xref: /netbsd-src/external/gpl3/gdb/dist/gdb/tic6x-tdep.c (revision e89934bbf778a6d6d6894877c4da59d0c7835b0f)
1 /* Target dependent code for GDB on TI C6x systems.
2 
3    Copyright (C) 2010-2016 Free Software Foundation, Inc.
4    Contributed by Andrew Jenner <andrew@codesourcery.com>
5    Contributed by Yao Qi <yao@codesourcery.com>
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51 
52 #include "features/tic6x-c64xp.c"
53 #include "features/tic6x-c64x.c"
54 #include "features/tic6x-c62x.c"
55 
56 #define TIC6X_OPCODE_SIZE 4
57 #define TIC6X_FETCH_PACKET_SIZE 32
58 
59 #define INST_S_BIT(INST) ((INST >> 1) & 1)
60 #define INST_X_BIT(INST) ((INST >> 12) & 1)
61 
62 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
63 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
64 
65 struct tic6x_unwind_cache
66 {
67   /* The frame's base, optionally used by the high-level debug info.  */
68   CORE_ADDR base;
69 
70   /* The previous frame's inner most stack address.  Used as this
71      frame ID's stack_addr.  */
72   CORE_ADDR cfa;
73 
74   /* The address of the first instruction in this function */
75   CORE_ADDR pc;
76 
77   /* Which register holds the return address for the frame.  */
78   int return_regnum;
79 
80   /* The offset of register saved on stack.  If register is not saved, the
81      corresponding element is -1.  */
82   CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
83 };
84 
85 
86 /* Name of TI C6x core registers.  */
87 static const char *const tic6x_register_names[] =
88 {
89   "A0",  "A1",  "A2",  "A3",  /*  0  1  2  3 */
90   "A4",  "A5",  "A6",  "A7",  /*  4  5  6  7 */
91   "A8",  "A9",  "A10", "A11", /*  8  9 10 11 */
92   "A12", "A13", "A14", "A15", /* 12 13 14 15 */
93   "B0",  "B1",  "B2",  "B3",  /* 16 17 18 19 */
94   "B4",  "B5",  "B6",  "B7",  /* 20 21 22 23 */
95   "B8",  "B9",  "B10", "B11", /* 24 25 26 27 */
96   "B12", "B13", "B14", "B15", /* 28 29 30 31 */
97   "CSR", "PC",                /* 32 33       */
98 };
99 
100 /* This array maps the arguments to the register number which passes argument
101    in function call according to C6000 ELF ABI.  */
102 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
103 
104 /* This is the implementation of gdbarch method register_name.  */
105 
106 static const char *
107 tic6x_register_name (struct gdbarch *gdbarch, int regno)
108 {
109   if (regno < 0)
110     return NULL;
111 
112   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
113     return tdesc_register_name (gdbarch, regno);
114   else if (regno >= ARRAY_SIZE (tic6x_register_names))
115     return "";
116   else
117     return tic6x_register_names[regno];
118 }
119 
120 /* This is the implementation of gdbarch method register_type.  */
121 
122 static struct type *
123 tic6x_register_type (struct gdbarch *gdbarch, int regno)
124 {
125 
126   if (regno == TIC6X_PC_REGNUM)
127     return builtin_type (gdbarch)->builtin_func_ptr;
128   else
129     return builtin_type (gdbarch)->builtin_uint32;
130 }
131 
132 static void
133 tic6x_setup_default (struct tic6x_unwind_cache *cache)
134 {
135   int i;
136 
137   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
138     cache->reg_saved[i] = -1;
139 }
140 
141 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
142 static int tic6x_register_number (int reg, int side, int crosspath);
143 
144 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
145    Bail out early if CURRENT_PC is reached.  Returns the address of the first
146    instruction after the prologue.  */
147 
148 static CORE_ADDR
149 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
150 			const CORE_ADDR current_pc,
151 			struct tic6x_unwind_cache *cache,
152 			struct frame_info *this_frame)
153 {
154   unsigned long inst;
155   unsigned int src_reg, base_reg, dst_reg;
156   int i;
157   CORE_ADDR pc = start_pc;
158   CORE_ADDR return_pc = start_pc;
159   int frame_base_offset_to_sp = 0;
160   /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'.  */
161   int non_stw_insn_counter = 0;
162 
163   if (start_pc >= current_pc)
164     return_pc = current_pc;
165 
166   cache->base = 0;
167 
168   /* The landmarks in prologue is one or two SUB instructions to SP.
