1 /* Low level packing and unpacking of values for GDB, the GNU Debugger. 2 3 Copyright (C) 1986-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "arch-utils.h" 22 #include "symtab.h" 23 #include "gdbtypes.h" 24 #include "value.h" 25 #include "gdbcore.h" 26 #include "command.h" 27 #include "gdbcmd.h" 28 #include "target.h" 29 #include "language.h" 30 #include "demangle.h" 31 #include "doublest.h" 32 #include "regcache.h" 33 #include "block.h" 34 #include "dfp.h" 35 #include "objfiles.h" 36 #include "valprint.h" 37 #include "cli/cli-decode.h" 38 #include "extension.h" 39 #include <ctype.h> 40 #include "tracepoint.h" 41 #include "cp-abi.h" 42 #include "user-regs.h" 43 44 /* Prototypes for exported functions. */ 45 46 void _initialize_values (void); 47 48 /* Definition of a user function. */ 49 struct internal_function 50 { 51 /* The name of the function. It is a bit odd to have this in the 52 function itself -- the user might use a differently-named 53 convenience variable to hold the function. */ 54 char *name; 55 56 /* The handler. */ 57 internal_function_fn handler; 58 59 /* User data for the handler. */ 60 void *cookie; 61 }; 62 63 /* Defines an [OFFSET, OFFSET + LENGTH) range. */ 64 65 struct range 66 { 67 /* Lowest offset in the range. */ 68 int offset; 69 70 /* Length of the range. */ 71 int length; 72 }; 73 74 typedef struct range range_s; 75 76 DEF_VEC_O(range_s); 77 78 /* Returns true if the ranges defined by [offset1, offset1+len1) and 79 [offset2, offset2+len2) overlap. */ 80 81 static int 82 ranges_overlap (int offset1, int len1, 83 int offset2, int len2) 84 { 85 ULONGEST h, l; 86 87 l = max (offset1, offset2); 88 h = min (offset1 + len1, offset2 + len2); 89 return (l < h); 90 } 91 92 /* Returns true if the first argument is strictly less than the 93 second, useful for VEC_lower_bound. We keep ranges sorted by 94 offset and coalesce overlapping and contiguous ranges, so this just 95 compares the starting offset. */ 96 97 static int 98 range_lessthan (const range_s *r1, const range_s *r2) 99 { 100 return r1->offset < r2->offset; 101 } 102 103 /* Returns true if RANGES contains any range that overlaps [OFFSET, 104 OFFSET+LENGTH). */ 105 106 static int 107 ranges_contain (VEC(range_s) *ranges, int offset, int length) 108 { 109 range_s what; 110 int i; 111 112 what.offset = offset; 113 what.length = length; 114 115 /* We keep ranges sorted by offset and coalesce overlapping and 116 contiguous ranges, so to check if a range list contains a given 117 range, we can do a binary search for the position the given range 118 would be inserted if we only considered the starting OFFSET of 119 ranges. We call that position I. Since we also have LENGTH to 120 care for (this is a range afterall), we need to check if the 121 _previous_ range overlaps the I range. E.g., 122 123 R 124 |---| 125 |---| |---| |------| ... |--| 126 0 1 2 N 127 128 I=1 129 130 In the case above, the binary search would return `I=1', meaning, 131 this OFFSET should be inserted at position 1, and the current 132 position 1 should be pushed further (and before 2). But, `0' 133 overlaps with R. 134 135 Then we need to check if the I range overlaps the I range itself. 136 E.g., 137 138 R 139 |---| 140 |---| |---| |-------| ... |--| 141 0 1 2 N 142 143 I=1 144 */ 145 146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan); 147 148 if (i > 0) 149 { 150 struct range *bef = VEC_index (range_s, ranges, i - 1); 151 152 if (ranges_overlap (bef->offset, bef->length, offset, length)) 153 return 1; 154 } 155 156 if (i < VEC_length (range_s, ranges)) 157 { 158 struct range *r = VEC_index (range_s, ranges, i); 159 160 if (ranges_overlap (r->offset, r->length, offset, length)) 161 return 1; 162 } 163 164 return 0; 165 } 166 167 static struct cmd_list_element *functionlist; 168 169 /* Note that the fields in this structure are arranged to save a bit 170 of memory. */ 171 172 struct value 173 { 174 /* Type of value; either not an lval, or one of the various 175 different possible kinds of lval. */ 176 enum lval_type lval; 177 178 /* Is it modifiable? Only relevant if lval != not_lval. */ 179 unsigned int modifiable : 1; 180 181 /* If zero, contents of this value are in the contents field. If 182 nonzero, contents are in inferior. If the lval field is lval_memory, 183 the contents are in inferior memory at location.address plus offset. 184 The lval field may also be lval_register. 185 186 WARNING: This field is used by the code which handles watchpoints 187 (see breakpoint.c) to decide whether a particular value can be 188 watched by hardware watchpoints. If the lazy flag is set for 189 some member of a value chain, it is assumed that this member of 190 the chain doesn't need to be watched as part of watching the 191 value itself. This is how GDB avoids watching the entire struct 192 or array when the user wants to watch a single struct member or 193 array element. If you ever change the way lazy flag is set and 194 reset, be sure to consider this use as well! */ 195 unsigned int lazy : 1; 196 197 /* If value is a variable, is it initialized or not. */ 198 unsigned int initialized : 1; 199 200 /* If value is from the stack. If this is set, read_stack will be 201 used instead of read_memory to enable extra caching. */ 202 unsigned int stack : 1; 203 204 /* If the value has been released. */ 205 unsigned int released : 1; 206 207 /* Register number if the value is from a register. */ 208 short regnum; 209 210 /* Location of value (if lval). */ 211 union 212 { 213 /* If lval == lval_memory, this is the address in the inferior. 214 If lval == lval_register, this is the byte offset into the 215 registers structure. */ 216 CORE_ADDR address; 217 218 /* Pointer to internal variable. */ 219 struct internalvar *internalvar; 220 221 /* Pointer to xmethod worker. */ 222 struct xmethod_worker *xm_worker; 223 224 /* If lval == lval_computed, this is a set of function pointers 225 to use to access and describe the value, and a closure pointer 226 for them to use. */ 227 struct 228 { 229 /* Functions to call. */ 230 const struct lval_funcs *funcs; 231 232 /* Closure for those functions to use. */ 233 void *closure; 234 } computed; 235 } location; 236 237 /* Describes offset of a value within lval of a structure in bytes. 238 If lval == lval_memory, this is an offset to the address. If 239 lval == lval_register, this is a further offset from 240 location.address within the registers structure. Note also the 241 member embedded_offset below. */ 242 int offset; 243 244 /* Only used for bitfields; number of bits contained in them. */ 245 int bitsize; 246 247 /* Only used for bitfields; position of start of field. For 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ 250 int bitpos; 251 252 /* The number of references to this value. When a value is created, 253 the value chain holds a reference, so REFERENCE_COUNT is 1. If 254 release_value is called, this value is removed from the chain but 255 the caller of release_value now has a reference to this value. 256 The caller must arrange for a call to value_free later. */ 257 int reference_count; 258 259 /* Only used for bitfields; the containing value. This allows a 260 single read from the target when displaying multiple 261 bitfields. */ 262 struct value *parent; 263 264 /* Frame register value is relative to. This will be described in 265 the lval enum above as "lval_register". */ 266 struct frame_id frame_id; 267 268 /* Type of the value. */ 269 struct type *type; 270 271 /* If a value represents a C++ object, then the `type' field gives 272 the object's compile-time type. If the object actually belongs 273 to some class derived from `type', perhaps with other base 274 classes and additional members, then `type' is just a subobject 275 of the real thing, and the full object is probably larger than 276 `type' would suggest. 277 278 If `type' is a dynamic class (i.e. one with a vtable), then GDB 279 can actually determine the object's run-time type by looking at 280 the run-time type information in the vtable. When this 281 information is available, we may elect to read in the entire 282 object, for several reasons: 283 284 - When printing the value, the user would probably rather see the 285 full object, not just the limited portion apparent from the 286 compile-time type. 287 288 - If `type' has virtual base classes, then even printing `type' 289 alone may require reaching outside the `type' portion of the 290 object to wherever the virtual base class has been stored. 291 292 When we store the entire object, `enclosing_type' is the run-time 293 type -- the complete object -- and `embedded_offset' is the 294 offset of `type' within that larger type, in bytes. The 295 value_contents() macro takes `embedded_offset' into account, so 296 most GDB code continues to see the `type' portion of the value, 297 just as the inferior would. 298 299 If `type' is a pointer to an object, then `enclosing_type' is a 300 pointer to the object's run-time type, and `pointed_to_offset' is 301 the offset in bytes from the full object to the pointed-to object 302 -- that is, the value `embedded_offset' would have if we followed 303 the pointer and fetched the complete object. (I don't really see 304 the point. Why not just determine the run-time type when you 305 indirect, and avoid the special case? The contents don't matter 306 until you indirect anyway.) 307 308 If we're not doing anything fancy, `enclosing_type' is equal to 309 `type', and `embedded_offset' is zero, so everything works 310 normally. */ 311 struct type *enclosing_type; 312 int embedded_offset; 313 int pointed_to_offset; 314 315 /* Values are stored in a chain, so that they can be deleted easily 316 over calls to the inferior. Values assigned to internal 317 variables, put into the value history or exposed to Python are 318 taken off this list. */ 319 struct value *next; 320 321 /* Actual contents of the value. Target byte-order. NULL or not 322 valid if lazy is nonzero. */ 323 gdb_byte *contents; 324 325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges, 326 rather than available, since the common and default case is for a 327 value to be available. This is filled in at value read time. 328 The unavailable ranges are tracked in bits. Note that a contents 329 bit that has been optimized out doesn't really exist in the 330 program, so it can't be marked unavailable either. */ 331 VEC(range_s) *unavailable; 332 333 /* Likewise, but for optimized out contents (a chunk of the value of 334 a variable that does not actually exist in the program). If LVAL 335 is lval_register, this is a register ($pc, $sp, etc., never a 336 program variable) that has not been saved in the frame. Not 337 saved registers and optimized-out program variables values are 338 treated pretty much the same, except not-saved registers have a 339 different string representation and related error strings. */ 340 VEC(range_s) *optimized_out; 341 }; 342 343 int 344 value_bits_available (const struct value *value, int offset, int length) 345 { 346 gdb_assert (!value->lazy); 347 348 return !ranges_contain (value->unavailable, offset, length); 349 } 350 351 int 352 value_bytes_available (const struct value *value, int offset, int length) 353 { 354 return value_bits_available (value, 355 offset * TARGET_CHAR_BIT, 356 length * TARGET_CHAR_BIT); 357 } 358 359 int 360 value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) 361 { 362 gdb_assert (!value->lazy); 363 364 return ranges_contain (value->optimized_out, bit_offset, bit_length); 365 } 366 367 int 368 value_entirely_available (struct value *value) 369 { 370 /* We can only tell whether the whole value is available when we try 371 to read it. */ 372 if (value->lazy) 373 value_fetch_lazy (value); 374 375 if (VEC_empty (range_s, value->unavailable)) 376 return 1; 377 return 0; 378 } 379 380 /* Returns true if VALUE is entirely covered by RANGES. If the value 381 is lazy, it'll be read now. Note that RANGE is a pointer to 382 pointer because reading the value might change *RANGE. */ 383 384 static int 385 value_entirely_covered_by_range_vector (struct value *value, 386 VEC(range_s) **ranges) 387 { 388 /* We can only tell whether the whole value is optimized out / 389 unavailable when we try to read it. */ 390 if (value->lazy) 391 value_fetch_lazy (value); 392 393 if (VEC_length (range_s, *ranges) == 1) 394 { 395 struct range *t = VEC_index (range_s, *ranges, 0); 396 397 if (t->offset == 0 398 && t->length == (TARGET_CHAR_BIT 399 * TYPE_LENGTH (value_enclosing_type (value)))) 400 return 1; 401 } 402 403 return 0; 404 } 405 406 int 407 value_entirely_unavailable (struct value *value) 408 { 409 return value_entirely_covered_by_range_vector (value, &value->unavailable); 410 } 411 412 int 413 value_entirely_optimized_out (struct value *value) 414 { 415 return value_entirely_covered_by_range_vector (value, &value->optimized_out); 416 } 417 418 /* Insert into the vector pointed to by VECTORP the bit range starting of 419 OFFSET bits, and extending for the next LENGTH bits. */ 420 421 static void 422 insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length) 423 { 424 range_s newr; 425 int i; 426 427 /* Insert the range sorted. If there's overlap or the new range 428 would be contiguous with an existing range, merge. */ 429 430 newr.offset = offset; 431 newr.length = length; 432 433 /* Do a binary search for the position the given range would be 434 inserted if we only considered the starting OFFSET of ranges. 435 Call that position I. Since we also have LENGTH to care for 436 (this is a range afterall), we need to check if the _previous_ 437 range overlaps the I range. E.g., calling R the new range: 438 439 #1 - overlaps with previous 440 441 R 442 |-...-| 443 |---| |---| |------| ... |--| 444 0 1 2 N 445 446 I=1 447 448 In the case #1 above, the binary search would return `I=1', 449 meaning, this OFFSET should be inserted at position 1, and the 450 current position 1 should be pushed further (and become 2). But, 451 note that `0' overlaps with R, so we want to merge them. 452 453 A similar consideration needs to be taken if the new range would 454 be contiguous with the previous range: 455 456 #2 - contiguous with previous 457 458 R 459 |-...-| 460 |--| |---| |------| ... |--| 461 0 1 2 N 462 463 I=1 464 465 If there's no overlap with the previous range, as in: 466 467 #3 - not overlapping and not contiguous 468 469 R 470 |-...-| 471 |--| |---| |------| ... |--| 472 0 1 2 N 473 474 I=1 475 476 or if I is 0: 477 478 #4 - R is the range with lowest offset 479 480 R 481 |-...