1 /* Support for the generic parts of PE/PEI, for BFD. 2 Copyright (C) 1995-2020 Free Software Foundation, Inc. 3 Written by Cygnus Solutions. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* Most of this hacked by Steve Chamberlain, 24 sac@cygnus.com 25 26 PE/PEI rearrangement (and code added): Donn Terry 27 Softway Systems, Inc. */ 28 29 /* Hey look, some documentation [and in a place you expect to find it]! 30 31 The main reference for the pei format is "Microsoft Portable Executable 32 and Common Object File Format Specification 4.1". Get it if you need to 33 do some serious hacking on this code. 34 35 Another reference: 36 "Peering Inside the PE: A Tour of the Win32 Portable Executable 37 File Format", MSJ 1994, Volume 9. 38 39 The *sole* difference between the pe format and the pei format is that the 40 latter has an MSDOS 2.0 .exe header on the front that prints the message 41 "This app must be run under Windows." (or some such). 42 (FIXME: Whether that statement is *really* true or not is unknown. 43 Are there more subtle differences between pe and pei formats? 44 For now assume there aren't. If you find one, then for God sakes 45 document it here!) 46 47 The Microsoft docs use the word "image" instead of "executable" because 48 the former can also refer to a DLL (shared library). Confusion can arise 49 because the `i' in `pei' also refers to "image". The `pe' format can 50 also create images (i.e. executables), it's just that to run on a win32 51 system you need to use the pei format. 52 53 FIXME: Please add more docs here so the next poor fool that has to hack 54 on this code has a chance of getting something accomplished without 55 wasting too much time. */ 56 57 #include "libpei.h" 58 59 static bfd_boolean (*pe_saved_coff_bfd_print_private_bfd_data) (bfd *, void *) = 60 #ifndef coff_bfd_print_private_bfd_data 61 NULL; 62 #else 63 coff_bfd_print_private_bfd_data; 64 #undef coff_bfd_print_private_bfd_data 65 #endif 66 67 static bfd_boolean pe_print_private_bfd_data (bfd *, void *); 68 #define coff_bfd_print_private_bfd_data pe_print_private_bfd_data 69 70 static bfd_boolean (*pe_saved_coff_bfd_copy_private_bfd_data) (bfd *, bfd *) = 71 #ifndef coff_bfd_copy_private_bfd_data 72 NULL; 73 #else 74 coff_bfd_copy_private_bfd_data; 75 #undef coff_bfd_copy_private_bfd_data 76 #endif 77 78 static bfd_boolean pe_bfd_copy_private_bfd_data (bfd *, bfd *); 79 #define coff_bfd_copy_private_bfd_data pe_bfd_copy_private_bfd_data 80 81 #define coff_mkobject pe_mkobject 82 #define coff_mkobject_hook pe_mkobject_hook 83 84 #ifdef COFF_IMAGE_WITH_PE 85 /* This structure contains static variables used by the ILF code. */ 86 typedef asection * asection_ptr; 87 88 typedef struct 89 { 90 bfd * abfd; 91 bfd_byte * data; 92 struct bfd_in_memory * bim; 93 unsigned short magic; 94 95 arelent * reltab; 96 unsigned int relcount; 97 98 coff_symbol_type * sym_cache; 99 coff_symbol_type * sym_ptr; 100 unsigned int sym_index; 101 102 unsigned int * sym_table; 103 unsigned int * table_ptr; 104 105 combined_entry_type * native_syms; 106 combined_entry_type * native_ptr; 107 108 coff_symbol_type ** sym_ptr_table; 109 coff_symbol_type ** sym_ptr_ptr; 110 111 unsigned int sec_index; 112 113 char * string_table; 114 char * string_ptr; 115 char * end_string_ptr; 116 117 SYMENT * esym_table; 118 SYMENT * esym_ptr; 119 120 struct internal_reloc * int_reltab; 121 } 122 pe_ILF_vars; 123 #endif /* COFF_IMAGE_WITH_PE */ 124 125 bfd_cleanup coff_real_object_p 126 (bfd *, unsigned, struct internal_filehdr *, struct internal_aouthdr *); 127 128 #ifndef NO_COFF_RELOCS 129 static void 130 coff_swap_reloc_in (bfd * abfd, void * src, void * dst) 131 { 132 RELOC *reloc_src = (RELOC *) src; 133 struct internal_reloc *reloc_dst = (struct internal_reloc *) dst; 134 135 reloc_dst->r_vaddr = H_GET_32 (abfd, reloc_src->r_vaddr); 136 reloc_dst->r_symndx = H_GET_S32 (abfd, reloc_src->r_symndx); 137 reloc_dst->r_type = H_GET_16 (abfd, reloc_src->r_type); 138 #ifdef SWAP_IN_RELOC_OFFSET 139 reloc_dst->r_offset = SWAP_IN_RELOC_OFFSET (abfd, reloc_src->r_offset); 140 #endif 141 } 142 143 static unsigned int 144 coff_swap_reloc_out (bfd * abfd, void * src, void * dst) 145 { 146 struct internal_reloc *reloc_src = (struct internal_reloc *) src; 147 struct external_reloc *reloc_dst = (struct external_reloc *) dst; 148 149 H_PUT_32 (abfd, reloc_src->r_vaddr, reloc_dst->r_vaddr); 150 H_PUT_32 (abfd, reloc_src->r_symndx, reloc_dst->r_symndx); 151 H_PUT_16 (abfd, reloc_src->r_type, reloc_dst->r_type); 152 153 #ifdef SWAP_OUT_RELOC_OFFSET 154 SWAP_OUT_RELOC_OFFSET (abfd, reloc_src->r_offset, reloc_dst->r_offset); 155 #endif 156 #ifdef SWAP_OUT_RELOC_EXTRA 157 SWAP_OUT_RELOC_EXTRA (abfd, reloc_src, reloc_dst); 158 #endif 159 return RELSZ; 160 } 161 #endif /* not NO_COFF_RELOCS */ 162 163 #ifdef COFF_IMAGE_WITH_PE 164 #undef FILHDR 165 #define FILHDR struct external_PEI_IMAGE_hdr 166 #endif 167 168 static void 169 coff_swap_filehdr_in (bfd * abfd, void * src, void * dst) 170 { 171 FILHDR *filehdr_src = (FILHDR *) src; 172 struct internal_filehdr *filehdr_dst = (struct internal_filehdr *) dst; 173 174 filehdr_dst->f_magic = H_GET_16 (abfd, filehdr_src->f_magic); 175 filehdr_dst->f_nscns = H_GET_16 (abfd, filehdr_src->f_nscns); 176 filehdr_dst->f_timdat = H_GET_32 (abfd, filehdr_src->f_timdat); 177 filehdr_dst->f_nsyms = H_GET_32 (abfd, filehdr_src->f_nsyms); 178 filehdr_dst->f_flags = H_GET_16 (abfd, filehdr_src->f_flags); 179 filehdr_dst->f_symptr = H_GET_32 (abfd, filehdr_src->f_symptr); 180 181 /* Other people's tools sometimes generate headers with an nsyms but 182 a zero symptr. */ 183 if (filehdr_dst->f_nsyms != 0 && filehdr_dst->f_symptr == 0) 184 { 185 filehdr_dst->f_nsyms = 