xref: /netbsd-src/external/gpl3/gdb/dist/gdb/nios2-tdep.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Target-machine dependent code for Nios II, for GDB.
2    Copyright (C) 2012-2019 Free Software Foundation, Inc.
3    Contributed by Peter Brookes (pbrookes@altera.com)
4    and Andrew Draper (adraper@altera.com).
5    Contributed by Mentor Graphics, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "infcall.h"
41 #include "regset.h"
42 #include "target-descriptions.h"
43 
44 /* To get entry_point_address.  */
45 #include "objfiles.h"
46 #include <algorithm>
47 
48 /* Nios II specific header.  */
49 #include "nios2-tdep.h"
50 
51 #include "features/nios2.c"
52 
53 /* Control debugging information emitted in this file.  */
54 
55 static int nios2_debug = 0;
56 
57 /* The following structures are used in the cache for prologue
58    analysis; see the reg_value and reg_saved tables in
59    struct nios2_unwind_cache, respectively.  */
60 
61 /* struct reg_value is used to record that a register has the same value
62    as reg at the given offset from the start of a function.  */
63 
64 struct reg_value
65 {
66   int reg;
67   unsigned int offset;
68 };
69 
70 /* struct reg_saved is used to record that a register value has been saved at
71    basereg + addr, for basereg >= 0.  If basereg < 0, that indicates
72    that the register is not known to have been saved.  Note that when
73    basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
74    addr is an absolute address.  */
75 
76 struct reg_saved
77 {
78   int basereg;
79   CORE_ADDR addr;
80 };
81 
82 struct nios2_unwind_cache
83 {
84   /* The frame's base, optionally used by the high-level debug info.  */
85   CORE_ADDR base;
86 
87   /* The previous frame's inner most stack address.  Used as this
88      frame ID's stack_addr.  */
89   CORE_ADDR cfa;
90 
91   /* The address of the first instruction in this function.  */
92   CORE_ADDR pc;
93 
94   /* Which register holds the return address for the frame.  */
95   int return_regnum;
96 
97   /* Table indicating what changes have been made to each register.  */
98   struct reg_value reg_value[NIOS2_NUM_REGS];
99 
100   /* Table indicating where each register has been saved.  */
101   struct reg_saved reg_saved[NIOS2_NUM_REGS];
102 };
103 
104 
105 /* This array is a mapping from Dwarf-2 register numbering to GDB's.  */
106 
107 static int nios2_dwarf2gdb_regno_map[] =
108 {
109   0, 1, 2, 3,
110   4, 5, 6, 7,
111   8, 9, 10, 11,
112   12, 13, 14, 15,
113   16, 17, 18, 19,
114   20, 21, 22, 23,
115   24, 25,
116   NIOS2_GP_REGNUM,        /* 26 */
117   NIOS2_SP_REGNUM,        /* 27 */
118   NIOS2_FP_REGNUM,        /* 28 */
119   NIOS2_EA_REGNUM,        /* 29 */
120   NIOS2_BA_REGNUM,        /* 30 */
121   NIOS2_RA_REGNUM,        /* 31 */
122   NIOS2_PC_REGNUM,        /* 32 */
123   NIOS2_STATUS_REGNUM,    /* 33 */
124   NIOS2_ESTATUS_REGNUM,   /* 34 */
125   NIOS2_BSTATUS_REGNUM,   /* 35 */
126   NIOS2_IENABLE_REGNUM,   /* 36 */
127   NIOS2_IPENDING_REGNUM,  /* 37 */
128   NIOS2_CPUID_REGNUM,     /* 38 */
129   39, /* CTL6 */          /* 39 */
130   NIOS2_EXCEPTION_REGNUM, /* 40 */
131   NIOS2_PTEADDR_REGNUM,   /* 41 */
132   NIOS2_TLBACC_REGNUM,    /* 42 */
133   NIOS2_TLBMISC_REGNUM,   /* 43 */
134   NIOS2_ECCINJ_REGNUM,    /* 44 */
135   NIOS2_BADADDR_REGNUM,   /* 45 */
136   NIOS2_CONFIG_REGNUM,    /* 46 */
137   NIOS2_MPUBASE_REGNUM,   /* 47 */
138   NIOS2_MPUACC_REGNUM     /* 48 */
139 };
140 
141 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
142 
143 /* Implement the dwarf2_reg_to_regnum gdbarch method.  */
144 
145 static int
146 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
147 {
148   if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
149     return -1;
150 
151   return nios2_dwarf2gdb_regno_map[dw_reg];
152 }
153 
154 /* Canonical names for the 49 registers.  */
155 
156 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
157 {
158   "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
159   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160   "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
161   "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
162   "pc",
163   "status", "estatus", "bstatus", "ienable",
164   "ipending", "cpuid", "ctl6", "exception",
165   "pteaddr", "tlbacc", "tlbmisc", "eccinj",
166   "badaddr", "config", "mpubase", "mpuacc"
167 };
168 
169 /* Implement the register_name gdbarch method.  */
170 
171 static const char *
172 nios2_register_name (struct gdbarch *gdbarch, int regno)
173 {
174   /* Use mnemonic aliases for GPRs.  */
175   if (regno >= 0 && regno < NIOS2_NUM_REGS)
176     return nios2_reg_names[regno];
177   else
178     return tdesc_register_name (gdbarch, regno);
179 }
180 
181 /* Implement the register_type gdbarch method.  */
182 
183 static struct type *
184 nios2_register_type (struct gdbarch *gdbarch, int regno)
185 {
186   /* If the XML description has register information, use that to
187      determine the register type.  */
188   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
189     return tdesc_register_type (gdbarch, regno);
190 
191   if (regno == NIOS2_PC_REGNUM)
192     return builtin_type (gdbarch)->builtin_func_ptr;
193   else if (regno == NIOS2_SP_REGNUM)
194     return builtin_type (gdbarch)->builtin_data_ptr;
195   else
196     return builtin_type (gdbarch)->builtin_uint32;
197 }
198 
199 /* Given a return value in REGCACHE with a type VALTYPE,
200    extract and copy its value into VALBUF.  */
201 
202 static void
203 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
204 			    struct regcache *regcache, gdb_byte *valbuf)
205 {
206   int len = TYPE_LENGTH (valtype);
207 
208   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
209   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
210     regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
211   else
212     {
213       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
214 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
215       regcache->cooked_read (NIOS2_R2_REGNUM, valbuf);
216       regcache->cooked_read (NIOS2_R3_REGNUM, valbuf + 4);
217     }
218 }
219 
220 /* Write into appropriate registers a function return value
221    of type TYPE, given in virtual format.  */
222 
223 static void
224 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
225 			  struct regcache *regcache, const gdb_byte *valbuf)
226 {
227   int len = TYPE_LENGTH (valtype);
228 
229   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
230   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
231     regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
232   else
233     {
234       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
235 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
236       regcache->cooked_write (NIOS2_R2_REGNUM, valbuf);
237       regcache->cooked_write (NIOS2_R3_REGNUM, valbuf + 4);
238     }
239 }
240 
241 
242 /* Set up the default values of the registers.  */
243 
244 static void
245 nios2_setup_default (struct nios2_unwind_cache *cache)
246 {
247   int i;
248 
249   for (i = 0; i < NIOS2_NUM_REGS; i++)
250   {
251     /* All registers start off holding their previous values.  */
252     cache->reg_value[i].reg    = i;
253     cache->reg_value[i].offset = 0;
254 
255     /* All registers start off not saved.  */
256     cache->reg_saved[i].basereg = -1;
257     cache->reg_saved[i].addr    = 0;
258   }
259 }
260 
261 /* Initialize the unwind cache.  */
262 
263 static void
264 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
265 {
266   cache->base = 0;
267   cache->cfa = 0;
268   cache->pc = pc;
269   cache->return_regnum = NIOS2_RA_REGNUM;
270   nios2_setup_default (cache);
271 }
272 
273 /* Read and identify an instruction at PC.  If INSNP is non-null,
274    store the instruction word into that location.  Return the opcode
275    pointer or NULL if the memory couldn't be read or disassembled.  */
276 
277 static const struct nios2_opcode *
278 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
279 		  unsigned int *insnp)
280 {
281   LONGEST memword;
282   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
283   unsigned int insn;
284 
285   if (mach == bfd_mach_nios2r2)
286     {
287       if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
288 				     BFD_ENDIAN_LITTLE, &memword)
289 	  && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
290 					BFD_ENDIAN_LITTLE, &memword))
291 	return NULL;
292     }
293   else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
294 				      gdbarch_byte_order (gdbarch), &memword))
295     return NULL;
296 
297   insn = (unsigned int) memword;
298   if (insnp)
299     *insnp = insn;
300   return nios2_find_opcode_hash (insn, mach);
301 }
302 
303 
304 /* Match and disassemble an ADD-type instruction, with 3 register operands.
