xref: /netbsd-src/external/gpl3/gdb/dist/gdb/hppa-linux-tdep.c (revision ccd9df534e375a4366c5b55f23782053c7a98d82)
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2 
3    Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2/frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34 #include "linux-tdep.h"
35 #include "elf/common.h"
36 
37 /* Map DWARF DBX register numbers to GDB register numbers.  */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41   /* The general registers and the sar are the same in both sets.  */
42   if (reg >= 0 && reg <= 32)
43     return reg;
44 
45   /* fr4-fr31 (left and right halves) are mapped from 72.  */
46   if (reg >= 72 && reg <= 72 + 28 * 2)
47     return HPPA_FP4_REGNUM + (reg - 72);
48 
49   return -1;
50 }
51 
52 static void
53 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
54 {
55   /* Probably this should be done by the kernel, but it isn't.  */
56   regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
57   regcache_cooked_write_unsigned (regcache,
58 				  HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
59 }
60 
61 /* An instruction to match.  */
62 struct insn_pattern
63 {
64   unsigned int data;            /* See if it matches this....  */
65   unsigned int mask;            /* ... with this mask.  */
66 };
67 
68 static struct insn_pattern hppa_sigtramp[] = {
69   /* ldi 0, %r25 or ldi 1, %r25 */
70   { 0x34190000, 0xfffffffd },
71   /* ldi __NR_rt_sigreturn, %r20 */
72   { 0x3414015a, 0xffffffff },
73   /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
74   { 0xe4008200, 0xffffffff },
75   /* nop */
76   { 0x08000240, 0xffffffff },
77   { 0, 0 }
78 };
79 
80 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81 
82 /* Return non-zero if the instructions at PC match the series
83    described in PATTERN, or zero otherwise.  PATTERN is an array of
84    'struct insn_pattern' objects, terminated by an entry whose mask is
85    zero.
86 
87    When the match is successful, fill INSN[i] with what PATTERN[i]
88    matched.  */
89 static int
90 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
91 		     struct insn_pattern *pattern,
92 		     unsigned int *insn)
93 {
94   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
95   int i;
96   CORE_ADDR npc = pc;
97 
98   for (i = 0; pattern[i].mask; i++)
99     {
100       gdb_byte buf[4];
101 
102       target_read_memory (npc, buf, 4);
103       insn[i] = extract_unsigned_integer (buf, 4, byte_order);
104       if ((insn[i] & pattern[i].mask) == pattern[i].data)
105 	npc += 4;
106       else
107 	return 0;
108     }
109   return 1;
110 }
111 
112 /* Signal frames.  */
113 
114 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
115 
116    Unfortunately, because of various bugs and changes to the kernel,
117    we have several cases to deal with.
118 
119    In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
120    the beginning of the trampoline and struct rt_sigframe.
121 
122    In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
123    the 4th word in the trampoline structure.  This is wrong, it should point
124    at the 5th word.  This is fixed in 2.6.5-rc2-pa4.
125 
126    To detect these cases, we first take pc, align it to 64-bytes
127    to get the beginning of the signal frame, and then check offsets 0, 4
128    and 5 to see if we found the beginning of the trampoline.  This will
129    tell us how to locate the sigcontext structure.
130 
131    Note that with a 2.4 64-bit kernel, the signal context is not properly
132    passed back to userspace so the unwind will not work correctly.  */
133 static CORE_ADDR
134 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
135 {
136   unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
137   int offs = 0;
138   int attempt;
139   /* offsets to try to find the trampoline */
140   static int pcoffs[] = { 0, 4*4, 5*4 };
141   /* offsets to the rt_sigframe structure */
142   static int sfoffs[] = { 4*4, 10*4, 10*4 };
143   CORE_ADDR sp;
144 
145   /* Most of the time, this will be correct.  The one case when this will
146      fail is if the user defined an alternate stack, in which case the
147      beginning of the stack will not be align_down (pc, 64).  */
148   sp = align_down (pc, 64);
149 
150   /* rt_sigreturn trampoline:
151      3419000x ldi 0, %r25 or ldi 1, %r25   (x = 0 or 2)
152      3414015a ldi __NR_rt_sigreturn, %r20
153      e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
154      08000240 nop  */
155 
156   for (attempt = 0; attempt < ARRAY_SIZE (pcoffs); attempt++)
157     {
158       if (insns_match_pattern (gdbarch, sp + pcoffs[attempt],
159 			       hppa_sigtramp, dummy))
160 	{
161 	  offs = sfoffs[attempt];
162 	  break;
163 	}
164     }
165 
166   if (offs == 0)
167     {
168       if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
169 	{
170 	  /* sigaltstack case: we have no way of knowing which offset to
171 	     use in this case; default to new kernel handling.  If this is
172 	     wrong the unwinding will fail.  */
173 	  attempt = 2;
174 	  sp = pc - pcoffs[attempt];
175 	}
176       else
177 	return 0;
178     }
179 
180   /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
181      a struct siginfo and a struct ucontext.  struct ucontext contains
182      a struct sigcontext.  Return an offset to this sigcontext here.  Too
183      bad we cannot include system specific headers :-(.
