1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2015 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "gdb_wait.h" 27 #ifdef HAVE_TKILL_SYSCALL 28 #include <unistd.h> 29 #include <sys/syscall.h> 30 #endif 31 #include <sys/ptrace.h> 32 #include "linux-nat.h" 33 #include "nat/linux-ptrace.h" 34 #include "nat/linux-procfs.h" 35 #include "nat/linux-personality.h" 36 #include "linux-fork.h" 37 #include "gdbthread.h" 38 #include "gdbcmd.h" 39 #include "regcache.h" 40 #include "regset.h" 41 #include "inf-child.h" 42 #include "inf-ptrace.h" 43 #include "auxv.h" 44 #include <sys/procfs.h> /* for elf_gregset etc. */ 45 #include "elf-bfd.h" /* for elfcore_write_* */ 46 #include "gregset.h" /* for gregset */ 47 #include "gdbcore.h" /* for get_exec_file */ 48 #include <ctype.h> /* for isdigit */ 49 #include <sys/stat.h> /* for struct stat */ 50 #include <fcntl.h> /* for O_RDONLY */ 51 #include "inf-loop.h" 52 #include "event-loop.h" 53 #include "event-top.h" 54 #include <pwd.h> 55 #include <sys/types.h> 56 #include <dirent.h> 57 #include "xml-support.h" 58 #include <sys/vfs.h> 59 #include "solib.h" 60 #include "nat/linux-osdata.h" 61 #include "linux-tdep.h" 62 #include "symfile.h" 63 #include "agent.h" 64 #include "tracepoint.h" 65 #include "buffer.h" 66 #include "target-descriptions.h" 67 #include "filestuff.h" 68 #include "objfiles.h" 69 #include "nat/linux-namespaces.h" 70 #include "fileio.h" 71 72 #ifndef SPUFS_MAGIC 73 #define SPUFS_MAGIC 0x23c9b64e 74 #endif 75 76 /* This comment documents high-level logic of this file. 77 78 Waiting for events in sync mode 79 =============================== 80 81 When waiting for an event in a specific thread, we just use waitpid, passing 82 the specific pid, and not passing WNOHANG. 83 84 When waiting for an event in all threads, waitpid is not quite good. Prior to 85 version 2.4, Linux can either wait for event in main thread, or in secondary 86 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might 87 miss an event. The solution is to use non-blocking waitpid, together with 88 sigsuspend. First, we use non-blocking waitpid to get an event in the main 89 process, if any. Second, we use non-blocking waitpid with the __WCLONED 90 flag to check for events in cloned processes. If nothing is found, we use 91 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something 92 happened to a child process -- and SIGCHLD will be delivered both for events 93 in main debugged process and in cloned processes. As soon as we know there's 94 an event, we get back to calling nonblocking waitpid with and without 95 __WCLONED. 96 97 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls, 98 so that we don't miss a signal. If SIGCHLD arrives in between, when it's 99 blocked, the signal becomes pending and sigsuspend immediately 100 notices it and returns. 101 102 Waiting for events in async mode 103 ================================ 104 105 In async mode, GDB should always be ready to handle both user input 106 and target events, so neither blocking waitpid nor sigsuspend are 107 viable options. Instead, we should asynchronously notify the GDB main 108 event loop whenever there's an unprocessed event from the target. We 109 detect asynchronous target events by handling SIGCHLD signals. To 110 notify the event loop about target events, the self-pipe trick is used 111 --- a pipe is registered as waitable event source in the event loop, 112 the event loop select/poll's on the read end of this pipe (as well on 113 other event sources, e.g., stdin), and the SIGCHLD handler writes a 114 byte to this pipe. This is more portable than relying on 115 pselect/ppoll, since on kernels that lack those syscalls, libc 116 emulates them with select/poll+sigprocmask, and that is racy 117 (a.k.a. plain broken). 118 119 Obviously, if we fail to notify the event loop if there's a target 120 event, it's bad. OTOH, if we notify the event loop when there's no 121 event from the target, linux_nat_wait will detect that there's no real 122 event to report, and return event of type TARGET_WAITKIND_IGNORE. 123 This is mostly harmless, but it will waste time and is better avoided. 124 125 The main design point is that every time GDB is outside linux-nat.c, 126 we have a SIGCHLD handler installed that is called when something 127 happens to the target and notifies the GDB event loop. Whenever GDB 128 core decides to handle the event, and calls into linux-nat.c, we 129 process things as in sync mode, except that the we never block in 130 sigsuspend. 131 132 While processing an event, we may end up momentarily blocked in 133 waitpid calls. Those waitpid calls, while blocking, are guarantied to 134 return quickly. E.g., in all-stop mode, before reporting to the core 135 that an LWP hit a breakpoint, all LWPs are stopped by sending them 136 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 137 Note that this is different from blocking indefinitely waiting for the 138 next event --- here, we're already handling an event. 139 140 Use of signals 141 ============== 142 143 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 144 signal is not entirely significant; we just need for a signal to be delivered, 145 so that we can intercept it. SIGSTOP's advantage is that it can not be 146 blocked. A disadvantage is that it is not a real-time signal, so it can only 147 be queued once; we do not keep track of other sources of SIGSTOP. 148 149 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 150 use them, because they have special behavior when the signal is generated - 151 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 152 kills the entire thread group. 153 154 A delivered SIGSTOP would stop the entire thread group, not just the thread we 155 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 156 cancel it (by PTRACE_CONT without passing SIGSTOP). 157 158 We could use a real-time signal instead. This would solve those problems; we 159 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 160 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 161 generates it, and there are races with trying to find a signal that is not 162 blocked. */ 163 164 #ifndef O_LARGEFILE 165 #define O_LARGEFILE 0 166 #endif 167 168 /* Does the current host support PTRACE_GETREGSET? */ 169 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 170 171 /* The single-threaded native GNU/Linux target_ops. We save a pointer for 172 the use of the multi-threaded target. */ 173 static struct target_ops *linux_ops; 174 static struct target_ops linux_ops_saved; 175 176 /* The method to call, if any, when a new thread is attached. */ 177 static void (*linux_nat_new_thread) (struct lwp_info *); 178 179 /* The method to call, if any, when a new fork is attached. */ 180 static linux_nat_new_fork_ftype *linux_nat_new_fork; 181 182 /* The method to call, if any, when a process is no longer 183 attached. */ 184 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook; 185 186 /* Hook to call prior to resuming a thread. */ 187 static void (*linux_nat_prepare_to_resume) (struct lwp_info *); 188 189 /* The method to call, if any, when the siginfo object needs to be 190 converted between the layout returned by ptrace, and the layout in 191 the architecture of the inferior. */ 192 static int (*linux_nat_siginfo_fixup) (siginfo_t *, 193 gdb_byte *, 194 int); 195 196 /* The saved to_xfer_partial method, inherited from inf-ptrace.c. 197 Called by our to_xfer_partial. */ 198 static target_xfer_partial_ftype *super_xfer_partial; 199 200 /* The saved to_close method, inherited from inf-ptrace.c. 201 Called by our to_close. */ 202 static void (*super_close) (struct target_ops *); 203 204 static unsigned int debug_linux_nat; 205 static void 206 show_debug_linux_nat (struct ui_file *file, int from_tty, 207 struct cmd_list_element *c, const char *value) 208 { 209 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 210 value); 211 } 212 213 struct simple_pid_list 214 { 215 int pid; 216 int status; 217 struct simple_pid_list *next; 218 }; 219 struct simple_pid_list *stopped_pids; 220 221 /* Async mode support. */ 222 223 /* The read/write ends of the pipe registered as waitable file in the 224 event loop. */ 225 static int linux_nat_event_pipe[2] = { -1, -1 }; 226 227 /* True if we're currently in async mode. */ 228 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1) 229 230 /* Flush the event pipe. */ 231 232 static void 233 async_file_flush (void) 234 { 235 int ret; 236 char buf; 237 238 do 239 { 240 ret = read (linux_nat_event_pipe[0], &buf, 1); 241 } 242 while (ret >= 0 || (ret == -1 && errno == EINTR)); 243 } 244 245 /* Put something (anything, doesn't matter what, or how much) in event 246 pipe, so that the select/poll in the event-loop realizes we have 247 something to process. */ 248 249 static void 250 async_file_mark (void) 251 { 252 int ret; 253 254 /* It doesn't really matter what the pipe contains, as long we end 255 up with something in it. Might as well flush the previous 256 left-overs. */ 257 async_file_flush (); 258 259 do 260 { 261 ret = write (linux_nat_event_pipe[1], "+", 1); 262 } 263 while (ret == -1 && errno == EINTR); 264 265 /* Ignore EAGAIN. If the pipe is full, the event loop will already 266 be awakened anyway. */ 267 } 268 269 static int kill_lwp (int lwpid, int signo); 270 271 static int stop_callback (struct lwp_info *lp, void *data); 272 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 273 274 static void block_child_signals (sigset_t *prev_mask); 275 static void restore_child_signals_mask (sigset_t *prev_mask); 276 277 struct lwp_info; 278 static struct lwp_info *add_lwp (ptid_t ptid); 279 static void purge_lwp_list (int pid); 280 static void delete_lwp (ptid_t ptid); 281 static struct lwp_info *find_lwp_pid (ptid_t ptid); 282 283 static int lwp_status_pending_p (struct lwp_info *lp); 284 285 static int check_stopped_by_breakpoint (struct lwp_info *lp); 286 static int sigtrap_is_event (int status); 287 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event; 288 289 290 /* LWP accessors. */ 291 292 /* See nat/linux-nat.h. */ 293 294 ptid_t 295 ptid_of_lwp (struct lwp_info *lwp) 296 { 297 return lwp->ptid; 298 } 299 300 /* See nat/linux-nat.h. */ 301 302 void 303 lwp_set_arch_private_info (struct lwp_info *lwp, 304 struct arch_lwp_info *info) 305 { 306 lwp->arch_private = info; 307 } 308 309 /* See nat/linux-nat.h. */ 310 311 struct arch_lwp_info * 312 lwp_arch_private_info (struct lwp_info *lwp) 313 { 314 return lwp->arch_private; 315 } 316 317 /* See nat/linux-nat.h. */ 318 319 int 320 lwp_is_stopped (struct lwp_info *lwp) 321 { 322 return lwp->stopped; 323 } 324 325 /* See nat/linux-nat.h. */ 326 327 enum target_stop_reason 328 lwp_stop_reason (struct lwp_info *lwp) 329 { 330 return lwp->stop_reason; 331 } 332 333 334 /* Trivial list manipulation functions to keep track of a list of 335 new stopped processes. */ 336 static void 337 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 338 { 339 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list)); 340 341 new_pid->pid = pid; 342 new_pid->status = status; 343 new_pid->next = *listp; 344 *listp = new_pid; 345 } 346 347 static int 348 in_pid_list_p (struct simple_pid_list *list, int pid) 349 { 350 struct simple_pid_list *p; 351 352 for (p = list; p != NULL; p = p->next) 353 if (p->pid == pid) 354 return 1; 355 return 0; 356 } 357 358 static int 359 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 360 { 361 struct simple_pid_list **p; 362 363 for (p = listp; *p != NULL; p = &(*p)->next) 364 if ((*p)->pid == pid) 365 { 366 struct simple_pid_list *next = (*p)->next; 367 368 *statusp = (*p)->status; 369 xfree (*p); 370 *p = next; 371 return 1; 372 } 373 return 0; 374 } 375 376 /* Return the ptrace options that we want to try to enable. */ 377 378 static int 379 linux_nat_ptrace_options (int attached) 380 { 381 int options = 0; 382 383 if (!attached) 384 options |= PTRACE_O_EXITKILL; 385 386 options |= (PTRACE_O_TRACESYSGOOD 387 | PTRACE_O_TRACEVFORKDONE 388 | PTRACE_O_TRACEVFORK 389 | PTRACE_O_TRACEFORK 390 | PTRACE_O_TRACEEXEC); 391 392 return options; 393 } 394 395 /* Initialize ptrace warnings and check for supported ptrace 396 features given PID. 397 398 ATTACHED should be nonzero iff we attached to the inferior. */ 399 400 static void 401 linux_init_ptrace (pid_t pid, int attached) 402 { 403 int options = linux_nat_ptrace_options (attached); 404 405 linux_enable_event_reporting (pid, options); 406 linux_ptrace_init_warnings (); 407 } 408 409 static void 410 linux_child_post_attach (struct target_ops *self, int pid) 411 { 412 linux_init_ptrace (pid, 1); 413 } 414 415 static void 416 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid) 417 { 418 linux_init_ptrace (ptid_get_pid (ptid), 0); 419 } 420 421 /* Return the number of known LWPs in the tgid given by PID. */ 422 423 static int 424 num_lwps (int pid) 425 { 426 int count = 0; 427 struct lwp_info *lp; 428 429 for (lp = lwp_list; lp; lp = lp->next) 430 if (ptid_get_pid (lp->ptid) == pid) 431 count++; 432 433 return count; 434 } 435 436 /* Call delete_lwp with prototype compatible for make_cleanup. */ 437 438 static void 439 delete_lwp_cleanup (void *lp_voidp) 440 { 441 struct lwp_info *lp = lp_voidp; 442 443 delete_lwp (lp->ptid); 444 } 445 446 /* Target hook for follow_fork. On entry inferior_ptid must be the 447 ptid of the followed inferior. At return, inferior_ptid will be 448 unchanged. */ 449 450 static int 451 linux_child_follow_fork (struct target_ops *ops, int follow_child, 452 int detach_fork) 453 { 454 if (!follow_child) 455 { 456 struct lwp_info *child_lp = NULL; 457 int status = W_STOPCODE (0); 458 struct cleanup *old_chain; 459 int has_vforked; 460 ptid_t parent_ptid, child_ptid; 461 int parent_pid, child_pid; 462 463 has_vforked = (inferior_thread ()->pending_follow.kind 464 == TARGET_WAITKIND_VFORKED); 465 parent_ptid = inferior_ptid; 466 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 467 parent_pid = ptid_get_lwp (parent_ptid); 468 child_pid = ptid_get_lwp (child_ptid); 469 470 /* We're already attached to the parent, by default. */ 471 old_chain = save_inferior_ptid (); 472 inferior_ptid = child_ptid; 473 child_lp = add_lwp (inferior_ptid); 474 child_lp->stopped = 1; 475 child_lp->last_resume_kind = resume_stop; 476 477 /* Detach new forked process? */ 478 if (detach_fork) 479 { 480 make_cleanup (delete_lwp_cleanup, child_lp); 481 482 if (linux_nat_prepare_to_resume != NULL) 483 linux_nat_prepare_to_resume (child_lp); 484 485 /* When debugging an inferior in an architecture that supports 486 hardware single stepping on a kernel without commit 487 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 488 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 489 set if the parent process had them set. 490 To work around this, single step the child process 491 once before detaching to clear the flags. */ 492 493 if (!gdbarch_software_single_step_p (target_thread_architecture 494 (child_lp->ptid))) 495 { 496 linux_disable_event_reporting (child_pid); 497 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 498 perror_with_name (_("Couldn't do single step")); 499 if (my_waitpid (child_pid, &status, 0) < 0) 500 perror_with_name (_("Couldn't wait vfork process")); 501 } 502 503 if (WIFSTOPPED (status)) 504 { 505 int signo; 506 507 signo = WSTOPSIG (status); 508 if (signo != 0 509 && !signal_pass_state (gdb_signal_from_host (signo))) 510 signo = 0; 511 ptrace (PTRACE_DETACH, child_pid, 0, signo); 512 } 513 514 /* Resets value of inferior_ptid to parent ptid. */ 515 do_cleanups (old_chain); 516 } 517 else 518 { 519 /* Let the thread_db layer learn about this new process. */ 520 check_for_thread_db (); 521 } 522 523 do_cleanups (old_chain); 524 525 if (has_vforked) 526 { 527 struct lwp_info *parent_lp; 528 529 parent_lp = find_lwp_pid (parent_ptid); 530 gdb_assert (linux_supports_tracefork () >= 0); 531 532 if (linux_supports_tracevforkdone ()) 533 { 534 if (debug_linux_nat) 535 fprintf_unfiltered (gdb_stdlog, 536 "LCFF: waiting for VFORK_DONE on %d\n", 537 parent_pid); 538 parent_lp->stopped = 1; 539 540 /* We'll handle the VFORK_DONE event like any other 541 event, in target_wait. */ 542 } 543 else 544 { 545 /* We can't insert breakpoints until the child has 546 finished with the shared memory region. We need to 547 wait until that happens. Ideal would be to just 548 call: 549 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 550 - waitpid (parent_pid, &status, __WALL); 551 However, most architectures can't handle a syscall 552 being traced on the way out if it wasn't traced on 553 the way in. 554 555 We might also think to loop, continuing the child 556 until it exits or gets a SIGTRAP. One problem is 557 that the child might call ptrace with PTRACE_TRACEME. 558 559 There's no simple and reliable way to figure out when 560 the vforked child will be done with its copy of the 561 shared memory. We could step it out of the syscall, 562 two instructions, let it go, and then single-step the 563 parent once. When we have hardware single-step, this 564 would work; with software single-step it could still 565 be made to work but we'd have to be able to insert 566 single-step breakpoints in the child, and we'd have 567 to insert -just- the single-step breakpoint in the 568 parent. Very awkward. 569 570 In the end, the best we can do is to make sure it 571 runs for a little while. Hopefully it will be out of 572 range of any breakpoints we reinsert. Usually this 573 is only the single-step breakpoint at vfork's return 574 point. */ 575 576 if (debug_linux_nat) 577 fprintf_unfiltered (gdb_stdlog, 578 "LCFF: no VFORK_DONE " 579 "support, sleeping a bit\n"); 580 581 usleep (10000); 582 583 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 584 and leave it pending. The next linux_nat_resume call 585 will notice a pending event, and bypasses actually 586 resuming the inferior. */ 587 parent_lp->status = 0; 588 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 589 parent_lp->stopped = 1; 590 591 /* If we're in async mode, need to tell the event loop 592 there's something here to process. */ 593 if (target_is_async_p ()) 594 async_file_mark (); 595 } 596 } 597 } 598 else 599 { 600 struct lwp_info *child_lp; 601 602 child_lp = add_lwp (inferior_ptid); 603 child_lp->stopped = 1; 604 child_lp->last_resume_kind = resume_stop; 605 606 /* Let the thread_db layer learn about this new process. */ 607 check_for_thread_db (); 608 } 609 610 return 0; 611 } 612 613 614 static int 615 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid) 616 { 617 return !linux_supports_tracefork (); 618 } 619 620 static int 621 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid) 622 { 623 return 0; 624 } 625 626 static int 627 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid) 628 { 629 return !linux_supports_tracefork (); 630 } 631 632 static int 633 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid) 634 { 635 return 0; 636 } 637 638 static int 639 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid) 640 { 641 return !linux_supports_tracefork (); 642 } 643 644 static int 645 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid) 646 { 647 return 0; 648 } 649 650 static int 651 linux_child_set_syscall_catchpoint (struct target_ops *self, 652 int pid, int needed, int any_count, 653 int table_size, int *table) 654 { 655 if (!linux_supports_tracesysgood ()) 656 return 1; 657 658 /* On GNU/Linux, we ignore the arguments. It means that we only 659 enable the syscall catchpoints, but do not disable them. 660 661 Also, we do not use the `table' information because we do not 662 filter system calls here. We let GDB do the logic for us. */ 663 return 0; 664 } 665 666 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's 667 are processes sharing the same VM space. A multi-threaded process 668 is basically a group of such processes. However, such a grouping 669 is almost entirely a user-space issue; the kernel doesn't enforce 670 such a grouping at all (this might change in the future). In 671 general, we'll rely on the threads library (i.e. the GNU/Linux 672 Threads library) to provide such a grouping. 