1 /* Low level packing and unpacking of values for GDB, the GNU Debugger. 2 3 Copyright (C) 1986-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include "symtab.h" 23 #include "gdbtypes.h" 24 #include "value.h" 25 #include "gdbcore.h" 26 #include "command.h" 27 #include "gdbcmd.h" 28 #include "target.h" 29 #include "language.h" 30 #include "demangle.h" 31 #include "doublest.h" 32 #include "regcache.h" 33 #include "block.h" 34 #include "dfp.h" 35 #include "objfiles.h" 36 #include "valprint.h" 37 #include "cli/cli-decode.h" 38 #include "extension.h" 39 #include <ctype.h> 40 #include "tracepoint.h" 41 #include "cp-abi.h" 42 #include "user-regs.h" 43 44 /* Prototypes for exported functions. */ 45 46 void _initialize_values (void); 47 48 /* Definition of a user function. */ 49 struct internal_function 50 { 51 /* The name of the function. It is a bit odd to have this in the 52 function itself -- the user might use a differently-named 53 convenience variable to hold the function. */ 54 char *name; 55 56 /* The handler. */ 57 internal_function_fn handler; 58 59 /* User data for the handler. */ 60 void *cookie; 61 }; 62 63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */ 64 65 struct range 66 { 67 /* Lowest offset in the range. */ 68 int offset; 69 70 /* Length of the range. */ 71 int length; 72 }; 73 74 typedef struct range range_s; 75 76 DEF_VEC_O(range_s); 77 78 /* Returns true if the ranges defined by [offset1, offset1+len1) and 79 [offset2, offset2+len2) overlap. */ 80 81 static int 82 ranges_overlap (int offset1, int len1, 83 int offset2, int len2) 84 { 85 ULONGEST h, l; 86 87 l = max (offset1, offset2); 88 h = min (offset1 + len1, offset2 + len2); 89 return (l < h); 90 } 91 92 /* Returns true if the first argument is strictly less than the 93 second, useful for VEC_lower_bound. We keep ranges sorted by 94 offset and coalesce overlapping and contiguous ranges, so this just 95 compares the starting offset. */ 96 97 static int 98 range_lessthan (const range_s *r1, const range_s *r2) 99 { 100 return r1->offset < r2->offset; 101 } 102 103 /* Returns true if RANGES contains any range that overlaps [OFFSET, 104 OFFSET+LENGTH). */ 105 106 static int 107 ranges_contain (VEC(range_s) *ranges, int offset, int length) 108 { 109 range_s what; 110 int i; 111 112 what.offset = offset; 113 what.length = length; 114 115 /* We keep ranges sorted by offset and coalesce overlapping and 116 contiguous ranges, so to check if a range list contains a given 117 range, we can do a binary search for the position the given range 118 would be inserted if we only considered the starting OFFSET of 119 ranges. We call that position I. Since we also have LENGTH to 120 care for (this is a range afterall), we need to check if the 121 _previous_ range overlaps the I range. E.g., 122 123 R 124 |---| 125 |---| |---| |------| ... |--| 126 0 1 2 N 127 128 I=1 129 130 In the case above, the binary search would return `I=1', meaning, 131 this OFFSET should be inserted at position 1, and the current 132 position 1 should be pushed further (and before 2). But, `0' 133 overlaps with R. 134 135 Then we need to check if the I range overlaps the I range itself. 136 E.g., 137 138 R 139 |---| 140 |---| |---| |-------| ... |--| 141 0 1 2 N 142 143 I=1 144 */ 145 146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan); 147 148 if (i > 0) 149 { 150 struct range *bef = VEC_index (range_s, ranges, i - 1); 151 152 if (ranges_overlap (bef->offset, bef->length, offset, length)) 153 return 1; 154 } 155 156 if (i < VEC_length (range_s, ranges)) 157 { 158 struct range *r = VEC_index (range_s, ranges, i); 159 160 if (ranges_overlap (r->offset, r->length, offset, length)) 161 return 1; 162 } 163 164 return 0; 165 } 166 167 static struct cmd_list_element *functionlist; 168 169 /* Note that the fields in this structure are arranged to save a bit 170 of memory. */ 171 172 struct value 173 { 174 /* Type of value; either not an lval, or one of the various 175 different possible kinds of lval. */ 176 enum lval_type lval; 177 178 /* Is it modifiable? Only relevant if lval != not_lval. */ 179 unsigned int modifiable : 1; 180 181 /* If zero, contents of this value are in the contents field. If 182 nonzero, contents are in inferior. If the lval field is lval_memory, 183 the contents are in inferior memory at location.address plus offset. 184 The lval field may also be lval_register. 185 186 WARNING: This field is used by the code which handles watchpoints 187 (see breakpoint.c) to decide whether a particular value can be 188 watched by hardware watchpoints. If the lazy flag is set for 189 some member of a value chain, it is assumed that this member of 190 the chain doesn't need to be watched as part of watching the 191 value itself. This is how GDB avoids watching the entire struct 192 or array when the user wants to watch a single struct member or 193 array element. If you ever change the way lazy flag is set and 194 reset, be sure to consider this use as well! */ 195 unsigned int lazy : 1; 196 197 /* If value is a variable, is it initialized or not. */ 198 unsigned int initialized : 1; 199 200 /* If value is from the stack. If this is set, read_stack will be 201 used instead of read_memory to enable extra caching. */ 202 unsigned int stack : 1; 203 204 /* If the value has been released. */ 205 unsigned int released : 1; 206 207 /* Register number if the value is from a register. */ 208 short regnum; 209 210 /* Location of value (if lval). */ 211 union 212 { 213 /* If lval == lval_memory, this is the address in the inferior. 214 If lval == lval_register, this is the byte offset into the 215 registers structure. */ 216 CORE_ADDR address; 217 218 /* Pointer to internal variable. */ 219 struct internalvar *internalvar; 220 221 /* Pointer to xmethod worker. */ 222 struct xmethod_worker *xm_worker; 223 224 /* If lval == lval_computed, this is a set of function pointers 225 to use to access and describe the value, and a closure pointer 226 for them to use. */ 227 struct 228 { 229 /* Functions to call. */ 230 const struct lval_funcs *funcs; 231 232 /* Closure for those functions to use. */ 233 void *closure; 234 } computed; 235 } location; 236 237 /* Describes offset of a value within lval of a structure in bytes. 238 If lval == lval_memory, this is an offset to the address. If 239 lval == lval_register, this is a further offset from 240 location.address within the registers structure. Note also the 241 member embedded_offset below. */ 242 int offset; 243 244 /* Only used for bitfields; number of bits contained in them. */ 245 int bitsize; 246 247 /* Only used for bitfields; position of start of field. For 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ 250 int bitpos; 251 252 /* The number of references to this value. When a value is created, 253 the value chain holds a reference, so REFERENCE_COUNT is 1. If 254 release_value is called, this value is removed from the chain but 255 the caller of release_value now has a reference to this value. 256 The caller must arrange for a call to value_free later. */ 257 int reference_count; 258 259 /* Only used for bitfields; the containing value. This allows a 260 single read from the target when displaying multiple 261 bitfields. */ 262 struct value *parent; 263 264 /* Frame register value is relative to. This will be described in 265 the lval enum above as "lval_register". */ 266 struct frame_id frame_id; 267 268 /* Type of the value. */ 269 struct type *type; 270 271 /* If a value represents a C++ object, then the `type' field gives 272 the object's compile-time type. If the object actually belongs 273 to some class derived from `type', perhaps with other base 274 classes and additional members, then `type' is just a subobject 275 of the real thing, and the full object is probably larger than 276 `type' would suggest. 277 278 If `type' is a dynamic class (i.e. one with a vtable), then GDB 279 can actually determine the object's run-time type by looking at 280 the run-time type information in the vtable. When this 281 information is available, we may elect to read in the entire 282 object, for several reasons: 283 284 - When printing the value, the user would probably rather see the 285 full object, not just the limited portion apparent from the 286 compile-time type. 287 288 - If `type' has virtual base classes, then even printing `type' 289 alone may require reaching outside the `type' portion of the 290 object to wherever the virtual base class has been stored. 291 292 When we store the entire object, `enclosing_type' is the run-time 293 type -- the complete object -- and `embedded_offset' is the 294 offset of `type' within that larger type, in bytes. The 295 value_contents() macro takes `embedded_offset' into account, so 296 most GDB code continues to see the `type' portion of the value, 297 just as the inferior would. 298 299 If `type' is a pointer to an object, then `enclosing_type' is a 300 pointer to the object's run-time type, and `pointed_to_offset' is 301 the offset in bytes from the full object to the pointed-to object 302 -- that is, the value `embedded_offset' would have if we followed 303 the pointer and fetched the complete object. (I don't really see 304 the point. Why not just determine the run-time type when you 305 indirect, and avoid the special case? The contents don't matter 306 until you indirect anyway.) 307 308 If we're not doing anything fancy, `enclosing_type' is equal to 309 `type', and `embedded_offset' is zero, so everything works 310 normally. */ 311 struct type *enclosing_type; 312 int embedded_offset; 313 int pointed_to_offset; 314 315 /* Values are stored in a chain, so that they can be deleted easily 316 over calls to the inferior. Values assigned to internal 317 variables, put into the value history or exposed to Python are 318 taken off this list. */ 319 struct value *next; 320 321 /* Actual contents of the value. Target byte-order. NULL or not 322 valid if lazy is nonzero. */ 323 gdb_byte *contents; 324 325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges, 326 rather than available, since the common and default case is for a 327 value to be available. This is filled in at value read time. 328 The unavailable ranges are tracked in bits. Note that a contents 329 bit that has been optimized out doesn't really exist in the 330 program, so it can't be marked unavailable either. */ 331 VEC(range_s) *unavailable; 332 333 /* Likewise, but for optimized out contents (a chunk of the value of 334 a variable that does not actually exist in the program). If LVAL 335 is lval_register, this is a register ($pc, $sp, etc., never a 336 program variable) that has not been saved in the frame. Not 337 saved registers and optimized-out program variables values are 338 treated pretty much the same, except not-saved registers have a 339 different string representation and related error strings. */ 340 VEC(range_s) *optimized_out; 341 }; 342 343 int 344 value_bits_available (const struct value *value, int offset, int length) 345 { 346 gdb_assert (!value->lazy); 347 348 return !ranges_contain (value->unavailable, offset, length); 349 } 350 351 int 352 value_bytes_available (const struct value *value, int offset, int length) 353 { 354 return value_bits_available (value, 355 offset * TARGET_CHAR_BIT, 356 length * TARGET_CHAR_BIT); 357 } 358 359 int 360 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) 361 { 362 gdb_assert (!value->lazy); 363 364 return ranges_contain (value->optimized_out, bit_offset, bit_length); 365 } 366 367 int 368 value_entirely_available (struct value *value) 369 { 370 /* We can only tell whether the whole value is available when we try 371 to read it. */ 372 if (value->lazy) 373 value_fetch_lazy (value); 374 375 if (VEC_empty (range_s, value->unavailable)) 376 return 1; 377 return 0; 378 } 379 380 /* Returns true if VALUE is entirely covered by RANGES. If the value 381 is lazy, it'll be read now. Note that RANGE is a pointer to 382 pointer because reading the value might change *RANGE. */ 383 384 static int 385 value_entirely_covered_by_range_vector (struct value *value, 386 VEC(range_s) **ranges) 387 { 388 /* We can only tell whether the whole value is optimized out / 389 unavailable when we try to read it. */ 390 if (value->lazy) 391 value_fetch_lazy (value); 392 393 if (VEC_length (range_s, *ranges) == 1) 394 { 395 struct range *t = VEC_index (range_s, *ranges, 0); 396 397 if (t->offset == 0 398 && t->length == (TARGET_CHAR_BIT 399 * TYPE_LENGTH (value_enclosing_type (value)))) 400 return 1; 401 } 402 403 return 0; 404 } 405 406 int 407 value_entirely_unavailable (struct value *value) 408 { 409 return value_entirely_covered_by_range_vector (value, &value->unavailable); 410 } 411 412 int 413 value_entirely_optimized_out (struct value *value) 414 { 415 return value_entirely_covered_by_range_vector (value, &value->optimized_out); 416 } 417 418 /* Insert into the vector pointed to by VECTORP the bit range starting of 419 OFFSET bits, and extending for the next LENGTH bits. */ 420 421 static void 422 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length) 423 { 424 range_s newr; 425 int i; 426 427 /* Insert the range sorted. If there's overlap or the new range 428 would be contiguous with an existing range, merge. */ 429 430 newr.offset = offset; 431 newr.length = length; 432 433 /* Do a binary search for the position the given range would be 434 inserted if we only considered the starting OFFSET of ranges. 435 Call that position I. Since we also have LENGTH to care for 436 (this is a range afterall), we need to check if the _previous_ 437 range overlaps the I range. E.g., calling R the new range: 438 439 #1 - overlaps with previous 440 441 R 442 |-...-| 443 |---| |---| |------| ... |--| 444 0 1 2 N 445 446 I=1 447 448 In the case #1 above, the binary search would return `I=1', 449 meaning, this OFFSET should be inserted at position 1, and the 450 current position 1 should be pushed further (and become 2). But, 451 note that `0' overlaps with R, so we want to merge them. 452 453 A similar consideration needs to be taken if the new range would 454 be contiguous with the previous range: 455 456 #2 - contiguous with previous 457 458 R 459 |-...-| 460 |--| |---| |------| ... |--| 461 0 1 2 N 462 463 I=1 464 465 If there's no overlap with the previous range, as in: 466 467 #3 - not overlapping and not contiguous 468 469 R 470 |-...-| 471 |--| |---| |------| ... |--| 472 0 1 2 N 473 474 I=1 475 476 or if I is 0: 477 478 #4 - R is the range with lowest offset 479 480 R 481 |-...