1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB. 2 3 Copyright (C) 2004-2020 Free Software Foundation, Inc. 4 5 This file is part of GDB. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 19 20 #include "defs.h" 21 #include "gdbcore.h" 22 #include "osabi.h" 23 #include "target.h" 24 #include "objfiles.h" 25 #include "solib-svr4.h" 26 #include "glibc-tdep.h" 27 #include "frame-unwind.h" 28 #include "trad-frame.h" 29 #include "dwarf2/frame.h" 30 #include "value.h" 31 #include "regset.h" 32 #include "regcache.h" 33 #include "hppa-tdep.h" 34 #include "linux-tdep.h" 35 #include "elf/common.h" 36 37 /* Map DWARF DBX register numbers to GDB register numbers. */ 38 static int 39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg) 40 { 41 /* The general registers and the sar are the same in both sets. */ 42 if (reg >= 0 && reg <= 32) 43 return reg; 44 45 /* fr4-fr31 (left and right halves) are mapped from 72. */ 46 if (reg >= 72 && reg <= 72 + 28 * 2) 47 return HPPA_FP4_REGNUM + (reg - 72); 48 49 return -1; 50 } 51 52 static void 53 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v) 54 { 55 /* Probably this should be done by the kernel, but it isn't. */ 56 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3); 57 regcache_cooked_write_unsigned (regcache, 58 HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3); 59 } 60 61 /* An instruction to match. */ 62 struct insn_pattern 63 { 64 unsigned int data; /* See if it matches this.... */ 65 unsigned int mask; /* ... with this mask. */ 66 }; 67 68 static struct insn_pattern hppa_sigtramp[] = { 69 /* ldi 0, %r25 or ldi 1, %r25 */ 70 { 0x34190000, 0xfffffffd }, 71 /* ldi __NR_rt_sigreturn, %r20 */ 72 { 0x3414015a, 0xffffffff }, 73 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */ 74 { 0xe4008200, 0xffffffff }, 75 /* nop */ 76 { 0x08000240, 0xffffffff }, 77 { 0, 0 } 78 }; 79 80 #define HPPA_MAX_INSN_PATTERN_LEN (4) 81 82 /* Return non-zero if the instructions at PC match the series 83 described in PATTERN, or zero otherwise. PATTERN is an array of 84 'struct insn_pattern' objects, terminated by an entry whose mask is 85 zero. 86 87 When the match is successful, fill INSN[i] with what PATTERN[i] 88 matched. */ 89 static int 90 insns_match_pattern (struct gdbarch *gdbarch, CORE_ADDR pc, 91 struct insn_pattern *pattern, 92 unsigned int *insn) 93 { 94 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 95 int i; 96 CORE_ADDR npc = pc; 97 98 for (i = 0; pattern[i].mask; i++) 99 { 100 gdb_byte buf[4]; 101 102 target_read_memory (npc, buf, 4); 103 insn[i] = extract_unsigned_integer (buf, 4, byte_order); 104 if ((insn[i] & pattern[i].mask) == pattern[i].data) 105 npc += 4; 106 else 107 return 0; 108 } 109 return 1; 110 } 111 112 /* Signal frames. */ 113 114 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.) 115 116 Unfortunately, because of various bugs and changes to the kernel, 117 we have several cases to deal with. 118 119 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at 120 the beginning of the trampoline and struct rt_sigframe. 121 122 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at 123 the 4th word in the trampoline structure. This is wrong, it should point 124 at the 5th word. This is fixed in 2.6.5-rc2-pa4. 125 126 To detect these cases, we first take pc, align it to 64-bytes 127 to get the beginning of the signal frame, and then check offsets 0, 4 128 and 5 to see if we found the beginning of the trampoline. This will 129 tell us how to locate the sigcontext structure. 