xref: /netbsd-src/external/gpl3/gdb/dist/gdb/tic6x-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target dependent code for GDB on TI C6x systems.
2 
3    Copyright (C) 2010-2017 Free Software Foundation, Inc.
4    Contributed by Andrew Jenner <andrew@codesourcery.com>
5    Contributed by Yao Qi <yao@codesourcery.com>
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "floatformat.h"
40 #include "glibc-tdep.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "tramp-frame.h"
44 #include "linux-tdep.h"
45 #include "solib.h"
46 #include "objfiles.h"
47 #include "osabi.h"
48 #include "tic6x-tdep.h"
49 #include "language.h"
50 #include "target-descriptions.h"
51 #include <algorithm>
52 
53 #include "features/tic6x-c64xp.c"
54 #include "features/tic6x-c64x.c"
55 #include "features/tic6x-c62x.c"
56 
57 #define TIC6X_OPCODE_SIZE 4
58 #define TIC6X_FETCH_PACKET_SIZE 32
59 
60 #define INST_S_BIT(INST) ((INST >> 1) & 1)
61 #define INST_X_BIT(INST) ((INST >> 12) & 1)
62 
63 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
64 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
65 
66 struct tic6x_unwind_cache
67 {
68   /* The frame's base, optionally used by the high-level debug info.  */
69   CORE_ADDR base;
70 
71   /* The previous frame's inner most stack address.  Used as this
72      frame ID's stack_addr.  */
73   CORE_ADDR cfa;
74 
75   /* The address of the first instruction in this function */
76   CORE_ADDR pc;
77 
78   /* Which register holds the return address for the frame.  */
79   int return_regnum;
80 
81   /* The offset of register saved on stack.  If register is not saved, the
82      corresponding element is -1.  */
83   CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
84 };
85 
86 
87 /* Name of TI C6x core registers.  */
88 static const char *const tic6x_register_names[] =
89 {
90   "A0",  "A1",  "A2",  "A3",  /*  0  1  2  3 */
91   "A4",  "A5",  "A6",  "A7",  /*  4  5  6  7 */
92   "A8",  "A9",  "A10", "A11", /*  8  9 10 11 */
93   "A12", "A13", "A14", "A15", /* 12 13 14 15 */
94   "B0",  "B1",  "B2",  "B3",  /* 16 17 18 19 */
95   "B4",  "B5",  "B6",  "B7",  /* 20 21 22 23 */
96   "B8",  "B9",  "B10", "B11", /* 24 25 26 27 */
97   "B12", "B13", "B14", "B15", /* 28 29 30 31 */
98   "CSR", "PC",                /* 32 33       */
99 };
100 
101 /* This array maps the arguments to the register number which passes argument
102    in function call according to C6000 ELF ABI.  */
103 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
104 
105 /* This is the implementation of gdbarch method register_name.  */
106 
107 static const char *
108 tic6x_register_name (struct gdbarch *gdbarch, int regno)
109 {
110   if (regno < 0)
111     return NULL;
112 
113   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
114     return tdesc_register_name (gdbarch, regno);
115   else if (regno >= ARRAY_SIZE (tic6x_register_names))
116     return "";
117   else
118     return tic6x_register_names[regno];
119 }
120 
121 /* This is the implementation of gdbarch method register_type.  */
122 
123 static struct type *
124 tic6x_register_type (struct gdbarch *gdbarch, int regno)
125 {
126 
127   if (regno == TIC6X_PC_REGNUM)
128     return builtin_type (gdbarch)->builtin_func_ptr;
129   else
130     return builtin_type (gdbarch)->builtin_uint32;
131 }
132 
133 static void
134 tic6x_setup_default (struct tic6x_unwind_cache *cache)
135 {
136   int i;
137 
138   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
139     cache->reg_saved[i] = -1;
140 }
141 
142 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
143 static int tic6x_register_number (int reg, int side, int crosspath);
144 
145 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
146    Bail out early if CURRENT_PC is reached.  Returns the address of the first
147    instruction after the prologue.  */
148 
149 static CORE_ADDR
150 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
151 			const CORE_ADDR current_pc,
152 			struct tic6x_unwind_cache *cache,
153 			struct frame_info *this_frame)
154 {
155   unsigned long inst;
156   unsigned int src_reg, base_reg, dst_reg;
157   int i;
158   CORE_ADDR pc = start_pc;
159   CORE_ADDR return_pc = start_pc;
160   int frame_base_offset_to_sp = 0;
161   /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'.  */
162   int non_stw_insn_counter = 0;
163 
164   if (start_pc >= current_pc)
165     return_pc = current_pc;
166 
167   cache->base = 0;
168 
169   /* The landmarks in prologue is one or two SUB instructions to SP.
