1 /* Generic symbol-table support for the BFD library. 2 Copyright (C) 1990-2024 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Symbols 25 26 BFD tries to maintain as much symbol information as it can when 27 it moves information from file to file. BFD passes information 28 to applications though the <<asymbol>> structure. When the 29 application requests the symbol table, BFD reads the table in 30 the native form and translates parts of it into the internal 31 format. To maintain more than the information passed to 32 applications, some targets keep some information ``behind the 33 scenes'' in a structure only the particular back end knows 34 about. For example, the coff back end keeps the original 35 symbol table structure as well as the canonical structure when 36 a BFD is read in. On output, the coff back end can reconstruct 37 the output symbol table so that no information is lost, even 38 information unique to coff which BFD doesn't know or 39 understand. If a coff symbol table were read, but were written 40 through an a.out back end, all the coff specific information 41 would be lost. The symbol table of a BFD 42 is not necessarily read in until a canonicalize request is 43 made. Then the BFD back end fills in a table provided by the 44 application with pointers to the canonical information. To 45 output symbols, the application provides BFD with a table of 46 pointers to pointers to <<asymbol>>s. This allows applications 47 like the linker to output a symbol as it was read, since the ``behind 48 the scenes'' information will be still available. 49 @menu 50 @* Reading Symbols:: 51 @* Writing Symbols:: 52 @* Mini Symbols:: 53 @* typedef asymbol:: 54 @* symbol handling functions:: 55 @end menu 56 57 INODE 58 Reading Symbols, Writing Symbols, Symbols, Symbols 59 SUBSECTION 60 Reading symbols 61 62 There are two stages to reading a symbol table from a BFD: 63 allocating storage, and the actual reading process. This is an 64 excerpt from an application which reads the symbol table: 65 66 | long storage_needed; 67 | asymbol **symbol_table; 68 | long number_of_symbols; 69 | long i; 70 | 71 | storage_needed = bfd_get_symtab_upper_bound (abfd); 72 | 73 | if (storage_needed < 0) 74 | FAIL 75 | 76 | if (storage_needed == 0) 77 | return; 78 | 79 | symbol_table = xmalloc (storage_needed); 80 | ... 81 | number_of_symbols = 82 | bfd_canonicalize_symtab (abfd, symbol_table); 83 | 84 | if (number_of_symbols < 0) 85 | FAIL 86 | 87 | for (i = 0; i < number_of_symbols; i++) 88 | process_symbol (symbol_table[i]); 89 90 All storage for the symbols themselves is in an objalloc 91 connected to the BFD; it is freed when the BFD is closed. 92 93 INODE 94 Writing Symbols, Mini Symbols, Reading Symbols, Symbols 95 SUBSECTION 96 Writing symbols 97 98 Writing of a symbol table is automatic when a BFD open for 99 writing is closed. The application attaches a vector of 100 pointers to pointers to symbols to the BFD being written, and 101 fills in the symbol count. The close and cleanup code reads 102 through the table provided and performs all the necessary 103 operations. The BFD output code must always be provided with an 104 ``owned'' symbol: one which has come from another BFD, or one 105 which has been created using <<bfd_make_empty_symbol>>. Here is an 106 example showing the creation of a symbol table with only one element: 107 108 | #include "sysdep.h" 109 | #include "bfd.h" 110 | int main (void) 111 | { 112 | bfd *abfd; 113 | asymbol *ptrs[2]; 114 | asymbol *new; 115 | 116 | abfd = bfd_openw ("foo","a.out-sunos-big"); 117 | bfd_set_format (abfd, bfd_object); 118 | new = bfd_make_empty_symbol (abfd); 119 | new->name = "dummy_symbol"; 120 | new->section = bfd_make_section_old_way (abfd, ".text"); 121 | new->flags = BSF_GLOBAL; 122 | new->value = 0x12345; 123 | 124 | ptrs[0] = new; 125 | ptrs[1] = 0; 126 | 127 | bfd_set_symtab (abfd, ptrs, 1); 128 | bfd_close (abfd); 129 | return 0; 130 | } 131 | 132 | ./makesym 133 | nm foo 134 | 00012345 A dummy_symbol 135 136 Many formats cannot represent arbitrary symbol information; for 137 instance, the <<a.out>> object format does not allow an 138 arbitrary number of sections. A symbol pointing to a section 139 which is not one of <<.text>>, <<.data>> or <<.bss>> cannot 140 be described. 141 142 INODE 143 Mini Symbols, typedef asymbol, Writing Symbols, Symbols 144 SUBSECTION 145 Mini Symbols 146 147 Mini symbols provide read-only access to the symbol table. 148 They use less memory space, but require more time to access. 149 They can be useful for tools like nm or objdump, which may 150 have to handle symbol tables of extremely large executables. 151 152 The <<bfd_read_minisymbols>> function will read the symbols 153 into memory in an internal form. It will return a <<void *>> 154 pointer to a block of memory, a symbol count, and the size of 155 each symbol. The pointer is allocated using <<malloc>>, and 156 should be freed by the caller when it is no longer needed. 157 158 The function <<bfd_minisymbol_to_symbol>> will take a pointer 159 to a minisymbol, and a pointer to a structure returned by 160 <<bfd_make_empty_symbol>>, and return a <<asymbol>> structure. 161 The return value may or may not be the same as the value from 162 <<bfd_make_empty_symbol>> which was passed in. 163 164 */ 165 166 /* 167 DOCDD 168 INODE 169 typedef asymbol, symbol handling functions, Mini Symbols, Symbols 170 171 SUBSECTION 172 typedef asymbol 173 174 An <<asymbol>> has the form: 175 176 CODE_FRAGMENT 177 .typedef struct bfd_symbol 178 .{ 179 . {* A pointer to the BFD which owns the symbol. This information 180 . is necessary so that a back end can work out what additional 181 . information (invisible to the application writer) is carried 182 . with the symbol. 183 . 