1 /* Target dependent code for GDB on TI C6x systems. 2 3 Copyright (C) 2010-2017 Free Software Foundation, Inc. 4 Contributed by Andrew Jenner <andrew@codesourcery.com> 5 Contributed by Yao Qi <yao@codesourcery.com> 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "frame.h" 24 #include "frame-unwind.h" 25 #include "frame-base.h" 26 #include "trad-frame.h" 27 #include "dwarf2-frame.h" 28 #include "symtab.h" 29 #include "inferior.h" 30 #include "gdbtypes.h" 31 #include "gdbcore.h" 32 #include "gdbcmd.h" 33 #include "target.h" 34 #include "dis-asm.h" 35 #include "regcache.h" 36 #include "value.h" 37 #include "symfile.h" 38 #include "arch-utils.h" 39 #include "floatformat.h" 40 #include "glibc-tdep.h" 41 #include "infcall.h" 42 #include "regset.h" 43 #include "tramp-frame.h" 44 #include "linux-tdep.h" 45 #include "solib.h" 46 #include "objfiles.h" 47 #include "osabi.h" 48 #include "tic6x-tdep.h" 49 #include "language.h" 50 #include "target-descriptions.h" 51 #include <algorithm> 52 53 #include "features/tic6x-c64xp.c" 54 #include "features/tic6x-c64x.c" 55 #include "features/tic6x-c62x.c" 56 57 #define TIC6X_OPCODE_SIZE 4 58 #define TIC6X_FETCH_PACKET_SIZE 32 59 60 #define INST_S_BIT(INST) ((INST >> 1) & 1) 61 #define INST_X_BIT(INST) ((INST >> 12) & 1) 62 63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 }; 64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 }; 65 66 struct tic6x_unwind_cache 67 { 68 /* The frame's base, optionally used by the high-level debug info. */ 69 CORE_ADDR base; 70 71 /* The previous frame's inner most stack address. Used as this 72 frame ID's stack_addr. */ 73 CORE_ADDR cfa; 74 75 /* The address of the first instruction in this function */ 76 CORE_ADDR pc; 77 78 /* Which register holds the return address for the frame. */ 79 int return_regnum; 80 81 /* The offset of register saved on stack. If register is not saved, the 82 corresponding element is -1. */ 83 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS]; 84 }; 85 86 87 /* Name of TI C6x core registers. */ 88 static const char *const tic6x_register_names[] = 89 { 90 "A0", "A1", "A2", "A3", /* 0 1 2 3 */ 91 "A4", "A5", "A6", "A7", /* 4 5 6 7 */ 92 "A8", "A9", "A10", "A11", /* 8 9 10 11 */ 93 "A12", "A13", "A14", "A15", /* 12 13 14 15 */ 94 "B0", "B1", "B2", "B3", /* 16 17 18 19 */ 95 "B4", "B5", "B6", "B7", /* 20 21 22 23 */ 96 "B8", "B9", "B10", "B11", /* 24 25 26 27 */ 97 "B12", "B13", "B14", "B15", /* 28 29 30 31 */ 98 "CSR", "PC", /* 32 33 */ 99 }; 100 101 /* This array maps the arguments to the register number which passes argument 102 in function call according to C6000 ELF ABI. */ 103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 }; 104 105 /* This is the implementation of gdbarch method register_name. */ 106 107 static const char * 108 tic6x_register_name (struct gdbarch *gdbarch, int regno) 109 { 110 if (regno < 0) 111 return NULL; 112 113 if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) 114 return tdesc_register_name (gdbarch, regno); 115 else if (regno >= ARRAY_SIZE (tic6x_register_names)) 116 return ""; 117 else 118 return tic6x_register_names[regno]; 119 } 120 121 /* This is the implementation of gdbarch method register_type. */ 122 123 static struct type * 124 tic6x_register_type (struct gdbarch *gdbarch, int regno) 125 { 126 127 if (regno == TIC6X_PC_REGNUM) 128 return builtin_type (gdbarch)->builtin_func_ptr; 129 else 130 return builtin_type (gdbarch)->builtin_uint32; 131 } 132 133 static void 134 tic6x_setup_default (struct tic6x_unwind_cache *cache) 135 { 136 int i; 137 138 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 139 cache->reg_saved[i] = -1; 140 } 141 142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR); 143 static int tic6x_register_number (int reg, int side, int crosspath); 144 145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly. 146 Bail out early if CURRENT_PC is reached. Returns the address of the first 147 instruction after the prologue. */ 148 149 static CORE_ADDR 150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, 151 const CORE_ADDR current_pc, 152 struct tic6x_unwind_cache *cache, 153 struct frame_info *this_frame) 154 { 155 unsigned long inst; 156 unsigned int src_reg, base_reg, dst_reg; 157 int i; 158 CORE_ADDR pc = start_pc; 159 CORE_ADDR return_pc = start_pc; 160 int frame_base_offset_to_sp = 0; 161 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */ 162 int non_stw_insn_counter = 0; 163 164 if (start_pc >= current_pc) 165 return_pc = current_pc; 166 167 cache->base = 0; 168 169 /* The landmarks in prologue is one or two SUB instructions to SP. 170 Instructions on setting up dsbt are in the last part of prologue, if 171 needed. In maxim, prologue can be divided to three parts by two 172 `sub sp, xx, sp' insns. */ 173 174 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the 175 2nd one is optional. */ 176 while (pc < current_pc) 177 { 178 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 179 180 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0 