1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "gdbsupport/gdb_wait.h" 27 #include <unistd.h> 28 #include <sys/syscall.h> 29 #include "nat/gdb_ptrace.h" 30 #include "linux-nat.h" 31 #include "nat/linux-ptrace.h" 32 #include "nat/linux-procfs.h" 33 #include "nat/linux-personality.h" 34 #include "linux-fork.h" 35 #include "gdbthread.h" 36 #include "gdbcmd.h" 37 #include "regcache.h" 38 #include "regset.h" 39 #include "inf-child.h" 40 #include "inf-ptrace.h" 41 #include "auxv.h" 42 #include <sys/procfs.h> /* for elf_gregset etc. */ 43 #include "elf-bfd.h" /* for elfcore_write_* */ 44 #include "gregset.h" /* for gregset */ 45 #include "gdbcore.h" /* for get_exec_file */ 46 #include <ctype.h> /* for isdigit */ 47 #include <sys/stat.h> /* for struct stat */ 48 #include <fcntl.h> /* for O_RDONLY */ 49 #include "inf-loop.h" 50 #include "gdbsupport/event-loop.h" 51 #include "event-top.h" 52 #include <pwd.h> 53 #include <sys/types.h> 54 #include <dirent.h> 55 #include "xml-support.h" 56 #include <sys/vfs.h> 57 #include "solib.h" 58 #include "nat/linux-osdata.h" 59 #include "linux-tdep.h" 60 #include "symfile.h" 61 #include "gdbsupport/agent.h" 62 #include "tracepoint.h" 63 #include "gdbsupport/buffer.h" 64 #include "target-descriptions.h" 65 #include "gdbsupport/filestuff.h" 66 #include "objfiles.h" 67 #include "nat/linux-namespaces.h" 68 #include "gdbsupport/fileio.h" 69 #include "gdbsupport/scope-exit.h" 70 #include "gdbsupport/gdb-sigmask.h" 71 #include "debug.h" 72 73 /* This comment documents high-level logic of this file. 74 75 Waiting for events in sync mode 76 =============================== 77 78 When waiting for an event in a specific thread, we just use waitpid, 79 passing the specific pid, and not passing WNOHANG. 80 81 When waiting for an event in all threads, waitpid is not quite good: 82 83 - If the thread group leader exits while other threads in the thread 84 group still exist, waitpid(TGID, ...) hangs. That waitpid won't 85 return an exit status until the other threads in the group are 86 reaped. 87 88 - When a non-leader thread execs, that thread just vanishes without 89 reporting an exit (so we'd hang if we waited for it explicitly in 90 that case). The exec event is instead reported to the TGID pid. 91 92 The solution is to always use -1 and WNOHANG, together with 93 sigsuspend. 94 95 First, we use non-blocking waitpid to check for events. If nothing is 96 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, 97 it means something happened to a child process. As soon as we know 98 there's an event, we get back to calling nonblocking waitpid. 99 100 Note that SIGCHLD should be blocked between waitpid and sigsuspend 101 calls, so that we don't miss a signal. If SIGCHLD arrives in between, 102 when it's blocked, the signal becomes pending and sigsuspend 103 immediately notices it and returns. 104 105 Waiting for events in async mode (TARGET_WNOHANG) 106 ================================================= 107 108 In async mode, GDB should always be ready to handle both user input 109 and target events, so neither blocking waitpid nor sigsuspend are 110 viable options. Instead, we should asynchronously notify the GDB main 111 event loop whenever there's an unprocessed event from the target. We 112 detect asynchronous target events by handling SIGCHLD signals. To 113 notify the event loop about target events, the self-pipe trick is used 114 --- a pipe is registered as waitable event source in the event loop, 115 the event loop select/poll's on the read end of this pipe (as well on 116 other event sources, e.g., stdin), and the SIGCHLD handler writes a 117 byte to this pipe. This is more portable than relying on 118 pselect/ppoll, since on kernels that lack those syscalls, libc 119 emulates them with select/poll+sigprocmask, and that is racy 120 (a.k.a. plain broken). 121 122 Obviously, if we fail to notify the event loop if there's a target 123 event, it's bad. OTOH, if we notify the event loop when there's no 124 event from the target, linux_nat_wait will detect that there's no real 125 event to report, and return event of type TARGET_WAITKIND_IGNORE. 126 This is mostly harmless, but it will waste time and is better avoided. 127 128 The main design point is that every time GDB is outside linux-nat.c, 129 we have a SIGCHLD handler installed that is called when something 130 happens to the target and notifies the GDB event loop. Whenever GDB 131 core decides to handle the event, and calls into linux-nat.c, we 132 process things as in sync mode, except that the we never block in 133 sigsuspend. 134 135 While processing an event, we may end up momentarily blocked in 136 waitpid calls. Those waitpid calls, while blocking, are guarantied to 137 return quickly. E.g., in all-stop mode, before reporting to the core 138 that an LWP hit a breakpoint, all LWPs are stopped by sending them 139 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 140 Note that this is different from blocking indefinitely waiting for the 141 next event --- here, we're already handling an event. 142 143 Use of signals 144 ============== 145 146 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 147 signal is not entirely significant; we just need for a signal to be delivered, 148 so that we can intercept it. SIGSTOP's advantage is that it can not be 149 blocked. A disadvantage is that it is not a real-time signal, so it can only 150 be queued once; we do not keep track of other sources of SIGSTOP. 151 152 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 153 use them, because they have special behavior when the signal is generated - 154 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 155 kills the entire thread group. 156 157 A delivered SIGSTOP would stop the entire thread group, not just the thread we 158 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 159 cancel it (by PTRACE_CONT without passing SIGSTOP). 160 161 We could use a real-time signal instead. This would solve those problems; we 162 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 163 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 164 generates it, and there are races with trying to find a signal that is not 165 blocked. 166 167 Exec events 168 =========== 169 170 The case of a thread group (process) with 3 or more threads, and a 171 thread other than the leader execs is worth detailing: 172 173 On an exec, the Linux kernel destroys all threads except the execing 174 one in the thread group, and resets the execing thread's tid to the 175 tgid. No exit notification is sent for the execing thread -- from the 176 ptracer's perspective, it appears as though the execing thread just 177 vanishes. Until we reap all other threads except the leader and the 178 execing thread, the leader will be zombie, and the execing thread will 179 be in `D (disc sleep)' state. As soon as all other threads are 180 reaped, the execing thread changes its tid to the tgid, and the 181 previous (zombie) leader vanishes, giving place to the "new" 182 leader. */ 183 184 #ifndef O_LARGEFILE 185 #define O_LARGEFILE 0 186 #endif 187 188 struct linux_nat_target *linux_target; 189 190 /* Does the current host support PTRACE_GETREGSET? */ 191 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 192 193 static unsigned int debug_linux_nat; 194 static void 195 show_debug_linux_nat (struct ui_file *file, int from_tty, 196 struct cmd_list_element *c, const char *value) 197 { 198 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 199 value); 200 } 201 202 /* Print a debug statement. Should be used through linux_nat_debug_printf. */ 203 204 static void ATTRIBUTE_PRINTF (2, 3) 205 linux_nat_debug_printf_1 (const char *func_name, const char *fmt, ...) 206 { 207 va_list ap; 208 va_start (ap, fmt); 209 debug_prefixed_vprintf ("linux-nat", func_name, fmt, ap); 210 va_end (ap); 211 } 212 213 #define linux_nat_debug_printf(fmt, ...) \ 214 do { \ 215 if (debug_linux_nat) \ 216 linux_nat_debug_printf_1 (__func__, fmt, ##__VA_ARGS__); \ 217 } while (0) 218 219 struct simple_pid_list 220 { 221 int pid; 222 int status; 223 struct simple_pid_list *next; 224 }; 225 static struct simple_pid_list *stopped_pids; 226 227 /* Whether target_thread_events is in effect. */ 228 static int report_thread_events; 229 230 /* Async mode support. */ 231 232 /* The read/write ends of the pipe registered as waitable file in the 233 event loop. */ 234 static int linux_nat_event_pipe[2] = { -1, -1 }; 235 236 /* True if we're currently in async mode. */ 237 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1) 238 239 /* Flush the event pipe. */ 240 241 static void 242 async_file_flush (void) 243 { 244 int ret; 245 char buf; 246 247 do 248 { 249 ret = read (linux_nat_event_pipe[0], &buf, 1); 250 } 251 while (ret >= 0 || (ret == -1 && errno == EINTR)); 252 } 253 254 /* Put something (anything, doesn't matter what, or how much) in event 255 pipe, so that the select/poll in the event-loop realizes we have 256 something to process. */ 257 258 static void 259 async_file_mark (void) 260 { 261 int ret; 262 263 /* It doesn't really matter what the pipe contains, as long we end 264 up with something in it. Might as well flush the previous 265 left-overs. */ 266 async_file_flush (); 267 268 do 269 { 270 ret = write (linux_nat_event_pipe[1], "+", 1); 271 } 272 while (ret == -1 && errno == EINTR); 273 274 /* Ignore EAGAIN. If the pipe is full, the event loop will already 275 be awakened anyway. */ 276 } 277 278 static int kill_lwp (int lwpid, int signo); 279 280 static int stop_callback (struct lwp_info *lp); 281 282 static void block_child_signals (sigset_t *prev_mask); 283 static void restore_child_signals_mask (sigset_t *prev_mask); 284 285 struct lwp_info; 286 static struct lwp_info *add_lwp (ptid_t ptid); 287 static void purge_lwp_list (int pid); 288 static void delete_lwp (ptid_t ptid); 289 static struct lwp_info *find_lwp_pid (ptid_t ptid); 290 291 static int lwp_status_pending_p (struct lwp_info *lp); 292 293 static void save_stop_reason (struct lwp_info *lp); 294 295 296 /* LWP accessors. */ 297 298 /* See nat/linux-nat.h. */ 299 300 ptid_t 301 ptid_of_lwp (struct lwp_info *lwp) 302 { 303 return lwp->ptid; 304 } 305 306 /* See nat/linux-nat.h. */ 307 308 void 309 lwp_set_arch_private_info (struct lwp_info *lwp, 310 struct arch_lwp_info *info) 311 { 312 lwp->arch_private = info; 313 } 314 315 /* See nat/linux-nat.h. */ 316 317 struct arch_lwp_info * 318 lwp_arch_private_info (struct lwp_info *lwp) 319 { 320 return lwp->arch_private; 321 } 322 323 /* See nat/linux-nat.h. */ 324 325 int 326 lwp_is_stopped (struct lwp_info *lwp) 327 { 328 return lwp->stopped; 329 } 330 331 /* See nat/linux-nat.h. */ 332 333 enum target_stop_reason 334 lwp_stop_reason (struct lwp_info *lwp) 335 { 336 return lwp->stop_reason; 337 } 338 339 /* See nat/linux-nat.h. */ 340 341 int 342 lwp_is_stepping (struct lwp_info *lwp) 343 { 344 return lwp->step; 345 } 346 347 348 /* Trivial list manipulation functions to keep track of a list of 349 new stopped processes. */ 350 static void 351 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 352 { 353 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); 354 355 new_pid->pid = pid; 356 new_pid->status = status; 357 new_pid->next = *listp; 358 *listp = new_pid; 359 } 360 361 static int 362 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 363 { 364 struct simple_pid_list **p; 365 366 for (p = listp; *p != NULL; p = &(*p)->next) 367 if ((*p)->pid == pid) 368 { 369 struct simple_pid_list *next = (*p)->next; 370 371 *statusp = (*p)->status; 372 xfree (*p); 373 *p = next; 374 return 1; 375 } 376 return 0; 377 } 378 379 /* Return the ptrace options that we want to try to enable. */ 380 381 static int 382 linux_nat_ptrace_options (int attached) 383 { 384 int options = 0; 385 386 if (!attached) 387 options |= PTRACE_O_EXITKILL; 388 389 options |= (PTRACE_O_TRACESYSGOOD 390 | PTRACE_O_TRACEVFORKDONE 391 | PTRACE_O_TRACEVFORK 392 | PTRACE_O_TRACEFORK 393 | PTRACE_O_TRACEEXEC); 394 395 return options; 396 } 397 398 /* Initialize ptrace and procfs warnings and check for supported 399 ptrace features given PID. 400 401 ATTACHED should be nonzero iff we attached to the inferior. */ 402 403 static void 404 linux_init_ptrace_procfs (pid_t pid, int attached) 405 { 406 int options = linux_nat_ptrace_options (attached); 407 408 linux_enable_event_reporting (pid, options); 409 linux_ptrace_init_warnings (); 410 linux_proc_init_warnings (); 411 } 412 413 linux_nat_target::~linux_nat_target () 414 {} 415 416 void 417 linux_nat_target::post_attach (int pid) 418 { 419 linux_init_ptrace_procfs (pid, 1); 420 } 421 422 void 423 linux_nat_target::post_startup_inferior (ptid_t ptid) 424 { 425 linux_init_ptrace_procfs (ptid.pid (), 0); 426 } 427 428 /* Return the number of known LWPs in the tgid given by PID. */ 429 430 static int 431 num_lwps (int pid) 432 { 433 int count = 0; 434 struct lwp_info *lp; 435 436 for (lp = lwp_list; lp; lp = lp->next) 437 if (lp->ptid.pid () == pid) 438 count++; 439 440 return count; 441 } 442 443 /* Deleter for lwp_info unique_ptr specialisation. */ 444 445 struct lwp_deleter 446 { 447 void operator() (struct lwp_info *lwp) const 448 { 449 delete_lwp (lwp->ptid); 450 } 451 }; 452 453 /* A unique_ptr specialisation for lwp_info. */ 454 455 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up; 456 457 /* Target hook for follow_fork. On entry inferior_ptid must be the 458 ptid of the followed inferior. At return, inferior_ptid will be 459 unchanged. */ 460 461 bool 462 linux_nat_target::follow_fork (bool follow_child, bool detach_fork) 463 { 464 if (!follow_child) 465 { 466 struct lwp_info *child_lp = NULL; 467 int has_vforked; 468 ptid_t parent_ptid, child_ptid; 469 int parent_pid, child_pid; 470 471 has_vforked = (inferior_thread ()->pending_follow.kind 472 == TARGET_WAITKIND_VFORKED); 473 parent_ptid = inferior_ptid; 474 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 475 parent_pid = parent_ptid.lwp (); 476 child_pid = child_ptid.lwp (); 477 478 /* We're already attached to the parent, by default. */ 479 child_lp = add_lwp (child_ptid); 480 child_lp->stopped = 1; 481 child_lp->last_resume_kind = resume_stop; 482 483 /* Detach new forked process? */ 484 if (detach_fork) 485 { 486 int child_stop_signal = 0; 487 bool detach_child = true; 488 489 /* Move CHILD_LP into a unique_ptr and clear the source pointer 490 to prevent us doing anything stupid with it. */ 491 lwp_info_up child_lp_ptr (child_lp); 492 child_lp = nullptr; 493 494 linux_target->low_prepare_to_resume (child_lp_ptr.get ()); 495 496 /* When debugging an inferior in an architecture that supports 497 hardware single stepping on a kernel without commit 498 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 499 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 500 set if the parent process had them set. 501 To work around this, single step the child process 502 once before detaching to clear the flags. */ 503 504 /* Note that we consult the parent's architecture instead of 505 the child's because there's no inferior for the child at 506 this point. */ 507 if (!gdbarch_software_single_step_p (target_thread_architecture 508 (parent_ptid))) 509 { 510 int status; 511 512 linux_disable_event_reporting (child_pid); 513 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 514 perror_with_name (_("Couldn't do single step")); 515 if (my_waitpid (child_pid, &status, 0) < 0) 516 perror_with_name (_("Couldn't wait vfork process")); 517 else 518 { 519 detach_child = WIFSTOPPED (status); 520 child_stop_signal = WSTOPSIG (status); 521 } 522 } 523 524 if (detach_child) 525 { 526 int signo = child_stop_signal; 527 528 if (signo != 0 529 && !signal_pass_state (gdb_signal_from_host (signo))) 530 signo = 0; 531 ptrace (PTRACE_DETACH, child_pid, 0, signo); 532 } 533 } 534 else 535 { 536 /* Switching inferior_ptid is not enough, because then 537 inferior_thread () would crash by not finding the thread 538 in the current inferior. */ 539 scoped_restore_current_thread restore_current_thread; 540 thread_info *child = find_thread_ptid (this, child_ptid); 541 switch_to_thread (child); 542 543 /* Let the thread_db layer learn about this new process. */ 544 check_for_thread_db (); 545 } 546 547 if (has_vforked) 548 { 549 struct lwp_info *parent_lp; 550 551 parent_lp = find_lwp_pid (parent_ptid); 552 gdb_assert (linux_supports_tracefork () >= 0); 553 554 if (linux_supports_tracevforkdone ()) 555 { 556 linux_nat_debug_printf ("waiting for VFORK_DONE on %d", 557 parent_pid); 558 parent_lp->stopped = 1; 559 560 /* We'll handle the VFORK_DONE event like any other 561 event, in target_wait. */ 562 } 563 else 564 { 565 /* We can't insert breakpoints until the child has 566 finished with the shared memory region. We need to 567 wait until that happens. Ideal would be to just 568 call: 569 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 570 - waitpid (parent_pid, &status, __WALL); 571 However, most architectures can't handle a syscall 572 being traced on the way out if it wasn't traced on 573 the way in. 574 575 We might also think to loop, continuing the child 576 until it exits or gets a SIGTRAP. One problem is 577 that the child might call ptrace with PTRACE_TRACEME. 