0; 186 filehdr_dst->f_flags |= F_LSYMS; 187 } 188 189 filehdr_dst->f_opthdr = H_GET_16 (abfd, filehdr_src-> f_opthdr); 190 } 191 192 #ifdef COFF_IMAGE_WITH_PE 193 # define coff_swap_filehdr_out _bfd_XXi_only_swap_filehdr_out 194 #elif defined COFF_WITH_pex64 195 # define coff_swap_filehdr_out _bfd_pex64_only_swap_filehdr_out 196 #elif defined COFF_WITH_pep 197 # define coff_swap_filehdr_out _bfd_pep_only_swap_filehdr_out 198 #else 199 # define coff_swap_filehdr_out _bfd_pe_only_swap_filehdr_out 200 #endif 201 202 static void 203 coff_swap_scnhdr_in (bfd * abfd, void * ext, void * in) 204 { 205 SCNHDR *scnhdr_ext = (SCNHDR *) ext; 206 struct internal_scnhdr *scnhdr_int = (struct internal_scnhdr *) in; 207 208 memcpy (scnhdr_int->s_name, scnhdr_ext->s_name, sizeof (scnhdr_int->s_name)); 209 210 scnhdr_int->s_vaddr = GET_SCNHDR_VADDR (abfd, scnhdr_ext->s_vaddr); 211 scnhdr_int->s_paddr = GET_SCNHDR_PADDR (abfd, scnhdr_ext->s_paddr); 212 scnhdr_int->s_size = GET_SCNHDR_SIZE (abfd, scnhdr_ext->s_size); 213 scnhdr_int->s_scnptr = GET_SCNHDR_SCNPTR (abfd, scnhdr_ext->s_scnptr); 214 scnhdr_int->s_relptr = GET_SCNHDR_RELPTR (abfd, scnhdr_ext->s_relptr); 215 scnhdr_int->s_lnnoptr = GET_SCNHDR_LNNOPTR (abfd, scnhdr_ext->s_lnnoptr); 216 scnhdr_int->s_flags = H_GET_32 (abfd, scnhdr_ext->s_flags); 217 218 /* MS handles overflow of line numbers by carrying into the reloc 219 field (it appears). Since it's supposed to be zero for PE 220 *IMAGE* format, that's safe. This is still a bit iffy. */ 221 #ifdef COFF_IMAGE_WITH_PE 222 scnhdr_int->s_nlnno = (H_GET_16 (abfd, scnhdr_ext->s_nlnno) 223 + (H_GET_16 (abfd, scnhdr_ext->s_nreloc) << 16)); 224 scnhdr_int->s_nreloc = 0; 225 #else 226 scnhdr_int->s_nreloc = H_GET_16 (abfd, scnhdr_ext->s_nreloc); 227 scnhdr_int->s_nlnno = H_GET_16 (abfd, scnhdr_ext->s_nlnno); 228 #endif 229 230 if (scnhdr_int->s_vaddr != 0) 231 { 232 scnhdr_int->s_vaddr += pe_data (abfd)->pe_opthdr.ImageBase; 233 /* Do not cut upper 32-bits for 64-bit vma. */ 234 #ifndef COFF_WITH_pex64 235 scnhdr_int->s_vaddr &= 0xffffffff; 236 #endif 237 } 238 239 #ifndef COFF_NO_HACK_SCNHDR_SIZE 240 /* If this section holds uninitialized data and is from an object file 241 or from an executable image that has not initialized the field, 242 or if the image is an executable file and the physical size is padded, 243 use the virtual size (stored in s_paddr) instead. */ 244 if (scnhdr_int->s_paddr > 0 245 && (((scnhdr_int->s_flags & IMAGE_SCN_CNT_UNINITIALIZED_DATA) != 0 246 && (! bfd_pei_p (abfd) || scnhdr_int->s_size == 0)) 247 || (bfd_pei_p (abfd) && (scnhdr_int->s_size > scnhdr_int->s_paddr)))) 248 /* This code used to set scnhdr_int->s_paddr to 0. However, 249 coff_set_alignment_hook stores s_paddr in virt_size, which 250 only works if it correctly holds the virtual size of the 251 section. */ 252 scnhdr_int->s_size = scnhdr_int->s_paddr; 253 #endif 254 } 255 256 static bfd_boolean 257 pe_mkobject (bfd * abfd) 258 { 259 pe_data_type *pe; 260 size_t amt = sizeof (pe_data_type); 261 262 abfd->tdata.pe_obj_data = (struct pe_tdata *) bfd_zalloc (abfd, amt); 263 264 if (abfd->tdata.pe_obj_data == 0) 265 return FALSE; 266 267 pe = pe_data (abfd); 268 269 pe->coff.pe = 1; 270 271 /* in_reloc_p is architecture dependent. */ 272 pe->in_reloc_p = in_reloc_p; 273 274 /* Default DOS message string. */ 275 pe->dos_message[0] = 0x0eba1f0e; 276 pe->dos_message[1] = 0xcd09b400; 277 pe->dos_message[2] = 0x4c01b821; 278 pe->dos_message[3] = 0x685421cd; 279 pe->dos_message[4] = 0x70207369; 280 pe->dos_message[5] = 0x72676f72; 281 pe->dos_message[6] = 0x63206d61; 282 pe->dos_message[7] = 0x6f6e6e61; 283 pe->dos_message[8] = 0x65622074; 284 pe->dos_message[9] = 0x6e757220; 285 pe->dos_message[10] = 0x206e6920; 286 pe->dos_message[11] = 0x20534f44; 287 pe->dos_message[12] = 0x65646f6d; 288 pe->dos_message[13] = 0x0a0d0d2e; 289 pe->dos_message[14] = 0x24; 290 pe->dos_message[15] = 0x0; 291 292 memset (& pe->pe_opthdr, 0, sizeof pe->pe_opthdr); 293 return TRUE; 294 } 295 296 /* Create the COFF backend specific information. */ 297 298 static void * 299 pe_mkobject_hook (bfd * abfd, 300 void * filehdr, 301 void * aouthdr ATTRIBUTE_UNUSED) 302 { 303 struct internal_filehdr *internal_f = (struct internal_filehdr *) filehdr; 304 pe_data_type *pe; 305 306 if (! pe_mkobject (abfd)) 307 return NULL; 308 309 pe = pe_data (abfd); 310 pe->coff.sym_filepos = internal_f->f_symptr; 311 /* These members communicate important constants about the symbol 312 table to GDB's symbol-reading code. These `constants' 313 unfortunately vary among coff implementations... */ 314 pe->coff.local_n_btmask = N_BTMASK; 315 pe->coff.local_n_btshft = N_BTSHFT; 316 pe->coff.local_n_tmask = N_TMASK; 317 pe->coff.local_n_tshift = N_TSHIFT; 318 pe->coff.local_symesz = SYMESZ; 319 pe->coff.local_auxesz = AUXESZ; 320 pe->coff.local_linesz = LINESZ; 321 322 pe->coff.timestamp = internal_f->f_timdat; 323 324 obj_raw_syment_count (abfd) = 325 obj_conv_table_size (abfd) = 326 internal_f->f_nsyms; 327 328 pe->real_flags = internal_f->f_flags; 329 330 if ((internal_f->f_flags & F_DLL) != 0) 331 pe->dll = 1; 332 333 if ((internal_f->f_flags & IMAGE_FILE_DEBUG_STRIPPED) == 0) 334 abfd->flags |= HAS_DEBUG; 335 336 #ifdef COFF_IMAGE_WITH_PE 337 if (aouthdr) 338 pe->pe_opthdr = ((struct internal_aouthdr *) aouthdr)->pe; 339 #endif 340 341 #ifdef ARM 342 if (! _bfd_coff_arm_set_private_flags (abfd, internal_f->f_flags)) 343 coff_data (abfd) ->flags = 0; 344 #endif 345 346 memcpy (pe->dos_message, internal_f->pe.dos_message, 347 sizeof (pe->dos_message)); 348 349 return (void *) pe; 350 } 351 352 static bfd_boolean 353 pe_print_private_bfd_data (bfd *abfd, void * vfile) 354 { 355 FILE *file = (FILE *) vfile; 356 357 if (!