1 /* Target dependent code for GDB on TI C6x systems. 2 3 Copyright (C) 2010-2020 Free Software Foundation, Inc. 4 Contributed by Andrew Jenner <andrew@codesourcery.com> 5 Contributed by Yao Qi <yao@codesourcery.com> 6 7 This file is part of GDB. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 21 22 #include "defs.h" 23 #include "frame.h" 24 #include "frame-unwind.h" 25 #include "frame-base.h" 26 #include "trad-frame.h" 27 #include "dwarf2/frame.h" 28 #include "symtab.h" 29 #include "inferior.h" 30 #include "gdbtypes.h" 31 #include "gdbcore.h" 32 #include "gdbcmd.h" 33 #include "target.h" 34 #include "dis-asm.h" 35 #include "regcache.h" 36 #include "value.h" 37 #include "symfile.h" 38 #include "arch-utils.h" 39 #include "glibc-tdep.h" 40 #include "infcall.h" 41 #include "regset.h" 42 #include "tramp-frame.h" 43 #include "linux-tdep.h" 44 #include "solib.h" 45 #include "objfiles.h" 46 #include "osabi.h" 47 #include "tic6x-tdep.h" 48 #include "language.h" 49 #include "target-descriptions.h" 50 #include <algorithm> 51 52 #define TIC6X_OPCODE_SIZE 4 53 #define TIC6X_FETCH_PACKET_SIZE 32 54 55 #define INST_S_BIT(INST) ((INST >> 1) & 1) 56 #define INST_X_BIT(INST) ((INST >> 12) & 1) 57 58 const gdb_byte tic6x_bkpt_illegal_opcode_be[] = { 0x56, 0x45, 0x43, 0x14 }; 59 const gdb_byte tic6x_bkpt_illegal_opcode_le[] = { 0x14, 0x43, 0x45, 0x56 }; 60 61 struct tic6x_unwind_cache 62 { 63 /* The frame's base, optionally used by the high-level debug info. */ 64 CORE_ADDR base; 65 66 /* The previous frame's inner most stack address. Used as this 67 frame ID's stack_addr. */ 68 CORE_ADDR cfa; 69 70 /* The address of the first instruction in this function */ 71 CORE_ADDR pc; 72 73 /* Which register holds the return address for the frame. */ 74 int return_regnum; 75 76 /* The offset of register saved on stack. If register is not saved, the 77 corresponding element is -1. */ 78 CORE_ADDR reg_saved[TIC6X_NUM_CORE_REGS]; 79 }; 80 81 82 /* Name of TI C6x core registers. */ 83 static const char *const tic6x_register_names[] = 84 { 85 "A0", "A1", "A2", "A3", /* 0 1 2 3 */ 86 "A4", "A5", "A6", "A7", /* 4 5 6 7 */ 87 "A8", "A9", "A10", "A11", /* 8 9 10 11 */ 88 "A12", "A13", "A14", "A15", /* 12 13 14 15 */ 89 "B0", "B1", "B2", "B3", /* 16 17 18 19 */ 90 "B4", "B5", "B6", "B7", /* 20 21 22 23 */ 91 "B8", "B9", "B10", "B11", /* 24 25 26 27 */ 92 "B12", "B13", "B14", "B15", /* 28 29 30 31 */ 93 "CSR", "PC", /* 32 33 */ 94 }; 95 96 /* This array maps the arguments to the register number which passes argument 97 in function call according to C6000 ELF ABI. */ 98 static const int arg_regs[] = { 4, 20, 6, 22, 8, 24, 10, 26, 12, 28 }; 99 100 /* This is the implementation of gdbarch method register_name. */ 101 102 static const char * 103 tic6x_register_name (struct gdbarch *gdbarch, int regno) 104 { 105 if (regno < 0) 106 return NULL; 107 108 if (tdesc_has_registers (gdbarch_target_desc (gdbarch))) 109 return tdesc_register_name (gdbarch, regno); 110 else if (regno >= ARRAY_SIZE (tic6x_register_names)) 111 return ""; 112 else 113 return tic6x_register_names[regno]; 114 } 115 116 /* This is the implementation of gdbarch method register_type. */ 117 118 static struct type * 119 tic6x_register_type (struct gdbarch *gdbarch, int regno) 120 { 121 122 if (regno == TIC6X_PC_REGNUM) 123 return builtin_type (gdbarch)->builtin_func_ptr; 124 else 125 return builtin_type (gdbarch)->builtin_uint32; 126 } 127 128 static void 129 tic6x_setup_default (struct tic6x_unwind_cache *cache) 130 { 131 int i; 132 133 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 134 cache->reg_saved[i] = -1; 135 } 136 137 static unsigned long tic6x_fetch_instruction (struct gdbarch *, CORE_ADDR); 138 static int tic6x_register_number (int reg, int side, int crosspath); 139 140 /* Do a full analysis of the prologue at START_PC and update CACHE accordingly. 141 Bail out early if CURRENT_PC is reached. Returns the address of the first 142 instruction after the prologue. */ 143 144 static CORE_ADDR 145 tic6x_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc, 146 const CORE_ADDR current_pc, 147 struct tic6x_unwind_cache *cache, 148 struct frame_info *this_frame) 149 { 150 unsigned int src_reg, base_reg, dst_reg; 151 int i; 152 CORE_ADDR pc = start_pc; 153 CORE_ADDR return_pc = start_pc; 154 int frame_base_offset_to_sp = 0; 155 /* Counter of non-stw instructions after first insn ` sub sp, xxx, sp'. */ 156 int non_stw_insn_counter = 0; 157 158 if (start_pc >= current_pc) 159 return_pc = current_pc; 160 161 cache->base = 0; 162 163 /* The landmarks in prologue is one or two SUB instructions to SP. 164 Instructions on setting up dsbt are in the last part of prologue, if 165 needed. In maxim, prologue can be divided to three parts by two 166 `sub sp, xx, sp' insns. */ 167 168 /* Step 1: Look for the 1st and 2nd insn `sub sp, xx, sp', in which, the 169 2nd one is optional. */ 170 while (pc < current_pc) 171 { 172 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 173 174 if ((inst & 0x1ffc) == 0x1dc0 || (inst & 0x1ffc) == 0x1bc0 175 || (inst & 0x0ffc) == 0x9c0) 176 { 177 /* SUBAW/SUBAH/SUB, and src1 is ucst 5. */ 178 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 179 INST_S_BIT (inst), 0); 180 unsigned int dst = tic6x_register_number ((inst >> 23) & 0x1f, 181 INST_S_BIT (inst), 0); 182 183 if (src2 == TIC6X_SP_REGNUM && dst == TIC6X_SP_REGNUM) 184 { 185 /* Extract const from insn SUBAW/SUBAH/SUB, and translate it to 186 offset. The constant offset is decoded in bit 13-17 in all 187 these three kinds of instructions. */ 188 unsigned int ucst5 = (inst >> 13) & 0x1f; 189 190 if ((inst & 0x1ffc) == 0x1dc0) /* SUBAW */ 191 frame_base_offset_to_sp += ucst5 << 2; 192 else if ((inst & 0x1ffc) == 0x1bc0) /* SUBAH */ 193 frame_base_offset_to_sp += ucst5 << 1; 194 else if ((inst & 0x0ffc) == 0x9c0) /* SUB */ 195 frame_base_offset_to_sp += ucst5; 196 else 197 gdb_assert_not_reached ("unexpected instruction"); 198 199 return_pc = pc + 4; 200 } 201 } 202 else if ((inst & 0x174) == 0x74) /* stw SRC, *+b15(uconst) */ 203 { 204 /* The y bit determines which file base is read from. */ 205 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, 206 (inst >> 7) & 1, 0); 207 208 if (base_reg == TIC6X_SP_REGNUM) 209 { 210 src_reg = tic6x_register_number ((inst >> 23) & 0x1f, 211 INST_S_BIT (inst), 0); 212 213 cache->reg_saved[src_reg] = ((inst >> 13) & 0x1f) << 2; 214 215 return_pc = pc + 4; 216 } 217 non_stw_insn_counter = 0; 218 } 219 else 220 { 221 non_stw_insn_counter++; 222 /* Following instruction sequence may be emitted in prologue: 223 224 <+0>: subah .D2 b15,28,b15 225 <+4>: or .L2X 0,a4,b0 226 <+8>: || stw .D2T2 b14,*+b15(56) 227 <+12>:[!b0] b .S1 0xe50e4c1c <sleep+220> 228 <+16>:|| stw .D2T1 a10,*+b15(48) 229 <+20>:stw .D2T2 b3,*+b15(52) 230 <+24>:stw .D2T1 a4,*+b15(40) 231 232 we should look forward for next instruction instead of breaking loop 233 here. So far, we allow almost two sequential non-stw instructions 234 in prologue. */ 235 if (non_stw_insn_counter >= 2) 236 break; 237 } 238 239 240 pc += 4; 241 } 242 /* Step 2: Skip insn on setting up dsbt if it is. Usually, it looks like, 243 ldw .D2T2 *+b14(0),b14 */ 244 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 245 /* The s bit determines which file dst will be loaded into, same effect as 246 other places. */ 247 dst_reg = tic6x_register_number ((inst >> 23) & 0x1f, (inst >> 1) & 1, 0); 248 /* The y bit (bit 7), instead of s bit, determines which file base be 249 used. */ 250 base_reg = tic6x_register_number ((inst >> 18) & 0x1f, (inst >> 7) & 1, 0); 251 252 if ((inst & 0x164) == 0x64 /* ldw */ 253 && dst_reg == TIC6X_DP_REGNUM /* dst is B14 */ 254 && base_reg == TIC6X_DP_REGNUM) /* baseR is B14 */ 255 { 256 return_pc = pc + 4; 257 } 258 259 if (this_frame) 260 { 261 cache->base = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 262 263 if (cache->reg_saved[TIC6X_FP_REGNUM] != -1) 264 { 265 /* If the FP now holds an offset from the CFA then this is a frame 266 which uses the frame pointer. */ 267 268 cache->cfa = get_frame_register_unsigned (this_frame, 269 TIC6X_FP_REGNUM); 270 } 271 else 272 { 273 /* FP doesn't hold an offset from the CFA. If SP still holds an 274 offset from the CFA then we might be in a function which omits 275 the frame pointer. */ 276 277 cache->cfa = cache->base + frame_base_offset_to_sp; 278 } 279 } 280 281 /* Adjust all the saved registers such that they contain addresses 282 instead of offsets. */ 283 for (i = 0; i < TIC6X_NUM_CORE_REGS; i++) 284 if (cache->reg_saved[i] != -1) 285 cache->reg_saved[i] = cache->base + cache->reg_saved[i]; 286 287 return return_pc; 288 } 289 290 /* This is the implementation of gdbarch method skip_prologue. */ 291 292 static CORE_ADDR 293 tic6x_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc) 294 { 295 CORE_ADDR func_addr; 296 struct tic6x_unwind_cache cache; 297 298 /* See if we can determine the end of the prologue via the symbol table. 299 If so, then return either PC, or the PC after the prologue, whichever is 300 greater. */ 301 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL)) 302 { 303 CORE_ADDR post_prologue_pc 304 = skip_prologue_using_sal (gdbarch, func_addr); 305 if (post_prologue_pc != 0) 306 return std::max (start_pc, post_prologue_pc); 307 } 308 309 /* Can't determine prologue from the symbol table, need to examine 310 instructions. */ 311 return tic6x_analyze_prologue (gdbarch, start_pc, (CORE_ADDR) -1, &cache, 312 NULL); 313 } 314 315 /* Implement the breakpoint_kind_from_pc gdbarch method. */ 316 317 static int 318 tic6x_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr) 319 { 320 return 4; 321 } 322 323 /* Implement the sw_breakpoint_from_kind gdbarch method. */ 324 325 static const gdb_byte * 326 tic6x_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size) 