-| 482 |--| |---| |------| ... |--| 483 0 1 2 N 484 485 I=0 486 487 ... we just push the new range to I. 488 489 All the 4 cases above need to consider that the new range may 490 also overlap several of the ranges that follow, or that R may be 491 contiguous with the following range, and merge. E.g., 492 493 #5 - overlapping following ranges 494 495 R 496 |------------------------| 497 |--| |---| |------| ... |--| 498 0 1 2 N 499 500 I=0 501 502 or: 503 504 R 505 |-------| 506 |--| |---| |------| ... |--| 507 0 1 2 N 508 509 I=1 510 511 */ 512 513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan); 514 if (i > 0) 515 { 516 struct range *bef = VEC_index (range_s, *vectorp, i - 1); 517 518 if (ranges_overlap (bef->offset, bef->length, offset, length)) 519 { 520 /* #1 */ 521 ULONGEST l = min (bef->offset, offset); 522 ULONGEST h = max (bef->offset + bef->length, offset + length); 523 524 bef->offset = l; 525 bef->length = h - l; 526 i--; 527 } 528 else if (offset == bef->offset + bef->length) 529 { 530 /* #2 */ 531 bef->length += length; 532 i--; 533 } 534 else 535 { 536 /* #3 */ 537 VEC_safe_insert (range_s, *vectorp, i, &newr); 538 } 539 } 540 else 541 { 542 /* #4 */ 543 VEC_safe_insert (range_s, *vectorp, i, &newr); 544 } 545 546 /* Check whether the ranges following the one we've just added or 547 touched can be folded in (#5 above). */ 548 if (i + 1 < VEC_length (range_s, *vectorp)) 549 { 550 struct range *t; 551 struct range *r; 552 int removed = 0; 553 int next = i + 1; 554 555 /* Get the range we just touched. */ 556 t = VEC_index (range_s, *vectorp, i); 557 removed = 0; 558 559 i = next; 560 for (; VEC_iterate (range_s, *vectorp, i, r); i++) 561 if (r->offset <= t->offset + t->length) 562 { 563 ULONGEST l, h; 564 565 l = min (t->offset, r->offset); 566 h = max (t->offset + t->length, r->offset + r->length); 567 568 t->offset = l; 569 t->length = h - l; 570 571 removed++; 572 } 573 else 574 { 575 /* If we couldn't merge this one, we won't be able to 576 merge following ones either, since the ranges are 577 always sorted by OFFSET. */ 578 break; 579 } 580 581 if (removed != 0) 582 VEC_block_remove (range_s, *vectorp, next, removed); 583 } 584 } 585 586 void 587 mark_value_bits_unavailable (struct value *value, int offset, int length) 588 { 589 insert_into_bit_range_vector (&value->unavailable, offset, length); 590 } 591 592 void 593 mark_value_bytes_unavailable (struct value *value, int offset, int length) 594 { 595 mark_value_bits_unavailable (value, 596 offset * TARGET_CHAR_BIT, 597 length * TARGET_CHAR_BIT); 598 } 599 600 /* Find the first range in RANGES that overlaps the range defined by 601 OFFSET and LENGTH, starting at element POS in the RANGES vector, 602 Returns the index into RANGES where such overlapping range was 603 found, or -1 if none was found. */ 604 605 static int 606 find_first_range_overlap (VEC(range_s) *ranges, int pos, 607 int offset, int length) 608 { 609 range_s *r; 610 int i; 611 612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++) 613 if (ranges_overlap (r->offset, r->length, offset, length)) 614 return i; 615 616 return -1; 617 } 618 619 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at 620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise 621 return non-zero. 622 623 It must always be the case that: 624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT 625 626 It is assumed that memory can be accessed from: 627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT) 628 to: 629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) 630 / TARGET_CHAR_BIT) */ 631 static int 632 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, 633 const gdb_byte *ptr2, size_t offset2_bits, 634 size_t length_bits) 635 { 636 gdb_assert (offset1_bits % TARGET_CHAR_BIT 637 == offset2_bits % TARGET_CHAR_BIT); 638 639 if (offset1_bits % TARGET_CHAR_BIT != 0) 640 { 641 size_t bits; 642 gdb_byte mask, b1, b2; 643 644 /* The offset from the base pointers PTR1 and PTR2 is not a complete 645 number of bytes. A number of bits up to either the next exact 646 byte boundary, or LENGTH_BITS (which ever is sooner) will be 647 compared. */ 648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; 649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 650 mask = (1 << bits) - 1; 651 652 if (length_bits < bits) 653 { 654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); 655 bits = length_bits; 656 } 657 658 /* Now load the two bytes and mask off the bits we care about. */ 659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; 660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; 661 662 if (b1 != b2) 663 return 1; 664 665 /* Now update the length and offsets to take account of the bits 666 we've just compared. */ 667 length_bits -= bits; 668 offset1_bits += bits; 669 offset2_bits += bits; 670 } 671 672 if (length_bits % TARGET_CHAR_BIT != 0) 673 { 674 size_t bits; 675 size_t o1, o2; 676 gdb_byte mask, b1, b2; 677 678 /* The length is not an exact number of bytes. After the previous 679 IF.. block then the offsets are byte aligned, or the 680 length is zero (in which case this code is not reached). Compare 681 a number of bits at the end of the region, starting from an exact 682 byte boundary. */ 683 bits = length_bits % TARGET_CHAR_BIT; 684 o1 = offset1_bits + length_bits - bits; 685 o2 = offset2_bits + length_bits - bits; 686 687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); 689 690 gdb_assert (o1 % TARGET_CHAR_BIT == 0); 691 gdb_assert (o2 % TARGET_CHAR_BIT == 0); 692 693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; 694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; 695 696 if (b1 != b2) 697 return 1; 698 699 length_bits -= bits; 700 } 701 702 if (length_bits > 0) 703 { 704 /* We've now taken care of any stray "bits" at the start, or end of 705 the region to compare, the remainder can be covered with a simple 706 memcmp. */ 707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); 708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); 709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0); 710 711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, 712 ptr2 + offset2_bits / TARGET_CHAR_BIT, 713 length_bits / TARGET_CHAR_BIT); 714 } 715 716 /* Length is zero, regions match. */ 717 return 0; 718 } 719 720 /* Helper struct for find_first_range_overlap_and_match and 721 value_contents_bits_eq. Keep track of which slot of a given ranges 722 vector have we last looked at. */ 723 724 struct ranges_and_idx 725 { 726 /* The ranges. */ 727 VEC(range_s) *ranges; 728 729 /* The range we've last found in RANGES. Given ranges are sorted, 730 we can start the next lookup here. */ 731 int idx; 732 }; 733 734 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of 735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's 736 ranges starting at OFFSET2 bits. Return true if the ranges match 737 and fill in *L and *H with the overlapping window relative to 738 (both) OFFSET1 or OFFSET2. */ 739 740 static int 741 find_first_range_overlap_and_match (struct ranges_and_idx *rp1, 742 struct ranges_and_idx *rp2, 743 int offset1, int offset2, 744 int length, ULONGEST *l, ULONGEST *h) 745 { 746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, 747 offset1, length); 748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, 749 offset2, length); 750 751 if (rp1->idx == -1 && rp2->idx == -1) 752 { 753 *l = length; 754 *h = length; 755 return 1; 756 } 757 else if (rp1->idx == -1 || rp2->idx == -1) 758 return 0; 759 else 760 { 761 range_s *r1, *r2; 762 ULONGEST l1, h1; 763 ULONGEST l2, h2; 764 765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx); 766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx); 767 768 /* Get the unavailable windows intersected by the incoming 769 ranges. The first and last ranges that overlap the argument 770 range may be wider than said incoming arguments ranges. */ 771 l1 = max (offset1, r1->offset); 772 h1 = min (offset1 + length, r1->offset + r1->length); 773 774 l2 = max (offset2, r2->offset); 775 h2 = min (offset2 + length, offset2 + r2->length); 776 777 /* Make them relative to the respective start offsets, so we can 778 compare them for equality. */ 779 l1 -= offset1; 780 h1 -= offset1; 781 782 l2 -= offset2; 783 h2 -= offset2; 784 785 /* Different ranges, no match. */ 786 if (l1 != l2 || h1 != h2) 787 return 0; 788 789 *h = h1; 790 *l = l1; 791 return 1; 792 } 793 } 794 795 /* Helper function for value_contents_eq. The only difference is that 796 this function is bit rather than byte based. 797 798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits 799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits. 800 Return true if the available bits match. */ 801 802 static int 803 value_contents_bits_eq (const struct value *val1, int offset1, 804 const struct value *val2, int offset2, 805 int length) 806 { 807 /* Each array element corresponds to a ranges source (unavailable, 808 optimized out). '1' is for VAL1, '2' for VAL2. */ 809 struct ranges_and_idx rp1[2], rp2[2]; 810 811 /* See function description in value.h. */ 812 gdb_assert (!val1->lazy && !val2->lazy); 813 814 /* We shouldn't be trying to compare past the end of the values. */ 815 gdb_assert (offset1 + length 816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); 817 gdb_assert (offset2 + length 818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); 819 820 memset (&rp1, 0, sizeof (rp1)); 821 memset (&rp2, 0, sizeof (rp2)); 822 rp1[0].ranges = val1->unavailable; 823 rp2[0].ranges = val2->unavailable; 824 rp1[1].ranges = val1->optimized_out; 825 rp2[1].ranges = val2->optimized_out; 826 827 while (length > 0) 828 { 829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */ 830 int i; 831 832 for (i = 0; i < 2; i++) 833 { 834 ULONGEST l_tmp, h_tmp; 835 836 /* The contents only match equal if the invalid/unavailable 837 contents ranges match as well. */ 838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], 839 offset1, offset2, length, 840 &l_tmp, &h_tmp)) 841 return 0; 842 843 /* We're interested in the lowest/first range found. */ 844 if (i == 0 || l_tmp < l) 845 { 846 l = l_tmp; 847 h = h_tmp; 848 } 849 } 850 851 /* Compare the available/valid contents. */ 852 if (memcmp_with_bit_offsets (val1->contents, offset1, 853 val2->contents, offset2, l) != 0) 854 return 0; 855 856 length -= h; 857 offset1 += h; 858 offset2 += h; 859 } 860 861 return 1; 862 } 863 864 int 865 value_contents_eq (const struct value *val1, int offset1, 866 const struct value *val2, int offset2, 867 int length) 868 { 869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, 870 val2, offset2 * TARGET_CHAR_BIT, 871 length * TARGET_CHAR_BIT); 872 } 873 874 /* Prototypes for local functions. */ 875 876 static void show_values (char *, int); 877 878 static void show_convenience (char *, int); 879 880 881 /* The value-history records all the values printed 882 by print commands during this session. Each chunk 883 records 60 consecutive values. The first chunk on 884 the chain records the most recent values. 885 The total number of values is in value_history_count. */ 886 887 #define VALUE_HISTORY_CHUNK 60 888 889 struct value_history_chunk 890 { 891 struct value_history_chunk *next; 892 struct value *values[VALUE_HISTORY_CHUNK]; 893 }; 894 895 /* Chain of chunks now in use. */ 896 897 static struct value_history_chunk *value_history_chain; 898 899 static int value_history_count; /* Abs number of last entry stored. */ 900 901 902 /* List of all value objects currently allocated 903 (except for those released by calls to release_value) 904 This is so they can be freed after each command. */ 905 906 static struct value *all_values; 907 908 /* Allocate a lazy value for type TYPE. Its actual content is 909 "lazily" allocated too: the content field of the return value is 910 NULL; it will be allocated when it is fetched from the target. */ 911 912 struct value * 913 allocate_value_lazy (struct type *type) 914 { 915 struct value *val; 916 917 /* Call check_typedef on our type to make sure that, if TYPE 918 is a TYPE_CODE_TYPEDEF, its length is set to the length 919 of the target type instead of zero. However, we do not 920 replace the typedef type by the target type, because we want 921 to keep the typedef in order to be able to set the VAL's type 922 description correctly. */ 923 check_typedef (type); 924 925 val = (struct value *) xzalloc (sizeof (struct value)); 926 val->contents = NULL; 927 val->next = all_values; 928 all_values = val; 929 val->type = type; 930 val->enclosing_type = type; 931 VALUE_LVAL (val) = not_lval; 932 val->location.address = 0; 933 VALUE_FRAME_ID (val) = null_frame_id; 934 val->offset = 0; 935 val->bitpos = 0; 936 val->bitsize = 0; 937 VALUE_REGNUM (val) = -1; 938 val->lazy = 1; 939 val->embedded_offset = 0; 940 val->pointed_to_offset = 0; 941 val->modifiable = 1; 942 val->initialized = 1; /* Default to initialized. */ 943 944 /* Values start out on the all_values chain. */ 945 val->reference_count = 1; 946 947 return val; 948 } 949 950 /* Allocate the contents of VAL if it has not been allocated yet. */ 951 952 static void 953 allocate_value_contents (struct value *val) 954 { 955 if (!val->contents) 956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); 957 } 958 959 /* Allocate a value and its contents for type TYPE. */ 960 961 struct value * 962 allocate_value (struct type *type) 963 { 964 struct value *val = allocate_value_lazy (type); 965 966 allocate_value_contents (val); 967 val->lazy = 0; 968 return val; 969 } 970 971 /* Allocate a value that has the correct length 972 for COUNT repetitions of type TYPE. */ 973 974 struct value * 975 allocate_repeat_value (struct type *type, int count) 976 { 977 int low_bound = current_language->string_lower_bound; /* ??? */ 978 /* FIXME-type-allocation: need a way to free this type when we are 979 done with it. */ 980 struct type *array_type 981 = lookup_array_range_type (type, low_bound, count + low_bound - 1); 982 983 return allocate_value (array_type); 984 } 985 986 struct value * 987 allocate_computed_value (struct type *type, 988 const struct lval_funcs *funcs, 989 void *closure) 990 { 991 struct value *v = allocate_value_lazy (type); 992 993 VALUE_LVAL (v) = lval_computed; 994 v->location.computed.funcs = funcs; 995 v->location.computed.closure = closure; 996 997 return v; 998 } 999 1000 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ 1001 1002 struct value * 1003 allocate_optimized_out_value (struct type *type) 1004 { 1005 struct value *retval = allocate_value_lazy (type); 1006 1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); 1008 set_value_lazy (retval, 0); 1009 return retval; 1010 } 1011 1012 /* Accessor methods. */ 1013 1014 struct value * 1015 value_next (struct value *value) 1016 { 1017 return value->next; 1018 } 1019 1020 struct type * 1021 value_type (const struct value *value) 1022 { 1023 return value->type; 1024 } 1025 void 1026 deprecated_set_value_type (struct value *value, struct type *type) 1027 { 1028 value->type = type; 1029 } 1030 1031 int 1032 value_offset (const struct value *value) 1033 { 1034 return value->offset; 1035 } 1036 void 1037 set_value_offset (struct value *value, int offset) 1038 { 1039 value->offset = offset; 1040 } 1041 1042 int 1043 value_bitpos (const struct value *value) 1044 { 1045 return value->bitpos; 1046 } 1047 void 1048 set_value_bitpos (struct value *value, int bit) 1049 { 1050 value->bitpos = bit; 1051 } 1052 1053 int 1054 value_bitsize (const struct value *value) 