1 /* GNU/Linux native-dependent code common to multiple platforms. 2 3 Copyright (C) 2001-2019 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "inferior.h" 22 #include "infrun.h" 23 #include "target.h" 24 #include "nat/linux-nat.h" 25 #include "nat/linux-waitpid.h" 26 #include "common/gdb_wait.h" 27 #include <unistd.h> 28 #include <sys/syscall.h> 29 #include "nat/gdb_ptrace.h" 30 #include "linux-nat.h" 31 #include "nat/linux-ptrace.h" 32 #include "nat/linux-procfs.h" 33 #include "nat/linux-personality.h" 34 #include "linux-fork.h" 35 #include "gdbthread.h" 36 #include "gdbcmd.h" 37 #include "regcache.h" 38 #include "regset.h" 39 #include "inf-child.h" 40 #include "inf-ptrace.h" 41 #include "auxv.h" 42 #include <sys/procfs.h> /* for elf_gregset etc. */ 43 #include "elf-bfd.h" /* for elfcore_write_* */ 44 #include "gregset.h" /* for gregset */ 45 #include "gdbcore.h" /* for get_exec_file */ 46 #include <ctype.h> /* for isdigit */ 47 #include <sys/stat.h> /* for struct stat */ 48 #include <fcntl.h> /* for O_RDONLY */ 49 #include "inf-loop.h" 50 #include "event-loop.h" 51 #include "event-top.h" 52 #include <pwd.h> 53 #include <sys/types.h> 54 #include <dirent.h> 55 #include "xml-support.h" 56 #include <sys/vfs.h> 57 #include "solib.h" 58 #include "nat/linux-osdata.h" 59 #include "linux-tdep.h" 60 #include "symfile.h" 61 #include "common/agent.h" 62 #include "tracepoint.h" 63 #include "common/buffer.h" 64 #include "target-descriptions.h" 65 #include "common/filestuff.h" 66 #include "objfiles.h" 67 #include "nat/linux-namespaces.h" 68 #include "common/fileio.h" 69 #include "common/scope-exit.h" 70 71 #ifndef SPUFS_MAGIC 72 #define SPUFS_MAGIC 0x23c9b64e 73 #endif 74 75 /* This comment documents high-level logic of this file. 76 77 Waiting for events in sync mode 78 =============================== 79 80 When waiting for an event in a specific thread, we just use waitpid, 81 passing the specific pid, and not passing WNOHANG. 82 83 When waiting for an event in all threads, waitpid is not quite good: 84 85 - If the thread group leader exits while other threads in the thread 86 group still exist, waitpid(TGID, ...) hangs. That waitpid won't 87 return an exit status until the other threads in the group are 88 reaped. 89 90 - When a non-leader thread execs, that thread just vanishes without 91 reporting an exit (so we'd hang if we waited for it explicitly in 92 that case). The exec event is instead reported to the TGID pid. 93 94 The solution is to always use -1 and WNOHANG, together with 95 sigsuspend. 96 97 First, we use non-blocking waitpid to check for events. If nothing is 98 found, we use sigsuspend to wait for SIGCHLD. When SIGCHLD arrives, 99 it means something happened to a child process. As soon as we know 100 there's an event, we get back to calling nonblocking waitpid. 101 102 Note that SIGCHLD should be blocked between waitpid and sigsuspend 103 calls, so that we don't miss a signal. If SIGCHLD arrives in between, 104 when it's blocked, the signal becomes pending and sigsuspend 105 immediately notices it and returns. 106 107 Waiting for events in async mode (TARGET_WNOHANG) 108 ================================================= 109 110 In async mode, GDB should always be ready to handle both user input 111 and target events, so neither blocking waitpid nor sigsuspend are 112 viable options. Instead, we should asynchronously notify the GDB main 113 event loop whenever there's an unprocessed event from the target. We 114 detect asynchronous target events by handling SIGCHLD signals. To 115 notify the event loop about target events, the self-pipe trick is used 116 --- a pipe is registered as waitable event source in the event loop, 117 the event loop select/poll's on the read end of this pipe (as well on 118 other event sources, e.g., stdin), and the SIGCHLD handler writes a 119 byte to this pipe. This is more portable than relying on 120 pselect/ppoll, since on kernels that lack those syscalls, libc 121 emulates them with select/poll+sigprocmask, and that is racy 122 (a.k.a. plain broken). 123 124 Obviously, if we fail to notify the event loop if there's a target 125 event, it's bad. OTOH, if we notify the event loop when there's no 126 event from the target, linux_nat_wait will detect that there's no real 127 event to report, and return event of type TARGET_WAITKIND_IGNORE. 128 This is mostly harmless, but it will waste time and is better avoided. 129 130 The main design point is that every time GDB is outside linux-nat.c, 131 we have a SIGCHLD handler installed that is called when something 132 happens to the target and notifies the GDB event loop. Whenever GDB 133 core decides to handle the event, and calls into linux-nat.c, we 134 process things as in sync mode, except that the we never block in 135 sigsuspend. 136 137 While processing an event, we may end up momentarily blocked in 138 waitpid calls. Those waitpid calls, while blocking, are guarantied to 139 return quickly. E.g., in all-stop mode, before reporting to the core 140 that an LWP hit a breakpoint, all LWPs are stopped by sending them 141 SIGSTOP, and synchronously waiting for the SIGSTOP to be reported. 142 Note that this is different from blocking indefinitely waiting for the 143 next event --- here, we're already handling an event. 144 145 Use of signals 146 ============== 147 148 We stop threads by sending a SIGSTOP. The use of SIGSTOP instead of another 149 signal is not entirely significant; we just need for a signal to be delivered, 150 so that we can intercept it. SIGSTOP's advantage is that it can not be 151 blocked. A disadvantage is that it is not a real-time signal, so it can only 152 be queued once; we do not keep track of other sources of SIGSTOP. 153 154 Two other signals that can't be blocked are SIGCONT and SIGKILL. But we can't 155 use them, because they have special behavior when the signal is generated - 156 not when it is delivered. SIGCONT resumes the entire thread group and SIGKILL 157 kills the entire thread group. 158 159 A delivered SIGSTOP would stop the entire thread group, not just the thread we 160 tkill'd. But we never let the SIGSTOP be delivered; we always intercept and 161 cancel it (by PTRACE_CONT without passing SIGSTOP). 162 163 We could use a real-time signal instead. This would solve those problems; we 164 could use PTRACE_GETSIGINFO to locate the specific stop signals sent by GDB. 165 But we would still have to have some support for SIGSTOP, since PTRACE_ATTACH 166 generates it, and there are races with trying to find a signal that is not 167 blocked. 168 169 Exec events 170 =========== 171 172 The case of a thread group (process) with 3 or more threads, and a 173 thread other than the leader execs is worth detailing: 174 175 On an exec, the Linux kernel destroys all threads except the execing 176 one in the thread group, and resets the execing thread's tid to the 177 tgid. No exit notification is sent for the execing thread -- from the 178 ptracer's perspective, it appears as though the execing thread just 179 vanishes. Until we reap all other threads except the leader and the 180 execing thread, the leader will be zombie, and the execing thread will 181 be in `D (disc sleep)' state. As soon as all other threads are 182 reaped, the execing thread changes its tid to the tgid, and the 183 previous (zombie) leader vanishes, giving place to the "new" 184 leader. */ 185 186 #ifndef O_LARGEFILE 187 #define O_LARGEFILE 0 188 #endif 189 190 struct linux_nat_target *linux_target; 191 192 /* Does the current host support PTRACE_GETREGSET? */ 193 enum tribool have_ptrace_getregset = TRIBOOL_UNKNOWN; 194 195 static unsigned int debug_linux_nat; 196 static void 197 show_debug_linux_nat (struct ui_file *file, int from_tty, 198 struct cmd_list_element *c, const char *value) 199 { 200 fprintf_filtered (file, _("Debugging of GNU/Linux lwp module is %s.\n"), 201 value); 202 } 203 204 struct simple_pid_list 205 { 206 int pid; 207 int status; 208 struct simple_pid_list *next; 209 }; 210 struct simple_pid_list *stopped_pids; 211 212 /* Whether target_thread_events is in effect. */ 213 static int report_thread_events; 214 215 /* Async mode support. */ 216 217 /* The read/write ends of the pipe registered as waitable file in the 218 event loop. */ 219 static int linux_nat_event_pipe[2] = { -1, -1 }; 220 221 /* True if we're currently in async mode. */ 222 #define linux_is_async_p() (linux_nat_event_pipe[0] != -1) 223 224 /* Flush the event pipe. */ 225 226 static void 227 async_file_flush (void) 228 { 229 int ret; 230 char buf; 231 232 do 233 { 234 ret = read (linux_nat_event_pipe[0], &buf, 1); 235 } 236 while (ret >= 0 || (ret == -1 && errno == EINTR)); 237 } 238 239 /* Put something (anything, doesn't matter what, or how much) in event 240 pipe, so that the select/poll in the event-loop realizes we have 241 something to process. */ 242 243 static void 244 async_file_mark (void) 245 { 246 int ret; 247 248 /* It doesn't really matter what the pipe contains, as long we end 249 up with something in it. Might as well flush the previous 250 left-overs. */ 251 async_file_flush (); 252 253 do 254 { 255 ret = write (linux_nat_event_pipe[1], "+", 1); 256 } 257 while (ret == -1 && errno == EINTR); 258 259 /* Ignore EAGAIN. If the pipe is full, the event loop will already 260 be awakened anyway. */ 261 } 262 263 static int kill_lwp (int lwpid, int signo); 264 265 static int stop_callback (struct lwp_info *lp, void *data); 266 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 267 268 static void block_child_signals (sigset_t *prev_mask); 269 static void restore_child_signals_mask (sigset_t *prev_mask); 270 271 struct lwp_info; 272 static struct lwp_info *add_lwp (ptid_t ptid); 273 static void purge_lwp_list (int pid); 274 static void delete_lwp (ptid_t ptid); 275 static struct lwp_info *find_lwp_pid (ptid_t ptid); 276 277 static int lwp_status_pending_p (struct lwp_info *lp); 278 279 static void save_stop_reason (struct lwp_info *lp); 280 281 282 /* LWP accessors. */ 283 284 /* See nat/linux-nat.h. */ 285 286 ptid_t 287 ptid_of_lwp (struct lwp_info *lwp) 288 { 289 return lwp->ptid; 290 } 291 292 /* See nat/linux-nat.h. */ 293 294 void 295 lwp_set_arch_private_info (struct lwp_info *lwp, 296 struct arch_lwp_info *info) 297 { 298 lwp->arch_private = info; 299 } 300 301 /* See nat/linux-nat.h. */ 302 303 struct arch_lwp_info * 304 lwp_arch_private_info (struct lwp_info *lwp) 305 { 306 return lwp->arch_private; 307 } 308 309 /* See nat/linux-nat.h. */ 310 311 int 312 lwp_is_stopped (struct lwp_info *lwp) 313 { 314 return lwp->stopped; 315 } 316 317 /* See nat/linux-nat.h. */ 318 319 enum target_stop_reason 320 lwp_stop_reason (struct lwp_info *lwp) 321 { 322 return lwp->stop_reason; 323 } 324 325 /* See nat/linux-nat.h. */ 326 327 int 328 lwp_is_stepping (struct lwp_info *lwp) 329 { 330 return lwp->step; 331 } 332 333 334 /* Trivial list manipulation functions to keep track of a list of 335 new stopped processes. */ 336 static void 337 add_to_pid_list (struct simple_pid_list **listp, int pid, int status) 338 { 339 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list); 340 341 new_pid->pid = pid; 342 new_pid->status = status; 343 new_pid->next = *listp; 344 *listp = new_pid; 345 } 346 347 static int 348 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp) 349 { 350 struct simple_pid_list **p; 351 352 for (p = listp; *p != NULL; p = &(*p)->next) 353 if ((*p)->pid == pid) 354 { 355 struct simple_pid_list *next = (*p)->next; 356 357 *statusp = (*p)->status; 358 xfree (*p); 359 *p = next; 360 return 1; 361 } 362 return 0; 363 } 364 365 /* Return the ptrace options that we want to try to enable. */ 366 367 static int 368 linux_nat_ptrace_options (int attached) 369 { 370 int options = 0; 371 372 if (!attached) 373 options |= PTRACE_O_EXITKILL; 374 375 options |= (PTRACE_O_TRACESYSGOOD 376 | PTRACE_O_TRACEVFORKDONE 377 | PTRACE_O_TRACEVFORK 378 | PTRACE_O_TRACEFORK 379 | PTRACE_O_TRACEEXEC); 380 381 return options; 382 } 383 384 /* Initialize ptrace and procfs warnings and check for supported 385 ptrace features given PID. 386 387 ATTACHED should be nonzero iff we attached to the inferior. */ 388 389 static void 390 linux_init_ptrace_procfs (pid_t pid, int attached) 391 { 392 int options = linux_nat_ptrace_options (attached); 393 394 linux_enable_event_reporting (pid, options); 395 linux_ptrace_init_warnings (); 396 linux_proc_init_warnings (); 397 } 398 399 linux_nat_target::~linux_nat_target () 400 {} 401 402 void 403 linux_nat_target::post_attach (int pid) 404 { 405 linux_init_ptrace_procfs (pid, 1); 406 } 407 408 void 409 linux_nat_target::post_startup_inferior (ptid_t ptid) 410 { 411 linux_init_ptrace_procfs (ptid.pid (), 0); 412 } 413 414 /* Return the number of known LWPs in the tgid given by PID. */ 415 416 static int 417 num_lwps (int pid) 418 { 419 int count = 0; 420 struct lwp_info *lp; 421 422 for (lp = lwp_list; lp; lp = lp->next) 423 if (lp->ptid.pid () == pid) 424 count++; 425 426 return count; 427 } 428 429 /* Deleter for lwp_info unique_ptr specialisation. */ 430 431 struct lwp_deleter 432 { 433 void operator() (struct lwp_info *lwp) const 434 { 435 delete_lwp (lwp->ptid); 436 } 437 }; 438 439 /* A unique_ptr specialisation for lwp_info. */ 440 441 typedef std::unique_ptr<struct lwp_info, lwp_deleter> lwp_info_up; 442 443 /* Target hook for follow_fork. On entry inferior_ptid must be the 444 ptid of the followed inferior. At return, inferior_ptid will be 445 unchanged. */ 446 447 int 448 linux_nat_target::follow_fork (int follow_child, int detach_fork) 449 { 450 if (!follow_child) 451 { 452 struct lwp_info *child_lp = NULL; 453 int has_vforked; 454 ptid_t parent_ptid, child_ptid; 455 int parent_pid, child_pid; 456 457 has_vforked = (inferior_thread ()->pending_follow.kind 458 == TARGET_WAITKIND_VFORKED); 459 parent_ptid = inferior_ptid; 460 child_ptid = inferior_thread ()->pending_follow.value.related_pid; 461 parent_pid = parent_ptid.lwp (); 462 child_pid = child_ptid.lwp (); 463 464 /* We're already attached to the parent, by default. */ 465 child_lp = add_lwp (child_ptid); 466 child_lp->stopped = 1; 467 child_lp->last_resume_kind = resume_stop; 468 469 /* Detach new forked process? */ 470 if (detach_fork) 471 { 472 int child_stop_signal = 0; 473 bool detach_child = true; 474 475 /* Move CHILD_LP into a unique_ptr and clear the source pointer 476 to prevent us doing anything stupid with it. */ 477 lwp_info_up child_lp_ptr (child_lp); 478 child_lp = nullptr; 479 480 linux_target->low_prepare_to_resume (child_lp_ptr.get ()); 481 482 /* When debugging an inferior in an architecture that supports 483 hardware single stepping on a kernel without commit 484 6580807da14c423f0d0a708108e6df6ebc8bc83d, the vfork child 485 process starts with the TIF_SINGLESTEP/X86_EFLAGS_TF bits 486 set if the parent process had them set. 487 To work around this, single step the child process 488 once before detaching to clear the flags. */ 489 490 /* Note that we consult the parent's architecture instead of 491 the child's because there's no inferior for the child at 492 this point. */ 493 if (!gdbarch_software_single_step_p (target_thread_architecture 494 (parent_ptid))) 495 { 496 int status; 497 498 linux_disable_event_reporting (child_pid); 499 if (ptrace (PTRACE_SINGLESTEP, child_pid, 0, 0) < 0) 500 perror_with_name (_("Couldn't do single step")); 501 if (my_waitpid (child_pid, &status, 0) < 0) 502 perror_with_name (_("Couldn't wait vfork process")); 503 else 504 { 505 detach_child = WIFSTOPPED (status); 506 child_stop_signal = WSTOPSIG (status); 507 } 508 } 509 510 if (detach_child) 511 { 512 int signo = child_stop_signal; 513 514 if (signo != 0 515 && !signal_pass_state (gdb_signal_from_host (signo))) 516 signo = 0; 517 ptrace (PTRACE_DETACH, child_pid, 0, signo); 518 } 519 } 520 else 521 { 522 scoped_restore save_inferior_ptid 523 = make_scoped_restore (&inferior_ptid); 524 inferior_ptid = child_ptid; 525 526 /* Let the thread_db layer learn about this new process. */ 527 check_for_thread_db (); 528 } 529 530 if (has_vforked) 531 { 532 struct lwp_info *parent_lp; 533 534 parent_lp = find_lwp_pid (parent_ptid); 535 gdb_assert (linux_supports_tracefork () >= 0); 536 537 if (linux_supports_tracevforkdone ()) 538 { 539 if (debug_linux_nat) 540 fprintf_unfiltered (gdb_stdlog, 541 "LCFF: waiting for VFORK_DONE on %d\n", 542 parent_pid); 543 parent_lp->stopped = 1; 544 545 /* We'll handle the VFORK_DONE event like any other 546 event, in target_wait. */ 547 } 548 else 549 { 550 /* We can't insert breakpoints until the child has 551 finished with the shared memory region. We need to 552 wait until that happens. Ideal would be to just 553 call: 554 - ptrace (PTRACE_SYSCALL, parent_pid, 0, 0); 555 - waitpid (parent_pid, &status, __WALL); 556 However, most architectures can't handle a syscall 557 being traced on the way out if it wasn't traced on 558 the way in. 559 560 We might also think to loop, continuing the child 561 until it exits or gets a SIGTRAP. One problem is 562 that the child might call ptrace with PTRACE_TRACEME. 563 564 There's no simple and reliable way to figure out when 565 the vforked child will be done with its copy of the 566 shared memory. We could step it out of the syscall, 567 two instructions, let it go, and then single-step the 568 parent once. When we have hardware single-step, this 569 would work; with software single-step it could still 570 be made to work but we'd have to be able to insert 571 single-step breakpoints in the child, and we'd have 572 to insert -just- the single-step breakpoint in the 573 parent. Very awkward. 