xref: /netbsd-src/external/gpl3/gdb/dist/gdb/hppa-linux-tdep.c (revision 946379e7b37692fc43f68eb0d1c10daa0a7f3b6c)
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2 
3    Copyright (C) 2004-2015 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34 #include "linux-tdep.h"
35 #include "elf/common.h"
36 
37 /* Map DWARF DBX register numbers to GDB register numbers.  */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41   /* The general registers and the sar are the same in both sets.  */
42   if (reg <= 32)
43     return reg;
44 
45   /* fr4-fr31 (left and right halves) are mapped from 72.  */
46   if (reg >= 72 && reg <= 72 + 28 * 2)
47     return HPPA_FP4_REGNUM + (reg - 72);
48 
49   warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
50   return -1;
51 }
52 
53 static void
54 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
55 {
56   /* Probably this should be done by the kernel, but it isn't.  */
57   regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
58   regcache_cooked_write_unsigned (regcache,
59 				  HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
60 }
61 
62 /* An instruction to match.  */
63 struct insn_pattern
64 {
65   unsigned int data;            /* See if it matches this....  */
66   unsigned int mask;            /* ... with this mask.  */
67 };
68 
69 static struct insn_pattern hppa_sigtramp[] = {
70   /* ldi 0, %r25 or ldi 1, %r25 */
71   { 0x34190000, 0xfffffffd },
72   /* ldi __NR_rt_sigreturn, %r20 */
73   { 0x3414015a, 0xffffffff },
74   /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
75   { 0xe4008200, 0xffffffff },
76   /* nop */
77   { 0x08000240, 0xffffffff },
78   { 0, 0 }
79 };
80 
81 #define HPPA_MAX_INSN_PATTERN_LEN (4)
82 
83 /* Return non-zero if the instructions at PC match the series
84    described in PATTERN, or zero otherwise.  PATTERN is an array of
85    'struct insn_pattern' objects, terminated by an entry whose mask is
86    zero.
87 
88    When the match is successful, fill INSN[i] with what PATTERN[i]
89    matched.  */
90 static int
91 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc,
92                      struct insn_pattern *pattern,
93                      unsigned int *insn)
94 {
95   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
96   int i;
97   CORE_ADDR npc = pc;
98 
99   for (i = 0; pattern[i].mask; i++)
100     {
101       gdb_byte buf[4];
102 
103       target_read_memory (npc, buf, 4);
104       insn[i] = extract_unsigned_integer (buf, 4, byte_order);
105       if ((insn[i] & pattern[i].mask) == pattern[i].data)
106         npc += 4;
107       else
108         return 0;
109     }
110   return 1;
111 }
112 
113 /* Signal frames.  */
114 
115 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
116 
117    Unfortunately, because of various bugs and changes to the kernel,
118    we have several cases to deal with.
119 
120    In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
121    the beginning of the trampoline and struct rt_sigframe.
122 
123    In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
124    the 4th word in the trampoline structure.  This is wrong, it should point
125    at the 5th word.  This is fixed in 2.6.5-rc2-pa4.
126 
127    To detect these cases, we first take pc, align it to 64-bytes
128    to get the beginning of the signal frame, and then check offsets 0, 4
129    and 5 to see if we found the beginning of the trampoline.  This will
130    tell us how to locate the sigcontext structure.