305    Returns true on success, and fills in the operand pointers.  */
306 
307 static int
308 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
309 		 unsigned long mach, int *ra, int *rb, int *rc)
310 {
311   int is_r2 = (mach == bfd_mach_nios2r2);
312 
313   if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
314     {
315       *ra = GET_IW_R_A (insn);
316       *rb = GET_IW_R_B (insn);
317       *rc = GET_IW_R_C (insn);
318       return 1;
319     }
320   else if (!is_r2)
321     return 0;
322   else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
323     {
324       *ra = GET_IW_F3X6L5_A (insn);
325       *rb = GET_IW_F3X6L5_B (insn);
326       *rc = GET_IW_F3X6L5_C (insn);
327       return 1;
328     }
329   else if (op->match == MATCH_R2_ADD_N)
330     {
331       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
332       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
333       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
334       return 1;
335     }
336   else if (op->match == MATCH_R2_MOV_N)
337     {
338       *ra = GET_IW_F2_A (insn);
339       *rb = 0;
340       *rc = GET_IW_F2_B (insn);
341       return 1;
342     }
343   return 0;
344 }
345 
346 /* Match and disassemble a SUB-type instruction, with 3 register operands.
347    Returns true on success, and fills in the operand pointers.  */
348 
349 static int
350 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
351 		 unsigned long mach, int *ra, int *rb, int *rc)
352 {
353   int is_r2 = (mach == bfd_mach_nios2r2);
354 
355   if (!is_r2 && op->match == MATCH_R1_SUB)
356     {
357       *ra = GET_IW_R_A (insn);
358       *rb = GET_IW_R_B (insn);
359       *rc = GET_IW_R_C (insn);
360       return 1;
361     }
362   else if (!is_r2)
363     return 0;
364   else if (op->match == MATCH_R2_SUB)
365     {
366       *ra = GET_IW_F3X6L5_A (insn);
367       *rb = GET_IW_F3X6L5_B (insn);
368       *rc = GET_IW_F3X6L5_C (insn);
369       return 1;
370     }
371   else if (op->match == MATCH_R2_SUB_N)
372     {
373       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
374       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
375       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
376       return 1;
377     }
378   return 0;
379 }
380 
381 /* Match and disassemble an ADDI-type instruction, with 2 register operands
382    and one immediate operand.
383    Returns true on success, and fills in the operand pointers.  */
384 
385 static int
386 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
387 		  unsigned long mach, int *ra, int *rb, int *imm)
388 {
389   int is_r2 = (mach == bfd_mach_nios2r2);
390 
391   if (!is_r2 && op->match == MATCH_R1_ADDI)
392     {
393       *ra = GET_IW_I_A (insn);
394       *rb = GET_IW_I_B (insn);
395       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
396       return 1;
397     }
398   else if (!is_r2)
399     return 0;
400   else if (op->match == MATCH_R2_ADDI)
401     {
402       *ra = GET_IW_F2I16_A (insn);
403       *rb = GET_IW_F2I16_B (insn);
404       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
405       return 1;
406     }
407   else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
408     {
409       *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
410       *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
411       *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
412       if (op->match == MATCH_R2_SUBI_N)
413 	*imm = - (*imm);
414       return 1;
415     }
416   else if (op->match == MATCH_R2_SPADDI_N)
417     {
418       *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
419       *rb = NIOS2_SP_REGNUM;
420       *imm = GET_IW_T1I7_IMM7 (insn) << 2;
421       return 1;
422     }
423   else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
424     {
425       *ra = NIOS2_SP_REGNUM;
426       *rb = NIOS2_SP_REGNUM;
427       *imm = GET_IW_X1I7_IMM7 (insn) << 2;
428       if (op->match == MATCH_R2_SPDECI_N)
429 	*imm = - (*imm);
430       return 1;
431     }
432   return 0;
433 }
434 
435 /* Match and disassemble an ORHI-type instruction, with 2 register operands
436    and one unsigned immediate operand.
437    Returns true on success, and fills in the operand pointers.  */
438 
439 static int
440 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
441 		  unsigned long mach, int *ra, int *rb, unsigned int *uimm)
442 {
443   int is_r2 = (mach == bfd_mach_nios2r2);
444 
445   if (!is_r2 && op->match == MATCH_R1_ORHI)
446     {
447       *ra = GET_IW_I_A (insn);
448       *rb = GET_IW_I_B (insn);
449       *uimm = GET_IW_I_IMM16 (insn);
450       return 1;
451     }
452   else if (!is_r2)
453     return 0;
454   else if (op->match == MATCH_R2_ORHI)
455     {
456       *ra = GET_IW_F2I16_A (insn);
457       *rb = GET_IW_F2I16_B (insn);
458       *uimm = GET_IW_F2I16_IMM16 (insn);
459       return 1;
460     }
461   return 0;
462 }
463 
464 /* Match and disassemble a STW-type instruction, with 2 register operands
465    and one immediate operand.
466    Returns true on success, and fills in the operand pointers.  */
467 
468 static int
469 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
470 		 unsigned long mach, int *ra, int *rb, int *imm)
471 {
472   int is_r2 = (mach == bfd_mach_nios2r2);
473 
474   if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
475     {
476       *ra = GET_IW_I_A (insn);
477       *rb = GET_IW_I_B (insn);
478       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
479       return 1;
480     }
481   else if (!is_r2)
482     return 0;
483   else if (op->match == MATCH_R2_STW)
484     {
485       *ra = GET_IW_F2I16_A (insn);
486       *rb = GET_IW_F2I16_B (insn);
487       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
488       return 1;
489     }
490   else if (op->match == MATCH_R2_STWIO)
491     {
492       *ra = GET_IW_F2X4I12_A (insn);
493       *rb = GET_IW_F2X4I12_B (insn);
494       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
495       return 1;
496     }
497   else if (op->match == MATCH_R2_STW_N)
498     {
499       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
500       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
501       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
502       return 1;
503     }
504   else if (op->match == MATCH_R2_STWSP_N)
505     {
506       *ra = NIOS2_SP_REGNUM;
507       *rb = GET_IW_F1I5_B (insn);
508       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
509       return 1;
510     }
511   else if (op->match == MATCH_R2_STWZ_N)
512     {
513       *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
514       *rb = 0;
515       *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
516       return 1;
517     }
518   return 0;
519 }
520 
521 /* Match and disassemble a LDW-type instruction, with 2 register operands
522    and one immediate operand.
523    Returns true on success, and fills in the operand pointers.  */
524 
525 static int
526 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
527 		 unsigned long mach, int *ra, int *rb, int *imm)
528 {
529   int is_r2 = (mach == bfd_mach_nios2r2);
530 
531   if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
532     {
533       *ra = GET_IW_I_A (insn);
534       *rb = GET_IW_I_B (insn);
535       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
536       return 1;
537     }
538   else if (!is_r2)
539     return 0;
540   else if (op->match == MATCH_R2_LDW)
541     {
542       *ra = GET_IW_F2I16_A (insn);
543       *rb = GET_IW_F2I16_B (insn);
544       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
545       return 1;
546     }
547   else if (op->match == MATCH_R2_LDWIO)
548     {
549       *ra = GET_IW_F2X4I12_A (insn);
550       *rb = GET_IW_F2X4I12_B (insn);
551       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
552       return 1;
553     }
554   else if (op->match == MATCH_R2_LDW_N)
555     {
556       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
557       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
558       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
559       return 1;
560     }
561   else if (op->match == MATCH_R2_LDWSP_N)
562     {
563       *ra = NIOS2_SP_REGNUM;
564       *rb = GET_IW_F1I5_B (insn);
565       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
566       return 1;
567     }
568   return 0;
569 }
570 
571 /* Match and disassemble a RDCTL instruction, with 2 register operands.
572    Returns true on success, and fills in the operand pointers.  */
573 
574 static int
575 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
576 		   unsigned long mach, int *ra, int *rc)
577 {
578   int is_r2 = (mach == bfd_mach_nios2r2);
579 
580   if (!is_r2 && (op->match == MATCH_R1_RDCTL))
581     {
582       *ra = GET_IW_R_IMM5 (insn);
583       *rc = GET_IW_R_C (insn);
584       return 1;
585     }
586   else if (!is_r2)
587     return 0;
588   else if (op->match == MATCH_R2_RDCTL)
589     {
590       *ra = GET_IW_F3X6L5_IMM5 (insn);
591       *rc = GET_IW_F3X6L5_C (insn);
592       return 1;
593     }
594   return 0;
595 }
596 
597 /* Match and disassemble a PUSH.N or STWM instruction.
598    Returns true on success, and fills in the operand pointers.  */
599 
600 static int
601 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
602 		  unsigned long mach, unsigned int *reglist,
603 		  int *ra, int *imm, int *wb, int *id)
604 {
605   int is_r2 = (mach == bfd_mach_nios2r2);
606 
607   if (!is_r2)
608     return 0;
609   else if (op->match == MATCH_R2_PUSH_N)
610     {
611       *reglist = 1 << 31;
612       if (GET_IW_L5I4X1_FP (insn))
613 	*reglist |= (1 << 28);
614       if (GET_IW_L5I4X1_CS (insn))
615 	{
616 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
617 	  *reglist |= nios2_r2_reg_range_mappings[val];
618 	}
619       *ra = NIOS2_SP_REGNUM;
620       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
621       *wb = 1;
622       *id = 0;
623       return 1;
624     }
625   else if (op->match == MATCH_R2_STWM)
626     {
627       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
628       if (GET_IW_F1X4L17_RS (insn))
629 	{
630 	  *reglist = ((rawmask << 14) & 0x00ffc000);
631 	  if (rawmask & (1 << 10))
632 	    *reglist |= (1 << 28);
633 	  if (rawmask & (1 << 11))
634 	    *reglist |= (1 << 31);
635 	}
636       else
637 	*reglist = rawmask << 2;
638       *ra = GET_IW_F1X4L17_A (insn);
639       *imm = 0;
640       *wb = GET_IW_F1X4L17_WB (insn);
641       *id = GET_IW_F1X4L17_ID (insn);
642       return 1;
643     }
644   return 0;
645 }
646 
647 /* Match and disassemble a POP.N or LDWM instruction.
