xref: /netbsd-src/external/gpl3/gdb/dist/gdb/ada-tasks.c (revision 3117ece4fc4a4ca4489ba793710b60b0d26bab6c)
1 /* Copyright (C) 1992-2024 Free Software Foundation, Inc.
2 
3    This file is part of GDB.
4 
5    This program is free software; you can redistribute it and/or modify
6    it under the terms of the GNU General Public License as published by
7    the Free Software Foundation; either version 3 of the License, or
8    (at your option) any later version.
9 
10    This program is distributed in the hope that it will be useful,
11    but WITHOUT ANY WARRANTY; without even the implied warranty of
12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13    GNU General Public License for more details.
14 
15    You should have received a copy of the GNU General Public License
16    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
17 
18 #include "extract-store-integer.h"
19 #include "observable.h"
20 #include "cli/cli-cmds.h"
21 #include "target.h"
22 #include "ada-lang.h"
23 #include "gdbcore.h"
24 #include "inferior.h"
25 #include "gdbthread.h"
26 #include "progspace.h"
27 #include "objfiles.h"
28 #include "cli/cli-style.h"
29 
30 static int ada_build_task_list ();
31 
32 /* The name of the array in the GNAT runtime where the Ada Task Control
33    Block of each task is stored.  */
34 #define KNOWN_TASKS_NAME "system__tasking__debug__known_tasks"
35 
36 /* The maximum number of tasks known to the Ada runtime.  */
37 static const int MAX_NUMBER_OF_KNOWN_TASKS = 1000;
38 
39 /* The name of the variable in the GNAT runtime where the head of a task
40    chain is saved.  This is an alternate mechanism to find the list of known
41    tasks.  */
42 #define KNOWN_TASKS_LIST "system__tasking__debug__first_task"
43 
44 enum task_states
45 {
46   Unactivated,
47   Runnable,
48   Terminated,
49   Activator_Sleep,
50   Acceptor_Sleep,
51   Entry_Caller_Sleep,
52   Async_Select_Sleep,
53   Delay_Sleep,
54   Master_Completion_Sleep,
55   Master_Phase_2_Sleep,
56   Interrupt_Server_Idle_Sleep,
57   Interrupt_Server_Blocked_Interrupt_Sleep,
58   Timer_Server_Sleep,
59   AST_Server_Sleep,
60   Asynchronous_Hold,
61   Interrupt_Server_Blocked_On_Event_Flag,
62   Activating,
63   Acceptor_Delay_Sleep
64 };
65 
66 /* A short description corresponding to each possible task state.  */
67 static const char * const task_states[] = {
68   N_("Unactivated"),
69   N_("Runnable"),
70   N_("Terminated"),
71   N_("Child Activation Wait"),
72   N_("Accept or Select Term"),
73   N_("Waiting on entry call"),
74   N_("Async Select Wait"),
75   N_("Delay Sleep"),
76   N_("Child Termination Wait"),
77   N_("Wait Child in Term Alt"),
78   "",
79   "",
80   "",
81   "",
82   N_("Asynchronous Hold"),
83   "",
84   N_("Activating"),
85   N_("Selective Wait")
86 };
87 
88 /* Return a string representing the task state.  */
89 static const char *
90 get_state (unsigned value)
91 {
92   if (value >= 0
93       && value <= ARRAY_SIZE (task_states)
94       && task_states[value][0] != '\0')
95     return _(task_states[value]);
96 
97   static char buffer[100];
98   xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
99   return buffer;
100 }
101 
102 /* A longer description corresponding to each possible task state.  */
103 static const char * const long_task_states[] = {
104   N_("Unactivated"),
105   N_("Runnable"),
106   N_("Terminated"),
107   N_("Waiting for child activation"),
108   N_("Blocked in accept or select with terminate"),
109   N_("Waiting on entry call"),
110   N_("Asynchronous Selective Wait"),
111   N_("Delay Sleep"),
112   N_("Waiting for children termination"),
113   N_("Waiting for children in terminate alternative"),
114   "",
115   "",
116   "",
117   "",
118   N_("Asynchronous Hold"),
119   "",
120   N_("Activating"),
121   N_("Blocked in selective wait statement")
122 };
123 
124 /* Return a string representing the task state.  This uses the long
125    descriptions.  */
126 static const char *
127 get_long_state (unsigned value)
128 {
129   if (value >= 0
130       && value <= ARRAY_SIZE (long_task_states)
131       && long_task_states[value][0] != '\0')
132     return _(long_task_states[value]);
133 
134   static char buffer[100];
135   xsnprintf (buffer, sizeof (buffer), _("Unknown task state: %d"), value);
136   return buffer;
137 }
138 
139 /* The index of certain important fields in the Ada Task Control Block
140    record and sub-records.  */
141 
142 struct atcb_fieldnos
143 {
144   /* Fields in record Ada_Task_Control_Block.  */
145   int common;
146   int entry_calls;
147   int atc_nesting_level;
148 
149   /* Fields in record Common_ATCB.  */
150   int state;
151   int parent;
152   int priority;
153   int image;
154   int image_len;     /* This field may be missing.  */
155   int activation_link;
156   int call;
157   int ll;
158   int base_cpu;
159 
160   /* Fields in Task_Primitives.Private_Data.  */
161   int ll_thread;
162   int ll_lwp;        /* This field may be missing.  */
163 
164   /* Fields in Common_ATCB.Call.all.  */
165   int call_self;
166 };
167 
168 /* This module's per-program-space data.  */
169 
170 struct ada_tasks_pspace_data
171 {
172   /* Nonzero if the data has been initialized.  If set to zero,
173      it means that the data has either not been initialized, or
174      has potentially become stale.  */
175   int initialized_p = 0;
176 
177   /* The ATCB record type.  */
178   struct type *atcb_type = nullptr;
179 
180   /* The ATCB "Common" component type.  */
181   struct type *atcb_common_type = nullptr;
182 
183   /* The type of the "ll" field, from the atcb_common_type.  */
184   struct type *atcb_ll_type = nullptr;
185 
186   /* The type of the "call" field, from the atcb_common_type.  */
187   struct type *atcb_call_type = nullptr;
188 
189   /* The index of various fields in the ATCB record and sub-records.  */
190   struct atcb_fieldnos atcb_fieldno {};
191 
192   /* On some systems, gdbserver applies an offset to the CPU that is
193      reported.  */
194   unsigned int cpu_id_offset = 0;
195 };
196 
197 /* Key to our per-program-space data.  */
198 static const registry<program_space>::key<ada_tasks_pspace_data>
199   ada_tasks_pspace_data_handle;
200 
201 /* The kind of data structure used by the runtime to store the list
202    of Ada tasks.  */
203 
204 enum ada_known_tasks_kind
205 {
206   /* Use this value when we haven't determined which kind of structure
207      is being used, or when we need to recompute it.
208 
209      We set the value of this enumerate to zero on purpose: This allows
210      us to use this enumerate in a structure where setting all fields
211      to zero will result in this kind being set to unknown.  */
212   ADA_TASKS_UNKNOWN = 0,
213 
214   /* This value means that we did not find any task list.  Unless
215      there is a bug somewhere, this means that the inferior does not
216      use tasking.  */
217   ADA_TASKS_NOT_FOUND,
218 
219   /* This value means that the task list is stored as an array.
220      This is the usual method, as it causes very little overhead.
221      But this method is not always used, as it does use a certain
222      amount of memory, which might be scarse in certain environments.  */
223   ADA_TASKS_ARRAY,
224 
225   /* This value means that the task list is stored as a linked list.
226      This has more runtime overhead than the array approach, but
227      also require less memory when the number of tasks is small.  */
228   ADA_TASKS_LIST,
229 };
230 
231 /* This module's per-inferior data.  */
232 
233 struct ada_tasks_inferior_data
234 {
235   /* The type of data structure used by the runtime to store
236      the list of Ada tasks.  The value of this field influences
237      the interpretation of the known_tasks_addr field below:
238        - ADA_TASKS_UNKNOWN: The value of known_tasks_addr hasn't
239 	 been determined yet;
240        - ADA_TASKS_NOT_FOUND: The program probably does not use tasking
241 	 and the known_tasks_addr is irrelevant;
242        - ADA_TASKS_ARRAY: The known_tasks is an array;
243        - ADA_TASKS_LIST: The known_tasks is a list.  */
244   enum ada_known_tasks_kind known_tasks_kind = ADA_TASKS_UNKNOWN;
245 
246   /* The address of the known_tasks structure.  This is where
247      the runtime stores the information for all Ada tasks.
