1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2014 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "target.h" 23 #include "nat/linux-nat.h" 24 #include "nat/linux-waitpid.h" 25 #include <string.h> 26 #include "gdb_wait.h" 27 #include "gdb_assert.h" 28 #ifdef HAVE_TKILL_SYSCALL 29 #include <unistd.h> 30 #include <sys/syscall.h> 31 #endif 32 #include <sys/ptrace.h> 33 #include "linux-nat.h" 34 #include "linux-ptrace.h" 35 #include "linux-procfs.h" 36 #include "linux-fork.h" 37 #include "gdbthread.h" 38 #include "gdbcmd.h" 39 #include "regcache.h" 40 #include "regset.h" 41 #include "inf-child.h" 42 #include "inf-ptrace.h" 43 #include "auxv.h" 44 #include <sys/procfs.h> /* for elf_gregset etc. */ 45 #include "elf-bfd.h" /* for elfcore_write_* */ 46 #include "gregset.h" /* for gregset */ 47 #include "gdbcore.h" /* for get_exec_file */ 48 #include <ctype.h> /* for isdigit */ 49 #include <sys/stat.h> /* for struct stat */ 50 #include <fcntl.h> /* for O_RDONLY */ 51 #include "inf-loop.h" 52 #include "event-loop.h" 53 #include "event-top.h" 54 #include <pwd.h> 55 #include <sys/types.h> 56 #include <dirent.h> 57 #include "xml-support.h" 58 #include "terminal.h" 59 #include <sys/vfs.h> 60 #include "solib.h" 61 #include "linux-osdata.h" 62 #include "linux-tdep.h" 63 #include "symfile.h" 64 #include "agent.h" 65 #include "tracepoint.h" 66 #include "exceptions.h" 67 #include "buffer.h" 68 #include "target-descriptions.h" 69 #include "filestuff.h" 70 71 #ifndef SPUFS_MAGIC 72 #define SPUFS_MAGIC 0x23c9b64e 73 #endif 74 75 #ifdef HAVE_PERSONALITY 76 # include <sys/personality.h> 77 # if !HAVE_DECL_ADDR_NO_RANDOMIZE 78 # define ADDR_NO_RANDOMIZE 0x0040000 79 # endif 80 #endif /* HAVE_PERSONALITY */ 81 82 /* This comment documents high-level logic of this file. 83 84 Waiting for events in sync mode 85 =============================== 86 87 When waiting for an event in a specific thread, we just use waitpid, passing 88 the specific pid, and not passing WNOHANG. 89 90 When waiting for an event in all threads, waitpid is not quite good. Prior to 91 version 2.4, Linux can either wait for event in main thread, or in secondary 92 threads. (2.4 has the __WALL flag). So, if we use blocking waitpid, we might 93 miss an event. The solution is to use non-blocking waitpid, together with 94 sigsuspend. First, we use non-blocking waitpid to get an event in the main 95 process, if any. Second, we use non-blocking waitpid with the __WCLONED 96 flag to check for events in cloned processes. If nothing is found, we use 97 sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, it means something 98 happened to a child process -- and SIGCHLD will be delivered both for events 99 in main debugged process and in cloned processes. As soon as we know there's 100 an event, we get back to calling nonblocking waitpid with and without 101 __WCLONED. 102 103 Note that SIGCHLD should be blocked between waitpid and sigsuspend calls, 104 so that we don't miss a signal. If SIGCHLD arrives in between, when it's 105 blocked, the signal becomes pending and sigsuspend immediately 106 notices it and returns. 107 108 Waiting for events in async mode 109 ================================ 110 111 In async mode, GDB should always be ready to handle both user input 112 and target events, so neither blocking waitpid nor sigsuspend are 113 viable options. Instead, we should asynchronously notify the GDB main 114 event loop whenever there's an unprocessed event from the target. We 115 detect asynchronous target events by handling SIGCHLD signals. To 116 notify the event loop about target events, the self-pipe trick is used 117 --- a pipe is registered as waitable event source in the event loop, 118 the event loop select/poll's on the read end of this pipe (as well on 119 other event sources, e.g., stdin), and the SIGCHLD handler writes a 120 byte to this pipe. This is more portable than relying on 121 pselect/ppoll, since on kernels that lack those syscalls, libc 122 emulates them with select/poll+sigprocmask, and that is racy 123 (a.k.a. plain broken). 124 125 Obviously, if we fail to notify the event loop if there's a target 126 event, it's bad. OTOH, if we notify the event loop when there's no 127 event from the target, linux_nat_wait will detect that there's no real 128 event to report, and return event of type TARGET_WAITKIND_IGNORE. 129 This is mostly harmless, but it will waste time and is better avoided. 130 131 The main design point is that every time GDB is outside linux-nat.c, 132 we have a SIGCHLD handler installed that is called when something 133 happens to the target and notifies the GDB event loop. Whenever GDB 134 core decides to handle the event, and calls into linux-nat.c, we 135 process things as in sync mode, except that the we never block in 136 sigsuspend. 137 138 While processing an event, we may end up momentarily blocked in 139 waitpid calls. Those waitpid calls, while blocking, are guarantied to 140 return quickly. E.g., in all-stop mode, before reporting to the core 141 that an LWP hit a breakpoint, all LWPs are stopped by sending them 142 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 143 Note that this is different from blocking indefinitely waiting for the 144 next event --- here, we're already handling an event. 145 146 Use of signals 147 ============== 148 149 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 150 signal is not entirely significant; we just need for a signal to be delivered, 151 so that we can intercept it. SIGSTOP's advantage is that it can not be 152 blocked. A disadvantage is that it is not a real-time signal, so it can only 153 be queued once; we do not keep track of other sources of SIGSTOP. 154 155 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 156 use them, because they have special behavior when the signal is generated - 157 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 158 kills the entire thread group. 159 160 A delivered SIGSTOP would stop the entire thread group, not just the thread we 161 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 162 cancel it (by PTRACE_CONT without passing SIGSTOP). 163 164 We could use a real-time signal instead. This would solve those problems; we 165 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 166 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 167 generates it, and there are races with trying to find a signal that is not 168 blocked. */ 169 170 #ifndef O_LARGEFILE 171 #define O_LARGEFILE 0 172 #endif 173 174 /* The single-threaded native GNU/Linux target_ops. We save a pointer for 175 the use of the multi-threaded target. */ 176 static struct target_ops *linux_ops; 177 static struct target_ops linux_ops_saved; 178 179 /* The method to call, if any, when a new thread is attached. */ 180 static void (*linux_nat_new_thread) (struct lwp_info *); 181 182 /* The method to call, if any, when a new fork is attached. */ 183 static linux_nat_new_fork_ftype *linux_nat_new_fork; 184 185 /* The method to call, if any, when a process is no longer 186 attached. */ 187 static linux_nat_forget_process_ftype *linux_nat_forget_process_hook; 188 189 /* Hook to call prior to resuming a thread. */ 190 static void (*linux_nat_prepare_to_resume) (struct lwp_info *); 191 192 /* The method to call, if any, when the siginfo object needs to be 193 converted between the layout returned by ptrace, and the layout in 194 the architecture of the inferior. */ 195 static int (*linux_nat_siginfo_fixup) (siginfo_t *, 196 gdb_byte *, 197 int); 198 199 /* The saved to_xfer_partial method, inherited from inf-ptrace.c. 200 Called by our to_xfer_partial. */ 201 static target_xfer_partial_ftype *super_xfer_partial; 202 203 static unsigned int debug_linux_nat; 204 static void 205 show_debug_linux_nat (struct ui_file *file, int from_tty, 206 struct cmd_list_element *c, const char *value) 207 { 208 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 209 value); 210 } 211 212 struct simple_pid_list 213 { 214 int pid; 215 int status; 216 struct simple_pid_list *next; 217 }; 218 struct simple_pid_list *stopped_pids; 219 220 /* Async mode support. */ 221 222 /* The read/write ends of the pipe registered as waitable file in the 223 event loop. */ 224 static int linux_nat_event_pipe[2] = { -1, -1 }; 225 226 /* Flush the event pipe. */ 227 228 static void 229 async_file_flush (void) 230 { 231 int ret; 232 char buf; 233 234 do 235 { 236 ret = read (linux_nat_event_pipe[0], &buf, 1); 237 } 238 while (ret >= 0 || (ret == -1 && errno == EINTR)); 239 } 240 241 /* Put something (anything, doesn't matter what, or how much) in event 242 pipe, so that the select/poll in the event-loop realizes we have 243 something to process. */ 244 245 static void 246 async_file_mark (void) 247 { 248 int ret; 249 250 /* It doesn't really matter what the pipe contains, as long we end 251 up with something in it. Might as well flush the previous 252 left-overs. */ 253 async_file_flush (); 254 255 do 256 { 257 ret = write (linux_nat_event_pipe[1], "+", 1); 258 } 259 while (ret == -1 && errno == EINTR); 260 261 /* Ignore EAGAIN. If the pipe is full, the event loop will already 262 be awakened anyway. */ 263 } 264 265 static void linux_nat_async (void (*callback) 266 (enum inferior_event_type event_type, 267 void *context), 268 void *context); 269 static int kill_lwp (int lwpid, int signo); 270 271 static int stop_callback (struct lwp_info *lp, void *data); 272 273 static void block_child_signals (sigset_t *prev_mask); 274 static void restore_child_signals_mask (sigset_t *prev_mask); 275 276 struct lwp_info; 277 static struct lwp_info *add_lwp (ptid_t ptid); 278 static void purge_lwp_list (int pid); 279 static void delete_lwp (ptid_t ptid); 280 static struct lwp_info *find_lwp_pid (ptid_t ptid); 281 282 283 /* Trivial list manipulation functions to keep track of a list of 284 new stopped processes. */ 285 static void 286 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 287 { 288 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list)); 289 290 new_pid->pid = pid; 291 new_pid->status = status; 292 new_pid->next = *listp; 293 *listp = new_pid; 294 } 295 296 static int 297 in_pid_list_p (struct simple_pid_list *list, int pid) 298 { 299 struct simple_pid_list *p; 300 301 for (p = list; p != NULL; p = p->next) 302 if (p->pid == pid) 303 return 1; 304 return 0; 305 } 306 307 static int 308 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 309 { 310 struct simple_pid_list **p; 311 312 for (p = listp; *p != NULL; p = &(*p)->next) 313 if ((*p)->pid == pid) 314 { 315 struct simple_pid_list *next = (*p)->next; 316 317 *statusp = (*p)->status; 318 xfree (*p); 319 *p = next; 320 return 1; 321 } 322 return 0; 323 } 324 325 /* Initialize ptrace warnings and check for supported ptrace 326 features given PID. */ 327 328 static void 329 linux_init_ptrace (pid_t pid) 330 { 331 linux_enable_event_reporting (pid); 332 linux_ptrace_init_warnings (); 333 } 334 335 static void 336 linux_child_post_attach (int pid) 337 { 338 linux_init_ptrace (pid); 339 } 340 341 static void 342 linux_child_post_startup_inferior (ptid_t ptid) 343 { 344 linux_init_ptrace (ptid_get_pid (ptid)); 345 } 346 347 /* Return the number of known LWPs in the tgid given by PID. */ 348 349 static int 350 num_lwps (int pid) 351 { 352 int count = 0; 353 struct lwp_info *lp; 354 355 for (lp = lwp_list; lp; lp = lp->next) 356 if (ptid_get_pid (lp->ptid) == pid) 357 count++; 358 359 return count; 360 } 361 362 /* Call delete_lwp with prototype compatible for make_cleanup. */ 363 364 static void 365 delete_lwp_cleanup (void *lp_voidp) 366 { 367 struct lwp_info *lp = lp_voidp; 368 369 delete_lwp (lp->ptid); 370 } 371 372 static int 373 linux_child_follow_fork (struct target_ops *ops, int follow_child, 374 int detach_fork) 375 { 376 int has_vforked; 377 int parent_pid, child_pid; 378 379 has_vforked = (inferior_thread ()->pending_follow.kind 380 == TARGET_WAITKIND_VFORKED); 381 parent_pid = ptid_get_lwp (inferior_ptid); 382 if (parent_pid == 0) 383 parent_pid = ptid_get_pid (inferior_ptid); 384 child_pid 385 = ptid_get_pid (inferior_thread ()->pending_follow.value.related_pid); 386 387 if (has_vforked 388 && !non_stop /* Non-stop always resumes both branches. */ 389 && (!target_is_async_p () || sync_execution) 390 && !(follow_child || detach_fork || sched_multi)) 391 { 392 /* The parent stays blocked inside the vfork syscall until the 393 child execs or exits. If we don't let the child run, then 394 the parent stays blocked. If we're telling the parent to run 395 in the foreground, the user will not be able to ctrl-c to get 396 back the terminal, effectively hanging the debug session. */ 397 fprintf_filtered (gdb_stderr, _("\ 398 Can not resume the parent process over vfork in the foreground while\n\ 399 holding the child stopped. Try \"set detach-on-fork\" or \ 400 \"set schedule-multiple\".\n")); 401 /* FIXME output string > 80 columns. */ 402 return 1; 403 } 404 405 if (! follow_child) 406 { 407 struct lwp_info *child_lp = NULL; 408 409 /* We're already attached to the parent, by default. */ 410 411 /* Detach new forked process? */ 412 if (detach_fork) 413 { 414 struct cleanup *old_chain; 415 416 /* Before detaching from the child, remove all breakpoints 417 from it. If we forked, then this has already been taken 418 care of by infrun.c. If we vforked however, any 419 breakpoint inserted in the parent is visible in the 420 child, even those added while stopped in a vfork 421 catchpoint. This will remove the breakpoints from the 422 parent also, but they'll be reinserted below. */ 423 if (has_vforked) 424 { 425 /* keep breakpoints list in sync. */ 426 remove_breakpoints_pid (ptid_get_pid (inferior_ptid)); 427 } 428 429 if (info_verbose || debug_linux_nat) 430 { 431 target_terminal_ours (); 432 fprintf_filtered (gdb_stdlog, 433 "Detaching after fork from " 434 "child process %d.\n", 435 child_pid); 436 } 437 438 old_chain = save_inferior_ptid (); 439 inferior_ptid = ptid_build (child_pid, child_pid, 0); 440 441 child_lp = add_lwp (inferior_ptid); 442 child_lp->stopped = 1; 443 child_lp->last_resume_kind = resume_stop; 444 make_cleanup (delete_lwp_cleanup, child_lp); 445 446 if (linux_nat_prepare_to_resume != NULL) 447 linux_nat_prepare_to_resume (child_lp); 448 ptrace (PTRACE_DETACH, child_pid, 0, 0); 449 450 do_cleanups (old_chain); 451 } 452 else 453 { 454 struct inferior *parent_inf, *child_inf; 455 struct cleanup *old_chain; 456 457 /* Add process to GDB's tables. */ 458 child_inf = add_inferior (child_pid); 459 460 parent_inf = current_inferior (); 461 child_inf->attach_flag = parent_inf->attach_flag; 462 copy_terminal_info (child_inf, parent_inf); 463 child_inf->gdbarch = parent_inf->gdbarch; 464 copy_inferior_target_desc_info (child_inf, parent_inf); 465 466 old_chain = save_inferior_ptid (); 467 save_current_program_space (); 468 469 inferior_ptid = ptid_build (child_pid, child_pid, 0); 470 add_thread (inferior_ptid); 471 child_lp = add_lwp (inferior_ptid); 472 child_lp->stopped = 1; 473 child_lp->last_resume_kind = resume_stop; 474 child_inf->symfile_flags = SYMFILE_NO_READ; 475 476 /* If this is a vfork child, then the address-space is 477 shared with the parent. */ 478 if (has_vforked) 479 { 480 child_inf->pspace = parent_inf->pspace; 481 child_inf->aspace = parent_inf->aspace; 482 483 /* The parent will be frozen until the child is done 484 with the shared region. Keep track of the 485 parent. */ 486 child_inf->vfork_parent = parent_inf; 487 child_inf->pending_detach = 0; 488 parent_inf->vfork_child = child_inf; 489 parent_inf->pending_detach = 0; 490 } 491 else 492 { 493 child_inf->aspace = new_address_space (); 494 child_inf->pspace = add_program_space (child_inf->aspace); 495 child_inf->removable = 1; 496 set_current_program_space (child_inf->pspace); 497 clone_program_space (child_inf->pspace, parent_inf->pspace); 498 499 /* Let the shared library layer (solib-svr4) learn about 500 this new process, relocate the cloned exec, pull in 501 shared libraries, and install the solib event 502 breakpoint. If a "cloned-VM" event was propagated 503 better throughout the core, this wouldn't be 504 required. */ 505 solib_create_inferior_hook (0); 506 } 507 508 /* Let the thread_db layer learn about this new process. */ 509 check_for_thread_db (); 510 511 do_cleanups (old_chain); 512 } 513 514 if (has_vforked) 515 { 516 struct lwp_info *parent_lp; 517 struct inferior *parent_inf; 518 519 parent_inf = current_inferior (); 520 521 /* If we detached from the child, then we have to be careful 522 to not insert breakpoints in the parent until the child 523 is done with the shared memory region. However, if we're 524 staying attached to the child, then we can and should 525 insert breakpoints, so that we can debug it. A 526 subsequent child exec or exit is enough to know when does 527 the child stops using the parent's address space. */ 528 parent_inf->waiting_for_vfork_done = detach_fork; 529 parent_inf->pspace->breakpoints_not_allowed = detach_fork; 530 531 parent_lp = find_lwp_pid (pid_to_ptid (parent_pid)); 532 gdb_assert (linux_supports_tracefork () >= 0); 533 534 if (linux_supports_tracevforkdone ()) 535 { 536 if (debug_linux_nat) 537 fprintf_unfiltered (gdb_stdlog, 538 "LCFF: waiting for VFORK_DONE on %d\n", 539 parent_pid); 540 parent_lp->stopped = 1; 541 542 /* We'll handle the VFORK_DONE event like any other 543 event, in target_wait. */ 544 } 545 else 546 { 547 /* We can't insert breakpoints until the child has 548 finished with the shared memory region. We need to 549 wait until that happens. Ideal would be to just 550 call: 551 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 552 - waitpid (parent_pid, &status, __WALL); 553 However, most architectures can't handle a syscall 554 being traced on the way out if it wasn't traced on 555 the way in. 556 557 We might also think to loop, continuing the child 558 until it exits or gets a SIGTRAP. One problem is 559 that the child might call ptrace with PTRACE_TRACEME. 560 561 There's no simple and reliable way to figure out when 562 the vforked child will be done with its copy of the 563 shared memory. We could step it out of the syscall, 564 two instructions, let it go, and then single-step the 565 parent once. When we have hardware single-step, this 566 would work; with software single-step it could still 567 be made to work but we'd have to be able to insert 568 single-step breakpoints in the child, and we'd have 569 to insert -just- the single-step breakpoint in the 570 parent. Very awkward. 571 572 In the end, the best we can do is to make sure it 573 runs for a little while. Hopefully it will be out of 574 range of any breakpoints we reinsert. Usually this 575 is only the single-step breakpoint at vfork's return 576 point. */ 577 578 if (debug_linux_nat) 579 fprintf_unfiltered (gdb_stdlog, 580 "LCFF: no VFORK_DONE " 581 "support, sleeping a bit\n"); 582 583 usleep (10000); 584 585 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 586 and leave it pending. The next linux_nat_resume call 587 will notice a pending event, and bypasses actually 588 resuming the inferior. */ 589 parent_lp->status = 0; 590 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 591 parent_lp->stopped = 1; 592 593 /* If we're in async mode, need to tell the event loop 594 there's something here to process. */ 595 if (target_can_async_p ()) 596 async_file_mark (); 597 } 598 } 599 } 600 else 601 { 602 struct inferior *parent_inf, *child_inf; 603 struct lwp_info *child_lp; 604 struct program_space *parent_pspace; 605 606 if (info_verbose || debug_linux_nat) 607 { 608 target_terminal_ours (); 609 if (has_vforked) 610 fprintf_filtered (gdb_stdlog, 611 _("Attaching after process %d " 612 "vfork to child process %d.