xref: /netbsd-src/external/gpl3/gdb/dist/bfd/syms.c (revision dd75ac5b443e967e26b4d18cc8cd5eb98512bfbf)
1 /* Generic symbol-table support for the BFD library.
2    Copyright (C) 1990-2020 Free Software Foundation, Inc.
3    Written by Cygnus Support.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 /*
23 SECTION
24 	Symbols
25 
26 	BFD tries to maintain as much symbol information as it can when
27 	it moves information from file to file. BFD passes information
28 	to applications though the <<asymbol>> structure. When the
29 	application requests the symbol table, BFD reads the table in
30 	the native form and translates parts of it into the internal
31 	format. To maintain more than the information passed to
32 	applications, some targets keep some information ``behind the
33 	scenes'' in a structure only the particular back end knows
34 	about. For example, the coff back end keeps the original
35 	symbol table structure as well as the canonical structure when
36 	a BFD is read in. On output, the coff back end can reconstruct
37 	the output symbol table so that no information is lost, even
38 	information unique to coff which BFD doesn't know or
39 	understand. If a coff symbol table were read, but were written
40 	through an a.out back end, all the coff specific information
41 	would be lost. The symbol table of a BFD
42 	is not necessarily read in until a canonicalize request is
43 	made. Then the BFD back end fills in a table provided by the
44 	application with pointers to the canonical information.  To
45 	output symbols, the application provides BFD with a table of
46 	pointers to pointers to <<asymbol>>s. This allows applications
47 	like the linker to output a symbol as it was read, since the ``behind
48 	the scenes'' information will be still available.
49 @menu
50 @* Reading Symbols::
51 @* Writing Symbols::
52 @* Mini Symbols::
53 @* typedef asymbol::
54 @* symbol handling functions::
55 @end menu
56 
57 INODE
58 Reading Symbols, Writing Symbols, Symbols, Symbols
59 SUBSECTION
60 	Reading symbols
61 
62 	There are two stages to reading a symbol table from a BFD:
63 	allocating storage, and the actual reading process. This is an
64 	excerpt from an application which reads the symbol table:
65 
66 |         long storage_needed;
67 |         asymbol **symbol_table;
68 |         long number_of_symbols;
69 |         long i;
70 |
71 |         storage_needed = bfd_get_symtab_upper_bound (abfd);
72 |
73 |         if (storage_needed < 0)
74 |           FAIL
75 |
76 |         if (storage_needed == 0)
77 |           return;
78 |
79 |         symbol_table = xmalloc (storage_needed);
80 |           ...
81 |         number_of_symbols =
82 |            bfd_canonicalize_symtab (abfd, symbol_table);
83 |
84 |         if (number_of_symbols < 0)
85 |           FAIL
86 |
87 |         for (i = 0; i < number_of_symbols; i++)
88 |           process_symbol (symbol_table[i]);
89 
90 	All storage for the symbols themselves is in an objalloc
91 	connected to the BFD; it is freed when the BFD is closed.
92 
93 INODE
94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols
95 SUBSECTION
96 	Writing symbols
97 
98 	Writing of a symbol table is automatic when a BFD open for
99 	writing is closed. The application attaches a vector of
100 	pointers to pointers to symbols to the BFD being written, and
101 	fills in the symbol count. The close and cleanup code reads
102 	through the table provided and performs all the necessary
103 	operations. The BFD output code must always be provided with an
104 	``owned'' symbol: one which has come from another BFD, or one
105 	which has been created using <<bfd_make_empty_symbol>>.  Here is an
106 	example showing the creation of a symbol table with only one element:
107 
108 |       #include "sysdep.h"
109 |       #include "bfd.h"
110 |       int main (void)
111 |       {
112 |         bfd *abfd;
113 |         asymbol *ptrs[2];
114 |         asymbol *new;
115 |
116 |         abfd = bfd_openw ("foo","a.out-sunos-big");
117 |         bfd_set_format (abfd, bfd_object);
118 |         new = bfd_make_empty_symbol (abfd);
119 |         new->name = "dummy_symbol";
120 |         new->section = bfd_make_section_old_way (abfd, ".text");
121 |         new->flags = BSF_GLOBAL;
122 |         new->value = 0x12345;
123 |
124 |         ptrs[0] = new;
125 |         ptrs[1] = 0;
126 |
127 |         bfd_set_symtab (abfd, ptrs, 1);
128 |         bfd_close (abfd);
129 |         return 0;
130 |       }
131 |
132 |       ./makesym
133 |       nm foo
134 |       00012345 A dummy_symbol
135 
136 	Many formats cannot represent arbitrary symbol information; for
137 	instance, the <<a.out>> object format does not allow an
138 	arbitrary number of sections. A symbol pointing to a section
139 	which is not one  of <<.text>>, <<.data>> or <<.bss>> cannot
140 	be described.
141 
142 INODE
143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols
144 SUBSECTION
145 	Mini Symbols
146 
147 	Mini symbols provide read-only access to the symbol table.
148 	They use less memory space, but require more time to access.
149 	They can be useful for tools like nm or objdump, which may
150 	have to handle symbol tables of extremely large executables.
151 
152 	The <<bfd_read_minisymbols>> function will read the symbols
153 	into memory in an internal form.  It will return a <<void *>>
154 	pointer to a block of memory, a symbol count, and the size of
155 	each symbol.  The pointer is allocated using <<malloc>>, and
156 	should be freed by the caller when it is no longer needed.
157 
158 	The function <<bfd_minisymbol_to_symbol>> will take a pointer
159 	to a minisymbol, and a pointer to a structure returned by
160 	<<bfd_make_empty_symbol>>, and return a <<asymbol>> structure.
161 	The return value may or may not be the same as the value from
162 	<<bfd_make_empty_symbol>> which was passed in.
163 
164 */
165 
166 /*
167 DOCDD
168 INODE
169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols
170 
171 */
172 /*
173 SUBSECTION
174 	typedef asymbol
175 
176 	An <<asymbol>> has the form:
177 
178 */
179 
180 /*
181 CODE_FRAGMENT
182 
183 .
184 .typedef struct bfd_symbol
185 .{
186 .  {* A pointer to the BFD which owns the symbol. This information
187 .     is necessary so that a back end can work out what additional
188 .     information (invisible to the application writer) is carried
189 .     with the symbol.
190 .
191 .     This field is *almost* redundant, since you can use section->owner
192 .     instead, except that some symbols point to the global sections
193 .     bfd_{abs,com,und}_section.  This could be fixed by making
194 .     these globals be per-bfd (or per-target-flavor).  FIXME.  *}
195 .  struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field.  *}
196 .
