xref: /netbsd-src/external/gpl3/gdb/dist/gdb/blockframe.c (revision cef8759bd76c1b621f8eab8faa6f208faabc2e15)
1 /* Get info from stack frames; convert between frames, blocks,
2    functions and pc values.
3 
4    Copyright (C) 1986-2019 Free Software Foundation, Inc.
5 
6    This file is part of GDB.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
20 
21 #include "defs.h"
22 #include "symtab.h"
23 #include "bfd.h"
24 #include "objfiles.h"
25 #include "frame.h"
26 #include "gdbcore.h"
27 #include "value.h"
28 #include "target.h"
29 #include "inferior.h"
30 #include "annotate.h"
31 #include "regcache.h"
32 #include "dummy-frame.h"
33 #include "command.h"
34 #include "gdbcmd.h"
35 #include "block.h"
36 #include "inline-frame.h"
37 
38 /* Return the innermost lexical block in execution in a specified
39    stack frame.  The frame address is assumed valid.
40 
41    If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code
42    address we used to choose the block.  We use this to find a source
43    line, to decide which macro definitions are in scope.
44 
45    The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's
46    PC, and may not really be a valid PC at all.  For example, in the
47    caller of a function declared to never return, the code at the
48    return address will never be reached, so the call instruction may
49    be the very last instruction in the block.  So the address we use
50    to choose the block is actually one byte before the return address
51    --- hopefully pointing us at the call instruction, or its delay
52    slot instruction.  */
53 
54 const struct block *
55 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block)
56 {
57   CORE_ADDR pc;
58   const struct block *bl;
59   int inline_count;
60 
61   if (!get_frame_address_in_block_if_available (frame, &pc))
62     return NULL;
63 
64   if (addr_in_block)
65     *addr_in_block = pc;
66 
67   bl = block_for_pc (pc);
68   if (bl == NULL)
69     return NULL;
70 
71   inline_count = frame_inlined_callees (frame);
72 
73   while (inline_count > 0)
74     {
75       if (block_inlined_p (bl))
76 	inline_count--;
77 
78       bl = BLOCK_SUPERBLOCK (bl);
79       gdb_assert (bl != NULL);
80     }
81 
82   return bl;
83 }
84 
85 CORE_ADDR
86 get_pc_function_start (CORE_ADDR pc)
87 {
88   const struct block *bl;
89   struct bound_minimal_symbol msymbol;
90 
91   bl = block_for_pc (pc);
92   if (bl)
93     {
94       struct symbol *symbol = block_linkage_function (bl);
95 
96       if (symbol)
97 	{
98 	  bl = SYMBOL_BLOCK_VALUE (symbol);
99 	  return BLOCK_ENTRY_PC (bl);
100 	}
101     }
102 
103   msymbol = lookup_minimal_symbol_by_pc (pc);
104   if (msymbol.minsym)
105     {
106       CORE_ADDR fstart = BMSYMBOL_VALUE_ADDRESS (msymbol);
107 
108       if (find_pc_section (fstart))
109 	return fstart;
110     }
111 
112   return 0;
113 }
114 
115 /* Return the symbol for the function executing in frame FRAME.  */
116 
117 struct symbol *
118 get_frame_function (struct frame_info *frame)
119 {
120   const struct block *bl = get_frame_block (frame, 0);
121 
122   if (bl == NULL)
123     return NULL;
124 
125   while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL)
126     bl = BLOCK_SUPERBLOCK (bl);
127 
128   return BLOCK_FUNCTION (bl);
129 }
130 
131 
132 /* Return the function containing pc value PC in section SECTION.
133    Returns 0 if function is not known.  */
134 
135 struct symbol *
136 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section)
137 {
138   const struct block *b = block_for_pc_sect (pc, section);
139 
140   if (b == 0)
141     return 0;
142   return block_linkage_function (b);
143 }
144 
145 /* Return the function containing pc value PC.
146    Returns 0 if function is not known.
147    Backward compatibility, no section */
148 
149 struct symbol *
150 find_pc_function (CORE_ADDR pc)
151 {
152   return find_pc_sect_function (pc, find_pc_mapped_section (pc));
153 }
154 
155 /* See symtab.h.  */
156 
157 struct symbol *
158 find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section)
159 {
160   const block *bl = block_for_pc_sect (pc, section);
161 
162   if (bl == nullptr)
163     return nullptr;
164 
165   return block_containing_function (bl);
166 }
167 
168 /* These variables are used to cache the most recent result of
169    find_pc_partial_function.
170 
171    The addresses cache_pc_function_low and cache_pc_function_high
172    record the range in which PC was found during the most recent
173    successful lookup.  When the function occupies a single contiguous
174    address range, these values correspond to the low and high
175    addresses of the function.  (The high address is actually one byte
176    beyond the last byte of the function.)  For a function with more
177    than one (non-contiguous) range, the range in which PC was found is
178    used to set the cache bounds.
