1 /* Object file "section" support for the BFD library. 2 Copyright (C) 1990-2015 Free Software Foundation, Inc. 3 Written by Cygnus Support. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 /* 23 SECTION 24 Sections 25 26 The raw data contained within a BFD is maintained through the 27 section abstraction. A single BFD may have any number of 28 sections. It keeps hold of them by pointing to the first; 29 each one points to the next in the list. 30 31 Sections are supported in BFD in <<section.c>>. 32 33 @menu 34 @* Section Input:: 35 @* Section Output:: 36 @* typedef asection:: 37 @* section prototypes:: 38 @end menu 39 40 INODE 41 Section Input, Section Output, Sections, Sections 42 SUBSECTION 43 Section input 44 45 When a BFD is opened for reading, the section structures are 46 created and attached to the BFD. 47 48 Each section has a name which describes the section in the 49 outside world---for example, <<a.out>> would contain at least 50 three sections, called <<.text>>, <<.data>> and <<.bss>>. 51 52 Names need not be unique; for example a COFF file may have several 53 sections named <<.data>>. 54 55 Sometimes a BFD will contain more than the ``natural'' number of 56 sections. A back end may attach other sections containing 57 constructor data, or an application may add a section (using 58 <<bfd_make_section>>) to the sections attached to an already open 59 BFD. For example, the linker creates an extra section 60 <<COMMON>> for each input file's BFD to hold information about 61 common storage. 62 63 The raw data is not necessarily read in when 64 the section descriptor is created. Some targets may leave the 65 data in place until a <<bfd_get_section_contents>> call is 66 made. Other back ends may read in all the data at once. For 67 example, an S-record file has to be read once to determine the 68 size of the data. An IEEE-695 file doesn't contain raw data in 69 sections, but data and relocation expressions intermixed, so 70 the data area has to be parsed to get out the data and 71 relocations. 72 73 INODE 74 Section Output, typedef asection, Section Input, Sections 75 76 SUBSECTION 77 Section output 78 79 To write a new object style BFD, the various sections to be 80 written have to be created. They are attached to the BFD in 81 the same way as input sections; data is written to the 82 sections using <<bfd_set_section_contents>>. 83 84 Any program that creates or combines sections (e.g., the assembler 85 and linker) must use the <<asection>> fields <<output_section>> and 86 <<output_offset>> to indicate the file sections to which each 87 section must be written. (If the section is being created from 88 scratch, <<output_section>> should probably point to the section 89 itself and <<output_offset>> should probably be zero.) 90 91 The data to be written comes from input sections attached 92 (via <<output_section>> pointers) to 93 the output sections. The output section structure can be 94 considered a filter for the input section: the output section 95 determines the vma of the output data and the name, but the 96 input section determines the offset into the output section of 97 the data to be written. 98 99 E.g., to create a section "O", starting at 0x100, 0x123 long, 100 containing two subsections, "A" at offset 0x0 (i.e., at vma 101 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the <<asection>> 102 structures would look like: 103 104 | section name "A" 105 | output_offset 0x00 106 | size 0x20 107 | output_section -----------> section name "O" 108 | | vma 0x100 109 | section name "B" | size 0x123 110 | output_offset 0x20 | 111 | size 0x103 | 112 | output_section --------| 113 114 SUBSECTION 115 Link orders 116 117 The data within a section is stored in a @dfn{link_order}. 118 These are much like the fixups in <<gas>>. The link_order 119 abstraction allows a section to grow and shrink within itself. 120 121 A link_order knows how big it is, and which is the next 122 link_order and where the raw data for it is; it also points to 123 a list of relocations which apply to it. 124 125 The link_order is used by the linker to perform relaxing on 126 final code. The compiler creates code which is as big as 127 necessary to make it work without relaxing, and the user can 128 select whether to relax. Sometimes relaxing takes a lot of 129 time. The linker runs around the relocations to see if any 130 are attached to data which can be shrunk, if so it does it on 131 a link_order by link_order basis. 132 133 */ 134 135 #include "sysdep.h" 136 #include "bfd.h" 137 #include "libbfd.h" 138 #include "bfdlink.h" 139 140 /* 141 DOCDD 142 INODE 143 typedef asection, section prototypes, Section Output, Sections 144 SUBSECTION 145 typedef asection 146 147 Here is the section structure: 148 149 CODE_FRAGMENT 150 . 151 .typedef struct bfd_section 152 .{ 153 . {* The name of the section; the name isn't a copy, the pointer is 154 . the same as that passed to bfd_make_section. *} 155 . const char *name; 156 . 157 . {* A unique sequence number. *} 158 . int id; 159 . 160 . {* Which section in the bfd; 0..n-1 as sections are created in a bfd. *} 161 . int index; 162 . 163 . {* The next section in the list belonging to the BFD, or NULL. *} 164 . struct bfd_section *next; 165 . 166 . {* The previous section in the list belonging to the BFD, or NULL. *} 167 . struct bfd_section *prev; 168 . 169 . {* The field flags contains attributes of the section. Some 170 . flags are read in from the object file, and some are 171 . synthesized from other information. *} 172 . flagword flags; 173 . 174 .#define SEC_NO_FLAGS 0x000 175 . 176 . {* Tells the OS to allocate space for this section when loading. 177 . This is clear for a section containing debug information only. *} 178 .#define SEC_ALLOC 0x001 179 . 180 . {* Tells the OS to load the section from the file when loading. 181 . This is clear for a .bss section. *} 182 .#define SEC_LOAD 0x002 183 . 184 . {* The section contains data still to be relocated, so there is 185 . some relocation information too. *} 186 .#define SEC_RELOC 0x004 187 . 188 . {* A signal to the OS that the section contains read only data. *} 189 .#define SEC_READONLY 0x008 190 . 191 . {* The section contains code only. *} 192 .#define SEC_CODE 0x010 193 . 194 . {* The section contains data only. *} 195 .#define SEC_DATA 0x020 196 . 197 . {* The section will reside in ROM. *} 198 .#define SEC_ROM 0x040 199 . 