1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2017 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "gdb_wait.h" 27 #include <unistd.h> 28 #include <sys/syscall.h> 29 #include "nat/gdb_ptrace.h" 30 #include "linux-nat.h" 31 #include "nat/linux-ptrace.h" 32 #include "nat/linux-procfs.h" 33 #include "nat/linux-personality.h" 34 #include "linux-fork.h" 35 #include "gdbthread.h" 36 #include "gdbcmd.h" 37 #include "regcache.h" 38 #include "regset.h" 39 #include "inf-child.h" 40 #include "inf-ptrace.h" 41 #include "auxv.h" 42 #include <sys/procfs.h> /* for elf_gregset etc. */ 43 #include "elf-bfd.h" /* for elfcore_write_* */ 44 #include "gregset.h" /* for gregset */ 45 #include "gdbcore.h" /* for get_exec_file */ 46 #include <ctype.h> /* for isdigit */ 47 #include <sys/stat.h> /* for struct stat */ 48 #include <fcntl.h> /* for O_RDONLY */ 49 #include "inf-loop.h" 50 #include "event-loop.h" 51 #include "event-top.h" 52 #include <pwd.h> 53 #include <sys/types.h> 54 #include <dirent.h> 55 #include "xml-support.h" 56 #include <sys/vfs.h> 57 #include "solib.h" 58 #include "nat/linux-osdata.h" 59 #include "linux-tdep.h" 60 #include "symfile.h" 61 #include "agent.h" 62 #include "tracepoint.h" 63 #include "buffer.h" 64 #include "target-descriptions.h" 65 #include "filestuff.h" 66 #include "objfiles.h" 67 #include "nat/linux-namespaces.h" 68 #include "fileio.h" 69 70 #ifndef SPUFS_MAGIC 71 #define SPUFS_MAGIC 0x23c9b64e 72 #endif 73 74 /* This comment documents high-level logic of this file. 75 76 Waiting for events in sync mode 77 =============================== 78 79 When waiting for an event in a specific thread, we just use waitpid, 80 passing the specific pid, and not passing WNOHANG. 81 82 When waiting for an event in all threads, waitpid is not quite good: 83 84 - If the thread group leader exits while other threads in the thread 85 group still exist, waitpid(TGID, ...) hangs. That waitpid won't 86 return an exit status until the other threads in the group are 87 reaped. 88 89 - When a non-leader thread execs, that thread just vanishes without 90 reporting an exit (so we'd hang if we waited for it explicitly in 91 that case). The exec event is instead reported to the TGID pid. 92 93 The solution is to always use -1 and WNOHANG, together with 94 sigsuspend. 95 96 First, we use non-blocking waitpid to check for events. If nothing is 97 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, 98 it means something happened to a child process. As soon as we know 99 there's an event, we get back to calling nonblocking waitpid. 100 101 Note that SIGCHLD should be blocked between waitpid and sigsuspend 102 calls, so that we don't miss a signal. If SIGCHLD arrives in between, 103 when it's blocked, the signal becomes pending and sigsuspend 104 immediately notices it and returns. 105 106 Waiting for events in async mode (TARGET_WNOHANG) 107 ================================================= 108 109 In async mode, GDB should always be ready to handle both user input 110 and target events, so neither blocking waitpid nor sigsuspend are 111 viable options. Instead, we should asynchronously notify the GDB main 112 event loop whenever there's an unprocessed event from the target. We 113 detect asynchronous target events by handling SIGCHLD signals. To 114 notify the event loop about target events, the self-pipe trick is used 115 --- a pipe is registered as waitable event source in the event loop, 116 the event loop select/poll's on the read end of this pipe (as well on 117 other event sources, e.g., stdin), and the SIGCHLD handler writes a 118 byte to this pipe. This is more portable than relying on 119 pselect/ppoll, since on kernels that lack those syscalls, libc 120 emulates them with select/poll+sigprocmask, and that is racy 121 (a.k.a. plain broken). 122 123 Obviously, if we fail to notify the event loop if there's a target 124 event, it's bad. OTOH, if we notify the event loop when there's no 125 event from the target, linux_nat_wait will detect that there's no real 126 event to report, and return event of type TARGET_WAITKIND_IGNORE. 127 This is mostly harmless, but it will waste time and is better avoided. 128 129 The main design point is that every time GDB is outside linux-nat.c, 130 we have a SIGCHLD handler installed that is called when something 131 happens to the target and notifies the GDB event loop. Whenever GDB 132 core decides to handle the event, and calls into linux-nat.c, we 133 process things as in sync mode, except that the we never block in 134 sigsuspend. 135 136 While processing an event, we may end up momentarily blocked in 137 waitpid calls. Those waitpid calls, while blocking, are guarantied to 138 return quickly. E.g., in all-stop mode, before reporting to the core 139 that an LWP hit a breakpoint, all LWPs are stopped by sending them 140 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 141 Note that this is different from blocking indefinitely waiting for the 142 next event --- here, we're already handling an event. 143 144 Use of signals 145 ============== 146 147 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 148 signal is not entirely significant; we just need for a signal to be delivered, 149 so that we can intercept it. SIGSTOP's advantage is that it can not be 150 blocked. A disadvantage is that it is not a real-time signal, so it can only 151 be queued once; we do not keep track of other sources of SIGSTOP. 152 153 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 154 use them, because they have special behavior when the signal is generated - 155 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 156 kills the entire thread group. 157 158 A delivered SIGSTOP would stop the entire thread group, not just the thread we 159 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 160 cancel it (by PTRACE_CONT without passing SIGSTOP). 161 162 We could use a real-time signal instead. This would solve those problems; we 163 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 164 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 165 generates it, and there are races with trying to find a signal that is not 166 blocked. 167 168 Exec events 169 =========== 170 171 The case of a thread group (process) with 3 or more threads, and a 172 thread other than the leader execs is worth detailing: 173 174 On an exec, the Linux kernel destroys all threads except the execing 175 one in the thread group, and resets the execing thread's tid to the 176 tgid. No exit notification is sent for the execing thread -- from the 177 ptracer's perspective, it appears as though the execing thread just 178 vanishes. Until we reap all other threads except the leader and the 179 execing thread, the leader will be zombie, and the execing thread will 180 be in `D (disc sleep)' state. As soon as all other threads are 181 reaped, the execing thread changes its tid to the tgid, and the 182 previous (zombie) leader vanishes, giving place to the "new" 183 leader. */ 184 185 #ifndef O_LARGEFILE 186 #define O_LARGEFILE 0 187 #endif 188 189 /* Does the current host support PTRACE_GETREGSET? */ 190 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 191 192 /* The single-threaded native GNU/Linux target_ops. We save a pointer for 193 the use of the multi-threaded target. */ 194 static struct target_ops *linux_ops; 195 static struct target_ops linux_ops_saved; 196 197 /* The method to call, if any, when a new thread is attached. */ 198 static void (*linux_nat_new_thread) (struct lwp_info *); 199 200 /* The method to call, if any, when a new fork is attached. */ 201 static linux_nat_new_fork_ftype *linux_nat_new_fork; 202 203 /* The method to call, if any, when a process is no longer 204 attached. */ 205 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook; 206 207 /* Hook to call prior to resuming a thread. */ 208 static void (*linux_nat_prepare_to_resume) (struct lwp_info *); 209 210 /* The method to call, if any, when the siginfo object needs to be 211 converted between the layout returned by ptrace, and the layout in 212 the architecture of the inferior. */ 213 static int (*linux_nat_siginfo_fixup) (siginfo_t *, 214 gdb_byte *, 215 int); 216 217 /* The saved to_xfer_partial method, inherited from inf-ptrace.c. 218 Called by our to_xfer_partial. */ 219 static target_xfer_partial_ftype *super_xfer_partial; 220 221 /* The saved to_close method, inherited from inf-ptrace.c. 222 Called by our to_close. */ 223 static void (*super_close) (struct target_ops *); 224 225 static unsigned int debug_linux_nat; 226 static void 227 show_debug_linux_nat (struct ui_file *file, int from_tty, 228 struct cmd_list_element *c, const char *value) 229 { 230 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 231 value); 232 } 233 234 struct simple_pid_list 235 { 236 int pid; 237 int status; 238 struct simple_pid_list *next; 239 }; 240 struct simple_pid_list *stopped_pids; 241 242 /* Whether target_thread_events is in effect. */ 243 static int report_thread_events; 244 245 /* Async mode support. */ 246 247 /* The read/write ends of the pipe registered as waitable file in the 248 event loop. */ 249 static int linux_nat_event_pipe[2] = { -1, -1 }; 250 251 /* True if we're currently in async mode. */ 252 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1) 253 254 /* Flush the event pipe. */ 255 256 static void 257 async_file_flush (void) 258 { 259 int ret; 260 char buf; 261 262 do 263 { 264 ret = read (linux_nat_event_pipe[0], &buf, 1); 265 } 266 while (ret >= 0 || (ret == -1 && errno == EINTR)); 267 } 268 269 /* Put something (anything, doesn't matter what, or how much) in event 270 pipe, so that the select/poll in the event-loop realizes we have 271 something to process. */ 272 273 static void 274 async_file_mark (void) 275 { 276 int ret; 277 278 /* It doesn't really matter what the pipe contains, as long we end 279 up with something in it. Might as well flush the previous 280 left-overs. */ 281 async_file_flush (); 282 283 do 284 { 285 ret = write (linux_nat_event_pipe[1], "+", 1); 286 } 287 while (ret == -1 && errno == EINTR); 288 289 /* Ignore EAGAIN. If the pipe is full, the event loop will already 290 be awakened anyway. */ 291 } 292 293 static int kill_lwp (int lwpid, int signo); 294 295 static int stop_callback (struct lwp_info *lp, void *data); 296 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 297 298 static void block_child_signals (sigset_t *prev_mask); 299 static void restore_child_signals_mask (sigset_t *prev_mask); 300 301 struct lwp_info; 302 static struct lwp_info *add_lwp (ptid_t ptid); 303 static void purge_lwp_list (int pid); 304 static void delete_lwp (ptid_t ptid); 305 static struct lwp_info *find_lwp_pid (ptid_t ptid); 306 307 static int lwp_status_pending_p (struct lwp_info *lp); 308 309 static int sigtrap_is_event (int status); 310 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event; 311 312 static void save_stop_reason (struct lwp_info *lp); 313 314 315 /* LWP accessors. */ 316 317 /* See nat/linux-nat.h. */ 318 319 ptid_t 320 ptid_of_lwp (struct lwp_info *lwp) 321 { 322 return lwp->ptid; 323 } 324 325 /* See nat/linux-nat.h. */ 326 327 void 328 lwp_set_arch_private_info (struct lwp_info *lwp, 329 struct arch_lwp_info *info) 330 { 331 lwp->arch_private = info; 332 } 333 334 /* See nat/linux-nat.h. */ 335 336 struct arch_lwp_info * 337 lwp_arch_private_info (struct lwp_info *lwp) 338 { 339 return lwp->arch_private; 340 } 341 342 /* See nat/linux-nat.h. */ 343 344 int 345 lwp_is_stopped (struct lwp_info *lwp) 346 { 347 return lwp->stopped; 348 } 349 350 /* See nat/linux-nat.h. */ 351 352 enum target_stop_reason 353 lwp_stop_reason (struct lwp_info *lwp) 354 { 355 return lwp->stop_reason; 356 } 357 358 /* See nat/linux-nat.h. */ 359 360 int 361 lwp_is_stepping (struct lwp_info *lwp) 362 { 363 return lwp->step; 364 } 365 366 367 /* Trivial list manipulation functions to keep track of a list of 368 new stopped processes. */ 369 static void 370 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 371 { 372 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); 373 374 new_pid->pid = pid; 375 new_pid->status = status; 376 new_pid->next = *listp; 377 *listp = new_pid; 378 } 379 380 static int 381 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 382 { 383 struct simple_pid_list **p; 384 385 for (p = listp; *p != NULL; p = &(*p)->next) 386 if ((*p)->pid == pid) 387 { 388 struct simple_pid_list *next = (*p)->next; 389 390 *statusp = (*p)->status; 391 xfree (*p); 392 *p = next; 393 return 1; 394 } 395 return 0; 396 } 397 398 /* Return the ptrace options that we want to try to enable. */ 399 400 static int 401 linux_nat_ptrace_options (int attached) 402 { 403 int options = 0; 404 405 if (!attached) 406 options |= PTRACE_O_EXITKILL; 407 408 options |= (PTRACE_O_TRACESYSGOOD 409 | PTRACE_O_TRACEVFORKDONE 410 | PTRACE_O_TRACEVFORK 411 | PTRACE_O_TRACEFORK 412 | PTRACE_O_TRACEEXEC); 413 414 return options; 415 } 416 417 /* Initialize ptrace warnings and check for supported ptrace 418 features given PID. 419 420 ATTACHED should be nonzero iff we attached to the inferior. */ 421 422 static void 423 linux_init_ptrace (pid_t pid, int attached) 424 { 425 int options = linux_nat_ptrace_options (attached); 426 427 linux_enable_event_reporting (pid, options); 428 linux_ptrace_init_warnings (); 429 } 430 431 static void 432 linux_child_post_attach (struct target_ops *self, int pid) 433 { 434 linux_init_ptrace (pid, 1); 435 } 436 437 static void 438 linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid) 439 { 440 linux_init_ptrace (ptid_get_pid (ptid), 0); 441 } 442 443 /* Return the number of known LWPs in the tgid given by PID. */ 444 445 static int 446 num_lwps (int pid) 447 { 448 int count = 0; 449 struct lwp_info *lp; 450 451 for (lp = lwp_list; lp; lp = lp->next) 452 if (ptid_get_pid (lp->ptid) == pid) 453 count++; 454 455 return count; 456 } 457 458 /* Call delete_lwp with prototype compatible for make_cleanup. */ 459 460 static void 461 delete_lwp_cleanup (void *lp_voidp) 462 { 463 struct lwp_info *lp = (struct lwp_info *) lp_voidp; 464 465 delete_lwp (lp->ptid); 466 } 467 468 /* Target hook for follow_fork. On entry inferior_ptid must be the 469 ptid of the followed inferior. At return, inferior_ptid will be 470 unchanged. */ 471 472 static int 473 linux_child_follow_fork (struct target_ops *ops, int follow_child, 474 int detach_fork) 475 { 476 if (!follow_child) 477 { 478 struct lwp_info *child_lp = NULL; 479 int status = W_STOPCODE (0); 480 struct cleanup *old_chain; 481 int has_vforked; 482 ptid_t parent_ptid, child_ptid; 483 int parent_pid, child_pid; 484 485 has_vforked = (inferior_thread ()->pending_follow.kind 486 == TARGET_WAITKIND_VFORKED); 487 parent_ptid = inferior_ptid; 488 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 489 parent_pid = ptid_get_lwp (parent_ptid); 490 child_pid = ptid_get_lwp (child_ptid); 491 492 /* We're already attached to the parent, by default. */ 493 old_chain = save_inferior_ptid (); 494 inferior_ptid = child_ptid; 495 child_lp = add_lwp (inferior_ptid); 496 child_lp->stopped = 1; 497 child_lp->last_resume_kind = resume_stop; 498 499 /* Detach new forked process? */ 500 if (detach_fork) 501 { 502 make_cleanup (delete_lwp_cleanup, child_lp); 503 504 if (linux_nat_prepare_to_resume != NULL) 505 linux_nat_prepare_to_resume (child_lp); 506 507 /* When debugging an inferior in an architecture that supports 508 hardware single stepping on a kernel without commit 509 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 510 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 511 set if the parent process had them set. 512 To work around this, single step the child process 513 once before detaching to clear the flags. */ 514 515 if (!gdbarch_software_single_step_p (target_thread_architecture 516 (child_lp->ptid))) 517 { 518 linux_disable_event_reporting (child_pid); 519 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 520 perror_with_name (_("Couldn't do single step")); 521 if (my_waitpid (child_pid, &status, 0) < 0) 522 perror_with_name (_("Couldn't wait vfork process")); 523 } 524 525 if (WIFSTOPPED (status)) 526 { 527 int signo; 528 529 signo = WSTOPSIG (status); 530 if (signo != 0 531 && !signal_pass_state (gdb_signal_from_host (signo))) 532 signo = 0; 533 ptrace (PTRACE_DETACH, child_pid, 0, signo); 534 } 535 536 /* Resets value of inferior_ptid to parent ptid. */ 537 do_cleanups (old_chain); 538 } 539 else 540 { 541 /* Let the thread_db layer learn about this new process. */ 542 check_for_thread_db (); 543 } 544 545 do_cleanups (old_chain); 546 547 if (has_vforked) 548 { 549 struct lwp_info *parent_lp; 550 551 parent_lp = find_lwp_pid (parent_ptid); 552 gdb_assert (linux_supports_tracefork () >= 0); 553 554 if (linux_supports_tracevforkdone ()) 555 { 556 if (debug_linux_nat) 557 fprintf_unfiltered (gdb_stdlog, 558 "LCFF: waiting for VFORK_DONE on %d\n", 559 parent_pid); 560 parent_lp->stopped = 1; 561 562 /* We'll handle the VFORK_DONE event like any other 563 event, in target_wait. */ 564 } 565 else 566 { 567 /* We can't insert breakpoints until the child has 568 finished with the shared memory region. We need to 569 wait until that happens. Ideal would be to just 570 call: 571 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 572 - waitpid (parent_pid, &status, __WALL); 573 However, most architectures can't handle a syscall 574 being traced on the way out if it wasn't traced on 575 the way in. 576 577 We might also think to loop, continuing the child 578 until it exits or gets a SIGTRAP. One problem is 579 that the child might call ptrace with PTRACE_TRACEME. 580 581 There's no simple and reliable way to figure out when 582 the vforked child will be done with its copy of the 583 shared memory. We could step it out of the syscall, 584 two instructions, let it go, and then single-step the 585 parent once. When we have hardware single-step, this 586 would work; with software single-step it could still 587 be made to work but we'd have to be able to insert 588 single-step breakpoints in the child, and we'd have 589 to insert -just- the single-step breakpoint in the 590 parent. Very awkward. 