170      Instructions on setting up dsbt are in the last part of prologue, if
171      needed.  In maxim, prologue can be divided to three parts by two
172      `sub sp, xx, sp' insns.  */
173 
174   /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp',  in which, the
175      2nd one is optional.  */
176   while (pc < current_pc)
177     {
178       unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
179 
180       if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
181 	  || (inst & 0x0ffc) == 0x9c0)
182 	{
183 	  /* SUBAW/SUBAH/SUB, and src1 is ucst 5.  */
184 	  unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
185 						     INST_S_BIT (inst), 0);
186 	  unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
187 						    INST_S_BIT (inst), 0);
188 
189 	  if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
190 	    {
191 	      /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
192 		 offset.  The constant offset is decoded in bit 13-17 in all
193 		 these three kinds of instructions.  */
194 	      unsigned int ucst5 = (inst >> 13) & 0x1f;
195 
196 	      if ((inst & 0x1ffc) == 0x1dc0)	/* SUBAW */
197 		frame_base_offset_to_sp += ucst5 << 2;
198 	      else if ((inst & 0x1ffc) == 0x1bc0)	/* SUBAH */
199 		frame_base_offset_to_sp += ucst5 << 1;
200 	      else if ((inst & 0x0ffc) == 0x9c0)	/* SUB */
201 		frame_base_offset_to_sp += ucst5;
202 	      else
203 		gdb_assert_not_reached ("unexpected instruction");
204 
205 	      return_pc = pc + 4;
206 	    }
207 	}
208       else if ((inst & 0x174) == 0x74)	/* stw SRC, *+b15(uconst) */
209 	{
210 	  /* The y bit determines which file base is read from.  */
211 	  base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
212 					    (inst >> 7) & 1, 0);
213 
214 	  if (base_reg == TIC6X_SP_REGNUM)
215 	    {
216 	      src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
217 					       INST_S_BIT (inst), 0);
218 
219 	      cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
220 
221 	      return_pc = pc + 4;
222 	    }
223 	  non_stw_insn_counter = 0;
224 	}
225       else
226 	{
227 	  non_stw_insn_counter++;
228 	  /* Following instruction sequence may be emitted in prologue:
229 
230 	     <+0>: subah .D2 b15,28,b15
231 	     <+4>: or .L2X 0,a4,b0
232 	     <+8>: || stw .D2T2 b14,*+b15(56)
233 	     <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
234 	     <+16>:|| stw .D2T1 a10,*+b15(48)
235 	     <+20>:stw .D2T2 b3,*+b15(52)
236 	     <+24>:stw .D2T1 a4,*+b15(40)
237 
238 	     we should look forward for next instruction instead of breaking loop
239 	     here.  So far, we allow almost two sequential non-stw instructions
240 	     in prologue.  */
241 	  if (non_stw_insn_counter >= 2)
242 	    break;
243 	}
244 
245 
246       pc += 4;
247     }
248   /* Step 2: Skip insn on setting up dsbt if it is.  Usually, it looks like,
249      ldw .D2T2 *+b14(0),b14 */
250   inst = tic6x_fetch_instruction (gdbarch, pc);
251   /* The s bit determines which file dst will be loaded into, same effect as
252      other places.  */
253   dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
254   /* The y bit (bit 7), instead of s bit, determines which file base be
255      used.  */
256   base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
257 
258   if ((inst & 0x164) == 0x64	/* ldw */
259       && dst_reg == TIC6X_DP_REGNUM	/* dst is B14 */
260       && base_reg == TIC6X_DP_REGNUM)	/* baseR is B14 */
261     {
262       return_pc = pc + 4;
263     }
264 
265   if (this_frame)
266     {
267       cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
268 
269       if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
270 	{
271 	  /* If the FP now holds an offset from the CFA then this is a frame
272 	     which uses the frame pointer.  */
273 
274 	  cache->cfa = get_frame_register_unsigned (this_frame,
275 						    TIC6X_FP_REGNUM);
276 	}
277       else
278 	{
279 	  /* FP doesn't hold an offset from the CFA.  If SP still holds an
280 	     offset from the CFA then we might be in a function which omits
281 	     the frame pointer.  */
282 
283 	  cache->cfa = cache->base + frame_base_offset_to_sp;
284 	}
285     }
286 
287   /* Adjust all the saved registers such that they contain addresses
288      instead of offsets.  */
289   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
290     if (cache->reg_saved[i] != -1)
291       cache->reg_saved[i] = cache->base + cache->reg_saved[i];
292 
293   return return_pc;
294 }
295 
296 /* This is the implementation of gdbarch method skip_prologue.  */
297 
298 static CORE_ADDR
299 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
300 {
301   CORE_ADDR func_addr;
302   struct tic6x_unwind_cache cache;
303 
304   /* See if we can determine the end of the prologue via the symbol table.