_bfd_XX_print_private_bfd_data_common (abfd, vfile)) 358 return FALSE; 359 360 if (pe_saved_coff_bfd_print_private_bfd_data == NULL) 361 return TRUE; 362 363 fputc ('\n', file); 364 365 return pe_saved_coff_bfd_print_private_bfd_data (abfd, vfile); 366 } 367 368 /* Copy any private info we understand from the input bfd 369 to the output bfd. */ 370 371 static bfd_boolean 372 pe_bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd) 373 { 374 /* PR binutils/716: Copy the large address aware flag. 375 XXX: Should we be copying other flags or other fields in the pe_data() 376 structure ? */ 377 if (pe_data (obfd) != NULL 378 && pe_data (ibfd) != NULL 379 && pe_data (ibfd)->real_flags & IMAGE_FILE_LARGE_ADDRESS_AWARE) 380 pe_data (obfd)->real_flags |= IMAGE_FILE_LARGE_ADDRESS_AWARE; 381 382 if (!_bfd_XX_bfd_copy_private_bfd_data_common (ibfd, obfd)) 383 return FALSE; 384 385 if (pe_saved_coff_bfd_copy_private_bfd_data) 386 return pe_saved_coff_bfd_copy_private_bfd_data (ibfd, obfd); 387 388 return TRUE; 389 } 390 391 #define coff_bfd_copy_private_section_data \ 392 _bfd_XX_bfd_copy_private_section_data 393 394 #define coff_get_symbol_info _bfd_XX_get_symbol_info 395 396 #ifdef COFF_IMAGE_WITH_PE 397 398 /* Code to handle Microsoft's Image Library Format. 399 Also known as LINK6 format. 400 Documentation about this format can be found at: 401 402 http://msdn.microsoft.com/library/specs/pecoff_section8.htm */ 403 404 /* The following constants specify the sizes of the various data 405 structures that we have to create in order to build a bfd describing 406 an ILF object file. The final "+ 1" in the definitions of SIZEOF_IDATA6 407 and SIZEOF_IDATA7 below is to allow for the possibility that we might 408 need a padding byte in order to ensure 16 bit alignment for the section's 409 contents. 410 411 The value for SIZEOF_ILF_STRINGS is computed as follows: 412 413 There will be NUM_ILF_SECTIONS section symbols. Allow 9 characters 414 per symbol for their names (longest section name is .idata$x). 415 416 There will be two symbols for the imported value, one the symbol name 417 and one with _imp__ prefixed. Allowing for the terminating nul's this 418 is strlen (symbol_name) * 2 + 8 + 21 + strlen (source_dll). 419 420 The strings in the string table must start STRING__SIZE_SIZE bytes into 421 the table in order to for the string lookup code in coffgen/coffcode to 422 work. */ 423 #define NUM_ILF_RELOCS 8 424 #define NUM_ILF_SECTIONS 6 425 #define NUM_ILF_SYMS (2 + NUM_ILF_SECTIONS) 426 427 #define SIZEOF_ILF_SYMS (NUM_ILF_SYMS * sizeof (* vars.sym_cache)) 428 #define SIZEOF_ILF_SYM_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_table)) 429 #define SIZEOF_ILF_NATIVE_SYMS (NUM_ILF_SYMS * sizeof (* vars.native_syms)) 430 #define SIZEOF_ILF_SYM_PTR_TABLE (NUM_ILF_SYMS * sizeof (* vars.sym_ptr_table)) 431 #define SIZEOF_ILF_EXT_SYMS (NUM_ILF_SYMS * sizeof (* vars.esym_table)) 432 #define SIZEOF_ILF_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.reltab)) 433 #define SIZEOF_ILF_INT_RELOCS (NUM_ILF_RELOCS * sizeof (* vars.int_reltab)) 434 #define SIZEOF_ILF_STRINGS (strlen (symbol_name) * 2 + 8 \ 435 + 21 + strlen (source_dll) \ 436 + NUM_ILF_SECTIONS * 9 \ 437 + STRING_SIZE_SIZE) 438 #define SIZEOF_IDATA2 (5 * 4) 439 440 /* For PEx64 idata4 & 5 have thumb size of 8 bytes. */ 441 #ifdef COFF_WITH_pex64 442 #define SIZEOF_IDATA4 (2 * 4) 443 #define SIZEOF_IDATA5 (2 * 4) 444 #else 445 #define SIZEOF_IDATA4 (1 * 4) 446 #define SIZEOF_IDATA5 (1 * 4) 447 #endif 448 449 #define SIZEOF_IDATA6 (2 + strlen (symbol_name) + 1 + 1) 450 #define SIZEOF_IDATA7 (strlen (source_dll) + 1 + 1) 451 #define SIZEOF_ILF_SECTIONS (NUM_ILF_SECTIONS * sizeof (struct coff_section_tdata)) 452 453 #define ILF_DATA_SIZE \ 454 + SIZEOF_ILF_SYMS \ 455 + SIZEOF_ILF_SYM_TABLE \ 456 + SIZEOF_ILF_NATIVE_SYMS \ 457 + SIZEOF_ILF_SYM_PTR_TABLE \ 458 + SIZEOF_ILF_EXT_SYMS \ 459 + SIZEOF_ILF_RELOCS \ 460 + SIZEOF_ILF_INT_RELOCS \ 461 + SIZEOF_ILF_STRINGS \ 462 + SIZEOF_IDATA2 \ 463 + SIZEOF_IDATA4 \ 464 + SIZEOF_IDATA5 \ 465 + SIZEOF_IDATA6 \ 466 + SIZEOF_IDATA7 \ 467 + SIZEOF_ILF_SECTIONS \ 468 + MAX_TEXT_SECTION_SIZE 469 470 /* Create an empty relocation against the given symbol. */ 471 472 static void 473 pe_ILF_make_a_symbol_reloc (pe_ILF_vars * vars, 474 bfd_vma address, 475 bfd_reloc_code_real_type reloc, 476 struct bfd_symbol ** sym, 477 unsigned int sym_index) 478 { 479 arelent * entry; 480 struct internal_reloc * internal; 481 482 entry = vars->reltab + vars->relcount; 483 internal = vars->int_reltab + vars->relcount; 484 485 entry->address = address; 486 entry->addend = 0; 487 entry->howto = bfd_reloc_type_lookup (vars->abfd, reloc); 488 entry->sym_ptr_ptr = sym; 489 490 internal->r_vaddr = address; 491 internal->r_symndx = sym_index; 492 internal->r_type = entry->howto->type; 493 494 vars->relcount ++; 495 496 BFD_ASSERT (vars->relcount <= NUM_ILF_RELOCS); 497 } 498 499 /* Create an empty relocation against the given section. */ 500 501 static void 502 pe_ILF_make_a_reloc (pe_ILF_vars * vars, 503 bfd_vma address, 504 bfd_reloc_code_real_type reloc, 505 asection_ptr sec) 506 { 507 pe_ILF_make_a_symbol_reloc (vars, address, reloc, sec->symbol_ptr_ptr, 508 coff_section_data (vars->abfd, sec)->i); 509 } 510 511 /* Move the queued relocs into the given section. */ 512 513 static void 514 pe_ILF_save_relocs (pe_ILF_vars * vars, 515 asection_ptr sec) 516 { 517 /* Make sure that there is somewhere to store the internal relocs. */ 518 if (coff_section_data (vars->abfd, sec) == NULL) 519 /* We should probably return an error indication here. */ 520 abort (); 521 522 coff_section_data (vars->abfd, sec)->relocs = vars->int_reltab; 523 coff_section_data (vars->abfd, sec)->keep_relocs = TRUE; 524 525 sec->relocation = vars->reltab; 526 sec->reloc_count = vars->relcount; 527 sec->flags |= SEC_RELOC; 528 529 vars->reltab += vars->relcount; 530 vars->int_reltab += vars->relcount; 531 vars->relcount = 0; 532 533 BFD_ASSERT ((bfd_byte *) vars->int_reltab < (bfd_byte *) vars->string_table); 534 } 535 536 /* Create a global symbol and add it to the relevant tables. */ 537 538 static void 539 pe_ILF_make_a_symbol (pe_ILF_vars * vars, 540 const char * prefix, 541 const char * symbol_name, 542 asection_ptr section, 543 flagword extra_flags) 544 { 545 coff_symbol_type * sym; 546 combined_entry_type * ent; 547 SYMENT * esym; 548 unsigned short sclass; 549 550 if (extra_flags & BSF_LOCAL) 551 sclass = C_STAT; 552 else 553 sclass = C_EXT; 554 555 #ifdef THUMBPEMAGIC 556 if (vars->magic == THUMBPEMAGIC) 557 { 558 if (extra_flags & BSF_FUNCTION) 559 sclass = C_THUMBEXTFUNC; 560 else if (extra_flags & BSF_LOCAL) 561 sclass = C_THUMBSTAT; 562 else 563 sclass = C_THUMBEXT; 564 } 565 #endif 566 567 BFD_ASSERT (vars->sym_index < NUM_ILF_SYMS); 568 569 sym = vars->sym_ptr; 570 ent = vars->native_ptr; 571 esym = vars->esym_ptr; 572 573 /* Copy the symbol's name into the string table. */ 574 sprintf (vars->string_ptr, "%s%s", prefix, symbol_name); 575 576 if (section == NULL) 577 section = bfd_und_section_ptr; 578 579 /* Initialise the external symbol. */ 580 H_PUT_32 (vars->abfd, vars->string_ptr - vars->string_table, 581 esym->e.e.e_offset); 582 H_PUT_16 (vars->abfd, section->target_index, esym->e_scnum); 583 esym->e_sclass[0] = sclass; 584 585 /* The following initialisations are unnecessary - the memory is 586 zero initialised. They are just kept here as reminders. */ 587 588 /* Initialise the internal symbol structure. */ 589 ent->u.syment.n_sclass = sclass; 590 ent->u.syment.n_scnum = section->target_index; 591 ent->u.syment._n._n_n._n_offset = (bfd_hostptr_t) sym; 592 ent->is_sym = TRUE; 593 594 sym->symbol.the_bfd = vars->abfd; 595 sym->symbol.name = vars->string_ptr; 596 sym->symbol.flags = BSF_EXPORT | BSF_GLOBAL | extra_flags; 597 sym->symbol.section = section; 598 sym->native = ent; 599 600 * vars->table_ptr = vars->sym_index; 601 * vars->sym_ptr_ptr = sym; 602 603 /* Adjust pointers for the next symbol. */ 604 vars->sym_index ++; 605 vars->sym_ptr ++; 606 vars->sym_ptr_ptr ++; 607 vars->table_ptr ++; 608 vars->native_ptr ++; 609 vars->esym_ptr ++; 610 vars->string_ptr += strlen (symbol_name) + strlen (prefix) + 1; 611 612 BFD_ASSERT (vars->string_ptr < vars->end_string_ptr); 613 } 614 615 /* Create a section. */ 616 617 static asection_ptr 618 pe_ILF_make_a_section (pe_ILF_vars * vars, 619 const char * name, 620 unsigned int size, 621 flagword extra_flags) 622 { 623 asection_ptr sec; 624 flagword flags; 625 intptr_t alignment; 626 627 sec = bfd_make_section_old_way (vars->abfd, name); 628 if (sec == NULL) 629 return NULL; 630 631 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_KEEP | SEC_IN_MEMORY; 632 633 bfd_set_section_flags (sec, flags | extra_flags); 634 635 bfd_set_section_alignment (sec, 2); 636 637 /* Check that we will not run out of space. */ 638 BFD_ASSERT (vars->data + size < vars->bim->buffer + vars->bim->size); 639 640 /* Set the section size and contents. The actual 641 contents are filled in by our parent. */ 642 bfd_set_section_size (sec, (bfd_size_type) size); 643 sec->contents = vars->data; 644 sec->target_index = vars->sec_index ++; 645 646 /* Advance data pointer in the vars structure. */ 647 vars->data += size; 648 649 /* Skip the padding byte if it was not needed. 650 The logic here is that if the string length is odd, 651 then the entire string length, including the null byte, 652 is even and so the extra, padding byte, is not needed. */ 653 if (size & 1) 654 vars->data --; 655 656 /* PR 18758: See note in pe_ILF_buid_a_bfd. We must make sure that we 657 preserve host alignment requirements. The BFD_ASSERTs in this 658 functions will warn us if we run out of room, but we should 659 already have enough padding built in to ILF_DATA_SIZE. */ 660 #if GCC_VERSION >= 3000 661 alignment = __alignof__ (struct coff_section_tdata); 662 #else 663 alignment = 8; 664 #endif 665 vars->data 666 = (bfd_byte *) (((intptr_t) vars->data + alignment - 1) & -alignment); 667 668 /* Create a coff_section_tdata structure for our use. */ 669 sec->used_by_bfd = (struct coff_section_tdata *) vars->data; 670 vars->data += sizeof (struct coff_section_tdata); 671 672 BFD_ASSERT (vars->data <= vars->bim->buffer + vars->bim->size); 673 674 /* Create a symbol to refer to this section. */ 675 pe_ILF_make_a_symbol (vars, "", name, sec, BSF_LOCAL); 676 677 /* Cache the index to the symbol in the coff_section_data structure. */ 678 coff_section_data (vars->abfd, sec)->i = vars->sym_index - 1; 679 680 return sec; 681 } 682 683 /* This structure contains the code that goes into the .text section 684 in order to perform a jump into the DLL lookup table. The entries 685 in the table are index by the magic number used to represent the 686 machine type in the PE file. The contents of the data[] arrays in 687 these entries are stolen from the jtab[] arrays in ld/pe-dll.c. 688 The SIZE field says how many bytes in the DATA array are actually 689 used. The OFFSET field says where in the data array the address 690 of the .idata$5 section should be placed. */ 691 #define MAX_TEXT_SECTION_SIZE 32 692 693 typedef struct 694 { 695 unsigned short magic; 696 unsigned char data[MAX_TEXT_SECTION_SIZE]; 697 unsigned int size; 698 unsigned int offset; 699 } 700 jump_table; 701 702 static jump_table jtab[] = 703 { 704 #ifdef I386MAGIC 705 { I386MAGIC, 706 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 }, 707 