574 575 In the end, the best we can do is to make sure it 576 runs for a little while. Hopefully it will be out of 577 range of any breakpoints we reinsert. Usually this 578 is only the single-step breakpoint at vfork's return 579 point. */ 580 581 if (debug_linux_nat) 582 fprintf_unfiltered (gdb_stdlog, 583 "LCFF: no VFORK_DONE " 584 "support, sleeping a bit\n"); 585 586 usleep (10000); 587 588 /* Pretend we've seen a PTRACE_EVENT_VFORK_DONE event, 589 and leave it pending. The next linux_nat_resume call 590 will notice a pending event, and bypasses actually 591 resuming the inferior. */ 592 parent_lp->status = 0; 593 parent_lp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE; 594 parent_lp->stopped = 1; 595 596 /* If we're in async mode, need to tell the event loop 597 there's something here to process. */ 598 if (target_is_async_p ()) 599 async_file_mark (); 600 } 601 } 602 } 603 else 604 { 605 struct lwp_info *child_lp; 606 607 child_lp = add_lwp (inferior_ptid); 608 child_lp->stopped = 1; 609 child_lp->last_resume_kind = resume_stop; 610 611 /* Let the thread_db layer learn about this new process. */ 612 check_for_thread_db (); 613 } 614 615 return 0; 616 } 617 618 619 int 620 linux_nat_target::insert_fork_catchpoint (int pid) 621 { 622 return !linux_supports_tracefork (); 623 } 624 625 int 626 linux_nat_target::remove_fork_catchpoint (int pid) 627 { 628 return 0; 629 } 630 631 int 632 linux_nat_target::insert_vfork_catchpoint (int pid) 633 { 634 return !linux_supports_tracefork (); 635 } 636 637 int 638 linux_nat_target::remove_vfork_catchpoint (int pid) 639 { 640 return 0; 641 } 642 643 int 644 linux_nat_target::insert_exec_catchpoint (int pid) 645 { 646 return !linux_supports_tracefork (); 647 } 648 649 int 650 linux_nat_target::remove_exec_catchpoint (int pid) 651 { 652 return 0; 653 } 654 655 int 656 linux_nat_target::set_syscall_catchpoint (int pid, bool needed, int any_count, 657 gdb::array_view<const int> syscall_counts) 658 { 659 if (!linux_supports_tracesysgood ()) 660 return 1; 661 662 /* On GNU/Linux, we ignore the arguments. It means that we only 663 enable the syscall catchpoints, but do not disable them. 664 665 Also, we do not use the `syscall_counts' information because we do not 666 filter system calls here. We let GDB do the logic for us. */ 667 return 0; 668 } 669 670 /* List of known LWPs, keyed by LWP PID. This speeds up the common 671 case of mapping a PID returned from the kernel to our corresponding 672 lwp_info data structure. */ 673 static htab_t lwp_lwpid_htab; 674 675 /* Calculate a hash from a lwp_info's LWP PID. */ 676 677 static hashval_t 678 lwp_info_hash (const void *ap) 679 { 680 const struct lwp_info *lp = (struct lwp_info *) ap; 681 pid_t pid = lp->ptid.lwp (); 682 683 return iterative_hash_object (pid, 0); 684 } 685 686 /* Equality function for the lwp_info hash table. Compares the LWP's 687 PID. */ 688 689 static int 690 lwp_lwpid_htab_eq (const void *a, const void *b) 691 { 692 const struct lwp_info *entry = (const struct lwp_info *) a; 693 const struct lwp_info *element = (const struct lwp_info *) b; 694 695 return entry->ptid.lwp () == element->ptid.lwp (); 696 } 697 698 /* Create the lwp_lwpid_htab hash table. */ 699 700 static void 701 lwp_lwpid_htab_create (void) 702 { 703 lwp_lwpid_htab = htab_create (100, lwp_info_hash, lwp_lwpid_htab_eq, NULL); 704 } 705 706 /* Add LP to the hash table. */ 707 708 static void 709 lwp_lwpid_htab_add_lwp (struct lwp_info *lp) 710 { 711 void **slot; 712 713 slot = htab_find_slot (lwp_lwpid_htab, lp, INSERT); 714 gdb_assert (slot != NULL && *slot == NULL); 715 *slot = lp; 716 } 717 718 /* Head of doubly-linked list of known LWPs. Sorted by reverse 719 creation order. This order is assumed in some cases. E.g., 720 reaping status after killing alls lwps of a process: the leader LWP 721 must be reaped last. */ 722 struct lwp_info *lwp_list; 723 724 /* Add LP to sorted-by-reverse-creation-order doubly-linked list. */ 725 726 static void 727 lwp_list_add (struct lwp_info *lp) 728 { 729 lp->next = lwp_list; 730 if (lwp_list != NULL) 731 lwp_list->prev = lp; 732 lwp_list = lp; 733 } 734 735 /* Remove LP from sorted-by-reverse-creation-order doubly-linked 736 list. */ 737 738 static void 739 lwp_list_remove (struct lwp_info *lp) 740 { 741 /* Remove from sorted-by-creation-order list. */ 742 if (lp->next != NULL) 743 lp->next->prev = lp->prev; 744 if (lp->prev != NULL) 745 lp->prev->next = lp->next; 746 if (lp == lwp_list) 747 lwp_list = lp->next; 748 } 749 750 751 752 /* Original signal mask. */ 753 static sigset_t normal_mask; 754 755 /* Signal mask for use with sigsuspend in linux_nat_wait, initialized in 756 _initialize_linux_nat. */ 757 static sigset_t suspend_mask; 758 759 /* Signals to block to make that sigsuspend work. */ 760 static sigset_t blocked_mask; 761 762 /* SIGCHLD action. */ 763 struct sigaction sigchld_action; 764 765 /* Block child signals (SIGCHLD and linux threads signals), and store 766 the previous mask in PREV_MASK. */ 767 768 static void 769 block_child_signals (sigset_t *prev_mask) 770 { 771 /* Make sure SIGCHLD is blocked. */ 772 if (!sigismember (&blocked_mask, SIGCHLD)) 773 sigaddset (&blocked_mask, SIGCHLD); 774 775 sigprocmask (SIG_BLOCK, &blocked_mask, prev_mask); 776 } 777 778 /* Restore child signals mask, previously returned by 779 block_child_signals. */ 780 781 static void 782 restore_child_signals_mask (sigset_t *prev_mask) 783 { 784 sigprocmask (SIG_SETMASK, prev_mask, NULL); 785 } 786 787 /* Mask of signals to pass directly to the inferior. */ 788 static sigset_t pass_mask; 789 790 /* Update signals to pass to the inferior. */ 791 void 792 linux_nat_target::pass_signals 793 (gdb::array_view<const unsigned char> pass_signals) 794 { 795 int signo; 796 797 sigemptyset (&pass_mask); 798 799 for (signo = 1; signo < NSIG; signo++) 800 { 801 int target_signo = gdb_signal_from_host (signo); 802 if (target_signo < pass_signals.size () && pass_signals[target_signo]) 803 sigaddset (&pass_mask, signo); 804 } 805 } 806 807 808 809 /* Prototypes for local functions. */ 810 static int stop_wait_callback (struct lwp_info *lp, void *data); 811 static int resume_stopped_resumed_lwps (struct lwp_info *lp, void *data); 812 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp); 813 814 815 816 /* Destroy and free LP. */ 817 818 static void 819 lwp_free (struct lwp_info *lp) 820 { 821 /* Let the arch specific bits release arch_lwp_info. */ 822 linux_target->low_delete_thread (lp->arch_private); 823 824 xfree (lp); 825 } 826 827 /* Traversal function for purge_lwp_list. */ 828 829 static int 830 lwp_lwpid_htab_remove_pid (void **slot, void *info) 831 { 832 struct lwp_info *lp = (struct lwp_info *) *slot; 833 int pid = *(int *) info; 834 835 if (lp->ptid.pid () == pid) 836 { 837 htab_clear_slot (lwp_lwpid_htab, slot); 838 lwp_list_remove (lp); 839 lwp_free (lp); 840 } 841 842 return 1; 843 } 844 845 /* Remove all LWPs belong to PID from the lwp list. */ 846 847 static void 848 purge_lwp_list (int pid) 849 { 850 htab_traverse_noresize (lwp_lwpid_htab, lwp_lwpid_htab_remove_pid, &pid); 851 } 852 853 /* Add the LWP specified by PTID to the list. PTID is the first LWP 854 in the process. Return a pointer to the structure describing the 855 new LWP. 856 857 This differs from add_lwp in that we don't let the arch specific 858 bits know about this new thread. Current clients of this callback 859 take the opportunity to install watchpoints in the new thread, and 860 we shouldn't do that for the first thread. If we're spawning a 861 child ("run"), the thread executes the shell wrapper first, and we 862 shouldn't touch it until it execs the program we want to debug. 863 For "attach", it'd be okay to call the callback, but it's not 864 necessary, because watchpoints can't yet have been inserted into 865 the inferior. */ 866 867 static struct lwp_info * 868 add_initial_lwp (ptid_t ptid) 869 { 870 struct lwp_info *lp; 871 872 gdb_assert (ptid.lwp_p ()); 873 874 lp = XNEW (struct lwp_info); 875 876 memset (lp, 0, sizeof (struct lwp_info)); 877 878 lp->last_resume_kind = resume_continue; 879 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 880 881 lp->ptid = ptid; 882 lp->core = -1; 883 884 /* Add to sorted-by-reverse-creation-order list. */ 885 lwp_list_add (lp); 886 887 /* Add to keyed-by-pid htab. */ 888 lwp_lwpid_htab_add_lwp (lp); 889 890 return lp; 891 } 892 893 /* Add the LWP specified by PID to the list. Return a pointer to the 894 structure describing the new LWP. The LWP should already be 895 stopped. */ 896 897 static struct lwp_info * 898 add_lwp (ptid_t ptid) 899 { 900 struct lwp_info *lp; 901 902 lp = add_initial_lwp (ptid); 903 904 /* Let the arch specific bits know about this new thread. Current 905 clients of this callback take the opportunity to install 906 watchpoints in the new thread. We don't do this for the first 907 thread though. See add_initial_lwp. */ 908 linux_target->low_new_thread (lp); 909 910 return lp; 911 } 912 913 /* Remove the LWP specified by PID from the list. */ 914 915 static void 916 delete_lwp (ptid_t ptid) 917 { 918 struct lwp_info *lp; 919 void **slot; 920 struct lwp_info dummy; 921 922 dummy.ptid = ptid; 923 slot = htab_find_slot (lwp_lwpid_htab, &dummy, NO_INSERT); 924 if (slot == NULL) 925 return; 926 927 lp = *(struct lwp_info **) slot; 928 gdb_assert (lp != NULL); 929 930 htab_clear_slot (lwp_lwpid_htab, slot); 931 932 /* Remove from sorted-by-creation-order list. */ 933 lwp_list_remove (lp); 934 935 /* Release. */ 936 lwp_free (lp); 937 } 938 939 /* Return a pointer to the structure describing the LWP corresponding 940 to PID. If no corresponding LWP could be found, return NULL. */ 941 942 static struct lwp_info * 943 find_lwp_pid (ptid_t ptid) 944 { 945 struct lwp_info *lp; 946 int lwp; 947 struct lwp_info dummy; 948 949 if (ptid.lwp_p ()) 950 lwp = ptid.lwp (); 951 else 952 lwp = ptid.pid (); 953 954 dummy.ptid = ptid_t (0, lwp, 0); 955 lp = (struct lwp_info *) htab_find (lwp_lwpid_htab, &dummy); 956 return lp; 957 } 958 959 /* See nat/linux-nat.h. */ 960 961 struct lwp_info * 962 iterate_over_lwps (ptid_t filter, 963 iterate_over_lwps_ftype callback, 964 void *data) 965 { 966 struct lwp_info *lp, *lpnext; 967 968 for (lp = lwp_list; lp; lp = lpnext) 969 { 970 lpnext = lp->next; 971 972 if (lp->ptid.matches (filter)) 973 { 974 if ((*callback) (lp, data) != 0) 975 return lp; 976 } 977 } 978 979 return NULL; 980 } 981 982 /* Update our internal state when changing from one checkpoint to 983 another indicated by NEW_PTID. We can only switch single-threaded 984 applications, so we only create one new LWP, and the previous list 985 is discarded. */ 986 987 void 988 linux_nat_switch_fork (ptid_t new_ptid) 989 { 990 struct lwp_info *lp; 991 992 purge_lwp_list (inferior_ptid.pid ()); 993 994 lp = add_lwp (new_ptid); 995 lp->stopped = 1; 996 997 /* This changes the thread's ptid while preserving the gdb thread 998 num. Also changes the inferior pid, while preserving the 999 inferior num. */ 1000 thread_change_ptid (inferior_ptid, new_ptid); 1001 1002 /* We've just told GDB core that the thread changed target id, but, 1003 in fact, it really is a different thread, with different register 1004 contents. */ 1005 registers_changed (); 1006 } 1007 1008 /* Handle the exit of a single thread LP. */ 1009 1010 static void 1011 exit_lwp (struct lwp_info *lp) 1012 { 1013 struct thread_info *th = find_thread_ptid (lp->ptid); 1014 1015 if (th) 1016 { 1017 if (print_thread_events) 1018 printf_unfiltered (_("[%s exited]\n"), target_pid_to_str (lp->ptid)); 1019 1020 delete_thread (th); 1021 } 1022 1023 delete_lwp (lp->ptid); 1024 } 1025 1026 /* Wait for the LWP specified by LP, which we have just attached to. 1027 Returns a wait status for that LWP, to cache. */ 1028 1029 static int 1030 linux_nat_post_attach_wait (ptid_t ptid, int *signalled) 1031 { 1032 pid_t new_pid, pid = ptid.lwp (); 1033 int status; 1034 1035 if (linux_proc_pid_is_stopped (pid)) 1036 { 1037 if (debug_linux_nat) 1038 fprintf_unfiltered (gdb_stdlog, 1039 "LNPAW: Attaching to a stopped process\n"); 1040 1041 /* The process is definitely stopped. It is in a job control 1042 stop, unless the kernel predates the TASK_STOPPED / 1043 TASK_TRACED distinction, in which case it might be in a 1044 ptrace stop. Make sure it is in a ptrace stop; from there we 1045 can kill it, signal it, et cetera. 1046 1047 First make sure there is a pending SIGSTOP. Since we are 1048 already attached, the process can not transition from stopped 1049 to running without a PTRACE_CONT; so we know this signal will 1050 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is 1051 probably already in the queue (unless this kernel is old 1052 enough to use TASK_STOPPED for ptrace stops); but since SIGSTOP 1053 is not an RT signal, it can only be queued once. */ 1054 kill_lwp (pid, SIGSTOP); 1055 1056 /* Finally, resume the stopped process. This will deliver the SIGSTOP 1057 (or a higher priority signal, just like normal PTRACE_ATTACH). */ 1058 ptrace (PTRACE_CONT, pid, 0, 0); 1059 } 1060 1061 /* Make sure the initial process is stopped. The user-level threads 1062 layer might want to poke around in the inferior, and that won't 1063 work if things haven't stabilized yet. */ 1064 new_pid = my_waitpid (pid, &status, __WALL); 1065 gdb_assert (pid == new_pid); 1066 1067 if (!WIFSTOPPED (status)) 1068 { 1069 /* The pid we tried to attach has apparently just exited. */ 1070 if (debug_linux_nat) 1071 fprintf_unfiltered (gdb_stdlog, "LNPAW: Failed to stop %d: %s", 1072 pid, status_to_str (status)); 1073 return status; 1074 } 1075 1076 if (WSTOPSIG (status) != SIGSTOP) 1077 { 1078 *signalled = 1; 1079 if (debug_linux_nat) 1080 fprintf_unfiltered (gdb_stdlog, 1081 "LNPAW: Received %s after attaching\n", 1082 status_to_str (status)); 1083 } 1084 1085 return status; 1086 } 1087 1088 void 1089 linux_nat_target::create_inferior (const char *exec_file, 1090 const std::string &allargs, 1091 char **env, int from_tty) 1092 { 1093 maybe_disable_address_space_randomization restore_personality 1094 (disable_randomization); 1095 1096 /* The fork_child mechanism is synchronous and calls target_wait, so 1097 we have to mask the async mode. */ 1098 1099 /* Make sure we report all signals during startup. */ 1100 pass_signals ({}); 1101 1102 inf_ptrace_target::create_inferior (exec_file, allargs, env, from_tty); 1103 } 1104 1105 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not 1106 already attached. Returns true if a new LWP is found, false 1107 otherwise. */ 1108 1109 static int 1110 attach_proc_task_lwp_callback (ptid_t ptid) 1111 { 1112 struct lwp_info *lp; 1113 1114 /* Ignore LWPs we're already attached to. */ 1115 lp = find_lwp_pid (ptid); 1116 if (lp == NULL) 1117 { 1118 int lwpid = ptid.lwp (); 1119 1120 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) < 0) 1121 { 1122 int err = errno; 1123 1124 /* Be quiet if we simply raced with the thread exiting. 1125 EPERM is returned if the thread's task still exists, and 1126 is marked as exited or zombie, as well as other 1127 conditions, so in that case, confirm the status in 1128 /proc/PID/status. */ 1129 if (err == ESRCH 1130 || (err == EPERM && linux_proc_pid_is_gone (lwpid))) 1131 { 1132 if (debug_linux_nat) 1133 { 1134 fprintf_unfiltered (gdb_stdlog, 1135 "Cannot attach to lwp %d: " 1136 "thread is gone (%d: %s)\n", 1137 lwpid, err, safe_strerror (err)); 1138 } 1139 } 1140 else 1141 { 1142 std::string reason 1143 = linux_ptrace_attach_fail_reason_string (ptid, err); 1144 1145 warning (_("Cannot attach to lwp %d: %s"), 1146 lwpid, reason.c_str ()); 1147 } 1148 } 1149 else 1150 { 1151 if (debug_linux_nat) 1152 fprintf_unfiltered (gdb_stdlog, 1153 "PTRACE_ATTACH %s, 0, 0 (OK)\n", 1154 target_pid_to_str (ptid)); 1155 1156 lp = add_lwp (ptid); 1157 1158 /* The next time we wait for this LWP we'll see a SIGSTOP as 1159 PTRACE_ATTACH brings it to a halt. */ 1160 lp->signalled = 1; 1161 1162 /* We need to wait for a stop before being able to make the 1163 next ptrace call on this LWP. */ 1164 lp->must_set_ptrace_flags = 1; 1165 1166 /* So that wait collects the SIGSTOP. */ 1167 lp->resumed = 1; 1168 1169 /* Also add the LWP to gdb's thread list, in case a 1170 matching libthread_db is not found (or the process uses 1171 raw clone). */ 1172 add_thread (lp->ptid); 1173 set_running (lp->ptid, 1); 1174 set_executing (lp->ptid, 1); 1175 } 1176 1177 return 1; 1178 } 1179 return 0; 1180 } 1181 1182 void 1183 linux_nat_target::attach (const char *args, int from_tty) 1184 { 1185 struct lwp_info *lp; 1186 int status; 1187 ptid_t ptid; 1188 1189 /* Make sure we report all signals during attach. */ 1190 pass_signals ({}); 1191 1192 TRY 1193 { 1194 inf_ptrace_target::attach (args, from_tty); 1195 } 1196 CATCH (ex, RETURN_MASK_ERROR) 1197 { 1198 pid_t pid = parse_pid_to_attach (args); 1199 std::string reason = linux_ptrace_attach_fail_reason (pid); 1200 1201 if (!reason.empty ()) 1202 throw_error (ex.error, "warning: %s\n%s", reason.c_str (), ex.message); 1203 else 1204 throw_error (ex.error, "%s", ex.message); 1205 } 1206 END_CATCH 1207 1208 /* The ptrace base target adds the main thread with (pid,0,0) 1209 format. Decorate it with lwp info. */ 1210 ptid = ptid_t (inferior_ptid.pid (), 1211 inferior_ptid.pid (), 1212 0); 1213 thread_change_ptid (inferior_ptid, ptid); 1214 1215 /* Add the initial process as the first LWP to the list. */ 1216 lp = add_initial_lwp (ptid); 1217 1218 status = linux_nat_post_attach_wait (lp->ptid, &lp->signalled); 1219 if (!WIFSTOPPED (status)) 1220 { 1221 if (WIFEXITED (status)) 1222 { 1223 int exit_code = WEXITSTATUS (status); 1224 1225 target_terminal::ours (); 1226 target_mourn_inferior (inferior_ptid); 1227 if (exit_code == 0) 1228 error (_("Unable to attach: program exited normally.")); 1229 else 1230 error (_("Unable to attach: program exited with code %d."), 1231 exit_code); 1232 } 1233 else if (WIFSIGNALED (status)) 1234 { 1235 enum gdb_signal signo; 1236 1237 target_terminal::ours (); 1238 target_mourn_inferior (inferior_ptid); 1239 1240 signo = gdb_signal_from_host (WTERMSIG (status)); 1241 error (_("Unable to attach: program terminated with signal " 1242 "%s, %s."), 1243 gdb_signal_to_name (signo), 1244 gdb_signal_to_string (signo)); 1245 } 1246 1247 internal_error (__FILE__, __LINE__, 1248 _("unexpected status %d for PID %ld"), 1249 status, (long) ptid.lwp ()); 1250 } 1251 1252 lp->stopped = 1; 1253 1254 /* Save the wait status to report later. */ 1255 lp->resumed = 1; 1256 if (debug_linux_nat) 1257 fprintf_unfiltered (gdb_stdlog, 1258 "LNA: waitpid %ld, saving status %s\n", 1259 (long) lp->ptid.pid (), status_to_str (status)); 1260 1261 lp->status = status; 1262 1263 /* We must attach to every LWP. If /proc is mounted, use that to 1264 find them now. The inferior may be using raw clone instead of 1265 using pthreads. But even if it is using pthreads, thread_db 1266 walks structures in the inferior's address space to find the list 1267 of threads/LWPs, and those structures may well be corrupted. 