1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2023 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "gdbsupport/gdb_wait.h" 27 #include <unistd.h> 28 #include <sys/syscall.h> 29 #include "nat/gdb_ptrace.h" 30 #include "linux-nat.h" 31 #include "nat/linux-ptrace.h" 32 #include "nat/linux-procfs.h" 33 #include "nat/linux-personality.h" 34 #include "linux-fork.h" 35 #include "gdbthread.h" 36 #include "gdbcmd.h" 37 #include "regcache.h" 38 #include "regset.h" 39 #include "inf-child.h" 40 #include "inf-ptrace.h" 41 #include "auxv.h" 42 #include <sys/procfs.h> /* for elf_gregset etc. */ 43 #include "elf-bfd.h" /* for elfcore_write_* */ 44 #include "gregset.h" /* for gregset */ 45 #include "gdbcore.h" /* for get_exec_file */ 46 #include <ctype.h> /* for isdigit */ 47 #include <sys/stat.h> /* for struct stat */ 48 #include <fcntl.h> /* for O_RDONLY */ 49 #include "inf-loop.h" 50 #include "gdbsupport/event-loop.h" 51 #include "event-top.h" 52 #include <pwd.h> 53 #include <sys/types.h> 54 #include <dirent.h> 55 #include "xml-support.h" 56 #include <sys/vfs.h> 57 #include "solib.h" 58 #include "nat/linux-osdata.h" 59 #include "linux-tdep.h" 60 #include "symfile.h" 61 #include "gdbsupport/agent.h" 62 #include "tracepoint.h" 63 #include "gdbsupport/buffer.h" 64 #include "target-descriptions.h" 65 #include "gdbsupport/filestuff.h" 66 #include "objfiles.h" 67 #include "nat/linux-namespaces.h" 68 #include "gdbsupport/block-signals.h" 69 #include "gdbsupport/fileio.h" 70 #include "gdbsupport/scope-exit.h" 71 #include "gdbsupport/gdb-sigmask.h" 72 #include "gdbsupport/common-debug.h" 73 #include <unordered_map> 74 75 /* This comment documents high-level logic of this file. 76 77 Waiting for events in sync mode 78 =============================== 79 80 When waiting for an event in a specific thread, we just use waitpid, 81 passing the specific pid, and not passing WNOHANG. 82 83 When waiting for an event in all threads, waitpid is not quite good: 84 85 - If the thread group leader exits while other threads in the thread 86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't 87 return an exit status until the other threads in the group are 88 reaped. 89 90 - When a non-leader thread execs, that thread just vanishes without 91 reporting an exit (so we'd hang if we waited for it explicitly in 92 that case). The exec event is instead reported to the TGID pid. 93 94 The solution is to always use -1 and WNOHANG, together with 95 sigsuspend. 96 97 First, we use non-blocking waitpid to check for events. If nothing is 98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, 99 it means something happened to a child process. As soon as we know 100 there's an event, we get back to calling nonblocking waitpid. 101 102 Note that SIGCHLD should be blocked between waitpid and sigsuspend 103 calls, so that we don't miss a signal. If SIGCHLD arrives in between, 104 when it's blocked, the signal becomes pending and sigsuspend 105 immediately notices it and returns. 106 107 Waiting for events in async mode (TARGET_WNOHANG) 108 ================================================= 109 110 In async mode, GDB should always be ready to handle both user input 111 and target events, so neither blocking waitpid nor sigsuspend are 112 viable options. Instead, we should asynchronously notify the GDB main 113 event loop whenever there's an unprocessed event from the target. We 114 detect asynchronous target events by handling SIGCHLD signals. To 115 notify the event loop about target events, an event pipe is used 116 --- the pipe is registered as waitable event source in the event loop, 117 the event loop select/poll's on the read end of this pipe (as well on 118 other event sources, e.g., stdin), and the SIGCHLD handler marks the 119 event pipe to raise an event. This is more portable than relying on 120 pselect/ppoll, since on kernels that lack those syscalls, libc 121 emulates them with select/poll+sigprocmask, and that is racy 122 (a.k.a. plain broken). 123 124 Obviously, if we fail to notify the event loop if there's a target 125 event, it's bad. OTOH, if we notify the event loop when there's no 126 event from the target, linux_nat_wait will detect that there's no real 127 event to report, and return event of type TARGET_WAITKIND_IGNORE. 128 This is mostly harmless, but it will waste time and is better avoided. 129 130 The main design point is that every time GDB is outside linux-nat.c, 131 we have a SIGCHLD handler installed that is called when something 132 happens to the target and notifies the GDB event loop. Whenever GDB 133 core decides to handle the event, and calls into linux-nat.c, we 134 process things as in sync mode, except that the we never block in 135 sigsuspend. 136 137 While processing an event, we may end up momentarily blocked in 138 waitpid calls. Those waitpid calls, while blocking, are guarantied to 139 return quickly. E.g., in all-stop mode, before reporting to the core 140 that an LWP hit a breakpoint, all LWPs are stopped by sending them 141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 142 Note that this is different from blocking indefinitely waiting for the 143 next event --- here, we're already handling an event. 144 145 Use of signals 146 ============== 147 148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 149 signal is not entirely significant; we just need for a signal to be delivered, 150 so that we can intercept it. SIGSTOP's advantage is that it can not be 151 blocked. A disadvantage is that it is not a real-time signal, so it can only 152 be queued once; we do not keep track of other sources of SIGSTOP. 153 154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 155 use them, because they have special behavior when the signal is generated - 156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 157 kills the entire thread group. 158 159 A delivered SIGSTOP would stop the entire thread group, not just the thread we 160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 161 cancel it (by PTRACE_CONT without passing SIGSTOP). 162 163 We could use a real-time signal instead. This would solve those problems; we 164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 166 generates it, and there are races with trying to find a signal that is not 167 blocked. 168 169 Exec events 170 =========== 171 172 The case of a thread group (process) with 3 or more threads, and a 173 thread other than the leader execs is worth detailing: 174 175 On an exec, the Linux kernel destroys all threads except the execing 176 one in the thread group, and resets the execing thread's tid to the 177 tgid. No exit notification is sent for the execing thread -- from the 178 ptracer's perspective, it appears as though the execing thread just 179 vanishes. Until we reap all other threads except the leader and the 180 execing thread, the leader will be zombie, and the execing thread will 181 be in `D (disc sleep)' state. As soon as all other threads are 182 reaped, the execing thread changes its tid to the tgid, and the 183 previous (zombie) leader vanishes, giving place to the "new" 184 leader. */ 185 186 #ifndef O_LARGEFILE 187 #define O_LARGEFILE 0 188 #endif 189 190 struct linux_nat_target *linux_target; 191 192 /* Does the current host support PTRACE_GETREGSET? */ 193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 194 195 /* When true, print debug messages relating to the linux native target. */ 196 197 static bool debug_linux_nat; 198 199 /* Implement 'show debug linux-nat'. */ 200 201 static void 202 show_debug_linux_nat (struct ui_file *file, int from_tty, 203 struct cmd_list_element *c, const char *value) 204 { 205 gdb_printf (file, _("Debugging of GNU/Linux native targets is %s.\n"), 206 value); 207 } 208 209 /* Print a linux-nat debug statement. */ 210 211 #define linux_nat_debug_printf(fmt, ...) \ 212 debug_prefixed_printf_cond (debug_linux_nat, "linux-nat", fmt, ##__VA_ARGS__) 213 214 /* Print "linux-nat" enter/exit debug statements. */ 215 216 #define LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT \ 217 scoped_debug_enter_exit (debug_linux_nat, "linux-nat") 218 219 struct simple_pid_list 220 { 221 int pid; 222 int status; 223 struct simple_pid_list *next; 224 }; 225 static struct simple_pid_list *stopped_pids; 226 227 /* Whether target_thread_events is in effect. */ 228 static int report_thread_events; 229 230 static int kill_lwp (int lwpid, int signo); 231 232 static int stop_callback (struct lwp_info *lp); 233 234 static void block_child_signals (sigset_t *prev_mask); 235 static void restore_child_signals_mask (sigset_t *prev_mask); 236 237 struct lwp_info; 238 static struct lwp_info *add_lwp (ptid_t ptid); 239 static void purge_lwp_list (int pid); 240 static void delete_lwp (ptid_t ptid); 241 static struct lwp_info *find_lwp_pid (ptid_t ptid); 242 243 static int lwp_status_pending_p (struct lwp_info *lp); 244 245 static void save_stop_reason (struct lwp_info *lp); 246 247 static bool proc_mem_file_is_writable (); 248 static void close_proc_mem_file (pid_t pid); 249 static void open_proc_mem_file (ptid_t ptid); 250 251 /* Return TRUE if LWP is the leader thread of the process. */ 252 253 static bool 254 is_leader (lwp_info *lp) 255 { 256 return lp->ptid.pid () == lp->ptid.lwp (); 257 } 258 259 260 /* LWP accessors. */ 261 262 /* See nat/linux-nat.h. */ 263 264 ptid_t 265 ptid_of_lwp (struct lwp_info *lwp) 266 { 267 return lwp->ptid; 268 } 269 270 /* See nat/linux-nat.h. */ 271 272 void 273 lwp_set_arch_private_info (struct lwp_info *lwp, 274 struct arch_lwp_info *info) 275 { 276 lwp->arch_private = info; 277 } 278 279 /* See nat/linux-nat.h. */ 280 281 struct arch_lwp_info * 282 lwp_arch_private_info (struct lwp_info *lwp) 283 { 284 return lwp->arch_private; 285 } 286 287 /* See nat/linux-nat.h. */ 288 289 int 290 lwp_is_stopped (struct lwp_info *lwp) 291 { 292 return lwp->stopped; 293 } 294 295 /* See nat/linux-nat.h. */ 296 297 enum target_stop_reason 298 lwp_stop_reason (struct lwp_info *lwp) 299 { 300 return lwp->stop_reason; 301 } 302 303 /* See nat/linux-nat.h. */ 304 305 int 306 lwp_is_stepping (struct lwp_info *lwp) 307 { 308 return lwp->step; 309 } 310 311 312 /* Trivial list manipulation functions to keep track of a list of 313 new stopped processes. */ 314 static void 315 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 316 { 317 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); 318 319 new_pid->pid = pid; 320 new_pid->status = status; 321 new_pid->next = *listp; 322 *listp = new_pid; 323 } 324 325 static int 326 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 327 { 328 struct simple_pid_list **p; 329 330 for (p = listp; *p != NULL; p = &(*p)->next) 331 if ((*p)->pid == pid) 332 { 333 struct simple_pid_list *next = (*p)->next; 334 335 *statusp = (*p)->status; 336 xfree (*p); 337 *p = next; 338 return 1; 339 } 340 return 0; 341 } 342 343 /* Return the ptrace options that we want to try to enable. */ 344 345 static int 346 linux_nat_ptrace_options (int attached) 347 { 348 int options = 0; 349 350 if (!attached) 351 options |= PTRACE_O_EXITKILL; 352 353 options |= (PTRACE_O_TRACESYSGOOD 354 | PTRACE_O_TRACEVFORKDONE 355 | PTRACE_O_TRACEVFORK 356 | PTRACE_O_TRACEFORK 357 | PTRACE_O_TRACEEXEC); 358 359 return options; 360 } 361 362 /* Initialize ptrace and procfs warnings and check for supported 363 ptrace features given PID. 364 365 ATTACHED should be nonzero iff we attached to the inferior. */ 366 367 static void 368 linux_init_ptrace_procfs (pid_t pid, int attached) 369 { 370 int options = linux_nat_ptrace_options (attached); 371 372 linux_enable_event_reporting (pid, options); 373 linux_ptrace_init_warnings (); 374 linux_proc_init_warnings (); 375 proc_mem_file_is_writable (); 376 } 377 378 linux_nat_target::~linux_nat_target () 379 {} 380 381 void 382 linux_nat_target::post_attach (int pid) 383 { 384 linux_init_ptrace_procfs (pid, 1); 385 } 386 387 /* Implement the virtual inf_ptrace_target::post_startup_inferior method. */ 388 389 void 390 linux_nat_target::post_startup_inferior (ptid_t ptid) 391 { 392 linux_init_ptrace_procfs (ptid.pid (), 0); 393 } 394 395 /* Return the number of known LWPs in the tgid given by PID. */ 396 397 static int 398 num_lwps (int pid) 399 { 400 int count = 0; 401 402 for (const lwp_info *lp ATTRIBUTE_UNUSED : all_lwps ()) 403 if (lp->ptid.pid () == pid) 404 count++; 405 406 return count; 407 } 408 409 /* Deleter for lwp_info unique_ptr specialisation. */ 410 411 struct lwp_deleter 412 { 413 void operator() (struct lwp_info *lwp) const 414 { 415 delete_lwp (lwp->ptid); 416 } 417 }; 418 419 /* A unique_ptr specialisation for lwp_info. */ 420 421 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up; 422 423 /* Target hook for follow_fork. */ 424 425 void 426 linux_nat_target::follow_fork (inferior *child_inf, ptid_t child_ptid, 427 target_waitkind fork_kind, bool follow_child, 428 bool detach_fork) 429 { 430 inf_ptrace_target::follow_fork (child_inf, child_ptid, fork_kind, 431 follow_child, detach_fork); 432 433 if (!follow_child) 434 { 435 bool has_vforked = fork_kind == TARGET_WAITKIND_VFORKED; 436 ptid_t parent_ptid = inferior_ptid; 437 int parent_pid = parent_ptid.lwp (); 438 int child_pid = child_ptid.lwp (); 439 440 /* We're already attached to the parent, by default. */ 441 lwp_info *child_lp = add_lwp (child_ptid); 442 child_lp->stopped = 1; 443 child_lp->last_resume_kind = resume_stop; 444 445 /* Detach new forked process? */ 446 if (detach_fork) 447 { 448 int child_stop_signal = 0; 449 bool detach_child = true; 450 451 /* Move CHILD_LP into a unique_ptr and clear the source pointer 452 to prevent us doing anything stupid with it. */ 453 lwp_info_up child_lp_ptr (child_lp); 454 child_lp = nullptr; 455 456 linux_target->low_prepare_to_resume (child_lp_ptr.get ()); 457 458 /* When debugging an inferior in an architecture that supports 459 hardware single stepping on a kernel without commit 460 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 461 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 462 set if the parent process had them set. 463 To work around this, single step the child process 464 once before detaching to clear the flags. */ 465 466 /* Note that we consult the parent's architecture instead of 467 the child's because there's no inferior for the child at 468 this point. */ 469 if (!gdbarch_software_single_step_p (target_thread_architecture 470 (parent_ptid))) 471 { 472 int status; 473 474 linux_disable_event_reporting (child_pid); 475 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 476 perror_with_name (_("Couldn't do single step")); 477 if (my_waitpid (child_pid, &status, 0) < 0) 478 perror_with_name (_("Couldn't wait vfork process")); 479 else 480 { 481 detach_child = WIFSTOPPED (status); 482 child_stop_signal = WSTOPSIG (status); 483 } 484 } 485 486 if (detach_child) 487 { 488 int signo = child_stop_signal; 489 490 if (signo != 0 491 && !signal_pass_state (gdb_signal_from_host (signo))) 492 signo = 0; 493 ptrace (PTRACE_DETACH, child_pid, 0, signo); 494 495 close_proc_mem_file (child_pid); 496 } 497 } 498 499 if (has_vforked) 500 { 501 lwp_info *parent_lp = find_lwp_pid (parent_ptid); 502 linux_nat_debug_printf ("waiting for VFORK_DONE on %d", parent_pid); 503 parent_lp->stopped = 1; 504 505 /* We'll handle the VFORK_DONE event like any other 506 event, in target_wait. */ 507 } 508 } 509 else 510 { 511 struct lwp_info *child_lp; 512 513 child_lp = add_lwp (child_ptid); 514 child_lp->stopped = 1; 515 child_lp->last_resume_kind = resume_stop; 516 } 517 } 518 519 520 int 521 linux_nat_target::insert_fork_catchpoint (int pid) 522 { 523 return 0; 524 } 525 526 int 527 linux_nat_target::remove_fork_catchpoint (int pid) 528 { 529 return 0; 530 } 531 532 int 533 linux_nat_target::insert_vfork_catchpoint (int pid) 534 { 535 return 0; 536 } 537 538 int 539 linux_nat_target::remove_vfork_catchpoint (int pid) 540 { 541 return 0; 542 } 543 544 int 545 linux_nat_target::insert_exec_catchpoint (int pid) 546 { 547 return 0; 548 } 549 550 int 551 linux_nat_target::remove_exec_catchpoint (int pid) 552 { 553 return 0; 554 } 555 556 int 557 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count, 558 gdb::array_view<const int> syscall_counts) 559 { 560 /* On GNU/Linux, we ignore the arguments. It means that we only 561 enable the syscall catchpoints, but do not disable them. 562 563 Also, we do not use the `syscall_counts' information because we do not 564 filter system calls here. We let GDB do the logic for us. */ 565 return 0; 566 } 567 568 /* List of known LWPs, keyed by LWP PID. This speeds up the common 569 case of mapping a PID returned from the kernel to our corresponding 570 lwp_info data structure. */ 571 static htab_t lwp_lwpid_htab; 572 573 /* Calculate a hash from a lwp_info's LWP PID. */ 574 575 static hashval_t 576 lwp_info_hash (const void *ap) 577 { 578 const struct lwp_info *lp = (struct lwp_info *) ap; 579 pid_t pid = lp->ptid.lwp (); 580 581 return iterative_hash_object (pid, 0); 582 } 583 584 /* Equality function for the lwp_info hash table. Compares the LWP's 585 PID. */ 586 587 static int 588 lwp_lwpid_htab_eq (const void *a, const void *b) 589 { 590 const struct lwp_info *entry = (const struct lwp_info *) a; 591 const struct lwp_info *element = (const struct lwp_info *) b; 592 593 return entry->ptid.lwp () == element->ptid.lwp (); 594 } 595 596 /* Create the lwp_lwpid_htab hash table. */ 597 598 static void 599 lwp_lwpid_htab_create (void) 600 { 601 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); 602 } 603 604 /* Add LP to the hash table. */ 605 606 static void 607 lwp_lwpid_htab_add_lwp (struct lwp_info *lp) 608 { 609 void **slot; 610 611 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); 612 gdb_assert (slot != NULL && *slot == NULL); 613 *slot = lp; 614 } 615 616 /* Head of doubly-linked list of known LWPs. Sorted by reverse 617 creation order. This order is assumed in some cases. E.g., 618 reaping status after killing alls lwps of a process: the leader LWP 619 must be reaped last. */ 620 621 static intrusive_list<lwp_info> lwp_list; 622 623 /* See linux-nat.h. */ 624 625 lwp_info_range 626 all_lwps () 627 { 628 return lwp_info_range (lwp_list.begin ()); 629 } 630 631 /* See linux-nat.h. */ 632 633 lwp_info_safe_range 634 all_lwps_safe () 635 { 636 return lwp_info_safe_range (lwp_list.begin ()); 637 } 638 639 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ 640 641 static void 642 lwp_list_add (struct lwp_info *lp) 643 { 644 lwp_list.push_front (*lp); 645 } 646 647 /* Remove LP from sorted-by-reverse-creation-order doubly-linked 648 list. */ 649 650 static void 651 lwp_list_remove (struct lwp_info *lp) 652 { 653 /* Remove from sorted-by-creation-order list. */ 654 lwp_list.erase (lwp_list.iterator_to (*lp)); 655 } 656 657 658 659 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 660 _initialize_linux_nat. */ 661 static sigset_t suspend_mask; 662 663 /* Signals to block to make that sigsuspend work. */ 664 static sigset_t blocked_mask; 665 666 /* SIGCHLD action. */ 667 static struct sigaction sigchld_action; 668 669 /* Block child signals (SIGCHLD and linux threads signals), and store 670 the previous mask in PREV_MASK. */ 671 672 static void 673 block_child_signals (sigset_t *prev_mask) 674 { 675 /* Make sure SIGCHLD is blocked. */ 676 if (!sigismember (&blocked_mask, SIGCHLD)) 677 sigaddset (&blocked_mask, SIGCHLD); 678 679 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask); 680 } 681 682 /* Restore child signals mask, previously returned by 683 block_child_signals. */ 684 685 static void 686 restore_child_signals_mask (sigset_t *prev_mask) 687 { 688 gdb_sigmask (SIG_SETMASK, prev_mask, NULL); 689 } 690 691 /* Mask of signals to pass directly to the inferior. */ 692 static sigset_t pass_mask; 693 694 /* Update signals to pass to the inferior. */ 695 void 696 linux_nat_target::pass_signals 697 (gdb::array_view<const unsigned char> pass_signals) 698 { 699 int signo; 700 701 sigemptyset (&pass_mask); 702 703 for (signo = 1; signo < NSIG; signo++) 704 { 705 int target_signo = gdb_signal_from_host (signo); 706 if (target_signo < pass_signals.size () && pass_signals[target_signo]) 707 sigaddset (&pass_mask, signo); 708 } 709 } 710 711 712 713 /* Prototypes for local functions. */ 714 static int stop_wait_callback (struct lwp_info *lp); 715 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid); 716 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); 717 718 719 720 /* Destroy and free LP. */ 721 722 lwp_info::~lwp_info () 723 { 724 /* Let the arch specific bits release arch_lwp_info. */ 725 linux_target->low_delete_thread (this->arch_private); 726 } 727 728 /* Traversal function for purge_lwp_list. */ 729 730 static int 731 lwp_lwpid_htab_remove_pid (void **slot, void *info) 732 { 733 struct lwp_info *lp = (struct lwp_info *) *slot; 734 int pid = *(int *) info; 735 736 if (lp->ptid.pid () == pid) 737 { 738 htab_clear_slot (lwp_lwpid_htab, slot); 739 lwp_list_remove (lp); 740 delete lp; 741 } 742 743 return 1; 744 } 745 746 /* Remove all LWPs belong to PID from the lwp list. */ 747 748 static void 749 purge_lwp_list (int pid) 750 { 751 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); 752 } 753 754 /* Add the LWP specified by PTID to the list. PTID is the first LWP 755 in the process. Return a pointer to the structure describing the 756 new LWP. 757 758 This differs from add_lwp in that we don't let the arch specific 759 bits know about this new thread. Current clients of this callback 760 take the opportunity to install watchpoints in the new thread, and 761 we shouldn't do that for the first thread. If we're spawning a 762 child ("run"), the thread executes the shell wrapper first, and we 763 shouldn't touch it until it execs the program we want to debug. 764 For "attach", it'd be okay to call the callback, but it's not 765 necessary, because watchpoints can't yet have been inserted into 766 the inferior. */ 767 768 static struct lwp_info * 769 add_initial_lwp (ptid_t ptid) 770 { 771 gdb_assert (ptid.lwp_p ()); 772 773 lwp_info *lp = new lwp_info (ptid); 774 775 776 /* Add to sorted-by-reverse-creation-order list. */ 777 lwp_list_add (lp); 778 779 /* Add to keyed-by-pid htab. */ 780 lwp_lwpid_htab_add_lwp (lp); 781 782 return lp; 783 } 784 785 /* Add the LWP specified by PID to the list. Return a pointer to the 786 structure describing the new LWP. The LWP should already be 787 stopped. */ 788 789 static struct lwp_info * 790 add_lwp (ptid_t ptid) 791 { 792 struct lwp_info *lp; 793 794 lp = add_initial_lwp (ptid); 795 796 /* Let the arch specific bits know about this new thread. Current 797 clients of this callback take the opportunity to install 798 watchpoints in the new thread. We don't do this for the first 799 thread though. See add_initial_lwp. */ 800 linux_target->low_new_thread (lp); 801 802 return lp; 803 } 804 805 /* Remove the LWP specified by PID from the list. */ 806 807 static void 808 delete_lwp (ptid_t ptid) 809 { 810 lwp_info dummy (ptid); 811 812 void **slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); 813 if (slot == NULL) 814 return; 815 816 lwp_info *lp = *(struct lwp_info **) slot; 817 gdb_assert (lp != NULL); 818 819 htab_clear_slot (lwp_lwpid_htab, slot); 820 821 /* Remove from sorted-by-creation-order list. */ 822 lwp_list_remove (lp); 823 824 /* Release. */ 825 delete lp; 826 } 827 828 /* Return a pointer to the structure describing the LWP corresponding 829 to PID. If no corresponding LWP could be found, return NULL. */ 830 831 static struct lwp_info * 832 find_lwp_pid (ptid_t ptid) 833 { 834 int lwp; 835 836 if (ptid.lwp_p ()) 837 lwp = ptid.lwp (); 838 else 839 lwp = ptid.pid (); 840 841 lwp_info dummy (ptid_t (0, lwp)); 842 return (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); 843 } 844 845 /* See nat/linux-nat.h. */ 846 847 struct lwp_info * 848 iterate_over_lwps (ptid_t filter, 849 gdb::function_view<iterate_over_lwps_ftype> callback) 850 { 851 for (lwp_info *lp : all_lwps_safe ()) 852 { 853 if (lp->ptid.matches (filter)) 854 { 855 if (callback (lp) != 0) 856 return lp; 857 } 858 } 859 860 return NULL; 861 } 862 863 /* Update our internal state when changing from one checkpoint to 864 another indicated by NEW_PTID. We can only switch single-threaded 865 applications, so we only create one new LWP, and the previous list 866 is discarded. */ 867 868 void 869 linux_nat_switch_fork (ptid_t new_ptid) 870 { 871 struct lwp_info *lp; 872 873 purge_lwp_list (inferior_ptid.pid ()); 874 875 lp = add_lwp (new_ptid); 876 lp->stopped = 1; 877 878 /* This changes the thread's ptid while preserving the gdb thread 879 num. Also changes the inferior pid, while preserving the 880 inferior num. */ 881 thread_change_ptid (linux_target, inferior_ptid, new_ptid); 882 883 /* We've just told GDB core that the thread changed target id, but, 884 in fact, it really is a different thread, with different register 885 contents. */ 886 registers_changed (); 887 } 888 889 /* Handle the exit of a single thread LP. */ 890 891 static void 892 exit_lwp (struct lwp_info *lp) 893 { 894 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid); 895 896 if (th) 897 { 898 if (print_thread_events) 899 gdb_printf (_("[%s exited]\n"), 900 target_pid_to_str (lp->ptid).c_str ()); 901 902 delete_thread (th); 903 } 904 905 delete_lwp (lp->ptid); 906 } 907 908 /* Wait for the LWP specified by LP, which we have just attached to. 909 Returns a wait status for that LWP, to cache. */ 910 911 static int 912 linux_nat_post_attach_wait (ptid_t ptid, int *signalled) 913 { 914 pid_t new_pid, pid = ptid.lwp (); 915 int status; 916 917 if (linux_proc_pid_is_stopped (pid)) 918 { 919 linux_nat_debug_printf ("Attaching to a stopped process"); 920 921 /* The process is definitely stopped. It is in a job control 922 stop, unless the kernel predates the TASK_STOPPED / 923 TASK_TRACED distinction, in which case it might be in a 924 ptrace stop. Make sure it is in a ptrace stop; from there we 925 can kill it, signal it, et cetera. 926 927 First make sure there is a pending SIGSTOP. Since we are 928 already attached, the process can not transition from stopped 929 to running without a PTRACE_CONT; so we know this signal will 930 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 931 probably already in the queue (unless this kernel is old 932 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 933 is not an RT signal, it can only be queued once. */ 934 kill_lwp (pid, SIGSTOP); 935 936 /* Finally, resume the stopped process. This will deliver the SIGSTOP 937 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 938 ptrace (PTRACE_CONT, pid, 0, 0); 939 } 940 941 /* Make sure the initial process is stopped. The user-level threads 942 layer might want to poke around in the inferior, and that won't 943 work if things haven't stabilized yet. */ 944 new_pid = my_waitpid (pid, &status, __WALL); 945 gdb_assert (pid == new_pid); 946 947 if (!WIFSTOPPED (status)) 948 { 949 /* The pid we tried to attach has apparently just exited. */ 950 linux_nat_debug_printf ("Failed to stop %d: %s", pid, 951 status_to_str (status).c_str ()); 952 return status; 953 } 954 955 if (WSTOPSIG (status) != SIGSTOP) 956 { 957 *signalled = 1; 958 linux_nat_debug_printf ("Received %s after attaching", 959 status_to_str (status).c_str ()); 960 } 961 962 return status; 963 } 964 965 void 966 linux_nat_target::create_inferior (const char *exec_file, 967 const std::string &allargs, 968 char **env, int from_tty) 969 { 970 maybe_disable_address_space_randomization restore_personality 971 (disable_randomization); 972 973 /* The fork_child mechanism is synchronous and calls target_wait, so 974 we have to mask the async mode. */ 975 976 /* Make sure we report all signals during startup. */ 977 pass_signals ({}); 978 979 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); 980 981 open_proc_mem_file (inferior_ptid); 982 } 983 984 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 985 already attached. Returns true if a new LWP is found, false 986 otherwise. */ 987 988 static int 989 attach_proc_task_lwp_callback (ptid_t ptid) 990 { 991 struct lwp_info *lp; 992 993 /* Ignore LWPs we're already attached to. */ 994 lp = find_lwp_pid (ptid); 995 if (lp == NULL) 996 { 997 int lwpid = ptid.lwp (); 998 999 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1000 { 1001 int err = errno; 1002 1003 /* Be quiet if we simply raced with the thread exiting. 1004 EPERM is returned if the thread's task still exists, and 1005 is marked as exited or zombie, as well as other 1006 conditions, so in that case, confirm the status in 1007 /proc/PID/status. */ 1008 if (err == ESRCH 1009 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1010 { 1011 linux_nat_debug_printf 1012 ("Cannot attach to lwp %d: thread is gone (%d: %s)", 1013 lwpid, err, safe_strerror (err)); 1014 1015 } 1016 else 1017 { 1018 std::string reason 1019 = linux_ptrace_attach_fail_reason_string (ptid, err); 1020 1021 warning (_("Cannot attach to lwp %d: %s"), 1022 lwpid, reason.c_str ()); 1023 } 1024 } 1025 else 1026 { 1027 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)", 1028 ptid.to_string ().c_str ()); 1029 1030 lp = add_lwp (ptid); 1031 1032 /* The next time we wait for this LWP we'll see a SIGSTOP as 1033 PTRACE_ATTACH brings it to a halt. */ 1034 lp->signalled = 1; 1035 1036 /* We need to wait for a stop before being able to make the 1037 next ptrace call on this LWP. */ 1038 lp->must_set_ptrace_flags = 1; 1039 1040 /* So that wait collects the SIGSTOP. */ 1041 lp->resumed = 1; 1042 1043 /* Also add the LWP to gdb's thread list, in case a 1044 matching libthread_db is not found (or the process uses 1045 raw clone). */ 1046 add_thread (linux_target, lp->ptid); 1047 set_running (linux_target, lp->ptid, true); 1048 set_executing (linux_target, lp->ptid, true); 1049 } 1050 1051 return 1; 1052 } 1053 return 0; 1054 } 1055 1056 void 1057 linux_nat_target::attach (const char *args, int from_tty) 1058 { 1059 struct lwp_info *lp; 1060 int status; 1061 ptid_t ptid; 1062 1063 /* Make sure we report all signals during attach. */ 1064 pass_signals ({}); 1065 1066 try 1067 { 1068 inf_ptrace_target::attach (args, from_tty); 1069 } 1070 catch (const gdb_exception_error &ex) 1071 { 1072 pid_t pid = parse_pid_to_attach (args); 1073 std::string reason = linux_ptrace_attach_fail_reason (pid); 1074 1075 if (!reason.empty ()) 1076 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), 1077 ex.what ()); 1078 else 1079 throw_error (ex.error, "%s", ex.what ()); 1080 } 1081 1082 /* The ptrace base target adds the main thread with (pid,0,0) 1083 format. Decorate it with lwp info. */ 1084 ptid = ptid_t (inferior_ptid.pid (), 1085 inferior_ptid.pid ()); 1086 thread_change_ptid (linux_target, inferior_ptid, ptid); 1087 1088 /* Add the initial process as the first LWP to the list. */ 1089 lp = add_initial_lwp (ptid); 1090 1091 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled); 1092 if (!WIFSTOPPED (status)) 1093 { 1094 if (WIFEXITED (status)) 1095 { 1096 int exit_code = WEXITSTATUS (status); 1097 1098 target_terminal::ours (); 1099 target_mourn_inferior (inferior_ptid); 1100 if (exit_code == 0) 1101 error (_("Unable to attach: program exited normally.")); 1102 else 1103 error (_("Unable to attach: program exited with code %d."), 1104 exit_code); 1105 } 1106 else if (WIFSIGNALED (status)) 1107 { 1108 enum gdb_signal signo; 1109 1110 target_terminal::ours (); 1111 target_mourn_inferior (inferior_ptid); 1112 1113 signo = gdb_signal_from_host (WTERMSIG (status)); 1114 error (_("Unable to attach: program terminated with signal " 1115 "%s, %s."), 1116 gdb_signal_to_name (signo), 1117 gdb_signal_to_string (signo)); 1118 } 1119 1120 internal_error (_("unexpected status %d for PID %ld"), 1121 status, (long) ptid.lwp ()); 1122 } 1123 1124 lp->stopped = 1; 1125 1126 open_proc_mem_file (lp->ptid); 1127 1128 /* Save the wait status to report later. */ 1129 lp->resumed = 1; 1130 linux_nat_debug_printf ("waitpid %ld, saving status %s", 1131 (long) lp->ptid.pid (), 1132 status_to_str (status).c_str ()); 1133 1134 lp->status = status; 1135 1136 /* We must attach to every LWP. If /proc is mounted, use that to 1137 find them now. The inferior may be using raw clone instead of 1138 using pthreads. But even if it is using pthreads, thread_db 1139 walks structures in the inferior's address space to find the list 1140 of threads/LWPs, and those structures may well be corrupted. 1141 Note that once thread_db is loaded, we'll still use it to list 1142 threads and associate pthread info with each LWP. */ 1143 linux_proc_attach_tgid_threads (lp->ptid.pid (), 1144 attach_proc_task_lwp_callback); 1145 } 1146 1147 /* Ptrace-detach the thread with pid PID. */ 1148 1149 static void 1150 detach_one_pid (int pid, int signo) 1151 { 1152 if (ptrace (PTRACE_DETACH, pid, 0, signo) < 0) 1153 { 1154 int save_errno = errno; 1155 1156 /* We know the thread exists, so ESRCH must mean the lwp is 1157 zombie. This can happen if one of the already-detached 1158 threads exits the whole thread group. In that case we're 1159 still attached, and must reap the lwp. */ 1160 if (save_errno == ESRCH) 1161 { 1162 int ret, status; 1163 1164 ret = my_waitpid (pid, &status, __WALL); 1165 if (ret == -1) 1166 { 1167 warning (_("Couldn't reap LWP %d while detaching: %s"), 1168 pid, safe_strerror (errno)); 1169 } 1170 else if (!WIFEXITED (status) && !WIFSIGNALED (status)) 1171 { 1172 warning (_("Reaping LWP %d while detaching " 1173 "returned unexpected status 0x%x"), 1174 pid, status); 1175 } 1176 } 1177 else 1178 error (_("Can't detach %d: %s"), 1179 pid, safe_strerror (save_errno)); 1180 } 1181 else 1182 linux_nat_debug_printf ("PTRACE_DETACH (%d, %s, 0) (OK)", 1183 pid, strsignal (signo)); 1184 } 1185 1186 /* Get pending signal of THREAD as a host signal number, for detaching 1187 purposes. This is the signal the thread last stopped for, which we 1188 need to deliver to the thread when detaching, otherwise, it'd be 1189 suppressed/lost. */ 1190 1191 static int 1192 get_detach_signal (struct lwp_info *lp) 1193 { 1194 enum gdb_signal signo = GDB_SIGNAL_0; 1195 1196 /* If we paused threads momentarily, we may have stored pending 1197 events in lp->status or lp->waitstatus (see stop_wait_callback), 1198 and GDB core hasn't seen any signal for those threads. 1199 Otherwise, the last signal reported to the core is found in the 1200 thread object's stop_signal. 