xref: /netbsd-src/external/gpl3/gdb/dist/gdb/nios2-tdep.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Target-machine dependent code for Nios II, for GDB.
2    Copyright (C) 2012-2017 Free Software Foundation, Inc.
3    Contributed by Peter Brookes (pbrookes@altera.com)
4    and Andrew Draper (adraper@altera.com).
5    Contributed by Mentor Graphics, Inc.
6 
7    This file is part of GDB.
8 
9    This program is free software; you can redistribute it and/or modify
10    it under the terms of the GNU General Public License as published by
11    the Free Software Foundation; either version 3 of the License, or
12    (at your option) any later version.
13 
14    This program is distributed in the hope that it will be useful,
15    but WITHOUT ANY WARRANTY; without even the implied warranty of
16    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17    GNU General Public License for more details.
18 
19    You should have received a copy of the GNU General Public License
20    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
21 
22 #include "defs.h"
23 #include "frame.h"
24 #include "frame-unwind.h"
25 #include "frame-base.h"
26 #include "trad-frame.h"
27 #include "dwarf2-frame.h"
28 #include "symtab.h"
29 #include "inferior.h"
30 #include "gdbtypes.h"
31 #include "gdbcore.h"
32 #include "gdbcmd.h"
33 #include "osabi.h"
34 #include "target.h"
35 #include "dis-asm.h"
36 #include "regcache.h"
37 #include "value.h"
38 #include "symfile.h"
39 #include "arch-utils.h"
40 #include "floatformat.h"
41 #include "infcall.h"
42 #include "regset.h"
43 #include "target-descriptions.h"
44 
45 /* To get entry_point_address.  */
46 #include "objfiles.h"
47 #include <algorithm>
48 
49 /* Nios II specific header.  */
50 #include "nios2-tdep.h"
51 
52 #include "features/nios2.c"
53 
54 /* Control debugging information emitted in this file.  */
55 
56 static int nios2_debug = 0;
57 
58 /* The following structures are used in the cache for prologue
59    analysis; see the reg_value and reg_saved tables in
60    struct nios2_unwind_cache, respectively.  */
61 
62 /* struct reg_value is used to record that a register has the same value
63    as reg at the given offset from the start of a function.  */
64 
65 struct reg_value
66 {
67   int reg;
68   unsigned int offset;
69 };
70 
71 /* struct reg_saved is used to record that a register value has been saved at
72    basereg + addr, for basereg >= 0.  If basereg < 0, that indicates
73    that the register is not known to have been saved.  Note that when
74    basereg == NIOS2_Z_REGNUM (that is, r0, which holds value 0),
75    addr is an absolute address.  */
76 
77 struct reg_saved
78 {
79   int basereg;
80   CORE_ADDR addr;
81 };
82 
83 struct nios2_unwind_cache
84 {
85   /* The frame's base, optionally used by the high-level debug info.  */
86   CORE_ADDR base;
87 
88   /* The previous frame's inner most stack address.  Used as this
89      frame ID's stack_addr.  */
90   CORE_ADDR cfa;
91 
92   /* The address of the first instruction in this function.  */
93   CORE_ADDR pc;
94 
95   /* Which register holds the return address for the frame.  */
96   int return_regnum;
97 
98   /* Table indicating what changes have been made to each register.  */
99   struct reg_value reg_value[NIOS2_NUM_REGS];
100 
101   /* Table indicating where each register has been saved.  */
102   struct reg_saved reg_saved[NIOS2_NUM_REGS];
103 };
104 
105 
106 /* This array is a mapping from Dwarf-2 register numbering to GDB's.  */
107 
108 static int nios2_dwarf2gdb_regno_map[] =
109 {
110   0, 1, 2, 3,
111   4, 5, 6, 7,
112   8, 9, 10, 11,
113   12, 13, 14, 15,
114   16, 17, 18, 19,
115   20, 21, 22, 23,
116   24, 25,
117   NIOS2_GP_REGNUM,        /* 26 */
118   NIOS2_SP_REGNUM,        /* 27 */
119   NIOS2_FP_REGNUM,        /* 28 */
120   NIOS2_EA_REGNUM,        /* 29 */
121   NIOS2_BA_REGNUM,        /* 30 */
122   NIOS2_RA_REGNUM,        /* 31 */
123   NIOS2_PC_REGNUM,        /* 32 */
124   NIOS2_STATUS_REGNUM,    /* 33 */
125   NIOS2_ESTATUS_REGNUM,   /* 34 */
126   NIOS2_BSTATUS_REGNUM,   /* 35 */
127   NIOS2_IENABLE_REGNUM,   /* 36 */
128   NIOS2_IPENDING_REGNUM,  /* 37 */
129   NIOS2_CPUID_REGNUM,     /* 38 */
130   39, /* CTL6 */          /* 39 */
131   NIOS2_EXCEPTION_REGNUM, /* 40 */
132   NIOS2_PTEADDR_REGNUM,   /* 41 */
133   NIOS2_TLBACC_REGNUM,    /* 42 */
134   NIOS2_TLBMISC_REGNUM,   /* 43 */
135   NIOS2_ECCINJ_REGNUM,    /* 44 */
136   NIOS2_BADADDR_REGNUM,   /* 45 */
137   NIOS2_CONFIG_REGNUM,    /* 46 */
138   NIOS2_MPUBASE_REGNUM,   /* 47 */
139   NIOS2_MPUACC_REGNUM     /* 48 */
140 };
141 
142 gdb_static_assert (ARRAY_SIZE (nios2_dwarf2gdb_regno_map) == NIOS2_NUM_REGS);
143 
144 /* Implement the dwarf2_reg_to_regnum gdbarch method.  */
145 
146 static int
147 nios2_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int dw_reg)
148 {
149   if (dw_reg < 0 || dw_reg >= NIOS2_NUM_REGS)
150     return -1;
151 
152   return nios2_dwarf2gdb_regno_map[dw_reg];
153 }
154 
155 /* Canonical names for the 49 registers.  */
156 
157 static const char *const nios2_reg_names[NIOS2_NUM_REGS] =
158 {
159   "zero", "at", "r2", "r3", "r4", "r5", "r6", "r7",
160   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161   "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
162   "et", "bt", "gp", "sp", "fp", "ea", "sstatus", "ra",
163   "pc",
164   "status", "estatus", "bstatus", "ienable",
165   "ipending", "cpuid", "ctl6", "exception",
166   "pteaddr", "tlbacc", "tlbmisc", "eccinj",
167   "badaddr", "config", "mpubase", "mpuacc"
168 };
169 
170 /* Implement the register_name gdbarch method.  */
171 
172 static const char *
173 nios2_register_name (struct gdbarch *gdbarch, int regno)
174 {
175   /* Use mnemonic aliases for GPRs.  */
176   if (regno >= 0 && regno < NIOS2_NUM_REGS)
177     return nios2_reg_names[regno];
178   else
179     return tdesc_register_name (gdbarch, regno);
180 }
181 
182 /* Implement the register_type gdbarch method.  */
183 
184 static struct type *
185 nios2_register_type (struct gdbarch *gdbarch, int regno)
186 {
187   /* If the XML description has register information, use that to
188      determine the register type.  */
189   if (tdesc_has_registers (gdbarch_target_desc (gdbarch)))
190     return tdesc_register_type (gdbarch, regno);
191 
192   if (regno == NIOS2_PC_REGNUM)
193     return builtin_type (gdbarch)->builtin_func_ptr;
194   else if (regno == NIOS2_SP_REGNUM)
195     return builtin_type (gdbarch)->builtin_data_ptr;
196   else
197     return builtin_type (gdbarch)->builtin_uint32;
198 }
199 
200 /* Given a return value in REGCACHE with a type VALTYPE,
201    extract and copy its value into VALBUF.  */
202 
203 static void
204 nios2_extract_return_value (struct gdbarch *gdbarch, struct type *valtype,
205 			    struct regcache *regcache, gdb_byte *valbuf)
206 {
207   int len = TYPE_LENGTH (valtype);
208 
209   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
210   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
211     regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
212   else
213     {
214       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
215 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
216       regcache_cooked_read (regcache, NIOS2_R2_REGNUM, valbuf);
217       regcache_cooked_read (regcache, NIOS2_R3_REGNUM, valbuf + 4);
218     }
219 }
220 
221 /* Write into appropriate registers a function return value
222    of type TYPE, given in virtual format.  */
223 
224 static void
225 nios2_store_return_value (struct gdbarch *gdbarch, struct type *valtype,
226 			  struct regcache *regcache, const gdb_byte *valbuf)
227 {
228   int len = TYPE_LENGTH (valtype);
229 
230   /* Return values of up to 8 bytes are returned in $r2 $r3.  */
231   if (len <= register_size (gdbarch, NIOS2_R2_REGNUM))
232     regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
233   else
234     {
235       gdb_assert (len <= (register_size (gdbarch, NIOS2_R2_REGNUM)
236 			  + register_size (gdbarch, NIOS2_R3_REGNUM)));
237       regcache_cooked_write (regcache, NIOS2_R2_REGNUM, valbuf);
238       regcache_cooked_write (regcache, NIOS2_R3_REGNUM, valbuf + 4);
239     }
240 }
241 
242 
243 /* Set up the default values of the registers.  */
244 
245 static void
246 nios2_setup_default (struct nios2_unwind_cache *cache)
247 {
248   int i;
249 
250   for (i = 0; i < NIOS2_NUM_REGS; i++)
251   {
252     /* All registers start off holding their previous values.  */
253     cache->reg_value[i].reg    = i;
254     cache->reg_value[i].offset = 0;
255 
256     /* All registers start off not saved.  */
257     cache->reg_saved[i].basereg = -1;
258     cache->reg_saved[i].addr    = 0;
259   }
260 }
261 
262 /* Initialize the unwind cache.  */
263 
264 static void
265 nios2_init_cache (struct nios2_unwind_cache *cache, CORE_ADDR pc)
266 {
267   cache->base = 0;
268   cache->cfa = 0;
269   cache->pc = pc;
270   cache->return_regnum = NIOS2_RA_REGNUM;
271   nios2_setup_default (cache);
272 }
273 
274 /* Read and identify an instruction at PC.  If INSNP is non-null,
275    store the instruction word into that location.  Return the opcode
276    pointer or NULL if the memory couldn't be read or disassembled.  */
277 
278 static const struct nios2_opcode *
279 nios2_fetch_insn (struct gdbarch *gdbarch, CORE_ADDR pc,
280 		  unsigned int *insnp)
281 {
282   LONGEST memword;
283   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
284   unsigned int insn;
285 
286   if (mach == bfd_mach_nios2r2)
287     {
288       if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
289 				     BFD_ENDIAN_LITTLE, &memword)
290 	  && !safe_read_memory_integer (pc, NIOS2_CDX_OPCODE_SIZE,
291 					BFD_ENDIAN_LITTLE, &memword))
292 	return NULL;
293     }
294   else if (!safe_read_memory_integer (pc, NIOS2_OPCODE_SIZE,
295 				      gdbarch_byte_order (gdbarch), &memword))
296     return NULL;
297 
298   insn = (unsigned int) memword;
299   if (insnp)
300     *insnp = insn;
301   return nios2_find_opcode_hash (insn, mach);
302 }
303 
304 
305 /* Match and disassemble an ADD-type instruction, with 3 register operands.