305      If so, then return either PC, or the PC after the prologue, whichever is
306      greater.  */
307   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
308     {
309       CORE_ADDR post_prologue_pc
310 	= skip_prologue_using_sal (gdbarch, func_addr);
311       if (post_prologue_pc != 0)
312 	return std::max (start_pc, post_prologue_pc);
313     }
314 
315   /* Can't determine prologue from the symbol table, need to examine
316      instructions.  */
317   return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
318 				 NULL);
319 }
320 
321 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
322 
323 static int
324 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
325 {
326   return 4;
327 }
328 
329 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
330 
331 static const gdb_byte *
332 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
333 {
334   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
335 
336   *size = kind;
337 
338   if (tdep == NULL || tdep->breakpoint == NULL)
339     {
340       if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
341 	return tic6x_bkpt_illegal_opcode_be;
342       else
343 	return tic6x_bkpt_illegal_opcode_le;
344     }
345   else
346     return tdep->breakpoint;
347 }
348 
349 /* This is the implementation of gdbarch method print_insn.  */
350 
351 static int
352 tic6x_print_insn (bfd_vma memaddr, disassemble_info *info)
353 {
354   return print_insn_tic6x (memaddr, info);
355 }
356 
357 static void
358 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
359 			     struct dwarf2_frame_state_reg *reg,
360 			     struct frame_info *this_frame)
361 {
362   /* Mark the PC as the destination for the return address.  */
363   if (regnum == gdbarch_pc_regnum (gdbarch))
364     reg->how = DWARF2_FRAME_REG_RA;
365 
366   /* Mark the stack pointer as the call frame address.  */
367   else if (regnum == gdbarch_sp_regnum (gdbarch))
368     reg->how = DWARF2_FRAME_REG_CFA;
369 
370   /* The above was taken from the default init_reg in dwarf2-frame.c
371      while the below is c6x specific.  */
372 
373   /* Callee save registers.  The ABI designates A10-A15 and B10-B15 as
374      callee-save.  */
375   else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
376     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
377   else
378     /* All other registers are caller-save.  */
379     reg->how = DWARF2_FRAME_REG_UNDEFINED;
380 }
381 
382 /* This is the implementation of gdbarch method unwind_pc.  */
383 
384 static CORE_ADDR
385 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
386 {
387   gdb_byte buf[8];
388 
389   frame_unwind_register (next_frame,  TIC6X_PC_REGNUM, buf);
390   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
391 }
392 
393 /* This is the implementation of gdbarch method unwind_sp.  */
394 
395 static CORE_ADDR
396 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
397 {
398   return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
399 }
400 
401 
402 /* Frame base handling.  */
403 
404 static struct tic6x_unwind_cache*
405 tic6x_frame_unwind_cache (struct frame_info *this_frame,
406 			  void **this_prologue_cache)
407 {
408   struct gdbarch *gdbarch = get_frame_arch (this_frame);
409   CORE_ADDR current_pc;
410   struct tic6x_unwind_cache *cache;
411 
412   if (*this_prologue_cache)
413     return (struct tic6x_unwind_cache *) *this_prologue_cache;
414 
415   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
416   (*this_prologue_cache) = cache;
417 
418   cache->return_regnum = TIC6X_RA_REGNUM;
419 
420   tic6x_setup_default (cache);
421 
422   cache->pc = get_frame_func (this_frame);
423   current_pc = get_frame_pc (this_frame);
424 
425   /* Prologue analysis does the rest...  */
426   if (cache->pc != 0)
427     tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
428 
429   return cache;
430 }
431 
432 static void
433 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
434 		     struct frame_id *this_id)
435 {
436   struct tic6x_unwind_cache *cache =
437     tic6x_frame_unwind_cache (this_frame, this_cache);
438 
439   /* This marks the outermost frame.  */
440   if (cache->base == 0)
441     return;
442 
443   (*this_id) = frame_id_build (cache->cfa, cache->pc);
444 }
445 
446 static struct value *
447 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
448 			   int regnum)
449 {
450   struct tic6x_unwind_cache *cache =
451     tic6x_frame_unwind_cache (this_frame, this_cache);
452 
453   gdb_assert (regnum >= 0);
454 
455   /* The PC of the previous frame is stored in the RA register of
456      the current frame.  Frob regnum so that we pull the value from
457      the correct place.  */
458   if (regnum == TIC6X_PC_REGNUM)
459     regnum = cache->return_regnum;
460 
461   if (regnum == TIC6X_SP_REGNUM && cache->cfa)
462     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
463 
464   /* If we've worked out where a register is stored then load it from
465      there.  */
466   if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
467     return frame_unwind_got_memory (this_frame, regnum,
468 				    cache->reg_saved[regnum]);
469 
470   return frame_unwind_got_register (this_frame, regnum, regnum);
471 }
472 
473 static CORE_ADDR
474 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
475 {
476   struct tic6x_unwind_cache *info
477     = tic6x_frame_unwind_cache (this_frame, this_cache);
478   return info->base;
479 }
480 
481 static const struct frame_unwind tic6x_frame_unwind =
482 {
483   NORMAL_FRAME,
484   default_frame_unwind_stop_reason,
485   tic6x_frame_this_id,
486   tic6x_frame_prev_register,
487   NULL,
488   default_frame_sniffer
489 };
490 
491 static const struct frame_base tic6x_frame_base =
492 {
493   &tic6x_frame_unwind,
494   tic6x_frame_base_address,
495   tic6x_frame_base_address,
496   tic6x_frame_base_address
497 };
498 
499 
500 static struct tic6x_unwind_cache *
501 tic6x_make_stub_cache (struct frame_info *this_frame)
502 {
503   struct tic6x_unwind_cache *cache;
504 
505   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
506 
507   cache->return_regnum = TIC6X_RA_REGNUM;
508 
509   tic6x_setup_default (cache);
510 
511   cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
512 
513   return cache;
514 }
515 
516 static void
517 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
518 		    struct frame_id *this_id)
519 {