1201 1202 There's a corner case that isn't handled here at present. Only 1203 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1204 stop_signal make sense as a real signal to pass to the inferior. 1205 Some catchpoint related events, like 1206 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1207 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1208 those traps are debug API (ptrace in our case) related and 1209 induced; the inferior wouldn't see them if it wasn't being 1210 traced. Hence, we should never pass them to the inferior, even 1211 when set to pass state. Since this corner case isn't handled by 1212 infrun.c when proceeding with a signal, for consistency, neither 1213 do we handle it here (or elsewhere in the file we check for 1214 signal pass state). Normally SIGTRAP isn't set to pass state, so 1215 this is really a corner case. */ 1216 1217 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE) 1218 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1219 else if (lp->status) 1220 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1221 else 1222 { 1223 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid); 1224 1225 if (target_is_non_stop_p () && !tp->executing ()) 1226 { 1227 if (tp->has_pending_waitstatus ()) 1228 { 1229 /* If the thread has a pending event, and it was stopped with a 1230 signal, use that signal to resume it. If it has a pending 1231 event of another kind, it was not stopped with a signal, so 1232 resume it without a signal. */ 1233 if (tp->pending_waitstatus ().kind () == TARGET_WAITKIND_STOPPED) 1234 signo = tp->pending_waitstatus ().sig (); 1235 else 1236 signo = GDB_SIGNAL_0; 1237 } 1238 else 1239 signo = tp->stop_signal (); 1240 } 1241 else if (!target_is_non_stop_p ()) 1242 { 1243 ptid_t last_ptid; 1244 process_stratum_target *last_target; 1245 1246 get_last_target_status (&last_target, &last_ptid, nullptr); 1247 1248 if (last_target == linux_target 1249 && lp->ptid.lwp () == last_ptid.lwp ()) 1250 signo = tp->stop_signal (); 1251 } 1252 } 1253 1254 if (signo == GDB_SIGNAL_0) 1255 { 1256 linux_nat_debug_printf ("lwp %s has no pending signal", 1257 lp->ptid.to_string ().c_str ()); 1258 } 1259 else if (!signal_pass_state (signo)) 1260 { 1261 linux_nat_debug_printf 1262 ("lwp %s had signal %s but it is in no pass state", 1263 lp->ptid.to_string ().c_str (), gdb_signal_to_string (signo)); 1264 } 1265 else 1266 { 1267 linux_nat_debug_printf ("lwp %s has pending signal %s", 1268 lp->ptid.to_string ().c_str (), 1269 gdb_signal_to_string (signo)); 1270 1271 return gdb_signal_to_host (signo); 1272 } 1273 1274 return 0; 1275 } 1276 1277 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the 1278 signal number that should be passed to the LWP when detaching. 1279 Otherwise pass any pending signal the LWP may have, if any. */ 1280 1281 static void 1282 detach_one_lwp (struct lwp_info *lp, int *signo_p) 1283 { 1284 int lwpid = lp->ptid.lwp (); 1285 int signo; 1286 1287 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1288 1289 /* If the lwp/thread we are about to detach has a pending fork event, 1290 there is a process GDB is attached to that the core of GDB doesn't know 1291 about. Detach from it. */ 1292 1293 /* Check in lwp_info::status. */ 1294 if (WIFSTOPPED (lp->status) && linux_is_extended_waitstatus (lp->status)) 1295 { 1296 int event = linux_ptrace_get_extended_event (lp->status); 1297 1298 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 1299 { 1300 unsigned long child_pid; 1301 int ret = ptrace (PTRACE_GETEVENTMSG, lp->ptid.lwp (), 0, &child_pid); 1302 if (ret == 0) 1303 detach_one_pid (child_pid, 0); 1304 else 1305 perror_warning_with_name (_("Failed to detach fork child")); 1306 } 1307 } 1308 1309 /* Check in lwp_info::waitstatus. */ 1310 if (lp->waitstatus.kind () == TARGET_WAITKIND_VFORKED 1311 || lp->waitstatus.kind () == TARGET_WAITKIND_FORKED) 1312 detach_one_pid (lp->waitstatus.child_ptid ().pid (), 0); 1313 1314 1315 /* Check in thread_info::pending_waitstatus. */ 1316 thread_info *tp = find_thread_ptid (linux_target, lp->ptid); 1317 if (tp->has_pending_waitstatus ()) 1318 { 1319 const target_waitstatus &ws = tp->pending_waitstatus (); 1320 1321 if (ws.kind () == TARGET_WAITKIND_VFORKED 1322 || ws.kind () == TARGET_WAITKIND_FORKED) 1323 detach_one_pid (ws.child_ptid ().pid (), 0); 1324 } 1325 1326 /* Check in thread_info::pending_follow. */ 1327 if (tp->pending_follow.kind () == TARGET_WAITKIND_VFORKED 1328 || tp->pending_follow.kind () == TARGET_WAITKIND_FORKED) 1329 detach_one_pid (tp->pending_follow.child_ptid ().pid (), 0); 1330 1331 if (lp->status != 0) 1332 linux_nat_debug_printf ("Pending %s for %s on detach.", 1333 strsignal (WSTOPSIG (lp->status)), 1334 lp->ptid.to_string ().c_str ()); 1335 1336 /* If there is a pending SIGSTOP, get rid of it. */ 1337 if (lp->signalled) 1338 { 1339 linux_nat_debug_printf ("Sending SIGCONT to %s", 1340 lp->ptid.to_string ().c_str ()); 1341 1342 kill_lwp (lwpid, SIGCONT); 1343 lp->signalled = 0; 1344 } 1345 1346 if (signo_p == NULL) 1347 { 1348 /* Pass on any pending signal for this LWP. */ 1349 signo = get_detach_signal (lp); 1350 } 1351 else 1352 signo = *signo_p; 1353 1354 /* Preparing to resume may try to write registers, and fail if the 1355 lwp is zombie. If that happens, ignore the error. We'll handle 1356 it below, when detach fails with ESRCH. */ 1357 try 1358 { 1359 linux_target->low_prepare_to_resume (lp); 1360 } 1361 catch (const gdb_exception_error &ex) 1362 { 1363 if (!check_ptrace_stopped_lwp_gone (lp)) 1364 throw; 1365 } 1366 1367 detach_one_pid (lwpid, signo); 1368 1369 delete_lwp (lp->ptid); 1370 } 1371 1372 static int 1373 detach_callback (struct lwp_info *lp) 1374 { 1375 /* We don't actually detach from the thread group leader just yet. 1376 If the thread group exits, we must reap the zombie clone lwps 1377 before we're able to reap the leader. */ 1378 if (lp->ptid.lwp () != lp->ptid.pid ()) 1379 detach_one_lwp (lp, NULL); 1380 return 0; 1381 } 1382 1383 void 1384 linux_nat_target::detach (inferior *inf, int from_tty) 1385 { 1386 struct lwp_info *main_lwp; 1387 int pid = inf->pid; 1388 1389 /* Don't unregister from the event loop, as there may be other 1390 inferiors running. */ 1391 1392 /* Stop all threads before detaching. ptrace requires that the 1393 thread is stopped to successfully detach. */ 1394 iterate_over_lwps (ptid_t (pid), stop_callback); 1395 /* ... and wait until all of them have reported back that 1396 they're no longer running. */ 1397 iterate_over_lwps (ptid_t (pid), stop_wait_callback); 1398 1399 /* We can now safely remove breakpoints. We don't this in earlier 1400 in common code because this target doesn't currently support 1401 writing memory while the inferior is running. */ 1402 remove_breakpoints_inf (current_inferior ()); 1403 1404 iterate_over_lwps (ptid_t (pid), detach_callback); 1405 1406 /* Only the initial process should be left right now. */ 1407 gdb_assert (num_lwps (pid) == 1); 1408 1409 main_lwp = find_lwp_pid (ptid_t (pid)); 1410 1411 if (forks_exist_p ()) 1412 { 1413 /* Multi-fork case. The current inferior_ptid is being detached 1414 from, but there are other viable forks to debug. Detach from 1415 the current fork, and context-switch to the first 1416 available. */ 1417 linux_fork_detach (from_tty); 1418 } 1419 else 1420 { 1421 target_announce_detach (from_tty); 1422 1423 /* Pass on any pending signal for the last LWP. */ 1424 int signo = get_detach_signal (main_lwp); 1425 1426 detach_one_lwp (main_lwp, &signo); 1427 1428 detach_success (inf); 1429 } 1430 1431 close_proc_mem_file (pid); 1432 } 1433 1434 /* Resume execution of the inferior process. If STEP is nonzero, 1435 single-step it. If SIGNAL is nonzero, give it that signal. */ 1436 1437 static void 1438 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1439 enum gdb_signal signo) 1440 { 1441 lp->step = step; 1442 1443 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1444 We only presently need that if the LWP is stepped though (to 1445 handle the case of stepping a breakpoint instruction). */ 1446 if (step) 1447 { 1448 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 1449 1450 lp->stop_pc = regcache_read_pc (regcache); 1451 } 1452 else 1453 lp->stop_pc = 0; 1454 1455 linux_target->low_prepare_to_resume (lp); 1456 linux_target->low_resume (lp->ptid, step, signo); 1457 1458 /* Successfully resumed. Clear state that no longer makes sense, 1459 and mark the LWP as running. Must not do this before resuming 1460 otherwise if that fails other code will be confused. E.g., we'd 1461 later try to stop the LWP and hang forever waiting for a stop 1462 status. Note that we must not throw after this is cleared, 1463 otherwise handle_zombie_lwp_error would get confused. */ 1464 lp->stopped = 0; 1465 lp->core = -1; 1466 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1467 registers_changed_ptid (linux_target, lp->ptid); 1468 } 1469 1470 /* Called when we try to resume a stopped LWP and that errors out. If 1471 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1472 or about to become), discard the error, clear any pending status 1473 the LWP may have, and return true (we'll collect the exit status 1474 soon enough). Otherwise, return false. */ 1475 1476 static int 1477 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1478 { 1479 /* If we get an error after resuming the LWP successfully, we'd 1480 confuse !T state for the LWP being gone. */ 1481 gdb_assert (lp->stopped); 1482 1483 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1484 because even if ptrace failed with ESRCH, the tracee may be "not 1485 yet fully dead", but already refusing ptrace requests. In that 1486 case the tracee has 'R (Running)' state for a little bit 1487 (observed in Linux 3.18). See also the note on ESRCH in the 1488 ptrace(2) man page. Instead, check whether the LWP has any state 1489 other than ptrace-stopped. */ 1490 1491 /* Don't assume anything if /proc/PID/status can't be read. */ 1492 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0) 1493 { 1494 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1495 lp->status = 0; 1496 lp->waitstatus.set_ignore (); 1497 return 1; 1498 } 1499 return 0; 1500 } 1501 1502 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1503 disappears while we try to resume it. */ 1504 1505 static void 1506 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1507 { 1508 try 1509 { 1510 linux_resume_one_lwp_throw (lp, step, signo); 1511 } 1512 catch (const gdb_exception_error &ex) 1513 { 1514 if (!check_ptrace_stopped_lwp_gone (lp)) 1515 throw; 1516 } 1517 } 1518 1519 /* Resume LP. */ 1520 1521 static void 1522 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1523 { 1524 if (lp->stopped) 1525 { 1526 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid); 1527 1528 if (inf->vfork_child != NULL) 1529 { 1530 linux_nat_debug_printf ("Not resuming %s (vfork parent)", 1531 lp->ptid.to_string ().c_str ()); 1532 } 1533 else if (!lwp_status_pending_p (lp)) 1534 { 1535 linux_nat_debug_printf ("Resuming sibling %s, %s, %s", 1536 lp->ptid.to_string ().c_str (), 1537 (signo != GDB_SIGNAL_0 1538 ? strsignal (gdb_signal_to_host (signo)) 1539 : "0"), 1540 step ? "step" : "resume"); 1541 1542 linux_resume_one_lwp (lp, step, signo); 1543 } 1544 else 1545 { 1546 linux_nat_debug_printf ("Not resuming sibling %s (has pending)", 1547 lp->ptid.to_string ().c_str ()); 1548 } 1549 } 1550 else 1551 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)", 1552 lp->ptid.to_string ().c_str ()); 1553 } 1554 1555 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1556 Resume LWP with the last stop signal, if it is in pass state. */ 1557 1558 static int 1559 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except) 1560 { 1561 enum gdb_signal signo = GDB_SIGNAL_0; 1562 1563 if (lp == except) 1564 return 0; 1565 1566 if (lp->stopped) 1567 { 1568 struct thread_info *thread; 1569 1570 thread = find_thread_ptid (linux_target, lp->ptid); 1571 if (thread != NULL) 1572 { 1573 signo = thread->stop_signal (); 1574 thread->set_stop_signal (GDB_SIGNAL_0); 1575 } 1576 } 1577 1578 resume_lwp (lp, 0, signo); 1579 return 0; 1580 } 1581 1582 static int 1583 resume_clear_callback (struct lwp_info *lp) 1584 { 1585 lp->resumed = 0; 1586 lp->last_resume_kind = resume_stop; 1587 return 0; 1588 } 1589 1590 static int 1591 resume_set_callback (struct lwp_info *lp) 1592 { 1593 lp->resumed = 1; 1594 lp->last_resume_kind = resume_continue; 1595 return 0; 1596 } 1597 1598 void 1599 linux_nat_target::resume (ptid_t scope_ptid, int step, enum gdb_signal signo) 1600 { 1601 struct lwp_info *lp; 1602 1603 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s", 1604 step ? "step" : "resume", 1605 scope_ptid.to_string ().c_str (), 1606 (signo != GDB_SIGNAL_0 1607 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1608 inferior_ptid.to_string ().c_str ()); 1609 1610 /* Mark the lwps we're resuming as resumed and update their 1611 last_resume_kind to resume_continue. */ 1612 iterate_over_lwps (scope_ptid, resume_set_callback); 1613 1614 lp = find_lwp_pid (inferior_ptid); 1615 gdb_assert (lp != NULL); 1616 1617 /* Remember if we're stepping. */ 1618 lp->last_resume_kind = step ? resume_step : resume_continue; 1619 1620 /* If we have a pending wait status for this thread, there is no 1621 point in resuming the process. But first make sure that 1622 linux_nat_wait won't preemptively handle the event - we 1623 should never take this short-circuit if we are going to 1624 leave LP running, since we have skipped resuming all the 1625 other threads. This bit of code needs to be synchronized 1626 with linux_nat_wait. */ 1627 1628 if (lp->status && WIFSTOPPED (lp->status)) 1629 { 1630 if (!lp->step 1631 && WSTOPSIG (lp->status) 1632 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1633 { 1634 linux_nat_debug_printf 1635 ("Not short circuiting for ignored status 0x%x", lp->status); 1636 1637 /* FIXME: What should we do if we are supposed to continue 1638 this thread with a signal? */ 1639 gdb_assert (signo == GDB_SIGNAL_0); 1640 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1641 lp->status = 0; 1642 } 1643 } 1644 1645 if (lwp_status_pending_p (lp)) 1646 { 1647 /* FIXME: What should we do if we are supposed to continue 1648 this thread with a signal? */ 1649 gdb_assert (signo == GDB_SIGNAL_0); 1650 1651 linux_nat_debug_printf ("Short circuiting for status 0x%x", 1652 lp->status); 1653 1654 if (target_can_async_p ()) 1655 { 1656 target_async (true); 1657 /* Tell the event loop we have something to process. */ 1658 async_file_mark (); 1659 } 1660 return; 1661 } 1662 1663 /* No use iterating unless we're resuming other threads. */ 1664 if (scope_ptid != lp->ptid) 1665 iterate_over_lwps (scope_ptid, [=] (struct lwp_info *info) 1666 { 1667 return linux_nat_resume_callback (info, lp); 1668 }); 1669 1670 linux_nat_debug_printf ("%s %s, %s (resume event thread)", 1671 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1672 lp->ptid.to_string ().c_str (), 1673 (signo != GDB_SIGNAL_0 1674 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1675 1676 linux_resume_one_lwp (lp, step, signo); 1677 } 1678 1679 /* Send a signal to an LWP. */ 1680 1681 static int 1682 kill_lwp (int lwpid, int signo) 1683 { 1684 int ret; 1685 1686 errno = 0; 1687 ret = syscall (__NR_tkill, lwpid, signo); 1688 if (errno == ENOSYS) 1689 { 1690 /* If tkill fails, then we are not using nptl threads, a 1691 configuration we no longer support. */ 1692 perror_with_name (("tkill")); 1693 } 1694 return ret; 1695 } 1696 1697 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1698 event, check if the core is interested in it: if not, ignore the 1699 event, and keep waiting; otherwise, we need to toggle the LWP's 1700 syscall entry/exit status, since the ptrace event itself doesn't 1701 indicate it, and report the trap to higher layers. */ 1702 1703 static int 1704 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1705 { 1706 struct target_waitstatus *ourstatus = &lp->waitstatus; 1707 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1708 thread_info *thread = find_thread_ptid (linux_target, lp->ptid); 1709 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread); 1710 1711 if (stopping) 1712 { 1713 /* If we're stopping threads, there's a SIGSTOP pending, which 1714 makes it so that the LWP reports an immediate syscall return, 1715 followed by the SIGSTOP. Skip seeing that "return" using 1716 PTRACE_CONT directly, and let stop_wait_callback collect the 1717 SIGSTOP. Later when the thread is resumed, a new syscall 1718 entry event. If we didn't do this (and returned 0), we'd 1719 leave a syscall entry pending, and our caller, by using 1720 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1721 itself. Later, when the user re-resumes this LWP, we'd see 1722 another syscall entry event and we'd mistake it for a return. 