1 /* Copyright (C) 1992-2024 Free Software Foundation, Inc. 2 3 This file is part of GDB. 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 3 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */ 17 18 #include "extract-store-integer.h" 19 #include "observable.h" 20 #include "cli/cli-cmds.h" 21 #include "target.h" 22 #include "ada-lang.h" 23 #include "gdbcore.h" 24 #include "inferior.h" 25 #include "gdbthread.h" 26 #include "progspace.h" 27 #include "objfiles.h" 28 #include "cli/cli-style.h" 29 30 static int ada_build_task_list (); 31 32 /* The name of the array in the GNAT runtime where the Ada Task Control 33 Block of each task is stored. */ 34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks" 35 36 /* The maximum number of tasks known to the Ada runtime. */ 37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000; 38 39 /* The name of the variable in the GNAT runtime where the head of a task 40 chain is saved. This is an alternate mechanism to find the list of known 41 tasks. */ 42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task" 43 44 enum task_states 45 { 46 Unactivated, 47 Runnable, 48 Terminated, 49 Activator_Sleep, 50 Acceptor_Sleep, 51 Entry_Caller_Sleep, 52 Async_Select_Sleep, 53 Delay_Sleep, 54 Master_Completion_Sleep, 55 Master_Phase_2_Sleep, 56 Interrupt_Server_Idle_Sleep, 57 Interrupt_Server_Blocked_Interrupt_Sleep, 58 Timer_Server_Sleep, 59 AST_Server_Sleep, 60 Asynchronous_Hold, 61 Interrupt_Server_Blocked_On_Event_Flag, 62 Activating, 63 Acceptor_Delay_Sleep 64 }; 65 66 /* A short description corresponding to each possible task state. */ 67 static const char * const task_states[] = { 68 N_("Unactivated"), 69 N_("Runnable"), 70 N_("Terminated"), 71 N_("Child Activation Wait"), 72 N_("Accept or Select Term"), 73 N_("Waiting on entry call"), 74 N_("Async Select Wait"), 75 N_("Delay Sleep"), 76 N_("Child Termination Wait"), 77 N_("Wait Child in Term Alt"), 78 "", 79 "", 80 "", 81 "", 82 N_("Asynchronous Hold"), 83 "", 84 N_("Activating"), 85 N_("Selective Wait") 86 }; 87 88 /* Return a string representing the task state. */ 89 static const char * 90 get_state (unsigned value) 91 { 92 if (value >= 0 93 && value <= ARRAY_SIZE (task_states) 94 && task_states[value][0] != '\0') 95 return _(task_states[value]); 96 97 static char buffer[100]; 98 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value); 99 return buffer; 100 } 101 102 /* A longer description corresponding to each possible task state. */ 103 static const char * const long_task_states[] = { 104 N_("Unactivated"), 105 N_("Runnable"), 106 N_("Terminated"), 107 N_("Waiting for child activation"), 108 N_("Blocked in accept or select with terminate"), 109 N_("Waiting on entry call"), 110 N_("Asynchronous Selective Wait"), 111 N_("Delay Sleep"), 112 N_("Waiting for children termination"), 113 N_("Waiting for children in terminate alternative"), 114 "", 115 "", 116 "", 117 "", 118 N_("Asynchronous Hold"), 119 "", 120 N_("Activating"), 121 N_("Blocked in selective wait statement") 122 }; 123 124 /* Return a string representing the task state. This uses the long 125 descriptions. */ 126 static const char * 127 get_long_state (unsigned value) 128 { 129 if (value >= 0 130 && value <= ARRAY_SIZE (long_task_states) 131 && long_task_states[value][0] != '\0') 132 return _(long_task_states[value]); 133 134 static char buffer[100]; 135 xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value); 136 return buffer; 137 } 138 139 /* The index of certain important fields in the Ada Task Control Block 140 record and sub-records. */ 141 142 struct atcb_fieldnos 143 { 144 /* Fields in record Ada_Task_Control_Block. */ 145 int common; 146 int entry_calls; 147 int atc_nesting_level; 148 149 /* Fields in record Common_ATCB. */ 150 int state; 151 int parent; 152 int priority; 153 int image; 154 int image_len; /* This field may be missing. */ 155 int activation_link; 156 int call; 157 int ll; 158 int base_cpu; 159 160 /* Fields in Task_Primitives.Private_Data. */ 161 int ll_thread; 162 int ll_lwp; /* This field may be missing. */ 163 164 /* Fields in Common_ATCB.Call.all. */ 165 int call_self; 166 }; 167 168 /* This module's per-program-space data. */ 169 170 struct ada_tasks_pspace_data 171 { 172 /* Nonzero if the data has been initialized. If set to zero, 173 it means that the data has either not been initialized, or 174 has potentially become stale. */ 175 int initialized_p = 0; 176 177 /* The ATCB record type. */ 178 struct type *atcb_type = nullptr; 179 180 /* The ATCB "Common" component type. */ 181 struct type *atcb_common_type = nullptr; 182 183 /* The type of the "ll" field, from the atcb_common_type. */ 184 struct type *atcb_ll_type = nullptr; 185 186 /* The type of the "call" field, from the atcb_common_type. */ 187 struct type *atcb_call_type = nullptr; 188 189 /* The index of various fields in the ATCB record and sub-records. */ 190 struct atcb_fieldnos atcb_fieldno {}; 191 192 /* On some systems, gdbserver applies an offset to the CPU that is 193 reported. */ 194 unsigned int cpu_id_offset = 0; 195 }; 196 197 /* Key to our per-program-space data. */ 198 static const registry<program_space>::key<ada_tasks_pspace_data> 199 ada_tasks_pspace_data_handle; 200 201 /* The kind of data structure used by the runtime to store the list 202 of Ada tasks. */ 203 204 enum ada_known_tasks_kind 205 { 206 /* Use this value when we haven't determined which kind of structure 207 is being used, or when we need to recompute it. 208 209 We set the value of this enumerate to zero on purpose: This allows 210 us to use this enumerate in a structure where setting all fields 211 to zero will result in this kind being set to unknown. */ 212 ADA_TASKS_UNKNOWN = 0, 213 214 /* This value means that we did not find any task list. Unless 215 there is a bug somewhere, this means that the inferior does not 216 use tasking. */ 217 ADA_TASKS_NOT_FOUND, 218 219 /* This value means that the task list is stored as an array. 220 This is the usual method, as it causes very little overhead. 221 But this method is not always used, as it does use a certain 222 amount of memory, which might be scarse in certain environments. */ 223 ADA_TASKS_ARRAY, 224 225 /* This value means that the task list is stored as a linked list. 226 This has more runtime overhead than the array approach, but 227 also require less memory when the number of tasks is small. */ 228 ADA_TASKS_LIST, 229 }; 230 231 /* This module's per-inferior data. */ 232 233 struct ada_tasks_inferior_data 234 { 235 /* The type of data structure used by the runtime to store 236 the list of Ada tasks. The value of this field influences 237 the interpretation of the known_tasks_addr field below: 238 - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't 239 been determined yet; 240 - ADA_TASKS_NOT_FOUND: The program probably does not use tasking 241 and the known_tasks_addr is irrelevant; 242 - ADA_TASKS_ARRAY: The known_tasks is an array; 243 - ADA_TASKS_LIST: The known_tasks is a list. */ 244 enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN; 245 246 /* The address of the known_tasks structure. This is where 247 the runtime stores the information for all Ada tasks. 