-| 482 |--| |---| |------| ... |--| 483 0 1 2 N 484 485 I=0 486 487 ... we just push the new range to I. 488 489 All the 4 cases above need to consider that the new range may 490 also overlap several of the ranges that follow, or that R may be 491 contiguous with the following range, and merge. E.g., 492 493 #5 - overlapping following ranges 494 495 R 496 |------------------------| 497 |--| |---| |------| ... |--| 498 0 1 2 N 499 500 I=0 501 502 or: 503 504 R 505 |-------| 506 |--| |---| |------| ... |--| 507 0 1 2 N 508 509 I=1 510 511 */ 512 513 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan); 514 if (i > 0) 515 { 516 struct range *bef = VEC_index (range_s, *vectorp, i - 1); 517 518 if (ranges_overlap (bef->offset, bef->length, offset, length)) 519 { 520 /* #1 */ 521 ULONGEST l = min (bef->offset, offset); 522 ULONGEST h = max (bef->offset + bef->length, offset + length); 523 524 bef->offset = l; 525 bef->length = h - l; 526 i--; 527 } 528 else if (offset == bef->offset + bef->length) 529 { 530 /* #2 */ 531 bef->length += length; 532 i--; 533 } 534 else 535 { 536 /* #3 */ 537 VEC_safe_insert (range_s, *vectorp, i, &newr); 538 } 539 } 540 else 541 { 542 /* #4 */ 543 VEC_safe_insert (range_s, *vectorp, i, &newr); 544 } 545 546 /* Check whether the ranges following the one we've just added or 547 touched can be folded in (#5 above). */ 548 if (i + 1 < VEC_length (range_s, *vectorp)) 549 { 550 struct range *t; 551 struct range *r; 552 int removed = 0; 553 int next = i + 1; 554 555 /* Get the range we just touched. */ 556 t = VEC_index (range_s, *vectorp, i); 557 removed = 0; 558 559 i = next; 560 for (; VEC_iterate (range_s, *vectorp, i, r); i++) 561 if (r->offset <= t->offset + t->length) 562 { 563 ULONGEST l, h; 564 565 l = min (t->offset, r->offset); 566 h = max (t->offset + t->length, r->offset + r->length); 567 568 t->offset = l; 569 t->length = h - l; 570 571 removed++; 572 } 573 else 574 { 575 /* If we couldn't merge this one, we won't be able to 576 merge following ones either, since the ranges are 577 always sorted by OFFSET. */ 578 break; 579 } 580 581 if (removed != 0) 582 VEC_block_remove (range_s, *vectorp, next, removed); 583 } 584 } 585 586 void 587 mark_value_bits_unavailable (struct value *value, int offset, int length) 588 { 589 insert_into_bit_range_vector (&value->unavailable, offset, length); 590 } 591 592 void 593 mark_value_bytes_unavailable (struct value *value, int offset, int length) 594 { 595 mark_value_bits_unavailable (value, 596 offset * TARGET_CHAR_BIT, 597 length * TARGET_CHAR_BIT); 598 } 599 600 /* Find the first range in RANGES that overlaps the range defined by 601 OFFSET and LENGTH, starting at element POS in the RANGES vector, 602 Returns the index into RANGES where such overlapping range was 603 found, or -1 if none was found. */ 604 605 static int 606 find_first_range_overlap (VEC(range_s) *ranges, int pos, 607 int offset, int length) 608 { 609 range_s *r; 610 int i; 611 612 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++) 613 if (ranges_overlap (r->offset, r->length, offset, length)) 614 return i; 615 616 return -1; 617 } 618 619 /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at 620 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise 621 return non-zero. 622 623 It must always be the case that: 624 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT 625 626 It is assumed that memory can be accessed from: 627 PTR + (OFFSET_BITS / TARGET_CHAR_BIT) 628 to: 629 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) 630 / TARGET_CHAR_BIT) */ 631 static int 632 memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, 633 const gdb_byte *ptr2, size_t offset2_bits, 634 size_t length_bits) 635 { 636 gdb_assert (offset1_bits % TARGET_CHAR_BIT 637 == offset2_bits % TARGET_CHAR_BIT); 638 639 if (offset1_bits % TARGET_CHAR_BIT != 0) 640 { 641 size_t bits; 642 gdb_byte mask, b1, b2; 643 644 /* The offset from the base pointers PTR1 and PTR2 is not a complete 645 number of bytes. A number of bits up to either the next exact 646 byte boundary, or LENGTH_BITS (which ever is sooner) will be 647 compared. */ 648 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; 649 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 650 mask = (1 << bits) - 1; 651 652 if (length_bits < bits) 653 { 654 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); 655 bits = length_bits; 656 } 657 658 /* Now load the two bytes and mask off the bits we care about. */ 659 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; 660 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; 661 662 if (b1 != b2) 663 return 1; 664 665 /* Now update the length and offsets to take account of the bits 666 we've just compared. */ 667 length_bits -= bits; 668 offset1_bits += bits; 669 offset2_bits += bits; 670 } 671 672 if (length_bits % TARGET_CHAR_BIT != 0) 673 { 674 size_t bits; 675 size_t o1, o2; 676 gdb_byte mask, b1, b2; 677 678 /* The length is not an exact number of bytes. After the previous 679 IF.. block then the offsets are byte aligned, or the 680 length is zero (in which case this code is not reached). Compare 681 a number of bits at the end of the region, starting from an exact 682 byte boundary. */ 683 bits = length_bits % TARGET_CHAR_BIT; 684 o1 = offset1_bits + length_bits - bits; 685 o2 = offset2_bits + length_bits - bits; 686 687 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); 688 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); 689 690 gdb_assert (o1 % TARGET_CHAR_BIT == 0); 691 gdb_assert (o2 % TARGET_CHAR_BIT == 0); 692 693 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; 694 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; 695 696 if (b1 != b2) 697 return 1; 698 699 length_bits -= bits; 700 } 701 702 if (length_bits > 0) 703 { 704 /* We've now taken care of any stray "bits" at the start, or end of 705 the region to compare, the remainder can be covered with a simple 706 memcmp. */ 707 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); 708 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); 709 gdb_assert (length_bits % TARGET_CHAR_BIT == 0); 710 711 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, 712 ptr2 + offset2_bits / TARGET_CHAR_BIT, 713 length_bits / TARGET_CHAR_BIT); 714 } 715 716 /* Length is zero, regions match. */ 717 return 0; 718 } 719 720 /* Helper struct for find_first_range_overlap_and_match and 721 value_contents_bits_eq. Keep track of which slot of a given ranges 722 vector have we last looked at. */ 723 724 struct ranges_and_idx 725 { 726 /* The ranges. */ 727 VEC(range_s) *ranges; 728 729 /* The range we've last found in RANGES. Given ranges are sorted, 730 we can start the next lookup here. */ 731 int idx; 732 }; 733 734 /* Helper function for value_contents_bits_eq. Compare LENGTH bits of 735 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's 736 ranges starting at OFFSET2 bits. Return true if the ranges match 737 and fill in *L and *H with the overlapping window relative to 738 (both) OFFSET1 or OFFSET2. */ 739 740 static int 741 find_first_range_overlap_and_match (struct ranges_and_idx *rp1, 742 struct ranges_and_idx *rp2, 743 int offset1, int offset2, 744 int length, ULONGEST *l, ULONGEST *h) 745 { 746 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, 747 offset1, length); 748 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, 749 offset2, length); 750 751 if (rp1->idx == -1 && rp2->idx == -1) 752 { 753 *l = length; 754 *h = length; 755 return 1; 756 } 757 else if (rp1->idx == -1 || rp2->idx == -1) 758 return 0; 759 else 760 { 761 range_s *r1, *r2; 762 ULONGEST l1, h1; 763 ULONGEST l2, h2; 764 765 r1 = VEC_index (range_s, rp1->ranges, rp1->idx); 766 r2 = VEC_index (range_s, rp2->ranges, rp2->idx); 767 768 /* Get the unavailable windows intersected by the incoming 769 ranges. The first and last ranges that overlap the argument 770 range may be wider than said incoming arguments ranges. */ 771 l1 = max (offset1, r1->offset); 772 h1 = min (offset1 + length, r1->offset + r1->length); 773 774 l2 = max (offset2, r2->offset); 775 h2 = min (offset2 + length, offset2 + r2->length); 776 777 /* Make them relative to the respective start offsets, so we can 778 compare them for equality. */ 779 l1 -= offset1; 780 h1 -= offset1; 781 782 l2 -= offset2; 783 h2 -= offset2; 784 785 /* Different ranges, no match. */ 786 if (l1 != l2 || h1 != h2) 787 return 0; 788 789 *h = h1; 790 *l = l1; 791 return 1; 792 } 793 } 794 795 /* Helper function for value_contents_eq. The only difference is that 796 this function is bit rather than byte based. 797 798 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits 799 with LENGTH bits of VAL2's contents starting at OFFSET2 bits. 800 Return true if the available bits match. */ 801 802 static int 803 value_contents_bits_eq (const struct value *val1, int offset1, 804 const struct value *val2, int offset2, 805 int length) 806 { 807 /* Each array element corresponds to a ranges source (unavailable, 808 optimized out). '1' is for VAL1, '2' for VAL2. */ 809 struct ranges_and_idx rp1[2], rp2[2]; 810 811 /* See function description in value.h. */ 812 gdb_assert (!val1->lazy && !val2->lazy); 813 814 /* We shouldn't be trying to compare past the end of the values. */ 815 gdb_assert (offset1 + length 816 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); 817 gdb_assert (offset2 + length 818 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); 819 820 memset (&rp1, 0, sizeof (rp1)); 821 memset (&rp2, 0, sizeof (rp2)); 822 rp1[0].ranges = val1->unavailable; 823 rp2[0].ranges = val2->unavailable; 824 rp1[1].ranges = val1->optimized_out; 825 rp2[1].ranges = val2->optimized_out; 826 827 while (length > 0) 828 { 829 ULONGEST l = 0, h = 0; /* init for gcc -Wall */ 830 int i; 831 832 for (i = 0; i < 2; i++) 833 { 834 ULONGEST l_tmp, h_tmp; 835 836 /* The contents only match equal if the invalid/unavailable 837 contents ranges match as well. */ 838 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], 839 offset1, offset2, length, 840 &l_tmp, &h_tmp)) 841 return 0; 842 843 /* We're interested in the lowest/first range found. */ 844 if (i == 0 || l_tmp < l) 845 { 846 l = l_tmp; 847 h = h_tmp; 848 } 849 } 850 851 /* Compare the available/valid contents. */ 852 if (memcmp_with_bit_offsets (val1->contents, offset1, 853 val2->contents, offset2, l) != 0) 854 return 0; 855 856 length -= h; 857 offset1 += h; 858 offset2 += h; 859 } 860 861 return 1; 862 } 863 864 int 865 value_contents_eq (const struct value *val1, int offset1, 866 const struct value *val2, int offset2, 867 int length) 868 { 869 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, 870 val2, offset2 * TARGET_CHAR_BIT, 871 length * TARGET_CHAR_BIT); 872 } 873 874 /* Prototypes for local functions. */ 875 876 static void show_values (char *, int); 877 878 static void show_convenience (char *, int); 879 880 881 /* The value-history records all the values printed 882 by print commands during this session. Each chunk 883 records 60 consecutive values. The first chunk on 884 the chain records the most recent values. 885 The total number of values is in value_history_count. */ 886 887 #define VALUE_HISTORY_CHUNK 60 888 889 struct value_history_chunk 890 { 891 struct value_history_chunk *next; 892 struct value *values[VALUE_HISTORY_CHUNK]; 893 }; 894 895 /* Chain of chunks now in use. */ 896 897 static struct value_history_chunk *value_history_chain; 898 899 static int value_history_count; /* Abs number of last entry stored. */ 900 901 902 /* List of all value objects currently allocated 903 (except for those released by calls to release_value) 904 This is so they can be freed after each command. */ 905 906 static struct value *all_values; 907 908 /* Allocate a lazy value for type TYPE. Its actual content is 909 "lazily" allocated too: the content field of the return value is 910 NULL; it will be allocated when it is fetched from the target. */ 911 912 struct value * 913 allocate_value_lazy (struct type *type) 914 { 915 struct value *val; 916 917 /* Call check_typedef on our type to make sure that, if TYPE 918 is a TYPE_CODE_TYPEDEF, its length is set to the length 919 of the target type instead of zero. However, we do not 920 replace the typedef type by the target type, because we want 921 to keep the typedef in order to be able to set the VAL's type 922 description correctly. */ 923 check_typedef (type); 924 925 val = (struct value *) xzalloc (sizeof (struct value)); 926 val->contents = NULL; 927 val->next = all_values; 928 all_values = val; 929 val->type = type; 930 val->enclosing_type = type; 931 VALUE_LVAL (val) = not_lval; 932 val->location.address = 0; 933 VALUE_FRAME_ID (val) = null_frame_id; 934 val->offset = 0; 935 val->bitpos = 0; 936 val->bitsize = 0; 937 VALUE_REGNUM (val) = -1; 938 val->lazy = 1; 939 val->embedded_offset = 0; 940 val->pointed_to_offset = 0; 941 val->modifiable = 1; 942 val->initialized = 1; /* Default to initialized. */ 943 944 /* Values start out on the all_values chain. */ 945 val->reference_count = 1; 946 947 return val; 948 } 949 950 /* Allocate the contents of VAL if it has not been allocated yet. */ 951 952 static void 953 allocate_value_contents (struct value *val) 954 { 955 if (!val->contents) 956 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); 957 } 958 959 /* Allocate a value and its contents for type TYPE. */ 960 961 struct value * 962 allocate_value (struct type *type) 963 { 964 struct value *val = allocate_value_lazy (type); 965 966 allocate_value_contents (val); 967 val->lazy = 0; 968 return val; 969 } 970 971 /* Allocate a value that has the correct length 972 for COUNT repetitions of type TYPE. */ 973 974 struct value * 975 allocate_repeat_value (struct type *type, int count) 976 { 977 int low_bound = current_language->string_lower_bound; /* ??? */ 978 /* FIXME-type-allocation: need a way to free this type when we are 979 done with it. */ 980 struct type *array_type 981 = lookup_array_range_type (type, low_bound, count + low_bound - 1); 982 983 return allocate_value (array_type); 984 } 985 986 struct value * 987 allocate_computed_value (struct type *type, 988 const struct lval_funcs *funcs, 989 void *closure) 990 { 991 struct value *v = allocate_value_lazy (type); 992 993 VALUE_LVAL (v) = lval_computed; 994 v->location.computed.funcs = funcs; 995 v->location.computed.closure = closure; 996 997 return v; 998 } 999 1000 /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ 1001 1002 struct value * 1003 allocate_optimized_out_value (struct type *type) 1004 { 1005 struct value *retval = allocate_value_lazy (type); 1006 1007 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); 1008 set_value_lazy (retval, 0); 1009 return retval; 1010 } 1011 1012 /* Accessor methods. */ 1013 1014 struct value * 1015 value_next (struct value *value) 1016 { 1017 return value->next; 1018 } 1019 1020 struct type * 1021 value_type (const struct value *value) 1022 { 1023 return value->type; 1024 } 1025 void 1026 deprecated_set_value_type (struct value *value, struct type *type) 1027 { 1028 value->type = type; 1029 } 1030 1031 int 1032 value_offset (const struct value *value) 1033 { 1034 return value->offset; 1035 } 1036 void 1037 set_value_offset (struct value *value, int offset) 1038 { 1039 value->offset = offset; 1040 } 1041 1042 int 1043 value_bitpos (const struct value *value) 1044 { 1045 return value->bitpos; 1046 } 1047 void 1048 set_value_bitpos (struct value *value, int bit) 1049 { 1050 value->bitpos = bit; 1051 } 1052 1053 int 1054 value_bitsize (const struct value *value) 1055 { 1056 return value->bitsize; 1057 } 1058 void 1059 set_value_bitsize (struct value *value, int bit) 1060 { 1061 value->bitsize = bit; 1062 } 1063 1064 struct value * 1065 value_parent (struct value *value) 1066 { 1067 return value->parent; 1068 } 1069 1070 /* See value.h. */ 1071 1072 void 1073 set_value_parent (struct value *value, struct value *parent) 1074 { 1075 struct value *old = value->parent; 1076 1077 value->parent = parent; 1078 if (parent != NULL) 1079 value_incref (parent); 1080 value_free (old); 1081 } 1082 1083 gdb_byte * 1084 value_contents_raw (struct value *value) 1085 { 1086 allocate_value_contents (value); 1087 return value->contents + value->embedded_offset; 1088 } 1089 1090 gdb_byte * 1091 value_contents_all_raw (struct value *value) 1092 { 1093 allocate_value_contents (value); 1094 return value->contents; 1095 } 1096 1097 struct type * 1098 value_enclosing_type (struct value *value) 1099 { 1100 return value->enclosing_type; 1101 } 1102 1103 /* Look at value.h for description. */ 1104 1105 struct type * 1106 value_actual_type (struct value *value, int resolve_simple_types, 1107 int *real_type_found) 1108 { 1109 struct value_print_options opts; 1110 struct type *result; 1111 1112 get_user_print_options (&opts); 1113 1114 if (real_type_found) 1115 *real_type_found = 0; 1116 result = value_type (value); 1117 if (opts.objectprint) 1118 { 1119 /* If result's target type is TYPE_CODE_STRUCT, proceed to 1120 fetch its rtti type. */ 1121 if ((TYPE_CODE (result) == TYPE_CODE_PTR 1122 || TYPE_CODE (result) == TYPE_CODE_REF) 1123 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) 1124 == TYPE_CODE_STRUCT) 1125 { 1126 struct type *real_type; 1127 1128 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); 1129 if (real_type) 1130 { 1131 if (real_type_found) 1132 *real_type_found = 1; 1133 result = real_type; 1134 } 1135 } 1136 else if (resolve_simple_types) 1137 { 1138 if (real_type_found) 1139 *real_type_found = 1; 1140 result = value_enclosing_type (value); 1141 } 1142 } 1143 1144 return result; 1145 } 1146 1147 void 1148 error_value_optimized_out (void) 1149 { 1150 error (_("value has been optimized out")); 1151 } 1152 1153 static void 1154 require_not_optimized_out (const struct value *value) 1155 { 1156 if (!VEC_empty (range_s, value->optimized_out)) 1157 { 1158 if (value->lval == lval_register) 1159 error (_("register has not been saved in frame")); 1160 else 1161 error_value_optimized_out (); 1162 } 1163 } 1164 1165 static void 1166 require_available (const struct value *value) 1167 { 1168 if (!VEC_empty (range_s, value->unavailable)) 1169 throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); 1170 } 1171 1172 const gdb_byte * 1173 value_contents_for_printing (struct value *value) 1174 { 1175 if (value->lazy) 1176 value_fetch_lazy (value); 1177 return value->contents; 1178 } 1179 1180 const gdb_byte * 1181 value_contents_for_printing_const (const struct value *value) 1182 { 1183 gdb_assert (!value->lazy); 1184 return value->contents; 1185 } 1186 1187 const gdb_byte * 1188 value_contents_all (struct value *value) 1189 { 1190 const gdb_byte *result = value_contents_for_printing (value); 1191 require_not_optimized_out (value); 1192 require_available (value); 1193 return result; 1194 } 1195 1196 /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, 1197 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ 1198 1199 static void 1200 ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset, 1201 VEC (range_s) *src_range, int src_bit_offset, 1202 int bit_length) 1203 { 1204 range_s *r; 1205 int i; 1206 1207 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++) 1208 { 1209 ULONGEST h, l; 1210 1211 l = max (r->offset, src_bit_offset); 1212 h = min (r->offset + r->length, src_bit_offset + bit_length); 1213 1214 if (l < h) 1215 insert_into_bit_range_vector (dst_range, 1216 dst_bit_offset + (l - src_bit_offset), 1217 h - l); 1218 } 1219 } 1220 1221 /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, 1222 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ 1223 1224 static void 1225 value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, 1226 const struct value *src, int src_bit_offset, 1227 int bit_length) 1228 { 1229 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, 1230 src->unavailable, src_bit_offset, 1231 bit_length); 1232 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, 1233 src->optimized_out, src_bit_offset, 1234 bit_length); 1235 } 1236 1237 /* Copy LENGTH bytes of SRC value's (all) contents 1238 (value_contents_all) starting at SRC_OFFSET, into DST value's (all) 1239 contents, starting at DST_OFFSET. If unavailable contents are 1240 being copied from SRC, the corresponding DST contents are marked 1241 unavailable accordingly. Neither DST nor SRC may be lazy 1242 values. 1243 1244 It is assumed the contents of DST in the [DST_OFFSET, 1245 DST_OFFSET+LENGTH) range are wholly available. */ 1246 1247 void 1248 value_contents_copy_raw (struct value *dst, int dst_offset, 1249 struct value *src, int src_offset, int length) 1250 { 1251 range_s *r; 1252 int i; 1253 int src_bit_offset, dst_bit_offset, bit_length; 1254 1255 /* A lazy DST would make that this copy operation useless, since as 1256 soon as DST's contents were un-lazied (by a later value_contents 1257 call, say), the contents would be overwritten. A lazy SRC would 1258 mean we'd be copying garbage. */ 1259 gdb_assert (!dst->lazy && !src->lazy); 1260 1261 /* The overwritten DST range gets unavailability ORed in, not 1262 replaced. Make sure to remember to implement replacing if it 1263 turns out actually necessary. */ 1264 gdb_assert (value_bytes_available (dst, dst_offset, length)); 1265 gdb_assert (!value_bits_any_optimized_out (dst, 1266 TARGET_CHAR_BIT * dst_offset, 1267 TARGET_CHAR_BIT * length)); 1268 1269 /* Copy the data. */ 1270 memcpy (value_contents_all_raw (dst) + dst_offset, 1271 value_contents_all_raw (src) + src_offset, 1272 length); 1273 1274 /* Copy the meta-data, adjusted. */ 1275 src_bit_offset = src_offset * TARGET_CHAR_BIT; 1276 dst_bit_offset = dst_offset * TARGET_CHAR_BIT; 1277 bit_length = length * TARGET_CHAR_BIT; 1278 1279 value_ranges_copy_adjusted (dst, dst_bit_offset, 1280 src, src_bit_offset, 1281 bit_length); 1282 } 1283 1284 /* Copy LENGTH bytes of SRC value's (all) contents 1285 (value_contents_all) starting at SRC_OFFSET byte, into DST value's 1286 (all) contents, starting at DST_OFFSET. If unavailable contents 1287 are being copied from SRC, the corresponding DST contents are 1288 marked unavailable accordingly. DST must not be lazy. If SRC is 1289 lazy, it will be fetched now. 1290 1291 It is assumed the contents of DST in the [DST_OFFSET, 1292 DST_OFFSET+LENGTH) range are wholly available. */ 1293 1294 void 1295 value_contents_copy (struct value *dst, int dst_offset, 1296 struct value *src, int src_offset, int length) 1297 { 1298 if (src->lazy) 1299 value_fetch_lazy (src); 1300 1301 value_contents_copy_raw (dst, dst_offset, src, src_offset, length); 1302 } 1303 1304 int 1305 value_lazy (struct value *value) 1306 { 1307 return value->lazy; 1308 } 1309 1310 void 1311 set_value_lazy (struct value *value, int val) 1312 { 1313 value->lazy = val; 1314 } 1315 1316 int 1317 value_stack (struct value *value) 1318 { 1319 return value->stack; 1320 } 1321 1322 void 1323 set_value_stack (struct value *value, int val) 1324 { 1325 value->stack = val; 1326 } 1327 1328 const gdb_byte * 1329 value_contents (struct value *value) 1330 { 1331 const gdb_byte *result = value_contents_writeable (value); 1332 require_not_optimized_out (value); 1333 require_available (value); 1334 return result; 1335 } 1336 1337 gdb_byte * 1338 value_contents_writeable (struct value *value) 1339 { 1340 if (value->lazy) 1341 value_fetch_lazy (value); 1342 return value_contents_raw (value); 1343 } 1344 1345 int 1346 value_optimized_out (struct value *value) 1347 { 1348 /* We can only know if a value is optimized out once we have tried to 1349 fetch it. */ 1350 if (VEC_empty (range_s, value->optimized_out) && value->lazy) 1351 value_fetch_lazy (value); 1352 1353 return !VEC_empty (range_s, value->optimized_out); 1354 } 1355 1356 /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and 1357 the following LENGTH bytes. */ 1358 1359 void 1360 mark_value_bytes_optimized_out (struct value *value, int offset, int length) 1361 { 1362 mark_value_bits_optimized_out (value, 1363 offset * TARGET_CHAR_BIT, 1364 length * TARGET_CHAR_BIT); 1365 } 1366 1367 /* See value.h. */ 1368 1369 void 1370 mark_value_bits_optimized_out (struct value *value, int offset, int length) 1371 { 1372 insert_into_bit_range_vector (&value->optimized_out, offset, length); 1373 } 1374 1375 int 1376 value_bits_synthetic_pointer (const struct value *value, 1377 int offset, int length) 1378 { 1379 if (value->lval != lval_computed 1380 || !value->location.computed.funcs->check_synthetic_pointer) 1381 return 0; 1382 return value->location.computed.funcs->check_synthetic_pointer (value, 1383 offset, 1384 length); 1385 } 1386 1387 int 1388 value_embedded_offset (struct value *value) 1389 { 1390 return value->embedded_offset; 1391 } 1392 1393 void 1394 set_value_embedded_offset (struct value *value, int val) 1395 { 1396 value->embedded_offset = val; 1397 } 1398 1399 int 1400 value_pointed_to_offset (struct value *value) 1401 { 1402 return value->pointed_to_offset; 1403 } 1404 1405 void 1406 set_value_pointed_to_offset (struct value *value, int val) 1407 { 1408 value->pointed_to_offset = val; 1409 } 1410 1411 const struct lval_funcs * 1412 value_computed_funcs (const struct value *v) 1413 { 1414 gdb_assert (value_lval_const (v) == lval_computed); 1415 1416 return v->location.computed.funcs; 1417 } 1418 1419 void * 1420 value_computed_closure (const struct value *v) 1421 { 1422 gdb_assert (v->lval == lval_computed); 1423 1424 return v->location.computed.closure; 1425 } 1426 1427 enum lval_type * 1428 deprecated_value_lval_hack (struct value *value) 1429 { 1430 return &value->lval; 1431 } 1432 1433 enum lval_type 1434 value_lval_const (const struct value *value) 1435 { 1436 return value->lval; 1437 } 1438 1439 CORE_ADDR 1440 value_address (const struct value *value) 1441 { 1442 if (value->lval == lval_internalvar 1443 || value->lval == lval_internalvar_component 1444 || value->lval == lval_xcallable) 1445 return 0; 1446 if (value->parent != NULL) 1447 return value_address (value->parent) + value->offset; 1448 else 1449 return value->location.address + value->offset; 1450 } 1451 1452 CORE_ADDR 1453 value_raw_address (struct value *value) 1454 { 1455 if (value->lval == lval_internalvar 1456 || value->lval == lval_internalvar_component 1457 || value->lval == lval_xcallable) 1458 return 0; 1459 return value->location.address; 1460 } 1461 1462 void 1463 set_value_address (struct value *value, CORE_ADDR addr) 1464 { 1465 gdb_assert (value->lval != lval_internalvar 1466 && value->lval != lval_internalvar_component 1467 && value->lval != lval_xcallable); 1468 value->location.address = addr; 1469 } 1470 1471 struct internalvar ** 1472 deprecated_value_internalvar_hack (struct value *value) 1473 { 1474 return &value->location.internalvar; 1475 } 1476 1477 struct frame_id * 1478 deprecated_value_frame_id_hack (struct value *value) 1479 { 1480 return &value->frame_id; 1481 } 1482 1483 short * 1484 deprecated_value_regnum_hack (struct value *value) 1485 { 1486 return &value->regnum; 1487 } 1488 1489 int 1490 deprecated_value_modifiable (struct value *value) 1491 { 1492 return value->modifiable; 1493 } 1494 1495 /* Return a mark in the value chain. All values allocated after the 1496 mark is obtained (except for those released) are subject to being freed 1497 if a subsequent value_free_to_mark is passed the mark. */ 1498 struct value * 1499 value_mark (void) 1500 { 1501 return all_values; 1502 } 1503 1504 /* Take a reference to VAL. VAL will not be deallocated until all 1505 references are released. */ 1506 1507 void 1508 value_incref (struct value *val) 1509 { 1510 val->reference_count++; 1511 } 1512 1513 /* Release a reference to VAL, which was acquired with value_incref. 1514 This function is also called to deallocate values from the value 1515 chain. */ 1516 1517 void 1518 value_free (struct value *val) 1519 { 1520 if (val) 1521 { 1522 gdb_assert (val->reference_count > 0); 1523 val->reference_count--; 1524 if (val->reference_count > 0) 1525 return; 1526 1527 /* If there's an associated parent value, drop our reference to 1528 it. */ 1529 if (val->parent != NULL) 1530 value_free (val->parent); 1531 1532 if (VALUE_LVAL (val) == lval_computed) 1533 { 1534 const struct lval_funcs *funcs = val->location.computed.funcs; 1535 1536 if (funcs->free_closure) 1537 funcs->free_closure (val); 1538 } 1539 else if (VALUE_LVAL (val) == lval_xcallable) 1540 free_xmethod_worker (val->location.xm_worker); 1541 1542 xfree (val->contents); 1543 VEC_free (range_s, val->unavailable); 1544 } 1545 xfree (val); 1546 } 1547 1548 /* Free all values allocated since MARK was obtained by value_mark 1549 (except for those released). */ 1550 void 1551 value_free_to_mark (struct value *mark) 1552 { 1553 struct value *val; 1554 struct value *next; 1555 1556 for (val = all_values; val && val != mark; val = next) 1557 { 1558 next = val->next; 1559 val->released = 1; 1560 value_free (val); 1561 } 1562 all_values = val; 1563 } 1564 1565 /* Free all the values that have been allocated (except for those released). 1566 Call after each command, successful or not. 1567 In practice this is called before each command, which is sufficient. */ 1568 1569 void 1570 free_all_values (void) 1571 { 1572 struct value *val; 1573 struct value *next; 1574 1575 for (val = all_values; val; val = next) 1576 { 1577 next = val->next; 1578 val->released = 1; 1579 value_free (val); 1580 } 1581 1582 all_values = 0; 1583 } 1584 1585 /* Frees all the elements in a chain of values. */ 1586 1587 void 1588 free_value_chain (struct value *v) 1589 { 1590 struct value *next; 1591 1592 for (; v; v = next) 1593 { 1594 next = value_next (v); 1595 value_free (v); 1596 } 1597 } 1598 1599 /* Remove VAL from the chain all_values 1600 so it will not be freed automatically. */ 1601 1602 void 1603 release_value (struct value *val) 1604 { 1605 struct value *v; 1606 1607 if (all_values == val) 1608 { 1609 all_values = val->next; 1610 val->next = NULL; 1611 val->released = 1; 1612 return; 1613 } 1614 1615 for (v = all_values; v; v = v->next) 1616 { 1617 if (v->next == val) 1618 { 1619 v->next = val->next; 1620 val->next = NULL; 1621 val->released = 1; 1622 break; 1623 } 1624 } 1625 } 1626 1627 /* If the value is not already released, release it. 1628 If the value is already released, increment its reference count. 