184      sizeof(struct siginfo) == 128
185      offsetof(struct ucontext, uc_mcontext) == 24.  */
186   return sp + sfoffs[attempt] + 128 + 24;
187 }
188 
189 struct hppa_linux_sigtramp_unwind_cache
190 {
191   CORE_ADDR base;
192   trad_frame_saved_reg *saved_regs;
193 };
194 
195 static struct hppa_linux_sigtramp_unwind_cache *
196 hppa_linux_sigtramp_frame_unwind_cache (frame_info_ptr this_frame,
197 					void **this_cache)
198 {
199   struct gdbarch *gdbarch = get_frame_arch (this_frame);
200   struct hppa_linux_sigtramp_unwind_cache *info;
201   CORE_ADDR pc, scptr;
202   int i;
203 
204   if (*this_cache)
205     return (struct hppa_linux_sigtramp_unwind_cache *) *this_cache;
206 
207   info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
208   *this_cache = info;
209   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
210 
211   pc = get_frame_pc (this_frame);
212   scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
213 
214   /* structure of struct sigcontext:
215 
216      struct sigcontext {
217 	unsigned long sc_flags;
218 	unsigned long sc_gr[32];
219 	unsigned long long sc_fr[32];
220 	unsigned long sc_iasq[2];
221 	unsigned long sc_iaoq[2];
222 	unsigned long sc_sar;           */
223 
224   /* Skip sc_flags.  */
225   scptr += 4;
226 
227   /* GR[0] is the psw.  */
228   info->saved_regs[HPPA_IPSW_REGNUM].set_addr (scptr);
229   scptr += 4;
230 
231   /* General registers.  */
232   for (i = 1; i < 32; i++)
233     {
234       info->saved_regs[HPPA_R0_REGNUM + i].set_addr (scptr);
235       scptr += 4;
236     }
237 
238   /* Pad to long long boundary.  */
239   scptr += 4;
240 
241   /* FP regs; FP0-3 are not restored.  */
242   scptr += (8 * 4);
243 
244   for (i = 4; i < 32; i++)
245     {
246       info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].set_addr (scptr);
247       scptr += 4;
248       info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].set_addr (scptr);
249       scptr += 4;
250     }
251 
252   /* IASQ/IAOQ.  */
253   info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].set_addr (scptr);
254   scptr += 4;
255   info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].set_addr (scptr);
256   scptr += 4;
257 
258   info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].set_addr (scptr);
259   scptr += 4;
260   info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].set_addr (scptr);
261   scptr += 4;
262 
263   info->saved_regs[HPPA_SAR_REGNUM].set_addr (scptr);
264 
265   info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
266 
267   return info;
268 }
269 
270 static void
271 hppa_linux_sigtramp_frame_this_id (frame_info_ptr this_frame,
272 				   void **this_prologue_cache,
273 				   struct frame_id *this_id)
274 {
275   struct hppa_linux_sigtramp_unwind_cache *info
276     = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
277   *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
278 }
279 
280 static struct value *
281 hppa_linux_sigtramp_frame_prev_register (frame_info_ptr this_frame,
282 					 void **this_prologue_cache,
283 					 int regnum)
284 {
285   struct hppa_linux_sigtramp_unwind_cache *info
286     = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
287   return hppa_frame_prev_register_helper (this_frame,
288 					  info->saved_regs, regnum);
289 }
290 
291 /* hppa-linux always uses "new-style" rt-signals.  The signal handler's return
292    address should point to a signal trampoline on the stack.  The signal
293    trampoline is embedded in a rt_sigframe structure that is aligned on
294    the stack.  We take advantage of the fact that sp must be 64-byte aligned,
295    and the trampoline is small, so by rounding down the trampoline address
296    we can find the beginning of the struct rt_sigframe.  */
297 static int
298 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
299 				   frame_info_ptr this_frame,
300 				   void **this_prologue_cache)
301 {
302   struct gdbarch *gdbarch = get_frame_arch (this_frame);
303   CORE_ADDR pc = get_frame_pc (this_frame);
304 
305   if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
306     return 1;
307 
308   return 0;
309 }
310 
311 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
312   "hppa linux sigtramp",
313   SIGTRAMP_FRAME,
314   default_frame_unwind_stop_reason,
315   hppa_linux_sigtramp_frame_this_id,
316   hppa_linux_sigtramp_frame_prev_register,
317   NULL,
318   hppa_linux_sigtramp_frame_sniffer
319 };
320 
321 /* Attempt to find (and return) the global pointer for the given
322    function.