591 592 In the end, the best we can do is to make sure it 593 runs for a little while. Hopefully it will be out of 594 range of any breakpoints we reinsert. Usually this 595 is only the single-step breakpoint at vfork's return 596 point. */ 597 598 if (debug_linux_nat) 599 fprintf_unfiltered (gdb_stdlog, 600 "LCFF: no VFORK_DONE " 601 "support, sleeping a bit\n"); 602 603 usleep (10000); 604 605 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 606 and leave it pending. The next linux_nat_resume call 607 will notice a pending event, and bypasses actually 608 resuming the inferior. */ 609 parent_lp->status = 0; 610 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 611 parent_lp->stopped = 1; 612 613 /* If we're in async mode, need to tell the event loop 614 there's something here to process. */ 615 if (target_is_async_p ()) 616 async_file_mark (); 617 } 618 } 619 } 620 else 621 { 622 struct lwp_info *child_lp; 623 624 child_lp = add_lwp (inferior_ptid); 625 child_lp->stopped = 1; 626 child_lp->last_resume_kind = resume_stop; 627 628 /* Let the thread_db layer learn about this new process. */ 629 check_for_thread_db (); 630 } 631 632 return 0; 633 } 634 635 636 static int 637 linux_child_insert_fork_catchpoint (struct target_ops *self, int pid) 638 { 639 return !linux_supports_tracefork (); 640 } 641 642 static int 643 linux_child_remove_fork_catchpoint (struct target_ops *self, int pid) 644 { 645 return 0; 646 } 647 648 static int 649 linux_child_insert_vfork_catchpoint (struct target_ops *self, int pid) 650 { 651 return !linux_supports_tracefork (); 652 } 653 654 static int 655 linux_child_remove_vfork_catchpoint (struct target_ops *self, int pid) 656 { 657 return 0; 658 } 659 660 static int 661 linux_child_insert_exec_catchpoint (struct target_ops *self, int pid) 662 { 663 return !linux_supports_tracefork (); 664 } 665 666 static int 667 linux_child_remove_exec_catchpoint (struct target_ops *self, int pid) 668 { 669 return 0; 670 } 671 672 static int 673 linux_child_set_syscall_catchpoint (struct target_ops *self, 674 int pid, int needed, int any_count, 675 int table_size, int *table) 676 { 677 if (!linux_supports_tracesysgood ()) 678 return 1; 679 680 /* On GNU/Linux, we ignore the arguments. It means that we only 681 enable the syscall catchpoints, but do not disable them. 682 683 Also, we do not use the `table' information because we do not 684 filter system calls here. We let GDB do the logic for us. */ 685 return 0; 686 } 687 688 /* List of known LWPs, keyed by LWP PID. This speeds up the common 689 case of mapping a PID returned from the kernel to our corresponding 690 lwp_info data structure. */ 691 static htab_t lwp_lwpid_htab; 692 693 /* Calculate a hash from a lwp_info's LWP PID. */ 694 695 static hashval_t 696 lwp_info_hash (const void *ap) 697 { 698 const struct lwp_info *lp = (struct lwp_info *) ap; 699 pid_t pid = ptid_get_lwp (lp->ptid); 700 701 return iterative_hash_object (pid, 0); 702 } 703 704 /* Equality function for the lwp_info hash table. Compares the LWP's 705 PID. */ 706 707 static int 708 lwp_lwpid_htab_eq (const void *a, const void *b) 709 { 710 const struct lwp_info *entry = (const struct lwp_info *) a; 711 const struct lwp_info *element = (const struct lwp_info *) b; 712 713 return ptid_get_lwp (entry->ptid) == ptid_get_lwp (element->ptid); 714 } 715 716 /* Create the lwp_lwpid_htab hash table. */ 717 718 static void 719 lwp_lwpid_htab_create (void) 720 { 721 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); 722 } 723 724 /* Add LP to the hash table. */ 725 726 static void 727 lwp_lwpid_htab_add_lwp (struct lwp_info *lp) 728 { 729 void **slot; 730 731 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); 732 gdb_assert (slot != NULL && *slot == NULL); 733 *slot = lp; 734 } 735 736 /* Head of doubly-linked list of known LWPs. Sorted by reverse 737 creation order. This order is assumed in some cases. E.g., 738 reaping status after killing alls lwps of a process: the leader LWP 739 must be reaped last. */ 740 struct lwp_info *lwp_list; 741 742 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ 743 744 static void 745 lwp_list_add (struct lwp_info *lp) 746 { 747 lp->next = lwp_list; 748 if (lwp_list != NULL) 749 lwp_list->prev = lp; 750 lwp_list = lp; 751 } 752 753 /* Remove LP from sorted-by-reverse-creation-order doubly-linked 754 list. */ 755 756 static void 757 lwp_list_remove (struct lwp_info *lp) 758 { 759 /* Remove from sorted-by-creation-order list. */ 760 if (lp->next != NULL) 761 lp->next->prev = lp->prev; 762 if (lp->prev != NULL) 763 lp->prev->next = lp->next; 764 if (lp == lwp_list) 765 lwp_list = lp->next; 766 } 767 768 769 770 /* Original signal mask. */ 771 static sigset_t normal_mask; 772 773 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 774 _initialize_linux_nat. */ 775 static sigset_t suspend_mask; 776 777 /* Signals to block to make that sigsuspend work. */ 778 static sigset_t blocked_mask; 779 780 /* SIGCHLD action. */ 781 struct sigaction sigchld_action; 782 783 /* Block child signals (SIGCHLD and linux threads signals), and store 784 the previous mask in PREV_MASK. */ 785 786 static void 787 block_child_signals (sigset_t *prev_mask) 788 { 789 /* Make sure SIGCHLD is blocked. */ 790 if (!sigismember (&blocked_mask, SIGCHLD)) 791 sigaddset (&blocked_mask, SIGCHLD); 792 793 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask); 794 } 795 796 /* Restore child signals mask, previously returned by 797 block_child_signals. */ 798 799 static void 800 restore_child_signals_mask (sigset_t *prev_mask) 801 { 802 sigprocmask (SIG_SETMASK, prev_mask, NULL); 803 } 804 805 /* Mask of signals to pass directly to the inferior. */ 806 static sigset_t pass_mask; 807 808 /* Update signals to pass to the inferior. */ 809 static void 810 linux_nat_pass_signals (struct target_ops *self, 811 int numsigs, unsigned char *pass_signals) 812 { 813 int signo; 814 815 sigemptyset (&pass_mask); 816 817 for (signo = 1; signo < NSIG; signo++) 818 { 819 int target_signo = gdb_signal_from_host (signo); 820 if (target_signo < numsigs && pass_signals[target_signo]) 821 sigaddset (&pass_mask, signo); 822 } 823 } 824 825 826 827 /* Prototypes for local functions. */ 828 static int stop_wait_callback (struct lwp_info *lp, void *data); 829 static char *linux_child_pid_to_exec_file (struct target_ops *self, int pid); 830 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 831 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); 832 833 834 835 /* Destroy and free LP. */ 836 837 static void 838 lwp_free (struct lwp_info *lp) 839 { 840 xfree (lp->arch_private); 841 xfree (lp); 842 } 843 844 /* Traversal function for purge_lwp_list. */ 845 846 static int 847 lwp_lwpid_htab_remove_pid (void **slot, void *info) 848 { 849 struct lwp_info *lp = (struct lwp_info *) *slot; 850 int pid = *(int *) info; 851 852 if (ptid_get_pid (lp->ptid) == pid) 853 { 854 htab_clear_slot (lwp_lwpid_htab, slot); 855 lwp_list_remove (lp); 856 lwp_free (lp); 857 } 858 859 return 1; 860 } 861 862 /* Remove all LWPs belong to PID from the lwp list. */ 863 864 static void 865 purge_lwp_list (int pid) 866 { 867 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); 868 } 869 870 /* Add the LWP specified by PTID to the list. PTID is the first LWP 871 in the process. Return a pointer to the structure describing the 872 new LWP. 873 874 This differs from add_lwp in that we don't let the arch specific 875 bits know about this new thread. Current clients of this callback 876 take the opportunity to install watchpoints in the new thread, and 877 we shouldn't do that for the first thread. If we're spawning a 878 child ("run"), the thread executes the shell wrapper first, and we 879 shouldn't touch it until it execs the program we want to debug. 880 For "attach", it'd be okay to call the callback, but it's not 881 necessary, because watchpoints can't yet have been inserted into 882 the inferior. */ 883 884 static struct lwp_info * 885 add_initial_lwp (ptid_t ptid) 886 { 887 struct lwp_info *lp; 888 889 gdb_assert (ptid_lwp_p (ptid)); 890 891 lp = XNEW (struct lwp_info); 892 893 memset (lp, 0, sizeof (struct lwp_info)); 894 895 lp->last_resume_kind = resume_continue; 896 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 897 898 lp->ptid = ptid; 899 lp->core = -1; 900 901 /* Add to sorted-by-reverse-creation-order list. */ 902 lwp_list_add (lp); 903 904 /* Add to keyed-by-pid htab. */ 905 lwp_lwpid_htab_add_lwp (lp); 906 907 return lp; 908 } 909 910 /* Add the LWP specified by PID to the list. Return a pointer to the 911 structure describing the new LWP. The LWP should already be 912 stopped. */ 913 914 static struct lwp_info * 915 add_lwp (ptid_t ptid) 916 { 917 struct lwp_info *lp; 918 919 lp = add_initial_lwp (ptid); 920 921 /* Let the arch specific bits know about this new thread. Current 922 clients of this callback take the opportunity to install 923 watchpoints in the new thread. We don't do this for the first 924 thread though. See add_initial_lwp. */ 925 if (linux_nat_new_thread != NULL) 926 linux_nat_new_thread (lp); 927 928 return lp; 929 } 930 931 /* Remove the LWP specified by PID from the list. */ 932 933 static void 934 delete_lwp (ptid_t ptid) 935 { 936 struct lwp_info *lp; 937 void **slot; 938 struct lwp_info dummy; 939 940 dummy.ptid = ptid; 941 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); 942 if (slot == NULL) 943 return; 944 945 lp = *(struct lwp_info **) slot; 946 gdb_assert (lp != NULL); 947 948 htab_clear_slot (lwp_lwpid_htab, slot); 949 950 /* Remove from sorted-by-creation-order list. */ 951 lwp_list_remove (lp); 952 953 /* Release. */ 954 lwp_free (lp); 955 } 956 957 /* Return a pointer to the structure describing the LWP corresponding 958 to PID. If no corresponding LWP could be found, return NULL. */ 959 960 static struct lwp_info * 961 find_lwp_pid (ptid_t ptid) 962 { 963 struct lwp_info *lp; 964 int lwp; 965 struct lwp_info dummy; 966 967 if (ptid_lwp_p (ptid)) 968 lwp = ptid_get_lwp (ptid); 969 else 970 lwp = ptid_get_pid (ptid); 971 972 dummy.ptid = ptid_build (0, lwp, 0); 973 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); 974 return lp; 975 } 976 977 /* See nat/linux-nat.h. */ 978 979 struct lwp_info * 980 iterate_over_lwps (ptid_t filter, 981 iterate_over_lwps_ftype callback, 982 void *data) 983 { 984 struct lwp_info *lp, *lpnext; 985 986 for (lp = lwp_list; lp; lp = lpnext) 987 { 988 lpnext = lp->next; 989 990 if (ptid_match (lp->ptid, filter)) 991 { 992 if ((*callback) (lp, data) != 0) 993 return lp; 994 } 995 } 996 997 return NULL; 998 } 999 1000 /* Update our internal state when changing from one checkpoint to 1001 another indicated by NEW_PTID. We can only switch single-threaded 1002 applications, so we only create one new LWP, and the previous list 1003 is discarded. */ 1004 1005 void 1006 linux_nat_switch_fork (ptid_t new_ptid) 1007 { 1008 struct lwp_info *lp; 1009 1010 purge_lwp_list (ptid_get_pid (inferior_ptid)); 1011 1012 lp = add_lwp (new_ptid); 1013 lp->stopped = 1; 1014 1015 /* This changes the thread's ptid while preserving the gdb thread 1016 num. Also changes the inferior pid, while preserving the 1017 inferior num. */ 1018 thread_change_ptid (inferior_ptid, new_ptid); 1019 1020 /* We've just told GDB core that the thread changed target id, but, 1021 in fact, it really is a different thread, with different register 1022 contents. */ 1023 registers_changed (); 1024 } 1025 1026 /* Handle the exit of a single thread LP. */ 1027 1028 static void 1029 exit_lwp (struct lwp_info *lp) 1030 { 1031 struct thread_info *th = find_thread_ptid (lp->ptid); 1032 1033 if (th) 1034 { 1035 if (print_thread_events) 1036 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); 1037 1038 delete_thread (lp->ptid); 1039 } 1040 1041 delete_lwp (lp->ptid); 1042 } 1043 1044 /* Wait for the LWP specified by LP, which we have just attached to. 1045 Returns a wait status for that LWP, to cache. */ 1046 1047 static int 1048 linux_nat_post_attach_wait (ptid_t ptid, int first, int *signalled) 1049 { 1050 pid_t new_pid, pid = ptid_get_lwp (ptid); 1051 int status; 1052 1053 if (linux_proc_pid_is_stopped (pid)) 1054 { 1055 if (debug_linux_nat) 1056 fprintf_unfiltered (gdb_stdlog, 1057 "LNPAW: Attaching to a stopped process\n"); 1058 1059 /* The process is definitely stopped. It is in a job control 1060 stop, unless the kernel predates the TASK_STOPPED / 1061 TASK_TRACED distinction, in which case it might be in a 1062 ptrace stop. Make sure it is in a ptrace stop; from there we 1063 can kill it, signal it, et cetera. 1064 1065 First make sure there is a pending SIGSTOP. Since we are 1066 already attached, the process can not transition from stopped 1067 to running without a PTRACE_CONT; so we know this signal will 1068 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1069 probably already in the queue (unless this kernel is old 1070 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1071 is not an RT signal, it can only be queued once. */ 1072 kill_lwp (pid, SIGSTOP); 1073 1074 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1075 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1076 ptrace (PTRACE_CONT, pid, 0, 0); 1077 } 1078 1079 /* Make sure the initial process is stopped. The user-level threads 1080 layer might want to poke around in the inferior, and that won't 1081 work if things haven't stabilized yet. */ 1082 new_pid = my_waitpid (pid, &status, __WALL); 1083 gdb_assert (pid == new_pid); 1084 1085 if (!WIFSTOPPED (status)) 1086 { 1087 /* The pid we tried to attach has apparently just exited. */ 1088 if (debug_linux_nat) 1089 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s", 1090 pid, status_to_str (status)); 1091 return status; 1092 } 1093 1094 if (WSTOPSIG (status) != SIGSTOP) 1095 { 1096 *signalled = 1; 1097 if (debug_linux_nat) 1098 fprintf_unfiltered (gdb_stdlog, 1099 "LNPAW: Received %s after attaching\n", 1100 status_to_str (status)); 1101 } 1102 1103 return status; 1104 } 1105 1106 static void 1107 linux_nat_create_inferior (struct target_ops *ops, 1108 const char *exec_file, const std::string &allargs, 1109 char **env, int from_tty) 1110 { 1111 struct cleanup *restore_personality 1112 = maybe_disable_address_space_randomization (disable_randomization); 1113 1114 /* The fork_child mechanism is synchronous and calls target_wait, so 1115 we have to mask the async mode. */ 1116 1117 /* Make sure we report all signals during startup. */ 1118 linux_nat_pass_signals (ops, 0, NULL); 1119 1120 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty); 1121 1122 do_cleanups (restore_personality); 1123 } 1124 1125 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 1126 already attached. Returns true if a new LWP is found, false 1127 otherwise. */ 1128 1129 static int 1130 attach_proc_task_lwp_callback (ptid_t ptid) 1131 { 1132 struct lwp_info *lp; 1133 1134 /* Ignore LWPs we're already attached to. */ 1135 lp = find_lwp_pid (ptid); 1136 if (lp == NULL) 1137 { 1138 int lwpid = ptid_get_lwp (ptid); 1139 1140 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1141 { 1142 int err = errno; 1143 1144 /* Be quiet if we simply raced with the thread exiting. 1145 EPERM is returned if the thread's task still exists, and 1146 is marked as exited or zombie, as well as other 1147 conditions, so in that case, confirm the status in 1148 /proc/PID/status. */ 1149 if (err == ESRCH 1150 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1151 { 1152 if (debug_linux_nat) 1153 { 1154 fprintf_unfiltered (gdb_stdlog, 1155 "Cannot attach to lwp %d: " 1156 "thread is gone (%d: %s)\n", 1157 lwpid, err, safe_strerror (err)); 1158 } 1159 } 1160 else 1161 { 1162 warning (_("Cannot attach to lwp %d: %s"), 1163 lwpid, 1164 linux_ptrace_attach_fail_reason_string (ptid, 1165 err)); 1166 } 1167 } 1168 else 1169 { 1170 if (debug_linux_nat) 1171 fprintf_unfiltered (gdb_stdlog, 1172 "PTRACE_ATTACH %s, 0, 0 (OK)\n", 1173 target_pid_to_str (ptid)); 1174 1175 lp = add_lwp (ptid); 1176 1177 /* The next time we wait for this LWP we'll see a SIGSTOP as 1178 PTRACE_ATTACH brings it to a halt. */ 1179 lp->signalled = 1; 1180 1181 /* We need to wait for a stop before being able to make the 1182 next ptrace call on this LWP. */ 1183 lp->must_set_ptrace_flags = 1; 1184 1185 /* So that wait collects the SIGSTOP. */ 1186 lp->resumed = 1; 1187 1188 /* Also add the LWP to gdb's thread list, in case a 1189 matching libthread_db is not found (or the process uses 1190 raw clone). */ 1191 add_thread (lp->ptid); 1192 set_running (lp->ptid, 1); 1193 set_executing (lp->ptid, 1); 1194 } 1195 1196 return 1; 1197 } 1198 return 0; 1199 } 1200 1201 static void 1202 linux_nat_attach (struct target_ops *ops, const char *args, int from_tty) 1203 { 1204 struct lwp_info *lp; 1205 int status; 1206 ptid_t ptid; 1207 1208 /* Make sure we report all signals during attach. */ 1209 linux_nat_pass_signals (ops, 0, NULL); 1210 1211 TRY 1212 { 1213 linux_ops->to_attach (ops, args, from_tty); 1214 } 1215 CATCH (ex, RETURN_MASK_ERROR) 1216 { 1217 pid_t pid = parse_pid_to_attach (args); 1218 struct buffer buffer; 1219 char *message, *buffer_s; 1220 1221 message = xstrdup (ex.message); 1222 make_cleanup (xfree, message); 1223 1224 buffer_init (&buffer); 1225 linux_ptrace_attach_fail_reason (pid, &buffer); 1226 1227 buffer_grow_str0 (&buffer, ""); 1228 buffer_s = buffer_finish (&buffer); 1229 make_cleanup (xfree, buffer_s); 1230 1231 if (*buffer_s != '\0') 1232 throw_error (ex.error, "warning: %s\n%s", buffer_s, message); 1233 else 1234 throw_error (ex.error, "%s", message); 1235 } 1236 END_CATCH 1237 1238 /* The ptrace base target adds the main thread with (pid,0,0) 1239 format. Decorate it with lwp info. */ 1240 ptid = ptid_build (ptid_get_pid (inferior_ptid), 1241 ptid_get_pid (inferior_ptid), 1242 0); 1243 thread_change_ptid (inferior_ptid, ptid); 1244 1245 /* Add the initial process as the first LWP to the list. */ 1246 lp = add_initial_lwp (ptid); 1247 1248 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->signalled); 1249 if (!WIFSTOPPED (status)) 1250 { 1251 if (WIFEXITED (status)) 1252 { 1253 int exit_code = WEXITSTATUS (status); 1254 1255 target_terminal_ours (); 1256 target_mourn_inferior (inferior_ptid); 1257 if (exit_code == 0) 1258 error (_("Unable to attach: program exited normally.")); 1259 else 1260 error (_("Unable to attach: program exited with code %d."), 1261 exit_code); 1262 } 1263 else if (WIFSIGNALED (status)) 1264 { 1265 enum gdb_signal signo; 1266 1267 target_terminal_ours (); 1268 target_mourn_inferior (inferior_ptid); 1269 1270 signo = gdb_signal_from_host (WTERMSIG (status)); 1271 error (_("Unable to attach: program terminated with signal " 1272 "%s, %s."), 1273 gdb_signal_to_name (signo), 1274 gdb_signal_to_string (signo)); 1275 } 1276 1277 internal_error (__FILE__, __LINE__, 1278 _("unexpected status %d for PID %ld"), 1279 status, (long) ptid_get_lwp (ptid)); 1280 } 1281 1282 lp->stopped = 1; 1283 1284 /* Save the wait status to report later. */ 1285 lp->resumed = 1; 1286 if (debug_linux_nat) 1287 fprintf_unfiltered (gdb_stdlog, 1288 "LNA: waitpid %ld, saving status %s\n", 1289 (long) ptid_get_pid (lp->ptid), status_to_str (status)); 1290 1291 lp->status = status; 1292 1293 /* We must attach to every LWP. If /proc is mounted, use that to 1294 find them now. The inferior may be using raw clone instead of 1295 using pthreads. But even if it is using pthreads, thread_db 1296 walks structures in the inferior's address space to find the list 1297 of threads/LWPs, and those structures may well be corrupted. 