184 . This field is *almost* redundant, since you can use section->owner 185 . instead, except that some symbols point to the global sections 186 . bfd_{abs,com,und}_section. This could be fixed by making 187 . these globals be per-bfd (or per-target-flavor). FIXME. *} 188 . struct bfd *the_bfd; {* Use bfd_asymbol_bfd(sym) to access this field. *} 189 . 190 . {* The text of the symbol. The name is left alone, and not copied; the 191 . application may not alter it. *} 192 . const char *name; 193 . 194 . {* The value of the symbol. This really should be a union of a 195 . numeric value with a pointer, since some flags indicate that 196 . a pointer to another symbol is stored here. *} 197 . symvalue value; 198 . 199 . {* Attributes of a symbol. *} 200 .#define BSF_NO_FLAGS 0 201 . 202 . {* The symbol has local scope; <<static>> in <<C>>. The value 203 . is the offset into the section of the data. *} 204 .#define BSF_LOCAL (1 << 0) 205 . 206 . {* The symbol has global scope; initialized data in <<C>>. The 207 . value is the offset into the section of the data. *} 208 .#define BSF_GLOBAL (1 << 1) 209 . 210 . {* The symbol has global scope and is exported. The value is 211 . the offset into the section of the data. *} 212 .#define BSF_EXPORT BSF_GLOBAL {* No real difference. *} 213 . 214 . {* A normal C symbol would be one of: 215 . <<BSF_LOCAL>>, <<BSF_UNDEFINED>> or <<BSF_GLOBAL>>. *} 216 . 217 . {* The symbol is a debugging record. The value has an arbitrary 218 . meaning, unless BSF_DEBUGGING_RELOC is also set. *} 219 .#define BSF_DEBUGGING (1 << 2) 220 . 221 . {* The symbol denotes a function entry point. Used in ELF, 222 . perhaps others someday. *} 223 .#define BSF_FUNCTION (1 << 3) 224 . 225 . {* Used by the linker. *} 226 .#define BSF_KEEP (1 << 5) 227 . 228 . {* An ELF common symbol. *} 229 .#define BSF_ELF_COMMON (1 << 6) 230 . 231 . {* A weak global symbol, overridable without warnings by 232 . a regular global symbol of the same name. *} 233 .#define BSF_WEAK (1 << 7) 234 . 235 . {* This symbol was created to point to a section, e.g. ELF's 236 . STT_SECTION symbols. *} 237 .#define BSF_SECTION_SYM (1 << 8) 238 . 239 . {* The symbol used to be a common symbol, but now it is 240 . allocated. *} 241 .#define BSF_OLD_COMMON (1 << 9) 242 . 243 . {* In some files the type of a symbol sometimes alters its 244 . location in an output file - ie in coff a <<ISFCN>> symbol 245 . which is also <<C_EXT>> symbol appears where it was 246 . declared and not at the end of a section. This bit is set 247 . by the target BFD part to convey this information. *} 248 .#define BSF_NOT_AT_END (1 << 10) 249 . 250 . {* Signal that the symbol is the label of constructor section. *} 251 .#define BSF_CONSTRUCTOR (1 << 11) 252 . 253 . {* Signal that the symbol is a warning symbol. The name is a 254 . warning. The name of the next symbol is the one to warn about; 255 . if a reference is made to a symbol with the same name as the next 256 . symbol, a warning is issued by the linker. *} 257 .#define BSF_WARNING (1 << 12) 258 . 259 . {* Signal that the symbol is indirect. This symbol is an indirect 260 . pointer to the symbol with the same name as the next symbol. *} 261 .#define BSF_INDIRECT (1 << 13) 262 . 263 . {* BSF_FILE marks symbols that contain a file name. This is used 264 . for ELF STT_FILE symbols. *} 265 .#define BSF_FILE (1 << 14) 266 . 267 . {* Symbol is from dynamic linking information. *} 268 .#define BSF_DYNAMIC (1 << 15) 269 . 270 . {* The symbol denotes a data object. Used in ELF, and perhaps 271 . others someday. *} 272 .#define BSF_OBJECT (1 << 16) 273 . 274 . {* This symbol is a debugging symbol. The value is the offset 275 . into the section of the data. BSF_DEBUGGING should be set 276 . as well. *} 277 .#define BSF_DEBUGGING_RELOC (1 << 17) 278 . 279 . {* This symbol is thread local. Used in ELF. *} 280 .#define BSF_THREAD_LOCAL (1 << 18) 281 . 282 . {* This symbol represents a complex relocation expression, 283 . with the expression tree serialized in the symbol name. *} 284 .#define BSF_RELC (1 << 19) 285 . 286 . {* This symbol represents a signed complex relocation expression, 287 . with the expression tree serialized in the symbol name. *} 288 .#define BSF_SRELC (1 << 20) 289 . 290 . {* This symbol was created by bfd_get_synthetic_symtab. *} 291 .#define BSF_SYNTHETIC (1 << 21) 292 . 293 . {* This symbol is an indirect code object. Unrelated to BSF_INDIRECT. 294 . The dynamic linker will compute the value of this symbol by 295 . calling the function that it points to. BSF_FUNCTION must 296 . also be also set. *} 297 .#define BSF_GNU_INDIRECT_FUNCTION (1 << 22) 298 . {* This symbol is a globally unique data object. The dynamic linker 299 . will make sure that in the entire process there is just one symbol 300 . with this name and type in use. BSF_OBJECT must also be set. *} 301 .#define BSF_GNU_UNIQUE (1 << 23) 302 . 303 . {* This section symbol should be included in the symbol table. *} 304 .#define BSF_SECTION_SYM_USED (1 << 24) 305 . 306 . flagword flags; 307 . 308 . {* A pointer to the section to which this symbol is 309 . relative. This will always be non NULL, there are special 310 . sections for undefined and absolute symbols. *} 311 . struct bfd_section *section; 312 . 313 . {* Back end special data. *} 314 . union 315 . { 316 . void *p; 317 . bfd_vma i; 318 . } 319 . udata; 320 .} 321 .asymbol; 322 . 323 324 EXTERNAL 325 .typedef enum bfd_print_symbol 326 .{ 327 . bfd_print_symbol_name, 328 . bfd_print_symbol_more, 329 . bfd_print_symbol_all 330 .} bfd_print_symbol_type; 331 . 332 .{* Information about a symbol that nm needs. *} 333 . 334 .typedef struct _symbol_info 335 .{ 336 . symvalue value; 337 . char type; 338 . const char *name; {* Symbol name. *} 339 . unsigned char stab_type; {* Stab type. *} 340 . char stab_other; {* Stab other. *} 341 . short stab_desc; {* Stab desc. *} 342 . const char *stab_name; {* String for stab type. *} 343 .