xref: /netbsd-src/external/gpl3/gdb/dist/gdb/linux-nat.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* GNU/Linux native-dependent code common to multiple platforms.
2 
3    Copyright (C) 2001-2017 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h>		/* for elf_gregset etc.  */
43 #include "elf-bfd.h"		/* for elfcore_write_* */
44 #include "gregset.h"		/* for gregset */
45 #include "gdbcore.h"		/* for get_exec_file */
46 #include <ctype.h>		/* for isdigit */
47 #include <sys/stat.h>		/* for struct stat */
48 #include <fcntl.h>		/* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "agent.h"
62 #include "tracepoint.h"
63 #include "buffer.h"
64 #include "target-descriptions.h"
65 #include "filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "fileio.h"
69 
70 #ifndef SPUFS_MAGIC
71 #define SPUFS_MAGIC 0x23c9b64e
72 #endif
73 
74 /* This comment documents high-level logic of this file.
75 
76 Waiting for events in sync mode
77 ===============================
78 
79 When waiting for an event in a specific thread, we just use waitpid,
80 passing the specific pid, and not passing WNOHANG.
81 
82 When waiting for an event in all threads, waitpid is not quite good:
83 
84 - If the thread group leader exits while other threads in the thread
85   group still exist, waitpid(TGID, ...) hangs.  That waitpid won't
86   return an exit status until the other threads in the group are
87   reaped.
88 
89 - When a non-leader thread execs, that thread just vanishes without
90   reporting an exit (so we'd hang if we waited for it explicitly in
91   that case).  The exec event is instead reported to the TGID pid.
92 
93 The solution is to always use -1 and WNOHANG, together with
94 sigsuspend.
95 
96 First, we use non-blocking waitpid to check for events.  If nothing is
97 found, we use sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives,
98 it means something happened to a child process.  As soon as we know
99 there's an event, we get back to calling nonblocking waitpid.
100 
101 Note that SIGCHLD should be blocked between waitpid and sigsuspend
102 calls, so that we don't miss a signal.  If SIGCHLD arrives in between,
103 when it's blocked, the signal becomes pending and sigsuspend
104 immediately notices it and returns.
105 
106 Waiting for events in async mode (TARGET_WNOHANG)
107 =================================================
108 
109 In async mode, GDB should always be ready to handle both user input
110 and target events, so neither blocking waitpid nor sigsuspend are
111 viable options.  Instead, we should asynchronously notify the GDB main
112 event loop whenever there's an unprocessed event from the target.  We
113 detect asynchronous target events by handling SIGCHLD signals.  To
114 notify the event loop about target events, the self-pipe trick is used
115 --- a pipe is registered as waitable event source in the event loop,
116 the event loop select/poll's on the read end of this pipe (as well on
117 other event sources, e.g., stdin), and the SIGCHLD handler writes a
118 byte to this pipe.  This is more portable than relying on
119 pselect/ppoll, since on kernels that lack those syscalls, libc
120 emulates them with select/poll+sigprocmask, and that is racy
121 (a.k.a. plain broken).
122 
123 Obviously, if we fail to notify the event loop if there's a target
124 event, it's bad.  OTOH, if we notify the event loop when there's no
125 event from the target, linux_nat_wait will detect that there's no real
126 event to report, and return event of type TARGET_WAITKIND_IGNORE.
127 This is mostly harmless, but it will waste time and is better avoided.
128 
129 The main design point is that every time GDB is outside linux-nat.c,
130 we have a SIGCHLD handler installed that is called when something
131 happens to the target and notifies the GDB event loop.  Whenever GDB
132 core decides to handle the event, and calls into linux-nat.c, we
133 process things as in sync mode, except that the we never block in
134 sigsuspend.
135 
136 While processing an event, we may end up momentarily blocked in
137 waitpid calls.  Those waitpid calls, while blocking, are guarantied to
138 return quickly.  E.g., in all-stop mode, before reporting to the core
139 that an LWP hit a breakpoint, all LWPs are stopped by sending them
140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
141 Note that this is different from blocking indefinitely waiting for the
142 next event --- here, we're already handling an event.
143 
144 Use of signals
145 ==============
146 
147 We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
148 signal is not entirely significant; we just need for a signal to be delivered,
149 so that we can intercept it.  SIGSTOP's advantage is that it can not be
150 blocked.  A disadvantage is that it is not a real-time signal, so it can only
151 be queued once; we do not keep track of other sources of SIGSTOP.
152 
153 Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
154 use them, because they have special behavior when the signal is generated -
155 not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
156 kills the entire thread group.
157 
158 A delivered SIGSTOP would stop the entire thread group, not just the thread we
159 tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
160 cancel it (by PTRACE_CONT without passing SIGSTOP).
161 
162 We could use a real-time signal instead.  This would solve those problems; we
163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
165 generates it, and there are races with trying to find a signal that is not
166 blocked.
167 
168 Exec events
169 ===========
170 
171 The case of a thread group (process) with 3 or more threads, and a
172 thread other than the leader execs is worth detailing:
173 
174 On an exec, the Linux kernel destroys all threads except the execing
175 one in the thread group, and resets the execing thread's tid to the
176 tgid.  No exit notification is sent for the execing thread -- from the
177 ptracer's perspective, it appears as though the execing thread just
178 vanishes.  Until we reap all other threads except the leader and the
179 execing thread, the leader will be zombie, and the execing thread will
180 be in `D (disc sleep)' state.  As soon as all other threads are
181 reaped, the execing thread changes its tid to the tgid, and the
182 previous (zombie) leader vanishes, giving place to the "new"
183 leader.  */
184 
185 #ifndef O_LARGEFILE
186 #define O_LARGEFILE 0
187 #endif
188 
189 /* Does the current host support PTRACE_GETREGSET?  */
190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
191 
192 /* The single-threaded native GNU/Linux target_ops.  We save a pointer for
193    the use of the multi-threaded target.  */
194 static struct target_ops *linux_ops;
195 static struct target_ops linux_ops_saved;
196 
197 /* The method to call, if any, when a new thread is attached.  */
198 static void (*linux_nat_new_thread) (struct lwp_info *);
199 
200 /* The method to call, if any, when a new fork is attached.  */
201 static linux_nat_new_fork_ftype *linux_nat_new_fork;
202 
203 /* The method to call, if any, when a process is no longer
204    attached.  */
205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook;
206 
207 /* Hook to call prior to resuming a thread.  */
208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *);
209 
210 /* The method to call, if any, when the siginfo object needs to be
211    converted between the layout returned by ptrace, and the layout in
212    the architecture of the inferior.  */
213 static int (*linux_nat_siginfo_fixup) (siginfo_t *,
214 				       gdb_byte *,
215 				       int);
216 
217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c.
218    Called by our to_xfer_partial.  */
219 static target_xfer_partial_ftype *super_xfer_partial;
220 
221 /* The saved to_close method, inherited from inf-ptrace.c.
222    Called by our to_close.  */
223 static void (*super_close) (struct target_ops *);
224 
225 static unsigned int debug_linux_nat;
226 static void
227 show_debug_linux_nat (struct ui_file *file, int from_tty,
228 		      struct cmd_list_element *c, const char *value)
229 {
230   fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
231 		    value);
232 }
233 
234 struct simple_pid_list
235 {
236   int pid;
237   int status;
238   struct simple_pid_list *next;
239 };
240 struct simple_pid_list *stopped_pids;
241 
242 /* Whether target_thread_events is in effect.  */
243 static int report_thread_events;
244 
245 /* Async mode support.  */
246 
247 /* The read/write ends of the pipe registered as waitable file in the
248    event loop.  */
249 static int linux_nat_event_pipe[2] = { -1, -1 };
250 
251 /* True if we're currently in async mode.  */
252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
253 
254 /* Flush the event pipe.  */
255 
256 static void
257 async_file_flush (void)
258 {
259   int ret;
260   char buf;
261 
262   do
263     {
264       ret = read (linux_nat_event_pipe[0], &buf, 1);
265     }
266   while (ret >= 0 || (ret == -1 && errno == EINTR));
267 }
268 
269 /* Put something (anything, doesn't matter what, or how much) in event
270    pipe, so that the select/poll in the event-loop realizes we have
271    something to process.  */
272 
273 static void
274 async_file_mark (void)
275 {
276   int ret;
277 
278   /* It doesn't really matter what the pipe contains, as long we end
279      up with something in it.  Might as well flush the previous
280      left-overs.  */
281   async_file_flush ();
282 
283   do
284     {
285       ret = write (linux_nat_event_pipe[1], "+", 1);
286     }
287   while (ret == -1 && errno == EINTR);
288 
289   /* Ignore EAGAIN.  If the pipe is full, the event loop will already
290      be awakened anyway.  */
291 }
292 
293 static int kill_lwp (int lwpid, int signo);
294 
295 static int stop_callback (struct lwp_info *lp, void *data);
296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
297 
298 static void block_child_signals (sigset_t *prev_mask);
299 static void restore_child_signals_mask (sigset_t *prev_mask);
300 
301 struct lwp_info;
302 static struct lwp_info *add_lwp (ptid_t ptid);
303 static void purge_lwp_list (int pid);
304 static void delete_lwp (ptid_t ptid);
305 static struct lwp_info *find_lwp_pid (ptid_t ptid);
306 
307 static int lwp_status_pending_p (struct lwp_info *lp);
308 
309 static int sigtrap_is_event (int status);
310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event;
311 
312 static void save_stop_reason (struct lwp_info *lp);
313 
314 
315 /* LWP accessors.  */
316 
317 /* See nat/linux-nat.h.  */
318 
319 ptid_t
320 ptid_of_lwp (struct lwp_info *lwp)
321 {
322   return lwp->ptid;
323 }
324 
325 /* See nat/linux-nat.h.  */
326 
327 void
328 lwp_set_arch_private_info (struct lwp_info *lwp,
329 			   struct arch_lwp_info *info)
330 {
331   lwp->arch_private = info;
332 }
333 
334 /* See nat/linux-nat.h.  */
335 
336 struct arch_lwp_info *
337 lwp_arch_private_info (struct lwp_info *lwp)
338 {
339   return lwp->arch_private;
340 }
341 
342 /* See nat/linux-nat.h.  */
343 
344 int
345 lwp_is_stopped (struct lwp_info *lwp)
346 {
347   return lwp->stopped;
348 }
349 
350 /* See nat/linux-nat.h.  */
351 
352 enum target_stop_reason
353 lwp_stop_reason (struct lwp_info *lwp)
354 {
355   return lwp->stop_reason;
356 }
357 
358 /* See nat/linux-nat.h.  */
359 
360 int
361 lwp_is_stepping (struct lwp_info *lwp)
362 {
363   return lwp->step;
364 }
365 
366 
367 /* Trivial list manipulation functions to keep track of a list of
368    new stopped processes.  */
369 static void
370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
371 {
372   struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
373 
374   new_pid->pid = pid;
375   new_pid->status = status;
376   new_pid->next = *listp;
377   *listp = new_pid;
378 }
379 
380 static int
381 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
382 {
383   struct simple_pid_list **p;
384 
385   for (p = listp; *p != NULL; p = &(*p)->next)
386     if ((*p)->pid == pid)
387       {
388 	struct simple_pid_list *next = (*p)->next;
389 
390 	*statusp = (*p)->status;
391 	xfree (*p);
392 	*p = next;
393 	return 1;
394       }
395   return 0;
396 }
397 
398 /* Return the ptrace options that we want to try to enable.  */
399 
400 static int
401 linux_nat_ptrace_options (int attached)
402 {
403   int options = 0;
404 
405   if (!attached)
406     options |= PTRACE_O_EXITKILL;
407 
408   options |= (PTRACE_O_TRACESYSGOOD
409 	      | PTRACE_O_TRACEVFORKDONE
410 	      | PTRACE_O_TRACEVFORK
411 	      | PTRACE_O_TRACEFORK
412 	      | PTRACE_O_TRACEEXEC);
413 
414   return options;
415 }
416 
417 /* Initialize ptrace warnings and check for supported ptrace
418    features given PID.
419 
420    ATTACHED should be nonzero iff we attached to the inferior.  */
421 
422 static void
423 linux_init_ptrace (pid_t pid, int attached)
424 {
425   int options = linux_nat_ptrace_options (attached);
426 
427   linux_enable_event_reporting (pid, options);
428   linux_ptrace_init_warnings ();
429 }
430 
431 static void
432 linux_child_post_attach (struct target_ops *self, int pid)
433 {
434   linux_init_ptrace (pid, 1);
435 }
436 
437 static void
438 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid)
439 {
440   linux_init_ptrace (ptid_get_pid (ptid), 0);
441 }
442 
443 /* Return the number of known LWPs in the tgid given by PID.  */
444 
445 static int
446 num_lwps (int pid)
447 {
448   int count = 0;
449   struct lwp_info *lp;
450 
451   for (lp = lwp_list; lp; lp = lp->next)
452     if (ptid_get_pid (lp->ptid) == pid)
453       count++;
454 
455   return count;
456 }
457 
458 /* Call delete_lwp with prototype compatible for make_cleanup.  */
459 
460 static void
461 delete_lwp_cleanup (void *lp_voidp)
462 {
463   struct lwp_info *lp = (struct lwp_info *) lp_voidp;
464 
465   delete_lwp (lp->ptid);
466 }
467 
468 /* Target hook for follow_fork.  On entry inferior_ptid must be the
469    ptid of the followed inferior.  At return, inferior_ptid will be
470    unchanged.  */
471 
472 static int
473 linux_child_follow_fork (struct target_ops *ops, int follow_child,
474 			 int detach_fork)
475 {
476   if (!follow_child)
477     {
478       struct lwp_info *child_lp = NULL;
479       int status = W_STOPCODE (0);
480       struct cleanup *old_chain;
481       int has_vforked;
482       ptid_t parent_ptid, child_ptid;
483       int parent_pid, child_pid;
484 
485       has_vforked = (inferior_thread ()->pending_follow.kind
486 		     == TARGET_WAITKIND_VFORKED);
487       parent_ptid = inferior_ptid;
488       child_ptid = inferior_thread ()->pending_follow.value.related_pid;
489       parent_pid = ptid_get_lwp (parent_ptid);
490       child_pid = ptid_get_lwp (child_ptid);
491 
492       /* We're already attached to the parent, by default.  */
493       old_chain = save_inferior_ptid ();
494       inferior_ptid = child_ptid;
495       child_lp = add_lwp (inferior_ptid);
496       child_lp->stopped = 1;
497       child_lp->last_resume_kind = resume_stop;
498 
499       /* Detach new forked process?  */
500       if (detach_fork)
501 	{
502 	  make_cleanup (delete_lwp_cleanup, child_lp);
503 
504 	  if (linux_nat_prepare_to_resume != NULL)
505 	    linux_nat_prepare_to_resume (child_lp);
506 
507 	  /* When debugging an inferior in an architecture that supports
508 	     hardware single stepping on a kernel without commit
509 	     6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
510 	     process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
511 	     set if the parent process had them set.
512 	     To work around this, single step the child process
513 	     once before detaching to clear the flags.  */
514 
515 	  if (!gdbarch_software_single_step_p (target_thread_architecture
516 						   (child_lp->ptid)))
517 	    {
518 	      linux_disable_event_reporting (child_pid);
519 	      if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
520 		perror_with_name (_("Couldn't do single step"));
521 	      if (my_waitpid (child_pid, &status, 0) < 0)
522 		perror_with_name (_("Couldn't wait vfork process"));
523 	    }
524 
525 	  if (WIFSTOPPED (status))
526 	    {
527 	      int signo;
528 
529 	      signo = WSTOPSIG (status);
530 	      if (signo != 0
531 		  && !signal_pass_state (gdb_signal_from_host (signo)))
532 		signo = 0;
533 	      ptrace (PTRACE_DETACH, child_pid, 0, signo);
534 	    }
535 
536 	  /* Resets value of inferior_ptid to parent ptid.  */
537 	  do_cleanups (old_chain);
538 	}
539       else
540 	{
541 	  /* Let the thread_db layer learn about this new process.  */
542 	  check_for_thread_db ();
543 	}
544 
545       do_cleanups (old_chain);
546 
547       if (has_vforked)
548 	{
549 	  struct lwp_info *parent_lp;
550 
551 	  parent_lp = find_lwp_pid (parent_ptid);
552 	  gdb_assert (linux_supports_tracefork () >= 0);
553 
554 	  if (linux_supports_tracevforkdone ())
555 	    {
556   	      if (debug_linux_nat)
557   		fprintf_unfiltered (gdb_stdlog,
558   				    "LCFF: waiting for VFORK_DONE on %d\n",
559   				    parent_pid);
560 	      parent_lp->stopped = 1;
561 
562 	      /* We'll handle the VFORK_DONE event like any other
563 		 event, in target_wait.  */
564 	    }
565 	  else
566 	    {
567 	      /* We can't insert breakpoints until the child has
568 		 finished with the shared memory region.  We need to
569 		 wait until that happens.  Ideal would be to just
570 		 call:
571 		 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
572 		 - waitpid (parent_pid, &status, __WALL);
573 		 However, most architectures can't handle a syscall
574 		 being traced on the way out if it wasn't traced on
575 		 the way in.
576 
577 		 We might also think to loop, continuing the child
578 		 until it exits or gets a SIGTRAP.  One problem is
579 		 that the child might call ptrace with PTRACE_TRACEME.
580 
581 		 There's no simple and reliable way to figure out when
582 		 the vforked child will be done with its copy of the
583 		 shared memory.  We could step it out of the syscall,
584 		 two instructions, let it go, and then single-step the
585 		 parent once.  When we have hardware single-step, this
586 		 would work; with software single-step it could still
587 		 be made to work but we'd have to be able to insert
588 		 single-step breakpoints in the child, and we'd have
589 		 to insert -just- the single-step breakpoint in the
590 		 parent.  Very awkward.
591 
592 		 In the end, the best we can do is to make sure it
593 		 runs for a little while.  Hopefully it will be out of
594 		 range of any breakpoints we reinsert.  Usually this
595 		 is only the single-step breakpoint at vfork's return
596 		 point.  */
597 
598   	      if (debug_linux_nat)
599   		fprintf_unfiltered (gdb_stdlog,
600 				    "LCFF: no VFORK_DONE "
601 				    "support, sleeping a bit\n");
602 
603 	      usleep (10000);
604 
605 	      /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
606 		 and leave it pending.  The next linux_nat_resume call
607 		 will notice a pending event, and bypasses actually
608 		 resuming the inferior.  */
609 	      parent_lp->status = 0;
610 	      parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
611 	      parent_lp->stopped = 1;
612 
613 	      /* If we're in async mode, need to tell the event loop
614 		 there's something here to process.  */
615 	      if (target_is_async_p ())
616 		async_file_mark ();
617 	    }
618 	}
619     }
620   else
621     {
622       struct lwp_info *child_lp;
623 
624       child_lp = add_lwp (inferior_ptid);
625       child_lp->stopped = 1;
626       child_lp->last_resume_kind = resume_stop;
627 
628       /* Let the thread_db layer learn about this new process.  */
629       check_for_thread_db ();
630     }
631 
632   return 0;
633 }
634 
635 
636 static int
637 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid)
638 {
639   return !linux_supports_tracefork ();
640 }
641 
642 static int
643 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid)
644 {
645   return 0;
646 }
647 
648 static int
649 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid)
650 {
651   return !linux_supports_tracefork ();
652 }
653 
654 static int
655 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid)
656 {
657   return 0;
658 }
659 
660 static int
661 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid)
662 {
663   return !linux_supports_tracefork ();
664 }
665 
666 static int
667 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid)
668 {
669   return 0;
670 }
671 
672 static int
673 linux_child_set_syscall_catchpoint (struct target_ops *self,
674 				    int pid, int needed, int any_count,
675 				    int table_size, int *table)
676 {
677   if (!linux_supports_tracesysgood ())
678     return 1;
679 
680   /* On GNU/Linux, we ignore the arguments.  It means that we only
681      enable the syscall catchpoints, but do not disable them.