306    Returns true on success, and fills in the operand pointers.  */
307 
308 static int
309 nios2_match_add (uint32_t insn, const struct nios2_opcode *op,
310 		 unsigned long mach, int *ra, int *rb, int *rc)
311 {
312   int is_r2 = (mach == bfd_mach_nios2r2);
313 
314   if (!is_r2 && (op->match == MATCH_R1_ADD || op->match == MATCH_R1_MOV))
315     {
316       *ra = GET_IW_R_A (insn);
317       *rb = GET_IW_R_B (insn);
318       *rc = GET_IW_R_C (insn);
319       return 1;
320     }
321   else if (!is_r2)
322     return 0;
323   else if (op->match == MATCH_R2_ADD || op->match == MATCH_R2_MOV)
324     {
325       *ra = GET_IW_F3X6L5_A (insn);
326       *rb = GET_IW_F3X6L5_B (insn);
327       *rc = GET_IW_F3X6L5_C (insn);
328       return 1;
329     }
330   else if (op->match == MATCH_R2_ADD_N)
331     {
332       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
333       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
334       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
335       return 1;
336     }
337   else if (op->match == MATCH_R2_MOV_N)
338     {
339       *ra = GET_IW_F2_A (insn);
340       *rb = 0;
341       *rc = GET_IW_F2_B (insn);
342       return 1;
343     }
344   return 0;
345 }
346 
347 /* Match and disassemble a SUB-type instruction, with 3 register operands.
348    Returns true on success, and fills in the operand pointers.  */
349 
350 static int
351 nios2_match_sub (uint32_t insn, const struct nios2_opcode *op,
352 		 unsigned long mach, int *ra, int *rb, int *rc)
353 {
354   int is_r2 = (mach == bfd_mach_nios2r2);
355 
356   if (!is_r2 && op->match == MATCH_R1_SUB)
357     {
358       *ra = GET_IW_R_A (insn);
359       *rb = GET_IW_R_B (insn);
360       *rc = GET_IW_R_C (insn);
361       return 1;
362     }
363   else if (!is_r2)
364     return 0;
365   else if (op->match == MATCH_R2_SUB)
366     {
367       *ra = GET_IW_F3X6L5_A (insn);
368       *rb = GET_IW_F3X6L5_B (insn);
369       *rc = GET_IW_F3X6L5_C (insn);
370       return 1;
371     }
372   else if (op->match == MATCH_R2_SUB_N)
373     {
374       *ra = nios2_r2_reg3_mappings[GET_IW_T3X1_A3 (insn)];
375       *rb = nios2_r2_reg3_mappings[GET_IW_T3X1_B3 (insn)];
376       *rc = nios2_r2_reg3_mappings[GET_IW_T3X1_C3 (insn)];
377       return 1;
378     }
379   return 0;
380 }
381 
382 /* Match and disassemble an ADDI-type instruction, with 2 register operands
383    and one immediate operand.
384    Returns true on success, and fills in the operand pointers.  */
385 
386 static int
387 nios2_match_addi (uint32_t insn, const struct nios2_opcode *op,
388 		  unsigned long mach, int *ra, int *rb, int *imm)
389 {
390   int is_r2 = (mach == bfd_mach_nios2r2);
391 
392   if (!is_r2 && op->match == MATCH_R1_ADDI)
393     {
394       *ra = GET_IW_I_A (insn);
395       *rb = GET_IW_I_B (insn);
396       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
397       return 1;
398     }
399   else if (!is_r2)
400     return 0;
401   else if (op->match == MATCH_R2_ADDI)
402     {
403       *ra = GET_IW_F2I16_A (insn);
404       *rb = GET_IW_F2I16_B (insn);
405       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
406       return 1;
407     }
408   else if (op->match == MATCH_R2_ADDI_N || op->match == MATCH_R2_SUBI_N)
409     {
410       *ra = nios2_r2_reg3_mappings[GET_IW_T2X1I3_A3 (insn)];
411       *rb = nios2_r2_reg3_mappings[GET_IW_T2X1I3_B3 (insn)];
412       *imm = nios2_r2_asi_n_mappings[GET_IW_T2X1I3_IMM3 (insn)];
413       if (op->match == MATCH_R2_SUBI_N)
414 	*imm = - (*imm);
415       return 1;
416     }
417   else if (op->match == MATCH_R2_SPADDI_N)
418     {
419       *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
420       *rb = NIOS2_SP_REGNUM;
421       *imm = GET_IW_T1I7_IMM7 (insn) << 2;
422       return 1;
423     }
424   else if (op->match == MATCH_R2_SPINCI_N || op->match == MATCH_R2_SPDECI_N)
425     {
426       *ra = NIOS2_SP_REGNUM;
427       *rb = NIOS2_SP_REGNUM;
428       *imm = GET_IW_X1I7_IMM7 (insn) << 2;
429       if (op->match == MATCH_R2_SPDECI_N)
430 	*imm = - (*imm);
431       return 1;
432     }
433   return 0;
434 }
435 
436 /* Match and disassemble an ORHI-type instruction, with 2 register operands
437    and one unsigned immediate operand.
438    Returns true on success, and fills in the operand pointers.  */
439 
440 static int
441 nios2_match_orhi (uint32_t insn, const struct nios2_opcode *op,
442 		  unsigned long mach, int *ra, int *rb, unsigned int *uimm)
443 {
444   int is_r2 = (mach == bfd_mach_nios2r2);
445 
446   if (!is_r2 && op->match == MATCH_R1_ORHI)
447     {
448       *ra = GET_IW_I_A (insn);
449       *rb = GET_IW_I_B (insn);
450       *uimm = GET_IW_I_IMM16 (insn);
451       return 1;
452     }
453   else if (!is_r2)
454     return 0;
455   else if (op->match == MATCH_R2_ORHI)
456     {
457       *ra = GET_IW_F2I16_A (insn);
458       *rb = GET_IW_F2I16_B (insn);
459       *uimm = GET_IW_F2I16_IMM16 (insn);
460       return 1;
461     }
462   return 0;
463 }
464 
465 /* Match and disassemble a STW-type instruction, with 2 register operands
466    and one immediate operand.
467    Returns true on success, and fills in the operand pointers.  */
468 
469 static int
470 nios2_match_stw (uint32_t insn, const struct nios2_opcode *op,
471 		 unsigned long mach, int *ra, int *rb, int *imm)
472 {
473   int is_r2 = (mach == bfd_mach_nios2r2);
474 
475   if (!is_r2 && (op->match == MATCH_R1_STW || op->match == MATCH_R1_STWIO))
476     {
477       *ra = GET_IW_I_A (insn);
478       *rb = GET_IW_I_B (insn);
479       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
480       return 1;
481     }
482   else if (!is_r2)
483     return 0;
484   else if (op->match == MATCH_R2_STW)
485     {
486       *ra = GET_IW_F2I16_A (insn);
487       *rb = GET_IW_F2I16_B (insn);
488       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
489       return 1;
490     }
491   else if (op->match == MATCH_R2_STWIO)
492     {
493       *ra = GET_IW_F2X4I12_A (insn);
494       *rb = GET_IW_F2X4I12_B (insn);
495       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
496       return 1;
497     }
498   else if (op->match == MATCH_R2_STW_N)
499     {
500       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
501       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
502       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
503       return 1;
504     }
505   else if (op->match == MATCH_R2_STWSP_N)
506     {
507       *ra = NIOS2_SP_REGNUM;
508       *rb = GET_IW_F1I5_B (insn);
509       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
510       return 1;
511     }
512   else if (op->match == MATCH_R2_STWZ_N)
513     {
514       *ra = nios2_r2_reg3_mappings[GET_IW_T1X1I6_A3 (insn)];
515       *rb = 0;
516       *imm = GET_IW_T1X1I6_IMM6 (insn) << 2;
517       return 1;
518     }
519   return 0;
520 }
521 
522 /* Match and disassemble a LDW-type instruction, with 2 register operands
523    and one immediate operand.
524    Returns true on success, and fills in the operand pointers.  */
525 
526 static int
527 nios2_match_ldw (uint32_t insn, const struct nios2_opcode *op,
528 		 unsigned long mach, int *ra, int *rb, int *imm)
529 {
530   int is_r2 = (mach == bfd_mach_nios2r2);
531 
532   if (!is_r2 && (op->match == MATCH_R1_LDW || op->match == MATCH_R1_LDWIO))
533     {
534       *ra = GET_IW_I_A (insn);
535       *rb = GET_IW_I_B (insn);
536       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
537       return 1;
538     }
539   else if (!is_r2)
540     return 0;
541   else if (op->match == MATCH_R2_LDW)
542     {
543       *ra = GET_IW_F2I16_A (insn);
544       *rb = GET_IW_F2I16_B (insn);
545       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
546       return 1;
547     }
548   else if (op->match == MATCH_R2_LDWIO)
549     {
550       *ra = GET_IW_F2X4I12_A (insn);
551       *rb = GET_IW_F2X4I12_B (insn);
552       *imm = (signed) (GET_IW_F2X4I12_IMM12 (insn) << 20) >> 20;
553       return 1;
554     }
555   else if (op->match == MATCH_R2_LDW_N)
556     {
557       *ra = nios2_r2_reg3_mappings[GET_IW_T2I4_A3 (insn)];
558       *rb = nios2_r2_reg3_mappings[GET_IW_T2I4_B3 (insn)];
559       *imm = GET_IW_T2I4_IMM4 (insn) << 2;
560       return 1;
561     }
562   else if (op->match == MATCH_R2_LDWSP_N)
563     {
564       *ra = NIOS2_SP_REGNUM;
565       *rb = GET_IW_F1I5_B (insn);
566       *imm = GET_IW_F1I5_IMM5 (insn) << 2;
567       return 1;
568     }
569   return 0;
570 }
571 
572 /* Match and disassemble a RDCTL instruction, with 2 register operands.
573    Returns true on success, and fills in the operand pointers.  */
574 
575 static int
576 nios2_match_rdctl (uint32_t insn, const struct nios2_opcode *op,
577 		   unsigned long mach, int *ra, int *rc)
578 {
579   int is_r2 = (mach == bfd_mach_nios2r2);
580 
581   if (!is_r2 && (op->match == MATCH_R1_RDCTL))
582     {
583       *ra = GET_IW_R_IMM5 (insn);
584       *rc = GET_IW_R_C (insn);
585       return 1;
586     }
587   else if (!is_r2)
588     return 0;
589   else if (op->match == MATCH_R2_RDCTL)
590     {
591       *ra = GET_IW_F3X6L5_IMM5 (insn);
592       *rc = GET_IW_F3X6L5_C (insn);
593       return 1;
594     }
595   return 0;
596 }
597 
598 /* Match and disassemble a PUSH.N or STWM instruction.