179 
180    When determining whether or not these cached values apply to a
181    particular PC value, PC must be within the range specified by
182    cache_pc_function_low and cache_pc_function_high.  In addition to
183    PC being in that range, cache_pc_section must also match PC's
184    section.  See find_pc_partial_function() for details on both the
185    comparison as well as how PC's section is determined.
186 
187    The other values aren't used for determining whether the cache
188    applies, but are used for setting the outputs from
189    find_pc_partial_function.  cache_pc_function_low and
190    cache_pc_function_high are used to set outputs as well.  */
191 
192 static CORE_ADDR cache_pc_function_low = 0;
193 static CORE_ADDR cache_pc_function_high = 0;
194 static const char *cache_pc_function_name = 0;
195 static struct obj_section *cache_pc_function_section = NULL;
196 static const struct block *cache_pc_function_block = nullptr;
197 
198 /* Clear cache, e.g. when symbol table is discarded.  */
199 
200 void
201 clear_pc_function_cache (void)
202 {
203   cache_pc_function_low = 0;
204   cache_pc_function_high = 0;
205   cache_pc_function_name = (char *) 0;
206   cache_pc_function_section = NULL;
207   cache_pc_function_block = nullptr;
208 }
209 
210 /* See symtab.h.  */
211 
212 int
213 find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address,
214 			  CORE_ADDR *endaddr, const struct block **block)
215 {
216   struct obj_section *section;
217   struct symbol *f;
218   struct bound_minimal_symbol msymbol;
219   struct compunit_symtab *compunit_symtab = NULL;
220   CORE_ADDR mapped_pc;
221 
222   /* To ensure that the symbol returned belongs to the correct setion
223      (and that the last [random] symbol from the previous section
224      isn't returned) try to find the section containing PC.  First try
225      the overlay code (which by default returns NULL); and second try
226      the normal section code (which almost always succeeds).  */
227   section = find_pc_overlay (pc);
228   if (section == NULL)
229     section = find_pc_section (pc);
230 
231   mapped_pc = overlay_mapped_address (pc, section);
232 
233   if (mapped_pc >= cache_pc_function_low
234       && mapped_pc < cache_pc_function_high
235       && section == cache_pc_function_section)
236     goto return_cached_value;
237 
238   msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section);
239   for (objfile *objfile : current_program_space->objfiles ())
240     {
241       if (objfile->sf)
242 	{
243 	  compunit_symtab
244 	    = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
245 							     mapped_pc,
246 							     section,
247 							     0);
248 	}
249       if (compunit_symtab != NULL)
250 	break;
251     }
252 
253   if (compunit_symtab != NULL)
254     {
255       /* Checking whether the msymbol has a larger value is for the
256 	 "pathological" case mentioned in stack.c:find_frame_funname.
257 
258 	 We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this
259 	 comparison because the minimal symbol should refer to the
260 	 function's entry pc which is not necessarily the lowest
261 	 address of the function.  This will happen when the function
262 	 has more than one range and the entry pc is not within the
263 	 lowest range of addresses.  */
264       f = find_pc_sect_function (mapped_pc, section);
265       if (f != NULL
266 	  && (msymbol.minsym == NULL
267 	      || (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (f))
268 		  >= BMSYMBOL_VALUE_ADDRESS (msymbol))))
269 	{
270 	  const struct block *b = SYMBOL_BLOCK_VALUE (f);
271 
272 	  cache_pc_function_name = SYMBOL_LINKAGE_NAME (f);
273 	  cache_pc_function_section = section;
274 	  cache_pc_function_block = b;
275 
276 	  /* For blocks occupying contiguous addresses (i.e. no gaps),
277 	     the low and high cache addresses are simply the start
278 	     and end of the block.
279 
280 	     For blocks with non-contiguous ranges, we have to search
281 	     for the range containing mapped_pc and then use the start
282 	     and end of that range.