\n"), 613 parent_pid, child_pid); 614 else 615 fprintf_filtered (gdb_stdlog, 616 _("Attaching after process %d " 617 "fork to child process %d.\n"), 618 parent_pid, child_pid); 619 } 620 621 /* Add the new inferior first, so that the target_detach below 622 doesn't unpush the target. */ 623 624 child_inf = add_inferior (child_pid); 625 626 parent_inf = current_inferior (); 627 child_inf->attach_flag = parent_inf->attach_flag; 628 copy_terminal_info (child_inf, parent_inf); 629 child_inf->gdbarch = parent_inf->gdbarch; 630 copy_inferior_target_desc_info (child_inf, parent_inf); 631 632 parent_pspace = parent_inf->pspace; 633 634 /* If we're vforking, we want to hold on to the parent until the 635 child exits or execs. At child exec or exit time we can 636 remove the old breakpoints from the parent and detach or 637 resume debugging it. Otherwise, detach the parent now; we'll 638 want to reuse it's program/address spaces, but we can't set 639 them to the child before removing breakpoints from the 640 parent, otherwise, the breakpoints module could decide to 641 remove breakpoints from the wrong process (since they'd be 642 assigned to the same address space). */ 643 644 if (has_vforked) 645 { 646 gdb_assert (child_inf->vfork_parent == NULL); 647 gdb_assert (parent_inf->vfork_child == NULL); 648 child_inf->vfork_parent = parent_inf; 649 child_inf->pending_detach = 0; 650 parent_inf->vfork_child = child_inf; 651 parent_inf->pending_detach = detach_fork; 652 parent_inf->waiting_for_vfork_done = 0; 653 } 654 else if (detach_fork) 655 target_detach (NULL, 0); 656 657 /* Note that the detach above makes PARENT_INF dangling. */ 658 659 /* Add the child thread to the appropriate lists, and switch to 660 this new thread, before cloning the program space, and 661 informing the solib layer about this new process. */ 662 663 inferior_ptid = ptid_build (child_pid, child_pid, 0); 664 add_thread (inferior_ptid); 665 child_lp = add_lwp (inferior_ptid); 666 child_lp->stopped = 1; 667 child_lp->last_resume_kind = resume_stop; 668 669 /* If this is a vfork child, then the address-space is shared 670 with the parent. If we detached from the parent, then we can 671 reuse the parent's program/address spaces. */ 672 if (has_vforked || detach_fork) 673 { 674 child_inf->pspace = parent_pspace; 675 child_inf->aspace = child_inf->pspace->aspace; 676 } 677 else 678 { 679 child_inf->aspace = new_address_space (); 680 child_inf->pspace = add_program_space (child_inf->aspace); 681 child_inf->removable = 1; 682 child_inf->symfile_flags = SYMFILE_NO_READ; 683 set_current_program_space (child_inf->pspace); 684 clone_program_space (child_inf->pspace, parent_pspace); 685 686 /* Let the shared library layer (solib-svr4) learn about 687 this new process, relocate the cloned exec, pull in 688 shared libraries, and install the solib event breakpoint. 689 If a "cloned-VM" event was propagated better throughout 690 the core, this wouldn't be required. */ 691 solib_create_inferior_hook (0); 692 } 693 694 /* Let the thread_db layer learn about this new process. */ 695 check_for_thread_db (); 696 } 697 698 return 0; 699 } 700 701 702 static int 703 linux_child_insert_fork_catchpoint (int pid) 704 { 705 return !linux_supports_tracefork (); 706 } 707 708 static int 709 linux_child_remove_fork_catchpoint (int pid) 710 { 711 return 0; 712 } 713 714 static int 715 linux_child_insert_vfork_catchpoint (int pid) 716 { 717 return !linux_supports_tracefork (); 718 } 719 720 static int 721 linux_child_remove_vfork_catchpoint (int pid) 722 { 723 return 0; 724 } 725 726 static int 727 linux_child_insert_exec_catchpoint (int pid) 728 { 729 return !linux_supports_tracefork (); 730 } 731 732 static int 733 linux_child_remove_exec_catchpoint (int pid) 734 { 735 return 0; 736 } 737 738 static int 739 linux_child_set_syscall_catchpoint (int pid, int needed, int any_count, 740 int table_size, int *table) 741 { 742 if (!linux_supports_tracesysgood ()) 743 return 1; 744 745 /* On GNU/Linux, we ignore the arguments. It means that we only 746 enable the syscall catchpoints, but do not disable them. 747 748 Also, we do not use the `table' information because we do not 749 filter system calls here. We let GDB do the logic for us. */ 750 return 0; 751 } 752 753 /* On GNU/Linux there are no real LWP's. The closest thing to LWP's 754 are processes sharing the same VM space. A multi-threaded process 755 is basically a group of such processes. However, such a grouping 756 is almost entirely a user-space issue; the kernel doesn't enforce 757 such a grouping at all (this might change in the future). In 758 general, we'll rely on the threads library (i.e. the GNU/Linux 759 Threads library) to provide such a grouping. 760 761 It is perfectly well possible to write a multi-threaded application 762 without the assistance of a threads library, by using the clone 763 system call directly. This module should be able to give some 764 rudimentary support for debugging such applications if developers 765 specify the CLONE_PTRACE flag in the clone system call, and are 766 using the Linux kernel 2.4 or above. 767 768 Note that there are some peculiarities in GNU/Linux that affect 769 this code: 770 771 - In general one should specify the __WCLONE flag to waitpid in 772 order to make it report events for any of the cloned processes 773 (and leave it out for the initial process). However, if a cloned 774 process has exited the exit status is only reported if the 775 __WCLONE flag is absent. Linux kernel 2.4 has a __WALL flag, but 776 we cannot use it since GDB must work on older systems too. 777 778 - When a traced, cloned process exits and is waited for by the 779 debugger, the kernel reassigns it to the original parent and 780 keeps it around as a "zombie". Somehow, the GNU/Linux Threads 781 library doesn't notice this, which leads to the "zombie problem": 782 When debugged a multi-threaded process that spawns a lot of 783 threads will run out of processes, even if the threads exit, 784 because the "zombies" stay around. */ 785 786 /* List of known LWPs. */ 787 struct lwp_info *lwp_list; 788 789 790 /* Original signal mask. */ 791 static sigset_t normal_mask; 792 793 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 794 _initialize_linux_nat. */ 795 static sigset_t suspend_mask; 796 797 /* Signals to block to make that sigsuspend work. */ 798 static sigset_t blocked_mask; 799 800 /* SIGCHLD action. */ 801 struct sigaction sigchld_action; 802 803 /* Block child signals (SIGCHLD and linux threads signals), and store 804 the previous mask in PREV_MASK. */ 805 806 static void 807 block_child_signals (sigset_t *prev_mask) 808 { 809 /* Make sure SIGCHLD is blocked. */ 810 if (!sigismember (&blocked_mask, SIGCHLD)) 811 sigaddset (&blocked_mask, SIGCHLD); 812 813 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask); 814 } 815 816 /* Restore child signals mask, previously returned by 817 block_child_signals. */ 818 819 static void 820 restore_child_signals_mask (sigset_t *prev_mask) 821 { 822 sigprocmask (SIG_SETMASK, prev_mask, NULL); 823 } 824 825 /* Mask of signals to pass directly to the inferior. */ 826 static sigset_t pass_mask; 827 828 /* Update signals to pass to the inferior. */ 829 static void 830 linux_nat_pass_signals (int numsigs, unsigned char *pass_signals) 831 { 832 int signo; 833 834 sigemptyset (&pass_mask); 835 836 for (signo = 1; signo < NSIG; signo++) 837 { 838 int target_signo = gdb_signal_from_host (signo); 839 if (target_signo < numsigs && pass_signals[target_signo]) 840 sigaddset (&pass_mask, signo); 841 } 842 } 843 844 845 846 /* Prototypes for local functions. */ 847 static int stop_wait_callback (struct lwp_info *lp, void *data); 848 static int linux_thread_alive (ptid_t ptid); 849 static char *linux_child_pid_to_exec_file (int pid); 850 851 852 /* Convert wait status STATUS to a string. Used for printing debug 853 messages only. */ 854 855 static char * 856 status_to_str (int status) 857 { 858 static char buf[64]; 859 860 if (WIFSTOPPED (status)) 861 { 862 if (WSTOPSIG (status) == SYSCALL_SIGTRAP) 863 snprintf (buf, sizeof (buf), "%s (stopped at syscall)", 864 strsignal (SIGTRAP)); 865 else 866 snprintf (buf, sizeof (buf), "%s (stopped)", 867 strsignal (WSTOPSIG (status))); 868 } 869 else if (WIFSIGNALED (status)) 870 snprintf (buf, sizeof (buf), "%s (terminated)", 871 strsignal (WTERMSIG (status))); 872 else 873 snprintf (buf, sizeof (buf), "%d (exited)", WEXITSTATUS (status)); 874 875 return buf; 876 } 877 878 /* Destroy and free LP. */ 879 880 static void 881 lwp_free (struct lwp_info *lp) 882 { 883 xfree (lp->arch_private); 884 xfree (lp); 885 } 886 887 /* Remove all LWPs belong to PID from the lwp list. */ 888 889 static void 890 purge_lwp_list (int pid) 891 { 892 struct lwp_info *lp, *lpprev, *lpnext; 893 894 lpprev = NULL; 895 896 for (lp = lwp_list; lp; lp = lpnext) 897 { 898 lpnext = lp->next; 899 900 if (ptid_get_pid (lp->ptid) == pid) 901 { 902 if (lp == lwp_list) 903 lwp_list = lp->next; 904 else 905 lpprev->next = lp->next; 906 907 lwp_free (lp); 908 } 909 else 910 lpprev = lp; 911 } 912 } 913 914 /* Add the LWP specified by PTID to the list. PTID is the first LWP 915 in the process. Return a pointer to the structure describing the 916 new LWP. 917 918 This differs from add_lwp in that we don't let the arch specific 919 bits know about this new thread. Current clients of this callback 920 take the opportunity to install watchpoints in the new thread, and 921 we shouldn't do that for the first thread. If we're spawning a 922 child ("run"), the thread executes the shell wrapper first, and we 923 shouldn't touch it until it execs the program we want to debug. 924 For "attach", it'd be okay to call the callback, but it's not 925 necessary, because watchpoints can't yet have been inserted into 926 the inferior. */ 927 928 static struct lwp_info * 929 add_initial_lwp (ptid_t ptid) 930 { 931 struct lwp_info *lp; 932 933 gdb_assert (ptid_lwp_p (ptid)); 934 935 lp = (struct lwp_info *) xmalloc (sizeof (struct lwp_info)); 936 937 memset (lp, 0, sizeof (struct lwp_info)); 938 939 lp->last_resume_kind = resume_continue; 940 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 941 942 lp->ptid = ptid; 943 lp->core = -1; 944 945 lp->next = lwp_list; 946 lwp_list = lp; 947 948 return lp; 949 } 950 951 /* Add the LWP specified by PID to the list. Return a pointer to the 952 structure describing the new LWP. The LWP should already be 953 stopped. */ 954 955 static struct lwp_info * 956 add_lwp (ptid_t ptid) 957 { 958 struct lwp_info *lp; 959 960 lp = add_initial_lwp (ptid); 961 962 /* Let the arch specific bits know about this new thread. Current 963 clients of this callback take the opportunity to install 964 watchpoints in the new thread. We don't do this for the first 965 thread though. See add_initial_lwp. */ 966 if (linux_nat_new_thread != NULL) 967 linux_nat_new_thread (lp); 968 969 return lp; 970 } 971 972 /* Remove the LWP specified by PID from the list. */ 973 974 static void 975 delete_lwp (ptid_t ptid) 976 { 977 struct lwp_info *lp, *lpprev; 978 979 lpprev = NULL; 980 981 for (lp = lwp_list; lp; lpprev = lp, lp = lp->next) 982 if (ptid_equal (lp->ptid, ptid)) 983 break; 984 985 if (!lp) 986 return; 987 988 if (lpprev) 989 lpprev->next = lp->next; 990 else 991 lwp_list = lp->next; 992 993 lwp_free (lp); 994 } 995 996 /* Return a pointer to the structure describing the LWP corresponding 997 to PID. If no corresponding LWP could be found, return NULL. */ 998 999 static struct lwp_info * 1000 find_lwp_pid (ptid_t ptid) 1001 { 1002 struct lwp_info *lp; 1003 int lwp; 1004 1005 if (ptid_lwp_p (ptid)) 1006 lwp = ptid_get_lwp (ptid); 1007 else 1008 lwp = ptid_get_pid (ptid); 1009 1010 for (lp = lwp_list; lp; lp = lp->next) 1011 if (lwp == ptid_get_lwp (lp->ptid)) 1012 return lp; 1013 1014 return NULL; 1015 } 1016 1017 /* Call CALLBACK with its second argument set to DATA for every LWP in 1018 the list. If CALLBACK returns 1 for a particular LWP, return a 1019 pointer to the structure describing that LWP immediately. 1020 Otherwise return NULL. */ 1021 1022 struct lwp_info * 1023 iterate_over_lwps (ptid_t filter, 1024 int (*callback) (struct lwp_info *, void *), 1025 void *data) 1026 { 1027 struct lwp_info *lp, *lpnext; 1028 1029 for (lp = lwp_list; lp; lp = lpnext) 1030 { 1031 lpnext = lp->next; 1032 1033 if (ptid_match (lp->ptid, filter)) 1034 { 1035 if ((*callback) (lp, data)) 1036 return lp; 1037 } 1038 } 1039 1040 return NULL; 1041 } 1042 1043 /* Update our internal state when changing from one checkpoint to 1044 another indicated by NEW_PTID. We can only switch single-threaded 1045 applications, so we only create one new LWP, and the previous list 1046 is discarded. */ 1047 1048 void 1049 linux_nat_switch_fork (ptid_t new_ptid) 1050 { 1051 struct lwp_info *lp; 1052 1053 purge_lwp_list (ptid_get_pid (inferior_ptid)); 1054 1055 lp = add_lwp (new_ptid); 1056 lp->stopped = 1; 1057 1058 /* This changes the thread's ptid while preserving the gdb thread 1059 num. Also changes the inferior pid, while preserving the 1060 inferior num. */ 1061 thread_change_ptid (inferior_ptid, new_ptid); 1062 1063 /* We've just told GDB core that the thread changed target id, but, 1064 in fact, it really is a different thread, with different register 1065 contents. */ 1066 registers_changed (); 1067 } 1068 1069 /* Handle the exit of a single thread LP. */ 1070 1071 static void 1072 exit_lwp (struct lwp_info *lp) 1073 { 1074 struct thread_info *th = find_thread_ptid (lp->ptid); 1075 1076 if (th) 1077 { 1078 if (print_thread_events) 1079 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); 1080 1081 delete_thread (lp->ptid); 1082 } 1083 1084 delete_lwp (lp->ptid); 1085 } 1086 1087 /* Wait for the LWP specified by LP, which we have just attached to. 1088 Returns a wait status for that LWP, to cache. */ 1089 1090 static int 1091 linux_nat_post_attach_wait (ptid_t ptid, int first, int *cloned, 1092 int *signalled) 1093 { 1094 pid_t new_pid, pid = ptid_get_lwp (ptid); 1095 int status; 1096 1097 if (linux_proc_pid_is_stopped (pid)) 1098 { 1099 if (debug_linux_nat) 1100 fprintf_unfiltered (gdb_stdlog, 1101 "LNPAW: Attaching to a stopped process\n"); 1102 1103 /* The process is definitely stopped. It is in a job control 1104 stop, unless the kernel predates the TASK_STOPPED / 1105 TASK_TRACED distinction, in which case it might be in a 1106 ptrace stop. Make sure it is in a ptrace stop; from there we 1107 can kill it, signal it, et cetera. 1108 1109 First make sure there is a pending SIGSTOP. Since we are 1110 already attached, the process can not transition from stopped 1111 to running without a PTRACE_CONT; so we know this signal will 1112 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1113 probably already in the queue (unless this kernel is old 1114 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1115 is not an RT signal, it can only be queued once. */ 1116 kill_lwp (pid, SIGSTOP); 1117 1118 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1119 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1120 ptrace (PTRACE_CONT, pid, 0, 0); 1121 } 1122 1123 /* Make sure the initial process is stopped. The user-level threads 1124 layer might want to poke around in the inferior, and that won't 1125 work if things haven't stabilized yet. */ 1126 new_pid = my_waitpid (pid, &status, 0); 1127 if (new_pid == -1 && errno == ECHILD) 1128 { 1129 if (first) 1130 warning (_("%s is a cloned process"), target_pid_to_str (ptid)); 1131 1132 /* Try again with __WCLONE to check cloned processes. */ 1133 new_pid = my_waitpid (pid, &status, __WCLONE); 1134 *cloned = 1; 1135 } 1136 1137 gdb_assert (pid == new_pid); 1138 1139 if (!WIFSTOPPED (status)) 1140 { 1141 /* The pid we tried to attach has apparently just exited. */ 1142 if (debug_linux_nat) 1143 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s", 1144 pid, status_to_str (status)); 1145 return status; 1146 } 1147 1148 if (WSTOPSIG (status) != SIGSTOP) 1149 { 1150 *signalled = 1; 1151 if (debug_linux_nat) 1152 fprintf_unfiltered (gdb_stdlog, 1153 "LNPAW: Received %s after attaching\n", 1154 status_to_str (status)); 1155 } 1156 1157 return status; 1158 } 1159 1160 /* Attach to the LWP specified by PID. Return 0 if successful, -1 if 1161 the new LWP could not be attached, or 1 if we're already auto 1162 attached to this thread, but haven't processed the 1163 PTRACE_EVENT_CLONE event of its parent thread, so we just ignore 1164 its existance, without considering it an error. */ 1165 1166 int 1167 lin_lwp_attach_lwp (ptid_t ptid) 1168 { 1169 struct lwp_info *lp; 1170 int lwpid; 1171 1172 gdb_assert (ptid_lwp_p (ptid)); 1173 1174 lp = find_lwp_pid (ptid); 1175 lwpid = ptid_get_lwp (ptid); 1176 1177 /* We assume that we're already attached to any LWP that has an id 1178 equal to the overall process id, and to any LWP that is already 1179 in our list of LWPs. If we're not seeing exit events from threads 1180 and we've had PID wraparound since we last tried to stop all threads, 1181 this assumption might be wrong; fortunately, this is very unlikely 1182 to happen. */ 1183 if (lwpid != ptid_get_pid (ptid) && lp == NULL) 1184 { 1185 int status, cloned = 0, signalled = 0; 1186 1187 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1188 { 1189 if (linux_supports_tracefork ()) 1190 { 1191 /* If we haven't stopped all threads when we get here, 1192 we may have seen a thread listed in thread_db's list, 1193 but not processed the PTRACE_EVENT_CLONE yet. If 1194 that's the case, ignore this new thread, and let 1195 normal event handling discover it later. */ 1196 if (in_pid_list_p (stopped_pids, lwpid)) 1197 { 1198 /* We've already seen this thread stop, but we 1199 haven't seen the PTRACE_EVENT_CLONE extended 1200 event yet. */ 1201 return 0; 1202 } 1203 else 1204 { 1205 int new_pid; 1206 int status; 1207 1208 /* See if we've got a stop for this new child 1209 pending. If so, we're already attached. */ 1210 new_pid = my_waitpid (lwpid, &status, WNOHANG); 1211 if (new_pid == -1 && errno == ECHILD) 1212 new_pid = my_waitpid (lwpid, &status, __WCLONE | WNOHANG); 1213 if (new_pid != -1) 1214 { 1215 if (WIFSTOPPED (status)) 1216 add_to_pid_list (&stopped_pids, lwpid, status); 1217 return 1; 1218 } 1219 } 1220 } 1221 1222 /* If we fail to attach to the thread, issue a warning, 1223 but continue. One way this can happen is if thread 1224 creation is interrupted; as of Linux kernel 2.6.19, a 1225 bug may place threads in the thread list and then fail 1226 to create them. */ 1227 warning (_("Can't attach %s: %s"), target_pid_to_str (ptid), 1228 safe_strerror (errno)); 1229 