1 /* Object file "section" support for the BFD library. 2 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 4 2012, 2013 5 Free Software Foundation, Inc. 6 Written by Cygnus Support. 7 8 This file is part of BFD, the Binary File Descriptor library. 9 10 This program is free software; you can redistribute it and/or modify 11 it under the terms of the GNU General Public License as published by 12 the Free Software Foundation; either version 3 of the License, or 13 (at your option) any later version. 14 15 This program is distributed in the hope that it will be useful, 16 but WITHOUT ANY WARRANTY; without even the implied warranty of 17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 GNU General Public License for more details. 19 20 You should have received a copy of the GNU General Public License 21 along with this program; if not, write to the Free Software 22 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 23 MA 02110-1301, USA. */ 24 25 /* 26 SECTION 27 Sections 28 29 The raw data contained within a BFD is maintained through the 30 section abstraction. A single BFD may have any number of 31 sections. It keeps hold of them by pointing to the first; 32 each one points to the next in the list. 33 34 Sections are supported in BFD in <<section.c>>. 35 36 @menu 37 @* Section Input:: 38 @* Section Output:: 39 @* typedef asection:: 40 @* section prototypes:: 41 @end menu 42 43 INODE 44 Section Input, Section Output, Sections, Sections 45 SUBSECTION 46 Section input 47 48 When a BFD is opened for reading, the section structures are 49 created and attached to the BFD. 50 51 Each section has a name which describes the section in the 52 outside world---for example, <<a.out>> would contain at least 53 three sections, called <<.text>>, <<.data>> and <<.bss>>. 54 55 Names need not be unique; for example a COFF file may have several 56 sections named <<.data>>. 57 58 Sometimes a BFD will contain more than the ``natural'' number of 59 sections. A back end may attach other sections containing 60 constructor data, or an application may add a section (using 61 <<bfd_make_section>>) to the sections attached to an already open 62 BFD. For example, the linker creates an extra section 63 <<COMMON>> for each input file's BFD to hold information about 64 common storage. 65 66 The raw data is not necessarily read in when 67 the section descriptor is created. Some targets may leave the 68 data in place until a <<bfd_get_section_contents>> call is 69 made. Other back ends may read in all the data at once. For 70 example, an S-record file has to be read once to determine the 71 size of the data. An IEEE-695 file doesn't contain raw data in 72 sections, but data and relocation expressions intermixed, so 73 the data area has to be parsed to get out the data and 74 relocations. 75 76 INODE 77 Section Output, typedef asection, Section Input, Sections 78 79 SUBSECTION 80 Section output 81 82 To write a new object style BFD, the various sections to be 83 written have to be created. They are attached to the BFD in 84 the same way as input sections; data is written to the 85 sections using <<bfd_set_section_contents>>. 86 87 Any program that creates or combines sections (e.g., the assembler 88 and linker) must use the <<asection>> fields <<output_section>> and 89 <<output_offset>> to indicate the file sections to which each 90 section must be written. (If the section is being created from 91 scratch, <<output_section>> should probably point to the section 92 itself and <<output_offset>> should probably be zero.) 93 94 The data to be written comes from input sections attached 95 (via <<output_section>> pointers) to 96 the output sections. The output section structure can be 97 considered a filter for the input section: the output section 98 determines the vma of the output data and the name, but the 99 input section determines the offset into the output section of 100 the data to be written. 101 102 E.g., to create a section "O", starting at 0x100, 0x123 long, 103 containing two subsections, "A" at offset 0x0 (i.e., at vma 104 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 105 structures would look like: 106 107 | section name "A" 108 | output_offset 0x00 109 | size 0x20 110 | output_section -----------> section name "O" 111 | | vma 0x100 112 | section name "B" | size 0x123 113 | output_offset 0x20 | 114 | size 0x103 | 115 | output_section --------| 116 117 SUBSECTION 118 Link orders 119 120 The data within a section is stored in a @dfn{link_order}. 121 These are much like the fixups in <<gas>>. The link_order 122 abstraction allows a section to grow and shrink within itself. 123 124 A link_order knows how big it is, and which is the next 125 link_order and where the raw data for it is; it also points to 126 a list of relocations which apply to it. 127 128 The link_order is used by the linker to perform relaxing on 129 final code. The compiler creates code which is as big as 130 necessary to make it work without relaxing, and the user can 131 select whether to relax. Sometimes relaxing takes a lot of 132 time. The linker runs around the relocations to see if any 133 are attached to data which can be shrunk, if so it does it on 134 a link_order by link_order basis. 135 136 */ 137 138 #include "sysdep.h" 139 #include "bfd.h" 140 #include "libbfd.h" 141 #include "bfdlink.h" 142 143 /* 144 DOCDD 145 INODE 146 typedef asection, section prototypes, Section Output, Sections 147 SUBSECTION 148 typedef asection 149 150 Here is the section structure: 151 152 CODE_FRAGMENT 153 . 154 .typedef struct bfd_section 155 .{ 156 . {* The name of the section; the name isn't a copy, the pointer is 157 . the same as that passed to bfd_make_section. *} 158 . const char *name; 159 . 160 . {* A unique sequence number. *} 161 . int id; 162 . 163 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 164 . int index; 165 . 166 . {* The next section in the list belonging to the BFD, or NULL. *} 167 . struct bfd_section *next; 168 . 169 . {* The previous section in the list belonging to the BFD, or NULL. *} 170 . struct bfd_section *prev; 171 . 172 . {* The field flags contains attributes of the section. Some 173 . flags are read in from the object file, and some are 174 . synthesized from other information. *} 175 . flagword flags; 176 . 177 .#define SEC_NO_FLAGS 0x000 178 . 179 . {* Tells the OS to allocate space for this section when loading. 