1629 That is, this function ensures that the value is released from the 1630 value chain and that the caller owns a reference to it. */ 1631 1632 void 1633 release_value_or_incref (struct value *val) 1634 { 1635 if (val->released) 1636 value_incref (val); 1637 else 1638 release_value (val); 1639 } 1640 1641 /* Release all values up to mark */ 1642 struct value * 1643 value_release_to_mark (struct value *mark) 1644 { 1645 struct value *val; 1646 struct value *next; 1647 1648 for (val = next = all_values; next; next = next->next) 1649 { 1650 if (next->next == mark) 1651 { 1652 all_values = next->next; 1653 next->next = NULL; 1654 return val; 1655 } 1656 next->released = 1; 1657 } 1658 all_values = 0; 1659 return val; 1660 } 1661 1662 /* Return a copy of the value ARG. 1663 It contains the same contents, for same memory address, 1664 but it's a different block of storage. */ 1665 1666 struct value * 1667 value_copy (struct value *arg) 1668 { 1669 struct type *encl_type = value_enclosing_type (arg); 1670 struct value *val; 1671 1672 if (value_lazy (arg)) 1673 val = allocate_value_lazy (encl_type); 1674 else 1675 val = allocate_value (encl_type); 1676 val->type = arg->type; 1677 VALUE_LVAL (val) = VALUE_LVAL (arg); 1678 val->location = arg->location; 1679 val->offset = arg->offset; 1680 val->bitpos = arg->bitpos; 1681 val->bitsize = arg->bitsize; 1682 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); 1683 VALUE_REGNUM (val) = VALUE_REGNUM (arg); 1684 val->lazy = arg->lazy; 1685 val->embedded_offset = value_embedded_offset (arg); 1686 val->pointed_to_offset = arg->pointed_to_offset; 1687 val->modifiable = arg->modifiable; 1688 if (!value_lazy (val)) 1689 { 1690 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), 1691 TYPE_LENGTH (value_enclosing_type (arg))); 1692 1693 } 1694 val->unavailable = VEC_copy (range_s, arg->unavailable); 1695 val->optimized_out = VEC_copy (range_s, arg->optimized_out); 1696 set_value_parent (val, arg->parent); 1697 if (VALUE_LVAL (val) == lval_computed) 1698 { 1699 const struct lval_funcs *funcs = val->location.computed.funcs; 1700 1701 if (funcs->copy_closure) 1702 val->location.computed.closure = funcs->copy_closure (val); 1703 } 1704 return val; 1705 } 1706 1707 /* Return a version of ARG that is non-lvalue. */ 1708 1709 struct value * 1710 value_non_lval (struct value *arg) 1711 { 1712 if (VALUE_LVAL (arg) != not_lval) 1713 { 1714 struct type *enc_type = value_enclosing_type (arg); 1715 struct value *val = allocate_value (enc_type); 1716 1717 memcpy (value_contents_all_raw (val), value_contents_all (arg), 1718 TYPE_LENGTH (enc_type)); 1719 val->type = arg->type; 1720 set_value_embedded_offset (val, value_embedded_offset (arg)); 1721 set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); 1722 return val; 1723 } 1724 return arg; 1725 } 1726 1727 /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ 1728 1729 void 1730 value_force_lval (struct value *v, CORE_ADDR addr) 1731 { 1732 gdb_assert (VALUE_LVAL (v) == not_lval); 1733 1734 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); 1735 v->lval = lval_memory; 1736 v->location.address = addr; 1737 } 1738 1739 void 1740 set_value_component_location (struct value *component, 1741 const struct value *whole) 1742 { 1743 gdb_assert (whole->lval != lval_xcallable); 1744 1745 if (whole->lval == lval_internalvar) 1746 VALUE_LVAL (component) = lval_internalvar_component; 1747 else 1748 VALUE_LVAL (component) = whole->lval; 1749 1750 component->location = whole->location; 1751 if (whole->lval == lval_computed) 1752 { 1753 const struct lval_funcs *funcs = whole->location.computed.funcs; 1754 1755 if (funcs->copy_closure) 1756 component->location.computed.closure = funcs->copy_closure (whole); 1757 } 1758 } 1759 1760 1761 /* Access to the value history. */ 1762 1763 /* Record a new value in the value history. 1764 Returns the absolute history index of the entry. */ 1765 1766 int 1767 record_latest_value (struct value *val) 1768 { 1769 int i; 1770 1771 /* We don't want this value to have anything to do with the inferior anymore. 1772 In particular, "set $1 = 50" should not affect the variable from which 1773 the value was taken, and fast watchpoints should be able to assume that 1774 a value on the value history never changes. */ 1775 if (value_lazy (val)) 1776 value_fetch_lazy (val); 1777 /* We preserve VALUE_LVAL so that the user can find out where it was fetched 1778 from. This is a bit dubious, because then *&$1 does not just return $1 1779 but the current contents of that location. c'est la vie... */ 1780 val->modifiable = 0; 1781 1782 /* The value may have already been released, in which case we're adding a 1783 new reference for its entry in the history. That is why we call 1784 release_value_or_incref here instead of release_value. */ 1785 release_value_or_incref (val); 1786 1787 /* Here we treat value_history_count as origin-zero 1788 and applying to the value being stored now. */ 1789 1790 i = value_history_count % VALUE_HISTORY_CHUNK; 1791 if (i == 0) 1792 { 1793 struct value_history_chunk *new 1794 = (struct value_history_chunk *) 1795 1796 xmalloc (sizeof (struct value_history_chunk)); 1797 memset (new->values, 0, sizeof new->values); 1798 new->next = value_history_chain; 1799 value_history_chain = new; 1800 } 1801 1802 value_history_chain->values[i] = val; 1803 1804 /* Now we regard value_history_count as origin-one 1805 and applying to the value just stored. */ 1806 1807 return ++value_history_count; 1808 } 1809 1810 /* Return a copy of the value in the history with sequence number NUM. */ 1811 1812 struct value * 1813 access_value_history (int num) 1814 { 1815 struct value_history_chunk *chunk; 1816 int i; 1817 int absnum = num; 1818 1819 if (absnum <= 0) 1820 absnum += value_history_count; 1821 1822 if (absnum <= 0) 1823 { 1824 if (num == 0) 1825 error (_("The history is empty.")); 1826 else if (num == 1) 1827 error (_("There is only one value in the history.")); 1828 else 1829 error (_("History does not go back to $$%d."), -num); 1830 } 1831 if (absnum > value_history_count) 1832 error (_("History has not yet reached $%d."), absnum); 1833 1834 absnum--; 1835 1836 /* Now absnum is always absolute and origin zero. */ 1837 1838 chunk = value_history_chain; 1839 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK 1840 - absnum / VALUE_HISTORY_CHUNK; 1841 i > 0; i--) 1842 chunk = chunk->next; 1843 1844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); 1845 } 1846 1847 static void 1848 show_values (char *num_exp, int from_tty) 1849 { 1850 int i; 1851 struct value *val; 1852 static int num = 1; 1853 1854 if (num_exp) 1855 { 1856 /* "show values +" should print from the stored position. 1857 "show values <exp>" should print around value number <exp>. */ 1858 if (num_exp[0] != '+' || num_exp[1] != '\0') 1859 num = parse_and_eval_long (num_exp) - 5; 1860 } 1861 else 1862 { 1863 /* "show values" means print the last 10 values. */ 1864 num = value_history_count - 9; 1865 } 1866 1867 if (num <= 0) 1868 num = 1; 1869 1870 for (i = num; i < num + 10 && i <= value_history_count; i++) 1871 { 1872 struct value_print_options opts; 1873 1874 val = access_value_history (i); 1875 printf_filtered (("$%d = "), i); 1876 get_user_print_options (&opts); 1877 value_print (val, gdb_stdout, &opts); 1878 printf_filtered (("\n")); 1879 } 1880 1881 /* The next "show values +" should start after what we just printed. */ 1882 num += 10; 1883 1884 /* Hitting just return after this command should do the same thing as 1885 "show values +". If num_exp is null, this is unnecessary, since 1886 "show values +" is not useful after "show values". */ 1887 if (from_tty && num_exp) 1888 { 1889 num_exp[0] = '+'; 1890 num_exp[1] = '\0'; 1891 } 1892 } 1893 1894 /* Internal variables. These are variables within the debugger 1895 that hold values assigned by debugger commands. 1896 The user refers to them with a '$' prefix 1897 that does not appear in the variable names stored internally. */ 1898 1899 struct internalvar 1900 { 1901 struct internalvar *next; 1902 char *name; 1903 1904 /* We support various different kinds of content of an internal variable. 1905 enum internalvar_kind specifies the kind, and union internalvar_data 1906 provides the data associated with this particular kind. */ 1907 1908 enum internalvar_kind 1909 { 1910 /* The internal variable is empty. */ 1911 INTERNALVAR_VOID, 1912 1913 /* The value of the internal variable is provided directly as 1914 a GDB value object. */ 1915 INTERNALVAR_VALUE, 1916 1917 /* A fresh value is computed via a call-back routine on every 1918 access to the internal variable. */ 1919 INTERNALVAR_MAKE_VALUE, 1920 1921 /* The internal variable holds a GDB internal convenience function. */ 1922 INTERNALVAR_FUNCTION, 1923 1924 /* The variable holds an integer value. */ 1925 INTERNALVAR_INTEGER, 1926 1927 /* The variable holds a GDB-provided string. */ 1928 INTERNALVAR_STRING, 1929 1930 } kind; 1931 1932 union internalvar_data 1933 { 1934 /* A value object used with INTERNALVAR_VALUE. */ 1935 struct value *value; 1936 1937 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ 1938 struct 1939 { 1940 /* The functions to call. */ 1941 const struct internalvar_funcs *functions; 1942 1943 /* The function's user-data. */ 1944 void *data; 1945 } make_value; 1946 1947 /* The internal function used with INTERNALVAR_FUNCTION. */ 1948 struct 1949 { 1950 struct internal_function *function; 1951 /* True if this is the canonical name for the function. */ 1952 int canonical; 1953 } fn; 1954 1955 /* An integer value used with INTERNALVAR_INTEGER. */ 1956 struct 1957 { 1958 /* If type is non-NULL, it will be used as the type to generate 1959 a value for this internal variable. If type is NULL, a default 1960 integer type for the architecture is used. */ 1961 struct type *type; 1962 LONGEST val; 1963 } integer; 1964 1965 /* A string value used with INTERNALVAR_STRING. */ 1966 char *string; 1967 } u; 1968 }; 1969 1970 static struct internalvar *internalvars; 1971 1972 /* If the variable does not already exist create it and give it the 1973 value given. If no value is given then the default is zero. */ 1974 static void 1975 init_if_undefined_command (char* args, int from_tty) 1976 { 1977 struct internalvar* intvar; 1978 1979 /* Parse the expression - this is taken from set_command(). */ 1980 struct expression *expr = parse_expression (args); 1981 register struct cleanup *old_chain = 1982 make_cleanup (free_current_contents, &expr); 1983 1984 /* Validate the expression. 1985 Was the expression an assignment? 1986 Or even an expression at all? */ 1987 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) 1988 error (_("Init-if-undefined requires an assignment expression.")); 1989 1990 /* Extract the variable from the parsed expression. 1991 In the case of an assign the lvalue will be in elts[1] and elts[2]. */ 1992 if (expr->elts[1].opcode != OP_INTERNALVAR) 1993 error (_("The first parameter to init-if-undefined " 1994 "should be a GDB variable.")); 1995 intvar = expr->elts[2].internalvar; 1996 1997 /* Only evaluate the expression if the lvalue is void. 1998 This may still fail if the expresssion is invalid. */ 1999 if (intvar->kind == INTERNALVAR_VOID) 2000 evaluate_expression (expr); 2001 2002 do_cleanups (old_chain); 2003 } 2004 2005 2006 /* Look up an internal variable with name NAME. NAME should not 2007 normally include a dollar sign. 2008 2009 If the specified internal variable does not exist, 2010 the return value is NULL. */ 2011 2012 struct internalvar * 2013 lookup_only_internalvar (const char *name) 2014 { 2015 struct internalvar *var; 2016 2017 for (var = internalvars; var; var = var->next) 2018 if (strcmp (var->name, name) == 0) 2019 return var; 2020 2021 return NULL; 2022 } 2023 2024 /* Complete NAME by comparing it to the names of internal variables. 2025 Returns a vector of newly allocated strings, or NULL if no matches 2026 were found. */ 2027 2028 VEC (char_ptr) * 2029 complete_internalvar (const char *name) 2030 { 2031 VEC (char_ptr) *result = NULL; 2032 struct internalvar *var; 2033 int len; 2034 2035 len = strlen (name); 2036 2037 for (var = internalvars; var; var = var->next) 2038 if (strncmp (var->name, name, len) == 0) 2039 { 2040 char *r = xstrdup (var->name); 2041 2042 VEC_safe_push (char_ptr, result, r); 2043 } 2044 2045 return result; 2046 } 2047 2048 /* Create an internal variable with name NAME and with a void value. 2049 NAME should not normally include a dollar sign. */ 2050 2051 struct internalvar * 2052 create_internalvar (const char *name) 2053 { 2054 struct internalvar *var; 2055 2056 var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); 2057 var->name = concat (name, (char *)NULL); 2058 var->kind = INTERNALVAR_VOID; 2059 var->next = internalvars; 2060 internalvars = var; 2061 return var; 2062 } 2063 2064 /* Create an internal variable with name NAME and register FUN as the 2065 function that value_of_internalvar uses to create a value whenever 2066 this variable is referenced. NAME should not normally include a 2067 dollar sign. DATA is passed uninterpreted to FUN when it is 2068 called. CLEANUP, if not NULL, is called when the internal variable 2069 is destroyed. It is passed DATA as its only argument. */ 2070 2071 struct internalvar * 2072 create_internalvar_type_lazy (const char *name, 2073 const struct internalvar_funcs *funcs, 2074 void *data) 2075 { 2076 struct internalvar *var = create_internalvar (name); 2077 2078 var->kind = INTERNALVAR_MAKE_VALUE; 2079 var->u.make_value.functions = funcs; 2080 var->u.make_value.data = data; 2081 return var; 2082 } 2083 2084 /* See documentation in value.h. */ 2085 2086 int 2087 compile_internalvar_to_ax (struct internalvar *var, 2088 struct agent_expr *expr, 2089 struct axs_value *value) 2090 { 2091 if (var->kind != INTERNALVAR_MAKE_VALUE 2092 || var->u.make_value.functions->compile_to_ax == NULL) 2093 return 0; 2094 2095 var->u.make_value.functions->compile_to_ax (var, expr, value, 2096 var->u.make_value.data); 2097 return 1; 2098 } 2099 2100 /* Look up an internal variable with name NAME. NAME should not 2101 normally include a dollar sign. 2102 2103 If the specified internal variable does not exist, 2104 one is created, with a void value. */ 2105 2106 struct internalvar * 2107 lookup_internalvar (const char *name) 2108 { 2109 struct internalvar *var; 2110 2111 var = lookup_only_internalvar (name); 2112 if (var) 2113 return var; 2114 2115 return create_internalvar (name); 2116 } 2117 2118 /* Return current value of internal variable VAR. For variables that 2119 are not inherently typed, use a value type appropriate for GDBARCH. */ 2120 2121 struct value * 2122 value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) 2123 { 2124 struct value *val; 2125 struct trace_state_variable *tsv; 2126 2127 /* If there is a trace state variable of the same name, assume that 2128 is what we really want to see. */ 2129 tsv = find_trace_state_variable (var->name); 2130 if (tsv) 2131 { 2132 tsv->value_known = target_get_trace_state_variable_value (tsv->number, 2133 &(tsv->value)); 2134 if (tsv->value_known) 2135 val = value_from_longest (builtin_type (gdbarch)->builtin_int64, 2136 tsv->value); 2137 else 2138 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2139 return val; 2140 } 2141 2142 switch (var->kind) 2143 { 2144 case INTERNALVAR_VOID: 2145 val = allocate_value (builtin_type (gdbarch)->builtin_void); 2146 break; 2147 2148 case INTERNALVAR_FUNCTION: 2149 val = allocate_value (builtin_type (gdbarch)->internal_fn); 2150 break; 2151 2152 case INTERNALVAR_INTEGER: 2153 if (!var->u.integer.type) 2154 val = value_from_longest (builtin_type (gdbarch)->builtin_int, 2155 var->u.integer.val); 2156 else 2157 val = value_from_longest (var->u.integer.type, var->u.integer.val); 2158 break; 2159 2160 case INTERNALVAR_STRING: 2161 val = value_cstring (var->u.string, strlen (var->u.string), 2162 builtin_type (gdbarch)->builtin_char); 2163 break; 2164 2165 case INTERNALVAR_VALUE: 2166 val = value_copy (var->u.value); 2167 if (value_lazy (val)) 2168 value_fetch_lazy (val); 2169 break; 2170 2171 case INTERNALVAR_MAKE_VALUE: 2172 val = (*var->u.make_value.functions->make_value) (gdbarch, var, 2173 var->u.make_value.data); 2174 break; 2175 2176 default: 2177 internal_error (__FILE__, __LINE__, _("bad kind")); 2178 } 2179 2180 /* Change the VALUE_LVAL to lval_internalvar so that future operations 2181 on this value go back to affect the original internal variable. 