1 /* Handle SVR4 shared libraries for GDB, the GNU Debugger. 2 3 Copyright (C) 1990-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 22 #include "elf/external.h" 23 #include "elf/common.h" 24 #include "elf/mips.h" 25 26 #include "symtab.h" 27 #include "bfd.h" 28 #include "symfile.h" 29 #include "objfiles.h" 30 #include "gdbcore.h" 31 #include "target.h" 32 #include "inferior.h" 33 #include "infrun.h" 34 #include "regcache.h" 35 #include "gdbthread.h" 36 #include "observer.h" 37 38 #include "solist.h" 39 #include "solib.h" 40 #include "solib-svr4.h" 41 42 #include "bfd-target.h" 43 #include "elf-bfd.h" 44 #include "exec.h" 45 #include "auxv.h" 46 #include "gdb_bfd.h" 47 #include "probe.h" 48 49 static struct link_map_offsets *svr4_fetch_link_map_offsets (void); 50 static int svr4_have_link_map_offsets (void); 51 static void svr4_relocate_main_executable (void); 52 static void svr4_free_library_list (void *p_list); 53 54 /* Link map info to include in an allocated so_list entry. */ 55 56 struct lm_info 57 { 58 /* Amount by which addresses in the binary should be relocated to 59 match the inferior. The direct inferior value is L_ADDR_INFERIOR. 60 When prelinking is involved and the prelink base address changes, 61 we may need a different offset - the recomputed offset is in L_ADDR. 62 It is commonly the same value. It is cached as we want to warn about 63 the difference and compute it only once. L_ADDR is valid 64 iff L_ADDR_P. */ 65 CORE_ADDR l_addr, l_addr_inferior; 66 unsigned int l_addr_p : 1; 67 68 /* The target location of lm. */ 69 CORE_ADDR lm_addr; 70 71 /* Values read in from inferior's fields of the same name. */ 72 CORE_ADDR l_ld, l_next, l_prev, l_name; 73 }; 74 75 /* On SVR4 systems, a list of symbols in the dynamic linker where 76 GDB can try to place a breakpoint to monitor shared library 77 events. 78 79 If none of these symbols are found, or other errors occur, then 80 SVR4 systems will fall back to using a symbol as the "startup 81 mapping complete" breakpoint address. */ 82 83 static const char * const solib_break_names[] = 84 { 85 "r_debug_state", 86 "_r_debug_state", 87 "_dl_debug_state", 88 "rtld_db_dlactivity", 89 "__dl_rtld_db_dlactivity", 90 "_rtld_debug_state", 91 92 NULL 93 }; 94 95 static const char * const bkpt_names[] = 96 { 97 "_start", 98 "__start", 99 "main", 100 NULL 101 }; 102 103 static const char * const main_name_list[] = 104 { 105 "main_$main", 106 NULL 107 }; 108 109 /* What to do when a probe stop occurs. */ 110 111 enum probe_action 112 { 113 /* Something went seriously wrong. Stop using probes and 114 revert to using the older interface. */ 115 PROBES_INTERFACE_FAILED, 116 117 /* No action is required. The shared object list is still 118 valid. */ 119 DO_NOTHING, 120 121 /* The shared object list should be reloaded entirely. */ 122 FULL_RELOAD, 123 124 /* Attempt to incrementally update the shared object list. If 125 the update fails or is not possible, fall back to reloading 126 the list in full. */ 127 UPDATE_OR_RELOAD, 128 }; 129 130 /* A probe's name and its associated action. */ 131 132 struct probe_info 133 { 134 /* The name of the probe. */ 135 const char *name; 136 137 /* What to do when a probe stop occurs. */ 138 enum probe_action action; 139 }; 140 141 /* A list of named probes and their associated actions. If all 142 probes are present in the dynamic linker then the probes-based 143 interface will be used. */ 144 145 static const struct probe_info probe_info[] = 146 { 147 { "init_start", DO_NOTHING }, 148 { "init_complete", FULL_RELOAD }, 149 { "map_start", DO_NOTHING }, 150 { "map_failed", DO_NOTHING }, 151 { "reloc_complete", UPDATE_OR_RELOAD }, 152 { "unmap_start", DO_NOTHING }, 153 { "unmap_complete", FULL_RELOAD }, 154 }; 155 156 #define NUM_PROBES ARRAY_SIZE (probe_info) 157 158 /* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent 159 the same shared library. */ 160 161 static int 162 svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name) 163 { 164 if (strcmp (gdb_so_name, inferior_so_name) == 0) 165 return 1; 166 167 /* On Solaris, when starting inferior we think that dynamic linker is 168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries 169 contains /lib/ld.so.1. Sometimes one file is a link to another, but 170 sometimes they have identical content, but are not linked to each 171 other. We don't restrict this check for Solaris, but the chances 172 of running into this situation elsewhere are very low. */ 173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0 174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0) 175 return 1; 176 177 /* Similarly, we observed the same issue with sparc64, but with 178 different locations. */ 179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0 180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0) 181 return 1; 182 183 return 0; 184 } 185 186 static int 187 svr4_same (struct so_list *gdb, struct so_list *inferior) 188 { 189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name)); 190 } 191 192 static struct lm_info * 193 lm_info_read (CORE_ADDR lm_addr) 194 { 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 196 gdb_byte *lm; 197 struct lm_info *lm_info; 198 struct cleanup *back_to; 199 200 lm = (gdb_byte *) xmalloc (lmo->link_map_size); 201 back_to = make_cleanup (xfree, lm); 202 203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0) 204 { 205 warning (_("Error reading shared library list entry at %s"), 206 paddress (target_gdbarch (), lm_addr)), 207 lm_info = NULL; 208 } 209 else 210 { 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 212 213 lm_info = XCNEW (struct lm_info); 214 lm_info->lm_addr = lm_addr; 215 216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset], 217 ptr_type); 218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type); 219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset], 220 ptr_type); 221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset], 222 ptr_type); 223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset], 224 ptr_type); 225 } 226 227 do_cleanups (back_to); 228 229 return lm_info; 230 } 231 232 static int 233 has_lm_dynamic_from_link_map (void) 234 { 235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 236 237 return lmo->l_ld_offset >= 0; 238 } 239 240 static CORE_ADDR 241 lm_addr_check (const struct so_list *so, bfd *abfd) 242 { 243 if (!so->lm_info->l_addr_p) 244 { 245 struct bfd_section *dyninfo_sect; 246 CORE_ADDR l_addr, l_dynaddr, dynaddr; 247 248 l_addr = so->lm_info->l_addr_inferior; 249 250 if (! abfd || ! has_lm_dynamic_from_link_map ()) 251 goto set_addr; 252 253 l_dynaddr = so->lm_info->l_ld; 254 255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic"); 256 if (dyninfo_sect == NULL) 257 goto set_addr; 258 259 dynaddr = bfd_section_vma (abfd, dyninfo_sect); 260 261 if (dynaddr + l_addr != l_dynaddr) 262 { 263 CORE_ADDR align = 0x1000; 264 CORE_ADDR minpagesize = align; 265 266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour) 267 { 268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header; 269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; 270 int i; 271 272 align = 1; 273 274 for (i = 0; i < ehdr->e_phnum; i++) 275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align) 276 align = phdr[i].p_align; 277 278 minpagesize = get_elf_backend_data (abfd)->minpagesize; 279 } 280 281 /* Turn it into a mask. */ 282 align--; 283 284 /* If the changes match the alignment requirements, we 285 assume we're using a core file that was generated by the 286 same binary, just prelinked with a different base offset. 287 If it doesn't match, we may have a different binary, the 288 same binary with the dynamic table loaded at an unrelated 289 location, or anything, really. To avoid regressions, 290 don't adjust the base offset in the latter case, although 291 odds are that, if things really changed, debugging won't 292 quite work. 293 294 One could expect more the condition 295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0) 296 but the one below is relaxed for PPC. The PPC kernel supports 297 either 4k or 64k page sizes. To be prepared for 64k pages, 298 PPC ELF files are built using an alignment requirement of 64k. 299 However, when running on a kernel supporting 4k pages, the memory 300 mapping of the library may not actually happen on a 64k boundary! 301 302 (In the usual case where (l_addr & align) == 0, this check is 303 equivalent to the possibly expected check above.) 304 305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */ 306 307 l_addr = l_dynaddr - dynaddr; 308 309 if ((l_addr & (minpagesize - 1)) == 0 310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align)) 311 { 312 if (info_verbose) 313 printf_unfiltered (_("Using PIC (Position Independent Code) " 314 "prelink displacement %s for \"%s\".\n"), 315 paddress (target_gdbarch (), l_addr), 316 so->so_name); 317 } 318 else 319 { 320 /* There is no way to verify the library file matches. prelink 321 can during prelinking of an unprelinked file (or unprelinking 322 of a prelinked file) shift the DYNAMIC segment by arbitrary 323 offset without any page size alignment. There is no way to 324 find out the ELF header and/or Program Headers for a limited 325 verification if it they match. One could do a verification 326 of the DYNAMIC segment. Still the found address is the best 327 one GDB could find. */ 328 329 warning (_(".dynamic section for \"%s\" " 330 "is not at the expected address " 331 "(wrong library or version mismatch?)"), so->so_name); 332 } 333 } 334 335 set_addr: 336 so->lm_info->l_addr = l_addr; 337 so->lm_info->l_addr_p = 1; 338 } 339 340 return so->lm_info->l_addr; 341 } 342 343 /* Per pspace SVR4 specific data. */ 344 345 struct svr4_info 346 { 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */ 348 349 /* Validity flag for debug_loader_offset. */ 350 int debug_loader_offset_p; 351 352 /* Load address for the dynamic linker, inferred. */ 353 CORE_ADDR debug_loader_offset; 354 355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */ 356 char *debug_loader_name; 357 358 /* Load map address for the main executable. */ 359 CORE_ADDR main_lm_addr; 360 361 CORE_ADDR interp_text_sect_low; 362 CORE_ADDR interp_text_sect_high; 363 CORE_ADDR interp_plt_sect_low; 364 CORE_ADDR interp_plt_sect_high; 365 366 /* Nonzero if the list of objects was last obtained from the target 367 via qXfer:libraries-svr4:read. */ 368 int using_xfer; 369 370 /* Table of struct probe_and_action instances, used by the 371 probes-based interface to map breakpoint addresses to probes 372 and their associated actions. Lookup is performed using 373 probe_and_action->probe->address. */ 374 htab_t probes_table; 375 376 /* List of objects loaded into the inferior, used by the probes- 377 based interface. */ 378 struct so_list *solib_list; 379 }; 380 381 /* Per-program-space data key. */ 382 static const struct program_space_data *solib_svr4_pspace_data; 383 384 /* Free the probes table. */ 385 386 static void 387 free_probes_table (struct svr4_info *info) 388 { 389 if (info->probes_table == NULL) 390 return; 391 392 htab_delete (info->probes_table); 393 info->probes_table = NULL; 394 } 395 396 /* Free the solib list. */ 397 398 static void 399 free_solib_list (struct svr4_info *info) 400 { 401 svr4_free_library_list (&info->solib_list); 402 info->solib_list = NULL; 403 } 404 405 static void 406 svr4_pspace_data_cleanup (struct program_space *pspace, void *arg) 407 { 408 struct svr4_info *info = (struct svr4_info *) arg; 409 410 free_probes_table (info); 411 free_solib_list (info); 412 413 xfree (info); 414 } 415 416 /* Get the current svr4 data. If none is found yet, add it now. This 417 function always returns a valid object. */ 418 419 static struct svr4_info * 420 get_svr4_info (void) 421 { 422 struct svr4_info *info; 423 424 info = (struct svr4_info *) program_space_data (current_program_space, 425 solib_svr4_pspace_data); 426 if (info != NULL) 427 return info; 428 429 info = XCNEW (struct svr4_info); 430 set_program_space_data (current_program_space, solib_svr4_pspace_data, info); 431 return info; 432 } 433 434 /* Local function prototypes */ 435 436 static int match_main (const char *); 437 438 /* Read program header TYPE from inferior memory. The header is found 439 by scanning the OS auxillary vector. 440 441 If TYPE == -1, return the program headers instead of the contents of 442 one program header. 