248 The interpretation of this field depends on KNOWN_TASKS_KIND 249 above. */ 250 CORE_ADDR known_tasks_addr = 0; 251 252 /* Type of elements of the known task. Usually a pointer. */ 253 struct type *known_tasks_element = nullptr; 254 255 /* Number of elements in the known tasks array. */ 256 unsigned int known_tasks_length = 0; 257 258 /* When nonzero, this flag indicates that the task_list field 259 below is up to date. When set to zero, the list has either 260 not been initialized, or has potentially become stale. */ 261 bool task_list_valid_p = false; 262 263 /* The list of Ada tasks. 264 265 Note: To each task we associate a number that the user can use to 266 reference it - this number is printed beside each task in the tasks 267 info listing displayed by "info tasks". This number is equal to 268 its index in the vector + 1. Reciprocally, to compute the index 269 of a task in the vector, we need to substract 1 from its number. */ 270 std::vector<ada_task_info> task_list; 271 }; 272 273 /* Key to our per-inferior data. */ 274 static const registry<inferior>::key<ada_tasks_inferior_data> 275 ada_tasks_inferior_data_handle; 276 277 /* Return a string with TASKNO followed by the task name if TASK_INFO 278 contains a name. */ 279 280 static std::string 281 task_to_str (int taskno, const ada_task_info *task_info) 282 { 283 if (task_info->name[0] == '\0') 284 return string_printf ("%d", taskno); 285 else 286 return string_printf ("%d \"%s\"", taskno, task_info->name); 287 } 288 289 /* Return the ada-tasks module's data for the given program space (PSPACE). 290 If none is found, add a zero'ed one now. 291 292 This function always returns a valid object. */ 293 294 static struct ada_tasks_pspace_data * 295 get_ada_tasks_pspace_data (struct program_space *pspace) 296 { 297 struct ada_tasks_pspace_data *data; 298 299 data = ada_tasks_pspace_data_handle.get (pspace); 300 if (data == NULL) 301 data = ada_tasks_pspace_data_handle.emplace (pspace); 302 303 return data; 304 } 305 306 /* Return the ada-tasks module's data for the given inferior (INF). 307 If none is found, add a zero'ed one now. 308 309 This function always returns a valid object. 310 311 Note that we could use an observer of the inferior-created event 312 to make sure that the ada-tasks per-inferior data always exists. 313 But we preferred this approach, as it avoids this entirely as long 314 as the user does not use any of the tasking features. This is 315 quite possible, particularly in the case where the inferior does 316 not use tasking. */ 317 318 static struct ada_tasks_inferior_data * 319 get_ada_tasks_inferior_data (struct inferior *inf) 320 { 321 struct ada_tasks_inferior_data *data; 322 323 data = ada_tasks_inferior_data_handle.get (inf); 324 if (data == NULL) 325 data = ada_tasks_inferior_data_handle.emplace (inf); 326 327 return data; 328 } 329 330 /* Return the task number of the task whose thread is THREAD, or zero 331 if the task could not be found. */ 332 333 int 334 ada_get_task_number (thread_info *thread) 335 { 336 struct inferior *inf = thread->inf; 337 struct ada_tasks_inferior_data *data; 338 339 gdb_assert (inf != NULL); 340 data = get_ada_tasks_inferior_data (inf); 341 342 for (int i = 0; i < data->task_list.size (); i++) 343 if (data->task_list[i].ptid == thread->ptid) 344 return i + 1; 345 346 return 0; /* No matching task found. */ 347 } 348 349 /* Return the task number of the task running in inferior INF which 350 matches TASK_ID , or zero if the task could not be found. */ 351 352 static int 353 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf) 354 { 355 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 356 357 for (int i = 0; i < data->task_list.size (); i++) 358 { 359 if (data->task_list[i].task_id == task_id) 360 return i + 1; 361 } 362 363 /* Task not found. Return 0. */ 364 return 0; 365 } 366 367 /* Return non-zero if TASK_NUM is a valid task number. */ 368 369 int 370 valid_task_id (int task_num) 371 { 372 struct ada_tasks_inferior_data *data; 373 374 ada_build_task_list (); 375 data = get_ada_tasks_inferior_data (current_inferior ()); 376 return task_num > 0 && task_num <= data->task_list.size (); 377 } 378 379 /* Return non-zero iff the task STATE corresponds to a non-terminated 380 task state. */ 381 382 static int 383 ada_task_is_alive (const struct ada_task_info *task_info) 384 { 385 return (task_info->state != Terminated); 386 } 387 388 /* Search through the list of known tasks for the one whose ptid is 389 PTID, and return it. Return NULL if the task was not found. */ 390 391 struct ada_task_info * 392 ada_get_task_info_from_ptid (ptid_t ptid) 393 { 394 struct ada_tasks_inferior_data *data; 395 396 ada_build_task_list (); 397 data = get_ada_tasks_inferior_data (current_inferior ()); 398 399 for (ada_task_info &task : data->task_list) 400 { 401 if (task.ptid == ptid) 402 return &task; 403 } 404 405 return NULL; 406 } 407 408 /* Call the ITERATOR function once for each Ada task that hasn't been 409 terminated yet. */ 410 411 void 412 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator) 413 { 414 struct ada_tasks_inferior_data *data; 415 416 ada_build_task_list (); 417 data = get_ada_tasks_inferior_data (current_inferior ()); 418 419 for (ada_task_info &task : data->task_list) 420 { 421 if (!ada_task_is_alive (&task)) 422 continue; 423 iterator (&task); 424 } 425 } 426 427 /* Extract the contents of the value as a string whose length is LENGTH, 428 and store the result in DEST. */ 429 430 static void 431 value_as_string (char *dest, struct value *val, int length) 432 { 433 memcpy (dest, val->contents ().data (), length); 434 dest[length] = '\0'; 435 } 436 437 /* Extract the string image from the fat string corresponding to VAL, 438 and store it in DEST. If the string length is greater than MAX_LEN, 439 then truncate the result to the first MAX_LEN characters of the fat 440 string. */ 441 442 static void 443 read_fat_string_value (char *dest, struct value *val, int max_len) 444 { 445 struct value *array_val; 446 struct value *bounds_val; 447 int len; 448 449 /* The following variables are made static to avoid recomputing them 450 each time this function is called. */ 451 static int initialize_fieldnos = 1; 452 static int array_fieldno; 453 static int bounds_fieldno; 454 static int upper_bound_fieldno; 455 456 /* Get the index of the fields that we will need to read in order 457 to extract the string from the fat string. */ 458 if (initialize_fieldnos) 459 { 460 struct type *type = val->type (); 461 struct type *bounds_type; 462 463 array_fieldno = ada_get_field_index (type, "P_ARRAY", 0); 464 bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0); 465 466 bounds_type = type->field (bounds_fieldno).type (); 467 if (bounds_type->code () == TYPE_CODE_PTR) 468 bounds_type = bounds_type->target_type (); 469 if (bounds_type->code () != TYPE_CODE_STRUCT) 470 error (_("Unknown task name format. Aborting")); 471 upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0); 472 473 initialize_fieldnos = 0; 474 } 475 476 /* Get the size of the task image by checking the value of the bounds. 