xref: /netbsd-src/external/gpl3/gdb/dist/gdb/linux-nat.c (revision 82d56013d7b633d116a93943de88e08335357a7c)
1 /* GNU/Linux native-dependent code common to multiple platforms.
2 
3    Copyright (C) 2001-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "inferior.h"
22 #include "infrun.h"
23 #include "target.h"
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdbsupport/gdb_wait.h"
27 #include <unistd.h>
28 #include <sys/syscall.h>
29 #include "nat/gdb_ptrace.h"
30 #include "linux-nat.h"
31 #include "nat/linux-ptrace.h"
32 #include "nat/linux-procfs.h"
33 #include "nat/linux-personality.h"
34 #include "linux-fork.h"
35 #include "gdbthread.h"
36 #include "gdbcmd.h"
37 #include "regcache.h"
38 #include "regset.h"
39 #include "inf-child.h"
40 #include "inf-ptrace.h"
41 #include "auxv.h"
42 #include <sys/procfs.h>		/* for elf_gregset etc.  */
43 #include "elf-bfd.h"		/* for elfcore_write_* */
44 #include "gregset.h"		/* for gregset */
45 #include "gdbcore.h"		/* for get_exec_file */
46 #include <ctype.h>		/* for isdigit */
47 #include <sys/stat.h>		/* for struct stat */
48 #include <fcntl.h>		/* for O_RDONLY */
49 #include "inf-loop.h"
50 #include "gdbsupport/event-loop.h"
51 #include "event-top.h"
52 #include <pwd.h>
53 #include <sys/types.h>
54 #include <dirent.h>
55 #include "xml-support.h"
56 #include <sys/vfs.h>
57 #include "solib.h"
58 #include "nat/linux-osdata.h"
59 #include "linux-tdep.h"
60 #include "symfile.h"
61 #include "gdbsupport/agent.h"
62 #include "tracepoint.h"
63 #include "gdbsupport/buffer.h"
64 #include "target-descriptions.h"
65 #include "gdbsupport/filestuff.h"
66 #include "objfiles.h"
67 #include "nat/linux-namespaces.h"
68 #include "gdbsupport/fileio.h"
69 #include "gdbsupport/scope-exit.h"
70 #include "gdbsupport/gdb-sigmask.h"
71 #include "debug.h"
72 
73 /* This comment documents high-level logic of this file.
74 
75 Waiting for events in sync mode
76 ===============================
77 
78 When waiting for an event in a specific thread, we just use waitpid,
79 passing the specific pid, and not passing WNOHANG.
80 
81 When waiting for an event in all threads, waitpid is not quite good:
82 
83 - If the thread group leader exits while other threads in the thread
84   group still exist, waitpid(TGID, ...) hangs.  That waitpid won't
85   return an exit status until the other threads in the group are
86   reaped.
87 
88 - When a non-leader thread execs, that thread just vanishes without
89   reporting an exit (so we'd hang if we waited for it explicitly in
90   that case).  The exec event is instead reported to the TGID pid.
91 
92 The solution is to always use -1 and WNOHANG, together with
93 sigsuspend.
94 
95 First, we use non-blocking waitpid to check for events.  If nothing is
96 found, we use sigsuspend to wait for SIGCHLD.  When SIGCHLD arrives,
97 it means something happened to a child process.  As soon as we know
98 there's an event, we get back to calling nonblocking waitpid.
99 
100 Note that SIGCHLD should be blocked between waitpid and sigsuspend
101 calls, so that we don't miss a signal.  If SIGCHLD arrives in between,
102 when it's blocked, the signal becomes pending and sigsuspend
103 immediately notices it and returns.
104 
105 Waiting for events in async mode (TARGET_WNOHANG)
106 =================================================
107 
108 In async mode, GDB should always be ready to handle both user input
109 and target events, so neither blocking waitpid nor sigsuspend are
110 viable options.  Instead, we should asynchronously notify the GDB main
111 event loop whenever there's an unprocessed event from the target.  We
112 detect asynchronous target events by handling SIGCHLD signals.  To
113 notify the event loop about target events, the self-pipe trick is used
114 --- a pipe is registered as waitable event source in the event loop,
115 the event loop select/poll's on the read end of this pipe (as well on
116 other event sources, e.g., stdin), and the SIGCHLD handler writes a
117 byte to this pipe.  This is more portable than relying on
118 pselect/ppoll, since on kernels that lack those syscalls, libc
119 emulates them with select/poll+sigprocmask, and that is racy
120 (a.k.a. plain broken).
121 
122 Obviously, if we fail to notify the event loop if there's a target
123 event, it's bad.  OTOH, if we notify the event loop when there's no
124 event from the target, linux_nat_wait will detect that there's no real
125 event to report, and return event of type TARGET_WAITKIND_IGNORE.
126 This is mostly harmless, but it will waste time and is better avoided.
127 
128 The main design point is that every time GDB is outside linux-nat.c,
129 we have a SIGCHLD handler installed that is called when something
130 happens to the target and notifies the GDB event loop.  Whenever GDB
131 core decides to handle the event, and calls into linux-nat.c, we
132 process things as in sync mode, except that the we never block in
133 sigsuspend.
134 
135 While processing an event, we may end up momentarily blocked in
136 waitpid calls.  Those waitpid calls, while blocking, are guarantied to
137 return quickly.  E.g., in all-stop mode, before reporting to the core
138 that an LWP hit a breakpoint, all LWPs are stopped by sending them
139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported.
140 Note that this is different from blocking indefinitely waiting for the
141 next event --- here, we're already handling an event.
142 
143 Use of signals
144 ==============
145 
146 We stop threads by sending a SIGSTOP.  The use of SIGSTOP instead of another
147 signal is not entirely significant; we just need for a signal to be delivered,
148 so that we can intercept it.  SIGSTOP's advantage is that it can not be
149 blocked.  A disadvantage is that it is not a real-time signal, so it can only
150 be queued once; we do not keep track of other sources of SIGSTOP.
151 
152 Two other signals that can't be blocked are SIGCONT and SIGKILL.  But we can't
153 use them, because they have special behavior when the signal is generated -
154 not when it is delivered.  SIGCONT resumes the entire thread group and SIGKILL
155 kills the entire thread group.
156 
157 A delivered SIGSTOP would stop the entire thread group, not just the thread we
158 tkill'd.  But we never let the SIGSTOP be delivered; we always intercept and
159 cancel it (by PTRACE_CONT without passing SIGSTOP).
160 
161 We could use a real-time signal instead.  This would solve those problems; we
162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB.
163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH
164 generates it, and there are races with trying to find a signal that is not
165 blocked.
166 
167 Exec events
168 ===========
169 
170 The case of a thread group (process) with 3 or more threads, and a
171 thread other than the leader execs is worth detailing:
172 
173 On an exec, the Linux kernel destroys all threads except the execing
174 one in the thread group, and resets the execing thread's tid to the
175 tgid.  No exit notification is sent for the execing thread -- from the
176 ptracer's perspective, it appears as though the execing thread just
177 vanishes.  Until we reap all other threads except the leader and the
178 execing thread, the leader will be zombie, and the execing thread will
179 be in `D (disc sleep)' state.  As soon as all other threads are
180 reaped, the execing thread changes its tid to the tgid, and the
181 previous (zombie) leader vanishes, giving place to the "new"
182 leader.  */
183 
184 #ifndef O_LARGEFILE
185 #define O_LARGEFILE 0
186 #endif
187 
188 struct linux_nat_target *linux_target;
189 
190 /* Does the current host support PTRACE_GETREGSET?  */
191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN;
192 
193 static unsigned int debug_linux_nat;
194 static void
195 show_debug_linux_nat (struct ui_file *file, int from_tty,
196 		      struct cmd_list_element *c, const char *value)
197 {
198   fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"),
199 		    value);
200 }
201 
202 /* Print a debug statement.  Should be used through linux_nat_debug_printf.  */
203 
204 static void ATTRIBUTE_PRINTF (2, 3)
205 linux_nat_debug_printf_1 (const char *func_name, const char *fmt, ...)
206 {
207   va_list ap;
208   va_start (ap, fmt);
209   debug_prefixed_vprintf ("linux-nat", func_name, fmt, ap);
210   va_end (ap);
211 }
212 
213 #define linux_nat_debug_printf(fmt, ...) \
214   do { \
215     if (debug_linux_nat) \
216       linux_nat_debug_printf_1 (__func__, fmt, ##__VA_ARGS__); \
217   } while (0)
218 
219 struct simple_pid_list
220 {
221   int pid;
222   int status;
223   struct simple_pid_list *next;
224 };
225 static struct simple_pid_list *stopped_pids;
226 
227 /* Whether target_thread_events is in effect.  */
228 static int report_thread_events;
229 
230 /* Async mode support.  */
231 
232 /* The read/write ends of the pipe registered as waitable file in the
233    event loop.  */
234 static int linux_nat_event_pipe[2] = { -1, -1 };
235 
236 /* True if we're currently in async mode.  */
237 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1)
238 
239 /* Flush the event pipe.  */
240 
241 static void
242 async_file_flush (void)
243 {
244   int ret;
245   char buf;
246 
247   do
248     {
249       ret = read (linux_nat_event_pipe[0], &buf, 1);
250     }
251   while (ret >= 0 || (ret == -1 && errno == EINTR));
252 }
253 
254 /* Put something (anything, doesn't matter what, or how much) in event
255    pipe, so that the select/poll in the event-loop realizes we have
256    something to process.  */
257 
258 static void
259 async_file_mark (void)
260 {
261   int ret;
262 
263   /* It doesn't really matter what the pipe contains, as long we end
264      up with something in it.  Might as well flush the previous
265      left-overs.  */
266   async_file_flush ();
267 
268   do
269     {
270       ret = write (linux_nat_event_pipe[1], "+", 1);
271     }
272   while (ret == -1 && errno == EINTR);
273 
274   /* Ignore EAGAIN.  If the pipe is full, the event loop will already
275      be awakened anyway.  */
276 }
277 
278 static int kill_lwp (int lwpid, int signo);
279 
280 static int stop_callback (struct lwp_info *lp);
281 
282 static void block_child_signals (sigset_t *prev_mask);
283 static void restore_child_signals_mask (sigset_t *prev_mask);
284 
285 struct lwp_info;
286 static struct lwp_info *add_lwp (ptid_t ptid);
287 static void purge_lwp_list (int pid);
288 static void delete_lwp (ptid_t ptid);
289 static struct lwp_info *find_lwp_pid (ptid_t ptid);
290 
291 static int lwp_status_pending_p (struct lwp_info *lp);
292 
293 static void save_stop_reason (struct lwp_info *lp);
294 
295 
296 /* LWP accessors.  */
297 
298 /* See nat/linux-nat.h.  */
299 
300 ptid_t
301 ptid_of_lwp (struct lwp_info *lwp)
302 {
303   return lwp->ptid;
304 }
305 
306 /* See nat/linux-nat.h.  */
307 
308 void
309 lwp_set_arch_private_info (struct lwp_info *lwp,
310 			   struct arch_lwp_info *info)
311 {
312   lwp->arch_private = info;
313 }
314 
315 /* See nat/linux-nat.h.  */
316 
317 struct arch_lwp_info *
318 lwp_arch_private_info (struct lwp_info *lwp)
319 {
320   return lwp->arch_private;
321 }
322 
323 /* See nat/linux-nat.h.  */
324 
325 int
326 lwp_is_stopped (struct lwp_info *lwp)
327 {
328   return lwp->stopped;
329 }
330 
331 /* See nat/linux-nat.h.  */
332 
333 enum target_stop_reason
334 lwp_stop_reason (struct lwp_info *lwp)
335 {
336   return lwp->stop_reason;
337 }
338 
339 /* See nat/linux-nat.h.  */
340 
341 int
342 lwp_is_stepping (struct lwp_info *lwp)
343 {
344   return lwp->step;
345 }
346 
347 
348 /* Trivial list manipulation functions to keep track of a list of
349    new stopped processes.  */
350 static void
351 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
352 {
353   struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
354 
355   new_pid->pid = pid;
356   new_pid->status = status;
357   new_pid->next = *listp;
358   *listp = new_pid;
359 }
360 
361 static int
362 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
363 {
364   struct simple_pid_list **p;
365 
366   for (p = listp; *p != NULL; p = &(*p)->next)
367     if ((*p)->pid == pid)
368       {
369 	struct simple_pid_list *next = (*p)->next;
370 
371 	*statusp = (*p)->status;
372 	xfree (*p);
373 	*p = next;
374 	return 1;
375       }
376   return 0;
377 }
378 
379 /* Return the ptrace options that we want to try to enable.  */
380 
381 static int
382 linux_nat_ptrace_options (int attached)
383 {
384   int options = 0;
385 
386   if (!attached)
387     options |= PTRACE_O_EXITKILL;
388 
389   options |= (PTRACE_O_TRACESYSGOOD
390 	      | PTRACE_O_TRACEVFORKDONE
391 	      | PTRACE_O_TRACEVFORK
392 	      | PTRACE_O_TRACEFORK
393 	      | PTRACE_O_TRACEEXEC);
394 
395   return options;
396 }
397 
398 /* Initialize ptrace and procfs warnings and check for supported
399    ptrace features given PID.
400 
401    ATTACHED should be nonzero iff we attached to the inferior.  */
402 
403 static void
404 linux_init_ptrace_procfs (pid_t pid, int attached)
405 {
406   int options = linux_nat_ptrace_options (attached);
407 
408   linux_enable_event_reporting (pid, options);
409   linux_ptrace_init_warnings ();
410   linux_proc_init_warnings ();
411 }
412 
413 linux_nat_target::~linux_nat_target ()
414 {}
415 
416 void
417 linux_nat_target::post_attach (int pid)
418 {
419   linux_init_ptrace_procfs (pid, 1);
420 }
421 
422 void
423 linux_nat_target::post_startup_inferior (ptid_t ptid)
424 {
425   linux_init_ptrace_procfs (ptid.pid (), 0);
426 }
427 
428 /* Return the number of known LWPs in the tgid given by PID.  */
429 
430 static int
431 num_lwps (int pid)
432 {
433   int count = 0;
434   struct lwp_info *lp;
435 
436   for (lp = lwp_list; lp; lp = lp->next)
437     if (lp->ptid.pid () == pid)
438       count++;
439 
440   return count;
441 }
442 
443 /* Deleter for lwp_info unique_ptr specialisation.  */
444 
445 struct lwp_deleter
446 {
447   void operator() (struct lwp_info *lwp) const
448   {
449     delete_lwp (lwp->ptid);
450   }
451 };
452 
453 /* A unique_ptr specialisation for lwp_info.  */
454 
455 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up;
456 
457 /* Target hook for follow_fork.  On entry inferior_ptid must be the
458    ptid of the followed inferior.  At return, inferior_ptid will be
459    unchanged.  */
460 
461 bool
462 linux_nat_target::follow_fork (bool follow_child, bool detach_fork)
463 {
464   if (!follow_child)
465     {
466       struct lwp_info *child_lp = NULL;
467       int has_vforked;
468       ptid_t parent_ptid, child_ptid;
469       int parent_pid, child_pid;
470 
471       has_vforked = (inferior_thread ()->pending_follow.kind
472 		     == TARGET_WAITKIND_VFORKED);
473       parent_ptid = inferior_ptid;
474       child_ptid = inferior_thread ()->pending_follow.value.related_pid;
475       parent_pid = parent_ptid.lwp ();
476       child_pid = child_ptid.lwp ();
477 
478       /* We're already attached to the parent, by default.  */
479       child_lp = add_lwp (child_ptid);
480       child_lp->stopped = 1;
481       child_lp->last_resume_kind = resume_stop;
482 
483       /* Detach new forked process?  */
484       if (detach_fork)
485 	{
486 	  int child_stop_signal = 0;
487 	  bool detach_child = true;
488 
489 	  /* Move CHILD_LP into a unique_ptr and clear the source pointer
490 	     to prevent us doing anything stupid with it.  */
491 	  lwp_info_up child_lp_ptr (child_lp);
492 	  child_lp = nullptr;
493 
494 	  linux_target->low_prepare_to_resume (child_lp_ptr.get ());
495 
496 	  /* When debugging an inferior in an architecture that supports
497 	     hardware single stepping on a kernel without commit
498 	     6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child
499 	     process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits
500 	     set if the parent process had them set.
501 	     To work around this, single step the child process
502 	     once before detaching to clear the flags.  */
503 
504 	  /* Note that we consult the parent's architecture instead of
505 	     the child's because there's no inferior for the child at
506 	     this point.  */
507 	  if (!gdbarch_software_single_step_p (target_thread_architecture
508 					       (parent_ptid)))
509 	    {
510 	      int status;
511 
512 	      linux_disable_event_reporting (child_pid);
513 	      if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0)
514 		perror_with_name (_("Couldn't do single step"));
515 	      if (my_waitpid (child_pid, &status, 0) < 0)
516 		perror_with_name (_("Couldn't wait vfork process"));
517 	      else
518 		{
519 		  detach_child = WIFSTOPPED (status);
520 		  child_stop_signal = WSTOPSIG (status);
521 		}
522 	    }
523 
524 	  if (detach_child)
525 	    {
526 	      int signo = child_stop_signal;
527 
528 	      if (signo != 0
529 		  && !signal_pass_state (gdb_signal_from_host (signo)))
530 		signo = 0;
531 	      ptrace (PTRACE_DETACH, child_pid, 0, signo);
532 	    }
533 	}
534       else
535 	{
536 	  /* Switching inferior_ptid is not enough, because then
537 	     inferior_thread () would crash by not finding the thread
538 	     in the current inferior.  */
539 	  scoped_restore_current_thread restore_current_thread;
540 	  thread_info *child = find_thread_ptid (this, child_ptid);
541 	  switch_to_thread (child);
542 
543 	  /* Let the thread_db layer learn about this new process.  */
544 	  check_for_thread_db ();
545 	}
546 
547       if (has_vforked)
548 	{
549 	  struct lwp_info *parent_lp;
550 
551 	  parent_lp = find_lwp_pid (parent_ptid);
552 	  gdb_assert (linux_supports_tracefork () >= 0);
553 
554 	  if (linux_supports_tracevforkdone ())
555 	    {
556 	      linux_nat_debug_printf ("waiting for VFORK_DONE on %d",
557 				      parent_pid);
558 	      parent_lp->stopped = 1;
559 
560 	      /* We'll handle the VFORK_DONE event like any other
561 		 event, in target_wait.  */
562 	    }
563 	  else
564 	    {
565 	      /* We can't insert breakpoints until the child has
566 		 finished with the shared memory region.  We need to
567 		 wait until that happens.  Ideal would be to just
568 		 call:
569 		 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0);
570 		 - waitpid (parent_pid, &status, __WALL);
571 		 However, most architectures can't handle a syscall
572 		 being traced on the way out if it wasn't traced on
573 		 the way in.
