1 /* Get info from stack frames; convert between frames, blocks, 2 functions and pc values. 3 4 Copyright (C) 1986-2019 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "symtab.h" 23 #include "bfd.h" 24 #include "objfiles.h" 25 #include "frame.h" 26 #include "gdbcore.h" 27 #include "value.h" 28 #include "target.h" 29 #include "inferior.h" 30 #include "annotate.h" 31 #include "regcache.h" 32 #include "dummy-frame.h" 33 #include "command.h" 34 #include "gdbcmd.h" 35 #include "block.h" 36 #include "inline-frame.h" 37 38 /* Return the innermost lexical block in execution in a specified 39 stack frame. The frame address is assumed valid. 40 41 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code 42 address we used to choose the block. We use this to find a source 43 line, to decide which macro definitions are in scope. 44 45 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's 46 PC, and may not really be a valid PC at all. For example, in the 47 caller of a function declared to never return, the code at the 48 return address will never be reached, so the call instruction may 49 be the very last instruction in the block. So the address we use 50 to choose the block is actually one byte before the return address 51 --- hopefully pointing us at the call instruction, or its delay 52 slot instruction. */ 53 54 const struct block * 55 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block) 56 { 57 CORE_ADDR pc; 58 const struct block *bl; 59 int inline_count; 60 61 if (!get_frame_address_in_block_if_available (frame, &pc)) 62 return NULL; 63 64 if (addr_in_block) 65 *addr_in_block = pc; 66 67 bl = block_for_pc (pc); 68 if (bl == NULL) 69 return NULL; 70 71 inline_count = frame_inlined_callees (frame); 72 73 while (inline_count > 0) 74 { 75 if (block_inlined_p (bl)) 76 inline_count--; 77 78 bl = BLOCK_SUPERBLOCK (bl); 79 gdb_assert (bl != NULL); 80 } 81 82 return bl; 83 } 84 85 CORE_ADDR 86 get_pc_function_start (CORE_ADDR pc) 87 { 88 const struct block *bl; 89 struct bound_minimal_symbol msymbol; 90 91 bl = block_for_pc (pc); 92 if (bl) 93 { 94 struct symbol *symbol = block_linkage_function (bl); 95 96 if (symbol) 97 { 98 bl = SYMBOL_BLOCK_VALUE (symbol); 99 return BLOCK_ENTRY_PC (bl); 100 } 101 } 102 103 msymbol = lookup_minimal_symbol_by_pc (pc); 104 if (msymbol.minsym) 105 { 106 CORE_ADDR fstart = BMSYMBOL_VALUE_ADDRESS (msymbol); 107 108 if (find_pc_section (fstart)) 109 return fstart; 110 } 111 112 return 0; 113 } 114 115 /* Return the symbol for the function executing in frame FRAME. */ 116 117 struct symbol * 118 get_frame_function (struct frame_info *frame) 119 { 120 const struct block *bl = get_frame_block (frame, 0); 121 122 if (bl == NULL) 123 return NULL; 124 125 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL) 126 bl = BLOCK_SUPERBLOCK (bl); 127 128 return BLOCK_FUNCTION (bl); 129 } 130 131 132 /* Return the function containing pc value PC in section SECTION. 133 Returns 0 if function is not known. */ 134 135 struct symbol * 136 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section) 137 { 138 const struct block *b = block_for_pc_sect (pc, section); 139 140 if (b == 0) 141 return 0; 142 return block_linkage_function (b); 143 } 144 145 /* Return the function containing pc value PC. 146 Returns 0 if function is not known. 147 Backward compatibility, no section */ 148 149 struct symbol * 150 find_pc_function (CORE_ADDR pc) 151 { 152 return find_pc_sect_function (pc, find_pc_mapped_section (pc)); 153 } 154 155 /* See symtab.h. */ 156 157 struct symbol * 158 find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section) 159 { 160 const block *bl = block_for_pc_sect (pc, section); 161 162 if (bl == nullptr) 163 return nullptr; 164 165 return block_containing_function (bl); 166 } 167 168 /* These variables are used to cache the most recent result of 169 find_pc_partial_function. 170 171 The addresses cache_pc_function_low and cache_pc_function_high 172 record the range in which PC was found during the most recent 173 successful lookup. When the function occupies a single contiguous 174 address range, these values correspond to the low and high 175 addresses of the function. (The high address is actually one byte 176 beyond the last byte of the function.) For a function with more 177 than one (non-contiguous) range, the range in which PC was found is 178 used to set the cache bounds. 