1 /* Get info from stack frames; convert between frames, blocks, 2 functions and pc values. 3 4 Copyright (C) 1986-2020 Free Software Foundation, Inc. 5 6 This file is part of GDB. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 20 21 #include "defs.h" 22 #include "symtab.h" 23 #include "bfd.h" 24 #include "objfiles.h" 25 #include "frame.h" 26 #include "gdbcore.h" 27 #include "value.h" 28 #include "target.h" 29 #include "inferior.h" 30 #include "annotate.h" 31 #include "regcache.h" 32 #include "dummy-frame.h" 33 #include "command.h" 34 #include "gdbcmd.h" 35 #include "block.h" 36 #include "inline-frame.h" 37 38 /* Return the innermost lexical block in execution in a specified 39 stack frame. The frame address is assumed valid. 40 41 If ADDR_IN_BLOCK is non-zero, set *ADDR_IN_BLOCK to the exact code 42 address we used to choose the block. We use this to find a source 43 line, to decide which macro definitions are in scope. 44 45 The value returned in *ADDR_IN_BLOCK isn't necessarily the frame's 46 PC, and may not really be a valid PC at all. For example, in the 47 caller of a function declared to never return, the code at the 48 return address will never be reached, so the call instruction may 49 be the very last instruction in the block. So the address we use 50 to choose the block is actually one byte before the return address 51 --- hopefully pointing us at the call instruction, or its delay 52 slot instruction. */ 53 54 const struct block * 55 get_frame_block (struct frame_info *frame, CORE_ADDR *addr_in_block) 56 { 57 CORE_ADDR pc; 58 const struct block *bl; 59 int inline_count; 60 61 if (!get_frame_address_in_block_if_available (frame, &pc)) 62 return NULL; 63 64 if (addr_in_block) 65 *addr_in_block = pc; 66 67 bl = block_for_pc (pc); 68 if (bl == NULL) 69 return NULL; 70 71 inline_count = frame_inlined_callees (frame); 72 73 while (inline_count > 0) 74 { 75 if (block_inlined_p (bl)) 76 inline_count--; 77 78 bl = BLOCK_SUPERBLOCK (bl); 79 gdb_assert (bl != NULL); 80 } 81 82 return bl; 83 } 84 85 CORE_ADDR 86 get_pc_function_start (CORE_ADDR pc) 87 { 88 const struct block *bl; 89 struct bound_minimal_symbol msymbol; 90 91 bl = block_for_pc (pc); 92 if (bl) 93 { 94 struct symbol *symbol = block_linkage_function (bl); 95 96 if (symbol) 97 { 98 bl = SYMBOL_BLOCK_VALUE (symbol); 99 return BLOCK_ENTRY_PC (bl); 100 } 101 } 102 103 msymbol = lookup_minimal_symbol_by_pc (pc); 104 if (msymbol.minsym) 105 { 106 CORE_ADDR fstart = BMSYMBOL_VALUE_ADDRESS (msymbol); 107 108 if (find_pc_section (fstart)) 109 return fstart; 110 } 111 112 return 0; 113 } 114 115 /* Return the symbol for the function executing in frame FRAME. */ 116 117 struct symbol * 118 get_frame_function (struct frame_info *frame) 119 { 120 const struct block *bl = get_frame_block (frame, 0); 121 122 if (bl == NULL) 123 return NULL; 124 125 while (BLOCK_FUNCTION (bl) == NULL && BLOCK_SUPERBLOCK (bl) != NULL) 126 bl = BLOCK_SUPERBLOCK (bl); 127 128 return BLOCK_FUNCTION (bl); 129 } 130 131 132 /* Return the function containing pc value PC in section SECTION. 133 Returns 0 if function is not known. */ 134 135 struct symbol * 136 find_pc_sect_function (CORE_ADDR pc, struct obj_section *section) 137 { 138 const struct block *b = block_for_pc_sect (pc, section); 139 140 if (b == 0) 141 return 0; 142 return block_linkage_function (b); 143 } 144 145 /* Return the function containing pc value PC. 146 Returns 0 if function is not known. 