xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elfxx-mips.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* MIPS-specific support for ELF
2    Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 #include "dwarf2.h"
40 
41 /* Get the ECOFF swapping routines.  */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 
47 #include "hashtab.h"
48 
49 /* Types of TLS GOT entry.  */
50 enum mips_got_tls_type {
51   GOT_TLS_NONE,
52   GOT_TLS_GD,
53   GOT_TLS_LDM,
54   GOT_TLS_IE
55 };
56 
57 /* This structure is used to hold information about one GOT entry.
58    There are four types of entry:
59 
60       (1) an absolute address
61 	    requires: abfd == NULL
62 	    fields: d.address
63 
64       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
65 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
66 	    fields: abfd, symndx, d.addend, tls_type
67 
68       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
69 	    requires: abfd != NULL, symndx == -1
70 	    fields: d.h, tls_type
71 
72       (4) a TLS LDM slot
73 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
74 	    fields: none; there's only one of these per GOT.  */
75 struct mips_got_entry
76 {
77   /* One input bfd that needs the GOT entry.  */
78   bfd *abfd;
79   /* The index of the symbol, as stored in the relocation r_info, if
80      we have a local symbol; -1 otherwise.  */
81   long symndx;
82   union
83   {
84     /* If abfd == NULL, an address that must be stored in the got.  */
85     bfd_vma address;
86     /* If abfd != NULL && symndx != -1, the addend of the relocation
87        that should be added to the symbol value.  */
88     bfd_vma addend;
89     /* If abfd != NULL && symndx == -1, the hash table entry
90        corresponding to a symbol in the GOT.  The symbol's entry
91        is in the local area if h->global_got_area is GGA_NONE,
92        otherwise it is in the global area.  */
93     struct mips_elf_link_hash_entry *h;
94   } d;
95 
96   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
97      symbol entry with r_symndx == 0.  */
98   unsigned char tls_type;
99 
100   /* True if we have filled in the GOT contents for a TLS entry,
101      and created the associated relocations.  */
102   unsigned char tls_initialized;
103 
104   /* The offset from the beginning of the .got section to the entry
105      corresponding to this symbol+addend.  If it's a global symbol
106      whose offset is yet to be decided, it's going to be -1.  */
107   long gotidx;
108 };
109 
110 /* This structure represents a GOT page reference from an input bfd.
111    Each instance represents a symbol + ADDEND, where the representation
112    of the symbol depends on whether it is local to the input bfd.
113    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
114    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
115 
116    Page references with SYMNDX >= 0 always become page references
117    in the output.  Page references with SYMNDX < 0 only become page
118    references if the symbol binds locally; in other cases, the page
119    reference decays to a global GOT reference.  */
120 struct mips_got_page_ref
121 {
122   long symndx;
123   union
124   {
125     struct mips_elf_link_hash_entry *h;
126     bfd *abfd;
127   } u;
128   bfd_vma addend;
129 };
130 
131 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
132    The structures form a non-overlapping list that is sorted by increasing
133    MIN_ADDEND.  */
134 struct mips_got_page_range
135 {
136   struct mips_got_page_range *next;
137   bfd_signed_vma min_addend;
138   bfd_signed_vma max_addend;
139 };
140 
141 /* This structure describes the range of addends that are applied to page
142    relocations against a given section.  */
143 struct mips_got_page_entry
144 {
145   /* The section that these entries are based on.  */
146   asection *sec;
147   /* The ranges for this page entry.  */
148   struct mips_got_page_range *ranges;
149   /* The maximum number of page entries needed for RANGES.  */
150   bfd_vma num_pages;
151 };
152 
153 /* This structure is used to hold .got information when linking.  */
154 
155 struct mips_got_info
156 {
157   /* The number of global .got entries.  */
158   unsigned int global_gotno;
159   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
160   unsigned int reloc_only_gotno;
161   /* The number of .got slots used for TLS.  */
162   unsigned int tls_gotno;
163   /* The first unused TLS .got entry.  Used only during
164      mips_elf_initialize_tls_index.  */
165   unsigned int tls_assigned_gotno;
166   /* The number of local .got entries, eventually including page entries.  */
167   unsigned int local_gotno;
168   /* The maximum number of page entries needed.  */
169   unsigned int page_gotno;
170   /* The number of relocations needed for the GOT entries.  */
171   unsigned int relocs;
172   /* The first unused local .got entry.  */
173   unsigned int assigned_low_gotno;
174   /* The last unused local .got entry.  */
175   unsigned int assigned_high_gotno;
176   /* A hash table holding members of the got.  */
177   struct htab *got_entries;
178   /* A hash table holding mips_got_page_ref structures.  */
179   struct htab *got_page_refs;
180   /* A hash table of mips_got_page_entry structures.  */
181   struct htab *got_page_entries;
182   /* In multi-got links, a pointer to the next got (err, rather, most
183      of the time, it points to the previous got).  */
184   struct mips_got_info *next;
185 };
186 
187 /* Structure passed when merging bfds' gots.  */
188 
189 struct mips_elf_got_per_bfd_arg
190 {
191   /* The output bfd.  */
192   bfd *obfd;
193   /* The link information.  */
194   struct bfd_link_info *info;
195   /* A pointer to the primary got, i.e., the one that's going to get
196      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
197      DT_MIPS_GOTSYM.  */
198   struct mips_got_info *primary;
199   /* A non-primary got we're trying to merge with other input bfd's
200      gots.  */
201   struct mips_got_info *current;
202   /* The maximum number of got entries that can be addressed with a
203      16-bit offset.  */
204   unsigned int max_count;
205   /* The maximum number of page entries needed by each got.  */
206   unsigned int max_pages;
207   /* The total number of global entries which will live in the
208      primary got and be automatically relocated.  This includes
209      those not referenced by the primary GOT but included in
210      the "master" GOT.  */
211   unsigned int global_count;
212 };
213 
214 /* A structure used to pass information to htab_traverse callbacks
215    when laying out the GOT.  */
216 
217 struct mips_elf_traverse_got_arg
218 {
219   struct bfd_link_info *info;
220   struct mips_got_info *g;
221   int value;
222 };
223 
224 struct _mips_elf_section_data
225 {
226   struct bfd_elf_section_data elf;
227   union
228   {
229     bfd_byte *tdata;
230   } u;
231 };
232 
233 #define mips_elf_section_data(sec) \
234   ((struct _mips_elf_section_data *) elf_section_data (sec))
235 
236 #define is_mips_elf(bfd)				\
237   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
238    && elf_tdata (bfd) != NULL				\
239    && elf_object_id (bfd) == MIPS_ELF_DATA)
240 
241 /* The ABI says that every symbol used by dynamic relocations must have
242    a global GOT entry.  Among other things, this provides the dynamic
243    linker with a free, directly-indexed cache.  The GOT can therefore
244    contain symbols that are not referenced by GOT relocations themselves
245    (in other words, it may have symbols that are not referenced by things
246    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
247 
248    GOT relocations are less likely to overflow if we put the associated
249    GOT entries towards the beginning.  We therefore divide the global
250    GOT entries into two areas: "normal" and "reloc-only".  Entries in
251    the first area can be used for both dynamic relocations and GP-relative
252    accesses, while those in the "reloc-only" area are for dynamic
253    relocations only.
254 
255    These GGA_* ("Global GOT Area") values are organised so that lower
256    values are more general than higher values.  Also, non-GGA_NONE
257    values are ordered by the position of the area in the GOT.  */
258 #define GGA_NORMAL 0
259 #define GGA_RELOC_ONLY 1
260 #define GGA_NONE 2
261 
262 /* Information about a non-PIC interface to a PIC function.  There are
263    two ways of creating these interfaces.  The first is to add:
264 
265 	lui	$25,%hi(func)
266 	addiu	$25,$25,%lo(func)
267 
268    immediately before a PIC function "func".  The second is to add:
269 
270 	lui	$25,%hi(func)
271 	j	func
272 	addiu	$25,$25,%lo(func)
273 
274    to a separate trampoline section.
275 
276    Stubs of the first kind go in a new section immediately before the
277    target function.  Stubs of the second kind go in a single section
278    pointed to by the hash table's "strampoline" field.  */
279 struct mips_elf_la25_stub {
280   /* The generated section that contains this stub.  */
281   asection *stub_section;
282 
283   /* The offset of the stub from the start of STUB_SECTION.  */
284   bfd_vma offset;
285 
286   /* One symbol for the original function.  Its location is available
287      in H->root.root.u.def.  */
288   struct mips_elf_link_hash_entry *h;
289 };
290 
291 /* Macros for populating a mips_elf_la25_stub.  */
292 
293 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
294 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
295 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
296 #define LA25_LUI_MICROMIPS(VAL)						\
297   (0x41b90000 | (VAL))				/* lui t9,VAL */
298 #define LA25_J_MICROMIPS(VAL)						\
299   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
300 #define LA25_ADDIU_MICROMIPS(VAL)					\
301   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
302 
303 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
304    the dynamic symbols.  */
305 
306 struct mips_elf_hash_sort_data
307 {
308   /* The symbol in the global GOT with the lowest dynamic symbol table
309      index.  */
310   struct elf_link_hash_entry *low;
311   /* The least dynamic symbol table index corresponding to a non-TLS
312      symbol with a GOT entry.  */
313   bfd_size_type min_got_dynindx;
314   /* The greatest dynamic symbol table index corresponding to a symbol
315      with a GOT entry that is not referenced (e.g., a dynamic symbol
316      with dynamic relocations pointing to it from non-primary GOTs).  */
317   bfd_size_type max_unref_got_dynindx;
318   /* The greatest dynamic symbol table index corresponding to a local
319      symbol.  */
320   bfd_size_type max_local_dynindx;
321   /* The greatest dynamic symbol table index corresponding to an external
322      symbol without a GOT entry.  */
323   bfd_size_type max_non_got_dynindx;
324 };
325 
326 /* We make up to two PLT entries if needed, one for standard MIPS code
327    and one for compressed code, either a MIPS16 or microMIPS one.  We
328    keep a separate record of traditional lazy-binding stubs, for easier
329    processing.  */
330 
331 struct plt_entry
332 {
333   /* Traditional SVR4 stub offset, or -1 if none.  */
334   bfd_vma stub_offset;
335 
336   /* Standard PLT entry offset, or -1 if none.  */
337   bfd_vma mips_offset;
338 
339   /* Compressed PLT entry offset, or -1 if none.  */
340   bfd_vma comp_offset;
341 
342   /* The corresponding .got.plt index, or -1 if none.  */
343   bfd_vma gotplt_index;
344 
345   /* Whether we need a standard PLT entry.  */
346   unsigned int need_mips : 1;
347 
348   /* Whether we need a compressed PLT entry.  */
349   unsigned int need_comp : 1;
350 };
351 
352 /* The MIPS ELF linker needs additional information for each symbol in
353    the global hash table.  */
354 
355 struct mips_elf_link_hash_entry
356 {
357   struct elf_link_hash_entry root;
358 
359   /* External symbol information.  */
360   EXTR esym;
361 
362   /* The la25 stub we have created for ths symbol, if any.  */
363   struct mips_elf_la25_stub *la25_stub;
364 
365   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
366      this symbol.  */
367   unsigned int possibly_dynamic_relocs;
368 
369   /* If there is a stub that 32 bit functions should use to call this
370      16 bit function, this points to the section containing the stub.  */
371   asection *fn_stub;
372 
373   /* If there is a stub that 16 bit functions should use to call this
374      32 bit function, this points to the section containing the stub.  */
375   asection *call_stub;
376 
377   /* This is like the call_stub field, but it is used if the function
378      being called returns a floating point value.  */
379   asection *call_fp_stub;
380 
381   /* The highest GGA_* value that satisfies all references to this symbol.  */
382   unsigned int global_got_area : 2;
383 
384   /* True if all GOT relocations against this symbol are for calls.  This is
385      a looser condition than no_fn_stub below, because there may be other
386      non-call non-GOT relocations against the symbol.  */
387   unsigned int got_only_for_calls : 1;
388 
389   /* True if one of the relocations described by possibly_dynamic_relocs
390      is against a readonly section.  */
391   unsigned int readonly_reloc : 1;
392 
393   /* True if there is a relocation against this symbol that must be
394      resolved by the static linker (in other words, if the relocation
395      cannot possibly be made dynamic).  */
396   unsigned int has_static_relocs : 1;
397 
398   /* True if we must not create a .MIPS.stubs entry for this symbol.
399      This is set, for example, if there are relocations related to
400      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
401      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
402   unsigned int no_fn_stub : 1;
403 
404   /* Whether we need the fn_stub; this is true if this symbol appears
405      in any relocs other than a 16 bit call.  */
406   unsigned int need_fn_stub : 1;
407 
408   /* True if this symbol is referenced by branch relocations from
409      any non-PIC input file.  This is used to determine whether an
410      la25 stub is required.  */
411   unsigned int has_nonpic_branches : 1;
412 
413   /* Does this symbol need a traditional MIPS lazy-binding stub
414      (as opposed to a PLT entry)?  */
415   unsigned int needs_lazy_stub : 1;
416 
417   /* Does this symbol resolve to a PLT entry?  */
418   unsigned int use_plt_entry : 1;
419 };
420 
421 /* MIPS ELF linker hash table.  */
422 
423 struct mips_elf_link_hash_table
424 {
425   struct elf_link_hash_table root;
426 
427   /* The number of .rtproc entries.  */
428   bfd_size_type procedure_count;
429 
430   /* The size of the .compact_rel section (if SGI_COMPAT).  */
431   bfd_size_type compact_rel_size;
432 
433   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
434      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
435   bfd_boolean use_rld_obj_head;
436 
437   /* The  __rld_map or __rld_obj_head symbol. */
438   struct elf_link_hash_entry *rld_symbol;
439 
440   /* This is set if we see any mips16 stub sections.  */
441   bfd_boolean mips16_stubs_seen;
442 
443   /* True if we can generate copy relocs and PLTs.  */
444   bfd_boolean use_plts_and_copy_relocs;
445 
446   /* True if we can only use 32-bit microMIPS instructions.  */
447   bfd_boolean insn32;
448 
449   /* True if we suppress checks for invalid branches between ISA modes.  */
450   bfd_boolean ignore_branch_isa;
451 
452   /* True if we're generating code for VxWorks.  */
453   bfd_boolean is_vxworks;
454 
455   /* True if we already reported the small-data section overflow.  */
456   bfd_boolean small_data_overflow_reported;
457 
458   /* Shortcuts to some dynamic sections, or NULL if they are not
459      being used.  */
460   asection *srelplt2;
461   asection *sstubs;
462 
463   /* The master GOT information.  */
464   struct mips_got_info *got_info;
465 
466   /* The global symbol in the GOT with the lowest index in the dynamic
467      symbol table.  */
468   struct elf_link_hash_entry *global_gotsym;
469 
470   /* The size of the PLT header in bytes.  */
471   bfd_vma plt_header_size;
472 
473   /* The size of a standard PLT entry in bytes.  */
474   bfd_vma plt_mips_entry_size;
475 
476   /* The size of a compressed PLT entry in bytes.  */
477   bfd_vma plt_comp_entry_size;
478 
479   /* The offset of the next standard PLT entry to create.  */
480   bfd_vma plt_mips_offset;
481 
482   /* The offset of the next compressed PLT entry to create.  */
483   bfd_vma plt_comp_offset;
484 
485   /* The index of the next .got.plt entry to create.  */
486   bfd_vma plt_got_index;
487 
488   /* The number of functions that need a lazy-binding stub.  */
489   bfd_vma lazy_stub_count;
490 
491   /* The size of a function stub entry in bytes.  */
492   bfd_vma function_stub_size;
493 
494   /* The number of reserved entries at the beginning of the GOT.  */
495   unsigned int reserved_gotno;
496 
497   /* The section used for mips_elf_la25_stub trampolines.
498      See the comment above that structure for details.  */
499   asection *strampoline;
500 
501   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
502      pairs.  */
503   htab_t la25_stubs;
504 
505   /* A function FN (NAME, IS, OS) that creates a new input section
506      called NAME and links it to output section OS.  If IS is nonnull,
507      the new section should go immediately before it, otherwise it
508      should go at the (current) beginning of OS.
509 
510      The function returns the new section on success, otherwise it
511      returns null.  */
512   asection *(*add_stub_section) (const char *, asection *, asection *);
513 
514   /* Small local sym cache.  */
515   struct sym_cache sym_cache;
516 
517   /* Is the PLT header compressed?  */
518   unsigned int plt_header_is_comp : 1;
519 };
520 
521 /* Get the MIPS ELF linker hash table from a link_info structure.  */
522 
523 #define mips_elf_hash_table(p) \
524   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
525   == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
526 
527 /* A structure used to communicate with htab_traverse callbacks.  */
528 struct mips_htab_traverse_info
529 {
530   /* The usual link-wide information.  */
531   struct bfd_link_info *info;
532   bfd *output_bfd;
533 
534   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
535   bfd_boolean error;
536 };
537 
538 /* MIPS ELF private object data.  */
539 
540 struct mips_elf_obj_tdata
541 {
542   /* Generic ELF private object data.  */
543   struct elf_obj_tdata root;
544 
545   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
546   bfd *abi_fp_bfd;
547 
548   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
549   bfd *abi_msa_bfd;
550 
551   /* The abiflags for this object.  */
552   Elf_Internal_ABIFlags_v0 abiflags;
553   bfd_boolean abiflags_valid;
554 
555   /* The GOT requirements of input bfds.  */
556   struct mips_got_info *got;
557 
558   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
559      included directly in this one, but there's no point to wasting
560      the memory just for the infrequently called find_nearest_line.  */
561   struct mips_elf_find_line *find_line_info;
562 
563   /* An array of stub sections indexed by symbol number.  */
564   asection **local_stubs;
565   asection **local_call_stubs;
566 
567   /* The Irix 5 support uses two virtual sections, which represent
568      text/data symbols defined in dynamic objects.  */
569   asymbol *elf_data_symbol;
570   asymbol *elf_text_symbol;
571   asection *elf_data_section;
572   asection *elf_text_section;
573 };
574 
575 /* Get MIPS ELF private object data from BFD's tdata.  */
576 
577 #define mips_elf_tdata(bfd) \
578   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
579 
580 #define TLS_RELOC_P(r_type) \
581   (r_type == R_MIPS_TLS_DTPMOD32		\
582    || r_type == R_MIPS_TLS_DTPMOD64		\
583    || r_type == R_MIPS_TLS_DTPREL32		\
584    || r_type == R_MIPS_TLS_DTPREL64		\
585    || r_type == R_MIPS_TLS_GD			\
586    || r_type == R_MIPS_TLS_LDM			\
587    || r_type == R_MIPS_TLS_DTPREL_HI16		\
588    || r_type == R_MIPS_TLS_DTPREL_LO16		\
589    || r_type == R_MIPS_TLS_GOTTPREL		\
590    || r_type == R_MIPS_TLS_TPREL32		\
591    || r_type == R_MIPS_TLS_TPREL64		\
592    || r_type == R_MIPS_TLS_TPREL_HI16		\
593    || r_type == R_MIPS_TLS_TPREL_LO16		\
594    || r_type == R_MIPS16_TLS_GD			\
595    || r_type == R_MIPS16_TLS_LDM		\
596    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
597    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
598    || r_type == R_MIPS16_TLS_GOTTPREL		\
599    || r_type == R_MIPS16_TLS_TPREL_HI16		\
600    || r_type == R_MIPS16_TLS_TPREL_LO16		\
601    || r_type == R_MICROMIPS_TLS_GD		\
602    || r_type == R_MICROMIPS_TLS_LDM		\
603    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
604    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
605    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
606    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
607    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
608 
609 /* Structure used to pass information to mips_elf_output_extsym.  */
610 
611 struct extsym_info
612 {
613   bfd *abfd;
614   struct bfd_link_info *info;
615   struct ecoff_debug_info *debug;
616   const struct ecoff_debug_swap *swap;
617   bfd_boolean failed;
618 };
619 
620 /* The names of the runtime procedure table symbols used on IRIX5.  */
621 
622 static const char * const mips_elf_dynsym_rtproc_names[] =
623 {
624   "_procedure_table",
625   "_procedure_string_table",
626   "_procedure_table_size",
627   NULL
628 };
629 
630 /* These structures are used to generate the .compact_rel section on
631    IRIX5.  */
632 
633 typedef struct
634 {
635   unsigned long id1;		/* Always one?  */
636   unsigned long num;		/* Number of compact relocation entries.  */
637   unsigned long id2;		/* Always two?  */
638   unsigned long offset;		/* The file offset of the first relocation.  */
639   unsigned long reserved0;	/* Zero?  */
640   unsigned long reserved1;	/* Zero?  */
641 } Elf32_compact_rel;
642 
643 typedef struct
644 {
645   bfd_byte id1[4];
646   bfd_byte num[4];
647   bfd_byte id2[4];
648   bfd_byte offset[4];
649   bfd_byte reserved0[4];
650   bfd_byte reserved1[4];
651 } Elf32_External_compact_rel;
652 
653 typedef struct
654 {
655   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
656   unsigned int rtype : 4;	/* Relocation types. See below.  */
657   unsigned int dist2to : 8;
658   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
659   unsigned long konst;		/* KONST field. See below.  */
660   unsigned long vaddr;		/* VADDR to be relocated.  */
661 } Elf32_crinfo;
662 
663 typedef struct
664 {
665   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
666   unsigned int rtype : 4;	/* Relocation types. See below.  */
667   unsigned int dist2to : 8;
668   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
669   unsigned long konst;		/* KONST field. See below.  */
670 } Elf32_crinfo2;
671 
672 typedef struct
673 {
674   bfd_byte info[4];
675   bfd_byte konst[4];
676   bfd_byte vaddr[4];
677 } Elf32_External_crinfo;
678 
679 typedef struct
680 {
681   bfd_byte info[4];
682   bfd_byte konst[4];
683 } Elf32_External_crinfo2;
684 
685 /* These are the constants used to swap the bitfields in a crinfo.  */
686 
687 #define CRINFO_CTYPE (0x1)
688 #define CRINFO_CTYPE_SH (31)
689 #define CRINFO_RTYPE (0xf)
690 #define CRINFO_RTYPE_SH (27)
691 #define CRINFO_DIST2TO (0xff)
692 #define CRINFO_DIST2TO_SH (19)
693 #define CRINFO_RELVADDR (0x7ffff)
694 #define CRINFO_RELVADDR_SH (0)
695 
696 /* A compact relocation info has long (3 words) or short (2 words)
697    formats.  A short format doesn't have VADDR field and relvaddr
698    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
699 #define CRF_MIPS_LONG			1
700 #define CRF_MIPS_SHORT			0
701 
702 /* There are 4 types of compact relocation at least. The value KONST
703    has different meaning for each type:
704 
705    (type)		(konst)
706    CT_MIPS_REL32	Address in data
707    CT_MIPS_WORD		Address in word (XXX)
708    CT_MIPS_GPHI_LO	GP - vaddr
709    CT_MIPS_JMPAD	Address to jump
710    */
711 
712 #define CRT_MIPS_REL32			0xa
713 #define CRT_MIPS_WORD			0xb
714 #define CRT_MIPS_GPHI_LO		0xc
715 #define CRT_MIPS_JMPAD			0xd
716 
717 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
718 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
719 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
720 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
721 
722 /* The structure of the runtime procedure descriptor created by the
723    loader for use by the static exception system.  */
724 
725 typedef struct runtime_pdr {
726 	bfd_vma	adr;		/* Memory address of start of procedure.  */
727 	long	regmask;	/* Save register mask.  */
728 	long	regoffset;	/* Save register offset.  */
729 	long	fregmask;	/* Save floating point register mask.  */
730 	long	fregoffset;	/* Save floating point register offset.  */
731 	long	frameoffset;	/* Frame size.  */
732 	short	framereg;	/* Frame pointer register.  */
733 	short	pcreg;		/* Offset or reg of return pc.  */
734 	long	irpss;		/* Index into the runtime string table.  */
735 	long	reserved;
736 	struct exception_info *exception_info;/* Pointer to exception array.  */
737 } RPDR, *pRPDR;
738 #define cbRPDR sizeof (RPDR)
739 #define rpdNil ((pRPDR) 0)
740 
741 static struct mips_got_entry *mips_elf_create_local_got_entry
742   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
743    struct mips_elf_link_hash_entry *, int);
744 static bfd_boolean mips_elf_sort_hash_table_f
745   (struct mips_elf_link_hash_entry *, void *);
746 static bfd_vma mips_elf_high
747   (bfd_vma);
748 static bfd_boolean mips_elf_create_dynamic_relocation
749   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
750    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
751    bfd_vma *, asection *);
752 static bfd_vma mips_elf_adjust_gp
753   (bfd *, struct mips_got_info *, bfd *);
754 
755 /* This will be used when we sort the dynamic relocation records.  */
756 static bfd *reldyn_sorting_bfd;
757 
758 /* True if ABFD is for CPUs with load interlocking that include
759    non-MIPS1 CPUs and R3900.  */
760 #define LOAD_INTERLOCKS_P(abfd) \
761   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
762    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
763 
764 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
765    This should be safe for all architectures.  We enable this predicate
766    for RM9000 for now.  */
767 #define JAL_TO_BAL_P(abfd) \
768   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
769 
770 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
771    This should be safe for all architectures.  We enable this predicate for
772    all CPUs.  */
773 #define JALR_TO_BAL_P(abfd) 1
774 
775 /* True if ABFD is for CPUs that are faster if JR is converted to B.
776    This should be safe for all architectures.  We enable this predicate for
777    all CPUs.  */
778 #define JR_TO_B_P(abfd) 1
779 
780 /* True if ABFD is a PIC object.  */
781 #define PIC_OBJECT_P(abfd) \
782   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
783 
784 /* Nonzero if ABFD is using the O32 ABI.  */
785 #define ABI_O32_P(abfd) \
786   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
787 
788 /* Nonzero if ABFD is using the N32 ABI.  */
789 #define ABI_N32_P(abfd) \
790   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
791 
792 /* Nonzero if ABFD is using the N64 ABI.  */
793 #define ABI_64_P(abfd) \
794   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
795 
796 /* Nonzero if ABFD is using NewABI conventions.  */
797 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
798 
799 /* Nonzero if ABFD has microMIPS code.  */
800 #define MICROMIPS_P(abfd) \
801   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
802 
803 /* Nonzero if ABFD is MIPS R6.  */
804 #define MIPSR6_P(abfd) \
805   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
806     || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
807 
808 /* The IRIX compatibility level we are striving for.  */
809 #define IRIX_COMPAT(abfd) \
810   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
811 
812 /* Whether we are trying to be compatible with IRIX at all.  */
813 #define SGI_COMPAT(abfd) \
814   (IRIX_COMPAT (abfd) != ict_none)
815 
816 /* The name of the options section.  */
817 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
818   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
819 
820 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
821    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
822 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
823   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
824 
825 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */
826 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
827   (strcmp (NAME, ".MIPS.abiflags") == 0)
828 
829 /* Whether the section is readonly.  */
830 #define MIPS_ELF_READONLY_SECTION(sec) \
831   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
832    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
833 
834 /* The name of the stub section.  */
835 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
836 
837 /* The size of an external REL relocation.  */
838 #define MIPS_ELF_REL_SIZE(abfd) \
839   (get_elf_backend_data (abfd)->s->sizeof_rel)
840 
841 /* The size of an external RELA relocation.  */
842 #define MIPS_ELF_RELA_SIZE(abfd) \
843   (get_elf_backend_data (abfd)->s->sizeof_rela)
844 
845 /* The size of an external dynamic table entry.  */
846 #define MIPS_ELF_DYN_SIZE(abfd) \
847   (get_elf_backend_data (abfd)->s->sizeof_dyn)
848 
849 /* The size of a GOT entry.  */
850 #define MIPS_ELF_GOT_SIZE(abfd) \
851   (get_elf_backend_data (abfd)->s->arch_size / 8)
852 
853 /* The size of the .rld_map section. */
854 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
855   (get_elf_backend_data (abfd)->s->arch_size / 8)
856 
857 /* The size of a symbol-table entry.  */
858 #define MIPS_ELF_SYM_SIZE(abfd) \
859   (get_elf_backend_data (abfd)->s->sizeof_sym)
860 
861 /* The default alignment for sections, as a power of two.  */
862 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
863   (get_elf_backend_data (abfd)->s->log_file_align)
864 
865 /* Get word-sized data.  */
866 #define MIPS_ELF_GET_WORD(abfd, ptr) \
867   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
868 
869 /* Put out word-sized data.  */
870 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
871   (ABI_64_P (abfd) 				\
872    ? bfd_put_64 (abfd, val, ptr) 		\
873    : bfd_put_32 (abfd, val, ptr))
874 
875 /* The opcode for word-sized loads (LW or LD).  */
876 #define MIPS_ELF_LOAD_WORD(abfd) \
877   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
878 
879 /* Add a dynamic symbol table-entry.  */
880 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
881   _bfd_elf_add_dynamic_entry (info, tag, val)
882 
883 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
884   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
885 
886 /* The name of the dynamic relocation section.  */
887 #define MIPS_ELF_REL_DYN_NAME(INFO) \
888   (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
889 
890 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
891    from smaller values.  Start with zero, widen, *then* decrement.  */
892 #define MINUS_ONE	(((bfd_vma)0) - 1)
893 #define MINUS_TWO	(((bfd_vma)0) - 2)
894 
895 /* The value to write into got[1] for SVR4 targets, to identify it is
896    a GNU object.  The dynamic linker can then use got[1] to store the
897    module pointer.  */
898 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
899   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
900 
901 /* The offset of $gp from the beginning of the .got section.  */
902 #define ELF_MIPS_GP_OFFSET(INFO) \
903   (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
904 
905 /* The maximum size of the GOT for it to be addressable using 16-bit
906    offsets from $gp.  */
907 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
908 
909 /* Instructions which appear in a stub.  */
910 #define STUB_LW(abfd)							\
911   ((ABI_64_P (abfd)							\
912     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
913     : 0x8f998010))              		/* lw t9,0x8010(gp) */
914 #define STUB_MOVE 0x03e07825			/* or t7,ra,zero */
915 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
916 #define STUB_JALR 0x0320f809			/* jalr ra,t9 */
917 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
918 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
919 #define STUB_LI16S(abfd, VAL)						\
920    ((ABI_64_P (abfd)							\
921     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
922     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
923 
924 /* Likewise for the microMIPS ASE.  */
925 #define STUB_LW_MICROMIPS(abfd)						\
926   (ABI_64_P (abfd)							\
927    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
928    : 0xff3c8010)				/* lw t9,0x8010(gp) */
929 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
930 #define STUB_MOVE32_MICROMIPS 0x001f7a90	/* or t7,ra,zero */
931 #define STUB_LUI_MICROMIPS(VAL)						\
932    (0x41b80000 + (VAL))				/* lui t8,VAL */
933 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
934 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
935 #define STUB_ORI_MICROMIPS(VAL)						\
936   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
937 #define STUB_LI16U_MICROMIPS(VAL)					\
938   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
940    (ABI_64_P (abfd)							\
941     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
942     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
943 
944 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
945 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
946 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
947 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
948 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
949 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
950 
951 /* The name of the dynamic interpreter.  This is put in the .interp
952    section.  */
953 
954 #define ELF_DYNAMIC_INTERPRETER(abfd) 		\
955    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
956     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
957     : "/usr/lib/libc.so.1")
958 
959 #ifdef BFD64
960 #define MNAME(bfd,pre,pos) \
961   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
962 #define ELF_R_SYM(bfd, i)					\
963   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
964 #define ELF_R_TYPE(bfd, i)					\
965   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
966 #define ELF_R_INFO(bfd, s, t)					\
967   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
968 #else
969 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
970 #define ELF_R_SYM(bfd, i)					\
971   (ELF32_R_SYM (i))
972 #define ELF_R_TYPE(bfd, i)					\
973   (ELF32_R_TYPE (i))
974 #define ELF_R_INFO(bfd, s, t)					\
975   (ELF32_R_INFO (s, t))
976 #endif
977 
978   /* The mips16 compiler uses a couple of special sections to handle
979      floating point arguments.
980 
981      Section names that look like .mips16.fn.FNNAME contain stubs that
982      copy floating point arguments from the fp regs to the gp regs and
983      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
984      call should be redirected to the stub instead.  If no 32 bit
985      function calls FNNAME, the stub should be discarded.  We need to
986      consider any reference to the function, not just a call, because
987      if the address of the function is taken we will need the stub,
988      since the address might be passed to a 32 bit function.
989 
990      Section names that look like .mips16.call.FNNAME contain stubs
991      that copy floating point arguments from the gp regs to the fp
992      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
993      then any 16 bit function that calls FNNAME should be redirected
994      to the stub instead.  If FNNAME is not a 32 bit function, the
995      stub should be discarded.
996 
997      .mips16.call.fp.FNNAME sections are similar, but contain stubs
998      which call FNNAME and then copy the return value from the fp regs
999      to the gp regs.  These stubs store the return value in $18 while
1000      calling FNNAME; any function which might call one of these stubs
1001      must arrange to save $18 around the call.  (This case is not
1002      needed for 32 bit functions that call 16 bit functions, because
1003      16 bit functions always return floating point values in both
1004      $f0/$f1 and $2/$3.)
1005 
1006      Note that in all cases FNNAME might be defined statically.
1007      Therefore, FNNAME is not used literally.  Instead, the relocation
1008      information will indicate which symbol the section is for.
1009 
1010      We record any stubs that we find in the symbol table.  */
1011 
1012 #define FN_STUB ".mips16.fn."
1013 #define CALL_STUB ".mips16.call."
1014 #define CALL_FP_STUB ".mips16.call.fp."
1015 
1016 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1017 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1018 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1019 
1020 /* The format of the first PLT entry in an O32 executable.  */
1021 static const bfd_vma mips_o32_exec_plt0_entry[] =
1022 {
1023   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1024   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1025   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1026   0x031cc023,	/* subu $24, $24, $28					*/
1027   0x03e07825,	/* or t7, ra, zero					*/
1028   0x0018c082,	/* srl $24, $24, 2					*/
1029   0x0320f809,	/* jalr $25						*/
1030   0x2718fffe	/* subu $24, $24, 2					*/
1031 };
1032 
1033 /* The format of the first PLT entry in an N32 executable.  Different
1034    because gp ($28) is not available; we use t2 ($14) instead.  */
1035 static const bfd_vma mips_n32_exec_plt0_entry[] =
1036 {
1037   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1038   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1039   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1040   0x030ec023,	/* subu $24, $24, $14					*/
1041   0x03e07825,	/* or t7, ra, zero					*/
1042   0x0018c082,	/* srl $24, $24, 2					*/
1043   0x0320f809,	/* jalr $25						*/
1044   0x2718fffe	/* subu $24, $24, 2					*/
1045 };
1046 
1047 /* The format of the first PLT entry in an N64 executable.  Different
1048    from N32 because of the increased size of GOT entries.  */
1049 static const bfd_vma mips_n64_exec_plt0_entry[] =
1050 {
1051   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1052   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1053   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1054   0x030ec023,	/* subu $24, $24, $14					*/
1055   0x03e07825,	/* or t7, ra, zero					*/
1056   0x0018c0c2,	/* srl $24, $24, 3					*/
1057   0x0320f809,	/* jalr $25						*/
1058   0x2718fffe	/* subu $24, $24, 2					*/
1059 };
1060 
1061 /* The format of the microMIPS first PLT entry in an O32 executable.
1062    We rely on v0 ($2) rather than t8 ($24) to contain the address
1063    of the GOTPLT entry handled, so this stub may only be used when
1064    all the subsequent PLT entries are microMIPS code too.
1065 
1066    The trailing NOP is for alignment and correct disassembly only.  */
1067 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1068 {
1069   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1070   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1071   0x0535,		/* subu $2, $2, $3				*/
1072   0x2525,		/* srl $2, $2, 2				*/
1073   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1074   0x0dff,		/* move $15, $31				*/
1075   0x45f9,		/* jalrs $25					*/
1076   0x0f83,		/* move $28, $3					*/
1077   0x0c00		/* nop						*/
1078 };
1079 
1080 /* The format of the microMIPS first PLT entry in an O32 executable
1081    in the insn32 mode.  */
1082 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1083 {
1084   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1085   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1086   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1087   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1088   0x001f, 0x7a90,	/* or $15, $31, zero				*/
1089   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1090   0x03f9, 0x0f3c,	/* jalr $25					*/
1091   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1092 };
1093 
1094 /* The format of subsequent standard PLT entries.  */
1095 static const bfd_vma mips_exec_plt_entry[] =
1096 {
1097   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1098   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1099   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1100   0x03200008	/* jr $25					*/
1101 };
1102 
1103 /* In the following PLT entry the JR and ADDIU instructions will
1104    be swapped in _bfd_mips_elf_finish_dynamic_symbol because
1105    LOAD_INTERLOCKS_P will be true for MIPS R6.  */
1106 static const bfd_vma mipsr6_exec_plt_entry[] =
1107 {
1108   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1109   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1110   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1111   0x03200009	/* jr $25					*/
1112 };
1113 
1114 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1115    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1116    directly addressable.  */
1117 static const bfd_vma mips16_o32_exec_plt_entry[] =
1118 {
1119   0xb203,		/* lw $2, 12($pc)			*/
1120   0x9a60,		/* lw $3, 0($2)				*/
1121   0x651a,		/* move $24, $2				*/
1122   0xeb00,		/* jr $3				*/
1123   0x653b,		/* move $25, $3				*/
1124   0x6500,		/* nop					*/
1125   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1126 };
1127 
1128 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1129    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1130 static const bfd_vma micromips_o32_exec_plt_entry[] =
1131 {
1132   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1133   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1134   0x4599,		/* jr $25				*/
1135   0x0f02		/* move $24, $2				*/
1136 };
1137 
1138 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1139 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1140 {
1141   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1142   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1143   0x0019, 0x0f3c,	/* jr $25				*/
1144   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1145 };
1146 
1147 /* The format of the first PLT entry in a VxWorks executable.  */
1148 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1149 {
1150   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1151   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1152   0x8f390008,	/* lw t9, 8(t9)					*/
1153   0x00000000,	/* nop						*/
1154   0x03200008,	/* jr t9					*/
1155   0x00000000	/* nop						*/
1156 };
1157 
1158 /* The format of subsequent PLT entries.  */
1159 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1160 {
1161   0x10000000,	/* b .PLT_resolver			*/
1162   0x24180000,	/* li t8, <pltindex>			*/
1163   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1164   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1165   0x8f390000,	/* lw t9, 0(t9)				*/
1166   0x00000000,	/* nop					*/
1167   0x03200008,	/* jr t9				*/
1168   0x00000000	/* nop					*/
1169 };
1170 
1171 /* The format of the first PLT entry in a VxWorks shared object.  */
1172 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1173 {
1174   0x8f990008,	/* lw t9, 8(gp)		*/
1175   0x00000000,	/* nop			*/
1176   0x03200008,	/* jr t9		*/
1177   0x00000000,	/* nop			*/
1178   0x00000000,	/* nop			*/
1179   0x00000000	/* nop			*/
1180 };
1181 
1182 /* The format of subsequent PLT entries.  */
1183 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1184 {
1185   0x10000000,	/* b .PLT_resolver	*/
1186   0x24180000	/* li t8, <pltindex>	*/
1187 };
1188 
1189 /* microMIPS 32-bit opcode helper installer.  */
1190 
1191 static void
1192 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1193 {
1194   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1195   bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
1196 }
1197 
1198 /* microMIPS 32-bit opcode helper retriever.  */
1199 
1200 static bfd_vma
1201 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1202 {
1203   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1204 }
1205 
1206 /* Look up an entry in a MIPS ELF linker hash table.  */
1207 
1208 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1209   ((struct mips_elf_link_hash_entry *)					\
1210    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1211 			 (copy), (follow)))
1212 
1213 /* Traverse a MIPS ELF linker hash table.  */
1214 
1215 #define mips_elf_link_hash_traverse(table, func, info)			\
1216   (elf_link_hash_traverse						\
1217    (&(table)->root,							\
1218     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1219     (info)))
1220 
1221 /* Find the base offsets for thread-local storage in this object,
1222    for GD/LD and IE/LE respectively.  */
1223 
1224 #define TP_OFFSET 0x7000
1225 #define DTP_OFFSET 0x8000
1226 
1227 static bfd_vma
1228 dtprel_base (struct bfd_link_info *info)
1229 {
1230   /* If tls_sec is NULL, we should have signalled an error already.  */
1231   if (elf_hash_table (info)->tls_sec == NULL)
1232     return 0;
1233   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1234 }
1235 
1236 static bfd_vma
1237 tprel_base (struct bfd_link_info *info)
1238 {
1239   /* If tls_sec is NULL, we should have signalled an error already.  */
1240   if (elf_hash_table (info)->tls_sec == NULL)
1241     return 0;
1242   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1243 }
1244 
1245 /* Create an entry in a MIPS ELF linker hash table.  */
1246 
1247 static struct bfd_hash_entry *
1248 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1249 			    struct bfd_hash_table *table, const char *string)
1250 {
1251   struct mips_elf_link_hash_entry *ret =
1252     (struct mips_elf_link_hash_entry *) entry;
1253 
1254   /* Allocate the structure if it has not already been allocated by a
1255      subclass.  */
1256   if (ret == NULL)
1257     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1258   if (ret == NULL)
1259     return (struct bfd_hash_entry *) ret;
1260 
1261   /* Call the allocation method of the superclass.  */
1262   ret = ((struct mips_elf_link_hash_entry *)
1263 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1264 				     table, string));
1265   if (ret != NULL)
1266     {
1267       /* Set local fields.  */
1268       memset (&ret->esym, 0, sizeof (EXTR));
1269       /* We use -2 as a marker to indicate that the information has
1270 	 not been set.  -1 means there is no associated ifd.  */
1271       ret->esym.ifd = -2;
1272       ret->la25_stub = 0;
1273       ret->possibly_dynamic_relocs = 0;
1274       ret->fn_stub = NULL;
1275       ret->call_stub = NULL;
1276       ret->call_fp_stub = NULL;
1277       ret->global_got_area = GGA_NONE;
1278       ret->got_only_for_calls = TRUE;
1279       ret->readonly_reloc = FALSE;
1280       ret->has_static_relocs = FALSE;
1281       ret->no_fn_stub = FALSE;
1282       ret->need_fn_stub = FALSE;
1283       ret->has_nonpic_branches = FALSE;
1284       ret->needs_lazy_stub = FALSE;
1285       ret->use_plt_entry = FALSE;
1286     }
1287 
1288   return (struct bfd_hash_entry *) ret;
1289 }
1290 
1291 /* Allocate MIPS ELF private object data.  */
1292 
1293 bfd_boolean
1294 _bfd_mips_elf_mkobject (bfd *abfd)
1295 {
1296   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1297 				  MIPS_ELF_DATA);
1298 }
1299 
1300 bfd_boolean
1301 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1302 {
1303   if (!sec->used_by_bfd)
1304     {
1305       struct _mips_elf_section_data *sdata;
1306       bfd_size_type amt = sizeof (*sdata);
1307 
1308       sdata = bfd_zalloc (abfd, amt);
1309       if (sdata == NULL)
1310 	return FALSE;
1311       sec->used_by_bfd = sdata;
1312     }
1313 
1314   return _bfd_elf_new_section_hook (abfd, sec);
1315 }
1316 
1317 /* Read ECOFF debugging information from a .mdebug section into a
1318    ecoff_debug_info structure.  */
1319 
1320 bfd_boolean
1321 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1322 			       struct ecoff_debug_info *debug)
1323 {
1324   HDRR *symhdr;
1325   const struct ecoff_debug_swap *swap;
1326   char *ext_hdr;
1327 
1328   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1329   memset (debug, 0, sizeof (*debug));
1330 
1331   ext_hdr = bfd_malloc (swap->external_hdr_size);
1332   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1333     goto error_return;
1334 
1335   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1336 				  swap->external_hdr_size))
1337     goto error_return;
1338 
1339   symhdr = &debug->symbolic_header;
1340   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1341 
1342   /* The symbolic header contains absolute file offsets and sizes to
1343      read.  */
1344 #define READ(ptr, offset, count, size, type)				\
1345   if (symhdr->count == 0)						\
1346     debug->ptr = NULL;							\
1347   else									\
1348     {									\
1349       bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
1350       debug->ptr = bfd_malloc (amt);					\
1351       if (debug->ptr == NULL)						\
1352 	goto error_return;						\
1353       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
1354 	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
1355 	goto error_return;						\
1356     }
1357 
1358   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1359   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1360   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1361   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1362   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1363   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1364 	union aux_ext *);
1365   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1366   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1367   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1368   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1369   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1370 #undef READ
1371 
1372   debug->fdr = NULL;
1373 
1374   return TRUE;
1375 
1376  error_return:
1377   if (ext_hdr != NULL)
1378     free (ext_hdr);
1379   if (debug->line != NULL)
1380     free (debug->line);
1381   if (debug->external_dnr != NULL)
1382     free (debug->external_dnr);
1383   if (debug->external_pdr != NULL)
1384     free (debug->external_pdr);
1385   if (debug->external_sym != NULL)
1386     free (debug->external_sym);
1387   if (debug->external_opt != NULL)
1388     free (debug->external_opt);
1389   if (debug->external_aux != NULL)
1390     free (debug->external_aux);
1391   if (debug->ss != NULL)
1392     free (debug->ss);
1393   if (debug->ssext != NULL)
1394     free (debug->ssext);
1395   if (debug->external_fdr != NULL)
1396     free (debug->external_fdr);
1397   if (debug->external_rfd != NULL)
1398     free (debug->external_rfd);
1399   if (debug->external_ext != NULL)
1400     free (debug->external_ext);
1401   return FALSE;
1402 }
1403 
1404 /* Swap RPDR (runtime procedure table entry) for output.  */
1405 
1406 static void
1407 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1408 {
1409   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1410   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1411   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1412   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1413   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1414   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1415 
1416   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1417   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1418 
1419   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1420 }
1421 
1422 /* Create a runtime procedure table from the .mdebug section.  */
1423 
1424 static bfd_boolean
1425 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1426 				 struct bfd_link_info *info, asection *s,
1427 				 struct ecoff_debug_info *debug)
1428 {
1429   const struct ecoff_debug_swap *swap;
1430   HDRR *hdr = &debug->symbolic_header;
1431   RPDR *rpdr, *rp;
1432   struct rpdr_ext *erp;
1433   void *rtproc;
1434   struct pdr_ext *epdr;
1435   struct sym_ext *esym;
1436   char *ss, **sv;
1437   char *str;
1438   bfd_size_type size;
1439   bfd_size_type count;
1440   unsigned long sindex;
1441   unsigned long i;
1442   PDR pdr;
1443   SYMR sym;
1444   const char *no_name_func = _("static procedure (no name)");
1445 
1446   epdr = NULL;
1447   rpdr = NULL;
1448   esym = NULL;
1449   ss = NULL;
1450   sv = NULL;
1451 
1452   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1453 
1454   sindex = strlen (no_name_func) + 1;
1455   count = hdr->ipdMax;
1456   if (count > 0)
1457     {
1458       size = swap->external_pdr_size;
1459 
1460       epdr = bfd_malloc (size * count);
1461       if (epdr == NULL)
1462 	goto error_return;
1463 
1464       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1465 	goto error_return;
1466 
1467       size = sizeof (RPDR);
1468       rp = rpdr = bfd_malloc (size * count);
1469       if (rpdr == NULL)
1470 	goto error_return;
1471 
1472       size = sizeof (char *);
1473       sv = bfd_malloc (size * count);
1474       if (sv == NULL)
1475 	goto error_return;
1476 
1477       count = hdr->isymMax;
1478       size = swap->external_sym_size;
1479       esym = bfd_malloc (size * count);
1480       if (esym == NULL)
1481 	goto error_return;
1482 
1483       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1484 	goto error_return;
1485 
1486       count = hdr->issMax;
1487       ss = bfd_malloc (count);
1488       if (ss == NULL)
1489 	goto error_return;
1490       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1491 	goto error_return;
1492 
1493       count = hdr->ipdMax;
1494       for (i = 0; i < (unsigned long) count; i++, rp++)
1495 	{
1496 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1497 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1498 	  rp->adr = sym.value;
1499 	  rp->regmask = pdr.regmask;
1500 	  rp->regoffset = pdr.regoffset;
1501 	  rp->fregmask = pdr.fregmask;
1502 	  rp->fregoffset = pdr.fregoffset;
1503 	  rp->frameoffset = pdr.frameoffset;
1504 	  rp->framereg = pdr.framereg;
1505 	  rp->pcreg = pdr.pcreg;
1506 	  rp->irpss = sindex;
1507 	  sv[i] = ss + sym.iss;
1508 	  sindex += strlen (sv[i]) + 1;
1509 	}
1510     }
1511 
1512   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1513   size = BFD_ALIGN (size, 16);
1514   rtproc = bfd_alloc (abfd, size);
1515   if (rtproc == NULL)
1516     {
1517       mips_elf_hash_table (info)->procedure_count = 0;
1518       goto error_return;
1519     }
1520 
1521   mips_elf_hash_table (info)->procedure_count = count + 2;
1522 
1523   erp = rtproc;
1524   memset (erp, 0, sizeof (struct rpdr_ext));
1525   erp++;
1526   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1527   strcpy (str, no_name_func);
1528   str += strlen (no_name_func) + 1;
1529   for (i = 0; i < count; i++)
1530     {
1531       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1532       strcpy (str, sv[i]);
1533       str += strlen (sv[i]) + 1;
1534     }
1535   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1536 
1537   /* Set the size and contents of .rtproc section.  */
1538   s->size = size;
1539   s->contents = rtproc;
1540 
1541   /* Skip this section later on (I don't think this currently
1542      matters, but someday it might).  */
1543   s->map_head.link_order = NULL;
1544 
1545   if (epdr != NULL)
1546     free (epdr);
1547   if (rpdr != NULL)
1548     free (rpdr);
1549   if (esym != NULL)
1550     free (esym);
1551   if (ss != NULL)
1552     free (ss);
1553   if (sv != NULL)
1554     free (sv);
1555 
1556   return TRUE;
1557 
1558  error_return:
1559   if (epdr != NULL)
1560     free (epdr);
1561   if (rpdr != NULL)
1562     free (rpdr);
1563   if (esym != NULL)
1564     free (esym);
1565   if (ss != NULL)
1566     free (ss);
1567   if (sv != NULL)
1568     free (sv);
1569   return FALSE;
1570 }
1571 
1572 /* We're going to create a stub for H.  Create a symbol for the stub's
1573    value and size, to help make the disassembly easier to read.  */
1574 
1575 static bfd_boolean
1576 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1577 			     struct mips_elf_link_hash_entry *h,
1578 			     const char *prefix, asection *s, bfd_vma value,
1579 			     bfd_vma size)
1580 {
1581   bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1582   struct bfd_link_hash_entry *bh;
1583   struct elf_link_hash_entry *elfh;
1584   char *name;
1585   bfd_boolean res;
1586 
1587   if (micromips_p)
1588     value |= 1;
1589 
1590   /* Create a new symbol.  */
1591   name = concat (prefix, h->root.root.root.string, NULL);
1592   bh = NULL;
1593   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1594 					  BSF_LOCAL, s, value, NULL,
1595 					  TRUE, FALSE, &bh);
1596   free (name);
1597   if (! res)
1598     return FALSE;
1599 
1600   /* Make it a local function.  */
1601   elfh = (struct elf_link_hash_entry *) bh;
1602   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1603   elfh->size = size;
1604   elfh->forced_local = 1;
1605   if (micromips_p)
1606     elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1607   return TRUE;
1608 }
1609 
1610 /* We're about to redefine H.  Create a symbol to represent H's
1611    current value and size, to help make the disassembly easier
1612    to read.  */
1613 
1614 static bfd_boolean
1615 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1616 			       struct mips_elf_link_hash_entry *h,
1617 			       const char *prefix)
1618 {
1619   struct bfd_link_hash_entry *bh;
1620   struct elf_link_hash_entry *elfh;
1621   char *name;
1622   asection *s;
1623   bfd_vma value;
1624   bfd_boolean res;
1625 
1626   /* Read the symbol's value.  */
1627   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1628 	      || h->root.root.type == bfd_link_hash_defweak);
1629   s = h->root.root.u.def.section;
1630   value = h->root.root.u.def.value;
1631 
1632   /* Create a new symbol.  */
1633   name = concat (prefix, h->root.root.root.string, NULL);
1634   bh = NULL;
1635   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1636 					  BSF_LOCAL, s, value, NULL,
1637 					  TRUE, FALSE, &bh);
1638   free (name);
1639   if (! res)
1640     return FALSE;
1641 
1642   /* Make it local and copy the other attributes from H.  */
1643   elfh = (struct elf_link_hash_entry *) bh;
1644   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1645   elfh->other = h->root.other;
1646   elfh->size = h->root.size;
1647   elfh->forced_local = 1;
1648   return TRUE;
1649 }
1650 
1651 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1652    function rather than to a hard-float stub.  */
1653 
1654 static bfd_boolean
1655 section_allows_mips16_refs_p (asection *section)
1656 {
1657   const char *name;
1658 
1659   name = bfd_get_section_name (section->owner, section);
1660   return (FN_STUB_P (name)
1661 	  || CALL_STUB_P (name)
1662 	  || CALL_FP_STUB_P (name)
1663 	  || strcmp (name, ".pdr") == 0);
1664 }
1665 
1666 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1667    stub section of some kind.  Return the R_SYMNDX of the target
1668    function, or 0 if we can't decide which function that is.  */
1669 
1670 static unsigned long
1671 mips16_stub_symndx (const struct elf_backend_data *bed,
1672 		    asection *sec ATTRIBUTE_UNUSED,
1673 		    const Elf_Internal_Rela *relocs,
1674 		    const Elf_Internal_Rela *relend)
1675 {
1676   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1677   const Elf_Internal_Rela *rel;
1678 
1679   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1680      one in a compound relocation.  */
1681   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1682     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1683       return ELF_R_SYM (sec->owner, rel->r_info);
1684 
1685   /* Otherwise trust the first relocation, whatever its kind.  This is
1686      the traditional behavior.  */
1687   if (relocs < relend)
1688     return ELF_R_SYM (sec->owner, relocs->r_info);
1689 
1690   return 0;
1691 }
1692 
1693 /* Check the mips16 stubs for a particular symbol, and see if we can
1694    discard them.  */
1695 
1696 static void
1697 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1698 			     struct mips_elf_link_hash_entry *h)
1699 {
1700   /* Dynamic symbols must use the standard call interface, in case other
1701      objects try to call them.  */
1702   if (h->fn_stub != NULL
1703       && h->root.dynindx != -1)
1704     {
1705       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1706       h->need_fn_stub = TRUE;
1707     }
1708 
1709   if (h->fn_stub != NULL
1710       && ! h->need_fn_stub)
1711     {
1712       /* We don't need the fn_stub; the only references to this symbol
1713          are 16 bit calls.  Clobber the size to 0 to prevent it from
1714          being included in the link.  */
1715       h->fn_stub->size = 0;
1716       h->fn_stub->flags &= ~SEC_RELOC;
1717       h->fn_stub->reloc_count = 0;
1718       h->fn_stub->flags |= SEC_EXCLUDE;
1719       h->fn_stub->output_section = bfd_abs_section_ptr;
1720     }
1721 
1722   if (h->call_stub != NULL
1723       && ELF_ST_IS_MIPS16 (h->root.other))
1724     {
1725       /* We don't need the call_stub; this is a 16 bit function, so
1726          calls from other 16 bit functions are OK.  Clobber the size
1727          to 0 to prevent it from being included in the link.  */
1728       h->call_stub->size = 0;
1729       h->call_stub->flags &= ~SEC_RELOC;
1730       h->call_stub->reloc_count = 0;
1731       h->call_stub->flags |= SEC_EXCLUDE;
1732       h->call_stub->output_section = bfd_abs_section_ptr;
1733     }
1734 
1735   if (h->call_fp_stub != NULL
1736       && ELF_ST_IS_MIPS16 (h->root.other))
1737     {
1738       /* We don't need the call_stub; this is a 16 bit function, so
1739          calls from other 16 bit functions are OK.  Clobber the size
1740          to 0 to prevent it from being included in the link.  */
1741       h->call_fp_stub->size = 0;
1742       h->call_fp_stub->flags &= ~SEC_RELOC;
1743       h->call_fp_stub->reloc_count = 0;
1744       h->call_fp_stub->flags |= SEC_EXCLUDE;
1745       h->call_fp_stub->output_section = bfd_abs_section_ptr;
1746     }
1747 }
1748 
1749 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1750 
1751 static hashval_t
1752 mips_elf_la25_stub_hash (const void *entry_)
1753 {
1754   const struct mips_elf_la25_stub *entry;
1755 
1756   entry = (struct mips_elf_la25_stub *) entry_;
1757   return entry->h->root.root.u.def.section->id
1758     + entry->h->root.root.u.def.value;
1759 }
1760 
1761 static int
1762 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1763 {
1764   const struct mips_elf_la25_stub *entry1, *entry2;
1765 
1766   entry1 = (struct mips_elf_la25_stub *) entry1_;
1767   entry2 = (struct mips_elf_la25_stub *) entry2_;
1768   return ((entry1->h->root.root.u.def.section
1769 	   == entry2->h->root.root.u.def.section)
1770 	  && (entry1->h->root.root.u.def.value
1771 	      == entry2->h->root.root.u.def.value));
1772 }
1773 
1774 /* Called by the linker to set up the la25 stub-creation code.  FN is
1775    the linker's implementation of add_stub_function.  Return true on
1776    success.  */
1777 
1778 bfd_boolean
1779 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1780 			  asection *(*fn) (const char *, asection *,
1781 					   asection *))
1782 {
1783   struct mips_elf_link_hash_table *htab;
1784 
1785   htab = mips_elf_hash_table (info);
1786   if (htab == NULL)
1787     return FALSE;
1788 
1789   htab->add_stub_section = fn;
1790   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1791 				      mips_elf_la25_stub_eq, NULL);
1792   if (htab->la25_stubs == NULL)
1793     return FALSE;
1794 
1795   return TRUE;
1796 }
1797 
1798 /* Return true if H is a locally-defined PIC function, in the sense
1799    that it or its fn_stub might need $25 to be valid on entry.
1800    Note that MIPS16 functions set up $gp using PC-relative instructions,
1801    so they themselves never need $25 to be valid.  Only non-MIPS16
1802    entry points are of interest here.  */
1803 
1804 static bfd_boolean
1805 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1806 {
1807   return ((h->root.root.type == bfd_link_hash_defined
1808 	   || h->root.root.type == bfd_link_hash_defweak)
1809 	  && h->root.def_regular
1810 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1811 	  && !bfd_is_und_section (h->root.root.u.def.section)
1812 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1813 	      || (h->fn_stub && h->need_fn_stub))
1814 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1815 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1816 }
1817 
1818 /* Set *SEC to the input section that contains the target of STUB.
