xref: /netbsd-src/external/gpl3/gdb/dist/gdb/tic6x-tdep.c (revision 8ecbf5f02b752fcb7debe1a8fab1dc82602bc760)
1 /* Target dependent code for GDB on TI C6x systems.
2 
3    Copyright (C) 2010-2019 Free Software Foundation, Inc.
4    Contributed by Andrew Jenner <andrew@codesourcery.com>
5    Contributed by Yao Qi <yao@codesourcery.com>
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "target.h"
34 #include "dis-asm.h"
35 #include "regcache.h"
36 #include "value.h"
37 #include "symfile.h"
38 #include "arch-utils.h"
39 #include "glibc-tdep.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "tramp-frame.h"
43 #include "linux-tdep.h"
44 #include "solib.h"
45 #include "objfiles.h"
46 #include "osabi.h"
47 #include "tic6x-tdep.h"
48 #include "language.h"
49 #include "target-descriptions.h"
50 #include <algorithm>
51 
52 #define TIC6X_OPCODE_SIZE 4
53 #define TIC6X_FETCH_PACKET_SIZE 32
54 
55 #define INST_S_BIT(INST) ((INST >> 1) & 1)
56 #define INST_X_BIT(INST) ((INST >> 12) & 1)
57 
58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 };
59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 };
60 
61 struct tic6x_unwind_cache
62 {
63   /* The frame's base, optionally used by the high-level debug info.  */
64   CORE_ADDR base;
65 
66   /* The previous frame's inner most stack address.  Used as this
67      frame ID's stack_addr.  */
68   CORE_ADDR cfa;
69 
70   /* The address of the first instruction in this function */
71   CORE_ADDR pc;
72 
73   /* Which register holds the return address for the frame.  */
74   int return_regnum;
75 
76   /* The offset of register saved on stack.  If register is not saved, the
77      corresponding element is -1.  */
78   CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS];
79 };
80 
81 
82 /* Name of TI C6x core registers.  */
83 static const char *const tic6x_register_names[] =
84 {
85   "A0",  "A1",  "A2",  "A3",  /*  0  1  2  3 */
86   "A4",  "A5",  "A6",  "A7",  /*  4  5  6  7 */
87   "A8",  "A9",  "A10", "A11", /*  8  9 10 11 */
88   "A12", "A13", "A14", "A15", /* 12 13 14 15 */
89   "B0",  "B1",  "B2",  "B3",  /* 16 17 18 19 */
90   "B4",  "B5",  "B6",  "B7",  /* 20 21 22 23 */
91   "B8",  "B9",  "B10", "B11", /* 24 25 26 27 */
92   "B12", "B13", "B14", "B15", /* 28 29 30 31 */
93   "CSR", "PC",                /* 32 33       */
94 };
95 
96 /* This array maps the arguments to the register number which passes argument
97    in function call according to C6000 ELF ABI.  */
98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 };
99 
100 /* This is the implementation of gdbarch method register_name.  */
101 
102 static const char *
103 tic6x_register_name (struct gdbarch *gdbarch, int regno)
104 {
105   if (regno < 0)
106     return NULL;
107 
108   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
109     return tdesc_register_name (gdbarch, regno);
110   else if (regno >= ARRAY_SIZE (tic6x_register_names))
111     return "";
112   else
113     return tic6x_register_names[regno];
114 }
115 
116 /* This is the implementation of gdbarch method register_type.  */
117 
118 static struct type *
119 tic6x_register_type (struct gdbarch *gdbarch, int regno)
120 {
121 
122   if (regno == TIC6X_PC_REGNUM)
123     return builtin_type (gdbarch)->builtin_func_ptr;
124   else
125     return builtin_type (gdbarch)->builtin_uint32;
126 }
127 
128 static void
129 tic6x_setup_default (struct tic6x_unwind_cache *cache)
130 {
131   int i;
132 
133   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
134     cache->reg_saved[i] = -1;
135 }
136 
137 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR);
138 static int tic6x_register_number (int reg, int side, int crosspath);
139 
140 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly.
141    Bail out early if CURRENT_PC is reached.  Returns the address of the first
142    instruction after the prologue.  */
143 
144 static CORE_ADDR
145 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
146 			const CORE_ADDR current_pc,
147 			struct tic6x_unwind_cache *cache,
148 			struct frame_info *this_frame)
149 {
150   unsigned int src_reg, base_reg, dst_reg;
151   int i;
152   CORE_ADDR pc = start_pc;
153   CORE_ADDR return_pc = start_pc;
154   int frame_base_offset_to_sp = 0;
155   /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'.  */
156   int non_stw_insn_counter = 0;
157 
158   if (start_pc >= current_pc)
159     return_pc = current_pc;
160 
161   cache->base = 0;
162 
163   /* The landmarks in prologue is one or two SUB instructions to SP.