520   struct tic6x_unwind_cache *cache;
521 
522   if (*this_cache == NULL)
523     *this_cache = tic6x_make_stub_cache (this_frame);
524   cache = (struct tic6x_unwind_cache *) *this_cache;
525 
526   *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
527 }
528 
529 static int
530 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
531 			   struct frame_info *this_frame,
532 			   void **this_prologue_cache)
533 {
534   CORE_ADDR addr_in_block;
535 
536   addr_in_block = get_frame_address_in_block (this_frame);
537   if (in_plt_section (addr_in_block))
538     return 1;
539 
540   return 0;
541 }
542 
543 static const struct frame_unwind tic6x_stub_unwind =
544 {
545   NORMAL_FRAME,
546   default_frame_unwind_stop_reason,
547   tic6x_stub_this_id,
548   tic6x_frame_prev_register,
549   NULL,
550   tic6x_stub_unwind_sniffer
551 };
552 
553 /* Return the instruction on address PC.  */
554 
555 static unsigned long
556 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
557 {
558   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
559   return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
560 }
561 
562 /* Compute the condition of INST if it is a conditional instruction.  Always
563    return 1 if INST is not a conditional instruction.  */
564 
565 static int
566 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
567 {
568   int register_number;
569   int register_value;
570   static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
571 
572   register_number = register_numbers[(inst >> 29) & 7];
573   if (register_number == -1)
574     return 1;
575 
576   register_value = regcache_raw_get_signed (regcache, register_number);
577   if ((inst & 0x10000000) != 0)
578     return register_value == 0;
579   return register_value != 0;
580 }
581 
582 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
583    instruction.  */
584 
585 static int
586 tic6x_register_number (int reg, int side, int crosspath)
587 {
588   int r = (reg & 15) | ((crosspath ^ side) << 4);
589   if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
590     r += 37;
591   return r;
592 }
593 
594 static int
595 tic6x_extract_signed_field (int value, int low_bit, int bits)
596 {
597   int mask = (1 << bits) - 1;
598   int r = (value >> low_bit) & mask;
599   if ((r & (1 << (bits - 1))) != 0)
600     r -= mask + 1;
601   return r;
602 }
603 
604 /* Determine where to set a single step breakpoint.  */
605 
606 static CORE_ADDR
607 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
608 {
609   struct gdbarch *gdbarch = get_regcache_arch (regcache);
610   unsigned long inst;
611   int register_number;
612   int last = 0;
613 
614   do
615     {
616       inst = tic6x_fetch_instruction (gdbarch, pc);
617 
618       last = !(inst & 1);
619 
620       if (inst == TIC6X_INST_SWE)
621 	{
622 	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
623 
624 	  if (tdep->syscall_next_pc != NULL)
625 	    return tdep->syscall_next_pc (get_current_frame ());
626 	}
627 
628       if (tic6x_condition_true (regcache, inst))
629 	{
630 	  if ((inst & 0x0000007c) == 0x00000010)
631 	    {
632 	      /* B with displacement */
633 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
634 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
635 	      break;
636 	    }
637 	  if ((inst & 0x0f83effc) == 0x00000360)
638 	    {
639 	      /* B with register */
640 
641 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
642 						       INST_S_BIT (inst),
643 						       INST_X_BIT (inst));
644 	      pc = regcache_raw_get_unsigned (regcache, register_number);
645 	      break;
646 	    }
647 	  if ((inst & 0x00001ffc) == 0x00001020)
648 	    {
649 	      /* BDEC */
650 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
651 						       INST_S_BIT (inst), 0);
652 	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
653 		{
654 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
655 		  pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
656 		}
657 	      break;
658 	    }
659 	  if ((inst & 0x00001ffc) == 0x00000120)
660 	    {
661 	      /* BNOP with displacement */
662 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
663 	      pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
664 	      break;
665 	    }
666 	  if ((inst & 0x0f830ffe) == 0x00800362)
667 	    {
668 	      /* BNOP with register */
669 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
670 						       1, INST_X_BIT (inst));
671 	      pc = regcache_raw_get_unsigned (regcache, register_number);
672 	      break;
673 	    }
674 	  if ((inst & 0x00001ffc) == 0x00000020)
675 	    {
676 	      /* BPOS */
677 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
678 						       INST_S_BIT (inst), 0);
679 	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
680 		{
681 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
682 		  pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
683 		}
684 	      break;
685 	    }
686 	  if ((inst & 0xf000007c) == 0x10000010)
687 	    {
688 	      /* CALLP */
689 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
690 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
691 	      break;
692 	    }
693 	}
694       pc += TIC6X_OPCODE_SIZE;
695     }
696   while (!last);
697   return pc;
698 }
699 
700 /* This is the implementation of gdbarch method software_single_step.  */
701 
702 static VEC (CORE_ADDR) *
703 tic6x_software_single_step (struct regcache *regcache)
704 {
705   CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
706   VEC (CORE_ADDR) *next_pcs = NULL;
707 
708   VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
709 
710   return next_pcs;
711 }
712 
713 /* This is the implementation of gdbarch method frame_align.  */
714 
715 static CORE_ADDR
716 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
717 {
718   return align_down (addr, 8);
719 }
720 
721 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
722    value into VALBUF.  */
723 
724 static void
725 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
726 			    enum bfd_endian byte_order, gdb_byte *valbuf)
727 {
728   int len = TYPE_LENGTH (valtype);
729 
730   /* pointer types are returned in register A4,
731      up to 32-bit types in A4
732      up to 64-bit types in A5:A4  */
733   if (len <= 4)
734     {
735       /* In big-endian,
736 	 - one-byte structure or union occupies the LSB of single even register.