180 . This is clear for a section containing debug information only. *} 181 .#define SEC_ALLOC 0x001 182 . 183 . {* Tells the OS to load the section from the file when loading. 184 . This is clear for a .bss section. *} 185 .#define SEC_LOAD 0x002 186 . 187 . {* The section contains data still to be relocated, so there is 188 . some relocation information too. *} 189 .#define SEC_RELOC 0x004 190 . 191 . {* A signal to the OS that the section contains read only data. *} 192 .#define SEC_READONLY 0x008 193 . 194 . {* The section contains code only. *} 195 .#define SEC_CODE 0x010 196 . 197 . {* The section contains data only. *} 198 .#define SEC_DATA 0x020 199 . 200 . {* The section will reside in ROM. *} 201 .#define SEC_ROM 0x040 202 . 203 . {* The section contains constructor information. This section 204 . type is used by the linker to create lists of constructors and 205 . destructors used by <<g++>>. When a back end sees a symbol 206 . which should be used in a constructor list, it creates a new 207 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 208 . the symbol to it, and builds a relocation. To build the lists 209 . of constructors, all the linker has to do is catenate all the 210 . sections called <<__CTOR_LIST__>> and relocate the data 211 . contained within - exactly the operations it would peform on 212 . standard data. *} 213 .#define SEC_CONSTRUCTOR 0x080 214 . 215 . {* The section has contents - a data section could be 216 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 217 . <<SEC_HAS_CONTENTS>> *} 218 .#define SEC_HAS_CONTENTS 0x100 219 . 220 . {* An instruction to the linker to not output the section 221 . even if it has information which would normally be written. *} 222 .#define SEC_NEVER_LOAD 0x200 223 . 224 . {* The section contains thread local data. *} 225 .#define SEC_THREAD_LOCAL 0x400 226 . 227 . {* The section has GOT references. This flag is only for the 228 . linker, and is currently only used by the elf32-hppa back end. 229 . It will be set if global offset table references were detected 230 . in this section, which indicate to the linker that the section 231 . contains PIC code, and must be handled specially when doing a 232 . static link. *} 233 .#define SEC_HAS_GOT_REF 0x800 234 . 235 . {* The section contains common symbols (symbols may be defined 236 . multiple times, the value of a symbol is the amount of 237 . space it requires, and the largest symbol value is the one 238 . used). Most targets have exactly one of these (which we 239 . translate to bfd_com_section_ptr), but ECOFF has two. *} 240 .#define SEC_IS_COMMON 0x1000 241 . 242 . {* The section contains only debugging information. For 243 . example, this is set for ELF .debug and .stab sections. 244 . strip tests this flag to see if a section can be 245 . discarded. *} 246 .#define SEC_DEBUGGING 0x2000 247 . 248 . {* The contents of this section are held in memory pointed to 249 . by the contents field. This is checked by bfd_get_section_contents, 250 . and the data is retrieved from memory if appropriate. *} 251 .#define SEC_IN_MEMORY 0x4000 252 . 253 . {* The contents of this section are to be excluded by the 254 . linker for executable and shared objects unless those 255 . objects are to be further relocated. *} 256 .#define SEC_EXCLUDE 0x8000 257 . 258 . {* The contents of this section are to be sorted based on the sum of 259 . the symbol and addend values specified by the associated relocation 260 . entries. Entries without associated relocation entries will be 261 . appended to the end of the section in an unspecified order. *} 262 .#define SEC_SORT_ENTRIES 0x10000 263 . 264 . {* When linking, duplicate sections of the same name should be 265 . discarded, rather than being combined into a single section as 266 . is usually done. This is similar to how common symbols are 267 . handled. See SEC_LINK_DUPLICATES below. *} 268 .#define SEC_LINK_ONCE 0x20000 269 . 270 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 271 . should handle duplicate sections. *} 272 .#define SEC_LINK_DUPLICATES 0xc0000 273 . 274 . {* This value for SEC_LINK_DUPLICATES means that duplicate 275 . sections with the same name should simply be discarded. *} 276 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 277 . 278 . {* This value for SEC_LINK_DUPLICATES means that the linker 279 . should warn if there are any duplicate sections, although 280 . it should still only link one copy. *} 281 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 282 . 283 . {* This value for SEC_LINK_DUPLICATES means that the linker 284 . should warn if any duplicate sections are a different size. *} 285 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 286 . 287 . {* This value for SEC_LINK_DUPLICATES means that the linker 288 . should warn if any duplicate sections contain different 289 . contents. *} 290 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 291 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 292 . 293 . {* This section was created by the linker as part of dynamic 294 . relocation or other arcane processing. It is skipped when 295 . going through the first-pass output, trusting that someone 296 . else up the line will take care of it later. *} 297 .#define SEC_LINKER_CREATED 0x100000 298 . 299 . {* This section should not be subject to garbage collection. 300 . Also set to inform the linker that this section should not be 301 . listed in the link map as discarded. *} 302 .#define SEC_KEEP 0x200000 303 . 304 . {* This section contains "short" data, and should be placed 305 . "near" the GP. *} 306 .#define SEC_SMALL_DATA 0x400000 307 . 308 . {* Attempt to merge identical entities in the section. 309 . Entity size is given in the entsize field. *} 310 .#define SEC_MERGE 0x800000 311 . 312 . {* If given with SEC_MERGE, entities to merge are zero terminated 313 . strings where entsize specifies character size instead of fixed 314 . size entries. *} 315 .#define SEC_STRINGS 0x1000000 316 . 317 . {* This section contains data about section groups. *} 318 .#define SEC_GROUP 0x2000000 319 . 320 . {* The section is a COFF shared library section. This flag is 321 . only for the linker. If this type of section appears in 322 . the input file, the linker must copy it to the output file 323 . without changing the vma or size. FIXME: Although this 324 . was originally intended to be general, it really is COFF 325 . specific (and the flag was renamed to indicate this). It 326 . might be cleaner to have some more general mechanism to 327 . allow the back end to control what the linker does with 328 . sections. *} 329 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 330 . 