1 /* Copyright (C) 1992-2016 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "observer.h" 20 #include "gdbcmd.h" 21 #include "target.h" 22 #include "ada-lang.h" 23 #include "gdbcore.h" 24 #include "inferior.h" 25 #include "gdbthread.h" 26 #include "progspace.h" 27 #include "objfiles.h" 28 29 /* The name of the array in the GNAT runtime where the Ada Task Control 30 Block of each task is stored. */ 31 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks" 32 33 /* The maximum number of tasks known to the Ada runtime. */ 34 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000; 35 36 /* The name of the variable in the GNAT runtime where the head of a task 37 chain is saved. This is an alternate mechanism to find the list of known 38 tasks. */ 39 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task" 40 41 enum task_states 42 { 43 Unactivated, 44 Runnable, 45 Terminated, 46 Activator_Sleep, 47 Acceptor_Sleep, 48 Entry_Caller_Sleep, 49 Async_Select_Sleep, 50 Delay_Sleep, 51 Master_Completion_Sleep, 52 Master_Phase_2_Sleep, 53 Interrupt_Server_Idle_Sleep, 54 Interrupt_Server_Blocked_Interrupt_Sleep, 55 Timer_Server_Sleep, 56 AST_Server_Sleep, 57 Asynchronous_Hold, 58 Interrupt_Server_Blocked_On_Event_Flag, 59 Activating, 60 Acceptor_Delay_Sleep 61 }; 62 63 /* A short description corresponding to each possible task state. */ 64 static const char *task_states[] = { 65 N_("Unactivated"), 66 N_("Runnable"), 67 N_("Terminated"), 68 N_("Child Activation Wait"), 69 N_("Accept or Select Term"), 70 N_("Waiting on entry call"), 71 N_("Async Select Wait"), 72 N_("Delay Sleep"), 73 N_("Child Termination Wait"), 74 N_("Wait Child in Term Alt"), 75 "", 76 "", 77 "", 78 "", 79 N_("Asynchronous Hold"), 80 "", 81 N_("Activating"), 82 N_("Selective Wait") 83 }; 84 85 /* A longer description corresponding to each possible task state. */ 86 static const char *long_task_states[] = { 87 N_("Unactivated"), 88 N_("Runnable"), 89 N_("Terminated"), 90 N_("Waiting for child activation"), 91 N_("Blocked in accept or select with terminate"), 92 N_("Waiting on entry call"), 93 N_("Asynchronous Selective Wait"), 94 N_("Delay Sleep"), 95 N_("Waiting for children termination"), 96 N_("Waiting for children in terminate alternative"), 97 "", 98 "", 99 "", 100 "", 101 N_("Asynchronous Hold"), 102 "", 103 N_("Activating"), 104 N_("Blocked in selective wait statement") 105 }; 106 107 /* The index of certain important fields in the Ada Task Control Block 108 record and sub-records. */ 109 110 struct atcb_fieldnos 111 { 112 /* Fields in record Ada_Task_Control_Block. */ 113 int common; 114 int entry_calls; 115 int atc_nesting_level; 116 117 /* Fields in record Common_ATCB. */ 118 int state; 119 int parent; 120 int priority; 121 int image; 122 int image_len; /* This field may be missing. */ 123 int activation_link; 124 int call; 125 int ll; 126 127 /* Fields in Task_Primitives.Private_Data. */ 128 int ll_thread; 129 int ll_lwp; /* This field may be missing. */ 130 131 /* Fields in Common_ATCB.Call.all. */ 132 int call_self; 133 }; 134 135 /* This module's per-program-space data. */ 136 137 struct ada_tasks_pspace_data 138 { 139 /* Nonzero if the data has been initialized. If set to zero, 140 it means that the data has either not been initialized, or 141 has potentially become stale. */ 142 int initialized_p; 143 144 /* The ATCB record type. */ 145 struct type *atcb_type; 146 147 /* The ATCB "Common" component type. */ 148 struct type *atcb_common_type; 149 150 /* The type of the "ll" field, from the atcb_common_type. */ 151 struct type *atcb_ll_type; 152 153 /* The type of the "call" field, from the atcb_common_type. */ 154 struct type *atcb_call_type; 155 156 /* The index of various fields in the ATCB record and sub-records. */ 157 struct atcb_fieldnos atcb_fieldno; 158 }; 159 160 /* Key to our per-program-space data. */ 161 static const struct program_space_data *ada_tasks_pspace_data_handle; 162 163 typedef struct ada_task_info ada_task_info_s; 164 DEF_VEC_O(ada_task_info_s); 165 166 /* The kind of data structure used by the runtime to store the list 167 of Ada tasks. */ 168 169 enum ada_known_tasks_kind 170 { 171 /* Use this value when we haven't determined which kind of structure 172 is being used, or when we need to recompute it. 173 174 We set the value of this enumerate to zero on purpose: This allows 175 us to use this enumerate in a structure where setting all fields 176 to zero will result in this kind being set to unknown. */ 177 ADA_TASKS_UNKNOWN = 0, 178 179 /* This value means that we did not find any task list. Unless 180 there is a bug somewhere, this means that the inferior does not 181 use tasking. */ 182 ADA_TASKS_NOT_FOUND, 183 184 /* This value means that the task list is stored as an array. 185 This is the usual method, as it causes very little overhead. 186 But this method is not always used, as it does use a certain 187 amount of memory, which might be scarse in certain environments. */ 188 ADA_TASKS_ARRAY, 189 190 /* This value means that the task list is stored as a linked list. 191 This has more runtime overhead than the array approach, but 192 also require less memory when the number of tasks is small. */ 193 ADA_TASKS_LIST, 194 }; 195 196 /* This module's per-inferior data. */ 197 198 struct ada_tasks_inferior_data 199 { 200 /* The type of data structure used by the runtime to store 201 the list of Ada tasks. The value of this field influences 202 the interpretation of the known_tasks_addr field below: 203 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't 204 been determined yet; 205 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking 206 and the known_tasks_addr is irrelevant; 207 - ADA_TASKS_ARRAY: The known_tasks is an array; 208 - ADA_TASKS_LIST: The known_tasks is a list. */ 209 enum ada_known_tasks_kind known_tasks_kind; 210 211 /* The address of the known_tasks structure. This is where 212 the runtime stores the information for all Ada tasks. 