1 /* Copyright (C) 1992-2020 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "defs.h" 19 #include "observable.h" 20 #include "gdbcmd.h" 21 #include "target.h" 22 #include "ada-lang.h" 23 #include "gdbcore.h" 24 #include "inferior.h" 25 #include "gdbthread.h" 26 #include "progspace.h" 27 #include "objfiles.h" 28 #include "cli/cli-style.h" 29 30 static int ada_build_task_list (); 31 32 /* The name of the array in the GNAT runtime where the Ada Task Control 33 Block of each task is stored. */ 34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks" 35 36 /* The maximum number of tasks known to the Ada runtime. */ 37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000; 38 39 /* The name of the variable in the GNAT runtime where the head of a task 40 chain is saved. This is an alternate mechanism to find the list of known 41 tasks. */ 42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task" 43 44 enum task_states 45 { 46 Unactivated, 47 Runnable, 48 Terminated, 49 Activator_Sleep, 50 Acceptor_Sleep, 51 Entry_Caller_Sleep, 52 Async_Select_Sleep, 53 Delay_Sleep, 54 Master_Completion_Sleep, 55 Master_Phase_2_Sleep, 56 Interrupt_Server_Idle_Sleep, 57 Interrupt_Server_Blocked_Interrupt_Sleep, 58 Timer_Server_Sleep, 59 AST_Server_Sleep, 60 Asynchronous_Hold, 61 Interrupt_Server_Blocked_On_Event_Flag, 62 Activating, 63 Acceptor_Delay_Sleep 64 }; 65 66 /* A short description corresponding to each possible task state. */ 67 static const char *task_states[] = { 68 N_("Unactivated"), 69 N_("Runnable"), 70 N_("Terminated"), 71 N_("Child Activation Wait"), 72 N_("Accept or Select Term"), 73 N_("Waiting on entry call"), 74 N_("Async Select Wait"), 75 N_("Delay Sleep"), 76 N_("Child Termination Wait"), 77 N_("Wait Child in Term Alt"), 78 "", 79 "", 80 "", 81 "", 82 N_("Asynchronous Hold"), 83 "", 84 N_("Activating"), 85 N_("Selective Wait") 86 }; 87 88 /* A longer description corresponding to each possible task state. */ 89 static const char *long_task_states[] = { 90 N_("Unactivated"), 91 N_("Runnable"), 92 N_("Terminated"), 93 N_("Waiting for child activation"), 94 N_("Blocked in accept or select with terminate"), 95 N_("Waiting on entry call"), 96 N_("Asynchronous Selective Wait"), 97 N_("Delay Sleep"), 98 N_("Waiting for children termination"), 99 N_("Waiting for children in terminate alternative"), 100 "", 101 "", 102 "", 103 "", 104 N_("Asynchronous Hold"), 105 "", 106 N_("Activating"), 107 N_("Blocked in selective wait statement") 108 }; 109 110 /* The index of certain important fields in the Ada Task Control Block 111 record and sub-records. */ 112 113 struct atcb_fieldnos 114 { 115 /* Fields in record Ada_Task_Control_Block. */ 116 int common; 117 int entry_calls; 118 int atc_nesting_level; 119 120 /* Fields in record Common_ATCB. */ 121 int state; 122 int parent; 123 int priority; 124 int image; 125 int image_len; /* This field may be missing. */ 126 int activation_link; 127 int call; 128 int ll; 129 int base_cpu; 130 131 /* Fields in Task_Primitives.Private_Data. */ 132 int ll_thread; 133 int ll_lwp; /* This field may be missing. */ 134 135 /* Fields in Common_ATCB.Call.all. */ 136 int call_self; 137 }; 138 139 /* This module's per-program-space data. */ 140 141 struct ada_tasks_pspace_data 142 { 143 /* Nonzero if the data has been initialized. If set to zero, 144 it means that the data has either not been initialized, or 145 has potentially become stale. */ 146 int initialized_p = 0; 147 148 /* The ATCB record type. */ 149 struct type *atcb_type = nullptr; 150 151 /* The ATCB "Common" component type. */ 152 struct type *atcb_common_type = nullptr; 153 154 /* The type of the "ll" field, from the atcb_common_type. */ 155 struct type *atcb_ll_type = nullptr; 156 157 /* The type of the "call" field, from the atcb_common_type. */ 158 struct type *atcb_call_type = nullptr; 159 160 /* The index of various fields in the ATCB record and sub-records. */ 161 struct atcb_fieldnos atcb_fieldno {}; 162 }; 163 164 /* Key to our per-program-space data. */ 165 static const struct program_space_key<ada_tasks_pspace_data> 166 ada_tasks_pspace_data_handle; 167 168 /* The kind of data structure used by the runtime to store the list 169 of Ada tasks. */ 170 171 enum ada_known_tasks_kind 172 { 173 /* Use this value when we haven't determined which kind of structure 174 is being used, or when we need to recompute it. 175 176 We set the value of this enumerate to zero on purpose: This allows 177 us to use this enumerate in a structure where setting all fields 178 to zero will result in this kind being set to unknown. */ 179 ADA_TASKS_UNKNOWN = 0, 180 181 /* This value means that we did not find any task list. Unless 182 there is a bug somewhere, this means that the inferior does not 183 use tasking. */ 184 ADA_TASKS_NOT_FOUND, 185 186 /* This value means that the task list is stored as an array. 187 This is the usual method, as it causes very little overhead. 188 But this method is not always used, as it does use a certain 189 amount of memory, which might be scarse in certain environments. */ 190 ADA_TASKS_ARRAY, 191 192 /* This value means that the task list is stored as a linked list. 193 This has more runtime overhead than the array approach, but 194 also require less memory when the number of tasks is small. */ 195 ADA_TASKS_LIST, 196 }; 197 198 /* This module's per-inferior data. */ 199 200 struct ada_tasks_inferior_data 201 { 202 /* The type of data structure used by the runtime to store 203 the list of Ada tasks. The value of this field influences 204 the interpretation of the known_tasks_addr field below: 205 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't 206 been determined yet; 207 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking 208 and the known_tasks_addr is irrelevant; 209 - ADA_TASKS_ARRAY: The known_tasks is an array; 210 - ADA_TASKS_LIST: The known_tasks is a list. */ 211 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN; 212 213 /* The address of the known_tasks structure. This is where 214 the runtime stores the information for all Ada tasks. 