169      Instructions on setting up dsbt are in the last part of prologue, if
170      needed.  In maxim, prologue can be divided to three parts by two
171      `sub sp, xx, sp' insns.  */
172 
173   /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp',  in which, the
174      2nd one is optional.  */
175   while (pc < current_pc)
176     {
177       unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
178 
179       if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
180 	  || (inst & 0x0ffc) == 0x9c0)
181 	{
182 	  /* SUBAW/SUBAH/SUB, and src1 is ucst 5.  */
183 	  unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
184 						     INST_S_BIT (inst), 0);
185 	  unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
186 						    INST_S_BIT (inst), 0);
187 
188 	  if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
189 	    {
190 	      /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
191 		 offset.  The constant offset is decoded in bit 13-17 in all
192 		 these three kinds of instructions.  */
193 	      unsigned int ucst5 = (inst >> 13) & 0x1f;
194 
195 	      if ((inst & 0x1ffc) == 0x1dc0)	/* SUBAW */
196 		frame_base_offset_to_sp += ucst5 << 2;
197 	      else if ((inst & 0x1ffc) == 0x1bc0)	/* SUBAH */
198 		frame_base_offset_to_sp += ucst5 << 1;
199 	      else if ((inst & 0x0ffc) == 0x9c0)	/* SUB */
200 		frame_base_offset_to_sp += ucst5;
201 	      else
202 		gdb_assert_not_reached ("unexpected instruction");
203 
204 	      return_pc = pc + 4;
205 	    }
206 	}
207       else if ((inst & 0x174) == 0x74)	/* stw SRC, *+b15(uconst) */
208 	{
209 	  /* The y bit determines which file base is read from.  */
210 	  base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
211 					    (inst >> 7) & 1, 0);
212 
213 	  if (base_reg == TIC6X_SP_REGNUM)
214 	    {
215 	      src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
216 					       INST_S_BIT (inst), 0);
217 
218 	      cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
219 
220 	      return_pc = pc + 4;
221 	    }
222 	  non_stw_insn_counter = 0;
223 	}
224       else
225 	{
226 	  non_stw_insn_counter++;
227 	  /* Following instruction sequence may be emitted in prologue:
228 
229 	     <+0>: subah .D2 b15,28,b15
230 	     <+4>: or .L2X 0,a4,b0
231 	     <+8>: || stw .D2T2 b14,*+b15(56)
232 	     <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
233 	     <+16>:|| stw .D2T1 a10,*+b15(48)
234 	     <+20>:stw .D2T2 b3,*+b15(52)
235 	     <+24>:stw .D2T1 a4,*+b15(40)
236 
237 	     we should look forward for next instruction instead of breaking loop
238 	     here.  So far, we allow almost two sequential non-stw instructions
239 	     in prologue.  */
240 	  if (non_stw_insn_counter >= 2)
241 	    break;
242 	}
243 
244 
245       pc += 4;
246     }
247   /* Step 2: Skip insn on setting up dsbt if it is.  Usually, it looks like,
248      ldw .D2T2 *+b14(0),b14 */
249   inst = tic6x_fetch_instruction (gdbarch, pc);
250   /* The s bit determines which file dst will be loaded into, same effect as
251      other places.  */
252   dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
253   /* The y bit (bit 7), instead of s bit, determines which file base be
254      used.  */
255   base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
256 
257   if ((inst & 0x164) == 0x64	/* ldw */
258       && dst_reg == TIC6X_DP_REGNUM	/* dst is B14 */
259       && base_reg == TIC6X_DP_REGNUM)	/* baseR is B14 */
260     {
261       return_pc = pc + 4;
262     }
263 
264   if (this_frame)
265     {
266       cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
267 
268       if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
269 	{
270 	  /* If the FP now holds an offset from the CFA then this is a frame
271 	     which uses the frame pointer.  */
272 
273 	  cache->cfa = get_frame_register_unsigned (this_frame,
274 						    TIC6X_FP_REGNUM);
275 	}
276       else
277 	{
278 	  /* FP doesn't hold an offset from the CFA.  If SP still holds an
279 	     offset from the CFA then we might be in a function which omits
280 	     the frame pointer.  */
281 
282 	  cache->cfa = cache->base + frame_base_offset_to_sp;
283 	}
284     }
285 
286   /* Adjust all the saved registers such that they contain addresses
287      instead of offsets.  */
288   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
289     if (cache->reg_saved[i] != -1)
290       cache->reg_saved[i] = cache->base + cache->reg_saved[i];
291 
292   return return_pc;
293 }
294 
295 /* This is the implementation of gdbarch method skip_prologue.  */
296 
297 static CORE_ADDR
298 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
299 {
300   CORE_ADDR func_addr;
301   struct tic6x_unwind_cache cache;
302 
303   /* See if we can determine the end of the prologue via the symbol table.