213 The interpretation of this field depends on KNOWN_TASKS_KIND 214 above. */ 215 CORE_ADDR known_tasks_addr; 216 217 /* Type of elements of the known task. Usually a pointer. */ 218 struct type *known_tasks_element; 219 220 /* Number of elements in the known tasks array. */ 221 unsigned int known_tasks_length; 222 223 /* When nonzero, this flag indicates that the task_list field 224 below is up to date. When set to zero, the list has either 225 not been initialized, or has potentially become stale. */ 226 int task_list_valid_p; 227 228 /* The list of Ada tasks. 229 230 Note: To each task we associate a number that the user can use to 231 reference it - this number is printed beside each task in the tasks 232 info listing displayed by "info tasks". This number is equal to 233 its index in the vector + 1. Reciprocally, to compute the index 234 of a task in the vector, we need to substract 1 from its number. */ 235 VEC(ada_task_info_s) *task_list; 236 }; 237 238 /* Key to our per-inferior data. */ 239 static const struct inferior_data *ada_tasks_inferior_data_handle; 240 241 /* Return the ada-tasks module's data for the given program space (PSPACE). 242 If none is found, add a zero'ed one now. 243 244 This function always returns a valid object. */ 245 246 static struct ada_tasks_pspace_data * 247 get_ada_tasks_pspace_data (struct program_space *pspace) 248 { 249 struct ada_tasks_pspace_data *data; 250 251 data = ((struct ada_tasks_pspace_data *) 252 program_space_data (pspace, ada_tasks_pspace_data_handle)); 253 if (data == NULL) 254 { 255 data = XCNEW (struct ada_tasks_pspace_data); 256 set_program_space_data (pspace, ada_tasks_pspace_data_handle, data); 257 } 258 259 return data; 260 } 261 262 /* Return the ada-tasks module's data for the given inferior (INF). 263 If none is found, add a zero'ed one now. 264 265 This function always returns a valid object. 266 267 Note that we could use an observer of the inferior-created event 268 to make sure that the ada-tasks per-inferior data always exists. 269 But we prefered this approach, as it avoids this entirely as long 270 as the user does not use any of the tasking features. This is 271 quite possible, particularly in the case where the inferior does 272 not use tasking. */ 273 274 static struct ada_tasks_inferior_data * 275 get_ada_tasks_inferior_data (struct inferior *inf) 276 { 277 struct ada_tasks_inferior_data *data; 278 279 data = ((struct ada_tasks_inferior_data *) 280 inferior_data (inf, ada_tasks_inferior_data_handle)); 281 if (data == NULL) 282 { 283 data = XCNEW (struct ada_tasks_inferior_data); 284 set_inferior_data (inf, ada_tasks_inferior_data_handle, data); 285 } 286 287 return data; 288 } 289 290 /* Return the task number of the task whose ptid is PTID, or zero 291 if the task could not be found. */ 292 293 int 294 ada_get_task_number (ptid_t ptid) 295 { 296 int i; 297 struct inferior *inf = find_inferior_ptid (ptid); 298 struct ada_tasks_inferior_data *data; 299 300 gdb_assert (inf != NULL); 301 data = get_ada_tasks_inferior_data (inf); 302 303 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++) 304 if (ptid_equal (VEC_index (ada_task_info_s, data->task_list, i)->ptid, 305 ptid)) 306 return i + 1; 307 308 return 0; /* No matching task found. */ 309 } 310 311 /* Return the task number of the task running in inferior INF which 312 matches TASK_ID , or zero if the task could not be found. */ 313 314 static int 315 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf) 316 { 317 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 318 int i; 319 320 for (i = 0; i < VEC_length (ada_task_info_s, data->task_list); i++) 321 { 322 struct ada_task_info *task_info = 323 VEC_index (ada_task_info_s, data->task_list, i); 324 325 if (task_info->task_id == task_id) 326 return i + 1; 327 } 328 329 /* Task not found. Return 0. */ 330 return 0; 331 } 332 333 /* Return non-zero if TASK_NUM is a valid task number. */ 334 335 int 336 valid_task_id (int task_num) 337 { 338 struct ada_tasks_inferior_data *data; 339 340 ada_build_task_list (); 341 data = get_ada_tasks_inferior_data (current_inferior ()); 342 return (task_num > 0 343 && task_num <= VEC_length (ada_task_info_s, data->task_list)); 344 } 345 346 /* Return non-zero iff the task STATE corresponds to a non-terminated 347 task state. */ 348 349 static int 350 ada_task_is_alive (struct ada_task_info *task_info) 351 { 352 return (task_info->state != Terminated); 353 } 354 355 /* Call the ITERATOR function once for each Ada task that hasn't been 356 terminated yet. */ 357 358 void 359 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype *iterator) 360 { 361 int i, nb_tasks; 362 struct ada_task_info *task; 363 struct ada_tasks_inferior_data *data; 364 365 ada_build_task_list (); 366 data = get_ada_tasks_inferior_data (current_inferior ()); 367 nb_tasks = VEC_length (ada_task_info_s, data->task_list); 368 369 for (i = 0; i < nb_tasks; i++) 370 { 371 task = VEC_index (ada_task_info_s, data->task_list, i); 372 if (!ada_task_is_alive (task)) 373 continue; 374 iterator (task); 375 } 376 } 377 378 /* Extract the contents of the value as a string whose length is LENGTH, 379 and store the result in DEST. */ 380 381 static void 382 value_as_string (char *dest, struct value *val, int length) 383 { 384 memcpy (dest, value_contents (val), length); 385 dest[length] = '\0'; 386 } 387 388 /* Extract the string image from the fat string corresponding to VAL, 389 and store it in DEST. If the string length is greater than MAX_LEN, 390 then truncate the result to the first MAX_LEN characters of the fat 391 string. */ 392 393 static void 394 read_fat_string_value (char *dest, struct value *val, int max_len) 395 { 396 struct value *array_val; 397 struct value *bounds_val; 398 int len; 399 400 /* The following variables are made static to avoid recomputing them 401 each time this function is called. */ 402 static int initialize_fieldnos = 1; 403 static int array_fieldno; 404 static int bounds_fieldno; 405 static int upper_bound_fieldno; 406 407 /* Get the index of the fields that we will need to read in order 408 to extract the string from the fat string. */ 409 if (initialize_fieldnos) 410 { 411 struct type *type = value_type (val); 412 struct type *bounds_type; 413 414 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0); 415 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0); 416 417 bounds_type = TYPE_FIELD_TYPE (type, bounds_fieldno); 418 if (TYPE_CODE (bounds_type) == TYPE_CODE_PTR) 419 bounds_type = TYPE_TARGET_TYPE (bounds_type); 420 if (TYPE_CODE (bounds_type) != TYPE_CODE_STRUCT) 421 error (_("Unknown task name format. Aborting")); 422 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0); 423 424 initialize_fieldnos = 0; 425 } 426 427 /* Get the size of the task image by checking the value of the bounds. 