578 579 There's no simple and reliable way to figure out when 580 the vforked child will be done with its copy of the 581 shared memory. We could step it out of the syscall, 582 two instructions, let it go, and then single-step the 583 parent once. When we have hardware single-step, this 584 would work; with software single-step it could still 585 be made to work but we'd have to be able to insert 586 single-step breakpoints in the child, and we'd have 587 to insert -just- the single-step breakpoint in the 588 parent. Very awkward. 589 590 In the end, the best we can do is to make sure it 591 runs for a little while. Hopefully it will be out of 592 range of any breakpoints we reinsert. Usually this 593 is only the single-step breakpoint at vfork's return 594 point. */ 595 596 linux_nat_debug_printf ("no VFORK_DONE support, sleeping a bit"); 597 598 usleep (10000); 599 600 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 601 and leave it pending. The next linux_nat_resume call 602 will notice a pending event, and bypasses actually 603 resuming the inferior. */ 604 parent_lp->status = 0; 605 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 606 parent_lp->stopped = 1; 607 608 /* If we're in async mode, need to tell the event loop 609 there's something here to process. */ 610 if (target_is_async_p ()) 611 async_file_mark (); 612 } 613 } 614 } 615 else 616 { 617 struct lwp_info *child_lp; 618 619 child_lp = add_lwp (inferior_ptid); 620 child_lp->stopped = 1; 621 child_lp->last_resume_kind = resume_stop; 622 623 /* Let the thread_db layer learn about this new process. */ 624 check_for_thread_db (); 625 } 626 627 return false; 628 } 629 630 631 int 632 linux_nat_target::insert_fork_catchpoint (int pid) 633 { 634 return !linux_supports_tracefork (); 635 } 636 637 int 638 linux_nat_target::remove_fork_catchpoint (int pid) 639 { 640 return 0; 641 } 642 643 int 644 linux_nat_target::insert_vfork_catchpoint (int pid) 645 { 646 return !linux_supports_tracefork (); 647 } 648 649 int 650 linux_nat_target::remove_vfork_catchpoint (int pid) 651 { 652 return 0; 653 } 654 655 int 656 linux_nat_target::insert_exec_catchpoint (int pid) 657 { 658 return !linux_supports_tracefork (); 659 } 660 661 int 662 linux_nat_target::remove_exec_catchpoint (int pid) 663 { 664 return 0; 665 } 666 667 int 668 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count, 669 gdb::array_view<const int> syscall_counts) 670 { 671 if (!linux_supports_tracesysgood ()) 672 return 1; 673 674 /* On GNU/Linux, we ignore the arguments. It means that we only 675 enable the syscall catchpoints, but do not disable them. 676 677 Also, we do not use the `syscall_counts' information because we do not 678 filter system calls here. We let GDB do the logic for us. */ 679 return 0; 680 } 681 682 /* List of known LWPs, keyed by LWP PID. This speeds up the common 683 case of mapping a PID returned from the kernel to our corresponding 684 lwp_info data structure. */ 685 static htab_t lwp_lwpid_htab; 686 687 /* Calculate a hash from a lwp_info's LWP PID. */ 688 689 static hashval_t 690 lwp_info_hash (const void *ap) 691 { 692 const struct lwp_info *lp = (struct lwp_info *) ap; 693 pid_t pid = lp->ptid.lwp (); 694 695 return iterative_hash_object (pid, 0); 696 } 697 698 /* Equality function for the lwp_info hash table. Compares the LWP's 699 PID. */ 700 701 static int 702 lwp_lwpid_htab_eq (const void *a, const void *b) 703 { 704 const struct lwp_info *entry = (const struct lwp_info *) a; 705 const struct lwp_info *element = (const struct lwp_info *) b; 706 707 return entry->ptid.lwp () == element->ptid.lwp (); 708 } 709 710 /* Create the lwp_lwpid_htab hash table. */ 711 712 static void 713 lwp_lwpid_htab_create (void) 714 { 715 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); 716 } 717 718 /* Add LP to the hash table. */ 719 720 static void 721 lwp_lwpid_htab_add_lwp (struct lwp_info *lp) 722 { 723 void **slot; 724 725 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); 726 gdb_assert (slot != NULL && *slot == NULL); 727 *slot = lp; 728 } 729 730 /* Head of doubly-linked list of known LWPs. Sorted by reverse 731 creation order. This order is assumed in some cases. E.g., 732 reaping status after killing alls lwps of a process: the leader LWP 733 must be reaped last. */ 734 struct lwp_info *lwp_list; 735 736 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ 737 738 static void 739 lwp_list_add (struct lwp_info *lp) 740 { 741 lp->next = lwp_list; 742 if (lwp_list != NULL) 743 lwp_list->prev = lp; 744 lwp_list = lp; 745 } 746 747 /* Remove LP from sorted-by-reverse-creation-order doubly-linked 748 list. */ 749 750 static void 751 lwp_list_remove (struct lwp_info *lp) 752 { 753 /* Remove from sorted-by-creation-order list. */ 754 if (lp->next != NULL) 755 lp->next->prev = lp->prev; 756 if (lp->prev != NULL) 757 lp->prev->next = lp->next; 758 if (lp == lwp_list) 759 lwp_list = lp->next; 760 } 761 762 763 764 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 765 _initialize_linux_nat. */ 766 static sigset_t suspend_mask; 767 768 /* Signals to block to make that sigsuspend work. */ 769 static sigset_t blocked_mask; 770 771 /* SIGCHLD action. */ 772 struct sigaction sigchld_action; 773 774 /* Block child signals (SIGCHLD and linux threads signals), and store 775 the previous mask in PREV_MASK. */ 776 777 static void 778 block_child_signals (sigset_t *prev_mask) 779 { 780 /* Make sure SIGCHLD is blocked. */ 781 if (!sigismember (&blocked_mask, SIGCHLD)) 782 sigaddset (&blocked_mask, SIGCHLD); 783 784 gdb_sigmask (SIG_BLOCK, &blocked_mask, prev_mask); 785 } 786 787 /* Restore child signals mask, previously returned by 788 block_child_signals. */ 789 790 static void 791 restore_child_signals_mask (sigset_t *prev_mask) 792 { 793 gdb_sigmask (SIG_SETMASK, prev_mask, NULL); 794 } 795 796 /* Mask of signals to pass directly to the inferior. */ 797 static sigset_t pass_mask; 798 799 /* Update signals to pass to the inferior. */ 800 void 801 linux_nat_target::pass_signals 802 (gdb::array_view<const unsigned char> pass_signals) 803 { 804 int signo; 805 806 sigemptyset (&pass_mask); 807 808 for (signo = 1; signo < NSIG; signo++) 809 { 810 int target_signo = gdb_signal_from_host (signo); 811 if (target_signo < pass_signals.size () && pass_signals[target_signo]) 812 sigaddset (&pass_mask, signo); 813 } 814 } 815 816 817 818 /* Prototypes for local functions. */ 819 static int stop_wait_callback (struct lwp_info *lp); 820 static int resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid); 821 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); 822 823 824 825 /* Destroy and free LP. */ 826 827 static void 828 lwp_free (struct lwp_info *lp) 829 { 830 /* Let the arch specific bits release arch_lwp_info. */ 831 linux_target->low_delete_thread (lp->arch_private); 832 833 xfree (lp); 834 } 835 836 /* Traversal function for purge_lwp_list. */ 837 838 static int 839 lwp_lwpid_htab_remove_pid (void **slot, void *info) 840 { 841 struct lwp_info *lp = (struct lwp_info *) *slot; 842 int pid = *(int *) info; 843 844 if (lp->ptid.pid () == pid) 845 { 846 htab_clear_slot (lwp_lwpid_htab, slot); 847 lwp_list_remove (lp); 848 lwp_free (lp); 849 } 850 851 return 1; 852 } 853 854 /* Remove all LWPs belong to PID from the lwp list. */ 855 856 static void 857 purge_lwp_list (int pid) 858 { 859 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); 860 } 861 862 /* Add the LWP specified by PTID to the list. PTID is the first LWP 863 in the process. Return a pointer to the structure describing the 864 new LWP. 865 866 This differs from add_lwp in that we don't let the arch specific 867 bits know about this new thread. Current clients of this callback 868 take the opportunity to install watchpoints in the new thread, and 869 we shouldn't do that for the first thread. If we're spawning a 870 child ("run"), the thread executes the shell wrapper first, and we 871 shouldn't touch it until it execs the program we want to debug. 872 For "attach", it'd be okay to call the callback, but it's not 873 necessary, because watchpoints can't yet have been inserted into 874 the inferior. */ 875 876 static struct lwp_info * 877 add_initial_lwp (ptid_t ptid) 878 { 879 struct lwp_info *lp; 880 881 gdb_assert (ptid.lwp_p ()); 882 883 lp = XNEW (struct lwp_info); 884 885 memset (lp, 0, sizeof (struct lwp_info)); 886 887 lp->last_resume_kind = resume_continue; 888 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 889 890 lp->ptid = ptid; 891 lp->core = -1; 892 893 /* Add to sorted-by-reverse-creation-order list. */ 894 lwp_list_add (lp); 895 896 /* Add to keyed-by-pid htab. */ 897 lwp_lwpid_htab_add_lwp (lp); 898 899 return lp; 900 } 901 902 /* Add the LWP specified by PID to the list. Return a pointer to the 903 structure describing the new LWP. The LWP should already be 904 stopped. */ 905 906 static struct lwp_info * 907 add_lwp (ptid_t ptid) 908 { 909 struct lwp_info *lp; 910 911 lp = add_initial_lwp (ptid); 912 913 /* Let the arch specific bits know about this new thread. Current 914 clients of this callback take the opportunity to install 915 watchpoints in the new thread. We don't do this for the first 916 thread though. See add_initial_lwp. */ 917 linux_target->low_new_thread (lp); 918 919 return lp; 920 } 921 922 /* Remove the LWP specified by PID from the list. */ 923 924 static void 925 delete_lwp (ptid_t ptid) 926 { 927 struct lwp_info *lp; 928 void **slot; 929 struct lwp_info dummy; 930 931 dummy.ptid = ptid; 932 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); 933 if (slot == NULL) 934 return; 935 936 lp = *(struct lwp_info **) slot; 937 gdb_assert (lp != NULL); 938 939 htab_clear_slot (lwp_lwpid_htab, slot); 940 941 /* Remove from sorted-by-creation-order list. */ 942 lwp_list_remove (lp); 943 944 /* Release. */ 945 lwp_free (lp); 946 } 947 948 /* Return a pointer to the structure describing the LWP corresponding 949 to PID. If no corresponding LWP could be found, return NULL. */ 950 951 static struct lwp_info * 952 find_lwp_pid (ptid_t ptid) 953 { 954 struct lwp_info *lp; 955 int lwp; 956 struct lwp_info dummy; 957 958 if (ptid.lwp_p ()) 959 lwp = ptid.lwp (); 960 else 961 lwp = ptid.pid (); 962 963 dummy.ptid = ptid_t (0, lwp, 0); 964 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); 965 return lp; 966 } 967 968 /* See nat/linux-nat.h. */ 969 970 struct lwp_info * 971 iterate_over_lwps (ptid_t filter, 972 gdb::function_view<iterate_over_lwps_ftype> callback) 973 { 974 struct lwp_info *lp, *lpnext; 975 976 for (lp = lwp_list; lp; lp = lpnext) 977 { 978 lpnext = lp->next; 979 980 if (lp->ptid.matches (filter)) 981 { 982 if (callback (lp) != 0) 983 return lp; 984 } 985 } 986 987 return NULL; 988 } 989 990 /* Update our internal state when changing from one checkpoint to 991 another indicated by NEW_PTID. We can only switch single-threaded 992 applications, so we only create one new LWP, and the previous list 993 is discarded. */ 994 995 void 996 linux_nat_switch_fork (ptid_t new_ptid) 997 { 998 struct lwp_info *lp; 999 1000 purge_lwp_list (inferior_ptid.pid ()); 1001 1002 lp = add_lwp (new_ptid); 1003 lp->stopped = 1; 1004 1005 /* This changes the thread's ptid while preserving the gdb thread 1006 num. Also changes the inferior pid, while preserving the 1007 inferior num. */ 1008 thread_change_ptid (linux_target, inferior_ptid, new_ptid); 1009 1010 /* We've just told GDB core that the thread changed target id, but, 1011 in fact, it really is a different thread, with different register 1012 contents. */ 1013 registers_changed (); 1014 } 1015 1016 /* Handle the exit of a single thread LP. */ 1017 1018 static void 1019 exit_lwp (struct lwp_info *lp) 1020 { 1021 struct thread_info *th = find_thread_ptid (linux_target, lp->ptid); 1022 1023 if (th) 1024 { 1025 if (print_thread_events) 1026 printf_unfiltered (_("[%s exited]\n"), 1027 target_pid_to_str (lp->ptid).c_str ()); 1028 1029 delete_thread (th); 1030 } 1031 1032 delete_lwp (lp->ptid); 1033 } 1034 1035 /* Wait for the LWP specified by LP, which we have just attached to. 1036 Returns a wait status for that LWP, to cache. */ 1037 1038 static int 1039 linux_nat_post_attach_wait (ptid_t ptid, int *signalled) 1040 { 1041 pid_t new_pid, pid = ptid.lwp (); 1042 int status; 1043 1044 if (linux_proc_pid_is_stopped (pid)) 1045 { 1046 linux_nat_debug_printf ("Attaching to a stopped process"); 1047 1048 /* The process is definitely stopped. It is in a job control 1049 stop, unless the kernel predates the TASK_STOPPED / 1050 TASK_TRACED distinction, in which case it might be in a 1051 ptrace stop. Make sure it is in a ptrace stop; from there we 1052 can kill it, signal it, et cetera. 1053 1054 First make sure there is a pending SIGSTOP. Since we are 1055 already attached, the process can not transition from stopped 1056 to running without a PTRACE_CONT; so we know this signal will 1057 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1058 probably already in the queue (unless this kernel is old 1059 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1060 is not an RT signal, it can only be queued once. */ 1061 kill_lwp (pid, SIGSTOP); 1062 1063 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1064 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1065 ptrace (PTRACE_CONT, pid, 0, 0); 1066 } 1067 1068 /* Make sure the initial process is stopped. The user-level threads 1069 layer might want to poke around in the inferior, and that won't 1070 work if things haven't stabilized yet. */ 1071 new_pid = my_waitpid (pid, &status, __WALL); 1072 gdb_assert (pid == new_pid); 1073 1074 if (!WIFSTOPPED (status)) 1075 { 1076 /* The pid we tried to attach has apparently just exited. */ 1077 linux_nat_debug_printf ("Failed to stop %d: %s", pid, 1078 status_to_str (status)); 1079 return status; 1080 } 1081 1082 if (WSTOPSIG (status) != SIGSTOP) 1083 { 1084 *signalled = 1; 1085 linux_nat_debug_printf ("Received %s after attaching", 1086 status_to_str (status)); 1087 } 1088 1089 return status; 1090 } 1091 1092 void 1093 linux_nat_target::create_inferior (const char *exec_file, 1094 const std::string &allargs, 1095 char **env, int from_tty) 1096 { 1097 maybe_disable_address_space_randomization restore_personality 1098 (disable_randomization); 1099 1100 /* The fork_child mechanism is synchronous and calls target_wait, so 1101 we have to mask the async mode. */ 1102 1103 /* Make sure we report all signals during startup. */ 1104 pass_signals ({}); 1105 1106 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); 1107 } 1108 1109 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 1110 already attached. Returns true if a new LWP is found, false 1111 otherwise. */ 1112 1113 static int 1114 attach_proc_task_lwp_callback (ptid_t ptid) 1115 { 1116 struct lwp_info *lp; 1117 1118 /* Ignore LWPs we're already attached to. */ 1119 lp = find_lwp_pid (ptid); 1120 if (lp == NULL) 1121 { 1122 int lwpid = ptid.lwp (); 1123 1124 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1125 { 1126 int err = errno; 1127 1128 /* Be quiet if we simply raced with the thread exiting. 