304      If so, then return either PC, or the PC after the prologue, whichever is
305      greater.  */
306   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
307     {
308       CORE_ADDR post_prologue_pc
309 	= skip_prologue_using_sal (gdbarch, func_addr);
310       if (post_prologue_pc != 0)
311 	return max (start_pc, post_prologue_pc);
312     }
313 
314   /* Can't determine prologue from the symbol table, need to examine
315      instructions.  */
316   return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
317 				 NULL);
318 }
319 
320 /* This is the implementation of gdbarch method breakpiont_from_pc.  */
321 
322 static const gdb_byte *
323 tic6x_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
324 			  int *bp_size)
325 {
326   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
327 
328   *bp_size = 4;
329 
330   if (tdep == NULL || tdep->breakpoint == NULL)
331     {
332       if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
333 	return tic6x_bkpt_illegal_opcode_be;
334       else
335 	return tic6x_bkpt_illegal_opcode_le;
336     }
337   else
338     return tdep->breakpoint;
339 }
340 
341 /* This is the implementation of gdbarch method print_insn.  */
342 
343 static int
344 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
345 {
346   return print_insn_tic6x (memaddr, info);
347 }
348 
349 static void
350 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
351 			     struct dwarf2_frame_state_reg *reg,
352 			     struct frame_info *this_frame)
353 {
354   /* Mark the PC as the destination for the return address.  */
355   if (regnum == gdbarch_pc_regnum (gdbarch))
356     reg->how = DWARF2_FRAME_REG_RA;
357 
358   /* Mark the stack pointer as the call frame address.  */
359   else if (regnum == gdbarch_sp_regnum (gdbarch))
360     reg->how = DWARF2_FRAME_REG_CFA;
361 
362   /* The above was taken from the default init_reg in dwarf2-frame.c
363      while the below is c6x specific.  */
364 
365   /* Callee save registers.  The ABI designates A10-A15 and B10-B15 as
366      callee-save.  */
367   else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
368     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
369   else
370     /* All other registers are caller-save.  */
371     reg->how = DWARF2_FRAME_REG_UNDEFINED;
372 }
373 
374 /* This is the implementation of gdbarch method unwind_pc.  */
375 
376 static CORE_ADDR
377 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
378 {
379   gdb_byte buf[8];
380 
381   frame_unwind_register (next_frame,  TIC6X_PC_REGNUM, buf);
382   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
383 }
384 
385 /* This is the implementation of gdbarch method unwind_sp.  */
386 
387 static CORE_ADDR
388 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
389 {
390   return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
391 }
392 
393 
394 /* Frame base handling.  */
395 
396 static struct tic6x_unwind_cache*
397 tic6x_frame_unwind_cache (struct frame_info *this_frame,
398 			  void **this_prologue_cache)
399 {
400   struct gdbarch *gdbarch = get_frame_arch (this_frame);
401   CORE_ADDR current_pc;
402   struct tic6x_unwind_cache *cache;
403 
404   if (*this_prologue_cache)
405     return (struct tic6x_unwind_cache *) *this_prologue_cache;
406 
407   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
408   (*this_prologue_cache) = cache;
409 
410   cache->return_regnum = TIC6X_RA_REGNUM;
411 
412   tic6x_setup_default (cache);
413 
414   cache->pc = get_frame_func (this_frame);
415   current_pc = get_frame_pc (this_frame);
416 
417   /* Prologue analysis does the rest...  */
418   if (cache->pc != 0)
419     tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
420 
421   return cache;
422 }
423 
424 static void
425 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
426 		     struct frame_id *this_id)
427 {
428   struct tic6x_unwind_cache *cache =
429     tic6x_frame_unwind_cache (this_frame, this_cache);
430 
431   /* This marks the outermost frame.  */
432   if (cache->base == 0)
433     return;
434 
435   (*this_id) = frame_id_build (cache->cfa, cache->pc);
436 }
437 
438 static struct value *
439 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
440 			   int regnum)
441 {
442   struct tic6x_unwind_cache *cache =
443     tic6x_frame_unwind_cache (this_frame, this_cache);
444 
445   gdb_assert (regnum >= 0);
446 
447   /* The PC of the previous frame is stored in the RA register of
448      the current frame.  Frob regnum so that we pull the value from
449      the correct place.  */
450   if (regnum == TIC6X_PC_REGNUM)
451     regnum = cache->return_regnum;
452 
453   if (regnum == TIC6X_SP_REGNUM && cache->cfa)
454     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
455 
456   /* If we've worked out where a register is stored then load it from
457      there.  */
458   if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
459     return frame_unwind_got_memory (this_frame, regnum,
460 				    cache->reg_saved[regnum]);
461 
462   return frame_unwind_got_register (this_frame, regnum, regnum);
463 }
464 
465 static CORE_ADDR
466 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
467 {
468   struct tic6x_unwind_cache *info
469     = tic6x_frame_unwind_cache (this_frame, this_cache);
470   return info->base;
471 }
472 
473 static const struct frame_unwind tic6x_frame_unwind =
474 {
475   NORMAL_FRAME,
476   default_frame_unwind_stop_reason,
477   tic6x_frame_this_id,
478   tic6x_frame_prev_register,
479   NULL,
480   default_frame_sniffer
481 };
482 
483 static const struct frame_base tic6x_frame_base =
484 {
485   &tic6x_frame_unwind,
486   tic6x_frame_base_address,
487   tic6x_frame_base_address,
488   tic6x_frame_base_address
489 };
490 
491 
492 static struct tic6x_unwind_cache *
493 tic6x_make_stub_cache (struct frame_info *this_frame)
494 {
495   struct tic6x_unwind_cache *cache;
496 
497   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
498 
499   cache->return_regnum = TIC6X_RA_REGNUM;
500 
501   tic6x_setup_default (cache);
502 
503   cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
504 
505   return cache;
506 }
507 
508 static void
509 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
510 		    struct frame_id *this_id)
511 {
512   struct tic6x_unwind_cache *cache;
513 
514   if (*this_cache == NULL)
515     *this_cache = tic6x_make_stub_cache (this_frame);