164      Instructions on setting up dsbt are in the last part of prologue, if
165      needed.  In maxim, prologue can be divided to three parts by two
166      `sub sp, xx, sp' insns.  */
167 
168   /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp',  in which, the
169      2nd one is optional.  */
170   while (pc < current_pc)
171     {
172       unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
173 
174       if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0
175 	  || (inst & 0x0ffc) == 0x9c0)
176 	{
177 	  /* SUBAW/SUBAH/SUB, and src1 is ucst 5.  */
178 	  unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
179 						     INST_S_BIT (inst), 0);
180 	  unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f,
181 						    INST_S_BIT (inst), 0);
182 
183 	  if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM)
184 	    {
185 	      /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to
186 		 offset.  The constant offset is decoded in bit 13-17 in all
187 		 these three kinds of instructions.  */
188 	      unsigned int ucst5 = (inst >> 13) & 0x1f;
189 
190 	      if ((inst & 0x1ffc) == 0x1dc0)	/* SUBAW */
191 		frame_base_offset_to_sp += ucst5 << 2;
192 	      else if ((inst & 0x1ffc) == 0x1bc0)	/* SUBAH */
193 		frame_base_offset_to_sp += ucst5 << 1;
194 	      else if ((inst & 0x0ffc) == 0x9c0)	/* SUB */
195 		frame_base_offset_to_sp += ucst5;
196 	      else
197 		gdb_assert_not_reached ("unexpected instruction");
198 
199 	      return_pc = pc + 4;
200 	    }
201 	}
202       else if ((inst & 0x174) == 0x74)	/* stw SRC, *+b15(uconst) */
203 	{
204 	  /* The y bit determines which file base is read from.  */
205 	  base_reg = tic6x_register_number ((inst >> 18) & 0x1f,
206 					    (inst >> 7) & 1, 0);
207 
208 	  if (base_reg == TIC6X_SP_REGNUM)
209 	    {
210 	      src_reg = tic6x_register_number ((inst >> 23) & 0x1f,
211 					       INST_S_BIT (inst), 0);
212 
213 	      cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2;
214 
215 	      return_pc = pc + 4;
216 	    }
217 	  non_stw_insn_counter = 0;
218 	}
219       else
220 	{
221 	  non_stw_insn_counter++;
222 	  /* Following instruction sequence may be emitted in prologue:
223 
224 	     <+0>: subah .D2 b15,28,b15
225 	     <+4>: or .L2X 0,a4,b0
226 	     <+8>: || stw .D2T2 b14,*+b15(56)
227 	     <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220>
228 	     <+16>:|| stw .D2T1 a10,*+b15(48)
229 	     <+20>:stw .D2T2 b3,*+b15(52)
230 	     <+24>:stw .D2T1 a4,*+b15(40)
231 
232 	     we should look forward for next instruction instead of breaking loop
233 	     here.  So far, we allow almost two sequential non-stw instructions
234 	     in prologue.  */
235 	  if (non_stw_insn_counter >= 2)
236 	    break;
237 	}
238 
239 
240       pc += 4;
241     }
242   /* Step 2: Skip insn on setting up dsbt if it is.  Usually, it looks like,
243      ldw .D2T2 *+b14(0),b14 */
244   unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
245   /* The s bit determines which file dst will be loaded into, same effect as
246      other places.  */
247   dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0);
248   /* The y bit (bit 7), instead of s bit, determines which file base be
249      used.  */
250   base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0);
251 
252   if ((inst & 0x164) == 0x64	/* ldw */
253       && dst_reg == TIC6X_DP_REGNUM	/* dst is B14 */
254       && base_reg == TIC6X_DP_REGNUM)	/* baseR is B14 */
255     {
256       return_pc = pc + 4;
257     }
258 
259   if (this_frame)
260     {
261       cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
262 
263       if (cache->reg_saved[TIC6X_FP_REGNUM] != -1)
264 	{
265 	  /* If the FP now holds an offset from the CFA then this is a frame
266 	     which uses the frame pointer.  */
267 
268 	  cache->cfa = get_frame_register_unsigned (this_frame,
269 						    TIC6X_FP_REGNUM);
270 	}
271       else
272 	{
273 	  /* FP doesn't hold an offset from the CFA.  If SP still holds an
274 	     offset from the CFA then we might be in a function which omits
275 	     the frame pointer.  */
276 
277 	  cache->cfa = cache->base + frame_base_offset_to_sp;
278 	}
279     }
280 
281   /* Adjust all the saved registers such that they contain addresses
282      instead of offsets.  */
283   for (i = 0; i < TIC6X_NUM_CORE_REGS; i++)
284     if (cache->reg_saved[i] != -1)
285       cache->reg_saved[i] = cache->base + cache->reg_saved[i];
286 
287   return return_pc;
288 }
289 
290 /* This is the implementation of gdbarch method skip_prologue.  */
291 
292 static CORE_ADDR
293 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
294 {
295   CORE_ADDR func_addr;
296   struct tic6x_unwind_cache cache;
297 
298   /* See if we can determine the end of the prologue via the symbol table.