248      The interpretation of this field depends on KNOWN_TASKS_KIND
249      above.  */
250   CORE_ADDR known_tasks_addr = 0;
251 
252   /* Type of elements of the known task.  Usually a pointer.  */
253   struct type *known_tasks_element = nullptr;
254 
255   /* Number of elements in the known tasks array.  */
256   unsigned int known_tasks_length = 0;
257 
258   /* When nonzero, this flag indicates that the task_list field
259      below is up to date.  When set to zero, the list has either
260      not been initialized, or has potentially become stale.  */
261   bool task_list_valid_p = false;
262 
263   /* The list of Ada tasks.
264 
265      Note: To each task we associate a number that the user can use to
266      reference it - this number is printed beside each task in the tasks
267      info listing displayed by "info tasks".  This number is equal to
268      its index in the vector + 1.  Reciprocally, to compute the index
269      of a task in the vector, we need to substract 1 from its number.  */
270   std::vector<ada_task_info> task_list;
271 };
272 
273 /* Key to our per-inferior data.  */
274 static const registry<inferior>::key<ada_tasks_inferior_data>
275   ada_tasks_inferior_data_handle;
276 
277 /* Return a string with TASKNO followed by the task name if TASK_INFO
278    contains a name.  */
279 
280 static std::string
281 task_to_str (int taskno, const ada_task_info *task_info)
282 {
283   if (task_info->name[0] == '\0')
284     return string_printf ("%d", taskno);
285   else
286     return string_printf ("%d \"%s\"", taskno, task_info->name);
287 }
288 
289 /* Return the ada-tasks module's data for the given program space (PSPACE).
290    If none is found, add a zero'ed one now.
291 
292    This function always returns a valid object.  */
293 
294 static struct ada_tasks_pspace_data *
295 get_ada_tasks_pspace_data (struct program_space *pspace)
296 {
297   struct ada_tasks_pspace_data *data;
298 
299   data = ada_tasks_pspace_data_handle.get (pspace);
300   if (data == NULL)
301     data = ada_tasks_pspace_data_handle.emplace (pspace);
302 
303   return data;
304 }
305 
306 /* Return the ada-tasks module's data for the given inferior (INF).
307    If none is found, add a zero'ed one now.
308 
309    This function always returns a valid object.
310 
311    Note that we could use an observer of the inferior-created event
312    to make sure that the ada-tasks per-inferior data always exists.
313    But we preferred this approach, as it avoids this entirely as long
314    as the user does not use any of the tasking features.  This is
315    quite possible, particularly in the case where the inferior does
316    not use tasking.  */
317 
318 static struct ada_tasks_inferior_data *
319 get_ada_tasks_inferior_data (struct inferior *inf)
320 {
321   struct ada_tasks_inferior_data *data;
322 
323   data = ada_tasks_inferior_data_handle.get (inf);
324   if (data == NULL)
325     data = ada_tasks_inferior_data_handle.emplace (inf);
326 
327   return data;
328 }
329 
330 /* Return the task number of the task whose thread is THREAD, or zero
331    if the task could not be found.  */
332 
333 int
334 ada_get_task_number (thread_info *thread)
335 {
336   struct inferior *inf = thread->inf;
337   struct ada_tasks_inferior_data *data;
338 
339   gdb_assert (inf != NULL);
340   data = get_ada_tasks_inferior_data (inf);
341 
342   for (int i = 0; i < data->task_list.size (); i++)
343     if (data->task_list[i].ptid == thread->ptid)
344       return i + 1;
345 
346   return 0;  /* No matching task found.  */
347 }
348 
349 /* Return the task number of the task running in inferior INF which
350    matches TASK_ID , or zero if the task could not be found.  */
351 
352 static int
353 get_task_number_from_id (CORE_ADDR task_id, struct inferior *inf)
354 {
355   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
356 
357   for (int i = 0; i < data->task_list.size (); i++)
358     {
359       if (data->task_list[i].task_id == task_id)
360 	return i + 1;
361     }
362 
363   /* Task not found.  Return 0.  */
364   return 0;
365 }
366 
367 /* Return non-zero if TASK_NUM is a valid task number.  */
368 
369 int
370 valid_task_id (int task_num)
371 {
372   struct ada_tasks_inferior_data *data;
373 
374   ada_build_task_list ();
375   data = get_ada_tasks_inferior_data (current_inferior ());
376   return task_num > 0 && task_num <= data->task_list.size ();
377 }
378 
379 /* Return non-zero iff the task STATE corresponds to a non-terminated
380    task state.  */
381 
382 static int
383 ada_task_is_alive (const struct ada_task_info *task_info)
384 {
385   return (task_info->state != Terminated);
386 }
387 
388 /* Search through the list of known tasks for the one whose ptid is
389    PTID, and return it.  Return NULL if the task was not found.  */
390 
391 struct ada_task_info *
392 ada_get_task_info_from_ptid (ptid_t ptid)
393 {
394   struct ada_tasks_inferior_data *data;
395 
396   ada_build_task_list ();
397   data = get_ada_tasks_inferior_data (current_inferior ());
398 
399   for (ada_task_info &task : data->task_list)
400     {
401       if (task.ptid == ptid)
402 	return &task;
403     }
404 
405   return NULL;
406 }
407 
408 /* Call the ITERATOR function once for each Ada task that hasn't been
409    terminated yet.  */
410 
411 void
412 iterate_over_live_ada_tasks (ada_task_list_iterator_ftype iterator)
413 {
414   struct ada_tasks_inferior_data *data;
415 
416   ada_build_task_list ();
417   data = get_ada_tasks_inferior_data (current_inferior ());
418 
419   for (ada_task_info &task : data->task_list)
420     {
421       if (!ada_task_is_alive (&task))
422 	continue;
423       iterator (&task);
424     }
425 }
426 
427 /* Extract the contents of the value as a string whose length is LENGTH,
428    and store the result in DEST.  */
429 
430 static void
431 value_as_string (char *dest, struct value *val, int length)
432 {
433   memcpy (dest, val->contents ().data (), length);
434   dest[length] = '\0';
435 }
436 
437 /* Extract the string image from the fat string corresponding to VAL,
438    and store it in DEST.  If the string length is greater than MAX_LEN,
439    then truncate the result to the first MAX_LEN characters of the fat
440    string.  */
441 
442 static void
443 read_fat_string_value (char *dest, struct value *val, int max_len)
444 {
445   struct value *array_val;
446   struct value *bounds_val;
447   int len;
448 
449   /* The following variables are made static to avoid recomputing them
450      each time this function is called.  */
451   static int initialize_fieldnos = 1;
452   static int array_fieldno;
453   static int bounds_fieldno;
454   static int upper_bound_fieldno;
455 
456   /* Get the index of the fields that we will need to read in order
457      to extract the string from the fat string.  */
458   if (initialize_fieldnos)
459     {
460       struct type *type = val->type ();
461       struct type *bounds_type;
462 
463       array_fieldno = ada_get_field_index (type, "P_ARRAY", 0);
464       bounds_fieldno = ada_get_field_index (type, "P_BOUNDS", 0);
465 
466       bounds_type = type->field (bounds_fieldno).type ();
467       if (bounds_type->code () == TYPE_CODE_PTR)
468 	bounds_type = bounds_type->target_type ();
469       if (bounds_type->code () != TYPE_CODE_STRUCT)
470 	error (_("Unknown task name format. Aborting"));
471       upper_bound_fieldno = ada_get_field_index (bounds_type, "UB0", 0);
472 
473       initialize_fieldnos = 0;
474     }
475 
476   /* Get the size of the task image by checking the value of the bounds.