1819    Return the offset of the target from the start of that section.  */
1820 
1821 static bfd_vma
1822 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1823 			  asection **sec)
1824 {
1825   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1826     {
1827       BFD_ASSERT (stub->h->need_fn_stub);
1828       *sec = stub->h->fn_stub;
1829       return 0;
1830     }
1831   else
1832     {
1833       *sec = stub->h->root.root.u.def.section;
1834       return stub->h->root.root.u.def.value;
1835     }
1836 }
1837 
1838 /* STUB describes an la25 stub that we have decided to implement
1839    by inserting an LUI/ADDIU pair before the target function.
1840    Create the section and redirect the function symbol to it.  */
1841 
1842 static bfd_boolean
1843 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1844 			 struct bfd_link_info *info)
1845 {
1846   struct mips_elf_link_hash_table *htab;
1847   char *name;
1848   asection *s, *input_section;
1849   unsigned int align;
1850 
1851   htab = mips_elf_hash_table (info);
1852   if (htab == NULL)
1853     return FALSE;
1854 
1855   /* Create a unique name for the new section.  */
1856   name = bfd_malloc (11 + sizeof (".text.stub."));
1857   if (name == NULL)
1858     return FALSE;
1859   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1860 
1861   /* Create the section.  */
1862   mips_elf_get_la25_target (stub, &input_section);
1863   s = htab->add_stub_section (name, input_section,
1864 			      input_section->output_section);
1865   if (s == NULL)
1866     return FALSE;
1867 
1868   /* Make sure that any padding goes before the stub.  */
1869   align = input_section->alignment_power;
1870   if (!bfd_set_section_alignment (s->owner, s, align))
1871     return FALSE;
1872   if (align > 3)
1873     s->size = (1 << align) - 8;
1874 
1875   /* Create a symbol for the stub.  */
1876   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1877   stub->stub_section = s;
1878   stub->offset = s->size;
1879 
1880   /* Allocate room for it.  */
1881   s->size += 8;
1882   return TRUE;
1883 }
1884 
1885 /* STUB describes an la25 stub that we have decided to implement
1886    with a separate trampoline.  Allocate room for it and redirect
1887    the function symbol to it.  */
1888 
1889 static bfd_boolean
1890 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1891 			      struct bfd_link_info *info)
1892 {
1893   struct mips_elf_link_hash_table *htab;
1894   asection *s;
1895 
1896   htab = mips_elf_hash_table (info);
1897   if (htab == NULL)
1898     return FALSE;
1899 
1900   /* Create a trampoline section, if we haven't already.  */
1901   s = htab->strampoline;
1902   if (s == NULL)
1903     {
1904       asection *input_section = stub->h->root.root.u.def.section;
1905       s = htab->add_stub_section (".text", NULL,
1906 				  input_section->output_section);
1907       if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1908 	return FALSE;
1909       htab->strampoline = s;
1910     }
1911 
1912   /* Create a symbol for the stub.  */
1913   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1914   stub->stub_section = s;
1915   stub->offset = s->size;
1916 
1917   /* Allocate room for it.  */
1918   s->size += 16;
1919   return TRUE;
1920 }
1921 
1922 /* H describes a symbol that needs an la25 stub.  Make sure that an
1923    appropriate stub exists and point H at it.  */
1924 
1925 static bfd_boolean
1926 mips_elf_add_la25_stub (struct bfd_link_info *info,
1927 			struct mips_elf_link_hash_entry *h)
1928 {
1929   struct mips_elf_link_hash_table *htab;
1930   struct mips_elf_la25_stub search, *stub;
1931   bfd_boolean use_trampoline_p;
1932   asection *s;
1933   bfd_vma value;
1934   void **slot;
1935 
1936   /* Describe the stub we want.  */
1937   search.stub_section = NULL;
1938   search.offset = 0;
1939   search.h = h;
1940 
1941   /* See if we've already created an equivalent stub.  */
1942   htab = mips_elf_hash_table (info);
1943   if (htab == NULL)
1944     return FALSE;
1945 
1946   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1947   if (slot == NULL)
1948     return FALSE;
1949 
1950   stub = (struct mips_elf_la25_stub *) *slot;
1951   if (stub != NULL)
1952     {
1953       /* We can reuse the existing stub.  */
1954       h->la25_stub = stub;
1955       return TRUE;
1956     }
1957 
1958   /* Create a permanent copy of ENTRY and add it to the hash table.  */
1959   stub = bfd_malloc (sizeof (search));
1960   if (stub == NULL)
1961     return FALSE;
1962   *stub = search;
1963   *slot = stub;
1964 
1965   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1966      of the section and if we would need no more than 2 nops.  */
1967   value = mips_elf_get_la25_target (stub, &s);
1968   if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
1969     value &= ~1;
1970   use_trampoline_p = (value != 0 || s->alignment_power > 4);
1971 
1972   h->la25_stub = stub;
1973   return (use_trampoline_p
1974 	  ? mips_elf_add_la25_trampoline (stub, info)
1975 	  : mips_elf_add_la25_intro (stub, info));
1976 }
1977 
1978 /* A mips_elf_link_hash_traverse callback that is called before sizing
1979    sections.  DATA points to a mips_htab_traverse_info structure.  */
1980 
1981 static bfd_boolean
1982 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1983 {
1984   struct mips_htab_traverse_info *hti;
1985 
1986   hti = (struct mips_htab_traverse_info *) data;
1987   if (!bfd_link_relocatable (hti->info))
1988     mips_elf_check_mips16_stubs (hti->info, h);
1989 
1990   if (mips_elf_local_pic_function_p (h))
1991     {
1992       /* PR 12845: If H is in a section that has been garbage
1993 	 collected it will have its output section set to *ABS*.  */
1994       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1995 	return TRUE;
1996 
1997       /* H is a function that might need $25 to be valid on entry.
1998 	 If we're creating a non-PIC relocatable object, mark H as
1999 	 being PIC.  If we're creating a non-relocatable object with
2000 	 non-PIC branches and jumps to H, make sure that H has an la25
2001 	 stub.  */
2002       if (bfd_link_relocatable (hti->info))
2003 	{
2004 	  if (!PIC_OBJECT_P (hti->output_bfd))
2005 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2006 	}
2007       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2008 	{
2009 	  hti->error = TRUE;
2010 	  return FALSE;
2011 	}
2012     }
2013   return TRUE;
2014 }
2015 
2016 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2017    Most mips16 instructions are 16 bits, but these instructions
2018    are 32 bits.
2019 
2020    The format of these instructions is:
2021 
2022    +--------------+--------------------------------+
2023    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
2024    +--------------+--------------------------------+
2025    |                Immediate  15:0                |
2026    +-----------------------------------------------+
2027 
2028    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
2029    Note that the immediate value in the first word is swapped.
2030 
2031    When producing a relocatable object file, R_MIPS16_26 is
2032    handled mostly like R_MIPS_26.  In particular, the addend is
2033    stored as a straight 26-bit value in a 32-bit instruction.
2034    (gas makes life simpler for itself by never adjusting a
2035    R_MIPS16_26 reloc to be against a section, so the addend is
2036    always zero).  However, the 32 bit instruction is stored as 2
2037    16-bit values, rather than a single 32-bit value.  In a
2038    big-endian file, the result is the same; in a little-endian
2039    file, the two 16-bit halves of the 32 bit value are swapped.
2040    This is so that a disassembler can recognize the jal
2041    instruction.
2042 
2043    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2044    instruction stored as two 16-bit values.  The addend A is the
2045    contents of the targ26 field.  The calculation is the same as
2046    R_MIPS_26.  When storing the calculated value, reorder the
2047    immediate value as shown above, and don't forget to store the
2048    value as two 16-bit values.
2049 
2050    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2051    defined as
2052 
2053    big-endian:
2054    +--------+----------------------+
2055    |        |                      |
2056    |        |    targ26-16         |
2057    |31    26|25                   0|
2058    +--------+----------------------+
2059 
2060    little-endian:
2061    +----------+------+-------------+
2062    |          |      |             |
2063    |  sub1    |      |     sub2    |
2064    |0        9|10  15|16         31|
2065    +----------+--------------------+
2066    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2067    ((sub1 << 16) | sub2)).
2068 
2069    When producing a relocatable object file, the calculation is
2070    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2071    When producing a fully linked file, the calculation is
2072    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2073    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2074 
2075    The table below lists the other MIPS16 instruction relocations.
2076    Each one is calculated in the same way as the non-MIPS16 relocation
2077    given on the right, but using the extended MIPS16 layout of 16-bit
2078    immediate fields:
2079 
2080 	R_MIPS16_GPREL		R_MIPS_GPREL16
2081 	R_MIPS16_GOT16		R_MIPS_GOT16
2082 	R_MIPS16_CALL16		R_MIPS_CALL16
2083 	R_MIPS16_HI16		R_MIPS_HI16
2084 	R_MIPS16_LO16		R_MIPS_LO16
2085 
2086    A typical instruction will have a format like this:
2087 
2088    +--------------+--------------------------------+
2089    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2090    +--------------+--------------------------------+
2091    |    Major     |   rx   |   ry   |   Imm  4:0   |
2092    +--------------+--------------------------------+
2093 
2094    EXTEND is the five bit value 11110.  Major is the instruction
2095    opcode.
2096 
2097    All we need to do here is shuffle the bits appropriately.
2098    As above, the two 16-bit halves must be swapped on a
2099    little-endian system.
2100 
2101    Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2102    relocatable field is shifted by 1 rather than 2 and the same bit
2103    shuffling is done as with the relocations above.  */
2104 
2105 static inline bfd_boolean
2106 mips16_reloc_p (int r_type)
2107 {
2108   switch (r_type)
2109     {
2110     case R_MIPS16_26:
2111     case R_MIPS16_GPREL:
2112     case R_MIPS16_GOT16:
2113     case R_MIPS16_CALL16:
2114     case R_MIPS16_HI16:
2115     case R_MIPS16_LO16:
2116     case R_MIPS16_TLS_GD:
2117     case R_MIPS16_TLS_LDM:
2118     case R_MIPS16_TLS_DTPREL_HI16:
2119     case R_MIPS16_TLS_DTPREL_LO16:
2120     case R_MIPS16_TLS_GOTTPREL:
2121     case R_MIPS16_TLS_TPREL_HI16:
2122     case R_MIPS16_TLS_TPREL_LO16:
2123     case R_MIPS16_PC16_S1:
2124       return TRUE;
2125 
2126     default:
2127       return FALSE;
2128     }
2129 }
2130 
2131 /* Check if a microMIPS reloc.  */
2132 
2133 static inline bfd_boolean
2134 micromips_reloc_p (unsigned int r_type)
2135 {
2136   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2137 }
2138 
2139 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2140    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2141    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2142 
2143 static inline bfd_boolean
2144 micromips_reloc_shuffle_p (unsigned int r_type)
2145 {
2146   return (micromips_reloc_p (r_type)
2147 	  && r_type != R_MICROMIPS_PC7_S1
2148 	  && r_type != R_MICROMIPS_PC10_S1);
2149 }
2150 
2151 static inline bfd_boolean
2152 got16_reloc_p (int r_type)
2153 {
2154   return (r_type == R_MIPS_GOT16
2155 	  || r_type == R_MIPS16_GOT16
2156 	  || r_type == R_MICROMIPS_GOT16);
2157 }
2158 
2159 static inline bfd_boolean
2160 call16_reloc_p (int r_type)
2161 {
2162   return (r_type == R_MIPS_CALL16
2163 	  || r_type == R_MIPS16_CALL16
2164 	  || r_type == R_MICROMIPS_CALL16);
2165 }
2166 
2167 static inline bfd_boolean
2168 got_disp_reloc_p (unsigned int r_type)
2169 {
2170   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2171 }
2172 
2173 static inline bfd_boolean
2174 got_page_reloc_p (unsigned int r_type)
2175 {
2176   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2177 }
2178 
2179 static inline bfd_boolean
2180 got_lo16_reloc_p (unsigned int r_type)
2181 {
2182   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2183 }
2184 
2185 static inline bfd_boolean
2186 call_hi16_reloc_p (unsigned int r_type)
2187 {
2188   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2189 }
2190 
2191 static inline bfd_boolean
2192 call_lo16_reloc_p (unsigned int r_type)
2193 {
2194   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2195 }
2196 
2197 static inline bfd_boolean
2198 hi16_reloc_p (int r_type)
2199 {
2200   return (r_type == R_MIPS_HI16
2201 	  || r_type == R_MIPS16_HI16
2202 	  || r_type == R_MICROMIPS_HI16
2203 	  || r_type == R_MIPS_PCHI16);
2204 }
2205 
2206 static inline bfd_boolean
2207 lo16_reloc_p (int r_type)
2208 {
2209   return (r_type == R_MIPS_LO16
2210 	  || r_type == R_MIPS16_LO16
2211 	  || r_type == R_MICROMIPS_LO16
2212 	  || r_type == R_MIPS_PCLO16);
2213 }
2214 
2215 static inline bfd_boolean
2216 mips16_call_reloc_p (int r_type)
2217 {
2218   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2219 }
2220 
2221 static inline bfd_boolean
2222 jal_reloc_p (int r_type)
2223 {
2224   return (r_type == R_MIPS_26
2225 	  || r_type == R_MIPS16_26
2226 	  || r_type == R_MICROMIPS_26_S1);
2227 }
2228 
2229 static inline bfd_boolean
2230 b_reloc_p (int r_type)
2231 {
2232   return (r_type == R_MIPS_PC26_S2
2233 	  || r_type == R_MIPS_PC21_S2
2234 	  || r_type == R_MIPS_PC16
2235 	  || r_type == R_MIPS_GNU_REL16_S2
2236 	  || r_type == R_MIPS16_PC16_S1
2237 	  || r_type == R_MICROMIPS_PC16_S1
2238 	  || r_type == R_MICROMIPS_PC10_S1
2239 	  || r_type == R_MICROMIPS_PC7_S1);
2240 }
2241 
2242 static inline bfd_boolean
2243 aligned_pcrel_reloc_p (int r_type)
2244 {
2245   return (r_type == R_MIPS_PC18_S3
2246 	  || r_type == R_MIPS_PC19_S2);
2247 }
2248 
2249 static inline bfd_boolean
2250 branch_reloc_p (int r_type)
2251 {
2252   return (r_type == R_MIPS_26
2253 	  || r_type == R_MIPS_PC26_S2
2254 	  || r_type == R_MIPS_PC21_S2
2255 	  || r_type == R_MIPS_PC16
2256 	  || r_type == R_MIPS_GNU_REL16_S2);
2257 }
2258 
2259 static inline bfd_boolean
2260 mips16_branch_reloc_p (int r_type)
2261 {
2262   return (r_type == R_MIPS16_26
2263 	  || r_type == R_MIPS16_PC16_S1);
2264 }
2265 
2266 static inline bfd_boolean
2267 micromips_branch_reloc_p (int r_type)
2268 {
2269   return (r_type == R_MICROMIPS_26_S1
2270 	  || r_type == R_MICROMIPS_PC16_S1
2271 	  || r_type == R_MICROMIPS_PC10_S1
2272 	  || r_type == R_MICROMIPS_PC7_S1);
2273 }
2274 
2275 static inline bfd_boolean
2276 tls_gd_reloc_p (unsigned int r_type)
2277 {
2278   return (r_type == R_MIPS_TLS_GD
2279 	  || r_type == R_MIPS16_TLS_GD
2280 	  || r_type == R_MICROMIPS_TLS_GD);
2281 }
2282 
2283 static inline bfd_boolean
2284 tls_ldm_reloc_p (unsigned int r_type)
2285 {
2286   return (r_type == R_MIPS_TLS_LDM
2287 	  || r_type == R_MIPS16_TLS_LDM
2288 	  || r_type == R_MICROMIPS_TLS_LDM);
2289 }
2290 
2291 static inline bfd_boolean
2292 tls_gottprel_reloc_p (unsigned int r_type)
2293 {
2294   return (r_type == R_MIPS_TLS_GOTTPREL
2295 	  || r_type == R_MIPS16_TLS_GOTTPREL
2296 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2297 }
2298 
2299 void
2300 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2301 			       bfd_boolean jal_shuffle, bfd_byte *data)
2302 {
2303   bfd_vma first, second, val;
2304 
2305   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2306     return;
2307 
2308   /* Pick up the first and second halfwords of the instruction.  */
2309   first = bfd_get_16 (abfd, data);
2310   second = bfd_get_16 (abfd, data + 2);
2311   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2312     val = first << 16 | second;
2313   else if (r_type != R_MIPS16_26)
2314     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2315 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2316   else
2317     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2318 	   | ((first & 0x1f) << 21) | second);
2319   bfd_put_32 (abfd, val, data);
2320 }
2321 
2322 void
2323 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2324 			     bfd_boolean jal_shuffle, bfd_byte *data)
2325 {
2326   bfd_vma first, second, val;
2327 
2328   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2329     return;
2330 
2331   val = bfd_get_32 (abfd, data);
2332   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2333     {
2334       second = val & 0xffff;
2335       first = val >> 16;
2336     }
2337   else if (r_type != R_MIPS16_26)
2338     {
2339       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2340       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2341     }
2342   else
2343     {
2344       second = val & 0xffff;
2345       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2346 	       | ((val >> 21) & 0x1f);
2347     }
2348   bfd_put_16 (abfd, second, data + 2);
2349   bfd_put_16 (abfd, first, data);
2350 }
2351 
2352 bfd_reloc_status_type
2353 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2354 			       arelent *reloc_entry, asection *input_section,
2355 			       bfd_boolean relocatable, void *data, bfd_vma gp)
2356 {
2357   bfd_vma relocation;
2358   bfd_signed_vma val;
2359   bfd_reloc_status_type status;
2360 
2361   if (bfd_is_com_section (symbol->section))
2362     relocation = 0;
2363   else
2364     relocation = symbol->value;
2365 
2366   relocation += symbol->section->output_section->vma;
2367   relocation += symbol->section->output_offset;
2368 
2369   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2370     return bfd_reloc_outofrange;
2371 
2372   /* Set val to the offset into the section or symbol.  */
2373   val = reloc_entry->addend;
2374 
2375   _bfd_mips_elf_sign_extend (val, 16);
2376 
2377   /* Adjust val for the final section location and GP value.  If we
2378      are producing relocatable output, we don't want to do this for
2379      an external symbol.  */
2380   if (! relocatable
2381       || (symbol->flags & BSF_SECTION_SYM) != 0)
2382     val += relocation - gp;
2383 
2384   if (reloc_entry->howto->partial_inplace)
2385     {
2386       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2387 				       (bfd_byte *) data
2388 				       + reloc_entry->address);
2389       if (status != bfd_reloc_ok)
2390 	return status;
2391     }
2392   else
2393     reloc_entry->addend = val;
2394 
2395   if (relocatable)
2396     reloc_entry->address += input_section->output_offset;
2397 
2398   return bfd_reloc_ok;
2399 }
2400 
2401 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2402    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2403    that contains the relocation field and DATA points to the start of
2404    INPUT_SECTION.  */
2405 
2406 struct mips_hi16
2407 {
2408   struct mips_hi16 *next;
2409   bfd_byte *data;
2410   asection *input_section;
2411   arelent rel;
2412 };
2413 
2414 /* FIXME: This should not be a static variable.  */
2415 
2416 static struct mips_hi16 *mips_hi16_list;
2417 
2418 /* A howto special_function for REL *HI16 relocations.  We can only
2419    calculate the correct value once we've seen the partnering
2420    *LO16 relocation, so just save the information for later.
2421 
2422    The ABI requires that the *LO16 immediately follow the *HI16.
2423    However, as a GNU extension, we permit an arbitrary number of
2424    *HI16s to be associated with a single *LO16.  This significantly
2425    simplies the relocation handling in gcc.  */
2426 
2427 bfd_reloc_status_type
2428 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2429 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2430 			  asection *input_section, bfd *output_bfd,
2431 			  char **error_message ATTRIBUTE_UNUSED)
2432 {
2433   struct mips_hi16 *n;
2434 
2435   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2436     return bfd_reloc_outofrange;
2437 
2438   n = bfd_malloc (sizeof *n);
2439   if (n == NULL)
2440     return bfd_reloc_outofrange;
2441 
2442   n->next = mips_hi16_list;
2443   n->data = data;
2444   n->input_section = input_section;
2445   n->rel = *reloc_entry;
2446   mips_hi16_list = n;
2447 
2448   if (output_bfd != NULL)
2449     reloc_entry->address += input_section->output_offset;
2450 
2451   return bfd_reloc_ok;
2452 }
2453 
2454 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2455    like any other 16-bit relocation when applied to global symbols, but is
2456    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2457 
2458 bfd_reloc_status_type
2459 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2460 			   void *data, asection *input_section,
2461 			   bfd *output_bfd, char **error_message)
2462 {
2463   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2464       || bfd_is_und_section (bfd_get_section (symbol))
2465       || bfd_is_com_section (bfd_get_section (symbol)))
2466     /* The relocation is against a global symbol.  */
2467     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2468 					input_section, output_bfd,
2469 					error_message);
2470 
2471   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2472 				   input_section, output_bfd, error_message);
2473 }
2474 
2475 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2476    is a straightforward 16 bit inplace relocation, but we must deal with
2477    any partnering high-part relocations as well.  */
2478 
2479 bfd_reloc_status_type
2480 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2481 			  void *data, asection *input_section,
2482 			  bfd *output_bfd, char **error_message)
2483 {
2484   bfd_vma vallo;
2485   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2486 
2487   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2488     return bfd_reloc_outofrange;
2489 
2490   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2491 				 location);
2492   vallo = bfd_get_32 (abfd, location);
2493   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2494 			       location);
2495 
2496   while (mips_hi16_list != NULL)
2497     {
2498       bfd_reloc_status_type ret;
2499       struct mips_hi16 *hi;
2500 
2501       hi = mips_hi16_list;
2502 
2503       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2504 	 want to install the addend in the same way as for a R_MIPS*_HI16
2505 	 relocation (with a rightshift of 16).  However, since GOT16
2506 	 relocations can also be used with global symbols, their howto
2507 	 has a rightshift of 0.  */
2508       if (hi->rel.howto->type == R_MIPS_GOT16)
2509 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2510       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2511 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2512       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2513 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2514 
2515       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2516 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2517       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2518 
2519       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2520 					 hi->input_section, output_bfd,
2521 					 error_message);
2522       if (ret != bfd_reloc_ok)
2523 	return ret;
2524 
2525       mips_hi16_list = hi->next;
2526       free (hi);
2527     }
2528 
2529   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2530 				      input_section, output_bfd,
2531 				      error_message);
2532 }
2533 
2534 /* A generic howto special_function.  This calculates and installs the
2535    relocation itself, thus avoiding the oft-discussed problems in
2536    bfd_perform_relocation and bfd_install_relocation.  */
2537 
2538 bfd_reloc_status_type
2539 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2540 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2541 			     asection *input_section, bfd *output_bfd,
2542 			     char **error_message ATTRIBUTE_UNUSED)
2543 {
2544   bfd_signed_vma val;
2545   bfd_reloc_status_type status;
2546   bfd_boolean relocatable;
2547 
2548   relocatable = (output_bfd != NULL);
2549 
2550   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2551     return bfd_reloc_outofrange;
2552 
2553   /* Build up the field adjustment in VAL.  */
2554   val = 0;
2555   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2556     {
2557       /* Either we're calculating the final field value or we have a
2558 	 relocation against a section symbol.  Add in the section's
2559 	 offset or address.  */
2560       val += symbol->section->output_section->vma;
2561       val += symbol->section->output_offset;
2562     }
2563 
2564   if (!relocatable)
2565     {
2566       /* We're calculating the final field value.  Add in the symbol's value
2567 	 and, if pc-relative, subtract the address of the field itself.  */
2568       val += symbol->value;
2569       if (reloc_entry->howto->pc_relative)
2570 	{
2571 	  val -= input_section->output_section->vma;
2572 	  val -= input_section->output_offset;
2573 	  val -= reloc_entry->address;
2574 	}
2575     }
2576 
2577   /* VAL is now the final adjustment.  If we're keeping this relocation
2578      in the output file, and if the relocation uses a separate addend,
2579      we just need to add VAL to that addend.  Otherwise we need to add
2580      VAL to the relocation field itself.  */
2581   if (relocatable && !reloc_entry->howto->partial_inplace)
2582     reloc_entry->addend += val;
2583   else
2584     {
2585       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2586 
2587       /* Add in the separate addend, if any.  */
2588       val += reloc_entry->addend;
2589 
2590       /* Add VAL to the relocation field.  */
2591       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2592 				     location);
2593       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2594 				       location);
2595       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2596 				   location);
2597 
2598       if (status != bfd_reloc_ok)
2599 	return status;
2600     }
2601 
2602   if (relocatable)
2603     reloc_entry->address += input_section->output_offset;
2604 
2605   return bfd_reloc_ok;
2606 }
2607 
2608 /* Swap an entry in a .gptab section.  Note that these routines rely
2609    on the equivalence of the two elements of the union.  */
2610 
2611 static void
2612 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2613 			      Elf32_gptab *in)
2614 {
2615   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2616   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2617 }
2618 
2619 static void
2620 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2621 			       Elf32_External_gptab *ex)
2622 {
2623   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2624   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2625 }
2626 
2627 static void
2628 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2629 				Elf32_External_compact_rel *ex)
2630 {
2631   H_PUT_32 (abfd, in->id1, ex->id1);
2632   H_PUT_32 (abfd, in->num, ex->num);
2633   H_PUT_32 (abfd, in->id2, ex->id2);
2634   H_PUT_32 (abfd, in->offset, ex->offset);
2635   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2636   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2637 }
2638 
2639 static void
2640 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2641 			   Elf32_External_crinfo *ex)
2642 {
2643   unsigned long l;
2644 
2645   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2646        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2647        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2648        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2649   H_PUT_32 (abfd, l, ex->info);
2650   H_PUT_32 (abfd, in->konst, ex->konst);
2651   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2652 }
2653 
2654 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2655    routines swap this structure in and out.  They are used outside of
2656    BFD, so they are globally visible.  */
2657 
2658 void
2659 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2660 				Elf32_RegInfo *in)
2661 {
2662   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2663   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2664   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2665   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2666   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2667   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2668 }
2669 
2670 void
2671 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2672 				 Elf32_External_RegInfo *ex)
2673 {
2674   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2675   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2676   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2677   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2678   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2679   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2680 }
2681 
2682 /* In the 64 bit ABI, the .MIPS.options section holds register
2683    information in an Elf64_Reginfo structure.  These routines swap
2684    them in and out.  They are globally visible because they are used
2685    outside of BFD.  These routines are here so that gas can call them
2686    without worrying about whether the 64 bit ABI has been included.  */
2687 
2688 void
2689 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2690 				Elf64_Internal_RegInfo *in)
2691 {
2692   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2693   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2694   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2695   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2696   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2697   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2698   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2699 }
2700 
2701 void
2702 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2703 				 Elf64_External_RegInfo *ex)
2704 {
2705   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2706   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2707   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2708   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2709   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2710   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2711   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2712 }
2713 
2714 /* Swap in an options header.  */
2715 
2716 void
2717 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2718 			      Elf_Internal_Options *in)
2719 {
2720   in->kind = H_GET_8 (abfd, ex->kind);
2721   in->size = H_GET_8 (abfd, ex->size);
2722   in->section = H_GET_16 (abfd, ex->section);
2723   in->info = H_GET_32 (abfd, ex->info);
2724 }
2725 
2726 /* Swap out an options header.  */
2727 
2728 void
2729 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2730 			       Elf_External_Options *ex)
2731 {
2732   H_PUT_8 (abfd, in->kind, ex->kind);
2733   H_PUT_8 (abfd, in->size, ex->size);
2734   H_PUT_16 (abfd, in->section, ex->section);
2735   H_PUT_32 (abfd, in->info, ex->info);
2736 }
2737 
2738 /* Swap in an abiflags structure.  */
2739 
2740 void
2741 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2742 				  const Elf_External_ABIFlags_v0 *ex,
2743 				  Elf_Internal_ABIFlags_v0 *in)
2744 {
2745   in->version = H_GET_16 (abfd, ex->version);
2746   in->isa_level = H_GET_8 (abfd, ex->isa_level);
2747   in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2748   in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2749   in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2750   in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2751   in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2752   in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2753   in->ases = H_GET_32 (abfd, ex->ases);
2754   in->flags1 = H_GET_32 (abfd, ex->flags1);
2755   in->flags2 = H_GET_32 (abfd, ex->flags2);
2756 }
2757 
2758 /* Swap out an abiflags structure.  */
2759 
2760 void
2761 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2762 				   const Elf_Internal_ABIFlags_v0 *in,
2763 				   Elf_External_ABIFlags_v0 *ex)
2764 {
2765   H_PUT_16 (abfd, in->version, ex->version);
2766   H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2767   H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2768   H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2769   H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2770   H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2771   H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2772   H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2773   H_PUT_32 (abfd, in->ases, ex->ases);
2774   H_PUT_32 (abfd, in->flags1, ex->flags1);
2775   H_PUT_32 (abfd, in->flags2, ex->flags2);
2776 }
2777 
2778 /* This function is called via qsort() to sort the dynamic relocation
2779    entries by increasing r_symndx value.  */
2780 
2781 static int
2782 sort_dynamic_relocs (const void *arg1, const void *arg2)
2783 {
2784   Elf_Internal_Rela int_reloc1;
2785   Elf_Internal_Rela int_reloc2;
2786   int diff;
2787 
2788   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2789   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2790 
2791   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2792   if (diff != 0)
2793     return diff;
2794 
2795   if (int_reloc1.r_offset < int_reloc2.r_offset)
2796     return -1;
2797   if (int_reloc1.r_offset > int_reloc2.r_offset)
2798     return 1;
2799   return 0;
2800 }
2801 
2802 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2803 
2804 static int
2805 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2806 			const void *arg2 ATTRIBUTE_UNUSED)
2807 {
2808 #ifdef BFD64
2809   Elf_Internal_Rela int_reloc1[3];
2810   Elf_Internal_Rela int_reloc2[3];
2811 
2812   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2813     (reldyn_sorting_bfd, arg1, int_reloc1);
2814   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2815     (reldyn_sorting_bfd, arg2, int_reloc2);
2816 
2817   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2818     return -1;
2819   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2820     return 1;
2821 
2822   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2823     return -1;
2824   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2825     return 1;
2826   return 0;
2827 #else
2828   abort ();
2829 #endif
2830 }
2831 
2832 
2833 /* This routine is used to write out ECOFF debugging external symbol
2834    information.  It is called via mips_elf_link_hash_traverse.  The
2835    ECOFF external symbol information must match the ELF external
2836    symbol information.  Unfortunately, at this point we don't know
2837    whether a symbol is required by reloc information, so the two
2838    tables may wind up being different.  We must sort out the external
2839    symbol information before we can set the final size of the .mdebug
2840    section, and we must set the size of the .mdebug section before we
2841    can relocate any sections, and we can't know which symbols are
2842    required by relocation until we relocate the sections.
2843    Fortunately, it is relatively unlikely that any symbol will be
2844    stripped but required by a reloc.  In particular, it can not happen
2845    when generating a final executable.  */
2846 
2847 static bfd_boolean
2848 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2849 {
2850   struct extsym_info *einfo = data;
2851   bfd_boolean strip;
2852   asection *sec, *output_section;
2853 
2854   if (h->root.indx == -2)
2855     strip = FALSE;
2856   else if ((h->root.def_dynamic
2857 	    || h->root.ref_dynamic
2858 	    || h->root.type == bfd_link_hash_new)
2859 	   && !h->root.def_regular
2860 	   && !h->root.ref_regular)
2861     strip = TRUE;
2862   else if (einfo->info->strip == strip_all
2863 	   || (einfo->info->strip == strip_some
2864 	       && bfd_hash_lookup (einfo->info->keep_hash,
2865 				   h->root.root.root.string,
2866 				   FALSE, FALSE) == NULL))
2867     strip = TRUE;
2868   else
2869     strip = FALSE;
2870 
2871   if (strip)
2872     return TRUE;
2873 
2874   if (h->esym.ifd == -2)
2875     {
2876       h->esym.jmptbl = 0;
2877       h->esym.cobol_main = 0;
2878       h->esym.weakext = 0;
2879       h->esym.reserved = 0;
2880       h->esym.ifd = ifdNil;
2881       h->esym.asym.value = 0;
2882       h->esym.asym.st = stGlobal;
2883 
2884       if (h->root.root.type == bfd_link_hash_undefined
2885 	  || h->root.root.type == bfd_link_hash_undefweak)
2886 	{
2887 	  const char *name;
2888 
2889 	  /* Use undefined class.  Also, set class and type for some
2890              special symbols.  */
2891 	  name = h->root.root.root.string;
2892 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2893 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2894 	    {
2895 	      h->esym.asym.sc = scData;
2896 	      h->esym.asym.st = stLabel;
2897 	      h->esym.asym.value = 0;
2898 	    }
2899 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2900 	    {
2901 	      h->esym.asym.sc = scAbs;
2902 	      h->esym.asym.st = stLabel;
2903 	      h->esym.asym.value =
2904 		mips_elf_hash_table (einfo->info)->procedure_count;
2905 	    }
2906 	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2907 	    {
2908 	      h->esym.asym.sc = scAbs;
2909 	      h->esym.asym.st = stLabel;
2910 	      h->esym.asym.value = elf_gp (einfo->abfd);
2911 	    }
2912 	  else
2913 	    h->esym.asym.sc = scUndefined;
2914 	}
2915       else if (h->root.root.type != bfd_link_hash_defined
2916 	  && h->root.root.type != bfd_link_hash_defweak)
2917 	h->esym.asym.sc = scAbs;
2918       else
2919 	{
2920 	  const char *name;
2921 
2922 	  sec = h->root.root.u.def.section;
2923 	  output_section = sec->output_section;
2924 
2925 	  /* When making a shared library and symbol h is the one from
2926 	     the another shared library, OUTPUT_SECTION may be null.  */
2927 	  if (output_section == NULL)
2928 	    h->esym.asym.sc = scUndefined;
2929 	  else
2930 	    {
2931 	      name = bfd_section_name (output_section->owner, output_section);
2932 
2933 	      if (strcmp (name, ".text") == 0)
2934 		h->esym.asym.sc = scText;
2935 	      else if (strcmp (name, ".data") == 0)
2936 		h->esym.asym.sc = scData;
2937 	      else if (strcmp (name, ".sdata") == 0)
2938 		h->esym.asym.sc = scSData;
2939 	      else if (strcmp (name, ".rodata") == 0
2940 		       || strcmp (name, ".rdata") == 0)
2941 		h->esym.asym.sc = scRData;
2942 	      else if (strcmp (name, ".bss") == 0)
2943 		h->esym.asym.sc = scBss;
2944 	      else if (strcmp (name, ".sbss") == 0)
2945 		h->esym.asym.sc = scSBss;
2946 	      else if (strcmp (name, ".init") == 0)
2947 		h->esym.asym.sc = scInit;
2948 	      else if (strcmp (name, ".fini") == 0)
2949 		h->esym.asym.sc = scFini;
2950 	      else
2951 		h->esym.asym.sc = scAbs;
2952 	    }
2953 	}
2954 
2955       h->esym.asym.reserved = 0;
2956       h->esym.asym.index = indexNil;
2957     }
2958 
2959   if (h->root.root.type == bfd_link_hash_common)
2960     h->esym.asym.value = h->root.root.u.c.size;
2961   else if (h->root.root.type == bfd_link_hash_defined
2962 	   || h->root.root.type == bfd_link_hash_defweak)
2963     {
2964       if (h->esym.asym.sc == scCommon)
2965 	h->esym.asym.sc = scBss;
2966       else if (h->esym.asym.sc == scSCommon)
2967 	h->esym.asym.sc = scSBss;
2968 
2969       sec = h->root.root.u.def.section;
2970       output_section = sec->output_section;
2971       if (output_section != NULL)
2972 	h->esym.asym.value = (h->root.root.u.def.value
2973 			      + sec->output_offset
2974 			      + output_section->vma);
2975       else
2976 	h->esym.asym.value = 0;
2977     }
2978   else
2979     {
2980       struct mips_elf_link_hash_entry *hd = h;
2981 
2982       while (hd->root.root.type == bfd_link_hash_indirect)
2983 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2984 
2985       if (hd->needs_lazy_stub)
2986 	{
2987 	  BFD_ASSERT (hd->root.plt.plist != NULL);
2988 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2989 	  /* Set type and value for a symbol with a function stub.  */
2990 	  h->esym.asym.st = stProc;
2991 	  sec = hd->root.root.u.def.section;
2992 	  if (sec == NULL)
2993 	    h->esym.asym.value = 0;
2994 	  else
2995 	    {
2996 	      output_section = sec->output_section;
2997 	      if (output_section != NULL)
2998 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
2999 				      + sec->output_offset
3000 				      + output_section->vma);
3001 	      else
3002 		h->esym.asym.value = 0;
3003 	    }
3004 	}
3005     }
3006 
3007   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3008 				      h->root.root.root.string,
3009 				      &h->esym))
3010     {
3011       einfo->failed = TRUE;
3012       return FALSE;
3013     }
3014 
3015   return TRUE;
3016 }
3017 
3018 /* A comparison routine used to sort .gptab entries.  */
3019 
3020 static int
3021 gptab_compare (const void *p1, const void *p2)
3022 {
3023   const Elf32_gptab *a1 = p1;
3024   const Elf32_gptab *a2 = p2;
3025 
3026   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3027 }
3028 
3029 /* Functions to manage the got entry hash table.  */
3030 
3031 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3032    hash number.  */
3033 
3034 static INLINE hashval_t
3035 mips_elf_hash_bfd_vma (bfd_vma addr)
3036 {
3037 #ifdef BFD64
3038   return addr + (addr >> 32);
3039 #else
3040   return addr;
3041 #endif
3042 }
3043 
3044 static hashval_t
3045 mips_elf_got_entry_hash (const void *entry_)
3046 {
3047   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3048 
3049   return (entry->symndx
3050 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
3051 	  + (entry->tls_type == GOT_TLS_LDM ? 0
3052 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3053 	     : entry->symndx >= 0 ? (entry->abfd->id
3054 				     + mips_elf_hash_bfd_vma (entry->d.addend))
3055 	     : entry->d.h->root.root.root.hash));
3056 }
3057 
3058 static int
3059 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3060 {
3061   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3062   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3063 
3064   return (e1->symndx == e2->symndx
3065 	  && e1->tls_type == e2->tls_type
3066 	  && (e1->tls_type == GOT_TLS_LDM ? TRUE
3067 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3068 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3069 				   && e1->d.addend == e2->d.addend)
3070 	      : e2->abfd && e1->d.h == e2->d.h));
3071 }
3072 
3073 static hashval_t
3074 mips_got_page_ref_hash (const void *ref_)
3075 {
3076   const struct mips_got_page_ref *ref;
3077 
3078   ref = (const struct mips_got_page_ref *) ref_;
3079   return ((ref->symndx >= 0
3080 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3081 	   : ref->u.h->root.root.root.hash)
3082 	  + mips_elf_hash_bfd_vma (ref->addend));
3083 }
3084 
3085 static int
3086 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3087 {
3088   const struct mips_got_page_ref *ref1, *ref2;
3089 
3090   ref1 = (const struct mips_got_page_ref *) ref1_;
3091   ref2 = (const struct mips_got_page_ref *) ref2_;
3092   return (ref1->symndx == ref2->symndx
3093 	  && (ref1->symndx < 0
3094 	      ? ref1->u.h == ref2->u.h
3095 	      : ref1->u.abfd == ref2->u.abfd)
3096 	  && ref1->addend == ref2->addend);
3097 }
3098 
3099 static hashval_t
3100 mips_got_page_entry_hash (const void *entry_)
3101 {
3102   const struct mips_got_page_entry *entry;
3103 
3104   entry = (const struct mips_got_page_entry *) entry_;
3105   return entry->sec->id;
3106 }
3107 
3108 static int
3109 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3110 {
3111   const struct mips_got_page_entry *entry1, *entry2;
3112 
3113   entry1 = (const struct mips_got_page_entry *) entry1_;
3114   entry2 = (const struct mips_got_page_entry *) entry2_;
3115   return entry1->sec == entry2->sec;
3116 }
3117 
3118 /* Create and return a new mips_got_info structure.  */
3119 
3120 static struct mips_got_info *
3121 mips_elf_create_got_info (bfd *abfd)
3122 {
3123   struct mips_got_info *g;
3124 
3125   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3126   if (g == NULL)
3127     return NULL;
3128 
3129   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3130 				    mips_elf_got_entry_eq, NULL);
3131   if (g->got_entries == NULL)
3132     return NULL;
3133 
3134   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3135 				      mips_got_page_ref_eq, NULL);
3136   if (g->got_page_refs == NULL)
3137     return NULL;
3138 
3139   return g;
3140 }
3141 
3142 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3143    CREATE_P and if ABFD doesn't already have a GOT.  */
3144 
3145 static struct mips_got_info *
3146 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3147 {
3148   struct mips_elf_obj_tdata *tdata;
3149 
3150   if (!is_mips_elf (abfd))
3151     return NULL;
3152 
3153   tdata = mips_elf_tdata (abfd);
3154   if (!tdata->got && create_p)
3155     tdata->got = mips_elf_create_got_info (abfd);
3156   return tdata->got;
3157 }
3158 
3159 /* Record that ABFD should use output GOT G.  */
3160 
3161 static void
3162 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3163 {
3164   struct mips_elf_obj_tdata *tdata;
3165 
3166   BFD_ASSERT (is_mips_elf (abfd));
3167   tdata = mips_elf_tdata (abfd);
3168   if (tdata->got)
3169     {
3170       /* The GOT structure itself and the hash table entries are
3171 	 allocated to a bfd, but the hash tables aren't.  */
3172       htab_delete (tdata->got->got_entries);
3173       htab_delete (tdata->got->got_page_refs);
3174       if (tdata->got->got_page_entries)
3175 	htab_delete (tdata->got->got_page_entries);
3176     }
3177   tdata->got = g;
3178 }
3179 
3180 /* Return the dynamic relocation section.  If it doesn't exist, try to
3181    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3182    if creation fails.  */
3183 
3184 static asection *
3185 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3186 {
3187   const char *dname;
3188   asection *sreloc;
3189   bfd *dynobj;
3190 
3191   dname = MIPS_ELF_REL_DYN_NAME (info);
3192   dynobj = elf_hash_table (info)->dynobj;
3193   sreloc = bfd_get_linker_section (dynobj, dname);
3194   if (sreloc == NULL && create_p)
3195     {
3196       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3197 						   (SEC_ALLOC
3198 						    | SEC_LOAD
3199 						    | SEC_HAS_CONTENTS
3200 						    | SEC_IN_MEMORY
3201 						    | SEC_LINKER_CREATED
3202 						    | SEC_READONLY));
3203       if (sreloc == NULL
3204 	  || ! bfd_set_section_alignment (dynobj, sreloc,
3205 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3206 	return NULL;
3207     }
3208   return sreloc;
3209 }
3210 
3211 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3212 
3213 static int
3214 mips_elf_reloc_tls_type (unsigned int r_type)
3215 {
3216   if (tls_gd_reloc_p (r_type))
3217     return GOT_TLS_GD;
3218 
3219   if (tls_ldm_reloc_p (r_type))
3220     return GOT_TLS_LDM;
3221 
3222   if (tls_gottprel_reloc_p (r_type))
3223     return GOT_TLS_IE;
3224 
3225   return GOT_TLS_NONE;
3226 }
3227 
3228 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3229 
3230 static int
3231 mips_tls_got_entries (unsigned int type)
3232 {
3233   switch (type)
3234     {
3235     case GOT_TLS_GD:
3236     case GOT_TLS_LDM:
3237       return 2;
3238 
3239     case GOT_TLS_IE:
3240       return 1;
3241 
3242     case GOT_TLS_NONE:
3243       return 0;
3244     }
3245   abort ();
3246 }
3247 
3248 /* Count the number of relocations needed for a TLS GOT entry, with
3249    access types from TLS_TYPE, and symbol H (or a local symbol if H
3250    is NULL).  */
3251 
3252 static int
3253 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3254 		     struct elf_link_hash_entry *h)
3255 {
3256   int indx = 0;
3257   bfd_boolean need_relocs = FALSE;
3258   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3259 
3260   if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3261       && (!bfd_link_pic (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3262     indx = h->dynindx;
3263 
3264   if ((bfd_link_pic (info) || indx != 0)
3265       && (h == NULL
3266 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3267 	  || h->root.type != bfd_link_hash_undefweak))
3268     need_relocs = TRUE;
3269 
3270   if (!need_relocs)
3271     return 0;
3272 
3273   switch (tls_type)
3274     {
3275     case GOT_TLS_GD:
3276       return indx != 0 ? 2 : 1;
3277 
3278     case GOT_TLS_IE:
3279       return 1;
3280 
3281     case GOT_TLS_LDM:
3282       return bfd_link_pic (info) ? 1 : 0;
3283 
3284     default:
3285       return 0;
3286     }
3287 }
3288 
3289 /* Add the number of GOT entries and TLS relocations required by ENTRY
3290    to G.  */
3291 
3292 static void
3293 mips_elf_count_got_entry (struct bfd_link_info *info,
3294 			  struct mips_got_info *g,
3295 			  struct mips_got_entry *entry)
3296 {
3297   if (entry->tls_type)
3298     {
3299       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3300       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3301 					entry->symndx < 0
3302 					? &entry->d.h->root : NULL);
3303     }
3304   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3305     g->local_gotno += 1;
3306   else
3307     g->global_gotno += 1;
3308 }
3309 
3310 /* Output a simple dynamic relocation into SRELOC.  */
3311 
3312 static void
3313 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3314 				    asection *sreloc,
3315 				    unsigned long reloc_index,
3316 				    unsigned long indx,
3317 				    int r_type,
3318 				    bfd_vma offset)
3319 {
3320   Elf_Internal_Rela rel[3];
3321 
3322   memset (rel, 0, sizeof (rel));
3323 
3324   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3325   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3326 
3327   if (ABI_64_P (output_bfd))
3328     {
3329       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3330 	(output_bfd, &rel[0],
3331 	 (sreloc->contents
3332 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3333     }
3334   else
3335     bfd_elf32_swap_reloc_out
3336       (output_bfd, &rel[0],
3337        (sreloc->contents
3338 	+ reloc_index * sizeof (Elf32_External_Rel)));
3339 }
3340 
3341 /* Initialize a set of TLS GOT entries for one symbol.  */
3342 
3343 static void
3344 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3345 			       struct mips_got_entry *entry,
3346 			       struct mips_elf_link_hash_entry *h,
3347 			       bfd_vma value)
3348 {
3349   struct mips_elf_link_hash_table *htab;
3350   int indx;
3351   asection *sreloc, *sgot;
3352   bfd_vma got_offset, got_offset2;
3353   bfd_boolean need_relocs = FALSE;
3354 
3355   htab = mips_elf_hash_table (info);
3356   if (htab == NULL)
3357     return;
3358 
3359   sgot = htab->root.sgot;
3360 
3361   indx = 0;
3362   if (h != NULL)
3363     {
3364       bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3365 
3366       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info),
3367 					   &h->root)
3368 	  && (!bfd_link_pic (info)
3369 	      || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3370 	indx = h->root.dynindx;
3371     }
3372 
3373   if (entry->tls_initialized)
3374     return;
3375 
3376   if ((bfd_link_pic (info) || indx != 0)
3377       && (h == NULL
3378 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3379 	  || h->root.type != bfd_link_hash_undefweak))
3380     need_relocs = TRUE;
3381 
3382   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3383      be defined at all; assume that the value doesn't matter in that
3384      case.  Otherwise complain if we would use the value.  */
3385   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3386 	      || h->root.root.type == bfd_link_hash_undefweak);
3387 
3388   /* Emit necessary relocations.  */
3389   sreloc = mips_elf_rel_dyn_section (info, FALSE);
3390   got_offset = entry->gotidx;
3391 
3392   switch (entry->tls_type)
3393     {
3394     case GOT_TLS_GD:
3395       /* General Dynamic.  */
3396       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3397 
3398       if (need_relocs)
3399 	{
3400 	  mips_elf_output_dynamic_relocation
3401 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3402 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3403 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3404 
3405 	  if (indx)
3406 	    mips_elf_output_dynamic_relocation
3407 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3408 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3409 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3410 	  else
3411 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3412 			       sgot->contents + got_offset2);
3413 	}
3414       else
3415 	{
3416 	  MIPS_ELF_PUT_WORD (abfd, 1,
3417 			     sgot->contents + got_offset);
3418 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3419 			     sgot->contents + got_offset2);
3420 	}
3421       break;
3422 
3423     case GOT_TLS_IE:
3424       /* Initial Exec model.  */
3425       if (need_relocs)
3426 	{
3427 	  if (indx == 0)
3428 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3429 			       sgot->contents + got_offset);
3430 	  else
3431 	    MIPS_ELF_PUT_WORD (abfd, 0,
3432 			       sgot->contents + got_offset);
3433 
3434 	  mips_elf_output_dynamic_relocation
3435 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3436 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3437 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3438 	}
3439       else
3440 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3441 			   sgot->contents + got_offset);
3442       break;
3443 
3444     case GOT_TLS_LDM:
3445       /* The initial offset is zero, and the LD offsets will include the
3446 	 bias by DTP_OFFSET.  */
3447       MIPS_ELF_PUT_WORD (abfd, 0,
3448 			 sgot->contents + got_offset
3449 			 + MIPS_ELF_GOT_SIZE (abfd));
3450 
3451       if (!bfd_link_pic (info))
3452 	MIPS_ELF_PUT_WORD (abfd, 1,
3453 			   sgot->contents + got_offset);
3454       else
3455 	mips_elf_output_dynamic_relocation
3456 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3457 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3458 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3459       break;
3460 
3461     default:
3462       abort ();
3463     }
3464 
3465   entry->tls_initialized = TRUE;
3466 }
3467 
3468 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3469    for global symbol H.  .got.plt comes before the GOT, so the offset
3470    will be negative.  */
3471 
3472 static bfd_vma
3473 mips_elf_gotplt_index (struct bfd_link_info *info,
3474 		       struct elf_link_hash_entry *h)
3475 {
3476   bfd_vma got_address, got_value;
3477   struct mips_elf_link_hash_table *htab;
3478 
3479   htab = mips_elf_hash_table (info);
3480   BFD_ASSERT (htab != NULL);
3481 
3482   BFD_ASSERT (h->plt.plist != NULL);
3483   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3484 
3485   /* Calculate the address of the associated .got.plt entry.  */
3486   got_address = (htab->root.sgotplt->output_section->vma
3487 		 + htab->root.sgotplt->output_offset
3488 		 + (h->plt.plist->gotplt_index
3489 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3490 
3491   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3492   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3493 	       + htab->root.hgot->root.u.def.section->output_offset
3494 	       + htab->root.hgot->root.u.def.value);
3495 
3496   return got_address - got_value;
3497 }
3498 
3499 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3500    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3501    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3502    offset can be found.  */
3503 
3504 static bfd_vma
3505 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3506 			  bfd_vma value, unsigned long r_symndx,
3507 			  struct mips_elf_link_hash_entry *h, int r_type)
3508 {
3509   struct mips_elf_link_hash_table *htab;
3510   struct mips_got_entry *entry;
3511 
3512   htab = mips_elf_hash_table (info);
3513   BFD_ASSERT (htab != NULL);
3514 
3515   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3516 					   r_symndx, h, r_type);
3517   if (!entry)
3518     return MINUS_ONE;
3519 
3520   if (entry->tls_type)
3521     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3522   return entry->gotidx;
3523 }
3524 
3525 /* Return the GOT index of global symbol H in the primary GOT.  */
3526 
3527 static bfd_vma
3528 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3529 				   struct elf_link_hash_entry *h)
3530 {
3531   struct mips_elf_link_hash_table *htab;
3532   long global_got_dynindx;
3533   struct mips_got_info *g;
3534   bfd_vma got_index;
3535 
3536   htab = mips_elf_hash_table (info);
3537   BFD_ASSERT (htab != NULL);
3538 
3539   global_got_dynindx = 0;
3540   if (htab->global_gotsym != NULL)
3541     global_got_dynindx = htab->global_gotsym->dynindx;
3542 
3543   /* Once we determine the global GOT entry with the lowest dynamic
3544      symbol table index, we must put all dynamic symbols with greater
3545      indices into the primary GOT.  That makes it easy to calculate the
3546      GOT offset.  */
3547   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3548   g = mips_elf_bfd_got (obfd, FALSE);
3549   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3550 	       * MIPS_ELF_GOT_SIZE (obfd));
3551   BFD_ASSERT (got_index < htab->root.sgot->size);
3552 
3553   return got_index;
3554 }
3555 
3556 /* Return the GOT index for the global symbol indicated by H, which is
3557    referenced by a relocation of type R_TYPE in IBFD.  */
3558 
3559 static bfd_vma
3560 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3561 			   struct elf_link_hash_entry *h, int r_type)
3562 {
3563   struct mips_elf_link_hash_table *htab;
3564   struct mips_got_info *g;
3565   struct mips_got_entry lookup, *entry;
3566   bfd_vma gotidx;
3567 
3568   htab = mips_elf_hash_table (info);
3569   BFD_ASSERT (htab != NULL);
3570 
3571   g = mips_elf_bfd_got (ibfd, FALSE);
3572   BFD_ASSERT (g);
3573 
3574   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3575   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3576     return mips_elf_primary_global_got_index (obfd, info, h);
3577 
3578   lookup.abfd = ibfd;
3579   lookup.symndx = -1;
3580   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3581   entry = htab_find (g->got_entries, &lookup);
3582   BFD_ASSERT (entry);
3583 
3584   gotidx = entry->gotidx;
3585   BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3586 
3587   if (lookup.tls_type)
3588     {
3589       bfd_vma value = MINUS_ONE;
3590 
3591       if ((h->root.type == bfd_link_hash_defined
3592 	   || h->root.type == bfd_link_hash_defweak)
3593 	  && h->root.u.def.section->output_section)
3594 	value = (h->root.u.def.value
3595 		 + h->root.u.def.section->output_offset
3596 		 + h->root.u.def.section->output_section->vma);
3597 
3598       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3599     }
3600   return gotidx;
3601 }
3602 
3603 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3604    entries are supposed to be placed at small offsets in the GOT, i.e.,
3605    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3606    entry could be created.  If OFFSETP is nonnull, use it to return the
3607    offset of the GOT entry from VALUE.  */
3608 
3609 static bfd_vma
3610 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3611 		   bfd_vma value, bfd_vma *offsetp)
3612 {
3613   bfd_vma page, got_index;
3614   struct mips_got_entry *entry;
3615 
3616   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3617   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3618 					   NULL, R_MIPS_GOT_PAGE);
3619 
3620   if (!entry)
3621     return MINUS_ONE;
3622 
3623   got_index = entry->gotidx;
3624 
3625   if (offsetp)
3626     *offsetp = value - entry->d.address;
3627 
3628   return got_index;
3629 }
3630 
3631 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3632    EXTERNAL is true if the relocation was originally against a global
3633    symbol that binds locally.  */
3634 
3635 static bfd_vma
3636 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3637 		      bfd_vma value, bfd_boolean external)
3638 {
3639   struct mips_got_entry *entry;
3640 
3641   /* GOT16 relocations against local symbols are followed by a LO16
3642      relocation; those against global symbols are not.  Thus if the
3643      symbol was originally local, the GOT16 relocation should load the
3644      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3645   if (! external)
3646     value = mips_elf_high (value) << 16;
3647 
3648   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3649      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3650      same in all cases.  */
3651   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3652 					   NULL, R_MIPS_GOT16);
3653   if (entry)
3654     return entry->gotidx;
3655   else
3656     return MINUS_ONE;
3657 }
3658 
3659 /* Returns the offset for the entry at the INDEXth position
3660    in the GOT.  */
3661 
3662 static bfd_vma
3663 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3664 				bfd *input_bfd, bfd_vma got_index)
3665 {
3666   struct mips_elf_link_hash_table *htab;
3667   asection *sgot;
3668   bfd_vma gp;
3669 
3670   htab = mips_elf_hash_table (info);
3671   BFD_ASSERT (htab != NULL);
3672 
3673   sgot = htab->root.sgot;
3674   gp = _bfd_get_gp_value (output_bfd)
3675     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3676 
3677   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3678 }
3679 
3680 /* Create and return a local GOT entry for VALUE, which was calculated
3681    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3682    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3683    instead.  */
3684 
3685 static struct mips_got_entry *
3686 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3687 				 bfd *ibfd, bfd_vma value,
3688 				 unsigned long r_symndx,
3689 				 struct mips_elf_link_hash_entry *h,
3690 				 int r_type)
3691 {
3692   struct mips_got_entry lookup, *entry;
3693   void **loc;
3694   struct mips_got_info *g;
3695   struct mips_elf_link_hash_table *htab;