1129 EPERM is returned if the thread's task still exists, and 1130 is marked as exited or zombie, as well as other 1131 conditions, so in that case, confirm the status in 1132 /proc/PID/status. */ 1133 if (err == ESRCH 1134 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1135 { 1136 linux_nat_debug_printf 1137 ("Cannot attach to lwp %d: thread is gone (%d: %s)", 1138 lwpid, err, safe_strerror (err)); 1139 1140 } 1141 else 1142 { 1143 std::string reason 1144 = linux_ptrace_attach_fail_reason_string (ptid, err); 1145 1146 warning (_("Cannot attach to lwp %d: %s"), 1147 lwpid, reason.c_str ()); 1148 } 1149 } 1150 else 1151 { 1152 linux_nat_debug_printf ("PTRACE_ATTACH %s, 0, 0 (OK)", 1153 target_pid_to_str (ptid).c_str ()); 1154 1155 lp = add_lwp (ptid); 1156 1157 /* The next time we wait for this LWP we'll see a SIGSTOP as 1158 PTRACE_ATTACH brings it to a halt. */ 1159 lp->signalled = 1; 1160 1161 /* We need to wait for a stop before being able to make the 1162 next ptrace call on this LWP. */ 1163 lp->must_set_ptrace_flags = 1; 1164 1165 /* So that wait collects the SIGSTOP. */ 1166 lp->resumed = 1; 1167 1168 /* Also add the LWP to gdb's thread list, in case a 1169 matching libthread_db is not found (or the process uses 1170 raw clone). */ 1171 add_thread (linux_target, lp->ptid); 1172 set_running (linux_target, lp->ptid, true); 1173 set_executing (linux_target, lp->ptid, true); 1174 } 1175 1176 return 1; 1177 } 1178 return 0; 1179 } 1180 1181 void 1182 linux_nat_target::attach (const char *args, int from_tty) 1183 { 1184 struct lwp_info *lp; 1185 int status; 1186 ptid_t ptid; 1187 1188 /* Make sure we report all signals during attach. */ 1189 pass_signals ({}); 1190 1191 try 1192 { 1193 inf_ptrace_target::attach (args, from_tty); 1194 } 1195 catch (const gdb_exception_error &ex) 1196 { 1197 pid_t pid = parse_pid_to_attach (args); 1198 std::string reason = linux_ptrace_attach_fail_reason (pid); 1199 1200 if (!reason.empty ()) 1201 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), 1202 ex.what ()); 1203 else 1204 throw_error (ex.error, "%s", ex.what ()); 1205 } 1206 1207 /* The ptrace base target adds the main thread with (pid,0,0) 1208 format. Decorate it with lwp info. */ 1209 ptid = ptid_t (inferior_ptid.pid (), 1210 inferior_ptid.pid (), 1211 0); 1212 thread_change_ptid (linux_target, inferior_ptid, ptid); 1213 1214 /* Add the initial process as the first LWP to the list. */ 1215 lp = add_initial_lwp (ptid); 1216 1217 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled); 1218 if (!WIFSTOPPED (status)) 1219 { 1220 if (WIFEXITED (status)) 1221 { 1222 int exit_code = WEXITSTATUS (status); 1223 1224 target_terminal::ours (); 1225 target_mourn_inferior (inferior_ptid); 1226 if (exit_code == 0) 1227 error (_("Unable to attach: program exited normally.")); 1228 else 1229 error (_("Unable to attach: program exited with code %d."), 1230 exit_code); 1231 } 1232 else if (WIFSIGNALED (status)) 1233 { 1234 enum gdb_signal signo; 1235 1236 target_terminal::ours (); 1237 target_mourn_inferior (inferior_ptid); 1238 1239 signo = gdb_signal_from_host (WTERMSIG (status)); 1240 error (_("Unable to attach: program terminated with signal " 1241 "%s, %s."), 1242 gdb_signal_to_name (signo), 1243 gdb_signal_to_string (signo)); 1244 } 1245 1246 internal_error (__FILE__, __LINE__, 1247 _("unexpected status %d for PID %ld"), 1248 status, (long) ptid.lwp ()); 1249 } 1250 1251 lp->stopped = 1; 1252 1253 /* Save the wait status to report later. */ 1254 lp->resumed = 1; 1255 linux_nat_debug_printf ("waitpid %ld, saving status %s", 1256 (long) lp->ptid.pid (), status_to_str (status)); 1257 1258 lp->status = status; 1259 1260 /* We must attach to every LWP. If /proc is mounted, use that to 1261 find them now. The inferior may be using raw clone instead of 1262 using pthreads. But even if it is using pthreads, thread_db 1263 walks structures in the inferior's address space to find the list 1264 of threads/LWPs, and those structures may well be corrupted. 1265 Note that once thread_db is loaded, we'll still use it to list 1266 threads and associate pthread info with each LWP. */ 1267 linux_proc_attach_tgid_threads (lp->ptid.pid (), 1268 attach_proc_task_lwp_callback); 1269 1270 if (target_can_async_p ()) 1271 target_async (1); 1272 } 1273 1274 /* Get pending signal of THREAD as a host signal number, for detaching 1275 purposes. This is the signal the thread last stopped for, which we 1276 need to deliver to the thread when detaching, otherwise, it'd be 1277 suppressed/lost. */ 1278 1279 static int 1280 get_detach_signal (struct lwp_info *lp) 1281 { 1282 enum gdb_signal signo = GDB_SIGNAL_0; 1283 1284 /* If we paused threads momentarily, we may have stored pending 1285 events in lp->status or lp->waitstatus (see stop_wait_callback), 1286 and GDB core hasn't seen any signal for those threads. 1287 Otherwise, the last signal reported to the core is found in the 1288 thread object's stop_signal. 1289 1290 There's a corner case that isn't handled here at present. Only 1291 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1292 stop_signal make sense as a real signal to pass to the inferior. 1293 Some catchpoint related events, like 1294 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1295 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1296 those traps are debug API (ptrace in our case) related and 1297 induced; the inferior wouldn't see them if it wasn't being 1298 traced. Hence, we should never pass them to the inferior, even 1299 when set to pass state. Since this corner case isn't handled by 1300 infrun.c when proceeding with a signal, for consistency, neither 1301 do we handle it here (or elsewhere in the file we check for 1302 signal pass state). Normally SIGTRAP isn't set to pass state, so 1303 this is really a corner case. */ 1304 1305 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1306 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1307 else if (lp->status) 1308 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1309 else 1310 { 1311 struct thread_info *tp = find_thread_ptid (linux_target, lp->ptid); 1312 1313 if (target_is_non_stop_p () && !tp->executing) 1314 { 1315 if (tp->suspend.waitstatus_pending_p) 1316 signo = tp->suspend.waitstatus.value.sig; 1317 else 1318 signo = tp->suspend.stop_signal; 1319 } 1320 else if (!target_is_non_stop_p ()) 1321 { 1322 ptid_t last_ptid; 1323 process_stratum_target *last_target; 1324 1325 get_last_target_status (&last_target, &last_ptid, nullptr); 1326 1327 if (last_target == linux_target 1328 && lp->ptid.lwp () == last_ptid.lwp ()) 1329 signo = tp->suspend.stop_signal; 1330 } 1331 } 1332 1333 if (signo == GDB_SIGNAL_0) 1334 { 1335 linux_nat_debug_printf ("lwp %s has no pending signal", 1336 target_pid_to_str (lp->ptid).c_str ()); 1337 } 1338 else if (!signal_pass_state (signo)) 1339 { 1340 linux_nat_debug_printf 1341 ("lwp %s had signal %s but it is in no pass state", 1342 target_pid_to_str (lp->ptid).c_str (), gdb_signal_to_string (signo)); 1343 } 1344 else 1345 { 1346 linux_nat_debug_printf ("lwp %s has pending signal %s", 1347 target_pid_to_str (lp->ptid).c_str (), 1348 gdb_signal_to_string (signo)); 1349 1350 return gdb_signal_to_host (signo); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the 1357 signal number that should be passed to the LWP when detaching. 1358 Otherwise pass any pending signal the LWP may have, if any. */ 1359 1360 static void 1361 detach_one_lwp (struct lwp_info *lp, int *signo_p) 1362 { 1363 int lwpid = lp->ptid.lwp (); 1364 int signo; 1365 1366 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1367 1368 if (lp->status != 0) 1369 linux_nat_debug_printf ("Pending %s for %s on detach.", 1370 strsignal (WSTOPSIG (lp->status)), 1371 target_pid_to_str (lp->ptid).c_str ()); 1372 1373 /* If there is a pending SIGSTOP, get rid of it. */ 1374 if (lp->signalled) 1375 { 1376 linux_nat_debug_printf ("Sending SIGCONT to %s", 1377 target_pid_to_str (lp->ptid).c_str ()); 1378 1379 kill_lwp (lwpid, SIGCONT); 1380 lp->signalled = 0; 1381 } 1382 1383 if (signo_p == NULL) 1384 { 1385 /* Pass on any pending signal for this LWP. */ 1386 signo = get_detach_signal (lp); 1387 } 1388 else 1389 signo = *signo_p; 1390 1391 /* Preparing to resume may try to write registers, and fail if the 1392 lwp is zombie. If that happens, ignore the error. We'll handle 1393 it below, when detach fails with ESRCH. */ 1394 try 1395 { 1396 linux_target->low_prepare_to_resume (lp); 1397 } 1398 catch (const gdb_exception_error &ex) 1399 { 1400 if (!check_ptrace_stopped_lwp_gone (lp)) 1401 throw; 1402 } 1403 1404 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0) 1405 { 1406 int save_errno = errno; 1407 1408 /* We know the thread exists, so ESRCH must mean the lwp is 1409 zombie. This can happen if one of the already-detached 1410 threads exits the whole thread group. In that case we're 1411 still attached, and must reap the lwp. */ 1412 if (save_errno == ESRCH) 1413 { 1414 int ret, status; 1415 1416 ret = my_waitpid (lwpid, &status, __WALL); 1417 if (ret == -1) 1418 { 1419 warning (_("Couldn't reap LWP %d while detaching: %s"), 1420 lwpid, safe_strerror (errno)); 1421 } 1422 else if (!WIFEXITED (status) && !WIFSIGNALED (status)) 1423 { 1424 warning (_("Reaping LWP %d while detaching " 1425 "returned unexpected status 0x%x"), 1426 lwpid, status); 1427 } 1428 } 1429 else 1430 { 1431 error (_("Can't detach %s: %s"), 1432 target_pid_to_str (lp->ptid).c_str (), 1433 safe_strerror (save_errno)); 1434 } 1435 } 1436 else 1437 linux_nat_debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)", 1438 target_pid_to_str (lp->ptid).c_str (), 1439 strsignal (signo)); 1440 1441 delete_lwp (lp->ptid); 1442 } 1443 1444 static int 1445 detach_callback (struct lwp_info *lp) 1446 { 1447 /* We don't actually detach from the thread group leader just yet. 1448 If the thread group exits, we must reap the zombie clone lwps 1449 before we're able to reap the leader. */ 1450 if (lp->ptid.lwp () != lp->ptid.pid ()) 1451 detach_one_lwp (lp, NULL); 1452 return 0; 1453 } 1454 1455 void 1456 linux_nat_target::detach (inferior *inf, int from_tty) 1457 { 1458 struct lwp_info *main_lwp; 1459 int pid = inf->pid; 1460 1461 /* Don't unregister from the event loop, as there may be other 1462 inferiors running. */ 1463 1464 /* Stop all threads before detaching. ptrace requires that the 1465 thread is stopped to successfully detach. */ 1466 iterate_over_lwps (ptid_t (pid), stop_callback); 1467 /* ... and wait until all of them have reported back that 1468 they're no longer running. */ 1469 iterate_over_lwps (ptid_t (pid), stop_wait_callback); 1470 1471 iterate_over_lwps (ptid_t (pid), detach_callback); 1472 1473 /* Only the initial process should be left right now. */ 1474 gdb_assert (num_lwps (pid) == 1); 1475 1476 main_lwp = find_lwp_pid (ptid_t (pid)); 1477 1478 if (forks_exist_p ()) 1479 { 1480 /* Multi-fork case. The current inferior_ptid is being detached 1481 from, but there are other viable forks to debug. Detach from 1482 the current fork, and context-switch to the first 1483 available. */ 1484 linux_fork_detach (from_tty); 1485 } 1486 else 1487 { 1488 target_announce_detach (from_tty); 1489 1490 /* Pass on any pending signal for the last LWP. */ 1491 int signo = get_detach_signal (main_lwp); 1492 1493 detach_one_lwp (main_lwp, &signo); 1494 1495 detach_success (inf); 1496 } 1497 } 1498 1499 /* Resume execution of the inferior process. If STEP is nonzero, 1500 single-step it. If SIGNAL is nonzero, give it that signal. */ 1501 1502 static void 1503 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1504 enum gdb_signal signo) 1505 { 1506 lp->step = step; 1507 1508 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1509 We only presently need that if the LWP is stepped though (to 1510 handle the case of stepping a breakpoint instruction). */ 1511 if (step) 1512 { 1513 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 1514 1515 lp->stop_pc = regcache_read_pc (regcache); 1516 } 1517 else 1518 lp->stop_pc = 0; 1519 1520 linux_target->low_prepare_to_resume (lp); 1521 linux_target->low_resume (lp->ptid, step, signo); 1522 1523 /* Successfully resumed. Clear state that no longer makes sense, 1524 and mark the LWP as running. Must not do this before resuming 1525 otherwise if that fails other code will be confused. E.g., we'd 1526 later try to stop the LWP and hang forever waiting for a stop 1527 status. Note that we must not throw after this is cleared, 1528 otherwise handle_zombie_lwp_error would get confused. */ 1529 lp->stopped = 0; 1530 lp->core = -1; 1531 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1532 registers_changed_ptid (linux_target, lp->ptid); 1533 } 1534 1535 /* Called when we try to resume a stopped LWP and that errors out. If 1536 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1537 or about to become), discard the error, clear any pending status 1538 the LWP may have, and return true (we'll collect the exit status 1539 soon enough). Otherwise, return false. */ 1540 1541 static int 1542 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1543 { 1544 /* If we get an error after resuming the LWP successfully, we'd 1545 confuse !T state for the LWP being gone. */ 1546 gdb_assert (lp->stopped); 1547 1548 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1549 because even if ptrace failed with ESRCH, the tracee may be "not 1550 yet fully dead", but already refusing ptrace requests. In that 1551 case the tracee has 'R (Running)' state for a little bit 1552 (observed in Linux 3.18). See also the note on ESRCH in the 1553 ptrace(2) man page. Instead, check whether the LWP has any state 1554 other than ptrace-stopped. */ 1555 1556 /* Don't assume anything if /proc/PID/status can't be read. */ 1557 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0) 1558 { 1559 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1560 lp->status = 0; 1561 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 1562 return 1; 1563 } 1564 return 0; 1565 } 1566 1567 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1568 disappears while we try to resume it. */ 1569 1570 static void 1571 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1572 { 1573 try 1574 { 1575 linux_resume_one_lwp_throw (lp, step, signo); 1576 } 1577 catch (const gdb_exception_error &ex) 1578 { 1579 if (!check_ptrace_stopped_lwp_gone (lp)) 1580 throw; 1581 } 1582 } 1583 1584 /* Resume LP. */ 1585 1586 static void 1587 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1588 { 1589 if (lp->stopped) 1590 { 1591 struct inferior *inf = find_inferior_ptid (linux_target, lp->ptid); 1592 1593 if (inf->vfork_child != NULL) 1594 { 1595 linux_nat_debug_printf ("Not resuming %s (vfork parent)", 1596 target_pid_to_str (lp->ptid).c_str ()); 1597 } 1598 else if (!lwp_status_pending_p (lp)) 1599 { 1600 linux_nat_debug_printf ("Resuming sibling %s, %s, %s", 1601 target_pid_to_str (lp->ptid).c_str (), 1602 (signo != GDB_SIGNAL_0 1603 ? strsignal (gdb_signal_to_host (signo)) 1604 : "0"), 1605 step ? "step" : "resume"); 1606 1607 linux_resume_one_lwp (lp, step, signo); 1608 } 1609 else 1610 { 1611 linux_nat_debug_printf ("Not resuming sibling %s (has pending)", 1612 target_pid_to_str (lp->ptid).c_str ()); 1613 } 1614 } 1615 else 1616 linux_nat_debug_printf ("Not resuming sibling %s (not stopped)", 1617 target_pid_to_str (lp->ptid).c_str ()); 1618 } 1619 1620 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1621 Resume LWP with the last stop signal, if it is in pass state. */ 1622 1623 static int 1624 linux_nat_resume_callback (struct lwp_info *lp, struct lwp_info *except) 1625 { 1626 enum gdb_signal signo = GDB_SIGNAL_0; 1627 1628 if (lp == except) 1629 return 0; 1630 1631 if (lp->stopped) 1632 { 1633 struct thread_info *thread; 1634 1635 thread = find_thread_ptid (linux_target, lp->ptid); 1636 if (thread != NULL) 1637 { 1638 signo = thread->suspend.stop_signal; 1639 thread->suspend.stop_signal = GDB_SIGNAL_0; 1640 } 1641 } 1642 1643 resume_lwp (lp, 0, signo); 1644 return 0; 1645 } 1646 1647 static int 1648 resume_clear_callback (struct lwp_info *lp) 1649 { 1650 lp->resumed = 0; 1651 lp->last_resume_kind = resume_stop; 1652 return 0; 1653 } 1654 1655 static int 1656 resume_set_callback (struct lwp_info *lp) 1657 { 1658 lp->resumed = 1; 1659 lp->last_resume_kind = resume_continue; 1660 return 0; 1661 } 1662 1663 void 1664 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo) 1665 { 1666 struct lwp_info *lp; 1667 int resume_many; 1668 1669 linux_nat_debug_printf ("Preparing to %s %s, %s, inferior_ptid %s", 1670 step ? "step" : "resume", 1671 target_pid_to_str (ptid).c_str (), 1672 (signo != GDB_SIGNAL_0 1673 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1674 target_pid_to_str (inferior_ptid).c_str ()); 1675 1676 /* A specific PTID means `step only this process id'. */ 1677 resume_many = (minus_one_ptid == ptid 1678 || ptid.is_pid ()); 1679 1680 /* Mark the lwps we're resuming as resumed and update their 1681 last_resume_kind to resume_continue. */ 1682 iterate_over_lwps (ptid, resume_set_callback); 1683 1684 /* See if it's the current inferior that should be handled 1685 specially. */ 1686 if (resume_many) 1687 lp = find_lwp_pid (inferior_ptid); 1688 else 1689 lp = find_lwp_pid (ptid); 1690 gdb_assert (lp != NULL); 1691 1692 /* Remember if we're stepping. */ 1693 lp->last_resume_kind = step ? resume_step : resume_continue; 1694 1695 /* If we have a pending wait status for this thread, there is no 1696 point in resuming the process. But first make sure that 