477      The lower bound is always 1, so we only need to read the upper bound.  */
478   bounds_val = value_ind (value_field (val, bounds_fieldno));
479   len = value_as_long (value_field (bounds_val, upper_bound_fieldno));
480 
481   /* Make sure that we do not read more than max_len characters...  */
482   if (len > max_len)
483     len = max_len;
484 
485   /* Extract LEN characters from the fat string.  */
486   array_val = value_ind (value_field (val, array_fieldno));
487   read_memory (array_val->address (), (gdb_byte *) dest, len);
488 
489   /* Add the NUL character to close the string.  */
490   dest[len] = '\0';
491 }
492 
493 /* Get, from the debugging information, the type description of all types
494    related to the Ada Task Control Block that are needed in order to
495    read the list of known tasks in the Ada runtime.  If all of the info
496    needed to do so is found, then save that info in the module's per-
497    program-space data, and return NULL.  Otherwise, if any information
498    cannot be found, leave the per-program-space data untouched, and
499    return an error message explaining what was missing (that error
500    message does NOT need to be deallocated).  */
501 
502 const char *
503 ada_get_tcb_types_info (void)
504 {
505   struct type *type;
506   struct type *common_type;
507   struct type *ll_type;
508   struct type *call_type;
509   struct atcb_fieldnos fieldnos;
510   struct ada_tasks_pspace_data *pspace_data;
511 
512   const char *atcb_name = "system__tasking__ada_task_control_block___XVE";
513   const char *atcb_name_fixed = "system__tasking__ada_task_control_block";
514   const char *common_atcb_name = "system__tasking__common_atcb";
515   const char *private_data_name = "system__task_primitives__private_data";
516   const char *entry_call_record_name = "system__tasking__entry_call_record";
517 
518   /* ATCB symbols may be found in several compilation units.  As we
519      are only interested in one instance, use standard (literal,
520      C-like) lookups to get the first match.  */
521 
522   struct symbol *atcb_sym =
523     lookup_symbol_in_language (atcb_name, NULL, SEARCH_TYPE_DOMAIN,
524 			       language_c, NULL).symbol;
525   const struct symbol *common_atcb_sym =
526     lookup_symbol_in_language (common_atcb_name, NULL, SEARCH_TYPE_DOMAIN,
527 			       language_c, NULL).symbol;
528   const struct symbol *private_data_sym =
529     lookup_symbol_in_language (private_data_name, NULL, SEARCH_TYPE_DOMAIN,
530 			       language_c, NULL).symbol;
531   const struct symbol *entry_call_record_sym =
532     lookup_symbol_in_language (entry_call_record_name, NULL,
533 			       SEARCH_TYPE_DOMAIN,
534 			       language_c, NULL).symbol;
535 
536   if (atcb_sym == NULL || atcb_sym->type () == NULL)
537     {
538       /* In Ravenscar run-time libs, the  ATCB does not have a dynamic
539 	 size, so the symbol name differs.  */
540       atcb_sym = lookup_symbol_in_language (atcb_name_fixed, NULL,
541 					    SEARCH_TYPE_DOMAIN, language_c,
542 					    NULL).symbol;
543 
544       if (atcb_sym == NULL || atcb_sym->type () == NULL)
545 	return _("Cannot find Ada_Task_Control_Block type");
546 
547       type = atcb_sym->type ();
548     }
549   else
550     {
551       /* Get a static representation of the type record
552 	 Ada_Task_Control_Block.  */
553       type = atcb_sym->type ();
554       type = ada_template_to_fixed_record_type_1 (type, NULL, 0, NULL, 0);
555     }
556 
557   if (common_atcb_sym == NULL || common_atcb_sym->type () == NULL)
558     return _("Cannot find Common_ATCB type");
559   if (private_data_sym == NULL || private_data_sym->type ()== NULL)
560     return _("Cannot find Private_Data type");
561   if (entry_call_record_sym == NULL || entry_call_record_sym->type () == NULL)
562     return _("Cannot find Entry_Call_Record type");
563 
564   /* Get the type for Ada_Task_Control_Block.Common.  */
565   common_type = common_atcb_sym->type ();
566 
567   /* Get the type for Ada_Task_Control_Bloc.Common.Call.LL.  */
568   ll_type = private_data_sym->type ();
569 
570   /* Get the type for Common_ATCB.Call.all.  */
571   call_type = entry_call_record_sym->type ();
572 
573   /* Get the field indices.  */
574   fieldnos.common = ada_get_field_index (type, "common", 0);
575   fieldnos.entry_calls = ada_get_field_index (type, "entry_calls", 1);
576   fieldnos.atc_nesting_level =
577     ada_get_field_index (type, "atc_nesting_level", 1);
578   fieldnos.state = ada_get_field_index (common_type, "state", 0);
579   fieldnos.parent = ada_get_field_index (common_type, "parent", 1);
580   fieldnos.priority = ada_get_field_index (common_type, "base_priority", 0);
581   fieldnos.image = ada_get_field_index (common_type, "task_image", 1);
582   fieldnos.image_len = ada_get_field_index (common_type, "task_image_len", 1);
583   fieldnos.activation_link = ada_get_field_index (common_type,
584 						  "activation_link", 1);
585   fieldnos.call = ada_get_field_index (common_type, "call", 1);
586   fieldnos.ll = ada_get_field_index (common_type, "ll", 0);
587   fieldnos.base_cpu = ada_get_field_index (common_type, "base_cpu", 0);
588   fieldnos.ll_thread = ada_get_field_index (ll_type, "thread", 0);
589   fieldnos.ll_lwp = ada_get_field_index (ll_type, "lwp", 1);
590   fieldnos.call_self = ada_get_field_index (call_type, "self", 0);
591 
592   /* On certain platforms such as x86-windows, the "lwp" field has been
593      named "thread_id".  This field will likely be renamed in the future,
594      but we need to support both possibilities to avoid an unnecessary
595      dependency on a recent compiler.  We therefore try locating the
596      "thread_id" field in place of the "lwp" field if we did not find
597      the latter.  */
598   if (fieldnos.ll_lwp < 0)
599     fieldnos.ll_lwp = ada_get_field_index (ll_type, "thread_id", 1);
600 
601   /* Check for the CPU offset.  */
602   bound_minimal_symbol first_id_sym
603     = lookup_bound_minimal_symbol ("__gnat_gdb_cpu_first_id");
604   unsigned int first_id = 0;
605   if (first_id_sym.minsym != nullptr)
606     {
607       CORE_ADDR addr = first_id_sym.value_address ();
608       gdbarch *arch = current_inferior ()->arch ();
609       /* This symbol always has type uint32_t.  */
610       struct type *u32type = builtin_type (arch)->builtin_uint32;
611       first_id = value_as_long (value_at (u32type, addr));
612     }
613 
614   /* Set all the out parameters all at once, now that we are certain
615      that there are no potential error() anymore.  */
616   pspace_data = get_ada_tasks_pspace_data (current_program_space);
617   pspace_data->initialized_p = 1;
618   pspace_data->atcb_type = type;
619   pspace_data->atcb_common_type = common_type;
620   pspace_data->atcb_ll_type = ll_type;
621   pspace_data->atcb_call_type = call_type;
622   pspace_data->atcb_fieldno = fieldnos;
623   pspace_data->cpu_id_offset = first_id;
624   return NULL;
625 }
626 
627 /* Build the PTID of the task from its COMMON_VALUE, which is the "Common"
628    component of its ATCB record.  This PTID needs to match the PTID used
629    by the thread layer.  */
630 
631 static ptid_t
632 ptid_from_atcb_common (struct value *common_value)
633 {
634   ULONGEST thread;
635   CORE_ADDR lwp = 0;
636   struct value *ll_value;
637   ptid_t ptid;
638   const struct ada_tasks_pspace_data *pspace_data
639     = get_ada_tasks_pspace_data (current_program_space);
640 
641   ll_value = value_field (common_value, pspace_data->atcb_fieldno.ll);
642 
643   if (pspace_data->atcb_fieldno.ll_lwp >= 0)
644     lwp = value_as_address (value_field (ll_value,
645 					 pspace_data->atcb_fieldno.ll_lwp));
646   thread = value_as_long (value_field (ll_value,
647 				       pspace_data->atcb_fieldno.ll_thread));
648 
649   ptid = target_get_ada_task_ptid (lwp, thread);
650 
651   return ptid;
652 }
653 
654 /* Read the ATCB data of a given task given its TASK_ID (which is in practice
655    the address of its associated ATCB record), and store the result inside
656    TASK_INFO.  */
657 
658 static void
659 read_atcb (CORE_ADDR task_id, struct ada_task_info *task_info)
660 {
661   struct value *tcb_value;
662   struct value *common_value;
663   struct value *atc_nesting_level_value;
664   struct value *entry_calls_value;
665   struct value *entry_calls_value_element;
666   int called_task_fieldno = -1;
667   static const char ravenscar_task_name[] = "Ravenscar task";
668   const struct ada_tasks_pspace_data *pspace_data
669     = get_ada_tasks_pspace_data (current_program_space);
670 
671   /* Clear the whole structure to start with, so that everything
672      is always initialized the same.  */
673   memset (task_info, 0, sizeof (struct ada_task_info));
674 
675   if (!pspace_data->initialized_p)
676     {
677       const char *err_msg = ada_get_tcb_types_info ();
678 
679       if (err_msg != NULL)
680 	error (_("%s. Aborting"), err_msg);
681     }
682 
683   tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
684 					       NULL, task_id);
685   common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
686 
687   /* Fill in the task_id.  */
688 
689   task_info->task_id = task_id;
690 
691   /* Compute the name of the task.
