xref: /netbsd-src/external/gpl3/gdb/dist/gdb/linux-nat.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /* GNU/Linux native-dependent code common to multiple platforms.
2 
3    Copyright (C) 2001-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h>		/* for elf_gregset etc.  */
43 #include "elf-bfd.h"		/* for elfcore_write_* */
44 #include "gregset.h"		/* for gregset */
45 #include "gdbcore.h"		/* for get_exec_file */
46 #include <ctype.h>		/* for isdigit */
47 #include <sys/stat.h>		/* for struct stat */
48 #include <fcntl.h>		/* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/block-signals.h"
69 #include "gdbsupport/fileio.h"
70 #include "gdbsupport/scope-exit.h"
71 #include "gdbsupport/gdb-sigmask.h"
72 #include "gdbsupport/common-debug.h"
73 #include <unordered_map>
74 
75 /* This comment documents high-level logic of this file.
76 
77 Waiting for events in sync mode
78 ===============================
79 
80 When waiting for an event in a specific thread, we just use waitpid,
81 passing the specific pid, and not passing WNOHANG.
82 
83 When waiting for an event in all threads, waitpid is not quite good:
84 
85 - If the thread group leader exits while other threads in the thread
86   group still exist, waitpid(TGID, ...) hangs.  That waitpid won't
87   return an exit status until the other threads in the group are
88   reaped.
89 
90 - When a non-leader thread execs, that thread just vanishes without
91   reporting an exit (so we'd hang if we waited for it explicitly in
92   that case).  The exec event is instead reported to the TGID pid.
93 
94 The solution is to always use -1 and WNOHANG, together with
95 sigsuspend.
96 
97 First, we use non-blocking waitpid to check for events.  If nothing is
98 found, we use sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives,
99 it means something happened to a child process.  As soon as we know
100 there's an event, we get back to calling nonblocking waitpid.
101 
102 Note that SIGCHLD should be blocked between waitpid and sigsuspend
103 calls, so that we don't miss a signal.  If SIGCHLD arrives in between,
104 when it's blocked, the signal becomes pending and sigsuspend
105 immediately notices it and returns.
106 
107 Waiting for events in async mode (TARGET_WNOHANG)
108 =================================================
109 
110 In async mode, GDB should always be ready to handle both user input
111 and target events, so neither blocking waitpid nor sigsuspend are
112 viable options.  Instead, we should asynchronously notify the GDB main
113 event loop whenever there's an unprocessed event from the target.  We
114 detect asynchronous target events by handling SIGCHLD signals.  To
115 notify the event loop about target events, an event pipe is used
116 --- the pipe is registered as waitable event source in the event loop,
117 the event loop select/poll's on the read end of this pipe (as well on
118 other event sources, e.g., stdin), and the SIGCHLD handler marks the
119 event pipe to raise an event.  This is more portable than relying on
120 pselect/ppoll, since on kernels that lack those syscalls, libc
121 emulates them with select/poll+sigprocmask, and that is racy
122 (a.k.a. plain broken).
123 
124 Obviously, if we fail to notify the event loop if there's a target
125 event, it's bad.  OTOH, if we notify the event loop when there's no
126 event from the target, linux_nat_wait will detect that there's no real
127 event to report, and return event of type TARGET_WAITKIND_IGNORE.
128 This is mostly harmless, but it will waste time and is better avoided.
129 
130 The main design point is that every time GDB is outside linux-nat.c,
131 we have a SIGCHLD handler installed that is called when something
132 happens to the target and notifies the GDB event loop.  Whenever GDB
133 core decides to handle the event, and calls into linux-nat.c, we
134 process things as in sync mode, except that the we never block in
135 sigsuspend.
136 
137 While processing an event, we may end up momentarily blocked in
138 waitpid calls.  Those waitpid calls, while blocking, are guarantied to
139 return quickly.  E.g., in all-stop mode, before reporting to the core
140 that an LWP hit a breakpoint, all LWPs are stopped by sending them
141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
142 Note that this is different from blocking indefinitely waiting for the
143 next event --- here, we're already handling an event.
144 
145 Use of signals
146 ==============
147 
148 We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
149 signal is not entirely significant; we just need for a signal to be delivered,
150 so that we can intercept it.  SIGSTOP's advantage is that it can not be
151 blocked.  A disadvantage is that it is not a real-time signal, so it can only
152 be queued once; we do not keep track of other sources of SIGSTOP.
153 
154 Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
155 use them, because they have special behavior when the signal is generated -
156 not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
157 kills the entire thread group.
158 
159 A delivered SIGSTOP would stop the entire thread group, not just the thread we
160 tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
161 cancel it (by PTRACE_CONT without passing SIGSTOP).
162 
163 We could use a real-time signal instead.  This would solve those problems; we
164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
166 generates it, and there are races with trying to find a signal that is not
167 blocked.
168 
169 Exec events
170 ===========
171 
172 The case of a thread group (process) with 3 or more threads, and a
173 thread other than the leader execs is worth detailing:
174 
175 On an exec, the Linux kernel destroys all threads except the execing
176 one in the thread group, and resets the execing thread's tid to the
177 tgid.  No exit notification is sent for the execing thread -- from the
178 ptracer's perspective, it appears as though the execing thread just
179 vanishes.  Until we reap all other threads except the leader and the
180 execing thread, the leader will be zombie, and the execing thread will
181 be in `D (disc sleep)' state.  As soon as all other threads are
182 reaped, the execing thread changes its tid to the tgid, and the
183 previous (zombie) leader vanishes, giving place to the "new"
184 leader.  */
185 
186 #ifndef O_LARGEFILE
187 #define O_LARGEFILE 0
188 #endif
189 
190 struct linux_nat_target *linux_target;
191 
192 /* Does the current host support PTRACE_GETREGSET?  */
193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
194 
195 /* When true, print debug messages relating to the linux native target.  */
196 
197 static bool debug_linux_nat;
198 
199 /* Implement 'show debug linux-nat'.  */
200 
201 static void
202 show_debug_linux_nat (struct ui_file *file, int from_tty,
203 		      struct cmd_list_element *c, const char *value)
204 {
205   gdb_printf (file, _("Debugging of GNU/Linux native targets is %s.\n"),
206 	      value);
207 }
208 
209 /* Print a linux-nat debug statement.  */
210 
211 #define linux_nat_debug_printf(fmt, ...) \
212   debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__)
213 
214 /* Print "linux-nat" enter/exit debug statements.  */
215 
216 #define LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT \
217   scoped_debug_enter_exit (debug_linux_nat, "linux-nat")
218 
219 struct simple_pid_list
220 {
221   int pid;
222   int status;
223   struct simple_pid_list *next;
224 };
225 static struct simple_pid_list *stopped_pids;
226 
227 /* Whether target_thread_events is in effect.  */
228 static int report_thread_events;
229 
230 static int kill_lwp (int lwpid, int signo);
231 
232 static int stop_callback (struct lwp_info *lp);
233 
234 static void block_child_signals (sigset_t *prev_mask);
235 static void restore_child_signals_mask (sigset_t *prev_mask);
236 
237 struct lwp_info;
238 static struct lwp_info *add_lwp (ptid_t ptid);
239 static void purge_lwp_list (int pid);
240 static void delete_lwp (ptid_t ptid);
241 static struct lwp_info *find_lwp_pid (ptid_t ptid);
242 
243 static int lwp_status_pending_p (struct lwp_info *lp);
244 
245 static void save_stop_reason (struct lwp_info *lp);
246 
247 static bool proc_mem_file_is_writable ();
248 static void close_proc_mem_file (pid_t pid);
249 static void open_proc_mem_file (ptid_t ptid);
250 
251 /* Return TRUE if LWP is the leader thread of the process.  */
252 
253 static bool
254 is_leader (lwp_info *lp)
255 {
256   return lp->ptid.pid () == lp->ptid.lwp ();
257 }
258 
259 
260 /* LWP accessors.  */
261 
262 /* See nat/linux-nat.h.  */
263 
264 ptid_t
265 ptid_of_lwp (struct lwp_info *lwp)
266 {
267   return lwp->ptid;
268 }
269 
270 /* See nat/linux-nat.h.  */
271 
272 void
273 lwp_set_arch_private_info (struct lwp_info *lwp,
274 			   struct arch_lwp_info *info)
275 {
276   lwp->arch_private = info;
277 }
278 
279 /* See nat/linux-nat.h.  */
280 
281 struct arch_lwp_info *
282 lwp_arch_private_info (struct lwp_info *lwp)
283 {
284   return lwp->arch_private;
285 }
286 
287 /* See nat/linux-nat.h.  */
288 
289 int
290 lwp_is_stopped (struct lwp_info *lwp)
291 {
292   return lwp->stopped;
293 }
294 
295 /* See nat/linux-nat.h.  */
296 
297 enum target_stop_reason
298 lwp_stop_reason (struct lwp_info *lwp)
299 {
300   return lwp->stop_reason;
301 }
302 
303 /* See nat/linux-nat.h.  */
304 
305 int
306 lwp_is_stepping (struct lwp_info *lwp)
307 {
308   return lwp->step;
309 }
310 
311 
312 /* Trivial list manipulation functions to keep track of a list of
313    new stopped processes.  */
314 static void
315 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
316 {
317   struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
318 
319   new_pid->pid = pid;
320   new_pid->status = status;
321   new_pid->next = *listp;
322   *listp = new_pid;
323 }
324 
325 static int
326 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
327 {
328   struct simple_pid_list **p;
329 
330   for (p = listp; *p != NULL; p = &(*p)->next)
331     if ((*p)->pid == pid)
332       {
333 	struct simple_pid_list *next = (*p)->next;
334 
335 	*statusp = (*p)->status;
336 	xfree (*p);
337 	*p = next;
338 	return 1;
339       }
340   return 0;
341 }
342 
343 /* Return the ptrace options that we want to try to enable.  */
344 
345 static int
346 linux_nat_ptrace_options (int attached)
347 {
348   int options = 0;
349 
350   if (!attached)
351     options |= PTRACE_O_EXITKILL;
352 
353   options |= (PTRACE_O_TRACESYSGOOD
354 	      | PTRACE_O_TRACEVFORKDONE
355 	      | PTRACE_O_TRACEVFORK
356 	      | PTRACE_O_TRACEFORK
357 	      | PTRACE_O_TRACEEXEC);
358 
359   return options;
360 }
361 
362 /* Initialize ptrace and procfs warnings and check for supported
363    ptrace features given PID.
364 
365    ATTACHED should be nonzero iff we attached to the inferior.  */
366 
367 static void
368 linux_init_ptrace_procfs (pid_t pid, int attached)
369 {
370   int options = linux_nat_ptrace_options (attached);
371 
372   linux_enable_event_reporting (pid, options);
373   linux_ptrace_init_warnings ();
374   linux_proc_init_warnings ();
375   proc_mem_file_is_writable ();
376 }
377 
378 linux_nat_target::~linux_nat_target ()
379 {}
380 
381 void
382 linux_nat_target::post_attach (int pid)
383 {
384   linux_init_ptrace_procfs (pid, 1);
385 }
386 
387 /* Implement the virtual inf_ptrace_target::post_startup_inferior method.  */
388 
389 void
390 linux_nat_target::post_startup_inferior (ptid_t ptid)
391 {
392   linux_init_ptrace_procfs (ptid.pid (), 0);
393 }
394 
395 /* Return the number of known LWPs in the tgid given by PID.  */
396 
397 static int
398 num_lwps (int pid)
399 {
400   int count = 0;
401 
402   for (const lwp_info *lp ATTRIBUTE_UNUSED : all_lwps ())
403     if (lp->ptid.pid () == pid)
404       count++;
405 
406   return count;
407 }
408 
409 /* Deleter for lwp_info unique_ptr specialisation.  */
410 
411 struct lwp_deleter
412 {
413   void operator() (struct lwp_info *lwp) const
414   {
415     delete_lwp (lwp->ptid);
416   }
417 };
418 
419 /* A unique_ptr specialisation for lwp_info.  */
420 
421 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
422 
423 /* Target hook for follow_fork.  */
424 
425 void
426 linux_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid,
427 			       target_waitkind fork_kind, bool follow_child,
428 			       bool detach_fork)
429 {
430   inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind,
431 				  follow_child, detach_fork);
432 
433   if (!follow_child)
434     {
435       bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED;
436       ptid_t parent_ptid = inferior_ptid;
437       int parent_pid = parent_ptid.lwp ();
438       int child_pid = child_ptid.lwp ();
439 
440       /* We're already attached to the parent, by default.  */
441       lwp_info *child_lp = add_lwp (child_ptid);
442       child_lp->stopped = 1;
443       child_lp->last_resume_kind = resume_stop;
444 
445       /* Detach new forked process?  */
446       if (detach_fork)
447 	{
448 	  int child_stop_signal = 0;
449 	  bool detach_child = true;
450 
451 	  /* Move CHILD_LP into a unique_ptr and clear the source pointer
452 	     to prevent us doing anything stupid with it.  */
453 	  lwp_info_up child_lp_ptr (child_lp);
454 	  child_lp = nullptr;
455 
456 	  linux_target->low_prepare_to_resume (child_lp_ptr.get ());
457 
458 	  /* When debugging an inferior in an architecture that supports
459 	     hardware single stepping on a kernel without commit
460 	     6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
461 	     process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
462 	     set if the parent process had them set.
463 	     To work around this, single step the child process
464 	     once before detaching to clear the flags.  */
465 
466 	  /* Note that we consult the parent's architecture instead of
467 	     the child's because there's no inferior for the child at
468 	     this point.  */
469 	  if (!gdbarch_software_single_step_p (target_thread_architecture
470 					       (parent_ptid)))
471 	    {
472 	      int status;
473 
474 	      linux_disable_event_reporting (child_pid);
475 	      if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
476 		perror_with_name (_("Couldn't do single step"));
477 	      if (my_waitpid (child_pid, &status, 0) < 0)
478 		perror_with_name (_("Couldn't wait vfork process"));
479 	      else
480 		{
481 		  detach_child = WIFSTOPPED (status);
482 		  child_stop_signal = WSTOPSIG (status);
483 		}
484 	    }
485 
486 	  if (detach_child)
487 	    {
488 	      int signo = child_stop_signal;
489 
490 	      if (signo != 0
491 		  && !signal_pass_state (gdb_signal_from_host (signo)))
492 		signo = 0;
493 	      ptrace (PTRACE_DETACH, child_pid, 0, signo);
494 
495 	      close_proc_mem_file (child_pid);
496 	    }
497 	}
498 
499       if (has_vforked)
500 	{
501 	  lwp_info *parent_lp = find_lwp_pid (parent_ptid);
502 	  linux_nat_debug_printf ("waiting for VFORK_DONE on %d", parent_pid);
503 	  parent_lp->stopped = 1;
504 
505 	  /* We'll handle the VFORK_DONE event like any other
506 	     event, in target_wait.  */
507 	}
508     }
509   else
510     {
511       struct lwp_info *child_lp;
512 
513       child_lp = add_lwp (child_ptid);
514       child_lp->stopped = 1;
515       child_lp->last_resume_kind = resume_stop;
516     }
517 }
518 
519 
520 int
521 linux_nat_target::insert_fork_catchpoint (int pid)
522 {
523   return 0;
524 }
525 
526 int
527 linux_nat_target::remove_fork_catchpoint (int pid)
528 {
529   return 0;
530 }
531 
532 int
533 linux_nat_target::insert_vfork_catchpoint (int pid)
534 {
535   return 0;
536 }
537 
538 int
539 linux_nat_target::remove_vfork_catchpoint (int pid)
540 {
541   return 0;
542 }
543 
544 int
545 linux_nat_target::insert_exec_catchpoint (int pid)
546 {
547   return 0;
548 }
549 
550 int
551 linux_nat_target::remove_exec_catchpoint (int pid)
552 {
553   return 0;
554 }
555 
556 int
557 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
558 					  gdb::array_view<const int> syscall_counts)
559 {
560   /* On GNU/Linux, we ignore the arguments.  It means that we only
561      enable the syscall catchpoints, but do not disable them.