682 
683      Also, we do not use the `table' information because we do not
684      filter system calls here.  We let GDB do the logic for us.  */
685   return 0;
686 }
687 
688 /* List of known LWPs, keyed by LWP PID.  This speeds up the common
689    case of mapping a PID returned from the kernel to our corresponding
690    lwp_info data structure.  */
691 static htab_t lwp_lwpid_htab;
692 
693 /* Calculate a hash from a lwp_info's LWP PID.  */
694 
695 static hashval_t
696 lwp_info_hash (const void *ap)
697 {
698   const struct lwp_info *lp = (struct lwp_info *) ap;
699   pid_t pid = ptid_get_lwp (lp->ptid);
700 
701   return iterative_hash_object (pid, 0);
702 }
703 
704 /* Equality function for the lwp_info hash table.  Compares the LWP's
705    PID.  */
706 
707 static int
708 lwp_lwpid_htab_eq (const void *a, const void *b)
709 {
710   const struct lwp_info *entry = (const struct lwp_info *) a;
711   const struct lwp_info *element = (const struct lwp_info *) b;
712 
713   return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid);
714 }
715 
716 /* Create the lwp_lwpid_htab hash table.  */
717 
718 static void
719 lwp_lwpid_htab_create (void)
720 {
721   lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
722 }
723 
724 /* Add LP to the hash table.  */
725 
726 static void
727 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
728 {
729   void **slot;
730 
731   slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
732   gdb_assert (slot != NULL && *slot == NULL);
733   *slot = lp;
734 }
735 
736 /* Head of doubly-linked list of known LWPs.  Sorted by reverse
737    creation order.  This order is assumed in some cases.  E.g.,
738    reaping status after killing alls lwps of a process: the leader LWP
739    must be reaped last.  */
740 struct lwp_info *lwp_list;
741 
742 /* Add LP to sorted-by-reverse-creation-order doubly-linked list.  */
743 
744 static void
745 lwp_list_add (struct lwp_info *lp)
746 {
747   lp->next = lwp_list;
748   if (lwp_list != NULL)
749     lwp_list->prev = lp;
750   lwp_list = lp;
751 }
752 
753 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
754    list.  */
755 
756 static void
757 lwp_list_remove (struct lwp_info *lp)
758 {
759   /* Remove from sorted-by-creation-order list.  */
760   if (lp->next != NULL)
761     lp->next->prev = lp->prev;
762   if (lp->prev != NULL)
763     lp->prev->next = lp->next;
764   if (lp == lwp_list)
765     lwp_list = lp->next;
766 }
767 
768 
769 
770 /* Original signal mask.  */
771 static sigset_t normal_mask;
772 
773 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
774    _initialize_linux_nat.  */
775 static sigset_t suspend_mask;
776 
777 /* Signals to block to make that sigsuspend work.  */
778 static sigset_t blocked_mask;
779 
780 /* SIGCHLD action.  */
781 struct sigaction sigchld_action;
782 
783 /* Block child signals (SIGCHLD and linux threads signals), and store
784    the previous mask in PREV_MASK.  */
785 
786 static void
787 block_child_signals (sigset_t *prev_mask)
788 {
789   /* Make sure SIGCHLD is blocked.  */
790   if (!sigismember (&blocked_mask, SIGCHLD))
791     sigaddset (&blocked_mask, SIGCHLD);
792 
793   sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask);
794 }
795 
796 /* Restore child signals mask, previously returned by
797    block_child_signals.  */
798 
799 static void
800 restore_child_signals_mask (sigset_t *prev_mask)
801 {
802   sigprocmask (SIG_SETMASK, prev_mask, NULL);
803 }
804 
805 /* Mask of signals to pass directly to the inferior.  */
806 static sigset_t pass_mask;
807 
808 /* Update signals to pass to the inferior.  */
809 static void
810 linux_nat_pass_signals (struct target_ops *self,
811 			int numsigs, unsigned char *pass_signals)
812 {
813   int signo;
814 
815   sigemptyset (&pass_mask);
816 
817   for (signo = 1; signo < NSIG; signo++)
818     {
819       int target_signo = gdb_signal_from_host (signo);
820       if (target_signo < numsigs && pass_signals[target_signo])
821         sigaddset (&pass_mask, signo);
822     }
823 }
824 
825 
826 
827 /* Prototypes for local functions.  */
828 static int stop_wait_callback (struct lwp_info *lp, void *data);
829 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid);
830 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data);
831 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
832 
833 
834 
835 /* Destroy and free LP.  */
836 
837 static void
838 lwp_free (struct lwp_info *lp)
839 {
840   xfree (lp->arch_private);
841   xfree (lp);
842 }
843 
844 /* Traversal function for purge_lwp_list.  */
845 
846 static int
847 lwp_lwpid_htab_remove_pid (void **slot, void *info)
848 {
849   struct lwp_info *lp = (struct lwp_info *) *slot;
850   int pid = *(int *) info;
851 
852   if (ptid_get_pid (lp->ptid) == pid)
853     {
854       htab_clear_slot (lwp_lwpid_htab, slot);
855       lwp_list_remove (lp);
856       lwp_free (lp);
857     }
858 
859   return 1;
860 }
861 
862 /* Remove all LWPs belong to PID from the lwp list.  */
863 
864 static void
865 purge_lwp_list (int pid)
866 {
867   htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
868 }
869 
870 /* Add the LWP specified by PTID to the list.  PTID is the first LWP
871    in the process.  Return a pointer to the structure describing the
872    new LWP.
873 
874    This differs from add_lwp in that we don't let the arch specific
875    bits know about this new thread.  Current clients of this callback
876    take the opportunity to install watchpoints in the new thread, and
877    we shouldn't do that for the first thread.  If we're spawning a
878    child ("run"), the thread executes the shell wrapper first, and we
879    shouldn't touch it until it execs the program we want to debug.
880    For "attach", it'd be okay to call the callback, but it's not
881    necessary, because watchpoints can't yet have been inserted into
882    the inferior.  */
883 
884 static struct lwp_info *
885 add_initial_lwp (ptid_t ptid)
886 {
887   struct lwp_info *lp;
888 
889   gdb_assert (ptid_lwp_p (ptid));
890 
891   lp = XNEW (struct lwp_info);
892 
893   memset (lp, 0, sizeof (struct lwp_info));
894 
895   lp->last_resume_kind = resume_continue;
896   lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
897 
898   lp->ptid = ptid;
899   lp->core = -1;
900 
901   /* Add to sorted-by-reverse-creation-order list.  */
902   lwp_list_add (lp);
903 
904   /* Add to keyed-by-pid htab.  */
905   lwp_lwpid_htab_add_lwp (lp);
906 
907   return lp;
908 }
909 
910 /* Add the LWP specified by PID to the list.  Return a pointer to the
911    structure describing the new LWP.  The LWP should already be
912    stopped.  */
913 
914 static struct lwp_info *
915 add_lwp (ptid_t ptid)
916 {
917   struct lwp_info *lp;
918 
919   lp = add_initial_lwp (ptid);
920 
921   /* Let the arch specific bits know about this new thread.  Current
922      clients of this callback take the opportunity to install
923      watchpoints in the new thread.  We don't do this for the first
924      thread though.  See add_initial_lwp.  */
925   if (linux_nat_new_thread != NULL)
926     linux_nat_new_thread (lp);
927 
928   return lp;
929 }
930 
931 /* Remove the LWP specified by PID from the list.  */
932 
933 static void
934 delete_lwp (ptid_t ptid)
935 {
936   struct lwp_info *lp;
937   void **slot;
938   struct lwp_info dummy;
939 
940   dummy.ptid = ptid;
941   slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
942   if (slot == NULL)
943     return;
944 
945   lp = *(struct lwp_info **) slot;
946   gdb_assert (lp != NULL);
947 
948   htab_clear_slot (lwp_lwpid_htab, slot);
949 
950   /* Remove from sorted-by-creation-order list.  */
951   lwp_list_remove (lp);
952 
953   /* Release.  */
954   lwp_free (lp);
955 }
956 
957 /* Return a pointer to the structure describing the LWP corresponding
958    to PID.  If no corresponding LWP could be found, return NULL.  */
959 
960 static struct lwp_info *
961 find_lwp_pid (ptid_t ptid)
962 {
963   struct lwp_info *lp;
964   int lwp;
965   struct lwp_info dummy;
966 
967   if (ptid_lwp_p (ptid))
968     lwp = ptid_get_lwp (ptid);
969   else
970     lwp = ptid_get_pid (ptid);
971 
972   dummy.ptid = ptid_build (0, lwp, 0);
973   lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
974   return lp;
975 }
976 
977 /* See nat/linux-nat.h.  */
978 
979 struct lwp_info *
980 iterate_over_lwps (ptid_t filter,
981 		   iterate_over_lwps_ftype callback,
982 		   void *data)
983 {
984   struct lwp_info *lp, *lpnext;
985 
986   for (lp = lwp_list; lp; lp = lpnext)
987     {
988       lpnext = lp->next;
989 
990       if (ptid_match (lp->ptid, filter))
991 	{
992 	  if ((*callback) (lp, data) != 0)
993 	    return lp;
994 	}
995     }
996 
997   return NULL;
998 }
999 
1000 /* Update our internal state when changing from one checkpoint to
1001    another indicated by NEW_PTID.  We can only switch single-threaded
1002    applications, so we only create one new LWP, and the previous list
1003    is discarded.  */
1004 
1005 void
1006 linux_nat_switch_fork (ptid_t new_ptid)
1007 {
1008   struct lwp_info *lp;
1009 
1010   purge_lwp_list (ptid_get_pid (inferior_ptid));
1011 
1012   lp = add_lwp (new_ptid);
1013   lp->stopped = 1;
1014 
1015   /* This changes the thread's ptid while preserving the gdb thread
1016      num.  Also changes the inferior pid, while preserving the
1017      inferior num.  */
1018   thread_change_ptid (inferior_ptid, new_ptid);
1019 
1020   /* We've just told GDB core that the thread changed target id, but,
1021      in fact, it really is a different thread, with different register
1022      contents.  */
1023   registers_changed ();
1024 }
1025 
1026 /* Handle the exit of a single thread LP.  */
1027 
1028 static void
1029 exit_lwp (struct lwp_info *lp)
1030 {
1031   struct thread_info *th = find_thread_ptid (lp->ptid);
1032 
1033   if (th)
1034     {
1035       if (print_thread_events)
1036 	printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid));
1037 
1038       delete_thread (lp->ptid);
1039     }
1040 
1041   delete_lwp (lp->ptid);
1042 }
1043 
1044 /* Wait for the LWP specified by LP, which we have just attached to.
1045    Returns a wait status for that LWP, to cache.  */
1046 
1047 static int
1048 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled)
1049 {
1050   pid_t new_pid, pid = ptid_get_lwp (ptid);
1051   int status;
1052 
1053   if (linux_proc_pid_is_stopped (pid))
1054     {
1055       if (debug_linux_nat)
1056 	fprintf_unfiltered (gdb_stdlog,
1057 			    "LNPAW: Attaching to a stopped process\n");
1058 
1059       /* The process is definitely stopped.  It is in a job control
1060 	 stop, unless the kernel predates the TASK_STOPPED /
1061 	 TASK_TRACED distinction, in which case it might be in a
1062 	 ptrace stop.  Make sure it is in a ptrace stop; from there we
1063 	 can kill it, signal it, et cetera.
1064 
1065          First make sure there is a pending SIGSTOP.  Since we are
1066 	 already attached, the process can not transition from stopped
1067 	 to running without a PTRACE_CONT; so we know this signal will
1068 	 go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
1069 	 probably already in the queue (unless this kernel is old
1070 	 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1071 	 is not an RT signal, it can only be queued once.  */
1072       kill_lwp (pid, SIGSTOP);
1073 
1074       /* Finally, resume the stopped process.  This will deliver the SIGSTOP
1075 	 (or a higher priority signal, just like normal PTRACE_ATTACH).  */
1076       ptrace (PTRACE_CONT, pid, 0, 0);
1077     }
1078 
1079   /* Make sure the initial process is stopped.  The user-level threads
1080      layer might want to poke around in the inferior, and that won't
1081      work if things haven't stabilized yet.  */
1082   new_pid = my_waitpid (pid, &status, __WALL);
1083   gdb_assert (pid == new_pid);
1084 
1085   if (!WIFSTOPPED (status))
1086     {
1087       /* The pid we tried to attach has apparently just exited.  */
1088       if (debug_linux_nat)
1089 	fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s",
1090 			    pid, status_to_str (status));
1091       return status;
1092     }
1093 
1094   if (WSTOPSIG (status) != SIGSTOP)
1095     {
1096       *signalled = 1;
1097       if (debug_linux_nat)
1098 	fprintf_unfiltered (gdb_stdlog,
1099 			    "LNPAW: Received %s after attaching\n",
1100 			    status_to_str (status));
1101     }
1102 
1103   return status;
1104 }
1105 
1106 static void
1107 linux_nat_create_inferior (struct target_ops *ops,
1108 			   const char *exec_file, const std::string &allargs,
1109 			   char **env, int from_tty)
1110 {
1111   struct cleanup *restore_personality
1112     = maybe_disable_address_space_randomization (disable_randomization);
1113 
1114   /* The fork_child mechanism is synchronous and calls target_wait, so
1115      we have to mask the async mode.  */
1116 
1117   /* Make sure we report all signals during startup.  */
1118   linux_nat_pass_signals (ops, 0, NULL);
1119 
1120   linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty);
1121 
1122   do_cleanups (restore_personality);
1123 }
1124 
1125 /* Callback for linux_proc_attach_tgid_threads.  Attach to PTID if not
1126    already attached.  Returns true if a new LWP is found, false
1127    otherwise.  */
1128 
1129 static int
1130 attach_proc_task_lwp_callback (ptid_t ptid)
1131 {
1132   struct lwp_info *lp;
1133 
1134   /* Ignore LWPs we're already attached to.  */
1135   lp = find_lwp_pid (ptid);
1136   if (lp == NULL)
1137     {
1138       int lwpid = ptid_get_lwp (ptid);
1139 
1140       if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1141 	{
1142 	  int err = errno;
1143 
1144 	  /* Be quiet if we simply raced with the thread exiting.
1145 	     EPERM is returned if the thread's task still exists, and
1146 	     is marked as exited or zombie, as well as other
1147 	     conditions, so in that case, confirm the status in
1148 	     /proc/PID/status.  */
1149 	  if (err == ESRCH
1150 	      || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1151 	    {
1152 	      if (debug_linux_nat)
1153 		{
1154 		  fprintf_unfiltered (gdb_stdlog,
1155 				      "Cannot attach to lwp %d: "
1156 				      "thread is gone (%d: %s)\n",
1157 				      lwpid, err, safe_strerror (err));
1158 		}
1159 	    }
1160 	  else
1161 	    {
1162 	      warning (_("Cannot attach to lwp %d: %s"),
1163 		       lwpid,
1164 		       linux_ptrace_attach_fail_reason_string (ptid,
1165 							       err));
1166 	    }
1167 	}
1168       else
1169 	{
1170 	  if (debug_linux_nat)
1171 	    fprintf_unfiltered (gdb_stdlog,
1172 				"PTRACE_ATTACH %s, 0, 0 (OK)\n",
1173 				target_pid_to_str (ptid));
1174 
1175 	  lp = add_lwp (ptid);
1176 
1177 	  /* The next time we wait for this LWP we'll see a SIGSTOP as
1178 	     PTRACE_ATTACH brings it to a halt.  */
1179 	  lp->signalled = 1;
1180 
1181 	  /* We need to wait for a stop before being able to make the
1182 	     next ptrace call on this LWP.  */
1183 	  lp->must_set_ptrace_flags = 1;
1184 
1185 	  /* So that wait collects the SIGSTOP.  */
1186 	  lp->resumed = 1;
1187 
1188 	  /* Also add the LWP to gdb's thread list, in case a
1189 	     matching libthread_db is not found (or the process uses
1190 	     raw clone).  */
1191 	  add_thread (lp->ptid);
1192 	  set_running (lp->ptid, 1);
1193 	  set_executing (lp->ptid, 1);
1194 	}
1195 
1196       return 1;
1197     }
1198   return 0;
1199 }
1200 
1201 static void
1202 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty)
1203 {
1204   struct lwp_info *lp;
1205   int status;
1206   ptid_t ptid;
1207 
1208   /* Make sure we report all signals during attach.  */
1209   linux_nat_pass_signals (ops, 0, NULL);
1210 
1211   TRY
1212     {
1213       linux_ops->to_attach (ops, args, from_tty);
1214     }
1215   CATCH (ex, RETURN_MASK_ERROR)
1216     {
1217       pid_t pid = parse_pid_to_attach (args);
1218       struct buffer buffer;
1219       char *message, *buffer_s;
1220 
1221       message = xstrdup (ex.message);
1222       make_cleanup (xfree, message);
1223 
1224       buffer_init (&buffer);
1225       linux_ptrace_attach_fail_reason (pid, &buffer);
1226 
1227       buffer_grow_str0 (&buffer, "");
1228       buffer_s = buffer_finish (&buffer);
1229       make_cleanup (xfree, buffer_s);
1230 
1231       if (*buffer_s != '\0')
1232 	throw_error (ex.error, "warning: %s\n%s", buffer_s, message);
1233       else
1234 	throw_error (ex.error, "%s", message);
1235     }
1236   END_CATCH
1237 
1238   /* The ptrace base target adds the main thread with (pid,0,0)
1239      format.  Decorate it with lwp info.  */
1240   ptid = ptid_build (ptid_get_pid (inferior_ptid),
1241 		     ptid_get_pid (inferior_ptid),
1242 		     0);
1243   thread_change_ptid (inferior_ptid, ptid);
1244 
1245   /* Add the initial process as the first LWP to the list.  */
1246   lp = add_initial_lwp (ptid);
1247 
1248   status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled);
1249   if (!WIFSTOPPED (status))
1250     {
1251       if (WIFEXITED (status))
1252 	{
1253 	  int exit_code = WEXITSTATUS (status);
1254 
1255 	  target_terminal_ours ();
1256 	  target_mourn_inferior (inferior_ptid);
1257 	  if (exit_code == 0)
1258 	    error (_("Unable to attach: program exited normally."));
1259 	  else
1260 	    error (_("Unable to attach: program exited with code %d."),
1261 		   exit_code);
1262 	}
1263       else if (WIFSIGNALED (status))
1264 	{
1265 	  enum gdb_signal signo;
1266 
1267 	  target_terminal_ours ();
1268 	  target_mourn_inferior (inferior_ptid);
1269 
1270 	  signo = gdb_signal_from_host (WTERMSIG (status));
1271 	  error (_("Unable to attach: program terminated with signal "
1272 		   "%s, %s."),
1273 		 gdb_signal_to_name (signo),
1274 		 gdb_signal_to_string (signo));
1275 	}
1276 
1277       internal_error (__FILE__, __LINE__,
1278 		      _("unexpected status %d for PID %ld"),
1279 		      status, (long) ptid_get_lwp (ptid));
1280     }
1281 
1282   lp->stopped = 1;
1283 
1284   /* Save the wait status to report later.  */
1285   lp->resumed = 1;
1286   if (debug_linux_nat)
1287     fprintf_unfiltered (gdb_stdlog,
1288 			"LNA: waitpid %ld, saving status %s\n",
1289 			(long) ptid_get_pid (lp->ptid), status_to_str (status));
1290 
1291   lp->status = status;
1292 
1293   /* We must attach to every LWP.  If /proc is mounted, use that to
1294      find them now.  The inferior may be using raw clone instead of
1295      using pthreads.  But even if it is using pthreads, thread_db
1296      walks structures in the inferior's address space to find the list
1297      of threads/LWPs, and those structures may well be corrupted.
1298      Note that once thread_db is loaded, we'll still use it to list
1299      threads and associate pthread info with each LWP.  */
1300   linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid),
1301 				  attach_proc_task_lwp_callback);
1302 
1303   if (target_can_async_p ())
1304     target_async (1);
1305 }
1306 
1307 /* Get pending signal of THREAD as a host signal number, for detaching
1308    purposes.  This is the signal the thread last stopped for, which we
1309    need to deliver to the thread when detaching, otherwise, it'd be
1310    suppressed/lost.  */
1311 
1312 static int
1313 get_detach_signal (struct lwp_info *lp)
1314 {
1315   enum gdb_signal signo = GDB_SIGNAL_0;
1316 
1317   /* If we paused threads momentarily, we may have stored pending
1318      events in lp->status or lp->waitstatus (see stop_wait_callback),
1319      and GDB core hasn't seen any signal for those threads.
1320      Otherwise, the last signal reported to the core is found in the
1321      thread object's stop_signal.
1322 
1323      There's a corner case that isn't handled here at present.  Only
1324      if the thread stopped with a TARGET_WAITKIND_STOPPED does
1325      stop_signal make sense as a real signal to pass to the inferior.