692 
693      Depending on the GNAT version used, the task image is either a fat
694      string, or a thin array of characters.  Older versions of GNAT used
695      to use fat strings, and therefore did not need an extra field in
696      the ATCB to store the string length.  For efficiency reasons, newer
697      versions of GNAT replaced the fat string by a static buffer, but this
698      also required the addition of a new field named "Image_Len" containing
699      the length of the task name.  The method used to extract the task name
700      is selected depending on the existence of this field.
701 
702      In some run-time libs (e.g. Ravenscar), the name is not in the ATCB;
703      we may want to get it from the first user frame of the stack.  For now,
704      we just give a dummy name.  */
705 
706   if (pspace_data->atcb_fieldno.image_len == -1)
707     {
708       if (pspace_data->atcb_fieldno.image >= 0)
709 	read_fat_string_value (task_info->name,
710 			       value_field (common_value,
711 					    pspace_data->atcb_fieldno.image),
712 			       sizeof (task_info->name) - 1);
713       else
714 	{
715 	  struct bound_minimal_symbol msym;
716 
717 	  msym = lookup_minimal_symbol_by_pc (task_id);
718 	  if (msym.minsym)
719 	    {
720 	      const char *full_name = msym.minsym->linkage_name ();
721 	      const char *task_name = full_name;
722 	      const char *p;
723 
724 	      /* Strip the prefix.  */
725 	      for (p = full_name; *p; p++)
726 		if (p[0] == '_' && p[1] == '_')
727 		  task_name = p + 2;
728 
729 	      /* Copy the task name.  */
730 	      strncpy (task_info->name, task_name,
731 		       sizeof (task_info->name) - 1);
732 	      task_info->name[sizeof (task_info->name) - 1] = 0;
733 	    }
734 	  else
735 	    {
736 	      /* No symbol found.  Use a default name.  */
737 	      strcpy (task_info->name, ravenscar_task_name);
738 	    }
739 	}
740     }
741   else
742     {
743       int len = value_as_long
744 		  (value_field (common_value,
745 				pspace_data->atcb_fieldno.image_len));
746 
747       value_as_string (task_info->name,
748 		       value_field (common_value,
749 				    pspace_data->atcb_fieldno.image),
750 		       len);
751     }
752 
753   /* Compute the task state and priority.  */
754 
755   task_info->state =
756     value_as_long (value_field (common_value,
757 				pspace_data->atcb_fieldno.state));
758   task_info->priority =
759     value_as_long (value_field (common_value,
760 				pspace_data->atcb_fieldno.priority));
761 
762   /* If the ATCB contains some information about the parent task,
763      then compute it as well.  Otherwise, zero.  */
764 
765   if (pspace_data->atcb_fieldno.parent >= 0)
766     task_info->parent =
767       value_as_address (value_field (common_value,
768 				     pspace_data->atcb_fieldno.parent));
769 
770   /* If the task is in an entry call waiting for another task,
771      then determine which task it is.  */
772 
773   if (task_info->state == Entry_Caller_Sleep
774       && pspace_data->atcb_fieldno.atc_nesting_level > 0
775       && pspace_data->atcb_fieldno.entry_calls > 0)
776     {
777       /* Let My_ATCB be the Ada task control block of a task calling the
778 	 entry of another task; then the Task_Id of the called task is
779 	 in My_ATCB.Entry_Calls (My_ATCB.ATC_Nesting_Level).Called_Task.  */
780       atc_nesting_level_value =
781 	value_field (tcb_value, pspace_data->atcb_fieldno.atc_nesting_level);
782       entry_calls_value =
783 	ada_coerce_to_simple_array_ptr
784 	  (value_field (tcb_value, pspace_data->atcb_fieldno.entry_calls));
785       entry_calls_value_element =
786 	value_subscript (entry_calls_value,
787 			 value_as_long (atc_nesting_level_value));
788       called_task_fieldno =
789 	ada_get_field_index (entry_calls_value_element->type (),
790 			     "called_task", 0);
791       task_info->called_task =
792 	value_as_address (value_field (entry_calls_value_element,
793 				       called_task_fieldno));
794     }
795 
796   /* If the ATCB contains some information about RV callers, then
797      compute the "caller_task".  Otherwise, leave it as zero.  */
798 
799   if (pspace_data->atcb_fieldno.call >= 0)
800     {
801       /* Get the ID of the caller task from Common_ATCB.Call.all.Self.
802 	 If Common_ATCB.Call is null, then there is no caller.  */
803       const CORE_ADDR call =
804 	value_as_address (value_field (common_value,
805 				       pspace_data->atcb_fieldno.call));
806       struct value *call_val;
807 
808       if (call != 0)
809 	{
810 	  call_val =
811 	    value_from_contents_and_address (pspace_data->atcb_call_type,
812 					     NULL, call);
813 	  task_info->caller_task =
814 	    value_as_address
815 	      (value_field (call_val, pspace_data->atcb_fieldno.call_self));
816 	}
817     }
818 
819   task_info->base_cpu
820     = (pspace_data->cpu_id_offset
821       + value_as_long (value_field (common_value,
822 				    pspace_data->atcb_fieldno.base_cpu)));
823 
824   /* And finally, compute the task ptid.  Note that there is not point
825      in computing it if the task is no longer alive, in which case
826      it is good enough to set its ptid to the null_ptid.  */
827   if (ada_task_is_alive (task_info))
828     task_info->ptid = ptid_from_atcb_common (common_value);
829   else
830     task_info->ptid = null_ptid;
831 }
832 
833 /* Read the ATCB info of the given task (identified by TASK_ID), and
834    add the result to the given inferior's TASK_LIST.  */
835 
836 static void
837 add_ada_task (CORE_ADDR task_id, struct inferior *inf)
838 {
839   struct ada_task_info task_info;
840   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
841 
842   read_atcb (task_id, &task_info);
843   data->task_list.push_back (task_info);
844 }
845 
846 /* Read the Known_Tasks array from the inferior memory, and store
847    it in the current inferior's TASK_LIST.  Return true upon success.  */
848 
849 static bool
850 read_known_tasks_array (struct ada_tasks_inferior_data *data)
851 {
852   const int target_ptr_byte = data->known_tasks_element->length ();
853   const int known_tasks_size = target_ptr_byte * data->known_tasks_length;
854   gdb_byte *known_tasks = (gdb_byte *) alloca (known_tasks_size);
855   int i;
856 
857   /* Build a new list by reading the ATCBs from the Known_Tasks array
858      in the Ada runtime.  */
859   read_memory (data->known_tasks_addr, known_tasks, known_tasks_size);
860   for (i = 0; i < data->known_tasks_length; i++)
861     {
862       CORE_ADDR task_id =
863 	extract_typed_address (known_tasks + i * target_ptr_byte,
864 			       data->known_tasks_element);
865 
866       if (task_id != 0)
867 	add_ada_task (task_id, current_inferior ());
868     }
869 
870   return true;
871 }
872 
873 /* Read the known tasks from the inferior memory, and store it in
874    the current inferior's TASK_LIST.  Return true upon success.  */
875 
876 static bool
877 read_known_tasks_list (struct ada_tasks_inferior_data *data)
878 {
879   const int target_ptr_byte = data->known_tasks_element->length ();
880   gdb_byte *known_tasks = (gdb_byte *) alloca (target_ptr_byte);
881   CORE_ADDR task_id;
882   const struct ada_tasks_pspace_data *pspace_data
883     = get_ada_tasks_pspace_data (current_program_space);
884 
885   /* Sanity check.  */
886   if (pspace_data->atcb_fieldno.activation_link < 0)
887     return false;
888 
889   /* Build a new list by reading the ATCBs.  Read head of the list.  */
890   read_memory (data->known_tasks_addr, known_tasks, target_ptr_byte);
891   task_id = extract_typed_address (known_tasks, data->known_tasks_element);
892   while (task_id != 0)
893     {
894       struct value *tcb_value;
895       struct value *common_value;
896 
897       add_ada_task (task_id, current_inferior ());
898 
899       /* Read the chain.  */
900       tcb_value = value_from_contents_and_address (pspace_data->atcb_type,
901 						   NULL, task_id);
902       common_value = value_field (tcb_value, pspace_data->atcb_fieldno.common);
903       task_id = value_as_address
904 		  (value_field (common_value,
905 				pspace_data->atcb_fieldno.activation_link));
906     }
907 
908   return true;
909 }
910 
911 /* Set all fields of the current inferior ada-tasks data pointed by DATA.