562 
563      Also, we do not use the `syscall_counts' information because we do not
564      filter system calls here.  We let GDB do the logic for us.  */
565   return 0;
566 }
567 
568 /* List of known LWPs, keyed by LWP PID.  This speeds up the common
569    case of mapping a PID returned from the kernel to our corresponding
570    lwp_info data structure.  */
571 static htab_t lwp_lwpid_htab;
572 
573 /* Calculate a hash from a lwp_info's LWP PID.  */
574 
575 static hashval_t
576 lwp_info_hash (const void *ap)
577 {
578   const struct lwp_info *lp = (struct lwp_info *) ap;
579   pid_t pid = lp->ptid.lwp ();
580 
581   return iterative_hash_object (pid, 0);
582 }
583 
584 /* Equality function for the lwp_info hash table.  Compares the LWP's
585    PID.  */
586 
587 static int
588 lwp_lwpid_htab_eq (const void *a, const void *b)
589 {
590   const struct lwp_info *entry = (const struct lwp_info *) a;
591   const struct lwp_info *element = (const struct lwp_info *) b;
592 
593   return entry->ptid.lwp () == element->ptid.lwp ();
594 }
595 
596 /* Create the lwp_lwpid_htab hash table.  */
597 
598 static void
599 lwp_lwpid_htab_create (void)
600 {
601   lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
602 }
603 
604 /* Add LP to the hash table.  */
605 
606 static void
607 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
608 {
609   void **slot;
610 
611   slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
612   gdb_assert (slot != NULL && *slot == NULL);
613   *slot = lp;
614 }
615 
616 /* Head of doubly-linked list of known LWPs.  Sorted by reverse
617    creation order.  This order is assumed in some cases.  E.g.,
618    reaping status after killing alls lwps of a process: the leader LWP
619    must be reaped last.  */
620 
621 static intrusive_list<lwp_info> lwp_list;
622 
623 /* See linux-nat.h.  */
624 
625 lwp_info_range
626 all_lwps ()
627 {
628   return lwp_info_range (lwp_list.begin ());
629 }
630 
631 /* See linux-nat.h.  */
632 
633 lwp_info_safe_range
634 all_lwps_safe ()
635 {
636   return lwp_info_safe_range (lwp_list.begin ());
637 }
638 
639 /* Add LP to sorted-by-reverse-creation-order doubly-linked list.  */
640 
641 static void
642 lwp_list_add (struct lwp_info *lp)
643 {
644   lwp_list.push_front (*lp);
645 }
646 
647 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
648    list.  */
649 
650 static void
651 lwp_list_remove (struct lwp_info *lp)
652 {
653   /* Remove from sorted-by-creation-order list.  */
654   lwp_list.erase (lwp_list.iterator_to (*lp));
655 }
656 
657 
658 
659 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
660    _initialize_linux_nat.  */
661 static sigset_t suspend_mask;
662 
663 /* Signals to block to make that sigsuspend work.  */
664 static sigset_t blocked_mask;
665 
666 /* SIGCHLD action.  */
667 static struct sigaction sigchld_action;
668 
669 /* Block child signals (SIGCHLD and linux threads signals), and store
670    the previous mask in PREV_MASK.  */
671 
672 static void
673 block_child_signals (sigset_t *prev_mask)
674 {
675   /* Make sure SIGCHLD is blocked.  */
676   if (!sigismember (&blocked_mask, SIGCHLD))
677     sigaddset (&blocked_mask, SIGCHLD);
678 
679   gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
680 }
681 
682 /* Restore child signals mask, previously returned by
683    block_child_signals.  */
684 
685 static void
686 restore_child_signals_mask (sigset_t *prev_mask)
687 {
688   gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
689 }
690 
691 /* Mask of signals to pass directly to the inferior.  */
692 static sigset_t pass_mask;
693 
694 /* Update signals to pass to the inferior.  */
695 void
696 linux_nat_target::pass_signals
697   (gdb::array_view<const unsigned char> pass_signals)
698 {
699   int signo;
700 
701   sigemptyset (&pass_mask);
702 
703   for (signo = 1; signo < NSIG; signo++)
704     {
705       int target_signo = gdb_signal_from_host (signo);
706       if (target_signo < pass_signals.size () && pass_signals[target_signo])
707 	sigaddset (&pass_mask, signo);
708     }
709 }
710 
711 
712 
713 /* Prototypes for local functions.  */
714 static int stop_wait_callback (struct lwp_info *lp);
715 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
716 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
717 
718 
719 
720 /* Destroy and free LP.  */
721 
722 lwp_info::~lwp_info ()
723 {
724   /* Let the arch specific bits release arch_lwp_info.  */
725   linux_target->low_delete_thread (this->arch_private);
726 }
727 
728 /* Traversal function for purge_lwp_list.  */
729 
730 static int
731 lwp_lwpid_htab_remove_pid (void **slot, void *info)
732 {
733   struct lwp_info *lp = (struct lwp_info *) *slot;
734   int pid = *(int *) info;
735 
736   if (lp->ptid.pid () == pid)
737     {
738       htab_clear_slot (lwp_lwpid_htab, slot);
739       lwp_list_remove (lp);
740       delete lp;
741     }
742 
743   return 1;
744 }
745 
746 /* Remove all LWPs belong to PID from the lwp list.  */
747 
748 static void
749 purge_lwp_list (int pid)
750 {
751   htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
752 }
753 
754 /* Add the LWP specified by PTID to the list.  PTID is the first LWP
755    in the process.  Return a pointer to the structure describing the
756    new LWP.
757 
758    This differs from add_lwp in that we don't let the arch specific
759    bits know about this new thread.  Current clients of this callback
760    take the opportunity to install watchpoints in the new thread, and
761    we shouldn't do that for the first thread.  If we're spawning a
762    child ("run"), the thread executes the shell wrapper first, and we
763    shouldn't touch it until it execs the program we want to debug.
764    For "attach", it'd be okay to call the callback, but it's not
765    necessary, because watchpoints can't yet have been inserted into
766    the inferior.  */
767 
768 static struct lwp_info *
769 add_initial_lwp (ptid_t ptid)
770 {
771   gdb_assert (ptid.lwp_p ());
772 
773   lwp_info *lp = new lwp_info (ptid);
774 
775 
776   /* Add to sorted-by-reverse-creation-order list.  */
777   lwp_list_add (lp);
778 
779   /* Add to keyed-by-pid htab.  */
780   lwp_lwpid_htab_add_lwp (lp);
781 
782   return lp;
783 }
784 
785 /* Add the LWP specified by PID to the list.  Return a pointer to the
786    structure describing the new LWP.  The LWP should already be
787    stopped.  */
788 
789 static struct lwp_info *
790 add_lwp (ptid_t ptid)
791 {
792   struct lwp_info *lp;
793 
794   lp = add_initial_lwp (ptid);
795 
796   /* Let the arch specific bits know about this new thread.  Current
797      clients of this callback take the opportunity to install
798      watchpoints in the new thread.  We don't do this for the first
799      thread though.  See add_initial_lwp.  */
800   linux_target->low_new_thread (lp);
801 
802   return lp;
803 }
804 
805 /* Remove the LWP specified by PID from the list.  */
806 
807 static void
808 delete_lwp (ptid_t ptid)
809 {
810   lwp_info dummy (ptid);
811 
812   void **slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
813   if (slot == NULL)
814     return;
815 
816   lwp_info *lp = *(struct lwp_info **) slot;
817   gdb_assert (lp != NULL);
818 
819   htab_clear_slot (lwp_lwpid_htab, slot);
820 
821   /* Remove from sorted-by-creation-order list.  */
822   lwp_list_remove (lp);
823 
824   /* Release.  */
825   delete lp;
826 }
827 
828 /* Return a pointer to the structure describing the LWP corresponding
829    to PID.  If no corresponding LWP could be found, return NULL.  */
830 
831 static struct lwp_info *
832 find_lwp_pid (ptid_t ptid)
833 {
834   int lwp;
835 
836   if (ptid.lwp_p ())
837     lwp = ptid.lwp ();
838   else
839     lwp = ptid.pid ();
840 
841   lwp_info dummy (ptid_t (0, lwp));
842   return (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
843 }
844 
845 /* See nat/linux-nat.h.  */
846 
847 struct lwp_info *
848 iterate_over_lwps (ptid_t filter,
849 		   gdb::function_view<iterate_over_lwps_ftype> callback)
850 {
851   for (lwp_info *lp : all_lwps_safe ())
852     {
853       if (lp->ptid.matches (filter))
854 	{
855 	  if (callback (lp) != 0)
856 	    return lp;
857 	}
858     }
859 
860   return NULL;
861 }
862 
863 /* Update our internal state when changing from one checkpoint to
864    another indicated by NEW_PTID.  We can only switch single-threaded
865    applications, so we only create one new LWP, and the previous list
866    is discarded.  */
867 
868 void
869 linux_nat_switch_fork (ptid_t new_ptid)
870 {
871   struct lwp_info *lp;
872 
873   purge_lwp_list (inferior_ptid.pid ());
874 
875   lp = add_lwp (new_ptid);
876   lp->stopped = 1;
877 
878   /* This changes the thread's ptid while preserving the gdb thread
879      num.  Also changes the inferior pid, while preserving the
880      inferior num.  */
881   thread_change_ptid (linux_target, inferior_ptid, new_ptid);
882 
883   /* We've just told GDB core that the thread changed target id, but,
884      in fact, it really is a different thread, with different register
885      contents.  */
886   registers_changed ();
887 }
888 
889 /* Handle the exit of a single thread LP.  */
890 
891 static void
892 exit_lwp (struct lwp_info *lp)
893 {
894   struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
895 
896   if (th)
897     {
898       if (print_thread_events)
899 	gdb_printf (_("[%s exited]\n"),
900 		    target_pid_to_str (lp->ptid).c_str ());
901 
902       delete_thread (th);
903     }
904 
905   delete_lwp (lp->ptid);
906 }
907 
908 /* Wait for the LWP specified by LP, which we have just attached to.
909    Returns a wait status for that LWP, to cache.  */
910 
911 static int
912 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
913 {
914   pid_t new_pid, pid = ptid.lwp ();
915   int status;
916 
917   if (linux_proc_pid_is_stopped (pid))
918     {
919       linux_nat_debug_printf ("Attaching to a stopped process");
920 
921       /* The process is definitely stopped.  It is in a job control
922 	 stop, unless the kernel predates the TASK_STOPPED /
923 	 TASK_TRACED distinction, in which case it might be in a
924 	 ptrace stop.  Make sure it is in a ptrace stop; from there we
925 	 can kill it, signal it, et cetera.
926 
927 	 First make sure there is a pending SIGSTOP.  Since we are
928 	 already attached, the process can not transition from stopped
929 	 to running without a PTRACE_CONT; so we know this signal will
930 	 go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
931 	 probably already in the queue (unless this kernel is old
932 	 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
933 	 is not an RT signal, it can only be queued once.  */
934       kill_lwp (pid, SIGSTOP);
935 
936       /* Finally, resume the stopped process.  This will deliver the SIGSTOP
937 	 (or a higher priority signal, just like normal PTRACE_ATTACH).  */
938       ptrace (PTRACE_CONT, pid, 0, 0);
939     }
940 
941   /* Make sure the initial process is stopped.  The user-level threads
942      layer might want to poke around in the inferior, and that won't
943      work if things haven't stabilized yet.  */
944   new_pid = my_waitpid (pid, &status, __WALL);
945   gdb_assert (pid == new_pid);
946 
947   if (!WIFSTOPPED (status))
948     {
949       /* The pid we tried to attach has apparently just exited.  */
950       linux_nat_debug_printf ("Failed to stop %d: %s", pid,
951 			      status_to_str (status).c_str ());
952       return status;
953     }
954 
955   if (WSTOPSIG (status) != SIGSTOP)
956     {
957       *signalled = 1;
958       linux_nat_debug_printf ("Received %s after attaching",
959 			      status_to_str (status).c_str ());
960     }
961 
962   return status;
963 }
964 
965 void
966 linux_nat_target::create_inferior (const char *exec_file,
967 				   const std::string &allargs,
968 				   char **env, int from_tty)
969 {
970   maybe_disable_address_space_randomization restore_personality
971     (disable_randomization);
972 
973   /* The fork_child mechanism is synchronous and calls target_wait, so
974      we have to mask the async mode.  */
975 
976   /* Make sure we report all signals during startup.  */
977   pass_signals ({});
978 
979   inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
980 
981   open_proc_mem_file (inferior_ptid);
982 }
983 
984 /* Callback for linux_proc_attach_tgid_threads.  Attach to PTID if not
985    already attached.  Returns true if a new LWP is found, false
986    otherwise.  */
987 
988 static int
989 attach_proc_task_lwp_callback (ptid_t ptid)
990 {
991   struct lwp_info *lp;
992 
993   /* Ignore LWPs we're already attached to.  */
994   lp = find_lwp_pid (ptid);
995   if (lp == NULL)
996     {
997       int lwpid = ptid.lwp ();
998 
999       if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1000 	{
1001 	  int err = errno;
1002 
1003 	  /* Be quiet if we simply raced with the thread exiting.
1004 	     EPERM is returned if the thread's task still exists, and
1005 	     is marked as exited or zombie, as well as other
1006 	     conditions, so in that case, confirm the status in
1007 	     /proc/PID/status.  */
1008 	  if (err == ESRCH
1009 	      || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1010 	    {
1011 	      linux_nat_debug_printf
1012 		("Cannot attach to lwp %d: thread is gone (%d: %s)",
1013 		 lwpid, err, safe_strerror (err));
1014 
1015 	    }
1016 	  else
1017 	    {
1018 	      std::string reason
1019 		= linux_ptrace_attach_fail_reason_string (ptid, err);
1020 
1021 	      warning (_("Cannot attach to lwp %d: %s"),
1022 		       lwpid, reason.c_str ());
1023 	    }
1024 	}
1025       else
1026 	{
1027 	  linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1028 				  ptid.to_string ().c_str ());
1029 
1030 	  lp = add_lwp (ptid);
1031 
1032 	  /* The next time we wait for this LWP we'll see a SIGSTOP as
1033 	     PTRACE_ATTACH brings it to a halt.  */
1034 	  lp->signalled = 1;
1035 
1036 	  /* We need to wait for a stop before being able to make the
1037 	     next ptrace call on this LWP.  */
1038 	  lp->must_set_ptrace_flags = 1;
1039 
1040 	  /* So that wait collects the SIGSTOP.  */
1041 	  lp->resumed = 1;
1042 
1043 	  /* Also add the LWP to gdb's thread list, in case a
1044 	     matching libthread_db is not found (or the process uses
1045 	     raw clone).  */
1046 	  add_thread (linux_target, lp->ptid);
1047 	  set_running (linux_target, lp->ptid, true);
1048 	  set_executing (linux_target, lp->ptid, true);
1049 	}
1050 
1051       return 1;
1052     }
1053   return 0;
1054 }
1055 
1056 void
1057 linux_nat_target::attach (const char *args, int from_tty)
1058 {
1059   struct lwp_info *lp;
1060   int status;
1061   ptid_t ptid;
1062 
1063   /* Make sure we report all signals during attach.  */
1064   pass_signals ({});
1065 
1066   try
1067     {
1068       inf_ptrace_target::attach (args, from_tty);
1069     }
1070   catch (const gdb_exception_error &ex)
1071     {
1072       pid_t pid = parse_pid_to_attach (args);
1073       std::string reason = linux_ptrace_attach_fail_reason (pid);
1074 
1075       if (!reason.empty ())
1076 	throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1077 		     ex.what ());
1078       else
1079 	throw_error (ex.error, "%s", ex.what ());
1080     }
1081 
1082   /* The ptrace base target adds the main thread with (pid,0,0)
1083      format.  Decorate it with lwp info.  */
1084   ptid = ptid_t (inferior_ptid.pid (),
1085 		 inferior_ptid.pid ());
1086   thread_change_ptid (linux_target, inferior_ptid, ptid);
1087 
1088   /* Add the initial process as the first LWP to the list.  */
1089   lp = add_initial_lwp (ptid);
1090 
1091   status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1092   if (!WIFSTOPPED (status))
1093     {
1094       if (WIFEXITED (status))
1095 	{
1096 	  int exit_code = WEXITSTATUS (status);
1097 
1098 	  target_terminal::ours ();
1099 	  target_mourn_inferior (inferior_ptid);
1100 	  if (exit_code == 0)
1101 	    error (_("Unable to attach: program exited normally."));
1102 	  else
1103 	    error (_("Unable to attach: program exited with code %d."),
1104 		   exit_code);
1105 	}
1106       else if (WIFSIGNALED (status))
1107 	{
1108 	  enum gdb_signal signo;
1109 
1110 	  target_terminal::ours ();
1111 	  target_mourn_inferior (inferior_ptid);
1112 
1113 	  signo = gdb_signal_from_host (WTERMSIG (status));
1114 	  error (_("Unable to attach: program terminated with signal "
1115 		   "%s, %s."),
1116 		 gdb_signal_to_name (signo),
1117 		 gdb_signal_to_string (signo));
1118 	}
1119 
1120       internal_error (_("unexpected status %d for PID %ld"),
1121 		      status, (long) ptid.lwp ());
1122     }
1123 
1124   lp->stopped = 1;
1125 
1126   open_proc_mem_file (lp->ptid);
1127 
1128   /* Save the wait status to report later.  */
1129   lp->resumed = 1;
1130   linux_nat_debug_printf ("waitpid %ld, saving status %s",
1131 			  (long) lp->ptid.pid (),
1132 			  status_to_str (status).c_str ());
1133 
1134   lp->status = status;
1135 
1136   /* We must attach to every LWP.  If /proc is mounted, use that to
1137      find them now.  The inferior may be using raw clone instead of
1138      using pthreads.  But even if it is using pthreads, thread_db
1139      walks structures in the inferior's address space to find the list
1140      of threads/LWPs, and those structures may well be corrupted.
1141      Note that once thread_db is loaded, we'll still use it to list
1142      threads and associate pthread info with each LWP.  */
1143   linux_proc_attach_tgid_threads (lp->ptid.pid (),
1144 				  attach_proc_task_lwp_callback);
1145 }
1146 
1147 /* Ptrace-detach the thread with pid PID.  */
1148 
1149 static void
1150 detach_one_pid (int pid, int signo)
1151 {
1152   if (ptrace (PTRACE_DETACH, pid, 0, signo) < 0)
1153     {
1154       int save_errno = errno;
1155 
1156       /* We know the thread exists, so ESRCH must mean the lwp is
1157 	 zombie.  This can happen if one of the already-detached
1158 	 threads exits the whole thread group.  In that case we're
1159 	 still attached, and must reap the lwp.  */
1160       if (save_errno == ESRCH)
1161 	{
1162 	  int ret, status;
1163 
1164 	  ret = my_waitpid (pid, &status, __WALL);
1165 	  if (ret == -1)
1166 	    {
1167 	      warning (_("Couldn't reap LWP %d while detaching: %s"),
1168 		       pid, safe_strerror (errno));
1169 	    }
1170 	  else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1171 	    {
1172 	      warning (_("Reaping LWP %d while detaching "
1173 			 "returned unexpected status 0x%x"),
1174 		       pid, status);
1175 	    }
1176 	}
1177       else
1178 	error (_("Can't detach %d: %s"),
1179 	       pid, safe_strerror (save_errno));
1180     }
1181   else
1182     linux_nat_debug_printf ("PTRACE_DETACH (%d, %s, 0) (OK)",
1183 			    pid, strsignal (signo));
1184 }
1185 
1186 /* Get pending signal of THREAD as a host signal number, for detaching
1187    purposes.  This is the signal the thread last stopped for, which we
1188    need to deliver to the thread when detaching, otherwise, it'd be
1189    suppressed/lost.  */
1190 
1191 static int
1192 get_detach_signal (struct lwp_info *lp)
1193 {
1194   enum gdb_signal signo = GDB_SIGNAL_0;
1195 
1196   /* If we paused threads momentarily, we may have stored pending
1197      events in lp->status or lp->waitstatus (see stop_wait_callback),
1198      and GDB core hasn't seen any signal for those threads.
1199      Otherwise, the last signal reported to the core is found in the
1200      thread object's stop_signal.
1201 
1202      There's a corner case that isn't handled here at present.  Only
1203      if the thread stopped with a TARGET_WAITKIND_STOPPED does
1204      stop_signal make sense as a real signal to pass to the inferior.