1723 1724 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1725 (leaving immediately with LWP->signalled set, without issuing 1726 a PTRACE_CONT), it would still be problematic to leave this 1727 syscall enter pending, as later when the thread is resumed, 1728 it would then see the same syscall exit mentioned above, 1729 followed by the delayed SIGSTOP, while the syscall didn't 1730 actually get to execute. It seems it would be even more 1731 confusing to the user. */ 1732 1733 linux_nat_debug_printf 1734 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with " 1735 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ()); 1736 1737 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1738 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 1739 lp->stopped = 0; 1740 return 1; 1741 } 1742 1743 /* Always update the entry/return state, even if this particular 1744 syscall isn't interesting to the core now. In async mode, 1745 the user could install a new catchpoint for this syscall 1746 between syscall enter/return, and we'll need to know to 1747 report a syscall return if that happens. */ 1748 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1749 ? TARGET_WAITKIND_SYSCALL_RETURN 1750 : TARGET_WAITKIND_SYSCALL_ENTRY); 1751 1752 if (catch_syscall_enabled ()) 1753 { 1754 if (catching_syscall_number (syscall_number)) 1755 { 1756 /* Alright, an event to report. */ 1757 if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY) 1758 ourstatus->set_syscall_entry (syscall_number); 1759 else if (lp->syscall_state == TARGET_WAITKIND_SYSCALL_RETURN) 1760 ourstatus->set_syscall_return (syscall_number); 1761 else 1762 gdb_assert_not_reached ("unexpected syscall state"); 1763 1764 linux_nat_debug_printf 1765 ("stopping for %s of syscall %d for LWP %ld", 1766 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1767 ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); 1768 1769 return 0; 1770 } 1771 1772 linux_nat_debug_printf 1773 ("ignoring %s of syscall %d for LWP %ld", 1774 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1775 ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); 1776 } 1777 else 1778 { 1779 /* If we had been syscall tracing, and hence used PT_SYSCALL 1780 before on this LWP, it could happen that the user removes all 1781 syscall catchpoints before we get to process this event. 1782 There are two noteworthy issues here: 1783 1784 - When stopped at a syscall entry event, resuming with 1785 PT_STEP still resumes executing the syscall and reports a 1786 syscall return. 1787 1788 - Only PT_SYSCALL catches syscall enters. If we last 1789 single-stepped this thread, then this event can't be a 1790 syscall enter. If we last single-stepped this thread, this 1791 has to be a syscall exit. 1792 1793 The points above mean that the next resume, be it PT_STEP or 1794 PT_CONTINUE, can not trigger a syscall trace event. */ 1795 linux_nat_debug_printf 1796 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, " 1797 "ignoring", syscall_number, lp->ptid.lwp ()); 1798 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1799 } 1800 1801 /* The core isn't interested in this event. For efficiency, avoid 1802 stopping all threads only to have the core resume them all again. 1803 Since we're not stopping threads, if we're still syscall tracing 1804 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1805 subsequent syscall. Simply resume using the inf-ptrace layer, 1806 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1807 1808 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1809 return 1; 1810 } 1811 1812 /* Handle a GNU/Linux extended wait response. If we see a clone 1813 event, we need to add the new LWP to our list (and not report the 1814 trap to higher layers). This function returns non-zero if the 1815 event should be ignored and we should wait again. If STOPPING is 1816 true, the new LWP remains stopped, otherwise it is continued. */ 1817 1818 static int 1819 linux_handle_extended_wait (struct lwp_info *lp, int status) 1820 { 1821 int pid = lp->ptid.lwp (); 1822 struct target_waitstatus *ourstatus = &lp->waitstatus; 1823 int event = linux_ptrace_get_extended_event (status); 1824 1825 /* All extended events we currently use are mid-syscall. Only 1826 PTRACE_EVENT_STOP is delivered more like a signal-stop, but 1827 you have to be using PTRACE_SEIZE to get that. */ 1828 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; 1829 1830 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1831 || event == PTRACE_EVENT_CLONE) 1832 { 1833 unsigned long new_pid; 1834 int ret; 1835 1836 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1837 1838 /* If we haven't already seen the new PID stop, wait for it now. */ 1839 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 1840 { 1841 /* The new child has a pending SIGSTOP. We can't affect it until it 1842 hits the SIGSTOP, but we're already attached. */ 1843 ret = my_waitpid (new_pid, &status, __WALL); 1844 if (ret == -1) 1845 perror_with_name (_("waiting for new child")); 1846 else if (ret != new_pid) 1847 internal_error (_("wait returned unexpected PID %d"), ret); 1848 else if (!WIFSTOPPED (status)) 1849 internal_error (_("wait returned unexpected status 0x%x"), status); 1850 } 1851 1852 ptid_t child_ptid (new_pid, new_pid); 1853 1854 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 1855 { 1856 open_proc_mem_file (child_ptid); 1857 1858 /* The arch-specific native code may need to know about new 1859 forks even if those end up never mapped to an 1860 inferior. */ 1861 linux_target->low_new_fork (lp, new_pid); 1862 } 1863 else if (event == PTRACE_EVENT_CLONE) 1864 { 1865 linux_target->low_new_clone (lp, new_pid); 1866 } 1867 1868 if (event == PTRACE_EVENT_FORK 1869 && linux_fork_checkpointing_p (lp->ptid.pid ())) 1870 { 1871 /* Handle checkpointing by linux-fork.c here as a special 1872 case. We don't want the follow-fork-mode or 'catch fork' 1873 to interfere with this. */ 1874 1875 /* This won't actually modify the breakpoint list, but will 1876 physically remove the breakpoints from the child. */ 1877 detach_breakpoints (ptid_t (new_pid, new_pid)); 1878 1879 /* Retain child fork in ptrace (stopped) state. */ 1880 if (!find_fork_pid (new_pid)) 1881 add_fork (new_pid); 1882 1883 /* Report as spurious, so that infrun doesn't want to follow 1884 this fork. We're actually doing an infcall in 1885 linux-fork.c. */ 1886 ourstatus->set_spurious (); 1887 1888 /* Report the stop to the core. */ 1889 return 0; 1890 } 1891 1892 if (event == PTRACE_EVENT_FORK) 1893 ourstatus->set_forked (child_ptid); 1894 else if (event == PTRACE_EVENT_VFORK) 1895 ourstatus->set_vforked (child_ptid); 1896 else if (event == PTRACE_EVENT_CLONE) 1897 { 1898 struct lwp_info *new_lp; 1899 1900 ourstatus->set_ignore (); 1901 1902 linux_nat_debug_printf 1903 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid); 1904 1905 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid)); 1906 new_lp->stopped = 1; 1907 new_lp->resumed = 1; 1908 1909 /* If the thread_db layer is active, let it record the user 1910 level thread id and status, and add the thread to GDB's 1911 list. */ 1912 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 1913 { 1914 /* The process is not using thread_db. Add the LWP to 1915 GDB's list. */ 1916 add_thread (linux_target, new_lp->ptid); 1917 } 1918 1919 /* Even if we're stopping the thread for some reason 1920 internal to this module, from the perspective of infrun 1921 and the user/frontend, this new thread is running until 1922 it next reports a stop. */ 1923 set_running (linux_target, new_lp->ptid, true); 1924 set_executing (linux_target, new_lp->ptid, true); 1925 1926 if (WSTOPSIG (status) != SIGSTOP) 1927 { 1928 /* This can happen if someone starts sending signals to 1929 the new thread before it gets a chance to run, which 1930 have a lower number than SIGSTOP (e.g. SIGUSR1). 1931 This is an unlikely case, and harder to handle for 1932 fork / vfork than for clone, so we do not try - but 1933 we handle it for clone events here. */ 1934 1935 new_lp->signalled = 1; 1936 1937 /* We created NEW_LP so it cannot yet contain STATUS. */ 1938 gdb_assert (new_lp->status == 0); 1939 1940 /* Save the wait status to report later. */ 1941 linux_nat_debug_printf 1942 ("waitpid of new LWP %ld, saving status %s", 1943 (long) new_lp->ptid.lwp (), status_to_str (status).c_str ()); 1944 new_lp->status = status; 1945 } 1946 else if (report_thread_events) 1947 { 1948 new_lp->waitstatus.set_thread_created (); 1949 new_lp->status = status; 1950 } 1951 1952 return 1; 1953 } 1954 1955 return 0; 1956 } 1957 1958 if (event == PTRACE_EVENT_EXEC) 1959 { 1960 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ()); 1961 1962 /* Close the previous /proc/PID/mem file for this inferior, 1963 which was using the address space which is now gone. 1964 Reading/writing from this file would return 0/EOF. */ 1965 close_proc_mem_file (lp->ptid.pid ()); 1966 1967 /* Open a new file for the new address space. */ 1968 open_proc_mem_file (lp->ptid); 1969 1970 ourstatus->set_execd 1971 (make_unique_xstrdup (linux_proc_pid_to_exec_file (pid))); 1972 1973 /* The thread that execed must have been resumed, but, when a 1974 thread execs, it changes its tid to the tgid, and the old 1975 tgid thread might have not been resumed. */ 1976 lp->resumed = 1; 1977 return 0; 1978 } 1979 1980 if (event == PTRACE_EVENT_VFORK_DONE) 1981 { 1982 linux_nat_debug_printf 1983 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld", 1984 lp->ptid.lwp ()); 1985 ourstatus->set_vfork_done (); 1986 return 0; 1987 } 1988 1989 internal_error (_("unknown ptrace event %d"), event); 1990 } 1991 1992 /* Suspend waiting for a signal. We're mostly interested in 1993 SIGCHLD/SIGINT. */ 1994 1995 static void 1996 wait_for_signal () 1997 { 1998 linux_nat_debug_printf ("about to sigsuspend"); 1999 sigsuspend (&suspend_mask); 2000 2001 /* If the quit flag is set, it means that the user pressed Ctrl-C 2002 and we're debugging a process that is running on a separate 2003 terminal, so we must forward the Ctrl-C to the inferior. (If the 2004 inferior is sharing GDB's terminal, then the Ctrl-C reaches the 2005 inferior directly.) We must do this here because functions that 2006 need to block waiting for a signal loop forever until there's an 2007 event to report before returning back to the event loop. */ 2008 if (!target_terminal::is_ours ()) 2009 { 2010 if (check_quit_flag ()) 2011 target_pass_ctrlc (); 2012 } 2013 } 2014 2015 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2016 exited. */ 2017 2018 static int 2019 wait_lwp (struct lwp_info *lp) 2020 { 2021 pid_t pid; 2022 int status = 0; 2023 int thread_dead = 0; 2024 sigset_t prev_mask; 2025 2026 gdb_assert (!lp->stopped); 2027 gdb_assert (lp->status == 0); 2028 2029 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2030 block_child_signals (&prev_mask); 2031 2032 for (;;) 2033 { 2034 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG); 2035 if (pid == -1 && errno == ECHILD) 2036 { 2037 /* The thread has previously exited. We need to delete it 2038 now because if this was a non-leader thread execing, we 2039 won't get an exit event. See comments on exec events at 2040 the top of the file. */ 2041 thread_dead = 1; 2042 linux_nat_debug_printf ("%s vanished.", 2043 lp->ptid.to_string ().c_str ()); 2044 } 2045 if (pid != 0) 2046 break; 2047 2048 /* Bugs 10970, 12702. 2049 Thread group leader may have exited in which case we'll lock up in 2050 waitpid if there are other threads, even if they are all zombies too. 2051 Basically, we're not supposed to use waitpid this way. 2052 tkill(pid,0) cannot be used here as it gets ESRCH for both 2053 for zombie and running processes. 2054 2055 As a workaround, check if we're waiting for the thread group leader and 2056 if it's a zombie, and avoid calling waitpid if it is. 2057 2058 This is racy, what if the tgl becomes a zombie right after we check? 2059 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2060 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2061 2062 if (lp->ptid.pid () == lp->ptid.lwp () 2063 && linux_proc_pid_is_zombie (lp->ptid.lwp ())) 2064 { 2065 thread_dead = 1; 2066 linux_nat_debug_printf ("Thread group leader %s vanished.", 2067 lp->ptid.to_string ().c_str ()); 2068 break; 2069 } 2070 2071 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2072 get invoked despite our caller had them intentionally blocked by 2073 block_child_signals. This is sensitive only to the loop of 2074 linux_nat_wait_1 and there if we get called my_waitpid gets called 2075 again before it gets to sigsuspend so we can safely let the handlers 2076 get executed here. */ 2077 wait_for_signal (); 2078 } 2079 2080 restore_child_signals_mask (&prev_mask); 2081 2082 if (!thread_dead) 2083 { 2084 gdb_assert (pid == lp->ptid.lwp ()); 2085 2086 linux_nat_debug_printf ("waitpid %s received %s", 2087 lp->ptid.to_string ().c_str (), 2088 status_to_str (status).c_str ()); 2089 2090 /* Check if the thread has exited. */ 2091 if (WIFEXITED (status) || WIFSIGNALED (status)) 2092 { 2093 if (report_thread_events 2094 || lp->ptid.pid () == lp->ptid.lwp ()) 2095 { 2096 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ()); 2097 2098 /* If this is the leader exiting, it means the whole 2099 process is gone. Store the status to report to the 2100 core. Store it in lp->waitstatus, because lp->status 2101 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2102 lp->waitstatus = host_status_to_waitstatus (status); 2103 return 0; 2104 } 2105 2106 thread_dead = 1; 2107 linux_nat_debug_printf ("%s exited.", 2108 lp->ptid.to_string ().c_str ()); 2109 } 2110 } 2111 2112 if (thread_dead) 2113 { 2114 exit_lwp (lp); 2115 return 0; 2116 } 2117 2118 gdb_assert (WIFSTOPPED (status)); 2119 lp->stopped = 1; 2120 2121 if (lp->must_set_ptrace_flags) 2122 { 2123 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); 2124 int options = linux_nat_ptrace_options (inf->attach_flag); 2125 2126 linux_enable_event_reporting (lp->ptid.lwp (), options); 2127 lp->must_set_ptrace_flags = 0; 2128 } 2129 2130 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2131 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2132 { 2133 /* No longer need the sysgood bit. The ptrace event ends up 2134 recorded in lp->waitstatus if we care for it. We can carry 2135 on handling the event like a regular SIGTRAP from here 2136 on. */ 2137 status = W_STOPCODE (SIGTRAP); 2138 if (linux_handle_syscall_trap (lp, 1)) 2139 return wait_lwp (lp); 2140 } 2141 else 2142 { 2143 /* Almost all other ptrace-stops are known to be outside of system 2144 calls, with further exceptions in linux_handle_extended_wait. */ 2145 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2146 } 2147 2148 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2149 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2150 && linux_is_extended_waitstatus (status)) 2151 { 2152 linux_nat_debug_printf ("Handling extended status 0x%06x", status); 2153 linux_handle_extended_wait (lp, status); 2154 return 0; 2155 } 2156 2157 return status; 2158 } 2159 2160 /* Send a SIGSTOP to LP. */ 2161 2162 static int 2163 stop_callback (struct lwp_info *lp) 2164 { 2165 if (!lp->stopped && !lp->signalled) 2166 { 2167 int ret; 2168 2169 linux_nat_debug_printf ("kill %s **<SIGSTOP>**", 2170 lp->ptid.to_string ().c_str ()); 2171 2172 errno = 0; 2173 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP); 2174 linux_nat_debug_printf ("lwp kill %d %s", ret, 2175 errno ? safe_strerror (errno) : "ERRNO-OK"); 2176 2177 lp->signalled = 1; 2178 gdb_assert (lp->status == 0); 2179 } 2180 2181 return 0; 2182 } 2183 2184 /* Request a stop on LWP. */ 2185 2186 void 2187 linux_stop_lwp (struct lwp_info *lwp) 2188 { 2189 stop_callback (lwp); 2190 } 2191 2192 /* See linux-nat.h */ 2193 2194 void 2195 linux_stop_and_wait_all_lwps (void) 2196 { 2197 /* Stop all LWP's ... */ 2198 iterate_over_lwps (minus_one_ptid, stop_callback); 2199 2200 /* ... and wait until all of them have reported back that 2201 they're no longer running. */ 2202 iterate_over_lwps (minus_one_ptid, stop_wait_callback); 2203 } 2204 2205 /* See linux-nat.h */ 2206 2207 void 2208 linux_unstop_all_lwps (void) 2209 { 2210 iterate_over_lwps (minus_one_ptid, 2211 [] (struct lwp_info *info) 2212 { 2213 return resume_stopped_resumed_lwps (info, minus_one_ptid); 2214 }); 2215 } 2216 2217 /* Return non-zero if LWP PID has a pending SIGINT. */ 2218 2219 static int 2220 linux_nat_has_pending_sigint (int pid) 2221 { 2222 sigset_t pending, blocked, ignored; 2223 2224 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2225 2226 if (sigismember (&pending, SIGINT) 2227 && !sigismember (&ignored, SIGINT)) 2228 return 1; 2229 2230 return 0; 2231 } 2232 2233 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2234 2235 static int 2236 set_ignore_sigint (struct lwp_info *lp) 2237 { 2238 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2239 flag to consume the next one. */ 2240 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2241 && WSTOPSIG (lp->status) == SIGINT) 2242 lp->status = 0; 2243 else 2244 lp->ignore_sigint = 1; 2245 2246 return 0; 2247 } 2248 2249 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2250 This function is called after we know the LWP has stopped; if the LWP 2251 stopped before the expected SIGINT was delivered, then it will never have 2252 arrived. Also, if the signal was delivered to a shared queue and consumed 2253 by a different thread, it will never be delivered to this LWP. */ 2254 2255 static void 2256 maybe_clear_ignore_sigint (struct lwp_info *lp) 2257 { 2258 if (!lp->ignore_sigint) 2259 return; 2260 2261 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ())) 2262 { 2263 