331 . {* This input section should be copied to output in reverse order 332 . as an array of pointers. This is for ELF linker internal use 333 . only. *} 334 .#define SEC_ELF_REVERSE_COPY 0x4000000 335 . 336 . {* This section contains data which may be shared with other 337 . executables or shared objects. This is for COFF only. *} 338 .#define SEC_COFF_SHARED 0x8000000 339 . 340 . {* When a section with this flag is being linked, then if the size of 341 . the input section is less than a page, it should not cross a page 342 . boundary. If the size of the input section is one page or more, 343 . it should be aligned on a page boundary. This is for TI 344 . TMS320C54X only. *} 345 .#define SEC_TIC54X_BLOCK 0x10000000 346 . 347 . {* Conditionally link this section; do not link if there are no 348 . references found to any symbol in the section. This is for TI 349 . TMS320C54X only. *} 350 .#define SEC_TIC54X_CLINK 0x20000000 351 . 352 . {* Indicate that section has the no read flag set. This happens 353 . when memory read flag isn't set. *} 354 .#define SEC_COFF_NOREAD 0x40000000 355 . 356 . {* End of section flags. *} 357 . 358 . {* Some internal packed boolean fields. *} 359 . 360 . {* See the vma field. *} 361 . unsigned int user_set_vma : 1; 362 . 363 . {* A mark flag used by some of the linker backends. *} 364 . unsigned int linker_mark : 1; 365 . 366 . {* Another mark flag used by some of the linker backends. Set for 367 . output sections that have an input section. *} 368 . unsigned int linker_has_input : 1; 369 . 370 . {* Mark flag used by some linker backends for garbage collection. *} 371 . unsigned int gc_mark : 1; 372 . 373 . {* Section compression status. *} 374 . unsigned int compress_status : 2; 375 .#define COMPRESS_SECTION_NONE 0 376 .#define COMPRESS_SECTION_DONE 1 377 .#define DECOMPRESS_SECTION_SIZED 2 378 . 379 . {* The following flags are used by the ELF linker. *} 380 . 381 . {* Mark sections which have been allocated to segments. *} 382 . unsigned int segment_mark : 1; 383 . 384 . {* Type of sec_info information. *} 385 . unsigned int sec_info_type:3; 386 .#define SEC_INFO_TYPE_NONE 0 387 .#define SEC_INFO_TYPE_STABS 1 388 .#define SEC_INFO_TYPE_MERGE 2 389 .#define SEC_INFO_TYPE_EH_FRAME 3 390 .#define SEC_INFO_TYPE_JUST_SYMS 4 391 . 392 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 393 . unsigned int use_rela_p:1; 394 . 395 . {* Bits used by various backends. The generic code doesn't touch 396 . these fields. *} 397 . 398 . unsigned int sec_flg0:1; 399 . unsigned int sec_flg1:1; 400 . unsigned int sec_flg2:1; 401 . unsigned int sec_flg3:1; 402 . unsigned int sec_flg4:1; 403 . unsigned int sec_flg5:1; 404 . 405 . {* End of internal packed boolean fields. *} 406 . 407 . {* The virtual memory address of the section - where it will be 408 . at run time. The symbols are relocated against this. The 409 . user_set_vma flag is maintained by bfd; if it's not set, the 410 . backend can assign addresses (for example, in <<a.out>>, where 411 . the default address for <<.data>> is dependent on the specific 412 . target and various flags). *} 413 . bfd_vma vma; 414 . 415 . {* The load address of the section - where it would be in a 416 . rom image; really only used for writing section header 417 . information. *} 418 . bfd_vma lma; 419 . 420 . {* The size of the section in octets, as it will be output. 421 . Contains a value even if the section has no contents (e.g., the 422 . size of <<.bss>>). *} 423 . bfd_size_type size; 424 . 425 . {* For input sections, the original size on disk of the section, in 426 . octets. This field should be set for any section whose size is 427 . changed by linker relaxation. It is required for sections where 428 . the linker relaxation scheme doesn't cache altered section and 429 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 430 . targets), and thus the original size needs to be kept to read the 431 . section multiple times. For output sections, rawsize holds the 432 . section size calculated on a previous linker relaxation pass. *} 433 . bfd_size_type rawsize; 434 . 435 . {* The compressed size of the section in octets. *} 436 . bfd_size_type compressed_size; 437 . 438 . {* Relaxation table. *} 439 . struct relax_table *relax; 440 . 441 . {* Count of used relaxation table entries. *} 442 . int relax_count; 443 . 444 . 445 . {* If this section is going to be output, then this value is the 446 . offset in *bytes* into the output section of the first byte in the 447 . input section (byte ==> smallest addressable unit on the 448 . target). In most cases, if this was going to start at the 449 . 100th octet (8-bit quantity) in the output section, this value 450 . would be 100. However, if the target byte size is 16 bits 451 . (bfd_octets_per_byte is "2"), this value would be 50. *} 452 . bfd_vma output_offset; 453 . 454 . {* The output section through which to map on output. *} 455 . struct bfd_section *output_section; 456 . 457 . {* The alignment requirement of the section, as an exponent of 2 - 458 . e.g., 3 aligns to 2^3 (or 8). *} 459 . unsigned int alignment_power; 460 . 461 . {* If an input section, a pointer to a vector of relocation 462 . records for the data in this section. *} 463 . struct reloc_cache_entry *relocation; 464 . 465 . {* If an output section, a pointer to a vector of pointers to 466 . relocation records for the data in this section. *} 467 . struct reloc_cache_entry **orelocation; 468 . 469 . {* The number of relocation records in one of the above. *} 470 . unsigned reloc_count; 471 . 472 . {* Information below is back end specific - and not always used 473 . or updated. *} 474 . 475 . {* File position of section data. *} 476 . file_ptr filepos; 477 . 478 . {* File position of relocation info. *} 479 . file_ptr rel_filepos; 480 . 481 . {* File position of line data. *} 482 . file_ptr line_filepos; 483 . 484 . {* Pointer to data for applications. *} 485 . void *userdata; 486 . 487 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 488 . contents. *} 489 . unsigned char *contents; 490 . 491 . {* Attached line number information. *} 492 . alent *lineno; 493 . 