574 
575 		 We might also think to loop, continuing the child
576 		 until it exits or gets a SIGTRAP.  One problem is
577 		 that the child might call ptrace with PTRACE_TRACEME.
578 
579 		 There's no simple and reliable way to figure out when
580 		 the vforked child will be done with its copy of the
581 		 shared memory.  We could step it out of the syscall,
582 		 two instructions, let it go, and then single-step the
583 		 parent once.  When we have hardware single-step, this
584 		 would work; with software single-step it could still
585 		 be made to work but we'd have to be able to insert
586 		 single-step breakpoints in the child, and we'd have
587 		 to insert -just- the single-step breakpoint in the
588 		 parent.  Very awkward.
589 
590 		 In the end, the best we can do is to make sure it
591 		 runs for a little while.  Hopefully it will be out of
592 		 range of any breakpoints we reinsert.  Usually this
593 		 is only the single-step breakpoint at vfork's return
594 		 point.  */
595 
596 	      linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit");
597 
598 	      usleep (10000);
599 
600 	      /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event,
601 		 and leave it pending.  The next linux_nat_resume call
602 		 will notice a pending event, and bypasses actually
603 		 resuming the inferior.  */
604 	      parent_lp->status = 0;
605 	      parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
606 	      parent_lp->stopped = 1;
607 
608 	      /* If we're in async mode, need to tell the event loop
609 		 there's something here to process.  */
610 	      if (target_is_async_p ())
611 		async_file_mark ();
612 	    }
613 	}
614     }
615   else
616     {
617       struct lwp_info *child_lp;
618 
619       child_lp = add_lwp (inferior_ptid);
620       child_lp->stopped = 1;
621       child_lp->last_resume_kind = resume_stop;
622 
623       /* Let the thread_db layer learn about this new process.  */
624       check_for_thread_db ();
625     }
626 
627   return false;
628 }
629 
630 
631 int
632 linux_nat_target::insert_fork_catchpoint (int pid)
633 {
634   return !linux_supports_tracefork ();
635 }
636 
637 int
638 linux_nat_target::remove_fork_catchpoint (int pid)
639 {
640   return 0;
641 }
642 
643 int
644 linux_nat_target::insert_vfork_catchpoint (int pid)
645 {
646   return !linux_supports_tracefork ();
647 }
648 
649 int
650 linux_nat_target::remove_vfork_catchpoint (int pid)
651 {
652   return 0;
653 }
654 
655 int
656 linux_nat_target::insert_exec_catchpoint (int pid)
657 {
658   return !linux_supports_tracefork ();
659 }
660 
661 int
662 linux_nat_target::remove_exec_catchpoint (int pid)
663 {
664   return 0;
665 }
666 
667 int
668 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
669 					  gdb::array_view<const int> syscall_counts)
670 {
671   if (!linux_supports_tracesysgood ())
672     return 1;
673 
674   /* On GNU/Linux, we ignore the arguments.  It means that we only
675      enable the syscall catchpoints, but do not disable them.
676 
677      Also, we do not use the `syscall_counts' information because we do not
678      filter system calls here.  We let GDB do the logic for us.  */
679   return 0;
680 }
681 
682 /* List of known LWPs, keyed by LWP PID.  This speeds up the common
683    case of mapping a PID returned from the kernel to our corresponding
684    lwp_info data structure.  */
685 static htab_t lwp_lwpid_htab;
686 
687 /* Calculate a hash from a lwp_info's LWP PID.  */
688 
689 static hashval_t
690 lwp_info_hash (const void *ap)
691 {
692   const struct lwp_info *lp = (struct lwp_info *) ap;
693   pid_t pid = lp->ptid.lwp ();
694 
695   return iterative_hash_object (pid, 0);
696 }
697 
698 /* Equality function for the lwp_info hash table.  Compares the LWP's
699    PID.  */
700 
701 static int
702 lwp_lwpid_htab_eq (const void *a, const void *b)
703 {
704   const struct lwp_info *entry = (const struct lwp_info *) a;
705   const struct lwp_info *element = (const struct lwp_info *) b;
706 
707   return entry->ptid.lwp () == element->ptid.lwp ();
708 }
709 
710 /* Create the lwp_lwpid_htab hash table.  */
711 
712 static void
713 lwp_lwpid_htab_create (void)
714 {
715   lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL);
716 }
717 
718 /* Add LP to the hash table.  */
719 
720 static void
721 lwp_lwpid_htab_add_lwp (struct lwp_info *lp)
722 {
723   void **slot;
724 
725   slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT);
726   gdb_assert (slot != NULL && *slot == NULL);
727   *slot = lp;
728 }
729 
730 /* Head of doubly-linked list of known LWPs.  Sorted by reverse
731    creation order.  This order is assumed in some cases.  E.g.,
732    reaping status after killing alls lwps of a process: the leader LWP
733    must be reaped last.  */
734 struct lwp_info *lwp_list;
735 
736 /* Add LP to sorted-by-reverse-creation-order doubly-linked list.  */
737 
738 static void
739 lwp_list_add (struct lwp_info *lp)
740 {
741   lp->next = lwp_list;
742   if (lwp_list != NULL)
743     lwp_list->prev = lp;
744   lwp_list = lp;
745 }
746 
747 /* Remove LP from sorted-by-reverse-creation-order doubly-linked
748    list.  */
749 
750 static void
751 lwp_list_remove (struct lwp_info *lp)
752 {
753   /* Remove from sorted-by-creation-order list.  */
754   if (lp->next != NULL)
755     lp->next->prev = lp->prev;
756   if (lp->prev != NULL)
757     lp->prev->next = lp->next;
758   if (lp == lwp_list)
759     lwp_list = lp->next;
760 }
761 
762 
763 
764 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in
765    _initialize_linux_nat.  */
766 static sigset_t suspend_mask;
767 
768 /* Signals to block to make that sigsuspend work.  */
769 static sigset_t blocked_mask;
770 
771 /* SIGCHLD action.  */
772 struct sigaction sigchld_action;
773 
774 /* Block child signals (SIGCHLD and linux threads signals), and store
775    the previous mask in PREV_MASK.  */
776 
777 static void
778 block_child_signals (sigset_t *prev_mask)
779 {
780   /* Make sure SIGCHLD is blocked.  */
781   if (!sigismember (&blocked_mask, SIGCHLD))
782     sigaddset (&blocked_mask, SIGCHLD);
783 
784   gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask);
785 }
786 
787 /* Restore child signals mask, previously returned by
788    block_child_signals.  */
789 
790 static void
791 restore_child_signals_mask (sigset_t *prev_mask)
792 {
793   gdb_sigmask (SIG_SETMASK, prev_mask, NULL);
794 }
795 
796 /* Mask of signals to pass directly to the inferior.  */
797 static sigset_t pass_mask;
798 
799 /* Update signals to pass to the inferior.  */
800 void
801 linux_nat_target::pass_signals
802   (gdb::array_view<const unsigned char> pass_signals)
803 {
804   int signo;
805 
806   sigemptyset (&pass_mask);
807 
808   for (signo = 1; signo < NSIG; signo++)
809     {
810       int target_signo = gdb_signal_from_host (signo);
811       if (target_signo < pass_signals.size () && pass_signals[target_signo])
812         sigaddset (&pass_mask, signo);
813     }
814 }
815 
816 
817 
818 /* Prototypes for local functions.  */
819 static int stop_wait_callback (struct lwp_info *lp);
820 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid);
821 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
822 
823 
824 
825 /* Destroy and free LP.  */
826 
827 static void
828 lwp_free (struct lwp_info *lp)
829 {
830   /* Let the arch specific bits release arch_lwp_info.  */
831   linux_target->low_delete_thread (lp->arch_private);
832 
833   xfree (lp);
834 }
835 
836 /* Traversal function for purge_lwp_list.  */
837 
838 static int
839 lwp_lwpid_htab_remove_pid (void **slot, void *info)
840 {
841   struct lwp_info *lp = (struct lwp_info *) *slot;
842   int pid = *(int *) info;
843 
844   if (lp->ptid.pid () == pid)
845     {
846       htab_clear_slot (lwp_lwpid_htab, slot);
847       lwp_list_remove (lp);
848       lwp_free (lp);
849     }
850 
851   return 1;
852 }
853 
854 /* Remove all LWPs belong to PID from the lwp list.  */
855 
856 static void
857 purge_lwp_list (int pid)
858 {
859   htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid);
860 }
861 
862 /* Add the LWP specified by PTID to the list.  PTID is the first LWP
863    in the process.  Return a pointer to the structure describing the
864    new LWP.
865 
866    This differs from add_lwp in that we don't let the arch specific
867    bits know about this new thread.  Current clients of this callback
868    take the opportunity to install watchpoints in the new thread, and
869    we shouldn't do that for the first thread.  If we're spawning a
870    child ("run"), the thread executes the shell wrapper first, and we
871    shouldn't touch it until it execs the program we want to debug.
872    For "attach", it'd be okay to call the callback, but it's not
873    necessary, because watchpoints can't yet have been inserted into
874    the inferior.  */
875 
876 static struct lwp_info *
877 add_initial_lwp (ptid_t ptid)
878 {
879   struct lwp_info *lp;
880 
881   gdb_assert (ptid.lwp_p ());
882 
883   lp = XNEW (struct lwp_info);
884 
885   memset (lp, 0, sizeof (struct lwp_info));
886 
887   lp->last_resume_kind = resume_continue;
888   lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
889 
890   lp->ptid = ptid;
891   lp->core = -1;
892 
893   /* Add to sorted-by-reverse-creation-order list.  */
894   lwp_list_add (lp);
895 
896   /* Add to keyed-by-pid htab.  */
897   lwp_lwpid_htab_add_lwp (lp);
898 
899   return lp;
900 }
901 
902 /* Add the LWP specified by PID to the list.  Return a pointer to the
903    structure describing the new LWP.  The LWP should already be
904    stopped.  */
905 
906 static struct lwp_info *
907 add_lwp (ptid_t ptid)
908 {
909   struct lwp_info *lp;
910 
911   lp = add_initial_lwp (ptid);
912 
913   /* Let the arch specific bits know about this new thread.  Current
914      clients of this callback take the opportunity to install
915      watchpoints in the new thread.  We don't do this for the first
916      thread though.  See add_initial_lwp.  */
917   linux_target->low_new_thread (lp);
918 
919   return lp;
920 }
921 
922 /* Remove the LWP specified by PID from the list.  */
923 
924 static void
925 delete_lwp (ptid_t ptid)
926 {
927   struct lwp_info *lp;
928   void **slot;
929   struct lwp_info dummy;
930 
931   dummy.ptid = ptid;
932   slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT);
933   if (slot == NULL)
934     return;
935 
936   lp = *(struct lwp_info **) slot;
937   gdb_assert (lp != NULL);
938 
939   htab_clear_slot (lwp_lwpid_htab, slot);
940 
941   /* Remove from sorted-by-creation-order list.  */
942   lwp_list_remove (lp);
943 
944   /* Release.  */
945   lwp_free (lp);
946 }
947 
948 /* Return a pointer to the structure describing the LWP corresponding
949    to PID.  If no corresponding LWP could be found, return NULL.  */
950 
951 static struct lwp_info *
952 find_lwp_pid (ptid_t ptid)
953 {
954   struct lwp_info *lp;
955   int lwp;
956   struct lwp_info dummy;
957 
958   if (ptid.lwp_p ())
959     lwp = ptid.lwp ();
960   else
961     lwp = ptid.pid ();
962 
963   dummy.ptid = ptid_t (0, lwp, 0);
964   lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy);
965   return lp;
966 }
967 
968 /* See nat/linux-nat.h.  */
969 
970 struct lwp_info *
971 iterate_over_lwps (ptid_t filter,
972 		   gdb::function_view<iterate_over_lwps_ftype> callback)
973 {
974   struct lwp_info *lp, *lpnext;
975 
976   for (lp = lwp_list; lp; lp = lpnext)
977     {
978       lpnext = lp->next;
979 
980       if (lp->ptid.matches (filter))
981 	{
982 	  if (callback (lp) != 0)
983 	    return lp;
984 	}
985     }
986 
987   return NULL;
988 }
989 
990 /* Update our internal state when changing from one checkpoint to
991    another indicated by NEW_PTID.  We can only switch single-threaded
992    applications, so we only create one new LWP, and the previous list
993    is discarded.  */
994 
995 void
996 linux_nat_switch_fork (ptid_t new_ptid)
997 {
998   struct lwp_info *lp;
999 
1000   purge_lwp_list (inferior_ptid.pid ());
1001 
1002   lp = add_lwp (new_ptid);
1003   lp->stopped = 1;
1004 
1005   /* This changes the thread's ptid while preserving the gdb thread
1006      num.  Also changes the inferior pid, while preserving the
1007      inferior num.  */
1008   thread_change_ptid (linux_target, inferior_ptid, new_ptid);
1009 
1010   /* We've just told GDB core that the thread changed target id, but,
1011      in fact, it really is a different thread, with different register
1012      contents.  */
1013   registers_changed ();
1014 }
1015 
1016 /* Handle the exit of a single thread LP.  */
1017 
1018 static void
1019 exit_lwp (struct lwp_info *lp)
1020 {
1021   struct thread_info *th = find_thread_ptid (linux_target, lp->ptid);
1022 
1023   if (th)
1024     {
1025       if (print_thread_events)
1026 	printf_unfiltered (_("[%s exited]\n"),
1027 			   target_pid_to_str (lp->ptid).c_str ());
1028 
1029       delete_thread (th);
1030     }
1031 
1032   delete_lwp (lp->ptid);
1033 }
1034 
1035 /* Wait for the LWP specified by LP, which we have just attached to.
1036    Returns a wait status for that LWP, to cache.  */
1037 
1038 static int
1039 linux_nat_post_attach_wait (ptid_t ptid, int *signalled)
1040 {
1041   pid_t new_pid, pid = ptid.lwp ();
1042   int status;
1043 
1044   if (linux_proc_pid_is_stopped (pid))
1045     {
1046       linux_nat_debug_printf ("Attaching to a stopped process");
1047 
1048       /* The process is definitely stopped.  It is in a job control
1049 	 stop, unless the kernel predates the TASK_STOPPED /
1050 	 TASK_TRACED distinction, in which case it might be in a
1051 	 ptrace stop.  Make sure it is in a ptrace stop; from there we
1052 	 can kill it, signal it, et cetera.
1053 
1054          First make sure there is a pending SIGSTOP.  Since we are
1055 	 already attached, the process can not transition from stopped
1056 	 to running without a PTRACE_CONT; so we know this signal will
1057 	 go into the queue.  The SIGSTOP generated by PTRACE_ATTACH is
1058 	 probably already in the queue (unless this kernel is old
1059 	 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP
1060 	 is not an RT signal, it can only be queued once.  */
1061       kill_lwp (pid, SIGSTOP);
1062 
1063       /* Finally, resume the stopped process.  This will deliver the SIGSTOP
1064 	 (or a higher priority signal, just like normal PTRACE_ATTACH).  */
1065       ptrace (PTRACE_CONT, pid, 0, 0);
1066     }
1067 
1068   /* Make sure the initial process is stopped.  The user-level threads
1069      layer might want to poke around in the inferior, and that won't
1070      work if things haven't stabilized yet.  */
1071   new_pid = my_waitpid (pid, &status, __WALL);
1072   gdb_assert (pid == new_pid);
1073 
1074   if (!WIFSTOPPED (status))
1075     {
1076       /* The pid we tried to attach has apparently just exited.  */
1077       linux_nat_debug_printf ("Failed to stop %d: %s", pid,
1078 			      status_to_str (status));
1079       return status;
1080     }
1081 
1082   if (WSTOPSIG (status) != SIGSTOP)
1083     {
1084       *signalled = 1;
1085       linux_nat_debug_printf ("Received %s after attaching",
1086 			      status_to_str (status));
1087     }
1088 
1089   return status;
1090 }
1091 
1092 void
1093 linux_nat_target::create_inferior (const char *exec_file,
1094 				   const std::string &allargs,
1095 				   char **env, int from_tty)
1096 {
1097   maybe_disable_address_space_randomization restore_personality
1098     (disable_randomization);
1099 
1100   /* The fork_child mechanism is synchronous and calls target_wait, so
1101      we have to mask the async mode.  */
1102 
1103   /* Make sure we report all signals during startup.  */
1104   pass_signals ({});
1105 
1106   inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty);
1107 }
1108 
1109 /* Callback for linux_proc_attach_tgid_threads.  Attach to PTID if not
1110    already attached.  Returns true if a new LWP is found, false
1111    otherwise.  */
1112 
1113 static int
1114 attach_proc_task_lwp_callback (ptid_t ptid)
1115 {
1116   struct lwp_info *lp;
1117 
1118   /* Ignore LWPs we're already attached to.  */
1119   lp = find_lwp_pid (ptid);
1120   if (lp == NULL)
1121     {
1122       int lwpid = ptid.lwp ();
1123 
1124       if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0)
1125 	{
1126 	  int err = errno;
1127 
1128 	  /* Be quiet if we simply raced with the thread exiting.