1697 linux_nat_wait won't preemptively handle the event - we 1698 should never take this short-circuit if we are going to 1699 leave LP running, since we have skipped resuming all the 1700 other threads. This bit of code needs to be synchronized 1701 with linux_nat_wait. */ 1702 1703 if (lp->status && WIFSTOPPED (lp->status)) 1704 { 1705 if (!lp->step 1706 && WSTOPSIG (lp->status) 1707 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1708 { 1709 linux_nat_debug_printf 1710 ("Not short circuiting for ignored status 0x%x", lp->status); 1711 1712 /* FIXME: What should we do if we are supposed to continue 1713 this thread with a signal? */ 1714 gdb_assert (signo == GDB_SIGNAL_0); 1715 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1716 lp->status = 0; 1717 } 1718 } 1719 1720 if (lwp_status_pending_p (lp)) 1721 { 1722 /* FIXME: What should we do if we are supposed to continue 1723 this thread with a signal? */ 1724 gdb_assert (signo == GDB_SIGNAL_0); 1725 1726 linux_nat_debug_printf ("Short circuiting for status 0x%x", 1727 lp->status); 1728 1729 if (target_can_async_p ()) 1730 { 1731 target_async (1); 1732 /* Tell the event loop we have something to process. */ 1733 async_file_mark (); 1734 } 1735 return; 1736 } 1737 1738 if (resume_many) 1739 iterate_over_lwps (ptid, [=] (struct lwp_info *info) 1740 { 1741 return linux_nat_resume_callback (info, lp); 1742 }); 1743 1744 linux_nat_debug_printf ("%s %s, %s (resume event thread)", 1745 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1746 target_pid_to_str (lp->ptid).c_str (), 1747 (signo != GDB_SIGNAL_0 1748 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1749 1750 linux_resume_one_lwp (lp, step, signo); 1751 1752 if (target_can_async_p ()) 1753 target_async (1); 1754 } 1755 1756 /* Send a signal to an LWP. */ 1757 1758 static int 1759 kill_lwp (int lwpid, int signo) 1760 { 1761 int ret; 1762 1763 errno = 0; 1764 ret = syscall (__NR_tkill, lwpid, signo); 1765 if (errno == ENOSYS) 1766 { 1767 /* If tkill fails, then we are not using nptl threads, a 1768 configuration we no longer support. */ 1769 perror_with_name (("tkill")); 1770 } 1771 return ret; 1772 } 1773 1774 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1775 event, check if the core is interested in it: if not, ignore the 1776 event, and keep waiting; otherwise, we need to toggle the LWP's 1777 syscall entry/exit status, since the ptrace event itself doesn't 1778 indicate it, and report the trap to higher layers. */ 1779 1780 static int 1781 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1782 { 1783 struct target_waitstatus *ourstatus = &lp->waitstatus; 1784 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1785 thread_info *thread = find_thread_ptid (linux_target, lp->ptid); 1786 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread); 1787 1788 if (stopping) 1789 { 1790 /* If we're stopping threads, there's a SIGSTOP pending, which 1791 makes it so that the LWP reports an immediate syscall return, 1792 followed by the SIGSTOP. Skip seeing that "return" using 1793 PTRACE_CONT directly, and let stop_wait_callback collect the 1794 SIGSTOP. Later when the thread is resumed, a new syscall 1795 entry event. If we didn't do this (and returned 0), we'd 1796 leave a syscall entry pending, and our caller, by using 1797 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1798 itself. Later, when the user re-resumes this LWP, we'd see 1799 another syscall entry event and we'd mistake it for a return. 1800 1801 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1802 (leaving immediately with LWP->signalled set, without issuing 1803 a PTRACE_CONT), it would still be problematic to leave this 1804 syscall enter pending, as later when the thread is resumed, 1805 it would then see the same syscall exit mentioned above, 1806 followed by the delayed SIGSTOP, while the syscall didn't 1807 actually get to execute. It seems it would be even more 1808 confusing to the user. */ 1809 1810 linux_nat_debug_printf 1811 ("ignoring syscall %d for LWP %ld (stopping threads), resuming with " 1812 "PTRACE_CONT for SIGSTOP", syscall_number, lp->ptid.lwp ()); 1813 1814 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1815 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 1816 lp->stopped = 0; 1817 return 1; 1818 } 1819 1820 /* Always update the entry/return state, even if this particular 1821 syscall isn't interesting to the core now. In async mode, 1822 the user could install a new catchpoint for this syscall 1823 between syscall enter/return, and we'll need to know to 1824 report a syscall return if that happens. */ 1825 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1826 ? TARGET_WAITKIND_SYSCALL_RETURN 1827 : TARGET_WAITKIND_SYSCALL_ENTRY); 1828 1829 if (catch_syscall_enabled ()) 1830 { 1831 if (catching_syscall_number (syscall_number)) 1832 { 1833 /* Alright, an event to report. */ 1834 ourstatus->kind = lp->syscall_state; 1835 ourstatus->value.syscall_number = syscall_number; 1836 1837 linux_nat_debug_printf 1838 ("stopping for %s of syscall %d for LWP %ld", 1839 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1840 ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); 1841 1842 return 0; 1843 } 1844 1845 linux_nat_debug_printf 1846 ("ignoring %s of syscall %d for LWP %ld", 1847 (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1848 ? "entry" : "return"), syscall_number, lp->ptid.lwp ()); 1849 } 1850 else 1851 { 1852 /* If we had been syscall tracing, and hence used PT_SYSCALL 1853 before on this LWP, it could happen that the user removes all 1854 syscall catchpoints before we get to process this event. 1855 There are two noteworthy issues here: 1856 1857 - When stopped at a syscall entry event, resuming with 1858 PT_STEP still resumes executing the syscall and reports a 1859 syscall return. 1860 1861 - Only PT_SYSCALL catches syscall enters. If we last 1862 single-stepped this thread, then this event can't be a 1863 syscall enter. If we last single-stepped this thread, this 1864 has to be a syscall exit. 1865 1866 The points above mean that the next resume, be it PT_STEP or 1867 PT_CONTINUE, can not trigger a syscall trace event. */ 1868 linux_nat_debug_printf 1869 ("caught syscall event with no syscall catchpoints. %d for LWP %ld, " 1870 "ignoring", syscall_number, lp->ptid.lwp ()); 1871 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1872 } 1873 1874 /* The core isn't interested in this event. For efficiency, avoid 1875 stopping all threads only to have the core resume them all again. 1876 Since we're not stopping threads, if we're still syscall tracing 1877 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1878 subsequent syscall. Simply resume using the inf-ptrace layer, 1879 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1880 1881 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1882 return 1; 1883 } 1884 1885 /* Handle a GNU/Linux extended wait response. If we see a clone 1886 event, we need to add the new LWP to our list (and not report the 1887 trap to higher layers). This function returns non-zero if the 1888 event should be ignored and we should wait again. If STOPPING is 1889 true, the new LWP remains stopped, otherwise it is continued. */ 1890 1891 static int 1892 linux_handle_extended_wait (struct lwp_info *lp, int status) 1893 { 1894 int pid = lp->ptid.lwp (); 1895 struct target_waitstatus *ourstatus = &lp->waitstatus; 1896 int event = linux_ptrace_get_extended_event (status); 1897 1898 /* All extended events we currently use are mid-syscall. Only 1899 PTRACE_EVENT_STOP is delivered more like a signal-stop, but 1900 you have to be using PTRACE_SEIZE to get that. */ 1901 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; 1902 1903 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1904 || event == PTRACE_EVENT_CLONE) 1905 { 1906 unsigned long new_pid; 1907 int ret; 1908 1909 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1910 1911 /* If we haven't already seen the new PID stop, wait for it now. */ 1912 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 1913 { 1914 /* The new child has a pending SIGSTOP. We can't affect it until it 1915 hits the SIGSTOP, but we're already attached. */ 1916 ret = my_waitpid (new_pid, &status, __WALL); 1917 if (ret == -1) 1918 perror_with_name (_("waiting for new child")); 1919 else if (ret != new_pid) 1920 internal_error (__FILE__, __LINE__, 1921 _("wait returned unexpected PID %d"), ret); 1922 else if (!WIFSTOPPED (status)) 1923 internal_error (__FILE__, __LINE__, 1924 _("wait returned unexpected status 0x%x"), status); 1925 } 1926 1927 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0); 1928 1929 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 1930 { 1931 /* The arch-specific native code may need to know about new 1932 forks even if those end up never mapped to an 1933 inferior. */ 1934 linux_target->low_new_fork (lp, new_pid); 1935 } 1936 else if (event == PTRACE_EVENT_CLONE) 1937 { 1938 linux_target->low_new_clone (lp, new_pid); 1939 } 1940 1941 if (event == PTRACE_EVENT_FORK 1942 && linux_fork_checkpointing_p (lp->ptid.pid ())) 1943 { 1944 /* Handle checkpointing by linux-fork.c here as a special 1945 case. We don't want the follow-fork-mode or 'catch fork' 1946 to interfere with this. */ 1947 1948 /* This won't actually modify the breakpoint list, but will 1949 physically remove the breakpoints from the child. */ 1950 detach_breakpoints (ptid_t (new_pid, new_pid, 0)); 1951 1952 /* Retain child fork in ptrace (stopped) state. */ 1953 if (!find_fork_pid (new_pid)) 1954 add_fork (new_pid); 1955 1956 /* Report as spurious, so that infrun doesn't want to follow 1957 this fork. We're actually doing an infcall in 1958 linux-fork.c. */ 1959 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 1960 1961 /* Report the stop to the core. */ 1962 return 0; 1963 } 1964 1965 if (event == PTRACE_EVENT_FORK) 1966 ourstatus->kind = TARGET_WAITKIND_FORKED; 1967 else if (event == PTRACE_EVENT_VFORK) 1968 ourstatus->kind = TARGET_WAITKIND_VFORKED; 1969 else if (event == PTRACE_EVENT_CLONE) 1970 { 1971 struct lwp_info *new_lp; 1972 1973 ourstatus->kind = TARGET_WAITKIND_IGNORE; 1974 1975 linux_nat_debug_printf 1976 ("Got clone event from LWP %d, new child is LWP %ld", pid, new_pid); 1977 1978 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0)); 1979 new_lp->stopped = 1; 1980 new_lp->resumed = 1; 1981 1982 /* If the thread_db layer is active, let it record the user 1983 level thread id and status, and add the thread to GDB's 1984 list. */ 1985 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 1986 { 1987 /* The process is not using thread_db. Add the LWP to 1988 GDB's list. */ 1989 target_post_attach (new_lp->ptid.lwp ()); 1990 add_thread (linux_target, new_lp->ptid); 1991 } 1992 1993 /* Even if we're stopping the thread for some reason 1994 internal to this module, from the perspective of infrun 1995 and the user/frontend, this new thread is running until 1996 it next reports a stop. */ 1997 set_running (linux_target, new_lp->ptid, true); 1998 set_executing (linux_target, new_lp->ptid, true); 1999 2000 if (WSTOPSIG (status) != SIGSTOP) 2001 { 2002 /* This can happen if someone starts sending signals to 2003 the new thread before it gets a chance to run, which 2004 have a lower number than SIGSTOP (e.g. SIGUSR1). 2005 This is an unlikely case, and harder to handle for 2006 fork / vfork than for clone, so we do not try - but 2007 we handle it for clone events here. */ 2008 2009 new_lp->signalled = 1; 2010 2011 /* We created NEW_LP so it cannot yet contain STATUS. */ 2012 gdb_assert (new_lp->status == 0); 2013 2014 /* Save the wait status to report later. */ 2015 linux_nat_debug_printf 2016 ("waitpid of new LWP %ld, saving status %s", 2017 (long) new_lp->ptid.lwp (), status_to_str (status)); 2018 new_lp->status = status; 2019 } 2020 else if (report_thread_events) 2021 { 2022 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED; 2023 new_lp->status = status; 2024 } 2025 2026 return 1; 2027 } 2028 2029 return 0; 2030 } 2031 2032 if (event == PTRACE_EVENT_EXEC) 2033 { 2034 linux_nat_debug_printf ("Got exec event from LWP %ld", lp->ptid.lwp ()); 2035 2036 ourstatus->kind = TARGET_WAITKIND_EXECD; 2037 ourstatus->value.execd_pathname 2038 = xstrdup (linux_proc_pid_to_exec_file (pid)); 2039 2040 /* The thread that execed must have been resumed, but, when a 2041 thread execs, it changes its tid to the tgid, and the old 2042 tgid thread might have not been resumed. */ 2043 lp->resumed = 1; 2044 return 0; 2045 } 2046 2047 if (event == PTRACE_EVENT_VFORK_DONE) 2048 { 2049 if (current_inferior ()->waiting_for_vfork_done) 2050 { 2051 linux_nat_debug_printf 2052 ("Got expected PTRACE_EVENT_VFORK_DONE from LWP %ld: stopping", 2053 lp->ptid.lwp ()); 2054 2055 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2056 return 0; 2057 } 2058 2059 linux_nat_debug_printf 2060 ("Got PTRACE_EVENT_VFORK_DONE from LWP %ld: ignoring", lp->ptid.lwp ()); 2061 2062 return 1; 2063 } 2064 2065 internal_error (__FILE__, __LINE__, 2066 _("unknown ptrace event %d"), event); 2067 } 2068 2069 /* Suspend waiting for a signal. We're mostly interested in 2070 SIGCHLD/SIGINT. */ 2071 2072 static void 2073 wait_for_signal () 2074 { 2075 linux_nat_debug_printf ("about to sigsuspend"); 2076 sigsuspend (&suspend_mask); 2077 2078 /* If the quit flag is set, it means that the user pressed Ctrl-C 2079 and we're debugging a process that is running on a separate 2080 terminal, so we must forward the Ctrl-C to the inferior. (If the 2081 inferior is sharing GDB's terminal, then the Ctrl-C reaches the 2082 inferior directly.) We must do this here because functions that 2083 need to block waiting for a signal loop forever until there's an 2084 event to report before returning back to the event loop. */ 2085 if (!target_terminal::is_ours ()) 2086 { 2087 if (check_quit_flag ()) 2088 target_pass_ctrlc (); 2089 } 2090 } 2091 2092 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2093 exited. */ 2094 2095 static int 2096 wait_lwp (struct lwp_info *lp) 2097 { 2098 pid_t pid; 2099 int status = 0; 2100 int thread_dead = 0; 2101 sigset_t prev_mask; 2102 2103 gdb_assert (!lp->stopped); 2104 gdb_assert (lp->status == 0); 2105 2106 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2107 block_child_signals (&prev_mask); 2108 2109 for (;;) 2110 { 2111 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG); 2112 if (pid == -1 && errno == ECHILD) 2113 { 2114 /* The thread has previously exited. We need to delete it 2115 now because if this was a non-leader thread execing, we 2116 won't get an exit event. See comments on exec events at 2117 the top of the file. */ 2118 thread_dead = 1; 2119 linux_nat_debug_printf ("%s vanished.", 2120 target_pid_to_str (lp->ptid).c_str ()); 2121 } 2122 if (pid != 0) 2123 break; 2124 2125 /* Bugs 10970, 12702. 2126 Thread group leader may have exited in which case we'll lock up in 2127 waitpid if there are other threads, even if they are all zombies too. 2128 Basically, we're not supposed to use waitpid this way. 2129 tkill(pid,0) cannot be used here as it gets ESRCH for both 2130 for zombie and running processes. 2131 2132 As a workaround, check if we're waiting for the thread group leader and 2133 if it's a zombie, and avoid calling waitpid if it is. 2134 2135 This is racy, what if the tgl becomes a zombie right after we check? 