3696   bfd_vma gotidx;
3697 
3698   htab = mips_elf_hash_table (info);
3699   BFD_ASSERT (htab != NULL);
3700 
3701   g = mips_elf_bfd_got (ibfd, FALSE);
3702   if (g == NULL)
3703     {
3704       g = mips_elf_bfd_got (abfd, FALSE);
3705       BFD_ASSERT (g != NULL);
3706     }
3707 
3708   /* This function shouldn't be called for symbols that live in the global
3709      area of the GOT.  */
3710   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3711 
3712   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3713   if (lookup.tls_type)
3714     {
3715       lookup.abfd = ibfd;
3716       if (tls_ldm_reloc_p (r_type))
3717 	{
3718 	  lookup.symndx = 0;
3719 	  lookup.d.addend = 0;
3720 	}
3721       else if (h == NULL)
3722 	{
3723 	  lookup.symndx = r_symndx;
3724 	  lookup.d.addend = 0;
3725 	}
3726       else
3727 	{
3728 	  lookup.symndx = -1;
3729 	  lookup.d.h = h;
3730 	}
3731 
3732       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3733       BFD_ASSERT (entry);
3734 
3735       gotidx = entry->gotidx;
3736       BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3737 
3738       return entry;
3739     }
3740 
3741   lookup.abfd = NULL;
3742   lookup.symndx = -1;
3743   lookup.d.address = value;
3744   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3745   if (!loc)
3746     return NULL;
3747 
3748   entry = (struct mips_got_entry *) *loc;
3749   if (entry)
3750     return entry;
3751 
3752   if (g->assigned_low_gotno > g->assigned_high_gotno)
3753     {
3754       /* We didn't allocate enough space in the GOT.  */
3755       _bfd_error_handler
3756 	(_("not enough GOT space for local GOT entries"));
3757       bfd_set_error (bfd_error_bad_value);
3758       return NULL;
3759     }
3760 
3761   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3762   if (!entry)
3763     return NULL;
3764 
3765   if (got16_reloc_p (r_type)
3766       || call16_reloc_p (r_type)
3767       || got_page_reloc_p (r_type)
3768       || got_disp_reloc_p (r_type))
3769     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3770   else
3771     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3772 
3773   *entry = lookup;
3774   *loc = entry;
3775 
3776   MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3777 
3778   /* These GOT entries need a dynamic relocation on VxWorks.  */
3779   if (htab->is_vxworks)
3780     {
3781       Elf_Internal_Rela outrel;
3782       asection *s;
3783       bfd_byte *rloc;
3784       bfd_vma got_address;
3785 
3786       s = mips_elf_rel_dyn_section (info, FALSE);
3787       got_address = (htab->root.sgot->output_section->vma
3788 		     + htab->root.sgot->output_offset
3789 		     + entry->gotidx);
3790 
3791       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3792       outrel.r_offset = got_address;
3793       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3794       outrel.r_addend = value;
3795       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3796     }
3797 
3798   return entry;
3799 }
3800 
3801 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3802    The number might be exact or a worst-case estimate, depending on how
3803    much information is available to elf_backend_omit_section_dynsym at
3804    the current linking stage.  */
3805 
3806 static bfd_size_type
3807 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3808 {
3809   bfd_size_type count;
3810 
3811   count = 0;
3812   if (bfd_link_pic (info)
3813       || elf_hash_table (info)->is_relocatable_executable)
3814     {
3815       asection *p;
3816       const struct elf_backend_data *bed;
3817 
3818       bed = get_elf_backend_data (output_bfd);
3819       for (p = output_bfd->sections; p ; p = p->next)
3820 	if ((p->flags & SEC_EXCLUDE) == 0
3821 	    && (p->flags & SEC_ALLOC) != 0
3822 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3823 	  ++count;
3824     }
3825   return count;
3826 }
3827 
3828 /* Sort the dynamic symbol table so that symbols that need GOT entries
3829    appear towards the end.  */
3830 
3831 static bfd_boolean
3832 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3833 {
3834   struct mips_elf_link_hash_table *htab;
3835   struct mips_elf_hash_sort_data hsd;
3836   struct mips_got_info *g;
3837 
3838   htab = mips_elf_hash_table (info);
3839   BFD_ASSERT (htab != NULL);
3840 
3841   if (htab->root.dynsymcount == 0)
3842     return TRUE;
3843 
3844   g = htab->got_info;
3845   if (g == NULL)
3846     return TRUE;
3847 
3848   hsd.low = NULL;
3849   hsd.max_unref_got_dynindx
3850     = hsd.min_got_dynindx
3851     = (htab->root.dynsymcount - g->reloc_only_gotno);
3852   /* Add 1 to local symbol indices to account for the mandatory NULL entry
3853      at the head of the table; see `_bfd_elf_link_renumber_dynsyms'.  */
3854   hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3855   hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3856   mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3857 
3858   /* There should have been enough room in the symbol table to
3859      accommodate both the GOT and non-GOT symbols.  */
3860   BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3861   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3862   BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3863   BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3864 
3865   /* Now we know which dynamic symbol has the lowest dynamic symbol
3866      table index in the GOT.  */
3867   htab->global_gotsym = hsd.low;
3868 
3869   return TRUE;
3870 }
3871 
3872 /* If H needs a GOT entry, assign it the highest available dynamic
3873    index.  Otherwise, assign it the lowest available dynamic
3874    index.  */
3875 
3876 static bfd_boolean
3877 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3878 {
3879   struct mips_elf_hash_sort_data *hsd = data;
3880 
3881   /* Symbols without dynamic symbol table entries aren't interesting
3882      at all.  */
3883   if (h->root.dynindx == -1)
3884     return TRUE;
3885 
3886   switch (h->global_got_area)
3887     {
3888     case GGA_NONE:
3889       if (h->root.forced_local)
3890 	h->root.dynindx = hsd->max_local_dynindx++;
3891       else
3892 	h->root.dynindx = hsd->max_non_got_dynindx++;
3893       break;
3894 
3895     case GGA_NORMAL:
3896       h->root.dynindx = --hsd->min_got_dynindx;
3897       hsd->low = (struct elf_link_hash_entry *) h;
3898       break;
3899 
3900     case GGA_RELOC_ONLY:
3901       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3902 	hsd->low = (struct elf_link_hash_entry *) h;
3903       h->root.dynindx = hsd->max_unref_got_dynindx++;
3904       break;
3905     }
3906 
3907   return TRUE;
3908 }
3909 
3910 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3911    (which is owned by the caller and shouldn't be added to the
3912    hash table directly).  */
3913 
3914 static bfd_boolean
3915 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3916 			   struct mips_got_entry *lookup)
3917 {
3918   struct mips_elf_link_hash_table *htab;
3919   struct mips_got_entry *entry;
3920   struct mips_got_info *g;
3921   void **loc, **bfd_loc;
3922 
3923   /* Make sure there's a slot for this entry in the master GOT.  */
3924   htab = mips_elf_hash_table (info);
3925   g = htab->got_info;
3926   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3927   if (!loc)
3928     return FALSE;
3929 
3930   /* Populate the entry if it isn't already.  */
3931   entry = (struct mips_got_entry *) *loc;
3932   if (!entry)
3933     {
3934       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3935       if (!entry)
3936 	return FALSE;
3937 
3938       lookup->tls_initialized = FALSE;
3939       lookup->gotidx = -1;
3940       *entry = *lookup;
3941       *loc = entry;
3942     }
3943 
3944   /* Reuse the same GOT entry for the BFD's GOT.  */
3945   g = mips_elf_bfd_got (abfd, TRUE);
3946   if (!g)
3947     return FALSE;
3948 
3949   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3950   if (!bfd_loc)
3951     return FALSE;
3952 
3953   if (!*bfd_loc)
3954     *bfd_loc = entry;
3955   return TRUE;
3956 }
3957 
3958 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
3959    entry for it.  FOR_CALL is true if the caller is only interested in
3960    using the GOT entry for calls.  */
3961 
3962 static bfd_boolean
3963 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3964 				   bfd *abfd, struct bfd_link_info *info,
3965 				   bfd_boolean for_call, int r_type)
3966 {
3967   struct mips_elf_link_hash_table *htab;
3968   struct mips_elf_link_hash_entry *hmips;
3969   struct mips_got_entry entry;
3970   unsigned char tls_type;
3971 
3972   htab = mips_elf_hash_table (info);
3973   BFD_ASSERT (htab != NULL);
3974 
3975   hmips = (struct mips_elf_link_hash_entry *) h;
3976   if (!for_call)
3977     hmips->got_only_for_calls = FALSE;
3978 
3979   /* A global symbol in the GOT must also be in the dynamic symbol
3980      table.  */
3981   if (h->dynindx == -1)
3982     {
3983       switch (ELF_ST_VISIBILITY (h->other))
3984 	{
3985 	case STV_INTERNAL:
3986 	case STV_HIDDEN:
3987 	  _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3988 	  break;
3989 	}
3990       if (!bfd_elf_link_record_dynamic_symbol (info, h))
3991 	return FALSE;
3992     }
3993 
3994   tls_type = mips_elf_reloc_tls_type (r_type);
3995   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3996     hmips->global_got_area = GGA_NORMAL;
3997 
3998   entry.abfd = abfd;
3999   entry.symndx = -1;
4000   entry.d.h = (struct mips_elf_link_hash_entry *) h;
4001   entry.tls_type = tls_type;
4002   return mips_elf_record_got_entry (info, abfd, &entry);
4003 }
4004 
4005 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4006    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
4007 
4008 static bfd_boolean
4009 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4010 				  struct bfd_link_info *info, int r_type)
4011 {
4012   struct mips_elf_link_hash_table *htab;
4013   struct mips_got_info *g;
4014   struct mips_got_entry entry;
4015 
4016   htab = mips_elf_hash_table (info);
4017   BFD_ASSERT (htab != NULL);
4018 
4019   g = htab->got_info;
4020   BFD_ASSERT (g != NULL);
4021 
4022   entry.abfd = abfd;
4023   entry.symndx = symndx;
4024   entry.d.addend = addend;
4025   entry.tls_type = mips_elf_reloc_tls_type (r_type);
4026   return mips_elf_record_got_entry (info, abfd, &entry);
4027 }
4028 
4029 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4030    H is the symbol's hash table entry, or null if SYMNDX is local
4031    to ABFD.  */
4032 
4033 static bfd_boolean
4034 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4035 			      long symndx, struct elf_link_hash_entry *h,
4036 			      bfd_signed_vma addend)
4037 {
4038   struct mips_elf_link_hash_table *htab;
4039   struct mips_got_info *g1, *g2;
4040   struct mips_got_page_ref lookup, *entry;
4041   void **loc, **bfd_loc;
4042 
4043   htab = mips_elf_hash_table (info);
4044   BFD_ASSERT (htab != NULL);
4045 
4046   g1 = htab->got_info;
4047   BFD_ASSERT (g1 != NULL);
4048 
4049   if (h)
4050     {
4051       lookup.symndx = -1;
4052       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4053     }
4054   else
4055     {
4056       lookup.symndx = symndx;
4057       lookup.u.abfd = abfd;
4058     }
4059   lookup.addend = addend;
4060   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4061   if (loc == NULL)
4062     return FALSE;
4063 
4064   entry = (struct mips_got_page_ref *) *loc;
4065   if (!entry)
4066     {
4067       entry = bfd_alloc (abfd, sizeof (*entry));
4068       if (!entry)
4069 	return FALSE;
4070 
4071       *entry = lookup;
4072       *loc = entry;
4073     }
4074 
4075   /* Add the same entry to the BFD's GOT.  */
4076   g2 = mips_elf_bfd_got (abfd, TRUE);
4077   if (!g2)
4078     return FALSE;
4079 
4080   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4081   if (!bfd_loc)
4082     return FALSE;
4083 
4084   if (!*bfd_loc)
4085     *bfd_loc = entry;
4086 
4087   return TRUE;
4088 }
4089 
4090 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4091 
4092 static void
4093 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4094 				       unsigned int n)
4095 {
4096   asection *s;
4097   struct mips_elf_link_hash_table *htab;
4098 
4099   htab = mips_elf_hash_table (info);
4100   BFD_ASSERT (htab != NULL);
4101 
4102   s = mips_elf_rel_dyn_section (info, FALSE);
4103   BFD_ASSERT (s != NULL);
4104 
4105   if (htab->is_vxworks)
4106     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4107   else
4108     {
4109       if (s->size == 0)
4110 	{
4111 	  /* Make room for a null element.  */
4112 	  s->size += MIPS_ELF_REL_SIZE (abfd);
4113 	  ++s->reloc_count;
4114 	}
4115       s->size += n * MIPS_ELF_REL_SIZE (abfd);
4116     }
4117 }
4118 
4119 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4120    mips_elf_traverse_got_arg structure.  Count the number of GOT
4121    entries and TLS relocs.  Set DATA->value to true if we need
4122    to resolve indirect or warning symbols and then recreate the GOT.  */
4123 
4124 static int
4125 mips_elf_check_recreate_got (void **entryp, void *data)
4126 {
4127   struct mips_got_entry *entry;
4128   struct mips_elf_traverse_got_arg *arg;
4129 
4130   entry = (struct mips_got_entry *) *entryp;
4131   arg = (struct mips_elf_traverse_got_arg *) data;
4132   if (entry->abfd != NULL && entry->symndx == -1)
4133     {
4134       struct mips_elf_link_hash_entry *h;
4135 
4136       h = entry->d.h;
4137       if (h->root.root.type == bfd_link_hash_indirect
4138 	  || h->root.root.type == bfd_link_hash_warning)
4139 	{
4140 	  arg->value = TRUE;
4141 	  return 0;
4142 	}
4143     }
4144   mips_elf_count_got_entry (arg->info, arg->g, entry);
4145   return 1;
4146 }
4147 
4148 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4149    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4150    converting entries for indirect and warning symbols into entries
4151    for the target symbol.  Set DATA->g to null on error.  */
4152 
4153 static int
4154 mips_elf_recreate_got (void **entryp, void *data)
4155 {
4156   struct mips_got_entry new_entry, *entry;
4157   struct mips_elf_traverse_got_arg *arg;
4158   void **slot;
4159 
4160   entry = (struct mips_got_entry *) *entryp;
4161   arg = (struct mips_elf_traverse_got_arg *) data;
4162   if (entry->abfd != NULL
4163       && entry->symndx == -1
4164       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4165 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4166     {
4167       struct mips_elf_link_hash_entry *h;
4168 
4169       new_entry = *entry;
4170       entry = &new_entry;
4171       h = entry->d.h;
4172       do
4173 	{
4174 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4175 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4176 	}
4177       while (h->root.root.type == bfd_link_hash_indirect
4178 	     || h->root.root.type == bfd_link_hash_warning);
4179       entry->d.h = h;
4180     }
4181   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4182   if (slot == NULL)
4183     {
4184       arg->g = NULL;
4185       return 0;
4186     }
4187   if (*slot == NULL)
4188     {
4189       if (entry == &new_entry)
4190 	{
4191 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4192 	  if (!entry)
4193 	    {
4194 	      arg->g = NULL;
4195 	      return 0;
4196 	    }
4197 	  *entry = new_entry;
4198 	}
4199       *slot = entry;
4200       mips_elf_count_got_entry (arg->info, arg->g, entry);
4201     }
4202   return 1;
4203 }
4204 
4205 /* Return the maximum number of GOT page entries required for RANGE.  */
4206 
4207 static bfd_vma
4208 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4209 {
4210   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4211 }
4212 
4213 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4214 
4215 static bfd_boolean
4216 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4217 				asection *sec, bfd_signed_vma addend)
4218 {
4219   struct mips_got_info *g = arg->g;
4220   struct mips_got_page_entry lookup, *entry;
4221   struct mips_got_page_range **range_ptr, *range;
4222   bfd_vma old_pages, new_pages;
4223   void **loc;
4224 
4225   /* Find the mips_got_page_entry hash table entry for this section.  */
4226   lookup.sec = sec;
4227   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4228   if (loc == NULL)
4229     return FALSE;
4230 
4231   /* Create a mips_got_page_entry if this is the first time we've
4232      seen the section.  */
4233   entry = (struct mips_got_page_entry *) *loc;
4234   if (!entry)
4235     {
4236       entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4237       if (!entry)
4238 	return FALSE;
4239 
4240       entry->sec = sec;
4241       *loc = entry;
4242     }
4243 
4244   /* Skip over ranges whose maximum extent cannot share a page entry
4245      with ADDEND.  */
4246   range_ptr = &entry->ranges;
4247   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4248     range_ptr = &(*range_ptr)->next;
4249 
4250   /* If we scanned to the end of the list, or found a range whose
4251      minimum extent cannot share a page entry with ADDEND, create
4252      a new singleton range.  */
4253   range = *range_ptr;
4254   if (!range || addend < range->min_addend - 0xffff)
4255     {
4256       range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4257       if (!range)
4258 	return FALSE;
4259 
4260       range->next = *range_ptr;
4261       range->min_addend = addend;
4262       range->max_addend = addend;
4263 
4264       *range_ptr = range;
4265       entry->num_pages++;
4266       g->page_gotno++;
4267       return TRUE;
4268     }
4269 
4270   /* Remember how many pages the old range contributed.  */
4271   old_pages = mips_elf_pages_for_range (range);
4272 
4273   /* Update the ranges.  */
4274   if (addend < range->min_addend)
4275     range->min_addend = addend;
4276   else if (addend > range->max_addend)
4277     {
4278       if (range->next && addend >= range->next->min_addend - 0xffff)
4279 	{
4280 	  old_pages += mips_elf_pages_for_range (range->next);
4281 	  range->max_addend = range->next->max_addend;
4282 	  range->next = range->next->next;
4283 	}
4284       else
4285 	range->max_addend = addend;
4286     }
4287 
4288   /* Record any change in the total estimate.  */
4289   new_pages = mips_elf_pages_for_range (range);
4290   if (old_pages != new_pages)
4291     {
4292       entry->num_pages += new_pages - old_pages;
4293       g->page_gotno += new_pages - old_pages;
4294     }
4295 
4296   return TRUE;
4297 }
4298 
4299 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4300    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4301    whether the page reference described by *REFP needs a GOT page entry,
4302    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4303 
4304 static bfd_boolean
4305 mips_elf_resolve_got_page_ref (void **refp, void *data)
4306 {
4307   struct mips_got_page_ref *ref;
4308   struct mips_elf_traverse_got_arg *arg;
4309   struct mips_elf_link_hash_table *htab;
4310   asection *sec;
4311   bfd_vma addend;
4312 
4313   ref = (struct mips_got_page_ref *) *refp;
4314   arg = (struct mips_elf_traverse_got_arg *) data;
4315   htab = mips_elf_hash_table (arg->info);
4316 
4317   if (ref->symndx < 0)
4318     {
4319       struct mips_elf_link_hash_entry *h;
4320 
4321       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4322       h = ref->u.h;
4323       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4324 	return 1;
4325 
4326       /* Ignore undefined symbols; we'll issue an error later if
4327 	 appropriate.  */
4328       if (!((h->root.root.type == bfd_link_hash_defined
4329 	     || h->root.root.type == bfd_link_hash_defweak)
4330 	    && h->root.root.u.def.section))
4331 	return 1;
4332 
4333       sec = h->root.root.u.def.section;
4334       addend = h->root.root.u.def.value + ref->addend;
4335     }
4336   else
4337     {
4338       Elf_Internal_Sym *isym;
4339 
4340       /* Read in the symbol.  */
4341       isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4342 				    ref->symndx);
4343       if (isym == NULL)
4344 	{
4345 	  arg->g = NULL;
4346 	  return 0;
4347 	}
4348 
4349       /* Get the associated input section.  */
4350       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4351       if (sec == NULL)
4352 	{
4353 	  arg->g = NULL;
4354 	  return 0;
4355 	}
4356 
4357       /* If this is a mergable section, work out the section and offset
4358 	 of the merged data.  For section symbols, the addend specifies
4359 	 of the offset _of_ the first byte in the data, otherwise it
4360 	 specifies the offset _from_ the first byte.  */
4361       if (sec->flags & SEC_MERGE)
4362 	{
4363 	  void *secinfo;
4364 
4365 	  secinfo = elf_section_data (sec)->sec_info;
4366 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4367 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4368 						 isym->st_value + ref->addend);
4369 	  else
4370 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4371 						 isym->st_value) + ref->addend;
4372 	}
4373       else
4374 	addend = isym->st_value + ref->addend;
4375     }
4376   if (!mips_elf_record_got_page_entry (arg, sec, addend))
4377     {
4378       arg->g = NULL;
4379       return 0;
4380     }
4381   return 1;
4382 }
4383 
4384 /* If any entries in G->got_entries are for indirect or warning symbols,
4385    replace them with entries for the target symbol.  Convert g->got_page_refs
4386    into got_page_entry structures and estimate the number of page entries
4387    that they require.  */
4388 
4389 static bfd_boolean
4390 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4391 				    struct mips_got_info *g)
4392 {
4393   struct mips_elf_traverse_got_arg tga;
4394   struct mips_got_info oldg;
4395 
4396   oldg = *g;
4397 
4398   tga.info = info;
4399   tga.g = g;
4400   tga.value = FALSE;
4401   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4402   if (tga.value)
4403     {
4404       *g = oldg;
4405       g->got_entries = htab_create (htab_size (oldg.got_entries),
4406 				    mips_elf_got_entry_hash,
4407 				    mips_elf_got_entry_eq, NULL);
4408       if (!g->got_entries)
4409 	return FALSE;
4410 
4411       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4412       if (!tga.g)
4413 	return FALSE;
4414 
4415       htab_delete (oldg.got_entries);
4416     }
4417 
4418   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4419 					 mips_got_page_entry_eq, NULL);
4420   if (g->got_page_entries == NULL)
4421     return FALSE;
4422 
4423   tga.info = info;
4424   tga.g = g;
4425   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4426 
4427   return TRUE;
4428 }
4429 
4430 /* Return true if a GOT entry for H should live in the local rather than
4431    global GOT area.  */
4432 
4433 static bfd_boolean
4434 mips_use_local_got_p (struct bfd_link_info *info,
4435 		      struct mips_elf_link_hash_entry *h)
4436 {
4437   /* Symbols that aren't in the dynamic symbol table must live in the
4438      local GOT.  This includes symbols that are completely undefined
4439      and which therefore don't bind locally.  We'll report undefined
4440      symbols later if appropriate.  */
4441   if (h->root.dynindx == -1)
4442     return TRUE;
4443 
4444   /* Symbols that bind locally can (and in the case of forced-local
4445      symbols, must) live in the local GOT.  */
4446   if (h->got_only_for_calls
4447       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4448       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4449     return TRUE;
4450 
4451   /* If this is an executable that must provide a definition of the symbol,
4452      either though PLTs or copy relocations, then that address should go in
4453      the local rather than global GOT.  */
4454   if (bfd_link_executable (info) && h->has_static_relocs)
4455     return TRUE;
4456 
4457   return FALSE;
4458 }
4459 
4460 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4461    link_info structure.  Decide whether the hash entry needs an entry in
4462    the global part of the primary GOT, setting global_got_area accordingly.
4463    Count the number of global symbols that are in the primary GOT only
4464    because they have relocations against them (reloc_only_gotno).  */
4465 
4466 static int
4467 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4468 {
4469   struct bfd_link_info *info;
4470   struct mips_elf_link_hash_table *htab;
4471   struct mips_got_info *g;
4472 
4473   info = (struct bfd_link_info *) data;
4474   htab = mips_elf_hash_table (info);
4475   g = htab->got_info;
4476   if (h->global_got_area != GGA_NONE)
4477     {
4478       /* Make a final decision about whether the symbol belongs in the
4479 	 local or global GOT.  */
4480       if (mips_use_local_got_p (info, h))
4481 	/* The symbol belongs in the local GOT.  We no longer need this
4482 	   entry if it was only used for relocations; those relocations
4483 	   will be against the null or section symbol instead of H.  */
4484 	h->global_got_area = GGA_NONE;
4485       else if (htab->is_vxworks
4486 	       && h->got_only_for_calls
4487 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4488 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4489 	   they don't need entries in the regular GOT.  .got.plt entries
4490 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4491 	h->global_got_area = GGA_NONE;
4492       else if (h->global_got_area == GGA_RELOC_ONLY)
4493 	{
4494 	  g->reloc_only_gotno++;
4495 	  g->global_gotno++;
4496 	}
4497     }
4498   return 1;
4499 }
4500 
4501 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4502    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4503 
4504 static int
4505 mips_elf_add_got_entry (void **entryp, void *data)
4506 {
4507   struct mips_got_entry *entry;
4508   struct mips_elf_traverse_got_arg *arg;
4509   void **slot;
4510 
4511   entry = (struct mips_got_entry *) *entryp;
4512   arg = (struct mips_elf_traverse_got_arg *) data;
4513   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4514   if (!slot)
4515     {
4516       arg->g = NULL;
4517       return 0;
4518     }
4519   if (!*slot)
4520     {
4521       *slot = entry;
4522       mips_elf_count_got_entry (arg->info, arg->g, entry);
4523     }
4524   return 1;
4525 }
4526 
4527 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4528    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4529 
4530 static int
4531 mips_elf_add_got_page_entry (void **entryp, void *data)
4532 {
4533   struct mips_got_page_entry *entry;
4534   struct mips_elf_traverse_got_arg *arg;
4535   void **slot;
4536 
4537   entry = (struct mips_got_page_entry *) *entryp;
4538   arg = (struct mips_elf_traverse_got_arg *) data;
4539   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4540   if (!slot)
4541     {
4542       arg->g = NULL;
4543       return 0;
4544     }
4545   if (!*slot)
4546     {
4547       *slot = entry;
4548       arg->g->page_gotno += entry->num_pages;
4549     }
4550   return 1;
4551 }
4552 
4553 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4554    this would lead to overflow, 1 if they were merged successfully,
4555    and 0 if a merge failed due to lack of memory.  (These values are chosen
4556    so that nonnegative return values can be returned by a htab_traverse
4557    callback.)  */
4558 
4559 static int
4560 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4561 			 struct mips_got_info *to,
4562 			 struct mips_elf_got_per_bfd_arg *arg)
4563 {
4564   struct mips_elf_traverse_got_arg tga;
4565   unsigned int estimate;
4566 
4567   /* Work out how many page entries we would need for the combined GOT.  */
4568   estimate = arg->max_pages;
4569   if (estimate >= from->page_gotno + to->page_gotno)
4570     estimate = from->page_gotno + to->page_gotno;
4571 
4572   /* And conservatively estimate how many local and TLS entries
4573      would be needed.  */
4574   estimate += from->local_gotno + to->local_gotno;
4575   estimate += from->tls_gotno + to->tls_gotno;
4576 
4577   /* If we're merging with the primary got, any TLS relocations will
4578      come after the full set of global entries.  Otherwise estimate those
4579      conservatively as well.  */
4580   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4581     estimate += arg->global_count;
4582   else
4583     estimate += from->global_gotno + to->global_gotno;
4584 
4585   /* Bail out if the combined GOT might be too big.  */
4586   if (estimate > arg->max_count)
4587     return -1;
4588 
4589   /* Transfer the bfd's got information from FROM to TO.  */
4590   tga.info = arg->info;
4591   tga.g = to;
4592   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4593   if (!tga.g)
4594     return 0;
4595 
4596   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4597   if (!tga.g)
4598     return 0;
4599 
4600   mips_elf_replace_bfd_got (abfd, to);
4601   return 1;
4602 }
4603 
4604 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4605    as possible of the primary got, since it doesn't require explicit
4606    dynamic relocations, but don't use bfds that would reference global
4607    symbols out of the addressable range.  Failing the primary got,
4608    attempt to merge with the current got, or finish the current got
4609    and then make make the new got current.  */
4610 
4611 static bfd_boolean
4612 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4613 		    struct mips_elf_got_per_bfd_arg *arg)
4614 {
4615   unsigned int estimate;
4616   int result;
4617 
4618   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4619     return FALSE;
4620 
4621   /* Work out the number of page, local and TLS entries.  */
4622   estimate = arg->max_pages;
4623   if (estimate > g->page_gotno)
4624     estimate = g->page_gotno;
4625   estimate += g->local_gotno + g->tls_gotno;
4626 
4627   /* We place TLS GOT entries after both locals and globals.  The globals
4628      for the primary GOT may overflow the normal GOT size limit, so be
4629      sure not to merge a GOT which requires TLS with the primary GOT in that
4630      case.  This doesn't affect non-primary GOTs.  */
4631   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4632 
4633   if (estimate <= arg->max_count)
4634     {
4635       /* If we don't have a primary GOT, use it as
4636 	 a starting point for the primary GOT.  */
4637       if (!arg->primary)
4638 	{
4639 	  arg->primary = g;
4640 	  return TRUE;
4641 	}
4642 
4643       /* Try merging with the primary GOT.  */
4644       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4645       if (result >= 0)
4646 	return result;
4647     }
4648 
4649   /* If we can merge with the last-created got, do it.  */
4650   if (arg->current)
4651     {
4652       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4653       if (result >= 0)
4654 	return result;
4655     }
4656 
4657   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4658      fits; if it turns out that it doesn't, we'll get relocation
4659      overflows anyway.  */
4660   g->next = arg->current;
4661   arg->current = g;
4662 
4663   return TRUE;
4664 }
4665 
4666 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4667    to GOTIDX, duplicating the entry if it has already been assigned
4668    an index in a different GOT.  */
4669 
4670 static bfd_boolean
4671 mips_elf_set_gotidx (void **entryp, long gotidx)
4672 {
4673   struct mips_got_entry *entry;
4674 
4675   entry = (struct mips_got_entry *) *entryp;
4676   if (entry->gotidx > 0)
4677     {
4678       struct mips_got_entry *new_entry;
4679 
4680       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4681       if (!new_entry)
4682 	return FALSE;
4683 
4684       *new_entry = *entry;
4685       *entryp = new_entry;
4686       entry = new_entry;
4687     }
4688   entry->gotidx = gotidx;
4689   return TRUE;
4690 }
4691 
4692 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4693    mips_elf_traverse_got_arg in which DATA->value is the size of one
4694    GOT entry.  Set DATA->g to null on failure.  */
4695 
4696 static int
4697 mips_elf_initialize_tls_index (void **entryp, void *data)
4698 {
4699   struct mips_got_entry *entry;
4700   struct mips_elf_traverse_got_arg *arg;
4701 
4702   /* We're only interested in TLS symbols.  */
4703   entry = (struct mips_got_entry *) *entryp;
4704   if (entry->tls_type == GOT_TLS_NONE)
4705     return 1;
4706 
4707   arg = (struct mips_elf_traverse_got_arg *) data;
4708   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4709     {
4710       arg->g = NULL;
4711       return 0;
4712     }
4713 
4714   /* Account for the entries we've just allocated.  */
4715   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4716   return 1;
4717 }
4718 
4719 /* A htab_traverse callback for GOT entries, where DATA points to a
4720    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4721    symbol to DATA->value.  */
4722 
4723 static int
4724 mips_elf_set_global_got_area (void **entryp, void *data)
4725 {
4726   struct mips_got_entry *entry;
4727   struct mips_elf_traverse_got_arg *arg;
4728 
4729   entry = (struct mips_got_entry *) *entryp;
4730   arg = (struct mips_elf_traverse_got_arg *) data;
4731   if (entry->abfd != NULL
4732       && entry->symndx == -1
4733       && entry->d.h->global_got_area != GGA_NONE)
4734     entry->d.h->global_got_area = arg->value;
4735   return 1;
4736 }
4737 
4738 /* A htab_traverse callback for secondary GOT entries, where DATA points
4739    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4740    and record the number of relocations they require.  DATA->value is
4741    the size of one GOT entry.  Set DATA->g to null on failure.  */
4742 
4743 static int
4744 mips_elf_set_global_gotidx (void **entryp, void *data)
4745 {
4746   struct mips_got_entry *entry;
4747   struct mips_elf_traverse_got_arg *arg;
4748 
4749   entry = (struct mips_got_entry *) *entryp;
4750   arg = (struct mips_elf_traverse_got_arg *) data;
4751   if (entry->abfd != NULL
4752       && entry->symndx == -1
4753       && entry->d.h->global_got_area != GGA_NONE)
4754     {
4755       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4756 	{
4757 	  arg->g = NULL;
4758 	  return 0;
4759 	}
4760       arg->g->assigned_low_gotno += 1;
4761 
4762       if (bfd_link_pic (arg->info)
4763 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4764 	      && entry->d.h->root.def_dynamic
4765 	      && !entry->d.h->root.def_regular))
4766 	arg->g->relocs += 1;
4767     }
4768 
4769   return 1;
4770 }
4771 
4772 /* A htab_traverse callback for GOT entries for which DATA is the
4773    bfd_link_info.  Forbid any global symbols from having traditional
4774    lazy-binding stubs.  */
4775 
4776 static int
4777 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4778 {
4779   struct bfd_link_info *info;
4780   struct mips_elf_link_hash_table *htab;
4781   struct mips_got_entry *entry;
4782 
4783   entry = (struct mips_got_entry *) *entryp;
4784   info = (struct bfd_link_info *) data;
4785   htab = mips_elf_hash_table (info);
4786   BFD_ASSERT (htab != NULL);
4787 
4788   if (entry->abfd != NULL
4789       && entry->symndx == -1
4790       && entry->d.h->needs_lazy_stub)
4791     {
4792       entry->d.h->needs_lazy_stub = FALSE;
4793       htab->lazy_stub_count--;
4794     }
4795 
4796   return 1;
4797 }
4798 
4799 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4800    the primary GOT.  */
4801 static bfd_vma
4802 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4803 {
4804   if (!g->next)
4805     return 0;
4806 
4807   g = mips_elf_bfd_got (ibfd, FALSE);
4808   if (! g)
4809     return 0;
4810 
4811   BFD_ASSERT (g->next);
4812 
4813   g = g->next;
4814 
4815   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4816     * MIPS_ELF_GOT_SIZE (abfd);
4817 }
4818 
4819 /* Turn a single GOT that is too big for 16-bit addressing into
4820    a sequence of GOTs, each one 16-bit addressable.  */
4821 
4822 static bfd_boolean
4823 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4824 		    asection *got, bfd_size_type pages)
4825 {
4826   struct mips_elf_link_hash_table *htab;
4827   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4828   struct mips_elf_traverse_got_arg tga;
4829   struct mips_got_info *g, *gg;
4830   unsigned int assign, needed_relocs;
4831   bfd *dynobj, *ibfd;
4832 
4833   dynobj = elf_hash_table (info)->dynobj;
4834   htab = mips_elf_hash_table (info);
4835   BFD_ASSERT (htab != NULL);
4836 
4837   g = htab->got_info;
4838 
4839   got_per_bfd_arg.obfd = abfd;
4840   got_per_bfd_arg.info = info;
4841   got_per_bfd_arg.current = NULL;
4842   got_per_bfd_arg.primary = NULL;
4843   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4844 				/ MIPS_ELF_GOT_SIZE (abfd))
4845 			       - htab->reserved_gotno);
4846   got_per_bfd_arg.max_pages = pages;
4847   /* The number of globals that will be included in the primary GOT.
4848      See the calls to mips_elf_set_global_got_area below for more
4849      information.  */
4850   got_per_bfd_arg.global_count = g->global_gotno;
4851 
4852   /* Try to merge the GOTs of input bfds together, as long as they
4853      don't seem to exceed the maximum GOT size, choosing one of them
4854      to be the primary GOT.  */
4855   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4856     {
4857       gg = mips_elf_bfd_got (ibfd, FALSE);
4858       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4859 	return FALSE;
4860     }
4861 
4862   /* If we do not find any suitable primary GOT, create an empty one.  */
4863   if (got_per_bfd_arg.primary == NULL)
4864     g->next = mips_elf_create_got_info (abfd);
4865   else
4866     g->next = got_per_bfd_arg.primary;
4867   g->next->next = got_per_bfd_arg.current;
4868 
4869   /* GG is now the master GOT, and G is the primary GOT.  */
4870   gg = g;
4871   g = g->next;
4872 
4873   /* Map the output bfd to the primary got.  That's what we're going
4874      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4875      didn't mark in check_relocs, and we want a quick way to find it.
4876      We can't just use gg->next because we're going to reverse the
4877      list.  */
4878   mips_elf_replace_bfd_got (abfd, g);
4879 
4880   /* Every symbol that is referenced in a dynamic relocation must be
4881      present in the primary GOT, so arrange for them to appear after
4882      those that are actually referenced.  */
4883   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4884   g->global_gotno = gg->global_gotno;
4885 
4886   tga.info = info;
4887   tga.value = GGA_RELOC_ONLY;
4888   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4889   tga.value = GGA_NORMAL;
4890   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4891 
4892   /* Now go through the GOTs assigning them offset ranges.
4893      [assigned_low_gotno, local_gotno[ will be set to the range of local
4894      entries in each GOT.  We can then compute the end of a GOT by
4895      adding local_gotno to global_gotno.  We reverse the list and make
4896      it circular since then we'll be able to quickly compute the
4897      beginning of a GOT, by computing the end of its predecessor.  To
4898      avoid special cases for the primary GOT, while still preserving
4899      assertions that are valid for both single- and multi-got links,
4900      we arrange for the main got struct to have the right number of
4901      global entries, but set its local_gotno such that the initial
4902      offset of the primary GOT is zero.  Remember that the primary GOT
4903      will become the last item in the circular linked list, so it
4904      points back to the master GOT.  */
4905   gg->local_gotno = -g->global_gotno;
4906   gg->global_gotno = g->global_gotno;
4907   gg->tls_gotno = 0;
4908   assign = 0;
4909   gg->next = gg;
4910 
4911   do
4912     {
4913       struct mips_got_info *gn;
4914 
4915       assign += htab->reserved_gotno;
4916       g->assigned_low_gotno = assign;
4917       g->local_gotno += assign;
4918       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4919       g->assigned_high_gotno = g->local_gotno - 1;
4920       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4921 
4922       /* Take g out of the direct list, and push it onto the reversed
4923 	 list that gg points to.  g->next is guaranteed to be nonnull after
4924 	 this operation, as required by mips_elf_initialize_tls_index. */
4925       gn = g->next;
4926       g->next = gg->next;
4927       gg->next = g;
4928 
4929       /* Set up any TLS entries.  We always place the TLS entries after
4930 	 all non-TLS entries.  */
4931       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4932       tga.g = g;
4933       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4934       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4935       if (!tga.g)
4936 	return FALSE;
4937       BFD_ASSERT (g->tls_assigned_gotno == assign);
4938 
4939       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4940       g = gn;
4941 
4942       /* Forbid global symbols in every non-primary GOT from having
4943 	 lazy-binding stubs.  */
4944       if (g)
4945 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4946     }
4947   while (g);
4948 
4949   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4950 
4951   needed_relocs = 0;
4952   for (g = gg->next; g && g->next != gg; g = g->next)
4953     {
4954       unsigned int save_assign;
4955 
4956       /* Assign offsets to global GOT entries and count how many
4957 	 relocations they need.  */
4958       save_assign = g->assigned_low_gotno;
4959       g->assigned_low_gotno = g->local_gotno;
4960       tga.info = info;
4961       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4962       tga.g = g;
4963       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4964       if (!tga.g)
4965 	return FALSE;
4966       BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
4967       g->assigned_low_gotno = save_assign;
4968 
4969       if (bfd_link_pic (info))
4970 	{
4971 	  g->relocs += g->local_gotno - g->assigned_low_gotno;
4972 	  BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
4973 		      + g->next->global_gotno
4974 		      + g->next->tls_gotno
4975 		      + htab->reserved_gotno);
4976 	}
4977       needed_relocs += g->relocs;
4978     }
4979   needed_relocs += g->relocs;
4980 
4981   if (needed_relocs)
4982     mips_elf_allocate_dynamic_relocations (dynobj, info,
4983 					   needed_relocs);
4984 
4985   return TRUE;
4986 }
4987 
4988 
4989 /* Returns the first relocation of type r_type found, beginning with
4990    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4991 
4992 static const Elf_Internal_Rela *
4993 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4994 			  const Elf_Internal_Rela *relocation,
4995 			  const Elf_Internal_Rela *relend)
4996 {
4997   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4998 
4999   while (relocation < relend)
5000     {
5001       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5002 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5003 	return relocation;
5004 
5005       ++relocation;
5006     }
5007 
5008   /* We didn't find it.  */
5009   return NULL;
5010 }
5011 
5012 /* Return whether an input relocation is against a local symbol.  */
5013 
5014 static bfd_boolean
5015 mips_elf_local_relocation_p (bfd *input_bfd,
5016 			     const Elf_Internal_Rela *relocation,
5017 			     asection **local_sections)
5018 {
5019   unsigned long r_symndx;
5020   Elf_Internal_Shdr *symtab_hdr;
5021   size_t extsymoff;
5022 
5023   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5024   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5025   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5026 
5027   if (r_symndx < extsymoff)
5028     return TRUE;
5029   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5030     return TRUE;
5031 
5032   return FALSE;
5033 }
5034 
5035 /* Sign-extend VALUE, which has the indicated number of BITS.  */
5036 
5037 bfd_vma
5038 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5039 {
5040   if (value & ((bfd_vma) 1 << (bits - 1)))
5041     /* VALUE is negative.  */
5042     value |= ((bfd_vma) - 1) << bits;
5043 
5044   return value;
5045 }
5046 
5047 /* Return non-zero if the indicated VALUE has overflowed the maximum
5048    range expressible by a signed number with the indicated number of
5049    BITS.  */
5050 
5051 static bfd_boolean
5052 mips_elf_overflow_p (bfd_vma value, int bits)
5053 {
5054   bfd_signed_vma svalue = (bfd_signed_vma) value;
5055 
5056   if (svalue > (1 << (bits - 1)) - 1)
5057     /* The value is too big.  */
5058     return TRUE;
5059   else if (svalue < -(1 << (bits - 1)))
5060     /* The value is too small.  */
5061     return TRUE;
5062 
5063   /* All is well.  */
5064   return FALSE;
5065 }
5066 
5067 /* Calculate the %high function.  */
5068 
5069 static bfd_vma
5070 mips_elf_high (bfd_vma value)
5071 {
5072   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5073 }
5074 
5075 /* Calculate the %higher function.  */
5076 
5077 static bfd_vma
5078 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5079 {
5080 #ifdef BFD64
5081   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5082 #else
5083   abort ();
5084   return MINUS_ONE;
5085 #endif
5086 }
5087 
5088 /* Calculate the %highest function.  */
5089 
5090 static bfd_vma
5091 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5092 {
5093 #ifdef BFD64
5094   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5095 #else
5096   abort ();
5097   return MINUS_ONE;
5098 #endif
5099 }
5100 
5101 /* Create the .compact_rel section.  */
5102 
5103 static bfd_boolean
5104 mips_elf_create_compact_rel_section
5105   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5106 {
5107   flagword flags;
5108   register asection *s;
5109 
5110   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5111     {
5112       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5113 	       | SEC_READONLY);
5114 
5115       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5116       if (s == NULL
5117 	  || ! bfd_set_section_alignment (abfd, s,
5118 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5119 	return FALSE;
5120 
5121       s->size = sizeof (Elf32_External_compact_rel);
5122     }
5123 
5124   return TRUE;
5125 }
5126 
5127 /* Create the .got section to hold the global offset table.  */
5128 
5129 static bfd_boolean
5130 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5131 {
5132   flagword flags;
5133   register asection *s;
5134   struct elf_link_hash_entry *h;
5135   struct bfd_link_hash_entry *bh;
5136   struct mips_elf_link_hash_table *htab;
5137 
5138   htab = mips_elf_hash_table (info);
5139   BFD_ASSERT (htab != NULL);
5140 
5141   /* This function may be called more than once.  */
5142   if (htab->root.sgot)
5143     return TRUE;
5144 
5145   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5146 	   | SEC_LINKER_CREATED);
5147 
5148   /* We have to use an alignment of 2**4 here because this is hardcoded
5149      in the function stub generation and in the linker script.  */
5150   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5151   if (s == NULL
5152       || ! bfd_set_section_alignment (abfd, s, 4))
5153     return FALSE;
5154   htab->root.sgot = s;
5155 
5156   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5157      linker script because we don't want to define the symbol if we
5158      are not creating a global offset table.  */
5159   bh = NULL;
5160   if (! (_bfd_generic_link_add_one_symbol
5161 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5162 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5163     return FALSE;
5164 
5165   h = (struct elf_link_hash_entry *) bh;
5166   h->non_elf = 0;
5167   h->def_regular = 1;
5168   h->type = STT_OBJECT;
5169   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5170   elf_hash_table (info)->hgot = h;
5171 
5172   if (bfd_link_pic (info)
5173       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5174     return FALSE;
5175 
5176   htab->got_info = mips_elf_create_got_info (abfd);
5177   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5178     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5179 
5180   /* We also need a .got.plt section when generating PLTs.  */
5181   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5182 					  SEC_ALLOC | SEC_LOAD
5183 					  | SEC_HAS_CONTENTS
5184 					  | SEC_IN_MEMORY
5185 					  | SEC_LINKER_CREATED);
5186   if (s == NULL)
5187     return FALSE;
5188   htab->root.sgotplt = s;
5189 
5190   return TRUE;
5191 }
5192 
5193 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5194    __GOTT_INDEX__ symbols.  These symbols are only special for
5195    shared objects; they are not used in executables.  */
5196 
5197 static bfd_boolean
5198 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5199 {
5200   return (mips_elf_hash_table (info)->is_vxworks
5201 	  && bfd_link_pic (info)
5202 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5203 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5204 }
5205 
5206 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5207    require an la25 stub.  See also mips_elf_local_pic_function_p,
5208    which determines whether the destination function ever requires a
5209    stub.  */
5210 
5211 static bfd_boolean
5212 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5213 				     bfd_boolean target_is_16_bit_code_p)
5214 {
5215   /* We specifically ignore branches and jumps from EF_PIC objects,
5216      where the onus is on the compiler or programmer to perform any
5217      necessary initialization of $25.  Sometimes such initialization
5218      is unnecessary; for example, -mno-shared functions do not use
5219      the incoming value of $25, and may therefore be called directly.  */
5220   if (PIC_OBJECT_P (input_bfd))
5221     return FALSE;
5222 
5223   switch (r_type)
5224     {
5225     case R_MIPS_26:
5226     case R_MIPS_PC16:
5227     case R_MIPS_PC21_S2:
5228     case R_MIPS_PC26_S2:
5229     case R_MICROMIPS_26_S1:
5230     case R_MICROMIPS_PC7_S1:
5231     case R_MICROMIPS_PC10_S1:
5232     case R_MICROMIPS_PC16_S1:
5233     case R_MICROMIPS_PC23_S2:
5234       return TRUE;
5235 
5236     case R_MIPS16_26:
5237       return !target_is_16_bit_code_p;
5238 
5239     default:
5240       return FALSE;
5241     }
5242 }
5243 
5244 /* Calculate the value produced by the RELOCATION (which comes from
5245    the INPUT_BFD).  The ADDEND is the addend to use for this
5246    RELOCATION; RELOCATION->R_ADDEND is ignored.
5247 
5248    The result of the relocation calculation is stored in VALUEP.
5249    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5250    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5251 
5252    This function returns bfd_reloc_continue if the caller need take no
5253    further action regarding this relocation, bfd_reloc_notsupported if
5254    something goes dramatically wrong, bfd_reloc_overflow if an
5255    overflow occurs, and bfd_reloc_ok to indicate success.  */
5256 
5257 static bfd_reloc_status_type
5258 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5259 			       asection *input_section,
5260 			       struct bfd_link_info *info,
5261 			       const Elf_Internal_Rela *relocation,
5262 			       bfd_vma addend, reloc_howto_type *howto,
5263 			       Elf_Internal_Sym *local_syms,
5264 			       asection **local_sections, bfd_vma *valuep,
5265 			       const char **namep,
5266 			       bfd_boolean *cross_mode_jump_p,
5267 			       bfd_boolean save_addend)
5268 {
5269   /* The eventual value we will return.  */
5270   bfd_vma value;
5271   /* The address of the symbol against which the relocation is
5272      occurring.  */
5273   bfd_vma symbol = 0;
5274   /* The final GP value to be used for the relocatable, executable, or
5275      shared object file being produced.  */
5276   bfd_vma gp;
5277   /* The place (section offset or address) of the storage unit being
5278      relocated.  */
5279   bfd_vma p;
5280   /* The value of GP used to create the relocatable object.  */
5281   bfd_vma gp0;
5282   /* The offset into the global offset table at which the address of
5283      the relocation entry symbol, adjusted by the addend, resides
5284      during execution.  */
5285   bfd_vma g = MINUS_ONE;
5286   /* The section in which the symbol referenced by the relocation is
5287      located.  */
5288   asection *sec = NULL;
5289   struct mips_elf_link_hash_entry *h = NULL;
5290   /* TRUE if the symbol referred to by this relocation is a local
5291      symbol.  */
5292   bfd_boolean local_p, was_local_p;
5293   /* TRUE if the symbol referred to by this relocation is a section
5294      symbol.  */
5295   bfd_boolean section_p = FALSE;
5296   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5297   bfd_boolean gp_disp_p = FALSE;
5298   /* TRUE if the symbol referred to by this relocation is
5299      "__gnu_local_gp".  */
5300   bfd_boolean gnu_local_gp_p = FALSE;
5301   Elf_Internal_Shdr *symtab_hdr;
5302   size_t extsymoff;
5303   unsigned long r_symndx;
5304   int r_type;
5305   /* TRUE if overflow occurred during the calculation of the
5306      relocation value.  */
5307   bfd_boolean overflowed_p;
5308   /* TRUE if this relocation refers to a MIPS16 function.  */
5309   bfd_boolean target_is_16_bit_code_p = FALSE;
5310   bfd_boolean target_is_micromips_code_p = FALSE;
5311   struct mips_elf_link_hash_table *htab;
5312   bfd *dynobj;
5313 
5314   dynobj = elf_hash_table (info)->dynobj;
5315   htab = mips_elf_hash_table (info);
5316   BFD_ASSERT (htab != NULL);
5317 
5318   /* Parse the relocation.  */
5319   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5320   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5321   p = (input_section->output_section->vma
5322        + input_section->output_offset
5323        + relocation->r_offset);
5324 
5325   /* Assume that there will be no overflow.  */
5326   overflowed_p = FALSE;
5327 
5328   /* Figure out whether or not the symbol is local, and get the offset
5329      used in the array of hash table entries.  */
5330   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5331   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5332 					 local_sections);
5333   was_local_p = local_p;
5334   if (! elf_bad_symtab (input_bfd))
5335     extsymoff = symtab_hdr->sh_info;
5336   else
5337     {
5338       /* The symbol table does not follow the rule that local symbols
5339 	 must come before globals.  */
5340       extsymoff = 0;
5341     }
5342 
5343   /* Figure out the value of the symbol.  */
5344   if (local_p)
5345     {
5346       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5347       Elf_Internal_Sym *sym;
5348 
5349       sym = local_syms + r_symndx;
5350       sec = local_sections[r_symndx];
5351 
5352       section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5353 
5354       symbol = sec->output_section->vma + sec->output_offset;
5355       if (!section_p || (sec->flags & SEC_MERGE))
5356 	symbol += sym->st_value;
5357       if ((sec->flags & SEC_MERGE) && section_p)
5358 	{
5359 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5360 	  addend -= symbol;
5361 	  addend += sec->output_section->vma + sec->output_offset;
5362 	}
5363 
5364       /* MIPS16/microMIPS text labels should be treated as odd.  */
5365       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5366 	++symbol;
5367 
5368       /* Record the name of this symbol, for our caller.  */
5369       *namep = bfd_elf_string_from_elf_section (input_bfd,
5370 						symtab_hdr->sh_link,
5371 						sym->st_name);
5372       if (*namep == NULL || **namep == '\0')
5373 	*namep = bfd_section_name (input_bfd, sec);
5374 
5375       /* For relocations against a section symbol and ones against no
5376          symbol (absolute relocations) infer the ISA mode from the addend.  */
5377       if (section_p || r_symndx == STN_UNDEF)
5378 	{
5379 	  target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5380 	  target_is_micromips_code_p = (addend & 1) && micromips_p;
5381 	}
5382       /* For relocations against an absolute symbol infer the ISA mode
5383          from the value of the symbol plus addend.  */
5384       else if (bfd_is_abs_section (sec))
5385 	{
5386 	  target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5387 	  target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5388 	}
5389       /* Otherwise just use the regular symbol annotation available.  */
5390       else
5391 	{
5392 	  target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5393 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5394 	}
5395     }
5396   else
5397     {
5398       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5399 
5400       /* For global symbols we look up the symbol in the hash-table.  */
5401       h = ((struct mips_elf_link_hash_entry *)
5402 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5403       /* Find the real hash-table entry for this symbol.  */
5404       while (h->root.root.type == bfd_link_hash_indirect
5405 	     || h->root.root.type == bfd_link_hash_warning)
5406 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5407 
5408       /* Record the name of this symbol, for our caller.  */
5409       *namep = h->root.root.root.string;
5410 
5411       /* See if this is the special _gp_disp symbol.  Note that such a
5412 	 symbol must always be a global symbol.  */
5413       if (strcmp (*namep, "_gp_disp") == 0
5414 	  && ! NEWABI_P (input_bfd))
5415 	{
5416 	  /* Relocations against _gp_disp are permitted only with
5417 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5418 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5419 	    return bfd_reloc_notsupported;
5420 
5421 	  gp_disp_p = TRUE;
5422 	}
5423       /* See if this is the special _gp symbol.  Note that such a
5424 	 symbol must always be a global symbol.  */
5425       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5426 	gnu_local_gp_p = TRUE;
5427 
5428 
5429       /* If this symbol is defined, calculate its address.  Note that
5430 	 _gp_disp is a magic symbol, always implicitly defined by the
5431 	 linker, so it's inappropriate to check to see whether or not
5432 	 its defined.  */
5433       else if ((h->root.root.type == bfd_link_hash_defined
5434 		|| h->root.root.type == bfd_link_hash_defweak)
5435 	       && h->root.root.u.def.section)
5436 	{
5437 	  sec = h->root.root.u.def.section;
5438 	  if (sec->output_section)
5439 	    symbol = (h->root.root.u.def.value
5440 		      + sec->output_section->vma
5441 		      + sec->output_offset);
5442 	  else
5443 	    symbol = h->root.root.u.def.value;
5444 	}
5445       else if (h->root.root.type == bfd_link_hash_undefweak)
5446 	/* We allow relocations against undefined weak symbols, giving
5447 	   it the value zero, so that you can undefined weak functions
5448 	   and check to see if they exist by looking at their
5449 	   addresses.  */
5450 	symbol = 0;
5451       else if (info->unresolved_syms_in_objects == RM_IGNORE
5452 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5453 	symbol = 0;
5454       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5455 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5456 	{
5457 	  /* If this is a dynamic link, we should have created a
5458 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5459 	     in in _bfd_mips_elf_create_dynamic_sections.
5460 	     Otherwise, we should define the symbol with a value of 0.
5461 	     FIXME: It should probably get into the symbol table
5462 	     somehow as well.  */
5463 	  BFD_ASSERT (! bfd_link_pic (info));
5464 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5465 	  symbol = 0;
5466 	}
5467       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5468 	{
5469 	  /* This is an optional symbol - an Irix specific extension to the
5470 	     ELF spec.  Ignore it for now.
5471 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5472 	     than simply ignoring them, but we do not handle this for now.
5473 	     For information see the "64-bit ELF Object File Specification"
5474 	     which is available from here:
5475 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5476 	  symbol = 0;
5477 	}
5478       else
5479 	{
5480 	  (*info->callbacks->undefined_symbol)
5481 	    (info, h->root.root.root.string, input_bfd,
5482 	     input_section, relocation->r_offset,
5483 	     (info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5484 	     || ELF_ST_VISIBILITY (h->root.other));
5485 	  return bfd_reloc_undefined;
5486 	}
5487 
5488       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5489       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5490     }
5491 
5492   /* If this is a reference to a 16-bit function with a stub, we need
5493      to redirect the relocation to the stub unless:
5494 
5495      (a) the relocation is for a MIPS16 JAL;
5496 
5497      (b) the relocation is for a MIPS16 PIC call, and there are no
5498 	 non-MIPS16 uses of the GOT slot; or
5499 
5500      (c) the section allows direct references to MIPS16 functions.  */
5501   if (r_type != R_MIPS16_26
5502       && !bfd_link_relocatable (info)
5503       && ((h != NULL
5504 	   && h->fn_stub != NULL
5505 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5506 	  || (local_p
5507 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5508 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5509       && !section_allows_mips16_refs_p (input_section))
5510     {
5511       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5512 	 have already noticed that we were going to need the
5513 	 stub.  */
5514       if (local_p)
5515 	{
5516 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5517 	  value = 0;
5518 	}
5519       else
5520 	{
5521 	  BFD_ASSERT (h->need_fn_stub);
5522 	  if (h->la25_stub)
5523 	    {
5524 	      /* If a LA25 header for the stub itself exists, point to the
5525 		 prepended LUI/ADDIU sequence.  */
5526 	      sec = h->la25_stub->stub_section;
5527 	      value = h->la25_stub->offset;
5528 	    }
5529 	  else
5530 	    {
5531 	      sec = h->fn_stub;
5532 	      value = 0;
5533 	    }
5534 	}
5535 
5536       symbol = sec->output_section->vma + sec->output_offset + value;
5537       /* The target is 16-bit, but the stub isn't.  */
5538       target_is_16_bit_code_p = FALSE;
5539     }
5540   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5541      to a standard MIPS function, we need to redirect the call to the stub.