131 
132    Note that with a 2.4 64-bit kernel, the signal context is not properly
133    passed back to userspace so the unwind will not work correctly.  */
134 static CORE_ADDR
135 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc)
136 {
137   unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
138   int offs = 0;
139   int try;
140   /* offsets to try to find the trampoline */
141   static int pcoffs[] = { 0, 4*4, 5*4 };
142   /* offsets to the rt_sigframe structure */
143   static int sfoffs[] = { 4*4, 10*4, 10*4 };
144   CORE_ADDR sp;
145 
146   /* Most of the time, this will be correct.  The one case when this will
147      fail is if the user defined an alternate stack, in which case the
148      beginning of the stack will not be align_down (pc, 64).  */
149   sp = align_down (pc, 64);
150 
151   /* rt_sigreturn trampoline:
152      3419000x ldi 0, %r25 or ldi 1, %r25   (x = 0 or 2)
153      3414015a ldi __NR_rt_sigreturn, %r20
154      e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
155      08000240 nop  */
156 
157   for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
158     {
159       if (insns_match_pattern (gdbarch, sp + pcoffs[try],
160 			       hppa_sigtramp, dummy))
161 	{
162           offs = sfoffs[try];
163 	  break;
164 	}
165     }
166 
167   if (offs == 0)
168     {
169       if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy))
170 	{
171 	  /* sigaltstack case: we have no way of knowing which offset to
172 	     use in this case; default to new kernel handling.  If this is
173 	     wrong the unwinding will fail.  */
174 	  try = 2;
175 	  sp = pc - pcoffs[try];
176 	}
177       else
178       {
179         return 0;
180       }
181     }
182 
183   /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
184      a struct siginfo and a struct ucontext.  struct ucontext contains
185      a struct sigcontext.  Return an offset to this sigcontext here.  Too
186      bad we cannot include system specific headers :-(.
187      sizeof(struct siginfo) == 128
188      offsetof(struct ucontext, uc_mcontext) == 24.  */
189   return sp + sfoffs[try] + 128 + 24;
190 }
191 
192 struct hppa_linux_sigtramp_unwind_cache
193 {
194   CORE_ADDR base;
195   struct trad_frame_saved_reg *saved_regs;
196 };
197 
198 static struct hppa_linux_sigtramp_unwind_cache *
199 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
200 					void **this_cache)
201 {
202   struct gdbarch *gdbarch = get_frame_arch (this_frame);
203   struct hppa_linux_sigtramp_unwind_cache *info;
204   CORE_ADDR pc, scptr;
205   int i;
206 
207   if (*this_cache)
208     return *this_cache;
209 
210   info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
211   *this_cache = info;
212   info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
213 
214   pc = get_frame_pc (this_frame);
215   scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc);
216 
217   /* structure of struct sigcontext:
218 
219      struct sigcontext {
220 	unsigned long sc_flags;
221 	unsigned long sc_gr[32];
222 	unsigned long long sc_fr[32];
223 	unsigned long sc_iasq[2];
224 	unsigned long sc_iaoq[2];
225 	unsigned long sc_sar;           */
226 
227   /* Skip sc_flags.  */
228   scptr += 4;
229 
230   /* GR[0] is the psw.  */
231   info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr;
232   scptr += 4;
233 
234   /* General registers.  */
235   for (i = 1; i < 32; i++)
236     {
237       info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
238       scptr += 4;
239     }
240 
241   /* Pad to long long boundary.  */
242   scptr += 4;
243 
244   /* FP regs; FP0-3 are not restored.  */
245   scptr += (8 * 4);
246 
247   for (i = 4; i < 32; i++)
248     {
249       info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
250       scptr += 4;
251       info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
252       scptr += 4;
253     }
254 
255   /* IASQ/IAOQ.  */
256   info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
257   scptr += 4;
258   info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
259   scptr += 4;
260 
261   info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
262   scptr += 4;
263   info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
264   scptr += 4;
265 
266   info->saved_regs[HPPA_SAR_REGNUM].addr = scptr;
267 
268   info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
269 
270   return info;
271 }
272 
273 static void
274 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
275 				   void **this_prologue_cache,
276 				   struct frame_id *this_id)
277 {
278   struct hppa_linux_sigtramp_unwind_cache *info
279     = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
280   *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
281 }
282 
283 static struct value *
284 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
285 					 void **this_prologue_cache,
286 					 int regnum)
287 {
288   struct hppa_linux_sigtramp_unwind_cache *info
289     = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
290   return hppa_frame_prev_register_helper (this_frame,
291 					  info->saved_regs, regnum);
292 }
293 
294 /* hppa-linux always uses "new-style" rt-signals.  The signal handler's return
295    address should point to a signal trampoline on the stack.  The signal
296    trampoline is embedded in a rt_sigframe structure that is aligned on
297    the stack.  We take advantage of the fact that sp must be 64-byte aligned,
298    and the trampoline is small, so by rounding down the trampoline address
299    we can find the beginning of the struct rt_sigframe.  */
300 static int
301 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
302 				   struct frame_info *this_frame,
303 				   void **this_prologue_cache)
304 {
305   struct gdbarch *gdbarch = get_frame_arch (this_frame);
306   CORE_ADDR pc = get_frame_pc (this_frame);
307 
308   if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc))
309     return 1;
310 
311   return 0;
312 }
313 
314 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
315   SIGTRAMP_FRAME,
316   default_frame_unwind_stop_reason,
317   hppa_linux_sigtramp_frame_this_id,
318   hppa_linux_sigtramp_frame_prev_register,
319   NULL,
320   hppa_linux_sigtramp_frame_sniffer
321 };
322 
323 /* Attempt to find (and return) the global pointer for the given
324    function.