2182 2183 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have 2184 no underlying modifyable state in the internal variable. 2185 2186 Likewise, if the variable's value is a computed lvalue, we want 2187 references to it to produce another computed lvalue, where 2188 references and assignments actually operate through the 2189 computed value's functions. 2190 2191 This means that internal variables with computed values 2192 behave a little differently from other internal variables: 2193 assignments to them don't just replace the previous value 2194 altogether. At the moment, this seems like the behavior we 2195 want. */ 2196 2197 if (var->kind != INTERNALVAR_MAKE_VALUE 2198 && val->lval != lval_computed) 2199 { 2200 VALUE_LVAL (val) = lval_internalvar; 2201 VALUE_INTERNALVAR (val) = var; 2202 } 2203 2204 return val; 2205 } 2206 2207 int 2208 get_internalvar_integer (struct internalvar *var, LONGEST *result) 2209 { 2210 if (var->kind == INTERNALVAR_INTEGER) 2211 { 2212 *result = var->u.integer.val; 2213 return 1; 2214 } 2215 2216 if (var->kind == INTERNALVAR_VALUE) 2217 { 2218 struct type *type = check_typedef (value_type (var->u.value)); 2219 2220 if (TYPE_CODE (type) == TYPE_CODE_INT) 2221 { 2222 *result = value_as_long (var->u.value); 2223 return 1; 2224 } 2225 } 2226 2227 return 0; 2228 } 2229 2230 static int 2231 get_internalvar_function (struct internalvar *var, 2232 struct internal_function **result) 2233 { 2234 switch (var->kind) 2235 { 2236 case INTERNALVAR_FUNCTION: 2237 *result = var->u.fn.function; 2238 return 1; 2239 2240 default: 2241 return 0; 2242 } 2243 } 2244 2245 void 2246 set_internalvar_component (struct internalvar *var, int offset, int bitpos, 2247 int bitsize, struct value *newval) 2248 { 2249 gdb_byte *addr; 2250 2251 switch (var->kind) 2252 { 2253 case INTERNALVAR_VALUE: 2254 addr = value_contents_writeable (var->u.value); 2255 2256 if (bitsize) 2257 modify_field (value_type (var->u.value), addr + offset, 2258 value_as_long (newval), bitpos, bitsize); 2259 else 2260 memcpy (addr + offset, value_contents (newval), 2261 TYPE_LENGTH (value_type (newval))); 2262 break; 2263 2264 default: 2265 /* We can never get a component of any other kind. */ 2266 internal_error (__FILE__, __LINE__, _("set_internalvar_component")); 2267 } 2268 } 2269 2270 void 2271 set_internalvar (struct internalvar *var, struct value *val) 2272 { 2273 enum internalvar_kind new_kind; 2274 union internalvar_data new_data = { 0 }; 2275 2276 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) 2277 error (_("Cannot overwrite convenience function %s"), var->name); 2278 2279 /* Prepare new contents. */ 2280 switch (TYPE_CODE (check_typedef (value_type (val)))) 2281 { 2282 case TYPE_CODE_VOID: 2283 new_kind = INTERNALVAR_VOID; 2284 break; 2285 2286 case TYPE_CODE_INTERNAL_FUNCTION: 2287 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2288 new_kind = INTERNALVAR_FUNCTION; 2289 get_internalvar_function (VALUE_INTERNALVAR (val), 2290 &new_data.fn.function); 2291 /* Copies created here are never canonical. */ 2292 break; 2293 2294 default: 2295 new_kind = INTERNALVAR_VALUE; 2296 new_data.value = value_copy (val); 2297 new_data.value->modifiable = 1; 2298 2299 /* Force the value to be fetched from the target now, to avoid problems 2300 later when this internalvar is referenced and the target is gone or 2301 has changed. */ 2302 if (value_lazy (new_data.value)) 2303 value_fetch_lazy (new_data.value); 2304 2305 /* Release the value from the value chain to prevent it from being 2306 deleted by free_all_values. From here on this function should not 2307 call error () until new_data is installed into the var->u to avoid 2308 leaking memory. */ 2309 release_value (new_data.value); 2310 break; 2311 } 2312 2313 /* Clean up old contents. */ 2314 clear_internalvar (var); 2315 2316 /* Switch over. */ 2317 var->kind = new_kind; 2318 var->u = new_data; 2319 /* End code which must not call error(). */ 2320 } 2321 2322 void 2323 set_internalvar_integer (struct internalvar *var, LONGEST l) 2324 { 2325 /* Clean up old contents. */ 2326 clear_internalvar (var); 2327 2328 var->kind = INTERNALVAR_INTEGER; 2329 var->u.integer.type = NULL; 2330 var->u.integer.val = l; 2331 } 2332 2333 void 2334 set_internalvar_string (struct internalvar *var, const char *string) 2335 { 2336 /* Clean up old contents. */ 2337 clear_internalvar (var); 2338 2339 var->kind = INTERNALVAR_STRING; 2340 var->u.string = xstrdup (string); 2341 } 2342 2343 static void 2344 set_internalvar_function (struct internalvar *var, struct internal_function *f) 2345 { 2346 /* Clean up old contents. */ 2347 clear_internalvar (var); 2348 2349 var->kind = INTERNALVAR_FUNCTION; 2350 var->u.fn.function = f; 2351 var->u.fn.canonical = 1; 2352 /* Variables installed here are always the canonical version. */ 2353 } 2354 2355 void 2356 clear_internalvar (struct internalvar *var) 2357 { 2358 /* Clean up old contents. */ 2359 switch (var->kind) 2360 { 2361 case INTERNALVAR_VALUE: 2362 value_free (var->u.value); 2363 break; 2364 2365 case INTERNALVAR_STRING: 2366 xfree (var->u.string); 2367 break; 2368 2369 case INTERNALVAR_MAKE_VALUE: 2370 if (var->u.make_value.functions->destroy != NULL) 2371 var->u.make_value.functions->destroy (var->u.make_value.data); 2372 break; 2373 2374 default: 2375 break; 2376 } 2377 2378 /* Reset to void kind. */ 2379 var->kind = INTERNALVAR_VOID; 2380 } 2381 2382 char * 2383 internalvar_name (struct internalvar *var) 2384 { 2385 return var->name; 2386 } 2387 2388 static struct internal_function * 2389 create_internal_function (const char *name, 2390 internal_function_fn handler, void *cookie) 2391 { 2392 struct internal_function *ifn = XNEW (struct internal_function); 2393 2394 ifn->name = xstrdup (name); 2395 ifn->handler = handler; 2396 ifn->cookie = cookie; 2397 return ifn; 2398 } 2399 2400 char * 2401 value_internal_function_name (struct value *val) 2402 { 2403 struct internal_function *ifn; 2404 int result; 2405 2406 gdb_assert (VALUE_LVAL (val) == lval_internalvar); 2407 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); 2408 gdb_assert (result); 2409 2410 return ifn->name; 2411 } 2412 2413 struct value * 2414 call_internal_function (struct gdbarch *gdbarch, 2415 const struct language_defn *language, 2416 struct value *func, int argc, struct value **argv) 2417 { 2418 struct internal_function *ifn; 2419 int result; 2420 2421 gdb_assert (VALUE_LVAL (func) == lval_internalvar); 2422 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); 2423 gdb_assert (result); 2424 2425 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); 2426 } 2427 2428 /* The 'function' command. This does nothing -- it is just a 2429 placeholder to let "help function NAME" work. This is also used as 2430 the implementation of the sub-command that is created when 2431 registering an internal function. */ 2432 static void 2433 function_command (char *command, int from_tty) 2434 { 2435 /* Do nothing. */ 2436 } 2437 2438 /* Clean up if an internal function's command is destroyed. */ 2439 static void 2440 function_destroyer (struct cmd_list_element *self, void *ignore) 2441 { 2442 xfree ((char *) self->name); 2443 xfree ((char *) self->doc); 2444 } 2445 2446 /* Add a new internal function. NAME is the name of the function; DOC 2447 is a documentation string describing the function. HANDLER is 2448 called when the function is invoked. COOKIE is an arbitrary 2449 pointer which is passed to HANDLER and is intended for "user 2450 data". */ 2451 void 2452 add_internal_function (const char *name, const char *doc, 2453 internal_function_fn handler, void *cookie) 2454 { 2455 struct cmd_list_element *cmd; 2456 struct internal_function *ifn; 2457 struct internalvar *var = lookup_internalvar (name); 2458 2459 ifn = create_internal_function (name, handler, cookie); 2460 set_internalvar_function (var, ifn); 2461 2462 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, 2463 &functionlist); 2464 cmd->destroyer = function_destroyer; 2465 } 2466 2467 /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to 2468 prevent cycles / duplicates. */ 2469 2470 void 2471 preserve_one_value (struct value *value, struct objfile *objfile, 2472 htab_t copied_types) 2473 { 2474 if (TYPE_OBJFILE (value->type) == objfile) 2475 value->type = copy_type_recursive (objfile, value->type, copied_types); 2476 2477 if (TYPE_OBJFILE (value->enclosing_type) == objfile) 2478 value->enclosing_type = copy_type_recursive (objfile, 2479 value->enclosing_type, 2480 copied_types); 2481 } 2482 2483 /* Likewise for internal variable VAR. */ 2484 2485 static void 2486 preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, 2487 htab_t copied_types) 2488 { 2489 switch (var->kind) 2490 { 2491 case INTERNALVAR_INTEGER: 2492 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) 2493 var->u.integer.type 2494 = copy_type_recursive (objfile, var->u.integer.type, copied_types); 2495 break; 2496 2497 case INTERNALVAR_VALUE: 2498 preserve_one_value (var->u.value, objfile, copied_types); 2499 break; 2500 } 2501 } 2502 2503 /* Update the internal variables and value history when OBJFILE is 2504 discarded; we must copy the types out of the objfile. New global types 2505 will be created for every convenience variable which currently points to 2506 this objfile's types, and the convenience variables will be adjusted to 2507 use the new global types. */ 2508 2509 void 2510 preserve_values (struct objfile *objfile) 2511 { 2512 htab_t copied_types; 2513 struct value_history_chunk *cur; 2514 struct internalvar *var; 2515 int i; 2516 2517 /* Create the hash table. We allocate on the objfile's obstack, since 2518 it is soon to be deleted. */ 2519 copied_types = create_copied_types_hash (objfile); 2520 2521 for (cur = value_history_chain; cur; cur = cur->next) 2522 for (i = 0; i < VALUE_HISTORY_CHUNK; i++) 2523 if (cur->values[i]) 2524 preserve_one_value (cur->values[i], objfile, copied_types); 2525 2526 for (var = internalvars; var; var = var->next) 2527 preserve_one_internalvar (var, objfile, copied_types); 2528 2529 preserve_ext_lang_values (objfile, copied_types); 2530 2531 htab_delete (copied_types); 2532 } 2533 2534 static void 2535 show_convenience (char *ignore, int from_tty) 2536 { 2537 struct gdbarch *gdbarch = get_current_arch (); 2538 struct internalvar *var; 2539 int varseen = 0; 2540 struct value_print_options opts; 2541 2542 get_user_print_options (&opts); 2543 for (var = internalvars; var; var = var->next) 2544 { 2545 volatile struct gdb_exception ex; 2546 2547 if (!varseen) 2548 { 2549 varseen = 1; 2550 } 2551 printf_filtered (("$%s = "), var->name); 2552 2553 TRY_CATCH (ex, RETURN_MASK_ERROR) 2554 { 2555 struct value *val; 2556 2557 val = value_of_internalvar (gdbarch, var); 2558 value_print (val, gdb_stdout, &opts); 2559 } 2560 if (ex.reason < 0) 2561 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message); 2562 printf_filtered (("\n")); 2563 } 2564 if (!varseen) 2565 { 2566 /* This text does not mention convenience functions on purpose. 2567 The user can't create them except via Python, and if Python support 2568 is installed this message will never be printed ($_streq will 2569 exist). */ 2570 printf_unfiltered (_("No debugger convenience variables now defined.\n" 2571 "Convenience variables have " 2572 "names starting with \"$\";\n" 2573 "use \"set\" as in \"set " 2574 "$foo = 5\" to define them.\n")); 2575 } 2576 } 2577 2578 /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */ 2579 2580 struct value * 2581 value_of_xmethod (struct xmethod_worker *worker) 2582 { 2583 if (worker->value == NULL) 2584 { 2585 struct value *v; 2586 2587 v = allocate_value (builtin_type (target_gdbarch ())->xmethod); 2588 v->lval = lval_xcallable; 2589 v->location.xm_worker = worker; 2590 v->modifiable = 0; 2591 worker->value = v; 2592 } 2593 2594 return worker->value; 2595 } 2596 2597 /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ 2598 2599 struct type * 2600 result_type_of_xmethod (struct value *method, int argc, struct value **argv) 2601 { 2602 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2603 && method->lval == lval_xcallable && argc > 0); 2604 2605 return get_xmethod_result_type (method->location.xm_worker, 2606 argv[0], argv + 1, argc - 1); 2607 } 2608 2609 /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ 2610 2611 struct value * 2612 call_xmethod (struct value *method, int argc, struct value **argv) 2613 { 2614 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD 2615 && method->lval == lval_xcallable && argc > 0); 2616 2617 return invoke_xmethod (method->location.xm_worker, 2618 argv[0], argv + 1, argc - 1); 2619 } 2620 2621 /* Extract a value as a C number (either long or double). 2622 Knows how to convert fixed values to double, or 2623 floating values to long. 2624 Does not deallocate the value. */ 2625 2626 LONGEST 2627 value_as_long (struct value *val) 2628 { 2629 /* This coerces arrays and functions, which is necessary (e.g. 2630 in disassemble_command). It also dereferences references, which 2631 I suspect is the most logical thing to do. */ 2632 val = coerce_array (val); 2633 return unpack_long (value_type (val), value_contents (val)); 2634 } 2635 2636 DOUBLEST 2637 value_as_double (struct value *val) 2638 { 2639 DOUBLEST foo; 2640 int inv; 2641 2642 foo = unpack_double (value_type (val), value_contents (val), &inv); 2643 if (inv) 2644 error (_("Invalid floating value found in program.")); 2645 return foo; 2646 } 2647 2648 /* Extract a value as a C pointer. Does not deallocate the value. 