912    Do nothing if those fields are already set and still up to date.  */
913 
914 static void
915 ada_tasks_inferior_data_sniffer (struct ada_tasks_inferior_data *data)
916 {
917   struct bound_minimal_symbol msym;
918   struct symbol *sym;
919 
920   /* Return now if already set.  */
921   if (data->known_tasks_kind != ADA_TASKS_UNKNOWN)
922     return;
923 
924   /* Try array.  */
925 
926   msym = lookup_minimal_symbol (KNOWN_TASKS_NAME, NULL, NULL);
927   if (msym.minsym != NULL)
928     {
929       data->known_tasks_kind = ADA_TASKS_ARRAY;
930       data->known_tasks_addr = msym.value_address ();
931 
932       /* Try to get pointer type and array length from the symtab.  */
933       sym = lookup_symbol_in_language (KNOWN_TASKS_NAME, NULL,
934 				       SEARCH_VAR_DOMAIN,
935 				       language_c, NULL).symbol;
936       if (sym != NULL)
937 	{
938 	  /* Validate.  */
939 	  struct type *type = check_typedef (sym->type ());
940 	  struct type *eltype = NULL;
941 	  struct type *idxtype = NULL;
942 
943 	  if (type->code () == TYPE_CODE_ARRAY)
944 	    eltype = check_typedef (type->target_type ());
945 	  if (eltype != NULL
946 	      && eltype->code () == TYPE_CODE_PTR)
947 	    idxtype = check_typedef (type->index_type ());
948 	  if (idxtype != NULL
949 	      && idxtype->bounds ()->low.is_constant ()
950 	      && idxtype->bounds ()->high.is_constant ())
951 	    {
952 	      data->known_tasks_element = eltype;
953 	      data->known_tasks_length =
954 		(idxtype->bounds ()->high.const_val ()
955 		 - idxtype->bounds ()->low.const_val () + 1);
956 	      return;
957 	    }
958 	}
959 
960       /* Fallback to default values.  The runtime may have been stripped (as
961 	 in some distributions), but it is likely that the executable still
962 	 contains debug information on the task type (due to implicit with of
963 	 Ada.Tasking).  */
964       data->known_tasks_element =
965 	builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
966       data->known_tasks_length = MAX_NUMBER_OF_KNOWN_TASKS;
967       return;
968     }
969 
970 
971   /* Try list.  */
972 
973   msym = lookup_minimal_symbol (KNOWN_TASKS_LIST, NULL, NULL);
974   if (msym.minsym != NULL)
975     {
976       data->known_tasks_kind = ADA_TASKS_LIST;
977       data->known_tasks_addr = msym.value_address ();
978       data->known_tasks_length = 1;
979 
980       sym = lookup_symbol_in_language (KNOWN_TASKS_LIST, NULL,
981 				       SEARCH_VAR_DOMAIN,
982 				       language_c, NULL).symbol;
983       if (sym != NULL && sym->value_address () != 0)
984 	{
985 	  /* Validate.  */
986 	  struct type *type = check_typedef (sym->type ());
987 
988 	  if (type->code () == TYPE_CODE_PTR)
989 	    {
990 	      data->known_tasks_element = type;
991 	      return;
992 	    }
993 	}
994 
995       /* Fallback to default values.  */
996       data->known_tasks_element =
997 	builtin_type (current_inferior ()->arch ())->builtin_data_ptr;
998       data->known_tasks_length = 1;
999       return;
1000     }
1001 
1002   /* Can't find tasks.  */
1003 
1004   data->known_tasks_kind = ADA_TASKS_NOT_FOUND;
1005   data->known_tasks_addr = 0;
1006 }
1007 
1008 /* Read the known tasks from the current inferior's memory, and store it
1009    in the current inferior's data TASK_LIST.  */
1010 
1011 static void
1012 read_known_tasks ()
1013 {
1014   struct ada_tasks_inferior_data *data =
1015     get_ada_tasks_inferior_data (current_inferior ());
1016 
1017   /* Step 1: Clear the current list, if necessary.  */
1018   data->task_list.clear ();
1019 
1020   /* Step 2: do the real work.
1021      If the application does not use task, then no more needs to be done.
1022      It is important to have the task list cleared (see above) before we
1023      return, as we don't want a stale task list to be used...  This can
1024      happen for instance when debugging a non-multitasking program after
1025      having debugged a multitasking one.  */
1026   ada_tasks_inferior_data_sniffer (data);
1027   gdb_assert (data->known_tasks_kind != ADA_TASKS_UNKNOWN);
1028 
1029   /* Step 3: Set task_list_valid_p, to avoid re-reading the Known_Tasks
1030      array unless needed.  */
1031   switch (data->known_tasks_kind)
1032     {
1033     case ADA_TASKS_NOT_FOUND: /* Tasking not in use in inferior.  */
1034       break;
1035     case ADA_TASKS_ARRAY:
1036       data->task_list_valid_p = read_known_tasks_array (data);
1037       break;
1038     case ADA_TASKS_LIST:
1039       data->task_list_valid_p = read_known_tasks_list (data);
1040       break;
1041     }
1042 }
1043 
1044 /* Build the task_list by reading the Known_Tasks array from
1045    the inferior, and return the number of tasks in that list
1046    (zero means that the program is not using tasking at all).  */
1047 
1048 static int
1049 ada_build_task_list ()
1050 {
1051   struct ada_tasks_inferior_data *data;
1052 
1053   if (!target_has_stack ())
1054     error (_("Cannot inspect Ada tasks when program is not running"));
1055 
1056   data = get_ada_tasks_inferior_data (current_inferior ());
1057   if (!data->task_list_valid_p)
1058     read_known_tasks ();
1059 
1060   return data->task_list.size ();
1061 }
1062 
1063 /* Print a table providing a short description of all Ada tasks
1064    running inside inferior INF.  If ARG_STR is set, it will be
1065    interpreted as a task number, and the table will be limited to
1066    that task only.  */
1067 
1068 void
1069 print_ada_task_info (struct ui_out *uiout,
1070 		     const char *arg_str,
1071 		     struct inferior *inf)
1072 {
1073   struct ada_tasks_inferior_data *data;
1074   int taskno, nb_tasks;
1075   int taskno_arg = 0;
1076   int nb_columns;
1077 
1078   if (ada_build_task_list () == 0)
1079     {
1080       uiout->message (_("Your application does not use any Ada tasks.\n"));
1081       return;
1082     }
1083 
1084   if (arg_str != NULL && arg_str[0] != '\0')
1085     taskno_arg = value_as_long (parse_and_eval (arg_str));
1086 
1087   if (uiout->is_mi_like_p ())
1088     /* In GDB/MI mode, we want to provide the thread ID corresponding
1089        to each task.  This allows clients to quickly find the thread
1090        associated to any task, which is helpful for commands that
1091        take a --thread argument.  However, in order to be able to
1092        provide that thread ID, the thread list must be up to date
1093        first.  */
1094     target_update_thread_list ();
1095 
1096   data = get_ada_tasks_inferior_data (inf);
1097 
1098   /* Compute the number of tasks that are going to be displayed
1099      in the output.  If an argument was given, there will be
1100      at most 1 entry.  Otherwise, there will be as many entries
1101      as we have tasks.  */
1102   if (taskno_arg)
1103     {
1104       if (taskno_arg > 0 && taskno_arg <= data->task_list.size ())
1105 	nb_tasks = 1;
1106       else
1107 	nb_tasks = 0;
1108     }
1109   else
1110     nb_tasks = data->task_list.size ();
1111 
1112   nb_columns = uiout->is_mi_like_p () ? 8 : 7;
1113   ui_out_emit_table table_emitter (uiout, nb_columns, nb_tasks, "tasks");
1114   uiout->table_header (1, ui_left, "current", "");
1115   uiout->table_header (3, ui_right, "id", "ID");
1116   {
1117     size_t tid_width = 9;
1118     /* Grown below in case the largest entry is bigger.  */
1119 
1120     if (!uiout->is_mi_like_p ())
1121       {