1055 { 1056 return value->bitsize; 1057 } 1058 void 1059 set_value_bitsize (struct value *value, int bit) 1060 { 1061 value->bitsize = bit; 1062 } 1063 1064 struct value * 1065 value_parent (struct value *value) 1066 { 1067 return value->parent; 1068 } 1069 1070 /* See value.h. */ 1071 1072 void 1073 set_value_parent (struct value *value, struct value *parent) 1074 { 1075 struct value *old = value->parent; 1076 1077 value->parent = parent; 1078 if (parent != NULL) 1079 value_incref (parent); 1080 value_free (old); 1081 } 1082 1083 gdb_byte * 1084 value_contents_raw (struct value *value) 1085 { 1086 allocate_value_contents (value); 1087 return value->contents + value->embedded_offset; 1088 } 1089 1090 gdb_byte * 1091 value_contents_all_raw (struct value *value) 1092 { 1093 allocate_value_contents (value); 1094 return value->contents; 1095 } 1096 1097 struct type * 1098 value_enclosing_type (struct value *value) 1099 { 1100 return value->enclosing_type; 1101 } 1102 1103 /* Look at value.h for description. */ 1104 1105 struct type * 1106 value_actual_type (struct value *value, int resolve_simple_types, 1107 int *real_type_found) 1108 { 1109 struct value_print_options opts; 1110 struct type *result; 1111 1112 get_user_print_options (&opts); 1113 1114 if (real_type_found) 1115 *real_type_found = 0; 1116 result = value_type (value); 1117 if (opts.objectprint) 1118 { 1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to 1120 fetch its rtti type. */ 1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR 1122 || TYPE_CODE (result) == TYPE_CODE_REF) 1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) 1124 == TYPE_CODE_STRUCT) 1125 { 1126 struct type *real_type; 1127 1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); 1129 if (real_type) 1130 { 1131 if (real_type_found) 1132 *real_type_found = 1; 1133 result = real_type; 1134 } 1135 } 1136 else if (resolve_simple_types) 1137 { 1138 if (real_type_found) 1139 *real_type_found = 1; 1140 result = value_enclosing_type (value); 1141 } 1142 } 1143 1144 return result; 1145 } 1146 1147 void 1148 error_value_optimized_out (void) 1149 { 1150 error (_("value has been optimized out")); 1151 } 1152 1153 static void 1154 require_not_optimized_out (const struct value *value) 1155 { 1156 if (!VEC_empty (range_s, value->optimized_out)) 1157 { 1158 if (value->lval == lval_register) 1159 error (_("register has not been saved in frame")); 1160 else 1161 error_value_optimized_out (); 1162 } 1163 } 1164 1165 static void 1166 require_available (const struct value *value) 1167 { 1168 if (!VEC_empty (range_s, value->unavailable)) 1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); 1170 } 1171 1172 const gdb_byte * 1173 value_contents_for_printing (struct value *value) 1174 { 1175 if (value->lazy) 1176 value_fetch_lazy (value); 1177 return value->contents; 1178 } 1179 1180 const gdb_byte * 1181 value_contents_for_printing_const (const struct value *value) 1182 { 1183 gdb_assert (!value->lazy); 1184 return value->contents; 1185 } 1186 1187 const gdb_byte * 1188 value_contents_all (struct value *value) 1189 { 1190 const gdb_byte *result = value_contents_for_printing (value); 1191 require_not_optimized_out (value); 1192 require_available (value); 1193 return result; 1194 } 1195 1196 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, 1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ 1198 1199 static void 1200 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset, 1201 VEC (range_s) *src_range, int src_bit_offset, 1202 int bit_length) 1203 { 1204 range_s *r; 1205 int i; 1206 1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++) 1208 { 1209 ULONGEST h, l; 1210 1211 l = max (r->offset, src_bit_offset); 1212 h = min (r->offset + r->length, src_bit_offset + bit_length); 1213 1214 if (l < h) 1215 insert_into_bit_range_vector (dst_range, 1216 dst_bit_offset + (l - src_bit_offset), 1217 h - l); 1218 } 1219 } 1220 1221 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, 1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ 1223 1224 static void 1225 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, 1226 const struct value *src, int src_bit_offset, 1227 int bit_length) 1228 { 1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, 1230 src->unavailable, src_bit_offset, 1231 bit_length); 1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, 1233 src->optimized_out, src_bit_offset, 1234 bit_length); 1235 } 1236 1237 /* Copy LENGTH bytes of SRC value's (all) contents 1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all) 1239 contents, starting at DST_OFFSET. If unavailable contents are 1240 being copied from SRC, the corresponding DST contents are marked 1241 unavailable accordingly. Neither DST nor SRC may be lazy 1242 values. 1243 1244 It is assumed the contents of DST in the [DST_OFFSET, 1245 DST_OFFSET+LENGTH) range are wholly available. */ 1246 1247 void 1248 value_contents_copy_raw (struct value *dst, int dst_offset, 1249 struct value *src, int src_offset, int length) 1250 { 1251 range_s *r; 1252 int i; 1253 int src_bit_offset, dst_bit_offset, bit_length; 1254 1255 /* A lazy DST would make that this copy operation useless, since as 1256 soon as DST's contents were un-lazied (by a later value_contents 1257 call, say), the contents would be overwritten. A lazy SRC would 1258 mean we'd be copying garbage. */ 1259 gdb_assert (!dst->lazy && !src->lazy); 1260 1261 /* The overwritten DST range gets unavailability ORed in, not 1262 replaced. Make sure to remember to implement replacing if it 1263 turns out actually necessary. */ 1264 gdb_assert (value_bytes_available (dst, dst_offset, length)); 1265 gdb_assert (!value_bits_any_optimized_out (dst, 1266 TARGET_CHAR_BIT * dst_offset, 1267 TARGET_CHAR_BIT * length)); 1268 1269 /* Copy the data. */ 1270 memcpy (value_contents_all_raw (dst) + dst_offset, 1271 value_contents_all_raw (src) + src_offset, 1272 length); 1273 1274 /* Copy the meta-data, adjusted. */ 1275 src_bit_offset = src_offset * TARGET_CHAR_BIT; 1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT; 1277 bit_length = length * TARGET_CHAR_BIT; 1278 1279 value_ranges_copy_adjusted (dst, dst_bit_offset, 1280 src, src_bit_offset, 1281 bit_length); 1282 } 1283 1284 /* Copy LENGTH bytes of SRC value's (all) contents 1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's 1286 (all) contents, starting at DST_OFFSET. If unavailable contents 1287 are being copied from SRC, the corresponding DST contents are 1288 marked unavailable accordingly. DST must not be lazy. If SRC is 1289 lazy, it will be fetched now. 1290 1291 It is assumed the contents of DST in the [DST_OFFSET, 1292 DST_OFFSET+LENGTH) range are wholly available. */ 1293 1294 void 1295 value_contents_copy (struct value *dst, int dst_offset, 1296 struct value *src, int src_offset, int length) 1297 { 1298 if (src->lazy) 1299 value_fetch_lazy (src); 1300 1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length); 1302 } 1303 1304 int 1305 value_lazy (struct value *value) 1306 { 1307 return value->lazy; 1308 } 1309 1310 void 1311 set_value_lazy (struct value *value, int val) 1312 { 1313 value->lazy = val; 1314 } 1315 1316 int 1317 value_stack (struct value *value) 1318 { 1319 return value->stack; 1320 } 1321 1322 void 1323 set_value_stack (struct value *value, int val) 1324 { 1325 value->stack = val; 1326 } 1327 1328 const gdb_byte * 1329 value_contents (struct value *value) 1330 { 1331 const gdb_byte *result = value_contents_writeable (value); 1332 require_not_optimized_out (value); 1333 require_available (value); 1334 return result; 1335 } 1336 1337 gdb_byte * 1338 value_contents_writeable (struct value *value) 1339 { 1340 if (value->lazy) 1341 value_fetch_lazy (value); 1342 return value_contents_raw (value); 1343 } 1344 1345 int 1346 value_optimized_out (struct value *value) 1347 { 1348 /* We can only know if a value is optimized out once we have tried to 1349 fetch it. */ 1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy) 1351 value_fetch_lazy (value); 1352 1353 return !VEC_empty (range_s, value->optimized_out); 1354 } 1355 1356 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and 1357 the following LENGTH bytes. */ 1358 1359 void 1360 mark_value_bytes_optimized_out (struct value *value, int offset, int length) 1361 { 1362 mark_value_bits_optimized_out (value, 1363 offset * TARGET_CHAR_BIT, 1364 length * TARGET_CHAR_BIT); 1365 } 1366 1367 /* See value.h. */ 1368 1369 void 1370 mark_value_bits_optimized_out (struct value *value, int offset, int length) 1371 { 1372 insert_into_bit_range_vector (&value->optimized_out, offset, length); 1373 } 1374 1375 int 1376 value_bits_synthetic_pointer (const struct value *value, 1377 int offset, int length) 1378 { 1379 if (value->lval != lval_computed 1380 || !value->location.computed.funcs->check_synthetic_pointer) 1381 return 0; 1382 return value->location.computed.funcs->check_synthetic_pointer (value, 1383 offset, 1384 length); 1385 } 1386 1387 int 1388 value_embedded_offset (struct value *value) 1389 { 1390 return value->embedded_offset; 1391 } 1392 1393 void 1394 set_value_embedded_offset (struct value *value, int val) 1395 { 1396 value->embedded_offset = val; 1397 } 1398 1399 int 1400 value_pointed_to_offset (struct value *value) 1401 { 1402 return value->pointed_to_offset; 1403 } 1404 1405 void 1406 set_value_pointed_to_offset (struct value *value, int val) 1407 { 1408 value->pointed_to_offset = val; 1409 } 1410 1411 const struct lval_funcs * 1412 value_computed_funcs (const struct value *v) 1413 { 1414 gdb_assert (value_lval_const (v) == lval_computed); 1415 1416 return v->location.computed.funcs; 1417 } 1418 1419 void * 1420 value_computed_closure (const struct value *v) 1421 { 1422 gdb_assert (v->lval == lval_computed); 1423 1424 return v->location.computed.closure; 1425 } 1426 1427 enum lval_type * 1428 deprecated_value_lval_hack (struct value *value) 1429 { 1430 return &value->lval; 1431 } 1432 1433 enum lval_type 1434 value_lval_const (const struct value *value) 1435 { 1436 return value->lval; 1437 } 1438 1439 CORE_ADDR 1440 value_address (const struct value *value) 1441 { 1442 if (value->lval == lval_internalvar 1443 || value->lval == lval_internalvar_component 1444 || value->lval == lval_xcallable) 1445 return 0; 1446 if (value->parent != NULL) 1447 return value_address (value->parent) + value->offset; 1448 else 1449 return value->location.address + value->offset; 1450 } 1451 1452 CORE_ADDR 1453 value_raw_address (struct value *value) 1454 { 1455 if (value->lval == lval_internalvar 1456 || value->lval == lval_internalvar_component 1457 || value->lval == lval_xcallable) 1458 return 0; 1459 return value->location.address; 1460 } 1461 1462 void 1463 set_value_address (struct value *value, CORE_ADDR addr) 1464 { 1465 gdb_assert (value->lval != lval_internalvar 1466 && value->lval != lval_internalvar_component 1467 && value->lval != lval_xcallable); 1468 value->location.address = addr; 1469 } 1470 1471 struct internalvar ** 1472 deprecated_value_internalvar_hack (struct value *value) 1473 { 1474 return &value->location.internalvar; 1475 } 1476 1477 struct frame_id * 1478 deprecated_value_frame_id_hack (struct value *value) 1479 { 1480 return &value->frame_id; 1481 } 1482 1483 short * 1484 deprecated_value_regnum_hack (struct value *value) 1485 { 1486 return &value->regnum; 1487 } 1488 1489 int 1490 deprecated_value_modifiable (struct value *value) 1491 { 1492 return value->modifiable; 1493 } 1494 1495 /* Return a mark in the value chain. All values allocated after the 1496 mark is obtained (except for those released) are subject to being freed 1497 if a subsequent value_free_to_mark is passed the mark. */ 1498 struct value * 1499 value_mark (void) 1500 { 1501 return all_values; 1502 } 1503 1504 /* Take a reference to VAL. VAL will not be deallocated until all 1505 references are released. */ 1506 1507 void 1508 value_incref (struct value *val) 1509 { 1510 val->reference_count++; 1511 } 1512 1513 /* Release a reference to VAL, which was acquired with value_incref. 1514 This function is also called to deallocate values from the value 1515 chain. */ 1516 1517 void 1518 value_free (struct value *val) 1519 { 1520 if (val) 1521 { 1522 gdb_assert (val->reference_count > 0); 1523 val->reference_count--; 1524 if (val->reference_count > 0) 1525 return; 1526 1527 /* If there's an associated parent value, drop our reference to 1528 it. */ 1529 if (val->parent != NULL) 1530 value_free (val->parent); 1531 1532 if (VALUE_LVAL (val) == lval_computed) 1533 { 1534 const struct lval_funcs *funcs = val->location.computed.funcs; 1535 1536 if (funcs->free_closure) 1537 funcs->free_closure (val); 1538 } 1539 else if (VALUE_LVAL (val) == lval_xcallable) 1540 free_xmethod_worker (val->location.xm_worker); 1541 1542 xfree (val->contents); 1543 VEC_free (range_s, val->unavailable); 1544 } 1545 xfree (val); 1546 } 1547 1548 /* Free all values allocated since MARK was obtained by value_mark 1549 (except for those released). */ 1550 void 1551 value_free_to_mark (struct value *mark) 1552 { 1553 struct value *val; 1554 struct value *next; 1555 1556 for (val = all_values; val && val != mark; val = next) 1557 { 1558 next = val->next; 1559 val->released = 1; 1560 value_free (val); 1561 } 1562 all_values = val; 1563 } 1564 1565 /* Free all the values that have been allocated (except for those released). 1566 Call after each command, successful or not. 1567 In practice this is called before each command, which is sufficient. */ 1568 1569 void 1570 free_all_values (void) 1571 { 1572 struct value *val; 1573 struct value *next; 1574 1575 for (val = all_values; val; val = next) 1576 { 1577 next = val->next; 1578 val->released = 1; 1579 value_free (val); 1580 } 1581 1582 all_values = 0; 1583 } 1584 1585 /* Frees all the elements in a chain of values. */ 1586 1587 void 1588 free_value_chain (struct value *v) 1589 { 1590 struct value *next; 1591 1592 for (; v; v = next) 1593 { 1594 next = value_next (v); 1595 value_free (v); 1596 } 1597 } 1598 1599 /* Remove VAL from the chain all_values 1600 so it will not be freed automatically. */ 1601 1602 void 1603 release_value (struct value *val) 1604 { 1605 struct value *v; 1606 1607 if (all_values == val) 1608 { 1609 all_values = val->next; 1610 val->next = NULL; 1611 val->released = 1; 1612 return; 1613 } 1614 1615 for (v = all_values; v; v = v->next) 1616 { 1617 if (v->next == val) 1618 { 1619 v->next = val->next; 1620 val->next = NULL; 1621 val->released = 1; 1622 break; 1623 } 1624 } 1625 } 1626 1627 /* If the value is not already released, release it. 1628 If the value is already released, increment its reference count. 