494 . {* Number of line number records. *} 495 . unsigned int lineno_count; 496 . 497 . {* Entity size for merging purposes. *} 498 . unsigned int entsize; 499 . 500 . {* Points to the kept section if this section is a link-once section, 501 . and is discarded. *} 502 . struct bfd_section *kept_section; 503 . 504 . {* When a section is being output, this value changes as more 505 . linenumbers are written out. *} 506 . file_ptr moving_line_filepos; 507 . 508 . {* What the section number is in the target world. *} 509 . int target_index; 510 . 511 . void *used_by_bfd; 512 . 513 . {* If this is a constructor section then here is a list of the 514 . relocations created to relocate items within it. *} 515 . struct relent_chain *constructor_chain; 516 . 517 . {* The BFD which owns the section. *} 518 . bfd *owner; 519 . 520 . {* A symbol which points at this section only. *} 521 . struct bfd_symbol *symbol; 522 . struct bfd_symbol **symbol_ptr_ptr; 523 . 524 . {* Early in the link process, map_head and map_tail are used to build 525 . a list of input sections attached to an output section. Later, 526 . output sections use these fields for a list of bfd_link_order 527 . structs. *} 528 . union { 529 . struct bfd_link_order *link_order; 530 . struct bfd_section *s; 531 . } map_head, map_tail; 532 .} asection; 533 . 534 .{* Relax table contains information about instructions which can 535 . be removed by relaxation -- replacing a long address with a 536 . short address. *} 537 .struct relax_table { 538 . {* Address where bytes may be deleted. *} 539 . bfd_vma addr; 540 . 541 . {* Number of bytes to be deleted. *} 542 . int size; 543 .}; 544 . 545 .{* Note: the following are provided as inline functions rather than macros 546 . because not all callers use the return value. A macro implementation 547 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 548 . compilers will complain about comma expressions that have no effect. *} 549 .static inline bfd_boolean 550 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val) 551 .{ 552 . ptr->userdata = val; 553 . return TRUE; 554 .} 555 . 556 .static inline bfd_boolean 557 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val) 558 .{ 559 . ptr->vma = ptr->lma = val; 560 . ptr->user_set_vma = TRUE; 561 . return TRUE; 562 .} 563 . 564 .static inline bfd_boolean 565 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val) 566 .{ 567 . ptr->alignment_power = val; 568 . return TRUE; 569 .} 570 . 571 .{* These sections are global, and are managed by BFD. The application 572 . and target back end are not permitted to change the values in 573 . these sections. *} 574 .extern asection _bfd_std_section[4]; 575 . 576 .#define BFD_ABS_SECTION_NAME "*ABS*" 577 .#define BFD_UND_SECTION_NAME "*UND*" 578 .#define BFD_COM_SECTION_NAME "*COM*" 579 .#define BFD_IND_SECTION_NAME "*IND*" 580 . 581 .{* Pointer to the common section. *} 582 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 583 .{* Pointer to the undefined section. *} 584 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 585 .{* Pointer to the absolute section. *} 586 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 587 .{* Pointer to the indirect section. *} 588 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 589 . 590 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 591 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 592 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 593 . 594 .#define bfd_is_const_section(SEC) \ 595 . ( ((SEC) == bfd_abs_section_ptr) \ 596 . || ((SEC) == bfd_und_section_ptr) \ 597 . || ((SEC) == bfd_com_section_ptr) \ 598 . || ((SEC) == bfd_ind_section_ptr)) 599 . 600 .{* Macros to handle insertion and deletion of a bfd's sections. These 601 . only handle the list pointers, ie. do not adjust section_count, 602 . target_index etc. *} 603 .#define bfd_section_list_remove(ABFD, S) \ 604 . do \ 605 . { \ 606 . asection *_s = S; \ 607 . asection *_next = _s->next; \ 608 . asection *_prev = _s->prev; \ 609 . if (_prev) \ 610 . _prev->next = _next; \ 611 . else \ 612 . (ABFD)->sections = _next; \ 613 . if (_next) \ 614 . _next->prev = _prev; \ 615 . else \ 616 . (ABFD)->section_last = _prev; \ 617 . } \ 618 . while (0) 619 .#define bfd_section_list_append(ABFD, S) \ 620 . do \ 621 . { \ 622 . asection *_s = S; \ 623 . bfd *_abfd = ABFD; \ 624 . _s->next = NULL; \ 625 . if (_abfd->section_last) \ 626 . { \ 627 . _s->prev = _abfd->section_last; \ 628 . _abfd->section_last->next = _s; \ 629 . } \ 630 . else \ 631 . { \ 632 . _s->prev = NULL; \ 633 . _abfd->sections = _s; \ 634 . } \ 635 . _abfd->section_last = _s; \ 636 . } \ 637 . while (0) 638 .#define bfd_section_list_prepend(ABFD, S) \ 639 . do \ 640 . { \ 641 . asection *_s = S; \ 642 . bfd *_abfd = ABFD; \ 643 . _s->prev = NULL; \ 644 . if (_abfd->sections) \ 645 . { \ 646 . _s->next = _abfd->sections; \ 647 . _abfd->sections->prev = _s; \ 648 . } \ 649 . else \ 650 . { \ 651 . _s->next = NULL; \ 652 . _abfd->section_last = _s; \ 653 . } \ 654 . _abfd->sections = _s; \ 655 . } \ 656 . while (0) 657 .#define bfd_section_list_insert_after(ABFD, A, S) \ 658 . do \ 659 . { \ 660 . asection *_a = A; \ 661 . asection *_s = S; \ 662 . asection *_next = _a->next; \ 663 . _s->next = _next; \ 664 . _s->prev = _a; \ 665 . _a->next = _s; \ 666 . if (_next) \ 667 . _next->prev = _s; \ 668 . else \ 669 . (ABFD)->section_last = _s; \ 670 . } \ 671 . while (0) 672 .#define bfd_section_list_insert_before(ABFD, B, S) \ 673 . do \ 674 . { \ 675 . asection *_b = B; \ 676 . asection *_s = S; \ 677 . asection *_prev = _b->prev; \ 678 . _s->prev = _prev; \ 679 . _s->next = _b; \ 680 . _b->prev = _s; \ 681 . if (_prev) \ 682 . _prev->next = _s; \ 683 . else \ 684 . (ABFD)->sections = _s; \ 685 . } \ 686 . while (0) 687 .#define bfd_section_removed_from_list(ABFD, S) \ 688 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 689 . 690 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 691 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 692 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 693 . \ 694 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 695 . 0, 0, 1, 0, \ 696 . \ 697 . {* segment_mark, sec_info_type, use_rela_p, *} \ 698 . 0, 0, 0, \ 699 . \ 700 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 701 . 0, 0, 0, 0, 0, 0, \ 702 . \ 703 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 704 . 