197 .  {* The text of the symbol. The name is left alone, and not copied; the
198 .     application may not alter it.  *}
199 .  const char *name;
200 .
201 .  {* The value of the symbol.  This really should be a union of a
202 .     numeric value with a pointer, since some flags indicate that
203 .     a pointer to another symbol is stored here.  *}
204 .  symvalue value;
205 .
206 .  {* Attributes of a symbol.  *}
207 .#define BSF_NO_FLAGS            0
208 .
209 .  {* The symbol has local scope; <<static>> in <<C>>. The value
210 .     is the offset into the section of the data.  *}
211 .#define BSF_LOCAL               (1 << 0)
212 .
213 .  {* The symbol has global scope; initialized data in <<C>>. The
214 .     value is the offset into the section of the data.  *}
215 .#define BSF_GLOBAL              (1 << 1)
216 .
217 .  {* The symbol has global scope and is exported. The value is
218 .     the offset into the section of the data.  *}
219 .#define BSF_EXPORT              BSF_GLOBAL {* No real difference.  *}
220 .
221 .  {* A normal C symbol would be one of:
222 .     <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>.  *}
223 .
224 .  {* The symbol is a debugging record. The value has an arbitrary
225 .     meaning, unless BSF_DEBUGGING_RELOC is also set.  *}
226 .#define BSF_DEBUGGING           (1 << 2)
227 .
228 .  {* The symbol denotes a function entry point.  Used in ELF,
229 .     perhaps others someday.  *}
230 .#define BSF_FUNCTION            (1 << 3)
231 .
232 .  {* Used by the linker.  *}
233 .#define BSF_KEEP                (1 << 5)
234 .
235 .  {* An ELF common symbol.  *}
236 .#define BSF_ELF_COMMON          (1 << 6)
237 .
238 .  {* A weak global symbol, overridable without warnings by
239 .     a regular global symbol of the same name.  *}
240 .#define BSF_WEAK                (1 << 7)
241 .
242 .  {* This symbol was created to point to a section, e.g. ELF's
243 .     STT_SECTION symbols.  *}
244 .#define BSF_SECTION_SYM         (1 << 8)
245 .
246 .  {* The symbol used to be a common symbol, but now it is
247 .     allocated.  *}
248 .#define BSF_OLD_COMMON          (1 << 9)
249 .
250 .  {* In some files the type of a symbol sometimes alters its
251 .     location in an output file - ie in coff a <<ISFCN>> symbol
252 .     which is also <<C_EXT>> symbol appears where it was
253 .     declared and not at the end of a section.  This bit is set
254 .     by the target BFD part to convey this information.  *}
255 .#define BSF_NOT_AT_END          (1 << 10)
256 .
257 .  {* Signal that the symbol is the label of constructor section.  *}
258 .#define BSF_CONSTRUCTOR         (1 << 11)
259 .
260 .  {* Signal that the symbol is a warning symbol.  The name is a
261 .     warning.  The name of the next symbol is the one to warn about;
262 .     if a reference is made to a symbol with the same name as the next
263 .     symbol, a warning is issued by the linker.  *}
264 .#define BSF_WARNING             (1 << 12)
265 .
266 .  {* Signal that the symbol is indirect.  This symbol is an indirect
267 .     pointer to the symbol with the same name as the next symbol.  *}
268 .#define BSF_INDIRECT            (1 << 13)
269 .
270 .  {* BSF_FILE marks symbols that contain a file name.  This is used
271 .     for ELF STT_FILE symbols.  *}
272 .#define BSF_FILE                (1 << 14)
273 .
274 .  {* Symbol is from dynamic linking information.  *}
275 .#define BSF_DYNAMIC             (1 << 15)
276 .
277 .  {* The symbol denotes a data object.  Used in ELF, and perhaps
278 .     others someday.  *}
279 .#define BSF_OBJECT              (1 << 16)
280 .
281 .  {* This symbol is a debugging symbol.  The value is the offset
282 .     into the section of the data.  BSF_DEBUGGING should be set
283 .     as well.  *}
284 .#define BSF_DEBUGGING_RELOC     (1 << 17)
285 .
286 .  {* This symbol is thread local.  Used in ELF.  *}
287 .#define BSF_THREAD_LOCAL        (1 << 18)
288 .
289 .  {* This symbol represents a complex relocation expression,
290 .     with the expression tree serialized in the symbol name.  *}
291 .#define BSF_RELC                (1 << 19)
292 .
293 .  {* This symbol represents a signed complex relocation expression,
294 .     with the expression tree serialized in the symbol name.  *}
295 .#define BSF_SRELC               (1 << 20)
296 .
297 .  {* This symbol was created by bfd_get_synthetic_symtab.  *}
298 .#define BSF_SYNTHETIC           (1 << 21)
299 .
300 .  {* This symbol is an indirect code object.  Unrelated to BSF_INDIRECT.
301 .     The dynamic linker will compute the value of this symbol by
302 .     calling the function that it points to.  BSF_FUNCTION must
303 .     also be also set.  *}
304 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22)
305 .  {* This symbol is a globally unique data object.  The dynamic linker
306 .     will make sure that in the entire process there is just one symbol
307 .     with this name and type in use.  BSF_OBJECT must also be set.  *}
308 .#define BSF_GNU_UNIQUE          (1 << 23)
309 .
310 .  flagword flags;
311 .
312 .  {* A pointer to the section to which this symbol is
313 .     relative.  This will always be non NULL, there are special
314 .     sections for undefined and absolute symbols.  *}
315 .  struct bfd_section *section;
316 .
317 .  {* Back end special data.  *}
318 .  union
319 .    {
320 .      void *p;
321 .      bfd_vma i;
322 .    }
323 .  udata;
324 .}
325 .asymbol;
326 .
327 */
328 
329 #include "sysdep.h"
330 #include "bfd.h"
331 #include "libbfd.h"
332 #include "safe-ctype.h"
333 #include "bfdlink.h"
334 #include "aout/stab_gnu.h"
335 
336 /*
337 DOCDD
338 INODE
339 symbol handling functions,  , typedef asymbol, Symbols
340 SUBSECTION
341 	Symbol handling functions
342 */
343 
344 /*
345 FUNCTION
346 	bfd_get_symtab_upper_bound
347 
348 DESCRIPTION
349 	Return the number of bytes required to store a vector of pointers
350 	to <<asymbols>> for all the symbols in the BFD @var{abfd},
351 	including a terminal NULL pointer. If there are no symbols in
352 	the BFD, then return 0.  If an error occurs, return -1.
353 
354 .#define bfd_get_symtab_upper_bound(abfd) \
355 .	BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))
356 .