linux_nat_debug_printf ("Clearing bogus flag for %s", 2264 lp->ptid.to_string ().c_str ()); 2265 lp->ignore_sigint = 0; 2266 } 2267 } 2268 2269 /* Fetch the possible triggered data watchpoint info and store it in 2270 LP. 2271 2272 On some archs, like x86, that use debug registers to set 2273 watchpoints, it's possible that the way to know which watched 2274 address trapped, is to check the register that is used to select 2275 which address to watch. Problem is, between setting the watchpoint 2276 and reading back which data address trapped, the user may change 2277 the set of watchpoints, and, as a consequence, GDB changes the 2278 debug registers in the inferior. To avoid reading back a stale 2279 stopped-data-address when that happens, we cache in LP the fact 2280 that a watchpoint trapped, and the corresponding data address, as 2281 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2282 registers meanwhile, we have the cached data we can rely on. */ 2283 2284 static int 2285 check_stopped_by_watchpoint (struct lwp_info *lp) 2286 { 2287 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 2288 inferior_ptid = lp->ptid; 2289 2290 if (linux_target->low_stopped_by_watchpoint ()) 2291 { 2292 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2293 lp->stopped_data_address_p 2294 = linux_target->low_stopped_data_address (&lp->stopped_data_address); 2295 } 2296 2297 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2298 } 2299 2300 /* Returns true if the LWP had stopped for a watchpoint. */ 2301 2302 bool 2303 linux_nat_target::stopped_by_watchpoint () 2304 { 2305 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2306 2307 gdb_assert (lp != NULL); 2308 2309 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2310 } 2311 2312 bool 2313 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 2314 { 2315 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2316 2317 gdb_assert (lp != NULL); 2318 2319 *addr_p = lp->stopped_data_address; 2320 2321 return lp->stopped_data_address_p; 2322 } 2323 2324 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2325 2326 bool 2327 linux_nat_target::low_status_is_event (int status) 2328 { 2329 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2330 } 2331 2332 /* Wait until LP is stopped. */ 2333 2334 static int 2335 stop_wait_callback (struct lwp_info *lp) 2336 { 2337 inferior *inf = find_inferior_ptid (linux_target, lp->ptid); 2338 2339 /* If this is a vfork parent, bail out, it is not going to report 2340 any SIGSTOP until the vfork is done with. */ 2341 if (inf->vfork_child != NULL) 2342 return 0; 2343 2344 if (!lp->stopped) 2345 { 2346 int status; 2347 2348 status = wait_lwp (lp); 2349 if (status == 0) 2350 return 0; 2351 2352 if (lp->ignore_sigint && WIFSTOPPED (status) 2353 && WSTOPSIG (status) == SIGINT) 2354 { 2355 lp->ignore_sigint = 0; 2356 2357 errno = 0; 2358 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 2359 lp->stopped = 0; 2360 linux_nat_debug_printf 2361 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)", 2362 lp->ptid.to_string ().c_str (), 2363 errno ? safe_strerror (errno) : "OK"); 2364 2365 return stop_wait_callback (lp); 2366 } 2367 2368 maybe_clear_ignore_sigint (lp); 2369 2370 if (WSTOPSIG (status) != SIGSTOP) 2371 { 2372 /* The thread was stopped with a signal other than SIGSTOP. */ 2373 2374 linux_nat_debug_printf ("Pending event %s in %s", 2375 status_to_str ((int) status).c_str (), 2376 lp->ptid.to_string ().c_str ()); 2377 2378 /* Save the sigtrap event. */ 2379 lp->status = status; 2380 gdb_assert (lp->signalled); 2381 save_stop_reason (lp); 2382 } 2383 else 2384 { 2385 /* We caught the SIGSTOP that we intended to catch. */ 2386 2387 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.", 2388 lp->ptid.to_string ().c_str ()); 2389 2390 lp->signalled = 0; 2391 2392 /* If we are waiting for this stop so we can report the thread 2393 stopped then we need to record this status. Otherwise, we can 2394 now discard this stop event. */ 2395 if (lp->last_resume_kind == resume_stop) 2396 { 2397 lp->status = status; 2398 save_stop_reason (lp); 2399 } 2400 } 2401 } 2402 2403 return 0; 2404 } 2405 2406 /* Return non-zero if LP has a wait status pending. Discard the 2407 pending event and resume the LWP if the event that originally 2408 caused the stop became uninteresting. */ 2409 2410 static int 2411 status_callback (struct lwp_info *lp) 2412 { 2413 /* Only report a pending wait status if we pretend that this has 2414 indeed been resumed. */ 2415 if (!lp->resumed) 2416 return 0; 2417 2418 if (!lwp_status_pending_p (lp)) 2419 return 0; 2420 2421 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2422 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2423 { 2424 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 2425 CORE_ADDR pc; 2426 int discard = 0; 2427 2428 pc = regcache_read_pc (regcache); 2429 2430 if (pc != lp->stop_pc) 2431 { 2432 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s", 2433 lp->ptid.to_string ().c_str (), 2434 paddress (target_gdbarch (), lp->stop_pc), 2435 paddress (target_gdbarch (), pc)); 2436 discard = 1; 2437 } 2438 2439 #if !USE_SIGTRAP_SIGINFO 2440 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) 2441 { 2442 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone", 2443 lp->ptid.to_string ().c_str (), 2444 paddress (target_gdbarch (), lp->stop_pc)); 2445 2446 discard = 1; 2447 } 2448 #endif 2449 2450 if (discard) 2451 { 2452 linux_nat_debug_printf ("pending event of %s cancelled.", 2453 lp->ptid.to_string ().c_str ()); 2454 2455 lp->status = 0; 2456 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2457 return 0; 2458 } 2459 } 2460 2461 return 1; 2462 } 2463 2464 /* Count the LWP's that have had events. */ 2465 2466 static int 2467 count_events_callback (struct lwp_info *lp, int *count) 2468 { 2469 gdb_assert (count != NULL); 2470 2471 /* Select only resumed LWPs that have an event pending. */ 2472 if (lp->resumed && lwp_status_pending_p (lp)) 2473 (*count)++; 2474 2475 return 0; 2476 } 2477 2478 /* Select the LWP (if any) that is currently being single-stepped. */ 2479 2480 static int 2481 select_singlestep_lwp_callback (struct lwp_info *lp) 2482 { 2483 if (lp->last_resume_kind == resume_step 2484 && lp->status != 0) 2485 return 1; 2486 else 2487 return 0; 2488 } 2489 2490 /* Returns true if LP has a status pending. */ 2491 2492 static int 2493 lwp_status_pending_p (struct lwp_info *lp) 2494 { 2495 /* We check for lp->waitstatus in addition to lp->status, because we 2496 can have pending process exits recorded in lp->status and 2497 W_EXITCODE(0,0) happens to be 0. */ 2498 return lp->status != 0 || lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE; 2499 } 2500 2501 /* Select the Nth LWP that has had an event. */ 2502 2503 static int 2504 select_event_lwp_callback (struct lwp_info *lp, int *selector) 2505 { 2506 gdb_assert (selector != NULL); 2507 2508 /* Select only resumed LWPs that have an event pending. */ 2509 if (lp->resumed && lwp_status_pending_p (lp)) 2510 if ((*selector)-- == 0) 2511 return 1; 2512 2513 return 0; 2514 } 2515 2516 /* Called when the LWP stopped for a signal/trap. If it stopped for a 2517 trap check what caused it (breakpoint, watchpoint, trace, etc.), 2518 and save the result in the LWP's stop_reason field. If it stopped 2519 for a breakpoint, decrement the PC if necessary on the lwp's 2520 architecture. */ 2521 2522 static void 2523 save_stop_reason (struct lwp_info *lp) 2524 { 2525 struct regcache *regcache; 2526 struct gdbarch *gdbarch; 2527 CORE_ADDR pc; 2528 CORE_ADDR sw_bp_pc; 2529 #if USE_SIGTRAP_SIGINFO 2530 siginfo_t siginfo; 2531 #endif 2532 2533 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2534 gdb_assert (lp->status != 0); 2535 2536 if (!linux_target->low_status_is_event (lp->status)) 2537 return; 2538 2539 inferior *inf = find_inferior_ptid (linux_target, lp->ptid); 2540 if (inf->starting_up) 2541 return; 2542 2543 regcache = get_thread_regcache (linux_target, lp->ptid); 2544 gdbarch = regcache->arch (); 2545 2546 pc = regcache_read_pc (regcache); 2547 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2548 2549 #if USE_SIGTRAP_SIGINFO 2550 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2551 { 2552 if (siginfo.si_signo == SIGTRAP) 2553 { 2554 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) 2555 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2556 { 2557 /* The si_code is ambiguous on this arch -- check debug 2558 registers. */ 2559 if (!check_stopped_by_watchpoint (lp)) 2560 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2561 } 2562 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) 2563 { 2564 /* If we determine the LWP stopped for a SW breakpoint, 2565 trust it. Particularly don't check watchpoint 2566 registers, because, at least on s390, we'd find 2567 stopped-by-watchpoint as long as there's a watchpoint 2568 set. */ 2569 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2570 } 2571 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2572 { 2573 /* This can indicate either a hardware breakpoint or 2574 hardware watchpoint. Check debug registers. */ 2575 if (!check_stopped_by_watchpoint (lp)) 2576 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2577 } 2578 else if (siginfo.si_code == TRAP_TRACE) 2579 { 2580 linux_nat_debug_printf ("%s stopped by trace", 2581 lp->ptid.to_string ().c_str ()); 2582 2583 /* We may have single stepped an instruction that 2584 triggered a watchpoint. In that case, on some 2585 architectures (such as x86), instead of TRAP_HWBKPT, 2586 si_code indicates TRAP_TRACE, and we need to check 2587 the debug registers separately. */ 2588 check_stopped_by_watchpoint (lp); 2589 } 2590 } 2591 } 2592 #else 2593 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2594 && software_breakpoint_inserted_here_p (regcache->aspace (), 2595 sw_bp_pc)) 2596 { 2597 /* The LWP was either continued, or stepped a software 2598 breakpoint instruction. */ 2599 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2600 } 2601 2602 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc)) 2603 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2604 2605 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON) 2606 check_stopped_by_watchpoint (lp); 2607 #endif 2608 2609 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) 2610 { 2611 linux_nat_debug_printf ("%s stopped by software breakpoint", 2612 lp->ptid.to_string ().c_str ()); 2613 2614 /* Back up the PC if necessary. */ 2615 if (pc != sw_bp_pc) 2616 regcache_write_pc (regcache, sw_bp_pc); 2617 2618 /* Update this so we record the correct stop PC below. */ 2619 pc = sw_bp_pc; 2620 } 2621 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2622 { 2623 linux_nat_debug_printf ("%s stopped by hardware breakpoint", 2624 lp->ptid.to_string ().c_str ()); 2625 } 2626 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 2627 { 2628 linux_nat_debug_printf ("%s stopped by hardware watchpoint", 2629 lp->ptid.to_string ().c_str ()); 2630 } 2631 2632 lp->stop_pc = pc; 2633 } 2634 2635 2636 /* Returns true if the LWP had stopped for a software breakpoint. */ 2637 2638 bool 2639 linux_nat_target::stopped_by_sw_breakpoint () 2640 { 2641 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2642 2643 gdb_assert (lp != NULL); 2644 2645 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2646 } 2647 2648 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2649 2650 bool 2651 linux_nat_target::supports_stopped_by_sw_breakpoint () 2652 { 2653 return USE_SIGTRAP_SIGINFO; 2654 } 2655 2656 /* Returns true if the LWP had stopped for a hardware 2657 breakpoint/watchpoint. */ 2658 2659 bool 2660 linux_nat_target::stopped_by_hw_breakpoint () 2661 { 2662 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2663 2664 gdb_assert (lp != NULL); 2665 2666 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2667 } 2668 2669 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2670 2671 bool 2672 linux_nat_target::supports_stopped_by_hw_breakpoint () 2673 { 2674 return USE_SIGTRAP_SIGINFO; 2675 } 2676 2677 /* Select one LWP out of those that have events pending. */ 2678 2679 static void 2680 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2681 { 2682 int num_events = 0; 2683 int random_selector; 2684 struct lwp_info *event_lp = NULL; 2685 2686 /* Record the wait status for the original LWP. */ 2687 (*orig_lp)->status = *status; 2688 2689 /* In all-stop, give preference to the LWP that is being 2690 single-stepped. There will be at most one, and it will be the 2691 LWP that the core is most interested in. If we didn't do this, 2692 then we'd have to handle pending step SIGTRAPs somehow in case 2693 the core later continues the previously-stepped thread, as 2694 otherwise we'd report the pending SIGTRAP then, and the core, not 2695 having stepped the thread, wouldn't understand what the trap was 2696 for, and therefore would report it to the user as a random 2697 signal. */ 2698 if (!target_is_non_stop_p ()) 2699 { 2700 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback); 2701 if (event_lp != NULL) 2702 { 2703 linux_nat_debug_printf ("Select single-step %s", 2704 event_lp->ptid.to_string ().c_str ()); 2705 } 2706 } 2707 2708 if (event_lp == NULL) 2709 { 2710 /* Pick one at random, out of those which have had events. */ 2711 2712 /* First see how many events we have. */ 2713 iterate_over_lwps (filter, 2714 [&] (struct lwp_info *info) 2715 { 2716 return count_events_callback (info, &num_events); 2717 }); 2718 gdb_assert (num_events > 0); 2719 2720 /* Now randomly pick a LWP out of those that have had 2721 events. */ 2722 random_selector = (int) 2723 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2724 2725 if (num_events > 1) 2726 linux_nat_debug_printf ("Found %d events, selecting #%d", 2727 num_events, random_selector); 2728 2729 event_lp 2730 = (iterate_over_lwps 2731 (filter, 2732 [&] (struct lwp_info *info) 2733 { 2734 return select_event_lwp_callback (info, 2735 &random_selector); 2736 })); 2737 } 2738 2739 if (event_lp != NULL) 2740 { 2741 /* Switch the event LWP. */ 2742 *orig_lp = event_lp; 2743 *status = event_lp->status; 2744 } 2745 2746 /* Flush the wait status for the event LWP. */ 2747 (*orig_lp)->status = 0; 2748 } 2749 2750 /* Return non-zero if LP has been resumed. */ 2751 2752 static int 2753 resumed_callback (struct lwp_info *lp) 2754 { 2755 return lp->resumed; 2756 } 2757 2758 /* Check if we should go on and pass this event to common code. 2759 2760 If so, save the status to the lwp_info structure associated to LWPID. */ 2761 2762 static void 2763 linux_nat_filter_event (int lwpid, int status) 2764 { 2765 struct lwp_info *lp; 2766 int event = linux_ptrace_get_extended_event (status); 2767 2768 lp = find_lwp_pid (ptid_t (lwpid)); 2769 2770 /* Check for events reported by anything not in our LWP list. */ 2771 if (lp == nullptr) 2772 { 2773 if (WIFSTOPPED (status)) 2774 { 2775 if (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC) 2776 { 2777 /* A non-leader thread exec'ed after we've seen the 2778 leader zombie, and removed it from our lists (in 2779 check_zombie_leaders). The non-leader thread changes 2780 its tid to the tgid. */ 2781 linux_nat_debug_printf 2782 ("Re-adding thread group leader LWP %d after exec.", 2783 lwpid); 2784 2785 lp = add_lwp (ptid_t (lwpid, lwpid)); 2786 lp->stopped = 1; 2787 lp->resumed = 1; 2788 add_thread (linux_target, lp->ptid); 2789 } 2790 else 2791 { 2792 /* A process we are controlling has forked and the new 2793 child's stop was reported to us by the kernel. Save 2794 its PID and go back to waiting for the fork event to 2795 be reported - the stopped process might be returned 2796 from waitpid before or after the fork event is. */ 2797 linux_nat_debug_printf 2798 ("Saving LWP %d status %s in stopped_pids list", 2799 lwpid, status_to_str (status).c_str ()); 2800 add_to_pid_list (&stopped_pids, lwpid, status); 2801 } 2802 } 2803 else 2804 { 2805 /* Don't report an event for the exit of an LWP not in our 2806 list, i.e. not part of any inferior we're debugging. 