327 { 328 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 329 330 *size = kind; 331 332 if (tdep == NULL || tdep->breakpoint == NULL) 333 { 334 if (BFD_ENDIAN_BIG == gdbarch_byte_order_for_code (gdbarch)) 335 return tic6x_bkpt_illegal_opcode_be; 336 else 337 return tic6x_bkpt_illegal_opcode_le; 338 } 339 else 340 return tdep->breakpoint; 341 } 342 343 static void 344 tic6x_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, 345 struct dwarf2_frame_state_reg *reg, 346 struct frame_info *this_frame) 347 { 348 /* Mark the PC as the destination for the return address. */ 349 if (regnum == gdbarch_pc_regnum (gdbarch)) 350 reg->how = DWARF2_FRAME_REG_RA; 351 352 /* Mark the stack pointer as the call frame address. */ 353 else if (regnum == gdbarch_sp_regnum (gdbarch)) 354 reg->how = DWARF2_FRAME_REG_CFA; 355 356 /* The above was taken from the default init_reg in dwarf2-frame.c 357 while the below is c6x specific. */ 358 359 /* Callee save registers. The ABI designates A10-A15 and B10-B15 as 360 callee-save. */ 361 else if ((regnum >= 10 && regnum <= 15) || (regnum >= 26 && regnum <= 31)) 362 reg->how = DWARF2_FRAME_REG_SAME_VALUE; 363 else 364 /* All other registers are caller-save. */ 365 reg->how = DWARF2_FRAME_REG_UNDEFINED; 366 } 367 368 /* This is the implementation of gdbarch method unwind_pc. */ 369 370 static CORE_ADDR 371 tic6x_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) 372 { 373 gdb_byte buf[8]; 374 375 frame_unwind_register (next_frame, TIC6X_PC_REGNUM, buf); 376 return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr); 377 } 378 379 /* Frame base handling. */ 380 381 static struct tic6x_unwind_cache* 382 tic6x_frame_unwind_cache (struct frame_info *this_frame, 383 void **this_prologue_cache) 384 { 385 struct gdbarch *gdbarch = get_frame_arch (this_frame); 386 CORE_ADDR current_pc; 387 struct tic6x_unwind_cache *cache; 388 389 if (*this_prologue_cache) 390 return (struct tic6x_unwind_cache *) *this_prologue_cache; 391 392 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 393 (*this_prologue_cache) = cache; 394 395 cache->return_regnum = TIC6X_RA_REGNUM; 396 397 tic6x_setup_default (cache); 398 399 cache->pc = get_frame_func (this_frame); 400 current_pc = get_frame_pc (this_frame); 401 402 /* Prologue analysis does the rest... */ 403 if (cache->pc != 0) 404 tic6x_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame); 405 406 return cache; 407 } 408 409 static void 410 tic6x_frame_this_id (struct frame_info *this_frame, void **this_cache, 411 struct frame_id *this_id) 412 { 413 struct tic6x_unwind_cache *cache = 414 tic6x_frame_unwind_cache (this_frame, this_cache); 415 416 /* This marks the outermost frame. */ 417 if (cache->base == 0) 418 return; 419 420 (*this_id) = frame_id_build (cache->cfa, cache->pc); 421 } 422 423 static struct value * 424 tic6x_frame_prev_register (struct frame_info *this_frame, void **this_cache, 425 int regnum) 426 { 427 struct tic6x_unwind_cache *cache = 428 tic6x_frame_unwind_cache (this_frame, this_cache); 429 430 gdb_assert (regnum >= 0); 431 432 /* The PC of the previous frame is stored in the RA register of 433 the current frame. Frob regnum so that we pull the value from 434 the correct place. */ 435 if (regnum == TIC6X_PC_REGNUM) 436 regnum = cache->return_regnum; 437 438 if (regnum == TIC6X_SP_REGNUM && cache->cfa) 439 return frame_unwind_got_constant (this_frame, regnum, cache->cfa); 440 441 /* If we've worked out where a register is stored then load it from 442 there. */ 443 if (regnum < TIC6X_NUM_CORE_REGS && cache->reg_saved[regnum] != -1) 444 return frame_unwind_got_memory (this_frame, regnum, 445 cache->reg_saved[regnum]); 446 447 return frame_unwind_got_register (this_frame, regnum, regnum); 448 } 449 450 static CORE_ADDR 451 tic6x_frame_base_address (struct frame_info *this_frame, void **this_cache) 452 { 453 struct tic6x_unwind_cache *info 454 = tic6x_frame_unwind_cache (this_frame, this_cache); 455 return info->base; 456 } 457 458 static const struct frame_unwind tic6x_frame_unwind = 459 { 460 NORMAL_FRAME, 461 default_frame_unwind_stop_reason, 462 tic6x_frame_this_id, 463 tic6x_frame_prev_register, 464 NULL, 465 default_frame_sniffer 466 }; 467 468 static const struct frame_base tic6x_frame_base = 469 { 470 &tic6x_frame_unwind, 471 tic6x_frame_base_address, 472 tic6x_frame_base_address, 473 tic6x_frame_base_address 474 }; 475 476 477 static struct tic6x_unwind_cache * 478 tic6x_make_stub_cache (struct frame_info *this_frame) 479 { 480 struct tic6x_unwind_cache *cache; 481 482 cache = FRAME_OBSTACK_ZALLOC (struct tic6x_unwind_cache); 483 484 cache->return_regnum = TIC6X_RA_REGNUM; 485 486 tic6x_setup_default (cache); 487 488 cache->cfa = get_frame_register_unsigned (this_frame, TIC6X_SP_REGNUM); 489 490 return cache; 491 } 492 493 static void 494 tic6x_stub_this_id (struct frame_info *this_frame, void **this_cache, 495 struct frame_id *this_id) 496 { 497 struct tic6x_unwind_cache *cache; 498 499 if (*this_cache == NULL) 500 *this_cache = tic6x_make_stub_cache (this_frame); 501 cache = (struct tic6x_unwind_cache *) *this_cache; 502 503 *this_id = frame_id_build (cache->cfa, get_frame_pc (this_frame)); 504 } 505 506 static int 507 tic6x_stub_unwind_sniffer (const struct frame_unwind *self, 508 struct frame_info *this_frame, 509 void **this_prologue_cache) 510 { 511 CORE_ADDR addr_in_block; 512 513 addr_in_block = get_frame_address_in_block (this_frame); 514 if (in_plt_section (addr_in_block)) 515 return 1; 516 517 return 0; 518 } 519 520 static const struct frame_unwind tic6x_stub_unwind = 521 { 522 NORMAL_FRAME, 523 default_frame_unwind_stop_reason, 524 tic6x_stub_this_id, 525 tic6x_frame_prev_register, 526 NULL, 527 tic6x_stub_unwind_sniffer 528 }; 529 530 /* Return the instruction on address PC. */ 531 532 static unsigned long 533 tic6x_fetch_instruction (struct gdbarch *gdbarch, CORE_ADDR pc) 534 { 535 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 536 return read_memory_unsigned_integer (pc, TIC6X_OPCODE_SIZE, byte_order); 537 } 538 539 /* Compute the condition of INST if it is a conditional instruction. Always 540 return 1 if INST is not a conditional instruction. */ 541 542 static int 543 tic6x_condition_true (struct regcache *regcache, unsigned long inst) 544 { 545 int register_number; 546 int register_value; 547 static const int register_numbers[8] = { -1, 16, 17, 18, 1, 2, 0, -1 }; 548 549 register_number = register_numbers[(inst >> 29) & 7]; 550 if (register_number == -1) 551 return 1; 552 553 register_value = regcache_raw_get_signed (regcache, register_number); 554 if ((inst & 0x10000000) != 0) 555 return register_value == 0; 556 return register_value != 0; 557 } 558 559 /* Get the register number by decoding raw bits REG, SIDE, and CROSSPATH in 560 instruction. */ 561 562 static int 563 tic6x_register_number (int reg, int side, int crosspath) 564 { 565 int r = (reg & 15) | ((crosspath ^ side) << 4); 566 if ((reg & 16) != 0) /* A16 - A31, B16 - B31 */ 567 r += 37; 568 return r; 569 } 570 571 static int 572 tic6x_extract_signed_field (int value, int low_bit, int bits) 573 { 574 int mask = (1 << bits) - 1; 575 int r = (value >> low_bit) & mask; 576 if ((r & (1 << (bits - 1))) != 0) 577 r -= mask + 1; 578 return r; 579 } 580 581 /* Determine where to set a single step breakpoint. */ 582 583 static CORE_ADDR 584 tic6x_get_next_pc (struct regcache *regcache, CORE_ADDR pc) 585 { 586 struct gdbarch *gdbarch = regcache->arch (); 587 unsigned long inst; 588 int register_number; 589 int last = 0; 590 591 do 592 { 593 inst = tic6x_fetch_instruction (gdbarch, pc); 594 595 last = !(inst & 1); 596 597 if (inst == TIC6X_INST_SWE) 598 { 599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 600 601 if (tdep->syscall_next_pc != NULL) 602 return tdep->syscall_next_pc (get_current_frame ()); 603 } 604 605 if (tic6x_condition_true (regcache, inst)) 606 { 607 if ((inst & 0x0000007c) == 0x00000010) 608 { 609 /* B with displacement */ 610 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 611 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 612 break; 613 } 614 if ((inst & 0x0f83effc) == 0x00000360) 615 { 616 /* B with register */ 617 618 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 619 INST_S_BIT (inst), 620 INST_X_BIT (inst)); 621 pc = regcache_raw_get_unsigned (regcache, register_number); 622 break; 623 } 624 if ((inst & 0x00001ffc) == 0x00001020) 625 { 626 /* BDEC */ 627 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 628 INST_S_BIT (inst), 0); 629 if (regcache_raw_get_signed (regcache, register_number) >= 0) 630 { 631 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 632 pc += tic6x_extract_signed_field (inst, 7, 10) << 2; 633 } 634 break; 635 } 636 if ((inst & 0x00001ffc) == 0x00000120) 637 { 638 /* BNOP with displacement */ 639 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 640 pc += tic6x_extract_signed_field (inst, 16, 12) << 2; 641 break; 642 } 643 if ((inst & 0x0f830ffe) == 0x00800362) 644 { 645 /* BNOP with register */ 646 register_number = tic6x_register_number ((inst >> 18) & 0x1f, 647 1, INST_X_BIT (inst)); 648 pc = regcache_raw_get_unsigned (regcache, register_number); 649 break; 650 } 651 if ((inst & 0x00001ffc) == 0x00000020) 652 { 653 /* BPOS */ 654 register_number = tic6x_register_number ((inst >> 23) & 0x1f, 655 INST_S_BIT (inst), 0); 656 if (regcache_raw_get_signed (regcache, register_number) >= 0) 657 { 658 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 659 pc += tic6x_extract_signed_field (inst, 13, 10) << 2; 660 } 661 break; 662 } 663 if ((inst & 0xf000007c) == 0x10000010) 664 { 665 /* CALLP */ 666 pc &= ~(TIC6X_FETCH_PACKET_SIZE - 1); 667 pc += tic6x_extract_signed_field (inst, 7, 21) << 2; 668 break; 669 } 670 } 671 pc += TIC6X_OPCODE_SIZE; 672 } 673 while (!last); 674 return pc; 675 } 676 