2136 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2137 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2138 2139 if (lp->ptid.pid () == lp->ptid.lwp () 2140 && linux_proc_pid_is_zombie (lp->ptid.lwp ())) 2141 { 2142 thread_dead = 1; 2143 linux_nat_debug_printf ("Thread group leader %s vanished.", 2144 target_pid_to_str (lp->ptid).c_str ()); 2145 break; 2146 } 2147 2148 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2149 get invoked despite our caller had them intentionally blocked by 2150 block_child_signals. This is sensitive only to the loop of 2151 linux_nat_wait_1 and there if we get called my_waitpid gets called 2152 again before it gets to sigsuspend so we can safely let the handlers 2153 get executed here. */ 2154 wait_for_signal (); 2155 } 2156 2157 restore_child_signals_mask (&prev_mask); 2158 2159 if (!thread_dead) 2160 { 2161 gdb_assert (pid == lp->ptid.lwp ()); 2162 2163 linux_nat_debug_printf ("waitpid %s received %s", 2164 target_pid_to_str (lp->ptid).c_str (), 2165 status_to_str (status)); 2166 2167 /* Check if the thread has exited. */ 2168 if (WIFEXITED (status) || WIFSIGNALED (status)) 2169 { 2170 if (report_thread_events 2171 || lp->ptid.pid () == lp->ptid.lwp ()) 2172 { 2173 linux_nat_debug_printf ("LWP %d exited.", lp->ptid.pid ()); 2174 2175 /* If this is the leader exiting, it means the whole 2176 process is gone. Store the status to report to the 2177 core. Store it in lp->waitstatus, because lp->status 2178 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2179 store_waitstatus (&lp->waitstatus, status); 2180 return 0; 2181 } 2182 2183 thread_dead = 1; 2184 linux_nat_debug_printf ("%s exited.", 2185 target_pid_to_str (lp->ptid).c_str ()); 2186 } 2187 } 2188 2189 if (thread_dead) 2190 { 2191 exit_lwp (lp); 2192 return 0; 2193 } 2194 2195 gdb_assert (WIFSTOPPED (status)); 2196 lp->stopped = 1; 2197 2198 if (lp->must_set_ptrace_flags) 2199 { 2200 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); 2201 int options = linux_nat_ptrace_options (inf->attach_flag); 2202 2203 linux_enable_event_reporting (lp->ptid.lwp (), options); 2204 lp->must_set_ptrace_flags = 0; 2205 } 2206 2207 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2208 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2209 { 2210 /* No longer need the sysgood bit. The ptrace event ends up 2211 recorded in lp->waitstatus if we care for it. We can carry 2212 on handling the event like a regular SIGTRAP from here 2213 on. */ 2214 status = W_STOPCODE (SIGTRAP); 2215 if (linux_handle_syscall_trap (lp, 1)) 2216 return wait_lwp (lp); 2217 } 2218 else 2219 { 2220 /* Almost all other ptrace-stops are known to be outside of system 2221 calls, with further exceptions in linux_handle_extended_wait. */ 2222 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2223 } 2224 2225 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2226 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2227 && linux_is_extended_waitstatus (status)) 2228 { 2229 linux_nat_debug_printf ("Handling extended status 0x%06x", status); 2230 linux_handle_extended_wait (lp, status); 2231 return 0; 2232 } 2233 2234 return status; 2235 } 2236 2237 /* Send a SIGSTOP to LP. */ 2238 2239 static int 2240 stop_callback (struct lwp_info *lp) 2241 { 2242 if (!lp->stopped && !lp->signalled) 2243 { 2244 int ret; 2245 2246 linux_nat_debug_printf ("kill %s **<SIGSTOP>**", 2247 target_pid_to_str (lp->ptid).c_str ()); 2248 2249 errno = 0; 2250 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP); 2251 linux_nat_debug_printf ("lwp kill %d %s", ret, 2252 errno ? safe_strerror (errno) : "ERRNO-OK"); 2253 2254 lp->signalled = 1; 2255 gdb_assert (lp->status == 0); 2256 } 2257 2258 return 0; 2259 } 2260 2261 /* Request a stop on LWP. */ 2262 2263 void 2264 linux_stop_lwp (struct lwp_info *lwp) 2265 { 2266 stop_callback (lwp); 2267 } 2268 2269 /* See linux-nat.h */ 2270 2271 void 2272 linux_stop_and_wait_all_lwps (void) 2273 { 2274 /* Stop all LWP's ... */ 2275 iterate_over_lwps (minus_one_ptid, stop_callback); 2276 2277 /* ... and wait until all of them have reported back that 2278 they're no longer running. */ 2279 iterate_over_lwps (minus_one_ptid, stop_wait_callback); 2280 } 2281 2282 /* See linux-nat.h */ 2283 2284 void 2285 linux_unstop_all_lwps (void) 2286 { 2287 iterate_over_lwps (minus_one_ptid, 2288 [] (struct lwp_info *info) 2289 { 2290 return resume_stopped_resumed_lwps (info, minus_one_ptid); 2291 }); 2292 } 2293 2294 /* Return non-zero if LWP PID has a pending SIGINT. */ 2295 2296 static int 2297 linux_nat_has_pending_sigint (int pid) 2298 { 2299 sigset_t pending, blocked, ignored; 2300 2301 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2302 2303 if (sigismember (&pending, SIGINT) 2304 && !sigismember (&ignored, SIGINT)) 2305 return 1; 2306 2307 return 0; 2308 } 2309 2310 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2311 2312 static int 2313 set_ignore_sigint (struct lwp_info *lp) 2314 { 2315 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2316 flag to consume the next one. */ 2317 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2318 && WSTOPSIG (lp->status) == SIGINT) 2319 lp->status = 0; 2320 else 2321 lp->ignore_sigint = 1; 2322 2323 return 0; 2324 } 2325 2326 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2327 This function is called after we know the LWP has stopped; if the LWP 2328 stopped before the expected SIGINT was delivered, then it will never have 2329 arrived. Also, if the signal was delivered to a shared queue and consumed 2330 by a different thread, it will never be delivered to this LWP. */ 2331 2332 static void 2333 maybe_clear_ignore_sigint (struct lwp_info *lp) 2334 { 2335 if (!lp->ignore_sigint) 2336 return; 2337 2338 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ())) 2339 { 2340 linux_nat_debug_printf ("Clearing bogus flag for %s", 2341 target_pid_to_str (lp->ptid).c_str ()); 2342 lp->ignore_sigint = 0; 2343 } 2344 } 2345 2346 /* Fetch the possible triggered data watchpoint info and store it in 2347 LP. 2348 2349 On some archs, like x86, that use debug registers to set 2350 watchpoints, it's possible that the way to know which watched 2351 address trapped, is to check the register that is used to select 2352 which address to watch. Problem is, between setting the watchpoint 2353 and reading back which data address trapped, the user may change 2354 the set of watchpoints, and, as a consequence, GDB changes the 2355 debug registers in the inferior. To avoid reading back a stale 2356 stopped-data-address when that happens, we cache in LP the fact 2357 that a watchpoint trapped, and the corresponding data address, as 2358 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2359 registers meanwhile, we have the cached data we can rely on. */ 2360 2361 static int 2362 check_stopped_by_watchpoint (struct lwp_info *lp) 2363 { 2364 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 2365 inferior_ptid = lp->ptid; 2366 2367 if (linux_target->low_stopped_by_watchpoint ()) 2368 { 2369 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2370 lp->stopped_data_address_p 2371 = linux_target->low_stopped_data_address (&lp->stopped_data_address); 2372 } 2373 2374 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2375 } 2376 2377 /* Returns true if the LWP had stopped for a watchpoint. */ 2378 2379 bool 2380 linux_nat_target::stopped_by_watchpoint () 2381 { 2382 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2383 2384 gdb_assert (lp != NULL); 2385 2386 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2387 } 2388 2389 bool 2390 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 2391 { 2392 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2393 2394 gdb_assert (lp != NULL); 2395 2396 *addr_p = lp->stopped_data_address; 2397 2398 return lp->stopped_data_address_p; 2399 } 2400 2401 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2402 2403 bool 2404 linux_nat_target::low_status_is_event (int status) 2405 { 2406 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2407 } 2408 2409 /* Wait until LP is stopped. */ 2410 2411 static int 2412 stop_wait_callback (struct lwp_info *lp) 2413 { 2414 inferior *inf = find_inferior_ptid (linux_target, lp->ptid); 2415 2416 /* If this is a vfork parent, bail out, it is not going to report 2417 any SIGSTOP until the vfork is done with. */ 2418 if (inf->vfork_child != NULL) 2419 return 0; 2420 2421 if (!lp->stopped) 2422 { 2423 int status; 2424 2425 status = wait_lwp (lp); 2426 if (status == 0) 2427 return 0; 2428 2429 if (lp->ignore_sigint && WIFSTOPPED (status) 2430 && WSTOPSIG (status) == SIGINT) 2431 { 2432 lp->ignore_sigint = 0; 2433 2434 errno = 0; 2435 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 2436 lp->stopped = 0; 2437 linux_nat_debug_printf 2438 ("PTRACE_CONT %s, 0, 0 (%s) (discarding SIGINT)", 2439 target_pid_to_str (lp->ptid).c_str (), 2440 errno ? safe_strerror (errno) : "OK"); 2441 2442 return stop_wait_callback (lp); 2443 } 2444 2445 maybe_clear_ignore_sigint (lp); 2446 2447 if (WSTOPSIG (status) != SIGSTOP) 2448 { 2449 /* The thread was stopped with a signal other than SIGSTOP. */ 2450 2451 linux_nat_debug_printf ("Pending event %s in %s", 2452 status_to_str ((int) status), 2453 target_pid_to_str (lp->ptid).c_str ()); 2454 2455 /* Save the sigtrap event. */ 2456 lp->status = status; 2457 gdb_assert (lp->signalled); 2458 save_stop_reason (lp); 2459 } 2460 else 2461 { 2462 /* We caught the SIGSTOP that we intended to catch. */ 2463 2464 linux_nat_debug_printf ("Expected SIGSTOP caught for %s.", 2465 target_pid_to_str (lp->ptid).c_str ()); 2466 2467 lp->signalled = 0; 2468 2469 /* If we are waiting for this stop so we can report the thread 2470 stopped then we need to record this status. Otherwise, we can 2471 now discard this stop event. */ 2472 if (lp->last_resume_kind == resume_stop) 2473 { 2474 lp->status = status; 2475 save_stop_reason (lp); 2476 } 2477 } 2478 } 2479 2480 return 0; 2481 } 2482 2483 /* Return non-zero if LP has a wait status pending. Discard the 2484 pending event and resume the LWP if the event that originally 2485 caused the stop became uninteresting. */ 2486 2487 static int 2488 status_callback (struct lwp_info *lp) 2489 { 2490 /* Only report a pending wait status if we pretend that this has 2491 indeed been resumed. */ 2492 if (!lp->resumed) 2493 return 0; 2494 2495 if (!lwp_status_pending_p (lp)) 2496 return 0; 2497 2498 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2499 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2500 { 2501 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 2502 CORE_ADDR pc; 2503 int discard = 0; 2504 2505 pc = regcache_read_pc (regcache); 2506 2507 if (pc != lp->stop_pc) 2508 { 2509 linux_nat_debug_printf ("PC of %s changed. was=%s, now=%s", 2510 target_pid_to_str (lp->ptid).c_str (), 2511 paddress (target_gdbarch (), lp->stop_pc), 2512 paddress (target_gdbarch (), pc)); 2513 discard = 1; 2514 } 2515 2516 #if !USE_SIGTRAP_SIGINFO 2517 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) 2518 { 2519 linux_nat_debug_printf ("previous breakpoint of %s, at %s gone", 2520 target_pid_to_str (lp->ptid).c_str (), 2521 paddress (target_gdbarch (), lp->stop_pc)); 2522 2523 discard = 1; 2524 } 2525 #endif 2526 2527 if (discard) 2528 { 2529 linux_nat_debug_printf ("pending event of %s cancelled.", 2530 target_pid_to_str (lp->ptid).c_str ()); 2531 2532 lp->status = 0; 2533 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2534 return 0; 2535 } 2536 } 2537 2538 return 1; 2539 } 2540 2541 /* Count the LWP's that have had events. */ 2542 2543 static int 2544 count_events_callback (struct lwp_info *lp, int *count) 2545 { 2546 gdb_assert (count != NULL); 2547 2548 /* Select only resumed LWPs that have an event pending. */ 2549 if (lp->resumed && lwp_status_pending_p (lp)) 2550 (*count)++; 2551 2552 return 0; 2553 } 2554 2555 /* Select the LWP (if any) that is currently being single-stepped. */ 2556 2557 static int 2558 select_singlestep_lwp_callback (struct lwp_info *lp) 2559 { 2560 if (lp->last_resume_kind == resume_step 2561 && lp->status != 0) 2562 return 1; 2563 else 2564 return 0; 2565 } 2566 2567 /* Returns true if LP has a status pending. */ 2568 2569 static int 2570 lwp_status_pending_p (struct lwp_info *lp) 2571 { 2572 /* We check for lp->waitstatus in addition to lp->status, because we 2573 can have pending process exits recorded in lp->status and 2574 W_EXITCODE(0,0) happens to be 0. */ 2575 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE; 2576 } 2577 2578 /* Select the Nth LWP that has had an event. */ 2579 2580 static int 2581 select_event_lwp_callback (struct lwp_info *lp, int *selector) 2582 { 2583 gdb_assert (selector != NULL); 2584 2585 /* Select only resumed LWPs that have an event pending. */ 2586 if (lp->resumed && lwp_status_pending_p (lp)) 2587 if ((*selector)-- == 0) 2588 return 1; 2589 2590 return 0; 2591 } 2592 2593 /* Called when the LWP stopped for a signal/trap. If it stopped for a 2594 trap check what caused it (breakpoint, watchpoint, trace, etc.), 2595 and save the result in the LWP's stop_reason field. If it stopped 2596 for a breakpoint, decrement the PC if necessary on the lwp's 2597 architecture. */ 2598 2599 static void 2600 save_stop_reason (struct lwp_info *lp) 2601 { 2602 struct regcache *regcache; 2603 struct gdbarch *gdbarch; 2604 CORE_ADDR pc; 2605 CORE_ADDR sw_bp_pc; 2606 #if USE_SIGTRAP_SIGINFO 2607 siginfo_t siginfo; 2608 #endif 2609 2610 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2611 gdb_assert (lp->status != 0); 2612 2613 if (!linux_target->low_status_is_event (lp->status)) 2614 return; 2615 2616 regcache = get_thread_regcache (linux_target, lp->ptid); 2617 gdbarch = regcache->arch (); 2618 2619 pc = regcache_read_pc (regcache); 2620 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2621 2622 #if USE_SIGTRAP_SIGINFO 2623 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2624 { 2625 if (siginfo.si_signo == SIGTRAP) 2626 { 2627 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) 2628 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2629 { 2630 /* The si_code is ambiguous on this arch -- check debug 2631 registers. */ 2632 if (!check_stopped_by_watchpoint (lp)) 2633 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2634 } 2635 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) 2636 { 2637 /* If we determine the LWP stopped for a SW breakpoint, 2638 trust it. Particularly don't check watchpoint 2639 registers, because, at least on s390, we'd find 2640 stopped-by-watchpoint as long as there's a watchpoint 2641 set. */ 2642 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2643 } 2644 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2645 { 2646 /* This can indicate either a hardware breakpoint or 2647 hardware watchpoint. Check debug registers. */ 2648 if (!check_stopped_by_watchpoint (lp)) 2649 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2650 } 2651 else if (siginfo.si_code == TRAP_TRACE) 2652 { 2653 linux_nat_debug_printf ("%s stopped by trace", 2654 target_pid_to_str (lp->ptid).c_str ()); 2655 2656 /* We may have single stepped an instruction that 2657 triggered a watchpoint. In that case, on some 2658 architectures (such as x86), instead of TRAP_HWBKPT, 2659 si_code indicates TRAP_TRACE, and we need to check 2660 the debug registers separately. */ 2661 check_stopped_by_watchpoint (lp); 2662 } 2663 } 2664 } 2665 #else 2666 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2667 && software_breakpoint_inserted_here_p (regcache->aspace (), 2668 sw_bp_pc)) 2669 { 2670 /* The LWP was either continued, or stepped a software 2671 breakpoint instruction. */ 2672 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2673 } 2674 2675 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc)) 2676 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2677 2678 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON) 2679 check_stopped_by_watchpoint (lp); 2680 #endif 2681 2682 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) 2683 { 2684 linux_nat_debug_printf ("%s stopped by software breakpoint", 2685 target_pid_to_str (lp->ptid).c_str ()); 2686 2687 /* Back up the PC if necessary. */ 2688 if (pc != sw_bp_pc) 2689 regcache_write_pc (regcache, sw_bp_pc); 2690 2691 /* Update this so we record the correct stop PC below. */ 2692 pc = sw_bp_pc; 2693 } 2694 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2695 { 2696 linux_nat_debug_printf ("%s stopped by hardware breakpoint", 2697 target_pid_to_str (lp->ptid).c_str ()); 2698 } 2699 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 2700 { 2701 linux_nat_debug_printf ("%s stopped by hardware watchpoint", 2702 target_pid_to_str (lp->ptid).c_str ()); 2703 } 2704 2705 lp->stop_pc = pc; 2706 } 2707 2708 2709 /* Returns true if the LWP had stopped for a software breakpoint. */ 2710 2711 bool 2712 linux_nat_target::stopped_by_sw_breakpoint () 2713 { 2714 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2715 2716 gdb_assert (lp != NULL); 2717 2718 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2719 } 2720 2721 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2722 2723 bool 2724 linux_nat_target::supports_stopped_by_sw_breakpoint () 2725 { 2726 return USE_SIGTRAP_SIGINFO; 2727 } 2728 2729 /* Returns true if the LWP had stopped for a hardware 2730 breakpoint/watchpoint. */ 2731 2732 bool 2733 linux_nat_target::stopped_by_hw_breakpoint () 2734 { 2735 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2736 2737 gdb_assert (lp != NULL); 2738 2739 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2740 } 2741 2742 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2743 2744 bool 2745 linux_nat_target::supports_stopped_by_hw_breakpoint () 2746 { 2747 return USE_SIGTRAP_SIGINFO; 2748 } 2749 2750 /* Select one LWP out of those that have events pending. */ 2751 2752 static void 