215 The interpretation of this field depends on KNOWN_TASKS_KIND 216 above. */ 217 CORE_ADDR known_tasks_addr = 0; 218 219 /* Type of elements of the known task. Usually a pointer. */ 220 struct type *known_tasks_element = nullptr; 221 222 /* Number of elements in the known tasks array. */ 223 unsigned int known_tasks_length = 0; 224 225 /* When nonzero, this flag indicates that the task_list field 226 below is up to date. When set to zero, the list has either 227 not been initialized, or has potentially become stale. */ 228 bool task_list_valid_p = false; 229 230 /* The list of Ada tasks. 231 232 Note: To each task we associate a number that the user can use to 233 reference it - this number is printed beside each task in the tasks 234 info listing displayed by "info tasks". This number is equal to 235 its index in the vector + 1. Reciprocally, to compute the index 236 of a task in the vector, we need to substract 1 from its number. */ 237 std::vector<ada_task_info> task_list; 238 }; 239 240 /* Key to our per-inferior data. */ 241 static const struct inferior_key<ada_tasks_inferior_data> 242 ada_tasks_inferior_data_handle; 243 244 /* Return a string with TASKNO followed by the task name if TASK_INFO 245 contains a name. */ 246 247 static std::string 248 task_to_str (int taskno, const ada_task_info *task_info) 249 { 250 if (task_info->name[0] == '\0') 251 return string_printf ("%d", taskno); 252 else 253 return string_printf ("%d \"%s\"", taskno, task_info->name); 254 } 255 256 /* Return the ada-tasks module's data for the given program space (PSPACE). 257 If none is found, add a zero'ed one now. 258 259 This function always returns a valid object. */ 260 261 static struct ada_tasks_pspace_data * 262 get_ada_tasks_pspace_data (struct program_space *pspace) 263 { 264 struct ada_tasks_pspace_data *data; 265 266 data = ada_tasks_pspace_data_handle.get (pspace); 267 if (data == NULL) 268 data = ada_tasks_pspace_data_handle.emplace (pspace); 269 270 return data; 271 } 272 273 /* Return the ada-tasks module's data for the given inferior (INF). 274 If none is found, add a zero'ed one now. 275 276 This function always returns a valid object. 277 278 Note that we could use an observer of the inferior-created event 279 to make sure that the ada-tasks per-inferior data always exists. 280 But we prefered this approach, as it avoids this entirely as long 281 as the user does not use any of the tasking features. This is 282 quite possible, particularly in the case where the inferior does 283 not use tasking. */ 284 285 static struct ada_tasks_inferior_data * 286 get_ada_tasks_inferior_data (struct inferior *inf) 287 { 288 struct ada_tasks_inferior_data *data; 289 290 data = ada_tasks_inferior_data_handle.get (inf); 291 if (data == NULL) 292 data = ada_tasks_inferior_data_handle.emplace (inf); 293 294 return data; 295 } 296 297 /* Return the task number of the task whose thread is THREAD, or zero 298 if the task could not be found. */ 299 300 int 301 ada_get_task_number (thread_info *thread) 302 { 303 struct inferior *inf = thread->inf; 304 struct ada_tasks_inferior_data *data; 305 306 gdb_assert (inf != NULL); 307 data = get_ada_tasks_inferior_data (inf); 308 309 for (int i = 0; i < data->task_list.size (); i++) 310 if (data->task_list[i].ptid == thread->ptid) 311 return i + 1; 312 313 return 0; /* No matching task found. */ 314 } 315 316 /* Return the task number of the task running in inferior INF which 317 matches TASK_ID , or zero if the task could not be found. */ 318 319 static int 320 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf) 321 { 322 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 323 324 for (int i = 0; i < data->task_list.size (); i++) 325 { 326 if (data->task_list[i].task_id == task_id) 327 return i + 1; 328 } 329 330 /* Task not found. Return 0. */ 331 return 0; 332 } 333 334 /* Return non-zero if TASK_NUM is a valid task number. */ 335 336 int 337 valid_task_id (int task_num) 338 { 339 struct ada_tasks_inferior_data *data; 340 341 ada_build_task_list (); 342 data = get_ada_tasks_inferior_data (current_inferior ()); 343 return task_num > 0 && task_num <= data->task_list.size (); 344 } 345 346 /* Return non-zero iff the task STATE corresponds to a non-terminated 347 task state. */ 348 349 static int 350 ada_task_is_alive (const struct ada_task_info *task_info) 351 { 352 return (task_info->state != Terminated); 353 } 354 355 /* Search through the list of known tasks for the one whose ptid is 356 PTID, and return it. Return NULL if the task was not found. */ 357 358 struct ada_task_info * 359 ada_get_task_info_from_ptid (ptid_t ptid) 360 { 361 struct ada_tasks_inferior_data *data; 362 363 ada_build_task_list (); 364 data = get_ada_tasks_inferior_data (current_inferior ()); 365 366 for (ada_task_info &task : data->task_list) 367 { 368 if (task.ptid == ptid) 369 return &task; 370 } 371 372 return NULL; 373 } 374 375 /* Call the ITERATOR function once for each Ada task that hasn't been 376 terminated yet. */ 377 378 void 379 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator) 380 { 381 struct ada_tasks_inferior_data *data; 382 383 ada_build_task_list (); 384 data = get_ada_tasks_inferior_data (current_inferior ()); 385 386 for (ada_task_info &task : data->task_list) 387 { 388 if (!ada_task_is_alive (&task)) 389 continue; 390 iterator (&task); 391 } 392 } 393 394 /* Extract the contents of the value as a string whose length is LENGTH, 395 and store the result in DEST. */ 396 397 static void 398 value_as_string (char *dest, struct value *val, int length) 399 { 400 memcpy (dest, value_contents (val), length); 401 dest[length] = '\0'; 402 } 403 404 /* Extract the string image from the fat string corresponding to VAL, 405 and store it in DEST. If the string length is greater than MAX_LEN, 406 then truncate the result to the first MAX_LEN characters of the fat 407 string. */ 408 409 static void 410 read_fat_string_value (char *dest, struct value *val, int max_len) 411 { 412 struct value *array_val; 413 struct value *bounds_val; 414 int len; 415 416 /* The following variables are made static to avoid recomputing them 417 each