357 */
358 
359 /*
360 FUNCTION
361 	bfd_is_local_label
362 
363 SYNOPSIS
364 	bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym);
365 
366 DESCRIPTION
367 	Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is
368 	a compiler generated local label, else return FALSE.
369 */
370 
371 bfd_boolean
372 bfd_is_local_label (bfd *abfd, asymbol *sym)
373 {
374   /* The BSF_SECTION_SYM check is needed for IA-64, where every label that
375      starts with '.' is local.  This would accidentally catch section names
376      if we didn't reject them here.  */
377   if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0)
378     return FALSE;
379   if (sym->name == NULL)
380     return FALSE;
381   return bfd_is_local_label_name (abfd, sym->name);
382 }
383 
384 /*
385 FUNCTION
386 	bfd_is_local_label_name
387 
388 SYNOPSIS
389 	bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name);
390 
391 DESCRIPTION
392 	Return TRUE if a symbol with the name @var{name} in the BFD
393 	@var{abfd} is a compiler generated local label, else return
394 	FALSE.  This just checks whether the name has the form of a
395 	local label.
396 
397 .#define bfd_is_local_label_name(abfd, name) \
398 .	BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))
399 .
400 */
401 
402 /*
403 FUNCTION
404 	bfd_is_target_special_symbol
405 
406 SYNOPSIS
407 	bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym);
408 
409 DESCRIPTION
410 	Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something
411 	special to the particular target represented by the BFD.  Such symbols
412 	should normally not be mentioned to the user.
413 
414 .#define bfd_is_target_special_symbol(abfd, sym) \
415 .	BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym))
416 .
417 */
418 
419 /*
420 FUNCTION
421 	bfd_canonicalize_symtab
422 
423 DESCRIPTION
424 	Read the symbols from the BFD @var{abfd}, and fills in
425 	the vector @var{location} with pointers to the symbols and
426 	a trailing NULL.
427 	Return the actual number of symbol pointers, not
428 	including the NULL.
429 
430 .#define bfd_canonicalize_symtab(abfd, location) \
431 .	BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location))
432 .
433 */
434 
435 /*
436 FUNCTION
437 	bfd_set_symtab
438 
439 SYNOPSIS
440 	bfd_boolean bfd_set_symtab
441 	  (bfd *abfd, asymbol **location, unsigned int count);
442 
443 DESCRIPTION
444 	Arrange that when the output BFD @var{abfd} is closed,
445 	the table @var{location} of @var{count} pointers to symbols
446 	will be written.
447 */
448 
449 bfd_boolean
450 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount)
451 {
452   if (abfd->format != bfd_object || bfd_read_p (abfd))
453     {
454       bfd_set_error (bfd_error_invalid_operation);
455       return FALSE;
456     }
457 
458   abfd->outsymbols = location;
459   abfd->symcount = symcount;
460   return TRUE;
461 }
462 
463 /*
464 FUNCTION
465 	bfd_print_symbol_vandf
466 
467 SYNOPSIS
468 	void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol);
469 
470 DESCRIPTION
471 	Print the value and flags of the @var{symbol} supplied to the
472 	stream @var{file}.
473 */
474 void
475 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol)
476 {
477   FILE *file = (FILE *) arg;
478 
479   flagword type = symbol->flags;
480 
481   if (symbol->section != NULL)
482     bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma);
483   else
484     bfd_fprintf_vma (abfd, file, symbol->value);
485 
486   /* This presumes that a symbol can not be both BSF_DEBUGGING and
487      BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and
488      BSF_OBJECT.  */
489   fprintf (file, " %c%c%c%c%c%c%c",
490 	   ((type & BSF_LOCAL)
491 	    ? (type & BSF_GLOBAL) ? '!' : 'l'
492 	    : (type & BSF_GLOBAL) ? 'g'
493 	    : (type & BSF_GNU_UNIQUE) ? 'u' : ' '),
494 	   (type & BSF_WEAK) ? 'w' : ' ',
495 	   (type & BSF_CONSTRUCTOR) ? 'C' : ' ',
496 	   (type & BSF_WARNING) ? 'W' : ' ',
497 	   (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ',
498 	   (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ',
499 	   ((type & BSF_FUNCTION)
500 	    ? 'F'
501 	    : ((type & BSF_FILE)
502 	       ? 'f'
503 	       : ((type & BSF_OBJECT) ? 'O' : ' '))));
504 }
505 
506 /*
507 FUNCTION
508 	bfd_make_empty_symbol
509 
510 DESCRIPTION
511 	Create a new <<asymbol>> structure for the BFD @var{abfd}
512 	and return a pointer to it.
513 
514 	This routine is necessary because each back end has private
515 	information surrounding the <<asymbol>>. Building your own
516 	<<asymbol>> and pointing to it will not create the private
517 	information, and will cause problems later on.
518 
519 .#define bfd_make_empty_symbol(abfd) \
520 .	BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))
521 .
522 */
523 
524 /*
525 FUNCTION
526 	_bfd_generic_make_empty_symbol
527 
528 SYNOPSIS
529 	asymbol *_bfd_generic_make_empty_symbol (bfd *);
530 
531 DESCRIPTION
532 	Create a new <<asymbol>> structure for the BFD @var{abfd}
533 	and return a pointer to it.  Used by core file routines,
534 	binary back-end and anywhere else where no private info
535 	is needed.
536 */
537 
538 asymbol *
539 _bfd_generic_make_empty_symbol (bfd *abfd)
540 {
541   size_t amt = sizeof (asymbol);
542   asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt);
543   if (new_symbol)
544     new_symbol->the_bfd = abfd;
545   return new_symbol;
546 }
547 
548 /*
549 FUNCTION
550 	bfd_make_debug_symbol
551 
552 DESCRIPTION
553 	Create a new <<asymbol>> structure for the BFD @var{abfd},
554 	to be used as a debugging symbol.  Further details of its use have
555 	yet to be worked out.
556 
557 .#define bfd_make_debug_symbol(abfd,ptr,size) \
558 .	BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))
559 .
560 */
561 
562 struct section_to_type
563 {
564   const char *section;
565   char type;
566 };
567 
568 /* Map special section names to POSIX/BSD single-character symbol types.
569    This table is probably incomplete.  It is sorted for convenience of
570    adding entries.  Since it is so short, a linear search is used.  */
571 static const struct section_to_type stt[] =
572 {
573   {".drectve", 'i'},		/* MSVC's .drective section */
574   {".edata", 'e'},		/* MSVC's .edata (export) section */
575   {".idata", 'i'},		/* MSVC's .idata (import) section */
576   {".pdata", 'p'},		/* MSVC's .pdata (stack unwind) section */
577   {0, 0}
578 };
579 
580 /* Return the single-character symbol type corresponding to
581    section S, or '?' for an unknown COFF section.