} symbol_info; 344 . 345 */ 346 347 #include "sysdep.h" 348 #include "bfd.h" 349 #include "libbfd.h" 350 #include "safe-ctype.h" 351 #include "bfdlink.h" 352 #include "aout/stab_gnu.h" 353 354 /* 355 DOCDD 356 INODE 357 symbol handling functions, , typedef asymbol, Symbols 358 SUBSECTION 359 Symbol handling functions 360 */ 361 362 /* 363 FUNCTION 364 bfd_get_symtab_upper_bound 365 366 DESCRIPTION 367 Return the number of bytes required to store a vector of pointers 368 to <<asymbols>> for all the symbols in the BFD @var{abfd}, 369 including a terminal NULL pointer. If there are no symbols in 370 the BFD, then return 0. If an error occurs, return -1. 371 372 .#define bfd_get_symtab_upper_bound(abfd) \ 373 . BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) 374 . 375 */ 376 377 /* 378 FUNCTION 379 bfd_is_local_label 380 381 SYNOPSIS 382 bool bfd_is_local_label (bfd *abfd, asymbol *sym); 383 384 DESCRIPTION 385 Return TRUE if the given symbol @var{sym} in the BFD @var{abfd} is 386 a compiler generated local label, else return FALSE. 387 */ 388 389 bool 390 bfd_is_local_label (bfd *abfd, asymbol *sym) 391 { 392 /* The BSF_SECTION_SYM check is needed for IA-64, where every label that 393 starts with '.' is local. This would accidentally catch section names 394 if we didn't reject them here. */ 395 if ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_FILE | BSF_SECTION_SYM)) != 0) 396 return false; 397 if (sym->name == NULL) 398 return false; 399 return bfd_is_local_label_name (abfd, sym->name); 400 } 401 402 /* 403 FUNCTION 404 bfd_is_local_label_name 405 406 SYNOPSIS 407 bool bfd_is_local_label_name (bfd *abfd, const char *name); 408 409 DESCRIPTION 410 Return TRUE if a symbol with the name @var{name} in the BFD 411 @var{abfd} is a compiler generated local label, else return 412 FALSE. This just checks whether the name has the form of a 413 local label. 414 415 .#define bfd_is_local_label_name(abfd, name) \ 416 . BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) 417 . 418 */ 419 420 /* 421 FUNCTION 422 bfd_is_target_special_symbol 423 424 SYNOPSIS 425 bool bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); 426 427 DESCRIPTION 428 Return TRUE iff a symbol @var{sym} in the BFD @var{abfd} is something 429 special to the particular target represented by the BFD. Such symbols 430 should normally not be mentioned to the user. 431 432 .#define bfd_is_target_special_symbol(abfd, sym) \ 433 . BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) 434 . 435 */ 436 437 /* 438 FUNCTION 439 bfd_canonicalize_symtab 440 441 DESCRIPTION 442 Read the symbols from the BFD @var{abfd}, and fills in 443 the vector @var{location} with pointers to the symbols and 444 a trailing NULL. 445 Return the actual number of symbol pointers, not 446 including the NULL. 447 448 .#define bfd_canonicalize_symtab(abfd, location) \ 449 . BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) 450 . 451 */ 452 453 /* 454 FUNCTION 455 bfd_set_symtab 456 457 SYNOPSIS 458 bool bfd_set_symtab 459 (bfd *abfd, asymbol **location, unsigned int count); 460 461 DESCRIPTION 462 Arrange that when the output BFD @var{abfd} is closed, 463 the table @var{location} of @var{count} pointers to symbols 464 will be written. 465 */ 466 467 bool 468 bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int symcount) 469 { 470 if (abfd->format != bfd_object || bfd_read_p (abfd)) 471 { 472 bfd_set_error (bfd_error_invalid_operation); 473 return false; 474 } 475 476 abfd->outsymbols = location; 477 abfd->symcount = symcount; 478 return true; 479 } 480 481 /* 482 FUNCTION 483 bfd_print_symbol_vandf 484 485 SYNOPSIS 486 void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); 487 488 DESCRIPTION 489 Print the value and flags of the @var{symbol} supplied to the 490 stream @var{file}. 491 */ 492 void 493 bfd_print_symbol_vandf (bfd *abfd, void *arg, asymbol *symbol) 494 { 495 FILE *file = (FILE *) arg; 496 497 flagword type = symbol->flags; 498 499 if (symbol->section != NULL) 500 bfd_fprintf_vma (abfd, file, symbol->value + symbol->section->vma); 501 else 502 bfd_fprintf_vma (abfd, file, symbol->value); 503 504 /* This presumes that a symbol can not be both BSF_DEBUGGING and 505 BSF_DYNAMIC, nor more than one of BSF_FUNCTION, BSF_FILE, and 506 BSF_OBJECT. */ 507 fprintf (file, " %c%c%c%c%c%c%c", 508 ((type & BSF_LOCAL) 509 ? (type & BSF_GLOBAL) ? '!' : 'l' 510 : (type & BSF_GLOBAL) ? 'g' 511 : (type & BSF_GNU_UNIQUE) ? 'u' : ' '), 512 (type & BSF_WEAK) ? 'w' : ' ', 513 (type & BSF_CONSTRUCTOR) ? 'C' : ' ', 514 (type & BSF_WARNING) ? 'W' : ' ', 515 (type & BSF_INDIRECT) ? 'I' : (type & BSF_GNU_INDIRECT_FUNCTION) ? 'i' : ' ', 516 (type & BSF_DEBUGGING) ? 'd' : (type & BSF_DYNAMIC) ? 'D' : ' ', 517 ((type & BSF_FUNCTION) 518 ? 'F' 519 : ((type & BSF_FILE) 520 ? 'f' 521 : ((type & BSF_OBJECT) ? 'O' : ' ')))); 522 } 523 524 /* 525 FUNCTION 526 bfd_make_empty_symbol 527 528 DESCRIPTION 529 Create a new <<asymbol>> structure for the BFD @var{abfd} 530 and return a pointer to it. 531 532 This routine is necessary because each back end has private 533 information surrounding the <<asymbol>>. Building your own 534 <<asymbol>> and pointing to it will not create the private 535 information, and will cause problems later on. 536 537 .#define bfd_make_empty_symbol(abfd) \ 538 . BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) 539 . 540 */ 541 542 /* 543 FUNCTION 544 _bfd_generic_make_empty_symbol 545 546 SYNOPSIS 547 asymbol *_bfd_generic_make_empty_symbol (bfd *); 548 549 DESCRIPTION 550 Create a new <<asymbol>> structure for the BFD @var{abfd} 551 and return a pointer to it. Used by core file routines, 552 binary back-end and anywhere else where no private info 553 is needed. 