516   cache = (struct tic6x_unwind_cache *) *this_cache;
517 
518   *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
519 }
520 
521 static int
522 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
523 			   struct frame_info *this_frame,
524 			   void **this_prologue_cache)
525 {
526   CORE_ADDR addr_in_block;
527 
528   addr_in_block = get_frame_address_in_block (this_frame);
529   if (in_plt_section (addr_in_block))
530     return 1;
531 
532   return 0;
533 }
534 
535 static const struct frame_unwind tic6x_stub_unwind =
536 {
537   NORMAL_FRAME,
538   default_frame_unwind_stop_reason,
539   tic6x_stub_this_id,
540   tic6x_frame_prev_register,
541   NULL,
542   tic6x_stub_unwind_sniffer
543 };
544 
545 /* Return the instruction on address PC.  */
546 
547 static unsigned long
548 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
549 {
550   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
551   return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
552 }
553 
554 /* Compute the condition of INST if it is a conditional instruction.  Always
555    return 1 if INST is not a conditional instruction.  */
556 
557 static int
558 tic6x_condition_true (struct frame_info *frame, unsigned long inst)
559 {
560   int register_number;
561   int register_value;
562   static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
563 
564   register_number = register_numbers[(inst >> 29) & 7];
565   if (register_number == -1)
566     return 1;
567 
568   register_value = get_frame_register_signed (frame, register_number);
569   if ((inst & 0x10000000) != 0)
570     return register_value == 0;
571   return register_value != 0;
572 }
573 
574 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
575    instruction.  */
576 
577 static int
578 tic6x_register_number (int reg, int side, int crosspath)
579 {
580   int r = (reg & 15) | ((crosspath ^ side) << 4);
581   if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
582     r += 37;
583   return r;
584 }
585 
586 static int
587 tic6x_extract_signed_field (int value, int low_bit, int bits)
588 {
589   int mask = (1 << bits) - 1;
590   int r = (value >> low_bit) & mask;
591   if ((r & (1 << (bits - 1))) != 0)
592     r -= mask + 1;
593   return r;
594 }
595 
596 /* Determine where to set a single step breakpoint.  */
597 
598 static CORE_ADDR
599 tic6x_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
600 {
601   struct gdbarch *gdbarch = get_frame_arch (frame);
602   unsigned long inst;
603   int register_number;
604   int last = 0;
605 
606   do
607     {
608       inst = tic6x_fetch_instruction (gdbarch, pc);
609 
610       last = !(inst & 1);
611 
612       if (inst == TIC6X_INST_SWE)
613 	{
614 	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
615 
616 	  if (tdep->syscall_next_pc != NULL)
617 	    return tdep->syscall_next_pc (frame);
618 	}
619 
620       if (tic6x_condition_true (frame, inst))
621 	{
622 	  if ((inst & 0x0000007c) == 0x00000010)
623 	    {
624 	      /* B with displacement */
625 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
626 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
627 	      break;
628 	    }
629 	  if ((inst & 0x0f83effc) == 0x00000360)
630 	    {
631 	      /* B with register */
632 
633 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
634 						       INST_S_BIT (inst),
635 						       INST_X_BIT (inst));
636 	      pc = get_frame_register_unsigned (frame, register_number);
637 	      break;
638 	    }
639 	  if ((inst & 0x00001ffc) == 0x00001020)
640 	    {
641 	      /* BDEC */
642 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
643 						       INST_S_BIT (inst), 0);
644 	      if (get_frame_register_signed (frame, register_number) >= 0)
645 		{
646 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
647 		  pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
648 		}
649 	      break;
650 	    }
651 	  if ((inst & 0x00001ffc) == 0x00000120)
652 	    {
653 	      /* BNOP with displacement */
654 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
655 	      pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
656 	      break;
657 	    }
658 	  if ((inst & 0x0f830ffe) == 0x00800362)
659 	    {
660 	      /* BNOP with register */
661 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
662 						       1, INST_X_BIT (inst));
663 	      pc = get_frame_register_unsigned (frame, register_number);
664 	      break;
665 	    }
666 	  if ((inst & 0x00001ffc) == 0x00000020)
667 	    {
668 	      /* BPOS */
669 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
670 						       INST_S_BIT (inst), 0);
671 	      if (get_frame_register_signed (frame, register_number) >= 0)
672 		{
673 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
674 		  pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
675 		}
676 	      break;
677 	    }
678 	  if ((inst & 0xf000007c) == 0x10000010)
679 	    {
680 	      /* CALLP */
681 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
682 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
683 	      break;
684 	    }
685 	}
686       pc += TIC6X_OPCODE_SIZE;
687     }
688   while (!last);
689   return pc;
690 }
691 
692 /* This is the implementation of gdbarch method software_single_step.  */
693 
694 static int
695 tic6x_software_single_step (struct frame_info *frame)
696 {
697   struct gdbarch *gdbarch = get_frame_arch (frame);
698   struct address_space *aspace = get_frame_address_space (frame);
699   CORE_ADDR next_pc = tic6x_get_next_pc (frame, get_frame_pc (frame));
700 
701   insert_single_step_breakpoint (gdbarch, aspace, next_pc);
702 
703   return 1;
704 }
705 
706 /* This is the implementation of gdbarch method frame_align.  */
707 
708 static CORE_ADDR
709 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
710 {
711   return align_down (addr, 8);
712 }
713 
714 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
715    value into VALBUF.  */
716 
717 static void
718 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
719 			    enum bfd_endian byte_order, gdb_byte *valbuf)
720 {
721   int len = TYPE_LENGTH (valtype);
722 
723   /* pointer types are returned in register A4,
724      up to 32-bit types in A4
725      up to 64-bit types in A5:A4  */
726   if (len <= 4)
727     {
728       /* In big-endian,
729 	 - one-byte structure or union occupies the LSB of single even register.