1122 	for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1123 	  {
1124 	    const struct ada_task_info *const task_info
1125 	      = &data->task_list[taskno - 1];
1126 
1127 	    gdb_assert (task_info != NULL);
1128 
1129 	    tid_width = std::max (tid_width,
1130 				  1 + strlen (phex_nz (task_info->task_id,
1131 						       sizeof (CORE_ADDR))));
1132 	  }
1133       }
1134     uiout->table_header (tid_width, ui_right, "task-id", "TID");
1135   }
1136   /* The following column is provided in GDB/MI mode only because
1137      it is only really useful in that mode, and also because it
1138      allows us to keep the CLI output shorter and more compact.  */
1139   if (uiout->is_mi_like_p ())
1140     uiout->table_header (4, ui_right, "thread-id", "");
1141   uiout->table_header (4, ui_right, "parent-id", "P-ID");
1142   uiout->table_header (3, ui_right, "priority", "Pri");
1143   uiout->table_header (22, ui_left, "state", "State");
1144   /* Use ui_noalign for the last column, to prevent the CLI uiout
1145      from printing an extra space at the end of each row.  This
1146      is a bit of a hack, but does get the job done.  */
1147   uiout->table_header (1, ui_noalign, "name", "Name");
1148   uiout->table_body ();
1149 
1150   for (taskno = 1; taskno <= data->task_list.size (); taskno++)
1151     {
1152       const struct ada_task_info *const task_info =
1153 	&data->task_list[taskno - 1];
1154       int parent_id;
1155 
1156       gdb_assert (task_info != NULL);
1157 
1158       /* If the user asked for the output to be restricted
1159 	 to one task only, and this is not the task, skip
1160 	 to the next one.  */
1161       if (taskno_arg && taskno != taskno_arg)
1162 	continue;
1163 
1164       ui_out_emit_tuple tuple_emitter (uiout, NULL);
1165 
1166       /* Print a star if this task is the current task (or the task
1167 	 currently selected).  */
1168       if (task_info->ptid == inferior_ptid)
1169 	uiout->field_string ("current", "*");
1170       else
1171 	uiout->field_skip ("current");
1172 
1173       /* Print the task number.  */
1174       uiout->field_signed ("id", taskno);
1175 
1176       /* Print the Task ID.  */
1177       uiout->field_string ("task-id", phex_nz (task_info->task_id,
1178 					       sizeof (CORE_ADDR)));
1179 
1180       /* Print the associated Thread ID.  */
1181       if (uiout->is_mi_like_p ())
1182 	{
1183 	  thread_info *thread = (ada_task_is_alive (task_info)
1184 				 ? inf->find_thread (task_info->ptid)
1185 				 : nullptr);
1186 
1187 	  if (thread != NULL)
1188 	    uiout->field_signed ("thread-id", thread->global_num);
1189 	  else
1190 	    {
1191 	      /* This can happen if the thread is no longer alive.  */
1192 	      uiout->field_skip ("thread-id");
1193 	    }
1194 	}
1195 
1196       /* Print the ID of the parent task.  */
1197       parent_id = get_task_number_from_id (task_info->parent, inf);
1198       if (parent_id)
1199 	uiout->field_signed ("parent-id", parent_id);
1200       else
1201 	uiout->field_skip ("parent-id");
1202 
1203       /* Print the base priority of the task.  */
1204       uiout->field_signed ("priority", task_info->priority);
1205 
1206       /* Print the task current state.  */
1207       if (task_info->caller_task)
1208 	uiout->field_fmt ("state",
1209 			  _("Accepting RV with %-4d"),
1210 			  get_task_number_from_id (task_info->caller_task,
1211 						   inf));
1212       else if (task_info->called_task)
1213 	uiout->field_fmt ("state",
1214 			  _("Waiting on RV with %-3d"),
1215 			  get_task_number_from_id (task_info->called_task,
1216 						   inf));
1217       else
1218 	uiout->field_string ("state", get_state (task_info->state));
1219 
1220       /* Finally, print the task name, without quotes around it, as mi like
1221 	 is not expecting quotes, and in non mi-like no need for quotes
1222 	 as there is a specific column for the name.  */
1223       uiout->field_fmt ("name",
1224 			(task_info->name[0] != '\0'
1225 			 ? ui_file_style ()
1226 			 : metadata_style.style ()),
1227 			"%s",
1228 			(task_info->name[0] != '\0'
1229 			 ? task_info->name
1230 			 : _("<no name>")));
1231 
1232       uiout->text ("\n");
1233     }
1234 }
1235 
1236 /* Print a detailed description of the Ada task whose ID is TASKNO_STR
1237    for the given inferior (INF).  */
1238 
1239 static void
1240 info_task (struct ui_out *uiout, const char *taskno_str, struct inferior *inf)
1241 {
1242   const int taskno = value_as_long (parse_and_eval (taskno_str));
1243   struct ada_task_info *task_info;
1244   int parent_taskno = 0;
1245   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1246 
1247   if (ada_build_task_list () == 0)
1248     {
1249       uiout->message (_("Your application does not use any Ada tasks.\n"));
1250       return;
1251     }
1252 
1253   if (taskno <= 0 || taskno > data->task_list.size ())
1254     error (_("Task ID %d not known.  Use the \"info tasks\" command to\n"
1255 	     "see the IDs of currently known tasks"), taskno);
1256   task_info = &data->task_list[taskno - 1];
1257 
1258   /* Print the Ada task ID.  */
1259   gdb_printf (_("Ada Task: %s\n"),
1260 	      paddress (current_inferior ()->arch (), task_info->task_id));
1261 
1262   /* Print the name of the task.  */
1263   if (task_info->name[0] != '\0')
1264     gdb_printf (_("Name: %s\n"), task_info->name);
1265   else
1266     fprintf_styled (gdb_stdout, metadata_style.style (), _("<no name>\n"));
1267 
1268   /* Print the TID and LWP.  */
1269   gdb_printf (_("Thread: 0x%s\n"), phex_nz (task_info->ptid.tid (),
1270 					    sizeof (ULONGEST)));
1271   gdb_printf (_("LWP: %#lx\n"), task_info->ptid.lwp ());
1272 
1273   /* If set, print the base CPU.  */
1274   if (task_info->base_cpu != 0)
1275     gdb_printf (_("Base CPU: %d\n"), task_info->base_cpu);
1276 
1277   /* Print who is the parent (if any).  */
1278   if (task_info->parent != 0)
1279     parent_taskno = get_task_number_from_id (task_info->parent, inf);
1280   if (parent_taskno)
1281     {
1282       struct ada_task_info *parent = &data->task_list[parent_taskno - 1];
1283 
1284       gdb_printf (_("Parent: %d"), parent_taskno);
1285       if (parent->name[0] != '\0')
1286 	gdb_printf (" (%s)", parent->name);
1287       gdb_printf ("\n");
1288     }
1289   else
1290     gdb_printf (_("No parent\n"));
1291 
1292   /* Print the base priority.  */
1293   gdb_printf (_("Base Priority: %d\n"), task_info->priority);
1294 
1295   /* print the task current state.  */
1296   {
1297     int target_taskno = 0;
1298 
1299     if (task_info->caller_task)
1300       {
1301 	target_taskno = get_task_number_from_id (task_info->caller_task, inf);
1302 	gdb_printf (_("State: Accepting rendezvous with %d"),
1303 		    target_taskno);
1304       }
1305     else if (task_info->called_task)
1306       {
1307 	target_taskno = get_task_number_from_id (task_info->called_task, inf);
1308 	gdb_printf (_("State: Waiting on task %d's entry"),
1309 		    target_taskno);
1310       }
1311     else
1312       gdb_printf (_("State: %s"), get_long_state (task_info->state));
1313 
1314     if (target_taskno)
1315       {
1316 	ada_task_info *target_task_info = &data->task_list[target_taskno - 1];
1317 
1318 	if (target_task_info->name[0] != '\0')
1319 	  gdb_printf (" (%s)", target_task_info->name);
1320       }
1321 
1322     gdb_printf ("\n");
1323   }
1324 }
1325 
1326 /* If ARG is empty or null, then print a list of all Ada tasks.