200 . {* The section contains constructor information. This section 201 . type is used by the linker to create lists of constructors and 202 . destructors used by <<g++>>. When a back end sees a symbol 203 . which should be used in a constructor list, it creates a new 204 . section for the type of name (e.g., <<__CTOR_LIST__>>), attaches 205 . the symbol to it, and builds a relocation. To build the lists 206 . of constructors, all the linker has to do is catenate all the 207 . sections called <<__CTOR_LIST__>> and relocate the data 208 . contained within - exactly the operations it would peform on 209 . standard data. *} 210 .#define SEC_CONSTRUCTOR 0x080 211 . 212 . {* The section has contents - a data section could be 213 . <<SEC_ALLOC>> | <<SEC_HAS_CONTENTS>>; a debug section could be 214 . <<SEC_HAS_CONTENTS>> *} 215 .#define SEC_HAS_CONTENTS 0x100 216 . 217 . {* An instruction to the linker to not output the section 218 . even if it has information which would normally be written. *} 219 .#define SEC_NEVER_LOAD 0x200 220 . 221 . {* The section contains thread local data. *} 222 .#define SEC_THREAD_LOCAL 0x400 223 . 224 . {* The section has GOT references. This flag is only for the 225 . linker, and is currently only used by the elf32-hppa back end. 226 . It will be set if global offset table references were detected 227 . in this section, which indicate to the linker that the section 228 . contains PIC code, and must be handled specially when doing a 229 . static link. *} 230 .#define SEC_HAS_GOT_REF 0x800 231 . 232 . {* The section contains common symbols (symbols may be defined 233 . multiple times, the value of a symbol is the amount of 234 . space it requires, and the largest symbol value is the one 235 . used). Most targets have exactly one of these (which we 236 . translate to bfd_com_section_ptr), but ECOFF has two. *} 237 .#define SEC_IS_COMMON 0x1000 238 . 239 . {* The section contains only debugging information. For 240 . example, this is set for ELF .debug and .stab sections. 241 . strip tests this flag to see if a section can be 242 . discarded. *} 243 .#define SEC_DEBUGGING 0x2000 244 . 245 . {* The contents of this section are held in memory pointed to 246 . by the contents field. This is checked by bfd_get_section_contents, 247 . and the data is retrieved from memory if appropriate. *} 248 .#define SEC_IN_MEMORY 0x4000 249 . 250 . {* The contents of this section are to be excluded by the 251 . linker for executable and shared objects unless those 252 . objects are to be further relocated. *} 253 .#define SEC_EXCLUDE 0x8000 254 . 255 . {* The contents of this section are to be sorted based on the sum of 256 . the symbol and addend values specified by the associated relocation 257 . entries. Entries without associated relocation entries will be 258 . appended to the end of the section in an unspecified order. *} 259 .#define SEC_SORT_ENTRIES 0x10000 260 . 261 . {* When linking, duplicate sections of the same name should be 262 . discarded, rather than being combined into a single section as 263 . is usually done. This is similar to how common symbols are 264 . handled. See SEC_LINK_DUPLICATES below. *} 265 .#define SEC_LINK_ONCE 0x20000 266 . 267 . {* If SEC_LINK_ONCE is set, this bitfield describes how the linker 268 . should handle duplicate sections. *} 269 .#define SEC_LINK_DUPLICATES 0xc0000 270 . 271 . {* This value for SEC_LINK_DUPLICATES means that duplicate 272 . sections with the same name should simply be discarded. *} 273 .#define SEC_LINK_DUPLICATES_DISCARD 0x0 274 . 275 . {* This value for SEC_LINK_DUPLICATES means that the linker 276 . should warn if there are any duplicate sections, although 277 . it should still only link one copy. *} 278 .#define SEC_LINK_DUPLICATES_ONE_ONLY 0x40000 279 . 280 . {* This value for SEC_LINK_DUPLICATES means that the linker 281 . should warn if any duplicate sections are a different size. *} 282 .#define SEC_LINK_DUPLICATES_SAME_SIZE 0x80000 283 . 284 . {* This value for SEC_LINK_DUPLICATES means that the linker 285 . should warn if any duplicate sections contain different 286 . contents. *} 287 .#define SEC_LINK_DUPLICATES_SAME_CONTENTS \ 288 . (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) 289 . 290 . {* This section was created by the linker as part of dynamic 291 . relocation or other arcane processing. It is skipped when 292 . going through the first-pass output, trusting that someone 293 . else up the line will take care of it later. *} 294 .#define SEC_LINKER_CREATED 0x100000 295 . 296 . {* This section should not be subject to garbage collection. 297 . Also set to inform the linker that this section should not be 298 . listed in the link map as discarded. *} 299 .#define SEC_KEEP 0x200000 300 . 301 . {* This section contains "short" data, and should be placed 302 . "near" the GP. *} 303 .#define SEC_SMALL_DATA 0x400000 304 . 305 . {* Attempt to merge identical entities in the section. 306 . Entity size is given in the entsize field. *} 307 .#define SEC_MERGE 0x800000 308 . 309 . {* If given with SEC_MERGE, entities to merge are zero terminated 310 . strings where entsize specifies character size instead of fixed 311 . size entries. *} 312 .#define SEC_STRINGS 0x1000000 313 . 314 . {* This section contains data about section groups. *} 315 .#define SEC_GROUP 0x2000000 316 . 317 . {* The section is a COFF shared library section. This flag is 318 . only for the linker. If this type of section appears in 319 . the input file, the linker must copy it to the output file 320 . without changing the vma or size. FIXME: Although this 321 . was originally intended to be general, it really is COFF 322 . specific (and the flag was renamed to indicate this). It 323 . might be cleaner to have some more general mechanism to 324 . allow the back end to control what the linker does with 325 . sections. *} 326 .#define SEC_COFF_SHARED_LIBRARY 0x4000000 327 . 328 . {* This input section should be copied to output in reverse order 329 . as an array of pointers. This is for ELF linker internal use 330 . only. *} 331 .#define SEC_ELF_REVERSE_COPY 0x4000000 332 . 333 . {* This section contains data which may be shared with other 334 . executables or shared objects. This is for COFF only. *} 335 .#define SEC_COFF_SHARED 0x8000000 336 . 337 . {* This section should be compressed. This is for ELF linker 338 . internal use only. *} 339 .#define SEC_ELF_COMPRESS 0x8000000 340 . 