0, 0, 0, 0, 0, 0, 0, \ 705 . \ 706 . {* output_offset, output_section, alignment_power, *} \ 707 . 0, &SEC, 0, \ 708 . \ 709 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 710 . NULL, NULL, 0, 0, 0, \ 711 . \ 712 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 713 . 0, NULL, NULL, NULL, 0, \ 714 . \ 715 . {* entsize, kept_section, moving_line_filepos, *} \ 716 . 0, NULL, 0, \ 717 . \ 718 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 719 . 0, NULL, NULL, NULL, \ 720 . \ 721 . {* symbol, symbol_ptr_ptr, *} \ 722 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 723 . \ 724 . {* map_head, map_tail *} \ 725 . { NULL }, { NULL } \ 726 . } 727 . 728 */ 729 730 /* We use a macro to initialize the static asymbol structures because 731 traditional C does not permit us to initialize a union member while 732 gcc warns if we don't initialize it. */ 733 /* the_bfd, name, value, attr, section [, udata] */ 734 #ifdef __STDC__ 735 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 736 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 737 #else 738 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 739 { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 740 #endif 741 742 /* These symbols are global, not specific to any BFD. Therefore, anything 743 that tries to change them is broken, and should be repaired. */ 744 745 static const asymbol global_syms[] = 746 { 747 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 748 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 749 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 750 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 751 }; 752 753 #define STD_SECTION(NAME, IDX, FLAGS) \ 754 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX) 755 756 asection _bfd_std_section[] = { 757 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 758 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 759 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 760 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 761 }; 762 #undef STD_SECTION 763 764 /* Initialize an entry in the section hash table. */ 765 766 struct bfd_hash_entry * 767 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 768 struct bfd_hash_table *table, 769 const char *string) 770 { 771 /* Allocate the structure if it has not already been allocated by a 772 subclass. */ 773 if (entry == NULL) 774 { 775 entry = (struct bfd_hash_entry *) 776 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 777 if (entry == NULL) 778 return entry; 779 } 780 781 /* Call the allocation method of the superclass. */ 782 entry = bfd_hash_newfunc (entry, table, string); 783 if (entry != NULL) 784 memset (&((struct section_hash_entry *) entry)->section, 0, 785 sizeof (asection)); 786 787 return entry; 788 } 789 790 #define section_hash_lookup(table, string, create, copy) \ 791 ((struct section_hash_entry *) \ 792 bfd_hash_lookup ((table), (string), (create), (copy))) 793 794 /* Create a symbol whose only job is to point to this section. This 795 is useful for things like relocs which are relative to the base 796 of a section. */ 797 798 bfd_boolean 799 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 800 { 801 newsect->symbol = bfd_make_empty_symbol (abfd); 802 if (newsect->symbol == NULL) 803 return FALSE; 804 805 newsect->symbol->name = newsect->name; 806 newsect->symbol->value = 0; 807 newsect->symbol->section = newsect; 808 newsect->symbol->flags = BSF_SECTION_SYM; 809 810 newsect->symbol_ptr_ptr = &newsect->symbol; 811 return TRUE; 812 } 813 814 /* Initializes a new section. NEWSECT->NAME is already set. */ 815 816 static asection * 817 bfd_section_init (bfd *abfd, asection *newsect) 818 { 819 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 820 821 newsect->id = section_id; 822 newsect->index = abfd->section_count; 823 newsect->owner = abfd; 824 825 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 826 return NULL; 827 828 section_id++; 829 abfd->section_count++; 830 bfd_section_list_append (abfd, newsect); 831 return newsect; 832 } 833 834 /* 835 DOCDD 836 INODE 837 section prototypes, , typedef asection, Sections 838 SUBSECTION 839 Section prototypes 840 841 These are the functions exported by the section handling part of BFD. 842 */ 843 844 /* 845 FUNCTION 846 bfd_section_list_clear 847 848 SYNOPSIS 849 void bfd_section_list_clear (bfd *); 850 851 DESCRIPTION 852 Clears the section list, and also resets the section count and 853 hash table entries. 854 */ 855 856 void 857 bfd_section_list_clear (bfd *abfd) 858 { 859 abfd->sections = NULL; 860 abfd->section_last = NULL; 861 abfd->section_count = 0; 862 memset (abfd->section_htab.table, 0, 863 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 864 abfd->section_htab.count = 0; 865 } 866 867 /* 868 FUNCTION 869 bfd_get_section_by_name 870 871 SYNOPSIS 872 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 873 874 DESCRIPTION 875 Return the most recently created section attached to @var{abfd} 876 named @var{name}. Return NULL if no such section exists. 877 */ 878 879 asection * 880 bfd_get_section_by_name (bfd *abfd, const char *name) 881 { 882 struct section_hash_entry *sh; 883 884 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 885 if (sh != NULL) 886 return &sh->section; 887 888 return NULL; 889 } 890 891 /* 892 FUNCTION 893 bfd_get_next_section_by_name 894 895 SYNOPSIS 896 asection *bfd_get_next_section_by_name (asection *sec); 897 898 DESCRIPTION 899 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 900 return the next most recently created section attached to the same 901 BFD with the same name. Return NULL if no such section exists. 902 */ 903 904 asection * 905 bfd_get_next_section_by_name (asection *sec) 906 { 907 struct section_hash_entry *sh; 908 const char *name; 909 unsigned long hash; 910 911 sh = ((struct section_hash_entry *) 912 ((char *) sec - offsetof (struct section_hash_entry, section))); 913 914 hash = sh->root.hash; 915 name = sec->name; 916 for (sh = (struct section_hash_entry *) sh->root.next; 917 sh != NULL; 918 sh = (struct section_hash_entry *) sh->root.next) 919 if (sh->root.hash == hash 920 && strcmp (sh->root.string, name) == 0) 921 return &sh->section; 922 923 return NULL; 924 } 925 926 /* 927 FUNCTION 928 bfd_get_linker_section 929 930 SYNOPSIS 931 asection *bfd_get_linker_section (bfd *abfd, const char *name); 932 933 DESCRIPTION 934 Return the linker created section attached to @var{abfd} 935 named @var{name}. Return NULL if no such section exists. 