599    Returns true on success, and fills in the operand pointers.  */
600 
601 static int
602 nios2_match_stwm (uint32_t insn, const struct nios2_opcode *op,
603 		  unsigned long mach, unsigned int *reglist,
604 		  int *ra, int *imm, int *wb, int *id)
605 {
606   int is_r2 = (mach == bfd_mach_nios2r2);
607 
608   if (!is_r2)
609     return 0;
610   else if (op->match == MATCH_R2_PUSH_N)
611     {
612       *reglist = 1 << 31;
613       if (GET_IW_L5I4X1_FP (insn))
614 	*reglist |= (1 << 28);
615       if (GET_IW_L5I4X1_CS (insn))
616 	{
617 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
618 	  *reglist |= nios2_r2_reg_range_mappings[val];
619 	}
620       *ra = NIOS2_SP_REGNUM;
621       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
622       *wb = 1;
623       *id = 0;
624       return 1;
625     }
626   else if (op->match == MATCH_R2_STWM)
627     {
628       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
629       if (GET_IW_F1X4L17_RS (insn))
630 	{
631 	  *reglist = ((rawmask << 14) & 0x00ffc000);
632 	  if (rawmask & (1 << 10))
633 	    *reglist |= (1 << 28);
634 	  if (rawmask & (1 << 11))
635 	    *reglist |= (1 << 31);
636 	}
637       else
638 	*reglist = rawmask << 2;
639       *ra = GET_IW_F1X4L17_A (insn);
640       *imm = 0;
641       *wb = GET_IW_F1X4L17_WB (insn);
642       *id = GET_IW_F1X4L17_ID (insn);
643       return 1;
644     }
645   return 0;
646 }
647 
648 /* Match and disassemble a POP.N or LDWM instruction.
649    Returns true on success, and fills in the operand pointers.  */
650 
651 static int
652 nios2_match_ldwm (uint32_t insn, const struct nios2_opcode *op,
653 		  unsigned long mach, unsigned int *reglist,
654 		  int *ra, int *imm, int *wb, int *id, int *ret)
655 {
656   int is_r2 = (mach == bfd_mach_nios2r2);
657 
658   if (!is_r2)
659     return 0;
660   else if (op->match == MATCH_R2_POP_N)
661     {
662       *reglist = 1 << 31;
663       if (GET_IW_L5I4X1_FP (insn))
664 	*reglist |= (1 << 28);
665       if (GET_IW_L5I4X1_CS (insn))
666 	{
667 	  int val = GET_IW_L5I4X1_REGRANGE (insn);
668 	  *reglist |= nios2_r2_reg_range_mappings[val];
669 	}
670       *ra = NIOS2_SP_REGNUM;
671       *imm = GET_IW_L5I4X1_IMM4 (insn) << 2;
672       *wb = 1;
673       *id = 1;
674       *ret = 1;
675       return 1;
676     }
677   else if (op->match == MATCH_R2_LDWM)
678     {
679       unsigned int rawmask = GET_IW_F1X4L17_REGMASK (insn);
680       if (GET_IW_F1X4L17_RS (insn))
681 	{
682 	  *reglist = ((rawmask << 14) & 0x00ffc000);
683 	  if (rawmask & (1 << 10))
684 	    *reglist |= (1 << 28);
685 	  if (rawmask & (1 << 11))
686 	    *reglist |= (1 << 31);
687 	}
688       else
689 	*reglist = rawmask << 2;
690       *ra = GET_IW_F1X4L17_A (insn);
691       *imm = 0;
692       *wb = GET_IW_F1X4L17_WB (insn);
693       *id = GET_IW_F1X4L17_ID (insn);
694       *ret = GET_IW_F1X4L17_PC (insn);
695       return 1;
696     }
697   return 0;
698 }
699 
700 /* Match and disassemble a branch instruction, with (potentially)
701    2 register operands and one immediate operand.
702    Returns true on success, and fills in the operand pointers.  */
703 
704 enum branch_condition {
705   branch_none,
706   branch_eq,
707   branch_ne,
708   branch_ge,
709   branch_geu,
710   branch_lt,
711   branch_ltu
712 };
713 
714 static int
715 nios2_match_branch (uint32_t insn, const struct nios2_opcode *op,
716 		    unsigned long mach, int *ra, int *rb, int *imm,
717 		    enum branch_condition *cond)
718 {
719   int is_r2 = (mach == bfd_mach_nios2r2);
720 
721   if (!is_r2)
722     {
723       switch (op->match)
724 	{
725 	case MATCH_R1_BR:
726 	  *cond = branch_none;
727 	  break;
728 	case MATCH_R1_BEQ:
729 	  *cond = branch_eq;
730 	  break;
731 	case MATCH_R1_BNE:
732 	  *cond = branch_ne;
733 	  break;
734 	case MATCH_R1_BGE:
735 	  *cond = branch_ge;
736 	  break;
737 	case MATCH_R1_BGEU:
738 	  *cond = branch_geu;
739 	  break;
740 	case MATCH_R1_BLT:
741 	  *cond = branch_lt;
742 	  break;
743 	case MATCH_R1_BLTU:
744 	  *cond = branch_ltu;
745 	  break;
746 	default:
747 	  return 0;
748 	}
749       *imm = (signed) (GET_IW_I_IMM16 (insn) << 16) >> 16;
750       *ra = GET_IW_I_A (insn);
751       *rb = GET_IW_I_B (insn);
752       return 1;
753     }
754   else
755     {
756       switch (op->match)
757 	{
758 	case MATCH_R2_BR_N:
759 	  *cond = branch_none;
760 	  *ra = NIOS2_Z_REGNUM;
761 	  *rb = NIOS2_Z_REGNUM;
762 	  *imm = (signed) ((GET_IW_I10_IMM10 (insn) << 1) << 21) >> 21;
763 	  return 1;
764 	case MATCH_R2_BEQZ_N:
765 	  *cond = branch_eq;
766 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
767 	  *rb = NIOS2_Z_REGNUM;
768 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
769 	  return 1;
770 	case MATCH_R2_BNEZ_N:
771 	  *cond = branch_ne;
772 	  *ra = nios2_r2_reg3_mappings[GET_IW_T1I7_A3 (insn)];
773 	  *rb = NIOS2_Z_REGNUM;
774 	  *imm = (signed) ((GET_IW_T1I7_IMM7 (insn) << 1) << 24) >> 24;
775 	  return 1;
776 	case MATCH_R2_BR:
777 	  *cond = branch_none;
778 	  break;
779 	case MATCH_R2_BEQ:
780 	  *cond = branch_eq;
781 	  break;
782 	case MATCH_R2_BNE:
783 	  *cond = branch_ne;
784 	  break;
785 	case MATCH_R2_BGE:
786 	  *cond = branch_ge;
787 	  break;
788 	case MATCH_R2_BGEU:
789 	  *cond = branch_geu;
790 	  break;
791 	case MATCH_R2_BLT:
792 	  *cond = branch_lt;
793 	  break;
794 	case MATCH_R2_BLTU:
795 	  *cond = branch_ltu;
796 	  break;
797 	default:
798 	  return 0;
799 	}
800       *ra = GET_IW_F2I16_A (insn);
801       *rb = GET_IW_F2I16_B (insn);
802       *imm = (signed) (GET_IW_F2I16_IMM16 (insn) << 16) >> 16;
803       return 1;
804     }
805   return 0;
806 }
807 
808 /* Match and disassemble a direct jump instruction, with an
809    unsigned operand.  Returns true on success, and fills in the operand
810    pointer.  */
811 
812 static int
813 nios2_match_jmpi (uint32_t insn, const struct nios2_opcode *op,
814 		  unsigned long mach, unsigned int *uimm)
815 {
816   int is_r2 = (mach == bfd_mach_nios2r2);
817 
818   if (!is_r2 && op->match == MATCH_R1_JMPI)
819     {
820       *uimm = GET_IW_J_IMM26 (insn) << 2;
821       return 1;
822     }
823   else if (!is_r2)
824     return 0;
825   else if (op->match == MATCH_R2_JMPI)
826     {
827       *uimm = GET_IW_L26_IMM26 (insn) << 2;
828       return 1;
829     }
830   return 0;
831 }
832 
833 /* Match and disassemble a direct call instruction, with an
834    unsigned operand.  Returns true on success, and fills in the operand
835    pointer.  */
836 
837 static int
838 nios2_match_calli (uint32_t insn, const struct nios2_opcode *op,
839 		   unsigned long mach, unsigned int *uimm)
840 {
841   int is_r2 = (mach == bfd_mach_nios2r2);
842 
843   if (!is_r2 && op->match == MATCH_R1_CALL)
844     {
845       *uimm = GET_IW_J_IMM26 (insn) << 2;
846       return 1;
847     }
848   else if (!is_r2)
849     return 0;
850   else if (op->match == MATCH_R2_CALL)
851     {
852       *uimm = GET_IW_L26_IMM26 (insn) << 2;
853       return 1;
854     }
855   return 0;
856 }
857 
858 /* Match and disassemble an indirect jump instruction, with a
859    (possibly implicit) register operand.  Returns true on success, and fills
860    in the operand pointer.  */
861 
862 static int
863 nios2_match_jmpr (uint32_t insn, const struct nios2_opcode *op,
864 		  unsigned long mach, int *ra)
865 {
866   int is_r2 = (mach == bfd_mach_nios2r2);
867 
868   if (!is_r2)
869     switch (op->match)
870       {
871       case MATCH_R1_JMP:
872 	*ra = GET_IW_I_A (insn);
873 	return 1;
874       case MATCH_R1_RET:
875 	*ra = NIOS2_RA_REGNUM;
876 	return 1;
877       case MATCH_R1_ERET:
878 	*ra = NIOS2_EA_REGNUM;
879 	return 1;
880       case MATCH_R1_BRET:
881 	*ra = NIOS2_BA_REGNUM;
882 	return 1;
883       default:
884 	return 0;
885       }
886   else
887     switch (op->match)
888       {
889       case MATCH_R2_JMP:
890 	*ra = GET_IW_F2I16_A (insn);
891 	return 1;
892       case MATCH_R2_JMPR_N:
893 	*ra = GET_IW_F1X1_A (insn);
894 	return 1;
895       case MATCH_R2_RET:
896       case MATCH_R2_RET_N:
897 	*ra = NIOS2_RA_REGNUM;
898 	return 1;
899       case MATCH_R2_ERET:
900 	*ra = NIOS2_EA_REGNUM;
901 	return 1;
902       case MATCH_R2_BRET:
903 	*ra = NIOS2_BA_REGNUM;
904 	return 1;
905       default:
906 	return 0;
907       }
908   return 0;
909 }
910 
911 /* Match and disassemble an indirect call instruction, with a register
912    operand.  Returns true on success, and fills in the operand pointer.  */
913 
914 static int
915 nios2_match_callr (uint32_t insn, const struct nios2_opcode *op,
916 		   unsigned long mach, int *ra)
917 {
918   int is_r2 = (mach == bfd_mach_nios2r2);
919 
920   if (!is_r2 && op->match == MATCH_R1_CALLR)
921     {
922       *ra = GET_IW_I_A (insn);
923       return 1;
924     }
925   else if (!is_r2)
926     return 0;
927   else if (op->match == MATCH_R2_CALLR)
928     {
929       *ra = GET_IW_F2I16_A (insn);
930       return 1;
931     }
932   else if (op->match == MATCH_R2_CALLR_N)
933     {
934       *ra = GET_IW_F1X1_A (insn);
935       return 1;
936     }
937   return 0;
938 }
939 
940 /* Match and disassemble a break instruction, with an unsigned operand.