181 || (inst & 0x0ffc) == 0x9c0) 182 { 183 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */ 184 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 185 INST_S_BIT (inst), 0); 186 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f, 187 INST_S_BIT (inst), 0); 188 189 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM) 190 { 191 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to 192 offset. The constant offset is decoded in bit 13-17 in all 193 these three kinds of instructions. */ 194 unsigned int ucst5 = (inst >> 13) & 0x1f; 195 196 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */ 197 frame_base_offset_to_sp += ucst5 << 2; 198 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */ 199 frame_base_offset_to_sp += ucst5 << 1; 200 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */ 201 frame_base_offset_to_sp += ucst5; 202 else 203 gdb_assert_not_reached ("unexpected instruction"); 204 205 return_pc = pc + 4; 206 } 207 } 208 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */ 209 { 210 /* The y bit determines which file base is read from. */ 211 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, 212 (inst >> 7) & 1, 0); 213 214 if (base_reg == TIC6X_SP_REGNUM) 215 { 216 src_reg = tic6x_register_number ((inst >> 23) & 0x1f, 217 INST_S_BIT (inst), 0); 218 219 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2; 220 221 return_pc = pc + 4; 222 } 223 non_stw_insn_counter = 0; 224 } 225 else 226 { 227 non_stw_insn_counter++; 228 /* Following instruction sequence may be emitted in prologue: 229 230 <+0>: subah .D2 b15,28,b15 231 <+4>: or .L2X 0,a4,b0 232 <+8>: || stw .D2T2 b14,*+b15(56) 233 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220> 234 <+16>:|| stw .D2T1 a10,*+b15(48) 235 <+20>:stw .D2T2 b3,*+b15(52) 236 <+24>:stw .D2T1 a4,*+b15(40) 237 238 we should look forward for next instruction instead of breaking loop 239 here. So far, we allow almost two sequential non-stw instructions 240 in prologue. */ 241 if (non_stw_insn_counter >= 2) 242 break; 243 } 244 245 246 pc += 4; 247 } 248 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like, 249 ldw .D2T2 *+b14(0),b14 */ 250 inst = tic6x_fetch_instruction (gdbarch, pc); 251 /* The s bit determines which file dst will be loaded into, same effect as 252 other places. */ 253 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0); 254 /* The y bit (bit 7), instead of s bit, determines which file base be 255 used. */ 256 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0); 257 258 if ((inst & 0x164) == 0x64 /* ldw */ 259 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */ 260 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */ 261 { 262 return_pc = pc + 4; 263 } 264 265 if (this_frame) 266 { 267 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 268 269 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1) 270 { 271 /* If the FP now holds an offset from the CFA then this is a frame 272 which uses the frame pointer. */ 273 274 cache->cfa = get_frame_register_unsigned (this_frame, 275 TIC6X_FP_REGNUM); 276 } 277 else 278 { 279 /* FP doesn't hold an offset from the CFA. If SP still holds an 280 offset from the CFA then we might be in a function which omits 281 the frame pointer. */ 282 283 cache->cfa = cache->base + frame_base_offset_to_sp; 284 } 285 } 286 287 /* Adjust all the saved registers such that they contain addresses 288 instead of offsets. */ 289 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 290 if (cache->reg_saved[i] != -1) 291 cache->reg_saved[i] = cache->base + cache->reg_saved[i]; 292 293 return return_pc; 294 } 295 296 /* This is the implementation of gdbarch method skip_prologue. */ 297 298 static CORE_ADDR 299 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) 300 { 301 CORE_ADDR func_addr; 302 struct tic6x_unwind_cache cache; 303 304 /* See if we can determine the end of the prologue via the symbol table. 305 If so, then return either PC, or the PC after the prologue, whichever is 306 greater. */ 307 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) 308 { 309 CORE_ADDR post_prologue_pc 310 = skip_prologue_using_sal (gdbarch, func_addr); 311 if (post_prologue_pc != 0) 312 return std::max (start_pc, post_prologue_pc); 313 } 314 315 /* Can't determine prologue from the symbol table, need to examine 316 instructions. */ 317 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache, 318 NULL); 319 } 320 321 /* Implement the breakpoint_kind_from_pc gdbarch method. */ 322 323 static int 324 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 325 { 326 return 4; 327 } 328 329 /* Implement the sw_breakpoint_from_kind gdbarch method. */ 330 331 static const gdb_byte * 332 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 333 { 334 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 335 336 *size = kind; 337 338 if (tdep == NULL || tdep->breakpoint == NULL) 339 { 340 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch)) 341 return tic6x_bkpt_illegal_opcode_be; 342 else 343 return