time this function is called. */ 418 static int initialize_fieldnos = 1; 419 static int array_fieldno; 420 static int bounds_fieldno; 421 static int upper_bound_fieldno; 422 423 /* Get the index of the fields that we will need to read in order 424 to extract the string from the fat string. */ 425 if (initialize_fieldnos) 426 { 427 struct type *type = value_type (val); 428 struct type *bounds_type; 429 430 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0); 431 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0); 432 433 bounds_type = type->field (bounds_fieldno).type (); 434 if (bounds_type->code () == TYPE_CODE_PTR) 435 bounds_type = TYPE_TARGET_TYPE (bounds_type); 436 if (bounds_type->code () != TYPE_CODE_STRUCT) 437 error (_("Unknown task name format. Aborting")); 438 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0); 439 440 initialize_fieldnos = 0; 441 } 442 443 /* Get the size of the task image by checking the value of the bounds. 444 The lower bound is always 1, so we only need to read the upper bound. */ 445 bounds_val = value_ind (value_field (val, bounds_fieldno)); 446 len = value_as_long (value_field (bounds_val, upper_bound_fieldno)); 447 448 /* Make sure that we do not read more than max_len characters... */ 449 if (len > max_len) 450 len = max_len; 451 452 /* Extract LEN characters from the fat string. */ 453 array_val = value_ind (value_field (val, array_fieldno)); 454 read_memory (value_address (array_val), (gdb_byte *) dest, len); 455 456 /* Add the NUL character to close the string. */ 457 dest[len] = '\0'; 458 } 459 460 /* Get, from the debugging information, the type description of all types 461 related to the Ada Task Control Block that are needed in order to 462 read the list of known tasks in the Ada runtime. If all of the info 463 needed to do so is found, then save that info in the module's per- 464 program-space data, and return NULL. Otherwise, if any information 465 cannot be found, leave the per-program-space data untouched, and 466 return an error message explaining what was missing (that error 467 message does NOT need to be deallocated). */ 468 469 const char * 470 ada_get_tcb_types_info (void) 471 { 472 struct type *type; 473 struct type *common_type; 474 struct type *ll_type; 475 struct type *call_type; 476 struct atcb_fieldnos fieldnos; 477 struct ada_tasks_pspace_data *pspace_data; 478 479 const char *atcb_name = "system__tasking__ada_task_control_block___XVE"; 480 const char *atcb_name_fixed = "system__tasking__ada_task_control_block"; 481 const char *common_atcb_name = "system__tasking__common_atcb"; 482 const char *private_data_name = "system__task_primitives__private_data"; 483 const char *entry_call_record_name = "system__tasking__entry_call_record"; 484 485 /* ATCB symbols may be found in several compilation units. As we 486 are only interested in one instance, use standard (literal, 487 C-like) lookups to get the first match. */ 488 489 struct symbol *atcb_sym = 490 lookup_symbol_in_language (atcb_name, NULL, STRUCT_DOMAIN, 491 language_c, NULL).symbol; 492 const struct symbol *common_atcb_sym = 493 lookup_symbol_in_language (common_atcb_name, NULL, STRUCT_DOMAIN, 494 language_c, NULL).symbol; 495 const struct symbol *private_data_sym = 496 lookup_symbol_in_language (private_data_name, NULL, STRUCT_DOMAIN, 497 language_c, NULL).symbol; 498 const struct symbol *entry_call_record_sym = 499 lookup_symbol_in_language (entry_call_record_name, NULL, STRUCT_DOMAIN, 500 language_c, NULL).symbol; 501 502 if (atcb_sym == NULL || atcb_sym->type == NULL) 503 { 504 /* In Ravenscar run-time libs, the ATCB does not have a dynamic 505 size, so the symbol name differs. */ 506 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, 507 STRUCT_DOMAIN, language_c, 508 NULL).symbol; 509 510 if (atcb_sym == NULL || atcb_sym->type == NULL) 511 return _("Cannot find Ada_Task_Control_Block type"); 512 513 type = atcb_sym->type; 514 } 515 else 516 { 517 /* Get a static representation of the type record 518 Ada_Task_Control_Block. */ 519 type = atcb_sym->type; 520 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0); 521 } 522 523 if (common_atcb_sym == NULL || common_atcb_sym->type == NULL) 524 return _("Cannot find Common_ATCB type"); 525 if (private_data_sym == NULL || private_data_sym->type == NULL) 526 return _("Cannot find Private_Data type"); 527 if (entry_call_record_sym == NULL || entry_call_record_sym->type == NULL) 528 return _("Cannot find Entry_Call_Record type"); 529 530 /* Get the type for Ada_Task_Control_Block.Common. */ 531 common_type = common_atcb_sym->type; 532 533 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */ 534 ll_type = private_data_sym->type; 535 536 /* Get the type for Common_ATCB.Call.all. */ 537 call_type = entry_call_record_sym->type; 538 539 /* Get the field indices. */ 540 fieldnos.common = ada_get_field_index (type, "common", 0); 541 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1); 542 fieldnos.atc_nesting_level = 543 ada_get_field_index (type, "atc_nesting_level", 1); 544 fieldnos.state = ada_get_field_index (common_type, "state", 0); 545 fieldnos.parent = ada_get_field_index (common_type, "parent", 1); 546 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0); 547 fieldnos.image = ada_get_field_index (common_type, "task_image", 1); 548 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1); 549 fieldnos.activation_link = ada_get_field_index (common_type, 550 "activation_link", 1); 551 fieldnos.call = ada_get_field_index (common_type, "call", 1); 552 fieldnos.ll = ada_get_field_index (common_type, "ll", 0); 553 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0); 554 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0); 555 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1); 556 fieldnos.call_self = ada_get_field_index (call_type, "self", 0); 557 558 /* On certain platforms such as x86-windows, the "lwp" field has been 559 named "thread_id". This field will likely be renamed in the future, 560 but we need to support both possibilities to avoid an unnecessary 561 dependency on a recent compiler. We therefore