1268 Note that once thread_db is loaded, we'll still use it to list 1269 threads and associate pthread info with each LWP. */ 1270 linux_proc_attach_tgid_threads (lp->ptid.pid (), 1271 attach_proc_task_lwp_callback); 1272 1273 if (target_can_async_p ()) 1274 target_async (1); 1275 } 1276 1277 /* Get pending signal of THREAD as a host signal number, for detaching 1278 purposes. This is the signal the thread last stopped for, which we 1279 need to deliver to the thread when detaching, otherwise, it'd be 1280 suppressed/lost. */ 1281 1282 static int 1283 get_detach_signal (struct lwp_info *lp) 1284 { 1285 enum gdb_signal signo = GDB_SIGNAL_0; 1286 1287 /* If we paused threads momentarily, we may have stored pending 1288 events in lp->status or lp->waitstatus (see stop_wait_callback), 1289 and GDB core hasn't seen any signal for those threads. 1290 Otherwise, the last signal reported to the core is found in the 1291 thread object's stop_signal. 1292 1293 There's a corner case that isn't handled here at present. Only 1294 if the thread stopped with a TARGET_WAITKIND_STOPPED does 1295 stop_signal make sense as a real signal to pass to the inferior. 1296 Some catchpoint related events, like 1297 TARGET_WAITKIND_(V)FORK|EXEC|SYSCALL, have their stop_signal set 1298 to GDB_SIGNAL_SIGTRAP when the catchpoint triggers. But, 1299 those traps are debug API (ptrace in our case) related and 1300 induced; the inferior wouldn't see them if it wasn't being 1301 traced. Hence, we should never pass them to the inferior, even 1302 when set to pass state. Since this corner case isn't handled by 1303 infrun.c when proceeding with a signal, for consistency, neither 1304 do we handle it here (or elsewhere in the file we check for 1305 signal pass state). Normally SIGTRAP isn't set to pass state, so 1306 this is really a corner case. */ 1307 1308 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 1309 signo = GDB_SIGNAL_0; /* a pending ptrace event, not a real signal. */ 1310 else if (lp->status) 1311 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1312 else 1313 { 1314 struct thread_info *tp = find_thread_ptid (lp->ptid); 1315 1316 if (target_is_non_stop_p () && !tp->executing) 1317 { 1318 if (tp->suspend.waitstatus_pending_p) 1319 signo = tp->suspend.waitstatus.value.sig; 1320 else 1321 signo = tp->suspend.stop_signal; 1322 } 1323 else if (!target_is_non_stop_p ()) 1324 { 1325 struct target_waitstatus last; 1326 ptid_t last_ptid; 1327 1328 get_last_target_status (&last_ptid, &last); 1329 1330 if (lp->ptid.lwp () == last_ptid.lwp ()) 1331 signo = tp->suspend.stop_signal; 1332 } 1333 } 1334 1335 if (signo == GDB_SIGNAL_0) 1336 { 1337 if (debug_linux_nat) 1338 fprintf_unfiltered (gdb_stdlog, 1339 "GPT: lwp %s has no pending signal\n", 1340 target_pid_to_str (lp->ptid)); 1341 } 1342 else if (!signal_pass_state (signo)) 1343 { 1344 if (debug_linux_nat) 1345 fprintf_unfiltered (gdb_stdlog, 1346 "GPT: lwp %s had signal %s, " 1347 "but it is in no pass state\n", 1348 target_pid_to_str (lp->ptid), 1349 gdb_signal_to_string (signo)); 1350 } 1351 else 1352 { 1353 if (debug_linux_nat) 1354 fprintf_unfiltered (gdb_stdlog, 1355 "GPT: lwp %s has pending signal %s\n", 1356 target_pid_to_str (lp->ptid), 1357 gdb_signal_to_string (signo)); 1358 1359 return gdb_signal_to_host (signo); 1360 } 1361 1362 return 0; 1363 } 1364 1365 /* Detach from LP. If SIGNO_P is non-NULL, then it points to the 1366 signal number that should be passed to the LWP when detaching. 1367 Otherwise pass any pending signal the LWP may have, if any. */ 1368 1369 static void 1370 detach_one_lwp (struct lwp_info *lp, int *signo_p) 1371 { 1372 int lwpid = lp->ptid.lwp (); 1373 int signo; 1374 1375 gdb_assert (lp->status == 0 || WIFSTOPPED (lp->status)); 1376 1377 if (debug_linux_nat && lp->status) 1378 fprintf_unfiltered (gdb_stdlog, "DC: Pending %s for %s on detach.\n", 1379 strsignal (WSTOPSIG (lp->status)), 1380 target_pid_to_str (lp->ptid)); 1381 1382 /* If there is a pending SIGSTOP, get rid of it. */ 1383 if (lp->signalled) 1384 { 1385 if (debug_linux_nat) 1386 fprintf_unfiltered (gdb_stdlog, 1387 "DC: Sending SIGCONT to %s\n", 1388 target_pid_to_str (lp->ptid)); 1389 1390 kill_lwp (lwpid, SIGCONT); 1391 lp->signalled = 0; 1392 } 1393 1394 if (signo_p == NULL) 1395 { 1396 /* Pass on any pending signal for this LWP. */ 1397 signo = get_detach_signal (lp); 1398 } 1399 else 1400 signo = *signo_p; 1401 1402 /* Preparing to resume may try to write registers, and fail if the 1403 lwp is zombie. If that happens, ignore the error. We'll handle 1404 it below, when detach fails with ESRCH. */ 1405 TRY 1406 { 1407 linux_target->low_prepare_to_resume (lp); 1408 } 1409 CATCH (ex, RETURN_MASK_ERROR) 1410 { 1411 if (!check_ptrace_stopped_lwp_gone (lp)) 1412 throw_exception (ex); 1413 } 1414 END_CATCH 1415 1416 if (ptrace (PTRACE_DETACH, lwpid, 0, signo) < 0) 1417 { 1418 int save_errno = errno; 1419 1420 /* We know the thread exists, so ESRCH must mean the lwp is 1421 zombie. This can happen if one of the already-detached 1422 threads exits the whole thread group. In that case we're 1423 still attached, and must reap the lwp. */ 1424 if (save_errno == ESRCH) 1425 { 1426 int ret, status; 1427 1428 ret = my_waitpid (lwpid, &status, __WALL); 1429 if (ret == -1) 1430 { 1431 warning (_("Couldn't reap LWP %d while detaching: %s"), 1432 lwpid, strerror (errno)); 1433 } 1434 else if (!WIFEXITED (status) && !WIFSIGNALED (status)) 1435 { 1436 warning (_("Reaping LWP %d while detaching " 1437 "returned unexpected status 0x%x"), 1438 lwpid, status); 1439 } 1440 } 1441 else 1442 { 1443 error (_("Can't detach %s: %s"), target_pid_to_str (lp->ptid), 1444 safe_strerror (save_errno)); 1445 } 1446 } 1447 else if (debug_linux_nat) 1448 { 1449 fprintf_unfiltered (gdb_stdlog, 1450 "PTRACE_DETACH (%s, %s, 0) (OK)\n", 1451 target_pid_to_str (lp->ptid), 1452 strsignal (signo)); 1453 } 1454 1455 delete_lwp (lp->ptid); 1456 } 1457 1458 static int 1459 detach_callback (struct lwp_info *lp, void *data) 1460 { 1461 /* We don't actually detach from the thread group leader just yet. 1462 If the thread group exits, we must reap the zombie clone lwps 1463 before we're able to reap the leader. */ 1464 if (lp->ptid.lwp () != lp->ptid.pid ()) 1465 detach_one_lwp (lp, NULL); 1466 return 0; 1467 } 1468 1469 void 1470 linux_nat_target::detach (inferior *inf, int from_tty) 1471 { 1472 struct lwp_info *main_lwp; 1473 int pid = inf->pid; 1474 1475 /* Don't unregister from the event loop, as there may be other 1476 inferiors running. */ 1477 1478 /* Stop all threads before detaching. ptrace requires that the 1479 thread is stopped to sucessfully detach. */ 1480 iterate_over_lwps (ptid_t (pid), stop_callback, NULL); 1481 /* ... and wait until all of them have reported back that 1482 they're no longer running. */ 1483 iterate_over_lwps (ptid_t (pid), stop_wait_callback, NULL); 1484 1485 iterate_over_lwps (ptid_t (pid), detach_callback, NULL); 1486 1487 /* Only the initial process should be left right now. */ 1488 gdb_assert (num_lwps (pid) == 1); 1489 1490 main_lwp = find_lwp_pid (ptid_t (pid)); 1491 1492 if (forks_exist_p ()) 1493 { 1494 /* Multi-fork case. The current inferior_ptid is being detached 1495 from, but there are other viable forks to debug. Detach from 1496 the current fork, and context-switch to the first 1497 available. */ 1498 linux_fork_detach (from_tty); 1499 } 1500 else 1501 { 1502 target_announce_detach (from_tty); 1503 1504 /* Pass on any pending signal for the last LWP. */ 1505 int signo = get_detach_signal (main_lwp); 1506 1507 detach_one_lwp (main_lwp, &signo); 1508 1509 detach_success (inf); 1510 } 1511 } 1512 1513 /* Resume execution of the inferior process. If STEP is nonzero, 1514 single-step it. If SIGNAL is nonzero, give it that signal. */ 1515 1516 static void 1517 linux_resume_one_lwp_throw (struct lwp_info *lp, int step, 1518 enum gdb_signal signo) 1519 { 1520 lp->step = step; 1521 1522 /* stop_pc doubles as the PC the LWP had when it was last resumed. 1523 We only presently need that if the LWP is stepped though (to 1524 handle the case of stepping a breakpoint instruction). */ 1525 if (step) 1526 { 1527 struct regcache *regcache = get_thread_regcache (lp->ptid); 1528 1529 lp->stop_pc = regcache_read_pc (regcache); 1530 } 1531 else 1532 lp->stop_pc = 0; 1533 1534 linux_target->low_prepare_to_resume (lp); 1535 linux_target->low_resume (lp->ptid, step, signo); 1536 1537 /* Successfully resumed. Clear state that no longer makes sense, 1538 and mark the LWP as running. Must not do this before resuming 1539 otherwise if that fails other code will be confused. E.g., we'd 1540 later try to stop the LWP and hang forever waiting for a stop 1541 status. Note that we must not throw after this is cleared, 1542 otherwise handle_zombie_lwp_error would get confused. */ 1543 lp->stopped = 0; 1544 lp->core = -1; 1545 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1546 registers_changed_ptid (lp->ptid); 1547 } 1548 1549 /* Called when we try to resume a stopped LWP and that errors out. If 1550 the LWP is no longer in ptrace-stopped state (meaning it's zombie, 1551 or about to become), discard the error, clear any pending status 1552 the LWP may have, and return true (we'll collect the exit status 1553 soon enough). Otherwise, return false. */ 1554 1555 static int 1556 check_ptrace_stopped_lwp_gone (struct lwp_info *lp) 1557 { 1558 /* If we get an error after resuming the LWP successfully, we'd 1559 confuse !T state for the LWP being gone. */ 1560 gdb_assert (lp->stopped); 1561 1562 /* We can't just check whether the LWP is in 'Z (Zombie)' state, 1563 because even if ptrace failed with ESRCH, the tracee may be "not 1564 yet fully dead", but already refusing ptrace requests. In that 1565 case the tracee has 'R (Running)' state for a little bit 1566 (observed in Linux 3.18). See also the note on ESRCH in the 1567 ptrace(2) man page. Instead, check whether the LWP has any state 1568 other than ptrace-stopped. */ 1569 1570 /* Don't assume anything if /proc/PID/status can't be read. */ 1571 if (linux_proc_pid_is_trace_stopped_nowarn (lp->ptid.lwp ()) == 0) 1572 { 1573 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON; 1574 lp->status = 0; 1575 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 1576 return 1; 1577 } 1578 return 0; 1579 } 1580 1581 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP 1582 disappears while we try to resume it. */ 1583 1584 static void 1585 linux_resume_one_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1586 { 1587 TRY 1588 { 1589 linux_resume_one_lwp_throw (lp, step, signo); 1590 } 1591 CATCH (ex, RETURN_MASK_ERROR) 1592 { 1593 if (!check_ptrace_stopped_lwp_gone (lp)) 1594 throw_exception (ex); 1595 } 1596 END_CATCH 1597 } 1598 1599 /* Resume LP. */ 1600 1601 static void 1602 resume_lwp (struct lwp_info *lp, int step, enum gdb_signal signo) 1603 { 1604 if (lp->stopped) 1605 { 1606 struct inferior *inf = find_inferior_ptid (lp->ptid); 1607 1608 if (inf->vfork_child != NULL) 1609 { 1610 if (debug_linux_nat) 1611 fprintf_unfiltered (gdb_stdlog, 1612 "RC: Not resuming %s (vfork parent)\n", 1613 target_pid_to_str (lp->ptid)); 1614 } 1615 else if (!lwp_status_pending_p (lp)) 1616 { 1617 if (debug_linux_nat) 1618 fprintf_unfiltered (gdb_stdlog, 1619 "RC: Resuming sibling %s, %s, %s\n", 1620 target_pid_to_str (lp->ptid), 1621 (signo != GDB_SIGNAL_0 1622 ? strsignal (gdb_signal_to_host (signo)) 1623 : "0"), 1624 step ? "step" : "resume"); 1625 1626 linux_resume_one_lwp (lp, step, signo); 1627 } 1628 else 1629 { 1630 if (debug_linux_nat) 1631 fprintf_unfiltered (gdb_stdlog, 1632 "RC: Not resuming sibling %s (has pending)\n", 1633 target_pid_to_str (lp->ptid)); 1634 } 1635 } 1636 else 1637 { 1638 if (debug_linux_nat) 1639 fprintf_unfiltered (gdb_stdlog, 1640 "RC: Not resuming sibling %s (not stopped)\n", 1641 target_pid_to_str (lp->ptid)); 1642 } 1643 } 1644 1645 /* Callback for iterate_over_lwps. If LWP is EXCEPT, do nothing. 1646 Resume LWP with the last stop signal, if it is in pass state. */ 1647 1648 static int 1649 linux_nat_resume_callback (struct lwp_info *lp, void *except) 1650 { 1651 enum gdb_signal signo = GDB_SIGNAL_0; 1652 1653 if (lp == except) 1654 return 0; 1655 1656 if (lp->stopped) 1657 { 1658 struct thread_info *thread; 1659 1660 thread = find_thread_ptid (lp->ptid); 1661 if (thread != NULL) 1662 { 1663 signo = thread->suspend.stop_signal; 1664 thread->suspend.stop_signal = GDB_SIGNAL_0; 1665 } 1666 } 1667 1668 resume_lwp (lp, 0, signo); 1669 return 0; 1670 } 1671 1672 static int 1673 resume_clear_callback (struct lwp_info *lp, void *data) 1674 { 1675 lp->resumed = 0; 1676 lp->last_resume_kind = resume_stop; 1677 return 0; 1678 } 1679 1680 static int 1681 resume_set_callback (struct lwp_info *lp, void *data) 1682 { 1683 lp->resumed = 1; 1684 lp->last_resume_kind = resume_continue; 1685 return 0; 1686 } 1687 1688 void 1689 linux_nat_target::resume (ptid_t ptid, int step, enum gdb_signal signo) 1690 { 1691 struct lwp_info *lp; 1692 int resume_many; 1693 1694 if (debug_linux_nat) 1695 fprintf_unfiltered (gdb_stdlog, 1696 "LLR: Preparing to %s %s, %s, inferior_ptid %s\n", 1697 step ? "step" : "resume", 1698 target_pid_to_str (ptid), 1699 (signo != GDB_SIGNAL_0 1700 ? strsignal (gdb_signal_to_host (signo)) : "0"), 1701 target_pid_to_str (inferior_ptid)); 1702 1703 /* A specific PTID means `step only this process id'. */ 1704 resume_many = (minus_one_ptid == ptid 1705 || ptid.is_pid ()); 1706 1707 /* Mark the lwps we're resuming as resumed. */ 1708 iterate_over_lwps (ptid, resume_set_callback, NULL); 1709 1710 /* See if it's the current inferior that should be handled 1711 specially. */ 1712 if (resume_many) 1713 lp = find_lwp_pid (inferior_ptid); 1714 else 1715 lp = find_lwp_pid (ptid); 1716 gdb_assert (lp != NULL); 1717 1718 /* Remember if we're stepping. */ 1719 lp->last_resume_kind = step ? resume_step : resume_continue; 1720 1721 /* If we have a pending wait status for this thread, there is no 1722 point in resuming the process. But first make sure that 1723 linux_nat_wait won't preemptively handle the event - we 1724 should never take this short-circuit if we are going to 1725 leave LP running, since we have skipped resuming all the 1726 other threads. This bit of code needs to be synchronized 1727 with linux_nat_wait. */ 1728 1729 if (lp->status && WIFSTOPPED (lp->status)) 1730 { 1731 if (!lp->step 1732 && WSTOPSIG (lp->status) 1733 && sigismember (&pass_mask, WSTOPSIG (lp->status))) 1734 { 1735 if (debug_linux_nat) 1736 fprintf_unfiltered (gdb_stdlog, 1737 "LLR: Not short circuiting for ignored " 1738 "status 0x%x\n", lp->status); 1739 1740 /* FIXME: What should we do if we are supposed to continue 1741 this thread with a signal? */ 1742 gdb_assert (signo == GDB_SIGNAL_0); 1743 signo = gdb_signal_from_host (WSTOPSIG (lp->status)); 1744 lp->status = 0; 1745 } 1746 } 1747 1748 if (lwp_status_pending_p (lp)) 1749 { 1750 /* FIXME: What should we do if we are supposed to continue 1751 this thread with a signal? */ 1752 gdb_assert (signo == GDB_SIGNAL_0); 1753 1754 if (debug_linux_nat) 1755 fprintf_unfiltered (gdb_stdlog, 1756 "LLR: Short circuiting for status 0x%x\n", 1757 lp->status); 1758 1759 if (target_can_async_p ()) 1760 { 1761 target_async (1); 1762 /* Tell the event loop we have something to process. */ 1763 async_file_mark (); 1764 } 1765 return; 1766 } 1767 1768 if (resume_many) 1769 iterate_over_lwps (ptid, linux_nat_resume_callback, lp); 1770 1771 if (debug_linux_nat) 1772 fprintf_unfiltered (gdb_stdlog, 1773 "LLR: %s %s, %s (resume event thread)\n", 1774 step ? "PTRACE_SINGLESTEP" : "PTRACE_CONT", 1775 target_pid_to_str (lp->ptid), 1776 (signo != GDB_SIGNAL_0 1777 ? strsignal (gdb_signal_to_host (signo)) : "0")); 1778 1779 linux_resume_one_lwp (lp, step, signo); 1780 1781 if (target_can_async_p ()) 1782 target_async (1); 1783 } 1784 1785 /* Send a signal to an LWP. */ 1786 1787 static int 1788 kill_lwp (int lwpid, int signo) 1789 { 1790 int ret; 1791 1792 errno = 0; 1793 ret = syscall (__NR_tkill, lwpid, signo); 1794 if (errno == ENOSYS) 1795 { 1796 /* If tkill fails, then we are not using nptl threads, a 1797 configuration we no longer support. */ 1798 perror_with_name (("tkill")); 1799 } 1800 return ret; 1801 } 1802 1803 /* Handle a GNU/Linux syscall trap wait response. If we see a syscall 1804 event, check if the core is interested in it: if not, ignore the 1805 event, and keep waiting; otherwise, we need to toggle the LWP's 1806 syscall entry/exit status, since the ptrace event itself doesn't 1807 indicate it, and report the trap to higher layers. */ 1808 1809 static int 1810 linux_handle_syscall_trap (struct lwp_info *lp, int stopping) 1811 { 1812 struct target_waitstatus *ourstatus = &lp->waitstatus; 1813 struct gdbarch *gdbarch = target_thread_architecture (lp->ptid); 1814 thread_info *thread = find_thread_ptid (lp->ptid); 1815 int syscall_number = (int) gdbarch_get_syscall_number (gdbarch, thread); 1816 1817 if (stopping) 1818 { 1819 /* If we're stopping threads, there's a SIGSTOP pending, which 1820 makes it so that the LWP reports an immediate syscall return, 1821 followed by the SIGSTOP. Skip seeing that "return" using 1822 PTRACE_CONT directly, and let stop_wait_callback collect the 1823 SIGSTOP. Later when the thread is resumed, a new syscall 1824 entry event. If we didn't do this (and returned 0), we'd 1825 leave a syscall entry pending, and our caller, by using 1826 PTRACE_CONT to collect the SIGSTOP, skips the syscall return 1827 itself. Later, when the user re-resumes this LWP, we'd see 1828 another syscall entry event and we'd mistake it for a return. 