443 444 Return a pointer to allocated memory holding the program header contents, 445 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the 446 size of those contents is returned to P_SECT_SIZE. Likewise, the target 447 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and 448 the base address of the section is returned in BASE_ADDR. */ 449 450 static gdb_byte * 451 read_program_header (int type, int *p_sect_size, int *p_arch_size, 452 CORE_ADDR *base_addr) 453 { 454 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 455 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0; 456 int arch_size, sect_size; 457 CORE_ADDR sect_addr; 458 gdb_byte *buf; 459 int pt_phdr_p = 0; 460 461 /* Get required auxv elements from target. */ 462 if (target_auxv_search (¤t_target, AT_PHDR, &at_phdr) <= 0) 463 return 0; 464 if (target_auxv_search (¤t_target, AT_PHENT, &at_phent) <= 0) 465 return 0; 466 if (target_auxv_search (¤t_target, AT_PHNUM, &at_phnum) <= 0) 467 return 0; 468 if (!at_phdr || !at_phnum) 469 return 0; 470 471 /* Determine ELF architecture type. */ 472 if (at_phent == sizeof (Elf32_External_Phdr)) 473 arch_size = 32; 474 else if (at_phent == sizeof (Elf64_External_Phdr)) 475 arch_size = 64; 476 else 477 return 0; 478 479 /* Find the requested segment. */ 480 if (type == -1) 481 { 482 sect_addr = at_phdr; 483 sect_size = at_phent * at_phnum; 484 } 485 else if (arch_size == 32) 486 { 487 Elf32_External_Phdr phdr; 488 int i; 489 490 /* Search for requested PHDR. */ 491 for (i = 0; i < at_phnum; i++) 492 { 493 int p_type; 494 495 if (target_read_memory (at_phdr + i * sizeof (phdr), 496 (gdb_byte *)&phdr, sizeof (phdr))) 497 return 0; 498 499 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, 500 4, byte_order); 501 502 if (p_type == PT_PHDR) 503 { 504 pt_phdr_p = 1; 505 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, 506 4, byte_order); 507 } 508 509 if (p_type == type) 510 break; 511 } 512 513 if (i == at_phnum) 514 return 0; 515 516 /* Retrieve address and size. */ 517 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 518 4, byte_order); 519 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 520 4, byte_order); 521 } 522 else 523 { 524 Elf64_External_Phdr phdr; 525 int i; 526 527 /* Search for requested PHDR. */ 528 for (i = 0; i < at_phnum; i++) 529 { 530 int p_type; 531 532 if (target_read_memory (at_phdr + i * sizeof (phdr), 533 (gdb_byte *)&phdr, sizeof (phdr))) 534 return 0; 535 536 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type, 537 4, byte_order); 538 539 if (p_type == PT_PHDR) 540 { 541 pt_phdr_p = 1; 542 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr, 543 8, byte_order); 544 } 545 546 if (p_type == type) 547 break; 548 } 549 550 if (i == at_phnum) 551 return 0; 552 553 /* Retrieve address and size. */ 554 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr, 555 8, byte_order); 556 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz, 557 8, byte_order); 558 } 559 560 /* PT_PHDR is optional, but we really need it 561 for PIE to make this work in general. */ 562 563 if (pt_phdr_p) 564 { 565 /* at_phdr is real address in memory. pt_phdr is what pheader says it is. 566 Relocation offset is the difference between the two. */ 567 sect_addr = sect_addr + (at_phdr - pt_phdr); 568 } 569 570 /* Read in requested program header. */ 571 buf = (gdb_byte *) xmalloc (sect_size); 572 if (target_read_memory (sect_addr, buf, sect_size)) 573 { 574 xfree (buf); 575 return NULL; 576 } 577 578 if (p_arch_size) 579 *p_arch_size = arch_size; 580 if (p_sect_size) 581 *p_sect_size = sect_size; 582 if (base_addr) 583 *base_addr = sect_addr; 584 585 return buf; 586 } 587 588 589 /* Return program interpreter string. */ 590 static char * 591 find_program_interpreter (void) 592 { 593 gdb_byte *buf = NULL; 594 595 /* If we have an exec_bfd, use its section table. */ 596 if (exec_bfd 597 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 598 { 599 struct bfd_section *interp_sect; 600 601 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp"); 602 if (interp_sect != NULL) 603 { 604 int sect_size = bfd_section_size (exec_bfd, interp_sect); 605 606 buf = (gdb_byte *) xmalloc (sect_size); 607 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size); 608 } 609 } 610 611 /* If we didn't find it, use the target auxillary vector. */ 612 if (!buf) 613 buf = read_program_header (PT_INTERP, NULL, NULL, NULL); 614 615 return (char *) buf; 616 } 617 618 619 /* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is 620 found, 1 is returned and the corresponding PTR is set. */ 621 622 static int 623 scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr, 624 CORE_ADDR *ptr_addr) 625 { 626 int arch_size, step, sect_size; 627 long current_dyntag; 628 CORE_ADDR dyn_ptr, dyn_addr; 629 gdb_byte *bufend, *bufstart, *buf; 630 Elf32_External_Dyn *x_dynp_32; 631 Elf64_External_Dyn *x_dynp_64; 632 struct bfd_section *sect; 633 struct target_section *target_section; 634 635 if (abfd == NULL) 636 return 0; 637 638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 639 return 0; 640 641 arch_size = bfd_get_arch_size (abfd); 642 if (arch_size == -1) 643 return 0; 644 645 /* Find the start address of the .dynamic section. */ 646 sect = bfd_get_section_by_name (abfd, ".dynamic"); 647 if (sect == NULL) 648 return 0; 649 650 for (target_section = current_target_sections->sections; 651 target_section < current_target_sections->sections_end; 652 target_section++) 653 if (sect == target_section->the_bfd_section) 654 break; 655 if (target_section < current_target_sections->sections_end) 656 dyn_addr = target_section->addr; 657 else 658 { 659 /* ABFD may come from OBJFILE acting only as a symbol file without being 660 loaded into the target (see add_symbol_file_command). This case is 661 such fallback to the file VMA address without the possibility of 662 having the section relocated to its actual in-memory address. */ 663 664 dyn_addr = bfd_section_vma (abfd, sect); 665 } 666 667 /* Read in .dynamic from the BFD. We will get the actual value 668 from memory later. */ 669 sect_size = bfd_section_size (abfd, sect); 670 buf = bufstart = (gdb_byte *) alloca (sect_size); 671 if (!bfd_get_section_contents (abfd, sect, 672 buf, 0, sect_size)) 673 return 0; 674 675 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ 676 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) 677 : sizeof (Elf64_External_Dyn); 678 for (bufend = buf + sect_size; 679 buf < bufend; 680 buf += step) 681 { 682 if (arch_size == 32) 683 { 684 x_dynp_32 = (Elf32_External_Dyn *) buf; 685 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag); 686 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr); 687 } 688 else 689 { 690 x_dynp_64 = (Elf64_External_Dyn *) buf; 691 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag); 692 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr); 693 } 694 if (current_dyntag == DT_NULL) 695 return 0; 696 if (current_dyntag == desired_dyntag) 697 { 698 /* If requested, try to read the runtime value of this .dynamic 699 entry. */ 700 if (ptr) 701 { 702 struct type *ptr_type; 703 gdb_byte ptr_buf[8]; 704 CORE_ADDR ptr_addr_1; 705 706 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 707 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8; 708 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0) 709 dyn_ptr = extract_typed_address (ptr_buf, ptr_type); 710 *ptr = dyn_ptr; 711 if (ptr_addr) 712 *ptr_addr = dyn_addr + (buf - bufstart); 713 } 714 return 1; 715 } 716 } 717 718 return 0; 719 } 720 721 /* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable, 722 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1 723 is returned and the corresponding PTR is set. */ 724 725 static int 726 scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr, 727 CORE_ADDR *ptr_addr) 728 { 729 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 730 int sect_size, arch_size, step; 731 long current_dyntag; 732 CORE_ADDR dyn_ptr; 733 CORE_ADDR base_addr; 734 gdb_byte *bufend, *bufstart, *buf; 735 736 /* Read in .dynamic section. */ 737 buf = bufstart = read_program_header (PT_DYNAMIC, §_size, &arch_size, 738 &base_addr); 739 if (!buf) 740 return 0; 741 742 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */ 743 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn) 744 : sizeof (Elf64_External_Dyn); 745 for (bufend = buf + sect_size; 746 buf < bufend; 747 buf += step) 748 { 749 if (arch_size == 32) 750 { 751 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf; 752 753 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 754 4, byte_order); 755 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 756 4, byte_order); 757 } 758 else 759 { 760 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf; 761 762 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag, 763 8, byte_order); 764 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr, 765 8, byte_order); 766 } 767 if (current_dyntag == DT_NULL) 768 break; 769 770 if (current_dyntag == desired_dyntag) 771 { 772 if (ptr) 773 *ptr = dyn_ptr; 774 775 if (ptr_addr) 776 *ptr_addr = base_addr + buf - bufstart; 777 778 xfree (bufstart); 779 return 1; 780 } 781 } 782 783 xfree (bufstart); 784 return 0; 785 } 786 787 /* Locate the base address of dynamic linker structs for SVR4 elf 788 targets. 789 790 For SVR4 elf targets the address of the dynamic linker's runtime 791 structure is contained within the dynamic info section in the 792 executable file. The dynamic section is also mapped into the 793 inferior address space. Because the runtime loader fills in the 794 real address before starting the inferior, we have to read in the 795 dynamic info section from the inferior address space. 796 If there are any errors while trying to find the address, we 797 silently return 0, otherwise the found address is returned. */ 798 799 static CORE_ADDR 800 elf_locate_base (void) 801 { 802 struct bound_minimal_symbol msymbol; 803 CORE_ADDR dyn_ptr, dyn_ptr_addr; 804 805 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this 806 instead of DT_DEBUG, although they sometimes contain an unused 807 DT_DEBUG. */ 808 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL) 809 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL)) 810 { 811 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 812 gdb_byte *pbuf; 813 int pbuf_size = TYPE_LENGTH (ptr_type); 814 815 pbuf = (gdb_byte *) alloca (pbuf_size); 816 /* DT_MIPS_RLD_MAP contains a pointer to the address 817 of the dynamic link structure. */ 818 if (target_read_memory (dyn_ptr, pbuf, pbuf_size)) 819 return 0; 820 return extract_typed_address (pbuf, ptr_type); 821 } 822 823 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form 824 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist 825 in non-PIE. */ 826 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr) 827 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr)) 828 { 829 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 830 gdb_byte *pbuf; 831 int pbuf_size = TYPE_LENGTH (ptr_type); 832 833 pbuf = (gdb_byte *) alloca (pbuf_size); 834 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the 835 DT slot to the address of the dynamic link structure. */ 836 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size)) 837 return 0; 838 return extract_typed_address (pbuf, ptr_type); 839 } 840 841 /* Find DT_DEBUG. */ 842 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL) 843 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL)) 844 return dyn_ptr; 845 846 /* This may be a static executable. Look for the symbol 847 conventionally named _r_debug, as a last resort. */ 848 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile); 849 if (msymbol.minsym != NULL) 850 return BMSYMBOL_VALUE_ADDRESS (msymbol); 851 852 /* DT_DEBUG entry not found. */ 853 return 0; 854 } 855 856 /* Locate the base address of dynamic linker structs. 857 858 For both the SunOS and SVR4 shared library implementations, if the 859 inferior executable has been linked dynamically, there is a single 860 address somewhere in the inferior's data space which is the key to 861 locating all of the dynamic linker's runtime structures. This 862 address is the value of the debug base symbol. The job of this 863 function is to find and return that address, or to return 0 if there 864 is no such address (the executable is statically linked for example). 865 866 For SunOS, the job is almost trivial, since the dynamic linker and 867 all of it's structures are statically linked to the executable at 868 link time. Thus the symbol for the address we are looking for has 869 already been added to the minimal symbol table for the executable's 870 objfile at the time the symbol file's symbols were read, and all we 871 have to do is look it up there. Note that we explicitly do NOT want 872 to find the copies in the shared library. 873 874 The SVR4 version is a bit more complicated because the address 875 is contained somewhere in the dynamic info section. We have to go 876 to a lot more work to discover the address of the debug base symbol. 877 Because of this complexity, we cache the value we find and return that 878 value on subsequent invocations. Note there is no copy in the 879 executable symbol tables. */ 880 881 static CORE_ADDR 882 locate_base (struct svr4_info *info) 883 { 884 /* Check to see if we have a currently valid address, and if so, avoid 885 doing all this work again and just return the cached address. If 886 we have no cached address, try to locate it in the dynamic info 887 section for ELF executables. There's no point in doing any of this 888 though if we don't have some link map offsets to work with. */ 889 890 if (info->debug_base == 0 && svr4_have_link_map_offsets ()) 891 info->debug_base = elf_locate_base (); 892 return info->debug_base; 893 } 894 895 /* Find the first element in the inferior's dynamic link map, and 896 return its address in the inferior. Return zero if the address 897 could not be determined. 