1326      Some catchpoint related events, like
1327      TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1328      to GDB_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
1329      those traps are debug API (ptrace in our case) related and
1330      induced; the inferior wouldn't see them if it wasn't being
1331      traced.  Hence, we should never pass them to the inferior, even
1332      when set to pass state.  Since this corner case isn't handled by
1333      infrun.c when proceeding with a signal, for consistency, neither
1334      do we handle it here (or elsewhere in the file we check for
1335      signal pass state).  Normally SIGTRAP isn't set to pass state, so
1336      this is really a corner case.  */
1337 
1338   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1339     signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
1340   else if (lp->status)
1341     signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1342   else if (target_is_non_stop_p () && !is_executing (lp->ptid))
1343     {
1344       struct thread_info *tp = find_thread_ptid (lp->ptid);
1345 
1346       if (tp->suspend.waitstatus_pending_p)
1347 	signo = tp->suspend.waitstatus.value.sig;
1348       else
1349 	signo = tp->suspend.stop_signal;
1350     }
1351   else if (!target_is_non_stop_p ())
1352     {
1353       struct target_waitstatus last;
1354       ptid_t last_ptid;
1355 
1356       get_last_target_status (&last_ptid, &last);
1357 
1358       if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid))
1359 	{
1360 	  struct thread_info *tp = find_thread_ptid (lp->ptid);
1361 
1362 	  signo = tp->suspend.stop_signal;
1363 	}
1364     }
1365 
1366   if (signo == GDB_SIGNAL_0)
1367     {
1368       if (debug_linux_nat)
1369 	fprintf_unfiltered (gdb_stdlog,
1370 			    "GPT: lwp %s has no pending signal\n",
1371 			    target_pid_to_str (lp->ptid));
1372     }
1373   else if (!signal_pass_state (signo))
1374     {
1375       if (debug_linux_nat)
1376 	fprintf_unfiltered (gdb_stdlog,
1377 			    "GPT: lwp %s had signal %s, "
1378 			    "but it is in no pass state\n",
1379 			    target_pid_to_str (lp->ptid),
1380 			    gdb_signal_to_string (signo));
1381     }
1382   else
1383     {
1384       if (debug_linux_nat)
1385 	fprintf_unfiltered (gdb_stdlog,
1386 			    "GPT: lwp %s has pending signal %s\n",
1387 			    target_pid_to_str (lp->ptid),
1388 			    gdb_signal_to_string (signo));
1389 
1390       return gdb_signal_to_host (signo);
1391     }
1392 
1393   return 0;
1394 }
1395 
1396 /* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
1397    signal number that should be passed to the LWP when detaching.
1398    Otherwise pass any pending signal the LWP may have, if any.  */
1399 
1400 static void
1401 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1402 {
1403   int lwpid = ptid_get_lwp (lp->ptid);
1404   int signo;
1405 
1406   gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1407 
1408   if (debug_linux_nat && lp->status)
1409     fprintf_unfiltered (gdb_stdlog, "DC:  Pending %s for %s on detach.\n",
1410 			strsignal (WSTOPSIG (lp->status)),
1411 			target_pid_to_str (lp->ptid));
1412 
1413   /* If there is a pending SIGSTOP, get rid of it.  */
1414   if (lp->signalled)
1415     {
1416       if (debug_linux_nat)
1417 	fprintf_unfiltered (gdb_stdlog,
1418 			    "DC: Sending SIGCONT to %s\n",
1419 			    target_pid_to_str (lp->ptid));
1420 
1421       kill_lwp (lwpid, SIGCONT);
1422       lp->signalled = 0;
1423     }
1424 
1425   if (signo_p == NULL)
1426     {
1427       /* Pass on any pending signal for this LWP.  */
1428       signo = get_detach_signal (lp);
1429     }
1430   else
1431     signo = *signo_p;
1432 
1433   /* Preparing to resume may try to write registers, and fail if the
1434      lwp is zombie.  If that happens, ignore the error.  We'll handle
1435      it below, when detach fails with ESRCH.  */
1436   TRY
1437     {
1438       if (linux_nat_prepare_to_resume != NULL)
1439 	linux_nat_prepare_to_resume (lp);
1440     }
1441   CATCH (ex, RETURN_MASK_ERROR)
1442     {
1443       if (!check_ptrace_stopped_lwp_gone (lp))
1444 	throw_exception (ex);
1445     }
1446   END_CATCH
1447 
1448   if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1449     {
1450       int save_errno = errno;
1451 
1452       /* We know the thread exists, so ESRCH must mean the lwp is
1453 	 zombie.  This can happen if one of the already-detached
1454 	 threads exits the whole thread group.  In that case we're
1455 	 still attached, and must reap the lwp.  */
1456       if (save_errno == ESRCH)
1457 	{
1458 	  int ret, status;
1459 
1460 	  ret = my_waitpid (lwpid, &status, __WALL);
1461 	  if (ret == -1)
1462 	    {
1463 	      warning (_("Couldn't reap LWP %d while detaching: %s"),
1464 		       lwpid, strerror (errno));
1465 	    }
1466 	  else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1467 	    {
1468 	      warning (_("Reaping LWP %d while detaching "
1469 			 "returned unexpected status 0x%x"),
1470 		       lwpid, status);
1471 	    }
1472 	}
1473       else
1474 	{
1475 	  error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid),
1476 		 safe_strerror (save_errno));
1477 	}
1478     }
1479   else if (debug_linux_nat)
1480     {
1481       fprintf_unfiltered (gdb_stdlog,
1482 			  "PTRACE_DETACH (%s, %s, 0) (OK)\n",
1483 			  target_pid_to_str (lp->ptid),
1484 			  strsignal (signo));
1485     }
1486 
1487   delete_lwp (lp->ptid);
1488 }
1489 
1490 static int
1491 detach_callback (struct lwp_info *lp, void *data)
1492 {
1493   /* We don't actually detach from the thread group leader just yet.
1494      If the thread group exits, we must reap the zombie clone lwps
1495      before we're able to reap the leader.  */
1496   if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid))
1497     detach_one_lwp (lp, NULL);
1498   return 0;
1499 }
1500 
1501 static void
1502 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty)
1503 {
1504   int pid;
1505   struct lwp_info *main_lwp;
1506 
1507   pid = ptid_get_pid (inferior_ptid);
1508 
1509   /* Don't unregister from the event loop, as there may be other
1510      inferiors running. */
1511 
1512   /* Stop all threads before detaching.  ptrace requires that the
1513      thread is stopped to sucessfully detach.  */
1514   iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL);
1515   /* ... and wait until all of them have reported back that
1516      they're no longer running.  */
1517   iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL);
1518 
1519   iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL);
1520 
1521   /* Only the initial process should be left right now.  */
1522   gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1);
1523 
1524   main_lwp = find_lwp_pid (pid_to_ptid (pid));
1525 
1526   if (forks_exist_p ())
1527     {
1528       /* Multi-fork case.  The current inferior_ptid is being detached
1529 	 from, but there are other viable forks to debug.  Detach from
1530 	 the current fork, and context-switch to the first
1531 	 available.  */
1532       linux_fork_detach (args, from_tty);
1533     }
1534   else
1535     {
1536       int signo;
1537 
1538       target_announce_detach (from_tty);
1539 
1540       /* Pass on any pending signal for the last LWP, unless the user
1541 	 requested detaching with a different signal (most likely 0,
1542 	 meaning, discard the signal).  */
1543       if (args != NULL)
1544 	signo = atoi (args);
1545       else
1546 	signo = get_detach_signal (main_lwp);
1547 
1548       detach_one_lwp (main_lwp, &signo);
1549 
1550       inf_ptrace_detach_success (ops);
1551     }
1552 }
1553 
1554 /* Resume execution of the inferior process.  If STEP is nonzero,
1555    single-step it.  If SIGNAL is nonzero, give it that signal.  */
1556 
1557 static void
1558 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1559 			    enum gdb_signal signo)
1560 {
1561   lp->step = step;
1562 
1563   /* stop_pc doubles as the PC the LWP had when it was last resumed.
1564      We only presently need that if the LWP is stepped though (to
1565      handle the case of stepping a breakpoint instruction).  */
1566   if (step)
1567     {
1568       struct regcache *regcache = get_thread_regcache (lp->ptid);
1569 
1570       lp->stop_pc = regcache_read_pc (regcache);
1571     }
1572   else
1573     lp->stop_pc = 0;
1574 
1575   if (linux_nat_prepare_to_resume != NULL)
1576     linux_nat_prepare_to_resume (lp);
1577   linux_ops->to_resume (linux_ops, lp->ptid, step, signo);
1578 
1579   /* Successfully resumed.  Clear state that no longer makes sense,
1580      and mark the LWP as running.  Must not do this before resuming
1581      otherwise if that fails other code will be confused.  E.g., we'd
1582      later try to stop the LWP and hang forever waiting for a stop
1583      status.  Note that we must not throw after this is cleared,
1584      otherwise handle_zombie_lwp_error would get confused.  */
1585   lp->stopped = 0;
1586   lp->core = -1;
1587   lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1588   registers_changed_ptid (lp->ptid);
1589 }
1590 
1591 /* Called when we try to resume a stopped LWP and that errors out.  If
1592    the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1593    or about to become), discard the error, clear any pending status
1594    the LWP may have, and return true (we'll collect the exit status
1595    soon enough).  Otherwise, return false.  */
1596 
1597 static int
1598 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1599 {
1600   /* If we get an error after resuming the LWP successfully, we'd
1601      confuse !T state for the LWP being gone.  */
1602   gdb_assert (lp->stopped);
1603 
1604   /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1605      because even if ptrace failed with ESRCH, the tracee may be "not
1606      yet fully dead", but already refusing ptrace requests.  In that
1607      case the tracee has 'R (Running)' state for a little bit
1608      (observed in Linux 3.18).  See also the note on ESRCH in the
1609      ptrace(2) man page.  Instead, check whether the LWP has any state
1610      other than ptrace-stopped.  */
1611 
1612   /* Don't assume anything if /proc/PID/status can't be read.  */
1613   if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0)
1614     {
1615       lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1616       lp->status = 0;
1617       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1618       return 1;
1619     }
1620   return 0;
1621 }
1622 
1623 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1624    disappears while we try to resume it.  */
1625 
1626 static void
1627 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1628 {
1629   TRY
1630     {
1631       linux_resume_one_lwp_throw (lp, step, signo);
1632     }
1633   CATCH (ex, RETURN_MASK_ERROR)
1634     {
1635       if (!check_ptrace_stopped_lwp_gone (lp))
1636 	throw_exception (ex);
1637     }
1638   END_CATCH
1639 }
1640 
1641 /* Resume LP.  */
1642 
1643 static void
1644 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1645 {
1646   if (lp->stopped)
1647     {
1648       struct inferior *inf = find_inferior_ptid (lp->ptid);
1649 
1650       if (inf->vfork_child != NULL)
1651 	{
1652 	  if (debug_linux_nat)
1653 	    fprintf_unfiltered (gdb_stdlog,
1654 				"RC: Not resuming %s (vfork parent)\n",
1655 				target_pid_to_str (lp->ptid));
1656 	}
1657       else if (!lwp_status_pending_p (lp))
1658 	{
1659 	  if (debug_linux_nat)
1660 	    fprintf_unfiltered (gdb_stdlog,
1661 				"RC: Resuming sibling %s, %s, %s\n",
1662 				target_pid_to_str (lp->ptid),
1663 				(signo != GDB_SIGNAL_0
1664 				 ? strsignal (gdb_signal_to_host (signo))
1665 				 : "0"),
1666 				step ? "step" : "resume");
1667 
1668 	  linux_resume_one_lwp (lp, step, signo);
1669 	}
1670       else
1671 	{
1672 	  if (debug_linux_nat)
1673 	    fprintf_unfiltered (gdb_stdlog,
1674 				"RC: Not resuming sibling %s (has pending)\n",
1675 				target_pid_to_str (lp->ptid));
1676 	}
1677     }
1678   else
1679     {
1680       if (debug_linux_nat)
1681 	fprintf_unfiltered (gdb_stdlog,
1682 			    "RC: Not resuming sibling %s (not stopped)\n",
1683 			    target_pid_to_str (lp->ptid));
1684     }
1685 }
1686 
1687 /* Callback for iterate_over_lwps.  If LWP is EXCEPT, do nothing.
1688    Resume LWP with the last stop signal, if it is in pass state.  */
1689 
1690 static int
1691 linux_nat_resume_callback (struct lwp_info *lp, void *except)
1692 {
1693   enum gdb_signal signo = GDB_SIGNAL_0;
1694 
1695   if (lp == except)
1696     return 0;
1697 
1698   if (lp->stopped)
1699     {
1700       struct thread_info *thread;
1701 
1702       thread = find_thread_ptid (lp->ptid);
1703       if (thread != NULL)
1704 	{
1705 	  signo = thread->suspend.stop_signal;
1706 	  thread->suspend.stop_signal = GDB_SIGNAL_0;
1707 	}
1708     }
1709 
1710   resume_lwp (lp, 0, signo);
1711   return 0;
1712 }
1713 
1714 static int
1715 resume_clear_callback (struct lwp_info *lp, void *data)
1716 {
1717   lp->resumed = 0;
1718   lp->last_resume_kind = resume_stop;
1719   return 0;
1720 }
1721 
1722 static int
1723 resume_set_callback (struct lwp_info *lp, void *data)
1724 {
1725   lp->resumed = 1;
1726   lp->last_resume_kind = resume_continue;
1727   return 0;
1728 }
1729 
1730 static void
1731 linux_nat_resume (struct target_ops *ops,
1732 		  ptid_t ptid, int step, enum gdb_signal signo)
1733 {
1734   struct lwp_info *lp;
1735   int resume_many;
1736 
1737   if (debug_linux_nat)
1738     fprintf_unfiltered (gdb_stdlog,
1739 			"LLR: Preparing to %s %s, %s, inferior_ptid %s\n",
1740 			step ? "step" : "resume",
1741 			target_pid_to_str (ptid),
1742 			(signo != GDB_SIGNAL_0
1743 			 ? strsignal (gdb_signal_to_host (signo)) : "0"),
1744 			target_pid_to_str (inferior_ptid));
1745 
1746   /* A specific PTID means `step only this process id'.  */
1747   resume_many = (ptid_equal (minus_one_ptid, ptid)
1748 		 || ptid_is_pid (ptid));
1749 
1750   /* Mark the lwps we're resuming as resumed.  */
1751   iterate_over_lwps (ptid, resume_set_callback, NULL);
1752 
1753   /* See if it's the current inferior that should be handled
1754      specially.  */
1755   if (resume_many)
1756     lp = find_lwp_pid (inferior_ptid);
1757   else
1758     lp = find_lwp_pid (ptid);
1759   gdb_assert (lp != NULL);
1760 
1761   /* Remember if we're stepping.  */
1762   lp->last_resume_kind = step ? resume_step : resume_continue;
1763 
1764   /* If we have a pending wait status for this thread, there is no
1765      point in resuming the process.  But first make sure that
1766      linux_nat_wait won't preemptively handle the event - we
1767      should never take this short-circuit if we are going to
1768      leave LP running, since we have skipped resuming all the
1769      other threads.  This bit of code needs to be synchronized
1770      with linux_nat_wait.  */
1771 
1772   if (lp->status && WIFSTOPPED (lp->status))
1773     {
1774       if (!lp->step
1775 	  && WSTOPSIG (lp->status)
1776 	  && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1777 	{
1778 	  if (debug_linux_nat)
1779 	    fprintf_unfiltered (gdb_stdlog,
1780 				"LLR: Not short circuiting for ignored "
1781 				"status 0x%x\n", lp->status);
1782 
1783 	  /* FIXME: What should we do if we are supposed to continue
1784 	     this thread with a signal?  */
1785 	  gdb_assert (signo == GDB_SIGNAL_0);
1786 	  signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1787 	  lp->status = 0;
1788 	}
1789     }
1790 
1791   if (lwp_status_pending_p (lp))
1792     {
1793       /* FIXME: What should we do if we are supposed to continue
1794 	 this thread with a signal?  */
1795       gdb_assert (signo == GDB_SIGNAL_0);
1796 
1797       if (debug_linux_nat)
1798 	fprintf_unfiltered (gdb_stdlog,
1799 			    "LLR: Short circuiting for status 0x%x\n",
1800 			    lp->status);
1801 
1802       if (target_can_async_p ())
1803 	{
1804 	  target_async (1);
1805 	  /* Tell the event loop we have something to process.  */
1806 	  async_file_mark ();
1807 	}
1808       return;
1809     }
1810 
1811   if (resume_many)
1812     iterate_over_lwps (ptid, linux_nat_resume_callback, lp);
1813 
1814   if (debug_linux_nat)
1815     fprintf_unfiltered (gdb_stdlog,
1816 			"LLR: %s %s, %s (resume event thread)\n",
1817 			step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1818 			target_pid_to_str (lp->ptid),
1819 			(signo != GDB_SIGNAL_0
1820 			 ? strsignal (gdb_signal_to_host (signo)) : "0"));
1821 
1822   linux_resume_one_lwp (lp, step, signo);
1823 
1824   if (target_can_async_p ())
1825     target_async (1);
1826 }
1827 
1828 /* Send a signal to an LWP.  */
1829 
1830 static int
1831 kill_lwp (int lwpid, int signo)
1832 {
1833   int ret;
1834 
1835   errno = 0;
1836   ret = syscall (__NR_tkill, lwpid, signo);
1837   if (errno == ENOSYS)
1838     {
1839       /* If tkill fails, then we are not using nptl threads, a
1840 	 configuration we no longer support.  */
1841       perror_with_name (("tkill"));
1842     }
1843   return ret;
1844 }
1845 
1846 /* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
1847    event, check if the core is interested in it: if not, ignore the
1848    event, and keep waiting; otherwise, we need to toggle the LWP's
1849    syscall entry/exit status, since the ptrace event itself doesn't
1850    indicate it, and report the trap to higher layers.  */
1851 
1852 static int
1853 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1854 {
1855   struct target_waitstatus *ourstatus = &lp->waitstatus;
1856   struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1857   int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid);
1858 
1859   if (stopping)
1860     {
1861       /* If we're stopping threads, there's a SIGSTOP pending, which
1862 	 makes it so that the LWP reports an immediate syscall return,
1863 	 followed by the SIGSTOP.  Skip seeing that "return" using
1864 	 PTRACE_CONT directly, and let stop_wait_callback collect the
1865 	 SIGSTOP.  Later when the thread is resumed, a new syscall
1866 	 entry event.  If we didn't do this (and returned 0), we'd
1867 	 leave a syscall entry pending, and our caller, by using
1868 	 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1869 	 itself.  Later, when the user re-resumes this LWP, we'd see
1870 	 another syscall entry event and we'd mistake it for a return.
1871 
1872 	 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1873 	 (leaving immediately with LWP->signalled set, without issuing
1874 	 a PTRACE_CONT), it would still be problematic to leave this
1875 	 syscall enter pending, as later when the thread is resumed,
1876 	 it would then see the same syscall exit mentioned above,
1877 	 followed by the delayed SIGSTOP, while the syscall didn't
1878 	 actually get to execute.  It seems it would be even more
1879 	 confusing to the user.  */
1880 
1881       if (debug_linux_nat)
1882 	fprintf_unfiltered (gdb_stdlog,
1883 			    "LHST: ignoring syscall %d "
1884 			    "for LWP %ld (stopping threads), "
1885 			    "resuming with PTRACE_CONT for SIGSTOP\n",
1886 			    syscall_number,
1887 			    ptid_get_lwp (lp->ptid));
1888 
1889       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1890       ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
1891       lp->stopped = 0;
1892       return 1;
1893     }
1894 
1895   /* Always update the entry/return state, even if this particular
1896      syscall isn't interesting to the core now.  In async mode,
1897      the user could install a new catchpoint for this syscall
1898      between syscall enter/return, and we'll need to know to
1899      report a syscall return if that happens.  */
1900   lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1901 		       ? TARGET_WAITKIND_SYSCALL_RETURN
1902 		       : TARGET_WAITKIND_SYSCALL_ENTRY);
1903 
1904   if (catch_syscall_enabled ())
1905     {
1906       if (catching_syscall_number (syscall_number))
1907 	{
1908 	  /* Alright, an event to report.  */
1909 	  ourstatus->kind = lp->syscall_state;
1910 	  ourstatus->value.syscall_number = syscall_number;
1911 
1912 	  if (debug_linux_nat)
1913 	    fprintf_unfiltered (gdb_stdlog,
1914 				"LHST: stopping for %s of syscall %d"
1915 				" for LWP %ld\n",
1916 				lp->syscall_state
1917 				== TARGET_WAITKIND_SYSCALL_ENTRY
1918 				? "entry" : "return",
1919 				syscall_number,
1920 				ptid_get_lwp (lp->ptid));
1921 	  return 0;
1922 	}
1923 
1924       if (debug_linux_nat)
1925 	fprintf_unfiltered (gdb_stdlog,
1926 			    "LHST: ignoring %s of syscall %d "
1927 			    "for LWP %ld\n",
1928 			    lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1929 			    ? "entry" : "return",
1930 			    syscall_number,
1931 			    ptid_get_lwp (lp->ptid));
1932     }
1933   else
1934     {
1935       /* If we had been syscall tracing, and hence used PT_SYSCALL
1936 	 before on this LWP, it could happen that the user removes all
1937 	 syscall catchpoints before we get to process this event.