return -1; 1230 } 1231 1232 if (debug_linux_nat) 1233 fprintf_unfiltered (gdb_stdlog, 1234 "LLAL: PTRACE_ATTACH %s, 0, 0 (OK)\n", 1235 target_pid_to_str (ptid)); 1236 1237 status = linux_nat_post_attach_wait (ptid, 0, &cloned, &signalled); 1238 if (!WIFSTOPPED (status)) 1239 return 1; 1240 1241 lp = add_lwp (ptid); 1242 lp->stopped = 1; 1243 lp->cloned = cloned; 1244 lp->signalled = signalled; 1245 if (WSTOPSIG (status) != SIGSTOP) 1246 { 1247 lp->resumed = 1; 1248 lp->status = status; 1249 } 1250 1251 target_post_attach (ptid_get_lwp (lp->ptid)); 1252 1253 if (debug_linux_nat) 1254 { 1255 fprintf_unfiltered (gdb_stdlog, 1256 "LLAL: waitpid %s received %s\n", 1257 target_pid_to_str (ptid), 1258 status_to_str (status)); 1259 } 1260 } 1261 else 1262 { 1263 /* We assume that the LWP representing the original process is 1264 already stopped. Mark it as stopped in the data structure 1265 that the GNU/linux ptrace layer uses to keep track of 1266 threads. Note that this won't have already been done since 1267 the main thread will have, we assume, been stopped by an 1268 attach from a different layer. */ 1269 if (lp == NULL) 1270 lp = add_lwp (ptid); 1271 lp->stopped = 1; 1272 } 1273 1274 lp->last_resume_kind = resume_stop; 1275 return 0; 1276 } 1277 1278 static void 1279 linux_nat_create_inferior (struct target_ops *ops, 1280 char *exec_file, char *allargs, char **env, 1281 int from_tty) 1282 { 1283 #ifdef HAVE_PERSONALITY 1284 int personality_orig = 0, personality_set = 0; 1285 #endif /* HAVE_PERSONALITY */ 1286 1287 /* The fork_child mechanism is synchronous and calls target_wait, so 1288 we have to mask the async mode. */ 1289 1290 #ifdef HAVE_PERSONALITY 1291 if (disable_randomization) 1292 { 1293 errno = 0; 1294 personality_orig = personality (0xffffffff); 1295 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE)) 1296 { 1297 personality_set = 1; 1298 personality (personality_orig | ADDR_NO_RANDOMIZE); 1299 } 1300 if (errno != 0 || (personality_set 1301 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE))) 1302 warning (_("Error disabling address space randomization: %s"), 1303 safe_strerror (errno)); 1304 } 1305 #endif /* HAVE_PERSONALITY */ 1306 1307 /* Make sure we report all signals during startup. */ 1308 linux_nat_pass_signals (0, NULL); 1309 1310 linux_ops->to_create_inferior (ops, exec_file, allargs, env, from_tty); 1311 1312 #ifdef HAVE_PERSONALITY 1313 if (personality_set) 1314 { 1315 errno = 0; 1316 personality (personality_orig); 1317 if (errno != 0) 1318 warning (_("Error restoring address space randomization: %s"), 1319 safe_strerror (errno)); 1320 } 1321 #endif /* HAVE_PERSONALITY */ 1322 } 1323 1324 static void 1325 linux_nat_attach (struct target_ops *ops, char *args, int from_tty) 1326 { 1327 struct lwp_info *lp; 1328 int status; 1329 ptid_t ptid; 1330 volatile struct gdb_exception ex; 1331 1332 /* Make sure we report all signals during attach. */ 1333 linux_nat_pass_signals (0, NULL); 1334 1335 TRY_CATCH (ex, RETURN_MASK_ERROR) 1336 { 1337 linux_ops->to_attach (ops, args, from_tty); 1338 } 1339 if (ex.reason < 0) 1340 { 1341 pid_t pid = parse_pid_to_attach (args); 1342 struct buffer buffer; 1343 char *message, *buffer_s; 1344 1345 message = xstrdup (ex.message); 1346 make_cleanup (xfree, message); 1347 1348 buffer_init (&buffer); 1349 linux_ptrace_attach_warnings (pid, &buffer); 1350 1351 buffer_grow_str0 (&buffer, ""); 1352 buffer_s = buffer_finish (&buffer); 1353 make_cleanup (xfree, buffer_s); 1354 1355 throw_error (ex.error, "%s%s", buffer_s, message); 1356 } 1357 1358 /* The ptrace base target adds the main thread with (pid,0,0) 1359 format. Decorate it with lwp info. */ 1360 ptid = ptid_build (ptid_get_pid (inferior_ptid), 1361 ptid_get_pid (inferior_ptid), 1362 0); 1363 thread_change_ptid (inferior_ptid, ptid); 1364 1365 /* Add the initial process as the first LWP to the list. */ 1366 lp = add_initial_lwp (ptid); 1367 1368 status = linux_nat_post_attach_wait (lp->ptid, 1, &lp->cloned, 1369 &lp->signalled); 1370 if (!WIFSTOPPED (status)) 1371 { 1372 if (WIFEXITED (status)) 1373 { 1374 int exit_code = WEXITSTATUS (status); 1375 1376 target_terminal_ours (); 1377 target_mourn_inferior (); 1378 if (exit_code == 0) 1379 error (_("Unable to attach: program exited normally.")); 1380 else 1381 error (_("Unable to attach: program exited with code %d."), 1382 exit_code); 1383 } 1384 else if (WIFSIGNALED (status)) 1385 { 1386 enum gdb_signal signo; 1387 1388 target_terminal_ours (); 1389 target_mourn_inferior (); 1390 1391 signo = gdb_signal_from_host (WTERMSIG (status)); 1392 error (_("Unable to attach: program terminated with signal " 1393 "%s, %s."), 1394 gdb_signal_to_name (signo), 1395 gdb_signal_to_string (signo)); 1396 } 1397 1398 internal_error (__FILE__, __LINE__, 1399 _("unexpected status %d for PID %ld"), 1400 status, (long) ptid_get_lwp (ptid)); 1401 } 1402 1403 lp->stopped = 1; 1404 1405 /* Save the wait status to report later. */ 1406 lp->resumed = 1; 1407 if (debug_linux_nat) 1408 fprintf_unfiltered (gdb_stdlog, 1409 "LNA: waitpid %ld, saving status %s\n", 1410 (long) ptid_get_pid (lp->ptid), status_to_str (status)); 1411 1412 lp->status = status; 1413 1414 if (target_can_async_p ()) 1415 target_async (inferior_event_handler, 0); 1416 } 1417 1418 /* Get pending status of LP. */ 1419 static int 1420 get_pending_status (struct lwp_info *lp, int *status) 1421 { 1422 enum gdb_signal signo = GDB_SIGNAL_0; 1423 1424 /* If we paused threads momentarily, we may have stored pending 1425 events in lp->status or lp->waitstatus (see stop_wait_callback), 1426 and GDB core hasn't seen any signal for those threads. 1427 Otherwise, the last signal reported to the core is found in the 1428 thread object's stop_signal. 1429 1430 There's a corner case that isn't handled here at present. Only 1431 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1432 stop_signal make sense as a real signal to pass to the inferior. 1433 Some catchpoint related events, like 1434 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1435 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1436 those traps are debug API (ptrace in our case) related and 1437 induced; the inferior wouldn't see them if it wasn't being 1438 traced. Hence, we should never pass them to the inferior, even 1439 when set to pass state. Since this corner case isn't handled by 1440 infrun.c when proceeding with a signal, for consistency, neither 1441 do we handle it here (or elsewhere in the file we check for 1442 signal pass state). Normally SIGTRAP isn't set to pass state, so 1443 this is really a corner case. */ 1444 1445 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1446 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1447 else if (lp->status) 1448 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1449 else if (non_stop && !is_executing (lp->ptid)) 1450 { 1451 struct thread_info *tp = find_thread_ptid (lp->ptid); 1452 1453 signo = tp->suspend.stop_signal; 1454 } 1455 else if (!non_stop) 1456 { 1457 struct target_waitstatus last; 1458 ptid_t last_ptid; 1459 1460 get_last_target_status (&last_ptid, &last); 1461 1462 if (ptid_get_lwp (lp->ptid) == ptid_get_lwp (last_ptid)) 1463 { 1464 struct thread_info *tp = find_thread_ptid (lp->ptid); 1465 1466 signo = tp->suspend.stop_signal; 1467 } 1468 } 1469 1470 *status = 0; 1471 1472 if (signo == GDB_SIGNAL_0) 1473 { 1474 if (debug_linux_nat) 1475 fprintf_unfiltered (gdb_stdlog, 1476 "GPT: lwp %s has no pending signal\n", 1477 target_pid_to_str (lp->ptid)); 1478 } 1479 else if (!signal_pass_state (signo)) 1480 { 1481 if (debug_linux_nat) 1482 fprintf_unfiltered (gdb_stdlog, 1483 "GPT: lwp %s had signal %s, " 1484 "but it is in no pass state\n", 1485 target_pid_to_str (lp->ptid), 1486 gdb_signal_to_string (signo)); 1487 } 1488 else 1489 { 1490 *status = W_STOPCODE (gdb_signal_to_host (signo)); 1491 1492 if (debug_linux_nat) 1493 fprintf_unfiltered (gdb_stdlog, 1494 "GPT: lwp %s has pending signal %s\n", 1495 target_pid_to_str (lp->ptid), 1496 gdb_signal_to_string (signo)); 1497 } 1498 1499 return 0; 1500 } 1501 1502 static int 1503 detach_callback (struct lwp_info *lp, void *data) 1504 { 1505 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1506 1507 if (debug_linux_nat && lp->status) 1508 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", 1509 strsignal (WSTOPSIG (lp->status)), 1510 target_pid_to_str (lp->ptid)); 1511 1512 /* If there is a pending SIGSTOP, get rid of it. */ 1513 if (lp->signalled) 1514 { 1515 if (debug_linux_nat) 1516 fprintf_unfiltered (gdb_stdlog, 1517 "DC: Sending SIGCONT to %s\n", 1518 target_pid_to_str (lp->ptid)); 1519 1520 kill_lwp (ptid_get_lwp (lp->ptid), SIGCONT); 1521 lp->signalled = 0; 1522 } 1523 1524 /* We don't actually detach from the LWP that has an id equal to the 1525 overall process id just yet. */ 1526 if (ptid_get_lwp (lp->ptid) != ptid_get_pid (lp->ptid)) 1527 { 1528 int status = 0; 1529 1530 /* Pass on any pending signal for this LWP. */ 1531 get_pending_status (lp, &status); 1532 1533 if (linux_nat_prepare_to_resume != NULL) 1534 linux_nat_prepare_to_resume (lp); 1535 errno = 0; 1536 if (ptrace (PTRACE_DETACH, ptid_get_lwp (lp->ptid), 0, 1537 WSTOPSIG (status)) < 0) 1538 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), 1539 safe_strerror (errno)); 1540 1541 if (debug_linux_nat) 1542 fprintf_unfiltered (gdb_stdlog, 1543 "PTRACE_DETACH (%s, %s, 0) (OK)\n", 1544 target_pid_to_str (lp->ptid), 1545 strsignal (WSTOPSIG (status))); 1546 1547 delete_lwp (lp->ptid); 1548 } 1549 1550 return 0; 1551 } 1552 1553 static void 1554 linux_nat_detach (struct target_ops *ops, const char *args, int from_tty) 1555 { 1556 int pid; 1557 int status; 1558 struct lwp_info *main_lwp; 1559 1560 pid = ptid_get_pid (inferior_ptid); 1561 1562 /* Don't unregister from the event loop, as there may be other 1563 inferiors running. */ 1564 1565 /* Stop all threads before detaching. ptrace requires that the 1566 thread is stopped to sucessfully detach. */ 1567 iterate_over_lwps (pid_to_ptid (pid), stop_callback, NULL); 1568 /* ... and wait until all of them have reported back that 1569 they're no longer running. */ 1570 iterate_over_lwps (pid_to_ptid (pid), stop_wait_callback, NULL); 1571 1572 iterate_over_lwps (pid_to_ptid (pid), detach_callback, NULL); 1573 1574 /* Only the initial process should be left right now. */ 1575 gdb_assert (num_lwps (ptid_get_pid (inferior_ptid)) == 1); 1576 1577 main_lwp = find_lwp_pid (pid_to_ptid (pid)); 1578 1579 /* Pass on any pending signal for the last LWP. */ 1580 if ((args == NULL || *args == '\0') 1581 && get_pending_status (main_lwp, &status) != -1 1582 && WIFSTOPPED (status)) 1583 { 1584 char *tem; 1585 1586 /* Put the signal number in ARGS so that inf_ptrace_detach will 1587 pass it along with PTRACE_DETACH. */ 1588 tem = alloca (8); 1589 xsnprintf (tem, 8, "%d", (int) WSTOPSIG (status)); 1590 args = tem; 1591 if (debug_linux_nat) 1592 fprintf_unfiltered (gdb_stdlog, 1593 "LND: Sending signal %s to %s\n", 1594 args, 1595 target_pid_to_str (main_lwp->ptid)); 1596 } 1597 1598 if (linux_nat_prepare_to_resume != NULL) 1599 linux_nat_prepare_to_resume (main_lwp); 1600 delete_lwp (main_lwp->ptid); 1601 1602 if (forks_exist_p ()) 1603 { 1604 /* Multi-fork case. The current inferior_ptid is being detached 1605 from, but there are other viable forks to debug. Detach from 1606 the current fork, and context-switch to the first 1607 available. */ 1608 linux_fork_detach (args, from_tty); 1609 } 1610 else 1611 linux_ops->to_detach (ops, args, from_tty); 1612 } 1613 1614 /* Resume LP. */ 1615 1616 static void 1617 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1618 { 1619 if (lp->stopped) 1620 { 1621 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 1622 1623 if (inf->vfork_child != NULL) 1624 { 1625 if (debug_linux_nat) 1626 fprintf_unfiltered (gdb_stdlog, 1627 "RC: Not resuming %s (vfork parent)\n", 1628 target_pid_to_str (lp->ptid)); 1629 } 1630 else if (lp->status == 0 1631 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE) 1632 { 1633 if (debug_linux_nat) 1634 fprintf_unfiltered (gdb_stdlog, 1635 "RC: Resuming sibling %s, %s, %s\n", 1636 target_pid_to_str (lp->ptid), 1637 (signo != GDB_SIGNAL_0 1638 ? strsignal (gdb_signal_to_host (signo)) 1639 : "0"), 1640 step ? "step" : "resume"); 1641 1642 if (linux_nat_prepare_to_resume != NULL) 1643 linux_nat_prepare_to_resume (lp); 1644 linux_ops->to_resume (linux_ops, 1645 pid_to_ptid (ptid_get_lwp (lp->ptid)), 1646 step, signo); 1647 lp->stopped = 0; 1648 lp->step = step; 1649 lp->stopped_by_watchpoint = 0; 1650 } 1651 else 1652 { 1653 if (debug_linux_nat) 1654 fprintf_unfiltered (gdb_stdlog, 1655 "RC: Not resuming sibling %s (has pending)\n", 1656 target_pid_to_str (lp->ptid)); 1657 } 1658 } 1659 else 1660 { 1661 if (debug_linux_nat) 1662 fprintf_unfiltered (gdb_stdlog, 1663 "RC: Not resuming sibling %s (not stopped)\n", 1664 target_pid_to_str (lp->ptid)); 1665 } 1666 } 1667 1668 /* Resume LWP, with the last stop signal, if it is in pass state. */ 1669 1670 static int 1671 linux_nat_resume_callback (struct lwp_info *lp, void *data) 1672 { 1673 enum gdb_signal signo = GDB_SIGNAL_0; 1674 1675 if (lp->stopped) 1676 { 1677 struct thread_info *thread; 1678 1679 thread = find_thread_ptid (lp->ptid); 1680 if (thread != NULL) 1681 { 1682 if (signal_pass_state (thread->suspend.stop_signal)) 1683 signo = thread->suspend.stop_signal; 1684 thread->suspend.stop_signal = GDB_SIGNAL_0; 1685 } 1686 } 1687 1688 resume_lwp (lp, 0, signo); 1689 return 0; 1690 } 1691 1692 static int 1693 resume_clear_callback (struct lwp_info *lp, void *data) 1694 { 1695 lp->resumed = 0; 1696 lp->last_resume_kind = resume_stop; 1697 return 0; 1698 } 1699 1700 static int 1701 resume_set_callback (struct lwp_info *lp, void *data) 1702 { 1703 lp->resumed = 1; 1704 lp->last_resume_kind = resume_continue; 1705 return 0; 1706 } 1707 1708 static void 1709 linux_nat_resume (struct target_ops *ops, 1710 ptid_t ptid, int step, enum gdb_signal signo) 1711 { 1712 struct lwp_info *lp; 1713 int resume_many; 1714 1715 if (debug_linux_nat) 1716 fprintf_unfiltered (gdb_stdlog, 1717 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", 1718 step ? "step" : "resume", 1719 target_pid_to_str (ptid), 1720 (signo != GDB_SIGNAL_0 1721 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1722 target_pid_to_str (inferior_ptid)); 1723 1724 /* A specific PTID means `step only this process id'. */ 1725 resume_many = (ptid_equal (minus_one_ptid, ptid) 1726 || ptid_is_pid (ptid)); 1727 1728 /* Mark the lwps we're resuming as resumed. */ 1729 iterate_over_lwps (ptid, resume_set_callback, NULL); 1730 1731 /* See if it's the current inferior that should be handled 1732 specially. */ 1733 if (resume_many) 1734 lp = find_lwp_pid (inferior_ptid); 1735 else 1736 lp = find_lwp_pid (ptid); 1737 gdb_assert (lp != NULL); 1738 1739 /* Remember if we're stepping. */ 1740 lp->step = step; 1741 lp->last_resume_kind = step ? resume_step : resume_continue; 1742 1743 /* If we have a pending wait status for this thread, there is no 1744 point in resuming the process. But first make sure that 1745 linux_nat_wait won't preemptively handle the event - we 1746 should never take this short-circuit if we are going to 1747 leave LP running, since we have skipped resuming all the 1748 other threads. This bit of code needs to be synchronized 1749 with linux_nat_wait. */ 1750 1751 if (lp->status && WIFSTOPPED (lp->status)) 1752 { 1753 if (!lp->step 1754 && WSTOPSIG (lp->status) 1755 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1756 { 1757 if (debug_linux_nat) 1758 fprintf_unfiltered (gdb_stdlog, 1759 "LLR: Not short circuiting for ignored " 1760 "status 0x%x\n", lp->status); 1761 1762 /* FIXME: What should we do if we are supposed to continue 1763 this thread with a signal? */ 1764 gdb_assert (signo == GDB_SIGNAL_0); 1765 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1766 lp->status = 0; 1767 } 1768 } 1769 1770 if (lp->status || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1771 { 1772 /* FIXME: What should we do if we are supposed to continue 1773 this thread with a signal? */ 1774 gdb_assert (signo == GDB_SIGNAL_0); 1775 1776 if (debug_linux_nat) 1777 fprintf_unfiltered (gdb_stdlog, 1778 "LLR: Short circuiting for status 0x%x\n", 1779 lp->status); 1780 1781 if (target_can_async_p ()) 1782 { 1783 target_async (inferior_event_handler, 0); 1784 /* Tell the event loop we have something to process. */ 1785 async_file_mark (); 1786 } 1787 return; 1788 } 1789 1790 /* Mark LWP as not stopped to prevent it from being continued by 1791 linux_nat_resume_callback. */ 1792 lp->stopped = 0; 1793 1794 if (resume_many) 1795 iterate_over_lwps (ptid, linux_nat_resume_callback, NULL); 1796 1797 /* Convert to something the lower layer understands. */ 1798 ptid = pid_to_ptid (ptid_get_lwp (lp->ptid)); 1799 1800 if (linux_nat_prepare_to_resume != NULL) 1801 linux_nat_prepare_to_resume (lp); 1802 linux_ops->to_resume (linux_ops, ptid, step, signo); 1803 lp->stopped_by_watchpoint = 0; 1804 1805 if (debug_linux_nat) 1806 fprintf_unfiltered (gdb_stdlog, 1807 "LLR: %s %s, %s (resume event thread)\n", 1808 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1809 target_pid_to_str (ptid), 1810 (signo != GDB_SIGNAL_0 1811 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1812 1813 if (target_can_async_p ()) 1814 target_async (inferior_event_handler, 0); 1815 } 1816 1817 /* Send a signal to an LWP. */ 1818 1819 static int 1820 kill_lwp (int lwpid, int signo) 1821 { 1822 /* Use tkill, if possible, in case we are using nptl threads. If tkill 1823 fails, then we are not using nptl threads and we should be using kill. */ 1824 1825 #ifdef HAVE_TKILL_SYSCALL 1826 { 1827 static int tkill_failed; 1828 1829 if (!tkill_failed) 1830 { 1831 int ret; 1832 1833 errno = 0; 1834 ret = syscall (__NR_tkill, lwpid, signo); 1835 if (errno != ENOSYS) 1836 return ret; 1837 tkill_failed = 1; 1838 } 1839 } 1840 #endif 1841 1842 return kill (lwpid, signo); 1843 } 1844 1845 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1846 event, check if the core is interested in it: if not, ignore the 1847 event, and keep waiting; otherwise, we need to toggle the LWP's 1848 syscall entry/exit status, since the ptrace event itself doesn't 1849 indicate it, and report the trap to higher layers. */ 1850 1851 static int 1852 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1853 { 1854 struct target_waitstatus *ourstatus = &lp->waitstatus; 1855 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1856 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, lp->ptid); 1857 1858 if (stopping) 1859 { 1860 /* If we're stopping threads, there's a SIGSTOP pending, which 1861 makes it so that the LWP reports an immediate syscall return, 1862 followed by the SIGSTOP. Skip seeing that "return" using 1863 PTRACE_CONT directly, and let stop_wait_callback collect the 1864 SIGSTOP. Later when the thread is resumed, a new syscall 1865 entry event. If we didn't do this (and returned 0), we'd 1866 leave a syscall entry pending, and our caller, by using 1867 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1868 itself. Later, when the user re-resumes this LWP, we'd see 1869 another syscall entry event and we'd mistake it for a return. 