xref: /netbsd-src/external/gpl3/gdb/dist/gdb/d-namespace.c (revision f4748aaa01faf324805f9747191535eb6600f82c)
1 /* Helper routines for D support in GDB.
2 
3    Copyright (C) 2014-2020 Free Software Foundation, Inc.
4 
5    This file is part of GDB.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
19 
20 #include "defs.h"
21 #include "symtab.h"
22 #include "block.h"
23 #include "language.h"
24 #include "namespace.h"
25 #include "d-lang.h"
26 #include "gdb_obstack.h"
27 #include "gdbarch.h"
28 
29 /* This returns the length of first component of NAME, which should be
30    the demangled name of a D variable/function/method/etc.
31    Specifically, it returns the index of the first dot forming the
32    boundary of the first component: so, given 'A.foo' or 'A.B.foo'
33    it returns the 1, and given 'foo', it returns 0.  */
34 
35 /* The character in NAME indexed by the return value is guaranteed to
36    always be either '.' or '\0'.  */
37 
38 static unsigned int
39 d_find_first_component (const char *name)
40 {
41   unsigned int index = 0;
42 
43   for (;; ++index)
44     {
45       if (name[index] == '.' || name[index] == '\0')
46 	return index;
47     }
48 }
49 
50 /* If NAME is the fully-qualified name of a D function/variable/method,
51    this returns the length of its entire prefix: all of the modules and
52    classes that make up its name.  Given 'A.foo', it returns 1, given
53    'A.B.foo', it returns 4, given 'foo', it returns 0.  */
54 
55 static unsigned int
56 d_entire_prefix_len (const char *name)
57 {
58   unsigned int current_len = d_find_first_component (name);
59   unsigned int previous_len = 0;
60 
61   while (name[current_len] != '\0')
62     {
63       gdb_assert (name[current_len] == '.');
64       previous_len = current_len;
65       /* Skip the '.'  */
66       current_len++;
67       current_len += d_find_first_component (name + current_len);
68     }
69 
70   return previous_len;
71 }
72 
73 /* Look up NAME in BLOCK's static block and in global blocks.
74    If SEARCH is non-zero, search through base classes for a matching
75    symbol.  Other arguments are as in d_lookup_symbol_nonlocal.  */
76 
77 static struct block_symbol
78 d_lookup_symbol (const struct language_defn *langdef,
79 		 const char *name, const struct block *block,
80 		 const domain_enum domain, int search)
81 {
82   struct block_symbol sym;
83 
84   sym = lookup_symbol_in_static_block (name, block, domain);
85   if (sym.symbol != NULL)
86     return sym;
87 
88   /* If we didn't find a definition for a builtin type in the static block,
89      such as "ucent" which is a specialist type, search for it now.  */
90   if (langdef != NULL && domain == VAR_DOMAIN)
91     {
92       struct gdbarch *gdbarch;
93 
94       if (block == NULL)
95 	gdbarch = target_gdbarch ();
96       else
97 	gdbarch = block_gdbarch (block);
98       sym.symbol
99 	= language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
100       sym.block = NULL;
101       if (sym.symbol != NULL)
102 	return sym;
103     }
104 
105   sym = lookup_global_symbol (name, block, domain);
106 
107   if (sym.symbol != NULL)
108     return sym;
109 
110   if (search)
111     {
112       std::string classname, nested;
113       unsigned int prefix_len;
114       struct block_symbol class_sym;
115 
116       /* A simple lookup failed.  Check if the symbol was defined in
117 	 a base class.  */
118 
119       /* Find the name of the class and the name of the method,
120 	 variable, etc.  */
121       prefix_len = d_entire_prefix_len (name);
122 
123       /* If no prefix was found, search "this".  */
124       if (prefix_len == 0)
125 	{
126 	  struct type *type;
127 	  struct block_symbol lang_this;
128 