428 The lower bound is always 1, so we only need to read the upper bound. */ 429 bounds_val = value_ind (value_field (val, bounds_fieldno)); 430 len = value_as_long (value_field (bounds_val, upper_bound_fieldno)); 431 432 /* Make sure that we do not read more than max_len characters... */ 433 if (len > max_len) 434 len = max_len; 435 436 /* Extract LEN characters from the fat string. */ 437 array_val = value_ind (value_field (val, array_fieldno)); 438 read_memory (value_address (array_val), (gdb_byte *) dest, len); 439 440 /* Add the NUL character to close the string. */ 441 dest[len] = '\0'; 442 } 443 444 /* Get from the debugging information the type description of all types 445 related to the Ada Task Control Block that will be needed in order to 446 read the list of known tasks in the Ada runtime. Also return the 447 associated ATCB_FIELDNOS. 448 449 Error handling: Any data missing from the debugging info will cause 450 an error to be raised, and none of the return values to be set. 451 Users of this function can depend on the fact that all or none of the 452 return values will be set. */ 453 454 static void 455 get_tcb_types_info (void) 456 { 457 struct type *type; 458 struct type *common_type; 459 struct type *ll_type; 460 struct type *call_type; 461 struct atcb_fieldnos fieldnos; 462 struct ada_tasks_pspace_data *pspace_data; 463 464 const char *atcb_name = "system__tasking__ada_task_control_block___XVE"; 465 const char *atcb_name_fixed = "system__tasking__ada_task_control_block"; 466 const char *common_atcb_name = "system__tasking__common_atcb"; 467 const char *private_data_name = "system__task_primitives__private_data"; 468 const char *entry_call_record_name = "system__tasking__entry_call_record"; 469 470 /* ATCB symbols may be found in several compilation units. As we 471 are only interested in one instance, use standard (literal, 472 C-like) lookups to get the first match. */ 473 474 struct symbol *atcb_sym = 475 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN, 476 language_c, NULL).symbol; 477 const struct symbol *common_atcb_sym = 478 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN, 479 language_c, NULL).symbol; 480 const struct symbol *private_data_sym = 481 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN, 482 language_c, NULL).symbol; 483 const struct symbol *entry_call_record_sym = 484 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN, 485 language_c, NULL).symbol; 486 487 if (atcb_sym == NULL || atcb_sym->type == NULL) 488 { 489 /* In Ravenscar run-time libs, the ATCB does not have a dynamic 490 size, so the symbol name differs. */ 491 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, 492 STRUCT_DOMAIN, language_c, 493 NULL).symbol; 494 495 if (atcb_sym == NULL || atcb_sym->type == NULL) 496 error (_("Cannot find Ada_Task_Control_Block type. Aborting")); 497 498 type = atcb_sym->type; 499 } 500 else 501 { 502 /* Get a static representation of the type record 503 Ada_Task_Control_Block. */ 504 type = atcb_sym->type; 505 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0); 506 } 507 508 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL) 509 error (_("Cannot find Common_ATCB type. Aborting")); 510 if (private_data_sym == NULL || private_data_sym->type == NULL) 511 error (_("Cannot find Private_Data type. Aborting")); 512 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL) 513 error (_("Cannot find Entry_Call_Record type. Aborting")); 514 515 /* Get the type for Ada_Task_Control_Block.Common. */ 516 common_type = common_atcb_sym->type; 517 518 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */ 519 ll_type = private_data_sym->type; 520 521 /* Get the type for Common_ATCB.Call.all. */ 522 call_type = entry_call_record_sym->type; 523 524 /* Get the field indices. */ 525 fieldnos.common = ada_get_field_index (type, "common", 0); 526 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1); 527 fieldnos.atc_nesting_level = 528 ada_get_field_index (type, "atc_nesting_level", 1); 529 fieldnos.state = ada_get_field_index (common_type, "state", 0); 530 fieldnos.parent = ada_get_field_index (common_type, "parent", 1); 531 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0); 532 fieldnos.image = ada_get_field_index (common_type, "task_image", 1); 533 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1); 534 fieldnos.activation_link = ada_get_field_index (common_type, 535 "activation_link", 1); 536 fieldnos.call = ada_get_field_index (common_type, "call", 1); 537 fieldnos.ll = ada_get_field_index (common_type, "ll", 0); 538 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0); 539 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1); 540 fieldnos.call_self = ada_get_field_index (call_type, "self", 0); 541 542 /* On certain platforms such as x86-windows, the "lwp" field has been 543 named "thread_id". This field will likely be renamed in the future, 544 but we need to support both possibilities to avoid an unnecessary 545 dependency on a recent compiler. We therefore try locating the 546 "thread_id" field in place of the "lwp" field if we did not find 547 the latter. */ 548 if (fieldnos.ll_lwp < 0) 549 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1); 550 551 /* Set all the out parameters all at once, now that we are certain 552 that there are no potential error() anymore. */ 553 pspace_data = get_ada_tasks_pspace_data (current_program_space); 554 pspace_data->initialized_p = 1; 555 pspace_data->atcb_type = type; 556 pspace_data->atcb_common_type = common_type; 557 pspace_data->atcb_ll_type = ll_type; 558 pspace_data->atcb_call_type = call_type; 559 pspace_data->atcb_fieldno = fieldnos; 560 } 561 562 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common" 563 component of its ATCB record. This PTID needs to match the PTID used 564 by the thread layer. */ 565 566 static ptid_t 567 ptid_from_atcb_common (struct value *common_value) 568 { 569 long thread = 0; 570 CORE_ADDR lwp = 0; 571 struct value *ll_value; 572 ptid_t ptid; 573 const struct ada_tasks_pspace_data *pspace_data 574 = get_ada_tasks_pspace_data (current_program_space); 575 576 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll); 577 578 if (pspace_data->atcb_fieldno.ll_lwp >= 0) 579 lwp = value_as_address (value_field (ll_value, 580 pspace_data->atcb_fieldno.ll_lwp)); 581 thread = value_as_long (value_field (ll_value, 582 pspace_data->atcb_fieldno.ll_thread)); 583 584 ptid = target_get_ada_task_ptid (lwp, thread); 585 586 return ptid; 587 } 588 589 /* Read the ATCB data of a given task given its TASK_ID (which is in practice 590 the address of its assocated ATCB record), and store the result inside 591 TASK_INFO. */ 592 593 static void 594 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info) 595 { 596 struct value *tcb_value; 597 struct value *common_value; 598 struct value *atc_nesting_level_value; 599 struct value *entry_calls_value; 600 struct value *entry_calls_value_element; 601 int called_task_fieldno = -1; 602 static const char ravenscar_task_name[] = "Ravenscar task"; 603 const struct ada_tasks_pspace_data *pspace_data 604 = get_ada_tasks_pspace_data (current_program_space); 605 606 if (!pspace_data->initialized_p) 607 get_tcb_types_info (); 608 609 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 610 NULL, task_id); 611 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 612 613 /* Fill in the task_id. */ 614 615 task_info->task_id = task_id; 616 617 /* Compute the name of the task. 618 619 Depending on the GNAT version used, the task image is either a fat 620 string, or a thin array of characters. Older versions of GNAT used 621 to use fat strings, and therefore did not need an extra field in 622 the ATCB to store the string length. For efficiency reasons, newer 623 versions of GNAT replaced the fat string by a static buffer, but this 624 also required the addition of a new field named "Image_Len" containing 625 the length of the task name. The method used to extract the task name 626 is selected depending on the existence of this field. 627 628 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB; 629 we may want to get it from the first user frame of the stack. For now, 630 we just give a dummy name. */ 631 632 if (pspace_data->atcb_fieldno.image_len == -1) 633 { 634 if (pspace_data->atcb_fieldno.image >= 0) 635 read_fat_string_value (task_info->name, 636 value_field (common_value, 637 pspace_data->atcb_fieldno.image), 638 sizeof (task_info->name) - 1); 639 else 640 { 641 struct bound_minimal_symbol msym; 642 643 msym = lookup_minimal_symbol_by_pc (task_id); 644 if (msym.minsym) 645 { 646 const char *full_name = MSYMBOL_LINKAGE_NAME (msym.minsym); 647 const char *task_name = full_name; 648 const char *p; 649 650 /* Strip the prefix. */ 651 for (p = full_name; *p; p++) 652 if (p[0] == '_' && p[1] == '_') 653 task_name = p + 2; 654 655 /* Copy the task name. */ 656 strncpy (task_info->name, task_name, sizeof (task_info->name)); 657 task_info->name[sizeof (task_info->name) - 1] = 0; 658 } 659 else 660 { 661 /* No symbol found. Use a default name. */ 662 strcpy (task_info->name, ravenscar_task_name); 663 } 664 } 665 } 666 else 667 { 668 int len = value_as_long 669 (value_field (common_value, 670 pspace_data->atcb_fieldno.image_len)); 671 672 value_as_string (task_info->name, 673 value_field (common_value, 674 pspace_data->atcb_fieldno.image), 675 len); 676 } 677 678 /* Compute the task state and priority. */ 679 680 task_info->state = 681 value_as_long (value_field (common_value, 682 pspace_data->atcb_fieldno.state)); 683 task_info->priority = 684 value_as_long (value_field (common_value, 685 pspace_data->atcb_fieldno.priority)); 686 687 /* If the ATCB contains some information about the parent task, 688 then compute it as well. Otherwise, zero. */ 689 690 if (pspace_data->atcb_fieldno.parent >= 0) 691 task_info->parent = 692 value_as_address (value_field (common_value, 693 pspace_data->atcb_fieldno.parent)); 694 else 695 task_info->parent = 0; 696 697 698 /* If the ATCB contains some information about entry calls, then 699 compute the "called_task" as well. Otherwise, zero. */ 700 701 if (pspace_data->atcb_fieldno.atc_nesting_level > 0 702 && pspace_data->atcb_fieldno.entry_calls > 0) 703 { 704 /* Let My_ATCB be the Ada task control block of a task calling the 705 entry of another task; then the Task_Id of the called task is 706 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */ 707 atc_nesting_level_value = 708 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level); 709 entry_calls_value = 710 ada_coerce_to_simple_array_ptr 711 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls)); 712 entry_calls_value_element = 713 value_subscript (entry_calls_value, 714 value_as_long (atc_nesting_level_value)); 715 called_task_fieldno = 716 ada_get_field_index (value_type (entry_calls_value_element), 717 "called_task", 0); 718 task_info->called_task = 719 value_as_address (value_field (entry_calls_value_element, 720 called_task_fieldno)); 721 } 722 else 723 { 724 task_info->called_task = 0; 725 } 726 727 /* If the ATCB cotnains some information about RV callers, 728 then compute the "caller_task". Otherwise, zero. */ 729 730 task_info->caller_task = 0; 731 if (pspace_data->atcb_fieldno.call >= 0) 732 { 733 /* Get the ID of the caller task from Common_ATCB.Call.all.Self. 734 If Common_ATCB.Call is null, then there is no caller. */ 735 const CORE_ADDR call = 736 value_as_address (value_field (common_value, 737 pspace_data->atcb_fieldno.call)); 738 struct value *call_val; 739 740 if (call != 0) 741 { 742 call_val = 743 value_from_contents_and_address (pspace_data->atcb_call_type, 744 NULL, call); 745 