737 	 - for two-byte structure or union, the first byte occupies byte 1 of
738 	 register and the second byte occupies byte 0.
739 	 so, we read the contents in VAL from the LSBs of register.  */
740       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
741 	regcache_cooked_read_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
742 				   valbuf);
743       else
744 	regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
745     }
746   else if (len <= 8)
747     {
748       /* For a 5-8 byte structure or union in big-endian, the first byte
749 	 occupies byte 3 (the MSB) of the upper (odd) register and the
750 	 remaining bytes fill the decreasingly significant bytes.  5-7
751 	 byte structures or unions have padding in the LSBs of the
752 	 lower (even) register.  */
753       if (byte_order == BFD_ENDIAN_BIG)
754 	{
755 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf + 4);
756 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf);
757 	}
758       else
759 	{
760 	  regcache_cooked_read (regcache, TIC6X_A4_REGNUM, valbuf);
761 	  regcache_cooked_read (regcache, TIC6X_A5_REGNUM, valbuf + 4);
762 	}
763     }
764 }
765 
766 /* Write into appropriate registers a function return value
767    of type TYPE, given in virtual format.  */
768 
769 static void
770 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
771 			  enum bfd_endian byte_order, const gdb_byte *valbuf)
772 {
773   int len = TYPE_LENGTH (valtype);
774 
775   /* return values of up to 8 bytes are returned in A5:A4 */
776 
777   if (len <= 4)
778     {
779       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
780 	regcache_cooked_write_part (regcache, TIC6X_A4_REGNUM, 4 - len, len,
781 				    valbuf);
782       else
783 	regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
784     }
785   else if (len <= 8)
786     {
787       if (byte_order == BFD_ENDIAN_BIG)
788 	{
789 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf + 4);
790 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf);
791 	}
792       else
793 	{
794 	  regcache_cooked_write (regcache, TIC6X_A4_REGNUM, valbuf);
795 	  regcache_cooked_write (regcache, TIC6X_A5_REGNUM, valbuf + 4);
796 	}
797     }
798 }
799 
800 /* This is the implementation of gdbarch method return_value.  */
801 
802 static enum return_value_convention
803 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
804 		    struct type *type, struct regcache *regcache,
805 		    gdb_byte *readbuf, const gdb_byte *writebuf)
806 {
807   /* In C++, when function returns an object, even its size is small
808      enough, it stii has to be passed via reference, pointed by register
809      A3.  */
810   if (current_language->la_language == language_cplus)
811     {
812       if (type != NULL)
813 	{
814 	  type = check_typedef (type);
815 	  if (language_pass_by_reference (type))
816 	    return RETURN_VALUE_STRUCT_CONVENTION;
817 	}
818     }
819 
820   if (TYPE_LENGTH (type) > 8)
821     return RETURN_VALUE_STRUCT_CONVENTION;
822 
823   if (readbuf)
824     tic6x_extract_return_value (type, regcache,
825 				gdbarch_byte_order (gdbarch), readbuf);
826   if (writebuf)
827     tic6x_store_return_value (type, regcache,
828 			      gdbarch_byte_order (gdbarch), writebuf);
829 
830   return RETURN_VALUE_REGISTER_CONVENTION;
831 }
832 
833 /* This is the implementation of gdbarch method dummy_id.  */
834 
835 static struct frame_id
836 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
837 {
838   return frame_id_build
839     (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
840      get_frame_pc (this_frame));
841 }
842 
843 /* Get the alignment requirement of TYPE.  */
844 
845 static int
846 tic6x_arg_type_alignment (struct type *type)
847 {
848   int len = TYPE_LENGTH (check_typedef (type));
849   enum type_code typecode = TYPE_CODE (check_typedef (type));
850 
851   if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
852     {
853       /* The stack alignment of a structure (and union) passed by value is the
854 	 smallest power of two greater than or equal to its size.