673 674 It is perfectly well possible to write a multi-threaded application 675 without the assistance of a threads library, by using the clone 676 system call directly. This module should be able to give some 677 rudimentary support for debugging such applications if developers 678 specify the CLONE_PTRACE flag in the clone system call, and are 679 using the Linux kernel 2.4 or above. 680 681 Note that there are some peculiarities in GNU/Linux that affect 682 this code: 683 684 - In general one should specify the __WCLONE flag to waitpid in 685 order to make it report events for any of the cloned processes 686 (and leave it out for the initial process). However, if a cloned 687 process has exited the exit status is only reported if the 688 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but 689 we cannot use it since GDB must work on older systems too. 690 691 - When a traced, cloned process exits and is waited for by the 692 debugger, the kernel reassigns it to the original parent and 693 keeps it around as a "zombie". Somehow, the GNU/Linux Threads 694 library doesn't notice this, which leads to the "zombie problem": 695 When debugged a multi-threaded process that spawns a lot of 696 threads will run out of processes, even if the threads exit, 697 because the "zombies" stay around. */ 698 699 /* List of known LWPs. */ 700 struct lwp_info *lwp_list; 701 702 703 /* Original signal mask. */ 704 static sigset_t normal_mask; 705 706 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 707 _initialize_linux_nat. */ 708 static sigset_t suspend_mask; 709 710 /* Signals to block to make that sigsuspend work. */ 711 static sigset_t blocked_mask; 712 713 /* SIGCHLD action. */ 714 struct sigaction sigchld_action; 715 716 /* Block child signals (SIGCHLD and linux threads signals), and store 717 the previous mask in PREV_MASK. */ 718 719 static void 720 block_child_signals (sigset_t *prev_mask) 721 { 722 /* Make sure SIGCHLD is blocked. */ 723 if (!sigismember (&blocked_mask, SIGCHLD)) 724 sigaddset (&blocked_mask, SIGCHLD); 725 726 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask); 727 } 728 729 /* Restore child signals mask, previously returned by 730 block_child_signals. */ 731 732 static void 733 restore_child_signals_mask (sigset_t *prev_mask) 734 { 735 sigprocmask (SIG_SETMASK, prev_mask, NULL); 736 } 737 738 /* Mask of signals to pass directly to the inferior. */ 739 static sigset_t pass_mask; 740 741 /* Update signals to pass to the inferior. */ 742 static void 743 linux_nat_pass_signals (struct target_ops *self, 744 int numsigs, unsigned char *pass_signals) 745 { 746 int signo; 747 748 sigemptyset (&pass_mask); 749 750 for (signo = 1; signo < NSIG; signo++) 751 { 752 int target_signo = gdb_signal_from_host (signo); 753 if (target_signo < numsigs && pass_signals[target_signo]) 754 sigaddset (&pass_mask, signo); 755 } 756 } 757 758 759 760 /* Prototypes for local functions. */ 761 static int stop_wait_callback (struct lwp_info *lp, void *data); 762 static int linux_thread_alive (ptid_t ptid); 763 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid); 764 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 765 766 767 768 /* Destroy and free LP. */ 769 770 static void 771 lwp_free (struct lwp_info *lp) 772 { 773 xfree (lp->arch_private); 774 xfree (lp); 775 } 776 777 /* Remove all LWPs belong to PID from the lwp list. */ 778 779 static void 780 purge_lwp_list (int pid) 781 { 782 struct lwp_info *lp, *lpprev, *lpnext; 783 784 lpprev = NULL; 785 786 for (lp = lwp_list; lp; lp = lpnext) 787 { 788 lpnext = lp->next; 789 790 if (ptid_get_pid (lp->ptid) == pid) 791 { 792 if (lp == lwp_list) 793 lwp_list = lp->next; 794 else 795 lpprev->next = lp->next; 796 797 lwp_free (lp); 798 } 799 else 800 lpprev = lp; 801 } 802 } 803 804 /* Add the LWP specified by PTID to the list. PTID is the first LWP 805 in the process. Return a pointer to the structure describing the 806 new LWP. 807 808 This differs from add_lwp in that we don't let the arch specific 809 bits know about this new thread. Current clients of this callback 810 take the opportunity to install watchpoints in the new thread, and 811 we shouldn't do that for the first thread. If we're spawning a 812 child ("run"), the thread executes the shell wrapper first, and we 813 shouldn't touch it until it execs the program we want to debug. 814 For "attach", it'd be okay to call the callback, but it's not 815 necessary, because watchpoints can't yet have been inserted into 816 the inferior. */ 817 818 static struct lwp_info * 819 add_initial_lwp (ptid_t ptid) 820 { 821 struct lwp_info *lp; 822 823 gdb_assert (ptid_lwp_p (ptid)); 824 825 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info)); 826 827 memset (lp, 0, sizeof (struct lwp_info)); 828 829 lp->last_resume_kind = resume_continue; 830 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 831 832 lp->ptid = ptid; 833 lp->core = -1; 834 835 lp->next = lwp_list; 836 lwp_list = lp; 837 838 return lp; 839 } 840 841 /* Add the LWP specified by PID to the list. Return a pointer to the 842 structure describing the new LWP. The LWP should already be 843 stopped. */ 844 845 static struct lwp_info * 846 add_lwp (ptid_t ptid) 847 { 848 struct lwp_info *lp; 849 850 lp = add_initial_lwp (ptid); 851 852 /* Let the arch specific bits know about this new thread. Current 853 clients of this callback take the opportunity to install 854 watchpoints in the new thread. We don't do this for the first 855 thread though. See add_initial_lwp. */ 856 if (linux_nat_new_thread != NULL) 857 linux_nat_new_thread (lp); 858 859 return lp; 860 } 861 862 /* Remove the LWP specified by PID from the list. */ 863 864 static void 865 delete_lwp (ptid_t ptid) 866 { 867 struct lwp_info *lp, *lpprev; 868 869 lpprev = NULL; 870 871 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next) 872 if (ptid_equal (lp->ptid, ptid)) 873 break; 874 875 if (!lp) 876 return; 877 878 if (lpprev) 879 lpprev->next = lp->next; 880 else 881 lwp_list = lp->next; 882 883 lwp_free (lp); 884 } 885 886 /* Return a pointer to the structure describing the LWP corresponding 887 to PID. If no corresponding LWP could be found, return NULL. */ 888 889 static struct lwp_info * 890 find_lwp_pid (ptid_t ptid) 891 { 892 struct lwp_info *lp; 893 int lwp; 894 895 if (ptid_lwp_p (ptid)) 896 lwp = ptid_get_lwp (ptid); 897 else 898 lwp = ptid_get_pid (ptid); 899 900 for (lp = lwp_list; lp; lp = lp->next) 901 if (lwp == ptid_get_lwp (lp->ptid)) 902 return lp; 903 904 return NULL; 905 } 906 907 /* See nat/linux-nat.h. */ 908 909 struct lwp_info * 910 iterate_over_lwps (ptid_t filter, 911 iterate_over_lwps_ftype callback, 912 void *data) 913 { 914 struct lwp_info *lp, *lpnext; 915 916 for (lp = lwp_list; lp; lp = lpnext) 917 { 918 lpnext = lp->next; 919 920 if (ptid_match (lp->ptid, filter)) 921 { 922 if ((*callback) (lp, data) != 0) 923 return lp; 924 } 925 } 926 927 return NULL; 928 } 929 930 /* Update our internal state when changing from one checkpoint to 931 another indicated by NEW_PTID. We can only switch single-threaded 932 applications, so we only create one new LWP, and the previous list 933 is discarded. */ 934 935 void 936 linux_nat_switch_fork (ptid_t new_ptid) 937 { 938 struct lwp_info *lp; 939 940 purge_lwp_list (ptid_get_pid (inferior_ptid)); 941 942 lp = add_lwp (new_ptid); 943 lp->stopped = 1; 944 945 /* This changes the thread's ptid while preserving the gdb thread 946 num. Also changes the inferior pid, while preserving the 947 inferior num. */ 948 thread_change_ptid (inferior_ptid, new_ptid); 949 950 /* We've just told GDB core that the thread changed target id, but, 951 in fact, it really is a different thread, with different register 952 contents. */ 953 registers_changed (); 954 } 955 956 /* Handle the exit of a single thread LP. */ 957 958 static void 959 exit_lwp (struct lwp_info *lp) 960 { 961 struct thread_info *th = find_thread_ptid (lp->ptid); 962 963 if (th) 964 { 965 if (print_thread_events) 966 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); 967 968 delete_thread (lp->ptid); 969 } 970 971 delete_lwp (lp->ptid); 972 } 973 974 /* Wait for the LWP specified by LP, which we have just attached to. 975 Returns a wait status for that LWP, to cache. */ 976 977 static int 978 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned, 979 int *signalled) 980 { 981 pid_t new_pid, pid = ptid_get_lwp (ptid); 982 int status; 983 984 if (linux_proc_pid_is_stopped (pid)) 985 { 986 if (debug_linux_nat) 987 fprintf_unfiltered (gdb_stdlog, 988 "LNPAW: Attaching to a stopped process\n"); 989 990 /* The process is definitely stopped. It is in a job control 991 stop, unless the kernel predates the TASK_STOPPED / 992 TASK_TRACED distinction, in which case it might be in a 993 ptrace stop. Make sure it is in a ptrace stop; from there we 994 can kill it, signal it, et cetera. 995 996 First make sure there is a pending SIGSTOP. Since we are 997 already attached, the process can not transition from stopped 998 to running without a PTRACE_CONT; so we know this signal will 999 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1000 probably already in the queue (unless this kernel is old 1001 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1002 is not an RT signal, it can only be queued once. */ 1003 kill_lwp (pid, SIGSTOP); 1004 1005 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1006 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1007 ptrace (PTRACE_CONT, pid, 0, 0); 1008 } 1009 1010 /* Make sure the initial process is stopped. The user-level threads 1011 layer might want to poke around in the inferior, and that won't 1012 work if things haven't stabilized yet. */ 1013 new_pid = my_waitpid (pid, &status, 0); 1014 if (new_pid == -1 && errno == ECHILD) 1015 { 1016 if (first) 1017 warning (_("%s is a cloned process"), target_pid_to_str (ptid)); 1018 1019 /* Try again with __WCLONE to check cloned processes. */ 1020 new_pid = my_waitpid (pid, &status, __WCLONE); 1021 *cloned = 1; 1022 } 1023 1024 gdb_assert (pid == new_pid); 1025 1026 if (!WIFSTOPPED (status)) 1027 { 1028 /* The pid we tried to attach has apparently just exited. */ 1029 if (debug_linux_nat) 1030 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s", 1031 pid, status_to_str (status)); 1032 return status; 1033 } 1034 1035 if (WSTOPSIG (status) != SIGSTOP) 1036 { 1037 *signalled = 1; 1038 if (debug_linux_nat) 1039 fprintf_unfiltered (gdb_stdlog, 1040 "LNPAW: Received %s after attaching\n", 1041 status_to_str (status)); 1042 } 1043 1044 return status; 1045 } 1046 1047 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if 1048 the new LWP could not be attached, or 1 if we're already auto 1049 attached to this thread, but haven't processed the 1050 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore 1051 its existance, without considering it an error. */ 1052 1053 int 1054 lin_lwp_attach_lwp (ptid_t ptid) 1055 { 1056 struct lwp_info *lp; 1057 int lwpid; 1058 1059 gdb_assert (ptid_lwp_p (ptid)); 1060 1061 lp = find_lwp_pid (ptid); 1062 lwpid = ptid_get_lwp (ptid); 1063 1064 /* We assume that we're already attached to any LWP that is already 1065 in our list of LWPs. If we're not seeing exit events from threads 1066 and we've had PID wraparound since we last tried to stop all threads, 1067 this assumption might be wrong; fortunately, this is very unlikely 1068 to happen. */ 1069 if (lp == NULL) 1070 { 1071 int status, cloned = 0, signalled = 0; 1072 1073 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1074 { 1075 if (linux_supports_tracefork ()) 1076 { 1077 /* If we haven't stopped all threads when we get here, 1078 we may have seen a thread listed in thread_db's list, 1079 but not processed the PTRACE_EVENT_CLONE yet. If 1080 that's the case, ignore this new thread, and let 1081 normal event handling discover it later. */ 1082 if (in_pid_list_p (stopped_pids, lwpid)) 1083 { 1084 /* We've already seen this thread stop, but we 1085 haven't seen the PTRACE_EVENT_CLONE extended 1086 event yet. */ 1087 if (debug_linux_nat) 1088 fprintf_unfiltered (gdb_stdlog, 1089 "LLAL: attach failed, but already seen " 1090 "this thread %s stop\n", 1091 target_pid_to_str (ptid)); 1092 return 1; 1093 } 1094 else 1095 { 1096 int new_pid; 1097 int status; 1098 1099 if (debug_linux_nat) 1100 fprintf_unfiltered (gdb_stdlog, 1101 "LLAL: attach failed, and haven't seen " 1102 "this thread %s stop yet\n", 1103 target_pid_to_str (ptid)); 1104 1105 /* We may or may not be attached to the LWP already. 1106 Try waitpid on it. If that errors, we're not 1107 attached to the LWP yet. Otherwise, we're 1108 already attached. */ 1109 gdb_assert (lwpid > 0); 1110 new_pid = my_waitpid (lwpid, &status, WNOHANG); 1111 if (new_pid == -1 && errno == ECHILD) 1112 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG); 1113 if (new_pid != -1) 1114 { 1115 if (new_pid == 0) 1116 { 1117 /* The child hasn't stopped for its initial 1118 SIGSTOP stop yet. */ 1119 if (debug_linux_nat) 1120 fprintf_unfiltered (gdb_stdlog, 1121 "LLAL: child hasn't " 1122 "stopped yet\n"); 1123 } 1124 else if (WIFSTOPPED (status)) 1125 { 1126 if (debug_linux_nat) 1127 fprintf_unfiltered (gdb_stdlog, 1128 "LLAL: adding to stopped_pids\n"); 1129 add_to_pid_list (&stopped_pids, lwpid, status); 1130 } 1131 return 1; 1132 } 1133 } 1134 } 1135 1136 /* If we fail to attach to the thread, issue a warning, 1137 but continue. One way this can happen is if thread 1138 creation is interrupted; as of Linux kernel 2.6.19, a 1139 bug may place threads in the thread list and then fail 1140 to create them. */ 1141 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid), 1142 safe_strerror (errno)); 1143 return -1; 1144 } 1145 1146 if (debug_linux_nat) 1147 fprintf_unfiltered (gdb_stdlog, 1148 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n", 1149 target_pid_to_str (ptid)); 1150 1151 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled); 1152 if (!WIFSTOPPED (status)) 1153 return 1; 1154 1155 lp = add_lwp (ptid); 1156 lp->stopped = 1; 1157 lp->last_resume_kind = resume_stop; 1158 lp->cloned = cloned; 1159 lp->signalled = signalled; 1160 if (WSTOPSIG (status) != SIGSTOP) 1161 { 1162 lp->resumed = 1; 1163 lp->status = status; 1164 } 1165 1166 target_post_attach (ptid_get_lwp (lp->ptid)); 1167 1168 if (debug_linux_nat) 1169 { 1170 fprintf_unfiltered (gdb_stdlog, 1171 "LLAL: waitpid %s received %s\n", 1172 target_pid_to_str (ptid), 1173 status_to_str (status)); 1174 } 1175 } 1176 1177 return 0; 1178 } 1179 1180 static void 1181 linux_nat_create_inferior (struct target_ops *ops, 1182 char *exec_file, char *allargs, char **env, 1183 int from_tty) 1184 { 1185 struct cleanup *restore_personality 1186 = maybe_disable_address_space_randomization (disable_randomization); 1187 1188 /* The fork_child mechanism is synchronous and calls target_wait, so 1189 we have to mask the async mode. */ 1190 1191 /* Make sure we report all signals during startup. */ 1192 linux_nat_pass_signals (ops, 0, NULL); 1193 1194 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty); 1195 1196 do_cleanups (restore_personality); 1197 } 1198 1199 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 1200 already attached. Returns true if a new LWP is found, false 1201 otherwise. */ 1202 1203 static int 1204 attach_proc_task_lwp_callback (ptid_t ptid) 1205 { 1206 struct lwp_info *lp; 1207 1208 /* Ignore LWPs we're already attached to. */ 1209 lp = find_lwp_pid (ptid); 1210 if (lp == NULL) 1211 { 1212 int lwpid = ptid_get_lwp (ptid); 1213 1214 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1215 { 1216 int err = errno; 1217 1218 /* Be quiet if we simply raced with the thread exiting. 1219 EPERM is returned if the thread's task still exists, and 1220 is marked as exited or zombie, as well as other 1221 conditions, so in that case, confirm the status in 1222 /proc/PID/status. */ 1223 if (err == ESRCH 1224 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1225 { 1226 if (debug_linux_nat) 1227 { 1228 fprintf_unfiltered (gdb_stdlog, 1229 "Cannot attach to lwp %d: " 1230 "thread is gone (%d: %s)\n", 1231 lwpid, err, safe_strerror (err)); 1232 } 1233 } 1234 else 1235 { 1236 warning (_("Cannot attach to lwp %d: %s"), 1237 lwpid, 1238 linux_ptrace_attach_fail_reason_string (ptid, 1239 err)); 1240 } 1241 } 1242 else 1243 { 1244 if (debug_linux_nat) 1245 fprintf_unfiltered (gdb_stdlog, 1246 "PTRACE_ATTACH %s, 0, 0 (OK)\n", 1247 target_pid_to_str (ptid)); 1248 1249 lp = add_lwp (ptid); 1250 lp->cloned = 1; 1251 1252 /* The next time we wait for this LWP we'll see a SIGSTOP as 1253 PTRACE_ATTACH brings it to a halt. */ 1254 lp->signalled = 1; 1255 1256 /* We need to wait for a stop before being able to make the 1257 next ptrace call on this LWP. */ 1258 lp->must_set_ptrace_flags = 1; 1259 } 1260 1261 return 1; 1262 } 1263 return 0; 1264 } 1265 1266 static void 1267 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty) 1268 { 1269 struct lwp_info *lp; 1270 int status; 1271 ptid_t ptid; 1272 1273 /* Make sure we report all signals during attach. */ 1274 linux_nat_pass_signals (ops, 0, NULL); 1275 1276 TRY 1277 { 1278 linux_ops->to_attach (ops, args, from_tty); 1279 } 1280 CATCH (ex, RETURN_MASK_ERROR) 1281 { 1282 pid_t pid = parse_pid_to_attach (args); 1283 struct buffer buffer; 1284 char *message, *buffer_s; 1285 1286 message = xstrdup (ex.message); 1287 make_cleanup (xfree, message); 1288 1289 buffer_init (&buffer); 1290 linux_ptrace_attach_fail_reason (pid, &buffer); 1291 1292 buffer_grow_str0 (&buffer, ""); 1293 buffer_s = buffer_finish (&buffer); 1294 make_cleanup (xfree, buffer_s); 1295 1296 if (*buffer_s != '\0') 1297 throw_error (ex.error, "warning: %s\n%s", buffer_s, message); 1298 else 1299 throw_error (ex.error, "%s", message); 1300 } 1301 END_CATCH 1302 1303 /* The ptrace base target adds the main thread with (pid,0,0) 1304 format. Decorate it with lwp info. */ 1305 ptid = ptid_build (ptid_get_pid (inferior_ptid), 1306 ptid_get_pid (inferior_ptid), 1307 0); 1308 thread_change_ptid (inferior_ptid, ptid); 1309 1310 /* Add the initial process as the first LWP to the list. */ 1311 lp = add_initial_lwp (ptid); 1312 1313 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned, 1314 &lp->signalled); 1315 if (!WIFSTOPPED (status)) 1316 { 1317 if (WIFEXITED (status)) 1318 { 1319 int exit_code = WEXITSTATUS (status); 1320 1321 target_terminal_ours (); 1322 target_mourn_inferior (); 1323 if (exit_code == 0) 1324 error (_("Unable to attach: program exited normally.")); 1325 else 1326 error (_("Unable to attach: program exited with code %d."), 1327 exit_code); 1328 } 1329 else if (WIFSIGNALED (status)) 1330 { 1331 enum gdb_signal signo; 1332 1333 target_terminal_ours (); 1334 target_mourn_inferior (); 1335 1336 signo = gdb_signal_from_host (WTERMSIG (status)); 1337 error (_("Unable to attach: program terminated with signal " 1338 "%s, %s."), 1339 gdb_signal_to_name (signo), 1340 gdb_signal_to_string (signo)); 1341 } 1342 1343 internal_error (__FILE__, __LINE__, 1344 _("unexpected status %d for PID %ld"), 1345 status, (long) ptid_get_lwp (ptid)); 1346 } 1347 1348 lp->stopped = 1; 1349 1350 /* Save the wait status to report later. */ 1351 lp->resumed = 1; 1352 if (debug_linux_nat) 1353 fprintf_unfiltered (gdb_stdlog, 1354 "LNA: waitpid %ld, saving status %s\n", 1355 (long) ptid_get_pid (lp->ptid), status_to_str (status)); 1356 1357 lp->status = status; 1358 1359 /* We must attach to every LWP. If /proc is mounted, use that to 1360 find them now. The inferior may be using raw clone instead of 1361 using pthreads. But even if it is using pthreads, thread_db 1362 walks structures in the inferior's address space to find the list 1363 of threads/LWPs, and those structures may well be corrupted. 