try locating the 562 "thread_id" field in place of the "lwp" field if we did not find 563 the latter. */ 564 if (fieldnos.ll_lwp < 0) 565 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1); 566 567 /* Set all the out parameters all at once, now that we are certain 568 that there are no potential error() anymore. */ 569 pspace_data = get_ada_tasks_pspace_data (current_program_space); 570 pspace_data->initialized_p = 1; 571 pspace_data->atcb_type = type; 572 pspace_data->atcb_common_type = common_type; 573 pspace_data->atcb_ll_type = ll_type; 574 pspace_data->atcb_call_type = call_type; 575 pspace_data->atcb_fieldno = fieldnos; 576 return NULL; 577 } 578 579 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common" 580 component of its ATCB record. This PTID needs to match the PTID used 581 by the thread layer. */ 582 583 static ptid_t 584 ptid_from_atcb_common (struct value *common_value) 585 { 586 long thread = 0; 587 CORE_ADDR lwp = 0; 588 struct value *ll_value; 589 ptid_t ptid; 590 const struct ada_tasks_pspace_data *pspace_data 591 = get_ada_tasks_pspace_data (current_program_space); 592 593 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll); 594 595 if (pspace_data->atcb_fieldno.ll_lwp >= 0) 596 lwp = value_as_address (value_field (ll_value, 597 pspace_data->atcb_fieldno.ll_lwp)); 598 thread = value_as_long (value_field (ll_value, 599 pspace_data->atcb_fieldno.ll_thread)); 600 601 ptid = target_get_ada_task_ptid (lwp, thread); 602 603 return ptid; 604 } 605 606 /* Read the ATCB data of a given task given its TASK_ID (which is in practice 607 the address of its associated ATCB record), and store the result inside 608 TASK_INFO. */ 609 610 static void 611 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info) 612 { 613 struct value *tcb_value; 614 struct value *common_value; 615 struct value *atc_nesting_level_value; 616 struct value *entry_calls_value; 617 struct value *entry_calls_value_element; 618 int called_task_fieldno = -1; 619 static const char ravenscar_task_name[] = "Ravenscar task"; 620 const struct ada_tasks_pspace_data *pspace_data 621 = get_ada_tasks_pspace_data (current_program_space); 622 623 /* Clear the whole structure to start with, so that everything 624 is always initialized the same. */ 625 memset (task_info, 0, sizeof (struct ada_task_info)); 626 627 if (!pspace_data->initialized_p) 628 { 629 const char *err_msg = ada_get_tcb_types_info (); 630 631 if (err_msg != NULL) 632 error (_("%s. Aborting"), err_msg); 633 } 634 635 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 636 NULL, task_id); 637 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 638 639 /* Fill in the task_id. */ 640 641 task_info->task_id = task_id; 642 643 /* Compute the name of the task. 644 645 Depending on the GNAT version used, the task image is either a fat 646 string, or a thin array of characters. Older versions of GNAT used 647 to use fat strings, and therefore did not need an extra field in 648 the ATCB to store the string length. For efficiency reasons, newer 649 versions of GNAT replaced the fat string by a static buffer, but this 650 also required the addition of a new field named "Image_Len" containing 651 the length of the task name. The method used to extract the task name 652 is selected depending on the existence of this field. 653 654 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB; 655 we may want to get it from the first user frame of the stack. For now, 656 we just give a dummy name. */ 657 658 if (pspace_data->atcb_fieldno.image_len == -1) 659 { 660 if (pspace_data->atcb_fieldno.image >= 0) 661 read_fat_string_value (task_info->name, 662 value_field (common_value, 663 pspace_data->atcb_fieldno.image), 664 sizeof (task_info->name) - 1); 665 else 666 { 667 struct bound_minimal_symbol msym; 668 669 msym = lookup_minimal_symbol_by_pc (task_id); 670 if (msym.minsym) 671 { 672 const char *full_name = msym.minsym->linkage_name (); 673 const char *task_name = full_name; 674 const char *p; 675 676 /* Strip the prefix. */ 677 for (p = full_name; *p; p++) 678 if (p[0] == '_' && p[1] == '_') 679 task_name = p + 2; 680 681 /* Copy the task name. */ 682 strncpy (task_info->name, task_name, 683 sizeof (task_info->name) - 1); 684 task_info->name[sizeof (task_info->name) - 1] = 0; 685 } 686 else 687 { 688 /* No symbol found. Use a default name. */ 689 strcpy (task_info->name, ravenscar_task_name); 690 } 691 } 692 } 693 else 694 { 695 int len = value_as_long 696 (value_field (common_value, 697 pspace_data->atcb_fieldno.image_len)); 698 699 value_as_string (task_info->name, 700 value_field (common_value, 701 pspace_data->atcb_fieldno.image), 702 len); 703 } 704 705 /* Compute the task state and priority. */ 706 707 task_info->state = 708 value_as_long (value_field (common_value, 709 pspace_data->atcb_fieldno.state)); 710 task_info->priority = 711 value_as_long (value_field (common_value, 712 pspace_data->atcb_fieldno.priority)); 713 714 /* If the ATCB contains some information about the parent task, 715 then compute it as well. Otherwise, zero. */ 716 717 if (pspace_data->atcb_fieldno.parent >= 0) 718 task_info->parent = 719 value_as_address (value_field (common_value, 720 pspace_data->atcb_fieldno.parent)); 721 722 /* If the task is in an entry call waiting for another task, 723 then determine which task it is. */ 724 725 if (task_info->state == Entry_Caller_Sleep 726 && pspace_data->atcb_fieldno.atc_nesting_level > 0 727 && pspace_data->atcb_fieldno.entry_calls > 0) 728 { 729 /* Let My_ATCB be the Ada task control block of a task calling the 730 entry of another task; then the Task_Id of the called task is 731 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */ 732 atc_nesting_level_value = 733 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level); 734 entry_calls_value = 735 ada_coerce_to_simple_array_ptr 736 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls)); 737 entry_calls_value_element = 738 value_subscript (entry_calls_value, 739 value_as_long (atc_nesting_level_value)); 740 called_task_fieldno = 741 ada_get_field_index (value_type (entry_calls_value_element), 742 "called_task", 0); 743 task_info->called_task = 744 value_as_address (value_field (entry_calls_value_element, 745 called_task_fieldno)); 746 } 747 748 /* If the ATCB contains some information about RV callers, then 749 compute the "caller_task". Otherwise, leave it as zero. */ 750 751 if (pspace_data->atcb_fieldno.call >= 0) 752 { 753 /* Get the ID of the caller task from Common_ATCB.Call.all.Self. 754 If Common_ATCB.Call is null, then there is no caller. */ 755 const CORE_ADDR call = 756 value_as_address (value_field (common_value, 757 pspace_data->atcb_fieldno.call)); 758 struct value *call_val; 759 760 if (call != 0) 761 { 762 call_val = 763 value_from_contents_and_address (pspace_data->atcb_call_type, 764 NULL, call); 765 task_info->caller_task = 766 value_as_address 767 (value_field (call_val, pspace_data->atcb_fieldno.call_self)); 768 } 769 } 770 771 task_info->base_cpu 772 = value_as_long (value_field (common_value, 773 pspace_data->atcb_fieldno.base_cpu)); 774 775 /* And finally, compute the task ptid. Note that there is not point 776 in computing it if the task is no longer alive, in which case 777 it is good enough to set its ptid to the null_ptid. */ 778 if (ada_task_is_alive (task_info)) 779 task_info->ptid = ptid_from_atcb_common (common_value); 780 else 781 task_info->ptid = null_ptid; 782 } 783 784 /* Read the ATCB info of the given task (identified by TASK_ID), and 785 add the result to the given inferior's TASK_LIST. */ 786 787 static void 788 add_ada_task (CORE_ADDR task_id, struct inferior *inf) 789 { 790 struct ada_task_info task_info; 791 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 792 793 read_atcb (task_id, &task_info); 794 data->task_list.push_back (task_info); 795 } 796 797 /* Read the Known_Tasks array from the inferior memory, and store 798 it in the current inferior's TASK_LIST. Return true upon success. */ 799 800 static bool 801 read_known_tasks_array (struct ada_tasks_inferior_data *data) 802 { 803 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); 804 const int known_tasks_size = target_ptr_byte * data->known_tasks_length; 805 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size); 806 int i; 807 808 /* Build a new list by reading the ATCBs from the Known_Tasks array 809 in the Ada runtime. */ 810 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size); 811 for (i = 0; i < data->known_tasks_length; i++) 812 { 813 CORE_ADDR task_id = 814 extract_typed_address (known_tasks + i * target_ptr_byte, 815 data->known_tasks_element); 816 817 if (task_id != 0) 818 add_ada_task (task_id, current_inferior ()); 819 } 820 821 return true; 822 } 823 824 /* Read the known tasks from the inferior memory, and store it in 825 the current inferior's TASK_LIST. Return true upon success. */ 826 827 static bool 828 read_known_tasks_list (struct ada_tasks_inferior_data *data) 829 { 830 const int target_ptr_byte = TYPE_LENGTH (data->known_tasks_element); 831 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte); 832 CORE_ADDR task_id; 833 const struct ada_tasks_pspace_data *pspace_data 834 = get_ada_tasks_pspace_data (current_program_space); 835 836 /* Sanity check. */ 837 if (pspace_data->atcb_fieldno.activation_link < 0) 838 return false; 839 840 /* Build a new list by reading the ATCBs. Read head of the list. */ 841 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte); 842 task_id = extract_typed_address (known_tasks, data->known_tasks_element); 843 while (task_id != 0) 844 { 845 struct value *tcb_value; 846 struct value *common_value; 847 848 add_ada_task (task_id, current_inferior ()); 849 850 /* Read the chain. */ 851 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 852 NULL, task_id); 853 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 854 task_id = value_as_address 855 (value_field (common_value, 856 pspace_data->atcb_fieldno.activation_link)); 857 } 858 859 return true; 860 } 861 862 /* Set all fields of the current inferior ada-tasks data pointed by DATA. 863 Do nothing if those fields are already set and still up to date. */ 864 865 static void 866 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data) 867 { 868 struct bound_minimal_symbol msym; 869 struct symbol *sym; 870 871 /* Return now if already set. */ 872 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN) 873 return; 874 875 /* Try array. */ 876 877 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL); 878 if (msym.minsym != NULL) 879 { 880 data->known_tasks_kind = ADA_TASKS_ARRAY; 881 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); 882 883 /* Try to get pointer type and array length from the symtab. */ 884 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, VAR_DOMAIN, 885 language_c, NULL).symbol; 886 if (sym != NULL) 887 { 888 /* Validate. */ 889 struct type *type = check_typedef (SYMBOL_TYPE (sym)); 890 struct type *eltype = NULL; 891 struct type *idxtype = NULL; 892 893 if (type->code () == TYPE_CODE_ARRAY) 894 eltype = check_typedef (TYPE_TARGET_TYPE (type)); 895 if (eltype != NULL 896 && eltype->code () == TYPE_CODE_PTR) 897 idxtype = check_typedef (type->index_type ()); 898 if (idxtype != NULL 899 && idxtype->bounds ()->low.kind () != PROP_UNDEFINED 900 && idxtype->bounds ()->high.kind () != PROP_UNDEFINED) 901 { 902 data->known_tasks_element = eltype; 903 data->known_tasks_length = 904 (idxtype->bounds ()->high.const_val () 905 - idxtype->bounds ()->low.const_val () + 1); 906 return; 907 } 908 } 909 910 /* Fallback to default values. The runtime may have been stripped (as 911 in some distributions), but it is likely that the executable still 912 contains debug information on the task type (due to implicit with of 913 Ada.Tasking). */ 914 data->known_tasks_element = 915 builtin_type (target_gdbarch ())->builtin_data_ptr; 916 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS; 917 return; 918 } 919 920 921 /* Try list. */ 922 923 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL); 924 if (msym.minsym != NULL) 925 { 926 data->known_tasks_kind = ADA_TASKS_LIST; 927 data->known_tasks_addr = BMSYMBOL_VALUE_ADDRESS (msym); 928 