936 */ 937 938 asection * 939 bfd_get_linker_section (bfd *abfd, const char *name) 940 { 941 asection *sec = bfd_get_section_by_name (abfd, name); 942 943 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 944 sec = bfd_get_next_section_by_name (sec); 945 return sec; 946 } 947 948 /* 949 FUNCTION 950 bfd_get_section_by_name_if 951 952 SYNOPSIS 953 asection *bfd_get_section_by_name_if 954 (bfd *abfd, 955 const char *name, 956 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 957 void *obj); 958 959 DESCRIPTION 960 Call the provided function @var{func} for each section 961 attached to the BFD @var{abfd} whose name matches @var{name}, 962 passing @var{obj} as an argument. The function will be called 963 as if by 964 965 | func (abfd, the_section, obj); 966 967 It returns the first section for which @var{func} returns true, 968 otherwise <<NULL>>. 969 970 */ 971 972 asection * 973 bfd_get_section_by_name_if (bfd *abfd, const char *name, 974 bfd_boolean (*operation) (bfd *, 975 asection *, 976 void *), 977 void *user_storage) 978 { 979 struct section_hash_entry *sh; 980 unsigned long hash; 981 982 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 983 if (sh == NULL) 984 return NULL; 985 986 hash = sh->root.hash; 987 do 988 { 989 if ((*operation) (abfd, &sh->section, user_storage)) 990 return &sh->section; 991 sh = (struct section_hash_entry *) sh->root.next; 992 } 993 while (sh != NULL && sh->root.hash == hash 994 && strcmp (sh->root.string, name) == 0); 995 996 return NULL; 997 } 998 999 /* 1000 FUNCTION 1001 bfd_get_unique_section_name 1002 1003 SYNOPSIS 1004 char *bfd_get_unique_section_name 1005 (bfd *abfd, const char *templat, int *count); 1006 1007 DESCRIPTION 1008 Invent a section name that is unique in @var{abfd} by tacking 1009 a dot and a digit suffix onto the original @var{templat}. If 1010 @var{count} is non-NULL, then it specifies the first number 1011 tried as a suffix to generate a unique name. The value 1012 pointed to by @var{count} will be incremented in this case. 1013 */ 1014 1015 char * 1016 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1017 { 1018 int num; 1019 unsigned int len; 1020 char *sname; 1021 1022 len = strlen (templat); 1023 sname = (char *) bfd_malloc (len + 8); 1024 if (sname == NULL) 1025 return NULL; 1026 memcpy (sname, templat, len); 1027 num = 1; 1028 if (count != NULL) 1029 num = *count; 1030 1031 do 1032 { 1033 /* If we have a million sections, something is badly wrong. */ 1034 if (num > 999999) 1035 abort (); 1036 sprintf (sname + len, ".%d", num++); 1037 } 1038 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1039 1040 if (count != NULL) 1041 *count = num; 1042 return sname; 1043 } 1044 1045 /* 1046 FUNCTION 1047 bfd_make_section_old_way 1048 1049 SYNOPSIS 1050 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1051 1052 DESCRIPTION 1053 Create a new empty section called @var{name} 1054 and attach it to the end of the chain of sections for the 1055 BFD @var{abfd}. An attempt to create a section with a name which 1056 is already in use returns its pointer without changing the 1057 section chain. 1058 1059 It has the funny name since this is the way it used to be 1060 before it was rewritten.... 1061 1062 Possible errors are: 1063 o <<bfd_error_invalid_operation>> - 1064 If output has already started for this BFD. 1065 o <<bfd_error_no_memory>> - 1066 If memory allocation fails. 1067 1068 */ 1069 1070 asection * 1071 bfd_make_section_old_way (bfd *abfd, const char *name) 1072 { 1073 asection *newsect; 1074 1075 if (abfd->output_has_begun) 1076 { 1077 bfd_set_error (bfd_error_invalid_operation); 1078 return NULL; 1079 } 1080 1081 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1082 newsect = bfd_abs_section_ptr; 1083 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1084 newsect = bfd_com_section_ptr; 1085 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1086 newsect = bfd_und_section_ptr; 1087 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1088 newsect = bfd_ind_section_ptr; 1089 else 1090 { 1091 struct section_hash_entry *sh; 1092 1093 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1094 if (sh == NULL) 1095 return NULL; 1096 1097 newsect = &sh->section; 1098 if (newsect->name != NULL) 1099 { 1100 /* Section already exists. */ 1101 return newsect; 1102 } 1103 1104 newsect->name = name; 1105 return bfd_section_init (abfd, newsect); 1106 } 1107 1108 /* Call new_section_hook when "creating" the standard abs, com, und 1109 and ind sections to tack on format specific section data. 1110 Also, create a proper section symbol. */ 1111 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1112 return NULL; 1113 return newsect; 1114 } 1115 1116 /* 1117 FUNCTION 1118 bfd_make_section_anyway_with_flags 1119 1120 SYNOPSIS 1121 asection *bfd_make_section_anyway_with_flags 1122 (bfd *abfd, const char *name, flagword flags); 1123 1124 DESCRIPTION 1125 Create a new empty section called @var{name} and attach it to the end of 1126 the chain of sections for @var{abfd}. Create a new section even if there 1127 is already a section with that name. Also set the attributes of the 1128 new section to the value @var{flags}. 1129 1130 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1131 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1132 o <<bfd_error_no_memory>> - If memory allocation fails. 1133 */ 1134 1135 sec_ptr 1136 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1137 flagword flags) 1138 { 1139 struct section_hash_entry *sh; 1140 asection *newsect; 1141 1142 if (abfd->output_has_begun) 1143 { 1144 bfd_set_error (bfd_error_invalid_operation); 1145 return NULL; 1146 } 1147 1148 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1149 if (sh == NULL) 1150 return NULL; 1151 1152 newsect = &sh->section; 1153 if (newsect->name != NULL) 1154 { 1155 /* We are making a section of the same name. Put it in the 1156 section hash table. Even though we can't find it directly by a 1157 hash lookup, we'll be able to find the section by traversing 1158 sh->root.next quicker than looking at all the bfd sections. */ 1159 struct section_hash_entry *new_sh; 1160 new_sh = (struct section_hash_entry *) 1161 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1162 if (new_sh == NULL) 1163 return NULL; 1164 1165 new_sh->root = sh->root; 1166 sh->root.next = &new_sh->root; 1167 newsect = &new_sh->section; 1168 } 1169 1170 newsect->flags = flags; 1171 newsect->name = name; 1172 return bfd_section_init (abfd, newsect); 1173 } 1174 1175 /* 1176 FUNCTION 1177 bfd_make_section_anyway 1178 1179 SYNOPSIS 1180 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1181 1182 DESCRIPTION 1183 Create a new empty section called @var{name} and attach it to the end of 1184 the chain of sections for @var{abfd}. Create a new section even if there 1185 is already a section with that name. 1186 1187 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1188 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1189 o <<bfd_error_no_memory>> - If memory allocation fails. 