898 899 FIXME: Perhaps we should validate the info somehow, perhaps by 900 checking r_version for a known version number, or r_state for 901 RT_CONSISTENT. */ 902 903 static CORE_ADDR 904 solib_svr4_r_map (struct svr4_info *info) 905 { 906 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 907 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 908 CORE_ADDR addr = 0; 909 910 TRY 911 { 912 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset, 913 ptr_type); 914 } 915 CATCH (ex, RETURN_MASK_ERROR) 916 { 917 exception_print (gdb_stderr, ex); 918 } 919 END_CATCH 920 921 return addr; 922 } 923 924 /* Find r_brk from the inferior's debug base. */ 925 926 static CORE_ADDR 927 solib_svr4_r_brk (struct svr4_info *info) 928 { 929 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 930 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 931 932 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset, 933 ptr_type); 934 } 935 936 /* Find the link map for the dynamic linker (if it is not in the 937 normal list of loaded shared objects). */ 938 939 static CORE_ADDR 940 solib_svr4_r_ldsomap (struct svr4_info *info) 941 { 942 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 943 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 944 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 945 ULONGEST version = 0; 946 947 TRY 948 { 949 /* Check version, and return zero if `struct r_debug' doesn't have 950 the r_ldsomap member. */ 951 version 952 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset, 953 lmo->r_version_size, byte_order); 954 } 955 CATCH (ex, RETURN_MASK_ERROR) 956 { 957 exception_print (gdb_stderr, ex); 958 } 959 END_CATCH 960 961 if (version < 2 || lmo->r_ldsomap_offset == -1) 962 return 0; 963 964 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset, 965 ptr_type); 966 } 967 968 /* On Solaris systems with some versions of the dynamic linker, 969 ld.so's l_name pointer points to the SONAME in the string table 970 rather than into writable memory. So that GDB can find shared 971 libraries when loading a core file generated by gcore, ensure that 972 memory areas containing the l_name string are saved in the core 973 file. */ 974 975 static int 976 svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size) 977 { 978 struct svr4_info *info; 979 CORE_ADDR ldsomap; 980 struct so_list *newobj; 981 struct cleanup *old_chain; 982 CORE_ADDR name_lm; 983 984 info = get_svr4_info (); 985 986 info->debug_base = 0; 987 locate_base (info); 988 if (!info->debug_base) 989 return 0; 990 991 ldsomap = solib_svr4_r_ldsomap (info); 992 if (!ldsomap) 993 return 0; 994 995 newobj = XCNEW (struct so_list); 996 old_chain = make_cleanup (xfree, newobj); 997 newobj->lm_info = lm_info_read (ldsomap); 998 make_cleanup (xfree, newobj->lm_info); 999 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0; 1000 do_cleanups (old_chain); 1001 1002 return (name_lm >= vaddr && name_lm < vaddr + size); 1003 } 1004 1005 /* Implement the "open_symbol_file_object" target_so_ops method. 1006 1007 If no open symbol file, attempt to locate and open the main symbol 1008 file. On SVR4 systems, this is the first link map entry. If its 1009 name is here, we can open it. Useful when attaching to a process 1010 without first loading its symbol file. */ 1011 1012 static int 1013 open_symbol_file_object (void *from_ttyp) 1014 { 1015 CORE_ADDR lm, l_name; 1016 char *filename; 1017 int errcode; 1018 int from_tty = *(int *)from_ttyp; 1019 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets (); 1020 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr; 1021 int l_name_size = TYPE_LENGTH (ptr_type); 1022 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size); 1023 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf); 1024 struct svr4_info *info = get_svr4_info (); 1025 symfile_add_flags add_flags = 0; 1026 1027 if (from_tty) 1028 add_flags |= SYMFILE_VERBOSE; 1029 1030 if (symfile_objfile) 1031 if (!query (_("Attempt to reload symbols from process? "))) 1032 { 1033 do_cleanups (cleanups); 1034 return 0; 1035 } 1036 1037 /* Always locate the debug struct, in case it has moved. */ 1038 info->debug_base = 0; 1039 if (locate_base (info) == 0) 1040 { 1041 do_cleanups (cleanups); 1042 return 0; /* failed somehow... */ 1043 } 1044 1045 /* First link map member should be the executable. */ 1046 lm = solib_svr4_r_map (info); 1047 if (lm == 0) 1048 { 1049 do_cleanups (cleanups); 1050 return 0; /* failed somehow... */ 1051 } 1052 1053 /* Read address of name from target memory to GDB. */ 1054 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size); 1055 1056 /* Convert the address to host format. */ 1057 l_name = extract_typed_address (l_name_buf, ptr_type); 1058 1059 if (l_name == 0) 1060 { 1061 do_cleanups (cleanups); 1062 return 0; /* No filename. */ 1063 } 1064 1065 /* Now fetch the filename from target memory. */ 1066 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode); 1067 make_cleanup (xfree, filename); 1068 1069 if (errcode) 1070 { 1071 warning (_("failed to read exec filename from attached file: %s"), 1072 safe_strerror (errcode)); 1073 do_cleanups (cleanups); 1074 return 0; 1075 } 1076 1077 /* Have a pathname: read the symbol file. */ 1078 symbol_file_add_main (filename, add_flags); 1079 1080 do_cleanups (cleanups); 1081 return 1; 1082 } 1083 1084 /* Data exchange structure for the XML parser as returned by 1085 svr4_current_sos_via_xfer_libraries. */ 1086 1087 struct svr4_library_list 1088 { 1089 struct so_list *head, **tailp; 1090 1091 /* Inferior address of struct link_map used for the main executable. It is 1092 NULL if not known. */ 1093 CORE_ADDR main_lm; 1094 }; 1095 1096 /* Implementation for target_so_ops.free_so. */ 1097 1098 static void 1099 svr4_free_so (struct so_list *so) 1100 { 1101 xfree (so->lm_info); 1102 } 1103 1104 /* Implement target_so_ops.clear_so. */ 1105 1106 static void 1107 svr4_clear_so (struct so_list *so) 1108 { 1109 if (so->lm_info != NULL) 1110 so->lm_info->l_addr_p = 0; 1111 } 1112 1113 /* Free so_list built so far (called via cleanup). */ 1114 1115 static void 1116 svr4_free_library_list (void *p_list) 1117 { 1118 struct so_list *list = *(struct so_list **) p_list; 1119 1120 while (list != NULL) 1121 { 1122 struct so_list *next = list->next; 1123 1124 free_so (list); 1125 list = next; 1126 } 1127 } 1128 1129 /* Copy library list. */ 1130 1131 static struct so_list * 1132 svr4_copy_library_list (struct so_list *src) 1133 { 1134 struct so_list *dst = NULL; 1135 struct so_list **link = &dst; 1136 1137 while (src != NULL) 1138 { 1139 struct so_list *newobj; 1140 1141 newobj = XNEW (struct so_list); 1142 memcpy (newobj, src, sizeof (struct so_list)); 1143 1144 newobj->lm_info = XNEW (struct lm_info); 1145 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info)); 1146 1147 newobj->next = NULL; 1148 *link = newobj; 1149 link = &newobj->next; 1150 1151 src = src->next; 1152 } 1153 1154 return dst; 1155 } 1156 1157 #ifdef HAVE_LIBEXPAT 1158 1159 #include "xml-support.h" 1160 1161 /* Handle the start of a <library> element. Note: new elements are added 1162 at the tail of the list, keeping the list in order. */ 1163 1164 static void 1165 library_list_start_library (struct gdb_xml_parser *parser, 1166 const struct gdb_xml_element *element, 1167 void *user_data, VEC(gdb_xml_value_s) *attributes) 1168 { 1169 struct svr4_library_list *list = (struct svr4_library_list *) user_data; 1170 const char *name 1171 = (const char *) xml_find_attribute (attributes, "name")->value; 1172 ULONGEST *lmp 1173 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value; 1174 ULONGEST *l_addrp 1175 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value; 1176 ULONGEST *l_ldp 1177 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value; 1178 struct so_list *new_elem; 1179 1180 new_elem = XCNEW (struct so_list); 1181 new_elem->lm_info = XCNEW (struct lm_info); 1182 new_elem->lm_info->lm_addr = *lmp; 1183 new_elem->lm_info->l_addr_inferior = *l_addrp; 1184 new_elem->lm_info->l_ld = *l_ldp; 1185 1186 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1); 1187 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0; 1188 strcpy (new_elem->so_original_name, new_elem->so_name); 1189 1190 *list->tailp = new_elem; 1191 list->tailp = &new_elem->next; 1192 } 1193 1194 /* Handle the start of a <library-list-svr4> element. */ 1195 1196 static void 1197 svr4_library_list_start_list (struct gdb_xml_parser *parser, 1198 const struct gdb_xml_element *element, 1199 void *user_data, VEC(gdb_xml_value_s) *attributes) 1200 { 1201 struct svr4_library_list *list = (struct svr4_library_list *) user_data; 1202 const char *version 1203 = (const char *) xml_find_attribute (attributes, "version")->value; 1204 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm"); 1205 1206 if (strcmp (version, "1.0") != 0) 1207 gdb_xml_error (parser, 1208 _("SVR4 Library list has unsupported version \"%s\""), 1209 version); 1210 1211 if (main_lm) 1212 list->main_lm = *(ULONGEST *) main_lm->value; 1213 } 1214 1215 /* The allowed elements and attributes for an XML library list. 1216 The root element is a <library-list>. */ 1217 1218 static const struct gdb_xml_attribute svr4_library_attributes[] = 1219 { 1220 { "name", GDB_XML_AF_NONE, NULL, NULL }, 1221 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, 1222 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, 1223 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL }, 1224 { NULL, GDB_XML_AF_NONE, NULL, NULL } 1225 }; 1226 1227 static const struct gdb_xml_element svr4_library_list_children[] = 1228 { 1229 { 1230 "library", svr4_library_attributes, NULL, 1231 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL, 1232 library_list_start_library, NULL 1233 }, 1234 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } 1235 }; 1236 1237 static const struct gdb_xml_attribute svr4_library_list_attributes[] = 1238 { 1239 { "version", GDB_XML_AF_NONE, NULL, NULL }, 1240 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL }, 1241 { NULL, GDB_XML_AF_NONE, NULL, NULL } 1242 }; 1243 1244 static const struct gdb_xml_element svr4_library_list_elements[] = 1245 { 1246 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children, 1247 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL }, 1248 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL } 1249 }; 1250 1251 /* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if 1252 1253 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such 1254 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be 1255 empty, caller is responsible for freeing all its entries. */ 1256 1257 static int 1258 svr4_parse_libraries (const char *document, struct svr4_library_list *list) 1259 { 1260 struct cleanup *back_to = make_cleanup (svr4_free_library_list, 1261 &list->head); 1262 1263 memset (list, 0, sizeof (*list)); 1264 list->tailp = &list->head; 1265 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd", 1266 svr4_library_list_elements, document, list) == 0) 1267 { 1268 /* Parsed successfully, keep the result. */ 1269 discard_cleanups (back_to); 1270 return 1; 1271 } 1272 1273 do_cleanups (back_to); 1274 return 0; 1275 } 1276 1277 /* Attempt to get so_list from target via qXfer:libraries-svr4:read packet. 1278 1279 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such 1280 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be 1281 empty, caller is responsible for freeing all its entries. 