1938 	 There are two noteworthy issues here:
1939 
1940 	 - When stopped at a syscall entry event, resuming with
1941 	   PT_STEP still resumes executing the syscall and reports a
1942 	   syscall return.
1943 
1944 	 - Only PT_SYSCALL catches syscall enters.  If we last
1945 	   single-stepped this thread, then this event can't be a
1946 	   syscall enter.  If we last single-stepped this thread, this
1947 	   has to be a syscall exit.
1948 
1949 	 The points above mean that the next resume, be it PT_STEP or
1950 	 PT_CONTINUE, can not trigger a syscall trace event.  */
1951       if (debug_linux_nat)
1952 	fprintf_unfiltered (gdb_stdlog,
1953 			    "LHST: caught syscall event "
1954 			    "with no syscall catchpoints."
1955 			    " %d for LWP %ld, ignoring\n",
1956 			    syscall_number,
1957 			    ptid_get_lwp (lp->ptid));
1958       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1959     }
1960 
1961   /* The core isn't interested in this event.  For efficiency, avoid
1962      stopping all threads only to have the core resume them all again.
1963      Since we're not stopping threads, if we're still syscall tracing
1964      and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1965      subsequent syscall.  Simply resume using the inf-ptrace layer,
1966      which knows when to use PT_SYSCALL or PT_CONTINUE.  */
1967 
1968   linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1969   return 1;
1970 }
1971 
1972 /* Handle a GNU/Linux extended wait response.  If we see a clone
1973    event, we need to add the new LWP to our list (and not report the
1974    trap to higher layers).  This function returns non-zero if the
1975    event should be ignored and we should wait again.  If STOPPING is
1976    true, the new LWP remains stopped, otherwise it is continued.  */
1977 
1978 static int
1979 linux_handle_extended_wait (struct lwp_info *lp, int status)
1980 {
1981   int pid = ptid_get_lwp (lp->ptid);
1982   struct target_waitstatus *ourstatus = &lp->waitstatus;
1983   int event = linux_ptrace_get_extended_event (status);
1984 
1985   /* All extended events we currently use are mid-syscall.  Only
1986      PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1987      you have to be using PTRACE_SEIZE to get that.  */
1988   lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1989 
1990   if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1991       || event == PTRACE_EVENT_CLONE)
1992     {
1993       unsigned long new_pid;
1994       int ret;
1995 
1996       ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1997 
1998       /* If we haven't already seen the new PID stop, wait for it now.  */
1999       if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
2000 	{
2001 	  /* The new child has a pending SIGSTOP.  We can't affect it until it
2002 	     hits the SIGSTOP, but we're already attached.  */
2003 	  ret = my_waitpid (new_pid, &status, __WALL);
2004 	  if (ret == -1)
2005 	    perror_with_name (_("waiting for new child"));
2006 	  else if (ret != new_pid)
2007 	    internal_error (__FILE__, __LINE__,
2008 			    _("wait returned unexpected PID %d"), ret);
2009 	  else if (!WIFSTOPPED (status))
2010 	    internal_error (__FILE__, __LINE__,
2011 			    _("wait returned unexpected status 0x%x"), status);
2012 	}
2013 
2014       ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0);
2015 
2016       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
2017 	{
2018 	  /* The arch-specific native code may need to know about new
2019 	     forks even if those end up never mapped to an
2020 	     inferior.  */
2021 	  if (linux_nat_new_fork != NULL)
2022 	    linux_nat_new_fork (lp, new_pid);
2023 	}
2024 
2025       if (event == PTRACE_EVENT_FORK
2026 	  && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid)))
2027 	{
2028 	  /* Handle checkpointing by linux-fork.c here as a special
2029 	     case.  We don't want the follow-fork-mode or 'catch fork'
2030 	     to interfere with this.  */
2031 
2032 	  /* This won't actually modify the breakpoint list, but will
2033 	     physically remove the breakpoints from the child.  */
2034 	  detach_breakpoints (ptid_build (new_pid, new_pid, 0));
2035 
2036 	  /* Retain child fork in ptrace (stopped) state.  */
2037 	  if (!find_fork_pid (new_pid))
2038 	    add_fork (new_pid);
2039 
2040 	  /* Report as spurious, so that infrun doesn't want to follow
2041 	     this fork.  We're actually doing an infcall in
2042 	     linux-fork.c.  */
2043 	  ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
2044 
2045 	  /* Report the stop to the core.  */
2046 	  return 0;
2047 	}
2048 
2049       if (event == PTRACE_EVENT_FORK)
2050 	ourstatus->kind = TARGET_WAITKIND_FORKED;
2051       else if (event == PTRACE_EVENT_VFORK)
2052 	ourstatus->kind = TARGET_WAITKIND_VFORKED;
2053       else if (event == PTRACE_EVENT_CLONE)
2054 	{
2055 	  struct lwp_info *new_lp;
2056 
2057 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
2058 
2059 	  if (debug_linux_nat)
2060 	    fprintf_unfiltered (gdb_stdlog,
2061 				"LHEW: Got clone event "
2062 				"from LWP %d, new child is LWP %ld\n",
2063 				pid, new_pid);
2064 
2065 	  new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0));
2066 	  new_lp->stopped = 1;
2067 	  new_lp->resumed = 1;
2068 
2069 	  /* If the thread_db layer is active, let it record the user
2070 	     level thread id and status, and add the thread to GDB's
2071 	     list.  */
2072 	  if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
2073 	    {
2074 	      /* The process is not using thread_db.  Add the LWP to
2075 		 GDB's list.  */
2076 	      target_post_attach (ptid_get_lwp (new_lp->ptid));
2077 	      add_thread (new_lp->ptid);
2078 	    }
2079 
2080 	  /* Even if we're stopping the thread for some reason
2081 	     internal to this module, from the perspective of infrun
2082 	     and the user/frontend, this new thread is running until
2083 	     it next reports a stop.  */
2084 	  set_running (new_lp->ptid, 1);
2085 	  set_executing (new_lp->ptid, 1);
2086 
2087 	  if (WSTOPSIG (status) != SIGSTOP)
2088 	    {
2089 	      /* This can happen if someone starts sending signals to
2090 		 the new thread before it gets a chance to run, which
2091 		 have a lower number than SIGSTOP (e.g. SIGUSR1).
2092 		 This is an unlikely case, and harder to handle for
2093 		 fork / vfork than for clone, so we do not try - but
2094 		 we handle it for clone events here.  */
2095 
2096 	      new_lp->signalled = 1;
2097 
2098 	      /* We created NEW_LP so it cannot yet contain STATUS.  */
2099 	      gdb_assert (new_lp->status == 0);
2100 
2101 	      /* Save the wait status to report later.  */
2102 	      if (debug_linux_nat)
2103 		fprintf_unfiltered (gdb_stdlog,
2104 				    "LHEW: waitpid of new LWP %ld, "
2105 				    "saving status %s\n",
2106 				    (long) ptid_get_lwp (new_lp->ptid),
2107 				    status_to_str (status));
2108 	      new_lp->status = status;
2109 	    }
2110 	  else if (report_thread_events)
2111 	    {
2112 	      new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2113 	      new_lp->status = status;
2114 	    }
2115 
2116 	  return 1;
2117 	}
2118 
2119       return 0;
2120     }
2121 
2122   if (event == PTRACE_EVENT_EXEC)
2123     {
2124       if (debug_linux_nat)
2125 	fprintf_unfiltered (gdb_stdlog,
2126 			    "LHEW: Got exec event from LWP %ld\n",
2127 			    ptid_get_lwp (lp->ptid));
2128 
2129       ourstatus->kind = TARGET_WAITKIND_EXECD;
2130       ourstatus->value.execd_pathname
2131 	= xstrdup (linux_child_pid_to_exec_file (NULL, pid));
2132 
2133       /* The thread that execed must have been resumed, but, when a
2134 	 thread execs, it changes its tid to the tgid, and the old
2135 	 tgid thread might have not been resumed.  */
2136       lp->resumed = 1;
2137       return 0;
2138     }
2139 
2140   if (event == PTRACE_EVENT_VFORK_DONE)
2141     {
2142       if (current_inferior ()->waiting_for_vfork_done)
2143 	{
2144 	  if (debug_linux_nat)
2145 	    fprintf_unfiltered (gdb_stdlog,
2146 				"LHEW: Got expected PTRACE_EVENT_"
2147 				"VFORK_DONE from LWP %ld: stopping\n",
2148 				ptid_get_lwp (lp->ptid));
2149 
2150 	  ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2151 	  return 0;
2152 	}
2153 
2154       if (debug_linux_nat)
2155 	fprintf_unfiltered (gdb_stdlog,
2156 			    "LHEW: Got PTRACE_EVENT_VFORK_DONE "
2157 			    "from LWP %ld: ignoring\n",
2158 			    ptid_get_lwp (lp->ptid));
2159       return 1;
2160     }
2161 
2162   internal_error (__FILE__, __LINE__,
2163 		  _("unknown ptrace event %d"), event);
2164 }
2165 
2166 /* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
2167    exited.  */
2168 
2169 static int
2170 wait_lwp (struct lwp_info *lp)
2171 {
2172   pid_t pid;
2173   int status = 0;
2174   int thread_dead = 0;
2175   sigset_t prev_mask;
2176 
2177   gdb_assert (!lp->stopped);
2178   gdb_assert (lp->status == 0);
2179 
2180   /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below.  */
2181   block_child_signals (&prev_mask);
2182 
2183   for (;;)
2184     {
2185       pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG);
2186       if (pid == -1 && errno == ECHILD)
2187 	{
2188 	  /* The thread has previously exited.  We need to delete it
2189 	     now because if this was a non-leader thread execing, we
2190 	     won't get an exit event.  See comments on exec events at
2191 	     the top of the file.  */
2192 	  thread_dead = 1;
2193 	  if (debug_linux_nat)
2194 	    fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n",
2195 				target_pid_to_str (lp->ptid));
2196 	}
2197       if (pid != 0)
2198 	break;
2199 
2200       /* Bugs 10970, 12702.
2201 	 Thread group leader may have exited in which case we'll lock up in
2202 	 waitpid if there are other threads, even if they are all zombies too.
2203 	 Basically, we're not supposed to use waitpid this way.
2204 	  tkill(pid,0) cannot be used here as it gets ESRCH for both
2205 	 for zombie and running processes.
2206 
2207 	 As a workaround, check if we're waiting for the thread group leader and
2208 	 if it's a zombie, and avoid calling waitpid if it is.
2209 
2210 	 This is racy, what if the tgl becomes a zombie right after we check?
2211 	 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2212 	 waiting waitpid but linux_proc_pid_is_zombie is safe this way.  */
2213 
2214       if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)
2215 	  && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid)))
2216 	{
2217 	  thread_dead = 1;
2218 	  if (debug_linux_nat)
2219 	    fprintf_unfiltered (gdb_stdlog,
2220 				"WL: Thread group leader %s vanished.\n",
2221 				target_pid_to_str (lp->ptid));
2222 	  break;
2223 	}
2224 
2225       /* Wait for next SIGCHLD and try again.  This may let SIGCHLD handlers
2226 	 get invoked despite our caller had them intentionally blocked by
2227 	 block_child_signals.  This is sensitive only to the loop of
2228 	 linux_nat_wait_1 and there if we get called my_waitpid gets called
2229 	 again before it gets to sigsuspend so we can safely let the handlers
2230 	 get executed here.  */
2231 
2232       if (debug_linux_nat)
2233 	fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n");
2234       sigsuspend (&suspend_mask);
2235     }
2236 
2237   restore_child_signals_mask (&prev_mask);
2238 
2239   if (!thread_dead)
2240     {
2241       gdb_assert (pid == ptid_get_lwp (lp->ptid));
2242 
2243       if (debug_linux_nat)
2244 	{
2245 	  fprintf_unfiltered (gdb_stdlog,
2246 			      "WL: waitpid %s received %s\n",
2247 			      target_pid_to_str (lp->ptid),
2248 			      status_to_str (status));
2249 	}
2250 
2251       /* Check if the thread has exited.  */
2252       if (WIFEXITED (status) || WIFSIGNALED (status))
2253 	{
2254 	  if (report_thread_events
2255 	      || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid))
2256 	    {
2257 	      if (debug_linux_nat)
2258 		fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n",
2259 				    ptid_get_pid (lp->ptid));
2260 
2261 	      /* If this is the leader exiting, it means the whole
2262 		 process is gone.  Store the status to report to the
2263 		 core.  Store it in lp->waitstatus, because lp->status
2264 		 would be ambiguous (W_EXITCODE(0,0) == 0).  */
2265 	      store_waitstatus (&lp->waitstatus, status);
2266 	      return 0;
2267 	    }
2268 
2269 	  thread_dead = 1;
2270 	  if (debug_linux_nat)
2271 	    fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n",
2272 				target_pid_to_str (lp->ptid));
2273 	}
2274     }
2275 
2276   if (thread_dead)
2277     {
2278       exit_lwp (lp);
2279       return 0;
2280     }
2281 
2282   gdb_assert (WIFSTOPPED (status));
2283   lp->stopped = 1;
2284 
2285   if (lp->must_set_ptrace_flags)
2286     {
2287       struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
2288       int options = linux_nat_ptrace_options (inf->attach_flag);
2289 
2290       linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
2291       lp->must_set_ptrace_flags = 0;
2292     }
2293 
2294   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2295   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2296     {
2297       /* No longer need the sysgood bit.  The ptrace event ends up
2298 	 recorded in lp->waitstatus if we care for it.  We can carry
2299 	 on handling the event like a regular SIGTRAP from here
2300 	 on.  */
2301       status = W_STOPCODE (SIGTRAP);
2302       if (linux_handle_syscall_trap (lp, 1))
2303 	return wait_lwp (lp);
2304     }
2305   else
2306     {
2307       /* Almost all other ptrace-stops are known to be outside of system
2308 	 calls, with further exceptions in linux_handle_extended_wait.  */
2309       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2310     }
2311 
2312   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2313   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2314       && linux_is_extended_waitstatus (status))
2315     {
2316       if (debug_linux_nat)
2317 	fprintf_unfiltered (gdb_stdlog,
2318 			    "WL: Handling extended status 0x%06x\n",
2319 			    status);
2320       linux_handle_extended_wait (lp, status);
2321       return 0;
2322     }
2323 
2324   return status;
2325 }
2326 
2327 /* Send a SIGSTOP to LP.  */
2328 
2329 static int
2330 stop_callback (struct lwp_info *lp, void *data)
2331 {
2332   if (!lp->stopped && !lp->signalled)
2333     {
2334       int ret;
2335 
2336       if (debug_linux_nat)
2337 	{
2338 	  fprintf_unfiltered (gdb_stdlog,
2339 			      "SC:  kill %s **<SIGSTOP>**\n",
2340 			      target_pid_to_str (lp->ptid));
2341 	}
2342       errno = 0;
2343       ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP);
2344       if (debug_linux_nat)
2345 	{
2346 	  fprintf_unfiltered (gdb_stdlog,
2347 			      "SC:  lwp kill %d %s\n",
2348 			      ret,
2349 			      errno ? safe_strerror (errno) : "ERRNO-OK");
2350 	}
2351 
2352       lp->signalled = 1;
2353       gdb_assert (lp->status == 0);
2354     }
2355 
2356   return 0;
2357 }
2358 
2359 /* Request a stop on LWP.  */
2360 
2361 void
2362 linux_stop_lwp (struct lwp_info *lwp)
2363 {
2364   stop_callback (lwp, NULL);
2365 }
2366 
2367 /* See linux-nat.h  */
2368 
2369 void
2370 linux_stop_and_wait_all_lwps (void)
2371 {
2372   /* Stop all LWP's ...  */
2373   iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
2374 
2375   /* ... and wait until all of them have reported back that
2376      they're no longer running.  */
2377   iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
2378 }
2379 
2380 /* See linux-nat.h  */
2381 
2382 void
2383 linux_unstop_all_lwps (void)
2384 {
2385   iterate_over_lwps (minus_one_ptid,
2386 		     resume_stopped_resumed_lwps, &minus_one_ptid);
2387 }
2388 
2389 /* Return non-zero if LWP PID has a pending SIGINT.  */
2390 
2391 static int
2392 linux_nat_has_pending_sigint (int pid)
2393 {
2394   sigset_t pending, blocked, ignored;
2395 
2396   linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2397 
2398   if (sigismember (&pending, SIGINT)
2399       && !sigismember (&ignored, SIGINT))
2400     return 1;
2401 
2402   return 0;
2403 }
2404 
2405 /* Set a flag in LP indicating that we should ignore its next SIGINT.  */
2406 
2407 static int
2408 set_ignore_sigint (struct lwp_info *lp, void *data)
2409 {
2410   /* If a thread has a pending SIGINT, consume it; otherwise, set a
2411      flag to consume the next one.  */
2412   if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2413       && WSTOPSIG (lp->status) == SIGINT)
2414     lp->status = 0;
2415   else
2416     lp->ignore_sigint = 1;
2417 
2418   return 0;
2419 }
2420 
2421 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2422    This function is called after we know the LWP has stopped; if the LWP
2423    stopped before the expected SIGINT was delivered, then it will never have
2424    arrived.  Also, if the signal was delivered to a shared queue and consumed
2425    by a different thread, it will never be delivered to this LWP.  */
2426 
2427 static void
2428 maybe_clear_ignore_sigint (struct lwp_info *lp)
2429 {
2430   if (!lp->ignore_sigint)
2431     return;
2432 
2433   if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid)))
2434     {
2435       if (debug_linux_nat)
2436 	fprintf_unfiltered (gdb_stdlog,
2437 			    "MCIS: Clearing bogus flag for %s\n",
2438 			    target_pid_to_str (lp->ptid));
2439       lp->ignore_sigint = 0;