325 
326    This is a rather nasty bit of code searchs for the .dynamic section
327    in the objfile corresponding to the pc of the function we're trying
328    to call.  Once it finds the addresses at which the .dynamic section
329    lives in the child process, it scans the Elf32_Dyn entries for a
330    DT_PLTGOT tag.  If it finds one of these, the corresponding
331    d_un.d_ptr value is the global pointer.  */
332 
333 static CORE_ADDR
334 hppa_linux_find_global_pointer (struct gdbarch *gdbarch,
335 				struct value *function)
336 {
337   enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
338   struct obj_section *faddr_sect;
339   CORE_ADDR faddr;
340 
341   faddr = value_as_address (function);
342 
343   /* Is this a plabel? If so, dereference it to get the gp value.  */
344   if (faddr & 2)
345     {
346       int status;
347       gdb_byte buf[4];
348 
349       faddr &= ~3;
350 
351       status = target_read_memory (faddr + 4, buf, sizeof (buf));
352       if (status == 0)
353 	return extract_unsigned_integer (buf, sizeof (buf), byte_order);
354     }
355 
356   /* If the address is in the plt section, then the real function hasn't
357      yet been fixed up by the linker so we cannot determine the gp of
358      that function.  */
359   if (in_plt_section (faddr))
360     return 0;
361 
362   faddr_sect = find_pc_section (faddr);
363   if (faddr_sect != NULL)
364     {
365       struct obj_section *osect;
366 
367       ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
368 	{
369 	  if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
370 	    break;
371 	}
372 
373       if (osect < faddr_sect->objfile->sections_end)
374 	{
375 	  CORE_ADDR addr, endaddr;
376 
377 	  addr = obj_section_addr (osect);
378 	  endaddr = obj_section_endaddr (osect);
379 
380 	  while (addr < endaddr)
381 	    {
382 	      int status;
383 	      LONGEST tag;
384 	      gdb_byte buf[4];
385 
386 	      status = target_read_memory (addr, buf, sizeof (buf));
387 	      if (status != 0)
388 		break;
389 	      tag = extract_signed_integer (buf, sizeof (buf), byte_order);
390 
391 	      if (tag == DT_PLTGOT)
392 		{
393 		  CORE_ADDR global_pointer;
394 
395 		  status = target_read_memory (addr + 4, buf, sizeof (buf));
396 		  if (status != 0)
397 		    break;
398 		  global_pointer = extract_unsigned_integer (buf, sizeof (buf),
399 							     byte_order);
400 		  /* The payoff...  */
401 		  return global_pointer;
402 		}
403 
404 	      if (tag == DT_NULL)
405 		break;
406 
407 	      addr += 8;
408 	    }
409 	}
410     }
411   return 0;
412 }
413 
414 /*
415  * Registers saved in a coredump:
416  * gr0..gr31
417  * sr0..sr7
418  * iaoq0..iaoq1
419  * iasq0..iasq1
420  * sar, iir, isr, ior, ipsw
421  * cr0, cr24..cr31
422  * cr8,9,12,13
423  * cr10, cr15
424  */
425 
426 static const struct regcache_map_entry hppa_linux_gregmap[] =
427   {
428     { 32, HPPA_R0_REGNUM },
429     { 1, HPPA_SR4_REGNUM+1 },
430     { 1, HPPA_SR4_REGNUM+2 },
431     { 1, HPPA_SR4_REGNUM+3 },
432     { 1, HPPA_SR4_REGNUM+4 },
433     { 1, HPPA_SR4_REGNUM },
434     { 1, HPPA_SR4_REGNUM+5 },
435     { 1, HPPA_SR4_REGNUM+6 },
436     { 1, HPPA_SR4_REGNUM+7 },
437     { 1, HPPA_PCOQ_HEAD_REGNUM },
438     { 1, HPPA_PCOQ_TAIL_REGNUM },
439     { 1, HPPA_PCSQ_HEAD_REGNUM },