1298 Note that once thread_db is loaded, we'll still use it to list 1299 threads and associate pthread info with each LWP. */ 1300 linux_proc_attach_tgid_threads (ptid_get_pid (lp->ptid), 1301 attach_proc_task_lwp_callback); 1302 1303 if (target_can_async_p ()) 1304 target_async (1); 1305 } 1306 1307 /* Get pending signal of THREAD as a host signal number, for detaching 1308 purposes. This is the signal the thread last stopped for, which we 1309 need to deliver to the thread when detaching, otherwise, it'd be 1310 suppressed/lost. */ 1311 1312 static int 1313 get_detach_signal (struct lwp_info *lp) 1314 { 1315 enum gdb_signal signo = GDB_SIGNAL_0; 1316 1317 /* If we paused threads momentarily, we may have stored pending 1318 events in lp->status or lp->waitstatus (see stop_wait_callback), 1319 and GDB core hasn't seen any signal for those threads. 1320 Otherwise, the last signal reported to the core is found in the 1321 thread object's stop_signal. 1322 1323 There's a corner case that isn't handled here at present. Only 1324 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1325 stop_signal make sense as a real signal to pass to the inferior. 1326 Some catchpoint related events, like 1327 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1328 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1329 those traps are debug API (ptrace in our case) related and 1330 induced; the inferior wouldn't see them if it wasn't being 1331 traced. Hence, we should never pass them to the inferior, even 1332 when set to pass state. Since this corner case isn't handled by 1333 infrun.c when proceeding with a signal, for consistency, neither 1334 do we handle it here (or elsewhere in the file we check for 1335 signal pass state). Normally SIGTRAP isn't set to pass state, so 1336 this is really a corner case. */ 1337 1338 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1339 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1340 else if (lp->status) 1341 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1342 else if (target_is_non_stop_p () && !is_executing (lp->ptid)) 1343 { 1344 struct thread_info *tp = find_thread_ptid (lp->ptid); 1345 1346 if (tp->suspend.waitstatus_pending_p) 1347 signo = tp->suspend.waitstatus.value.sig; 1348 else 1349 signo = tp->suspend.stop_signal; 1350 } 1351 else if (!target_is_non_stop_p ()) 1352 { 1353 struct target_waitstatus last; 1354 ptid_t last_ptid; 1355 1356 get_last_target_status (&last_ptid, &last); 1357 1358 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid)) 1359 { 1360 struct thread_info *tp = find_thread_ptid (lp->ptid); 1361 1362 signo = tp->suspend.stop_signal; 1363 } 1364 } 1365 1366 if (signo == GDB_SIGNAL_0) 1367 { 1368 if (debug_linux_nat) 1369 fprintf_unfiltered (gdb_stdlog, 1370 "GPT: lwp %s has no pending signal\n", 1371 target_pid_to_str (lp->ptid)); 1372 } 1373 else if (!signal_pass_state (signo)) 1374 { 1375 if (debug_linux_nat) 1376 fprintf_unfiltered (gdb_stdlog, 1377 "GPT: lwp %s had signal %s, " 1378 "but it is in no pass state\n", 1379 target_pid_to_str (lp->ptid), 1380 gdb_signal_to_string (signo)); 1381 } 1382 else 1383 { 1384 if (debug_linux_nat) 1385 fprintf_unfiltered (gdb_stdlog, 1386 "GPT: lwp %s has pending signal %s\n", 1387 target_pid_to_str (lp->ptid), 1388 gdb_signal_to_string (signo)); 1389 1390 return gdb_signal_to_host (signo); 1391 } 1392 1393 return 0; 1394 } 1395 1396 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the 1397 signal number that should be passed to the LWP when detaching. 1398 Otherwise pass any pending signal the LWP may have, if any. */ 1399 1400 static void 1401 detach_one_lwp (struct lwp_info *lp, int *signo_p) 1402 { 1403 int lwpid = ptid_get_lwp (lp->ptid); 1404 int signo; 1405 1406 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1407 1408 if (debug_linux_nat && lp->status) 1409 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", 1410 strsignal (WSTOPSIG (lp->status)), 1411 target_pid_to_str (lp->ptid)); 1412 1413 /* If there is a pending SIGSTOP, get rid of it. */ 1414 if (lp->signalled) 1415 { 1416 if (debug_linux_nat) 1417 fprintf_unfiltered (gdb_stdlog, 1418 "DC: Sending SIGCONT to %s\n", 1419 target_pid_to_str (lp->ptid)); 1420 1421 kill_lwp (lwpid, SIGCONT); 1422 lp->signalled = 0; 1423 } 1424 1425 if (signo_p == NULL) 1426 { 1427 /* Pass on any pending signal for this LWP. */ 1428 signo = get_detach_signal (lp); 1429 } 1430 else 1431 signo = *signo_p; 1432 1433 /* Preparing to resume may try to write registers, and fail if the 1434 lwp is zombie. If that happens, ignore the error. We'll handle 1435 it below, when detach fails with ESRCH. */ 1436 TRY 1437 { 1438 if (linux_nat_prepare_to_resume != NULL) 1439 linux_nat_prepare_to_resume (lp); 1440 } 1441 CATCH (ex, RETURN_MASK_ERROR) 1442 { 1443 if (!check_ptrace_stopped_lwp_gone (lp)) 1444 throw_exception (ex); 1445 } 1446 END_CATCH 1447 1448 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0) 1449 { 1450 int save_errno = errno; 1451 1452 /* We know the thread exists, so ESRCH must mean the lwp is 1453 zombie. This can happen if one of the already-detached 1454 threads exits the whole thread group. In that case we're 1455 still attached, and must reap the lwp. */ 1456 if (save_errno == ESRCH) 1457 { 1458 int ret, status; 1459 1460 ret = my_waitpid (lwpid, &status, __WALL); 1461 if (ret == -1) 1462 { 1463 warning (_("Couldn't reap LWP %d while detaching: %s"), 1464 lwpid, strerror (errno)); 1465 } 1466 else if (!WIFEXITED (status) && !WIFSIGNALED (status)) 1467 { 1468 warning (_("Reaping LWP %d while detaching " 1469 "returned unexpected status 0x%x"), 1470 lwpid, status); 1471 } 1472 } 1473 else 1474 { 1475 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), 1476 safe_strerror (save_errno)); 1477 } 1478 } 1479 else if (debug_linux_nat) 1480 { 1481 fprintf_unfiltered (gdb_stdlog, 1482 "PTRACE_DETACH (%s, %s, 0) (OK)\n", 1483 target_pid_to_str (lp->ptid), 1484 strsignal (signo)); 1485 } 1486 1487 delete_lwp (lp->ptid); 1488 } 1489 1490 static int 1491 detach_callback (struct lwp_info *lp, void *data) 1492 { 1493 /* We don't actually detach from the thread group leader just yet. 1494 If the thread group exits, we must reap the zombie clone lwps 1495 before we're able to reap the leader. */ 1496 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid)) 1497 detach_one_lwp (lp, NULL); 1498 return 0; 1499 } 1500 1501 static void 1502 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty) 1503 { 1504 int pid; 1505 struct lwp_info *main_lwp; 1506 1507 pid = ptid_get_pid (inferior_ptid); 1508 1509 /* Don't unregister from the event loop, as there may be other 1510 inferiors running. */ 1511 1512 /* Stop all threads before detaching. ptrace requires that the 1513 thread is stopped to sucessfully detach. */ 1514 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL); 1515 /* ... and wait until all of them have reported back that 1516 they're no longer running. */ 1517 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL); 1518 1519 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL); 1520 1521 /* Only the initial process should be left right now. */ 1522 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1); 1523 1524 main_lwp = find_lwp_pid (pid_to_ptid (pid)); 1525 1526 if (forks_exist_p ()) 1527 { 1528 /* Multi-fork case. The current inferior_ptid is being detached 1529 from, but there are other viable forks to debug. Detach from 1530 the current fork, and context-switch to the first 1531 available. */ 1532 linux_fork_detach (args, from_tty); 1533 } 1534 else 1535 { 1536 int signo; 1537 1538 target_announce_detach (from_tty); 1539 1540 /* Pass on any pending signal for the last LWP, unless the user 1541 requested detaching with a different signal (most likely 0, 1542 meaning, discard the signal). */ 1543 if (args != NULL) 1544 signo = atoi (args); 1545 else 1546 signo = get_detach_signal (main_lwp); 1547 1548 detach_one_lwp (main_lwp, &signo); 1549 1550 inf_ptrace_detach_success (ops); 1551 } 1552 } 1553 1554 /* Resume execution of the inferior process. If STEP is nonzero, 1555 single-step it. If SIGNAL is nonzero, give it that signal. */ 1556 1557 static void 1558 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1559 enum gdb_signal signo) 1560 { 1561 lp->step = step; 1562 1563 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1564 We only presently need that if the LWP is stepped though (to 1565 handle the case of stepping a breakpoint instruction). */ 1566 if (step) 1567 { 1568 struct regcache *regcache = get_thread_regcache (lp->ptid); 1569 1570 lp->stop_pc = regcache_read_pc (regcache); 1571 } 1572 else 1573 lp->stop_pc = 0; 1574 1575 if (linux_nat_prepare_to_resume != NULL) 1576 linux_nat_prepare_to_resume (lp); 1577 linux_ops->to_resume (linux_ops, lp->ptid, step, signo); 1578 1579 /* Successfully resumed. Clear state that no longer makes sense, 1580 and mark the LWP as running. Must not do this before resuming 1581 otherwise if that fails other code will be confused. E.g., we'd 1582 later try to stop the LWP and hang forever waiting for a stop 1583 status. Note that we must not throw after this is cleared, 1584 otherwise handle_zombie_lwp_error would get confused. */ 1585 lp->stopped = 0; 1586 lp->core = -1; 1587 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1588 registers_changed_ptid (lp->ptid); 1589 } 1590 1591 /* Called when we try to resume a stopped LWP and that errors out. If 1592 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1593 or about to become), discard the error, clear any pending status 1594 the LWP may have, and return true (we'll collect the exit status 1595 soon enough). Otherwise, return false. */ 1596 1597 static int 1598 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1599 { 1600 /* If we get an error after resuming the LWP successfully, we'd 1601 confuse !T state for the LWP being gone. */ 1602 gdb_assert (lp->stopped); 1603 1604 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1605 because even if ptrace failed with ESRCH, the tracee may be "not 1606 yet fully dead", but already refusing ptrace requests. In that 1607 case the tracee has 'R (Running)' state for a little bit 1608 (observed in Linux 3.18). See also the note on ESRCH in the 1609 ptrace(2) man page. Instead, check whether the LWP has any state 1610 other than ptrace-stopped. */ 1611 1612 /* Don't assume anything if /proc/PID/status can't be read. */ 1613 if (linux_proc_pid_is_trace_stopped_nowarn (ptid_get_lwp (lp->ptid)) == 0) 1614 { 1615 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1616 lp->status = 0; 1617 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 1618 return 1; 1619 } 1620 return 0; 1621 } 1622 1623 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1624 disappears while we try to resume it. */ 1625 1626 static void 1627 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1628 { 1629 TRY 1630 { 1631 linux_resume_one_lwp_throw (lp, step, signo); 1632 } 1633 CATCH (ex, RETURN_MASK_ERROR) 1634 { 1635 if (!check_ptrace_stopped_lwp_gone (lp)) 1636 throw_exception (ex); 1637 } 1638 END_CATCH 1639 } 1640 1641 /* Resume LP. */ 1642 1643 static void 1644 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1645 { 1646 if (lp->stopped) 1647 { 1648 struct inferior *inf = find_inferior_ptid (lp->ptid); 1649 1650 if (inf->vfork_child != NULL) 1651 { 1652 if (debug_linux_nat) 1653 fprintf_unfiltered (gdb_stdlog, 1654 "RC: Not resuming %s (vfork parent)\n", 1655 target_pid_to_str (lp->ptid)); 1656 } 1657 else if (!lwp_status_pending_p (lp)) 1658 { 1659 if (debug_linux_nat) 1660 fprintf_unfiltered (gdb_stdlog, 1661 "RC: Resuming sibling %s, %s, %s\n", 1662 target_pid_to_str (lp->ptid), 1663 (signo != GDB_SIGNAL_0 1664 ? strsignal (gdb_signal_to_host (signo)) 1665 : "0"), 1666 step ? "step" : "resume"); 1667 1668 linux_resume_one_lwp (lp, step, signo); 1669 } 1670 else 1671 { 1672 if (debug_linux_nat) 1673 fprintf_unfiltered (gdb_stdlog, 1674 "RC: Not resuming sibling %s (has pending)\n", 1675 target_pid_to_str (lp->ptid)); 1676 } 1677 } 1678 else 1679 { 1680 if (debug_linux_nat) 1681 fprintf_unfiltered (gdb_stdlog, 1682 "RC: Not resuming sibling %s (not stopped)\n", 1683 target_pid_to_str (lp->ptid)); 1684 } 1685 } 1686 1687 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1688 Resume LWP with the last stop signal, if it is in pass state. */ 1689 1690 static int 1691 linux_nat_resume_callback (struct lwp_info *lp, void *except) 1692 { 1693 enum gdb_signal signo = GDB_SIGNAL_0; 1694 1695 if (lp == except) 1696 return 0; 1697 1698 if (lp->stopped) 1699 { 1700 struct thread_info *thread; 1701 1702 thread = find_thread_ptid (lp->ptid); 1703 if (thread != NULL) 1704 { 1705 signo = thread->suspend.stop_signal; 1706 thread->suspend.stop_signal = GDB_SIGNAL_0; 1707 } 1708 } 1709 1710 resume_lwp (lp, 0, signo); 1711 return 0; 1712 } 1713 1714 static int 1715 resume_clear_callback (struct lwp_info *lp, void *data) 1716 { 1717 lp->resumed = 0; 1718 lp->last_resume_kind = resume_stop; 1719 return 0; 1720 } 1721 1722 static int 1723 resume_set_callback (struct lwp_info *lp, void *data) 1724 { 1725 lp->resumed = 1; 1726 lp->last_resume_kind = resume_continue; 1727 return 0; 1728 } 1729 1730 static void 1731 linux_nat_resume (struct target_ops *ops, 1732 ptid_t ptid, int step, enum gdb_signal signo) 1733 { 1734 struct lwp_info *lp; 1735 int resume_many; 1736 1737 if (debug_linux_nat) 1738 fprintf_unfiltered (gdb_stdlog, 1739 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", 1740 step ? "step" : "resume", 1741 target_pid_to_str (ptid), 1742 (signo != GDB_SIGNAL_0 1743 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1744 target_pid_to_str (inferior_ptid)); 1745 1746 /* A specific PTID means `step only this process id'. */ 1747 resume_many = (ptid_equal (minus_one_ptid, ptid) 1748 || ptid_is_pid (ptid)); 1749 1750 /* Mark the lwps we're resuming as resumed. */ 1751 iterate_over_lwps (ptid, resume_set_callback, NULL); 1752 1753 /* See if it's the current inferior that should be handled 1754 specially. */ 1755 if (resume_many) 1756 lp = find_lwp_pid (inferior_ptid); 1757 else 1758 lp = find_lwp_pid (ptid); 1759 gdb_assert (lp != NULL); 1760 1761 /* Remember if we're stepping. */ 1762 lp->last_resume_kind = step ? resume_step : resume_continue; 1763 1764 /* If we have a pending wait status for this thread, there is no 1765 point in resuming the process. But first make sure that 1766 linux_nat_wait won't preemptively handle the event - we 1767 should never take this short-circuit if we are going to 1768 leave LP running, since we have skipped resuming all the 1769 other threads. This bit of code needs to be synchronized 1770 with linux_nat_wait. */ 1771 1772 if (lp->status && WIFSTOPPED (lp->status)) 1773 { 1774 if (!lp->step 1775 && WSTOPSIG (lp->status) 1776 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1777 { 1778 if (debug_linux_nat) 1779 fprintf_unfiltered (gdb_stdlog, 1780 "LLR: Not short circuiting for ignored " 1781 "status 0x%x\n", lp->status); 1782 1783 /* FIXME: What should we do if we are supposed to continue 1784 this thread with a signal? */ 1785 gdb_assert (signo == GDB_SIGNAL_0); 1786 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1787 lp->status = 0; 1788 } 1789 } 1790 1791 if (lwp_status_pending_p (lp)) 1792 { 1793 /* FIXME: What should we do if we are supposed to continue 1794 this thread with a signal? */ 1795 gdb_assert (signo == GDB_SIGNAL_0); 1796 1797 if (debug_linux_nat) 1798 fprintf_unfiltered (gdb_stdlog, 1799 "LLR: Short circuiting for status 0x%x\n", 1800 lp->status); 1801 1802 if (target_can_async_p ()) 1803 { 1804 target_async (1); 1805 /* Tell the event loop we have something to process. */ 1806 async_file_mark (); 1807 } 1808 return; 1809 } 1810 1811 if (resume_many) 1812 iterate_over_lwps (ptid, linux_nat_resume_callback, lp); 1813 1814 if (debug_linux_nat) 1815 fprintf_unfiltered (gdb_stdlog, 1816 "LLR: %s %s, %s (resume event thread)\n", 1817 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1818 target_pid_to_str (lp->ptid), 1819 (signo != GDB_SIGNAL_0 1820 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1821 1822 linux_resume_one_lwp (lp, step, signo); 1823 1824 if (target_can_async_p ()) 1825 target_async (1); 1826 } 1827 1828 /* Send a signal to an LWP. */ 1829 1830 static int 1831 kill_lwp (int lwpid, int signo) 1832 { 1833 int ret; 1834 1835 errno = 0; 1836 ret = syscall (__NR_tkill, lwpid, signo); 1837 if (errno == ENOSYS) 1838 { 1839 /* If tkill fails, then we are not using nptl threads, a 1840 configuration we no longer support. */ 1841 perror_with_name (("tkill")); 1842 } 1843 return ret; 1844 } 1845 1846 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1847 event, check if the core is interested in it: if not, ignore the 1848 event, and keep waiting; otherwise, we need to toggle the LWP's 1849 syscall entry/exit status, since the ptrace event itself doesn't 1850 indicate it, and report the trap to higher layers. */ 1851 1852 static int 1853 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1854 { 1855 struct target_waitstatus *ourstatus = &lp->waitstatus; 1856 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1857 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid); 1858 1859 if (stopping) 1860 { 1861 /* If we're stopping threads, there's a SIGSTOP pending, which 1862 makes it so that the LWP reports an immediate syscall return, 1863 followed by the SIGSTOP. Skip seeing that "return" using 1864 PTRACE_CONT directly, and let stop_wait_callback collect the 1865 SIGSTOP. Later when the thread is resumed, a new syscall 1866 entry event. If we didn't do this (and returned 0), we'd 1867 leave a syscall entry pending, and our caller, by using 1868 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1869 itself. Later, when the user re-resumes this LWP, we'd see 1870 another syscall entry event and we'd mistake it for a return. 