730 	 - for two-byte structure or union, the first byte occupies byte 1 of
731 	 register and the second byte occupies byte 0.
732 	 so, we read the contents in VAL from the LSBs of register.  */
733       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
734 	regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
735 				   valbuf);
736       else
737 	regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
738     }
739   else if (len <= 8)
740     {
741       /* For a 5-8 byte structure or union in big-endian, the first byte
742 	 occupies byte 3 (the MSB) of the upper (odd) register and the
743 	 remaining bytes fill the decreasingly significant bytes.  5-7
744 	 byte structures or unions have padding in the LSBs of the
745 	 lower (even) register.  */
746       if (byte_order == BFD_ENDIAN_BIG)
747 	{
748 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
749 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
750 	}
751       else
752 	{
753 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
754 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
755 	}
756     }
757 }
758 
759 /* Write into appropriate registers a function return value
760    of type TYPE, given in virtual format.  */
761 
762 static void
763 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
764 			  enum bfd_endian byte_order, const gdb_byte *valbuf)
765 {
766   int len = TYPE_LENGTH (valtype);
767 
768   /* return values of up to 8 bytes are returned in A5:A4 */
769 
770   if (len <= 4)
771     {
772       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
773 	regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
774 				    valbuf);
775       else
776 	regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
777     }
778   else if (len <= 8)
779     {
780       if (byte_order == BFD_ENDIAN_BIG)
781 	{
782 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
783 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
784 	}
785       else
786 	{
787 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
788 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
789 	}
790     }
791 }
792 
793 /* This is the implementation of gdbarch method return_value.  */
794 
795 static enum return_value_convention
796 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
797 		    struct type *type, struct regcache *regcache,
798 		    gdb_byte *readbuf, const gdb_byte *writebuf)
799 {
800   /* In C++, when function returns an object, even its size is small
801      enough, it stii has to be passed via reference, pointed by register
802      A3.  */
803   if (current_language->la_language == language_cplus)
804     {
805       if (type != NULL)
806 	{
807 	  type = check_typedef (type);
808 	  if (language_pass_by_reference (type))
809 	    return RETURN_VALUE_STRUCT_CONVENTION;
810 	}
811     }
812 
813   if (TYPE_LENGTH (type) > 8)
814     return RETURN_VALUE_STRUCT_CONVENTION;
815 
816   if (readbuf)
817     tic6x_extract_return_value (type, regcache,
818 				gdbarch_byte_order (gdbarch), readbuf);
819   if (writebuf)
820     tic6x_store_return_value (type, regcache,
821 			      gdbarch_byte_order (gdbarch), writebuf);
822 
823   return RETURN_VALUE_REGISTER_CONVENTION;
824 }
825 
826 /* This is the implementation of gdbarch method dummy_id.  */
827 
828 static struct frame_id
829 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
830 {
831   return frame_id_build
832     (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
833      get_frame_pc (this_frame));
834 }
835 
836 /* Get the alignment requirement of TYPE.  */
837 
838 static int
839 tic6x_arg_type_alignment (struct type *type)
840 {
841   int len = TYPE_LENGTH (check_typedef (type));
842   enum type_code typecode = TYPE_CODE (check_typedef (type));
843 
844   if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
845     {
846       /* The stack alignment of a structure (and union) passed by value is the
847 	 smallest power of two greater than or equal to its size.