554 */ 555 556 asymbol * 557 _bfd_generic_make_empty_symbol (bfd *abfd) 558 { 559 size_t amt = sizeof (asymbol); 560 asymbol *new_symbol = (asymbol *) bfd_zalloc (abfd, amt); 561 if (new_symbol) 562 new_symbol->the_bfd = abfd; 563 return new_symbol; 564 } 565 566 /* 567 FUNCTION 568 bfd_make_debug_symbol 569 570 DESCRIPTION 571 Create a new <<asymbol>> structure for the BFD @var{abfd}, 572 to be used as a debugging symbol. 573 574 .#define bfd_make_debug_symbol(abfd) \ 575 . BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd)) 576 . 577 */ 578 579 struct section_to_type 580 { 581 const char *section; 582 char type; 583 }; 584 585 /* Map special section names to POSIX/BSD single-character symbol types. 586 This table is probably incomplete. It is sorted for convenience of 587 adding entries. Since it is so short, a linear search is used. */ 588 static const struct section_to_type stt[] = 589 { 590 {".drectve", 'i'}, /* MSVC's .drective section */ 591 {".edata", 'e'}, /* MSVC's .edata (export) section */ 592 {".idata", 'i'}, /* MSVC's .idata (import) section */ 593 {".pdata", 'p'}, /* MSVC's .pdata (stack unwind) section */ 594 {0, 0} 595 }; 596 597 /* Return the single-character symbol type corresponding to 598 section S, or '?' for an unknown COFF section. 599 600 Check for leading strings which match, followed by a number, '.', 601 or '$' so .idata5 matches the .idata entry. */ 602 603 static char 604 coff_section_type (const char *s) 605 { 606 const struct section_to_type *t; 607 608 for (t = &stt[0]; t->section; t++) 609 { 610 size_t len = strlen (t->section); 611 if (strncmp (s, t->section, len) == 0 612 && memchr (".$0123456789", s[len], 13) != 0) 613 return t->type; 614 } 615 616 return '?'; 617 } 618 619 /* Return the single-character symbol type corresponding to section 620 SECTION, or '?' for an unknown section. This uses section flags to 621 identify sections. 622 623 FIXME These types are unhandled: e, i, p. If we handled these also, 624 we could perhaps obsolete coff_section_type. */ 625 626 static char 627 decode_section_type (const struct bfd_section *section) 628 { 629 if (section->flags & SEC_CODE) 630 return 't'; 631 if (section->flags & SEC_DATA) 632 { 633 if (section->flags & SEC_READONLY) 634 return 'r'; 635 else if (section->flags & SEC_SMALL_DATA) 636 return 'g'; 637 else 638 return 'd'; 639 } 640 if ((section->flags & SEC_HAS_CONTENTS) == 0) 641 { 642 if (section->flags & SEC_SMALL_DATA) 643 return 's'; 644 else 645 return 'b'; 646 } 647 if (section->flags & SEC_DEBUGGING) 648 return 'N'; 649 if ((section->flags & SEC_HAS_CONTENTS) && (section->flags & SEC_READONLY)) 650 return 'n'; 651 652 return '?'; 653 } 654 655 /* 656 FUNCTION 657 bfd_decode_symclass 658 659 SYNOPSIS 660 int bfd_decode_symclass (asymbol *symbol); 661 662 DESCRIPTION 663 Return a character corresponding to the symbol 664 class of @var{symbol}, or '?' for an unknown class. 665 */ 666 int 667 bfd_decode_symclass (asymbol *symbol) 668 { 669 char c; 670 671 /* Paranoia... */ 672 if (symbol == NULL || symbol->section == NULL) 673 return '?'; 674 675 if (symbol->section && bfd_is_com_section (symbol->section)) 676 { 677 if (symbol->section->flags & SEC_SMALL_DATA) 678 return 'c'; 679 else 680 return 'C'; 681 } 682 if (bfd_is_und_section (symbol->section)) 683 { 684 if (symbol->flags & BSF_WEAK) 685 { 686 /* If weak, determine if it's specifically an object 687 or non-object weak. */ 688 if (symbol->flags & BSF_OBJECT) 689 return 'v'; 690 else 691 return 'w'; 692 } 693 else 694 return 'U'; 695 } 696 if (bfd_is_ind_section (symbol->section)) 697 return 'I'; 698 if (symbol->flags & BSF_GNU_INDIRECT_FUNCTION) 699 return 'i'; 700 if (symbol->flags & BSF_WEAK) 701 { 702 /* If weak, determine if it's specifically an object 703 or non-object weak. */ 704 if (symbol->flags & BSF_OBJECT) 705 return 'V'; 706 else 707 return 'W'; 708 } 709 if (symbol->flags & BSF_GNU_UNIQUE) 710 return 'u'; 711 if (!(symbol->flags & (BSF_GLOBAL | BSF_LOCAL))) 712 return '?'; 713 714 if (bfd_is_abs_section (symbol->section)) 715 c = 'a'; 716 else if (symbol->section) 717 { 718 c = coff_section_type (symbol->section->name); 719 if (c == '?') 720 c = decode_section_type (symbol->section); 721 } 722 else 723 return '?'; 724 if (symbol->flags & BSF_GLOBAL) 725 c = TOUPPER (c); 726 return c; 727 728 /* We don't have to handle these cases just yet, but we will soon: 729 N_SETV: 'v'; 730 N_SETA: 'l'; 731 N_SETT: 'x'; 732 N_SETD: 'z'; 733 N_SETB: 's'; 734 N_INDR: 'i'; 735 */ 736 } 737 738 /* 739 FUNCTION 740 bfd_is_undefined_symclass 741 742 SYNOPSIS 743 bool bfd_is_undefined_symclass (int symclass); 744 745 DESCRIPTION 746 Returns non-zero if the class symbol returned by 747 bfd_decode_symclass represents an undefined symbol. 748 Returns zero otherwise. 749 */ 750 751 bool 752 bfd_is_undefined_symclass (int symclass) 753 { 754 return symclass == 'U' || symclass == 'w' || symclass == 'v'; 755 } 756 757 /* 758 FUNCTION 759 bfd_symbol_info 760 761 SYNOPSIS 762 void bfd_symbol_info (asymbol *symbol, symbol_info *ret); 763 764 DESCRIPTION 765 Fill in the basic info about symbol that nm needs. 766 Additional info may be added by the back-ends after 767 calling this function. 768 */ 769 770 void 771 bfd_symbol_info (asymbol *symbol, symbol_info *ret) 772 { 773 ret->type = bfd_decode_symclass (symbol); 774 775 if (bfd_is_undefined_symclass (ret->type)) 776 ret->value = 0; 777 else 778 ret->value = symbol->value + symbol->section->vma; 779 780 ret->name = symbol->name; 781 } 782 783 /* 784 FUNCTION 785 bfd_copy_private_symbol_data 786 787 SYNOPSIS 788 bool bfd_copy_private_symbol_data 789 (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); 790 791 DESCRIPTION 792 Copy private symbol information from @var{isym} in the BFD 793 @var{ibfd} to the symbol @var{osym} in the BFD @var{obfd}. 