677 /* This is the implementation of gdbarch method software_single_step. */ 678 679 static std::vector<CORE_ADDR> 680 tic6x_software_single_step (struct regcache *regcache) 681 { 682 CORE_ADDR next_pc = tic6x_get_next_pc (regcache, regcache_read_pc (regcache)); 683 684 return {next_pc}; 685 } 686 687 /* This is the implementation of gdbarch method frame_align. */ 688 689 static CORE_ADDR 690 tic6x_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) 691 { 692 return align_down (addr, 8); 693 } 694 695 /* Given a return value in REGCACHE with a type VALTYPE, extract and copy its 696 value into VALBUF. */ 697 698 static void 699 tic6x_extract_return_value (struct type *valtype, struct regcache *regcache, 700 enum bfd_endian byte_order, gdb_byte *valbuf) 701 { 702 int len = TYPE_LENGTH (valtype); 703 704 /* pointer types are returned in register A4, 705 up to 32-bit types in A4 706 up to 64-bit types in A5:A4 */ 707 if (len <= 4) 708 { 709 /* In big-endian, 710 - one-byte structure or union occupies the LSB of single even register. 711 - for two-byte structure or union, the first byte occupies byte 1 of 712 register and the second byte occupies byte 0. 713 so, we read the contents in VAL from the LSBs of register. */ 714 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 715 regcache->cooked_read_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf); 716 else 717 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf); 718 } 719 else if (len <= 8) 720 { 721 /* For a 5-8 byte structure or union in big-endian, the first byte 722 occupies byte 3 (the MSB) of the upper (odd) register and the 723 remaining bytes fill the decreasingly significant bytes. 5-7 724 byte structures or unions have padding in the LSBs of the 725 lower (even) register. */ 726 if (byte_order == BFD_ENDIAN_BIG) 727 { 728 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf + 4); 729 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf); 730 } 731 else 732 { 733 regcache->cooked_read (TIC6X_A4_REGNUM, valbuf); 734 regcache->cooked_read (TIC6X_A5_REGNUM, valbuf + 4); 735 } 736 } 737 } 738 739 /* Write into appropriate registers a function return value 740 of type TYPE, given in virtual format. */ 741 742 static void 743 tic6x_store_return_value (struct type *valtype, struct regcache *regcache, 744 enum bfd_endian byte_order, const gdb_byte *valbuf) 745 { 746 int len = TYPE_LENGTH (valtype); 747 748 /* return values of up to 8 bytes are returned in A5:A4 */ 749 750 if (len <= 4) 751 { 752 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 753 regcache->cooked_write_part (TIC6X_A4_REGNUM, 4 - len, len, valbuf); 754 else 755 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf); 756 } 757 else if (len <= 8) 758 { 759 if (byte_order == BFD_ENDIAN_BIG) 760 { 761 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf + 4); 762 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf); 763 } 764 else 765 { 766 regcache->cooked_write (TIC6X_A4_REGNUM, valbuf); 767 regcache->cooked_write (TIC6X_A5_REGNUM, valbuf + 4); 768 } 769 } 770 } 771 772 /* This is the implementation of gdbarch method return_value. */ 773 774 static enum return_value_convention 775 tic6x_return_value (struct gdbarch *gdbarch, struct value *function, 776 struct type *type, struct regcache *regcache, 777 gdb_byte *readbuf, const gdb_byte *writebuf) 778 { 779 /* In C++, when function returns an object, even its size is small 780 enough, it stii has to be passed via reference, pointed by register 781 A3. */ 782 if (current_language->la_language == language_cplus) 783 { 784 if (type != NULL) 785 { 786 type = check_typedef (type); 787 if (!(language_pass_by_reference (type).trivially_copyable)) 788 return RETURN_VALUE_STRUCT_CONVENTION; 789 } 790 } 791 792 if (TYPE_LENGTH (type) > 8) 793 return RETURN_VALUE_STRUCT_CONVENTION; 794 795 if (readbuf) 796 tic6x_extract_return_value (type, regcache, 797 gdbarch_byte_order (gdbarch), readbuf); 798 if (writebuf) 799 tic6x_store_return_value (type, regcache, 800 gdbarch_byte_order (gdbarch), writebuf); 801 802 return RETURN_VALUE_REGISTER_CONVENTION; 803 } 804 805 /* Get the alignment requirement of TYPE. */ 806 807 static int 808 tic6x_arg_type_alignment (struct type *type) 809 { 810 int len = TYPE_LENGTH (check_typedef (type)); 811 enum type_code typecode = check_typedef (type)->code (); 812 813 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 814 { 815 /* The stack alignment of a structure (and union) passed by value is the 816 smallest power of two greater than or equal to its size. 817 This cannot exceed 8 bytes, which is the largest allowable size for 818 a structure passed by value. */ 819 820 if (len <= 2) 821 return len; 822 else if (len <= 4) 823 return 4; 824 else if (len <= 8) 825 return 8; 826 else 827 gdb_assert_not_reached ("unexpected length of data"); 828 } 829 else 830 { 831 if (len <= 4) 832 return 4; 833 else if (len == 8) 