1129 	     EPERM is returned if the thread's task still exists, and
1130 	     is marked as exited or zombie, as well as other
1131 	     conditions, so in that case, confirm the status in
1132 	     /proc/PID/status.  */
1133 	  if (err == ESRCH
1134 	      || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1135 	    {
1136 	      linux_nat_debug_printf
1137 		("Cannot attach to lwp %d: thread is gone (%d: %s)",
1138 		 lwpid, err, safe_strerror (err));
1139 
1140 	    }
1141 	  else
1142 	    {
1143 	      std::string reason
1144 		= linux_ptrace_attach_fail_reason_string (ptid, err);
1145 
1146 	      warning (_("Cannot attach to lwp %d: %s"),
1147 		       lwpid, reason.c_str ());
1148 	    }
1149 	}
1150       else
1151 	{
1152 	  linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)",
1153 				  target_pid_to_str (ptid).c_str ());
1154 
1155 	  lp = add_lwp (ptid);
1156 
1157 	  /* The next time we wait for this LWP we'll see a SIGSTOP as
1158 	     PTRACE_ATTACH brings it to a halt.  */
1159 	  lp->signalled = 1;
1160 
1161 	  /* We need to wait for a stop before being able to make the
1162 	     next ptrace call on this LWP.  */
1163 	  lp->must_set_ptrace_flags = 1;
1164 
1165 	  /* So that wait collects the SIGSTOP.  */
1166 	  lp->resumed = 1;
1167 
1168 	  /* Also add the LWP to gdb's thread list, in case a
1169 	     matching libthread_db is not found (or the process uses
1170 	     raw clone).  */
1171 	  add_thread (linux_target, lp->ptid);
1172 	  set_running (linux_target, lp->ptid, true);
1173 	  set_executing (linux_target, lp->ptid, true);
1174 	}
1175 
1176       return 1;
1177     }
1178   return 0;
1179 }
1180 
1181 void
1182 linux_nat_target::attach (const char *args, int from_tty)
1183 {
1184   struct lwp_info *lp;
1185   int status;
1186   ptid_t ptid;
1187 
1188   /* Make sure we report all signals during attach.  */
1189   pass_signals ({});
1190 
1191   try
1192     {
1193       inf_ptrace_target::attach (args, from_tty);
1194     }
1195   catch (const gdb_exception_error &ex)
1196     {
1197       pid_t pid = parse_pid_to_attach (args);
1198       std::string reason = linux_ptrace_attach_fail_reason (pid);
1199 
1200       if (!reason.empty ())
1201 	throw_error (ex.error, "warning: %s\n%s", reason.c_str (),
1202 		     ex.what ());
1203       else
1204 	throw_error (ex.error, "%s", ex.what ());
1205     }
1206 
1207   /* The ptrace base target adds the main thread with (pid,0,0)
1208      format.  Decorate it with lwp info.  */
1209   ptid = ptid_t (inferior_ptid.pid (),
1210 		 inferior_ptid.pid (),
1211 		 0);
1212   thread_change_ptid (linux_target, inferior_ptid, ptid);
1213 
1214   /* Add the initial process as the first LWP to the list.  */
1215   lp = add_initial_lwp (ptid);
1216 
1217   status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled);
1218   if (!WIFSTOPPED (status))
1219     {
1220       if (WIFEXITED (status))
1221 	{
1222 	  int exit_code = WEXITSTATUS (status);
1223 
1224 	  target_terminal::ours ();
1225 	  target_mourn_inferior (inferior_ptid);
1226 	  if (exit_code == 0)
1227 	    error (_("Unable to attach: program exited normally."));
1228 	  else
1229 	    error (_("Unable to attach: program exited with code %d."),
1230 		   exit_code);
1231 	}
1232       else if (WIFSIGNALED (status))
1233 	{
1234 	  enum gdb_signal signo;
1235 
1236 	  target_terminal::ours ();
1237 	  target_mourn_inferior (inferior_ptid);
1238 
1239 	  signo = gdb_signal_from_host (WTERMSIG (status));
1240 	  error (_("Unable to attach: program terminated with signal "
1241 		   "%s, %s."),
1242 		 gdb_signal_to_name (signo),
1243 		 gdb_signal_to_string (signo));
1244 	}
1245 
1246       internal_error (__FILE__, __LINE__,
1247 		      _("unexpected status %d for PID %ld"),
1248 		      status, (long) ptid.lwp ());
1249     }
1250 
1251   lp->stopped = 1;
1252 
1253   /* Save the wait status to report later.  */
1254   lp->resumed = 1;
1255   linux_nat_debug_printf ("waitpid %ld, saving status %s",
1256 			  (long) lp->ptid.pid (), status_to_str (status));
1257 
1258   lp->status = status;
1259 
1260   /* We must attach to every LWP.  If /proc is mounted, use that to
1261      find them now.  The inferior may be using raw clone instead of
1262      using pthreads.  But even if it is using pthreads, thread_db
1263      walks structures in the inferior's address space to find the list
1264      of threads/LWPs, and those structures may well be corrupted.
1265      Note that once thread_db is loaded, we'll still use it to list
1266      threads and associate pthread info with each LWP.  */
1267   linux_proc_attach_tgid_threads (lp->ptid.pid (),
1268 				  attach_proc_task_lwp_callback);
1269 
1270   if (target_can_async_p ())
1271     target_async (1);
1272 }
1273 
1274 /* Get pending signal of THREAD as a host signal number, for detaching
1275    purposes.  This is the signal the thread last stopped for, which we
1276    need to deliver to the thread when detaching, otherwise, it'd be
1277    suppressed/lost.  */
1278 
1279 static int
1280 get_detach_signal (struct lwp_info *lp)
1281 {
1282   enum gdb_signal signo = GDB_SIGNAL_0;
1283 
1284   /* If we paused threads momentarily, we may have stored pending
1285      events in lp->status or lp->waitstatus (see stop_wait_callback),
1286      and GDB core hasn't seen any signal for those threads.
1287      Otherwise, the last signal reported to the core is found in the
1288      thread object's stop_signal.
1289 
1290      There's a corner case that isn't handled here at present.  Only
1291      if the thread stopped with a TARGET_WAITKIND_STOPPED does
1292      stop_signal make sense as a real signal to pass to the inferior.
1293      Some catchpoint related events, like
1294      TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set
1295      to GDB_SIGNAL_SIGTRAP when the catchpoint triggers.  But,
1296      those traps are debug API (ptrace in our case) related and
1297      induced; the inferior wouldn't see them if it wasn't being
1298      traced.  Hence, we should never pass them to the inferior, even
1299      when set to pass state.  Since this corner case isn't handled by
1300      infrun.c when proceeding with a signal, for consistency, neither
1301      do we handle it here (or elsewhere in the file we check for
1302      signal pass state).  Normally SIGTRAP isn't set to pass state, so
1303      this is really a corner case.  */
1304 
1305   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
1306     signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal.  */
1307   else if (lp->status)
1308     signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1309   else
1310     {
1311       struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid);
1312 
1313       if (target_is_non_stop_p () && !tp->executing)
1314 	{
1315 	  if (tp->suspend.waitstatus_pending_p)
1316 	    signo = tp->suspend.waitstatus.value.sig;
1317 	  else
1318 	    signo = tp->suspend.stop_signal;
1319 	}
1320       else if (!target_is_non_stop_p ())
1321 	{
1322 	  ptid_t last_ptid;
1323 	  process_stratum_target *last_target;
1324 
1325 	  get_last_target_status (&last_target, &last_ptid, nullptr);
1326 
1327 	  if (last_target == linux_target
1328 	      && lp->ptid.lwp () == last_ptid.lwp ())
1329 	    signo = tp->suspend.stop_signal;
1330 	}
1331     }
1332 
1333   if (signo == GDB_SIGNAL_0)
1334     {
1335       linux_nat_debug_printf ("lwp %s has no pending signal",
1336 			      target_pid_to_str (lp->ptid).c_str ());
1337     }
1338   else if (!signal_pass_state (signo))
1339     {
1340       linux_nat_debug_printf
1341 	("lwp %s had signal %s but it is in no pass state",
1342 	 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo));
1343     }
1344   else
1345     {
1346       linux_nat_debug_printf ("lwp %s has pending signal %s",
1347 			      target_pid_to_str (lp->ptid).c_str (),
1348 			      gdb_signal_to_string (signo));
1349 
1350       return gdb_signal_to_host (signo);
1351     }
1352 
1353   return 0;
1354 }
1355 
1356 /* Detach from LP.  If SIGNO_P is non-NULL, then it points to the
1357    signal number that should be passed to the LWP when detaching.
1358    Otherwise pass any pending signal the LWP may have, if any.  */
1359 
1360 static void
1361 detach_one_lwp (struct lwp_info *lp, int *signo_p)
1362 {
1363   int lwpid = lp->ptid.lwp ();
1364   int signo;
1365 
1366   gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status));
1367 
1368   if (lp->status != 0)
1369     linux_nat_debug_printf ("Pending %s for %s on detach.",
1370 			    strsignal (WSTOPSIG (lp->status)),
1371 			    target_pid_to_str (lp->ptid).c_str ());
1372 
1373   /* If there is a pending SIGSTOP, get rid of it.  */
1374   if (lp->signalled)
1375     {
1376       linux_nat_debug_printf ("Sending SIGCONT to %s",
1377 			      target_pid_to_str (lp->ptid).c_str ());
1378 
1379       kill_lwp (lwpid, SIGCONT);
1380       lp->signalled = 0;
1381     }
1382 
1383   if (signo_p == NULL)
1384     {
1385       /* Pass on any pending signal for this LWP.  */
1386       signo = get_detach_signal (lp);
1387     }
1388   else
1389     signo = *signo_p;
1390 
1391   /* Preparing to resume may try to write registers, and fail if the
1392      lwp is zombie.  If that happens, ignore the error.  We'll handle
1393      it below, when detach fails with ESRCH.  */
1394   try
1395     {
1396       linux_target->low_prepare_to_resume (lp);
1397     }
1398   catch (const gdb_exception_error &ex)
1399     {
1400       if (!check_ptrace_stopped_lwp_gone (lp))
1401 	throw;
1402     }
1403 
1404   if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0)
1405     {
1406       int save_errno = errno;
1407 
1408       /* We know the thread exists, so ESRCH must mean the lwp is
1409 	 zombie.  This can happen if one of the already-detached
1410 	 threads exits the whole thread group.  In that case we're
1411 	 still attached, and must reap the lwp.  */
1412       if (save_errno == ESRCH)
1413 	{
1414 	  int ret, status;
1415 
1416 	  ret = my_waitpid (lwpid, &status, __WALL);
1417 	  if (ret == -1)
1418 	    {
1419 	      warning (_("Couldn't reap LWP %d while detaching: %s"),
1420 		       lwpid, safe_strerror (errno));
1421 	    }
1422 	  else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1423 	    {
1424 	      warning (_("Reaping LWP %d while detaching "
1425 			 "returned unexpected status 0x%x"),
1426 		       lwpid, status);
1427 	    }
1428 	}
1429       else
1430 	{
1431 	  error (_("Can't detach %s: %s"),
1432 		 target_pid_to_str (lp->ptid).c_str (),
1433 		 safe_strerror (save_errno));
1434 	}
1435     }
1436   else
1437     linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)",
1438 			    target_pid_to_str (lp->ptid).c_str (),
1439 			    strsignal (signo));
1440 
1441   delete_lwp (lp->ptid);
1442 }
1443 
1444 static int
1445 detach_callback (struct lwp_info *lp)
1446 {
1447   /* We don't actually detach from the thread group leader just yet.
1448      If the thread group exits, we must reap the zombie clone lwps
1449      before we're able to reap the leader.  */
1450   if (lp->ptid.lwp () != lp->ptid.pid ())
1451     detach_one_lwp (lp, NULL);
1452   return 0;
1453 }
1454 
1455 void
1456 linux_nat_target::detach (inferior *inf, int from_tty)
1457 {
1458   struct lwp_info *main_lwp;
1459   int pid = inf->pid;
1460 
1461   /* Don't unregister from the event loop, as there may be other
1462      inferiors running. */
1463 
1464   /* Stop all threads before detaching.  ptrace requires that the
1465      thread is stopped to successfully detach.  */
1466   iterate_over_lwps (ptid_t (pid), stop_callback);
1467   /* ... and wait until all of them have reported back that
1468      they're no longer running.  */
1469   iterate_over_lwps (ptid_t (pid), stop_wait_callback);
1470 
1471   iterate_over_lwps (ptid_t (pid), detach_callback);
1472 
1473   /* Only the initial process should be left right now.  */
1474   gdb_assert (num_lwps (pid) == 1);
1475 
1476   main_lwp = find_lwp_pid (ptid_t (pid));
1477 
1478   if (forks_exist_p ())
1479     {
1480       /* Multi-fork case.  The current inferior_ptid is being detached
1481 	 from, but there are other viable forks to debug.  Detach from
1482 	 the current fork, and context-switch to the first
1483 	 available.  */
1484       linux_fork_detach (from_tty);
1485     }
1486   else
1487     {
1488       target_announce_detach (from_tty);
1489 
1490       /* Pass on any pending signal for the last LWP.  */
1491       int signo = get_detach_signal (main_lwp);
1492 
1493       detach_one_lwp (main_lwp, &signo);
1494 
1495       detach_success (inf);
1496     }
1497 }
1498 
1499 /* Resume execution of the inferior process.  If STEP is nonzero,
1500    single-step it.  If SIGNAL is nonzero, give it that signal.  */
1501 
1502 static void
1503 linux_resume_one_lwp_throw (struct lwp_info *lp, int step,
1504 			    enum gdb_signal signo)
1505 {
1506   lp->step = step;
1507 
1508   /* stop_pc doubles as the PC the LWP had when it was last resumed.
1509      We only presently need that if the LWP is stepped though (to
1510      handle the case of stepping a breakpoint instruction).  */
1511   if (step)
1512     {
1513       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
1514 
1515       lp->stop_pc = regcache_read_pc (regcache);
1516     }
1517   else
1518     lp->stop_pc = 0;
1519 
1520   linux_target->low_prepare_to_resume (lp);
1521   linux_target->low_resume (lp->ptid, step, signo);
1522 
1523   /* Successfully resumed.  Clear state that no longer makes sense,
1524      and mark the LWP as running.  Must not do this before resuming
1525      otherwise if that fails other code will be confused.  E.g., we'd
1526      later try to stop the LWP and hang forever waiting for a stop
1527      status.  Note that we must not throw after this is cleared,
1528      otherwise handle_zombie_lwp_error would get confused.  */
1529   lp->stopped = 0;
1530   lp->core = -1;
1531   lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1532   registers_changed_ptid (linux_target, lp->ptid);
1533 }
1534 
1535 /* Called when we try to resume a stopped LWP and that errors out.  If
1536    the LWP is no longer in ptrace-stopped state (meaning it's zombie,
1537    or about to become), discard the error, clear any pending status
1538    the LWP may have, and return true (we'll collect the exit status
1539    soon enough).  Otherwise, return false.  */
1540 
1541 static int
1542 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
1543 {
1544   /* If we get an error after resuming the LWP successfully, we'd
1545      confuse !T state for the LWP being gone.  */
1546   gdb_assert (lp->stopped);
1547 
1548   /* We can't just check whether the LWP is in 'Z (Zombie)' state,
1549      because even if ptrace failed with ESRCH, the tracee may be "not
1550      yet fully dead", but already refusing ptrace requests.  In that
1551      case the tracee has 'R (Running)' state for a little bit
1552      (observed in Linux 3.18).  See also the note on ESRCH in the
1553      ptrace(2) man page.  Instead, check whether the LWP has any state
1554      other than ptrace-stopped.  */
1555 
1556   /* Don't assume anything if /proc/PID/status can't be read.  */
1557   if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0)
1558     {
1559       lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
1560       lp->status = 0;
1561       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
1562       return 1;
1563     }
1564   return 0;
1565 }
1566 
1567 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
1568    disappears while we try to resume it.  */
1569 
1570 static void
1571 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1572 {
1573   try
1574     {
1575       linux_resume_one_lwp_throw (lp, step, signo);
1576     }
1577   catch (const gdb_exception_error &ex)
1578     {
1579       if (!check_ptrace_stopped_lwp_gone (lp))
1580 	throw;
1581     }
1582 }
1583 
1584 /* Resume LP.  */
1585 
1586 static void
1587 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo)
1588 {
1589   if (lp->stopped)
1590     {
1591       struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
1592 
1593       if (inf->vfork_child != NULL)
1594 	{
1595 	  linux_nat_debug_printf ("Not resuming %s (vfork parent)",
1596 				  target_pid_to_str (lp->ptid).c_str ());
1597 	}
1598       else if (!lwp_status_pending_p (lp))
1599 	{
1600 	  linux_nat_debug_printf ("Resuming sibling %s, %s, %s",
1601 				  target_pid_to_str (lp->ptid).c_str (),
1602 				  (signo != GDB_SIGNAL_0
1603 				   ? strsignal (gdb_signal_to_host (signo))
1604 				   : "0"),
1605 				  step ? "step" : "resume");
1606 
1607 	  linux_resume_one_lwp (lp, step, signo);
1608 	}
1609       else
1610 	{
1611 	  linux_nat_debug_printf ("Not resuming sibling %s (has pending)",
1612 				  target_pid_to_str (lp->ptid).c_str ());
1613 	}
1614     }
1615   else
1616     linux_nat_debug_printf ("Not resuming sibling %s (not stopped)",
1617 			    target_pid_to_str (lp->ptid).c_str ());
1618 }
1619 
1620 /* Callback for iterate_over_lwps.  If LWP is EXCEPT, do nothing.