8, 2 708 }, 709 #endif 710 711 #ifdef AMD64MAGIC 712 { AMD64MAGIC, 713 { 0xff, 0x25, 0x00, 0x00, 0x00, 0x00, 0x90, 0x90 }, 714 8, 2 715 }, 716 #endif 717 718 #ifdef MC68MAGIC 719 { MC68MAGIC, 720 { /* XXX fill me in */ }, 721 0, 0 722 }, 723 #endif 724 725 #ifdef MIPS_ARCH_MAGIC_WINCE 726 { MIPS_ARCH_MAGIC_WINCE, 727 { 0x00, 0x00, 0x08, 0x3c, 0x00, 0x00, 0x08, 0x8d, 728 0x08, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00 }, 729 16, 0 730 }, 731 #endif 732 733 #ifdef SH_ARCH_MAGIC_WINCE 734 { SH_ARCH_MAGIC_WINCE, 735 { 0x01, 0xd0, 0x02, 0x60, 0x2b, 0x40, 736 0x09, 0x00, 0x00, 0x00, 0x00, 0x00 }, 737 12, 8 738 }, 739 #endif 740 741 #ifdef ARMPEMAGIC 742 { ARMPEMAGIC, 743 { 0x00, 0xc0, 0x9f, 0xe5, 0x00, 0xf0, 744 0x9c, 0xe5, 0x00, 0x00, 0x00, 0x00}, 745 12, 8 746 }, 747 #endif 748 749 #ifdef THUMBPEMAGIC 750 { THUMBPEMAGIC, 751 { 0x40, 0xb4, 0x02, 0x4e, 0x36, 0x68, 0xb4, 0x46, 752 0x40, 0xbc, 0x60, 0x47, 0x00, 0x00, 0x00, 0x00 }, 753 16, 12 754 }, 755 #endif 756 { 0, { 0 }, 0, 0 } 757 }; 758 759 #ifndef NUM_ENTRIES 760 #define NUM_ENTRIES(a) (sizeof (a) / sizeof (a)[0]) 761 #endif 762 763 /* Build a full BFD from the information supplied in a ILF object. */ 764 765 static bfd_boolean 766 pe_ILF_build_a_bfd (bfd * abfd, 767 unsigned int magic, 768 char * symbol_name, 769 char * source_dll, 770 unsigned int ordinal, 771 unsigned int types) 772 { 773 bfd_byte * ptr; 774 pe_ILF_vars vars; 775 struct internal_filehdr internal_f; 776 unsigned int import_type; 777 unsigned int import_name_type; 778 asection_ptr id4, id5, id6 = NULL, text = NULL; 779 coff_symbol_type ** imp_sym; 780 unsigned int imp_index; 781 intptr_t alignment; 782 783 /* Decode and verify the types field of the ILF structure. */ 784 import_type = types & 0x3; 785 import_name_type = (types & 0x1c) >> 2; 786 787 switch (import_type) 788 { 789 case IMPORT_CODE: 790 case IMPORT_DATA: 791 break; 792 793 case IMPORT_CONST: 794 /* XXX code yet to be written. */ 795 /* xgettext:c-format */ 796 _bfd_error_handler (_("%pB: unhandled import type; %x"), 797 abfd, import_type); 798 return FALSE; 799 800 default: 801 /* xgettext:c-format */ 802 _bfd_error_handler (_("%pB: unrecognized import type; %x"), 803 abfd, import_type); 804 return FALSE; 805 } 806 807 switch (import_name_type) 808 { 809 case IMPORT_ORDINAL: 810 case IMPORT_NAME: 811 case IMPORT_NAME_NOPREFIX: 812 case IMPORT_NAME_UNDECORATE: 813 break; 814 815 default: 816 /* xgettext:c-format */ 817 _bfd_error_handler (_("%pB: unrecognized import name type; %x"), 818 abfd, import_name_type); 819 return FALSE; 820 } 821 822 /* Initialise local variables. 823 824 Note these are kept in a structure rather than being 825 declared as statics since bfd frowns on global variables. 826 827 We are going to construct the contents of the BFD in memory, 828 so allocate all the space that we will need right now. */ 829 vars.bim 830 = (struct bfd_in_memory *) bfd_malloc ((bfd_size_type) sizeof (*vars.bim)); 831 if (vars.bim == NULL) 832 return FALSE; 833 834 ptr = (bfd_byte *) bfd_zmalloc ((bfd_size_type) ILF_DATA_SIZE); 835 vars.bim->buffer = ptr; 836 vars.bim->size = ILF_DATA_SIZE; 837 if (ptr == NULL) 838 goto error_return; 839 840 /* Initialise the pointers to regions of the memory and the 841 other contents of the pe_ILF_vars structure as well. */ 842 vars.sym_cache = (coff_symbol_type *) ptr; 843 vars.sym_ptr = (coff_symbol_type *) ptr; 844 vars.sym_index = 0; 845 ptr += SIZEOF_ILF_SYMS; 846 847 vars.sym_table = (unsigned int *) ptr; 848 vars.table_ptr = (unsigned int *) ptr; 849 ptr += SIZEOF_ILF_SYM_TABLE; 850 851 vars.native_syms = (combined_entry_type *) ptr; 852 vars.native_ptr = (combined_entry_type *) ptr; 853 ptr += SIZEOF_ILF_NATIVE_SYMS; 854 855 vars.sym_ptr_table = (coff_symbol_type **) ptr; 856 vars.sym_ptr_ptr = (coff_symbol_type **) ptr; 857 ptr += SIZEOF_ILF_SYM_PTR_TABLE; 858 859 vars.esym_table = (SYMENT *) ptr; 860 vars.esym_ptr = (SYMENT *) ptr; 861 ptr += SIZEOF_ILF_EXT_SYMS; 862 863 vars.reltab = (arelent *) ptr; 864 vars.relcount = 0; 865 ptr += SIZEOF_ILF_RELOCS; 866 867 vars.int_reltab = (struct internal_reloc *) ptr; 868 ptr += SIZEOF_ILF_INT_RELOCS; 869 870 vars.string_table = (char *) ptr; 871 vars.string_ptr = (char *) ptr + STRING_SIZE_SIZE; 872 ptr += SIZEOF_ILF_STRINGS; 873 vars.end_string_ptr = (char *) ptr; 874 875 /* The remaining space in bim->buffer is used 876 by the pe_ILF_make_a_section() function. */ 877 878 /* PR 18758: Make sure that the data area is sufficiently aligned for 879 struct coff_section_tdata. __alignof__ is a gcc extension, hence 880 the test of GCC_VERSION. For other compilers we assume 8 byte 881 alignment. */ 882 #if GCC_VERSION >= 3000 883 alignment = __alignof__ (struct coff_section_tdata); 884 #else 885 alignment = 8; 886 #endif 887 ptr = (bfd_byte *) (((intptr_t) ptr + alignment - 1) & -alignment); 888 889 vars.data = ptr; 890 vars.abfd = abfd; 891 vars.sec_index = 0; 892 vars.magic = magic; 893 894 /* Create the initial .idata$<n> sections: 895 [.idata$2: Import Directory Table -- not needed] 896 .idata$4: Import Lookup Table 897 .idata$5: Import Address Table 898 899 Note we do not create a .idata$3 section as this is 900 created for us by the linker script. */ 901 id4 = pe_ILF_make_a_section (& vars, ".idata$4", SIZEOF_IDATA4, 0); 902 id5 = pe_ILF_make_a_section (& vars, ".idata$5", SIZEOF_IDATA5, 0); 903 if (id4 == NULL || id5 == NULL) 904 goto error_return; 905 906 /* Fill in the contents of these sections. */ 907 if (import_name_type == IMPORT_ORDINAL) 908 { 909 if (ordinal == 0) 910 /* See PR 20907 for a reproducer. */ 911 goto error_return; 912 913 #ifdef COFF_WITH_pex64 914 ((unsigned int *) id4->contents)[0] = ordinal; 915 ((unsigned int *) id4->contents)[1] = 0x80000000; 916 ((unsigned int *) id5->contents)[0] = ordinal; 917 ((unsigned int *) id5->contents)[1] = 0x80000000; 918 #else 919 * (unsigned int *) id4->contents = ordinal | 0x80000000; 920 * (unsigned int *) id5->contents = ordinal | 0x80000000; 921 #endif 922 } 923 else 924 { 925 char * symbol; 926 unsigned int len; 927 928 /* Create .idata$6 - the Hint Name Table. */ 929 id6 = pe_ILF_make_a_section (& vars, ".idata$6", SIZEOF_IDATA6, 0); 930 if (id6 == NULL) 931 goto error_return; 932 933 /* If necessary, trim the import symbol name. */ 934 symbol = symbol_name; 935 936 /* As used by MS compiler, '_', '@', and '?' are alternative 937 forms of USER_LABEL_PREFIX, with '?' for c++ mangled names, 938 '@' used for fastcall (in C), '_' everywhere else. Only one 939 of these is used for a symbol. We strip this leading char for 940 IMPORT_NAME_NOPREFIX and IMPORT_NAME_UNDECORATE as per the 941 PE COFF 6.0 spec (section 8.3, Import Name Type). */ 942 943 if (import_name_type != IMPORT_NAME) 944 { 945 char c = symbol[0]; 946 947 /* Check that we don't remove for targets with empty 948 USER_LABEL_PREFIX the leading underscore. */ 949 if ((c == '_' && abfd->xvec->symbol_leading_char != 0) 950 || c == '@' || c == '?') 951 symbol++; 952 } 953 954 len = strlen (symbol); 955 if (import_name_type == IMPORT_NAME_UNDECORATE) 956 { 957 /* Truncate at the first '@'. */ 958 char *at = strchr (symbol, '@'); 959 960 if (at != NULL) 961 len = at - symbol; 962 } 963 964 id6->contents[0] = ordinal & 0xff; 965 id6->contents[1] = ordinal >> 8; 966 967 memcpy ((char *) id6->contents + 2, symbol, len); 968 id6->contents[len + 2] = '\0'; 969 } 970 971 if (import_name_type != IMPORT_ORDINAL) 972 { 973 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6); 974 pe_ILF_save_relocs (&vars, id4); 975 976 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_RVA, id6); 977 pe_ILF_save_relocs (&vars, id5); 978 } 979 980 /* Create an import symbol. */ 981 pe_ILF_make_a_symbol (& vars, "__imp_", symbol_name, id5, 0); 982 imp_sym = vars.sym_ptr_ptr - 1; 983 imp_index = vars.sym_index - 1; 984 985 /* Create extra sections depending upon the type of import we are dealing with. */ 986 switch (import_type) 987 { 988 int i; 989 990 case IMPORT_CODE: 991 /* CODE functions are special, in that they get a trampoline that 992 jumps to the main import symbol. Create a .text section to hold it. 993 First we need to look up its contents in the jump table. */ 994 for (i = NUM_ENTRIES (jtab); i--;) 995 { 996 if (jtab[i].size == 0) 997 continue; 998 if (jtab[i].magic == magic) 999 break; 1000 } 1001 /* If we did not find a matching entry something is wrong. */ 1002 if (i < 0) 1003 abort (); 1004 1005 /* Create the .text section. */ 1006 text = pe_ILF_make_a_section (& vars, ".text", jtab[i].size, SEC_CODE); 1007 if (text == NULL) 1008 goto error_return; 1009 1010 /* Copy in the jump code. */ 1011 memcpy (text->contents, jtab[i].data, jtab[i].size); 1012 1013 /* Create a reloc for the data in the text section. */ 1014 #ifdef MIPS_ARCH_MAGIC_WINCE 1015 if (magic == MIPS_ARCH_MAGIC_WINCE) 1016 { 1017 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 0, BFD_RELOC_HI16_S, 1018 (struct bfd_symbol **) imp_sym, 1019 imp_index); 1020 pe_ILF_make_a_reloc (&vars, (bfd_vma) 0, BFD_RELOC_LO16, text); 1021 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) 4, BFD_RELOC_LO16, 1022 (struct bfd_symbol **) imp_sym, 1023 imp_index); 1024 } 1025 else 1026 #endif 1027 #ifdef AMD64MAGIC 1028 if (magic == AMD64MAGIC) 1029 { 1030 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset, 1031 BFD_RELOC_32_PCREL, (asymbol **) imp_sym, 1032 imp_index); 1033 } 1034 else 1035 #endif 1036 pe_ILF_make_a_symbol_reloc (&vars, (bfd_vma) jtab[i].offset, 1037 BFD_RELOC_32, (asymbol **) imp_sym, 1038 imp_index); 1039 1040 pe_ILF_save_relocs (& vars, text); 1041 break; 1042 1043 case IMPORT_DATA: 1044 break; 1045 1046 default: 1047 /* XXX code not yet written. */ 1048 abort (); 1049 } 1050 1051 /* Initialise the bfd. */ 1052 memset (& internal_f, 0, sizeof (internal_f)); 1053 1054 internal_f.f_magic = magic; 1055 internal_f.f_symptr = 0; 1056 internal_f.f_nsyms = 0; 1057 internal_f.f_flags = F_AR32WR | F_LNNO; /* XXX is this correct ? */ 1058 1059 if ( ! bfd_set_start_address (abfd, (bfd_vma) 0) 1060 || ! bfd_coff_set_arch_mach_hook (abfd, & internal_f)) 1061 goto error_return; 1062 1063 if (bfd_coff_mkobject_hook (abfd, (void *) & internal_f, NULL) == NULL) 1064 goto error_return; 1065 1066 coff_data (abfd)->pe = 1; 1067 #ifdef THUMBPEMAGIC 1068 if (vars.magic == THUMBPEMAGIC) 1069 /* Stop some linker warnings about thumb code not supporting interworking. */ 1070 coff_data (abfd)->flags |= F_INTERWORK | F_INTERWORK_SET; 1071 #endif 1072 1073 /* Switch from file contents to memory contents. */ 1074 bfd_cache_close (abfd); 1075 1076 abfd->iostream = (void *) vars.bim; 1077 abfd->flags |= BFD_IN_MEMORY /* | HAS_LOCALS */; 1078 abfd->iovec = &_bfd_memory_iovec; 1079 abfd->where = 0; 1080 abfd->origin = 0; 1081 obj_sym_filepos (abfd) = 0; 1082 1083 /* Now create a symbol describing the imported value. */ 1084 switch (import_type) 1085 { 1086 case IMPORT_CODE: 1087 pe_ILF_make_a_symbol (& vars, "", symbol_name, text, 1088 BSF_NOT_AT_END | BSF_FUNCTION); 1089 1090 break; 1091 1092 case IMPORT_DATA: 1093 /* Nothing to do here. */ 1094 break; 1095 1096 default: 1097 /* XXX code not yet written. */ 1098 abort (); 1099 } 1100 1101 /* Create an import symbol for the DLL, without the .dll suffix. */ 1102 ptr = (bfd_byte *) strrchr (source_dll, '.'); 1103 if (ptr) 1104 * ptr = 0; 1105 pe_ILF_make_a_symbol (& vars, "__IMPORT_DESCRIPTOR_", source_dll, NULL, 0); 1106 if (ptr) 1107 * ptr = '.'; 1108 1109 /* Point the bfd at the symbol table. */ 1110 obj_symbols (abfd) = vars.sym_cache; 1111 abfd->symcount = vars.sym_index; 1112 1113 obj_raw_syments (abfd) = vars.native_syms; 1114 obj_raw_syment_count (abfd) = vars.sym_index; 1115 1116 obj_coff_external_syms (abfd) = (void *) vars.esym_table; 1117 obj_coff_keep_syms (abfd) = TRUE; 1118 1119 obj_convert (abfd) = vars.sym_table; 1120 obj_conv_table_size (abfd) = vars.sym_index; 1121 1122 obj_coff_strings (abfd) = vars.string_table; 1123 obj_coff_keep_strings (abfd) = TRUE; 1124 1125 abfd->flags |= HAS_SYMS; 1126 1127 return TRUE; 1128 1129 error_return: 1130 free (vars.bim->buffer); 1131 free (vars.bim); 1132 return FALSE; 1133 } 1134 1135 /* We have detected a Image Library Format archive element. 