147 Backward compatibility, no section */ 148 149 struct symbol * 150 find_pc_function (CORE_ADDR pc) 151 { 152 return find_pc_sect_function (pc, find_pc_mapped_section (pc)); 153 } 154 155 /* See symtab.h. */ 156 157 struct symbol * 158 find_pc_sect_containing_function (CORE_ADDR pc, struct obj_section *section) 159 { 160 const block *bl = block_for_pc_sect (pc, section); 161 162 if (bl == nullptr) 163 return nullptr; 164 165 return block_containing_function (bl); 166 } 167 168 /* These variables are used to cache the most recent result of 169 find_pc_partial_function. 170 171 The addresses cache_pc_function_low and cache_pc_function_high 172 record the range in which PC was found during the most recent 173 successful lookup. When the function occupies a single contiguous 174 address range, these values correspond to the low and high 175 addresses of the function. (The high address is actually one byte 176 beyond the last byte of the function.) For a function with more 177 than one (non-contiguous) range, the range in which PC was found is 178 used to set the cache bounds. 179 180 When determining whether or not these cached values apply to a 181 particular PC value, PC must be within the range specified by 182 cache_pc_function_low and cache_pc_function_high. In addition to 183 PC being in that range, cache_pc_section must also match PC's 184 section. See find_pc_partial_function() for details on both the 185 comparison as well as how PC's section is determined. 186 187 The other values aren't used for determining whether the cache 188 applies, but are used for setting the outputs from 189 find_pc_partial_function. cache_pc_function_low and 190 cache_pc_function_high are used to set outputs as well. */ 191 192 static CORE_ADDR cache_pc_function_low = 0; 193 static CORE_ADDR cache_pc_function_high = 0; 194 static const general_symbol_info *cache_pc_function_sym = nullptr; 195 static struct obj_section *cache_pc_function_section = NULL; 196 static const struct block *cache_pc_function_block = nullptr; 197 198 /* Clear cache, e.g. when symbol table is discarded. */ 199 200 void 201 clear_pc_function_cache (void) 202 { 203 cache_pc_function_low = 0; 204 cache_pc_function_high = 0; 205 cache_pc_function_sym = nullptr; 206 cache_pc_function_section = NULL; 207 cache_pc_function_block = nullptr; 208 } 209 210 /* See symtab.h. */ 211 212 bool 213 find_pc_partial_function_sym (CORE_ADDR pc, 214 const struct general_symbol_info **sym, 215 CORE_ADDR *address, CORE_ADDR *endaddr, 216 const struct block **block) 217 { 218 struct obj_section *section; 219 struct symbol *f; 220 struct bound_minimal_symbol msymbol; 221 struct compunit_symtab *compunit_symtab = NULL; 222 CORE_ADDR mapped_pc; 223 224 /* To ensure that the symbol returned belongs to the correct section 225 (and that the last [random] symbol from the previous section 226 isn't returned) try to find the section containing PC. First try 227 the overlay code (which by default returns NULL); and second try 228 the normal section code (which almost always succeeds). */ 229 section = find_pc_overlay (pc); 230 if (section == NULL) 231 section = find_pc_section (pc); 232 233 mapped_pc = overlay_mapped_address (pc, section); 234 235 if (mapped_pc >= cache_pc_function_low 236 && mapped_pc < cache_pc_function_high 237 && section == cache_pc_function_section) 238 goto return_cached_value; 239 240 msymbol = lookup_minimal_symbol_by_pc_section (mapped_pc, section); 241 compunit_symtab = find_pc_sect_compunit_symtab (mapped_pc, section); 242 243 if (compunit_symtab != NULL) 244 { 245 /* Checking whether the msymbol has a larger value is for the 246 "pathological" case mentioned in stack.c:find_frame_funname. 