1282 1283 Note that ANNEX must be NULL if the remote does not explicitly allow 1284 qXfer:libraries-svr4:read packets with non-empty annexes. Support for 1285 this can be checked using target_augmented_libraries_svr4_read (). */ 1286 1287 static int 1288 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, 1289 const char *annex) 1290 { 1291 char *svr4_library_document; 1292 int result; 1293 struct cleanup *back_to; 1294 1295 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ()); 1296 1297 /* Fetch the list of shared libraries. */ 1298 svr4_library_document = target_read_stralloc (¤t_target, 1299 TARGET_OBJECT_LIBRARIES_SVR4, 1300 annex); 1301 if (svr4_library_document == NULL) 1302 return 0; 1303 1304 back_to = make_cleanup (xfree, svr4_library_document); 1305 result = svr4_parse_libraries (svr4_library_document, list); 1306 do_cleanups (back_to); 1307 1308 return result; 1309 } 1310 1311 #else 1312 1313 static int 1314 svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list, 1315 const char *annex) 1316 { 1317 return 0; 1318 } 1319 1320 #endif 1321 1322 /* If no shared library information is available from the dynamic 1323 linker, build a fallback list from other sources. */ 1324 1325 static struct so_list * 1326 svr4_default_sos (void) 1327 { 1328 struct svr4_info *info = get_svr4_info (); 1329 struct so_list *newobj; 1330 1331 if (!info->debug_loader_offset_p) 1332 return NULL; 1333 1334 newobj = XCNEW (struct so_list); 1335 1336 newobj->lm_info = XCNEW (struct lm_info); 1337 1338 /* Nothing will ever check the other fields if we set l_addr_p. */ 1339 newobj->lm_info->l_addr = info->debug_loader_offset; 1340 newobj->lm_info->l_addr_p = 1; 1341 1342 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1); 1343 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 1344 strcpy (newobj->so_original_name, newobj->so_name); 1345 1346 return newobj; 1347 } 1348 1349 /* Read the whole inferior libraries chain starting at address LM. 1350 Expect the first entry in the chain's previous entry to be PREV_LM. 1351 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the 1352 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according 1353 to it. Returns nonzero upon success. If zero is returned the 1354 entries stored to LINK_PTR_PTR are still valid although they may 1355 represent only part of the inferior library list. */ 1356 1357 static int 1358 svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm, 1359 struct so_list ***link_ptr_ptr, int ignore_first) 1360 { 1361 CORE_ADDR first_l_name = 0; 1362 CORE_ADDR next_lm; 1363 1364 for (; lm != 0; prev_lm = lm, lm = next_lm) 1365 { 1366 struct so_list *newobj; 1367 struct cleanup *old_chain; 1368 int errcode; 1369 char *buffer; 1370 1371 newobj = XCNEW (struct so_list); 1372 old_chain = make_cleanup_free_so (newobj); 1373 1374 newobj->lm_info = lm_info_read (lm); 1375 if (newobj->lm_info == NULL) 1376 { 1377 do_cleanups (old_chain); 1378 return 0; 1379 } 1380 1381 next_lm = newobj->lm_info->l_next; 1382 1383 if (newobj->lm_info->l_prev != prev_lm) 1384 { 1385 warning (_("Corrupted shared library list: %s != %s"), 1386 paddress (target_gdbarch (), prev_lm), 1387 paddress (target_gdbarch (), newobj->lm_info->l_prev)); 1388 do_cleanups (old_chain); 1389 return 0; 1390 } 1391 1392 /* For SVR4 versions, the first entry in the link map is for the 1393 inferior executable, so we must ignore it. For some versions of 1394 SVR4, it has no name. For others (Solaris 2.3 for example), it 1395 does have a name, so we can no longer use a missing name to 1396 decide when to ignore it. */ 1397 if (ignore_first && newobj->lm_info->l_prev == 0) 1398 { 1399 struct svr4_info *info = get_svr4_info (); 1400 1401 first_l_name = newobj->lm_info->l_name; 1402 info->main_lm_addr = newobj->lm_info->lm_addr; 1403 do_cleanups (old_chain); 1404 continue; 1405 } 1406 1407 /* Extract this shared object's name. */ 1408 target_read_string (newobj->lm_info->l_name, &buffer, 1409 SO_NAME_MAX_PATH_SIZE - 1, &errcode); 1410 if (errcode != 0) 1411 { 1412 /* If this entry's l_name address matches that of the 1413 inferior executable, then this is not a normal shared 1414 object, but (most likely) a vDSO. In this case, silently 1415 skip it; otherwise emit a warning. */ 1416 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name) 1417 warning (_("Can't read pathname for load map: %s."), 1418 safe_strerror (errcode)); 1419 do_cleanups (old_chain); 1420 continue; 1421 } 1422 1423 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1); 1424 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0'; 1425 strcpy (newobj->so_original_name, newobj->so_name); 1426 xfree (buffer); 1427 1428 /* If this entry has no name, or its name matches the name 1429 for the main executable, don't include it in the list. */ 1430 if (! newobj->so_name[0] || match_main (newobj->so_name)) 1431 { 1432 do_cleanups (old_chain); 1433 continue; 1434 } 1435 1436 discard_cleanups (old_chain); 1437 newobj->next = 0; 1438 **link_ptr_ptr = newobj; 1439 *link_ptr_ptr = &newobj->next; 1440 } 1441 1442 return 1; 1443 } 1444 1445 /* Read the full list of currently loaded shared objects directly 1446 from the inferior, without referring to any libraries read and 1447 stored by the probes interface. Handle special cases relating 1448 to the first elements of the list. */ 1449 1450 static struct so_list * 1451 svr4_current_sos_direct (struct svr4_info *info) 1452 { 1453 CORE_ADDR lm; 1454 struct so_list *head = NULL; 1455 struct so_list **link_ptr = &head; 1456 struct cleanup *back_to; 1457 int ignore_first; 1458 struct svr4_library_list library_list; 1459 1460 /* Fall back to manual examination of the target if the packet is not 1461 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp 1462 tests a case where gdbserver cannot find the shared libraries list while 1463 GDB itself is able to find it via SYMFILE_OBJFILE. 1464 1465 Unfortunately statically linked inferiors will also fall back through this 1466 suboptimal code path. */ 1467 1468 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list, 1469 NULL); 1470 if (info->using_xfer) 1471 { 1472 if (library_list.main_lm) 1473 info->main_lm_addr = library_list.main_lm; 1474 1475 return library_list.head ? library_list.head : svr4_default_sos (); 1476 } 1477 1478 /* Always locate the debug struct, in case it has moved. */ 1479 info->debug_base = 0; 1480 locate_base (info); 1481 1482 /* If we can't find the dynamic linker's base structure, this 1483 must not be a dynamically linked executable. Hmm. */ 1484 if (! info->debug_base) 1485 return svr4_default_sos (); 1486 1487 /* Assume that everything is a library if the dynamic loader was loaded 1488 late by a static executable. */ 1489 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL) 1490 ignore_first = 0; 1491 else 1492 ignore_first = 1; 1493 1494 back_to = make_cleanup (svr4_free_library_list, &head); 1495 1496 /* Walk the inferior's link map list, and build our list of 1497 `struct so_list' nodes. */ 1498 lm = solib_svr4_r_map (info); 1499 if (lm) 1500 svr4_read_so_list (lm, 0, &link_ptr, ignore_first); 1501 1502 /* On Solaris, the dynamic linker is not in the normal list of 1503 shared objects, so make sure we pick it up too. Having 1504 symbol information for the dynamic linker is quite crucial 1505 for skipping dynamic linker resolver code. */ 1506 lm = solib_svr4_r_ldsomap (info); 1507 if (lm) 1508 svr4_read_so_list (lm, 0, &link_ptr, 0); 1509 1510 discard_cleanups (back_to); 1511 1512 if (head == NULL) 1513 return svr4_default_sos (); 1514 1515 return head; 1516 } 1517 1518 /* Implement the main part of the "current_sos" target_so_ops 1519 method. */ 1520 1521 static struct so_list * 1522 svr4_current_sos_1 (void) 1523 { 1524 struct svr4_info *info = get_svr4_info (); 1525 1526 /* If the solib list has been read and stored by the probes 1527 interface then we return a copy of the stored list. */ 1528 if (info->solib_list != NULL) 1529 return svr4_copy_library_list (info->solib_list); 1530 1531 /* Otherwise obtain the solib list directly from the inferior. */ 1532 return svr4_current_sos_direct (info); 1533 } 1534 1535 /* Implement the "current_sos" target_so_ops method. */ 1536 1537 static struct so_list * 1538 svr4_current_sos (void) 1539 { 1540 struct so_list *so_head = svr4_current_sos_1 (); 1541 struct mem_range vsyscall_range; 1542 1543 /* Filter out the vDSO module, if present. Its symbol file would 1544 not be found on disk. The vDSO/vsyscall's OBJFILE is instead 1545 managed by symfile-mem.c:add_vsyscall_page. */ 1546 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range) 1547 && vsyscall_range.length != 0) 1548 { 1549 struct so_list **sop; 1550 1551 sop = &so_head; 1552 while (*sop != NULL) 1553 { 1554 struct so_list *so = *sop; 1555 1556 /* We can't simply match the vDSO by starting address alone, 1557 because lm_info->l_addr_inferior (and also l_addr) do not 1558 necessarily represent the real starting address of the 1559 ELF if the vDSO's ELF itself is "prelinked". The l_ld 1560 field (the ".dynamic" section of the shared object) 1561 always points at the absolute/resolved address though. 1562 So check whether that address is inside the vDSO's 1563 mapping instead. 1564 1565 E.g., on Linux 3.16 (x86_64) the vDSO is a regular 1566 0-based ELF, and we see: 1567 1568 (gdb) info auxv 1569 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000 1570 (gdb) p/x *_r_debug.r_map.l_next 1571 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...} 1572 1573 And on Linux 2.6.32 (x86_64) we see: 1574 1575 (gdb) info auxv 1576 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000 1577 (gdb) p/x *_r_debug.r_map.l_next 1578 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... } 1579 1580 Dumping that vDSO shows: 1581 1582 (gdb) info proc mappings 1583 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso] 1584 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000 1585 # readelf -Wa vdso.bin 1586 [...] 1587 Entry point address: 0xffffffffff700700 1588 [...] 1589 Section Headers: 1590 [Nr] Name Type Address Off Size 1591 [ 0] NULL 0000000000000000 000000 000000 1592 [ 1] .hash HASH ffffffffff700120 000120 000038 1593 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8 1594 [...] 1595 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0 1596 */ 1597 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range)) 1598 { 1599 *sop = so->next; 1600 free_so (so); 1601 break; 1602 } 1603 1604 sop = &so->next; 1605 } 1606 } 1607 1608 return so_head; 1609 } 1610 1611 /* Get the address of the link_map for a given OBJFILE. */ 1612 1613 CORE_ADDR 1614 svr4_fetch_objfile_link_map (struct objfile *objfile) 1615 { 1616 struct so_list *so; 1617 struct svr4_info *info = get_svr4_info (); 1618 1619 /* Cause svr4_current_sos() to be run if it hasn't been already. */ 1620 if (info->main_lm_addr == 0) 1621 solib_add (NULL, 0, auto_solib_add); 1622 1623 /* svr4_current_sos() will set main_lm_addr for the main executable. */ 1624 if (objfile == symfile_objfile) 1625 return info->main_lm_addr; 1626 1627 /* The other link map addresses may be found by examining the list 1628 of shared libraries. */ 1629 for (so = master_so_list (); so; so = so->next) 1630 if (so->objfile == objfile) 1631 return so->lm_info->lm_addr; 1632 1633 /* Not found! */ 1634 return 0; 1635 } 1636 1637 /* On some systems, the only way to recognize the link map entry for 1638 the main executable file is by looking at its name. Return 1639 non-zero iff SONAME matches one of the known main executable names. */ 1640 1641 static int 1642 match_main (const char *soname) 1643 { 1644 const char * const *mainp; 1645 1646 for (mainp = main_name_list; *mainp != NULL; mainp++) 1647 { 1648 if (strcmp (soname, *mainp) == 0) 1649 return (1); 1650 } 1651 1652 return (0); 1653 } 1654 1655 /* Return 1 if PC lies in the dynamic symbol resolution code of the 1656 SVR4 run time loader. */ 1657 1658 int 1659 svr4_in_dynsym_resolve_code (CORE_ADDR pc) 1660 { 1661 struct svr4_info *info = get_svr4_info (); 1662 1663 return ((pc >= info->interp_text_sect_low 1664 && pc < info->interp_text_sect_high) 1665 || (pc >= info->interp_plt_sect_low 1666 && pc < info->interp_plt_sect_high) 1667 || in_plt_section (pc) 1668 || in_gnu_ifunc_stub (pc)); 1669 } 1670 1671 /* Given an executable's ABFD and target, compute the entry-point 1672 address. */ 1673 1674 static CORE_ADDR 1675 exec_entry_point (struct bfd *abfd, struct target_ops *targ) 1676 { 1677 CORE_ADDR addr; 1678 1679 /* KevinB wrote ... for most targets, the address returned by 1680 bfd_get_start_address() is the entry point for the start 1681 function. But, for some targets, bfd_get_start_address() returns 1682 the address of a function descriptor from which the entry point 1683 address may be extracted. This address is extracted by 1684 gdbarch_convert_from_func_ptr_addr(). The method 1685 gdbarch_convert_from_func_ptr_addr() is the merely the identify 1686 function for targets which don't use function descriptors. */ 1687 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), 1688 bfd_get_start_address (abfd), 1689 targ); 1690 return gdbarch_addr_bits_remove (target_gdbarch (), addr); 1691 } 1692 1693 /* A probe and its associated action. */ 1694 1695 struct probe_and_action 1696 { 1697 /* The probe. */ 1698 struct probe *probe; 1699 1700 /* The relocated address of the probe. */ 1701 CORE_ADDR address; 1702 1703 /* The action. */ 1704 enum probe_action action; 1705 }; 1706 1707 /* Returns a hash code for the probe_and_action referenced by p. */ 1708 1709 static hashval_t 1710 hash_probe_and_action (const void *p) 1711 { 1712 const struct probe_and_action *pa = (const struct probe_and_action *) p; 1713 1714 return (hashval_t) pa->address; 1715 } 1716 1717 /* Returns non-zero if the probe_and_actions referenced by p1 and p2 1718 are equal. */ 1719 1720 static int 1721 equal_probe_and_action (const void *p1, const void *p2) 1722 { 1723 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1; 1724 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2; 1725 1726 return pa1->address == pa2->address; 1727 } 1728 1729 /* Register a solib event probe and its associated action in the 1730 probes table. */ 1731 1732 static void 1733 register_solib_event_probe (struct probe *probe, CORE_ADDR address, 1734 enum probe_action action) 1735 { 1736 struct svr4_info *info = get_svr4_info (); 1737 struct probe_and_action lookup, *pa; 1738 void **slot; 1739 1740 /* Create the probes table, if necessary. */ 1741 if (info->probes_table == NULL) 1742 info->probes_table = htab_create_alloc (1, hash_probe_and_action, 1743 equal_probe_and_action, 1744 xfree, xcalloc, xfree); 1745 1746 lookup.probe = probe; 1747 lookup.address = address; 1748 slot = htab_find_slot (info->probes_table, &lookup, INSERT); 1749 gdb_assert (*slot == HTAB_EMPTY_ENTRY); 1750 1751 pa = XCNEW (struct probe_and_action); 1752 pa->probe = probe; 1753 pa->address = address; 1754 pa->action = action; 1755 1756 *slot = pa; 1757 } 1758 1759 /* Get the solib event probe at the specified location, and the 1760 action associated with it. Returns NULL if no solib event probe 1761 was found. */ 1762 1763 static struct probe_and_action * 1764 solib_event_probe_at (struct svr4_info *info, CORE_ADDR address) 1765 { 1766 struct probe_and_action lookup; 1767 void **slot; 1768 1769 lookup.address = address; 1770 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT); 1771 1772 if (slot == NULL) 1773 return NULL; 1774 1775 return (struct probe_and_action *) *slot; 1776 } 1777 1778 /* Decide what action to take when the specified solib event probe is 1779 hit. */ 1780 1781 static enum probe_action 1782 solib_event_probe_action (struct probe_and_action *pa) 1783 { 1784 enum probe_action action; 1785 unsigned probe_argc = 0; 1786 struct frame_info *frame = get_current_frame (); 1787 1788 action = pa->action; 1789 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED) 1790 return action; 1791 1792 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD); 1793 1794 /* Check that an appropriate number of arguments has been supplied. 