1870 1871 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1872 (leaving immediately with LWP->signalled set, without issuing 1873 a PTRACE_CONT), it would still be problematic to leave this 1874 syscall enter pending, as later when the thread is resumed, 1875 it would then see the same syscall exit mentioned above, 1876 followed by the delayed SIGSTOP, while the syscall didn't 1877 actually get to execute. It seems it would be even more 1878 confusing to the user. */ 1879 1880 if (debug_linux_nat) 1881 fprintf_unfiltered (gdb_stdlog, 1882 "LHST: ignoring syscall %d " 1883 "for LWP %ld (stopping threads), " 1884 "resuming with PTRACE_CONT for SIGSTOP\n", 1885 syscall_number, 1886 ptid_get_lwp (lp->ptid)); 1887 1888 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1889 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 1890 return 1; 1891 } 1892 1893 if (catch_syscall_enabled ()) 1894 { 1895 /* Always update the entry/return state, even if this particular 1896 syscall isn't interesting to the core now. In async mode, 1897 the user could install a new catchpoint for this syscall 1898 between syscall enter/return, and we'll need to know to 1899 report a syscall return if that happens. */ 1900 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1901 ? TARGET_WAITKIND_SYSCALL_RETURN 1902 : TARGET_WAITKIND_SYSCALL_ENTRY); 1903 1904 if (catching_syscall_number (syscall_number)) 1905 { 1906 /* Alright, an event to report. */ 1907 ourstatus->kind = lp->syscall_state; 1908 ourstatus->value.syscall_number = syscall_number; 1909 1910 if (debug_linux_nat) 1911 fprintf_unfiltered (gdb_stdlog, 1912 "LHST: stopping for %s of syscall %d" 1913 " for LWP %ld\n", 1914 lp->syscall_state 1915 == TARGET_WAITKIND_SYSCALL_ENTRY 1916 ? "entry" : "return", 1917 syscall_number, 1918 ptid_get_lwp (lp->ptid)); 1919 return 0; 1920 } 1921 1922 if (debug_linux_nat) 1923 fprintf_unfiltered (gdb_stdlog, 1924 "LHST: ignoring %s of syscall %d " 1925 "for LWP %ld\n", 1926 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1927 ? "entry" : "return", 1928 syscall_number, 1929 ptid_get_lwp (lp->ptid)); 1930 } 1931 else 1932 { 1933 /* If we had been syscall tracing, and hence used PT_SYSCALL 1934 before on this LWP, it could happen that the user removes all 1935 syscall catchpoints before we get to process this event. 1936 There are two noteworthy issues here: 1937 1938 - When stopped at a syscall entry event, resuming with 1939 PT_STEP still resumes executing the syscall and reports a 1940 syscall return. 1941 1942 - Only PT_SYSCALL catches syscall enters. If we last 1943 single-stepped this thread, then this event can't be a 1944 syscall enter. If we last single-stepped this thread, this 1945 has to be a syscall exit. 1946 1947 The points above mean that the next resume, be it PT_STEP or 1948 PT_CONTINUE, can not trigger a syscall trace event. */ 1949 if (debug_linux_nat) 1950 fprintf_unfiltered (gdb_stdlog, 1951 "LHST: caught syscall event " 1952 "with no syscall catchpoints." 1953 " %d for LWP %ld, ignoring\n", 1954 syscall_number, 1955 ptid_get_lwp (lp->ptid)); 1956 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1957 } 1958 1959 /* The core isn't interested in this event. For efficiency, avoid 1960 stopping all threads only to have the core resume them all again. 1961 Since we're not stopping threads, if we're still syscall tracing 1962 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1963 subsequent syscall. Simply resume using the inf-ptrace layer, 1964 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1965 1966 /* Note that gdbarch_get_syscall_number may access registers, hence 1967 fill a regcache. */ 1968 registers_changed (); 1969 if (linux_nat_prepare_to_resume != NULL) 1970 linux_nat_prepare_to_resume (lp); 1971 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)), 1972 lp->step, GDB_SIGNAL_0); 1973 return 1; 1974 } 1975 1976 /* Handle a GNU/Linux extended wait response. If we see a clone 1977 event, we need to add the new LWP to our list (and not report the 1978 trap to higher layers). This function returns non-zero if the 1979 event should be ignored and we should wait again. If STOPPING is 1980 true, the new LWP remains stopped, otherwise it is continued. */ 1981 1982 static int 1983 linux_handle_extended_wait (struct lwp_info *lp, int status, 1984 int stopping) 1985 { 1986 int pid = ptid_get_lwp (lp->ptid); 1987 struct target_waitstatus *ourstatus = &lp->waitstatus; 1988 int event = status >> 16; 1989 1990 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1991 || event == PTRACE_EVENT_CLONE) 1992 { 1993 unsigned long new_pid; 1994 int ret; 1995 1996 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1997 1998 /* If we haven't already seen the new PID stop, wait for it now. */ 1999 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 2000 { 2001 /* The new child has a pending SIGSTOP. We can't affect it until it 2002 hits the SIGSTOP, but we're already attached. */ 2003 ret = my_waitpid (new_pid, &status, 2004 (event == PTRACE_EVENT_CLONE) ? __WCLONE : 0); 2005 if (ret == -1) 2006 perror_with_name (_("waiting for new child")); 2007 else if (ret != new_pid) 2008 internal_error (__FILE__, __LINE__, 2009 _("wait returned unexpected PID %d"), ret); 2010 else if (!WIFSTOPPED (status)) 2011 internal_error (__FILE__, __LINE__, 2012 _("wait returned unexpected status 0x%x"), status); 2013 } 2014 2015 ourstatus->value.related_pid = ptid_build (new_pid, new_pid, 0); 2016 2017 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 2018 { 2019 /* The arch-specific native code may need to know about new 2020 forks even if those end up never mapped to an 2021 inferior. */ 2022 if (linux_nat_new_fork != NULL) 2023 linux_nat_new_fork (lp, new_pid); 2024 } 2025 2026 if (event == PTRACE_EVENT_FORK 2027 && linux_fork_checkpointing_p (ptid_get_pid (lp->ptid))) 2028 { 2029 /* Handle checkpointing by linux-fork.c here as a special 2030 case. We don't want the follow-fork-mode or 'catch fork' 2031 to interfere with this. */ 2032 2033 /* This won't actually modify the breakpoint list, but will 2034 physically remove the breakpoints from the child. */ 2035 detach_breakpoints (ptid_build (new_pid, new_pid, 0)); 2036 2037 /* Retain child fork in ptrace (stopped) state. */ 2038 if (!find_fork_pid (new_pid)) 2039 add_fork (new_pid); 2040 2041 /* Report as spurious, so that infrun doesn't want to follow 2042 this fork. We're actually doing an infcall in 2043 linux-fork.c. */ 2044 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 2045 2046 /* Report the stop to the core. */ 2047 return 0; 2048 } 2049 2050 if (event == PTRACE_EVENT_FORK) 2051 ourstatus->kind = TARGET_WAITKIND_FORKED; 2052 else if (event == PTRACE_EVENT_VFORK) 2053 ourstatus->kind = TARGET_WAITKIND_VFORKED; 2054 else 2055 { 2056 struct lwp_info *new_lp; 2057 2058 ourstatus->kind = TARGET_WAITKIND_IGNORE; 2059 2060 if (debug_linux_nat) 2061 fprintf_unfiltered (gdb_stdlog, 2062 "LHEW: Got clone event " 2063 "from LWP %d, new child is LWP %ld\n", 2064 pid, new_pid); 2065 2066 new_lp = add_lwp (ptid_build (ptid_get_pid (lp->ptid), new_pid, 0)); 2067 new_lp->cloned = 1; 2068 new_lp->stopped = 1; 2069 2070 if (WSTOPSIG (status) != SIGSTOP) 2071 { 2072 /* This can happen if someone starts sending signals to 2073 the new thread before it gets a chance to run, which 2074 have a lower number than SIGSTOP (e.g. SIGUSR1). 2075 This is an unlikely case, and harder to handle for 2076 fork / vfork than for clone, so we do not try - but 2077 we handle it for clone events here. We'll send 2078 the other signal on to the thread below. */ 2079 2080 new_lp->signalled = 1; 2081 } 2082 else 2083 { 2084 struct thread_info *tp; 2085 2086 /* When we stop for an event in some other thread, and 2087 pull the thread list just as this thread has cloned, 2088 we'll have seen the new thread in the thread_db list 2089 before handling the CLONE event (glibc's 2090 pthread_create adds the new thread to the thread list 2091 before clone'ing, and has the kernel fill in the 2092 thread's tid on the clone call with 2093 CLONE_PARENT_SETTID). If that happened, and the core 2094 had requested the new thread to stop, we'll have 2095 killed it with SIGSTOP. But since SIGSTOP is not an 2096 RT signal, it can only be queued once. We need to be 2097 careful to not resume the LWP if we wanted it to 2098 stop. In that case, we'll leave the SIGSTOP pending. 2099 It will later be reported as GDB_SIGNAL_0. */ 2100 tp = find_thread_ptid (new_lp->ptid); 2101 if (tp != NULL && tp->stop_requested) 2102 new_lp->last_resume_kind = resume_stop; 2103 else 2104 status = 0; 2105 } 2106 2107 if (non_stop) 2108 { 2109 /* Add the new thread to GDB's lists as soon as possible 2110 so that: 2111 2112 1) the frontend doesn't have to wait for a stop to 2113 display them, and, 2114 2115 2) we tag it with the correct running state. */ 2116 2117 /* If the thread_db layer is active, let it know about 2118 this new thread, and add it to GDB's list. */ 2119 if (!thread_db_attach_lwp (new_lp->ptid)) 2120 { 2121 /* We're not using thread_db. Add it to GDB's 2122 list. */ 2123 target_post_attach (ptid_get_lwp (new_lp->ptid)); 2124 add_thread (new_lp->ptid); 2125 } 2126 2127 if (!stopping) 2128 { 2129 set_running (new_lp->ptid, 1); 2130 set_executing (new_lp->ptid, 1); 2131 /* thread_db_attach_lwp -> lin_lwp_attach_lwp forced 2132 resume_stop. */ 2133 new_lp->last_resume_kind = resume_continue; 2134 } 2135 } 2136 2137 if (status != 0) 2138 { 2139 /* We created NEW_LP so it cannot yet contain STATUS. */ 2140 gdb_assert (new_lp->status == 0); 2141 2142 /* Save the wait status to report later. */ 2143 if (debug_linux_nat) 2144 fprintf_unfiltered (gdb_stdlog, 2145 "LHEW: waitpid of new LWP %ld, " 2146 "saving status %s\n", 2147 (long) ptid_get_lwp (new_lp->ptid), 2148 status_to_str (status)); 2149 new_lp->status = status; 2150 } 2151 2152 /* Note the need to use the low target ops to resume, to 2153 handle resuming with PT_SYSCALL if we have syscall 2154 catchpoints. */ 2155 if (!stopping) 2156 { 2157 new_lp->resumed = 1; 2158 2159 if (status == 0) 2160 { 2161 gdb_assert (new_lp->last_resume_kind == resume_continue); 2162 if (debug_linux_nat) 2163 fprintf_unfiltered (gdb_stdlog, 2164 "LHEW: resuming new LWP %ld\n", 2165 ptid_get_lwp (new_lp->ptid)); 2166 if (linux_nat_prepare_to_resume != NULL) 2167 linux_nat_prepare_to_resume (new_lp); 2168 linux_ops->to_resume (linux_ops, pid_to_ptid (new_pid), 2169 0, GDB_SIGNAL_0); 2170 new_lp->stopped = 0; 2171 } 2172 } 2173 2174 if (debug_linux_nat) 2175 fprintf_unfiltered (gdb_stdlog, 2176 "LHEW: resuming parent LWP %d\n", pid); 2177 if (linux_nat_prepare_to_resume != NULL) 2178 linux_nat_prepare_to_resume (lp); 2179 linux_ops->to_resume (linux_ops, 2180 pid_to_ptid (ptid_get_lwp (lp->ptid)), 2181 0, GDB_SIGNAL_0); 2182 2183 return 1; 2184 } 2185 2186 return 0; 2187 } 2188 2189 if (event == PTRACE_EVENT_EXEC) 2190 { 2191 if (debug_linux_nat) 2192 fprintf_unfiltered (gdb_stdlog, 2193 "LHEW: Got exec event from LWP %ld\n", 2194 ptid_get_lwp (lp->ptid)); 2195 2196 ourstatus->kind = TARGET_WAITKIND_EXECD; 2197 ourstatus->value.execd_pathname 2198 = xstrdup (linux_child_pid_to_exec_file (pid)); 2199 2200 return 0; 2201 } 2202 2203 if (event == PTRACE_EVENT_VFORK_DONE) 2204 { 2205 if (current_inferior ()->waiting_for_vfork_done) 2206 { 2207 if (debug_linux_nat) 2208 fprintf_unfiltered (gdb_stdlog, 2209 "LHEW: Got expected PTRACE_EVENT_" 2210 "VFORK_DONE from LWP %ld: stopping\n", 2211 ptid_get_lwp (lp->ptid)); 2212 2213 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2214 return 0; 2215 } 2216 2217 if (debug_linux_nat) 2218 fprintf_unfiltered (gdb_stdlog, 2219 "LHEW: Got PTRACE_EVENT_VFORK_DONE " 2220 "from LWP %ld: resuming\n", 2221 ptid_get_lwp (lp->ptid)); 2222 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 2223 return 1; 2224 } 2225 2226 internal_error (__FILE__, __LINE__, 2227 _("unknown ptrace event %d"), event); 2228 } 2229 2230 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2231 exited. */ 2232 2233 static int 2234 wait_lwp (struct lwp_info *lp) 2235 { 2236 pid_t pid; 2237 int status = 0; 2238 int thread_dead = 0; 2239 sigset_t prev_mask; 2240 2241 gdb_assert (!lp->stopped); 2242 gdb_assert (lp->status == 0); 2243 2244 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2245 block_child_signals (&prev_mask); 2246 2247 for (;;) 2248 { 2249 /* If my_waitpid returns 0 it means the __WCLONE vs. non-__WCLONE kind 2250 was right and we should just call sigsuspend. */ 2251 2252 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, WNOHANG); 2253 if (pid == -1 && errno == ECHILD) 2254 pid = my_waitpid (ptid_get_lwp (lp->ptid), &status, __WCLONE | WNOHANG); 2255 if (pid == -1 && errno == ECHILD) 2256 { 2257 /* The thread has previously exited. We need to delete it 2258 now because, for some vendor 2.4 kernels with NPTL 2259 support backported, there won't be an exit event unless 2260 it is the main thread. 2.6 kernels will report an exit 2261 event for each thread that exits, as expected. */ 2262 thread_dead = 1; 2263 if (debug_linux_nat) 2264 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", 2265 target_pid_to_str (lp->ptid)); 2266 } 2267 if (pid != 0) 2268 break; 2269 2270 /* Bugs 10970, 12702. 2271 Thread group leader may have exited in which case we'll lock up in 2272 waitpid if there are other threads, even if they are all zombies too. 2273 Basically, we're not supposed to use waitpid this way. 2274 __WCLONE is not applicable for the leader so we can't use that. 2275 LINUX_NAT_THREAD_ALIVE cannot be used here as it requires a STOPPED 2276 process; it gets ESRCH both for the zombie and for running processes. 2277 2278 As a workaround, check if we're waiting for the thread group leader and 2279 if it's a zombie, and avoid calling waitpid if it is. 2280 2281 This is racy, what if the tgl becomes a zombie right after we check? 2282 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2283 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2284 2285 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid) 2286 && linux_proc_pid_is_zombie (ptid_get_lwp (lp->ptid))) 2287 { 2288 thread_dead = 1; 2289 if (debug_linux_nat) 2290 fprintf_unfiltered (gdb_stdlog, 2291 "WL: Thread group leader %s vanished.\n", 2292 target_pid_to_str (lp->ptid)); 2293 break; 2294 } 2295 2296 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2297 get invoked despite our caller had them intentionally blocked by 2298 block_child_signals. This is sensitive only to the loop of 2299 linux_nat_wait_1 and there if we get called my_waitpid gets called 2300 again before it gets to sigsuspend so we can safely let the handlers 2301 get executed here. */ 2302 2303 sigsuspend (&suspend_mask); 2304 } 2305 2306 restore_child_signals_mask (&prev_mask); 2307 2308 if (!thread_dead) 2309 { 2310 gdb_assert (pid == ptid_get_lwp (lp->ptid)); 2311 2312 if (debug_linux_nat) 2313 { 2314 fprintf_unfiltered (gdb_stdlog, 2315 "WL: waitpid %s received %s\n", 2316 target_pid_to_str (lp->ptid), 2317 status_to_str (status)); 2318 } 2319 2320 /* Check if the thread has exited. */ 2321 if (WIFEXITED (status) || WIFSIGNALED (status)) 2322 { 2323 thread_dead = 1; 2324 if (debug_linux_nat) 2325 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", 2326 target_pid_to_str (lp->ptid)); 2327 } 2328 } 2329 2330 if (thread_dead) 2331 { 2332 exit_lwp (lp); 2333 return 0; 2334 } 2335 2336 gdb_assert (WIFSTOPPED (status)); 2337 2338 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2339 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2340 { 2341 /* No longer need the sysgood bit. The ptrace event ends up 2342 recorded in lp->waitstatus if we care for it. We can carry 2343 on handling the event like a regular SIGTRAP from here 2344 on. */ 2345 status = W_STOPCODE (SIGTRAP); 2346 if (linux_handle_syscall_trap (lp, 1)) 2347 return wait_lwp (lp); 2348 } 2349 2350 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2351 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0) 2352 { 2353 if (debug_linux_nat) 2354 fprintf_unfiltered (gdb_stdlog, 2355 "WL: Handling extended status 0x%06x\n", 2356 status); 2357 if (linux_handle_extended_wait (lp, status, 1)) 2358 return wait_lwp (lp); 2359 } 2360 2361 return status; 2362 } 2363 2364 /* Send a SIGSTOP to LP. */ 2365 2366 static int 2367 stop_callback (struct lwp_info *lp, void *data) 2368 { 2369 if (!lp->stopped && !lp->signalled) 2370 { 2371 int ret; 2372 2373 if (debug_linux_nat) 2374 { 2375 fprintf_unfiltered (gdb_stdlog, 2376 "SC: kill %s **<SIGSTOP>**\n", 2377 target_pid_to_str (lp->ptid)); 2378 } 2379 errno = 0; 2380 ret = kill_lwp (ptid_get_lwp (lp->ptid), SIGSTOP); 2381 if (debug_linux_nat) 2382 { 2383 fprintf_unfiltered (gdb_stdlog, 2384 "SC: lwp kill %d %s\n", 2385 ret, 2386 errno ? safe_strerror (errno) : "ERRNO-OK"); 2387 } 2388 2389 lp->signalled = 1; 2390 gdb_assert (lp->status == 0); 2391 } 2392 2393 return 0; 2394 } 2395 2396 /* Request a stop on LWP. */ 2397 2398 void 2399 linux_stop_lwp (struct lwp_info *lwp) 2400 { 2401 stop_callback (lwp, NULL); 2402 } 2403 2404 /* Return non-zero if LWP PID has a pending SIGINT. */ 2405 2406 static int 2407 linux_nat_has_pending_sigint (int pid) 2408 { 2409 sigset_t pending, blocked, ignored; 2410 2411 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2412 2413 if (sigismember (&pending, SIGINT) 2414 && !sigismember (&ignored, SIGINT)) 2415 return 1; 2416 2417 return 0; 2418 } 2419 2420 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2421 2422 static int 2423 set_ignore_sigint (struct lwp_info *lp, void *data) 2424 { 2425 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2426 flag to consume the next one. */ 2427 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2428 && WSTOPSIG (lp->status) == SIGINT) 2429 lp->status = 0; 2430 else 2431 lp->ignore_sigint = 1; 2432 2433 return 0; 2434 } 2435 2436 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2437 This function is called after we know the LWP has stopped; if the LWP 2438 stopped before the expected SIGINT was delivered, then it will never have 2439 arrived. Also, if the signal was delivered to a shared queue and consumed 2440 by a different thread, it will never be delivered to this LWP. */ 2441 2442 static void 2443 maybe_clear_ignore_sigint (struct lwp_info *lp) 2444 { 2445 if (!lp->ignore_sigint) 2446 return; 2447 2448 if (!linux_nat_has_pending_sigint (ptid_get_lwp (lp->ptid))) 2449 { 2450 if (debug_linux_nat) 2451 fprintf_unfiltered (gdb_stdlog, 2452 "MCIS: Clearing bogus flag for %s\n", 2453 target_pid_to_str (lp->ptid)); 2454 lp->ignore_sigint = 0; 2455 } 2456 } 2457 2458 /* Fetch the possible triggered data watchpoint info and store it in 2459 LP. 2460 2461 On some archs, like x86, that use debug registers to set 2462 watchpoints, it's possible that the way to know which watched 2463 address trapped, is to check the register that is used to select 2464 which address to watch. Problem is, between setting the watchpoint 2465 and reading back which data address trapped, the user may change 2466 the set of watchpoints, and, as a consequence, GDB