2440     }
2441 }
2442 
2443 /* Fetch the possible triggered data watchpoint info and store it in
2444    LP.
2445 
2446    On some archs, like x86, that use debug registers to set
2447    watchpoints, it's possible that the way to know which watched
2448    address trapped, is to check the register that is used to select
2449    which address to watch.  Problem is, between setting the watchpoint
2450    and reading back which data address trapped, the user may change
2451    the set of watchpoints, and, as a consequence, GDB changes the
2452    debug registers in the inferior.  To avoid reading back a stale
2453    stopped-data-address when that happens, we cache in LP the fact
2454    that a watchpoint trapped, and the corresponding data address, as
2455    soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
2456    registers meanwhile, we have the cached data we can rely on.  */
2457 
2458 static int
2459 check_stopped_by_watchpoint (struct lwp_info *lp)
2460 {
2461   struct cleanup *old_chain;
2462 
2463   if (linux_ops->to_stopped_by_watchpoint == NULL)
2464     return 0;
2465 
2466   old_chain = save_inferior_ptid ();
2467   inferior_ptid = lp->ptid;
2468 
2469   if (linux_ops->to_stopped_by_watchpoint (linux_ops))
2470     {
2471       lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2472 
2473       if (linux_ops->to_stopped_data_address != NULL)
2474 	lp->stopped_data_address_p =
2475 	  linux_ops->to_stopped_data_address (&current_target,
2476 					      &lp->stopped_data_address);
2477       else
2478 	lp->stopped_data_address_p = 0;
2479     }
2480 
2481   do_cleanups (old_chain);
2482 
2483   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2484 }
2485 
2486 /* Returns true if the LWP had stopped for a watchpoint.  */
2487 
2488 static int
2489 linux_nat_stopped_by_watchpoint (struct target_ops *ops)
2490 {
2491   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2492 
2493   gdb_assert (lp != NULL);
2494 
2495   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2496 }
2497 
2498 static int
2499 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p)
2500 {
2501   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2502 
2503   gdb_assert (lp != NULL);
2504 
2505   *addr_p = lp->stopped_data_address;
2506 
2507   return lp->stopped_data_address_p;
2508 }
2509 
2510 /* Commonly any breakpoint / watchpoint generate only SIGTRAP.  */
2511 
2512 static int
2513 sigtrap_is_event (int status)
2514 {
2515   return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2516 }
2517 
2518 /* Set alternative SIGTRAP-like events recognizer.  If
2519    breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be
2520    applied.  */
2521 
2522 void
2523 linux_nat_set_status_is_event (struct target_ops *t,
2524 			       int (*status_is_event) (int status))
2525 {
2526   linux_nat_status_is_event = status_is_event;
2527 }
2528 
2529 /* Wait until LP is stopped.  */
2530 
2531 static int
2532 stop_wait_callback (struct lwp_info *lp, void *data)
2533 {
2534   struct inferior *inf = find_inferior_ptid (lp->ptid);
2535 
2536   /* If this is a vfork parent, bail out, it is not going to report
2537      any SIGSTOP until the vfork is done with.  */
2538   if (inf->vfork_child != NULL)
2539     return 0;
2540 
2541   if (!lp->stopped)
2542     {
2543       int status;
2544 
2545       status = wait_lwp (lp);
2546       if (status == 0)
2547 	return 0;
2548 
2549       if (lp->ignore_sigint && WIFSTOPPED (status)
2550 	  && WSTOPSIG (status) == SIGINT)
2551 	{
2552 	  lp->ignore_sigint = 0;
2553 
2554 	  errno = 0;
2555 	  ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0);
2556 	  lp->stopped = 0;
2557 	  if (debug_linux_nat)
2558 	    fprintf_unfiltered (gdb_stdlog,
2559 				"PTRACE_CONT %s, 0, 0 (%s) "
2560 				"(discarding SIGINT)\n",
2561 				target_pid_to_str (lp->ptid),
2562 				errno ? safe_strerror (errno) : "OK");
2563 
2564 	  return stop_wait_callback (lp, NULL);
2565 	}
2566 
2567       maybe_clear_ignore_sigint (lp);
2568 
2569       if (WSTOPSIG (status) != SIGSTOP)
2570 	{
2571 	  /* The thread was stopped with a signal other than SIGSTOP.  */
2572 
2573 	  if (debug_linux_nat)
2574 	    fprintf_unfiltered (gdb_stdlog,
2575 				"SWC: Pending event %s in %s\n",
2576 				status_to_str ((int) status),
2577 				target_pid_to_str (lp->ptid));
2578 
2579 	  /* Save the sigtrap event.  */
2580 	  lp->status = status;
2581 	  gdb_assert (lp->signalled);
2582 	  save_stop_reason (lp);
2583 	}
2584       else
2585 	{
2586 	  /* We caught the SIGSTOP that we intended to catch, so
2587 	     there's no SIGSTOP pending.  */
2588 
2589 	  if (debug_linux_nat)
2590 	    fprintf_unfiltered (gdb_stdlog,
2591 				"SWC: Expected SIGSTOP caught for %s.\n",
2592 				target_pid_to_str (lp->ptid));
2593 
2594 	  /* Reset SIGNALLED only after the stop_wait_callback call
2595 	     above as it does gdb_assert on SIGNALLED.  */
2596 	  lp->signalled = 0;
2597 	}
2598     }
2599 
2600   return 0;
2601 }
2602 
2603 /* Return non-zero if LP has a wait status pending.  Discard the
2604    pending event and resume the LWP if the event that originally
2605    caused the stop became uninteresting.  */
2606 
2607 static int
2608 status_callback (struct lwp_info *lp, void *data)
2609 {
2610   /* Only report a pending wait status if we pretend that this has
2611      indeed been resumed.  */
2612   if (!lp->resumed)
2613     return 0;
2614 
2615   if (!lwp_status_pending_p (lp))
2616     return 0;
2617 
2618   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2619       || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2620     {
2621       struct regcache *regcache = get_thread_regcache (lp->ptid);
2622       CORE_ADDR pc;
2623       int discard = 0;
2624 
2625       pc = regcache_read_pc (regcache);
2626 
2627       if (pc != lp->stop_pc)
2628 	{
2629 	  if (debug_linux_nat)
2630 	    fprintf_unfiltered (gdb_stdlog,
2631 				"SC: PC of %s changed.  was=%s, now=%s\n",
2632 				target_pid_to_str (lp->ptid),
2633 				paddress (target_gdbarch (), lp->stop_pc),
2634 				paddress (target_gdbarch (), pc));
2635 	  discard = 1;
2636 	}
2637 
2638 #if !USE_SIGTRAP_SIGINFO
2639       else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2640 	{
2641 	  if (debug_linux_nat)
2642 	    fprintf_unfiltered (gdb_stdlog,
2643 				"SC: previous breakpoint of %s, at %s gone\n",
2644 				target_pid_to_str (lp->ptid),
2645 				paddress (target_gdbarch (), lp->stop_pc));
2646 
2647 	  discard = 1;
2648 	}
2649 #endif
2650 
2651       if (discard)
2652 	{
2653 	  if (debug_linux_nat)
2654 	    fprintf_unfiltered (gdb_stdlog,
2655 				"SC: pending event of %s cancelled.\n",
2656 				target_pid_to_str (lp->ptid));
2657 
2658 	  lp->status = 0;
2659 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2660 	  return 0;
2661 	}
2662     }
2663 
2664   return 1;
2665 }
2666 
2667 /* Count the LWP's that have had events.  */
2668 
2669 static int
2670 count_events_callback (struct lwp_info *lp, void *data)
2671 {
2672   int *count = (int *) data;
2673 
2674   gdb_assert (count != NULL);
2675 
2676   /* Select only resumed LWPs that have an event pending.  */
2677   if (lp->resumed && lwp_status_pending_p (lp))
2678     (*count)++;
2679 
2680   return 0;
2681 }
2682 
2683 /* Select the LWP (if any) that is currently being single-stepped.  */
2684 
2685 static int
2686 select_singlestep_lwp_callback (struct lwp_info *lp, void *data)
2687 {
2688   if (lp->last_resume_kind == resume_step
2689       && lp->status != 0)
2690     return 1;
2691   else
2692     return 0;
2693 }
2694 
2695 /* Returns true if LP has a status pending.  */
2696 
2697 static int
2698 lwp_status_pending_p (struct lwp_info *lp)
2699 {
2700   /* We check for lp->waitstatus in addition to lp->status, because we
2701      can have pending process exits recorded in lp->status and
2702      W_EXITCODE(0,0) happens to be 0.  */
2703   return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2704 }
2705 
2706 /* Select the Nth LWP that has had an event.  */
2707 
2708 static int
2709 select_event_lwp_callback (struct lwp_info *lp, void *data)
2710 {
2711   int *selector = (int *) data;
2712 
2713   gdb_assert (selector != NULL);
2714 
2715   /* Select only resumed LWPs that have an event pending.  */
2716   if (lp->resumed && lwp_status_pending_p (lp))
2717     if ((*selector)-- == 0)
2718       return 1;
2719 
2720   return 0;
2721 }
2722 
2723 /* Called when the LWP stopped for a signal/trap.  If it stopped for a
2724    trap check what caused it (breakpoint, watchpoint, trace, etc.),
2725    and save the result in the LWP's stop_reason field.  If it stopped
2726    for a breakpoint, decrement the PC if necessary on the lwp's
2727    architecture.  */
2728 
2729 static void
2730 save_stop_reason (struct lwp_info *lp)
2731 {
2732   struct regcache *regcache;
2733   struct gdbarch *gdbarch;
2734   CORE_ADDR pc;
2735   CORE_ADDR sw_bp_pc;
2736 #if USE_SIGTRAP_SIGINFO
2737   siginfo_t siginfo;
2738 #endif
2739 
2740   gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2741   gdb_assert (lp->status != 0);
2742 
2743   if (!linux_nat_status_is_event (lp->status))
2744     return;
2745 
2746   regcache = get_thread_regcache (lp->ptid);
2747   gdbarch = get_regcache_arch (regcache);
2748 
2749   pc = regcache_read_pc (regcache);
2750   sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2751 
2752 #if USE_SIGTRAP_SIGINFO
2753   if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2754     {
2755       if (siginfo.si_signo == SIGTRAP)
2756 	{
2757 	  if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2758 	      && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2759 	    {
2760 	      /* The si_code is ambiguous on this arch -- check debug
2761 		 registers.  */
2762 	      if (!check_stopped_by_watchpoint (lp))
2763 		lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2764 	    }
2765 	  else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2766 	    {
2767 	      /* If we determine the LWP stopped for a SW breakpoint,
2768 		 trust it.  Particularly don't check watchpoint
2769 		 registers, because at least on s390, we'd find
2770 		 stopped-by-watchpoint as long as there's a watchpoint
2771 		 set.  */
2772 	      lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2773 	    }
2774 	  else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2775 	    {
2776 	      /* This can indicate either a hardware breakpoint or
2777 		 hardware watchpoint.  Check debug registers.  */
2778 	      if (!check_stopped_by_watchpoint (lp))
2779 		lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2780 	    }
2781 	  else if (siginfo.si_code == TRAP_TRACE)
2782 	    {
2783 	      if (debug_linux_nat)
2784 		fprintf_unfiltered (gdb_stdlog,
2785 				    "CSBB: %s stopped by trace\n",
2786 				    target_pid_to_str (lp->ptid));
2787 
2788 	      /* We may have single stepped an instruction that
2789 		 triggered a watchpoint.  In that case, on some
2790 		 architectures (such as x86), instead of TRAP_HWBKPT,
2791 		 si_code indicates TRAP_TRACE, and we need to check
2792 		 the debug registers separately.  */
2793 	      check_stopped_by_watchpoint (lp);
2794 	    }
2795 	}
2796     }
2797 #else
2798   if ((!lp->step || lp->stop_pc == sw_bp_pc)
2799       && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache),
2800 					      sw_bp_pc))
2801     {
2802       /* The LWP was either continued, or stepped a software
2803 	 breakpoint instruction.  */
2804       lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2805     }
2806 
2807   if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
2808     lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2809 
2810   if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2811     check_stopped_by_watchpoint (lp);
2812 #endif
2813 
2814   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2815     {
2816       if (debug_linux_nat)
2817 	fprintf_unfiltered (gdb_stdlog,
2818 			    "CSBB: %s stopped by software breakpoint\n",
2819 			    target_pid_to_str (lp->ptid));
2820 
2821       /* Back up the PC if necessary.  */
2822       if (pc != sw_bp_pc)
2823 	regcache_write_pc (regcache, sw_bp_pc);
2824 
2825       /* Update this so we record the correct stop PC below.  */
2826       pc = sw_bp_pc;
2827     }
2828   else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2829     {
2830       if (debug_linux_nat)
2831 	fprintf_unfiltered (gdb_stdlog,
2832 			    "CSBB: %s stopped by hardware breakpoint\n",
2833 			    target_pid_to_str (lp->ptid));
2834     }
2835   else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2836     {
2837       if (debug_linux_nat)
2838 	fprintf_unfiltered (gdb_stdlog,
2839 			    "CSBB: %s stopped by hardware watchpoint\n",
2840 			    target_pid_to_str (lp->ptid));
2841     }
2842 
2843   lp->stop_pc = pc;
2844 }
2845 
2846 
2847 /* Returns true if the LWP had stopped for a software breakpoint.  */
2848 
2849 static int
2850 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops)
2851 {
2852   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2853 
2854   gdb_assert (lp != NULL);
2855 
2856   return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2857 }
2858 
2859 /* Implement the supports_stopped_by_sw_breakpoint method.  */
2860 
2861 static int
2862 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops)
2863 {
2864   return USE_SIGTRAP_SIGINFO;
2865 }
2866 
2867 /* Returns true if the LWP had stopped for a hardware
2868    breakpoint/watchpoint.  */
2869 
2870 static int
2871 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops)
2872 {
2873   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2874 
2875   gdb_assert (lp != NULL);
2876 
2877   return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2878 }
2879 
2880 /* Implement the supports_stopped_by_hw_breakpoint method.  */
2881 
2882 static int
2883 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops)
2884 {
2885   return USE_SIGTRAP_SIGINFO;
2886 }
2887 
2888 /* Select one LWP out of those that have events pending.  */
2889 
2890 static void
2891 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2892 {
2893   int num_events = 0;
2894   int random_selector;
2895   struct lwp_info *event_lp = NULL;
2896 
2897   /* Record the wait status for the original LWP.  */
2898   (*orig_lp)->status = *status;
2899 
2900   /* In all-stop, give preference to the LWP that is being
2901      single-stepped.  There will be at most one, and it will be the
2902      LWP that the core is most interested in.  If we didn't do this,
2903      then we'd have to handle pending step SIGTRAPs somehow in case
2904      the core later continues the previously-stepped thread, as
2905      otherwise we'd report the pending SIGTRAP then, and the core, not
2906      having stepped the thread, wouldn't understand what the trap was
2907      for, and therefore would report it to the user as a random
2908      signal.  */
2909   if (!target_is_non_stop_p ())
2910     {
2911       event_lp = iterate_over_lwps (filter,
2912 				    select_singlestep_lwp_callback, NULL);
2913       if (event_lp != NULL)
2914 	{
2915 	  if (debug_linux_nat)
2916 	    fprintf_unfiltered (gdb_stdlog,
2917 				"SEL: Select single-step %s\n",
2918 				target_pid_to_str (event_lp->ptid));
2919 	}
2920     }
2921 
2922   if (event_lp == NULL)
2923     {
2924       /* Pick one at random, out of those which have had events.  */
2925 
2926       /* First see how many events we have.  */
2927       iterate_over_lwps (filter, count_events_callback, &num_events);
2928       gdb_assert (num_events > 0);
2929 
2930       /* Now randomly pick a LWP out of those that have had
2931 	 events.  */
2932       random_selector = (int)
2933 	((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2934 
2935       if (debug_linux_nat && num_events > 1)
2936 	fprintf_unfiltered (gdb_stdlog,
2937 			    "SEL: Found %d events, selecting #%d\n",
2938 			    num_events, random_selector);
2939 
2940       event_lp = iterate_over_lwps (filter,
2941 				    select_event_lwp_callback,
2942 				    &random_selector);
2943     }
2944 
2945   if (event_lp != NULL)
2946     {
2947       /* Switch the event LWP.  */
2948       *orig_lp = event_lp;
2949       *status = event_lp->status;
2950     }
2951 
2952   /* Flush the wait status for the event LWP.  */
2953   (*orig_lp)->status = 0;
2954 }
2955 
2956 /* Return non-zero if LP has been resumed.  */
2957 
2958 static int
2959 resumed_callback (struct lwp_info *lp, void *data)
2960 {
2961   return lp->resumed;
2962 }
2963 
2964 /* Check if we should go on and pass this event to common code.
2965    Return the affected lwp if we are, or NULL otherwise.  */
2966 
2967 static struct lwp_info *
2968 linux_nat_filter_event (int lwpid, int status)
2969 {
2970   struct lwp_info *lp;
2971   int event = linux_ptrace_get_extended_event (status);
2972 
2973   lp = find_lwp_pid (pid_to_ptid (lwpid));
2974 
2975   /* Check for stop events reported by a process we didn't already
2976      know about - anything not already in our LWP list.
2977 
2978      If we're expecting to receive stopped processes after
2979      fork, vfork, and clone events, then we'll just add the
2980      new one to our list and go back to waiting for the event
2981      to be reported - the stopped process might be returned
2982      from waitpid before or after the event is.
2983 
2984      But note the case of a non-leader thread exec'ing after the
2985      leader having exited, and gone from our lists.  The non-leader
2986      thread changes its tid to the tgid.  */
2987 
2988   if (WIFSTOPPED (status) && lp == NULL
2989       && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2990     {
2991       /* A multi-thread exec after we had seen the leader exiting.  */
2992       if (debug_linux_nat)
2993 	fprintf_unfiltered (gdb_stdlog,
2994 			    "LLW: Re-adding thread group leader LWP %d.\n",
2995 			    lwpid);
2996 
2997       lp = add_lwp (ptid_build (lwpid, lwpid, 0));
2998       lp->stopped = 1;
2999       lp->resumed = 1;
3000       add_thread (lp->ptid);
3001     }
3002 
3003   if (WIFSTOPPED (status) && !lp)
3004     {
3005       if (debug_linux_nat)
3006 	fprintf_unfiltered (gdb_stdlog,
3007 			    "LHEW: saving LWP %ld status %s in stopped_pids list\n",
3008 			    (long) lwpid, status_to_str (status));
3009       add_to_pid_list (&stopped_pids, lwpid, status);
3010       return NULL;
3011     }
3012 
3013   /* Make sure we don't report an event for the exit of an LWP not in
3014      our list, i.e. not part of the current process.  This can happen
3015      if we detach from a program we originally forked and then it
3016      exits.  */
3017   if (!WIFSTOPPED (status) && !lp)
3018     return NULL;
3019 
3020   /* This LWP is stopped now.  (And if dead, this prevents it from
3021      ever being continued.)  */
3022   lp->stopped = 1;
3023 
3024   if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
3025     {
3026       struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid));
3027       int options = linux_nat_ptrace_options (inf->attach_flag);
3028 
3029       linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options);
3030       lp->must_set_ptrace_flags = 0;
3031     }
3032 
3033   /* Handle GNU/Linux's syscall SIGTRAPs.  */
3034   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
3035     {
3036       /* No longer need the sysgood bit.  The ptrace event ends up
3037 	 recorded in lp->waitstatus if we care for it.  We can carry
3038 	 on handling the event like a regular SIGTRAP from here
3039 	 on.  */
3040       status = W_STOPCODE (SIGTRAP);
3041       if (linux_handle_syscall_trap (lp, 0))
3042 	return NULL;
3043     }
3044   else
3045     {
3046       /* Almost all other ptrace-stops are known to be outside of system
3047 	 calls, with further exceptions in linux_handle_extended_wait.  */
3048       lp->syscall_state = TARGET_WAITKIND_IGNORE;
3049     }
3050 
3051   /* Handle GNU/Linux's extended waitstatus for trace events.  */
3052   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
3053       && linux_is_extended_waitstatus (status))
3054     {
3055       if (debug_linux_nat)
3056 	fprintf_unfiltered (gdb_stdlog,
3057 			    "LLW: Handling extended status 0x%06x\n",
3058 			    status);
3059       if (linux_handle_extended_wait (lp, status))
3060 	return NULL;
3061     }
3062 
3063   /* Check if the thread has exited.  */
3064   if (WIFEXITED (status) || WIFSIGNALED (status))
3065     {
3066       if (!report_thread_events
3067 	  && num_lwps (ptid_get_pid (lp->ptid)) > 1)
3068 	{
3069 	  if (debug_linux_nat)
3070 	    fprintf_unfiltered (gdb_stdlog,
3071 				"LLW: %s exited.\n",
3072 				target_pid_to_str (lp->ptid));
3073 
3074 	  /* If there is at least one more LWP, then the exit signal
3075 	     was not the end of the debugged application and should be
3076 	     ignored.  */
3077 	  exit_lwp (lp);
3078 	  return NULL;
3079 	}
3080 
3081       /* Note that even if the leader was ptrace-stopped, it can still
3082 	 exit, if e.g., some other thread brings down the whole
3083 	 process (calls `exit').  So don't assert that the lwp is
3084 	 resumed.  */
3085       if (debug_linux_nat)
3086 	fprintf_unfiltered (gdb_stdlog,
3087 			    "LWP %ld exited (resumed=%d)\n",
3088 			    ptid_get_lwp (lp->ptid), lp->resumed);
3089 
3090       /* Dead LWP's aren't expected to reported a pending sigstop.  */
3091       lp->signalled = 0;
3092 
3093       /* Store the pending event in the waitstatus, because
3094 	 W_EXITCODE(0,0) == 0.  */
3095       store_waitstatus (&lp->waitstatus, status);
3096       return lp;
3097     }
3098 
3099   /* Make sure we don't report a SIGSTOP that we sent ourselves in
3100      an attempt to stop an LWP.  */
3101   if (lp->signalled
3102       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
3103     {
3104       lp->signalled = 0;
3105 
3106       if (lp->last_resume_kind == resume_stop)
3107 	{
3108 	  if (debug_linux_nat)
3109 	    fprintf_unfiltered (gdb_stdlog,
3110 				"LLW: resume_stop SIGSTOP caught for %s.\n",
3111 				target_pid_to_str (lp->ptid));
3112 	}
3113       else
3114 	{
3115 	  /* This is a delayed SIGSTOP.  Filter out the event.  */
3116 
3117 	  if (debug_linux_nat)
3118 	    fprintf_unfiltered (gdb_stdlog,
3119 				"LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
3120 				lp->step ?
3121 				"PTRACE_SINGLESTEP" : "PTRACE_CONT",
3122 				target_pid_to_str (lp->ptid));
3123 
3124 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3125 	  gdb_assert (lp->resumed);
3126 	  return NULL;
3127 	}
3128     }
3129 
3130   /* Make sure we don't report a SIGINT that we have already displayed
3131      for another thread.  */
3132   if (lp->ignore_sigint
3133       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
3134     {
3135       if (debug_linux_nat)
3136 	fprintf_unfiltered (gdb_stdlog,
3137 			    "LLW: Delayed SIGINT caught for %s.\n",
3138 			    target_pid_to_str (lp->ptid));
3139 
3140       /* This is a delayed SIGINT.  */
3141       lp->ignore_sigint = 0;
3142 
3143       linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
3144       if (debug_linux_nat)
3145 	fprintf_unfiltered (gdb_stdlog,
3146 			    "LLW: %s %s, 0, 0 (discard SIGINT)\n",
3147 			    lp->step ?