tic6x_bkpt_illegal_opcode_le; 344 } 345 else 346 return tdep->breakpoint; 347 } 348 349 /* This is the implementation of gdbarch method print_insn. */ 350 351 static int 352 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info) 353 { 354 return print_insn_tic6x (memaddr, info); 355 } 356 357 static void 358 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 359 struct dwarf2_frame_state_reg *reg, 360 struct frame_info *this_frame) 361 { 362 /* Mark the PC as the destination for the return address. */ 363 if (regnum == gdbarch_pc_regnum (gdbarch)) 364 reg->how = DWARF2_FRAME_REG_RA; 365 366 /* Mark the stack pointer as the call frame address. */ 367 else if (regnum == gdbarch_sp_regnum (gdbarch)) 368 reg->how = DWARF2_FRAME_REG_CFA; 369 370 /* The above was taken from the default init_reg in dwarf2-frame.c 371 while the below is c6x specific. */ 372 373 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as 374 callee-save. */ 375 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31)) 376 reg->how = DWARF2_FRAME_REG_SAME_VALUE; 377 else 378 /* All other registers are caller-save. */ 379 reg->how = DWARF2_FRAME_REG_UNDEFINED; 380 } 381 382 /* This is the implementation of gdbarch method unwind_pc. */ 383 384 static CORE_ADDR 385 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 386 { 387 gdb_byte buf[8]; 388 389 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf); 390 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); 391 } 392 393 /* This is the implementation of gdbarch method unwind_sp. */ 394 395 static CORE_ADDR 396 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) 397 { 398 return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM); 399 } 400 401 402 /* Frame base handling. */ 403 404 static struct tic6x_unwind_cache* 405 tic6x_frame_unwind_cache (struct frame_info *this_frame, 406 void **this_prologue_cache) 407 { 408 struct gdbarch *gdbarch = get_frame_arch (this_frame); 409 CORE_ADDR current_pc; 410 struct tic6x_unwind_cache *cache; 411 412 if (*this_prologue_cache) 413 return (struct tic6x_unwind_cache *) *this_prologue_cache; 414 415 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 416 (*this_prologue_cache) = cache; 417 418 cache->return_regnum = TIC6X_RA_REGNUM; 419 420 tic6x_setup_default (cache); 421 422 cache->pc = get_frame_func (this_frame); 423 current_pc = get_frame_pc (this_frame); 424 425 /* Prologue analysis does the rest... */ 426 if (cache->pc != 0) 427 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); 428 429 return cache; 430 } 431 432 static void 433 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache, 434 struct frame_id *this_id) 435 { 436 struct tic6x_unwind_cache *cache = 437 tic6x_frame_unwind_cache (this_frame, this_cache); 438 439 /* This marks the outermost frame. */ 440 if (cache->base == 0) 441 return; 442 443 (*this_id) = frame_id_build (cache->cfa, cache->pc); 444 } 445 446 static struct value * 447 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache, 448 int regnum) 449 { 450 struct tic6x_unwind_cache *cache = 451 tic6x_frame_unwind_cache (this_frame, this_cache); 452 453 gdb_assert (regnum >= 0); 454 455 /* The PC of the previous frame is stored in the RA register of 456 the current frame. Frob regnum so that we pull the value from 457 the correct place. */ 458 if (regnum == TIC6X_PC_REGNUM) 459 regnum = cache->return_regnum; 460 461 if (regnum == TIC6X_SP_REGNUM && cache->cfa) 462 return frame_unwind_got_constant (this_frame, regnum, cache->cfa); 463 464 /* If we've worked out where a register is stored then load it from 465 there. */ 466 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1) 467 return frame_unwind_got_memory (this_frame, regnum, 468 cache->reg_saved[regnum]); 469 470 return frame_unwind_got_register (this_frame, regnum, regnum); 471 } 472 473 static CORE_ADDR 474 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache) 475 { 476 struct tic6x_unwind_cache *info 477 = tic6x_frame_unwind_cache (this_frame, this_cache); 478 return info->base; 479 } 480 481 static const struct frame_unwind tic6x_frame_unwind = 482 { 483 NORMAL_FRAME, 484 default_frame_unwind_stop_reason, 485 tic6x_frame_this_id, 486 tic6x_frame_prev_register, 487 NULL, 488 default_frame_sniffer 489 }; 490 491 static const struct frame_base tic6x_frame_base = 492 { 493 &tic6x_frame_unwind, 494 tic6x_frame_base_address, 495 tic6x_frame_base_address, 496 tic6x_frame_base_address 497 }; 498 499 500 static struct tic6x_unwind_cache * 501 tic6x_make_stub_cache (struct frame_info *this_frame) 502 { 503 struct tic6x_unwind_cache *cache; 504 505 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 506 507 cache->return_regnum = TIC6X_RA_REGNUM; 508 509 tic6x_setup_default (cache); 510 511 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 512 513 return cache; 514 } 515 516 static void 517 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache, 518 struct frame_id *this_id) 519 { 520 struct tic6x_unwind_cache *cache; 521 522 if (*this_cache == NULL) 