648    Returns true on success, and fills in the operand pointers.  */
649 
650 static int
651 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
652 		  unsigned long mach, unsigned int *reglist,
653 		  int *ra, int *imm, int *wb, int *id, int *ret)
654 {
655   int is_r2 = (mach == bfd_mach_nios2r2);
656 
657   if (!is_r2)
658     return 0;
659   else if (op->match == MATCH_R2_POP_N)
660     {
661       *reglist = 1 << 31;
662       if (GET_IW_L5I4X1_FP (insn))
663 	*reglist |= (1 << 28);
664       if (GET_IW_L5I4X1_CS (insn))
665 	{
666 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
667 	  *reglist |= nios2_r2_reg_range_mappings[val];
668 	}
669       *ra = NIOS2_SP_REGNUM;
670       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
671       *wb = 1;
672       *id = 1;
673       *ret = 1;
674       return 1;
675     }
676   else if (op->match == MATCH_R2_LDWM)
677     {
678       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
679       if (GET_IW_F1X4L17_RS (insn))
680 	{
681 	  *reglist = ((rawmask << 14) & 0x00ffc000);
682 	  if (rawmask & (1 << 10))
683 	    *reglist |= (1 << 28);
684 	  if (rawmask & (1 << 11))
685 	    *reglist |= (1 << 31);
686 	}
687       else
688 	*reglist = rawmask << 2;
689       *ra = GET_IW_F1X4L17_A (insn);
690       *imm = 0;
691       *wb = GET_IW_F1X4L17_WB (insn);
692       *id = GET_IW_F1X4L17_ID (insn);
693       *ret = GET_IW_F1X4L17_PC (insn);
694       return 1;
695     }
696   return 0;
697 }
698 
699 /* Match and disassemble a branch instruction, with (potentially)
700    2 register operands and one immediate operand.
701    Returns true on success, and fills in the operand pointers.  */
702 
703 enum branch_condition {
704   branch_none,
705   branch_eq,
706   branch_ne,
707   branch_ge,
708   branch_geu,
709   branch_lt,
710   branch_ltu
711 };
712 
713 static int
714 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
715 		    unsigned long mach, int *ra, int *rb, int *imm,
716 		    enum branch_condition *cond)
717 {
718   int is_r2 = (mach == bfd_mach_nios2r2);
719 
720   if (!is_r2)
721     {
722       switch (op->match)
723 	{
724 	case MATCH_R1_BR:
725 	  *cond = branch_none;
726 	  break;
727 	case MATCH_R1_BEQ:
728 	  *cond = branch_eq;
729 	  break;
730 	case MATCH_R1_BNE:
731 	  *cond = branch_ne;
732 	  break;
733 	case MATCH_R1_BGE:
734 	  *cond = branch_ge;
735 	  break;
736 	case MATCH_R1_BGEU:
737 	  *cond = branch_geu;
738 	  break;
739 	case MATCH_R1_BLT:
740 	  *cond = branch_lt;
741 	  break;
742 	case MATCH_R1_BLTU:
743 	  *cond = branch_ltu;
744 	  break;
745 	default:
746 	  return 0;
747 	}
748       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
749       *ra = GET_IW_I_A (insn);
750       *rb = GET_IW_I_B (insn);
751       return 1;
752     }
753   else
754     {
755       switch (op->match)
756 	{
757 	case MATCH_R2_BR_N:
758 	  *cond = branch_none;
759 	  *ra = NIOS2_Z_REGNUM;
760 	  *rb = NIOS2_Z_REGNUM;
761 	  *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
762 	  return 1;
763 	case MATCH_R2_BEQZ_N:
764 	  *cond = branch_eq;
765 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
766 	  *rb = NIOS2_Z_REGNUM;
767 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
768 	  return 1;
769 	case MATCH_R2_BNEZ_N:
770 	  *cond = branch_ne;
771 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
772 	  *rb = NIOS2_Z_REGNUM;
773 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
774 	  return 1;
775 	case MATCH_R2_BR:
776 	  *cond = branch_none;
777 	  break;
778 	case MATCH_R2_BEQ:
779 	  *cond = branch_eq;
780 	  break;
781 	case MATCH_R2_BNE:
782 	  *cond = branch_ne;
783 	  break;
784 	case MATCH_R2_BGE:
785 	  *cond = branch_ge;
786 	  break;
787 	case MATCH_R2_BGEU:
788 	  *cond = branch_geu;
789 	  break;
790 	case MATCH_R2_BLT:
791 	  *cond = branch_lt;
792 	  break;
793 	case MATCH_R2_BLTU:
794 	  *cond = branch_ltu;
795 	  break;
796 	default:
797 	  return 0;
798 	}
799       *ra = GET_IW_F2I16_A (insn);
800       *rb = GET_IW_F2I16_B (insn);
801       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
802       return 1;
803     }
804   return 0;
805 }
806 
807 /* Match and disassemble a direct jump instruction, with an
808    unsigned operand.  Returns true on success, and fills in the operand
809    pointer.  */
810 
811 static int
812 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
813 		  unsigned long mach, unsigned int *uimm)
814 {
815   int is_r2 = (mach == bfd_mach_nios2r2);
816 
817   if (!is_r2 && op->match == MATCH_R1_JMPI)
818     {
819       *uimm = GET_IW_J_IMM26 (insn) << 2;
820       return 1;
821     }
822   else if (!is_r2)
823     return 0;
824   else if (op->match == MATCH_R2_JMPI)
825     {
826       *uimm = GET_IW_L26_IMM26 (insn) << 2;
827       return 1;
828     }
829   return 0;
830 }
831 
832 /* Match and disassemble a direct call instruction, with an
833    unsigned operand.  Returns true on success, and fills in the operand
834    pointer.  */
835 
836 static int
837 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
838 		   unsigned long mach, unsigned int *uimm)
839 {
840   int is_r2 = (mach == bfd_mach_nios2r2);
841 
842   if (!is_r2 && op->match == MATCH_R1_CALL)
843     {
844       *uimm = GET_IW_J_IMM26 (insn) << 2;
845       return 1;
846     }
847   else if (!is_r2)
848     return 0;
849   else if (op->match == MATCH_R2_CALL)
850     {
851       *uimm = GET_IW_L26_IMM26 (insn) << 2;
852       return 1;
853     }
854   return 0;
855 }
856 
857 /* Match and disassemble an indirect jump instruction, with a
858    (possibly implicit) register operand.  Returns true on success, and fills
859    in the operand pointer.  */
860 
861 static int
862 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
863 		  unsigned long mach, int *ra)
864 {
865   int is_r2 = (mach == bfd_mach_nios2r2);
866 
867   if (!is_r2)
868     switch (op->match)
869       {
870       case MATCH_R1_JMP:
871 	*ra = GET_IW_I_A (insn);
872 	return 1;
873       case MATCH_R1_RET:
874 	*ra = NIOS2_RA_REGNUM;
875 	return 1;
876       case MATCH_R1_ERET:
877 	*ra = NIOS2_EA_REGNUM;
878 	return 1;
879       case MATCH_R1_BRET:
880 	*ra = NIOS2_BA_REGNUM;
881 	return 1;
882       default:
883 	return 0;
884       }
885   else
886     switch (op->match)
887       {
888       case MATCH_R2_JMP:
889 	*ra = GET_IW_F2I16_A (insn);
890 	return 1;
891       case MATCH_R2_JMPR_N:
892 	*ra = GET_IW_F1X1_A (insn);
893 	return 1;
894       case MATCH_R2_RET:
895       case MATCH_R2_RET_N:
896 	*ra = NIOS2_RA_REGNUM;
897 	return 1;
898       case MATCH_R2_ERET:
899 	*ra = NIOS2_EA_REGNUM;
900 	return 1;
901       case MATCH_R2_BRET:
902 	*ra = NIOS2_BA_REGNUM;
903 	return 1;
904       default:
905 	return 0;
906       }
907   return 0;
908 }
909 
910 /* Match and disassemble an indirect call instruction, with a register
911    operand.  Returns true on success, and fills in the operand pointer.  */
912 
913 static int
914 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
915 		   unsigned long mach, int *ra)
916 {
917   int is_r2 = (mach == bfd_mach_nios2r2);
918 
919   if (!is_r2 && op->match == MATCH_R1_CALLR)
920     {
921       *ra = GET_IW_I_A (insn);
922       return 1;
923     }
924   else if (!is_r2)
925     return 0;
926   else if (op->match == MATCH_R2_CALLR)
927     {
928       *ra = GET_IW_F2I16_A (insn);
929       return 1;
930     }
931   else if (op->match == MATCH_R2_CALLR_N)
932     {
933       *ra = GET_IW_F1X1_A (insn);
934       return 1;
935     }
936   return 0;
937 }
938 
939 /* Match and disassemble a break instruction, with an unsigned operand.