1364 Note that once thread_db is loaded, we'll still use it to list 1365 threads and associate pthread info with each LWP. */ 1366 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid), 1367 attach_proc_task_lwp_callback); 1368 1369 if (target_can_async_p ()) 1370 target_async (1); 1371 } 1372 1373 /* Get pending status of LP. */ 1374 static int 1375 get_pending_status (struct lwp_info *lp, int *status) 1376 { 1377 enum gdb_signal signo = GDB_SIGNAL_0; 1378 1379 /* If we paused threads momentarily, we may have stored pending 1380 events in lp->status or lp->waitstatus (see stop_wait_callback), 1381 and GDB core hasn't seen any signal for those threads. 1382 Otherwise, the last signal reported to the core is found in the 1383 thread object's stop_signal. 1384 1385 There's a corner case that isn't handled here at present. Only 1386 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1387 stop_signal make sense as a real signal to pass to the inferior. 1388 Some catchpoint related events, like 1389 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1390 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1391 those traps are debug API (ptrace in our case) related and 1392 induced; the inferior wouldn't see them if it wasn't being 1393 traced. Hence, we should never pass them to the inferior, even 1394 when set to pass state. Since this corner case isn't handled by 1395 infrun.c when proceeding with a signal, for consistency, neither 1396 do we handle it here (or elsewhere in the file we check for 1397 signal pass state). Normally SIGTRAP isn't set to pass state, so 1398 this is really a corner case. */ 1399 1400 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1401 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1402 else if (lp->status) 1403 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1404 else if (non_stop && !is_executing (lp->ptid)) 1405 { 1406 struct thread_info *tp = find_thread_ptid (lp->ptid); 1407 1408 signo = tp->suspend.stop_signal; 1409 } 1410 else if (!non_stop) 1411 { 1412 struct target_waitstatus last; 1413 ptid_t last_ptid; 1414 1415 get_last_target_status (&last_ptid, &last); 1416 1417 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid)) 1418 { 1419 struct thread_info *tp = find_thread_ptid (lp->ptid); 1420 1421 signo = tp->suspend.stop_signal; 1422 } 1423 } 1424 1425 *status = 0; 1426 1427 if (signo == GDB_SIGNAL_0) 1428 { 1429 if (debug_linux_nat) 1430 fprintf_unfiltered (gdb_stdlog, 1431 "GPT: lwp %s has no pending signal\n", 1432 target_pid_to_str (lp->ptid)); 1433 } 1434 else if (!signal_pass_state (signo)) 1435 { 1436 if (debug_linux_nat) 1437 fprintf_unfiltered (gdb_stdlog, 1438 "GPT: lwp %s had signal %s, " 1439 "but it is in no pass state\n", 1440 target_pid_to_str (lp->ptid), 1441 gdb_signal_to_string (signo)); 1442 } 1443 else 1444 { 1445 *status = W_STOPCODE (gdb_signal_to_host (signo)); 1446 1447 if (debug_linux_nat) 1448 fprintf_unfiltered (gdb_stdlog, 1449 "GPT: lwp %s has pending signal %s\n", 1450 target_pid_to_str (lp->ptid), 1451 gdb_signal_to_string (signo)); 1452 } 1453 1454 return 0; 1455 } 1456 1457 static int 1458 detach_callback (struct lwp_info *lp, void *data) 1459 { 1460 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1461 1462 if (debug_linux_nat && lp->status) 1463 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", 1464 strsignal (WSTOPSIG (lp->status)), 1465 target_pid_to_str (lp->ptid)); 1466 1467 /* If there is a pending SIGSTOP, get rid of it. */ 1468 if (lp->signalled) 1469 { 1470 if (debug_linux_nat) 1471 fprintf_unfiltered (gdb_stdlog, 1472 "DC: Sending SIGCONT to %s\n", 1473 target_pid_to_str (lp->ptid)); 1474 1475 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT); 1476 lp->signalled = 0; 1477 } 1478 1479 /* We don't actually detach from the LWP that has an id equal to the 1480 overall process id just yet. */ 1481 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid)) 1482 { 1483 int status = 0; 1484 1485 /* Pass on any pending signal for this LWP. */ 1486 get_pending_status (lp, &status); 1487 1488 if (linux_nat_prepare_to_resume != NULL) 1489 linux_nat_prepare_to_resume (lp); 1490 errno = 0; 1491 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0, 1492 WSTOPSIG (status)) < 0) 1493 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), 1494 safe_strerror (errno)); 1495 1496 if (debug_linux_nat) 1497 fprintf_unfiltered (gdb_stdlog, 1498 "PTRACE_DETACH (%s, %s, 0) (OK)\n", 1499 target_pid_to_str (lp->ptid), 1500 strsignal (WSTOPSIG (status))); 1501 1502 delete_lwp (lp->ptid); 1503 } 1504 1505 return 0; 1506 } 1507 1508 static void 1509 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty) 1510 { 1511 int pid; 1512 int status; 1513 struct lwp_info *main_lwp; 1514 1515 pid = ptid_get_pid (inferior_ptid); 1516 1517 /* Don't unregister from the event loop, as there may be other 1518 inferiors running. */ 1519 1520 /* Stop all threads before detaching. ptrace requires that the 1521 thread is stopped to sucessfully detach. */ 1522 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL); 1523 /* ... and wait until all of them have reported back that 1524 they're no longer running. */ 1525 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL); 1526 1527 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL); 1528 1529 /* Only the initial process should be left right now. */ 1530 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1); 1531 1532 main_lwp = find_lwp_pid (pid_to_ptid (pid)); 1533 1534 /* Pass on any pending signal for the last LWP. */ 1535 if ((args == NULL || *args == '\0') 1536 && get_pending_status (main_lwp, &status) != -1 1537 && WIFSTOPPED (status)) 1538 { 1539 char *tem; 1540 1541 /* Put the signal number in ARGS so that inf_ptrace_detach will 1542 pass it along with PTRACE_DETACH. */ 1543 tem = alloca (8); 1544 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status)); 1545 args = tem; 1546 if (debug_linux_nat) 1547 fprintf_unfiltered (gdb_stdlog, 1548 "LND: Sending signal %s to %s\n", 1549 args, 1550 target_pid_to_str (main_lwp->ptid)); 1551 } 1552 1553 if (linux_nat_prepare_to_resume != NULL) 1554 linux_nat_prepare_to_resume (main_lwp); 1555 delete_lwp (main_lwp->ptid); 1556 1557 if (forks_exist_p ()) 1558 { 1559 /* Multi-fork case. The current inferior_ptid is being detached 1560 from, but there are other viable forks to debug. Detach from 1561 the current fork, and context-switch to the first 1562 available. */ 1563 linux_fork_detach (args, from_tty); 1564 } 1565 else 1566 linux_ops->to_detach (ops, args, from_tty); 1567 } 1568 1569 /* Resume execution of the inferior process. If STEP is nonzero, 1570 single-step it. If SIGNAL is nonzero, give it that signal. */ 1571 1572 static void 1573 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1574 enum gdb_signal signo) 1575 { 1576 lp->step = step; 1577 1578 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1579 We only presently need that if the LWP is stepped though (to 1580 handle the case of stepping a breakpoint instruction). */ 1581 if (step) 1582 { 1583 struct regcache *regcache = get_thread_regcache (lp->ptid); 1584 1585 lp->stop_pc = regcache_read_pc (regcache); 1586 } 1587 else 1588 lp->stop_pc = 0; 1589 1590 if (linux_nat_prepare_to_resume != NULL) 1591 linux_nat_prepare_to_resume (lp); 1592 linux_ops->to_resume (linux_ops, lp->ptid, step, signo); 1593 1594 /* Successfully resumed. Clear state that no longer makes sense, 1595 and mark the LWP as running. Must not do this before resuming 1596 otherwise if that fails other code will be confused. E.g., we'd 1597 later try to stop the LWP and hang forever waiting for a stop 1598 status. Note that we must not throw after this is cleared, 1599 otherwise handle_zombie_lwp_error would get confused. */ 1600 lp->stopped = 0; 1601 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1602 registers_changed_ptid (lp->ptid); 1603 } 1604 1605 /* Called when we try to resume a stopped LWP and that errors out. If 1606 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1607 or about to become), discard the error, clear any pending status 1608 the LWP may have, and return true (we'll collect the exit status 1609 soon enough). Otherwise, return false. */ 1610 1611 static int 1612 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1613 { 1614 /* If we get an error after resuming the LWP successfully, we'd 1615 confuse !T state for the LWP being gone. */ 1616 gdb_assert (lp->stopped); 1617 1618 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1619 because even if ptrace failed with ESRCH, the tracee may be "not 1620 yet fully dead", but already refusing ptrace requests. In that 1621 case the tracee has 'R (Running)' state for a little bit 1622 (observed in Linux 3.18). See also the note on ESRCH in the 1623 ptrace(2) man page. Instead, check whether the LWP has any state 1624 other than ptrace-stopped. */ 1625 1626 /* Don't assume anything if /proc/PID/status can't be read. */ 1627 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0) 1628 { 1629 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1630 lp->status = 0; 1631 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 1632 return 1; 1633 } 1634 return 0; 1635 } 1636 1637 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1638 disappears while we try to resume it. */ 1639 1640 static void 1641 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1642 { 1643 TRY 1644 { 1645 linux_resume_one_lwp_throw (lp, step, signo); 1646 } 1647 CATCH (ex, RETURN_MASK_ERROR) 1648 { 1649 if (!check_ptrace_stopped_lwp_gone (lp)) 1650 throw_exception (ex); 1651 } 1652 END_CATCH 1653 } 1654 1655 /* Resume LP. */ 1656 1657 static void 1658 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1659 { 1660 if (lp->stopped) 1661 { 1662 struct inferior *inf = find_inferior_ptid (lp->ptid); 1663 1664 if (inf->vfork_child != NULL) 1665 { 1666 if (debug_linux_nat) 1667 fprintf_unfiltered (gdb_stdlog, 1668 "RC: Not resuming %s (vfork parent)\n", 1669 target_pid_to_str (lp->ptid)); 1670 } 1671 else if (!lwp_status_pending_p (lp)) 1672 { 1673 if (debug_linux_nat) 1674 fprintf_unfiltered (gdb_stdlog, 1675 "RC: Resuming sibling %s, %s, %s\n", 1676 target_pid_to_str (lp->ptid), 1677 (signo != GDB_SIGNAL_0 1678 ? strsignal (gdb_signal_to_host (signo)) 1679 : "0"), 1680 step ? "step" : "resume"); 1681 1682 linux_resume_one_lwp (lp, step, signo); 1683 } 1684 else 1685 { 1686 if (debug_linux_nat) 1687 fprintf_unfiltered (gdb_stdlog, 1688 "RC: Not resuming sibling %s (has pending)\n", 1689 target_pid_to_str (lp->ptid)); 1690 } 1691 } 1692 else 1693 { 1694 if (debug_linux_nat) 1695 fprintf_unfiltered (gdb_stdlog, 1696 "RC: Not resuming sibling %s (not stopped)\n", 1697 target_pid_to_str (lp->ptid)); 1698 } 1699 } 1700 1701 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1702 Resume LWP with the last stop signal, if it is in pass state. */ 1703 1704 static int 1705 linux_nat_resume_callback (struct lwp_info *lp, void *except) 1706 { 1707 enum gdb_signal signo = GDB_SIGNAL_0; 1708 1709 if (lp == except) 1710 return 0; 1711 1712 if (lp->stopped) 1713 { 1714 struct thread_info *thread; 1715 1716 thread = find_thread_ptid (lp->ptid); 1717 if (thread != NULL) 1718 { 1719 signo = thread->suspend.stop_signal; 1720 thread->suspend.stop_signal = GDB_SIGNAL_0; 1721 } 1722 } 1723 1724 resume_lwp (lp, 0, signo); 1725 return 0; 1726 } 1727 1728 static int 1729 resume_clear_callback (struct lwp_info *lp, void *data) 1730 { 1731 lp->resumed = 0; 1732 lp->last_resume_kind = resume_stop; 1733 return 0; 1734 } 1735 1736 static int 1737 resume_set_callback (struct lwp_info *lp, void *data) 1738 { 1739 lp->resumed = 1; 1740 lp->last_resume_kind = resume_continue; 1741 return 0; 1742 } 1743 1744 static void 1745 linux_nat_resume (struct target_ops *ops, 1746 ptid_t ptid, int step, enum gdb_signal signo) 1747 { 1748 struct lwp_info *lp; 1749 int resume_many; 1750 1751 if (debug_linux_nat) 1752 fprintf_unfiltered (gdb_stdlog, 1753 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", 1754 step ? "step" : "resume", 1755 target_pid_to_str (ptid), 1756 (signo != GDB_SIGNAL_0 1757 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1758 target_pid_to_str (inferior_ptid)); 1759 1760 /* A specific PTID means `step only this process id'. */ 1761 resume_many = (ptid_equal (minus_one_ptid, ptid) 1762 || ptid_is_pid (ptid)); 1763 1764 /* Mark the lwps we're resuming as resumed. */ 1765 iterate_over_lwps (ptid, resume_set_callback, NULL); 1766 1767 /* See if it's the current inferior that should be handled 1768 specially. */ 1769 if (resume_many) 1770 lp = find_lwp_pid (inferior_ptid); 1771 else 1772 lp = find_lwp_pid (ptid); 1773 gdb_assert (lp != NULL); 1774 1775 /* Remember if we're stepping. */ 1776 lp->last_resume_kind = step ? resume_step : resume_continue; 1777 1778 /* If we have a pending wait status for this thread, there is no 1779 point in resuming the process. But first make sure that 1780 linux_nat_wait won't preemptively handle the event - we 1781 should never take this short-circuit if we are going to 1782 leave LP running, since we have skipped resuming all the 1783 other threads. This bit of code needs to be synchronized 1784 with linux_nat_wait. */ 1785 1786 if (lp->status && WIFSTOPPED (lp->status)) 1787 { 1788 if (!lp->step 1789 && WSTOPSIG (lp->status) 1790 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1791 { 1792 if (debug_linux_nat) 1793 fprintf_unfiltered (gdb_stdlog, 1794 "LLR: Not short circuiting for ignored " 1795 "status 0x%x\n", lp->status); 1796 1797 /* FIXME: What should we do if we are supposed to continue 1798 this thread with a signal? */ 1799 gdb_assert (signo == GDB_SIGNAL_0); 1800 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1801 lp->status = 0; 1802 } 1803 } 1804 1805 if (lwp_status_pending_p (lp)) 1806 { 1807 /* FIXME: What should we do if we are supposed to continue 1808 this thread with a signal? */ 1809 gdb_assert (signo == GDB_SIGNAL_0); 1810 1811 if (debug_linux_nat) 1812 fprintf_unfiltered (gdb_stdlog, 1813 "LLR: Short circuiting for status 0x%x\n", 1814 lp->status); 1815 1816 if (target_can_async_p ()) 1817 { 1818 target_async (1); 1819 /* Tell the event loop we have something to process. */ 1820 async_file_mark (); 1821 } 1822 return; 1823 } 1824 1825 if (resume_many) 1826 iterate_over_lwps (ptid, linux_nat_resume_callback, lp); 1827 1828 if (debug_linux_nat) 1829 fprintf_unfiltered (gdb_stdlog, 1830 "LLR: %s %s, %s (resume event thread)\n", 1831 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1832 target_pid_to_str (lp->ptid), 1833 (signo != GDB_SIGNAL_0 1834 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1835 1836 linux_resume_one_lwp (lp, step, signo); 1837 1838 if (target_can_async_p ()) 1839 target_async (1); 1840 } 1841 1842 /* Send a signal to an LWP. */ 1843 1844 static int 1845 kill_lwp (int lwpid, int signo) 1846 { 1847 /* Use tkill, if possible, in case we are using nptl threads. If tkill 1848 fails, then we are not using nptl threads and we should be using kill. */ 1849 1850 #ifdef HAVE_TKILL_SYSCALL 1851 { 1852 static int tkill_failed; 1853 1854 if (!tkill_failed) 1855 { 1856 int ret; 1857 1858 errno = 0; 1859 ret = syscall (__NR_tkill, lwpid, signo); 1860 if (errno != ENOSYS) 1861 return ret; 1862 tkill_failed = 1; 1863 } 1864 } 1865 #endif 1866 1867 return kill (lwpid, signo); 1868 } 1869 1870 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1871 event, check if the core is interested in it: if not, ignore the 1872 event, and keep waiting; otherwise, we need to toggle the LWP's 1873 syscall entry/exit status, since the ptrace event itself doesn't 1874 indicate it, and report the trap to higher layers. */ 1875 1876 static int 1877 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1878 { 1879 struct target_waitstatus *ourstatus = &lp->waitstatus; 1880 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1881 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid); 1882 1883 if (stopping) 1884 { 1885 /* If we're stopping threads, there's a SIGSTOP pending, which 1886 makes it so that the LWP reports an immediate syscall return, 1887 followed by the SIGSTOP. Skip seeing that "return" using 1888 PTRACE_CONT directly, and let stop_wait_callback collect the 1889 SIGSTOP. Later when the thread is resumed, a new syscall 1890 entry event. If we didn't do this (and returned 0), we'd 1891 leave a syscall entry pending, and our caller, by using 1892 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1893 itself. Later, when the user re-resumes this LWP, we'd see 1894 another syscall entry event and we'd mistake it for a return. 1895 1896 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1897 (leaving immediately with LWP->signalled set, without issuing 1898 a PTRACE_CONT), it would still be problematic to leave this 1899 syscall enter pending, as later when the thread is resumed, 1900 it would then see the same syscall exit mentioned above, 1901 followed by the delayed SIGSTOP, while the syscall didn't 1902 actually get to execute. It seems it would be even more 1903 confusing to the user. */ 1904 1905 if (debug_linux_nat) 1906 fprintf_unfiltered (gdb_stdlog, 1907 "LHST: ignoring syscall %d " 1908 "for LWP %ld (stopping threads), " 1909 "resuming with PTRACE_CONT for SIGSTOP\n", 1910 syscall_number, 1911 ptid_get_lwp (lp->ptid)); 1912 1913 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1914 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 1915 lp->stopped = 0; 1916 return 1; 1917 } 1918 1919 if (catch_syscall_enabled ()) 1920 { 1921 /* Always update the entry/return state, even if this particular 1922 syscall isn't interesting to the core now. In async mode, 1923 the user could install a new catchpoint for this syscall 1924 between syscall enter/return, and we'll need to know to 1925 report a syscall return if that happens. */ 1926 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1927 ? TARGET_WAITKIND_SYSCALL_RETURN 1928 : TARGET_WAITKIND_SYSCALL_ENTRY); 1929 1930 if (catching_syscall_number (syscall_number)) 1931 { 1932 /* Alright, an event to report. */ 1933 ourstatus->kind = lp->syscall_state; 1934 ourstatus->value.syscall_number = syscall_number; 1935 1936 if (debug_linux_nat) 1937 fprintf_unfiltered (gdb_stdlog, 1938 "LHST: stopping for %s of syscall %d" 1939 " for LWP %ld\n", 1940 lp->syscall_state 1941 == TARGET_WAITKIND_SYSCALL_ENTRY 1942 ? "entry" : "return", 1943 syscall_number, 1944 ptid_get_lwp (lp->ptid)); 1945 return 0; 1946 } 1947 1948 if (debug_linux_nat) 1949 fprintf_unfiltered (gdb_stdlog, 1950 "LHST: ignoring %s of syscall %d " 1951 "for LWP %ld\n", 1952 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1953 ? "entry" : "return", 1954 syscall_number, 1955 ptid_get_lwp (lp->ptid)); 1956 } 1957 else 1958 { 1959 /* If we had been syscall tracing, and hence used PT_SYSCALL 1960 before on this LWP, it could happen that the user removes all 1961 syscall catchpoints before we get to process this event. 