477 The lower bound is always 1, so we only need to read the upper bound. */ 478 bounds_val = value_ind (value_field (val, bounds_fieldno)); 479 len = value_as_long (value_field (bounds_val, upper_bound_fieldno)); 480 481 /* Make sure that we do not read more than max_len characters... */ 482 if (len > max_len) 483 len = max_len; 484 485 /* Extract LEN characters from the fat string. */ 486 array_val = value_ind (value_field (val, array_fieldno)); 487 read_memory (array_val->address (), (gdb_byte *) dest, len); 488 489 /* Add the NUL character to close the string. */ 490 dest[len] = '\0'; 491 } 492 493 /* Get, from the debugging information, the type description of all types 494 related to the Ada Task Control Block that are needed in order to 495 read the list of known tasks in the Ada runtime. If all of the info 496 needed to do so is found, then save that info in the module's per- 497 program-space data, and return NULL. Otherwise, if any information 498 cannot be found, leave the per-program-space data untouched, and 499 return an error message explaining what was missing (that error 500 message does NOT need to be deallocated). */ 501 502 const char * 503 ada_get_tcb_types_info (void) 504 { 505 struct type *type; 506 struct type *common_type; 507 struct type *ll_type; 508 struct type *call_type; 509 struct atcb_fieldnos fieldnos; 510 struct ada_tasks_pspace_data *pspace_data; 511 512 const char *atcb_name = "system__tasking__ada_task_control_block___XVE"; 513 const char *atcb_name_fixed = "system__tasking__ada_task_control_block"; 514 const char *common_atcb_name = "system__tasking__common_atcb"; 515 const char *private_data_name = "system__task_primitives__private_data"; 516 const char *entry_call_record_name = "system__tasking__entry_call_record"; 517 518 /* ATCB symbols may be found in several compilation units. As we 519 are only interested in one instance, use standard (literal, 520 C-like) lookups to get the first match. */ 521 522 struct symbol *atcb_sym = 523 lookup_symbol_in_language (atcb_name, NULL, SEARCH_TYPE_DOMAIN, 524 language_c, NULL).symbol; 525 const struct symbol *common_atcb_sym = 526 lookup_symbol_in_language (common_atcb_name, NULL, SEARCH_TYPE_DOMAIN, 527 language_c, NULL).symbol; 528 const struct symbol *private_data_sym = 529 lookup_symbol_in_language (private_data_name, NULL, SEARCH_TYPE_DOMAIN, 530 language_c, NULL).symbol; 531 const struct symbol *entry_call_record_sym = 532 lookup_symbol_in_language (entry_call_record_name, NULL, 533 SEARCH_TYPE_DOMAIN, 534 language_c, NULL).symbol; 535 536 if (atcb_sym == NULL || atcb_sym->type () == NULL) 537 { 538 /* In Ravenscar run-time libs, the ATCB does not have a dynamic 539 size, so the symbol name differs. */ 540 atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL, 541 SEARCH_TYPE_DOMAIN, language_c, 542 NULL).symbol; 543 544 if (atcb_sym == NULL || atcb_sym->type () == NULL) 545 return _("Cannot find Ada_Task_Control_Block type"); 546 547 type = atcb_sym->type (); 548 } 549 else 550 { 551 /* Get a static representation of the type record 552 Ada_Task_Control_Block. */ 553 type = atcb_sym->type (); 554 type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0); 555 } 556 557 if (common_atcb_sym == NULL || common_atcb_sym->type () == NULL) 558 return _("Cannot find Common_ATCB type"); 559 if (private_data_sym == NULL || private_data_sym->type ()== NULL) 560 return _("Cannot find Private_Data type"); 561 if (entry_call_record_sym == NULL || entry_call_record_sym->type () == NULL) 562 return _("Cannot find Entry_Call_Record type"); 563 564 /* Get the type for Ada_Task_Control_Block.Common. */ 565 common_type = common_atcb_sym->type (); 566 567 /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL. */ 568 ll_type = private_data_sym->type (); 569 570 /* Get the type for Common_ATCB.Call.all. */ 571 call_type = entry_call_record_sym->type (); 572 573 /* Get the field indices. */ 574 fieldnos.common = ada_get_field_index (type, "common", 0); 575 fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1); 576 fieldnos.atc_nesting_level = 577 ada_get_field_index (type, "atc_nesting_level", 1); 578 fieldnos.state = ada_get_field_index (common_type, "state", 0); 579 fieldnos.parent = ada_get_field_index (common_type, "parent", 1); 580 fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0); 581 fieldnos.image = ada_get_field_index (common_type, "task_image", 1); 582 fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1); 583 fieldnos.activation_link = ada_get_field_index (common_type, 584 "activation_link", 1); 585 fieldnos.call = ada_get_field_index (common_type, "call", 1); 586 fieldnos.ll = ada_get_field_index (common_type, "ll", 0); 587 fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0); 588 fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0); 589 fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1); 590 fieldnos.call_self = ada_get_field_index (call_type, "self", 0); 591 592 /* On certain platforms such as x86-windows, the "lwp" field has been 593 named "thread_id". This field will likely be renamed in the future, 594 but we need to support both possibilities to avoid an unnecessary 595 dependency on a recent compiler. We therefore try locating the 596 "thread_id" field in place of the "lwp" field if we did not find 597 the latter. */ 598 if (fieldnos.ll_lwp < 0) 599 fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1); 600 601 /* Check for the CPU offset. */ 602 bound_minimal_symbol first_id_sym 603 = lookup_bound_minimal_symbol ("__gnat_gdb_cpu_first_id"); 604 unsigned int first_id = 0; 605 if (first_id_sym.minsym != nullptr) 606 { 607 CORE_ADDR addr = first_id_sym.value_address (); 608 gdbarch *arch = current_inferior ()->arch (); 609 /* This symbol always has type uint32_t. */ 610 struct type *u32type = builtin_type (arch)->builtin_uint32; 611 first_id = value_as_long (value_at (u32type, addr)); 612 } 613 614 /* Set all the out parameters all at once, now that we are certain 615 that there are no potential error() anymore. */ 616 pspace_data = get_ada_tasks_pspace_data (current_program_space); 617 pspace_data->initialized_p = 1; 618 pspace_data->atcb_type = type; 619 pspace_data->atcb_common_type = common_type; 620 pspace_data->atcb_ll_type = ll_type; 621 pspace_data->atcb_call_type = call_type; 622 pspace_data->atcb_fieldno = fieldnos; 623 pspace_data->cpu_id_offset = first_id; 624 return NULL; 625 } 626 627 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common" 628 component of its ATCB record. This PTID needs to match the PTID used 629 by the thread layer. */ 630 631 static ptid_t 632 ptid_from_atcb_common (struct value *common_value) 633 { 634 ULONGEST thread; 635 CORE_ADDR lwp = 0; 636 struct value *ll_value; 637 ptid_t ptid; 638 const struct ada_tasks_pspace_data *pspace_data 639 = get_ada_tasks_pspace_data (current_program_space); 640 641 ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll); 642 643 if (pspace_data->atcb_fieldno.ll_lwp >= 0) 644 lwp = value_as_address (value_field (ll_value, 645 pspace_data->atcb_fieldno.ll_lwp)); 646 thread = value_as_long (value_field (ll_value, 647 pspace_data->atcb_fieldno.ll_thread)); 648 649 ptid = target_get_ada_task_ptid (lwp, thread); 650 651 return ptid; 652 } 653 654 /* Read the ATCB data of a given task given its TASK_ID (which is in practice 655 the address of its associated ATCB record), and store the result inside 656 TASK_INFO. */ 657 658 static void 659 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info) 660 { 661 struct value *tcb_value; 662 struct value *common_value; 663 struct value *atc_nesting_level_value; 664 struct value *entry_calls_value; 665 struct value *entry_calls_value_element; 666 int called_task_fieldno = -1; 667 static const char ravenscar_task_name[] = "Ravenscar task"; 668 const struct ada_tasks_pspace_data *pspace_data 669 = get_ada_tasks_pspace_data (current_program_space); 670 671 /* Clear the whole structure to start with, so that everything 672 is always initialized the same. */ 673 memset (task_info, 0, sizeof (struct ada_task_info)); 674 675 if (!pspace_data->initialized_p) 676 { 677 const char *err_msg = ada_get_tcb_types_info (); 678 679 if (err_msg != NULL) 680 error (_("%s. Aborting"), err_msg); 681 } 682 683 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 684 NULL, task_id); 685 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 686 687 /* Fill in the task_id. */ 688 689 task_info->task_id = task_id; 690 691 /* Compute the name of the task. 692 693 Depending on the GNAT version used, the task image is either a fat 694 string, or a thin array of characters. Older versions of GNAT used 695 to use fat strings, and therefore did not need an extra field in 696 the ATCB to store the string length. For efficiency reasons, newer 697 versions of GNAT replaced the fat string by a static buffer, but this 698 also required the addition of a new field named "Image_Len" containing 699 the length of the task name. The method used to extract the task name 700 is selected depending on the existence of this field. 701 702 In some run-time libs (e.g. Ravenscar), the name is not in the ATCB; 703 we may want to get it from the first user frame of the stack. For now, 704 we just give a dummy name. */ 705 706 if (pspace_data->atcb_fieldno.image_len == -1) 707 { 708 if (pspace_data->atcb_fieldno.image >= 0) 709 read_fat_string_value (task_info->name, 710 value_field (common_value, 711 pspace_data->atcb_fieldno.image), 712 sizeof (task_info->name) - 1); 713 else 714 { 715 struct bound_minimal_symbol msym; 716 717 msym = lookup_minimal_symbol_by_pc (task_id); 718 if (msym.minsym) 719 { 720 const char *full_name = msym.minsym->linkage_name (); 721 const char *task_name = full_name; 722 const char *p; 723 724 /* Strip the prefix. */ 725 for (p = full_name; *p; p++) 726 if (p[0] == '_' && p[1] == '_') 727 task_name = p + 2; 728 729 /* Copy the task name. */ 730 strncpy (task_info->name, task_name, 731 sizeof (task_info->name) - 1); 732 task_info->name[sizeof (task_info->name) - 1] = 0; 733 } 734 else 735 { 736 /* No symbol found. Use a default name. */ 737 strcpy (task_info->name, ravenscar_task_name); 738 } 739 } 740 } 741 else 742 { 743 int len = value_as_long 744 (value_field (common_value, 745 pspace_data->atcb_fieldno.image_len)); 746 747 value_as_string (task_info->name, 748 value_field (common_value, 749 pspace_data->atcb_fieldno.image), 750 len); 751 } 752 753 /* Compute the task state and priority. */ 754 755 task_info->state = 756 value_as_long (value_field (common_value, 757 pspace_data->atcb_fieldno.state)); 758 task_info->priority = 759 value_as_long (value_field (common_value, 760 pspace_data->atcb_fieldno.priority)); 761 762 /* If the ATCB contains some information about the parent task, 763 then compute it as well. Otherwise, zero. */ 764 765 if (pspace_data->atcb_fieldno.parent >= 0) 766 task_info->parent = 767 value_as_address (value_field (common_value, 768 pspace_data->atcb_fieldno.parent)); 769 770 /* If the task is in an entry call waiting for another task, 771 then determine which task it is. */ 772 773 if (task_info->state == Entry_Caller_Sleep 774 && pspace_data->atcb_fieldno.atc_nesting_level > 0 775 && pspace_data->atcb_fieldno.entry_calls > 0) 776 { 777 /* Let My_ATCB be the Ada task control block of a task calling the 778 entry of another task; then the Task_Id of the called task is 779 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task. */ 780 atc_nesting_level_value = 781 value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level); 782 entry_calls_value = 783 ada_coerce_to_simple_array_ptr 784 (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls)); 785 entry_calls_value_element = 786 value_subscript (entry_calls_value, 787 value_as_long (atc_nesting_level_value)); 788 called_task_fieldno = 789 ada_get_field_index (entry_calls_value_element->type (), 790 "called_task", 0); 791 task_info->called_task = 792 value_as_address (value_field (entry_calls_value_element, 793 called_task_fieldno)); 794 } 795 796 /* If the ATCB contains some information about RV callers, then 797 compute the "caller_task". Otherwise, leave it as zero. */ 798 799 if (pspace_data->atcb_fieldno.call >= 0) 800 { 801 /* Get the ID of the caller task from Common_ATCB.Call.all.Self. 802 If Common_ATCB.Call is null, then there is no caller. */ 803 const CORE_ADDR call = 804 value_as_address (value_field (common_value, 805 pspace_data->atcb_fieldno.call)); 806 struct value *call_val; 807 808 if (call != 0) 809 { 810 call_val = 811 value_from_contents_and_address (pspace_data->atcb_call_type, 812 NULL, call); 813 task_info->caller_task = 814 value_as_address 815 (value_field (call_val, pspace_data->atcb_fieldno.call_self)); 816 } 817 } 818 819 task_info->base_cpu 820 = (pspace_data->cpu_id_offset 821 + value_as_long (value_field (common_value, 822 pspace_data->atcb_fieldno.base_cpu))); 823 824 /* And finally, compute the task ptid. Note that there is not point 825 in computing it if the task is no longer alive, in which case 826 it is good enough to set its ptid to the null_ptid. */ 827 if (ada_task_is_alive (task_info)) 828 task_info->ptid = ptid_from_atcb_common (common_value); 829 else 830 task_info->ptid = null_ptid; 831 } 832 833 /* Read the ATCB info of the given task (identified by TASK_ID), and 834 add the result to the given inferior's TASK_LIST. */ 835 836 static void 837 add_ada_task (CORE_ADDR task_id, struct inferior *inf) 838 { 839 struct ada_task_info task_info; 840 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 841 842 read_atcb (task_id, &task_info); 843 data->task_list.push_back (task_info); 844 } 845 846 /* Read the Known_Tasks array from the inferior memory, and store 847 it in the current inferior's TASK_LIST. Return true upon success. */ 848 849 static bool 850 read_known_tasks_array (struct ada_tasks_inferior_data *data) 851 { 852 const int target_ptr_byte = data->known_tasks_element->length (); 853 const int known_tasks_size = target_ptr_byte * data->known_tasks_length; 854 gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size); 855 int i; 856 857 /* Build a new list by reading the ATCBs from the Known_Tasks array 858 in the Ada runtime. */ 859 read_memory (data->known_tasks_addr, known_tasks, known_tasks_size); 860 for (i = 0; i < data->known_tasks_length; i++) 861 { 862 CORE_ADDR task_id = 863 extract_typed_address (known_tasks + i * target_ptr_byte, 864 data->known_tasks_element); 865 866 if (task_id != 0) 867 add_ada_task (task_id, current_inferior ()); 868 } 869 870 return true; 871 } 872 873 /* Read the known tasks from the inferior memory, and store it in 874 the current inferior's TASK_LIST. Return true upon success. */ 875 876 static bool 877 read_known_tasks_list (struct ada_tasks_inferior_data *data) 878 { 879 const int target_ptr_byte = data->known_tasks_element->length (); 880 gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte); 881 CORE_ADDR task_id; 882 const struct ada_tasks_pspace_data *pspace_data 883 = get_ada_tasks_pspace_data (current_program_space); 884 885 /* Sanity check. */ 886 if (pspace_data->atcb_fieldno.activation_link < 0) 887 return false; 888 889 /* Build a new list by reading the ATCBs. Read head of the list. */ 890 read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte); 891 task_id = extract_typed_address (known_tasks, data->known_tasks_element); 892 while (task_id != 0) 893 { 894 struct value *tcb_value; 895 struct value *common_value; 896 897 add_ada_task (task_id, current_inferior ()); 898 899 /* Read the chain. */ 900 tcb_value = value_from_contents_and_address (pspace_data->atcb_type, 901 NULL, task_id); 902 common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common); 903 task_id = value_as_address 904 (value_field (common_value, 905 pspace_data->atcb_fieldno.activation_link)); 906 } 907 908 return true; 909 } 910 911 /* Set all fields of the current inferior ada-tasks data pointed by DATA. 912 Do nothing if those fields are already set and still up to date. */ 913 914 static void 915 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data) 916 { 917 struct bound_minimal_symbol msym; 918 struct symbol *sym; 919 920 /* Return now if already set. */ 921 if (data->known_tasks_kind != ADA_TASKS_UNKNOWN) 922 return; 923 924 /* Try array. */ 925 926 msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL); 927 if (msym.minsym != NULL) 928 { 929 data->known_tasks_kind = ADA_TASKS_ARRAY; 930 data->known_tasks_addr = msym.value_address (); 931 932 /* Try to get pointer type and array length from the symtab. */ 933 sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL, 934 SEARCH_VAR_DOMAIN, 935 language_c, NULL).symbol; 936 if (sym != NULL) 937 { 938 /* Validate. */ 939 struct type *type = check_typedef (sym->type ()); 940 struct type *eltype = NULL; 941 struct type *idxtype = NULL; 942 943 if (type->code () == TYPE_CODE_ARRAY) 944 eltype = check_typedef (type->target_type ()); 945 if (eltype != NULL 946 && eltype->code () == TYPE_CODE_PTR) 947 idxtype = check_typedef (type->index_type ()); 948 if (idxtype != NULL 949 && idxtype->bounds ()->low.is_constant () 950 && idxtype->bounds ()->high.is_constant ()) 951 { 952 data->known_tasks_element = eltype; 953 data->known_tasks_length = 954 (idxtype->bounds ()->high.const_val () 955 - idxtype->bounds ()->low.const_val () + 1); 956 return; 957 } 958 } 959 960 /* Fallback to default values. The runtime may have been stripped (as 961 in some distributions), but it is likely that the executable still 962 contains debug information on the task type (due to implicit with of 963 Ada.Tasking). */ 964 data->known_tasks_element = 965 builtin_type (current_inferior ()->arch ())->builtin_data_ptr; 966 data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS; 967 return; 968 } 969 970 971 /* Try list. */ 972 973 msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL); 974 if (msym.minsym != NULL) 975 { 976 data->known_tasks_kind = ADA_TASKS_LIST; 977 data->known_tasks_addr = msym.value_address (); 978 data->known_tasks_length = 1; 979 980 sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL, 981 SEARCH_VAR_DOMAIN, 982 language_c, NULL).symbol; 983 if (sym != NULL && sym->value_address () != 0) 984 { 985 /* Validate. */ 986 struct type *type = check_typedef (sym->type ()); 987 988 if (type->code () == TYPE_CODE_PTR) 989 { 990 data->known_tasks_element = type; 991 return; 992 } 993 } 994 995 /* Fallback to default values. */ 996 data->known_tasks_element = 997 builtin_type (current_inferior ()->arch ())->builtin_data_ptr; 998 data->known_tasks_length = 1; 999 return; 1000 } 1001 1002 /* Can't find tasks. */ 1003 1004 data->known_tasks_kind = ADA_TASKS_NOT_FOUND; 1005 data->known_tasks_addr = 0; 1006 } 1007 1008 /* Read the known tasks from the current inferior's memory, and store it 1009 in the current inferior's data TASK_LIST. */ 1010 1011 static void 1012 read_known_tasks () 1013 { 1014 struct ada_tasks_inferior_data *data = 1015 get_ada_tasks_inferior_data (current_inferior ()); 1016 1017 /* Step 1: Clear the current list, if necessary. */ 1018 data->task_list.clear (); 1019 1020 /* Step 2: do the real work. 1021 If the application does not use task, then no more needs to be done. 1022 It is important to have the task list cleared (see above) before we 1023 return, as we don't want a stale task list to be used... This can 1024 happen for instance when debugging a non-multitasking program after 1025 having debugged a multitasking one. */ 1026 ada_tasks_inferior_data_sniffer (data); 1027 gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN); 1028 1029 /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks 1030 array unless needed. */ 1031 switch (data->known_tasks_kind) 1032 { 1033 case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior. */ 1034 break; 1035 case ADA_TASKS_ARRAY: 1036 data->task_list_valid_p = read_known_tasks_array (data); 1037 break; 1038 case ADA_TASKS_LIST: 1039 data->task_list_valid_p = read_known_tasks_list (data); 1040 break; 1041 } 1042 } 1043 1044 /* Build the task_list by reading the Known_Tasks array from 1045 the inferior, and return the number of tasks in that list 1046 (zero means that the program is not using tasking at all). */ 1047 1048 static int 1049 ada_build_task_list () 1050 { 1051 struct ada_tasks_inferior_data *data; 1052 1053 if (!target_has_stack ()) 1054 error (_("Cannot inspect Ada tasks when program is not running")); 1055 1056 data = get_ada_tasks_inferior_data (current_inferior ()); 1057 if (!data->task_list_valid_p) 1058 read_known_tasks (); 1059 1060 return data->task_list.size (); 1061 } 1062 1063 /* Print a table providing a short description of all Ada tasks 1064 running inside inferior INF. If ARG_STR is set, it will be 1065 interpreted as a task number, and the table will be limited to 1066 that task only. */ 1067 1068 void 1069 print_ada_task_info (struct ui_out *uiout, 1070 const char *arg_str, 1071 struct inferior *inf) 1072 { 1073 struct ada_tasks_inferior_data *data; 1074 int taskno, nb_tasks; 1075 int taskno_arg = 0; 1076 int nb_columns; 1077 1078 if (ada_build_task_list () == 0) 1079 { 1080 uiout->message (_("Your application does not use any Ada tasks.