941    Returns true on success, and fills in the operand pointer.  */
942 
943 static int
944 nios2_match_break (uint32_t insn, const struct nios2_opcode *op,
945 		  unsigned long mach, unsigned int *uimm)
946 {
947   int is_r2 = (mach == bfd_mach_nios2r2);
948 
949   if (!is_r2 && op->match == MATCH_R1_BREAK)
950     {
951       *uimm = GET_IW_R_IMM5 (insn);
952       return 1;
953     }
954   else if (!is_r2)
955     return 0;
956   else if (op->match == MATCH_R2_BREAK)
957     {
958       *uimm = GET_IW_F3X6L5_IMM5 (insn);
959       return 1;
960     }
961   else if (op->match == MATCH_R2_BREAK_N)
962     {
963       *uimm = GET_IW_X2L5_IMM5 (insn);
964       return 1;
965     }
966   return 0;
967 }
968 
969 /* Match and disassemble a trap instruction, with an unsigned operand.
970    Returns true on success, and fills in the operand pointer.  */
971 
972 static int
973 nios2_match_trap (uint32_t insn, const struct nios2_opcode *op,
974 		  unsigned long mach, unsigned int *uimm)
975 {
976   int is_r2 = (mach == bfd_mach_nios2r2);
977 
978   if (!is_r2 && op->match == MATCH_R1_TRAP)
979     {
980       *uimm = GET_IW_R_IMM5 (insn);
981       return 1;
982     }
983   else if (!is_r2)
984     return 0;
985   else if (op->match == MATCH_R2_TRAP)
986     {
987       *uimm = GET_IW_F3X6L5_IMM5 (insn);
988       return 1;
989     }
990   else if (op->match == MATCH_R2_TRAP_N)
991     {
992       *uimm = GET_IW_X2L5_IMM5 (insn);
993       return 1;
994     }
995   return 0;
996 }
997 
998 /* Helper function to identify when we're in a function epilogue;
999    that is, the part of the function from the point at which the
1000    stack adjustments are made, to the return or sibcall.
1001    Note that we may have several stack adjustment instructions, and
1002    this function needs to test whether the stack teardown has already
1003    started before current_pc, not whether it has completed.  */
1004 
1005 static int
1006 nios2_in_epilogue_p (struct gdbarch *gdbarch,
1007 		     CORE_ADDR current_pc,
1008 		     CORE_ADDR start_pc)
1009 {
1010   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1011   int is_r2 = (mach == bfd_mach_nios2r2);
1012   /* Maximum number of possibly-epilogue instructions to check.
1013      Note that this number should not be too large, else we can
1014      potentially end up iterating through unmapped memory.  */
1015   int ninsns, max_insns = 5;
1016   unsigned int insn;
1017   const struct nios2_opcode *op = NULL;
1018   unsigned int uimm;
1019   int imm;
1020   int wb, id, ret;
1021   int ra, rb, rc;
1022   enum branch_condition cond;
1023   CORE_ADDR pc;
1024 
1025   /* There has to be a previous instruction in the function.  */
1026   if (current_pc <= start_pc)
1027     return 0;
1028 
1029   /* Find the previous instruction before current_pc.  For R2, it might
1030      be either a 16-bit or 32-bit instruction; the only way to know for
1031      sure is to scan through from the beginning of the function,
1032      disassembling as we go.  */
1033   if (is_r2)
1034     for (pc = start_pc; ; )
1035       {
1036 	op = nios2_fetch_insn (gdbarch, pc, &insn);
1037 	if (op == NULL)
1038 	  return 0;
1039 	if (pc + op->size < current_pc)
1040 	  pc += op->size;
1041 	else
1042 	  break;
1043 	/* We can skip over insns to a forward branch target.  Since
1044 	   the branch offset is relative to the next instruction,
1045 	   it's correct to do this after incrementing the pc above.  */
1046 	if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1047 	    && imm > 0
1048 	    && pc + imm < current_pc)
1049 	  pc += imm;
1050       }
1051   /* Otherwise just go back to the previous 32-bit insn.  */
1052   else
1053     pc = current_pc - NIOS2_OPCODE_SIZE;
1054 
1055   /* Beginning with the previous instruction we just located, check whether
1056      we are in a sequence of at least one stack adjustment instruction.
1057      Possible instructions here include:
1058 	 ADDI sp, sp, n
1059 	 ADD sp, sp, rn
1060 	 LDW sp, n(sp)
1061 	 SPINCI.N n
1062 	 LDWSP.N sp, n(sp)
1063 	 LDWM {reglist}, (sp)++, wb */
1064   for (ninsns = 0; ninsns < max_insns; ninsns++)
1065     {
1066       int ok = 0;
1067 
1068       /* Fetch the insn at pc.  */
1069       op = nios2_fetch_insn (gdbarch, pc, &insn);
1070       if (op == NULL)
1071 	return 0;
1072       pc += op->size;
1073 
1074       /* Was it a stack adjustment?  */
1075       if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1076 	ok = (rb == NIOS2_SP_REGNUM);
1077       else if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1078 	ok = (rc == NIOS2_SP_REGNUM);
1079       else if (nios2_match_ldw (insn, op, mach, &ra, &rb, &imm))
1080 	ok = (rb == NIOS2_SP_REGNUM);
1081       else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra,
1082 				 &imm, &wb, &ret, &id))
1083 	ok = (ra == NIOS2_SP_REGNUM && wb && id);
1084       if (!ok)
1085 	break;
1086     }
1087 
1088   /* No stack adjustments found.  */
1089   if (ninsns == 0)
1090     return 0;
1091 
1092   /* We found more stack adjustments than we expect GCC to be generating.
1093      Since it looks like a stack unwind might be in progress tell GDB to
1094      treat it as such.  */
1095   if (ninsns == max_insns)
1096     return 1;
1097 
1098   /* The next instruction following the stack adjustments must be a
1099      return, jump, or unconditional branch, or a CDX pop.n or ldwm
1100      that does an implicit return.  */
1101   if (nios2_match_jmpr (insn, op, mach, &ra)
1102       || nios2_match_jmpi (insn, op, mach, &uimm)
1103       || (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
1104 	  && ret)
1105       || (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond)
1106 	  && cond == branch_none))
1107     return 1;
1108 
1109   return 0;
1110 }
1111 
1112 /* Implement the stack_frame_destroyed_p gdbarch method.  */
1113 
1114 static int
1115 nios2_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1116 {
1117   CORE_ADDR func_addr;
1118 
1119   if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
1120     return nios2_in_epilogue_p (gdbarch, pc, func_addr);
1121 
1122   return 0;
1123 }
1124 
1125 /* Do prologue analysis, returning the PC of the first instruction
1126    after the function prologue.  Assumes CACHE has already been
1127    initialized.  THIS_FRAME can be null, in which case we are only
1128    interested in skipping the prologue.  Otherwise CACHE is filled in
1129    from the frame information.
1130 
1131    The prologue may consist of the following parts:
1132      1) Profiling instrumentation.  For non-PIC code it looks like:
1133 	  mov	 r8, ra
1134 	  call	 mcount
1135 	  mov	 ra, r8
1136 
1137      2) A stack adjustment and save of R4-R7 for varargs functions.
1138         For R2 CDX this is typically handled with a STWM, otherwise
1139 	this is typically merged with item 3.
1140 
1141      3) A stack adjustment and save of the callee-saved registers.
1142         For R2 CDX these are typically handled with a PUSH.N or STWM,
1143 	otherwise as an explicit SP decrement and individual register
1144 	saves.
1145 
1146         There may also be a stack switch here in an exception handler
1147 	in place of a stack adjustment.  It looks like:
1148 	  movhi  rx, %hiadj(newstack)
1149 	  addhi  rx, rx, %lo(newstack)
1150 	  stw    sp, constant(rx)
1151 	  mov    sp, rx
1152 
1153      4) A frame pointer save, which can be either a MOV or ADDI.
1154 
1155      5) A further stack pointer adjustment.  This is normally included
1156         adjustment in step 3 unless the total adjustment is too large
1157 	to be done in one step.
1158 
1159      7) A stack overflow check, which can take either of these forms:
1160 	  bgeu   sp, rx, +8
1161 	  trap  3
1162 	or
1163 	  bltu   sp, rx, .Lstack_overflow
1164 	  ...
1165 	.Lstack_overflow:
1166 	  trap  3
1167 
1168 	Older versions of GCC emitted "break 3" instead of "trap 3" here,
1169 	so we check for both cases.
1170 
1171 	Older GCC versions emitted stack overflow checks after the SP
1172 	adjustments in both steps 3 and 4.  Starting with GCC 6, there is
1173 	at most one overflow check, which is placed before the first
1174 	stack adjustment for R2 CDX and after the first stack adjustment
1175 	otherwise.
1176 
1177     The prologue instructions may be combined or interleaved with other
1178     instructions.
1179 
1180     To cope with all this variability we decode all the instructions
1181     from the start of the prologue until we hit an instruction that
1182     cannot possibly be a prologue instruction, such as a branch, call,
1183     return, or epilogue instruction.  The prologue is considered to end
1184     at the last instruction that can definitely be considered a
1185     prologue instruction.  */
1186 
1187 static CORE_ADDR
1188 nios2_analyze_prologue (struct gdbarch *gdbarch, const CORE_ADDR start_pc,
1189 			const CORE_ADDR current_pc,
1190 			struct nios2_unwind_cache *cache,
1191 			struct frame_info *this_frame)
1192 {
1193   /* Maximum number of possibly-prologue instructions to check.