1829 1830 If stop_wait_callback didn't force the SIGSTOP out of the LWP 1831 (leaving immediately with LWP->signalled set, without issuing 1832 a PTRACE_CONT), it would still be problematic to leave this 1833 syscall enter pending, as later when the thread is resumed, 1834 it would then see the same syscall exit mentioned above, 1835 followed by the delayed SIGSTOP, while the syscall didn't 1836 actually get to execute. It seems it would be even more 1837 confusing to the user. */ 1838 1839 if (debug_linux_nat) 1840 fprintf_unfiltered (gdb_stdlog, 1841 "LHST: ignoring syscall %d " 1842 "for LWP %ld (stopping threads), " 1843 "resuming with PTRACE_CONT for SIGSTOP\n", 1844 syscall_number, 1845 lp->ptid.lwp ()); 1846 1847 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1848 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 1849 lp->stopped = 0; 1850 return 1; 1851 } 1852 1853 /* Always update the entry/return state, even if this particular 1854 syscall isn't interesting to the core now. In async mode, 1855 the user could install a new catchpoint for this syscall 1856 between syscall enter/return, and we'll need to know to 1857 report a syscall return if that happens. */ 1858 lp->syscall_state = (lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1859 ? TARGET_WAITKIND_SYSCALL_RETURN 1860 : TARGET_WAITKIND_SYSCALL_ENTRY); 1861 1862 if (catch_syscall_enabled ()) 1863 { 1864 if (catching_syscall_number (syscall_number)) 1865 { 1866 /* Alright, an event to report. */ 1867 ourstatus->kind = lp->syscall_state; 1868 ourstatus->value.syscall_number = syscall_number; 1869 1870 if (debug_linux_nat) 1871 fprintf_unfiltered (gdb_stdlog, 1872 "LHST: stopping for %s of syscall %d" 1873 " for LWP %ld\n", 1874 lp->syscall_state 1875 == TARGET_WAITKIND_SYSCALL_ENTRY 1876 ? "entry" : "return", 1877 syscall_number, 1878 lp->ptid.lwp ()); 1879 return 0; 1880 } 1881 1882 if (debug_linux_nat) 1883 fprintf_unfiltered (gdb_stdlog, 1884 "LHST: ignoring %s of syscall %d " 1885 "for LWP %ld\n", 1886 lp->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY 1887 ? "entry" : "return", 1888 syscall_number, 1889 lp->ptid.lwp ()); 1890 } 1891 else 1892 { 1893 /* If we had been syscall tracing, and hence used PT_SYSCALL 1894 before on this LWP, it could happen that the user removes all 1895 syscall catchpoints before we get to process this event. 1896 There are two noteworthy issues here: 1897 1898 - When stopped at a syscall entry event, resuming with 1899 PT_STEP still resumes executing the syscall and reports a 1900 syscall return. 1901 1902 - Only PT_SYSCALL catches syscall enters. If we last 1903 single-stepped this thread, then this event can't be a 1904 syscall enter. If we last single-stepped this thread, this 1905 has to be a syscall exit. 1906 1907 The points above mean that the next resume, be it PT_STEP or 1908 PT_CONTINUE, can not trigger a syscall trace event. */ 1909 if (debug_linux_nat) 1910 fprintf_unfiltered (gdb_stdlog, 1911 "LHST: caught syscall event " 1912 "with no syscall catchpoints." 1913 " %d for LWP %ld, ignoring\n", 1914 syscall_number, 1915 lp->ptid.lwp ()); 1916 lp->syscall_state = TARGET_WAITKIND_IGNORE; 1917 } 1918 1919 /* The core isn't interested in this event. For efficiency, avoid 1920 stopping all threads only to have the core resume them all again. 1921 Since we're not stopping threads, if we're still syscall tracing 1922 and not stepping, we can't use PTRACE_CONT here, as we'd miss any 1923 subsequent syscall. Simply resume using the inf-ptrace layer, 1924 which knows when to use PT_SYSCALL or PT_CONTINUE. */ 1925 1926 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 1927 return 1; 1928 } 1929 1930 /* Handle a GNU/Linux extended wait response. If we see a clone 1931 event, we need to add the new LWP to our list (and not report the 1932 trap to higher layers). This function returns non-zero if the 1933 event should be ignored and we should wait again. If STOPPING is 1934 true, the new LWP remains stopped, otherwise it is continued. */ 1935 1936 static int 1937 linux_handle_extended_wait (struct lwp_info *lp, int status) 1938 { 1939 int pid = lp->ptid.lwp (); 1940 struct target_waitstatus *ourstatus = &lp->waitstatus; 1941 int event = linux_ptrace_get_extended_event (status); 1942 1943 /* All extended events we currently use are mid-syscall. Only 1944 PTRACE_EVENT_STOP is delivered more like a signal-stop, but 1945 you have to be using PTRACE_SEIZE to get that. */ 1946 lp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY; 1947 1948 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK 1949 || event == PTRACE_EVENT_CLONE) 1950 { 1951 unsigned long new_pid; 1952 int ret; 1953 1954 ptrace (PTRACE_GETEVENTMSG, pid, 0, &new_pid); 1955 1956 /* If we haven't already seen the new PID stop, wait for it now. */ 1957 if (! pull_pid_from_list (&stopped_pids, new_pid, &status)) 1958 { 1959 /* The new child has a pending SIGSTOP. We can't affect it until it 1960 hits the SIGSTOP, but we're already attached. */ 1961 ret = my_waitpid (new_pid, &status, __WALL); 1962 if (ret == -1) 1963 perror_with_name (_("waiting for new child")); 1964 else if (ret != new_pid) 1965 internal_error (__FILE__, __LINE__, 1966 _("wait returned unexpected PID %d"), ret); 1967 else if (!WIFSTOPPED (status)) 1968 internal_error (__FILE__, __LINE__, 1969 _("wait returned unexpected status 0x%x"), status); 1970 } 1971 1972 ourstatus->value.related_pid = ptid_t (new_pid, new_pid, 0); 1973 1974 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK) 1975 { 1976 /* The arch-specific native code may need to know about new 1977 forks even if those end up never mapped to an 1978 inferior. */ 1979 linux_target->low_new_fork (lp, new_pid); 1980 } 1981 1982 if (event == PTRACE_EVENT_FORK 1983 && linux_fork_checkpointing_p (lp->ptid.pid ())) 1984 { 1985 /* Handle checkpointing by linux-fork.c here as a special 1986 case. We don't want the follow-fork-mode or 'catch fork' 1987 to interfere with this. */ 1988 1989 /* This won't actually modify the breakpoint list, but will 1990 physically remove the breakpoints from the child. */ 1991 detach_breakpoints (ptid_t (new_pid, new_pid, 0)); 1992 1993 /* Retain child fork in ptrace (stopped) state. */ 1994 if (!find_fork_pid (new_pid)) 1995 add_fork (new_pid); 1996 1997 /* Report as spurious, so that infrun doesn't want to follow 1998 this fork. We're actually doing an infcall in 1999 linux-fork.c. */ 2000 ourstatus->kind = TARGET_WAITKIND_SPURIOUS; 2001 2002 /* Report the stop to the core. */ 2003 return 0; 2004 } 2005 2006 if (event == PTRACE_EVENT_FORK) 2007 ourstatus->kind = TARGET_WAITKIND_FORKED; 2008 else if (event == PTRACE_EVENT_VFORK) 2009 ourstatus->kind = TARGET_WAITKIND_VFORKED; 2010 else if (event == PTRACE_EVENT_CLONE) 2011 { 2012 struct lwp_info *new_lp; 2013 2014 ourstatus->kind = TARGET_WAITKIND_IGNORE; 2015 2016 if (debug_linux_nat) 2017 fprintf_unfiltered (gdb_stdlog, 2018 "LHEW: Got clone event " 2019 "from LWP %d, new child is LWP %ld\n", 2020 pid, new_pid); 2021 2022 new_lp = add_lwp (ptid_t (lp->ptid.pid (), new_pid, 0)); 2023 new_lp->stopped = 1; 2024 new_lp->resumed = 1; 2025 2026 /* If the thread_db layer is active, let it record the user 2027 level thread id and status, and add the thread to GDB's 2028 list. */ 2029 if (!thread_db_notice_clone (lp->ptid, new_lp->ptid)) 2030 { 2031 /* The process is not using thread_db. Add the LWP to 2032 GDB's list. */ 2033 target_post_attach (new_lp->ptid.lwp ()); 2034 add_thread (new_lp->ptid); 2035 } 2036 2037 /* Even if we're stopping the thread for some reason 2038 internal to this module, from the perspective of infrun 2039 and the user/frontend, this new thread is running until 2040 it next reports a stop. */ 2041 set_running (new_lp->ptid, 1); 2042 set_executing (new_lp->ptid, 1); 2043 2044 if (WSTOPSIG (status) != SIGSTOP) 2045 { 2046 /* This can happen if someone starts sending signals to 2047 the new thread before it gets a chance to run, which 2048 have a lower number than SIGSTOP (e.g. SIGUSR1). 2049 This is an unlikely case, and harder to handle for 2050 fork / vfork than for clone, so we do not try - but 2051 we handle it for clone events here. */ 2052 2053 new_lp->signalled = 1; 2054 2055 /* We created NEW_LP so it cannot yet contain STATUS. */ 2056 gdb_assert (new_lp->status == 0); 2057 2058 /* Save the wait status to report later. */ 2059 if (debug_linux_nat) 2060 fprintf_unfiltered (gdb_stdlog, 2061 "LHEW: waitpid of new LWP %ld, " 2062 "saving status %s\n", 2063 (long) new_lp->ptid.lwp (), 2064 status_to_str (status)); 2065 new_lp->status = status; 2066 } 2067 else if (report_thread_events) 2068 { 2069 new_lp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED; 2070 new_lp->status = status; 2071 } 2072 2073 return 1; 2074 } 2075 2076 return 0; 2077 } 2078 2079 if (event == PTRACE_EVENT_EXEC) 2080 { 2081 if (debug_linux_nat) 2082 fprintf_unfiltered (gdb_stdlog, 2083 "LHEW: Got exec event from LWP %ld\n", 2084 lp->ptid.lwp ()); 2085 2086 ourstatus->kind = TARGET_WAITKIND_EXECD; 2087 ourstatus->value.execd_pathname 2088 = xstrdup (linux_proc_pid_to_exec_file (pid)); 2089 2090 /* The thread that execed must have been resumed, but, when a 2091 thread execs, it changes its tid to the tgid, and the old 2092 tgid thread might have not been resumed. */ 2093 lp->resumed = 1; 2094 return 0; 2095 } 2096 2097 if (event == PTRACE_EVENT_VFORK_DONE) 2098 { 2099 if (current_inferior ()->waiting_for_vfork_done) 2100 { 2101 if (debug_linux_nat) 2102 fprintf_unfiltered (gdb_stdlog, 2103 "LHEW: Got expected PTRACE_EVENT_" 2104 "VFORK_DONE from LWP %ld: stopping\n", 2105 lp->ptid.lwp ()); 2106 2107 ourstatus->kind = TARGET_WAITKIND_VFORK_DONE; 2108 return 0; 2109 } 2110 2111 if (debug_linux_nat) 2112 fprintf_unfiltered (gdb_stdlog, 2113 "LHEW: Got PTRACE_EVENT_VFORK_DONE " 2114 "from LWP %ld: ignoring\n", 2115 lp->ptid.lwp ()); 2116 return 1; 2117 } 2118 2119 internal_error (__FILE__, __LINE__, 2120 _("unknown ptrace event %d"), event); 2121 } 2122 2123 /* Suspend waiting for a signal. We're mostly interested in 2124 SIGCHLD/SIGINT. */ 2125 2126 static void 2127 wait_for_signal () 2128 { 2129 if (debug_linux_nat) 2130 fprintf_unfiltered (gdb_stdlog, "linux-nat: about to sigsuspend\n"); 2131 sigsuspend (&suspend_mask); 2132 2133 /* If the quit flag is set, it means that the user pressed Ctrl-C 2134 and we're debugging a process that is running on a separate 2135 terminal, so we must forward the Ctrl-C to the inferior. (If the 2136 inferior is sharing GDB's terminal, then the Ctrl-C reaches the 2137 inferior directly.) We must do this here because functions that 2138 need to block waiting for a signal loop forever until there's an 2139 event to report before returning back to the event loop. */ 2140 if (!target_terminal::is_ours ()) 2141 { 2142 if (check_quit_flag ()) 2143 target_pass_ctrlc (); 2144 } 2145 } 2146 2147 /* Wait for LP to stop. Returns the wait status, or 0 if the LWP has 2148 exited. */ 2149 2150 static int 2151 wait_lwp (struct lwp_info *lp) 2152 { 2153 pid_t pid; 2154 int status = 0; 2155 int thread_dead = 0; 2156 sigset_t prev_mask; 2157 2158 gdb_assert (!lp->stopped); 2159 gdb_assert (lp->status == 0); 2160 2161 /* Make sure SIGCHLD is blocked for sigsuspend avoiding a race below. */ 2162 block_child_signals (&prev_mask); 2163 2164 for (;;) 2165 { 2166 pid = my_waitpid (lp->ptid.lwp (), &status, __WALL | WNOHANG); 2167 if (pid == -1 && errno == ECHILD) 2168 { 2169 /* The thread has previously exited. We need to delete it 2170 now because if this was a non-leader thread execing, we 2171 won't get an exit event. See comments on exec events at 2172 the top of the file. */ 2173 thread_dead = 1; 2174 if (debug_linux_nat) 2175 fprintf_unfiltered (gdb_stdlog, "WL: %s vanished.\n", 2176 target_pid_to_str (lp->ptid)); 2177 } 2178 if (pid != 0) 2179 break; 2180 2181 /* Bugs 10970, 12702. 2182 Thread group leader may have exited in which case we'll lock up in 2183 waitpid if there are other threads, even if they are all zombies too. 2184 Basically, we're not supposed to use waitpid this way. 2185 tkill(pid,0) cannot be used here as it gets ESRCH for both 2186 for zombie and running processes. 2187 2188 As a workaround, check if we're waiting for the thread group leader and 2189 if it's a zombie, and avoid calling waitpid if it is. 2190 2191 This is racy, what if the tgl becomes a zombie right after we check? 2192 Therefore always use WNOHANG with sigsuspend - it is equivalent to 2193 waiting waitpid but linux_proc_pid_is_zombie is safe this way. */ 2194 2195 if (lp->ptid.pid () == lp->ptid.lwp () 2196 && linux_proc_pid_is_zombie (lp->ptid.lwp ())) 2197 { 2198 thread_dead = 1; 2199 if (debug_linux_nat) 2200 fprintf_unfiltered (gdb_stdlog, 2201 "WL: Thread group leader %s vanished.\n", 2202 target_pid_to_str (lp->ptid)); 2203 break; 2204 } 2205 2206 /* Wait for next SIGCHLD and try again. This may let SIGCHLD handlers 2207 get invoked despite our caller had them intentionally blocked by 2208 block_child_signals. This is sensitive only to the loop of 2209 linux_nat_wait_1 and there if we get called my_waitpid gets called 2210 again before it gets to sigsuspend so we can safely let the handlers 2211 get executed here. */ 2212 wait_for_signal (); 2213 } 2214 2215 restore_child_signals_mask (&prev_mask); 2216 2217 if (!thread_dead) 2218 { 2219 gdb_assert (pid == lp->ptid.lwp ()); 2220 2221 if (debug_linux_nat) 2222 { 2223 fprintf_unfiltered (gdb_stdlog, 2224 "WL: waitpid %s received %s\n", 2225 target_pid_to_str (lp->ptid), 2226 status_to_str (status)); 2227 } 2228 2229 /* Check if the thread has exited. */ 2230 if (WIFEXITED (status) || WIFSIGNALED (status)) 2231 { 2232 if (report_thread_events 2233 || lp->ptid.pid () == lp->ptid.lwp ()) 2234 { 2235 if (debug_linux_nat) 2236 fprintf_unfiltered (gdb_stdlog, "WL: LWP %d exited.\n", 2237 lp->ptid.pid ()); 2238 2239 /* If this is the leader exiting, it means the whole 2240 process is gone. Store the status to report to the 2241 core. Store it in lp->waitstatus, because lp->status 2242 would be ambiguous (W_EXITCODE(0,0) == 0). */ 2243 store_waitstatus (&lp->waitstatus, status); 2244 return 0; 2245 } 2246 2247 thread_dead = 1; 2248 if (debug_linux_nat) 2249 fprintf_unfiltered (gdb_stdlog, "WL: %s exited.