1962 There are two noteworthy issues here: 1963 1964 - When stopped at a syscall entry event, resuming with 1965 PT_STEP still resumes executing the syscall and reports a 1966 syscall return. 1967 1968 - Only PT_SYSCALL catches syscall enters. If we last 1969 single-stepped this thread, then this event can't be a 1970 syscall enter. If we last single-stepped this thread, this 1971 has to be a syscall exit. 1972 1973 The points above mean that the next resume, be it PT_STEP or 1974 PT_CONTINUE, can not trigger a syscall trace event. */ 1975 if (debug_linux_nat) 1976 fprintf_unfiltered (gdb_stdlog, 1977 "LHST: caught syscall event " 1978 "with no syscall catchpoints." 1979 " %d for LWP %ld, ignoring\n", 1980 syscall_number, 1981 ptid_get_lwp (lp->ptid)); 1982 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1983 } 1984 1985 /* The core isn't interested in this event. For efficiency, avoid 1986 stopping all threads only to have the core resume them all again. 1987 Since we're not stopping threads, if we're still syscall tracing 1988 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1989 subsequent syscall. Simply resume using the inf-ptrace layer, 1990 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1991 1992 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1993 return 1; 1994 } 1995 1996 /* Handle a GNU/Linux extended wait response. If we see a clone 1997 event, we need to add the new LWP to our list (and not report the 1998 trap to higher layers). This function returns non-zero if the 1999 event should be ignored and we should wait again. If STOPPING is 2000 true, the new LWP remains stopped, otherwise it is continued. */ 2001 2002 static int 2003 linux_handle_extended_wait (struct lwp_info *lp, int status) 2004 { 2005 int pid = ptid_get_lwp (lp->ptid); 2006 struct target_waitstatus *ourstatus = &lp->waitstatus; 2007 int event = linux_ptrace_get_extended_event (status); 2008 2009 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 2010 || event == PTRACE_EVENT_CLONE) 2011 { 2012 unsigned long new_pid; 2013 int ret; 2014 2015 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 2016 2017 /* If we haven't already seen the new PID stop, wait for it now. */ 2018 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 2019 { 2020 /* The new child has a pending SIGSTOP. We can't affect it until it 2021 hits the SIGSTOP, but we're already attached. */ 2022 ret = my_waitpid (new_pid, &status, 2023 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0); 2024 if (ret == -1) 2025 perror_with_name (_("waiting for new child")); 2026 else if (ret != new_pid) 2027 internal_error (__FILE__, __LINE__, 2028 _("wait returned unexpected PID %d"), ret); 2029 else if (!WIFSTOPPED (status)) 2030 internal_error (__FILE__, __LINE__, 2031 _("wait returned unexpected status 0x%x"), status); 2032 } 2033 2034 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0); 2035 2036 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 2037 { 2038 /* The arch-specific native code may need to know about new 2039 forks even if those end up never mapped to an 2040 inferior. */ 2041 if (linux_nat_new_fork != NULL) 2042 linux_nat_new_fork (lp, new_pid); 2043 } 2044 2045 if (event == PTRACE_EVENT_FORK 2046 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid))) 2047 { 2048 /* Handle checkpointing by linux-fork.c here as a special 2049 case. We don't want the follow-fork-mode or 'catch fork' 2050 to interfere with this. */ 2051 2052 /* This won't actually modify the breakpoint list, but will 2053 physically remove the breakpoints from the child. */ 2054 detach_breakpoints (ptid_build (new_pid, new_pid, 0)); 2055 2056 /* Retain child fork in ptrace (stopped) state. */ 2057 if (!find_fork_pid (new_pid)) 2058 add_fork (new_pid); 2059 2060 /* Report as spurious, so that infrun doesn't want to follow 2061 this fork. We're actually doing an infcall in 2062 linux-fork.c. */ 2063 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 2064 2065 /* Report the stop to the core. */ 2066 return 0; 2067 } 2068 2069 if (event == PTRACE_EVENT_FORK) 2070 ourstatus->kind = TARGET_WAITKIND_FORKED; 2071 else if (event == PTRACE_EVENT_VFORK) 2072 ourstatus->kind = TARGET_WAITKIND_VFORKED; 2073 else if (event == PTRACE_EVENT_CLONE) 2074 { 2075 struct lwp_info *new_lp; 2076 2077 ourstatus->kind = TARGET_WAITKIND_IGNORE; 2078 2079 if (debug_linux_nat) 2080 fprintf_unfiltered (gdb_stdlog, 2081 "LHEW: Got clone event " 2082 "from LWP %d, new child is LWP %ld\n", 2083 pid, new_pid); 2084 2085 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0)); 2086 new_lp->cloned = 1; 2087 new_lp->stopped = 1; 2088 new_lp->resumed = 1; 2089 2090 /* If the thread_db layer is active, let it record the user 2091 level thread id and status, and add the thread to GDB's 2092 list. */ 2093 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 2094 { 2095 /* The process is not using thread_db. Add the LWP to 2096 GDB's list. */ 2097 target_post_attach (ptid_get_lwp (new_lp->ptid)); 2098 add_thread (new_lp->ptid); 2099 } 2100 2101 /* Even if we're stopping the thread for some reason 2102 internal to this module, from the perspective of infrun 2103 and the user/frontend, this new thread is running until 2104 it next reports a stop. */ 2105 set_running (new_lp->ptid, 1); 2106 set_executing (new_lp->ptid, 1); 2107 2108 if (WSTOPSIG (status) != SIGSTOP) 2109 { 2110 /* This can happen if someone starts sending signals to 2111 the new thread before it gets a chance to run, which 2112 have a lower number than SIGSTOP (e.g. SIGUSR1). 2113 This is an unlikely case, and harder to handle for 2114 fork / vfork than for clone, so we do not try - but 2115 we handle it for clone events here. */ 2116 2117 new_lp->signalled = 1; 2118 2119 /* We created NEW_LP so it cannot yet contain STATUS. */ 2120 gdb_assert (new_lp->status == 0); 2121 2122 /* Save the wait status to report later. */ 2123 if (debug_linux_nat) 2124 fprintf_unfiltered (gdb_stdlog, 2125 "LHEW: waitpid of new LWP %ld, " 2126 "saving status %s\n", 2127 (long) ptid_get_lwp (new_lp->ptid), 2128 status_to_str (status)); 2129 new_lp->status = status; 2130 } 2131 2132 return 1; 2133 } 2134 2135 return 0; 2136 } 2137 2138 if (event == PTRACE_EVENT_EXEC) 2139 { 2140 if (debug_linux_nat) 2141 fprintf_unfiltered (gdb_stdlog, 2142 "LHEW: Got exec event from LWP %ld\n", 2143 ptid_get_lwp (lp->ptid)); 2144 2145 ourstatus->kind = TARGET_WAITKIND_EXECD; 2146 ourstatus->value.execd_pathname 2147 = xstrdup (linux_child_pid_to_exec_file (NULL, pid)); 2148 2149 /* The thread that execed must have been resumed, but, when a 2150 thread execs, it changes its tid to the tgid, and the old 2151 tgid thread might have not been resumed. */ 2152 lp->resumed = 1; 2153 return 0; 2154 } 2155 2156 if (event == PTRACE_EVENT_VFORK_DONE) 2157 { 2158 if (current_inferior ()->waiting_for_vfork_done) 2159 { 2160 if (debug_linux_nat) 2161 fprintf_unfiltered (gdb_stdlog, 2162 "LHEW: Got expected PTRACE_EVENT_" 2163 "VFORK_DONE from LWP %ld: stopping\n", 2164 ptid_get_lwp (lp->ptid)); 2165 2166 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2167 return 0; 2168 } 2169 2170 if (debug_linux_nat) 2171 fprintf_unfiltered (gdb_stdlog, 2172 "LHEW: Got PTRACE_EVENT_VFORK_DONE " 2173 "from LWP %ld: ignoring\n", 2174 ptid_get_lwp (lp->ptid)); 2175 return 1; 2176 } 2177 2178 internal_error (__FILE__, __LINE__, 2179 _("unknown ptrace event %d"), event); 2180 } 2181 2182 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2183 exited. */ 2184 2185 static int 2186 wait_lwp (struct lwp_info *lp) 2187 { 2188 pid_t pid; 2189 int status = 0; 2190 int thread_dead = 0; 2191 sigset_t prev_mask; 2192 2193 gdb_assert (!lp->stopped); 2194 gdb_assert (lp->status == 0); 2195 2196 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2197 block_child_signals (&prev_mask); 2198 2199 for (;;) 2200 { 2201 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind 2202 was right and we should just call sigsuspend. */ 2203 2204 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG); 2205 if (pid == -1 && errno == ECHILD) 2206 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG); 2207 if (pid == -1 && errno == ECHILD) 2208 { 2209 /* The thread has previously exited. We need to delete it 2210 now because, for some vendor 2.4 kernels with NPTL 2211 support backported, there won't be an exit event unless 2212 it is the main thread. 2.6 kernels will report an exit 2213 event for each thread that exits, as expected. */ 2214 thread_dead = 1; 2215 if (debug_linux_nat) 2216 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", 2217 target_pid_to_str (lp->ptid)); 2218 } 2219 if (pid != 0) 2220 break; 2221 2222 /* Bugs 10970, 12702. 2223 Thread group leader may have exited in which case we'll lock up in 2224 waitpid if there are other threads, even if they are all zombies too. 2225 Basically, we're not supposed to use waitpid this way. 2226 __WCLONE is not applicable for the leader so we can't use that. 2227 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED 2228 process; it gets ESRCH both for the zombie and for running processes. 2229 2230 As a workaround, check if we're waiting for the thread group leader and 2231 if it's a zombie, and avoid calling waitpid if it is. 2232 2233 This is racy, what if the tgl becomes a zombie right after we check? 2234 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2235 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2236 2237 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid) 2238 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid))) 2239 { 2240 thread_dead = 1; 2241 if (debug_linux_nat) 2242 fprintf_unfiltered (gdb_stdlog, 2243 "WL: Thread group leader %s vanished.\n", 2244 target_pid_to_str (lp->ptid)); 2245 break; 2246 } 2247 2248 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2249 get invoked despite our caller had them intentionally blocked by 2250 block_child_signals. This is sensitive only to the loop of 2251 linux_nat_wait_1 and there if we get called my_waitpid gets called 2252 again before it gets to sigsuspend so we can safely let the handlers 2253 get executed here. */ 2254 2255 if (debug_linux_nat) 2256 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n"); 2257 sigsuspend (&suspend_mask); 2258 } 2259 2260 restore_child_signals_mask (&prev_mask); 2261 2262 if (!thread_dead) 2263 { 2264 gdb_assert (pid == ptid_get_lwp (lp->ptid)); 2265 2266 if (debug_linux_nat) 2267 { 2268 fprintf_unfiltered (gdb_stdlog, 2269 "WL: waitpid %s received %s\n", 2270 target_pid_to_str (lp->ptid), 2271 status_to_str (status)); 2272 } 2273 2274 /* Check if the thread has exited. */ 2275 if (WIFEXITED (status) || WIFSIGNALED (status)) 2276 { 2277 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)) 2278 { 2279 if (debug_linux_nat) 2280 fprintf_unfiltered (gdb_stdlog, "WL: Process %d exited.\n", 2281 ptid_get_pid (lp->ptid)); 2282 2283 /* This is the leader exiting, it means the whole 2284 process is gone. Store the status to report to the 2285 core. Store it in lp->waitstatus, because lp->status 2286 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2287 store_waitstatus (&lp->waitstatus, status); 2288 return 0; 2289 } 2290 2291 thread_dead = 1; 2292 if (debug_linux_nat) 2293 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", 2294 target_pid_to_str (lp->ptid)); 2295 } 2296 } 2297 2298 if (thread_dead) 2299 { 2300 exit_lwp (lp); 2301 return 0; 2302 } 2303 2304 gdb_assert (WIFSTOPPED (status)); 2305 lp->stopped = 1; 2306 2307 if (lp->must_set_ptrace_flags) 2308 { 2309 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 2310 int options = linux_nat_ptrace_options (inf->attach_flag); 2311 2312 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 2313 lp->must_set_ptrace_flags = 0; 2314 } 2315 2316 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2317 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2318 { 2319 /* No longer need the sysgood bit. The ptrace event ends up 2320 recorded in lp->waitstatus if we care for it. We can carry 2321 on handling the event like a regular SIGTRAP from here 2322 on. */ 2323 status = W_STOPCODE (SIGTRAP); 2324 if (linux_handle_syscall_trap (lp, 1)) 2325 return wait_lwp (lp); 2326 } 2327 2328 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2329 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2330 && linux_is_extended_waitstatus (status)) 2331 { 2332 if (debug_linux_nat) 2333 fprintf_unfiltered (gdb_stdlog, 2334 "WL: Handling extended status 0x%06x\n", 2335 status); 2336 linux_handle_extended_wait (lp, status); 2337 return 0; 2338 } 2339 2340 return status; 2341 } 2342 2343 /* Send a SIGSTOP to LP. */ 2344 2345 static int 2346 stop_callback (struct lwp_info *lp, void *data) 2347 { 2348 if (!lp->stopped && !lp->signalled) 2349 { 2350 int ret; 2351 2352 if (debug_linux_nat) 2353 { 2354 fprintf_unfiltered (gdb_stdlog, 2355 "SC: kill %s **<SIGSTOP>**\n", 2356 target_pid_to_str (lp->ptid)); 2357 } 2358 errno = 0; 2359 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP); 2360 if (debug_linux_nat) 2361 { 2362 fprintf_unfiltered (gdb_stdlog, 2363 "SC: lwp kill %d %s\n", 2364 ret, 2365 errno ? safe_strerror (errno) : "ERRNO-OK"); 2366 } 2367 2368 lp->signalled = 1; 2369 gdb_assert (lp->status == 0); 2370 } 2371 2372 return 0; 2373 } 2374 2375 /* Request a stop on LWP. */ 2376 2377 void 2378 linux_stop_lwp (struct lwp_info *lwp) 2379 { 2380 stop_callback (lwp, NULL); 2381 } 2382 2383 /* See linux-nat.h */ 2384 2385 void 2386 linux_stop_and_wait_all_lwps (void) 2387 { 2388 /* Stop all LWP's ... */ 2389 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 2390 2391 /* ... and wait until all of them have reported back that 2392 they're no longer running. */ 2393 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 2394 } 2395 2396 /* See linux-nat.h */ 2397 2398 void 2399 linux_unstop_all_lwps (void) 2400 { 2401 iterate_over_lwps (minus_one_ptid, 2402 resume_stopped_resumed_lwps, &minus_one_ptid); 2403 } 2404 2405 /* Return non-zero if LWP PID has a pending SIGINT. */ 2406 2407 static int 2408 linux_nat_has_pending_sigint (int pid) 2409 { 2410 sigset_t pending, blocked, ignored; 2411 2412 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2413 2414 if (sigismember (&pending, SIGINT) 2415 && !sigismember (&ignored, SIGINT)) 2416 return 1; 2417 2418 return 0; 2419 } 2420 2421 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2422 2423 static int 2424 set_ignore_sigint (struct lwp_info *lp, void *data) 2425 { 2426 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2427 flag to consume the next one. */ 2428 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2429 && WSTOPSIG (lp->status) == SIGINT) 2430 lp->status = 0; 2431 else 2432 lp->ignore_sigint = 1; 2433 2434 return 0; 2435 } 2436 2437 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2438 This function is called after we know the LWP has stopped; if the LWP 2439 stopped before the expected SIGINT was delivered, then it will never have 2440 arrived. Also, if the signal was delivered to a shared queue and consumed 2441 by a different thread, it will never be delivered to this LWP. */ 2442 2443 static void 2444 maybe_clear_ignore_sigint (struct lwp_info *lp) 2445 { 2446 if (!lp->ignore_sigint) 2447 return; 2448 2449 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid))) 2450 { 2451 if (debug_linux_nat) 2452 fprintf_unfiltered (gdb_stdlog, 2453 "MCIS: Clearing bogus flag for %s\n", 2454 target_pid_to_str (lp->ptid)); 2455 lp->ignore_sigint = 0; 2456 } 2457 } 2458 2459 /* Fetch the possible triggered data watchpoint info and store it in 2460 LP. 2461 2462 On some archs, like x86, that use debug registers to set 2463 watchpoints, it's possible that the way to know which watched 2464 address trapped, is to check the register that is used to select 2465 which address to watch. Problem is, between setting the watchpoint 2466 and reading back which data address trapped, the user may change 2467 the set of watchpoints, and, as a consequence, GDB changes the 2468 debug registers in the inferior. To avoid reading back a stale 2469 stopped-data-address when that happens, we cache in LP the fact 2470 that a watchpoint trapped, and the corresponding data address, as 2471 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2472 registers meanwhile, we have the cached data we can rely on. */ 2473 2474 static int 2475 check_stopped_by_watchpoint (struct lwp_info *lp) 2476 { 2477 struct cleanup *old_chain; 2478 2479 if (linux_ops->to_stopped_by_watchpoint == NULL) 2480 return 0; 2481 2482 old_chain = save_inferior_ptid (); 2483 inferior_ptid = lp->ptid; 2484 2485 if (linux_ops->to_stopped_by_watchpoint (linux_ops)) 2486 { 2487 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2488 2489 if (linux_ops->to_stopped_data_address != NULL) 2490 lp->stopped_data_address_p = 2491 linux_ops->to_stopped_data_address (¤t_target, 2492 &lp->stopped_data_address); 2493 else 2494 lp->stopped_data_address_p = 0; 2495 } 2496 2497 do_cleanups (old_chain); 2498 2499 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2500 } 2501 2502 /* Called when the LWP stopped for a trap that could be explained by a 2503 watchpoint or a breakpoint. */ 2504 2505 static void 2506 save_sigtrap (struct lwp_info *lp) 2507 { 2508 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2509 gdb_assert (lp->status != 0); 2510 2511 /* Check first if this was a SW/HW breakpoint before checking 2512 watchpoints, because at least s390 can't tell the data address of 2513 hardware watchpoint hits, and the kernel returns 2514 stopped-by-watchpoint as long as there's a watchpoint set. */ 2515 if (linux_nat_status_is_event (lp->status)) 2516 check_stopped_by_breakpoint (lp); 2517 2518 /* Note that TRAP_HWBKPT can indicate either a hardware breakpoint 2519 or hardware watchpoint. Check which is which if we got 2520 TARGET_STOPPED_BY_HW_BREAKPOINT. */ 2521 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON 2522 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2523 check_stopped_by_watchpoint (lp); 2524 } 2525 2526 /* Returns true if the LWP had stopped for a watchpoint. */ 2527 2528 static int 2529 linux_nat_stopped_by_watchpoint (struct target_ops *ops) 2530 { 2531 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2532 2533 gdb_assert (lp != NULL); 2534 2535 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2536 } 2537 2538 static int 2539 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 2540 { 2541 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2542 2543 gdb_assert (lp != NULL); 2544 2545 *addr_p = lp->stopped_data_address; 2546 2547 return lp->stopped_data_address_p; 2548 } 2549 2550 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2551 2552 static int 2553 sigtrap_is_event (int status) 2554 { 2555 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2556 } 2557 2558 /* Set alternative SIGTRAP-like events recognizer. If 2559 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be 2560 applied. */ 2561 2562 void 2563 linux_nat_set_status_is_event (struct target_ops *t, 2564 int (*status_is_event) (int status)) 2565 { 2566 linux_nat_status_is_event = status_is_event; 2567 } 2568 2569 /* Wait until LP is stopped. */ 2570 2571 static int 2572 stop_wait_callback (struct lwp_info *lp, void *data) 2573 { 2574 struct inferior *inf = find_inferior_ptid (lp->ptid); 2575 2576 /* If this is a vfork parent, bail out, it is not going to report 2577 any SIGSTOP until the vfork is done with. */ 2578 if (inf->vfork_child != NULL) 2579 return 0; 2580 2581 if (!lp->stopped) 2582 { 2583 int status; 2584 2585 status = wait_lwp (lp); 2586 if (status == 0) 2587 return 0; 2588 2589 if (lp->ignore_sigint && WIFSTOPPED (status) 2590 && WSTOPSIG (status) == SIGINT) 2591 { 2592 lp->ignore_sigint = 0; 2593 2594 errno = 0; 2595 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 2596 lp->stopped = 0; 2597 if (debug_linux_nat) 2598 fprintf_unfiltered (gdb_stdlog, 2599 "PTRACE_CONT %s, 0, 0 (%s) " 2600 "(discarding SIGINT)\n", 2601 target_pid_to_str (lp->ptid), 2602 errno ? safe_strerror (errno) : "OK"); 2603 2604 return stop_wait_callback (lp, NULL); 2605 } 2606 2607 maybe_clear_ignore_sigint (lp); 2608 2609 if (WSTOPSIG (status) != SIGSTOP) 2610 { 2611 /* The thread was stopped with a signal other than SIGSTOP. */ 2612 2613 if (debug_linux_nat) 2614 fprintf_unfiltered (gdb_stdlog, 2615 "SWC: Pending event %s in %s\n", 2616 status_to_str ((int) status), 2617 target_pid_to_str (lp->ptid)); 2618 2619 /* Save the sigtrap event. */ 2620 lp->status = status; 2621 gdb_assert (lp->signalled); 2622 save_sigtrap (lp); 2623 } 2624 else 2625 { 2626 /* We caught the SIGSTOP that we intended to catch, so 2627 there's no SIGSTOP pending. */ 2628 2629 if (debug_linux_nat) 2630 fprintf_unfiltered (gdb_stdlog, 2631 "SWC: Expected SIGSTOP caught for %s.