\n")); 1081 return; 1082 } 1083 1084 if (arg_str != NULL && arg_str[0] != '\0') 1085 taskno_arg = value_as_long (parse_and_eval (arg_str)); 1086 1087 if (uiout->is_mi_like_p ()) 1088 /* In GDB/MI mode, we want to provide the thread ID corresponding 1089 to each task. This allows clients to quickly find the thread 1090 associated to any task, which is helpful for commands that 1091 take a --thread argument. However, in order to be able to 1092 provide that thread ID, the thread list must be up to date 1093 first. */ 1094 target_update_thread_list (); 1095 1096 data = get_ada_tasks_inferior_data (inf); 1097 1098 /* Compute the number of tasks that are going to be displayed 1099 in the output. If an argument was given, there will be 1100 at most 1 entry. Otherwise, there will be as many entries 1101 as we have tasks. */ 1102 if (taskno_arg) 1103 { 1104 if (taskno_arg > 0 && taskno_arg <= data->task_list.size ()) 1105 nb_tasks = 1; 1106 else 1107 nb_tasks = 0; 1108 } 1109 else 1110 nb_tasks = data->task_list.size (); 1111 1112 nb_columns = uiout->is_mi_like_p () ? 8 : 7; 1113 ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks"); 1114 uiout->table_header (1, ui_left, "current", ""); 1115 uiout->table_header (3, ui_right, "id", "ID"); 1116 { 1117 size_t tid_width = 9; 1118 /* Grown below in case the largest entry is bigger. */ 1119 1120 if (!uiout->is_mi_like_p ()) 1121 { 1122 for (taskno = 1; taskno <= data->task_list.size (); taskno++) 1123 { 1124 const struct ada_task_info *const task_info 1125 = &data->task_list[taskno - 1]; 1126 1127 gdb_assert (task_info != NULL); 1128 1129 tid_width = std::max (tid_width, 1130 1 + strlen (phex_nz (task_info->task_id, 1131 sizeof (CORE_ADDR)))); 1132 } 1133 } 1134 uiout->table_header (tid_width, ui_right, "task-id", "TID"); 1135 } 1136 /* The following column is provided in GDB/MI mode only because 1137 it is only really useful in that mode, and also because it 1138 allows us to keep the CLI output shorter and more compact. */ 1139 if (uiout->is_mi_like_p ()) 1140 uiout->table_header (4, ui_right, "thread-id", ""); 1141 uiout->table_header (4, ui_right, "parent-id", "P-ID"); 1142 uiout->table_header (3, ui_right, "priority", "Pri"); 1143 uiout->table_header (22, ui_left, "state", "State"); 1144 /* Use ui_noalign for the last column, to prevent the CLI uiout 1145 from printing an extra space at the end of each row. This 1146 is a bit of a hack, but does get the job done. */ 1147 uiout->table_header (1, ui_noalign, "name", "Name"); 1148 uiout->table_body (); 1149 1150 for (taskno = 1; taskno <= data->task_list.size (); taskno++) 1151 { 1152 const struct ada_task_info *const task_info = 1153 &data->task_list[taskno - 1]; 1154 int parent_id; 1155 1156 gdb_assert (task_info != NULL); 1157 1158 /* If the user asked for the output to be restricted 1159 to one task only, and this is not the task, skip 1160 to the next one. */ 1161 if (taskno_arg && taskno != taskno_arg) 1162 continue; 1163 1164 ui_out_emit_tuple tuple_emitter (uiout, NULL); 1165 1166 /* Print a star if this task is the current task (or the task 1167 currently selected). */ 1168 if (task_info->ptid == inferior_ptid) 1169 uiout->field_string ("current", "*"); 1170 else 1171 uiout->field_skip ("current"); 1172 1173 /* Print the task number. */ 1174 uiout->field_signed ("id", taskno); 1175 1176 /* Print the Task ID. */ 1177 uiout->field_string ("task-id", phex_nz (task_info->task_id, 1178 sizeof (CORE_ADDR))); 1179 1180 /* Print the associated Thread ID. */ 1181 if (uiout->is_mi_like_p ()) 1182 { 1183 thread_info *thread = (ada_task_is_alive (task_info) 1184 ? inf->find_thread (task_info->ptid) 1185 : nullptr); 1186 1187 if (thread != NULL) 1188 uiout->field_signed ("thread-id", thread->global_num); 1189 else 1190 { 1191 /* This can happen if the thread is no longer alive. */ 1192 uiout->field_skip ("thread-id"); 1193 } 1194 } 1195 1196 /* Print the ID of the parent task. */ 1197 parent_id = get_task_number_from_id (task_info->parent, inf); 1198 if (parent_id) 1199 uiout->field_signed ("parent-id", parent_id); 1200 else 1201 uiout->field_skip ("parent-id"); 1202 1203 /* Print the base priority of the task. */ 1204 uiout->field_signed ("priority", task_info->priority); 1205 1206 /* Print the task current state. */ 1207 if (task_info->caller_task) 1208 uiout->field_fmt ("state", 1209 _("Accepting RV with %-4d"), 1210 get_task_number_from_id (task_info->caller_task, 1211 inf)); 1212 else if (task_info->called_task) 1213 uiout->field_fmt ("state", 1214 _("Waiting on RV with %-3d"), 1215 get_task_number_from_id (task_info->called_task, 1216 inf)); 1217 else 1218 uiout->field_string ("state", get_state (task_info->state)); 1219 1220 /* Finally, print the task name, without quotes around it, as mi like 1221 is not expecting quotes, and in non mi-like no need for quotes 1222 as there is a specific column for the name. */ 1223 uiout->field_fmt ("name", 1224 (task_info->name[0] != '\0' 1225 ? ui_file_style () 1226 : metadata_style.style ()), 1227 "%s", 1228 (task_info->name[0] != '\0' 1229 ? task_info->name 1230 : _("<no name>"))); 1231 1232 uiout->text ("\n"); 1233 } 1234 } 1235 1236 /* Print a detailed description of the Ada task whose ID is TASKNO_STR 1237 for the given inferior (INF). */ 1238 1239 static void 1240 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf) 1241 { 1242 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1243 struct ada_task_info *task_info; 1244 int parent_taskno = 0; 1245 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1246 1247 if (ada_build_task_list () == 0) 1248 { 1249 uiout->message (_("Your application does not use any Ada tasks.\n")); 1250 return; 1251 } 1252 1253 if (taskno <= 0 || taskno > data->task_list.size ()) 1254 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1255 "see the IDs of currently known tasks"), taskno); 1256 task_info = &data->task_list[taskno - 1]; 1257 1258 /* Print the Ada task ID. */ 1259 gdb_printf (_("Ada Task: %s\n"), 1260 paddress (current_inferior ()->arch (), task_info->task_id)); 1261 1262 /* Print the name of the task. */ 1263 if (task_info->name[0] != '\0') 1264 gdb_printf (_("Name: %s\n"), task_info->name); 1265 else 1266 fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n")); 1267 1268 /* Print the TID and LWP. */ 1269 gdb_printf (_("Thread: 0x%s\n"), phex_nz (task_info->ptid.tid (), 1270 sizeof (ULONGEST))); 1271 gdb_printf (_("LWP: %#lx\n"), task_info->ptid.lwp ()); 1272 1273 /* If set, print the base CPU. */ 1274 if (task_info->base_cpu != 0) 1275 gdb_printf (_("Base CPU: %d\n"), task_info->base_cpu); 1276 1277 /* Print who is the parent (if any). */ 1278 if (task_info->parent != 0) 1279 parent_taskno = get_task_number_from_id (task_info->parent, inf); 1280 if (parent_taskno) 1281 { 1282 struct ada_task_info *parent = &data->task_list[parent_taskno - 1]; 1283 1284 gdb_printf (_("Parent: %d"), parent_taskno); 1285 if (parent->name[0] != '\0') 1286 gdb_printf (" (%s)", parent->name); 1287 gdb_printf ("\n"); 1288 } 1289 else 1290 gdb_printf (_("No parent\n")); 1291 1292 /* Print the base priority. */ 1293 gdb_printf (_("Base Priority: %d\n"), task_info->priority); 1294 1295 /* print the task current state. */ 1296 { 1297 int target_taskno = 0; 1298 1299 if (task_info->caller_task) 1300 { 1301 target_taskno = get_task_number_from_id (task_info->caller_task, inf); 1302 gdb_printf (_("State: Accepting rendezvous with %d"), 1303 target_taskno); 1304 } 1305 else if (task_info->called_task) 1306 { 1307 target_taskno = get_task_number_from_id (task_info->called_task, inf); 1308 gdb_printf (_("State: Waiting on task %d's entry"), 1309 target_taskno); 1310 } 1311 else 1312 gdb_printf (_("State: %s"), get_long_state (task_info->state)); 1313 1314 if (target_taskno) 1315 { 1316 ada_task_info *target_task_info = &data->task_list[target_taskno - 1]; 1317 1318 if (target_task_info->name[0] != '\0') 1319 gdb_printf (" (%s)", target_task_info->name); 1320 } 1321 1322 gdb_printf ("\n"); 1323 } 1324 } 1325 1326 /* If ARG is empty or null, then print a list of all Ada tasks. 