582 
583    Check for leading strings which match, followed by a number, '.',
584    or '$' so .idata5 matches the .idata entry.  */
585 
586 static char
587 coff_section_type (const char *s)
588 {
589   const struct section_to_type *t;
590 
591   for (t = &stt[0]; t->section; t++)
592     {
593       size_t len = strlen (t->section);
594       if (strncmp (s, t->section, len) == 0
595 	  && memchr (".$0123456789", s[len], 13) != 0)
596 	return t->type;
597     }
598 
599   return '?';
600 }
601 
602 /* Return the single-character symbol type corresponding to section
603    SECTION, or '?' for an unknown section.  This uses section flags to
604    identify sections.
605 
606    FIXME These types are unhandled: e, i, p.  If we handled these also,
607    we could perhaps obsolete coff_section_type.  */
608 
609 static char
610 decode_section_type (const struct bfd_section *section)
611 {
612   if (section->flags & SEC_CODE)
613     return 't';
614   if (section->flags & SEC_DATA)
615     {
616       if (section->flags & SEC_READONLY)
617 	return 'r';
618       else if (section->flags & SEC_SMALL_DATA)
619 	return 'g';
620       else
621 	return 'd';
622     }
623   if ((section->flags & SEC_HAS_CONTENTS) == 0)
624     {
625       if (section->flags & SEC_SMALL_DATA)
626 	return 's';
627       else
628 	return 'b';
629     }
630   if (section->flags & SEC_DEBUGGING)
631     return 'N';
632   if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY))
633     return 'n';
634 
635   return '?';
636 }
637 
638 /*
639 FUNCTION
640 	bfd_decode_symclass
641 
642 DESCRIPTION
643 	Return a character corresponding to the symbol
644 	class of @var{symbol}, or '?' for an unknown class.
645 
646 SYNOPSIS
647 	int bfd_decode_symclass (asymbol *symbol);
648 */
649 int
650 bfd_decode_symclass (asymbol *symbol)
651 {
652   char c;
653 
654   if (symbol->section && bfd_is_com_section (symbol->section))
655     {
656       if (symbol->section->flags & SEC_SMALL_DATA)
657 	return 'c';
658       else
659 	return 'C';
660     }
661   if (bfd_is_und_section (symbol->section))
662     {
663       if (symbol->flags & BSF_WEAK)
664 	{
665 	  /* If weak, determine if it's specifically an object
666 	     or non-object weak.  */
667 	  if (symbol->flags & BSF_OBJECT)
668 	    return 'v';
669 	  else
670 	    return 'w';
671 	}
672       else
673 	return 'U';
674     }
675   if (bfd_is_ind_section (symbol->section))
676     return 'I';
677   if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION)
678     return 'i';
679   if (symbol->flags & BSF_WEAK)
680     {
681       /* If weak, determine if it's specifically an object
682 	 or non-object weak.  */
683       if (symbol->flags & BSF_OBJECT)
684 	return 'V';
685       else
686 	return 'W';
687     }
688   if (symbol->flags & BSF_GNU_UNIQUE)
689     return 'u';
690   if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL)))
691     return '?';
692 
693   if (bfd_is_abs_section (symbol->section))
694     c = 'a';
695   else if (symbol->section)
696     {
697       c = coff_section_type (symbol->section->name);
698       if (c == '?')
699 	c = decode_section_type (symbol->section);
700     }
701   else
702     return '?';
703   if (symbol->flags & BSF_GLOBAL)
704     c = TOUPPER (c);
705   return c;
706 
707   /* We don't have to handle these cases just yet, but we will soon:
708      N_SETV: 'v';
709      N_SETA: 'l';
710      N_SETT: 'x';
711      N_SETD: 'z';
712      N_SETB: 's';
713      N_INDR: 'i';
714      */
715 }
716 
717 /*
718 FUNCTION
719 	bfd_is_undefined_symclass
720 
721 DESCRIPTION
722 	Returns non-zero if the class symbol returned by
723 	bfd_decode_symclass represents an undefined symbol.
724 	Returns zero otherwise.
725 
726 SYNOPSIS
727 	bfd_boolean bfd_is_undefined_symclass (int symclass);
728 */
729 
730 bfd_boolean
731 bfd_is_undefined_symclass (int symclass)
732 {
733   return symclass == 'U' || symclass == 'w' || symclass == 'v';
734 }
735 
736 /*
737 FUNCTION
738 	bfd_symbol_info
739 
740 DESCRIPTION
741 	Fill in the basic info about symbol that nm needs.
742 	Additional info may be added by the back-ends after
743 	calling this function.
744 
745 SYNOPSIS
746 	void bfd_symbol_info (asymbol *symbol, symbol_info *ret);
747 */
748 
749 void
750 bfd_symbol_info (asymbol *symbol, symbol_info *ret)
751 {
752   ret->type = bfd_decode_symclass (symbol);
753 
754   if (bfd_is_undefined_symclass (ret->type))
755     ret->value = 0;
756   else
757     ret->value = symbol->value + symbol->section->vma;
758 
759   ret->name = symbol->name;
760 }
761 
762 /*
763 FUNCTION
764 	bfd_copy_private_symbol_data
765 
766 SYNOPSIS
767 	bfd_boolean bfd_copy_private_symbol_data
768 	  (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym);
769 
770 DESCRIPTION
771 	Copy private symbol information from @var{isym} in the BFD
772 	@var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}.
773 	Return <<TRUE>> on success, <<FALSE>> on error.  Possible error
774 	returns are:
775 
776 	o <<bfd_error_no_memory>> -
777 	Not enough memory exists to create private data for @var{osec}.
778 
779 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
780 .	BFD_SEND (obfd, _bfd_copy_private_symbol_data, \
781 .		  (ibfd, isymbol, obfd, osymbol))
782 .
783 */
784 
785 /* The generic version of the function which returns mini symbols.