2807 This can happen if we detach from a program we originally 2808 forked and then it exits. However, note that we may have 2809 earlier deleted a leader of an inferior we're debugging, 2810 in check_zombie_leaders. Re-add it back here if so. */ 2811 for (inferior *inf : all_inferiors (linux_target)) 2812 { 2813 if (inf->pid == lwpid) 2814 { 2815 linux_nat_debug_printf 2816 ("Re-adding thread group leader LWP %d after exit.", 2817 lwpid); 2818 2819 lp = add_lwp (ptid_t (lwpid, lwpid)); 2820 lp->resumed = 1; 2821 add_thread (linux_target, lp->ptid); 2822 break; 2823 } 2824 } 2825 } 2826 2827 if (lp == nullptr) 2828 return; 2829 } 2830 2831 /* This LWP is stopped now. (And if dead, this prevents it from 2832 ever being continued.) */ 2833 lp->stopped = 1; 2834 2835 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 2836 { 2837 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); 2838 int options = linux_nat_ptrace_options (inf->attach_flag); 2839 2840 linux_enable_event_reporting (lp->ptid.lwp (), options); 2841 lp->must_set_ptrace_flags = 0; 2842 } 2843 2844 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2845 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2846 { 2847 /* No longer need the sysgood bit. The ptrace event ends up 2848 recorded in lp->waitstatus if we care for it. We can carry 2849 on handling the event like a regular SIGTRAP from here 2850 on. */ 2851 status = W_STOPCODE (SIGTRAP); 2852 if (linux_handle_syscall_trap (lp, 0)) 2853 return; 2854 } 2855 else 2856 { 2857 /* Almost all other ptrace-stops are known to be outside of system 2858 calls, with further exceptions in linux_handle_extended_wait. */ 2859 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2860 } 2861 2862 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2863 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2864 && linux_is_extended_waitstatus (status)) 2865 { 2866 linux_nat_debug_printf ("Handling extended status 0x%06x", status); 2867 2868 if (linux_handle_extended_wait (lp, status)) 2869 return; 2870 } 2871 2872 /* Check if the thread has exited. */ 2873 if (WIFEXITED (status) || WIFSIGNALED (status)) 2874 { 2875 if (!report_thread_events && !is_leader (lp)) 2876 { 2877 linux_nat_debug_printf ("%s exited.", 2878 lp->ptid.to_string ().c_str ()); 2879 2880 /* If this was not the leader exiting, then the exit signal 2881 was not the end of the debugged application and should be 2882 ignored. */ 2883 exit_lwp (lp); 2884 return; 2885 } 2886 2887 /* Note that even if the leader was ptrace-stopped, it can still 2888 exit, if e.g., some other thread brings down the whole 2889 process (calls `exit'). So don't assert that the lwp is 2890 resumed. */ 2891 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)", 2892 lp->ptid.lwp (), lp->resumed); 2893 2894 /* Dead LWP's aren't expected to reported a pending sigstop. */ 2895 lp->signalled = 0; 2896 2897 /* Store the pending event in the waitstatus, because 2898 W_EXITCODE(0,0) == 0. */ 2899 lp->waitstatus = host_status_to_waitstatus (status); 2900 return; 2901 } 2902 2903 /* Make sure we don't report a SIGSTOP that we sent ourselves in 2904 an attempt to stop an LWP. */ 2905 if (lp->signalled 2906 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 2907 { 2908 lp->signalled = 0; 2909 2910 if (lp->last_resume_kind == resume_stop) 2911 { 2912 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.", 2913 lp->ptid.to_string ().c_str ()); 2914 } 2915 else 2916 { 2917 /* This is a delayed SIGSTOP. Filter out the event. */ 2918 2919 linux_nat_debug_printf 2920 ("%s %s, 0, 0 (discard delayed SIGSTOP)", 2921 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 2922 lp->ptid.to_string ().c_str ()); 2923 2924 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2925 gdb_assert (lp->resumed); 2926 return; 2927 } 2928 } 2929 2930 /* Make sure we don't report a SIGINT that we have already displayed 2931 for another thread. */ 2932 if (lp->ignore_sigint 2933 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 2934 { 2935 linux_nat_debug_printf ("Delayed SIGINT caught for %s.", 2936 lp->ptid.to_string ().c_str ()); 2937 2938 /* This is a delayed SIGINT. */ 2939 lp->ignore_sigint = 0; 2940 2941 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2942 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)", 2943 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 2944 lp->ptid.to_string ().c_str ()); 2945 gdb_assert (lp->resumed); 2946 2947 /* Discard the event. */ 2948 return; 2949 } 2950 2951 /* Don't report signals that GDB isn't interested in, such as 2952 signals that are neither printed nor stopped upon. Stopping all 2953 threads can be a bit time-consuming, so if we want decent 2954 performance with heavily multi-threaded programs, especially when 2955 they're using a high frequency timer, we'd better avoid it if we 2956 can. */ 2957 if (WIFSTOPPED (status)) 2958 { 2959 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 2960 2961 if (!target_is_non_stop_p ()) 2962 { 2963 /* Only do the below in all-stop, as we currently use SIGSTOP 2964 to implement target_stop (see linux_nat_stop) in 2965 non-stop. */ 2966 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 2967 { 2968 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 2969 forwarded to the entire process group, that is, all LWPs 2970 will receive it - unless they're using CLONE_THREAD to 2971 share signals. Since we only want to report it once, we 2972 mark it as ignored for all LWPs except this one. */ 2973 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint); 2974 lp->ignore_sigint = 0; 2975 } 2976 else 2977 maybe_clear_ignore_sigint (lp); 2978 } 2979 2980 /* When using hardware single-step, we need to report every signal. 2981 Otherwise, signals in pass_mask may be short-circuited 2982 except signals that might be caused by a breakpoint, or SIGSTOP 2983 if we sent the SIGSTOP and are waiting for it to arrive. */ 2984 if (!lp->step 2985 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 2986 && (WSTOPSIG (status) != SIGSTOP 2987 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested) 2988 && !linux_wstatus_maybe_breakpoint (status)) 2989 { 2990 linux_resume_one_lwp (lp, lp->step, signo); 2991 linux_nat_debug_printf 2992 ("%s %s, %s (preempt 'handle')", 2993 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 2994 lp->ptid.to_string ().c_str (), 2995 (signo != GDB_SIGNAL_0 2996 ? strsignal (gdb_signal_to_host (signo)) : "0")); 2997 return; 2998 } 2999 } 3000 3001 /* An interesting event. */ 3002 gdb_assert (lp); 3003 lp->status = status; 3004 save_stop_reason (lp); 3005 } 3006 3007 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3008 their exits until all other threads in the group have exited. */ 3009 3010 static void 3011 check_zombie_leaders (void) 3012 { 3013 for (inferior *inf : all_inferiors ()) 3014 { 3015 struct lwp_info *leader_lp; 3016 3017 if (inf->pid == 0) 3018 continue; 3019 3020 leader_lp = find_lwp_pid (ptid_t (inf->pid)); 3021 if (leader_lp != NULL 3022 /* Check if there are other threads in the group, as we may 3023 have raced with the inferior simply exiting. Note this 3024 isn't a watertight check. If the inferior is 3025 multi-threaded and is exiting, it may be we see the 3026 leader as zombie before we reap all the non-leader 3027 threads. See comments below. */ 3028 && num_lwps (inf->pid) > 1 3029 && linux_proc_pid_is_zombie (inf->pid)) 3030 { 3031 /* A zombie leader in a multi-threaded program can mean one 3032 of three things: 3033 3034 #1 - Only the leader exited, not the whole program, e.g., 3035 with pthread_exit. Since we can't reap the leader's exit 3036 status until all other threads are gone and reaped too, 3037 we want to delete the zombie leader right away, as it 3038 can't be debugged, we can't read its registers, etc. 3039 This is the main reason we check for zombie leaders 3040 disappearing. 3041 3042 #2 - The whole thread-group/process exited (a group exit, 3043 via e.g. exit(3), and there is (or will be shortly) an 3044 exit reported for each thread in the process, and then 3045 finally an exit for the leader once the non-leaders are 3046 reaped. 3047 3048 #3 - There are 3 or more threads in the group, and a 3049 thread other than the leader exec'd. See comments on 3050 exec events at the top of the file. 3051 3052 Ideally we would never delete the leader for case #2. 3053 Instead, we want to collect the exit status of each 3054 non-leader thread, and then finally collect the exit 3055 status of the leader as normal and use its exit code as 3056 whole-process exit code. Unfortunately, there's no 3057 race-free way to distinguish cases #1 and #2. We can't 3058 assume the exit events for the non-leaders threads are 3059 already pending in the kernel, nor can we assume the 3060 non-leader threads are in zombie state already. Between 3061 the leader becoming zombie and the non-leaders exiting 3062 and becoming zombie themselves, there's a small time 3063 window, so such a check would be racy. Temporarily 3064 pausing all threads and checking to see if all threads 3065 exit or not before re-resuming them would work in the 3066 case that all threads are running right now, but it 3067 wouldn't work if some thread is currently already 3068 ptrace-stopped, e.g., due to scheduler-locking. 3069 3070 So what we do is we delete the leader anyhow, and then 3071 later on when we see its exit status, we re-add it back. 3072 We also make sure that we only report a whole-process 3073 exit when we see the leader exiting, as opposed to when 3074 the last LWP in the LWP list exits, which can be a 3075 non-leader if we deleted the leader here. */ 3076 linux_nat_debug_printf ("Thread group leader %d zombie " 3077 "(it exited, or another thread execd), " 3078 "deleting it.", 3079 inf->pid); 3080 exit_lwp (leader_lp); 3081 } 3082 } 3083 } 3084 3085 /* Convenience function that is called when the kernel reports an exit 3086 event. This decides whether to report the event to GDB as a 3087 process exit event, a thread exit event, or to suppress the 3088 event. */ 3089 3090 static ptid_t 3091 filter_exit_event (struct lwp_info *event_child, 3092 struct target_waitstatus *ourstatus) 3093 { 3094 ptid_t ptid = event_child->ptid; 3095 3096 if (!is_leader (event_child)) 3097 { 3098 if (report_thread_events) 3099 ourstatus->set_thread_exited (0); 3100 else 3101 ourstatus->set_ignore (); 3102 3103 exit_lwp (event_child); 3104 } 3105 3106 return ptid; 3107 } 3108 3109 static ptid_t 3110 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus, 3111 target_wait_flags target_options) 3112 { 3113 sigset_t prev_mask; 3114 enum resume_kind last_resume_kind; 3115 struct lwp_info *lp; 3116 int status; 3117 3118 linux_nat_debug_printf ("enter"); 3119 3120 /* The first time we get here after starting a new inferior, we may 3121 not have added it to the LWP list yet - this is the earliest 3122 moment at which we know its PID. */ 3123 if (ptid.is_pid () && find_lwp_pid (ptid) == nullptr) 3124 { 3125 ptid_t lwp_ptid (ptid.pid (), ptid.pid ()); 3126 3127 /* Upgrade the main thread's ptid. */ 3128 thread_change_ptid (linux_target, ptid, lwp_ptid); 3129 lp = add_initial_lwp (lwp_ptid); 3130 lp->resumed = 1; 3131 } 3132 3133 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3134 block_child_signals (&prev_mask); 3135 3136 /* First check if there is a LWP with a wait status pending. */ 3137 lp = iterate_over_lwps (ptid, status_callback); 3138 if (lp != NULL) 3139 { 3140 linux_nat_debug_printf ("Using pending wait status %s for %s.", 3141 status_to_str (lp->status).c_str (), 3142 lp->ptid.to_string ().c_str ()); 3143 } 3144 3145 /* But if we don't find a pending event, we'll have to wait. Always 3146 pull all events out of the kernel. We'll randomly select an 3147 event LWP out of all that have events, to prevent starvation. */ 3148 3149 while (lp == NULL) 3150 { 3151 pid_t lwpid; 3152 3153 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3154 quirks: 3155 3156 - If the thread group leader exits while other threads in the 3157 thread group still exist, waitpid(TGID, ...) hangs. That 3158 waitpid won't return an exit status until the other threads 3159 in the group are reaped. 3160 3161 - When a non-leader thread execs, that thread just vanishes 3162 without reporting an exit (so we'd hang if we waited for it 3163 explicitly in that case). The exec event is reported to 3164 the TGID pid. */ 3165 3166 errno = 0; 3167 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); 3168 3169 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s", 3170 lwpid, 3171 errno ? safe_strerror (errno) : "ERRNO-OK"); 3172 3173 if (lwpid > 0) 3174 { 3175 linux_nat_debug_printf ("waitpid %ld received %s", 3176 (long) lwpid, 3177 status_to_str (status).c_str ()); 3178 3179 linux_nat_filter_event (lwpid, status); 3180 /* Retry until nothing comes out of waitpid. A single 3181 SIGCHLD can indicate more than one child stopped. */ 3182 continue; 3183 } 3184 3185 /* Now that we've pulled all events out of the kernel, resume 3186 LWPs that don't have an interesting event to report. */ 3187 iterate_over_lwps (minus_one_ptid, 3188 [] (struct lwp_info *info) 3189 { 3190 return resume_stopped_resumed_lwps (info, minus_one_ptid); 3191 }); 3192 3193 /* ... and find an LWP with a status to report to the core, if 3194 any. */ 3195 lp = iterate_over_lwps (ptid, status_callback); 3196 if (lp != NULL) 3197 break; 3198 3199 /* Check for zombie thread group leaders. Those can't be reaped 3200 until all other threads in the thread group are. */ 3201 check_zombie_leaders (); 3202 3203 /* If there are no resumed children left, bail. We'd be stuck 3204 forever in the sigsuspend call below otherwise. */ 3205 if (iterate_over_lwps (ptid, resumed_callback) == NULL) 3206 { 3207 linux_nat_debug_printf ("exit (no resumed LWP)"); 3208 3209 ourstatus->set_no_resumed (); 3210 3211 restore_child_signals_mask (&prev_mask); 3212 return minus_one_ptid; 3213 } 3214 3215 /* No interesting event to report to the core. */ 3216 3217 if (target_options & TARGET_WNOHANG) 3218 { 3219 linux_nat_debug_printf ("exit (ignore)"); 3220 3221 ourstatus->set_ignore (); 3222 restore_child_signals_mask (&prev_mask); 3223 return minus_one_ptid; 3224 } 3225 3226 /* We shouldn't end up here unless we want to try again. */ 3227 gdb_assert (lp == NULL); 3228 3229 /* Block until we get an event reported with SIGCHLD. */ 3230 wait_for_signal (); 3231 } 3232 3233 gdb_assert (lp); 3234 3235 status = lp->status; 3236 lp->status = 0; 3237 3238 if (!target_is_non_stop_p ()) 3239 { 3240 /* Now stop all other LWP's ... */ 3241 iterate_over_lwps (minus_one_ptid, stop_callback); 3242 3243 /* ... and wait until all of them have reported back that 3244 they're no longer running. */ 3245 iterate_over_lwps (minus_one_ptid, stop_wait_callback); 3246 } 3247 3248 /* If we're not waiting for a specific LWP, choose an event LWP from 3249 among those that have had events. Giving equal priority to all 3250 LWPs that have had events helps prevent starvation. */ 3251 if (ptid == minus_one_ptid || ptid.is_pid ()) 3252 select_event_lwp (ptid, &lp, &status); 3253 3254 gdb_assert (lp != NULL); 3255 3256 /* Now that we've selected our final event LWP, un-adjust its PC if 3257 it was a software breakpoint, and we can't reliably support the 3258 "stopped by software breakpoint" stop reason. */ 3259 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3260 && !USE_SIGTRAP_SIGINFO) 3261 { 3262 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 3263 struct gdbarch *gdbarch = regcache->arch (); 3264 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3265 3266 if (decr_pc != 0) 3267 { 3268 CORE_ADDR pc; 3269 3270 pc = regcache_read_pc (regcache); 3271 regcache_write_pc (regcache, pc + decr_pc); 3272 } 3273 } 3274 3275 /* We'll need this to determine whether to report a SIGSTOP as 3276 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3277 clears it. */ 3278 last_resume_kind = lp->last_resume_kind; 3279 3280 if (!target_is_non_stop_p ()) 3281 { 3282 /* In all-stop, from the core's perspective, all LWPs are now 3283 stopped until a new resume action is sent over. */ 3284 iterate_over_lwps (minus_one_ptid, resume_clear_callback); 3285 } 3286 else 3287 { 3288 resume_clear_callback (lp); 3289 } 3290 3291 if (linux_target->low_status_is_event (status)) 3292 { 3293 linux_nat_debug_printf ("trap ptid is %s.", 3294 lp->ptid.to_string ().c_str ()); 3295 } 3296 3297 if (lp->waitstatus.kind () != TARGET_WAITKIND_IGNORE) 3298 { 3299 *ourstatus = lp->waitstatus; 3300 lp->waitstatus.set_ignore (); 3301 } 3302 else 3303 *ourstatus = host_status_to_waitstatus (status); 3304 3305 linux_nat_debug_printf ("exit"); 3306 3307 restore_child_signals_mask (&prev_mask); 3308 3309 if (last_resume_kind == resume_stop 3310 && ourstatus->kind () == TARGET_WAITKIND_STOPPED 3311 && WSTOPSIG (status) == SIGSTOP) 3312 { 3313 /* A thread that has been requested to stop by GDB with 3314 target_stop, and it stopped cleanly, so report as SIG0. The 3315 use of SIGSTOP is an implementation detail. */ 3316 ourstatus->set_stopped (GDB_SIGNAL_0); 3317 } 3318 3319 if (ourstatus->kind () == TARGET_WAITKIND_EXITED 3320 || ourstatus->kind () == TARGET_WAITKIND_SIGNALLED) 3321 lp->core = -1; 3322 else 3323 lp->core = linux_common_core_of_thread (lp->ptid); 3324 3325 if (ourstatus->kind () == TARGET_WAITKIND_EXITED) 3326 return filter_exit_event (lp, ourstatus); 3327 3328 return lp->ptid; 3329 } 3330 3331 /* Resume LWPs that are currently stopped without any pending status 3332 to report, but are resumed from the core's perspective. */ 3333 3334 static int 3335 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid) 3336 { 3337 if (!lp->stopped) 3338 { 3339 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped", 3340 lp->ptid.to_string ().c_str ()); 3341 } 3342 else if (!lp->resumed) 3343 { 3344 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed", 3345 lp->ptid.to_string ().c_str ()); 3346 } 3347 else if (lwp_status_pending_p (lp)) 3348 { 3349 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status", 3350 lp->ptid.to_string ().c_str ()); 3351 } 3352 else 3353 { 3354 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 3355 struct gdbarch *gdbarch = regcache->arch (); 3356 3357 try 3358 { 3359 CORE_ADDR pc = regcache_read_pc (regcache); 3360 int leave_stopped = 0; 3361 3362 /* Don't bother if there's a breakpoint at PC that we'd hit 3363 immediately, and we're not waiting for this LWP. */ 