247 248 We use BLOCK_ENTRY_PC instead of BLOCK_START_PC for this 249 comparison because the minimal symbol should refer to the 250 function's entry pc which is not necessarily the lowest 251 address of the function. This will happen when the function 252 has more than one range and the entry pc is not within the 253 lowest range of addresses. */ 254 f = find_pc_sect_function (mapped_pc, section); 255 if (f != NULL 256 && (msymbol.minsym == NULL 257 || (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (f)) 258 >= BMSYMBOL_VALUE_ADDRESS (msymbol)))) 259 { 260 const struct block *b = SYMBOL_BLOCK_VALUE (f); 261 262 cache_pc_function_sym = f; 263 cache_pc_function_section = section; 264 cache_pc_function_block = b; 265 266 /* For blocks occupying contiguous addresses (i.e. no gaps), 267 the low and high cache addresses are simply the start 268 and end of the block. 269 270 For blocks with non-contiguous ranges, we have to search 271 for the range containing mapped_pc and then use the start 272 and end of that range. 273 274 This causes the returned *ADDRESS and *ENDADDR values to 275 be limited to the range in which mapped_pc is found. See 276 comment preceding declaration of find_pc_partial_function 277 in symtab.h for more information. */ 278 279 if (BLOCK_CONTIGUOUS_P (b)) 280 { 281 cache_pc_function_low = BLOCK_START (b); 282 cache_pc_function_high = BLOCK_END (b); 283 } 284 else 285 { 286 int i; 287 for (i = 0; i < BLOCK_NRANGES (b); i++) 288 { 289 if (BLOCK_RANGE_START (b, i) <= mapped_pc 290 && mapped_pc < BLOCK_RANGE_END (b, i)) 291 { 292 cache_pc_function_low = BLOCK_RANGE_START (b, i); 293 cache_pc_function_high = BLOCK_RANGE_END (b, i); 294 break; 295 } 296 } 297 /* Above loop should exit via the break. */ 298 gdb_assert (i < BLOCK_NRANGES (b)); 299 } 300 301 302 goto return_cached_value; 303 } 304 } 305 306 /* Not in the normal symbol tables, see if the pc is in a known 307 section. If it's not, then give up. This ensures that anything 308 beyond the end of the text seg doesn't appear to be part of the 309 last function in the text segment. */ 310 311 if (!section) 312 msymbol.minsym = NULL; 313 314 /* Must be in the minimal symbol table. */ 315 if (msymbol.minsym == NULL) 316 { 317 /* No available symbol. */ 318 if (sym != nullptr) 319 *sym = 0; 320 if (address != NULL) 321 *address = 0; 322 if (endaddr != NULL) 323 *endaddr = 0; 324 if (block != nullptr) 325 *block = nullptr; 326 return false; 327 } 328 329 cache_pc_function_low = BMSYMBOL_VALUE_ADDRESS (msymbol); 330 cache_pc_function_sym = msymbol.minsym; 331 cache_pc_function_section = section; 332 cache_pc_function_high = minimal_symbol_upper_bound (msymbol); 333 cache_pc_function_block = nullptr; 334 335 return_cached_value: 336 337 if (address) 338 { 339 if (pc_in_unmapped_range (pc, section)) 340 *address = overlay_unmapped_address (cache_pc_function_low, section); 341 else 342 *address = cache_pc_function_low; 343 } 344 345 if (sym != nullptr) 346 *sym = cache_pc_function_sym; 347 348 if (endaddr) 349 { 350 if (pc_in_unmapped_range (pc, section)) 351 { 352 /* Because the high address is actually beyond the end of 353 the function (and therefore possibly beyond the end of 354 the overlay), we