940    Returns true on success, and fills in the operand pointer.  */
941 
942 static int
943 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
944 		  unsigned long mach, unsigned int *uimm)
945 {
946   int is_r2 = (mach == bfd_mach_nios2r2);
947 
948   if (!is_r2 && op->match == MATCH_R1_BREAK)
949     {
950       *uimm = GET_IW_R_IMM5 (insn);
951       return 1;
952     }
953   else if (!is_r2)
954     return 0;
955   else if (op->match == MATCH_R2_BREAK)
956     {
957       *uimm = GET_IW_F3X6L5_IMM5 (insn);
958       return 1;
959     }
960   else if (op->match == MATCH_R2_BREAK_N)
961     {
962       *uimm = GET_IW_X2L5_IMM5 (insn);
963       return 1;
964     }
965   return 0;
966 }
967 
968 /* Match and disassemble a trap instruction, with an unsigned operand.
969    Returns true on success, and fills in the operand pointer.  */
970 
971 static int
972 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
973 		  unsigned long mach, unsigned int *uimm)
974 {
975   int is_r2 = (mach == bfd_mach_nios2r2);
976 
977   if (!is_r2 && op->match == MATCH_R1_TRAP)
978     {
979       *uimm = GET_IW_R_IMM5 (insn);
980       return 1;
981     }
982   else if (!is_r2)
983     return 0;
984   else if (op->match == MATCH_R2_TRAP)
985     {
986       *uimm = GET_IW_F3X6L5_IMM5 (insn);
987       return 1;
988     }
989   else if (op->match == MATCH_R2_TRAP_N)
990     {
991       *uimm = GET_IW_X2L5_IMM5 (insn);
992       return 1;
993     }
994   return 0;
995 }
996 
997 /* Helper function to identify when we're in a function epilogue;
998    that is, the part of the function from the point at which the
999    stack adjustments are made, to the return or sibcall.
1000    Note that we may have several stack adjustment instructions, and
1001    this function needs to test whether the stack teardown has already
1002    started before current_pc, not whether it has completed.  */
1003 
1004 static int
1005 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1006 		     CORE_ADDR current_pc,
1007 		     CORE_ADDR start_pc)
1008 {
1009   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1010   int is_r2 = (mach == bfd_mach_nios2r2);
1011   /* Maximum number of possibly-epilogue instructions to check.
1012      Note that this number should not be too large, else we can
1013      potentially end up iterating through unmapped memory.  */
1014   int ninsns, max_insns = 5;
1015   unsigned int insn;
1016   const struct nios2_opcode *op = NULL;
1017   unsigned int uimm;
1018   int imm;
1019   int wb, id, ret;
1020   int ra, rb, rc;
1021   enum branch_condition cond;
1022   CORE_ADDR pc;
1023 
1024   /* There has to be a previous instruction in the function.  */
1025   if (current_pc <= start_pc)
1026     return 0;
1027 
1028   /* Find the previous instruction before current_pc.  For R2, it might
1029      be either a 16-bit or 32-bit instruction; the only way to know for
1030      sure is to scan through from the beginning of the function,
1031      disassembling as we go.  */
1032   if (is_r2)
1033     for (pc = start_pc; ; )
1034       {
1035 	op = nios2_fetch_insn (gdbarch, pc, &insn);
1036 	if (op == NULL)
1037 	  return 0;
1038 	if (pc + op->size < current_pc)
1039 	  pc += op->size;
1040 	else
1041 	  break;
1042 	/* We can skip over insns to a forward branch target.  Since
1043 	   the branch offset is relative to the next instruction,
1044 	   it's correct to do this after incrementing the pc above.  */
1045 	if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1046 	    && imm > 0
1047 	    && pc + imm < current_pc)
1048 	  pc += imm;
1049       }
1050   /* Otherwise just go back to the previous 32-bit insn.  */
1051   else
1052     pc = current_pc - NIOS2_OPCODE_SIZE;
1053 
1054   /* Beginning with the previous instruction we just located, check whether
1055      we are in a sequence of at least one stack adjustment instruction.
1056      Possible instructions here include:
1057 	 ADDI sp, sp, n
1058 	 ADD sp, sp, rn
1059 	 LDW sp, n(sp)
1060 	 SPINCI.N n
1061 	 LDWSP.N sp, n(sp)
1062 	 LDWM {reglist}, (sp)++, wb */
1063   for (ninsns = 0; ninsns < max_insns; ninsns++)
1064     {
1065       int ok = 0;
1066 
1067       /* Fetch the insn at pc.  */
1068       op = nios2_fetch_insn (gdbarch, pc, &insn);
1069       if (op == NULL)
1070 	return 0;
1071       pc += op->size;
1072 
1073       /* Was it a stack adjustment?  */
1074       if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1075 	ok = (rb == NIOS2_SP_REGNUM);
1076       else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1077 	ok = (rc == NIOS2_SP_REGNUM);
1078       else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1079 	ok = (rb == NIOS2_SP_REGNUM);
1080       else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1081 				 &imm, &wb, &ret, &id))
1082 	ok = (ra == NIOS2_SP_REGNUM && wb && id);
1083       if (!ok)
1084 	break;
1085     }
1086 
1087   /* No stack adjustments found.  */
1088   if (ninsns == 0)
1089     return 0;
1090 
1091   /* We found more stack adjustments than we expect GCC to be generating.
1092      Since it looks like a stack unwind might be in progress tell GDB to
1093      treat it as such.  */
1094   if (ninsns == max_insns)
1095     return 1;
1096 
1097   /* The next instruction following the stack adjustments must be a
1098      return, jump, or unconditional branch, or a CDX pop.n or ldwm
1099      that does an implicit return.  */
1100   if (nios2_match_jmpr (insn, op, mach, &ra)
1101       || nios2_match_jmpi (insn, op, mach, &uimm)
1102       || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1103 	  && ret)
1104       || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1105 	  && cond == branch_none))
1106     return 1;
1107 
1108   return 0;
1109 }
1110 
1111 /* Implement the stack_frame_destroyed_p gdbarch method.  */
1112 
1113 static int
1114 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1115 {
1116   CORE_ADDR func_addr;
1117 
1118   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1119     return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1120 
1121   return 0;
1122 }
1123 
1124 /* Do prologue analysis, returning the PC of the first instruction
1125    after the function prologue.  Assumes CACHE has already been
1126    initialized.  THIS_FRAME can be null, in which case we are only
1127    interested in skipping the prologue.  Otherwise CACHE is filled in
1128    from the frame information.
1129 
1130    The prologue may consist of the following parts:
1131      1) Profiling instrumentation.  For non-PIC code it looks like:
1132 	  mov	 r8, ra
1133 	  call	 mcount
1134 	  mov	 ra, r8
1135 
1136      2) A stack adjustment and save of R4-R7 for varargs functions.
1137         For R2 CDX this is typically handled with a STWM, otherwise
1138 	this is typically merged with item 3.
1139 
1140      3) A stack adjustment and save of the callee-saved registers.
1141         For R2 CDX these are typically handled with a PUSH.N or STWM,
1142 	otherwise as an explicit SP decrement and individual register
1143 	saves.
1144 
1145         There may also be a stack switch here in an exception handler
1146 	in place of a stack adjustment.  It looks like:
1147 	  movhi  rx, %hiadj(newstack)
1148 	  addhi  rx, rx, %lo(newstack)
1149 	  stw    sp, constant(rx)
1150 	  mov    sp, rx
1151 
1152      4) A frame pointer save, which can be either a MOV or ADDI.
1153 
1154      5) A further stack pointer adjustment.  This is normally included
1155         adjustment in step 3 unless the total adjustment is too large
1156 	to be done in one step.
1157 
1158      7) A stack overflow check, which can take either of these forms:
1159 	  bgeu   sp, rx, +8
1160 	  trap  3
1161 	or
1162 	  bltu   sp, rx, .Lstack_overflow
1163 	  ...
1164 	.Lstack_overflow:
1165 	  trap  3
1166 
1167 	Older versions of GCC emitted "break 3" instead of "trap 3" here,
1168 	so we check for both cases.
1169 
1170 	Older GCC versions emitted stack overflow checks after the SP
1171 	adjustments in both steps 3 and 4.  Starting with GCC 6, there is
1172 	at most one overflow check, which is placed before the first
1173 	stack adjustment for R2 CDX and after the first stack adjustment
1174 	otherwise.
1175 
1176     The prologue instructions may be combined or interleaved with other
1177     instructions.
1178 
1179     To cope with all this variability we decode all the instructions
1180     from the start of the prologue until we hit an instruction that
1181     cannot possibly be a prologue instruction, such as a branch, call,
1182     return, or epilogue instruction.  The prologue is considered to end
1183     at the last instruction that can definitely be considered a
1184     prologue instruction.  */
1185 
1186 static CORE_ADDR
1187 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1188 			const CORE_ADDR current_pc,
1189 			struct nios2_unwind_cache *cache,
1190 			struct frame_info *this_frame)
1191 {
1192   /* Maximum number of possibly-prologue instructions to check.