341 . {* When a section with this flag is being linked, then if the size of 342 . the input section is less than a page, it should not cross a page 343 . boundary. If the size of the input section is one page or more, 344 . it should be aligned on a page boundary. This is for TI 345 . TMS320C54X only. *} 346 .#define SEC_TIC54X_BLOCK 0x10000000 347 . 348 . {* This section should be renamed. This is for ELF linker 349 . internal use only. *} 350 .#define SEC_ELF_RENAME 0x10000000 351 . 352 . {* Conditionally link this section; do not link if there are no 353 . references found to any symbol in the section. This is for TI 354 . TMS320C54X only. *} 355 .#define SEC_TIC54X_CLINK 0x20000000 356 . 357 . {* This section contains vliw code. This is for Toshiba MeP only. *} 358 .#define SEC_MEP_VLIW 0x20000000 359 . 360 . {* Indicate that section has the no read flag set. This happens 361 . when memory read flag isn't set. *} 362 .#define SEC_COFF_NOREAD 0x40000000 363 . 364 . {* End of section flags. *} 365 . 366 . {* Some internal packed boolean fields. *} 367 . 368 . {* See the vma field. *} 369 . unsigned int user_set_vma : 1; 370 . 371 . {* A mark flag used by some of the linker backends. *} 372 . unsigned int linker_mark : 1; 373 . 374 . {* Another mark flag used by some of the linker backends. Set for 375 . output sections that have an input section. *} 376 . unsigned int linker_has_input : 1; 377 . 378 . {* Mark flag used by some linker backends for garbage collection. *} 379 . unsigned int gc_mark : 1; 380 . 381 . {* Section compression status. *} 382 . unsigned int compress_status : 2; 383 .#define COMPRESS_SECTION_NONE 0 384 .#define COMPRESS_SECTION_DONE 1 385 .#define DECOMPRESS_SECTION_SIZED 2 386 . 387 . {* The following flags are used by the ELF linker. *} 388 . 389 . {* Mark sections which have been allocated to segments. *} 390 . unsigned int segment_mark : 1; 391 . 392 . {* Type of sec_info information. *} 393 . unsigned int sec_info_type:3; 394 .#define SEC_INFO_TYPE_NONE 0 395 .#define SEC_INFO_TYPE_STABS 1 396 .#define SEC_INFO_TYPE_MERGE 2 397 .#define SEC_INFO_TYPE_EH_FRAME 3 398 .#define SEC_INFO_TYPE_JUST_SYMS 4 399 .#define SEC_INFO_TYPE_TARGET 5 400 .#define SEC_INFO_TYPE_EH_FRAME_ENTRY 6 401 . 402 . {* Nonzero if this section uses RELA relocations, rather than REL. *} 403 . unsigned int use_rela_p:1; 404 . 405 . {* Bits used by various backends. The generic code doesn't touch 406 . these fields. *} 407 . 408 . unsigned int sec_flg0:1; 409 . unsigned int sec_flg1:1; 410 . unsigned int sec_flg2:1; 411 . unsigned int sec_flg3:1; 412 . unsigned int sec_flg4:1; 413 . unsigned int sec_flg5:1; 414 . 415 . {* End of internal packed boolean fields. *} 416 . 417 . {* The virtual memory address of the section - where it will be 418 . at run time. The symbols are relocated against this. The 419 . user_set_vma flag is maintained by bfd; if it's not set, the 420 . backend can assign addresses (for example, in <<a.out>>, where 421 . the default address for <<.data>> is dependent on the specific 422 . target and various flags). *} 423 . bfd_vma vma; 424 . 425 . {* The load address of the section - where it would be in a 426 . rom image; really only used for writing section header 427 . information. *} 428 . bfd_vma lma; 429 . 430 . {* The size of the section in octets, as it will be output. 431 . Contains a value even if the section has no contents (e.g., the 432 . size of <<.bss>>). *} 433 . bfd_size_type size; 434 . 435 . {* For input sections, the original size on disk of the section, in 436 . octets. This field should be set for any section whose size is 437 . changed by linker relaxation. It is required for sections where 438 . the linker relaxation scheme doesn't cache altered section and 439 . reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing 440 . targets), and thus the original size needs to be kept to read the 441 . section multiple times. For output sections, rawsize holds the 442 . section size calculated on a previous linker relaxation pass. *} 443 . bfd_size_type rawsize; 444 . 445 . {* The compressed size of the section in octets. *} 446 . bfd_size_type compressed_size; 447 . 448 . {* Relaxation table. *} 449 . struct relax_table *relax; 450 . 451 . {* Count of used relaxation table entries. *} 452 . int relax_count; 453 . 454 . 455 . {* If this section is going to be output, then this value is the 456 . offset in *bytes* into the output section of the first byte in the 457 . input section (byte ==> smallest addressable unit on the 458 . target). In most cases, if this was going to start at the 459 . 100th octet (8-bit quantity) in the output section, this value 460 . would be 100. However, if the target byte size is 16 bits 461 . (bfd_octets_per_byte is "2"), this value would be 50. *} 462 . bfd_vma output_offset; 463 . 464 . {* The output section through which to map on output. *} 465 . struct bfd_section *output_section; 466 . 467 . {* The alignment requirement of the section, as an exponent of 2 - 468 . e.g., 3 aligns to 2^3 (or 8). *} 469 . unsigned int alignment_power; 470 . 471 . {* If an input section, a pointer to a vector of relocation 472 . records for the data in this section. *} 473 . struct reloc_cache_entry *relocation; 474 . 475 . {* If an output section, a pointer to a vector of pointers to 476 . relocation records for the data in this section. *} 477 . struct reloc_cache_entry **orelocation; 478 . 479 . {* The number of relocation records in one of the above. *} 480 . unsigned reloc_count; 481 . 482 . {* Information below is back end specific - and not always used 483 . or updated. *} 484 . 485 . {* File position of section data. *} 486 . file_ptr filepos; 487 . 488 . {* File position of relocation info. *} 489 . file_ptr rel_filepos; 490 . 491 . {* File position of line data. *} 492 . file_ptr line_filepos; 493 . 494 . {* Pointer to data for applications. *} 495 . void *userdata; 496 . 497 . {* If the SEC_IN_MEMORY flag is set, this points to the actual 498 . contents. *} 499 . unsigned char *contents; 500 . 501 . {* Attached line number information. *} 502 . alent *lineno; 503 . 504 . {* Number of line number records. *} 505 . unsigned int lineno_count; 506 . 507 . {* Entity size for merging purposes. *} 508 . unsigned int entsize; 509 . 510 . {* Points to the kept section if this section is a link-once section, 511 . and is discarded. *} 512 . struct bfd_section *kept_section; 513 . 