1327 Otherwise, print detailed information about the task whose ID 1328 is ARG. 1329 1330 Does nothing if the program doesn't use Ada tasking. */ 1331 1332 static void 1333 info_tasks_command (const char *arg, int from_tty) 1334 { 1335 struct ui_out *uiout = current_uiout; 1336 1337 if (arg == NULL || *arg == '\0') 1338 print_ada_task_info (uiout, NULL, current_inferior ()); 1339 else 1340 info_task (uiout, arg, current_inferior ()); 1341 } 1342 1343 /* Print a message telling the user id of the current task. 1344 This function assumes that tasking is in use in the inferior. */ 1345 1346 static void 1347 display_current_task_id (void) 1348 { 1349 const int current_task = ada_get_task_number (inferior_thread ()); 1350 1351 if (current_task == 0) 1352 gdb_printf (_("[Current task is unknown]\n")); 1353 else 1354 { 1355 struct ada_tasks_inferior_data *data 1356 = get_ada_tasks_inferior_data (current_inferior ()); 1357 struct ada_task_info *task_info = &data->task_list[current_task - 1]; 1358 1359 gdb_printf (_("[Current task is %s]\n"), 1360 task_to_str (current_task, task_info).c_str ()); 1361 } 1362 } 1363 1364 /* Parse and evaluate TIDSTR into a task id, and try to switch to 1365 that task. Print an error message if the task switch failed. */ 1366 1367 static void 1368 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf) 1369 { 1370 const int taskno = value_as_long (parse_and_eval (taskno_str)); 1371 struct ada_task_info *task_info; 1372 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1373 1374 if (taskno <= 0 || taskno > data->task_list.size ()) 1375 error (_("Task ID %d not known. Use the \"info tasks\" command to\n" 1376 "see the IDs of currently known tasks"), taskno); 1377 task_info = &data->task_list[taskno - 1]; 1378 1379 if (!ada_task_is_alive (task_info)) 1380 error (_("Cannot switch to task %s: Task is no longer running"), 1381 task_to_str (taskno, task_info).c_str ()); 1382 1383 /* On some platforms, the thread list is not updated until the user 1384 performs a thread-related operation (by using the "info threads" 1385 command, for instance). So this thread list may not be up to date 1386 when the user attempts this task switch. Since we cannot switch 1387 to the thread associated to our task if GDB does not know about 1388 that thread, we need to make sure that any new threads gets added 1389 to the thread list. */ 1390 target_update_thread_list (); 1391 1392 /* Verify that the ptid of the task we want to switch to is valid 1393 (in other words, a ptid that GDB knows about). Otherwise, we will 1394 cause an assertion failure later on, when we try to determine 1395 the ptid associated thread_info data. We should normally never 1396 encounter such an error, but the wrong ptid can actually easily be 1397 computed if target_get_ada_task_ptid has not been implemented for 1398 our target (yet). Rather than cause an assertion error in that case, 1399 it's nicer for the user to just refuse to perform the task switch. */ 1400 thread_info *tp = inf->find_thread (task_info->ptid); 1401 if (tp == NULL) 1402 error (_("Unable to compute thread ID for task %s.\n" 1403 "Cannot switch to this task."), 1404 task_to_str (taskno, task_info).c_str ()); 1405 1406 switch_to_thread (tp); 1407 ada_find_printable_frame (get_selected_frame (NULL)); 1408 gdb_printf (_("[Switching to task %s]\n"), 1409 task_to_str (taskno, task_info).c_str ()); 1410 print_stack_frame (get_selected_frame (NULL), 1411 frame_relative_level (get_selected_frame (NULL)), 1412 SRC_AND_LOC, 1); 1413 } 1414 1415 1416 /* Print the ID of the current task if TASKNO_STR is empty or NULL. 1417 Otherwise, switch to the task indicated by TASKNO_STR. */ 1418 1419 static void 1420 task_command (const char *taskno_str, int from_tty) 1421 { 1422 struct ui_out *uiout = current_uiout; 1423 1424 if (ada_build_task_list () == 0) 1425 { 1426 uiout->message (_("Your application does not use any Ada tasks.\n")); 1427 return; 1428 } 1429 1430 if (taskno_str == NULL || taskno_str[0] == '\0') 1431 display_current_task_id (); 1432 else 1433 task_command_1 (taskno_str, from_tty, current_inferior ()); 1434 } 1435 1436 /* Indicate that the given inferior's task list may have changed, 1437 so invalidate the cache. */ 1438 1439 static void 1440 ada_task_list_changed (struct inferior *inf) 1441 { 1442 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1443 1444 data->task_list_valid_p = false; 1445 } 1446 1447 /* Invalidate the per-program-space data. */ 1448 1449 static void 1450 ada_tasks_invalidate_pspace_data (struct program_space *pspace) 1451 { 1452 get_ada_tasks_pspace_data (pspace)->initialized_p = 0; 1453 } 1454 1455 /* Invalidate the per-inferior data. */ 1456 1457 static void 1458 ada_tasks_invalidate_inferior_data (struct inferior *inf) 1459 { 1460 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1461 1462 data->known_tasks_kind = ADA_TASKS_UNKNOWN; 1463 data->task_list_valid_p = false; 1464 } 1465 1466 /* The 'normal_stop' observer notification callback. */ 1467 1468 static void 1469 ada_tasks_normal_stop_observer (struct bpstat *unused_args, int unused_args2) 1470 { 1471 /* The inferior has been resumed, and just stopped. This means that 1472 our task_list needs to be recomputed before it can be used again. */ 1473 ada_task_list_changed (current_inferior ()); 1474 } 1475 1476 /* Clear data associated to PSPACE and all inferiors using that program 1477 space. */ 1478 1479 static void 1480 ada_tasks_clear_pspace_data (program_space *pspace) 1481 { 1482 /* The associated program-space data might have changed after 1483 this objfile was added. Invalidate all cached data. */ 1484 ada_tasks_invalidate_pspace_data (pspace); 1485 1486 /* Invalidate the per-inferior cache for all inferiors using 1487 this program space. */ 1488 for (inferior *inf : all_inferiors ()) 1489 if (inf->pspace == pspace) 1490 ada_tasks_invalidate_inferior_data (inf); 1491 } 1492 1493 /* Called when a new objfile was added. */ 1494 1495 static void 1496 ada_tasks_new_objfile_observer (objfile *objfile) 1497 { 1498 ada_tasks_clear_pspace_data (objfile->pspace); 1499 } 1500 1501 /* The qcs command line flags for the "task apply" commands. Keep 