1795 We expect: 1796 arg0: Lmid_t lmid (mandatory) 1797 arg1: struct r_debug *debug_base (mandatory) 1798 arg2: struct link_map *new (optional, for incremental updates) */ 1799 TRY 1800 { 1801 probe_argc = get_probe_argument_count (pa->probe, frame); 1802 } 1803 CATCH (ex, RETURN_MASK_ERROR) 1804 { 1805 exception_print (gdb_stderr, ex); 1806 probe_argc = 0; 1807 } 1808 END_CATCH 1809 1810 /* If get_probe_argument_count throws an exception, probe_argc will 1811 be set to zero. However, if pa->probe does not have arguments, 1812 then get_probe_argument_count will succeed but probe_argc will 1813 also be zero. Both cases happen because of different things, but 1814 they are treated equally here: action will be set to 1815 PROBES_INTERFACE_FAILED. */ 1816 if (probe_argc == 2) 1817 action = FULL_RELOAD; 1818 else if (probe_argc < 2) 1819 action = PROBES_INTERFACE_FAILED; 1820 1821 return action; 1822 } 1823 1824 /* Populate the shared object list by reading the entire list of 1825 shared objects from the inferior. Handle special cases relating 1826 to the first elements of the list. Returns nonzero on success. */ 1827 1828 static int 1829 solist_update_full (struct svr4_info *info) 1830 { 1831 free_solib_list (info); 1832 info->solib_list = svr4_current_sos_direct (info); 1833 1834 return 1; 1835 } 1836 1837 /* Update the shared object list starting from the link-map entry 1838 passed by the linker in the probe's third argument. Returns 1839 nonzero if the list was successfully updated, or zero to indicate 1840 failure. */ 1841 1842 static int 1843 solist_update_incremental (struct svr4_info *info, CORE_ADDR lm) 1844 { 1845 struct so_list *tail; 1846 CORE_ADDR prev_lm; 1847 1848 /* svr4_current_sos_direct contains logic to handle a number of 1849 special cases relating to the first elements of the list. To 1850 avoid duplicating this logic we defer to solist_update_full 1851 if the list is empty. */ 1852 if (info->solib_list == NULL) 1853 return 0; 1854 1855 /* Fall back to a full update if we are using a remote target 1856 that does not support incremental transfers. */ 1857 if (info->using_xfer && !target_augmented_libraries_svr4_read ()) 1858 return 0; 1859 1860 /* Walk to the end of the list. */ 1861 for (tail = info->solib_list; tail->next != NULL; tail = tail->next) 1862 /* Nothing. */; 1863 prev_lm = tail->lm_info->lm_addr; 1864 1865 /* Read the new objects. */ 1866 if (info->using_xfer) 1867 { 1868 struct svr4_library_list library_list; 1869 char annex[64]; 1870 1871 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s", 1872 phex_nz (lm, sizeof (lm)), 1873 phex_nz (prev_lm, sizeof (prev_lm))); 1874 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex)) 1875 return 0; 1876 1877 tail->next = library_list.head; 1878 } 1879 else 1880 { 1881 struct so_list **link = &tail->next; 1882 1883 /* IGNORE_FIRST may safely be set to zero here because the 1884 above check and deferral to solist_update_full ensures 1885 that this call to svr4_read_so_list will never see the 1886 first element. */ 1887 if (!svr4_read_so_list (lm, prev_lm, &link, 0)) 1888 return 0; 1889 } 1890 1891 return 1; 1892 } 1893 1894 /* Disable the probes-based linker interface and revert to the 1895 original interface. We don't reset the breakpoints as the 1896 ones set up for the probes-based interface are adequate. */ 1897 1898 static void 1899 disable_probes_interface_cleanup (void *arg) 1900 { 1901 struct svr4_info *info = get_svr4_info (); 1902 1903 warning (_("Probes-based dynamic linker interface failed.\n" 1904 "Reverting to original interface.\n")); 1905 1906 free_probes_table (info); 1907 free_solib_list (info); 1908 } 1909 1910 /* Update the solib list as appropriate when using the 1911 probes-based linker interface. Do nothing if using the 1912 standard interface. */ 1913 1914 static void 1915 svr4_handle_solib_event (void) 1916 { 1917 struct svr4_info *info = get_svr4_info (); 1918 struct probe_and_action *pa; 1919 enum probe_action action; 1920 struct cleanup *old_chain, *usm_chain; 1921 struct value *val = NULL; 1922 CORE_ADDR pc, debug_base, lm = 0; 1923 struct frame_info *frame = get_current_frame (); 1924 1925 /* Do nothing if not using the probes interface. */ 1926 if (info->probes_table == NULL) 1927 return; 1928 1929 /* If anything goes wrong we revert to the original linker 1930 interface. */ 1931 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL); 1932 1933 pc = regcache_read_pc (get_current_regcache ()); 1934 pa = solib_event_probe_at (info, pc); 1935 if (pa == NULL) 1936 { 1937 do_cleanups (old_chain); 1938 return; 1939 } 1940 1941 action = solib_event_probe_action (pa); 1942 if (action == PROBES_INTERFACE_FAILED) 1943 { 1944 do_cleanups (old_chain); 1945 return; 1946 } 1947 1948 if (action == DO_NOTHING) 1949 { 1950 discard_cleanups (old_chain); 1951 return; 1952 } 1953 1954 /* evaluate_probe_argument looks up symbols in the dynamic linker 1955 using find_pc_section. find_pc_section is accelerated by a cache 1956 called the section map. The section map is invalidated every 1957 time a shared library is loaded or unloaded, and if the inferior 1958 is generating a lot of shared library events then the section map 1959 will be updated every time svr4_handle_solib_event is called. 1960 We called find_pc_section in svr4_create_solib_event_breakpoints, 1961 so we can guarantee that the dynamic linker's sections are in the 1962 section map. We can therefore inhibit section map updates across 1963 these calls to evaluate_probe_argument and save a lot of time. */ 1964 inhibit_section_map_updates (current_program_space); 1965 usm_chain = make_cleanup (resume_section_map_updates_cleanup, 1966 current_program_space); 1967 1968 TRY 1969 { 1970 val = evaluate_probe_argument (pa->probe, 1, frame); 1971 } 1972 CATCH (ex, RETURN_MASK_ERROR) 1973 { 1974 exception_print (gdb_stderr, ex); 1975 val = NULL; 1976 } 1977 END_CATCH 1978 1979 if (val == NULL) 1980 { 1981 do_cleanups (old_chain); 1982 return; 1983 } 1984 1985 debug_base = value_as_address (val); 1986 if (debug_base == 0) 1987 { 1988 do_cleanups (old_chain); 1989 return; 1990 } 1991 1992 /* Always locate the debug struct, in case it moved. */ 1993 info->debug_base = 0; 1994 if (locate_base (info) == 0) 1995 { 1996 do_cleanups (old_chain); 1997 return; 1998 } 1999 2000 /* GDB does not currently support libraries loaded via dlmopen 2001 into namespaces other than the initial one. We must ignore 2002 any namespace other than the initial namespace here until 2003 support for this is added to GDB. */ 2004 if (debug_base != info->debug_base) 2005 action = DO_NOTHING; 2006 2007 if (action == UPDATE_OR_RELOAD) 2008 { 2009 TRY 2010 { 2011 val = evaluate_probe_argument (pa->probe, 2, frame); 2012 } 2013 CATCH (ex, RETURN_MASK_ERROR) 2014 { 2015 exception_print (gdb_stderr, ex); 2016 do_cleanups (old_chain); 2017 return; 2018 } 2019 END_CATCH 2020 2021 if (val != NULL) 2022 lm = value_as_address (val); 2023 2024 if (lm == 0) 2025 action = FULL_RELOAD; 2026 } 2027 2028 /* Resume section map updates. */ 2029 do_cleanups (usm_chain); 2030 2031 if (action == UPDATE_OR_RELOAD) 2032 { 2033 if (!solist_update_incremental (info, lm)) 2034 action = FULL_RELOAD; 2035 } 2036 2037 if (action == FULL_RELOAD) 2038 { 2039 if (!solist_update_full (info)) 2040 { 2041 do_cleanups (old_chain); 2042 return; 2043 } 2044 } 2045 2046 discard_cleanups (old_chain); 2047 } 2048 2049 /* Helper function for svr4_update_solib_event_breakpoints. */ 2050 2051 static int 2052 svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg) 2053 { 2054 struct bp_location *loc; 2055 2056 if (b->type != bp_shlib_event) 2057 { 2058 /* Continue iterating. */ 2059 return 0; 2060 } 2061 2062 for (loc = b->loc; loc != NULL; loc = loc->next) 2063 { 2064 struct svr4_info *info; 2065 struct probe_and_action *pa; 2066 2067 info = ((struct svr4_info *) 2068 program_space_data (loc->pspace, solib_svr4_pspace_data)); 2069 if (info == NULL || info->probes_table == NULL) 2070 continue; 2071 2072 pa = solib_event_probe_at (info, loc->address); 2073 if (pa == NULL) 2074 continue; 2075 2076 if (pa->action == DO_NOTHING) 2077 { 2078 if (b->enable_state == bp_disabled && stop_on_solib_events) 2079 enable_breakpoint (b); 2080 else if (b->enable_state == bp_enabled && !stop_on_solib_events) 2081 disable_breakpoint (b); 2082 } 2083 2084 break; 2085 } 2086 2087 /* Continue iterating. */ 2088 return 0; 2089 } 2090 2091 /* Enable or disable optional solib event breakpoints as appropriate. 2092 Called whenever stop_on_solib_events is changed. */ 2093 2094 static void 2095 svr4_update_solib_event_breakpoints (void) 2096 { 2097 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL); 2098 } 2099 2100 /* Create and register solib event breakpoints. PROBES is an array 2101 of NUM_PROBES elements, each of which is vector of probes. A 2102 solib event breakpoint will be created and registered for each 2103 probe. */ 2104 2105 static void 2106 svr4_create_probe_breakpoints (struct gdbarch *gdbarch, 2107 VEC (probe_p) **probes, 2108 struct objfile *objfile) 2109 { 2110 int i; 2111 2112 for (i = 0; i < NUM_PROBES; i++) 2113 { 2114 enum probe_action action = probe_info[i].action; 2115 struct probe *probe; 2116 int ix; 2117 2118 for (ix = 0; 2119 VEC_iterate (probe_p, probes[i], ix, probe); 2120 ++ix) 2121 { 2122 CORE_ADDR address = get_probe_address (probe, objfile); 2123 2124 create_solib_event_breakpoint (gdbarch, address); 2125 register_solib_event_probe (probe, address, action); 2126 } 2127 } 2128 2129 svr4_update_solib_event_breakpoints (); 2130 } 2131 2132 /* Both the SunOS and the SVR4 dynamic linkers call a marker function 2133 before and after mapping and unmapping shared libraries. The sole 2134 purpose of this method is to allow debuggers to set a breakpoint so 2135 they can track these changes. 2136 2137 Some versions of the glibc dynamic linker contain named probes 2138 to allow more fine grained stopping. Given the address of the 2139 original marker function, this function attempts to find these 2140 probes, and if found, sets breakpoints on those instead. If the 2141 probes aren't found, a single breakpoint is set on the original 2142 marker function. */ 2143 2144 static void 2145 svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch, 2146 CORE_ADDR address) 2147 { 2148 struct obj_section *os; 2149 2150 os = find_pc_section (address); 2151 if (os != NULL) 2152 { 2153 int with_prefix; 2154 2155 for (with_prefix = 0; with_prefix <= 1; with_prefix++) 2156 { 2157 VEC (probe_p) *probes[NUM_PROBES]; 2158 int all_probes_found = 1; 2159 int checked_can_use_probe_arguments = 0; 2160 int i; 2161 2162 memset (probes, 0, sizeof (probes)); 2163 for (i = 0; i < NUM_PROBES; i++) 2164 { 2165 const char *name = probe_info[i].name; 2166 struct probe *p; 2167 char buf[32]; 2168 2169 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4 2170 shipped with an early version of the probes code in 2171 which the probes' names were prefixed with "rtld_" 2172 and the "map_failed" probe did not exist. The 2173 locations of the probes are otherwise the same, so 2174 we check for probes with prefixed names if probes 2175 with unprefixed names are not present. */ 2176 if (with_prefix) 2177 { 2178 xsnprintf (buf, sizeof (buf), "rtld_%s", name); 2179 name = buf; 2180 } 2181 2182 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name); 2183 2184 /* The "map_failed" probe did not exist in early 2185 versions of the probes code in which the probes' 2186 names were prefixed with "rtld_". */ 2187 if (strcmp (name, "rtld_map_failed") == 0) 2188 continue; 2189 2190 if (VEC_empty (probe_p, probes[i])) 2191 { 2192 all_probes_found = 0; 2193 break; 2194 } 2195 2196 /* Ensure probe arguments can be evaluated. */ 2197 if (!checked_can_use_probe_arguments) 2198 { 2199 p = VEC_index (probe_p, probes[i], 0); 2200 if (!can_evaluate_probe_arguments (p)) 2201 { 2202 all_probes_found = 0; 2203 break; 2204 } 2205 checked_can_use_probe_arguments = 1; 2206 } 2207 } 2208 2209 if (all_probes_found) 2210 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile); 2211 2212 for (i = 0; i < NUM_PROBES; i++) 2213 VEC_free (probe_p, probes[i]); 2214 2215 if (all_probes_found) 2216 return; 2217 } 2218 } 2219 2220 create_solib_event_breakpoint (gdbarch, address); 2221 } 2222 2223 /* Helper function for gdb_bfd_lookup_symbol. */ 2224 2225 static int 2226 cmp_name_and_sec_flags (const asymbol *sym, const void *data) 2227 { 2228 return (strcmp (sym->name, (const char *) data) == 0 2229 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0); 2230 } 2231 /* Arrange for dynamic linker to hit breakpoint. 