1629 That is, this function ensures that the value is released from the 1630 value chain and that the caller owns a reference to it. */ 1631 1632 void 1633 release_value_or_incref (struct value *val) 1634 { 1635 if (val->released) 1636 value_incref (val); 1637 else 1638 release_value (val); 1639 } 1640 1641 /* Release all values up to mark */ 1642 struct value * 1643 value_release_to_mark (struct value *mark) 1644 { 1645 struct value *val; 1646 struct value *next; 1647 1648 for (val = next = all_values; next; next = next->next) 1649 { 1650 if (next->next == mark) 1651 { 1652 all_values = next->next; 1653 next->next = NULL; 1654 return val; 1655 } 1656 next->released = 1; 1657 } 1658 all_values = 0; 1659 return val; 1660 } 1661 1662 /* Return a copy of the value ARG. 1663 It contains the same contents, for same memory address, 1664 but it's a different block of storage. */ 1665 1666 struct value * 1667 value_copy (struct value *arg) 1668 { 1669 struct type *encl_type = value_enclosing_type (arg); 1670 struct value *val; 1671 1672 if (value_lazy (arg)) 1673 val = allocate_value_lazy (encl_type); 1674 else 1675 val = allocate_value (encl_type); 1676 val->type = arg->type; 1677 VALUE_LVAL (val) = VALUE_LVAL (arg); 1678 val->location = arg->location; 1679 val->offset = arg->offset; 1680 val->bitpos = arg->bitpos; 1681 val->bitsize = arg->bitsize; 1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); 1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg); 1684 val->lazy = arg->lazy; 1685 val->embedded_offset = value_embedded_offset (arg); 1686 val->pointed_to_offset = arg->pointed_to_offset; 1687 val->modifiable = arg->modifiable; 1688 if (!value_lazy (val)) 1689 { 1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), 1691 TYPE_LENGTH (value_enclosing_type (arg))); 1692 1693 } 1694 val->unavailable = VEC_copy (range_s, arg->unavailable); 1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out); 1696 set_value_parent (val, arg->parent); 1697 if (VALUE_LVAL (val) == lval_computed) 1698 { 1699 const struct lval_funcs *funcs = val->location.computed.funcs; 1700 1701 if (funcs->copy_closure) 1702 val->location.computed.closure = funcs->copy_closure (val); 1703 } 1704 return val; 1705 } 1706 1707 /* Return a "const" and/or "volatile" qualified version of the value V. 1708 If CNST is true, then the returned value will be qualified with 1709 "const". 1710 if VOLTL is true, then the returned value will be qualified with 1711 "volatile". */ 1712 1713 struct value * 1714 make_cv_value (int cnst, int voltl, struct value *v) 1715 { 1716 struct type *val_type = value_type (v); 1717 struct type *enclosing_type = value_enclosing_type (v); 1718 struct value *cv_val = value_copy (v); 1719 1720 deprecated_set_value_type (cv_val, 1721 make_cv_type (cnst, voltl, val_type, NULL)); 1722 set_value_enclosing_type (cv_val, 1723 make_cv_type (cnst, voltl, enclosing_type, NULL)); 1724 1725 return cv_val; 1726 } 1727 1728 /* Return a version of ARG that is non-lvalue. */ 1729 1730 struct value * 1731 value_non_lval (struct value *arg) 1732 { 1733 if (VALUE_LVAL (arg) != not_lval) 1734 { 1735 struct type *enc_type = value_enclosing_type (arg); 1736 struct value *val = allocate_value (enc_type); 1737 1738 memcpy (value_contents_all_raw (val), value_contents_all (arg), 1739 TYPE_LENGTH (enc_type)); 1740 val->type = arg->type; 1741 set_value_embedded_offset (val, value_embedded_offset (arg)); 1742 set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); 1743 return val; 1744 } 1745 return arg; 1746 } 1747 1748 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ 1749 1750 void 1751 value_force_lval (struct value *v, CORE_ADDR addr) 1752 { 1753 gdb_assert (VALUE_LVAL (v) == not_lval); 1754 1755 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); 1756 v->lval = lval_memory; 1757 v->location.address = addr; 1758 } 1759 1760 void 1761 set_value_component_location (struct value *component, 1762 const struct value *whole) 1763 { 1764 gdb_assert (whole->lval != lval_xcallable); 1765 1766 if (whole->lval == lval_internalvar) 1767 VALUE_LVAL (component) = lval_internalvar_component; 1768 else 1769 VALUE_LVAL (component) = whole->lval; 1770 1771 component->location = whole->location; 1772 if (whole->lval == lval_computed) 1773 { 1774 const struct lval_funcs *funcs = whole->location.computed.funcs; 1775 1776 if (funcs->copy_closure) 1777 component->location.computed.closure = funcs->copy_closure (whole); 1778 } 1779 } 1780 1781 1782 /* Access to the value history. */ 1783 1784 /* Record a new value in the value history. 1785 Returns the absolute history index of the entry. */ 1786 1787 int 1788 record_latest_value (struct value *val) 1789 { 1790 int i; 1791 1792 /* We don't want this value to have anything to do with the inferior anymore. 1793 In particular, "set $1 = 50" should not affect the variable from which 1794 the value was taken, and fast watchpoints should be able to assume that 1795 a value on the value history never changes. */ 1796 if (value_lazy (val)) 1797 value_fetch_lazy (val); 1798 /* We preserve VALUE_LVAL so that the user can find out where it was fetched 1799 from. This is a bit dubious, because then *&$1 does not just return $1 1800 but the current contents of that location. c'est la vie... */ 1801 val->modifiable = 0; 1802 1803 /* The value may have already been released, in which case we're adding a 1804 new reference for its entry in the history. That is why we call 1805 release_value_or_incref here instead of release_value. */ 1806 release_value_or_incref (val); 1807 1808 /* Here we treat value_history_count as origin-zero 1809 and applying to the value being stored now. */ 1810 1811 i = value_history_count % VALUE_HISTORY_CHUNK; 1812 if (i == 0) 1813 { 1814 struct value_history_chunk *newobj 1815 = (struct value_history_chunk *) 1816 1817 xmalloc (sizeof (struct value_history_chunk)); 1818 memset (newobj->values, 0, sizeof newobj->values); 1819 newobj->next = value_history_chain; 1820 value_history_chain = newobj; 1821 } 1822 1823 value_history_chain->values[i] = val; 1824 1825 /* Now we regard value_history_count as origin-one 1826 and applying to the value just stored. */ 1827 1828 return ++value_history_count; 1829 } 1830 1831 /* Return a copy of the value in the history with sequence number NUM. */ 1832 1833 struct value * 1834 access_value_history (int num) 1835 { 1836 struct value_history_chunk *chunk; 1837 int i; 1838 int absnum = num; 1839 1840 if (absnum <= 0) 1841 absnum += value_history_count; 1842 1843 if (absnum <= 0) 1844 { 1845 if (num == 0) 1846 error (_("The history is empty.")); 1847 else if (num == 1) 1848 error (_("There is only one value in the history.")); 1849 else 1850 error (_("History does not go back to $$%d."), -num); 1851 } 1852 if (absnum > value_history_count) 1853 error (_("History has not yet reached $%d."), absnum); 1854 1855 absnum--; 1856 1857 /* Now absnum is always absolute and origin zero. */ 1858 1859 chunk = value_history_chain; 1860 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK 1861 - absnum / VALUE_HISTORY_CHUNK; 1862 i > 0; i--) 1863 chunk = chunk->next; 1864 1865 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); 1866 } 1867 1868 static void 1869 show_values (char *num_exp, int from_tty) 1870 { 1871 int i; 1872 struct value *val; 1873 static int num = 1; 1874 1875 if (num_exp) 1876 { 1877 /* "show values +" should print from the stored position. 1878 "show values <exp>" should print around value number <exp>. */ 1879 if (num_exp[0] != '+' || num_exp[1] != '\0') 1880 num = parse_and_eval_long (num_exp) - 5; 1881 } 1882 else 1883 { 1884 /* "show values" means print the last 10 values. */ 1885 num = value_history_count - 9; 1886 } 1887 1888 if (num <= 0) 1889 num = 1; 1890 1891 for (i = num; i < num + 10 && i <= value_history_count; i++) 1892 { 1893 struct value_print_options opts; 1894 1895 val = access_value_history (i); 1896 printf_filtered (("$%d = "), i); 1897 get_user_print_options (&opts); 1898 value_print (val, gdb_stdout, &opts); 1899 printf_filtered (("\n")); 1900 } 1901 1902 /* The next "show values +" should start after what we just printed. */ 1903 num += 10; 1904 1905 /* Hitting just return after this command should do the same thing as 1906 "show values +". If num_exp is null, this is unnecessary, since 1907 "show values +" is not useful after "show values". */ 1908 if (from_tty && num_exp) 1909 { 1910 num_exp[0] = '+'; 1911 num_exp[1] = '\0'; 1912 } 1913 } 1914 1915 enum internalvar_kind 1916 { 1917 /* The internal variable is empty. */ 1918 INTERNALVAR_VOID, 1919 1920 /* The value of the internal variable is provided directly as 1921 a GDB value object. */ 1922 INTERNALVAR_VALUE, 1923 1924 /* A fresh value is computed via a call-back routine on every 1925 access to the internal variable. */ 1926 INTERNALVAR_MAKE_VALUE, 1927 1928 /* The internal variable holds a GDB internal convenience function. */ 1929 INTERNALVAR_FUNCTION, 1930 1931 /* The variable holds an integer value. */ 1932 INTERNALVAR_INTEGER, 1933 1934 /* The variable holds a GDB-provided string. */ 1935 INTERNALVAR_STRING, 1936 }; 1937 1938 union internalvar_data 1939 { 1940 /* A value object used with INTERNALVAR_VALUE. */ 1941 struct value *value; 1942 1943 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ 1944 struct 1945 { 1946 /* The functions to call. */ 1947 const struct internalvar_funcs *functions; 1948 1949 /* The function's user-data. */ 1950 void *data; 1951 } make_value; 1952 1953 /* The internal function used with INTERNALVAR_FUNCTION. */ 1954 struct 1955 { 1956 struct internal_function *function; 1957 /* True if this is the canonical name for the function. */ 1958 int canonical; 1959 } fn; 1960 1961 /* An integer value used with INTERNALVAR_INTEGER. */ 1962 struct 1963 { 1964 /* If type is non-NULL, it will be used as the type to generate 1965 a value for this internal variable. If type is NULL, a default 1966 integer type for the architecture is used. */ 1967 struct type *type; 1968 LONGEST val; 1969 } integer; 1970 1971 /* A string value used with INTERNALVAR_STRING. */ 1972 char *string; 1973 }; 1974 1975 /* Internal variables. These are variables within the debugger 1976 that hold values assigned by debugger commands. 1977 The user refers to them with a '$' prefix 1978 that does not appear in the variable names stored internally. */ 1979 1980 struct internalvar 1981 { 1982 struct internalvar *next; 1983 char *name; 1984 1985 /* We support various different kinds of content of an internal variable. 1986 enum internalvar_kind specifies the kind, and union internalvar_data 1987 provides the data associated with this particular kind. */ 1988 1989 enum internalvar_kind kind; 1990 1991 union internalvar_data u; 1992 }; 1993 1994 static struct internalvar *internalvars; 1995 1996 /* If the variable does not already exist create it and give it the 1997 value given. If no value is given then the default is zero. */ 1998 static void 1999 init_if_undefined_command (char* args, int from_tty) 2000 { 2001 struct internalvar* intvar; 2002 2003 /* Parse the expression - this is taken from set_command(). */ 2004 struct expression *expr = parse_expression (args); 2005 register struct cleanup *old_chain = 2006 make_cleanup (free_current_contents, &expr); 2007 2008 /* Validate the expression. 2009 Was the expression an assignment? 2010 Or even an expression at all? */ 2011 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) 2012 error (_("Init-if-undefined requires an assignment expression.")); 2013 2014 /* Extract the variable from the parsed expression. 2015 In the case of an assign the lvalue will be in elts[1] and elts[2]. */ 2016 if (expr->elts[1].opcode != OP_INTERNALVAR) 2017 error (_("The first parameter to init-if-undefined " 2018 "should be a GDB variable.")); 2019 intvar = expr->elts[2].internalvar; 2020 2021 /* Only evaluate the expression if the lvalue is void. 2022 This may still fail if the expresssion is invalid. */ 2023 if (intvar->kind == INTERNALVAR_VOID) 2024 evaluate_expression (expr); 2025 2026 do_cleanups (old_chain); 2027 } 2028 2029 2030 /* Look up an internal variable with name NAME. NAME should not 2031 normally include a dollar sign. 2032 2033 If the specified internal variable does not exist, 2034 the return value is NULL. */ 2035 2036 struct internalvar * 2037 lookup_only_internalvar (const char *name) 2038 { 2039 struct internalvar *var; 2040 2041 for (var = internalvars; var; var = var->next) 2042 if (strcmp (var->name, name) == 0) 2043 return var; 2044 2045 return NULL; 2046 } 2047 2048 /* Complete NAME by comparing it to the names of internal variables. 2049 Returns a vector of newly allocated strings, or NULL if no matches 2050 were found. */ 2051 2052 VEC (char_ptr) * 2053 complete_internalvar (const char *name) 2054 { 2055 VEC (char_ptr) *result = NULL; 2056 struct internalvar *var; 2057 int len; 2058 2059 len = strlen (name); 2060 2061 for (var = internalvars; var; var = var->next) 2062 if (strncmp (var->name, name, len) == 0) 2063 { 2064 char *r = xstrdup (var->name); 2065 2066 VEC_safe_push (char_ptr, result, r); 2067 } 2068 2069 return result; 2070 } 2071 2072 /* Create an internal variable with name NAME and with a void value. 2073 NAME should not normally include a dollar sign. */ 2074 2075 struct internalvar * 2076 create_internalvar (const char *name) 2077 { 2078 struct internalvar *var; 2079 2080 var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); 2081 var->name = concat (name, (char *)NULL); 2082 var->kind = INTERNALVAR_VOID; 2083 var->next = internalvars; 2084 internalvars = var; 2085 return var; 2086 } 2087 2088 /* Create an internal variable with name NAME and register FUN as the 2089 function that value_of_internalvar uses to create a value whenever 2090 this variable is referenced. NAME should not normally include a 2091 dollar sign. DATA is passed uninterpreted to FUN when it is 2092 called. CLEANUP, if not NULL, is called when the internal variable 2093 is destroyed. It is passed DATA as its only argument. */ 2094 2095 struct internalvar * 2096 create_internalvar_type_lazy (const char *name, 2097 const struct internalvar_funcs *funcs, 2098 void *data) 2099 { 2100 struct internalvar *var = create_internalvar (name); 2101 2102 var->kind = INTERNALVAR_MAKE_VALUE; 2103 var->u.make_value.functions = funcs; 2104 var->u.make_value.data = data; 2105 return var; 2106 } 2107 2108 /* See documentation in value.h. */ 2109 2110 int 2111 compile_internalvar_to_ax (struct internalvar *var, 2112 struct agent_expr *expr, 2113 struct axs_value *value) 2114 { 2115 if (var->kind != INTERNALVAR_MAKE_VALUE 2116 || var->u.make_value.functions->compile_to_ax == NULL) 2117 return 0; 2118 2119 var->u.make_value.functions->compile_to_ax (var, expr, value, 2120 var->u.make_value.data); 2121 return 1; 2122 } 2123 2124 /* Look up an internal variable with name NAME. NAME should not 2125 normally include a dollar sign. 2126 2127 If the specified internal variable does not exist, 2128 one is created, with a void value. */ 2129 2130 struct internalvar * 2131 lookup_internalvar (const char *name) 2132 { 2133 struct internalvar *var; 2134 2135 var = lookup_only_internalvar (name); 2136 if (var) 2137 return var; 2138 2139 return create_internalvar (name); 2140 } 2141 2142 /* Return current value of internal variable VAR. For variables that 2143 are not inherently typed, use a value type appropriate for GDBARCH. */ 2144 2145 struct value * 2146 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) 2147 { 2148 struct value *val; 2149 struct trace_state_variable *tsv; 2150 2151 /* If there is a trace state variable of the same name, assume that 2152 is what we really want to see. */ 2153 tsv = find_trace_state_variable (var->name); 2154 if (tsv) 2155 { 2156 tsv->value_known = target_get_trace_state_variable_value (tsv->number, 2157 &(tsv->value)); 2158 if (tsv->value_known) 2159 val = value_from_longest (builtin_type (gdbarch)->builtin_int64, 2160 tsv->value); 2161 else 2162 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2163 return val; 2164 } 2165 2166 switch (var->kind) 2167 { 2168 case INTERNALVAR_VOID: 2169 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2170 break; 2171 2172 case INTERNALVAR_FUNCTION: 2173 val = allocate_value (builtin_type (gdbarch)->internal_fn); 2174 break; 2175 2176 case INTERNALVAR_INTEGER: 2177 if (!var->u.integer.type) 2178 val = value_from_longest (builtin_type (gdbarch)->builtin_int, 2179 var->u.integer.val); 2180 else 2181 val = value_from_longest (var->u.integer.type, var->u.integer.val); 2182 break; 2183 2184 case INTERNALVAR_STRING: 2185 val = value_cstring (var->u.string, strlen (var->u.string), 2186 builtin_type (gdbarch)->builtin_char); 2187 break; 2188 2189 case INTERNALVAR_VALUE: 2190 val = value_copy (var->u.value); 2191 if (value_lazy (val)) 2192 value_fetch_lazy (val); 2193 break; 2194 2195 case INTERNALVAR_MAKE_VALUE: 2196 val = (*var->u.make_value.functions->make_value) (gdbarch, var, 2197 var->u.make_value.data); 2198 break; 2199 2200 default: 2201 internal_error (__FILE__, __LINE__, _("bad kind")); 2202 } 2203 2204 /* Change the VALUE_LVAL to lval_internalvar so that future operations 2205 on this value go back to affect the original internal variable. 