\n", 2632 target_pid_to_str (lp->ptid)); 2633 2634 /* Reset SIGNALLED only after the stop_wait_callback call 2635 above as it does gdb_assert on SIGNALLED. */ 2636 lp->signalled = 0; 2637 } 2638 } 2639 2640 return 0; 2641 } 2642 2643 /* Return non-zero if LP has a wait status pending. Discard the 2644 pending event and resume the LWP if the event that originally 2645 caused the stop became uninteresting. */ 2646 2647 static int 2648 status_callback (struct lwp_info *lp, void *data) 2649 { 2650 /* Only report a pending wait status if we pretend that this has 2651 indeed been resumed. */ 2652 if (!lp->resumed) 2653 return 0; 2654 2655 if (!lwp_status_pending_p (lp)) 2656 return 0; 2657 2658 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2659 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2660 { 2661 struct regcache *regcache = get_thread_regcache (lp->ptid); 2662 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2663 CORE_ADDR pc; 2664 int discard = 0; 2665 2666 pc = regcache_read_pc (regcache); 2667 2668 if (pc != lp->stop_pc) 2669 { 2670 if (debug_linux_nat) 2671 fprintf_unfiltered (gdb_stdlog, 2672 "SC: PC of %s changed. was=%s, now=%s\n", 2673 target_pid_to_str (lp->ptid), 2674 paddress (target_gdbarch (), lp->stop_pc), 2675 paddress (target_gdbarch (), pc)); 2676 discard = 1; 2677 } 2678 2679 #if !USE_SIGTRAP_SIGINFO 2680 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2681 { 2682 if (debug_linux_nat) 2683 fprintf_unfiltered (gdb_stdlog, 2684 "SC: previous breakpoint of %s, at %s gone\n", 2685 target_pid_to_str (lp->ptid), 2686 paddress (target_gdbarch (), lp->stop_pc)); 2687 2688 discard = 1; 2689 } 2690 #endif 2691 2692 if (discard) 2693 { 2694 if (debug_linux_nat) 2695 fprintf_unfiltered (gdb_stdlog, 2696 "SC: pending event of %s cancelled.\n", 2697 target_pid_to_str (lp->ptid)); 2698 2699 lp->status = 0; 2700 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2701 return 0; 2702 } 2703 } 2704 2705 return 1; 2706 } 2707 2708 /* Return non-zero if LP isn't stopped. */ 2709 2710 static int 2711 running_callback (struct lwp_info *lp, void *data) 2712 { 2713 return (!lp->stopped 2714 || (lwp_status_pending_p (lp) && lp->resumed)); 2715 } 2716 2717 /* Count the LWP's that have had events. */ 2718 2719 static int 2720 count_events_callback (struct lwp_info *lp, void *data) 2721 { 2722 int *count = data; 2723 2724 gdb_assert (count != NULL); 2725 2726 /* Select only resumed LWPs that have an event pending. */ 2727 if (lp->resumed && lwp_status_pending_p (lp)) 2728 (*count)++; 2729 2730 return 0; 2731 } 2732 2733 /* Select the LWP (if any) that is currently being single-stepped. */ 2734 2735 static int 2736 select_singlestep_lwp_callback (struct lwp_info *lp, void *data) 2737 { 2738 if (lp->last_resume_kind == resume_step 2739 && lp->status != 0) 2740 return 1; 2741 else 2742 return 0; 2743 } 2744 2745 /* Returns true if LP has a status pending. */ 2746 2747 static int 2748 lwp_status_pending_p (struct lwp_info *lp) 2749 { 2750 /* We check for lp->waitstatus in addition to lp->status, because we 2751 can have pending process exits recorded in lp->status and 2752 W_EXITCODE(0,0) happens to be 0. */ 2753 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE; 2754 } 2755 2756 /* Select the Nth LWP that has had an event. */ 2757 2758 static int 2759 select_event_lwp_callback (struct lwp_info *lp, void *data) 2760 { 2761 int *selector = data; 2762 2763 gdb_assert (selector != NULL); 2764 2765 /* Select only resumed LWPs that have an event pending. */ 2766 if (lp->resumed && lwp_status_pending_p (lp)) 2767 if ((*selector)-- == 0) 2768 return 1; 2769 2770 return 0; 2771 } 2772 2773 /* Called when the LWP got a signal/trap that could be explained by a 2774 software or hardware breakpoint. */ 2775 2776 static int 2777 check_stopped_by_breakpoint (struct lwp_info *lp) 2778 { 2779 /* Arrange for a breakpoint to be hit again later. We don't keep 2780 the SIGTRAP status and don't forward the SIGTRAP signal to the 2781 LWP. We will handle the current event, eventually we will resume 2782 this LWP, and this breakpoint will trap again. 2783 2784 If we do not do this, then we run the risk that the user will 2785 delete or disable the breakpoint, but the LWP will have already 2786 tripped on it. */ 2787 2788 struct regcache *regcache = get_thread_regcache (lp->ptid); 2789 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2790 CORE_ADDR pc; 2791 CORE_ADDR sw_bp_pc; 2792 #if USE_SIGTRAP_SIGINFO 2793 siginfo_t siginfo; 2794 #endif 2795 2796 pc = regcache_read_pc (regcache); 2797 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2798 2799 #if USE_SIGTRAP_SIGINFO 2800 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2801 { 2802 if (siginfo.si_signo == SIGTRAP) 2803 { 2804 if (siginfo.si_code == GDB_ARCH_TRAP_BRKPT) 2805 { 2806 if (debug_linux_nat) 2807 fprintf_unfiltered (gdb_stdlog, 2808 "CSBB: %s stopped by software " 2809 "breakpoint\n", 2810 target_pid_to_str (lp->ptid)); 2811 2812 /* Back up the PC if necessary. */ 2813 if (pc != sw_bp_pc) 2814 regcache_write_pc (regcache, sw_bp_pc); 2815 2816 lp->stop_pc = sw_bp_pc; 2817 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2818 return 1; 2819 } 2820 else if (siginfo.si_code == TRAP_HWBKPT) 2821 { 2822 if (debug_linux_nat) 2823 fprintf_unfiltered (gdb_stdlog, 2824 "CSBB: %s stopped by hardware " 2825 "breakpoint/watchpoint\n", 2826 target_pid_to_str (lp->ptid)); 2827 2828 lp->stop_pc = pc; 2829 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2830 return 1; 2831 } 2832 else if (siginfo.si_code == TRAP_TRACE) 2833 { 2834 if (debug_linux_nat) 2835 fprintf_unfiltered (gdb_stdlog, 2836 "CSBB: %s stopped by trace\n", 2837 target_pid_to_str (lp->ptid)); 2838 } 2839 } 2840 } 2841 #else 2842 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2843 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache), 2844 sw_bp_pc)) 2845 { 2846 /* The LWP was either continued, or stepped a software 2847 breakpoint instruction. */ 2848 if (debug_linux_nat) 2849 fprintf_unfiltered (gdb_stdlog, 2850 "CSBB: %s stopped by software breakpoint\n", 2851 target_pid_to_str (lp->ptid)); 2852 2853 /* Back up the PC if necessary. */ 2854 if (pc != sw_bp_pc) 2855 regcache_write_pc (regcache, sw_bp_pc); 2856 2857 lp->stop_pc = sw_bp_pc; 2858 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2859 return 1; 2860 } 2861 2862 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2863 { 2864 if (debug_linux_nat) 2865 fprintf_unfiltered (gdb_stdlog, 2866 "CSBB: stopped by hardware breakpoint %s\n", 2867 target_pid_to_str (lp->ptid)); 2868 2869 lp->stop_pc = pc; 2870 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2871 return 1; 2872 } 2873 #endif 2874 2875 return 0; 2876 } 2877 2878 2879 /* Returns true if the LWP had stopped for a software breakpoint. */ 2880 2881 static int 2882 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops) 2883 { 2884 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2885 2886 gdb_assert (lp != NULL); 2887 2888 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2889 } 2890 2891 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2892 2893 static int 2894 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops) 2895 { 2896 return USE_SIGTRAP_SIGINFO; 2897 } 2898 2899 /* Returns true if the LWP had stopped for a hardware 2900 breakpoint/watchpoint. */ 2901 2902 static int 2903 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops) 2904 { 2905 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2906 2907 gdb_assert (lp != NULL); 2908 2909 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2910 } 2911 2912 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2913 2914 static int 2915 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops) 2916 { 2917 return USE_SIGTRAP_SIGINFO; 2918 } 2919 2920 /* Select one LWP out of those that have events pending. */ 2921 2922 static void 2923 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2924 { 2925 int num_events = 0; 2926 int random_selector; 2927 struct lwp_info *event_lp = NULL; 2928 2929 /* Record the wait status for the original LWP. */ 2930 (*orig_lp)->status = *status; 2931 2932 /* In all-stop, give preference to the LWP that is being 2933 single-stepped. There will be at most one, and it will be the 2934 LWP that the core is most interested in. If we didn't do this, 2935 then we'd have to handle pending step SIGTRAPs somehow in case 2936 the core later continues the previously-stepped thread, as 2937 otherwise we'd report the pending SIGTRAP then, and the core, not 2938 having stepped the thread, wouldn't understand what the trap was 2939 for, and therefore would report it to the user as a random 2940 signal. */ 2941 if (!non_stop) 2942 { 2943 event_lp = iterate_over_lwps (filter, 2944 select_singlestep_lwp_callback, NULL); 2945 if (event_lp != NULL) 2946 { 2947 if (debug_linux_nat) 2948 fprintf_unfiltered (gdb_stdlog, 2949 "SEL: Select single-step %s\n", 2950 target_pid_to_str (event_lp->ptid)); 2951 } 2952 } 2953 2954 if (event_lp == NULL) 2955 { 2956 /* Pick one at random, out of those which have had events. */ 2957 2958 /* First see how many events we have. */ 2959 iterate_over_lwps (filter, count_events_callback, &num_events); 2960 gdb_assert (num_events > 0); 2961 2962 /* Now randomly pick a LWP out of those that have had 2963 events. */ 2964 random_selector = (int) 2965 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2966 2967 if (debug_linux_nat && num_events > 1) 2968 fprintf_unfiltered (gdb_stdlog, 2969 "SEL: Found %d events, selecting #%d\n", 2970 num_events, random_selector); 2971 2972 event_lp = iterate_over_lwps (filter, 2973 select_event_lwp_callback, 2974 &random_selector); 2975 } 2976 2977 if (event_lp != NULL) 2978 { 2979 /* Switch the event LWP. */ 2980 *orig_lp = event_lp; 2981 *status = event_lp->status; 2982 } 2983 2984 /* Flush the wait status for the event LWP. */ 2985 (*orig_lp)->status = 0; 2986 } 2987 2988 /* Return non-zero if LP has been resumed. */ 2989 2990 static int 2991 resumed_callback (struct lwp_info *lp, void *data) 2992 { 2993 return lp->resumed; 2994 } 2995 2996 /* Stop an active thread, verify it still exists, then resume it. If 2997 the thread ends up with a pending status, then it is not resumed, 2998 and *DATA (really a pointer to int), is set. */ 2999 3000 static int 3001 stop_and_resume_callback (struct lwp_info *lp, void *data) 3002 { 3003 if (!lp->stopped) 3004 { 3005 ptid_t ptid = lp->ptid; 3006 3007 stop_callback (lp, NULL); 3008 stop_wait_callback (lp, NULL); 3009 3010 /* Resume if the lwp still exists, and the core wanted it 3011 running. */ 3012 lp = find_lwp_pid (ptid); 3013 if (lp != NULL) 3014 { 3015 if (lp->last_resume_kind == resume_stop 3016 && !lwp_status_pending_p (lp)) 3017 { 3018 /* The core wanted the LWP to stop. Even if it stopped 3019 cleanly (with SIGSTOP), leave the event pending. */ 3020 if (debug_linux_nat) 3021 fprintf_unfiltered (gdb_stdlog, 3022 "SARC: core wanted LWP %ld stopped " 3023 "(leaving SIGSTOP pending)\n", 3024 ptid_get_lwp (lp->ptid)); 3025 lp->status = W_STOPCODE (SIGSTOP); 3026 } 3027 3028 if (!lwp_status_pending_p (lp)) 3029 { 3030 if (debug_linux_nat) 3031 fprintf_unfiltered (gdb_stdlog, 3032 "SARC: re-resuming LWP %ld\n", 3033 ptid_get_lwp (lp->ptid)); 3034 resume_lwp (lp, lp->step, GDB_SIGNAL_0); 3035 } 3036 else 3037 { 3038 if (debug_linux_nat) 3039 fprintf_unfiltered (gdb_stdlog, 3040 "SARC: not re-resuming LWP %ld " 3041 "(has pending)\n", 3042 ptid_get_lwp (lp->ptid)); 3043 } 3044 } 3045 } 3046 return 0; 3047 } 3048 3049 /* Check if we should go on and pass this event to common code. 3050 Return the affected lwp if we are, or NULL otherwise. */ 3051 3052 static struct lwp_info * 3053 linux_nat_filter_event (int lwpid, int status) 3054 { 3055 struct lwp_info *lp; 3056 int event = linux_ptrace_get_extended_event (status); 3057 3058 lp = find_lwp_pid (pid_to_ptid (lwpid)); 3059 3060 /* Check for stop events reported by a process we didn't already 3061 know about - anything not already in our LWP list. 3062 3063 If we're expecting to receive stopped processes after 3064 fork, vfork, and clone events, then we'll just add the 3065 new one to our list and go back to waiting for the event 3066 to be reported - the stopped process might be returned 3067 from waitpid before or after the event is. 3068 3069 But note the case of a non-leader thread exec'ing after the 3070 leader having exited, and gone from our lists. The non-leader 3071 thread changes its tid to the tgid. */ 3072 3073 if (WIFSTOPPED (status) && lp == NULL 3074 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)) 3075 { 3076 /* A multi-thread exec after we had seen the leader exiting. */ 3077 if (debug_linux_nat) 3078 fprintf_unfiltered (gdb_stdlog, 3079 "LLW: Re-adding thread group leader LWP %d.\n", 3080 lwpid); 3081 3082 lp = add_lwp (ptid_build (lwpid, lwpid, 0)); 3083 lp->stopped = 1; 3084 lp->resumed = 1; 3085 add_thread (lp->ptid); 3086 } 3087 3088 if (WIFSTOPPED (status) && !lp) 3089 { 3090 if (debug_linux_nat) 3091 fprintf_unfiltered (gdb_stdlog, 3092 "LHEW: saving LWP %ld status %s in stopped_pids list\n", 3093 (long) lwpid, status_to_str (status)); 3094 add_to_pid_list (&stopped_pids, lwpid, status); 3095 return NULL; 3096 } 3097 3098 /* Make sure we don't report an event for the exit of an LWP not in 3099 our list, i.e. not part of the current process. This can happen 3100 if we detach from a program we originally forked and then it 3101 exits. */ 3102 if (!WIFSTOPPED (status) && !lp) 3103 return NULL; 3104 3105 /* This LWP is stopped now. (And if dead, this prevents it from 3106 ever being continued.) */ 3107 lp->stopped = 1; 3108 3109 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 3110 { 3111 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 3112 int options = linux_nat_ptrace_options (inf->attach_flag); 3113 3114 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 3115 lp->must_set_ptrace_flags = 0; 3116 } 3117 3118 /* Handle GNU/Linux's syscall SIGTRAPs. */ 3119 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 3120 { 3121 /* No longer need the sysgood bit. The ptrace event ends up 3122 recorded in lp->waitstatus if we care for it. We can carry 3123 on handling the event like a regular SIGTRAP from here 3124 on. */ 3125 status = W_STOPCODE (SIGTRAP); 3126 if (linux_handle_syscall_trap (lp, 0)) 3127 return NULL; 3128 } 3129 3130 /* Handle GNU/Linux's extended waitstatus for trace events. */ 3131 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 3132 && linux_is_extended_waitstatus (status)) 3133 { 3134 if (debug_linux_nat) 3135 fprintf_unfiltered (gdb_stdlog, 3136 "LLW: Handling extended status 0x%06x\n", 3137 status); 3138 if (linux_handle_extended_wait (lp, status)) 3139 return NULL; 3140 } 3141 3142 /* Check if the thread has exited. */ 3143 if (WIFEXITED (status) || WIFSIGNALED (status)) 3144 { 3145 if (num_lwps (ptid_get_pid (lp->ptid)) > 1) 3146 { 3147 /* If this is the main thread, we must stop all threads and 3148 verify if they are still alive. This is because in the 3149 nptl thread model on Linux 2.4, there is no signal issued 3150 for exiting LWPs other than the main thread. We only get 3151 the main thread exit signal once all child threads have 3152 already exited. If we stop all the threads and use the 3153 stop_wait_callback to check if they have exited we can 3154 determine whether this signal should be ignored or 3155 whether it means the end of the debugged application, 3156 regardless of which threading model is being used. */ 3157 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)) 3158 { 3159 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)), 3160 stop_and_resume_callback, NULL); 3161 } 3162 3163 if (debug_linux_nat) 3164 fprintf_unfiltered (gdb_stdlog, 3165 "LLW: %s exited.\n", 3166 target_pid_to_str (lp->ptid)); 3167 3168 if (num_lwps (ptid_get_pid (lp->ptid)) > 1) 3169 { 3170 /* If there is at least one more LWP, then the exit signal 3171 was not the end of the debugged application and should be 3172 ignored. */ 3173 exit_lwp (lp); 3174 return NULL; 3175 } 3176 } 3177 3178 gdb_assert (lp->resumed); 3179 3180 if (debug_linux_nat) 3181 fprintf_unfiltered (gdb_stdlog, 3182 "Process %ld exited\n", 3183 ptid_get_lwp (lp->ptid)); 3184 3185 /* This was the last lwp in the process. Since events are 3186 serialized to GDB core, we may not be able report this one 3187 right now, but GDB core and the other target layers will want 3188 to be notified about the exit code/signal, leave the status 3189 pending for the next time we're able to report it. */ 3190 3191 /* Dead LWP's aren't expected to reported a pending sigstop. */ 3192 lp->signalled = 0; 3193 3194 /* Store the pending event in the waitstatus, because 3195 W_EXITCODE(0,0) == 0. */ 3196 store_waitstatus (&lp->waitstatus, status); 3197 return lp; 3198 } 3199 3200 /* Check if the current LWP has previously exited. In the nptl 3201 thread model, LWPs other than the main thread do not issue 3202 signals when they exit so we must check whenever the thread has 3203 stopped. A similar check is made in stop_wait_callback(). */ 3204 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid)) 3205 { 3206 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid)); 3207 3208 if (debug_linux_nat) 3209 fprintf_unfiltered (gdb_stdlog, 3210 "LLW: %s exited.\n", 3211 target_pid_to_str (lp->ptid)); 3212 3213 exit_lwp (lp); 3214 3215 /* Make sure there is at least one thread running. */ 3216 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL)); 3217 3218 /* Discard the event. */ 3219 return NULL; 3220 } 3221 3222 /* Make sure we don't report a SIGSTOP that we sent ourselves in 3223 an attempt to stop an LWP. */ 3224 if (lp->signalled 3225 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 3226 { 3227 lp->signalled = 0; 3228 3229 if (lp->last_resume_kind == resume_stop) 3230 { 3231 if (debug_linux_nat) 3232 fprintf_unfiltered (gdb_stdlog, 3233 "LLW: resume_stop SIGSTOP caught for %s.\n", 3234 target_pid_to_str (lp->ptid)); 3235 } 3236 else 3237 { 3238 /* This is a delayed SIGSTOP. Filter out the event. */ 3239 3240 if (debug_linux_nat) 3241 fprintf_unfiltered (gdb_stdlog, 3242 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n", 3243 lp->step ? 