changes the 2467 debug registers in the inferior. To avoid reading back a stale 2468 stopped-data-address when that happens, we cache in LP the fact 2469 that a watchpoint trapped, and the corresponding data address, as 2470 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2471 registers meanwhile, we have the cached data we can rely on. */ 2472 2473 static void 2474 save_sigtrap (struct lwp_info *lp) 2475 { 2476 struct cleanup *old_chain; 2477 2478 if (linux_ops->to_stopped_by_watchpoint == NULL) 2479 { 2480 lp->stopped_by_watchpoint = 0; 2481 return; 2482 } 2483 2484 old_chain = save_inferior_ptid (); 2485 inferior_ptid = lp->ptid; 2486 2487 lp->stopped_by_watchpoint = linux_ops->to_stopped_by_watchpoint (); 2488 2489 if (lp->stopped_by_watchpoint) 2490 { 2491 if (linux_ops->to_stopped_data_address != NULL) 2492 lp->stopped_data_address_p = 2493 linux_ops->to_stopped_data_address (¤t_target, 2494 &lp->stopped_data_address); 2495 else 2496 lp->stopped_data_address_p = 0; 2497 } 2498 2499 do_cleanups (old_chain); 2500 } 2501 2502 /* See save_sigtrap. */ 2503 2504 static int 2505 linux_nat_stopped_by_watchpoint (void) 2506 { 2507 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2508 2509 gdb_assert (lp != NULL); 2510 2511 return lp->stopped_by_watchpoint; 2512 } 2513 2514 static int 2515 linux_nat_stopped_data_address (struct target_ops *ops, CORE_ADDR *addr_p) 2516 { 2517 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2518 2519 gdb_assert (lp != NULL); 2520 2521 *addr_p = lp->stopped_data_address; 2522 2523 return lp->stopped_data_address_p; 2524 } 2525 2526 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2527 2528 static int 2529 sigtrap_is_event (int status) 2530 { 2531 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2532 } 2533 2534 /* SIGTRAP-like events recognizer. */ 2535 2536 static int (*linux_nat_status_is_event) (int status) = sigtrap_is_event; 2537 2538 /* Check for SIGTRAP-like events in LP. */ 2539 2540 static int 2541 linux_nat_lp_status_is_event (struct lwp_info *lp) 2542 { 2543 /* We check for lp->waitstatus in addition to lp->status, because we can 2544 have pending process exits recorded in lp->status 2545 and W_EXITCODE(0,0) == 0. We should probably have an additional 2546 lp->status_p flag. */ 2547 2548 return (lp->waitstatus.kind == TARGET_WAITKIND_IGNORE 2549 && linux_nat_status_is_event (lp->status)); 2550 } 2551 2552 /* Set alternative SIGTRAP-like events recognizer. If 2553 breakpoint_inserted_here_p there then gdbarch_decr_pc_after_break will be 2554 applied. */ 2555 2556 void 2557 linux_nat_set_status_is_event (struct target_ops *t, 2558 int (*status_is_event) (int status)) 2559 { 2560 linux_nat_status_is_event = status_is_event; 2561 } 2562 2563 /* Wait until LP is stopped. */ 2564 2565 static int 2566 stop_wait_callback (struct lwp_info *lp, void *data) 2567 { 2568 struct inferior *inf = find_inferior_pid (ptid_get_pid (lp->ptid)); 2569 2570 /* If this is a vfork parent, bail out, it is not going to report 2571 any SIGSTOP until the vfork is done with. */ 2572 if (inf->vfork_child != NULL) 2573 return 0; 2574 2575 if (!lp->stopped) 2576 { 2577 int status; 2578 2579 status = wait_lwp (lp); 2580 if (status == 0) 2581 return 0; 2582 2583 if (lp->ignore_sigint && WIFSTOPPED (status) 2584 && WSTOPSIG (status) == SIGINT) 2585 { 2586 lp->ignore_sigint = 0; 2587 2588 errno = 0; 2589 ptrace (PTRACE_CONT, ptid_get_lwp (lp->ptid), 0, 0); 2590 if (debug_linux_nat) 2591 fprintf_unfiltered (gdb_stdlog, 2592 "PTRACE_CONT %s, 0, 0 (%s) " 2593 "(discarding SIGINT)\n", 2594 target_pid_to_str (lp->ptid), 2595 errno ? safe_strerror (errno) : "OK"); 2596 2597 return stop_wait_callback (lp, NULL); 2598 } 2599 2600 maybe_clear_ignore_sigint (lp); 2601 2602 if (WSTOPSIG (status) != SIGSTOP) 2603 { 2604 /* The thread was stopped with a signal other than SIGSTOP. */ 2605 2606 save_sigtrap (lp); 2607 2608 if (debug_linux_nat) 2609 fprintf_unfiltered (gdb_stdlog, 2610 "SWC: Pending event %s in %s\n", 2611 status_to_str ((int) status), 2612 target_pid_to_str (lp->ptid)); 2613 2614 /* Save the sigtrap event. */ 2615 lp->status = status; 2616 gdb_assert (!lp->stopped); 2617 gdb_assert (lp->signalled); 2618 lp->stopped = 1; 2619 } 2620 else 2621 { 2622 /* We caught the SIGSTOP that we intended to catch, so 2623 there's no SIGSTOP pending. */ 2624 2625 if (debug_linux_nat) 2626 fprintf_unfiltered (gdb_stdlog, 2627 "SWC: Delayed SIGSTOP caught for %s.\n", 2628 target_pid_to_str (lp->ptid)); 2629 2630 lp->stopped = 1; 2631 2632 /* Reset SIGNALLED only after the stop_wait_callback call 2633 above as it does gdb_assert on SIGNALLED. */ 2634 lp->signalled = 0; 2635 } 2636 } 2637 2638 return 0; 2639 } 2640 2641 /* Return non-zero if LP has a wait status pending. */ 2642 2643 static int 2644 status_callback (struct lwp_info *lp, void *data) 2645 { 2646 /* Only report a pending wait status if we pretend that this has 2647 indeed been resumed. */ 2648 if (!lp->resumed) 2649 return 0; 2650 2651 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 2652 { 2653 /* A ptrace event, like PTRACE_FORK|VFORK|EXEC, syscall event, 2654 or a pending process exit. Note that `W_EXITCODE(0,0) == 2655 0', so a clean process exit can not be stored pending in 2656 lp->status, it is indistinguishable from 2657 no-pending-status. */ 2658 return 1; 2659 } 2660 2661 if (lp->status != 0) 2662 return 1; 2663 2664 return 0; 2665 } 2666 2667 /* Return non-zero if LP isn't stopped. */ 2668 2669 static int 2670 running_callback (struct lwp_info *lp, void *data) 2671 { 2672 return (!lp->stopped 2673 || ((lp->status != 0 2674 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 2675 && lp->resumed)); 2676 } 2677 2678 /* Count the LWP's that have had events. */ 2679 2680 static int 2681 count_events_callback (struct lwp_info *lp, void *data) 2682 { 2683 int *count = data; 2684 2685 gdb_assert (count != NULL); 2686 2687 /* Count only resumed LWPs that have a SIGTRAP event pending. */ 2688 if (lp->resumed && linux_nat_lp_status_is_event (lp)) 2689 (*count)++; 2690 2691 return 0; 2692 } 2693 2694 /* Select the LWP (if any) that is currently being single-stepped. */ 2695 2696 static int 2697 select_singlestep_lwp_callback (struct lwp_info *lp, void *data) 2698 { 2699 if (lp->last_resume_kind == resume_step 2700 && lp->status != 0) 2701 return 1; 2702 else 2703 return 0; 2704 } 2705 2706 /* Select the Nth LWP that has had a SIGTRAP event. */ 2707 2708 static int 2709 select_event_lwp_callback (struct lwp_info *lp, void *data) 2710 { 2711 int *selector = data; 2712 2713 gdb_assert (selector != NULL); 2714 2715 /* Select only resumed LWPs that have a SIGTRAP event pending. */ 2716 if (lp->resumed && linux_nat_lp_status_is_event (lp)) 2717 if ((*selector)-- == 0) 2718 return 1; 2719 2720 return 0; 2721 } 2722 2723 static int 2724 cancel_breakpoint (struct lwp_info *lp) 2725 { 2726 /* Arrange for a breakpoint to be hit again later. We don't keep 2727 the SIGTRAP status and don't forward the SIGTRAP signal to the 2728 LWP. We will handle the current event, eventually we will resume 2729 this LWP, and this breakpoint will trap again. 2730 2731 If we do not do this, then we run the risk that the user will 2732 delete or disable the breakpoint, but the LWP will have already 2733 tripped on it. */ 2734 2735 struct regcache *regcache = get_thread_regcache (lp->ptid); 2736 struct gdbarch *gdbarch = get_regcache_arch (regcache); 2737 CORE_ADDR pc; 2738 2739 pc = regcache_read_pc (regcache) - gdbarch_decr_pc_after_break (gdbarch); 2740 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 2741 { 2742 if (debug_linux_nat) 2743 fprintf_unfiltered (gdb_stdlog, 2744 "CB: Push back breakpoint for %s\n", 2745 target_pid_to_str (lp->ptid)); 2746 2747 /* Back up the PC if necessary. */ 2748 if (gdbarch_decr_pc_after_break (gdbarch)) 2749 regcache_write_pc (regcache, pc); 2750 2751 return 1; 2752 } 2753 return 0; 2754 } 2755 2756 static int 2757 cancel_breakpoints_callback (struct lwp_info *lp, void *data) 2758 { 2759 struct lwp_info *event_lp = data; 2760 2761 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */ 2762 if (lp == event_lp) 2763 return 0; 2764 2765 /* If a LWP other than the LWP that we're reporting an event for has 2766 hit a GDB breakpoint (as opposed to some random trap signal), 2767 then just arrange for it to hit it again later. We don't keep 2768 the SIGTRAP status and don't forward the SIGTRAP signal to the 2769 LWP. We will handle the current event, eventually we will resume 2770 all LWPs, and this one will get its breakpoint trap again. 2771 2772 If we do not do this, then we run the risk that the user will 2773 delete or disable the breakpoint, but the LWP will have already 2774 tripped on it. */ 2775 2776 if (linux_nat_lp_status_is_event (lp) 2777 && cancel_breakpoint (lp)) 2778 /* Throw away the SIGTRAP. */ 2779 lp->status = 0; 2780 2781 return 0; 2782 } 2783 2784 /* Select one LWP out of those that have events pending. */ 2785 2786 static void 2787 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2788 { 2789 int num_events = 0; 2790 int random_selector; 2791 struct lwp_info *event_lp; 2792 2793 /* Record the wait status for the original LWP. */ 2794 (*orig_lp)->status = *status; 2795 2796 /* Give preference to any LWP that is being single-stepped. */ 2797 event_lp = iterate_over_lwps (filter, 2798 select_singlestep_lwp_callback, NULL); 2799 if (event_lp != NULL) 2800 { 2801 if (debug_linux_nat) 2802 fprintf_unfiltered (gdb_stdlog, 2803 "SEL: Select single-step %s\n", 2804 target_pid_to_str (event_lp->ptid)); 2805 } 2806 else 2807 { 2808 /* No single-stepping LWP. Select one at random, out of those 2809 which have had SIGTRAP events. */ 2810 2811 /* First see how many SIGTRAP events we have. */ 2812 iterate_over_lwps (filter, count_events_callback, &num_events); 2813 2814 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */ 2815 random_selector = (int) 2816 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2817 2818 if (debug_linux_nat && num_events > 1) 2819 fprintf_unfiltered (gdb_stdlog, 2820 "SEL: Found %d SIGTRAP events, selecting #%d\n", 2821 num_events, random_selector); 2822 2823 event_lp = iterate_over_lwps (filter, 2824 select_event_lwp_callback, 2825 &random_selector); 2826 } 2827 2828 if (event_lp != NULL) 2829 { 2830 /* Switch the event LWP. */ 2831 *orig_lp = event_lp; 2832 *status = event_lp->status; 2833 } 2834 2835 /* Flush the wait status for the event LWP. */ 2836 (*orig_lp)->status = 0; 2837 } 2838 2839 /* Return non-zero if LP has been resumed. */ 2840 2841 static int 2842 resumed_callback (struct lwp_info *lp, void *data) 2843 { 2844 return lp->resumed; 2845 } 2846 2847 /* Stop an active thread, verify it still exists, then resume it. If 2848 the thread ends up with a pending status, then it is not resumed, 2849 and *DATA (really a pointer to int), is set. */ 2850 2851 static int 2852 stop_and_resume_callback (struct lwp_info *lp, void *data) 2853 { 2854 int *new_pending_p = data; 2855 2856 if (!lp->stopped) 2857 { 2858 ptid_t ptid = lp->ptid; 2859 2860 stop_callback (lp, NULL); 2861 stop_wait_callback (lp, NULL); 2862 2863 /* Resume if the lwp still exists, and the core wanted it 2864 running. */ 2865 lp = find_lwp_pid (ptid); 2866 if (lp != NULL) 2867 { 2868 if (lp->last_resume_kind == resume_stop 2869 && lp->status == 0) 2870 { 2871 /* The core wanted the LWP to stop. Even if it stopped 2872 cleanly (with SIGSTOP), leave the event pending. */ 2873 if (debug_linux_nat) 2874 fprintf_unfiltered (gdb_stdlog, 2875 "SARC: core wanted LWP %ld stopped " 2876 "(leaving SIGSTOP pending)\n", 2877 ptid_get_lwp (lp->ptid)); 2878 lp->status = W_STOPCODE (SIGSTOP); 2879 } 2880 2881 if (lp->status == 0) 2882 { 2883 if (debug_linux_nat) 2884 fprintf_unfiltered (gdb_stdlog, 2885 "SARC: re-resuming LWP %ld\n", 2886 ptid_get_lwp (lp->ptid)); 2887 resume_lwp (lp, lp->step, GDB_SIGNAL_0); 2888 } 2889 else 2890 { 2891 if (debug_linux_nat) 2892 fprintf_unfiltered (gdb_stdlog, 2893 "SARC: not re-resuming LWP %ld " 2894 "(has pending)\n", 2895 ptid_get_lwp (lp->ptid)); 2896 if (new_pending_p) 2897 *new_pending_p = 1; 2898 } 2899 } 2900 } 2901 return 0; 2902 } 2903 2904 /* Check if we should go on and pass this event to common code. 2905 Return the affected lwp if we are, or NULL otherwise. If we stop 2906 all lwps temporarily, we may end up with new pending events in some 2907 other lwp. In that case set *NEW_PENDING_P to true. */ 2908 2909 static struct lwp_info * 2910 linux_nat_filter_event (int lwpid, int status, int *new_pending_p) 2911 { 2912 struct lwp_info *lp; 2913 2914 *new_pending_p = 0; 2915 2916 lp = find_lwp_pid (pid_to_ptid (lwpid)); 2917 2918 /* Check for stop events reported by a process we didn't already 2919 know about - anything not already in our LWP list. 2920 2921 If we're expecting to receive stopped processes after 2922 fork, vfork, and clone events, then we'll just add the 2923 new one to our list and go back to waiting for the event 2924 to be reported - the stopped process might be returned 2925 from waitpid before or after the event is. 2926 2927 But note the case of a non-leader thread exec'ing after the 2928 leader having exited, and gone from our lists. The non-leader 2929 thread changes its tid to the tgid. */ 2930 2931 if (WIFSTOPPED (status) && lp == NULL 2932 && (WSTOPSIG (status) == SIGTRAP && status >> 16 == PTRACE_EVENT_EXEC)) 2933 { 2934 /* A multi-thread exec after we had seen the leader exiting. */ 2935 if (debug_linux_nat) 2936 fprintf_unfiltered (gdb_stdlog, 2937 "LLW: Re-adding thread group leader LWP %d.\n", 2938 lwpid); 2939 2940 lp = add_lwp (ptid_build (lwpid, lwpid, 0)); 2941 lp->stopped = 1; 2942 lp->resumed = 1; 2943 add_thread (lp->ptid); 2944 } 2945 2946 if (WIFSTOPPED (status) && !lp) 2947 { 2948 add_to_pid_list (&stopped_pids, lwpid, status); 2949 return NULL; 2950 } 2951 2952 /* Make sure we don't report an event for the exit of an LWP not in 2953 our list, i.e. not part of the current process. This can happen 2954 if we detach from a program we originally forked and then it 2955 exits. */ 2956 if (!WIFSTOPPED (status) && !lp) 2957 return NULL; 2958 2959 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2960 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2961 { 2962 /* No longer need the sysgood bit. The ptrace event ends up 2963 recorded in lp->waitstatus if we care for it. We can carry 2964 on handling the event like a regular SIGTRAP from here 2965 on. */ 2966 status = W_STOPCODE (SIGTRAP); 2967 if (linux_handle_syscall_trap (lp, 0)) 2968 return NULL; 2969 } 2970 2971 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2972 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP && status >> 16 != 0) 2973 { 2974 if (debug_linux_nat) 2975 fprintf_unfiltered (gdb_stdlog, 2976 "LLW: Handling extended status 0x%06x\n", 2977 status); 2978 if (linux_handle_extended_wait (lp, status, 0)) 2979 return NULL; 2980 } 2981 2982 if (linux_nat_status_is_event (status)) 2983 save_sigtrap (lp); 2984 2985 /* Check if the thread has exited. */ 2986 if ((WIFEXITED (status) || WIFSIGNALED (status)) 2987 && num_lwps (ptid_get_pid (lp->ptid)) > 1) 2988 { 2989 /* If this is the main thread, we must stop all threads and verify 2990 if they are still alive. This is because in the nptl thread model 2991 on Linux 2.4, there is no signal issued for exiting LWPs 2992 other than the main thread. We only get the main thread exit 2993 signal once all child threads have already exited. If we 2994 stop all the threads and use the stop_wait_callback to check 2995 if they have exited we can determine whether this signal 2996 should be ignored or whether it means the end of the debugged 2997 application, regardless of which threading model is being 2998 used. */ 2999 if (ptid_get_pid (lp->ptid) == ptid_get_lwp (lp->ptid)) 3000 { 3001 lp->stopped = 1; 3002 iterate_over_lwps (pid_to_ptid (ptid_get_pid (lp->ptid)), 3003 stop_and_resume_callback, new_pending_p); 3004 } 3005 3006 if (debug_linux_nat) 3007 fprintf_unfiltered (gdb_stdlog, 3008 "LLW: %s exited.\n", 3009 target_pid_to_str (lp->ptid)); 3010 3011 if (num_lwps (ptid_get_pid (lp->ptid)) > 1) 3012 { 3013 /* If there is at least one more LWP, then the exit signal 3014 was not the end of the debugged application and should be 3015 ignored. */ 3016 exit_lwp (lp); 3017 return NULL; 3018 } 3019 } 3020 3021 /* Check if the current LWP has previously exited. In the nptl 3022 thread model, LWPs other than the main thread do not issue 3023 signals when they exit so we must check whenever the thread has 3024 stopped. A similar check is made in stop_wait_callback(). */ 3025 if (num_lwps (ptid_get_pid (lp->ptid)) > 1 && !linux_thread_alive (lp->ptid)) 3026 { 3027 ptid_t ptid = pid_to_ptid (ptid_get_pid (lp->ptid)); 3028 3029 if (debug_linux_nat) 3030 fprintf_unfiltered (gdb_stdlog, 3031 "LLW: %s exited.\n", 3032 target_pid_to_str (lp->ptid)); 3033 3034 exit_lwp (lp); 3035 3036 /* Make sure there is at least one thread running. */ 3037 gdb_assert (iterate_over_lwps (ptid, running_callback, NULL)); 3038 3039 /* Discard the event. */ 3040 return NULL; 3041 } 3042 3043 /* Make sure we don't report a SIGSTOP that we sent ourselves in 3044 an attempt to stop an LWP. */ 3045 if (lp->signalled 3046 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 3047 { 3048 if (debug_linux_nat) 3049 fprintf_unfiltered (gdb_stdlog, 3050 "LLW: Delayed SIGSTOP caught for %s.\n", 3051 target_pid_to_str (lp->ptid)); 3052 3053 lp->signalled = 0; 3054 3055 if (lp->last_resume_kind != resume_stop) 3056 { 3057 /* This is a delayed SIGSTOP. */ 3058 3059 registers_changed (); 3060 3061 if (linux_nat_prepare_to_resume != NULL) 3062 linux_nat_prepare_to_resume (lp); 3063 linux_ops->to_resume (linux_ops, 3064 pid_to_ptid (ptid_get_lwp (lp->ptid)), 3065 lp->step, GDB_SIGNAL_0); 3066 if (debug_linux_nat) 3067 fprintf_unfiltered (gdb_stdlog, 3068 "LLW: %s %s, 0, 0 (discard SIGSTOP)\n", 3069 lp->step ? 3070 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3071 target_pid_to_str (lp->ptid)); 3072 3073 lp->stopped = 0; 3074 gdb_assert (lp->resumed); 3075 3076 /* Discard the event. */ 3077 return NULL; 3078 } 3079 } 3080 3081 /* Make sure we don't report a SIGINT that we have already displayed 3082 for another thread. */ 3083 if (lp->ignore_sigint 3084 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 3085 { 3086 if (debug_linux_nat) 3087 fprintf_unfiltered (gdb_stdlog, 3088 "LLW: Delayed SIGINT caught for %s.\n", 3089 target_pid_to_str (lp->ptid)); 3090 3091 /* This is a delayed SIGINT. */ 3092 lp->ignore_sigint = 0; 3093 3094 registers_changed (); 3095 if (linux_nat_prepare_to_resume != NULL) 3096 linux_nat_prepare_to_resume (lp); 3097 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)), 3098 lp->step, GDB_SIGNAL_0); 3099 if (debug_linux_nat) 3100 fprintf_unfiltered (gdb_stdlog, 3101 "LLW: %s %s, 0, 0 (discard SIGINT)\n", 3102 lp->step ? 