848 	 This cannot exceed 8 bytes, which is the largest allowable size for
849 	 a structure passed by value.  */
850 
851       if (len <= 2)
852 	return len;
853       else if (len <= 4)
854 	return 4;
855       else if (len <= 8)
856 	return 8;
857       else
858 	gdb_assert_not_reached ("unexpected length of data");
859     }
860   else
861     {
862       if (len <= 4)
863 	return 4;
864       else if (len == 8)
865 	{
866 	  if (typecode == TYPE_CODE_COMPLEX)
867 	    return 4;
868 	  else
869 	    return 8;
870 	}
871       else if (len == 16)
872 	{
873 	  if (typecode == TYPE_CODE_COMPLEX)
874 	    return 8;
875 	  else
876 	    return 16;
877 	}
878       else
879 	internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
880 			len);
881     }
882 }
883 
884 /* This is the implementation of gdbarch method push_dummy_call.  */
885 
886 static CORE_ADDR
887 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
888 		       struct regcache *regcache, CORE_ADDR bp_addr,
889 		       int nargs, struct value **args, CORE_ADDR sp,
890 		       int struct_return, CORE_ADDR struct_addr)
891 {
892   int argreg = 0;
893   int argnum;
894   int stack_offset = 4;
895   int references_offset = 4;
896   CORE_ADDR func_addr = find_function_addr (function, NULL);
897   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
898   struct type *func_type = value_type (function);
899   /* The first arg passed on stack.  Mostly the first 10 args are passed by
900      registers.  */
901   int first_arg_on_stack = 10;
902 
903   /* Set the return address register to point to the entry point of
904      the program, where a breakpoint lies in wait.  */
905   regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
906 
907   /* The caller must pass an argument in A3 containing a destination address
908      for the returned value.  The callee returns the object by copying it to
909      the address in A3.  */
910   if (struct_return)
911     regcache_cooked_write_unsigned (regcache, 3, struct_addr);
912 
913   /* Determine the type of this function.  */
914   func_type = check_typedef (func_type);
915   if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
916     func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
917 
918   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
919 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
920 
921   /* For a variadic C function, the last explicitly declared argument and all
922      remaining arguments are passed on the stack.  */
923   if (TYPE_VARARGS (func_type))
924     first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
925 
926   /* Now make space on the stack for the args.  */
927   for (argnum = 0; argnum < nargs; argnum++)
928     {
929       int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
930       if (argnum >= 10 - argreg)
931 	references_offset += len;
932       stack_offset += len;
933     }
934   sp -= stack_offset;
935   /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
936      Stack Alignment.  */
937   sp = align_down (sp, 8);
938   stack_offset = 4;
939 
940   /* Now load as many as possible of the first arguments into
941      registers, and push the rest onto the stack.  Loop through args
942      from first to last.  */
943   for (argnum = 0; argnum < nargs; argnum++)
944     {
945       const gdb_byte *val;
946       struct value *arg = args[argnum];
947       struct type *arg_type = check_typedef (value_type (arg));
948       int len = TYPE_LENGTH (arg_type);
949       enum type_code typecode = TYPE_CODE (arg_type);
950 
951       val = value_contents (arg);
952 
953       /* Copy the argument to general registers or the stack in
954          register-sized pieces.  */
955       if (argreg < first_arg_on_stack)
956 	{
957 	  if (len <= 4)
958 	    {
959 	      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
960 		{
961 		  /* In big-endian,
962 		     - one-byte structure or union occupies the LSB of single
963 		     even register.
964 		     - for two-byte structure or union, the first byte
965 		     occupies byte 1 of register and the second byte occupies
966 		     byte 0.
967 		     so, we write the contents in VAL to the lsp of
968 		     register.  */
969 		  if (len < 3 && byte_order == BFD_ENDIAN_BIG)
970 		    regcache_cooked_write_part (regcache, arg_regs[argreg],
971 						4 - len, len, val);
972 		  else
973 		    regcache_cooked_write (regcache, arg_regs[argreg], val);
974 		}
975 	      else
976 		{
977 		  /* The argument is being passed by value in a single
978 		     register.  */
979 		  CORE_ADDR regval = extract_unsigned_integer (val, len,
980 							       byte_order);
981 
982 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
983 						  regval);
984 		}
985 	    }
986 	  else
987 	    {
988 	      if (len <= 8)
989 		{
990 		  if (typecode == TYPE_CODE_STRUCT
991 		      || typecode == TYPE_CODE_UNION)
992 		    {
993 		      /* For a 5-8 byte structure or union in big-endian, the
994 		         first byte occupies byte 3 (the MSB) of the upper (odd)
995 		         register and the remaining bytes fill the decreasingly
996 		         significant bytes.  5-7 byte structures or unions have
997 		         padding in the LSBs of the lower (even) register.  */
998 		      if (byte_order == BFD_ENDIAN_BIG)
999 			{
1000 			  regcache_cooked_write (regcache,
1001 						 arg_regs[argreg] + 1, val);
1002 			  regcache_cooked_write_part (regcache,
1003 						      arg_regs[argreg], 0,
1004 						      len - 4, val + 4);
1005 			}
1006 		      else
1007 			{
1008 			  regcache_cooked_write (regcache, arg_regs[argreg],
1009 						 val);
1010 			  regcache_cooked_write_part (regcache,
1011 						      arg_regs[argreg] + 1, 0,
1012 						      len - 4, val + 4);
1013 			}
1014 		    }
1015 		  else
1016 		    {
1017 		      /* The argument is being passed by value in a pair of
1018 		         registers.  */
1019 		      ULONGEST regval = extract_unsigned_integer (val, len,
1020 								  byte_order);
1021 
1022 		      regcache_cooked_write_unsigned (regcache,
1023 						      arg_regs[argreg],
1024 						      regval);
1025 		      regcache_cooked_write_unsigned (regcache,
1026 						      arg_regs[argreg] + 1,
1027 						      regval >> 32);
1028 		    }
1029 		}
1030 	      else
1031 		{
1032 		  /* The argument is being passed by reference in a single
1033 		     register.  */
1034 		  CORE_ADDR addr;
1035 
1036 		  /* It is not necessary to adjust REFERENCES_OFFSET to
1037 		     8-byte aligned in some cases, in which 4-byte alignment
1038 		     is sufficient.  For simplicity, we adjust
1039 		     REFERENCES_OFFSET to 8-byte aligned.  */
1040 		  references_offset = align_up (references_offset, 8);
1041 
1042 		  addr = sp + references_offset;
1043 		  write_memory (addr, val, len);
1044 		  references_offset += align_up (len, 4);
1045 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1046 						  addr);
1047 		}
1048 	    }
1049 	  argreg++;
1050 	}
1051       else
1052 	{
1053 	  /* The argument is being passed on the stack.  */
1054 	  CORE_ADDR addr;
1055 
1056 	  /* There are six different cases of alignment, and these rules can
1057 	     be found in tic6x_arg_type_alignment:
1058 
1059 	     1) 4-byte aligned if size is less than or equal to 4 byte, such
1060 	     as short, int, struct, union etc.