514 . {* When a section is being output, this value changes as more 515 . linenumbers are written out. *} 516 . file_ptr moving_line_filepos; 517 . 518 . {* What the section number is in the target world. *} 519 . int target_index; 520 . 521 . void *used_by_bfd; 522 . 523 . {* If this is a constructor section then here is a list of the 524 . relocations created to relocate items within it. *} 525 . struct relent_chain *constructor_chain; 526 . 527 . {* The BFD which owns the section. *} 528 . bfd *owner; 529 . 530 . {* A symbol which points at this section only. *} 531 . struct bfd_symbol *symbol; 532 . struct bfd_symbol **symbol_ptr_ptr; 533 . 534 . {* Early in the link process, map_head and map_tail are used to build 535 . a list of input sections attached to an output section. Later, 536 . output sections use these fields for a list of bfd_link_order 537 . structs. *} 538 . union { 539 . struct bfd_link_order *link_order; 540 . struct bfd_section *s; 541 . } map_head, map_tail; 542 .} asection; 543 . 544 .{* Relax table contains information about instructions which can 545 . be removed by relaxation -- replacing a long address with a 546 . short address. *} 547 .struct relax_table { 548 . {* Address where bytes may be deleted. *} 549 . bfd_vma addr; 550 . 551 . {* Number of bytes to be deleted. *} 552 . int size; 553 .}; 554 . 555 .{* Note: the following are provided as inline functions rather than macros 556 . because not all callers use the return value. A macro implementation 557 . would use a comma expression, eg: "((ptr)->foo = val, TRUE)" and some 558 . compilers will complain about comma expressions that have no effect. *} 559 .static inline bfd_boolean 560 .bfd_set_section_userdata (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, void * val) 561 .{ 562 . ptr->userdata = val; 563 . return TRUE; 564 .} 565 . 566 .static inline bfd_boolean 567 .bfd_set_section_vma (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, bfd_vma val) 568 .{ 569 . ptr->vma = ptr->lma = val; 570 . ptr->user_set_vma = TRUE; 571 . return TRUE; 572 .} 573 . 574 .static inline bfd_boolean 575 .bfd_set_section_alignment (bfd * abfd ATTRIBUTE_UNUSED, asection * ptr, unsigned int val) 576 .{ 577 . ptr->alignment_power = val; 578 . return TRUE; 579 .} 580 . 581 .{* These sections are global, and are managed by BFD. The application 582 . and target back end are not permitted to change the values in 583 . these sections. *} 584 .extern asection _bfd_std_section[4]; 585 . 586 .#define BFD_ABS_SECTION_NAME "*ABS*" 587 .#define BFD_UND_SECTION_NAME "*UND*" 588 .#define BFD_COM_SECTION_NAME "*COM*" 589 .#define BFD_IND_SECTION_NAME "*IND*" 590 . 591 .{* Pointer to the common section. *} 592 .#define bfd_com_section_ptr (&_bfd_std_section[0]) 593 .{* Pointer to the undefined section. *} 594 .#define bfd_und_section_ptr (&_bfd_std_section[1]) 595 .{* Pointer to the absolute section. *} 596 .#define bfd_abs_section_ptr (&_bfd_std_section[2]) 597 .{* Pointer to the indirect section. *} 598 .#define bfd_ind_section_ptr (&_bfd_std_section[3]) 599 . 600 .#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) 601 .#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) 602 .#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) 603 . 604 .#define bfd_is_const_section(SEC) \ 605 . ( ((SEC) == bfd_abs_section_ptr) \ 606 . || ((SEC) == bfd_und_section_ptr) \ 607 . || ((SEC) == bfd_com_section_ptr) \ 608 . || ((SEC) == bfd_ind_section_ptr)) 609 . 610 .{* Macros to handle insertion and deletion of a bfd's sections. These 611 . only handle the list pointers, ie. do not adjust section_count, 612 . target_index etc. *} 613 .#define bfd_section_list_remove(ABFD, S) \ 614 . do \ 615 . { \ 616 . asection *_s = S; \ 617 . asection *_next = _s->next; \ 618 . asection *_prev = _s->prev; \ 619 . if (_prev) \ 620 . _prev->next = _next; \ 621 . else \ 622 . (ABFD)->sections = _next; \ 623 . if (_next) \ 624 . _next->prev = _prev; \ 625 . else \ 626 . (ABFD)->section_last = _prev; \ 627 . } \ 628 . while (0) 629 .#define bfd_section_list_append(ABFD, S) \ 630 . do \ 631 . { \ 632 . asection *_s = S; \ 633 . bfd *_abfd = ABFD; \ 634 . _s->next = NULL; \ 635 . if (_abfd->section_last) \ 636 . { \ 637 . _s->prev = _abfd->section_last; \ 638 . _abfd->section_last->next = _s; \ 639 . } \ 640 . else \ 641 . { \ 642 . _s->prev = NULL; \ 643 . _abfd->sections = _s; \ 644 . } \ 645 . _abfd->section_last = _s; \ 646 . } \ 647 . while (0) 648 .#define bfd_section_list_prepend(ABFD, S) \ 649 . do \ 650 . { \ 651 . asection *_s = S; \ 652 . bfd *_abfd = ABFD; \ 653 . _s->prev = NULL; \ 654 . if (_abfd->sections) \ 655 . { \ 656 . _s->next = _abfd->sections; \ 657 . _abfd->sections->prev = _s; \ 658 . } \ 659 . else \ 660 . { \ 661 . _s->next = NULL; \ 662 . _abfd->section_last = _s; \ 663 . } \ 664 . _abfd->sections = _s; \ 665 . } \ 666 . while (0) 667 .#define bfd_section_list_insert_after(ABFD, A, S) \ 668 . do \ 669 . { \ 670 . asection *_a = A; \ 671 . asection *_s = S; \ 672 . asection *_next = _a->next; \ 673 . _s->next = _next; \ 674 . _s->prev = _a; \ 675 . _a->next = _s; \ 676 . if (_next) \ 677 . _next->prev = _s; \ 678 . else \ 679 . (ABFD)->section_last = _s; \ 680 . } \ 681 . while (0) 682 .#define bfd_section_list_insert_before(ABFD, B, S) \ 683 . do \ 684 . { \ 685 . asection *_b = B; \ 686 . asection *_s = S; \ 687 . asection *_prev = _b->prev; \ 688 . _s->prev = _prev; \ 689 . _s->next = _b; \ 690 . _b->prev = _s; \ 691 . if (_prev) \ 692 . _prev->next = _s; \ 693 . else \ 694 . (ABFD)->sections = _s; \ 695 . } \ 696 . while (0) 697 .#define bfd_section_removed_from_list(ABFD, S) \ 698 . ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) 699 . 700 .#define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ 701 . {* name, id, index, next, prev, flags, user_set_vma, *} \ 702 . { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ 703 . \ 704 . {* linker_mark, linker_has_input, gc_mark, decompress_status, *} \ 705 . 0, 0, 1, 0, \ 706 . \ 707 . {* segment_mark, sec_info_type, use_rela_p, *} \ 708 . 0, 0, 0, \ 709 . \ 710 . {* sec_flg0, sec_flg1, sec_flg2, sec_flg3, sec_flg4, sec_flg5, *} \ 711 . 0, 0, 0, 0, 0, 0, \ 712 . \ 713 . {* vma, lma, size, rawsize, compressed_size, relax, relax_count, *} \ 714 . 0, 0, 0, 0, 0, 0, 0, \ 715 . \ 716 . {* output_offset, output_section, alignment_power, *} \ 717 . 0, &SEC, 0, \ 718 . \ 719 . {* relocation, orelocation, reloc_count, filepos, rel_filepos, *} \ 720 . NULL, NULL, 0, 0, 0, \ 721 . \ 722 . {* line_filepos, userdata, contents, lineno, lineno_count, *} \ 723 . 