1327    Otherwise, print detailed information about the task whose ID
1328    is ARG.
1329 
1330    Does nothing if the program doesn't use Ada tasking.  */
1331 
1332 static void
1333 info_tasks_command (const char *arg, int from_tty)
1334 {
1335   struct ui_out *uiout = current_uiout;
1336 
1337   if (arg == NULL || *arg == '\0')
1338     print_ada_task_info (uiout, NULL, current_inferior ());
1339   else
1340     info_task (uiout, arg, current_inferior ());
1341 }
1342 
1343 /* Print a message telling the user id of the current task.
1344    This function assumes that tasking is in use in the inferior.  */
1345 
1346 static void
1347 display_current_task_id (void)
1348 {
1349   const int current_task = ada_get_task_number (inferior_thread ());
1350 
1351   if (current_task == 0)
1352     gdb_printf (_("[Current task is unknown]\n"));
1353   else
1354     {
1355       struct ada_tasks_inferior_data *data
1356 	= get_ada_tasks_inferior_data (current_inferior ());
1357       struct ada_task_info *task_info = &data->task_list[current_task - 1];
1358 
1359       gdb_printf (_("[Current task is %s]\n"),
1360 		  task_to_str (current_task, task_info).c_str ());
1361     }
1362 }
1363 
1364 /* Parse and evaluate TIDSTR into a task id, and try to switch to
1365    that task.  Print an error message if the task switch failed.  */
1366 
1367 static void
1368 task_command_1 (const char *taskno_str, int from_tty, struct inferior *inf)
1369 {
1370   const int taskno = value_as_long (parse_and_eval (taskno_str));
1371   struct ada_task_info *task_info;
1372   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1373 
1374   if (taskno <= 0 || taskno > data->task_list.size ())
1375     error (_("Task ID %d not known.  Use the \"info tasks\" command to\n"
1376 	     "see the IDs of currently known tasks"), taskno);
1377   task_info = &data->task_list[taskno - 1];
1378 
1379   if (!ada_task_is_alive (task_info))
1380     error (_("Cannot switch to task %s: Task is no longer running"),
1381 	   task_to_str (taskno, task_info).c_str ());
1382 
1383   /* On some platforms, the thread list is not updated until the user
1384      performs a thread-related operation (by using the "info threads"
1385      command, for instance).  So this thread list may not be up to date
1386      when the user attempts this task switch.  Since we cannot switch
1387      to the thread associated to our task if GDB does not know about
1388      that thread, we need to make sure that any new threads gets added
1389      to the thread list.  */
1390   target_update_thread_list ();
1391 
1392   /* Verify that the ptid of the task we want to switch to is valid
1393      (in other words, a ptid that GDB knows about).  Otherwise, we will
1394      cause an assertion failure later on, when we try to determine
1395      the ptid associated thread_info data.  We should normally never
1396      encounter such an error, but the wrong ptid can actually easily be
1397      computed if target_get_ada_task_ptid has not been implemented for
1398      our target (yet).  Rather than cause an assertion error in that case,
1399      it's nicer for the user to just refuse to perform the task switch.  */
1400   thread_info *tp = inf->find_thread (task_info->ptid);
1401   if (tp == NULL)
1402     error (_("Unable to compute thread ID for task %s.\n"
1403 	     "Cannot switch to this task."),
1404 	   task_to_str (taskno, task_info).c_str ());
1405 
1406   switch_to_thread (tp);
1407   ada_find_printable_frame (get_selected_frame (NULL));
1408   gdb_printf (_("[Switching to task %s]\n"),
1409 	      task_to_str (taskno, task_info).c_str ());
1410   print_stack_frame (get_selected_frame (NULL),
1411 		     frame_relative_level (get_selected_frame (NULL)),
1412 		     SRC_AND_LOC, 1);
1413 }
1414 
1415 
1416 /* Print the ID of the current task if TASKNO_STR is empty or NULL.
1417    Otherwise, switch to the task indicated by TASKNO_STR.  */
1418 
1419 static void
1420 task_command (const char *taskno_str, int from_tty)
1421 {
1422   struct ui_out *uiout = current_uiout;
1423 
1424   if (ada_build_task_list () == 0)
1425     {
1426       uiout->message (_("Your application does not use any Ada tasks.\n"));
1427       return;
1428     }
1429 
1430   if (taskno_str == NULL || taskno_str[0] == '\0')
1431     display_current_task_id ();
1432   else
1433     task_command_1 (taskno_str, from_tty, current_inferior ());
1434 }
1435 
1436 /* Indicate that the given inferior's task list may have changed,
1437    so invalidate the cache.  */
1438 
1439 static void
1440 ada_task_list_changed (struct inferior *inf)
1441 {
1442   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1443 
1444   data->task_list_valid_p = false;
1445 }
1446 
1447 /* Invalidate the per-program-space data.  */
1448 
1449 static void
1450 ada_tasks_invalidate_pspace_data (struct program_space *pspace)
1451 {
1452   get_ada_tasks_pspace_data (pspace)->initialized_p = 0;
1453 }
1454 
1455 /* Invalidate the per-inferior data.  */
1456 
1457 static void
1458 ada_tasks_invalidate_inferior_data (struct inferior *inf)
1459 {
1460   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1461 
1462   data->known_tasks_kind = ADA_TASKS_UNKNOWN;
1463   data->task_list_valid_p = false;
1464 }
1465 
1466 /* The 'normal_stop' observer notification callback.  */
1467 
1468 static void
1469 ada_tasks_normal_stop_observer (struct bpstat *unused_args, int unused_args2)
1470 {
1471   /* The inferior has been resumed, and just stopped. This means that
1472      our task_list needs to be recomputed before it can be used again.  */
1473   ada_task_list_changed (current_inferior ());
1474 }
1475 
1476 /* Clear data associated to PSPACE and all inferiors using that program
1477    space.  */
1478 
1479 static void
1480 ada_tasks_clear_pspace_data (program_space *pspace)
1481 {
1482   /* The associated program-space data might have changed after
1483      this objfile was added.  Invalidate all cached data.  */
1484   ada_tasks_invalidate_pspace_data (pspace);
1485 
1486   /* Invalidate the per-inferior cache for all inferiors using
1487      this program space.  */
1488   for (inferior *inf : all_inferiors ())
1489     if (inf->pspace == pspace)
1490       ada_tasks_invalidate_inferior_data (inf);
1491 }
1492 
1493 /* Called when a new objfile was added.  */
1494 
1495 static void
1496 ada_tasks_new_objfile_observer (objfile *objfile)
1497 {
1498   ada_tasks_clear_pspace_data (objfile->pspace);
1499 }
1500 
1501 /* The qcs command line flags for the "task apply" commands.  Keep
1502    this in sync with the "frame apply" commands.  */
1503 
1504 using qcs_flag_option_def
1505   = gdb::option::flag_option_def<qcs_flags>;
1506 
1507 static const gdb::option::option_def task_qcs_flags_option_defs[] = {
1508   qcs_flag_option_def {
1509     "q", [] (qcs_flags *opt) { return &opt->quiet; },
1510     N_("Disables printing the task information."),
1511   },
1512 
1513   qcs_flag_option_def {
1514     "c", [] (qcs_flags *opt) { return &opt->cont; },
1515     N_("Print any error raised by COMMAND and continue."),