1193      Note that this number should not be too large, else we can
1194      potentially end up iterating through unmapped memory.  */
1195   int ninsns, max_insns = 50;
1196   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1197   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1198 
1199   /* Does the frame set up the FP register?  */
1200   int base_reg = 0;
1201 
1202   struct reg_value *value = cache->reg_value;
1203   struct reg_value temp_value[NIOS2_NUM_REGS];
1204 
1205   /* Save the starting PC so we can correct the pc after running
1206      through the prolog, using symbol info.  */
1207   CORE_ADDR pc = start_pc;
1208 
1209   /* Is this an exception handler?  */
1210   int exception_handler = 0;
1211 
1212   /* What was the original value of SP (or fake original value for
1213      functions which switch stacks?  */
1214   CORE_ADDR frame_high;
1215 
1216   /* The last definitely-prologue instruction seen.  */
1217   CORE_ADDR prologue_end;
1218 
1219   /* Is this the innermost function?  */
1220   int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1221 
1222   if (nios2_debug)
1223     fprintf_unfiltered (gdb_stdlog,
1224 			"{ nios2_analyze_prologue start=%s, current=%s ",
1225 			paddress (gdbarch, start_pc),
1226 			paddress (gdbarch, current_pc));
1227 
1228   /* Set up the default values of the registers.  */
1229   nios2_setup_default (cache);
1230 
1231   /* Find the prologue instructions.  */
1232   prologue_end = start_pc;
1233   for (ninsns = 0; ninsns < max_insns; ninsns++)
1234     {
1235       /* Present instruction.  */
1236       uint32_t insn;
1237       const struct nios2_opcode *op;
1238       int ra, rb, rc, imm;
1239       unsigned int uimm;
1240       unsigned int reglist;
1241       int wb, id, ret;
1242       enum branch_condition cond;
1243 
1244       if (pc == current_pc)
1245       {
1246 	/* When we reach the current PC we must save the current
1247 	   register state (for the backtrace) but keep analysing
1248 	   because there might be more to find out (eg. is this an
1249 	   exception handler).  */
1250 	memcpy (temp_value, value, sizeof (temp_value));
1251 	value = temp_value;
1252 	if (nios2_debug)
1253 	  fprintf_unfiltered (gdb_stdlog, "*");
1254       }
1255 
1256       op = nios2_fetch_insn (gdbarch, pc, &insn);
1257 
1258       /* Unknown opcode?  Stop scanning.  */
1259       if (op == NULL)
1260 	break;
1261       pc += op->size;
1262 
1263       if (nios2_debug)
1264 	{
1265 	  if (op->size == 2)
1266 	    fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1267 	  else
1268 	    fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1269 	}
1270 
1271       /* The following instructions can appear in the prologue.  */
1272 
1273       if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1274 	{
1275 	  /* ADD   rc, ra, rb  (also used for MOV) */
1276 	  if (rc == NIOS2_SP_REGNUM
1277 	      && rb == 0
1278 	      && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1279 	    {
1280 	      /* If the previous value of SP is available somewhere
1281 		 near the new stack pointer value then this is a
1282 		 stack switch.  */
1283 
1284 	      /* If any registers were saved on the stack before then
1285 		 we can't backtrace into them now.  */
1286 	      for (int i = 0 ; i < NIOS2_NUM_REGS ; i++)
1287 		{
1288 		  if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1289 		    cache->reg_saved[i].basereg = -1;
1290 		  if (value[i].reg == NIOS2_SP_REGNUM)
1291 		    value[i].reg = -1;
1292 		}
1293 
1294 	      /* Create a fake "high water mark" 4 bytes above where SP
1295 		 was stored and fake up the registers to be consistent
1296 		 with that.  */
1297 	      value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1298 	      value[NIOS2_SP_REGNUM].offset
1299 		= (value[ra].offset
1300 		   - cache->reg_saved[NIOS2_SP_REGNUM].addr
1301 		   - 4);
1302 	      cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1303 	      cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1304 	    }
1305 
1306 	  else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1307 	    /* This is setting SP from FP.  This only happens in the
1308 	       function epilogue.  */
1309 	    break;
1310 
1311 	  else if (rc != 0)
1312 	    {
1313 	      if (value[rb].reg == 0)
1314 		value[rc].reg = value[ra].reg;
1315 	      else if (value[ra].reg == 0)
1316 		value[rc].reg = value[rb].reg;
1317 	      else
1318 		value[rc].reg = -1;
1319 	      value[rc].offset = value[ra].offset + value[rb].offset;
1320 	    }
1321 
1322 	  /* The add/move is only considered a prologue instruction
1323 	     if the destination is SP or FP.  */
1324 	  if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1325 	    prologue_end = pc;
1326 	}
1327 
1328       else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1329 	{
1330 	  /* SUB   rc, ra, rb */
1331 	  if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1332 	      && value[rc].reg != 0)
1333 	    /* If we are decrementing the SP by a non-constant amount,
1334 	       this is alloca, not part of the prologue.  */
1335 	    break;
1336 	  else if (rc != 0)
1337 	    {
1338 	      if (value[rb].reg == 0)
1339 		value[rc].reg = value[ra].reg;
1340 	      else
1341 		value[rc].reg = -1;
1342 	      value[rc].offset = value[ra].offset - value[rb].offset;
1343 	    }
1344 	}
1345 
1346       else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1347 	{
1348 	  /* ADDI    rb, ra, imm */
1349 
1350 	  /* A positive stack adjustment has to be part of the epilogue.  */
1351 	  if (rb == NIOS2_SP_REGNUM
1352 	      && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1353 	    break;
1354 
1355 	  /* Likewise restoring SP from FP.  */
1356 	  else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1357 	    break;
1358 
1359 	  if (rb != 0)
1360 	    {
1361 	      value[rb].reg    = value[ra].reg;
1362 	      value[rb].offset = value[ra].offset + imm;
1363 	    }
1364 
1365 	  /* The add is only considered a prologue instruction
1366 	     if the destination is SP or FP.  */
1367 	  if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1368 	    prologue_end = pc;
1369 	}
1370 
1371       else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1372 	{
1373 	  /* ORHI  rb, ra, uimm   (also used for MOVHI) */
1374 	  if (rb != 0)
1375 	    {
1376   	      value[rb].reg    = (value[ra].reg == 0) ? 0 : -1;
1377 	      value[rb].offset = value[ra].offset | (uimm << 16);
1378 	    }
1379 	}
1380 
1381       else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1382         {
1383 	  /* STW rb, imm(ra) */
1384 
1385 	  /* Are we storing the original value of a register to the stack?
1386 	     For exception handlers the value of EA-4 (return
1387 	     address from interrupts etc) is sometimes stored.  */
1388 	  int orig = value[rb].reg;
1389 	  if (orig > 0
1390 	      && (value[rb].offset == 0
1391 		  || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1392 	      && value[ra].reg == NIOS2_SP_REGNUM)
1393 	    {
1394 	      if (pc < current_pc)
1395 		{
1396 		  /* Save off callee saved registers.  */
1397 		  cache->reg_saved[orig].basereg = value[ra].reg;
1398 		  cache->reg_saved[orig].addr = value[ra].offset + imm;
1399 		}
1400 
1401 	      prologue_end = pc;
1402 
1403 	      if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1404 		exception_handler = 1;
1405 	    }
1406 	  else
1407 	    /* Non-stack memory writes cannot appear in the prologue.  */
1408 	    break;
1409         }
1410 
1411       else if (nios2_match_stwm (insn, op, mach,
1412 				 &reglist, &ra, &imm, &wb, &id))
1413 	{
1414 	  /* PUSH.N {reglist}, adjust
1415 	     or
1416 	     STWM {reglist}, --(SP)[, writeback] */
1417 	  int off = 0;
1418 
1419 	  if (ra != NIOS2_SP_REGNUM || id != 0)
1420 	    /* This is a non-stack-push memory write and cannot be
1421 	       part of the prologue.  */
1422 	    break;
1423 
1424 	  for (int i = 31; i >= 0; i--)
1425 	    if (reglist & (1 << i))
1426 	      {
1427 		int orig = value[i].reg;
1428 
1429 		off += 4;
1430 		if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1431 		  {
1432 		    cache->reg_saved[orig].basereg
1433 		      = value[NIOS2_SP_REGNUM].reg;
1434 		    cache->reg_saved[orig].addr
1435 		      = value[NIOS2_SP_REGNUM].offset - off;
1436 		  }
1437 	      }
1438 
1439 	  if (wb)
1440 	    value[NIOS2_SP_REGNUM].offset -= off;
1441 	  value[NIOS2_SP_REGNUM].offset -= imm;
1442 
1443 	  prologue_end = pc;
1444 	}
1445 
1446       else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1447 	{
1448 	  /* RDCTL rC, ctlN
1449 	     This can appear in exception handlers in combination with
1450 	     a subsequent save to the stack frame.  */
1451 	  if (rc != 0)
1452 	    {
1453 	      value[rc].reg    = NIOS2_STATUS_REGNUM + ra;
1454 	      value[rc].offset = 0;
1455 	    }
1456         }
1457 
1458       else if (nios2_match_calli (insn, op, mach, &uimm))
1459 	{
1460 	  if (value[8].reg == NIOS2_RA_REGNUM
1461 	      && value[8].offset == 0
1462 	      && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1463 	      && value[NIOS2_SP_REGNUM].offset == 0)
1464 	    {
1465 	      /* A CALL instruction.  This is treated as a call to mcount
1466 		 if ra has been stored into r8 beforehand and if it's
1467 		 before the stack adjust.