\n", 2250 target_pid_to_str (lp->ptid)); 2251 } 2252 } 2253 2254 if (thread_dead) 2255 { 2256 exit_lwp (lp); 2257 return 0; 2258 } 2259 2260 gdb_assert (WIFSTOPPED (status)); 2261 lp->stopped = 1; 2262 2263 if (lp->must_set_ptrace_flags) 2264 { 2265 struct inferior *inf = find_inferior_pid (lp->ptid.pid ()); 2266 int options = linux_nat_ptrace_options (inf->attach_flag); 2267 2268 linux_enable_event_reporting (lp->ptid.lwp (), options); 2269 lp->must_set_ptrace_flags = 0; 2270 } 2271 2272 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2273 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2274 { 2275 /* No longer need the sysgood bit. The ptrace event ends up 2276 recorded in lp->waitstatus if we care for it. We can carry 2277 on handling the event like a regular SIGTRAP from here 2278 on. */ 2279 status = W_STOPCODE (SIGTRAP); 2280 if (linux_handle_syscall_trap (lp, 1)) 2281 return wait_lwp (lp); 2282 } 2283 else 2284 { 2285 /* Almost all other ptrace-stops are known to be outside of system 2286 calls, with further exceptions in linux_handle_extended_wait. */ 2287 lp->syscall_state = TARGET_WAITKIND_IGNORE; 2288 } 2289 2290 /* Handle GNU/Linux's extended waitstatus for trace events. */ 2291 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 2292 && linux_is_extended_waitstatus (status)) 2293 { 2294 if (debug_linux_nat) 2295 fprintf_unfiltered (gdb_stdlog, 2296 "WL: Handling extended status 0x%06x\n", 2297 status); 2298 linux_handle_extended_wait (lp, status); 2299 return 0; 2300 } 2301 2302 return status; 2303 } 2304 2305 /* Send a SIGSTOP to LP. */ 2306 2307 static int 2308 stop_callback (struct lwp_info *lp, void *data) 2309 { 2310 if (!lp->stopped && !lp->signalled) 2311 { 2312 int ret; 2313 2314 if (debug_linux_nat) 2315 { 2316 fprintf_unfiltered (gdb_stdlog, 2317 "SC: kill %s **<SIGSTOP>**\n", 2318 target_pid_to_str (lp->ptid)); 2319 } 2320 errno = 0; 2321 ret = kill_lwp (lp->ptid.lwp (), SIGSTOP); 2322 if (debug_linux_nat) 2323 { 2324 fprintf_unfiltered (gdb_stdlog, 2325 "SC: lwp kill %d %s\n", 2326 ret, 2327 errno ? safe_strerror (errno) : "ERRNO-OK"); 2328 } 2329 2330 lp->signalled = 1; 2331 gdb_assert (lp->status == 0); 2332 } 2333 2334 return 0; 2335 } 2336 2337 /* Request a stop on LWP. */ 2338 2339 void 2340 linux_stop_lwp (struct lwp_info *lwp) 2341 { 2342 stop_callback (lwp, NULL); 2343 } 2344 2345 /* See linux-nat.h */ 2346 2347 void 2348 linux_stop_and_wait_all_lwps (void) 2349 { 2350 /* Stop all LWP's ... */ 2351 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 2352 2353 /* ... and wait until all of them have reported back that 2354 they're no longer running. */ 2355 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 2356 } 2357 2358 /* See linux-nat.h */ 2359 2360 void 2361 linux_unstop_all_lwps (void) 2362 { 2363 iterate_over_lwps (minus_one_ptid, 2364 resume_stopped_resumed_lwps, &minus_one_ptid); 2365 } 2366 2367 /* Return non-zero if LWP PID has a pending SIGINT. */ 2368 2369 static int 2370 linux_nat_has_pending_sigint (int pid) 2371 { 2372 sigset_t pending, blocked, ignored; 2373 2374 linux_proc_pending_signals (pid, &pending, &blocked, &ignored); 2375 2376 if (sigismember (&pending, SIGINT) 2377 && !sigismember (&ignored, SIGINT)) 2378 return 1; 2379 2380 return 0; 2381 } 2382 2383 /* Set a flag in LP indicating that we should ignore its next SIGINT. */ 2384 2385 static int 2386 set_ignore_sigint (struct lwp_info *lp, void *data) 2387 { 2388 /* If a thread has a pending SIGINT, consume it; otherwise, set a 2389 flag to consume the next one. */ 2390 if (lp->stopped && lp->status != 0 && WIFSTOPPED (lp->status) 2391 && WSTOPSIG (lp->status) == SIGINT) 2392 lp->status = 0; 2393 else 2394 lp->ignore_sigint = 1; 2395 2396 return 0; 2397 } 2398 2399 /* If LP does not have a SIGINT pending, then clear the ignore_sigint flag. 2400 This function is called after we know the LWP has stopped; if the LWP 2401 stopped before the expected SIGINT was delivered, then it will never have 2402 arrived. Also, if the signal was delivered to a shared queue and consumed 2403 by a different thread, it will never be delivered to this LWP. */ 2404 2405 static void 2406 maybe_clear_ignore_sigint (struct lwp_info *lp) 2407 { 2408 if (!lp->ignore_sigint) 2409 return; 2410 2411 if (!linux_nat_has_pending_sigint (lp->ptid.lwp ())) 2412 { 2413 if (debug_linux_nat) 2414 fprintf_unfiltered (gdb_stdlog, 2415 "MCIS: Clearing bogus flag for %s\n", 2416 target_pid_to_str (lp->ptid)); 2417 lp->ignore_sigint = 0; 2418 } 2419 } 2420 2421 /* Fetch the possible triggered data watchpoint info and store it in 2422 LP. 2423 2424 On some archs, like x86, that use debug registers to set 2425 watchpoints, it's possible that the way to know which watched 2426 address trapped, is to check the register that is used to select 2427 which address to watch. Problem is, between setting the watchpoint 2428 and reading back which data address trapped, the user may change 2429 the set of watchpoints, and, as a consequence, GDB changes the 2430 debug registers in the inferior. To avoid reading back a stale 2431 stopped-data-address when that happens, we cache in LP the fact 2432 that a watchpoint trapped, and the corresponding data address, as 2433 soon as we see LP stop with a SIGTRAP. If GDB changes the debug 2434 registers meanwhile, we have the cached data we can rely on. */ 2435 2436 static int 2437 check_stopped_by_watchpoint (struct lwp_info *lp) 2438 { 2439 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid); 2440 inferior_ptid = lp->ptid; 2441 2442 if (linux_target->low_stopped_by_watchpoint ()) 2443 { 2444 lp->stop_reason = TARGET_STOPPED_BY_WATCHPOINT; 2445 lp->stopped_data_address_p 2446 = linux_target->low_stopped_data_address (&lp->stopped_data_address); 2447 } 2448 2449 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2450 } 2451 2452 /* Returns true if the LWP had stopped for a watchpoint. */ 2453 2454 bool 2455 linux_nat_target::stopped_by_watchpoint () 2456 { 2457 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2458 2459 gdb_assert (lp != NULL); 2460 2461 return lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT; 2462 } 2463 2464 bool 2465 linux_nat_target::stopped_data_address (CORE_ADDR *addr_p) 2466 { 2467 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2468 2469 gdb_assert (lp != NULL); 2470 2471 *addr_p = lp->stopped_data_address; 2472 2473 return lp->stopped_data_address_p; 2474 } 2475 2476 /* Commonly any breakpoint / watchpoint generate only SIGTRAP. */ 2477 2478 bool 2479 linux_nat_target::low_status_is_event (int status) 2480 { 2481 return WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP; 2482 } 2483 2484 /* Wait until LP is stopped. */ 2485 2486 static int 2487 stop_wait_callback (struct lwp_info *lp, void *data) 2488 { 2489 struct inferior *inf = find_inferior_ptid (lp->ptid); 2490 2491 /* If this is a vfork parent, bail out, it is not going to report 2492 any SIGSTOP until the vfork is done with. */ 2493 if (inf->vfork_child != NULL) 2494 return 0; 2495 2496 if (!lp->stopped) 2497 { 2498 int status; 2499 2500 status = wait_lwp (lp); 2501 if (status == 0) 2502 return 0; 2503 2504 if (lp->ignore_sigint && WIFSTOPPED (status) 2505 && WSTOPSIG (status) == SIGINT) 2506 { 2507 lp->ignore_sigint = 0; 2508 2509 errno = 0; 2510 ptrace (PTRACE_CONT, lp->ptid.lwp (), 0, 0); 2511 lp->stopped = 0; 2512 if (debug_linux_nat) 2513 fprintf_unfiltered (gdb_stdlog, 2514 "PTRACE_CONT %s, 0, 0 (%s) " 2515 "(discarding SIGINT)\n", 2516 target_pid_to_str (lp->ptid), 2517 errno ? safe_strerror (errno) : "OK"); 2518 2519 return stop_wait_callback (lp, NULL); 2520 } 2521 2522 maybe_clear_ignore_sigint (lp); 2523 2524 if (WSTOPSIG (status) != SIGSTOP) 2525 { 2526 /* The thread was stopped with a signal other than SIGSTOP. */ 2527 2528 if (debug_linux_nat) 2529 fprintf_unfiltered (gdb_stdlog, 2530 "SWC: Pending event %s in %s\n", 2531 status_to_str ((int) status), 2532 target_pid_to_str (lp->ptid)); 2533 2534 /* Save the sigtrap event. */ 2535 lp->status = status; 2536 gdb_assert (lp->signalled); 2537 save_stop_reason (lp); 2538 } 2539 else 2540 { 2541 /* We caught the SIGSTOP that we intended to catch. */ 2542 2543 if (debug_linux_nat) 2544 fprintf_unfiltered (gdb_stdlog, 2545 "SWC: Expected SIGSTOP caught for %s.\n", 2546 target_pid_to_str (lp->ptid)); 2547 2548 lp->signalled = 0; 2549 2550 /* If we are waiting for this stop so we can report the thread 2551 stopped then we need to record this status. Otherwise, we can 2552 now discard this stop event. */ 2553 if (lp->last_resume_kind == resume_stop) 2554 { 2555 lp->status = status; 2556 save_stop_reason (lp); 2557 } 2558 } 2559 } 2560 2561 return 0; 2562 } 2563 2564 /* Return non-zero if LP has a wait status pending. Discard the 2565 pending event and resume the LWP if the event that originally 2566 caused the stop became uninteresting. */ 2567 2568 static int 2569 status_callback (struct lwp_info *lp, void *data) 2570 { 2571 /* Only report a pending wait status if we pretend that this has 2572 indeed been resumed. */ 2573 if (!lp->resumed) 2574 return 0; 2575 2576 if (!lwp_status_pending_p (lp)) 2577 return 0; 2578 2579 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 2580 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2581 { 2582 struct regcache *regcache = get_thread_regcache (lp->ptid); 2583 CORE_ADDR pc; 2584 int discard = 0; 2585 2586 pc = regcache_read_pc (regcache); 2587 2588 if (pc != lp->stop_pc) 2589 { 2590 if (debug_linux_nat) 2591 fprintf_unfiltered (gdb_stdlog, 2592 "SC: PC of %s changed. was=%s, now=%s\n", 2593 target_pid_to_str (lp->ptid), 2594 paddress (target_gdbarch (), lp->stop_pc), 2595 paddress (target_gdbarch (), pc)); 2596 discard = 1; 2597 } 2598 2599 #if !USE_SIGTRAP_SIGINFO 2600 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc)) 2601 { 2602 if (debug_linux_nat) 2603 fprintf_unfiltered (gdb_stdlog, 2604 "SC: previous breakpoint of %s, at %s gone\n", 2605 target_pid_to_str (lp->ptid), 2606 paddress (target_gdbarch (), lp->stop_pc)); 2607 2608 discard = 1; 2609 } 2610 #endif 2611 2612 if (discard) 2613 { 2614 if (debug_linux_nat) 2615 fprintf_unfiltered (gdb_stdlog, 2616 "SC: pending event of %s cancelled.\n", 2617 target_pid_to_str (lp->ptid)); 2618 2619 lp->status = 0; 2620 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 2621 return 0; 2622 } 2623 } 2624 2625 return 1; 2626 } 2627 2628 /* Count the LWP's that have had events. */ 2629 2630 static int 2631 count_events_callback (struct lwp_info *lp, void *data) 2632 { 2633 int *count = (int *) data; 2634 2635 gdb_assert (count != NULL); 2636 2637 /* Select only resumed LWPs that have an event pending. */ 2638 if (lp->resumed && lwp_status_pending_p (lp)) 2639 (*count)++; 2640 2641 return 0; 2642 } 2643 2644 /* Select the LWP (if any) that is currently being single-stepped. */ 2645 2646 static int 2647 select_singlestep_lwp_callback (struct lwp_info *lp, void *data) 2648 { 2649 if (lp->last_resume_kind == resume_step 2650 && lp->status != 0) 2651 return 1; 2652 else 2653 return 0; 2654 } 2655 2656 /* Returns true if LP has a status pending. */ 2657 2658 static int 2659 lwp_status_pending_p (struct lwp_info *lp) 2660 { 2661 /* We check for lp->waitstatus in addition to lp->status, because we 2662 can have pending process exits recorded in lp->status and 2663 W_EXITCODE(0,0) happens to be 0. */ 2664 return lp->status != 0 || lp->waitstatus.kind != TARGET_WAITKIND_IGNORE; 2665 } 2666 2667 /* Select the Nth LWP that has had an event. */ 2668 2669 static int 2670 select_event_lwp_callback (struct lwp_info *lp, void *data) 2671 { 2672 int *selector = (int *) data; 2673 2674 gdb_assert (selector != NULL); 2675 2676 /* Select only resumed LWPs that have an event pending. */ 2677 if (lp->resumed && lwp_status_pending_p (lp)) 2678 if ((*selector)-- == 0) 2679 return 1; 2680 2681 return 0; 2682 } 2683 2684 /* Called when the LWP stopped for a signal/trap. If it stopped for a 2685 trap check what caused it (breakpoint, watchpoint, trace, etc.), 2686 and save the result in the LWP's stop_reason field. If it stopped 2687 for a breakpoint, decrement the PC if necessary on the lwp's 2688 architecture. */ 2689 2690 static void 2691 save_stop_reason (struct lwp_info *lp) 2692 { 2693 struct regcache *regcache; 2694 struct gdbarch *gdbarch; 2695 CORE_ADDR pc; 2696 CORE_ADDR sw_bp_pc; 2697 #if USE_SIGTRAP_SIGINFO 2698 siginfo_t siginfo; 2699 #endif 2700 2701 gdb_assert (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON); 2702 gdb_assert (lp->status != 0); 2703 2704 if (!linux_target->low_status_is_event (lp->status)) 2705 return; 2706 2707 regcache = get_thread_regcache (lp->ptid); 2708 gdbarch = regcache->arch (); 2709 2710 pc = regcache_read_pc (regcache); 2711 sw_bp_pc = pc - gdbarch_decr_pc_after_break (gdbarch); 2712 2713 #if USE_SIGTRAP_SIGINFO 2714 if (linux_nat_get_siginfo (lp->ptid, &siginfo)) 2715 { 2716 if (siginfo.si_signo == SIGTRAP) 2717 { 2718 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code) 2719 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2720 { 2721 /* The si_code is ambiguous on this arch -- check debug 2722 registers. */ 2723 if (!check_stopped_by_watchpoint (lp)) 2724 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2725 } 2726 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)) 2727 { 2728 /* If we determine the LWP stopped for a SW breakpoint, 2729 trust it. Particularly don't check watchpoint 2730 registers, because at least on s390, we'd find 2731 stopped-by-watchpoint as long as there's a watchpoint 2732 set. */ 2733 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2734 } 2735 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code)) 2736 { 2737 /* This can indicate either a hardware breakpoint or 2738 hardware watchpoint. Check debug registers. */ 2739 if (!check_stopped_by_watchpoint (lp)) 2740 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2741 } 2742 else if (siginfo.si_code == TRAP_TRACE) 2743 { 2744 if (debug_linux_nat) 2745 fprintf_unfiltered (gdb_stdlog, 2746 "CSBB: %s stopped by trace\n", 2747 target_pid_to_str (lp->ptid)); 2748 2749 /* We may have single stepped an instruction that 2750 triggered a watchpoint. In that case, on some 2751 architectures (such as x86), instead of TRAP_HWBKPT, 2752 si_code indicates TRAP_TRACE, and we need to check 2753 the debug registers separately. */ 2754 check_stopped_by_watchpoint (lp); 2755 } 2756 } 2757 } 2758 #else 2759 if ((!lp->step || lp->stop_pc == sw_bp_pc) 2760 && software_breakpoint_inserted_here_p (regcache->aspace (), 2761 sw_bp_pc)) 2762 { 2763 /* The LWP was either continued, or stepped a software 2764 breakpoint instruction. */ 2765 lp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT; 2766 } 2767 2768 if (hardware_breakpoint_inserted_here_p (regcache->aspace (), pc)) 2769 lp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT; 2770 2771 if (lp->stop_reason == TARGET_STOPPED_BY_NO_REASON) 2772 check_stopped_by_watchpoint (lp); 2773 #endif 2774 2775 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT) 2776 { 2777 if (debug_linux_nat) 2778 fprintf_unfiltered (gdb_stdlog, 2779 "CSBB: %s stopped by software breakpoint\n", 2780 target_pid_to_str (lp->ptid)); 2781 2782 /* Back up the PC if necessary. */ 2783 if (pc != sw_bp_pc) 2784 regcache_write_pc (regcache, sw_bp_pc); 2785 2786 /* Update this so we record the correct stop PC below. */ 2787 pc = sw_bp_pc; 2788 } 2789 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT) 2790 { 2791 if (debug_linux_nat) 2792 fprintf_unfiltered (gdb_stdlog, 2793 "CSBB: %s stopped by hardware breakpoint\n", 2794 target_pid_to_str (lp->ptid)); 2795 } 2796 else if (lp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT) 2797 { 2798 if (debug_linux_nat) 2799 fprintf_unfiltered (gdb_stdlog, 2800 "CSBB: %s stopped by hardware watchpoint\n", 2801 target_pid_to_str (lp->ptid)); 2802 } 2803 2804 lp->stop_pc = pc; 2805 } 2806 2807 2808 /* Returns true if the LWP had stopped for a software breakpoint. */ 2809 2810 bool 2811 linux_nat_target::stopped_by_sw_breakpoint () 2812 { 2813 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2814 2815 gdb_assert (lp != NULL); 2816 2817 return lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT; 2818 } 2819 2820 /* Implement the supports_stopped_by_sw_breakpoint method. */ 2821 2822 bool 2823 linux_nat_target::supports_stopped_by_sw_breakpoint () 2824 { 2825 return USE_SIGTRAP_SIGINFO; 2826 } 2827 2828 /* Returns true if the LWP had stopped for a hardware 2829 breakpoint/watchpoint. */ 2830 2831 bool 2832 linux_nat_target::stopped_by_hw_breakpoint () 2833 { 2834 struct lwp_info *lp = find_lwp_pid (inferior_ptid); 2835 2836 gdb_assert (lp != NULL); 2837 2838 return lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT; 2839 } 2840 2841 /* Implement the supports_stopped_by_hw_breakpoint method. */ 2842 2843 bool 2844 linux_nat_target::supports_stopped_by_hw_breakpoint () 2845 { 2846 return USE_SIGTRAP_SIGINFO; 2847 } 2848 2849 /* Select one LWP out of those that have events pending. */ 2850 2851 static void 2852 select_event_lwp (ptid_t filter, struct lwp_info **orig_lp, int *status) 2853 { 2854 int num_events = 0; 2855 int random_selector; 2856 struct lwp_info *event_lp = NULL; 2857 2858 /* Record the wait status for the original LWP. */ 2859 (*orig_lp)->status = *status; 2860 2861 /* In all-stop, give preference to the LWP that is being 2862 single-stepped. There will be at most one, and it will be the 2863 LWP that the core is most interested in. If we didn't do this, 2864 then we'd have to handle pending step SIGTRAPs somehow in case 2865 the core later continues the previously-stepped thread, as 2866 otherwise we'd report the pending SIGTRAP then, and the core, not 2867 having stepped the thread, wouldn't understand what the trap was 2868 for, and therefore would report it to the user as a random 2869 signal. */ 2870 if (!target_is_non_stop_p ()) 2871 { 2872 event_lp = iterate_over_lwps (filter, 2873 select_singlestep_lwp_callback, NULL); 2874 if (event_lp != NULL) 2875 { 2876 if (debug_linux_nat) 2877 fprintf_unfiltered (gdb_stdlog, 2878 "SEL: Select single-step %s\n", 2879 target_pid_to_str (event_lp->ptid)); 2880 } 2881 } 2882 2883 if (event_lp == NULL) 2884 { 2885 /* Pick one at random, out of those which have had events. */ 2886 2887 /* First see how many events we have. */ 2888 iterate_over_lwps (filter, count_events_callback, &num_events); 2889 gdb_assert (num_events > 0); 2890 2891 /* Now randomly pick a LWP out of those that have had 2892 events. */ 2893 random_selector = (int) 2894 ((num_events * (double) rand ()) / (RAND_MAX + 1.0)); 2895 2896 if (debug_linux_nat && num_events > 1) 2897 fprintf_unfiltered (gdb_stdlog, 2898 "SEL: Found %d events, selecting #%d\n", 2899 num_events, random_selector); 2900 2901 event_lp = iterate_over_lwps (filter, 2902 select_event_lwp_callback, 2903 &random_selector); 2904 } 2905 2906 if (event_lp != NULL) 2907 { 2908 /* Switch the event LWP. */ 2909 *orig_lp = event_lp; 2910 *status = event_lp->status; 2911 } 2912 2913 /* Flush the wait status for the event LWP. */ 2914 (*orig_lp)->status = 0; 2915 } 2916 2917 /* Return non-zero if LP has been resumed. */ 2918 2919 static int 2920 resumed_callback (struct lwp_info *lp, void *data) 2921 { 2922 return lp->resumed; 2923 } 2924 2925 /* Check if we should go on and pass this event to common code. 2926 Return the affected lwp if we are, or NULL otherwise. */ 2927 2928 static struct lwp_info * 2929 linux_nat_filter_event (int lwpid, int status) 2930 { 2931 struct lwp_info *lp; 2932 int event = linux_ptrace_get_extended_event (status); 2933 2934 lp = find_lwp_pid (ptid_t (lwpid)); 2935 2936 /* Check for stop events reported by a process we didn't already 2937 know about - anything not already in our LWP list. 2938 2939 If we're expecting to receive stopped processes after 2940 fork, vfork, and clone events, then we'll just add the 2941 new one to our list and go back to waiting for the event 2942 to be reported - the stopped process might be returned 2943 from waitpid before or after the event is. 2944 2945 But note the case of a non-leader thread exec'ing after the 2946 leader having exited, and gone from our lists. The non-leader 2947 thread changes its tid to the tgid. */ 2948 2949 if (WIFSTOPPED (status) && lp == NULL 2950 && (WSTOPSIG (status) == SIGTRAP && event == PTRACE_EVENT_EXEC)) 2951 { 2952 /* A multi-thread exec after we had seen the leader exiting. */ 2953 if (debug_linux_nat) 2954 fprintf_unfiltered (gdb_stdlog, 2955 "LLW: Re-adding thread group leader LWP %d.