1205      Some catchpoint related events, like
1206      TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1207      to GDB_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
1208      those traps are debug API (ptrace in our case) related and
1209      induced; the inferior wouldn't see them if it wasn't being
1210      traced.  Hence, we should never pass them to the inferior, even
1211      when set to pass state.  Since this corner case isn't handled by
1212      infrun.c when proceeding with a signal, for consistency, neither
1213      do we handle it here (or elsewhere in the file we check for
1214      signal pass state).  Normally SIGTRAP isn't set to pass state, so
1215      this is really a corner case.  */
1216 
1217   if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
1218     signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
1219   else if (lp->status)
1220     signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1221   else
1222     {
1223       struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1224 
1225       if (target_is_non_stop_p () && !tp->executing ())
1226 	{
1227 	  if (tp->has_pending_waitstatus ())
1228 	    {
1229 	      /* If the thread has a pending event, and it was stopped with a
1230 	         signal, use that signal to resume it.  If it has a pending
1231 		 event of another kind, it was not stopped with a signal, so
1232 		 resume it without a signal.  */
1233 	      if (tp->pending_waitstatus ().kind () == TARGET_WAITKIND_STOPPED)
1234 		signo = tp->pending_waitstatus ().sig ();
1235 	      else
1236 		signo = GDB_SIGNAL_0;
1237 	    }
1238 	  else
1239 	    signo = tp->stop_signal ();
1240 	}
1241       else if (!target_is_non_stop_p ())
1242 	{
1243 	  ptid_t last_ptid;
1244 	  process_stratum_target *last_target;
1245 
1246 	  get_last_target_status (&last_target, &last_ptid, nullptr);
1247 
1248 	  if (last_target == linux_target
1249 	      && lp->ptid.lwp () == last_ptid.lwp ())
1250 	    signo = tp->stop_signal ();
1251 	}
1252     }
1253 
1254   if (signo == GDB_SIGNAL_0)
1255     {
1256       linux_nat_debug_printf ("lwp %s has no pending signal",
1257 			      lp->ptid.to_string ().c_str ());
1258     }
1259   else if (!signal_pass_state (signo))
1260     {
1261       linux_nat_debug_printf
1262 	("lwp %s had signal %s but it is in no pass state",
1263 	 lp->ptid.to_string ().c_str (), gdb_signal_to_string (signo));
1264     }
1265   else
1266     {
1267       linux_nat_debug_printf ("lwp %s has pending signal %s",
1268 			      lp->ptid.to_string ().c_str (),
1269 			      gdb_signal_to_string (signo));
1270 
1271       return gdb_signal_to_host (signo);
1272     }
1273 
1274   return 0;
1275 }
1276 
1277 /* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
1278    signal number that should be passed to the LWP when detaching.
1279    Otherwise pass any pending signal the LWP may have, if any.  */
1280 
1281 static void
1282 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1283 {
1284   int lwpid = lp->ptid.lwp ();
1285   int signo;
1286 
1287   gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1288 
1289   /* If the lwp/thread we are about to detach has a pending fork event,
1290      there is a process GDB is attached to that the core of GDB doesn't know
1291      about.  Detach from it.  */
1292 
1293   /* Check in lwp_info::status.  */
1294   if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status))
1295     {
1296       int event = linux_ptrace_get_extended_event (lp->status);
1297 
1298       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1299 	{
1300 	  unsigned long child_pid;
1301 	  int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid);
1302 	  if (ret == 0)
1303 	    detach_one_pid (child_pid, 0);
1304 	  else
1305 	    perror_warning_with_name (_("Failed to detach fork child"));
1306 	}
1307     }
1308 
1309   /* Check in lwp_info::waitstatus.  */
1310   if (lp->waitstatus.kind () == TARGET_WAITKIND_VFORKED
1311       || lp->waitstatus.kind () == TARGET_WAITKIND_FORKED)
1312     detach_one_pid (lp->waitstatus.child_ptid ().pid (), 0);
1313 
1314 
1315   /* Check in thread_info::pending_waitstatus.  */
1316   thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1317   if (tp->has_pending_waitstatus ())
1318     {
1319       const target_waitstatus &ws = tp->pending_waitstatus ();
1320 
1321       if (ws.kind () == TARGET_WAITKIND_VFORKED
1322 	  || ws.kind () == TARGET_WAITKIND_FORKED)
1323 	detach_one_pid (ws.child_ptid ().pid (), 0);
1324     }
1325 
1326   /* Check in thread_info::pending_follow.  */
1327   if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED
1328       || tp->pending_follow.kind () == TARGET_WAITKIND_FORKED)
1329     detach_one_pid (tp->pending_follow.child_ptid ().pid (), 0);
1330 
1331   if (lp->status != 0)
1332     linux_nat_debug_printf ("Pending %s for %s on detach.",
1333 			    strsignal (WSTOPSIG (lp->status)),
1334 			    lp->ptid.to_string ().c_str ());
1335 
1336   /* If there is a pending SIGSTOP, get rid of it.  */
1337   if (lp->signalled)
1338     {
1339       linux_nat_debug_printf ("Sending SIGCONT to %s",
1340 			      lp->ptid.to_string ().c_str ());
1341 
1342       kill_lwp (lwpid, SIGCONT);
1343       lp->signalled = 0;
1344     }
1345 
1346   if (signo_p == NULL)
1347     {
1348       /* Pass on any pending signal for this LWP.  */
1349       signo = get_detach_signal (lp);
1350     }
1351   else
1352     signo = *signo_p;
1353 
1354   /* Preparing to resume may try to write registers, and fail if the
1355      lwp is zombie.  If that happens, ignore the error.  We'll handle
1356      it below, when detach fails with ESRCH.  */
1357   try
1358     {
1359       linux_target->low_prepare_to_resume (lp);
1360     }
1361   catch (const gdb_exception_error &ex)
1362     {
1363       if (!check_ptrace_stopped_lwp_gone (lp))
1364 	throw;
1365     }
1366 
1367   detach_one_pid (lwpid, signo);
1368 
1369   delete_lwp (lp->ptid);
1370 }
1371 
1372 static int
1373 detach_callback (struct lwp_info *lp)
1374 {
1375   /* We don't actually detach from the thread group leader just yet.
1376      If the thread group exits, we must reap the zombie clone lwps
1377      before we're able to reap the leader.  */
1378   if (lp->ptid.lwp () != lp->ptid.pid ())
1379     detach_one_lwp (lp, NULL);
1380   return 0;
1381 }
1382 
1383 void
1384 linux_nat_target::detach (inferior *inf, int from_tty)
1385 {
1386   struct lwp_info *main_lwp;
1387   int pid = inf->pid;
1388 
1389   /* Don't unregister from the event loop, as there may be other
1390      inferiors running. */
1391 
1392   /* Stop all threads before detaching.  ptrace requires that the
1393      thread is stopped to successfully detach.  */
1394   iterate_over_lwps (ptid_t (pid), stop_callback);
1395   /* ... and wait until all of them have reported back that
1396      they're no longer running.  */
1397   iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1398 
1399   /* We can now safely remove breakpoints.  We don't this in earlier
1400      in common code because this target doesn't currently support
1401      writing memory while the inferior is running.  */
1402   remove_breakpoints_inf (current_inferior ());
1403 
1404   iterate_over_lwps (ptid_t (pid), detach_callback);
1405 
1406   /* Only the initial process should be left right now.  */
1407   gdb_assert (num_lwps (pid) == 1);
1408 
1409   main_lwp = find_lwp_pid (ptid_t (pid));
1410 
1411   if (forks_exist_p ())
1412     {
1413       /* Multi-fork case.  The current inferior_ptid is being detached
1414 	 from, but there are other viable forks to debug.  Detach from
1415 	 the current fork, and context-switch to the first
1416 	 available.  */
1417       linux_fork_detach (from_tty);
1418     }
1419   else
1420     {
1421       target_announce_detach (from_tty);
1422 
1423       /* Pass on any pending signal for the last LWP.  */
1424       int signo = get_detach_signal (main_lwp);
1425 
1426       detach_one_lwp (main_lwp, &signo);
1427 
1428       detach_success (inf);
1429     }
1430 
1431   close_proc_mem_file (pid);
1432 }
1433 
1434 /* Resume execution of the inferior process.  If STEP is nonzero,
1435    single-step it.  If SIGNAL is nonzero, give it that signal.  */
1436 
1437 static void
1438 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1439 			    enum gdb_signal signo)
1440 {
1441   lp->step = step;
1442 
1443   /* stop_pc doubles as the PC the LWP had when it was last resumed.
1444      We only presently need that if the LWP is stepped though (to
1445      handle the case of stepping a breakpoint instruction).  */
1446   if (step)
1447     {
1448       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1449 
1450       lp->stop_pc = regcache_read_pc (regcache);
1451     }
1452   else
1453     lp->stop_pc = 0;
1454 
1455   linux_target->low_prepare_to_resume (lp);
1456   linux_target->low_resume (lp->ptid, step, signo);
1457 
1458   /* Successfully resumed.  Clear state that no longer makes sense,
1459      and mark the LWP as running.  Must not do this before resuming
1460      otherwise if that fails other code will be confused.  E.g., we'd
1461      later try to stop the LWP and hang forever waiting for a stop
1462      status.  Note that we must not throw after this is cleared,
1463      otherwise handle_zombie_lwp_error would get confused.  */
1464   lp->stopped = 0;
1465   lp->core = -1;
1466   lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1467   registers_changed_ptid (linux_target, lp->ptid);
1468 }
1469 
1470 /* Called when we try to resume a stopped LWP and that errors out.  If
1471    the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1472    or about to become), discard the error, clear any pending status
1473    the LWP may have, and return true (we'll collect the exit status
1474    soon enough).  Otherwise, return false.  */
1475 
1476 static int
1477 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1478 {
1479   /* If we get an error after resuming the LWP successfully, we'd
1480      confuse !T state for the LWP being gone.  */
1481   gdb_assert (lp->stopped);
1482 
1483   /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1484      because even if ptrace failed with ESRCH, the tracee may be "not
1485      yet fully dead", but already refusing ptrace requests.  In that
1486      case the tracee has 'R (Running)' state for a little bit
1487      (observed in Linux 3.18).  See also the note on ESRCH in the
1488      ptrace(2) man page.  Instead, check whether the LWP has any state
1489      other than ptrace-stopped.  */
1490 
1491   /* Don't assume anything if /proc/PID/status can't be read.  */
1492   if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1493     {
1494       lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1495       lp->status = 0;
1496       lp->waitstatus.set_ignore ();
1497       return 1;
1498     }
1499   return 0;
1500 }
1501 
1502 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1503    disappears while we try to resume it.  */
1504 
1505 static void
1506 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1507 {
1508   try
1509     {
1510       linux_resume_one_lwp_throw (lp, step, signo);
1511     }
1512   catch (const gdb_exception_error &ex)
1513     {
1514       if (!check_ptrace_stopped_lwp_gone (lp))
1515 	throw;
1516     }
1517 }
1518 
1519 /* Resume LP.  */
1520 
1521 static void
1522 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1523 {
1524   if (lp->stopped)
1525     {
1526       struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1527 
1528       if (inf->vfork_child != NULL)
1529 	{
1530 	  linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1531 				  lp->ptid.to_string ().c_str ());
1532 	}
1533       else if (!lwp_status_pending_p (lp))
1534 	{
1535 	  linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1536 				  lp->ptid.to_string ().c_str (),
1537 				  (signo != GDB_SIGNAL_0
1538 				   ? strsignal (gdb_signal_to_host (signo))
1539 				   : "0"),
1540 				  step ? "step" : "resume");
1541 
1542 	  linux_resume_one_lwp (lp, step, signo);
1543 	}
1544       else
1545 	{
1546 	  linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1547 				  lp->ptid.to_string ().c_str ());
1548 	}
1549     }
1550   else
1551     linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1552 			    lp->ptid.to_string ().c_str ());
1553 }
1554 
1555 /* Callback for iterate_over_lwps.  If LWP is EXCEPT, do nothing.
1556    Resume LWP with the last stop signal, if it is in pass state.  */
1557 
1558 static int
1559 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1560 {
1561   enum gdb_signal signo = GDB_SIGNAL_0;
1562 
1563   if (lp == except)
1564     return 0;
1565 
1566   if (lp->stopped)
1567     {
1568       struct thread_info *thread;
1569 
1570       thread = find_thread_ptid (linux_target, lp->ptid);
1571       if (thread != NULL)
1572 	{
1573 	  signo = thread->stop_signal ();
1574 	  thread->set_stop_signal (GDB_SIGNAL_0);
1575 	}
1576     }
1577 
1578   resume_lwp (lp, 0, signo);
1579   return 0;
1580 }
1581 
1582 static int
1583 resume_clear_callback (struct lwp_info *lp)
1584 {
1585   lp->resumed = 0;
1586   lp->last_resume_kind = resume_stop;
1587   return 0;
1588 }
1589 
1590 static int
1591 resume_set_callback (struct lwp_info *lp)
1592 {
1593   lp->resumed = 1;
1594   lp->last_resume_kind = resume_continue;
1595   return 0;
1596 }
1597 
1598 void
1599 linux_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo)
1600 {
1601   struct lwp_info *lp;
1602 
1603   linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1604 			  step ? "step" : "resume",
1605 			  scope_ptid.to_string ().c_str (),
1606 			  (signo != GDB_SIGNAL_0
1607 			   ? strsignal (gdb_signal_to_host (signo)) : "0"),
1608 			  inferior_ptid.to_string ().c_str ());
1609 
1610   /* Mark the lwps we're resuming as resumed and update their
1611      last_resume_kind to resume_continue.  */
1612   iterate_over_lwps (scope_ptid, resume_set_callback);
1613 
1614   lp = find_lwp_pid (inferior_ptid);
1615   gdb_assert (lp != NULL);
1616 
1617   /* Remember if we're stepping.  */
1618   lp->last_resume_kind = step ? resume_step : resume_continue;
1619 
1620   /* If we have a pending wait status for this thread, there is no
1621      point in resuming the process.  But first make sure that
1622      linux_nat_wait won't preemptively handle the event - we
1623      should never take this short-circuit if we are going to
1624      leave LP running, since we have skipped resuming all the
1625      other threads.  This bit of code needs to be synchronized
1626      with linux_nat_wait.  */
1627 
1628   if (lp->status && WIFSTOPPED (lp->status))
1629     {
1630       if (!lp->step
1631 	  && WSTOPSIG (lp->status)
1632 	  && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1633 	{
1634 	  linux_nat_debug_printf
1635 	    ("Not short circuiting for ignored status 0x%x", lp->status);
1636 
1637 	  /* FIXME: What should we do if we are supposed to continue
1638 	     this thread with a signal?  */
1639 	  gdb_assert (signo == GDB_SIGNAL_0);
1640 	  signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1641 	  lp->status = 0;
1642 	}
1643     }
1644 
1645   if (lwp_status_pending_p (lp))
1646     {
1647       /* FIXME: What should we do if we are supposed to continue
1648 	 this thread with a signal?  */
1649       gdb_assert (signo == GDB_SIGNAL_0);
1650 
1651       linux_nat_debug_printf ("Short circuiting for status 0x%x",
1652 			      lp->status);
1653 
1654       if (target_can_async_p ())
1655 	{
1656 	  target_async (true);
1657 	  /* Tell the event loop we have something to process.  */
1658 	  async_file_mark ();
1659 	}
1660       return;
1661     }
1662 
1663   /* No use iterating unless we're resuming other threads.  */
1664   if (scope_ptid != lp->ptid)
1665     iterate_over_lwps (scope_ptid, [=] (struct lwp_info *info)
1666       {
1667 	return linux_nat_resume_callback (info, lp);
1668       });
1669 
1670   linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1671 			  step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1672 			  lp->ptid.to_string ().c_str (),
1673 			  (signo != GDB_SIGNAL_0
1674 			   ? strsignal (gdb_signal_to_host (signo)) : "0"));
1675 
1676   linux_resume_one_lwp (lp, step, signo);
1677 }
1678 
1679 /* Send a signal to an LWP.  */
1680 
1681 static int
1682 kill_lwp (int lwpid, int signo)
1683 {
1684   int ret;
1685 
1686   errno = 0;
1687   ret = syscall (__NR_tkill, lwpid, signo);
1688   if (errno == ENOSYS)
1689     {
1690       /* If tkill fails, then we are not using nptl threads, a
1691 	 configuration we no longer support.  */
1692       perror_with_name (("tkill"));
1693     }
1694   return ret;
1695 }
1696 
1697 /* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
1698    event, check if the core is interested in it: if not, ignore the
1699    event, and keep waiting; otherwise, we need to toggle the LWP's
1700    syscall entry/exit status, since the ptrace event itself doesn't
1701    indicate it, and report the trap to higher layers.  */
1702 
1703 static int
1704 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1705 {
1706   struct target_waitstatus *ourstatus = &lp->waitstatus;
1707   struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1708   thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1709   int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1710 
1711   if (stopping)
1712     {
1713       /* If we're stopping threads, there's a SIGSTOP pending, which
1714 	 makes it so that the LWP reports an immediate syscall return,
1715 	 followed by the SIGSTOP.  Skip seeing that "return" using
1716 	 PTRACE_CONT directly, and let stop_wait_callback collect the
1717 	 SIGSTOP.  Later when the thread is resumed, a new syscall
1718 	 entry event.  If we didn't do this (and returned 0), we'd
1719 	 leave a syscall entry pending, and our caller, by using
1720 	 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1721 	 itself.  Later, when the user re-resumes this LWP, we'd see
1722 	 another syscall entry event and we'd mistake it for a return.
1723 
1724 	 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1725 	 (leaving immediately with LWP->signalled set, without issuing
1726 	 a PTRACE_CONT), it would still be problematic to leave this
1727 	 syscall enter pending, as later when the thread is resumed,
1728 	 it would then see the same syscall exit mentioned above,
1729 	 followed by the delayed SIGSTOP, while the syscall didn't
1730 	 actually get to execute.  It seems it would be even more
1731 	 confusing to the user.  */
1732 
1733       linux_nat_debug_printf
1734 	("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1735 	 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1736 
1737       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1738       ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1739       lp->stopped = 0;
1740       return 1;
1741     }
1742 
1743   /* Always update the entry/return state, even if this particular
1744      syscall isn't interesting to the core now.  In async mode,
1745      the user could install a new catchpoint for this syscall
1746      between syscall enter/return, and we'll need to know to
1747      report a syscall return if that happens.  */
1748   lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1749 		       ? TARGET_WAITKIND_SYSCALL_RETURN
1750 		       : TARGET_WAITKIND_SYSCALL_ENTRY);
1751 
1752   if (catch_syscall_enabled ())
1753     {
1754       if (catching_syscall_number (syscall_number))
1755 	{
1756 	  /* Alright, an event to report.  */
1757 	  if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY)
1758 	    ourstatus->set_syscall_entry (syscall_number);
1759 	  else if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN)
1760 	    ourstatus->set_syscall_return (syscall_number);
1761 	  else
1762 	    gdb_assert_not_reached ("unexpected syscall state");
1763 
1764 	  linux_nat_debug_printf
1765 	    ("stopping for %s of syscall %d for LWP %ld",
1766 	     (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1767 	      ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1768 
1769 	  return 0;
1770 	}
1771 
1772       linux_nat_debug_printf
1773 	("ignoring %s of syscall %d for LWP %ld",
1774 	 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1775 	  ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1776     }
1777   else
1778     {
1779       /* If we had been syscall tracing, and hence used PT_SYSCALL
1780 	 before on this LWP, it could happen that the user removes all
1781 	 syscall catchpoints before we get to process this event.