1468 		 Note mcount corrupts r2-r3, r9-r15 & ra.  */
1469 	      for (int i = 2 ; i <= 3 ; i++)
1470 		value[i].reg = -1;
1471 	      for (int i = 9 ; i <= 15 ; i++)
1472 		value[i].reg = -1;
1473 	      value[NIOS2_RA_REGNUM].reg = -1;
1474 
1475 	      prologue_end = pc;
1476 	    }
1477 
1478 	  /* Other calls are not part of the prologue.  */
1479 	  else
1480 	    break;
1481 	}
1482 
1483       else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1484 	{
1485 	  /* Branches not involving a stack overflow check aren't part of
1486 	     the prologue.  */
1487 	  if (ra != NIOS2_SP_REGNUM)
1488 	    break;
1489 	  else if (cond == branch_geu)
1490 	    {
1491 	      /* BGEU sp, rx, +8
1492 		 TRAP 3  (or BREAK 3)
1493 		 This instruction sequence is used in stack checking;
1494 		 we can ignore it.  */
1495 	      unsigned int next_insn;
1496 	      const struct nios2_opcode *next_op
1497 		= nios2_fetch_insn (gdbarch, pc, &next_insn);
1498 	      if (next_op != NULL
1499 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1500 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1501 		pc += next_op->size;
1502 	      else
1503 		break;
1504 	    }
1505 	  else if (cond == branch_ltu)
1506 	    {
1507 	      /* BLTU sp, rx, .Lstackoverflow
1508 		 If the location branched to holds a TRAP or BREAK
1509 		 instruction then this is also stack overflow detection.  */
1510 	      unsigned int next_insn;
1511 	      const struct nios2_opcode *next_op
1512 		= nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1513 	      if (next_op != NULL
1514 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1515 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1516 		;
1517 	      else
1518 		break;
1519 	    }
1520 	  else
1521 	    break;
1522 	}
1523 
1524       /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1525 	 the prologue.  */
1526       else if (nios2_match_callr (insn, op, mach, &ra)
1527 	       || nios2_match_jmpr (insn, op, mach, &ra)
1528 	       || nios2_match_jmpi (insn, op, mach, &uimm)
1529 	       || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1530 				     &imm, &wb, &id, &ret)
1531 		   && ret)
1532 	       || nios2_match_trap (insn, op, mach, &uimm)
1533 	       || nios2_match_break (insn, op, mach, &uimm))
1534 	break;
1535     }
1536 
1537   /* If THIS_FRAME is NULL, we are being called from skip_prologue
1538      and are only interested in the PROLOGUE_END value, so just
1539      return that now and skip over the cache updates, which depend
1540      on having frame information.  */
1541   if (this_frame == NULL)
1542     return prologue_end;
1543 
1544   /* If we are in the function epilogue and have already popped
1545      registers off the stack in preparation for returning, then we
1546      want to go back to the original register values.  */
1547   if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1548     nios2_setup_default (cache);
1549 
1550   /* Exception handlers use a different return address register.  */
1551   if (exception_handler)
1552     cache->return_regnum = NIOS2_EA_REGNUM;
1553 
1554   if (nios2_debug)
1555     fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1556 
1557   if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1558     /* If the FP now holds an offset from the CFA then this is a
1559        normal frame which uses the frame pointer.  */
1560     base_reg = NIOS2_FP_REGNUM;
1561   else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1562     /* FP doesn't hold an offset from the CFA.  If SP still holds an
1563        offset from the CFA then we might be in a function which omits
1564        the frame pointer, or we might be partway through the prologue.
1565        In both cases we can find the CFA using SP.  */
1566     base_reg = NIOS2_SP_REGNUM;
1567   else
1568     {
1569       /* Somehow the stack pointer has been corrupted.
1570 	 We can't return.  */
1571       if (nios2_debug)
1572 	fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1573       return 0;
1574     }
1575 
1576   if (cache->reg_value[base_reg].offset == 0
1577       || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1578       || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1579     {
1580       /* If the frame didn't adjust the stack, didn't save RA or
1581 	 didn't save EA in an exception handler then it must either
1582 	 be a leaf function (doesn't call any other functions) or it
1583 	 can't return.  If it has called another function then it
1584 	 can't be a leaf, so set base == 0 to indicate that we can't
1585 	 backtrace past it.  */
1586 
1587       if (!innermost)
1588 	{
1589 	  /* If it isn't the innermost function then it can't be a
1590 	     leaf, unless it was interrupted.  Check whether RA for
1591 	     this frame is the same as PC.  If so then it probably
1592 	     wasn't interrupted.  */
1593 	  CORE_ADDR ra
1594 	    = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1595 
1596 	  if (ra == current_pc)
1597 	    {
1598 	      if (nios2_debug)
1599 		fprintf_unfiltered
1600 		  (gdb_stdlog,
1601 		   "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1602 		   paddress (gdbarch, cache->reg_value[base_reg].offset),
1603 		   cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1604 		   cache->return_regnum,
1605 		   cache->reg_saved[cache->return_regnum].basereg);
1606 	      return 0;
1607 	    }
1608 	}
1609     }
1610 
1611   /* Get the value of whichever register we are using for the
1612      base.  */
1613   cache->base = get_frame_register_unsigned (this_frame, base_reg);
1614 
1615   /* What was the value of SP at the start of this function (or just
1616      after the stack switch).  */
1617   frame_high = cache->base - cache->reg_value[base_reg].offset;
1618 
1619   /* Adjust all the saved registers such that they contain addresses
1620      instead of offsets.  */
1621   for (int i = 0; i < NIOS2_NUM_REGS; i++)
1622     if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1623       {
1624 	cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1625 	cache->reg_saved[i].addr += frame_high;
1626       }
1627 
1628   for (int i = 0; i < NIOS2_NUM_REGS; i++)
1629     if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1630       {
1631 	CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1632 						    NIOS2_GP_REGNUM);
1633 
1634 	for ( ; i < NIOS2_NUM_REGS; i++)
1635 	  if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1636 	    {
1637 	      cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1638 	      cache->reg_saved[i].addr += gp;
1639 	    }
1640       }
1641 
1642   /* Work out what the value of SP was on the first instruction of
1643      this function.  If we didn't switch stacks then this can be
1644      trivially computed from the base address.  */
1645   if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1646     cache->cfa
1647       = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1648 				      4, byte_order);
1649   else
1650     cache->cfa = frame_high;
1651 
1652   /* Exception handlers restore ESTATUS into STATUS.  */
1653   if (exception_handler)
1654     {
1655       cache->reg_saved[NIOS2_STATUS_REGNUM]
1656 	= cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1657       cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1658     }
1659 
1660   if (nios2_debug)
1661     fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1662 			paddress (gdbarch, cache->cfa));
1663 
1664   return prologue_end;
1665 }
1666 
1667 /* Implement the skip_prologue gdbarch hook.  */
1668 
1669 static CORE_ADDR
1670 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1671 {
1672   CORE_ADDR func_addr;
1673 
1674   struct nios2_unwind_cache cache;
1675 
1676   /* See if we can determine the end of the prologue via the symbol
1677      table.  If so, then return either PC, or the PC after the
1678      prologue, whichever is greater.  */
1679   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1680     {
1681       CORE_ADDR post_prologue_pc
1682         = skip_prologue_using_sal (gdbarch, func_addr);
1683 
1684       if (post_prologue_pc != 0)
1685         return std::max (start_pc, post_prologue_pc);
1686     }
1687 
1688   /* Prologue analysis does the rest....  */
1689   nios2_init_cache (&cache, start_pc);
1690   return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1691 }
1692 
1693 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
1694 
1695 static int
1696 nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1697 {
1698   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1699 
1700   if (mach == bfd_mach_nios2r2)
1701     {
1702       unsigned int insn;
1703       const struct nios2_opcode *op
1704 	= nios2_fetch_insn (gdbarch, *pcptr, &insn);
1705 
1706       if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1707 	return NIOS2_CDX_OPCODE_SIZE;
1708       else
1709 	return NIOS2_OPCODE_SIZE;
1710     }
1711   else
1712     return NIOS2_OPCODE_SIZE;
1713 }
1714 
1715 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
1716 
1717 static const gdb_byte *
1718 nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1719 {
1720 /* The Nios II ABI for Linux says: "Userspace programs should not use
1721    the break instruction and userspace debuggers should not insert
1722    one." and "Userspace breakpoints are accomplished using the trap
1723    instruction with immediate operand 31 (all ones)."