523 *this_cache = tic6x_make_stub_cache (this_frame); 524 cache = (struct tic6x_unwind_cache *) *this_cache; 525 526 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame)); 527 } 528 529 static int 530 tic6x_stub_unwind_sniffer (const struct frame_unwind *self, 531 struct frame_info *this_frame, 532 void **this_prologue_cache) 533 { 534 CORE_ADDR addr_in_block; 535 536 addr_in_block = get_frame_address_in_block (this_frame); 537 if (in_plt_section (addr_in_block)) 538 return 1; 539 540 return 0; 541 } 542 543 static const struct frame_unwind tic6x_stub_unwind = 544 { 545 NORMAL_FRAME, 546 default_frame_unwind_stop_reason, 547 tic6x_stub_this_id, 548 tic6x_frame_prev_register, 549 NULL, 550 tic6x_stub_unwind_sniffer 551 }; 552 553 /* Return the instruction on address PC. */ 554 555 static unsigned long 556 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc) 557 { 558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 559 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order); 560 } 561 562 /* Compute the condition of INST if it is a conditional instruction. Always 563 return 1 if INST is not a conditional instruction. */ 564 565 static int 566 tic6x_condition_true (struct regcache *regcache, unsigned long inst) 567 { 568 int register_number; 569 int register_value; 570 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 }; 571 572 register_number = register_numbers[(inst >> 29) & 7]; 573 if (register_number == -1) 574 return 1; 575 576 register_value = regcache_raw_get_signed (regcache, register_number); 577 if ((inst & 0x10000000) != 0) 578 return register_value == 0; 579 return register_value != 0; 580 } 581 582 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in 583 instruction. */ 584 585 static int 586 tic6x_register_number (int reg, int side, int crosspath) 587 { 588 int r = (reg & 15) | ((crosspath ^ side) << 4); 589 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */ 590 r += 37; 591 return r; 592 } 593 594 static int 595 tic6x_extract_signed_field (int value, int low_bit, int bits) 596 { 597 int mask = (1 << bits) - 1; 598 int r = (value >> low_bit) & mask; 599 if ((r & (1 << (bits - 1))) != 0) 600 r -= mask + 1; 601 return r; 602 } 603 604 /* Determine where to set a single step breakpoint. */ 605 606 static CORE_ADDR 607 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc) 608 { 609 struct gdbarch *gdbarch = get_regcache_arch (regcache); 610 unsigned long inst; 611 int register_number; 612 int last = 0; 613 614 do 615 { 616 inst = tic6x_fetch_instruction (gdbarch, pc); 617 618 last = !(inst & 1); 619 620 if (inst == TIC6X_INST_SWE) 621 { 622 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 623 624 if (tdep->syscall_next_pc != NULL) 625 return tdep->syscall_next_pc (get_current_frame ()); 626 } 627 628 if (tic6x_condition_true (regcache, inst)) 629 { 630 if ((inst & 0x0000007c) == 0x00000010) 631 { 632 /* B with displacement */ 633 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 634 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 635 break; 636 } 637 if ((inst & 0x0f83effc) == 0x00000360) 638 { 639 /* B with register */ 640 641 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 642 INST_S_BIT (inst), 643 INST_X_BIT (inst)); 644 pc = regcache_raw_get_unsigned (regcache, register_number); 645 break; 646 } 647 if ((inst & 0x00001ffc) == 0x00001020) 648 { 649 /* BDEC */ 650 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 651 INST_S_BIT (inst), 0); 652 if (regcache_raw_get_signed (regcache, register_number) >= 0) 653 { 654 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 655 pc += tic6x_extract_signed_field (inst, 7, 10) << 2; 656 } 657 break; 658 } 659 if ((inst & 0x00001ffc) == 0x00000120) 660 { 661 /* BNOP with displacement */ 662 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 663 pc += tic6x_extract_signed_field (inst, 16, 12) << 2; 664 break; 665 } 666 if ((inst & 0x0f830ffe) == 0x00800362) 667 { 668 /* BNOP with register */ 669 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 670 1, INST_X_BIT (inst)); 671 pc = regcache_raw_get_unsigned (regcache, register_number); 672 break; 673 } 674 if ((inst & 0x00001ffc) == 0x00000020) 675 { 676 /* BPOS */ 677 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 678 INST_S_BIT (inst), 0); 679 if (regcache_raw_get_signed (regcache, register_number) >= 0) 680 { 681 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 682 pc += tic6x_extract_signed_field (inst, 13, 10) << 2; 683 } 684 break; 685 } 686 if ((inst & 0xf000007c) == 0x10000010) 687 { 688 /* CALLP */ 689 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 690 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 691 break; 692 } 693 } 694 pc += TIC6X_OPCODE_SIZE; 695 } 696 while (!last); 697 return pc; 698 } 699 700 /* This is the implementation of gdbarch method software_single_step. */ 701 702 static VEC (CORE_ADDR) * 703 tic6x_software_single_step (struct regcache *regcache) 704 { 705 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache)); 