1194      Note that this number should not be too large, else we can
1195      potentially end up iterating through unmapped memory.  */
1196   int ninsns, max_insns = 50;
1197   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1198   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1199 
1200   /* Does the frame set up the FP register?  */
1201   int base_reg = 0;
1202 
1203   struct reg_value *value = cache->reg_value;
1204   struct reg_value temp_value[NIOS2_NUM_REGS];
1205 
1206   int i;
1207 
1208   /* Save the starting PC so we can correct the pc after running
1209      through the prolog, using symbol info.  */
1210   CORE_ADDR pc = start_pc;
1211 
1212   /* Is this an exception handler?  */
1213   int exception_handler = 0;
1214 
1215   /* What was the original value of SP (or fake original value for
1216      functions which switch stacks?  */
1217   CORE_ADDR frame_high;
1218 
1219   /* The last definitely-prologue instruction seen.  */
1220   CORE_ADDR prologue_end;
1221 
1222   /* Is this the innermost function?  */
1223   int innermost = (this_frame ? (frame_relative_level (this_frame) == 0) : 1);
1224 
1225   if (nios2_debug)
1226     fprintf_unfiltered (gdb_stdlog,
1227 			"{ nios2_analyze_prologue start=%s, current=%s ",
1228 			paddress (gdbarch, start_pc),
1229 			paddress (gdbarch, current_pc));
1230 
1231   /* Set up the default values of the registers.  */
1232   nios2_setup_default (cache);
1233 
1234   /* Find the prologue instructions.  */
1235   prologue_end = start_pc;
1236   for (ninsns = 0; ninsns < max_insns; ninsns++)
1237     {
1238       /* Present instruction.  */
1239       uint32_t insn;
1240       const struct nios2_opcode *op;
1241       int ra, rb, rc, imm;
1242       unsigned int uimm;
1243       unsigned int reglist;
1244       int wb, id, ret;
1245       enum branch_condition cond;
1246 
1247       if (pc == current_pc)
1248       {
1249 	/* When we reach the current PC we must save the current
1250 	   register state (for the backtrace) but keep analysing
1251 	   because there might be more to find out (eg. is this an
1252 	   exception handler).  */
1253 	memcpy (temp_value, value, sizeof (temp_value));
1254 	value = temp_value;
1255 	if (nios2_debug)
1256 	  fprintf_unfiltered (gdb_stdlog, "*");
1257       }
1258 
1259       op = nios2_fetch_insn (gdbarch, pc, &insn);
1260 
1261       /* Unknown opcode?  Stop scanning.  */
1262       if (op == NULL)
1263 	break;
1264       pc += op->size;
1265 
1266       if (nios2_debug)
1267 	{
1268 	  if (op->size == 2)
1269 	    fprintf_unfiltered (gdb_stdlog, "[%04X]", insn & 0xffff);
1270 	  else
1271 	    fprintf_unfiltered (gdb_stdlog, "[%08X]", insn);
1272 	}
1273 
1274       /* The following instructions can appear in the prologue.  */
1275 
1276       if (nios2_match_add (insn, op, mach, &ra, &rb, &rc))
1277 	{
1278 	  /* ADD   rc, ra, rb  (also used for MOV) */
1279 	  if (rc == NIOS2_SP_REGNUM
1280 	      && rb == 0
1281 	      && value[ra].reg == cache->reg_saved[NIOS2_SP_REGNUM].basereg)
1282 	    {
1283 	      /* If the previous value of SP is available somewhere
1284 		 near the new stack pointer value then this is a
1285 		 stack switch.  */
1286 
1287 	      /* If any registers were saved on the stack before then
1288 		 we can't backtrace into them now.  */
1289 	      for (i = 0 ; i < NIOS2_NUM_REGS ; i++)
1290 		{
1291 		  if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1292 		    cache->reg_saved[i].basereg = -1;
1293 		  if (value[i].reg == NIOS2_SP_REGNUM)
1294 		    value[i].reg = -1;
1295 		}
1296 
1297 	      /* Create a fake "high water mark" 4 bytes above where SP
1298 		 was stored and fake up the registers to be consistent
1299 		 with that.  */
1300 	      value[NIOS2_SP_REGNUM].reg = NIOS2_SP_REGNUM;
1301 	      value[NIOS2_SP_REGNUM].offset
1302 		= (value[ra].offset
1303 		   - cache->reg_saved[NIOS2_SP_REGNUM].addr
1304 		   - 4);
1305 	      cache->reg_saved[NIOS2_SP_REGNUM].basereg = NIOS2_SP_REGNUM;
1306 	      cache->reg_saved[NIOS2_SP_REGNUM].addr = -4;
1307 	    }
1308 
1309 	  else if (rc == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1310 	    /* This is setting SP from FP.  This only happens in the
1311 	       function epilogue.  */
1312 	    break;
1313 
1314 	  else if (rc != 0)
1315 	    {
1316 	      if (value[rb].reg == 0)
1317 		value[rc].reg = value[ra].reg;
1318 	      else if (value[ra].reg == 0)
1319 		value[rc].reg = value[rb].reg;
1320 	      else
1321 		value[rc].reg = -1;
1322 	      value[rc].offset = value[ra].offset + value[rb].offset;
1323 	    }
1324 
1325 	  /* The add/move is only considered a prologue instruction
1326 	     if the destination is SP or FP.  */
1327 	  if (rc == NIOS2_SP_REGNUM || rc == NIOS2_FP_REGNUM)
1328 	    prologue_end = pc;
1329 	}
1330 
1331       else if (nios2_match_sub (insn, op, mach, &ra, &rb, &rc))
1332 	{
1333 	  /* SUB   rc, ra, rb */
1334 	  if (rc == NIOS2_SP_REGNUM && rb == NIOS2_SP_REGNUM
1335 	      && value[rc].reg != 0)
1336 	    /* If we are decrementing the SP by a non-constant amount,
1337 	       this is alloca, not part of the prologue.  */
1338 	    break;
1339 	  else if (rc != 0)
1340 	    {
1341 	      if (value[rb].reg == 0)
1342 		value[rc].reg = value[ra].reg;
1343 	      else
1344 		value[rc].reg = -1;
1345 	      value[rc].offset = value[ra].offset - value[rb].offset;
1346 	    }
1347 	}
1348 
1349       else if (nios2_match_addi (insn, op, mach, &ra, &rb, &imm))
1350 	{
1351 	  /* ADDI    rb, ra, imm */
1352 
1353 	  /* A positive stack adjustment has to be part of the epilogue.  */
1354 	  if (rb == NIOS2_SP_REGNUM
1355 	      && (imm > 0 || value[ra].reg != NIOS2_SP_REGNUM))
1356 	    break;
1357 
1358 	  /* Likewise restoring SP from FP.  */
1359 	  else if (rb == NIOS2_SP_REGNUM && ra == NIOS2_FP_REGNUM)
1360 	    break;
1361 
1362 	  if (rb != 0)
1363 	    {
1364 	      value[rb].reg    = value[ra].reg;
1365 	      value[rb].offset = value[ra].offset + imm;
1366 	    }
1367 
1368 	  /* The add is only considered a prologue instruction
1369 	     if the destination is SP or FP.  */
1370 	  if (rb == NIOS2_SP_REGNUM || rb == NIOS2_FP_REGNUM)
1371 	    prologue_end = pc;
1372 	}
1373 
1374       else if (nios2_match_orhi (insn, op, mach, &ra, &rb, &uimm))
1375 	{
1376 	  /* ORHI  rb, ra, uimm   (also used for MOVHI) */
1377 	  if (rb != 0)
1378 	    {
1379   	      value[rb].reg    = (value[ra].reg == 0) ? 0 : -1;
1380 	      value[rb].offset = value[ra].offset | (uimm << 16);
1381 	    }
1382 	}
1383 
1384       else if (nios2_match_stw (insn, op, mach, &ra, &rb, &imm))
1385         {
1386 	  /* STW rb, imm(ra) */
1387 
1388 	  /* Are we storing the original value of a register to the stack?
1389 	     For exception handlers the value of EA-4 (return
1390 	     address from interrupts etc) is sometimes stored.  */
1391 	  int orig = value[rb].reg;
1392 	  if (orig > 0
1393 	      && (value[rb].offset == 0
1394 		  || (orig == NIOS2_EA_REGNUM && value[rb].offset == -4))
1395 	      && value[ra].reg == NIOS2_SP_REGNUM)
1396 	    {
1397 	      if (pc < current_pc)
1398 		{
1399 		  /* Save off callee saved registers.  */
1400 		  cache->reg_saved[orig].basereg = value[ra].reg;
1401 		  cache->reg_saved[orig].addr = value[ra].offset + imm;
1402 		}
1403 
1404 	      prologue_end = pc;
1405 
1406 	      if (orig == NIOS2_EA_REGNUM || orig == NIOS2_ESTATUS_REGNUM)
1407 		exception_handler = 1;
1408 	    }
1409 	  else
1410 	    /* Non-stack memory writes cannot appear in the prologue.  */
1411 	    break;
1412         }
1413 
1414       else if (nios2_match_stwm (insn, op, mach,
1415 				 &reglist, &ra, &imm, &wb, &id))
1416 	{
1417 	  /* PUSH.N {reglist}, adjust
1418 	     or
1419 	     STWM {reglist}, --(SP)[, writeback] */
1420 	  int i;
1421 	  int off = 0;
1422 
1423 	  if (ra != NIOS2_SP_REGNUM || id != 0)
1424 	    /* This is a non-stack-push memory write and cannot be
1425 	       part of the prologue.  */
1426 	    break;
1427 
1428 	  for (i = 31; i >= 0; i--)
1429 	    if (reglist & (1 << i))
1430 	      {
1431 		int orig = value[i].reg;
1432 
1433 		off += 4;
1434 		if (orig > 0 && value[i].offset == 0 && pc < current_pc)
1435 		  {
1436 		    cache->reg_saved[orig].basereg
1437 		      = value[NIOS2_SP_REGNUM].reg;
1438 		    cache->reg_saved[orig].addr
1439 		      = value[NIOS2_SP_REGNUM].offset - off;
1440 		  }
1441 	      }
1442 
1443 	  if (wb)
1444 	    value[NIOS2_SP_REGNUM].offset -= off;
1445 	  value[NIOS2_SP_REGNUM].offset -= imm;
1446 
1447 	  prologue_end = pc;
1448 	}
1449 
1450       else if (nios2_match_rdctl (insn, op, mach, &ra, &rc))
1451 	{
1452 	  /* RDCTL rC, ctlN
1453 	     This can appear in exception handlers in combination with
1454 	     a subsequent save to the stack frame.  */
1455 	  if (rc != 0)
1456 	    {
1457 	      value[rc].reg    = NIOS2_STATUS_REGNUM + ra;
1458 	      value[rc].offset = 0;
1459 	    }
1460         }
1461 
1462       else if (nios2_match_calli (insn, op, mach, &uimm))
1463 	{
1464 	  if (value[8].reg == NIOS2_RA_REGNUM
1465 	      && value[8].offset == 0
1466 	      && value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM
1467 	      && value[NIOS2_SP_REGNUM].offset == 0)
1468 	    {
1469 	      /* A CALL instruction.  This is treated as a call to mcount
1470 		 if ra has been stored into r8 beforehand and if it's
1471 		 before the stack adjust.
1472 		 Note mcount corrupts r2-r3, r9-r15 & ra.  */
1473 	      for (i = 2 ; i <= 3 ; i++)
1474 		value[i].reg = -1;
1475 	      for (i = 9 ; i <= 15 ; i++)
1476 		value[i].reg = -1;
1477 	      value[NIOS2_RA_REGNUM].reg = -1;
1478 
1479 	      prologue_end = pc;
1480 	    }
1481 
1482 	  /* Other calls are not part of the prologue.  */
1483 	  else
1484 	    break;
1485 	}
1486 
1487       else if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
1488 	{
1489 	  /* Branches not involving a stack overflow check aren't part of
1490 	     the prologue.  */
1491 	  if (ra != NIOS2_SP_REGNUM)
1492 	    break;
1493 	  else if (cond == branch_geu)
1494 	    {
1495 	      /* BGEU sp, rx, +8
1496 		 TRAP 3  (or BREAK 3)
1497 		 This instruction sequence is used in stack checking;
1498 		 we can ignore it.  */
1499 	      unsigned int next_insn;
1500 	      const struct nios2_opcode *next_op
1501 		= nios2_fetch_insn (gdbarch, pc, &next_insn);
1502 	      if (next_op != NULL
1503 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1504 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1505 		pc += next_op->size;
1506 	      else
1507 		break;
1508 	    }
1509 	  else if (cond == branch_ltu)
1510 	    {
1511 	      /* BLTU sp, rx, .Lstackoverflow
1512 		 If the location branched to holds a TRAP or BREAK
1513 		 instruction then this is also stack overflow detection.  */
1514 	      unsigned int next_insn;
1515 	      const struct nios2_opcode *next_op
1516 		= nios2_fetch_insn (gdbarch, pc + imm, &next_insn);
1517 	      if (next_op != NULL
1518 		  && (nios2_match_trap (next_insn, op, mach, &uimm)
1519 		      || nios2_match_break (next_insn, op, mach, &uimm)))
1520 		;
1521 	      else
1522 		break;
1523 	    }
1524 	  else
1525 	    break;
1526 	}
1527 
1528       /* All other calls, jumps, returns, TRAPs, or BREAKs terminate
1529 	 the prologue.  */
1530       else if (nios2_match_callr (insn, op, mach, &ra)
1531 	       || nios2_match_jmpr (insn, op, mach, &ra)
1532 	       || nios2_match_jmpi (insn, op, mach, &uimm)
1533 	       || (nios2_match_ldwm (insn, op, mach, &reglist, &ra,
1534 				     &imm, &wb, &id, &ret)
1535 		   && ret)
1536 	       || nios2_match_trap (insn, op, mach, &uimm)
1537 	       || nios2_match_break (insn, op, mach, &uimm))
1538 	break;
1539     }
1540 
1541   /* If THIS_FRAME is NULL, we are being called from skip_prologue
1542      and are only interested in the PROLOGUE_END value, so just
1543      return that now and skip over the cache updates, which depend
1544      on having frame information.  */
1545   if (this_frame == NULL)
1546     return prologue_end;
1547 
1548   /* If we are in the function epilogue and have already popped
1549      registers off the stack in preparation for returning, then we
1550      want to go back to the original register values.  */
1551   if (innermost && nios2_in_epilogue_p (gdbarch, current_pc, start_pc))
1552     nios2_setup_default (cache);
1553 
1554   /* Exception handlers use a different return address register.  */
1555   if (exception_handler)
1556     cache->return_regnum = NIOS2_EA_REGNUM;
1557 
1558   if (nios2_debug)
1559     fprintf_unfiltered (gdb_stdlog, "\n-> retreg=%d, ", cache->return_regnum);
1560 
1561   if (cache->reg_value[NIOS2_FP_REGNUM].reg == NIOS2_SP_REGNUM)
1562     /* If the FP now holds an offset from the CFA then this is a
1563        normal frame which uses the frame pointer.  */
1564     base_reg = NIOS2_FP_REGNUM;
1565   else if (cache->reg_value[NIOS2_SP_REGNUM].reg == NIOS2_SP_REGNUM)
1566     /* FP doesn't hold an offset from the CFA.  If SP still holds an
1567        offset from the CFA then we might be in a function which omits
1568        the frame pointer, or we might be partway through the prologue.