786    This is used when the backend does not provide a more efficient
787    version.  It just uses BFD asymbol structures as mini symbols.  */
788 
789 long
790 _bfd_generic_read_minisymbols (bfd *abfd,
791 			       bfd_boolean dynamic,
792 			       void **minisymsp,
793 			       unsigned int *sizep)
794 {
795   long storage;
796   asymbol **syms = NULL;
797   long symcount;
798 
799   if (dynamic)
800     storage = bfd_get_dynamic_symtab_upper_bound (abfd);
801   else
802     storage = bfd_get_symtab_upper_bound (abfd);
803   if (storage < 0)
804     goto error_return;
805   if (storage == 0)
806     return 0;
807 
808   syms = (asymbol **) bfd_malloc (storage);
809   if (syms == NULL)
810     goto error_return;
811 
812   if (dynamic)
813     symcount = bfd_canonicalize_dynamic_symtab (abfd, syms);
814   else
815     symcount = bfd_canonicalize_symtab (abfd, syms);
816   if (symcount < 0)
817     goto error_return;
818 
819   if (symcount == 0)
820     /* We return 0 above when storage is 0.  Exit in the same state
821        here, so as to not complicate callers with having to deal with
822        freeing memory for zero symcount.  */
823     free (syms);
824   else
825     {
826       *minisymsp = syms;
827       *sizep = sizeof (asymbol *);
828     }
829   return symcount;
830 
831  error_return:
832   bfd_set_error (bfd_error_no_symbols);
833   free (syms);
834   return -1;
835 }
836 
837 /* The generic version of the function which converts a minisymbol to
838    an asymbol.  We don't worry about the sym argument we are passed;
839    we just return the asymbol the minisymbol points to.  */
840 
841 asymbol *
842 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED,
843 				   bfd_boolean dynamic ATTRIBUTE_UNUSED,
844 				   const void *minisym,
845 				   asymbol *sym ATTRIBUTE_UNUSED)
846 {
847   return *(asymbol **) minisym;
848 }
849 
850 /* Look through stabs debugging information in .stab and .stabstr
851    sections to find the source file and line closest to a desired
852    location.  This is used by COFF and ELF targets.  It sets *pfound
853    to TRUE if it finds some information.  The *pinfo field is used to
854    pass cached information in and out of this routine; this first time
855    the routine is called for a BFD, *pinfo should be NULL.  The value
856    placed in *pinfo should be saved with the BFD, and passed back each
857    time this function is called.  */
858 
859 /* We use a cache by default.  */
860 
861 #define ENABLE_CACHING
862 
863 /* We keep an array of indexentry structures to record where in the
864    stabs section we should look to find line number information for a
865    particular address.  */
866 
867 struct indexentry
868 {
869   bfd_vma val;
870   bfd_byte *stab;
871   bfd_byte *str;
872   char *directory_name;
873   char *file_name;
874   char *function_name;
875   int idx;
876 };
877 
878 /* Compare two indexentry structures.  This is called via qsort.  */
879 
880 static int
881 cmpindexentry (const void *a, const void *b)
882 {
883   const struct indexentry *contestantA = (const struct indexentry *) a;
884   const struct indexentry *contestantB = (const struct indexentry *) b;
885 
886   if (contestantA->val < contestantB->val)
887     return -1;
888   if (contestantA->val > contestantB->val)
889     return 1;
890   return contestantA->idx - contestantB->idx;
891 }
892 
893 /* A pointer to this structure is stored in *pinfo.  */
894 
895 struct stab_find_info
896 {
897   /* The .stab section.  */
898   asection *stabsec;
899   /* The .stabstr section.  */
900   asection *strsec;
901   /* The contents of the .stab section.  */
902   bfd_byte *stabs;
903   /* The contents of the .stabstr section.  */
904   bfd_byte *strs;
905 
906   /* A table that indexes stabs by memory address.  */
907   struct indexentry *indextable;
908   /* The number of entries in indextable.  */
909   int indextablesize;
910 
911 #ifdef ENABLE_CACHING
912   /* Cached values to restart quickly.  */
913   struct indexentry *cached_indexentry;
914   bfd_vma cached_offset;
915   bfd_byte *cached_stab;
916   char *cached_file_name;
917 #endif
918 
919   /* Saved ptr to malloc'ed filename.  */
920   char *filename;
921 };
922 
923 bfd_boolean
924 _bfd_stab_section_find_nearest_line (bfd *abfd,
925 				     asymbol **symbols,
926 				     asection *section,
927 				     bfd_vma offset,
928 				     bfd_boolean *pfound,
929 				     const char **pfilename,
930 				     const char **pfnname,
931 				     unsigned int *pline,
932 				     void **pinfo)
933 {
934   struct stab_find_info *info;
935   bfd_size_type stabsize, strsize;
936   bfd_byte *stab, *str;
937   bfd_byte *nul_fun, *nul_str;
938   bfd_size_type stroff;
939   struct indexentry *indexentry;
940   char *file_name;
941   char *directory_name;
942   bfd_boolean saw_line, saw_func;
943 
944   *pfound = FALSE;
945   *pfilename = bfd_get_filename (abfd);
946   *pfnname = NULL;
947   *pline = 0;
948 
949   /* Stabs entries use a 12 byte format:
950        4 byte string table index
951        1 byte stab type
952        1 byte stab other field
953        2 byte stab desc field
954        4 byte stab value
955      FIXME: This will have to change for a 64 bit object format.
956 
957      The stabs symbols are divided into compilation units.  For the
958      first entry in each unit, the type of 0, the value is the length
959      of the string table for this unit, and the desc field is the
960      number of stabs symbols for this unit.  */
961 
962 #define STRDXOFF (0)
963 #define TYPEOFF (4)
964 #define OTHEROFF (5)
965 #define DESCOFF (6)
966 #define VALOFF (8)
967 #define STABSIZE (12)
968 
969   info = (struct stab_find_info *) *pinfo;
970   if (info != NULL)
971     {
972       if (info->stabsec == NULL || info->strsec == NULL)
973 	{
974 	  /* No stabs debugging information.  */
975 	  return TRUE;
976 	}
977 
978       stabsize = (info->stabsec->rawsize
979 		  ? info->stabsec->rawsize
980 		  : info->stabsec->size);
981       strsize = (info->strsec->rawsize
982 		 ? info->strsec->rawsize
983 		 : info->strsec->size);
984     }
985   else
986     {
987       long reloc_size, reloc_count;
988       arelent **reloc_vector;
989       int i;
990       char *function_name;
991       bfd_size_type amt = sizeof *info;
992 