2206 2207 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have 2208 no underlying modifyable state in the internal variable. 2209 2210 Likewise, if the variable's value is a computed lvalue, we want 2211 references to it to produce another computed lvalue, where 2212 references and assignments actually operate through the 2213 computed value's functions. 2214 2215 This means that internal variables with computed values 2216 behave a little differently from other internal variables: 2217 assignments to them don't just replace the previous value 2218 altogether. At the moment, this seems like the behavior we 2219 want. */ 2220 2221 if (var->kind != INTERNALVAR_MAKE_VALUE 2222 && val->lval != lval_computed) 2223 { 2224 VALUE_LVAL (val) = lval_internalvar; 2225 VALUE_INTERNALVAR (val) = var; 2226 } 2227 2228 return val; 2229 } 2230 2231 int 2232 get_internalvar_integer (struct internalvar *var, LONGEST *result) 2233 { 2234 if (var->kind == INTERNALVAR_INTEGER) 2235 { 2236 *result = var->u.integer.val; 2237 return 1; 2238 } 2239 2240 if (var->kind == INTERNALVAR_VALUE) 2241 { 2242 struct type *type = check_typedef (value_type (var->u.value)); 2243 2244 if (TYPE_CODE (type) == TYPE_CODE_INT) 2245 { 2246 *result = value_as_long (var->u.value); 2247 return 1; 2248 } 2249 } 2250 2251 return 0; 2252 } 2253 2254 static int 2255 get_internalvar_function (struct internalvar *var, 2256 struct internal_function **result) 2257 { 2258 switch (var->kind) 2259 { 2260 case INTERNALVAR_FUNCTION: 2261 *result = var->u.fn.function; 2262 return 1; 2263 2264 default: 2265 return 0; 2266 } 2267 } 2268 2269 void 2270 set_internalvar_component (struct internalvar *var, int offset, int bitpos, 2271 int bitsize, struct value *newval) 2272 { 2273 gdb_byte *addr; 2274 2275 switch (var->kind) 2276 { 2277 case INTERNALVAR_VALUE: 2278 addr = value_contents_writeable (var->u.value); 2279 2280 if (bitsize) 2281 modify_field (value_type (var->u.value), addr + offset, 2282 value_as_long (newval), bitpos, bitsize); 2283 else 2284 memcpy (addr + offset, value_contents (newval), 2285 TYPE_LENGTH (value_type (newval))); 2286 break; 2287 2288 default: 2289 /* We can never get a component of any other kind. */ 2290 internal_error (__FILE__, __LINE__, _("set_internalvar_component")); 2291 } 2292 } 2293 2294 void 2295 set_internalvar (struct internalvar *var, struct value *val) 2296 { 2297 enum internalvar_kind new_kind; 2298 union internalvar_data new_data = { 0 }; 2299 2300 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) 2301 error (_("Cannot overwrite convenience function %s"), var->name); 2302 2303 /* Prepare new contents. */ 2304 switch (TYPE_CODE (check_typedef (value_type (val)))) 2305 { 2306 case TYPE_CODE_VOID: 2307 new_kind = INTERNALVAR_VOID; 2308 break; 2309 2310 case TYPE_CODE_INTERNAL_FUNCTION: 2311 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2312 new_kind = INTERNALVAR_FUNCTION; 2313 get_internalvar_function (VALUE_INTERNALVAR (val), 2314 &new_data.fn.function); 2315 /* Copies created here are never canonical. */ 2316 break; 2317 2318 default: 2319 new_kind = INTERNALVAR_VALUE; 2320 new_data.value = value_copy (val); 2321 new_data.value->modifiable = 1; 2322 2323 /* Force the value to be fetched from the target now, to avoid problems 2324 later when this internalvar is referenced and the target is gone or 2325 has changed. */ 2326 if (value_lazy (new_data.value)) 2327 value_fetch_lazy (new_data.value); 2328 2329 /* Release the value from the value chain to prevent it from being 2330 deleted by free_all_values. From here on this function should not 2331 call error () until new_data is installed into the var->u to avoid 2332 leaking memory. */ 2333 release_value (new_data.value); 2334 break; 2335 } 2336 2337 /* Clean up old contents. */ 2338 clear_internalvar (var); 2339 2340 /* Switch over. */ 2341 var->kind = new_kind; 2342 var->u = new_data; 2343 /* End code which must not call error(). */ 2344 } 2345 2346 void 2347 set_internalvar_integer (struct internalvar *var, LONGEST l) 2348 { 2349 /* Clean up old contents. */ 2350 clear_internalvar (var); 2351 2352 var->kind = INTERNALVAR_INTEGER; 2353 var->u.integer.type = NULL; 2354 var->u.integer.val = l; 2355 } 2356 2357 void 2358 set_internalvar_string (struct internalvar *var, const char *string) 2359 { 2360 /* Clean up old contents. */ 2361 clear_internalvar (var); 2362 2363 var->kind = INTERNALVAR_STRING; 2364 var->u.string = xstrdup (string); 2365 } 2366 2367 static void 2368 set_internalvar_function (struct internalvar *var, struct internal_function *f) 2369 { 2370 /* Clean up old contents. */ 2371 clear_internalvar (var); 2372 2373 var->kind = INTERNALVAR_FUNCTION; 2374 var->u.fn.function = f; 2375 var->u.fn.canonical = 1; 2376 /* Variables installed here are always the canonical version. */ 2377 } 2378 2379 void 2380 clear_internalvar (struct internalvar *var) 2381 { 2382 /* Clean up old contents. */ 2383 switch (var->kind) 2384 { 2385 case INTERNALVAR_VALUE: 2386 value_free (var->u.value); 2387 break; 2388 2389 case INTERNALVAR_STRING: 2390 xfree (var->u.string); 2391 break; 2392 2393 case INTERNALVAR_MAKE_VALUE: 2394 if (var->u.make_value.functions->destroy != NULL) 2395 var->u.make_value.functions->destroy (var->u.make_value.data); 2396 break; 2397 2398 default: 2399 break; 2400 } 2401 2402 /* Reset to void kind. */ 2403 var->kind = INTERNALVAR_VOID; 2404 } 2405 2406 char * 2407 internalvar_name (struct internalvar *var) 2408 { 2409 return var->name; 2410 } 2411 2412 static struct internal_function * 2413 create_internal_function (const char *name, 2414 internal_function_fn handler, void *cookie) 2415 { 2416 struct internal_function *ifn = XNEW (struct internal_function); 2417 2418 ifn->name = xstrdup (name); 2419 ifn->handler = handler; 2420 ifn->cookie = cookie; 2421 return ifn; 2422 } 2423 2424 char * 2425 value_internal_function_name (struct value *val) 2426 { 2427 struct internal_function *ifn; 2428 int result; 2429 2430 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2431 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); 2432 gdb_assert (result); 2433 2434 return ifn->name; 2435 } 2436 2437 struct value * 2438 call_internal_function (struct gdbarch *gdbarch, 2439 const struct language_defn *language, 2440 struct value *func, int argc, struct value **argv) 2441 { 2442 struct internal_function *ifn; 2443 int result; 2444 2445 gdb_assert (VALUE_LVAL (func) == lval_internalvar); 2446 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); 2447 gdb_assert (result); 2448 2449 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); 2450 } 2451 2452 /* The 'function' command. This does nothing -- it is just a 2453 placeholder to let "help function NAME" work. This is also used as 2454 the implementation of the sub-command that is created when 2455 registering an internal function. */ 2456 static void 2457 function_command (char *command, int from_tty) 2458 { 2459 /* Do nothing. */ 2460 } 2461 2462 /* Clean up if an internal function's command is destroyed. */ 2463 static void 2464 function_destroyer (struct cmd_list_element *self, void *ignore) 2465 { 2466 xfree ((char *) self->name); 2467 xfree ((char *) self->doc); 2468 } 2469 2470 /* Add a new internal function. NAME is the name of the function; DOC 2471 is a documentation string describing the function. HANDLER is 2472 called when the function is invoked. COOKIE is an arbitrary 2473 pointer which is passed to HANDLER and is intended for "user 2474 data". */ 2475 void 2476 add_internal_function (const char *name, const char *doc, 2477 internal_function_fn handler, void *cookie) 2478 { 2479 struct cmd_list_element *cmd; 2480 struct internal_function *ifn; 2481 struct internalvar *var = lookup_internalvar (name); 2482 2483 ifn = create_internal_function (name, handler, cookie); 2484 set_internalvar_function (var, ifn); 2485 2486 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, 2487 &functionlist); 2488 cmd->destroyer = function_destroyer; 2489 } 2490 2491 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to 2492 prevent cycles / duplicates. */ 2493 2494 void 2495 preserve_one_value (struct value *value, struct objfile *objfile, 2496 htab_t copied_types) 2497 { 2498 if (TYPE_OBJFILE (value->type) == objfile) 2499 value->type = copy_type_recursive (objfile, value->type, copied_types); 2500 2501 if (TYPE_OBJFILE (value->enclosing_type) == objfile) 2502 value->enclosing_type = copy_type_recursive (objfile, 2503 value->enclosing_type, 2504 copied_types); 2505 } 2506 2507 /* Likewise for internal variable VAR. */ 2508 2509 static void 2510 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, 2511 htab_t copied_types) 2512 { 2513 switch (var->kind) 2514 { 2515 case INTERNALVAR_INTEGER: 2516 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) 2517 var->u.integer.type 2518 = copy_type_recursive (objfile, var->u.integer.type, copied_types); 2519 break; 2520 2521 case INTERNALVAR_VALUE: 2522 preserve_one_value (var->u.value, objfile, copied_types); 2523 break; 2524 } 2525 } 2526 2527 /* Update the internal variables and value history when OBJFILE is 2528 discarded; we must copy the types out of the objfile. New global types 2529 will be created for every convenience variable which currently points to 2530 this objfile's types, and the convenience variables will be adjusted to 2531 use the new global types. */ 2532 2533 void 2534 preserve_values (struct objfile *objfile) 2535 { 2536 htab_t copied_types; 2537 struct value_history_chunk *cur; 2538 struct internalvar *var; 2539 int i; 2540 2541 /* Create the hash table. We allocate on the objfile's obstack, since 2542 it is soon to be deleted. */ 2543 copied_types = create_copied_types_hash (objfile); 2544 2545 for (cur = value_history_chain; cur; cur = cur->next) 2546 for (i = 0; i < VALUE_HISTORY_CHUNK; i++) 2547 if (cur->values[i]) 2548 preserve_one_value (cur->values[i], objfile, copied_types); 2549 2550 for (var = internalvars; var; var = var->next) 2551 preserve_one_internalvar (var, objfile, copied_types); 2552 2553 preserve_ext_lang_values (objfile, copied_types); 2554 2555 htab_delete (copied_types); 2556 } 2557 2558 static void 2559 show_convenience (char *ignore, int from_tty) 2560 { 2561 struct gdbarch *gdbarch = get_current_arch (); 2562 struct internalvar *var; 2563 int varseen = 0; 2564 struct value_print_options opts; 2565 2566 get_user_print_options (&opts); 2567 for (var = internalvars; var; var = var->next) 2568 { 2569 2570 if (!varseen) 2571 { 2572 varseen = 1; 2573 } 2574 printf_filtered (("$%s = "), var->name); 2575 2576 TRY 2577 { 2578 struct value *val; 2579 2580 val = value_of_internalvar (gdbarch, var); 2581 value_print (val, gdb_stdout, &opts); 2582 } 2583 CATCH (ex, RETURN_MASK_ERROR) 2584 { 2585 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message); 2586 } 2587 END_CATCH 2588 2589 printf_filtered (("\n")); 2590 } 2591 if (!varseen) 2592 { 2593 /* This text does not mention convenience functions on purpose. 2594 The user can't create them except via Python, and if Python support 2595 is installed this message will never be printed ($_streq will 2596 exist). */ 2597 printf_unfiltered (_("No debugger convenience variables now defined.\n" 2598 "Convenience variables have " 2599 "names starting with \"$\";\n" 2600 "use \"set\" as in \"set " 2601 "$foo = 5\" to define them.\n")); 2602 } 2603 } 2604 2605 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */ 2606 2607 struct value * 2608 value_of_xmethod (struct xmethod_worker *worker) 2609 { 2610 if (worker->value == NULL) 2611 { 2612 struct value *v; 2613 2614 v = allocate_value (builtin_type (target_gdbarch ())->xmethod); 2615 v->lval = lval_xcallable; 2616 v->location.xm_worker = worker; 2617 v->modifiable = 0; 2618 worker->value = v; 2619 } 2620 2621 return worker->value; 2622 } 2623 2624 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ 2625 2626 struct type * 2627 result_type_of_xmethod (struct value *method, int argc, struct value **argv) 2628 { 2629 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2630 && method->lval == lval_xcallable && argc > 0); 2631 2632 return get_xmethod_result_type (method->location.xm_worker, 2633 argv[0], argv + 1, argc - 1); 2634 } 2635 2636 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ 2637 2638 struct value * 2639 call_xmethod (struct value *method, int argc, struct value **argv) 2640 { 2641 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2642 && method->lval == lval_xcallable && argc > 0); 2643 2644 return invoke_xmethod (method->location.xm_worker, 2645 argv[0], argv + 1, argc - 1); 2646 } 2647 2648 /* Extract a value as a C number (either long or double). 2649 Knows how to convert fixed values to double, or 2650 floating values to long. 2651 Does not deallocate the value. */ 2652 2653 LONGEST 2654 value_as_long (struct value *val) 2655 { 2656 /* This coerces arrays and functions, which is necessary (e.g. 2657 in disassemble_command). It also dereferences references, which 2658 I suspect is the most logical thing to do. */ 2659 val = coerce_array (val); 2660 return unpack_long (value_type (val), value_contents (val)); 2661 } 2662 2663 DOUBLEST 2664 value_as_double (struct value *val) 2665 { 2666 DOUBLEST foo; 2667 int inv; 2668 2669 foo = unpack_double (value_type (val), value_contents (val), &inv); 2670 if (inv) 2671 error (_("Invalid floating value found in program.")); 2672 return foo; 2673 } 2674 2675 /* Extract a value as a C pointer. Does not deallocate the value. 