1621    Resume LWP with the last stop signal, if it is in pass state.  */
1622 
1623 static int
1624 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except)
1625 {
1626   enum gdb_signal signo = GDB_SIGNAL_0;
1627 
1628   if (lp == except)
1629     return 0;
1630 
1631   if (lp->stopped)
1632     {
1633       struct thread_info *thread;
1634 
1635       thread = find_thread_ptid (linux_target, lp->ptid);
1636       if (thread != NULL)
1637 	{
1638 	  signo = thread->suspend.stop_signal;
1639 	  thread->suspend.stop_signal = GDB_SIGNAL_0;
1640 	}
1641     }
1642 
1643   resume_lwp (lp, 0, signo);
1644   return 0;
1645 }
1646 
1647 static int
1648 resume_clear_callback (struct lwp_info *lp)
1649 {
1650   lp->resumed = 0;
1651   lp->last_resume_kind = resume_stop;
1652   return 0;
1653 }
1654 
1655 static int
1656 resume_set_callback (struct lwp_info *lp)
1657 {
1658   lp->resumed = 1;
1659   lp->last_resume_kind = resume_continue;
1660   return 0;
1661 }
1662 
1663 void
1664 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo)
1665 {
1666   struct lwp_info *lp;
1667   int resume_many;
1668 
1669   linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s",
1670 			  step ? "step" : "resume",
1671 			  target_pid_to_str (ptid).c_str (),
1672 			  (signo != GDB_SIGNAL_0
1673 			   ? strsignal (gdb_signal_to_host (signo)) : "0"),
1674 			  target_pid_to_str (inferior_ptid).c_str ());
1675 
1676   /* A specific PTID means `step only this process id'.  */
1677   resume_many = (minus_one_ptid == ptid
1678 		 || ptid.is_pid ());
1679 
1680   /* Mark the lwps we're resuming as resumed and update their
1681      last_resume_kind to resume_continue.  */
1682   iterate_over_lwps (ptid, resume_set_callback);
1683 
1684   /* See if it's the current inferior that should be handled
1685      specially.  */
1686   if (resume_many)
1687     lp = find_lwp_pid (inferior_ptid);
1688   else
1689     lp = find_lwp_pid (ptid);
1690   gdb_assert (lp != NULL);
1691 
1692   /* Remember if we're stepping.  */
1693   lp->last_resume_kind = step ? resume_step : resume_continue;
1694 
1695   /* If we have a pending wait status for this thread, there is no
1696      point in resuming the process.  But first make sure that
1697      linux_nat_wait won't preemptively handle the event - we
1698      should never take this short-circuit if we are going to
1699      leave LP running, since we have skipped resuming all the
1700      other threads.  This bit of code needs to be synchronized
1701      with linux_nat_wait.  */
1702 
1703   if (lp->status && WIFSTOPPED (lp->status))
1704     {
1705       if (!lp->step
1706 	  && WSTOPSIG (lp->status)
1707 	  && sigismember (&pass_mask, WSTOPSIG (lp->status)))
1708 	{
1709 	  linux_nat_debug_printf
1710 	    ("Not short circuiting for ignored status 0x%x", lp->status);
1711 
1712 	  /* FIXME: What should we do if we are supposed to continue
1713 	     this thread with a signal?  */
1714 	  gdb_assert (signo == GDB_SIGNAL_0);
1715 	  signo = gdb_signal_from_host (WSTOPSIG (lp->status));
1716 	  lp->status = 0;
1717 	}
1718     }
1719 
1720   if (lwp_status_pending_p (lp))
1721     {
1722       /* FIXME: What should we do if we are supposed to continue
1723 	 this thread with a signal?  */
1724       gdb_assert (signo == GDB_SIGNAL_0);
1725 
1726       linux_nat_debug_printf ("Short circuiting for status 0x%x",
1727 			      lp->status);
1728 
1729       if (target_can_async_p ())
1730 	{
1731 	  target_async (1);
1732 	  /* Tell the event loop we have something to process.  */
1733 	  async_file_mark ();
1734 	}
1735       return;
1736     }
1737 
1738   if (resume_many)
1739     iterate_over_lwps (ptid, [=] (struct lwp_info *info)
1740 			     {
1741 			       return linux_nat_resume_callback (info, lp);
1742 			     });
1743 
1744   linux_nat_debug_printf ("%s %s, %s (resume event thread)",
1745 			  step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
1746 			  target_pid_to_str (lp->ptid).c_str (),
1747 			  (signo != GDB_SIGNAL_0
1748 			   ? strsignal (gdb_signal_to_host (signo)) : "0"));
1749 
1750   linux_resume_one_lwp (lp, step, signo);
1751 
1752   if (target_can_async_p ())
1753     target_async (1);
1754 }
1755 
1756 /* Send a signal to an LWP.  */
1757 
1758 static int
1759 kill_lwp (int lwpid, int signo)
1760 {
1761   int ret;
1762 
1763   errno = 0;
1764   ret = syscall (__NR_tkill, lwpid, signo);
1765   if (errno == ENOSYS)
1766     {
1767       /* If tkill fails, then we are not using nptl threads, a
1768 	 configuration we no longer support.  */
1769       perror_with_name (("tkill"));
1770     }
1771   return ret;
1772 }
1773 
1774 /* Handle a GNU/Linux syscall trap wait response.  If we see a syscall
1775    event, check if the core is interested in it: if not, ignore the
1776    event, and keep waiting; otherwise, we need to toggle the LWP's
1777    syscall entry/exit status, since the ptrace event itself doesn't
1778    indicate it, and report the trap to higher layers.  */
1779 
1780 static int
1781 linux_handle_syscall_trap (struct lwp_info *lp, int stopping)
1782 {
1783   struct target_waitstatus *ourstatus = &lp->waitstatus;
1784   struct gdbarch *gdbarch = target_thread_architecture (lp->ptid);
1785   thread_info *thread = find_thread_ptid (linux_target, lp->ptid);
1786   int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread);
1787 
1788   if (stopping)
1789     {
1790       /* If we're stopping threads, there's a SIGSTOP pending, which
1791 	 makes it so that the LWP reports an immediate syscall return,
1792 	 followed by the SIGSTOP.  Skip seeing that "return" using
1793 	 PTRACE_CONT directly, and let stop_wait_callback collect the
1794 	 SIGSTOP.  Later when the thread is resumed, a new syscall
1795 	 entry event.  If we didn't do this (and returned 0), we'd
1796 	 leave a syscall entry pending, and our caller, by using
1797 	 PTRACE_CONT to collect the SIGSTOP, skips the syscall return
1798 	 itself.  Later, when the user re-resumes this LWP, we'd see
1799 	 another syscall entry event and we'd mistake it for a return.
1800 
1801 	 If stop_wait_callback didn't force the SIGSTOP out of the LWP
1802 	 (leaving immediately with LWP->signalled set, without issuing
1803 	 a PTRACE_CONT), it would still be problematic to leave this
1804 	 syscall enter pending, as later when the thread is resumed,
1805 	 it would then see the same syscall exit mentioned above,
1806 	 followed by the delayed SIGSTOP, while the syscall didn't
1807 	 actually get to execute.  It seems it would be even more
1808 	 confusing to the user.  */
1809 
1810       linux_nat_debug_printf
1811 	("ignoring syscall %d for LWP %ld (stopping threads), resuming with "
1812 	 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ());
1813 
1814       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1815       ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
1816       lp->stopped = 0;
1817       return 1;
1818     }
1819 
1820   /* Always update the entry/return state, even if this particular
1821      syscall isn't interesting to the core now.  In async mode,
1822      the user could install a new catchpoint for this syscall
1823      between syscall enter/return, and we'll need to know to
1824      report a syscall return if that happens.  */
1825   lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1826 		       ? TARGET_WAITKIND_SYSCALL_RETURN
1827 		       : TARGET_WAITKIND_SYSCALL_ENTRY);
1828 
1829   if (catch_syscall_enabled ())
1830     {
1831       if (catching_syscall_number (syscall_number))
1832 	{
1833 	  /* Alright, an event to report.  */
1834 	  ourstatus->kind = lp->syscall_state;
1835 	  ourstatus->value.syscall_number = syscall_number;
1836 
1837 	  linux_nat_debug_printf
1838 	    ("stopping for %s of syscall %d for LWP %ld",
1839 	     (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1840 	      ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1841 
1842 	  return 0;
1843 	}
1844 
1845       linux_nat_debug_printf
1846 	("ignoring %s of syscall %d for LWP %ld",
1847 	 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
1848 	  ? "entry" : "return"), syscall_number, lp->ptid.lwp ());
1849     }
1850   else
1851     {
1852       /* If we had been syscall tracing, and hence used PT_SYSCALL
1853 	 before on this LWP, it could happen that the user removes all
1854 	 syscall catchpoints before we get to process this event.
1855 	 There are two noteworthy issues here:
1856 
1857 	 - When stopped at a syscall entry event, resuming with
1858 	   PT_STEP still resumes executing the syscall and reports a
1859 	   syscall return.
1860 
1861 	 - Only PT_SYSCALL catches syscall enters.  If we last
1862 	   single-stepped this thread, then this event can't be a
1863 	   syscall enter.  If we last single-stepped this thread, this
1864 	   has to be a syscall exit.
1865 
1866 	 The points above mean that the next resume, be it PT_STEP or
1867 	 PT_CONTINUE, can not trigger a syscall trace event.  */
1868       linux_nat_debug_printf
1869 	("caught syscall event with no syscall catchpoints. %d for LWP %ld, "
1870 	 "ignoring", syscall_number, lp->ptid.lwp ());
1871       lp->syscall_state = TARGET_WAITKIND_IGNORE;
1872     }
1873 
1874   /* The core isn't interested in this event.  For efficiency, avoid
1875      stopping all threads only to have the core resume them all again.
1876      Since we're not stopping threads, if we're still syscall tracing
1877      and not stepping, we can't use PTRACE_CONT here, as we'd miss any
1878      subsequent syscall.  Simply resume using the inf-ptrace layer,
1879      which knows when to use PT_SYSCALL or PT_CONTINUE.  */
1880 
1881   linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
1882   return 1;
1883 }
1884 
1885 /* Handle a GNU/Linux extended wait response.  If we see a clone
1886    event, we need to add the new LWP to our list (and not report the
1887    trap to higher layers).  This function returns non-zero if the
1888    event should be ignored and we should wait again.  If STOPPING is
1889    true, the new LWP remains stopped, otherwise it is continued.  */
1890 
1891 static int
1892 linux_handle_extended_wait (struct lwp_info *lp, int status)
1893 {
1894   int pid = lp->ptid.lwp ();
1895   struct target_waitstatus *ourstatus = &lp->waitstatus;
1896   int event = linux_ptrace_get_extended_event (status);
1897 
1898   /* All extended events we currently use are mid-syscall.  Only
1899      PTRACE_EVENT_STOP is delivered more like a signal-stop, but
1900      you have to be using PTRACE_SEIZE to get that.  */
1901   lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
1902 
1903   if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK
1904       || event == PTRACE_EVENT_CLONE)
1905     {
1906       unsigned long new_pid;
1907       int ret;
1908 
1909       ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid);
1910 
1911       /* If we haven't already seen the new PID stop, wait for it now.  */
1912       if (! pull_pid_from_list (&stopped_pids, new_pid, &status))
1913 	{
1914 	  /* The new child has a pending SIGSTOP.  We can't affect it until it
1915 	     hits the SIGSTOP, but we're already attached.  */
1916 	  ret = my_waitpid (new_pid, &status, __WALL);
1917 	  if (ret == -1)
1918 	    perror_with_name (_("waiting for new child"));
1919 	  else if (ret != new_pid)
1920 	    internal_error (__FILE__, __LINE__,
1921 			    _("wait returned unexpected PID %d"), ret);
1922 	  else if (!WIFSTOPPED (status))
1923 	    internal_error (__FILE__, __LINE__,
1924 			    _("wait returned unexpected status 0x%x"), status);
1925 	}
1926 
1927       ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0);
1928 
1929       if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
1930 	{
1931 	  /* The arch-specific native code may need to know about new
1932 	     forks even if those end up never mapped to an
1933 	     inferior.  */
1934 	  linux_target->low_new_fork (lp, new_pid);
1935 	}
1936       else if (event == PTRACE_EVENT_CLONE)
1937 	{
1938 	  linux_target->low_new_clone (lp, new_pid);
1939 	}
1940 
1941       if (event == PTRACE_EVENT_FORK
1942 	  && linux_fork_checkpointing_p (lp->ptid.pid ()))
1943 	{
1944 	  /* Handle checkpointing by linux-fork.c here as a special
1945 	     case.  We don't want the follow-fork-mode or 'catch fork'
1946 	     to interfere with this.  */
1947 
1948 	  /* This won't actually modify the breakpoint list, but will
1949 	     physically remove the breakpoints from the child.  */
1950 	  detach_breakpoints (ptid_t (new_pid, new_pid, 0));
1951 
1952 	  /* Retain child fork in ptrace (stopped) state.  */
1953 	  if (!find_fork_pid (new_pid))
1954 	    add_fork (new_pid);
1955 
1956 	  /* Report as spurious, so that infrun doesn't want to follow
1957 	     this fork.  We're actually doing an infcall in
1958 	     linux-fork.c.  */
1959 	  ourstatus->kind = TARGET_WAITKIND_SPURIOUS;
1960 
1961 	  /* Report the stop to the core.  */
1962 	  return 0;
1963 	}
1964 
1965       if (event == PTRACE_EVENT_FORK)
1966 	ourstatus->kind = TARGET_WAITKIND_FORKED;
1967       else if (event == PTRACE_EVENT_VFORK)
1968 	ourstatus->kind = TARGET_WAITKIND_VFORKED;
1969       else if (event == PTRACE_EVENT_CLONE)
1970 	{
1971 	  struct lwp_info *new_lp;
1972 
1973 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
1974 
1975 	  linux_nat_debug_printf
1976 	    ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid);
1977 
1978 	  new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0));
1979 	  new_lp->stopped = 1;
1980 	  new_lp->resumed = 1;
1981 
1982 	  /* If the thread_db layer is active, let it record the user
1983 	     level thread id and status, and add the thread to GDB's
1984 	     list.  */
1985 	  if (!thread_db_notice_clone (lp->ptid, new_lp->ptid))
1986 	    {
1987 	      /* The process is not using thread_db.  Add the LWP to
1988 		 GDB's list.  */
1989 	      target_post_attach (new_lp->ptid.lwp ());
1990 	      add_thread (linux_target, new_lp->ptid);
1991 	    }
1992 
1993 	  /* Even if we're stopping the thread for some reason
1994 	     internal to this module, from the perspective of infrun
1995 	     and the user/frontend, this new thread is running until
1996 	     it next reports a stop.  */
1997 	  set_running (linux_target, new_lp->ptid, true);
1998 	  set_executing (linux_target, new_lp->ptid, true);
1999 
2000 	  if (WSTOPSIG (status) != SIGSTOP)
2001 	    {
2002 	      /* This can happen if someone starts sending signals to
2003 		 the new thread before it gets a chance to run, which
2004 		 have a lower number than SIGSTOP (e.g. SIGUSR1).
2005 		 This is an unlikely case, and harder to handle for
2006 		 fork / vfork than for clone, so we do not try - but
2007 		 we handle it for clone events here.  */
2008 
2009 	      new_lp->signalled = 1;
2010 
2011 	      /* We created NEW_LP so it cannot yet contain STATUS.  */
2012 	      gdb_assert (new_lp->status == 0);
2013 
2014 	      /* Save the wait status to report later.  */
2015 	      linux_nat_debug_printf
2016 		("waitpid of new LWP %ld, saving status %s",
2017 		 (long) new_lp->ptid.lwp (), status_to_str (status));
2018 	      new_lp->status = status;
2019 	    }
2020 	  else if (report_thread_events)
2021 	    {
2022 	      new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
2023 	      new_lp->status = status;
2024 	    }
2025 
2026 	  return 1;
2027 	}
2028 
2029       return 0;
2030     }
2031 
2032   if (event == PTRACE_EVENT_EXEC)
2033     {
2034       linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ());
2035 
2036       ourstatus->kind = TARGET_WAITKIND_EXECD;
2037       ourstatus->value.execd_pathname
2038 	= xstrdup (linux_proc_pid_to_exec_file (pid));
2039 
2040       /* The thread that execed must have been resumed, but, when a
2041 	 thread execs, it changes its tid to the tgid, and the old
2042 	 tgid thread might have not been resumed.  */
2043       lp->resumed = 1;
2044       return 0;
2045     }
2046 
2047   if (event == PTRACE_EVENT_VFORK_DONE)
2048     {
2049       if (current_inferior ()->waiting_for_vfork_done)
2050 	{
2051 	  linux_nat_debug_printf
2052 	    ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping",
2053 	     lp->ptid.lwp ());
2054 
2055 	  ourstatus->kind = TARGET_WAITKIND_VFORK_DONE;
2056 	  return 0;
2057 	}
2058 
2059       linux_nat_debug_printf
2060 	("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ());
2061 
2062       return 1;
2063     }
2064 
2065   internal_error (__FILE__, __LINE__,
2066 		  _("unknown ptrace event %d"), event);
2067 }
2068 
2069 /* Suspend waiting for a signal.  We're mostly interested in
2070    SIGCHLD/SIGINT.  */
2071 
2072 static void
2073 wait_for_signal ()
2074 {
2075   linux_nat_debug_printf ("about to sigsuspend");
2076   sigsuspend (&suspend_mask);
2077 
2078   /* If the quit flag is set, it means that the user pressed Ctrl-C
2079      and we're debugging a process that is running on a separate
2080      terminal, so we must forward the Ctrl-C to the inferior.  (If the
2081      inferior is sharing GDB's terminal, then the Ctrl-C reaches the
2082      inferior directly.)  We must do this here because functions that
2083      need to block waiting for a signal loop forever until there's an
2084      event to report before returning back to the event loop.  */
2085   if (!target_terminal::is_ours ())
2086     {
2087       if (check_quit_flag ())
2088 	target_pass_ctrlc ();
2089     }
2090 }
2091 
2092 /* Wait for LP to stop.  Returns the wait status, or 0 if the LWP has
2093    exited.  */
2094 
2095 static int
2096 wait_lwp (struct lwp_info *lp)
2097 {
2098   pid_t pid;
2099   int status = 0;
2100   int thread_dead = 0;
2101   sigset_t prev_mask;
2102 
2103   gdb_assert (!lp->stopped);
2104   gdb_assert (lp->status == 0);
2105 
2106   /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below.  */
2107   block_child_signals (&prev_mask);
2108 
2109   for (;;)
2110     {
2111       pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG);
2112       if (pid == -1 && errno == ECHILD)
2113 	{
2114 	  /* The thread has previously exited.  We need to delete it
2115 	     now because if this was a non-leader thread execing, we
2116 	     won't get an exit event.  See comments on exec events at
2117 	     the top of the file.  */
2118 	  thread_dead = 1;
2119 	  linux_nat_debug_printf ("%s vanished.",
2120 				  target_pid_to_str (lp->ptid).c_str ());
2121 	}
2122       if (pid != 0)
2123 	break;
2124 
2125       /* Bugs 10970, 12702.
2126 	 Thread group leader may have exited in which case we'll lock up in
2127 	 waitpid if there are other threads, even if they are all zombies too.
2128 	 Basically, we're not supposed to use waitpid this way.
2129 	  tkill(pid,0) cannot be used here as it gets ESRCH for both
2130 	 for zombie and running processes.
2131 
2132 	 As a workaround, check if we're waiting for the thread group leader and
2133 	 if it's a zombie, and avoid calling waitpid if it is.