2232 2233 Both the SunOS and the SVR4 dynamic linkers have, as part of their 2234 debugger interface, support for arranging for the inferior to hit 2235 a breakpoint after mapping in the shared libraries. This function 2236 enables that breakpoint. 2237 2238 For SunOS, there is a special flag location (in_debugger) which we 2239 set to 1. When the dynamic linker sees this flag set, it will set 2240 a breakpoint at a location known only to itself, after saving the 2241 original contents of that place and the breakpoint address itself, 2242 in it's own internal structures. When we resume the inferior, it 2243 will eventually take a SIGTRAP when it runs into the breakpoint. 2244 We handle this (in a different place) by restoring the contents of 2245 the breakpointed location (which is only known after it stops), 2246 chasing around to locate the shared libraries that have been 2247 loaded, then resuming. 2248 2249 For SVR4, the debugger interface structure contains a member (r_brk) 2250 which is statically initialized at the time the shared library is 2251 built, to the offset of a function (_r_debug_state) which is guaran- 2252 teed to be called once before mapping in a library, and again when 2253 the mapping is complete. At the time we are examining this member, 2254 it contains only the unrelocated offset of the function, so we have 2255 to do our own relocation. Later, when the dynamic linker actually 2256 runs, it relocates r_brk to be the actual address of _r_debug_state(). 2257 2258 The debugger interface structure also contains an enumeration which 2259 is set to either RT_ADD or RT_DELETE prior to changing the mapping, 2260 depending upon whether or not the library is being mapped or unmapped, 2261 and then set to RT_CONSISTENT after the library is mapped/unmapped. */ 2262 2263 static int 2264 enable_break (struct svr4_info *info, int from_tty) 2265 { 2266 struct bound_minimal_symbol msymbol; 2267 const char * const *bkpt_namep; 2268 asection *interp_sect; 2269 char *interp_name; 2270 CORE_ADDR sym_addr; 2271 2272 info->interp_text_sect_low = info->interp_text_sect_high = 0; 2273 info->interp_plt_sect_low = info->interp_plt_sect_high = 0; 2274 2275 /* If we already have a shared library list in the target, and 2276 r_debug contains r_brk, set the breakpoint there - this should 2277 mean r_brk has already been relocated. Assume the dynamic linker 2278 is the object containing r_brk. */ 2279 2280 solib_add (NULL, from_tty, auto_solib_add); 2281 sym_addr = 0; 2282 if (info->debug_base && solib_svr4_r_map (info) != 0) 2283 sym_addr = solib_svr4_r_brk (info); 2284 2285 if (sym_addr != 0) 2286 { 2287 struct obj_section *os; 2288 2289 sym_addr = gdbarch_addr_bits_remove 2290 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (), 2291 sym_addr, 2292 ¤t_target)); 2293 2294 /* On at least some versions of Solaris there's a dynamic relocation 2295 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if 2296 we get control before the dynamic linker has self-relocated. 2297 Check if SYM_ADDR is in a known section, if it is assume we can 2298 trust its value. This is just a heuristic though, it could go away 2299 or be replaced if it's getting in the way. 2300 2301 On ARM we need to know whether the ISA of rtld_db_dlactivity (or 2302 however it's spelled in your particular system) is ARM or Thumb. 2303 That knowledge is encoded in the address, if it's Thumb the low bit 2304 is 1. However, we've stripped that info above and it's not clear 2305 what all the consequences are of passing a non-addr_bits_remove'd 2306 address to svr4_create_solib_event_breakpoints. The call to 2307 find_pc_section verifies we know about the address and have some 2308 hope of computing the right kind of breakpoint to use (via 2309 symbol info). It does mean that GDB needs to be pointed at a 2310 non-stripped version of the dynamic linker in order to obtain 2311 information it already knows about. Sigh. */ 2312 2313 os = find_pc_section (sym_addr); 2314 if (os != NULL) 2315 { 2316 /* Record the relocated start and end address of the dynamic linker 2317 text and plt section for svr4_in_dynsym_resolve_code. */ 2318 bfd *tmp_bfd; 2319 CORE_ADDR load_addr; 2320 2321 tmp_bfd = os->objfile->obfd; 2322 load_addr = ANOFFSET (os->objfile->section_offsets, 2323 SECT_OFF_TEXT (os->objfile)); 2324 2325 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text"); 2326 if (interp_sect) 2327 { 2328 info->interp_text_sect_low = 2329 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 2330 info->interp_text_sect_high = 2331 info->interp_text_sect_low 2332 + bfd_section_size (tmp_bfd, interp_sect); 2333 } 2334 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt"); 2335 if (interp_sect) 2336 { 2337 info->interp_plt_sect_low = 2338 bfd_section_vma (tmp_bfd, interp_sect) + load_addr; 2339 info->interp_plt_sect_high = 2340 info->interp_plt_sect_low 2341 + bfd_section_size (tmp_bfd, interp_sect); 2342 } 2343 2344 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); 2345 return 1; 2346 } 2347 } 2348 2349 /* Find the program interpreter; if not found, warn the user and drop 2350 into the old breakpoint at symbol code. */ 2351 interp_name = find_program_interpreter (); 2352 if (interp_name) 2353 { 2354 CORE_ADDR load_addr = 0; 2355 int load_addr_found = 0; 2356 int loader_found_in_list = 0; 2357 struct so_list *so; 2358 struct target_ops *tmp_bfd_target; 2359 2360 sym_addr = 0; 2361 2362 /* Now we need to figure out where the dynamic linker was 2363 loaded so that we can load its symbols and place a breakpoint 2364 in the dynamic linker itself. 2365 2366 This address is stored on the stack. However, I've been unable 2367 to find any magic formula to find it for Solaris (appears to 2368 be trivial on GNU/Linux). Therefore, we have to try an alternate 2369 mechanism to find the dynamic linker's base address. */ 2370 2371 gdb_bfd_ref_ptr tmp_bfd; 2372 TRY 2373 { 2374 tmp_bfd = solib_bfd_open (interp_name); 2375 } 2376 CATCH (ex, RETURN_MASK_ALL) 2377 { 2378 } 2379 END_CATCH 2380 2381 if (tmp_bfd == NULL) 2382 goto bkpt_at_symbol; 2383 2384 /* Now convert the TMP_BFD into a target. That way target, as 2385 well as BFD operations can be used. target_bfd_reopen 2386 acquires its own reference. */ 2387 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ()); 2388 2389 /* On a running target, we can get the dynamic linker's base 2390 address from the shared library table. */ 2391 so = master_so_list (); 2392 while (so) 2393 { 2394 if (svr4_same_1 (interp_name, so->so_original_name)) 2395 { 2396 load_addr_found = 1; 2397 loader_found_in_list = 1; 2398 load_addr = lm_addr_check (so, tmp_bfd.get ()); 2399 break; 2400 } 2401 so = so->next; 2402 } 2403 2404 /* If we were not able to find the base address of the loader 2405 from our so_list, then try using the AT_BASE auxilliary entry. */ 2406 if (!load_addr_found) 2407 if (target_auxv_search (¤t_target, AT_BASE, &load_addr) > 0) 2408 { 2409 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 2410 2411 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so 2412 that `+ load_addr' will overflow CORE_ADDR width not creating 2413 invalid addresses like 0x101234567 for 32bit inferiors on 64bit 2414 GDB. */ 2415 2416 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) 2417 { 2418 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit; 2419 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (), 2420 tmp_bfd_target); 2421 2422 gdb_assert (load_addr < space_size); 2423 2424 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked 2425 64bit ld.so with 32bit executable, it should not happen. */ 2426 2427 if (tmp_entry_point < space_size 2428 && tmp_entry_point + load_addr >= space_size) 2429 load_addr -= space_size; 2430 } 2431 2432 load_addr_found = 1; 2433 } 2434 2435 /* Otherwise we find the dynamic linker's base address by examining 2436 the current pc (which should point at the entry point for the 2437 dynamic linker) and subtracting the offset of the entry point. 2438 2439 This is more fragile than the previous approaches, but is a good 2440 fallback method because it has actually been working well in 2441 most cases. */ 2442 if (!load_addr_found) 2443 { 2444 struct regcache *regcache 2445 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ()); 2446 2447 load_addr = (regcache_read_pc (regcache) 2448 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target)); 2449 } 2450 2451 if (!loader_found_in_list) 2452 { 2453 info->debug_loader_name = xstrdup (interp_name); 2454 info->debug_loader_offset_p = 1; 2455 info->debug_loader_offset = load_addr; 2456 solib_add (NULL, from_tty, auto_solib_add); 2457 } 2458 2459 /* Record the relocated start and end address of the dynamic linker 2460 text and plt section for svr4_in_dynsym_resolve_code. */ 2461 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text"); 2462 if (interp_sect) 2463 { 2464 info->interp_text_sect_low = 2465 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr; 2466 info->interp_text_sect_high = 2467 info->interp_text_sect_low 2468 + bfd_section_size (tmp_bfd.get (), interp_sect); 2469 } 2470 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt"); 2471 if (interp_sect) 2472 { 2473 info->interp_plt_sect_low = 2474 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr; 2475 info->interp_plt_sect_high = 2476 info->interp_plt_sect_low 2477 + bfd_section_size (tmp_bfd.get (), interp_sect); 2478 } 2479 2480 /* Now try to set a breakpoint in the dynamic linker. */ 2481 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 2482 { 2483 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), 2484 cmp_name_and_sec_flags, 2485 *bkpt_namep); 2486 if (sym_addr != 0) 2487 break; 2488 } 2489 2490 if (sym_addr != 0) 2491 /* Convert 'sym_addr' from a function pointer to an address. 2492 Because we pass tmp_bfd_target instead of the current 2493 target, this will always produce an unrelocated value. */ 2494 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), 2495 sym_addr, 2496 tmp_bfd_target); 2497 2498 /* We're done with both the temporary bfd and target. Closing 2499 the target closes the underlying bfd, because it holds the 2500 only remaining reference. */ 2501 target_close (tmp_bfd_target); 2502 2503 if (sym_addr != 0) 2504 { 2505 svr4_create_solib_event_breakpoints (target_gdbarch (), 2506 load_addr + sym_addr); 2507 xfree (interp_name); 2508 return 1; 2509 } 2510 2511 /* For whatever reason we couldn't set a breakpoint in the dynamic 2512 linker. Warn and drop into the old code. */ 2513 bkpt_at_symbol: 2514 xfree (interp_name); 2515 warning (_("Unable to find dynamic linker breakpoint function.\n" 2516 "GDB will be unable to debug shared library initializers\n" 2517 "and track explicitly loaded dynamic code.")); 2518 } 2519 2520 /* Scan through the lists of symbols, trying to look up the symbol and 2521 set a breakpoint there. Terminate loop when we/if we succeed. */ 2522 2523 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++) 2524 { 2525 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); 2526 if ((msymbol.minsym != NULL) 2527 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) 2528 { 2529 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); 2530 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), 2531 sym_addr, 2532 ¤t_target); 2533 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); 2534 return 1; 2535 } 2536 } 2537 2538 if (interp_name != NULL && !current_inferior ()->attach_flag) 2539 { 2540 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++) 2541 { 2542 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile); 2543 if ((msymbol.minsym != NULL) 2544 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0)) 2545 { 2546 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol); 2547 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (), 2548 sym_addr, 2549 ¤t_target); 2550 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr); 2551 return 1; 2552 } 2553 } 2554 } 2555 return 0; 2556 } 2557 2558 /* Read the ELF program headers from ABFD. Return the contents and 2559 set *PHDRS_SIZE to the size of the program headers. */ 2560 2561 static gdb_byte * 2562 read_program_headers_from_bfd (bfd *abfd, int *phdrs_size) 2563 { 2564 Elf_Internal_Ehdr *ehdr; 2565 gdb_byte *buf; 2566 2567 ehdr = elf_elfheader (abfd); 2568 2569 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize; 2570 if (*phdrs_size == 0) 2571 return NULL; 2572 2573 buf = (gdb_byte *) xmalloc (*phdrs_size); 2574 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0 2575 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size) 2576 { 2577 xfree (buf); 2578 return NULL; 2579 } 2580 2581 return buf; 2582 } 2583 2584 /* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior 2585 exec_bfd. Otherwise return 0. 