5542      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5543      indirect calls should use an indirect stub instead.  */
5544   else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5545 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5546 	       || (local_p
5547 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5548 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5549 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5550     {
5551       if (local_p)
5552 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5553       else
5554 	{
5555 	  /* If both call_stub and call_fp_stub are defined, we can figure
5556 	     out which one to use by checking which one appears in the input
5557 	     file.  */
5558 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5559 	    {
5560 	      asection *o;
5561 
5562 	      sec = NULL;
5563 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5564 		{
5565 		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5566 		    {
5567 		      sec = h->call_fp_stub;
5568 		      break;
5569 		    }
5570 		}
5571 	      if (sec == NULL)
5572 		sec = h->call_stub;
5573 	    }
5574 	  else if (h->call_stub != NULL)
5575 	    sec = h->call_stub;
5576 	  else
5577 	    sec = h->call_fp_stub;
5578   	}
5579 
5580       BFD_ASSERT (sec->size > 0);
5581       symbol = sec->output_section->vma + sec->output_offset;
5582     }
5583   /* If this is a direct call to a PIC function, redirect to the
5584      non-PIC stub.  */
5585   else if (h != NULL && h->la25_stub
5586 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5587 						   target_is_16_bit_code_p))
5588     {
5589 	symbol = (h->la25_stub->stub_section->output_section->vma
5590 		  + h->la25_stub->stub_section->output_offset
5591 		  + h->la25_stub->offset);
5592 	if (ELF_ST_IS_MICROMIPS (h->root.other))
5593 	  symbol |= 1;
5594     }
5595   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5596      entry is used if a standard PLT entry has also been made.  In this
5597      case the symbol will have been set by mips_elf_set_plt_sym_value
5598      to point to the standard PLT entry, so redirect to the compressed
5599      one.  */
5600   else if ((mips16_branch_reloc_p (r_type)
5601 	    || micromips_branch_reloc_p (r_type))
5602 	   && !bfd_link_relocatable (info)
5603 	   && h != NULL
5604 	   && h->use_plt_entry
5605 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5606 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5607     {
5608       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5609 
5610       sec = htab->root.splt;
5611       symbol = (sec->output_section->vma
5612 		+ sec->output_offset
5613 		+ htab->plt_header_size
5614 		+ htab->plt_mips_offset
5615 		+ h->root.plt.plist->comp_offset
5616 		+ 1);
5617 
5618       target_is_16_bit_code_p = !micromips_p;
5619       target_is_micromips_code_p = micromips_p;
5620     }
5621 
5622   /* Make sure MIPS16 and microMIPS are not used together.  */
5623   if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5624       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5625    {
5626       _bfd_error_handler
5627 	(_("MIPS16 and microMIPS functions cannot call each other"));
5628       return bfd_reloc_notsupported;
5629    }
5630 
5631   /* Calls from 16-bit code to 32-bit code and vice versa require the
5632      mode change.  However, we can ignore calls to undefined weak symbols,
5633      which should never be executed at runtime.  This exception is important
5634      because the assembly writer may have "known" that any definition of the
5635      symbol would be 16-bit code, and that direct jumps were therefore
5636      acceptable.  */
5637   *cross_mode_jump_p = (!bfd_link_relocatable (info)
5638 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5639 			&& ((mips16_branch_reloc_p (r_type)
5640 			     && !target_is_16_bit_code_p)
5641 			    || (micromips_branch_reloc_p (r_type)
5642 				&& !target_is_micromips_code_p)
5643 			    || ((branch_reloc_p (r_type)
5644 				 || r_type == R_MIPS_JALR)
5645 				&& (target_is_16_bit_code_p
5646 				    || target_is_micromips_code_p))));
5647 
5648   local_p = (h == NULL || mips_use_local_got_p (info, h));
5649 
5650   gp0 = _bfd_get_gp_value (input_bfd);
5651   gp = _bfd_get_gp_value (abfd);
5652   if (htab->got_info)
5653     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5654 
5655   if (gnu_local_gp_p)
5656     symbol = gp;
5657 
5658   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5659      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5660      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5661   if (got_page_reloc_p (r_type) && !local_p)
5662     {
5663       r_type = (micromips_reloc_p (r_type)
5664 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5665       addend = 0;
5666     }
5667 
5668   /* If we haven't already determined the GOT offset, and we're going
5669      to need it, get it now.  */
5670   switch (r_type)
5671     {
5672     case R_MIPS16_CALL16:
5673     case R_MIPS16_GOT16:
5674     case R_MIPS_CALL16:
5675     case R_MIPS_GOT16:
5676     case R_MIPS_GOT_DISP:
5677     case R_MIPS_GOT_HI16:
5678     case R_MIPS_CALL_HI16:
5679     case R_MIPS_GOT_LO16:
5680     case R_MIPS_CALL_LO16:
5681     case R_MICROMIPS_CALL16:
5682     case R_MICROMIPS_GOT16:
5683     case R_MICROMIPS_GOT_DISP:
5684     case R_MICROMIPS_GOT_HI16:
5685     case R_MICROMIPS_CALL_HI16:
5686     case R_MICROMIPS_GOT_LO16:
5687     case R_MICROMIPS_CALL_LO16:
5688     case R_MIPS_TLS_GD:
5689     case R_MIPS_TLS_GOTTPREL:
5690     case R_MIPS_TLS_LDM:
5691     case R_MIPS16_TLS_GD:
5692     case R_MIPS16_TLS_GOTTPREL:
5693     case R_MIPS16_TLS_LDM:
5694     case R_MICROMIPS_TLS_GD:
5695     case R_MICROMIPS_TLS_GOTTPREL:
5696     case R_MICROMIPS_TLS_LDM:
5697       /* Find the index into the GOT where this value is located.  */
5698       if (tls_ldm_reloc_p (r_type))
5699 	{
5700 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5701 					0, 0, NULL, r_type);
5702 	  if (g == MINUS_ONE)
5703 	    return bfd_reloc_outofrange;
5704 	}
5705       else if (!local_p)
5706 	{
5707 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5708 	     entry, which is initialized to point at the PLT stub.  */
5709 	  if (htab->is_vxworks
5710 	      && (call_hi16_reloc_p (r_type)
5711 		  || call_lo16_reloc_p (r_type)
5712 		  || call16_reloc_p (r_type)))
5713 	    {
5714 	      BFD_ASSERT (addend == 0);
5715 	      BFD_ASSERT (h->root.needs_plt);
5716 	      g = mips_elf_gotplt_index (info, &h->root);
5717 	    }
5718 	  else
5719 	    {
5720 	      BFD_ASSERT (addend == 0);
5721 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5722 					     &h->root, r_type);
5723 	      if (!TLS_RELOC_P (r_type)
5724 		  && !elf_hash_table (info)->dynamic_sections_created)
5725 		/* This is a static link.  We must initialize the GOT entry.  */
5726 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5727 	    }
5728 	}
5729       else if (!htab->is_vxworks
5730 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5731 	/* The calculation below does not involve "g".  */
5732 	break;
5733       else
5734 	{
5735 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5736 					symbol + addend, r_symndx, h, r_type);
5737 	  if (g == MINUS_ONE)
5738 	    return bfd_reloc_outofrange;
5739 	}
5740 
5741       /* Convert GOT indices to actual offsets.  */
5742       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5743       break;
5744     }
5745 
5746   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5747      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5748   if (h != NULL && is_gott_symbol (info, &h->root))
5749     {
5750       Elf_Internal_Rela outrel;
5751       bfd_byte *loc;
5752       asection *s;
5753 
5754       s = mips_elf_rel_dyn_section (info, FALSE);
5755       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5756 
5757       outrel.r_offset = (input_section->output_section->vma
5758 			 + input_section->output_offset
5759 			 + relocation->r_offset);
5760       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5761       outrel.r_addend = addend;
5762       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5763 
5764       /* If we've written this relocation for a readonly section,
5765 	 we need to set DF_TEXTREL again, so that we do not delete the
5766 	 DT_TEXTREL tag.  */
5767       if (MIPS_ELF_READONLY_SECTION (input_section))
5768 	info->flags |= DF_TEXTREL;
5769 
5770       *valuep = 0;
5771       return bfd_reloc_ok;
5772     }
5773 
5774   /* Figure out what kind of relocation is being performed.  */
5775   switch (r_type)
5776     {
5777     case R_MIPS_NONE:
5778       return bfd_reloc_continue;
5779 
5780     case R_MIPS_16:
5781       if (howto->partial_inplace)
5782 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5783       value = symbol + addend;
5784       overflowed_p = mips_elf_overflow_p (value, 16);
5785       break;
5786 
5787     case R_MIPS_32:
5788     case R_MIPS_REL32:
5789     case R_MIPS_64:
5790       if ((bfd_link_pic (info)
5791 	   || (htab->root.dynamic_sections_created
5792 	       && h != NULL
5793 	       && h->root.def_dynamic
5794 	       && !h->root.def_regular
5795 	       && !h->has_static_relocs))
5796 	  && r_symndx != STN_UNDEF
5797 	  && (h == NULL
5798 	      || h->root.root.type != bfd_link_hash_undefweak
5799 	      || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5800 	  && (input_section->flags & SEC_ALLOC) != 0)
5801 	{
5802 	  /* If we're creating a shared library, then we can't know
5803 	     where the symbol will end up.  So, we create a relocation
5804 	     record in the output, and leave the job up to the dynamic
5805 	     linker.  We must do the same for executable references to
5806 	     shared library symbols, unless we've decided to use copy
5807 	     relocs or PLTs instead.  */
5808 	  value = addend;
5809 	  if (!mips_elf_create_dynamic_relocation (abfd,
5810 						   info,
5811 						   relocation,
5812 						   h,
5813 						   sec,
5814 						   symbol,
5815 						   &value,
5816 						   input_section))
5817 	    return bfd_reloc_undefined;
5818 	}
5819       else
5820 	{
5821 	  if (r_type != R_MIPS_REL32)
5822 	    value = symbol + addend;
5823 	  else
5824 	    value = addend;
5825 	}
5826       value &= howto->dst_mask;
5827       break;
5828 
5829     case R_MIPS_PC32:
5830       value = symbol + addend - p;
5831       value &= howto->dst_mask;
5832       break;
5833 
5834     case R_MIPS16_26:
5835       /* The calculation for R_MIPS16_26 is just the same as for an
5836 	 R_MIPS_26.  It's only the storage of the relocated field into
5837 	 the output file that's different.  That's handled in
5838 	 mips_elf_perform_relocation.  So, we just fall through to the
5839 	 R_MIPS_26 case here.  */
5840     case R_MIPS_26:
5841     case R_MICROMIPS_26_S1:
5842       {
5843 	unsigned int shift;
5844 
5845 	/* Shift is 2, unusually, for microMIPS JALX.  */
5846 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5847 
5848 	if (howto->partial_inplace && !section_p)
5849 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5850 	else
5851 	  value = addend;
5852 	value += symbol;
5853 
5854 	/* Make sure the target of a jump is suitably aligned.  Bit 0 must
5855 	   be the correct ISA mode selector except for weak undefined
5856 	   symbols.  */
5857 	if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5858 	    && (*cross_mode_jump_p
5859 		? (value & 3) != (r_type == R_MIPS_26)
5860 	        : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
5861 	  return bfd_reloc_outofrange;
5862 
5863 	value >>= shift;
5864 	if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5865 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5866 	value &= howto->dst_mask;
5867       }
5868       break;
5869 
5870     case R_MIPS_TLS_DTPREL_HI16:
5871     case R_MIPS16_TLS_DTPREL_HI16:
5872     case R_MICROMIPS_TLS_DTPREL_HI16:
5873       value = (mips_elf_high (addend + symbol - dtprel_base (info))
5874 	       & howto->dst_mask);
5875       break;
5876 
5877     case R_MIPS_TLS_DTPREL_LO16:
5878     case R_MIPS_TLS_DTPREL32:
5879     case R_MIPS_TLS_DTPREL64:
5880     case R_MIPS16_TLS_DTPREL_LO16:
5881     case R_MICROMIPS_TLS_DTPREL_LO16:
5882       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5883       break;
5884 
5885     case R_MIPS_TLS_TPREL_HI16:
5886     case R_MIPS16_TLS_TPREL_HI16:
5887     case R_MICROMIPS_TLS_TPREL_HI16:
5888       value = (mips_elf_high (addend + symbol - tprel_base (info))
5889 	       & howto->dst_mask);
5890       break;
5891 
5892     case R_MIPS_TLS_TPREL_LO16:
5893     case R_MIPS_TLS_TPREL32:
5894     case R_MIPS_TLS_TPREL64:
5895     case R_MIPS16_TLS_TPREL_LO16:
5896     case R_MICROMIPS_TLS_TPREL_LO16:
5897       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5898       break;
5899 
5900     case R_MIPS_HI16:
5901     case R_MIPS16_HI16:
5902     case R_MICROMIPS_HI16:
5903       if (!gp_disp_p)
5904 	{
5905 	  value = mips_elf_high (addend + symbol);
5906 	  value &= howto->dst_mask;
5907 	}
5908       else
5909 	{
5910 	  /* For MIPS16 ABI code we generate this sequence
5911 	        0: li      $v0,%hi(_gp_disp)
5912 	        4: addiupc $v1,%lo(_gp_disp)
5913 	        8: sll     $v0,16
5914 	       12: addu    $v0,$v1
5915 	       14: move    $gp,$v0
5916 	     So the offsets of hi and lo relocs are the same, but the
5917 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5918 	     ADDIUPC clears the low two bits of the instruction address,
5919 	     so the base is ($t9 + 4) & ~3.  */
5920 	  if (r_type == R_MIPS16_HI16)
5921 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5922 	  /* The microMIPS .cpload sequence uses the same assembly
5923 	     instructions as the traditional psABI version, but the
5924 	     incoming $t9 has the low bit set.  */
5925 	  else if (r_type == R_MICROMIPS_HI16)
5926 	    value = mips_elf_high (addend + gp - p - 1);
5927 	  else
5928 	    value = mips_elf_high (addend + gp - p);
5929 	}
5930       break;
5931 
5932     case R_MIPS_LO16:
5933     case R_MIPS16_LO16:
5934     case R_MICROMIPS_LO16:
5935     case R_MICROMIPS_HI0_LO16:
5936       if (!gp_disp_p)
5937 	value = (symbol + addend) & howto->dst_mask;
5938       else
5939 	{
5940 	  /* See the comment for R_MIPS16_HI16 above for the reason
5941 	     for this conditional.  */
5942 	  if (r_type == R_MIPS16_LO16)
5943 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
5944 	  else if (r_type == R_MICROMIPS_LO16
5945 		   || r_type == R_MICROMIPS_HI0_LO16)
5946 	    value = addend + gp - p + 3;
5947 	  else
5948 	    value = addend + gp - p + 4;
5949 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5950 	     for overflow.  But, on, say, IRIX5, relocations against
5951 	     _gp_disp are normally generated from the .cpload
5952 	     pseudo-op.  It generates code that normally looks like
5953 	     this:
5954 
5955 	       lui    $gp,%hi(_gp_disp)
5956 	       addiu  $gp,$gp,%lo(_gp_disp)
5957 	       addu   $gp,$gp,$t9
5958 
5959 	     Here $t9 holds the address of the function being called,
5960 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
5961 	     relocation can easily overflow in this situation, but the
5962 	     R_MIPS_HI16 relocation will handle the overflow.
5963 	     Therefore, we consider this a bug in the MIPS ABI, and do
5964 	     not check for overflow here.  */
5965 	}
5966       break;
5967 
5968     case R_MIPS_LITERAL:
5969     case R_MICROMIPS_LITERAL:
5970       /* Because we don't merge literal sections, we can handle this
5971 	 just like R_MIPS_GPREL16.  In the long run, we should merge
5972 	 shared literals, and then we will need to additional work
5973 	 here.  */
5974 
5975       /* Fall through.  */
5976 
5977     case R_MIPS16_GPREL:
5978       /* The R_MIPS16_GPREL performs the same calculation as
5979 	 R_MIPS_GPREL16, but stores the relocated bits in a different
5980 	 order.  We don't need to do anything special here; the
5981 	 differences are handled in mips_elf_perform_relocation.  */
5982     case R_MIPS_GPREL16:
5983     case R_MICROMIPS_GPREL7_S2:
5984     case R_MICROMIPS_GPREL16:
5985       /* Only sign-extend the addend if it was extracted from the
5986 	 instruction.  If the addend was separate, leave it alone,
5987 	 otherwise we may lose significant bits.  */
5988       if (howto->partial_inplace)
5989 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5990       value = symbol + addend - gp;
5991       /* If the symbol was local, any earlier relocatable links will
5992 	 have adjusted its addend with the gp offset, so compensate
5993 	 for that now.  Don't do it for symbols forced local in this
5994 	 link, though, since they won't have had the gp offset applied
5995 	 to them before.  */
5996       if (was_local_p)
5997 	value += gp0;
5998       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
5999 	overflowed_p = mips_elf_overflow_p (value, 16);
6000       break;
6001 
6002     case R_MIPS16_GOT16:
6003     case R_MIPS16_CALL16:
6004     case R_MIPS_GOT16:
6005     case R_MIPS_CALL16:
6006     case R_MICROMIPS_GOT16:
6007     case R_MICROMIPS_CALL16:
6008       /* VxWorks does not have separate local and global semantics for
6009 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
6010       if (!htab->is_vxworks && local_p)
6011 	{
6012 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
6013 					symbol + addend, !was_local_p);
6014 	  if (value == MINUS_ONE)
6015 	    return bfd_reloc_outofrange;
6016 	  value
6017 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6018 	  overflowed_p = mips_elf_overflow_p (value, 16);
6019 	  break;
6020 	}
6021 
6022       /* Fall through.  */
6023 
6024     case R_MIPS_TLS_GD:
6025     case R_MIPS_TLS_GOTTPREL:
6026     case R_MIPS_TLS_LDM:
6027     case R_MIPS_GOT_DISP:
6028     case R_MIPS16_TLS_GD:
6029     case R_MIPS16_TLS_GOTTPREL:
6030     case R_MIPS16_TLS_LDM:
6031     case R_MICROMIPS_TLS_GD:
6032     case R_MICROMIPS_TLS_GOTTPREL:
6033     case R_MICROMIPS_TLS_LDM:
6034     case R_MICROMIPS_GOT_DISP:
6035       value = g;
6036       overflowed_p = mips_elf_overflow_p (value, 16);
6037       break;
6038 
6039     case R_MIPS_GPREL32:
6040       value = (addend + symbol + gp0 - gp);
6041       if (!save_addend)
6042 	value &= howto->dst_mask;
6043       break;
6044 
6045     case R_MIPS_PC16:
6046     case R_MIPS_GNU_REL16_S2:
6047       if (howto->partial_inplace)
6048 	addend = _bfd_mips_elf_sign_extend (addend, 18);
6049 
6050       /* No need to exclude weak undefined symbols here as they resolve
6051          to 0 and never set `*cross_mode_jump_p', so this alignment check
6052          will never trigger for them.  */
6053       if (*cross_mode_jump_p
6054 	  ? ((symbol + addend) & 3) != 1
6055 	  : ((symbol + addend) & 3) != 0)
6056 	return bfd_reloc_outofrange;
6057 
6058       value = symbol + addend - p;
6059       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6060 	overflowed_p = mips_elf_overflow_p (value, 18);
6061       value >>= howto->rightshift;
6062       value &= howto->dst_mask;
6063       break;
6064 
6065     case R_MIPS16_PC16_S1:
6066       if (howto->partial_inplace)
6067 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6068 
6069       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6070 	  && (*cross_mode_jump_p
6071 	      ? ((symbol + addend) & 3) != 0
6072 	      : ((symbol + addend) & 1) == 0))
6073 	return bfd_reloc_outofrange;
6074 
6075       value = symbol + addend - p;
6076       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6077 	overflowed_p = mips_elf_overflow_p (value, 17);
6078       value >>= howto->rightshift;
6079       value &= howto->dst_mask;
6080       break;
6081 
6082     case R_MIPS_PC21_S2:
6083       if (howto->partial_inplace)
6084 	addend = _bfd_mips_elf_sign_extend (addend, 23);
6085 
6086       if ((symbol + addend) & 3)
6087 	return bfd_reloc_outofrange;
6088 
6089       value = symbol + addend - p;
6090       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6091 	overflowed_p = mips_elf_overflow_p (value, 23);
6092       value >>= howto->rightshift;
6093       value &= howto->dst_mask;
6094       break;
6095 
6096     case R_MIPS_PC26_S2:
6097       if (howto->partial_inplace)
6098 	addend = _bfd_mips_elf_sign_extend (addend, 28);
6099 
6100       if ((symbol + addend) & 3)
6101 	return bfd_reloc_outofrange;
6102 
6103       value = symbol + addend - p;
6104       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6105 	overflowed_p = mips_elf_overflow_p (value, 28);
6106       value >>= howto->rightshift;
6107       value &= howto->dst_mask;
6108       break;
6109 
6110     case R_MIPS_PC18_S3:
6111       if (howto->partial_inplace)
6112 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6113 
6114       if ((symbol + addend) & 7)
6115 	return bfd_reloc_outofrange;
6116 
6117       value = symbol + addend - ((p | 7) ^ 7);
6118       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6119 	overflowed_p = mips_elf_overflow_p (value, 21);
6120       value >>= howto->rightshift;
6121       value &= howto->dst_mask;
6122       break;
6123 
6124     case R_MIPS_PC19_S2:
6125       if (howto->partial_inplace)
6126 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6127 
6128       if ((symbol + addend) & 3)
6129 	return bfd_reloc_outofrange;
6130 
6131       value = symbol + addend - p;
6132       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6133 	overflowed_p = mips_elf_overflow_p (value, 21);
6134       value >>= howto->rightshift;
6135       value &= howto->dst_mask;
6136       break;
6137 
6138     case R_MIPS_PCHI16:
6139       value = mips_elf_high (symbol + addend - p);
6140       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6141 	overflowed_p = mips_elf_overflow_p (value, 16);
6142       value &= howto->dst_mask;
6143       break;
6144 
6145     case R_MIPS_PCLO16:
6146       if (howto->partial_inplace)
6147 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6148       value = symbol + addend - p;
6149       value &= howto->dst_mask;
6150       break;
6151 
6152     case R_MICROMIPS_PC7_S1:
6153       if (howto->partial_inplace)
6154 	addend = _bfd_mips_elf_sign_extend (addend, 8);
6155 
6156       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6157 	  && (*cross_mode_jump_p
6158 	      ? ((symbol + addend + 2) & 3) != 0
6159 	      : ((symbol + addend + 2) & 1) == 0))
6160 	return bfd_reloc_outofrange;
6161 
6162       value = symbol + addend - p;
6163       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6164 	overflowed_p = mips_elf_overflow_p (value, 8);
6165       value >>= howto->rightshift;
6166       value &= howto->dst_mask;
6167       break;
6168 
6169     case R_MICROMIPS_PC10_S1:
6170       if (howto->partial_inplace)
6171 	addend = _bfd_mips_elf_sign_extend (addend, 11);
6172 
6173       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6174 	  && (*cross_mode_jump_p
6175 	      ? ((symbol + addend + 2) & 3) != 0
6176 	      : ((symbol + addend + 2) & 1) == 0))
6177 	return bfd_reloc_outofrange;
6178 
6179       value = symbol + addend - p;
6180       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6181 	overflowed_p = mips_elf_overflow_p (value, 11);
6182       value >>= howto->rightshift;
6183       value &= howto->dst_mask;
6184       break;
6185 
6186     case R_MICROMIPS_PC16_S1:
6187       if (howto->partial_inplace)
6188 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6189 
6190       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6191 	  && (*cross_mode_jump_p
6192 	      ? ((symbol + addend) & 3) != 0
6193 	      : ((symbol + addend) & 1) == 0))
6194 	return bfd_reloc_outofrange;
6195 
6196       value = symbol + addend - p;
6197       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6198 	overflowed_p = mips_elf_overflow_p (value, 17);
6199       value >>= howto->rightshift;
6200       value &= howto->dst_mask;
6201       break;
6202 
6203     case R_MICROMIPS_PC23_S2:
6204       if (howto->partial_inplace)
6205 	addend = _bfd_mips_elf_sign_extend (addend, 25);
6206       value = symbol + addend - ((p | 3) ^ 3);
6207       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6208 	overflowed_p = mips_elf_overflow_p (value, 25);
6209       value >>= howto->rightshift;
6210       value &= howto->dst_mask;
6211       break;
6212 
6213     case R_MIPS_GOT_HI16:
6214     case R_MIPS_CALL_HI16:
6215     case R_MICROMIPS_GOT_HI16:
6216     case R_MICROMIPS_CALL_HI16:
6217       /* We're allowed to handle these two relocations identically.
6218 	 The dynamic linker is allowed to handle the CALL relocations
6219 	 differently by creating a lazy evaluation stub.  */
6220       value = g;
6221       value = mips_elf_high (value);
6222       value &= howto->dst_mask;
6223       break;
6224 
6225     case R_MIPS_GOT_LO16:
6226     case R_MIPS_CALL_LO16:
6227     case R_MICROMIPS_GOT_LO16:
6228     case R_MICROMIPS_CALL_LO16:
6229       value = g & howto->dst_mask;
6230       break;
6231 
6232     case R_MIPS_GOT_PAGE:
6233     case R_MICROMIPS_GOT_PAGE:
6234       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6235       if (value == MINUS_ONE)
6236 	return bfd_reloc_outofrange;
6237       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6238       overflowed_p = mips_elf_overflow_p (value, 16);
6239       break;
6240 
6241     case R_MIPS_GOT_OFST:
6242     case R_MICROMIPS_GOT_OFST:
6243       if (local_p)
6244 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6245       else
6246 	value = addend;
6247       overflowed_p = mips_elf_overflow_p (value, 16);
6248       break;
6249 
6250     case R_MIPS_SUB:
6251     case R_MICROMIPS_SUB:
6252       value = symbol - addend;
6253       value &= howto->dst_mask;
6254       break;
6255 
6256     case R_MIPS_HIGHER:
6257     case R_MICROMIPS_HIGHER:
6258       value = mips_elf_higher (addend + symbol);
6259       value &= howto->dst_mask;
6260       break;
6261 
6262     case R_MIPS_HIGHEST:
6263     case R_MICROMIPS_HIGHEST:
6264       value = mips_elf_highest (addend + symbol);
6265       value &= howto->dst_mask;
6266       break;
6267 
6268     case R_MIPS_SCN_DISP:
6269     case R_MICROMIPS_SCN_DISP:
6270       value = symbol + addend - sec->output_offset;
6271       value &= howto->dst_mask;
6272       break;
6273 
6274     case R_MIPS_JALR:
6275     case R_MICROMIPS_JALR:
6276       /* This relocation is only a hint.  In some cases, we optimize
6277 	 it into a bal instruction.  But we don't try to optimize
6278 	 when the symbol does not resolve locally.  */
6279       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6280 	return bfd_reloc_continue;
6281       /* We can't optimize cross-mode jumps either.  */
6282       if (*cross_mode_jump_p)
6283 	return bfd_reloc_continue;
6284       value = symbol + addend;
6285       /* Neither we can non-instruction-aligned targets.  */
6286       if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6287 	return bfd_reloc_continue;
6288       break;
6289 
6290     case R_MIPS_PJUMP:
6291     case R_MIPS_GNU_VTINHERIT:
6292     case R_MIPS_GNU_VTENTRY:
6293       /* We don't do anything with these at present.  */
6294       return bfd_reloc_continue;
6295 
6296     default:
6297       /* An unrecognized relocation type.  */
6298       return bfd_reloc_notsupported;
6299     }
6300 
6301   /* Store the VALUE for our caller.  */
6302   *valuep = value;
6303   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6304 }
6305 
6306 /* Obtain the field relocated by RELOCATION.  */
6307 
6308 static bfd_vma
6309 mips_elf_obtain_contents (reloc_howto_type *howto,
6310 			  const Elf_Internal_Rela *relocation,
6311 			  bfd *input_bfd, bfd_byte *contents)
6312 {
6313   bfd_vma x = 0;
6314   bfd_byte *location = contents + relocation->r_offset;
6315   unsigned int size = bfd_get_reloc_size (howto);
6316 
6317   /* Obtain the bytes.  */
6318   if (size != 0)
6319     x = bfd_get (8 * size, input_bfd, location);
6320 
6321   return x;
6322 }
6323 
6324 /* It has been determined that the result of the RELOCATION is the
6325    VALUE.  Use HOWTO to place VALUE into the output file at the
6326    appropriate position.  The SECTION is the section to which the
6327    relocation applies.
6328    CROSS_MODE_JUMP_P is true if the relocation field
6329    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6330 
6331    Returns FALSE if anything goes wrong.  */
6332 
6333 static bfd_boolean
6334 mips_elf_perform_relocation (struct bfd_link_info *info,
6335 			     reloc_howto_type *howto,
6336 			     const Elf_Internal_Rela *relocation,
6337 			     bfd_vma value, bfd *input_bfd,
6338 			     asection *input_section, bfd_byte *contents,
6339 			     bfd_boolean cross_mode_jump_p)
6340 {
6341   bfd_vma x;
6342   bfd_byte *location;
6343   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6344   unsigned int size;
6345 
6346   /* Figure out where the relocation is occurring.  */
6347   location = contents + relocation->r_offset;
6348 
6349   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6350 
6351   /* Obtain the current value.  */
6352   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6353 
6354   /* Clear the field we are setting.  */
6355   x &= ~howto->dst_mask;
6356 
6357   /* Set the field.  */
6358   x |= (value & howto->dst_mask);
6359 
6360   /* Detect incorrect JALX usage.  If required, turn JAL or BAL into JALX.  */
6361   if (!cross_mode_jump_p && jal_reloc_p (r_type))
6362     {
6363       bfd_vma opcode = x >> 26;
6364 
6365       if (r_type == R_MIPS16_26 ? opcode == 0x7
6366 	  : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6367 	  : opcode == 0x1d)
6368 	{
6369 	  info->callbacks->einfo
6370 	    (_("%X%H: Unsupported JALX to the same ISA mode\n"),
6371 	     input_bfd, input_section, relocation->r_offset);
6372 	  return TRUE;
6373 	}
6374     }
6375   if (cross_mode_jump_p && jal_reloc_p (r_type))
6376     {
6377       bfd_boolean ok;
6378       bfd_vma opcode = x >> 26;
6379       bfd_vma jalx_opcode;
6380 
6381       /* Check to see if the opcode is already JAL or JALX.  */
6382       if (r_type == R_MIPS16_26)
6383 	{
6384 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6385 	  jalx_opcode = 0x7;
6386 	}
6387       else if (r_type == R_MICROMIPS_26_S1)
6388 	{
6389 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6390 	  jalx_opcode = 0x3c;
6391 	}
6392       else
6393 	{
6394 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6395 	  jalx_opcode = 0x1d;
6396 	}
6397 
6398       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6399          convert J or JALS to JALX.  */
6400       if (!ok)
6401 	{
6402 	  info->callbacks->einfo
6403 	    (_("%X%H: Unsupported jump between ISA modes; "
6404 	       "consider recompiling with interlinking enabled\n"),
6405 	     input_bfd, input_section, relocation->r_offset);
6406 	  return TRUE;
6407 	}
6408 
6409       /* Make this the JALX opcode.  */
6410       x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6411     }
6412   else if (cross_mode_jump_p && b_reloc_p (r_type))
6413     {
6414       bfd_boolean ok = FALSE;
6415       bfd_vma opcode = x >> 16;
6416       bfd_vma jalx_opcode = 0;
6417       bfd_vma addr;
6418       bfd_vma dest;
6419 
6420       if (r_type == R_MICROMIPS_PC16_S1)
6421 	{
6422 	  ok = opcode == 0x4060;
6423 	  jalx_opcode = 0x3c;
6424 	  value <<= 1;
6425 	}
6426       else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6427 	{
6428 	  ok = opcode == 0x411;
6429 	  jalx_opcode = 0x1d;
6430 	  value <<= 2;
6431 	}
6432 
6433       if (ok && !bfd_link_pic (info))
6434 	{
6435 	  addr = (input_section->output_section->vma
6436 		  + input_section->output_offset
6437 		  + relocation->r_offset
6438 		  + 4);
6439 	  dest = addr + (((value & 0x3ffff) ^ 0x20000) - 0x20000);
6440 
6441 	  if ((addr >> 28) << 28 != (dest >> 28) << 28)
6442 	    {
6443 	      info->callbacks->einfo
6444 		(_("%X%H: Cannot convert branch between ISA modes "
6445 		   "to JALX: relocation out of range\n"),
6446 		 input_bfd, input_section, relocation->r_offset);
6447 	      return TRUE;
6448 	    }
6449 
6450 	  /* Make this the JALX opcode.  */
6451 	  x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6452 	}
6453       else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6454 	{
6455 	  info->callbacks->einfo
6456 	    (_("%X%H: Unsupported branch between ISA modes\n"),
6457 	     input_bfd, input_section, relocation->r_offset);
6458 	  return TRUE;
6459 	}
6460     }
6461 
6462   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6463      range.  */
6464   if (!bfd_link_relocatable (info)
6465       && !cross_mode_jump_p
6466       && ((JAL_TO_BAL_P (input_bfd)
6467 	   && r_type == R_MIPS_26
6468 	   && (x >> 26) == 0x3)			/* jal addr */
6469 	  || (JALR_TO_BAL_P (input_bfd)
6470 	      && r_type == R_MIPS_JALR
6471 	      && x == 0x0320f809)		/* jalr t9 */
6472 	  || (JR_TO_B_P (input_bfd)
6473 	      && r_type == R_MIPS_JALR
6474 	      && (x & ~1) == 0x03200008)))	/* jr t9 / jalr zero, t9 */
6475     {
6476       bfd_vma addr;
6477       bfd_vma dest;
6478       bfd_signed_vma off;
6479 
6480       addr = (input_section->output_section->vma
6481 	      + input_section->output_offset
6482 	      + relocation->r_offset
6483 	      + 4);
6484       if (r_type == R_MIPS_26)
6485 	dest = (value << 2) | ((addr >> 28) << 28);
6486       else
6487 	dest = value;
6488       off = dest - addr;
6489       if (off <= 0x1ffff && off >= -0x20000)
6490 	{
6491 	  if ((x & ~1) == 0x03200008)		/* jr t9 / jalr zero, t9 */
6492 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6493 	  else
6494 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6495 	}
6496     }
6497 
6498   /* Put the value into the output.  */
6499   size = bfd_get_reloc_size (howto);
6500   if (size != 0)
6501     bfd_put (8 * size, input_bfd, x, location);
6502 
6503   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6504 			       location);
6505 
6506   return TRUE;
6507 }
6508 
6509 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6510    is the original relocation, which is now being transformed into a
6511    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6512    caller should store the result in place of the original addend.  */
6513 
6514 static bfd_boolean
6515 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6516 				    struct bfd_link_info *info,
6517 				    const Elf_Internal_Rela *rel,
6518 				    struct mips_elf_link_hash_entry *h,
6519 				    asection *sec, bfd_vma symbol,
6520 				    bfd_vma *addendp, asection *input_section)
6521 {
6522   Elf_Internal_Rela outrel[3];
6523   asection *sreloc;
6524   bfd *dynobj;
6525   int r_type;
6526   long indx;
6527   bfd_boolean defined_p;
6528   struct mips_elf_link_hash_table *htab;
6529 
6530   htab = mips_elf_hash_table (info);
6531   BFD_ASSERT (htab != NULL);
6532 
6533   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6534   dynobj = elf_hash_table (info)->dynobj;
6535   sreloc = mips_elf_rel_dyn_section (info, FALSE);
6536   BFD_ASSERT (sreloc != NULL);
6537   BFD_ASSERT (sreloc->contents != NULL);
6538   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6539 	      < sreloc->size);
6540 
6541   outrel[0].r_offset =
6542     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6543   if (ABI_64_P (output_bfd))
6544     {
6545       outrel[1].r_offset =
6546 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6547       outrel[2].r_offset =
6548 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6549     }
6550 
6551   if (outrel[0].r_offset == MINUS_ONE)
6552     /* The relocation field has been deleted.  */
6553     return TRUE;
6554 
6555   if (outrel[0].r_offset == MINUS_TWO)
6556     {
6557       /* The relocation field has been converted into a relative value of
6558 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6559 	 the field to be fully relocated, so add in the symbol's value.  */
6560       *addendp += symbol;
6561       return TRUE;
6562     }
6563 
6564   /* We must now calculate the dynamic symbol table index to use
6565      in the relocation.  */
6566   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6567     {
6568       BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6569       indx = h->root.dynindx;
6570       if (SGI_COMPAT (output_bfd))
6571 	defined_p = h->root.def_regular;
6572       else
6573 	/* ??? glibc's ld.so just adds the final GOT entry to the
6574 	   relocation field.  It therefore treats relocs against
6575 	   defined symbols in the same way as relocs against
6576 	   undefined symbols.  */
6577 	defined_p = FALSE;
6578     }
6579   else
6580     {
6581       if (sec != NULL && bfd_is_abs_section (sec))
6582 	indx = 0;
6583       else if (sec == NULL || sec->owner == NULL)
6584 	{
6585 	  bfd_set_error (bfd_error_bad_value);
6586 	  return FALSE;
6587 	}
6588       else
6589 	{
6590 	  indx = elf_section_data (sec->output_section)->dynindx;
6591 	  if (indx == 0)
6592 	    {
6593 	      asection *osec = htab->root.text_index_section;
6594 	      indx = elf_section_data (osec)->dynindx;
6595 	    }
6596 	  if (indx == 0)
6597 	    abort ();
6598 	}
6599 
6600       /* Instead of generating a relocation using the section
6601 	 symbol, we may as well make it a fully relative
6602 	 relocation.  We want to avoid generating relocations to
6603 	 local symbols because we used to generate them
6604 	 incorrectly, without adding the original symbol value,
6605 	 which is mandated by the ABI for section symbols.  In
6606 	 order to give dynamic loaders and applications time to
6607 	 phase out the incorrect use, we refrain from emitting
6608 	 section-relative relocations.  It's not like they're
6609 	 useful, after all.  This should be a bit more efficient
6610 	 as well.  */
6611       /* ??? Although this behavior is compatible with glibc's ld.so,
6612 	 the ABI says that relocations against STN_UNDEF should have
6613 	 a symbol value of 0.  Irix rld honors this, so relocations
6614 	 against STN_UNDEF have no effect.  */
6615       if (!SGI_COMPAT (output_bfd))
6616 	indx = 0;
6617       defined_p = TRUE;
6618     }
6619 
6620   /* If the relocation was previously an absolute relocation and
6621      this symbol will not be referred to by the relocation, we must
6622      adjust it by the value we give it in the dynamic symbol table.
6623      Otherwise leave the job up to the dynamic linker.  */
6624   if (defined_p && r_type != R_MIPS_REL32)
6625     *addendp += symbol;
6626 
6627   if (htab->is_vxworks)
6628     /* VxWorks uses non-relative relocations for this.  */
6629     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6630   else
6631     /* The relocation is always an REL32 relocation because we don't
6632        know where the shared library will wind up at load-time.  */
6633     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6634 				   R_MIPS_REL32);
6635 
6636   /* For strict adherence to the ABI specification, we should
6637      generate a R_MIPS_64 relocation record by itself before the
6638      _REL32/_64 record as well, such that the addend is read in as
6639      a 64-bit value (REL32 is a 32-bit relocation, after all).
6640      However, since none of the existing ELF64 MIPS dynamic
6641      loaders seems to care, we don't waste space with these
6642      artificial relocations.  If this turns out to not be true,
6643      mips_elf_allocate_dynamic_relocation() should be tweaked so
6644      as to make room for a pair of dynamic relocations per
6645      invocation if ABI_64_P, and here we should generate an
6646      additional relocation record with R_MIPS_64 by itself for a
6647      NULL symbol before this relocation record.  */
6648   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6649 				 ABI_64_P (output_bfd)
6650 				 ? R_MIPS_64
6651 				 : R_MIPS_NONE);
6652   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6653 
6654   /* Adjust the output offset of the relocation to reference the
6655      correct location in the output file.  */
6656   outrel[0].r_offset += (input_section->output_section->vma
6657 			 + input_section->output_offset);
6658   outrel[1].r_offset += (input_section->output_section->vma
6659 			 + input_section->output_offset);
6660   outrel[2].r_offset += (input_section->output_section->vma
6661 			 + input_section->output_offset);
6662 
6663   /* Put the relocation back out.  We have to use the special
6664      relocation outputter in the 64-bit case since the 64-bit
6665      relocation format is non-standard.  */
6666   if (ABI_64_P (output_bfd))
6667     {
6668       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6669 	(output_bfd, &outrel[0],
6670 	 (sreloc->contents
6671 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6672     }
6673   else if (htab->is_vxworks)
6674     {
6675       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6676       outrel[0].r_addend = *addendp;
6677       bfd_elf32_swap_reloca_out
6678 	(output_bfd, &outrel[0],
6679 	 (sreloc->contents
6680 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6681     }
6682   else
6683     bfd_elf32_swap_reloc_out
6684       (output_bfd, &outrel[0],
6685        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6686 
6687   /* We've now added another relocation.  */
6688   ++sreloc->reloc_count;
6689 
6690   /* Make sure the output section is writable.  The dynamic linker
6691      will be writing to it.  */
6692   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6693     |= SHF_WRITE;
6694 
6695   /* On IRIX5, make an entry of compact relocation info.  */
6696   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6697     {
6698       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6699       bfd_byte *cr;
6700 
6701       if (scpt)
6702 	{
6703 	  Elf32_crinfo cptrel;
6704 
6705 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6706 	  cptrel.vaddr = (rel->r_offset
6707 			  + input_section->output_section->vma
6708 			  + input_section->output_offset);
6709 	  if (r_type == R_MIPS_REL32)
6710 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6711 	  else
6712 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6713 	  mips_elf_set_cr_dist2to (cptrel, 0);
6714 	  cptrel.konst = *addendp;
6715 
6716 	  cr = (scpt->contents
6717 		+ sizeof (Elf32_External_compact_rel));
6718 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6719 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6720 				     ((Elf32_External_crinfo *) cr
6721 				      + scpt->reloc_count));
6722 	  ++scpt->reloc_count;
6723 	}
6724     }
6725 
6726   /* If we've written this relocation for a readonly section,
6727      we need to set DF_TEXTREL again, so that we do not delete the
6728      DT_TEXTREL tag.  */
6729   if (MIPS_ELF_READONLY_SECTION (input_section))
6730     info->flags |= DF_TEXTREL;
6731 
6732   return TRUE;
6733 }
6734 
6735 /* Return the MACH for a MIPS e_flags value.  */
6736 
6737 unsigned long
6738 _bfd_elf_mips_mach (flagword flags)
6739 {
6740   switch (flags & EF_MIPS_MACH)
6741     {
6742     case E_MIPS_MACH_3900:
6743       return bfd_mach_mips3900;
6744 
6745     case E_MIPS_MACH_4010:
6746       return bfd_mach_mips4010;
6747 
6748     case E_MIPS_MACH_4100:
6749       return bfd_mach_mips4100;
6750 
6751     case E_MIPS_MACH_4111:
6752       return bfd_mach_mips4111;
6753 
6754     case E_MIPS_MACH_4120:
6755       return bfd_mach_mips4120;
6756 
6757     case E_MIPS_MACH_4650:
6758       return bfd_mach_mips4650;
6759 
6760     case E_MIPS_MACH_5400:
6761       return bfd_mach_mips5400;
6762 
6763     case E_MIPS_MACH_5500:
6764       return bfd_mach_mips5500;
6765 
6766     case E_MIPS_MACH_5900:
6767       return bfd_mach_mips5900;
6768 
6769     case E_MIPS_MACH_9000:
6770       return bfd_mach_mips9000;
6771 
6772     case E_MIPS_MACH_SB1:
6773       return bfd_mach_mips_sb1;
6774 
6775     case E_MIPS_MACH_LS2E:
6776       return bfd_mach_mips_loongson_2e;
6777 
6778     case E_MIPS_MACH_LS2F:
6779       return bfd_mach_mips_loongson_2f;
6780 
6781     case E_MIPS_MACH_LS3A:
6782       return bfd_mach_mips_loongson_3a;
6783 
6784     case E_MIPS_MACH_OCTEON3:
6785       return bfd_mach_mips_octeon3;
6786 
6787     case E_MIPS_MACH_OCTEON2:
6788       return bfd_mach_mips_octeon2;
6789 
6790     case E_MIPS_MACH_OCTEON:
6791       return bfd_mach_mips_octeon;
6792 
6793     case E_MIPS_MACH_XLR:
6794       return bfd_mach_mips_xlr;
6795 
6796     default:
6797       switch (flags & EF_MIPS_ARCH)
6798 	{
6799 	default:
6800 	case E_MIPS_ARCH_1:
6801 	  return bfd_mach_mips3000;
6802 
6803 	case E_MIPS_ARCH_2:
6804 	  return bfd_mach_mips6000;
6805 
6806 	case E_MIPS_ARCH_3:
6807 	  return bfd_mach_mips4000;
6808 
6809 	case E_MIPS_ARCH_4:
6810 	  return bfd_mach_mips8000;
6811 
6812 	case E_MIPS_ARCH_5:
6813 	  return bfd_mach_mips5;
6814 
6815 	case E_MIPS_ARCH_32:
6816 	  return bfd_mach_mipsisa32;
6817 
6818 	case E_MIPS_ARCH_64:
6819 	  return bfd_mach_mipsisa64;
6820 
6821 	case E_MIPS_ARCH_32R2:
6822 	  return bfd_mach_mipsisa32r2;
6823 
6824 	case E_MIPS_ARCH_64R2:
6825 	  return bfd_mach_mipsisa64r2;
6826 
6827 	case E_MIPS_ARCH_32R6:
6828 	  return bfd_mach_mipsisa32r6;
6829 
6830 	case E_MIPS_ARCH_64R6:
6831 	  return bfd_mach_mipsisa64r6;
6832 	}
6833     }
6834 
6835   return 0;
6836 }
6837 
6838 /* Return printable name for ABI.  */
6839 
6840 static INLINE char *
6841 elf_mips_abi_name (bfd *abfd)
6842 {
6843   flagword flags;
6844 
6845   flags = elf_elfheader (abfd)->e_flags;
6846   switch (flags & EF_MIPS_ABI)
6847     {
6848     case 0:
6849       if (ABI_N32_P (abfd))
6850 	return "N32";
6851       else if (ABI_64_P (abfd))
6852 	return "64";
6853       else
6854 	return "none";
6855     case E_MIPS_ABI_O32:
6856       return "O32";
6857     case E_MIPS_ABI_O64:
6858       return "O64";
6859     case E_MIPS_ABI_EABI32:
6860       return "EABI32";
6861     case E_MIPS_ABI_EABI64:
6862       return "EABI64";
6863     default:
6864       return "unknown abi";
6865     }
6866 }
6867 
6868 /* MIPS ELF uses two common sections.  One is the usual one, and the
6869    other is for small objects.  All the small objects are kept
6870    together, and then referenced via the gp pointer, which yields
6871    faster assembler code.  This is what we use for the small common
6872    section.  This approach is copied from ecoff.c.  */
6873 static asection mips_elf_scom_section;
6874 static asymbol mips_elf_scom_symbol;
6875 static asymbol *mips_elf_scom_symbol_ptr;
6876 
6877 /* MIPS ELF also uses an acommon section, which represents an
6878    allocated common symbol which may be overridden by a
6879    definition in a shared library.  */
6880 static asection mips_elf_acom_section;
6881 static asymbol mips_elf_acom_symbol;
6882 static asymbol *mips_elf_acom_symbol_ptr;
6883 
6884 /* This is used for both the 32-bit and the 64-bit ABI.  */
6885 
6886 void
6887 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6888 {
6889   elf_symbol_type *elfsym;
6890 
6891   /* Handle the special MIPS section numbers that a symbol may use.  */
6892   elfsym = (elf_symbol_type *) asym;
6893   switch (elfsym->internal_elf_sym.st_shndx)
6894     {
6895     case SHN_MIPS_ACOMMON:
6896       /* This section is used in a dynamically linked executable file.
6897 	 It is an allocated common section.  The dynamic linker can
6898 	 either resolve these symbols to something in a shared
6899 	 library, or it can just leave them here.  For our purposes,
6900 	 we can consider these symbols to be in a new section.  */
6901       if (mips_elf_acom_section.name == NULL)
6902 	{
6903 	  /* Initialize the acommon section.  */
6904 	  mips_elf_acom_section.name = ".acommon";
6905 	  mips_elf_acom_section.flags = SEC_ALLOC;
6906 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
6907 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6908 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6909 	  mips_elf_acom_symbol.name = ".acommon";
6910 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6911 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
6912 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6913 	}
6914       asym->section = &mips_elf_acom_section;
6915       break;
6916 
6917     case SHN_COMMON:
6918       /* Common symbols less than the GP size are automatically
6919 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6920       if (asym->value > elf_gp_size (abfd)
6921 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6922 	  || IRIX_COMPAT (abfd) == ict_irix6)
6923 	break;
6924       /* Fall through.  */
6925     case SHN_MIPS_SCOMMON:
6926       if (mips_elf_scom_section.name == NULL)
6927 	{
6928 	  /* Initialize the small common section.  */
6929 	  mips_elf_scom_section.name = ".scommon";
6930 	  mips_elf_scom_section.flags = SEC_IS_COMMON;
6931 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
6932 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6933 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6934 	  mips_elf_scom_symbol.name = ".scommon";
6935 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6936 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
6937 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6938 	}
6939       asym->section = &mips_elf_scom_section;
6940       asym->value = elfsym->internal_elf_sym.st_size;
6941       break;
6942 
6943     case SHN_MIPS_SUNDEFINED:
6944       asym->section = bfd_und_section_ptr;
6945       break;
6946 
6947     case SHN_MIPS_TEXT:
6948       {
6949 	asection *section = bfd_get_section_by_name (abfd, ".text");
6950 
6951 	if (section != NULL)
6952 	  {
6953 	    asym->section = section;
6954 	    /* MIPS_TEXT is a bit special, the address is not an offset
6955 	       to the base of the .text section.  So substract the section
6956 	       base address to make it an offset.  */
6957 	    asym->value -= section->vma;
6958 	  }
6959       }
6960       break;
6961 
6962     case SHN_MIPS_DATA:
6963       {
6964 	asection *section = bfd_get_section_by_name (abfd, ".data");
6965 
6966 	if (section != NULL)
6967 	  {
6968 	    asym->section = section;
6969 	    /* MIPS_DATA is a bit special, the address is not an offset
6970 	       to the base of the .data section.  So substract the section
6971 	       base address to make it an offset.  */
6972 	    asym->value -= section->vma;
6973 	  }
6974       }
6975       break;
6976     }
6977 
6978   /* If this is an odd-valued function symbol, assume it's a MIPS16
6979      or microMIPS one.  */
6980   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6981       && (asym->value & 1) != 0)
6982     {
6983       asym->value--;
6984       if (MICROMIPS_P (abfd))
6985 	elfsym->internal_elf_sym.st_other
6986 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6987       else
6988 	elfsym->internal_elf_sym.st_other
6989 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6990     }
6991 }
6992 
6993 /* Implement elf_backend_eh_frame_address_size.  This differs from
6994    the default in the way it handles EABI64.
6995 
6996    EABI64 was originally specified as an LP64 ABI, and that is what
6997    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6998    historically accepted the combination of -mabi=eabi and -mlong32,
6999    and this ILP32 variation has become semi-official over time.
7000    Both forms use elf32 and have pointer-sized FDE addresses.
7001 
7002    If an EABI object was generated by GCC 4.0 or above, it will have
7003    an empty .gcc_compiled_longXX section, where XX is the size of longs
7004    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
7005    have no special marking to distinguish them from LP64 objects.
7006 
7007    We don't want users of the official LP64 ABI to be punished for the
7008    existence of the ILP32 variant, but at the same time, we don't want
7009    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7010    We therefore take the following approach:
7011 
7012       - If ABFD contains a .gcc_compiled_longXX section, use it to
7013         determine the pointer size.
7014 
7015       - Otherwise check the type of the first relocation.  Assume that
7016         the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7017 
7018       - Otherwise punt.
7019 
7020    The second check is enough to detect LP64 objects generated by pre-4.0
7021    compilers because, in the kind of output generated by those compilers,
7022    the first relocation will be associated with either a CIE personality
7023    routine or an FDE start address.  Furthermore, the compilers never
7024    used a special (non-pointer) encoding for this ABI.
7025 
7026    Checking the relocation type should also be safe because there is no
7027    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
7028    did so.  */
7029 
7030 unsigned int
7031 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
7032 {
7033   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7034     return 8;
7035   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7036     {
7037       bfd_boolean long32_p, long64_p;
7038 
7039       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7040       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7041       if (long32_p && long64_p)
7042 	return 0;
7043       if (long32_p)
7044 	return 4;
7045       if (long64_p)
7046 	return 8;
7047 
7048       if (sec->reloc_count > 0
7049 	  && elf_section_data (sec)->relocs != NULL
7050 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7051 	      == R_MIPS_64))
7052 	return 8;
7053 
7054       return 0;
7055     }
7056   return 4;
7057 }
7058 
7059 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7060    relocations against two unnamed section symbols to resolve to the
7061    same address.  For example, if we have code like:
7062 
7063 	lw	$4,%got_disp(.data)($gp)
7064 	lw	$25,%got_disp(.text)($gp)
7065 	jalr	$25
7066 
7067    then the linker will resolve both relocations to .data and the program
7068    will jump there rather than to .text.
7069 
7070    We can work around this problem by giving names to local section symbols.
7071    This is also what the MIPSpro tools do.  */
7072 
7073 bfd_boolean
7074 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7075 {
7076   return SGI_COMPAT (abfd);
7077 }
7078 
7079 /* Work over a section just before writing it out.  This routine is
7080    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
7081    sections that need the SHF_MIPS_GPREL flag by name; there has to be
7082    a better way.  */
7083 
7084 bfd_boolean
7085 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7086 {
7087   if (hdr->sh_type == SHT_MIPS_REGINFO
7088       && hdr->sh_size > 0)
7089     {
7090       bfd_byte buf[4];
7091 
7092       BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
7093       BFD_ASSERT (hdr->contents == NULL);
7094 
7095       if (bfd_seek (abfd,
7096 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7097 		    SEEK_SET) != 0)
7098 	return FALSE;
7099       H_PUT_32 (abfd, elf_gp (abfd), buf);
7100       if (bfd_bwrite (buf, 4, abfd) != 4)
7101 	return FALSE;
7102     }
7103 
7104   if (hdr->sh_type == SHT_MIPS_OPTIONS
7105       && hdr->bfd_section != NULL
7106       && mips_elf_section_data (hdr->bfd_section) != NULL
7107       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7108     {
7109       bfd_byte *contents, *l, *lend;
7110 
7111       /* We stored the section contents in the tdata field in the
7112 	 set_section_contents routine.  We save the section contents
7113 	 so that we don't have to read them again.
7114 	 At this point we know that elf_gp is set, so we can look
7115 	 through the section contents to see if there is an
7116 	 ODK_REGINFO structure.  */
7117 
7118       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7119       l = contents;
7120       lend = contents + hdr->sh_size;
7121       while (l + sizeof (Elf_External_Options) <= lend)
7122 	{
7123 	  Elf_Internal_Options intopt;
7124 
7125 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7126 					&intopt);
7127 	  if (intopt.size < sizeof (Elf_External_Options))
7128 	    {
7129 	      _bfd_error_handler
7130 		/* xgettext:c-format */
7131 		(_("%B: Warning: bad `%s' option size %u smaller than"
7132 		   " its header"),
7133 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7134 	      break;
7135 	    }
7136 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7137 	    {
7138 	      bfd_byte buf[8];
7139 
7140 	      if (bfd_seek (abfd,
7141 			    (hdr->sh_offset
7142 			     + (l - contents)
7143 			     + sizeof (Elf_External_Options)
7144 			     + (sizeof (Elf64_External_RegInfo) - 8)),
7145 			     SEEK_SET) != 0)
7146 		return FALSE;
7147 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
7148 	      if (bfd_bwrite (buf, 8, abfd) != 8)
7149 		return FALSE;
7150 	    }
7151 	  else if (intopt.kind == ODK_REGINFO)
7152 	    {
7153 	      bfd_byte buf[4];
7154 
7155 	      if (bfd_seek (abfd,
7156 			    (hdr->sh_offset
7157 			     + (l - contents)
7158 			     + sizeof (Elf_External_Options)
7159 			     + (sizeof (Elf32_External_RegInfo) - 4)),
7160 			    SEEK_SET) != 0)
7161 		return FALSE;
7162 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
7163 	      if (bfd_bwrite (buf, 4, abfd) != 4)
7164 		return FALSE;
7165 	    }
7166 	  l += intopt.size;
7167 	}
7168     }
7169 
7170   if (hdr->bfd_section != NULL)
7171     {
7172       const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
7173 
7174       /* .sbss is not handled specially here because the GNU/Linux
7175 	 prelinker can convert .sbss from NOBITS to PROGBITS and
7176 	 changing it back to NOBITS breaks the binary.  The entry in
7177 	 _bfd_mips_elf_special_sections will ensure the correct flags
7178 	 are set on .sbss if BFD creates it without reading it from an
7179 	 input file, and without special handling here the flags set
7180 	 on it in an input file will be followed.  */
7181       if (strcmp (name, ".sdata") == 0
7182 	  || strcmp (name, ".lit8") == 0
7183 	  || strcmp (name, ".lit4") == 0)
7184 	hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7185       else if (strcmp (name, ".srdata") == 0)
7186 	hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7187       else if (strcmp (name, ".compact_rel") == 0)
7188 	hdr->sh_flags = 0;
7189       else if (strcmp (name, ".rtproc") == 0)
7190 	{
7191 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7192 	    {
7193 	      unsigned int adjust;
7194 
7195 	      adjust = hdr->sh_size % hdr->sh_addralign;
7196 	      if (adjust != 0)
7197 		hdr->sh_size += hdr->sh_addralign - adjust;
7198 	    }
7199 	}
7200     }
7201 
7202   return TRUE;
7203 }
7204 
7205 /* Handle a MIPS specific section when reading an object file.  This
7206    is called when elfcode.h finds a section with an unknown type.
7207    This routine supports both the 32-bit and 64-bit ELF ABI.
7208 
7209    FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7210    how to.  */
7211 
7212 bfd_boolean
7213 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7214 				 Elf_Internal_Shdr *hdr,
7215 				 const char *name,
7216 				 int shindex)
7217 {
7218   flagword flags = 0;
7219 
7220   /* There ought to be a place to keep ELF backend specific flags, but
7221      at the moment there isn't one.  We just keep track of the
7222      sections by their name, instead.  Fortunately, the ABI gives
7223      suggested names for all the MIPS specific sections, so we will
7224      probably get away with this.  */
7225   switch (hdr->sh_type)
7226     {
7227     case SHT_MIPS_LIBLIST:
7228       if (strcmp (name, ".liblist") != 0)
7229 	return FALSE;
7230       break;
7231     case SHT_MIPS_MSYM:
7232       if (strcmp (name, ".msym") != 0)
7233 	return FALSE;
7234       break;
7235     case SHT_MIPS_CONFLICT:
7236       if (strcmp (name, ".conflict") != 0)
7237 	return FALSE;
7238       break;
7239     case SHT_MIPS_GPTAB:
7240       if (! CONST_STRNEQ (name, ".gptab."))