794 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 795 returns are: 796 797 o <<bfd_error_no_memory>> - 798 Not enough memory exists to create private data for @var{osec}. 799 800 .#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ 801 . BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ 802 . (ibfd, isymbol, obfd, osymbol)) 803 . 804 */ 805 806 /* The generic version of the function which returns mini symbols. 807 This is used when the backend does not provide a more efficient 808 version. It just uses BFD asymbol structures as mini symbols. */ 809 810 long 811 _bfd_generic_read_minisymbols (bfd *abfd, 812 bool dynamic, 813 void **minisymsp, 814 unsigned int *sizep) 815 { 816 long storage; 817 asymbol **syms = NULL; 818 long symcount; 819 820 if (dynamic) 821 storage = bfd_get_dynamic_symtab_upper_bound (abfd); 822 else 823 storage = bfd_get_symtab_upper_bound (abfd); 824 if (storage < 0) 825 goto error_return; 826 if (storage == 0) 827 return 0; 828 829 syms = (asymbol **) bfd_malloc (storage); 830 if (syms == NULL) 831 goto error_return; 832 833 if (dynamic) 834 symcount = bfd_canonicalize_dynamic_symtab (abfd, syms); 835 else 836 symcount = bfd_canonicalize_symtab (abfd, syms); 837 if (symcount < 0) 838 goto error_return; 839 840 if (symcount == 0) 841 /* We return 0 above when storage is 0. Exit in the same state 842 here, so as to not complicate callers with having to deal with 843 freeing memory for zero symcount. */ 844 free (syms); 845 else 846 { 847 *minisymsp = syms; 848 *sizep = sizeof (asymbol *); 849 } 850 return symcount; 851 852 error_return: 853 bfd_set_error (bfd_error_no_symbols); 854 free (syms); 855 return -1; 856 } 857 858 /* The generic version of the function which converts a minisymbol to 859 an asymbol. We don't worry about the sym argument we are passed; 860 we just return the asymbol the minisymbol points to. */ 861 862 asymbol * 863 _bfd_generic_minisymbol_to_symbol (bfd *abfd ATTRIBUTE_UNUSED, 864 bool dynamic ATTRIBUTE_UNUSED, 865 const void *minisym, 866 asymbol *sym ATTRIBUTE_UNUSED) 867 { 868 return *(asymbol **) minisym; 869 } 870 871 /* Look through stabs debugging information in .stab and .stabstr 872 sections to find the source file and line closest to a desired 873 location. This is used by COFF and ELF targets. It sets *pfound 874 to TRUE if it finds some information. The *pinfo field is used to 875 pass cached information in and out of this routine; this first time 876 the routine is called for a BFD, *pinfo should be NULL. The value 877 placed in *pinfo should be saved with the BFD, and passed back each 878 time this function is called. */ 879 880 /* We use a cache by default. */ 881 882 #define ENABLE_CACHING 883 884 /* We keep an array of indexentry structures to record where in the 885 stabs section we should look to find line number information for a 886 particular address. */ 887 888 struct indexentry 889 { 890 bfd_vma val; 891 bfd_byte *stab; 892 bfd_byte *str; 893 char *directory_name; 894 char *file_name; 895 char *function_name; 896 int idx; 897 }; 898 899 /* Compare two indexentry structures. This is called via qsort. */ 900 901 static int 902 cmpindexentry (const void *a, const void *b) 903 { 904 const struct indexentry *contestantA = (const struct indexentry *) a; 905 const struct indexentry *contestantB = (const struct indexentry *) b; 906 907 if (contestantA->val < contestantB->val) 908 return -1; 909 if (contestantA->val > contestantB->val) 910 return 1; 911 return contestantA->idx - contestantB->idx; 912 } 913 914 /* A pointer to this structure is stored in *pinfo. */ 915 916 struct stab_find_info 917 { 918 /* The .stab section. */ 919 asection *stabsec; 920 /* The .stabstr section. */ 921 asection *strsec; 922 /* The contents of the .stab section. */ 923 bfd_byte *stabs; 924 /* The contents of the .stabstr section. */ 925 bfd_byte *strs; 926 927 /* A table that indexes stabs by memory address. */ 928 struct indexentry *indextable; 929 /* The number of entries in indextable. */ 930 int indextablesize; 931 932 #ifdef ENABLE_CACHING 933 /* Cached values to restart quickly. */ 934 struct indexentry *cached_indexentry; 935 bfd_vma cached_offset; 936 bfd_byte *cached_stab; 937 char *cached_file_name; 938 #endif 939 940 /* Saved ptr to malloc'ed filename. */ 941 char *filename; 942 }; 943 944 bool 945 _bfd_stab_section_find_nearest_line (bfd *abfd, 946 asymbol **symbols, 947 asection *section, 948 bfd_vma offset, 949 bool *pfound, 950 const char **pfilename, 951 const char **pfnname, 952 unsigned int *pline, 953 void **pinfo) 954 { 955 struct stab_find_info *info; 956 bfd_size_type stabsize, strsize; 957 bfd_byte *stab, *str; 958 bfd_byte *nul_fun, *nul_str; 959 bfd_size_type stroff; 960 struct indexentry *indexentry; 961 char *file_name; 962 char *directory_name; 963 bool saw_line, saw_func; 964 965 *pfound = false; 966 *pfilename = bfd_get_filename (abfd); 967 *pfnname = NULL; 968 *pline = 0; 969 970 /* Stabs entries use a 12 byte format: 971 4 byte string table index 972 1 byte stab type 973 1 byte stab other field 974 2 byte stab desc field 975 4 byte stab value 976 FIXME: This will have to change for a 64 bit object format. 