1569        In both cases we can find the CFA using SP.  */
1570     base_reg = NIOS2_SP_REGNUM;
1571   else
1572     {
1573       /* Somehow the stack pointer has been corrupted.
1574 	 We can't return.  */
1575       if (nios2_debug)
1576 	fprintf_unfiltered (gdb_stdlog, "<can't reach cfa> }\n");
1577       return 0;
1578     }
1579 
1580   if (cache->reg_value[base_reg].offset == 0
1581       || cache->reg_saved[NIOS2_RA_REGNUM].basereg != NIOS2_SP_REGNUM
1582       || cache->reg_saved[cache->return_regnum].basereg != NIOS2_SP_REGNUM)
1583     {
1584       /* If the frame didn't adjust the stack, didn't save RA or
1585 	 didn't save EA in an exception handler then it must either
1586 	 be a leaf function (doesn't call any other functions) or it
1587 	 can't return.  If it has called another function then it
1588 	 can't be a leaf, so set base == 0 to indicate that we can't
1589 	 backtrace past it.  */
1590 
1591       if (!innermost)
1592 	{
1593 	  /* If it isn't the innermost function then it can't be a
1594 	     leaf, unless it was interrupted.  Check whether RA for
1595 	     this frame is the same as PC.  If so then it probably
1596 	     wasn't interrupted.  */
1597 	  CORE_ADDR ra
1598 	    = get_frame_register_unsigned (this_frame, NIOS2_RA_REGNUM);
1599 
1600 	  if (ra == current_pc)
1601 	    {
1602 	      if (nios2_debug)
1603 		fprintf_unfiltered
1604 		  (gdb_stdlog,
1605 		   "<noreturn ADJUST %s, r31@r%d+?>, r%d@r%d+?> }\n",
1606 		   paddress (gdbarch, cache->reg_value[base_reg].offset),
1607 		   cache->reg_saved[NIOS2_RA_REGNUM].basereg,
1608 		   cache->return_regnum,
1609 		   cache->reg_saved[cache->return_regnum].basereg);
1610 	      return 0;
1611 	    }
1612 	}
1613     }
1614 
1615   /* Get the value of whichever register we are using for the
1616      base.  */
1617   cache->base = get_frame_register_unsigned (this_frame, base_reg);
1618 
1619   /* What was the value of SP at the start of this function (or just
1620      after the stack switch).  */
1621   frame_high = cache->base - cache->reg_value[base_reg].offset;
1622 
1623   /* Adjust all the saved registers such that they contain addresses
1624      instead of offsets.  */
1625   for (i = 0; i < NIOS2_NUM_REGS; i++)
1626     if (cache->reg_saved[i].basereg == NIOS2_SP_REGNUM)
1627       {
1628 	cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1629 	cache->reg_saved[i].addr += frame_high;
1630       }
1631 
1632   for (i = 0; i < NIOS2_NUM_REGS; i++)
1633     if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1634       {
1635 	CORE_ADDR gp = get_frame_register_unsigned (this_frame,
1636 						    NIOS2_GP_REGNUM);
1637 
1638 	for ( ; i < NIOS2_NUM_REGS; i++)
1639 	  if (cache->reg_saved[i].basereg == NIOS2_GP_REGNUM)
1640 	    {
1641 	      cache->reg_saved[i].basereg = NIOS2_Z_REGNUM;
1642 	      cache->reg_saved[i].addr += gp;
1643 	    }
1644       }
1645 
1646   /* Work out what the value of SP was on the first instruction of
1647      this function.  If we didn't switch stacks then this can be
1648      trivially computed from the base address.  */
1649   if (cache->reg_saved[NIOS2_SP_REGNUM].basereg == NIOS2_Z_REGNUM)
1650     cache->cfa
1651       = read_memory_unsigned_integer (cache->reg_saved[NIOS2_SP_REGNUM].addr,
1652 				      4, byte_order);
1653   else
1654     cache->cfa = frame_high;
1655 
1656   /* Exception handlers restore ESTATUS into STATUS.  */
1657   if (exception_handler)
1658     {
1659       cache->reg_saved[NIOS2_STATUS_REGNUM]
1660 	= cache->reg_saved[NIOS2_ESTATUS_REGNUM];
1661       cache->reg_saved[NIOS2_ESTATUS_REGNUM].basereg = -1;
1662     }
1663 
1664   if (nios2_debug)
1665     fprintf_unfiltered (gdb_stdlog, "cfa=%s }\n",
1666 			paddress (gdbarch, cache->cfa));
1667 
1668   return prologue_end;
1669 }
1670 
1671 /* Implement the skip_prologue gdbarch hook.  */
1672 
1673 static CORE_ADDR
1674 nios2_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
1675 {
1676   CORE_ADDR func_addr;
1677 
1678   struct nios2_unwind_cache cache;
1679 
1680   /* See if we can determine the end of the prologue via the symbol
1681      table.  If so, then return either PC, or the PC after the
1682      prologue, whichever is greater.  */
1683   if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
1684     {
1685       CORE_ADDR post_prologue_pc
1686         = skip_prologue_using_sal (gdbarch, func_addr);
1687 
1688       if (post_prologue_pc != 0)
1689         return std::max (start_pc, post_prologue_pc);
1690     }
1691 
1692   /* Prologue analysis does the rest....  */
1693   nios2_init_cache (&cache, start_pc);
1694   return nios2_analyze_prologue (gdbarch, start_pc, start_pc, &cache, NULL);
1695 }
1696 
1697 /* Implement the breakpoint_kind_from_pc gdbarch method.  */
1698 
1699 static int
1700 nios2_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
1701 {
1702   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1703 
1704   if (mach == bfd_mach_nios2r2)
1705     {
1706       unsigned int insn;
1707       const struct nios2_opcode *op
1708 	= nios2_fetch_insn (gdbarch, *pcptr, &insn);
1709 
1710       if (op && op->size == NIOS2_CDX_OPCODE_SIZE)
1711 	return NIOS2_CDX_OPCODE_SIZE;
1712       else
1713 	return NIOS2_OPCODE_SIZE;
1714     }
1715   else
1716     return NIOS2_OPCODE_SIZE;
1717 }
1718 
1719 /* Implement the sw_breakpoint_from_kind gdbarch method.  */
1720 
1721 static const gdb_byte *
1722 nios2_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
1723 {
1724 /* The Nios II ABI for Linux says: "Userspace programs should not use
1725    the break instruction and userspace debuggers should not insert
1726    one." and "Userspace breakpoints are accomplished using the trap
1727    instruction with immediate operand 31 (all ones)."