7241 	return FALSE;
7242       break;
7243     case SHT_MIPS_UCODE:
7244       if (strcmp (name, ".ucode") != 0)
7245 	return FALSE;
7246       break;
7247     case SHT_MIPS_DEBUG:
7248       if (strcmp (name, ".mdebug") != 0)
7249 	return FALSE;
7250       flags = SEC_DEBUGGING;
7251       break;
7252     case SHT_MIPS_REGINFO:
7253       if (strcmp (name, ".reginfo") != 0
7254 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7255 	return FALSE;
7256       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7257       break;
7258     case SHT_MIPS_IFACE:
7259       if (strcmp (name, ".MIPS.interfaces") != 0)
7260 	return FALSE;
7261       break;
7262     case SHT_MIPS_CONTENT:
7263       if (! CONST_STRNEQ (name, ".MIPS.content"))
7264 	return FALSE;
7265       break;
7266     case SHT_MIPS_OPTIONS:
7267       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7268 	return FALSE;
7269       break;
7270     case SHT_MIPS_ABIFLAGS:
7271       if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7272 	return FALSE;
7273       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7274       break;
7275     case SHT_MIPS_DWARF:
7276       if (! CONST_STRNEQ (name, ".debug_")
7277           && ! CONST_STRNEQ (name, ".zdebug_"))
7278 	return FALSE;
7279       break;
7280     case SHT_MIPS_SYMBOL_LIB:
7281       if (strcmp (name, ".MIPS.symlib") != 0)
7282 	return FALSE;
7283       break;
7284     case SHT_MIPS_EVENTS:
7285       if (! CONST_STRNEQ (name, ".MIPS.events")
7286 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7287 	return FALSE;
7288       break;
7289     default:
7290       break;
7291     }
7292 
7293   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7294     return FALSE;
7295 
7296   if (flags)
7297     {
7298       if (! bfd_set_section_flags (abfd, hdr->bfd_section,
7299 				   (bfd_get_section_flags (abfd,
7300 							   hdr->bfd_section)
7301 				    | flags)))
7302 	return FALSE;
7303     }
7304 
7305   if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7306     {
7307       Elf_External_ABIFlags_v0 ext;
7308 
7309       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7310 				      &ext, 0, sizeof ext))
7311 	return FALSE;
7312       bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7313 					&mips_elf_tdata (abfd)->abiflags);
7314       if (mips_elf_tdata (abfd)->abiflags.version != 0)
7315 	return FALSE;
7316       mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7317     }
7318 
7319   /* FIXME: We should record sh_info for a .gptab section.  */
7320 
7321   /* For a .reginfo section, set the gp value in the tdata information
7322      from the contents of this section.  We need the gp value while
7323      processing relocs, so we just get it now.  The .reginfo section
7324      is not used in the 64-bit MIPS ELF ABI.  */
7325   if (hdr->sh_type == SHT_MIPS_REGINFO)
7326     {
7327       Elf32_External_RegInfo ext;
7328       Elf32_RegInfo s;
7329 
7330       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7331 				      &ext, 0, sizeof ext))
7332 	return FALSE;
7333       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7334       elf_gp (abfd) = s.ri_gp_value;
7335     }
7336 
7337   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7338      set the gp value based on what we find.  We may see both
7339      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7340      they should agree.  */
7341   if (hdr->sh_type == SHT_MIPS_OPTIONS)
7342     {
7343       bfd_byte *contents, *l, *lend;
7344 
7345       contents = bfd_malloc (hdr->sh_size);
7346       if (contents == NULL)
7347 	return FALSE;
7348       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7349 				      0, hdr->sh_size))
7350 	{
7351 	  free (contents);
7352 	  return FALSE;
7353 	}
7354       l = contents;
7355       lend = contents + hdr->sh_size;
7356       while (l + sizeof (Elf_External_Options) <= lend)
7357 	{
7358 	  Elf_Internal_Options intopt;
7359 
7360 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7361 					&intopt);
7362 	  if (intopt.size < sizeof (Elf_External_Options))
7363 	    {
7364 	      _bfd_error_handler
7365 		/* xgettext:c-format */
7366 		(_("%B: Warning: bad `%s' option size %u smaller than"
7367 		   " its header"),
7368 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7369 	      break;
7370 	    }
7371 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7372 	    {
7373 	      Elf64_Internal_RegInfo intreg;
7374 
7375 	      bfd_mips_elf64_swap_reginfo_in
7376 		(abfd,
7377 		 ((Elf64_External_RegInfo *)
7378 		  (l + sizeof (Elf_External_Options))),
7379 		 &intreg);
7380 	      elf_gp (abfd) = intreg.ri_gp_value;
7381 	    }
7382 	  else if (intopt.kind == ODK_REGINFO)
7383 	    {
7384 	      Elf32_RegInfo intreg;
7385 
7386 	      bfd_mips_elf32_swap_reginfo_in
7387 		(abfd,
7388 		 ((Elf32_External_RegInfo *)
7389 		  (l + sizeof (Elf_External_Options))),
7390 		 &intreg);
7391 	      elf_gp (abfd) = intreg.ri_gp_value;
7392 	    }
7393 	  l += intopt.size;
7394 	}
7395       free (contents);
7396     }
7397 
7398   return TRUE;
7399 }
7400 
7401 /* Set the correct type for a MIPS ELF section.  We do this by the
7402    section name, which is a hack, but ought to work.  This routine is
7403    used by both the 32-bit and the 64-bit ABI.  */
7404 
7405 bfd_boolean
7406 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7407 {
7408   const char *name = bfd_get_section_name (abfd, sec);
7409 
7410   if (strcmp (name, ".liblist") == 0)
7411     {
7412       hdr->sh_type = SHT_MIPS_LIBLIST;
7413       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7414       /* The sh_link field is set in final_write_processing.  */
7415     }
7416   else if (strcmp (name, ".conflict") == 0)
7417     hdr->sh_type = SHT_MIPS_CONFLICT;
7418   else if (CONST_STRNEQ (name, ".gptab."))
7419     {
7420       hdr->sh_type = SHT_MIPS_GPTAB;
7421       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7422       /* The sh_info field is set in final_write_processing.  */
7423     }
7424   else if (strcmp (name, ".ucode") == 0)
7425     hdr->sh_type = SHT_MIPS_UCODE;
7426   else if (strcmp (name, ".mdebug") == 0)
7427     {
7428       hdr->sh_type = SHT_MIPS_DEBUG;
7429       /* In a shared object on IRIX 5.3, the .mdebug section has an
7430          entsize of 0.  FIXME: Does this matter?  */
7431       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7432 	hdr->sh_entsize = 0;
7433       else
7434 	hdr->sh_entsize = 1;
7435     }
7436   else if (strcmp (name, ".reginfo") == 0)
7437     {
7438       hdr->sh_type = SHT_MIPS_REGINFO;
7439       /* In a shared object on IRIX 5.3, the .reginfo section has an
7440          entsize of 0x18.  FIXME: Does this matter?  */
7441       if (SGI_COMPAT (abfd))
7442 	{
7443 	  if ((abfd->flags & DYNAMIC) != 0)
7444 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7445 	  else
7446 	    hdr->sh_entsize = 1;
7447 	}
7448       else
7449 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7450     }
7451   else if (SGI_COMPAT (abfd)
7452 	   && (strcmp (name, ".hash") == 0
7453 	       || strcmp (name, ".dynamic") == 0
7454 	       || strcmp (name, ".dynstr") == 0))
7455     {
7456       if (SGI_COMPAT (abfd))
7457 	hdr->sh_entsize = 0;
7458 #if 0
7459       /* This isn't how the IRIX6 linker behaves.  */
7460       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7461 #endif
7462     }
7463   else if (strcmp (name, ".got") == 0
7464 	   || strcmp (name, ".srdata") == 0
7465 	   || strcmp (name, ".sdata") == 0
7466 	   || strcmp (name, ".sbss") == 0
7467 	   || strcmp (name, ".lit4") == 0
7468 	   || strcmp (name, ".lit8") == 0)
7469     hdr->sh_flags |= SHF_MIPS_GPREL;
7470   else if (strcmp (name, ".MIPS.interfaces") == 0)
7471     {
7472       hdr->sh_type = SHT_MIPS_IFACE;
7473       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7474     }
7475   else if (CONST_STRNEQ (name, ".MIPS.content"))
7476     {
7477       hdr->sh_type = SHT_MIPS_CONTENT;
7478       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7479       /* The sh_info field is set in final_write_processing.  */
7480     }
7481   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7482     {
7483       hdr->sh_type = SHT_MIPS_OPTIONS;
7484       hdr->sh_entsize = 1;
7485       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7486     }
7487   else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7488     {
7489       hdr->sh_type = SHT_MIPS_ABIFLAGS;
7490       hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7491     }
7492   else if (CONST_STRNEQ (name, ".debug_")
7493            || CONST_STRNEQ (name, ".zdebug_"))
7494     {
7495       hdr->sh_type = SHT_MIPS_DWARF;
7496 
7497       /* Irix facilities such as libexc expect a single .debug_frame
7498 	 per executable, the system ones have NOSTRIP set and the linker
7499 	 doesn't merge sections with different flags so ...  */
7500       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7501 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7502     }
7503   else if (strcmp (name, ".MIPS.symlib") == 0)
7504     {
7505       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7506       /* The sh_link and sh_info fields are set in
7507          final_write_processing.  */
7508     }
7509   else if (CONST_STRNEQ (name, ".MIPS.events")
7510 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
7511     {
7512       hdr->sh_type = SHT_MIPS_EVENTS;
7513       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7514       /* The sh_link field is set in final_write_processing.  */
7515     }
7516   else if (strcmp (name, ".msym") == 0)
7517     {
7518       hdr->sh_type = SHT_MIPS_MSYM;
7519       hdr->sh_flags |= SHF_ALLOC;
7520       hdr->sh_entsize = 8;
7521     }
7522 
7523   /* The generic elf_fake_sections will set up REL_HDR using the default
7524    kind of relocations.  We used to set up a second header for the
7525    non-default kind of relocations here, but only NewABI would use
7526    these, and the IRIX ld doesn't like resulting empty RELA sections.
7527    Thus we create those header only on demand now.  */
7528 
7529   return TRUE;
7530 }
7531 
7532 /* Given a BFD section, try to locate the corresponding ELF section
7533    index.  This is used by both the 32-bit and the 64-bit ABI.
7534    Actually, it's not clear to me that the 64-bit ABI supports these,
7535    but for non-PIC objects we will certainly want support for at least
7536    the .scommon section.  */
7537 
7538 bfd_boolean
7539 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7540 					asection *sec, int *retval)
7541 {
7542   if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7543     {
7544       *retval = SHN_MIPS_SCOMMON;
7545       return TRUE;
7546     }
7547   if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7548     {
7549       *retval = SHN_MIPS_ACOMMON;
7550       return TRUE;
7551     }
7552   return FALSE;
7553 }
7554 
7555 /* Hook called by the linker routine which adds symbols from an object
7556    file.  We must handle the special MIPS section numbers here.  */
7557 
7558 bfd_boolean
7559 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7560 			       Elf_Internal_Sym *sym, const char **namep,
7561 			       flagword *flagsp ATTRIBUTE_UNUSED,
7562 			       asection **secp, bfd_vma *valp)
7563 {
7564   if (SGI_COMPAT (abfd)
7565       && (abfd->flags & DYNAMIC) != 0
7566       && strcmp (*namep, "_rld_new_interface") == 0)
7567     {
7568       /* Skip IRIX5 rld entry name.  */
7569       *namep = NULL;
7570       return TRUE;
7571     }
7572 
7573   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7574      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7575      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7576      a magic symbol resolved by the linker, we ignore this bogus definition
7577      of _gp_disp.  New ABI objects do not suffer from this problem so this
7578      is not done for them. */
7579   if (!NEWABI_P(abfd)
7580       && (sym->st_shndx == SHN_ABS)
7581       && (strcmp (*namep, "_gp_disp") == 0))
7582     {
7583       *namep = NULL;
7584       return TRUE;
7585     }
7586 
7587   switch (sym->st_shndx)
7588     {
7589     case SHN_COMMON:
7590       /* Common symbols less than the GP size are automatically
7591 	 treated as SHN_MIPS_SCOMMON symbols.  */
7592       if (sym->st_size > elf_gp_size (abfd)
7593 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7594 	  || IRIX_COMPAT (abfd) == ict_irix6)
7595 	break;
7596       /* Fall through.  */
7597     case SHN_MIPS_SCOMMON:
7598       *secp = bfd_make_section_old_way (abfd, ".scommon");
7599       (*secp)->flags |= SEC_IS_COMMON;
7600       *valp = sym->st_size;
7601       break;
7602 
7603     case SHN_MIPS_TEXT:
7604       /* This section is used in a shared object.  */
7605       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7606 	{
7607 	  asymbol *elf_text_symbol;
7608 	  asection *elf_text_section;
7609 	  bfd_size_type amt = sizeof (asection);
7610 
7611 	  elf_text_section = bfd_zalloc (abfd, amt);
7612 	  if (elf_text_section == NULL)
7613 	    return FALSE;
7614 
7615 	  amt = sizeof (asymbol);
7616 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7617 	  if (elf_text_symbol == NULL)
7618 	    return FALSE;
7619 
7620 	  /* Initialize the section.  */
7621 
7622 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7623 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7624 
7625 	  elf_text_section->symbol = elf_text_symbol;
7626 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7627 
7628 	  elf_text_section->name = ".text";
7629 	  elf_text_section->flags = SEC_NO_FLAGS;
7630 	  elf_text_section->output_section = NULL;
7631 	  elf_text_section->owner = abfd;
7632 	  elf_text_symbol->name = ".text";
7633 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7634 	  elf_text_symbol->section = elf_text_section;
7635 	}
7636       /* This code used to do *secp = bfd_und_section_ptr if
7637          bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7638          so I took it out.  */
7639       *secp = mips_elf_tdata (abfd)->elf_text_section;
7640       break;
7641 
7642     case SHN_MIPS_ACOMMON:
7643       /* Fall through. XXX Can we treat this as allocated data?  */
7644     case SHN_MIPS_DATA:
7645       /* This section is used in a shared object.  */
7646       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7647 	{
7648 	  asymbol *elf_data_symbol;
7649 	  asection *elf_data_section;
7650 	  bfd_size_type amt = sizeof (asection);
7651 
7652 	  elf_data_section = bfd_zalloc (abfd, amt);
7653 	  if (elf_data_section == NULL)
7654 	    return FALSE;
7655 
7656 	  amt = sizeof (asymbol);
7657 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7658 	  if (elf_data_symbol == NULL)
7659 	    return FALSE;
7660 
7661 	  /* Initialize the section.  */
7662 
7663 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7664 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7665 
7666 	  elf_data_section->symbol = elf_data_symbol;
7667 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7668 
7669 	  elf_data_section->name = ".data";
7670 	  elf_data_section->flags = SEC_NO_FLAGS;
7671 	  elf_data_section->output_section = NULL;
7672 	  elf_data_section->owner = abfd;
7673 	  elf_data_symbol->name = ".data";
7674 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7675 	  elf_data_symbol->section = elf_data_section;
7676 	}
7677       /* This code used to do *secp = bfd_und_section_ptr if
7678          bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7679          so I took it out.  */
7680       *secp = mips_elf_tdata (abfd)->elf_data_section;
7681       break;
7682 
7683     case SHN_MIPS_SUNDEFINED:
7684       *secp = bfd_und_section_ptr;
7685       break;
7686     }
7687 
7688   if (SGI_COMPAT (abfd)
7689       && ! bfd_link_pic (info)
7690       && info->output_bfd->xvec == abfd->xvec
7691       && strcmp (*namep, "__rld_obj_head") == 0)
7692     {
7693       struct elf_link_hash_entry *h;
7694       struct bfd_link_hash_entry *bh;
7695 
7696       /* Mark __rld_obj_head as dynamic.  */
7697       bh = NULL;
7698       if (! (_bfd_generic_link_add_one_symbol
7699 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7700 	      get_elf_backend_data (abfd)->collect, &bh)))
7701 	return FALSE;
7702 
7703       h = (struct elf_link_hash_entry *) bh;
7704       h->non_elf = 0;
7705       h->def_regular = 1;
7706       h->type = STT_OBJECT;
7707 
7708       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7709 	return FALSE;
7710 
7711       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7712       mips_elf_hash_table (info)->rld_symbol = h;
7713     }
7714 
7715   /* If this is a mips16 text symbol, add 1 to the value to make it
7716      odd.  This will cause something like .word SYM to come up with
7717      the right value when it is loaded into the PC.  */
7718   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7719     ++*valp;
7720 
7721   return TRUE;
7722 }
7723 
7724 /* This hook function is called before the linker writes out a global
7725    symbol.  We mark symbols as small common if appropriate.  This is
7726    also where we undo the increment of the value for a mips16 symbol.  */
7727 
7728 int
7729 _bfd_mips_elf_link_output_symbol_hook
7730   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7731    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7732    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7733 {
7734   /* If we see a common symbol, which implies a relocatable link, then
7735      if a symbol was small common in an input file, mark it as small
7736      common in the output file.  */
7737   if (sym->st_shndx == SHN_COMMON
7738       && strcmp (input_sec->name, ".scommon") == 0)
7739     sym->st_shndx = SHN_MIPS_SCOMMON;
7740 
7741   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7742     sym->st_value &= ~1;
7743 
7744   return 1;
7745 }
7746 
7747 /* Functions for the dynamic linker.  */
7748 
7749 /* Create dynamic sections when linking against a dynamic object.  */
7750 
7751 bfd_boolean
7752 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7753 {
7754   struct elf_link_hash_entry *h;
7755   struct bfd_link_hash_entry *bh;
7756   flagword flags;
7757   register asection *s;
7758   const char * const *namep;
7759   struct mips_elf_link_hash_table *htab;
7760 
7761   htab = mips_elf_hash_table (info);
7762   BFD_ASSERT (htab != NULL);
7763 
7764   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7765 	   | SEC_LINKER_CREATED | SEC_READONLY);
7766 
7767   /* The psABI requires a read-only .dynamic section, but the VxWorks
7768      EABI doesn't.  */
7769   if (!htab->is_vxworks)
7770     {
7771       s = bfd_get_linker_section (abfd, ".dynamic");
7772       if (s != NULL)
7773 	{
7774 	  if (! bfd_set_section_flags (abfd, s, flags))
7775 	    return FALSE;
7776 	}
7777     }
7778 
7779   /* We need to create .got section.  */
7780   if (!mips_elf_create_got_section (abfd, info))
7781     return FALSE;
7782 
7783   if (! mips_elf_rel_dyn_section (info, TRUE))
7784     return FALSE;
7785 
7786   /* Create .stub section.  */
7787   s = bfd_make_section_anyway_with_flags (abfd,
7788 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7789 					  flags | SEC_CODE);
7790   if (s == NULL
7791       || ! bfd_set_section_alignment (abfd, s,
7792 				      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7793     return FALSE;
7794   htab->sstubs = s;
7795 
7796   if (!mips_elf_hash_table (info)->use_rld_obj_head
7797       && bfd_link_executable (info)
7798       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7799     {
7800       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7801 					      flags &~ (flagword) SEC_READONLY);
7802       if (s == NULL
7803 	  || ! bfd_set_section_alignment (abfd, s,
7804 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7805 	return FALSE;
7806     }
7807 
7808   /* On IRIX5, we adjust add some additional symbols and change the
7809      alignments of several sections.  There is no ABI documentation
7810      indicating that this is necessary on IRIX6, nor any evidence that
7811      the linker takes such action.  */
7812   if (IRIX_COMPAT (abfd) == ict_irix5)
7813     {
7814       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7815 	{
7816 	  bh = NULL;
7817 	  if (! (_bfd_generic_link_add_one_symbol
7818 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7819 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7820 	    return FALSE;
7821 
7822 	  h = (struct elf_link_hash_entry *) bh;
7823 	  h->non_elf = 0;
7824 	  h->def_regular = 1;
7825 	  h->type = STT_SECTION;
7826 
7827 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7828 	    return FALSE;
7829 	}
7830 
7831       /* We need to create a .compact_rel section.  */
7832       if (SGI_COMPAT (abfd))
7833 	{
7834 	  if (!mips_elf_create_compact_rel_section (abfd, info))
7835 	    return FALSE;
7836 	}
7837 
7838       /* Change alignments of some sections.  */
7839       s = bfd_get_linker_section (abfd, ".hash");
7840       if (s != NULL)
7841 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7842 
7843       s = bfd_get_linker_section (abfd, ".dynsym");
7844       if (s != NULL)
7845 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7846 
7847       s = bfd_get_linker_section (abfd, ".dynstr");
7848       if (s != NULL)
7849 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7850 
7851       /* ??? */
7852       s = bfd_get_section_by_name (abfd, ".reginfo");
7853       if (s != NULL)
7854 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7855 
7856       s = bfd_get_linker_section (abfd, ".dynamic");
7857       if (s != NULL)
7858 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7859     }
7860 
7861   if (bfd_link_executable (info))
7862     {
7863       const char *name;
7864 
7865       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7866       bh = NULL;
7867       if (!(_bfd_generic_link_add_one_symbol
7868 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7869 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7870 	return FALSE;
7871 
7872       h = (struct elf_link_hash_entry *) bh;
7873       h->non_elf = 0;
7874       h->def_regular = 1;
7875       h->type = STT_SECTION;
7876 
7877       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7878 	return FALSE;
7879 
7880       if (! mips_elf_hash_table (info)->use_rld_obj_head)
7881 	{
7882 	  /* __rld_map is a four byte word located in the .data section
7883 	     and is filled in by the rtld to contain a pointer to
7884 	     the _r_debug structure. Its symbol value will be set in
7885 	     _bfd_mips_elf_finish_dynamic_symbol.  */
7886 	  s = bfd_get_linker_section (abfd, ".rld_map");
7887 	  BFD_ASSERT (s != NULL);
7888 
7889 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7890 	  bh = NULL;
7891 	  if (!(_bfd_generic_link_add_one_symbol
7892 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7893 		 get_elf_backend_data (abfd)->collect, &bh)))
7894 	    return FALSE;
7895 
7896 	  h = (struct elf_link_hash_entry *) bh;
7897 	  h->non_elf = 0;
7898 	  h->def_regular = 1;
7899 	  h->type = STT_OBJECT;
7900 
7901 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7902 	    return FALSE;
7903 	  mips_elf_hash_table (info)->rld_symbol = h;
7904 	}
7905     }
7906 
7907   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7908      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
7909   if (!_bfd_elf_create_dynamic_sections (abfd, info))
7910     return FALSE;
7911 
7912   /* Do the usual VxWorks handling.  */
7913   if (htab->is_vxworks
7914       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7915     return FALSE;
7916 
7917   return TRUE;
7918 }
7919 
7920 /* Return true if relocation REL against section SEC is a REL rather than
7921    RELA relocation.  RELOCS is the first relocation in the section and
7922    ABFD is the bfd that contains SEC.  */
7923 
7924 static bfd_boolean
7925 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7926 			   const Elf_Internal_Rela *relocs,
7927 			   const Elf_Internal_Rela *rel)
7928 {
7929   Elf_Internal_Shdr *rel_hdr;
7930   const struct elf_backend_data *bed;
7931 
7932   /* To determine which flavor of relocation this is, we depend on the
7933      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7934   rel_hdr = elf_section_data (sec)->rel.hdr;
7935   if (rel_hdr == NULL)
7936     return FALSE;
7937   bed = get_elf_backend_data (abfd);
7938   return ((size_t) (rel - relocs)
7939 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7940 }
7941 
7942 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7943    HOWTO is the relocation's howto and CONTENTS points to the contents
7944    of the section that REL is against.  */
7945 
7946 static bfd_vma
7947 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7948 			  reloc_howto_type *howto, bfd_byte *contents)
7949 {
7950   bfd_byte *location;
7951   unsigned int r_type;
7952   bfd_vma addend;
7953   bfd_vma bytes;
7954 
7955   r_type = ELF_R_TYPE (abfd, rel->r_info);
7956   location = contents + rel->r_offset;
7957 
7958   /* Get the addend, which is stored in the input file.  */
7959   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7960   bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
7961   _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7962 
7963   addend = bytes & howto->src_mask;
7964 
7965   /* Shift is 2, unusually, for microMIPS JALX.  Adjust the addend
7966      accordingly.  */
7967   if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
7968     addend <<= 1;
7969 
7970   return addend;
7971 }
7972 
7973 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7974    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7975    and update *ADDEND with the final addend.  Return true on success
7976    or false if the LO16 could not be found.  RELEND is the exclusive
7977    upper bound on the relocations for REL's section.  */
7978 
7979 static bfd_boolean
7980 mips_elf_add_lo16_rel_addend (bfd *abfd,
7981 			      const Elf_Internal_Rela *rel,
7982 			      const Elf_Internal_Rela *relend,
7983 			      bfd_byte *contents, bfd_vma *addend)
7984 {
7985   unsigned int r_type, lo16_type;
7986   const Elf_Internal_Rela *lo16_relocation;
7987   reloc_howto_type *lo16_howto;
7988   bfd_vma l;
7989 
7990   r_type = ELF_R_TYPE (abfd, rel->r_info);
7991   if (mips16_reloc_p (r_type))
7992     lo16_type = R_MIPS16_LO16;
7993   else if (micromips_reloc_p (r_type))
7994     lo16_type = R_MICROMIPS_LO16;
7995   else if (r_type == R_MIPS_PCHI16)
7996     lo16_type = R_MIPS_PCLO16;
7997   else
7998     lo16_type = R_MIPS_LO16;
7999 
8000   /* The combined value is the sum of the HI16 addend, left-shifted by
8001      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
8002      code does a `lui' of the HI16 value, and then an `addiu' of the
8003      LO16 value.)
8004 
8005      Scan ahead to find a matching LO16 relocation.
8006 
8007      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8008      be immediately following.  However, for the IRIX6 ABI, the next
8009      relocation may be a composed relocation consisting of several
8010      relocations for the same address.  In that case, the R_MIPS_LO16
8011      relocation may occur as one of these.  We permit a similar
8012      extension in general, as that is useful for GCC.
8013 
8014      In some cases GCC dead code elimination removes the LO16 but keeps
8015      the corresponding HI16.  This is strictly speaking a violation of
8016      the ABI but not immediately harmful.  */
8017   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8018   if (lo16_relocation == NULL)
8019     return FALSE;
8020 
8021   /* Obtain the addend kept there.  */
8022   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8023   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8024 
8025   l <<= lo16_howto->rightshift;
8026   l = _bfd_mips_elf_sign_extend (l, 16);
8027 
8028   *addend <<= 16;
8029   *addend += l;
8030   return TRUE;
8031 }
8032 
8033 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
8034    store the contents in *CONTENTS on success.  Assume that *CONTENTS
8035    already holds the contents if it is nonull on entry.  */
8036 
8037 static bfd_boolean
8038 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8039 {
8040   if (*contents)
8041     return TRUE;
8042 
8043   /* Get cached copy if it exists.  */
8044   if (elf_section_data (sec)->this_hdr.contents != NULL)
8045     {
8046       *contents = elf_section_data (sec)->this_hdr.contents;
8047       return TRUE;
8048     }
8049 
8050   return bfd_malloc_and_get_section (abfd, sec, contents);
8051 }
8052 
8053 /* Make a new PLT record to keep internal data.  */
8054 
8055 static struct plt_entry *
8056 mips_elf_make_plt_record (bfd *abfd)
8057 {
8058   struct plt_entry *entry;
8059 
8060   entry = bfd_zalloc (abfd, sizeof (*entry));
8061   if (entry == NULL)
8062     return NULL;
8063 
8064   entry->stub_offset = MINUS_ONE;
8065   entry->mips_offset = MINUS_ONE;
8066   entry->comp_offset = MINUS_ONE;
8067   entry->gotplt_index = MINUS_ONE;
8068   return entry;
8069 }
8070 
8071 /* Look through the relocs for a section during the first phase, and
8072    allocate space in the global offset table and record the need for
8073    standard MIPS and compressed procedure linkage table entries.  */
8074 
8075 bfd_boolean
8076 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8077 			    asection *sec, const Elf_Internal_Rela *relocs)
8078 {
8079   const char *name;
8080   bfd *dynobj;
8081   Elf_Internal_Shdr *symtab_hdr;
8082   struct elf_link_hash_entry **sym_hashes;
8083   size_t extsymoff;
8084   const Elf_Internal_Rela *rel;
8085   const Elf_Internal_Rela *rel_end;
8086   asection *sreloc;
8087   const struct elf_backend_data *bed;
8088   struct mips_elf_link_hash_table *htab;
8089   bfd_byte *contents;
8090   bfd_vma addend;
8091   reloc_howto_type *howto;
8092 
8093   if (bfd_link_relocatable (info))
8094     return TRUE;
8095 
8096   htab = mips_elf_hash_table (info);
8097   BFD_ASSERT (htab != NULL);
8098 
8099   dynobj = elf_hash_table (info)->dynobj;
8100   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8101   sym_hashes = elf_sym_hashes (abfd);
8102   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8103 
8104   bed = get_elf_backend_data (abfd);
8105   rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
8106 
8107   /* Check for the mips16 stub sections.  */
8108 
8109   name = bfd_get_section_name (abfd, sec);
8110   if (FN_STUB_P (name))
8111     {
8112       unsigned long r_symndx;
8113 
8114       /* Look at the relocation information to figure out which symbol
8115          this is for.  */
8116 
8117       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8118       if (r_symndx == 0)
8119 	{
8120 	  _bfd_error_handler
8121 	    /* xgettext:c-format */
8122 	    (_("%B: Warning: cannot determine the target function for"
8123 	       " stub section `%s'"),
8124 	     abfd, name);
8125 	  bfd_set_error (bfd_error_bad_value);
8126 	  return FALSE;
8127 	}
8128 
8129       if (r_symndx < extsymoff
8130 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8131 	{
8132 	  asection *o;
8133 
8134 	  /* This stub is for a local symbol.  This stub will only be
8135              needed if there is some relocation in this BFD, other
8136              than a 16 bit function call, which refers to this symbol.  */
8137 	  for (o = abfd->sections; o != NULL; o = o->next)
8138 	    {
8139 	      Elf_Internal_Rela *sec_relocs;
8140 	      const Elf_Internal_Rela *r, *rend;
8141 
8142 	      /* We can ignore stub sections when looking for relocs.  */
8143 	      if ((o->flags & SEC_RELOC) == 0
8144 		  || o->reloc_count == 0
8145 		  || section_allows_mips16_refs_p (o))
8146 		continue;
8147 
8148 	      sec_relocs
8149 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8150 					     info->keep_memory);
8151 	      if (sec_relocs == NULL)
8152 		return FALSE;
8153 
8154 	      rend = sec_relocs + o->reloc_count;
8155 	      for (r = sec_relocs; r < rend; r++)
8156 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8157 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8158 		  break;
8159 
8160 	      if (elf_section_data (o)->relocs != sec_relocs)
8161 		free (sec_relocs);
8162 
8163 	      if (r < rend)
8164 		break;
8165 	    }
8166 
8167 	  if (o == NULL)
8168 	    {
8169 	      /* There is no non-call reloc for this stub, so we do
8170                  not need it.  Since this function is called before
8171                  the linker maps input sections to output sections, we
8172                  can easily discard it by setting the SEC_EXCLUDE
8173                  flag.  */
8174 	      sec->flags |= SEC_EXCLUDE;
8175 	      return TRUE;
8176 	    }
8177 
8178 	  /* Record this stub in an array of local symbol stubs for
8179              this BFD.  */
8180 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
8181 	    {
8182 	      unsigned long symcount;
8183 	      asection **n;
8184 	      bfd_size_type amt;
8185 
8186 	      if (elf_bad_symtab (abfd))
8187 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8188 	      else
8189 		symcount = symtab_hdr->sh_info;
8190 	      amt = symcount * sizeof (asection *);
8191 	      n = bfd_zalloc (abfd, amt);
8192 	      if (n == NULL)
8193 		return FALSE;
8194 	      mips_elf_tdata (abfd)->local_stubs = n;
8195 	    }
8196 
8197 	  sec->flags |= SEC_KEEP;
8198 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8199 
8200 	  /* We don't need to set mips16_stubs_seen in this case.
8201              That flag is used to see whether we need to look through
8202              the global symbol table for stubs.  We don't need to set
8203              it here, because we just have a local stub.  */
8204 	}
8205       else
8206 	{
8207 	  struct mips_elf_link_hash_entry *h;
8208 
8209 	  h = ((struct mips_elf_link_hash_entry *)
8210 	       sym_hashes[r_symndx - extsymoff]);
8211 
8212 	  while (h->root.root.type == bfd_link_hash_indirect
8213 		 || h->root.root.type == bfd_link_hash_warning)
8214 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8215 
8216 	  /* H is the symbol this stub is for.  */
8217 
8218 	  /* If we already have an appropriate stub for this function, we
8219 	     don't need another one, so we can discard this one.  Since
8220 	     this function is called before the linker maps input sections
8221 	     to output sections, we can easily discard it by setting the
8222 	     SEC_EXCLUDE flag.  */
8223 	  if (h->fn_stub != NULL)
8224 	    {
8225 	      sec->flags |= SEC_EXCLUDE;
8226 	      return TRUE;
8227 	    }
8228 
8229 	  sec->flags |= SEC_KEEP;
8230 	  h->fn_stub = sec;
8231 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8232 	}
8233     }
8234   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8235     {
8236       unsigned long r_symndx;
8237       struct mips_elf_link_hash_entry *h;
8238       asection **loc;
8239 
8240       /* Look at the relocation information to figure out which symbol
8241          this is for.  */
8242 
8243       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8244       if (r_symndx == 0)
8245 	{
8246 	  _bfd_error_handler
8247 	    /* xgettext:c-format */
8248 	    (_("%B: Warning: cannot determine the target function for"
8249 	       " stub section `%s'"),
8250 	     abfd, name);
8251 	  bfd_set_error (bfd_error_bad_value);
8252 	  return FALSE;
8253 	}
8254 
8255       if (r_symndx < extsymoff
8256 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8257 	{
8258 	  asection *o;
8259 
8260 	  /* This stub is for a local symbol.  This stub will only be
8261              needed if there is some relocation (R_MIPS16_26) in this BFD
8262              that refers to this symbol.  */
8263 	  for (o = abfd->sections; o != NULL; o = o->next)
8264 	    {
8265 	      Elf_Internal_Rela *sec_relocs;
8266 	      const Elf_Internal_Rela *r, *rend;
8267 
8268 	      /* We can ignore stub sections when looking for relocs.  */
8269 	      if ((o->flags & SEC_RELOC) == 0
8270 		  || o->reloc_count == 0
8271 		  || section_allows_mips16_refs_p (o))
8272 		continue;
8273 
8274 	      sec_relocs
8275 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8276 					     info->keep_memory);
8277 	      if (sec_relocs == NULL)
8278 		return FALSE;
8279 
8280 	      rend = sec_relocs + o->reloc_count;
8281 	      for (r = sec_relocs; r < rend; r++)
8282 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8283 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8284 		    break;
8285 
8286 	      if (elf_section_data (o)->relocs != sec_relocs)
8287 		free (sec_relocs);
8288 
8289 	      if (r < rend)
8290 		break;
8291 	    }
8292 
8293 	  if (o == NULL)
8294 	    {
8295 	      /* There is no non-call reloc for this stub, so we do
8296                  not need it.  Since this function is called before
8297                  the linker maps input sections to output sections, we
8298                  can easily discard it by setting the SEC_EXCLUDE
8299                  flag.  */
8300 	      sec->flags |= SEC_EXCLUDE;
8301 	      return TRUE;
8302 	    }
8303 
8304 	  /* Record this stub in an array of local symbol call_stubs for
8305              this BFD.  */
8306 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8307 	    {
8308 	      unsigned long symcount;
8309 	      asection **n;
8310 	      bfd_size_type amt;
8311 
8312 	      if (elf_bad_symtab (abfd))
8313 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8314 	      else
8315 		symcount = symtab_hdr->sh_info;
8316 	      amt = symcount * sizeof (asection *);
8317 	      n = bfd_zalloc (abfd, amt);
8318 	      if (n == NULL)
8319 		return FALSE;
8320 	      mips_elf_tdata (abfd)->local_call_stubs = n;
8321 	    }
8322 
8323 	  sec->flags |= SEC_KEEP;
8324 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8325 
8326 	  /* We don't need to set mips16_stubs_seen in this case.
8327              That flag is used to see whether we need to look through
8328              the global symbol table for stubs.  We don't need to set
8329              it here, because we just have a local stub.  */
8330 	}
8331       else
8332 	{
8333 	  h = ((struct mips_elf_link_hash_entry *)
8334 	       sym_hashes[r_symndx - extsymoff]);
8335 
8336 	  /* H is the symbol this stub is for.  */
8337 
8338 	  if (CALL_FP_STUB_P (name))
8339 	    loc = &h->call_fp_stub;
8340 	  else
8341 	    loc = &h->call_stub;
8342 
8343 	  /* If we already have an appropriate stub for this function, we
8344 	     don't need another one, so we can discard this one.  Since
8345 	     this function is called before the linker maps input sections
8346 	     to output sections, we can easily discard it by setting the
8347 	     SEC_EXCLUDE flag.  */
8348 	  if (*loc != NULL)
8349 	    {
8350 	      sec->flags |= SEC_EXCLUDE;
8351 	      return TRUE;
8352 	    }
8353 
8354 	  sec->flags |= SEC_KEEP;
8355 	  *loc = sec;
8356 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8357 	}
8358     }
8359 
8360   sreloc = NULL;
8361   contents = NULL;
8362   for (rel = relocs; rel < rel_end; ++rel)
8363     {
8364       unsigned long r_symndx;
8365       unsigned int r_type;
8366       struct elf_link_hash_entry *h;
8367       bfd_boolean can_make_dynamic_p;
8368       bfd_boolean call_reloc_p;
8369       bfd_boolean constrain_symbol_p;
8370 
8371       r_symndx = ELF_R_SYM (abfd, rel->r_info);
8372       r_type = ELF_R_TYPE (abfd, rel->r_info);
8373 
8374       if (r_symndx < extsymoff)
8375 	h = NULL;
8376       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8377 	{
8378 	  _bfd_error_handler
8379 	    /* xgettext:c-format */
8380 	    (_("%B: Malformed reloc detected for section %s"),
8381 	     abfd, name);
8382 	  bfd_set_error (bfd_error_bad_value);
8383 	  return FALSE;
8384 	}
8385       else
8386 	{
8387 	  h = sym_hashes[r_symndx - extsymoff];
8388 	  if (h != NULL)
8389 	    {
8390 	      while (h->root.type == bfd_link_hash_indirect
8391 		     || h->root.type == bfd_link_hash_warning)
8392 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8393 
8394 	      /* PR15323, ref flags aren't set for references in the
8395 		 same object.  */
8396 	      h->root.non_ir_ref = 1;
8397 	    }
8398 	}
8399 
8400       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8401 	 relocation into a dynamic one.  */
8402       can_make_dynamic_p = FALSE;
8403 
8404       /* Set CALL_RELOC_P to true if the relocation is for a call,
8405 	 and if pointer equality therefore doesn't matter.  */
8406       call_reloc_p = FALSE;
8407 
8408       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8409 	 into account when deciding how to define the symbol.
8410 	 Relocations in nonallocatable sections such as .pdr and
8411 	 .debug* should have no effect.  */
8412       constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8413 
8414       switch (r_type)
8415 	{
8416 	case R_MIPS_CALL16:
8417 	case R_MIPS_CALL_HI16:
8418 	case R_MIPS_CALL_LO16:
8419 	case R_MIPS16_CALL16:
8420 	case R_MICROMIPS_CALL16:
8421 	case R_MICROMIPS_CALL_HI16:
8422 	case R_MICROMIPS_CALL_LO16:
8423 	  call_reloc_p = TRUE;
8424 	  /* Fall through.  */
8425 
8426 	case R_MIPS_GOT16:
8427 	case R_MIPS_GOT_HI16:
8428 	case R_MIPS_GOT_LO16:
8429 	case R_MIPS_GOT_PAGE:
8430 	case R_MIPS_GOT_OFST:
8431 	case R_MIPS_GOT_DISP:
8432 	case R_MIPS_TLS_GOTTPREL:
8433 	case R_MIPS_TLS_GD:
8434 	case R_MIPS_TLS_LDM:
8435 	case R_MIPS16_GOT16:
8436 	case R_MIPS16_TLS_GOTTPREL:
8437 	case R_MIPS16_TLS_GD:
8438 	case R_MIPS16_TLS_LDM:
8439 	case R_MICROMIPS_GOT16:
8440 	case R_MICROMIPS_GOT_HI16:
8441 	case R_MICROMIPS_GOT_LO16:
8442 	case R_MICROMIPS_GOT_PAGE:
8443 	case R_MICROMIPS_GOT_OFST:
8444 	case R_MICROMIPS_GOT_DISP:
8445 	case R_MICROMIPS_TLS_GOTTPREL:
8446 	case R_MICROMIPS_TLS_GD:
8447 	case R_MICROMIPS_TLS_LDM:
8448 	  if (dynobj == NULL)
8449 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8450 	  if (!mips_elf_create_got_section (dynobj, info))
8451 	    return FALSE;
8452 	  if (htab->is_vxworks && !bfd_link_pic (info))
8453 	    {
8454 	      _bfd_error_handler
8455 		/* xgettext:c-format */
8456 		(_("%B: GOT reloc at 0x%lx not expected in executables"),
8457 		 abfd, (unsigned long) rel->r_offset);
8458 	      bfd_set_error (bfd_error_bad_value);
8459 	      return FALSE;
8460 	    }
8461 	  can_make_dynamic_p = TRUE;
8462 	  break;
8463 
8464 	case R_MIPS_NONE:
8465 	case R_MIPS_JALR:
8466 	case R_MICROMIPS_JALR:
8467 	  /* These relocations have empty fields and are purely there to
8468 	     provide link information.  The symbol value doesn't matter.  */
8469 	  constrain_symbol_p = FALSE;
8470 	  break;
8471 
8472 	case R_MIPS_GPREL16:
8473 	case R_MIPS_GPREL32:
8474 	case R_MIPS16_GPREL:
8475 	case R_MICROMIPS_GPREL16:
8476 	  /* GP-relative relocations always resolve to a definition in a
8477 	     regular input file, ignoring the one-definition rule.  This is
8478 	     important for the GP setup sequence in NewABI code, which
8479 	     always resolves to a local function even if other relocations
8480 	     against the symbol wouldn't.  */
8481 	  constrain_symbol_p = FALSE;
8482 	  break;
8483 
8484 	case R_MIPS_32:
8485 	case R_MIPS_REL32:
8486 	case R_MIPS_64:
8487 	  /* In VxWorks executables, references to external symbols
8488 	     must be handled using copy relocs or PLT entries; it is not
8489 	     possible to convert this relocation into a dynamic one.
8490 
8491 	     For executables that use PLTs and copy-relocs, we have a
8492 	     choice between converting the relocation into a dynamic
8493 	     one or using copy relocations or PLT entries.  It is
8494 	     usually better to do the former, unless the relocation is
8495 	     against a read-only section.  */
8496 	  if ((bfd_link_pic (info)
8497 	       || (h != NULL
8498 		   && !htab->is_vxworks
8499 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8500 		   && !(!info->nocopyreloc
8501 			&& !PIC_OBJECT_P (abfd)
8502 			&& MIPS_ELF_READONLY_SECTION (sec))))
8503 	      && (sec->flags & SEC_ALLOC) != 0)
8504 	    {
8505 	      can_make_dynamic_p = TRUE;
8506 	      if (dynobj == NULL)
8507 		elf_hash_table (info)->dynobj = dynobj = abfd;
8508 	    }
8509 	  break;
8510 
8511 	case R_MIPS_26:
8512 	case R_MIPS_PC16:
8513 	case R_MIPS_PC21_S2:
8514 	case R_MIPS_PC26_S2:
8515 	case R_MIPS16_26:
8516 	case R_MIPS16_PC16_S1:
8517 	case R_MICROMIPS_26_S1:
8518 	case R_MICROMIPS_PC7_S1:
8519 	case R_MICROMIPS_PC10_S1:
8520 	case R_MICROMIPS_PC16_S1:
8521 	case R_MICROMIPS_PC23_S2:
8522 	  call_reloc_p = TRUE;
8523 	  break;
8524 	}
8525 
8526       if (h)
8527 	{
8528 	  if (constrain_symbol_p)
8529 	    {
8530 	      if (!can_make_dynamic_p)
8531 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8532 
8533 	      if (!call_reloc_p)
8534 		h->pointer_equality_needed = 1;
8535 
8536 	      /* We must not create a stub for a symbol that has
8537 		 relocations related to taking the function's address.
8538 		 This doesn't apply to VxWorks, where CALL relocs refer
8539 		 to a .got.plt entry instead of a normal .got entry.  */
8540 	      if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8541 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8542 	    }
8543 
8544 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8545 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8546 	     room for them in .rela.dyn.  */
8547 	  if (is_gott_symbol (info, h))
8548 	    {
8549 	      if (sreloc == NULL)
8550 		{
8551 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8552 		  if (sreloc == NULL)
8553 		    return FALSE;
8554 		}
8555 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8556 	      if (MIPS_ELF_READONLY_SECTION (sec))
8557 		/* We tell the dynamic linker that there are
8558 		   relocations against the text segment.  */
8559 		info->flags |= DF_TEXTREL;
8560 	    }
8561 	}
8562       else if (call_lo16_reloc_p (r_type)
8563 	       || got_lo16_reloc_p (r_type)
8564 	       || got_disp_reloc_p (r_type)
8565 	       || (got16_reloc_p (r_type) && htab->is_vxworks))
8566 	{
8567 	  /* We may need a local GOT entry for this relocation.  We
8568 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8569 	     maximum number of pages needed by looking at the size of
8570 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8571 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8572 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8573 	     R_MIPS_CALL_HI16 because these are always followed by an
8574 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8575 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8576 						 rel->r_addend, info, r_type))
8577 	    return FALSE;
8578 	}
8579 
8580       if (h != NULL
8581 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8582 						  ELF_ST_IS_MIPS16 (h->other)))
8583 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8584 
8585       switch (r_type)
8586 	{
8587 	case R_MIPS_CALL16:
8588 	case R_MIPS16_CALL16:
8589 	case R_MICROMIPS_CALL16:
8590 	  if (h == NULL)
8591 	    {
8592 	      _bfd_error_handler
8593 		/* xgettext:c-format */
8594 		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8595 		 abfd, (unsigned long) rel->r_offset);
8596 	      bfd_set_error (bfd_error_bad_value);
8597 	      return FALSE;
8598 	    }
8599 	  /* Fall through.  */
8600 
8601 	case R_MIPS_CALL_HI16:
8602 	case R_MIPS_CALL_LO16:
8603 	case R_MICROMIPS_CALL_HI16:
8604 	case R_MICROMIPS_CALL_LO16:
8605 	  if (h != NULL)
8606 	    {
8607 	      /* Make sure there is room in the regular GOT to hold the
8608 		 function's address.  We may eliminate it in favour of
8609 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8610 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8611 						      r_type))
8612 		return FALSE;
8613 
8614 	      /* We need a stub, not a plt entry for the undefined
8615 		 function.  But we record it as if it needs plt.  See
8616 		 _bfd_elf_adjust_dynamic_symbol.  */
8617 	      h->needs_plt = 1;
8618 	      h->type = STT_FUNC;
8619 	    }
8620 	  break;
8621 
8622 	case R_MIPS_GOT_PAGE:
8623 	case R_MICROMIPS_GOT_PAGE:
8624 	case R_MIPS16_GOT16:
8625 	case R_MIPS_GOT16:
8626 	case R_MIPS_GOT_HI16:
8627 	case R_MIPS_GOT_LO16:
8628 	case R_MICROMIPS_GOT16:
8629 	case R_MICROMIPS_GOT_HI16:
8630 	case R_MICROMIPS_GOT_LO16:
8631 	  if (!h || got_page_reloc_p (r_type))
8632 	    {
8633 	      /* This relocation needs (or may need, if h != NULL) a
8634 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8635 		 know for sure until we know whether the symbol is
8636 		 preemptible.  */
8637 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8638 		{
8639 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8640 		    return FALSE;
8641 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8642 		  addend = mips_elf_read_rel_addend (abfd, rel,
8643 						     howto, contents);
8644 		  if (got16_reloc_p (r_type))
8645 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8646 						  contents, &addend);
8647 		  else
8648 		    addend <<= howto->rightshift;
8649 		}
8650 	      else
8651 		addend = rel->r_addend;
8652 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8653 						 h, addend))
8654 		return FALSE;
8655 
8656 	      if (h)
8657 		{
8658 		  struct mips_elf_link_hash_entry *hmips =
8659 		    (struct mips_elf_link_hash_entry *) h;
8660 
8661 		  /* This symbol is definitely not overridable.  */
8662 		  if (hmips->root.def_regular
8663 		      && ! (bfd_link_pic (info) && ! info->symbolic
8664 			    && ! hmips->root.forced_local))
8665 		    h = NULL;
8666 		}
8667 	    }
8668 	  /* If this is a global, overridable symbol, GOT_PAGE will
8669 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8670 	  /* Fall through.  */
8671 
8672 	case R_MIPS_GOT_DISP:
8673 	case R_MICROMIPS_GOT_DISP:
8674 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8675 						       FALSE, r_type))
8676 	    return FALSE;
8677 	  break;
8678 
8679 	case R_MIPS_TLS_GOTTPREL:
8680 	case R_MIPS16_TLS_GOTTPREL:
8681 	case R_MICROMIPS_TLS_GOTTPREL:
8682 	  if (bfd_link_pic (info))
8683 	    info->flags |= DF_STATIC_TLS;
8684 	  /* Fall through */
8685 
8686 	case R_MIPS_TLS_LDM:
8687 	case R_MIPS16_TLS_LDM:
8688 	case R_MICROMIPS_TLS_LDM:
8689 	  if (tls_ldm_reloc_p (r_type))
8690 	    {
8691 	      r_symndx = STN_UNDEF;
8692 	      h = NULL;
8693 	    }
8694 	  /* Fall through */
8695 
8696 	case R_MIPS_TLS_GD:
8697 	case R_MIPS16_TLS_GD:
8698 	case R_MICROMIPS_TLS_GD:
8699 	  /* This symbol requires a global offset table entry, or two
8700 	     for TLS GD relocations.  */
8701 	  if (h != NULL)
8702 	    {
8703 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8704 						      FALSE, r_type))
8705 		return FALSE;
8706 	    }
8707 	  else
8708 	    {
8709 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8710 						     rel->r_addend,
8711 						     info, r_type))
8712 		return FALSE;
8713 	    }
8714 	  break;
8715 
8716 	case R_MIPS_32:
8717 	case R_MIPS_REL32:
8718 	case R_MIPS_64:
8719 	  /* In VxWorks executables, references to external symbols
8720 	     are handled using copy relocs or PLT stubs, so there's
8721 	     no need to add a .rela.dyn entry for this relocation.  */
8722 	  if (can_make_dynamic_p)
8723 	    {
8724 	      if (sreloc == NULL)
8725 		{
8726 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8727 		  if (sreloc == NULL)
8728 		    return FALSE;
8729 		}
8730 	      if (bfd_link_pic (info) && h == NULL)
8731 		{
8732 		  /* When creating a shared object, we must copy these
8733 		     reloc types into the output file as R_MIPS_REL32
8734 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
8735 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8736 		  if (MIPS_ELF_READONLY_SECTION (sec))
8737 		    /* We tell the dynamic linker that there are
8738 		       relocations against the text segment.  */
8739 		    info->flags |= DF_TEXTREL;
8740 		}
8741 	      else
8742 		{
8743 		  struct mips_elf_link_hash_entry *hmips;
8744 
8745 		  /* For a shared object, we must copy this relocation
8746 		     unless the symbol turns out to be undefined and
8747 		     weak with non-default visibility, in which case
8748 		     it will be left as zero.
8749 
8750 		     We could elide R_MIPS_REL32 for locally binding symbols
8751 		     in shared libraries, but do not yet do so.
8752 
8753 		     For an executable, we only need to copy this
8754 		     reloc if the symbol is defined in a dynamic
8755 		     object.  */
8756 		  hmips = (struct mips_elf_link_hash_entry *) h;
8757 		  ++hmips->possibly_dynamic_relocs;
8758 		  if (MIPS_ELF_READONLY_SECTION (sec))
8759 		    /* We need it to tell the dynamic linker if there
8760 		       are relocations against the text segment.  */
8761 		    hmips->readonly_reloc = TRUE;
8762 		}
8763 	    }
8764 
8765 	  if (SGI_COMPAT (abfd))
8766 	    mips_elf_hash_table (info)->compact_rel_size +=
8767 	      sizeof (Elf32_External_crinfo);
8768 	  break;
8769 
8770 	case R_MIPS_26:
8771 	case R_MIPS_GPREL16:
8772 	case R_MIPS_LITERAL:
8773 	case R_MIPS_GPREL32:
8774 	case R_MICROMIPS_26_S1:
8775 	case R_MICROMIPS_GPREL16:
8776 	case R_MICROMIPS_LITERAL:
8777 	case R_MICROMIPS_GPREL7_S2:
8778 	  if (SGI_COMPAT (abfd))
8779 	    mips_elf_hash_table (info)->compact_rel_size +=
8780 	      sizeof (Elf32_External_crinfo);
8781 	  break;
8782 
8783 	  /* This relocation describes the C++ object vtable hierarchy.
8784 	     Reconstruct it for later use during GC.  */
8785 	case R_MIPS_GNU_VTINHERIT:
8786 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8787 	    return FALSE;
8788 	  break;
8789 
8790 	  /* This relocation describes which C++ vtable entries are actually
8791 	     used.  Record for later use during GC.  */
8792 	case R_MIPS_GNU_VTENTRY:
8793 	  BFD_ASSERT (h != NULL);
8794 	  if (h != NULL
8795 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8796 	    return FALSE;
8797 	  break;
8798 
8799 	default:
8800 	  break;
8801 	}
8802 
8803       /* Record the need for a PLT entry.  At this point we don't know
8804          yet if we are going to create a PLT in the first place, but
8805          we only record whether the relocation requires a standard MIPS
8806          or a compressed code entry anyway.  If we don't make a PLT after
8807          all, then we'll just ignore these arrangements.  Likewise if
8808          a PLT entry is not created because the symbol is satisfied
8809          locally.  */
8810       if (h != NULL
8811 	  && (branch_reloc_p (r_type)
8812 	      || mips16_branch_reloc_p (r_type)
8813 	      || micromips_branch_reloc_p (r_type))
8814 	  && !SYMBOL_CALLS_LOCAL (info, h))
8815 	{
8816 	  if (h->plt.plist == NULL)
8817 	    h->plt.plist = mips_elf_make_plt_record (abfd);
8818 	  if (h->plt.plist == NULL)
8819 	    return FALSE;
8820 
8821 	  if (branch_reloc_p (r_type))
8822 	    h->plt.plist->need_mips = TRUE;
8823 	  else
8824 	    h->plt.plist->need_comp = TRUE;
8825 	}
8826 
8827       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8828 	 if there is one.  We only need to handle global symbols here;
8829 	 we decide whether to keep or delete stubs for local symbols
8830 	 when processing the stub's relocations.  */
8831       if (h != NULL
8832 	  && !mips16_call_reloc_p (r_type)
8833 	  && !section_allows_mips16_refs_p (sec))
8834 	{
8835 	  struct mips_elf_link_hash_entry *mh;
8836 
8837 	  mh = (struct mips_elf_link_hash_entry *) h;
8838 	  mh->need_fn_stub = TRUE;
8839 	}
8840 
8841       /* Refuse some position-dependent relocations when creating a
8842 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8843 	 not PIC, but we can create dynamic relocations and the result
8844 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
8845 	 combined with R_MIPS_GOT16.  */
8846       if (bfd_link_pic (info))
8847 	{
8848 	  switch (r_type)
8849 	    {
8850 	    case R_MIPS16_HI16:
8851 	    case R_MIPS_HI16:
8852 	    case R_MIPS_HIGHER:
8853 	    case R_MIPS_HIGHEST:
8854 	    case R_MICROMIPS_HI16:
8855 	    case R_MICROMIPS_HIGHER:
8856 	    case R_MICROMIPS_HIGHEST:
8857 	      /* Don't refuse a high part relocation if it's against
8858 		 no symbol (e.g. part of a compound relocation).  */
8859 	      if (r_symndx == STN_UNDEF)
8860 		break;
8861 
8862 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8863 		 and has a special meaning.  */
8864 	      if (!NEWABI_P (abfd) && h != NULL
8865 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
8866 		break;
8867 
8868 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
8869 	      if (is_gott_symbol (info, h))
8870 		break;
8871 
8872 	      /* FALLTHROUGH */
8873 
8874 	    case R_MIPS16_26:
8875 	    case R_MIPS_26:
8876 	    case R_MICROMIPS_26_S1:
8877 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8878 	      _bfd_error_handler
8879 		/* xgettext:c-format */
8880 		(_("%B: relocation %s against `%s' can not be used"
8881 		   " when making a shared object; recompile with -fPIC"),
8882 		 abfd, howto->name,
8883 		 (h) ? h->root.root.string : "a local symbol");
8884 	      bfd_set_error (bfd_error_bad_value);
8885 	      return FALSE;
8886 	    default:
8887 	      break;
8888 	    }
8889 	}
8890     }
8891 
8892   return TRUE;
8893 }
8894 
8895 /* Allocate space for global sym dynamic relocs.  */
8896 
8897 static bfd_boolean
8898 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8899 {
8900   struct bfd_link_info *info = inf;
8901   bfd *dynobj;
8902   struct mips_elf_link_hash_entry *hmips;
8903   struct mips_elf_link_hash_table *htab;
8904 
8905   htab = mips_elf_hash_table (info);
8906   BFD_ASSERT (htab != NULL);
8907 
8908   dynobj = elf_hash_table (info)->dynobj;
8909   hmips = (struct mips_elf_link_hash_entry *) h;
8910 
8911   /* VxWorks executables are handled elsewhere; we only need to
8912      allocate relocations in shared objects.  */
8913   if (htab->is_vxworks && !bfd_link_pic (info))
8914     return TRUE;
8915 
8916   /* Ignore indirect symbols.  All relocations against such symbols
8917      will be redirected to the target symbol.  */
8918   if (h->root.type == bfd_link_hash_indirect)
8919     return TRUE;
8920 
8921   /* If this symbol is defined in a dynamic object, or we are creating
8922      a shared library, we will need to copy any R_MIPS_32 or
8923      R_MIPS_REL32 relocs against it into the output file.  */
8924   if (! bfd_link_relocatable (info)
8925       && hmips->possibly_dynamic_relocs != 0
8926       && (h->root.type == bfd_link_hash_defweak
8927 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8928 	  || bfd_link_pic (info)))
8929     {
8930       bfd_boolean do_copy = TRUE;
8931 
8932       if (h->root.type == bfd_link_hash_undefweak)
8933 	{
8934 	  /* Do not copy relocations for undefined weak symbols with
8935 	     non-default visibility.  */
8936 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8937 	    do_copy = FALSE;
8938 
8939 	  /* Make sure undefined weak symbols are output as a dynamic
8940 	     symbol in PIEs.  */
8941 	  else if (h->dynindx == -1 && !h->forced_local)
8942 	    {
8943 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
8944 		return FALSE;
8945 	    }
8946 	}
8947 
8948       if (do_copy)
8949 	{
8950 	  /* Even though we don't directly need a GOT entry for this symbol,
8951 	     the SVR4 psABI requires it to have a dynamic symbol table
8952 	     index greater that DT_MIPS_GOTSYM if there are dynamic
8953 	     relocations against it.