1782 	 There are two noteworthy issues here:
1783 
1784 	 - When stopped at a syscall entry event, resuming with
1785 	   PT_STEP still resumes executing the syscall and reports a
1786 	   syscall return.
1787 
1788 	 - Only PT_SYSCALL catches syscall enters.  If we last
1789 	   single-stepped this thread, then this event can't be a
1790 	   syscall enter.  If we last single-stepped this thread, this
1791 	   has to be a syscall exit.
1792 
1793 	 The points above mean that the next resume, be it PT_STEP or
1794 	 PT_CONTINUE, can not trigger a syscall trace event.  */
1795       linux_nat_debug_printf
1796 	("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1797 	 "ignoring", syscall_number, lp->ptid.lwp ());
1798       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1799     }
1800 
1801   /* The core isn't interested in this event.  For efficiency, avoid
1802      stopping all threads only to have the core resume them all again.
1803      Since we're not stopping threads, if we're still syscall tracing
1804      and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1805      subsequent syscall.  Simply resume using the inf-ptrace layer,
1806      which knows when to use PT_SYSCALL or PT_CONTINUE.  */
1807 
1808   linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1809   return 1;
1810 }
1811 
1812 /* Handle a GNU/Linux extended wait response.  If we see a clone
1813    event, we need to add the new LWP to our list (and not report the
1814    trap to higher layers).  This function returns non-zero if the
1815    event should be ignored and we should wait again.  If STOPPING is
1816    true, the new LWP remains stopped, otherwise it is continued.  */
1817 
1818 static int
1819 linux_handle_extended_wait (struct lwp_info *lp, int status)
1820 {
1821   int pid = lp->ptid.lwp ();
1822   struct target_waitstatus *ourstatus = &lp->waitstatus;
1823   int event = linux_ptrace_get_extended_event (status);
1824 
1825   /* All extended events we currently use are mid-syscall.  Only
1826      PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1827      you have to be using PTRACE_SEIZE to get that.  */
1828   lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1829 
1830   if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1831       || event == PTRACE_EVENT_CLONE)
1832     {
1833       unsigned long new_pid;
1834       int ret;
1835 
1836       ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1837 
1838       /* If we haven't already seen the new PID stop, wait for it now.  */
1839       if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1840 	{
1841 	  /* The new child has a pending SIGSTOP.  We can't affect it until it
1842 	     hits the SIGSTOP, but we're already attached.  */
1843 	  ret = my_waitpid (new_pid, &status, __WALL);
1844 	  if (ret == -1)
1845 	    perror_with_name (_("waiting for new child"));
1846 	  else if (ret != new_pid)
1847 	    internal_error (_("wait returned unexpected PID %d"), ret);
1848 	  else if (!WIFSTOPPED (status))
1849 	    internal_error (_("wait returned unexpected status 0x%x"), status);
1850 	}
1851 
1852       ptid_t child_ptid (new_pid, new_pid);
1853 
1854       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1855 	{
1856 	  open_proc_mem_file (child_ptid);
1857 
1858 	  /* The arch-specific native code may need to know about new
1859 	     forks even if those end up never mapped to an
1860 	     inferior.  */
1861 	  linux_target->low_new_fork (lp, new_pid);
1862 	}
1863       else if (event == PTRACE_EVENT_CLONE)
1864 	{
1865 	  linux_target->low_new_clone (lp, new_pid);
1866 	}
1867 
1868       if (event == PTRACE_EVENT_FORK
1869 	  && linux_fork_checkpointing_p (lp->ptid.pid ()))
1870 	{
1871 	  /* Handle checkpointing by linux-fork.c here as a special
1872 	     case.  We don't want the follow-fork-mode or 'catch fork'
1873 	     to interfere with this.  */
1874 
1875 	  /* This won't actually modify the breakpoint list, but will
1876 	     physically remove the breakpoints from the child.  */
1877 	  detach_breakpoints (ptid_t (new_pid, new_pid));
1878 
1879 	  /* Retain child fork in ptrace (stopped) state.  */
1880 	  if (!find_fork_pid (new_pid))
1881 	    add_fork (new_pid);
1882 
1883 	  /* Report as spurious, so that infrun doesn't want to follow
1884 	     this fork.  We're actually doing an infcall in
1885 	     linux-fork.c.  */
1886 	  ourstatus->set_spurious ();
1887 
1888 	  /* Report the stop to the core.  */
1889 	  return 0;
1890 	}
1891 
1892       if (event == PTRACE_EVENT_FORK)
1893 	ourstatus->set_forked (child_ptid);
1894       else if (event == PTRACE_EVENT_VFORK)
1895 	ourstatus->set_vforked (child_ptid);
1896       else if (event == PTRACE_EVENT_CLONE)
1897 	{
1898 	  struct lwp_info *new_lp;
1899 
1900 	  ourstatus->set_ignore ();
1901 
1902 	  linux_nat_debug_printf
1903 	    ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1904 
1905 	  new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid));
1906 	  new_lp->stopped = 1;
1907 	  new_lp->resumed = 1;
1908 
1909 	  /* If the thread_db layer is active, let it record the user
1910 	     level thread id and status, and add the thread to GDB's
1911 	     list.  */
1912 	  if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1913 	    {
1914 	      /* The process is not using thread_db.  Add the LWP to
1915 		 GDB's list.  */
1916 	      add_thread (linux_target, new_lp->ptid);
1917 	    }
1918 
1919 	  /* Even if we're stopping the thread for some reason
1920 	     internal to this module, from the perspective of infrun
1921 	     and the user/frontend, this new thread is running until
1922 	     it next reports a stop.  */
1923 	  set_running (linux_target, new_lp->ptid, true);
1924 	  set_executing (linux_target, new_lp->ptid, true);
1925 
1926 	  if (WSTOPSIG (status) != SIGSTOP)
1927 	    {
1928 	      /* This can happen if someone starts sending signals to
1929 		 the new thread before it gets a chance to run, which
1930 		 have a lower number than SIGSTOP (e.g. SIGUSR1).
1931 		 This is an unlikely case, and harder to handle for
1932 		 fork / vfork than for clone, so we do not try - but
1933 		 we handle it for clone events here.  */
1934 
1935 	      new_lp->signalled = 1;
1936 
1937 	      /* We created NEW_LP so it cannot yet contain STATUS.  */
1938 	      gdb_assert (new_lp->status == 0);
1939 
1940 	      /* Save the wait status to report later.  */
1941 	      linux_nat_debug_printf
1942 		("waitpid of new LWP %ld, saving status %s",
1943 		 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ());
1944 	      new_lp->status = status;
1945 	    }
1946 	  else if (report_thread_events)
1947 	    {
1948 	      new_lp->waitstatus.set_thread_created ();
1949 	      new_lp->status = status;
1950 	    }
1951 
1952 	  return 1;
1953 	}
1954 
1955       return 0;
1956     }
1957 
1958   if (event == PTRACE_EVENT_EXEC)
1959     {
1960       linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
1961 
1962       /* Close the previous /proc/PID/mem file for this inferior,
1963 	 which was using the address space which is now gone.
1964 	 Reading/writing from this file would return 0/EOF.  */
1965       close_proc_mem_file (lp->ptid.pid ());
1966 
1967       /* Open a new file for the new address space.  */
1968       open_proc_mem_file (lp->ptid);
1969 
1970       ourstatus->set_execd
1971 	(make_unique_xstrdup (linux_proc_pid_to_exec_file (pid)));
1972 
1973       /* The thread that execed must have been resumed, but, when a
1974 	 thread execs, it changes its tid to the tgid, and the old
1975 	 tgid thread might have not been resumed.  */
1976       lp->resumed = 1;
1977       return 0;
1978     }
1979 
1980   if (event == PTRACE_EVENT_VFORK_DONE)
1981     {
1982       linux_nat_debug_printf
1983 	("Got PTRACE_EVENT_VFORK_DONE from LWP %ld",
1984 	 lp->ptid.lwp ());
1985 	ourstatus->set_vfork_done ();
1986 	return 0;
1987     }
1988 
1989   internal_error (_("unknown ptrace event %d"), event);
1990 }
1991 
1992 /* Suspend waiting for a signal.  We're mostly interested in
1993    SIGCHLD/SIGINT.  */
1994 
1995 static void
1996 wait_for_signal ()
1997 {
1998   linux_nat_debug_printf ("about to sigsuspend");
1999   sigsuspend (&suspend_mask);
2000 
2001   /* If the quit flag is set, it means that the user pressed Ctrl-C
2002      and we're debugging a process that is running on a separate
2003      terminal, so we must forward the Ctrl-C to the inferior.  (If the
2004      inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2005      inferior directly.)  We must do this here because functions that
2006      need to block waiting for a signal loop forever until there's an
2007      event to report before returning back to the event loop.  */
2008   if (!target_terminal::is_ours ())
2009     {
2010       if (check_quit_flag ())
2011 	target_pass_ctrlc ();
2012     }
2013 }
2014 
2015 /* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
2016    exited.  */
2017 
2018 static int
2019 wait_lwp (struct lwp_info *lp)
2020 {
2021   pid_t pid;
2022   int status = 0;
2023   int thread_dead = 0;
2024   sigset_t prev_mask;
2025 
2026   gdb_assert (!lp->stopped);
2027   gdb_assert (lp->status == 0);
2028 
2029   /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below.  */
2030   block_child_signals (&prev_mask);
2031 
2032   for (;;)
2033     {
2034       pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2035       if (pid == -1 && errno == ECHILD)
2036 	{
2037 	  /* The thread has previously exited.  We need to delete it
2038 	     now because if this was a non-leader thread execing, we
2039 	     won't get an exit event.  See comments on exec events at
2040 	     the top of the file.  */
2041 	  thread_dead = 1;
2042 	  linux_nat_debug_printf ("%s vanished.",
2043 				  lp->ptid.to_string ().c_str ());
2044 	}
2045       if (pid != 0)
2046 	break;
2047 
2048       /* Bugs 10970, 12702.
2049 	 Thread group leader may have exited in which case we'll lock up in
2050 	 waitpid if there are other threads, even if they are all zombies too.
2051 	 Basically, we're not supposed to use waitpid this way.
2052 	  tkill(pid,0) cannot be used here as it gets ESRCH for both
2053 	 for zombie and running processes.
2054 
2055 	 As a workaround, check if we're waiting for the thread group leader and
2056 	 if it's a zombie, and avoid calling waitpid if it is.
2057 
2058 	 This is racy, what if the tgl becomes a zombie right after we check?
2059 	 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2060 	 waiting waitpid but linux_proc_pid_is_zombie is safe this way.  */
2061 
2062       if (lp->ptid.pid () == lp->ptid.lwp ()
2063 	  && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2064 	{
2065 	  thread_dead = 1;
2066 	  linux_nat_debug_printf ("Thread group leader %s vanished.",
2067 				  lp->ptid.to_string ().c_str ());
2068 	  break;
2069 	}
2070 
2071       /* Wait for next SIGCHLD and try again.  This may let SIGCHLD handlers
2072 	 get invoked despite our caller had them intentionally blocked by
2073 	 block_child_signals.  This is sensitive only to the loop of
2074 	 linux_nat_wait_1 and there if we get called my_waitpid gets called
2075 	 again before it gets to sigsuspend so we can safely let the handlers
2076 	 get executed here.  */
2077       wait_for_signal ();
2078     }
2079 
2080   restore_child_signals_mask (&prev_mask);
2081 
2082   if (!thread_dead)
2083     {
2084       gdb_assert (pid == lp->ptid.lwp ());
2085 
2086       linux_nat_debug_printf ("waitpid %s received %s",
2087 			      lp->ptid.to_string ().c_str (),
2088 			      status_to_str (status).c_str ());
2089 
2090       /* Check if the thread has exited.  */
2091       if (WIFEXITED (status) || WIFSIGNALED (status))
2092 	{
2093 	  if (report_thread_events
2094 	      || lp->ptid.pid () == lp->ptid.lwp ())
2095 	    {
2096 	      linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2097 
2098 	      /* If this is the leader exiting, it means the whole
2099 		 process is gone.  Store the status to report to the
2100 		 core.  Store it in lp->waitstatus, because lp->status
2101 		 would be ambiguous (W_EXITCODE(0,0) == 0).  */
2102 	      lp->waitstatus = host_status_to_waitstatus (status);
2103 	      return 0;
2104 	    }
2105 
2106 	  thread_dead = 1;
2107 	  linux_nat_debug_printf ("%s exited.",
2108 				  lp->ptid.to_string ().c_str ());
2109 	}
2110     }
2111 
2112   if (thread_dead)
2113     {
2114       exit_lwp (lp);
2115       return 0;
2116     }
2117 
2118   gdb_assert (WIFSTOPPED (status));
2119   lp->stopped = 1;
2120 
2121   if (lp->must_set_ptrace_flags)
2122     {
2123       inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2124       int options = linux_nat_ptrace_options (inf->attach_flag);
2125 
2126       linux_enable_event_reporting (lp->ptid.lwp (), options);
2127       lp->must_set_ptrace_flags = 0;
2128     }
2129 
2130   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2131   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2132     {
2133       /* No longer need the sysgood bit.  The ptrace event ends up
2134 	 recorded in lp->waitstatus if we care for it.  We can carry
2135 	 on handling the event like a regular SIGTRAP from here
2136 	 on.  */
2137       status = W_STOPCODE (SIGTRAP);
2138       if (linux_handle_syscall_trap (lp, 1))
2139 	return wait_lwp (lp);
2140     }
2141   else
2142     {
2143       /* Almost all other ptrace-stops are known to be outside of system
2144 	 calls, with further exceptions in linux_handle_extended_wait.  */
2145       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2146     }
2147 
2148   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2149   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2150       && linux_is_extended_waitstatus (status))
2151     {
2152       linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2153       linux_handle_extended_wait (lp, status);
2154       return 0;
2155     }
2156 
2157   return status;
2158 }
2159 
2160 /* Send a SIGSTOP to LP.  */
2161 
2162 static int
2163 stop_callback (struct lwp_info *lp)
2164 {
2165   if (!lp->stopped && !lp->signalled)
2166     {
2167       int ret;
2168 
2169       linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2170 			      lp->ptid.to_string ().c_str ());
2171 
2172       errno = 0;
2173       ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2174       linux_nat_debug_printf ("lwp kill %d %s", ret,
2175 			      errno ? safe_strerror (errno) : "ERRNO-OK");
2176 
2177       lp->signalled = 1;
2178       gdb_assert (lp->status == 0);
2179     }
2180 
2181   return 0;
2182 }
2183 
2184 /* Request a stop on LWP.  */
2185 
2186 void
2187 linux_stop_lwp (struct lwp_info *lwp)
2188 {
2189   stop_callback (lwp);
2190 }
2191 
2192 /* See linux-nat.h  */
2193 
2194 void
2195 linux_stop_and_wait_all_lwps (void)
2196 {
2197   /* Stop all LWP's ...  */
2198   iterate_over_lwps (minus_one_ptid, stop_callback);
2199 
2200   /* ... and wait until all of them have reported back that
2201      they're no longer running.  */
2202   iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2203 }
2204 
2205 /* See linux-nat.h  */
2206 
2207 void
2208 linux_unstop_all_lwps (void)
2209 {
2210   iterate_over_lwps (minus_one_ptid,
2211 		     [] (struct lwp_info *info)
2212 		     {
2213 		       return resume_stopped_resumed_lwps (info, minus_one_ptid);
2214 		     });
2215 }
2216 
2217 /* Return non-zero if LWP PID has a pending SIGINT.  */
2218 
2219 static int
2220 linux_nat_has_pending_sigint (int pid)
2221 {
2222   sigset_t pending, blocked, ignored;
2223 
2224   linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2225 
2226   if (sigismember (&pending, SIGINT)
2227       && !sigismember (&ignored, SIGINT))
2228     return 1;
2229 
2230   return 0;
2231 }
2232 
2233 /* Set a flag in LP indicating that we should ignore its next SIGINT.  */
2234 
2235 static int
2236 set_ignore_sigint (struct lwp_info *lp)
2237 {
2238   /* If a thread has a pending SIGINT, consume it; otherwise, set a
2239      flag to consume the next one.  */
2240   if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2241       && WSTOPSIG (lp->status) == SIGINT)
2242     lp->status = 0;
2243   else
2244     lp->ignore_sigint = 1;
2245 
2246   return 0;
2247 }
2248 
2249 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2250    This function is called after we know the LWP has stopped; if the LWP
2251    stopped before the expected SIGINT was delivered, then it will never have
2252    arrived.  Also, if the signal was delivered to a shared queue and consumed
2253    by a different thread, it will never be delivered to this LWP.  */
2254 
2255 static void
2256 maybe_clear_ignore_sigint (struct lwp_info *lp)
2257 {
2258   if (!lp->ignore_sigint)
2259     return;
2260 
2261   if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2262     {
2263       linux_nat_debug_printf ("Clearing bogus flag for %s",
2264 			      lp->ptid.to_string ().c_str ());
2265       lp->ignore_sigint = 0;