323 
324    This is a rather nasty bit of code searchs for the .dynamic section
325    in the objfile corresponding to the pc of the function we're trying
326    to call.  Once it finds the addresses at which the .dynamic section
327    lives in the child process, it scans the Elf32_Dyn entries for a
328    DT_PLTGOT tag.  If it finds one of these, the corresponding
329    d_un.d_ptr value is the global pointer.  */
330 
331 static CORE_ADDR
332 hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
333 				struct value *function)
334 {
335   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
336   struct obj_section *faddr_sect;
337   CORE_ADDR faddr;
338 
339   faddr = value_as_address (function);
340 
341   /* Is this a plabel? If so, dereference it to get the gp value.  */
342   if (faddr & 2)
343     {
344       int status;
345       gdb_byte buf[4];
346 
347       faddr &= ~3;
348 
349       status = target_read_memory (faddr + 4, buf, sizeof (buf));
350       if (status == 0)
351 	return extract_unsigned_integer (buf, sizeof (buf), byte_order);
352     }
353 
354   /* If the address is in the plt section, then the real function hasn't
355      yet been fixed up by the linker so we cannot determine the gp of
356      that function.  */
357   if (in_plt_section (faddr))
358     return 0;
359 
360   faddr_sect = find_pc_section (faddr);
361   if (faddr_sect != NULL)
362     {
363       struct obj_section *osect;
364 
365       ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
366 	{
367 	  if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
368 	    break;
369 	}
370 
371       if (osect < faddr_sect->objfile->sections_end)
372 	{
373 	  CORE_ADDR addr, endaddr;
374 
375 	  addr = osect->addr ();
376 	  endaddr = osect->endaddr ();
377 
378 	  while (addr < endaddr)
379 	    {
380 	      int status;
381 	      LONGEST tag;
382 	      gdb_byte buf[4];
383 
384 	      status = target_read_memory (addr, buf, sizeof (buf));
385 	      if (status != 0)
386 		break;
387 	      tag = extract_signed_integer (buf, byte_order);
388 
389 	      if (tag == DT_PLTGOT)
390 		{
391 		  CORE_ADDR global_pointer;
392 
393 		  status = target_read_memory (addr + 4, buf, sizeof (buf));
394 		  if (status != 0)
395 		    break;
396 		  global_pointer = extract_unsigned_integer (buf, sizeof (buf),
397 							     byte_order);
398 		  /* The payoff...  */
399 		  return global_pointer;
400 		}
401 
402 	      if (tag == DT_NULL)
403 		break;
404 
405 	      addr += 8;
406 	    }
407 	}
408     }
409   return 0;
410 }
411 
412 /*
413  * Registers saved in a coredump:
414  * gr0..gr31
415  * sr0..sr7
416  * iaoq0..iaoq1
417  * iasq0..iasq1
418  * sar, iir, isr, ior, ipsw
419  * cr0, cr24..cr31
420  * cr8,9,12,13
421  * cr10, cr15
422  */
423 
424 static const struct regcache_map_entry hppa_linux_gregmap[] =
425   {
426     { 32, HPPA_R0_REGNUM },
427     { 1, HPPA_SR4_REGNUM+1 },
428     { 1, HPPA_SR4_REGNUM+2 },
429     { 1, HPPA_SR4_REGNUM+3 },
430     { 1, HPPA_SR4_REGNUM+4 },
431     { 1, HPPA_SR4_REGNUM },
432     { 1, HPPA_SR4_REGNUM+5 },
433     { 1, HPPA_SR4_REGNUM+6 },
434     { 1, HPPA_SR4_REGNUM+7 },
435     { 1, HPPA_PCOQ_HEAD_REGNUM },
436     { 1, HPPA_PCOQ_TAIL_REGNUM },
437     { 1, HPPA_PCSQ_HEAD_REGNUM },