2134 
2135 	 This is racy, what if the tgl becomes a zombie right after we check?
2136 	 Therefore always use WNOHANG with sigsuspend - it is equivalent to
2137 	 waiting waitpid but linux_proc_pid_is_zombie is safe this way.  */
2138 
2139       if (lp->ptid.pid () == lp->ptid.lwp ()
2140 	  && linux_proc_pid_is_zombie (lp->ptid.lwp ()))
2141 	{
2142 	  thread_dead = 1;
2143 	  linux_nat_debug_printf ("Thread group leader %s vanished.",
2144 				  target_pid_to_str (lp->ptid).c_str ());
2145 	  break;
2146 	}
2147 
2148       /* Wait for next SIGCHLD and try again.  This may let SIGCHLD handlers
2149 	 get invoked despite our caller had them intentionally blocked by
2150 	 block_child_signals.  This is sensitive only to the loop of
2151 	 linux_nat_wait_1 and there if we get called my_waitpid gets called
2152 	 again before it gets to sigsuspend so we can safely let the handlers
2153 	 get executed here.  */
2154       wait_for_signal ();
2155     }
2156 
2157   restore_child_signals_mask (&prev_mask);
2158 
2159   if (!thread_dead)
2160     {
2161       gdb_assert (pid == lp->ptid.lwp ());
2162 
2163       linux_nat_debug_printf ("waitpid %s received %s",
2164 			      target_pid_to_str (lp->ptid).c_str (),
2165 			      status_to_str (status));
2166 
2167       /* Check if the thread has exited.  */
2168       if (WIFEXITED (status) || WIFSIGNALED (status))
2169 	{
2170 	  if (report_thread_events
2171 	      || lp->ptid.pid () == lp->ptid.lwp ())
2172 	    {
2173 	      linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ());
2174 
2175 	      /* If this is the leader exiting, it means the whole
2176 		 process is gone.  Store the status to report to the
2177 		 core.  Store it in lp->waitstatus, because lp->status
2178 		 would be ambiguous (W_EXITCODE(0,0) == 0).  */
2179 	      store_waitstatus (&lp->waitstatus, status);
2180 	      return 0;
2181 	    }
2182 
2183 	  thread_dead = 1;
2184 	  linux_nat_debug_printf ("%s exited.",
2185 				  target_pid_to_str (lp->ptid).c_str ());
2186 	}
2187     }
2188 
2189   if (thread_dead)
2190     {
2191       exit_lwp (lp);
2192       return 0;
2193     }
2194 
2195   gdb_assert (WIFSTOPPED (status));
2196   lp->stopped = 1;
2197 
2198   if (lp->must_set_ptrace_flags)
2199     {
2200       inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2201       int options = linux_nat_ptrace_options (inf->attach_flag);
2202 
2203       linux_enable_event_reporting (lp->ptid.lwp (), options);
2204       lp->must_set_ptrace_flags = 0;
2205     }
2206 
2207   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2208   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2209     {
2210       /* No longer need the sysgood bit.  The ptrace event ends up
2211 	 recorded in lp->waitstatus if we care for it.  We can carry
2212 	 on handling the event like a regular SIGTRAP from here
2213 	 on.  */
2214       status = W_STOPCODE (SIGTRAP);
2215       if (linux_handle_syscall_trap (lp, 1))
2216 	return wait_lwp (lp);
2217     }
2218   else
2219     {
2220       /* Almost all other ptrace-stops are known to be outside of system
2221 	 calls, with further exceptions in linux_handle_extended_wait.  */
2222       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2223     }
2224 
2225   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2226   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2227       && linux_is_extended_waitstatus (status))
2228     {
2229       linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2230       linux_handle_extended_wait (lp, status);
2231       return 0;
2232     }
2233 
2234   return status;
2235 }
2236 
2237 /* Send a SIGSTOP to LP.  */
2238 
2239 static int
2240 stop_callback (struct lwp_info *lp)
2241 {
2242   if (!lp->stopped && !lp->signalled)
2243     {
2244       int ret;
2245 
2246       linux_nat_debug_printf ("kill %s **<SIGSTOP>**",
2247 			      target_pid_to_str (lp->ptid).c_str ());
2248 
2249       errno = 0;
2250       ret = kill_lwp (lp->ptid.lwp (), SIGSTOP);
2251       linux_nat_debug_printf ("lwp kill %d %s", ret,
2252 			      errno ? safe_strerror (errno) : "ERRNO-OK");
2253 
2254       lp->signalled = 1;
2255       gdb_assert (lp->status == 0);
2256     }
2257 
2258   return 0;
2259 }
2260 
2261 /* Request a stop on LWP.  */
2262 
2263 void
2264 linux_stop_lwp (struct lwp_info *lwp)
2265 {
2266   stop_callback (lwp);
2267 }
2268 
2269 /* See linux-nat.h  */
2270 
2271 void
2272 linux_stop_and_wait_all_lwps (void)
2273 {
2274   /* Stop all LWP's ...  */
2275   iterate_over_lwps (minus_one_ptid, stop_callback);
2276 
2277   /* ... and wait until all of them have reported back that
2278      they're no longer running.  */
2279   iterate_over_lwps (minus_one_ptid, stop_wait_callback);
2280 }
2281 
2282 /* See linux-nat.h  */
2283 
2284 void
2285 linux_unstop_all_lwps (void)
2286 {
2287   iterate_over_lwps (minus_one_ptid,
2288 		     [] (struct lwp_info *info)
2289 		     {
2290 		       return resume_stopped_resumed_lwps (info, minus_one_ptid);
2291 		     });
2292 }
2293 
2294 /* Return non-zero if LWP PID has a pending SIGINT.  */
2295 
2296 static int
2297 linux_nat_has_pending_sigint (int pid)
2298 {
2299   sigset_t pending, blocked, ignored;
2300 
2301   linux_proc_pending_signals (pid, &pending, &blocked, &ignored);
2302 
2303   if (sigismember (&pending, SIGINT)
2304       && !sigismember (&ignored, SIGINT))
2305     return 1;
2306 
2307   return 0;
2308 }
2309 
2310 /* Set a flag in LP indicating that we should ignore its next SIGINT.  */
2311 
2312 static int
2313 set_ignore_sigint (struct lwp_info *lp)
2314 {
2315   /* If a thread has a pending SIGINT, consume it; otherwise, set a
2316      flag to consume the next one.  */
2317   if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status)
2318       && WSTOPSIG (lp->status) == SIGINT)
2319     lp->status = 0;
2320   else
2321     lp->ignore_sigint = 1;
2322 
2323   return 0;
2324 }
2325 
2326 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag.
2327    This function is called after we know the LWP has stopped; if the LWP
2328    stopped before the expected SIGINT was delivered, then it will never have
2329    arrived.  Also, if the signal was delivered to a shared queue and consumed
2330    by a different thread, it will never be delivered to this LWP.  */
2331 
2332 static void
2333 maybe_clear_ignore_sigint (struct lwp_info *lp)
2334 {
2335   if (!lp->ignore_sigint)
2336     return;
2337 
2338   if (!linux_nat_has_pending_sigint (lp->ptid.lwp ()))
2339     {
2340       linux_nat_debug_printf ("Clearing bogus flag for %s",
2341 			      target_pid_to_str (lp->ptid).c_str ());
2342       lp->ignore_sigint = 0;
2343     }
2344 }
2345 
2346 /* Fetch the possible triggered data watchpoint info and store it in
2347    LP.
2348 
2349    On some archs, like x86, that use debug registers to set
2350    watchpoints, it's possible that the way to know which watched
2351    address trapped, is to check the register that is used to select
2352    which address to watch.  Problem is, between setting the watchpoint
2353    and reading back which data address trapped, the user may change
2354    the set of watchpoints, and, as a consequence, GDB changes the
2355    debug registers in the inferior.  To avoid reading back a stale
2356    stopped-data-address when that happens, we cache in LP the fact
2357    that a watchpoint trapped, and the corresponding data address, as
2358    soon as we see LP stop with a SIGTRAP.  If GDB changes the debug
2359    registers meanwhile, we have the cached data we can rely on.  */
2360 
2361 static int
2362 check_stopped_by_watchpoint (struct lwp_info *lp)
2363 {
2364   scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
2365   inferior_ptid = lp->ptid;
2366 
2367   if (linux_target->low_stopped_by_watchpoint ())
2368     {
2369       lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2370       lp->stopped_data_address_p
2371 	= linux_target->low_stopped_data_address (&lp->stopped_data_address);
2372     }
2373 
2374   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2375 }
2376 
2377 /* Returns true if the LWP had stopped for a watchpoint.  */
2378 
2379 bool
2380 linux_nat_target::stopped_by_watchpoint ()
2381 {
2382   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2383 
2384   gdb_assert (lp != NULL);
2385 
2386   return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2387 }
2388 
2389 bool
2390 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p)
2391 {
2392   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2393 
2394   gdb_assert (lp != NULL);
2395 
2396   *addr_p = lp->stopped_data_address;
2397 
2398   return lp->stopped_data_address_p;
2399 }
2400 
2401 /* Commonly any breakpoint / watchpoint generate only SIGTRAP.  */
2402 
2403 bool
2404 linux_nat_target::low_status_is_event (int status)
2405 {
2406   return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP;
2407 }
2408 
2409 /* Wait until LP is stopped.  */
2410 
2411 static int
2412 stop_wait_callback (struct lwp_info *lp)
2413 {
2414   inferior *inf = find_inferior_ptid (linux_target, lp->ptid);
2415 
2416   /* If this is a vfork parent, bail out, it is not going to report
2417      any SIGSTOP until the vfork is done with.  */
2418   if (inf->vfork_child != NULL)
2419     return 0;
2420 
2421   if (!lp->stopped)
2422     {
2423       int status;
2424 
2425       status = wait_lwp (lp);
2426       if (status == 0)
2427 	return 0;
2428 
2429       if (lp->ignore_sigint && WIFSTOPPED (status)
2430 	  && WSTOPSIG (status) == SIGINT)
2431 	{
2432 	  lp->ignore_sigint = 0;
2433 
2434 	  errno = 0;
2435 	  ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0);
2436 	  lp->stopped = 0;
2437 	  linux_nat_debug_printf
2438 	    ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)",
2439 	     target_pid_to_str (lp->ptid).c_str (),
2440 	     errno ? safe_strerror (errno) : "OK");
2441 
2442 	  return stop_wait_callback (lp);
2443 	}
2444 
2445       maybe_clear_ignore_sigint (lp);
2446 
2447       if (WSTOPSIG (status) != SIGSTOP)
2448 	{
2449 	  /* The thread was stopped with a signal other than SIGSTOP.  */
2450 
2451 	  linux_nat_debug_printf ("Pending event %s in %s",
2452 				  status_to_str ((int) status),
2453 				  target_pid_to_str (lp->ptid).c_str ());
2454 
2455 	  /* Save the sigtrap event.  */
2456 	  lp->status = status;
2457 	  gdb_assert (lp->signalled);
2458 	  save_stop_reason (lp);
2459 	}
2460       else
2461 	{
2462 	  /* We caught the SIGSTOP that we intended to catch.  */
2463 
2464 	  linux_nat_debug_printf ("Expected SIGSTOP caught for %s.",
2465 				  target_pid_to_str (lp->ptid).c_str ());
2466 
2467 	  lp->signalled = 0;
2468 
2469 	  /* If we are waiting for this stop so we can report the thread
2470 	     stopped then we need to record this status.  Otherwise, we can
2471 	     now discard this stop event.  */
2472 	  if (lp->last_resume_kind == resume_stop)
2473 	    {
2474 	      lp->status = status;
2475 	      save_stop_reason (lp);
2476 	    }
2477 	}
2478     }
2479 
2480   return 0;
2481 }
2482 
2483 /* Return non-zero if LP has a wait status pending.  Discard the
2484    pending event and resume the LWP if the event that originally
2485    caused the stop became uninteresting.  */
2486 
2487 static int
2488 status_callback (struct lwp_info *lp)
2489 {
2490   /* Only report a pending wait status if we pretend that this has
2491      indeed been resumed.  */
2492   if (!lp->resumed)
2493     return 0;
2494 
2495   if (!lwp_status_pending_p (lp))
2496     return 0;
2497 
2498   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
2499       || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2500     {
2501       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
2502       CORE_ADDR pc;
2503       int discard = 0;
2504 
2505       pc = regcache_read_pc (regcache);
2506 
2507       if (pc != lp->stop_pc)
2508 	{
2509 	  linux_nat_debug_printf ("PC of %s changed.  was=%s, now=%s",
2510 				  target_pid_to_str (lp->ptid).c_str (),
2511 				  paddress (target_gdbarch (), lp->stop_pc),
2512 				  paddress (target_gdbarch (), pc));
2513 	  discard = 1;
2514 	}
2515 
2516 #if !USE_SIGTRAP_SIGINFO
2517       else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
2518 	{
2519 	  linux_nat_debug_printf ("previous breakpoint of %s, at %s gone",
2520 				  target_pid_to_str (lp->ptid).c_str (),
2521 				  paddress (target_gdbarch (), lp->stop_pc));
2522 
2523 	  discard = 1;
2524 	}
2525 #endif
2526 
2527       if (discard)
2528 	{
2529 	  linux_nat_debug_printf ("pending event of %s cancelled.",
2530 				  target_pid_to_str (lp->ptid).c_str ());
2531 
2532 	  lp->status = 0;
2533 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2534 	  return 0;
2535 	}
2536     }
2537 
2538   return 1;
2539 }
2540 
2541 /* Count the LWP's that have had events.  */
2542 
2543 static int
2544 count_events_callback (struct lwp_info *lp, int *count)
2545 {
2546   gdb_assert (count != NULL);
2547 
2548   /* Select only resumed LWPs that have an event pending.  */
2549   if (lp->resumed && lwp_status_pending_p (lp))
2550     (*count)++;
2551 
2552   return 0;
2553 }
2554 
2555 /* Select the LWP (if any) that is currently being single-stepped.  */
2556 
2557 static int
2558 select_singlestep_lwp_callback (struct lwp_info *lp)
2559 {
2560   if (lp->last_resume_kind == resume_step
2561       && lp->status != 0)
2562     return 1;
2563   else
2564     return 0;
2565 }
2566 
2567 /* Returns true if LP has a status pending.  */
2568 
2569 static int
2570 lwp_status_pending_p (struct lwp_info *lp)
2571 {
2572   /* We check for lp->waitstatus in addition to lp->status, because we
2573      can have pending process exits recorded in lp->status and
2574      W_EXITCODE(0,0) happens to be 0.  */
2575   return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE;
2576 }
2577 
2578 /* Select the Nth LWP that has had an event.  */
2579 
2580 static int
2581 select_event_lwp_callback (struct lwp_info *lp, int *selector)
2582 {
2583   gdb_assert (selector != NULL);
2584 
2585   /* Select only resumed LWPs that have an event pending.  */
2586   if (lp->resumed && lwp_status_pending_p (lp))
2587     if ((*selector)-- == 0)
2588       return 1;
2589 
2590   return 0;
2591 }
2592 
2593 /* Called when the LWP stopped for a signal/trap.  If it stopped for a
2594    trap check what caused it (breakpoint, watchpoint, trace, etc.),
2595    and save the result in the LWP's stop_reason field.  If it stopped
2596    for a breakpoint, decrement the PC if necessary on the lwp's
2597    architecture.  */
2598 
2599 static void
2600 save_stop_reason (struct lwp_info *lp)
2601 {
2602   struct regcache *regcache;
2603   struct gdbarch *gdbarch;
2604   CORE_ADDR pc;
2605   CORE_ADDR sw_bp_pc;
2606 #if USE_SIGTRAP_SIGINFO
2607   siginfo_t siginfo;
2608 #endif
2609 
2610   gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON);
2611   gdb_assert (lp->status != 0);
2612 
2613   if (!linux_target->low_status_is_event (lp->status))
2614     return;
2615 
2616   regcache = get_thread_regcache (linux_target, lp->ptid);
2617   gdbarch = regcache->arch ();
2618 
2619   pc = regcache_read_pc (regcache);
2620   sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch);
2621 
2622 #if USE_SIGTRAP_SIGINFO
2623   if (linux_nat_get_siginfo (lp->ptid, &siginfo))
2624     {
2625       if (siginfo.si_signo == SIGTRAP)
2626 	{
2627 	  if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
2628 	      && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2629 	    {
2630 	      /* The si_code is ambiguous on this arch -- check debug
2631 		 registers.  */
2632 	      if (!check_stopped_by_watchpoint (lp))
2633 		lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2634 	    }
2635 	  else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
2636 	    {
2637 	      /* If we determine the LWP stopped for a SW breakpoint,
2638 		 trust it.  Particularly don't check watchpoint
2639 		 registers, because, at least on s390, we'd find
2640 		 stopped-by-watchpoint as long as there's a watchpoint
2641 		 set.  */
2642 	      lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2643 	    }
2644 	  else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
2645 	    {
2646 	      /* This can indicate either a hardware breakpoint or
2647 		 hardware watchpoint.  Check debug registers.  */
2648 	      if (!check_stopped_by_watchpoint (lp))
2649 		lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2650 	    }
2651 	  else if (siginfo.si_code == TRAP_TRACE)
2652 	    {
2653 	      linux_nat_debug_printf ("%s stopped by trace",
2654 				      target_pid_to_str (lp->ptid).c_str ());
2655 
2656 	      /* We may have single stepped an instruction that
2657 		 triggered a watchpoint.  In that case, on some
2658 		 architectures (such as x86), instead of TRAP_HWBKPT,
2659 		 si_code indicates TRAP_TRACE, and we need to check
2660 		 the debug registers separately.  */
2661 	      check_stopped_by_watchpoint (lp);
2662 	    }
2663 	}
2664     }
2665 #else
2666   if ((!lp->step || lp->stop_pc == sw_bp_pc)
2667       && software_breakpoint_inserted_here_p (regcache->aspace (),
2668 					      sw_bp_pc))
2669     {
2670       /* The LWP was either continued, or stepped a software
2671 	 breakpoint instruction.  */
2672       lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
2673     }
2674 
2675   if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc))
2676     lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
2677 
2678   if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
2679     check_stopped_by_watchpoint (lp);
2680 #endif
2681 
2682   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
2683     {
2684       linux_nat_debug_printf ("%s stopped by software breakpoint",
2685 			      target_pid_to_str (lp->ptid).c_str ());
2686 
2687       /* Back up the PC if necessary.  */
2688       if (pc != sw_bp_pc)
2689 	regcache_write_pc (regcache, sw_bp_pc);
2690 
2691       /* Update this so we record the correct stop PC below.  */
2692       pc = sw_bp_pc;
2693     }
2694   else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
2695     {
2696       linux_nat_debug_printf ("%s stopped by hardware breakpoint",
2697 			      target_pid_to_str (lp->ptid).c_str ());
2698     }
2699   else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
2700     {
2701       linux_nat_debug_printf ("%s stopped by hardware watchpoint",
2702 			      target_pid_to_str (lp->ptid).c_str ());
2703     }
2704 
2705   lp->stop_pc = pc;
2706 }
2707 
2708 
2709 /* Returns true if the LWP had stopped for a software breakpoint.  */
2710 
2711 bool
2712 linux_nat_target::stopped_by_sw_breakpoint ()
2713 {
2714   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2715 
2716   gdb_assert (lp != NULL);
2717 
2718   return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
2719 }
2720 
2721 /* Implement the supports_stopped_by_sw_breakpoint method.  */
2722 
2723 bool
2724 linux_nat_target::supports_stopped_by_sw_breakpoint ()
2725 {
2726   return USE_SIGTRAP_SIGINFO;
2727 }
2728 
2729 /* Returns true if the LWP had stopped for a hardware
2730    breakpoint/watchpoint.  */
2731 
2732 bool
2733 linux_nat_target::stopped_by_hw_breakpoint ()
2734 {
2735   struct lwp_info *lp = find_lwp_pid (inferior_ptid);
2736 
2737   gdb_assert (lp != NULL);
2738 
2739   return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
2740 }
2741 
2742 /* Implement the supports_stopped_by_hw_breakpoint method.  */
2743 
2744 bool
2745 linux_nat_target::supports_stopped_by_hw_breakpoint ()
2746 {
2747   return USE_SIGTRAP_SIGINFO;
2748 }
2749 
2750 /* Select one LWP out of those that have events pending.  */
2751 
2752 static void
2753 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status)
2754 {
2755   int num_events = 0;
2756   int random_selector;
2757   struct lwp_info *event_lp = NULL;
2758 
2759   /* Record the wait status for the original LWP.  */
2760   (*orig_lp)->status = *status;
2761 
2762   /* In all-stop, give preference to the LWP that is being
2763      single-stepped.  There will be at most one, and it will be the
2764      LWP that the core is most interested in.  If we didn't do this,
2765      then we'd have to handle pending step SIGTRAPs somehow in case
2766      the core later continues the previously-stepped thread, as
2767      otherwise we'd report the pending SIGTRAP then, and the core, not
2768      having stepped the thread, wouldn't understand what the trap was
2769      for, and therefore would report it to the user as a random
2770      signal.  */
2771   if (!target_is_non_stop_p ())
2772     {
2773       event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback);
2774       if (event_lp != NULL)
2775 	{
2776 	  linux_nat_debug_printf ("Select single-step %s",
2777 				  target_pid_to_str (event_lp->ptid).c_str ());
2778 	}
2779     }
2780 
2781   if (event_lp == NULL)
2782     {
2783       /* Pick one at random, out of those which have had events.  */
2784 
2785       /* First see how many events we have.  */
2786       iterate_over_lwps (filter,
2787 			 [&] (struct lwp_info *info)
2788 			 {
2789 			   return count_events_callback (info, &num_events);
2790 			 });
2791       gdb_assert (num_events > 0);
2792 
2793       /* Now randomly pick a LWP out of those that have had
2794 	 events.  */
2795       random_selector = (int)
2796 	((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2797 
2798       if (num_events > 1)
2799 	linux_nat_debug_printf ("Found %d events, selecting #%d",
2800 				num_events, random_selector);
2801 
2802       event_lp
2803 	= (iterate_over_lwps
2804 	   (filter,
2805 	    [&] (struct lwp_info *info)
2806 	    {
2807 	      return select_event_lwp_callback (info,
2808 						&random_selector);
2809 	    }));
2810     }
2811 
2812   if (event_lp != NULL)
2813     {
2814       /* Switch the event LWP.  */
2815       *orig_lp = event_lp;
2816       *status = event_lp->status;
2817     }
2818 
2819   /* Flush the wait status for the event LWP.  */
2820   (*orig_lp)->status = 0;
2821 }
2822 
2823 /* Return non-zero if LP has been resumed.  */
2824 
2825 static int
2826 resumed_callback (struct lwp_info *lp)
2827 {
2828   return lp->resumed;
2829 }
2830 
2831 /* Check if we should go on and pass this event to common code.