1516   },
1517 
1518   qcs_flag_option_def {
1519     "s", [] (qcs_flags *opt) { return &opt->silent; },
1520     N_("Silently ignore any errors or empty output produced by COMMAND."),
1521   },
1522 };
1523 
1524 /* Create an option_def_group for the "task apply all" options, with
1525    FLAGS as context.  */
1526 
1527 static inline std::array<gdb::option::option_def_group, 1>
1528 make_task_apply_all_options_def_group (qcs_flags *flags)
1529 {
1530   return {{
1531     { {task_qcs_flags_option_defs}, flags },
1532   }};
1533 }
1534 
1535 /* Create an option_def_group for the "task apply" options, with
1536    FLAGS as context.  */
1537 
1538 static inline gdb::option::option_def_group
1539 make_task_apply_options_def_group (qcs_flags *flags)
1540 {
1541   return {{task_qcs_flags_option_defs}, flags};
1542 }
1543 
1544 /* Implementation of 'task apply all'.  */
1545 
1546 static void
1547 task_apply_all_command (const char *cmd, int from_tty)
1548 {
1549   qcs_flags flags;
1550 
1551   auto group = make_task_apply_all_options_def_group (&flags);
1552   gdb::option::process_options
1553     (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1554 
1555   validate_flags_qcs ("task apply all", &flags);
1556 
1557   if (cmd == nullptr || *cmd == '\0')
1558     error (_("Please specify a command at the end of 'task apply all'"));
1559 
1560   update_thread_list ();
1561   ada_build_task_list ();
1562 
1563   inferior *inf = current_inferior ();
1564   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1565 
1566   /* Save a copy of the thread list and increment each thread's
1567      refcount while executing the command in the context of each
1568      thread, in case the command affects this.  */
1569   std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1570 
1571   for (int i = 1; i <= data->task_list.size (); ++i)
1572     {
1573       ada_task_info &task = data->task_list[i - 1];
1574       if (!ada_task_is_alive (&task))
1575 	continue;
1576 
1577       thread_info *tp = inf->find_thread (task.ptid);
1578       if (tp == nullptr)
1579 	warning (_("Unable to compute thread ID for task %s.\n"
1580 		   "Cannot switch to this task."),
1581 		 task_to_str (i, &task).c_str ());
1582       else
1583 	thr_list_cpy.emplace_back (i, thread_info_ref::new_reference (tp));
1584     }
1585 
1586   scoped_restore_current_thread restore_thread;
1587 
1588   for (const auto &info : thr_list_cpy)
1589     if (switch_to_thread_if_alive (info.second.get ()))
1590       thread_try_catch_cmd (info.second.get (), info.first, cmd,
1591 			    from_tty, flags);
1592 }
1593 
1594 /* Implementation of 'task apply'.  */
1595 
1596 static void
1597 task_apply_command (const char *tidlist, int from_tty)
1598 {
1599 
1600   if (tidlist == nullptr || *tidlist == '\0')
1601     error (_("Please specify a task ID list"));
1602 
1603   update_thread_list ();
1604   ada_build_task_list ();
1605 
1606   inferior *inf = current_inferior ();
1607   struct ada_tasks_inferior_data *data = get_ada_tasks_inferior_data (inf);
1608 
1609   /* Save a copy of the thread list and increment each thread's
1610      refcount while executing the command in the context of each
1611      thread, in case the command affects this.  */
1612   std::vector<std::pair<int, thread_info_ref>> thr_list_cpy;
1613 
1614   number_or_range_parser parser (tidlist);
1615   while (!parser.finished ())
1616     {
1617       int num = parser.get_number ();
1618 
1619       if (num < 1 || num - 1 >= data->task_list.size ())
1620 	warning (_("no Ada Task with number %d"), num);
1621       else
1622 	{
1623 	  ada_task_info &task = data->task_list[num - 1];
1624 	  if (!ada_task_is_alive (&task))
1625 	    continue;
1626 
1627 	  thread_info *tp = inf->find_thread (task.ptid);
1628 	  if (tp == nullptr)
1629 	    warning (_("Unable to compute thread ID for task %s.\n"
1630 		       "Cannot switch to this task."),
1631 		     task_to_str (num, &task).c_str ());
1632 	  else
1633 	    thr_list_cpy.emplace_back (num,
1634 				       thread_info_ref::new_reference (tp));
1635 	}
1636     }
1637 
1638   qcs_flags flags;
1639   const char *cmd = parser.cur_tok ();
1640 
1641   auto group = make_task_apply_options_def_group (&flags);
1642   gdb::option::process_options
1643     (&cmd, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group);
1644 
1645   validate_flags_qcs ("task apply", &flags);
1646 
1647   if (*cmd == '\0')
1648     error (_("Please specify a command following the task ID list"));
1649 
1650   scoped_restore_current_thread restore_thread;
1651 
1652   for (const auto &info : thr_list_cpy)
1653     if (switch_to_thread_if_alive (info.second.get ()))
1654       thread_try_catch_cmd (info.second.get (), info.first, cmd,
1655 			    from_tty, flags);
1656 }
1657 
1658 void _initialize_tasks ();
1659 void
1660 _initialize_tasks ()
1661 {
1662   /* Attach various observers.  */
1663   gdb::observers::normal_stop.attach (ada_tasks_normal_stop_observer,
1664 				      "ada-tasks");
1665   gdb::observers::new_objfile.attach (ada_tasks_new_objfile_observer,
1666 				      "ada-tasks");
1667   gdb::observers::all_objfiles_removed.attach (ada_tasks_clear_pspace_data,
1668 					       "ada-tasks");
1669 
1670   static struct cmd_list_element *task_cmd_list;
1671   static struct cmd_list_element *task_apply_list;
1672 
1673 
1674   /* Some new commands provided by this module.  */
1675   add_info ("tasks", info_tasks_command,
1676 	    _("Provide information about all known Ada tasks."));
1677 
1678   add_prefix_cmd ("task", class_run, task_command,
1679 		  _("Use this command to switch between Ada tasks.\n\
1680 Without argument, this command simply prints the current task ID."),
1681 		  &task_cmd_list, 1, &cmdlist);
1682 
1683 #define TASK_APPLY_OPTION_HELP "\
1684 Prints per-inferior task number followed by COMMAND output.\n\
1685 \n\
1686 By default, an error raised during the execution of COMMAND\n\
1687 aborts \"task apply\".\n\
1688 \n\
1689 Options:\n\
1690 %OPTIONS%"
1691 
1692   static const auto task_apply_opts
1693     = make_task_apply_options_def_group (nullptr);
1694 
1695   static std::string task_apply_help = gdb::option::build_help (_("\
1696 Apply a command to a list of tasks.\n\
1697 Usage: task apply ID... [OPTION]... COMMAND\n\
1698 ID is a space-separated list of IDs of tasks to apply COMMAND on.\n"
1699 TASK_APPLY_OPTION_HELP), task_apply_opts);
1700 
1701   add_prefix_cmd ("apply", class_run,
1702 		  task_apply_command,
1703 		  task_apply_help.c_str (),
1704 		  &task_apply_list, 1,
1705 		  &task_cmd_list);
1706 
1707   static const auto task_apply_all_opts
1708     = make_task_apply_all_options_def_group (nullptr);
1709 
1710   static std::string task_apply_all_help = gdb::option::build_help (_("\
1711 Apply a command to all tasks in the current inferior.\n\
1712 \n\
1713 Usage: task apply all [OPTION]... COMMAND\n"
1714 TASK_APPLY_OPTION_HELP), task_apply_all_opts);
1715 
1716   add_cmd ("all", class_run, task_apply_all_command,
1717 	   task_apply_all_help.c_str (), &task_apply_list);
1718 }
1719