2649 Note that val's type may not actually be a pointer; value_as_long 2650 handles all the cases. */ 2651 CORE_ADDR 2652 value_as_address (struct value *val) 2653 { 2654 struct gdbarch *gdbarch = get_type_arch (value_type (val)); 2655 2656 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2657 whether we want this to be true eventually. */ 2658 #if 0 2659 /* gdbarch_addr_bits_remove is wrong if we are being called for a 2660 non-address (e.g. argument to "signal", "info break", etc.), or 2661 for pointers to char, in which the low bits *are* significant. */ 2662 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); 2663 #else 2664 2665 /* There are several targets (IA-64, PowerPC, and others) which 2666 don't represent pointers to functions as simply the address of 2667 the function's entry point. For example, on the IA-64, a 2668 function pointer points to a two-word descriptor, generated by 2669 the linker, which contains the function's entry point, and the 2670 value the IA-64 "global pointer" register should have --- to 2671 support position-independent code. The linker generates 2672 descriptors only for those functions whose addresses are taken. 2673 2674 On such targets, it's difficult for GDB to convert an arbitrary 2675 function address into a function pointer; it has to either find 2676 an existing descriptor for that function, or call malloc and 2677 build its own. On some targets, it is impossible for GDB to 2678 build a descriptor at all: the descriptor must contain a jump 2679 instruction; data memory cannot be executed; and code memory 2680 cannot be modified. 2681 2682 Upon entry to this function, if VAL is a value of type `function' 2683 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then 2684 value_address (val) is the address of the function. This is what 2685 you'll get if you evaluate an expression like `main'. The call 2686 to COERCE_ARRAY below actually does all the usual unary 2687 conversions, which includes converting values of type `function' 2688 to `pointer to function'. This is the challenging conversion 2689 discussed above. Then, `unpack_long' will convert that pointer 2690 back into an address. 2691 2692 So, suppose the user types `disassemble foo' on an architecture 2693 with a strange function pointer representation, on which GDB 2694 cannot build its own descriptors, and suppose further that `foo' 2695 has no linker-built descriptor. The address->pointer conversion 2696 will signal an error and prevent the command from running, even 2697 though the next step would have been to convert the pointer 2698 directly back into the same address. 2699 2700 The following shortcut avoids this whole mess. If VAL is a 2701 function, just return its address directly. */ 2702 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC 2703 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) 2704 return value_address (val); 2705 2706 val = coerce_array (val); 2707 2708 /* Some architectures (e.g. Harvard), map instruction and data 2709 addresses onto a single large unified address space. For 2710 instance: An architecture may consider a large integer in the 2711 range 0x10000000 .. 0x1000ffff to already represent a data 2712 addresses (hence not need a pointer to address conversion) while 2713 a small integer would still need to be converted integer to 2714 pointer to address. Just assume such architectures handle all 2715 integer conversions in a single function. */ 2716 2717 /* JimB writes: 2718 2719 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we 2720 must admonish GDB hackers to make sure its behavior matches the 2721 compiler's, whenever possible. 2722 2723 In general, I think GDB should evaluate expressions the same way 2724 the compiler does. When the user copies an expression out of 2725 their source code and hands it to a `print' command, they should 2726 get the same value the compiler would have computed. Any 2727 deviation from this rule can cause major confusion and annoyance, 2728 and needs to be justified carefully. In other words, GDB doesn't 2729 really have the freedom to do these conversions in clever and 2730 useful ways. 2731 2732 AndrewC pointed out that users aren't complaining about how GDB 2733 casts integers to pointers; they are complaining that they can't 2734 take an address from a disassembly listing and give it to `x/i'. 2735 This is certainly important. 2736 2737 Adding an architecture method like integer_to_address() certainly 2738 makes it possible for GDB to "get it right" in all circumstances 2739 --- the target has complete control over how things get done, so 2740 people can Do The Right Thing for their target without breaking 2741 anyone else. The standard doesn't specify how integers get 2742 converted to pointers; usually, the ABI doesn't either, but 2743 ABI-specific code is a more reasonable place to handle it. */ 2744 2745 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR 2746 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF 2747 && gdbarch_integer_to_address_p (gdbarch)) 2748 return gdbarch_integer_to_address (gdbarch, value_type (val), 2749 value_contents (val)); 2750 2751 return unpack_long (value_type (val), value_contents (val)); 2752 #endif 2753 } 2754 2755 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2756 as a long, or as a double, assuming the raw data is described 2757 by type TYPE. Knows how to convert different sizes of values 2758 and can convert between fixed and floating point. We don't assume 2759 any alignment for the raw data. Return value is in host byte order. 2760 2761 If you want functions and arrays to be coerced to pointers, and 2762 references to be dereferenced, call value_as_long() instead. 2763 2764 C++: It is assumed that the front-end has taken care of 2765 all matters concerning pointers to members. A pointer 2766 to member which reaches here is considered to be equivalent 2767 to an INT (or some size). After all, it is only an offset. */ 2768 2769 LONGEST 2770 unpack_long (struct type *type, const gdb_byte *valaddr) 2771 { 2772 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2773 enum type_code code = TYPE_CODE (type); 2774 int len = TYPE_LENGTH (type); 2775 int nosign = TYPE_UNSIGNED (type); 2776 2777 switch (code) 2778 { 2779 case TYPE_CODE_TYPEDEF: 2780 return unpack_long (check_typedef (type), valaddr); 2781 case TYPE_CODE_ENUM: 2782 case TYPE_CODE_FLAGS: 2783 case TYPE_CODE_BOOL: 2784 case TYPE_CODE_INT: 2785 case TYPE_CODE_CHAR: 2786 case TYPE_CODE_RANGE: 2787 case TYPE_CODE_MEMBERPTR: 2788 if (nosign) 2789 return extract_unsigned_integer (valaddr, len, byte_order); 2790 else 2791 return extract_signed_integer (valaddr, len, byte_order); 2792 2793 case TYPE_CODE_FLT: 2794 return extract_typed_floating (valaddr, type); 2795 2796 case TYPE_CODE_DECFLOAT: 2797 /* libdecnumber has a function to convert from decimal to integer, but 2798 it doesn't work when the decimal number has a fractional part. */ 2799 return decimal_to_doublest (valaddr, len, byte_order); 2800 2801 case TYPE_CODE_PTR: 2802 case TYPE_CODE_REF: 2803 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2804 whether we want this to be true eventually. */ 2805 return extract_typed_address (valaddr, type); 2806 2807 default: 2808 error (_("Value can't be converted to integer.")); 2809 } 2810 return 0; /* Placate lint. */ 2811 } 2812 2813 /* Return a double value from the specified type and address. 2814 INVP points to an int which is set to 0 for valid value, 2815 1 for invalid value (bad float format). In either case, 2816 the returned double is OK to use. Argument is in target 2817 format, result is in host format. */ 2818 2819 DOUBLEST 2820 unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) 2821 { 2822 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 2823 enum type_code code; 2824 int len; 2825 int nosign; 2826 2827 *invp = 0; /* Assume valid. */ 2828 CHECK_TYPEDEF (type); 2829 code = TYPE_CODE (type); 2830 len = TYPE_LENGTH (type); 2831 nosign = TYPE_UNSIGNED (type); 2832 if (code == TYPE_CODE_FLT) 2833 { 2834 /* NOTE: cagney/2002-02-19: There was a test here to see if the 2835 floating-point value was valid (using the macro 2836 INVALID_FLOAT). That test/macro have been removed. 2837 2838 It turns out that only the VAX defined this macro and then 2839 only in a non-portable way. Fixing the portability problem 2840 wouldn't help since the VAX floating-point code is also badly 2841 bit-rotten. The target needs to add definitions for the 2842 methods gdbarch_float_format and gdbarch_double_format - these 2843 exactly describe the target floating-point format. The 2844 problem here is that the corresponding floatformat_vax_f and 2845 floatformat_vax_d values these methods should be set to are 2846 also not defined either. Oops! 2847 2848 Hopefully someone will add both the missing floatformat 2849 definitions and the new cases for floatformat_is_valid (). */ 2850 2851 if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) 2852 { 2853 *invp = 1; 2854 return 0.0; 2855 } 2856 2857 return extract_typed_floating (valaddr, type); 2858 } 2859 else if (code == TYPE_CODE_DECFLOAT) 2860 return decimal_to_doublest (valaddr, len, byte_order); 2861 else if (nosign) 2862 { 2863 /* Unsigned -- be sure we compensate for signed LONGEST. */ 2864 return (ULONGEST) unpack_long (type, valaddr); 2865 } 2866 else 2867 { 2868 /* Signed -- we are OK with unpack_long. */ 2869 return unpack_long (type, valaddr); 2870 } 2871 } 2872 2873 /* Unpack raw data (copied from debugee, target byte order) at VALADDR 2874 as a CORE_ADDR, assuming the raw data is described by type TYPE. 2875 We don't assume any alignment for the raw data. Return value is in 2876 host byte order. 2877 2878 If you want functions and arrays to be coerced to pointers, and 2879 references to be dereferenced, call value_as_address() instead. 2880 2881 C++: It is assumed that the front-end has taken care of 2882 all matters concerning pointers to members. A pointer 2883 to member which reaches here is considered to be equivalent 2884 to an INT (or some size). After all, it is only an offset. */ 2885 2886 CORE_ADDR 2887 unpack_pointer (struct type *type, const gdb_byte *valaddr) 2888 { 2889 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure 2890 whether we want this to be true eventually. */ 2891 return unpack_long (type, valaddr); 2892 } 2893 2894 2895 /* Get the value of the FIELDNO'th field (which must be static) of 2896 TYPE. */ 2897 2898 struct value * 2899 value_static_field (struct type *type, int fieldno) 2900 { 2901 struct value *retval; 2902 2903 switch (TYPE_FIELD_LOC_KIND (type, fieldno)) 2904 { 2905 case FIELD_LOC_KIND_PHYSADDR: 2906 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), 2907 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); 2908 break; 2909 case FIELD_LOC_KIND_PHYSNAME: 2910 { 2911 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); 2912 /* TYPE_FIELD_NAME (type, fieldno); */ 2913 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); 2914 2915 if (sym == NULL) 2916 { 2917 /* With some compilers, e.g. HP aCC, static data members are 2918 reported as non-debuggable symbols. */ 2919 struct bound_minimal_symbol msym 2920 = lookup_minimal_symbol (phys_name, NULL, NULL); 2921 2922 if (!msym.minsym) 2923 return allocate_optimized_out_value (type); 2924 else 2925 { 2926 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), 2927 BMSYMBOL_VALUE_ADDRESS (msym)); 2928 } 2929 } 2930 else 2931 retval = value_of_variable (sym, NULL); 2932 break; 2933 } 2934 default: 2935 gdb_assert_not_reached ("unexpected field location kind"); 2936 } 2937 2938 return retval; 2939 } 2940 2941 /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. 2942 You have to be careful here, since the size of the data area for the value 2943 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger 2944 than the old enclosing type, you have to allocate more space for the 2945 data. */ 2946 2947 void 2948 set_value_enclosing_type (struct value *val, struct type *new_encl_type) 2949 { 2950 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) 2951 val->contents = 2952 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); 2953 2954 val->enclosing_type = new_encl_type; 2955 } 2956 2957 /* Given a value ARG1 (offset by OFFSET bytes) 2958 of a struct or union type ARG_TYPE, 2959 extract and return the value of one of its (non-static) fields. 2960 FIELDNO says which field. */ 2961 2962 struct value * 2963 value_primitive_field (struct value *arg1, int offset, 2964 int fieldno, struct type *arg_type) 2965 { 2966 struct value *v; 2967 struct type *type; 2968 2969 CHECK_TYPEDEF (arg_type); 2970 type = TYPE_FIELD_TYPE (arg_type, fieldno); 2971 2972 /* Call check_typedef on our type to make sure that, if TYPE 2973 is a TYPE_CODE_TYPEDEF, its length is set to the length 2974 of the target type instead of zero. However, we do not 2975 replace the typedef type by the target type, because we want 2976 to keep the typedef in order to be able to print the type 2977 description correctly. */ 2978 check_typedef (type); 2979 2980 if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) 2981 { 2982 /* Handle packed fields. 2983 2984 Create a new value for the bitfield, with bitpos and bitsize 2985 set. If possible, arrange offset and bitpos so that we can 2986 do a single aligned read of the size of the containing type. 2987 Otherwise, adjust offset to the byte containing the first 2988 bit. Assume that the address, offset, and embedded offset 2989 are sufficiently aligned. */ 2990 2991 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); 2992 int container_bitsize = TYPE_LENGTH (type) * 8; 2993 2994 v = allocate_value_lazy (type); 2995 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); 2996 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize 2997 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) 2998 v->bitpos = bitpos % container_bitsize; 2999 else 3000 v->bitpos = bitpos % 8; 3001 v->offset = (value_embedded_offset (arg1) 3002 + offset 3003 + (bitpos - v->bitpos) / 8); 3004 set_value_parent (v, arg1); 3005 if (!value_lazy (arg1)) 3006 value_fetch_lazy (v); 3007 } 3008 else if (fieldno < TYPE_N_BASECLASSES (arg_type)) 3009 { 3010 /* This field is actually a base subobject, so preserve the 3011 entire object's contents for later references to virtual 3012 bases, etc. */ 3013 int boffset; 3014 3015 /* Lazy register values with offsets are not supported. */ 3016 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 3017 value_fetch_lazy (arg1); 3018 3019 /* We special case virtual inheritance here because this 3020 requires access to the contents, which we would rather avoid 3021 for references to ordinary fields of unavailable values. */ 3022 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) 3023 boffset = baseclass_offset (arg_type, fieldno, 3024 value_contents (arg1), 3025 value_embedded_offset (arg1), 3026 value_address (arg1), 3027 arg1); 3028 else 3029 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 3030 3031 if (value_lazy (arg1)) 3032 v = allocate_value_lazy (value_enclosing_type (arg1)); 3033 else 3034 { 3035 v = allocate_value (value_enclosing_type (arg1)); 3036 value_contents_copy_raw (v, 0, arg1, 0, 3037 TYPE_LENGTH (value_enclosing_type (arg1))); 3038 } 3039 v->type = type; 3040 v->offset = value_offset (arg1); 3041 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; 3042 } 3043 else 3044 { 3045 /* Plain old data member */ 3046 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; 3047 3048 /* Lazy register values with offsets are not supported. */ 3049 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) 3050 value_fetch_lazy (arg1); 3051 3052 if (value_lazy (arg1)) 3053 v = allocate_value_lazy (type); 3054 else 3055 { 3056 v = allocate_value (type); 3057 value_contents_copy_raw (v, value_embedded_offset (v), 3058 arg1, value_embedded_offset (arg1) + offset, 3059 TYPE_LENGTH (type)); 3060 } 3061 v->offset = (value_offset (arg1) + offset 3062 + value_embedded_offset (arg1)); 3063 } 3064 set_value_component_location (v, arg1); 3065 VALUE_REGNUM (v) = VALUE_REGNUM (arg1); 3066 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); 3067 return v; 3068 } 3069 3070 /* Given a value ARG1 of a struct or union type, 3071 extract and return the value of one of its (non-static) fields. 