130 131 Note that with a 2.4 64-bit kernel, the signal context is not properly 132 passed back to userspace so the unwind will not work correctly. */ 133 static CORE_ADDR 134 hppa_linux_sigtramp_find_sigcontext (struct gdbarch *gdbarch, CORE_ADDR pc) 135 { 136 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN]; 137 int offs = 0; 138 int attempt; 139 /* offsets to try to find the trampoline */ 140 static int pcoffs[] = { 0, 4*4, 5*4 }; 141 /* offsets to the rt_sigframe structure */ 142 static int sfoffs[] = { 4*4, 10*4, 10*4 }; 143 CORE_ADDR sp; 144 145 /* Most of the time, this will be correct. The one case when this will 146 fail is if the user defined an alternate stack, in which case the 147 beginning of the stack will not be align_down (pc, 64). */ 148 sp = align_down (pc, 64); 149 150 /* rt_sigreturn trampoline: 151 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2) 152 3414015a ldi __NR_rt_sigreturn, %r20 153 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31 154 08000240 nop */ 155 156 for (attempt = 0; attempt < ARRAY_SIZE (pcoffs); attempt++) 157 { 158 if (insns_match_pattern (gdbarch, sp + pcoffs[attempt], 159 hppa_sigtramp, dummy)) 160 { 161 offs = sfoffs[attempt]; 162 break; 163 } 164 } 165 166 if (offs == 0) 167 { 168 if (insns_match_pattern (gdbarch, pc, hppa_sigtramp, dummy)) 169 { 170 /* sigaltstack case: we have no way of knowing which offset to 171 use in this case; default to new kernel handling. If this is 172 wrong the unwinding will fail. */ 173 attempt = 2; 174 sp = pc - pcoffs[attempt]; 175 } 176 else 177 { 178 return 0; 179 } 180 } 181 182 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains 183 a struct siginfo and a struct ucontext. struct ucontext contains 184 a struct sigcontext. Return an offset to this sigcontext here. Too 185 bad we cannot include system specific headers :-(. 186 sizeof(struct siginfo) == 128 187 offsetof(struct ucontext, uc_mcontext) == 24. */ 188 return sp + sfoffs[attempt] + 128 + 24; 189 } 190 191 struct hppa_linux_sigtramp_unwind_cache 192 { 193 CORE_ADDR base; 194 struct trad_frame_saved_reg *saved_regs; 195 }; 196 197 static struct hppa_linux_sigtramp_unwind_cache * 198 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame, 199 void **this_cache) 200 { 201 struct gdbarch *gdbarch = get_frame_arch (this_frame); 202 struct hppa_linux_sigtramp_unwind_cache *info; 203 CORE_ADDR pc, scptr; 204 int i; 205 206 if (*this_cache) 207 return (struct hppa_linux_sigtramp_unwind_cache *) *this_cache; 208 209 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache); 210 *this_cache = info; 211 info->saved_regs = trad_frame_alloc_saved_regs (this_frame); 212 213 pc = get_frame_pc (this_frame); 214 scptr = hppa_linux_sigtramp_find_sigcontext (gdbarch, pc); 215 216 /* structure of struct sigcontext: 217 218 struct sigcontext { 219 unsigned long sc_flags; 220 unsigned long sc_gr[32]; 221 unsigned long long sc_fr[32]; 222 unsigned long sc_iasq[2]; 223 unsigned long sc_iaoq[2]; 224 unsigned long sc_sar; */ 225 226 /* Skip sc_flags. */ 227 scptr += 4; 228 229 /* GR[0] is the psw. */ 230 info->saved_regs[HPPA_IPSW_REGNUM].addr = scptr; 231 scptr += 4; 232 233 /* General registers. */ 234 for (i = 1; i < 32; i++) 235 { 236 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr; 237 scptr += 4; 238 } 239 240 /* Pad to long long boundary. */ 241 scptr += 4; 242 243 /* FP regs; FP0-3 are not restored. */ 244 scptr += (8 * 4); 245 246 for (i = 4; i < 32; i++) 247 { 248 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr; 249 scptr += 4; 250 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr; 251 scptr += 4; 252 } 253 254 /* IASQ/IAOQ. */ 255 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr; 256 scptr += 4; 257 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr; 258 scptr += 4; 259 260 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr; 261 scptr += 4; 262 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr; 263 scptr += 4; 264 265 info->saved_regs[HPPA_SAR_REGNUM].addr = scptr; 266 267 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM); 268 269 return info; 270 } 271 272 static void 273 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame, 274 void **this_prologue_cache, 275 