\n", 2956 lwpid); 2957 2958 lp = add_lwp (ptid_t (lwpid, lwpid, 0)); 2959 lp->stopped = 1; 2960 lp->resumed = 1; 2961 add_thread (lp->ptid); 2962 } 2963 2964 if (WIFSTOPPED (status) && !lp) 2965 { 2966 if (debug_linux_nat) 2967 fprintf_unfiltered (gdb_stdlog, 2968 "LHEW: saving LWP %ld status %s in stopped_pids list\n", 2969 (long) lwpid, status_to_str (status)); 2970 add_to_pid_list (&stopped_pids, lwpid, status); 2971 return NULL; 2972 } 2973 2974 /* Make sure we don't report an event for the exit of an LWP not in 2975 our list, i.e. not part of the current process. This can happen 2976 if we detach from a program we originally forked and then it 2977 exits. */ 2978 if (!WIFSTOPPED (status) && !lp) 2979 return NULL; 2980 2981 /* This LWP is stopped now. (And if dead, this prevents it from 2982 ever being continued.) */ 2983 lp->stopped = 1; 2984 2985 if (WIFSTOPPED (status) && lp->must_set_ptrace_flags) 2986 { 2987 struct inferior *inf = find_inferior_pid (lp->ptid.pid ()); 2988 int options = linux_nat_ptrace_options (inf->attach_flag); 2989 2990 linux_enable_event_reporting (lp->ptid.lwp (), options); 2991 lp->must_set_ptrace_flags = 0; 2992 } 2993 2994 /* Handle GNU/Linux's syscall SIGTRAPs. */ 2995 if (WIFSTOPPED (status) && WSTOPSIG (status) == SYSCALL_SIGTRAP) 2996 { 2997 /* No longer need the sysgood bit. The ptrace event ends up 2998 recorded in lp->waitstatus if we care for it. We can carry 2999 on handling the event like a regular SIGTRAP from here 3000 on. */ 3001 status = W_STOPCODE (SIGTRAP); 3002 if (linux_handle_syscall_trap (lp, 0)) 3003 return NULL; 3004 } 3005 else 3006 { 3007 /* Almost all other ptrace-stops are known to be outside of system 3008 calls, with further exceptions in linux_handle_extended_wait. */ 3009 lp->syscall_state = TARGET_WAITKIND_IGNORE; 3010 } 3011 3012 /* Handle GNU/Linux's extended waitstatus for trace events. */ 3013 if (WIFSTOPPED (status) && WSTOPSIG (status) == SIGTRAP 3014 && linux_is_extended_waitstatus (status)) 3015 { 3016 if (debug_linux_nat) 3017 fprintf_unfiltered (gdb_stdlog, 3018 "LLW: Handling extended status 0x%06x\n", 3019 status); 3020 if (linux_handle_extended_wait (lp, status)) 3021 return NULL; 3022 } 3023 3024 /* Check if the thread has exited. */ 3025 if (WIFEXITED (status) || WIFSIGNALED (status)) 3026 { 3027 if (!report_thread_events 3028 && num_lwps (lp->ptid.pid ()) > 1) 3029 { 3030 if (debug_linux_nat) 3031 fprintf_unfiltered (gdb_stdlog, 3032 "LLW: %s exited.\n", 3033 target_pid_to_str (lp->ptid)); 3034 3035 /* If there is at least one more LWP, then the exit signal 3036 was not the end of the debugged application and should be 3037 ignored. */ 3038 exit_lwp (lp); 3039 return NULL; 3040 } 3041 3042 /* Note that even if the leader was ptrace-stopped, it can still 3043 exit, if e.g., some other thread brings down the whole 3044 process (calls `exit'). So don't assert that the lwp is 3045 resumed. */ 3046 if (debug_linux_nat) 3047 fprintf_unfiltered (gdb_stdlog, 3048 "LWP %ld exited (resumed=%d)\n", 3049 lp->ptid.lwp (), lp->resumed); 3050 3051 /* Dead LWP's aren't expected to reported a pending sigstop. */ 3052 lp->signalled = 0; 3053 3054 /* Store the pending event in the waitstatus, because 3055 W_EXITCODE(0,0) == 0. */ 3056 store_waitstatus (&lp->waitstatus, status); 3057 return lp; 3058 } 3059 3060 /* Make sure we don't report a SIGSTOP that we sent ourselves in 3061 an attempt to stop an LWP. */ 3062 if (lp->signalled 3063 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGSTOP) 3064 { 3065 lp->signalled = 0; 3066 3067 if (lp->last_resume_kind == resume_stop) 3068 { 3069 if (debug_linux_nat) 3070 fprintf_unfiltered (gdb_stdlog, 3071 "LLW: resume_stop SIGSTOP caught for %s.\n", 3072 target_pid_to_str (lp->ptid)); 3073 } 3074 else 3075 { 3076 /* This is a delayed SIGSTOP. Filter out the event. */ 3077 3078 if (debug_linux_nat) 3079 fprintf_unfiltered (gdb_stdlog, 3080 "LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n", 3081 lp->step ? 3082 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3083 target_pid_to_str (lp->ptid)); 3084 3085 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3086 gdb_assert (lp->resumed); 3087 return NULL; 3088 } 3089 } 3090 3091 /* Make sure we don't report a SIGINT that we have already displayed 3092 for another thread. */ 3093 if (lp->ignore_sigint 3094 && WIFSTOPPED (status) && WSTOPSIG (status) == SIGINT) 3095 { 3096 if (debug_linux_nat) 3097 fprintf_unfiltered (gdb_stdlog, 3098 "LLW: Delayed SIGINT caught for %s.\n", 3099 target_pid_to_str (lp->ptid)); 3100 3101 /* This is a delayed SIGINT. */ 3102 lp->ignore_sigint = 0; 3103 3104 linux_resume_one_lwp (lp, lp->step, GDB_SIGNAL_0); 3105 if (debug_linux_nat) 3106 fprintf_unfiltered (gdb_stdlog, 3107 "LLW: %s %s, 0, 0 (discard SIGINT)\n", 3108 lp->step ? 3109 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3110 target_pid_to_str (lp->ptid)); 3111 gdb_assert (lp->resumed); 3112 3113 /* Discard the event. */ 3114 return NULL; 3115 } 3116 3117 /* Don't report signals that GDB isn't interested in, such as 3118 signals that are neither printed nor stopped upon. Stopping all 3119 threads can be a bit time-consuming so if we want decent 3120 performance with heavily multi-threaded programs, especially when 3121 they're using a high frequency timer, we'd better avoid it if we 3122 can. */ 3123 if (WIFSTOPPED (status)) 3124 { 3125 enum gdb_signal signo = gdb_signal_from_host (WSTOPSIG (status)); 3126 3127 if (!target_is_non_stop_p ()) 3128 { 3129 /* Only do the below in all-stop, as we currently use SIGSTOP 3130 to implement target_stop (see linux_nat_stop) in 3131 non-stop. */ 3132 if (signo == GDB_SIGNAL_INT && signal_pass_state (signo) == 0) 3133 { 3134 /* If ^C/BREAK is typed at the tty/console, SIGINT gets 3135 forwarded to the entire process group, that is, all LWPs 3136 will receive it - unless they're using CLONE_THREAD to 3137 share signals. Since we only want to report it once, we 3138 mark it as ignored for all LWPs except this one. */ 3139 iterate_over_lwps (ptid_t (lp->ptid.pid ()), 3140 set_ignore_sigint, NULL); 3141 lp->ignore_sigint = 0; 3142 } 3143 else 3144 maybe_clear_ignore_sigint (lp); 3145 } 3146 3147 /* When using hardware single-step, we need to report every signal. 3148 Otherwise, signals in pass_mask may be short-circuited 3149 except signals that might be caused by a breakpoint. */ 3150 if (!lp->step 3151 && WSTOPSIG (status) && sigismember (&pass_mask, WSTOPSIG (status)) 3152 && !linux_wstatus_maybe_breakpoint (status)) 3153 { 3154 linux_resume_one_lwp (lp, lp->step, signo); 3155 if (debug_linux_nat) 3156 fprintf_unfiltered (gdb_stdlog, 3157 "LLW: %s %s, %s (preempt 'handle')\n", 3158 lp->step ? 3159 "PTRACE_SINGLESTEP" : "PTRACE_CONT", 3160 target_pid_to_str (lp->ptid), 3161 (signo != GDB_SIGNAL_0 3162 ? strsignal (gdb_signal_to_host (signo)) 3163 : "0")); 3164 return NULL; 3165 } 3166 } 3167 3168 /* An interesting event. */ 3169 gdb_assert (lp); 3170 lp->status = status; 3171 save_stop_reason (lp); 3172 return lp; 3173 } 3174 3175 /* Detect zombie thread group leaders, and "exit" them. We can't reap 3176 their exits until all other threads in the group have exited. */ 3177 3178 static void 3179 check_zombie_leaders (void) 3180 { 3181 for (inferior *inf : all_inferiors ()) 3182 { 3183 struct lwp_info *leader_lp; 3184 3185 if (inf->pid == 0) 3186 continue; 3187 3188 leader_lp = find_lwp_pid (ptid_t (inf->pid)); 3189 if (leader_lp != NULL 3190 /* Check if there are other threads in the group, as we may 3191 have raced with the inferior simply exiting. */ 3192 && num_lwps (inf->pid) > 1 3193 && linux_proc_pid_is_zombie (inf->pid)) 3194 { 3195 if (debug_linux_nat) 3196 fprintf_unfiltered (gdb_stdlog, 3197 "CZL: Thread group leader %d zombie " 3198 "(it exited, or another thread execd).\n", 3199 inf->pid); 3200 3201 /* A leader zombie can mean one of two things: 3202 3203 - It exited, and there's an exit status pending 3204 available, or only the leader exited (not the whole 3205 program). In the latter case, we can't waitpid the 3206 leader's exit status until all other threads are gone. 3207 3208 - There are 3 or more threads in the group, and a thread 3209 other than the leader exec'd. See comments on exec 3210 events at the top of the file. We could try 3211 distinguishing the exit and exec cases, by waiting once 3212 more, and seeing if something comes out, but it doesn't 3213 sound useful. The previous leader _does_ go away, and 3214 we'll re-add the new one once we see the exec event 3215 (which is just the same as what would happen if the 3216 previous leader did exit voluntarily before some other 3217 thread execs). */ 3218 3219 if (debug_linux_nat) 3220 fprintf_unfiltered (gdb_stdlog, 3221 "CZL: Thread group leader %d vanished.\n", 3222 inf->pid); 3223 exit_lwp (leader_lp); 3224 } 3225 } 3226 } 3227 3228 /* Convenience function that is called when the kernel reports an exit 3229 event. This decides whether to report the event to GDB as a 3230 process exit event, a thread exit event, or to suppress the 3231 event. */ 3232 3233 static ptid_t 3234 filter_exit_event (struct lwp_info *event_child, 3235 struct target_waitstatus *ourstatus) 3236 { 3237 ptid_t ptid = event_child->ptid; 3238 3239 if (num_lwps (ptid.pid ()) > 1) 3240 { 3241 if (report_thread_events) 3242 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED; 3243 else 3244 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3245 3246 exit_lwp (event_child); 3247 } 3248 3249 return ptid; 3250 } 3251 3252 static ptid_t 3253 linux_nat_wait_1 (ptid_t ptid, struct target_waitstatus *ourstatus, 3254 int target_options) 3255 { 3256 sigset_t prev_mask; 3257 enum resume_kind last_resume_kind; 3258 struct lwp_info *lp; 3259 int status; 3260 3261 if (debug_linux_nat) 3262 fprintf_unfiltered (gdb_stdlog, "LLW: enter\n"); 3263 3264 /* The first time we get here after starting a new inferior, we may 3265 not have added it to the LWP list yet - this is the earliest 3266 moment at which we know its PID. */ 3267 if (inferior_ptid.is_pid ()) 3268 { 3269 /* Upgrade the main thread's ptid. */ 3270 thread_change_ptid (inferior_ptid, 3271 ptid_t (inferior_ptid.pid (), 3272 inferior_ptid.pid (), 0)); 3273 3274 lp = add_initial_lwp (inferior_ptid); 3275 lp->resumed = 1; 3276 } 3277 3278 /* Make sure SIGCHLD is blocked until the sigsuspend below. */ 3279 block_child_signals (&prev_mask); 3280 3281 /* First check if there is a LWP with a wait status pending. */ 3282 lp = iterate_over_lwps (ptid, status_callback, NULL); 3283 if (lp != NULL) 3284 { 3285 if (debug_linux_nat) 3286 fprintf_unfiltered (gdb_stdlog, 3287 "LLW: Using pending wait status %s for %s.\n", 3288 status_to_str (lp->status), 3289 target_pid_to_str (lp->ptid)); 3290 } 3291 3292 /* But if we don't find a pending event, we'll have to wait. Always 3293 pull all events out of the kernel. We'll randomly select an 3294 event LWP out of all that have events, to prevent starvation. */ 3295 3296 while (lp == NULL) 3297 { 3298 pid_t lwpid; 3299 3300 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace 3301 quirks: 3302 3303 - If the thread group leader exits while other threads in the 3304 thread group still exist, waitpid(TGID, ...) hangs. That 3305 waitpid won't return an exit status until the other threads 3306 in the group are reapped. 3307 3308 - When a non-leader thread execs, that thread just vanishes 3309 without reporting an exit (so we'd hang if we waited for it 3310 explicitly in that case). The exec event is reported to 3311 the TGID pid. */ 3312 3313 errno = 0; 3314 lwpid = my_waitpid (-1, &status, __WALL | WNOHANG); 3315 3316 if (debug_linux_nat) 3317 fprintf_unfiltered (gdb_stdlog, 3318 "LNW: waitpid(-1, ...) returned %d, %s\n", 3319 lwpid, errno ? safe_strerror (errno) : "ERRNO-OK"); 3320 3321 if (lwpid > 0) 3322 { 3323 if (debug_linux_nat) 3324 { 3325 fprintf_unfiltered (gdb_stdlog, 3326 "LLW: waitpid %ld received %s\n", 3327 (long) lwpid, status_to_str (status)); 3328 } 3329 3330 linux_nat_filter_event (lwpid, status); 3331 /* Retry until nothing comes out of waitpid. A single 3332 SIGCHLD can indicate more than one child stopped. */ 3333 continue; 3334 } 3335 3336 /* Now that we've pulled all events out of the kernel, resume 3337 LWPs that don't have an interesting event to report. */ 3338 iterate_over_lwps (minus_one_ptid, 3339 resume_stopped_resumed_lwps, &minus_one_ptid); 3340 3341 /* ... and find an LWP with a status to report to the core, if 3342 any. */ 3343 lp = iterate_over_lwps (ptid, status_callback, NULL); 3344 if (lp != NULL) 3345 break; 3346 3347 /* Check for zombie thread group leaders. Those can't be reaped 3348 until all other threads in the thread group are. */ 3349 check_zombie_leaders (); 3350 3351 /* If there are no resumed children left, bail. We'd be stuck 3352 forever in the sigsuspend call below otherwise. */ 3353 if (iterate_over_lwps (ptid, resumed_callback, NULL) == NULL) 3354 { 3355 if (debug_linux_nat) 3356 fprintf_unfiltered (gdb_stdlog, "LLW: exit (no resumed LWP)\n"); 3357 3358 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED; 3359 3360 restore_child_signals_mask (&prev_mask); 3361 return minus_one_ptid; 3362 } 3363 3364 /* No interesting event to report to the core. */ 3365 3366 if (target_options & TARGET_WNOHANG) 3367 { 3368 if (debug_linux_nat) 3369 fprintf_unfiltered (gdb_stdlog, "LLW: exit (ignore)\n"); 3370 3371 ourstatus->kind = TARGET_WAITKIND_IGNORE; 3372 restore_child_signals_mask (&prev_mask); 3373 return minus_one_ptid; 3374 } 3375 3376 /* We shouldn't end up here unless we want to try again. */ 3377 gdb_assert (lp == NULL); 3378 3379 /* Block until we get an event reported with SIGCHLD. */ 3380 wait_for_signal (); 3381 } 3382 3383 gdb_assert (lp); 3384 3385 status = lp->status; 3386 lp->status = 0; 3387 3388 if (!target_is_non_stop_p ()) 3389 { 3390 /* Now stop all other LWP's ... */ 3391 iterate_over_lwps (minus_one_ptid, stop_callback, NULL); 3392 3393 /* ... and wait until all of them have reported back that 3394 they're no longer running. */ 3395 iterate_over_lwps (minus_one_ptid, stop_wait_callback, NULL); 3396 } 3397 3398 /* If we're not waiting for a specific LWP, choose an event LWP from 3399 among those that have had events. Giving equal priority to all 3400 LWPs that have had events helps prevent starvation. */ 3401 if (ptid == minus_one_ptid || ptid.is_pid ()) 3402 select_event_lwp (ptid, &lp, &status); 3403 3404 gdb_assert (lp != NULL); 3405 3406 /* Now that we've selected our final event LWP, un-adjust its PC if 3407 it was a software breakpoint, and we can't reliably support the 3408 "stopped by software breakpoint" stop reason. */ 3409 if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT 3410 && !USE_SIGTRAP_SIGINFO) 3411 { 3412 struct regcache *regcache = get_thread_regcache (lp->ptid); 3413 struct gdbarch *gdbarch = regcache->arch (); 3414 int decr_pc = gdbarch_decr_pc_after_break (gdbarch); 3415 3416 if (decr_pc != 0) 3417 { 3418 CORE_ADDR pc; 3419 3420 pc = regcache_read_pc (regcache); 3421 regcache_write_pc (regcache, pc + decr_pc); 3422 } 3423 } 3424 3425 /* We'll need this to determine whether to report a SIGSTOP as 3426 GDB_SIGNAL_0. Need to take a copy because resume_clear_callback 3427 clears it. */ 3428 last_resume_kind = lp->last_resume_kind; 3429 3430 if (!target_is_non_stop_p ()) 3431 { 3432 /* In all-stop, from the core's perspective, all LWPs are now 3433 stopped until a new resume action is sent over. */ 3434 iterate_over_lwps (minus_one_ptid, resume_clear_callback, NULL); 3435 } 3436 else 3437 { 3438 resume_clear_callback (lp, NULL); 3439 } 3440 3441 if (linux_target->low_status_is_event (status)) 3442 { 3443 if (debug_linux_nat) 3444 fprintf_unfiltered (gdb_stdlog, 3445 "LLW: trap ptid is %s.