179 180 When determining whether or not these cached values apply to a 181 particular PC value, PC must be within the range specified by 182 cache_pc_function_low and cache_pc_function_high. In addition to 183 PC being in that range, cache_pc_section must also match PC's 184 section. See find_pc_partial_function() for details on both the 185 comparison as well as how PC's section is determined. 186 187 The other values aren't used for determining whether the cache 188 applies, but are used for setting the outputs from 189 find_pc_partial_function. cache_pc_function_low and 190 cache_pc_function_high are used to set outputs as well. */ 191 192 static CORE_ADDR cache_pc_function_low = 0; 193 static CORE_ADDR cache_pc_function_high = 0; 194 static const char *cache_pc_function_name = 0; 195 static struct obj_section *cache_pc_function_section = NULL; 196 static const struct block *cache_pc_function_block = nullptr; 197 198 /* Clear cache, e.g. when symbol table is discarded. */ 199 200 void 201 clear_pc_function_cache (void) 202 { 203 cache_pc_function_low = 0; 204 cache_pc_function_high = 0; 205 cache_pc_function_name = (char *) 0; 206 cache_pc_function_section = NULL; 207 cache_pc_function_block = nullptr; 208 } 209 210 /* See symtab.h. */ 211 212 int 213 find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address, 214 CORE_ADDR *endaddr, const struct block **block) 215 { 216 struct obj_section *section; 217 struct symbol *f; 218 struct bound_minimal_symbol msymbol; 219 struct compunit_symtab *compunit_symtab = NULL; 220 CORE_ADDR mapped_pc; 221 222 /* To ensure that the symbol returned belongs to the correct setion 223 (and that the last [random] symbol from the previous section 224 isn't returned) try to find the section containing PC. First try 225 the overlay code (which by default returns NULL); and second try 226 the normal section code (which almost always succeeds). */ 227 section = find_pc_overlay (pc); 228 if (section == NULL) 229 section = find_pc_section (pc); 230 231 mapped_pc = overlay_mapped_address (pc, section); 232 233 if (mapped_pc >= cache_pc_function_low 234 && mapped_pc < cache_pc_function_high 235 && section == cache_pc_function_section) 236 goto return_cached_value; 237 238 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); 239 for (objfile *objfile : current_program_space->objfiles ()) 240 { 241 if (objfile->sf) 242 { 243 compunit_symtab 244 = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol, 245 mapped_pc, 246 section, 247 0); 248 } 249 if (compunit_symtab != NULL) 250 break; 251 } 252 253 if (compunit_symtab != NULL) 254 { 255 /* Checking whether the msymbol has a larger value is for the 256 "pathological" case mentioned in stack.c:find_frame_funname. 257 258 We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this 259 comparison because the minimal symbol should refer to the 260 function's entry pc which is not necessarily the lowest 261 address of the function. This will happen when the function 262 has more than one range and the entry pc is not within the 263 lowest range of addresses. */ 264 f = find_pc_sect_function (mapped_pc, section); 265 if (f != NULL 266 && (msymbol.minsym == NULL 267 || (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (f)) 268 >= BMSYMBOL_VALUE_ADDRESS (msymbol)))) 269 { 270 const struct block *b = SYMBOL_BLOCK_VALUE (f); 271 272 cache_pc_function_name = SYMBOL_LINKAGE_NAME (f); 273 cache_pc_function_section = section; 274 cache_pc_function_block = b; 275 276 /* For blocks occupying contiguous addresses (i.e. no gaps), 277 the low and high cache addresses are simply the start 278 and end of the block. 279 280 For blocks with non-contiguous ranges, we have to search 281 for the range containing mapped_pc and then use the start 282 and end of that range. 283 284 This causes the returned *ADDRESS and *ENDADDR values to 285 be limited to the range in which mapped_pc is found. See 286 comment preceding declaration of find_pc_partial_function 287 in symtab.h for more information. */ 288 289 if (BLOCK_CONTIGUOUS_P (b)) 290 { 291 cache_pc_function_low = BLOCK_START (b); 292 cache_pc_function_high = BLOCK_END (b); 293 } 294 else 295 { 296 int i; 297 for (i = 0; i < BLOCK_NRANGES (b); i++) 298 { 299 if (BLOCK_RANGE_START (b, i) <= mapped_pc 300 && mapped_pc < BLOCK_RANGE_END (b, i)) 301 { 302 cache_pc_function_low = BLOCK_RANGE_START (b, i); 303 cache_pc_function_high = BLOCK_RANGE_END (b, i); 304 break; 305 } 306 } 307 /* Above loop should exit via the break. */ 308 gdb_assert (i < BLOCK_NRANGES (b)); 309 } 310 311 312 goto return_cached_value; 313 } 314 } 315 316 /* Not in the normal symbol tables, see if the pc is in a known 317 section. If it's not, then give up. This ensures that anything 318 beyond the end of the text seg doesn't appear to be part of the 319 last function in the text segment. */ 320 321 if (!section) 322 msymbol.minsym = NULL; 323 324 /* Must be in the minimal symbol table. */ 325 if (msymbol.minsym == NULL) 326 { 327 /* No available symbol. */ 328 if (name != NULL) 329 *name = 0; 330 if (address != NULL) 331 *address = 0; 332 if (endaddr != NULL) 333 *endaddr = 0; 334 return 0; 335 } 336 337 cache_pc_function_low = BMSYMBOL_VALUE_ADDRESS (msymbol); 338 cache_pc_function_name = MSYMBOL_LINKAGE_NAME (msymbol.minsym); 339 cache_pc_function_section = section; 340 cache_pc_function_high = minimal_symbol_upper_bound (msymbol); 341 cache_pc_function_block = nullptr; 342 343 return_cached_value: 344 345 if (address) 346 { 347 if (pc_in_unmapped_range (pc, section)) 348 *address = overlay_unmapped_address (cache_pc_function_low, section); 349 else 350 *address = cache_pc_function_low; 351 } 352 353 if (name) 354 *name = cache_pc_function_name; 355 356 if (endaddr) 357 { 358 if (pc_in_unmapped_range (pc, section)) 359 { 360 /* Because the high address is actually beyond the end of 361 the function (and therefore possibly beyond the end of 362 the overlay), we must actually convert (high - 1) and 363 then add one to that. */ 364 365 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, 366 section); 367 } 368 else 369 *endaddr = cache_pc_function_high; 370 } 371 372 if (block != nullptr) 373 *block = cache_pc_function_block; 374 375 return 1; 376 } 377 378 /* See symtab.h. */ 379 380 bool 381 find_function_entry_range_from_pc (CORE_ADDR pc, const char **name, 382 CORE_ADDR *address, CORE_ADDR *endaddr) 383 { 384 const struct block *block; 385 bool status = find_pc_partial_function (pc, name, address, endaddr, &block); 386 387 if (status && block != nullptr && !BLOCK_CONTIGUOUS_P (block)) 388 { 389 CORE_ADDR entry_pc = BLOCK_ENTRY_PC (block); 390 391 for (int i = 0; i < BLOCK_NRANGES (block); i++) 392 { 393 if (BLOCK_RANGE_START (block, i) <= entry_pc 394 && entry_pc < BLOCK_RANGE_END (block, i)) 395 { 396 if (address != nullptr) 397 *address = BLOCK_RANGE_START (block, i); 398 399 if (endaddr != nullptr) 400 *endaddr = BLOCK_RANGE_END (block, i); 401 402 return status; 403 } 404 } 405 406 /* It's an internal error if we exit the above loop without finding 407 the range. */ 408 internal_error (__FILE__, __LINE__, 409 _("Entry block not found in find_function_entry_range_from_pc")); 410 } 411 412 return status; 413 } 414 415 /* See symtab.h. */ 416 417 struct type * 418 find_function_type (CORE_ADDR pc) 419 { 420 struct symbol *sym = find_pc_function (pc); 421 422 if (sym != NULL && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == pc) 423 return SYMBOL_TYPE (sym); 424 425 return NULL; 426 } 427 428 /* See symtab.h. */ 429 430 struct type * 431 find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr) 432 { 433 struct type *resolver_type = find_function_type (resolver_funaddr); 434 if (resolver_type != NULL) 435 { 436 /* Get the return type of the resolver. */ 437 struct type *resolver_ret_type 438 = check_typedef (TYPE_TARGET_TYPE (resolver_type)); 439 440 /* If we found a pointer to function, then the resolved type 441 is the type of the pointed-to function. */ 442 if (TYPE_CODE (resolver_ret_type) == TYPE_CODE_PTR) 443 { 444 struct type *resolved_type 445 = TYPE_TARGET_TYPE (resolver_ret_type); 446 if (TYPE_CODE (check_typedef (resolved_type)) == TYPE_CODE_FUNC) 447 return resolved_type; 448 } 449 } 450 451 return NULL; 452 } 453 454 /* Return the innermost stack frame that is executing inside of BLOCK and is 455 at least as old as the selected frame. Return NULL if there is no 456 such frame. If BLOCK is NULL, just return NULL. */ 457 458 struct frame_info * 459 block_innermost_frame (const struct block *block) 460 { 461 struct frame_info *frame; 462 463 if (block == NULL) 464 return NULL; 465 466 frame = get_selected_frame_if_set (); 467 if (frame == NULL) 468 frame = get_current_frame (); 469 while (frame != NULL) 470 { 471 const struct block *frame_block = get_frame_block (frame, NULL); 472 if (frame_block != NULL && contained_in (frame_block, block)) 473 return frame; 474 475 frame = get_prev_frame (frame); 476 } 477 478 return NULL; 479 } 480