struct frame_id *this_id) 276 { 277 struct hppa_linux_sigtramp_unwind_cache *info 278 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); 279 *this_id = frame_id_build (info->base, get_frame_pc (this_frame)); 280 } 281 282 static struct value * 283 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame, 284 void **this_prologue_cache, 285 int regnum) 286 { 287 struct hppa_linux_sigtramp_unwind_cache *info 288 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache); 289 return hppa_frame_prev_register_helper (this_frame, 290 info->saved_regs, regnum); 291 } 292 293 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return 294 address should point to a signal trampoline on the stack. The signal 295 trampoline is embedded in a rt_sigframe structure that is aligned on 296 the stack. We take advantage of the fact that sp must be 64-byte aligned, 297 and the trampoline is small, so by rounding down the trampoline address 298 we can find the beginning of the struct rt_sigframe. */ 299 static int 300 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self, 301 struct frame_info *this_frame, 302 void **this_prologue_cache) 303 { 304 struct gdbarch *gdbarch = get_frame_arch (this_frame); 305 CORE_ADDR pc = get_frame_pc (this_frame); 306 307 if (hppa_linux_sigtramp_find_sigcontext (gdbarch, pc)) 308 return 1; 309 310 return 0; 311 } 312 313 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = { 314 SIGTRAMP_FRAME, 315 default_frame_unwind_stop_reason, 316 hppa_linux_sigtramp_frame_this_id, 317 hppa_linux_sigtramp_frame_prev_register, 318 NULL, 319 hppa_linux_sigtramp_frame_sniffer 320 }; 321 322 /* Attempt to find (and return) the global pointer for the given 323 function. 324 325 This is a rather nasty bit of code searchs for the .dynamic section 326 in the objfile corresponding to the pc of the function we're trying 327 to call. Once it finds the addresses at which the .dynamic section 328 lives in the child process, it scans the Elf32_Dyn entries for a 329 DT_PLTGOT tag. If it finds one of these, the corresponding 330 d_un.d_ptr value is the global pointer. */ 331 332 static CORE_ADDR 333 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, 334 struct value *function) 335 { 336 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); 337 struct obj_section *faddr_sect; 338 CORE_ADDR faddr; 339 340 faddr = value_as_address (function); 341 342 /* Is this a plabel? If so, dereference it to get the gp value. */ 343 if (faddr & 2) 344 { 345 int status; 346 gdb_byte buf[4]; 347 348 faddr &= ~3; 349 350 status = target_read_memory (faddr + 4, buf, sizeof (buf)); 351 if (status == 0) 352 return extract_unsigned_integer (buf, sizeof (buf), byte_order); 353 } 354 355 /* If the address is in the plt section, then the real function hasn't 356 yet been fixed up by the linker so we cannot determine the gp of 357 that function. */ 358 if (in_plt_section (faddr)) 359 return 0; 360 361 faddr_sect = find_pc_section (faddr); 362 if (faddr_sect != NULL) 363 { 364 struct obj_section *osect; 365 366 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect) 367 { 368 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0) 369 break; 370 } 371 372 if (osect < faddr_sect->objfile->sections_end) 373 { 374 CORE_ADDR addr, endaddr; 375 376 addr = obj_section_addr (osect); 377 endaddr = obj_section_endaddr (osect); 378 379 while (addr < endaddr) 380 { 381 int status; 382 LONGEST tag; 383 gdb_byte buf[4]; 384 385 status = target_read_memory (addr, buf, sizeof (buf)); 386 if (status != 0) 387 break; 388 tag = extract_signed_integer (buf, sizeof (buf), byte_order); 389 390 if (tag == DT_PLTGOT) 391 { 392 CORE_ADDR global_pointer; 393 394 status = target_read_memory (addr + 4, buf, sizeof (buf)); 395 if (status != 0) 396 break; 397 global_pointer = extract_unsigned_integer (buf, sizeof (buf), 398 byte_order); 399 /* The payoff... */ 