993       info = (struct stab_find_info *) bfd_zalloc (abfd, amt);
994       if (info == NULL)
995 	return FALSE;
996 
997       /* FIXME: When using the linker --split-by-file or
998 	 --split-by-reloc options, it is possible for the .stab and
999 	 .stabstr sections to be split.  We should handle that.  */
1000 
1001       info->stabsec = bfd_get_section_by_name (abfd, ".stab");
1002       info->strsec = bfd_get_section_by_name (abfd, ".stabstr");
1003 
1004       if (info->stabsec == NULL || info->strsec == NULL)
1005 	{
1006 	  /* Try SOM section names.  */
1007 	  info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$");
1008 	  info->strsec  = bfd_get_section_by_name (abfd, "$GDB_STRINGS$");
1009 
1010 	  if (info->stabsec == NULL || info->strsec == NULL)
1011 	    {
1012 	      /* No stabs debugging information.  Set *pinfo so that we
1013 		 can return quickly in the info != NULL case above.  */
1014 	      *pinfo = info;
1015 	      return TRUE;
1016 	    }
1017 	}
1018 
1019       stabsize = (info->stabsec->rawsize
1020 		  ? info->stabsec->rawsize
1021 		  : info->stabsec->size);
1022       stabsize = (stabsize / STABSIZE) * STABSIZE;
1023       strsize = (info->strsec->rawsize
1024 		 ? info->strsec->rawsize
1025 		 : info->strsec->size);
1026 
1027       info->stabs = (bfd_byte *) bfd_alloc (abfd, stabsize);
1028       info->strs = (bfd_byte *) bfd_alloc (abfd, strsize);
1029       if (info->stabs == NULL || info->strs == NULL)
1030 	return FALSE;
1031 
1032       if (! bfd_get_section_contents (abfd, info->stabsec, info->stabs,
1033 				      0, stabsize)
1034 	  || ! bfd_get_section_contents (abfd, info->strsec, info->strs,
1035 					 0, strsize))
1036 	return FALSE;
1037 
1038       /* Stab strings ought to be nul terminated.  Ensure the last one
1039 	 is, to prevent running off the end of the buffer.  */
1040       info->strs[strsize - 1] = 0;
1041 
1042       /* If this is a relocatable object file, we have to relocate
1043 	 the entries in .stab.  This should always be simple 32 bit
1044 	 relocations against symbols defined in this object file, so
1045 	 this should be no big deal.  */
1046       reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec);
1047       if (reloc_size < 0)
1048 	return FALSE;
1049       reloc_vector = (arelent **) bfd_malloc (reloc_size);
1050       if (reloc_vector == NULL && reloc_size != 0)
1051 	return FALSE;
1052       reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector,
1053 					    symbols);
1054       if (reloc_count < 0)
1055 	{
1056 	  free (reloc_vector);
1057 	  return FALSE;
1058 	}
1059       if (reloc_count > 0)
1060 	{
1061 	  arelent **pr;
1062 
1063 	  for (pr = reloc_vector; *pr != NULL; pr++)
1064 	    {
1065 	      arelent *r;
1066 	      unsigned long val;
1067 	      asymbol *sym;
1068 	      bfd_size_type octets;
1069 
1070 	      r = *pr;
1071 	      /* Ignore R_*_NONE relocs.  */
1072 	      if (r->howto->dst_mask == 0)
1073 		continue;
1074 
1075 	      octets = r->address * bfd_octets_per_byte (abfd, NULL);
1076 	      if (r->howto->rightshift != 0
1077 		  || r->howto->size != 2
1078 		  || r->howto->bitsize != 32
1079 		  || r->howto->pc_relative
1080 		  || r->howto->bitpos != 0
1081 		  || r->howto->dst_mask != 0xffffffff
1082 		  || octets + 4 > stabsize)
1083 		{
1084 		  _bfd_error_handler
1085 		    (_("unsupported .stab relocation"));
1086 		  bfd_set_error (bfd_error_invalid_operation);
1087 		  free (reloc_vector);
1088 		  return FALSE;
1089 		}
1090 
1091 	      val = bfd_get_32 (abfd, info->stabs + octets);
1092 	      val &= r->howto->src_mask;
1093 	      sym = *r->sym_ptr_ptr;
1094 	      val += sym->value + sym->section->vma + r->addend;
1095 	      bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets);
1096 	    }
1097 	}
1098 
1099       free (reloc_vector);
1100 
1101       /* First time through this function, build a table matching
1102 	 function VM addresses to stabs, then sort based on starting
1103 	 VM address.  Do this in two passes: once to count how many
1104 	 table entries we'll need, and a second to actually build the
1105 	 table.  */
1106 
1107       info->indextablesize = 0;
1108       nul_fun = NULL;
1109       for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE)
1110 	{
1111 	  if (stab[TYPEOFF] == (bfd_byte) N_SO)
1112 	    {
1113 	      /* if we did not see a function def, leave space for one.  */
1114 	      if (nul_fun != NULL)
1115 		++info->indextablesize;
1116 
1117 	      /* N_SO with null name indicates EOF */
1118 	      if (bfd_get_32 (abfd, stab + STRDXOFF) == 0)
1119 		nul_fun = NULL;
1120 	      else
1121 		{
1122 		  nul_fun = stab;
1123 
1124 		  /* two N_SO's in a row is a filename and directory. Skip */
1125 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1126 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1127 		    stab += STABSIZE;
1128 		}
1129 	    }
1130 	  else if (stab[TYPEOFF] == (bfd_byte) N_FUN
1131 		   && bfd_get_32 (abfd, stab + STRDXOFF) != 0)
1132 	    {
1133 	      nul_fun = NULL;
1134 	      ++info->indextablesize;
1135 	    }
1136 	}
1137 
1138       if (nul_fun != NULL)
1139 	++info->indextablesize;
1140 
1141       if (info->indextablesize == 0)
1142 	return TRUE;
1143       ++info->indextablesize;
1144 
1145       amt = info->indextablesize;
1146       amt *= sizeof (struct indexentry);
1147       info->indextable = (struct indexentry *) bfd_alloc (abfd, amt);
1148       if (info->indextable == NULL)
1149 	return FALSE;
1150 
1151       file_name = NULL;
1152       directory_name = NULL;
1153       nul_fun = NULL;
1154       stroff = 0;
1155 
1156       for (i = 0, stab = info->stabs, nul_str = str = info->strs;
1157 	   i < info->indextablesize && stab < info->stabs + stabsize;
1158 	   stab += STABSIZE)
1159 	{
1160 	  switch (stab[TYPEOFF])
1161 	    {
1162 	    case 0:
1163 	      /* This is the first entry in a compilation unit.  */
1164 	      if ((bfd_size_type) ((info->strs + strsize) - str) < stroff)
1165 		break;
1166 	      str += stroff;
1167 	      stroff = bfd_get_32 (abfd, stab + VALOFF);
1168 	      break;
1169 
1170 	    case N_SO:
1171 	      /* The main file name.  */
1172 
1173 	      /* The following code creates a new indextable entry with
1174 		 a NULL function name if there were no N_FUNs in a file.