2586 2587 We relocate all of the sections by the same amount. This 2588 behavior is mandated by recent editions of the System V ABI. 2589 According to the System V Application Binary Interface, 2590 Edition 4.1, page 5-5: 2591 2592 ... Though the system chooses virtual addresses for 2593 individual processes, it maintains the segments' relative 2594 positions. Because position-independent code uses relative 2595 addressesing between segments, the difference between 2596 virtual addresses in memory must match the difference 2597 between virtual addresses in the file. The difference 2598 between the virtual address of any segment in memory and 2599 the corresponding virtual address in the file is thus a 2600 single constant value for any one executable or shared 2601 object in a given process. This difference is the base 2602 address. One use of the base address is to relocate the 2603 memory image of the program during dynamic linking. 2604 2605 The same language also appears in Edition 4.0 of the System V 2606 ABI and is left unspecified in some of the earlier editions. 2607 2608 Decide if the objfile needs to be relocated. As indicated above, we will 2609 only be here when execution is stopped. But during attachment PC can be at 2610 arbitrary address therefore regcache_read_pc can be misleading (contrary to 2611 the auxv AT_ENTRY value). Moreover for executable with interpreter section 2612 regcache_read_pc would point to the interpreter and not the main executable. 2613 2614 So, to summarize, relocations are necessary when the start address obtained 2615 from the executable is different from the address in auxv AT_ENTRY entry. 2616 2617 [ The astute reader will note that we also test to make sure that 2618 the executable in question has the DYNAMIC flag set. It is my 2619 opinion that this test is unnecessary (undesirable even). It 2620 was added to avoid inadvertent relocation of an executable 2621 whose e_type member in the ELF header is not ET_DYN. There may 2622 be a time in the future when it is desirable to do relocations 2623 on other types of files as well in which case this condition 2624 should either be removed or modified to accomodate the new file 2625 type. - Kevin, Nov 2000. ] */ 2626 2627 static int 2628 svr4_exec_displacement (CORE_ADDR *displacementp) 2629 { 2630 /* ENTRY_POINT is a possible function descriptor - before 2631 a call to gdbarch_convert_from_func_ptr_addr. */ 2632 CORE_ADDR entry_point, exec_displacement; 2633 2634 if (exec_bfd == NULL) 2635 return 0; 2636 2637 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries 2638 being executed themselves and PIE (Position Independent Executable) 2639 executables are ET_DYN. */ 2640 2641 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0) 2642 return 0; 2643 2644 if (target_auxv_search (¤t_target, AT_ENTRY, &entry_point) <= 0) 2645 return 0; 2646 2647 exec_displacement = entry_point - bfd_get_start_address (exec_bfd); 2648 2649 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page 2650 alignment. It is cheaper than the program headers comparison below. */ 2651 2652 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 2653 { 2654 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd); 2655 2656 /* p_align of PT_LOAD segments does not specify any alignment but 2657 only congruency of addresses: 2658 p_offset % p_align == p_vaddr % p_align 2659 Kernel is free to load the executable with lower alignment. */ 2660 2661 if ((exec_displacement & (elf->minpagesize - 1)) != 0) 2662 return 0; 2663 } 2664 2665 /* Verify that the auxilliary vector describes the same file as exec_bfd, by 2666 comparing their program headers. If the program headers in the auxilliary 2667 vector do not match the program headers in the executable, then we are 2668 looking at a different file than the one used by the kernel - for 2669 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */ 2670 2671 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour) 2672 { 2673 /* Be optimistic and clear OK only if GDB was able to verify the headers 2674 really do not match. */ 2675 int phdrs_size, phdrs2_size, ok = 1; 2676 gdb_byte *buf, *buf2; 2677 int arch_size; 2678 2679 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL); 2680 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size); 2681 if (buf != NULL && buf2 != NULL) 2682 { 2683 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 2684 2685 /* We are dealing with three different addresses. EXEC_BFD 2686 represents current address in on-disk file. target memory content 2687 may be different from EXEC_BFD as the file may have been prelinked 2688 to a different address after the executable has been loaded. 2689 Moreover the address of placement in target memory can be 2690 different from what the program headers in target memory say - 2691 this is the goal of PIE. 2692 2693 Detected DISPLACEMENT covers both the offsets of PIE placement and 2694 possible new prelink performed after start of the program. Here 2695 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory 2696 content offset for the verification purpose. */ 2697 2698 if (phdrs_size != phdrs2_size 2699 || bfd_get_arch_size (exec_bfd) != arch_size) 2700 ok = 0; 2701 else if (arch_size == 32 2702 && phdrs_size >= sizeof (Elf32_External_Phdr) 2703 && phdrs_size % sizeof (Elf32_External_Phdr) == 0) 2704 { 2705 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; 2706 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; 2707 CORE_ADDR displacement = 0; 2708 int i; 2709 2710 /* DISPLACEMENT could be found more easily by the difference of 2711 ehdr2->e_entry. But we haven't read the ehdr yet, and we 2712 already have enough information to compute that displacement 2713 with what we've read. */ 2714 2715 for (i = 0; i < ehdr2->e_phnum; i++) 2716 if (phdr2[i].p_type == PT_LOAD) 2717 { 2718 Elf32_External_Phdr *phdrp; 2719 gdb_byte *buf_vaddr_p, *buf_paddr_p; 2720 CORE_ADDR vaddr, paddr; 2721 CORE_ADDR displacement_vaddr = 0; 2722 CORE_ADDR displacement_paddr = 0; 2723 2724 phdrp = &((Elf32_External_Phdr *) buf)[i]; 2725 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 2726 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 2727 2728 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, 2729 byte_order); 2730 displacement_vaddr = vaddr - phdr2[i].p_vaddr; 2731 2732 paddr = extract_unsigned_integer (buf_paddr_p, 4, 2733 byte_order); 2734 displacement_paddr = paddr - phdr2[i].p_paddr; 2735 2736 if (displacement_vaddr == displacement_paddr) 2737 displacement = displacement_vaddr; 2738 2739 break; 2740 } 2741 2742 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ 2743 2744 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++) 2745 { 2746 Elf32_External_Phdr *phdrp; 2747 Elf32_External_Phdr *phdr2p; 2748 gdb_byte *buf_vaddr_p, *buf_paddr_p; 2749 CORE_ADDR vaddr, paddr; 2750 asection *plt2_asect; 2751 2752 phdrp = &((Elf32_External_Phdr *) buf)[i]; 2753 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 2754 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 2755 phdr2p = &((Elf32_External_Phdr *) buf2)[i]; 2756 2757 /* PT_GNU_STACK is an exception by being never relocated by 2758 prelink as its addresses are always zero. */ 2759 2760 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2761 continue; 2762 2763 /* Check also other adjustment combinations - PR 11786. */ 2764 2765 vaddr = extract_unsigned_integer (buf_vaddr_p, 4, 2766 byte_order); 2767 vaddr -= displacement; 2768 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr); 2769 2770 paddr = extract_unsigned_integer (buf_paddr_p, 4, 2771 byte_order); 2772 paddr -= displacement; 2773 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr); 2774 2775 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2776 continue; 2777 2778 /* Strip modifies the flags and alignment of PT_GNU_RELRO. 2779 CentOS-5 has problems with filesz, memsz as well. 2780 See PR 11786. */ 2781 if (phdr2[i].p_type == PT_GNU_RELRO) 2782 { 2783 Elf32_External_Phdr tmp_phdr = *phdrp; 2784 Elf32_External_Phdr tmp_phdr2 = *phdr2p; 2785 2786 memset (tmp_phdr.p_filesz, 0, 4); 2787 memset (tmp_phdr.p_memsz, 0, 4); 2788 memset (tmp_phdr.p_flags, 0, 4); 2789 memset (tmp_phdr.p_align, 0, 4); 2790 memset (tmp_phdr2.p_filesz, 0, 4); 2791 memset (tmp_phdr2.p_memsz, 0, 4); 2792 memset (tmp_phdr2.p_flags, 0, 4); 2793 memset (tmp_phdr2.p_align, 0, 4); 2794 2795 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) 2796 == 0) 2797 continue; 2798 } 2799 2800 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ 2801 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); 2802 if (plt2_asect) 2803 { 2804 int content2; 2805 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; 2806 CORE_ADDR filesz; 2807 2808 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) 2809 & SEC_HAS_CONTENTS) != 0; 2810 2811 filesz = extract_unsigned_integer (buf_filesz_p, 4, 2812 byte_order); 2813 2814 /* PLT2_ASECT is from on-disk file (exec_bfd) while 2815 FILESZ is from the in-memory image. */ 2816 if (content2) 2817 filesz += bfd_get_section_size (plt2_asect); 2818 else 2819 filesz -= bfd_get_section_size (plt2_asect); 2820 2821 store_unsigned_integer (buf_filesz_p, 4, byte_order, 2822 filesz); 2823 2824 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2825 continue; 2826 } 2827 2828 ok = 0; 2829 break; 2830 } 2831 } 2832 else if (arch_size == 64 2833 && phdrs_size >= sizeof (Elf64_External_Phdr) 2834 && phdrs_size % sizeof (Elf64_External_Phdr) == 0) 2835 { 2836 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header; 2837 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr; 2838 CORE_ADDR displacement = 0; 2839 int i; 2840 2841 /* DISPLACEMENT could be found more easily by the difference of 2842 ehdr2->e_entry. But we haven't read the ehdr yet, and we 2843 already have enough information to compute that displacement 2844 with what we've read. */ 2845 2846 for (i = 0; i < ehdr2->e_phnum; i++) 2847 if (phdr2[i].p_type == PT_LOAD) 2848 { 2849 Elf64_External_Phdr *phdrp; 2850 gdb_byte *buf_vaddr_p, *buf_paddr_p; 2851 CORE_ADDR vaddr, paddr; 2852 CORE_ADDR displacement_vaddr = 0; 2853 CORE_ADDR displacement_paddr = 0; 2854 2855 phdrp = &((Elf64_External_Phdr *) buf)[i]; 2856 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 2857 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 2858 2859 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, 2860 byte_order); 2861 displacement_vaddr = vaddr - phdr2[i].p_vaddr; 2862 2863 paddr = extract_unsigned_integer (buf_paddr_p, 8, 2864 byte_order); 2865 displacement_paddr = paddr - phdr2[i].p_paddr; 2866 2867 if (displacement_vaddr == displacement_paddr) 2868 displacement = displacement_vaddr; 2869 2870 break; 2871 } 2872 2873 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */ 2874 2875 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++) 2876 { 2877 Elf64_External_Phdr *phdrp; 2878 Elf64_External_Phdr *phdr2p; 2879 gdb_byte *buf_vaddr_p, *buf_paddr_p; 2880 CORE_ADDR vaddr, paddr; 2881 asection *plt2_asect; 2882 2883 phdrp = &((Elf64_External_Phdr *) buf)[i]; 2884 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr; 2885 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr; 2886 phdr2p = &((Elf64_External_Phdr *) buf2)[i]; 2887 2888 /* PT_GNU_STACK is an exception by being never relocated by 2889 prelink as its addresses are always zero. */ 2890 2891 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2892 continue; 2893 2894 /* Check also other adjustment combinations - PR 11786. */ 2895 2896 vaddr = extract_unsigned_integer (buf_vaddr_p, 8, 2897 byte_order); 2898 vaddr -= displacement; 2899 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr); 2900 2901 paddr = extract_unsigned_integer (buf_paddr_p, 8, 2902 byte_order); 2903 paddr -= displacement; 2904 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr); 2905 2906 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2907 continue; 2908 2909 /* Strip modifies the flags and alignment of PT_GNU_RELRO. 