129 	  lang_this = lookup_language_this (language_def (language_d), block);
130 	  if (lang_this.symbol == NULL)
131 	    return {};
132 
133 	  type = check_typedef (TYPE_TARGET_TYPE (SYMBOL_TYPE (lang_this.symbol)));
134 	  classname = type->name ();
135 	  nested = name;
136 	}
137       else
138 	{
139 	  /* The class name is everything up to and including PREFIX_LEN.  */
140 	  classname = std::string (name, prefix_len);
141 
142 	  /* The rest of the name is everything else past the initial scope
143 	     operator.  */
144 	  nested = std::string (name + prefix_len + 1);
145 	}
146 
147       /* Lookup a class named CLASSNAME.  If none is found, there is nothing
148 	 more that can be done.  */
149       class_sym = lookup_global_symbol (classname.c_str (), block, domain);
150       if (class_sym.symbol == NULL)
151 	return {};
152 
153       /* Look for a symbol named NESTED in this class.  */
154       sym = d_lookup_nested_symbol (SYMBOL_TYPE (class_sym.symbol),
155 				    nested.c_str (), block);
156     }
157 
158   return sym;
159 }
160 
161 /* Look up NAME in the D module MODULE.  Other arguments are as in
162    d_lookup_symbol_nonlocal.  If SEARCH is non-zero, search through
163    base classes for a matching symbol.  */
164 
165 static struct block_symbol
166 d_lookup_symbol_in_module (const char *module, const char *name,
167 			   const struct block *block,
168 			   const domain_enum domain, int search)
169 {
170   char *concatenated_name = NULL;
171 
172   if (module[0] != '\0')
173     {
174       concatenated_name
175 	= (char *) alloca (strlen (module) + strlen (name) + 2);
176       strcpy (concatenated_name, module);
177       strcat (concatenated_name, ".");
178       strcat (concatenated_name, name);
179       name = concatenated_name;
180     }
181 
182   return d_lookup_symbol (NULL, name, block, domain, search);
183 }
184 
185 /* Lookup NAME at module scope.  SCOPE is the module that the current
186    function is defined within; only consider modules whose length is at
187    least SCOPE_LEN.  Other arguments are as in d_lookup_symbol_nonlocal.
188 
189    For example, if we're within a function A.B.f and looking for a
190    symbol x, this will get called with NAME = "x", SCOPE = "A.B", and
191    SCOPE_LEN = 0.  It then calls itself with NAME and SCOPE the same,
192    but with SCOPE_LEN = 1.  And then it calls itself with NAME and
193    SCOPE the same, but with SCOPE_LEN = 4.  This third call looks for
194    "A.B.x"; if it doesn't find it, then the second call looks for "A.x",
195    and if that call fails, then the first call looks for "x".  */
196 
197 static struct block_symbol
198 lookup_module_scope (const struct language_defn *langdef,
199 		     const char *name, const struct block *block,
200 		     const domain_enum domain, const char *scope,
201 		     int scope_len)
202 {
203   char *module;
204 
205   if (scope[scope_len] != '\0')
206     {
207       /* Recursively search for names in child modules first.  */
208 
209       struct block_symbol sym;
210       int new_scope_len = scope_len;
211 
212       /* If the current scope is followed by ".", skip past that.  */
213       if (new_scope_len != 0)
214 	{
215 	  gdb_assert (scope[new_scope_len] == '.');
216 	  new_scope_len++;
217 	}
218       new_scope_len += d_find_first_component (scope + new_scope_len);
219       sym = lookup_module_scope (langdef, name, block, domain,
220 				 scope, new_scope_len);
221       if (sym.symbol != NULL)
222 	return sym;
223     }
224 
225   /* Okay, we didn't find a match in our children, so look for the
226      name in the current module.
227 
228      If we there is no scope and we know we have a bare symbol, then short
229      circuit everything and call d_lookup_symbol directly.