3364 if (!lp->ptid.matches (wait_ptid)) 3365 { 3366 if (breakpoint_inserted_here_p (regcache->aspace (), pc)) 3367 leave_stopped = 1; 3368 } 3369 3370 if (!leave_stopped) 3371 { 3372 linux_nat_debug_printf 3373 ("resuming stopped-resumed LWP %s at %s: step=%d", 3374 lp->ptid.to_string ().c_str (), paddress (gdbarch, pc), 3375 lp->step); 3376 3377 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3378 } 3379 } 3380 catch (const gdb_exception_error &ex) 3381 { 3382 if (!check_ptrace_stopped_lwp_gone (lp)) 3383 throw; 3384 } 3385 } 3386 3387 return 0; 3388 } 3389 3390 ptid_t 3391 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, 3392 target_wait_flags target_options) 3393 { 3394 ptid_t event_ptid; 3395 3396 linux_nat_debug_printf ("[%s], [%s]", ptid.to_string ().c_str (), 3397 target_options_to_string (target_options).c_str ()); 3398 3399 /* Flush the async file first. */ 3400 if (target_is_async_p ()) 3401 async_file_flush (); 3402 3403 /* Resume LWPs that are currently stopped without any pending status 3404 to report, but are resumed from the core's perspective. LWPs get 3405 in this state if we find them stopping at a time we're not 3406 interested in reporting the event (target_wait on a 3407 specific_process, for example, see linux_nat_wait_1), and 3408 meanwhile the event became uninteresting. Don't bother resuming 3409 LWPs we're not going to wait for if they'd stop immediately. */ 3410 if (target_is_non_stop_p ()) 3411 iterate_over_lwps (minus_one_ptid, 3412 [=] (struct lwp_info *info) 3413 { 3414 return resume_stopped_resumed_lwps (info, ptid); 3415 }); 3416 3417 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options); 3418 3419 /* If we requested any event, and something came out, assume there 3420 may be more. If we requested a specific lwp or process, also 3421 assume there may be more. */ 3422 if (target_is_async_p () 3423 && ((ourstatus->kind () != TARGET_WAITKIND_IGNORE 3424 && ourstatus->kind () != TARGET_WAITKIND_NO_RESUMED) 3425 || ptid != minus_one_ptid)) 3426 async_file_mark (); 3427 3428 return event_ptid; 3429 } 3430 3431 /* Kill one LWP. */ 3432 3433 static void 3434 kill_one_lwp (pid_t pid) 3435 { 3436 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3437 3438 errno = 0; 3439 kill_lwp (pid, SIGKILL); 3440 3441 if (debug_linux_nat) 3442 { 3443 int save_errno = errno; 3444 3445 linux_nat_debug_printf 3446 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid, 3447 save_errno != 0 ? safe_strerror (save_errno) : "OK"); 3448 } 3449 3450 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3451 3452 errno = 0; 3453 ptrace (PTRACE_KILL, pid, 0, 0); 3454 if (debug_linux_nat) 3455 { 3456 int save_errno = errno; 3457 3458 linux_nat_debug_printf 3459 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid, 3460 save_errno ? safe_strerror (save_errno) : "OK"); 3461 } 3462 } 3463 3464 /* Wait for an LWP to die. */ 3465 3466 static void 3467 kill_wait_one_lwp (pid_t pid) 3468 { 3469 pid_t res; 3470 3471 /* We must make sure that there are no pending events (delayed 3472 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3473 program doesn't interfere with any following debugging session. */ 3474 3475 do 3476 { 3477 res = my_waitpid (pid, NULL, __WALL); 3478 if (res != (pid_t) -1) 3479 { 3480 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid); 3481 3482 /* The Linux kernel sometimes fails to kill a thread 3483 completely after PTRACE_KILL; that goes from the stop 3484 point in do_fork out to the one in get_signal_to_deliver 3485 and waits again. So kill it again. */ 3486 kill_one_lwp (pid); 3487 } 3488 } 3489 while (res == pid); 3490 3491 gdb_assert (res == -1 && errno == ECHILD); 3492 } 3493 3494 /* Callback for iterate_over_lwps. */ 3495 3496 static int 3497 kill_callback (struct lwp_info *lp) 3498 { 3499 kill_one_lwp (lp->ptid.lwp ()); 3500 return 0; 3501 } 3502 3503 /* Callback for iterate_over_lwps. */ 3504 3505 static int 3506 kill_wait_callback (struct lwp_info *lp) 3507 { 3508 kill_wait_one_lwp (lp->ptid.lwp ()); 3509 return 0; 3510 } 3511 3512 /* Kill the fork children of any threads of inferior INF that are 3513 stopped at a fork event. */ 3514 3515 static void 3516 kill_unfollowed_fork_children (struct inferior *inf) 3517 { 3518 for (thread_info *thread : inf->non_exited_threads ()) 3519 { 3520 struct target_waitstatus *ws = &thread->pending_follow; 3521 3522 if (ws->kind () == TARGET_WAITKIND_FORKED 3523 || ws->kind () == TARGET_WAITKIND_VFORKED) 3524 { 3525 ptid_t child_ptid = ws->child_ptid (); 3526 int child_pid = child_ptid.pid (); 3527 int child_lwp = child_ptid.lwp (); 3528 3529 kill_one_lwp (child_lwp); 3530 kill_wait_one_lwp (child_lwp); 3531 3532 /* Let the arch-specific native code know this process is 3533 gone. */ 3534 linux_target->low_forget_process (child_pid); 3535 } 3536 } 3537 } 3538 3539 void 3540 linux_nat_target::kill () 3541 { 3542 /* If we're stopped while forking and we haven't followed yet, 3543 kill the other task. We need to do this first because the 3544 parent will be sleeping if this is a vfork. */ 3545 kill_unfollowed_fork_children (current_inferior ()); 3546 3547 if (forks_exist_p ()) 3548 linux_fork_killall (); 3549 else 3550 { 3551 ptid_t ptid = ptid_t (inferior_ptid.pid ()); 3552 3553 /* Stop all threads before killing them, since ptrace requires 3554 that the thread is stopped to successfully PTRACE_KILL. */ 3555 iterate_over_lwps (ptid, stop_callback); 3556 /* ... and wait until all of them have reported back that 3557 they're no longer running. */ 3558 iterate_over_lwps (ptid, stop_wait_callback); 3559 3560 /* Kill all LWP's ... */ 3561 iterate_over_lwps (ptid, kill_callback); 3562 3563 /* ... and wait until we've flushed all events. */ 3564 iterate_over_lwps (ptid, kill_wait_callback); 3565 } 3566 3567 target_mourn_inferior (inferior_ptid); 3568 } 3569 3570 void 3571 linux_nat_target::mourn_inferior () 3572 { 3573 int pid = inferior_ptid.pid (); 3574 3575 purge_lwp_list (pid); 3576 3577 close_proc_mem_file (pid); 3578 3579 if (! forks_exist_p ()) 3580 /* Normal case, no other forks available. */ 3581 inf_ptrace_target::mourn_inferior (); 3582 else 3583 /* Multi-fork case. The current inferior_ptid has exited, but 3584 there are other viable forks to debug. Delete the exiting 3585 one and context-switch to the first available. */ 3586 linux_fork_mourn_inferior (); 3587 3588 /* Let the arch-specific native code know this process is gone. */ 3589 linux_target->low_forget_process (pid); 3590 } 3591 3592 /* Convert a native/host siginfo object, into/from the siginfo in the 3593 layout of the inferiors' architecture. */ 3594 3595 static void 3596 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3597 { 3598 /* If the low target didn't do anything, then just do a straight 3599 memcpy. */ 3600 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction)) 3601 { 3602 if (direction == 1) 3603 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3604 else 3605 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3606 } 3607 } 3608 3609 static enum target_xfer_status 3610 linux_xfer_siginfo (ptid_t ptid, enum target_object object, 3611 const char *annex, gdb_byte *readbuf, 3612 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3613 ULONGEST *xfered_len) 3614 { 3615 siginfo_t siginfo; 3616 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3617 3618 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3619 gdb_assert (readbuf || writebuf); 3620 3621 if (offset > sizeof (siginfo)) 3622 return TARGET_XFER_E_IO; 3623 3624 if (!linux_nat_get_siginfo (ptid, &siginfo)) 3625 return TARGET_XFER_E_IO; 3626 3627 /* When GDB is built as a 64-bit application, ptrace writes into 3628 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3629 inferior with a 64-bit GDB should look the same as debugging it 3630 with a 32-bit GDB, we need to convert it. GDB core always sees 3631 the converted layout, so any read/write will have to be done 3632 post-conversion. */ 3633 siginfo_fixup (&siginfo, inf_siginfo, 0); 3634 3635 if (offset + len > sizeof (siginfo)) 3636 len = sizeof (siginfo) - offset; 3637 3638 if (readbuf != NULL) 3639 memcpy (readbuf, inf_siginfo + offset, len); 3640 else 3641 { 3642 memcpy (inf_siginfo + offset, writebuf, len); 3643 3644 /* Convert back to ptrace layout before flushing it out. */ 3645 siginfo_fixup (&siginfo, inf_siginfo, 1); 3646 3647 int pid = get_ptrace_pid (ptid); 3648 errno = 0; 3649 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3650 if (errno != 0) 3651 return TARGET_XFER_E_IO; 3652 } 3653 3654 *xfered_len = len; 3655 return TARGET_XFER_OK; 3656 } 3657 3658 static enum target_xfer_status 3659 linux_nat_xfer_osdata (enum target_object object, 3660 const char *annex, gdb_byte *readbuf, 3661 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3662 ULONGEST *xfered_len); 3663 3664 static enum target_xfer_status 3665 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf, 3666 const gdb_byte *writebuf, ULONGEST offset, 3667 LONGEST len, ULONGEST *xfered_len); 3668 3669 enum target_xfer_status 3670 linux_nat_target::xfer_partial (enum target_object object, 3671 const char *annex, gdb_byte *readbuf, 3672 const gdb_byte *writebuf, 3673 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 3674 { 3675 if (object == TARGET_OBJECT_SIGNAL_INFO) 3676 return linux_xfer_siginfo (inferior_ptid, object, annex, readbuf, writebuf, 3677 offset, len, xfered_len); 3678 3679 /* The target is connected but no live inferior is selected. Pass 3680 this request down to a lower stratum (e.g., the executable 3681 file). */ 3682 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid) 3683 return TARGET_XFER_EOF; 3684 3685 if (object == TARGET_OBJECT_AUXV) 3686 return memory_xfer_auxv (this, object, annex, readbuf, writebuf, 3687 offset, len, xfered_len); 3688 3689 if (object == TARGET_OBJECT_OSDATA) 3690 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf, 3691 offset, len, xfered_len); 3692 3693 if (object == TARGET_OBJECT_MEMORY) 3694 { 3695 /* GDB calculates all addresses in the largest possible address 3696 width. The address width must be masked before its final use 3697 by linux_proc_xfer_partial. 3698 3699 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 3700 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 3701 3702 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 3703 offset &= ((ULONGEST) 1 << addr_bit) - 1; 3704 3705 /* If /proc/pid/mem is writable, don't fallback to ptrace. If 3706 the write via /proc/pid/mem fails because the inferior execed 3707 (and we haven't seen the exec event yet), a subsequent ptrace 3708 poke would incorrectly write memory to the post-exec address 3709 space, while the core was trying to write to the pre-exec 3710 address space. */ 3711 if (proc_mem_file_is_writable ()) 3712 return linux_proc_xfer_memory_partial (inferior_ptid.pid (), readbuf, 3713 writebuf, offset, len, 3714 xfered_len); 3715 } 3716 3717 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf, 3718 offset, len, xfered_len); 3719 } 3720 3721 bool 3722 linux_nat_target::thread_alive (ptid_t ptid) 3723 { 3724 /* As long as a PTID is in lwp list, consider it alive. */ 3725 return find_lwp_pid (ptid) != NULL; 3726 } 3727 3728 /* Implement the to_update_thread_list target method for this 3729 target. */ 3730 3731 void 3732 linux_nat_target::update_thread_list () 3733 { 3734 /* We add/delete threads from the list as clone/exit events are 3735 processed, so just try deleting exited threads still in the 3736 thread list. */ 3737 delete_exited_threads (); 3738 3739 /* Update the processor core that each lwp/thread was last seen 3740 running on. */ 3741 for (lwp_info *lwp : all_lwps ()) 3742 { 3743 /* Avoid accessing /proc if the thread hasn't run since we last 3744 time we fetched the thread's core. Accessing /proc becomes 3745 noticeably expensive when we have thousands of LWPs. */ 3746 if (lwp->core == -1) 3747 lwp->core = linux_common_core_of_thread (lwp->ptid); 3748 } 3749 } 3750 3751 std::string 3752 linux_nat_target::pid_to_str (ptid_t ptid) 3753 { 3754 if (ptid.lwp_p () 3755 && (ptid.pid () != ptid.lwp () 3756 || num_lwps (ptid.pid ()) > 1)) 3757 return string_printf ("LWP %ld", ptid.lwp ()); 3758 3759 return normal_pid_to_str (ptid); 3760 } 3761 3762 const char * 3763 linux_nat_target::thread_name (struct thread_info *thr) 3764 { 3765 return linux_proc_tid_get_name (thr->ptid); 3766 } 3767 3768 /* Accepts an integer PID; Returns a string representing a file that 3769 can be opened to get the symbols for the child process. */ 3770 3771 const char * 3772 linux_nat_target::pid_to_exec_file (int pid) 3773 { 3774 return linux_proc_pid_to_exec_file (pid); 3775 } 3776 3777 /* Object representing an /proc/PID/mem open file. We keep one such 3778 file open per inferior. 3779 3780 It might be tempting to think about only ever opening one file at 3781 most for all inferiors, closing/reopening the file as we access 3782 memory of different inferiors, to minimize number of file 3783 descriptors open, which can otherwise run into resource limits. 3784 However, that does not work correctly -- if the inferior execs and 3785 we haven't processed the exec event yet, and, we opened a 3786 /proc/PID/mem file, we will get a mem file accessing the post-exec 3787 address space, thinking we're opening it for the pre-exec address 3788 space. That is dangerous as we can poke memory (e.g. clearing 3789 breakpoints) in the post-exec memory by mistake, corrupting the 3790 inferior. For that reason, we open the mem file as early as 3791 possible, right after spawning, forking or attaching to the 3792 inferior, when the inferior is stopped and thus before it has a 3793 chance of execing. 3794 3795 Note that after opening the file, even if the thread we opened it 3796 for subsequently exits, the open file is still usable for accessing 3797 memory. It's only when the whole process exits or execs that the 3798 file becomes invalid, at which point reads/writes return EOF. */ 3799 3800 class proc_mem_file 3801 { 3802 public: 3803 proc_mem_file (ptid_t ptid, int fd) 3804 : m_ptid (ptid), m_fd (fd) 3805 { 3806 gdb_assert (m_fd != -1); 3807 } 3808 3809 ~proc_mem_file () 3810 { 3811 linux_nat_debug_printf ("closing fd %d for /proc/%d/task/%ld/mem", 3812 m_fd, m_ptid.pid (), m_ptid.lwp ()); 3813 close (m_fd); 3814 } 3815 3816 DISABLE_COPY_AND_ASSIGN (proc_mem_file); 3817 3818 int fd () 3819 { 3820 return m_fd; 3821 } 3822 3823 private: 3824 /* The LWP this file was opened for. Just for debugging 3825 purposes. */ 3826 ptid_t m_ptid; 3827 3828 /* The file descriptor. */ 3829 int m_fd = -1; 3830 }; 3831 3832 /* The map between an inferior process id, and the open /proc/PID/mem 3833 file. This is stored in a map instead of in a per-inferior 3834 structure because we need to be able to access memory of processes 3835 which don't have a corresponding struct inferior object. E.g., 3836 with "detach-on-fork on" (the default), and "follow-fork parent" 3837 (also default), we don't create an inferior for the fork child, but 3838 we still need to remove breakpoints from the fork child's 3839 memory. */ 3840 static std::unordered_map<int, proc_mem_file> proc_mem_file_map; 3841 3842 /* Close the /proc/PID/mem file for PID. */ 3843 3844 static void 3845 close_proc_mem_file (pid_t pid) 3846 { 3847 proc_mem_file_map.erase (pid); 3848 } 3849 3850 /* Open the /proc/PID/mem file for the process (thread group) of PTID. 3851 We actually open /proc/PID/task/LWP/mem, as that's the LWP we know 3852 exists and is stopped right now. We prefer the 3853 /proc/PID/task/LWP/mem form over /proc/LWP/mem to avoid tid-reuse 3854 races, just in case this is ever called on an already-waited 3855 LWP. */ 3856 3857 static void 3858 open_proc_mem_file (ptid_t ptid) 3859 { 3860 auto iter = proc_mem_file_map.find (ptid.pid ()); 3861 gdb_assert (iter == proc_mem_file_map.end ()); 3862 3863 char filename[64]; 3864 xsnprintf (filename, sizeof filename, 3865 "/proc/%d/task/%ld/mem", ptid.pid (), ptid.lwp ()); 3866 3867 int fd = gdb_open_cloexec (filename, O_RDWR | O_LARGEFILE, 0).release (); 3868 3869 if (fd == -1) 3870 { 3871 warning (_("opening /proc/PID/mem file for lwp %d.%ld failed: %s (%d)"), 3872 ptid.pid (), ptid.lwp (), 3873 safe_strerror (errno), errno); 3874 return; 3875 } 3876 3877 proc_mem_file_map.emplace (std::piecewise_construct, 3878 std::forward_as_tuple (ptid.pid ()), 3879 std::forward_as_tuple (ptid, fd)); 3880 3881 linux_nat_debug_printf ("opened fd %d for lwp %d.