task_info->caller_task = 746 value_as_address 747 (value_field (call_val, pspace_data->atcb_fieldno.call_self)); 748 } 749 } 750 751 /* And finally, compute the task ptid. Note that there are situations 752 where this cannot be determined: 753 - The task is no longer alive - the ptid is irrelevant; 754 - We are debugging a core file - the thread is not always 755 completely preserved for us to link back a task to its 756 underlying thread. Since we do not support task switching 757 when debugging core files anyway, we don't need to compute 758 that task ptid. 759 In either case, we don't need that ptid, and it is just good enough 760 to set it to null_ptid. */ 761 762 if (target_has_execution && ada_task_is_alive (task_info)) 763 task_info->ptid = ptid_from_atcb_common (common_value); 764 else 765 task_info->ptid = null_ptid; 766 } 767 768 /* Read the ATCB info of the given task (identified by TASK_ID), and 769 add the result to the given inferior's TASK_LIST. */ 770 771 static void 772 add_ada_task (CORE_ADDR task_id, struct inferior *inf) 773 { 774 struct ada_task_info task_info; 775 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 776 777 read_atcb (task_id, &task_info); 778 VEC_safe_push (ada_task_info_s, data->task_list, &task_info); 779 } 780 781 /* Read the Known_Tasks array from the inferior memory, and store 782 it in the current inferior's TASK_LIST. Return non-zero upon success. */ 783 784 static int 785 read_known_tasks_array (struct ada_tasks_inferior_data *data) 786 { 787 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); 788 const int known_tasks_size = target_ptr_byte * data->known_tasks_length; 789 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size); 790 int i; 791 792 /* Build a new list by reading the ATCBs from the Known_Tasks array 793 in the Ada runtime. */ 794 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size); 795 for (i = 0; i < data->known_tasks_length; i++) 796 { 797 CORE_ADDR task_id = 798 extract_typed_address (known_tasks + i * target_ptr_byte, 799 data->known_tasks_element); 800 801 if (task_id != 0) 802 add_ada_task (task_id, current_inferior ()); 803 } 804 805 return 1; 806 } 807 808 /* Read the known tasks from the inferior memory, and store it in 809 the current inferior's TASK_LIST. Return non-zero upon success. */ 810 811 static int 812 read_known_tasks_list (struct ada_tasks_inferior_data *data) 813 { 814 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); 815 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte); 816 CORE_ADDR task_id; 817 const struct ada_tasks_pspace_data *pspace_data 818 = get_ada_tasks_pspace_data (current_program_space); 819 820 /* Sanity check. */ 821 if (pspace_data->atcb_fieldno.activation_link < 0) 822 return 0; 823 824 /* Build a new list by reading the ATCBs. Read head of the list. */ 825 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte); 826 task_id = extract_typed_address (known_tasks, data->known_tasks_element); 827 while (task_id != 0) 828 { 829 struct value *tcb_value; 830 struct value *common_value; 831 832 add_ada_task (task_id, current_inferior ()); 833 834 /* Read the chain. */ 835 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 836 NULL, task_id); 837 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 838 task_id = value_as_address 839 (value_field (common_value, 840 pspace_data->atcb_fieldno.activation_link)); 841 } 842 843 return 1; 844 } 845 846 /* Set all fields of the current inferior ada-tasks data pointed by DATA. 847 Do nothing if those fields are already set and still up to date. */ 848 849 static void 850 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data) 851 { 852 struct bound_minimal_symbol msym; 853 struct symbol *sym; 854 855 /* Return now if already set. */ 856 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN) 857 return; 858 859 /* Try array. */ 860 861 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL); 862 if (msym.minsym != NULL) 863 { 864 data->known_tasks_kind = ADA_TASKS_ARRAY; 865 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); 866 867 /* Try to get pointer type and array length from the symtab. */ 868 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN, 869 language_c, NULL).symbol; 870 if (sym != NULL) 871 { 872 /* Validate. */ 873 struct type *type = check_typedef (SYMBOL_TYPE (sym)); 874 struct type *eltype = NULL; 875 struct type *idxtype = NULL; 876 877 if (TYPE_CODE (type) == TYPE_CODE_ARRAY) 878 eltype = check_typedef (TYPE_TARGET_TYPE (type)); 879 if (eltype != NULL 880 && TYPE_CODE (eltype) == TYPE_CODE_PTR) 881 idxtype = check_typedef (TYPE_INDEX_TYPE (type)); 882 if (idxtype != NULL 883 && !TYPE_LOW_BOUND_UNDEFINED (idxtype) 884 && !TYPE_HIGH_BOUND_UNDEFINED (idxtype)) 885 { 886 data->known_tasks_element = eltype; 887 data->known_tasks_length = 888 TYPE_HIGH_BOUND (idxtype) - TYPE_LOW_BOUND (idxtype) + 1; 889 return; 890 } 891 } 892 893 /* Fallback to default values. The runtime may have been stripped (as 894 in some distributions), but it is likely that the executable still 895 contains debug information on the task type (due to implicit with of 896 Ada.Tasking). */ 897 data->known_tasks_element = 898 builtin_type (target_gdbarch ())->builtin_data_ptr; 899 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS; 900 return; 901 } 902 903 904 /* Try list. */ 905 906 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL); 907 if (msym.minsym != NULL) 908 { 909 data->known_tasks_kind = ADA_TASKS_LIST; 910 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); 911 data->known_tasks_length = 1; 912 913 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN, 914 language_c, NULL).symbol; 915 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0) 916 { 917 /* Validate. */ 918 struct type *type = check_typedef (SYMBOL_TYPE (sym)); 919 920 if (TYPE_CODE (type) == TYPE_CODE_PTR) 921 { 922 data->known_tasks_element = type; 923 return; 924 } 925 } 926 927 /* Fallback to default values. */ 928 data->known_tasks_element = 929 builtin_type (target_gdbarch ())->builtin_data_ptr; 930 data->known_tasks_length = 1; 931 return; 932 } 933 934 /* Can't