2832    Return the affected lwp if we should, or NULL otherwise.  */
2833 
2834 static struct lwp_info *
2835 linux_nat_filter_event (int lwpid, int status)
2836 {
2837   struct lwp_info *lp;
2838   int event = linux_ptrace_get_extended_event (status);
2839 
2840   lp = find_lwp_pid (ptid_t (lwpid));
2841 
2842   /* Check for stop events reported by a process we didn't already
2843      know about - anything not already in our LWP list.
2844 
2845      If we're expecting to receive stopped processes after
2846      fork, vfork, and clone events, then we'll just add the
2847      new one to our list and go back to waiting for the event
2848      to be reported - the stopped process might be returned
2849      from waitpid before or after the event is.
2850 
2851      But note the case of a non-leader thread exec'ing after the
2852      leader having exited, and gone from our lists.  The non-leader
2853      thread changes its tid to the tgid.  */
2854 
2855   if (WIFSTOPPED (status) && lp == NULL
2856       && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC))
2857     {
2858       /* A multi-thread exec after we had seen the leader exiting.  */
2859       linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid);
2860 
2861       lp = add_lwp (ptid_t (lwpid, lwpid, 0));
2862       lp->stopped = 1;
2863       lp->resumed = 1;
2864       add_thread (linux_target, lp->ptid);
2865     }
2866 
2867   if (WIFSTOPPED (status) && !lp)
2868     {
2869       linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list",
2870 			      (long) lwpid, status_to_str (status));
2871       add_to_pid_list (&stopped_pids, lwpid, status);
2872       return NULL;
2873     }
2874 
2875   /* Make sure we don't report an event for the exit of an LWP not in
2876      our list, i.e. not part of the current process.  This can happen
2877      if we detach from a program we originally forked and then it
2878      exits.  */
2879   if (!WIFSTOPPED (status) && !lp)
2880     return NULL;
2881 
2882   /* This LWP is stopped now.  (And if dead, this prevents it from
2883      ever being continued.)  */
2884   lp->stopped = 1;
2885 
2886   if (WIFSTOPPED (status) && lp->must_set_ptrace_flags)
2887     {
2888       inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ());
2889       int options = linux_nat_ptrace_options (inf->attach_flag);
2890 
2891       linux_enable_event_reporting (lp->ptid.lwp (), options);
2892       lp->must_set_ptrace_flags = 0;
2893     }
2894 
2895   /* Handle GNU/Linux's syscall SIGTRAPs.  */
2896   if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP)
2897     {
2898       /* No longer need the sysgood bit.  The ptrace event ends up
2899 	 recorded in lp->waitstatus if we care for it.  We can carry
2900 	 on handling the event like a regular SIGTRAP from here
2901 	 on.  */
2902       status = W_STOPCODE (SIGTRAP);
2903       if (linux_handle_syscall_trap (lp, 0))
2904 	return NULL;
2905     }
2906   else
2907     {
2908       /* Almost all other ptrace-stops are known to be outside of system
2909 	 calls, with further exceptions in linux_handle_extended_wait.  */
2910       lp->syscall_state = TARGET_WAITKIND_IGNORE;
2911     }
2912 
2913   /* Handle GNU/Linux's extended waitstatus for trace events.  */
2914   if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP
2915       && linux_is_extended_waitstatus (status))
2916     {
2917       linux_nat_debug_printf ("Handling extended status 0x%06x", status);
2918 
2919       if (linux_handle_extended_wait (lp, status))
2920 	return NULL;
2921     }
2922 
2923   /* Check if the thread has exited.  */
2924   if (WIFEXITED (status) || WIFSIGNALED (status))
2925     {
2926       if (!report_thread_events
2927 	  && num_lwps (lp->ptid.pid ()) > 1)
2928 	{
2929 	  linux_nat_debug_printf ("%s exited.",
2930 				  target_pid_to_str (lp->ptid).c_str ());
2931 
2932 	  /* If there is at least one more LWP, then the exit signal
2933 	     was not the end of the debugged application and should be
2934 	     ignored.  */
2935 	  exit_lwp (lp);
2936 	  return NULL;
2937 	}
2938 
2939       /* Note that even if the leader was ptrace-stopped, it can still
2940 	 exit, if e.g., some other thread brings down the whole
2941 	 process (calls `exit').  So don't assert that the lwp is
2942 	 resumed.  */
2943       linux_nat_debug_printf ("LWP %ld exited (resumed=%d)",
2944 			      lp->ptid.lwp (), lp->resumed);
2945 
2946       /* Dead LWP's aren't expected to reported a pending sigstop.  */
2947       lp->signalled = 0;
2948 
2949       /* Store the pending event in the waitstatus, because
2950 	 W_EXITCODE(0,0) == 0.  */
2951       store_waitstatus (&lp->waitstatus, status);
2952       return lp;
2953     }
2954 
2955   /* Make sure we don't report a SIGSTOP that we sent ourselves in
2956      an attempt to stop an LWP.  */
2957   if (lp->signalled
2958       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP)
2959     {
2960       lp->signalled = 0;
2961 
2962       if (lp->last_resume_kind == resume_stop)
2963 	{
2964 	  linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.",
2965 				  target_pid_to_str (lp->ptid).c_str ());
2966 	}
2967       else
2968 	{
2969 	  /* This is a delayed SIGSTOP.  Filter out the event.  */
2970 
2971 	  linux_nat_debug_printf
2972 	    ("%s %s, 0, 0 (discard delayed SIGSTOP)",
2973 	     lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2974 	     target_pid_to_str (lp->ptid).c_str ());
2975 
2976 	  linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2977 	  gdb_assert (lp->resumed);
2978 	  return NULL;
2979 	}
2980     }
2981 
2982   /* Make sure we don't report a SIGINT that we have already displayed
2983      for another thread.  */
2984   if (lp->ignore_sigint
2985       && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT)
2986     {
2987       linux_nat_debug_printf ("Delayed SIGINT caught for %s.",
2988 			      target_pid_to_str (lp->ptid).c_str ());
2989 
2990       /* This is a delayed SIGINT.  */
2991       lp->ignore_sigint = 0;
2992 
2993       linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0);
2994       linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)",
2995 			      lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
2996 			      target_pid_to_str (lp->ptid).c_str ());
2997       gdb_assert (lp->resumed);
2998 
2999       /* Discard the event.  */
3000       return NULL;
3001     }
3002 
3003   /* Don't report signals that GDB isn't interested in, such as
3004      signals that are neither printed nor stopped upon.  Stopping all
3005      threads can be a bit time-consuming, so if we want decent
3006      performance with heavily multi-threaded programs, especially when
3007      they're using a high frequency timer, we'd better avoid it if we
3008      can.  */
3009   if (WIFSTOPPED (status))
3010     {
3011       enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status));
3012 
3013       if (!target_is_non_stop_p ())
3014 	{
3015 	  /* Only do the below in all-stop, as we currently use SIGSTOP
3016 	     to implement target_stop (see linux_nat_stop) in
3017 	     non-stop.  */
3018 	  if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0)
3019 	    {
3020 	      /* If ^C/BREAK is typed at the tty/console, SIGINT gets
3021 		 forwarded to the entire process group, that is, all LWPs
3022 		 will receive it - unless they're using CLONE_THREAD to
3023 		 share signals.  Since we only want to report it once, we
3024 		 mark it as ignored for all LWPs except this one.  */
3025 	      iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint);
3026 	      lp->ignore_sigint = 0;
3027 	    }
3028 	  else
3029 	    maybe_clear_ignore_sigint (lp);
3030 	}
3031 
3032       /* When using hardware single-step, we need to report every signal.
3033 	 Otherwise, signals in pass_mask may be short-circuited
3034 	 except signals that might be caused by a breakpoint, or SIGSTOP
3035 	 if we sent the SIGSTOP and are waiting for it to arrive.  */
3036       if (!lp->step
3037 	  && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status))
3038 	  && (WSTOPSIG (status) != SIGSTOP
3039 	      || !find_thread_ptid (linux_target, lp->ptid)->stop_requested)
3040 	  && !linux_wstatus_maybe_breakpoint (status))
3041 	{
3042 	  linux_resume_one_lwp (lp, lp->step, signo);
3043 	  linux_nat_debug_printf
3044 	    ("%s %s, %s (preempt 'handle')",
3045 	     lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT",
3046 	     target_pid_to_str (lp->ptid).c_str (),
3047 	     (signo != GDB_SIGNAL_0
3048 	      ? strsignal (gdb_signal_to_host (signo)) : "0"));
3049 	  return NULL;
3050 	}
3051     }
3052 
3053   /* An interesting event.  */
3054   gdb_assert (lp);
3055   lp->status = status;
3056   save_stop_reason (lp);
3057   return lp;
3058 }
3059 
3060 /* Detect zombie thread group leaders, and "exit" them.  We can't reap
3061    their exits until all other threads in the group have exited.  */
3062 
3063 static void
3064 check_zombie_leaders (void)
3065 {
3066   for (inferior *inf : all_inferiors ())
3067     {
3068       struct lwp_info *leader_lp;
3069 
3070       if (inf->pid == 0)
3071 	continue;
3072 
3073       leader_lp = find_lwp_pid (ptid_t (inf->pid));
3074       if (leader_lp != NULL
3075 	  /* Check if there are other threads in the group, as we may
3076 	     have raced with the inferior simply exiting.  */
3077 	  && num_lwps (inf->pid) > 1
3078 	  && linux_proc_pid_is_zombie (inf->pid))
3079 	{
3080 	  linux_nat_debug_printf ("Thread group leader %d zombie "
3081 				  "(it exited, or another thread execd).",
3082 				  inf->pid);
3083 
3084 	  /* A leader zombie can mean one of two things:
3085 
3086 	     - It exited, and there's an exit status pending
3087 	     available, or only the leader exited (not the whole
3088 	     program).  In the latter case, we can't waitpid the
3089 	     leader's exit status until all other threads are gone.
3090 
3091 	     - There are 3 or more threads in the group, and a thread
3092 	     other than the leader exec'd.  See comments on exec
3093 	     events at the top of the file.  We could try
3094 	     distinguishing the exit and exec cases, by waiting once
3095 	     more, and seeing if something comes out, but it doesn't
3096 	     sound useful.  The previous leader _does_ go away, and
3097 	     we'll re-add the new one once we see the exec event
3098 	     (which is just the same as what would happen if the
3099 	     previous leader did exit voluntarily before some other
3100 	     thread execs).  */
3101 
3102 	  linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid);
3103 	  exit_lwp (leader_lp);
3104 	}
3105     }
3106 }
3107 
3108 /* Convenience function that is called when the kernel reports an exit
3109    event.  This decides whether to report the event to GDB as a
3110    process exit event, a thread exit event, or to suppress the
3111    event.  */
3112 
3113 static ptid_t
3114 filter_exit_event (struct lwp_info *event_child,
3115 		   struct target_waitstatus *ourstatus)
3116 {
3117   ptid_t ptid = event_child->ptid;
3118 
3119   if (num_lwps (ptid.pid ()) > 1)
3120     {
3121       if (report_thread_events)
3122 	ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3123       else
3124 	ourstatus->kind = TARGET_WAITKIND_IGNORE;
3125 
3126       exit_lwp (event_child);
3127     }
3128 
3129   return ptid;
3130 }
3131 
3132 static ptid_t
3133 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus,
3134 		  int target_options)
3135 {
3136   sigset_t prev_mask;
3137   enum resume_kind last_resume_kind;
3138   struct lwp_info *lp;
3139   int status;
3140 
3141   linux_nat_debug_printf ("enter");
3142 
3143   /* The first time we get here after starting a new inferior, we may
3144      not have added it to the LWP list yet - this is the earliest
3145      moment at which we know its PID.  */
3146   if (inferior_ptid.is_pid ())
3147     {
3148       /* Upgrade the main thread's ptid.  */
3149       thread_change_ptid (linux_target, inferior_ptid,
3150 			  ptid_t (inferior_ptid.pid (),
3151 				  inferior_ptid.pid (), 0));
3152 
3153       lp = add_initial_lwp (inferior_ptid);
3154       lp->resumed = 1;
3155     }
3156 
3157   /* Make sure SIGCHLD is blocked until the sigsuspend below.  */
3158   block_child_signals (&prev_mask);
3159 
3160   /* First check if there is a LWP with a wait status pending.  */
3161   lp = iterate_over_lwps (ptid, status_callback);
3162   if (lp != NULL)
3163     {
3164       linux_nat_debug_printf ("Using pending wait status %s for %s.",
3165 			      status_to_str (lp->status),
3166 			      target_pid_to_str (lp->ptid).c_str ());
3167     }
3168 
3169   /* But if we don't find a pending event, we'll have to wait.  Always
3170      pull all events out of the kernel.  We'll randomly select an
3171      event LWP out of all that have events, to prevent starvation.  */
3172 
3173   while (lp == NULL)
3174     {
3175       pid_t lwpid;
3176 
3177       /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
3178 	 quirks:
3179 
3180 	 - If the thread group leader exits while other threads in the
3181 	   thread group still exist, waitpid(TGID, ...) hangs.  That
3182 	   waitpid won't return an exit status until the other threads
3183 	   in the group are reaped.