data->known_tasks_length = 1; 929 930 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, VAR_DOMAIN, 931 language_c, NULL).symbol; 932 if (sym != NULL && SYMBOL_VALUE_ADDRESS (sym) != 0) 933 { 934 /* Validate. */ 935 struct type *type = check_typedef (SYMBOL_TYPE (sym)); 936 937 if (type->code () == TYPE_CODE_PTR) 938 { 939 data->known_tasks_element = type; 940 return; 941 } 942 } 943 944 /* Fallback to default values. */ 945 data->known_tasks_element = 946 builtin_type (target_gdbarch ())->builtin_data_ptr; 947 data->known_tasks_length = 1; 948 return; 949 } 950 951 /* Can't find tasks. */ 952 953 data->known_tasks_kind = ADA_TASKS_NOT_FOUND; 954 data->known_tasks_addr = 0; 955 } 956 957 /* Read the known tasks from the current inferior's memory, and store it 958 in the current inferior's data TASK_LIST. */ 959 960 static void 961 read_known_tasks () 962 { 963 struct ada_tasks_inferior_data *data = 964 get_ada_tasks_inferior_data (current_inferior ()); 965 966 /* Step 1: Clear the current list, if necessary. */ 967 data->task_list.clear (); 968 969 /* Step 2: do the real work. 970 If the application does not use task, then no more needs to be done. 971 It is important to have the task list cleared (see above) before we 972 return, as we don't want a stale task list to be used... This can 973 happen for instance when debugging a non-multitasking program after 974 having debugged a multitasking one. */ 975 ada_tasks_inferior_data_sniffer (data); 976 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN); 977 978 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks 979 array unless needed. */ 980 switch (data->known_tasks_kind) 981 { 982 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */ 983 break; 984 case ADA_TASKS_ARRAY: 985 data->task_list_valid_p = read_known_tasks_array (data); 986 break; 987 case ADA_TASKS_LIST: 988 data->task_list_valid_p = read_known_tasks_list (data); 989 break; 990 } 991 } 992 993 /* Build the task_list by reading the Known_Tasks array from 994 the inferior, and return the number of tasks in that list 995 (zero means that the program is not using tasking at all). */ 996 997 static int 998 ada_build_task_list () 999 { 1000 struct ada_tasks_inferior_data *data; 1001 1002 if (!target_has_stack) 1003 error (_("Cannot inspect Ada tasks when program is not running")); 1004 1005 data = get_ada_tasks_inferior_data (current_inferior ()); 1006 if (!data->task_list_valid_p) 1007 read_known_tasks (); 1008 1009 return data->task_list.size (); 1010 } 1011 1012 /* Print a table providing a short description of all Ada tasks 1013 running inside inferior INF. If ARG_STR is set, it will be 1014 interpreted as a task number, and the table will be limited to 1015 that task only. */ 1016 1017 void 1018 print_ada_task_info (struct ui_out *uiout, 1019 const char *arg_str, 1020 struct inferior *inf) 1021 { 1022 struct ada_tasks_inferior_data *data; 1023 int taskno, nb_tasks; 1024 int taskno_arg = 0; 1025 int nb_columns; 1026 1027 if (ada_build_task_list () == 0) 1028 { 1029 uiout->message (_("Your application does not use any Ada tasks.\n")); 1030 return; 1031 } 1032 1033 if (arg_str != NULL && arg_str[0] != '\0') 1034 taskno_arg = value_as_long (parse_and_eval (arg_str)); 1035 1036 if (uiout->is_mi_like_p ()) 1037 /* In GDB/MI mode, we want to provide the thread ID corresponding 1038 to each task. This allows clients to quickly find the thread 1039 associated to any task, which is helpful for commands that 1040 take a --thread argument. However, in order to be able to 1041 provide that thread ID, the thread list must be up to date 1042 first. */ 1043 target_update_thread_list (); 1044 1045 data = get_ada_tasks_inferior_data (inf); 1046 1047 /* Compute the number of tasks that are going to be displayed 1048 in the output. If an argument was given, there will be 1049 at most 1 entry. Otherwise, there will be as many entries 1050 as we have tasks. */ 1051 if (taskno_arg) 1052 { 1053 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ()) 1054 nb_tasks = 1; 1055 else 1056 nb_tasks = 0; 1057 } 1058 else 1059 nb_tasks = data->task_list.size (); 1060 1061 nb_columns = uiout->is_mi_like_p () ? 8 : 7; 1062 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks"); 1063 uiout->table_header (1, ui_left, "current", ""); 1064 uiout->table_header (3, ui_right, "id", "ID"); 1065 { 1066 size_t tid_width = 9; 1067 /* Grown below in case the largest entry is bigger. */ 1068 1069 if (!uiout->is_mi_like_p ()) 1070 { 1071 for (taskno = 1; taskno <= data->task_list.size (); taskno++) 1072 { 1073 const struct ada_task_info *const task_info 1074 = &data->task_list[taskno - 1]; 1075 1076 gdb_assert (task_info != NULL); 1077 1078 tid_width = std::max (tid_width, 1079 1 + strlen (phex_nz (task_info->task_id, 1080 sizeof (CORE_ADDR)))); 1081 } 1082 } 1083 uiout->table_header (tid_width, ui_right, "task-id", "TID"); 1084 } 1085 /* The following column is provided in GDB/MI mode only because 1086 it is only really useful in that mode, and also because it 1087 allows us to keep the CLI output shorter and more compact. */ 1088 if (uiout->is_mi_like_p ()) 1089 uiout->table_header (4, ui_right, "thread-id", ""); 1090 uiout->table_header (4, ui_right, "parent-id", "P-ID"); 1091 uiout->table_header (3, ui_right, "priority", "Pri"); 1092 uiout->table_header (22, ui_left, "state", "State"); 1093 /* Use ui_noalign for the last column, to prevent the CLI uiout 1094 from printing an extra space at the end of each row. This 1095 is a bit of a hack, but does get the job done. */ 1096 uiout->table_header (1, ui_noalign, "name", "Name"); 1097 uiout->table_body (); 1098 1099 for (taskno = 1; taskno <= data->task_list.size (); taskno++) 1100 { 1101 const struct ada_task_info *const task_info = 1102 &data->task_list[taskno - 1]; 1103 int parent_id; 1104 1105 gdb_assert (task_info != NULL); 1106 1107 /* If the user asked for the output to be restricted 1108 to one task only, and this is not the task, skip 1109 to the next one. */ 1110 if (taskno_arg && taskno != taskno_arg) 1111 continue; 1112 1113 ui_out_emit_tuple tuple_emitter (uiout, NULL); 