299      If so, then return either PC, or the PC after the prologue, whichever is
300      greater.  */
301   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
302     {
303       CORE_ADDR post_prologue_pc
304 	= skip_prologue_using_sal (gdbarch, func_addr);
305       if (post_prologue_pc != 0)
306 	return std::max (start_pc, post_prologue_pc);
307     }
308 
309   /* Can't determine prologue from the symbol table, need to examine
310      instructions.  */
311   return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache,
312 				 NULL);
313 }
314 
315 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
316 
317 static int
318 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
319 {
320   return 4;
321 }
322 
323 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
324 
325 static const gdb_byte *
326 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
327 {
328   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
329 
330   *size = kind;
331 
332   if (tdep == NULL || tdep->breakpoint == NULL)
333     {
334       if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch))
335 	return tic6x_bkpt_illegal_opcode_be;
336       else
337 	return tic6x_bkpt_illegal_opcode_le;
338     }
339   else
340     return tdep->breakpoint;
341 }
342 
343 static void
344 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
345 			     struct dwarf2_frame_state_reg *reg,
346 			     struct frame_info *this_frame)
347 {
348   /* Mark the PC as the destination for the return address.  */
349   if (regnum == gdbarch_pc_regnum (gdbarch))
350     reg->how = DWARF2_FRAME_REG_RA;
351 
352   /* Mark the stack pointer as the call frame address.  */
353   else if (regnum == gdbarch_sp_regnum (gdbarch))
354     reg->how = DWARF2_FRAME_REG_CFA;
355 
356   /* The above was taken from the default init_reg in dwarf2-frame.c
357      while the below is c6x specific.  */
358 
359   /* Callee save registers.  The ABI designates A10-A15 and B10-B15 as
360      callee-save.  */
361   else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31))
362     reg->how = DWARF2_FRAME_REG_SAME_VALUE;
363   else
364     /* All other registers are caller-save.  */
365     reg->how = DWARF2_FRAME_REG_UNDEFINED;
366 }
367 
368 /* This is the implementation of gdbarch method unwind_pc.  */
369 
370 static CORE_ADDR
371 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
372 {
373   gdb_byte buf[8];
374 
375   frame_unwind_register (next_frame,  TIC6X_PC_REGNUM, buf);
376   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
377 }
378 
379 /* This is the implementation of gdbarch method unwind_sp.  */
380 
381 static CORE_ADDR
382 tic6x_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
383 {
384   return frame_unwind_register_unsigned (this_frame, TIC6X_SP_REGNUM);
385 }
386 
387 
388 /* Frame base handling.  */
389 
390 static struct tic6x_unwind_cache*
391 tic6x_frame_unwind_cache (struct frame_info *this_frame,
392 			  void **this_prologue_cache)
393 {
394   struct gdbarch *gdbarch = get_frame_arch (this_frame);
395   CORE_ADDR current_pc;
396   struct tic6x_unwind_cache *cache;
397 
398   if (*this_prologue_cache)
399     return (struct tic6x_unwind_cache *) *this_prologue_cache;
400 
401   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
402   (*this_prologue_cache) = cache;
403 
404   cache->return_regnum = TIC6X_RA_REGNUM;
405 
406   tic6x_setup_default (cache);
407 
408   cache->pc = get_frame_func (this_frame);
409   current_pc = get_frame_pc (this_frame);
410 
411   /* Prologue analysis does the rest...  */
412   if (cache->pc != 0)
413     tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
414 
415   return cache;
416 }
417 
418 static void
419 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache,
420 		     struct frame_id *this_id)
421 {
422   struct tic6x_unwind_cache *cache =
423     tic6x_frame_unwind_cache (this_frame, this_cache);
424 
425   /* This marks the outermost frame.  */
426   if (cache->base == 0)
427     return;
428 
429   (*this_id) = frame_id_build (cache->cfa, cache->pc);
430 }
431 
432 static struct value *
433 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache,
434 			   int regnum)
435 {
436   struct tic6x_unwind_cache *cache =
437     tic6x_frame_unwind_cache (this_frame, this_cache);
438 
439   gdb_assert (regnum >= 0);
440 
441   /* The PC of the previous frame is stored in the RA register of
442      the current frame.  Frob regnum so that we pull the value from
443      the correct place.  */
444   if (regnum == TIC6X_PC_REGNUM)
445     regnum = cache->return_regnum;
446 
447   if (regnum == TIC6X_SP_REGNUM && cache->cfa)
448     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
449 
450   /* If we've worked out where a register is stored then load it from
451      there.  */
452   if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1)
453     return frame_unwind_got_memory (this_frame, regnum,
454 				    cache->reg_saved[regnum]);
455 
456   return frame_unwind_got_register (this_frame, regnum, regnum);
457 }
458 
459 static CORE_ADDR
460 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache)
461 {
462   struct tic6x_unwind_cache *info
463     = tic6x_frame_unwind_cache (this_frame, this_cache);
464   return info->base;
465 }
466 
467 static const struct frame_unwind tic6x_frame_unwind =
468 {
469   NORMAL_FRAME,
470   default_frame_unwind_stop_reason,
471   tic6x_frame_this_id,
472   tic6x_frame_prev_register,
473   NULL,
474   default_frame_sniffer
475 };
476 
477 static const struct frame_base tic6x_frame_base =
478 {
479   &tic6x_frame_unwind,
480   tic6x_frame_base_address,
481   tic6x_frame_base_address,
482   tic6x_frame_base_address
483 };
484 
485 
486 static struct tic6x_unwind_cache *
487 tic6x_make_stub_cache (struct frame_info *this_frame)
488 {
489   struct tic6x_unwind_cache *cache;
490 
491   cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache);
492 
493   cache->return_regnum = TIC6X_RA_REGNUM;
494 
495   tic6x_setup_default (cache);
496 
497   cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM);
498 
499   return cache;
500 }
501 
502 static void
503 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache,
504 		    struct frame_id *this_id)
505 {
506   struct tic6x_unwind_cache *cache;
507 
508   if (*this_cache == NULL)