1871 1872 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1873 (leaving immediately with LWP->signalled set, without issuing 1874 a PTRACE_CONT), it would still be problematic to leave this 1875 syscall enter pending, as later when the thread is resumed, 1876 it would then see the same syscall exit mentioned above, 1877 followed by the delayed SIGSTOP, while the syscall didn't 1878 actually get to execute. It seems it would be even more 1879 confusing to the user. */ 1880 1881 if (debug_linux_nat) 1882 fprintf_unfiltered (gdb_stdlog, 1883 "LHST: ignoring syscall %d " 1884 "for LWP %ld (stopping threads), " 1885 "resuming with PTRACE_CONT for SIGSTOP\n", 1886 syscall_number, 1887 ptid_get_lwp (lp->ptid)); 1888 1889 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1890 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 1891 lp->stopped = 0; 1892 return 1; 1893 } 1894 1895 /* Always update the entry/return state, even if this particular 1896 syscall isn't interesting to the core now. In async mode, 1897 the user could install a new catchpoint for this syscall 1898 between syscall enter/return, and we'll need to know to 1899 report a syscall return if that happens. */ 1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1901 ? TARGET_WAITKIND_SYSCALL_RETURN 1902 : TARGET_WAITKIND_SYSCALL_ENTRY); 1903 1904 if (catch_syscall_enabled ()) 1905 { 1906 if (catching_syscall_number (syscall_number)) 1907 { 1908 /* Alright, an event to report. */ 1909 ourstatus->kind = lp->syscall_state; 1910 ourstatus->value.syscall_number = syscall_number; 1911 1912 if (debug_linux_nat) 1913 fprintf_unfiltered (gdb_stdlog, 1914 "LHST: stopping for %s of syscall %d" 1915 " for LWP %ld\n", 1916 lp->syscall_state 1917 == TARGET_WAITKIND_SYSCALL_ENTRY 1918 ? "entry" : "return", 1919 syscall_number, 1920 ptid_get_lwp (lp->ptid)); 1921 return 0; 1922 } 1923 1924 if (debug_linux_nat) 1925 fprintf_unfiltered (gdb_stdlog, 1926 "LHST: ignoring %s of syscall %d " 1927 "for LWP %ld\n", 1928 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1929 ? "entry" : "return", 1930 syscall_number, 1931 ptid_get_lwp (lp->ptid)); 1932 } 1933 else 1934 { 1935 /* If we had been syscall tracing, and hence used PT_SYSCALL 1936 before on this LWP, it could happen that the user removes all 1937 syscall catchpoints before we get to process this event. 1938 There are two noteworthy issues here: 1939 1940 - When stopped at a syscall entry event, resuming with 1941 PT_STEP still resumes executing the syscall and reports a 1942 syscall return. 1943 1944 - Only PT_SYSCALL catches syscall enters. If we last 1945 single-stepped this thread, then this event can't be a 1946 syscall enter. If we last single-stepped this thread, this 1947 has to be a syscall exit. 1948 1949 The points above mean that the next resume, be it PT_STEP or 1950 PT_CONTINUE, can not trigger a syscall trace event. */ 1951 if (debug_linux_nat) 1952 fprintf_unfiltered (gdb_stdlog, 1953 "LHST: caught syscall event " 1954 "with no syscall catchpoints." 1955 " %d for LWP %ld, ignoring\n", 1956 syscall_number, 1957 ptid_get_lwp (lp->ptid)); 1958 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1959 } 1960 1961 /* The core isn't interested in this event. For efficiency, avoid 1962 stopping all threads only to have the core resume them all again. 1963 Since we're not stopping threads, if we're still syscall tracing 1964 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1965 subsequent syscall. Simply resume using the inf-ptrace layer, 1966 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1967 1968 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1969 return 1; 1970 } 1971 1972 /* Handle a GNU/Linux extended wait response. If we see a clone 1973 event, we need to add the new LWP to our list (and not report the 1974 trap to higher layers). This function returns non-zero if the 1975 event should be ignored and we should wait again. If STOPPING is 1976 true, the new LWP remains stopped, otherwise it is continued. */ 1977 1978 static int 1979 linux_handle_extended_wait (struct lwp_info *lp, int status) 1980 { 1981 int pid = ptid_get_lwp (lp->ptid); 1982 struct target_waitstatus *ourstatus = &lp->waitstatus; 1983 int event = linux_ptrace_get_extended_event (status); 1984 1985 /* All extended events we currently use are mid-syscall. Only 1986 PTRACE_EVENT_STOP is delivered more like a signal-stop, but 1987 you have to be using PTRACE_SEIZE to get that. */ 1988 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; 1989 1990 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1991 || event == PTRACE_EVENT_CLONE) 1992 { 1993 unsigned long new_pid; 1994 int ret; 1995 1996 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1997 1998 /* If we haven't already seen the new PID stop, wait for it now. */ 1999 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 2000 { 2001 /* The new child has a pending SIGSTOP. We can't affect it until it 2002 hits the SIGSTOP, but we're already attached. */ 2003 ret = my_waitpid (new_pid, &status, __WALL); 2004 if (ret == -1) 2005 perror_with_name (_("waiting for new child")); 2006 else if (ret != new_pid) 2007 internal_error (__FILE__, __LINE__, 2008 _("wait returned unexpected PID %d"), ret); 2009 else if (!WIFSTOPPED (status)) 2010 internal_error (__FILE__, __LINE__, 2011 _("wait returned unexpected status 0x%x"), status); 2012 } 2013 2014 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0); 2015 2016 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 2017 { 2018 /* The arch-specific native code may need to know about new 2019 forks even if those end up never mapped to an 2020 inferior. */ 2021 if (linux_nat_new_fork != NULL) 2022 linux_nat_new_fork (lp, new_pid); 2023 } 2024 2025 if (event == PTRACE_EVENT_FORK 2026 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid))) 2027 { 2028 /* Handle checkpointing by linux-fork.c here as a special 2029 case. We don't want the follow-fork-mode or 'catch fork' 2030 to interfere with this. */ 2031 2032 /* This won't actually modify the breakpoint list, but will 2033 physically remove the breakpoints from the child. */ 2034 detach_breakpoints (ptid_build (new_pid, new_pid, 0)); 2035 2036 /* Retain child fork in ptrace (stopped) state. */ 2037 if (!find_fork_pid (new_pid)) 2038 add_fork (new_pid); 2039 2040 /* Report as spurious, so that infrun doesn't want to follow 2041 this fork. We're actually doing an infcall in 2042 linux-fork.c. */ 2043 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 2044 2045 /* Report the stop to the core. */ 2046 return 0; 2047 } 2048 2049 if (event == PTRACE_EVENT_FORK) 2050 ourstatus->kind = TARGET_WAITKIND_FORKED; 2051 else if (event == PTRACE_EVENT_VFORK) 2052 ourstatus->kind = TARGET_WAITKIND_VFORKED; 2053 else if (event == PTRACE_EVENT_CLONE) 2054 { 2055 struct lwp_info *new_lp; 2056 2057 ourstatus->kind = TARGET_WAITKIND_IGNORE; 2058 2059 if (debug_linux_nat) 2060 fprintf_unfiltered (gdb_stdlog, 2061 "LHEW: Got clone event " 2062 "from LWP %d, new child is LWP %ld\n", 2063 pid, new_pid); 2064 2065 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0)); 2066 new_lp->stopped = 1; 2067 new_lp->resumed = 1; 2068 2069 /* If the thread_db layer is active, let it record the user 2070 level thread id and status, and add the thread to GDB's 2071 list. */ 2072 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 2073 { 2074 /* The process is not using thread_db. Add the LWP to 2075 GDB's list. */ 2076 target_post_attach (ptid_get_lwp (new_lp->ptid)); 2077 add_thread (new_lp->ptid); 2078 } 2079 2080 /* Even if we're stopping the thread for some reason 2081 internal to this module, from the perspective of infrun 2082 and the user/frontend, this new thread is running until 2083 it next reports a stop. */ 2084 set_running (new_lp->ptid, 1); 2085 set_executing (new_lp->ptid, 1); 2086 2087 if (WSTOPSIG (status) != SIGSTOP) 2088 { 2089 /* This can happen if someone starts sending signals to 2090 the new thread before it gets a chance to run, which 2091 have a lower number than SIGSTOP (e.g. SIGUSR1). 2092 This is an unlikely case, and harder to handle for 2093 fork / vfork than for clone, so we do not try - but 2094 we handle it for clone events here. */ 2095 2096 new_lp->signalled = 1; 2097 2098 /* We created NEW_LP so it cannot yet contain STATUS. */ 2099 gdb_assert (new_lp->status == 0); 2100 2101 /* Save the wait status to report later. */ 2102 if (debug_linux_nat) 2103 fprintf_unfiltered (gdb_stdlog, 2104 "LHEW: waitpid of new LWP %ld, " 2105 "saving status %s\n", 2106 (long) ptid_get_lwp (new_lp->ptid), 2107 status_to_str (status)); 2108 new_lp->status = status; 2109 } 2110 else if (report_thread_events) 2111 { 2112 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED; 2113 new_lp->status = status; 2114 } 2115 2116 return 1; 2117 } 2118 2119 return 0; 2120 } 2121 2122 if (event == PTRACE_EVENT_EXEC) 2123 { 2124 if (debug_linux_nat) 2125 fprintf_unfiltered (gdb_stdlog, 2126 "LHEW: Got exec event from LWP %ld\n", 2127 ptid_get_lwp (lp->ptid)); 2128 2129 ourstatus->kind = TARGET_WAITKIND_EXECD; 2130 ourstatus->value.execd_pathname 2131 = xstrdup (linux_child_pid_to_exec_file (NULL, pid)); 2132 2133 /* The thread that execed must have been resumed, but, when a 2134 thread execs, it changes its tid to the tgid, and the old 2135 tgid thread might have not been resumed. */ 2136 lp->resumed = 1; 2137 return 0; 2138 } 2139 2140 if (event == PTRACE_EVENT_VFORK_DONE) 2141 { 2142 if (current_inferior ()->waiting_for_vfork_done) 2143 { 2144 if (debug_linux_nat) 2145 fprintf_unfiltered (gdb_stdlog, 2146 "LHEW: Got expected PTRACE_EVENT_" 2147 "VFORK_DONE from LWP %ld: stopping\n", 2148 ptid_get_lwp (lp->ptid)); 2149 2150 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2151 return 0; 2152 } 2153 2154 if (debug_linux_nat) 2155 fprintf_unfiltered (gdb_stdlog, 2156 "LHEW: Got PTRACE_EVENT_VFORK_DONE " 2157 "from LWP %ld: ignoring\n", 2158 ptid_get_lwp (lp->ptid)); 2159 return 1; 2160 } 2161 2162 internal_error (__FILE__, __LINE__, 2163 _("unknown ptrace event %d"), event); 2164 } 2165 2166 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2167 exited. */ 2168 2169 static int 2170 wait_lwp (struct lwp_info *lp) 2171 { 2172 pid_t pid; 2173 int status = 0; 2174 int thread_dead = 0; 2175 sigset_t prev_mask; 2176 2177 gdb_assert (!lp->stopped); 2178 gdb_assert (lp->status == 0); 2179 2180 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2181 block_child_signals (&prev_mask); 2182 2183 for (;;) 2184 { 2185 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WALL | WNOHANG); 2186 if (pid == -1 && errno == ECHILD) 2187 { 2188 /* The thread has previously exited. We need to delete it 2189 now because if this was a non-leader thread execing, we 2190 won't get an exit event. See comments on exec events at 2191 the top of the file. */ 2192 thread_dead = 1; 2193 if (debug_linux_nat) 2194 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", 2195 target_pid_to_str (lp->ptid)); 2196 } 2197 if (pid != 0) 2198 break; 2199 2200 /* Bugs 10970, 12702. 2201 Thread group leader may have exited in which case we'll lock up in 2202 waitpid if there are other threads, even if they are all zombies too. 2203 Basically, we're not supposed to use waitpid this way. 2204 tkill(pid,0) cannot be used here as it gets ESRCH for both 2205 for zombie and running processes. 2206 2207 As a workaround, check if we're waiting for the thread group leader and 2208 if it's a zombie, and avoid calling waitpid if it is. 2209 2210 This is racy, what if the tgl becomes a zombie right after we check? 2211 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2212 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2213 2214 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid) 2215 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid))) 2216 { 2217 thread_dead = 1; 2218 if (debug_linux_nat) 2219 fprintf_unfiltered (gdb_stdlog, 2220 "WL: Thread group leader %s vanished.\n", 2221 target_pid_to_str (lp->ptid)); 2222 break; 2223 } 2224 2225 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2226 get invoked despite our caller had them intentionally blocked by 2227 block_child_signals. This is sensitive only to the loop of 2228 linux_nat_wait_1 and there if we get called my_waitpid gets called 2229 again before it gets to sigsuspend so we can safely let the handlers 2230 get executed here. */ 2231 2232 if (debug_linux_nat) 2233 fprintf_unfiltered (gdb_stdlog, "WL: about to sigsuspend\n"); 2234 sigsuspend (&suspend_mask); 2235 } 2236 2237 restore_child_signals_mask (&prev_mask); 2238 2239 if (!thread_dead) 2240 { 2241 gdb_assert (pid == ptid_get_lwp (lp->ptid)); 2242 2243 if (debug_linux_nat) 2244 { 2245 fprintf_unfiltered (gdb_stdlog, 2246 "WL: waitpid %s received %s\n", 2247 target_pid_to_str (lp->ptid), 2248 status_to_str (status)); 2249 } 2250 2251 /* Check if the thread has exited. */ 2252 if (WIFEXITED (status) || WIFSIGNALED (status)) 2253 { 2254 if (report_thread_events 2255 || ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)) 2256 { 2257 if (debug_linux_nat) 2258 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n", 2259 ptid_get_pid (lp->ptid)); 2260 2261 /* If this is the leader exiting, it means the whole 2262 process is gone. Store the status to report to the 2263 core. Store it in lp->waitstatus, because lp->status 2264 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2265 store_waitstatus (&lp->waitstatus, status); 2266 return 0; 2267 } 2268 2269 thread_dead = 1; 2270 if (debug_linux_nat) 2271 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", 2272 target_pid_to_str (lp->ptid)); 2273 } 2274 } 2275 2276 if (thread_dead) 2277 { 2278 exit_lwp (lp); 2279 return 0; 2280 } 2281 2282 gdb_assert (WIFSTOPPED (status)); 2283 lp->stopped = 1; 2284 2285 if (lp->must_set_ptrace_flags) 2286 { 2287 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 2288 int options = linux_nat_ptrace_options (inf->attach_flag); 2289 2290 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 2291 lp->must_set_ptrace_flags = 0; 2292 } 2293 2294 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2295 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2296 { 2297 /* No longer need the sysgood bit. The ptrace event ends up 2298 recorded in lp->waitstatus if we care for it. We can carry 2299 on handling the event like a regular SIGTRAP from here 2300 on. */ 2301 status = W_STOPCODE (SIGTRAP); 2302 if (linux_handle_syscall_trap (lp, 1)) 2303 return wait_lwp (lp); 2304 } 2305 else 2306 { 2307 /* Almost all other ptrace-stops are known to be outside of system 2308 calls, with further exceptions in linux_handle_extended_wait. */ 2309 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2310 } 2311 2312 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2313 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2314 && linux_is_extended_waitstatus (status)) 2315 { 2316 if (debug_linux_nat) 2317 fprintf_unfiltered (gdb_stdlog, 2318 "WL: Handling extended status 0x%06x\n", 2319 status); 2320 linux_handle_extended_wait (lp, status); 2321 return 0; 2322 } 2323 2324 return status; 2325 } 2326 2327 /* Send a SIGSTOP to LP. */ 2328 2329 static int 2330 stop_callback (struct lwp_info *lp, void *data) 2331 { 2332 if (!lp->stopped && !lp->signalled) 2333 { 2334 int ret; 2335 2336 if (debug_linux_nat) 2337 { 2338 fprintf_unfiltered (gdb_stdlog, 2339 "SC: kill %s **<SIGSTOP>**\n", 2340 target_pid_to_str (lp->ptid)); 2341 } 2342 errno = 0; 2343 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP); 2344 if (debug_linux_nat) 2345 { 2346 fprintf_unfiltered (gdb_stdlog, 2347 "SC: lwp kill %d %s\n", 2348 ret, 2349 errno ? safe_strerror (errno) : "ERRNO-OK"); 2350 } 2351 2352 lp->signalled = 1; 2353 gdb_assert (lp->status == 0); 2354 } 2355 2356 return 0; 2357 } 2358 2359 /* Request a stop on LWP. */ 2360 2361 void 2362 linux_stop_lwp (struct lwp_info *lwp) 2363 { 2364 stop_callback (lwp, NULL); 2365 } 2366 2367 /* See linux-nat.h */ 2368 2369 void 2370 linux_stop_and_wait_all_lwps (void) 2371 { 2372 /* Stop all LWP's ... */ 2373 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 2374 2375 /* ... and wait until all of them have reported back that 2376 they're no longer running. */ 2377 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 2378 } 2379 2380 /* See linux-nat.h */ 2381 2382 void 2383 linux_unstop_all_lwps (void) 2384 { 2385 iterate_over_lwps (minus_one_ptid, 2386 resume_stopped_resumed_lwps, &minus_one_ptid); 2387 } 2388 2389 /* Return non-zero if LWP PID has a pending SIGINT. */ 2390 2391 static int 2392 linux_nat_has_pending_sigint (int pid) 2393 { 2394 sigset_t pending, blocked, ignored; 2395 2396 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2397 2398 if (sigismember (&pending, SIGINT) 2399 && !sigismember (&ignored, SIGINT)) 2400 return 1; 2401 2402 return 0; 2403 } 2404 2405 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2406 2407 static int 2408 set_ignore_sigint (struct lwp_info *lp, void *data) 2409 { 2410 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2411 flag to consume the next one. */ 2412 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2413 && WSTOPSIG (lp->status) == SIGINT) 2414 lp->status = 0; 2415 else 2416 lp->ignore_sigint = 1; 2417 2418 return 0; 2419 } 2420 2421 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2422 This function is called after we know the LWP has stopped; if the LWP 2423 stopped before the expected SIGINT was delivered, then it will never have 2424 arrived. Also, if the signal was delivered to a shared queue and consumed 2425 by a different thread, it will never be delivered to this LWP. */ 2426 2427 static void 2428 maybe_clear_ignore_sigint (struct lwp_info *lp) 2429 { 2430 if (!lp->ignore_sigint) 2431 return; 2432 2433 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid))) 2434 { 2435 if (debug_linux_nat) 2436 fprintf_unfiltered (gdb_stdlog, 2437 "MCIS: Clearing bogus flag for %s\n", 2438 target_pid_to_str (lp->ptid)); 2439 lp->ignore_sigint = 0; 2440 } 2441 } 2442 2443 /* Fetch the possible triggered data watchpoint info and store it in 2444 LP. 2445 2446 On some archs, like x86, that use debug registers to set 2447 watchpoints, it's possible that the way to know which watched 2448 address trapped, is to check the register that is used to select 2449 which address to watch. Problem is, between setting the watchpoint 2450 and reading back which data address trapped, the user may change 2451 the set of watchpoints, and, as a consequence, GDB changes the 2452 debug registers in the inferior. To avoid reading back a stale 2453 stopped-data-address when that happens, we cache in LP the fact 2454 that a watchpoint trapped, and the corresponding data address, as 2455 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2456 registers meanwhile, we have the cached data we can rely on. */ 2457 2458 static int 2459 check_stopped_by_watchpoint (struct lwp_info *lp) 2460 { 2461 struct cleanup *old_chain; 2462 2463 if (linux_ops->to_stopped_by_watchpoint == NULL) 2464 return 0; 2465 2466 old_chain = save_inferior_ptid (); 2467 inferior_ptid = lp->ptid; 2468 2469 if (linux_ops->to_stopped_by_watchpoint (linux_ops)) 2470 { 2471 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2472 2473 if (linux_ops->to_stopped_data_address != NULL) 2474 lp->stopped_data_address_p = 2475 linux_ops->to_stopped_data_address (¤t_target, 2476 &lp->stopped_data_address); 2477 else 2478 lp->stopped_data_address_p = 0; 2479 } 2480 2481 do_cleanups (old_chain); 2482 2483 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2484 } 2485 2486 /* Returns true if the LWP had stopped for a watchpoint. */ 2487 2488 static int 2489 linux_nat_stopped_by_watchpoint (struct target_ops *ops) 2490 { 2491 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2492 2493 gdb_assert (lp != NULL); 2494 2495 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2496 } 2497 2498 static int 2499 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 2500 { 2501 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2502 2503 gdb_assert (lp != NULL); 2504 2505 *addr_p = lp->stopped_data_address; 2506 2507 return lp->stopped_data_address_p; 2508 } 2509 2510 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2511 2512 static int 2513 sigtrap_is_event (int status) 2514 { 2515 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2516 } 2517 2518 /* Set alternative SIGTRAP-like events recognizer. If 2519 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be 2520 applied. */ 2521 2522 void 2523 linux_nat_set_status_is_event (struct target_ops *t, 2524 int (*status_is_event) (int status)) 2525 { 2526 linux_nat_status_is_event = status_is_event; 2527 } 2528 2529 /* Wait until LP is stopped. */ 2530 2531 static int 2532 stop_wait_callback (struct lwp_info *lp, void *data) 2533 { 2534 struct inferior *inf = find_inferior_ptid (lp->ptid); 2535 2536 /* If this is a vfork parent, bail out, it is not going to report 2537 any SIGSTOP until the vfork is done with. */ 2538 if (inf->vfork_child != NULL) 2539 return 0; 2540 2541 if (!lp->stopped) 2542 { 2543 int status; 2544 2545 status = wait_lwp (lp); 2546 if (status == 0) 2547 return 0; 2548 2549 if (lp->ignore_sigint && WIFSTOPPED (status) 2550 && WSTOPSIG (status) == SIGINT) 2551 { 2552 lp->ignore_sigint = 0; 2553 2554 errno = 0; 2555 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 2556 lp->stopped = 0; 2557 if (debug_linux_nat) 2558 fprintf_unfiltered (gdb_stdlog, 2559 "PTRACE_CONT %s, 0, 0 (%s) " 2560 "(discarding SIGINT)\n", 2561 target_pid_to_str (lp->ptid), 2562 errno ? safe_strerror (errno) : "OK"); 2563 2564 return stop_wait_callback (lp, NULL); 2565 } 2566 2567 maybe_clear_ignore_sigint (lp); 2568 2569 if (WSTOPSIG (status) != SIGSTOP) 2570 { 2571 /* The thread was stopped with a signal other than SIGSTOP. */ 2572 2573 if (debug_linux_nat) 2574 fprintf_unfiltered (gdb_stdlog, 2575 "SWC: Pending event %s in %s\n", 2576 status_to_str ((int) status), 2577 target_pid_to_str (lp->ptid)); 2578 2579 /* Save the sigtrap event. */ 2580 lp->status = status; 2581 gdb_assert (lp->signalled); 2582 save_stop_reason (lp); 2583 } 2584 else 2585 { 2586 /* We caught the SIGSTOP that we intended to catch, so 2587 there's no SIGSTOP pending. */ 2588 2589 if (debug_linux_nat) 2590 fprintf_unfiltered (gdb_stdlog, 2591 "SWC: Expected SIGSTOP caught for %s.\n", 2592 target_pid_to_str (lp->ptid)); 2593 2594 /* Reset SIGNALLED only after the stop_wait_callback call 2595 above as it does gdb_assert on SIGNALLED. */ 2596 lp->signalled = 0; 2597 } 2598 } 2599 2600 return 0; 2601 } 2602 2603 /* Return non-zero if LP has a wait status pending. Discard the 2604 pending event and resume the LWP if the event that originally 2605 caused the stop became uninteresting. */ 2606 2607 static int 2608 status_callback (struct lwp_info *lp, void *data) 2609 { 2610 /* Only report a pending wait status if we pretend that this has 2611 indeed been resumed. */ 2612 if (!lp->resumed) 2613 return 0; 2614 2615 if (!lwp_status_pending_p (lp)) 2616 return 0; 2617 2618 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2619 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2620 { 2621 struct regcache *regcache = get_thread_regcache (lp->ptid); 2622 CORE_ADDR pc; 2623 int discard = 0; 2624 2625 pc = regcache_read_pc (regcache); 2626 2627 if (pc != lp->stop_pc) 2628 { 2629 if (debug_linux_nat) 2630 fprintf_unfiltered (gdb_stdlog, 2631 "SC: PC of %s changed. was=%s, now=%s\n", 2632 target_pid_to_str (lp->ptid), 2633 paddress (target_gdbarch (), lp->stop_pc), 2634 paddress (target_gdbarch (), pc)); 2635 discard = 1; 2636 } 2637 2638 #if !USE_SIGTRAP_SIGINFO 2639 else if (!breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2640 { 2641 if (debug_linux_nat) 2642 fprintf_unfiltered (gdb_stdlog, 2643 "SC: previous breakpoint of %s, at %s gone\n", 2644 target_pid_to_str (lp->ptid), 2645 paddress (target_gdbarch (), lp->stop_pc)); 2646 2647 discard = 1; 2648 } 2649 #endif 2650 2651 if (discard) 2652 { 2653 if (debug_linux_nat) 2654 fprintf_unfiltered (gdb_stdlog, 2655 "SC: pending event of %s cancelled.\n", 2656 target_pid_to_str (lp->ptid)); 2657 2658 lp->status = 0; 2659 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2660 return 0; 2661 } 2662 } 2663 2664 return 1; 2665 } 2666 2667 /* Count the LWP's that have had events. */ 2668 2669 static int 2670 count_events_callback (struct lwp_info *lp, void *data) 2671 { 2672 int *count = (int *) data; 2673 2674 gdb_assert (count != NULL); 2675 2676 /* Select only resumed LWPs that have an event pending. */ 2677 if (lp->resumed && lwp_status_pending_p (lp)) 2678 (*count)++; 2679 2680 return 0; 2681 } 2682 2683 /* Select the LWP (if any) that is currently being single-stepped. */ 2684 2685 static int 2686 select_singlestep_lwp_callback (struct lwp_info *lp, void *data) 2687 { 2688 if (lp->last_resume_kind == resume_step 2689 && lp->status != 0) 2690 return 1; 2691 else 2692 return 0; 2693 } 2694 2695 /* Returns true if LP has a status pending. */ 2696 2697 static int 2698 lwp_status_pending_p (struct lwp_info *lp) 2699 { 2700 /* We check for lp->waitstatus in addition to lp->status, because we 2701 can have pending process exits recorded in lp->status and 2702 W_EXITCODE(0,0) happens to be 0. */ 2703 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE; 2704 } 2705 2706 /* Select the Nth LWP that has had an event. */ 2707 2708 static int 2709 select_event_lwp_callback (struct lwp_info *lp, void *data) 2710 { 2711 int *selector = (int *) data; 2712 2713 gdb_assert (selector != NULL); 2714 2715 /* Select only resumed LWPs that have an event pending. */ 2716 if (lp->resumed && lwp_status_pending_p (lp)) 2717 if ((*selector)-- == 0) 2718 return 1; 2719 2720 return 0; 2721 } 2722 2723 /* Called when the LWP stopped for a signal/trap. If it stopped for a 2724 trap check what caused it (breakpoint, watchpoint, trace, etc.), 2725 and save the result in the LWP's stop_reason field. If it stopped 2726 for a breakpoint, decrement the PC if necessary on the lwp's 2727 architecture. */ 2728 2729 static void 2730 save_stop_reason (struct lwp_info *lp) 2731 { 2732 struct regcache *regcache; 2733 struct gdbarch *gdbarch; 2734 CORE_ADDR pc; 2735 CORE_ADDR sw_bp_pc; 2736 #if USE_SIGTRAP_SIGINFO 2737 siginfo_t siginfo; 2738 #endif 2739 2740 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2741 gdb_assert (lp->status != 0); 2742 2743 if (!linux_nat_status_is_event (lp->status)) 2744 return; 2745 2746 regcache = get_thread_regcache (lp->ptid); 2747 gdbarch = get_regcache_arch (regcache); 2748 2749 pc = regcache_read_pc (regcache); 2750 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2751 2752 #if USE_SIGTRAP_SIGINFO 2753 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2754 { 2755 if (siginfo.si_signo == SIGTRAP) 2756 { 2757 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) 2758 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2759 { 2760 /* The si_code is ambiguous on this arch -- check debug 2761 registers. */ 2762 if (!check_stopped_by_watchpoint (lp)) 2763 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2764 } 2765 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) 2766 { 2767 /* If we determine the LWP stopped for a SW breakpoint, 2768 trust it. Particularly don't check watchpoint 2769 registers, because at least on s390, we'd find 2770 stopped-by-watchpoint as long as there's a watchpoint 2771 set. */ 2772 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2773 } 2774 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2775 { 2776 /* This can indicate either a hardware breakpoint or 2777 hardware watchpoint. Check debug registers. */ 2778 if (!check_stopped_by_watchpoint (lp)) 2779 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2780 } 2781 else if (siginfo.si_code == TRAP_TRACE) 2782 { 2783 if (debug_linux_nat) 2784 fprintf_unfiltered (gdb_stdlog, 2785 "CSBB: %s stopped by trace\n", 2786 target_pid_to_str (lp->ptid)); 2787 2788 /* We may have single stepped an instruction that 2789 triggered a watchpoint. In that case, on some 2790 architectures (such as x86), instead of TRAP_HWBKPT, 2791 si_code indicates TRAP_TRACE, and we need to check 2792 the debug registers separately. */ 2793 check_stopped_by_watchpoint (lp); 2794 } 2795 } 2796 } 2797 #else 2798 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2799 && software_breakpoint_inserted_here_p (get_regcache_aspace (regcache), 2800 sw_bp_pc)) 2801 { 2802 /* The LWP was either continued, or stepped a software 2803 breakpoint instruction. */ 2804 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2805 } 2806 2807 if (hardware_breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2808 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2809 2810 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON) 2811 check_stopped_by_watchpoint (lp); 2812 #endif 2813 2814 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) 2815 { 2816 if (debug_linux_nat) 2817 fprintf_unfiltered (gdb_stdlog, 2818 "CSBB: %s stopped by software breakpoint\n", 2819 target_pid_to_str (lp->ptid)); 2820 2821 /* Back up the PC if necessary. */ 2822 if (pc != sw_bp_pc) 2823 regcache_write_pc (regcache, sw_bp_pc); 2824 2825 /* Update this so we record the correct stop PC below. */ 2826 pc = sw_bp_pc; 2827 } 2828 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2829 { 2830 if (debug_linux_nat) 2831 fprintf_unfiltered (gdb_stdlog, 2832 "CSBB: %s stopped by hardware breakpoint\n", 2833 target_pid_to_str (lp->ptid)); 2834 } 2835 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 2836 { 2837 if (debug_linux_nat) 2838 fprintf_unfiltered (gdb_stdlog, 2839 "CSBB: %s stopped by hardware watchpoint\n", 2840 target_pid_to_str (lp->ptid)); 2841 } 2842 2843 lp->stop_pc = pc; 2844 } 2845 2846 2847 /* Returns true if the LWP had stopped for a software breakpoint. */ 2848 2849 static int 2850 linux_nat_stopped_by_sw_breakpoint (struct target_ops *ops) 2851 { 2852 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2853 2854 gdb_assert (lp != NULL); 2855 2856 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2857 } 2858 2859 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2860 2861 static int 2862 linux_nat_supports_stopped_by_sw_breakpoint (struct target_ops *ops) 2863 { 2864 return USE_SIGTRAP_SIGINFO; 2865 } 2866 2867 /* Returns true if the LWP had stopped for a hardware 2868 breakpoint/watchpoint. */ 2869 2870 static int 2871 linux_nat_stopped_by_hw_breakpoint (struct target_ops *ops) 2872 { 2873 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2874 2875 gdb_assert (lp != NULL); 2876 2877 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2878 } 2879 2880 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2881 2882 static int 2883 linux_nat_supports_stopped_by_hw_breakpoint (struct target_ops *ops) 2884 { 2885 return USE_SIGTRAP_SIGINFO; 2886 } 2887 2888 /* Select one LWP out of those that have events pending. */ 2889 2890 static void 2891 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2892 { 2893 int num_events = 0; 2894 int random_selector; 2895 struct lwp_info *event_lp = NULL; 2896 2897 /* Record the wait status for the original LWP. */ 2898 (*orig_lp)->status = *status; 2899 2900 /* In all-stop, give preference to the LWP that is being 2901 single-stepped. There will be at most one, and it will be the 2902 LWP that the core is most interested in. If we didn't do this, 2903 then we'd have to handle pending step SIGTRAPs somehow in case 2904 the core later continues the previously-stepped thread, as 2905 otherwise we'd report the pending SIGTRAP then, and the core, not 2906 having stepped the thread, wouldn't understand what the trap was 2907 for, and therefore would report it to the user as a random 2908 signal. */ 2909 if (!target_is_non_stop_p ()) 2910 { 2911 event_lp = iterate_over_lwps (filter, 2912 select_singlestep_lwp_callback, NULL); 2913 if (event_lp != NULL) 2914 { 2915 if (debug_linux_nat) 2916 fprintf_unfiltered (gdb_stdlog, 2917 "SEL: Select single-step %s\n", 2918 target_pid_to_str (event_lp->ptid)); 2919 } 2920 } 2921 2922 if (event_lp == NULL) 2923 { 2924 /* Pick one at random, out of those which have had events. */ 2925 2926 /* First see how many events we have. */ 2927 iterate_over_lwps (filter, count_events_callback, &num_events); 2928 gdb_assert (num_events > 0); 2929 2930 /* Now randomly pick a LWP out of those that have had 2931 events. */ 2932 random_selector = (int) 2933 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2934 2935 if (debug_linux_nat && num_events > 1) 2936 fprintf_unfiltered (gdb_stdlog, 2937 "SEL: Found %d events, selecting #%d\n", 2938 num_events, random_selector); 2939 2940 event_lp = iterate_over_lwps (filter, 2941 select_event_lwp_callback, 2942 &random_selector); 2943 } 2944 2945 if (event_lp != NULL) 2946 { 2947 /* Switch the event LWP. */ 2948 *orig_lp = event_lp; 2949 *status = event_lp->status; 2950 } 2951 2952 /* Flush the wait status for the event LWP. */ 2953 (*orig_lp)->status = 0; 2954 } 2955 2956 /* Return non-zero if LP has been resumed. */ 2957 2958 static int 2959 resumed_callback (struct lwp_info *lp, void *data) 2960 { 2961 return lp->resumed; 2962 } 2963 2964 /* Check if we should go on and pass this event to common code. 2965 Return the affected lwp if we are, or NULL otherwise. */ 2966 2967 static struct lwp_info * 2968 linux_nat_filter_event (int lwpid, int status) 2969 { 2970 struct lwp_info *lp; 2971 int event = linux_ptrace_get_extended_event (status); 2972 2973 lp = find_lwp_pid (pid_to_ptid (lwpid)); 2974 2975 /* Check for stop events reported by a process we didn't already 2976 know about - anything not already in our LWP list. 2977 2978 If we're expecting to receive stopped processes after 2979 fork, vfork, and clone events, then we'll just add the 2980 new one to our list and go back to waiting for the event 2981 to be reported - the stopped process might be returned 2982 from waitpid before or after the event is. 2983 2984 But note the case of a non-leader thread exec'ing after the 2985 leader having exited, and gone from our lists. The non-leader 2986 thread changes its tid to the tgid. */ 2987 2988 if (WIFSTOPPED (status) && lp == NULL 2989 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)) 2990 { 2991 /* A multi-thread exec after we had seen the leader exiting. */ 2992 if (debug_linux_nat) 2993 fprintf_unfiltered (gdb_stdlog, 2994 "LLW: Re-adding thread group leader LWP %d.\n", 2995 lwpid); 2996 2997 lp = add_lwp (ptid_build (lwpid, lwpid, 0)); 2998 lp->stopped = 1; 2999 lp->resumed = 1; 3000 add_thread (lp->ptid); 3001 } 3002 3003 if (WIFSTOPPED (status) && !lp) 3004 { 3005 if (debug_linux_nat) 3006 fprintf_unfiltered (gdb_stdlog, 3007 "LHEW: saving LWP %ld status %s in stopped_pids list\n", 3008 (long) lwpid, status_to_str (status)); 3009 add_to_pid_list (&stopped_pids, lwpid, status); 3010 return NULL; 3011 } 3012 3013 /* Make sure we don't report an event for the exit of an LWP not in 3014 our list, i.e. not part of the current process. This can happen 3015 if we detach from a program we originally forked and then it 3016 exits. */ 3017 if (!WIFSTOPPED (status) && !lp) 3018 return NULL; 3019 3020 /* This LWP is stopped now. (And if dead, this prevents it from 3021 ever being continued.) */ 3022 lp->stopped = 1; 3023 3024 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 3025 { 3026 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 3027 int options = linux_nat_ptrace_options (inf->attach_flag); 3028 3029 linux_enable_event_reporting (ptid_get_lwp (lp->ptid), options); 3030 lp->must_set_ptrace_flags = 0; 3031 } 3032 3033 /* Handle GNU/Linux's syscall SIGTRAPs. */ 3034 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 3035 { 3036 /* No longer need the sysgood bit. The ptrace event ends up 3037 recorded in lp->waitstatus if we care for it. We can carry 3038 on handling the event like a regular SIGTRAP from here 3039 on. */ 3040 status = W_STOPCODE (SIGTRAP); 3041 if (linux_handle_syscall_trap (lp, 0)) 3042 return NULL; 3043 } 3044 else 3045 { 3046 /* Almost all other ptrace-stops are known to be outside of system 3047 calls, with further exceptions in linux_handle_extended_wait. */ 3048 lp->syscall_state = TARGET_WAITKIND_IGNORE; 3049 } 3050 3051 /* Handle GNU/Linux's extended waitstatus for trace events. */ 3052 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 3053 && linux_is_extended_waitstatus (status)) 3054 { 3055 if (debug_linux_nat) 3056 fprintf_unfiltered (gdb_stdlog, 3057 "LLW: Handling extended status 0x%06x\n", 3058 status); 3059 if (linux_handle_extended_wait (lp, status)) 3060 return NULL; 3061 } 3062 3063 /* Check if the thread has exited. */ 3064 if (WIFEXITED (status) || WIFSIGNALED (status)) 3065 { 3066 if (!report_thread_events 3067 && num_lwps (ptid_get_pid (lp->ptid)) > 1) 3068 { 3069 if (debug_linux_nat) 3070 fprintf_unfiltered (gdb_stdlog, 3071 "LLW: %s exited.\n", 3072 target_pid_to_str (lp->ptid)); 3073 3074 /* If there is at least one more LWP, then the exit signal 3075 was not the end of the debugged application and should be 3076 ignored. */ 3077 exit_lwp (lp); 3078 return NULL; 3079 } 3080 3081 /* Note that even if the leader was ptrace-stopped, it can still 3082 exit, if e.g., some other thread brings down the whole 3083 process (calls `exit'). So don't assert that the lwp is 3084 resumed. */ 3085 if (debug_linux_nat) 3086 fprintf_unfiltered (gdb_stdlog, 3087 "LWP %ld exited (resumed=%d)\n", 3088 ptid_get_lwp (lp->ptid), lp->resumed); 3089 3090 /* Dead LWP's aren't expected to reported a pending sigstop. */ 3091 lp->signalled = 0; 3092 3093 /* Store the pending event in the waitstatus, because 3094 W_EXITCODE(0,0) == 0. */ 3095 store_waitstatus (&lp->waitstatus, status); 3096 return lp; 3097 } 3098 3099 /* Make sure we don't report a SIGSTOP that we sent ourselves in 3100 an attempt to stop an LWP. */ 3101 if (lp->signalled 3102 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 3103 { 3104 lp->signalled = 0; 3105 3106 if (lp->last_resume_kind == resume_stop) 3107 { 3108 if (debug_linux_nat) 3109 fprintf_unfiltered (gdb_stdlog, 3110 "LLW: resume_stop SIGSTOP caught for %s.