1136 Decode the element and return the appropriate target. */ 1137 1138 static bfd_cleanup 1139 pe_ILF_object_p (bfd * abfd) 1140 { 1141 bfd_byte buffer[14]; 1142 bfd_byte * ptr; 1143 char * symbol_name; 1144 char * source_dll; 1145 unsigned int machine; 1146 bfd_size_type size; 1147 unsigned int ordinal; 1148 unsigned int types; 1149 unsigned int magic; 1150 1151 /* Upon entry the first six bytes of the ILF header have 1152 already been read. Now read the rest of the header. */ 1153 if (bfd_bread (buffer, (bfd_size_type) 14, abfd) != 14) 1154 return NULL; 1155 1156 ptr = buffer; 1157 1158 machine = H_GET_16 (abfd, ptr); 1159 ptr += 2; 1160 1161 /* Check that the machine type is recognised. */ 1162 magic = 0; 1163 1164 switch (machine) 1165 { 1166 case IMAGE_FILE_MACHINE_UNKNOWN: 1167 case IMAGE_FILE_MACHINE_ALPHA: 1168 case IMAGE_FILE_MACHINE_ALPHA64: 1169 case IMAGE_FILE_MACHINE_IA64: 1170 break; 1171 1172 case IMAGE_FILE_MACHINE_I386: 1173 #ifdef I386MAGIC 1174 magic = I386MAGIC; 1175 #endif 1176 break; 1177 1178 case IMAGE_FILE_MACHINE_AMD64: 1179 #ifdef AMD64MAGIC 1180 magic = AMD64MAGIC; 1181 #endif 1182 break; 1183 1184 case IMAGE_FILE_MACHINE_R3000: 1185 case IMAGE_FILE_MACHINE_R4000: 1186 case IMAGE_FILE_MACHINE_R10000: 1187 1188 case IMAGE_FILE_MACHINE_MIPS16: 1189 case IMAGE_FILE_MACHINE_MIPSFPU: 1190 case IMAGE_FILE_MACHINE_MIPSFPU16: 1191 #ifdef MIPS_ARCH_MAGIC_WINCE 1192 magic = MIPS_ARCH_MAGIC_WINCE; 1193 #endif 1194 break; 1195 1196 case IMAGE_FILE_MACHINE_SH3: 1197 case IMAGE_FILE_MACHINE_SH4: 1198 #ifdef SH_ARCH_MAGIC_WINCE 1199 magic = SH_ARCH_MAGIC_WINCE; 1200 #endif 1201 break; 1202 1203 case IMAGE_FILE_MACHINE_ARM: 1204 #ifdef ARMPEMAGIC 1205 magic = ARMPEMAGIC; 1206 #endif 1207 break; 1208 1209 case IMAGE_FILE_MACHINE_THUMB: 1210 #ifdef THUMBPEMAGIC 1211 { 1212 extern const bfd_target TARGET_LITTLE_SYM; 1213 1214 if (abfd->xvec == & TARGET_LITTLE_SYM) 1215 magic = THUMBPEMAGIC; 1216 } 1217 #endif 1218 break; 1219 1220 case IMAGE_FILE_MACHINE_POWERPC: 1221 /* We no longer support PowerPC. */ 1222 default: 1223 _bfd_error_handler 1224 /* xgettext:c-format */ 1225 (_("%pB: unrecognised machine type (0x%x)" 1226 " in Import Library Format archive"), 1227 abfd, machine); 1228 bfd_set_error (bfd_error_malformed_archive); 1229 1230 return NULL; 1231 break; 1232 } 1233 1234 if (magic == 0) 1235 { 1236 _bfd_error_handler 1237 /* xgettext:c-format */ 1238 (_("%pB: recognised but unhandled machine type (0x%x)" 1239 " in Import Library Format archive"), 1240 abfd, machine); 1241 bfd_set_error (bfd_error_wrong_format); 1242 1243 return NULL; 1244 } 1245 1246 /* We do not bother to check the date. 1247 date = H_GET_32 (abfd, ptr); */ 1248 ptr += 4; 1249 1250 size = H_GET_32 (abfd, ptr); 1251 ptr += 4; 1252 1253 if (size == 0) 1254 { 1255 _bfd_error_handler 1256 (_("%pB: size field is zero in Import Library Format header"), abfd); 1257 bfd_set_error (bfd_error_malformed_archive); 1258 1259 return NULL; 1260 } 1261 1262 ordinal = H_GET_16 (abfd, ptr); 1263 ptr += 2; 1264 1265 types = H_GET_16 (abfd, ptr); 1266 /* ptr += 2; */ 1267 1268 /* Now read in the two strings that follow. */ 1269 ptr = (bfd_byte *) _bfd_alloc_and_read (abfd, size, size); 1270 if (ptr == NULL) 1271 return NULL; 1272 1273 symbol_name = (char *) ptr; 1274 /* See PR 20905 for an example of where the strnlen is necessary. */ 1275 source_dll = symbol_name + strnlen (symbol_name, size - 1) + 1; 1276 1277 /* Verify that the strings are null terminated. */ 1278 if (ptr[size - 1] != 0 1279 || (bfd_size_type) ((bfd_byte *) source_dll - ptr) >= size) 1280 { 1281 _bfd_error_handler 1282 (_("%pB: string not null terminated in ILF object file"), abfd); 1283 bfd_set_error (bfd_error_malformed_archive); 1284 bfd_release (abfd, ptr); 1285 return NULL; 1286 } 1287 1288 /* Now construct the bfd. */ 1289 if (! pe_ILF_build_a_bfd (abfd, magic, symbol_name, 1290 source_dll, ordinal, types)) 1291 { 1292 bfd_release (abfd, ptr); 1293 return NULL; 1294 } 1295 1296 return _bfd_no_cleanup; 1297 } 1298 1299 static void 1300 pe_bfd_read_buildid (bfd *abfd) 1301 { 1302 pe_data_type *pe = pe_data (abfd); 1303 struct internal_extra_pe_aouthdr *extra = &pe->pe_opthdr; 1304 asection *section; 1305 bfd_byte *data = 0; 1306 bfd_size_type dataoff; 1307 unsigned int i; 1308 bfd_vma addr = extra->DataDirectory[PE_DEBUG_DATA].VirtualAddress; 1309 bfd_size_type size = extra->DataDirectory[PE_DEBUG_DATA].Size; 1310 1311 if (size == 0) 1312 return; 1313 1314 addr += extra->ImageBase; 1315 1316 /* Search for the section containing the DebugDirectory. */ 1317 for (section = abfd->sections; section != NULL; section = section->next) 1318 { 1319 if ((addr >= section->vma) && (addr < (section->vma + section->size))) 1320 break; 1321 } 1322 1323 if (section == NULL) 1324 return; 1325 1326 if (!(section->flags & SEC_HAS_CONTENTS)) 1327 return; 1328 1329 dataoff = addr - section->vma; 1330 1331 /* PR 20605 and 22373: Make sure that the data is really there. 