509     *this_cache = tic6x_make_stub_cache (this_frame);
510   cache = (struct tic6x_unwind_cache *) *this_cache;
511 
512   *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame));
513 }
514 
515 static int
516 tic6x_stub_unwind_sniffer (const struct frame_unwind *self,
517 			   struct frame_info *this_frame,
518 			   void **this_prologue_cache)
519 {
520   CORE_ADDR addr_in_block;
521 
522   addr_in_block = get_frame_address_in_block (this_frame);
523   if (in_plt_section (addr_in_block))
524     return 1;
525 
526   return 0;
527 }
528 
529 static const struct frame_unwind tic6x_stub_unwind =
530 {
531   NORMAL_FRAME,
532   default_frame_unwind_stop_reason,
533   tic6x_stub_this_id,
534   tic6x_frame_prev_register,
535   NULL,
536   tic6x_stub_unwind_sniffer
537 };
538 
539 /* Return the instruction on address PC.  */
540 
541 static unsigned long
542 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc)
543 {
544   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
545   return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order);
546 }
547 
548 /* Compute the condition of INST if it is a conditional instruction.  Always
549    return 1 if INST is not a conditional instruction.  */
550 
551 static int
552 tic6x_condition_true (struct regcache *regcache, unsigned long inst)
553 {
554   int register_number;
555   int register_value;
556   static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 };
557 
558   register_number = register_numbers[(inst >> 29) & 7];
559   if (register_number == -1)
560     return 1;
561 
562   register_value = regcache_raw_get_signed (regcache, register_number);
563   if ((inst & 0x10000000) != 0)
564     return register_value == 0;
565   return register_value != 0;
566 }
567 
568 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in
569    instruction.  */
570 
571 static int
572 tic6x_register_number (int reg, int side, int crosspath)
573 {
574   int r = (reg & 15) | ((crosspath ^ side) << 4);
575   if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */
576     r += 37;
577   return r;
578 }
579 
580 static int
581 tic6x_extract_signed_field (int value, int low_bit, int bits)
582 {
583   int mask = (1 << bits) - 1;
584   int r = (value >> low_bit) & mask;
585   if ((r & (1 << (bits - 1))) != 0)
586     r -= mask + 1;
587   return r;
588 }
589 
590 /* Determine where to set a single step breakpoint.  */
591 
592 static CORE_ADDR
593 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
594 {
595   struct gdbarch *gdbarch = regcache->arch ();
596   unsigned long inst;
597   int register_number;
598   int last = 0;
599 
600   do
601     {
602       inst = tic6x_fetch_instruction (gdbarch, pc);
603 
604       last = !(inst & 1);
605 
606       if (inst == TIC6X_INST_SWE)
607 	{
608 	  struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
609 
610 	  if (tdep->syscall_next_pc != NULL)
611 	    return tdep->syscall_next_pc (get_current_frame ());
612 	}
613 
614       if (tic6x_condition_true (regcache, inst))
615 	{
616 	  if ((inst & 0x0000007c) == 0x00000010)
617 	    {
618 	      /* B with displacement */
619 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
620 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
621 	      break;
622 	    }
623 	  if ((inst & 0x0f83effc) == 0x00000360)
624 	    {
625 	      /* B with register */
626 
627 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
628 						       INST_S_BIT (inst),
629 						       INST_X_BIT (inst));
630 	      pc = regcache_raw_get_unsigned (regcache, register_number);
631 	      break;
632 	    }
633 	  if ((inst & 0x00001ffc) == 0x00001020)
634 	    {
635 	      /* BDEC */
636 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
637 						       INST_S_BIT (inst), 0);
638 	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
639 		{
640 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
641 		  pc += tic6x_extract_signed_field (inst, 7, 10) << 2;
642 		}
643 	      break;
644 	    }
645 	  if ((inst & 0x00001ffc) == 0x00000120)
646 	    {
647 	      /* BNOP with displacement */
648 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
649 	      pc += tic6x_extract_signed_field (inst, 16, 12) << 2;
650 	      break;
651 	    }
652 	  if ((inst & 0x0f830ffe) == 0x00800362)
653 	    {
654 	      /* BNOP with register */
655 	      register_number = tic6x_register_number ((inst >> 18) & 0x1f,
656 						       1, INST_X_BIT (inst));
657 	      pc = regcache_raw_get_unsigned (regcache, register_number);
658 	      break;
659 	    }
660 	  if ((inst & 0x00001ffc) == 0x00000020)
661 	    {
662 	      /* BPOS */
663 	      register_number = tic6x_register_number ((inst >> 23) & 0x1f,
664 						       INST_S_BIT (inst), 0);
665 	      if (regcache_raw_get_signed (regcache, register_number) >= 0)
666 		{
667 		  pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
668 		  pc += tic6x_extract_signed_field (inst, 13, 10) << 2;
669 		}
670 	      break;
671 	    }
672 	  if ((inst & 0xf000007c) == 0x10000010)
673 	    {
674 	      /* CALLP */
675 	      pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1);
676 	      pc += tic6x_extract_signed_field (inst, 7, 21) << 2;
677 	      break;
678 	    }
679 	}
680       pc += TIC6X_OPCODE_SIZE;
681     }
682   while (!last);
683   return pc;
684 }
685 
686 /* This is the implementation of gdbarch method software_single_step.  */
687 
688 static std::vector<CORE_ADDR>
689 tic6x_software_single_step (struct regcache *regcache)
690 {
691   CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache));
692 
693   return {next_pc};
694 }
695 
696 /* This is the implementation of gdbarch method frame_align.  */
697 
698 static CORE_ADDR
699 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
700 {
701   return align_down (addr, 8);
702 }
703 
704 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its
705    value into VALBUF.  */
706 
707 static void
708 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache,
709 			    enum bfd_endian byte_order, gdb_byte *valbuf)
710 {
711   int len = TYPE_LENGTH (valtype);
712 
713   /* pointer types are returned in register A4,
714      up to 32-bit types in A4
715      up to 64-bit types in A5:A4  */
716   if (len <= 4)
717     {
718       /* In big-endian,
719 	 - one-byte structure or union occupies the LSB of single even register.