0, NULL, NULL, NULL, 0, \ 724 . \ 725 . {* entsize, kept_section, moving_line_filepos, *} \ 726 . 0, NULL, 0, \ 727 . \ 728 . {* target_index, used_by_bfd, constructor_chain, owner, *} \ 729 . 0, NULL, NULL, NULL, \ 730 . \ 731 . {* symbol, symbol_ptr_ptr, *} \ 732 . (struct bfd_symbol *) SYM, &SEC.symbol, \ 733 . \ 734 . {* map_head, map_tail *} \ 735 . { NULL }, { NULL } \ 736 . } 737 . 738 */ 739 740 /* We use a macro to initialize the static asymbol structures because 741 traditional C does not permit us to initialize a union member while 742 gcc warns if we don't initialize it. */ 743 /* the_bfd, name, value, attr, section [, udata] */ 744 #ifdef __STDC__ 745 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 746 { 0, NAME, 0, BSF_SECTION_SYM, SECTION, { 0 }} 747 #else 748 #define GLOBAL_SYM_INIT(NAME, SECTION) \ 749 { 0, NAME, 0, BSF_SECTION_SYM, SECTION } 750 #endif 751 752 /* These symbols are global, not specific to any BFD. Therefore, anything 753 that tries to change them is broken, and should be repaired. */ 754 755 static const asymbol global_syms[] = 756 { 757 GLOBAL_SYM_INIT (BFD_COM_SECTION_NAME, bfd_com_section_ptr), 758 GLOBAL_SYM_INIT (BFD_UND_SECTION_NAME, bfd_und_section_ptr), 759 GLOBAL_SYM_INIT (BFD_ABS_SECTION_NAME, bfd_abs_section_ptr), 760 GLOBAL_SYM_INIT (BFD_IND_SECTION_NAME, bfd_ind_section_ptr) 761 }; 762 763 #define STD_SECTION(NAME, IDX, FLAGS) \ 764 BFD_FAKE_SECTION(_bfd_std_section[IDX], FLAGS, &global_syms[IDX], NAME, IDX) 765 766 asection _bfd_std_section[] = { 767 STD_SECTION (BFD_COM_SECTION_NAME, 0, SEC_IS_COMMON), 768 STD_SECTION (BFD_UND_SECTION_NAME, 1, 0), 769 STD_SECTION (BFD_ABS_SECTION_NAME, 2, 0), 770 STD_SECTION (BFD_IND_SECTION_NAME, 3, 0) 771 }; 772 #undef STD_SECTION 773 774 /* Initialize an entry in the section hash table. */ 775 776 struct bfd_hash_entry * 777 bfd_section_hash_newfunc (struct bfd_hash_entry *entry, 778 struct bfd_hash_table *table, 779 const char *string) 780 { 781 /* Allocate the structure if it has not already been allocated by a 782 subclass. */ 783 if (entry == NULL) 784 { 785 entry = (struct bfd_hash_entry *) 786 bfd_hash_allocate (table, sizeof (struct section_hash_entry)); 787 if (entry == NULL) 788 return entry; 789 } 790 791 /* Call the allocation method of the superclass. */ 792 entry = bfd_hash_newfunc (entry, table, string); 793 if (entry != NULL) 794 memset (&((struct section_hash_entry *) entry)->section, 0, 795 sizeof (asection)); 796 797 return entry; 798 } 799 800 #define section_hash_lookup(table, string, create, copy) \ 801 ((struct section_hash_entry *) \ 802 bfd_hash_lookup ((table), (string), (create), (copy))) 803 804 /* Create a symbol whose only job is to point to this section. This 805 is useful for things like relocs which are relative to the base 806 of a section. */ 807 808 bfd_boolean 809 _bfd_generic_new_section_hook (bfd *abfd, asection *newsect) 810 { 811 newsect->symbol = bfd_make_empty_symbol (abfd); 812 if (newsect->symbol == NULL) 813 return FALSE; 814 815 newsect->symbol->name = newsect->name; 816 newsect->symbol->value = 0; 817 newsect->symbol->section = newsect; 818 newsect->symbol->flags = BSF_SECTION_SYM; 819 820 newsect->symbol_ptr_ptr = &newsect->symbol; 821 return TRUE; 822 } 823 824 /* Initializes a new section. NEWSECT->NAME is already set. */ 825 826 static asection * 827 bfd_section_init (bfd *abfd, asection *newsect) 828 { 829 static int section_id = 0x10; /* id 0 to 3 used by STD_SECTION. */ 830 831 newsect->id = section_id; 832 newsect->index = abfd->section_count; 833 newsect->owner = abfd; 834 835 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 836 return NULL; 837 838 section_id++; 839 abfd->section_count++; 840 bfd_section_list_append (abfd, newsect); 841 return newsect; 842 } 843 844 /* 845 DOCDD 846 INODE 847 section prototypes, , typedef asection, Sections 848 SUBSECTION 849 Section prototypes 850 851 These are the functions exported by the section handling part of BFD. 852 */ 853 854 /* 855 FUNCTION 856 bfd_section_list_clear 857 858 SYNOPSIS 859 void bfd_section_list_clear (bfd *); 860 861 DESCRIPTION 862 Clears the section list, and also resets the section count and 863 hash table entries. 864 */ 865 866 void 867 bfd_section_list_clear (bfd *abfd) 868 { 869 abfd->sections = NULL; 870 abfd->section_last = NULL; 871 abfd->section_count = 0; 872 memset (abfd->section_htab.table, 0, 873 abfd->section_htab.size * sizeof (struct bfd_hash_entry *)); 874 abfd->section_htab.count = 0; 875 } 876 877 /* 878 FUNCTION 879 bfd_get_section_by_name 880 881 SYNOPSIS 882 asection *bfd_get_section_by_name (bfd *abfd, const char *name); 883 884 DESCRIPTION 885 Return the most recently created section attached to @var{abfd} 886 named @var{name}. Return NULL if no such section exists. 887 */ 888 889 asection * 890 bfd_get_section_by_name (bfd *abfd, const char *name) 891 { 892 struct section_hash_entry *sh; 893 894 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 895 if (sh != NULL) 896 return &sh->section; 897 898 return NULL; 899 } 900 901 /* 902 FUNCTION 903 bfd_get_next_section_by_name 904 905 SYNOPSIS 906 asection *bfd_get_next_section_by_name (asection *sec); 907 908 DESCRIPTION 909 Given @var{sec} is a section returned by @code{bfd_get_section_by_name}, 910 return the next most recently created section attached to the same 911 BFD with the same name. Return NULL if no such section exists. 912 */ 913 914 asection * 915 bfd_get_next_section_by_name (asection *sec) 916 { 917 struct section_hash_entry *sh; 918 const char *name; 919 unsigned long hash; 920 921 sh = ((struct section_hash_entry *) 922 ((char *) sec - offsetof (struct section_hash_entry, section))); 923 924 hash = sh->root.hash; 925 name = sec->name; 926 for (sh = (struct section_hash_entry *) sh->root.next; 927 sh != NULL; 928 sh = (struct section_hash_entry *) sh->root.next) 929 if (sh->root.hash == hash 930 && strcmp (sh->root.string, name) == 0) 931 return &sh->section; 932 933 return NULL; 934 } 935 936 /* 937 FUNCTION 938 bfd_get_linker_section 939 940 SYNOPSIS 941 asection *bfd_get_linker_section (bfd *abfd, const char *name); 942 943 DESCRIPTION 944 Return the linker created section attached to @var{abfd} 945 named @var{name}. Return NULL if no such section exists. 