3103 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3104 target_pid_to_str (lp->ptid)); 3105 3106 lp->stopped = 0; 3107 gdb_assert (lp->resumed); 3108 3109 /* Discard the event. */ 3110 return NULL; 3111 } 3112 3113 /* An interesting event. */ 3114 gdb_assert (lp); 3115 lp->status = status; 3116 return lp; 3117 } 3118 3119 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3120 their exits until all other threads in the group have exited. */ 3121 3122 static void 3123 check_zombie_leaders (void) 3124 { 3125 struct inferior *inf; 3126 3127 ALL_INFERIORS (inf) 3128 { 3129 struct lwp_info *leader_lp; 3130 3131 if (inf->pid == 0) 3132 continue; 3133 3134 leader_lp = find_lwp_pid (pid_to_ptid (inf->pid)); 3135 if (leader_lp != NULL 3136 /* Check if there are other threads in the group, as we may 3137 have raced with the inferior simply exiting. */ 3138 && num_lwps (inf->pid) > 1 3139 && linux_proc_pid_is_zombie (inf->pid)) 3140 { 3141 if (debug_linux_nat) 3142 fprintf_unfiltered (gdb_stdlog, 3143 "CZL: Thread group leader %d zombie " 3144 "(it exited, or another thread execd).\n", 3145 inf->pid); 3146 3147 /* A leader zombie can mean one of two things: 3148 3149 - It exited, and there's an exit status pending 3150 available, or only the leader exited (not the whole 3151 program). In the latter case, we can't waitpid the 3152 leader's exit status until all other threads are gone. 3153 3154 - There are 3 or more threads in the group, and a thread 3155 other than the leader exec'd. On an exec, the Linux 3156 kernel destroys all other threads (except the execing 3157 one) in the thread group, and resets the execing thread's 3158 tid to the tgid. No exit notification is sent for the 3159 execing thread -- from the ptracer's perspective, it 3160 appears as though the execing thread just vanishes. 3161 Until we reap all other threads except the leader and the 3162 execing thread, the leader will be zombie, and the 3163 execing thread will be in `D (disc sleep)'. As soon as 3164 all other threads are reaped, the execing thread changes 3165 it's tid to the tgid, and the previous (zombie) leader 3166 vanishes, giving place to the "new" leader. We could try 3167 distinguishing the exit and exec cases, by waiting once 3168 more, and seeing if something comes out, but it doesn't 3169 sound useful. The previous leader _does_ go away, and 3170 we'll re-add the new one once we see the exec event 3171 (which is just the same as what would happen if the 3172 previous leader did exit voluntarily before some other 3173 thread execs). */ 3174 3175 if (debug_linux_nat) 3176 fprintf_unfiltered (gdb_stdlog, 3177 "CZL: Thread group leader %d vanished.\n", 3178 inf->pid); 3179 exit_lwp (leader_lp); 3180 } 3181 } 3182 } 3183 3184 static ptid_t 3185 linux_nat_wait_1 (struct target_ops *ops, 3186 ptid_t ptid, struct target_waitstatus *ourstatus, 3187 int target_options) 3188 { 3189 static sigset_t prev_mask; 3190 enum resume_kind last_resume_kind; 3191 struct lwp_info *lp; 3192 int status; 3193 3194 if (debug_linux_nat) 3195 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); 3196 3197 /* The first time we get here after starting a new inferior, we may 3198 not have added it to the LWP list yet - this is the earliest 3199 moment at which we know its PID. */ 3200 if (ptid_is_pid (inferior_ptid)) 3201 { 3202 /* Upgrade the main thread's ptid. */ 3203 thread_change_ptid (inferior_ptid, 3204 ptid_build (ptid_get_pid (inferior_ptid), 3205 ptid_get_pid (inferior_ptid), 0)); 3206 3207 lp = add_initial_lwp (inferior_ptid); 3208 lp->resumed = 1; 3209 } 3210 3211 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3212 block_child_signals (&prev_mask); 3213 3214 retry: 3215 lp = NULL; 3216 status = 0; 3217 3218 /* First check if there is a LWP with a wait status pending. */ 3219 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3220 { 3221 /* Any LWP in the PTID group that's been resumed will do. */ 3222 lp = iterate_over_lwps (ptid, status_callback, NULL); 3223 if (lp) 3224 { 3225 if (debug_linux_nat && lp->status) 3226 fprintf_unfiltered (gdb_stdlog, 3227 "LLW: Using pending wait status %s for %s.\n", 3228 status_to_str (lp->status), 3229 target_pid_to_str (lp->ptid)); 3230 } 3231 } 3232 else if (ptid_lwp_p (ptid)) 3233 { 3234 if (debug_linux_nat) 3235 fprintf_unfiltered (gdb_stdlog, 3236 "LLW: Waiting for specific LWP %s.\n", 3237 target_pid_to_str (ptid)); 3238 3239 /* We have a specific LWP to check. */ 3240 lp = find_lwp_pid (ptid); 3241 gdb_assert (lp); 3242 3243 if (debug_linux_nat && lp->status) 3244 fprintf_unfiltered (gdb_stdlog, 3245 "LLW: Using pending wait status %s for %s.\n", 3246 status_to_str (lp->status), 3247 target_pid_to_str (lp->ptid)); 3248 3249 /* We check for lp->waitstatus in addition to lp->status, 3250 because we can have pending process exits recorded in 3251 lp->status and W_EXITCODE(0,0) == 0. We should probably have 3252 an additional lp->status_p flag. */ 3253 if (lp->status == 0 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE) 3254 lp = NULL; 3255 } 3256 3257 if (!target_can_async_p ()) 3258 { 3259 /* Causes SIGINT to be passed on to the attached process. */ 3260 set_sigint_trap (); 3261 } 3262 3263 /* But if we don't find a pending event, we'll have to wait. */ 3264 3265 while (lp == NULL) 3266 { 3267 pid_t lwpid; 3268 3269 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3270 quirks: 3271 3272 - If the thread group leader exits while other threads in the 3273 thread group still exist, waitpid(TGID, ...) hangs. That 3274 waitpid won't return an exit status until the other threads 3275 in the group are reapped. 3276 3277 - When a non-leader thread execs, that thread just vanishes 3278 without reporting an exit (so we'd hang if we waited for it 3279 explicitly in that case). The exec event is reported to 3280 the TGID pid. */ 3281 3282 errno = 0; 3283 lwpid = my_waitpid (-1, &status, __WCLONE | WNOHANG); 3284 if (lwpid == 0 || (lwpid == -1 && errno == ECHILD)) 3285 lwpid = my_waitpid (-1, &status, WNOHANG); 3286 3287 if (debug_linux_nat) 3288 fprintf_unfiltered (gdb_stdlog, 3289 "LNW: waitpid(-1, ...) returned %d, %s\n", 3290 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK"); 3291 3292 if (lwpid > 0) 3293 { 3294 /* If this is true, then we paused LWPs momentarily, and may 3295 now have pending events to handle. */ 3296 int new_pending; 3297 3298 if (debug_linux_nat) 3299 { 3300 fprintf_unfiltered (gdb_stdlog, 3301 "LLW: waitpid %ld received %s\n", 3302 (long) lwpid, status_to_str (status)); 3303 } 3304 3305 lp = linux_nat_filter_event (lwpid, status, &new_pending); 3306 3307 /* STATUS is now no longer valid, use LP->STATUS instead. */ 3308 status = 0; 3309 3310 if (lp && !ptid_match (lp->ptid, ptid)) 3311 { 3312 gdb_assert (lp->resumed); 3313 3314 if (debug_linux_nat) 3315 fprintf (stderr, 3316 "LWP %ld got an event %06x, leaving pending.\n", 3317 ptid_get_lwp (lp->ptid), lp->status); 3318 3319 if (WIFSTOPPED (lp->status)) 3320 { 3321 if (WSTOPSIG (lp->status) != SIGSTOP) 3322 { 3323 /* Cancel breakpoint hits. The breakpoint may 3324 be removed before we fetch events from this 3325 process to report to the core. It is best 3326 not to assume the moribund breakpoints 3327 heuristic always handles these cases --- it 3328 could be too many events go through to the 3329 core before this one is handled. All-stop 3330 always cancels breakpoint hits in all 3331 threads. */ 3332 if (non_stop 3333 && linux_nat_lp_status_is_event (lp) 3334 && cancel_breakpoint (lp)) 3335 { 3336 /* Throw away the SIGTRAP. */ 3337 lp->status = 0; 3338 3339 if (debug_linux_nat) 3340 fprintf (stderr, 3341 "LLW: LWP %ld hit a breakpoint while" 3342 " waiting for another process;" 3343 " cancelled it\n", 3344 ptid_get_lwp (lp->ptid)); 3345 } 3346 lp->stopped = 1; 3347 } 3348 else 3349 { 3350 lp->stopped = 1; 3351 lp->signalled = 0; 3352 } 3353 } 3354 else if (WIFEXITED (lp->status) || WIFSIGNALED (lp->status)) 3355 { 3356 if (debug_linux_nat) 3357 fprintf (stderr, 3358 "Process %ld exited while stopping LWPs\n", 3359 ptid_get_lwp (lp->ptid)); 3360 3361 /* This was the last lwp in the process. Since 3362 events are serialized to GDB core, and we can't 3363 report this one right now, but GDB core and the 3364 other target layers will want to be notified 3365 about the exit code/signal, leave the status 3366 pending for the next time we're able to report 3367 it. */ 3368 3369 /* Prevent trying to stop this thread again. We'll 3370 never try to resume it because it has a pending 3371 status. */ 3372 lp->stopped = 1; 3373 3374 /* Dead LWP's aren't expected to reported a pending 3375 sigstop. */ 3376 lp->signalled = 0; 3377 3378 /* Store the pending event in the waitstatus as 3379 well, because W_EXITCODE(0,0) == 0. */ 3380 store_waitstatus (&lp->waitstatus, lp->status); 3381 } 3382 3383 /* Keep looking. */ 3384 lp = NULL; 3385 } 3386 3387 if (new_pending) 3388 { 3389 /* Some LWP now has a pending event. Go all the way 3390 back to check it. */ 3391 goto retry; 3392 } 3393 3394 if (lp) 3395 { 3396 /* We got an event to report to the core. */ 3397 break; 3398 } 3399 3400 /* Retry until nothing comes out of waitpid. A single 3401 SIGCHLD can indicate more than one child stopped. */ 3402 continue; 3403 } 3404 3405 /* Check for zombie thread group leaders. Those can't be reaped 3406 until all other threads in the thread group are. */ 3407 check_zombie_leaders (); 3408 3409 /* If there are no resumed children left, bail. We'd be stuck 3410 forever in the sigsuspend call below otherwise. */ 3411 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL) 3412 { 3413 if (debug_linux_nat) 3414 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n"); 3415 3416 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3417 3418 if (!target_can_async_p ()) 3419 clear_sigint_trap (); 3420 3421 restore_child_signals_mask (&prev_mask); 3422 return minus_one_ptid; 3423 } 3424 3425 /* No interesting event to report to the core. */ 3426 3427 if (target_options & TARGET_WNOHANG) 3428 { 3429 if (debug_linux_nat) 3430 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); 3431 3432 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3433 restore_child_signals_mask (&prev_mask); 3434 return minus_one_ptid; 3435 } 3436 3437 /* We shouldn't end up here unless we want to try again. */ 3438 gdb_assert (lp == NULL); 3439 3440 /* Block until we get an event reported with SIGCHLD. */ 3441 sigsuspend (&suspend_mask); 3442 } 3443 3444 if (!target_can_async_p ()) 3445 clear_sigint_trap (); 3446 3447 gdb_assert (lp); 3448 3449 status = lp->status; 3450 lp->status = 0; 3451 3452 /* Don't report signals that GDB isn't interested in, such as 3453 signals that are neither printed nor stopped upon. Stopping all 3454 threads can be a bit time-consuming so if we want decent 3455 performance with heavily multi-threaded programs, especially when 3456 they're using a high frequency timer, we'd better avoid it if we 3457 can. */ 3458 3459 if (WIFSTOPPED (status)) 3460 { 3461 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3462 3463 /* When using hardware single-step, we need to report every signal. 3464 Otherwise, signals in pass_mask may be short-circuited. */ 3465 if (!lp->step 3466 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))) 3467 { 3468 /* FIMXE: kettenis/2001-06-06: Should we resume all threads 3469 here? It is not clear we should. GDB may not expect 3470 other threads to run. On the other hand, not resuming 3471 newly attached threads may cause an unwanted delay in 3472 getting them running. */ 3473 registers_changed (); 3474 if (linux_nat_prepare_to_resume != NULL) 3475 linux_nat_prepare_to_resume (lp); 3476 linux_ops->to_resume (linux_ops, 3477 pid_to_ptid (ptid_get_lwp (lp->ptid)), 3478 lp->step, signo); 3479 if (debug_linux_nat) 3480 fprintf_unfiltered (gdb_stdlog, 3481 "LLW: %s %s, %s (preempt 'handle')\n", 3482 lp->step ? 3483 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3484 target_pid_to_str (lp->ptid), 3485 (signo != GDB_SIGNAL_0 3486 ? strsignal (gdb_signal_to_host (signo)) 3487 : "0")); 3488 lp->stopped = 0; 3489 goto retry; 3490 } 3491 3492 if (!non_stop) 3493 { 3494 /* Only do the below in all-stop, as we currently use SIGINT 3495 to implement target_stop (see linux_nat_stop) in 3496 non-stop. */ 3497 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3498 { 3499 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3500 forwarded to the entire process group, that is, all LWPs 3501 will receive it - unless they're using CLONE_THREAD to 3502 share signals. Since we only want to report it once, we 3503 mark it as ignored for all LWPs except this one. */ 3504 iterate_over_lwps (pid_to_ptid (ptid_get_pid (ptid)), 3505 set_ignore_sigint, NULL); 3506 lp->ignore_sigint = 0; 3507 } 3508 else 3509 maybe_clear_ignore_sigint (lp); 3510 } 3511 } 3512 3513 /* This LWP is stopped now. */ 3514 lp->stopped = 1; 3515 3516 if (debug_linux_nat) 3517 fprintf_unfiltered (gdb_stdlog, "LLW: Candidate event %s in %s.\n", 3518 status_to_str (status), target_pid_to_str (lp->ptid)); 3519 3520 if (!non_stop) 3521 { 3522 /* Now stop all other LWP's ... */ 3523 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 3524 3525 /* ... and wait until all of them have reported back that 3526 they're no longer running. */ 3527 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 3528 3529 /* If we're not waiting for a specific LWP, choose an event LWP 3530 from among those that have had events. Giving equal priority 3531 to all LWPs that have had events helps prevent 3532 starvation. */ 3533 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid)) 3534 select_event_lwp (ptid, &lp, &status); 3535 3536 /* Now that we've selected our final event LWP, cancel any 3537 breakpoints in other LWPs that have hit a GDB breakpoint. 3538 See the comment in cancel_breakpoints_callback to find out 3539 why. */ 3540 iterate_over_lwps (minus_one_ptid, cancel_breakpoints_callback, lp); 3541 3542 /* We'll need this to determine whether to report a SIGSTOP as 3543 TARGET_WAITKIND_0. Need to take a copy because 3544 resume_clear_callback clears it. */ 3545 last_resume_kind = lp->last_resume_kind; 3546 3547 /* In all-stop, from the core's perspective, all LWPs are now 3548 stopped until a new resume action is sent over. */ 3549 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL); 3550 } 3551 else 3552 { 3553 /* See above. */ 3554 last_resume_kind = lp->last_resume_kind; 3555 resume_clear_callback (lp, NULL); 3556 } 3557 3558 if (linux_nat_status_is_event (status)) 3559 { 3560 if (debug_linux_nat) 3561 fprintf_unfiltered (gdb_stdlog, 3562 "LLW: trap ptid is %s.\n", 3563 target_pid_to_str (lp->ptid)); 3564 } 3565 3566 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3567 { 3568 *ourstatus = lp->waitstatus; 3569 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3570 } 3571 else 3572 store_waitstatus (ourstatus, status); 3573 3574 if (debug_linux_nat) 3575 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); 3576 3577 restore_child_signals_mask (&prev_mask); 3578 3579 if (last_resume_kind == resume_stop 3580 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3581 && WSTOPSIG (status) == SIGSTOP) 3582 { 3583 /* A thread that has been requested to stop by GDB with 3584 target_stop, and it stopped cleanly, so report as SIG0. The 3585 use of SIGSTOP is an implementation detail. */ 3586 ourstatus->value.sig = GDB_SIGNAL_0; 3587 } 3588 3589 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3590 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3591 lp->core = -1; 3592 else 3593 lp->core = linux_common_core_of_thread (lp->ptid); 3594 3595 return lp->ptid; 3596 } 3597 3598 /* Resume LWPs that are currently stopped without any pending status 3599 to report, but are resumed from the core's perspective. */ 3600 3601 static int 3602 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data) 3603 { 3604 ptid_t *wait_ptid_p = data; 3605 3606 if (lp->stopped 3607 && lp->resumed 3608 && lp->status == 0 3609 && lp->waitstatus.kind == TARGET_WAITKIND_IGNORE) 3610 { 3611 struct regcache *regcache = get_thread_regcache (lp->ptid); 3612 struct gdbarch *gdbarch = get_regcache_arch (regcache); 3613 CORE_ADDR pc = regcache_read_pc (regcache); 3614 3615 gdb_assert (is_executing (lp->ptid)); 3616 3617 /* Don't bother if there's a breakpoint at PC that we'd hit 3618 immediately, and we're not waiting for this LWP. */ 3619 if (!ptid_match (lp->ptid, *wait_ptid_p)) 3620 { 3621 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache), pc)) 3622 return 0; 3623 } 3624 3625 if (debug_linux_nat) 3626 fprintf_unfiltered (gdb_stdlog, 3627 "RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n", 3628 target_pid_to_str (lp->ptid), 3629 paddress (gdbarch, pc), 3630 lp->step); 3631 3632 registers_changed (); 3633 if (linux_nat_prepare_to_resume != NULL) 3634 linux_nat_prepare_to_resume (lp); 3635 linux_ops->to_resume (linux_ops, pid_to_ptid (ptid_get_lwp (lp->ptid)), 3636 lp->step, GDB_SIGNAL_0); 3637 lp->stopped = 0; 3638 lp->stopped_by_watchpoint = 0; 3639 } 3640 3641 return 0; 3642 } 3643 3644 static ptid_t 3645 linux_nat_wait (struct target_ops *ops, 3646 ptid_t ptid, struct target_waitstatus *ourstatus, 3647 int target_options) 3648 { 3649 ptid_t event_ptid; 3650 3651 if (debug_linux_nat) 3652 { 3653 char *options_string; 3654 3655 options_string = target_options_to_string (target_options); 3656 fprintf_unfiltered (gdb_stdlog, 3657 "linux_nat_wait: [%s], [%s]\n", 3658 target_pid_to_str (ptid), 3659 options_string); 3660 xfree (options_string); 3661 } 3662 3663 /* Flush the async file first. */ 3664 if (target_can_async_p ()) 3665 async_file_flush (); 3666 3667 /* Resume LWPs that are currently stopped without any pending status 3668 to report, but are resumed from the core's perspective. LWPs get 3669 in this state if we find them stopping at a time we're not 3670 interested in reporting the event (target_wait on a 3671 specific_process, for example, see linux_nat_wait_1), and 3672 meanwhile the event became uninteresting. Don't bother resuming 3673 LWPs we're not going to wait for if they'd stop immediately. */ 3674 if (non_stop) 3675 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid); 3676 3677 event_ptid = linux_nat_wait_1 (ops, ptid, ourstatus, target_options); 3678 3679 /* If we requested any event, and something came out, assume there 3680 may be more. If we requested a specific lwp or process, also 3681 assume there may be more. */ 3682 if (target_can_async_p () 3683 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3684 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3685 || !ptid_equal (ptid, minus_one_ptid))) 3686 async_file_mark (); 3687 3688 /* Get ready for the next event. */ 3689 if (target_can_async_p ()) 3690 target_async (inferior_event_handler, 0); 3691 3692 return event_ptid; 3693 } 3694 3695 static int 3696 kill_callback (struct lwp_info *lp, void *data) 3697 { 3698 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3699 3700 errno = 0; 3701 kill (ptid_get_lwp (lp->ptid), SIGKILL); 3702 if (debug_linux_nat) 3703 fprintf_unfiltered (gdb_stdlog, 3704 "KC: kill (SIGKILL) %s, 0, 0 (%s)\n", 3705 target_pid_to_str (lp->ptid), 3706 errno ? safe_strerror (errno) : "OK"); 3707 3708 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3709 3710 errno = 0; 3711 ptrace (PTRACE_KILL, ptid_get_lwp (lp->ptid), 0, 0); 3712 if (debug_linux_nat) 3713 fprintf_unfiltered (gdb_stdlog, 3714 "KC: PTRACE_KILL %s, 0, 0 (%s)\n", 3715 target_pid_to_str (lp->ptid), 3716 errno ? safe_strerror (errno) : "OK"); 3717 3718 return 0; 3719 } 3720 3721 static int 3722 kill_wait_callback (struct lwp_info *lp, void *data) 3723 { 3724 pid_t pid; 3725 3726 /* We must make sure that there are no pending events (delayed 3727 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3728 program doesn't interfere with any following debugging session. */ 3729 3730 /* For cloned processes we must check both with __WCLONE and 3731 without, since the exit status of a cloned process isn't reported 3732 with __WCLONE. */ 3733 if (lp->cloned) 3734 { 3735 do 3736 { 3737 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, __WCLONE); 3738 if (pid != (pid_t) -1) 3739 { 3740 if (debug_linux_nat) 3741 fprintf_unfiltered (gdb_stdlog, 3742 "KWC: wait %s received unknown.