706 VEC (CORE_ADDR) *next_pcs = NULL; 707 708 VEC_safe_push (CORE_ADDR, next_pcs, next_pc); 709 710 return next_pcs; 711 } 712 713 /* This is the implementation of gdbarch method frame_align. */ 714 715 static CORE_ADDR 716 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 717 { 718 return align_down (addr, 8); 719 } 720 721 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its 722 value into VALBUF. */ 723 724 static void 725 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache, 726 enum bfd_endian byte_order, gdb_byte *valbuf) 727 { 728 int len = TYPE_LENGTH (valtype); 729 730 /* pointer types are returned in register A4, 731 up to 32-bit types in A4 732 up to 64-bit types in A5:A4 */ 733 if (len <= 4) 734 { 735 /* In big-endian, 736 - one-byte structure or union occupies the LSB of single even register. 737 - for two-byte structure or union, the first byte occupies byte 1 of 738 register and the second byte occupies byte 0. 739 so, we read the contents in VAL from the LSBs of register. */ 740 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 741 regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len, 742 valbuf); 743 else 744 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf); 745 } 746 else if (len <= 8) 747 { 748 /* For a 5-8 byte structure or union in big-endian, the first byte 749 occupies byte 3 (the MSB) of the upper (odd) register and the 750 remaining bytes fill the decreasingly significant bytes. 5-7 751 byte structures or unions have padding in the LSBs of the 752 lower (even) register. */ 753 if (byte_order == BFD_ENDIAN_BIG) 754 { 755 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4); 756 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf); 757 } 758 else 759 { 760 regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf); 761 regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4); 762 } 763 } 764 } 765 766 /* Write into appropriate registers a function return value 767 of type TYPE, given in virtual format. */ 768 769 static void 770 tic6x_store_return_value (struct type *valtype, struct regcache *regcache, 771 enum bfd_endian byte_order, const gdb_byte *valbuf) 772 { 773 int len = TYPE_LENGTH (valtype); 774 775 /* return values of up to 8 bytes are returned in A5:A4 */ 776 777 if (len <= 4) 778 { 779 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 780 regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len, 781 valbuf); 782 else 783 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf); 784 } 785 else if (len <= 8) 786 { 787 if (byte_order == BFD_ENDIAN_BIG) 788 { 789 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4); 790 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf); 791 } 792 else 793 { 794 regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf); 795 regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4); 796 } 797 } 798 } 799 800 /* This is the implementation of gdbarch method return_value. */ 801 802 static enum return_value_convention 803 tic6x_return_value (struct gdbarch *gdbarch, struct value *function, 804 struct type *type, struct regcache *regcache, 805 gdb_byte *readbuf, const gdb_byte *writebuf) 806 { 807 /* In C++, when function returns an object, even its size is small 808 enough, it stii has to be passed via reference, pointed by register 809 A3. */ 810 if (current_language->la_language == language_cplus) 811 { 812 if (type != NULL) 813 { 814 type = check_typedef (type); 815 if (language_pass_by_reference (type)) 816 return RETURN_VALUE_STRUCT_CONVENTION; 817 } 818 } 819 820 if (TYPE_LENGTH (type) > 8) 821 return RETURN_VALUE_STRUCT_CONVENTION; 822 823 if (readbuf) 824 tic6x_extract_return_value (type, regcache, 825 gdbarch_byte_order (gdbarch), readbuf); 826 if (writebuf) 827 tic6x_store_return_value (type, regcache, 828 gdbarch_byte_order (gdbarch), writebuf); 829 830 return RETURN_VALUE_REGISTER_CONVENTION; 831 } 832 833 /* This is the implementation of gdbarch method dummy_id. */ 834 835 static struct frame_id 836 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) 837 { 838 return frame_id_build 839 (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM), 840 get_frame_pc (this_frame)); 841 } 842 843 /* Get the alignment requirement of TYPE. */ 844 845 static int 846 tic6x_arg_type_alignment (struct type *type) 847 { 848 int len = TYPE_LENGTH (check_typedef (type)); 849 enum type_code typecode = TYPE_CODE (check_typedef (type)); 850 851 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 852 { 853 /* The stack alignment of a structure (and union) passed by value is the 854 smallest power of two greater than or equal to its size. 855 This cannot exceed 8 bytes, which is the largest allowable size for 856 a structure passed by value. */ 857 858 if (len <= 2) 859 return len; 860 else if (len <= 4) 861 return 4; 862 else if (len <= 8) 863 return 8; 864 else 865 gdb_assert_not_reached ("unexpected length of data"); 866 } 867 else 868 { 869 if (len <= 4) 870 return 4; 871 else if (len == 8) 872 { 873 if (typecode == TYPE_CODE_COMPLEX) 874 return 4; 875 else 876 return 8; 877 } 878 else if (len == 16) 879 { 880 if (typecode == TYPE_CODE_COMPLEX) 881 return 8; 882 else 883 return 16; 884 } 885 else 886 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"), 887 len); 888 } 889 } 890 891 /* This is the implementation of gdbarch method push_dummy_call. */ 892 893 static CORE_ADDR 894 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 895 struct regcache *regcache, CORE_ADDR bp_addr, 896 int nargs, struct value **args, CORE_ADDR sp, 897 int struct_return, CORE_ADDR struct_addr) 898 { 899 int argreg = 0; 900 int argnum; 901 int stack_offset = 4; 902 int references_offset = 4; 903 CORE_ADDR func_addr = find_function_addr (function, NULL); 904 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 905 struct type *func_type = value_type (function); 906 /* The first arg passed on stack. Mostly the first 10 args are passed by 907 registers. */ 908 int first_arg_on_stack = 10; 909 910 /* Set the return address register to point to the entry point of 911 the program, where a breakpoint lies in wait. */ 912 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr); 913 914 /* The caller must pass an argument in A3 containing a destination address 915 for the returned value. The callee returns the object by copying it to 916 the address in A3. */ 917 if (struct_return) 918 regcache_cooked_write_unsigned (regcache, 3, struct_addr); 919 920 /* Determine the type of this function. */ 921 func_type = check_typedef (func_type); 922 if (TYPE_CODE (func_type) == TYPE_CODE_PTR) 923 func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); 924 925 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC 926 || TYPE_CODE (func_type) == TYPE_CODE_METHOD); 927 928 /* For a variadic C function, the last explicitly declared argument and all 929 remaining arguments are passed on the stack. */ 930 if (TYPE_VARARGS (func_type)) 931 first_arg_on_stack = TYPE_NFIELDS (func_type) - 1; 932 933 /* Now make space on the stack for the args. */ 934 for (argnum = 0; argnum < nargs; argnum++) 935 { 936 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4); 937 if (argnum >= 10 - argreg) 938 references_offset += len; 939 stack_offset += len; 940 } 941 sp -= stack_offset; 942 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1 943 Stack Alignment. */ 944 sp = align_down (sp, 8); 945 stack_offset = 4; 946 947 /* Now load as many as possible of the first arguments into 948 registers, and push the rest onto the stack. Loop through args 949 from first to last. */ 950 for (argnum = 0; argnum < nargs; argnum++) 951 { 952 const gdb_byte *val; 953 struct value *arg = args[argnum]; 954 struct type *arg_type = check_typedef (value_type (arg)); 955 int len = TYPE_LENGTH (arg_type); 956 enum type_code typecode = TYPE_CODE (arg_type); 957 958 val = value_contents (arg); 959 960 /* Copy the argument to general registers or the stack in 961 register-sized pieces. */ 962 if (argreg < first_arg_on_stack) 963 { 964 if (len <= 4) 965 { 966 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 967 { 968 /* In big-endian, 969 - one-byte structure or union occupies the LSB of single 970 even register. 971 - for two-byte structure or union, the first byte 972 occupies byte 1 of register and the second byte occupies 973 byte 0. 974 so, we write the contents in VAL to the lsp of 975 register. */ 976 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 977 regcache_cooked_write_part (regcache, arg_regs[argreg], 978 4 - len, len, val); 979 else 980 regcache_cooked_write (regcache, arg_regs[argreg], val); 981 } 982 else 983 { 984 /* The argument is being passed by value in a single 985 register. */ 986 CORE_ADDR regval = extract_unsigned_integer (val, len, 987 byte_order); 988 989 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 990 regval); 991 } 992 } 993 else 994 { 995 if (len <= 8) 996 { 997 if (typecode == TYPE_CODE_STRUCT 998 || typecode == TYPE_CODE_UNION) 999 { 1000 /* For a 5-8 byte structure or union in big-endian, the 1001 first byte occupies byte 3 (the MSB) of the upper (odd) 1002 register and the remaining bytes fill the decreasingly 1003 significant bytes. 5-7 byte structures or unions have 1004 padding in the LSBs of the lower (even) register. */ 1005 if (byte_order == BFD_ENDIAN_BIG) 1006 { 1007 regcache_cooked_write (regcache, 1008 arg_regs[argreg] + 1, val); 1009 regcache_cooked_write_part (regcache, 1010 arg_regs[argreg], 0, 1011 len - 4, val + 4); 1012 } 1013 else 1014 { 1015 regcache_cooked_write (regcache, arg_regs[argreg], 1016 val); 1017 regcache_cooked_write_part (regcache, 1018 arg_regs[argreg] + 1, 0, 1019 len - 4, val + 4); 1020 } 1021 } 1022 else 1023 { 1024 /* The argument is being passed by value in a pair of 1025 registers. */ 1026 ULONGEST regval = extract_unsigned_integer (val, len, 1027 byte_order); 1028 1029 regcache_cooked_write_unsigned (regcache, 1030 arg_regs[argreg], 1031 regval); 1032 regcache_cooked_write_unsigned (regcache, 1033 arg_regs[argreg] + 