230      This isn't an optimization, rather it allows us to pass LANGDEF which
231      is needed for primitive type lookup.  */
232 
233   if (scope_len == 0 && strchr (name, '.') == NULL)
234     return d_lookup_symbol (langdef, name, block, domain, 1);
235 
236   module = (char *) alloca (scope_len + 1);
237   strncpy (module, scope, scope_len);
238   module[scope_len] = '\0';
239   return d_lookup_symbol_in_module (module, name,
240 				    block, domain, 1);
241 }
242 
243 /* Search through the base classes of PARENT_TYPE for a symbol named
244    NAME in block BLOCK.  */
245 
246 static struct block_symbol
247 find_symbol_in_baseclass (struct type *parent_type, const char *name,
248 			  const struct block *block)
249 {
250   struct block_symbol sym = {};
251   int i;
252 
253   for (i = 0; i < TYPE_N_BASECLASSES (parent_type); ++i)
254     {
255       struct type *base_type = TYPE_BASECLASS (parent_type, i);
256       const char *base_name = TYPE_BASECLASS_NAME (parent_type, i);
257 
258       if (base_name == NULL)
259 	continue;
260 
261       /* Search this particular base class.  */
262       sym = d_lookup_symbol_in_module (base_name, name, block,
263 				       VAR_DOMAIN, 0);
264       if (sym.symbol != NULL)
265 	break;
266 
267       /* Now search all static file-level symbols.  We have to do this for
268 	 things like typedefs in the class.  First search in this symtab,
269 	 what we want is possibly there.  */
270       std::string concatenated_name = std::string (base_name) + "." + name;
271       sym = lookup_symbol_in_static_block (concatenated_name.c_str (), block,
272 					   VAR_DOMAIN);
273       if (sym.symbol != NULL)
274 	break;
275 
276       /* Nope.  We now have to search all static blocks in all objfiles,
277 	 even if block != NULL, because there's no guarantees as to which
278 	 symtab the symbol we want is in.  */
279       sym = lookup_static_symbol (concatenated_name.c_str (), VAR_DOMAIN);
280       if (sym.symbol != NULL)
281 	break;
282 
283       /* If this class has base classes, search them next.  */
284       base_type = check_typedef (base_type);
285       if (TYPE_N_BASECLASSES (base_type) > 0)
286 	{
287 	  sym = find_symbol_in_baseclass (base_type, name, block);
288 	  if (sym.symbol != NULL)
289 	    break;
290 	}
291     }
292 
293   return sym;
294 }
295 
296 /* Look up a symbol named NESTED_NAME that is nested inside the D
297    class or module given by PARENT_TYPE, from within the context
298    given by BLOCK.  Return NULL if there is no such nested type.  */
299 
300 struct block_symbol
301 d_lookup_nested_symbol (struct type *parent_type,
302 			const char *nested_name,
303 			const struct block *block)
304 {
305   /* type_name_no_tag_required provides better error reporting using the
306      original type.  */
307   struct type *saved_parent_type = parent_type;
308 
309   parent_type = check_typedef (parent_type);
310 
311   switch (parent_type->code ())
312     {
313     case TYPE_CODE_STRUCT:
314     case TYPE_CODE_UNION:
315     case TYPE_CODE_ENUM:
316     case TYPE_CODE_MODULE:
317 	{
318 	  int size;
319 	  const char *parent_name = type_name_or_error (saved_parent_type);
320 	  struct block_symbol sym
321 	    = d_lookup_symbol_in_module (parent_name, nested_name,
322 					 block, VAR_DOMAIN, 0);
323 	  char *concatenated_name;
324 
325 	  if (sym.symbol != NULL)
326 	    return sym;
327 
328 	  /* Now search all static file-level symbols.  We have to do this
329 	     for things like typedefs in the class.  We do not try to
330 	     guess any imported module as even the fully specified
331 	     module search is already not D compliant and more assumptions
332 	     could make it too magic.  */
333 	  size = strlen (parent_name) + strlen (nested_name) + 2;
334 	  concatenated_name = (char *) alloca (size);
335 
336 	  xsnprintf (concatenated_name, size, "%s.%s",
337 		     parent_name, nested_name);
338 
339 	  sym = lookup_static_symbol (concatenated_name, VAR_DOMAIN);
340 	  if (sym.symbol != NULL)
341 	    return sym;
342 
343 	  /* If no matching symbols were found, try searching any
344 	     base classes.  */
345 	  return find_symbol_in_baseclass (parent_type, nested_name, block);
346 	}
347 
348     case TYPE_CODE_FUNC:
349     case TYPE_CODE_METHOD:
350       return {};
351 
352     default:
353       gdb_assert_not_reached ("called with non-aggregate type.");
354     }
355 }
356 
357 /* Search for NAME by applying all import statements belonging to
358    BLOCK which are applicable in SCOPE.  */
359 
360 static struct block_symbol
361 d_lookup_symbol_imports (const char *scope, const char *name,
362 			 const struct block *block,
363 			 const domain_enum domain)
364 {
365   struct using_direct *current;
366   struct block_symbol sym;
367 
368   /* First, try to find the symbol in the given module.  */
369   sym = d_lookup_symbol_in_module (scope, name, block, domain, 1);
370 
371   if (sym.symbol != NULL)
372     return sym;
373 
374   /* Go through the using directives.  If any of them add new names to