2676 Note that val's type may not actually be a pointer; value_as_long 2677 handles all the cases. */ 2678 CORE_ADDR 2679 value_as_address (struct value *val) 2680 { 2681 struct gdbarch *gdbarch = get_type_arch (value_type (val)); 2682 2683 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2684 whether we want this to be true eventually. */ 2685 #if 0 2686 /* gdbarch_addr_bits_remove is wrong if we are being called for a 2687 non-address (e.g. argument to "signal", "info break", etc.), or 2688 for pointers to char, in which the low bits *are* significant. */ 2689 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); 2690 #else 2691 2692 /* There are several targets (IA-64, PowerPC, and others) which 2693 don't represent pointers to functions as simply the address of 2694 the function's entry point. For example, on the IA-64, a 2695 function pointer points to a two-word descriptor, generated by 2696 the linker, which contains the function's entry point, and the 2697 value the IA-64 "global pointer" register should have --- to 2698 support position-independent code. The linker generates 2699 descriptors only for those functions whose addresses are taken. 2700 2701 On such targets, it's difficult for GDB to convert an arbitrary 2702 function address into a function pointer; it has to either find 2703 an existing descriptor for that function, or call malloc and 2704 build its own. On some targets, it is impossible for GDB to 2705 build a descriptor at all: the descriptor must contain a jump 2706 instruction; data memory cannot be executed; and code memory 2707 cannot be modified. 2708 2709 Upon entry to this function, if VAL is a value of type `function' 2710 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then 2711 value_address (val) is the address of the function. This is what 2712 you'll get if you evaluate an expression like `main'. The call 2713 to COERCE_ARRAY below actually does all the usual unary 2714 conversions, which includes converting values of type `function' 2715 to `pointer to function'. This is the challenging conversion 2716 discussed above. Then, `unpack_long' will convert that pointer 2717 back into an address. 2718 2719 So, suppose the user types `disassemble foo' on an architecture 2720 with a strange function pointer representation, on which GDB 2721 cannot build its own descriptors, and suppose further that `foo' 2722 has no linker-built descriptor. The address->pointer conversion 2723 will signal an error and prevent the command from running, even 2724 though the next step would have been to convert the pointer 2725 directly back into the same address. 2726 2727 The following shortcut avoids this whole mess. If VAL is a 2728 function, just return its address directly. */ 2729 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC 2730 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) 2731 return value_address (val); 2732 2733 val = coerce_array (val); 2734 2735 /* Some architectures (e.g. Harvard), map instruction and data 2736 addresses onto a single large unified address space. For 2737 instance: An architecture may consider a large integer in the 2738 range 0x10000000 .. 0x1000ffff to already represent a data 2739 addresses (hence not need a pointer to address conversion) while 2740 a small integer would still need to be converted integer to 2741 pointer to address. Just assume such architectures handle all 2742 integer conversions in a single function. */ 2743 2744 /* JimB writes: 2745 2746 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we 2747 must admonish GDB hackers to make sure its behavior matches the 2748 compiler's, whenever possible. 2749 2750 In general, I think GDB should evaluate expressions the same way 2751 the compiler does. When the user copies an expression out of 2752 their source code and hands it to a `print' command, they should 2753 get the same value the compiler would have computed. Any 2754 deviation from this rule can cause major confusion and annoyance, 2755 and needs to be justified carefully. In other words, GDB doesn't 2756 really have the freedom to do these conversions in clever and 2757 useful ways. 2758 2759 AndrewC pointed out that users aren't complaining about how GDB 2760 casts integers to pointers; they are complaining that they can't 2761 take an address from a disassembly listing and give it to `x/i'. 2762 This is certainly important. 2763 2764 Adding an architecture method like integer_to_address() certainly 2765 makes it possible for GDB to "get it right" in all circumstances 2766 --- the target has complete control over how things get done, so 2767 people can Do The Right Thing for their target without breaking 2768 anyone else. The standard doesn't specify how integers get 2769 converted to pointers; usually, the ABI doesn't either, but 2770 ABI-specific code is a more reasonable place to handle it. */ 2771 2772 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR 2773 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF 2774 && gdbarch_integer_to_address_p (gdbarch)) 2775 return gdbarch_integer_to_address (gdbarch, value_type (val), 2776 value_contents (val)); 2777 2778 return unpack_long (value_type (val), value_contents (val)); 2779 #endif 2780 } 2781 2782 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2783 as a long, or as a double, assuming the raw data is described 2784 by type TYPE. Knows how to convert different sizes of values 2785 and can convert between fixed and floating point. We don't assume 2786 any alignment for the raw data. Return value is in host byte order. 2787 2788 If you want functions and arrays to be coerced to pointers, and 2789 references to be dereferenced, call value_as_long() instead. 2790 2791 C++: It is assumed that the front-end has taken care of 2792 all matters concerning pointers to members. A pointer 2793 to member which reaches here is considered to be equivalent 2794 to an INT (or some size). After all, it is only an offset. */ 2795 2796 LONGEST 2797 unpack_long (struct type *type, const gdb_byte *valaddr) 2798 { 2799 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2800 enum type_code code = TYPE_CODE (type); 2801 int len = TYPE_LENGTH (type); 2802 int nosign = TYPE_UNSIGNED (type); 2803 2804 switch (code) 2805 { 2806 case TYPE_CODE_TYPEDEF: 2807 return unpack_long (check_typedef (type), valaddr); 2808 case TYPE_CODE_ENUM: 2809 case TYPE_CODE_FLAGS: 2810 case TYPE_CODE_BOOL: 2811 case TYPE_CODE_INT: 2812 case TYPE_CODE_CHAR: 2813 case TYPE_CODE_RANGE: 2814 case TYPE_CODE_MEMBERPTR: 2815 if (nosign) 2816 return extract_unsigned_integer (valaddr, len, byte_order); 2817 else 2818 return extract_signed_integer (valaddr, len, byte_order); 2819 2820 case TYPE_CODE_FLT: 2821 return extract_typed_floating (valaddr, type); 2822 2823 case TYPE_CODE_DECFLOAT: 2824 /* libdecnumber has a function to convert from decimal to integer, but 2825 it doesn't work when the decimal number has a fractional part. */ 2826 return decimal_to_doublest (valaddr, len, byte_order); 2827 2828 case TYPE_CODE_PTR: 2829 case TYPE_CODE_REF: 2830 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2831 whether we want this to be true eventually. */ 2832 return extract_typed_address (valaddr, type); 2833 2834 default: 2835 error (_("Value can't be converted to integer.")); 2836 } 2837 return 0; /* Placate lint. */ 2838 } 2839 2840 /* Return a double value from the specified type and address. 2841 INVP points to an int which is set to 0 for valid value, 2842 1 for invalid value (bad float format). In either case, 2843 the returned double is OK to use. Argument is in target 2844 format, result is in host format. */ 2845 2846 DOUBLEST 2847 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) 2848 { 2849 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2850 enum type_code code; 2851 int len; 2852 int nosign; 2853 2854 *invp = 0; /* Assume valid. */ 2855 CHECK_TYPEDEF (type); 2856 code = TYPE_CODE (type); 2857 len = TYPE_LENGTH (type); 2858 nosign = TYPE_UNSIGNED (type); 2859 if (code == TYPE_CODE_FLT) 2860 { 2861 /* NOTE: cagney/2002-02-19: There was a test here to see if the 2862 floating-point value was valid (using the macro 2863 INVALID_FLOAT). That test/macro have been removed. 2864 2865 It turns out that only the VAX defined this macro and then 2866 only in a non-portable way. Fixing the portability problem 2867 wouldn't help since the VAX floating-point code is also badly 2868 bit-rotten. The target needs to add definitions for the 2869 methods gdbarch_float_format and gdbarch_double_format - these 2870 exactly describe the target floating-point format. The 2871 problem here is that the corresponding floatformat_vax_f and 2872 floatformat_vax_d values these methods should be set to are 2873 also not defined either. Oops! 2874 2875 Hopefully someone will add both the missing floatformat 2876 definitions and the new cases for floatformat_is_valid (). */ 2877 2878 if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) 2879 { 2880 *invp = 1; 2881 return 0.0; 2882 } 2883 2884 return extract_typed_floating (valaddr, type); 2885 } 2886 else if (code == TYPE_CODE_DECFLOAT) 2887 return decimal_to_doublest (valaddr, len, byte_order); 2888 else if (nosign) 2889 { 2890 /* Unsigned -- be sure we compensate for signed LONGEST. */ 2891 return (ULONGEST) unpack_long (type, valaddr); 2892 } 2893 else 2894 { 2895 /* Signed -- we are OK with unpack_long. */ 2896 return unpack_long (type, valaddr); 2897 } 2898 } 2899 2900 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2901 as a CORE_ADDR, assuming the raw data is described by type TYPE. 2902 We don't assume any alignment for the raw data. Return value is in 2903 host byte order. 2904 2905 If you want functions and arrays to be coerced to pointers, and 2906 references to be dereferenced, call value_as_address() instead. 2907 2908 C++: It is assumed that the front-end has taken care of 2909 all matters concerning pointers to members. A pointer 2910 to member which reaches here is considered to be equivalent 2911 to an INT (or some size). After all, it is only an offset. */ 2912 2913 CORE_ADDR 2914 unpack_pointer (struct type *type, const gdb_byte *valaddr) 2915 { 2916 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2917 whether we want this to be true eventually. */ 2918 return unpack_long (type, valaddr); 2919 } 2920 2921 2922 /* Get the value of the FIELDNO'th field (which must be static) of 2923 TYPE. */ 2924 2925 struct value * 2926 value_static_field (struct type *type, int fieldno) 2927 { 2928 struct value *retval; 2929 2930 switch (TYPE_FIELD_LOC_KIND (type, fieldno)) 2931 { 2932 case FIELD_LOC_KIND_PHYSADDR: 2933 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), 2934 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); 2935 break; 2936 case FIELD_LOC_KIND_PHYSNAME: 2937 { 2938 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); 2939 /* TYPE_FIELD_NAME (type, fieldno); */ 2940 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); 2941 2942 if (sym == NULL) 2943 { 2944 /* With some compilers, e.g. HP aCC, static data members are 2945 reported as non-debuggable symbols. */ 2946 struct bound_minimal_symbol msym 2947 = lookup_minimal_symbol (phys_name, NULL, NULL); 2948 2949 if (!msym.minsym) 2950 return allocate_optimized_out_value (type); 2951 else 2952 { 2953 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), 2954 BMSYMBOL_VALUE_ADDRESS (msym)); 2955 } 2956 } 2957 else 2958 retval = value_of_variable (sym, NULL); 2959 break; 2960 } 2961 default: 2962 gdb_assert_not_reached ("unexpected field location kind"); 2963 } 2964 2965 return retval; 2966 } 2967 2968 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. 2969 You have to be careful here, since the size of the data area for the value 2970 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger 2971 than the old enclosing type, you have to allocate more space for the 2972 data. */ 2973 2974 void 2975 set_value_enclosing_type (struct value *val, struct type *new_encl_type) 2976 { 2977 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 2978 val->contents = 2979 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); 2980 2981 val->enclosing_type = new_encl_type; 2982 } 2983 2984 /* Given a value ARG1 (offset by OFFSET bytes) 2985 of a struct or union type ARG_TYPE, 2986 extract and return the value of one of its (non-static) fields. 2987 FIELDNO says which field. */ 2988 2989 struct value * 2990 value_primitive_field (struct value *arg1, int offset, 2991 int fieldno, struct type *arg_type) 2992 { 2993 struct value *v; 2994 struct type *type; 2995 2996 CHECK_TYPEDEF (arg_type); 2997 type = TYPE_FIELD_TYPE (arg_type, fieldno); 2998 2999 /* Call check_typedef on our type to make sure that, if TYPE 3000 is a TYPE_CODE_TYPEDEF, its length is set to the length 3001 of the target type instead of zero. However, we do not 3002 replace the typedef type by the target type, because we want 3003 to keep the typedef in order to be able to print the type 3004 description correctly. */ 3005 check_typedef (type); 3006 3007 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) 3008 { 3009 /* Handle packed fields. 