3072 FIELDNO says which field. */ 3073 3074 struct value * 3075 value_field (struct value *arg1, int fieldno) 3076 { 3077 return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); 3078 } 3079 3080 /* Return a non-virtual function as a value. 3081 F is the list of member functions which contains the desired method. 3082 J is an index into F which provides the desired method. 3083 3084 We only use the symbol for its address, so be happy with either a 3085 full symbol or a minimal symbol. */ 3086 3087 struct value * 3088 value_fn_field (struct value **arg1p, struct fn_field *f, 3089 int j, struct type *type, 3090 int offset) 3091 { 3092 struct value *v; 3093 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); 3094 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); 3095 struct symbol *sym; 3096 struct bound_minimal_symbol msym; 3097 3098 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); 3099 if (sym != NULL) 3100 { 3101 memset (&msym, 0, sizeof (msym)); 3102 } 3103 else 3104 { 3105 gdb_assert (sym == NULL); 3106 msym = lookup_bound_minimal_symbol (physname); 3107 if (msym.minsym == NULL) 3108 return NULL; 3109 } 3110 3111 v = allocate_value (ftype); 3112 if (sym) 3113 { 3114 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); 3115 } 3116 else 3117 { 3118 /* The minimal symbol might point to a function descriptor; 3119 resolve it to the actual code address instead. */ 3120 struct objfile *objfile = msym.objfile; 3121 struct gdbarch *gdbarch = get_objfile_arch (objfile); 3122 3123 set_value_address (v, 3124 gdbarch_convert_from_func_ptr_addr 3125 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target)); 3126 } 3127 3128 if (arg1p) 3129 { 3130 if (type != value_type (*arg1p)) 3131 *arg1p = value_ind (value_cast (lookup_pointer_type (type), 3132 value_addr (*arg1p))); 3133 3134 /* Move the `this' pointer according to the offset. 3135 VALUE_OFFSET (*arg1p) += offset; */ 3136 } 3137 3138 return v; 3139 } 3140 3141 3142 3143 /* Unpack a bitfield of the specified FIELD_TYPE, from the object at 3144 VALADDR, and store the result in *RESULT. 3145 The bitfield starts at BITPOS bits and contains BITSIZE bits. 3146 3147 Extracting bits depends on endianness of the machine. Compute the 3148 number of least significant bits to discard. For big endian machines, 3149 we compute the total number of bits in the anonymous object, subtract 3150 off the bit count from the MSB of the object to the MSB of the 3151 bitfield, then the size of the bitfield, which leaves the LSB discard 3152 count. For little endian machines, the discard count is simply the 3153 number of bits from the LSB of the anonymous object to the LSB of the 3154 bitfield. 3155 3156 If the field is signed, we also do sign extension. */ 3157 3158 static LONGEST 3159 unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, 3160 int bitpos, int bitsize) 3161 { 3162 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3163 ULONGEST val; 3164 ULONGEST valmask; 3165 int lsbcount; 3166 int bytes_read; 3167 int read_offset; 3168 3169 /* Read the minimum number of bytes required; there may not be 3170 enough bytes to read an entire ULONGEST. */ 3171 CHECK_TYPEDEF (field_type); 3172 if (bitsize) 3173 bytes_read = ((bitpos % 8) + bitsize + 7) / 8; 3174 else 3175 bytes_read = TYPE_LENGTH (field_type); 3176 3177 read_offset = bitpos / 8; 3178 3179 val = extract_unsigned_integer (valaddr + read_offset, 3180 bytes_read, byte_order); 3181 3182 /* Extract bits. See comment above. */ 3183 3184 if (gdbarch_bits_big_endian (get_type_arch (field_type))) 3185 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); 3186 else 3187 lsbcount = (bitpos % 8); 3188 val >>= lsbcount; 3189 3190 /* If the field does not entirely fill a LONGEST, then zero the sign bits. 3191 If the field is signed, and is negative, then sign extend. */ 3192 3193 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) 3194 { 3195 valmask = (((ULONGEST) 1) << bitsize) - 1; 3196 val &= valmask; 3197 if (!TYPE_UNSIGNED (field_type)) 3198 { 3199 if (val & (valmask ^ (valmask >> 1))) 3200 { 3201 val |= ~valmask; 3202 } 3203 } 3204 } 3205 3206 return val; 3207 } 3208 3209 /* Unpack a field FIELDNO of the specified TYPE, from the object at 3210 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of 3211 ORIGINAL_VALUE, which must not be NULL. See 3212 unpack_value_bits_as_long for more details. */ 3213 3214 int 3215 unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, 3216 int embedded_offset, int fieldno, 3217 const struct value *val, LONGEST *result) 3218 { 3219 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3220 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3221 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3222 int bit_offset; 3223 3224 gdb_assert (val != NULL); 3225 3226 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3227 if (value_bits_any_optimized_out (val, bit_offset, bitsize) 3228 || !value_bits_available (val, bit_offset, bitsize)) 3229 return 0; 3230 3231 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3232 bitpos, bitsize); 3233 return 1; 3234 } 3235 3236 /* Unpack a field FIELDNO of the specified TYPE, from the anonymous 3237 object at VALADDR. See unpack_bits_as_long for more details. */ 3238 3239 LONGEST 3240 unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) 3241 { 3242 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3243 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3244 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); 3245 3246 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); 3247 } 3248 3249 /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at 3250 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store 3251 the contents in DEST_VAL, zero or sign extending if the type of 3252 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of 3253 VAL. If the VAL's contents required to extract the bitfield from 3254 are unavailable/optimized out, DEST_VAL is correspondingly 3255 marked unavailable/optimized out. */ 3256 3257 void 3258 unpack_value_bitfield (struct value *dest_val, 3259 int bitpos, int bitsize, 3260 const gdb_byte *valaddr, int embedded_offset, 3261 const struct value *val) 3262 { 3263 enum bfd_endian byte_order; 3264 int src_bit_offset; 3265 int dst_bit_offset; 3266 LONGEST num; 3267 struct type *field_type = value_type (dest_val); 3268 3269 /* First, unpack and sign extend the bitfield as if it was wholly 3270 available. Invalid/unavailable bits are read as zero, but that's 3271 OK, as they'll end up marked below. */ 3272 byte_order = gdbarch_byte_order (get_type_arch (field_type)); 3273 num = unpack_bits_as_long (field_type, valaddr + embedded_offset, 3274 bitpos, bitsize); 3275 store_signed_integer (value_contents_raw (dest_val), 3276 TYPE_LENGTH (field_type), byte_order, num); 3277 3278 /* Now copy the optimized out / unavailability ranges to the right 3279 bits. */ 3280 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; 3281 if (byte_order == BFD_ENDIAN_BIG) 3282 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; 3283 else 3284 dst_bit_offset = 0; 3285 value_ranges_copy_adjusted (dest_val, dst_bit_offset, 3286 val, src_bit_offset, bitsize); 3287 } 3288 3289 /* Return a new value with type TYPE, which is FIELDNO field of the 3290 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents 3291 of VAL. If the VAL's contents required to extract the bitfield 3292 from are unavailable/optimized out, the new value is 3293 correspondingly marked unavailable/optimized out. */ 3294 3295 struct value * 3296 value_field_bitfield (struct type *type, int fieldno, 3297 const gdb_byte *valaddr, 3298 int embedded_offset, const struct value *val) 3299 { 3300 int bitpos = TYPE_FIELD_BITPOS (type, fieldno); 3301 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); 3302 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); 3303 3304 unpack_value_bitfield (res_val, bitpos, bitsize, 3305 valaddr, embedded_offset, val); 3306 3307 return res_val; 3308 } 3309 3310 /* Modify the value of a bitfield. ADDR points to a block of memory in 3311 target byte order; the bitfield starts in the byte pointed to. FIELDVAL 3312 is the desired value of the field, in host byte order. BITPOS and BITSIZE 3313 indicate which bits (in target bit order) comprise the bitfield. 3314 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and 3315 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ 3316 3317 void 3318 modify_field (struct type *type, gdb_byte *addr, 3319 LONGEST fieldval, int bitpos, int bitsize) 3320 { 3321 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3322 ULONGEST oword; 3323 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); 3324 int bytesize; 3325 3326 /* Normalize BITPOS. */ 3327 addr += bitpos / 8; 3328 bitpos %= 8; 3329 3330 /* If a negative fieldval fits in the field in question, chop 3331 off the sign extension bits. */ 3332 if ((~fieldval & ~(mask >> 1)) == 0) 3333 fieldval &= mask; 3334 3335 /* Warn if value is too big to fit in the field in question. */ 3336 if (0 != (fieldval & ~mask)) 3337 { 3338 /* FIXME: would like to include fieldval in the message, but 3339 we don't have a sprintf_longest. */ 3340 warning (_("Value does not fit in %d bits."), bitsize); 3341 3342 /* Truncate it, otherwise adjoining fields may be corrupted. */ 3343 fieldval &= mask; 3344 } 3345 3346 /* Ensure no bytes outside of the modified ones get accessed as it may cause 3347 false valgrind reports. */ 3348 3349 bytesize = (bitpos + bitsize + 7) / 8; 3350 oword = extract_unsigned_integer (addr, bytesize, byte_order); 3351 3352 /* Shifting for bit field depends on endianness of the target machine. */ 3353 if (gdbarch_bits_big_endian (get_type_arch (type))) 3354 bitpos = bytesize * 8 - bitpos - bitsize; 3355 3356 oword &= ~(mask << bitpos); 3357 oword |= fieldval << bitpos; 3358 3359 store_unsigned_integer (addr, bytesize, byte_order, oword); 3360 } 3361 3362 /* Pack NUM into BUF using a target format of TYPE. */ 3363 3364 void 3365 pack_long (gdb_byte *buf, struct type *type, LONGEST num) 3366 { 3367 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); 3368 int len; 3369 3370 type = check_typedef (type); 3371 len = TYPE_LENGTH (type); 3372 3373 switch (TYPE_CODE (type)) 3374 { 3375 case TYPE_CODE_INT: 3376 case TYPE_CODE_CHAR: 3377 case TYPE_CODE_ENUM: 3378 case TYPE_CODE_FLAGS: 3379 case TYPE_CODE_BOOL: 3380 case TYPE_CODE_RANGE: 3381 case TYPE_CODE_MEMBERPTR: 3382 store_signed_integer (buf, len, byte_order, num); 3383 break; 3384 3385 case TYPE_CODE_REF: 3386 case TYPE_CODE_PTR: 3387 store_typed_address (buf, type, (CORE_ADDR) num); 3388 break; 3389 3390 default: 3391 error (_("Unexpected type (%d) encountered for integer constant."), 3392 TYPE_CODE (type)); 3393 } 3394 } 3395 3396 3397 /* Pack NUM into BUF using a target format of TYPE. */ 3398 3399 static void 3400 pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) 3401 { 3402 int len; 3403 enum bfd_endian byte_order; 3404 3405 type = check_typedef (type); 3406 len = TYPE_LENGTH (type); 3407 byte_order = gdbarch_byte_order (get_type_arch (type)); 3408 3409 switch (TYPE_CODE (type)) 3410 { 3411 case TYPE_CODE_INT: 3412 case TYPE_CODE_CHAR: 3413 case TYPE_CODE_ENUM: 3414 case TYPE_CODE_FLAGS: 3415 case TYPE_CODE_BOOL: 3416 case TYPE_CODE_RANGE: 3417 case TYPE_CODE_MEMBERPTR: 3418 store_unsigned_integer (buf, len, byte_order, num); 3419 break; 3420 3421 case TYPE_CODE_REF: 3422 case TYPE_CODE_PTR: 3423 store_typed_address (buf, type, (CORE_ADDR) num); 3424 break; 3425 3426 default: 3427 error (_("Unexpected type (%d) encountered " 3428 "for unsigned integer constant."), 3429 TYPE_CODE (type)); 3430 } 3431 } 3432 3433 3434 /* Convert C numbers into newly allocated values. */ 3435 3436 struct value * 3437 value_from_longest (struct type *type, LONGEST num) 3438 { 3439 struct value *val = allocate_value (type); 3440 3441 pack_long (value_contents_raw (val), type, num); 3442 return val; 3443 } 3444 3445 3446 /* Convert C unsigned numbers into newly allocated values. */ 3447 3448 struct value * 3449 value_from_ulongest (struct type *type, ULONGEST num) 3450 { 3451 struct value *val = allocate_value (type); 3452 3453 pack_unsigned_long (value_contents_raw (val), type, num); 3454 3455 return val; 3456 } 3457 3458 3459 /* Create a value representing a pointer of type TYPE to the address 3460 ADDR. */ 3461 3462 struct value * 3463 value_from_pointer (struct type *type, CORE_ADDR addr) 3464 { 3465 struct value *val = allocate_value (type); 3466 3467 store_typed_address (value_contents_raw (val), 3468 check_typedef (type), addr); 3469 return val; 3470 } 3471 3472 3473 /* Create a value of type TYPE whose contents come from VALADDR, if it 3474 is non-null, and whose memory address (in the inferior) is 3475 ADDRESS. The type of the created value may differ from the passed 3476 type TYPE. Make sure to retrieve values new type after this call. 3477 Note that TYPE is not passed through resolve_dynamic_type; this is 3478 a special API intended for use only by Ada. */ 3479 3480 struct value * 3481 value_from_contents_and_address_unresolved (struct type *type, 3482 const gdb_byte *valaddr, 3483 CORE_ADDR address) 3484 { 3485 struct value *v; 3486 3487 if (valaddr == NULL) 3488 v = allocate_value_lazy (type); 3489 else 3490 v = value_from_contents (type, valaddr); 3491 set_value_address (v, address); 3492 VALUE_LVAL (v) = lval_memory; 3493 return v; 3494 } 3495 3496 /* Create a value of type TYPE whose contents come from VALADDR, if it 3497 is non-null, and whose memory address (in the inferior) is 3498 ADDRESS. The type of the created value may differ from the passed 3499 type TYPE. Make sure to retrieve values new type after this call. */ 3500 3501 struct value * 3502 value_from_contents_and_address (struct type *type, 3503 const gdb_byte *valaddr, 3504 CORE_ADDR address) 3505 { 3506 struct type *resolved_type = resolve_dynamic_type (type, address); 3507 struct type *resolved_type_no_typedef = check_typedef (resolved_type); 3508 struct value *v; 3509 3510 if (valaddr == NULL) 3511 v = allocate_value_lazy (resolved_type); 3512 else 3513 v = value_from_contents (resolved_type, valaddr); 3514 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL 3515 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) 3516 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); 3517 set_value_address (v, address); 3518 VALUE_LVAL (v) = lval_memory; 3519 return v; 3520 } 3521 3522 /* Create a value of type TYPE holding the contents CONTENTS. 