find tasks. */ 935 936 data->known_tasks_kind = ADA_TASKS_NOT_FOUND; 937 data->known_tasks_addr = 0; 938 } 939 940 /* Read the known tasks from the current inferior's memory, and store it 941 in the current inferior's data TASK_LIST. 942 Return non-zero upon success. */ 943 944 static int 945 read_known_tasks (void) 946 { 947 struct ada_tasks_inferior_data *data = 948 get_ada_tasks_inferior_data (current_inferior ()); 949 950 /* Step 1: Clear the current list, if necessary. */ 951 VEC_truncate (ada_task_info_s, data->task_list, 0); 952 953 /* Step 2: do the real work. 954 If the application does not use task, then no more needs to be done. 955 It is important to have the task list cleared (see above) before we 956 return, as we don't want a stale task list to be used... This can 957 happen for instance when debugging a non-multitasking program after 958 having debugged a multitasking one. */ 959 ada_tasks_inferior_data_sniffer (data); 960 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN); 961 962 switch (data->known_tasks_kind) 963 { 964 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */ 965 return 0; 966 case ADA_TASKS_ARRAY: 967 return read_known_tasks_array (data); 968 case ADA_TASKS_LIST: 969 return read_known_tasks_list (data); 970 } 971 972 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks 973 array unless needed. Then report a success. */ 974 data->task_list_valid_p = 1; 975 976 return 1; 977 } 978 979 /* Build the task_list by reading the Known_Tasks array from 980 the inferior, and return the number of tasks in that list 981 (zero means that the program is not using tasking at all). */ 982 983 int 984 ada_build_task_list (void) 985 { 986 struct ada_tasks_inferior_data *data; 987 988 if (!target_has_stack) 989 error (_("Cannot inspect Ada tasks when program is not running")); 990 991 data = get_ada_tasks_inferior_data (current_inferior ()); 992 if (!data->task_list_valid_p) 993 read_known_tasks (); 994 995 return VEC_length (ada_task_info_s, data->task_list); 996 } 997 998 /* Print a table providing a short description of all Ada tasks 999 running inside inferior INF. If ARG_STR is set, it will be 1000 interpreted as a task number, and the table will be limited to 1001 that task only. */ 1002 1003 void 1004 print_ada_task_info (struct ui_out *uiout, 1005 char *arg_str, 1006 struct inferior *inf) 1007 { 1008 struct ada_tasks_inferior_data *data; 1009 int taskno, nb_tasks; 1010 int taskno_arg = 0; 1011 struct cleanup *old_chain; 1012 int nb_columns; 1013 1014 if (ada_build_task_list () == 0) 1015 { 1016 ui_out_message (uiout, 0, 1017 _("Your application does not use any Ada tasks.\n")); 1018 return; 1019 } 1020 1021 if (arg_str != NULL && arg_str[0] != '\0') 1022 taskno_arg = value_as_long (parse_and_eval (arg_str)); 1023 1024 if (ui_out_is_mi_like_p (uiout)) 1025 /* In GDB/MI mode, we want to provide the thread ID corresponding 1026 to each task. This allows clients to quickly find the thread 1027 associated to any task, which is helpful for commands that 1028 take a --thread argument. However, in order to be able to 1029 provide that thread ID, the thread list must be up to date 1030 first. */ 1031 target_update_thread_list (); 1032 1033 data = get_ada_tasks_inferior_data (inf); 1034 1035 /* Compute the number of tasks that are going to be displayed 1036 in the output. If an argument was given, there will be 1037 at most 1 entry. Otherwise, there will be as many entries 1038 as we have tasks. */ 1039 if (taskno_arg) 1040 { 1041 if (taskno_arg > 0 1042 && taskno_arg <= VEC_length (ada_task_info_s, data->task_list)) 1043 nb_tasks = 1; 1044 else 1045 nb_tasks = 0; 1046 } 1047 else 1048 nb_tasks = VEC_length (ada_task_info_s, data->task_list); 1049 1050 nb_columns = ui_out_is_mi_like_p (uiout) ? 8 : 7; 1051 old_chain = make_cleanup_ui_out_table_begin_end (uiout, nb_columns, 1052 nb_tasks, "tasks"); 1053 ui_out_table_header (uiout, 1, ui_left, "current", ""); 1054 ui_out_table_header (uiout, 3, ui_right, "id", "ID"); 1055 ui_out_table_header (uiout, 9, ui_right, "task-id", "TID"); 1056 /* The following column is provided in GDB/MI mode only because 1057 it is only really useful in that mode, and also because it 1058 allows us to keep the CLI output shorter and more compact. */ 1059 if (ui_out_is_mi_like_p (uiout)) 1060 ui_out_table_header (uiout, 4, ui_right, "thread-id", ""); 1061 ui_out_table_header (uiout, 4, ui_right, "parent-id", "P-ID"); 1062 ui_out_table_header (uiout, 3, ui_right, "priority", "Pri"); 1063 ui_out_table_header (uiout, 22, ui_left, "state", "State"); 1064 /* Use ui_noalign for the last column, to prevent the CLI uiout 1065 from printing an extra space at the end of each row. This 1066 is a bit of a hack, but does get the job done. */ 1067 ui_out_table_header (uiout, 1, ui_noalign, "name", "Name"); 1068 ui_out_table_body (uiout); 1069 1070 for (taskno = 1; 1071 taskno <= VEC_length (ada_task_info_s, data->task_list); 1072 taskno++) 1073 { 1074 const struct ada_task_info *const task_info = 1075 VEC_index (ada_task_info_s, data->task_list, taskno - 1); 1076 int parent_id; 1077 struct cleanup *chain2; 1078 1079 gdb_assert (task_info != NULL); 1080 1081 /* If the user asked for the output to be restricted 1082 to one task only, and this is not the task, skip 1083 to the next one. */ 1084 if (taskno_arg && taskno != taskno_arg) 1085 continue; 1086 1087 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL); 1088 1089 /* Print a star if this task is the current task (or the task 1090 currently selected). */ 1091 if (ptid_equal (task_info->ptid, inferior_ptid)) 1092 ui_out_field_string (uiout, "current", "*"); 1093 else 1094 ui_out_field_skip (uiout, "current"); 1095 1096 /* Print the task number. */ 1097 ui_out_field_int (uiout, "id", taskno); 1098 1099 /* Print the Task ID. */ 1100 ui_out_field_fmt (uiout, "task-id", "%9lx", (long) task_info->task_id); 1101 1102 /* Print the associated Thread ID. */ 1103 if (ui_out_is_mi_like_p (uiout)) 1104 { 1105 const int thread_id = ptid_to_global_thread_id (task_info->ptid); 1106 1107 if (thread_id != 0) 1108 ui_out_field_int (uiout, "thread-id", thread_id); 1109 else 1110 /* This should never happen unless there is a bug somewhere, 1111 but be resilient when that happens. */ 1112 ui_out_field_skip (uiout, "thread-id"); 1113 } 1114 1115 /* Print the ID of the parent task. */ 1116 parent_id = get_task_number_from_id (task_info->parent, inf); 1117 if (parent_id) 1118 ui_out_field_int (uiout, "parent-id", parent_id); 1119 else 1120 ui_out_field_skip (uiout, "parent-id"); 1121 1122 /* Print the base priority of the task. */ 1123 ui_out_field_int (uiout, "priority", task_info->priority); 1124 1125 /* Print the task current state. */ 1126 if (task_info->caller_task) 1127 ui_out_field_fmt (uiout, "state", 1128 _("Accepting RV with %-4d"), 1129 get_task_number_from_id (task_info->caller_task, 1130 inf)); 1131 else if (task_info->state == Entry_Caller_Sleep 1132 && task_info->called_task) 1133 ui_out_field_fmt (uiout, "state", 1134 _("Waiting on RV with %-3d"), 1135 get_task_number_from_id (task_info->called_task, 1136 inf)); 1137 else 1138 ui_out_field_string (uiout, "state", task_states[task_info->state]); 1139 1140 /* Finally, print the task name. */ 1141 ui_out_field_fmt (uiout, "name", 1142 "%s", 1143 task_info->name[0] != '\0' ? task_info->name 1144 : _("<no name>")); 1145 1146 ui_out_text (uiout, "\n"); 1147 do_cleanups (chain2); 1148 } 1149 1150 do_cleanups (old_chain); 1151 } 1152 1153 /* Print a detailed description of the Ada task whose ID is TASKNO_STR 1154 for the given inferior (INF). */ 1155 1156 static void 1157 info_task (struct ui_out *uiout, char *taskno_str, struct inferior *inf) 1158 { 1159 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1160 struct ada_task_info *task_info; 1161 int parent_taskno = 0; 1162 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1163 1164 if (ada_build_task_list () == 0) 1165 { 1166 ui_out_message (uiout, 0, 1167 _("Your application does not use any Ada tasks.\n")); 1168 return; 1169 } 1170 1171 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list)) 1172 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1173 "see the IDs of currently known tasks"), taskno); 1174 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1); 1175 1176 /* Print the Ada task ID. */ 1177 printf_filtered (_("Ada Task: %s\n"), 1178 paddress (target_gdbarch (), task_info->task_id)); 1179 1180 /* Print the name of the task. */ 1181 if (task_info->name[0] != '\0') 1182 printf_filtered (_("Name: %s\n"), task_info->name); 1183 else 1184 printf_filtered (_("<no name>\n")); 1185 1186 /* Print the TID and LWP. */ 1187 printf_filtered (_("Thread: %#lx\n"), ptid_get_tid (task_info->ptid)); 1188 printf_filtered (_("LWP: %#lx\n"), ptid_get_lwp (task_info->ptid)); 1189 1190 /* Print who is the parent (if any). */ 1191 if (task_info->parent != 0) 1192 parent_taskno = get_task_number_from_id (task_info->parent, inf); 1193 if (parent_taskno) 1194 { 1195 struct ada_task_info *parent = 1196 VEC_index (ada_task_info_s, data->task_list, parent_taskno - 1); 1197 1198 printf_filtered (_("Parent: %d"), parent_taskno); 1199 if (parent->name[0] != '\0') 1200 printf_filtered (" (%s)", parent->name); 1201 printf_filtered ("\n"); 1202 } 1203 else 1204 printf_filtered (_("No parent\n")); 1205 1206 /* Print the base priority. */ 1207 printf_filtered (_("Base Priority: %d\n"), task_info->priority); 1208 1209 /* print the task current state. */ 1210 { 1211 int target_taskno = 0; 1212 1213 if (task_info->caller_task) 1214 { 1215 target_taskno = get_task_number_from_id (task_info->caller_task, inf); 1216 printf_filtered (_("State: Accepting rendezvous with %d"), 1217 target_taskno); 1218 } 1219 else if (task_info->state == Entry_Caller_Sleep && task_info->called_task) 1220 { 1221 target_taskno = get_task_number_from_id (task_info->called_task, inf); 1222 printf_filtered (_("State: Waiting on task %d's entry"), 1223 target_taskno); 1224 } 1225 else 1226 printf_filtered (_("State: %s"), _(long_task_states[task_info->state])); 1227 1228 if (target_taskno) 1229 { 1230 struct ada_task_info *target_task_info = 1231 VEC_index (ada_task_info_s, data->task_list, target_taskno - 1); 1232 1233 if (target_task_info->name[0] != '\0') 1234 printf_filtered (" (%s)", target_task_info->name); 1235 } 1236 1237 printf_filtered ("\n"); 1238 } 1239 } 1240 1241 /* If ARG is empty or null, then print a list of all Ada tasks. 1242 Otherwise, print detailed information about the task whose ID 1243 is ARG. 1244 1245 Does nothing if the program doesn't use Ada tasking. */ 1246 1247 static void 1248 info_tasks_command (char *arg, int from_tty) 1249 { 1250 struct ui_out *uiout = current_uiout; 1251 1252 if (arg == NULL || *arg == '\0') 1253 print_ada_task_info (uiout, NULL, current_inferior ()); 1254 else 1255 info_task (uiout, arg, current_inferior ()); 1256 } 1257 1258 /* Print a message telling the user id of the current task. 1259 This function assumes that tasking is in use in the inferior. */ 1260 1261 static void 1262 display_current_task_id (void) 1263 { 1264 const int current_task = ada_get_task_number (inferior_ptid); 1265 1266 if (current_task == 0) 1267 printf_filtered (_("[Current task is unknown]\n")); 1268 else 1269 printf_filtered (_("[Current task is %d]\n"), current_task); 1270 } 1271 1272 /* Parse and evaluate TIDSTR into a task id, and try to switch to 1273 that task. Print an error message if the task switch failed. */ 1274 1275 static void 1276 task_command_1 (char *taskno_str, int from_tty, struct inferior *inf) 1277 { 1278 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1279 struct ada_task_info *task_info; 1280 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1281 1282 if (taskno <= 0 || taskno > VEC_length (ada_task_info_s, data->task_list)) 1283 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1284 "see the IDs of currently known tasks"), taskno); 1285 task_info = VEC_index (ada_task_info_s, data->task_list, taskno - 1); 1286 1287 if (!ada_task_is_alive (task_info)) 1288 error (_("Cannot switch to task %d: Task is no longer running"), taskno); 1289 1290 /* On some platforms, the thread list is not updated until the user 1291 performs a