3010 3011 Create a new value for the bitfield, with bitpos and bitsize 3012 set. If possible, arrange offset and bitpos so that we can 3013 do a single aligned read of the size of the containing type. 3014 Otherwise, adjust offset to the byte containing the first 3015 bit. Assume that the address, offset, and embedded offset 3016 are sufficiently aligned. */ 3017 3018 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); 3019 int container_bitsize = TYPE_LENGTH (type) * 8; 3020 3021 v = allocate_value_lazy (type); 3022 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); 3023 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize 3024 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) 3025 v->bitpos = bitpos % container_bitsize; 3026 else 3027 v->bitpos = bitpos % 8; 3028 v->offset = (value_embedded_offset (arg1) 3029 + offset 3030 + (bitpos - v->bitpos) / 8); 3031 set_value_parent (v, arg1); 3032 if (!value_lazy (arg1)) 3033 value_fetch_lazy (v); 3034 } 3035 else if (fieldno < TYPE_N_BASECLASSES (arg_type)) 3036 { 3037 /* This field is actually a base subobject, so preserve the 3038 entire object's contents for later references to virtual 3039 bases, etc. */ 3040 int boffset; 3041 3042 /* Lazy register values with offsets are not supported. */ 3043 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 3044 value_fetch_lazy (arg1); 3045 3046 /* We special case virtual inheritance here because this 3047 requires access to the contents, which we would rather avoid 3048 for references to ordinary fields of unavailable values. */ 3049 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) 3050 boffset = baseclass_offset (arg_type, fieldno, 3051 value_contents (arg1), 3052 value_embedded_offset (arg1), 3053 value_address (arg1), 3054 arg1); 3055 else 3056 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 3057 3058 if (value_lazy (arg1)) 3059 v = allocate_value_lazy (value_enclosing_type (arg1)); 3060 else 3061 { 3062 v = allocate_value (value_enclosing_type (arg1)); 3063 value_contents_copy_raw (v, 0, arg1, 0, 3064 TYPE_LENGTH (value_enclosing_type (arg1))); 3065 } 3066 v->type = type; 3067 v->offset = value_offset (arg1); 3068 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; 3069 } 3070 else 3071 { 3072 /* Plain old data member */ 3073 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 3074 3075 /* Lazy register values with offsets are not supported. */ 3076 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 3077 value_fetch_lazy (arg1); 3078 3079 if (value_lazy (arg1)) 3080 v = allocate_value_lazy (type); 3081 else 3082 { 3083 v = allocate_value (type); 3084 value_contents_copy_raw (v, value_embedded_offset (v), 3085 arg1, value_embedded_offset (arg1) + offset, 3086 TYPE_LENGTH (type)); 3087 } 3088 v->offset = (value_offset (arg1) + offset 3089 + value_embedded_offset (arg1)); 3090 } 3091 set_value_component_location (v, arg1); 3092 VALUE_REGNUM (v) = VALUE_REGNUM (arg1); 3093 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); 3094 return v; 3095 } 3096 3097 /* Given a value ARG1 of a struct or union type, 3098 extract and return the value of one of its (non-static) fields. 3099 FIELDNO says which field. */ 3100 3101 struct value * 3102 value_field (struct value *arg1, int fieldno) 3103 { 3104 return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); 3105 } 3106 3107 /* Return a non-virtual function as a value. 3108 F is the list of member functions which contains the desired method. 3109 J is an index into F which provides the desired method. 3110 3111 We only use the symbol for its address, so be happy with either a 3112 full symbol or a minimal symbol. */ 3113 3114 struct value * 3115 value_fn_field (struct value **arg1p, struct fn_field *f, 3116 int j, struct type *type, 3117 int offset) 3118 { 3119 struct value *v; 3120 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); 3121 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); 3122 struct symbol *sym; 3123 struct bound_minimal_symbol msym; 3124 3125 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); 3126 if (sym != NULL) 3127 { 3128 memset (&msym, 0, sizeof (msym)); 3129 } 3130 else 3131 { 3132 gdb_assert (sym == NULL); 3133 msym = lookup_bound_minimal_symbol (physname); 3134 if (msym.minsym == NULL) 3135 return NULL; 3136 } 3137 3138 v = allocate_value (ftype); 3139 if (sym) 3140 { 3141 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); 3142 } 3143 else 3144 { 3145 /* The minimal symbol might point to a function descriptor; 3146 resolve it to the actual code address instead. */ 3147 struct objfile *objfile = msym.objfile; 3148 struct gdbarch *gdbarch = get_objfile_arch (objfile); 3149 3150 set_value_address (v, 3151 gdbarch_convert_from_func_ptr_addr 3152 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target)); 3153 } 3154 3155 if (arg1p) 3156 { 3157 if (type != value_type (*arg1p)) 3158 *arg1p = value_ind (value_cast (lookup_pointer_type (type), 3159 value_addr (*arg1p))); 3160 3161 /* Move the `this' pointer according to the offset. 3162 VALUE_OFFSET (*arg1p) += offset; */ 3163 } 3164 3165 return v; 3166 } 3167 3168 3169 3170 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at 3171 VALADDR, and store the result in *RESULT. 3172 The bitfield starts at BITPOS bits and contains BITSIZE bits. 3173 3174 Extracting bits depends on endianness of the machine. Compute the 3175 number of least significant bits to discard. For big endian machines, 3176 we compute the total number of bits in the anonymous object, subtract 3177 off the bit count from the MSB of the object to the MSB of the 3178 bitfield, then the size of the bitfield, which leaves the LSB discard 3179 count. For little endian machines, the discard count is simply the 3180 number of bits from the LSB of the anonymous object to the LSB of the 3181 bitfield. 3182 3183 If the field is signed, we also do sign extension. */ 3184 3185 static LONGEST 3186 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, 3187 int bitpos, int bitsize) 3188 { 3189 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3190 ULONGEST val; 3191 ULONGEST valmask; 3192 int lsbcount; 3193 int bytes_read; 3194 int read_offset; 3195 3196 /* Read the minimum number of bytes required; there may not be 3197 enough bytes to read an entire ULONGEST. */ 3198 CHECK_TYPEDEF (field_type); 3199 if (bitsize) 3200 bytes_read = ((bitpos % 8) + bitsize + 7) / 8; 3201 else 3202 bytes_read = TYPE_LENGTH (field_type); 3203 3204 read_offset = bitpos / 8; 3205 3206 val = extract_unsigned_integer (valaddr + read_offset, 3207 bytes_read, byte_order); 3208 3209 /* Extract bits. See comment above. */ 3210 3211 if (gdbarch_bits_big_endian (get_type_arch (field_type))) 3212 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); 3213 else 3214 lsbcount = (bitpos % 8); 3215 val >>= lsbcount; 3216 3217 /* If the field does not entirely fill a LONGEST, then zero the sign bits. 3218 If the field is signed, and is negative, then sign extend. */ 3219 3220 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) 3221 { 3222 valmask = (((ULONGEST) 1) << bitsize) - 1; 3223 val &= valmask; 3224 if (!TYPE_UNSIGNED (field_type)) 3225 { 3226 if (val & (valmask ^ (valmask >> 1))) 3227 { 3228 val |= ~valmask; 3229 } 3230 } 3231 } 3232 3233 return val; 3234 } 3235 3236 /* Unpack a field FIELDNO of the specified TYPE, from the object at 3237 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of 3238 ORIGINAL_VALUE, which must not be NULL. See 3239 unpack_value_bits_as_long for more details. */ 3240 3241 int 3242 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, 3243 int embedded_offset, int fieldno, 3244 const struct value *val, LONGEST *result) 3245 { 3246 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3247 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3248 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3249 int bit_offset; 3250 3251 gdb_assert (val != NULL); 3252 3253 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3254 if (value_bits_any_optimized_out (val, bit_offset, bitsize) 3255 || !value_bits_available (val, bit_offset, bitsize)) 3256 return 0; 3257 3258 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3259 bitpos, bitsize); 3260 return 1; 3261 } 3262 3263 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous 3264 object at VALADDR. See unpack_bits_as_long for more details. */ 3265 3266 LONGEST 3267 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) 3268 { 3269 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3270 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3271 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3272 3273 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); 3274 } 3275 3276 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at 3277 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store 3278 the contents in DEST_VAL, zero or sign extending if the type of 3279 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of 3280 VAL. If the VAL's contents required to extract the bitfield from 3281 are unavailable/optimized out, DEST_VAL is correspondingly 3282 marked unavailable/optimized out. */ 3283 3284 void 3285 unpack_value_bitfield (struct value *dest_val, 3286 int bitpos, int bitsize, 3287 const gdb_byte *valaddr, int embedded_offset, 3288 const struct value *val) 3289 { 3290 enum bfd_endian byte_order; 3291 int src_bit_offset; 3292 int dst_bit_offset; 3293 LONGEST num; 3294 struct type *field_type = value_type (dest_val); 3295 3296 /* First, unpack and sign extend the bitfield as if it was wholly 3297 available. Invalid/unavailable bits are read as zero, but that's 3298 OK, as they'll end up marked below. */ 3299 byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3300 num = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3301 bitpos, bitsize); 3302 store_signed_integer (value_contents_raw (dest_val), 3303 TYPE_LENGTH (field_type), byte_order, num); 3304 3305 /* Now copy the optimized out / unavailability ranges to the right 3306 bits. */ 3307 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3308 if (byte_order == BFD_ENDIAN_BIG) 3309 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; 3310 else 3311 dst_bit_offset = 0; 3312 value_ranges_copy_adjusted (dest_val, dst_bit_offset, 3313 val, src_bit_offset, bitsize); 3314 } 3315 3316 /* Return a new value with type TYPE, which is FIELDNO field of the 3317 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents 3318 of VAL. If the VAL's contents required to extract the bitfield 3319 from are unavailable/optimized out, the new value is 3320 correspondingly marked unavailable/optimized out. */ 3321 3322 struct value * 3323 value_field_bitfield (struct type *type, int fieldno, 3324 const gdb_byte *valaddr, 3325 int embedded_offset, const struct value *val) 3326 { 3327 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3328 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3329 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); 3330 3331 unpack_value_bitfield (res_val, bitpos, bitsize, 3332 valaddr, embedded_offset, val); 3333 3334 return res_val; 3335 } 3336 3337 /* Modify the value of a bitfield. ADDR points to a block of memory in 3338 target byte order; the bitfield starts in the byte pointed to. FIELDVAL 3339 is the desired value of the field, in host byte order. BITPOS and BITSIZE 3340 indicate which bits (in target bit order) comprise the bitfield. 3341 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and 3342 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ 3343 3344 void 3345 modify_field (struct type *type, gdb_byte *addr, 3346 LONGEST fieldval, int bitpos, int bitsize) 3347 { 3348 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3349 ULONGEST oword; 3350 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); 3351 int bytesize; 3352 3353 /* Normalize BITPOS. */ 3354 addr += bitpos / 8; 3355 bitpos %= 8; 3356 3357 /* If a negative fieldval fits in the field in question, chop 3358 off the sign extension bits. */ 3359 if ((~fieldval & ~(mask >> 1)) == 0) 3360 fieldval &= mask; 3361 3362 /* Warn if value is too big to fit in the field in question. */ 3363 if (0 != (fieldval & ~mask)) 3364 { 3365 /* FIXME: would like to include fieldval in the message, but 3366 we don't have a sprintf_longest. */ 3367 warning (_("Value does not fit in %d bits."), bitsize); 3368 3369 /* Truncate it, otherwise adjoining fields may be corrupted. */ 3370 fieldval &= mask; 3371 } 3372 3373 /* Ensure no bytes outside of the modified ones get accessed as it may cause 3374 false valgrind reports. */ 3375 3376 bytesize = (bitpos + bitsize + 7) / 8; 3377 oword = extract_unsigned_integer (addr, bytesize, byte_order); 3378 3379 /* Shifting for bit field depends on endianness of the target machine. */ 3380 if (gdbarch_bits_big_endian (get_type_arch (type))) 3381 bitpos = bytesize * 8 - bitpos - bitsize; 3382 3383 oword &= ~(mask << bitpos); 3384 oword |= fieldval << bitpos; 3385 3386 store_unsigned_integer (addr, bytesize, byte_order, oword); 3387 } 3388 3389 /* Pack NUM into BUF using a target format of TYPE. */ 3390 3391 void 3392 pack_long (gdb_byte *buf, struct type *type, LONGEST num) 3393 { 3394 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3395 int len; 3396 3397 type = check_typedef (type); 3398 len = TYPE_LENGTH (type); 3399 3400 switch (TYPE_CODE (type)) 3401 { 3402 case TYPE_CODE_INT: 3403 case TYPE_CODE_CHAR: 3404 case TYPE_CODE_ENUM: 3405 case TYPE_CODE_FLAGS: 3406 case TYPE_CODE_BOOL: 3407 case TYPE_CODE_RANGE: 3408 case TYPE_CODE_MEMBERPTR: 3409 store_signed_integer (buf, len, byte_order, num); 3410 break; 3411 3412 case TYPE_CODE_REF: 3413 case TYPE_CODE_PTR: 3414 store_typed_address (buf, type, (CORE_ADDR) num); 3415 break; 3416 3417 default: 3418 error (_("Unexpected type (%d) encountered for integer constant."), 3419 TYPE_CODE (type)); 3420 } 3421 } 3422 3423 3424 /* Pack NUM into BUF using a target format of TYPE. */ 3425 3426 static void 3427 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) 3428 { 3429 int len; 3430 enum bfd_endian byte_order; 3431 3432 type = check_typedef (type); 3433 len = TYPE_LENGTH (type); 3434 byte_order = gdbarch_byte_order (get_type_arch (type)); 3435 3436 switch (TYPE_CODE (type)) 3437 { 3438 case TYPE_CODE_INT: 3439 case TYPE_CODE_CHAR: 3440 case TYPE_CODE_ENUM: 3441 case TYPE_CODE_FLAGS: 3442 case TYPE_CODE_BOOL: 3443 case TYPE_CODE_RANGE: 3444 case TYPE_CODE_MEMBERPTR: 3445 store_unsigned_integer (buf, len, byte_order, num); 3446 break; 3447 3448 case TYPE_CODE_REF: 3449 case TYPE_CODE_PTR: 3450 store_typed_address (buf, type, (CORE_ADDR) num); 3451 break; 3452 3453 default: 3454 error (_("Unexpected type (%d) encountered " 3455 "for unsigned integer constant."), 3456 TYPE_CODE (type)); 3457 } 3458 } 3459 3460 3461 /* Convert C numbers into newly allocated values. */ 3462 3463 struct value * 3464 value_from_longest (struct type *type, LONGEST num) 3465 { 3466 struct value *val = allocate_value (type); 3467 3468 pack_long (value_contents_raw (val), type, num); 3469 return val; 3470 } 3471 3472 3473 /* Convert C unsigned numbers into newly allocated values. */ 3474 3475 struct value * 3476 value_from_ulongest (struct type *type, ULONGEST num) 3477 { 3478 struct value *val = allocate_value (type); 3479 3480 pack_unsigned_long (value_contents_raw (val), type, num); 3481 3482 return val; 3483 } 3484 3485 3486 /* Create a value representing a pointer of type TYPE to the address 3487 ADDR. */ 3488 3489 struct value * 3490 value_from_pointer (struct type *type, CORE_ADDR addr) 3491 { 3492 struct value *val = allocate_value (type); 3493 3494 store_typed_address (value_contents_raw (val), 3495 check_typedef (type), addr); 3496 return val; 3497 } 3498 3499 3500 /* Create a value of type TYPE whose contents come from VALADDR, if it 3501 is non-null, and whose memory address (in the inferior) is 3502 ADDRESS. The type of the created value may differ from the passed 3503 type TYPE. Make sure to retrieve values new type after this call. 3504 Note that TYPE is not passed through resolve_dynamic_type; this is 3505 a special API intended for use only by Ada. */ 3506 3507 struct value * 3508 value_from_contents_and_address_unresolved (struct type *type, 3509 const gdb_byte *valaddr, 3510 CORE_ADDR address) 3511 { 3512 struct value *v; 3513 3514 if (valaddr == NULL) 3515 v = allocate_value_lazy (type); 3516 else 3517 v = value_from_contents (type, valaddr); 3518 set_value_address (v, address); 3519 VALUE_LVAL (v) = lval_memory; 3520 return v; 3521 } 3522 3523 /* Create a value of type TYPE whose contents come from VALADDR, if it 3524 is non-null, and whose memory address (in the inferior) is 3525 ADDRESS. The type of the created value may differ from the passed 3526 type TYPE. Make sure to retrieve values new type after this call. */ 3527 3528 struct value * 3529 value_from_contents_and_address (struct type *type, 3530 const gdb_byte *valaddr, 3531 CORE_ADDR address) 3532 { 3533 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address); 3534 struct type *resolved_type_no_typedef = check_typedef (resolved_type); 3535 struct value *v; 3536 3537 if (valaddr == NULL) 3538 v = allocate_value_lazy (resolved_type); 3539 else 3540 v = value_from_contents (resolved_type, valaddr); 3541 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL 3542 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) 3543 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); 3544 set_value_address (v, address); 3545 VALUE_LVAL (v) = lval_memory; 3546 return v; 3547 } 3548 3549 /* Create a value of type TYPE holding the contents CONTENTS. 