8954 
8955 	     VxWorks does not enforce the same mapping between the GOT
8956 	     and the symbol table, so the same requirement does not
8957 	     apply there.  */
8958 	  if (!htab->is_vxworks)
8959 	    {
8960 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
8961 		hmips->global_got_area = GGA_RELOC_ONLY;
8962 	      hmips->got_only_for_calls = FALSE;
8963 	    }
8964 
8965 	  mips_elf_allocate_dynamic_relocations
8966 	    (dynobj, info, hmips->possibly_dynamic_relocs);
8967 	  if (hmips->readonly_reloc)
8968 	    /* We tell the dynamic linker that there are relocations
8969 	       against the text segment.  */
8970 	    info->flags |= DF_TEXTREL;
8971 	}
8972     }
8973 
8974   return TRUE;
8975 }
8976 
8977 /* Adjust a symbol defined by a dynamic object and referenced by a
8978    regular object.  The current definition is in some section of the
8979    dynamic object, but we're not including those sections.  We have to
8980    change the definition to something the rest of the link can
8981    understand.  */
8982 
8983 bfd_boolean
8984 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8985 				     struct elf_link_hash_entry *h)
8986 {
8987   bfd *dynobj;
8988   struct mips_elf_link_hash_entry *hmips;
8989   struct mips_elf_link_hash_table *htab;
8990   asection *s, *srel;
8991 
8992   htab = mips_elf_hash_table (info);
8993   BFD_ASSERT (htab != NULL);
8994 
8995   dynobj = elf_hash_table (info)->dynobj;
8996   hmips = (struct mips_elf_link_hash_entry *) h;
8997 
8998   /* Make sure we know what is going on here.  */
8999   BFD_ASSERT (dynobj != NULL
9000 	      && (h->needs_plt
9001 		  || h->u.weakdef != NULL
9002 		  || (h->def_dynamic
9003 		      && h->ref_regular
9004 		      && !h->def_regular)));
9005 
9006   hmips = (struct mips_elf_link_hash_entry *) h;
9007 
9008   /* If there are call relocations against an externally-defined symbol,
9009      see whether we can create a MIPS lazy-binding stub for it.  We can
9010      only do this if all references to the function are through call
9011      relocations, and in that case, the traditional lazy-binding stubs
9012      are much more efficient than PLT entries.
9013 
9014      Traditional stubs are only available on SVR4 psABI-based systems;
9015      VxWorks always uses PLTs instead.  */
9016   if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9017     {
9018       if (! elf_hash_table (info)->dynamic_sections_created)
9019 	return TRUE;
9020 
9021       /* If this symbol is not defined in a regular file, then set
9022 	 the symbol to the stub location.  This is required to make
9023 	 function pointers compare as equal between the normal
9024 	 executable and the shared library.  */
9025       if (!h->def_regular)
9026 	{
9027 	  hmips->needs_lazy_stub = TRUE;
9028 	  htab->lazy_stub_count++;
9029 	  return TRUE;
9030 	}
9031     }
9032   /* As above, VxWorks requires PLT entries for externally-defined
9033      functions that are only accessed through call relocations.
9034 
9035      Both VxWorks and non-VxWorks targets also need PLT entries if there
9036      are static-only relocations against an externally-defined function.
9037      This can technically occur for shared libraries if there are
9038      branches to the symbol, although it is unlikely that this will be
9039      used in practice due to the short ranges involved.  It can occur
9040      for any relative or absolute relocation in executables; in that
9041      case, the PLT entry becomes the function's canonical address.  */
9042   else if (((h->needs_plt && !hmips->no_fn_stub)
9043 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
9044 	   && htab->use_plts_and_copy_relocs
9045 	   && !SYMBOL_CALLS_LOCAL (info, h)
9046 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9047 		&& h->root.type == bfd_link_hash_undefweak))
9048     {
9049       bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9050       bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9051 
9052       /* If this is the first symbol to need a PLT entry, then make some
9053          basic setup.  Also work out PLT entry sizes.  We'll need them
9054          for PLT offset calculations.  */
9055       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9056 	{
9057 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9058 	  BFD_ASSERT (htab->plt_got_index == 0);
9059 
9060 	  /* If we're using the PLT additions to the psABI, each PLT
9061 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
9062 	     Encourage better cache usage by aligning.  We do this
9063 	     lazily to avoid pessimizing traditional objects.  */
9064 	  if (!htab->is_vxworks
9065 	      && !bfd_set_section_alignment (dynobj, htab->root.splt, 5))
9066 	    return FALSE;
9067 
9068 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
9069 	     for the same reason as above.  */
9070 	  if (!bfd_set_section_alignment (dynobj, htab->root.sgotplt,
9071 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9072 	    return FALSE;
9073 
9074 	  /* On non-VxWorks targets, the first two entries in .got.plt
9075 	     are reserved.  */
9076 	  if (!htab->is_vxworks)
9077 	    htab->plt_got_index
9078 	      += (get_elf_backend_data (dynobj)->got_header_size
9079 		  / MIPS_ELF_GOT_SIZE (dynobj));
9080 
9081 	  /* On VxWorks, also allocate room for the header's
9082 	     .rela.plt.unloaded entries.  */
9083 	  if (htab->is_vxworks && !bfd_link_pic (info))
9084 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9085 
9086 	  /* Now work out the sizes of individual PLT entries.  */
9087 	  if (htab->is_vxworks && bfd_link_pic (info))
9088 	    htab->plt_mips_entry_size
9089 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9090 	  else if (htab->is_vxworks)
9091 	    htab->plt_mips_entry_size
9092 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9093 	  else if (newabi_p)
9094 	    htab->plt_mips_entry_size
9095 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9096 	  else if (!micromips_p)
9097 	    {
9098 	      htab->plt_mips_entry_size
9099 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9100 	      htab->plt_comp_entry_size
9101 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9102 	    }
9103 	  else if (htab->insn32)
9104 	    {
9105 	      htab->plt_mips_entry_size
9106 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9107 	      htab->plt_comp_entry_size
9108 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9109 	    }
9110 	  else
9111 	    {
9112 	      htab->plt_mips_entry_size
9113 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9114 	      htab->plt_comp_entry_size
9115 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9116 	    }
9117 	}
9118 
9119       if (h->plt.plist == NULL)
9120 	h->plt.plist = mips_elf_make_plt_record (dynobj);
9121       if (h->plt.plist == NULL)
9122 	return FALSE;
9123 
9124       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9125          n32 or n64, so always use a standard entry there.
9126 
9127          If the symbol has a MIPS16 call stub and gets a PLT entry, then
9128          all MIPS16 calls will go via that stub, and there is no benefit
9129          to having a MIPS16 entry.  And in the case of call_stub a
9130          standard entry actually has to be used as the stub ends with a J
9131          instruction.  */
9132       if (newabi_p
9133 	  || htab->is_vxworks
9134 	  || hmips->call_stub
9135 	  || hmips->call_fp_stub)
9136 	{
9137 	  h->plt.plist->need_mips = TRUE;
9138 	  h->plt.plist->need_comp = FALSE;
9139 	}
9140 
9141       /* Otherwise, if there are no direct calls to the function, we
9142          have a free choice of whether to use standard or compressed
9143          entries.  Prefer microMIPS entries if the object is known to
9144          contain microMIPS code, so that it becomes possible to create
9145          pure microMIPS binaries.  Prefer standard entries otherwise,
9146          because MIPS16 ones are no smaller and are usually slower.  */
9147       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9148 	{
9149 	  if (micromips_p)
9150 	    h->plt.plist->need_comp = TRUE;
9151 	  else
9152 	    h->plt.plist->need_mips = TRUE;
9153 	}
9154 
9155       if (h->plt.plist->need_mips)
9156 	{
9157 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
9158 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
9159 	}
9160       if (h->plt.plist->need_comp)
9161 	{
9162 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
9163 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
9164 	}
9165 
9166       /* Reserve the corresponding .got.plt entry now too.  */
9167       h->plt.plist->gotplt_index = htab->plt_got_index++;
9168 
9169       /* If the output file has no definition of the symbol, set the
9170 	 symbol's value to the address of the stub.  */
9171       if (!bfd_link_pic (info) && !h->def_regular)
9172 	hmips->use_plt_entry = TRUE;
9173 
9174       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
9175       htab->root.srelplt->size += (htab->is_vxworks
9176 				   ? MIPS_ELF_RELA_SIZE (dynobj)
9177 				   : MIPS_ELF_REL_SIZE (dynobj));
9178 
9179       /* Make room for the .rela.plt.unloaded relocations.  */
9180       if (htab->is_vxworks && !bfd_link_pic (info))
9181 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9182 
9183       /* All relocations against this symbol that could have been made
9184 	 dynamic will now refer to the PLT entry instead.  */
9185       hmips->possibly_dynamic_relocs = 0;
9186 
9187       return TRUE;
9188     }
9189 
9190   /* If this is a weak symbol, and there is a real definition, the
9191      processor independent code will have arranged for us to see the
9192      real definition first, and we can just use the same value.  */
9193   if (h->u.weakdef != NULL)
9194     {
9195       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9196 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
9197       h->root.u.def.section = h->u.weakdef->root.u.def.section;
9198       h->root.u.def.value = h->u.weakdef->root.u.def.value;
9199       return TRUE;
9200     }
9201 
9202   /* Otherwise, there is nothing further to do for symbols defined
9203      in regular objects.  */
9204   if (h->def_regular)
9205     return TRUE;
9206 
9207   /* There's also nothing more to do if we'll convert all relocations
9208      against this symbol into dynamic relocations.  */
9209   if (!hmips->has_static_relocs)
9210     return TRUE;
9211 
9212   /* We're now relying on copy relocations.  Complain if we have
9213      some that we can't convert.  */
9214   if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9215     {
9216       _bfd_error_handler (_("non-dynamic relocations refer to "
9217 			    "dynamic symbol %s"),
9218 			  h->root.root.string);
9219       bfd_set_error (bfd_error_bad_value);
9220       return FALSE;
9221     }
9222 
9223   /* We must allocate the symbol in our .dynbss section, which will
9224      become part of the .bss section of the executable.  There will be
9225      an entry for this symbol in the .dynsym section.  The dynamic
9226      object will contain position independent code, so all references
9227      from the dynamic object to this symbol will go through the global
9228      offset table.  The dynamic linker will use the .dynsym entry to
9229      determine the address it must put in the global offset table, so
9230      both the dynamic object and the regular object will refer to the
9231      same memory location for the variable.  */
9232 
9233   if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9234     {
9235       s = htab->root.sdynrelro;
9236       srel = htab->root.sreldynrelro;
9237     }
9238   else
9239     {
9240       s = htab->root.sdynbss;
9241       srel = htab->root.srelbss;
9242     }
9243   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9244     {
9245       if (htab->is_vxworks)
9246 	srel->size += sizeof (Elf32_External_Rela);
9247       else
9248 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9249       h->needs_copy = 1;
9250     }
9251 
9252   /* All relocations against this symbol that could have been made
9253      dynamic will now refer to the local copy instead.  */
9254   hmips->possibly_dynamic_relocs = 0;
9255 
9256   return _bfd_elf_adjust_dynamic_copy (info, h, s);
9257 }
9258 
9259 /* This function is called after all the input files have been read,
9260    and the input sections have been assigned to output sections.  We
9261    check for any mips16 stub sections that we can discard.  */
9262 
9263 bfd_boolean
9264 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9265 				    struct bfd_link_info *info)
9266 {
9267   asection *sect;
9268   struct mips_elf_link_hash_table *htab;
9269   struct mips_htab_traverse_info hti;
9270 
9271   htab = mips_elf_hash_table (info);
9272   BFD_ASSERT (htab != NULL);
9273 
9274   /* The .reginfo section has a fixed size.  */
9275   sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9276   if (sect != NULL)
9277     bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo));
9278 
9279   /* The .MIPS.abiflags section has a fixed size.  */
9280   sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9281   if (sect != NULL)
9282     bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0));
9283 
9284   hti.info = info;
9285   hti.output_bfd = output_bfd;
9286   hti.error = FALSE;
9287   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9288 			       mips_elf_check_symbols, &hti);
9289   if (hti.error)
9290     return FALSE;
9291 
9292   return TRUE;
9293 }
9294 
9295 /* If the link uses a GOT, lay it out and work out its size.  */
9296 
9297 static bfd_boolean
9298 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9299 {
9300   bfd *dynobj;
9301   asection *s;
9302   struct mips_got_info *g;
9303   bfd_size_type loadable_size = 0;
9304   bfd_size_type page_gotno;
9305   bfd *ibfd;
9306   struct mips_elf_traverse_got_arg tga;
9307   struct mips_elf_link_hash_table *htab;
9308 
9309   htab = mips_elf_hash_table (info);
9310   BFD_ASSERT (htab != NULL);
9311 
9312   s = htab->root.sgot;
9313   if (s == NULL)
9314     return TRUE;
9315 
9316   dynobj = elf_hash_table (info)->dynobj;
9317   g = htab->got_info;
9318 
9319   /* Allocate room for the reserved entries.  VxWorks always reserves
9320      3 entries; other objects only reserve 2 entries.  */
9321   BFD_ASSERT (g->assigned_low_gotno == 0);
9322   if (htab->is_vxworks)
9323     htab->reserved_gotno = 3;
9324   else
9325     htab->reserved_gotno = 2;
9326   g->local_gotno += htab->reserved_gotno;
9327   g->assigned_low_gotno = htab->reserved_gotno;
9328 
9329   /* Decide which symbols need to go in the global part of the GOT and
9330      count the number of reloc-only GOT symbols.  */
9331   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9332 
9333   if (!mips_elf_resolve_final_got_entries (info, g))
9334     return FALSE;
9335 
9336   /* Calculate the total loadable size of the output.  That
9337      will give us the maximum number of GOT_PAGE entries
9338      required.  */
9339   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9340     {
9341       asection *subsection;
9342 
9343       for (subsection = ibfd->sections;
9344 	   subsection;
9345 	   subsection = subsection->next)
9346 	{
9347 	  if ((subsection->flags & SEC_ALLOC) == 0)
9348 	    continue;
9349 	  loadable_size += ((subsection->size + 0xf)
9350 			    &~ (bfd_size_type) 0xf);
9351 	}
9352     }
9353 
9354   if (htab->is_vxworks)
9355     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9356        relocations against local symbols evaluate to "G", and the EABI does
9357        not include R_MIPS_GOT_PAGE.  */
9358     page_gotno = 0;
9359   else
9360     /* Assume there are two loadable segments consisting of contiguous
9361        sections.  Is 5 enough?  */
9362     page_gotno = (loadable_size >> 16) + 5;
9363 
9364   /* Choose the smaller of the two page estimates; both are intended to be
9365      conservative.  */
9366   if (page_gotno > g->page_gotno)
9367     page_gotno = g->page_gotno;
9368 
9369   g->local_gotno += page_gotno;
9370   g->assigned_high_gotno = g->local_gotno - 1;
9371 
9372   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9373   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9374   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9375 
9376   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9377      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9378      dynamic loader.  */
9379   if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9380     {
9381       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9382 	return FALSE;
9383     }
9384   else
9385     {
9386       /* Record that all bfds use G.  This also has the effect of freeing
9387 	 the per-bfd GOTs, which we no longer need.  */
9388       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9389 	if (mips_elf_bfd_got (ibfd, FALSE))
9390 	  mips_elf_replace_bfd_got (ibfd, g);
9391       mips_elf_replace_bfd_got (output_bfd, g);
9392 
9393       /* Set up TLS entries.  */
9394       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9395       tga.info = info;
9396       tga.g = g;
9397       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9398       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9399       if (!tga.g)
9400 	return FALSE;
9401       BFD_ASSERT (g->tls_assigned_gotno
9402 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9403 
9404       /* Each VxWorks GOT entry needs an explicit relocation.  */
9405       if (htab->is_vxworks && bfd_link_pic (info))
9406 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9407 
9408       /* Allocate room for the TLS relocations.  */
9409       if (g->relocs)
9410 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9411     }
9412 
9413   return TRUE;
9414 }
9415 
9416 /* Estimate the size of the .MIPS.stubs section.  */
9417 
9418 static void
9419 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9420 {
9421   struct mips_elf_link_hash_table *htab;
9422   bfd_size_type dynsymcount;
9423 
9424   htab = mips_elf_hash_table (info);
9425   BFD_ASSERT (htab != NULL);
9426 
9427   if (htab->lazy_stub_count == 0)
9428     return;
9429 
9430   /* IRIX rld assumes that a function stub isn't at the end of the .text
9431      section, so add a dummy entry to the end.  */
9432   htab->lazy_stub_count++;
9433 
9434   /* Get a worst-case estimate of the number of dynamic symbols needed.
9435      At this point, dynsymcount does not account for section symbols
9436      and count_section_dynsyms may overestimate the number that will
9437      be needed.  */
9438   dynsymcount = (elf_hash_table (info)->dynsymcount
9439 		 + count_section_dynsyms (output_bfd, info));
9440 
9441   /* Determine the size of one stub entry.  There's no disadvantage
9442      from using microMIPS code here, so for the sake of pure-microMIPS
9443      binaries we prefer it whenever there's any microMIPS code in
9444      output produced at all.  This has a benefit of stubs being
9445      shorter by 4 bytes each too, unless in the insn32 mode.  */
9446   if (!MICROMIPS_P (output_bfd))
9447     htab->function_stub_size = (dynsymcount > 0x10000
9448 				? MIPS_FUNCTION_STUB_BIG_SIZE
9449 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9450   else if (htab->insn32)
9451     htab->function_stub_size = (dynsymcount > 0x10000
9452 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9453 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9454   else
9455     htab->function_stub_size = (dynsymcount > 0x10000
9456 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9457 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9458 
9459   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9460 }
9461 
9462 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9463    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9464    stub, allocate an entry in the stubs section.  */
9465 
9466 static bfd_boolean
9467 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9468 {
9469   struct mips_htab_traverse_info *hti = data;
9470   struct mips_elf_link_hash_table *htab;
9471   struct bfd_link_info *info;
9472   bfd *output_bfd;
9473 
9474   info = hti->info;
9475   output_bfd = hti->output_bfd;
9476   htab = mips_elf_hash_table (info);
9477   BFD_ASSERT (htab != NULL);
9478 
9479   if (h->needs_lazy_stub)
9480     {
9481       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9482       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9483       bfd_vma isa_bit = micromips_p;
9484 
9485       BFD_ASSERT (htab->root.dynobj != NULL);
9486       if (h->root.plt.plist == NULL)
9487 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9488       if (h->root.plt.plist == NULL)
9489 	{
9490 	  hti->error = TRUE;
9491 	  return FALSE;
9492 	}
9493       h->root.root.u.def.section = htab->sstubs;
9494       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9495       h->root.plt.plist->stub_offset = htab->sstubs->size;
9496       h->root.other = other;
9497       htab->sstubs->size += htab->function_stub_size;
9498     }
9499   return TRUE;
9500 }
9501 
9502 /* Allocate offsets in the stubs section to each symbol that needs one.
9503    Set the final size of the .MIPS.stub section.  */
9504 
9505 static bfd_boolean
9506 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9507 {
9508   bfd *output_bfd = info->output_bfd;
9509   bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9510   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9511   bfd_vma isa_bit = micromips_p;
9512   struct mips_elf_link_hash_table *htab;
9513   struct mips_htab_traverse_info hti;
9514   struct elf_link_hash_entry *h;
9515   bfd *dynobj;
9516 
9517   htab = mips_elf_hash_table (info);
9518   BFD_ASSERT (htab != NULL);
9519 
9520   if (htab->lazy_stub_count == 0)
9521     return TRUE;
9522 
9523   htab->sstubs->size = 0;
9524   hti.info = info;
9525   hti.output_bfd = output_bfd;
9526   hti.error = FALSE;
9527   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9528   if (hti.error)
9529     return FALSE;
9530   htab->sstubs->size += htab->function_stub_size;
9531   BFD_ASSERT (htab->sstubs->size
9532 	      == htab->lazy_stub_count * htab->function_stub_size);
9533 
9534   dynobj = elf_hash_table (info)->dynobj;
9535   BFD_ASSERT (dynobj != NULL);
9536   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9537   if (h == NULL)
9538     return FALSE;
9539   h->root.u.def.value = isa_bit;
9540   h->other = other;
9541   h->type = STT_FUNC;
9542 
9543   return TRUE;
9544 }
9545 
9546 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9547    bfd_link_info.  If H uses the address of a PLT entry as the value
9548    of the symbol, then set the entry in the symbol table now.  Prefer
9549    a standard MIPS PLT entry.  */
9550 
9551 static bfd_boolean
9552 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9553 {
9554   struct bfd_link_info *info = data;
9555   bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9556   struct mips_elf_link_hash_table *htab;
9557   unsigned int other;
9558   bfd_vma isa_bit;
9559   bfd_vma val;
9560 
9561   htab = mips_elf_hash_table (info);
9562   BFD_ASSERT (htab != NULL);
9563 
9564   if (h->use_plt_entry)
9565     {
9566       BFD_ASSERT (h->root.plt.plist != NULL);
9567       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9568 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9569 
9570       val = htab->plt_header_size;
9571       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9572 	{
9573 	  isa_bit = 0;
9574 	  val += h->root.plt.plist->mips_offset;
9575 	  other = 0;
9576 	}
9577       else
9578 	{
9579 	  isa_bit = 1;
9580 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9581 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9582 	}
9583       val += isa_bit;
9584       /* For VxWorks, point at the PLT load stub rather than the lazy
9585          resolution stub; this stub will become the canonical function
9586          address.  */
9587       if (htab->is_vxworks)
9588 	val += 8;
9589 
9590       h->root.root.u.def.section = htab->root.splt;
9591       h->root.root.u.def.value = val;
9592       h->root.other = other;
9593     }
9594 
9595   return TRUE;
9596 }
9597 
9598 /* Set the sizes of the dynamic sections.  */
9599 
9600 bfd_boolean
9601 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9602 				     struct bfd_link_info *info)
9603 {
9604   bfd *dynobj;
9605   asection *s, *sreldyn;
9606   bfd_boolean reltext;
9607   struct mips_elf_link_hash_table *htab;
9608 
9609   htab = mips_elf_hash_table (info);
9610   BFD_ASSERT (htab != NULL);
9611   dynobj = elf_hash_table (info)->dynobj;
9612   BFD_ASSERT (dynobj != NULL);
9613 
9614   if (elf_hash_table (info)->dynamic_sections_created)
9615     {
9616       /* Set the contents of the .interp section to the interpreter.  */
9617       if (bfd_link_executable (info) && !info->nointerp)
9618 	{
9619 	  s = bfd_get_linker_section (dynobj, ".interp");
9620 	  BFD_ASSERT (s != NULL);
9621 	  s->size
9622 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9623 	  s->contents
9624 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9625 	}
9626 
9627       /* Figure out the size of the PLT header if we know that we
9628          are using it.  For the sake of cache alignment always use
9629          a standard header whenever any standard entries are present
9630          even if microMIPS entries are present as well.  This also
9631          lets the microMIPS header rely on the value of $v0 only set
9632          by microMIPS entries, for a small size reduction.
9633 
9634          Set symbol table entry values for symbols that use the
9635          address of their PLT entry now that we can calculate it.
9636 
9637          Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9638          haven't already in _bfd_elf_create_dynamic_sections.  */
9639       if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9640 	{
9641 	  bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9642 				     && !htab->plt_mips_offset);
9643 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9644 	  bfd_vma isa_bit = micromips_p;
9645 	  struct elf_link_hash_entry *h;
9646 	  bfd_vma size;
9647 
9648 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9649 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9650 	  BFD_ASSERT (htab->root.splt->size == 0);
9651 
9652 	  if (htab->is_vxworks && bfd_link_pic (info))
9653 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9654 	  else if (htab->is_vxworks)
9655 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9656 	  else if (ABI_64_P (output_bfd))
9657 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9658 	  else if (ABI_N32_P (output_bfd))
9659 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9660 	  else if (!micromips_p)
9661 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9662 	  else if (htab->insn32)
9663 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9664 	  else
9665 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9666 
9667 	  htab->plt_header_is_comp = micromips_p;
9668 	  htab->plt_header_size = size;
9669 	  htab->root.splt->size = (size
9670 				   + htab->plt_mips_offset
9671 				   + htab->plt_comp_offset);
9672 	  htab->root.sgotplt->size = (htab->plt_got_index
9673 				      * MIPS_ELF_GOT_SIZE (dynobj));
9674 
9675 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9676 
9677 	  if (htab->root.hplt == NULL)
9678 	    {
9679 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9680 					       "_PROCEDURE_LINKAGE_TABLE_");
9681 	      htab->root.hplt = h;
9682 	      if (h == NULL)
9683 		return FALSE;
9684 	    }
9685 
9686 	  h = htab->root.hplt;
9687 	  h->root.u.def.value = isa_bit;
9688 	  h->other = other;
9689 	  h->type = STT_FUNC;
9690 	}
9691     }
9692 
9693   /* Allocate space for global sym dynamic relocs.  */
9694   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9695 
9696   mips_elf_estimate_stub_size (output_bfd, info);
9697 
9698   if (!mips_elf_lay_out_got (output_bfd, info))
9699     return FALSE;
9700 
9701   mips_elf_lay_out_lazy_stubs (info);
9702 
9703   /* The check_relocs and adjust_dynamic_symbol entry points have
9704      determined the sizes of the various dynamic sections.  Allocate
9705      memory for them.  */
9706   reltext = FALSE;
9707   for (s = dynobj->sections; s != NULL; s = s->next)
9708     {
9709       const char *name;
9710 
9711       /* It's OK to base decisions on the section name, because none
9712 	 of the dynobj section names depend upon the input files.  */
9713       name = bfd_get_section_name (dynobj, s);
9714 
9715       if ((s->flags & SEC_LINKER_CREATED) == 0)
9716 	continue;
9717 
9718       if (CONST_STRNEQ (name, ".rel"))
9719 	{
9720 	  if (s->size != 0)
9721 	    {
9722 	      const char *outname;
9723 	      asection *target;
9724 
9725 	      /* If this relocation section applies to a read only
9726                  section, then we probably need a DT_TEXTREL entry.
9727                  If the relocation section is .rel(a).dyn, we always
9728                  assert a DT_TEXTREL entry rather than testing whether
9729                  there exists a relocation to a read only section or
9730                  not.  */
9731 	      outname = bfd_get_section_name (output_bfd,
9732 					      s->output_section);
9733 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
9734 	      if ((target != NULL
9735 		   && (target->flags & SEC_READONLY) != 0
9736 		   && (target->flags & SEC_ALLOC) != 0)
9737 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9738 		reltext = TRUE;
9739 
9740 	      /* We use the reloc_count field as a counter if we need
9741 		 to copy relocs into the output file.  */
9742 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9743 		s->reloc_count = 0;
9744 
9745 	      /* If combreloc is enabled, elf_link_sort_relocs() will
9746 		 sort relocations, but in a different way than we do,
9747 		 and before we're done creating relocations.  Also, it
9748 		 will move them around between input sections'
9749 		 relocation's contents, so our sorting would be
9750 		 broken, so don't let it run.  */
9751 	      info->combreloc = 0;
9752 	    }
9753 	}
9754       else if (bfd_link_executable (info)
9755 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
9756 	       && CONST_STRNEQ (name, ".rld_map"))
9757 	{
9758 	  /* We add a room for __rld_map.  It will be filled in by the
9759 	     rtld to contain a pointer to the _r_debug structure.  */
9760 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9761 	}
9762       else if (SGI_COMPAT (output_bfd)
9763 	       && CONST_STRNEQ (name, ".compact_rel"))
9764 	s->size += mips_elf_hash_table (info)->compact_rel_size;
9765       else if (s == htab->root.splt)
9766 	{
9767 	  /* If the last PLT entry has a branch delay slot, allocate
9768 	     room for an extra nop to fill the delay slot.  This is
9769 	     for CPUs without load interlocking.  */
9770 	  if (! LOAD_INTERLOCKS_P (output_bfd)
9771 	      && ! htab->is_vxworks && s->size > 0)
9772 	    s->size += 4;
9773 	}
9774       else if (! CONST_STRNEQ (name, ".init")
9775 	       && s != htab->root.sgot
9776 	       && s != htab->root.sgotplt
9777 	       && s != htab->sstubs
9778 	       && s != htab->root.sdynbss
9779 	       && s != htab->root.sdynrelro)
9780 	{
9781 	  /* It's not one of our sections, so don't allocate space.  */
9782 	  continue;
9783 	}
9784 
9785       if (s->size == 0)
9786 	{
9787 	  s->flags |= SEC_EXCLUDE;
9788 	  continue;
9789 	}
9790 
9791       if ((s->flags & SEC_HAS_CONTENTS) == 0)
9792 	continue;
9793 
9794       /* Allocate memory for the section contents.  */
9795       s->contents = bfd_zalloc (dynobj, s->size);
9796       if (s->contents == NULL)
9797 	{
9798 	  bfd_set_error (bfd_error_no_memory);
9799 	  return FALSE;
9800 	}
9801     }
9802 
9803   if (elf_hash_table (info)->dynamic_sections_created)
9804     {
9805       /* Add some entries to the .dynamic section.  We fill in the
9806 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9807 	 must add the entries now so that we get the correct size for
9808 	 the .dynamic section.  */
9809 
9810       /* SGI object has the equivalence of DT_DEBUG in the
9811 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
9812 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9813 	 may only look at the first one they see.  */
9814       if (!bfd_link_pic (info)
9815 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9816 	return FALSE;
9817 
9818       if (bfd_link_executable (info)
9819 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
9820 	return FALSE;
9821 
9822       /* The DT_DEBUG entry may be filled in by the dynamic linker and
9823 	 used by the debugger.  */
9824       if (bfd_link_executable (info)
9825 	  && !SGI_COMPAT (output_bfd)
9826 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9827 	return FALSE;
9828 
9829       if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9830 	info->flags |= DF_TEXTREL;
9831 
9832       if ((info->flags & DF_TEXTREL) != 0)
9833 	{
9834 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9835 	    return FALSE;
9836 
9837 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
9838 	     write out an actual text relocation; we may not, because
9839 	     at this point we do not know whether e.g. any .eh_frame
9840 	     absolute relocations have been converted to PC-relative.  */
9841 	  info->flags &= ~DF_TEXTREL;
9842 	}
9843 
9844       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9845 	return FALSE;
9846 
9847       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9848       if (htab->is_vxworks)
9849 	{
9850 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
9851 	     use any of the DT_MIPS_* tags.  */
9852 	  if (sreldyn && sreldyn->size > 0)
9853 	    {
9854 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9855 		return FALSE;
9856 
9857 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9858 		return FALSE;
9859 
9860 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9861 		return FALSE;
9862 	    }
9863 	}
9864       else
9865 	{
9866 	  if (sreldyn && sreldyn->size > 0)
9867 	    {
9868 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9869 		return FALSE;
9870 
9871 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9872 		return FALSE;
9873 
9874 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9875 		return FALSE;
9876 	    }
9877 
9878 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9879 	    return FALSE;
9880 
9881 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9882 	    return FALSE;
9883 
9884 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9885 	    return FALSE;
9886 
9887 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9888 	    return FALSE;
9889 
9890 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9891 	    return FALSE;
9892 
9893 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9894 	    return FALSE;
9895 
9896 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9897 	    return FALSE;
9898 
9899 	  if (IRIX_COMPAT (dynobj) == ict_irix5
9900 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9901 	    return FALSE;
9902 
9903 	  if (IRIX_COMPAT (dynobj) == ict_irix6
9904 	      && (bfd_get_section_by_name
9905 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9906 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9907 	    return FALSE;
9908 	}
9909       if (htab->root.splt->size > 0)
9910 	{
9911 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9912 	    return FALSE;
9913 
9914 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9915 	    return FALSE;
9916 
9917 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9918 	    return FALSE;
9919 
9920 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9921 	    return FALSE;
9922 	}
9923       if (htab->is_vxworks
9924 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9925 	return FALSE;
9926     }
9927 
9928   return TRUE;
9929 }
9930 
9931 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9932    Adjust its R_ADDEND field so that it is correct for the output file.
9933    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9934    and sections respectively; both use symbol indexes.  */
9935 
9936 static void
9937 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9938 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
9939 			asection **local_sections, Elf_Internal_Rela *rel)
9940 {
9941   unsigned int r_type, r_symndx;
9942   Elf_Internal_Sym *sym;
9943   asection *sec;
9944 
9945   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9946     {
9947       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9948       if (gprel16_reloc_p (r_type)
9949 	  || r_type == R_MIPS_GPREL32
9950 	  || literal_reloc_p (r_type))
9951 	{
9952 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
9953 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
9954 	}
9955 
9956       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9957       sym = local_syms + r_symndx;
9958 
9959       /* Adjust REL's addend to account for section merging.  */
9960       if (!bfd_link_relocatable (info))
9961 	{
9962 	  sec = local_sections[r_symndx];
9963 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9964 	}
9965 
9966       /* This would normally be done by the rela_normal code in elflink.c.  */
9967       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9968 	rel->r_addend += local_sections[r_symndx]->output_offset;
9969     }
9970 }
9971 
9972 /* Handle relocations against symbols from removed linkonce sections,
9973    or sections discarded by a linker script.  We use this wrapper around
9974    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9975    on 64-bit ELF targets.  In this case for any relocation handled, which
9976    always be the first in a triplet, the remaining two have to be processed
9977    together with the first, even if they are R_MIPS_NONE.  It is the symbol
9978    index referred by the first reloc that applies to all the three and the
9979    remaining two never refer to an object symbol.  And it is the final
9980    relocation (the last non-null one) that determines the output field of
9981    the whole relocation so retrieve the corresponding howto structure for
9982    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9983 
9984    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9985    and therefore requires to be pasted in a loop.  It also defines a block
9986    and does not protect any of its arguments, hence the extra brackets.  */
9987 
9988 static void
9989 mips_reloc_against_discarded_section (bfd *output_bfd,
9990 				      struct bfd_link_info *info,
9991 				      bfd *input_bfd, asection *input_section,
9992 				      Elf_Internal_Rela **rel,
9993 				      const Elf_Internal_Rela **relend,
9994 				      bfd_boolean rel_reloc,
9995 				      reloc_howto_type *howto,
9996 				      bfd_byte *contents)
9997 {
9998   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9999   int count = bed->s->int_rels_per_ext_rel;
10000   unsigned int r_type;
10001   int i;
10002 
10003   for (i = count - 1; i > 0; i--)
10004     {
10005       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10006       if (r_type != R_MIPS_NONE)
10007 	{
10008 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10009 	  break;
10010 	}
10011     }
10012   do
10013     {
10014        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10015 					(*rel), count, (*relend),
10016 					howto, i, contents);
10017     }
10018   while (0);
10019 }
10020 
10021 /* Relocate a MIPS ELF section.  */
10022 
10023 bfd_boolean
10024 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10025 				bfd *input_bfd, asection *input_section,
10026 				bfd_byte *contents, Elf_Internal_Rela *relocs,
10027 				Elf_Internal_Sym *local_syms,
10028 				asection **local_sections)
10029 {
10030   Elf_Internal_Rela *rel;
10031   const Elf_Internal_Rela *relend;
10032   bfd_vma addend = 0;
10033   bfd_boolean use_saved_addend_p = FALSE;
10034   const struct elf_backend_data *bed;
10035 
10036   bed = get_elf_backend_data (output_bfd);
10037   relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
10038   for (rel = relocs; rel < relend; ++rel)
10039     {
10040       const char *name;
10041       bfd_vma value = 0;
10042       reloc_howto_type *howto;
10043       bfd_boolean cross_mode_jump_p = FALSE;
10044       /* TRUE if the relocation is a RELA relocation, rather than a
10045          REL relocation.  */
10046       bfd_boolean rela_relocation_p = TRUE;
10047       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10048       const char *msg;
10049       unsigned long r_symndx;
10050       asection *sec;
10051       Elf_Internal_Shdr *symtab_hdr;
10052       struct elf_link_hash_entry *h;
10053       bfd_boolean rel_reloc;
10054 
10055       rel_reloc = (NEWABI_P (input_bfd)
10056 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
10057 						 relocs, rel));
10058       /* Find the relocation howto for this relocation.  */
10059       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10060 
10061       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10062       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10063       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10064 	{
10065 	  sec = local_sections[r_symndx];
10066 	  h = NULL;
10067 	}
10068       else
10069 	{
10070 	  unsigned long extsymoff;
10071 
10072 	  extsymoff = 0;
10073 	  if (!elf_bad_symtab (input_bfd))
10074 	    extsymoff = symtab_hdr->sh_info;
10075 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10076 	  while (h->root.type == bfd_link_hash_indirect
10077 		 || h->root.type == bfd_link_hash_warning)
10078 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10079 
10080 	  sec = NULL;
10081 	  if (h->root.type == bfd_link_hash_defined
10082 	      || h->root.type == bfd_link_hash_defweak)
10083 	    sec = h->root.u.def.section;
10084 	}
10085 
10086       if (sec != NULL && discarded_section (sec))
10087 	{
10088 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10089 						input_section, &rel, &relend,
10090 						rel_reloc, howto, contents);
10091 	  continue;
10092 	}
10093 
10094       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10095 	{
10096 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
10097 	     64-bit code, but make sure all their addresses are in the
10098 	     lowermost or uppermost 32-bit section of the 64-bit address
10099 	     space.  Thus, when they use an R_MIPS_64 they mean what is
10100 	     usually meant by R_MIPS_32, with the exception that the
10101 	     stored value is sign-extended to 64 bits.  */
10102 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10103 
10104 	  /* On big-endian systems, we need to lie about the position
10105 	     of the reloc.  */
10106 	  if (bfd_big_endian (input_bfd))
10107 	    rel->r_offset += 4;
10108 	}
10109 
10110       if (!use_saved_addend_p)
10111 	{
10112 	  /* If these relocations were originally of the REL variety,
10113 	     we must pull the addend out of the field that will be
10114 	     relocated.  Otherwise, we simply use the contents of the
10115 	     RELA relocation.  */
10116 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
10117 					 relocs, rel))
10118 	    {
10119 	      rela_relocation_p = FALSE;
10120 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
10121 						 howto, contents);
10122 	      if (hi16_reloc_p (r_type)
10123 		  || (got16_reloc_p (r_type)
10124 		      && mips_elf_local_relocation_p (input_bfd, rel,
10125 						      local_sections)))
10126 		{
10127 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10128 						     contents, &addend))
10129 		    {
10130 		      if (h)
10131 			name = h->root.root.string;
10132 		      else
10133 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10134 						 local_syms + r_symndx,
10135 						 sec);
10136 		      _bfd_error_handler
10137 			/* xgettext:c-format */
10138 			(_("%B: Can't find matching LO16 reloc against `%s'"
10139 			   " for %s at 0x%lx in section `%A'"),
10140 			 input_bfd, name,
10141 			 howto->name, rel->r_offset, input_section);
10142 		    }
10143 		}
10144 	      else
10145 		addend <<= howto->rightshift;
10146 	    }
10147 	  else
10148 	    addend = rel->r_addend;
10149 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
10150 				  local_syms, local_sections, rel);
10151 	}
10152 
10153       if (bfd_link_relocatable (info))
10154 	{
10155 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10156 	      && bfd_big_endian (input_bfd))
10157 	    rel->r_offset -= 4;
10158 
10159 	  if (!rela_relocation_p && rel->r_addend)
10160 	    {
10161 	      addend += rel->r_addend;
10162 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10163 		addend = mips_elf_high (addend);
10164 	      else if (r_type == R_MIPS_HIGHER)
10165 		addend = mips_elf_higher (addend);
10166 	      else if (r_type == R_MIPS_HIGHEST)
10167 		addend = mips_elf_highest (addend);
10168 	      else
10169 		addend >>= howto->rightshift;
10170 
10171 	      /* We use the source mask, rather than the destination
10172 		 mask because the place to which we are writing will be
10173 		 source of the addend in the final link.  */
10174 	      addend &= howto->src_mask;
10175 
10176 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10177 		/* See the comment above about using R_MIPS_64 in the 32-bit
10178 		   ABI.  Here, we need to update the addend.  It would be
10179 		   possible to get away with just using the R_MIPS_32 reloc
10180 		   but for endianness.  */
10181 		{
10182 		  bfd_vma sign_bits;
10183 		  bfd_vma low_bits;
10184 		  bfd_vma high_bits;
10185 
10186 		  if (addend & ((bfd_vma) 1 << 31))
10187 #ifdef BFD64
10188 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
10189 #else
10190 		    sign_bits = -1;
10191 #endif
10192 		  else
10193 		    sign_bits = 0;
10194 
10195 		  /* If we don't know that we have a 64-bit type,
10196 		     do two separate stores.  */
10197 		  if (bfd_big_endian (input_bfd))
10198 		    {
10199 		      /* Store the sign-bits (which are most significant)
10200 			 first.  */
10201 		      low_bits = sign_bits;
10202 		      high_bits = addend;
10203 		    }
10204 		  else
10205 		    {
10206 		      low_bits = addend;
10207 		      high_bits = sign_bits;
10208 		    }
10209 		  bfd_put_32 (input_bfd, low_bits,
10210 			      contents + rel->r_offset);
10211 		  bfd_put_32 (input_bfd, high_bits,
10212 			      contents + rel->r_offset + 4);
10213 		  continue;
10214 		}
10215 
10216 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
10217 						 input_bfd, input_section,
10218 						 contents, FALSE))
10219 		return FALSE;
10220 	    }
10221 
10222 	  /* Go on to the next relocation.  */
10223 	  continue;
10224 	}
10225 
10226       /* In the N32 and 64-bit ABIs there may be multiple consecutive
10227 	 relocations for the same offset.  In that case we are
10228 	 supposed to treat the output of each relocation as the addend
10229 	 for the next.  */
10230       if (rel + 1 < relend
10231 	  && rel->r_offset == rel[1].r_offset
10232 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10233 	use_saved_addend_p = TRUE;
10234       else
10235 	use_saved_addend_p = FALSE;
10236 
10237       /* Figure out what value we are supposed to relocate.  */
10238       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10239 					     input_section, info, rel,
10240 					     addend, howto, local_syms,
10241 					     local_sections, &value,
10242 					     &name, &cross_mode_jump_p,
10243 					     use_saved_addend_p))
10244 	{
10245 	case bfd_reloc_continue:
10246 	  /* There's nothing to do.  */
10247 	  continue;
10248 
10249 	case bfd_reloc_undefined:
10250 	  /* mips_elf_calculate_relocation already called the
10251 	     undefined_symbol callback.  There's no real point in
10252 	     trying to perform the relocation at this point, so we
10253 	     just skip ahead to the next relocation.  */
10254 	  continue;
10255 
10256 	case bfd_reloc_notsupported:
10257 	  msg = _("internal error: unsupported relocation error");
10258 	  info->callbacks->warning
10259 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
10260 	  return FALSE;
10261 
10262 	case bfd_reloc_overflow:
10263 	  if (use_saved_addend_p)
10264 	    /* Ignore overflow until we reach the last relocation for
10265 	       a given location.  */
10266 	    ;
10267 	  else
10268 	    {
10269 	      struct mips_elf_link_hash_table *htab;
10270 
10271 	      htab = mips_elf_hash_table (info);
10272 	      BFD_ASSERT (htab != NULL);
10273 	      BFD_ASSERT (name != NULL);
10274 	      if (!htab->small_data_overflow_reported
10275 		  && (gprel16_reloc_p (howto->type)
10276 		      || literal_reloc_p (howto->type)))
10277 		{
10278 		  msg = _("small-data section exceeds 64KB;"
10279 			  " lower small-data size limit (see option -G)");
10280 
10281 		  htab->small_data_overflow_reported = TRUE;
10282 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10283 		}
10284 	      (*info->callbacks->reloc_overflow)
10285 		(info, NULL, name, howto->name, (bfd_vma) 0,
10286 		 input_bfd, input_section, rel->r_offset);
10287 	    }
10288 	  break;
10289 
10290 	case bfd_reloc_ok:
10291 	  break;
10292 
10293 	case bfd_reloc_outofrange:
10294 	  msg = NULL;
10295 	  if (jal_reloc_p (howto->type))
10296 	    msg = (cross_mode_jump_p
10297 		   ? _("Cannot convert a jump to JALX "
10298 		       "for a non-word-aligned address")
10299 		   : (howto->type == R_MIPS16_26
10300 		      ? _("Jump to a non-word-aligned address")
10301 		      : _("Jump to a non-instruction-aligned address")));
10302 	  else if (b_reloc_p (howto->type))
10303 	    msg = (cross_mode_jump_p
10304 		   ? _("Cannot convert a branch to JALX "
10305 		       "for a non-word-aligned address")
10306 		   : _("Branch to a non-instruction-aligned address"));
10307 	  else if (aligned_pcrel_reloc_p (howto->type))
10308 	    msg = _("PC-relative load from unaligned address");
10309 	  if (msg)
10310 	    {
10311 	      info->callbacks->einfo
10312 		("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10313 	      break;
10314 	    }
10315 	  /* Fall through.  */
10316 
10317 	default:
10318 	  abort ();
10319 	  break;
10320 	}
10321 
10322       /* If we've got another relocation for the address, keep going
10323 	 until we reach the last one.  */
10324       if (use_saved_addend_p)
10325 	{
10326 	  addend = value;
10327 	  continue;
10328 	}
10329 
10330       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10331 	/* See the comment above about using R_MIPS_64 in the 32-bit
10332 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10333 	   that calculated the right value.  Now, however, we
10334 	   sign-extend the 32-bit result to 64-bits, and store it as a
10335 	   64-bit value.  We are especially generous here in that we
10336 	   go to extreme lengths to support this usage on systems with
10337 	   only a 32-bit VMA.  */
10338 	{
10339 	  bfd_vma sign_bits;
10340 	  bfd_vma low_bits;
10341 	  bfd_vma high_bits;
10342 
10343 	  if (value & ((bfd_vma) 1 << 31))
10344 #ifdef BFD64
10345 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10346 #else
10347 	    sign_bits = -1;
10348 #endif
10349 	  else
10350 	    sign_bits = 0;
10351 
10352 	  /* If we don't know that we have a 64-bit type,
10353 	     do two separate stores.  */
10354 	  if (bfd_big_endian (input_bfd))
10355 	    {
10356 	      /* Undo what we did above.  */
10357 	      rel->r_offset -= 4;
10358 	      /* Store the sign-bits (which are most significant)
10359 		 first.  */
10360 	      low_bits = sign_bits;
10361 	      high_bits = value;
10362 	    }
10363 	  else
10364 	    {
10365 	      low_bits = value;
10366 	      high_bits = sign_bits;
10367 	    }
10368 	  bfd_put_32 (input_bfd, low_bits,
10369 		      contents + rel->r_offset);
10370 	  bfd_put_32 (input_bfd, high_bits,
10371 		      contents + rel->r_offset + 4);
10372 	  continue;
10373 	}
10374 
10375       /* Actually perform the relocation.  */
10376       if (! mips_elf_perform_relocation (info, howto, rel, value,
10377 					 input_bfd, input_section,
10378 					 contents, cross_mode_jump_p))
10379 	return FALSE;
10380     }
10381 
10382   return TRUE;
10383 }
10384 
10385 /* A function that iterates over each entry in la25_stubs and fills
10386    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10387 
10388 static int
10389 mips_elf_create_la25_stub (void **slot, void *data)
10390 {
10391   struct mips_htab_traverse_info *hti;
10392   struct mips_elf_link_hash_table *htab;
10393   struct mips_elf_la25_stub *stub;
10394   asection *s;
10395   bfd_byte *loc;
10396   bfd_vma offset, target, target_high, target_low;
10397 
10398   stub = (struct mips_elf_la25_stub *) *slot;
10399   hti = (struct mips_htab_traverse_info *) data;
10400   htab = mips_elf_hash_table (hti->info);
10401   BFD_ASSERT (htab != NULL);
10402 
10403   /* Create the section contents, if we haven't already.  */
10404   s = stub->stub_section;
10405   loc = s->contents;
10406   if (loc == NULL)
10407     {
10408       loc = bfd_malloc (s->size);
10409       if (loc == NULL)
10410 	{
10411 	  hti->error = TRUE;
10412 	  return FALSE;
10413 	}
10414       s->contents = loc;
10415     }
10416 
10417   /* Work out where in the section this stub should go.  */
10418   offset = stub->offset;
10419 
10420   /* Work out the target address.  */
10421   target = mips_elf_get_la25_target (stub, &s);
10422   target += s->output_section->vma + s->output_offset;
10423 
10424   target_high = ((target + 0x8000) >> 16) & 0xffff;
10425   target_low = (target & 0xffff);
10426 
10427   if (stub->stub_section != htab->strampoline)
10428     {
10429       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10430 	 of the section and write the two instructions at the end.  */
10431       memset (loc, 0, offset);
10432       loc += offset;
10433       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10434 	{
10435 	  bfd_put_micromips_32 (hti->output_bfd,
10436 				LA25_LUI_MICROMIPS (target_high),
10437 				loc);
10438 	  bfd_put_micromips_32 (hti->output_bfd,
10439 				LA25_ADDIU_MICROMIPS (target_low),
10440 				loc + 4);
10441 	}
10442       else
10443 	{
10444 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10445 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10446 	}
10447     }
10448   else
10449     {
10450       /* This is trampoline.  */
10451       loc += offset;
10452       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10453 	{
10454 	  bfd_put_micromips_32 (hti->output_bfd,
10455 				LA25_LUI_MICROMIPS (target_high), loc);
10456 	  bfd_put_micromips_32 (hti->output_bfd,
10457 				LA25_J_MICROMIPS (target), loc + 4);
10458 	  bfd_put_micromips_32 (hti->output_bfd,
10459 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10460 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10461 	}
10462       else
10463 	{
10464 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10465 	  bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10466 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10467 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10468 	}
10469     }
10470   return TRUE;
10471 }
10472 
10473 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10474    adjust it appropriately now.  */
10475 
10476 static void
10477 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10478 				      const char *name, Elf_Internal_Sym *sym)
10479 {
10480   /* The linker script takes care of providing names and values for
10481      these, but we must place them into the right sections.  */
10482   static const char* const text_section_symbols[] = {
10483     "_ftext",
10484     "_etext",
10485     "__dso_displacement",
10486     "__elf_header",
10487     "__program_header_table",
10488     NULL
10489   };
10490 
10491   static const char* const data_section_symbols[] = {
10492     "_fdata",
10493     "_edata",
10494     "_end",
10495     "_fbss",
10496     NULL
10497   };
10498 
10499   const char* const *p;
10500   int i;
10501 
10502   for (i = 0; i < 2; ++i)
10503     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10504 	 *p;
10505 	 ++p)
10506       if (strcmp (*p, name) == 0)
10507 	{
10508 	  /* All of these symbols are given type STT_SECTION by the
10509 	     IRIX6 linker.  */
10510 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10511 	  sym->st_other = STO_PROTECTED;
10512 
10513 	  /* The IRIX linker puts these symbols in special sections.  */
10514 	  if (i == 0)
10515 	    sym->st_shndx = SHN_MIPS_TEXT;
10516 	  else
10517 	    sym->st_shndx = SHN_MIPS_DATA;
10518 
10519 	  break;
10520 	}
10521 }
10522 
10523 /* Finish up dynamic symbol handling.  We set the contents of various
10524    dynamic sections here.  */
10525 
10526 bfd_boolean
10527 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10528 				     struct bfd_link_info *info,
10529 				     struct elf_link_hash_entry *h,
10530 				     Elf_Internal_Sym *sym)
10531 {
10532   bfd *dynobj;
10533   asection *sgot;
10534   struct mips_got_info *g, *gg;
10535   const char *name;
10536   int idx;
10537   struct mips_elf_link_hash_table *htab;
10538   struct mips_elf_link_hash_entry *hmips;
10539 
10540   htab = mips_elf_hash_table (info);
10541   BFD_ASSERT (htab != NULL);
10542   dynobj = elf_hash_table (info)->dynobj;
10543   hmips = (struct mips_elf_link_hash_entry *) h;
10544 
10545   BFD_ASSERT (!htab->is_vxworks);
10546 
10547   if (h->plt.plist != NULL
10548       && (h->plt.plist->mips_offset != MINUS_ONE
10549 	  || h->plt.plist->comp_offset != MINUS_ONE))
10550     {
10551       /* We've decided to create a PLT entry for this symbol.  */
10552       bfd_byte *loc;
10553       bfd_vma header_address, got_address;
10554       bfd_vma got_address_high, got_address_low, load;
10555       bfd_vma got_index;
10556       bfd_vma isa_bit;
10557 
10558       got_index = h->plt.plist->gotplt_index;
10559 
10560       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10561       BFD_ASSERT (h->dynindx != -1);
10562       BFD_ASSERT (htab->root.splt != NULL);
10563       BFD_ASSERT (got_index != MINUS_ONE);
10564       BFD_ASSERT (!h->def_regular);
10565 
10566       /* Calculate the address of the PLT header.  */
10567       isa_bit = htab->plt_header_is_comp;
10568       header_address = (htab->root.splt->output_section->vma
10569 			+ htab->root.splt->output_offset + isa_bit);
10570 
10571       /* Calculate the address of the .got.plt entry.  */
10572       got_address = (htab->root.sgotplt->output_section->vma
10573 		     + htab->root.sgotplt->output_offset
10574 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10575 
10576       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10577       got_address_low = got_address & 0xffff;
10578 
10579       /* Initially point the .got.plt entry at the PLT header.  */
10580       loc = (htab->root.sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10581       if (ABI_64_P (output_bfd))
10582 	bfd_put_64 (output_bfd, header_address, loc);
10583       else
10584 	bfd_put_32 (output_bfd, header_address, loc);
10585 
10586       /* Now handle the PLT itself.  First the standard entry (the order
10587          does not matter, we just have to pick one).  */
10588       if (h->plt.plist->mips_offset != MINUS_ONE)
10589 	{
10590 	  const bfd_vma *plt_entry;
10591 	  bfd_vma plt_offset;
10592 
10593 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10594 
10595 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
10596 
10597 	  /* Find out where the .plt entry should go.  */
10598 	  loc = htab->root.splt->contents + plt_offset;
10599 
10600 	  /* Pick the load opcode.  */
10601 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10602 
10603 	  /* Fill in the PLT entry itself.  */
10604 
10605 	  if (MIPSR6_P (output_bfd))
10606 	    plt_entry = mipsr6_exec_plt_entry;
10607 	  else
10608 	    plt_entry = mips_exec_plt_entry;
10609 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10610 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10611 		      loc + 4);
10612 
10613 	  if (! LOAD_INTERLOCKS_P (output_bfd))
10614 	    {
10615 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10616 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10617 	    }
10618 	  else
10619 	    {
10620 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10621 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10622 			  loc + 12);
10623 	    }
10624 	}
10625 
10626       /* Now the compressed entry.  They come after any standard ones.  */
10627       if (h->plt.plist->comp_offset != MINUS_ONE)
10628 	{
10629 	  bfd_vma plt_offset;
10630 
10631 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10632 			+ h->plt.plist->comp_offset);
10633 
10634 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
10635 
10636 	  /* Find out where the .plt entry should go.  */
10637 	  loc = htab->root.splt->contents + plt_offset;
10638 
10639 	  /* Fill in the PLT entry itself.  */
10640 	  if (!MICROMIPS_P (output_bfd))
10641 	    {
10642 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10643 
10644 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10645 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10646 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10647 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10648 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10649 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10650 	      bfd_put_32 (output_bfd, got_address, loc + 12);
10651 	    }
10652 	  else if (htab->insn32)
10653 	    {
10654 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10655 
10656 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10657 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
10658 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10659 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
10660 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10661 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10662 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10663 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
10664 	    }
10665 	  else
10666 	    {
10667 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10668 	      bfd_signed_vma gotpc_offset;
10669 	      bfd_vma loc_address;
10670 
10671 	      BFD_ASSERT (got_address % 4 == 0);
10672 
10673 	      loc_address = (htab->root.splt->output_section->vma
10674 			     + htab->root.splt->output_offset + plt_offset);
10675 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10676 
10677 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
10678 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
10679 		{
10680 		  _bfd_error_handler
10681 		    /* xgettext:c-format */
10682 		    (_("%B: `%A' offset of %ld from `%A' "
10683 		       "beyond the range of ADDIUPC"),
10684 		     output_bfd,
10685 		     htab->root.sgotplt->output_section,
10686 		     (long) gotpc_offset,
10687 		     htab->root.splt->output_section);
10688 		  bfd_set_error (bfd_error_no_error);
10689 		  return FALSE;
10690 		}
10691 	      bfd_put_16 (output_bfd,
10692 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10693 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10694 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10695 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10696 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10697 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10698 	    }
10699 	}
10700 
10701       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10702       mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
10703 					  got_index - 2, h->dynindx,
10704 					  R_MIPS_JUMP_SLOT, got_address);
10705 
10706       /* We distinguish between PLT entries and lazy-binding stubs by
10707 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
10708 	 flag and leave the value if there are any relocations in the
10709 	 binary where pointer equality matters.  */
10710       sym->st_shndx = SHN_UNDEF;
10711       if (h->pointer_equality_needed)
10712 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10713       else
10714 	{
10715 	  sym->st_value = 0;
10716 	  sym->st_other = 0;
10717 	}
10718     }
10719 
10720   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10721     {
10722       /* We've decided to create a lazy-binding stub.  */
10723       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10724       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10725       bfd_vma stub_size = htab->function_stub_size;
10726       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10727       bfd_vma isa_bit = micromips_p;
10728       bfd_vma stub_big_size;
10729 
10730       if (!micromips_p)
10731 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10732       else if (htab->insn32)
10733 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10734       else
10735 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10736 
10737       /* This symbol has a stub.  Set it up.  */
10738 
10739       BFD_ASSERT (h->dynindx != -1);
10740 
10741       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10742 
10743       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
10744 	 sign extension at runtime in the stub, resulting in a negative
10745 	 index value.  */
10746       if (h->dynindx & ~0x7fffffff)
10747 	return FALSE;
10748 
10749       /* Fill the stub.  */
10750       if (micromips_p)
10751 	{
10752 	  idx = 0;
10753 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10754 				stub + idx);
10755 	  idx += 4;
10756 	  if (htab->insn32)
10757 	    {
10758 	      bfd_put_micromips_32 (output_bfd,
10759 				    STUB_MOVE32_MICROMIPS, stub + idx);
10760 	      idx += 4;
10761 	    }
10762 	  else
10763 	    {
10764 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10765 	      idx += 2;
10766 	    }
10767 	  if (stub_size == stub_big_size)
10768 	    {
10769 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10770 
10771 	      bfd_put_micromips_32 (output_bfd,
10772 				    STUB_LUI_MICROMIPS (dynindx_hi),
10773 				    stub + idx);
10774 	      idx += 4;
10775 	    }
10776 	  if (htab->insn32)
10777 	    {
10778 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10779 				    stub + idx);
10780 	      idx += 4;
10781 	    }
10782 	  else
10783 	    {
10784 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10785 	      idx += 2;
10786 	    }
10787 
10788 	  /* If a large stub is not required and sign extension is not a
10789 	     problem, then use legacy code in the stub.  */
10790 	  if (stub_size == stub_big_size)
10791 	    bfd_put_micromips_32 (output_bfd,
10792 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10793 				  stub + idx);
10794 	  else if (h->dynindx & ~0x7fff)