must actually convert (high - 1) and 355 then add one to that. */ 356 357 *endaddr = 1 + overlay_unmapped_address (cache_pc_function_high - 1, 358 section); 359 } 360 else 361 *endaddr = cache_pc_function_high; 362 } 363 364 if (block != nullptr) 365 *block = cache_pc_function_block; 366 367 return true; 368 } 369 370 /* See symtab.h. */ 371 372 bool 373 find_pc_partial_function (CORE_ADDR pc, const char **name, CORE_ADDR *address, 374 CORE_ADDR *endaddr, const struct block **block) 375 { 376 const general_symbol_info *gsi; 377 bool r = find_pc_partial_function_sym (pc, &gsi, address, endaddr, block); 378 if (name != nullptr) 379 *name = r ? gsi->linkage_name () : nullptr; 380 return r; 381 } 382 383 384 /* See symtab.h. */ 385 386 bool 387 find_function_entry_range_from_pc (CORE_ADDR pc, const char **name, 388 CORE_ADDR *address, CORE_ADDR *endaddr) 389 { 390 const struct block *block; 391 bool status = find_pc_partial_function (pc, name, address, endaddr, &block); 392 393 if (status && block != nullptr && !BLOCK_CONTIGUOUS_P (block)) 394 { 395 CORE_ADDR entry_pc = BLOCK_ENTRY_PC (block); 396 397 for (int i = 0; i < BLOCK_NRANGES (block); i++) 398 { 399 if (BLOCK_RANGE_START (block, i) <= entry_pc 400 && entry_pc < BLOCK_RANGE_END (block, i)) 401 { 402 if (address != nullptr) 403 *address = BLOCK_RANGE_START (block, i); 404 405 if (endaddr != nullptr) 406 *endaddr = BLOCK_RANGE_END (block, i); 407 408 return status; 409 } 410 } 411 412 /* It's an internal error if we exit the above loop without finding 413 the range. */ 414 internal_error (__FILE__, __LINE__, 415 _("Entry block not found in find_function_entry_range_from_pc")); 416 } 417 418 return status; 419 } 420 421 /* See symtab.h. */ 422 423 struct type * 424 find_function_type (CORE_ADDR pc) 425 { 426 struct symbol *sym = find_pc_function (pc); 427 428 if (sym != NULL && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == pc) 429 return SYMBOL_TYPE (sym); 430 431 return NULL; 432 } 433 434 /* See symtab.h. */ 435 436 struct type * 437 find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr) 438 { 439 struct type *resolver_type = find_function_type (resolver_funaddr); 440 if (resolver_type != NULL) 441 { 442 /* Get the return type of the resolver. */ 443 struct type *resolver_ret_type 444 = check_typedef (TYPE_TARGET_TYPE (resolver_type)); 445 446 /* If we found a pointer to function, then the resolved type 447 is the type of the pointed-to function. */ 448 if (resolver_ret_type->code () == TYPE_CODE_PTR) 449 { 450 struct type *resolved_type 451 = TYPE_TARGET_TYPE (resolver_ret_type); 452 if (check_typedef (resolved_type)->code () == TYPE_CODE_FUNC) 453 return resolved_type; 454 } 455 } 456 457 return NULL; 458 } 459 460 /* Return the innermost stack frame that is executing inside of BLOCK and is 461 at least as old as the selected frame. Return NULL if there is no 462 such frame. If BLOCK is NULL, just return NULL. */ 463 464 struct frame_info * 465 block_innermost_frame (const struct block *block) 466 { 467 struct frame_info *frame; 468 469 if (block == NULL) 470 return NULL; 471 472 frame = get_selected_frame_if_set (); 473 if (frame == NULL) 474 frame = get_current_frame (); 475 while (frame != NULL) 476 { 477 const struct block *frame_block = get_frame_block (frame, NULL); 478 if (frame_block != NULL && contained_in (frame_block, block)) 479 return frame; 480 481 frame = get_prev_frame (frame); 482 } 483 484 return NULL; 485 } 486