3550 The new value is `not_lval'. */ 3551 3552 struct value * 3553 value_from_contents (struct type *type, const gdb_byte *contents) 3554 { 3555 struct value *result; 3556 3557 result = allocate_value (type); 3558 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); 3559 return result; 3560 } 3561 3562 struct value * 3563 value_from_double (struct type *type, DOUBLEST num) 3564 { 3565 struct value *val = allocate_value (type); 3566 struct type *base_type = check_typedef (type); 3567 enum type_code code = TYPE_CODE (base_type); 3568 3569 if (code == TYPE_CODE_FLT) 3570 { 3571 store_typed_floating (value_contents_raw (val), base_type, num); 3572 } 3573 else 3574 error (_("Unexpected type encountered for floating constant.")); 3575 3576 return val; 3577 } 3578 3579 struct value * 3580 value_from_decfloat (struct type *type, const gdb_byte *dec) 3581 { 3582 struct value *val = allocate_value (type); 3583 3584 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); 3585 return val; 3586 } 3587 3588 /* Extract a value from the history file. Input will be of the form 3589 $digits or $$digits. See block comment above 'write_dollar_variable' 3590 for details. */ 3591 3592 struct value * 3593 value_from_history_ref (const char *h, const char **endp) 3594 { 3595 int index, len; 3596 3597 if (h[0] == '$') 3598 len = 1; 3599 else 3600 return NULL; 3601 3602 if (h[1] == '$') 3603 len = 2; 3604 3605 /* Find length of numeral string. */ 3606 for (; isdigit (h[len]); len++) 3607 ; 3608 3609 /* Make sure numeral string is not part of an identifier. */ 3610 if (h[len] == '_' || isalpha (h[len])) 3611 return NULL; 3612 3613 /* Now collect the index value. */ 3614 if (h[1] == '$') 3615 { 3616 if (len == 2) 3617 { 3618 /* For some bizarre reason, "$$" is equivalent to "$$1", 3619 rather than to "$$0" as it ought to be! */ 3620 index = -1; 3621 *endp += len; 3622 } 3623 else 3624 { 3625 char *local_end; 3626 3627 index = -strtol (&h[2], &local_end, 10); 3628 *endp = local_end; 3629 } 3630 } 3631 else 3632 { 3633 if (len == 1) 3634 { 3635 /* "$" is equivalent to "$0". */ 3636 index = 0; 3637 *endp += len; 3638 } 3639 else 3640 { 3641 char *local_end; 3642 3643 index = strtol (&h[1], &local_end, 10); 3644 *endp = local_end; 3645 } 3646 } 3647 3648 return access_value_history (index); 3649 } 3650 3651 struct value * 3652 coerce_ref_if_computed (const struct value *arg) 3653 { 3654 const struct lval_funcs *funcs; 3655 3656 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF) 3657 return NULL; 3658 3659 if (value_lval_const (arg) != lval_computed) 3660 return NULL; 3661 3662 funcs = value_computed_funcs (arg); 3663 if (funcs->coerce_ref == NULL) 3664 return NULL; 3665 3666 return funcs->coerce_ref (arg); 3667 } 3668 3669 /* Look at value.h for description. */ 3670 3671 struct value * 3672 readjust_indirect_value_type (struct value *value, struct type *enc_type, 3673 struct type *original_type, 3674 struct value *original_value) 3675 { 3676 /* Re-adjust type. */ 3677 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); 3678 3679 /* Add embedding info. */ 3680 set_value_enclosing_type (value, enc_type); 3681 set_value_embedded_offset (value, value_pointed_to_offset (original_value)); 3682 3683 /* We may be pointing to an object of some derived type. */ 3684 return value_full_object (value, NULL, 0, 0, 0); 3685 } 3686 3687 struct value * 3688 coerce_ref (struct value *arg) 3689 { 3690 struct type *value_type_arg_tmp = check_typedef (value_type (arg)); 3691 struct value *retval; 3692 struct type *enc_type; 3693 3694 retval = coerce_ref_if_computed (arg); 3695 if (retval) 3696 return retval; 3697 3698 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF) 3699 return arg; 3700 3701 enc_type = check_typedef (value_enclosing_type (arg)); 3702 enc_type = TYPE_TARGET_TYPE (enc_type); 3703 3704 retval = value_at_lazy (enc_type, 3705 unpack_pointer (value_type (arg), 3706 value_contents (arg))); 3707 enc_type = value_type (retval); 3708 return readjust_indirect_value_type (retval, enc_type, 3709 value_type_arg_tmp, arg); 3710 } 3711 3712 struct value * 3713 coerce_array (struct value *arg) 3714 { 3715 struct type *type; 3716 3717 arg = coerce_ref (arg); 3718 type = check_typedef (value_type (arg)); 3719 3720 switch (TYPE_CODE (type)) 3721 { 3722 case TYPE_CODE_ARRAY: 3723 if (!TYPE_VECTOR (type) && current_language->c_style_arrays) 3724 arg = value_coerce_array (arg); 3725 break; 3726 case TYPE_CODE_FUNC: 3727 arg = value_coerce_function (arg); 3728 break; 3729 } 3730 return arg; 3731 } 3732 3733 3734 /* Return the return value convention that will be used for the 3735 specified type. */ 3736 3737 enum return_value_convention 3738 struct_return_convention (struct gdbarch *gdbarch, 3739 struct value *function, struct type *value_type) 3740 { 3741 enum type_code code = TYPE_CODE (value_type); 3742 3743 if (code == TYPE_CODE_ERROR) 3744 error (_("Function return type unknown.")); 3745 3746 /* Probe the architecture for the return-value convention. */ 3747 return gdbarch_return_value (gdbarch, function, value_type, 3748 NULL, NULL, NULL); 3749 } 3750 3751 /* Return true if the function returning the specified type is using 3752 the convention of returning structures in memory (passing in the 3753 address as a hidden first parameter). */ 3754 3755 int 3756 using_struct_return (struct gdbarch *gdbarch, 3757 struct value *function, struct type *value_type) 3758 { 3759 if (TYPE_CODE (value_type) == TYPE_CODE_VOID) 3760 /* A void return value is never in memory. See also corresponding 3761 code in "print_return_value". */ 3762 return 0; 3763 3764 return (struct_return_convention (gdbarch, function, value_type) 3765 != RETURN_VALUE_REGISTER_CONVENTION); 3766 } 3767 3768 /* Set the initialized field in a value struct. */ 3769 3770 void 3771 set_value_initialized (struct value *val, int status) 3772 { 3773 val->initialized = status; 3774 } 3775 3776 /* Return the initialized field in a value struct. */ 3777 3778 int 3779 value_initialized (struct value *val) 3780 { 3781 return val->initialized; 3782 } 3783 3784 /* Load the actual content of a lazy value. Fetch the data from the 3785 user's process and clear the lazy flag to indicate that the data in 3786 the buffer is valid. 3787 3788 If the value is zero-length, we avoid calling read_memory, which 3789 would abort. We mark the value as fetched anyway -- all 0 bytes of 3790 it. */ 3791 3792 void 3793 value_fetch_lazy (struct value *val) 3794 { 3795 gdb_assert (value_lazy (val)); 3796 allocate_value_contents (val); 3797 /* A value is either lazy, or fully fetched. The 3798 availability/validity is only established as we try to fetch a 3799 value. */ 3800 gdb_assert (VEC_empty (range_s, val->optimized_out)); 3801 gdb_assert (VEC_empty (range_s, val->unavailable)); 3802 if (value_bitsize (val)) 3803 { 3804 /* To read a lazy bitfield, read the entire enclosing value. This 3805 prevents reading the same block of (possibly volatile) memory once 3806 per bitfield. It would be even better to read only the containing 3807 word, but we have no way to record that just specific bits of a 3808 value have been fetched. */ 3809 struct type *type = check_typedef (value_type (val)); 3810 struct value *parent = value_parent (val); 3811 3812 if (value_lazy (parent)) 3813 value_fetch_lazy (parent); 3814 3815 unpack_value_bitfield (val, 3816 value_bitpos (val), value_bitsize (val), 3817 value_contents_for_printing (parent), 3818 value_offset (val), parent); 3819 } 3820 else if (VALUE_LVAL (val) == lval_memory) 3821 { 3822 CORE_ADDR addr = value_address (val); 3823 struct type *type = check_typedef (value_enclosing_type (val)); 3824 3825 if (TYPE_LENGTH (type)) 3826 read_value_memory (val, 0, value_stack (val), 3827 addr, value_contents_all_raw (val), 3828 TYPE_LENGTH (type)); 3829 } 3830 else if (VALUE_LVAL (val) == lval_register) 3831 { 3832 struct frame_info *frame; 3833 int regnum; 3834 struct type *type = check_typedef (value_type (val)); 3835 struct value *new_val = val, *mark = value_mark (); 3836 3837 /* Offsets are not supported here; lazy register values must 3838 refer to the entire register. */ 3839 gdb_assert (value_offset (val) == 0); 3840 3841 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) 3842 { 3843 struct frame_id frame_id = VALUE_FRAME_ID (new_val); 3844 3845 frame = frame_find_by_id (frame_id); 3846 regnum = VALUE_REGNUM (new_val); 3847 3848 gdb_assert (frame != NULL); 3849 3850 /* Convertible register routines are used for multi-register 3851 values and for interpretation in different types 3852 (e.g. float or int from a double register). Lazy 3853 register values should have the register's natural type, 3854 so they do not apply. */ 3855 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), 3856 regnum, type)); 3857 3858 new_val = get_frame_register_value (frame, regnum); 3859 3860 /* If we get another lazy lval_register value, it means the 3861 register is found by reading it from the next frame. 3862 get_frame_register_value should never return a value with 3863 the frame id pointing to FRAME. If it does, it means we 3864 either have two consecutive frames with the same frame id 3865 in the frame chain, or some code is trying to unwind 3866 behind get_prev_frame's back (e.g., a frame unwind 3867 sniffer trying to unwind), bypassing its validations. In 3868 any case, it should always be an internal error to end up 3869 in this situation. */ 3870 if (VALUE_LVAL (new_val) == lval_register 3871 && value_lazy (new_val) 3872 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id)) 3873 internal_error (__FILE__, __LINE__, 3874 _("infinite loop while fetching a register")); 3875 } 3876 3877 /* If it's still lazy (for instance, a saved register on the 3878 stack), fetch it. */ 3879 if (value_lazy (new_val)) 3880 value_fetch_lazy (new_val); 3881 3882 /* Copy the contents and the unavailability/optimized-out 3883 meta-data from NEW_VAL to VAL. */ 3884 set_value_lazy (val, 0); 3885 value_contents_copy (val, value_embedded_offset (val), 3886 new_val, value_embedded_offset (new_val), 3887 TYPE_LENGTH (type)); 3888 3889 if (frame_debug) 3890 { 3891 struct gdbarch *gdbarch; 3892 frame = frame_find_by_id (VALUE_FRAME_ID (val)); 3893 regnum = VALUE_REGNUM (val); 3894 gdbarch = get_frame_arch (frame); 3895 3896 fprintf_unfiltered (gdb_stdlog, 3897 "{ value_fetch_lazy " 3898 "(frame=%d,regnum=%d(%s),...) ", 3899 frame_relative_level (frame), regnum, 3900 user_reg_map_regnum_to_name (gdbarch, regnum)); 3901 3902 fprintf_unfiltered (gdb_stdlog, "->"); 3903 if (value_optimized_out (new_val)) 3904 { 3905 fprintf_unfiltered (gdb_stdlog, " "); 3906 val_print_optimized_out (new_val, gdb_stdlog); 3907 } 3908 else 3909 { 3910 int i; 3911 const gdb_byte *buf = value_contents (new_val); 3912 3913 if (VALUE_LVAL (new_val) == lval_register) 3914 fprintf_unfiltered (gdb_stdlog, " register=%d", 3915 VALUE_REGNUM (new_val)); 3916 else if (VALUE_LVAL (new_val) == lval_memory) 3917 fprintf_unfiltered (gdb_stdlog, " address=%s", 3918 paddress (gdbarch, 3919 value_address (new_val))); 3920 else 3921 fprintf_unfiltered (gdb_stdlog, " computed"); 3922 3923 fprintf_unfiltered (gdb_stdlog, " bytes="); 3924 fprintf_unfiltered (gdb_stdlog, "["); 3925 for (i = 0; i < register_size (gdbarch, regnum); i++) 3926 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 3927 fprintf_unfiltered (gdb_stdlog, "]"); 3928 } 3929 3930 fprintf_unfiltered (gdb_stdlog, " }\n"); 3931 } 3932 3933 /* Dispose of the intermediate values. This prevents 3934 watchpoints from trying to watch the saved frame pointer. */ 3935 value_free_to_mark (mark); 3936 } 3937 else if (VALUE_LVAL (val) == lval_computed 3938 && value_computed_funcs (val)->read != NULL) 3939 value_computed_funcs (val)->read (val); 3940 else 3941 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); 3942 3943 set_value_lazy (val, 0); 3944 } 3945 3946 /* Implementation of the convenience function $_isvoid. */ 3947 3948 static struct value * 3949 isvoid_internal_fn (struct gdbarch *gdbarch, 3950 const struct language_defn *language, 3951 void *cookie, int argc, struct value **argv) 3952 { 3953 int ret; 3954 3955 if (argc != 1) 3956 error (_("You must provide one argument for $_isvoid.")); 3957 3958 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; 3959 3960 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); 3961 } 3962 3963 void 3964 _initialize_values (void) 3965 { 3966 add_cmd ("convenience", no_class, show_convenience, _("\ 3967 Debugger convenience (\"$foo\") variables and functions.\n\ 3968 Convenience variables are created when you assign them values;\n\ 3969 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ 3970 \n\ 3971 A few convenience variables are given values automatically:\n\ 3972 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ 3973 \"$__\" holds the contents of the last address examined with \"x\"." 3974 #ifdef HAVE_PYTHON 3975 "\n\n\ 3976 Convenience functions are defined via the Python API." 3977 #endif 3978 ), &showlist); 3979 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); 3980 3981 add_cmd ("values", no_set_class, show_values, _("\ 3982 Elements of value history around item number IDX (or last ten)."), 3983 &showlist); 3984 3985 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ 3986 Initialize a convenience variable if necessary.\n\ 3987 init-if-undefined VARIABLE = EXPRESSION\n\ 3988 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ 3989 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ 3990 VARIABLE is already initialized.")); 3991 3992 add_prefix_cmd ("function", no_class, function_command, _("\ 3993 Placeholder command for showing help on convenience functions."), 3994 &functionlist, "function ", 0, &cmdlist); 3995 3996 add_internal_function ("_isvoid", _("\ 3997 Check whether an expression is void.\n\ 3998 Usage: $_isvoid (expression)\n\ 3999 Return 1 if the expression is void, zero otherwise."), 4000 isvoid_internal_fn, NULL); 4001 } 4002