\n", 3743 target_pid_to_str (lp->ptid)); 3744 /* The Linux kernel sometimes fails to kill a thread 3745 completely after PTRACE_KILL; that goes from the stop 3746 point in do_fork out to the one in 3747 get_signal_to_deliever and waits again. So kill it 3748 again. */ 3749 kill_callback (lp, NULL); 3750 } 3751 } 3752 while (pid == ptid_get_lwp (lp->ptid)); 3753 3754 gdb_assert (pid == -1 && errno == ECHILD); 3755 } 3756 3757 do 3758 { 3759 pid = my_waitpid (ptid_get_lwp (lp->ptid), NULL, 0); 3760 if (pid != (pid_t) -1) 3761 { 3762 if (debug_linux_nat) 3763 fprintf_unfiltered (gdb_stdlog, 3764 "KWC: wait %s received unk.\n", 3765 target_pid_to_str (lp->ptid)); 3766 /* See the call to kill_callback above. */ 3767 kill_callback (lp, NULL); 3768 } 3769 } 3770 while (pid == ptid_get_lwp (lp->ptid)); 3771 3772 gdb_assert (pid == -1 && errno == ECHILD); 3773 return 0; 3774 } 3775 3776 static void 3777 linux_nat_kill (struct target_ops *ops) 3778 { 3779 struct target_waitstatus last; 3780 ptid_t last_ptid; 3781 int status; 3782 3783 /* If we're stopped while forking and we haven't followed yet, 3784 kill the other task. We need to do this first because the 3785 parent will be sleeping if this is a vfork. */ 3786 3787 get_last_target_status (&last_ptid, &last); 3788 3789 if (last.kind == TARGET_WAITKIND_FORKED 3790 || last.kind == TARGET_WAITKIND_VFORKED) 3791 { 3792 ptrace (PT_KILL, ptid_get_pid (last.value.related_pid), 0, 0); 3793 wait (&status); 3794 3795 /* Let the arch-specific native code know this process is 3796 gone. */ 3797 linux_nat_forget_process (ptid_get_pid (last.value.related_pid)); 3798 } 3799 3800 if (forks_exist_p ()) 3801 linux_fork_killall (); 3802 else 3803 { 3804 ptid_t ptid = pid_to_ptid (ptid_get_pid (inferior_ptid)); 3805 3806 /* Stop all threads before killing them, since ptrace requires 3807 that the thread is stopped to sucessfully PTRACE_KILL. */ 3808 iterate_over_lwps (ptid, stop_callback, NULL); 3809 /* ... and wait until all of them have reported back that 3810 they're no longer running. */ 3811 iterate_over_lwps (ptid, stop_wait_callback, NULL); 3812 3813 /* Kill all LWP's ... */ 3814 iterate_over_lwps (ptid, kill_callback, NULL); 3815 3816 /* ... and wait until we've flushed all events. */ 3817 iterate_over_lwps (ptid, kill_wait_callback, NULL); 3818 } 3819 3820 target_mourn_inferior (); 3821 } 3822 3823 static void 3824 linux_nat_mourn_inferior (struct target_ops *ops) 3825 { 3826 int pid = ptid_get_pid (inferior_ptid); 3827 3828 purge_lwp_list (pid); 3829 3830 if (! forks_exist_p ()) 3831 /* Normal case, no other forks available. */ 3832 linux_ops->to_mourn_inferior (ops); 3833 else 3834 /* Multi-fork case. The current inferior_ptid has exited, but 3835 there are other viable forks to debug. Delete the exiting 3836 one and context-switch to the first available. */ 3837 linux_fork_mourn_inferior (); 3838 3839 /* Let the arch-specific native code know this process is gone. */ 3840 linux_nat_forget_process (pid); 3841 } 3842 3843 /* Convert a native/host siginfo object, into/from the siginfo in the 3844 layout of the inferiors' architecture. */ 3845 3846 static void 3847 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3848 { 3849 int done = 0; 3850 3851 if (linux_nat_siginfo_fixup != NULL) 3852 done = linux_nat_siginfo_fixup (siginfo, inf_siginfo, direction); 3853 3854 /* If there was no callback, or the callback didn't do anything, 3855 then just do a straight memcpy. */ 3856 if (!done) 3857 { 3858 if (direction == 1) 3859 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3860 else 3861 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3862 } 3863 } 3864 3865 static LONGEST 3866 linux_xfer_siginfo (struct target_ops *ops, enum target_object object, 3867 const char *annex, gdb_byte *readbuf, 3868 const gdb_byte *writebuf, ULONGEST offset, LONGEST len) 3869 { 3870 int pid; 3871 siginfo_t siginfo; 3872 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3873 3874 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3875 gdb_assert (readbuf || writebuf); 3876 3877 pid = ptid_get_lwp (inferior_ptid); 3878 if (pid == 0) 3879 pid = ptid_get_pid (inferior_ptid); 3880 3881 if (offset > sizeof (siginfo)) 3882 return -1; 3883 3884 errno = 0; 3885 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3886 if (errno != 0) 3887 return -1; 3888 3889 /* When GDB is built as a 64-bit application, ptrace writes into 3890 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3891 inferior with a 64-bit GDB should look the same as debugging it 3892 with a 32-bit GDB, we need to convert it. GDB core always sees 3893 the converted layout, so any read/write will have to be done 3894 post-conversion. */ 3895 siginfo_fixup (&siginfo, inf_siginfo, 0); 3896 3897 if (offset + len > sizeof (siginfo)) 3898 len = sizeof (siginfo) - offset; 3899 3900 if (readbuf != NULL) 3901 memcpy (readbuf, inf_siginfo + offset, len); 3902 else 3903 { 3904 memcpy (inf_siginfo + offset, writebuf, len); 3905 3906 /* Convert back to ptrace layout before flushing it out. */ 3907 siginfo_fixup (&siginfo, inf_siginfo, 1); 3908 3909 errno = 0; 3910 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3911 if (errno != 0) 3912 return -1; 3913 } 3914 3915 return len; 3916 } 3917 3918 static LONGEST 3919 linux_nat_xfer_partial (struct target_ops *ops, enum target_object object, 3920 const char *annex, gdb_byte *readbuf, 3921 const gdb_byte *writebuf, 3922 ULONGEST offset, LONGEST len) 3923 { 3924 struct cleanup *old_chain; 3925 LONGEST xfer; 3926 3927 if (object == TARGET_OBJECT_SIGNAL_INFO) 3928 return linux_xfer_siginfo (ops, object, annex, readbuf, writebuf, 3929 offset, len); 3930 3931 /* The target is connected but no live inferior is selected. Pass 3932 this request down to a lower stratum (e.g., the executable 3933 file). */ 3934 if (object == TARGET_OBJECT_MEMORY && ptid_equal (inferior_ptid, null_ptid)) 3935 return 0; 3936 3937 old_chain = save_inferior_ptid (); 3938 3939 if (ptid_lwp_p (inferior_ptid)) 3940 inferior_ptid = pid_to_ptid (ptid_get_lwp (inferior_ptid)); 3941 3942 xfer = linux_ops->to_xfer_partial (ops, object, annex, readbuf, writebuf, 3943 offset, len); 3944 3945 do_cleanups (old_chain); 3946 return xfer; 3947 } 3948 3949 static int 3950 linux_thread_alive (ptid_t ptid) 3951 { 3952 int err, tmp_errno; 3953 3954 gdb_assert (ptid_lwp_p (ptid)); 3955 3956 /* Send signal 0 instead of anything ptrace, because ptracing a 3957 running thread errors out claiming that the thread doesn't 3958 exist. */ 3959 err = kill_lwp (ptid_get_lwp (ptid), 0); 3960 tmp_errno = errno; 3961 if (debug_linux_nat) 3962 fprintf_unfiltered (gdb_stdlog, 3963 "LLTA: KILL(SIG0) %s (%s)\n", 3964 target_pid_to_str (ptid), 3965 err ? safe_strerror (tmp_errno) : "OK"); 3966 3967 if (err != 0) 3968 return 0; 3969 3970 return 1; 3971 } 3972 3973 static int 3974 linux_nat_thread_alive (struct target_ops *ops, ptid_t ptid) 3975 { 3976 return linux_thread_alive (ptid); 3977 } 3978 3979 static char * 3980 linux_nat_pid_to_str (struct target_ops *ops, ptid_t ptid) 3981 { 3982 static char buf[64]; 3983 3984 if (ptid_lwp_p (ptid) 3985 && (ptid_get_pid (ptid) != ptid_get_lwp (ptid) 3986 || num_lwps (ptid_get_pid (ptid)) > 1)) 3987 { 3988 snprintf (buf, sizeof (buf), "LWP %ld", ptid_get_lwp (ptid)); 3989 return buf; 3990 } 3991 3992 return normal_pid_to_str (ptid); 3993 } 3994 3995 static char * 3996 linux_nat_thread_name (struct thread_info *thr) 3997 { 3998 int pid = ptid_get_pid (thr->ptid); 3999 long lwp = ptid_get_lwp (thr->ptid); 4000 #define FORMAT "/proc/%d/task/%ld/comm" 4001 char buf[sizeof (FORMAT) + 30]; 4002 FILE *comm_file; 4003 char *result = NULL; 4004 4005 snprintf (buf, sizeof (buf), FORMAT, pid, lwp); 4006 comm_file = gdb_fopen_cloexec (buf, "r"); 4007 if (comm_file) 4008 { 4009 /* Not exported by the kernel, so we define it here. */ 4010 #define COMM_LEN 16 4011 static char line[COMM_LEN + 1]; 4012 4013 if (fgets (line, sizeof (line), comm_file)) 4014 { 4015 char *nl = strchr (line, '\n'); 4016 4017 if (nl) 4018 *nl = '\0'; 4019 if (*line != '\0') 4020 result = line; 4021 } 4022 4023 fclose (comm_file); 4024 } 4025 4026 #undef COMM_LEN 4027 #undef FORMAT 4028 4029 return result; 4030 } 4031 4032 /* Accepts an integer PID; Returns a string representing a file that 4033 can be opened to get the symbols for the child process. */ 4034 4035 static char * 4036 linux_child_pid_to_exec_file (int pid) 4037 { 4038 char *name1, *name2; 4039 4040 name1 = xmalloc (PATH_MAX); 4041 name2 = xmalloc (PATH_MAX); 4042 make_cleanup (xfree, name1); 4043 make_cleanup (xfree, name2); 4044 memset (name2, 0, PATH_MAX); 4045 4046 xsnprintf (name1, PATH_MAX, "/proc/%d/exe", pid); 4047 if (readlink (name1, name2, PATH_MAX - 1) > 0) 4048 return name2; 4049 else 4050 return name1; 4051 } 4052 4053 /* Records the thread's register state for the corefile note 4054 section. */ 4055 4056 static char * 4057 linux_nat_collect_thread_registers (const struct regcache *regcache, 4058 ptid_t ptid, bfd *obfd, 4059 char *note_data, int *note_size, 4060 enum gdb_signal stop_signal) 4061 { 4062 struct gdbarch *gdbarch = get_regcache_arch (regcache); 4063 const struct regset *regset; 4064 int core_regset_p; 4065 gdb_gregset_t gregs; 4066 gdb_fpregset_t fpregs; 4067 4068 core_regset_p = gdbarch_regset_from_core_section_p (gdbarch); 4069 4070 if (core_regset_p 4071 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg", 4072 sizeof (gregs))) 4073 != NULL && regset->collect_regset != NULL) 4074 regset->collect_regset (regset, regcache, -1, &gregs, sizeof (gregs)); 4075 else 4076 fill_gregset (regcache, &gregs, -1); 4077 4078 note_data = (char *) elfcore_write_prstatus 4079 (obfd, note_data, note_size, ptid_get_lwp (ptid), 4080 gdb_signal_to_host (stop_signal), &gregs); 4081 4082 if (core_regset_p 4083 && (regset = gdbarch_regset_from_core_section (gdbarch, ".reg2", 4084 sizeof (fpregs))) 4085 != NULL && regset->collect_regset != NULL) 4086 regset->collect_regset (regset, regcache, -1, &fpregs, sizeof (fpregs)); 4087 else 4088 fill_fpregset (regcache, &fpregs, -1); 4089 4090 note_data = (char *) elfcore_write_prfpreg (obfd, note_data, note_size, 4091 &fpregs, sizeof (fpregs)); 4092 4093 return note_data; 4094 } 4095 4096 /* Fills the "to_make_corefile_note" target vector. Builds the note 4097 section for a corefile, and returns it in a malloc buffer. */ 4098 4099 static char * 4100 linux_nat_make_corefile_notes (bfd *obfd, int *note_size) 4101 { 4102 /* FIXME: uweigand/2011-10-06: Once all GNU/Linux architectures have been 4103 converted to gdbarch_core_regset_sections, this function can go away. */ 4104 return linux_make_corefile_notes (target_gdbarch (), obfd, note_size, 4105 linux_nat_collect_thread_registers); 4106 } 4107 4108 /* Implement the to_xfer_partial interface for memory reads using the /proc 4109 filesystem. Because we can use a single read() call for /proc, this 4110 can be much more efficient than banging away at PTRACE_PEEKTEXT, 4111 but it doesn't support writes. */ 4112 4113 static LONGEST 4114 linux_proc_xfer_partial (struct target_ops *ops, enum target_object object, 4115 const char *annex, gdb_byte *readbuf, 4116 const gdb_byte *writebuf, 4117 ULONGEST offset, LONGEST len) 4118 { 4119 LONGEST ret; 4120 int fd; 4121 char filename[64]; 4122 4123 if (object != TARGET_OBJECT_MEMORY || !readbuf) 4124 return 0; 4125 4126 /* Don't bother for one word. */ 4127 if (len < 3 * sizeof (long)) 4128 return 0; 4129 4130 /* We could keep this file open and cache it - possibly one per 4131 thread. That requires some juggling, but is even faster. */ 4132 xsnprintf (filename, sizeof filename, "/proc/%d/mem", 4133 ptid_get_pid (inferior_ptid)); 4134 fd = gdb_open_cloexec (filename, O_RDONLY | O_LARGEFILE, 0); 4135 if (fd == -1) 4136 return 0; 4137 4138 /* If pread64 is available, use it. It's faster if the kernel 4139 supports it (only one syscall), and it's 64-bit safe even on 4140 32-bit platforms (for instance, SPARC debugging a SPARC64 4141 application). */ 4142 #ifdef HAVE_PREAD64 4143 if (pread64 (fd, readbuf, len, offset) != len) 4144 #else 4145 if (lseek (fd, offset, SEEK_SET) == -1 || read (fd, readbuf, len) != len) 4146 #endif 4147 ret = 0; 4148 else 4149 ret = len; 4150 4151 close (fd); 4152 return ret; 4153 } 4154 4155 4156 /* Enumerate spufs IDs for process PID. */ 4157 static LONGEST 4158 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, LONGEST len) 4159 { 4160 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 4161 LONGEST pos = 0; 4162 LONGEST written = 0; 4163 char path[128]; 4164 DIR *dir; 4165 struct dirent *entry; 4166 4167 xsnprintf (path, sizeof path, "/proc/%d/fd", pid); 4168 dir = opendir (path); 4169 if (!dir) 4170 return -1; 4171 4172 rewinddir (dir); 4173 while ((entry = readdir (dir)) != NULL) 4174 { 4175 struct stat st; 4176 struct statfs stfs; 4177 int fd; 4178 4179 fd = atoi (entry->d_name); 4180 if (!fd) 4181 continue; 4182 4183 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd); 4184 if (stat (path, &st) != 0) 4185 continue; 4186 if (!S_ISDIR (st.st_mode)) 4187 continue; 4188 4189 if (statfs (path, &stfs) != 0) 4190 continue; 4191 if (stfs.f_type != SPUFS_MAGIC) 4192 continue; 4193 4194 if (pos >= offset && pos + 4 <= offset + len) 4195 { 4196 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd); 4197 written += 4; 4198 } 4199 pos += 4; 4200 } 4201 4202 closedir (dir); 4203 return written; 4204 } 4205 4206 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU 4207 object type, using the /proc file system. */ 4208 static LONGEST 4209 linux_proc_xfer_spu (struct target_ops *ops, enum target_object object, 4210 const char *annex, gdb_byte *readbuf, 4211 const gdb_byte *writebuf, 4212 ULONGEST offset, LONGEST len) 4213 { 4214 char buf[128]; 4215 int fd = 0; 4216 int ret = -1; 4217 int pid = ptid_get_pid (inferior_ptid); 4218 4219 if (!annex) 4220 { 4221 if (!readbuf) 4222 return -1; 4223 else 4224 return spu_enumerate_spu_ids (pid, readbuf, offset, len); 4225 } 4226 4227 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex); 4228 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0); 4229 if (fd <= 0) 4230 return -1; 4231 4232 if (offset != 0 4233 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) 4234 { 4235 close (fd); 4236 return 0; 4237 } 4238 4239 if (writebuf) 4240 ret = write (fd, writebuf, (size_t) len); 4241 else if (readbuf) 4242 ret = read (fd, readbuf, (size_t) len); 4243 4244 close (fd); 4245 return ret; 4246 } 4247 4248 4249 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4250 4251 static void 4252 add_line_to_sigset (const char *line, sigset_t *sigs) 4253 { 4254 int len = strlen (line) - 1; 4255 const char *p; 4256 int signum; 4257 4258 if (line[len] != '\n') 4259 error (_("Could not parse signal set: %s"), line); 4260 4261 p = line; 4262 signum = len * 4; 4263 while (len-- > 0) 4264 { 4265 int digit; 4266 4267 if (*p >= '0' && *p <= '9') 4268 digit = *p - '0'; 4269 else if (*p >= 'a' && *p <= 'f') 4270 digit = *p - 'a' + 10; 4271 else 4272 error (_("Could not parse signal set: %s"), line); 4273 4274 signum -= 4; 4275 4276 if (digit & 1) 4277 sigaddset (sigs, signum + 1); 4278 if (digit & 2) 4279 sigaddset (sigs, signum + 2); 4280 if (digit & 4) 4281 sigaddset (sigs, signum + 3); 4282 if (digit & 8) 4283 sigaddset (sigs, signum + 4); 4284 4285 p++; 4286 } 4287 } 4288 4289 /* Find process PID's pending signals from /proc/pid/status and set 4290 SIGS to match. */ 4291 4292 void 4293 linux_proc_pending_signals (int pid, sigset_t *pending, 4294 sigset_t *blocked, sigset_t *ignored) 4295 { 4296 FILE *procfile; 4297 char buffer[PATH_MAX], fname[PATH_MAX]; 4298 struct cleanup *cleanup; 4299 4300 sigemptyset (pending); 4301 sigemptyset (blocked); 4302 sigemptyset (ignored); 4303 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4304 procfile = gdb_fopen_cloexec (fname, "r"); 4305 if (procfile == NULL) 4306 error (_("Could not open %s"), fname); 4307 cleanup = make_cleanup_fclose (procfile); 4308 4309 while (fgets (buffer, PATH_MAX, procfile) != NULL) 4310 { 4311 /* Normal queued signals are on the SigPnd line in the status 4312 file. However, 2.6 kernels also have a "shared" pending 4313 queue for delivering signals to a thread group, so check for 4314 a ShdPnd line also. 4315 4316 Unfortunately some Red Hat kernels include the shared pending 4317 queue but not the ShdPnd status field. */ 4318 4319 if (strncmp (buffer, "SigPnd:\t", 8) == 0) 4320 add_line_to_sigset (buffer + 8, pending); 4321 else if (strncmp (buffer, "ShdPnd:\t", 8) == 0) 4322 add_line_to_sigset (buffer + 8, pending); 4323 else if (strncmp (buffer, "SigBlk:\t", 8) == 0) 4324 add_line_to_sigset (buffer + 8, blocked); 4325 else if (strncmp (buffer, "SigIgn:\t", 8) == 0) 4326 add_line_to_sigset (buffer + 8, ignored); 4327 } 4328 4329 do_cleanups (cleanup); 4330 } 4331 4332 static LONGEST 4333 linux_nat_xfer_osdata (struct target_ops *ops, enum target_object object, 4334 const char *annex, gdb_byte *readbuf, 4335 const gdb_byte *writebuf, ULONGEST offset, LONGEST len) 4336 { 4337 gdb_assert (object == TARGET_OBJECT_OSDATA); 4338 4339 return linux_common_xfer_osdata (annex, readbuf, offset, len); 4340 } 4341 4342 static LONGEST 4343 linux_xfer_partial (struct target_ops *ops, enum target_object object, 4344 const char *annex, gdb_byte *readbuf, 4345 const gdb_byte *writebuf, ULONGEST offset, LONGEST len) 4346 { 4347 LONGEST xfer; 4348 4349 if (object == TARGET_OBJECT_AUXV) 4350 return memory_xfer_auxv (ops, object, annex, readbuf, writebuf, 4351 offset, len); 4352 4353 if (object == TARGET_OBJECT_OSDATA) 4354 return linux_nat_xfer_osdata (ops, object, annex, readbuf, writebuf, 4355 offset, len); 4356 4357 if (object == TARGET_OBJECT_SPU) 4358 return linux_proc_xfer_spu (ops, object, annex, readbuf, writebuf, 4359 offset, len); 4360 4361 /* GDB calculates all the addresses in possibly larget width of the address. 4362 Address width needs to be masked before its final use - either by 4363 linux_proc_xfer_partial or inf_ptrace_xfer_partial. 