977 978 The stabs symbols are divided into compilation units. For the 979 first entry in each unit, the type of 0, the value is the length 980 of the string table for this unit, and the desc field is the 981 number of stabs symbols for this unit. */ 982 983 #define STRDXOFF (0) 984 #define TYPEOFF (4) 985 #define OTHEROFF (5) 986 #define DESCOFF (6) 987 #define VALOFF (8) 988 #define STABSIZE (12) 989 990 info = (struct stab_find_info *) *pinfo; 991 if (info != NULL) 992 { 993 if (info->stabsec == NULL || info->strsec == NULL) 994 { 995 /* No usable stabs debugging information. */ 996 return true; 997 } 998 999 stabsize = (info->stabsec->rawsize 1000 ? info->stabsec->rawsize 1001 : info->stabsec->size); 1002 strsize = (info->strsec->rawsize 1003 ? info->strsec->rawsize 1004 : info->strsec->size); 1005 } 1006 else 1007 { 1008 long reloc_size, reloc_count; 1009 arelent **reloc_vector; 1010 int i; 1011 char *function_name; 1012 bfd_size_type amt = sizeof *info; 1013 1014 info = (struct stab_find_info *) bfd_zalloc (abfd, amt); 1015 if (info == NULL) 1016 return false; 1017 *pinfo = info; 1018 1019 /* FIXME: When using the linker --split-by-file or 1020 --split-by-reloc options, it is possible for the .stab and 1021 .stabstr sections to be split. We should handle that. */ 1022 1023 info->stabsec = bfd_get_section_by_name (abfd, ".stab"); 1024 info->strsec = bfd_get_section_by_name (abfd, ".stabstr"); 1025 1026 if (info->stabsec == NULL || info->strsec == NULL) 1027 { 1028 /* Try SOM section names. */ 1029 info->stabsec = bfd_get_section_by_name (abfd, "$GDB_SYMBOLS$"); 1030 info->strsec = bfd_get_section_by_name (abfd, "$GDB_STRINGS$"); 1031 1032 if (info->stabsec == NULL || info->strsec == NULL) 1033 return true; 1034 } 1035 1036 if ((info->stabsec->flags & SEC_HAS_CONTENTS) == 0 1037 || (info->strsec->flags & SEC_HAS_CONTENTS) == 0) 1038 goto out; 1039 1040 stabsize = (info->stabsec->rawsize 1041 ? info->stabsec->rawsize 1042 : info->stabsec->size); 1043 stabsize = (stabsize / STABSIZE) * STABSIZE; 1044 strsize = (info->strsec->rawsize 1045 ? info->strsec->rawsize 1046 : info->strsec->size); 1047 1048 if (stabsize == 0 || strsize == 0) 1049 goto out; 1050 1051 if (!bfd_malloc_and_get_section (abfd, info->stabsec, &info->stabs)) 1052 goto out; 1053 if (!bfd_malloc_and_get_section (abfd, info->strsec, &info->strs)) 1054 goto out1; 1055 1056 /* Stab strings ought to be nul terminated. Ensure the last one 1057 is, to prevent running off the end of the buffer. */ 1058 info->strs[strsize - 1] = 0; 1059 1060 /* If this is a relocatable object file, we have to relocate 1061 the entries in .stab. This should always be simple 32 bit 1062 relocations against symbols defined in this object file, so 1063 this should be no big deal. */ 1064 reloc_size = bfd_get_reloc_upper_bound (abfd, info->stabsec); 1065 if (reloc_size < 0) 1066 goto out2; 1067 reloc_vector = (arelent **) bfd_malloc (reloc_size); 1068 if (reloc_vector == NULL && reloc_size != 0) 1069 goto out2; 1070 reloc_count = bfd_canonicalize_reloc (abfd, info->stabsec, reloc_vector, 1071 symbols); 1072 if (reloc_count < 0) 1073 { 1074 out3: 1075 free (reloc_vector); 1076 out2: 1077 free (info->strs); 1078 info->strs = NULL; 1079 out1: 1080 free (info->stabs); 1081 info->stabs = NULL; 1082 out: 1083 info->stabsec = NULL; 1084 return false; 1085 } 1086 if (reloc_count > 0) 1087 { 1088 arelent **pr; 1089 1090 for (pr = reloc_vector; *pr != NULL; pr++) 1091 { 1092 arelent *r; 1093 unsigned long val; 1094 asymbol *sym; 1095 bfd_size_type octets; 1096 1097 r = *pr; 1098 /* Ignore R_*_NONE relocs. */ 1099 if (r->howto->dst_mask == 0) 1100 continue; 1101 1102 octets = r->address * bfd_octets_per_byte (abfd, NULL); 1103 if (r->howto->rightshift != 0 1104 || bfd_get_reloc_size (r->howto) != 4 1105 || r->howto->bitsize != 32 1106 || r->howto->pc_relative 1107 || r->howto->bitpos != 0 1108 || r->howto->dst_mask != 0xffffffff 1109 || octets > stabsize - 4) 1110 { 1111 _bfd_error_handler 1112 (_("unsupported .stab relocation")); 1113 bfd_set_error (bfd_error_invalid_operation); 1114 goto out3; 1115 } 1116 1117 val = bfd_get_32 (abfd, info->stabs + octets); 1118 val &= r->howto->src_mask; 1119 sym = *r->sym_ptr_ptr; 1120 val += sym->value + sym->section->vma + r->addend; 1121 bfd_put_32 (abfd, (bfd_vma) val, info->stabs + octets); 1122 } 1123 } 1124 1125 free (reloc_vector); 1126 1127 /* First time through this function, build a table matching 1128 function VM addresses to stabs, then sort based on starting 1129 VM address. Do this in two passes: once to count how many 1130 table entries we'll need, and a second to actually build the 1131 table. */ 1132 1133 info->indextablesize = 0; 1134 nul_fun = NULL; 1135 for (stab = info->stabs; stab < info->stabs + stabsize; stab += STABSIZE) 1136 { 1137 if (stab[TYPEOFF] == (bfd_byte) N_SO) 1138 { 1139 /* if we did not see a function def, leave space for one. */ 1140 if (nul_fun != NULL) 1141 ++info->indextablesize; 1142 1143 /* N_SO with null name indicates EOF */ 1144 if (bfd_get_32 (abfd, stab + STRDXOFF) == 0) 1145 nul_fun = NULL; 1146 else 1147 { 1148 nul_fun = stab; 1149 1150 /* two N_SO's in a row is a filename and directory. Skip */ 1151 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize 1152 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) 1153 stab += STABSIZE; 1154 } 1155 } 1156 else if (stab[TYPEOFF] == (bfd_byte) N_FUN 1157 && bfd_get_32 (abfd, stab + STRDXOFF) != 0) 1158 { 1159 nul_fun = NULL; 1160 ++info->indextablesize; 1161 } 1162 } 1163 1164 if (nul_fun != NULL) 1165 ++info->indextablesize; 1166 1167 if (info->indextablesize == 0) 1168 { 1169 free (info->strs); 1170 info->strs = NULL; 1171 free (info->stabs); 1172 info->stabs = NULL; 1173 info->stabsec = NULL; 1174 return true; 1175 } 1176 ++info->indextablesize; 1177 1178 amt = info->indextablesize; 1179 amt *= sizeof (struct indexentry); 1180 info->indextable = (struct indexentry *) bfd_malloc (amt); 1181 if (info->indextable == NULL) 1182 goto out3; 1183 1184 file_name = NULL; 1185 directory_name = NULL; 1186 nul_fun = NULL; 1187 stroff = 0; 1188 1189 for (i = 0, stab = info->stabs, nul_str = str = info->strs; 1190 i < info->indextablesize && stab < info->stabs + stabsize; 1191 stab += STABSIZE) 1192 { 1193 switch (stab[TYPEOFF]) 1194 { 1195 case 0: 1196 /* This is the first entry in a compilation unit. */ 1197 if ((bfd_size_type) ((info->strs + strsize) - str) < stroff) 1198 break; 1199 str += stroff; 1200 stroff = bfd_get_32 (abfd, stab + VALOFF); 1201 break; 1202 1203 case N_SO: 1204 /* The main file name. */ 1205 1206 /* The following code creates a new indextable entry with 1207 a NULL function name if there were no N_FUNs in a file. 1208 Note that a N_SO without a file name is an EOF and 1209 there could be 2 N_SO following it with the new filename 1210 and directory. */ 1211 if (nul_fun != NULL) 1212 { 1213 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF); 1214 info->indextable[i].stab = nul_fun; 1215 info->indextable[i].str = nul_str; 1216 info->indextable[i].directory_name = directory_name; 1217 info->indextable[i].file_name = file_name; 1218 info->indextable[i].function_name = NULL; 1219 info->indextable[i].idx = i; 1220 ++i; 1221 } 1222 1223 directory_name = NULL; 1224 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1225 if (file_name == (char *) str) 1226 { 1227 file_name = NULL; 1228 nul_fun = NULL; 1229 } 1230 else 1231 { 1232 nul_fun = stab; 1233 nul_str = str; 1234 if (file_name >= (char *) info->strs + strsize 1235 || file_name < (char *) str) 1236 file_name = NULL; 1237 if (stab + STABSIZE + TYPEOFF < info->stabs + stabsize 1238 && *(stab + STABSIZE + TYPEOFF) == (bfd_byte) N_SO) 1239 { 1240 /* Two consecutive N_SOs are a directory and a 1241 file name. */ 1242 stab += STABSIZE; 1243 directory_name = file_name; 1244 file_name = ((char *) str 1245 + bfd_get_32 (abfd, stab + STRDXOFF)); 1246 if (file_name >= (char *) info->strs + strsize 1247 || file_name < (char *) str) 1248 file_name = NULL; 1249 } 1250 } 1251 break; 1252 1253 case N_SOL: 1254 /* The name of an include file. */ 1255 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1256 /* PR 17512: file: 0c680a1f. */ 1257 /* PR 17512: file: 5da8aec4. */ 1258 if (file_name >= (char *) info->strs + strsize 1259 || file_name < (char *) str) 1260 file_name = NULL; 1261 break; 1262 1263 case N_FUN: 1264 /* A function name. */ 1265 function_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1266 if (function_name == (char *) str) 1267 continue; 1268 if (function_name >= (char *) info->strs + strsize 1269 || function_name < (char *) str) 1270 function_name = NULL; 1271 1272 nul_fun = NULL; 1273 info->indextable[i].val = bfd_get_32 (abfd, stab + VALOFF); 1274 info->indextable[i].stab = stab; 1275 info->indextable[i].str = str; 1276 info->indextable[i].directory_name = directory_name; 1277 info->indextable[i].file_name = file_name; 1278 info->indextable[i].function_name = function_name; 1279 info->indextable[i].idx = i; 1280 ++i; 1281 break; 1282 } 1283 } 1284 1285 if (nul_fun != NULL) 1286 { 1287 info->indextable[i].val = bfd_get_32 (abfd, nul_fun + VALOFF); 1288 info->indextable[i].stab = nul_fun; 1289 info->indextable[i].str = nul_str; 1290 info->indextable[i].directory_name = directory_name; 1291 info->indextable[i].file_name = file_name; 1292 info->indextable[i].function_name = NULL; 1293 info->indextable[i].idx = i; 1294 ++i; 1295 } 1296 1297 info->indextable[i].val = (bfd_vma) -1; 1298 info->indextable[i].stab = info->stabs + stabsize; 1299 info->indextable[i].str = str; 1300 info->indextable[i].directory_name = NULL; 1301 info->indextable[i].file_name = NULL; 1302 info->indextable[i].function_name = NULL; 1303 info->indextable[i].idx = i; 1304 ++i; 1305 1306 info->indextablesize = i; 1307 qsort (info->indextable, (size_t) i, sizeof (struct indexentry), 1308 cmpindexentry); 1309 } 1310 1311 /* We are passed a section relative offset. The offsets in the 1312 stabs information are absolute. */ 1313 offset += bfd_section_vma (section); 1314 1315 #ifdef ENABLE_CACHING 1316 if (info->cached_indexentry != NULL 1317 && offset >= info->cached_offset 1318 && offset < (info->cached_indexentry + 1)->val) 1319 { 1320 stab = info->cached_stab; 1321 indexentry = info->cached_indexentry; 1322 file_name = info->cached_file_name; 1323 } 1324 else 1325 #endif 1326 { 1327 long low, high; 1328 long mid = -1; 1329 1330 /* Cache non-existent or invalid. Do binary search on 1331 indextable. */ 1332 indexentry = NULL; 1333 1334 low = 0; 1335 high = info->indextablesize - 1; 1336 while (low != high) 1337 { 1338 mid = (high + low) / 2; 1339 if (offset >= info->indextable[mid].val 1340 && offset < info->indextable[mid + 1].val) 1341 { 1342 indexentry = &info->indextable[mid]; 1343 break; 1344 } 1345 1346 if (info->indextable[mid].val > offset) 1347 high = mid; 1348 else 1349 low = mid + 1; 1350 } 1351 1352 if (indexentry == NULL) 1353 return true; 1354 1355 stab = indexentry->stab + STABSIZE; 1356 file_name = indexentry->file_name; 1357 } 1358 1359 directory_name = indexentry->directory_name; 1360 str = indexentry->str; 1361 1362 saw_line = false; 1363 saw_func = false; 1364 for (; stab < (indexentry+1)->stab; stab += STABSIZE) 1365 { 1366 bool done; 1367 bfd_vma val; 1368 1369 done = false; 1370 1371 switch (stab[TYPEOFF]) 1372 { 1373 case N_SOL: 1374 /* The name of an include file. */ 1375 val = bfd_get_32 (abfd, stab + VALOFF); 1376 if (val <= offset) 1377 { 1378 file_name = (char *) str + bfd_get_32 (abfd, stab + STRDXOFF); 1379 if (file_name >= (char *) info->strs + strsize 1380 || file_name < (char *) str) 1381 file_name = NULL; 1382 *pline = 0; 1383 } 1384 break; 1385 1386 case N_SLINE: 1387 case N_DSLINE: 1388 case N_BSLINE: 1389 /* A line number. If the function was specified, then the value 1390 is relative to the start of the function. Otherwise, the 1391 value is an absolute address. */ 1392 val = ((indexentry->function_name ? indexentry->val : 0) 1393 + bfd_get_32 (abfd, stab + VALOFF)); 1394 /* If this line starts before our desired offset, or if it's 1395 the first line we've been able to find, use it. The 1396 !saw_line check works around a bug in GCC 