1190 */ 1191 1192 sec_ptr 1193 bfd_make_section_anyway (bfd *abfd, const char *name) 1194 { 1195 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1196 } 1197 1198 /* 1199 FUNCTION 1200 bfd_make_section_with_flags 1201 1202 SYNOPSIS 1203 asection *bfd_make_section_with_flags 1204 (bfd *, const char *name, flagword flags); 1205 1206 DESCRIPTION 1207 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1208 bfd_set_error ()) without changing the section chain if there is already a 1209 section named @var{name}. Also set the attributes of the new section to 1210 the value @var{flags}. If there is an error, return <<NULL>> and set 1211 <<bfd_error>>. 1212 */ 1213 1214 asection * 1215 bfd_make_section_with_flags (bfd *abfd, const char *name, 1216 flagword flags) 1217 { 1218 struct section_hash_entry *sh; 1219 asection *newsect; 1220 1221 if (abfd->output_has_begun) 1222 { 1223 bfd_set_error (bfd_error_invalid_operation); 1224 return NULL; 1225 } 1226 1227 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1228 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1229 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1230 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1231 return NULL; 1232 1233 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1234 if (sh == NULL) 1235 return NULL; 1236 1237 newsect = &sh->section; 1238 if (newsect->name != NULL) 1239 { 1240 /* Section already exists. */ 1241 return NULL; 1242 } 1243 1244 newsect->name = name; 1245 newsect->flags = flags; 1246 return bfd_section_init (abfd, newsect); 1247 } 1248 1249 /* 1250 FUNCTION 1251 bfd_make_section 1252 1253 SYNOPSIS 1254 asection *bfd_make_section (bfd *, const char *name); 1255 1256 DESCRIPTION 1257 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1258 bfd_set_error ()) without changing the section chain if there is already a 1259 section named @var{name}. If there is an error, return <<NULL>> and set 1260 <<bfd_error>>. 1261 */ 1262 1263 asection * 1264 bfd_make_section (bfd *abfd, const char *name) 1265 { 1266 return bfd_make_section_with_flags (abfd, name, 0); 1267 } 1268 1269 /* 1270 FUNCTION 1271 bfd_set_section_flags 1272 1273 SYNOPSIS 1274 bfd_boolean bfd_set_section_flags 1275 (bfd *abfd, asection *sec, flagword flags); 1276 1277 DESCRIPTION 1278 Set the attributes of the section @var{sec} in the BFD 1279 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1280 <<FALSE>> on error. Possible error returns are: 1281 1282 o <<bfd_error_invalid_operation>> - 1283 The section cannot have one or more of the attributes 1284 requested. For example, a .bss section in <<a.out>> may not 1285 have the <<SEC_HAS_CONTENTS>> field set. 1286 1287 */ 1288 1289 bfd_boolean 1290 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1291 sec_ptr section, 1292 flagword flags) 1293 { 1294 section->flags = flags; 1295 return TRUE; 1296 } 1297 1298 /* 1299 FUNCTION 1300 bfd_rename_section 1301 1302 SYNOPSIS 1303 void bfd_rename_section 1304 (bfd *abfd, asection *sec, const char *newname); 1305 1306 DESCRIPTION 1307 Rename section @var{sec} in @var{abfd} to @var{newname}. 1308 */ 1309 1310 void 1311 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1312 { 1313 struct section_hash_entry *sh; 1314 1315 sh = (struct section_hash_entry *) 1316 ((char *) sec - offsetof (struct section_hash_entry, section)); 1317 sh->section.name = newname; 1318 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1319 } 1320 1321 /* 1322 FUNCTION 1323 bfd_map_over_sections 1324 1325 SYNOPSIS 1326 void bfd_map_over_sections 1327 (bfd *abfd, 1328 void (*func) (bfd *abfd, asection *sect, void *obj), 1329 void *obj); 1330 1331 DESCRIPTION 1332 Call the provided function @var{func} for each section 1333 attached to the BFD @var{abfd}, passing @var{obj} as an 1334 argument. The function will be called as if by 1335 1336 | func (abfd, the_section, obj); 1337 1338 This is the preferred method for iterating over sections; an 1339 alternative would be to use a loop: 1340 1341 | asection *p; 1342 | for (p = abfd->sections; p != NULL; p = p->next) 1343 | func (abfd, p, ...) 1344 1345 */ 1346 1347 void 1348 bfd_map_over_sections (bfd *abfd, 1349 void (*operation) (bfd *, asection *, void *), 1350 void *user_storage) 1351 { 1352 asection *sect; 1353 unsigned int i = 0; 1354 1355 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1356 (*operation) (abfd, sect, user_storage); 1357 1358 if (i != abfd->section_count) /* Debugging */ 1359 abort (); 1360 } 1361 1362 /* 1363 FUNCTION 1364 bfd_sections_find_if 1365 1366 SYNOPSIS 1367 asection *bfd_sections_find_if 1368 (bfd *abfd, 1369 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1370 void *obj); 1371 1372 DESCRIPTION 1373 Call the provided function @var{operation} for each section 1374 attached to the BFD @var{abfd}, passing @var{obj} as an 1375 argument. The function will be called as if by 1376 1377 | operation (abfd, the_section, obj); 1378 1379 It returns the first section for which @var{operation} returns true. 1380 1381 */ 1382 1383 asection * 1384 bfd_sections_find_if (bfd *abfd, 1385 bfd_boolean (*operation) (bfd *, asection *, void *), 1386 void *user_storage) 1387 { 1388 asection *sect; 1389 1390 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1391 if ((*operation) (abfd, sect, user_storage)) 1392 break; 1393 1394 return sect; 1395 } 1396 1397 /* 1398 FUNCTION 1399 bfd_set_section_size 1400 1401 SYNOPSIS 1402 bfd_boolean bfd_set_section_size 1403 (bfd *abfd, asection *sec, bfd_size_type val); 1404 1405 DESCRIPTION 1406 Set @var{sec} to the size @var{val}. If the operation is 1407 ok, then <<TRUE>> is returned, else <<FALSE>>. 1408 1409 Possible error returns: 1410 o <<bfd_error_invalid_operation>> - 1411 Writing has started to the BFD, so setting the size is invalid. 