3184 
3185 	 - When a non-leader thread execs, that thread just vanishes
3186 	   without reporting an exit (so we'd hang if we waited for it
3187 	   explicitly in that case).  The exec event is reported to
3188 	   the TGID pid.  */
3189 
3190       errno = 0;
3191       lwpid = my_waitpid (-1, &status,  __WALL | WNOHANG);
3192 
3193       linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s",
3194 			      lwpid,
3195 			      errno ? safe_strerror (errno) : "ERRNO-OK");
3196 
3197       if (lwpid > 0)
3198 	{
3199 	  linux_nat_debug_printf ("waitpid %ld received %s",
3200 				  (long) lwpid, status_to_str (status));
3201 
3202 	  linux_nat_filter_event (lwpid, status);
3203 	  /* Retry until nothing comes out of waitpid.  A single
3204 	     SIGCHLD can indicate more than one child stopped.  */
3205 	  continue;
3206 	}
3207 
3208       /* Now that we've pulled all events out of the kernel, resume
3209 	 LWPs that don't have an interesting event to report.  */
3210       iterate_over_lwps (minus_one_ptid,
3211 			 [] (struct lwp_info *info)
3212 			 {
3213 			   return resume_stopped_resumed_lwps (info, minus_one_ptid);
3214 			 });
3215 
3216       /* ... and find an LWP with a status to report to the core, if
3217 	 any.  */
3218       lp = iterate_over_lwps (ptid, status_callback);
3219       if (lp != NULL)
3220 	break;
3221 
3222       /* Check for zombie thread group leaders.  Those can't be reaped
3223 	 until all other threads in the thread group are.  */
3224       check_zombie_leaders ();
3225 
3226       /* If there are no resumed children left, bail.  We'd be stuck
3227 	 forever in the sigsuspend call below otherwise.  */
3228       if (iterate_over_lwps (ptid, resumed_callback) == NULL)
3229 	{
3230 	  linux_nat_debug_printf ("exit (no resumed LWP)");
3231 
3232 	  ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3233 
3234 	  restore_child_signals_mask (&prev_mask);
3235 	  return minus_one_ptid;
3236 	}
3237 
3238       /* No interesting event to report to the core.  */
3239 
3240       if (target_options & TARGET_WNOHANG)
3241 	{
3242 	  linux_nat_debug_printf ("exit (ignore)");
3243 
3244 	  ourstatus->kind = TARGET_WAITKIND_IGNORE;
3245 	  restore_child_signals_mask (&prev_mask);
3246 	  return minus_one_ptid;
3247 	}
3248 
3249       /* We shouldn't end up here unless we want to try again.  */
3250       gdb_assert (lp == NULL);
3251 
3252       /* Block until we get an event reported with SIGCHLD.  */
3253       wait_for_signal ();
3254     }
3255 
3256   gdb_assert (lp);
3257 
3258   status = lp->status;
3259   lp->status = 0;
3260 
3261   if (!target_is_non_stop_p ())
3262     {
3263       /* Now stop all other LWP's ...  */
3264       iterate_over_lwps (minus_one_ptid, stop_callback);
3265 
3266       /* ... and wait until all of them have reported back that
3267 	 they're no longer running.  */
3268       iterate_over_lwps (minus_one_ptid, stop_wait_callback);
3269     }
3270 
3271   /* If we're not waiting for a specific LWP, choose an event LWP from
3272      among those that have had events.  Giving equal priority to all
3273      LWPs that have had events helps prevent starvation.  */
3274   if (ptid == minus_one_ptid || ptid.is_pid ())
3275     select_event_lwp (ptid, &lp, &status);
3276 
3277   gdb_assert (lp != NULL);
3278 
3279   /* Now that we've selected our final event LWP, un-adjust its PC if
3280      it was a software breakpoint, and we can't reliably support the
3281      "stopped by software breakpoint" stop reason.  */
3282   if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3283       && !USE_SIGTRAP_SIGINFO)
3284     {
3285       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3286       struct gdbarch *gdbarch = regcache->arch ();
3287       int decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3288 
3289       if (decr_pc != 0)
3290 	{
3291 	  CORE_ADDR pc;
3292 
3293 	  pc = regcache_read_pc (regcache);
3294 	  regcache_write_pc (regcache, pc + decr_pc);
3295 	}
3296     }
3297 
3298   /* We'll need this to determine whether to report a SIGSTOP as
3299      GDB_SIGNAL_0.  Need to take a copy because resume_clear_callback
3300      clears it.  */
3301   last_resume_kind = lp->last_resume_kind;
3302 
3303   if (!target_is_non_stop_p ())
3304     {
3305       /* In all-stop, from the core's perspective, all LWPs are now
3306 	 stopped until a new resume action is sent over.  */
3307       iterate_over_lwps (minus_one_ptid, resume_clear_callback);
3308     }
3309   else
3310     {
3311       resume_clear_callback (lp);
3312     }
3313 
3314   if (linux_target->low_status_is_event (status))
3315     {
3316       linux_nat_debug_printf ("trap ptid is %s.",
3317 			      target_pid_to_str (lp->ptid).c_str ());
3318     }
3319 
3320   if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3321     {
3322       *ourstatus = lp->waitstatus;
3323       lp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3324     }
3325   else
3326     store_waitstatus (ourstatus, status);
3327 
3328   linux_nat_debug_printf ("exit");
3329 
3330   restore_child_signals_mask (&prev_mask);
3331 
3332   if (last_resume_kind == resume_stop
3333       && ourstatus->kind == TARGET_WAITKIND_STOPPED
3334       && WSTOPSIG (status) == SIGSTOP)
3335     {
3336       /* A thread that has been requested to stop by GDB with
3337 	 target_stop, and it stopped cleanly, so report as SIG0.  The
3338 	 use of SIGSTOP is an implementation detail.  */
3339       ourstatus->value.sig = GDB_SIGNAL_0;
3340     }
3341 
3342   if (ourstatus->kind == TARGET_WAITKIND_EXITED
3343       || ourstatus->kind == TARGET_WAITKIND_SIGNALLED)
3344     lp->core = -1;
3345   else
3346     lp->core = linux_common_core_of_thread (lp->ptid);
3347 
3348   if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3349     return filter_exit_event (lp, ourstatus);
3350 
3351   return lp->ptid;
3352 }
3353 
3354 /* Resume LWPs that are currently stopped without any pending status
3355    to report, but are resumed from the core's perspective.  */
3356 
3357 static int
3358 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid)
3359 {
3360   if (!lp->stopped)
3361     {
3362       linux_nat_debug_printf ("NOT resuming LWP %s, not stopped",
3363 			      target_pid_to_str (lp->ptid).c_str ());
3364     }
3365   else if (!lp->resumed)
3366     {
3367       linux_nat_debug_printf ("NOT resuming LWP %s, not resumed",
3368 			      target_pid_to_str (lp->ptid).c_str ());
3369     }
3370   else if (lwp_status_pending_p (lp))
3371     {
3372       linux_nat_debug_printf ("NOT resuming LWP %s, has pending status",
3373 			      target_pid_to_str (lp->ptid).c_str ());
3374     }
3375   else
3376     {
3377       struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid);
3378       struct gdbarch *gdbarch = regcache->arch ();
3379 
3380       try
3381 	{
3382 	  CORE_ADDR pc = regcache_read_pc (regcache);
3383 	  int leave_stopped = 0;
3384 
3385 	  /* Don't bother if there's a breakpoint at PC that we'd hit
3386 	     immediately, and we're not waiting for this LWP.  */
3387 	  if (!lp->ptid.matches (wait_ptid))
3388 	    {
3389 	      if (breakpoint_inserted_here_p (regcache->aspace (), pc))
3390 		leave_stopped = 1;
3391 	    }
3392 
3393 	  if (!leave_stopped)
3394 	    {
3395 	      linux_nat_debug_printf
3396 		("resuming stopped-resumed LWP %s at %s: step=%d",
3397 		 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc),
3398 		 lp->step);
3399 
3400 	      linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0);
3401 	    }
3402 	}
3403       catch (const gdb_exception_error &ex)
3404 	{
3405 	  if (!check_ptrace_stopped_lwp_gone (lp))
3406 	    throw;
3407 	}
3408     }
3409 
3410   return 0;
3411 }
3412 
3413 ptid_t
3414 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus,
3415 			int target_options)
3416 {
3417   ptid_t event_ptid;
3418 
3419   linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (),
3420 			  target_options_to_string (target_options).c_str ());
3421 
3422   /* Flush the async file first.  */
3423   if (target_is_async_p ())
3424     async_file_flush ();
3425 
3426   /* Resume LWPs that are currently stopped without any pending status
3427      to report, but are resumed from the core's perspective.  LWPs get
3428      in this state if we find them stopping at a time we're not
3429      interested in reporting the event (target_wait on a
3430      specific_process, for example, see linux_nat_wait_1), and
3431      meanwhile the event became uninteresting.  Don't bother resuming
3432      LWPs we're not going to wait for if they'd stop immediately.  */
3433   if (target_is_non_stop_p ())
3434     iterate_over_lwps (minus_one_ptid,
3435 		       [=] (struct lwp_info *info)
3436 		       {
3437 			 return resume_stopped_resumed_lwps (info, ptid);
3438 		       });
3439 
3440   event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options);
3441 
3442   /* If we requested any event, and something came out, assume there
3443      may be more.  If we requested a specific lwp or process, also
3444      assume there may be more.  */
3445   if (target_is_async_p ()
3446       && ((ourstatus->kind != TARGET_WAITKIND_IGNORE
3447 	   && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED)
3448 	  || ptid != minus_one_ptid))
3449     async_file_mark ();
3450 
3451   return event_ptid;
3452 }
3453 
3454 /* Kill one LWP.  */
3455 
3456 static void
3457 kill_one_lwp (pid_t pid)
3458 {
3459   /* PTRACE_KILL may resume the inferior.  Send SIGKILL first.  */
3460 
3461   errno = 0;
3462   kill_lwp (pid, SIGKILL);
3463 
3464   if (debug_linux_nat)
3465     {
3466       int save_errno = errno;
3467 
3468       linux_nat_debug_printf
3469 	("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid,
3470 	 save_errno != 0 ? safe_strerror (save_errno) : "OK");
3471     }
3472 
3473   /* Some kernels ignore even SIGKILL for processes under ptrace.  */
3474 
3475   errno = 0;
3476   ptrace (PTRACE_KILL, pid, 0, 0);
3477   if (debug_linux_nat)
3478     {
3479       int save_errno = errno;
3480 
3481       linux_nat_debug_printf
3482 	("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid,
3483 	 save_errno ? safe_strerror (save_errno) : "OK");
3484     }
3485 }
3486 
3487 /* Wait for an LWP to die.  */
3488 
3489 static void
3490 kill_wait_one_lwp (pid_t pid)
3491 {
3492   pid_t res;
3493 
3494   /* We must make sure that there are no pending events (delayed
3495      SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current
3496      program doesn't interfere with any following debugging session.  */
3497 
3498   do
3499     {
3500       res = my_waitpid (pid, NULL, __WALL);
3501       if (res != (pid_t) -1)
3502 	{
3503 	  linux_nat_debug_printf ("wait %ld received unknown.", (long) pid);
3504 
3505 	  /* The Linux kernel sometimes fails to kill a thread
3506 	     completely after PTRACE_KILL; that goes from the stop
3507 	     point in do_fork out to the one in get_signal_to_deliver
3508 	     and waits again.  So kill it again.  */
3509 	  kill_one_lwp (pid);
3510 	}
3511     }
3512   while (res == pid);
3513 
3514   gdb_assert (res == -1 && errno == ECHILD);
3515 }
3516 
3517 /* Callback for iterate_over_lwps.  */
3518 
3519 static int
3520 kill_callback (struct lwp_info *lp)
3521 {
3522   kill_one_lwp (lp->ptid.lwp ());
3523   return 0;
3524 }
3525 
3526 /* Callback for iterate_over_lwps.  */
3527 
3528 static int
3529 kill_wait_callback (struct lwp_info *lp)
3530 {
3531   kill_wait_one_lwp (lp->ptid.lwp ());
3532   return 0;
3533 }
3534 
3535 /* Kill the fork children of any threads of inferior INF that are
3536    stopped at a fork event.  */
3537 
3538 static void
3539 kill_unfollowed_fork_children (struct inferior *inf)
3540 {
3541   for (thread_info *thread : inf->non_exited_threads ())
3542     {
3543       struct target_waitstatus *ws = &thread->pending_follow;
3544 
3545       if (ws->kind == TARGET_WAITKIND_FORKED
3546 	  || ws->kind == TARGET_WAITKIND_VFORKED)
3547 	{
3548 	  ptid_t child_ptid = ws->value.related_pid;
3549 	  int child_pid = child_ptid.pid ();
3550 	  int child_lwp = child_ptid.lwp ();
3551 
3552 	  kill_one_lwp (child_lwp);
3553 	  kill_wait_one_lwp (child_lwp);
3554 
3555 	  /* Let the arch-specific native code know this process is
3556 	     gone.  */
3557 	  linux_target->low_forget_process (child_pid);
3558 	}
3559     }
3560 }
3561 
3562 void
3563 linux_nat_target::kill ()
3564 {
3565   /* If we're stopped while forking and we haven't followed yet,
3566      kill the other task.  We need to do this first because the
3567      parent will be sleeping if this is a vfork.  */
3568   kill_unfollowed_fork_children (current_inferior ());
3569 
3570   if (forks_exist_p ())
3571     linux_fork_killall ();
3572   else
3573     {
3574       ptid_t ptid = ptid_t (inferior_ptid.pid ());
3575 
3576       /* Stop all threads before killing them, since ptrace requires
3577 	 that the thread is stopped to successfully PTRACE_KILL.  */
3578       iterate_over_lwps (ptid, stop_callback);
3579       /* ... and wait until all of them have reported back that
3580 	 they're no longer running.  */
3581       iterate_over_lwps (ptid, stop_wait_callback);
3582 
3583       /* Kill all LWP's ...  */
3584       iterate_over_lwps (ptid, kill_callback);
3585 
3586       /* ... and wait until we've flushed all events.  */
3587       iterate_over_lwps (ptid, kill_wait_callback);
3588     }
3589 
3590   target_mourn_inferior (inferior_ptid);
3591 }
3592 
3593 void
3594 linux_nat_target::mourn_inferior ()
3595 {
3596   int pid = inferior_ptid.pid ();
3597 
3598   purge_lwp_list (pid);
3599 
3600   if (! forks_exist_p ())
3601     /* Normal case, no other forks available.  */
3602     inf_ptrace_target::mourn_inferior ();
3603   else
3604     /* Multi-fork case.  The current inferior_ptid has exited, but
3605        there are other viable forks to debug.  Delete the exiting
3606        one and context-switch to the first available.  */
3607     linux_fork_mourn_inferior ();
3608 
3609   /* Let the arch-specific native code know this process is gone.  */
3610   linux_target->low_forget_process (pid);
3611 }
3612 
3613 /* Convert a native/host siginfo object, into/from the siginfo in the
3614    layout of the inferiors' architecture.  */
3615 
3616 static void
3617 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
3618 {
3619   /* If the low target didn't do anything, then just do a straight
3620      memcpy.  */
3621   if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction))
3622     {
3623       if (direction == 1)
3624 	memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
3625       else
3626 	memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
3627     }
3628 }
3629 
3630 static enum target_xfer_status
3631 linux_xfer_siginfo (enum target_object object,
3632                     const char *annex, gdb_byte *readbuf,
3633 		    const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3634 		    ULONGEST *xfered_len)
3635 {
3636   int pid;
3637   siginfo_t siginfo;
3638   gdb_byte inf_siginfo[sizeof (siginfo_t)];
3639 
3640   gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO);
3641   gdb_assert (readbuf || writebuf);
3642 
3643   pid = inferior_ptid.lwp ();
3644   if (pid == 0)
3645     pid = inferior_ptid.pid ();
3646 
3647   if (offset > sizeof (siginfo))
3648     return TARGET_XFER_E_IO;
3649 
3650   errno = 0;
3651   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3652   if (errno != 0)
3653     return TARGET_XFER_E_IO;
3654 
3655   /* When GDB is built as a 64-bit application, ptrace writes into
3656      SIGINFO an object with 64-bit layout.  Since debugging a 32-bit
3657      inferior with a 64-bit GDB should look the same as debugging it
3658      with a 32-bit GDB, we need to convert it.  GDB core always sees
3659      the converted layout, so any read/write will have to be done
3660      post-conversion.  */
3661   siginfo_fixup (&siginfo, inf_siginfo, 0);
3662 
3663   if (offset + len > sizeof (siginfo))
3664     len = sizeof (siginfo) - offset;
3665 
3666   if (readbuf != NULL)
3667     memcpy (readbuf, inf_siginfo + offset, len);
3668   else
3669     {
3670       memcpy (inf_siginfo + offset, writebuf, len);
3671 
3672       /* Convert back to ptrace layout before flushing it out.  */
3673       siginfo_fixup (&siginfo, inf_siginfo, 1);
3674 
3675       errno = 0;
3676       ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo);
3677       if (errno != 0)
3678 	return TARGET_XFER_E_IO;
3679     }
3680 
3681   *xfered_len = len;
3682   return TARGET_XFER_OK;
3683 }
3684 
3685 static enum target_xfer_status
3686 linux_nat_xfer_osdata (enum target_object object,
3687 		       const char *annex, gdb_byte *readbuf,
3688 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3689 		       ULONGEST *xfered_len);
3690 
3691 static enum target_xfer_status
3692 linux_proc_xfer_partial (enum target_object object,
3693 			 const char *annex, gdb_byte *readbuf,
3694 			 const gdb_byte *writebuf,
3695 			 ULONGEST offset, LONGEST len, ULONGEST *xfered_len);
3696 
3697 enum target_xfer_status
3698 linux_nat_target::xfer_partial (enum target_object object,
3699 				const char *annex, gdb_byte *readbuf,
3700 				const gdb_byte *writebuf,
3701 				ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
3702 {
3703   enum target_xfer_status xfer;
3704 
3705   if (object == TARGET_OBJECT_SIGNAL_INFO)
3706     return linux_xfer_siginfo (object, annex, readbuf, writebuf,
3707 			       offset, len, xfered_len);
3708 
3709   /* The target is connected but no live inferior is selected.  Pass
3710      this request down to a lower stratum (e.g., the executable
3711      file).  */
3712   if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid)
3713     return TARGET_XFER_EOF;
3714 
3715   if (object == TARGET_OBJECT_AUXV)
3716     return memory_xfer_auxv (this, object, annex, readbuf, writebuf,
3717 			     offset, len, xfered_len);
3718 
3719   if (object == TARGET_OBJECT_OSDATA)
3720     return linux_nat_xfer_osdata (object, annex, readbuf, writebuf,
3721 				  offset, len, xfered_len);
3722 
3723   /* GDB calculates all addresses in the largest possible address
3724      width.
3725      The address width must be masked before its final use - either by
3726      linux_proc_xfer_partial or inf_ptrace_target::xfer_partial.
3727 
3728      Compare ADDR_BIT first to avoid a compiler warning on shift overflow.  */
3729 
3730   if (object == TARGET_OBJECT_MEMORY)
3731     {
3732       int addr_bit = gdbarch_addr_bit (target_gdbarch ());
3733 
3734       if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT))
3735 	offset &= ((ULONGEST) 1 << addr_bit) - 1;
3736     }
3737 
3738   xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf,
3739 				  offset, len, xfered_len);
3740   if (xfer != TARGET_XFER_EOF)
3741     return xfer;
3742 
3743   return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf,
3744 					  offset, len, xfered_len);
3745 }
3746 
3747 bool
3748 linux_nat_target::thread_alive (ptid_t ptid)
3749 {
3750   /* As long as a PTID is in lwp list, consider it alive.  */
3751   return find_lwp_pid (ptid) != NULL;
3752 }
3753 
3754 /* Implement the to_update_thread_list target method for this
3755    target.  */
3756 
3757 void
3758 linux_nat_target::update_thread_list ()
3759 {
3760   struct lwp_info *lwp;
3761 
3762   /* We add/delete threads from the list as clone/exit events are
3763      processed, so just try deleting exited threads still in the
3764      thread list.  */
3765   delete_exited_threads ();
3766 
3767   /* Update the processor core that each lwp/thread was last seen
3768      running on.  */
3769   ALL_LWPS (lwp)
3770     {
3771       /* Avoid accessing /proc if the thread hasn't run since we last
3772 	 time we fetched the thread's core.  Accessing /proc becomes
3773 	 noticeably expensive when we have thousands of LWPs.  */
3774       if (lwp->core == -1)
3775 	lwp->core = linux_common_core_of_thread (lwp->ptid);
3776     }
3777 }
3778 
3779 std::string
3780 linux_nat_target::pid_to_str (ptid_t ptid)
3781 {
3782   if (ptid.lwp_p ()
3783       && (ptid.pid () != ptid.lwp ()
3784 	  || num_lwps (ptid.pid ()) > 1))
3785     return string_printf ("LWP %ld", ptid.lwp ());
3786 
3787   return normal_pid_to_str (ptid);
3788 }
3789 
3790 const char *
3791 linux_nat_target::thread_name (struct thread_info *thr)
3792 {
3793   return linux_proc_tid_get_name (thr->ptid);
3794 }
3795 
3796 /* Accepts an integer PID; Returns a string representing a file that
3797    can be opened to get the symbols for the child process.  */
3798 
3799 char *
3800 linux_nat_target::pid_to_exec_file (int pid)
3801 {
3802   return linux_proc_pid_to_exec_file (pid);
3803 }
3804 
3805 /* Implement the to_xfer_partial target method using /proc/<pid>/mem.