2266     }
2267 }
2268 
2269 /* Fetch the possible triggered data watchpoint info and store it in
2270    LP.
2271 
2272    On some archs, like x86, that use debug registers to set
2273    watchpoints, it's possible that the way to know which watched
2274    address trapped, is to check the register that is used to select
2275    which address to watch.  Problem is, between setting the watchpoint
2276    and reading back which data address trapped, the user may change
2277    the set of watchpoints, and, as a consequence, GDB changes the
2278    debug registers in the inferior.  To avoid reading back a stale
2279    stopped-data-address when that happens, we cache in LP the fact
2280    that a watchpoint trapped, and the corresponding data address, as
2281    soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
2282    registers meanwhile, we have the cached data we can rely on.  */
2283 
2284 static int
2285 check_stopped_by_watchpoint (struct lwp_info *lp)
2286 {
2287   scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2288   inferior_ptid = lp->ptid;
2289 
2290   if (linux_target->low_stopped_by_watchpoint ())
2291     {
2292       lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2293       lp->stopped_data_address_p
2294 	= linux_target->low_stopped_data_address (&lp->stopped_data_address);
2295     }
2296 
2297   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2298 }
2299 
2300 /* Returns true if the LWP had stopped for a watchpoint.  */
2301 
2302 bool
2303 linux_nat_target::stopped_by_watchpoint ()
2304 {
2305   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2306 
2307   gdb_assert (lp != NULL);
2308 
2309   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2310 }
2311 
2312 bool
2313 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2314 {
2315   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2316 
2317   gdb_assert (lp != NULL);
2318 
2319   *addr_p = lp->stopped_data_address;
2320 
2321   return lp->stopped_data_address_p;
2322 }
2323 
2324 /* Commonly any breakpoint / watchpoint generate only SIGTRAP.  */
2325 
2326 bool
2327 linux_nat_target::low_status_is_event (int status)
2328 {
2329   return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2330 }
2331 
2332 /* Wait until LP is stopped.  */
2333 
2334 static int
2335 stop_wait_callback (struct lwp_info *lp)
2336 {
2337   inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2338 
2339   /* If this is a vfork parent, bail out, it is not going to report
2340      any SIGSTOP until the vfork is done with.  */
2341   if (inf->vfork_child != NULL)
2342     return 0;
2343 
2344   if (!lp->stopped)
2345     {
2346       int status;
2347 
2348       status = wait_lwp (lp);
2349       if (status == 0)
2350 	return 0;
2351 
2352       if (lp->ignore_sigint && WIFSTOPPED (status)
2353 	  && WSTOPSIG (status) == SIGINT)
2354 	{
2355 	  lp->ignore_sigint = 0;
2356 
2357 	  errno = 0;
2358 	  ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2359 	  lp->stopped = 0;
2360 	  linux_nat_debug_printf
2361 	    ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2362 	     lp->ptid.to_string ().c_str (),
2363 	     errno ? safe_strerror (errno) : "OK");
2364 
2365 	  return stop_wait_callback (lp);
2366 	}
2367 
2368       maybe_clear_ignore_sigint (lp);
2369 
2370       if (WSTOPSIG (status) != SIGSTOP)
2371 	{
2372 	  /* The thread was stopped with a signal other than SIGSTOP.  */
2373 
2374 	  linux_nat_debug_printf ("Pending event %s in %s",
2375 				  status_to_str ((int) status).c_str (),
2376 				  lp->ptid.to_string ().c_str ());
2377 
2378 	  /* Save the sigtrap event.  */
2379 	  lp->status = status;
2380 	  gdb_assert (lp->signalled);
2381 	  save_stop_reason (lp);
2382 	}
2383       else
2384 	{
2385 	  /* We caught the SIGSTOP that we intended to catch.  */
2386 
2387 	  linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2388 				  lp->ptid.to_string ().c_str ());
2389 
2390 	  lp->signalled = 0;
2391 
2392 	  /* If we are waiting for this stop so we can report the thread
2393 	     stopped then we need to record this status.  Otherwise, we can
2394 	     now discard this stop event.  */
2395 	  if (lp->last_resume_kind == resume_stop)
2396 	    {
2397 	      lp->status = status;
2398 	      save_stop_reason (lp);
2399 	    }
2400 	}
2401     }
2402 
2403   return 0;
2404 }
2405 
2406 /* Return non-zero if LP has a wait status pending.  Discard the
2407    pending event and resume the LWP if the event that originally
2408    caused the stop became uninteresting.  */
2409 
2410 static int
2411 status_callback (struct lwp_info *lp)
2412 {
2413   /* Only report a pending wait status if we pretend that this has
2414      indeed been resumed.  */
2415   if (!lp->resumed)
2416     return 0;
2417 
2418   if (!lwp_status_pending_p (lp))
2419     return 0;
2420 
2421   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2422       || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2423     {
2424       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2425       CORE_ADDR pc;
2426       int discard = 0;
2427 
2428       pc = regcache_read_pc (regcache);
2429 
2430       if (pc != lp->stop_pc)
2431 	{
2432 	  linux_nat_debug_printf ("PC of %s changed.  was=%s, now=%s",
2433 				  lp->ptid.to_string ().c_str (),
2434 				  paddress (target_gdbarch (), lp->stop_pc),
2435 				  paddress (target_gdbarch (), pc));
2436 	  discard = 1;
2437 	}
2438 
2439 #if !USE_SIGTRAP_SIGINFO
2440       else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2441 	{
2442 	  linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2443 				  lp->ptid.to_string ().c_str (),
2444 				  paddress (target_gdbarch (), lp->stop_pc));
2445 
2446 	  discard = 1;
2447 	}
2448 #endif
2449 
2450       if (discard)
2451 	{
2452 	  linux_nat_debug_printf ("pending event of %s cancelled.",
2453 				  lp->ptid.to_string ().c_str ());
2454 
2455 	  lp->status = 0;
2456 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2457 	  return 0;
2458 	}
2459     }
2460 
2461   return 1;
2462 }
2463 
2464 /* Count the LWP's that have had events.  */
2465 
2466 static int
2467 count_events_callback (struct lwp_info *lp, int *count)
2468 {
2469   gdb_assert (count != NULL);
2470 
2471   /* Select only resumed LWPs that have an event pending.  */
2472   if (lp->resumed && lwp_status_pending_p (lp))
2473     (*count)++;
2474 
2475   return 0;
2476 }
2477 
2478 /* Select the LWP (if any) that is currently being single-stepped.  */
2479 
2480 static int
2481 select_singlestep_lwp_callback (struct lwp_info *lp)
2482 {
2483   if (lp->last_resume_kind == resume_step
2484       && lp->status != 0)
2485     return 1;
2486   else
2487     return 0;
2488 }
2489 
2490 /* Returns true if LP has a status pending.  */
2491 
2492 static int
2493 lwp_status_pending_p (struct lwp_info *lp)
2494 {
2495   /* We check for lp->waitstatus in addition to lp->status, because we
2496      can have pending process exits recorded in lp->status and
2497      W_EXITCODE(0,0) happens to be 0.  */
2498   return lp->status != 0 || lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE;
2499 }
2500 
2501 /* Select the Nth LWP that has had an event.  */
2502 
2503 static int
2504 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2505 {
2506   gdb_assert (selector != NULL);
2507 
2508   /* Select only resumed LWPs that have an event pending.  */
2509   if (lp->resumed && lwp_status_pending_p (lp))
2510     if ((*selector)-- == 0)
2511       return 1;
2512 
2513   return 0;
2514 }
2515 
2516 /* Called when the LWP stopped for a signal/trap.  If it stopped for a
2517    trap check what caused it (breakpoint, watchpoint, trace, etc.),
2518    and save the result in the LWP's stop_reason field.  If it stopped
2519    for a breakpoint, decrement the PC if necessary on the lwp's
2520    architecture.  */
2521 
2522 static void
2523 save_stop_reason (struct lwp_info *lp)
2524 {
2525   struct regcache *regcache;
2526   struct gdbarch *gdbarch;
2527   CORE_ADDR pc;
2528   CORE_ADDR sw_bp_pc;
2529 #if USE_SIGTRAP_SIGINFO
2530   siginfo_t siginfo;
2531 #endif
2532 
2533   gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2534   gdb_assert (lp->status != 0);
2535 
2536   if (!linux_target->low_status_is_event (lp->status))
2537     return;
2538 
2539   inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2540   if (inf->starting_up)
2541     return;
2542 
2543   regcache = get_thread_regcache (linux_target, lp->ptid);
2544   gdbarch = regcache->arch ();
2545 
2546   pc = regcache_read_pc (regcache);
2547   sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2548 
2549 #if USE_SIGTRAP_SIGINFO
2550   if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2551     {
2552       if (siginfo.si_signo == SIGTRAP)
2553 	{
2554 	  if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2555 	      && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2556 	    {
2557 	      /* The si_code is ambiguous on this arch -- check debug
2558 		 registers.  */
2559 	      if (!check_stopped_by_watchpoint (lp))
2560 		lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2561 	    }
2562 	  else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2563 	    {
2564 	      /* If we determine the LWP stopped for a SW breakpoint,
2565 		 trust it.  Particularly don't check watchpoint
2566 		 registers, because, at least on s390, we'd find
2567 		 stopped-by-watchpoint as long as there's a watchpoint
2568 		 set.  */
2569 	      lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2570 	    }
2571 	  else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2572 	    {
2573 	      /* This can indicate either a hardware breakpoint or
2574 		 hardware watchpoint.  Check debug registers.  */
2575 	      if (!check_stopped_by_watchpoint (lp))
2576 		lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2577 	    }
2578 	  else if (siginfo.si_code == TRAP_TRACE)
2579 	    {
2580 	      linux_nat_debug_printf ("%s stopped by trace",
2581 				      lp->ptid.to_string ().c_str ());
2582 
2583 	      /* We may have single stepped an instruction that
2584 		 triggered a watchpoint.  In that case, on some
2585 		 architectures (such as x86), instead of TRAP_HWBKPT,
2586 		 si_code indicates TRAP_TRACE, and we need to check
2587 		 the debug registers separately.  */
2588 	      check_stopped_by_watchpoint (lp);
2589 	    }
2590 	}
2591     }
2592 #else
2593   if ((!lp->step || lp->stop_pc == sw_bp_pc)
2594       && software_breakpoint_inserted_here_p (regcache->aspace (),
2595 					      sw_bp_pc))
2596     {
2597       /* The LWP was either continued, or stepped a software
2598 	 breakpoint instruction.  */
2599       lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2600     }
2601 
2602   if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2603     lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2604 
2605   if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2606     check_stopped_by_watchpoint (lp);
2607 #endif
2608 
2609   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2610     {
2611       linux_nat_debug_printf ("%s stopped by software breakpoint",
2612 			      lp->ptid.to_string ().c_str ());
2613 
2614       /* Back up the PC if necessary.  */
2615       if (pc != sw_bp_pc)
2616 	regcache_write_pc (regcache, sw_bp_pc);
2617 
2618       /* Update this so we record the correct stop PC below.  */
2619       pc = sw_bp_pc;
2620     }
2621   else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2622     {
2623       linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2624 			      lp->ptid.to_string ().c_str ());
2625     }
2626   else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2627     {
2628       linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2629 			      lp->ptid.to_string ().c_str ());
2630     }
2631 
2632   lp->stop_pc = pc;
2633 }
2634 
2635 
2636 /* Returns true if the LWP had stopped for a software breakpoint.  */
2637 
2638 bool
2639 linux_nat_target::stopped_by_sw_breakpoint ()
2640 {
2641   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2642 
2643   gdb_assert (lp != NULL);
2644 
2645   return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2646 }
2647 
2648 /* Implement the supports_stopped_by_sw_breakpoint method.  */
2649 
2650 bool
2651 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2652 {
2653   return USE_SIGTRAP_SIGINFO;
2654 }
2655 
2656 /* Returns true if the LWP had stopped for a hardware
2657    breakpoint/watchpoint.  */
2658 
2659 bool
2660 linux_nat_target::stopped_by_hw_breakpoint ()
2661 {
2662   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2663 
2664   gdb_assert (lp != NULL);
2665 
2666   return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2667 }
2668 
2669 /* Implement the supports_stopped_by_hw_breakpoint method.  */
2670 
2671 bool
2672 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2673 {
2674   return USE_SIGTRAP_SIGINFO;
2675 }
2676 
2677 /* Select one LWP out of those that have events pending.  */
2678 
2679 static void
2680 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2681 {
2682   int num_events = 0;
2683   int random_selector;
2684   struct lwp_info *event_lp = NULL;
2685 
2686   /* Record the wait status for the original LWP.  */
2687   (*orig_lp)->status = *status;
2688 
2689   /* In all-stop, give preference to the LWP that is being
2690      single-stepped.  There will be at most one, and it will be the
2691      LWP that the core is most interested in.  If we didn't do this,
2692      then we'd have to handle pending step SIGTRAPs somehow in case
2693      the core later continues the previously-stepped thread, as
2694      otherwise we'd report the pending SIGTRAP then, and the core, not
2695      having stepped the thread, wouldn't understand what the trap was
2696      for, and therefore would report it to the user as a random
2697      signal.  */
2698   if (!target_is_non_stop_p ())
2699     {
2700       event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2701       if (event_lp != NULL)
2702 	{
2703 	  linux_nat_debug_printf ("Select single-step %s",
2704 				  event_lp->ptid.to_string ().c_str ());
2705 	}
2706     }
2707 
2708   if (event_lp == NULL)
2709     {
2710       /* Pick one at random, out of those which have had events.  */
2711 
2712       /* First see how many events we have.  */
2713       iterate_over_lwps (filter,
2714 			 [&] (struct lwp_info *info)
2715 			 {
2716 			   return count_events_callback (info, &num_events);
2717 			 });
2718       gdb_assert (num_events > 0);
2719 
2720       /* Now randomly pick a LWP out of those that have had
2721 	 events.  */
2722       random_selector = (int)
2723 	((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2724 
2725       if (num_events > 1)
2726 	linux_nat_debug_printf ("Found %d events, selecting #%d",
2727 				num_events, random_selector);
2728 
2729       event_lp
2730 	= (iterate_over_lwps
2731 	   (filter,
2732 	    [&] (struct lwp_info *info)
2733 	    {
2734 	      return select_event_lwp_callback (info,
2735 						&random_selector);
2736 	    }));
2737     }
2738 
2739   if (event_lp != NULL)
2740     {
2741       /* Switch the event LWP.  */
2742       *orig_lp = event_lp;
2743       *status = event_lp->status;
2744     }
2745 
2746   /* Flush the wait status for the event LWP.  */
2747   (*orig_lp)->status = 0;
2748 }
2749 
2750 /* Return non-zero if LP has been resumed.  */
2751 
2752 static int
2753 resumed_callback (struct lwp_info *lp)
2754 {
2755   return lp->resumed;
2756 }
2757 
2758 /* Check if we should go on and pass this event to common code.
2759 
2760    If so, save the status to the lwp_info structure associated to LWPID.  */
2761 
2762 static void
2763 linux_nat_filter_event (int lwpid, int status)
2764 {
2765   struct lwp_info *lp;
2766   int event = linux_ptrace_get_extended_event (status);
2767 
2768   lp = find_lwp_pid (ptid_t (lwpid));
2769 
2770   /* Check for events reported by anything not in our LWP list.  */
2771   if (lp == nullptr)
2772     {
2773       if (WIFSTOPPED (status))
2774 	{
2775 	  if (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)
2776 	    {
2777 	      /* A non-leader thread exec'ed after we've seen the
2778 		 leader zombie, and removed it from our lists (in
2779 		 check_zombie_leaders).  The non-leader thread changes
2780 		 its tid to the tgid.  */
2781 	      linux_nat_debug_printf
2782 		("Re-adding thread group leader LWP %d after exec.",
2783 		 lwpid);
2784 
2785 	      lp = add_lwp (ptid_t (lwpid, lwpid));
2786 	      lp->stopped = 1;
2787 	      lp->resumed = 1;
2788 	      add_thread (linux_target, lp->ptid);
2789 	    }
2790 	  else
2791 	    {
2792 	      /* A process we are controlling has forked and the new
2793 		 child's stop was reported to us by the kernel.  Save
2794 		 its PID and go back to waiting for the fork event to
2795 		 be reported - the stopped process might be returned
2796 		 from waitpid before or after the fork event is.  */
2797 	      linux_nat_debug_printf
2798 		("Saving LWP %d status %s in stopped_pids list",
2799 		 lwpid, status_to_str (status).c_str ());
2800 	      add_to_pid_list (&stopped_pids, lwpid, status);
2801 	    }
2802 	}
2803       else
2804 	{
2805 	  /* Don't report an event for the exit of an LWP not in our
2806 	     list, i.e. not part of any inferior we're debugging.