375      the module we're searching in, see if we can find a match by
376      applying them.  */
377 
378   for (current = block_using (block);
379        current != NULL;
380        current = current->next)
381     {
382       const char **excludep;
383 
384       /* If the import destination is the current scope then search it.  */
385       if (!current->searched && strcmp (scope, current->import_dest) == 0)
386 	{
387 	  /* Mark this import as searched so that the recursive call
388 	     does not search it again.  */
389 	  scoped_restore restore_searched
390 	    = make_scoped_restore (&current->searched, 1);
391 
392 	  /* If there is an import of a single declaration, compare the
393 	     imported declaration (after optional renaming by its alias)
394 	     with the sought out name.  If there is a match pass
395 	     current->import_src as MODULE to direct the search towards
396 	     the imported module.  */
397 	  if (current->declaration
398 	      && strcmp (name, current->alias
399 			 ? current->alias : current->declaration) == 0)
400 	    sym = d_lookup_symbol_in_module (current->import_src,
401 					     current->declaration,
402 					     block, domain, 1);
403 
404 	  /* If a symbol was found or this import statement was an import
405 	     declaration, the search of this import is complete.  */
406 	  if (sym.symbol != NULL || current->declaration)
407 	    {
408 	      if (sym.symbol != NULL)
409 		return sym;
410 
411 	      continue;
412 	    }
413 
414 	  /* Do not follow CURRENT if NAME matches its EXCLUDES.  */
415 	  for (excludep = current->excludes; *excludep; excludep++)
416 	    if (strcmp (name, *excludep) == 0)
417 	      break;
418 	  if (*excludep)
419 	    continue;
420 
421 	  /* If the import statement is creating an alias.  */
422 	  if (current->alias != NULL)
423 	    {
424 	      if (strcmp (name, current->alias) == 0)
425 		{
426 		  /* If the alias matches the sought name.  Pass
427 		     current->import_src as the NAME to direct the
428 		     search towards the aliased module.  */
429 		  sym = lookup_module_scope (NULL, current->import_src, block,
430 					     domain, scope, 0);
431 		}
432 	      else
433 		{
434 		  /* If the alias matches the first component of the
435 		     sought name, pass current->import_src as MODULE
436 		     to direct the search, skipping over the aliased
437 		     component in NAME.  */
438 		  int name_scope = d_find_first_component (name);
439 
440 		  if (name[name_scope] != '\0'
441 		      && strncmp (name, current->alias, name_scope) == 0)
442 		    {
443 		      /* Skip the '.'  */
444 		      name_scope++;
445 		      sym = d_lookup_symbol_in_module (current->import_src,
446 						       name + name_scope,
447 						       block, domain, 1);
448 		    }
449 		}
450 	    }
451 	  else
452 	    {
453 	      /* If this import statement creates no alias, pass
454 		 current->import_src as MODULE to direct the search
455 		 towards the imported module.  */
456 	      sym = d_lookup_symbol_in_module (current->import_src,
457 					       name, block, domain, 1);
458 	    }
459 
460 	  if (sym.symbol != NULL)
461 	    return sym;
462 	}
463     }
464 
465   return {};
466 }
467 
468 /* Searches for NAME in the current module, and by applying relevant
469    import statements belonging to BLOCK and its parents.  SCOPE is the
470    module scope of the context in which the search is being evaluated.  */
471 
472 static struct block_symbol
473 d_lookup_symbol_module (const char *scope, const char *name,
474 			const struct block *block,
475 			const domain_enum domain)
476 {
477   struct block_symbol sym;
478 
479   /* First, try to find the symbol in the given module.  */
480   sym = d_lookup_symbol_in_module (scope, name,
481 				   block, domain, 1);
482   if (sym.symbol != NULL)
483     return sym;
484 
485   /* Search for name in modules imported to this and parent
486      blocks.  */
487   while (block != NULL)
488     {
489       sym = d_lookup_symbol_imports (scope, name, block, domain);
490 
491       if (sym.symbol != NULL)
492 	return sym;
493 
494       block = BLOCK_SUPERBLOCK (block);
495     }
496 
497   return {};
498 }
499 
500 /* The D-specific version of name lookup for static and global names
501    This makes sure that names get looked for in all modules that are
502    in scope.  NAME is the natural name of the symbol that we're looking
503    looking for, BLOCK is the block that we're searching within, DOMAIN
504    says what kind of symbols we're looking for, and if SYMTAB is non-NULL,
505    we should store the symtab where we found the symbol in it.  */
506 
507 struct block_symbol
508 d_lookup_symbol_nonlocal (const struct language_defn *langdef,
509 			  const char *name,
510 			  const struct block *block,
511 			  const domain_enum domain)
512 {
513   struct block_symbol sym;
514   const char *scope = block_scope (block);
515 
516   sym = lookup_module_scope (langdef, name, block, domain, scope, 0);
517   if (sym.symbol != NULL)
518     return sym;
519 
520   return d_lookup_symbol_module (scope, name, block, domain);
521 }
522 
523