\n", 3111 target_pid_to_str (lp->ptid)); 3112 } 3113 else 3114 { 3115 /* This is a delayed SIGSTOP. Filter out the event. */ 3116 3117 if (debug_linux_nat) 3118 fprintf_unfiltered (gdb_stdlog, 3119 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n", 3120 lp->step ? 3121 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3122 target_pid_to_str (lp->ptid)); 3123 3124 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3125 gdb_assert (lp->resumed); 3126 return NULL; 3127 } 3128 } 3129 3130 /* Make sure we don't report a SIGINT that we have already displayed 3131 for another thread. */ 3132 if (lp->ignore_sigint 3133 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 3134 { 3135 if (debug_linux_nat) 3136 fprintf_unfiltered (gdb_stdlog, 3137 "LLW: Delayed SIGINT caught for %s.\n", 3138 target_pid_to_str (lp->ptid)); 3139 3140 /* This is a delayed SIGINT. */ 3141 lp->ignore_sigint = 0; 3142 3143 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3144 if (debug_linux_nat) 3145 fprintf_unfiltered (gdb_stdlog, 3146 "LLW: %s %s, 0, 0 (discard SIGINT)\n", 3147 lp->step ? 3148 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3149 target_pid_to_str (lp->ptid)); 3150 gdb_assert (lp->resumed); 3151 3152 /* Discard the event. */ 3153 return NULL; 3154 } 3155 3156 /* Don't report signals that GDB isn't interested in, such as 3157 signals that are neither printed nor stopped upon. Stopping all 3158 threads can be a bit time-consuming so if we want decent 3159 performance with heavily multi-threaded programs, especially when 3160 they're using a high frequency timer, we'd better avoid it if we 3161 can. */ 3162 if (WIFSTOPPED (status)) 3163 { 3164 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3165 3166 if (!target_is_non_stop_p ()) 3167 { 3168 /* Only do the below in all-stop, as we currently use SIGSTOP 3169 to implement target_stop (see linux_nat_stop) in 3170 non-stop. */ 3171 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3172 { 3173 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3174 forwarded to the entire process group, that is, all LWPs 3175 will receive it - unless they're using CLONE_THREAD to 3176 share signals. Since we only want to report it once, we 3177 mark it as ignored for all LWPs except this one. */ 3178 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)), 3179 set_ignore_sigint, NULL); 3180 lp->ignore_sigint = 0; 3181 } 3182 else 3183 maybe_clear_ignore_sigint (lp); 3184 } 3185 3186 /* When using hardware single-step, we need to report every signal. 3187 Otherwise, signals in pass_mask may be short-circuited 3188 except signals that might be caused by a breakpoint. */ 3189 if (!lp->step 3190 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 3191 && !linux_wstatus_maybe_breakpoint (status)) 3192 { 3193 linux_resume_one_lwp (lp, lp->step, signo); 3194 if (debug_linux_nat) 3195 fprintf_unfiltered (gdb_stdlog, 3196 "LLW: %s %s, %s (preempt 'handle')\n", 3197 lp->step ? 3198 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3199 target_pid_to_str (lp->ptid), 3200 (signo != GDB_SIGNAL_0 3201 ? strsignal (gdb_signal_to_host (signo)) 3202 : "0")); 3203 return NULL; 3204 } 3205 } 3206 3207 /* An interesting event. */ 3208 gdb_assert (lp); 3209 lp->status = status; 3210 save_stop_reason (lp); 3211 return lp; 3212 } 3213 3214 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3215 their exits until all other threads in the group have exited. */ 3216 3217 static void 3218 check_zombie_leaders (void) 3219 { 3220 struct inferior *inf; 3221 3222 ALL_INFERIORS (inf) 3223 { 3224 struct lwp_info *leader_lp; 3225 3226 if (inf->pid == 0) 3227 continue; 3228 3229 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid)); 3230 if (leader_lp != NULL 3231 /* Check if there are other threads in the group, as we may 3232 have raced with the inferior simply exiting. */ 3233 && num_lwps (inf->pid) > 1 3234 && linux_proc_pid_is_zombie (inf->pid)) 3235 { 3236 if (debug_linux_nat) 3237 fprintf_unfiltered (gdb_stdlog, 3238 "CZL: Thread group leader %d zombie " 3239 "(it exited, or another thread execd).\n", 3240 inf->pid); 3241 3242 /* A leader zombie can mean one of two things: 3243 3244 - It exited, and there's an exit status pending 3245 available, or only the leader exited (not the whole 3246 program). In the latter case, we can't waitpid the 3247 leader's exit status until all other threads are gone. 3248 3249 - There are 3 or more threads in the group, and a thread 3250 other than the leader exec'd. See comments on exec 3251 events at the top of the file. We could try 3252 distinguishing the exit and exec cases, by waiting once 3253 more, and seeing if something comes out, but it doesn't 3254 sound useful. The previous leader _does_ go away, and 3255 we'll re-add the new one once we see the exec event 3256 (which is just the same as what would happen if the 3257 previous leader did exit voluntarily before some other 3258 thread execs). */ 3259 3260 if (debug_linux_nat) 3261 fprintf_unfiltered (gdb_stdlog, 3262 "CZL: Thread group leader %d vanished.\n", 3263 inf->pid); 3264 exit_lwp (leader_lp); 3265 } 3266 } 3267 } 3268 3269 /* Convenience function that is called when the kernel reports an exit 3270 event. This decides whether to report the event to GDB as a 3271 process exit event, a thread exit event, or to suppress the 3272 event. */ 3273 3274 static ptid_t 3275 filter_exit_event (struct lwp_info *event_child, 3276 struct target_waitstatus *ourstatus) 3277 { 3278 ptid_t ptid = event_child->ptid; 3279 3280 if (num_lwps (ptid_get_pid (ptid)) > 1) 3281 { 3282 if (report_thread_events) 3283 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED; 3284 else 3285 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3286 3287 exit_lwp (event_child); 3288 } 3289 3290 return ptid; 3291 } 3292 3293 static ptid_t 3294 linux_nat_wait_1 (struct target_ops *ops, 3295 ptid_t ptid, struct target_waitstatus *ourstatus, 3296 int target_options) 3297 { 3298 sigset_t prev_mask; 3299 enum resume_kind last_resume_kind; 3300 struct lwp_info *lp; 3301 int status; 3302 3303 if (debug_linux_nat) 3304 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); 3305 3306 /* The first time we get here after starting a new inferior, we may 3307 not have added it to the LWP list yet - this is the earliest 3308 moment at which we know its PID. */ 3309 if (ptid_is_pid (inferior_ptid)) 3310 { 3311 /* Upgrade the main thread's ptid. */ 3312 thread_change_ptid (inferior_ptid, 3313 ptid_build (ptid_get_pid (inferior_ptid), 3314 ptid_get_pid (inferior_ptid), 0)); 3315 3316 lp = add_initial_lwp (inferior_ptid); 3317 lp->resumed = 1; 3318 } 3319 3320 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3321 block_child_signals (&prev_mask); 3322 3323 /* First check if there is a LWP with a wait status pending. */ 3324 lp = iterate_over_lwps (ptid, status_callback, NULL); 3325 if (lp != NULL) 3326 { 3327 if (debug_linux_nat) 3328 fprintf_unfiltered (gdb_stdlog, 3329 "LLW: Using pending wait status %s for %s.\n", 3330 status_to_str (lp->status), 3331 target_pid_to_str (lp->ptid)); 3332 } 3333 3334 /* But if we don't find a pending event, we'll have to wait. Always 3335 pull all events out of the kernel. We'll randomly select an 3336 event LWP out of all that have events, to prevent starvation. */ 3337 3338 while (lp == NULL) 3339 { 3340 pid_t lwpid; 3341 3342 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3343 quirks: 3344 3345 - If the thread group leader exits while other threads in the 3346 thread group still exist, waitpid(TGID, ...) hangs. That 3347 waitpid won't return an exit status until the other threads 3348 in the group are reapped. 3349 3350 - When a non-leader thread execs, that thread just vanishes 3351 without reporting an exit (so we'd hang if we waited for it 3352 explicitly in that case). The exec event is reported to 3353 the TGID pid. */ 3354 3355 errno = 0; 3356 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); 3357 3358 if (debug_linux_nat) 3359 fprintf_unfiltered (gdb_stdlog, 3360 "LNW: waitpid(-1, ...) returned %d, %s\n", 3361 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK"); 3362 3363 if (lwpid > 0) 3364 { 3365 if (debug_linux_nat) 3366 { 3367 fprintf_unfiltered (gdb_stdlog, 3368 "LLW: waitpid %ld received %s\n", 3369 (long) lwpid, status_to_str (status)); 3370 } 3371 3372 linux_nat_filter_event (lwpid, status); 3373 /* Retry until nothing comes out of waitpid. A single 3374 SIGCHLD can indicate more than one child stopped. */ 3375 continue; 3376 } 3377 3378 /* Now that we've pulled all events out of the kernel, resume 3379 LWPs that don't have an interesting event to report. */ 3380 iterate_over_lwps (minus_one_ptid, 3381 resume_stopped_resumed_lwps, &minus_one_ptid); 3382 3383 /* ... and find an LWP with a status to report to the core, if 3384 any. */ 3385 lp = iterate_over_lwps (ptid, status_callback, NULL); 3386 if (lp != NULL) 3387 break; 3388 3389 /* Check for zombie thread group leaders. Those can't be reaped 3390 until all other threads in the thread group are. */ 3391 check_zombie_leaders (); 3392 3393 /* If there are no resumed children left, bail. We'd be stuck 3394 forever in the sigsuspend call below otherwise. */ 3395 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL) 3396 { 3397 if (debug_linux_nat) 3398 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n"); 3399 3400 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3401 3402 restore_child_signals_mask (&prev_mask); 3403 return minus_one_ptid; 3404 } 3405 3406 /* No interesting event to report to the core. */ 3407 3408 if (target_options & TARGET_WNOHANG) 3409 { 3410 if (debug_linux_nat) 3411 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); 3412 3413 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3414 restore_child_signals_mask (&prev_mask); 3415 return minus_one_ptid; 3416 } 3417 3418 /* We shouldn't end up here unless we want to try again. */ 3419 gdb_assert (lp == NULL); 3420 3421 /* Block until we get an event reported with SIGCHLD. */ 3422 if (debug_linux_nat) 3423 fprintf_unfiltered (gdb_stdlog, "LNW: about to sigsuspend\n"); 3424 sigsuspend (&suspend_mask); 3425 } 3426 3427 gdb_assert (lp); 3428 3429 status = lp->status; 3430 lp->status = 0; 3431 3432 if (!target_is_non_stop_p ()) 3433 { 3434 /* Now stop all other LWP's ... */ 3435 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 3436 3437 /* ... and wait until all of them have reported back that 3438 they're no longer running. */ 3439 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 3440 } 3441 3442 /* If we're not waiting for a specific LWP, choose an event LWP from 3443 among those that have had events. Giving equal priority to all 3444 LWPs that have had events helps prevent starvation. */ 3445 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3446 select_event_lwp (ptid, &lp, &status); 3447 3448 gdb_assert (lp != NULL); 3449 3450 /* Now that we've selected our final event LWP, un-adjust its PC if 3451 it was a software breakpoint, and we can't reliably support the 3452 "stopped by software breakpoint" stop reason. */ 3453 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3454 && !USE_SIGTRAP_SIGINFO) 3455 { 3456 struct regcache *regcache = get_thread_regcache (lp->ptid); 3457 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3458 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3459 3460 if (decr_pc != 0) 3461 { 3462 CORE_ADDR pc; 3463 3464 pc = regcache_read_pc (regcache); 3465 regcache_write_pc (regcache, pc + decr_pc); 3466 } 3467 } 3468 3469 /* We'll need this to determine whether to report a SIGSTOP as 3470 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3471 clears it. */ 3472 last_resume_kind = lp->last_resume_kind; 3473 3474 if (!target_is_non_stop_p ()) 3475 { 3476 /* In all-stop, from the core's perspective, all LWPs are now 3477 stopped until a new resume action is sent over. */ 3478 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL); 3479 } 3480 else 3481 { 3482 resume_clear_callback (lp, NULL); 3483 } 3484 3485 if (linux_nat_status_is_event (status)) 3486 { 3487 if (debug_linux_nat) 3488 fprintf_unfiltered (gdb_stdlog, 3489 "LLW: trap ptid is %s.\n", 3490 target_pid_to_str (lp->ptid)); 3491 } 3492 3493 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3494 { 3495 *ourstatus = lp->waitstatus; 3496 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3497 } 3498 else 3499 store_waitstatus (ourstatus, status); 3500 3501 if (debug_linux_nat) 3502 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); 3503 3504 restore_child_signals_mask (&prev_mask); 3505 3506 if (last_resume_kind == resume_stop 3507 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3508 && WSTOPSIG (status) == SIGSTOP) 3509 { 3510 /* A thread that has been requested to stop by GDB with 3511 target_stop, and it stopped cleanly, so report as SIG0. The 3512 use of SIGSTOP is an implementation detail. */ 3513 ourstatus->value.sig = GDB_SIGNAL_0; 3514 } 3515 3516 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3517 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3518 lp->core = -1; 3519 else 3520 lp->core = linux_common_core_of_thread (lp->ptid); 3521 3522 if (ourstatus->kind == TARGET_WAITKIND_EXITED) 3523 return filter_exit_event (lp, ourstatus); 3524 3525 return lp->ptid; 3526 } 3527 3528 /* Resume LWPs that are currently stopped without any pending status 3529 to report, but are resumed from the core's perspective. */ 3530 3531 static int 3532 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data) 3533 { 3534 ptid_t *wait_ptid_p = (ptid_t *) data; 3535 3536 if (!lp->stopped) 3537 { 3538 if (debug_linux_nat) 3539 fprintf_unfiltered (gdb_stdlog, 3540 "RSRL: NOT resuming LWP %s, not stopped\n", 3541 target_pid_to_str (lp->ptid)); 3542 } 3543 else if (!lp->resumed) 3544 { 3545 if (debug_linux_nat) 3546 fprintf_unfiltered (gdb_stdlog, 3547 "RSRL: NOT resuming LWP %s, not resumed\n", 3548 target_pid_to_str (lp->ptid)); 3549 } 3550 else if (lwp_status_pending_p (lp)) 3551 { 3552 if (debug_linux_nat) 3553 fprintf_unfiltered (gdb_stdlog, 3554 "RSRL: NOT resuming LWP %s, has pending status\n", 3555 target_pid_to_str (lp->ptid)); 3556 } 3557 else 3558 { 3559 struct regcache *regcache = get_thread_regcache (lp->ptid); 3560 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3561 3562 TRY 3563 { 3564 CORE_ADDR pc = regcache_read_pc (regcache); 3565 int leave_stopped = 0; 3566 3567 /* Don't bother if there's a breakpoint at PC that we'd hit 3568 immediately, and we're not waiting for this LWP. */ 3569 if (!ptid_match (lp->ptid, *wait_ptid_p)) 3570 { 3571 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 3572 leave_stopped = 1; 3573 } 3574 3575 if (!leave_stopped) 3576 { 3577 if (debug_linux_nat) 3578 fprintf_unfiltered (gdb_stdlog, 3579 "RSRL: resuming stopped-resumed LWP %s at " 3580 "%s: step=%d\n", 3581 target_pid_to_str (lp->ptid), 3582 paddress (gdbarch, pc), 3583 lp->step); 3584 3585 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3586 } 3587 } 3588 CATCH (ex, RETURN_MASK_ERROR) 3589 { 3590 if (!check_ptrace_stopped_lwp_gone (lp)) 3591 throw_exception (ex); 3592 } 3593 END_CATCH 3594 } 3595 3596 return 0; 3597 } 3598 3599 static ptid_t 3600 linux_nat_wait (struct target_ops *ops, 3601 ptid_t ptid, struct target_waitstatus *ourstatus, 3602 int target_options) 3603 { 3604 ptid_t event_ptid; 3605 3606 if (debug_linux_nat) 3607 { 3608 char *options_string; 3609 3610 options_string = target_options_to_string (target_options); 3611 fprintf_unfiltered (gdb_stdlog, 3612 "linux_nat_wait: [%s], [%s]\n", 3613 target_pid_to_str (ptid), 3614 options_string); 3615 xfree (options_string); 3616 } 3617 3618 /* Flush the async file first. */ 3619 if (target_is_async_p ()) 3620 async_file_flush (); 3621 3622 /* Resume LWPs that are currently stopped without any pending status 3623 to report, but are resumed from the core's perspective. LWPs get 3624 in this state if we find them stopping at a time we're not 3625 interested in reporting the event (target_wait on a 3626 specific_process, for example, see linux_nat_wait_1), and 3627 meanwhile the event became uninteresting. Don't bother resuming 3628 LWPs we're not going to wait for if they'd stop immediately. */ 3629 if (target_is_non_stop_p ()) 3630 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid); 3631 3632 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options); 3633 3634 /* If we requested any event, and something came out, assume there 3635 may be more. If we requested a specific lwp or process, also 3636 assume there may be more. */ 3637 if (target_is_async_p () 3638 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3639 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3640 || !ptid_equal (ptid, minus_one_ptid))) 3641 async_file_mark (); 3642 3643 return event_ptid; 3644 } 3645 3646 /* Kill one LWP. */ 3647 3648 static void 3649 kill_one_lwp (pid_t pid) 3650 { 3651 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3652 3653 errno = 0; 3654 kill_lwp (pid, SIGKILL); 3655 if (debug_linux_nat) 3656 { 3657 int save_errno = errno; 3658 3659 fprintf_unfiltered (gdb_stdlog, 3660 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid, 3661 save_errno ? safe_strerror (save_errno) : "OK"); 3662 } 3663 3664 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3665 3666 errno = 0; 3667 ptrace (PTRACE_KILL, pid, 0, 0); 3668 if (debug_linux_nat) 3669 { 3670 int save_errno = errno; 3671 3672 fprintf_unfiltered (gdb_stdlog, 3673 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid, 3674 save_errno ? safe_strerror (save_errno) : "OK"); 3675 } 3676 } 3677 3678 /* Wait for an LWP to die. */ 3679 3680 static void 3681 kill_wait_one_lwp (pid_t pid) 3682 { 3683 pid_t res; 3684 3685 /* We must make sure that there are no pending events (delayed 3686 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3687 program doesn't interfere with any following debugging session. */ 3688 3689 do 3690 { 3691 res = my_waitpid (pid, NULL, __WALL); 3692 if (res != (pid_t) -1) 3693 { 3694 if (debug_linux_nat) 3695 fprintf_unfiltered (gdb_stdlog, 3696 "KWC: wait %ld received unknown.