855 	 This cannot exceed 8 bytes, which is the largest allowable size for
856 	 a structure passed by value.  */
857 
858       if (len <= 2)
859 	return len;
860       else if (len <= 4)
861 	return 4;
862       else if (len <= 8)
863 	return 8;
864       else
865 	gdb_assert_not_reached ("unexpected length of data");
866     }
867   else
868     {
869       if (len <= 4)
870 	return 4;
871       else if (len == 8)
872 	{
873 	  if (typecode == TYPE_CODE_COMPLEX)
874 	    return 4;
875 	  else
876 	    return 8;
877 	}
878       else if (len == 16)
879 	{
880 	  if (typecode == TYPE_CODE_COMPLEX)
881 	    return 8;
882 	  else
883 	    return 16;
884 	}
885       else
886 	internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
887 			len);
888     }
889 }
890 
891 /* This is the implementation of gdbarch method push_dummy_call.  */
892 
893 static CORE_ADDR
894 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
895 		       struct regcache *regcache, CORE_ADDR bp_addr,
896 		       int nargs, struct value **args, CORE_ADDR sp,
897 		       int struct_return, CORE_ADDR struct_addr)
898 {
899   int argreg = 0;
900   int argnum;
901   int stack_offset = 4;
902   int references_offset = 4;
903   CORE_ADDR func_addr = find_function_addr (function, NULL);
904   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
905   struct type *func_type = value_type (function);
906   /* The first arg passed on stack.  Mostly the first 10 args are passed by
907      registers.  */
908   int first_arg_on_stack = 10;
909 
910   /* Set the return address register to point to the entry point of
911      the program, where a breakpoint lies in wait.  */
912   regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
913 
914   /* The caller must pass an argument in A3 containing a destination address
915      for the returned value.  The callee returns the object by copying it to
916      the address in A3.  */
917   if (struct_return)
918     regcache_cooked_write_unsigned (regcache, 3, struct_addr);
919 
920   /* Determine the type of this function.  */
921   func_type = check_typedef (func_type);
922   if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
923     func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
924 
925   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
926 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
927 
928   /* For a variadic C function, the last explicitly declared argument and all
929      remaining arguments are passed on the stack.  */
930   if (TYPE_VARARGS (func_type))
931     first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
932 
933   /* Now make space on the stack for the args.  */
934   for (argnum = 0; argnum < nargs; argnum++)
935     {
936       int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
937       if (argnum >= 10 - argreg)
938 	references_offset += len;
939       stack_offset += len;
940     }
941   sp -= stack_offset;
942   /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
943      Stack Alignment.  */
944   sp = align_down (sp, 8);
945   stack_offset = 4;
946 
947   /* Now load as many as possible of the first arguments into
948      registers, and push the rest onto the stack.  Loop through args
949      from first to last.  */
950   for (argnum = 0; argnum < nargs; argnum++)
951     {
952       const gdb_byte *val;
953       struct value *arg = args[argnum];
954       struct type *arg_type = check_typedef (value_type (arg));
955       int len = TYPE_LENGTH (arg_type);
956       enum type_code typecode = TYPE_CODE (arg_type);
957 
958       val = value_contents (arg);
959 
960       /* Copy the argument to general registers or the stack in
961          register-sized pieces.  */
962       if (argreg < first_arg_on_stack)
963 	{
964 	  if (len <= 4)
965 	    {
966 	      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
967 		{
968 		  /* In big-endian,
969 		     - one-byte structure or union occupies the LSB of single
970 		     even register.
971 		     - for two-byte structure or union, the first byte
972 		     occupies byte 1 of register and the second byte occupies
973 		     byte 0.
974 		     so, we write the contents in VAL to the lsp of
975 		     register.  */
976 		  if (len < 3 && byte_order == BFD_ENDIAN_BIG)
977 		    regcache_cooked_write_part (regcache, arg_regs[argreg],
978 						4 - len, len, val);
979 		  else
980 		    regcache_cooked_write (regcache, arg_regs[argreg], val);
981 		}
982 	      else
983 		{
984 		  /* The argument is being passed by value in a single
985 		     register.  */
986 		  CORE_ADDR regval = extract_unsigned_integer (val, len,
987 							       byte_order);
988 
989 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
990 						  regval);
991 		}
992 	    }
993 	  else
994 	    {
995 	      if (len <= 8)
996 		{
997 		  if (typecode == TYPE_CODE_STRUCT
998 		      || typecode == TYPE_CODE_UNION)
999 		    {
1000 		      /* For a 5-8 byte structure or union in big-endian, the
1001 		         first byte occupies byte 3 (the MSB) of the upper (odd)
1002 		         register and the remaining bytes fill the decreasingly
1003 		         significant bytes.  5-7 byte structures or unions have
1004 		         padding in the LSBs of the lower (even) register.  */
1005 		      if (byte_order == BFD_ENDIAN_BIG)
1006 			{
1007 			  regcache_cooked_write (regcache,
1008 						 arg_regs[argreg] + 1, val);
1009 			  regcache_cooked_write_part (regcache,
1010 						      arg_regs[argreg], 0,
1011 						      len - 4, val + 4);
1012 			}
1013 		      else
1014 			{
1015 			  regcache_cooked_write (regcache, arg_regs[argreg],
1016 						 val);
1017 			  regcache_cooked_write_part (regcache,
1018 						      arg_regs[argreg] + 1, 0,
1019 						      len - 4, val + 4);
1020 			}
1021 		    }
1022 		  else
1023 		    {
1024 		      /* The argument is being passed by value in a pair of
1025 		         registers.  */
1026 		      ULONGEST regval = extract_unsigned_integer (val, len,
1027 								  byte_order);
1028 
1029 		      regcache_cooked_write_unsigned (regcache,
1030 						      arg_regs[argreg],
1031 						      regval);
1032 		      regcache_cooked_write_unsigned (regcache,
1033 						      arg_regs[argreg] + 1,
1034 						      regval >> 32);
1035 		    }
1036 		}
1037 	      else
1038 		{
1039 		  /* The argument is being passed by reference in a single
1040 		     register.  */
1041 		  CORE_ADDR addr;
1042 
1043 		  /* It is not necessary to adjust REFERENCES_OFFSET to
1044 		     8-byte aligned in some cases, in which 4-byte alignment
1045 		     is sufficient.  For simplicity, we adjust
1046 		     REFERENCES_OFFSET to 8-byte aligned.  */
1047 		  references_offset = align_up (references_offset, 8);
1048 
1049 		  addr = sp + references_offset;
1050 		  write_memory (addr, val, len);
1051 		  references_offset += align_up (len, 4);
1052 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1053 						  addr);
1054 		}
1055 	    }
1056 	  argreg++;
1057 	}
1058       else
1059 	{
1060 	  /* The argument is being passed on the stack.  */
1061 	  CORE_ADDR addr;
1062 
1063 	  /* There are six different cases of alignment, and these rules can
1064 	     be found in tic6x_arg_type_alignment:
1065 
1066 	     1) 4-byte aligned if size is less than or equal to 4 byte, such
1067 	     as short, int, struct, union etc.