\n", 3446 target_pid_to_str (lp->ptid)); 3447 } 3448 3449 if (lp->waitstatus.kind != TARGET_WAITKIND_IGNORE) 3450 { 3451 *ourstatus = lp->waitstatus; 3452 lp->waitstatus.kind = TARGET_WAITKIND_IGNORE; 3453 } 3454 else 3455 store_waitstatus (ourstatus, status); 3456 3457 if (debug_linux_nat) 3458 fprintf_unfiltered (gdb_stdlog, "LLW: exit\n"); 3459 3460 restore_child_signals_mask (&prev_mask); 3461 3462 if (last_resume_kind == resume_stop 3463 && ourstatus->kind == TARGET_WAITKIND_STOPPED 3464 && WSTOPSIG (status) == SIGSTOP) 3465 { 3466 /* A thread that has been requested to stop by GDB with 3467 target_stop, and it stopped cleanly, so report as SIG0. The 3468 use of SIGSTOP is an implementation detail. */ 3469 ourstatus->value.sig = GDB_SIGNAL_0; 3470 } 3471 3472 if (ourstatus->kind == TARGET_WAITKIND_EXITED 3473 || ourstatus->kind == TARGET_WAITKIND_SIGNALLED) 3474 lp->core = -1; 3475 else 3476 lp->core = linux_common_core_of_thread (lp->ptid); 3477 3478 if (ourstatus->kind == TARGET_WAITKIND_EXITED) 3479 return filter_exit_event (lp, ourstatus); 3480 3481 return lp->ptid; 3482 } 3483 3484 /* Resume LWPs that are currently stopped without any pending status 3485 to report, but are resumed from the core's perspective. */ 3486 3487 static int 3488 resume_stopped_resumed_lwps (struct lwp_info *lp, void *data) 3489 { 3490 ptid_t *wait_ptid_p = (ptid_t *) data; 3491 3492 if (!lp->stopped) 3493 { 3494 if (debug_linux_nat) 3495 fprintf_unfiltered (gdb_stdlog, 3496 "RSRL: NOT resuming LWP %s, not stopped\n", 3497 target_pid_to_str (lp->ptid)); 3498 } 3499 else if (!lp->resumed) 3500 { 3501 if (debug_linux_nat) 3502 fprintf_unfiltered (gdb_stdlog, 3503 "RSRL: NOT resuming LWP %s, not resumed\n", 3504 target_pid_to_str (lp->ptid)); 3505 } 3506 else if (lwp_status_pending_p (lp)) 3507 { 3508 if (debug_linux_nat) 3509 fprintf_unfiltered (gdb_stdlog, 3510 "RSRL: NOT resuming LWP %s, has pending status\n", 3511 target_pid_to_str (lp->ptid)); 3512 } 3513 else 3514 { 3515 struct regcache *regcache = get_thread_regcache (lp->ptid); 3516 struct gdbarch *gdbarch = regcache->arch (); 3517 3518 TRY 3519 { 3520 CORE_ADDR pc = regcache_read_pc (regcache); 3521 int leave_stopped = 0; 3522 3523 /* Don't bother if there's a breakpoint at PC that we'd hit 3524 immediately, and we're not waiting for this LWP. */ 3525 if (!lp->ptid.matches (*wait_ptid_p)) 3526 { 3527 if (breakpoint_inserted_here_p (regcache->aspace (), pc)) 3528 leave_stopped = 1; 3529 } 3530 3531 if (!leave_stopped) 3532 { 3533 if (debug_linux_nat) 3534 fprintf_unfiltered (gdb_stdlog, 3535 "RSRL: resuming stopped-resumed LWP %s at " 3536 "%s: step=%d\n", 3537 target_pid_to_str (lp->ptid), 3538 paddress (gdbarch, pc), 3539 lp->step); 3540 3541 linux_resume_one_lwp_throw (lp, lp->step, GDB_SIGNAL_0); 3542 } 3543 } 3544 CATCH (ex, RETURN_MASK_ERROR) 3545 { 3546 if (!check_ptrace_stopped_lwp_gone (lp)) 3547 throw_exception (ex); 3548 } 3549 END_CATCH 3550 } 3551 3552 return 0; 3553 } 3554 3555 ptid_t 3556 linux_nat_target::wait (ptid_t ptid, struct target_waitstatus *ourstatus, 3557 int target_options) 3558 { 3559 ptid_t event_ptid; 3560 3561 if (debug_linux_nat) 3562 { 3563 std::string options_string = target_options_to_string (target_options); 3564 fprintf_unfiltered (gdb_stdlog, 3565 "linux_nat_wait: [%s], [%s]\n", 3566 target_pid_to_str (ptid), 3567 options_string.c_str ()); 3568 } 3569 3570 /* Flush the async file first. */ 3571 if (target_is_async_p ()) 3572 async_file_flush (); 3573 3574 /* Resume LWPs that are currently stopped without any pending status 3575 to report, but are resumed from the core's perspective. LWPs get 3576 in this state if we find them stopping at a time we're not 3577 interested in reporting the event (target_wait on a 3578 specific_process, for example, see linux_nat_wait_1), and 3579 meanwhile the event became uninteresting. Don't bother resuming 3580 LWPs we're not going to wait for if they'd stop immediately. */ 3581 if (target_is_non_stop_p ()) 3582 iterate_over_lwps (minus_one_ptid, resume_stopped_resumed_lwps, &ptid); 3583 3584 event_ptid = linux_nat_wait_1 (ptid, ourstatus, target_options); 3585 3586 /* If we requested any event, and something came out, assume there 3587 may be more. If we requested a specific lwp or process, also 3588 assume there may be more. */ 3589 if (target_is_async_p () 3590 && ((ourstatus->kind != TARGET_WAITKIND_IGNORE 3591 && ourstatus->kind != TARGET_WAITKIND_NO_RESUMED) 3592 || ptid != minus_one_ptid)) 3593 async_file_mark (); 3594 3595 return event_ptid; 3596 } 3597 3598 /* Kill one LWP. */ 3599 3600 static void 3601 kill_one_lwp (pid_t pid) 3602 { 3603 /* PTRACE_KILL may resume the inferior. Send SIGKILL first. */ 3604 3605 errno = 0; 3606 kill_lwp (pid, SIGKILL); 3607 if (debug_linux_nat) 3608 { 3609 int save_errno = errno; 3610 3611 fprintf_unfiltered (gdb_stdlog, 3612 "KC: kill (SIGKILL) %ld, 0, 0 (%s)\n", (long) pid, 3613 save_errno ? safe_strerror (save_errno) : "OK"); 3614 } 3615 3616 /* Some kernels ignore even SIGKILL for processes under ptrace. */ 3617 3618 errno = 0; 3619 ptrace (PTRACE_KILL, pid, 0, 0); 3620 if (debug_linux_nat) 3621 { 3622 int save_errno = errno; 3623 3624 fprintf_unfiltered (gdb_stdlog, 3625 "KC: PTRACE_KILL %ld, 0, 0 (%s)\n", (long) pid, 3626 save_errno ? safe_strerror (save_errno) : "OK"); 3627 } 3628 } 3629 3630 /* Wait for an LWP to die. */ 3631 3632 static void 3633 kill_wait_one_lwp (pid_t pid) 3634 { 3635 pid_t res; 3636 3637 /* We must make sure that there are no pending events (delayed 3638 SIGSTOPs, pending SIGTRAPs, etc.) to make sure the current 3639 program doesn't interfere with any following debugging session. */ 3640 3641 do 3642 { 3643 res = my_waitpid (pid, NULL, __WALL); 3644 if (res != (pid_t) -1) 3645 { 3646 if (debug_linux_nat) 3647 fprintf_unfiltered (gdb_stdlog, 3648 "KWC: wait %ld received unknown.\n", 3649 (long) pid); 3650 /* The Linux kernel sometimes fails to kill a thread 3651 completely after PTRACE_KILL; that goes from the stop 3652 point in do_fork out to the one in get_signal_to_deliver 3653 and waits again. So kill it again. */ 3654 kill_one_lwp (pid); 3655 } 3656 } 3657 while (res == pid); 3658 3659 gdb_assert (res == -1 && errno == ECHILD); 3660 } 3661 3662 /* Callback for iterate_over_lwps. */ 3663 3664 static int 3665 kill_callback (struct lwp_info *lp, void *data) 3666 { 3667 kill_one_lwp (lp->ptid.lwp ()); 3668 return 0; 3669 } 3670 3671 /* Callback for iterate_over_lwps. */ 3672 3673 static int 3674 kill_wait_callback (struct lwp_info *lp, void *data) 3675 { 3676 kill_wait_one_lwp (lp->ptid.lwp ()); 3677 return 0; 3678 } 3679 3680 /* Kill the fork children of any threads of inferior INF that are 3681 stopped at a fork event. */ 3682 3683 static void 3684 kill_unfollowed_fork_children (struct inferior *inf) 3685 { 3686 for (thread_info *thread : inf->non_exited_threads ()) 3687 { 3688 struct target_waitstatus *ws = &thread->pending_follow; 3689 3690 if (ws->kind == TARGET_WAITKIND_FORKED 3691 || ws->kind == TARGET_WAITKIND_VFORKED) 3692 { 3693 ptid_t child_ptid = ws->value.related_pid; 3694 int child_pid = child_ptid.pid (); 3695 int child_lwp = child_ptid.lwp (); 3696 3697 kill_one_lwp (child_lwp); 3698 kill_wait_one_lwp (child_lwp); 3699 3700 /* Let the arch-specific native code know this process is 3701 gone. */ 3702 linux_target->low_forget_process (child_pid); 3703 } 3704 } 3705 } 3706 3707 void 3708 linux_nat_target::kill () 3709 { 3710 /* If we're stopped while forking and we haven't followed yet, 3711 kill the other task. We need to do this first because the 3712 parent will be sleeping if this is a vfork. */ 3713 kill_unfollowed_fork_children (current_inferior ()); 3714 3715 if (forks_exist_p ()) 3716 linux_fork_killall (); 3717 else 3718 { 3719 ptid_t ptid = ptid_t (inferior_ptid.pid ()); 3720 3721 /* Stop all threads before killing them, since ptrace requires 3722 that the thread is stopped to sucessfully PTRACE_KILL. */ 3723 iterate_over_lwps (ptid, stop_callback, NULL); 3724 /* ... and wait until all of them have reported back that 3725 they're no longer running. */ 3726 iterate_over_lwps (ptid, stop_wait_callback, NULL); 3727 3728 /* Kill all LWP's ... */ 3729 iterate_over_lwps (ptid, kill_callback, NULL); 3730 3731 /* ... and wait until we've flushed all events. */ 3732 iterate_over_lwps (ptid, kill_wait_callback, NULL); 3733 } 3734 3735 target_mourn_inferior (inferior_ptid); 3736 } 3737 3738 void 3739 linux_nat_target::mourn_inferior () 3740 { 3741 int pid = inferior_ptid.pid (); 3742 3743 purge_lwp_list (pid); 3744 3745 if (! forks_exist_p ()) 3746 /* Normal case, no other forks available. */ 3747 inf_ptrace_target::mourn_inferior (); 3748 else 3749 /* Multi-fork case. The current inferior_ptid has exited, but 3750 there are other viable forks to debug. Delete the exiting 3751 one and context-switch to the first available. */ 3752 linux_fork_mourn_inferior (); 3753 3754 /* Let the arch-specific native code know this process is gone. */ 3755 linux_target->low_forget_process (pid); 3756 } 3757 3758 /* Convert a native/host siginfo object, into/from the siginfo in the 3759 layout of the inferiors' architecture. */ 3760 3761 static void 3762 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction) 3763 { 3764 /* If the low target didn't do anything, then just do a straight 3765 memcpy. */ 3766 if (!linux_target->low_siginfo_fixup (siginfo, inf_siginfo, direction)) 3767 { 3768 if (direction == 1) 3769 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t)); 3770 else 3771 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t)); 3772 } 3773 } 3774 3775 static enum target_xfer_status 3776 linux_xfer_siginfo (enum target_object object, 3777 const char *annex, gdb_byte *readbuf, 3778 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3779 ULONGEST *xfered_len) 3780 { 3781 int pid; 3782 siginfo_t siginfo; 3783 gdb_byte inf_siginfo[sizeof (siginfo_t)]; 3784 3785 gdb_assert (object == TARGET_OBJECT_SIGNAL_INFO); 3786 gdb_assert (readbuf || writebuf); 3787 3788 pid = inferior_ptid.lwp (); 3789 if (pid == 0) 3790 pid = inferior_ptid.pid (); 3791 3792 if (offset > sizeof (siginfo)) 3793 return TARGET_XFER_E_IO; 3794 3795 errno = 0; 3796 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3797 if (errno != 0) 3798 return TARGET_XFER_E_IO; 3799 3800 /* When GDB is built as a 64-bit application, ptrace writes into 3801 SIGINFO an object with 64-bit layout. Since debugging a 32-bit 3802 inferior with a 64-bit GDB should look the same as debugging it 3803 with a 32-bit GDB, we need to convert it. GDB core always sees 3804 the converted layout, so any read/write will have to be done 3805 post-conversion. */ 3806 siginfo_fixup (&siginfo, inf_siginfo, 0); 3807 3808 if (offset + len > sizeof (siginfo)) 3809 len = sizeof (siginfo) - offset; 3810 3811 if (readbuf != NULL) 3812 memcpy (readbuf, inf_siginfo + offset, len); 3813 else 3814 { 3815 memcpy (inf_siginfo + offset, writebuf, len); 3816 3817 /* Convert back to ptrace layout before flushing it out. */ 3818 siginfo_fixup (&siginfo, inf_siginfo, 1); 3819 3820 errno = 0; 3821 ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo); 3822 if (errno != 0) 3823 return TARGET_XFER_E_IO; 3824 } 3825 3826 *xfered_len = len; 3827 return TARGET_XFER_OK; 3828 } 3829 3830 static enum target_xfer_status 3831 linux_nat_xfer_osdata (enum target_object object, 3832 const char *annex, gdb_byte *readbuf, 3833 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 3834 ULONGEST *xfered_len); 3835 3836 static enum target_xfer_status 3837 linux_proc_xfer_spu (enum target_object object, 3838 const char *annex, gdb_byte *readbuf, 3839 const gdb_byte *writebuf, 3840 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len); 3841 3842 static enum target_xfer_status 3843 linux_proc_xfer_partial (enum target_object object, 3844 const char *annex, gdb_byte *readbuf, 3845 const gdb_byte *writebuf, 3846 ULONGEST offset, LONGEST len, ULONGEST *xfered_len); 3847 3848 enum target_xfer_status 3849 linux_nat_target::xfer_partial (enum target_object object, 3850 const char *annex, gdb_byte *readbuf, 3851 const gdb_byte *writebuf, 3852 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 3853 { 3854 enum target_xfer_status xfer; 3855 3856 if (object == TARGET_OBJECT_SIGNAL_INFO) 3857 return linux_xfer_siginfo (object, annex, readbuf, writebuf, 3858 offset, len, xfered_len); 3859 3860 /* The target is connected but no live inferior is selected. Pass 3861 this request down to a lower stratum (e.g., the executable 3862 file). */ 3863 if (object == TARGET_OBJECT_MEMORY && inferior_ptid == null_ptid) 3864 return TARGET_XFER_EOF; 3865 3866 if (object == TARGET_OBJECT_AUXV) 3867 return memory_xfer_auxv (this, object, annex, readbuf, writebuf, 3868 offset, len, xfered_len); 3869 3870 if (object == TARGET_OBJECT_OSDATA) 3871 return linux_nat_xfer_osdata (object, annex, readbuf, writebuf, 3872 offset, len, xfered_len); 3873 3874 if (object == TARGET_OBJECT_SPU) 3875 return linux_proc_xfer_spu (object, annex, readbuf, writebuf, 3876 offset, len, xfered_len); 3877 3878 /* GDB calculates all addresses in the largest possible address 3879 width. 3880 The address width must be masked before its final use - either by 3881 linux_proc_xfer_partial or inf_ptrace_target::xfer_partial. 3882 3883 Compare ADDR_BIT first to avoid a compiler warning on shift overflow. */ 3884 3885 if (object == TARGET_OBJECT_MEMORY) 3886 { 3887 int addr_bit = gdbarch_addr_bit (target_gdbarch ()); 3888 3889 if (addr_bit < (sizeof (ULONGEST) * HOST_CHAR_BIT)) 3890 offset &= ((ULONGEST) 1 << addr_bit) - 1; 3891 } 3892 3893 xfer = linux_proc_xfer_partial (object, annex, readbuf, writebuf, 3894 offset, len, xfered_len); 3895 if (xfer != TARGET_XFER_EOF) 3896 return xfer; 3897 3898 return inf_ptrace_target::xfer_partial (object, annex, readbuf, writebuf, 3899 offset, len, xfered_len); 3900 } 3901 3902 bool 3903 linux_nat_target::thread_alive (ptid_t ptid) 3904 { 3905 /* As long as a PTID is in lwp list, consider it alive. */ 3906 return find_lwp_pid (ptid) != NULL; 3907 } 3908 3909 /* Implement the to_update_thread_list target method for this 3910 target. */ 3911 3912 void 3913 linux_nat_target::update_thread_list () 3914 { 3915 struct lwp_info *lwp; 3916 3917 /* We add/delete threads from the list as clone/exit events are 3918 processed, so just try deleting exited threads still in the 3919 thread list. */ 3920 delete_exited_threads (); 3921 3922 /* Update the processor core that each lwp/thread was last seen 3923 running on. */ 3924 ALL_LWPS (lwp) 3925 { 3926 /* Avoid accessing /proc if the thread hasn't run since we last 3927 time we fetched the thread's core. Accessing /proc becomes 3928 noticeably expensive when we have thousands of LWPs. */ 3929 if (lwp->core == -1) 3930 lwp->core = linux_common_core_of_thread (lwp->ptid); 3931 } 3932 } 3933 3934 const char * 3935 linux_nat_target::pid_to_str (ptid_t ptid) 3936 { 3937 static char buf[64]; 3938 3939 if (ptid.lwp_p () 3940 && (ptid.pid () != ptid.lwp () 3941 || num_lwps (ptid.pid ()) > 1)) 3942 { 3943 snprintf (buf, sizeof (buf), "LWP %ld", ptid.lwp ()); 3944 return buf; 3945 } 3946 3947 return normal_pid_to_str (ptid); 3948 } 3949 3950 const char * 3951 linux_nat_target::thread_name (struct thread_info *thr) 3952 { 3953 return linux_proc_tid_get_name (thr->ptid); 3954 } 3955 3956 /* Accepts an integer PID; Returns a string representing a file that 3957 can be opened to get the symbols for the child process. */ 3958 3959 char * 3960 linux_nat_target::pid_to_exec_file (int pid) 3961 { 3962 return linux_proc_pid_to_exec_file (pid); 3963 } 3964 3965 /* Implement the to_xfer_partial target method using /proc/<pid>/mem. 3966 Because we can use a single read/write call, this can be much more 3967 efficient than banging away at PTRACE_PEEKTEXT. */ 3968 3969 static enum target_xfer_status 3970 linux_proc_xfer_partial (enum target_object object, 3971 const char *annex, gdb_byte *readbuf, 3972 const gdb_byte *writebuf, 3973 ULONGEST offset, LONGEST len, ULONGEST *xfered_len) 3974 { 3975 LONGEST ret; 3976 int fd; 3977 char filename[64]; 3978 3979 if (object != TARGET_OBJECT_MEMORY) 3980 return TARGET_XFER_EOF; 3981 3982 /* Don't bother for one word. */ 3983 if (len < 3 * sizeof (long)) 3984 return TARGET_XFER_EOF; 3985 3986 /* We could keep this file open and cache it - possibly one per 3987 thread. That requires some juggling, but is even faster. */ 3988 xsnprintf (filename, sizeof filename, "/proc/%ld/mem", 3989 inferior_ptid.lwp ()); 3990 fd = gdb_open_cloexec (filename, ((readbuf ? O_RDONLY : O_WRONLY) 3991 | O_LARGEFILE), 0); 3992 if (fd == -1) 3993 return TARGET_XFER_EOF; 3994 3995 /* Use pread64/pwrite64 if available, since they save a syscall and can 3996 handle 64-bit offsets even on 32-bit platforms (for instance, SPARC 3997 debugging a SPARC64 application). */ 3998 #ifdef HAVE_PREAD64 3999 ret = (readbuf ? pread64 (fd, readbuf, len, offset) 4000 : pwrite64 (fd, writebuf, len, offset)); 4001 #else 4002 ret = lseek (fd, offset, SEEK_SET); 4003 if (ret != -1) 4004 ret = (readbuf ? read (fd, readbuf, len) 4005 : write (fd, writebuf, len)); 4006 #endif 4007 4008 close (fd); 4009 4010 if (ret == -1 || ret == 0) 4011 return TARGET_XFER_EOF; 4012 else 4013 { 4014 *xfered_len = ret; 4015 return TARGET_XFER_OK; 4016 } 4017 } 4018 4019 4020 /* Enumerate spufs IDs for process PID. */ 4021 static LONGEST 4022 spu_enumerate_spu_ids (int pid, gdb_byte *buf, ULONGEST offset, ULONGEST len) 4023 { 4024 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ()); 4025 LONGEST pos = 0; 4026 LONGEST written = 0; 4027 char path[128]; 4028 DIR *dir; 4029 struct dirent *entry; 4030 4031 xsnprintf (path, sizeof path, "/proc/%d/fd", pid); 4032 dir = opendir (path); 4033 if (!dir) 4034 return -1; 4035 4036 rewinddir (dir); 4037 while ((entry = readdir (dir)) != NULL) 4038 { 4039 