1502 this in sync with the "frame apply" commands. */ 1503 1504 using qcs_flag_option_def 1505 = gdb::option::flag_option_def<qcs_flags>; 1506 1507 static const gdb::option::option_def task_qcs_flags_option_defs[] = { 1508 qcs_flag_option_def { 1509 "q", [] (qcs_flags *opt) { return &opt->quiet; }, 1510 N_("Disables printing the task information."), 1511 }, 1512 1513 qcs_flag_option_def { 1514 "c", [] (qcs_flags *opt) { return &opt->cont; }, 1515 N_("Print any error raised by COMMAND and continue."), 1516 }, 1517 1518 qcs_flag_option_def { 1519 "s", [] (qcs_flags *opt) { return &opt->silent; }, 1520 N_("Silently ignore any errors or empty output produced by COMMAND."), 1521 }, 1522 }; 1523 1524 /* Create an option_def_group for the "task apply all" options, with 1525 FLAGS as context. */ 1526 1527 static inline std::array<gdb::option::option_def_group, 1> 1528 make_task_apply_all_options_def_group (qcs_flags *flags) 1529 { 1530 return {{ 1531 { {task_qcs_flags_option_defs}, flags }, 1532 }}; 1533 } 1534 1535 /* Create an option_def_group for the "task apply" options, with 1536 FLAGS as context. */ 1537 1538 static inline gdb::option::option_def_group 1539 make_task_apply_options_def_group (qcs_flags *flags) 1540 { 1541 return {{task_qcs_flags_option_defs}, flags}; 1542 } 1543 1544 /* Implementation of 'task apply all'. */ 1545 1546 static void 1547 task_apply_all_command (const char *cmd, int from_tty) 1548 { 1549 qcs_flags flags; 1550 1551 auto group = make_task_apply_all_options_def_group (&flags); 1552 gdb::option::process_options 1553 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group); 1554 1555 validate_flags_qcs ("task apply all", &flags); 1556 1557 if (cmd == nullptr || *cmd == '\0') 1558 error (_("Please specify a command at the end of 'task apply all'")); 1559 1560 update_thread_list (); 1561 ada_build_task_list (); 1562 1563 inferior *inf = current_inferior (); 1564 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1565 1566 /* Save a copy of the thread list and increment each thread's 1567 refcount while executing the command in the context of each 1568 thread, in case the command affects this. */ 1569 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy; 1570 1571 for (int i = 1; i <= data->task_list.size (); ++i) 1572 { 1573 ada_task_info &task = data->task_list[i - 1]; 1574 if (!ada_task_is_alive (&task)) 1575 continue; 1576 1577 thread_info *tp = inf->find_thread (task.ptid); 1578 if (tp == nullptr) 1579 warning (_("Unable to compute thread ID for task %s.\n" 1580 "Cannot switch to this task."), 1581 task_to_str (i, &task).c_str ()); 1582 else 1583 thr_list_cpy.emplace_back (i, thread_info_ref::new_reference (tp)); 1584 } 1585 1586 scoped_restore_current_thread restore_thread; 1587 1588 for (const auto &info : thr_list_cpy) 1589 if (switch_to_thread_if_alive (info.second.get ())) 1590 thread_try_catch_cmd (info.second.get (), info.first, cmd, 1591 from_tty, flags); 1592 } 1593 1594 /* Implementation of 'task apply'. */ 1595 1596 static void 1597 task_apply_command (const char *tidlist, int from_tty) 1598 { 1599 1600 if (tidlist == nullptr || *tidlist == '\0') 1601 error (_("Please specify a task ID list")); 1602 1603 update_thread_list (); 1604 ada_build_task_list (); 1605 1606 inferior *inf = current_inferior (); 1607 struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf); 1608 1609 /* Save a copy of the thread list and increment each thread's 1610 refcount while executing the command in the context of each 1611 thread, in case the command affects this. */ 1612 std::vector<std::pair<int, thread_info_ref>> thr_list_cpy; 1613 1614 number_or_range_parser parser (tidlist); 1615 while (!parser.finished ()) 1616 { 1617 int num = parser.get_number (); 1618 1619 if (num < 1 || num - 1 >= data->task_list.size ()) 1620 warning (_("no Ada Task with number %d"), num); 1621 else 1622 { 1623 ada_task_info &task = data->task_list[num - 1]; 1624 if (!ada_task_is_alive (&task)) 1625 continue; 1626 1627 thread_info *tp = inf->find_thread (task.ptid); 1628 if (tp == nullptr) 1629 warning (_("Unable to compute thread ID for task %s.\n" 1630 "Cannot switch to this task."), 1631 task_to_str (num, &task).c_str ()); 1632 else 1633 thr_list_cpy.emplace_back (num, 1634 thread_info_ref::new_reference (tp)); 1635 } 1636 } 1637 1638 qcs_flags flags; 1639 const char *cmd = parser.cur_tok (); 1640 1641 auto group = make_task_apply_options_def_group (&flags); 1642 gdb::option::process_options 1643 (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group); 1644 1645 validate_flags_qcs ("task apply", &flags); 1646 1647 if (*cmd == '\0') 1648 error (_("Please specify a command following the task ID list")); 1649 1650 scoped_restore_current_thread restore_thread; 1651 1652 for (const auto &info : thr_list_cpy) 1653 if (switch_to_thread_if_alive (info.second.get ())) 1654 thread_try_catch_cmd (info.second.get (), info.first, cmd, 1655 from_tty, flags); 1656 } 1657 1658 void _initialize_tasks (); 1659 void 1660 _initialize_tasks () 1661 { 1662 /* Attach various observers. */ 1663 gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer, 1664 "ada-tasks"); 1665 gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer, 1666 "ada-tasks"); 1667 gdb::observers::all_objfiles_removed.attach (ada_tasks_clear_pspace_data, 1668 "ada-tasks"); 1669 1670 static struct cmd_list_element *task_cmd_list; 1671 static struct cmd_list_element *task_apply_list; 1672 1673 1674 /* Some new commands provided by this module. */ 1675 add_info ("tasks", info_tasks_command, 1676 _("Provide information about all known Ada tasks.")); 1677 1678 add_prefix_cmd ("task", class_run, task_command, 1679 _("Use this command to switch between Ada tasks.\n\ 1680 Without argument, this command simply prints the current task ID."), 1681 &task_cmd_list, 1, &cmdlist); 1682 1683 #define TASK_APPLY_OPTION_HELP "\ 1684 Prints per-inferior task number followed by COMMAND output.\n\ 1685 \n\ 1686 By default, an error raised during the execution of COMMAND\n\ 1687 aborts \"task apply\".\n\ 1688 \n\ 1689 Options:\n\ 1690 %OPTIONS%" 1691 1692 static const auto task_apply_opts 1693 = make_task_apply_options_def_group (nullptr); 1694 1695 static std::string task_apply_help = gdb::option::build_help (_("\ 1696 Apply a command to a list of tasks.\n\ 1697 Usage: task apply ID... [OPTION]... COMMAND\n\ 1698 ID is a space-separated list of IDs of tasks to apply COMMAND on.\n" 1699 TASK_APPLY_OPTION_HELP), task_apply_opts); 1700 1701 add_prefix_cmd ("apply", class_run, 1702 task_apply_command, 1703 task_apply_help.c_str (), 1704 &task_apply_list, 1, 1705 &task_cmd_list); 1706 1707 static const auto task_apply_all_opts 1708 = make_task_apply_all_options_def_group (nullptr); 1709 1710 static std::string task_apply_all_help = gdb::option::build_help (_("\ 1711 Apply a command to all tasks in the current inferior.\n\ 1712 \n\ 1713 Usage: task apply all [OPTION]... COMMAND\n" 1714 TASK_APPLY_OPTION_HELP), task_apply_all_opts); 1715 1716 add_cmd ("all", class_run, task_apply_all_command, 1717 task_apply_all_help.c_str (), &task_apply_list); 1718 } 1719