3244 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3245 target_pid_to_str (lp->ptid)); 3246 3247 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3248 gdb_assert (lp->resumed); 3249 return NULL; 3250 } 3251 } 3252 3253 /* Make sure we don't report a SIGINT that we have already displayed 3254 for another thread. */ 3255 if (lp->ignore_sigint 3256 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 3257 { 3258 if (debug_linux_nat) 3259 fprintf_unfiltered (gdb_stdlog, 3260 "LLW: Delayed SIGINT caught for %s.\n", 3261 target_pid_to_str (lp->ptid)); 3262 3263 /* This is a delayed SIGINT. */ 3264 lp->ignore_sigint = 0; 3265 3266 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3267 if (debug_linux_nat) 3268 fprintf_unfiltered (gdb_stdlog, 3269 "LLW: %s %s, 0, 0 (discard SIGINT)\n", 3270 lp->step ? 3271 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3272 target_pid_to_str (lp->ptid)); 3273 gdb_assert (lp->resumed); 3274 3275 /* Discard the event. */ 3276 return NULL; 3277 } 3278 3279 /* Don't report signals that GDB isn't interested in, such as 3280 signals that are neither printed nor stopped upon. Stopping all 3281 threads can be a bit time-consuming so if we want decent 3282 performance with heavily multi-threaded programs, especially when 3283 they're using a high frequency timer, we'd better avoid it if we 3284 can. */ 3285 if (WIFSTOPPED (status)) 3286 { 3287 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3288 3289 if (!non_stop) 3290 { 3291 /* Only do the below in all-stop, as we currently use SIGSTOP 3292 to implement target_stop (see linux_nat_stop) in 3293 non-stop. */ 3294 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3295 { 3296 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3297 forwarded to the entire process group, that is, all LWPs 3298 will receive it - unless they're using CLONE_THREAD to 3299 share signals. Since we only want to report it once, we 3300 mark it as ignored for all LWPs except this one. */ 3301 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)), 3302 set_ignore_sigint, NULL); 3303 lp->ignore_sigint = 0; 3304 } 3305 else 3306 maybe_clear_ignore_sigint (lp); 3307 } 3308 3309 /* When using hardware single-step, we need to report every signal. 3310 Otherwise, signals in pass_mask may be short-circuited 3311 except signals that might be caused by a breakpoint. */ 3312 if (!lp->step 3313 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 3314 && !linux_wstatus_maybe_breakpoint (status)) 3315 { 3316 linux_resume_one_lwp (lp, lp->step, signo); 3317 if (debug_linux_nat) 3318 fprintf_unfiltered (gdb_stdlog, 3319 "LLW: %s %s, %s (preempt 'handle')\n", 3320 lp->step ? 3321 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3322 target_pid_to_str (lp->ptid), 3323 (signo != GDB_SIGNAL_0 3324 ? strsignal (gdb_signal_to_host (signo)) 3325 : "0")); 3326 return NULL; 3327 } 3328 } 3329 3330 /* An interesting event. */ 3331 gdb_assert (lp); 3332 lp->status = status; 3333 save_sigtrap (lp); 3334 return lp; 3335 } 3336 3337 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3338 their exits until all other threads in the group have exited. */ 3339 3340 static void 3341 check_zombie_leaders (void) 3342 { 3343 struct inferior *inf; 3344 3345 ALL_INFERIORS (inf) 3346 { 3347 struct lwp_info *leader_lp; 3348 3349 if (inf->pid == 0) 3350 continue; 3351 3352 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid)); 3353 if (leader_lp != NULL 3354 /* Check if there are other threads in the group, as we may 3355 have raced with the inferior simply exiting. */ 3356 && num_lwps (inf->pid) > 1 3357 && linux_proc_pid_is_zombie (inf->pid)) 3358 { 3359 if (debug_linux_nat) 3360 fprintf_unfiltered (gdb_stdlog, 3361 "CZL: Thread group leader %d zombie " 3362 "(it exited, or another thread execd).\n", 3363 inf->pid); 3364 3365 /* A leader zombie can mean one of two things: 3366 3367 - It exited, and there's an exit status pending 3368 available, or only the leader exited (not the whole 3369 program). In the latter case, we can't waitpid the 3370 leader's exit status until all other threads are gone. 3371 3372 - There are 3 or more threads in the group, and a thread 3373 other than the leader exec'd. On an exec, the Linux 3374 kernel destroys all other threads (except the execing 3375 one) in the thread group, and resets the execing thread's 3376 tid to the tgid. No exit notification is sent for the 3377 execing thread -- from the ptracer's perspective, it 3378 appears as though the execing thread just vanishes. 3379 Until we reap all other threads except the leader and the 3380 execing thread, the leader will be zombie, and the 3381 execing thread will be in `D (disc sleep)'. As soon as 3382 all other threads are reaped, the execing thread changes 3383 it's tid to the tgid, and the previous (zombie) leader 3384 vanishes, giving place to the "new" leader. We could try 3385 distinguishing the exit and exec cases, by waiting once 3386 more, and seeing if something comes out, but it doesn't 3387 sound useful. The previous leader _does_ go away, and 3388 we'll re-add the new one once we see the exec event 3389 (which is just the same as what would happen if the 3390 previous leader did exit voluntarily before some other 3391 thread execs). */ 3392 3393 if (debug_linux_nat) 3394 fprintf_unfiltered (gdb_stdlog, 3395 "CZL: Thread group leader %d vanished.\n", 3396 inf->pid); 3397 exit_lwp (leader_lp); 3398 } 3399 } 3400 } 3401 3402 static ptid_t 3403 linux_nat_wait_1 (struct target_ops *ops, 3404 ptid_t ptid, struct target_waitstatus *ourstatus, 3405 int target_options) 3406 { 3407 sigset_t prev_mask; 3408 enum resume_kind last_resume_kind; 3409 struct lwp_info *lp; 3410 int status; 3411 3412 if (debug_linux_nat) 3413 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); 3414 3415 /* The first time we get here after starting a new inferior, we may 3416 not have added it to the LWP list yet - this is the earliest 3417 moment at which we know its PID. */ 3418 if (ptid_is_pid (inferior_ptid)) 3419 { 3420 /* Upgrade the main thread's ptid. */ 3421 thread_change_ptid (inferior_ptid, 3422 ptid_build (ptid_get_pid (inferior_ptid), 3423 ptid_get_pid (inferior_ptid), 0)); 3424 3425 lp = add_initial_lwp (inferior_ptid); 3426 lp->resumed = 1; 3427 } 3428 3429 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3430 block_child_signals (&prev_mask); 3431 3432 /* First check if there is a LWP with a wait status pending. */ 3433 lp = iterate_over_lwps (ptid, status_callback, NULL); 3434 if (lp != NULL) 3435 { 3436 if (debug_linux_nat) 3437 fprintf_unfiltered (gdb_stdlog, 3438 "LLW: Using pending wait status %s for %s.\n", 3439 status_to_str (lp->status), 3440 target_pid_to_str (lp->ptid)); 3441 } 3442 3443 if (!target_is_async_p ()) 3444 { 3445 /* Causes SIGINT to be passed on to the attached process. */ 3446 set_sigint_trap (); 3447 } 3448 3449 /* But if we don't find a pending event, we'll have to wait. Always 3450 pull all events out of the kernel. We'll randomly select an 3451 event LWP out of all that have events, to prevent starvation. */ 3452 3453 while (lp == NULL) 3454 { 3455 pid_t lwpid; 3456 3457 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3458 quirks: 3459 3460 - If the thread group leader exits while other threads in the 3461 thread group still exist, waitpid(TGID, ...) hangs. That 3462 waitpid won't return an exit status until the other threads 3463 in the group are reapped. 3464 3465 - When a non-leader thread execs, that thread just vanishes 3466 without reporting an exit (so we'd hang if we waited for it 3467 explicitly in that case). The exec event is reported to 3468 the TGID pid. */ 3469 3470 errno = 0; 3471 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG); 3472 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD)) 3473 lwpid = my_waitpid (-1, &status, WNOHANG); 3474 3475 if (debug_linux_nat) 3476 fprintf_unfiltered (gdb_stdlog, 3477 "LNW: waitpid(-1, ...) returned %d, %s\n", 3478 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK"); 3479 3480 if (lwpid > 0) 3481 { 3482 if (debug_linux_nat) 3483 { 3484 fprintf_unfiltered (gdb_stdlog, 3485 "LLW: waitpid %ld received %s\n", 3486 (long) lwpid, status_to_str (status)); 3487 } 3488 3489 linux_nat_filter_event (lwpid, status); 3490 /* Retry until nothing comes out of waitpid. A single 3491 SIGCHLD can indicate more than one child stopped. */ 3492 continue; 3493 } 3494 3495 /* Now that we've pulled all events out of the kernel, resume 3496 LWPs that don't have an interesting event to report. */ 3497 iterate_over_lwps (minus_one_ptid, 3498 resume_stopped_resumed_lwps, &minus_one_ptid); 3499 3500 /* ... and find an LWP with a status to report to the core, if 3501 any. */ 3502 lp = iterate_over_lwps (ptid, status_callback, NULL); 3503 if (lp != NULL) 3504 break; 3505 3506 /* Check for zombie thread group leaders. Those can't be reaped 3507 until all other threads in the thread group are. */ 3508 check_zombie_leaders (); 3509 3510 /* If there are no resumed children left, bail. We'd be stuck 3511 forever in the sigsuspend call below otherwise. */ 3512 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL) 3513 { 3514 if (debug_linux_nat) 3515 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n"); 3516 3517 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3518 3519 if (!target_is_async_p ()) 3520 clear_sigint_trap (); 3521 3522 restore_child_signals_mask (&prev_mask); 3523 return minus_one_ptid; 3524 } 3525 3526 /* No interesting event to report to the core. */ 3527 3528 if (target_options & TARGET_WNOHANG) 3529 { 3530 if (debug_linux_nat) 3531 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); 3532 3533 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3534 restore_child_signals_mask (&prev_mask); 3535 return minus_one_ptid; 3536 } 3537 3538 /* We shouldn't end up here unless we want to try again. */ 3539 gdb_assert (lp == NULL); 3540 3541 /* Block until we get an event reported with SIGCHLD. */ 3542 if (debug_linux_nat) 3543 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n"); 3544 sigsuspend (&suspend_mask); 3545 } 3546 3547 if (!target_is_async_p ()) 3548 clear_sigint_trap (); 3549 3550 gdb_assert (lp); 3551 3552 status = lp->status; 3553 lp->status = 0; 3554 3555 if (!non_stop) 3556 { 3557 /* Now stop all other LWP's ... */ 3558 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 3559 3560 /* ... and wait until all of them have reported back that 3561 they're no longer running. */ 3562 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 3563 } 3564 3565 /* If we're not waiting for a specific LWP, choose an event LWP from 3566 among those that have had events. Giving equal priority to all 3567 LWPs that have had events helps prevent starvation. */ 3568 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3569 select_event_lwp (ptid, &lp, &status); 3570 3571 gdb_assert (lp != NULL); 3572 3573 /* Now that we've selected our final event LWP, un-adjust its PC if 3574 it was a software breakpoint, and we can't reliably support the 3575 "stopped by software breakpoint" stop reason. */ 3576 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3577 && !USE_SIGTRAP_SIGINFO) 3578 { 3579 struct regcache *regcache = get_thread_regcache (lp->ptid); 3580 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3581 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3582 3583 if (decr_pc != 0) 3584 { 3585 CORE_ADDR pc; 3586 3587 pc = regcache_read_pc (regcache); 3588 regcache_write_pc (regcache, pc + decr_pc); 3589 } 3590 } 3591 3592 /* We'll need this to determine whether to report a SIGSTOP as 3593 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3594 clears it. */ 3595 last_resume_kind = lp->last_resume_kind; 3596 3597 if (!non_stop) 3598 { 3599 /* In all-stop, from the core's perspective, all LWPs are now 3600 stopped until a new resume action is sent over. */ 3601 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL); 3602 } 3603 else 3604 { 3605 resume_clear_callback (lp, NULL); 3606 } 3607 3608 if (linux_nat_status_is_event (status)) 3609 { 3610 if (debug_linux_nat) 3611 fprintf_unfiltered (gdb_stdlog, 3612 "LLW: trap ptid is %s.\n", 3613 target_pid_to_str (lp->ptid)); 3614 } 3615 3616 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3617 { 3618 *ourstatus = lp->waitstatus; 3619 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3620 } 3621 else 3622 store_waitstatus (ourstatus, status); 3623 3624 if (debug_linux_nat) 3625 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); 3626 3627 restore_child_signals_mask (&prev_mask); 3628 3629 if (last_resume_kind == resume_stop 3630 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3631 && WSTOPSIG (status) == SIGSTOP) 3632 { 3633 /* A thread that has been requested to stop by GDB with 3634 target_stop, and it stopped cleanly, so report as SIG0. The 3635 use of SIGSTOP is an implementation detail. */ 3636 ourstatus->value.sig = GDB_SIGNAL_0; 3637 } 3638 3639 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3640 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3641 lp->core = -1; 3642 else 3643 lp->core = linux_common_core_of_thread (lp->ptid); 3644 3645 return lp->ptid; 3646 } 3647 3648 /* Resume LWPs that are currently stopped without any pending status 3649 to report, but are resumed from the core's perspective. */ 3650 3651 static int 3652 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data) 3653 { 3654 ptid_t *wait_ptid_p = data; 3655 3656 if (!lp->stopped) 3657 { 3658 if (debug_linux_nat) 3659 fprintf_unfiltered (gdb_stdlog, 3660 "RSRL: NOT resuming LWP %s, not stopped\n", 3661 target_pid_to_str (lp->ptid)); 3662 } 3663 else if (!lp->resumed) 3664 { 3665 if (debug_linux_nat) 3666 fprintf_unfiltered (gdb_stdlog, 3667 "RSRL: NOT resuming LWP %s, not resumed\n", 3668 target_pid_to_str (lp->ptid)); 3669 } 3670 else if (lwp_status_pending_p (lp)) 3671 { 3672 if (debug_linux_nat) 3673 fprintf_unfiltered (gdb_stdlog, 3674 "RSRL: NOT resuming LWP %s, has pending status\n", 3675 target_pid_to_str (lp->ptid)); 3676 } 3677 else 3678 { 3679 struct regcache *regcache = get_thread_regcache (lp->ptid); 3680 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3681 3682 TRY 3683 { 3684 CORE_ADDR pc = regcache_read_pc (regcache); 3685 int leave_stopped = 0; 3686 3687 /* Don't bother if there's a breakpoint at PC that we'd hit 3688 immediately, and we're not waiting for this LWP. */ 3689 if (!ptid_match (lp->ptid, *wait_ptid_p)) 3690 { 3691 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 3692 leave_stopped = 1; 3693 } 3694 3695 if (!leave_stopped) 3696 { 3697 if (debug_linux_nat) 3698 fprintf_unfiltered (gdb_stdlog, 3699 "RSRL: resuming stopped-resumed LWP %s at " 3700 "%s: step=%d\n", 3701 target_pid_to_str (lp->ptid), 3702 paddress (gdbarch, pc), 3703 lp->step); 3704 3705 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3706 } 3707 } 3708 CATCH (ex, RETURN_MASK_ERROR) 3709 { 3710 if (!check_ptrace_stopped_lwp_gone (lp)) 3711 throw_exception (ex); 3712 } 3713 END_CATCH 3714 } 3715 3716 return 0; 3717 } 3718 3719 static ptid_t 3720 linux_nat_wait (struct target_ops *ops, 3721 ptid_t ptid, struct target_waitstatus *ourstatus, 3722 int target_options) 3723 { 3724 ptid_t event_ptid; 3725 3726 if (debug_linux_nat) 3727 { 3728 char *options_string; 3729 3730 options_string = target_options_to_string (target_options); 3731 fprintf_unfiltered (gdb_stdlog, 3732 "linux_nat_wait: [%s], [%s]\n", 3733 target_pid_to_str (ptid), 3734 options_string); 3735 xfree (options_string); 3736 } 3737 3738 /* Flush the async file first. */ 3739 if (target_is_async_p ()) 3740 async_file_flush (); 3741 3742 /* Resume LWPs that are currently stopped without any pending status 3743 to report, but are resumed from the core's perspective. LWPs get 3744 in this state if we find them stopping at a time we're not 3745 interested in reporting the event (target_wait on a 3746 specific_process, for example, see linux_nat_wait_1), and 3747 meanwhile the event became uninteresting. Don't bother resuming 3748 LWPs we're not going to wait for if they'd stop immediately. */ 3749 if (non_stop) 3750 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid); 3751 3752 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options); 3753 3754 /* If we requested any event, and something came out, assume there 3755 may be more. If we requested a specific lwp or process, also 3756 assume there may be more. */ 3757 if (target_is_async_p () 3758 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3759 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3760 || !ptid_equal (ptid, minus_one_ptid))) 3761 async_file_mark (); 3762 3763 return event_ptid; 3764 } 3765 3766 static int 3767 kill_callback (struct lwp_info *lp, void *data) 3768 { 3769 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3770 3771 errno = 0; 3772 kill_lwp (ptid_get_lwp (lp->ptid), SIGKILL); 3773 if (debug_linux_nat) 3774 { 3775 int save_errno = errno; 3776 3777 fprintf_unfiltered (gdb_stdlog, 3778 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n", 3779 target_pid_to_str (lp->ptid), 3780 save_errno ? safe_strerror (save_errno) : "OK"); 3781 } 3782 3783 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3784 3785 errno = 0; 3786 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0); 3787 if (debug_linux_nat) 3788 { 3789 int save_errno = errno; 3790 3791 fprintf_unfiltered (gdb_stdlog, 3792 "KC: PTRACE_KILL %s, 0, 0 (%s)\n", 3793 target_pid_to_str (lp->ptid), 3794 save_errno ? safe_strerror (save_errno) : "OK"); 3795 } 3796 3797 return 0; 3798 } 3799 3800 static int 3801 kill_wait_callback (struct lwp_info *lp, void *data) 3802 { 3803 pid_t pid; 3804 3805 /* We must make sure that there are no pending events (delayed 3806 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3807 program doesn't interfere with any following debugging session. */ 3808 3809 /* For cloned processes we must check both with __WCLONE and 3810 without, since the exit status of a cloned process isn't reported 3811 with __WCLONE. */ 3812 if (lp->cloned) 3813 { 3814 do 3815 { 3816 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE); 3817 if (pid != (pid_t) -1) 3818 { 3819 if (debug_linux_nat) 3820 fprintf_unfiltered (gdb_stdlog, 3821 "KWC: wait %s received unknown.\n", 3822 target_pid_to_str (lp->ptid)); 3823 /* The Linux kernel sometimes fails to kill a thread 3824 completely after PTRACE_KILL; that goes from the stop 3825 point in do_fork out to the one in 3826 get_signal_to_deliever and waits again. So kill it 3827 again. */ 3828 kill_callback (lp, NULL); 3829 } 3830 } 3831 while (pid == ptid_get_lwp (lp->ptid)); 3832 3833 gdb_assert (pid == -1 && errno == ECHILD); 3834 } 3835 3836 do 3837 { 3838 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0); 3839 if (pid != (pid_t) -1) 3840 { 3841 if (debug_linux_nat) 3842 fprintf_unfiltered (gdb_stdlog, 3843 "KWC: wait %s received unk.