1061 	     2) 8-byte aligned if size is less than or equal to 8-byte, such
1062 	     as double, long long,
1063 	     3) 4-byte aligned if it is of type _Complex float, even its size
1064 	     is 8-byte.
1065 	     4) 8-byte aligned if it is of type _Complex double or _Complex
1066 	     long double, even its size is 16-byte.  Because, the address of
1067 	     variable is passed as reference.
1068 	     5) struct and union larger than 8-byte are passed by reference, so
1069 	     it is 4-byte aligned.
1070 	     6) struct and union of size between 4 byte and 8 byte varies.
1071 	     alignment of struct variable is the alignment of its first field,
1072 	     while alignment of union variable is the max of all its fields'
1073 	     alignment.  */
1074 
1075 	  if (len <= 4)
1076 	    ; /* Default is 4-byte aligned.  Nothing to be done.  */
1077 	  else if (len <= 8)
1078 	    stack_offset = align_up (stack_offset,
1079 				     tic6x_arg_type_alignment (arg_type));
1080 	  else if (len == 16)
1081 	    {
1082 	      /* _Complex double or _Complex long double */
1083 	      if (typecode == TYPE_CODE_COMPLEX)
1084 		{
1085 		  /* The argument is being passed by reference on stack.  */
1086 		  CORE_ADDR addr;
1087 		  references_offset = align_up (references_offset, 8);
1088 
1089 		  addr = sp + references_offset;
1090 		  /* Store variable on stack.  */
1091 		  write_memory (addr, val, len);
1092 
1093 		  references_offset += align_up (len, 4);
1094 
1095 		  /* Pass the address of variable on stack as reference.  */
1096 		  store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1097 					  addr);
1098 		  len = 4;
1099 
1100 		}
1101 	      else
1102 		internal_error (__FILE__, __LINE__,
1103 				_("unexpected type %d of arg %d"),
1104 				typecode, argnum);
1105 	    }
1106 	  else
1107 	    internal_error (__FILE__, __LINE__,
1108 			    _("unexpected length %d of arg %d"), len, argnum);
1109 
1110 	  addr = sp + stack_offset;
1111 	  write_memory (addr, val, len);
1112 	  stack_offset += align_up (len, 4);
1113 	}
1114     }
1115 
1116   regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1117 
1118   /* Return adjusted stack pointer.  */
1119   return sp;
1120 }
1121 
1122 /* This is the implementation of gdbarch method stack_frame_destroyed_p.  */
1123 
1124 static int
1125 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1126 {
1127   unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1128   /* Normally, the epilogue is composed by instruction `b .S2 b3'.  */
1129   if ((inst & 0x0f83effc) == 0x360)
1130     {
1131       unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1132 						 INST_S_BIT (inst),
1133 						 INST_X_BIT (inst));
1134       if (src2 == TIC6X_RA_REGNUM)
1135 	return 1;
1136     }
1137 
1138   return 0;
1139 }
1140 
1141 /* This is the implementation of gdbarch method get_longjmp_target.  */
1142 
1143 static int
1144 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1145 {
1146   struct gdbarch *gdbarch = get_frame_arch (frame);
1147   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1148   CORE_ADDR jb_addr;
1149   gdb_byte buf[4];
1150 
1151   /* JMP_BUF is passed by reference in A4.  */
1152   jb_addr = get_frame_register_unsigned (frame, 4);
1153 
1154   /* JMP_BUF contains 13 elements of type int, and return address is stored
1155      in the last slot.  */
1156   if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1157     return 0;
1158 
1159   *pc = extract_unsigned_integer (buf, 4, byte_order);
1160 
1161   return 1;
1162 }
1163 
1164 /* This is the implementation of gdbarch method
1165    return_in_first_hidden_param_p.  */
1166 
1167 static int
1168 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1169 				      struct type *type)
1170 {
1171   return 0;
1172 }
1173 
1174 static struct gdbarch *
1175 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1176 {
1177   struct gdbarch *gdbarch;
1178   struct gdbarch_tdep *tdep;
1179   struct tdesc_arch_data *tdesc_data = NULL;
1180   const struct target_desc *tdesc = info.target_desc;
1181   int has_gp = 0;
1182 
1183   /* Check any target description for validity.  */
1184   if (tdesc_has_registers (tdesc))
1185     {
1186       const struct tdesc_feature *feature;
1187       int valid_p, i;
1188 
1189       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1190 
1191       if (feature == NULL)
1192 	return NULL;
1193 
1194       tdesc_data = tdesc_data_alloc ();
1195 
1196       valid_p = 1;
1197       for (i = 0; i < 32; i++)	/* A0 - A15, B0 - B15 */
1198 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1199 					    tic6x_register_names[i]);
1200 
1201       /* CSR */
1202       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1203 					  tic6x_register_names[TIC6X_CSR_REGNUM]);
1204       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1205 					  tic6x_register_names[TIC6X_PC_REGNUM]);