%ld", 3882 fd, ptid.pid (), ptid.lwp ()); 3883 } 3884 3885 /* Helper for linux_proc_xfer_memory_partial and 3886 proc_mem_file_is_writable. FD is the already opened /proc/pid/mem 3887 file, and PID is the pid of the corresponding process. The rest of 3888 the arguments are like linux_proc_xfer_memory_partial's. */ 3889 3890 static enum target_xfer_status 3891 linux_proc_xfer_memory_partial_fd (int fd, int pid, 3892 gdb_byte *readbuf, const gdb_byte *writebuf, 3893 ULONGEST offset, LONGEST len, 3894 ULONGEST *xfered_len) 3895 { 3896 ssize_t ret; 3897 3898 gdb_assert (fd != -1); 3899 3900 /* Use pread64/pwrite64 if available, since they save a syscall and can 3901 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC 3902 debugging a SPARC64 application). */ 3903 #ifdef HAVE_PREAD64 3904 ret = (readbuf ? pread64 (fd, readbuf, len, offset) 3905 : pwrite64 (fd, writebuf, len, offset)); 3906 #else 3907 ret = lseek (fd, offset, SEEK_SET); 3908 if (ret != -1) 3909 ret = (readbuf ? read (fd, readbuf, len) 3910 : write (fd, writebuf, len)); 3911 #endif 3912 3913 if (ret == -1) 3914 { 3915 linux_nat_debug_printf ("accessing fd %d for pid %d failed: %s (%d)", 3916 fd, pid, safe_strerror (errno), errno); 3917 return TARGET_XFER_E_IO; 3918 } 3919 else if (ret == 0) 3920 { 3921 /* EOF means the address space is gone, the whole process exited 3922 or execed. */ 3923 linux_nat_debug_printf ("accessing fd %d for pid %d got EOF", 3924 fd, pid); 3925 return TARGET_XFER_EOF; 3926 } 3927 else 3928 { 3929 *xfered_len = ret; 3930 return TARGET_XFER_OK; 3931 } 3932 } 3933 3934 /* Implement the to_xfer_partial target method using /proc/PID/mem. 3935 Because we can use a single read/write call, this can be much more 3936 efficient than banging away at PTRACE_PEEKTEXT. Also, unlike 3937 PTRACE_PEEKTEXT/PTRACE_POKETEXT, this works with running 3938 threads. */ 3939 3940 static enum target_xfer_status 3941 linux_proc_xfer_memory_partial (int pid, gdb_byte *readbuf, 3942 const gdb_byte *writebuf, ULONGEST offset, 3943 LONGEST len, ULONGEST *xfered_len) 3944 { 3945 auto iter = proc_mem_file_map.find (pid); 3946 if (iter == proc_mem_file_map.end ()) 3947 return TARGET_XFER_EOF; 3948 3949 int fd = iter->second.fd (); 3950 3951 return linux_proc_xfer_memory_partial_fd (fd, pid, readbuf, writebuf, offset, 3952 len, xfered_len); 3953 } 3954 3955 /* Check whether /proc/pid/mem is writable in the current kernel, and 3956 return true if so. It wasn't writable before Linux 2.6.39, but 3957 there's no way to know whether the feature was backported to older 3958 kernels. So we check to see if it works. The result is cached, 3959 and this is garanteed to be called once early during inferior 3960 startup, so that any warning is printed out consistently between 3961 GDB invocations. Note we don't call it during GDB startup instead 3962 though, because then we might warn with e.g. just "gdb --version" 3963 on sandboxed systems. See PR gdb/29907. */ 3964 3965 static bool 3966 proc_mem_file_is_writable () 3967 { 3968 static gdb::optional<bool> writable; 3969 3970 if (writable.has_value ()) 3971 return *writable; 3972 3973 writable.emplace (false); 3974 3975 /* We check whether /proc/pid/mem is writable by trying to write to 3976 one of our variables via /proc/self/mem. */ 3977 3978 int fd = gdb_open_cloexec ("/proc/self/mem", O_RDWR | O_LARGEFILE, 0).release (); 3979 3980 if (fd == -1) 3981 { 3982 warning (_("opening /proc/self/mem file failed: %s (%d)"), 3983 safe_strerror (errno), errno); 3984 return *writable; 3985 } 3986 3987 SCOPE_EXIT { close (fd); }; 3988 3989 /* This is the variable we try to write to. Note OFFSET below. */ 3990 volatile gdb_byte test_var = 0; 3991 3992 gdb_byte writebuf[] = {0x55}; 3993 ULONGEST offset = (uintptr_t) &test_var; 3994 ULONGEST xfered_len; 3995 3996 enum target_xfer_status res 3997 = linux_proc_xfer_memory_partial_fd (fd, getpid (), nullptr, writebuf, 3998 offset, 1, &xfered_len); 3999 4000 if (res == TARGET_XFER_OK) 4001 { 4002 gdb_assert (xfered_len == 1); 4003 gdb_assert (test_var == 0x55); 4004 /* Success. */ 4005 *writable = true; 4006 } 4007 4008 return *writable; 4009 } 4010 4011 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4012 4013 static void 4014 add_line_to_sigset (const char *line, sigset_t *sigs) 4015 { 4016 int len = strlen (line) - 1; 4017 const char *p; 4018 int signum; 4019 4020 if (line[len] != '\n') 4021 error (_("Could not parse signal set: %s"), line); 4022 4023 p = line; 4024 signum = len * 4; 4025 while (len-- > 0) 4026 { 4027 int digit; 4028 4029 if (*p >= '0' && *p <= '9') 4030 digit = *p - '0'; 4031 else if (*p >= 'a' && *p <= 'f') 4032 digit = *p - 'a' + 10; 4033 else 4034 error (_("Could not parse signal set: %s"), line); 4035 4036 signum -= 4; 4037 4038 if (digit & 1) 4039 sigaddset (sigs, signum + 1); 4040 if (digit & 2) 4041 sigaddset (sigs, signum + 2); 4042 if (digit & 4) 4043 sigaddset (sigs, signum + 3); 4044 if (digit & 8) 4045 sigaddset (sigs, signum + 4); 4046 4047 p++; 4048 } 4049 } 4050 4051 /* Find process PID's pending signals from /proc/pid/status and set 4052 SIGS to match. */ 4053 4054 void 4055 linux_proc_pending_signals (int pid, sigset_t *pending, 4056 sigset_t *blocked, sigset_t *ignored) 4057 { 4058 char buffer[PATH_MAX], fname[PATH_MAX]; 4059 4060 sigemptyset (pending); 4061 sigemptyset (blocked); 4062 sigemptyset (ignored); 4063 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4064 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r"); 4065 if (procfile == NULL) 4066 error (_("Could not open %s"), fname); 4067 4068 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL) 4069 { 4070 /* Normal queued signals are on the SigPnd line in the status 4071 file. However, 2.6 kernels also have a "shared" pending 4072 queue for delivering signals to a thread group, so check for 4073 a ShdPnd line also. 4074 4075 Unfortunately some Red Hat kernels include the shared pending 4076 queue but not the ShdPnd status field. */ 4077 4078 if (startswith (buffer, "SigPnd:\t")) 4079 add_line_to_sigset (buffer + 8, pending); 4080 else if (startswith (buffer, "ShdPnd:\t")) 4081 add_line_to_sigset (buffer + 8, pending); 4082 else if (startswith (buffer, "SigBlk:\t")) 4083 add_line_to_sigset (buffer + 8, blocked); 4084 else if (startswith (buffer, "SigIgn:\t")) 4085 add_line_to_sigset (buffer + 8, ignored); 4086 } 4087 } 4088 4089 static enum target_xfer_status 4090 linux_nat_xfer_osdata (enum target_object object, 4091 const char *annex, gdb_byte *readbuf, 4092 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4093 ULONGEST *xfered_len) 4094 { 4095 gdb_assert (object == TARGET_OBJECT_OSDATA); 4096 4097 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 4098 if (*xfered_len == 0) 4099 return TARGET_XFER_EOF; 4100 else 4101 return TARGET_XFER_OK; 4102 } 4103 4104 std::vector<static_tracepoint_marker> 4105 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid) 4106 { 4107 char s[IPA_CMD_BUF_SIZE]; 4108 int pid = inferior_ptid.pid (); 4109 std::vector<static_tracepoint_marker> markers; 4110 const char *p = s; 4111 ptid_t ptid = ptid_t (pid, 0); 4112 static_tracepoint_marker marker; 4113 4114 /* Pause all */ 4115 target_stop (ptid); 4116 4117 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4118 s[sizeof ("qTfSTM")] = 0; 4119 4120 agent_run_command (pid, s, strlen (s) + 1); 4121 4122 /* Unpause all. */ 4123 SCOPE_EXIT { target_continue_no_signal (ptid); }; 4124 4125 while (*p++ == 'm') 4126 { 4127 do 4128 { 4129 parse_static_tracepoint_marker_definition (p, &p, &marker); 4130 4131 if (strid == NULL || marker.str_id == strid) 4132 markers.push_back (std::move (marker)); 4133 } 4134 while (*p++ == ','); /* comma-separated list */ 4135 4136 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4137 s[sizeof ("qTsSTM")] = 0; 4138 agent_run_command (pid, s, strlen (s) + 1); 4139 p = s; 4140 } 4141 4142 return markers; 4143 } 4144 4145 /* target_can_async_p implementation. */ 4146 4147 bool 4148 linux_nat_target::can_async_p () 4149 { 4150 /* This flag should be checked in the common target.c code. */ 4151 gdb_assert (target_async_permitted); 4152 4153 /* Otherwise, this targets is always able to support async mode. */ 4154 return true; 4155 } 4156 4157 bool 4158 linux_nat_target::supports_non_stop () 4159 { 4160 return true; 4161 } 4162 4163 /* to_always_non_stop_p implementation. */ 4164 4165 bool 4166 linux_nat_target::always_non_stop_p () 4167 { 4168 return true; 4169 } 4170 4171 bool 4172 linux_nat_target::supports_multi_process () 4173 { 4174 return true; 4175 } 4176 4177 bool 4178 linux_nat_target::supports_disable_randomization () 4179 { 4180 return true; 4181 } 4182 4183 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4184 so we notice when any child changes state, and notify the 4185 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4186 above to wait for the arrival of a SIGCHLD. */ 4187 4188 static void 4189 sigchld_handler (int signo) 4190 { 4191 int old_errno = errno; 4192 4193 if (debug_linux_nat) 4194 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1); 4195 4196 if (signo == SIGCHLD) 4197 { 4198 /* Let the event loop know that there are events to handle. */ 4199 linux_nat_target::async_file_mark_if_open (); 4200 } 4201 4202 errno = old_errno; 4203 } 4204 4205 /* Callback registered with the target events file descriptor. */ 4206 4207 static void 4208 handle_target_event (int error, gdb_client_data client_data) 4209 { 4210 inferior_event_handler (INF_REG_EVENT); 4211 } 4212 4213 /* target_async implementation. */ 4214 4215 void 4216 linux_nat_target::async (bool enable) 4217 { 4218 if (enable == is_async_p ()) 4219 return; 4220 4221 /* Block child signals while we create/destroy the pipe, as their 4222 handler writes to it. */ 4223 gdb::block_signals blocker; 4224 4225 if (enable) 4226 { 4227 if (!async_file_open ()) 4228 internal_error ("creating event pipe failed."); 4229 4230 add_file_handler (async_wait_fd (), handle_target_event, NULL, 4231 "linux-nat"); 4232 4233 /* There may be pending events to handle. Tell the event loop 4234 to poll them. */ 4235 async_file_mark (); 4236 } 4237 else 4238 { 4239 delete_file_handler (async_wait_fd ()); 4240 async_file_close (); 4241 } 4242 } 4243 4244 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4245 event came out. */ 4246 4247 static int 4248 linux_nat_stop_lwp (struct lwp_info *lwp) 4249 { 4250 if (!lwp->stopped) 4251 { 4252 linux_nat_debug_printf ("running -> suspending %s", 4253 lwp->ptid.to_string ().c_str ()); 4254 4255 4256 if (lwp->last_resume_kind == resume_stop) 4257 { 4258 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request", 4259 lwp->ptid.lwp ()); 4260 return 0; 4261 } 4262 4263 stop_callback (lwp); 4264 lwp->last_resume_kind = resume_stop; 4265 } 4266 else 4267 { 4268 /* Already known to be stopped; do nothing. */ 4269 4270 if (debug_linux_nat) 4271 { 4272 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested) 4273 linux_nat_debug_printf ("already stopped/stop_requested %s", 4274 lwp->ptid.to_string ().c_str ()); 4275 else 4276 linux_nat_debug_printf ("already stopped/no stop_requested yet %s", 4277 lwp->ptid.to_string ().c_str ()); 4278 } 4279 } 4280 return 0; 4281 } 4282 4283 void 4284 linux_nat_target::stop (ptid_t ptid) 4285 { 4286 LINUX_NAT_SCOPED_DEBUG_ENTER_EXIT; 4287 iterate_over_lwps (ptid, linux_nat_stop_lwp); 4288 } 4289 4290 /* When requests are passed down from the linux-nat layer to the 4291 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4292 used. The address space pointer is stored in the inferior object, 4293 but the common code that is passed such ptid can't tell whether 4294 lwpid is a "main" process id or not (it assumes so). We reverse 4295 look up the "main" process id from the lwp here. */ 4296 4297 struct address_space * 4298 linux_nat_target::thread_address_space (ptid_t ptid) 4299 { 4300 struct lwp_info *lwp; 4301 struct inferior *inf; 4302 int pid; 4303 4304 if (ptid.lwp () == 0) 4305 { 4306 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4307 tgid. */ 4308 lwp = find_lwp_pid (ptid); 4309 pid = lwp->ptid.pid (); 4310 } 4311 else 4312 { 4313 /* A (pid,lwpid,0) ptid. */ 4314 pid = ptid.pid (); 4315 } 4316 4317 inf = find_inferior_pid (this, pid); 4318 gdb_assert (inf != NULL); 4319 return inf->aspace; 4320 } 4321 4322 /* Return the cached value of the processor core for thread PTID. */ 4323 4324 int 4325 linux_nat_target::core_of_thread (ptid_t ptid) 4326 { 4327 struct lwp_info *info = find_lwp_pid (ptid); 4328 4329 if (info) 4330 return info->core; 4331 return -1; 4332 } 4333 4334 /* Implementation of to_filesystem_is_local. */ 4335 4336 bool 4337 linux_nat_target::filesystem_is_local () 4338 { 4339 struct inferior *inf = current_inferior (); 4340 4341 if (inf->fake_pid_p || inf->pid == 0) 4342 return true; 4343 4344 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4345 } 4346 4347 /* Convert the INF argument passed to a to_fileio_* method 4348 to a process ID suitable for passing to its corresponding 4349 linux_mntns_* function. If INF is non-NULL then the 4350 caller is requesting the filesystem seen by INF. If INF 4351 is NULL then the caller is requesting the filesystem seen 4352 by the GDB. We fall back to GDB's filesystem in the case 4353 that INF is non-NULL but its PID is unknown. */ 4354 4355 static pid_t 4356 linux_nat_fileio_pid_of (struct inferior *inf) 4357 { 4358 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4359 return getpid (); 4360 else 4361 return inf->pid; 4362 } 4363 4364 /* Implementation of to_fileio_open. */ 4365 4366 int 4367 linux_nat_target::fileio_open (struct inferior *inf, const char *filename, 4368 int flags, int mode, int warn_if_slow, 4369 fileio_error *target_errno) 4370 { 4371 int nat_flags; 4372 mode_t nat_mode; 4373 int fd; 4374 4375 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4376 || fileio_to_host_mode (mode, &nat_mode) == -1) 4377 { 4378 *target_errno = FILEIO_EINVAL; 4379 return -1; 4380 } 4381 4382 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4383 filename, nat_flags, nat_mode); 4384 if (fd == -1) 4385 *target_errno = host_to_fileio_error (errno); 4386 4387 return fd; 4388 } 4389 4390 /* Implementation of to_fileio_readlink. */ 4391 4392 gdb::optional<std::string> 4393 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename, 4394 fileio_error *target_errno) 4395 { 4396 char buf[PATH_MAX]; 4397 int len; 4398 4399 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4400 filename, buf, sizeof (buf)); 4401 if (len < 0) 4402 { 4403 *target_errno = host_to_fileio_error (errno); 4404 return {}; 4405 } 4406 4407 return std::string (buf, len); 4408 } 4409 4410 /* Implementation of to_fileio_unlink. */ 4411 4412 int 4413 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename, 4414 fileio_error *target_errno) 4415 { 4416 int ret; 4417 4418 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4419 filename); 4420 if (ret == -1) 4421 *target_errno = host_to_fileio_error (errno); 4422 4423 return ret; 4424 } 4425 4426 /* Implementation of the to_thread_events method. */ 4427 4428 void 4429 linux_nat_target::thread_events (int enable) 4430 { 4431 report_thread_events = enable; 4432 } 4433 4434 linux_nat_target::linux_nat_target () 4435 { 4436 /* We don't change the stratum; this target will sit at 4437 process_stratum and thread_db will set at thread_stratum. This 4438 is a little strange, since this is a multi-threaded-capable 4439 target, but we want to be on the stack below thread_db, and we 4440 also want to be used for single-threaded processes. */ 4441 } 4442 4443 /* See linux-nat.h. */ 4444 4445 bool 4446 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4447 { 4448 int pid = get_ptrace_pid (ptid); 4449 return ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo) == 0; 4450 } 4451 4452 /* See nat/linux-nat.h. */ 4453 4454 ptid_t 4455 current_lwp_ptid (void) 4456 { 4457 gdb_assert (inferior_ptid.lwp_p ()); 4458 return inferior_ptid; 4459 } 4460 4461 void _initialize_linux_nat (); 4462 void 4463 _initialize_linux_nat () 4464 { 4465 add_setshow_boolean_cmd ("linux-nat", class_maintenance, 4466 &debug_linux_nat, _("\ 4467 Set debugging of GNU/Linux native target."), _(" \ 4468 Show debugging of GNU/Linux native target."), _(" \ 4469 When on, print debug messages relating to the GNU/Linux native target."), 4470 nullptr, 4471 show_debug_linux_nat, 4472 &setdebuglist, &showdebuglist); 4473 4474 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 4475 &debug_linux_namespaces, _("\ 4476 Set debugging of GNU/Linux namespaces module."), _("\ 4477 Show debugging of GNU/Linux namespaces module."), _("\ 4478 Enables printf debugging output."), 4479 NULL, 4480 NULL, 4481 &setdebuglist, &showdebuglist); 4482 4483 /* Install a SIGCHLD handler. */ 4484 sigchld_action.sa_handler = sigchld_handler; 4485 sigemptyset (&sigchld_action.sa_mask); 4486 sigchld_action.sa_flags = SA_RESTART; 4487 4488 /* Make it the default. */ 4489 sigaction (SIGCHLD, &sigchld_action, NULL); 4490 4491 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 4492 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask); 4493 sigdelset (&suspend_mask, SIGCHLD); 4494 4495 sigemptyset (&blocked_mask); 4496 4497 lwp_lwpid_htab_create (); 4498 } 4499 4500 4501 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 4502 the GNU/Linux Threads library and therefore doesn't really belong 4503 here. */ 4504 4505 /* NPTL reserves the first two RT signals, but does not provide any 4506 way for the debugger to query the signal numbers - fortunately 4507 they don't change. */ 4508 static int lin_thread_signals[] = { __SIGRTMIN, __SIGRTMIN + 1 }; 4509 4510 /* See linux-nat.h. */ 4511 4512 unsigned int 4513 lin_thread_get_thread_signal_num (void) 4514 { 4515 return sizeof (lin_thread_signals) / sizeof (lin_thread_signals[0]); 4516 } 4517 4518 /* See linux-nat.h. */ 4519 4520 int 4521 lin_thread_get_thread_signal (unsigned int i) 4522 { 4523 gdb_assert (i < lin_thread_get_thread_signal_num ()); 4524 return lin_thread_signals[i]; 4525 } 4526