1332 Note - since we are dealing with unsigned quantities we have 1333 to be careful to check for potential overflows. */ 1334 if (dataoff >= section->size 1335 || size > section->size - dataoff) 1336 { 1337 _bfd_error_handler 1338 (_("%pB: error: debug data ends beyond end of debug directory"), 1339 abfd); 1340 return; 1341 } 1342 1343 /* Read the whole section. */ 1344 if (!bfd_malloc_and_get_section (abfd, section, &data)) 1345 { 1346 free (data); 1347 return; 1348 } 1349 1350 /* Search for a CodeView entry in the DebugDirectory */ 1351 for (i = 0; i < size / sizeof (struct external_IMAGE_DEBUG_DIRECTORY); i++) 1352 { 1353 struct external_IMAGE_DEBUG_DIRECTORY *ext 1354 = &((struct external_IMAGE_DEBUG_DIRECTORY *)(data + dataoff))[i]; 1355 struct internal_IMAGE_DEBUG_DIRECTORY idd; 1356 1357 _bfd_XXi_swap_debugdir_in (abfd, ext, &idd); 1358 1359 if (idd.Type == PE_IMAGE_DEBUG_TYPE_CODEVIEW) 1360 { 1361 char buffer[256 + 1]; 1362 CODEVIEW_INFO *cvinfo = (CODEVIEW_INFO *) buffer; 1363 1364 /* 1365 The debug entry doesn't have to have to be in a section, in which 1366 case AddressOfRawData is 0, so always use PointerToRawData. 1367 */ 1368 if (_bfd_XXi_slurp_codeview_record (abfd, 1369 (file_ptr) idd.PointerToRawData, 1370 idd.SizeOfData, cvinfo)) 1371 { 1372 struct bfd_build_id* build_id = bfd_alloc (abfd, 1373 sizeof (struct bfd_build_id) + cvinfo->SignatureLength); 1374 if (build_id) 1375 { 1376 build_id->size = cvinfo->SignatureLength; 1377 memcpy(build_id->data, cvinfo->Signature, 1378 cvinfo->SignatureLength); 1379 abfd->build_id = build_id; 1380 } 1381 } 1382 break; 1383 } 1384 } 1385 1386 free (data); 1387 } 1388 1389 static bfd_cleanup 1390 pe_bfd_object_p (bfd * abfd) 1391 { 1392 bfd_byte buffer[6]; 1393 struct external_DOS_hdr dos_hdr; 1394 struct external_PEI_IMAGE_hdr image_hdr; 1395 struct internal_filehdr internal_f; 1396 struct internal_aouthdr internal_a; 1397 bfd_size_type opt_hdr_size; 1398 file_ptr offset; 1399 bfd_cleanup result; 1400 1401 /* Detect if this a Microsoft Import Library Format element. */ 1402 /* First read the beginning of the header. */ 1403 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0 1404 || bfd_bread (buffer, (bfd_size_type) 6, abfd) != 6) 1405 { 1406 if (bfd_get_error () != bfd_error_system_call) 1407 bfd_set_error (bfd_error_wrong_format); 1408 return NULL; 1409 } 1410 1411 /* Then check the magic and the version (only 0 is supported). */ 1412 if (H_GET_32 (abfd, buffer) == 0xffff0000 1413 && H_GET_16 (abfd, buffer + 4) == 0) 1414 return pe_ILF_object_p (abfd); 1415 1416 if (bfd_seek (abfd, (file_ptr) 0, SEEK_SET) != 0 1417 || bfd_bread (&dos_hdr, (bfd_size_type) sizeof (dos_hdr), abfd) 1418 != sizeof (dos_hdr)) 1419 { 1420 if (bfd_get_error () != bfd_error_system_call) 1421 bfd_set_error (bfd_error_wrong_format); 1422 return NULL; 1423 } 1424 1425 /* There are really two magic numbers involved; the magic number 1426 that says this is a NT executable (PEI) and the magic number that 1427 determines the architecture. The former is IMAGE_DOS_SIGNATURE, stored in 1428 the e_magic field. The latter is stored in the f_magic field. 1429 If the NT magic number isn't valid, the architecture magic number 1430 could be mimicked by some other field (specifically, the number 1431 of relocs in section 3). Since this routine can only be called 1432 correctly for a PEI file, check the e_magic number here, and, if 1433 it doesn't match, clobber the f_magic number so that we don't get 1434 a false match. */ 1435 if (H_GET_16 (abfd, dos_hdr.e_magic) != IMAGE_DOS_SIGNATURE) 1436 { 1437 bfd_set_error (bfd_error_wrong_format); 1438 return NULL; 1439 } 1440 1441 offset = H_GET_32 (abfd, dos_hdr.e_lfanew); 1442 if (bfd_seek (abfd, offset, SEEK_SET) != 0 1443 || (bfd_bread (&image_hdr, (bfd_size_type) sizeof (image_hdr), abfd) 1444 != sizeof (image_hdr))) 1445 { 1446 if (bfd_get_error () != bfd_error_system_call) 1447 bfd_set_error (bfd_error_wrong_format); 1448 return NULL; 1449 } 1450 1451 if (H_GET_32 (abfd, image_hdr.nt_signature) != 0x4550) 1452 { 1453 bfd_set_error (bfd_error_wrong_format); 1454 return NULL; 1455 } 1456 1457 /* Swap file header, so that we get the location for calling 1458 real_object_p. */ 1459 bfd_coff_swap_filehdr_in (abfd, &image_hdr, &internal_f); 1460 1461 if (! bfd_coff_bad_format_hook (abfd, &internal_f) 1462 || internal_f.f_opthdr > bfd_coff_aoutsz (abfd)) 1463 { 1464 bfd_set_error (bfd_error_wrong_format); 1465 return NULL; 1466 } 1467 1468 memcpy (internal_f.pe.dos_message, dos_hdr.dos_message, 1469 sizeof (internal_f.pe.dos_message)); 1470 1471 /* Read the optional header, which has variable size. */ 1472 opt_hdr_size = internal_f.f_opthdr; 1473 1474 if (opt_hdr_size != 0) 1475 { 1476 bfd_size_type amt = opt_hdr_size; 1477 void * opthdr; 1478 1479 /* PR 17521 file: 230-131433-0.004. */ 1480 if (amt < sizeof (PEAOUTHDR)) 1481 amt = sizeof (PEAOUTHDR); 1482 1483 opthdr = _bfd_alloc_and_read (abfd, amt, opt_hdr_size); 1484 if (opthdr == NULL) 1485 return NULL; 1486 if (amt > opt_hdr_size) 1487 memset (opthdr + opt_hdr_size, 0, amt - opt_hdr_size); 1488 1489 bfd_set_error (bfd_error_no_error); 1490 bfd_coff_swap_aouthdr_in (abfd, opthdr, & internal_a); 1491 if (bfd_get_error () != bfd_error_no_error) 1492 return NULL; 1493 } 1494 1495 1496 result = coff_real_object_p (abfd, internal_f.f_nscns, &internal_f, 1497 (opt_hdr_size != 0 1498 ? &internal_a 1499 : (struct internal_aouthdr *) NULL)); 1500 1501 1502 if (result) 1503 { 1504 /* Now the whole header has been processed, see if there is a build-id */ 1505 pe_bfd_read_buildid(abfd); 1506 } 1507 1508 return result; 1509 } 1510 1511 #define coff_object_p pe_bfd_object_p 1512 #endif /* COFF_IMAGE_WITH_PE */ 1513