2910 CentOS-5 has problems with filesz, memsz as well. 2911 See PR 11786. */ 2912 if (phdr2[i].p_type == PT_GNU_RELRO) 2913 { 2914 Elf64_External_Phdr tmp_phdr = *phdrp; 2915 Elf64_External_Phdr tmp_phdr2 = *phdr2p; 2916 2917 memset (tmp_phdr.p_filesz, 0, 8); 2918 memset (tmp_phdr.p_memsz, 0, 8); 2919 memset (tmp_phdr.p_flags, 0, 4); 2920 memset (tmp_phdr.p_align, 0, 8); 2921 memset (tmp_phdr2.p_filesz, 0, 8); 2922 memset (tmp_phdr2.p_memsz, 0, 8); 2923 memset (tmp_phdr2.p_flags, 0, 4); 2924 memset (tmp_phdr2.p_align, 0, 8); 2925 2926 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr)) 2927 == 0) 2928 continue; 2929 } 2930 2931 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */ 2932 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt"); 2933 if (plt2_asect) 2934 { 2935 int content2; 2936 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz; 2937 CORE_ADDR filesz; 2938 2939 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect) 2940 & SEC_HAS_CONTENTS) != 0; 2941 2942 filesz = extract_unsigned_integer (buf_filesz_p, 8, 2943 byte_order); 2944 2945 /* PLT2_ASECT is from on-disk file (exec_bfd) while 2946 FILESZ is from the in-memory image. */ 2947 if (content2) 2948 filesz += bfd_get_section_size (plt2_asect); 2949 else 2950 filesz -= bfd_get_section_size (plt2_asect); 2951 2952 store_unsigned_integer (buf_filesz_p, 8, byte_order, 2953 filesz); 2954 2955 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0) 2956 continue; 2957 } 2958 2959 ok = 0; 2960 break; 2961 } 2962 } 2963 else 2964 ok = 0; 2965 } 2966 2967 xfree (buf); 2968 xfree (buf2); 2969 2970 if (!ok) 2971 return 0; 2972 } 2973 2974 if (info_verbose) 2975 { 2976 /* It can be printed repeatedly as there is no easy way to check 2977 the executable symbols/file has been already relocated to 2978 displacement. */ 2979 2980 printf_unfiltered (_("Using PIE (Position Independent Executable) " 2981 "displacement %s for \"%s\".\n"), 2982 paddress (target_gdbarch (), exec_displacement), 2983 bfd_get_filename (exec_bfd)); 2984 } 2985 2986 *displacementp = exec_displacement; 2987 return 1; 2988 } 2989 2990 /* Relocate the main executable. This function should be called upon 2991 stopping the inferior process at the entry point to the program. 2992 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are 2993 different, the main executable is relocated by the proper amount. */ 2994 2995 static void 2996 svr4_relocate_main_executable (void) 2997 { 2998 CORE_ADDR displacement; 2999 3000 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS 3001 probably contains the offsets computed using the PIE displacement 3002 from the previous run, which of course are irrelevant for this run. 3003 So we need to determine the new PIE displacement and recompute the 3004 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS 3005 already contains pre-computed offsets. 3006 3007 If we cannot compute the PIE displacement, either: 3008 3009 - The executable is not PIE. 3010 3011 - SYMFILE_OBJFILE does not match the executable started in the target. 3012 This can happen for main executable symbols loaded at the host while 3013 `ld.so --ld-args main-executable' is loaded in the target. 3014 3015 Then we leave the section offsets untouched and use them as is for 3016 this run. Either: 3017 3018 - These section offsets were properly reset earlier, and thus 3019 already contain the correct values. This can happen for instance 3020 when reconnecting via the remote protocol to a target that supports 3021 the `qOffsets' packet. 3022 3023 - The section offsets were not reset earlier, and the best we can 3024 hope is that the old offsets are still applicable to the new run. */ 3025 3026 if (! svr4_exec_displacement (&displacement)) 3027 return; 3028 3029 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file 3030 addresses. */ 3031 3032 if (symfile_objfile) 3033 { 3034 struct section_offsets *new_offsets; 3035 int i; 3036 3037 new_offsets = XALLOCAVEC (struct section_offsets, 3038 symfile_objfile->num_sections); 3039 3040 for (i = 0; i < symfile_objfile->num_sections; i++) 3041 new_offsets->offsets[i] = displacement; 3042 3043 objfile_relocate (symfile_objfile, new_offsets); 3044 } 3045 else if (exec_bfd) 3046 { 3047 asection *asect; 3048 3049 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next) 3050 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index, 3051 (bfd_section_vma (exec_bfd, asect) 3052 + displacement)); 3053 } 3054 } 3055 3056 /* Implement the "create_inferior_hook" target_solib_ops method. 3057 3058 For SVR4 executables, this first instruction is either the first 3059 instruction in the dynamic linker (for dynamically linked 3060 executables) or the instruction at "start" for statically linked 3061 executables. For dynamically linked executables, the system 3062 first exec's /lib/libc.so.N, which contains the dynamic linker, 3063 and starts it running. The dynamic linker maps in any needed 3064 shared libraries, maps in the actual user executable, and then 3065 jumps to "start" in the user executable. 3066 3067 We can arrange to cooperate with the dynamic linker to discover the 3068 names of shared libraries that are dynamically linked, and the base 3069 addresses to which they are linked. 3070 3071 This function is responsible for discovering those names and 3072 addresses, and saving sufficient information about them to allow 3073 their symbols to be read at a later time. */ 3074 3075 static void 3076 svr4_solib_create_inferior_hook (int from_tty) 3077 { 3078 struct svr4_info *info; 3079 3080 info = get_svr4_info (); 3081 3082 /* Clear the probes-based interface's state. */ 3083 free_probes_table (info); 3084 free_solib_list (info); 3085 3086 /* Relocate the main executable if necessary. */ 3087 svr4_relocate_main_executable (); 3088 3089 /* No point setting a breakpoint in the dynamic linker if we can't 3090 hit it (e.g., a core file, or a trace file). */ 3091 if (!target_has_execution) 3092 return; 3093 3094 if (!svr4_have_link_map_offsets ()) 3095 return; 3096 3097 if (!enable_break (info, from_tty)) 3098 return; 3099 } 3100 3101 static void 3102 svr4_clear_solib (void) 3103 { 3104 struct svr4_info *info; 3105 3106 info = get_svr4_info (); 3107 info->debug_base = 0; 3108 info->debug_loader_offset_p = 0; 3109 info->debug_loader_offset = 0; 3110 xfree (info->debug_loader_name); 3111 info->debug_loader_name = NULL; 3112 } 3113 3114 /* Clear any bits of ADDR that wouldn't fit in a target-format 3115 data pointer. "Data pointer" here refers to whatever sort of 3116 address the dynamic linker uses to manage its sections. At the 3117 moment, we don't support shared libraries on any processors where 3118 code and data pointers are different sizes. 3119 3120 This isn't really the right solution. What we really need here is 3121 a way to do arithmetic on CORE_ADDR values that respects the 3122 natural pointer/address correspondence. (For example, on the MIPS, 3123 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to 3124 sign-extend the value. There, simply truncating the bits above 3125 gdbarch_ptr_bit, as we do below, is no good.) This should probably 3126 be a new gdbarch method or something. */ 3127 static CORE_ADDR 3128 svr4_truncate_ptr (CORE_ADDR addr) 3129 { 3130 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8) 3131 /* We don't need to truncate anything, and the bit twiddling below 3132 will fail due to overflow problems. */ 3133 return addr; 3134 else 3135 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1); 3136 } 3137 3138 3139 static void 3140 svr4_relocate_section_addresses (struct so_list *so, 3141 struct target_section *sec) 3142 { 3143 bfd *abfd = sec->the_bfd_section->owner; 3144 3145 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd)); 3146 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd)); 3147 } 3148 3149 3150 /* Architecture-specific operations. */ 3151 3152 /* Per-architecture data key. */ 3153 static struct gdbarch_data *solib_svr4_data; 3154 3155 struct solib_svr4_ops 3156 { 3157 /* Return a description of the layout of `struct link_map'. */ 3158 struct link_map_offsets *(*fetch_link_map_offsets)(void); 3159 }; 3160 3161 /* Return a default for the architecture-specific operations. */ 3162 3163 static void * 3164 solib_svr4_init (struct obstack *obstack) 3165 { 3166 struct solib_svr4_ops *ops; 3167 3168 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops); 3169 ops->fetch_link_map_offsets = NULL; 3170 return ops; 3171 } 3172 3173 /* Set the architecture-specific `struct link_map_offsets' fetcher for 3174 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */ 3175 3176 void 3177 set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch, 3178 struct link_map_offsets *(*flmo) (void)) 3179 { 3180 struct solib_svr4_ops *ops 3181 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data); 3182 3183 ops->fetch_link_map_offsets = flmo; 3184 3185 set_solib_ops (gdbarch, &svr4_so_ops); 3186 } 3187 3188 /* Fetch a link_map_offsets structure using the architecture-specific 3189 `struct link_map_offsets' fetcher. */ 3190 3191 static struct link_map_offsets * 3192 svr4_fetch_link_map_offsets (void) 3193 { 3194 struct solib_svr4_ops *ops 3195 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), 3196 solib_svr4_data); 3197 3198 gdb_assert (ops->fetch_link_map_offsets); 3199 return ops->fetch_link_map_offsets (); 3200 } 3201 3202 /* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */ 3203 3204 static int 3205 svr4_have_link_map_offsets (void) 3206 { 3207 struct solib_svr4_ops *ops 3208 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (), 3209 solib_svr4_data); 3210 3211 return (ops->fetch_link_map_offsets != NULL); 3212 } 3213 3214 3215 /* Most OS'es that have SVR4-style ELF dynamic libraries define a 3216 `struct r_debug' and a `struct link_map' that are binary compatible 3217 with the origional SVR4 implementation. */ 3218 3219 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 3220 for an ILP32 SVR4 system. */ 3221 3222 struct link_map_offsets * 3223 svr4_ilp32_fetch_link_map_offsets (void) 3224 { 3225 static struct link_map_offsets lmo; 3226 static struct link_map_offsets *lmp = NULL; 3227 3228 if (lmp == NULL) 3229 { 3230 lmp = &lmo; 3231 3232 lmo.r_version_offset = 0; 3233 lmo.r_version_size = 4; 3234 lmo.r_map_offset = 4; 3235 lmo.r_brk_offset = 8; 3236 lmo.r_ldsomap_offset = 20; 3237 3238 /* Everything we need is in the first 20 bytes. */ 3239 lmo.link_map_size = 20; 3240 lmo.l_addr_offset = 0; 3241 lmo.l_name_offset = 4; 3242 lmo.l_ld_offset = 8; 3243 lmo.l_next_offset = 12; 3244 lmo.l_prev_offset = 16; 3245 } 3246 3247 return lmp; 3248 } 3249 3250 /* Fetch (and possibly build) an appropriate `struct link_map_offsets' 3251 for an LP64 SVR4 system. */ 3252 3253 struct link_map_offsets * 3254 svr4_lp64_fetch_link_map_offsets (void) 3255 { 3256 static struct link_map_offsets lmo; 3257 static struct link_map_offsets *lmp = NULL; 3258 3259 if (lmp == NULL) 3260 { 3261 lmp = &lmo; 3262 3263 lmo.r_version_offset = 0; 3264 lmo.r_version_size = 4; 3265 lmo.r_map_offset = 8; 3266 lmo.r_brk_offset = 16; 3267 lmo.r_ldsomap_offset = 40; 3268 3269 /* Everything we need is in the first 40 bytes. */ 3270 lmo.link_map_size = 40; 3271 lmo.l_addr_offset = 0; 3272 lmo.l_name_offset = 8; 3273 lmo.l_ld_offset = 16; 3274 lmo.l_next_offset = 24; 3275 lmo.l_prev_offset = 32; 3276 } 3277 3278 return lmp; 3279 } 3280 3281 3282 struct target_so_ops svr4_so_ops; 3283 3284 /* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a 3285 different rule for symbol lookup. The lookup begins here in the DSO, not in 3286 the main executable. */ 3287 3288 static struct block_symbol 3289 elf_lookup_lib_symbol (struct objfile *objfile, 3290 const char *name, 3291 const domain_enum domain) 3292 { 3293 bfd *abfd; 3294 3295 if (objfile == symfile_objfile) 3296 abfd = exec_bfd; 3297 else 3298 { 3299 /* OBJFILE should have been passed as the non-debug one. */ 3300 gdb_assert (objfile->separate_debug_objfile_backlink == NULL); 3301 3302 abfd = objfile->obfd; 3303 } 3304 3305 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1) 3306 return (struct block_symbol) {NULL, NULL}; 3307 3308 return lookup_global_symbol_from_objfile (objfile, name, domain); 3309 } 3310 3311 extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */ 3312 3313 void 3314 _initialize_svr4_solib (void) 3315 { 3316 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init); 3317 solib_svr4_pspace_data 3318 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup); 3319 3320 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses; 3321 svr4_so_ops.free_so = svr4_free_so; 3322 svr4_so_ops.clear_so = svr4_clear_so; 3323 svr4_so_ops.clear_solib = svr4_clear_solib; 3324 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook; 3325 svr4_so_ops.current_sos = svr4_current_sos; 3326 svr4_so_ops.open_symbol_file_object = open_symbol_file_object; 3327 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code; 3328 svr4_so_ops.bfd_open = solib_bfd_open; 3329 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol; 3330 svr4_so_ops.same = svr4_same; 3331 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core; 3332 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints; 3333 svr4_so_ops.handle_event = svr4_handle_solib_event; 3334 } 3335