834 { 835 if (typecode == TYPE_CODE_COMPLEX) 836 return 4; 837 else 838 return 8; 839 } 840 else if (len == 16) 841 { 842 if (typecode == TYPE_CODE_COMPLEX) 843 return 8; 844 else 845 return 16; 846 } 847 else 848 internal_error (__FILE__, __LINE__, _("unexpected length %d of type"), 849 len); 850 } 851 } 852 853 /* This is the implementation of gdbarch method push_dummy_call. */ 854 855 static CORE_ADDR 856 tic6x_push_dummy_call (struct gdbarch *gdbarch, struct value *function, 857 struct regcache *regcache, CORE_ADDR bp_addr, 858 int nargs, struct value **args, CORE_ADDR sp, 859 function_call_return_method return_method, 860 CORE_ADDR struct_addr) 861 { 862 int argreg = 0; 863 int argnum; 864 int stack_offset = 4; 865 int references_offset = 4; 866 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 867 struct type *func_type = value_type (function); 868 /* The first arg passed on stack. Mostly the first 10 args are passed by 869 registers. */ 870 int first_arg_on_stack = 10; 871 872 /* Set the return address register to point to the entry point of 873 the program, where a breakpoint lies in wait. */ 874 regcache_cooked_write_unsigned (regcache, TIC6X_RA_REGNUM, bp_addr); 875 876 /* The caller must pass an argument in A3 containing a destination address 877 for the returned value. The callee returns the object by copying it to 878 the address in A3. */ 879 if (return_method == return_method_struct) 880 regcache_cooked_write_unsigned (regcache, 3, struct_addr); 881 882 /* Determine the type of this function. */ 883 func_type = check_typedef (func_type); 884 if (func_type->code () == TYPE_CODE_PTR) 885 func_type = check_typedef (TYPE_TARGET_TYPE (func_type)); 886 887 gdb_assert (func_type->code () == TYPE_CODE_FUNC 888 || func_type->code () == TYPE_CODE_METHOD); 889 890 /* For a variadic C function, the last explicitly declared argument and all 891 remaining arguments are passed on the stack. */ 892 if (TYPE_VARARGS (func_type)) 893 first_arg_on_stack = func_type->num_fields () - 1; 894 895 /* Now make space on the stack for the args. */ 896 for (argnum = 0; argnum < nargs; argnum++) 897 { 898 int len = align_up (TYPE_LENGTH (value_type (args[argnum])), 4); 899 if (argnum >= 10 - argreg) 900 references_offset += len; 901 stack_offset += len; 902 } 903 sp -= stack_offset; 904 /* SP should be 8-byte aligned, see C6000 ABI section 4.4.1 905 Stack Alignment. */ 906 sp = align_down (sp, 8); 907 stack_offset = 4; 908 909 /* Now load as many as possible of the first arguments into 910 registers, and push the rest onto the stack. Loop through args 911 from first to last. */ 912 for (argnum = 0; argnum < nargs; argnum++) 913 { 914 const gdb_byte *val; 915 struct value *arg = args[argnum]; 916 struct type *arg_type = check_typedef (value_type (arg)); 917 int len = TYPE_LENGTH (arg_type); 918 enum type_code typecode = arg_type->code (); 919 920 val = value_contents (arg); 921 922 /* Copy the argument to general registers or the stack in 923 register-sized pieces. */ 924 if (argreg < first_arg_on_stack) 925 { 926 if (len <= 4) 927 { 928 if (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION) 929 { 930 /* In big-endian, 931 - one-byte structure or union occupies the LSB of single 932 even register. 933 - for two-byte structure or union, the first byte 934 occupies byte 1 of register and the second byte occupies 935 byte 0. 936 so, we write the contents in VAL to the lsp of 937 register. */ 938 if (len < 3 && byte_order == BFD_ENDIAN_BIG) 939 regcache->cooked_write_part (arg_regs[argreg], 4 - len, len, 940 val); 941 else 942 regcache->cooked_write (arg_regs[argreg], val); 943 } 944 else 945 { 946 /* The argument is being passed by value in a single 947 register. */ 948 CORE_ADDR regval = extract_unsigned_integer (val, len, 949 byte_order); 950 951 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 952 regval); 953 } 954 } 955 else 956 { 957 if (len <= 8) 958 { 959 if (typecode == TYPE_CODE_STRUCT 960 || typecode == TYPE_CODE_UNION) 961 { 962 /* For a 5-8 byte structure or union in big-endian, the 963 first byte occupies byte 3 (the MSB) of the upper (odd) 964 register and the remaining bytes fill the decreasingly 965 significant bytes. 