2807 	     This can happen if we detach from a program we originally
2808 	     forked and then it exits.  However, note that we may have
2809 	     earlier deleted a leader of an inferior we're debugging,
2810 	     in check_zombie_leaders.  Re-add it back here if so.  */
2811 	  for (inferior *inf : all_inferiors (linux_target))
2812 	    {
2813 	      if (inf->pid == lwpid)
2814 		{
2815 		  linux_nat_debug_printf
2816 		    ("Re-adding thread group leader LWP %d after exit.",
2817 		     lwpid);
2818 
2819 		  lp = add_lwp (ptid_t (lwpid, lwpid));
2820 		  lp->resumed = 1;
2821 		  add_thread (linux_target, lp->ptid);
2822 		  break;
2823 		}
2824 	    }
2825 	}
2826 
2827       if (lp == nullptr)
2828 	return;
2829     }
2830 
2831   /* This LWP is stopped now.  (And if dead, this prevents it from
2832      ever being continued.)  */
2833   lp->stopped = 1;
2834 
2835   if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2836     {
2837       inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2838       int options = linux_nat_ptrace_options (inf->attach_flag);
2839 
2840       linux_enable_event_reporting (lp->ptid.lwp (), options);
2841       lp->must_set_ptrace_flags = 0;
2842     }
2843 
2844   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2845   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2846     {
2847       /* No longer need the sysgood bit.  The ptrace event ends up
2848 	 recorded in lp->waitstatus if we care for it.  We can carry
2849 	 on handling the event like a regular SIGTRAP from here
2850 	 on.  */
2851       status = W_STOPCODE (SIGTRAP);
2852       if (linux_handle_syscall_trap (lp, 0))
2853 	return;
2854     }
2855   else
2856     {
2857       /* Almost all other ptrace-stops are known to be outside of system
2858 	 calls, with further exceptions in linux_handle_extended_wait.  */
2859       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2860     }
2861 
2862   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2863   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2864       && linux_is_extended_waitstatus (status))
2865     {
2866       linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2867 
2868       if (linux_handle_extended_wait (lp, status))
2869 	return;
2870     }
2871 
2872   /* Check if the thread has exited.  */
2873   if (WIFEXITED (status) || WIFSIGNALED (status))
2874     {
2875       if (!report_thread_events && !is_leader (lp))
2876 	{
2877 	  linux_nat_debug_printf ("%s exited.",
2878 				  lp->ptid.to_string ().c_str ());
2879 
2880 	  /* If this was not the leader exiting, then the exit signal
2881 	     was not the end of the debugged application and should be
2882 	     ignored.  */
2883 	  exit_lwp (lp);
2884 	  return;
2885 	}
2886 
2887       /* Note that even if the leader was ptrace-stopped, it can still
2888 	 exit, if e.g., some other thread brings down the whole
2889 	 process (calls `exit').  So don't assert that the lwp is
2890 	 resumed.  */
2891       linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2892 			      lp->ptid.lwp (), lp->resumed);
2893 
2894       /* Dead LWP's aren't expected to reported a pending sigstop.  */
2895       lp->signalled = 0;
2896 
2897       /* Store the pending event in the waitstatus, because
2898 	 W_EXITCODE(0,0) == 0.  */
2899       lp->waitstatus = host_status_to_waitstatus (status);
2900       return;
2901     }
2902 
2903   /* Make sure we don't report a SIGSTOP that we sent ourselves in
2904      an attempt to stop an LWP.  */
2905   if (lp->signalled
2906       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2907     {
2908       lp->signalled = 0;
2909 
2910       if (lp->last_resume_kind == resume_stop)
2911 	{
2912 	  linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2913 				  lp->ptid.to_string ().c_str ());
2914 	}
2915       else
2916 	{
2917 	  /* This is a delayed SIGSTOP.  Filter out the event.  */
2918 
2919 	  linux_nat_debug_printf
2920 	    ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2921 	     lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2922 	     lp->ptid.to_string ().c_str ());
2923 
2924 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2925 	  gdb_assert (lp->resumed);
2926 	  return;
2927 	}
2928     }
2929 
2930   /* Make sure we don't report a SIGINT that we have already displayed
2931      for another thread.  */
2932   if (lp->ignore_sigint
2933       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2934     {
2935       linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2936 			      lp->ptid.to_string ().c_str ());
2937 
2938       /* This is a delayed SIGINT.  */
2939       lp->ignore_sigint = 0;
2940 
2941       linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2942       linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2943 			      lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2944 			      lp->ptid.to_string ().c_str ());
2945       gdb_assert (lp->resumed);
2946 
2947       /* Discard the event.  */
2948       return;
2949     }
2950 
2951   /* Don't report signals that GDB isn't interested in, such as
2952      signals that are neither printed nor stopped upon.  Stopping all
2953      threads can be a bit time-consuming, so if we want decent
2954      performance with heavily multi-threaded programs, especially when
2955      they're using a high frequency timer, we'd better avoid it if we
2956      can.  */
2957   if (WIFSTOPPED (status))
2958     {
2959       enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
2960 
2961       if (!target_is_non_stop_p ())
2962 	{
2963 	  /* Only do the below in all-stop, as we currently use SIGSTOP
2964 	     to implement target_stop (see linux_nat_stop) in
2965 	     non-stop.  */
2966 	  if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
2967 	    {
2968 	      /* If ^C/BREAK is typed at the tty/console, SIGINT gets
2969 		 forwarded to the entire process group, that is, all LWPs
2970 		 will receive it - unless they're using CLONE_THREAD to
2971 		 share signals.  Since we only want to report it once, we
2972 		 mark it as ignored for all LWPs except this one.  */
2973 	      iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
2974 	      lp->ignore_sigint = 0;
2975 	    }
2976 	  else
2977 	    maybe_clear_ignore_sigint (lp);
2978 	}
2979 
2980       /* When using hardware single-step, we need to report every signal.
2981 	 Otherwise, signals in pass_mask may be short-circuited
2982 	 except signals that might be caused by a breakpoint, or SIGSTOP
2983 	 if we sent the SIGSTOP and are waiting for it to arrive.  */
2984       if (!lp->step
2985 	  && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
2986 	  && (WSTOPSIG (status) != SIGSTOP
2987 	      || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
2988 	  && !linux_wstatus_maybe_breakpoint (status))
2989 	{
2990 	  linux_resume_one_lwp (lp, lp->step, signo);
2991 	  linux_nat_debug_printf
2992 	    ("%s %s, %s (preempt 'handle')",
2993 	     lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2994 	     lp->ptid.to_string ().c_str (),
2995 	     (signo != GDB_SIGNAL_0
2996 	      ? strsignal (gdb_signal_to_host (signo)) : "0"));
2997 	  return;
2998 	}
2999     }
3000 
3001   /* An interesting event.  */
3002   gdb_assert (lp);
3003   lp->status = status;
3004   save_stop_reason (lp);
3005 }
3006 
3007 /* Detect zombie thread group leaders, and "exit" them.  We can't reap
3008    their exits until all other threads in the group have exited.  */
3009 
3010 static void
3011 check_zombie_leaders (void)
3012 {
3013   for (inferior *inf : all_inferiors ())
3014     {
3015       struct lwp_info *leader_lp;
3016 
3017       if (inf->pid == 0)
3018 	continue;
3019 
3020       leader_lp = find_lwp_pid (ptid_t (inf->pid));
3021       if (leader_lp != NULL
3022 	  /* Check if there are other threads in the group, as we may
3023 	     have raced with the inferior simply exiting.  Note this
3024 	     isn't a watertight check.  If the inferior is
3025 	     multi-threaded and is exiting, it may be we see the
3026 	     leader as zombie before we reap all the non-leader
3027 	     threads.  See comments below.  */
3028 	  && num_lwps (inf->pid) > 1
3029 	  && linux_proc_pid_is_zombie (inf->pid))
3030 	{
3031 	  /* A zombie leader in a multi-threaded program can mean one
3032 	     of three things:
3033 
3034 	     #1 - Only the leader exited, not the whole program, e.g.,
3035 	     with pthread_exit.  Since we can't reap the leader's exit
3036 	     status until all other threads are gone and reaped too,
3037 	     we want to delete the zombie leader right away, as it
3038 	     can't be debugged, we can't read its registers, etc.
3039 	     This is the main reason we check for zombie leaders
3040 	     disappearing.
3041 
3042 	     #2 - The whole thread-group/process exited (a group exit,
3043 	     via e.g. exit(3), and there is (or will be shortly) an
3044 	     exit reported for each thread in the process, and then
3045 	     finally an exit for the leader once the non-leaders are
3046 	     reaped.
3047 
3048 	     #3 - There are 3 or more threads in the group, and a
3049 	     thread other than the leader exec'd.  See comments on
3050 	     exec events at the top of the file.
3051 
3052 	     Ideally we would never delete the leader for case #2.
3053 	     Instead, we want to collect the exit status of each
3054 	     non-leader thread, and then finally collect the exit
3055 	     status of the leader as normal and use its exit code as
3056 	     whole-process exit code.  Unfortunately, there's no
3057 	     race-free way to distinguish cases #1 and #2.  We can't
3058 	     assume the exit events for the non-leaders threads are
3059 	     already pending in the kernel, nor can we assume the
3060 	     non-leader threads are in zombie state already.  Between
3061 	     the leader becoming zombie and the non-leaders exiting
3062 	     and becoming zombie themselves, there's a small time
3063 	     window, so such a check would be racy.  Temporarily
3064 	     pausing all threads and checking to see if all threads
3065 	     exit or not before re-resuming them would work in the
3066 	     case that all threads are running right now, but it
3067 	     wouldn't work if some thread is currently already
3068 	     ptrace-stopped, e.g., due to scheduler-locking.
3069 
3070 	     So what we do is we delete the leader anyhow, and then
3071 	     later on when we see its exit status, we re-add it back.
3072 	     We also make sure that we only report a whole-process
3073 	     exit when we see the leader exiting, as opposed to when
3074 	     the last LWP in the LWP list exits, which can be a
3075 	     non-leader if we deleted the leader here.  */
3076 	  linux_nat_debug_printf ("Thread group leader %d zombie "
3077 				  "(it exited, or another thread execd), "
3078 				  "deleting it.",
3079 				  inf->pid);
3080 	  exit_lwp (leader_lp);
3081 	}
3082     }
3083 }
3084 
3085 /* Convenience function that is called when the kernel reports an exit
3086    event.  This decides whether to report the event to GDB as a
3087    process exit event, a thread exit event, or to suppress the
3088    event.  */
3089 
3090 static ptid_t
3091 filter_exit_event (struct lwp_info *event_child,
3092 		   struct target_waitstatus *ourstatus)
3093 {
3094   ptid_t ptid = event_child->ptid;
3095 
3096   if (!is_leader (event_child))
3097     {
3098       if (report_thread_events)
3099 	ourstatus->set_thread_exited (0);
3100       else
3101 	ourstatus->set_ignore ();
3102 
3103       exit_lwp (event_child);
3104     }
3105 
3106   return ptid;
3107 }
3108 
3109 static ptid_t
3110 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3111 		  target_wait_flags target_options)
3112 {
3113   sigset_t prev_mask;
3114   enum resume_kind last_resume_kind;
3115   struct lwp_info *lp;
3116   int status;
3117 
3118   linux_nat_debug_printf ("enter");
3119 
3120   /* The first time we get here after starting a new inferior, we may
3121      not have added it to the LWP list yet - this is the earliest
3122      moment at which we know its PID.  */
3123   if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr)
3124     {
3125       ptid_t lwp_ptid (ptid.pid (), ptid.pid ());
3126 
3127       /* Upgrade the main thread's ptid.  */
3128       thread_change_ptid (linux_target, ptid, lwp_ptid);
3129       lp = add_initial_lwp (lwp_ptid);
3130       lp->resumed = 1;
3131     }
3132 
3133   /* Make sure SIGCHLD is blocked until the sigsuspend below.  */
3134   block_child_signals (&prev_mask);
3135 
3136   /* First check if there is a LWP with a wait status pending.  */
3137   lp = iterate_over_lwps (ptid, status_callback);
3138   if (lp != NULL)
3139     {
3140       linux_nat_debug_printf ("Using pending wait status %s for %s.",
3141 			      status_to_str (lp->status).c_str (),
3142 			      lp->ptid.to_string ().c_str ());
3143     }
3144 
3145   /* But if we don't find a pending event, we'll have to wait.  Always
3146      pull all events out of the kernel.  We'll randomly select an
3147      event LWP out of all that have events, to prevent starvation.  */
3148 
3149   while (lp == NULL)
3150     {
3151       pid_t lwpid;
3152 
3153       /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3154 	 quirks:
3155 
3156 	 - If the thread group leader exits while other threads in the
3157 	   thread group still exist, waitpid(TGID, ...) hangs.  That
3158 	   waitpid won't return an exit status until the other threads
3159 	   in the group are reaped.
3160 
3161 	 - When a non-leader thread execs, that thread just vanishes
3162 	   without reporting an exit (so we'd hang if we waited for it
3163 	   explicitly in that case).  The exec event is reported to
3164 	   the TGID pid.  */
3165 
3166       errno = 0;
3167       lwpid = my_waitpid (-1, &status,  __WALL | WNOHANG);
3168 
3169       linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3170 			      lwpid,
3171 			      errno ? safe_strerror (errno) : "ERRNO-OK");
3172 
3173       if (lwpid > 0)
3174 	{
3175 	  linux_nat_debug_printf ("waitpid %ld received %s",
3176 				  (long) lwpid,
3177 				  status_to_str (status).c_str ());
3178 
3179 	  linux_nat_filter_event (lwpid, status);
3180 	  /* Retry until nothing comes out of waitpid.  A single
3181 	     SIGCHLD can indicate more than one child stopped.  */
3182 	  continue;
3183 	}
3184 
3185       /* Now that we've pulled all events out of the kernel, resume
3186 	 LWPs that don't have an interesting event to report.  */
3187       iterate_over_lwps (minus_one_ptid,
3188 			 [] (struct lwp_info *info)
3189 			 {
3190 			   return resume_stopped_resumed_lwps (info, minus_one_ptid);
3191 			 });
3192 
3193       /* ... and find an LWP with a status to report to the core, if
3194 	 any.  */
3195       lp = iterate_over_lwps (ptid, status_callback);
3196       if (lp != NULL)
3197 	break;
3198 
3199       /* Check for zombie thread group leaders.  Those can't be reaped
3200 	 until all other threads in the thread group are.  */
3201       check_zombie_leaders ();
3202 
3203       /* If there are no resumed children left, bail.  We'd be stuck
3204 	 forever in the sigsuspend call below otherwise.  */
3205       if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3206 	{
3207 	  linux_nat_debug_printf ("exit (no resumed LWP)");
3208 
3209 	  ourstatus->set_no_resumed ();
3210 
3211 	  restore_child_signals_mask (&prev_mask);
3212 	  return minus_one_ptid;
3213 	}
3214 
3215       /* No interesting event to report to the core.  */
3216 
3217       if (target_options & TARGET_WNOHANG)
3218 	{
3219 	  linux_nat_debug_printf ("exit (ignore)");
3220 
3221 	  ourstatus->set_ignore ();
3222 	  restore_child_signals_mask (&prev_mask);
3223 	  return minus_one_ptid;
3224 	}
3225 
3226       /* We shouldn't end up here unless we want to try again.  */
3227       gdb_assert (lp == NULL);
3228 
3229       /* Block until we get an event reported with SIGCHLD.  */
3230       wait_for_signal ();
3231     }
3232 
3233   gdb_assert (lp);
3234 
3235   status = lp->status;
3236   lp->status = 0;
3237 
3238   if (!target_is_non_stop_p ())
3239     {
3240       /* Now stop all other LWP's ...  */
3241       iterate_over_lwps (minus_one_ptid, stop_callback);
3242 
3243       /* ... and wait until all of them have reported back that
3244 	 they're no longer running.  */
3245       iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3246     }
3247 
3248   /* If we're not waiting for a specific LWP, choose an event LWP from
3249      among those that have had events.  Giving equal priority to all
3250      LWPs that have had events helps prevent starvation.  */
3251   if (ptid == minus_one_ptid || ptid.is_pid ())
3252     select_event_lwp (ptid, &lp, &status);
3253 
3254   gdb_assert (lp != NULL);
3255 
3256   /* Now that we've selected our final event LWP, un-adjust its PC if
3257      it was a software breakpoint, and we can't reliably support the
3258      "stopped by software breakpoint" stop reason.  */
3259   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3260       && !USE_SIGTRAP_SIGINFO)
3261     {
3262       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3263       struct gdbarch *gdbarch = regcache->arch ();
3264       int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3265 
3266       if (decr_pc != 0)
3267 	{
3268 	  CORE_ADDR pc;
3269 
3270 	  pc = regcache_read_pc (regcache);
3271 	  regcache_write_pc (regcache, pc + decr_pc);
3272 	}
3273     }
3274 
3275   /* We'll need this to determine whether to report a SIGSTOP as
3276      GDB_SIGNAL_0.  Need to take a copy because resume_clear_callback
3277      clears it.  */
3278   last_resume_kind = lp->last_resume_kind;
3279 
3280   if (!target_is_non_stop_p ())
3281     {
3282       /* In all-stop, from the core's perspective, all LWPs are now
3283 	 stopped until a new resume action is sent over.  */
3284       iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3285     }
3286   else
3287     {
3288       resume_clear_callback (lp);
3289     }
3290 
3291   if (linux_target->low_status_is_event (status))
3292     {
3293       linux_nat_debug_printf ("trap ptid is %s.",
3294 			      lp->ptid.to_string ().c_str ());
3295     }
3296 
3297   if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE)
3298     {
3299       *ourstatus = lp->waitstatus;
3300       lp->waitstatus.set_ignore ();
3301     }
3302   else
3303     *ourstatus = host_status_to_waitstatus (status);
3304 
3305   linux_nat_debug_printf ("exit");
3306 
3307   restore_child_signals_mask (&prev_mask);
3308 
3309   if (last_resume_kind == resume_stop
3310       && ourstatus->kind () == TARGET_WAITKIND_STOPPED
3311       && WSTOPSIG (status) == SIGSTOP)
3312     {
3313       /* A thread that has been requested to stop by GDB with
3314 	 target_stop, and it stopped cleanly, so report as SIG0.  The
3315 	 use of SIGSTOP is an implementation detail.  */
3316       ourstatus->set_stopped (GDB_SIGNAL_0);
3317     }
3318 
3319   if (ourstatus->kind () == TARGET_WAITKIND_EXITED
3320       || ourstatus->kind () == TARGET_WAITKIND_SIGNALLED)
3321     lp->core = -1;
3322   else
3323     lp->core = linux_common_core_of_thread (lp->ptid);
3324 
3325   if (ourstatus->kind () == TARGET_WAITKIND_EXITED)
3326     return filter_exit_event (lp, ourstatus);
3327 
3328   return lp->ptid;
3329 }
3330 
3331 /* Resume LWPs that are currently stopped without any pending status
3332    to report, but are resumed from the core's perspective.  */
3333 
3334 static int
3335 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3336 {
3337   if (!lp->stopped)
3338     {
3339       linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3340 			      lp->ptid.to_string ().c_str ());
3341     }
3342   else if (!lp->resumed)
3343     {
3344       linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3345 			      lp->ptid.to_string ().c_str ());
3346     }
3347   else if (lwp_status_pending_p (lp))
3348     {
3349       linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3350 			      lp->ptid.to_string ().c_str ());