1724 
1725    So, we use "trap 31" consistently as the breakpoint on bare-metal
1726    as well as Linux targets.  */
1727 
1728   /* R2 trap encoding:
1729      ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1730      0xb7fd0020
1731      CDX trap.n encoding:
1732      ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1733      0xd7c9
1734      Note that code is always little-endian on R2.  */
1735   *size = kind;
1736 
1737   if (kind == NIOS2_CDX_OPCODE_SIZE)
1738     {
1739       static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1740 
1741       return cdx_breakpoint_le;
1742     }
1743   else
1744     {
1745       unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1746 
1747       if (mach == bfd_mach_nios2r2)
1748 	{
1749 	  static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1750 
1751 	  return r2_breakpoint_le;
1752 	}
1753       else
1754 	{
1755 	  enum bfd_endian byte_order_for_code
1756 	    = gdbarch_byte_order_for_code (gdbarch);
1757 	  /* R1 trap encoding:
1758 	     ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1759 	     0x003b6ffa */
1760 	  static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1761 	  static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1762 
1763 	  if (byte_order_for_code == BFD_ENDIAN_BIG)
1764 	    return r1_breakpoint_be;
1765 	  else
1766 	    return r1_breakpoint_le;
1767 	}
1768     }
1769 }
1770 
1771 /* Implement the frame_align gdbarch method.  */
1772 
1773 static CORE_ADDR
1774 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1775 {
1776   return align_down (addr, 4);
1777 }
1778 
1779 
1780 /* Implement the return_value gdbarch method.  */
1781 
1782 static enum return_value_convention
1783 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1784 		    struct type *type, struct regcache *regcache,
1785 		    gdb_byte *readbuf, const gdb_byte *writebuf)
1786 {
1787   if (TYPE_LENGTH (type) > 8)
1788     return RETURN_VALUE_STRUCT_CONVENTION;
1789 
1790   if (readbuf)
1791     nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1792   if (writebuf)
1793     nios2_store_return_value (gdbarch, type, regcache, writebuf);
1794 
1795   return RETURN_VALUE_REGISTER_CONVENTION;
1796 }
1797 
1798 /* Implement the dummy_id gdbarch method.  */
1799 
1800 static struct frame_id
1801 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1802 {
1803   return frame_id_build
1804     (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1805      get_frame_pc (this_frame));
1806 }
1807 
1808 /* Implement the push_dummy_call gdbarch method.  */
1809 
1810 static CORE_ADDR
1811 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1812                        struct regcache *regcache, CORE_ADDR bp_addr,
1813                        int nargs, struct value **args, CORE_ADDR sp,
1814 		       function_call_return_method return_method,
1815 		       CORE_ADDR struct_addr)
1816 {
1817   int argreg;
1818   int argnum;
1819   int arg_space = 0;
1820   int stack_offset = 0;
1821   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1822 
1823   /* Set the return address register to point to the entry point of
1824      the program, where a breakpoint lies in wait.  */
1825   regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1826 
1827   /* Now make space on the stack for the args.  */
1828   for (argnum = 0; argnum < nargs; argnum++)
1829     arg_space += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1830   sp -= arg_space;
1831 
1832   /* Initialize the register pointer.  */
1833   argreg = NIOS2_FIRST_ARGREG;
1834 
1835   /* The struct_return pointer occupies the first parameter-passing
1836      register.  */
1837   if (return_method == return_method_struct)
1838     regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1839 
1840   /* Now load as many as possible of the first arguments into
1841      registers, and push the rest onto the stack.  Loop through args
1842      from first to last.  */
1843   for (argnum = 0; argnum < nargs; argnum++)
1844     {
1845       const gdb_byte *val;
1846       struct value *arg = args[argnum];
1847       struct type *arg_type = check_typedef (value_type (arg));
1848       int len = TYPE_LENGTH (arg_type);
1849 
1850       val = value_contents (arg);
1851 
1852       /* Copy the argument to general registers or the stack in
1853          register-sized pieces.  Large arguments are split between
1854          registers and stack.  */
1855       while (len > 0)
1856         {
1857 	  int partial_len = (len < 4 ? len : 4);
1858 
1859 	  if (argreg <= NIOS2_LAST_ARGREG)
1860 	    {
1861 	      /* The argument is being passed in a register.  */
1862 	      CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1863 							   byte_order);
1864 
1865 	      regcache_cooked_write_unsigned (regcache, argreg, regval);
1866 	      argreg++;
1867 	    }
1868 	  else
1869 	    {
1870 	      /* The argument is being passed on the stack.  */
1871 	      CORE_ADDR addr = sp + stack_offset;
1872 
1873 	      write_memory (addr, val, partial_len);
1874 	      stack_offset += align_up (partial_len, 4);
1875 	    }
1876 
1877 	  len -= partial_len;
1878 	  val += partial_len;
1879 	}
1880     }
1881 
1882   regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1883 
1884   /* Return adjusted stack pointer.  */
1885   return sp;
1886 }
1887 
1888 /* Implement the unwind_pc gdbarch method.  */
1889 
1890 static CORE_ADDR
1891 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1892 {
1893   gdb_byte buf[4];
1894 
1895   frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1896   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1897 }
1898 
1899 /* Implement the unwind_sp gdbarch method.  */
1900 
1901 static CORE_ADDR
1902 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1903 {
1904   return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1905 }
1906 
1907 /* Use prologue analysis to fill in the register cache
1908    *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes
1909    *THIS_PROLOGUE_CACHE first.  */
1910 
1911 static struct nios2_unwind_cache *
1912 nios2_frame_unwind_cache (struct frame_info *this_frame,
1913 			  void **this_prologue_cache)
1914 {
1915   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1916   CORE_ADDR current_pc;
1917   struct nios2_unwind_cache *cache;
1918 
1919   if (*this_prologue_cache)
1920     return (struct nios2_unwind_cache *) *this_prologue_cache;
1921 
1922   cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1923   *this_prologue_cache = cache;
1924 
1925   /* Zero all fields.  */
1926   nios2_init_cache (cache, get_frame_func (this_frame));
1927 
1928   /* Prologue analysis does the rest...  */
1929   current_pc = get_frame_pc (this_frame);
1930   if (cache->pc != 0)
1931     nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1932 
1933   return cache;
1934 }
1935 
1936 /* Implement the this_id function for the normal unwinder.  */
1937 
1938 static void
1939 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1940 		     struct frame_id *this_id)
1941 {
1942   struct nios2_unwind_cache *cache =
1943     nios2_frame_unwind_cache (this_frame, this_cache);
1944 
1945   /* This marks the outermost frame.  */
1946   if (cache->base == 0)
1947     return;
1948 
1949   *this_id = frame_id_build (cache->cfa, cache->pc);
1950 }
1951 
1952 /* Implement the prev_register function for the normal unwinder.  */
1953 
1954 static struct value *
1955 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1956 			   int regnum)
1957 {
1958   struct nios2_unwind_cache *cache =
1959     nios2_frame_unwind_cache (this_frame, this_cache);
1960 
1961   gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1962 
1963   /* The PC of the previous frame is stored in the RA register of
1964      the current frame.  Frob regnum so that we pull the value from
1965      the correct place.  */
1966   if (regnum == NIOS2_PC_REGNUM)
1967     regnum = cache->return_regnum;
1968 
1969   if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1970     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1971 
1972   /* If we've worked out where a register is stored then load it from
1973      there.  */
1974   if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1975     return frame_unwind_got_memory (this_frame, regnum,
1976 				    cache->reg_saved[regnum].addr);
1977 
1978   return frame_unwind_got_register (this_frame, regnum, regnum);
1979 }
1980 
1981 /* Implement the this_base, this_locals, and this_args hooks
1982    for the normal unwinder.  */
1983 
1984 static CORE_ADDR
1985 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
1986 {
1987   struct nios2_unwind_cache *info
1988     = nios2_frame_unwind_cache (this_frame, this_cache);
1989 
1990   return info->base;
1991 }
1992 
1993 /* Data structures for the normal prologue-analysis-based
1994    unwinder.  */
1995 
1996 static const struct frame_unwind nios2_frame_unwind =
1997 {
1998   NORMAL_FRAME,
1999   default_frame_unwind_stop_reason,
2000   nios2_frame_this_id,
2001   nios2_frame_prev_register,
2002   NULL,
2003   default_frame_sniffer
2004 };
2005 
2006 static const struct frame_base nios2_frame_base =
2007 {
2008   &nios2_frame_unwind,
2009   nios2_frame_base_address,
2010   nios2_frame_base_address,
2011   nios2_frame_base_address
2012 };
2013 
2014 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2015    in the stub unwinder.  */
2016 
2017 static struct trad_frame_cache *
2018 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2019 {
2020   CORE_ADDR pc;
2021   CORE_ADDR start_addr;
2022   CORE_ADDR stack_addr;
2023   struct trad_frame_cache *this_trad_cache;
2024   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2025 
2026   if (*this_cache != NULL)
2027     return (struct trad_frame_cache *) *this_cache;
2028   this_trad_cache = trad_frame_cache_zalloc (this_frame);
2029   *this_cache = this_trad_cache;
2030 
2031   /* The return address is in the link register.  */
2032   trad_frame_set_reg_realreg (this_trad_cache,
2033                               gdbarch_pc_regnum (gdbarch),
2034                               NIOS2_RA_REGNUM);
2035 
2036   /* Frame ID, since it's a frameless / stackless function, no stack
2037      space is allocated and SP on entry is the current SP.  */
2038   pc = get_frame_pc (this_frame);
2039   find_pc_partial_function (pc, NULL, &start_addr, NULL);
2040   stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2041   trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2042   /* Assume that the frame's base is the same as the stack pointer.  */
2043   trad_frame_set_this_base (this_trad_cache, stack_addr);
2044 
2045   return this_trad_cache;
2046 }
2047 
2048 /* Implement the this_id function for the stub unwinder.  */
2049 
2050 static void
2051 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2052                           struct frame_id *this_id)
2053 {
2054   struct trad_frame_cache *this_trad_cache
2055     = nios2_stub_frame_cache (this_frame, this_cache);
2056 
2057   trad_frame_get_id (this_trad_cache, this_id);
2058 }
2059 
2060 /* Implement the prev_register function for the stub unwinder.  */
2061 
2062 static struct value *
2063 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2064 			        void **this_cache, int regnum)
2065 {
2066   struct trad_frame_cache *this_trad_cache
2067     = nios2_stub_frame_cache (this_frame, this_cache);
2068 
2069   return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2070 }
2071 
2072 /* Implement the sniffer function for the stub unwinder.