720 	 - for two-byte structure or union, the first byte occupies byte 1 of
721 	 register and the second byte occupies byte 0.
722 	 so, we read the contents in VAL from the LSBs of register.  */
723       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
724 	regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
725       else
726 	regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
727     }
728   else if (len <= 8)
729     {
730       /* For a 5-8 byte structure or union in big-endian, the first byte
731 	 occupies byte 3 (the MSB) of the upper (odd) register and the
732 	 remaining bytes fill the decreasingly significant bytes.  5-7
733 	 byte structures or unions have padding in the LSBs of the
734 	 lower (even) register.  */
735       if (byte_order == BFD_ENDIAN_BIG)
736 	{
737 	  regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4);
738 	  regcache->cooked_read (TIC6X_A5_REGNUM, valbuf);
739 	}
740       else
741 	{
742 	  regcache->cooked_read (TIC6X_A4_REGNUM, valbuf);
743 	  regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4);
744 	}
745     }
746 }
747 
748 /* Write into appropriate registers a function return value
749    of type TYPE, given in virtual format.  */
750 
751 static void
752 tic6x_store_return_value (struct type *valtype, struct regcache *regcache,
753 			  enum bfd_endian byte_order, const gdb_byte *valbuf)
754 {
755   int len = TYPE_LENGTH (valtype);
756 
757   /* return values of up to 8 bytes are returned in A5:A4 */
758 
759   if (len <= 4)
760     {
761       if (len < 3 && byte_order == BFD_ENDIAN_BIG)
762 	regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf);
763       else
764 	regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
765     }
766   else if (len <= 8)
767     {
768       if (byte_order == BFD_ENDIAN_BIG)
769 	{
770 	  regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4);
771 	  regcache->cooked_write (TIC6X_A5_REGNUM, valbuf);
772 	}
773       else
774 	{
775 	  regcache->cooked_write (TIC6X_A4_REGNUM, valbuf);
776 	  regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4);
777 	}
778     }
779 }
780 
781 /* This is the implementation of gdbarch method return_value.  */
782 
783 static enum return_value_convention
784 tic6x_return_value (struct gdbarch *gdbarch, struct value *function,
785 		    struct type *type, struct regcache *regcache,
786 		    gdb_byte *readbuf, const gdb_byte *writebuf)
787 {
788   /* In C++, when function returns an object, even its size is small
789      enough, it stii has to be passed via reference, pointed by register
790      A3.  */
791   if (current_language->la_language == language_cplus)
792     {
793       if (type != NULL)
794 	{
795 	  type = check_typedef (type);
796 	  if (language_pass_by_reference (type))
797 	    return RETURN_VALUE_STRUCT_CONVENTION;
798 	}
799     }
800 
801   if (TYPE_LENGTH (type) > 8)
802     return RETURN_VALUE_STRUCT_CONVENTION;
803 
804   if (readbuf)
805     tic6x_extract_return_value (type, regcache,
806 				gdbarch_byte_order (gdbarch), readbuf);
807   if (writebuf)
808     tic6x_store_return_value (type, regcache,
809 			      gdbarch_byte_order (gdbarch), writebuf);
810 
811   return RETURN_VALUE_REGISTER_CONVENTION;
812 }
813 
814 /* This is the implementation of gdbarch method dummy_id.  */
815 
816 static struct frame_id
817 tic6x_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
818 {
819   return frame_id_build
820     (get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM),
821      get_frame_pc (this_frame));
822 }
823 
824 /* Get the alignment requirement of TYPE.  */
825 
826 static int
827 tic6x_arg_type_alignment (struct type *type)
828 {
829   int len = TYPE_LENGTH (check_typedef (type));
830   enum type_code typecode = TYPE_CODE (check_typedef (type));
831 
832   if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
833     {
834       /* The stack alignment of a structure (and union) passed by value is the
835 	 smallest power of two greater than or equal to its size.