1175 		 Note that a N_SO without a file name is an EOF and
1176 		 there could be 2 N_SO following it with the new filename
1177 		 and directory.  */
1178 	      if (nul_fun != NULL)
1179 		{
1180 		  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1181 		  info->indextable[i].stab = nul_fun;
1182 		  info->indextable[i].str = nul_str;
1183 		  info->indextable[i].directory_name = directory_name;
1184 		  info->indextable[i].file_name = file_name;
1185 		  info->indextable[i].function_name = NULL;
1186 		  info->indextable[i].idx = i;
1187 		  ++i;
1188 		}
1189 
1190 	      directory_name = NULL;
1191 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1192 	      if (file_name == (char *) str)
1193 		{
1194 		  file_name = NULL;
1195 		  nul_fun = NULL;
1196 		}
1197 	      else
1198 		{
1199 		  nul_fun = stab;
1200 		  nul_str = str;
1201 		  if (file_name >= (char *) info->strs + strsize
1202 		      || file_name < (char *) str)
1203 		    file_name = NULL;
1204 		  if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize
1205 		      && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO)
1206 		    {
1207 		      /* Two consecutive N_SOs are a directory and a
1208 			 file name.  */
1209 		      stab += STABSIZE;
1210 		      directory_name = file_name;
1211 		      file_name = ((char *) str
1212 				   + bfd_get_32 (abfd, stab + STRDXOFF));
1213 		      if (file_name >= (char *) info->strs + strsize
1214 			  || file_name < (char *) str)
1215 			file_name = NULL;
1216 		    }
1217 		}
1218 	      break;
1219 
1220 	    case N_SOL:
1221 	      /* The name of an include file.  */
1222 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1223 	      /* PR 17512: file: 0c680a1f.  */
1224 	      /* PR 17512: file: 5da8aec4.  */
1225 	      if (file_name >= (char *) info->strs + strsize
1226 		  || file_name < (char *) str)
1227 		file_name = NULL;
1228 	      break;
1229 
1230 	    case N_FUN:
1231 	      /* A function name.  */
1232 	      function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1233 	      if (function_name == (char *) str)
1234 		continue;
1235 	      if (function_name >= (char *) info->strs + strsize
1236 		  || function_name < (char *) str)
1237 		function_name = NULL;
1238 
1239 	      nul_fun = NULL;
1240 	      info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF);
1241 	      info->indextable[i].stab = stab;
1242 	      info->indextable[i].str = str;
1243 	      info->indextable[i].directory_name = directory_name;
1244 	      info->indextable[i].file_name = file_name;
1245 	      info->indextable[i].function_name = function_name;
1246 	      info->indextable[i].idx = i;
1247 	      ++i;
1248 	      break;
1249 	    }
1250 	}
1251 
1252       if (nul_fun != NULL)
1253 	{
1254 	  info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF);
1255 	  info->indextable[i].stab = nul_fun;
1256 	  info->indextable[i].str = nul_str;
1257 	  info->indextable[i].directory_name = directory_name;
1258 	  info->indextable[i].file_name = file_name;
1259 	  info->indextable[i].function_name = NULL;
1260 	  info->indextable[i].idx = i;
1261 	  ++i;
1262 	}
1263 
1264       info->indextable[i].val = (bfd_vma) -1;
1265       info->indextable[i].stab = info->stabs + stabsize;
1266       info->indextable[i].str = str;
1267       info->indextable[i].directory_name = NULL;
1268       info->indextable[i].file_name = NULL;
1269       info->indextable[i].function_name = NULL;
1270       info->indextable[i].idx = i;
1271       ++i;
1272 
1273       info->indextablesize = i;
1274       qsort (info->indextable, (size_t) i, sizeof (struct indexentry),
1275 	     cmpindexentry);
1276 
1277       *pinfo = info;
1278     }
1279 
1280   /* We are passed a section relative offset.  The offsets in the
1281      stabs information are absolute.  */
1282   offset += bfd_section_vma (section);
1283 
1284 #ifdef ENABLE_CACHING
1285   if (info->cached_indexentry != NULL
1286       && offset >= info->cached_offset
1287       && offset < (info->cached_indexentry + 1)->val)
1288     {
1289       stab = info->cached_stab;
1290       indexentry = info->cached_indexentry;
1291       file_name = info->cached_file_name;
1292     }
1293   else
1294 #endif
1295     {
1296       long low, high;
1297       long mid = -1;
1298 
1299       /* Cache non-existent or invalid.  Do binary search on
1300 	 indextable.  */
1301       indexentry = NULL;
1302 
1303       low = 0;
1304       high = info->indextablesize - 1;
1305       while (low != high)
1306 	{
1307 	  mid = (high + low) / 2;
1308 	  if (offset >= info->indextable[mid].val
1309 	      && offset < info->indextable[mid + 1].val)
1310 	    {
1311 	      indexentry = &info->indextable[mid];
1312 	      break;
1313 	    }
1314 
1315 	  if (info->indextable[mid].val > offset)
1316 	    high = mid;
1317 	  else
1318 	    low = mid + 1;
1319 	}
1320 
1321       if (indexentry == NULL)
1322 	return TRUE;
1323 
1324       stab = indexentry->stab + STABSIZE;
1325       file_name = indexentry->file_name;
1326     }
1327 
1328   directory_name = indexentry->directory_name;
1329   str = indexentry->str;
1330 
1331   saw_line = FALSE;
1332   saw_func = FALSE;
1333   for (; stab < (indexentry+1)->stab; stab += STABSIZE)
1334     {
1335       bfd_boolean done;
1336       bfd_vma val;
1337 
1338       done = FALSE;
1339 
1340       switch (stab[TYPEOFF])
1341 	{
1342 	case N_SOL:
1343 	  /* The name of an include file.  */
1344 	  val = bfd_get_32 (abfd, stab + VALOFF);
1345 	  if (val <= offset)
1346 	    {
1347 	      file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF);
1348 	      if (file_name >= (char *) info->strs + strsize
1349 		  || file_name < (char *) str)
1350 		file_name = NULL;
1351 	      *pline = 0;
1352 	    }
1353 	  break;
1354 
1355 	case N_SLINE:
1356 	case N_DSLINE:
1357 	case N_BSLINE:
1358 	  /* A line number.  If the function was specified, then the value
1359 	     is relative to the start of the function.  Otherwise, the