440     { 1, HPPA_PCSQ_TAIL_REGNUM },
441     { 1, HPPA_SAR_REGNUM },
442     { 1, HPPA_IIR_REGNUM },
443     { 1, HPPA_ISR_REGNUM },
444     { 1, HPPA_IOR_REGNUM },
445     { 1, HPPA_IPSW_REGNUM },
446     { 1, HPPA_RCR_REGNUM },
447     { 8, HPPA_TR0_REGNUM },
448     { 4, HPPA_PID0_REGNUM },
449     { 1, HPPA_CCR_REGNUM },
450     { 1, HPPA_EIEM_REGNUM },
451     { 0 }
452   };
453 
454 static const struct regcache_map_entry hppa_linux_fpregmap[] =
455   {
456     /* FIXME: Only works for 32-bit mode.  In 64-bit mode there should
457        be 32 fpregs, 8 bytes each.  */
458     { 64, HPPA_FP0_REGNUM, 4 },
459     { 0 }
460   };
461 
462 /* HPPA Linux kernel register set.  */
463 static const struct regset hppa_linux_regset =
464 {
465   hppa_linux_gregmap,
466   regcache_supply_regset, regcache_collect_regset
467 };
468 
469 static const struct regset hppa_linux_fpregset =
470 {
471   hppa_linux_fpregmap,
472   regcache_supply_regset, regcache_collect_regset
473 };
474 
475 static void
476 hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch,
477 					 iterate_over_regset_sections_cb *cb,
478 					 void *cb_data,
479 					 const struct regcache *regcache)
480 {
481   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
482 
483   cb (".reg", 80 * tdep->bytes_per_address, &hppa_linux_regset,
484       NULL, cb_data);
485   cb (".reg2", 64 * 4, &hppa_linux_fpregset, NULL, cb_data);
486 }
487 
488 
489 /* Forward declarations.  */
490 extern initialize_file_ftype _initialize_hppa_linux_tdep;
491 
492 static void
493 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
494 {
495   struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
496 
497   linux_init_abi (info, gdbarch);
498 
499   /* GNU/Linux is always ELF.  */
500   tdep->is_elf = 1;
501 
502   tdep->find_global_pointer = hppa_linux_find_global_pointer;
503 
504   set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
505 
506   frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
507 
508   /* GNU/Linux uses SVR4-style shared libraries.  */
509   set_solib_svr4_fetch_link_map_offsets
510     (gdbarch, svr4_ilp32_fetch_link_map_offsets);
511 
512   tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
513   set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
514 
515   /* GNU/Linux uses the dynamic linker included in the GNU C Library.  */
516   set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
517 
518   /* On hppa-linux, currently, sizeof(long double) == 8.  There has been
519      some discussions to support 128-bit long double, but it requires some
520      more work in gcc and glibc first.  */
521   set_gdbarch_long_double_bit (gdbarch, 64);
522 
523   set_gdbarch_iterate_over_regset_sections
524     (gdbarch, hppa_linux_iterate_over_regset_sections);
525 
526   set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
527 
528   /* Enable TLS support.  */
529   set_gdbarch_fetch_tls_load_module_address (gdbarch,
530                                              svr4_fetch_objfile_link_map);
531 }
532 
533 void
534 _initialize_hppa_linux_tdep (void)
535 {
536   gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX,
537 			  hppa_linux_init_abi);
538   gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w,
539 			  GDB_OSABI_LINUX, hppa_linux_init_abi);
540 }
541