\n", 3697 (long) pid); 3698 /* The Linux kernel sometimes fails to kill a thread 3699 completely after PTRACE_KILL; that goes from the stop 3700 point in do_fork out to the one in get_signal_to_deliver 3701 and waits again. So kill it again. */ 3702 kill_one_lwp (pid); 3703 } 3704 } 3705 while (res == pid); 3706 3707 gdb_assert (res == -1 && errno == ECHILD); 3708 } 3709 3710 /* Callback for iterate_over_lwps. */ 3711 3712 static int 3713 kill_callback (struct lwp_info *lp, void *data) 3714 { 3715 kill_one_lwp (ptid_get_lwp (lp->ptid)); 3716 return 0; 3717 } 3718 3719 /* Callback for iterate_over_lwps. */ 3720 3721 static int 3722 kill_wait_callback (struct lwp_info *lp, void *data) 3723 { 3724 kill_wait_one_lwp (ptid_get_lwp (lp->ptid)); 3725 return 0; 3726 } 3727 3728 /* Kill the fork children of any threads of inferior INF that are 3729 stopped at a fork event. */ 3730 3731 static void 3732 kill_unfollowed_fork_children (struct inferior *inf) 3733 { 3734 struct thread_info *thread; 3735 3736 ALL_NON_EXITED_THREADS (thread) 3737 if (thread->inf == inf) 3738 { 3739 struct target_waitstatus *ws = &thread->pending_follow; 3740 3741 if (ws->kind == TARGET_WAITKIND_FORKED 3742 || ws->kind == TARGET_WAITKIND_VFORKED) 3743 { 3744 ptid_t child_ptid = ws->value.related_pid; 3745 int child_pid = ptid_get_pid (child_ptid); 3746 int child_lwp = ptid_get_lwp (child_ptid); 3747 3748 kill_one_lwp (child_lwp); 3749 kill_wait_one_lwp (child_lwp); 3750 3751 /* Let the arch-specific native code know this process is 3752 gone. */ 3753 linux_nat_forget_process (child_pid); 3754 } 3755 } 3756 } 3757 3758 static void 3759 linux_nat_kill (struct target_ops *ops) 3760 { 3761 /* If we're stopped while forking and we haven't followed yet, 3762 kill the other task. We need to do this first because the 3763 parent will be sleeping if this is a vfork. */ 3764 kill_unfollowed_fork_children (current_inferior ()); 3765 3766 if (forks_exist_p ()) 3767 linux_fork_killall (); 3768 else 3769 { 3770 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 3771 3772 /* Stop all threads before killing them, since ptrace requires 3773 that the thread is stopped to sucessfully PTRACE_KILL. */ 3774 iterate_over_lwps (ptid, stop_callback, NULL); 3775 /* ... and wait until all of them have reported back that 3776 they're no longer running. */ 3777 iterate_over_lwps (ptid, stop_wait_callback, NULL); 3778 3779 /* Kill all LWP's ... */ 3780 iterate_over_lwps (ptid, kill_callback, NULL); 3781 3782 /* ... and wait until we've flushed all events. */ 3783 iterate_over_lwps (ptid, kill_wait_callback, NULL); 3784 } 3785 3786 target_mourn_inferior (inferior_ptid); 3787 } 3788 3789 static void 3790 linux_nat_mourn_inferior (struct target_ops *ops) 3791 { 3792 int pid = ptid_get_pid (inferior_ptid); 3793 3794 purge_lwp_list (pid); 3795 3796 if (! forks_exist_p ()) 3797 /* Normal case, no other forks available. */ 3798 linux_ops->to_mourn_inferior (ops); 3799 else 3800 /* Multi-fork case. The current inferior_ptid has exited, but 3801 there are other viable forks to debug. Delete the exiting 3802 one and context-switch to the first available. */ 3803 linux_fork_mourn_inferior (); 3804 3805 /* Let the arch-specific native code know this process is gone. */ 3806 linux_nat_forget_process (pid); 3807 } 3808 3809 /* Convert a native/host siginfo object, into/from the siginfo in the 3810 layout of the inferiors' architecture. */ 3811 3812 static void 3813 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3814 { 3815 int done = 0; 3816 3817 if (linux_nat_siginfo_fixup != NULL) 3818 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction); 3819 3820 /* If there was no callback, or the callback didn't do anything, 3821 then just do a straight memcpy. */ 3822 if (!done) 3823 { 3824 if (direction == 1) 3825 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3826 else 3827 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3828 } 3829 } 3830 3831 static enum target_xfer_status 3832 linux_xfer_siginfo (struct target_ops *ops, enum target_object object, 3833 const char *annex, gdb_byte *readbuf, 3834 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3835 ULONGEST *xfered_len) 3836 { 3837 int pid; 3838 siginfo_t siginfo; 3839 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3840 3841 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3842 gdb_assert (readbuf || writebuf); 3843 3844 pid = ptid_get_lwp (inferior_ptid); 3845 if (pid == 0) 3846 pid = ptid_get_pid (inferior_ptid); 3847 3848 if (offset > sizeof (siginfo)) 3849 return TARGET_XFER_E_IO; 3850 3851 errno = 0; 3852 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3853 if (errno != 0) 3854 return TARGET_XFER_E_IO; 3855 3856 /* When GDB is built as a 64-bit application, ptrace writes into 3857 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3858 inferior with a 64-bit GDB should look the same as debugging it 3859 with a 32-bit GDB, we need to convert it. GDB core always sees 3860 the converted layout, so any read/write will have to be done 3861 post-conversion. */ 3862 siginfo_fixup (&siginfo, inf_siginfo, 0); 3863 3864 if (offset + len > sizeof (siginfo)) 3865 len = sizeof (siginfo) - offset; 3866 3867 if (readbuf != NULL) 3868 memcpy (readbuf, inf_siginfo + offset, len); 3869 else 3870 { 3871 memcpy (inf_siginfo + offset, writebuf, len); 3872 3873 /* Convert back to ptrace layout before flushing it out. */ 3874 siginfo_fixup (&siginfo, inf_siginfo, 1); 3875 3876 errno = 0; 3877 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3878 if (errno != 0) 3879 return TARGET_XFER_E_IO; 3880 } 3881 3882 *xfered_len = len; 3883 return TARGET_XFER_OK; 3884 } 3885 3886 static enum target_xfer_status 3887 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object, 3888 const char *annex, gdb_byte *readbuf, 3889 const gdb_byte *writebuf, 3890 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 3891 { 3892 enum target_xfer_status xfer; 3893 3894 if (object == TARGET_OBJECT_SIGNAL_INFO) 3895 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf, 3896 offset, len, xfered_len); 3897 3898 /* The target is connected but no live inferior is selected. Pass 3899 this request down to a lower stratum (e.g., the executable 3900 file). */ 3901 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid)) 3902 return TARGET_XFER_EOF; 3903 3904 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, 3905 offset, len, xfered_len); 3906 3907 return xfer; 3908 } 3909 3910 static int 3911 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid) 3912 { 3913 /* As long as a PTID is in lwp list, consider it alive. */ 3914 return find_lwp_pid (ptid) != NULL; 3915 } 3916 3917 /* Implement the to_update_thread_list target method for this 3918 target. */ 3919 3920 static void 3921 linux_nat_update_thread_list (struct target_ops *ops) 3922 { 3923 struct lwp_info *lwp; 3924 3925 /* We add/delete threads from the list as clone/exit events are 3926 processed, so just try deleting exited threads still in the 3927 thread list. */ 3928 delete_exited_threads (); 3929 3930 /* Update the processor core that each lwp/thread was last seen 3931 running on. */ 3932 ALL_LWPS (lwp) 3933 { 3934 /* Avoid accessing /proc if the thread hasn't run since we last 3935 time we fetched the thread's core. Accessing /proc becomes 3936 noticeably expensive when we have thousands of LWPs. */ 3937 if (lwp->core == -1) 3938 lwp->core = linux_common_core_of_thread (lwp->ptid); 3939 } 3940 } 3941 3942 static const char * 3943 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid) 3944 { 3945 static char buf[64]; 3946 3947 if (ptid_lwp_p (ptid) 3948 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid) 3949 || num_lwps (ptid_get_pid (ptid)) > 1)) 3950 { 3951 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); 3952 return buf; 3953 } 3954 3955 return normal_pid_to_str (ptid); 3956 } 3957 3958 static const char * 3959 linux_nat_thread_name (struct target_ops *self, struct thread_info *thr) 3960 { 3961 return linux_proc_tid_get_name (thr->ptid); 3962 } 3963 3964 /* Accepts an integer PID; Returns a string representing a file that 3965 can be opened to get the symbols for the child process. */ 3966 3967 static char * 3968 linux_child_pid_to_exec_file (struct target_ops *self, int pid) 3969 { 3970 return linux_proc_pid_to_exec_file (pid); 3971 } 3972 3973 /* Implement the to_xfer_partial target method using /proc/<pid>/mem. 3974 Because we can use a single read/write call, this can be much more 3975 efficient than banging away at PTRACE_PEEKTEXT. */ 3976 3977 static enum target_xfer_status 3978 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object, 3979 const char *annex, gdb_byte *readbuf, 3980 const gdb_byte *writebuf, 3981 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 3982 { 3983 LONGEST ret; 3984 int fd; 3985 char filename[64]; 3986 3987 if (object != TARGET_OBJECT_MEMORY) 3988 return TARGET_XFER_EOF; 3989 3990 /* Don't bother for one word. */ 3991 if (len < 3 * sizeof (long)) 3992 return TARGET_XFER_EOF; 3993 3994 /* We could keep this file open and cache it - possibly one per 3995 thread. That requires some juggling, but is even faster. */ 3996 xsnprintf (filename, sizeof filename, "/proc/%ld/mem", 3997 ptid_get_lwp (inferior_ptid)); 3998 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY) 3999 | O_LARGEFILE), 0); 4000 if (fd == -1) 4001 return TARGET_XFER_EOF; 4002 4003 /* Use pread64/pwrite64 if available, since they save a syscall and can 4004 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC 4005 debugging a SPARC64 application). */ 4006 #ifdef HAVE_PREAD64 4007 ret = (readbuf ? pread64 (fd, readbuf, len, offset) 4008 : pwrite64 (fd, writebuf, len, offset)); 4009 #else 4010 ret = lseek (fd, offset, SEEK_SET); 4011 if (ret != -1) 4012 ret = (readbuf ? read (fd, readbuf, len) 4013 : write (fd, writebuf, len)); 4014 #endif 4015 4016 close (fd); 4017 4018 if (ret == -1 || ret == 0) 4019 return TARGET_XFER_EOF; 4020 else 4021 { 4022 *xfered_len = ret; 4023 return TARGET_XFER_OK; 4024 } 4025 } 4026 4027 4028 /* Enumerate spufs IDs for process PID. */ 4029 static LONGEST 4030 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len) 4031 { 4032 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 4033 LONGEST pos = 0; 4034 LONGEST written = 0; 4035 char path[128]; 4036 DIR *dir; 4037 struct dirent *entry; 4038 4039 xsnprintf (path, sizeof path, "/proc/%d/fd", pid); 4040 dir = opendir (path); 4041 if (!dir) 4042 return -1; 4043 4044 rewinddir (dir); 4045 while ((entry = readdir (dir)) != NULL) 4046 { 4047 struct stat st; 4048 struct statfs stfs; 4049 int fd; 4050 4051 fd = atoi (entry->d_name); 4052 if (!fd) 4053 continue; 4054 4055 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd); 4056 if (stat (path, &st) != 0) 4057 continue; 4058 if (!S_ISDIR (st.st_mode)) 4059 continue; 4060 4061 if (statfs (path, &stfs) != 0) 4062 continue; 4063 if (stfs.f_type != SPUFS_MAGIC) 4064 continue; 4065 4066 if (pos >= offset && pos + 4 <= offset + len) 4067 { 4068 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd); 4069 written += 4; 4070 } 4071 pos += 4; 4072 } 4073 4074 closedir (dir); 4075 return written; 4076 } 4077 4078 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU 4079 object type, using the /proc file system. */ 4080 4081 static enum target_xfer_status 4082 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object, 4083 const char *annex, gdb_byte *readbuf, 4084 const gdb_byte *writebuf, 4085 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 4086 { 4087 char buf[128]; 4088 int fd = 0; 4089 int ret = -1; 4090 int pid = ptid_get_lwp (inferior_ptid); 4091 4092 if (!annex) 4093 { 4094 if (!readbuf) 4095 return TARGET_XFER_E_IO; 4096 else 4097 { 4098 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len); 4099 4100 if (l < 0) 4101 return TARGET_XFER_E_IO; 4102 else if (l == 0) 4103 return TARGET_XFER_EOF; 4104 else 4105 { 4106 *xfered_len = (ULONGEST) l; 4107 return TARGET_XFER_OK; 4108 } 4109 } 4110 } 4111 4112 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex); 4113 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0); 4114 if (fd <= 0) 4115 return TARGET_XFER_E_IO; 4116 4117 if (offset != 0 4118 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) 4119 { 4120 close (fd); 4121 return TARGET_XFER_EOF; 4122 } 4123 4124 if (writebuf) 4125 ret = write (fd, writebuf, (size_t) len); 4126 else if (readbuf) 4127 ret = read (fd, readbuf, (size_t) len); 4128 4129 close (fd); 4130 4131 if (ret < 0) 4132 return TARGET_XFER_E_IO; 4133 else if (ret == 0) 4134 return TARGET_XFER_EOF; 4135 else 4136 { 4137 *xfered_len = (ULONGEST) ret; 4138 return TARGET_XFER_OK; 4139 } 4140 } 4141 4142 4143 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4144 4145 static void 4146 add_line_to_sigset (const char *line, sigset_t *sigs) 4147 { 4148 int len = strlen (line) - 1; 4149 const char *p; 4150 int signum; 4151 4152 if (line[len] != '\n') 4153 error (_("Could not parse signal set: %s"), line); 4154 4155 p = line; 4156 signum = len * 4; 4157 while (len-- > 0) 4158 { 4159 int digit; 4160 4161 if (*p >= '0' && *p <= '9') 4162 digit = *p - '0'; 4163 else if (*p >= 'a' && *p <= 'f') 4164 digit = *p - 'a' + 10; 4165 else 4166 error (_("Could not parse signal set: %s"), line); 4167 4168 signum -= 4; 4169 4170 if (digit & 1) 4171 sigaddset (sigs, signum + 1); 4172 if (digit & 2) 4173 sigaddset (sigs, signum + 2); 4174 if (digit & 4) 4175 sigaddset (sigs, signum + 3); 4176 if (digit & 8) 4177 sigaddset (sigs, signum + 4); 4178 4179 p++; 4180 } 4181 } 4182 4183 /* Find process PID's pending signals from /proc/pid/status and set 4184 SIGS to match. */ 4185 4186 void 4187 linux_proc_pending_signals (int pid, sigset_t *pending, 4188 sigset_t *blocked, sigset_t *ignored) 4189 { 4190 FILE *procfile; 4191 char buffer[PATH_MAX], fname[PATH_MAX]; 4192 struct cleanup *cleanup; 4193 4194 sigemptyset (pending); 4195 sigemptyset (blocked); 4196 sigemptyset (ignored); 4197 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4198 procfile = gdb_fopen_cloexec (fname, "r"); 4199 if (procfile == NULL) 4200 error (_("Could not open %s"), fname); 4201 cleanup = make_cleanup_fclose (procfile); 4202 4203 while (fgets (buffer, PATH_MAX, procfile) != NULL) 4204 { 4205 /* Normal queued signals are on the SigPnd line in the status 4206 file. However, 2.6 kernels also have a "shared" pending 4207 queue for delivering signals to a thread group, so check for 4208 a ShdPnd line also. 4209 4210 Unfortunately some Red Hat kernels include the shared pending 4211 queue but not the ShdPnd status field. */ 4212 4213 if (startswith (buffer, "SigPnd:\t")) 4214 add_line_to_sigset (buffer + 8, pending); 4215 else if (startswith (buffer, "ShdPnd:\t")) 4216 add_line_to_sigset (buffer + 8, pending); 4217 else if (startswith (buffer, "SigBlk:\t")) 4218 add_line_to_sigset (buffer + 8, blocked); 4219 else if (startswith (buffer, "SigIgn:\t")) 4220 add_line_to_sigset (buffer + 8, ignored); 4221 } 4222 4223 do_cleanups (cleanup); 4224 } 4225 4226 static enum target_xfer_status 4227 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object, 4228 const char *annex, gdb_byte *readbuf, 4229 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4230 ULONGEST *xfered_len) 4231 { 4232 gdb_assert (object == TARGET_OBJECT_OSDATA); 4233 4234 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 4235 if (*xfered_len == 0) 4236 return TARGET_XFER_EOF; 4237 else 4238 return TARGET_XFER_OK; 4239 } 4240 4241 static enum target_xfer_status 4242 linux_xfer_partial (struct target_ops *ops, enum target_object object, 4243 const char *annex, gdb_byte *readbuf, 4244 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4245 ULONGEST *xfered_len) 4246 { 4247 enum target_xfer_status xfer; 4248 4249 if (object == TARGET_OBJECT_AUXV) 4250 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf, 4251 offset, len, xfered_len); 4252 4253 if (object == TARGET_OBJECT_OSDATA) 4254 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf, 4255 offset, len, xfered_len); 4256 4257 if (object == TARGET_OBJECT_SPU) 4258 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf, 4259 offset, len, xfered_len); 4260 4261 /* GDB calculates all the addresses in possibly larget width of the address. 4262 Address width needs to be masked before its final use - either by 4263 linux_proc_xfer_partial or inf_ptrace_xfer_partial. 4264 4265 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 4266 4267 if (object == TARGET_OBJECT_MEMORY) 4268 { 4269 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 4270 4271 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 4272 offset &= ((ULONGEST) 1 << addr_bit) - 1; 4273 } 4274 4275 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf, 4276 offset, len, xfered_len); 4277 if (xfer != TARGET_XFER_EOF) 4278 return xfer; 4279 4280 return super_xfer_partial (ops, object, annex, readbuf, writebuf, 4281 offset, len, xfered_len); 4282 } 4283 4284 static void 4285 cleanup_target_stop (void *arg) 4286 { 4287 ptid_t *ptid = (ptid_t *) arg; 4288 4289 gdb_assert (arg != NULL); 4290 4291 /* Unpause all */ 4292 target_continue_no_signal (*ptid); 4293 } 4294 4295 static VEC(static_tracepoint_marker_p) * 4296 linux_child_static_tracepoint_markers_by_strid (struct target_ops *self, 4297 const char *strid) 4298 { 4299 char s[IPA_CMD_BUF_SIZE]; 4300 struct cleanup *old_chain; 4301 int pid = ptid_get_pid (inferior_ptid); 4302 VEC(static_tracepoint_marker_p) *markers = NULL; 4303 struct static_tracepoint_marker *marker = NULL; 4304 char *p = s; 4305 ptid_t ptid = ptid_build (pid, 0, 0); 4306 4307 /* Pause all */ 4308 target_stop (ptid); 4309 4310 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4311 s[sizeof ("qTfSTM")] = 0; 4312 4313 agent_run_command (pid, s, strlen (s) + 1); 4314 4315 old_chain = make_cleanup (free_current_marker, &marker); 4316 make_cleanup (cleanup_target_stop, &ptid); 4317 4318 while (*p++ == 'm') 4319 { 4320 if (marker == NULL) 4321 marker = XCNEW (struct static_tracepoint_marker); 4322 4323 do 4324 { 4325 parse_static_tracepoint_marker_definition (p, &p, marker); 4326 4327 if (strid == NULL || strcmp (strid, marker->str_id) == 0) 4328 { 4329 VEC_safe_push (static_tracepoint_marker_p, 4330 markers, marker); 4331 marker = NULL; 4332 } 4333 else 4334 { 4335 release_static_tracepoint_marker (marker); 4336 memset (marker, 0, sizeof (*marker)); 4337 } 4338 } 4339 while (*p++ == ','); /* comma-separated list */ 4340 4341 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4342 s[sizeof ("qTsSTM")] = 0; 4343 agent_run_command (pid, s, strlen (s) + 1); 4344 p = s; 4345 } 4346 4347 do_cleanups (old_chain); 4348 4349 return markers; 4350 } 4351 4352 /* Create a prototype generic GNU/Linux target. The client can override 4353 it with local methods. */ 4354 4355 static void 4356 linux_target_install_ops (struct target_ops *t) 4357 { 4358 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint; 4359 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint; 4360 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint; 4361 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint; 4362 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint; 4363 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint; 4364 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint; 4365 t->to_pid_to_exec_file = linux_child_pid_to_exec_file; 4366 t->to_post_startup_inferior = linux_child_post_startup_inferior; 4367 t->to_post_attach = linux_child_post_attach; 4368 t->to_follow_fork = linux_child_follow_fork; 4369 4370 super_xfer_partial = t->to_xfer_partial; 4371 t->to_xfer_partial = linux_xfer_partial; 4372 4373 t->to_static_tracepoint_markers_by_strid 4374 = linux_child_static_tracepoint_markers_by_strid; 4375 } 4376 4377 struct target_ops * 4378 linux_target (void) 4379 { 4380 struct target_ops *t; 4381 4382 t = inf_ptrace_target (); 4383 linux_target_install_ops (t); 4384 4385 return t; 4386 } 4387 4388 struct target_ops * 4389 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int)) 4390 { 4391 struct target_ops *t; 4392 4393 t = inf_ptrace_trad_target (register_u_offset); 4394 linux_target_install_ops (t); 4395 4396 return t; 4397 } 4398 4399 /* target_is_async_p implementation. */ 4400 4401 static int 4402 linux_nat_is_async_p (struct target_ops *ops) 4403 { 4404 return linux_is_async_p (); 4405 } 4406 4407 /* target_can_async_p implementation. */ 4408 4409 static int 4410 linux_nat_can_async_p (struct target_ops *ops) 4411 { 4412 /* We're always async, unless the user explicitly prevented it with the 4413 "maint set target-async" command. */ 4414 return target_async_permitted; 4415 } 4416 4417 static int 4418 linux_nat_supports_non_stop (struct target_ops *self) 4419 { 4420 return 1; 4421 } 4422 4423 /* to_always_non_stop_p implementation. */ 4424 4425 static int 4426 linux_nat_always_non_stop_p (struct target_ops *self) 4427 { 4428 return 1; 4429 } 4430 4431 /* True if we want to support multi-process. To be removed when GDB 4432 supports multi-exec. */ 4433 4434 int linux_multi_process = 1; 4435 4436 static int 4437 linux_nat_supports_multi_process (struct target_ops *self) 4438 { 4439 return linux_multi_process; 4440 } 4441 4442 static int 4443 linux_nat_supports_disable_randomization (struct target_ops *self) 4444 { 4445 #ifdef HAVE_PERSONALITY 4446 return 1; 4447 #else 4448 return 0; 4449 #endif 4450 } 4451 4452 static int async_terminal_is_ours = 1; 4453 4454 /* target_terminal_inferior implementation. 