946 */ 947 948 asection * 949 bfd_get_linker_section (bfd *abfd, const char *name) 950 { 951 asection *sec = bfd_get_section_by_name (abfd, name); 952 953 while (sec != NULL && (sec->flags & SEC_LINKER_CREATED) == 0) 954 sec = bfd_get_next_section_by_name (sec); 955 return sec; 956 } 957 958 /* 959 FUNCTION 960 bfd_get_section_by_name_if 961 962 SYNOPSIS 963 asection *bfd_get_section_by_name_if 964 (bfd *abfd, 965 const char *name, 966 bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), 967 void *obj); 968 969 DESCRIPTION 970 Call the provided function @var{func} for each section 971 attached to the BFD @var{abfd} whose name matches @var{name}, 972 passing @var{obj} as an argument. The function will be called 973 as if by 974 975 | func (abfd, the_section, obj); 976 977 It returns the first section for which @var{func} returns true, 978 otherwise <<NULL>>. 979 980 */ 981 982 asection * 983 bfd_get_section_by_name_if (bfd *abfd, const char *name, 984 bfd_boolean (*operation) (bfd *, 985 asection *, 986 void *), 987 void *user_storage) 988 { 989 struct section_hash_entry *sh; 990 unsigned long hash; 991 992 sh = section_hash_lookup (&abfd->section_htab, name, FALSE, FALSE); 993 if (sh == NULL) 994 return NULL; 995 996 hash = sh->root.hash; 997 do 998 { 999 if ((*operation) (abfd, &sh->section, user_storage)) 1000 return &sh->section; 1001 sh = (struct section_hash_entry *) sh->root.next; 1002 } 1003 while (sh != NULL && sh->root.hash == hash 1004 && strcmp (sh->root.string, name) == 0); 1005 1006 return NULL; 1007 } 1008 1009 /* 1010 FUNCTION 1011 bfd_get_unique_section_name 1012 1013 SYNOPSIS 1014 char *bfd_get_unique_section_name 1015 (bfd *abfd, const char *templat, int *count); 1016 1017 DESCRIPTION 1018 Invent a section name that is unique in @var{abfd} by tacking 1019 a dot and a digit suffix onto the original @var{templat}. If 1020 @var{count} is non-NULL, then it specifies the first number 1021 tried as a suffix to generate a unique name. The value 1022 pointed to by @var{count} will be incremented in this case. 1023 */ 1024 1025 char * 1026 bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count) 1027 { 1028 int num; 1029 unsigned int len; 1030 char *sname; 1031 1032 len = strlen (templat); 1033 sname = (char *) bfd_malloc (len + 8); 1034 if (sname == NULL) 1035 return NULL; 1036 memcpy (sname, templat, len); 1037 num = 1; 1038 if (count != NULL) 1039 num = *count; 1040 1041 do 1042 { 1043 /* If we have a million sections, something is badly wrong. */ 1044 if (num > 999999) 1045 abort (); 1046 sprintf (sname + len, ".%d", num++); 1047 } 1048 while (section_hash_lookup (&abfd->section_htab, sname, FALSE, FALSE)); 1049 1050 if (count != NULL) 1051 *count = num; 1052 return sname; 1053 } 1054 1055 /* 1056 FUNCTION 1057 bfd_make_section_old_way 1058 1059 SYNOPSIS 1060 asection *bfd_make_section_old_way (bfd *abfd, const char *name); 1061 1062 DESCRIPTION 1063 Create a new empty section called @var{name} 1064 and attach it to the end of the chain of sections for the 1065 BFD @var{abfd}. An attempt to create a section with a name which 1066 is already in use returns its pointer without changing the 1067 section chain. 1068 1069 It has the funny name since this is the way it used to be 1070 before it was rewritten.... 1071 1072 Possible errors are: 1073 o <<bfd_error_invalid_operation>> - 1074 If output has already started for this BFD. 1075 o <<bfd_error_no_memory>> - 1076 If memory allocation fails. 1077 1078 */ 1079 1080 asection * 1081 bfd_make_section_old_way (bfd *abfd, const char *name) 1082 { 1083 asection *newsect; 1084 1085 if (abfd->output_has_begun) 1086 { 1087 bfd_set_error (bfd_error_invalid_operation); 1088 return NULL; 1089 } 1090 1091 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0) 1092 newsect = bfd_abs_section_ptr; 1093 else if (strcmp (name, BFD_COM_SECTION_NAME) == 0) 1094 newsect = bfd_com_section_ptr; 1095 else if (strcmp (name, BFD_UND_SECTION_NAME) == 0) 1096 newsect = bfd_und_section_ptr; 1097 else if (strcmp (name, BFD_IND_SECTION_NAME) == 0) 1098 newsect = bfd_ind_section_ptr; 1099 else 1100 { 1101 struct section_hash_entry *sh; 1102 1103 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1104 if (sh == NULL) 1105 return NULL; 1106 1107 newsect = &sh->section; 1108 if (newsect->name != NULL) 1109 { 1110 /* Section already exists. */ 1111 return newsect; 1112 } 1113 1114 newsect->name = name; 1115 return bfd_section_init (abfd, newsect); 1116 } 1117 1118 /* Call new_section_hook when "creating" the standard abs, com, und 1119 and ind sections to tack on format specific section data. 1120 Also, create a proper section symbol. */ 1121 if (! BFD_SEND (abfd, _new_section_hook, (abfd, newsect))) 1122 return NULL; 1123 return newsect; 1124 } 1125 1126 /* 1127 FUNCTION 1128 bfd_make_section_anyway_with_flags 1129 1130 SYNOPSIS 1131 asection *bfd_make_section_anyway_with_flags 1132 (bfd *abfd, const char *name, flagword flags); 1133 1134 DESCRIPTION 1135 Create a new empty section called @var{name} and attach it to the end of 1136 the chain of sections for @var{abfd}. Create a new section even if there 1137 is already a section with that name. Also set the attributes of the 1138 new section to the value @var{flags}. 1139 1140 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1141 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1142 o <<bfd_error_no_memory>> - If memory allocation fails. 1143 */ 1144 1145 sec_ptr 1146 bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, 1147 flagword flags) 1148 { 1149 struct section_hash_entry *sh; 1150 asection *newsect; 1151 1152 if (abfd->output_has_begun) 1153 { 1154 bfd_set_error (bfd_error_invalid_operation); 1155 return NULL; 1156 } 1157 1158 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1159 if (sh == NULL) 1160 return NULL; 1161 1162 newsect = &sh->section; 1163 if (newsect->name != NULL) 1164 { 1165 /* We are making a section of the same name. Put it in the 1166 section hash table. Even though we can't find it directly by a 1167 hash lookup, we'll be able to find the section by traversing 1168 sh->root.next quicker than looking at all the bfd sections. */ 1169 struct section_hash_entry *new_sh; 1170 new_sh = (struct section_hash_entry *) 1171 bfd_section_hash_newfunc (NULL, &abfd->section_htab, name); 1172 if (new_sh == NULL) 1173 return NULL; 1174 1175 new_sh->root = sh->root; 1176 sh->root.next = &new_sh->root; 1177 newsect = &new_sh->section; 1178 } 1179 1180 newsect->flags = flags; 1181 newsect->name = name; 1182 return bfd_section_init (abfd, newsect); 1183 } 1184 1185 /* 1186 FUNCTION 1187 bfd_make_section_anyway 1188 1189 SYNOPSIS 1190 asection *bfd_make_section_anyway (bfd *abfd, const char *name); 1191 1192 DESCRIPTION 1193 Create a new empty section called @var{name} and attach it to the end of 1194 the chain of sections for @var{abfd}. Create a new section even if there 1195 is already a section with that name. 1196 1197 Return <<NULL>> and set <<bfd_error>> on error; possible errors are: 1198 o <<bfd_error_invalid_operation>> - If output has already started for @var{abfd}. 