2073    This unwinder is used for cases where the normal
2074    prologue-analysis-based unwinder can't work,
2075    such as PLT stubs.  */
2076 
2077 static int
2078 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2079 			  struct frame_info *this_frame, void **cache)
2080 {
2081   gdb_byte dummy[4];
2082   CORE_ADDR pc = get_frame_address_in_block (this_frame);
2083 
2084   /* Use the stub unwinder for unreadable code.  */
2085   if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2086     return 1;
2087 
2088   if (in_plt_section (pc))
2089     return 1;
2090 
2091   return 0;
2092 }
2093 
2094 /* Define the data structures for the stub unwinder.  */
2095 
2096 static const struct frame_unwind nios2_stub_frame_unwind =
2097 {
2098   NORMAL_FRAME,
2099   default_frame_unwind_stop_reason,
2100   nios2_stub_frame_this_id,
2101   nios2_stub_frame_prev_register,
2102   NULL,
2103   nios2_stub_frame_sniffer
2104 };
2105 
2106 
2107 
2108 /* Determine where to set a single step breakpoint while considering
2109    branch prediction.  */
2110 
2111 static CORE_ADDR
2112 nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2113 {
2114   struct gdbarch *gdbarch = regcache->arch ();
2115   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2116   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2117   unsigned int insn;
2118   const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2119   int ra;
2120   int rb;
2121   int imm;
2122   unsigned int uimm;
2123   int wb, id, ret;
2124   enum branch_condition cond;
2125 
2126   /* Do something stupid if we can't disassemble the insn at pc.  */
2127   if (op == NULL)
2128     return pc + NIOS2_OPCODE_SIZE;
2129 
2130   if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2131     {
2132       int ras = regcache_raw_get_signed (regcache, ra);
2133       int rbs = regcache_raw_get_signed (regcache, rb);
2134       unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2135       unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2136 
2137       pc += op->size;
2138       switch (cond)
2139 	{
2140 	case branch_none:
2141 	  pc += imm;
2142 	  break;
2143 	case branch_eq:
2144 	  if (ras == rbs)
2145 	    pc += imm;
2146 	  break;
2147 	case branch_ne:
2148 	  if (ras != rbs)
2149 	    pc += imm;
2150 	  break;
2151 	case branch_ge:
2152 	  if (ras >= rbs)
2153 	    pc += imm;
2154 	  break;
2155 	case branch_geu:
2156 	  if (rau >= rbu)
2157 	    pc += imm;
2158 	  break;
2159 	case branch_lt:
2160 	  if (ras < rbs)
2161 	    pc += imm;
2162 	  break;
2163 	case branch_ltu:
2164 	  if (rau < rbu)
2165 	    pc += imm;
2166 	  break;
2167 	default:
2168 	  break;
2169 	}
2170     }
2171 
2172   else if (nios2_match_jmpi (insn, op, mach, &uimm)
2173 	   || nios2_match_calli (insn, op, mach, &uimm))
2174     pc = (pc & 0xf0000000) | uimm;
2175 
2176   else if (nios2_match_jmpr (insn, op, mach, &ra)
2177 	   || nios2_match_callr (insn, op, mach, &ra))
2178     pc = regcache_raw_get_unsigned (regcache, ra);
2179 
2180   else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2181 	   && ret)
2182     {
2183       /* If ra is in the reglist, we have to use the value saved in the
2184 	 stack frame rather than the current value.  */
2185       if (uimm & (1 << NIOS2_RA_REGNUM))
2186 	pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2187       else
2188 	pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2189     }
2190 
2191   else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2192     {
2193       if (tdep->syscall_next_pc != NULL)
2194 	return tdep->syscall_next_pc (get_current_frame (), op);
2195     }
2196 
2197   else
2198     pc += op->size;
2199 
2200   return pc;
2201 }
2202 
2203 /* Implement the software_single_step gdbarch method.  */
2204 
2205 static std::vector<CORE_ADDR>
2206 nios2_software_single_step (struct regcache *regcache)
2207 {
2208   CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2209 
2210   return {next_pc};
2211 }
2212 
2213 /* Implement the get_longjump_target gdbarch method.  */
2214 
2215 static int
2216 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2217 {
2218   struct gdbarch *gdbarch = get_frame_arch (frame);
2219   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2220   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2221   CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2222   gdb_byte buf[4];
2223 
2224   if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2225     return 0;
2226 
2227   *pc = extract_unsigned_integer (buf, 4, byte_order);
2228   return 1;
2229 }
2230 
2231 /* Implement the type_align gdbarch function.  */
2232 
2233 static ULONGEST
2234 nios2_type_align (struct gdbarch *gdbarch, struct type *type)
2235 {
2236   type = check_typedef (type);
2237   return std::min<ULONGEST> (4, TYPE_LENGTH (type));
2238 }
2239 
2240 /* Implement the gcc_target_options gdbarch method.  */
2241 static char *
2242 nios2_gcc_target_options (struct gdbarch *gdbarch)
2243 {
2244   /* GCC doesn't know "-m32".  */
2245   return NULL;
2246 }
2247 
2248 /* Initialize the Nios II gdbarch.  */
2249 
2250 static struct gdbarch *
2251 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2252 {
2253   struct gdbarch *gdbarch;
2254   struct gdbarch_tdep *tdep;
2255   int i;
2256   struct tdesc_arch_data *tdesc_data = NULL;
2257   const struct target_desc *tdesc = info.target_desc;
2258 
2259   if (!tdesc_has_registers (tdesc))
2260     /* Pick a default target description.  */
2261     tdesc = tdesc_nios2;
2262 
2263   /* Check any target description for validity.  */
2264   if (tdesc_has_registers (tdesc))
2265     {
2266       const struct tdesc_feature *feature;
2267       int valid_p;
2268 
2269       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2270       if (feature == NULL)
2271 	return NULL;
2272 
2273       tdesc_data = tdesc_data_alloc ();
2274 
2275       valid_p = 1;
2276 
2277       for (i = 0; i < NIOS2_NUM_REGS; i++)
2278 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2279 					    nios2_reg_names[i]);
2280 
2281       if (!valid_p)
2282 	{
2283 	  tdesc_data_cleanup (tdesc_data);
2284 	  return NULL;
2285 	}
2286     }
2287 
2288   /* Find a candidate among the list of pre-declared architectures.  */
2289   arches = gdbarch_list_lookup_by_info (arches, &info);
2290   if (arches != NULL)
2291     return arches->gdbarch;
2292 
2293   /* None found, create a new architecture from the information
2294      provided.  */
2295   tdep = XCNEW (struct gdbarch_tdep);
2296   gdbarch = gdbarch_alloc (&info, tdep);
2297 
2298   /* longjmp support not enabled by default.  */
2299   tdep->jb_pc = -1;
2300 
2301   /* Data type sizes.  */
2302   set_gdbarch_ptr_bit (gdbarch, 32);
2303   set_gdbarch_addr_bit (gdbarch, 32);
2304   set_gdbarch_short_bit (gdbarch, 16);
2305   set_gdbarch_int_bit (gdbarch, 32);
2306   set_gdbarch_long_bit (gdbarch, 32);
2307   set_gdbarch_long_long_bit (gdbarch, 64);
2308   set_gdbarch_float_bit (gdbarch, 32);
2309   set_gdbarch_double_bit (gdbarch, 64);
2310 
2311   set_gdbarch_type_align (gdbarch, nios2_type_align);
2312 
2313   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2314   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2315 
2316   /* The register set.  */
2317   set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2318   set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2319   set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */
2320 
2321   set_gdbarch_register_name (gdbarch, nios2_register_name);
2322   set_gdbarch_register_type (gdbarch, nios2_register_type);
2323 
2324   /* Provide register mappings for stabs and dwarf2.  */
2325   set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2326   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2327 
2328   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2329 
2330   /* Call dummy code.  */
2331   set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2332 
2333   set_gdbarch_return_value (gdbarch, nios2_return_value);
2334 
2335   set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2336   set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2337   set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2338   set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2339 
2340   set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2341   set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2342   set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2343 
2344   /* The dwarf2 unwinder will normally produce the best results if
2345      the debug information is available, so register it first.  */
2346   dwarf2_append_unwinders (gdbarch);
2347   frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2348   frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2349 
2350   /* Single stepping.  */
2351   set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2352 
2353   /* Target options for compile.  */
2354   set_gdbarch_gcc_target_options (gdbarch, nios2_gcc_target_options);
2355 
2356   /* Hook in ABI-specific overrides, if they have been registered.  */
2357   gdbarch_init_osabi (info, gdbarch);
2358 
2359   if (tdep->jb_pc >= 0)
2360     set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2361 
2362   frame_base_set_default (gdbarch, &nios2_frame_base);
2363 
2364   /* Enable inferior call support.  */
2365   set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2366 
2367   if (tdesc_data)
2368     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2369 
2370   return gdbarch;
2371 }
2372 
2373 void
2374 _initialize_nios2_tdep (void)
2375 {
2376   gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2377   initialize_tdesc_nios2 ();
2378 
2379   /* Allow debugging this file's internals.  */
2380   add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2381 			   _("Set Nios II debugging."),
2382 			   _("Show Nios II debugging."),
2383 			   _("When on, Nios II specific debugging is enabled."),
2384 			   NULL,
2385 			   NULL,
2386 			   &setdebuglist, &showdebuglist);
2387 }
2388