3148 			    "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3149 			    target_pid_to_str (lp->ptid));
3150       gdb_assert (lp->resumed);
3151 
3152       /* Discard the event.  */
3153       return NULL;
3154     }
3155 
3156   /* Don't report signals that GDB isn't interested in, such as
3157      signals that are neither printed nor stopped upon.  Stopping all
3158      threads can be a bit time-consuming so if we want decent
3159      performance with heavily multi-threaded programs, especially when
3160      they're using a high frequency timer, we'd better avoid it if we
3161      can.  */
3162   if (WIFSTOPPED (status))
3163     {
3164       enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3165 
3166       if (!target_is_non_stop_p ())
3167 	{
3168 	  /* Only do the below in all-stop, as we currently use SIGSTOP
3169 	     to implement target_stop (see linux_nat_stop) in
3170 	     non-stop.  */
3171 	  if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3172 	    {
3173 	      /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3174 		 forwarded to the entire process group, that is, all LWPs
3175 		 will receive it - unless they're using CLONE_THREAD to
3176 		 share signals.  Since we only want to report it once, we
3177 		 mark it as ignored for all LWPs except this one.  */
3178 	      iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)),
3179 					      set_ignore_sigint, NULL);
3180 	      lp->ignore_sigint = 0;
3181 	    }
3182 	  else
3183 	    maybe_clear_ignore_sigint (lp);
3184 	}
3185 
3186       /* When using hardware single-step, we need to report every signal.
3187 	 Otherwise, signals in pass_mask may be short-circuited
3188 	 except signals that might be caused by a breakpoint.  */
3189       if (!lp->step
3190 	  && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3191 	  && !linux_wstatus_maybe_breakpoint (status))
3192 	{
3193 	  linux_resume_one_lwp (lp, lp->step, signo);
3194 	  if (debug_linux_nat)
3195 	    fprintf_unfiltered (gdb_stdlog,
3196 				"LLW: %s %s, %s (preempt 'handle')\n",
3197 				lp->step ?
3198 				"PTRACE_SINGLESTEP" : "PTRACE_CONT",
3199 				target_pid_to_str (lp->ptid),
3200 				(signo != GDB_SIGNAL_0
3201 				 ? strsignal (gdb_signal_to_host (signo))
3202 				 : "0"));
3203 	  return NULL;
3204 	}
3205     }
3206 
3207   /* An interesting event.  */
3208   gdb_assert (lp);
3209   lp->status = status;
3210   save_stop_reason (lp);
3211   return lp;
3212 }
3213 
3214 /* Detect zombie thread group leaders, and "exit" them.  We can't reap
3215    their exits until all other threads in the group have exited.  */
3216 
3217 static void
3218 check_zombie_leaders (void)
3219 {
3220   struct inferior *inf;
3221 
3222   ALL_INFERIORS (inf)
3223     {
3224       struct lwp_info *leader_lp;
3225 
3226       if (inf->pid == 0)
3227 	continue;
3228 
3229       leader_lp = find_lwp_pid (pid_to_ptid (inf->pid));
3230       if (leader_lp != NULL
3231 	  /* Check if there are other threads in the group, as we may
3232 	     have raced with the inferior simply exiting.  */
3233 	  && num_lwps (inf->pid) > 1
3234 	  && linux_proc_pid_is_zombie (inf->pid))
3235 	{
3236 	  if (debug_linux_nat)
3237 	    fprintf_unfiltered (gdb_stdlog,
3238 				"CZL: Thread group leader %d zombie "
3239 				"(it exited, or another thread execd).\n",
3240 				inf->pid);
3241 
3242 	  /* A leader zombie can mean one of two things:
3243 
3244 	     - It exited, and there's an exit status pending
3245 	     available, or only the leader exited (not the whole
3246 	     program).  In the latter case, we can't waitpid the
3247 	     leader's exit status until all other threads are gone.
3248 
3249 	     - There are 3 or more threads in the group, and a thread
3250 	     other than the leader exec'd.  See comments on exec
3251 	     events at the top of the file.  We could try
3252 	     distinguishing the exit and exec cases, by waiting once
3253 	     more, and seeing if something comes out, but it doesn't
3254 	     sound useful.  The previous leader _does_ go away, and
3255 	     we'll re-add the new one once we see the exec event
3256 	     (which is just the same as what would happen if the
3257 	     previous leader did exit voluntarily before some other
3258 	     thread execs).  */
3259 
3260 	  if (debug_linux_nat)
3261 	    fprintf_unfiltered (gdb_stdlog,
3262 				"CZL: Thread group leader %d vanished.\n",
3263 				inf->pid);
3264 	  exit_lwp (leader_lp);
3265 	}
3266     }
3267 }
3268 
3269 /* Convenience function that is called when the kernel reports an exit
3270    event.  This decides whether to report the event to GDB as a
3271    process exit event, a thread exit event, or to suppress the
3272    event.  */
3273 
3274 static ptid_t
3275 filter_exit_event (struct lwp_info *event_child,
3276 		   struct target_waitstatus *ourstatus)
3277 {
3278   ptid_t ptid = event_child->ptid;
3279 
3280   if (num_lwps (ptid_get_pid (ptid)) > 1)
3281     {
3282       if (report_thread_events)
3283 	ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3284       else
3285 	ourstatus->kind = TARGET_WAITKIND_IGNORE;
3286 
3287       exit_lwp (event_child);
3288     }
3289 
3290   return ptid;
3291 }
3292 
3293 static ptid_t
3294 linux_nat_wait_1 (struct target_ops *ops,
3295 		  ptid_t ptid, struct target_waitstatus *ourstatus,
3296 		  int target_options)
3297 {
3298   sigset_t prev_mask;
3299   enum resume_kind last_resume_kind;
3300   struct lwp_info *lp;
3301   int status;
3302 
3303   if (debug_linux_nat)
3304     fprintf_unfiltered (gdb_stdlog, "LLW: enter\n");
3305 
3306   /* The first time we get here after starting a new inferior, we may
3307      not have added it to the LWP list yet - this is the earliest
3308      moment at which we know its PID.  */
3309   if (ptid_is_pid (inferior_ptid))
3310     {
3311       /* Upgrade the main thread's ptid.  */
3312       thread_change_ptid (inferior_ptid,
3313 			  ptid_build (ptid_get_pid (inferior_ptid),
3314 				      ptid_get_pid (inferior_ptid), 0));
3315 
3316       lp = add_initial_lwp (inferior_ptid);
3317       lp->resumed = 1;
3318     }
3319 
3320   /* Make sure SIGCHLD is blocked until the sigsuspend below.  */
3321   block_child_signals (&prev_mask);
3322 
3323   /* First check if there is a LWP with a wait status pending.  */
3324   lp = iterate_over_lwps (ptid, status_callback, NULL);
3325   if (lp != NULL)
3326     {
3327       if (debug_linux_nat)
3328 	fprintf_unfiltered (gdb_stdlog,
3329 			    "LLW: Using pending wait status %s for %s.\n",
3330 			    status_to_str (lp->status),
3331 			    target_pid_to_str (lp->ptid));
3332     }
3333 
3334   /* But if we don't find a pending event, we'll have to wait.  Always
3335      pull all events out of the kernel.  We'll randomly select an
3336      event LWP out of all that have events, to prevent starvation.  */
3337 
3338   while (lp == NULL)
3339     {
3340       pid_t lwpid;
3341 
3342       /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3343 	 quirks:
3344 
3345 	 - If the thread group leader exits while other threads in the
3346 	   thread group still exist, waitpid(TGID, ...) hangs.  That
3347 	   waitpid won't return an exit status until the other threads
3348 	   in the group are reapped.
3349 
3350 	 - When a non-leader thread execs, that thread just vanishes
3351 	   without reporting an exit (so we'd hang if we waited for it
3352 	   explicitly in that case).  The exec event is reported to
3353 	   the TGID pid.  */
3354 
3355       errno = 0;
3356       lwpid = my_waitpid (-1, &status,  __WALL | WNOHANG);
3357 
3358       if (debug_linux_nat)
3359 	fprintf_unfiltered (gdb_stdlog,
3360 			    "LNW: waitpid(-1, ...) returned %d, %s\n",
3361 			    lwpid, errno ? safe_strerror (errno) : "ERRNO-OK");
3362 
3363       if (lwpid > 0)
3364 	{
3365 	  if (debug_linux_nat)
3366 	    {
3367 	      fprintf_unfiltered (gdb_stdlog,
3368 				  "LLW: waitpid %ld received %s\n",
3369 				  (long) lwpid, status_to_str (status));
3370 	    }
3371 
3372 	  linux_nat_filter_event (lwpid, status);
3373 	  /* Retry until nothing comes out of waitpid.  A single
3374 	     SIGCHLD can indicate more than one child stopped.  */
3375 	  continue;
3376 	}
3377 
3378       /* Now that we've pulled all events out of the kernel, resume
3379 	 LWPs that don't have an interesting event to report.  */
3380       iterate_over_lwps (minus_one_ptid,
3381 			 resume_stopped_resumed_lwps, &minus_one_ptid);
3382 
3383       /* ... and find an LWP with a status to report to the core, if
3384 	 any.  */
3385       lp = iterate_over_lwps (ptid, status_callback, NULL);
3386       if (lp != NULL)
3387 	break;
3388 
3389       /* Check for zombie thread group leaders.  Those can't be reaped
3390 	 until all other threads in the thread group are.  */
3391       check_zombie_leaders ();
3392 
3393       /* If there are no resumed children left, bail.  We'd be stuck
3394 	 forever in the sigsuspend call below otherwise.  */
3395       if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL)
3396 	{
3397 	  if (debug_linux_nat)
3398 	    fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n");
3399 
3400 	  ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3401 
3402 	  restore_child_signals_mask (&prev_mask);
3403 	  return minus_one_ptid;
3404 	}
3405 
3406       /* No interesting event to report to the core.  */
3407 
3408       if (target_options & TARGET_WNOHANG)
3409 	{
3410 	  if (debug_linux_nat)
3411 	    fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n");
3412 
3413 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
3414 	  restore_child_signals_mask (&prev_mask);
3415 	  return minus_one_ptid;
3416 	}
3417 
3418       /* We shouldn't end up here unless we want to try again.  */
3419       gdb_assert (lp == NULL);
3420 
3421       /* Block until we get an event reported with SIGCHLD.  */
3422       if (debug_linux_nat)
3423 	fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n");
3424       sigsuspend (&suspend_mask);
3425     }
3426 
3427   gdb_assert (lp);
3428 
3429   status = lp->status;
3430   lp->status = 0;
3431 
3432   if (!target_is_non_stop_p ())
3433     {
3434       /* Now stop all other LWP's ...  */
3435       iterate_over_lwps (minus_one_ptid, stop_callback, NULL);
3436 
3437       /* ... and wait until all of them have reported back that
3438 	 they're no longer running.  */
3439       iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL);
3440     }
3441 
3442   /* If we're not waiting for a specific LWP, choose an event LWP from
3443      among those that have had events.  Giving equal priority to all
3444      LWPs that have had events helps prevent starvation.  */
3445   if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
3446     select_event_lwp (ptid, &lp, &status);
3447 
3448   gdb_assert (lp != NULL);
3449 
3450   /* Now that we've selected our final event LWP, un-adjust its PC if
3451      it was a software breakpoint, and we can't reliably support the
3452      "stopped by software breakpoint" stop reason.  */
3453   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3454       && !USE_SIGTRAP_SIGINFO)
3455     {
3456       struct regcache *regcache = get_thread_regcache (lp->ptid);
3457       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3458       int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3459 
3460       if (decr_pc != 0)
3461 	{
3462 	  CORE_ADDR pc;
3463 
3464 	  pc = regcache_read_pc (regcache);
3465 	  regcache_write_pc (regcache, pc + decr_pc);
3466 	}
3467     }
3468 
3469   /* We'll need this to determine whether to report a SIGSTOP as
3470      GDB_SIGNAL_0.  Need to take a copy because resume_clear_callback
3471      clears it.  */
3472   last_resume_kind = lp->last_resume_kind;
3473 
3474   if (!target_is_non_stop_p ())
3475     {
3476       /* In all-stop, from the core's perspective, all LWPs are now
3477 	 stopped until a new resume action is sent over.  */
3478       iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL);
3479     }
3480   else
3481     {
3482       resume_clear_callback (lp, NULL);
3483     }
3484 
3485   if (linux_nat_status_is_event (status))
3486     {
3487       if (debug_linux_nat)
3488 	fprintf_unfiltered (gdb_stdlog,
3489 			    "LLW: trap ptid is %s.\n",
3490 			    target_pid_to_str (lp->ptid));
3491     }
3492 
3493   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3494     {
3495       *ourstatus = lp->waitstatus;
3496       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3497     }
3498   else
3499     store_waitstatus (ourstatus, status);
3500 
3501   if (debug_linux_nat)
3502     fprintf_unfiltered (gdb_stdlog, "LLW: exit\n");
3503 
3504   restore_child_signals_mask (&prev_mask);
3505 
3506   if (last_resume_kind == resume_stop
3507       && ourstatus->kind == TARGET_WAITKIND_STOPPED
3508       && WSTOPSIG (status) == SIGSTOP)
3509     {
3510       /* A thread that has been requested to stop by GDB with
3511 	 target_stop, and it stopped cleanly, so report as SIG0.  The
3512 	 use of SIGSTOP is an implementation detail.  */
3513       ourstatus->value.sig = GDB_SIGNAL_0;
3514     }
3515 
3516   if (ourstatus->kind == TARGET_WAITKIND_EXITED
3517       || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3518     lp->core = -1;
3519   else
3520     lp->core = linux_common_core_of_thread (lp->ptid);
3521 
3522   if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3523     return filter_exit_event (lp, ourstatus);
3524 
3525   return lp->ptid;
3526 }
3527 
3528 /* Resume LWPs that are currently stopped without any pending status
3529    to report, but are resumed from the core's perspective.  */
3530 
3531 static int
3532 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data)
3533 {
3534   ptid_t *wait_ptid_p = (ptid_t *) data;
3535 
3536   if (!lp->stopped)
3537     {
3538       if (debug_linux_nat)
3539 	fprintf_unfiltered (gdb_stdlog,
3540 			    "RSRL: NOT resuming LWP %s, not stopped\n",
3541 			    target_pid_to_str (lp->ptid));
3542     }
3543   else if (!lp->resumed)
3544     {
3545       if (debug_linux_nat)
3546 	fprintf_unfiltered (gdb_stdlog,
3547 			    "RSRL: NOT resuming LWP %s, not resumed\n",
3548 			    target_pid_to_str (lp->ptid));
3549     }
3550   else if (lwp_status_pending_p (lp))
3551     {
3552       if (debug_linux_nat)
3553 	fprintf_unfiltered (gdb_stdlog,
3554 			    "RSRL: NOT resuming LWP %s, has pending status\n",
3555 			    target_pid_to_str (lp->ptid));
3556     }
3557   else
3558     {
3559       struct regcache *regcache = get_thread_regcache (lp->ptid);
3560       struct gdbarch *gdbarch = get_regcache_arch (regcache);
3561 
3562       TRY
3563 	{
3564 	  CORE_ADDR pc = regcache_read_pc (regcache);
3565 	  int leave_stopped = 0;
3566 
3567 	  /* Don't bother if there's a breakpoint at PC that we'd hit
3568 	     immediately, and we're not waiting for this LWP.  */
3569 	  if (!ptid_match (lp->ptid, *wait_ptid_p))
3570 	    {
3571 	      if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc))
3572 		leave_stopped = 1;
3573 	    }
3574 
3575 	  if (!leave_stopped)
3576 	    {
3577 	      if (debug_linux_nat)
3578 		fprintf_unfiltered (gdb_stdlog,
3579 				    "RSRL: resuming stopped-resumed LWP %s at "
3580 				    "%s: step=%d\n",
3581 				    target_pid_to_str (lp->ptid),
3582 				    paddress (gdbarch, pc),
3583 				    lp->step);
3584 
3585 	      linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3586 	    }
3587 	}
3588       CATCH (ex, RETURN_MASK_ERROR)
3589 	{
3590 	  if (!check_ptrace_stopped_lwp_gone (lp))
3591 	    throw_exception (ex);
3592 	}
3593       END_CATCH
3594     }
3595 
3596   return 0;
3597 }
3598 
3599 static ptid_t
3600 linux_nat_wait (struct target_ops *ops,
3601 		ptid_t ptid, struct target_waitstatus *ourstatus,
3602 		int target_options)
3603 {
3604   ptid_t event_ptid;
3605 
3606   if (debug_linux_nat)
3607     {
3608       char *options_string;
3609 
3610       options_string = target_options_to_string (target_options);
3611       fprintf_unfiltered (gdb_stdlog,
3612 			  "linux_nat_wait: [%s], [%s]\n",
3613 			  target_pid_to_str (ptid),
3614 			  options_string);
3615       xfree (options_string);
3616     }
3617 
3618   /* Flush the async file first.  */
3619   if (target_is_async_p ())
3620     async_file_flush ();
3621 
3622   /* Resume LWPs that are currently stopped without any pending status
3623      to report, but are resumed from the core's perspective.  LWPs get
3624      in this state if we find them stopping at a time we're not
3625      interested in reporting the event (target_wait on a
3626      specific_process, for example, see linux_nat_wait_1), and
3627      meanwhile the event became uninteresting.  Don't bother resuming
3628      LWPs we're not going to wait for if they'd stop immediately.  */
3629   if (target_is_non_stop_p ())
3630     iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid);
3631 
3632   event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options);
3633 
3634   /* If we requested any event, and something came out, assume there
3635      may be more.  If we requested a specific lwp or process, also
3636      assume there may be more.  */
3637   if (target_is_async_p ()
3638       && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3639 	   && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3640 	  || !ptid_equal (ptid, minus_one_ptid)))
3641     async_file_mark ();
3642 
3643   return event_ptid;
3644 }
3645 
3646 /* Kill one LWP.  */
3647 
3648 static void
3649 kill_one_lwp (pid_t pid)
3650 {
3651   /* PTRACE_KILL may resume the inferior.  Send SIGKILL first.  */
3652 
3653   errno = 0;
3654   kill_lwp (pid, SIGKILL);
3655   if (debug_linux_nat)
3656     {
3657       int save_errno = errno;
3658 
3659       fprintf_unfiltered (gdb_stdlog,
3660 			  "KC:  kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid,
3661 			  save_errno ? safe_strerror (save_errno) : "OK");
3662     }
3663 
3664   /* Some kernels ignore even SIGKILL for processes under ptrace.  */
3665 
3666   errno = 0;
3667   ptrace (PTRACE_KILL, pid, 0, 0);
3668   if (debug_linux_nat)
3669     {
3670       int save_errno = errno;
3671 
3672       fprintf_unfiltered (gdb_stdlog,
3673 			  "KC:  PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid,
3674 			  save_errno ? safe_strerror (save_errno) : "OK");
3675     }
3676 }
3677 
3678 /* Wait for an LWP to die.  */
3679 
3680 static void
3681 kill_wait_one_lwp (pid_t pid)
3682 {
3683   pid_t res;
3684 
3685   /* We must make sure that there are no pending events (delayed
3686      SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3687      program doesn't interfere with any following debugging session.  */
3688 
3689   do
3690     {
3691       res = my_waitpid (pid, NULL, __WALL);
3692       if (res != (pid_t) -1)
3693 	{
3694 	  if (debug_linux_nat)
3695 	    fprintf_unfiltered (gdb_stdlog,
3696 				"KWC: wait %ld received unknown.\n",
3697 				(long) pid);
3698 	  /* The Linux kernel sometimes fails to kill a thread
3699 	     completely after PTRACE_KILL; that goes from the stop
3700 	     point in do_fork out to the one in get_signal_to_deliver
3701 	     and waits again.  So kill it again.  */
3702 	  kill_one_lwp (pid);
3703 	}
3704     }
3705   while (res == pid);
3706 
3707   gdb_assert (res == -1 && errno == ECHILD);
3708 }
3709 
3710 /* Callback for iterate_over_lwps.  */
3711 
3712 static int
3713 kill_callback (struct lwp_info *lp, void *data)
3714 {
3715   kill_one_lwp (ptid_get_lwp (lp->ptid));
3716   return 0;
3717 }
3718 
3719 /* Callback for iterate_over_lwps.  */
3720 
3721 static int
3722 kill_wait_callback (struct lwp_info *lp, void *data)
3723 {
3724   kill_wait_one_lwp (ptid_get_lwp (lp->ptid));
3725   return 0;
3726 }
3727 
3728 /* Kill the fork children of any threads of inferior INF that are
3729    stopped at a fork event.  */
3730 
3731 static void
3732 kill_unfollowed_fork_children (struct inferior *inf)
3733 {
3734   struct thread_info *thread;
3735 
3736   ALL_NON_EXITED_THREADS (thread)
3737     if (thread->inf == inf)
3738       {
3739 	struct target_waitstatus *ws = &thread->pending_follow;
3740 
3741 	if (ws->kind == TARGET_WAITKIND_FORKED
3742 	    || ws->kind == TARGET_WAITKIND_VFORKED)
3743 	  {
3744 	    ptid_t child_ptid = ws->value.related_pid;
3745 	    int child_pid = ptid_get_pid (child_ptid);
3746 	    int child_lwp = ptid_get_lwp (child_ptid);
3747 
3748 	    kill_one_lwp (child_lwp);
3749 	    kill_wait_one_lwp (child_lwp);
3750 
3751 	    /* Let the arch-specific native code know this process is
3752 	       gone.  */
3753 	    linux_nat_forget_process (child_pid);
3754 	  }
3755       }
3756 }
3757 
3758 static void
3759 linux_nat_kill (struct target_ops *ops)
3760 {
3761   /* If we're stopped while forking and we haven't followed yet,
3762      kill the other task.  We need to do this first because the
3763      parent will be sleeping if this is a vfork.  */
3764   kill_unfollowed_fork_children (current_inferior ());
3765 
3766   if (forks_exist_p ())
3767     linux_fork_killall ();
3768   else
3769     {