5-7 byte structures or unions have 966 padding in the LSBs of the lower (even) register. */ 967 if (byte_order == BFD_ENDIAN_BIG) 968 { 969 regcache->cooked_write (arg_regs[argreg] + 1, val); 970 regcache->cooked_write_part (arg_regs[argreg], 0, 971 len - 4, val + 4); 972 } 973 else 974 { 975 regcache->cooked_write (arg_regs[argreg], val); 976 regcache->cooked_write_part (arg_regs[argreg] + 1, 0, 977 len - 4, val + 4); 978 } 979 } 980 else 981 { 982 /* The argument is being passed by value in a pair of 983 registers. */ 984 ULONGEST regval = extract_unsigned_integer (val, len, 985 byte_order); 986 987 regcache_cooked_write_unsigned (regcache, 988 arg_regs[argreg], 989 regval); 990 regcache_cooked_write_unsigned (regcache, 991 arg_regs[argreg] + 1, 992 regval >> 32); 993 } 994 } 995 else 996 { 997 /* The argument is being passed by reference in a single 998 register. */ 999 CORE_ADDR addr; 1000 1001 /* It is not necessary to adjust REFERENCES_OFFSET to 1002 8-byte aligned in some cases, in which 4-byte alignment 1003 is sufficient. For simplicity, we adjust 1004 REFERENCES_OFFSET to 8-byte aligned. */ 1005 references_offset = align_up (references_offset, 8); 1006 1007 addr = sp + references_offset; 1008 write_memory (addr, val, len); 1009 references_offset += align_up (len, 4); 1010 regcache_cooked_write_unsigned (regcache, arg_regs[argreg], 1011 addr); 1012 } 1013 } 1014 argreg++; 1015 } 1016 else 1017 { 1018 /* The argument is being passed on the stack. */ 1019 CORE_ADDR addr; 1020 1021 /* There are six different cases of alignment, and these rules can 1022 be found in tic6x_arg_type_alignment: 1023 1024 1) 4-byte aligned if size is less than or equal to 4 byte, such 1025 as short, int, struct, union etc. 1026 2) 8-byte aligned if size is less than or equal to 8-byte, such 1027 as double, long long, 1028 3) 4-byte aligned if it is of type _Complex float, even its size 1029 is 8-byte. 1030 4) 8-byte aligned if it is of type _Complex double or _Complex 1031 long double, even its size is 16-byte. Because, the address of 1032 variable is passed as reference. 1033 5) struct and union larger than 8-byte are passed by reference, so 1034 it is 4-byte aligned. 1035 6) struct and union of size between 4 byte and 8 byte varies. 1036 alignment of struct variable is the alignment of its first field, 1037 while alignment of union variable is the max of all its fields' 1038 alignment. */ 1039 1040 if (len <= 4) 1041 ; /* Default is 4-byte aligned. Nothing to be done. */ 1042 else if (len <= 8) 1043 stack_offset = align_up (stack_offset, 1044 tic6x_arg_type_alignment (arg_type)); 1045 else if (len == 16) 1046 { 1047 /* _Complex double or _Complex long double */ 1048 if (typecode == TYPE_CODE_COMPLEX) 1049 { 1050 /* The argument is being passed by reference on stack. */ 1051 references_offset = align_up (references_offset, 8); 1052 1053 addr = sp + references_offset; 1054 /* Store variable on stack. */ 1055 write_memory (addr, val, len); 1056 1057 references_offset += align_up (len, 4); 1058 1059 /* Pass the address of variable on stack as reference. */ 1060 store_unsigned_integer ((gdb_byte *) val, 4, byte_order, 1061 addr); 1062 len = 4; 1063 1064 } 1065 else 1066 internal_error (__FILE__, __LINE__, 1067 _("unexpected type %d of arg %d"), 1068 typecode, argnum); 1069 } 1070 else 1071 internal_error (__FILE__, __LINE__, 1072 _("unexpected length %d of arg %d"), len, argnum); 1073 1074 addr = sp + stack_offset; 1075 write_memory (addr, val, len); 1076 stack_offset += align_up (len, 4); 1077 } 1078 } 1079 1080 regcache_cooked_write_signed (regcache, TIC6X_SP_REGNUM, sp); 1081 1082 /* Return adjusted stack pointer. */ 1083 return sp; 1084 } 1085 1086 /* This is the implementation of gdbarch method stack_frame_destroyed_p. */ 1087 1088 static int 1089 tic6x_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) 1090 { 1091 unsigned long inst = tic6x_fetch_instruction (gdbarch, pc); 1092 /* Normally, the epilogue is composed by instruction `b .S2 b3'. */ 1093 if ((inst & 0x0f83effc) == 0x360) 1094 { 1095 unsigned int src2 = tic6x_register_number ((inst >> 18) & 0x1f, 1096 INST_S_BIT (inst), 1097 INST_X_BIT (inst)); 1098 if (src2 == TIC6X_RA_REGNUM) 1099 return 1; 1100 } 1101 1102 return 0; 1103 } 1104 1105 /* This is the implementation of gdbarch method get_longjmp_target. */ 1106 1107 static int 1108 tic6x_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc) 1109 { 1110 struct gdbarch *gdbarch = get_frame_arch (frame); 1111 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 1112 CORE_ADDR jb_addr; 1113 gdb_byte buf[4]; 1114 1115 /* JMP_BUF is passed by reference in A4. */ 1116 jb_addr = get_frame_register_unsigned (frame, 4); 1117 1118 /* JMP_BUF contains 13 elements of type int, and return address is stored 1119 in the last slot. */ 1120 if (target_read_memory (jb_addr + 12 * 4, buf, 4)) 1121 return 0; 1122 1123 *pc = extract_unsigned_integer (buf, 4, byte_order); 1124 1125 return 1; 1126 } 1127 1128 /* This is the implementation of gdbarch method 1129 return_in_first_hidden_param_p. */ 1130 1131 static int 1132 tic6x_return_in_first_hidden_param_p (struct gdbarch *gdbarch, 1133 struct type *type) 1134 { 1135 return 0; 1136 } 1137 1138 static struct gdbarch * 1139 tic6x_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) 1140 { 1141 struct gdbarch *gdbarch; 1142 struct gdbarch_tdep *tdep; 1143 struct tdesc_arch_data *tdesc_data = NULL; 1144 const struct target_desc *tdesc = info.target_desc; 1145 int has_gp = 0; 1146 1147 /* Check any target description for validity. */ 1148 if (tdesc_has_registers (tdesc)) 1149 { 1150 const