1360 	     value is an absolute address.  */
1361 	  val = ((indexentry->function_name ? indexentry->val : 0)
1362 		 + bfd_get_32 (abfd, stab + VALOFF));
1363 	  /* If this line starts before our desired offset, or if it's
1364 	     the first line we've been able to find, use it.  The
1365 	     !saw_line check works around a bug in GCC 2.95.3, which emits
1366 	     the first N_SLINE late.  */
1367 	  if (!saw_line || val <= offset)
1368 	    {
1369 	      *pline = bfd_get_16 (abfd, stab + DESCOFF);
1370 
1371 #ifdef ENABLE_CACHING
1372 	      info->cached_stab = stab;
1373 	      info->cached_offset = val;
1374 	      info->cached_file_name = file_name;
1375 	      info->cached_indexentry = indexentry;
1376 #endif
1377 	    }
1378 	  if (val > offset)
1379 	    done = TRUE;
1380 	  saw_line = TRUE;
1381 	  break;
1382 
1383 	case N_FUN:
1384 	case N_SO:
1385 	  if (saw_func || saw_line)
1386 	    done = TRUE;
1387 	  saw_func = TRUE;
1388 	  break;
1389 	}
1390 
1391       if (done)
1392 	break;
1393     }
1394 
1395   *pfound = TRUE;
1396 
1397   if (file_name == NULL || IS_ABSOLUTE_PATH (file_name)
1398       || directory_name == NULL)
1399     *pfilename = file_name;
1400   else
1401     {
1402       size_t dirlen;
1403 
1404       dirlen = strlen (directory_name);
1405       if (info->filename == NULL
1406 	  || filename_ncmp (info->filename, directory_name, dirlen) != 0
1407 	  || filename_cmp (info->filename + dirlen, file_name) != 0)
1408 	{
1409 	  size_t len;
1410 
1411 	  /* Don't free info->filename here.  objdump and other
1412 	     apps keep a copy of a previously returned file name
1413 	     pointer.  */
1414 	  len = strlen (file_name) + 1;
1415 	  info->filename = (char *) bfd_alloc (abfd, dirlen + len);
1416 	  if (info->filename == NULL)
1417 	    return FALSE;
1418 	  memcpy (info->filename, directory_name, dirlen);
1419 	  memcpy (info->filename + dirlen, file_name, len);
1420 	}
1421 
1422       *pfilename = info->filename;
1423     }
1424 
1425   if (indexentry->function_name != NULL)
1426     {
1427       char *s;
1428 
1429       /* This will typically be something like main:F(0,1), so we want
1430 	 to clobber the colon.  It's OK to change the name, since the
1431 	 string is in our own local storage anyhow.  */
1432       s = strchr (indexentry->function_name, ':');
1433       if (s != NULL)
1434 	*s = '\0';
1435 
1436       *pfnname = indexentry->function_name;
1437     }
1438 
1439   return TRUE;
1440 }
1441 
1442 long
1443 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED,
1444 				    asymbol **location ATTRIBUTE_UNUSED)
1445 {
1446   return 0;
1447 }
1448 
1449 void
1450 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED,
1451 			     void *afile ATTRIBUTE_UNUSED,
1452 			     asymbol *symbol ATTRIBUTE_UNUSED,
1453 			     bfd_print_symbol_type how ATTRIBUTE_UNUSED)
1454 {
1455 }
1456 
1457 void
1458 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
1459 				asymbol *sym ATTRIBUTE_UNUSED,
1460 				symbol_info *ret ATTRIBUTE_UNUSED)
1461 {
1462 }
1463 
1464 const char *
1465 _bfd_nosymbols_get_symbol_version_string (bfd *abfd,
1466 					  asymbol *symbol ATTRIBUTE_UNUSED,
1467 					  bfd_boolean base_p ATTRIBUTE_UNUSED,
1468 					  bfd_boolean *hidden ATTRIBUTE_UNUSED)
1469 {
1470   return (const char *) _bfd_ptr_bfd_null_error (abfd);
1471 }
1472 
1473 bfd_boolean
1474 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
1475 					const char *name ATTRIBUTE_UNUSED)
1476 {
1477   return FALSE;
1478 }
1479 
1480 alent *
1481 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED)
1482 {
1483   return (alent *) _bfd_ptr_bfd_null_error (abfd);
1484 }
1485 
1486 bfd_boolean
1487 _bfd_nosymbols_find_nearest_line
1488     (bfd *abfd,
1489      asymbol **symbols ATTRIBUTE_UNUSED,
1490      asection *section ATTRIBUTE_UNUSED,
1491      bfd_vma offset ATTRIBUTE_UNUSED,
1492      const char **filename_ptr ATTRIBUTE_UNUSED,
1493      const char **functionname_ptr ATTRIBUTE_UNUSED,
1494      unsigned int *line_ptr ATTRIBUTE_UNUSED,
1495      unsigned int *discriminator_ptr ATTRIBUTE_UNUSED)
1496 {
1497   return _bfd_bool_bfd_false_error (abfd);
1498 }
1499 
1500 bfd_boolean
1501 _bfd_nosymbols_find_line (bfd *abfd,
1502 			  asymbol **symbols ATTRIBUTE_UNUSED,
1503 			  asymbol *symbol ATTRIBUTE_UNUSED,
1504 			  const char **filename_ptr ATTRIBUTE_UNUSED,
1505 			  unsigned int *line_ptr ATTRIBUTE_UNUSED)
1506 {
1507   return _bfd_bool_bfd_false_error (abfd);
1508 }
1509 
1510 bfd_boolean
1511 _bfd_nosymbols_find_inliner_info
1512     (bfd *abfd,
1513      const char **filename_ptr ATTRIBUTE_UNUSED,
1514      const char **functionname_ptr ATTRIBUTE_UNUSED,
1515      unsigned int *line_ptr ATTRIBUTE_UNUSED)
1516 {
1517   return _bfd_bool_bfd_false_error (abfd);
1518 }
1519 
1520 asymbol *
1521 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd,
1522 				      void *ptr ATTRIBUTE_UNUSED,
1523 				      unsigned long sz ATTRIBUTE_UNUSED)
1524 {
1525   return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1526 }
1527 
1528 long
1529 _bfd_nosymbols_read_minisymbols (bfd *abfd,
1530 				 bfd_boolean dynamic ATTRIBUTE_UNUSED,
1531 				 void **minisymsp ATTRIBUTE_UNUSED,
1532 				 unsigned int *sizep ATTRIBUTE_UNUSED)
1533 {
1534   return _bfd_long_bfd_n1_error (abfd);
1535 }
1536 
1537 asymbol *
1538 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd,
1539 				     bfd_boolean dynamic ATTRIBUTE_UNUSED,
1540 				     const void *minisym ATTRIBUTE_UNUSED,
1541 				     asymbol *sym ATTRIBUTE_UNUSED)
1542 {
1543   return (asymbol *) _bfd_ptr_bfd_null_error (abfd);
1544 }
1545 
1546 long
1547 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd,
1548 				     long symcount ATTRIBUTE_UNUSED,
1549 				     asymbol **syms ATTRIBUTE_UNUSED,
1550 				     long dynsymcount ATTRIBUTE_UNUSED,
1551 				     asymbol **dynsyms ATTRIBUTE_UNUSED,
1552 				     asymbol **ret ATTRIBUTE_UNUSED)
1553 {
1554   return _bfd_long_bfd_n1_error (abfd);
1555 }
1556