3523 The new value is `not_lval'. */ 3524 3525 struct value * 3526 value_from_contents (struct type *type, const gdb_byte *contents) 3527 { 3528 struct value *result; 3529 3530 result = allocate_value (type); 3531 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); 3532 return result; 3533 } 3534 3535 struct value * 3536 value_from_double (struct type *type, DOUBLEST num) 3537 { 3538 struct value *val = allocate_value (type); 3539 struct type *base_type = check_typedef (type); 3540 enum type_code code = TYPE_CODE (base_type); 3541 3542 if (code == TYPE_CODE_FLT) 3543 { 3544 store_typed_floating (value_contents_raw (val), base_type, num); 3545 } 3546 else 3547 error (_("Unexpected type encountered for floating constant.")); 3548 3549 return val; 3550 } 3551 3552 struct value * 3553 value_from_decfloat (struct type *type, const gdb_byte *dec) 3554 { 3555 struct value *val = allocate_value (type); 3556 3557 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); 3558 return val; 3559 } 3560 3561 /* Extract a value from the history file. Input will be of the form 3562 $digits or $$digits. See block comment above 'write_dollar_variable' 3563 for details. */ 3564 3565 struct value * 3566 value_from_history_ref (const char *h, const char **endp) 3567 { 3568 int index, len; 3569 3570 if (h[0] == '$') 3571 len = 1; 3572 else 3573 return NULL; 3574 3575 if (h[1] == '$') 3576 len = 2; 3577 3578 /* Find length of numeral string. */ 3579 for (; isdigit (h[len]); len++) 3580 ; 3581 3582 /* Make sure numeral string is not part of an identifier. */ 3583 if (h[len] == '_' || isalpha (h[len])) 3584 return NULL; 3585 3586 /* Now collect the index value. */ 3587 if (h[1] == '$') 3588 { 3589 if (len == 2) 3590 { 3591 /* For some bizarre reason, "$$" is equivalent to "$$1", 3592 rather than to "$$0" as it ought to be! */ 3593 index = -1; 3594 *endp += len; 3595 } 3596 else 3597 { 3598 char *local_end; 3599 3600 index = -strtol (&h[2], &local_end, 10); 3601 *endp = local_end; 3602 } 3603 } 3604 else 3605 { 3606 if (len == 1) 3607 { 3608 /* "$" is equivalent to "$0". */ 3609 index = 0; 3610 *endp += len; 3611 } 3612 else 3613 { 3614 char *local_end; 3615 3616 index = strtol (&h[1], &local_end, 10); 3617 *endp = local_end; 3618 } 3619 } 3620 3621 return access_value_history (index); 3622 } 3623 3624 struct value * 3625 coerce_ref_if_computed (const struct value *arg) 3626 { 3627 const struct lval_funcs *funcs; 3628 3629 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF) 3630 return NULL; 3631 3632 if (value_lval_const (arg) != lval_computed) 3633 return NULL; 3634 3635 funcs = value_computed_funcs (arg); 3636 if (funcs->coerce_ref == NULL) 3637 return NULL; 3638 3639 return funcs->coerce_ref (arg); 3640 } 3641 3642 /* Look at value.h for description. */ 3643 3644 struct value * 3645 readjust_indirect_value_type (struct value *value, struct type *enc_type, 3646 struct type *original_type, 3647 struct value *original_value) 3648 { 3649 /* Re-adjust type. */ 3650 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); 3651 3652 /* Add embedding info. */ 3653 set_value_enclosing_type (value, enc_type); 3654 set_value_embedded_offset (value, value_pointed_to_offset (original_value)); 3655 3656 /* We may be pointing to an object of some derived type. */ 3657 return value_full_object (value, NULL, 0, 0, 0); 3658 } 3659 3660 struct value * 3661 coerce_ref (struct value *arg) 3662 { 3663 struct type *value_type_arg_tmp = check_typedef (value_type (arg)); 3664 struct value *retval; 3665 struct type *enc_type; 3666 3667 retval = coerce_ref_if_computed (arg); 3668 if (retval) 3669 return retval; 3670 3671 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF) 3672 return arg; 3673 3674 enc_type = check_typedef (value_enclosing_type (arg)); 3675 enc_type = TYPE_TARGET_TYPE (enc_type); 3676 3677 retval = value_at_lazy (enc_type, 3678 unpack_pointer (value_type (arg), 3679 value_contents (arg))); 3680 enc_type = value_type (retval); 3681 return readjust_indirect_value_type (retval, enc_type, 3682 value_type_arg_tmp, arg); 3683 } 3684 3685 struct value * 3686 coerce_array (struct value *arg) 3687 { 3688 struct type *type; 3689 3690 arg = coerce_ref (arg); 3691 type = check_typedef (value_type (arg)); 3692 3693 switch (TYPE_CODE (type)) 3694 { 3695 case TYPE_CODE_ARRAY: 3696 if (!TYPE_VECTOR (type) && current_language->c_style_arrays) 3697 arg = value_coerce_array (arg); 3698 break; 3699 case TYPE_CODE_FUNC: 3700 arg = value_coerce_function (arg); 3701 break; 3702 } 3703 return arg; 3704 } 3705 3706 3707 /* Return the return value convention that will be used for the 3708 specified type. */ 3709 3710 enum return_value_convention 3711 struct_return_convention (struct gdbarch *gdbarch, 3712 struct value *function, struct type *value_type) 3713 { 3714 enum type_code code = TYPE_CODE (value_type); 3715 3716 if (code == TYPE_CODE_ERROR) 3717 error (_("Function return type unknown.")); 3718 3719 /* Probe the architecture for the return-value convention. */ 3720 return gdbarch_return_value (gdbarch, function, value_type, 3721 NULL, NULL, NULL); 3722 } 3723 3724 /* Return true if the function returning the specified type is using 3725 the convention of returning structures in memory (passing in the 3726 address as a hidden first parameter). */ 3727 3728 int 3729 using_struct_return (struct gdbarch *gdbarch, 3730 struct value *function, struct type *value_type) 3731 { 3732 if (TYPE_CODE (value_type) == TYPE_CODE_VOID) 3733 /* A void return value is never in memory. See also corresponding 3734 code in "print_return_value". */ 3735 return 0; 3736 3737 return (struct_return_convention (gdbarch, function, value_type) 3738 != RETURN_VALUE_REGISTER_CONVENTION); 3739 } 3740 3741 /* Set the initialized field in a value struct. */ 3742 3743 void 3744 set_value_initialized (struct value *val, int status) 3745 { 3746 val->initialized = status; 3747 } 3748 3749 /* Return the initialized field in a value struct. */ 3750 3751 int 3752 value_initialized (struct value *val) 3753 { 3754 return val->initialized; 3755 } 3756 3757 /* Called only from the value_contents and value_contents_all() 3758 macros, if the current data for a variable needs to be loaded into 3759 value_contents(VAL). Fetches the data from the user's process, and 3760 clears the lazy flag to indicate that the data in the buffer is 3761 valid. 3762 3763 If the value is zero-length, we avoid calling read_memory, which 3764 would abort. We mark the value as fetched anyway -- all 0 bytes of 3765 it. 3766 3767 This function returns a value because it is used in the 3768 value_contents macro as part of an expression, where a void would 3769 not work. The value is ignored. */ 3770 3771 int 3772 value_fetch_lazy (struct value *val) 3773 { 3774 gdb_assert (value_lazy (val)); 3775 allocate_value_contents (val); 3776 /* A value is either lazy, or fully fetched. The 3777 availability/validity is only established as we try to fetch a 3778 value. */ 3779 gdb_assert (VEC_empty (range_s, val->optimized_out)); 3780 gdb_assert (VEC_empty (range_s, val->unavailable)); 3781 if (value_bitsize (val)) 3782 { 3783 /* To read a lazy bitfield, read the entire enclosing value. This 3784 prevents reading the same block of (possibly volatile) memory once 3785 per bitfield. It would be even better to read only the containing 3786 word, but we have no way to record that just specific bits of a 3787 value have been fetched. */ 3788 struct type *type = check_typedef (value_type (val)); 3789 struct value *parent = value_parent (val); 3790 3791 if (value_lazy (parent)) 3792 value_fetch_lazy (parent); 3793 3794 unpack_value_bitfield (val, 3795 value_bitpos (val), value_bitsize (val), 3796 value_contents_for_printing (parent), 3797 value_offset (val), parent); 3798 } 3799 else if (VALUE_LVAL (val) == lval_memory) 3800 { 3801 CORE_ADDR addr = value_address (val); 3802 struct type *type = check_typedef (value_enclosing_type (val)); 3803 3804 if (TYPE_LENGTH (type)) 3805 read_value_memory (val, 0, value_stack (val), 3806 addr, value_contents_all_raw (val), 3807 TYPE_LENGTH (type)); 3808 } 3809 else if (VALUE_LVAL (val) == lval_register) 3810 { 3811 struct frame_info *frame; 3812 int regnum; 3813 struct type *type = check_typedef (value_type (val)); 3814 struct value *new_val = val, *mark = value_mark (); 3815 3816 /* Offsets are not supported here; lazy register values must 3817 refer to the entire register. */ 3818 gdb_assert (value_offset (val) == 0); 3819 3820 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) 3821 { 3822 struct frame_id frame_id = VALUE_FRAME_ID (new_val); 3823 3824 frame = frame_find_by_id (frame_id); 3825 regnum = VALUE_REGNUM (new_val); 3826 3827 gdb_assert (frame != NULL); 3828 3829 /* Convertible register routines are used for multi-register 3830 values and for interpretation in different types 3831 (e.g. float or int from a double register). Lazy 3832 register values should have the register's natural type, 3833 so they do not apply. */ 3834 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame), 3835 regnum, type)); 3836 3837 new_val = get_frame_register_value (frame, regnum); 3838 3839 /* If we get another lazy lval_register value, it means the 3840 register is found by reading it from the next frame. 3841 get_frame_register_value should never return a value with 3842 the frame id pointing to FRAME. If it does, it means we 3843 either have two consecutive frames with the same frame id 3844 in the frame chain, or some code is trying to unwind 3845 behind get_prev_frame's back (e.g., a frame unwind 3846 sniffer trying to unwind), bypassing its validations. In 3847 any case, it should always be an internal error to end up 3848 in this situation. */ 3849 if (VALUE_LVAL (new_val) == lval_register 3850 && value_lazy (new_val) 3851 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id)) 3852 internal_error (__FILE__, __LINE__, 3853 _("infinite loop while fetching a register")); 3854 } 3855 3856 /* If it's still lazy (for instance, a saved register on the 3857 stack), fetch it. */ 3858 if (value_lazy (new_val)) 3859 value_fetch_lazy (new_val); 3860 3861 /* Copy the contents and the unavailability/optimized-out 3862 meta-data from NEW_VAL to VAL. */ 3863 set_value_lazy (val, 0); 3864 value_contents_copy (val, value_embedded_offset (val), 3865 new_val, value_embedded_offset (new_val), 3866 TYPE_LENGTH (type)); 3867 3868 if (frame_debug) 3869 { 3870 struct gdbarch *gdbarch; 3871 frame = frame_find_by_id (VALUE_FRAME_ID (val)); 3872 regnum = VALUE_REGNUM (val); 3873 gdbarch = get_frame_arch (frame); 3874 3875 fprintf_unfiltered (gdb_stdlog, 3876 "{ value_fetch_lazy " 3877 "(frame=%d,regnum=%d(%s),...) ", 3878 frame_relative_level (frame), regnum, 3879 user_reg_map_regnum_to_name (gdbarch, regnum)); 3880 3881 fprintf_unfiltered (gdb_stdlog, "->"); 3882 if (value_optimized_out (new_val)) 3883 { 3884 fprintf_unfiltered (gdb_stdlog, " "); 3885 val_print_optimized_out (new_val, gdb_stdlog); 3886 } 3887 else 3888 { 3889 int i; 3890 const gdb_byte *buf = value_contents (new_val); 3891 3892 if (VALUE_LVAL (new_val) == lval_register) 3893 fprintf_unfiltered (gdb_stdlog, " register=%d", 3894 VALUE_REGNUM (new_val)); 3895 else if (VALUE_LVAL (new_val) == lval_memory) 3896 fprintf_unfiltered (gdb_stdlog, " address=%s", 3897 paddress (gdbarch, 3898 value_address (new_val))); 3899 else 3900 fprintf_unfiltered (gdb_stdlog, " computed"); 3901 3902 fprintf_unfiltered (gdb_stdlog, " bytes="); 3903 fprintf_unfiltered (gdb_stdlog, "["); 3904 for (i = 0; i < register_size (gdbarch, regnum); i++) 3905 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); 3906 fprintf_unfiltered (gdb_stdlog, "]"); 3907 } 3908 3909 fprintf_unfiltered (gdb_stdlog, " }\n"); 3910 } 3911 3912 /* Dispose of the intermediate values. This prevents 3913 watchpoints from trying to watch the saved frame pointer. */ 3914 value_free_to_mark (mark); 3915 } 3916 else if (VALUE_LVAL (val) == lval_computed 3917 && value_computed_funcs (val)->read != NULL) 3918 value_computed_funcs (val)->read (val); 3919 else 3920 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); 3921 3922 set_value_lazy (val, 0); 3923 return 0; 3924 } 3925 3926 /* Implementation of the convenience function $_isvoid. */ 3927 3928 static struct value * 3929 isvoid_internal_fn (struct gdbarch *gdbarch, 3930 const struct language_defn *language, 3931 void *cookie, int argc, struct value **argv) 3932 { 3933 int ret; 3934 3935 if (argc != 1) 3936 error (_("You must provide one argument for $_isvoid.")); 3937 3938 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; 3939 3940 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); 3941 } 3942 3943 void 3944 _initialize_values (void) 3945 { 3946 add_cmd ("convenience", no_class, show_convenience, _("\ 3947 Debugger convenience (\"$foo\") variables and functions.\n\ 3948 Convenience variables are created when you assign them values;\n\ 3949 thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ 3950 \n\ 3951 A few convenience variables are given values automatically:\n\ 3952 \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ 3953 \"$__\" holds the contents of the last address examined with \"x\"." 3954 #ifdef HAVE_PYTHON 3955 "\n\n\ 3956 Convenience functions are defined via the Python API." 3957 #endif 3958 ), &showlist); 3959 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); 3960 3961 add_cmd ("values", no_set_class, show_values, _("\ 3962 Elements of value history around item number IDX (or last ten)."), 3963 &showlist); 3964 3965 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ 3966 Initialize a convenience variable if necessary.\n\ 3967 init-if-undefined VARIABLE = EXPRESSION\n\ 3968 Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ 3969 exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ 3970 VARIABLE is already initialized.")); 3971 3972 add_prefix_cmd ("function", no_class, function_command, _("\ 3973 Placeholder command for showing help on convenience functions."), 3974 &functionlist, "function ", 0, &cmdlist); 3975 3976 add_internal_function ("_isvoid", _("\ 3977 Check whether an expression is void.\n\ 3978 Usage: $_isvoid (expression)\n\ 3979 Return 1 if the expression is void, zero otherwise."), 3980 isvoid_internal_fn, NULL); 3981 } 3982