1199 o <<bfd_error_no_memory>> - If memory allocation fails. 1200 */ 1201 1202 sec_ptr 1203 bfd_make_section_anyway (bfd *abfd, const char *name) 1204 { 1205 return bfd_make_section_anyway_with_flags (abfd, name, 0); 1206 } 1207 1208 /* 1209 FUNCTION 1210 bfd_make_section_with_flags 1211 1212 SYNOPSIS 1213 asection *bfd_make_section_with_flags 1214 (bfd *, const char *name, flagword flags); 1215 1216 DESCRIPTION 1217 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1218 bfd_set_error ()) without changing the section chain if there is already a 1219 section named @var{name}. Also set the attributes of the new section to 1220 the value @var{flags}. If there is an error, return <<NULL>> and set 1221 <<bfd_error>>. 1222 */ 1223 1224 asection * 1225 bfd_make_section_with_flags (bfd *abfd, const char *name, 1226 flagword flags) 1227 { 1228 struct section_hash_entry *sh; 1229 asection *newsect; 1230 1231 if (abfd->output_has_begun) 1232 { 1233 bfd_set_error (bfd_error_invalid_operation); 1234 return NULL; 1235 } 1236 1237 if (strcmp (name, BFD_ABS_SECTION_NAME) == 0 1238 || strcmp (name, BFD_COM_SECTION_NAME) == 0 1239 || strcmp (name, BFD_UND_SECTION_NAME) == 0 1240 || strcmp (name, BFD_IND_SECTION_NAME) == 0) 1241 return NULL; 1242 1243 sh = section_hash_lookup (&abfd->section_htab, name, TRUE, FALSE); 1244 if (sh == NULL) 1245 return NULL; 1246 1247 newsect = &sh->section; 1248 if (newsect->name != NULL) 1249 { 1250 /* Section already exists. */ 1251 return NULL; 1252 } 1253 1254 newsect->name = name; 1255 newsect->flags = flags; 1256 return bfd_section_init (abfd, newsect); 1257 } 1258 1259 /* 1260 FUNCTION 1261 bfd_make_section 1262 1263 SYNOPSIS 1264 asection *bfd_make_section (bfd *, const char *name); 1265 1266 DESCRIPTION 1267 Like <<bfd_make_section_anyway>>, but return <<NULL>> (without calling 1268 bfd_set_error ()) without changing the section chain if there is already a 1269 section named @var{name}. If there is an error, return <<NULL>> and set 1270 <<bfd_error>>. 1271 */ 1272 1273 asection * 1274 bfd_make_section (bfd *abfd, const char *name) 1275 { 1276 return bfd_make_section_with_flags (abfd, name, 0); 1277 } 1278 1279 /* 1280 FUNCTION 1281 bfd_set_section_flags 1282 1283 SYNOPSIS 1284 bfd_boolean bfd_set_section_flags 1285 (bfd *abfd, asection *sec, flagword flags); 1286 1287 DESCRIPTION 1288 Set the attributes of the section @var{sec} in the BFD 1289 @var{abfd} to the value @var{flags}. Return <<TRUE>> on success, 1290 <<FALSE>> on error. Possible error returns are: 1291 1292 o <<bfd_error_invalid_operation>> - 1293 The section cannot have one or more of the attributes 1294 requested. For example, a .bss section in <<a.out>> may not 1295 have the <<SEC_HAS_CONTENTS>> field set. 1296 1297 */ 1298 1299 bfd_boolean 1300 bfd_set_section_flags (bfd *abfd ATTRIBUTE_UNUSED, 1301 sec_ptr section, 1302 flagword flags) 1303 { 1304 section->flags = flags; 1305 return TRUE; 1306 } 1307 1308 /* 1309 FUNCTION 1310 bfd_rename_section 1311 1312 SYNOPSIS 1313 void bfd_rename_section 1314 (bfd *abfd, asection *sec, const char *newname); 1315 1316 DESCRIPTION 1317 Rename section @var{sec} in @var{abfd} to @var{newname}. 1318 */ 1319 1320 void 1321 bfd_rename_section (bfd *abfd, sec_ptr sec, const char *newname) 1322 { 1323 struct section_hash_entry *sh; 1324 1325 sh = (struct section_hash_entry *) 1326 ((char *) sec - offsetof (struct section_hash_entry, section)); 1327 sh->section.name = newname; 1328 bfd_hash_rename (&abfd->section_htab, newname, &sh->root); 1329 } 1330 1331 /* 1332 FUNCTION 1333 bfd_map_over_sections 1334 1335 SYNOPSIS 1336 void bfd_map_over_sections 1337 (bfd *abfd, 1338 void (*func) (bfd *abfd, asection *sect, void *obj), 1339 void *obj); 1340 1341 DESCRIPTION 1342 Call the provided function @var{func} for each section 1343 attached to the BFD @var{abfd}, passing @var{obj} as an 1344 argument. The function will be called as if by 1345 1346 | func (abfd, the_section, obj); 1347 1348 This is the preferred method for iterating over sections; an 1349 alternative would be to use a loop: 1350 1351 | asection *p; 1352 | for (p = abfd->sections; p != NULL; p = p->next) 1353 | func (abfd, p, ...) 1354 1355 */ 1356 1357 void 1358 bfd_map_over_sections (bfd *abfd, 1359 void (*operation) (bfd *, asection *, void *), 1360 void *user_storage) 1361 { 1362 asection *sect; 1363 unsigned int i = 0; 1364 1365 for (sect = abfd->sections; sect != NULL; i++, sect = sect->next) 1366 (*operation) (abfd, sect, user_storage); 1367 1368 if (i != abfd->section_count) /* Debugging */ 1369 abort (); 1370 } 1371 1372 /* 1373 FUNCTION 1374 bfd_sections_find_if 1375 1376 SYNOPSIS 1377 asection *bfd_sections_find_if 1378 (bfd *abfd, 1379 bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), 1380 void *obj); 1381 1382 DESCRIPTION 1383 Call the provided function @var{operation} for each section 1384 attached to the BFD @var{abfd}, passing @var{obj} as an 1385 argument. The function will be called as if by 1386 1387 | operation (abfd, the_section, obj); 1388 1389 It returns the first section for which @var{operation} returns true. 1390 1391 */ 1392 1393 asection * 1394 bfd_sections_find_if (bfd *abfd, 1395 bfd_boolean (*operation) (bfd *, asection *, void *), 1396 void *user_storage) 1397 { 1398 asection *sect; 1399 1400 for (sect = abfd->sections; sect != NULL; sect = sect->next) 1401 if ((*operation) (abfd, sect, user_storage)) 1402 break; 1403 1404 return sect; 1405 } 1406 1407 /* 1408 FUNCTION 1409 bfd_set_section_size 1410 1411 SYNOPSIS 1412 bfd_boolean bfd_set_section_size 1413 (bfd *abfd, asection *sec, bfd_size_type val); 1414 1415 DESCRIPTION 1416 Set @var{sec} to the size @var{val}. If the operation is 1417 ok, then <<TRUE>> is returned, else <<FALSE>>. 1418 1419 Possible error returns: 1420 o <<bfd_error_invalid_operation>> - 1421 Writing has started to the BFD, so setting the size is invalid. 