struct tdesc_feature *feature; 1151 int valid_p, i; 1152 1153 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.core"); 1154 1155 if (feature == NULL) 1156 return NULL; 1157 1158 tdesc_data = tdesc_data_alloc (); 1159 1160 valid_p = 1; 1161 for (i = 0; i < 32; i++) /* A0 - A15, B0 - B15 */ 1162 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, 1163 tic6x_register_names[i]); 1164 1165 /* CSR */ 1166 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1167 tic6x_register_names[TIC6X_CSR_REGNUM]); 1168 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1169 tic6x_register_names[TIC6X_PC_REGNUM]); 1170 1171 if (!valid_p) 1172 { 1173 tdesc_data_cleanup (tdesc_data); 1174 return NULL; 1175 } 1176 1177 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.gp"); 1178 if (feature) 1179 { 1180 int j = 0; 1181 static const char *const gp[] = 1182 { 1183 "A16", "A17", "A18", "A19", "A20", "A21", "A22", "A23", 1184 "A24", "A25", "A26", "A27", "A28", "A29", "A30", "A31", 1185 "B16", "B17", "B18", "B19", "B20", "B21", "B22", "B23", 1186 "B24", "B25", "B26", "B27", "B28", "B29", "B30", "B31", 1187 }; 1188 1189 has_gp = 1; 1190 valid_p = 1; 1191 for (j = 0; j < 32; j++) /* A16 - A31, B16 - B31 */ 1192 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, 1193 gp[j]); 1194 1195 if (!valid_p) 1196 { 1197 tdesc_data_cleanup (tdesc_data); 1198 return NULL; 1199 } 1200 } 1201 1202 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.tic6x.c6xp"); 1203 if (feature) 1204 { 1205 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "TSR"); 1206 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "ILC"); 1207 valid_p &= tdesc_numbered_register (feature, tdesc_data, i++, "RILC"); 1208 1209 if (!valid_p) 1210 { 1211 tdesc_data_cleanup (tdesc_data); 1212 return NULL; 1213 } 1214 } 1215 1216 } 1217 1218 /* Find a candidate among extant architectures. */ 1219 for (arches = gdbarch_list_lookup_by_info (arches, &info); 1220 arches != NULL; 1221 arches = gdbarch_list_lookup_by_info (arches->next, &info)) 1222 { 1223 tdep = gdbarch_tdep (arches->gdbarch); 1224 1225 if (has_gp != tdep->has_gp) 1226 continue; 1227 1228 if (tdep && tdep->breakpoint) 1229 return arches->gdbarch; 1230 } 1231 1232 tdep = XCNEW (struct gdbarch_tdep); 1233 1234 tdep->has_gp = has_gp; 1235 gdbarch = gdbarch_alloc (&info, tdep); 1236 1237 /* Data type sizes. */ 1238 set_gdbarch_ptr_bit (gdbarch, 32); 1239 set_gdbarch_addr_bit (gdbarch, 32); 1240 set_gdbarch_short_bit (gdbarch, 16); 1241 set_gdbarch_int_bit (gdbarch, 32); 1242 set_gdbarch_long_bit (gdbarch, 32); 1243 set_gdbarch_long_long_bit (gdbarch, 64); 1244 set_gdbarch_float_bit (gdbarch, 32); 1245 set_gdbarch_double_bit (gdbarch, 64); 1246 1247 set_gdbarch_float_format (gdbarch, floatformats_ieee_single); 1248 set_gdbarch_double_format (gdbarch, floatformats_ieee_double); 1249 1250 /* The register set. */ 1251 set_gdbarch_num_regs (gdbarch, TIC6X_NUM_REGS); 1252 set_gdbarch_sp_regnum (gdbarch, TIC6X_SP_REGNUM); 1253 set_gdbarch_pc_regnum (gdbarch, TIC6X_PC_REGNUM); 1254 1255 set_gdbarch_register_name (gdbarch, tic6x_register_name); 1256 set_gdbarch_register_type (gdbarch, tic6x_register_type); 1257 1258 set_gdbarch_inner_than (gdbarch, core_addr_lessthan); 1259 1260 set_gdbarch_skip_prologue (gdbarch, tic6x_skip_prologue); 1261 set_gdbarch_breakpoint_kind_from_pc (gdbarch, 1262 tic6x_breakpoint_kind_from_pc); 1263 set_gdbarch_sw_breakpoint_from_kind (gdbarch, 1264 tic6x_sw_breakpoint_from_kind); 1265 1266 set_gdbarch_unwind_pc (gdbarch, tic6x_unwind_pc); 1267 1268 /* Unwinding. */ 1269 dwarf2_append_unwinders (gdbarch); 1270 1271 frame_unwind_append_unwinder (gdbarch, &tic6x_stub_unwind); 1272 frame_unwind_append_unwinder (gdbarch, &tic6x_frame_unwind); 1273 frame_base_set_default (gdbarch, &tic6x_frame_base); 1274 1275 dwarf2_frame_set_init_reg (gdbarch, tic6x_dwarf2_frame_init_reg); 1276 1277 /* Single stepping. */ 1278 set_gdbarch_software_single_step (gdbarch, tic6x_software_single_step); 1279 1280 /* Call dummy code. */ 1281 set_gdbarch_frame_align (gdbarch, tic6x_frame_align); 1282 1283 set_gdbarch_return_value (gdbarch, tic6x_return_value); 1284 1285 /* Enable inferior call support. */ 1286 set_gdbarch_push_dummy_call (gdbarch, tic6x_push_dummy_call); 1287 1288 set_gdbarch_get_longjmp_target (gdbarch, tic6x_get_longjmp_target); 1289 1290 set_gdbarch_stack_frame_destroyed_p (gdbarch, tic6x_stack_frame_destroyed_p); 1291 1292 set_gdbarch_return_in_first_hidden_param_p (gdbarch, 1293 tic6x_return_in_first_hidden_param_p); 1294 1295 /* Hook in ABI-specific overrides, if they have been registered. */ 1296 gdbarch_init_osabi (info, gdbarch); 1297 1298 if (tdesc_data) 1299 tdesc_use_registers (gdbarch, tdesc, tdesc_data); 1300 1301 return gdbarch; 1302 } 1303 1304 void _initialize_tic6x_tdep (); 1305 void 1306 _initialize_tic6x_tdep () 1307 { 1308 register_gdbarch_init (bfd_arch_tic6x, tic6x_gdbarch_init); 1309 } 1310