283 
284 	     This causes the returned *ADDRESS and *ENDADDR values to
285 	     be limited to the range in which mapped_pc is found.  See
286 	     comment preceding declaration of find_pc_partial_function
287 	     in symtab.h for more information.  */
288 
289 	  if (BLOCK_CONTIGUOUS_P (b))
290 	    {
291 	      cache_pc_function_low = BLOCK_START (b);
292 	      cache_pc_function_high = BLOCK_END (b);
293 	    }
294 	  else
295 	    {
296 	      int i;
297 	      for (i = 0; i < BLOCK_NRANGES (b); i++)
298 	        {
299 		  if (BLOCK_RANGE_START (b, i) <= mapped_pc
300 		      && mapped_pc < BLOCK_RANGE_END (b, i))
301 		    {
302 		      cache_pc_function_low = BLOCK_RANGE_START (b, i);
303 		      cache_pc_function_high = BLOCK_RANGE_END (b, i);
304 		      break;
305 		    }
306 		}
307 	      /* Above loop should exit via the break.  */
308 	      gdb_assert (i < BLOCK_NRANGES (b));
309 	    }
310 
311 
312 	  goto return_cached_value;
313 	}
314     }
315 
316   /* Not in the normal symbol tables, see if the pc is in a known
317      section.  If it's not, then give up.  This ensures that anything
318      beyond the end of the text seg doesn't appear to be part of the
319      last function in the text segment.  */
320 
321   if (!section)
322     msymbol.minsym = NULL;
323 
324   /* Must be in the minimal symbol table.  */
325   if (msymbol.minsym == NULL)
326     {
327       /* No available symbol.  */
328       if (name != NULL)
329 	*name = 0;
330       if (address != NULL)
331 	*address = 0;
332       if (endaddr != NULL)
333 	*endaddr = 0;
334       return 0;
335     }
336 
337   cache_pc_function_low = BMSYMBOL_VALUE_ADDRESS (msymbol);
338   cache_pc_function_name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
339   cache_pc_function_section = section;
340   cache_pc_function_high = minimal_symbol_upper_bound (msymbol);
341   cache_pc_function_block = nullptr;
342 
343  return_cached_value:
344 
345   if (address)
346     {
347       if (pc_in_unmapped_range (pc, section))
348 	*address = overlay_unmapped_address (cache_pc_function_low, section);
349       else
350 	*address = cache_pc_function_low;
351     }
352 
353   if (name)
354     *name = cache_pc_function_name;
355 
356   if (endaddr)
357     {
358       if (pc_in_unmapped_range (pc, section))
359 	{
360 	  /* Because the high address is actually beyond the end of
361 	     the function (and therefore possibly beyond the end of
362 	     the overlay), we must actually convert (high - 1) and
363 	     then add one to that.  */
364 
365 	  *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1,
366 						   section);
367 	}
368       else
369 	*endaddr = cache_pc_function_high;
370     }
371 
372   if (block != nullptr)
373     *block = cache_pc_function_block;
374 
375   return 1;
376 }
377 
378 /* See symtab.h.  */
379 
380 bool
381 find_function_entry_range_from_pc (CORE_ADDR pc, const char **name,
382 				   CORE_ADDR *address, CORE_ADDR *endaddr)
383 {
384   const struct block *block;
385   bool status = find_pc_partial_function (pc, name, address, endaddr, &block);
386 
387   if (status && block != nullptr && !BLOCK_CONTIGUOUS_P (block))
388     {
389       CORE_ADDR entry_pc = BLOCK_ENTRY_PC (block);
390 
391       for (int i = 0; i < BLOCK_NRANGES (block); i++)
392         {
393 	  if (BLOCK_RANGE_START (block, i) <= entry_pc
394 	      && entry_pc < BLOCK_RANGE_END (block, i))
395 	    {
396 	      if (address != nullptr)
397 	        *address = BLOCK_RANGE_START (block, i);
398 
399 	      if (endaddr != nullptr)
400 	        *endaddr = BLOCK_RANGE_END (block, i);
401 
402 	      return status;
403 	    }
404 	}
405 
406       /* It's an internal error if we exit the above loop without finding
407          the range.  */
408       internal_error (__FILE__, __LINE__,
409                       _("Entry block not found in find_function_entry_range_from_pc"));
410     }
411 
412   return status;
413 }
414 
415 /* See symtab.h.  */
416 
417 struct type *
418 find_function_type (CORE_ADDR pc)
419 {
420   struct symbol *sym = find_pc_function (pc);
421 
422   if (sym != NULL && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == pc)
423     return SYMBOL_TYPE (sym);
424 
425   return NULL;
426 }
427 
428 /* See symtab.h.  */
429 
430 struct type *
431 find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr)
432 {
433   struct type *resolver_type = find_function_type (resolver_funaddr);
434   if (resolver_type != NULL)
435     {
436       /* Get the return type of the resolver.  */
437       struct type *resolver_ret_type
438 	= check_typedef (TYPE_TARGET_TYPE (resolver_type));
439 
440       /* If we found a pointer to function, then the resolved type
441 	 is the type of the pointed-to function.  */
442       if (TYPE_CODE (resolver_ret_type) == TYPE_CODE_PTR)
443 	{
444 	  struct type *resolved_type
445 	    = TYPE_TARGET_TYPE (resolver_ret_type);
446 	  if (TYPE_CODE (check_typedef (resolved_type)) == TYPE_CODE_FUNC)
447 	    return resolved_type;
448 	}
449     }
450 
451   return NULL;
452 }
453 
454 /* Return the innermost stack frame that is executing inside of BLOCK and is
455    at least as old as the selected frame. Return NULL if there is no
456    such frame.  If BLOCK is NULL, just return NULL.  */
457 
458 struct frame_info *
459 block_innermost_frame (const struct block *block)
460 {
461   struct frame_info *frame;
462 
463   if (block == NULL)
464     return NULL;
465 
466   frame = get_selected_frame_if_set ();
467   if (frame == NULL)
468     frame = get_current_frame ();
469   while (frame != NULL)
470     {
471       const struct block *frame_block = get_frame_block (frame, NULL);
472       if (frame_block != NULL && contained_in (frame_block, block))
473 	return frame;
474 
475       frame = get_prev_frame (frame);
476     }
477 
478   return NULL;
479 }
480