1114 1115 /* Print a star if this task is the current task (or the task 1116 currently selected). */ 1117 if (task_info->ptid == inferior_ptid) 1118 uiout->field_string ("current", "*"); 1119 else 1120 uiout->field_skip ("current"); 1121 1122 /* Print the task number. */ 1123 uiout->field_signed ("id", taskno); 1124 1125 /* Print the Task ID. */ 1126 uiout->field_string ("task-id", phex_nz (task_info->task_id, 1127 sizeof (CORE_ADDR))); 1128 1129 /* Print the associated Thread ID. */ 1130 if (uiout->is_mi_like_p ()) 1131 { 1132 thread_info *thread = (ada_task_is_alive (task_info) 1133 ? find_thread_ptid (inf, task_info->ptid) 1134 : nullptr); 1135 1136 if (thread != NULL) 1137 uiout->field_signed ("thread-id", thread->global_num); 1138 else 1139 { 1140 /* This can happen if the thread is no longer alive. */ 1141 uiout->field_skip ("thread-id"); 1142 } 1143 } 1144 1145 /* Print the ID of the parent task. */ 1146 parent_id = get_task_number_from_id (task_info->parent, inf); 1147 if (parent_id) 1148 uiout->field_signed ("parent-id", parent_id); 1149 else 1150 uiout->field_skip ("parent-id"); 1151 1152 /* Print the base priority of the task. */ 1153 uiout->field_signed ("priority", task_info->priority); 1154 1155 /* Print the task current state. */ 1156 if (task_info->caller_task) 1157 uiout->field_fmt ("state", 1158 _("Accepting RV with %-4d"), 1159 get_task_number_from_id (task_info->caller_task, 1160 inf)); 1161 else if (task_info->called_task) 1162 uiout->field_fmt ("state", 1163 _("Waiting on RV with %-3d"), 1164 get_task_number_from_id (task_info->called_task, 1165 inf)); 1166 else 1167 uiout->field_string ("state", task_states[task_info->state]); 1168 1169 /* Finally, print the task name, without quotes around it, as mi like 1170 is not expecting quotes, and in non mi-like no need for quotes 1171 as there is a specific column for the name. */ 1172 uiout->field_fmt ("name", 1173 (task_info->name[0] != '\0' 1174 ? ui_file_style () 1175 : metadata_style.style ()), 1176 "%s", 1177 (task_info->name[0] != '\0' 1178 ? task_info->name 1179 : _("<no name>"))); 1180 1181 uiout->text ("\n"); 1182 } 1183 } 1184 1185 /* Print a detailed description of the Ada task whose ID is TASKNO_STR 1186 for the given inferior (INF). */ 1187 1188 static void 1189 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf) 1190 { 1191 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1192 struct ada_task_info *task_info; 1193 int parent_taskno = 0; 1194 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1195 1196 if (ada_build_task_list () == 0) 1197 { 1198 uiout->message (_("Your application does not use any Ada tasks.\n")); 1199 return; 1200 } 1201 1202 if (taskno <= 0 || taskno > data->task_list.size ()) 1203 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1204 "see the IDs of currently known tasks"), taskno); 1205 task_info = &data->task_list[taskno - 1]; 1206 1207 /* Print the Ada task ID. */ 1208 printf_filtered (_("Ada Task: %s\n"), 1209 paddress (target_gdbarch (), task_info->task_id)); 1210 1211 /* Print the name of the task. */ 1212 if (task_info->name[0] != '\0') 1213 printf_filtered (_("Name: %s\n"), task_info->name); 1214 else 1215 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n")); 1216 1217 /* Print the TID and LWP. */ 1218 printf_filtered (_("Thread: %#lx\n"), task_info->ptid.tid ()); 1219 printf_filtered (_("LWP: %#lx\n"), task_info->ptid.lwp ()); 1220 1221 /* If set, print the base CPU. */ 1222 if (task_info->base_cpu != 0) 1223 printf_filtered (_("Base CPU: %d\n"), task_info->base_cpu); 1224 1225 /* Print who is the parent (if any). */ 1226 if (task_info->parent != 0) 1227 parent_taskno = get_task_number_from_id (task_info->parent, inf); 1228 if (parent_taskno) 1229 { 1230 struct ada_task_info *parent = &data->task_list[parent_taskno - 1]; 1231 1232 printf_filtered (_("Parent: %d"), parent_taskno); 1233 if (parent->name[0] != '\0') 1234 printf_filtered (" (%s)", parent->name); 1235 printf_filtered ("\n"); 1236 } 1237 else 1238 printf_filtered (_("No parent\n")); 1239 1240 /* Print the base priority. */ 1241 printf_filtered (_("Base Priority: %d\n"), task_info->priority); 1242 1243 /* print the task current state. */ 1244 { 1245 int target_taskno = 0; 1246 1247 if (task_info->caller_task) 1248 { 1249 target_taskno = get_task_number_from_id (task_info->caller_task, inf); 1250 printf_filtered (_("State: Accepting rendezvous with %d"), 1251 target_taskno); 1252 } 1253 else if (task_info->called_task) 1254 { 1255 target_taskno = get_task_number_from_id (task_info->called_task, inf); 1256 printf_filtered (_("State: Waiting on task %d's entry"), 1257 target_taskno); 1258 } 1259 else 1260 printf_filtered (_("State: %s"), _(long_task_states[task_info->state])); 1261 1262 if (target_taskno) 1263 { 1264 ada_task_info *target_task_info = &data->task_list[target_taskno - 1]; 1265 1266 if (target_task_info->name[0] != '\0') 1267 printf_filtered (" (%s)", target_task_info->name); 1268 } 1269 1270 printf_filtered ("\n"); 1271 } 1272 } 1273 1274 /* If ARG is empty or null, then print a list of all Ada tasks. 1275 Otherwise, print detailed information about the task whose ID 1276 is ARG. 1277 1278 Does nothing if the program doesn't use Ada tasking. */ 1279 1280 static void 1281 info_tasks_command (const char *arg, int from_tty) 1282 { 1283 struct ui_out *uiout = current_uiout; 1284 1285 if (arg == NULL || *arg == '\0') 1286 print_ada_task_info (uiout, NULL, current_inferior ()); 1287 else 1288 info_task (uiout, arg, current_inferior ()); 1289 } 1290 1291 /* Print a message telling the user id of the current task. 1292 This function assumes that tasking is in use in the inferior. */ 1293 1294 static void 1295 display_current_task_id (void) 1296 { 1297 const int current_task = ada_get_task_number (inferior_thread ()); 1298 1299 if (current_task == 0) 1300 printf_filtered (_("[Current task is unknown]\n")); 1301 else 1302 { 1303 struct ada_tasks_inferior_data *data 1304 = get_ada_tasks_inferior_data (current_inferior ()); 1305 struct ada_task_info *task_info = &data->task_list[current_task - 1]; 1306 1307 