2.95.3, which emits 1397 the first N_SLINE late. */ 1398 if (!saw_line || val <= offset) 1399 { 1400 *pline = bfd_get_16 (abfd, stab + DESCOFF); 1401 1402 #ifdef ENABLE_CACHING 1403 info->cached_stab = stab; 1404 info->cached_offset = val; 1405 info->cached_file_name = file_name; 1406 info->cached_indexentry = indexentry; 1407 #endif 1408 } 1409 if (val > offset) 1410 done = true; 1411 saw_line = true; 1412 break; 1413 1414 case N_FUN: 1415 case N_SO: 1416 if (saw_func || saw_line) 1417 done = true; 1418 saw_func = true; 1419 break; 1420 } 1421 1422 if (done) 1423 break; 1424 } 1425 1426 *pfound = true; 1427 1428 if (file_name == NULL || IS_ABSOLUTE_PATH (file_name) 1429 || directory_name == NULL) 1430 *pfilename = file_name; 1431 else 1432 { 1433 size_t dirlen; 1434 1435 dirlen = strlen (directory_name); 1436 if (info->filename == NULL 1437 || filename_ncmp (info->filename, directory_name, dirlen) != 0 1438 || filename_cmp (info->filename + dirlen, file_name) != 0) 1439 { 1440 size_t len; 1441 1442 /* Don't free info->filename here. objdump and other 1443 apps keep a copy of a previously returned file name 1444 pointer. */ 1445 len = strlen (file_name) + 1; 1446 info->filename = (char *) bfd_alloc (abfd, dirlen + len); 1447 if (info->filename == NULL) 1448 return false; 1449 memcpy (info->filename, directory_name, dirlen); 1450 memcpy (info->filename + dirlen, file_name, len); 1451 } 1452 1453 *pfilename = info->filename; 1454 } 1455 1456 if (indexentry->function_name != NULL) 1457 { 1458 char *s; 1459 1460 /* This will typically be something like main:F(0,1), so we want 1461 to clobber the colon. It's OK to change the name, since the 1462 string is in our own local storage anyhow. */ 1463 s = strchr (indexentry->function_name, ':'); 1464 if (s != NULL) 1465 *s = '\0'; 1466 1467 *pfnname = indexentry->function_name; 1468 } 1469 1470 return true; 1471 } 1472 1473 void 1474 _bfd_stab_cleanup (bfd *abfd ATTRIBUTE_UNUSED, void **pinfo) 1475 { 1476 struct stab_find_info *info = (struct stab_find_info *) *pinfo; 1477 if (info == NULL) 1478 return; 1479 1480 free (info->indextable); 1481 free (info->strs); 1482 free (info->stabs); 1483 } 1484 1485 long 1486 _bfd_nosymbols_canonicalize_symtab (bfd *abfd ATTRIBUTE_UNUSED, 1487 asymbol **location ATTRIBUTE_UNUSED) 1488 { 1489 return 0; 1490 } 1491 1492 void 1493 _bfd_nosymbols_print_symbol (bfd *abfd ATTRIBUTE_UNUSED, 1494 void *afile ATTRIBUTE_UNUSED, 1495 asymbol *symbol ATTRIBUTE_UNUSED, 1496 bfd_print_symbol_type how ATTRIBUTE_UNUSED) 1497 { 1498 } 1499 1500 void 1501 _bfd_nosymbols_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED, 1502 asymbol *sym ATTRIBUTE_UNUSED, 1503 symbol_info *ret ATTRIBUTE_UNUSED) 1504 { 1505 } 1506 1507 const char * 1508 _bfd_nosymbols_get_symbol_version_string (bfd *abfd, 1509 asymbol *symbol ATTRIBUTE_UNUSED, 1510 bool base_p ATTRIBUTE_UNUSED, 1511 bool *hidden ATTRIBUTE_UNUSED) 1512 { 1513 return (const char *) _bfd_ptr_bfd_null_error (abfd); 1514 } 1515 1516 bool 1517 _bfd_nosymbols_bfd_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED, 1518 const char *name ATTRIBUTE_UNUSED) 1519 { 1520 return false; 1521 } 1522 1523 alent * 1524 _bfd_nosymbols_get_lineno (bfd *abfd, asymbol *sym ATTRIBUTE_UNUSED) 1525 { 1526 return (alent *) _bfd_ptr_bfd_null_error (abfd); 1527 } 1528 1529 bool 1530 _bfd_nosymbols_find_nearest_line 1531 (bfd *abfd, 1532 asymbol **symbols ATTRIBUTE_UNUSED, 1533 asection *section ATTRIBUTE_UNUSED, 1534 bfd_vma offset ATTRIBUTE_UNUSED, 1535 const char **filename_ptr ATTRIBUTE_UNUSED, 1536 const char **functionname_ptr ATTRIBUTE_UNUSED, 1537 unsigned int *line_ptr ATTRIBUTE_UNUSED, 1538 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED) 1539 { 1540 return _bfd_bool_bfd_false_error (abfd); 1541 } 1542 1543 bool 1544 _bfd_nosymbols_find_nearest_line_with_alt 1545 (bfd *abfd, 1546 const char *alt_filename ATTRIBUTE_UNUSED, 1547 asymbol **symbols ATTRIBUTE_UNUSED, 1548 asection *section ATTRIBUTE_UNUSED, 1549 bfd_vma offset ATTRIBUTE_UNUSED, 1550 const char **filename_ptr ATTRIBUTE_UNUSED, 1551 const char **functionname_ptr ATTRIBUTE_UNUSED, 1552 unsigned int *line_ptr ATTRIBUTE_UNUSED, 1553 unsigned int *discriminator_ptr ATTRIBUTE_UNUSED) 1554 { 1555 return _bfd_bool_bfd_false_error (abfd); 1556 } 1557 1558 bool 1559 _bfd_nosymbols_find_line (bfd *abfd, 1560 asymbol **symbols ATTRIBUTE_UNUSED, 1561 asymbol *symbol ATTRIBUTE_UNUSED, 1562 const char **filename_ptr ATTRIBUTE_UNUSED, 1563 unsigned int *line_ptr ATTRIBUTE_UNUSED) 1564 { 1565 return _bfd_bool_bfd_false_error (abfd); 1566 } 1567 1568 bool 1569 _bfd_nosymbols_find_inliner_info 1570 (bfd *abfd, 1571 const char **filename_ptr ATTRIBUTE_UNUSED, 1572 const char **functionname_ptr ATTRIBUTE_UNUSED, 1573 unsigned int *line_ptr ATTRIBUTE_UNUSED) 1574 { 1575 return _bfd_bool_bfd_false_error (abfd); 1576 } 1577 1578 asymbol * 1579 _bfd_nosymbols_bfd_make_debug_symbol (bfd *abfd) 1580 { 1581 return (asymbol *) _bfd_ptr_bfd_null_error (abfd); 1582 } 1583 1584 long 1585 _bfd_nosymbols_read_minisymbols (bfd *abfd, 1586 bool dynamic ATTRIBUTE_UNUSED, 1587 void **minisymsp ATTRIBUTE_UNUSED, 1588 unsigned int *sizep ATTRIBUTE_UNUSED) 1589 { 1590 return _bfd_long_bfd_n1_error (abfd); 1591 } 1592 1593 asymbol * 1594 _bfd_nosymbols_minisymbol_to_symbol (bfd *abfd, 1595 bool dynamic ATTRIBUTE_UNUSED, 1596 const void *minisym ATTRIBUTE_UNUSED, 1597 asymbol *sym ATTRIBUTE_UNUSED) 1598 { 1599 return (asymbol *) _bfd_ptr_bfd_null_error (abfd); 1600 } 1601 1602 long 1603 _bfd_nodynamic_get_synthetic_symtab (bfd *abfd, 1604 long symcount ATTRIBUTE_UNUSED, 1605 asymbol **syms ATTRIBUTE_UNUSED, 1606 long dynsymcount ATTRIBUTE_UNUSED, 1607 asymbol **dynsyms ATTRIBUTE_UNUSED, 1608 asymbol **ret ATTRIBUTE_UNUSED) 1609 { 1610 return _bfd_long_bfd_n1_error (abfd); 1611 } 1612