1728 
1729    So, we use "trap 31" consistently as the breakpoint on bare-metal
1730    as well as Linux targets.  */
1731 
1732   /* R2 trap encoding:
1733      ((0x2d << 26) | (0x1f << 21) | (0x1d << 16) | (0x20 << 0))
1734      0xb7fd0020
1735      CDX trap.n encoding:
1736      ((0xd << 12) | (0x1f << 6) | (0x9 << 0))
1737      0xd7c9
1738      Note that code is always little-endian on R2.  */
1739   *size = kind;
1740 
1741   if (kind == NIOS2_CDX_OPCODE_SIZE)
1742     {
1743       static const gdb_byte cdx_breakpoint_le[] = {0xc9, 0xd7};
1744 
1745       return cdx_breakpoint_le;
1746     }
1747   else
1748     {
1749       unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
1750 
1751       if (mach == bfd_mach_nios2r2)
1752 	{
1753 	  static const gdb_byte r2_breakpoint_le[] = {0x20, 0x00, 0xfd, 0xb7};
1754 
1755 	  return r2_breakpoint_le;
1756 	}
1757       else
1758 	{
1759 	  enum bfd_endian byte_order_for_code
1760 	    = gdbarch_byte_order_for_code (gdbarch);
1761 	  /* R1 trap encoding:
1762 	     ((0x1d << 17) | (0x2d << 11) | (0x1f << 6) | (0x3a << 0))
1763 	     0x003b6ffa */
1764 	  static const gdb_byte r1_breakpoint_le[] = {0xfa, 0x6f, 0x3b, 0x0};
1765 	  static const gdb_byte r1_breakpoint_be[] = {0x0, 0x3b, 0x6f, 0xfa};
1766 
1767 	  if (byte_order_for_code == BFD_ENDIAN_BIG)
1768 	    return r1_breakpoint_be;
1769 	  else
1770 	    return r1_breakpoint_le;
1771 	}
1772     }
1773 }
1774 
1775 /* Implement the print_insn gdbarch method.  */
1776 
1777 static int
1778 nios2_print_insn (bfd_vma memaddr, disassemble_info *info)
1779 {
1780   if (info->endian == BFD_ENDIAN_BIG)
1781     return print_insn_big_nios2 (memaddr, info);
1782   else
1783     return print_insn_little_nios2 (memaddr, info);
1784 }
1785 
1786 
1787 /* Implement the frame_align gdbarch method.  */
1788 
1789 static CORE_ADDR
1790 nios2_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1791 {
1792   return align_down (addr, 4);
1793 }
1794 
1795 
1796 /* Implement the return_value gdbarch method.  */
1797 
1798 static enum return_value_convention
1799 nios2_return_value (struct gdbarch *gdbarch, struct value *function,
1800 		    struct type *type, struct regcache *regcache,
1801 		    gdb_byte *readbuf, const gdb_byte *writebuf)
1802 {
1803   if (TYPE_LENGTH (type) > 8)
1804     return RETURN_VALUE_STRUCT_CONVENTION;
1805 
1806   if (readbuf)
1807     nios2_extract_return_value (gdbarch, type, regcache, readbuf);
1808   if (writebuf)
1809     nios2_store_return_value (gdbarch, type, regcache, writebuf);
1810 
1811   return RETURN_VALUE_REGISTER_CONVENTION;
1812 }
1813 
1814 /* Implement the dummy_id gdbarch method.  */
1815 
1816 static struct frame_id
1817 nios2_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1818 {
1819   return frame_id_build
1820     (get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM),
1821      get_frame_pc (this_frame));
1822 }
1823 
1824 /* Implement the push_dummy_call gdbarch method.  */
1825 
1826 static CORE_ADDR
1827 nios2_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1828                        struct regcache *regcache, CORE_ADDR bp_addr,
1829                        int nargs, struct value **args, CORE_ADDR sp,
1830                        int struct_return, CORE_ADDR struct_addr)
1831 {
1832   int argreg;
1833   int float_argreg;
1834   int argnum;
1835   int len = 0;
1836   int stack_offset = 0;
1837   CORE_ADDR func_addr = find_function_addr (function, NULL);
1838   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1839 
1840   /* Set the return address register to point to the entry point of
1841      the program, where a breakpoint lies in wait.  */
1842   regcache_cooked_write_signed (regcache, NIOS2_RA_REGNUM, bp_addr);
1843 
1844   /* Now make space on the stack for the args.  */
1845   for (argnum = 0; argnum < nargs; argnum++)
1846     len += align_up (TYPE_LENGTH (value_type (args[argnum])), 4);
1847   sp -= len;
1848 
1849   /* Initialize the register pointer.  */
1850   argreg = NIOS2_FIRST_ARGREG;
1851 
1852   /* The struct_return pointer occupies the first parameter-passing
1853      register.  */
1854   if (struct_return)
1855     regcache_cooked_write_unsigned (regcache, argreg++, struct_addr);
1856 
1857   /* Now load as many as possible of the first arguments into
1858      registers, and push the rest onto the stack.  Loop through args
1859      from first to last.  */
1860   for (argnum = 0; argnum < nargs; argnum++)
1861     {
1862       const gdb_byte *val;
1863       struct value *arg = args[argnum];
1864       struct type *arg_type = check_typedef (value_type (arg));
1865       int len = TYPE_LENGTH (arg_type);
1866 
1867       val = value_contents (arg);
1868 
1869       /* Copy the argument to general registers or the stack in
1870          register-sized pieces.  Large arguments are split between
1871          registers and stack.  */
1872       while (len > 0)
1873         {
1874 	  int partial_len = (len < 4 ? len : 4);
1875 
1876 	  if (argreg <= NIOS2_LAST_ARGREG)
1877 	    {
1878 	      /* The argument is being passed in a register.  */
1879 	      CORE_ADDR regval = extract_unsigned_integer (val, partial_len,
1880 							   byte_order);
1881 
1882 	      regcache_cooked_write_unsigned (regcache, argreg, regval);
1883 	      argreg++;
1884 	    }
1885 	  else
1886 	    {
1887 	      /* The argument is being passed on the stack.  */
1888 	      CORE_ADDR addr = sp + stack_offset;
1889 
1890 	      write_memory (addr, val, partial_len);
1891 	      stack_offset += align_up (partial_len, 4);
1892 	    }
1893 
1894 	  len -= partial_len;
1895 	  val += partial_len;
1896 	}
1897     }
1898 
1899   regcache_cooked_write_signed (regcache, NIOS2_SP_REGNUM, sp);
1900 
1901   /* Return adjusted stack pointer.  */
1902   return sp;
1903 }
1904 
1905 /* Implement the unwind_pc gdbarch method.  */
1906 
1907 static CORE_ADDR
1908 nios2_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1909 {
1910   gdb_byte buf[4];
1911 
1912   frame_unwind_register (next_frame, NIOS2_PC_REGNUM, buf);
1913   return extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
1914 }
1915 
1916 /* Implement the unwind_sp gdbarch method.  */
1917 
1918 static CORE_ADDR
1919 nios2_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1920 {
1921   return frame_unwind_register_unsigned (this_frame, NIOS2_SP_REGNUM);
1922 }
1923 
1924 /* Use prologue analysis to fill in the register cache
1925    *THIS_PROLOGUE_CACHE for THIS_FRAME.  This function initializes
1926    *THIS_PROLOGUE_CACHE first.  */
1927 
1928 static struct nios2_unwind_cache *
1929 nios2_frame_unwind_cache (struct frame_info *this_frame,
1930 			  void **this_prologue_cache)
1931 {
1932   struct gdbarch *gdbarch = get_frame_arch (this_frame);
1933   CORE_ADDR current_pc;
1934   struct nios2_unwind_cache *cache;
1935 
1936   if (*this_prologue_cache)
1937     return (struct nios2_unwind_cache *) *this_prologue_cache;
1938 
1939   cache = FRAME_OBSTACK_ZALLOC (struct nios2_unwind_cache);
1940   *this_prologue_cache = cache;
1941 
1942   /* Zero all fields.  */
1943   nios2_init_cache (cache, get_frame_func (this_frame));
1944 
1945   /* Prologue analysis does the rest...  */
1946   current_pc = get_frame_pc (this_frame);
1947   if (cache->pc != 0)
1948     nios2_analyze_prologue (gdbarch, cache->pc, current_pc, cache, this_frame);
1949 
1950   return cache;
1951 }
1952 
1953 /* Implement the this_id function for the normal unwinder.  */
1954 
1955 static void
1956 nios2_frame_this_id (struct frame_info *this_frame, void **this_cache,
1957 		     struct frame_id *this_id)
1958 {
1959   struct nios2_unwind_cache *cache =
1960     nios2_frame_unwind_cache (this_frame, this_cache);
1961 
1962   /* This marks the outermost frame.  */
1963   if (cache->base == 0)
1964     return;
1965 
1966   *this_id = frame_id_build (cache->cfa, cache->pc);
1967 }
1968 
1969 /* Implement the prev_register function for the normal unwinder.  */
1970 
1971 static struct value *
1972 nios2_frame_prev_register (struct frame_info *this_frame, void **this_cache,
1973 			   int regnum)
1974 {
1975   struct nios2_unwind_cache *cache =
1976     nios2_frame_unwind_cache (this_frame, this_cache);
1977 
1978   gdb_assert (regnum >= 0 && regnum < NIOS2_NUM_REGS);
1979 
1980   /* The PC of the previous frame is stored in the RA register of
1981      the current frame.  Frob regnum so that we pull the value from
1982      the correct place.  */
1983   if (regnum == NIOS2_PC_REGNUM)
1984     regnum = cache->return_regnum;
1985 
1986   if (regnum == NIOS2_SP_REGNUM && cache->cfa)
1987     return frame_unwind_got_constant (this_frame, regnum, cache->cfa);
1988 
1989   /* If we've worked out where a register is stored then load it from
1990      there.  */
1991   if (cache->reg_saved[regnum].basereg == NIOS2_Z_REGNUM)
1992     return frame_unwind_got_memory (this_frame, regnum,
1993 				    cache->reg_saved[regnum].addr);
1994 
1995   return frame_unwind_got_register (this_frame, regnum, regnum);
1996 }
1997 
1998 /* Implement the this_base, this_locals, and this_args hooks
1999    for the normal unwinder.  */
2000 
2001 static CORE_ADDR
2002 nios2_frame_base_address (struct frame_info *this_frame, void **this_cache)
2003 {
2004   struct nios2_unwind_cache *info
2005     = nios2_frame_unwind_cache (this_frame, this_cache);
2006 
2007   return info->base;
2008 }
2009 
2010 /* Data structures for the normal prologue-analysis-based
2011    unwinder.  */
2012 
2013 static const struct frame_unwind nios2_frame_unwind =
2014 {
2015   NORMAL_FRAME,
2016   default_frame_unwind_stop_reason,
2017   nios2_frame_this_id,
2018   nios2_frame_prev_register,
2019   NULL,
2020   default_frame_sniffer
2021 };
2022 
2023 static const struct frame_base nios2_frame_base =
2024 {
2025   &nios2_frame_unwind,
2026   nios2_frame_base_address,
2027   nios2_frame_base_address,
2028   nios2_frame_base_address
2029 };
2030 
2031 /* Fill in the register cache *THIS_CACHE for THIS_FRAME for use
2032    in the stub unwinder.  */
2033 
2034 static struct trad_frame_cache *
2035 nios2_stub_frame_cache (struct frame_info *this_frame, void **this_cache)
2036 {
2037   CORE_ADDR pc;
2038   CORE_ADDR start_addr;
2039   CORE_ADDR stack_addr;
2040   struct trad_frame_cache *this_trad_cache;
2041   struct gdbarch *gdbarch = get_frame_arch (this_frame);
2042 
2043   if (*this_cache != NULL)
2044     return (struct trad_frame_cache *) *this_cache;
2045   this_trad_cache = trad_frame_cache_zalloc (this_frame);
2046   *this_cache = this_trad_cache;
2047 
2048   /* The return address is in the link register.  */
2049   trad_frame_set_reg_realreg (this_trad_cache,
2050                               gdbarch_pc_regnum (gdbarch),
2051                               NIOS2_RA_REGNUM);
2052 
2053   /* Frame ID, since it's a frameless / stackless function, no stack
2054      space is allocated and SP on entry is the current SP.  */
2055   pc = get_frame_pc (this_frame);
2056   find_pc_partial_function (pc, NULL, &start_addr, NULL);
2057   stack_addr = get_frame_register_unsigned (this_frame, NIOS2_SP_REGNUM);
2058   trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2059   /* Assume that the frame's base is the same as the stack pointer.  */
2060   trad_frame_set_this_base (this_trad_cache, stack_addr);
2061 
2062   return this_trad_cache;
2063 }
2064 
2065 /* Implement the this_id function for the stub unwinder.  */
2066 
2067 static void
2068 nios2_stub_frame_this_id (struct frame_info *this_frame, void **this_cache,
2069                           struct frame_id *this_id)
2070 {
2071   struct trad_frame_cache *this_trad_cache
2072     = nios2_stub_frame_cache (this_frame, this_cache);
2073 
2074   trad_frame_get_id (this_trad_cache, this_id);
2075 }
2076 
2077 /* Implement the prev_register function for the stub unwinder.  */
2078 
2079 static struct value *
2080 nios2_stub_frame_prev_register (struct frame_info *this_frame,
2081 			        void **this_cache, int regnum)
2082 {
2083   struct trad_frame_cache *this_trad_cache
2084     = nios2_stub_frame_cache (this_frame, this_cache);
2085 
2086   return trad_frame_get_register (this_trad_cache, this_frame, regnum);
2087 }
2088 
2089 /* Implement the sniffer function for the stub unwinder.