1068 	     2) 8-byte aligned if size is less than or equal to 8-byte, such
1069 	     as double, long long,
1070 	     3) 4-byte aligned if it is of type _Complex float, even its size
1071 	     is 8-byte.
1072 	     4) 8-byte aligned if it is of type _Complex double or _Complex
1073 	     long double, even its size is 16-byte.  Because, the address of
1074 	     variable is passed as reference.
1075 	     5) struct and union larger than 8-byte are passed by reference, so
1076 	     it is 4-byte aligned.
1077 	     6) struct and union of size between 4 byte and 8 byte varies.
1078 	     alignment of struct variable is the alignment of its first field,
1079 	     while alignment of union variable is the max of all its fields'
1080 	     alignment.  */
1081 
1082 	  if (len <= 4)
1083 	    ; /* Default is 4-byte aligned.  Nothing to be done.  */
1084 	  else if (len <= 8)
1085 	    stack_offset = align_up (stack_offset,
1086 				     tic6x_arg_type_alignment (arg_type));
1087 	  else if (len == 16)
1088 	    {
1089 	      /* _Complex double or _Complex long double */
1090 	      if (typecode == TYPE_CODE_COMPLEX)
1091 		{
1092 		  /* The argument is being passed by reference on stack.  */
1093 		  CORE_ADDR addr;
1094 		  references_offset = align_up (references_offset, 8);
1095 
1096 		  addr = sp + references_offset;
1097 		  /* Store variable on stack.  */
1098 		  write_memory (addr, val, len);
1099 
1100 		  references_offset += align_up (len, 4);
1101 
1102 		  /* Pass the address of variable on stack as reference.  */
1103 		  store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1104 					  addr);
1105 		  len = 4;
1106 
1107 		}
1108 	      else
1109 		internal_error (__FILE__, __LINE__,
1110 				_("unexpected type %d of arg %d"),
1111 				typecode, argnum);
1112 	    }
1113 	  else
1114 	    internal_error (__FILE__, __LINE__,
1115 			    _("unexpected length %d of arg %d"), len, argnum);
1116 
1117 	  addr = sp + stack_offset;
1118 	  write_memory (addr, val, len);
1119 	  stack_offset += align_up (len, 4);
1120 	}
1121     }
1122 
1123   regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1124 
1125   /* Return adjusted stack pointer.  */
1126   return sp;
1127 }
1128 
1129 /* This is the implementation of gdbarch method stack_frame_destroyed_p.  */
1130 
1131 static int
1132 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1133 {
1134   unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1135   /* Normally, the epilogue is composed by instruction `b .S2 b3'.  */
1136   if ((inst & 0x0f83effc) == 0x360)
1137     {
1138       unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1139 						 INST_S_BIT (inst),
1140 						 INST_X_BIT (inst));
1141       if (src2 == TIC6X_RA_REGNUM)
1142 	return 1;
1143     }
1144 
1145   return 0;
1146 }
1147 
1148 /* This is the implementation of gdbarch method get_longjmp_target.  */
1149 
1150 static int
1151 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1152 {
1153   struct gdbarch *gdbarch = get_frame_arch (frame);
1154   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1155   CORE_ADDR jb_addr;
1156   gdb_byte buf[4];
1157 
1158   /* JMP_BUF is passed by reference in A4.  */
1159   jb_addr = get_frame_register_unsigned (frame, 4);
1160 
1161   /* JMP_BUF contains 13 elements of type int, and return address is stored
1162      in the last slot.  */
1163   if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1164     return 0;
1165 
1166   *pc = extract_unsigned_integer (buf, 4, byte_order);
1167 
1168   return 1;
1169 }
1170 
1171 /* This is the implementation of gdbarch method
1172    return_in_first_hidden_param_p.  */
1173 
1174 static int
1175 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1176 				      struct type *type)
1177 {
1178   return 0;
1179 }
1180 
1181 static struct gdbarch *
1182 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1183 {
1184   struct gdbarch *gdbarch;
1185   struct gdbarch_tdep *tdep;
1186   struct tdesc_arch_data *tdesc_data = NULL;
1187   const struct target_desc *tdesc = info.target_desc;
1188   int has_gp = 0;
1189 
1190   /* Check any target description for validity.  */
1191   if (tdesc_has_registers (tdesc))
1192     {
1193       const struct tdesc_feature *feature;
1194       int valid_p, i;
1195 
1196       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1197 
1198       if (feature == NULL)
1199 	return NULL;
1200 
1201       tdesc_data = tdesc_data_alloc ();
1202 
1203       valid_p = 1;
1204       for (i = 0; i < 32; i++)	/* A0 - A15, B0 - B15 */
1205 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1206 					    tic6x_register_names[i]);
1207 
1208       /* CSR */
1209       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1210 					  tic6x_register_names[TIC6X_CSR_REGNUM]);
1211       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1212 					  tic6x_register_names[TIC6X_PC_REGNUM]);
1213 