1412 1413 */ 1414 1415 bfd_boolean 1416 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1417 { 1418 /* Once you've started writing to any section you cannot create or change 1419 the size of any others. */ 1420 1421 if (abfd->output_has_begun) 1422 { 1423 bfd_set_error (bfd_error_invalid_operation); 1424 return FALSE; 1425 } 1426 1427 ptr->size = val; 1428 return TRUE; 1429 } 1430 1431 /* 1432 FUNCTION 1433 bfd_set_section_contents 1434 1435 SYNOPSIS 1436 bfd_boolean bfd_set_section_contents 1437 (bfd *abfd, asection *section, const void *data, 1438 file_ptr offset, bfd_size_type count); 1439 1440 DESCRIPTION 1441 Sets the contents of the section @var{section} in BFD 1442 @var{abfd} to the data starting in memory at @var{data}. The 1443 data is written to the output section starting at offset 1444 @var{offset} for @var{count} octets. 1445 1446 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1447 returns are: 1448 o <<bfd_error_no_contents>> - 1449 The output section does not have the <<SEC_HAS_CONTENTS>> 1450 attribute, so nothing can be written to it. 1451 o and some more too 1452 1453 This routine is front end to the back end function 1454 <<_bfd_set_section_contents>>. 1455 1456 */ 1457 1458 bfd_boolean 1459 bfd_set_section_contents (bfd *abfd, 1460 sec_ptr section, 1461 const void *location, 1462 file_ptr offset, 1463 bfd_size_type count) 1464 { 1465 bfd_size_type sz; 1466 1467 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1468 { 1469 bfd_set_error (bfd_error_no_contents); 1470 return FALSE; 1471 } 1472 1473 sz = section->size; 1474 if ((bfd_size_type) offset > sz 1475 || count > sz 1476 || offset + count > sz 1477 || count != (size_t) count) 1478 { 1479 bfd_set_error (bfd_error_bad_value); 1480 return FALSE; 1481 } 1482 1483 if (!bfd_write_p (abfd)) 1484 { 1485 bfd_set_error (bfd_error_invalid_operation); 1486 return FALSE; 1487 } 1488 1489 /* Record a copy of the data in memory if desired. */ 1490 if (section->contents 1491 && location != section->contents + offset) 1492 memcpy (section->contents + offset, location, (size_t) count); 1493 1494 if (BFD_SEND (abfd, _bfd_set_section_contents, 1495 (abfd, section, location, offset, count))) 1496 { 1497 abfd->output_has_begun = TRUE; 1498 return TRUE; 1499 } 1500 1501 return FALSE; 1502 } 1503 1504 /* 1505 FUNCTION 1506 bfd_get_section_contents 1507 1508 SYNOPSIS 1509 bfd_boolean bfd_get_section_contents 1510 (bfd *abfd, asection *section, void *location, file_ptr offset, 1511 bfd_size_type count); 1512 1513 DESCRIPTION 1514 Read data from @var{section} in BFD @var{abfd} 1515 into memory starting at @var{location}. The data is read at an 1516 offset of @var{offset} from the start of the input section, 1517 and is read for @var{count} bytes. 1518 1519 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1520 flag set are requested or if the section does not have the 1521 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1522 with zeroes. If no errors occur, <<TRUE>> is returned, else 1523 <<FALSE>>. 1524 1525 */ 1526 bfd_boolean 1527 bfd_get_section_contents (bfd *abfd, 1528 sec_ptr section, 1529 void *location, 1530 file_ptr offset, 1531 bfd_size_type count) 1532 { 1533 bfd_size_type sz; 1534 1535 if (section->flags & SEC_CONSTRUCTOR) 1536 { 1537 memset (location, 0, (size_t) count); 1538 return TRUE; 1539 } 1540 1541 if (abfd->direction != write_direction && section->rawsize != 0) 1542 sz = section->rawsize; 1543 else 1544 sz = section->size; 1545 if ((bfd_size_type) offset > sz 1546 || count > sz 1547 || offset + count > sz 1548 || count != (size_t) count) 1549 { 1550 bfd_set_error (bfd_error_bad_value); 1551 return FALSE; 1552 } 1553 1554 if (count == 0) 1555 /* Don't bother. */ 1556 return TRUE; 1557 1558 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1559 { 1560 memset (location, 0, (size_t) count); 1561 return TRUE; 1562 } 1563 1564 if ((section->flags & SEC_IN_MEMORY) != 0) 1565 { 1566 if (section->contents == NULL) 1567 { 1568 /* This can happen because of errors earlier on in the linking process. 1569 We do not want to seg-fault here, so clear the flag and return an 1570 error code. */ 1571 section->flags &= ~ SEC_IN_MEMORY; 1572 bfd_set_error (bfd_error_invalid_operation); 1573 return FALSE; 1574 } 1575 1576 memmove (location, section->contents + offset, (size_t) count); 1577 return TRUE; 1578 } 1579 1580 return BFD_SEND (abfd, _bfd_get_section_contents, 1581 (abfd, section, location, offset, count)); 1582 } 1583 1584 /* 1585 FUNCTION 1586 bfd_malloc_and_get_section 1587 1588 SYNOPSIS 1589 bfd_boolean bfd_malloc_and_get_section 1590 (bfd *abfd, asection *section, bfd_byte **buf); 1591 1592 DESCRIPTION 1593 Read all data from @var{section} in BFD @var{abfd} 1594 into a buffer, *@var{buf}, malloc'd by this function. 1595 */ 1596 1597 bfd_boolean 1598 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1599 { 1600 *buf = NULL; 1601 return bfd_get_full_section_contents (abfd, sec, buf); 1602 } 1603 /* 1604 FUNCTION 1605 bfd_copy_private_section_data 1606 1607 SYNOPSIS 1608 bfd_boolean bfd_copy_private_section_data 1609 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1610 1611 DESCRIPTION 1612 Copy private section information from @var{isec} in the BFD 1613 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1614 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1615 returns are: 1616 1617 o <<bfd_error_no_memory>> - 1618 Not enough memory exists to create private data for @var{osec}. 1619 1620 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1621 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1622 . (ibfd, isection, obfd, osection)) 1623 */ 1624 1625 /* 1626 FUNCTION 1627 bfd_generic_is_group_section 1628 1629 SYNOPSIS 1630 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1631 1632 DESCRIPTION 1633 Returns TRUE if @var{sec} is a member of a group. 1634 */ 1635 1636 bfd_boolean 1637 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1638 const asection *sec ATTRIBUTE_UNUSED) 1639 { 1640 return FALSE; 1641 } 1642 1643 /* 1644 FUNCTION 1645 bfd_generic_discard_group 1646 1647 SYNOPSIS 1648 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1649 1650 DESCRIPTION 1651 Remove all members of @var{group} from the output. 1652 */ 1653 1654 bfd_boolean 1655 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1656 asection *group ATTRIBUTE_UNUSED) 1657 { 1658 return TRUE; 1659 } 1660