2090    This unwinder is used for cases where the normal
2091    prologue-analysis-based unwinder can't work,
2092    such as PLT stubs.  */
2093 
2094 static int
2095 nios2_stub_frame_sniffer (const struct frame_unwind *self,
2096 			  struct frame_info *this_frame, void **cache)
2097 {
2098   gdb_byte dummy[4];
2099   CORE_ADDR pc = get_frame_address_in_block (this_frame);
2100 
2101   /* Use the stub unwinder for unreadable code.  */
2102   if (target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
2103     return 1;
2104 
2105   if (in_plt_section (pc))
2106     return 1;
2107 
2108   return 0;
2109 }
2110 
2111 /* Define the data structures for the stub unwinder.  */
2112 
2113 static const struct frame_unwind nios2_stub_frame_unwind =
2114 {
2115   NORMAL_FRAME,
2116   default_frame_unwind_stop_reason,
2117   nios2_stub_frame_this_id,
2118   nios2_stub_frame_prev_register,
2119   NULL,
2120   nios2_stub_frame_sniffer
2121 };
2122 
2123 
2124 
2125 /* Determine where to set a single step breakpoint while considering
2126    branch prediction.  */
2127 
2128 static CORE_ADDR
2129 nios2_get_next_pc (struct regcache *regcache, CORE_ADDR pc)
2130 {
2131   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2132   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2133   unsigned long mach = gdbarch_bfd_arch_info (gdbarch)->mach;
2134   unsigned int insn;
2135   const struct nios2_opcode *op = nios2_fetch_insn (gdbarch, pc, &insn);
2136   int ra;
2137   int rb;
2138   int imm;
2139   unsigned int uimm;
2140   int wb, id, ret;
2141   enum branch_condition cond;
2142 
2143   /* Do something stupid if we can't disassemble the insn at pc.  */
2144   if (op == NULL)
2145     return pc + NIOS2_OPCODE_SIZE;
2146 
2147   if (nios2_match_branch (insn, op, mach, &ra, &rb, &imm, &cond))
2148     {
2149       int ras = regcache_raw_get_signed (regcache, ra);
2150       int rbs = regcache_raw_get_signed (regcache, rb);
2151       unsigned int rau = regcache_raw_get_unsigned (regcache, ra);
2152       unsigned int rbu = regcache_raw_get_unsigned (regcache, rb);
2153 
2154       pc += op->size;
2155       switch (cond)
2156 	{
2157 	case branch_none:
2158 	  pc += imm;
2159 	  break;
2160 	case branch_eq:
2161 	  if (ras == rbs)
2162 	    pc += imm;
2163 	  break;
2164 	case branch_ne:
2165 	  if (ras != rbs)
2166 	    pc += imm;
2167 	  break;
2168 	case branch_ge:
2169 	  if (ras >= rbs)
2170 	    pc += imm;
2171 	  break;
2172 	case branch_geu:
2173 	  if (rau >= rbu)
2174 	    pc += imm;
2175 	  break;
2176 	case branch_lt:
2177 	  if (ras < rbs)
2178 	    pc += imm;
2179 	  break;
2180 	case branch_ltu:
2181 	  if (rau < rbu)
2182 	    pc += imm;
2183 	  break;
2184 	default:
2185 	  break;
2186 	}
2187     }
2188 
2189   else if (nios2_match_jmpi (insn, op, mach, &uimm)
2190 	   || nios2_match_calli (insn, op, mach, &uimm))
2191     pc = (pc & 0xf0000000) | uimm;
2192 
2193   else if (nios2_match_jmpr (insn, op, mach, &ra)
2194 	   || nios2_match_callr (insn, op, mach, &ra))
2195     pc = regcache_raw_get_unsigned (regcache, ra);
2196 
2197   else if (nios2_match_ldwm (insn, op, mach, &uimm, &ra, &imm, &wb, &id, &ret)
2198 	   && ret)
2199     {
2200       /* If ra is in the reglist, we have to use the value saved in the
2201 	 stack frame rather than the current value.  */
2202       if (uimm & (1 << NIOS2_RA_REGNUM))
2203 	pc = nios2_unwind_pc (gdbarch, get_current_frame ());
2204       else
2205 	pc = regcache_raw_get_unsigned (regcache, NIOS2_RA_REGNUM);
2206     }
2207 
2208   else if (nios2_match_trap (insn, op, mach, &uimm) && uimm == 0)
2209     {
2210       if (tdep->syscall_next_pc != NULL)
2211 	return tdep->syscall_next_pc (get_current_frame (), op);
2212     }
2213 
2214   else
2215     pc += op->size;
2216 
2217   return pc;
2218 }
2219 
2220 /* Implement the software_single_step gdbarch method.  */
2221 
2222 static VEC (CORE_ADDR) *
2223 nios2_software_single_step (struct regcache *regcache)
2224 {
2225   struct gdbarch *gdbarch = get_regcache_arch (regcache);
2226   CORE_ADDR next_pc = nios2_get_next_pc (regcache, regcache_read_pc (regcache));
2227   VEC (CORE_ADDR) *next_pcs = NULL;
2228 
2229   VEC_safe_push (CORE_ADDR, next_pcs, next_pc);
2230 
2231   return next_pcs;
2232 }
2233 
2234 /* Implement the get_longjump_target gdbarch method.  */
2235 
2236 static int
2237 nios2_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2238 {
2239   struct gdbarch *gdbarch = get_frame_arch (frame);
2240   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2241   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2242   CORE_ADDR jb_addr = get_frame_register_unsigned (frame, NIOS2_R4_REGNUM);
2243   gdb_byte buf[4];
2244 
2245   if (target_read_memory (jb_addr + (tdep->jb_pc * 4), buf, 4))
2246     return 0;
2247 
2248   *pc = extract_unsigned_integer (buf, 4, byte_order);
2249   return 1;
2250 }
2251 
2252 /* Initialize the Nios II gdbarch.  */
2253 
2254 static struct gdbarch *
2255 nios2_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2256 {
2257   struct gdbarch *gdbarch;
2258   struct gdbarch_tdep *tdep;
2259   int i;
2260   struct tdesc_arch_data *tdesc_data = NULL;
2261   const struct target_desc *tdesc = info.target_desc;
2262 
2263   if (!tdesc_has_registers (tdesc))
2264     /* Pick a default target description.  */
2265     tdesc = tdesc_nios2;
2266 
2267   /* Check any target description for validity.  */
2268   if (tdesc_has_registers (tdesc))
2269     {
2270       const struct tdesc_feature *feature;
2271       int valid_p;
2272 
2273       feature = tdesc_find_feature (tdesc, "org.gnu.gdb.nios2.cpu");
2274       if (feature == NULL)
2275 	return NULL;
2276 
2277       tdesc_data = tdesc_data_alloc ();
2278 
2279       valid_p = 1;
2280 
2281       for (i = 0; i < NIOS2_NUM_REGS; i++)
2282 	valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
2283 					    nios2_reg_names[i]);
2284 
2285       if (!valid_p)
2286 	{
2287 	  tdesc_data_cleanup (tdesc_data);
2288 	  return NULL;
2289 	}
2290     }
2291 
2292   /* Find a candidate among the list of pre-declared architectures.  */
2293   arches = gdbarch_list_lookup_by_info (arches, &info);
2294   if (arches != NULL)
2295     return arches->gdbarch;
2296 
2297   /* None found, create a new architecture from the information
2298      provided.  */
2299   tdep = XCNEW (struct gdbarch_tdep);
2300   gdbarch = gdbarch_alloc (&info, tdep);
2301 
2302   /* longjmp support not enabled by default.  */
2303   tdep->jb_pc = -1;
2304 
2305   /* Data type sizes.  */
2306   set_gdbarch_ptr_bit (gdbarch, 32);
2307   set_gdbarch_addr_bit (gdbarch, 32);
2308   set_gdbarch_short_bit (gdbarch, 16);
2309   set_gdbarch_int_bit (gdbarch, 32);
2310   set_gdbarch_long_bit (gdbarch, 32);
2311   set_gdbarch_long_long_bit (gdbarch, 64);
2312   set_gdbarch_float_bit (gdbarch, 32);
2313   set_gdbarch_double_bit (gdbarch, 64);
2314 
2315   set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
2316   set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
2317 
2318   /* The register set.  */
2319   set_gdbarch_num_regs (gdbarch, NIOS2_NUM_REGS);
2320   set_gdbarch_sp_regnum (gdbarch, NIOS2_SP_REGNUM);
2321   set_gdbarch_pc_regnum (gdbarch, NIOS2_PC_REGNUM);	/* Pseudo register PC */
2322 
2323   set_gdbarch_register_name (gdbarch, nios2_register_name);
2324   set_gdbarch_register_type (gdbarch, nios2_register_type);
2325 
2326   /* Provide register mappings for stabs and dwarf2.  */
2327   set_gdbarch_stab_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2328   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, nios2_dwarf_reg_to_regnum);
2329 
2330   set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2331 
2332   /* Call dummy code.  */
2333   set_gdbarch_frame_align (gdbarch, nios2_frame_align);
2334 
2335   set_gdbarch_return_value (gdbarch, nios2_return_value);
2336 
2337   set_gdbarch_skip_prologue (gdbarch, nios2_skip_prologue);
2338   set_gdbarch_stack_frame_destroyed_p (gdbarch, nios2_stack_frame_destroyed_p);
2339   set_gdbarch_breakpoint_kind_from_pc (gdbarch, nios2_breakpoint_kind_from_pc);
2340   set_gdbarch_sw_breakpoint_from_kind (gdbarch, nios2_sw_breakpoint_from_kind);
2341 
2342   set_gdbarch_dummy_id (gdbarch, nios2_dummy_id);
2343   set_gdbarch_unwind_pc (gdbarch, nios2_unwind_pc);
2344   set_gdbarch_unwind_sp (gdbarch, nios2_unwind_sp);
2345 
2346   /* The dwarf2 unwinder will normally produce the best results if
2347      the debug information is available, so register it first.  */
2348   dwarf2_append_unwinders (gdbarch);
2349   frame_unwind_append_unwinder (gdbarch, &nios2_stub_frame_unwind);
2350   frame_unwind_append_unwinder (gdbarch, &nios2_frame_unwind);
2351 
2352   /* Single stepping.  */
2353   set_gdbarch_software_single_step (gdbarch, nios2_software_single_step);
2354 
2355   /* Hook in ABI-specific overrides, if they have been registered.  */
2356   gdbarch_init_osabi (info, gdbarch);
2357 
2358   if (tdep->jb_pc >= 0)
2359     set_gdbarch_get_longjmp_target (gdbarch, nios2_get_longjmp_target);
2360 
2361   frame_base_set_default (gdbarch, &nios2_frame_base);
2362 
2363   set_gdbarch_print_insn (gdbarch, nios2_print_insn);
2364 
2365   /* Enable inferior call support.  */
2366   set_gdbarch_push_dummy_call (gdbarch, nios2_push_dummy_call);
2367 
2368   if (tdesc_data)
2369     tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2370 
2371   return gdbarch;
2372 }
2373 
2374 extern initialize_file_ftype _initialize_nios2_tdep; /* -Wmissing-prototypes */
2375 
2376 void
2377 _initialize_nios2_tdep (void)
2378 {
2379   gdbarch_register (bfd_arch_nios2, nios2_gdbarch_init, NULL);
2380   initialize_tdesc_nios2 ();
2381 
2382   /* Allow debugging this file's internals.  */
2383   add_setshow_boolean_cmd ("nios2", class_maintenance, &nios2_debug,
2384 			   _("Set Nios II debugging."),
2385 			   _("Show Nios II debugging."),
2386 			   _("When on, Nios II specific debugging is enabled."),
2387 			   NULL,
2388 			   NULL,
2389 			   &setdebuglist, &showdebuglist);
2390 }
2391