1206 
1207       if (!valid_p)
1208 	{
1209 	  tdesc_data_cleanup (tdesc_data);
1210 	  return NULL;
1211 	}
1212 
1213       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1214       if (feature)
1215 	{
1216 	  int j = 0;
1217 	  static const char *const gp[] =
1218 	    {
1219 	      "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1220 	      "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1221 	      "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1222 	      "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1223 	    };
1224 
1225 	  has_gp = 1;
1226 	  valid_p = 1;
1227 	  for (j = 0; j < 32; j++)	/* A16 - A31, B16 - B31 */
1228 	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1229 						gp[j]);
1230 
1231 	  if (!valid_p)
1232 	    {
1233 	      tdesc_data_cleanup (tdesc_data);
1234 	      return NULL;
1235 	    }
1236 	}
1237 
1238       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1239       if (feature)
1240 	{
1241 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1242 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1243 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1244 
1245 	  if (!valid_p)
1246 	    {
1247 	      tdesc_data_cleanup (tdesc_data);
1248 	      return NULL;
1249 	    }
1250 	}
1251 
1252     }
1253 
1254   /* Find a candidate among extant architectures.  */
1255   for (arches = gdbarch_list_lookup_by_info (arches, &info);
1256        arches != NULL;
1257        arches = gdbarch_list_lookup_by_info (arches->next, &info))
1258     {
1259       tdep = gdbarch_tdep (arches->gdbarch);
1260 
1261       if (has_gp != tdep->has_gp)
1262 	continue;
1263 
1264       if (tdep && tdep->breakpoint)
1265 	return arches->gdbarch;
1266     }
1267 
1268   tdep = XCNEW (struct gdbarch_tdep);
1269 
1270   tdep->has_gp = has_gp;
1271   gdbarch = gdbarch_alloc (&info, tdep);
1272 
1273   /* Data type sizes.  */
1274   set_gdbarch_ptr_bit (gdbarch, 32);
1275   set_gdbarch_addr_bit (gdbarch, 32);
1276   set_gdbarch_short_bit (gdbarch, 16);
1277   set_gdbarch_int_bit (gdbarch, 32);
1278   set_gdbarch_long_bit (gdbarch, 32);
1279   set_gdbarch_long_long_bit (gdbarch, 64);
1280   set_gdbarch_float_bit (gdbarch, 32);
1281   set_gdbarch_double_bit (gdbarch, 64);
1282 
1283   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1284   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1285 
1286   /* The register set.  */
1287   set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1288   set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1289   set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1290 
1291   set_gdbarch_register_name (gdbarch, tic6x_register_name);
1292   set_gdbarch_register_type (gdbarch, tic6x_register_type);
1293 
1294   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1295 
1296   set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1297   set_gdbarch_breakpoint_from_pc (gdbarch, tic6x_breakpoint_from_pc);
1298 
1299   set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1300   set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1301 
1302   /* Unwinding.  */
1303   dwarf2_append_unwinders (gdbarch);
1304 
1305   frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1306   frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1307   frame_base_set_default (gdbarch, &tic6x_frame_base);
1308 
1309   dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1310 
1311   /* Single stepping.  */
1312   set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1313 
1314   set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1315 
1316   /* Call dummy code.  */
1317   set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1318 
1319   set_gdbarch_return_value (gdbarch, tic6x_return_value);
1320 
1321   set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1322 
1323   /* Enable inferior call support.  */
1324   set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1325 
1326   set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1327 
1328   set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1329 
1330   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1331 					      tic6x_return_in_first_hidden_param_p);
1332 
1333   /* Hook in ABI-specific overrides, if they have been registered.  */
1334   gdbarch_init_osabi (info, gdbarch);
1335 
1336   if (tdesc_data)
1337     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1338 
1339   return gdbarch;
1340 }
1341 
1342 /* -Wmissing-prototypes */
1343 extern initialize_file_ftype _initialize_tic6x_tdep;
1344 
1345 void
1346 _initialize_tic6x_tdep (void)
1347 {
1348   register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1349 
1350   initialize_tdesc_tic6x_c64xp ();
1351   initialize_tdesc_tic6x_c64x ();
1352   initialize_tdesc_tic6x_c62x ();
1353 }
1354