836 	 This cannot exceed 8 bytes, which is the largest allowable size for
837 	 a structure passed by value.  */
838 
839       if (len <= 2)
840 	return len;
841       else if (len <= 4)
842 	return 4;
843       else if (len <= 8)
844 	return 8;
845       else
846 	gdb_assert_not_reached ("unexpected length of data");
847     }
848   else
849     {
850       if (len <= 4)
851 	return 4;
852       else if (len == 8)
853 	{
854 	  if (typecode == TYPE_CODE_COMPLEX)
855 	    return 4;
856 	  else
857 	    return 8;
858 	}
859       else if (len == 16)
860 	{
861 	  if (typecode == TYPE_CODE_COMPLEX)
862 	    return 8;
863 	  else
864 	    return 16;
865 	}
866       else
867 	internal_error (__FILE__, __LINE__, _("unexpected length %d of type"),
868 			len);
869     }
870 }
871 
872 /* This is the implementation of gdbarch method push_dummy_call.  */
873 
874 static CORE_ADDR
875 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
876 		       struct regcache *regcache, CORE_ADDR bp_addr,
877 		       int nargs, struct value **args, CORE_ADDR sp,
878 		       function_call_return_method return_method,
879 		       CORE_ADDR struct_addr)
880 {
881   int argreg = 0;
882   int argnum;
883   int stack_offset = 4;
884   int references_offset = 4;
885   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
886   struct type *func_type = value_type (function);
887   /* The first arg passed on stack.  Mostly the first 10 args are passed by
888      registers.  */
889   int first_arg_on_stack = 10;
890 
891   /* Set the return address register to point to the entry point of
892      the program, where a breakpoint lies in wait.  */
893   regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr);
894 
895   /* The caller must pass an argument in A3 containing a destination address
896      for the returned value.  The callee returns the object by copying it to
897      the address in A3.  */
898   if (return_method == return_method_struct)
899     regcache_cooked_write_unsigned (regcache, 3, struct_addr);
900 
901   /* Determine the type of this function.  */
902   func_type = check_typedef (func_type);
903   if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
904     func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
905 
906   gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC
907 	      || TYPE_CODE (func_type) == TYPE_CODE_METHOD);
908 
909   /* For a variadic C function, the last explicitly declared argument and all
910      remaining arguments are passed on the stack.  */
911   if (TYPE_VARARGS (func_type))
912     first_arg_on_stack = TYPE_NFIELDS (func_type) - 1;
913 
914   /* Now make space on the stack for the args.  */
915   for (argnum = 0; argnum < nargs; argnum++)
916     {
917       int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
918       if (argnum >= 10 - argreg)
919 	references_offset += len;
920       stack_offset += len;
921     }
922   sp -= stack_offset;
923   /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1
924      Stack Alignment.  */
925   sp = align_down (sp, 8);
926   stack_offset = 4;
927 
928   /* Now load as many as possible of the first arguments into
929      registers, and push the rest onto the stack.  Loop through args
930      from first to last.  */
931   for (argnum = 0; argnum < nargs; argnum++)
932     {
933       const gdb_byte *val;
934       struct value *arg = args[argnum];
935       struct type *arg_type = check_typedef (value_type (arg));
936       int len = TYPE_LENGTH (arg_type);
937       enum type_code typecode = TYPE_CODE (arg_type);
938 
939       val = value_contents (arg);
940 
941       /* Copy the argument to general registers or the stack in
942          register-sized pieces.  */
943       if (argreg < first_arg_on_stack)
944 	{
945 	  if (len <= 4)
946 	    {
947 	      if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION)
948 		{
949 		  /* In big-endian,
950 		     - one-byte structure or union occupies the LSB of single
951 		     even register.
952 		     - for two-byte structure or union, the first byte
953 		     occupies byte 1 of register and the second byte occupies
954 		     byte 0.
955 		     so, we write the contents in VAL to the lsp of
956 		     register.  */
957 		  if (len < 3 && byte_order == BFD_ENDIAN_BIG)
958 		    regcache->cooked_write_part (arg_regs[argreg], 4 - len, len,
959 						 val);
960 		  else
961 		    regcache->cooked_write (arg_regs[argreg], val);
962 		}
963 	      else
964 		{
965 		  /* The argument is being passed by value in a single
966 		     register.  */
967 		  CORE_ADDR regval = extract_unsigned_integer (val, len,
968 							       byte_order);
969 
970 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
971 						  regval);
972 		}
973 	    }
974 	  else
975 	    {
976 	      if (len <= 8)
977 		{
978 		  if (typecode == TYPE_CODE_STRUCT
979 		      || typecode == TYPE_CODE_UNION)
980 		    {
981 		      /* For a 5-8 byte structure or union in big-endian, the
982 		         first byte occupies byte 3 (the MSB) of the upper (odd)
983 		         register and the remaining bytes fill the decreasingly
984 		         significant bytes.  5-7 byte structures or unions have
985 		         padding in the LSBs of the lower (even) register.  */
986 		      if (byte_order == BFD_ENDIAN_BIG)
987 			{
988 			  regcache->cooked_write (arg_regs[argreg] + 1, val);
989 			  regcache->cooked_write_part (arg_regs[argreg], 0,
990 						       len - 4, val + 4);
991 			}
992 		      else
993 			{
994 			  regcache->cooked_write (arg_regs[argreg], val);
995 			  regcache->cooked_write_part (arg_regs[argreg] + 1, 0,
996 						       len - 4, val + 4);
997 			}
998 		    }
999 		  else
1000 		    {
1001 		      /* The argument is being passed by value in a pair of
1002 		         registers.  */
1003 		      ULONGEST regval = extract_unsigned_integer (val, len,
1004 								  byte_order);
1005 
1006 		      regcache_cooked_write_unsigned (regcache,
1007 						      arg_regs[argreg],
1008 						      regval);
1009 		      regcache_cooked_write_unsigned (regcache,
1010 						      arg_regs[argreg] + 1,
1011 						      regval >> 32);
1012 		    }
1013 		}
1014 	      else
1015 		{
1016 		  /* The argument is being passed by reference in a single
1017 		     register.  */
1018 		  CORE_ADDR addr;
1019 
1020 		  /* It is not necessary to adjust REFERENCES_OFFSET to
1021 		     8-byte aligned in some cases, in which 4-byte alignment
1022 		     is sufficient.  For simplicity, we adjust
1023 		     REFERENCES_OFFSET to 8-byte aligned.  */
1024 		  references_offset = align_up (references_offset, 8);
1025 
1026 		  addr = sp + references_offset;
1027 		  write_memory (addr, val, len);
1028 		  references_offset += align_up (len, 4);
1029 		  regcache_cooked_write_unsigned (regcache, arg_regs[argreg],
1030 						  addr);
1031 		}
1032 	    }
1033 	  argreg++;
1034 	}
1035       else
1036 	{
1037 	  /* The argument is being passed on the stack.  */
1038 	  CORE_ADDR addr;
1039 
1040 	  /* There are six different cases of alignment, and these rules can
1041 	     be found in tic6x_arg_type_alignment:
1042 
1043 	     1) 4-byte aligned if size is less than or equal to 4 byte, such
1044 	     as short, int, struct, union etc.