10795 	    bfd_put_micromips_32 (output_bfd,
10796 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10797 				  stub + idx);
10798 	  else
10799 	    bfd_put_micromips_32 (output_bfd,
10800 				  STUB_LI16S_MICROMIPS (output_bfd,
10801 							h->dynindx),
10802 				  stub + idx);
10803 	}
10804       else
10805 	{
10806 	  idx = 0;
10807 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10808 	  idx += 4;
10809 	  bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
10810 	  idx += 4;
10811 	  if (stub_size == stub_big_size)
10812 	    {
10813 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10814 			  stub + idx);
10815 	      idx += 4;
10816 	    }
10817 	  bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10818 	  idx += 4;
10819 
10820 	  /* If a large stub is not required and sign extension is not a
10821 	     problem, then use legacy code in the stub.  */
10822 	  if (stub_size == stub_big_size)
10823 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10824 			stub + idx);
10825 	  else if (h->dynindx & ~0x7fff)
10826 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10827 			stub + idx);
10828 	  else
10829 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10830 			stub + idx);
10831 	}
10832 
10833       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10834       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10835 	      stub, stub_size);
10836 
10837       /* Mark the symbol as undefined.  stub_offset != -1 occurs
10838 	 only for the referenced symbol.  */
10839       sym->st_shndx = SHN_UNDEF;
10840 
10841       /* The run-time linker uses the st_value field of the symbol
10842 	 to reset the global offset table entry for this external
10843 	 to its stub address when unlinking a shared object.  */
10844       sym->st_value = (htab->sstubs->output_section->vma
10845 		       + htab->sstubs->output_offset
10846 		       + h->plt.plist->stub_offset
10847 		       + isa_bit);
10848       sym->st_other = other;
10849     }
10850 
10851   /* If we have a MIPS16 function with a stub, the dynamic symbol must
10852      refer to the stub, since only the stub uses the standard calling
10853      conventions.  */
10854   if (h->dynindx != -1 && hmips->fn_stub != NULL)
10855     {
10856       BFD_ASSERT (hmips->need_fn_stub);
10857       sym->st_value = (hmips->fn_stub->output_section->vma
10858 		       + hmips->fn_stub->output_offset);
10859       sym->st_size = hmips->fn_stub->size;
10860       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10861     }
10862 
10863   BFD_ASSERT (h->dynindx != -1
10864 	      || h->forced_local);
10865 
10866   sgot = htab->root.sgot;
10867   g = htab->got_info;
10868   BFD_ASSERT (g != NULL);
10869 
10870   /* Run through the global symbol table, creating GOT entries for all
10871      the symbols that need them.  */
10872   if (hmips->global_got_area != GGA_NONE)
10873     {
10874       bfd_vma offset;
10875       bfd_vma value;
10876 
10877       value = sym->st_value;
10878       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10879       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10880     }
10881 
10882   if (hmips->global_got_area != GGA_NONE && g->next)
10883     {
10884       struct mips_got_entry e, *p;
10885       bfd_vma entry;
10886       bfd_vma offset;
10887 
10888       gg = g;
10889 
10890       e.abfd = output_bfd;
10891       e.symndx = -1;
10892       e.d.h = hmips;
10893       e.tls_type = GOT_TLS_NONE;
10894 
10895       for (g = g->next; g->next != gg; g = g->next)
10896 	{
10897 	  if (g->got_entries
10898 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10899 							   &e)))
10900 	    {
10901 	      offset = p->gotidx;
10902 	      BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
10903 	      if (bfd_link_pic (info)
10904 		  || (elf_hash_table (info)->dynamic_sections_created
10905 		      && p->d.h != NULL
10906 		      && p->d.h->root.def_dynamic
10907 		      && !p->d.h->root.def_regular))
10908 		{
10909 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
10910 		     the various compatibility problems, it's easier to mock
10911 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
10912 		     mips_elf_create_dynamic_relocation to calculate the
10913 		     appropriate addend.  */
10914 		  Elf_Internal_Rela rel[3];
10915 
10916 		  memset (rel, 0, sizeof (rel));
10917 		  if (ABI_64_P (output_bfd))
10918 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10919 		  else
10920 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10921 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10922 
10923 		  entry = 0;
10924 		  if (! (mips_elf_create_dynamic_relocation
10925 			 (output_bfd, info, rel,
10926 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
10927 		    return FALSE;
10928 		}
10929 	      else
10930 		entry = sym->st_value;
10931 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10932 	    }
10933 	}
10934     }
10935 
10936   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
10937   name = h->root.root.string;
10938   if (h == elf_hash_table (info)->hdynamic
10939       || h == elf_hash_table (info)->hgot)
10940     sym->st_shndx = SHN_ABS;
10941   else if (strcmp (name, "_DYNAMIC_LINK") == 0
10942 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
10943     {
10944       sym->st_shndx = SHN_ABS;
10945       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10946       sym->st_value = 1;
10947     }
10948   else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10949     {
10950       sym->st_shndx = SHN_ABS;
10951       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10952       sym->st_value = elf_gp (output_bfd);
10953     }
10954   else if (SGI_COMPAT (output_bfd))
10955     {
10956       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10957 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10958 	{
10959 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10960 	  sym->st_other = STO_PROTECTED;
10961 	  sym->st_value = 0;
10962 	  sym->st_shndx = SHN_MIPS_DATA;
10963 	}
10964       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10965 	{
10966 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10967 	  sym->st_other = STO_PROTECTED;
10968 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
10969 	  sym->st_shndx = SHN_ABS;
10970 	}
10971       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10972 	{
10973 	  if (h->type == STT_FUNC)
10974 	    sym->st_shndx = SHN_MIPS_TEXT;
10975 	  else if (h->type == STT_OBJECT)
10976 	    sym->st_shndx = SHN_MIPS_DATA;
10977 	}
10978     }
10979 
10980   /* Emit a copy reloc, if needed.  */
10981   if (h->needs_copy)
10982     {
10983       asection *s;
10984       bfd_vma symval;
10985 
10986       BFD_ASSERT (h->dynindx != -1);
10987       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10988 
10989       s = mips_elf_rel_dyn_section (info, FALSE);
10990       symval = (h->root.u.def.section->output_section->vma
10991 		+ h->root.u.def.section->output_offset
10992 		+ h->root.u.def.value);
10993       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10994 					  h->dynindx, R_MIPS_COPY, symval);
10995     }
10996 
10997   /* Handle the IRIX6-specific symbols.  */
10998   if (IRIX_COMPAT (output_bfd) == ict_irix6)
10999     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11000 
11001   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
11002      to treat compressed symbols like any other.  */
11003   if (ELF_ST_IS_MIPS16 (sym->st_other))
11004     {
11005       BFD_ASSERT (sym->st_value & 1);
11006       sym->st_other -= STO_MIPS16;
11007     }
11008   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11009     {
11010       BFD_ASSERT (sym->st_value & 1);
11011       sym->st_other -= STO_MICROMIPS;
11012     }
11013 
11014   return TRUE;
11015 }
11016 
11017 /* Likewise, for VxWorks.  */
11018 
11019 bfd_boolean
11020 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11021 					 struct bfd_link_info *info,
11022 					 struct elf_link_hash_entry *h,
11023 					 Elf_Internal_Sym *sym)
11024 {
11025   bfd *dynobj;
11026   asection *sgot;
11027   struct mips_got_info *g;
11028   struct mips_elf_link_hash_table *htab;
11029   struct mips_elf_link_hash_entry *hmips;
11030 
11031   htab = mips_elf_hash_table (info);
11032   BFD_ASSERT (htab != NULL);
11033   dynobj = elf_hash_table (info)->dynobj;
11034   hmips = (struct mips_elf_link_hash_entry *) h;
11035 
11036   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11037     {
11038       bfd_byte *loc;
11039       bfd_vma plt_address, got_address, got_offset, branch_offset;
11040       Elf_Internal_Rela rel;
11041       static const bfd_vma *plt_entry;
11042       bfd_vma gotplt_index;
11043       bfd_vma plt_offset;
11044 
11045       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11046       gotplt_index = h->plt.plist->gotplt_index;
11047 
11048       BFD_ASSERT (h->dynindx != -1);
11049       BFD_ASSERT (htab->root.splt != NULL);
11050       BFD_ASSERT (gotplt_index != MINUS_ONE);
11051       BFD_ASSERT (plt_offset <= htab->root.splt->size);
11052 
11053       /* Calculate the address of the .plt entry.  */
11054       plt_address = (htab->root.splt->output_section->vma
11055 		     + htab->root.splt->output_offset
11056 		     + plt_offset);
11057 
11058       /* Calculate the address of the .got.plt entry.  */
11059       got_address = (htab->root.sgotplt->output_section->vma
11060 		     + htab->root.sgotplt->output_offset
11061 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11062 
11063       /* Calculate the offset of the .got.plt entry from
11064 	 _GLOBAL_OFFSET_TABLE_.  */
11065       got_offset = mips_elf_gotplt_index (info, h);
11066 
11067       /* Calculate the offset for the branch at the start of the PLT
11068 	 entry.  The branch jumps to the beginning of .plt.  */
11069       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11070 
11071       /* Fill in the initial value of the .got.plt entry.  */
11072       bfd_put_32 (output_bfd, plt_address,
11073 		  (htab->root.sgotplt->contents
11074 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11075 
11076       /* Find out where the .plt entry should go.  */
11077       loc = htab->root.splt->contents + plt_offset;
11078 
11079       if (bfd_link_pic (info))
11080 	{
11081 	  plt_entry = mips_vxworks_shared_plt_entry;
11082 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11083 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11084 	}
11085       else
11086 	{
11087 	  bfd_vma got_address_high, got_address_low;
11088 
11089 	  plt_entry = mips_vxworks_exec_plt_entry;
11090 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11091 	  got_address_low = got_address & 0xffff;
11092 
11093 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11094 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11095 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11096 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11097 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11098 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11099 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11100 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11101 
11102 	  loc = (htab->srelplt2->contents
11103 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11104 
11105 	  /* Emit a relocation for the .got.plt entry.  */
11106 	  rel.r_offset = got_address;
11107 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11108 	  rel.r_addend = plt_offset;
11109 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11110 
11111 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
11112 	  loc += sizeof (Elf32_External_Rela);
11113 	  rel.r_offset = plt_address + 8;
11114 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11115 	  rel.r_addend = got_offset;
11116 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11117 
11118 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
11119 	  loc += sizeof (Elf32_External_Rela);
11120 	  rel.r_offset += 4;
11121 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11122 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11123 	}
11124 
11125       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11126       loc = (htab->root.srelplt->contents
11127 	     + gotplt_index * sizeof (Elf32_External_Rela));
11128       rel.r_offset = got_address;
11129       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11130       rel.r_addend = 0;
11131       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11132 
11133       if (!h->def_regular)
11134 	sym->st_shndx = SHN_UNDEF;
11135     }
11136 
11137   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11138 
11139   sgot = htab->root.sgot;
11140   g = htab->got_info;
11141   BFD_ASSERT (g != NULL);
11142 
11143   /* See if this symbol has an entry in the GOT.  */
11144   if (hmips->global_got_area != GGA_NONE)
11145     {
11146       bfd_vma offset;
11147       Elf_Internal_Rela outrel;
11148       bfd_byte *loc;
11149       asection *s;
11150 
11151       /* Install the symbol value in the GOT.   */
11152       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11153       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11154 
11155       /* Add a dynamic relocation for it.  */
11156       s = mips_elf_rel_dyn_section (info, FALSE);
11157       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11158       outrel.r_offset = (sgot->output_section->vma
11159 			 + sgot->output_offset
11160 			 + offset);
11161       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11162       outrel.r_addend = 0;
11163       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11164     }
11165 
11166   /* Emit a copy reloc, if needed.  */
11167   if (h->needs_copy)
11168     {
11169       Elf_Internal_Rela rel;
11170       asection *srel;
11171       bfd_byte *loc;
11172 
11173       BFD_ASSERT (h->dynindx != -1);
11174 
11175       rel.r_offset = (h->root.u.def.section->output_section->vma
11176 		      + h->root.u.def.section->output_offset
11177 		      + h->root.u.def.value);
11178       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11179       rel.r_addend = 0;
11180       if (h->root.u.def.section == htab->root.sdynrelro)
11181 	srel = htab->root.sreldynrelro;
11182       else
11183 	srel = htab->root.srelbss;
11184       loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11185       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11186       ++srel->reloc_count;
11187     }
11188 
11189   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
11190   if (ELF_ST_IS_COMPRESSED (sym->st_other))
11191     sym->st_value &= ~1;
11192 
11193   return TRUE;
11194 }
11195 
11196 /* Write out a plt0 entry to the beginning of .plt.  */
11197 
11198 static bfd_boolean
11199 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11200 {
11201   bfd_byte *loc;
11202   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11203   static const bfd_vma *plt_entry;
11204   struct mips_elf_link_hash_table *htab;
11205 
11206   htab = mips_elf_hash_table (info);
11207   BFD_ASSERT (htab != NULL);
11208 
11209   if (ABI_64_P (output_bfd))
11210     plt_entry = mips_n64_exec_plt0_entry;
11211   else if (ABI_N32_P (output_bfd))
11212     plt_entry = mips_n32_exec_plt0_entry;
11213   else if (!htab->plt_header_is_comp)
11214     plt_entry = mips_o32_exec_plt0_entry;
11215   else if (htab->insn32)
11216     plt_entry = micromips_insn32_o32_exec_plt0_entry;
11217   else
11218     plt_entry = micromips_o32_exec_plt0_entry;
11219 
11220   /* Calculate the value of .got.plt.  */
11221   gotplt_value = (htab->root.sgotplt->output_section->vma
11222 		  + htab->root.sgotplt->output_offset);
11223   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11224   gotplt_value_low = gotplt_value & 0xffff;
11225 
11226   /* The PLT sequence is not safe for N64 if .got.plt's address can
11227      not be loaded in two instructions.  */
11228   BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
11229 	      || ~(gotplt_value | 0x7fffffff) == 0);
11230 
11231   /* Install the PLT header.  */
11232   loc = htab->root.splt->contents;
11233   if (plt_entry == micromips_o32_exec_plt0_entry)
11234     {
11235       bfd_vma gotpc_offset;
11236       bfd_vma loc_address;
11237       size_t i;
11238 
11239       BFD_ASSERT (gotplt_value % 4 == 0);
11240 
11241       loc_address = (htab->root.splt->output_section->vma
11242 		     + htab->root.splt->output_offset);
11243       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11244 
11245       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11246       if (gotpc_offset + 0x1000000 >= 0x2000000)
11247 	{
11248 	  _bfd_error_handler
11249 	    /* xgettext:c-format */
11250 	    (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
11251 	     output_bfd,
11252 	     htab->root.sgotplt->output_section,
11253 	     (long) gotpc_offset,
11254 	     htab->root.splt->output_section);
11255 	  bfd_set_error (bfd_error_no_error);
11256 	  return FALSE;
11257 	}
11258       bfd_put_16 (output_bfd,
11259 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11260       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11261       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11262 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11263     }
11264   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11265     {
11266       size_t i;
11267 
11268       bfd_put_16 (output_bfd, plt_entry[0], loc);
11269       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11270       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11271       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11272       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11273       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11274       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11275 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11276     }
11277   else
11278     {
11279       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11280       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11281       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11282       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11283       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11284       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11285       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11286       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11287     }
11288 
11289   return TRUE;
11290 }
11291 
11292 /* Install the PLT header for a VxWorks executable and finalize the
11293    contents of .rela.plt.unloaded.  */
11294 
11295 static void
11296 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11297 {
11298   Elf_Internal_Rela rela;
11299   bfd_byte *loc;
11300   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11301   static const bfd_vma *plt_entry;
11302   struct mips_elf_link_hash_table *htab;
11303 
11304   htab = mips_elf_hash_table (info);
11305   BFD_ASSERT (htab != NULL);
11306 
11307   plt_entry = mips_vxworks_exec_plt0_entry;
11308 
11309   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11310   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11311 	       + htab->root.hgot->root.u.def.section->output_offset
11312 	       + htab->root.hgot->root.u.def.value);
11313 
11314   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11315   got_value_low = got_value & 0xffff;
11316 
11317   /* Calculate the address of the PLT header.  */
11318   plt_address = (htab->root.splt->output_section->vma
11319 		 + htab->root.splt->output_offset);
11320 
11321   /* Install the PLT header.  */
11322   loc = htab->root.splt->contents;
11323   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11324   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11325   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11326   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11327   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11328   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11329 
11330   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11331   loc = htab->srelplt2->contents;
11332   rela.r_offset = plt_address;
11333   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11334   rela.r_addend = 0;
11335   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11336   loc += sizeof (Elf32_External_Rela);
11337 
11338   /* Output the relocation for the following addiu of
11339      %lo(_GLOBAL_OFFSET_TABLE_).  */
11340   rela.r_offset += 4;
11341   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11342   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11343   loc += sizeof (Elf32_External_Rela);
11344 
11345   /* Fix up the remaining relocations.  They may have the wrong
11346      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11347      in which symbols were output.  */
11348   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11349     {
11350       Elf_Internal_Rela rel;
11351 
11352       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11353       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11354       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11355       loc += sizeof (Elf32_External_Rela);
11356 
11357       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11358       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11359       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11360       loc += sizeof (Elf32_External_Rela);
11361 
11362       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11363       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11364       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11365       loc += sizeof (Elf32_External_Rela);
11366     }
11367 }
11368 
11369 /* Install the PLT header for a VxWorks shared library.  */
11370 
11371 static void
11372 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11373 {
11374   unsigned int i;
11375   struct mips_elf_link_hash_table *htab;
11376 
11377   htab = mips_elf_hash_table (info);
11378   BFD_ASSERT (htab != NULL);
11379 
11380   /* We just need to copy the entry byte-by-byte.  */
11381   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11382     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11383 		htab->root.splt->contents + i * 4);
11384 }
11385 
11386 /* Finish up the dynamic sections.  */
11387 
11388 bfd_boolean
11389 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11390 				       struct bfd_link_info *info)
11391 {
11392   bfd *dynobj;
11393   asection *sdyn;
11394   asection *sgot;
11395   struct mips_got_info *gg, *g;
11396   struct mips_elf_link_hash_table *htab;
11397 
11398   htab = mips_elf_hash_table (info);
11399   BFD_ASSERT (htab != NULL);
11400 
11401   dynobj = elf_hash_table (info)->dynobj;
11402 
11403   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11404 
11405   sgot = htab->root.sgot;
11406   gg = htab->got_info;
11407 
11408   if (elf_hash_table (info)->dynamic_sections_created)
11409     {
11410       bfd_byte *b;
11411       int dyn_to_skip = 0, dyn_skipped = 0;
11412 
11413       BFD_ASSERT (sdyn != NULL);
11414       BFD_ASSERT (gg != NULL);
11415 
11416       g = mips_elf_bfd_got (output_bfd, FALSE);
11417       BFD_ASSERT (g != NULL);
11418 
11419       for (b = sdyn->contents;
11420 	   b < sdyn->contents + sdyn->size;
11421 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11422 	{
11423 	  Elf_Internal_Dyn dyn;
11424 	  const char *name;
11425 	  size_t elemsize;
11426 	  asection *s;
11427 	  bfd_boolean swap_out_p;
11428 
11429 	  /* Read in the current dynamic entry.  */
11430 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11431 
11432 	  /* Assume that we're going to modify it and write it out.  */
11433 	  swap_out_p = TRUE;
11434 
11435 	  switch (dyn.d_tag)
11436 	    {
11437 	    case DT_RELENT:
11438 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11439 	      break;
11440 
11441 	    case DT_RELAENT:
11442 	      BFD_ASSERT (htab->is_vxworks);
11443 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11444 	      break;
11445 
11446 	    case DT_STRSZ:
11447 	      /* Rewrite DT_STRSZ.  */
11448 	      dyn.d_un.d_val =
11449 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11450 	      break;
11451 
11452 	    case DT_PLTGOT:
11453 	      s = htab->root.sgot;
11454 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11455 	      break;
11456 
11457 	    case DT_MIPS_PLTGOT:
11458 	      s = htab->root.sgotplt;
11459 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11460 	      break;
11461 
11462 	    case DT_MIPS_RLD_VERSION:
11463 	      dyn.d_un.d_val = 1; /* XXX */
11464 	      break;
11465 
11466 	    case DT_MIPS_FLAGS:
11467 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11468 	      break;
11469 
11470 	    case DT_MIPS_TIME_STAMP:
11471 	      {
11472 		time_t t;
11473 		time (&t);
11474 		dyn.d_un.d_val = t;
11475 	      }
11476 	      break;
11477 
11478 	    case DT_MIPS_ICHECKSUM:
11479 	      /* XXX FIXME: */
11480 	      swap_out_p = FALSE;
11481 	      break;
11482 
11483 	    case DT_MIPS_IVERSION:
11484 	      /* XXX FIXME: */
11485 	      swap_out_p = FALSE;
11486 	      break;
11487 
11488 	    case DT_MIPS_BASE_ADDRESS:
11489 	      s = output_bfd->sections;
11490 	      BFD_ASSERT (s != NULL);
11491 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11492 	      break;
11493 
11494 	    case DT_MIPS_LOCAL_GOTNO:
11495 	      dyn.d_un.d_val = g->local_gotno;
11496 	      break;
11497 
11498 	    case DT_MIPS_UNREFEXTNO:
11499 	      /* The index into the dynamic symbol table which is the
11500 		 entry of the first external symbol that is not
11501 		 referenced within the same object.  */
11502 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11503 	      break;
11504 
11505 	    case DT_MIPS_GOTSYM:
11506 	      if (htab->global_gotsym)
11507 		{
11508 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11509 		  break;
11510 		}
11511 	      /* In case if we don't have global got symbols we default
11512 		 to setting DT_MIPS_GOTSYM to the same value as
11513 		 DT_MIPS_SYMTABNO.  */
11514 	      /* Fall through.  */
11515 
11516 	    case DT_MIPS_SYMTABNO:
11517 	      name = ".dynsym";
11518 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11519 	      s = bfd_get_linker_section (dynobj, name);
11520 
11521 	      if (s != NULL)
11522 		dyn.d_un.d_val = s->size / elemsize;
11523 	      else
11524 		dyn.d_un.d_val = 0;
11525 	      break;
11526 
11527 	    case DT_MIPS_HIPAGENO:
11528 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11529 	      break;
11530 
11531 	    case DT_MIPS_RLD_MAP:
11532 	      {
11533 		struct elf_link_hash_entry *h;
11534 		h = mips_elf_hash_table (info)->rld_symbol;
11535 		if (!h)
11536 		  {
11537 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11538 		    swap_out_p = FALSE;
11539 		    break;
11540 		  }
11541 		s = h->root.u.def.section;
11542 
11543 		/* The MIPS_RLD_MAP tag stores the absolute address of the
11544 		   debug pointer.  */
11545 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11546 				  + h->root.u.def.value);
11547 	      }
11548 	      break;
11549 
11550 	    case DT_MIPS_RLD_MAP_REL:
11551 	      {
11552 		struct elf_link_hash_entry *h;
11553 		bfd_vma dt_addr, rld_addr;
11554 		h = mips_elf_hash_table (info)->rld_symbol;
11555 		if (!h)
11556 		  {
11557 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11558 		    swap_out_p = FALSE;
11559 		    break;
11560 		  }
11561 		s = h->root.u.def.section;
11562 
11563 		/* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11564 		   pointer, relative to the address of the tag.  */
11565 		dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11566 			   + (b - sdyn->contents));
11567 		rld_addr = (s->output_section->vma + s->output_offset
11568 			    + h->root.u.def.value);
11569 		dyn.d_un.d_ptr = rld_addr - dt_addr;
11570 	      }
11571 	      break;
11572 
11573 	    case DT_MIPS_OPTIONS:
11574 	      s = (bfd_get_section_by_name
11575 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11576 	      dyn.d_un.d_ptr = s->vma;
11577 	      break;
11578 
11579 	    case DT_PLTREL:
11580 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11581 	      if (htab->is_vxworks)
11582 		dyn.d_un.d_val = DT_RELA;
11583 	      else
11584 		dyn.d_un.d_val = DT_REL;
11585 	      break;
11586 
11587 	    case DT_PLTRELSZ:
11588 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11589 	      dyn.d_un.d_val = htab->root.srelplt->size;
11590 	      break;
11591 
11592 	    case DT_JMPREL:
11593 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11594 	      dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11595 				+ htab->root.srelplt->output_offset);
11596 	      break;
11597 
11598 	    case DT_TEXTREL:
11599 	      /* If we didn't need any text relocations after all, delete
11600 		 the dynamic tag.  */
11601 	      if (!(info->flags & DF_TEXTREL))
11602 		{
11603 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11604 		  swap_out_p = FALSE;
11605 		}
11606 	      break;
11607 
11608 	    case DT_FLAGS:
11609 	      /* If we didn't need any text relocations after all, clear
11610 		 DF_TEXTREL from DT_FLAGS.  */
11611 	      if (!(info->flags & DF_TEXTREL))
11612 		dyn.d_un.d_val &= ~DF_TEXTREL;
11613 	      else
11614 		swap_out_p = FALSE;
11615 	      break;
11616 
11617 	    default:
11618 	      swap_out_p = FALSE;
11619 	      if (htab->is_vxworks
11620 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11621 		swap_out_p = TRUE;
11622 	      break;
11623 	    }
11624 
11625 	  if (swap_out_p || dyn_skipped)
11626 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11627 	      (dynobj, &dyn, b - dyn_skipped);
11628 
11629 	  if (dyn_to_skip)
11630 	    {
11631 	      dyn_skipped += dyn_to_skip;
11632 	      dyn_to_skip = 0;
11633 	    }
11634 	}
11635 
11636       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
11637       if (dyn_skipped > 0)
11638 	memset (b - dyn_skipped, 0, dyn_skipped);
11639     }
11640 
11641   if (sgot != NULL && sgot->size > 0
11642       && !bfd_is_abs_section (sgot->output_section))
11643     {
11644       if (htab->is_vxworks)
11645 	{
11646 	  /* The first entry of the global offset table points to the
11647 	     ".dynamic" section.  The second is initialized by the
11648 	     loader and contains the shared library identifier.
11649 	     The third is also initialized by the loader and points
11650 	     to the lazy resolution stub.  */
11651 	  MIPS_ELF_PUT_WORD (output_bfd,
11652 			     sdyn->output_offset + sdyn->output_section->vma,
11653 			     sgot->contents);
11654 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11655 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11656 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11657 			     sgot->contents
11658 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11659 	}
11660       else
11661 	{
11662 	  /* The first entry of the global offset table will be filled at
11663 	     runtime. The second entry will be used by some runtime loaders.
11664 	     This isn't the case of IRIX rld.  */
11665 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11666 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11667 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11668 	}
11669 
11670       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11671 	 = MIPS_ELF_GOT_SIZE (output_bfd);
11672     }
11673 
11674   /* Generate dynamic relocations for the non-primary gots.  */
11675   if (gg != NULL && gg->next)
11676     {
11677       Elf_Internal_Rela rel[3];
11678       bfd_vma addend = 0;
11679 
11680       memset (rel, 0, sizeof (rel));
11681       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11682 
11683       for (g = gg->next; g->next != gg; g = g->next)
11684 	{
11685 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11686 	    + g->next->tls_gotno;
11687 
11688 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11689 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11690 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11691 			     sgot->contents
11692 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11693 
11694 	  if (! bfd_link_pic (info))
11695 	    continue;
11696 
11697 	  for (; got_index < g->local_gotno; got_index++)
11698 	    {
11699 	      if (got_index >= g->assigned_low_gotno
11700 		  && got_index <= g->assigned_high_gotno)
11701 		continue;
11702 
11703 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11704 		= got_index * MIPS_ELF_GOT_SIZE (output_bfd);
11705 	      if (!(mips_elf_create_dynamic_relocation
11706 		    (output_bfd, info, rel, NULL,
11707 		     bfd_abs_section_ptr,
11708 		     0, &addend, sgot)))
11709 		return FALSE;
11710 	      BFD_ASSERT (addend == 0);
11711 	    }
11712 	}
11713     }
11714 
11715   /* The generation of dynamic relocations for the non-primary gots
11716      adds more dynamic relocations.  We cannot count them until
11717      here.  */
11718 
11719   if (elf_hash_table (info)->dynamic_sections_created)
11720     {
11721       bfd_byte *b;
11722       bfd_boolean swap_out_p;
11723 
11724       BFD_ASSERT (sdyn != NULL);
11725 
11726       for (b = sdyn->contents;
11727 	   b < sdyn->contents + sdyn->size;
11728 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11729 	{
11730 	  Elf_Internal_Dyn dyn;
11731 	  asection *s;
11732 
11733 	  /* Read in the current dynamic entry.  */
11734 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11735 
11736 	  /* Assume that we're going to modify it and write it out.  */
11737 	  swap_out_p = TRUE;
11738 
11739 	  switch (dyn.d_tag)
11740 	    {
11741 	    case DT_RELSZ:
11742 	      /* Reduce DT_RELSZ to account for any relocations we
11743 		 decided not to make.  This is for the n64 irix rld,
11744 		 which doesn't seem to apply any relocations if there
11745 		 are trailing null entries.  */
11746 	      s = mips_elf_rel_dyn_section (info, FALSE);
11747 	      dyn.d_un.d_val = (s->reloc_count
11748 				* (ABI_64_P (output_bfd)
11749 				   ? sizeof (Elf64_Mips_External_Rel)
11750 				   : sizeof (Elf32_External_Rel)));
11751 	      /* Adjust the section size too.  Tools like the prelinker
11752 		 can reasonably expect the values to the same.  */
11753 	      elf_section_data (s->output_section)->this_hdr.sh_size
11754 		= dyn.d_un.d_val;
11755 	      break;
11756 
11757 	    default:
11758 	      swap_out_p = FALSE;
11759 	      break;
11760 	    }
11761 
11762 	  if (swap_out_p)
11763 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11764 	      (dynobj, &dyn, b);
11765 	}
11766     }
11767 
11768   {
11769     asection *s;
11770     Elf32_compact_rel cpt;
11771 
11772     if (SGI_COMPAT (output_bfd))
11773       {
11774 	/* Write .compact_rel section out.  */
11775 	s = bfd_get_linker_section (dynobj, ".compact_rel");
11776 	if (s != NULL)
11777 	  {
11778 	    cpt.id1 = 1;
11779 	    cpt.num = s->reloc_count;
11780 	    cpt.id2 = 2;
11781 	    cpt.offset = (s->output_section->filepos
11782 			  + sizeof (Elf32_External_compact_rel));
11783 	    cpt.reserved0 = 0;
11784 	    cpt.reserved1 = 0;
11785 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11786 					    ((Elf32_External_compact_rel *)
11787 					     s->contents));
11788 
11789 	    /* Clean up a dummy stub function entry in .text.  */
11790 	    if (htab->sstubs != NULL)
11791 	      {
11792 		file_ptr dummy_offset;
11793 
11794 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11795 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
11796 		memset (htab->sstubs->contents + dummy_offset, 0,
11797 			htab->function_stub_size);
11798 	      }
11799 	  }
11800       }
11801 
11802     /* The psABI says that the dynamic relocations must be sorted in
11803        increasing order of r_symndx.  The VxWorks EABI doesn't require
11804        this, and because the code below handles REL rather than RELA
11805        relocations, using it for VxWorks would be outright harmful.  */
11806     if (!htab->is_vxworks)
11807       {
11808 	s = mips_elf_rel_dyn_section (info, FALSE);
11809 	if (s != NULL
11810 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11811 	  {
11812 	    reldyn_sorting_bfd = output_bfd;
11813 
11814 	    if (ABI_64_P (output_bfd))
11815 	      qsort ((Elf64_External_Rel *) s->contents + 1,
11816 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11817 		     sort_dynamic_relocs_64);
11818 	    else
11819 	      qsort ((Elf32_External_Rel *) s->contents + 1,
11820 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
11821 		     sort_dynamic_relocs);
11822 	  }
11823       }
11824   }
11825 
11826   if (htab->root.splt && htab->root.splt->size > 0)
11827     {
11828       if (htab->is_vxworks)
11829 	{
11830 	  if (bfd_link_pic (info))
11831 	    mips_vxworks_finish_shared_plt (output_bfd, info);
11832 	  else
11833 	    mips_vxworks_finish_exec_plt (output_bfd, info);
11834 	}
11835       else
11836 	{
11837 	  BFD_ASSERT (!bfd_link_pic (info));
11838 	  if (!mips_finish_exec_plt (output_bfd, info))
11839 	    return FALSE;
11840 	}
11841     }
11842   return TRUE;
11843 }
11844 
11845 
11846 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
11847 
11848 static void
11849 mips_set_isa_flags (bfd *abfd)
11850 {
11851   flagword val;
11852 
11853   switch (bfd_get_mach (abfd))
11854     {
11855     default:
11856     case bfd_mach_mips3000:
11857       val = E_MIPS_ARCH_1;
11858       break;
11859 
11860     case bfd_mach_mips3900:
11861       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11862       break;
11863 
11864     case bfd_mach_mips6000:
11865       val = E_MIPS_ARCH_2;
11866       break;
11867 
11868     case bfd_mach_mips4000:
11869     case bfd_mach_mips4300:
11870     case bfd_mach_mips4400:
11871     case bfd_mach_mips4600:
11872       val = E_MIPS_ARCH_3;
11873       break;
11874 
11875     case bfd_mach_mips4010:
11876       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11877       break;
11878 
11879     case bfd_mach_mips4100:
11880       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11881       break;
11882 
11883     case bfd_mach_mips4111:
11884       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11885       break;
11886 
11887     case bfd_mach_mips4120:
11888       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11889       break;
11890 
11891     case bfd_mach_mips4650:
11892       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11893       break;
11894 
11895     case bfd_mach_mips5400:
11896       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11897       break;
11898 
11899     case bfd_mach_mips5500:
11900       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11901       break;
11902 
11903     case bfd_mach_mips5900:
11904       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11905       break;
11906 
11907     case bfd_mach_mips9000:
11908       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11909       break;
11910 
11911     case bfd_mach_mips5000:
11912     case bfd_mach_mips7000:
11913     case bfd_mach_mips8000:
11914     case bfd_mach_mips10000:
11915     case bfd_mach_mips12000:
11916     case bfd_mach_mips14000:
11917     case bfd_mach_mips16000:
11918       val = E_MIPS_ARCH_4;
11919       break;
11920 
11921     case bfd_mach_mips5:
11922       val = E_MIPS_ARCH_5;
11923       break;
11924 
11925     case bfd_mach_mips_loongson_2e:
11926       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11927       break;
11928 
11929     case bfd_mach_mips_loongson_2f:
11930       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11931       break;
11932 
11933     case bfd_mach_mips_sb1:
11934       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11935       break;
11936 
11937     case bfd_mach_mips_loongson_3a:
11938       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A;
11939       break;
11940 
11941     case bfd_mach_mips_octeon:
11942     case bfd_mach_mips_octeonp:
11943       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11944       break;
11945 
11946     case bfd_mach_mips_octeon3:
11947       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
11948       break;
11949 
11950     case bfd_mach_mips_xlr:
11951       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11952       break;
11953 
11954     case bfd_mach_mips_octeon2:
11955       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11956       break;
11957 
11958     case bfd_mach_mipsisa32:
11959       val = E_MIPS_ARCH_32;
11960       break;
11961 
11962     case bfd_mach_mipsisa64:
11963       val = E_MIPS_ARCH_64;
11964       break;
11965 
11966     case bfd_mach_mipsisa32r2:
11967     case bfd_mach_mipsisa32r3:
11968     case bfd_mach_mipsisa32r5:
11969       val = E_MIPS_ARCH_32R2;
11970       break;
11971 
11972     case bfd_mach_mipsisa64r2:
11973     case bfd_mach_mipsisa64r3:
11974     case bfd_mach_mipsisa64r5:
11975       val = E_MIPS_ARCH_64R2;
11976       break;
11977 
11978     case bfd_mach_mipsisa32r6:
11979       val = E_MIPS_ARCH_32R6;
11980       break;
11981 
11982     case bfd_mach_mipsisa64r6:
11983       val = E_MIPS_ARCH_64R6;
11984       break;
11985     }
11986   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11987   elf_elfheader (abfd)->e_flags |= val;
11988 
11989 }
11990 
11991 
11992 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
11993    Don't do so for code sections.  We want to keep ordering of HI16/LO16
11994    as is.  On the other hand, elf-eh-frame.c processing requires .eh_frame
11995    relocs to be sorted.  */
11996 
11997 bfd_boolean
11998 _bfd_mips_elf_sort_relocs_p (asection *sec)
11999 {
12000   return (sec->flags & SEC_CODE) == 0;
12001 }
12002 
12003 
12004 /* The final processing done just before writing out a MIPS ELF object
12005    file.  This gets the MIPS architecture right based on the machine
12006    number.  This is used by both the 32-bit and the 64-bit ABI.  */
12007 
12008 void
12009 _bfd_mips_elf_final_write_processing (bfd *abfd,
12010 				      bfd_boolean linker ATTRIBUTE_UNUSED)
12011 {
12012   unsigned int i;
12013   Elf_Internal_Shdr **hdrpp;
12014   const char *name;
12015   asection *sec;
12016 
12017   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12018      is nonzero.  This is for compatibility with old objects, which used
12019      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
12020   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12021     mips_set_isa_flags (abfd);
12022 
12023   /* Set the sh_info field for .gptab sections and other appropriate
12024      info for each special section.  */
12025   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12026        i < elf_numsections (abfd);
12027        i++, hdrpp++)
12028     {
12029       switch ((*hdrpp)->sh_type)
12030 	{
12031 	case SHT_MIPS_MSYM:
12032 	case SHT_MIPS_LIBLIST:
12033 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
12034 	  if (sec != NULL)
12035 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12036 	  break;
12037 
12038 	case SHT_MIPS_GPTAB:
12039 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12040 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12041 	  BFD_ASSERT (name != NULL
12042 		      && CONST_STRNEQ (name, ".gptab."));
12043 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12044 	  BFD_ASSERT (sec != NULL);
12045 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12046 	  break;
12047 
12048 	case SHT_MIPS_CONTENT:
12049 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12050 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12051 	  BFD_ASSERT (name != NULL
12052 		      && CONST_STRNEQ (name, ".MIPS.content"));
12053 	  sec = bfd_get_section_by_name (abfd,
12054 					 name + sizeof ".MIPS.content" - 1);
12055 	  BFD_ASSERT (sec != NULL);
12056 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12057 	  break;
12058 
12059 	case SHT_MIPS_SYMBOL_LIB:
12060 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12061 	  if (sec != NULL)
12062 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12063 	  sec = bfd_get_section_by_name (abfd, ".liblist");
12064 	  if (sec != NULL)
12065 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12066 	  break;
12067 
12068 	case SHT_MIPS_EVENTS:
12069 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12070 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
12071 	  BFD_ASSERT (name != NULL);
12072 	  if (CONST_STRNEQ (name, ".MIPS.events"))
12073 	    sec = bfd_get_section_by_name (abfd,
12074 					   name + sizeof ".MIPS.events" - 1);
12075 	  else
12076 	    {
12077 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12078 	      sec = bfd_get_section_by_name (abfd,
12079 					     (name
12080 					      + sizeof ".MIPS.post_rel" - 1));
12081 	    }
12082 	  BFD_ASSERT (sec != NULL);
12083 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12084 	  break;
12085 
12086 	}
12087     }
12088 }
12089 
12090 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12091    segments.  */
12092 
12093 int
12094 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12095 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
12096 {
12097   asection *s;
12098   int ret = 0;
12099 
12100   /* See if we need a PT_MIPS_REGINFO segment.  */
12101   s = bfd_get_section_by_name (abfd, ".reginfo");
12102   if (s && (s->flags & SEC_LOAD))
12103     ++ret;
12104 
12105   /* See if we need a PT_MIPS_ABIFLAGS segment.  */
12106   if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12107     ++ret;
12108 
12109   /* See if we need a PT_MIPS_OPTIONS segment.  */
12110   if (IRIX_COMPAT (abfd) == ict_irix6
12111       && bfd_get_section_by_name (abfd,
12112 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12113     ++ret;
12114 
12115   /* See if we need a PT_MIPS_RTPROC segment.  */
12116   if (IRIX_COMPAT (abfd) == ict_irix5
12117       && bfd_get_section_by_name (abfd, ".dynamic")
12118       && bfd_get_section_by_name (abfd, ".mdebug"))
12119     ++ret;
12120 
12121   /* Allocate a PT_NULL header in dynamic objects.  See
12122      _bfd_mips_elf_modify_segment_map for details.  */
12123   if (!SGI_COMPAT (abfd)
12124       && bfd_get_section_by_name (abfd, ".dynamic"))
12125     ++ret;
12126 
12127   return ret;
12128 }
12129 
12130 /* Modify the segment map for an IRIX5 executable.  */
12131 
12132 bfd_boolean
12133 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12134 				  struct bfd_link_info *info)
12135 {
12136   asection *s;
12137   struct elf_segment_map *m, **pm;
12138   bfd_size_type amt;
12139 
12140   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12141      segment.  */
12142   s = bfd_get_section_by_name (abfd, ".reginfo");
12143   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12144     {
12145       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12146 	if (m->p_type == PT_MIPS_REGINFO)
12147 	  break;
12148       if (m == NULL)
12149 	{
12150 	  amt = sizeof *m;
12151 	  m = bfd_zalloc (abfd, amt);
12152 	  if (m == NULL)
12153 	    return FALSE;
12154 
12155 	  m->p_type = PT_MIPS_REGINFO;
12156 	  m->count = 1;
12157 	  m->sections[0] = s;
12158 
12159 	  /* We want to put it after the PHDR and INTERP segments.  */
12160 	  pm = &elf_seg_map (abfd);
12161 	  while (*pm != NULL
12162 		 && ((*pm)->p_type == PT_PHDR
12163 		     || (*pm)->p_type == PT_INTERP))
12164 	    pm = &(*pm)->next;
12165 
12166 	  m->next = *pm;
12167 	  *pm = m;
12168 	}
12169     }
12170 
12171   /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12172      segment.  */
12173   s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12174   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12175     {
12176       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12177 	if (m->p_type == PT_MIPS_ABIFLAGS)
12178 	  break;
12179       if (m == NULL)
12180 	{
12181 	  amt = sizeof *m;
12182 	  m = bfd_zalloc (abfd, amt);
12183 	  if (m == NULL)
12184 	    return FALSE;
12185 
12186 	  m->p_type = PT_MIPS_ABIFLAGS;
12187 	  m->count = 1;
12188 	  m->sections[0] = s;
12189 
12190 	  /* We want to put it after the PHDR and INTERP segments.  */
12191 	  pm = &elf_seg_map (abfd);
12192 	  while (*pm != NULL
12193 		 && ((*pm)->p_type == PT_PHDR
12194 		     || (*pm)->p_type == PT_INTERP))
12195 	    pm = &(*pm)->next;
12196 
12197 	  m->next = *pm;
12198 	  *pm = m;
12199 	}
12200     }
12201 
12202   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12203      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
12204      PT_MIPS_OPTIONS segment immediately following the program header
12205      table.  */
12206   if (NEWABI_P (abfd)
12207       /* On non-IRIX6 new abi, we'll have already created a segment
12208 	 for this section, so don't create another.  I'm not sure this
12209 	 is not also the case for IRIX 6, but I can't test it right
12210 	 now.  */
12211       && IRIX_COMPAT (abfd) == ict_irix6)
12212     {
12213       for (s = abfd->sections; s; s = s->next)
12214 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12215 	  break;
12216 
12217       if (s)
12218 	{
12219 	  struct elf_segment_map *options_segment;
12220 
12221 	  pm = &elf_seg_map (abfd);
12222 	  while (*pm != NULL
12223 		 && ((*pm)->p_type == PT_PHDR
12224 		     || (*pm)->p_type == PT_INTERP))
12225 	    pm = &(*pm)->next;
12226 
12227 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12228 	    {
12229 	      amt = sizeof (struct elf_segment_map);
12230 	      options_segment = bfd_zalloc (abfd, amt);
12231 	      options_segment->next = *pm;
12232 	      options_segment->p_type = PT_MIPS_OPTIONS;
12233 	      options_segment->p_flags = PF_R;
12234 	      options_segment->p_flags_valid = TRUE;
12235 	      options_segment->count = 1;
12236 	      options_segment->sections[0] = s;
12237 	      *pm = options_segment;
12238 	    }
12239 	}
12240     }
12241   else
12242     {
12243       if (IRIX_COMPAT (abfd) == ict_irix5)
12244 	{
12245 	  /* If there are .dynamic and .mdebug sections, we make a room
12246 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
12247 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
12248 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12249 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12250 	    {
12251 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12252 		if (m->p_type == PT_MIPS_RTPROC)
12253 		  break;
12254 	      if (m == NULL)
12255 		{
12256 		  amt = sizeof *m;
12257 		  m = bfd_zalloc (abfd, amt);
12258 		  if (m == NULL)
12259 		    return FALSE;
12260 
12261 		  m->p_type = PT_MIPS_RTPROC;
12262 
12263 		  s = bfd_get_section_by_name (abfd, ".rtproc");
12264 		  if (s == NULL)
12265 		    {
12266 		      m->count = 0;
12267 		      m->p_flags = 0;
12268 		      m->p_flags_valid = 1;
12269 		    }
12270 		  else
12271 		    {
12272 		      m->count = 1;
12273 		      m->sections[0] = s;
12274 		    }
12275 
12276 		  /* We want to put it after the DYNAMIC segment.  */
12277 		  pm = &elf_seg_map (abfd);
12278 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12279 		    pm = &(*pm)->next;
12280 		  if (*pm != NULL)
12281 		    pm = &(*pm)->next;
12282 
12283 		  m->next = *pm;
12284 		  *pm = m;
12285 		}
12286 	    }
12287 	}
12288       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12289 	 .dynstr, .dynsym, and .hash sections, and everything in
12290 	 between.  */
12291       for (pm = &elf_seg_map (abfd); *pm != NULL;
12292 	   pm = &(*pm)->next)
12293 	if ((*pm)->p_type == PT_DYNAMIC)
12294 	  break;
12295       m = *pm;
12296       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12297 	 glibc's dynamic linker has traditionally derived the number of
12298 	 tags from the p_filesz field, and sometimes allocates stack
12299 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
12300 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
12301 	 other sections can also make life hard for the prelinker,
12302 	 which might move one of the other sections to a different
12303 	 PT_LOAD segment.  */
12304       if (SGI_COMPAT (abfd)
12305 	  && m != NULL
12306 	  && m->count == 1
12307 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
12308 	{
12309 	  static const char *sec_names[] =
12310 	  {
12311 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
12312 	  };
12313 	  bfd_vma low, high;
12314 	  unsigned int i, c;
12315 	  struct elf_segment_map *n;
12316 
12317 	  low = ~(bfd_vma) 0;
12318 	  high = 0;
12319 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12320 	    {
12321 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
12322 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
12323 		{
12324 		  bfd_size_type sz;
12325 
12326 		  if (low > s->vma)
12327 		    low = s->vma;
12328 		  sz = s->size;
12329 		  if (high < s->vma + sz)
12330 		    high = s->vma + sz;
12331 		}
12332 	    }
12333 
12334 	  c = 0;
12335 	  for (s = abfd->sections; s != NULL; s = s->next)
12336 	    if ((s->flags & SEC_LOAD) != 0
12337 		&& s->vma >= low
12338 		&& s->vma + s->size <= high)
12339 	      ++c;
12340 
12341 	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12342 	  n = bfd_zalloc (abfd, amt);
12343 	  if (n == NULL)
12344 	    return FALSE;
12345 	  *n = *m;
12346 	  n->count = c;
12347 
12348 	  i = 0;
12349 	  for (s = abfd->sections; s != NULL; s = s->next)
12350 	    {
12351 	      if ((s->flags & SEC_LOAD) != 0
12352 		  && s->vma >= low
12353 		  && s->vma + s->size <= high)
12354 		{
12355 		  n->sections[i] = s;
12356 		  ++i;
12357 		}
12358 	    }
12359 
12360 	  *pm = n;
12361 	}
12362     }
12363 
12364   /* Allocate a spare program header in dynamic objects so that tools
12365      like the prelinker can add an extra PT_LOAD entry.
12366 
12367      If the prelinker needs to make room for a new PT_LOAD entry, its
12368      standard procedure is to move the first (read-only) sections into
12369      the new (writable) segment.  However, the MIPS ABI requires
12370      .dynamic to be in a read-only segment, and the section will often
12371      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12372 
12373      Although the prelinker could in principle move .dynamic to a
12374      writable segment, it seems better to allocate a spare program
12375      header instead, and avoid the need to move any sections.
12376      There is a long tradition of allocating spare dynamic tags,
12377      so allocating a spare program header seems like a natural
12378      extension.
12379 
12380      If INFO is NULL, we may be copying an already prelinked binary
12381      with objcopy or strip, so do not add this header.  */
12382   if (info != NULL
12383       && !SGI_COMPAT (abfd)
12384       && bfd_get_section_by_name (abfd, ".dynamic"))
12385     {
12386       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12387 	if ((*pm)->p_type == PT_NULL)
12388 	  break;
12389       if (*pm == NULL)
12390 	{
12391 	  m = bfd_zalloc (abfd, sizeof (*m));
12392 	  if (m == NULL)
12393 	    return FALSE;
12394 
12395 	  m->p_type = PT_NULL;
12396 	  *pm = m;
12397 	}
12398     }
12399 
12400   return TRUE;
12401 }
12402 
12403 /* Return the section that should be marked against GC for a given
12404    relocation.  */
12405 
12406 asection *
12407 _bfd_mips_elf_gc_mark_hook (asection *sec,
12408 			    struct bfd_link_info *info,
12409 			    Elf_Internal_Rela *rel,
12410 			    struct elf_link_hash_entry *h,
12411 			    Elf_Internal_Sym *sym)
12412 {
12413   /* ??? Do mips16 stub sections need to be handled special?  */
12414 
12415   if (h != NULL)
12416     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12417       {
12418       case R_MIPS_GNU_VTINHERIT:
12419       case R_MIPS_GNU_VTENTRY:
12420 	return NULL;
12421       }
12422 
12423   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12424 }
12425 
12426 /* Update the got entry reference counts for the section being removed.  */
12427 
12428 bfd_boolean
12429 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12430 			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
12431 			     asection *sec ATTRIBUTE_UNUSED,
12432 			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12433 {
12434 #if 0
12435   Elf_Internal_Shdr *symtab_hdr;
12436   struct elf_link_hash_entry **sym_hashes;
12437   bfd_signed_vma *local_got_refcounts;
12438   const Elf_Internal_Rela *rel, *relend;
12439   unsigned long r_symndx;
12440   struct elf_link_hash_entry *h;
12441 
12442   if (bfd_link_relocatable (info))
12443     return TRUE;
12444 
12445   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12446   sym_hashes = elf_sym_hashes (abfd);
12447   local_got_refcounts = elf_local_got_refcounts (abfd);
12448 
12449   relend = relocs + sec->reloc_count;
12450   for (rel = relocs; rel < relend; rel++)
12451     switch (ELF_R_TYPE (abfd, rel->r_info))
12452       {
12453       case R_MIPS16_GOT16:
12454       case R_MIPS16_CALL16:
12455       case R_MIPS_GOT16:
12456       case R_MIPS_CALL16:
12457       case R_MIPS_CALL_HI16:
12458       case R_MIPS_CALL_LO16:
12459       case R_MIPS_GOT_HI16:
12460       case R_MIPS_GOT_LO16:
12461       case R_MIPS_GOT_DISP:
12462       case R_MIPS_GOT_PAGE:
12463       case R_MIPS_GOT_OFST:
12464       case R_MICROMIPS_GOT16:
12465       case R_MICROMIPS_CALL16:
12466       case R_MICROMIPS_CALL_HI16:
12467       case R_MICROMIPS_CALL_LO16:
12468       case R_MICROMIPS_GOT_HI16:
12469       case R_MICROMIPS_GOT_LO16:
12470       case R_MICROMIPS_GOT_DISP:
12471       case R_MICROMIPS_GOT_PAGE:
12472       case R_MICROMIPS_GOT_OFST:
12473 	/* ??? It would seem that the existing MIPS code does no sort
12474 	   of reference counting or whatnot on its GOT and PLT entries,
12475 	   so it is not possible to garbage collect them at this time.  */
12476 	break;
12477 
12478       default:
12479 	break;
12480       }
12481 #endif
12482 
12483   return TRUE;
12484 }
12485 
12486 /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */
12487 
12488 bfd_boolean
12489 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12490 				      elf_gc_mark_hook_fn gc_mark_hook)
12491 {
12492   bfd *sub;
12493 
12494   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12495 
12496   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12497     {
12498       asection *o;
12499 
12500       if (! is_mips_elf (sub))
12501 	continue;
12502 
12503       for (o = sub->sections; o != NULL; o = o->next)
12504 	if (!o->gc_mark
12505 	    && MIPS_ELF_ABIFLAGS_SECTION_NAME_P
12506 		 (bfd_get_section_name (sub, o)))
12507 	  {
12508 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12509 	      return FALSE;
12510 	  }
12511     }
12512 
12513   return TRUE;
12514 }
12515 
12516 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12517    hiding the old indirect symbol.  Process additional relocation
12518    information.  Also called for weakdefs, in which case we just let
12519    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12520 
12521 void
12522 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12523 				    struct elf_link_hash_entry *dir,
12524 				    struct elf_link_hash_entry *ind)
12525 {
12526   struct mips_elf_link_hash_entry *dirmips, *indmips;
12527 
12528   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12529 
12530   dirmips = (struct mips_elf_link_hash_entry *) dir;
12531   indmips = (struct mips_elf_link_hash_entry *) ind;
12532   /* Any absolute non-dynamic relocations against an indirect or weak
12533      definition will be against the target symbol.  */
12534   if (indmips->has_static_relocs)
12535     dirmips->has_static_relocs = TRUE;
12536 
12537   if (ind->root.type != bfd_link_hash_indirect)
12538     return;
12539 
12540   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12541   if (indmips->readonly_reloc)
12542     dirmips->readonly_reloc = TRUE;
12543   if (indmips->no_fn_stub)
12544     dirmips->no_fn_stub = TRUE;
12545   if (indmips->fn_stub)
12546     {
12547       dirmips->fn_stub = indmips->fn_stub;
12548       indmips->fn_stub = NULL;
12549     }
12550   if (indmips->need_fn_stub)
12551     {
12552       dirmips->need_fn_stub = TRUE;
12553       indmips->need_fn_stub = FALSE;
12554     }
12555   if (indmips->call_stub)
12556     {
12557       dirmips->call_stub = indmips->call_stub;
12558       indmips->call_stub = NULL;
12559     }
12560   if (indmips->call_fp_stub)
12561     {
12562       dirmips->call_fp_stub = indmips->call_fp_stub;
12563       indmips->call_fp_stub = NULL;
12564     }
12565   if (indmips->global_got_area < dirmips->global_got_area)
12566     dirmips->global_got_area = indmips->global_got_area;
12567   if (indmips->global_got_area < GGA_NONE)
12568     indmips->global_got_area = GGA_NONE;
12569   if (indmips->has_nonpic_branches)
12570     dirmips->has_nonpic_branches = TRUE;
12571 }
12572 
12573 #define PDR_SIZE 32
12574 
12575 bfd_boolean
12576 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12577 			    struct bfd_link_info *info)
12578 {
12579   asection *o;
12580   bfd_boolean ret = FALSE;
12581   unsigned char *tdata;
12582   size_t i, skip;
12583 
12584   o = bfd_get_section_by_name (abfd, ".pdr");
12585   if (! o)
12586     return FALSE;
12587   if (o->size == 0)
12588     return FALSE;
12589   if (o->size % PDR_SIZE != 0)
12590     return FALSE;
12591   if (o->output_section != NULL
12592       && bfd_is_abs_section (o->output_section))
12593     return FALSE;
12594 
12595   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12596   if (! tdata)
12597     return FALSE;
12598 
12599   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12600 					    info->keep_memory);
12601   if (!cookie->rels)
12602     {
12603       free (tdata);
12604       return FALSE;
12605     }
12606 
12607   cookie->rel = cookie->rels;
12608   cookie->relend = cookie->rels + o->reloc_count;
12609 
12610   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12611     {
12612       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12613 	{
12614 	  tdata[i] = 1;
12615 	  skip ++;
12616 	}
12617     }
12618 
12619   if (skip != 0)
12620     {
12621       mips_elf_section_data (o)->u.tdata = tdata;
12622       if (o->rawsize == 0)
12623 	o->rawsize = o->size;
12624       o->size -= skip * PDR_SIZE;
12625       ret = TRUE;
12626     }
12627   else
12628     free (tdata);
12629 
12630   if (! info->keep_memory)
12631     free (cookie->rels);
12632 
12633   return ret;
12634 }
12635 
12636 bfd_boolean
12637 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12638 {
12639   if (strcmp (sec->name, ".pdr") == 0)
12640     return TRUE;
12641   return FALSE;
12642 }
12643 
12644 bfd_boolean
12645 _bfd_mips_elf_write_section (bfd *output_bfd,
12646 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12647                              asection *sec, bfd_byte *contents)
12648 {
12649   bfd_byte *to, *from, *end;
12650   int i;
12651 
12652   if (strcmp (sec->name, ".pdr") != 0)
12653     return FALSE;
12654 
12655   if (mips_elf_section_data (sec)->u.tdata == NULL)
12656     return FALSE;
12657 
12658   to = contents;
12659   end = contents + sec->size;
12660   for (from = contents, i = 0;
12661        from < end;
12662        from += PDR_SIZE, i++)
12663     {
12664       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12665 	continue;
12666       if (to != from)
12667 	memcpy (to, from, PDR_SIZE);
12668       to += PDR_SIZE;
12669     }
12670   bfd_set_section_contents (output_bfd, sec->output_section, contents,
12671 			    sec->output_offset, sec->size);
12672   return TRUE;
12673 }
12674 
12675 /* microMIPS code retains local labels for linker relaxation.  Omit them
12676    from output by default for clarity.  */
12677 
12678 bfd_boolean
12679 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12680 {
12681   return _bfd_elf_is_local_label_name (abfd, sym->name);
12682 }
12683 
12684 /* MIPS ELF uses a special find_nearest_line routine in order the
12685    handle the ECOFF debugging information.  */
12686 
12687 struct mips_elf_find_line
12688 {
12689   struct ecoff_debug_info d;
12690   struct ecoff_find_line i;
12691 };
12692 
12693 bfd_boolean
12694 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
12695 				 asection *section, bfd_vma offset,
12696 				 const char **filename_ptr,
12697 				 const char **functionname_ptr,
12698 				 unsigned int *line_ptr,
12699 				 unsigned int *discriminator_ptr)
12700 {
12701   asection *msec;
12702 
12703   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
12704 				     filename_ptr, functionname_ptr,
12705 				     line_ptr, discriminator_ptr,
12706 				     dwarf_debug_sections,
12707 				     ABI_64_P (abfd) ? 8 : 0,
12708 				     &elf_tdata (abfd)->dwarf2_find_line_info))
12709     return TRUE;
12710 
12711   if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
12712 				     filename_ptr, functionname_ptr,
12713 				     line_ptr))
12714     return TRUE;
12715 
12716   msec = bfd_get_section_by_name (abfd, ".mdebug");
12717   if (msec != NULL)
12718     {
12719       flagword origflags;
12720       struct mips_elf_find_line *fi;
12721       const struct ecoff_debug_swap * const swap =
12722 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12723 
12724       /* If we are called during a link, mips_elf_final_link may have
12725 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
12726 	 if appropriate (which it normally will be).  */
12727       origflags = msec->flags;
12728       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12729 	msec->flags |= SEC_HAS_CONTENTS;
12730 
12731       fi = mips_elf_tdata (abfd)->find_line_info;
12732       if (fi == NULL)
12733 	{
12734 	  bfd_size_type external_fdr_size;
12735 	  char *fraw_src;
12736 	  char *fraw_end;
12737 	  struct fdr *fdr_ptr;
12738 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
12739 
12740 	  fi = bfd_zalloc (abfd, amt);
12741 	  if (fi == NULL)
12742 	    {
12743 	      msec->flags = origflags;
12744 	      return FALSE;
12745 	    }
12746 
12747 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12748 	    {
12749 	      msec->flags = origflags;
12750 	      return FALSE;
12751 	    }
12752 
12753 	  /* Swap in the FDR information.  */
12754 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12755 	  fi->d.fdr = bfd_alloc (abfd, amt);
12756 	  if (fi->d.fdr == NULL)
12757 	    {
12758 	      msec->flags = origflags;
12759 	      return FALSE;
12760 	    }
12761 	  external_fdr_size = swap->external_fdr_size;
12762 	  fdr_ptr = fi->d.fdr;
12763 	  fraw_src = (char *) fi->d.external_fdr;
12764 	  fraw_end = (fraw_src
12765 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
12766 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12767 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12768 
12769 	  mips_elf_tdata (abfd)->find_line_info = fi;
12770 
12771 	  /* Note that we don't bother to ever free this information.