3770       ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
3771 
3772       /* Stop all threads before killing them, since ptrace requires
3773 	 that the thread is stopped to sucessfully PTRACE_KILL.  */
3774       iterate_over_lwps (ptid, stop_callback, NULL);
3775       /* ... and wait until all of them have reported back that
3776 	 they're no longer running.  */
3777       iterate_over_lwps (ptid, stop_wait_callback, NULL);
3778 
3779       /* Kill all LWP's ...  */
3780       iterate_over_lwps (ptid, kill_callback, NULL);
3781 
3782       /* ... and wait until we've flushed all events.  */
3783       iterate_over_lwps (ptid, kill_wait_callback, NULL);
3784     }
3785 
3786   target_mourn_inferior (inferior_ptid);
3787 }
3788 
3789 static void
3790 linux_nat_mourn_inferior (struct target_ops *ops)
3791 {
3792   int pid = ptid_get_pid (inferior_ptid);
3793 
3794   purge_lwp_list (pid);
3795 
3796   if (! forks_exist_p ())
3797     /* Normal case, no other forks available.  */
3798     linux_ops->to_mourn_inferior (ops);
3799   else
3800     /* Multi-fork case.  The current inferior_ptid has exited, but
3801        there are other viable forks to debug.  Delete the exiting
3802        one and context-switch to the first available.  */
3803     linux_fork_mourn_inferior ();
3804 
3805   /* Let the arch-specific native code know this process is gone.  */
3806   linux_nat_forget_process (pid);
3807 }
3808 
3809 /* Convert a native/host siginfo object, into/from the siginfo in the
3810    layout of the inferiors' architecture.  */
3811 
3812 static void
3813 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3814 {
3815   int done = 0;
3816 
3817   if (linux_nat_siginfo_fixup != NULL)
3818     done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction);
3819 
3820   /* If there was no callback, or the callback didn't do anything,
3821      then just do a straight memcpy.  */
3822   if (!done)
3823     {
3824       if (direction == 1)
3825 	memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3826       else
3827 	memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3828     }
3829 }
3830 
3831 static enum target_xfer_status
3832 linux_xfer_siginfo (struct target_ops *ops, enum target_object object,
3833                     const char *annex, gdb_byte *readbuf,
3834 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3835 		    ULONGEST *xfered_len)
3836 {
3837   int pid;
3838   siginfo_t siginfo;
3839   gdb_byte inf_siginfo[sizeof (siginfo_t)];
3840 
3841   gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3842   gdb_assert (readbuf || writebuf);
3843 
3844   pid = ptid_get_lwp (inferior_ptid);
3845   if (pid == 0)
3846     pid = ptid_get_pid (inferior_ptid);
3847 
3848   if (offset > sizeof (siginfo))
3849     return TARGET_XFER_E_IO;
3850 
3851   errno = 0;
3852   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3853   if (errno != 0)
3854     return TARGET_XFER_E_IO;
3855 
3856   /* When GDB is built as a 64-bit application, ptrace writes into
3857      SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
3858      inferior with a 64-bit GDB should look the same as debugging it
3859      with a 32-bit GDB, we need to convert it.  GDB core always sees
3860      the converted layout, so any read/write will have to be done
3861      post-conversion.  */
3862   siginfo_fixup (&siginfo, inf_siginfo, 0);
3863 
3864   if (offset + len > sizeof (siginfo))
3865     len = sizeof (siginfo) - offset;
3866 
3867   if (readbuf != NULL)
3868     memcpy (readbuf, inf_siginfo + offset, len);
3869   else
3870     {
3871       memcpy (inf_siginfo + offset, writebuf, len);
3872 
3873       /* Convert back to ptrace layout before flushing it out.  */
3874       siginfo_fixup (&siginfo, inf_siginfo, 1);
3875 
3876       errno = 0;
3877       ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3878       if (errno != 0)
3879 	return TARGET_XFER_E_IO;
3880     }
3881 
3882   *xfered_len = len;
3883   return TARGET_XFER_OK;
3884 }
3885 
3886 static enum target_xfer_status
3887 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object,
3888 			const char *annex, gdb_byte *readbuf,
3889 			const gdb_byte *writebuf,
3890 			ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3891 {
3892   enum target_xfer_status xfer;
3893 
3894   if (object == TARGET_OBJECT_SIGNAL_INFO)
3895     return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf,
3896 			       offset, len, xfered_len);
3897 
3898   /* The target is connected but no live inferior is selected.  Pass
3899      this request down to a lower stratum (e.g., the executable
3900      file).  */
3901   if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid))
3902     return TARGET_XFER_EOF;
3903 
3904   xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf,
3905 				     offset, len, xfered_len);
3906 
3907   return xfer;
3908 }
3909 
3910 static int
3911 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid)
3912 {
3913   /* As long as a PTID is in lwp list, consider it alive.  */
3914   return find_lwp_pid (ptid) != NULL;
3915 }
3916 
3917 /* Implement the to_update_thread_list target method for this
3918    target.  */
3919 
3920 static void
3921 linux_nat_update_thread_list (struct target_ops *ops)
3922 {
3923   struct lwp_info *lwp;
3924 
3925   /* We add/delete threads from the list as clone/exit events are
3926      processed, so just try deleting exited threads still in the
3927      thread list.  */
3928   delete_exited_threads ();
3929 
3930   /* Update the processor core that each lwp/thread was last seen
3931      running on.  */
3932   ALL_LWPS (lwp)
3933     {
3934       /* Avoid accessing /proc if the thread hasn't run since we last
3935 	 time we fetched the thread's core.  Accessing /proc becomes
3936 	 noticeably expensive when we have thousands of LWPs.  */
3937       if (lwp->core == -1)
3938 	lwp->core = linux_common_core_of_thread (lwp->ptid);
3939     }
3940 }
3941 
3942 static const char *
3943 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid)
3944 {
3945   static char buf[64];
3946 
3947   if (ptid_lwp_p (ptid)
3948       && (ptid_get_pid (ptid) != ptid_get_lwp (ptid)
3949 	  || num_lwps (ptid_get_pid (ptid)) > 1))
3950     {
3951       snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid));
3952       return buf;
3953     }
3954 
3955   return normal_pid_to_str (ptid);
3956 }
3957 
3958 static const char *
3959 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr)
3960 {
3961   return linux_proc_tid_get_name (thr->ptid);
3962 }
3963 
3964 /* Accepts an integer PID; Returns a string representing a file that
3965    can be opened to get the symbols for the child process.  */
3966 
3967 static char *
3968 linux_child_pid_to_exec_file (struct target_ops *self, int pid)
3969 {
3970   return linux_proc_pid_to_exec_file (pid);
3971 }
3972 
3973 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3974    Because we can use a single read/write call, this can be much more
3975    efficient than banging away at PTRACE_PEEKTEXT.  */
3976 
3977 static enum target_xfer_status
3978 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object,
3979 			 const char *annex, gdb_byte *readbuf,
3980 			 const gdb_byte *writebuf,
3981 			 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3982 {
3983   LONGEST ret;
3984   int fd;
3985   char filename[64];
3986 
3987   if (object != TARGET_OBJECT_MEMORY)
3988     return TARGET_XFER_EOF;
3989 
3990   /* Don't bother for one word.  */
3991   if (len < 3 * sizeof (long))
3992     return TARGET_XFER_EOF;
3993 
3994   /* We could keep this file open and cache it - possibly one per
3995      thread.  That requires some juggling, but is even faster.  */
3996   xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3997 	     ptid_get_lwp (inferior_ptid));
3998   fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3999 				    | O_LARGEFILE), 0);
4000   if (fd == -1)
4001     return TARGET_XFER_EOF;
4002 
4003   /* Use pread64/pwrite64 if available, since they save a syscall and can
4004      handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
4005      debugging a SPARC64 application).  */
4006 #ifdef HAVE_PREAD64
4007   ret = (readbuf ? pread64 (fd, readbuf, len, offset)
4008 	 : pwrite64 (fd, writebuf, len, offset));
4009 #else
4010   ret = lseek (fd, offset, SEEK_SET);
4011   if (ret != -1)
4012     ret = (readbuf ? read (fd, readbuf, len)
4013 	   : write (fd, writebuf, len));
4014 #endif
4015 
4016   close (fd);
4017 
4018   if (ret == -1 || ret == 0)
4019     return TARGET_XFER_EOF;
4020   else
4021     {
4022       *xfered_len = ret;
4023       return TARGET_XFER_OK;
4024     }
4025 }
4026 
4027 
4028 /* Enumerate spufs IDs for process PID.  */
4029 static LONGEST
4030 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len)
4031 {
4032   enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
4033   LONGEST pos = 0;
4034   LONGEST written = 0;
4035   char path[128];
4036   DIR *dir;
4037   struct dirent *entry;
4038 
4039   xsnprintf (path, sizeof path, "/proc/%d/fd", pid);
4040   dir = opendir (path);
4041   if (!dir)
4042     return -1;
4043 
4044   rewinddir (dir);
4045   while ((entry = readdir (dir)) != NULL)
4046     {
4047       struct stat st;
4048       struct statfs stfs;
4049       int fd;
4050 
4051       fd = atoi (entry->d_name);
4052       if (!fd)
4053 	continue;
4054 
4055       xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd);
4056       if (stat (path, &st) != 0)
4057 	continue;
4058       if (!S_ISDIR (st.st_mode))
4059 	continue;
4060 
4061       if (statfs (path, &stfs) != 0)
4062 	continue;
4063       if (stfs.f_type != SPUFS_MAGIC)
4064 	continue;
4065 
4066       if (pos >= offset && pos + 4 <= offset + len)
4067 	{
4068 	  store_unsigned_integer (buf + pos - offset, 4, byte_order, fd);
4069 	  written += 4;
4070 	}
4071       pos += 4;
4072     }
4073 
4074   closedir (dir);
4075   return written;
4076 }
4077 
4078 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU
4079    object type, using the /proc file system.  */
4080 
4081 static enum target_xfer_status
4082 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object,
4083 		     const char *annex, gdb_byte *readbuf,
4084 		     const gdb_byte *writebuf,
4085 		     ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
4086 {
4087   char buf[128];
4088   int fd = 0;
4089   int ret = -1;
4090   int pid = ptid_get_lwp (inferior_ptid);
4091 
4092   if (!annex)
4093     {
4094       if (!readbuf)
4095 	return TARGET_XFER_E_IO;
4096       else
4097 	{
4098 	  LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len);
4099 
4100 	  if (l < 0)
4101 	    return TARGET_XFER_E_IO;
4102 	  else if (l == 0)
4103 	    return TARGET_XFER_EOF;
4104 	  else
4105 	    {
4106 	      *xfered_len = (ULONGEST) l;
4107 	      return TARGET_XFER_OK;
4108 	    }
4109 	}
4110     }
4111 
4112   xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex);
4113   fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0);
4114   if (fd <= 0)
4115     return TARGET_XFER_E_IO;
4116 
4117   if (offset != 0
4118       && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4119     {
4120       close (fd);
4121       return TARGET_XFER_EOF;
4122     }
4123 
4124   if (writebuf)
4125     ret = write (fd, writebuf, (size_t) len);
4126   else if (readbuf)
4127     ret = read (fd, readbuf, (size_t) len);
4128 
4129   close (fd);
4130 
4131   if (ret < 0)
4132     return TARGET_XFER_E_IO;
4133   else if (ret == 0)
4134     return TARGET_XFER_EOF;
4135   else
4136     {
4137       *xfered_len = (ULONGEST) ret;
4138       return TARGET_XFER_OK;
4139     }
4140 }
4141 
4142 
4143 /* Parse LINE as a signal set and add its set bits to SIGS.  */
4144 
4145 static void
4146 add_line_to_sigset (const char *line, sigset_t *sigs)
4147 {
4148   int len = strlen (line) - 1;
4149   const char *p;
4150   int signum;
4151 
4152   if (line[len] != '\n')
4153     error (_("Could not parse signal set: %s"), line);
4154 
4155   p = line;
4156   signum = len * 4;
4157   while (len-- > 0)
4158     {
4159       int digit;
4160 
4161       if (*p >= '0' && *p <= '9')
4162 	digit = *p - '0';
4163       else if (*p >= 'a' && *p <= 'f')
4164 	digit = *p - 'a' + 10;
4165       else
4166 	error (_("Could not parse signal set: %s"), line);
4167 
4168       signum -= 4;
4169 
4170       if (digit & 1)
4171 	sigaddset (sigs, signum + 1);
4172       if (digit & 2)
4173 	sigaddset (sigs, signum + 2);
4174       if (digit & 4)
4175 	sigaddset (sigs, signum + 3);
4176       if (digit & 8)
4177 	sigaddset (sigs, signum + 4);
4178 
4179       p++;
4180     }
4181 }
4182 
4183 /* Find process PID's pending signals from /proc/pid/status and set
4184    SIGS to match.  */
4185 
4186 void
4187 linux_proc_pending_signals (int pid, sigset_t *pending,
4188 			    sigset_t *blocked, sigset_t *ignored)
4189 {
4190   FILE *procfile;
4191   char buffer[PATH_MAX], fname[PATH_MAX];
4192   struct cleanup *cleanup;
4193 
4194   sigemptyset (pending);
4195   sigemptyset (blocked);
4196   sigemptyset (ignored);
4197   xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
4198   procfile = gdb_fopen_cloexec (fname, "r");
4199   if (procfile == NULL)
4200     error (_("Could not open %s"), fname);
4201   cleanup = make_cleanup_fclose (procfile);
4202 
4203   while (fgets (buffer, PATH_MAX, procfile) != NULL)
4204     {
4205       /* Normal queued signals are on the SigPnd line in the status
4206 	 file.  However, 2.6 kernels also have a "shared" pending
4207 	 queue for delivering signals to a thread group, so check for
4208 	 a ShdPnd line also.
4209 
4210 	 Unfortunately some Red Hat kernels include the shared pending
4211 	 queue but not the ShdPnd status field.  */
4212 
4213       if (startswith (buffer, "SigPnd:\t"))
4214 	add_line_to_sigset (buffer + 8, pending);
4215       else if (startswith (buffer, "ShdPnd:\t"))
4216 	add_line_to_sigset (buffer + 8, pending);
4217       else if (startswith (buffer, "SigBlk:\t"))
4218 	add_line_to_sigset (buffer + 8, blocked);
4219       else if (startswith (buffer, "SigIgn:\t"))
4220 	add_line_to_sigset (buffer + 8, ignored);
4221     }
4222 
4223   do_cleanups (cleanup);
4224 }
4225 
4226 static enum target_xfer_status
4227 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object,
4228 		       const char *annex, gdb_byte *readbuf,
4229 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4230 		       ULONGEST *xfered_len)
4231 {
4232   gdb_assert (object == TARGET_OBJECT_OSDATA);
4233 
4234   *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
4235   if (*xfered_len == 0)
4236     return TARGET_XFER_EOF;
4237   else
4238     return TARGET_XFER_OK;
4239 }
4240 
4241 static enum target_xfer_status
4242 linux_xfer_partial (struct target_ops *ops, enum target_object object,
4243                     const char *annex, gdb_byte *readbuf,
4244 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
4245 		    ULONGEST *xfered_len)
4246 {
4247   enum target_xfer_status xfer;
4248 
4249   if (object == TARGET_OBJECT_AUXV)
4250     return memory_xfer_auxv (ops, object, annex, readbuf, writebuf,
4251 			     offset, len, xfered_len);
4252 
4253   if (object == TARGET_OBJECT_OSDATA)
4254     return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf,
4255 				  offset, len, xfered_len);
4256 
4257   if (object == TARGET_OBJECT_SPU)
4258     return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf,
4259 				offset, len, xfered_len);
4260 
4261   /* GDB calculates all the addresses in possibly larget width of the address.
4262      Address width needs to be masked before its final use - either by
4263      linux_proc_xfer_partial or inf_ptrace_xfer_partial.
4264 
4265      Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
4266 
4267   if (object == TARGET_OBJECT_MEMORY)
4268     {
4269       int addr_bit = gdbarch_addr_bit (target_gdbarch ());
4270 
4271       if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
4272 	offset &= ((ULONGEST) 1 << addr_bit) - 1;
4273     }
4274 
4275   xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf,
4276 				  offset, len, xfered_len);
4277   if (xfer != TARGET_XFER_EOF)
4278     return xfer;
4279 
4280   return super_xfer_partial (ops, object, annex, readbuf, writebuf,
4281 			     offset, len, xfered_len);
4282 }
4283 
4284 static void
4285 cleanup_target_stop (void *arg)
4286 {
4287   ptid_t *ptid = (ptid_t *) arg;
4288 
4289   gdb_assert (arg != NULL);
4290 
4291   /* Unpause all */
4292   target_continue_no_signal (*ptid);
4293 }
4294 
4295 static VEC(static_tracepoint_marker_p) *
4296 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self,
4297 						const char *strid)
4298 {
4299   char s[IPA_CMD_BUF_SIZE];
4300   struct cleanup *old_chain;
4301   int pid = ptid_get_pid (inferior_ptid);
4302   VEC(static_tracepoint_marker_p) *markers = NULL;
4303   struct static_tracepoint_marker *marker = NULL;
4304   char *p = s;
4305   ptid_t ptid = ptid_build (pid, 0, 0);
4306 
4307   /* Pause all */
4308   target_stop (ptid);
4309 
4310   memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
4311   s[sizeof ("qTfSTM")] = 0;
4312 
4313   agent_run_command (pid, s, strlen (s) + 1);
4314 
4315   old_chain = make_cleanup (free_current_marker, &marker);
4316   make_cleanup (cleanup_target_stop, &ptid);
4317 
4318   while (*p++ == 'm')
4319     {
4320       if (marker == NULL)
4321 	marker = XCNEW (struct static_tracepoint_marker);
4322 
4323       do
4324 	{
4325 	  parse_static_tracepoint_marker_definition (p, &p, marker);
4326 
4327 	  if (strid == NULL || strcmp (strid, marker->str_id) == 0)
4328 	    {
4329 	      VEC_safe_push (static_tracepoint_marker_p,
4330 			     markers, marker);
4331 	      marker = NULL;
4332 	    }
4333 	  else
4334 	    {
4335 	      release_static_tracepoint_marker (marker);
4336 	      memset (marker, 0, sizeof (*marker));
4337 	    }
4338 	}
4339       while (*p++ == ',');	/* comma-separated list */
4340 
4341       memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
4342       s[sizeof ("qTsSTM")] = 0;
4343       agent_run_command (pid, s, strlen (s) + 1);
4344       p = s;
4345     }
4346 
4347   do_cleanups (old_chain);
4348 
4349   return markers;
4350 }
4351 
4352 /* Create a prototype generic GNU/Linux target.  The client can override
4353    it with local methods.  */
4354 
4355 static void
4356 linux_target_install_ops (struct target_ops *t)
4357 {
4358   t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint;
4359   t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint;
4360   t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint;
4361   t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint;
4362   t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint;
4363   t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint;
4364   t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint;
4365   t->to_pid_to_exec_file = linux_child_pid_to_exec_file;
4366   t->to_post_startup_inferior = linux_child_post_startup_inferior;
4367   t->to_post_attach = linux_child_post_attach;
4368   t->to_follow_fork = linux_child_follow_fork;
4369 
4370   super_xfer_partial = t->to_xfer_partial;
4371   t->to_xfer_partial = linux_xfer_partial;
4372 
4373   t->to_static_tracepoint_markers_by_strid
4374     = linux_child_static_tracepoint_markers_by_strid;
4375 }
4376 
4377 struct target_ops *
4378 linux_target (void)
4379 {
4380   struct target_ops *t;
4381 
4382   t = inf_ptrace_target ();
4383   linux_target_install_ops (t);
4384 
4385   return t;
4386 }
4387 
4388 struct target_ops *
4389 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int))
4390 {
4391   struct target_ops *t;
4392 
4393   t = inf_ptrace_trad_target (register_u_offset);
4394   linux_target_install_ops (t);
4395 
4396   return t;
4397 }
4398 
4399 /* target_is_async_p implementation.  */
4400 
4401 static int
4402 linux_nat_is_async_p (struct target_ops *ops)
4403 {
4404   return linux_is_async_p ();
4405 }
4406 
4407 /* target_can_async_p implementation.  */
4408 
4409 static int
4410 linux_nat_can_async_p (struct target_ops *ops)
4411 {
4412   /* We're always async, unless the user explicitly prevented it with the
4413      "maint set target-async" command.  */
4414   return target_async_permitted;
4415 }
4416 
4417 static int
4418 linux_nat_supports_non_stop (struct target_ops *self)
4419 {
4420   return 1;
4421 }
4422 
4423 /* to_always_non_stop_p implementation.  */
4424 
4425 static int
4426 linux_nat_always_non_stop_p (struct target_ops *self)
4427 {
4428   return 1;
4429 }
4430 
4431 /* True if we want to support multi-process.  To be removed when GDB
4432    supports multi-exec.  */
4433 
4434 int linux_multi_process = 1;
4435 
4436 static int
4437 linux_nat_supports_multi_process (struct target_ops *self)
4438 {
4439   return linux_multi_process;
4440 }
4441 
4442 static int
4443 linux_nat_supports_disable_randomization (struct target_ops *self)
4444 {
4445 #ifdef HAVE_PERSONALITY
4446   return 1;
4447 #else
4448   return 0;
4449 #endif
4450 }
4451 
4452 static int async_terminal_is_ours = 1;
4453 
4454 /* target_terminal_inferior implementation.