1045 	     2) 8-byte aligned if size is less than or equal to 8-byte, such
1046 	     as double, long long,
1047 	     3) 4-byte aligned if it is of type _Complex float, even its size
1048 	     is 8-byte.
1049 	     4) 8-byte aligned if it is of type _Complex double or _Complex
1050 	     long double, even its size is 16-byte.  Because, the address of
1051 	     variable is passed as reference.
1052 	     5) struct and union larger than 8-byte are passed by reference, so
1053 	     it is 4-byte aligned.
1054 	     6) struct and union of size between 4 byte and 8 byte varies.
1055 	     alignment of struct variable is the alignment of its first field,
1056 	     while alignment of union variable is the max of all its fields'
1057 	     alignment.  */
1058 
1059 	  if (len <= 4)
1060 	    ; /* Default is 4-byte aligned.  Nothing to be done.  */
1061 	  else if (len <= 8)
1062 	    stack_offset = align_up (stack_offset,
1063 				     tic6x_arg_type_alignment (arg_type));
1064 	  else if (len == 16)
1065 	    {
1066 	      /* _Complex double or _Complex long double */
1067 	      if (typecode == TYPE_CODE_COMPLEX)
1068 		{
1069 		  /* The argument is being passed by reference on stack.  */
1070 		  references_offset = align_up (references_offset, 8);
1071 
1072 		  addr = sp + references_offset;
1073 		  /* Store variable on stack.  */
1074 		  write_memory (addr, val, len);
1075 
1076 		  references_offset += align_up (len, 4);
1077 
1078 		  /* Pass the address of variable on stack as reference.  */
1079 		  store_unsigned_integer ((gdb_byte *) val, 4, byte_order,
1080 					  addr);
1081 		  len = 4;
1082 
1083 		}
1084 	      else
1085 		internal_error (__FILE__, __LINE__,
1086 				_("unexpected type %d of arg %d"),
1087 				typecode, argnum);
1088 	    }
1089 	  else
1090 	    internal_error (__FILE__, __LINE__,
1091 			    _("unexpected length %d of arg %d"), len, argnum);
1092 
1093 	  addr = sp + stack_offset;
1094 	  write_memory (addr, val, len);
1095 	  stack_offset += align_up (len, 4);
1096 	}
1097     }
1098 
1099   regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp);
1100 
1101   /* Return adjusted stack pointer.  */
1102   return sp;
1103 }
1104 
1105 /* This is the implementation of gdbarch method stack_frame_destroyed_p.  */
1106 
1107 static int
1108 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1109 {
1110   unsigned long inst = tic6x_fetch_instruction (gdbarch, pc);
1111   /* Normally, the epilogue is composed by instruction `b .S2 b3'.  */
1112   if ((inst & 0x0f83effc) == 0x360)
1113     {
1114       unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f,
1115 						 INST_S_BIT (inst),
1116 						 INST_X_BIT (inst));
1117       if (src2 == TIC6X_RA_REGNUM)
1118 	return 1;
1119     }
1120 
1121   return 0;
1122 }
1123 
1124 /* This is the implementation of gdbarch method get_longjmp_target.  */
1125 
1126 static int
1127 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
1128 {
1129   struct gdbarch *gdbarch = get_frame_arch (frame);
1130   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1131   CORE_ADDR jb_addr;
1132   gdb_byte buf[4];
1133 
1134   /* JMP_BUF is passed by reference in A4.  */
1135   jb_addr = get_frame_register_unsigned (frame, 4);
1136 
1137   /* JMP_BUF contains 13 elements of type int, and return address is stored
1138      in the last slot.  */
1139   if (target_read_memory (jb_addr + 12 * 4, buf, 4))
1140     return 0;
1141 
1142   *pc = extract_unsigned_integer (buf, 4, byte_order);
1143 
1144   return 1;
1145 }
1146 
1147 /* This is the implementation of gdbarch method
1148    return_in_first_hidden_param_p.  */
1149 
1150 static int
1151 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
1152 				      struct type *type)
1153 {
1154   return 0;
1155 }
1156 
1157 static struct gdbarch *
1158 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1159 {
1160   struct gdbarch *gdbarch;
1161   struct gdbarch_tdep *tdep;
1162   struct tdesc_arch_data *tdesc_data = NULL;
1163   const struct target_desc *tdesc = info.target_desc;
1164   int has_gp = 0;
1165 
1166   /* Check any target description for validity.  */
1167   if (tdesc_has_registers (tdesc))
1168     {
1169       const struct tdesc_feature *feature;
1170       int valid_p, i;
1171 
1172       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core");
1173 
1174       if (feature == NULL)
1175 	return NULL;
1176 
1177       tdesc_data = tdesc_data_alloc ();
1178 
1179       valid_p = 1;
1180       for (i = 0; i < 32; i++)	/* A0 - A15, B0 - B15 */
1181 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
1182 					    tic6x_register_names[i]);
1183 
1184       /* CSR */
1185       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1186 					  tic6x_register_names[TIC6X_CSR_REGNUM]);