1422 1423 */ 1424 1425 bfd_boolean 1426 bfd_set_section_size (bfd *abfd, sec_ptr ptr, bfd_size_type val) 1427 { 1428 /* Once you've started writing to any section you cannot create or change 1429 the size of any others. */ 1430 1431 if (abfd->output_has_begun) 1432 { 1433 bfd_set_error (bfd_error_invalid_operation); 1434 return FALSE; 1435 } 1436 1437 ptr->size = val; 1438 return TRUE; 1439 } 1440 1441 /* 1442 FUNCTION 1443 bfd_set_section_contents 1444 1445 SYNOPSIS 1446 bfd_boolean bfd_set_section_contents 1447 (bfd *abfd, asection *section, const void *data, 1448 file_ptr offset, bfd_size_type count); 1449 1450 DESCRIPTION 1451 Sets the contents of the section @var{section} in BFD 1452 @var{abfd} to the data starting in memory at @var{data}. The 1453 data is written to the output section starting at offset 1454 @var{offset} for @var{count} octets. 1455 1456 Normally <<TRUE>> is returned, else <<FALSE>>. Possible error 1457 returns are: 1458 o <<bfd_error_no_contents>> - 1459 The output section does not have the <<SEC_HAS_CONTENTS>> 1460 attribute, so nothing can be written to it. 1461 o and some more too 1462 1463 This routine is front end to the back end function 1464 <<_bfd_set_section_contents>>. 1465 1466 */ 1467 1468 bfd_boolean 1469 bfd_set_section_contents (bfd *abfd, 1470 sec_ptr section, 1471 const void *location, 1472 file_ptr offset, 1473 bfd_size_type count) 1474 { 1475 bfd_size_type sz; 1476 1477 if (!(bfd_get_section_flags (abfd, section) & SEC_HAS_CONTENTS)) 1478 { 1479 bfd_set_error (bfd_error_no_contents); 1480 return FALSE; 1481 } 1482 1483 sz = section->size; 1484 if ((bfd_size_type) offset > sz 1485 || count > sz 1486 || offset + count > sz 1487 || count != (size_t) count) 1488 { 1489 bfd_set_error (bfd_error_bad_value); 1490 return FALSE; 1491 } 1492 1493 if (!bfd_write_p (abfd)) 1494 { 1495 bfd_set_error (bfd_error_invalid_operation); 1496 return FALSE; 1497 } 1498 1499 /* Record a copy of the data in memory if desired. */ 1500 if (section->contents 1501 && location != section->contents + offset) 1502 memcpy (section->contents + offset, location, (size_t) count); 1503 1504 if (BFD_SEND (abfd, _bfd_set_section_contents, 1505 (abfd, section, location, offset, count))) 1506 { 1507 abfd->output_has_begun = TRUE; 1508 return TRUE; 1509 } 1510 1511 return FALSE; 1512 } 1513 1514 /* 1515 FUNCTION 1516 bfd_get_section_contents 1517 1518 SYNOPSIS 1519 bfd_boolean bfd_get_section_contents 1520 (bfd *abfd, asection *section, void *location, file_ptr offset, 1521 bfd_size_type count); 1522 1523 DESCRIPTION 1524 Read data from @var{section} in BFD @var{abfd} 1525 into memory starting at @var{location}. The data is read at an 1526 offset of @var{offset} from the start of the input section, 1527 and is read for @var{count} bytes. 1528 1529 If the contents of a constructor with the <<SEC_CONSTRUCTOR>> 1530 flag set are requested or if the section does not have the 1531 <<SEC_HAS_CONTENTS>> flag set, then the @var{location} is filled 1532 with zeroes. If no errors occur, <<TRUE>> is returned, else 1533 <<FALSE>>. 1534 1535 */ 1536 bfd_boolean 1537 bfd_get_section_contents (bfd *abfd, 1538 sec_ptr section, 1539 void *location, 1540 file_ptr offset, 1541 bfd_size_type count) 1542 { 1543 bfd_size_type sz; 1544 1545 if (section->flags & SEC_CONSTRUCTOR) 1546 { 1547 memset (location, 0, (size_t) count); 1548 return TRUE; 1549 } 1550 1551 if (abfd->direction != write_direction && section->rawsize != 0) 1552 sz = section->rawsize; 1553 else 1554 sz = section->size; 1555 if ((bfd_size_type) offset > sz 1556 || count > sz 1557 || offset + count > sz 1558 || count != (size_t) count) 1559 { 1560 bfd_set_error (bfd_error_bad_value); 1561 return FALSE; 1562 } 1563 1564 if (count == 0) 1565 /* Don't bother. */ 1566 return TRUE; 1567 1568 if ((section->flags & SEC_HAS_CONTENTS) == 0) 1569 { 1570 memset (location, 0, (size_t) count); 1571 return TRUE; 1572 } 1573 1574 if ((section->flags & SEC_IN_MEMORY) != 0) 1575 { 1576 if (section->contents == NULL) 1577 { 1578 /* This can happen because of errors earlier on in the linking process. 1579 We do not want to seg-fault here, so clear the flag and return an 1580 error code. */ 1581 section->flags &= ~ SEC_IN_MEMORY; 1582 bfd_set_error (bfd_error_invalid_operation); 1583 return FALSE; 1584 } 1585 1586 memmove (location, section->contents + offset, (size_t) count); 1587 return TRUE; 1588 } 1589 1590 return BFD_SEND (abfd, _bfd_get_section_contents, 1591 (abfd, section, location, offset, count)); 1592 } 1593 1594 /* 1595 FUNCTION 1596 bfd_malloc_and_get_section 1597 1598 SYNOPSIS 1599 bfd_boolean bfd_malloc_and_get_section 1600 (bfd *abfd, asection *section, bfd_byte **buf); 1601 1602 DESCRIPTION 1603 Read all data from @var{section} in BFD @var{abfd} 1604 into a buffer, *@var{buf}, malloc'd by this function. 1605 */ 1606 1607 bfd_boolean 1608 bfd_malloc_and_get_section (bfd *abfd, sec_ptr sec, bfd_byte **buf) 1609 { 1610 *buf = NULL; 1611 return bfd_get_full_section_contents (abfd, sec, buf); 1612 } 1613 /* 1614 FUNCTION 1615 bfd_copy_private_section_data 1616 1617 SYNOPSIS 1618 bfd_boolean bfd_copy_private_section_data 1619 (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); 1620 1621 DESCRIPTION 1622 Copy private section information from @var{isec} in the BFD 1623 @var{ibfd} to the section @var{osec} in the BFD @var{obfd}. 1624 Return <<TRUE>> on success, <<FALSE>> on error. Possible error 1625 returns are: 1626 1627 o <<bfd_error_no_memory>> - 1628 Not enough memory exists to create private data for @var{osec}. 1629 1630 .#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ 1631 . BFD_SEND (obfd, _bfd_copy_private_section_data, \ 1632 . (ibfd, isection, obfd, osection)) 1633 */ 1634 1635 /* 1636 FUNCTION 1637 bfd_generic_is_group_section 1638 1639 SYNOPSIS 1640 bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); 1641 1642 DESCRIPTION 1643 Returns TRUE if @var{sec} is a member of a group. 1644 */ 1645 1646 bfd_boolean 1647 bfd_generic_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, 1648 const asection *sec ATTRIBUTE_UNUSED) 1649 { 1650 return FALSE; 1651 } 1652 1653 /* 1654 FUNCTION 1655 bfd_generic_discard_group 1656 1657 SYNOPSIS 1658 bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); 1659 1660 DESCRIPTION 1661 Remove all members of @var{group} from the output. 1662 */ 1663 1664 bfd_boolean 1665 bfd_generic_discard_group (bfd *abfd ATTRIBUTE_UNUSED, 1666 asection *group ATTRIBUTE_UNUSED) 1667 { 1668 return TRUE; 1669 } 1670