2753 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2754 { 2755 int num_events = 0; 2756 int random_selector; 2757 struct lwp_info *event_lp = NULL; 2758 2759 /* Record the wait status for the original LWP. */ 2760 (*orig_lp)->status = *status; 2761 2762 /* In all-stop, give preference to the LWP that is being 2763 single-stepped. There will be at most one, and it will be the 2764 LWP that the core is most interested in. If we didn't do this, 2765 then we'd have to handle pending step SIGTRAPs somehow in case 2766 the core later continues the previously-stepped thread, as 2767 otherwise we'd report the pending SIGTRAP then, and the core, not 2768 having stepped the thread, wouldn't understand what the trap was 2769 for, and therefore would report it to the user as a random 2770 signal. */ 2771 if (!target_is_non_stop_p ()) 2772 { 2773 event_lp = iterate_over_lwps (filter, select_singlestep_lwp_callback); 2774 if (event_lp != NULL) 2775 { 2776 linux_nat_debug_printf ("Select single-step %s", 2777 target_pid_to_str (event_lp->ptid).c_str ()); 2778 } 2779 } 2780 2781 if (event_lp == NULL) 2782 { 2783 /* Pick one at random, out of those which have had events. */ 2784 2785 /* First see how many events we have. */ 2786 iterate_over_lwps (filter, 2787 [&] (struct lwp_info *info) 2788 { 2789 return count_events_callback (info, &num_events); 2790 }); 2791 gdb_assert (num_events > 0); 2792 2793 /* Now randomly pick a LWP out of those that have had 2794 events. */ 2795 random_selector = (int) 2796 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2797 2798 if (num_events > 1) 2799 linux_nat_debug_printf ("Found %d events, selecting #%d", 2800 num_events, random_selector); 2801 2802 event_lp 2803 = (iterate_over_lwps 2804 (filter, 2805 [&] (struct lwp_info *info) 2806 { 2807 return select_event_lwp_callback (info, 2808 &random_selector); 2809 })); 2810 } 2811 2812 if (event_lp != NULL) 2813 { 2814 /* Switch the event LWP. */ 2815 *orig_lp = event_lp; 2816 *status = event_lp->status; 2817 } 2818 2819 /* Flush the wait status for the event LWP. */ 2820 (*orig_lp)->status = 0; 2821 } 2822 2823 /* Return non-zero if LP has been resumed. */ 2824 2825 static int 2826 resumed_callback (struct lwp_info *lp) 2827 { 2828 return lp->resumed; 2829 } 2830 2831 /* Check if we should go on and pass this event to common code. 2832 Return the affected lwp if we should, or NULL otherwise. */ 2833 2834 static struct lwp_info * 2835 linux_nat_filter_event (int lwpid, int status) 2836 { 2837 struct lwp_info *lp; 2838 int event = linux_ptrace_get_extended_event (status); 2839 2840 lp = find_lwp_pid (ptid_t (lwpid)); 2841 2842 /* Check for stop events reported by a process we didn't already 2843 know about - anything not already in our LWP list. 2844 2845 If we're expecting to receive stopped processes after 2846 fork, vfork, and clone events, then we'll just add the 2847 new one to our list and go back to waiting for the event 2848 to be reported - the stopped process might be returned 2849 from waitpid before or after the event is. 2850 2851 But note the case of a non-leader thread exec'ing after the 2852 leader having exited, and gone from our lists. The non-leader 2853 thread changes its tid to the tgid. */ 2854 2855 if (WIFSTOPPED (status) && lp == NULL 2856 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)) 2857 { 2858 /* A multi-thread exec after we had seen the leader exiting. */ 2859 linux_nat_debug_printf ("Re-adding thread group leader LWP %d.", lwpid); 2860 2861 lp = add_lwp (ptid_t (lwpid, lwpid, 0)); 2862 lp->stopped = 1; 2863 lp->resumed = 1; 2864 add_thread (linux_target, lp->ptid); 2865 } 2866 2867 if (WIFSTOPPED (status) && !lp) 2868 { 2869 linux_nat_debug_printf ("saving LWP %ld status %s in stopped_pids list", 2870 (long) lwpid, status_to_str (status)); 2871 add_to_pid_list (&stopped_pids, lwpid, status); 2872 return NULL; 2873 } 2874 2875 /* Make sure we don't report an event for the exit of an LWP not in 2876 our list, i.e. not part of the current process. This can happen 2877 if we detach from a program we originally forked and then it 2878 exits. */ 2879 if (!WIFSTOPPED (status) && !lp) 2880 return NULL; 2881 2882 /* This LWP is stopped now. (And if dead, this prevents it from 2883 ever being continued.) */ 2884 lp->stopped = 1; 2885 2886 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 2887 { 2888 inferior *inf = find_inferior_pid (linux_target, lp->ptid.pid ()); 2889 int options = linux_nat_ptrace_options (inf->attach_flag); 2890 2891 linux_enable_event_reporting (lp->ptid.lwp (), options); 2892 lp->must_set_ptrace_flags = 0; 2893 } 2894 2895 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2896 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2897 { 2898 /* No longer need the sysgood bit. The ptrace event ends up 2899 recorded in lp->waitstatus if we care for it. We can carry 2900 on handling the event like a regular SIGTRAP from here 2901 on. */ 2902 status = W_STOPCODE (SIGTRAP); 2903 if (linux_handle_syscall_trap (lp, 0)) 2904 return NULL; 2905 } 2906 else 2907 { 2908 /* Almost all other ptrace-stops are known to be outside of system 2909 calls, with further exceptions in linux_handle_extended_wait. */ 2910 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2911 } 2912 2913 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2914 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2915 && linux_is_extended_waitstatus (status)) 2916 { 2917 linux_nat_debug_printf ("Handling extended status 0x%06x", status); 2918 2919 if (linux_handle_extended_wait (lp, status)) 2920 return NULL; 2921 } 2922 2923 /* Check if the thread has exited. */ 2924 if (WIFEXITED (status) || WIFSIGNALED (status)) 2925 { 2926 if (!report_thread_events 2927 && num_lwps (lp->ptid.pid ()) > 1) 2928 { 2929 linux_nat_debug_printf ("%s exited.", 2930 target_pid_to_str (lp->ptid).c_str ()); 2931 2932 /* If there is at least one more LWP, then the exit signal 2933 was not the end of the debugged application and should be 2934 ignored. */ 2935 exit_lwp (lp); 2936 return NULL; 2937 } 2938 2939 /* Note that even if the leader was ptrace-stopped, it can still 2940 exit, if e.g., some other thread brings down the whole 2941 process (calls `exit'). So don't assert that the lwp is 2942 resumed. */ 2943 linux_nat_debug_printf ("LWP %ld exited (resumed=%d)", 2944 lp->ptid.lwp (), lp->resumed); 2945 2946 /* Dead LWP's aren't expected to reported a pending sigstop. */ 2947 lp->signalled = 0; 2948 2949 /* Store the pending event in the waitstatus, because 2950 W_EXITCODE(0,0) == 0. */ 2951 store_waitstatus (&lp->waitstatus, status); 2952 return lp; 2953 } 2954 2955 /* Make sure we don't report a SIGSTOP that we sent ourselves in 2956 an attempt to stop an LWP. */ 2957 if (lp->signalled 2958 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 2959 { 2960 lp->signalled = 0; 2961 2962 if (lp->last_resume_kind == resume_stop) 2963 { 2964 linux_nat_debug_printf ("resume_stop SIGSTOP caught for %s.", 2965 target_pid_to_str (lp->ptid).c_str ()); 2966 } 2967 else 2968 { 2969 /* This is a delayed SIGSTOP. Filter out the event. */ 2970 2971 linux_nat_debug_printf 2972 ("%s %s, 0, 0 (discard delayed SIGSTOP)", 2973 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 2974 target_pid_to_str (lp->ptid).c_str ()); 2975 2976 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2977 gdb_assert (lp->resumed); 2978 return NULL; 2979 } 2980 } 2981 2982 /* Make sure we don't report a SIGINT that we have already displayed 2983 for another thread. */ 2984 if (lp->ignore_sigint 2985 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 2986 { 2987 linux_nat_debug_printf ("Delayed SIGINT caught for %s.", 2988 target_pid_to_str (lp->ptid).c_str ()); 2989 2990 /* This is a delayed SIGINT. */ 2991 lp->ignore_sigint = 0; 2992 2993 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2994 linux_nat_debug_printf ("%s %s, 0, 0 (discard SIGINT)", 2995 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 2996 target_pid_to_str (lp->ptid).c_str ()); 2997 gdb_assert (lp->resumed); 2998 2999 /* Discard the event. */ 3000 return NULL; 3001 } 3002 3003 /* Don't report signals that GDB isn't interested in, such as 3004 signals that are neither printed nor stopped upon. Stopping all 3005 threads can be a bit time-consuming, so if we want decent 3006 performance with heavily multi-threaded programs, especially when 3007 they're using a high frequency timer, we'd better avoid it if we 3008 can. */ 3009 if (WIFSTOPPED (status)) 3010 { 3011 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3012 3013 if (!target_is_non_stop_p ()) 3014 { 3015 /* Only do the below in all-stop, as we currently use SIGSTOP 3016 to implement target_stop (see linux_nat_stop) in 3017 non-stop. */ 3018 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3019 { 3020 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3021 forwarded to the entire process group, that is, all LWPs 3022 will receive it - unless they're using CLONE_THREAD to 3023 share signals. Since we only want to report it once, we 3024 mark it as ignored for all LWPs except this one. */ 3025 iterate_over_lwps (ptid_t (lp->ptid.pid ()), set_ignore_sigint); 3026 lp->ignore_sigint = 0; 3027 } 3028 else 3029 maybe_clear_ignore_sigint (lp); 3030 } 3031 3032 /* When using hardware single-step, we need to report every signal. 3033 Otherwise, signals in pass_mask may be short-circuited 3034 except signals that might be caused by a breakpoint, or SIGSTOP 3035 if we sent the SIGSTOP and are waiting for it to arrive. */ 3036 if (!lp->step 3037 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 3038 && (WSTOPSIG (status) != SIGSTOP 3039 || !find_thread_ptid (linux_target, lp->ptid)->stop_requested) 3040 && !linux_wstatus_maybe_breakpoint (status)) 3041 { 3042 linux_resume_one_lwp (lp, lp->step, signo); 3043 linux_nat_debug_printf 3044 ("%s %s, %s (preempt 'handle')", 3045 lp->step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3046 target_pid_to_str (lp->ptid).c_str (), 3047 (signo != GDB_SIGNAL_0 3048 ? strsignal (gdb_signal_to_host (signo)) : "0")); 3049 return NULL; 3050 } 3051 } 3052 3053 /* An interesting event. */ 3054 gdb_assert (lp); 3055 lp->status = status; 3056 save_stop_reason (lp); 3057 return lp; 3058 } 3059 3060 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3061 their exits until all other threads in the group have exited. */ 3062 3063 static void 3064 check_zombie_leaders (void) 3065 { 3066 for (inferior *inf : all_inferiors ()) 3067 { 3068 struct lwp_info *leader_lp; 3069 3070 if (inf->pid == 0) 3071 continue; 3072 3073 leader_lp = find_lwp_pid (ptid_t (inf->pid)); 3074 if (leader_lp != NULL 3075 /* Check if there are other threads in the group, as we may 3076 have raced with the inferior simply exiting. */ 3077 && num_lwps (inf->pid) > 1 3078 && linux_proc_pid_is_zombie (inf->pid)) 3079 { 3080 linux_nat_debug_printf ("Thread group leader %d zombie " 3081 "(it exited, or another thread execd).", 3082 inf->pid); 3083 3084 /* A leader zombie can mean one of two things: 3085 3086 - It exited, and there's an exit status pending 3087 available, or only the leader exited (not the whole 3088 program). In the latter case, we can't waitpid the 3089 leader's exit status until all other threads are gone. 3090 3091 - There are 3 or more threads in the group, and a thread 3092 other than the leader exec'd. See comments on exec 3093 events at the top of the file. We could try 3094 distinguishing the exit and exec cases, by waiting once 3095 more, and seeing if something comes out, but it doesn't 3096 sound useful. The previous leader _does_ go away, and 3097 we'll re-add the new one once we see the exec event 3098 (which is just the same as what would happen if the 3099 previous leader did exit voluntarily before some other 3100 thread execs). */ 3101 3102 linux_nat_debug_printf ("Thread group leader %d vanished.", inf->pid); 3103 exit_lwp (leader_lp); 3104 } 3105 } 3106 } 3107 3108 /* Convenience function that is called when the kernel reports an exit 3109 event. This decides whether to report the event to GDB as a 3110 process exit event, a thread exit event, or to suppress the 3111 event. */ 3112 3113 static ptid_t 3114 filter_exit_event (struct lwp_info *event_child, 3115 struct target_waitstatus *ourstatus) 3116 { 3117 ptid_t ptid = event_child->ptid; 3118 3119 if (num_lwps (ptid.pid ()) > 1) 3120 { 3121 if (report_thread_events) 3122 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED; 3123 else 3124 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3125 3126 exit_lwp (event_child); 3127 } 3128 3129 return ptid; 3130 } 3131 3132 static ptid_t 3133 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus, 3134 int target_options) 3135 { 3136 sigset_t prev_mask; 3137 enum resume_kind last_resume_kind; 3138 struct lwp_info *lp; 3139 int status; 3140 3141 linux_nat_debug_printf ("enter"); 3142 3143 /* The first time we get here after starting a new inferior, we may 3144 not have added it to the LWP list yet - this is the earliest 3145 moment at which we know its PID. */ 3146 if (inferior_ptid.is_pid ()) 3147 { 3148 /* Upgrade the main thread's ptid. */ 3149 thread_change_ptid (linux_target, inferior_ptid, 3150 ptid_t (inferior_ptid.pid (), 3151 inferior_ptid.pid (), 0)); 3152 3153 lp = add_initial_lwp (inferior_ptid); 3154 lp->resumed = 1; 3155 } 3156 3157 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3158 block_child_signals (&prev_mask); 3159 3160 /* First check if there is a LWP with a wait status pending. */ 3161 lp = iterate_over_lwps (ptid, status_callback); 3162 if (lp != NULL) 3163 { 3164 linux_nat_debug_printf ("Using pending wait status %s for %s.", 3165 status_to_str (lp->status), 3166 target_pid_to_str (lp->ptid).c_str ()); 3167 } 3168 3169 /* But if we don't find a pending event, we'll have to wait. Always 3170 pull all events out of the kernel. We'll randomly select an 3171 event LWP out of all that have events, to prevent starvation. */ 3172 3173 while (lp == NULL) 3174 { 3175 pid_t lwpid; 3176 3177 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3178 quirks: 3179 3180 - If the thread group leader exits while other threads in the 3181 thread group still exist, waitpid(TGID, ...) hangs. That 3182 waitpid won't return an exit status until the other threads 3183 in the group are reaped. 