1214       if (!valid_p)
1215 	{
1216 	  tdesc_data_cleanup (tdesc_data);
1217 	  return NULL;
1218 	}
1219 
1220       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1221       if (feature)
1222 	{
1223 	  int j = 0;
1224 	  static const char *const gp[] =
1225 	    {
1226 	      "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1227 	      "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1228 	      "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1229 	      "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1230 	    };
1231 
1232 	  has_gp = 1;
1233 	  valid_p = 1;
1234 	  for (j = 0; j < 32; j++)	/* A16 - A31, B16 - B31 */
1235 	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1236 						gp[j]);
1237 
1238 	  if (!valid_p)
1239 	    {
1240 	      tdesc_data_cleanup (tdesc_data);
1241 	      return NULL;
1242 	    }
1243 	}
1244 
1245       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1246       if (feature)
1247 	{
1248 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1249 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1250 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1251 
1252 	  if (!valid_p)
1253 	    {
1254 	      tdesc_data_cleanup (tdesc_data);
1255 	      return NULL;
1256 	    }
1257 	}
1258 
1259     }
1260 
1261   /* Find a candidate among extant architectures.  */
1262   for (arches = gdbarch_list_lookup_by_info (arches, &info);
1263        arches != NULL;
1264        arches = gdbarch_list_lookup_by_info (arches->next, &info))
1265     {
1266       tdep = gdbarch_tdep (arches->gdbarch);
1267 
1268       if (has_gp != tdep->has_gp)
1269 	continue;
1270 
1271       if (tdep && tdep->breakpoint)
1272 	return arches->gdbarch;
1273     }
1274 
1275   tdep = XCNEW (struct gdbarch_tdep);
1276 
1277   tdep->has_gp = has_gp;
1278   gdbarch = gdbarch_alloc (&info, tdep);
1279 
1280   /* Data type sizes.  */
1281   set_gdbarch_ptr_bit (gdbarch, 32);
1282   set_gdbarch_addr_bit (gdbarch, 32);
1283   set_gdbarch_short_bit (gdbarch, 16);
1284   set_gdbarch_int_bit (gdbarch, 32);
1285   set_gdbarch_long_bit (gdbarch, 32);
1286   set_gdbarch_long_long_bit (gdbarch, 64);
1287   set_gdbarch_float_bit (gdbarch, 32);
1288   set_gdbarch_double_bit (gdbarch, 64);
1289 
1290   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1291   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1292 
1293   /* The register set.  */
1294   set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1295   set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1296   set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1297 
1298   set_gdbarch_register_name (gdbarch, tic6x_register_name);
1299   set_gdbarch_register_type (gdbarch, tic6x_register_type);
1300 
1301   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1302 
1303   set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1304   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1305 				       tic6x_breakpoint_kind_from_pc);
1306   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1307 				       tic6x_sw_breakpoint_from_kind);
1308 
1309   set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1310   set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1311 
1312   /* Unwinding.  */
1313   dwarf2_append_unwinders (gdbarch);
1314 
1315   frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1316   frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1317   frame_base_set_default (gdbarch, &tic6x_frame_base);
1318 
1319   dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1320 
1321   /* Single stepping.  */
1322   set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1323 
1324   set_gdbarch_print_insn (gdbarch, tic6x_print_insn);
1325 
1326   /* Call dummy code.  */
1327   set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1328 
1329   set_gdbarch_return_value (gdbarch, tic6x_return_value);
1330 
1331   set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1332 
1333   /* Enable inferior call support.  */
1334   set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1335 
1336   set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1337 
1338   set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1339 
1340   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1341 					      tic6x_return_in_first_hidden_param_p);
1342 
1343   /* Hook in ABI-specific overrides, if they have been registered.  */
1344   gdbarch_init_osabi (info, gdbarch);
1345 
1346   if (tdesc_data)
1347     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1348 
1349   return gdbarch;
1350 }
1351 
1352 /* -Wmissing-prototypes */
1353 extern initialize_file_ftype _initialize_tic6x_tdep;
1354 
1355 void
1356 _initialize_tic6x_tdep (void)
1357 {
1358   register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1359 
1360   initialize_tdesc_tic6x_c64xp ();
1361   initialize_tdesc_tic6x_c64x ();
1362   initialize_tdesc_tic6x_c62x ();
1363 }
1364