4455 4456 This is a wrapper around child_terminal_inferior to add async support. */ 4457 4458 static void 4459 linux_nat_terminal_inferior (struct target_ops *self) 4460 { 4461 child_terminal_inferior (self); 4462 4463 /* Calls to target_terminal_*() are meant to be idempotent. */ 4464 if (!async_terminal_is_ours) 4465 return; 4466 4467 async_terminal_is_ours = 0; 4468 set_sigint_trap (); 4469 } 4470 4471 /* target_terminal_ours implementation. 4472 4473 This is a wrapper around child_terminal_ours to add async support (and 4474 implement the target_terminal_ours vs target_terminal_ours_for_output 4475 distinction). child_terminal_ours is currently no different than 4476 child_terminal_ours_for_output. 4477 We leave target_terminal_ours_for_output alone, leaving it to 4478 child_terminal_ours_for_output. */ 4479 4480 static void 4481 linux_nat_terminal_ours (struct target_ops *self) 4482 { 4483 /* GDB should never give the terminal to the inferior if the 4484 inferior is running in the background (run&, continue&, etc.), 4485 but claiming it sure should. */ 4486 child_terminal_ours (self); 4487 4488 if (async_terminal_is_ours) 4489 return; 4490 4491 clear_sigint_trap (); 4492 async_terminal_is_ours = 1; 4493 } 4494 4495 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4496 so we notice when any child changes state, and notify the 4497 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4498 above to wait for the arrival of a SIGCHLD. */ 4499 4500 static void 4501 sigchld_handler (int signo) 4502 { 4503 int old_errno = errno; 4504 4505 if (debug_linux_nat) 4506 ui_file_write_async_safe (gdb_stdlog, 4507 "sigchld\n", sizeof ("sigchld\n") - 1); 4508 4509 if (signo == SIGCHLD 4510 && linux_nat_event_pipe[0] != -1) 4511 async_file_mark (); /* Let the event loop know that there are 4512 events to handle. */ 4513 4514 errno = old_errno; 4515 } 4516 4517 /* Callback registered with the target events file descriptor. */ 4518 4519 static void 4520 handle_target_event (int error, gdb_client_data client_data) 4521 { 4522 inferior_event_handler (INF_REG_EVENT, NULL); 4523 } 4524 4525 /* Create/destroy the target events pipe. Returns previous state. */ 4526 4527 static int 4528 linux_async_pipe (int enable) 4529 { 4530 int previous = linux_is_async_p (); 4531 4532 if (previous != enable) 4533 { 4534 sigset_t prev_mask; 4535 4536 /* Block child signals while we create/destroy the pipe, as 4537 their handler writes to it. */ 4538 block_child_signals (&prev_mask); 4539 4540 if (enable) 4541 { 4542 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4543 internal_error (__FILE__, __LINE__, 4544 "creating event pipe failed."); 4545 4546 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4547 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4548 } 4549 else 4550 { 4551 close (linux_nat_event_pipe[0]); 4552 close (linux_nat_event_pipe[1]); 4553 linux_nat_event_pipe[0] = -1; 4554 linux_nat_event_pipe[1] = -1; 4555 } 4556 4557 restore_child_signals_mask (&prev_mask); 4558 } 4559 4560 return previous; 4561 } 4562 4563 /* target_async implementation. */ 4564 4565 static void 4566 linux_nat_async (struct target_ops *ops, int enable) 4567 { 4568 if (enable) 4569 { 4570 if (!linux_async_pipe (1)) 4571 { 4572 add_file_handler (linux_nat_event_pipe[0], 4573 handle_target_event, NULL); 4574 /* There may be pending events to handle. Tell the event loop 4575 to poll them. */ 4576 async_file_mark (); 4577 } 4578 } 4579 else 4580 { 4581 delete_file_handler (linux_nat_event_pipe[0]); 4582 linux_async_pipe (0); 4583 } 4584 return; 4585 } 4586 4587 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4588 event came out. */ 4589 4590 static int 4591 linux_nat_stop_lwp (struct lwp_info *lwp, void *data) 4592 { 4593 if (!lwp->stopped) 4594 { 4595 if (debug_linux_nat) 4596 fprintf_unfiltered (gdb_stdlog, 4597 "LNSL: running -> suspending %s\n", 4598 target_pid_to_str (lwp->ptid)); 4599 4600 4601 if (lwp->last_resume_kind == resume_stop) 4602 { 4603 if (debug_linux_nat) 4604 fprintf_unfiltered (gdb_stdlog, 4605 "linux-nat: already stopping LWP %ld at " 4606 "GDB's request\n", 4607 ptid_get_lwp (lwp->ptid)); 4608 return 0; 4609 } 4610 4611 stop_callback (lwp, NULL); 4612 lwp->last_resume_kind = resume_stop; 4613 } 4614 else 4615 { 4616 /* Already known to be stopped; do nothing. */ 4617 4618 if (debug_linux_nat) 4619 { 4620 if (find_thread_ptid (lwp->ptid)->stop_requested) 4621 fprintf_unfiltered (gdb_stdlog, 4622 "LNSL: already stopped/stop_requested %s\n", 4623 target_pid_to_str (lwp->ptid)); 4624 else 4625 fprintf_unfiltered (gdb_stdlog, 4626 "LNSL: already stopped/no " 4627 "stop_requested yet %s\n", 4628 target_pid_to_str (lwp->ptid)); 4629 } 4630 } 4631 return 0; 4632 } 4633 4634 static void 4635 linux_nat_stop (struct target_ops *self, ptid_t ptid) 4636 { 4637 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL); 4638 } 4639 4640 static void 4641 linux_nat_close (struct target_ops *self) 4642 { 4643 /* Unregister from the event loop. */ 4644 if (linux_nat_is_async_p (self)) 4645 linux_nat_async (self, 0); 4646 4647 if (linux_ops->to_close) 4648 linux_ops->to_close (linux_ops); 4649 4650 super_close (self); 4651 } 4652 4653 /* When requests are passed down from the linux-nat layer to the 4654 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4655 used. The address space pointer is stored in the inferior object, 4656 but the common code that is passed such ptid can't tell whether 4657 lwpid is a "main" process id or not (it assumes so). We reverse 4658 look up the "main" process id from the lwp here. */ 4659 4660 static struct address_space * 4661 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid) 4662 { 4663 struct lwp_info *lwp; 4664 struct inferior *inf; 4665 int pid; 4666 4667 if (ptid_get_lwp (ptid) == 0) 4668 { 4669 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4670 tgid. */ 4671 lwp = find_lwp_pid (ptid); 4672 pid = ptid_get_pid (lwp->ptid); 4673 } 4674 else 4675 { 4676 /* A (pid,lwpid,0) ptid. */ 4677 pid = ptid_get_pid (ptid); 4678 } 4679 4680 inf = find_inferior_pid (pid); 4681 gdb_assert (inf != NULL); 4682 return inf->aspace; 4683 } 4684 4685 /* Return the cached value of the processor core for thread PTID. */ 4686 4687 static int 4688 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid) 4689 { 4690 struct lwp_info *info = find_lwp_pid (ptid); 4691 4692 if (info) 4693 return info->core; 4694 return -1; 4695 } 4696 4697 /* Implementation of to_filesystem_is_local. */ 4698 4699 static int 4700 linux_nat_filesystem_is_local (struct target_ops *ops) 4701 { 4702 struct inferior *inf = current_inferior (); 4703 4704 if (inf->fake_pid_p || inf->pid == 0) 4705 return 1; 4706 4707 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4708 } 4709 4710 /* Convert the INF argument passed to a to_fileio_* method 4711 to a process ID suitable for passing to its corresponding 4712 linux_mntns_* function. If INF is non-NULL then the 4713 caller is requesting the filesystem seen by INF. If INF 4714 is NULL then the caller is requesting the filesystem seen 4715 by the GDB. We fall back to GDB's filesystem in the case 4716 that INF is non-NULL but its PID is unknown. */ 4717 4718 static pid_t 4719 linux_nat_fileio_pid_of (struct inferior *inf) 4720 { 4721 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4722 return getpid (); 4723 else 4724 return inf->pid; 4725 } 4726 4727 /* Implementation of to_fileio_open. */ 4728 4729 static int 4730 linux_nat_fileio_open (struct target_ops *self, 4731 struct inferior *inf, const char *filename, 4732 int flags, int mode, int warn_if_slow, 4733 int *target_errno) 4734 { 4735 int nat_flags; 4736 mode_t nat_mode; 4737 int fd; 4738 4739 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4740 || fileio_to_host_mode (mode, &nat_mode) == -1) 4741 { 4742 *target_errno = FILEIO_EINVAL; 4743 return -1; 4744 } 4745 4746 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4747 filename, nat_flags, nat_mode); 4748 if (fd == -1) 4749 *target_errno = host_to_fileio_error (errno); 4750 4751 return fd; 4752 } 4753 4754 /* Implementation of to_fileio_readlink. */ 4755 4756 static char * 4757 linux_nat_fileio_readlink (struct target_ops *self, 4758 struct inferior *inf, const char *filename, 4759 int *target_errno) 4760 { 4761 char buf[PATH_MAX]; 4762 int len; 4763 char *ret; 4764 4765 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4766 filename, buf, sizeof (buf)); 4767 if (len < 0) 4768 { 4769 *target_errno = host_to_fileio_error (errno); 4770 return NULL; 4771 } 4772 4773 ret = (char *) xmalloc (len + 1); 4774 memcpy (ret, buf, len); 4775 ret[len] = '\0'; 4776 return ret; 4777 } 4778 4779 /* Implementation of to_fileio_unlink. */ 4780 4781 static int 4782 linux_nat_fileio_unlink (struct target_ops *self, 4783 struct inferior *inf, const char *filename, 4784 int *target_errno) 4785 { 4786 int ret; 4787 4788 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4789 filename); 4790 if (ret == -1) 4791 *target_errno = host_to_fileio_error (errno); 4792 4793 return ret; 4794 } 4795 4796 /* Implementation of the to_thread_events method. */ 4797 4798 static void 4799 linux_nat_thread_events (struct target_ops *ops, int enable) 4800 { 4801 report_thread_events = enable; 4802 } 4803 4804 void 4805 linux_nat_add_target (struct target_ops *t) 4806 { 4807 /* Save the provided single-threaded target. We save this in a separate 4808 variable because another target we've inherited from (e.g. inf-ptrace) 4809 may have saved a pointer to T; we want to use it for the final 4810 process stratum target. */ 4811 linux_ops_saved = *t; 4812 linux_ops = &linux_ops_saved; 4813 4814 /* Override some methods for multithreading. */ 4815 t->to_create_inferior = linux_nat_create_inferior; 4816 t->to_attach = linux_nat_attach; 4817 t->to_detach = linux_nat_detach; 4818 t->to_resume = linux_nat_resume; 4819 t->to_wait = linux_nat_wait; 4820 t->to_pass_signals = linux_nat_pass_signals; 4821 t->to_xfer_partial = linux_nat_xfer_partial; 4822 t->to_kill = linux_nat_kill; 4823 t->to_mourn_inferior = linux_nat_mourn_inferior; 4824 t->to_thread_alive = linux_nat_thread_alive; 4825 t->to_update_thread_list = linux_nat_update_thread_list; 4826 t->to_pid_to_str = linux_nat_pid_to_str; 4827 t->to_thread_name = linux_nat_thread_name; 4828 t->to_has_thread_control = tc_schedlock; 4829 t->to_thread_address_space = linux_nat_thread_address_space; 4830 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint; 4831 t->to_stopped_data_address = linux_nat_stopped_data_address; 4832 t->to_stopped_by_sw_breakpoint = linux_nat_stopped_by_sw_breakpoint; 4833 t->to_supports_stopped_by_sw_breakpoint = linux_nat_supports_stopped_by_sw_breakpoint; 4834 t->to_stopped_by_hw_breakpoint = linux_nat_stopped_by_hw_breakpoint; 4835 t->to_supports_stopped_by_hw_breakpoint = linux_nat_supports_stopped_by_hw_breakpoint; 4836 t->to_thread_events = linux_nat_thread_events; 4837 4838 t->to_can_async_p = linux_nat_can_async_p; 4839 t->to_is_async_p = linux_nat_is_async_p; 4840 t->to_supports_non_stop = linux_nat_supports_non_stop; 4841 t->to_always_non_stop_p = linux_nat_always_non_stop_p; 4842 t->to_async = linux_nat_async; 4843 t->to_terminal_inferior = linux_nat_terminal_inferior; 4844 t->to_terminal_ours = linux_nat_terminal_ours; 4845 4846 super_close = t->to_close; 4847 t->to_close = linux_nat_close; 4848 4849 t->to_stop = linux_nat_stop; 4850 4851 t->to_supports_multi_process = linux_nat_supports_multi_process; 4852 4853 t->to_supports_disable_randomization 4854 = linux_nat_supports_disable_randomization; 4855 4856 t->to_core_of_thread = linux_nat_core_of_thread; 4857 4858 t->to_filesystem_is_local = linux_nat_filesystem_is_local; 4859 t->to_fileio_open = linux_nat_fileio_open; 4860 t->to_fileio_readlink = linux_nat_fileio_readlink; 4861 t->to_fileio_unlink = linux_nat_fileio_unlink; 4862 4863 /* We don't change the stratum; this target will sit at 4864 process_stratum and thread_db will set at thread_stratum. This 4865 is a little strange, since this is a multi-threaded-capable 4866 target, but we want to be on the stack below thread_db, and we 4867 also want to be used for single-threaded processes. */ 4868 4869 add_target (t); 4870 } 4871 4872 /* Register a method to call whenever a new thread is attached. */ 4873 void 4874 linux_nat_set_new_thread (struct target_ops *t, 4875 void (*new_thread) (struct lwp_info *)) 4876 { 4877 /* Save the pointer. We only support a single registered instance 4878 of the GNU/Linux native target, so we do not need to map this to 4879 T. */ 4880 linux_nat_new_thread = new_thread; 4881 } 4882 4883 /* See declaration in linux-nat.h. */ 4884 4885 void 4886 linux_nat_set_new_fork (struct target_ops *t, 4887 linux_nat_new_fork_ftype *new_fork) 4888 { 4889 /* Save the pointer. */ 4890 linux_nat_new_fork = new_fork; 4891 } 4892 4893 /* See declaration in linux-nat.h. */ 4894 4895 void 4896 linux_nat_set_forget_process (struct target_ops *t, 4897 linux_nat_forget_process_ftype *fn) 4898 { 4899 /* Save the pointer. */ 4900 linux_nat_forget_process_hook = fn; 4901 } 4902 4903 /* See declaration in linux-nat.h. */ 4904 4905 void 4906 linux_nat_forget_process (pid_t pid) 4907 { 4908 if (linux_nat_forget_process_hook != NULL) 4909 linux_nat_forget_process_hook (pid); 4910 } 4911 4912 /* Register a method that converts a siginfo object between the layout 4913 that ptrace returns, and the layout in the architecture of the 4914 inferior. */ 4915 void 4916 linux_nat_set_siginfo_fixup (struct target_ops *t, 4917 int (*siginfo_fixup) (siginfo_t *, 4918 gdb_byte *, 4919 int)) 4920 { 4921 /* Save the pointer. */ 4922 linux_nat_siginfo_fixup = siginfo_fixup; 4923 } 4924 4925 /* Register a method to call prior to resuming a thread. */ 4926 4927 void 4928 linux_nat_set_prepare_to_resume (struct target_ops *t, 4929 void (*prepare_to_resume) (struct lwp_info *)) 4930 { 4931 /* Save the pointer. */ 4932 linux_nat_prepare_to_resume = prepare_to_resume; 4933 } 4934 4935 /* See linux-nat.h. */ 4936 4937 int 4938 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4939 { 4940 int pid; 4941 4942 pid = ptid_get_lwp (ptid); 4943 if (pid == 0) 4944 pid = ptid_get_pid (ptid); 4945 4946 errno = 0; 4947 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 4948 if (errno != 0) 4949 { 4950 memset (siginfo, 0, sizeof (*siginfo)); 4951 return 0; 4952 } 4953 return 1; 4954 } 4955 4956 /* See nat/linux-nat.h. */ 4957 4958 ptid_t 4959 current_lwp_ptid (void) 4960 { 4961 gdb_assert (ptid_lwp_p (inferior_ptid)); 4962 return inferior_ptid; 4963 } 4964 4965 /* Provide a prototype to silence -Wmissing-prototypes. */ 4966 extern initialize_file_ftype _initialize_linux_nat; 4967 4968 void 4969 _initialize_linux_nat (void) 4970 { 4971 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 4972 &debug_linux_nat, _("\ 4973 Set debugging of GNU/Linux lwp module."), _("\ 4974 Show debugging of GNU/Linux lwp module."), _("\ 4975 Enables printf debugging output."), 4976 NULL, 4977 show_debug_linux_nat, 4978 &setdebuglist, &showdebuglist); 4979 4980 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 4981 &debug_linux_namespaces, _("\ 4982 Set debugging of GNU/Linux namespaces module."), _("\ 4983 Show debugging of GNU/Linux namespaces module."), _("\ 4984 Enables printf debugging output."), 4985 NULL, 4986 NULL, 4987 &setdebuglist, &showdebuglist); 4988 4989 /* Save this mask as the default. */ 4990 sigprocmask (SIG_SETMASK, NULL, &normal_mask); 4991 4992 /* Install a SIGCHLD handler. */ 4993 sigchld_action.sa_handler = sigchld_handler; 4994 sigemptyset (&sigchld_action.sa_mask); 4995 sigchld_action.sa_flags = SA_RESTART; 4996 4997 /* Make it the default. */ 4998 sigaction (SIGCHLD, &sigchld_action, NULL); 4999 5000 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 5001 sigprocmask (SIG_SETMASK, NULL, &suspend_mask); 5002 sigdelset (&suspend_mask, SIGCHLD); 5003 5004 sigemptyset (&blocked_mask); 5005 5006 lwp_lwpid_htab_create (); 5007 } 5008 5009 5010 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 5011 the GNU/Linux Threads library and therefore doesn't really belong 5012 here. */ 5013 5014 /* Return the set of signals used by the threads library in *SET. */ 5015 5016 void 5017 lin_thread_get_thread_signals (sigset_t *set) 5018 { 5019 sigemptyset (set); 5020 5021 /* NPTL reserves the first two RT signals, but does not provide any 5022 way for the debugger to query the signal numbers - fortunately 5023 they don't change. */ 5024 sigaddset (set, __SIGRTMIN); 5025 sigaddset (set, __SIGRTMIN + 1); 5026 } 5027