3806    Because we can use a single read/write call, this can be much more
3807    efficient than banging away at PTRACE_PEEKTEXT.  */
3808 
3809 static enum target_xfer_status
3810 linux_proc_xfer_partial (enum target_object object,
3811 			 const char *annex, gdb_byte *readbuf,
3812 			 const gdb_byte *writebuf,
3813 			 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
3814 {
3815   LONGEST ret;
3816   int fd;
3817   char filename[64];
3818 
3819   if (object != TARGET_OBJECT_MEMORY)
3820     return TARGET_XFER_EOF;
3821 
3822   /* Don't bother for one word.  */
3823   if (len < 3 * sizeof (long))
3824     return TARGET_XFER_EOF;
3825 
3826   /* We could keep this file open and cache it - possibly one per
3827      thread.  That requires some juggling, but is even faster.  */
3828   xsnprintf (filename, sizeof filename, "/proc/%ld/mem",
3829 	     inferior_ptid.lwp ());
3830   fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY)
3831 				    | O_LARGEFILE), 0);
3832   if (fd == -1)
3833     return TARGET_XFER_EOF;
3834 
3835   /* Use pread64/pwrite64 if available, since they save a syscall and can
3836      handle 64-bit offsets even on 32-bit platforms (for instance, SPARC
3837      debugging a SPARC64 application).  */
3838 #ifdef HAVE_PREAD64
3839   ret = (readbuf ? pread64 (fd, readbuf, len, offset)
3840 	 : pwrite64 (fd, writebuf, len, offset));
3841 #else
3842   ret = lseek (fd, offset, SEEK_SET);
3843   if (ret != -1)
3844     ret = (readbuf ? read (fd, readbuf, len)
3845 	   : write (fd, writebuf, len));
3846 #endif
3847 
3848   close (fd);
3849 
3850   if (ret == -1 || ret == 0)
3851     return TARGET_XFER_EOF;
3852   else
3853     {
3854       *xfered_len = ret;
3855       return TARGET_XFER_OK;
3856     }
3857 }
3858 
3859 
3860 /* Parse LINE as a signal set and add its set bits to SIGS.  */
3861 
3862 static void
3863 add_line_to_sigset (const char *line, sigset_t *sigs)
3864 {
3865   int len = strlen (line) - 1;
3866   const char *p;
3867   int signum;
3868 
3869   if (line[len] != '\n')
3870     error (_("Could not parse signal set: %s"), line);
3871 
3872   p = line;
3873   signum = len * 4;
3874   while (len-- > 0)
3875     {
3876       int digit;
3877 
3878       if (*p >= '0' && *p <= '9')
3879 	digit = *p - '0';
3880       else if (*p >= 'a' && *p <= 'f')
3881 	digit = *p - 'a' + 10;
3882       else
3883 	error (_("Could not parse signal set: %s"), line);
3884 
3885       signum -= 4;
3886 
3887       if (digit & 1)
3888 	sigaddset (sigs, signum + 1);
3889       if (digit & 2)
3890 	sigaddset (sigs, signum + 2);
3891       if (digit & 4)
3892 	sigaddset (sigs, signum + 3);
3893       if (digit & 8)
3894 	sigaddset (sigs, signum + 4);
3895 
3896       p++;
3897     }
3898 }
3899 
3900 /* Find process PID's pending signals from /proc/pid/status and set
3901    SIGS to match.  */
3902 
3903 void
3904 linux_proc_pending_signals (int pid, sigset_t *pending,
3905 			    sigset_t *blocked, sigset_t *ignored)
3906 {
3907   char buffer[PATH_MAX], fname[PATH_MAX];
3908 
3909   sigemptyset (pending);
3910   sigemptyset (blocked);
3911   sigemptyset (ignored);
3912   xsnprintf (fname, sizeof fname, "/proc/%d/status", pid);
3913   gdb_file_up procfile = gdb_fopen_cloexec (fname, "r");
3914   if (procfile == NULL)
3915     error (_("Could not open %s"), fname);
3916 
3917   while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL)
3918     {
3919       /* Normal queued signals are on the SigPnd line in the status
3920 	 file.  However, 2.6 kernels also have a "shared" pending
3921 	 queue for delivering signals to a thread group, so check for
3922 	 a ShdPnd line also.
3923 
3924 	 Unfortunately some Red Hat kernels include the shared pending
3925 	 queue but not the ShdPnd status field.  */
3926 
3927       if (startswith (buffer, "SigPnd:\t"))
3928 	add_line_to_sigset (buffer + 8, pending);
3929       else if (startswith (buffer, "ShdPnd:\t"))
3930 	add_line_to_sigset (buffer + 8, pending);
3931       else if (startswith (buffer, "SigBlk:\t"))
3932 	add_line_to_sigset (buffer + 8, blocked);
3933       else if (startswith (buffer, "SigIgn:\t"))
3934 	add_line_to_sigset (buffer + 8, ignored);
3935     }
3936 }
3937 
3938 static enum target_xfer_status
3939 linux_nat_xfer_osdata (enum target_object object,
3940 		       const char *annex, gdb_byte *readbuf,
3941 		       const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
3942 		       ULONGEST *xfered_len)
3943 {
3944   gdb_assert (object == TARGET_OBJECT_OSDATA);
3945 
3946   *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len);
3947   if (*xfered_len == 0)
3948     return TARGET_XFER_EOF;
3949   else
3950     return TARGET_XFER_OK;
3951 }
3952 
3953 std::vector<static_tracepoint_marker>
3954 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid)
3955 {
3956   char s[IPA_CMD_BUF_SIZE];
3957   int pid = inferior_ptid.pid ();
3958   std::vector<static_tracepoint_marker> markers;
3959   const char *p = s;
3960   ptid_t ptid = ptid_t (pid, 0, 0);
3961   static_tracepoint_marker marker;
3962 
3963   /* Pause all */
3964   target_stop (ptid);
3965 
3966   memcpy (s, "qTfSTM", sizeof ("qTfSTM"));
3967   s[sizeof ("qTfSTM")] = 0;
3968 
3969   agent_run_command (pid, s, strlen (s) + 1);
3970 
3971   /* Unpause all.  */
3972   SCOPE_EXIT { target_continue_no_signal (ptid); };
3973 
3974   while (*p++ == 'm')
3975     {
3976       do
3977 	{
3978 	  parse_static_tracepoint_marker_definition (p, &p, &marker);
3979 
3980 	  if (strid == NULL || marker.str_id == strid)
3981 	    markers.push_back (std::move (marker));
3982 	}
3983       while (*p++ == ',');	/* comma-separated list */
3984 
3985       memcpy (s, "qTsSTM", sizeof ("qTsSTM"));
3986       s[sizeof ("qTsSTM")] = 0;
3987       agent_run_command (pid, s, strlen (s) + 1);
3988       p = s;
3989     }
3990 
3991   return markers;
3992 }
3993 
3994 /* target_is_async_p implementation.  */
3995 
3996 bool
3997 linux_nat_target::is_async_p ()
3998 {
3999   return linux_is_async_p ();
4000 }
4001 
4002 /* target_can_async_p implementation.  */
4003 
4004 bool
4005 linux_nat_target::can_async_p ()
4006 {
4007   /* We're always async, unless the user explicitly prevented it with the
4008      "maint set target-async" command.  */
4009   return target_async_permitted;
4010 }
4011 
4012 bool
4013 linux_nat_target::supports_non_stop ()
4014 {
4015   return true;
4016 }
4017 
4018 /* to_always_non_stop_p implementation.  */
4019 
4020 bool
4021 linux_nat_target::always_non_stop_p ()
4022 {
4023   return true;
4024 }
4025 
4026 bool
4027 linux_nat_target::supports_multi_process ()
4028 {
4029   return true;
4030 }
4031 
4032 bool
4033 linux_nat_target::supports_disable_randomization ()
4034 {
4035 #ifdef HAVE_PERSONALITY
4036   return true;
4037 #else
4038   return false;
4039 #endif
4040 }
4041 
4042 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4043    so we notice when any child changes state, and notify the
4044    event-loop; it allows us to use sigsuspend in linux_nat_wait_1
4045    above to wait for the arrival of a SIGCHLD.  */
4046 
4047 static void
4048 sigchld_handler (int signo)
4049 {
4050   int old_errno = errno;
4051 
4052   if (debug_linux_nat)
4053     gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1);
4054 
4055   if (signo == SIGCHLD
4056       && linux_nat_event_pipe[0] != -1)
4057     async_file_mark (); /* Let the event loop know that there are
4058 			   events to handle.  */
4059 
4060   errno = old_errno;
4061 }
4062 
4063 /* Callback registered with the target events file descriptor.  */
4064 
4065 static void
4066 handle_target_event (int error, gdb_client_data client_data)
4067 {
4068   inferior_event_handler (INF_REG_EVENT);
4069 }
4070 
4071 /* Create/destroy the target events pipe.  Returns previous state.  */
4072 
4073 static int
4074 linux_async_pipe (int enable)
4075 {
4076   int previous = linux_is_async_p ();
4077 
4078   if (previous != enable)
4079     {
4080       sigset_t prev_mask;
4081 
4082       /* Block child signals while we create/destroy the pipe, as
4083 	 their handler writes to it.  */
4084       block_child_signals (&prev_mask);
4085 
4086       if (enable)
4087 	{
4088 	  if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1)
4089 	    internal_error (__FILE__, __LINE__,
4090 			    "creating event pipe failed.");
4091 
4092 	  fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK);
4093 	  fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK);
4094 	}
4095       else
4096 	{
4097 	  close (linux_nat_event_pipe[0]);
4098 	  close (linux_nat_event_pipe[1]);
4099 	  linux_nat_event_pipe[0] = -1;
4100 	  linux_nat_event_pipe[1] = -1;
4101 	}
4102 
4103       restore_child_signals_mask (&prev_mask);
4104     }
4105 
4106   return previous;
4107 }
4108 
4109 int
4110 linux_nat_target::async_wait_fd ()
4111 {
4112   return linux_nat_event_pipe[0];
4113 }
4114 
4115 /* target_async implementation.  */
4116 
4117 void
4118 linux_nat_target::async (int enable)
4119 {
4120   if (enable)
4121     {
4122       if (!linux_async_pipe (1))
4123 	{
4124 	  add_file_handler (linux_nat_event_pipe[0],
4125 			    handle_target_event, NULL);
4126 	  /* There may be pending events to handle.  Tell the event loop
4127 	     to poll them.  */
4128 	  async_file_mark ();
4129 	}
4130     }
4131   else
4132     {
4133       delete_file_handler (linux_nat_event_pipe[0]);
4134       linux_async_pipe (0);
4135     }
4136   return;
4137 }
4138 
4139 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other
4140    event came out.  */
4141 
4142 static int
4143 linux_nat_stop_lwp (struct lwp_info *lwp)
4144 {
4145   if (!lwp->stopped)
4146     {
4147       linux_nat_debug_printf ("running -> suspending %s",
4148 			      target_pid_to_str (lwp->ptid).c_str ());
4149 
4150 
4151       if (lwp->last_resume_kind == resume_stop)
4152 	{
4153 	  linux_nat_debug_printf ("already stopping LWP %ld at GDB's request",
4154 				  lwp->ptid.lwp ());
4155 	  return 0;
4156 	}
4157 
4158       stop_callback (lwp);
4159       lwp->last_resume_kind = resume_stop;
4160     }
4161   else
4162     {
4163       /* Already known to be stopped; do nothing.  */
4164 
4165       if (debug_linux_nat)
4166 	{
4167 	  if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested)
4168 	    linux_nat_debug_printf ("already stopped/stop_requested %s",
4169 				    target_pid_to_str (lwp->ptid).c_str ());
4170 	  else
4171 	    linux_nat_debug_printf ("already stopped/no stop_requested yet %s",
4172 				    target_pid_to_str (lwp->ptid).c_str ());
4173 	}
4174     }
4175   return 0;
4176 }
4177 
4178 void
4179 linux_nat_target::stop (ptid_t ptid)
4180 {
4181   iterate_over_lwps (ptid, linux_nat_stop_lwp);
4182 }
4183 
4184 void
4185 linux_nat_target::close ()
4186 {
4187   /* Unregister from the event loop.  */
4188   if (is_async_p ())
4189     async (0);
4190 
4191   inf_ptrace_target::close ();
4192 }
4193 
4194 /* When requests are passed down from the linux-nat layer to the
4195    single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are
4196    used.  The address space pointer is stored in the inferior object,
4197    but the common code that is passed such ptid can't tell whether
4198    lwpid is a "main" process id or not (it assumes so).  We reverse
4199    look up the "main" process id from the lwp here.  */
4200 
4201 struct address_space *
4202 linux_nat_target::thread_address_space (ptid_t ptid)
4203 {
4204   struct lwp_info *lwp;
4205   struct inferior *inf;
4206   int pid;
4207 
4208   if (ptid.lwp () == 0)
4209     {
4210       /* An (lwpid,0,0) ptid.  Look up the lwp object to get at the
4211 	 tgid.  */
4212       lwp = find_lwp_pid (ptid);
4213       pid = lwp->ptid.pid ();
4214     }
4215   else
4216     {
4217       /* A (pid,lwpid,0) ptid.  */
4218       pid = ptid.pid ();
4219     }
4220 
4221   inf = find_inferior_pid (this, pid);
4222   gdb_assert (inf != NULL);
4223   return inf->aspace;
4224 }
4225 
4226 /* Return the cached value of the processor core for thread PTID.  */
4227 
4228 int
4229 linux_nat_target::core_of_thread (ptid_t ptid)
4230 {
4231   struct lwp_info *info = find_lwp_pid (ptid);
4232 
4233   if (info)
4234     return info->core;
4235   return -1;
4236 }
4237 
4238 /* Implementation of to_filesystem_is_local.  */
4239 
4240 bool
4241 linux_nat_target::filesystem_is_local ()
4242 {
4243   struct inferior *inf = current_inferior ();
4244 
4245   if (inf->fake_pid_p || inf->pid == 0)
4246     return true;
4247 
4248   return linux_ns_same (inf->pid, LINUX_NS_MNT);
4249 }
4250 
4251 /* Convert the INF argument passed to a to_fileio_* method
4252    to a process ID suitable for passing to its corresponding
4253    linux_mntns_* function.  If INF is non-NULL then the
4254    caller is requesting the filesystem seen by INF.  If INF
4255    is NULL then the caller is requesting the filesystem seen
4256    by the GDB.  We fall back to GDB's filesystem in the case
4257    that INF is non-NULL but its PID is unknown.  */
4258 
4259 static pid_t
4260 linux_nat_fileio_pid_of (struct inferior *inf)
4261 {
4262   if (inf == NULL || inf->fake_pid_p || inf->pid == 0)
4263     return getpid ();
4264   else
4265     return inf->pid;
4266 }
4267 
4268 /* Implementation of to_fileio_open.  */
4269 
4270 int
4271 linux_nat_target::fileio_open (struct inferior *inf, const char *filename,
4272 			       int flags, int mode, int warn_if_slow,
4273 			       int *target_errno)
4274 {
4275   int nat_flags;
4276   mode_t nat_mode;
4277   int fd;
4278 
4279   if (fileio_to_host_openflags (flags, &nat_flags) == -1
4280       || fileio_to_host_mode (mode, &nat_mode) == -1)
4281     {
4282       *target_errno = FILEIO_EINVAL;
4283       return -1;
4284     }
4285 
4286   fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf),
4287 				 filename, nat_flags, nat_mode);
4288   if (fd == -1)
4289     *target_errno = host_to_fileio_error (errno);
4290 
4291   return fd;
4292 }
4293 
4294 /* Implementation of to_fileio_readlink.  */
4295 
4296 gdb::optional<std::string>
4297 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename,
4298 				   int *target_errno)
4299 {
4300   char buf[PATH_MAX];
4301   int len;
4302 
4303   len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf),
4304 			      filename, buf, sizeof (buf));
4305   if (len < 0)
4306     {
4307       *target_errno = host_to_fileio_error (errno);
4308       return {};
4309     }
4310 
4311   return std::string (buf, len);
4312 }
4313 
4314 /* Implementation of to_fileio_unlink.  */
4315 
4316 int
4317 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename,
4318 				 int *target_errno)
4319 {
4320   int ret;
4321 
4322   ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf),
4323 			    filename);
4324   if (ret == -1)
4325     *target_errno = host_to_fileio_error (errno);
4326 
4327   return ret;
4328 }
4329 
4330 /* Implementation of the to_thread_events method.  */
4331 
4332 void
4333 linux_nat_target::thread_events (int enable)
4334 {
4335   report_thread_events = enable;
4336 }
4337 
4338 linux_nat_target::linux_nat_target ()
4339 {
4340   /* We don't change the stratum; this target will sit at
4341      process_stratum and thread_db will set at thread_stratum.  This
4342      is a little strange, since this is a multi-threaded-capable
4343      target, but we want to be on the stack below thread_db, and we
4344      also want to be used for single-threaded processes.  */
4345 }
4346 
4347 /* See linux-nat.h.  */
4348 
4349 int
4350 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo)
4351 {
4352   int pid;
4353 
4354   pid = ptid.lwp ();
4355   if (pid == 0)
4356     pid = ptid.pid ();
4357 
4358   errno = 0;
4359   ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo);
4360   if (errno != 0)
4361     {
4362       memset (siginfo, 0, sizeof (*siginfo));
4363       return 0;
4364     }
4365   return 1;
4366 }
4367 
4368 /* See nat/linux-nat.h.  */
4369 
4370 ptid_t
4371 current_lwp_ptid (void)
4372 {
4373   gdb_assert (inferior_ptid.lwp_p ());
4374   return inferior_ptid;
4375 }
4376 
4377 void _initialize_linux_nat ();
4378 void
4379 _initialize_linux_nat ()
4380 {
4381   add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance,
4382 			     &debug_linux_nat, _("\
4383 Set debugging of GNU/Linux lwp module."), _("\
4384 Show debugging of GNU/Linux lwp module."), _("\
4385 Enables printf debugging output."),
4386 			     NULL,
4387 			     show_debug_linux_nat,
4388 			     &setdebuglist, &showdebuglist);
4389 
4390   add_setshow_boolean_cmd ("linux-namespaces", class_maintenance,
4391 			   &debug_linux_namespaces, _("\
4392 Set debugging of GNU/Linux namespaces module."), _("\
4393 Show debugging of GNU/Linux namespaces module."), _("\
4394 Enables printf debugging output."),
4395 			   NULL,
4396 			   NULL,
4397 			   &setdebuglist, &showdebuglist);
4398 
4399   /* Install a SIGCHLD handler.  */
4400   sigchld_action.sa_handler = sigchld_handler;
4401   sigemptyset (&sigchld_action.sa_mask);
4402   sigchld_action.sa_flags = SA_RESTART;
4403 
4404   /* Make it the default.  */
4405   sigaction (SIGCHLD, &sigchld_action, NULL);
4406 
4407   /* Make sure we don't block SIGCHLD during a sigsuspend.  */
4408   gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask);
4409   sigdelset (&suspend_mask, SIGCHLD);
4410 
4411   sigemptyset (&blocked_mask);
4412 
4413   lwp_lwpid_htab_create ();
4414 }
4415 
4416 
4417 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to
4418    the GNU/Linux Threads library and therefore doesn't really belong
4419    here.  */
4420 
4421 /* Return the set of signals used by the threads library in *SET.  */
4422 
4423 void
4424 lin_thread_get_thread_signals (sigset_t *set)
4425 {
4426   sigemptyset (set);
4427 
4428   /* NPTL reserves the first two RT signals, but does not provide any
4429      way for the debugger to query the signal numbers - fortunately
4430      they don't change.  */
4431   sigaddset (set, __SIGRTMIN);
4432   sigaddset (set, __SIGRTMIN + 1);
4433 }
4434