printf_filtered (_("[Current task is %s]\n"), 1308 task_to_str (current_task, task_info).c_str ()); 1309 } 1310 } 1311 1312 /* Parse and evaluate TIDSTR into a task id, and try to switch to 1313 that task. Print an error message if the task switch failed. */ 1314 1315 static void 1316 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf) 1317 { 1318 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1319 struct ada_task_info *task_info; 1320 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1321 1322 if (taskno <= 0 || taskno > data->task_list.size ()) 1323 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1324 "see the IDs of currently known tasks"), taskno); 1325 task_info = &data->task_list[taskno - 1]; 1326 1327 if (!ada_task_is_alive (task_info)) 1328 error (_("Cannot switch to task %s: Task is no longer running"), 1329 task_to_str (taskno, task_info).c_str ()); 1330 1331 /* On some platforms, the thread list is not updated until the user 1332 performs a thread-related operation (by using the "info threads" 1333 command, for instance). So this thread list may not be up to date 1334 when the user attempts this task switch. Since we cannot switch 1335 to the thread associated to our task if GDB does not know about 1336 that thread, we need to make sure that any new threads gets added 1337 to the thread list. */ 1338 target_update_thread_list (); 1339 1340 /* Verify that the ptid of the task we want to switch to is valid 1341 (in other words, a ptid that GDB knows about). Otherwise, we will 1342 cause an assertion failure later on, when we try to determine 1343 the ptid associated thread_info data. We should normally never 1344 encounter such an error, but the wrong ptid can actually easily be 1345 computed if target_get_ada_task_ptid has not been implemented for 1346 our target (yet). Rather than cause an assertion error in that case, 1347 it's nicer for the user to just refuse to perform the task switch. */ 1348 thread_info *tp = find_thread_ptid (inf, task_info->ptid); 1349 if (tp == NULL) 1350 error (_("Unable to compute thread ID for task %s.\n" 1351 "Cannot switch to this task."), 1352 task_to_str (taskno, task_info).c_str ()); 1353 1354 switch_to_thread (tp); 1355 ada_find_printable_frame (get_selected_frame (NULL)); 1356 printf_filtered (_("[Switching to task %s]\n"), 1357 task_to_str (taskno, task_info).c_str ()); 1358 print_stack_frame (get_selected_frame (NULL), 1359 frame_relative_level (get_selected_frame (NULL)), 1360 SRC_AND_LOC, 1); 1361 } 1362 1363 1364 /* Print the ID of the current task if TASKNO_STR is empty or NULL. 1365 Otherwise, switch to the task indicated by TASKNO_STR. */ 1366 1367 static void 1368 task_command (const char *taskno_str, int from_tty) 1369 { 1370 struct ui_out *uiout = current_uiout; 1371 1372 if (ada_build_task_list () == 0) 1373 { 1374 uiout->message (_("Your application does not use any Ada tasks.\n")); 1375 return; 1376 } 1377 1378 if (taskno_str == NULL || taskno_str[0] == '\0') 1379 display_current_task_id (); 1380 else 1381 task_command_1 (taskno_str, from_tty, current_inferior ()); 1382 } 1383 1384 /* Indicate that the given inferior's task list may have changed, 1385 so invalidate the cache. */ 1386 1387 static void 1388 ada_task_list_changed (struct inferior *inf) 1389 { 1390 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1391 1392 data->task_list_valid_p = false; 1393 } 1394 1395 /* Invalidate the per-program-space data. */ 1396 1397 static void 1398 ada_tasks_invalidate_pspace_data (struct program_space *pspace) 1399 { 1400 get_ada_tasks_pspace_data (pspace)->initialized_p = 0; 1401 } 1402 1403 /* Invalidate the per-inferior data. */ 1404 1405 static void 1406 ada_tasks_invalidate_inferior_data (struct inferior *inf) 1407 { 1408 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1409 1410 data->known_tasks_kind = ADA_TASKS_UNKNOWN; 1411 data->task_list_valid_p = false; 1412 } 1413 1414 /* The 'normal_stop' observer notification callback. */ 1415 1416 static void 1417 ada_tasks_normal_stop_observer (struct bpstats *unused_args, int unused_args2) 1418 { 1419 /* The inferior has been resumed, and just stopped. This means that 1420 our task_list needs to be recomputed before it can be used again. */ 1421 ada_task_list_changed (current_inferior ()); 1422 } 1423 1424 /* A routine to be called when the objfiles have changed. */ 1425 1426 static void 1427 ada_tasks_new_objfile_observer (struct objfile *objfile) 1428 { 1429 struct inferior *inf; 1430 1431 /* Invalidate the relevant data in our program-space data. */ 1432 1433 if (objfile == NULL) 1434 { 1435 /* All objfiles are being cleared, so we should clear all 1436 our caches for all program spaces. */ 1437 for (struct program_space *pspace : program_spaces) 1438 ada_tasks_invalidate_pspace_data (pspace); 1439 } 1440 else 1441 { 1442 /* The associated program-space data might have changed after 1443 this objfile was added. Invalidate all cached data. */ 1444 ada_tasks_invalidate_pspace_data (objfile->pspace); 1445 } 1446 1447 /* Invalidate the per-inferior cache for all inferiors using 1448 this objfile (or, in other words, for all inferiors who have 1449 the same program-space as the objfile's program space). 1450 If all objfiles are being cleared (OBJFILE is NULL), then 1451 clear the caches for all inferiors. */ 1452 1453 for (inf = inferior_list; inf != NULL; inf = inf->next) 1454 if (objfile == NULL || inf->pspace == objfile->pspace) 1455 ada_tasks_invalidate_inferior_data (inf); 1456 } 1457 1458 void _initialize_tasks (); 1459 void 1460 _initialize_tasks () 1461 { 1462 /* Attach various observers. */ 1463 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer); 1464 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer); 1465 1466 /* Some new commands provided by this module. */ 1467 add_info ("tasks", info_tasks_command, 1468 _("Provide information about all known Ada tasks.")); 1469 add_cmd ("task", class_run, task_command, 1470 _("Use this command to switch between Ada tasks.\n\ 1471 Without argument, this command simply prints the current task ID."), 1472 &cmdlist); 1473 } 1474