\n", 3844 target_pid_to_str (lp->ptid)); 3845 /* See the call to kill_callback above. */ 3846 kill_callback (lp, NULL); 3847 } 3848 } 3849 while (pid == ptid_get_lwp (lp->ptid)); 3850 3851 gdb_assert (pid == -1 && errno == ECHILD); 3852 return 0; 3853 } 3854 3855 static void 3856 linux_nat_kill (struct target_ops *ops) 3857 { 3858 struct target_waitstatus last; 3859 ptid_t last_ptid; 3860 int status; 3861 3862 /* If we're stopped while forking and we haven't followed yet, 3863 kill the other task. We need to do this first because the 3864 parent will be sleeping if this is a vfork. */ 3865 3866 get_last_target_status (&last_ptid, &last); 3867 3868 if (last.kind == TARGET_WAITKIND_FORKED 3869 || last.kind == TARGET_WAITKIND_VFORKED) 3870 { 3871 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0); 3872 wait (&status); 3873 3874 /* Let the arch-specific native code know this process is 3875 gone. */ 3876 linux_nat_forget_process (ptid_get_pid (last.value.related_pid)); 3877 } 3878 3879 if (forks_exist_p ()) 3880 linux_fork_killall (); 3881 else 3882 { 3883 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 3884 3885 /* Stop all threads before killing them, since ptrace requires 3886 that the thread is stopped to sucessfully PTRACE_KILL. */ 3887 iterate_over_lwps (ptid, stop_callback, NULL); 3888 /* ... and wait until all of them have reported back that 3889 they're no longer running. */ 3890 iterate_over_lwps (ptid, stop_wait_callback, NULL); 3891 3892 /* Kill all LWP's ... */ 3893 iterate_over_lwps (ptid, kill_callback, NULL); 3894 3895 /* ... and wait until we've flushed all events. */ 3896 iterate_over_lwps (ptid, kill_wait_callback, NULL); 3897 } 3898 3899 target_mourn_inferior (); 3900 } 3901 3902 static void 3903 linux_nat_mourn_inferior (struct target_ops *ops) 3904 { 3905 int pid = ptid_get_pid (inferior_ptid); 3906 3907 purge_lwp_list (pid); 3908 3909 if (! forks_exist_p ()) 3910 /* Normal case, no other forks available. */ 3911 linux_ops->to_mourn_inferior (ops); 3912 else 3913 /* Multi-fork case. The current inferior_ptid has exited, but 3914 there are other viable forks to debug. Delete the exiting 3915 one and context-switch to the first available. */ 3916 linux_fork_mourn_inferior (); 3917 3918 /* Let the arch-specific native code know this process is gone. */ 3919 linux_nat_forget_process (pid); 3920 } 3921 3922 /* Convert a native/host siginfo object, into/from the siginfo in the 3923 layout of the inferiors' architecture. */ 3924 3925 static void 3926 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3927 { 3928 int done = 0; 3929 3930 if (linux_nat_siginfo_fixup != NULL) 3931 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction); 3932 3933 /* If there was no callback, or the callback didn't do anything, 3934 then just do a straight memcpy. */ 3935 if (!done) 3936 { 3937 if (direction == 1) 3938 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3939 else 3940 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3941 } 3942 } 3943 3944 static enum target_xfer_status 3945 linux_xfer_siginfo (struct target_ops *ops, enum target_object object, 3946 const char *annex, gdb_byte *readbuf, 3947 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3948 ULONGEST *xfered_len) 3949 { 3950 int pid; 3951 siginfo_t siginfo; 3952 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3953 3954 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3955 gdb_assert (readbuf || writebuf); 3956 3957 pid = ptid_get_lwp (inferior_ptid); 3958 if (pid == 0) 3959 pid = ptid_get_pid (inferior_ptid); 3960 3961 if (offset > sizeof (siginfo)) 3962 return TARGET_XFER_E_IO; 3963 3964 errno = 0; 3965 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3966 if (errno != 0) 3967 return TARGET_XFER_E_IO; 3968 3969 /* When GDB is built as a 64-bit application, ptrace writes into 3970 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3971 inferior with a 64-bit GDB should look the same as debugging it 3972 with a 32-bit GDB, we need to convert it. GDB core always sees 3973 the converted layout, so any read/write will have to be done 3974 post-conversion. */ 3975 siginfo_fixup (&siginfo, inf_siginfo, 0); 3976 3977 if (offset + len > sizeof (siginfo)) 3978 len = sizeof (siginfo) - offset; 3979 3980 if (readbuf != NULL) 3981 memcpy (readbuf, inf_siginfo + offset, len); 3982 else 3983 { 3984 memcpy (inf_siginfo + offset, writebuf, len); 3985 3986 /* Convert back to ptrace layout before flushing it out. */ 3987 siginfo_fixup (&siginfo, inf_siginfo, 1); 3988 3989 errno = 0; 3990 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3991 if (errno != 0) 3992 return TARGET_XFER_E_IO; 3993 } 3994 3995 *xfered_len = len; 3996 return TARGET_XFER_OK; 3997 } 3998 3999 static enum target_xfer_status 4000 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object, 4001 const char *annex, gdb_byte *readbuf, 4002 const gdb_byte *writebuf, 4003 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 4004 { 4005 struct cleanup *old_chain; 4006 enum target_xfer_status xfer; 4007 4008 if (object == TARGET_OBJECT_SIGNAL_INFO) 4009 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf, 4010 offset, len, xfered_len); 4011 4012 /* The target is connected but no live inferior is selected. Pass 4013 this request down to a lower stratum (e.g., the executable 4014 file). */ 4015 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid)) 4016 return TARGET_XFER_EOF; 4017 4018 old_chain = save_inferior_ptid (); 4019 4020 if (ptid_lwp_p (inferior_ptid)) 4021 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid)); 4022 4023 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, 4024 offset, len, xfered_len); 4025 4026 do_cleanups (old_chain); 4027 return xfer; 4028 } 4029 4030 static int 4031 linux_thread_alive (ptid_t ptid) 4032 { 4033 int err, tmp_errno; 4034 4035 gdb_assert (ptid_lwp_p (ptid)); 4036 4037 /* Send signal 0 instead of anything ptrace, because ptracing a 4038 running thread errors out claiming that the thread doesn't 4039 exist. */ 4040 err = kill_lwp (ptid_get_lwp (ptid), 0); 4041 tmp_errno = errno; 4042 if (debug_linux_nat) 4043 fprintf_unfiltered (gdb_stdlog, 4044 "LLTA: KILL(SIG0) %s (%s)\n", 4045 target_pid_to_str (ptid), 4046 err ? safe_strerror (tmp_errno) : "OK"); 4047 4048 if (err != 0) 4049 return 0; 4050 4051 return 1; 4052 } 4053 4054 static int 4055 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid) 4056 { 4057 return linux_thread_alive (ptid); 4058 } 4059 4060 /* Implement the to_update_thread_list target method for this 4061 target. */ 4062 4063 static void 4064 linux_nat_update_thread_list (struct target_ops *ops) 4065 { 4066 if (linux_supports_traceclone ()) 4067 { 4068 /* With support for clone events, we add/delete threads from the 4069 list as clone/exit events are processed, so just try deleting 4070 exited threads still in the thread list. */ 4071 delete_exited_threads (); 4072 } 4073 else 4074 prune_threads (); 4075 } 4076 4077 static char * 4078 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid) 4079 { 4080 static char buf[64]; 4081 4082 if (ptid_lwp_p (ptid) 4083 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid) 4084 || num_lwps (ptid_get_pid (ptid)) > 1)) 4085 { 4086 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); 4087 return buf; 4088 } 4089 4090 return normal_pid_to_str (ptid); 4091 } 4092 4093 static char * 4094 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr) 4095 { 4096 int pid = ptid_get_pid (thr->ptid); 4097 long lwp = ptid_get_lwp (thr->ptid); 4098 #define FORMAT "/proc/%d/task/%ld/comm" 4099 char buf[sizeof (FORMAT) + 30]; 4100 FILE *comm_file; 4101 char *result = NULL; 4102 4103 snprintf (buf, sizeof (buf), FORMAT, pid, lwp); 4104 comm_file = gdb_fopen_cloexec (buf, "r"); 4105 if (comm_file) 4106 { 4107 /* Not exported by the kernel, so we define it here. */ 4108 #define COMM_LEN 16 4109 static char line[COMM_LEN + 1]; 4110 4111 if (fgets (line, sizeof (line), comm_file)) 4112 { 4113 char *nl = strchr (line, '\n'); 4114 4115 if (nl) 4116 *nl = '\0'; 4117 if (*line != '\0') 4118 result = line; 4119 } 4120 4121 fclose (comm_file); 4122 } 4123 4124 #undef COMM_LEN 4125 #undef FORMAT 4126 4127 return result; 4128 } 4129 4130 /* Accepts an integer PID; Returns a string representing a file that 4131 can be opened to get the symbols for the child process. */ 4132 4133 static char * 4134 linux_child_pid_to_exec_file (struct target_ops *self, int pid) 4135 { 4136 return linux_proc_pid_to_exec_file (pid); 4137 } 4138 4139 /* Implement the to_xfer_partial interface for memory reads using the /proc 4140 filesystem. Because we can use a single read() call for /proc, this 4141 can be much more efficient than banging away at PTRACE_PEEKTEXT, 4142 but it doesn't support writes. */ 4143 4144 static enum target_xfer_status 4145 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object, 4146 const char *annex, gdb_byte *readbuf, 4147 const gdb_byte *writebuf, 4148 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 4149 { 4150 LONGEST ret; 4151 int fd; 4152 char filename[64]; 4153 4154 if (object != TARGET_OBJECT_MEMORY || !readbuf) 4155 return 0; 4156 4157 /* Don't bother for one word. */ 4158 if (len < 3 * sizeof (long)) 4159 return TARGET_XFER_EOF; 4160 4161 /* We could keep this file open and cache it - possibly one per 4162 thread. That requires some juggling, but is even faster. */ 4163 xsnprintf (filename, sizeof filename, "/proc/%d/mem", 4164 ptid_get_pid (inferior_ptid)); 4165 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0); 4166 if (fd == -1) 4167 return TARGET_XFER_EOF; 4168 4169 /* If pread64 is available, use it. It's faster if the kernel 4170 supports it (only one syscall), and it's 64-bit safe even on 4171 32-bit platforms (for instance, SPARC debugging a SPARC64 4172 application). */ 4173 #ifdef HAVE_PREAD64 4174 if (pread64 (fd, readbuf, len, offset) != len) 4175 #else 4176 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len) 4177 #endif 4178 ret = 0; 4179 else 4180 ret = len; 4181 4182 close (fd); 4183 4184 if (ret == 0) 4185 return TARGET_XFER_EOF; 4186 else 4187 { 4188 *xfered_len = ret; 4189 return TARGET_XFER_OK; 4190 } 4191 } 4192 4193 4194 /* Enumerate spufs IDs for process PID. */ 4195 static LONGEST 4196 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len) 4197 { 4198 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 4199 LONGEST pos = 0; 4200 LONGEST written = 0; 4201 char path[128]; 4202 DIR *dir; 4203 struct dirent *entry; 4204 4205 xsnprintf (path, sizeof path, "/proc/%d/fd", pid); 4206 dir = opendir (path); 4207 if (!dir) 4208 return -1; 4209 4210 rewinddir (dir); 4211 while ((entry = readdir (dir)) != NULL) 4212 { 4213 struct stat st; 4214 struct statfs stfs; 4215 int fd; 4216 4217 fd = atoi (entry->d_name); 4218 if (!fd) 4219 continue; 4220 4221 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd); 4222 if (stat (path, &st) != 0) 4223 continue; 4224 if (!S_ISDIR (st.st_mode)) 4225 continue; 4226 4227 if (statfs (path, &stfs) != 0) 4228 continue; 4229 if (stfs.f_type != SPUFS_MAGIC) 4230 continue; 4231 4232 if (pos >= offset && pos + 4 <= offset + len) 4233 { 4234 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd); 4235 written += 4; 4236 } 4237 pos += 4; 4238 } 4239 4240 closedir (dir); 4241 return written; 4242 } 4243 4244 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU 4245 object type, using the /proc file system. */ 4246 4247 static enum target_xfer_status 4248 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object, 4249 const char *annex, gdb_byte *readbuf, 4250 const gdb_byte *writebuf, 4251 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 4252 { 4253 char buf[128]; 4254 int fd = 0; 4255 int ret = -1; 4256 int pid = ptid_get_pid (inferior_ptid); 4257 4258 if (!annex) 4259 { 4260 if (!readbuf) 4261 return TARGET_XFER_E_IO; 4262 else 4263 { 4264 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len); 4265 4266 if (l < 0) 4267 return TARGET_XFER_E_IO; 4268 else if (l == 0) 4269 return TARGET_XFER_EOF; 4270 else 4271 { 4272 *xfered_len = (ULONGEST) l; 4273 return TARGET_XFER_OK; 4274 } 4275 } 4276 } 4277 4278 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex); 4279 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0); 4280 if (fd <= 0) 4281 return TARGET_XFER_E_IO; 4282 4283 if (offset != 0 4284 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) 4285 { 4286 close (fd); 4287 return TARGET_XFER_EOF; 4288 } 4289 4290 if (writebuf) 4291 ret = write (fd, writebuf, (size_t) len); 4292 else if (readbuf) 4293 ret = read (fd, readbuf, (size_t) len); 4294 4295 close (fd); 4296 4297 if (ret < 0) 4298 return TARGET_XFER_E_IO; 4299 else if (ret == 0) 4300 return TARGET_XFER_EOF; 4301 else 4302 { 4303 *xfered_len = (ULONGEST) ret; 4304 return TARGET_XFER_OK; 4305 } 4306 } 4307 4308 4309 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4310 4311 static void 4312 add_line_to_sigset (const char *line, sigset_t *sigs) 4313 { 4314 int len = strlen (line) - 1; 4315 const char *p; 4316 int signum; 4317 4318 if (line[len] != '\n') 4319 error (_("Could not parse signal set: %s"), line); 4320 4321 p = line; 4322 signum = len * 4; 4323 while (len-- > 0) 4324 { 4325 int digit; 4326 4327 if (*p >= '0' && *p <= '9') 4328 digit = *p - '0'; 4329 else if (*p >= 'a' && *p <= 'f') 4330 digit = *p - 'a' + 10; 4331 else 4332 error (_("Could not parse signal set: %s"), line); 4333 4334 signum -= 4; 4335 4336 if (digit & 1) 4337 sigaddset (sigs, signum + 1); 4338 if (digit & 2) 4339 sigaddset (sigs, signum + 2); 4340 if (digit & 4) 4341 sigaddset (sigs, signum + 3); 4342 if (digit & 8) 4343 sigaddset (sigs, signum + 4); 4344 4345 p++; 4346 } 4347 } 4348 4349 /* Find process PID's pending signals from /proc/pid/status and set 4350 SIGS to match. */ 4351 4352 void 4353 linux_proc_pending_signals (int pid, sigset_t *pending, 4354 sigset_t *blocked, sigset_t *ignored) 4355 { 4356 FILE *procfile; 4357 char buffer[PATH_MAX], fname[PATH_MAX]; 4358 struct cleanup *cleanup; 4359 4360 sigemptyset (pending); 4361 sigemptyset (blocked); 4362 sigemptyset (ignored); 4363 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4364 procfile = gdb_fopen_cloexec (fname, "r"); 4365 if (procfile == NULL) 4366 error (_("Could not open %s"), fname); 4367 cleanup = make_cleanup_fclose (procfile); 4368 4369 while (fgets (buffer, PATH_MAX, procfile) != NULL) 4370 { 4371 /* Normal queued signals are on the SigPnd line in the status 4372 file. However, 2.6 kernels also have a "shared" pending 4373 queue for delivering signals to a thread group, so check for 4374 a ShdPnd line also. 4375 4376 Unfortunately some Red Hat kernels include the shared pending 4377 queue but not the ShdPnd status field. */ 4378 4379 if (startswith (buffer, "SigPnd:\t")) 4380 add_line_to_sigset (buffer + 8, pending); 4381 else if (startswith (buffer, "ShdPnd:\t")) 4382 add_line_to_sigset (buffer + 8, pending); 4383 else if (startswith (buffer, "SigBlk:\t")) 4384 add_line_to_sigset (buffer + 8, blocked); 4385 else if (startswith (buffer, "SigIgn:\t")) 4386 add_line_to_sigset (buffer + 8, ignored); 4387 } 4388 4389 do_cleanups (cleanup); 4390 } 4391 4392 static enum target_xfer_status 4393 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object, 4394 const char *annex, gdb_byte *readbuf, 4395 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4396 ULONGEST *xfered_len) 4397 { 4398 gdb_assert (object == TARGET_OBJECT_OSDATA); 4399 4400 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 4401 if (*xfered_len == 0) 4402 return TARGET_XFER_EOF; 4403 else 4404 return TARGET_XFER_OK; 4405 } 4406 4407 static enum target_xfer_status 4408 linux_xfer_partial (struct target_ops *ops, enum target_object object, 4409 const char *annex, gdb_byte *readbuf, 4410 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4411 ULONGEST *xfered_len) 4412 { 4413 enum target_xfer_status xfer; 4414 4415 if (object == TARGET_OBJECT_AUXV) 4416 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf, 4417 offset, len, xfered_len); 4418 4419 if (object == TARGET_OBJECT_OSDATA) 4420 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf, 4421 offset, len, xfered_len); 4422 4423 if (object == TARGET_OBJECT_SPU) 4424 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf, 4425 offset, len, xfered_len); 4426 4427 /* GDB calculates all the addresses in possibly larget width of the address. 4428 Address width needs to be masked before its final use - either by 4429 linux_proc_xfer_partial or inf_ptrace_xfer_partial. 4430 4431 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 4432 4433 if (object == TARGET_OBJECT_MEMORY) 4434 { 4435 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 4436 4437 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 4438 offset &= ((ULONGEST) 1 << addr_bit) - 1; 4439 } 4440 4441 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf, 4442 offset, len, xfered_len); 4443 if (xfer != TARGET_XFER_EOF) 4444 return xfer; 4445 4446 return super_xfer_partial (ops, object, annex, readbuf, writebuf, 4447 offset, len, xfered_len); 4448 } 4449 4450 static void 4451 cleanup_target_stop (void *arg) 4452 { 4453 ptid_t *ptid = (ptid_t *) arg; 4454 4455 gdb_assert (arg != NULL); 4456 4457 /* Unpause all */ 4458 target_resume (*ptid, 0, GDB_SIGNAL_0); 4459 } 4460 4461 static VEC(static_tracepoint_marker_p) * 4462 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self, 4463 const char *strid) 4464 { 4465 char s[IPA_CMD_BUF_SIZE]; 4466 struct cleanup *old_chain; 4467 int pid = ptid_get_pid (inferior_ptid); 4468 VEC(static_tracepoint_marker_p) *markers = NULL; 4469 struct static_tracepoint_marker *marker = NULL; 4470 char *p = s; 4471 ptid_t ptid = ptid_build (pid, 0, 0); 4472 4473 /* Pause all */ 4474 target_stop (ptid); 4475 4476 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4477 s[sizeof ("qTfSTM")] = 0; 4478 4479 agent_run_command (pid, s, strlen (s) + 1); 4480 4481 old_chain = make_cleanup (free_current_marker, &marker); 4482 make_cleanup (cleanup_target_stop, &ptid); 4483 4484 while (*p++ == 'm') 4485 { 4486 if (marker == NULL) 4487 marker = XCNEW (struct static_tracepoint_marker); 4488 4489 do 4490 { 4491 parse_static_tracepoint_marker_definition (p, &p, marker); 4492 4493 if (strid == NULL || strcmp (strid, marker->str_id) == 0) 4494 { 4495 VEC_safe_push (static_tracepoint_marker_p, 4496 markers, marker); 4497 marker = NULL; 4498 } 4499 else 4500 { 4501 release_static_tracepoint_marker (marker); 4502 memset (marker, 0, sizeof (*marker)); 4503 } 4504 } 4505 while (*p++ == ','); /* comma-separated list */ 4506 4507 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4508 s[sizeof ("qTsSTM")] = 0; 4509 agent_run_command (pid, s, strlen (s) + 1); 4510 p = s; 4511 } 4512 4513 do_cleanups (old_chain); 4514 4515 return markers; 4516 } 4517 4518 /* Create a prototype generic GNU/Linux target. The client can override 4519 it with local methods. */ 4520 4521 static void 4522 linux_target_install_ops (struct target_ops *t) 4523 { 4524 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint; 4525 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint; 4526 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint; 4527 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint; 4528 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint; 4529 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint; 4530 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint; 4531 t->to_pid_to_exec_file = linux_child_pid_to_exec_file; 4532 t->to_post_startup_inferior = linux_child_post_startup_inferior; 4533 t->to_post_attach = linux_child_post_attach; 4534 t->to_follow_fork = linux_child_follow_fork; 4535 4536 super_xfer_partial = t->to_xfer_partial; 4537 t->to_xfer_partial = linux_xfer_partial; 4538 4539 t->to_static_tracepoint_markers_by_strid 4540 = linux_child_static_tracepoint_markers_by_strid; 4541 } 4542 4543 struct target_ops * 4544 linux_target (void) 4545 { 4546 struct target_ops *t; 4547 4548 t = inf_ptrace_target (); 4549 linux_target_install_ops (t); 4550 4551 return t; 4552 } 4553 4554 struct target_ops * 4555 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int)) 4556 { 4557 struct target_ops *t; 4558 4559 t = inf_ptrace_trad_target (register_u_offset); 4560 linux_target_install_ops (t); 4561 4562 return t; 4563 } 4564 4565 /* target_is_async_p implementation. */ 4566 4567 static int 4568 linux_nat_is_async_p (struct target_ops *ops) 4569 { 4570 return linux_is_async_p (); 4571 } 4572 4573 /* target_can_async_p implementation. */ 4574 4575 static int 4576 linux_nat_can_async_p (struct target_ops *ops) 4577 { 4578 /* NOTE: palves 2008-03-21: We're only async when the user requests 4579 it explicitly with the "set target-async" command. 