4455 
4456    This is a wrapper around child_terminal_inferior to add async support.  */
4457 
4458 static void
4459 linux_nat_terminal_inferior (struct target_ops *self)
4460 {
4461   child_terminal_inferior (self);
4462 
4463   /* Calls to target_terminal_*() are meant to be idempotent.  */
4464   if (!async_terminal_is_ours)
4465     return;
4466 
4467   async_terminal_is_ours = 0;
4468   set_sigint_trap ();
4469 }
4470 
4471 /* target_terminal_ours implementation.
4472 
4473    This is a wrapper around child_terminal_ours to add async support (and
4474    implement the target_terminal_ours vs target_terminal_ours_for_output
4475    distinction).  child_terminal_ours is currently no different than
4476    child_terminal_ours_for_output.
4477    We leave target_terminal_ours_for_output alone, leaving it to
4478    child_terminal_ours_for_output.  */
4479 
4480 static void
4481 linux_nat_terminal_ours (struct target_ops *self)
4482 {
4483   /* GDB should never give the terminal to the inferior if the
4484      inferior is running in the background (run&, continue&, etc.),
4485      but claiming it sure should.  */
4486   child_terminal_ours (self);
4487 
4488   if (async_terminal_is_ours)
4489     return;
4490 
4491   clear_sigint_trap ();
4492   async_terminal_is_ours = 1;
4493 }
4494 
4495 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4496    so we notice when any child changes state, and notify the
4497    event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4498    above to wait for the arrival of a SIGCHLD.  */
4499 
4500 static void
4501 sigchld_handler (int signo)
4502 {
4503   int old_errno = errno;
4504 
4505   if (debug_linux_nat)
4506     ui_file_write_async_safe (gdb_stdlog,
4507 			      "sigchld\n", sizeof ("sigchld\n") - 1);
4508 
4509   if (signo == SIGCHLD
4510       && linux_nat_event_pipe[0] != -1)
4511     async_file_mark (); /* Let the event loop know that there are
4512 			   events to handle.  */
4513 
4514   errno = old_errno;
4515 }
4516 
4517 /* Callback registered with the target events file descriptor.  */
4518 
4519 static void
4520 handle_target_event (int error, gdb_client_data client_data)
4521 {
4522   inferior_event_handler (INF_REG_EVENT, NULL);
4523 }
4524 
4525 /* Create/destroy the target events pipe.  Returns previous state.  */
4526 
4527 static int
4528 linux_async_pipe (int enable)
4529 {
4530   int previous = linux_is_async_p ();
4531 
4532   if (previous != enable)
4533     {
4534       sigset_t prev_mask;
4535 
4536       /* Block child signals while we create/destroy the pipe, as
4537 	 their handler writes to it.  */
4538       block_child_signals (&prev_mask);
4539 
4540       if (enable)
4541 	{
4542 	  if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4543 	    internal_error (__FILE__, __LINE__,
4544 			    "creating event pipe failed.");
4545 
4546 	  fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4547 	  fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4548 	}
4549       else
4550 	{
4551 	  close (linux_nat_event_pipe[0]);
4552 	  close (linux_nat_event_pipe[1]);
4553 	  linux_nat_event_pipe[0] = -1;
4554 	  linux_nat_event_pipe[1] = -1;
4555 	}
4556 
4557       restore_child_signals_mask (&prev_mask);
4558     }
4559 
4560   return previous;
4561 }
4562 
4563 /* target_async implementation.  */
4564 
4565 static void
4566 linux_nat_async (struct target_ops *ops, int enable)
4567 {
4568   if (enable)
4569     {
4570       if (!linux_async_pipe (1))
4571 	{
4572 	  add_file_handler (linux_nat_event_pipe[0],
4573 			    handle_target_event, NULL);
4574 	  /* There may be pending events to handle.  Tell the event loop
4575 	     to poll them.  */
4576 	  async_file_mark ();
4577 	}
4578     }
4579   else
4580     {
4581       delete_file_handler (linux_nat_event_pipe[0]);
4582       linux_async_pipe (0);
4583     }
4584   return;
4585 }
4586 
4587 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4588    event came out.  */
4589 
4590 static int
4591 linux_nat_stop_lwp (struct lwp_info *lwp, void *data)
4592 {
4593   if (!lwp->stopped)
4594     {
4595       if (debug_linux_nat)
4596 	fprintf_unfiltered (gdb_stdlog,
4597 			    "LNSL: running -> suspending %s\n",
4598 			    target_pid_to_str (lwp->ptid));
4599 
4600 
4601       if (lwp->last_resume_kind == resume_stop)
4602 	{
4603 	  if (debug_linux_nat)
4604 	    fprintf_unfiltered (gdb_stdlog,
4605 				"linux-nat: already stopping LWP %ld at "
4606 				"GDB's request\n",
4607 				ptid_get_lwp (lwp->ptid));
4608 	  return 0;
4609 	}
4610 
4611       stop_callback (lwp, NULL);
4612       lwp->last_resume_kind = resume_stop;
4613     }
4614   else
4615     {
4616       /* Already known to be stopped; do nothing.  */
4617 
4618       if (debug_linux_nat)
4619 	{
4620 	  if (find_thread_ptid (lwp->ptid)->stop_requested)
4621 	    fprintf_unfiltered (gdb_stdlog,
4622 				"LNSL: already stopped/stop_requested %s\n",
4623 				target_pid_to_str (lwp->ptid));
4624 	  else
4625 	    fprintf_unfiltered (gdb_stdlog,
4626 				"LNSL: already stopped/no "
4627 				"stop_requested yet %s\n",
4628 				target_pid_to_str (lwp->ptid));
4629 	}
4630     }
4631   return 0;
4632 }
4633 
4634 static void
4635 linux_nat_stop (struct target_ops *self, ptid_t ptid)
4636 {
4637   iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL);
4638 }
4639 
4640 static void
4641 linux_nat_close (struct target_ops *self)
4642 {
4643   /* Unregister from the event loop.  */
4644   if (linux_nat_is_async_p (self))
4645     linux_nat_async (self, 0);
4646 
4647   if (linux_ops->to_close)
4648     linux_ops->to_close (linux_ops);
4649 
4650   super_close (self);
4651 }
4652 
4653 /* When requests are passed down from the linux-nat layer to the
4654    single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4655    used.  The address space pointer is stored in the inferior object,
4656    but the common code that is passed such ptid can't tell whether
4657    lwpid is a "main" process id or not (it assumes so).  We reverse
4658    look up the "main" process id from the lwp here.  */
4659 
4660 static struct address_space *
4661 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid)
4662 {
4663   struct lwp_info *lwp;
4664   struct inferior *inf;
4665   int pid;
4666 
4667   if (ptid_get_lwp (ptid) == 0)
4668     {
4669       /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
4670 	 tgid.  */
4671       lwp = find_lwp_pid (ptid);
4672       pid = ptid_get_pid (lwp->ptid);
4673     }
4674   else
4675     {
4676       /* A (pid,lwpid,0) ptid.  */
4677       pid = ptid_get_pid (ptid);
4678     }
4679 
4680   inf = find_inferior_pid (pid);
4681   gdb_assert (inf != NULL);
4682   return inf->aspace;
4683 }
4684 
4685 /* Return the cached value of the processor core for thread PTID.  */
4686 
4687 static int
4688 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid)
4689 {
4690   struct lwp_info *info = find_lwp_pid (ptid);
4691 
4692   if (info)
4693     return info->core;
4694   return -1;
4695 }
4696 
4697 /* Implementation of to_filesystem_is_local.  */
4698 
4699 static int
4700 linux_nat_filesystem_is_local (struct target_ops *ops)
4701 {
4702   struct inferior *inf = current_inferior ();
4703 
4704   if (inf->fake_pid_p || inf->pid == 0)
4705     return 1;
4706 
4707   return linux_ns_same (inf->pid, LINUX_NS_MNT);
4708 }
4709 
4710 /* Convert the INF argument passed to a to_fileio_* method
4711    to a process ID suitable for passing to its corresponding
4712    linux_mntns_* function.  If INF is non-NULL then the
4713    caller is requesting the filesystem seen by INF.  If INF
4714    is NULL then the caller is requesting the filesystem seen
4715    by the GDB.  We fall back to GDB's filesystem in the case
4716    that INF is non-NULL but its PID is unknown.  */
4717 
4718 static pid_t
4719 linux_nat_fileio_pid_of (struct inferior *inf)
4720 {
4721   if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4722     return getpid ();
4723   else
4724     return inf->pid;
4725 }
4726 
4727 /* Implementation of to_fileio_open.  */
4728 
4729 static int
4730 linux_nat_fileio_open (struct target_ops *self,
4731 		       struct inferior *inf, const char *filename,
4732 		       int flags, int mode, int warn_if_slow,
4733 		       int *target_errno)
4734 {
4735   int nat_flags;
4736   mode_t nat_mode;
4737   int fd;
4738 
4739   if (fileio_to_host_openflags (flags, &nat_flags) == -1
4740       || fileio_to_host_mode (mode, &nat_mode) == -1)
4741     {
4742       *target_errno = FILEIO_EINVAL;
4743       return -1;
4744     }
4745 
4746   fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4747 				 filename, nat_flags, nat_mode);
4748   if (fd == -1)
4749     *target_errno = host_to_fileio_error (errno);
4750 
4751   return fd;
4752 }
4753 
4754 /* Implementation of to_fileio_readlink.  */
4755 
4756 static char *
4757 linux_nat_fileio_readlink (struct target_ops *self,
4758 			   struct inferior *inf, const char *filename,
4759 			   int *target_errno)
4760 {
4761   char buf[PATH_MAX];
4762   int len;
4763   char *ret;
4764 
4765   len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4766 			      filename, buf, sizeof (buf));
4767   if (len < 0)
4768     {
4769       *target_errno = host_to_fileio_error (errno);
4770       return NULL;
4771     }
4772 
4773   ret = (char *) xmalloc (len + 1);
4774   memcpy (ret, buf, len);
4775   ret[len] = '\0';
4776   return ret;
4777 }
4778 
4779 /* Implementation of to_fileio_unlink.  */
4780 
4781 static int
4782 linux_nat_fileio_unlink (struct target_ops *self,
4783 			 struct inferior *inf, const char *filename,
4784 			 int *target_errno)
4785 {
4786   int ret;
4787 
4788   ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4789 			    filename);
4790   if (ret == -1)
4791     *target_errno = host_to_fileio_error (errno);
4792 
4793   return ret;
4794 }
4795 
4796 /* Implementation of the to_thread_events method.  */
4797 
4798 static void
4799 linux_nat_thread_events (struct target_ops *ops, int enable)
4800 {
4801   report_thread_events = enable;
4802 }
4803 
4804 void
4805 linux_nat_add_target (struct target_ops *t)
4806 {
4807   /* Save the provided single-threaded target.  We save this in a separate
4808      variable because another target we've inherited from (e.g. inf-ptrace)
4809      may have saved a pointer to T; we want to use it for the final
4810      process stratum target.  */
4811   linux_ops_saved = *t;
4812   linux_ops = &linux_ops_saved;
4813 
4814   /* Override some methods for multithreading.  */
4815   t->to_create_inferior = linux_nat_create_inferior;
4816   t->to_attach = linux_nat_attach;
4817   t->to_detach = linux_nat_detach;
4818   t->to_resume = linux_nat_resume;
4819   t->to_wait = linux_nat_wait;
4820   t->to_pass_signals = linux_nat_pass_signals;
4821   t->to_xfer_partial = linux_nat_xfer_partial;
4822   t->to_kill = linux_nat_kill;
4823   t->to_mourn_inferior = linux_nat_mourn_inferior;
4824   t->to_thread_alive = linux_nat_thread_alive;
4825   t->to_update_thread_list = linux_nat_update_thread_list;
4826   t->to_pid_to_str = linux_nat_pid_to_str;
4827   t->to_thread_name = linux_nat_thread_name;
4828   t->to_has_thread_control = tc_schedlock;
4829   t->to_thread_address_space = linux_nat_thread_address_space;
4830   t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint;
4831   t->to_stopped_data_address = linux_nat_stopped_data_address;
4832   t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint;
4833   t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint;
4834   t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint;
4835   t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint;
4836   t->to_thread_events = linux_nat_thread_events;
4837 
4838   t->to_can_async_p = linux_nat_can_async_p;
4839   t->to_is_async_p = linux_nat_is_async_p;
4840   t->to_supports_non_stop = linux_nat_supports_non_stop;
4841   t->to_always_non_stop_p = linux_nat_always_non_stop_p;
4842   t->to_async = linux_nat_async;
4843   t->to_terminal_inferior = linux_nat_terminal_inferior;
4844   t->to_terminal_ours = linux_nat_terminal_ours;
4845 
4846   super_close = t->to_close;
4847   t->to_close = linux_nat_close;
4848 
4849   t->to_stop = linux_nat_stop;
4850 
4851   t->to_supports_multi_process = linux_nat_supports_multi_process;
4852 
4853   t->to_supports_disable_randomization
4854     = linux_nat_supports_disable_randomization;
4855 
4856   t->to_core_of_thread = linux_nat_core_of_thread;
4857 
4858   t->to_filesystem_is_local = linux_nat_filesystem_is_local;
4859   t->to_fileio_open = linux_nat_fileio_open;
4860   t->to_fileio_readlink = linux_nat_fileio_readlink;
4861   t->to_fileio_unlink = linux_nat_fileio_unlink;
4862 
4863   /* We don't change the stratum; this target will sit at
4864      process_stratum and thread_db will set at thread_stratum.  This
4865      is a little strange, since this is a multi-threaded-capable
4866      target, but we want to be on the stack below thread_db, and we
4867      also want to be used for single-threaded processes.  */
4868 
4869   add_target (t);
4870 }
4871 
4872 /* Register a method to call whenever a new thread is attached.  */
4873 void
4874 linux_nat_set_new_thread (struct target_ops *t,
4875 			  void (*new_thread) (struct lwp_info *))
4876 {
4877   /* Save the pointer.  We only support a single registered instance
4878      of the GNU/Linux native target, so we do not need to map this to
4879      T.  */
4880   linux_nat_new_thread = new_thread;
4881 }
4882 
4883 /* See declaration in linux-nat.h.  */
4884 
4885 void
4886 linux_nat_set_new_fork (struct target_ops *t,
4887 			linux_nat_new_fork_ftype *new_fork)
4888 {
4889   /* Save the pointer.  */
4890   linux_nat_new_fork = new_fork;
4891 }
4892 
4893 /* See declaration in linux-nat.h.  */
4894 
4895 void
4896 linux_nat_set_forget_process (struct target_ops *t,
4897 			      linux_nat_forget_process_ftype *fn)
4898 {
4899   /* Save the pointer.  */
4900   linux_nat_forget_process_hook = fn;
4901 }
4902 
4903 /* See declaration in linux-nat.h.  */
4904 
4905 void
4906 linux_nat_forget_process (pid_t pid)
4907 {
4908   if (linux_nat_forget_process_hook != NULL)
4909     linux_nat_forget_process_hook (pid);
4910 }
4911 
4912 /* Register a method that converts a siginfo object between the layout
4913    that ptrace returns, and the layout in the architecture of the
4914    inferior.  */
4915 void
4916 linux_nat_set_siginfo_fixup (struct target_ops *t,
4917 			     int (*siginfo_fixup) (siginfo_t *,
4918 						   gdb_byte *,
4919 						   int))
4920 {
4921   /* Save the pointer.  */
4922   linux_nat_siginfo_fixup = siginfo_fixup;
4923 }
4924 
4925 /* Register a method to call prior to resuming a thread.  */
4926 
4927 void
4928 linux_nat_set_prepare_to_resume (struct target_ops *t,
4929 				 void (*prepare_to_resume) (struct lwp_info *))
4930 {
4931   /* Save the pointer.  */
4932   linux_nat_prepare_to_resume = prepare_to_resume;
4933 }
4934 
4935 /* See linux-nat.h.  */
4936 
4937 int
4938 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4939 {
4940   int pid;
4941 
4942   pid = ptid_get_lwp (ptid);
4943   if (pid == 0)
4944     pid = ptid_get_pid (ptid);
4945 
4946   errno = 0;
4947   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4948   if (errno != 0)
4949     {
4950       memset (siginfo, 0, sizeof (*siginfo));
4951       return 0;
4952     }
4953   return 1;
4954 }
4955 
4956 /* See nat/linux-nat.h.  */
4957 
4958 ptid_t
4959 current_lwp_ptid (void)
4960 {
4961   gdb_assert (ptid_lwp_p (inferior_ptid));
4962   return inferior_ptid;
4963 }
4964 
4965 /* Provide a prototype to silence -Wmissing-prototypes.  */
4966 extern initialize_file_ftype _initialize_linux_nat;
4967 
4968 void
4969 _initialize_linux_nat (void)
4970 {
4971   add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4972 			     &debug_linux_nat, _("\
4973 Set debugging of GNU/Linux lwp module."), _("\
4974 Show debugging of GNU/Linux lwp module."), _("\
4975 Enables printf debugging output."),
4976 			     NULL,
4977 			     show_debug_linux_nat,
4978 			     &setdebuglist, &showdebuglist);
4979 
4980   add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4981 			   &debug_linux_namespaces, _("\
4982 Set debugging of GNU/Linux namespaces module."), _("\
4983 Show debugging of GNU/Linux namespaces module."), _("\
4984 Enables printf debugging output."),
4985 			   NULL,
4986 			   NULL,
4987 			   &setdebuglist, &showdebuglist);
4988 
4989   /* Save this mask as the default.  */
4990   sigprocmask (SIG_SETMASK, NULL, &normal_mask);
4991 
4992   /* Install a SIGCHLD handler.  */
4993   sigchld_action.sa_handler = sigchld_handler;
4994   sigemptyset (&sigchld_action.sa_mask);
4995   sigchld_action.sa_flags = SA_RESTART;
4996 
4997   /* Make it the default.  */
4998   sigaction (SIGCHLD, &sigchld_action, NULL);
4999 
5000   /* Make sure we don't block SIGCHLD during a sigsuspend.  */
5001   sigprocmask (SIG_SETMASK, NULL, &suspend_mask);
5002   sigdelset (&suspend_mask, SIGCHLD);
5003 
5004   sigemptyset (&blocked_mask);
5005 
5006   lwp_lwpid_htab_create ();
5007 }
5008 
5009 
5010 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
5011    the GNU/Linux Threads library and therefore doesn't really belong
5012    here.  */
5013 
5014 /* Return the set of signals used by the threads library in *SET.  */
5015 
5016 void
5017 lin_thread_get_thread_signals (sigset_t *set)
5018 {
5019   sigemptyset (set);
5020 
5021   /* NPTL reserves the first two RT signals, but does not provide any
5022      way for the debugger to query the signal numbers - fortunately
5023      they don't change.  */
5024   sigaddset (set, __SIGRTMIN);
5025   sigaddset (set, __SIGRTMIN + 1);
5026 }
5027