3184 3185 - When a non-leader thread execs, that thread just vanishes 3186 without reporting an exit (so we'd hang if we waited for it 3187 explicitly in that case). The exec event is reported to 3188 the TGID pid. */ 3189 3190 errno = 0; 3191 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); 3192 3193 linux_nat_debug_printf ("waitpid(-1, ...) returned %d, %s", 3194 lwpid, 3195 errno ? safe_strerror (errno) : "ERRNO-OK"); 3196 3197 if (lwpid > 0) 3198 { 3199 linux_nat_debug_printf ("waitpid %ld received %s", 3200 (long) lwpid, status_to_str (status)); 3201 3202 linux_nat_filter_event (lwpid, status); 3203 /* Retry until nothing comes out of waitpid. A single 3204 SIGCHLD can indicate more than one child stopped. */ 3205 continue; 3206 } 3207 3208 /* Now that we've pulled all events out of the kernel, resume 3209 LWPs that don't have an interesting event to report. */ 3210 iterate_over_lwps (minus_one_ptid, 3211 [] (struct lwp_info *info) 3212 { 3213 return resume_stopped_resumed_lwps (info, minus_one_ptid); 3214 }); 3215 3216 /* ... and find an LWP with a status to report to the core, if 3217 any. */ 3218 lp = iterate_over_lwps (ptid, status_callback); 3219 if (lp != NULL) 3220 break; 3221 3222 /* Check for zombie thread group leaders. Those can't be reaped 3223 until all other threads in the thread group are. */ 3224 check_zombie_leaders (); 3225 3226 /* If there are no resumed children left, bail. We'd be stuck 3227 forever in the sigsuspend call below otherwise. */ 3228 if (iterate_over_lwps (ptid, resumed_callback) == NULL) 3229 { 3230 linux_nat_debug_printf ("exit (no resumed LWP)"); 3231 3232 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3233 3234 restore_child_signals_mask (&prev_mask); 3235 return minus_one_ptid; 3236 } 3237 3238 /* No interesting event to report to the core. */ 3239 3240 if (target_options & TARGET_WNOHANG) 3241 { 3242 linux_nat_debug_printf ("exit (ignore)"); 3243 3244 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3245 restore_child_signals_mask (&prev_mask); 3246 return minus_one_ptid; 3247 } 3248 3249 /* We shouldn't end up here unless we want to try again. */ 3250 gdb_assert (lp == NULL); 3251 3252 /* Block until we get an event reported with SIGCHLD. */ 3253 wait_for_signal (); 3254 } 3255 3256 gdb_assert (lp); 3257 3258 status = lp->status; 3259 lp->status = 0; 3260 3261 if (!target_is_non_stop_p ()) 3262 { 3263 /* Now stop all other LWP's ... */ 3264 iterate_over_lwps (minus_one_ptid, stop_callback); 3265 3266 /* ... and wait until all of them have reported back that 3267 they're no longer running. */ 3268 iterate_over_lwps (minus_one_ptid, stop_wait_callback); 3269 } 3270 3271 /* If we're not waiting for a specific LWP, choose an event LWP from 3272 among those that have had events. Giving equal priority to all 3273 LWPs that have had events helps prevent starvation. */ 3274 if (ptid == minus_one_ptid || ptid.is_pid ()) 3275 select_event_lwp (ptid, &lp, &status); 3276 3277 gdb_assert (lp != NULL); 3278 3279 /* Now that we've selected our final event LWP, un-adjust its PC if 3280 it was a software breakpoint, and we can't reliably support the 3281 "stopped by software breakpoint" stop reason. */ 3282 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3283 && !USE_SIGTRAP_SIGINFO) 3284 { 3285 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 3286 struct gdbarch *gdbarch = regcache->arch (); 3287 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3288 3289 if (decr_pc != 0) 3290 { 3291 CORE_ADDR pc; 3292 3293 pc = regcache_read_pc (regcache); 3294 regcache_write_pc (regcache, pc + decr_pc); 3295 } 3296 } 3297 3298 /* We'll need this to determine whether to report a SIGSTOP as 3299 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3300 clears it. */ 3301 last_resume_kind = lp->last_resume_kind; 3302 3303 if (!target_is_non_stop_p ()) 3304 { 3305 /* In all-stop, from the core's perspective, all LWPs are now 3306 stopped until a new resume action is sent over. */ 3307 iterate_over_lwps (minus_one_ptid, resume_clear_callback); 3308 } 3309 else 3310 { 3311 resume_clear_callback (lp); 3312 } 3313 3314 if (linux_target->low_status_is_event (status)) 3315 { 3316 linux_nat_debug_printf ("trap ptid is %s.", 3317 target_pid_to_str (lp->ptid).c_str ()); 3318 } 3319 3320 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3321 { 3322 *ourstatus = lp->waitstatus; 3323 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3324 } 3325 else 3326 store_waitstatus (ourstatus, status); 3327 3328 linux_nat_debug_printf ("exit"); 3329 3330 restore_child_signals_mask (&prev_mask); 3331 3332 if (last_resume_kind == resume_stop 3333 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3334 && WSTOPSIG (status) == SIGSTOP) 3335 { 3336 /* A thread that has been requested to stop by GDB with 3337 target_stop, and it stopped cleanly, so report as SIG0. The 3338 use of SIGSTOP is an implementation detail. */ 3339 ourstatus->value.sig = GDB_SIGNAL_0; 3340 } 3341 3342 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3343 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3344 lp->core = -1; 3345 else 3346 lp->core = linux_common_core_of_thread (lp->ptid); 3347 3348 if (ourstatus->kind == TARGET_WAITKIND_EXITED) 3349 return filter_exit_event (lp, ourstatus); 3350 3351 return lp->ptid; 3352 } 3353 3354 /* Resume LWPs that are currently stopped without any pending status 3355 to report, but are resumed from the core's perspective. */ 3356 3357 static int 3358 resume_stopped_resumed_lwps (struct lwp_info *lp, const ptid_t wait_ptid) 3359 { 3360 if (!lp->stopped) 3361 { 3362 linux_nat_debug_printf ("NOT resuming LWP %s, not stopped", 3363 target_pid_to_str (lp->ptid).c_str ()); 3364 } 3365 else if (!lp->resumed) 3366 { 3367 linux_nat_debug_printf ("NOT resuming LWP %s, not resumed", 3368 target_pid_to_str (lp->ptid).c_str ()); 3369 } 3370 else if (lwp_status_pending_p (lp)) 3371 { 3372 linux_nat_debug_printf ("NOT resuming LWP %s, has pending status", 3373 target_pid_to_str (lp->ptid).c_str ()); 3374 } 3375 else 3376 { 3377 struct regcache *regcache = get_thread_regcache (linux_target, lp->ptid); 3378 struct gdbarch *gdbarch = regcache->arch (); 3379 3380 try 3381 { 3382 CORE_ADDR pc = regcache_read_pc (regcache); 3383 int leave_stopped = 0; 3384 3385 /* Don't bother if there's a breakpoint at PC that we'd hit 3386 immediately, and we're not waiting for this LWP. */ 3387 if (!lp->ptid.matches (wait_ptid)) 3388 { 3389 if (breakpoint_inserted_here_p (regcache->aspace (), pc)) 3390 leave_stopped = 1; 3391 } 3392 3393 if (!leave_stopped) 3394 { 3395 linux_nat_debug_printf 3396 ("resuming stopped-resumed LWP %s at %s: step=%d", 3397 target_pid_to_str (lp->ptid).c_str (), paddress (gdbarch, pc), 3398 lp->step); 3399 3400 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3401 } 3402 } 3403 catch (const gdb_exception_error &ex) 3404 { 3405 if (!check_ptrace_stopped_lwp_gone (lp)) 3406 throw; 3407 } 3408 } 3409 3410 return 0; 3411 } 3412 3413 ptid_t 3414 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, 3415 int target_options) 3416 { 3417 ptid_t event_ptid; 3418 3419 linux_nat_debug_printf ("[%s], [%s]", target_pid_to_str (ptid).c_str (), 3420 target_options_to_string (target_options).c_str ()); 3421 3422 /* Flush the async file first. */ 3423 if (target_is_async_p ()) 3424 async_file_flush (); 3425 3426 /* Resume LWPs that are currently stopped without any pending status 3427 to report, but are resumed from the core's perspective. LWPs get 3428 in this state if we find them stopping at a time we're not 3429 interested in reporting the event (target_wait on a 3430 specific_process, for example, see linux_nat_wait_1), and 3431 meanwhile the event became uninteresting. Don't bother resuming 3432 LWPs we're not going to wait for if they'd stop immediately. */ 3433 if (target_is_non_stop_p ()) 3434 iterate_over_lwps (minus_one_ptid, 3435 [=] (struct lwp_info *info) 3436 { 3437 return resume_stopped_resumed_lwps (info, ptid); 3438 }); 3439 3440 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options); 3441 3442 /* If we requested any event, and something came out, assume there 3443 may be more. If we requested a specific lwp or process, also 3444 assume there may be more. */ 3445 if (target_is_async_p () 3446 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3447 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3448 || ptid != minus_one_ptid)) 3449 async_file_mark (); 3450 3451 return event_ptid; 3452 } 3453 3454 /* Kill one LWP. */ 3455 3456 static void 3457 kill_one_lwp (pid_t pid) 3458 { 3459 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3460 3461 errno = 0; 3462 kill_lwp (pid, SIGKILL); 3463 3464 if (debug_linux_nat) 3465 { 3466 int save_errno = errno; 3467 3468 linux_nat_debug_printf 3469 ("kill (SIGKILL) %ld, 0, 0 (%s)", (long) pid, 3470 save_errno != 0 ? safe_strerror (save_errno) : "OK"); 3471 } 3472 3473 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3474 3475 errno = 0; 3476 ptrace (PTRACE_KILL, pid, 0, 0); 3477 if (debug_linux_nat) 3478 { 3479 int save_errno = errno; 3480 3481 linux_nat_debug_printf 3482 ("PTRACE_KILL %ld, 0, 0 (%s)", (long) pid, 3483 save_errno ? safe_strerror (save_errno) : "OK"); 3484 } 3485 } 3486 3487 /* Wait for an LWP to die. */ 3488 3489 static void 3490 kill_wait_one_lwp (pid_t pid) 3491 { 3492 pid_t res; 3493 3494 /* We must make sure that there are no pending events (delayed 3495 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3496 program doesn't interfere with any following debugging session. */ 3497 3498 do 3499 { 3500 res = my_waitpid (pid, NULL, __WALL); 3501 if (res != (pid_t) -1) 3502 { 3503 linux_nat_debug_printf ("wait %ld received unknown.", (long) pid); 3504 3505 /* The Linux kernel sometimes fails to kill a thread 3506 completely after PTRACE_KILL; that goes from the stop 3507 point in do_fork out to the one in get_signal_to_deliver 3508 and waits again. So kill it again. */ 3509 kill_one_lwp (pid); 3510 } 3511 } 3512 while (res == pid); 3513 3514 gdb_assert (res == -1 && errno == ECHILD); 3515 } 3516 3517 /* Callback for iterate_over_lwps. */ 3518 3519 static int 3520 kill_callback (struct lwp_info *lp) 3521 { 3522 kill_one_lwp (lp->ptid.lwp ()); 3523 return 0; 3524 } 3525 3526 /* Callback for iterate_over_lwps. */ 3527 3528 static int 3529 kill_wait_callback (struct lwp_info *lp) 3530 { 3531 kill_wait_one_lwp (lp->ptid.lwp ()); 3532 return 0; 3533 } 3534 3535 /* Kill the fork children of any threads of inferior INF that are 3536 stopped at a fork event. */ 3537 3538 static void 3539 kill_unfollowed_fork_children (struct inferior *inf) 3540 { 3541 for (thread_info *thread : inf->non_exited_threads ()) 3542 { 3543 struct target_waitstatus *ws = &thread->pending_follow; 3544 3545 if (ws->kind == TARGET_WAITKIND_FORKED 3546 || ws->kind == TARGET_WAITKIND_VFORKED) 3547 { 3548 ptid_t child_ptid = ws->value.related_pid; 3549 int child_pid = child_ptid.pid (); 3550 int child_lwp = child_ptid.lwp (); 3551 3552 kill_one_lwp (child_lwp); 3553 kill_wait_one_lwp (child_lwp); 3554 3555 /* Let the arch-specific native code know this process is 3556 gone. */ 3557 linux_target->low_forget_process (child_pid); 3558 } 3559 } 3560 } 3561 3562 void 3563 linux_nat_target::kill () 3564 { 3565 /* If we're stopped while forking and we haven't followed yet, 3566 kill the other task. We need to do this first because the 3567 parent will be sleeping if this is a vfork. */ 3568 kill_unfollowed_fork_children (current_inferior ()); 3569 3570 if (forks_exist_p ()) 3571 linux_fork_killall (); 3572 else 3573 { 3574 ptid_t ptid = ptid_t (inferior_ptid.pid ()); 3575 3576 /* Stop all threads before killing them, since ptrace requires 3577 that the thread is stopped to successfully PTRACE_KILL. */ 3578 iterate_over_lwps (ptid, stop_callback); 3579 /* ... and wait until all of them have reported back that 3580 they're no longer running. */ 3581 iterate_over_lwps (ptid, stop_wait_callback); 3582 3583 /* Kill all LWP's ... */ 3584 iterate_over_lwps (ptid, kill_callback); 3585 3586 /* ... and wait until we've flushed all events. */ 3587 iterate_over_lwps (ptid, kill_wait_callback); 3588 } 3589 3590 target_mourn_inferior (inferior_ptid); 3591 } 3592 3593 void 3594 linux_nat_target::mourn_inferior () 3595 { 3596 int pid = inferior_ptid.pid (); 3597 3598 purge_lwp_list (pid); 3599 3600 if (! forks_exist_p ()) 3601 /* Normal case, no other forks available. */ 3602 inf_ptrace_target::mourn_inferior (); 3603 else 3604 /* Multi-fork case. The current inferior_ptid has exited, but 3605 there are other viable forks to debug. Delete the exiting 3606 one and context-switch to the first available. */ 3607 linux_fork_mourn_inferior (); 3608 3609 /* Let the arch-specific native code know this process is gone. */ 3610 linux_target->low_forget_process (pid); 3611 } 3612 3613 /* Convert a native/host siginfo object, into/from the siginfo in the 3614 layout of the inferiors' architecture. */ 3615 3616 static void 3617 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3618 { 3619 /* If the low target didn't do anything, then just do a straight 3620 memcpy. */ 3621 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction)) 3622 { 3623 if (direction == 1) 3624 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3625 else 3626 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3627 } 3628 } 3629 3630 static enum target_xfer_status 3631 linux_xfer_siginfo (enum target_object object, 3632 const char *annex, gdb_byte *readbuf, 3633 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3634 ULONGEST *xfered_len) 3635 { 3636 int pid; 3637 siginfo_t siginfo; 3638 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3639 3640 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3641 gdb_assert (readbuf || writebuf); 3642 3643 pid = inferior_ptid.lwp (); 3644 if (pid == 0) 3645 pid = inferior_ptid.pid (); 3646 3647 if (offset > sizeof (siginfo)) 3648 return TARGET_XFER_E_IO; 3649 3650 errno = 0; 3651 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3652 if (errno != 0) 3653 return TARGET_XFER_E_IO; 3654 3655 /* When GDB is built as a 64-bit application, ptrace writes into 3656 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3657 inferior with a 64-bit GDB should look the same as debugging it 3658 with a 32-bit GDB, we need to convert it. GDB core always sees 3659 the converted layout, so any read/write will have to be done 3660 post-conversion. */ 3661 siginfo_fixup (&siginfo, inf_siginfo, 0); 3662 3663 if (offset + len > sizeof (siginfo)) 3664 len = sizeof (siginfo) - offset; 3665 3666 if (readbuf != NULL) 3667 memcpy (readbuf, inf_siginfo + offset, len); 3668 else 3669 { 3670 memcpy (inf_siginfo + offset, writebuf, len); 3671 3672 /* Convert back to ptrace layout before flushing it out. */ 3673 siginfo_fixup (&siginfo, inf_siginfo, 1); 3674 3675 errno = 0; 3676 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3677 if (errno != 0) 3678 return TARGET_XFER_E_IO; 3679 } 3680 3681 *xfered_len = len; 3682 return TARGET_XFER_OK; 3683 } 3684 3685 static enum target_xfer_status 3686 linux_nat_xfer_osdata (enum target_object object, 3687 const char *annex, gdb_byte *readbuf, 3688 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3689 ULONGEST *xfered_len); 3690 3691 static enum target_xfer_status 3692 linux_proc_xfer_partial (enum target_object object, 3693 const char *annex, gdb_byte *readbuf, 3694 const gdb_byte *writebuf, 3695 ULONGEST offset, LONGEST len, ULONGEST *xfered_len); 3696 3697 enum target_xfer_status 3698 linux_nat_target::xfer_partial (enum target_object object, 3699 const char *annex, gdb_byte *readbuf, 3700 const gdb_byte *writebuf, 3701 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 3702 { 3703 enum target_xfer_status xfer; 3704 3705 if (object == TARGET_OBJECT_SIGNAL_INFO) 3706 return linux_xfer_siginfo (object, annex, readbuf, writebuf, 3707 offset, len, xfered_len); 3708 3709 /* The target is connected but no live inferior is selected. Pass 3710 this request down to a lower stratum (e.g., the executable 3711 file). */ 3712 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid) 3713 return TARGET_XFER_EOF; 3714 3715 if (object == TARGET_OBJECT_AUXV) 3716 return memory_xfer_auxv (this, object, annex, readbuf, writebuf, 3717 offset, len, xfered_len); 3718 3719 if (object == TARGET_OBJECT_OSDATA) 3720 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf, 3721 offset, len, xfered_len); 3722 3723 /* GDB calculates all addresses in the largest possible address 3724 width. 