3351     }
3352   else
3353     {
3354       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3355       struct gdbarch *gdbarch = regcache->arch ();
3356 
3357       try
3358 	{
3359 	  CORE_ADDR pc = regcache_read_pc (regcache);
3360 	  int leave_stopped = 0;
3361 
3362 	  /* Don't bother if there's a breakpoint at PC that we'd hit
3363 	     immediately, and we're not waiting for this LWP.  */
3364 	  if (!lp->ptid.matches (wait_ptid))
3365 	    {
3366 	      if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3367 		leave_stopped = 1;
3368 	    }
3369 
3370 	  if (!leave_stopped)
3371 	    {
3372 	      linux_nat_debug_printf
3373 		("resuming stopped-resumed LWP %s at %s: step=%d",
3374 		 lp->ptid.to_string ().c_str (), paddress (gdbarch, pc),
3375 		 lp->step);
3376 
3377 	      linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3378 	    }
3379 	}
3380       catch (const gdb_exception_error &ex)
3381 	{
3382 	  if (!check_ptrace_stopped_lwp_gone (lp))
3383 	    throw;
3384 	}
3385     }
3386 
3387   return 0;
3388 }
3389 
3390 ptid_t
3391 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3392 			target_wait_flags target_options)
3393 {
3394   ptid_t event_ptid;
3395 
3396   linux_nat_debug_printf ("[%s], [%s]", ptid.to_string ().c_str (),
3397 			  target_options_to_string (target_options).c_str ());
3398 
3399   /* Flush the async file first.  */
3400   if (target_is_async_p ())
3401     async_file_flush ();
3402 
3403   /* Resume LWPs that are currently stopped without any pending status
3404      to report, but are resumed from the core's perspective.  LWPs get
3405      in this state if we find them stopping at a time we're not
3406      interested in reporting the event (target_wait on a
3407      specific_process, for example, see linux_nat_wait_1), and
3408      meanwhile the event became uninteresting.  Don't bother resuming
3409      LWPs we're not going to wait for if they'd stop immediately.  */
3410   if (target_is_non_stop_p ())
3411     iterate_over_lwps (minus_one_ptid,
3412 		       [=] (struct lwp_info *info)
3413 		       {
3414 			 return resume_stopped_resumed_lwps (info, ptid);
3415 		       });
3416 
3417   event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3418 
3419   /* If we requested any event, and something came out, assume there
3420      may be more.  If we requested a specific lwp or process, also
3421      assume there may be more.  */
3422   if (target_is_async_p ()
3423       && ((ourstatus->kind () != TARGET_WAITKIND_IGNORE
3424 	   && ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED)
3425 	  || ptid != minus_one_ptid))
3426     async_file_mark ();
3427 
3428   return event_ptid;
3429 }
3430 
3431 /* Kill one LWP.  */
3432 
3433 static void
3434 kill_one_lwp (pid_t pid)
3435 {
3436   /* PTRACE_KILL may resume the inferior.  Send SIGKILL first.  */
3437 
3438   errno = 0;
3439   kill_lwp (pid, SIGKILL);
3440 
3441   if (debug_linux_nat)
3442     {
3443       int save_errno = errno;
3444 
3445       linux_nat_debug_printf
3446 	("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3447 	 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3448     }
3449 
3450   /* Some kernels ignore even SIGKILL for processes under ptrace.  */
3451 
3452   errno = 0;
3453   ptrace (PTRACE_KILL, pid, 0, 0);
3454   if (debug_linux_nat)
3455     {
3456       int save_errno = errno;
3457 
3458       linux_nat_debug_printf
3459 	("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3460 	 save_errno ? safe_strerror (save_errno) : "OK");
3461     }
3462 }
3463 
3464 /* Wait for an LWP to die.  */
3465 
3466 static void
3467 kill_wait_one_lwp (pid_t pid)
3468 {
3469   pid_t res;
3470 
3471   /* We must make sure that there are no pending events (delayed
3472      SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3473      program doesn't interfere with any following debugging session.  */
3474 
3475   do
3476     {
3477       res = my_waitpid (pid, NULL, __WALL);
3478       if (res != (pid_t) -1)
3479 	{
3480 	  linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3481 
3482 	  /* The Linux kernel sometimes fails to kill a thread
3483 	     completely after PTRACE_KILL; that goes from the stop
3484 	     point in do_fork out to the one in get_signal_to_deliver
3485 	     and waits again.  So kill it again.  */
3486 	  kill_one_lwp (pid);
3487 	}
3488     }
3489   while (res == pid);
3490 
3491   gdb_assert (res == -1 && errno == ECHILD);
3492 }
3493 
3494 /* Callback for iterate_over_lwps.  */
3495 
3496 static int
3497 kill_callback (struct lwp_info *lp)
3498 {
3499   kill_one_lwp (lp->ptid.lwp ());
3500   return 0;
3501 }
3502 
3503 /* Callback for iterate_over_lwps.  */
3504 
3505 static int
3506 kill_wait_callback (struct lwp_info *lp)
3507 {
3508   kill_wait_one_lwp (lp->ptid.lwp ());
3509   return 0;
3510 }
3511 
3512 /* Kill the fork children of any threads of inferior INF that are
3513    stopped at a fork event.  */
3514 
3515 static void
3516 kill_unfollowed_fork_children (struct inferior *inf)
3517 {
3518   for (thread_info *thread : inf->non_exited_threads ())
3519     {
3520       struct target_waitstatus *ws = &thread->pending_follow;
3521 
3522       if (ws->kind () == TARGET_WAITKIND_FORKED
3523 	  || ws->kind () == TARGET_WAITKIND_VFORKED)
3524 	{
3525 	  ptid_t child_ptid = ws->child_ptid ();
3526 	  int child_pid = child_ptid.pid ();
3527 	  int child_lwp = child_ptid.lwp ();
3528 
3529 	  kill_one_lwp (child_lwp);
3530 	  kill_wait_one_lwp (child_lwp);
3531 
3532 	  /* Let the arch-specific native code know this process is
3533 	     gone.  */
3534 	  linux_target->low_forget_process (child_pid);
3535 	}
3536     }
3537 }
3538 
3539 void
3540 linux_nat_target::kill ()
3541 {
3542   /* If we're stopped while forking and we haven't followed yet,
3543      kill the other task.  We need to do this first because the
3544      parent will be sleeping if this is a vfork.  */
3545   kill_unfollowed_fork_children (current_inferior ());
3546 
3547   if (forks_exist_p ())
3548     linux_fork_killall ();
3549   else
3550     {
3551       ptid_t ptid = ptid_t (inferior_ptid.pid ());
3552 
3553       /* Stop all threads before killing them, since ptrace requires
3554 	 that the thread is stopped to successfully PTRACE_KILL.  */
3555       iterate_over_lwps (ptid, stop_callback);
3556       /* ... and wait until all of them have reported back that
3557 	 they're no longer running.  */
3558       iterate_over_lwps (ptid, stop_wait_callback);
3559 
3560       /* Kill all LWP's ...  */
3561       iterate_over_lwps (ptid, kill_callback);
3562 
3563       /* ... and wait until we've flushed all events.  */
3564       iterate_over_lwps (ptid, kill_wait_callback);
3565     }
3566 
3567   target_mourn_inferior (inferior_ptid);
3568 }
3569 
3570 void
3571 linux_nat_target::mourn_inferior ()
3572 {
3573   int pid = inferior_ptid.pid ();
3574 
3575   purge_lwp_list (pid);
3576 
3577   close_proc_mem_file (pid);
3578 
3579   if (! forks_exist_p ())
3580     /* Normal case, no other forks available.  */
3581     inf_ptrace_target::mourn_inferior ();
3582   else
3583     /* Multi-fork case.  The current inferior_ptid has exited, but
3584        there are other viable forks to debug.  Delete the exiting
3585        one and context-switch to the first available.  */
3586     linux_fork_mourn_inferior ();
3587 
3588   /* Let the arch-specific native code know this process is gone.  */
3589   linux_target->low_forget_process (pid);
3590 }
3591 
3592 /* Convert a native/host siginfo object, into/from the siginfo in the
3593    layout of the inferiors' architecture.  */
3594 
3595 static void
3596 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3597 {
3598   /* If the low target didn't do anything, then just do a straight
3599      memcpy.  */
3600   if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3601     {
3602       if (direction == 1)
3603 	memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3604       else
3605 	memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3606     }
3607 }
3608 
3609 static enum target_xfer_status
3610 linux_xfer_siginfo (ptid_t ptid, enum target_object object,
3611 		    const char *annex, gdb_byte *readbuf,
3612 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3613 		    ULONGEST *xfered_len)
3614 {
3615   siginfo_t siginfo;
3616   gdb_byte inf_siginfo[sizeof (siginfo_t)];
3617 
3618   gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3619   gdb_assert (readbuf || writebuf);
3620 
3621   if (offset > sizeof (siginfo))
3622     return TARGET_XFER_E_IO;
3623 
3624   if (!linux_nat_get_siginfo (ptid, &siginfo))
3625     return TARGET_XFER_E_IO;
3626 
3627   /* When GDB is built as a 64-bit application, ptrace writes into
3628      SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
3629      inferior with a 64-bit GDB should look the same as debugging it
3630      with a 32-bit GDB, we need to convert it.  GDB core always sees
3631      the converted layout, so any read/write will have to be done
3632      post-conversion.  */
3633   siginfo_fixup (&siginfo, inf_siginfo, 0);
3634 
3635   if (offset + len > sizeof (siginfo))
3636     len = sizeof (siginfo) - offset;
3637 
3638   if (readbuf != NULL)
3639     memcpy (readbuf, inf_siginfo + offset, len);
3640   else
3641     {
3642       memcpy (inf_siginfo + offset, writebuf, len);
3643 
3644       /* Convert back to ptrace layout before flushing it out.  */
3645       siginfo_fixup (&siginfo, inf_siginfo, 1);
3646 
3647       int pid = get_ptrace_pid (ptid);
3648       errno = 0;
3649       ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3650       if (errno != 0)
3651 	return TARGET_XFER_E_IO;
3652     }
3653 
3654   *xfered_len = len;
3655   return TARGET_XFER_OK;
3656 }
3657 
3658 static enum target_xfer_status
3659 linux_nat_xfer_osdata (enum target_object object,
3660 		       const char *annex, gdb_byte *readbuf,
3661 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3662 		       ULONGEST *xfered_len);
3663 
3664 static enum target_xfer_status
3665 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
3666 				const gdb_byte *writebuf, ULONGEST offset,
3667 				LONGEST len, ULONGEST *xfered_len);
3668 
3669 enum target_xfer_status
3670 linux_nat_target::xfer_partial (enum target_object object,
3671 				const char *annex, gdb_byte *readbuf,
3672 				const gdb_byte *writebuf,
3673 				ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3674 {
3675   if (object == TARGET_OBJECT_SIGNAL_INFO)
3676     return linux_xfer_siginfo (inferior_ptid, object, annex, readbuf, writebuf,
3677 			       offset, len, xfered_len);
3678 
3679   /* The target is connected but no live inferior is selected.  Pass
3680      this request down to a lower stratum (e.g., the executable
3681      file).  */
3682   if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3683     return TARGET_XFER_EOF;
3684 
3685   if (object == TARGET_OBJECT_AUXV)
3686     return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3687 			     offset, len, xfered_len);
3688 
3689   if (object == TARGET_OBJECT_OSDATA)
3690     return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3691 				  offset, len, xfered_len);
3692 
3693   if (object == TARGET_OBJECT_MEMORY)
3694     {
3695       /* GDB calculates all addresses in the largest possible address
3696 	 width.  The address width must be masked before its final use
3697 	 by linux_proc_xfer_partial.
3698 
3699 	 Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
3700       int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3701 
3702       if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3703 	offset &= ((ULONGEST) 1 << addr_bit) - 1;
3704 
3705       /* If /proc/pid/mem is writable, don't fallback to ptrace.  If
3706 	 the write via /proc/pid/mem fails because the inferior execed
3707 	 (and we haven't seen the exec event yet), a subsequent ptrace
3708 	 poke would incorrectly write memory to the post-exec address
3709 	 space, while the core was trying to write to the pre-exec
3710 	 address space.  */
3711       if (proc_mem_file_is_writable ())
3712 	return linux_proc_xfer_memory_partial (inferior_ptid.pid (), readbuf,
3713 					       writebuf, offset, len,
3714 					       xfered_len);
3715     }
3716 
3717   return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3718 					  offset, len, xfered_len);
3719 }
3720 
3721 bool
3722 linux_nat_target::thread_alive (ptid_t ptid)
3723 {
3724   /* As long as a PTID is in lwp list, consider it alive.  */
3725   return find_lwp_pid (ptid) != NULL;
3726 }
3727 
3728 /* Implement the to_update_thread_list target method for this
3729    target.  */
3730 
3731 void
3732 linux_nat_target::update_thread_list ()
3733 {
3734   /* We add/delete threads from the list as clone/exit events are
3735      processed, so just try deleting exited threads still in the
3736      thread list.  */
3737   delete_exited_threads ();
3738 
3739   /* Update the processor core that each lwp/thread was last seen
3740      running on.  */
3741   for (lwp_info *lwp : all_lwps ())
3742     {
3743       /* Avoid accessing /proc if the thread hasn't run since we last
3744 	 time we fetched the thread's core.  Accessing /proc becomes
3745 	 noticeably expensive when we have thousands of LWPs.  */
3746       if (lwp->core == -1)
3747 	lwp->core = linux_common_core_of_thread (lwp->ptid);
3748     }
3749 }
3750 
3751 std::string
3752 linux_nat_target::pid_to_str (ptid_t ptid)
3753 {
3754   if (ptid.lwp_p ()
3755       && (ptid.pid () != ptid.lwp ()
3756 	  || num_lwps (ptid.pid ()) > 1))
3757     return string_printf ("LWP %ld", ptid.lwp ());
3758 
3759   return normal_pid_to_str (ptid);
3760 }
3761 
3762 const char *
3763 linux_nat_target::thread_name (struct thread_info *thr)
3764 {
3765   return linux_proc_tid_get_name (thr->ptid);
3766 }
3767 
3768 /* Accepts an integer PID; Returns a string representing a file that
3769    can be opened to get the symbols for the child process.  */
3770 
3771 const char *
3772 linux_nat_target::pid_to_exec_file (int pid)
3773 {
3774   return linux_proc_pid_to_exec_file (pid);
3775 }
3776 
3777 /* Object representing an /proc/PID/mem open file.  We keep one such
3778    file open per inferior.
3779 
3780    It might be tempting to think about only ever opening one file at
3781    most for all inferiors, closing/reopening the file as we access
3782    memory of different inferiors, to minimize number of file
3783    descriptors open, which can otherwise run into resource limits.
3784    However, that does not work correctly -- if the inferior execs and
3785    we haven't processed the exec event yet, and, we opened a
3786    /proc/PID/mem file, we will get a mem file accessing the post-exec
3787    address space, thinking we're opening it for the pre-exec address
3788    space.  That is dangerous as we can poke memory (e.g. clearing
3789    breakpoints) in the post-exec memory by mistake, corrupting the
3790    inferior.  For that reason, we open the mem file as early as
3791    possible, right after spawning, forking or attaching to the
3792    inferior, when the inferior is stopped and thus before it has a
3793    chance of execing.
3794 
3795    Note that after opening the file, even if the thread we opened it
3796    for subsequently exits, the open file is still usable for accessing
3797    memory.  It's only when the whole process exits or execs that the
3798    file becomes invalid, at which point reads/writes return EOF.  */
3799 
3800 class proc_mem_file
3801 {
3802 public:
3803   proc_mem_file (ptid_t ptid, int fd)
3804     : m_ptid (ptid), m_fd (fd)
3805   {
3806     gdb_assert (m_fd != -1);
3807   }
3808 
3809   ~proc_mem_file ()
3810   {
3811     linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem",
3812 			    m_fd, m_ptid.pid (), m_ptid.lwp ());
3813     close (m_fd);
3814   }
3815 
3816   DISABLE_COPY_AND_ASSIGN (proc_mem_file);
3817 
3818   int fd ()
3819   {
3820     return m_fd;
3821   }
3822 
3823 private:
3824   /* The LWP this file was opened for.  Just for debugging
3825      purposes.  */
3826   ptid_t m_ptid;
3827 
3828   /* The file descriptor.  */
3829   int m_fd = -1;
3830 };
3831 
3832 /* The map between an inferior process id, and the open /proc/PID/mem
3833    file.  This is stored in a map instead of in a per-inferior
3834    structure because we need to be able to access memory of processes
3835    which don't have a corresponding struct inferior object.  E.g.,
3836    with "detach-on-fork on" (the default), and "follow-fork parent"
3837    (also default), we don't create an inferior for the fork child, but
3838    we still need to remove breakpoints from the fork child's
3839    memory.  */
3840 static std::unordered_map<int, proc_mem_file> proc_mem_file_map;
3841 
3842 /* Close the /proc/PID/mem file for PID.  */
3843 
3844 static void
3845 close_proc_mem_file (pid_t pid)
3846 {
3847   proc_mem_file_map.erase (pid);
3848 }
3849 
3850 /* Open the /proc/PID/mem file for the process (thread group) of PTID.
3851    We actually open /proc/PID/task/LWP/mem, as that's the LWP we know
3852    exists and is stopped right now.  We prefer the
3853    /proc/PID/task/LWP/mem form over /proc/LWP/mem to avoid tid-reuse
3854    races, just in case this is ever called on an already-waited
3855    LWP.  */
3856 
3857 static void
3858 open_proc_mem_file (ptid_t ptid)
3859 {
3860   auto iter = proc_mem_file_map.find (ptid.pid ());
3861   gdb_assert (iter == proc_mem_file_map.end ());
3862 
3863   char filename[64];
3864   xsnprintf (filename, sizeof filename,
3865 	     "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ());
3866 
3867   int fd = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0).release ();
3868 
3869   if (fd == -1)
3870     {
3871       warning (_("opening /proc/PID/mem file for lwp %d.%ld failed: %s (%d)"),
3872 	       ptid.pid (), ptid.lwp (),
3873 	       safe_strerror (errno), errno);
3874       return;
3875     }
3876 
3877   proc_mem_file_map.emplace (std::piecewise_construct,
3878 			     std::forward_as_tuple (ptid.pid ()),
3879 			     std::forward_as_tuple (ptid, fd));
3880 
3881   linux_nat_debug_printf ("opened fd %d for lwp %d.%ld",
3882 			  fd, ptid.pid (), ptid.lwp ());
3883 }
3884 
3885 /* Helper for linux_proc_xfer_memory_partial and
3886    proc_mem_file_is_writable.  FD is the already opened /proc/pid/mem
3887    file, and PID is the pid of the corresponding process.  The rest of
3888    the arguments are like linux_proc_xfer_memory_partial's.  */
3889 
3890 static enum target_xfer_status
3891 linux_proc_xfer_memory_partial_fd (int fd, int pid,
3892 				   gdb_byte *readbuf, const gdb_byte *writebuf,
3893 				   ULONGEST offset, LONGEST len,
3894 				   ULONGEST *xfered_len)
3895 {
3896   ssize_t ret;
3897 
3898   gdb_assert (fd != -1);
3899 
3900   /* Use pread64/pwrite64 if available, since they save a syscall and can
3901      handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3902      debugging a SPARC64 application).  */
3903 #ifdef HAVE_PREAD64
3904   ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3905 	 : pwrite64 (fd, writebuf, len, offset));
3906 #else
3907   ret = lseek (fd, offset, SEEK_SET);
3908   if (ret != -1)
3909     ret = (readbuf ? read (fd, readbuf, len)
3910 	   : write (fd, writebuf, len));
3911 #endif
3912 
3913   if (ret == -1)
3914     {
3915       linux_nat_debug_printf ("accessing fd %d for pid %d failed: %s (%d)",
3916 			      fd, pid, safe_strerror (errno), errno);
3917       return TARGET_XFER_E_IO;
3918     }
3919   else if (ret == 0)
3920     {
3921       /* EOF means the address space is gone, the whole process exited
3922 	 or execed.  */
3923       linux_nat_debug_printf ("accessing fd %d for pid %d got EOF",
3924 			      fd, pid);
3925       return TARGET_XFER_EOF;
3926     }
3927   else
3928     {
3929       *xfered_len = ret;
3930       return TARGET_XFER_OK;
3931     }
3932 }
3933 
3934 /* Implement the to_xfer_partial target method using /proc/PID/mem.