struct stat st; 4040 struct statfs stfs; 4041 int fd; 4042 4043 fd = atoi (entry->d_name); 4044 if (!fd) 4045 continue; 4046 4047 xsnprintf (path, sizeof path, "/proc/%d/fd/%d", pid, fd); 4048 if (stat (path, &st) != 0) 4049 continue; 4050 if (!S_ISDIR (st.st_mode)) 4051 continue; 4052 4053 if (statfs (path, &stfs) != 0) 4054 continue; 4055 if (stfs.f_type != SPUFS_MAGIC) 4056 continue; 4057 4058 if (pos >= offset && pos + 4 <= offset + len) 4059 { 4060 store_unsigned_integer (buf + pos - offset, 4, byte_order, fd); 4061 written += 4; 4062 } 4063 pos += 4; 4064 } 4065 4066 closedir (dir); 4067 return written; 4068 } 4069 4070 /* Implement the to_xfer_partial interface for the TARGET_OBJECT_SPU 4071 object type, using the /proc file system. */ 4072 4073 static enum target_xfer_status 4074 linux_proc_xfer_spu (enum target_object object, 4075 const char *annex, gdb_byte *readbuf, 4076 const gdb_byte *writebuf, 4077 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len) 4078 { 4079 char buf[128]; 4080 int fd = 0; 4081 int ret = -1; 4082 int pid = inferior_ptid.lwp (); 4083 4084 if (!annex) 4085 { 4086 if (!readbuf) 4087 return TARGET_XFER_E_IO; 4088 else 4089 { 4090 LONGEST l = spu_enumerate_spu_ids (pid, readbuf, offset, len); 4091 4092 if (l < 0) 4093 return TARGET_XFER_E_IO; 4094 else if (l == 0) 4095 return TARGET_XFER_EOF; 4096 else 4097 { 4098 *xfered_len = (ULONGEST) l; 4099 return TARGET_XFER_OK; 4100 } 4101 } 4102 } 4103 4104 xsnprintf (buf, sizeof buf, "/proc/%d/fd/%s", pid, annex); 4105 fd = gdb_open_cloexec (buf, writebuf? O_WRONLY : O_RDONLY, 0); 4106 if (fd <= 0) 4107 return TARGET_XFER_E_IO; 4108 4109 if (offset != 0 4110 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset) 4111 { 4112 close (fd); 4113 return TARGET_XFER_EOF; 4114 } 4115 4116 if (writebuf) 4117 ret = write (fd, writebuf, (size_t) len); 4118 else if (readbuf) 4119 ret = read (fd, readbuf, (size_t) len); 4120 4121 close (fd); 4122 4123 if (ret < 0) 4124 return TARGET_XFER_E_IO; 4125 else if (ret == 0) 4126 return TARGET_XFER_EOF; 4127 else 4128 { 4129 *xfered_len = (ULONGEST) ret; 4130 return TARGET_XFER_OK; 4131 } 4132 } 4133 4134 4135 /* Parse LINE as a signal set and add its set bits to SIGS. */ 4136 4137 static void 4138 add_line_to_sigset (const char *line, sigset_t *sigs) 4139 { 4140 int len = strlen (line) - 1; 4141 const char *p; 4142 int signum; 4143 4144 if (line[len] != '\n') 4145 error (_("Could not parse signal set: %s"), line); 4146 4147 p = line; 4148 signum = len * 4; 4149 while (len-- > 0) 4150 { 4151 int digit; 4152 4153 if (*p >= '0' && *p <= '9') 4154 digit = *p - '0'; 4155 else if (*p >= 'a' && *p <= 'f') 4156 digit = *p - 'a' + 10; 4157 else 4158 error (_("Could not parse signal set: %s"), line); 4159 4160 signum -= 4; 4161 4162 if (digit & 1) 4163 sigaddset (sigs, signum + 1); 4164 if (digit & 2) 4165 sigaddset (sigs, signum + 2); 4166 if (digit & 4) 4167 sigaddset (sigs, signum + 3); 4168 if (digit & 8) 4169 sigaddset (sigs, signum + 4); 4170 4171 p++; 4172 } 4173 } 4174 4175 /* Find process PID's pending signals from /proc/pid/status and set 4176 SIGS to match. */ 4177 4178 void 4179 linux_proc_pending_signals (int pid, sigset_t *pending, 4180 sigset_t *blocked, sigset_t *ignored) 4181 { 4182 char buffer[PATH_MAX], fname[PATH_MAX]; 4183 4184 sigemptyset (pending); 4185 sigemptyset (blocked); 4186 sigemptyset (ignored); 4187 xsnprintf (fname, sizeof fname, "/proc/%d/status", pid); 4188 gdb_file_up procfile = gdb_fopen_cloexec (fname, "r"); 4189 if (procfile == NULL) 4190 error (_("Could not open %s"), fname); 4191 4192 while (fgets (buffer, PATH_MAX, procfile.get ()) != NULL) 4193 { 4194 /* Normal queued signals are on the SigPnd line in the status 4195 file. However, 2.6 kernels also have a "shared" pending 4196 queue for delivering signals to a thread group, so check for 4197 a ShdPnd line also. 4198 4199 Unfortunately some Red Hat kernels include the shared pending 4200 queue but not the ShdPnd status field. */ 4201 4202 if (startswith (buffer, "SigPnd:\t")) 4203 add_line_to_sigset (buffer + 8, pending); 4204 else if (startswith (buffer, "ShdPnd:\t")) 4205 add_line_to_sigset (buffer + 8, pending); 4206 else if (startswith (buffer, "SigBlk:\t")) 4207 add_line_to_sigset (buffer + 8, blocked); 4208 else if (startswith (buffer, "SigIgn:\t")) 4209 add_line_to_sigset (buffer + 8, ignored); 4210 } 4211 } 4212 4213 static enum target_xfer_status 4214 linux_nat_xfer_osdata (enum target_object object, 4215 const char *annex, gdb_byte *readbuf, 4216 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len, 4217 ULONGEST *xfered_len) 4218 { 4219 gdb_assert (object == TARGET_OBJECT_OSDATA); 4220 4221 *xfered_len = linux_common_xfer_osdata (annex, readbuf, offset, len); 4222 if (*xfered_len == 0) 4223 return TARGET_XFER_EOF; 4224 else 4225 return TARGET_XFER_OK; 4226 } 4227 4228 std::vector<static_tracepoint_marker> 4229 linux_nat_target::static_tracepoint_markers_by_strid (const char *strid) 4230 { 4231 char s[IPA_CMD_BUF_SIZE]; 4232 int pid = inferior_ptid.pid (); 4233 std::vector<static_tracepoint_marker> markers; 4234 const char *p = s; 4235 ptid_t ptid = ptid_t (pid, 0, 0); 4236 static_tracepoint_marker marker; 4237 4238 /* Pause all */ 4239 target_stop (ptid); 4240 4241 memcpy (s, "qTfSTM", sizeof ("qTfSTM")); 4242 s[sizeof ("qTfSTM")] = 0; 4243 4244 agent_run_command (pid, s, strlen (s) + 1); 4245 4246 /* Unpause all. */ 4247 SCOPE_EXIT { target_continue_no_signal (ptid); }; 4248 4249 while (*p++ == 'm') 4250 { 4251 do 4252 { 4253 parse_static_tracepoint_marker_definition (p, &p, &marker); 4254 4255 if (strid == NULL || marker.str_id == strid) 4256 markers.push_back (std::move (marker)); 4257 } 4258 while (*p++ == ','); /* comma-separated list */ 4259 4260 memcpy (s, "qTsSTM", sizeof ("qTsSTM")); 4261 s[sizeof ("qTsSTM")] = 0; 4262 agent_run_command (pid, s, strlen (s) + 1); 4263 p = s; 4264 } 4265 4266 return markers; 4267 } 4268 4269 /* target_is_async_p implementation. */ 4270 4271 bool 4272 linux_nat_target::is_async_p () 4273 { 4274 return linux_is_async_p (); 4275 } 4276 4277 /* target_can_async_p implementation. */ 4278 4279 bool 4280 linux_nat_target::can_async_p () 4281 { 4282 /* We're always async, unless the user explicitly prevented it with the 4283 "maint set target-async" command. */ 4284 return target_async_permitted; 4285 } 4286 4287 bool 4288 linux_nat_target::supports_non_stop () 4289 { 4290 return 1; 4291 } 4292 4293 /* to_always_non_stop_p implementation. */ 4294 4295 bool 4296 linux_nat_target::always_non_stop_p () 4297 { 4298 return 1; 4299 } 4300 4301 /* True if we want to support multi-process. To be removed when GDB 4302 supports multi-exec. */ 4303 4304 int linux_multi_process = 1; 4305 4306 bool 4307 linux_nat_target::supports_multi_process () 4308 { 4309 return linux_multi_process; 4310 } 4311 4312 bool 4313 linux_nat_target::supports_disable_randomization () 4314 { 4315 #ifdef HAVE_PERSONALITY 4316 return 1; 4317 #else 4318 return 0; 4319 #endif 4320 } 4321 4322 /* SIGCHLD handler that serves two purposes: In non-stop/async mode, 4323 so we notice when any child changes state, and notify the 4324 event-loop; it allows us to use sigsuspend in linux_nat_wait_1 4325 above to wait for the arrival of a SIGCHLD. */ 4326 4327 static void 4328 sigchld_handler (int signo) 4329 { 4330 int old_errno = errno; 4331 4332 if (debug_linux_nat) 4333 ui_file_write_async_safe (gdb_stdlog, 4334 "sigchld\n", sizeof ("sigchld\n") - 1); 4335 4336 if (signo == SIGCHLD 4337 && linux_nat_event_pipe[0] != -1) 4338 async_file_mark (); /* Let the event loop know that there are 4339 events to handle. */ 4340 4341 errno = old_errno; 4342 } 4343 4344 /* Callback registered with the target events file descriptor. */ 4345 4346 static void 4347 handle_target_event (int error, gdb_client_data client_data) 4348 { 4349 inferior_event_handler (INF_REG_EVENT, NULL); 4350 } 4351 4352 /* Create/destroy the target events pipe. Returns previous state. */ 4353 4354 static int 4355 linux_async_pipe (int enable) 4356 { 4357 int previous = linux_is_async_p (); 4358 4359 if (previous != enable) 4360 { 4361 sigset_t prev_mask; 4362 4363 /* Block child signals while we create/destroy the pipe, as 4364 their handler writes to it. */ 4365 block_child_signals (&prev_mask); 4366 4367 if (enable) 4368 { 4369 if (gdb_pipe_cloexec (linux_nat_event_pipe) == -1) 4370 internal_error (__FILE__, __LINE__, 4371 "creating event pipe failed."); 4372 4373 fcntl (linux_nat_event_pipe[0], F_SETFL, O_NONBLOCK); 4374 fcntl (linux_nat_event_pipe[1], F_SETFL, O_NONBLOCK); 4375 } 4376 else 4377 { 4378 close (linux_nat_event_pipe[0]); 4379 close (linux_nat_event_pipe[1]); 4380 linux_nat_event_pipe[0] = -1; 4381 linux_nat_event_pipe[1] = -1; 4382 } 4383 4384 restore_child_signals_mask (&prev_mask); 4385 } 4386 4387 return previous; 4388 } 4389 4390 /* target_async implementation. */ 4391 4392 void 4393 linux_nat_target::async (int enable) 4394 { 4395 if (enable) 4396 { 4397 if (!linux_async_pipe (1)) 4398 { 4399 add_file_handler (linux_nat_event_pipe[0], 4400 handle_target_event, NULL); 4401 /* There may be pending events to handle. Tell the event loop 4402 to poll them. */ 4403 async_file_mark (); 4404 } 4405 } 4406 else 4407 { 4408 delete_file_handler (linux_nat_event_pipe[0]); 4409 linux_async_pipe (0); 4410 } 4411 return; 4412 } 4413 4414 /* Stop an LWP, and push a GDB_SIGNAL_0 stop status if no other 4415 event came out. */ 4416 4417 static int 4418 linux_nat_stop_lwp (struct lwp_info *lwp, void *data) 4419 { 4420 if (!lwp->stopped) 4421 { 4422 if (debug_linux_nat) 4423 fprintf_unfiltered (gdb_stdlog, 4424 "LNSL: running -> suspending %s\n", 4425 target_pid_to_str (lwp->ptid)); 4426 4427 4428 if (lwp->last_resume_kind == resume_stop) 4429 { 4430 if (debug_linux_nat) 4431 fprintf_unfiltered (gdb_stdlog, 4432 "linux-nat: already stopping LWP %ld at " 4433 "GDB's request\n", 4434 lwp->ptid.lwp ()); 4435 return 0; 4436 } 4437 4438 stop_callback (lwp, NULL); 4439 lwp->last_resume_kind = resume_stop; 4440 } 4441 else 4442 { 4443 /* Already known to be stopped; do nothing. */ 4444 4445 if (debug_linux_nat) 4446 { 4447 if (find_thread_ptid (lwp->ptid)->stop_requested) 4448 fprintf_unfiltered (gdb_stdlog, 4449 "LNSL: already stopped/stop_requested %s\n", 4450 target_pid_to_str (lwp->ptid)); 4451 else 4452 fprintf_unfiltered (gdb_stdlog, 4453 "LNSL: already stopped/no " 4454 "stop_requested yet %s\n", 4455 target_pid_to_str (lwp->ptid)); 4456 } 4457 } 4458 return 0; 4459 } 4460 4461 void 4462 linux_nat_target::stop (ptid_t ptid) 4463 { 4464 iterate_over_lwps (ptid, linux_nat_stop_lwp, NULL); 4465 } 4466 4467 void 4468 linux_nat_target::close () 4469 { 4470 /* Unregister from the event loop. */ 4471 if (is_async_p ()) 4472 async (0); 4473 4474 inf_ptrace_target::close (); 4475 } 4476 4477 /* When requests are passed down from the linux-nat layer to the 4478 single threaded inf-ptrace layer, ptids of (lwpid,0,0) form are 4479 used. The address space pointer is stored in the inferior object, 4480 but the common code that is passed such ptid can't tell whether 4481 lwpid is a "main" process id or not (it assumes so). We reverse 4482 look up the "main" process id from the lwp here. */ 4483 4484 struct address_space * 4485 linux_nat_target::thread_address_space (ptid_t ptid) 4486 { 4487 struct lwp_info *lwp; 4488 struct inferior *inf; 4489 int pid; 4490 4491 if (ptid.lwp () == 0) 4492 { 4493 /* An (lwpid,0,0) ptid. Look up the lwp object to get at the 4494 tgid. */ 4495 lwp = find_lwp_pid (ptid); 4496 pid = lwp->ptid.pid (); 4497 } 4498 else 4499 { 4500 /* A (pid,lwpid,0) ptid. */ 4501 pid = ptid.pid (); 4502 } 4503 4504 inf = find_inferior_pid (pid); 4505 gdb_assert (inf != NULL); 4506 return inf->aspace; 4507 } 4508 4509 /* Return the cached value of the processor core for thread PTID. */ 4510 4511 int 4512 linux_nat_target::core_of_thread (ptid_t ptid) 4513 { 4514 struct lwp_info *info = find_lwp_pid (ptid); 4515 4516 if (info) 4517 return info->core; 4518 return -1; 4519 } 4520 4521 /* Implementation of to_filesystem_is_local. */ 4522 4523 bool 4524 linux_nat_target::filesystem_is_local () 4525 { 4526 struct inferior *inf = current_inferior (); 4527 4528 if (inf->fake_pid_p || inf->pid == 0) 4529 return true; 4530 4531 return linux_ns_same (inf->pid, LINUX_NS_MNT); 4532 } 4533 4534 /* Convert the INF argument passed to a to_fileio_* method 4535 to a process ID suitable for passing to its corresponding 4536 linux_mntns_* function. If INF is non-NULL then the 4537 caller is requesting the filesystem seen by INF. If INF 4538 is NULL then the caller is requesting the filesystem seen 4539 by the GDB. We fall back to GDB's filesystem in the case 4540 that INF is non-NULL but its PID is unknown. */ 4541 4542 static pid_t 4543 linux_nat_fileio_pid_of (struct inferior *inf) 4544 { 4545 if (inf == NULL || inf->fake_pid_p || inf->pid == 0) 4546 return getpid (); 4547 else 4548 return inf->pid; 4549 } 4550 4551 /* Implementation of to_fileio_open. */ 4552 4553 int 4554 linux_nat_target::fileio_open (struct inferior *inf, const char *filename, 4555 int flags, int mode, int warn_if_slow, 4556 int *target_errno) 4557 { 4558 int nat_flags; 4559 mode_t nat_mode; 4560 int fd; 4561 4562 if (fileio_to_host_openflags (flags, &nat_flags) == -1 4563 || fileio_to_host_mode (mode, &nat_mode) == -1) 4564 { 4565 *target_errno = FILEIO_EINVAL; 4566 return -1; 4567 } 4568 4569 fd = linux_mntns_open_cloexec (linux_nat_fileio_pid_of (inf), 4570 filename, nat_flags, nat_mode); 4571 if (fd == -1) 4572 *target_errno = host_to_fileio_error (errno); 4573 4574 return fd; 4575 } 4576 4577 /* Implementation of to_fileio_readlink. */ 4578 4579 gdb::optional<std::string> 4580 linux_nat_target::fileio_readlink (struct inferior *inf, const char *filename, 4581 int *target_errno) 4582 { 4583 char buf[PATH_MAX]; 4584 int len; 4585 4586 len = linux_mntns_readlink (linux_nat_fileio_pid_of (inf), 4587 filename, buf, sizeof (buf)); 4588 if (len < 0) 4589 { 4590 *target_errno = host_to_fileio_error (errno); 4591 return {}; 4592 } 4593 4594 return std::string (buf, len); 4595 } 4596 4597 /* Implementation of to_fileio_unlink. */ 4598 4599 int 4600 linux_nat_target::fileio_unlink (struct inferior *inf, const char *filename, 4601 int *target_errno) 4602 { 4603 int ret; 4604 4605 ret = linux_mntns_unlink (linux_nat_fileio_pid_of (inf), 4606 filename); 4607 if (ret == -1) 4608 *target_errno = host_to_fileio_error (errno); 4609 4610 return ret; 4611 } 4612 4613 /* Implementation of the to_thread_events method. */ 4614 4615 void 4616 linux_nat_target::thread_events (int enable) 4617 { 4618 report_thread_events = enable; 4619 } 4620 4621 linux_nat_target::linux_nat_target () 4622 { 4623 /* We don't change the stratum; this target will sit at 4624 process_stratum and thread_db will set at thread_stratum. This 4625 is a little strange, since this is a multi-threaded-capable 4626 target, but we want to be on the stack below thread_db, and we 4627 also want to be used for single-threaded processes. */ 4628 } 4629 4630 /* See linux-nat.h. */ 4631 4632 int 4633 linux_nat_get_siginfo (ptid_t ptid, siginfo_t *siginfo) 4634 { 4635 int pid; 4636 4637 pid = ptid.lwp (); 4638 if (pid == 0) 4639 pid = ptid.pid (); 4640 4641 errno = 0; 4642 ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, siginfo); 4643 if (errno != 0) 4644 { 4645 memset (siginfo, 0, sizeof (*siginfo)); 4646 return 0; 4647 } 4648 return 1; 4649 } 4650 4651 /* See nat/linux-nat.h. */ 4652 4653 ptid_t 4654 current_lwp_ptid (void) 4655 { 4656 gdb_assert (inferior_ptid.lwp_p ()); 4657 return inferior_ptid; 4658 } 4659 4660 void 4661 _initialize_linux_nat (void) 4662 { 4663 add_setshow_zuinteger_cmd ("lin-lwp", class_maintenance, 4664 &debug_linux_nat, _("\ 4665 Set debugging of GNU/Linux lwp module."), _("\ 4666 Show debugging of GNU/Linux lwp module."), _("\ 4667 Enables printf debugging output."), 4668 NULL, 4669 show_debug_linux_nat, 4670 &setdebuglist, &showdebuglist); 4671 4672 add_setshow_boolean_cmd ("linux-namespaces", class_maintenance, 4673 &debug_linux_namespaces, _("\ 4674 Set debugging of GNU/Linux namespaces module."), _("\ 4675 Show debugging of GNU/Linux namespaces module."), _("\ 4676 Enables printf debugging output."), 4677 NULL, 4678 NULL, 4679 &setdebuglist, &showdebuglist); 4680 4681 /* Save this mask as the default. */ 4682 sigprocmask (SIG_SETMASK, NULL, &normal_mask); 4683 4684 /* Install a SIGCHLD handler. */ 4685 sigchld_action.sa_handler = sigchld_handler; 4686 sigemptyset (&sigchld_action.sa_mask); 4687 sigchld_action.sa_flags = SA_RESTART; 4688 4689 /* Make it the default. */ 4690 sigaction (SIGCHLD, &sigchld_action, NULL); 4691 4692 /* Make sure we don't block SIGCHLD during a sigsuspend. */ 4693 sigprocmask (SIG_SETMASK, NULL, &suspend_mask); 4694 sigdelset (&suspend_mask, SIGCHLD); 4695 4696 sigemptyset (&blocked_mask); 4697 4698 lwp_lwpid_htab_create (); 4699 } 4700 4701 4702 /* FIXME: kettenis/2000-08-26: The stuff on this page is specific to 4703 the GNU/Linux Threads library and therefore doesn't really belong 4704 here. */ 4705 4706 /* Return the set of signals used by the threads library in *SET. */ 4707 4708 void 4709 lin_thread_get_thread_signals (sigset_t *set) 4710 { 4711 sigemptyset (set); 4712 4713 /* NPTL reserves the first two RT signals, but does not provide any 4714 way for the debugger to query the signal numbers - fortunately 4715 they don't change. */ 4716 sigaddset (set, __SIGRTMIN); 4717 sigaddset (set, __SIGRTMIN + 1); 4718 } 4719