3725 The address width must be masked before its final use - either by 3726 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial. 3727 3728 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 3729 3730 if (object == TARGET_OBJECT_MEMORY) 3731 { 3732 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 3733 3734 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 3735 offset &= ((ULONGEST) 1 << addr_bit) - 1; 3736 } 3737 3738 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf, 3739 offset, len, xfered_len); 3740 if (xfer != TARGET_XFER_EOF) 3741 return xfer; 3742 3743 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf, 3744 offset, len, xfered_len); 3745 } 3746 3747 bool 3748 linux_nat_target::thread_alive (ptid_t ptid) 3749 { 3750 /* As long as a PTID is in lwp list, consider it alive. */ 3751 return find_lwp_pid (ptid) != NULL; 3752 } 3753 3754 /* Implement the to_update_thread_list target method for this 3755 target. */ 3756 3757 void 3758 linux_nat_target::update_thread_list () 3759 { 3760 struct lwp_info *lwp; 3761 3762 /* We add/delete threads from the list as clone/exit events are 3763 processed, so just try deleting exited threads still in the 3764 thread list. */ 3765 delete_exited_threads (); 3766 3767 /* Update the processor core that each lwp/thread was last seen 3768 running on. */ 3769 ALL_LWPS (lwp) 3770 { 3771 /* Avoid accessing /proc if the thread hasn't run since we last 3772 time we fetched the thread's core. Accessing /proc becomes 3773 noticeably expensive when we have thousands of LWPs. */ 3774 if (lwp->core == -1) 3775 lwp->core = linux_common_core_of_thread (lwp->ptid); 3776 } 3777 } 3778 3779 std::string 3780 linux_nat_target::pid_to_str (ptid_t ptid) 3781 { 3782 if (ptid.lwp_p () 3783 && (ptid.pid () != ptid.lwp () 3784 || num_lwps (ptid.pid ()) > 1)) 3785 return string_printf ("LWP %ld", ptid.lwp ()); 3786 3787 return normal_pid_to_str (ptid); 3788 } 3789 3790 const char * 3791 linux_nat_target::thread_name (struct thread_info *thr) 3792 { 3793 return linux_proc_tid_get_name (thr->ptid); 3794 } 3795 3796 /* Accepts an integer PID; Returns a string representing a file that 3797 can be opened to get the symbols for the child process. */ 3798 3799 char * 3800 linux_nat_target::pid_to_exec_file (int pid) 3801 { 3802 return linux_proc_pid_to_exec_file (pid); 3803 } 3804 3805 /* Implement the to_xfer_partial target method using /proc/<pid>/mem. 3806 Because we can use a single read/write call, this can be much more 3807 efficient than banging away at PTRACE_PEEKTEXT. */ 3808 3809 static enum target_xfer_status 3810 linux_proc_xfer_partial (enum target_object object, 3811 const char *annex, gdb_byte *readbuf, 3812 const gdb_byte *writebuf, 3813 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 3814 { 3815 LONGEST ret; 3816 int fd; 3817 char filename[64]; 3818 3819 if (object != TARGET_OBJECT_MEMORY) 3820 return TARGET_XFER_EOF; 3821 3822 /* Don't bother for one word. */ 3823 if (len < 3 * sizeof (long)) 3824 return TARGET_XFER_EOF; 3825 3826 /* We could keep this file open and cache it - possibly one per 3827 thread. That requires some juggling, but is even faster. */ 3828 xsnprintf (filename, sizeof filename, "/proc/%ld/mem", 3829 inferior_ptid.lwp ()); 3830 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY) 3831 | O_LARGEFILE), 0); 3832 if (fd == -1) 3833 return TARGET_XFER_EOF; 3834 3835 /* Use pread64/pwrite64 if available, since they save a syscall and can 3836 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC 3837 debugging a SPARC64 application). */ 3838 #ifdef HAVE_PREAD64 3839 ret = (readbuf ? pread64 (fd, readbuf, len, offset) 3840 : pwrite64 (fd, writebuf, len, offset)); 3841 #else 3842 ret = lseek (fd, offset, SEEK_SET); 3843 if (ret != -1) 3844 ret = (readbuf ? read (fd, readbuf, len) 3845 : write (fd, writebuf, len)); 3846 #endif 3847 3848 close (fd); 3849 3850 if (ret == -1 || ret == 0) 3851 return TARGET_XFER_EOF; 3852 else 3853 { 3854 *xfered_len = ret; 3855 return TARGET_XFER_OK; 3856 } 3857 } 3858 3859 3860 /* Parse LINE as a signal set and add its set bits to SIGS. */ 3861 3862 static void 3863 add_line_to_sigset (const char *line, sigset_t *sigs) 3864 { 3865 int len = strlen (line) - 1; 3866 const char *p; 3867 int signum; 3868 3869 if (line[len] != '\n') 3870 error (_("Could not parse signal set: %s"), line); 3871 3872 p = line; 3873 signum = len * 4; 3874 while (len-- > 0) 3875 { 3876 int digit; 3877 3878 if (*p >= '0' && *p <= '9') 3879 digit = *p - '0'; 3880 else if (*p >= 'a' && *p <= 'f') 3881 digit = *p - 'a' + 10; 3882 else 3883 error (_("Could not parse signal set: %s"), line); 3884 3885 signum -= 4; 3886 3887 if (digit & 1) 3888 sigaddset (sigs, signum + 1); 3889 if (digit & 2) 3890 sigaddset (sigs, signum + 2); 3891 if (digit & 4) 3892 sigaddset (sigs, signum + 3); 3893 if (digit & 8) 3894 sigaddset (sigs, signum + 4); 3895 3896 p++; 3897 } 3898 } 3899 3900 /* Find process PID's pending signals from /proc/pid/status and set 3901 SIGS to match. */ 3902 3903 void 3904 linux_proc_pending_signals (int pid, sigset_t *pending, 3905 sigset_t *blocked, sigset_t *ignored) 3906 { 3907 char buffer[PATH_MAX], fname[PATH_MAX]; 3908 3909 sigemptyset (pending); 3910 sigemptyset (blocked); 3911 sigemptyset (ignored); 3912 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 3913 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r"); 3914 if (procfile == NULL) 3915 error (_("Could not open %s"), fname); 3916 3917 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL) 3918 { 3919 /* Normal queued signals are on the SigPnd line in the status 3920 file. However, 2.6 kernels also have a "shared" pending 3921 queue for delivering signals to a thread group, so check for 3922 a ShdPnd line also. 3923 3924 Unfortunately some Red Hat kernels include the shared pending 3925 queue but not the ShdPnd status field. */ 3926 3927 if (startswith (buffer, "SigPnd:\t")) 3928 add_line_to_sigset (buffer + 8, pending); 3929 else if (startswith (buffer, "ShdPnd:\t")) 3930 add_line_to_sigset (buffer + 8, pending); 3931 else if (startswith (buffer, "SigBlk:\t")) 3932 add_line_to_sigset (buffer + 8, blocked); 3933 else if (startswith (buffer, "SigIgn:\t")) 3934 add_line_to_sigset (buffer + 8, ignored); 3935 } 3936 } 3937 3938 static enum target_xfer_status 3939 linux_nat_xfer_osdata (enum target_object object, 3940 const char *annex, gdb_byte *readbuf, 3941 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3942 ULONGEST *xfered_len) 3943 { 3944 gdb_assert (object == TARGET_OBJECT_OSDATA); 3945 3946 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 3947 if (*xfered_len == 0) 3948 return TARGET_XFER_EOF; 3949 else 3950 return TARGET_XFER_OK; 3951 } 3952 3953 std::vector<static_tracepoint_marker> 3954 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid) 3955 { 3956 char s[IPA_CMD_BUF_SIZE]; 3957 int pid = inferior_ptid.pid (); 3958 std::vector<static_tracepoint_marker> markers; 3959 const char *p = s; 3960 ptid_t ptid = ptid_t (pid, 0, 0); 3961 static_tracepoint_marker marker; 3962 3963 /* Pause all */ 3964 target_stop (ptid); 3965 3966 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 3967 s[sizeof ("qTfSTM")] = 0; 3968 3969 agent_run_command (pid, s, strlen (s) + 1); 3970 3971 /* Unpause all. */ 3972 SCOPE_EXIT { target_continue_no_signal (ptid); }; 3973 3974 while (*p++ == 'm') 3975 { 3976 do 3977 { 3978 parse_static_tracepoint_marker_definition (p, &p, &marker); 3979 3980 if (strid == NULL || marker.str_id == strid) 3981 markers.push_back (std::move (marker)); 3982 } 3983 while (*p++ == ','); /* comma-separated list */ 3984 3985 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 3986 s[sizeof ("qTsSTM")] = 0; 3987 agent_run_command (pid, s, strlen (s) + 1); 3988 p = s; 3989 } 3990 3991 return markers; 3992 } 3993 3994 /* target_is_async_p implementation. */ 3995 3996 bool 3997 linux_nat_target::is_async_p () 3998 { 3999 return linux_is_async_p (); 4000 } 4001 4002 /* target_can_async_p implementation. */ 4003 4004 bool 4005 linux_nat_target::can_async_p () 4006 { 4007 /* We're always async, unless the user explicitly prevented it with the 4008 "maint set target-async" command. */ 4009 return target_async_permitted; 4010 } 4011 4012 bool 4013 linux_nat_target::supports_non_stop () 4014 { 4015 return true; 4016 } 4017 4018 /* to_always_non_stop_p implementation. */ 4019 4020 bool 4021 linux_nat_target::always_non_stop_p () 4022 { 4023 return true; 4024 } 4025 4026 bool 4027 linux_nat_target::supports_multi_process () 4028 { 4029 return true; 4030 } 4031 4032 bool 4033 linux_nat_target::supports_disable_randomization () 4034 { 4035 #ifdef HAVE_PERSONALITY 4036 return true; 4037 #else 4038 return false; 4039 #endif 4040 } 4041 4042 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4043 so we notice when any child changes state, and notify the 4044 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4045 above to wait for the arrival of a SIGCHLD. */ 4046 4047 static void 4048 sigchld_handler (int signo) 4049 { 4050 int old_errno = errno; 4051 4052 if (debug_linux_nat) 4053 gdb_stdlog->write_async_safe ("sigchld\n", sizeof ("sigchld\n") - 1); 4054 4055 if (signo == SIGCHLD 4056 && linux_nat_event_pipe[0] != -1) 4057 async_file_mark (); /* Let the event loop know that there are 4058 events to handle. */ 4059 4060 errno = old_errno; 4061 } 4062 4063 /* Callback registered with the target events file descriptor. */ 4064 4065 static void 4066 handle_target_event (int error, gdb_client_data client_data) 4067 { 4068 inferior_event_handler (INF_REG_EVENT); 4069 } 4070 4071 /* Create/destroy the target events pipe. Returns previous state. */ 4072 4073 static int 4074 linux_async_pipe (int enable) 4075 { 4076 int previous = linux_is_async_p (); 4077 4078 if (previous != enable) 4079 { 4080 sigset_t prev_mask; 4081 4082 /* Block child signals while we create/destroy the pipe, as 4083 their handler writes to it. */ 4084 block_child_signals (&prev_mask); 4085 4086 if (enable) 4087 { 4088 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4089 internal_error (__FILE__, __LINE__, 4090 "creating event pipe failed."); 4091 4092 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4093 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4094 } 4095 else 4096 { 4097 close (linux_nat_event_pipe[0]); 4098 close (linux_nat_event_pipe[1]); 4099 linux_nat_event_pipe[0] = -1; 4100 linux_nat_event_pipe[1] = -1; 4101 } 4102 4103 restore_child_signals_mask (&prev_mask); 4104 } 4105 4106 return previous; 4107 } 4108 4109 int 4110 linux_nat_target::async_wait_fd () 4111 { 4112 return linux_nat_event_pipe[0]; 4113 } 4114 4115 /* target_async implementation. */ 4116 4117 void 4118 linux_nat_target::async (int enable) 4119 { 4120 if (enable) 4121 { 4122 if (!linux_async_pipe (1)) 4123 { 4124 add_file_handler (linux_nat_event_pipe[0], 4125 handle_target_event, NULL); 4126 /* There may be pending events to handle. Tell the event loop 4127 to poll them. */ 4128 async_file_mark (); 4129 } 4130 } 4131 else 4132 { 4133 delete_file_handler (linux_nat_event_pipe[0]); 4134 linux_async_pipe (0); 4135 } 4136 return; 4137 } 4138 4139 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4140 event came out. */ 4141 4142 static int 4143 linux_nat_stop_lwp (struct lwp_info *lwp) 4144 { 4145 if (!lwp->stopped) 4146 { 4147 linux_nat_debug_printf ("running -> suspending %s", 4148 target_pid_to_str (lwp->ptid).c_str ()); 4149 4150 4151 if (lwp->last_resume_kind == resume_stop) 4152 { 4153 linux_nat_debug_printf ("already stopping LWP %ld at GDB's request", 4154 lwp->ptid.lwp ()); 4155 return 0; 4156 } 4157 4158 stop_callback (lwp); 4159 lwp->last_resume_kind = resume_stop; 4160 } 4161 else 4162 { 4163 /* Already known to be stopped; do nothing. */ 4164 4165 if (debug_linux_nat) 4166 { 4167 if (find_thread_ptid (linux_target, lwp->ptid)->stop_requested) 4168 linux_nat_debug_printf ("already stopped/stop_requested %s", 4169 target_pid_to_str (lwp->ptid).c_str ()); 4170 else 4171 linux_nat_debug_printf ("already stopped/no stop_requested yet %s", 4172 target_pid_to_str (lwp->ptid).c_str ()); 4173 } 4174 } 4175 return 0; 4176 } 4177 4178 void 4179 linux_nat_target::stop (ptid_t ptid) 4180 { 4181 iterate_over_lwps (ptid, linux_nat_stop_lwp); 4182 } 4183 4184 void 4185 linux_nat_target::close () 4186 { 4187 /* Unregister from the event loop. */ 4188 if (is_async_p ()) 4189 async (0); 4190 4191 inf_ptrace_target::close (); 4192 } 4193 4194 /* When requests are passed down from the linux-nat layer to the 4195 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4196 used. The address space pointer is stored in the inferior object, 4197 but the common code that is passed such ptid can't tell whether 4198 lwpid is a "main" process id or not (it assumes so). We reverse 4199 look up the "main" process id from the lwp here. */ 4200 4201 struct address_space * 4202 linux_nat_target::thread_address_space (ptid_t ptid) 4203 { 4204 struct lwp_info *lwp; 4205 struct inferior *inf; 4206 int pid; 4207 4208 if (ptid.lwp () == 0) 4209 { 4210 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4211 tgid. */ 4212 lwp = find_lwp_pid (ptid); 4213 pid = lwp->ptid.pid (); 4214 } 4215 else 4216 { 4217 /* A (pid,lwpid,0) ptid. */ 4218 pid = ptid.pid (); 4219 } 4220 4221 inf = find_inferior_pid (this, pid); 4222 gdb_assert (inf != NULL); 4223 return inf->aspace; 4224 } 4225 4226 /* Return the cached value of the processor core for thread PTID. */ 4227 4228 int 4229 linux_nat_target::core_of_thread (ptid_t ptid) 4230 { 4231 struct lwp_info *info = find_lwp_pid (ptid); 4232 4233 if (info) 4234 return info->core; 4235 return -1; 4236 } 4237 4238 /* Implementation of to_filesystem_is_local. */ 4239 4240 bool 4241 linux_nat_target::filesystem_is_local () 4242 { 4243 struct inferior *inf = current_inferior (); 4244 4245 if (inf->fake_pid_p || inf->pid == 0) 4246 return true; 4247 4248 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4249 } 4250 4251 /* Convert the INF argument passed to a to_fileio_* method 4252 to a process ID suitable for passing to its corresponding 4253 linux_mntns_* function. If INF is non-NULL then the 4254 caller is requesting the filesystem seen by INF. If INF 4255 is NULL then the caller is requesting the filesystem seen 4256 by the GDB. We fall back to GDB's filesystem in the case 4257 that INF is non-NULL but its PID is unknown. */ 4258 4259 static pid_t 4260 linux_nat_fileio_pid_of (struct inferior *inf) 4261 { 4262 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4263 return getpid (); 4264 else 4265 return inf->pid; 4266 } 4267 4268 /* Implementation of to_fileio_open. */ 4269 4270 int 4271 linux_nat_target::fileio_open (struct inferior *inf, const char *filename, 4272 int flags, int mode, int warn_if_slow, 4273 int *target_errno) 4274 { 4275 int nat_flags; 4276 mode_t nat_mode; 4277 int fd; 4278 4279 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4280 || fileio_to_host_mode (mode, &nat_mode) == -1) 4281 { 4282 *target_errno = FILEIO_EINVAL; 4283 return -1; 4284 } 4285 4286 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4287 filename, nat_flags, nat_mode); 4288 if (fd == -1) 4289 *target_errno = host_to_fileio_error (errno); 4290 4291 return fd; 4292 } 4293 4294 /* Implementation of to_fileio_readlink. */ 4295 4296 gdb::optional<std::string> 4297 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename, 4298 int *target_errno) 4299 { 4300 char buf[PATH_MAX]; 4301 int len; 4302 4303 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4304 filename, buf, sizeof (buf)); 4305 if (len < 0) 4306 { 4307 *target_errno = host_to_fileio_error (errno); 4308 return {}; 4309 } 4310 4311 return std::string (buf, len); 4312 } 4313 4314 /* Implementation of to_fileio_unlink. */ 4315 4316 int 4317 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename, 4318 int *target_errno) 4319 { 4320 int ret; 4321 4322 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4323 filename); 4324 if (ret == -1) 4325 *target_errno = host_to_fileio_error (errno); 4326 4327 return ret; 4328 } 4329 4330 /* Implementation of the to_thread_events method. */ 4331 4332 void 4333 linux_nat_target::thread_events (int enable) 4334 { 4335 report_thread_events = enable; 4336 } 4337 4338 linux_nat_target::linux_nat_target () 4339 { 4340 /* We don't change the stratum; this target will sit at 4341 process_stratum and thread_db will set at thread_stratum. This 4342 is a little strange, since this is a multi-threaded-capable 4343 target, but we want to be on the stack below thread_db, and we 4344 also want to be used for single-threaded processes. */ 4345 } 4346 4347 /* See linux-nat.h. */ 4348 4349 int 4350 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4351 { 4352 int pid; 4353 4354 pid = ptid.lwp (); 4355 if (pid == 0) 4356 pid = ptid.pid (); 4357 4358 errno = 0; 4359 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 4360 if (errno != 0) 4361 { 4362 memset (siginfo, 0, sizeof (*siginfo)); 4363 return 0; 4364 } 4365 return 1; 4366 } 4367 4368 /* See nat/linux-nat.h. */ 4369 4370 ptid_t 4371 current_lwp_ptid (void) 4372 { 4373 gdb_assert (inferior_ptid.lwp_p ()); 4374 return inferior_ptid; 4375 } 4376 4377 void _initialize_linux_nat (); 4378 void 4379 _initialize_linux_nat () 4380 { 4381 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 4382 &debug_linux_nat, _("\ 4383 Set debugging of GNU/Linux lwp module."), _("\ 4384 Show debugging of GNU/Linux lwp module."), _("\ 4385 Enables printf debugging output."), 4386 NULL, 4387 show_debug_linux_nat, 4388 &setdebuglist, &showdebuglist); 4389 4390 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 4391 &debug_linux_namespaces, _("\ 4392 Set debugging of GNU/Linux namespaces module."), _("\ 4393 Show debugging of GNU/Linux namespaces module."), _("\ 4394 Enables printf debugging output."), 4395 NULL, 4396 NULL, 4397 &setdebuglist, &showdebuglist); 4398 4399 /* Install a SIGCHLD handler. */ 4400 sigchld_action.sa_handler = sigchld_handler; 4401 sigemptyset (&sigchld_action.sa_mask); 4402 sigchld_action.sa_flags = SA_RESTART; 4403 4404 /* Make it the default. */ 4405 sigaction (SIGCHLD, &sigchld_action, NULL); 4406 4407 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 4408 gdb_sigmask (SIG_SETMASK, NULL, &suspend_mask); 4409 sigdelset (&suspend_mask, SIGCHLD); 4410 4411 sigemptyset (&blocked_mask); 4412 4413 lwp_lwpid_htab_create (); 4414 } 4415 4416 4417 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 4418 the GNU/Linux Threads library and therefore doesn't really belong 4419 here. */ 4420 4421 /* Return the set of signals used by the threads library in *SET. */ 4422 4423 void 4424 lin_thread_get_thread_signals (sigset_t *set) 4425 { 4426 sigemptyset (set); 4427 4428 /* NPTL reserves the first two RT signals, but does not provide any 4429 way for the debugger to query the signal numbers - fortunately 4430 they don't change. */ 4431 sigaddset (set, __SIGRTMIN); 4432 sigaddset (set, __SIGRTMIN + 1); 4433 } 4434