1187       valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1188 					  tic6x_register_names[TIC6X_PC_REGNUM]);
1189 
1190       if (!valid_p)
1191 	{
1192 	  tdesc_data_cleanup (tdesc_data);
1193 	  return NULL;
1194 	}
1195 
1196       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp");
1197       if (feature)
1198 	{
1199 	  int j = 0;
1200 	  static const char *const gp[] =
1201 	    {
1202 	      "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23",
1203 	      "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31",
1204 	      "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23",
1205 	      "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31",
1206 	    };
1207 
1208 	  has_gp = 1;
1209 	  valid_p = 1;
1210 	  for (j = 0; j < 32; j++)	/* A16 - A31, B16 - B31 */
1211 	    valid_p &= tdesc_numbered_register (feature, tdesc_data, i++,
1212 						gp[j]);
1213 
1214 	  if (!valid_p)
1215 	    {
1216 	      tdesc_data_cleanup (tdesc_data);
1217 	      return NULL;
1218 	    }
1219 	}
1220 
1221       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp");
1222       if (feature)
1223 	{
1224 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR");
1225 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC");
1226 	  valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC");
1227 
1228 	  if (!valid_p)
1229 	    {
1230 	      tdesc_data_cleanup (tdesc_data);
1231 	      return NULL;
1232 	    }
1233 	}
1234 
1235     }
1236 
1237   /* Find a candidate among extant architectures.  */
1238   for (arches = gdbarch_list_lookup_by_info (arches, &info);
1239        arches != NULL;
1240        arches = gdbarch_list_lookup_by_info (arches->next, &info))
1241     {
1242       tdep = gdbarch_tdep (arches->gdbarch);
1243 
1244       if (has_gp != tdep->has_gp)
1245 	continue;
1246 
1247       if (tdep && tdep->breakpoint)
1248 	return arches->gdbarch;
1249     }
1250 
1251   tdep = XCNEW (struct gdbarch_tdep);
1252 
1253   tdep->has_gp = has_gp;
1254   gdbarch = gdbarch_alloc (&info, tdep);
1255 
1256   /* Data type sizes.  */
1257   set_gdbarch_ptr_bit (gdbarch, 32);
1258   set_gdbarch_addr_bit (gdbarch, 32);
1259   set_gdbarch_short_bit (gdbarch, 16);
1260   set_gdbarch_int_bit (gdbarch, 32);
1261   set_gdbarch_long_bit (gdbarch, 32);
1262   set_gdbarch_long_long_bit (gdbarch, 64);
1263   set_gdbarch_float_bit (gdbarch, 32);
1264   set_gdbarch_double_bit (gdbarch, 64);
1265 
1266   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
1267   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1268 
1269   /* The register set.  */
1270   set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS);
1271   set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM);
1272   set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM);
1273 
1274   set_gdbarch_register_name (gdbarch, tic6x_register_name);
1275   set_gdbarch_register_type (gdbarch, tic6x_register_type);
1276 
1277   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1278 
1279   set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue);
1280   set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1281 				       tic6x_breakpoint_kind_from_pc);
1282   set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1283 				       tic6x_sw_breakpoint_from_kind);
1284 
1285   set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc);
1286   set_gdbarch_unwind_sp (gdbarch, tic6x_unwind_sp);
1287 
1288   /* Unwinding.  */
1289   dwarf2_append_unwinders (gdbarch);
1290 
1291   frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind);
1292   frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind);
1293   frame_base_set_default (gdbarch, &tic6x_frame_base);
1294 
1295   dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg);
1296 
1297   /* Single stepping.  */
1298   set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step);
1299 
1300   /* Call dummy code.  */
1301   set_gdbarch_frame_align (gdbarch, tic6x_frame_align);
1302 
1303   set_gdbarch_return_value (gdbarch, tic6x_return_value);
1304 
1305   set_gdbarch_dummy_id (gdbarch, tic6x_dummy_id);
1306 
1307   /* Enable inferior call support.  */
1308   set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call);
1309 
1310   set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target);
1311 
1312   set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p);
1313 
1314   set_gdbarch_return_in_first_hidden_param_p (gdbarch,
1315 					      tic6x_return_in_first_hidden_param_p);
1316 
1317   /* Hook in ABI-specific overrides, if they have been registered.  */
1318   gdbarch_init_osabi (info, gdbarch);
1319 
1320   if (tdesc_data)
1321     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
1322 
1323   return gdbarch;
1324 }
1325 
1326 void
1327 _initialize_tic6x_tdep (void)
1328 {
1329   register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init);
1330 }
1331