4580 Someday, linux will always be async. */ 4581 return target_async_permitted; 4582 } 4583 4584 static int 4585 linux_nat_supports_non_stop (struct target_ops *self) 4586 { 4587 return 1; 4588 } 4589 4590 /* True if we want to support multi-process. To be removed when GDB 4591 supports multi-exec. */ 4592 4593 int linux_multi_process = 1; 4594 4595 static int 4596 linux_nat_supports_multi_process (struct target_ops *self) 4597 { 4598 return linux_multi_process; 4599 } 4600 4601 static int 4602 linux_nat_supports_disable_randomization (struct target_ops *self) 4603 { 4604 #ifdef HAVE_PERSONALITY 4605 return 1; 4606 #else 4607 return 0; 4608 #endif 4609 } 4610 4611 static int async_terminal_is_ours = 1; 4612 4613 /* target_terminal_inferior implementation. 4614 4615 This is a wrapper around child_terminal_inferior to add async support. */ 4616 4617 static void 4618 linux_nat_terminal_inferior (struct target_ops *self) 4619 { 4620 /* Like target_terminal_inferior, use target_can_async_p, not 4621 target_is_async_p, since at this point the target is not async 4622 yet. If it can async, then we know it will become async prior to 4623 resume. */ 4624 if (!target_can_async_p ()) 4625 { 4626 /* Async mode is disabled. */ 4627 child_terminal_inferior (self); 4628 return; 4629 } 4630 4631 child_terminal_inferior (self); 4632 4633 /* Calls to target_terminal_*() are meant to be idempotent. */ 4634 if (!async_terminal_is_ours) 4635 return; 4636 4637 delete_file_handler (input_fd); 4638 async_terminal_is_ours = 0; 4639 set_sigint_trap (); 4640 } 4641 4642 /* target_terminal_ours implementation. 4643 4644 This is a wrapper around child_terminal_ours to add async support (and 4645 implement the target_terminal_ours vs target_terminal_ours_for_output 4646 distinction). child_terminal_ours is currently no different than 4647 child_terminal_ours_for_output. 4648 We leave target_terminal_ours_for_output alone, leaving it to 4649 child_terminal_ours_for_output. */ 4650 4651 static void 4652 linux_nat_terminal_ours (struct target_ops *self) 4653 { 4654 /* GDB should never give the terminal to the inferior if the 4655 inferior is running in the background (run&, continue&, etc.), 4656 but claiming it sure should. */ 4657 child_terminal_ours (self); 4658 4659 if (async_terminal_is_ours) 4660 return; 4661 4662 clear_sigint_trap (); 4663 add_file_handler (input_fd, stdin_event_handler, 0); 4664 async_terminal_is_ours = 1; 4665 } 4666 4667 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4668 so we notice when any child changes state, and notify the 4669 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4670 above to wait for the arrival of a SIGCHLD. */ 4671 4672 static void 4673 sigchld_handler (int signo) 4674 { 4675 int old_errno = errno; 4676 4677 if (debug_linux_nat) 4678 ui_file_write_async_safe (gdb_stdlog, 4679 "sigchld\n", sizeof ("sigchld\n") - 1); 4680 4681 if (signo == SIGCHLD 4682 && linux_nat_event_pipe[0] != -1) 4683 async_file_mark (); /* Let the event loop know that there are 4684 events to handle. */ 4685 4686 errno = old_errno; 4687 } 4688 4689 /* Callback registered with the target events file descriptor. */ 4690 4691 static void 4692 handle_target_event (int error, gdb_client_data client_data) 4693 { 4694 inferior_event_handler (INF_REG_EVENT, NULL); 4695 } 4696 4697 /* Create/destroy the target events pipe. Returns previous state. */ 4698 4699 static int 4700 linux_async_pipe (int enable) 4701 { 4702 int previous = linux_is_async_p (); 4703 4704 if (previous != enable) 4705 { 4706 sigset_t prev_mask; 4707 4708 /* Block child signals while we create/destroy the pipe, as 4709 their handler writes to it. */ 4710 block_child_signals (&prev_mask); 4711 4712 if (enable) 4713 { 4714 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4715 internal_error (__FILE__, __LINE__, 4716 "creating event pipe failed."); 4717 4718 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4719 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4720 } 4721 else 4722 { 4723 close (linux_nat_event_pipe[0]); 4724 close (linux_nat_event_pipe[1]); 4725 linux_nat_event_pipe[0] = -1; 4726 linux_nat_event_pipe[1] = -1; 4727 } 4728 4729 restore_child_signals_mask (&prev_mask); 4730 } 4731 4732 return previous; 4733 } 4734 4735 /* target_async implementation. */ 4736 4737 static void 4738 linux_nat_async (struct target_ops *ops, int enable) 4739 { 4740 if (enable) 4741 { 4742 if (!linux_async_pipe (1)) 4743 { 4744 add_file_handler (linux_nat_event_pipe[0], 4745 handle_target_event, NULL); 4746 /* There may be pending events to handle. Tell the event loop 4747 to poll them. */ 4748 async_file_mark (); 4749 } 4750 } 4751 else 4752 { 4753 delete_file_handler (linux_nat_event_pipe[0]); 4754 linux_async_pipe (0); 4755 } 4756 return; 4757 } 4758 4759 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4760 event came out. */ 4761 4762 static int 4763 linux_nat_stop_lwp (struct lwp_info *lwp, void *data) 4764 { 4765 if (!lwp->stopped) 4766 { 4767 if (debug_linux_nat) 4768 fprintf_unfiltered (gdb_stdlog, 4769 "LNSL: running -> suspending %s\n", 4770 target_pid_to_str (lwp->ptid)); 4771 4772 4773 if (lwp->last_resume_kind == resume_stop) 4774 { 4775 if (debug_linux_nat) 4776 fprintf_unfiltered (gdb_stdlog, 4777 "linux-nat: already stopping LWP %ld at " 4778 "GDB's request\n", 4779 ptid_get_lwp (lwp->ptid)); 4780 return 0; 4781 } 4782 4783 stop_callback (lwp, NULL); 4784 lwp->last_resume_kind = resume_stop; 4785 } 4786 else 4787 { 4788 /* Already known to be stopped; do nothing. */ 4789 4790 if (debug_linux_nat) 4791 { 4792 if (find_thread_ptid (lwp->ptid)->stop_requested) 4793 fprintf_unfiltered (gdb_stdlog, 4794 "LNSL: already stopped/stop_requested %s\n", 4795 target_pid_to_str (lwp->ptid)); 4796 else 4797 fprintf_unfiltered (gdb_stdlog, 4798 "LNSL: already stopped/no " 4799 "stop_requested yet %s\n", 4800 target_pid_to_str (lwp->ptid)); 4801 } 4802 } 4803 return 0; 4804 } 4805 4806 static void 4807 linux_nat_stop (struct target_ops *self, ptid_t ptid) 4808 { 4809 if (non_stop) 4810 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL); 4811 else 4812 linux_ops->to_stop (linux_ops, ptid); 4813 } 4814 4815 static void 4816 linux_nat_close (struct target_ops *self) 4817 { 4818 /* Unregister from the event loop. */ 4819 if (linux_nat_is_async_p (self)) 4820 linux_nat_async (self, 0); 4821 4822 if (linux_ops->to_close) 4823 linux_ops->to_close (linux_ops); 4824 4825 super_close (self); 4826 } 4827 4828 /* When requests are passed down from the linux-nat layer to the 4829 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4830 used. The address space pointer is stored in the inferior object, 4831 but the common code that is passed such ptid can't tell whether 4832 lwpid is a "main" process id or not (it assumes so). We reverse 4833 look up the "main" process id from the lwp here. */ 4834 4835 static struct address_space * 4836 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid) 4837 { 4838 struct lwp_info *lwp; 4839 struct inferior *inf; 4840 int pid; 4841 4842 if (ptid_get_lwp (ptid) == 0) 4843 { 4844 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4845 tgid. */ 4846 lwp = find_lwp_pid (ptid); 4847 pid = ptid_get_pid (lwp->ptid); 4848 } 4849 else 4850 { 4851 /* A (pid,lwpid,0) ptid. */ 4852 pid = ptid_get_pid (ptid); 4853 } 4854 4855 inf = find_inferior_pid (pid); 4856 gdb_assert (inf != NULL); 4857 return inf->aspace; 4858 } 4859 4860 /* Return the cached value of the processor core for thread PTID. */ 4861 4862 static int 4863 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid) 4864 { 4865 struct lwp_info *info = find_lwp_pid (ptid); 4866 4867 if (info) 4868 return info->core; 4869 return -1; 4870 } 4871 4872 /* Implementation of to_filesystem_is_local. */ 4873 4874 static int 4875 linux_nat_filesystem_is_local (struct target_ops *ops) 4876 { 4877 struct inferior *inf = current_inferior (); 4878 4879 if (inf->fake_pid_p || inf->pid == 0) 4880 return 1; 4881 4882 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4883 } 4884 4885 /* Convert the INF argument passed to a to_fileio_* method 4886 to a process ID suitable for passing to its corresponding 4887 linux_mntns_* function. If INF is non-NULL then the 4888 caller is requesting the filesystem seen by INF. If INF 4889 is NULL then the caller is requesting the filesystem seen 4890 by the GDB. We fall back to GDB's filesystem in the case 4891 that INF is non-NULL but its PID is unknown. */ 4892 4893 static pid_t 4894 linux_nat_fileio_pid_of (struct inferior *inf) 4895 { 4896 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4897 return getpid (); 4898 else 4899 return inf->pid; 4900 } 4901 4902 /* Implementation of to_fileio_open. */ 4903 4904 static int 4905 linux_nat_fileio_open (struct target_ops *self, 4906 struct inferior *inf, const char *filename, 4907 int flags, int mode, int warn_if_slow, 4908 int *target_errno) 4909 { 4910 int nat_flags; 4911 mode_t nat_mode; 4912 int fd; 4913 4914 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4915 || fileio_to_host_mode (mode, &nat_mode) == -1) 4916 { 4917 *target_errno = FILEIO_EINVAL; 4918 return -1; 4919 } 4920 4921 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4922 filename, nat_flags, nat_mode); 4923 if (fd == -1) 4924 *target_errno = host_to_fileio_error (errno); 4925 4926 return fd; 4927 } 4928 4929 /* Implementation of to_fileio_readlink. */ 4930 4931 static char * 4932 linux_nat_fileio_readlink (struct target_ops *self, 4933 struct inferior *inf, const char *filename, 4934 int *target_errno) 4935 { 4936 char buf[PATH_MAX]; 4937 int len; 4938 char *ret; 4939 4940 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4941 filename, buf, sizeof (buf)); 4942 if (len < 0) 4943 { 4944 *target_errno = host_to_fileio_error (errno); 4945 return NULL; 4946 } 4947 4948 ret = xmalloc (len + 1); 4949 memcpy (ret, buf, len); 4950 ret[len] = '\0'; 4951 return ret; 4952 } 4953 4954 /* Implementation of to_fileio_unlink. */ 4955 4956 static int 4957 linux_nat_fileio_unlink (struct target_ops *self, 4958 struct inferior *inf, const char *filename, 4959 int *target_errno) 4960 { 4961 int ret; 4962 4963 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4964 filename); 4965 if (ret == -1) 4966 *target_errno = host_to_fileio_error (errno); 4967 4968 return ret; 4969 } 4970 4971 void 4972 linux_nat_add_target (struct target_ops *t) 4973 { 4974 /* Save the provided single-threaded target. We save this in a separate 4975 variable because another target we've inherited from (e.g. inf-ptrace) 4976 may have saved a pointer to T; we want to use it for the final 4977 process stratum target. */ 4978 linux_ops_saved = *t; 4979 linux_ops = &linux_ops_saved; 4980 4981 /* Override some methods for multithreading. */ 4982 t->to_create_inferior = linux_nat_create_inferior; 4983 t->to_attach = linux_nat_attach; 4984 t->to_detach = linux_nat_detach; 4985 t->to_resume = linux_nat_resume; 4986 t->to_wait = linux_nat_wait; 4987 t->to_pass_signals = linux_nat_pass_signals; 4988 t->to_xfer_partial = linux_nat_xfer_partial; 4989 t->to_kill = linux_nat_kill; 4990 t->to_mourn_inferior = linux_nat_mourn_inferior; 4991 t->to_thread_alive = linux_nat_thread_alive; 4992 t->to_update_thread_list = linux_nat_update_thread_list; 4993 t->to_pid_to_str = linux_nat_pid_to_str; 4994 t->to_thread_name = linux_nat_thread_name; 4995 t->to_has_thread_control = tc_schedlock; 4996 t->to_thread_address_space = linux_nat_thread_address_space; 4997 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint; 4998 t->to_stopped_data_address = linux_nat_stopped_data_address; 4999 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint; 5000 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint; 5001 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint; 5002 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint; 5003 5004 t->to_can_async_p = linux_nat_can_async_p; 5005 t->to_is_async_p = linux_nat_is_async_p; 5006 t->to_supports_non_stop = linux_nat_supports_non_stop; 5007 t->to_async = linux_nat_async; 5008 t->to_terminal_inferior = linux_nat_terminal_inferior; 5009 t->to_terminal_ours = linux_nat_terminal_ours; 5010 5011 super_close = t->to_close; 5012 t->to_close = linux_nat_close; 5013 5014 /* Methods for non-stop support. */ 5015 t->to_stop = linux_nat_stop; 5016 5017 t->to_supports_multi_process = linux_nat_supports_multi_process; 5018 5019 t->to_supports_disable_randomization 5020 = linux_nat_supports_disable_randomization; 5021 5022 t->to_core_of_thread = linux_nat_core_of_thread; 5023 5024 t->to_filesystem_is_local = linux_nat_filesystem_is_local; 5025 t->to_fileio_open = linux_nat_fileio_open; 5026 t->to_fileio_readlink = linux_nat_fileio_readlink; 5027 t->to_fileio_unlink = linux_nat_fileio_unlink; 5028 5029 /* We don't change the stratum; this target will sit at 5030 process_stratum and thread_db will set at thread_stratum. This 5031 is a little strange, since this is a multi-threaded-capable 5032 target, but we want to be on the stack below thread_db, and we 5033 also want to be used for single-threaded processes. */ 5034 5035 add_target (t); 5036 } 5037 5038 /* Register a method to call whenever a new thread is attached. */ 5039 void 5040 linux_nat_set_new_thread (struct target_ops *t, 5041 void (*new_thread) (struct lwp_info *)) 5042 { 5043 /* Save the pointer. We only support a single registered instance 5044 of the GNU/Linux native target, so we do not need to map this to 5045 T. */ 5046 linux_nat_new_thread = new_thread; 5047 } 5048 5049 /* See declaration in linux-nat.h. */ 5050 5051 void 5052 linux_nat_set_new_fork (struct target_ops *t, 5053 linux_nat_new_fork_ftype *new_fork) 5054 { 5055 /* Save the pointer. */ 5056 linux_nat_new_fork = new_fork; 5057 } 5058 5059 /* See declaration in linux-nat.h. */ 5060 5061 void 5062 linux_nat_set_forget_process (struct target_ops *t, 5063 linux_nat_forget_process_ftype *fn) 5064 { 5065 /* Save the pointer. */ 5066 linux_nat_forget_process_hook = fn; 5067 } 5068 5069 /* See declaration in linux-nat.h. */ 5070 5071 void 5072 linux_nat_forget_process (pid_t pid) 5073 { 5074 if (linux_nat_forget_process_hook != NULL) 5075 linux_nat_forget_process_hook (pid); 5076 } 5077 5078 /* Register a method that converts a siginfo object between the layout 5079 that ptrace returns, and the layout in the architecture of the 5080 inferior. */ 5081 void 5082 linux_nat_set_siginfo_fixup (struct target_ops *t, 5083 int (*siginfo_fixup) (siginfo_t *, 5084 gdb_byte *, 5085 int)) 5086 { 5087 /* Save the pointer. */ 5088 linux_nat_siginfo_fixup = siginfo_fixup; 5089 } 5090 5091 /* Register a method to call prior to resuming a thread. */ 5092 5093 void 5094 linux_nat_set_prepare_to_resume (struct target_ops *t, 5095 void (*prepare_to_resume) (struct lwp_info *)) 5096 { 5097 /* Save the pointer. */ 5098 linux_nat_prepare_to_resume = prepare_to_resume; 5099 } 5100 5101 /* See linux-nat.h. */ 5102 5103 int 5104 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 5105 { 5106 int pid; 5107 5108 pid = ptid_get_lwp (ptid); 5109 if (pid == 0) 5110 pid = ptid_get_pid (ptid); 5111 5112 errno = 0; 5113 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 5114 if (errno != 0) 5115 { 5116 memset (siginfo, 0, sizeof (*siginfo)); 5117 return 0; 5118 } 5119 return 1; 5120 } 5121 5122 /* See nat/linux-nat.h. */ 5123 5124 ptid_t 5125 current_lwp_ptid (void) 5126 { 5127 gdb_assert (ptid_lwp_p (inferior_ptid)); 5128 return inferior_ptid; 5129 } 5130 5131 /* Provide a prototype to silence -Wmissing-prototypes. */ 5132 extern initialize_file_ftype _initialize_linux_nat; 5133 5134 void 5135 _initialize_linux_nat (void) 5136 { 5137 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 5138 &debug_linux_nat, _("\ 5139 Set debugging of GNU/Linux lwp module."), _("\ 5140 Show debugging of GNU/Linux lwp module."), _("\ 5141 Enables printf debugging output."), 5142 NULL, 5143 show_debug_linux_nat, 5144 &setdebuglist, &showdebuglist); 5145 5146 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 5147 &debug_linux_namespaces, _("\ 5148 Set debugging of GNU/Linux namespaces module."), _("\ 5149 Show debugging of GNU/Linux namespaces module."), _("\ 5150 Enables printf debugging output."), 5151 NULL, 5152 NULL, 5153 &setdebuglist, &showdebuglist); 5154 5155 /* Save this mask as the default. */ 5156 sigprocmask (SIG_SETMASK, NULL, &normal_mask); 5157 5158 /* Install a SIGCHLD handler. */ 5159 sigchld_action.sa_handler = sigchld_handler; 5160 sigemptyset (&sigchld_action.sa_mask); 5161 sigchld_action.sa_flags = SA_RESTART; 5162 5163 /* Make it the default. */ 5164 sigaction (SIGCHLD, &sigchld_action, NULL); 5165 5166 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 5167 sigprocmask (SIG_SETMASK, NULL, &suspend_mask); 5168 sigdelset (&suspend_mask, SIGCHLD); 5169 5170 sigemptyset (&blocked_mask); 5171 } 5172 5173 5174 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 5175 the GNU/Linux Threads library and therefore doesn't really belong 5176 here. */ 5177 5178 /* Read variable NAME in the target and return its value if found. 5179 Otherwise return zero. It is assumed that the type of the variable 5180 is `int'. */ 5181 5182 static int 5183 get_signo (const char *name) 5184 { 5185 struct bound_minimal_symbol ms; 5186 int signo; 5187 5188 ms = lookup_minimal_symbol (name, NULL, NULL); 5189 if (ms.minsym == NULL) 5190 return 0; 5191 5192 if (target_read_memory (BMSYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo, 5193 sizeof (signo)) != 0) 5194 return 0; 5195 5196 return signo; 5197 } 5198 5199 /* Return the set of signals used by the threads library in *SET. */ 5200 5201 void 5202 lin_thread_get_thread_signals (sigset_t *set) 5203 { 5204 struct sigaction action; 5205 int restart, cancel; 5206 5207 sigemptyset (&blocked_mask); 5208 sigemptyset (set); 5209 5210 restart = get_signo ("__pthread_sig_restart"); 5211 cancel = get_signo ("__pthread_sig_cancel"); 5212 5213 /* LinuxThreads normally uses the first two RT signals, but in some legacy 5214 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does 5215 not provide any way for the debugger to query the signal numbers - 5216 fortunately they don't change! */ 5217 5218 if (restart == 0) 5219 restart = __SIGRTMIN; 5220 5221 if (cancel == 0) 5222 cancel = __SIGRTMIN + 1; 5223 5224 sigaddset (set, restart); 5225 sigaddset (set, cancel); 5226 5227 /* The GNU/Linux Threads library makes terminating threads send a 5228 special "cancel" signal instead of SIGCHLD. Make sure we catch 5229 those (to prevent them from terminating GDB itself, which is 5230 likely to be their default action) and treat them the same way as 5231 SIGCHLD. */ 5232 5233 action.sa_handler = sigchld_handler; 5234 sigemptyset (&action.sa_mask); 5235 action.sa_flags = SA_RESTART; 5236 sigaction (cancel, &action, NULL); 5237 5238 /* We block the "cancel" signal throughout this code ... */ 5239 sigaddset (&blocked_mask, cancel); 5240 sigprocmask (SIG_BLOCK, &blocked_mask, NULL); 5241 5242 /* ... except during a sigsuspend. */ 5243 sigdelset (&suspend_mask, cancel); 5244 } 5245