438     { 1, HPPA_PCSQ_TAIL_REGNUM },
439     { 1, HPPA_SAR_REGNUM },
440     { 1, HPPA_IIR_REGNUM },
441     { 1, HPPA_ISR_REGNUM },
442     { 1, HPPA_IOR_REGNUM },
443     { 1, HPPA_IPSW_REGNUM },
444     { 1, HPPA_RCR_REGNUM },
445     { 8, HPPA_TR0_REGNUM },
446     { 4, HPPA_PID0_REGNUM },
447     { 1, HPPA_CCR_REGNUM },
448     { 1, HPPA_EIEM_REGNUM },
449     { 0 }
450   };
451 
452 static const struct regcache_map_entry hppa_linux_fpregmap[] =
453   {
454     /* FIXME: Only works for 32-bit mode.  In 64-bit mode there should
455        be 32 fpregs, 8 bytes each.  */
456     { 64, HPPA_FP0_REGNUM, 4 },
457     { 0 }
458   };
459 
460 /* HPPA Linux kernel register set.  */
461 static const struct regset hppa_linux_regset =
462 {
463   hppa_linux_gregmap,
464   regcache_supply_regset, regcache_collect_regset
465 };
466 
467 static const struct regset hppa_linux_fpregset =
468 {
469   hppa_linux_fpregmap,
470   regcache_supply_regset, regcache_collect_regset
471 };
472 
473 static void
474 hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
475 					 iterate_over_regset_sections_cb *cb,
476 					 void *cb_data,
477 					 const struct regcache *regcache)
478 {
479   hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
480 
481   cb (".reg", 80 * tdep->bytes_per_address, 80 * tdep->bytes_per_address,
482       &hppa_linux_regset, NULL, cb_data);
483   cb (".reg2", 64 * 4, 64 * 4, &hppa_linux_fpregset, NULL, cb_data);
484 }
485 
486 static void
487 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
488 {
489   hppa_gdbarch_tdep *tdep = gdbarch_tdep<hppa_gdbarch_tdep> (gdbarch);
490 
491   linux_init_abi (info, gdbarch, 0);
492 
493   /* GNU/Linux is always ELF.  */
494   tdep->is_elf = 1;
495 
496   tdep->find_global_pointer = hppa_linux_find_global_pointer;
497 
498   set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
499 
500   frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
501 
502   /* GNU/Linux uses SVR4-style shared libraries.  */
503   set_solib_svr4_fetch_link_map_offsets
504     (gdbarch, linux_ilp32_fetch_link_map_offsets);
505 
506   tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
507   set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
508 
509   /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
510   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
511 
512   /* On hppa-linux, currently, sizeof(long double) == 8.  There has been
513      some discussions to support 128-bit long double, but it requires some
514      more work in gcc and glibc first.  */
515   set_gdbarch_long_double_bit (gdbarch, 64);
516   set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
517 
518   set_gdbarch_iterate_over_regset_sections
519     (gdbarch, hppa_linux_iterate_over_regset_sections);
520 
521   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
522 
523   /* Enable TLS support.  */
524   set_gdbarch_fetch_tls_load_module_address (gdbarch,
525 					     svr4_fetch_objfile_link_map);
526 }
527 
528 void _initialize_hppa_linux_tdep ();
529 void
530 _initialize_hppa_linux_tdep ()
531 {
532   gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
533 			  hppa_linux_init_abi);
534   gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
535 			  GDB_OSABI_LINUX, hppa_linux_init_abi);
536 }
537