1, 1034 regval >> 32); 1035 } 1036 } 1037 else 1038 { 1039 /* The argument is being passed by reference in a single 1040 register. */ 1041 CORE_ADDR addr; 1042 1043 /* It is not necessary to adjust REFERENCES_OFFSET to 1044 8-byte aligned in some cases, in which 4-byte alignment 1045 is sufficient. For simplicity, we adjust 1046 REFERENCES_OFFSET to 8-byte aligned. */ 1047 references_offset = align_up (references_offset, 8); 1048 1049 addr = sp + references_offset; 1050 write_memory (addr, val, len); 1051 references_offset += align_up (len, 4); 1052 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 1053 addr); 1054 } 1055 } 1056 argreg++; 1057 } 1058 else 1059 { 1060 /* The argument is being passed on the stack. */ 1061 CORE_ADDR addr; 1062 1063 /* There are six different cases of alignment, and these rules can 1064 be found in tic6x_arg_type_alignment: 1065 1066 1) 4-byte aligned if size is less than or equal to 4 byte, such 1067 as short, int, struct, union etc. 1068 2) 8-byte aligned if size is less than or equal to 8-byte, such 1069 as double, long long, 1070 3) 4-byte aligned if it is of type _Complex float, even its size 1071 is 8-byte. 1072 4) 8-byte aligned if it is of type _Complex double or _Complex 1073 long double, even its size is 16-byte. Because, the address of 1074 variable is passed as reference. 1075 5) struct and union larger than 8-byte are passed by reference, so 1076 it is 4-byte aligned. 1077 6) struct and union of size between 4 byte and 8 byte varies. 1078 alignment of struct variable is the alignment of its first field, 1079 while alignment of union variable is the max of all its fields' 1080 alignment. */ 1081 1082 if (len <= 4) 1083 ; /* Default is 4-byte aligned. Nothing to be done. */ 1084 else if (len <= 8) 1085 stack_offset = align_up (stack_offset, 1086 tic6x_arg_type_alignment (arg_type)); 1087 else if (len == 16) 1088 { 1089 /* _Complex double or _Complex long double */ 1090 if (typecode == TYPE_CODE_COMPLEX) 1091 { 1092 /* The argument is being passed by reference on stack. */ 1093 CORE_ADDR addr; 1094 references_offset = align_up (references_offset, 8); 1095 1096 addr = sp + references_offset; 1097 /* Store variable on stack. */ 1098 write_memory (addr, val, len); 1099 1100 references_offset += align_up (len, 4); 1101 1102 /* Pass the address of variable on stack as reference. */ 1103 store_unsigned_integer ((gdb_byte *) val, 4, byte_order, 1104 addr); 1105 len = 4; 1106 1107 } 1108 else 1109 internal_error (__FILE__, __LINE__, 1110 _("unexpected type %d of arg %d"), 1111 typecode, argnum); 1112 } 1113 else 1114 internal_error (__FILE__, __LINE__, 1115 _("unexpected length %d of arg %d"), len, argnum); 1116 1117 addr = sp + stack_offset; 1118 write_memory (addr, val, len); 1119 stack_offset += align_up (len, 4); 1120 } 1121 } 1122 1123 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp); 1124 1125 /* Return adjusted stack pointer. */ 1126 return sp; 1127 } 1128 1129 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */ 1130 1131 static int 1132 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) 1133 { 1134 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 1135 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */ 1136 if ((inst & 0x0f83effc) == 0x360) 1137 { 1138 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 1139 INST_S_BIT (inst), 1140 INST_X_BIT (inst)); 1141 if (src2 == TIC6X_RA_REGNUM) 1142 return 1; 1143 } 1144 1145 return 0; 1146 } 1147 1148 /* This is the implementation of gdbarch method get_longjmp_target. */ 1149 1150 static int 1151 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) 1152 { 1153 struct gdbarch *gdbarch = get_frame_arch (frame); 1154 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1155 CORE_ADDR jb_addr; 1156 gdb_byte buf[4]; 1157 1158 /* JMP_BUF is passed by reference in A4. */ 1159 jb_addr = get_frame_register_unsigned (frame, 4); 1160 1161 /* JMP_BUF contains 13 elements of type int, and return address is stored 1162 in the last slot. */ 1163 if (target_read_memory (jb_addr + 12 * 4, buf, 4)) 1164 return 0; 1165 1166 *pc = extract_unsigned_integer (buf, 4, byte_order); 1167 1168 return 1; 1169 } 1170 1171 /* This is the implementation of gdbarch method 1172 return_in_first_hidden_param_p. */ 1173 1174 static int 1175 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch, 1176 struct type *type) 1177 { 1178 return 0; 1179 } 1180 1181 static struct gdbarch * 1182 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1183 { 1184 struct gdbarch *gdbarch; 1185 struct gdbarch_tdep *tdep; 1186 struct tdesc_arch_data *tdesc_data = NULL; 1187 const struct target_desc *tdesc = info.target_desc; 1188 int has_gp = 0; 1189 1190 /* Check any target description for validity. */ 1191 if (tdesc_has_registers (tdesc)) 1192 { 1193 const struct tdesc_feature *feature; 1194 int valid_p, i; 1195 1196 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core"); 1197 1198 if (feature == NULL) 1199 return NULL; 1200 1201 tdesc_data = tdesc_data_alloc (); 1202 1203 valid_p = 1; 1204 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */ 1205 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, 1206 tic6x_register_names[i]); 1207 1208 /* CSR */ 1209 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1210 tic6x_register_names[TIC6X_CSR_REGNUM]); 1211 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1212 tic6x_register_names[TIC6X_PC_REGNUM]); 1213 1214 if (!valid_p) 1215 { 1216 tdesc_data_cleanup (tdesc_data); 1217 return NULL; 1218 } 1219 1220 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp"); 1221 if (feature) 1222 { 1223 int j = 0; 1224 static const char *const gp[] = 1225 { 1226 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", 1227 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", 1228 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", 1229 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", 1230 }; 1231 1232 has_gp = 1; 1233 valid_p = 1; 1234 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */ 1235 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1236 gp[j]); 1237 1238 if (!valid_p) 1239 { 1240 tdesc_data_cleanup (tdesc_data); 1241 return NULL; 1242 } 1243 } 1244 1245 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp"); 1246 if (feature) 1247 { 1248 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR"); 1249 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC"); 1250 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC"); 1251 1252 if (!valid_p) 1253 { 1254 tdesc_data_cleanup (tdesc_data); 1255 return NULL; 1256 } 1257 } 1258 1259 } 1260 1261 /* Find a candidate among extant architectures. */ 1262 for (arches = gdbarch_list_lookup_by_info (arches, &info); 1263 arches != NULL; 1264 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 1265 { 1266 tdep = gdbarch_tdep (arches->gdbarch); 1267 1268 if (has_gp != tdep->has_gp) 1269 continue; 1270 1271 if (tdep && tdep->breakpoint) 1272 return arches->gdbarch; 1273 } 1274 1275 tdep = XCNEW (struct gdbarch_tdep); 1276 1277 tdep->has_gp = has_gp; 1278 gdbarch = gdbarch_alloc (&info, tdep); 1279 1280 /* Data type sizes. */ 1281 set_gdbarch_ptr_bit (gdbarch, 32); 1282 set_gdbarch_addr_bit (gdbarch, 32); 1283 set_gdbarch_short_bit (gdbarch, 16); 1284 set_gdbarch_int_bit (gdbarch, 32); 1285 set_gdbarch_long_bit (gdbarch, 32); 1286 set_gdbarch_long_long_bit (gdbarch, 64); 1287 set_gdbarch_float_bit (gdbarch, 32); 1288 set_gdbarch_double_bit (gdbarch, 64); 1289 1290 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1291 set_gdbarch_double_format (gdbarch, floatformats_ieee_double); 1292 1293 /* The register set. */ 1294 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS); 1295 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM); 1296 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM); 1297 1298 set_gdbarch_register_name (gdbarch, tic6x_register_name); 1299 set_gdbarch_register_type (gdbarch, tic6x_register_type); 1300 1301 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1302 1303 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue); 1304 set_gdbarch_breakpoint_kind_from_pc (gdbarch, 1305 tic6x_breakpoint_kind_from_pc); 1306 set_gdbarch_sw_breakpoint_from_kind (gdbarch, 1307 tic6x_sw_breakpoint_from_kind); 1308 1309 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc); 1310 set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp); 1311 1312 /* Unwinding. */ 1313 dwarf2_append_unwinders (gdbarch); 1314 1315 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind); 1316 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind); 1317 frame_base_set_default (gdbarch, &tic6x_frame_base); 1318 1319 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg); 1320 1321 /* Single stepping. */ 1322 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step); 1323 1324 set_gdbarch_print_insn (gdbarch, tic6x_print_insn); 1325 1326 /* Call dummy code. */ 1327 set_gdbarch_frame_align (gdbarch, tic6x_frame_align); 1328 1329 set_gdbarch_return_value (gdbarch, tic6x_return_value); 1330 1331 set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id); 1332 1333 /* Enable inferior call support. */ 1334 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call); 1335 1336 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target); 1337 1338 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p); 1339 1340 set_gdbarch_return_in_first_hidden_param_p (gdbarch, 1341 tic6x_return_in_first_hidden_param_p); 1342 1343 /* Hook in ABI-specific overrides, if they have been registered. */ 1344 gdbarch_init_osabi (info, gdbarch); 1345 1346 if (tdesc_data) 1347 tdesc_use_registers (gdbarch, tdesc, tdesc_data); 1348 1349 return gdbarch; 1350 } 1351 1352 /* -Wmissing-prototypes */ 1353 extern initialize_file_ftype _initialize_tic6x_tdep; 1354 1355 void 1356 _initialize_tic6x_tdep (void) 1357 { 1358 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init); 1359 1360 initialize_tdesc_tic6x_c64xp (); 1361 initialize_tdesc_tic6x_c64x (); 1362 initialize_tdesc_tic6x_c62x (); 1363 } 1364