4364 4365 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 4366 4367 if (object == TARGET_OBJECT_MEMORY) 4368 { 4369 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 4370 4371 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 4372 offset &= ((ULONGEST) 1 << addr_bit) - 1; 4373 } 4374 4375 xfer = linux_proc_xfer_partial (ops, object, annex, readbuf, writebuf, 4376 offset, len); 4377 if (xfer != 0) 4378 return xfer; 4379 4380 return super_xfer_partial (ops, object, annex, readbuf, writebuf, 4381 offset, len); 4382 } 4383 4384 static void 4385 cleanup_target_stop (void *arg) 4386 { 4387 ptid_t *ptid = (ptid_t *) arg; 4388 4389 gdb_assert (arg != NULL); 4390 4391 /* Unpause all */ 4392 target_resume (*ptid, 0, GDB_SIGNAL_0); 4393 } 4394 4395 static VEC(static_tracepoint_marker_p) * 4396 linux_child_static_tracepoint_markers_by_strid (const char *strid) 4397 { 4398 char s[IPA_CMD_BUF_SIZE]; 4399 struct cleanup *old_chain; 4400 int pid = ptid_get_pid (inferior_ptid); 4401 VEC(static_tracepoint_marker_p) *markers = NULL; 4402 struct static_tracepoint_marker *marker = NULL; 4403 char *p = s; 4404 ptid_t ptid = ptid_build (pid, 0, 0); 4405 4406 /* Pause all */ 4407 target_stop (ptid); 4408 4409 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4410 s[sizeof ("qTfSTM")] = 0; 4411 4412 agent_run_command (pid, s, strlen (s) + 1); 4413 4414 old_chain = make_cleanup (free_current_marker, &marker); 4415 make_cleanup (cleanup_target_stop, &ptid); 4416 4417 while (*p++ == 'm') 4418 { 4419 if (marker == NULL) 4420 marker = XCNEW (struct static_tracepoint_marker); 4421 4422 do 4423 { 4424 parse_static_tracepoint_marker_definition (p, &p, marker); 4425 4426 if (strid == NULL || strcmp (strid, marker->str_id) == 0) 4427 { 4428 VEC_safe_push (static_tracepoint_marker_p, 4429 markers, marker); 4430 marker = NULL; 4431 } 4432 else 4433 { 4434 release_static_tracepoint_marker (marker); 4435 memset (marker, 0, sizeof (*marker)); 4436 } 4437 } 4438 while (*p++ == ','); /* comma-separated list */ 4439 4440 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4441 s[sizeof ("qTsSTM")] = 0; 4442 agent_run_command (pid, s, strlen (s) + 1); 4443 p = s; 4444 } 4445 4446 do_cleanups (old_chain); 4447 4448 return markers; 4449 } 4450 4451 /* Create a prototype generic GNU/Linux target. The client can override 4452 it with local methods. */ 4453 4454 static void 4455 linux_target_install_ops (struct target_ops *t) 4456 { 4457 t->to_insert_fork_catchpoint = linux_child_insert_fork_catchpoint; 4458 t->to_remove_fork_catchpoint = linux_child_remove_fork_catchpoint; 4459 t->to_insert_vfork_catchpoint = linux_child_insert_vfork_catchpoint; 4460 t->to_remove_vfork_catchpoint = linux_child_remove_vfork_catchpoint; 4461 t->to_insert_exec_catchpoint = linux_child_insert_exec_catchpoint; 4462 t->to_remove_exec_catchpoint = linux_child_remove_exec_catchpoint; 4463 t->to_set_syscall_catchpoint = linux_child_set_syscall_catchpoint; 4464 t->to_pid_to_exec_file = linux_child_pid_to_exec_file; 4465 t->to_post_startup_inferior = linux_child_post_startup_inferior; 4466 t->to_post_attach = linux_child_post_attach; 4467 t->to_follow_fork = linux_child_follow_fork; 4468 t->to_make_corefile_notes = linux_nat_make_corefile_notes; 4469 4470 super_xfer_partial = t->to_xfer_partial; 4471 t->to_xfer_partial = linux_xfer_partial; 4472 4473 t->to_static_tracepoint_markers_by_strid 4474 = linux_child_static_tracepoint_markers_by_strid; 4475 } 4476 4477 struct target_ops * 4478 linux_target (void) 4479 { 4480 struct target_ops *t; 4481 4482 t = inf_ptrace_target (); 4483 linux_target_install_ops (t); 4484 4485 return t; 4486 } 4487 4488 struct target_ops * 4489 linux_trad_target (CORE_ADDR (*register_u_offset)(struct gdbarch *, int, int)) 4490 { 4491 struct target_ops *t; 4492 4493 t = inf_ptrace_trad_target (register_u_offset); 4494 linux_target_install_ops (t); 4495 4496 return t; 4497 } 4498 4499 /* target_is_async_p implementation. */ 4500 4501 static int 4502 linux_nat_is_async_p (void) 4503 { 4504 /* NOTE: palves 2008-03-21: We're only async when the user requests 4505 it explicitly with the "set target-async" command. 4506 Someday, linux will always be async. */ 4507 return target_async_permitted; 4508 } 4509 4510 /* target_can_async_p implementation. */ 4511 4512 static int 4513 linux_nat_can_async_p (void) 4514 { 4515 /* NOTE: palves 2008-03-21: We're only async when the user requests 4516 it explicitly with the "set target-async" command. 4517 Someday, linux will always be async. */ 4518 return target_async_permitted; 4519 } 4520 4521 static int 4522 linux_nat_supports_non_stop (void) 4523 { 4524 return 1; 4525 } 4526 4527 /* True if we want to support multi-process. To be removed when GDB 4528 supports multi-exec. */ 4529 4530 int linux_multi_process = 1; 4531 4532 static int 4533 linux_nat_supports_multi_process (void) 4534 { 4535 return linux_multi_process; 4536 } 4537 4538 static int 4539 linux_nat_supports_disable_randomization (void) 4540 { 4541 #ifdef HAVE_PERSONALITY 4542 return 1; 4543 #else 4544 return 0; 4545 #endif 4546 } 4547 4548 static int async_terminal_is_ours = 1; 4549 4550 /* target_terminal_inferior implementation. */ 4551 4552 static void 4553 linux_nat_terminal_inferior (void) 4554 { 4555 if (!target_is_async_p ()) 4556 { 4557 /* Async mode is disabled. */ 4558 terminal_inferior (); 4559 return; 4560 } 4561 4562 terminal_inferior (); 4563 4564 /* Calls to target_terminal_*() are meant to be idempotent. */ 4565 if (!async_terminal_is_ours) 4566 return; 4567 4568 delete_file_handler (input_fd); 4569 async_terminal_is_ours = 0; 4570 set_sigint_trap (); 4571 } 4572 4573 /* target_terminal_ours implementation. */ 4574 4575 static void 4576 linux_nat_terminal_ours (void) 4577 { 4578 if (!target_is_async_p ()) 4579 { 4580 /* Async mode is disabled. */ 4581 terminal_ours (); 4582 return; 4583 } 4584 4585 /* GDB should never give the terminal to the inferior if the 4586 inferior is running in the background (run&, continue&, etc.), 4587 but claiming it sure should. */ 4588 terminal_ours (); 4589 4590 if (async_terminal_is_ours) 4591 return; 4592 4593 clear_sigint_trap (); 4594 add_file_handler (input_fd, stdin_event_handler, 0); 4595 async_terminal_is_ours = 1; 4596 } 4597 4598 static void (*async_client_callback) (enum inferior_event_type event_type, 4599 void *context); 4600 static void *async_client_context; 4601 4602 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4603 so we notice when any child changes state, and notify the 4604 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4605 above to wait for the arrival of a SIGCHLD. */ 4606 4607 static void 4608 sigchld_handler (int signo) 4609 { 4610 int old_errno = errno; 4611 4612 if (debug_linux_nat) 4613 ui_file_write_async_safe (gdb_stdlog, 4614 "sigchld\n", sizeof ("sigchld\n") - 1); 4615 4616 if (signo == SIGCHLD 4617 && linux_nat_event_pipe[0] != -1) 4618 async_file_mark (); /* Let the event loop know that there are 4619 events to handle. */ 4620 4621 errno = old_errno; 4622 } 4623 4624 /* Callback registered with the target events file descriptor. */ 4625 4626 static void 4627 handle_target_event (int error, gdb_client_data client_data) 4628 { 4629 (*async_client_callback) (INF_REG_EVENT, async_client_context); 4630 } 4631 4632 /* Create/destroy the target events pipe. Returns previous state. */ 4633 4634 static int 4635 linux_async_pipe (int enable) 4636 { 4637 int previous = (linux_nat_event_pipe[0] != -1); 4638 4639 if (previous != enable) 4640 { 4641 sigset_t prev_mask; 4642 4643 /* Block child signals while we create/destroy the pipe, as 4644 their handler writes to it. */ 4645 block_child_signals (&prev_mask); 4646 4647 if (enable) 4648 { 4649 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4650 internal_error (__FILE__, __LINE__, 4651 "creating event pipe failed."); 4652 4653 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4654 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4655 } 4656 else 4657 { 4658 close (linux_nat_event_pipe[0]); 4659 close (linux_nat_event_pipe[1]); 4660 linux_nat_event_pipe[0] = -1; 4661 linux_nat_event_pipe[1] = -1; 4662 } 4663 4664 restore_child_signals_mask (&prev_mask); 4665 } 4666 4667 return previous; 4668 } 4669 4670 /* target_async implementation. */ 4671 4672 static void 4673 linux_nat_async (void (*callback) (enum inferior_event_type event_type, 4674 void *context), void *context) 4675 { 4676 if (callback != NULL) 4677 { 4678 async_client_callback = callback; 4679 async_client_context = context; 4680 if (!linux_async_pipe (1)) 4681 { 4682 add_file_handler (linux_nat_event_pipe[0], 4683 handle_target_event, NULL); 4684 /* There may be pending events to handle. Tell the event loop 4685 to poll them. */ 4686 async_file_mark (); 4687 } 4688 } 4689 else 4690 { 4691 async_client_callback = callback; 4692 async_client_context = context; 4693 delete_file_handler (linux_nat_event_pipe[0]); 4694 linux_async_pipe (0); 4695 } 4696 return; 4697 } 4698 4699 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4700 event came out. */ 4701 4702 static int 4703 linux_nat_stop_lwp (struct lwp_info *lwp, void *data) 4704 { 4705 if (!lwp->stopped) 4706 { 4707 if (debug_linux_nat) 4708 fprintf_unfiltered (gdb_stdlog, 4709 "LNSL: running -> suspending %s\n", 4710 target_pid_to_str (lwp->ptid)); 4711 4712 4713 if (lwp->last_resume_kind == resume_stop) 4714 { 4715 if (debug_linux_nat) 4716 fprintf_unfiltered (gdb_stdlog, 4717 "linux-nat: already stopping LWP %ld at " 4718 "GDB's request\n", 4719 ptid_get_lwp (lwp->ptid)); 4720 return 0; 4721 } 4722 4723 stop_callback (lwp, NULL); 4724 lwp->last_resume_kind = resume_stop; 4725 } 4726 else 4727 { 4728 /* Already known to be stopped; do nothing. */ 4729 4730 if (debug_linux_nat) 4731 { 4732 if (find_thread_ptid (lwp->ptid)->stop_requested) 4733 fprintf_unfiltered (gdb_stdlog, 4734 "LNSL: already stopped/stop_requested %s\n", 4735 target_pid_to_str (lwp->ptid)); 4736 else 4737 fprintf_unfiltered (gdb_stdlog, 4738 "LNSL: already stopped/no " 4739 "stop_requested yet %s\n", 4740 target_pid_to_str (lwp->ptid)); 4741 } 4742 } 4743 return 0; 4744 } 4745 4746 static void 4747 linux_nat_stop (ptid_t ptid) 4748 { 4749 if (non_stop) 4750 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL); 4751 else 4752 linux_ops->to_stop (ptid); 4753 } 4754 4755 static void 4756 linux_nat_close (void) 4757 { 4758 /* Unregister from the event loop. */ 4759 if (linux_nat_is_async_p ()) 4760 linux_nat_async (NULL, 0); 4761 4762 if (linux_ops->to_close) 4763 linux_ops->to_close (); 4764 } 4765 4766 /* When requests are passed down from the linux-nat layer to the 4767 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4768 used. The address space pointer is stored in the inferior object, 4769 but the common code that is passed such ptid can't tell whether 4770 lwpid is a "main" process id or not (it assumes so). We reverse 4771 look up the "main" process id from the lwp here. */ 4772 4773 static struct address_space * 4774 linux_nat_thread_address_space (struct target_ops *t, ptid_t ptid) 4775 { 4776 struct lwp_info *lwp; 4777 struct inferior *inf; 4778 int pid; 4779 4780 pid = ptid_get_lwp (ptid); 4781 if (ptid_get_lwp (ptid) == 0) 4782 { 4783 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4784 tgid. */ 4785 lwp = find_lwp_pid (ptid); 4786 pid = ptid_get_pid (lwp->ptid); 4787 } 4788 else 4789 { 4790 /* A (pid,lwpid,0) ptid. */ 4791 pid = ptid_get_pid (ptid); 4792 } 4793 4794 inf = find_inferior_pid (pid); 4795 gdb_assert (inf != NULL); 4796 return inf->aspace; 4797 } 4798 4799 /* Return the cached value of the processor core for thread PTID. */ 4800 4801 static int 4802 linux_nat_core_of_thread (struct target_ops *ops, ptid_t ptid) 4803 { 4804 struct lwp_info *info = find_lwp_pid (ptid); 4805 4806 if (info) 4807 return info->core; 4808 return -1; 4809 } 4810 4811 void 4812 linux_nat_add_target (struct target_ops *t) 4813 { 4814 /* Save the provided single-threaded target. We save this in a separate 4815 variable because another target we've inherited from (e.g. inf-ptrace) 4816 may have saved a pointer to T; we want to use it for the final 4817 process stratum target. */ 4818 linux_ops_saved = *t; 4819 linux_ops = &linux_ops_saved; 4820 4821 /* Override some methods for multithreading. */ 4822 t->to_create_inferior = linux_nat_create_inferior; 4823 t->to_attach = linux_nat_attach; 4824 t->to_detach = linux_nat_detach; 4825 t->to_resume = linux_nat_resume; 4826 t->to_wait = linux_nat_wait; 4827 t->to_pass_signals = linux_nat_pass_signals; 4828 t->to_xfer_partial = linux_nat_xfer_partial; 4829 t->to_kill = linux_nat_kill; 4830 t->to_mourn_inferior = linux_nat_mourn_inferior; 4831 t->to_thread_alive = linux_nat_thread_alive; 4832 t->to_pid_to_str = linux_nat_pid_to_str; 4833 t->to_thread_name = linux_nat_thread_name; 4834 t->to_has_thread_control = tc_schedlock; 4835 t->to_thread_address_space = linux_nat_thread_address_space; 4836 t->to_stopped_by_watchpoint = linux_nat_stopped_by_watchpoint; 4837 t->to_stopped_data_address = linux_nat_stopped_data_address; 4838 4839 t->to_can_async_p = linux_nat_can_async_p; 4840 t->to_is_async_p = linux_nat_is_async_p; 4841 t->to_supports_non_stop = linux_nat_supports_non_stop; 4842 t->to_async = linux_nat_async; 4843 t->to_terminal_inferior = linux_nat_terminal_inferior; 4844 t->to_terminal_ours = linux_nat_terminal_ours; 4845 t->to_close = linux_nat_close; 4846 4847 /* Methods for non-stop support. */ 4848 t->to_stop = linux_nat_stop; 4849 4850 t->to_supports_multi_process = linux_nat_supports_multi_process; 4851 4852 t->to_supports_disable_randomization 4853 = linux_nat_supports_disable_randomization; 4854 4855 t->to_core_of_thread = linux_nat_core_of_thread; 4856 4857 /* We don't change the stratum; this target will sit at 4858 process_stratum and thread_db will set at thread_stratum. This 4859 is a little strange, since this is a multi-threaded-capable 4860 target, but we want to be on the stack below thread_db, and we 4861 also want to be used for single-threaded processes. */ 4862 4863 add_target (t); 4864 } 4865 4866 /* Register a method to call whenever a new thread is attached. */ 4867 void 4868 linux_nat_set_new_thread (struct target_ops *t, 4869 void (*new_thread) (struct lwp_info *)) 4870 { 4871 /* Save the pointer. We only support a single registered instance 4872 of the GNU/Linux native target, so we do not need to map this to 4873 T. */ 4874 linux_nat_new_thread = new_thread; 4875 } 4876 4877 /* See declaration in linux-nat.h. */ 4878 4879 void 4880 linux_nat_set_new_fork (struct target_ops *t, 4881 linux_nat_new_fork_ftype *new_fork) 4882 { 4883 /* Save the pointer. */ 4884 linux_nat_new_fork = new_fork; 4885 } 4886 4887 /* See declaration in linux-nat.h. */ 4888 4889 void 4890 linux_nat_set_forget_process (struct target_ops *t, 4891 linux_nat_forget_process_ftype *fn) 4892 { 4893 /* Save the pointer. */ 4894 linux_nat_forget_process_hook = fn; 4895 } 4896 4897 /* See declaration in linux-nat.h. */ 4898 4899 void 4900 linux_nat_forget_process (pid_t pid) 4901 { 4902 if (linux_nat_forget_process_hook != NULL) 4903 linux_nat_forget_process_hook (pid); 4904 } 4905 4906 /* Register a method that converts a siginfo object between the layout 4907 that ptrace returns, and the layout in the architecture of the 4908 inferior. */ 4909 void 4910 linux_nat_set_siginfo_fixup (struct target_ops *t, 4911 int (*siginfo_fixup) (siginfo_t *, 4912 gdb_byte *, 4913 int)) 4914 { 4915 /* Save the pointer. */ 4916 linux_nat_siginfo_fixup = siginfo_fixup; 4917 } 4918 4919 /* Register a method to call prior to resuming a thread. */ 4920 4921 void 4922 linux_nat_set_prepare_to_resume (struct target_ops *t, 4923 void (*prepare_to_resume) (struct lwp_info *)) 4924 { 4925 /* Save the pointer. */ 4926 linux_nat_prepare_to_resume = prepare_to_resume; 4927 } 4928 4929 /* See linux-nat.h. */ 4930 4931 int 4932 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4933 { 4934 int pid; 4935 4936 pid = ptid_get_lwp (ptid); 4937 if (pid == 0) 4938 pid = ptid_get_pid (ptid); 4939 4940 errno = 0; 4941 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 4942 if (errno != 0) 4943 { 4944 memset (siginfo, 0, sizeof (*siginfo)); 4945 return 0; 4946 } 4947 return 1; 4948 } 4949 4950 /* Provide a prototype to silence -Wmissing-prototypes. */ 4951 extern initialize_file_ftype _initialize_linux_nat; 4952 4953 void 4954 _initialize_linux_nat (void) 4955 { 4956 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 4957 &debug_linux_nat, _("\ 4958 Set debugging of GNU/Linux lwp module."), _("\ 4959 Show debugging of GNU/Linux lwp module."), _("\ 4960 Enables printf debugging output."), 4961 NULL, 4962 show_debug_linux_nat, 4963 &setdebuglist, &showdebuglist); 4964 4965 /* Save this mask as the default. */ 4966 sigprocmask (SIG_SETMASK, NULL, &normal_mask); 4967 4968 /* Install a SIGCHLD handler. */ 4969 sigchld_action.sa_handler = sigchld_handler; 4970 sigemptyset (&sigchld_action.sa_mask); 4971 sigchld_action.sa_flags = SA_RESTART; 4972 4973 /* Make it the default. */ 4974 sigaction (SIGCHLD, &sigchld_action, NULL); 4975 4976 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 4977 sigprocmask (SIG_SETMASK, NULL, &suspend_mask); 4978 sigdelset (&suspend_mask, SIGCHLD); 4979 4980 sigemptyset (&blocked_mask); 4981 } 4982 4983 4984 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 4985 the GNU/Linux Threads library and therefore doesn't really belong 4986 here. */ 4987 4988 /* Read variable NAME in the target and return its value if found. 4989 Otherwise return zero. It is assumed that the type of the variable 4990 is `int'. */ 4991 4992 static int 4993 get_signo (const char *name) 4994 { 4995 struct minimal_symbol *ms; 4996 int signo; 4997 4998 ms = lookup_minimal_symbol (name, NULL, NULL); 4999 if (ms == NULL) 5000 return 0; 5001 5002 if (target_read_memory (SYMBOL_VALUE_ADDRESS (ms), (gdb_byte *) &signo, 5003 sizeof (signo)) != 0) 5004 return 0; 5005 5006 return signo; 5007 } 5008 5009 /* Return the set of signals used by the threads library in *SET. */ 5010 5011 void 5012 lin_thread_get_thread_signals (sigset_t *set) 5013 { 5014 struct sigaction action; 5015 int restart, cancel; 5016 5017 sigemptyset (&blocked_mask); 5018 sigemptyset (set); 5019 5020 restart = get_signo ("__pthread_sig_restart"); 5021 cancel = get_signo ("__pthread_sig_cancel"); 5022 5023 /* LinuxThreads normally uses the first two RT signals, but in some legacy 5024 cases may use SIGUSR1/SIGUSR2. NPTL always uses RT signals, but does 5025 not provide any way for the debugger to query the signal numbers - 5026 fortunately they don't change! */ 5027 5028 if (restart == 0) 5029 restart = __SIGRTMIN; 5030 5031 if (cancel == 0) 5032 cancel = __SIGRTMIN + 1; 5033 5034 sigaddset (set, restart); 5035 sigaddset (set, cancel); 5036 5037 /* The GNU/Linux Threads library makes terminating threads send a 5038 special "cancel" signal instead of SIGCHLD. Make sure we catch 5039 those (to prevent them from terminating GDB itself, which is 5040 likely to be their default action) and treat them the same way as 5041 SIGCHLD. */ 5042 5043 action.sa_handler = sigchld_handler; 5044 sigemptyset (&action.sa_mask); 5045 action.sa_flags = SA_RESTART; 5046 sigaction (cancel, &action, NULL); 5047 5048 /* We block the "cancel" signal throughout this code ... */ 5049 sigaddset (&blocked_mask, cancel); 5050 sigprocmask (SIG_BLOCK, &blocked_mask, NULL); 5051 5052 /* ... except during a sigsuspend. */ 5053 sigdelset (&suspend_mask, cancel); 5054 } 5055