3935    Because we can use a single read/write call, this can be much more
3936    efficient than banging away at PTRACE_PEEKTEXT.  Also, unlike
3937    PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running
3938    threads.  */
3939 
3940 static enum target_xfer_status
3941 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf,
3942 				const gdb_byte *writebuf, ULONGEST offset,
3943 				LONGEST len, ULONGEST *xfered_len)
3944 {
3945   auto iter = proc_mem_file_map.find (pid);
3946   if (iter == proc_mem_file_map.end ())
3947     return TARGET_XFER_EOF;
3948 
3949   int fd = iter->second.fd ();
3950 
3951   return linux_proc_xfer_memory_partial_fd (fd, pid, readbuf, writebuf, offset,
3952 					    len, xfered_len);
3953 }
3954 
3955 /* Check whether /proc/pid/mem is writable in the current kernel, and
3956    return true if so.  It wasn't writable before Linux 2.6.39, but
3957    there's no way to know whether the feature was backported to older
3958    kernels.  So we check to see if it works.  The result is cached,
3959    and this is garanteed to be called once early during inferior
3960    startup, so that any warning is printed out consistently between
3961    GDB invocations.  Note we don't call it during GDB startup instead
3962    though, because then we might warn with e.g. just "gdb --version"
3963    on sandboxed systems.  See PR gdb/29907.  */
3964 
3965 static bool
3966 proc_mem_file_is_writable ()
3967 {
3968   static gdb::optional<bool> writable;
3969 
3970   if (writable.has_value ())
3971     return *writable;
3972 
3973   writable.emplace (false);
3974 
3975   /* We check whether /proc/pid/mem is writable by trying to write to
3976      one of our variables via /proc/self/mem.  */
3977 
3978   int fd = gdb_open_cloexec ("/proc/self/mem", O_RDWR | O_LARGEFILE, 0).release ();
3979 
3980   if (fd == -1)
3981     {
3982       warning (_("opening /proc/self/mem file failed: %s (%d)"),
3983 	       safe_strerror (errno), errno);
3984       return *writable;
3985     }
3986 
3987   SCOPE_EXIT { close (fd); };
3988 
3989   /* This is the variable we try to write to.  Note OFFSET below.  */
3990   volatile gdb_byte test_var = 0;
3991 
3992   gdb_byte writebuf[] = {0x55};
3993   ULONGEST offset = (uintptr_t) &test_var;
3994   ULONGEST xfered_len;
3995 
3996   enum target_xfer_status res
3997     = linux_proc_xfer_memory_partial_fd (fd, getpid (), nullptr, writebuf,
3998 					 offset, 1, &xfered_len);
3999 
4000   if (res == TARGET_XFER_OK)
4001     {
4002       gdb_assert (xfered_len == 1);
4003       gdb_assert (test_var == 0x55);
4004       /* Success.  */
4005       *writable = true;
4006     }
4007 
4008   return *writable;
4009 }
4010 
4011 /* Parse LINE as a signal set and add its set bits to SIGS.  */
4012 
4013 static void
4014 add_line_to_sigset (const char *line, sigset_t *sigs)
4015 {
4016   int len = strlen (line) - 1;
4017   const char *p;
4018   int signum;
4019 
4020   if (line[len] != '\n')
4021     error (_("Could not parse signal set: %s"), line);
4022 
4023   p = line;
4024   signum = len * 4;
4025   while (len-- > 0)
4026     {
4027       int digit;
4028 
4029       if (*p >= '0' && *p <= '9')
4030 	digit = *p - '0';
4031       else if (*p >= 'a' && *p <= 'f')
4032 	digit = *p - 'a' + 10;
4033       else
4034 	error (_("Could not parse signal set: %s"), line);
4035 
4036       signum -= 4;
4037 
4038       if (digit & 1)
4039 	sigaddset (sigs, signum + 1);
4040       if (digit & 2)
4041 	sigaddset (sigs, signum + 2);
4042       if (digit & 4)
4043 	sigaddset (sigs, signum + 3);
4044       if (digit & 8)
4045 	sigaddset (sigs, signum + 4);
4046 
4047       p++;
4048     }
4049 }
4050 
4051 /* Find process PID's pending signals from /proc/pid/status and set
4052    SIGS to match.  */
4053 
4054 void
4055 linux_proc_pending_signals (int pid, sigset_t *pending,
4056 			    sigset_t *blocked, sigset_t *ignored)
4057 {
4058   char buffer[PATH_MAX], fname[PATH_MAX];
4059 
4060   sigemptyset (pending);
4061   sigemptyset (blocked);
4062   sigemptyset (ignored);
4063   xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4064   gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
4065   if (procfile == NULL)
4066     error (_("Could not open %s"), fname);
4067 
4068   while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
4069     {
4070       /* Normal queued signals are on the SigPnd line in the status
4071 	 file.  However, 2.6 kernels also have a "shared" pending
4072 	 queue for delivering signals to a thread group, so check for
4073 	 a ShdPnd line also.
4074 
4075 	 Unfortunately some Red Hat kernels include the shared pending
4076 	 queue but not the ShdPnd status field.  */
4077 
4078       if (startswith (buffer, "SigPnd:\t"))
4079 	add_line_to_sigset (buffer + 8, pending);
4080       else if (startswith (buffer, "ShdPnd:\t"))
4081 	add_line_to_sigset (buffer + 8, pending);
4082       else if (startswith (buffer, "SigBlk:\t"))
4083 	add_line_to_sigset (buffer + 8, blocked);
4084       else if (startswith (buffer, "SigIgn:\t"))
4085 	add_line_to_sigset (buffer + 8, ignored);
4086     }
4087 }
4088 
4089 static enum target_xfer_status
4090 linux_nat_xfer_osdata (enum target_object object,
4091 		       const char *annex, gdb_byte *readbuf,
4092 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4093 		       ULONGEST *xfered_len)
4094 {
4095   gdb_assert (object == TARGET_OBJECT_OSDATA);
4096 
4097   *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4098   if (*xfered_len == 0)
4099     return TARGET_XFER_EOF;
4100   else
4101     return TARGET_XFER_OK;
4102 }
4103 
4104 std::vector<static_tracepoint_marker>
4105 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
4106 {
4107   char s[IPA_CMD_BUF_SIZE];
4108   int pid = inferior_ptid.pid ();
4109   std::vector<static_tracepoint_marker> markers;
4110   const char *p = s;
4111   ptid_t ptid = ptid_t (pid, 0);
4112   static_tracepoint_marker marker;
4113 
4114   /* Pause all */
4115   target_stop (ptid);
4116 
4117   memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4118   s[sizeof ("qTfSTM")] = 0;
4119 
4120   agent_run_command (pid, s, strlen (s) + 1);
4121 
4122   /* Unpause all.  */
4123   SCOPE_EXIT { target_continue_no_signal (ptid); };
4124 
4125   while (*p++ == 'm')
4126     {
4127       do
4128 	{
4129 	  parse_static_tracepoint_marker_definition (p, &p, &marker);
4130 
4131 	  if (strid == NULL || marker.str_id == strid)
4132 	    markers.push_back (std::move (marker));
4133 	}
4134       while (*p++ == ',');	/* comma-separated list */
4135 
4136       memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4137       s[sizeof ("qTsSTM")] = 0;
4138       agent_run_command (pid, s, strlen (s) + 1);
4139       p = s;
4140     }
4141 
4142   return markers;
4143 }
4144 
4145 /* target_can_async_p implementation.  */
4146 
4147 bool
4148 linux_nat_target::can_async_p ()
4149 {
4150   /* This flag should be checked in the common target.c code.  */
4151   gdb_assert (target_async_permitted);
4152 
4153   /* Otherwise, this targets is always able to support async mode.  */
4154   return true;
4155 }
4156 
4157 bool
4158 linux_nat_target::supports_non_stop ()
4159 {
4160   return true;
4161 }
4162 
4163 /* to_always_non_stop_p implementation.  */
4164 
4165 bool
4166 linux_nat_target::always_non_stop_p ()
4167 {
4168   return true;
4169 }
4170 
4171 bool
4172 linux_nat_target::supports_multi_process ()
4173 {
4174   return true;
4175 }
4176 
4177 bool
4178 linux_nat_target::supports_disable_randomization ()
4179 {
4180   return true;
4181 }
4182 
4183 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4184    so we notice when any child changes state, and notify the
4185    event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4186    above to wait for the arrival of a SIGCHLD.  */
4187 
4188 static void
4189 sigchld_handler (int signo)
4190 {
4191   int old_errno = errno;
4192 
4193   if (debug_linux_nat)
4194     gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4195 
4196   if (signo == SIGCHLD)
4197     {
4198       /* Let the event loop know that there are events to handle.  */
4199       linux_nat_target::async_file_mark_if_open ();
4200     }
4201 
4202   errno = old_errno;
4203 }
4204 
4205 /* Callback registered with the target events file descriptor.  */
4206 
4207 static void
4208 handle_target_event (int error, gdb_client_data client_data)
4209 {
4210   inferior_event_handler (INF_REG_EVENT);
4211 }
4212 
4213 /* target_async implementation.  */
4214 
4215 void
4216 linux_nat_target::async (bool enable)
4217 {
4218   if (enable == is_async_p ())
4219     return;
4220 
4221   /* Block child signals while we create/destroy the pipe, as their
4222      handler writes to it.  */
4223   gdb::block_signals blocker;
4224 
4225   if (enable)
4226     {
4227       if (!async_file_open ())
4228 	internal_error ("creating event pipe failed.");
4229 
4230       add_file_handler (async_wait_fd (), handle_target_event, NULL,
4231 			"linux-nat");
4232 
4233       /* There may be pending events to handle.  Tell the event loop
4234 	 to poll them.  */
4235       async_file_mark ();
4236     }
4237   else
4238     {
4239       delete_file_handler (async_wait_fd ());
4240       async_file_close ();
4241     }
4242 }
4243 
4244 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4245    event came out.  */
4246 
4247 static int
4248 linux_nat_stop_lwp (struct lwp_info *lwp)
4249 {
4250   if (!lwp->stopped)
4251     {
4252       linux_nat_debug_printf ("running -> suspending %s",
4253 			      lwp->ptid.to_string ().c_str ());
4254 
4255 
4256       if (lwp->last_resume_kind == resume_stop)
4257 	{
4258 	  linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4259 				  lwp->ptid.lwp ());
4260 	  return 0;
4261 	}
4262 
4263       stop_callback (lwp);
4264       lwp->last_resume_kind = resume_stop;
4265     }
4266   else
4267     {
4268       /* Already known to be stopped; do nothing.  */
4269 
4270       if (debug_linux_nat)
4271 	{
4272 	  if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4273 	    linux_nat_debug_printf ("already stopped/stop_requested %s",
4274 				    lwp->ptid.to_string ().c_str ());
4275 	  else
4276 	    linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4277 				    lwp->ptid.to_string ().c_str ());
4278 	}
4279     }
4280   return 0;
4281 }
4282 
4283 void
4284 linux_nat_target::stop (ptid_t ptid)
4285 {
4286   LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT;
4287   iterate_over_lwps (ptid, linux_nat_stop_lwp);
4288 }
4289 
4290 /* When requests are passed down from the linux-nat layer to the
4291    single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4292    used.  The address space pointer is stored in the inferior object,
4293    but the common code that is passed such ptid can't tell whether
4294    lwpid is a "main" process id or not (it assumes so).  We reverse
4295    look up the "main" process id from the lwp here.  */
4296 
4297 struct address_space *
4298 linux_nat_target::thread_address_space (ptid_t ptid)
4299 {
4300   struct lwp_info *lwp;
4301   struct inferior *inf;
4302   int pid;
4303 
4304   if (ptid.lwp () == 0)
4305     {
4306       /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
4307 	 tgid.  */
4308       lwp = find_lwp_pid (ptid);
4309       pid = lwp->ptid.pid ();
4310     }
4311   else
4312     {
4313       /* A (pid,lwpid,0) ptid.  */
4314       pid = ptid.pid ();
4315     }
4316 
4317   inf = find_inferior_pid (this, pid);
4318   gdb_assert (inf != NULL);
4319   return inf->aspace;
4320 }
4321 
4322 /* Return the cached value of the processor core for thread PTID.  */
4323 
4324 int
4325 linux_nat_target::core_of_thread (ptid_t ptid)
4326 {
4327   struct lwp_info *info = find_lwp_pid (ptid);
4328 
4329   if (info)
4330     return info->core;
4331   return -1;
4332 }
4333 
4334 /* Implementation of to_filesystem_is_local.  */
4335 
4336 bool
4337 linux_nat_target::filesystem_is_local ()
4338 {
4339   struct inferior *inf = current_inferior ();
4340 
4341   if (inf->fake_pid_p || inf->pid == 0)
4342     return true;
4343 
4344   return linux_ns_same (inf->pid, LINUX_NS_MNT);
4345 }
4346 
4347 /* Convert the INF argument passed to a to_fileio_* method
4348    to a process ID suitable for passing to its corresponding
4349    linux_mntns_* function.  If INF is non-NULL then the
4350    caller is requesting the filesystem seen by INF.  If INF
4351    is NULL then the caller is requesting the filesystem seen
4352    by the GDB.  We fall back to GDB's filesystem in the case
4353    that INF is non-NULL but its PID is unknown.  */
4354 
4355 static pid_t
4356 linux_nat_fileio_pid_of (struct inferior *inf)
4357 {
4358   if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4359     return getpid ();
4360   else
4361     return inf->pid;
4362 }
4363 
4364 /* Implementation of to_fileio_open.  */
4365 
4366 int
4367 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4368 			       int flags, int mode, int warn_if_slow,
4369 			       fileio_error *target_errno)
4370 {
4371   int nat_flags;
4372   mode_t nat_mode;
4373   int fd;
4374 
4375   if (fileio_to_host_openflags (flags, &nat_flags) == -1
4376       || fileio_to_host_mode (mode, &nat_mode) == -1)
4377     {
4378       *target_errno = FILEIO_EINVAL;
4379       return -1;
4380     }
4381 
4382   fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4383 				 filename, nat_flags, nat_mode);
4384   if (fd == -1)
4385     *target_errno = host_to_fileio_error (errno);
4386 
4387   return fd;
4388 }
4389 
4390 /* Implementation of to_fileio_readlink.  */
4391 
4392 gdb::optional<std::string>
4393 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4394 				   fileio_error *target_errno)
4395 {
4396   char buf[PATH_MAX];
4397   int len;
4398 
4399   len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4400 			      filename, buf, sizeof (buf));
4401   if (len < 0)
4402     {
4403       *target_errno = host_to_fileio_error (errno);
4404       return {};
4405     }
4406 
4407   return std::string (buf, len);
4408 }
4409 
4410 /* Implementation of to_fileio_unlink.  */
4411 
4412 int
4413 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4414 				 fileio_error *target_errno)
4415 {
4416   int ret;
4417 
4418   ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4419 			    filename);
4420   if (ret == -1)
4421     *target_errno = host_to_fileio_error (errno);
4422 
4423   return ret;
4424 }
4425 
4426 /* Implementation of the to_thread_events method.  */
4427 
4428 void
4429 linux_nat_target::thread_events (int enable)
4430 {
4431   report_thread_events = enable;
4432 }
4433 
4434 linux_nat_target::linux_nat_target ()
4435 {
4436   /* We don't change the stratum; this target will sit at
4437      process_stratum and thread_db will set at thread_stratum.  This
4438      is a little strange, since this is a multi-threaded-capable
4439      target, but we want to be on the stack below thread_db, and we
4440      also want to be used for single-threaded processes.  */
4441 }
4442 
4443 /* See linux-nat.h.  */
4444 
4445 bool
4446 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4447 {
4448   int pid = get_ptrace_pid (ptid);
4449   return ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo) == 0;
4450 }
4451 
4452 /* See nat/linux-nat.h.  */
4453 
4454 ptid_t
4455 current_lwp_ptid (void)
4456 {
4457   gdb_assert (inferior_ptid.lwp_p ());
4458   return inferior_ptid;
4459 }
4460 
4461 void _initialize_linux_nat ();
4462 void
4463 _initialize_linux_nat ()
4464 {
4465   add_setshow_boolean_cmd ("linux-nat", class_maintenance,
4466 			   &debug_linux_nat, _("\
4467 Set debugging of GNU/Linux native target."), _("	\
4468 Show debugging of GNU/Linux native target."), _("	\
4469 When on, print debug messages relating to the GNU/Linux native target."),
4470 			   nullptr,
4471 			   show_debug_linux_nat,
4472 			   &setdebuglist, &showdebuglist);
4473 
4474   add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4475 			   &debug_linux_namespaces, _("\
4476 Set debugging of GNU/Linux namespaces module."), _("\
4477 Show debugging of GNU/Linux namespaces module."), _("\
4478 Enables printf debugging output."),
4479 			   NULL,
4480 			   NULL,
4481 			   &setdebuglist, &showdebuglist);
4482 
4483   /* Install a SIGCHLD handler.  */
4484   sigchld_action.sa_handler = sigchld_handler;
4485   sigemptyset (&sigchld_action.sa_mask);
4486   sigchld_action.sa_flags = SA_RESTART;
4487 
4488   /* Make it the default.  */
4489   sigaction (SIGCHLD, &sigchld_action, NULL);
4490 
4491   /* Make sure we don't block SIGCHLD during a sigsuspend.  */
4492   gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4493   sigdelset (&suspend_mask, SIGCHLD);
4494 
4495   sigemptyset (&blocked_mask);
4496 
4497   lwp_lwpid_htab_create ();
4498 }
4499 
4500 
4501 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4502    the GNU/Linux Threads library and therefore doesn't really belong
4503    here.  */
4504 
4505 /* NPTL reserves the first two RT signals, but does not provide any
4506    way for the debugger to query the signal numbers - fortunately
4507    they don't change.  */
4508 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 };
4509 
4510 /* See linux-nat.h.  */
4511 
4512 unsigned int
4513 lin_thread_get_thread_signal_num (void)
4514 {
4515   return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]);
4516 }
4517 
4518 /* See linux-nat.h.  */
4519 
4520 int
4521 lin_thread_get_thread_signal (unsigned int i)
4522 {
4523   gdb_assert (i < lin_thread_get_thread_signal_num ());
4524   return lin_thread_signals[i];
4525 }
4526