400 return global_pointer; 401 } 402 403 if (tag == DT_NULL) 404 break; 405 406 addr += 8; 407 } 408 } 409 } 410 return 0; 411 } 412 413 /* 414 * Registers saved in a coredump: 415 * gr0..gr31 416 * sr0..sr7 417 * iaoq0..iaoq1 418 * iasq0..iasq1 419 * sar, iir, isr, ior, ipsw 420 * cr0, cr24..cr31 421 * cr8,9,12,13 422 * cr10, cr15 423 */ 424 425 static const struct regcache_map_entry hppa_linux_gregmap[] = 426 { 427 { 32, HPPA_R0_REGNUM }, 428 { 1, HPPA_SR4_REGNUM+1 }, 429 { 1, HPPA_SR4_REGNUM+2 }, 430 { 1, HPPA_SR4_REGNUM+3 }, 431 { 1, HPPA_SR4_REGNUM+4 }, 432 { 1, HPPA_SR4_REGNUM }, 433 { 1, HPPA_SR4_REGNUM+5 }, 434 { 1, HPPA_SR4_REGNUM+6 }, 435 { 1, HPPA_SR4_REGNUM+7 }, 436 { 1, HPPA_PCOQ_HEAD_REGNUM }, 437 { 1, HPPA_PCOQ_TAIL_REGNUM }, 438 { 1, HPPA_PCSQ_HEAD_REGNUM }, 439 { 1, HPPA_PCSQ_TAIL_REGNUM }, 440 { 1, HPPA_SAR_REGNUM }, 441 { 1, HPPA_IIR_REGNUM }, 442 { 1, HPPA_ISR_REGNUM }, 443 { 1, HPPA_IOR_REGNUM }, 444 { 1, HPPA_IPSW_REGNUM }, 445 { 1, HPPA_RCR_REGNUM }, 446 { 8, HPPA_TR0_REGNUM }, 447 { 4, HPPA_PID0_REGNUM }, 448 { 1, HPPA_CCR_REGNUM }, 449 { 1, HPPA_EIEM_REGNUM }, 450 { 0 } 451 }; 452 453 static const struct regcache_map_entry hppa_linux_fpregmap[] = 454 { 455 /* FIXME: Only works for 32-bit mode. In 64-bit mode there should 456 be 32 fpregs, 8 bytes each. */ 457 { 64, HPPA_FP0_REGNUM, 4 }, 458 { 0 } 459 }; 460 461 /* HPPA Linux kernel register set. */ 462 static const struct regset hppa_linux_regset = 463 { 464 hppa_linux_gregmap, 465 regcache_supply_regset, regcache_collect_regset 466 }; 467 468 static const struct regset hppa_linux_fpregset = 469 { 470 hppa_linux_fpregmap, 471 regcache_supply_regset, regcache_collect_regset 472 }; 473 474 static void 475 hppa_linux_iterate_over_regset_sections (struct gdbarch *gdbarch, 476 iterate_over_regset_sections_cb *cb, 477 void *cb_data, 478 const struct regcache *regcache) 479 { 480 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 481 482 cb (".reg", 80 * tdep->bytes_per_address, 80 * tdep->bytes_per_address, 483 &hppa_linux_regset, NULL, cb_data); 484 cb (".reg2", 64 * 4, 64 * 4, &hppa_linux_fpregset, NULL, cb_data); 485 } 486 487 static void 488 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch) 489 { 490 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); 491 492 linux_init_abi (info, gdbarch); 493 494 /* GNU/Linux is always ELF. */ 495 tdep->is_elf = 1; 496 497 tdep->find_global_pointer = hppa_linux_find_global_pointer; 498 499 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc); 500 501 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind); 502 503 /* GNU/Linux uses SVR4-style shared libraries. */ 504 set_solib_svr4_fetch_link_map_offsets 505 (gdbarch, svr4_ilp32_fetch_link_map_offsets); 506 507 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline; 508 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code); 509 510 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */ 511 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver); 512 513 /* On hppa-linux, currently, sizeof(long double) == 8. There has been 514 some discussions to support 128-bit long double, but it requires some 515 more work in gcc and glibc first. */ 516 set_gdbarch_long_double_bit (gdbarch, 64); 517 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); 518 519 set_gdbarch_iterate_over_regset_sections 520 (gdbarch, hppa_linux_iterate_over_regset_sections); 521 522 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum); 523 524 /* Enable TLS support. */ 525 set_gdbarch_fetch_tls_load_module_address (gdbarch, 526 svr4_fetch_objfile_link_map); 527 } 528 529 void _initialize_hppa_linux_tdep (); 530 void 531 _initialize_hppa_linux_tdep () 532 { 533 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, 534 hppa_linux_init_abi); 535 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, 536 GDB_OSABI_LINUX, hppa_linux_init_abi); 537 } 538