thread-related operation (by using the "info threads" 1292 command, for instance). So this thread list may not be up to date 1293 when the user attempts this task switch. Since we cannot switch 1294 to the thread associated to our task if GDB does not know about 1295 that thread, we need to make sure that any new threads gets added 1296 to the thread list. */ 1297 target_update_thread_list (); 1298 1299 /* Verify that the ptid of the task we want to switch to is valid 1300 (in other words, a ptid that GDB knows about). Otherwise, we will 1301 cause an assertion failure later on, when we try to determine 1302 the ptid associated thread_info data. We should normally never 1303 encounter such an error, but the wrong ptid can actually easily be 1304 computed if target_get_ada_task_ptid has not been implemented for 1305 our target (yet). Rather than cause an assertion error in that case, 1306 it's nicer for the user to just refuse to perform the task switch. */ 1307 if (!find_thread_ptid (task_info->ptid)) 1308 error (_("Unable to compute thread ID for task %d.\n" 1309 "Cannot switch to this task."), 1310 taskno); 1311 1312 switch_to_thread (task_info->ptid); 1313 ada_find_printable_frame (get_selected_frame (NULL)); 1314 printf_filtered (_("[Switching to task %d]\n"), taskno); 1315 print_stack_frame (get_selected_frame (NULL), 1316 frame_relative_level (get_selected_frame (NULL)), 1317 SRC_AND_LOC, 1); 1318 } 1319 1320 1321 /* Print the ID of the current task if TASKNO_STR is empty or NULL. 1322 Otherwise, switch to the task indicated by TASKNO_STR. */ 1323 1324 static void 1325 task_command (char *taskno_str, int from_tty) 1326 { 1327 struct ui_out *uiout = current_uiout; 1328 1329 if (ada_build_task_list () == 0) 1330 { 1331 ui_out_message (uiout, 0, 1332 _("Your application does not use any Ada tasks.\n")); 1333 return; 1334 } 1335 1336 if (taskno_str == NULL || taskno_str[0] == '\0') 1337 display_current_task_id (); 1338 else 1339 { 1340 /* Task switching in core files doesn't work, either because: 1341 1. Thread support is not implemented with core files 1342 2. Thread support is implemented, but the thread IDs created 1343 after having read the core file are not the same as the ones 1344 that were used during the program life, before the crash. 1345 As a consequence, there is no longer a way for the debugger 1346 to find the associated thead ID of any given Ada task. 1347 So, instead of attempting a task switch without giving the user 1348 any clue as to what might have happened, just error-out with 1349 a message explaining that this feature is not supported. */ 1350 if (!target_has_execution) 1351 error (_("\ 1352 Task switching not supported when debugging from core files\n\ 1353 (use thread support instead)")); 1354 task_command_1 (taskno_str, from_tty, current_inferior ()); 1355 } 1356 } 1357 1358 /* Indicate that the given inferior's task list may have changed, 1359 so invalidate the cache. */ 1360 1361 static void 1362 ada_task_list_changed (struct inferior *inf) 1363 { 1364 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1365 1366 data->task_list_valid_p = 0; 1367 } 1368 1369 /* Invalidate the per-program-space data. */ 1370 1371 static void 1372 ada_tasks_invalidate_pspace_data (struct program_space *pspace) 1373 { 1374 get_ada_tasks_pspace_data (pspace)->initialized_p = 0; 1375 } 1376 1377 /* Invalidate the per-inferior data. */ 1378 1379 static void 1380 ada_tasks_invalidate_inferior_data (struct inferior *inf) 1381 { 1382 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1383 1384 data->known_tasks_kind = ADA_TASKS_UNKNOWN; 1385 data->task_list_valid_p = 0; 1386 } 1387 1388 /* The 'normal_stop' observer notification callback. */ 1389 1390 static void 1391 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2) 1392 { 1393 /* The inferior has been resumed, and just stopped. This means that 1394 our task_list needs to be recomputed before it can be used again. */ 1395 ada_task_list_changed (current_inferior ()); 1396 } 1397 1398 /* A routine to be called when the objfiles have changed. */ 1399 1400 static void 1401 ada_tasks_new_objfile_observer (struct objfile *objfile) 1402 { 1403 struct inferior *inf; 1404 1405 /* Invalidate the relevant data in our program-space data. */ 1406 1407 if (objfile == NULL) 1408 { 1409 /* All objfiles are being cleared, so we should clear all 1410 our caches for all program spaces. */ 1411 struct program_space *pspace; 1412 1413 for (pspace = program_spaces; pspace != NULL; pspace = pspace->next) 1414 ada_tasks_invalidate_pspace_data (pspace); 1415 } 1416 else 1417 { 1418 /* The associated program-space data might have changed after 1419 this objfile was added. Invalidate all cached data. */ 1420 ada_tasks_invalidate_pspace_data (objfile->pspace); 1421 } 1422 1423 /* Invalidate the per-inferior cache for all inferiors using 1424 this objfile (or, in other words, for all inferiors who have 1425 the same program-space as the objfile's program space). 1426 If all objfiles are being cleared (OBJFILE is NULL), then 1427 clear the caches for all inferiors. */ 1428 1429 for (inf = inferior_list; inf != NULL; inf = inf->next) 1430 if (objfile == NULL || inf->pspace == objfile->pspace) 1431 ada_tasks_invalidate_inferior_data (inf); 1432 } 1433 1434 /* Provide a prototype to silence -Wmissing-prototypes. */ 1435 extern initialize_file_ftype _initialize_tasks; 1436 1437 void 1438 _initialize_tasks (void) 1439 { 1440 ada_tasks_pspace_data_handle = register_program_space_data (); 1441 ada_tasks_inferior_data_handle = register_inferior_data (); 1442 1443 /* Attach various observers. */ 1444 observer_attach_normal_stop (ada_tasks_normal_stop_observer); 1445 observer_attach_new_objfile (ada_tasks_new_objfile_observer); 1446 1447 /* Some new commands provided by this module. */ 1448 add_info ("tasks", info_tasks_command, 1449 _("Provide information about all known Ada tasks")); 1450 add_cmd ("task", class_run, task_command, 1451 _("Use this command to switch between Ada tasks.\n\ 1452 Without argument, this command simply prints the current task ID"), 1453 &cmdlist); 1454 } 1455