12772              find_nearest_line is either called all the time, as in
12773              objdump -l, so the information should be saved, or it is
12774              rarely called, as in ld error messages, so the memory
12775              wasted is unimportant.  Still, it would probably be a
12776              good idea for free_cached_info to throw it away.  */
12777 	}
12778 
12779       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12780 				  &fi->i, filename_ptr, functionname_ptr,
12781 				  line_ptr))
12782 	{
12783 	  msec->flags = origflags;
12784 	  return TRUE;
12785 	}
12786 
12787       msec->flags = origflags;
12788     }
12789 
12790   /* Fall back on the generic ELF find_nearest_line routine.  */
12791 
12792   return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
12793 				     filename_ptr, functionname_ptr,
12794 				     line_ptr, discriminator_ptr);
12795 }
12796 
12797 bfd_boolean
12798 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12799 				 const char **filename_ptr,
12800 				 const char **functionname_ptr,
12801 				 unsigned int *line_ptr)
12802 {
12803   bfd_boolean found;
12804   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12805 					 functionname_ptr, line_ptr,
12806 					 & elf_tdata (abfd)->dwarf2_find_line_info);
12807   return found;
12808 }
12809 
12810 
12811 /* When are writing out the .options or .MIPS.options section,
12812    remember the bytes we are writing out, so that we can install the
12813    GP value in the section_processing routine.  */
12814 
12815 bfd_boolean
12816 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12817 				    const void *location,
12818 				    file_ptr offset, bfd_size_type count)
12819 {
12820   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12821     {
12822       bfd_byte *c;
12823 
12824       if (elf_section_data (section) == NULL)
12825 	{
12826 	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12827 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
12828 	  if (elf_section_data (section) == NULL)
12829 	    return FALSE;
12830 	}
12831       c = mips_elf_section_data (section)->u.tdata;
12832       if (c == NULL)
12833 	{
12834 	  c = bfd_zalloc (abfd, section->size);
12835 	  if (c == NULL)
12836 	    return FALSE;
12837 	  mips_elf_section_data (section)->u.tdata = c;
12838 	}
12839 
12840       memcpy (c + offset, location, count);
12841     }
12842 
12843   return _bfd_elf_set_section_contents (abfd, section, location, offset,
12844 					count);
12845 }
12846 
12847 /* This is almost identical to bfd_generic_get_... except that some
12848    MIPS relocations need to be handled specially.  Sigh.  */
12849 
12850 bfd_byte *
12851 _bfd_elf_mips_get_relocated_section_contents
12852   (bfd *abfd,
12853    struct bfd_link_info *link_info,
12854    struct bfd_link_order *link_order,
12855    bfd_byte *data,
12856    bfd_boolean relocatable,
12857    asymbol **symbols)
12858 {
12859   /* Get enough memory to hold the stuff */
12860   bfd *input_bfd = link_order->u.indirect.section->owner;
12861   asection *input_section = link_order->u.indirect.section;
12862   bfd_size_type sz;
12863 
12864   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12865   arelent **reloc_vector = NULL;
12866   long reloc_count;
12867 
12868   if (reloc_size < 0)
12869     goto error_return;
12870 
12871   reloc_vector = bfd_malloc (reloc_size);
12872   if (reloc_vector == NULL && reloc_size != 0)
12873     goto error_return;
12874 
12875   /* read in the section */
12876   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12877   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12878     goto error_return;
12879 
12880   reloc_count = bfd_canonicalize_reloc (input_bfd,
12881 					input_section,
12882 					reloc_vector,
12883 					symbols);
12884   if (reloc_count < 0)
12885     goto error_return;
12886 
12887   if (reloc_count > 0)
12888     {
12889       arelent **parent;
12890       /* for mips */
12891       int gp_found;
12892       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
12893 
12894       {
12895 	struct bfd_hash_entry *h;
12896 	struct bfd_link_hash_entry *lh;
12897 	/* Skip all this stuff if we aren't mixing formats.  */
12898 	if (abfd && input_bfd
12899 	    && abfd->xvec == input_bfd->xvec)
12900 	  lh = 0;
12901 	else
12902 	  {
12903 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12904 	    lh = (struct bfd_link_hash_entry *) h;
12905 	  }
12906       lookup:
12907 	if (lh)
12908 	  {
12909 	    switch (lh->type)
12910 	      {
12911 	      case bfd_link_hash_undefined:
12912 	      case bfd_link_hash_undefweak:
12913 	      case bfd_link_hash_common:
12914 		gp_found = 0;
12915 		break;
12916 	      case bfd_link_hash_defined:
12917 	      case bfd_link_hash_defweak:
12918 		gp_found = 1;
12919 		gp = lh->u.def.value;
12920 		break;
12921 	      case bfd_link_hash_indirect:
12922 	      case bfd_link_hash_warning:
12923 		lh = lh->u.i.link;
12924 		/* @@FIXME  ignoring warning for now */
12925 		goto lookup;
12926 	      case bfd_link_hash_new:
12927 	      default:
12928 		abort ();
12929 	      }
12930 	  }
12931 	else
12932 	  gp_found = 0;
12933       }
12934       /* end mips */
12935       for (parent = reloc_vector; *parent != NULL; parent++)
12936 	{
12937 	  char *error_message = NULL;
12938 	  bfd_reloc_status_type r;
12939 
12940 	  /* Specific to MIPS: Deal with relocation types that require
12941 	     knowing the gp of the output bfd.  */
12942 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
12943 
12944 	  /* If we've managed to find the gp and have a special
12945 	     function for the relocation then go ahead, else default
12946 	     to the generic handling.  */
12947 	  if (gp_found
12948 	      && (*parent)->howto->special_function
12949 	      == _bfd_mips_elf32_gprel16_reloc)
12950 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12951 					       input_section, relocatable,
12952 					       data, gp);
12953 	  else
12954 	    r = bfd_perform_relocation (input_bfd, *parent, data,
12955 					input_section,
12956 					relocatable ? abfd : NULL,
12957 					&error_message);
12958 
12959 	  if (relocatable)
12960 	    {
12961 	      asection *os = input_section->output_section;
12962 
12963 	      /* A partial link, so keep the relocs */
12964 	      os->orelocation[os->reloc_count] = *parent;
12965 	      os->reloc_count++;
12966 	    }
12967 
12968 	  if (r != bfd_reloc_ok)
12969 	    {
12970 	      switch (r)
12971 		{
12972 		case bfd_reloc_undefined:
12973 		  (*link_info->callbacks->undefined_symbol)
12974 		    (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12975 		     input_bfd, input_section, (*parent)->address, TRUE);
12976 		  break;
12977 		case bfd_reloc_dangerous:
12978 		  BFD_ASSERT (error_message != NULL);
12979 		  (*link_info->callbacks->reloc_dangerous)
12980 		    (link_info, error_message,
12981 		     input_bfd, input_section, (*parent)->address);
12982 		  break;
12983 		case bfd_reloc_overflow:
12984 		  (*link_info->callbacks->reloc_overflow)
12985 		    (link_info, NULL,
12986 		     bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12987 		     (*parent)->howto->name, (*parent)->addend,
12988 		     input_bfd, input_section, (*parent)->address);
12989 		  break;
12990 		case bfd_reloc_outofrange:
12991 		default:
12992 		  abort ();
12993 		  break;
12994 		}
12995 
12996 	    }
12997 	}
12998     }
12999   if (reloc_vector != NULL)
13000     free (reloc_vector);
13001   return data;
13002 
13003 error_return:
13004   if (reloc_vector != NULL)
13005     free (reloc_vector);
13006   return NULL;
13007 }
13008 
13009 static bfd_boolean
13010 mips_elf_relax_delete_bytes (bfd *abfd,
13011 			     asection *sec, bfd_vma addr, int count)
13012 {
13013   Elf_Internal_Shdr *symtab_hdr;
13014   unsigned int sec_shndx;
13015   bfd_byte *contents;
13016   Elf_Internal_Rela *irel, *irelend;
13017   Elf_Internal_Sym *isym;
13018   Elf_Internal_Sym *isymend;
13019   struct elf_link_hash_entry **sym_hashes;
13020   struct elf_link_hash_entry **end_hashes;
13021   struct elf_link_hash_entry **start_hashes;
13022   unsigned int symcount;
13023 
13024   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13025   contents = elf_section_data (sec)->this_hdr.contents;
13026 
13027   irel = elf_section_data (sec)->relocs;
13028   irelend = irel + sec->reloc_count;
13029 
13030   /* Actually delete the bytes.  */
13031   memmove (contents + addr, contents + addr + count,
13032 	   (size_t) (sec->size - addr - count));
13033   sec->size -= count;
13034 
13035   /* Adjust all the relocs.  */
13036   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13037     {
13038       /* Get the new reloc address.  */
13039       if (irel->r_offset > addr)
13040 	irel->r_offset -= count;
13041     }
13042 
13043   BFD_ASSERT (addr % 2 == 0);
13044   BFD_ASSERT (count % 2 == 0);
13045 
13046   /* Adjust the local symbols defined in this section.  */
13047   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13048   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13049   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13050     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13051       isym->st_value -= count;
13052 
13053   /* Now adjust the global symbols defined in this section.  */
13054   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13055 	      - symtab_hdr->sh_info);
13056   sym_hashes = start_hashes = elf_sym_hashes (abfd);
13057   end_hashes = sym_hashes + symcount;
13058 
13059   for (; sym_hashes < end_hashes; sym_hashes++)
13060     {
13061       struct elf_link_hash_entry *sym_hash = *sym_hashes;
13062 
13063       if ((sym_hash->root.type == bfd_link_hash_defined
13064 	   || sym_hash->root.type == bfd_link_hash_defweak)
13065 	  && sym_hash->root.u.def.section == sec)
13066 	{
13067 	  bfd_vma value = sym_hash->root.u.def.value;
13068 
13069 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13070 	    value &= MINUS_TWO;
13071 	  if (value > addr)
13072 	    sym_hash->root.u.def.value -= count;
13073 	}
13074     }
13075 
13076   return TRUE;
13077 }
13078 
13079 
13080 /* Opcodes needed for microMIPS relaxation as found in
13081    opcodes/micromips-opc.c.  */
13082 
13083 struct opcode_descriptor {
13084   unsigned long match;
13085   unsigned long mask;
13086 };
13087 
13088 /* The $ra register aka $31.  */
13089 
13090 #define RA 31
13091 
13092 /* 32-bit instruction format register fields.  */
13093 
13094 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13095 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13096 
13097 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
13098 
13099 #define OP16_VALID_REG(r) \
13100   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13101 
13102 
13103 /* 32-bit and 16-bit branches.  */
13104 
13105 static const struct opcode_descriptor b_insns_32[] = {
13106   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
13107   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13108   { 0, 0 }  /* End marker for find_match().  */
13109 };
13110 
13111 static const struct opcode_descriptor bc_insn_32 =
13112   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
13113 
13114 static const struct opcode_descriptor bz_insn_32 =
13115   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
13116 
13117 static const struct opcode_descriptor bzal_insn_32 =
13118   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
13119 
13120 static const struct opcode_descriptor beq_insn_32 =
13121   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
13122 
13123 static const struct opcode_descriptor b_insn_16 =
13124   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
13125 
13126 static const struct opcode_descriptor bz_insn_16 =
13127   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
13128 
13129 
13130 /* 32-bit and 16-bit branch EQ and NE zero.  */
13131 
13132 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13133    eq and second the ne.  This convention is used when replacing a
13134    32-bit BEQ/BNE with the 16-bit version.  */
13135 
13136 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13137 
13138 static const struct opcode_descriptor bz_rs_insns_32[] = {
13139   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
13140   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
13141   { 0, 0 }  /* End marker for find_match().  */
13142 };
13143 
13144 static const struct opcode_descriptor bz_rt_insns_32[] = {
13145   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
13146   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
13147   { 0, 0 }  /* End marker for find_match().  */
13148 };
13149 
13150 static const struct opcode_descriptor bzc_insns_32[] = {
13151   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
13152   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
13153   { 0, 0 }  /* End marker for find_match().  */
13154 };
13155 
13156 static const struct opcode_descriptor bz_insns_16[] = {
13157   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
13158   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
13159   { 0, 0 }  /* End marker for find_match().  */
13160 };
13161 
13162 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
13163 
13164 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13165 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13166 
13167 
13168 /* 32-bit instructions with a delay slot.  */
13169 
13170 static const struct opcode_descriptor jal_insn_32_bd16 =
13171   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
13172 
13173 static const struct opcode_descriptor jal_insn_32_bd32 =
13174   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
13175 
13176 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13177   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
13178 
13179 static const struct opcode_descriptor j_insn_32 =
13180   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
13181 
13182 static const struct opcode_descriptor jalr_insn_32 =
13183   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
13184 
13185 /* This table can be compacted, because no opcode replacement is made.  */
13186 
13187 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13188   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
13189 
13190   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
13191   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
13192 
13193   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
13194   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
13195   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
13196   { 0, 0 }  /* End marker for find_match().  */
13197 };
13198 
13199 /* This table can be compacted, because no opcode replacement is made.  */
13200 
13201 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13202   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
13203 
13204   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
13205   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
13206   { 0, 0 }  /* End marker for find_match().  */
13207 };
13208 
13209 
13210 /* 16-bit instructions with a delay slot.  */
13211 
13212 static const struct opcode_descriptor jalr_insn_16_bd16 =
13213   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
13214 
13215 static const struct opcode_descriptor jalr_insn_16_bd32 =
13216   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
13217 
13218 static const struct opcode_descriptor jr_insn_16 =
13219   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
13220 
13221 #define JR16_REG(opcode) ((opcode) & 0x1f)
13222 
13223 /* This table can be compacted, because no opcode replacement is made.  */
13224 
13225 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13226   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
13227 
13228   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
13229   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
13230   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
13231   { 0, 0 }  /* End marker for find_match().  */
13232 };
13233 
13234 
13235 /* LUI instruction.  */
13236 
13237 static const struct opcode_descriptor lui_insn =
13238  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
13239 
13240 
13241 /* ADDIU instruction.  */
13242 
13243 static const struct opcode_descriptor addiu_insn =
13244   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
13245 
13246 static const struct opcode_descriptor addiupc_insn =
13247   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
13248 
13249 #define ADDIUPC_REG_FIELD(r) \
13250   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13251 
13252 
13253 /* Relaxable instructions in a JAL delay slot: MOVE.  */
13254 
13255 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
13256    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
13257 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13258 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13259 
13260 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13261 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
13262 
13263 static const struct opcode_descriptor move_insns_32[] = {
13264   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
13265   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13266   { 0, 0 }  /* End marker for find_match().  */
13267 };
13268 
13269 static const struct opcode_descriptor move_insn_16 =
13270   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
13271 
13272 
13273 /* NOP instructions.  */
13274 
13275 static const struct opcode_descriptor nop_insn_32 =
13276   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
13277 
13278 static const struct opcode_descriptor nop_insn_16 =
13279   { /* "nop",	"",		*/ 0x0c00,     0xffff };
13280 
13281 
13282 /* Instruction match support.  */
13283 
13284 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13285 
13286 static int
13287 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13288 {
13289   unsigned long indx;
13290 
13291   for (indx = 0; insn[indx].mask != 0; indx++)
13292     if (MATCH (opcode, insn[indx]))
13293       return indx;
13294 
13295   return -1;
13296 }
13297 
13298 
13299 /* Branch and delay slot decoding support.  */
13300 
13301 /* If PTR points to what *might* be a 16-bit branch or jump, then
13302    return the minimum length of its delay slot, otherwise return 0.
13303    Non-zero results are not definitive as we might be checking against
13304    the second half of another instruction.  */
13305 
13306 static int
13307 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13308 {
13309   unsigned long opcode;
13310   int bdsize;
13311 
13312   opcode = bfd_get_16 (abfd, ptr);
13313   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13314     /* 16-bit branch/jump with a 32-bit delay slot.  */
13315     bdsize = 4;
13316   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13317 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
13318     /* 16-bit branch/jump with a 16-bit delay slot.  */
13319     bdsize = 2;
13320   else
13321     /* No delay slot.  */
13322     bdsize = 0;
13323 
13324   return bdsize;
13325 }
13326 
13327 /* If PTR points to what *might* be a 32-bit branch or jump, then
13328    return the minimum length of its delay slot, otherwise return 0.
13329    Non-zero results are not definitive as we might be checking against
13330    the second half of another instruction.  */
13331 
13332 static int
13333 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13334 {
13335   unsigned long opcode;
13336   int bdsize;
13337 
13338   opcode = bfd_get_micromips_32 (abfd, ptr);
13339   if (find_match (opcode, ds_insns_32_bd32) >= 0)
13340     /* 32-bit branch/jump with a 32-bit delay slot.  */
13341     bdsize = 4;
13342   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13343     /* 32-bit branch/jump with a 16-bit delay slot.  */
13344     bdsize = 2;
13345   else
13346     /* No delay slot.  */
13347     bdsize = 0;
13348 
13349   return bdsize;
13350 }
13351 
13352 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13353    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
13354 
13355 static bfd_boolean
13356 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13357 {
13358   unsigned long opcode;
13359 
13360   opcode = bfd_get_16 (abfd, ptr);
13361   if (MATCH (opcode, b_insn_16)
13362 						/* B16  */
13363       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13364 						/* JR16  */
13365       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13366 						/* BEQZ16, BNEZ16  */
13367       || (MATCH (opcode, jalr_insn_16_bd32)
13368 						/* JALR16  */
13369 	  && reg != JR16_REG (opcode) && reg != RA))
13370     return TRUE;
13371 
13372   return FALSE;
13373 }
13374 
13375 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13376    then return TRUE, otherwise FALSE.  */
13377 
13378 static bfd_boolean
13379 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13380 {
13381   unsigned long opcode;
13382 
13383   opcode = bfd_get_micromips_32 (abfd, ptr);
13384   if (MATCH (opcode, j_insn_32)
13385 						/* J  */
13386       || MATCH (opcode, bc_insn_32)
13387 						/* BC1F, BC1T, BC2F, BC2T  */
13388       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13389 						/* JAL, JALX  */
13390       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13391 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
13392       || (MATCH (opcode, bzal_insn_32)
13393 						/* BGEZAL, BLTZAL  */
13394 	  && reg != OP32_SREG (opcode) && reg != RA)
13395       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13396 						/* JALR, JALR.HB, BEQ, BNE  */
13397 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13398     return TRUE;
13399 
13400   return FALSE;
13401 }
13402 
13403 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13404    IRELEND) at OFFSET indicate that there must be a compact branch there,
13405    then return TRUE, otherwise FALSE.  */
13406 
13407 static bfd_boolean
13408 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13409 		     const Elf_Internal_Rela *internal_relocs,
13410 		     const Elf_Internal_Rela *irelend)
13411 {
13412   const Elf_Internal_Rela *irel;
13413   unsigned long opcode;
13414 
13415   opcode = bfd_get_micromips_32 (abfd, ptr);
13416   if (find_match (opcode, bzc_insns_32) < 0)
13417     return FALSE;
13418 
13419   for (irel = internal_relocs; irel < irelend; irel++)
13420     if (irel->r_offset == offset
13421 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13422       return TRUE;
13423 
13424   return FALSE;
13425 }
13426 
13427 /* Bitsize checking.  */
13428 #define IS_BITSIZE(val, N)						\
13429   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13430     - (1ULL << ((N) - 1))) == (val))
13431 
13432 
13433 bfd_boolean
13434 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13435 			     struct bfd_link_info *link_info,
13436 			     bfd_boolean *again)
13437 {
13438   bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13439   Elf_Internal_Shdr *symtab_hdr;
13440   Elf_Internal_Rela *internal_relocs;
13441   Elf_Internal_Rela *irel, *irelend;
13442   bfd_byte *contents = NULL;
13443   Elf_Internal_Sym *isymbuf = NULL;
13444 
13445   /* Assume nothing changes.  */
13446   *again = FALSE;
13447 
13448   /* We don't have to do anything for a relocatable link, if
13449      this section does not have relocs, or if this is not a
13450      code section.  */
13451 
13452   if (bfd_link_relocatable (link_info)
13453       || (sec->flags & SEC_RELOC) == 0
13454       || sec->reloc_count == 0
13455       || (sec->flags & SEC_CODE) == 0)
13456     return TRUE;
13457 
13458   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13459 
13460   /* Get a copy of the native relocations.  */
13461   internal_relocs = (_bfd_elf_link_read_relocs
13462 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13463 		      link_info->keep_memory));
13464   if (internal_relocs == NULL)
13465     goto error_return;
13466 
13467   /* Walk through them looking for relaxing opportunities.  */
13468   irelend = internal_relocs + sec->reloc_count;
13469   for (irel = internal_relocs; irel < irelend; irel++)
13470     {
13471       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13472       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13473       bfd_boolean target_is_micromips_code_p;
13474       unsigned long opcode;
13475       bfd_vma symval;
13476       bfd_vma pcrval;
13477       bfd_byte *ptr;
13478       int fndopc;
13479 
13480       /* The number of bytes to delete for relaxation and from where
13481          to delete these bytes starting at irel->r_offset.  */
13482       int delcnt = 0;
13483       int deloff = 0;
13484 
13485       /* If this isn't something that can be relaxed, then ignore
13486          this reloc.  */
13487       if (r_type != R_MICROMIPS_HI16
13488 	  && r_type != R_MICROMIPS_PC16_S1
13489 	  && r_type != R_MICROMIPS_26_S1)
13490 	continue;
13491 
13492       /* Get the section contents if we haven't done so already.  */
13493       if (contents == NULL)
13494 	{
13495 	  /* Get cached copy if it exists.  */
13496 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13497 	    contents = elf_section_data (sec)->this_hdr.contents;
13498 	  /* Go get them off disk.  */
13499 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13500 	    goto error_return;
13501 	}
13502       ptr = contents + irel->r_offset;
13503 
13504       /* Read this BFD's local symbols if we haven't done so already.  */
13505       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13506 	{
13507 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13508 	  if (isymbuf == NULL)
13509 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13510 					    symtab_hdr->sh_info, 0,
13511 					    NULL, NULL, NULL);
13512 	  if (isymbuf == NULL)
13513 	    goto error_return;
13514 	}
13515 
13516       /* Get the value of the symbol referred to by the reloc.  */
13517       if (r_symndx < symtab_hdr->sh_info)
13518 	{
13519 	  /* A local symbol.  */
13520 	  Elf_Internal_Sym *isym;
13521 	  asection *sym_sec;
13522 
13523 	  isym = isymbuf + r_symndx;
13524 	  if (isym->st_shndx == SHN_UNDEF)
13525 	    sym_sec = bfd_und_section_ptr;
13526 	  else if (isym->st_shndx == SHN_ABS)
13527 	    sym_sec = bfd_abs_section_ptr;
13528 	  else if (isym->st_shndx == SHN_COMMON)
13529 	    sym_sec = bfd_com_section_ptr;
13530 	  else
13531 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13532 	  symval = (isym->st_value
13533 		    + sym_sec->output_section->vma
13534 		    + sym_sec->output_offset);
13535 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13536 	}
13537       else
13538 	{
13539 	  unsigned long indx;
13540 	  struct elf_link_hash_entry *h;
13541 
13542 	  /* An external symbol.  */
13543 	  indx = r_symndx - symtab_hdr->sh_info;
13544 	  h = elf_sym_hashes (abfd)[indx];
13545 	  BFD_ASSERT (h != NULL);
13546 
13547 	  if (h->root.type != bfd_link_hash_defined
13548 	      && h->root.type != bfd_link_hash_defweak)
13549 	    /* This appears to be a reference to an undefined
13550 	       symbol.  Just ignore it -- it will be caught by the
13551 	       regular reloc processing.  */
13552 	    continue;
13553 
13554 	  symval = (h->root.u.def.value
13555 		    + h->root.u.def.section->output_section->vma
13556 		    + h->root.u.def.section->output_offset);
13557 	  target_is_micromips_code_p = (!h->needs_plt
13558 					&& ELF_ST_IS_MICROMIPS (h->other));
13559 	}
13560 
13561 
13562       /* For simplicity of coding, we are going to modify the
13563          section contents, the section relocs, and the BFD symbol
13564          table.  We must tell the rest of the code not to free up this
13565          information.  It would be possible to instead create a table
13566          of changes which have to be made, as is done in coff-mips.c;
13567          that would be more work, but would require less memory when
13568          the linker is run.  */
13569 
13570       /* Only 32-bit instructions relaxed.  */
13571       if (irel->r_offset + 4 > sec->size)
13572 	continue;
13573 
13574       opcode = bfd_get_micromips_32 (abfd, ptr);
13575 
13576       /* This is the pc-relative distance from the instruction the
13577          relocation is applied to, to the symbol referred.  */
13578       pcrval = (symval
13579 		- (sec->output_section->vma + sec->output_offset)
13580 		- irel->r_offset);
13581 
13582       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13583          of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13584          R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
13585 
13586            (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13587 
13588          where pcrval has first to be adjusted to apply against the LO16
13589          location (we make the adjustment later on, when we have figured
13590          out the offset).  */
13591       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13592 	{
13593 	  bfd_boolean bzc = FALSE;
13594 	  unsigned long nextopc;
13595 	  unsigned long reg;
13596 	  bfd_vma offset;
13597 
13598 	  /* Give up if the previous reloc was a HI16 against this symbol
13599 	     too.  */
13600 	  if (irel > internal_relocs
13601 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13602 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13603 	    continue;
13604 
13605 	  /* Or if the next reloc is not a LO16 against this symbol.  */
13606 	  if (irel + 1 >= irelend
13607 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13608 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13609 	    continue;
13610 
13611 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
13612 	  if (irel + 2 >= irelend
13613 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13614 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13615 	    continue;
13616 
13617 	  /* See if the LUI instruction *might* be in a branch delay slot.
13618 	     We check whether what looks like a 16-bit branch or jump is
13619 	     actually an immediate argument to a compact branch, and let
13620 	     it through if so.  */
13621 	  if (irel->r_offset >= 2
13622 	      && check_br16_dslot (abfd, ptr - 2)
13623 	      && !(irel->r_offset >= 4
13624 		   && (bzc = check_relocated_bzc (abfd,
13625 						  ptr - 4, irel->r_offset - 4,
13626 						  internal_relocs, irelend))))
13627 	    continue;
13628 	  if (irel->r_offset >= 4
13629 	      && !bzc
13630 	      && check_br32_dslot (abfd, ptr - 4))
13631 	    continue;
13632 
13633 	  reg = OP32_SREG (opcode);
13634 
13635 	  /* We only relax adjacent instructions or ones separated with
13636 	     a branch or jump that has a delay slot.  The branch or jump
13637 	     must not fiddle with the register used to hold the address.
13638 	     Subtract 4 for the LUI itself.  */
13639 	  offset = irel[1].r_offset - irel[0].r_offset;
13640 	  switch (offset - 4)
13641 	    {
13642 	    case 0:
13643 	      break;
13644 	    case 2:
13645 	      if (check_br16 (abfd, ptr + 4, reg))
13646 		break;
13647 	      continue;
13648 	    case 4:
13649 	      if (check_br32 (abfd, ptr + 4, reg))
13650 		break;
13651 	      continue;
13652 	    default:
13653 	      continue;
13654 	    }
13655 
13656 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13657 
13658 	  /* Give up unless the same register is used with both
13659 	     relocations.  */
13660 	  if (OP32_SREG (nextopc) != reg)
13661 	    continue;
13662 
13663 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13664 	     and rounding up to take masking of the two LSBs into account.  */
13665 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13666 
13667 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
13668 	  if (IS_BITSIZE (symval, 16))
13669 	    {
13670 	      /* Fix the relocation's type.  */
13671 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13672 
13673 	      /* Instructions using R_MICROMIPS_LO16 have the base or
13674 	         source register in bits 20:16.  This register becomes $0
13675 	         (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
13676 	      nextopc &= ~0x001f0000;
13677 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13678 			  contents + irel[1].r_offset);
13679 	    }
13680 
13681 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13682 	     We add 4 to take LUI deletion into account while checking
13683 	     the PC-relative distance.  */
13684 	  else if (symval % 4 == 0
13685 		   && IS_BITSIZE (pcrval + 4, 25)
13686 		   && MATCH (nextopc, addiu_insn)
13687 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13688 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
13689 	    {
13690 	      /* Fix the relocation's type.  */
13691 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13692 
13693 	      /* Replace ADDIU with the ADDIUPC version.  */
13694 	      nextopc = (addiupc_insn.match
13695 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13696 
13697 	      bfd_put_micromips_32 (abfd, nextopc,
13698 				    contents + irel[1].r_offset);
13699 	    }
13700 
13701 	  /* Can't do anything, give up, sigh...  */
13702 	  else
13703 	    continue;
13704 
13705 	  /* Fix the relocation's type.  */
13706 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13707 
13708 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
13709 	  delcnt = 4;
13710 	  deloff = 0;
13711 	}
13712 
13713       /* Compact branch relaxation -- due to the multitude of macros
13714          employed by the compiler/assembler, compact branches are not
13715          always generated.  Obviously, this can/will be fixed elsewhere,
13716          but there is no drawback in double checking it here.  */
13717       else if (r_type == R_MICROMIPS_PC16_S1
13718 	       && irel->r_offset + 5 < sec->size
13719 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13720 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13721 	       && ((!insn32
13722 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13723 					nop_insn_16) ? 2 : 0))
13724 		   || (irel->r_offset + 7 < sec->size
13725 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13726 								 ptr + 4),
13727 					   nop_insn_32) ? 4 : 0))))
13728 	{
13729 	  unsigned long reg;
13730 
13731 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13732 
13733 	  /* Replace BEQZ/BNEZ with the compact version.  */
13734 	  opcode = (bzc_insns_32[fndopc].match
13735 		    | BZC32_REG_FIELD (reg)
13736 		    | (opcode & 0xffff));		/* Addend value.  */
13737 
13738 	  bfd_put_micromips_32 (abfd, opcode, ptr);
13739 
13740 	  /* Delete the delay slot NOP: two or four bytes from
13741 	     irel->offset + 4; delcnt has already been set above.  */
13742 	  deloff = 4;
13743 	}
13744 
13745       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
13746          to check the distance from the next instruction, so subtract 2.  */
13747       else if (!insn32
13748 	       && r_type == R_MICROMIPS_PC16_S1
13749 	       && IS_BITSIZE (pcrval - 2, 11)
13750 	       && find_match (opcode, b_insns_32) >= 0)
13751 	{
13752 	  /* Fix the relocation's type.  */
13753 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13754 
13755 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13756 	  bfd_put_16 (abfd,
13757 		      (b_insn_16.match
13758 		       | (opcode & 0x3ff)),		/* Addend value.  */
13759 		      ptr);
13760 
13761 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13762 	  delcnt = 2;
13763 	  deloff = 2;
13764 	}
13765 
13766       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
13767          to check the distance from the next instruction, so subtract 2.  */
13768       else if (!insn32
13769 	       && r_type == R_MICROMIPS_PC16_S1
13770 	       && IS_BITSIZE (pcrval - 2, 8)
13771 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13772 		    && OP16_VALID_REG (OP32_SREG (opcode)))
13773 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13774 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
13775 	{
13776 	  unsigned long reg;
13777 
13778 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13779 
13780 	  /* Fix the relocation's type.  */
13781 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13782 
13783 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13784 	  bfd_put_16 (abfd,
13785 		      (bz_insns_16[fndopc].match
13786 		       | BZ16_REG_FIELD (reg)
13787 		       | (opcode & 0x7f)),		/* Addend value.  */
13788 		      ptr);
13789 
13790 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13791 	  delcnt = 2;
13792 	  deloff = 2;
13793 	}
13794 
13795       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
13796       else if (!insn32
13797 	       && r_type == R_MICROMIPS_26_S1
13798 	       && target_is_micromips_code_p
13799 	       && irel->r_offset + 7 < sec->size
13800 	       && MATCH (opcode, jal_insn_32_bd32))
13801 	{
13802 	  unsigned long n32opc;
13803 	  bfd_boolean relaxed = FALSE;
13804 
13805 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13806 
13807 	  if (MATCH (n32opc, nop_insn_32))
13808 	    {
13809 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
13810 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13811 
13812 	      relaxed = TRUE;
13813 	    }
13814 	  else if (find_match (n32opc, move_insns_32) >= 0)
13815 	    {
13816 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
13817 	      bfd_put_16 (abfd,
13818 			  (move_insn_16.match
13819 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13820 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13821 			  ptr + 4);
13822 
13823 	      relaxed = TRUE;
13824 	    }
13825 	  /* Other 32-bit instructions relaxable to 16-bit
13826 	     instructions will be handled here later.  */
13827 
13828 	  if (relaxed)
13829 	    {
13830 	      /* JAL with 32-bit delay slot that is changed to a JALS
13831 	         with 16-bit delay slot.  */
13832 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13833 
13834 	      /* Delete 2 bytes from irel->r_offset + 6.  */
13835 	      delcnt = 2;
13836 	      deloff = 6;
13837 	    }
13838 	}
13839 
13840       if (delcnt != 0)
13841 	{
13842 	  /* Note that we've changed the relocs, section contents, etc.  */
13843 	  elf_section_data (sec)->relocs = internal_relocs;
13844 	  elf_section_data (sec)->this_hdr.contents = contents;
13845 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13846 
13847 	  /* Delete bytes depending on the delcnt and deloff.  */
13848 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
13849 					    irel->r_offset + deloff, delcnt))
13850 	    goto error_return;
13851 
13852 	  /* That will change things, so we should relax again.
13853 	     Note that this is not required, and it may be slow.  */
13854 	  *again = TRUE;
13855 	}
13856     }
13857 
13858   if (isymbuf != NULL
13859       && symtab_hdr->contents != (unsigned char *) isymbuf)
13860     {
13861       if (! link_info->keep_memory)
13862 	free (isymbuf);
13863       else
13864 	{
13865 	  /* Cache the symbols for elf_link_input_bfd.  */
13866 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13867 	}
13868     }
13869 
13870   if (contents != NULL
13871       && elf_section_data (sec)->this_hdr.contents != contents)
13872     {
13873       if (! link_info->keep_memory)
13874 	free (contents);
13875       else
13876 	{
13877 	  /* Cache the section contents for elf_link_input_bfd.  */
13878 	  elf_section_data (sec)->this_hdr.contents = contents;
13879 	}
13880     }
13881 
13882   if (internal_relocs != NULL
13883       && elf_section_data (sec)->relocs != internal_relocs)
13884     free (internal_relocs);
13885 
13886   return TRUE;
13887 
13888  error_return:
13889   if (isymbuf != NULL
13890       && symtab_hdr->contents != (unsigned char *) isymbuf)
13891     free (isymbuf);
13892   if (contents != NULL
13893       && elf_section_data (sec)->this_hdr.contents != contents)
13894     free (contents);
13895   if (internal_relocs != NULL
13896       && elf_section_data (sec)->relocs != internal_relocs)
13897     free (internal_relocs);
13898 
13899   return FALSE;
13900 }
13901 
13902 /* Create a MIPS ELF linker hash table.  */
13903 
13904 struct bfd_link_hash_table *
13905 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13906 {
13907   struct mips_elf_link_hash_table *ret;
13908   bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13909 
13910   ret = bfd_zmalloc (amt);
13911   if (ret == NULL)
13912     return NULL;
13913 
13914   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13915 				      mips_elf_link_hash_newfunc,
13916 				      sizeof (struct mips_elf_link_hash_entry),
13917 				      MIPS_ELF_DATA))
13918     {
13919       free (ret);
13920       return NULL;
13921     }
13922   ret->root.init_plt_refcount.plist = NULL;
13923   ret->root.init_plt_offset.plist = NULL;
13924 
13925   return &ret->root.root;
13926 }
13927 
13928 /* Likewise, but indicate that the target is VxWorks.  */
13929 
13930 struct bfd_link_hash_table *
13931 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13932 {
13933   struct bfd_link_hash_table *ret;
13934 
13935   ret = _bfd_mips_elf_link_hash_table_create (abfd);
13936   if (ret)
13937     {
13938       struct mips_elf_link_hash_table *htab;
13939 
13940       htab = (struct mips_elf_link_hash_table *) ret;
13941       htab->use_plts_and_copy_relocs = TRUE;
13942       htab->is_vxworks = TRUE;
13943     }
13944   return ret;
13945 }
13946 
13947 /* A function that the linker calls if we are allowed to use PLTs
13948    and copy relocs.  */
13949 
13950 void
13951 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13952 {
13953   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13954 }
13955 
13956 /* A function that the linker calls to select between all or only
13957    32-bit microMIPS instructions, and between making or ignoring
13958    branch relocation checks for invalid transitions between ISA modes.  */
13959 
13960 void
13961 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
13962 			    bfd_boolean ignore_branch_isa)
13963 {
13964   mips_elf_hash_table (info)->insn32 = insn32;
13965   mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
13966 }
13967 
13968 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
13969 
13970 struct mips_mach_extension
13971 {
13972   unsigned long extension, base;
13973 };
13974 
13975 
13976 /* An array describing how BFD machines relate to one another.  The entries
13977    are ordered topologically with MIPS I extensions listed last.  */
13978 
13979 static const struct mips_mach_extension mips_mach_extensions[] =
13980 {
13981   /* MIPS64r2 extensions.  */
13982   { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
13983   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
13984   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
13985   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
13986   { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 },
13987 
13988   /* MIPS64 extensions.  */
13989   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
13990   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
13991   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
13992 
13993   /* MIPS V extensions.  */
13994   { bfd_mach_mipsisa64, bfd_mach_mips5 },
13995 
13996   /* R10000 extensions.  */
13997   { bfd_mach_mips12000, bfd_mach_mips10000 },
13998   { bfd_mach_mips14000, bfd_mach_mips10000 },
13999   { bfd_mach_mips16000, bfd_mach_mips10000 },
14000 
14001   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
14002      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
14003      better to allow vr5400 and vr5500 code to be merged anyway, since
14004      many libraries will just use the core ISA.  Perhaps we could add
14005      some sort of ASE flag if this ever proves a problem.  */
14006   { bfd_mach_mips5500, bfd_mach_mips5400 },
14007   { bfd_mach_mips5400, bfd_mach_mips5000 },
14008 
14009   /* MIPS IV extensions.  */
14010   { bfd_mach_mips5, bfd_mach_mips8000 },
14011   { bfd_mach_mips10000, bfd_mach_mips8000 },
14012   { bfd_mach_mips5000, bfd_mach_mips8000 },
14013   { bfd_mach_mips7000, bfd_mach_mips8000 },
14014   { bfd_mach_mips9000, bfd_mach_mips8000 },
14015 
14016   /* VR4100 extensions.  */
14017   { bfd_mach_mips4120, bfd_mach_mips4100 },
14018   { bfd_mach_mips4111, bfd_mach_mips4100 },
14019 
14020   /* MIPS III extensions.  */
14021   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14022   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14023   { bfd_mach_mips8000, bfd_mach_mips4000 },
14024   { bfd_mach_mips4650, bfd_mach_mips4000 },
14025   { bfd_mach_mips4600, bfd_mach_mips4000 },
14026   { bfd_mach_mips4400, bfd_mach_mips4000 },
14027   { bfd_mach_mips4300, bfd_mach_mips4000 },
14028   { bfd_mach_mips4100, bfd_mach_mips4000 },
14029   { bfd_mach_mips4010, bfd_mach_mips4000 },
14030   { bfd_mach_mips5900, bfd_mach_mips4000 },
14031 
14032   /* MIPS32 extensions.  */
14033   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14034 
14035   /* MIPS II extensions.  */
14036   { bfd_mach_mips4000, bfd_mach_mips6000 },
14037   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14038 
14039   /* MIPS I extensions.  */
14040   { bfd_mach_mips6000, bfd_mach_mips3000 },
14041   { bfd_mach_mips3900, bfd_mach_mips3000 }
14042 };
14043 
14044 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14045 
14046 static bfd_boolean
14047 mips_mach_extends_p (unsigned long base, unsigned long extension)
14048 {
14049   size_t i;
14050 
14051   if (extension == base)
14052     return TRUE;
14053 
14054   if (base == bfd_mach_mipsisa32
14055       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14056     return TRUE;
14057 
14058   if (base == bfd_mach_mipsisa32r2
14059       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14060     return TRUE;
14061 
14062   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14063     if (extension == mips_mach_extensions[i].extension)
14064       {
14065 	extension = mips_mach_extensions[i].base;
14066 	if (extension == base)
14067 	  return TRUE;
14068       }
14069 
14070   return FALSE;
14071 }
14072 
14073 /* Return the BFD mach for each .MIPS.abiflags ISA Extension.  */
14074 
14075 static unsigned long
14076 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14077 {
14078   switch (isa_ext)
14079     {
14080     case AFL_EXT_3900:        return bfd_mach_mips3900;
14081     case AFL_EXT_4010:        return bfd_mach_mips4010;
14082     case AFL_EXT_4100:        return bfd_mach_mips4100;
14083     case AFL_EXT_4111:        return bfd_mach_mips4111;
14084     case AFL_EXT_4120:        return bfd_mach_mips4120;
14085     case AFL_EXT_4650:        return bfd_mach_mips4650;
14086     case AFL_EXT_5400:        return bfd_mach_mips5400;
14087     case AFL_EXT_5500:        return bfd_mach_mips5500;
14088     case AFL_EXT_5900:        return bfd_mach_mips5900;
14089     case AFL_EXT_10000:       return bfd_mach_mips10000;
14090     case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14091     case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14092     case AFL_EXT_LOONGSON_3A: return bfd_mach_mips_loongson_3a;
14093     case AFL_EXT_SB1:         return bfd_mach_mips_sb1;
14094     case AFL_EXT_OCTEON:      return bfd_mach_mips_octeon;
14095     case AFL_EXT_OCTEONP:     return bfd_mach_mips_octeonp;
14096     case AFL_EXT_OCTEON2:     return bfd_mach_mips_octeon2;
14097     case AFL_EXT_XLR:         return bfd_mach_mips_xlr;
14098     default:                  return bfd_mach_mips3000;
14099     }
14100 }
14101 
14102 /* Return the .MIPS.abiflags value representing each ISA Extension.  */
14103 
14104 unsigned int
14105 bfd_mips_isa_ext (bfd *abfd)
14106 {
14107   switch (bfd_get_mach (abfd))
14108     {
14109     case bfd_mach_mips3900:         return AFL_EXT_3900;
14110     case bfd_mach_mips4010:         return AFL_EXT_4010;
14111     case bfd_mach_mips4100:         return AFL_EXT_4100;
14112     case bfd_mach_mips4111:         return AFL_EXT_4111;
14113     case bfd_mach_mips4120:         return AFL_EXT_4120;
14114     case bfd_mach_mips4650:         return AFL_EXT_4650;
14115     case bfd_mach_mips5400:         return AFL_EXT_5400;
14116     case bfd_mach_mips5500:         return AFL_EXT_5500;
14117     case bfd_mach_mips5900:         return AFL_EXT_5900;
14118     case bfd_mach_mips10000:        return AFL_EXT_10000;
14119     case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14120     case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14121     case bfd_mach_mips_loongson_3a: return AFL_EXT_LOONGSON_3A;
14122     case bfd_mach_mips_sb1:         return AFL_EXT_SB1;
14123     case bfd_mach_mips_octeon:      return AFL_EXT_OCTEON;
14124     case bfd_mach_mips_octeonp:     return AFL_EXT_OCTEONP;
14125     case bfd_mach_mips_octeon3:     return AFL_EXT_OCTEON3;
14126     case bfd_mach_mips_octeon2:     return AFL_EXT_OCTEON2;
14127     case bfd_mach_mips_xlr:         return AFL_EXT_XLR;
14128     default:                        return 0;
14129     }
14130 }
14131 
14132 /* Encode ISA level and revision as a single value.  */
14133 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14134 
14135 /* Decode a single value into level and revision.  */
14136 #define ISA_LEVEL(LEVREV)  ((LEVREV) >> 3)
14137 #define ISA_REV(LEVREV)    ((LEVREV) & 0x7)
14138 
14139 /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */
14140 
14141 static void
14142 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14143 {
14144   int new_isa = 0;
14145   switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14146     {
14147     case E_MIPS_ARCH_1:    new_isa = LEVEL_REV (1, 0); break;
14148     case E_MIPS_ARCH_2:    new_isa = LEVEL_REV (2, 0); break;
14149     case E_MIPS_ARCH_3:    new_isa = LEVEL_REV (3, 0); break;
14150     case E_MIPS_ARCH_4:    new_isa = LEVEL_REV (4, 0); break;
14151     case E_MIPS_ARCH_5:    new_isa = LEVEL_REV (5, 0); break;
14152     case E_MIPS_ARCH_32:   new_isa = LEVEL_REV (32, 1); break;
14153     case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14154     case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14155     case E_MIPS_ARCH_64:   new_isa = LEVEL_REV (64, 1); break;
14156     case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14157     case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14158     default:
14159       _bfd_error_handler
14160 	/* xgettext:c-format */
14161 	(_("%B: Unknown architecture %s"),
14162 	 abfd, bfd_printable_name (abfd));
14163     }
14164 
14165   if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14166     {
14167       abiflags->isa_level = ISA_LEVEL (new_isa);
14168       abiflags->isa_rev = ISA_REV (new_isa);
14169     }
14170 
14171   /* Update the isa_ext if ABFD describes a further extension.  */
14172   if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14173 			   bfd_get_mach (abfd)))
14174     abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14175 }
14176 
14177 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14178 
14179 static bfd_boolean
14180 mips_32bit_flags_p (flagword flags)
14181 {
14182   return ((flags & EF_MIPS_32BITMODE) != 0
14183 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14184 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14185 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14186 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14187 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14188 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14189 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14190 }
14191 
14192 /* Infer the content of the ABI flags based on the elf header.  */
14193 
14194 static void
14195 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14196 {
14197   obj_attribute *in_attr;
14198 
14199   memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14200   update_mips_abiflags_isa (abfd, abiflags);
14201 
14202   if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14203     abiflags->gpr_size = AFL_REG_32;
14204   else
14205     abiflags->gpr_size = AFL_REG_64;
14206 
14207   abiflags->cpr1_size = AFL_REG_NONE;
14208 
14209   in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14210   abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14211 
14212   if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14213       || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14214       || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14215 	  && abiflags->gpr_size == AFL_REG_32))
14216     abiflags->cpr1_size = AFL_REG_32;
14217   else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14218 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14219 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14220     abiflags->cpr1_size = AFL_REG_64;
14221 
14222   abiflags->cpr2_size = AFL_REG_NONE;
14223 
14224   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14225     abiflags->ases |= AFL_ASE_MDMX;
14226   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14227     abiflags->ases |= AFL_ASE_MIPS16;
14228   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14229     abiflags->ases |= AFL_ASE_MICROMIPS;
14230 
14231   if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14232       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14233       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14234       && abiflags->isa_level >= 32
14235       && abiflags->isa_ext != AFL_EXT_LOONGSON_3A)
14236     abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14237 }
14238 
14239 /* We need to use a special link routine to handle the .reginfo and
14240    the .mdebug sections.  We need to merge all instances of these
14241    sections together, not write them all out sequentially.  */
14242 
14243 bfd_boolean
14244 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14245 {
14246   asection *o;
14247   struct bfd_link_order *p;
14248   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14249   asection *rtproc_sec, *abiflags_sec;
14250   Elf32_RegInfo reginfo;
14251   struct ecoff_debug_info debug;
14252   struct mips_htab_traverse_info hti;
14253   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14254   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14255   HDRR *symhdr = &debug.symbolic_header;
14256   void *mdebug_handle = NULL;
14257   asection *s;
14258   EXTR esym;
14259   unsigned int i;
14260   bfd_size_type amt;
14261   struct mips_elf_link_hash_table *htab;
14262 
14263   static const char * const secname[] =
14264   {
14265     ".text", ".init", ".fini", ".data",
14266     ".rodata", ".sdata", ".sbss", ".bss"
14267   };
14268   static const int sc[] =
14269   {
14270     scText, scInit, scFini, scData,
14271     scRData, scSData, scSBss, scBss
14272   };
14273 
14274   /* Sort the dynamic symbols so that those with GOT entries come after
14275      those without.  */
14276   htab = mips_elf_hash_table (info);
14277   BFD_ASSERT (htab != NULL);
14278 
14279   if (!mips_elf_sort_hash_table (abfd, info))
14280     return FALSE;
14281 
14282   /* Create any scheduled LA25 stubs.  */
14283   hti.info = info;
14284   hti.output_bfd = abfd;
14285   hti.error = FALSE;
14286   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14287   if (hti.error)
14288     return FALSE;
14289 
14290   /* Get a value for the GP register.  */
14291   if (elf_gp (abfd) == 0)
14292     {
14293       struct bfd_link_hash_entry *h;
14294 
14295       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14296       if (h != NULL && h->type == bfd_link_hash_defined)
14297 	elf_gp (abfd) = (h->u.def.value
14298 			 + h->u.def.section->output_section->vma
14299 			 + h->u.def.section->output_offset);
14300       else if (htab->is_vxworks
14301 	       && (h = bfd_link_hash_lookup (info->hash,
14302 					     "_GLOBAL_OFFSET_TABLE_",
14303 					     FALSE, FALSE, TRUE))
14304 	       && h->type == bfd_link_hash_defined)
14305 	elf_gp (abfd) = (h->u.def.section->output_section->vma
14306 			 + h->u.def.section->output_offset
14307 			 + h->u.def.value);
14308       else if (bfd_link_relocatable (info))
14309 	{
14310 	  bfd_vma lo = MINUS_ONE;
14311 
14312 	  /* Find the GP-relative section with the lowest offset.  */
14313 	  for (o = abfd->sections; o != NULL; o = o->next)
14314 	    if (o->vma < lo
14315 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14316 	      lo = o->vma;
14317 
14318 	  /* And calculate GP relative to that.  */
14319 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14320 	}
14321       else
14322 	{
14323 	  /* If the relocate_section function needs to do a reloc
14324 	     involving the GP value, it should make a reloc_dangerous
14325 	     callback to warn that GP is not defined.  */
14326 	}
14327     }
14328 
14329   /* Go through the sections and collect the .reginfo and .mdebug
14330      information.  */
14331   abiflags_sec = NULL;
14332   reginfo_sec = NULL;
14333   mdebug_sec = NULL;
14334   gptab_data_sec = NULL;
14335   gptab_bss_sec = NULL;
14336   for (o = abfd->sections; o != NULL; o = o->next)
14337     {
14338       if (strcmp (o->name, ".MIPS.abiflags") == 0)
14339 	{
14340 	  /* We have found the .MIPS.abiflags section in the output file.
14341 	     Look through all the link_orders comprising it and remove them.
14342 	     The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */
14343 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14344 	    {
14345 	      asection *input_section;
14346 
14347 	      if (p->type != bfd_indirect_link_order)
14348 		{
14349 		  if (p->type == bfd_data_link_order)
14350 		    continue;
14351 		  abort ();
14352 		}
14353 
14354 	      input_section = p->u.indirect.section;
14355 
14356 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14357 		 elf_link_input_bfd ignores this section.  */
14358 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14359 	    }
14360 
14361 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14362 	  BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14363 
14364 	  /* Skip this section later on (I don't think this currently
14365 	     matters, but someday it might).  */
14366 	  o->map_head.link_order = NULL;
14367 
14368 	  abiflags_sec = o;
14369 	}
14370 
14371       if (strcmp (o->name, ".reginfo") == 0)
14372 	{
14373 	  memset (&reginfo, 0, sizeof reginfo);
14374 
14375 	  /* We have found the .reginfo section in the output file.
14376 	     Look through all the link_orders comprising it and merge
14377 	     the information together.  */
14378 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14379 	    {
14380 	      asection *input_section;
14381 	      bfd *input_bfd;
14382 	      Elf32_External_RegInfo ext;
14383 	      Elf32_RegInfo sub;
14384 
14385 	      if (p->type != bfd_indirect_link_order)
14386 		{
14387 		  if (p->type == bfd_data_link_order)
14388 		    continue;
14389 		  abort ();
14390 		}
14391 
14392 	      input_section = p->u.indirect.section;
14393 	      input_bfd = input_section->owner;
14394 
14395 	      if (! bfd_get_section_contents (input_bfd, input_section,
14396 					      &ext, 0, sizeof ext))
14397 		return FALSE;
14398 
14399 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14400 
14401 	      reginfo.ri_gprmask |= sub.ri_gprmask;
14402 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14403 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14404 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14405 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14406 
14407 	      /* ri_gp_value is set by the function
14408 		 mips_elf32_section_processing when the section is
14409 		 finally written out.  */
14410 
14411 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14412 		 elf_link_input_bfd ignores this section.  */
14413 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14414 	    }
14415 
14416 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14417 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14418 
14419 	  /* Skip this section later on (I don't think this currently
14420 	     matters, but someday it might).  */
14421 	  o->map_head.link_order = NULL;
14422 
14423 	  reginfo_sec = o;
14424 	}
14425 
14426       if (strcmp (o->name, ".mdebug") == 0)
14427 	{
14428 	  struct extsym_info einfo;
14429 	  bfd_vma last;
14430 
14431 	  /* We have found the .mdebug section in the output file.
14432 	     Look through all the link_orders comprising it and merge
14433 	     the information together.  */
14434 	  symhdr->magic = swap->sym_magic;
14435 	  /* FIXME: What should the version stamp be?  */
14436 	  symhdr->vstamp = 0;
14437 	  symhdr->ilineMax = 0;
14438 	  symhdr->cbLine = 0;
14439 	  symhdr->idnMax = 0;
14440 	  symhdr->ipdMax = 0;
14441 	  symhdr->isymMax = 0;
14442 	  symhdr->ioptMax = 0;
14443 	  symhdr->iauxMax = 0;
14444 	  symhdr->issMax = 0;
14445 	  symhdr->issExtMax = 0;
14446 	  symhdr->ifdMax = 0;
14447 	  symhdr->crfd = 0;
14448 	  symhdr->iextMax = 0;
14449 
14450 	  /* We accumulate the debugging information itself in the
14451 	     debug_info structure.  */
14452 	  debug.line = NULL;
14453 	  debug.external_dnr = NULL;
14454 	  debug.external_pdr = NULL;
14455 	  debug.external_sym = NULL;
14456 	  debug.external_opt = NULL;
14457 	  debug.external_aux = NULL;
14458 	  debug.ss = NULL;
14459 	  debug.ssext = debug.ssext_end = NULL;
14460 	  debug.external_fdr = NULL;
14461 	  debug.external_rfd = NULL;
14462 	  debug.external_ext = debug.external_ext_end = NULL;
14463 
14464 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14465 	  if (mdebug_handle == NULL)
14466 	    return FALSE;
14467 
14468 	  esym.jmptbl = 0;
14469 	  esym.cobol_main = 0;
14470 	  esym.weakext = 0;
14471 	  esym.reserved = 0;
14472 	  esym.ifd = ifdNil;
14473 	  esym.asym.iss = issNil;
14474 	  esym.asym.st = stLocal;
14475 	  esym.asym.reserved = 0;
14476 	  esym.asym.index = indexNil;
14477 	  last = 0;
14478 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14479 	    {
14480 	      esym.asym.sc = sc[i];
14481 	      s = bfd_get_section_by_name (abfd, secname[i]);
14482 	      if (s != NULL)
14483 		{
14484 		  esym.asym.value = s->vma;
14485 		  last = s->vma + s->size;
14486 		}
14487 	      else
14488 		esym.asym.value = last;
14489 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14490 						 secname[i], &esym))
14491 		return FALSE;
14492 	    }
14493 
14494 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14495 	    {
14496 	      asection *input_section;
14497 	      bfd *input_bfd;
14498 	      const struct ecoff_debug_swap *input_swap;
14499 	      struct ecoff_debug_info input_debug;
14500 	      char *eraw_src;
14501 	      char *eraw_end;
14502 
14503 	      if (p->type != bfd_indirect_link_order)
14504 		{
14505 		  if (p->type == bfd_data_link_order)
14506 		    continue;
14507 		  abort ();
14508 		}
14509 
14510 	      input_section = p->u.indirect.section;
14511 	      input_bfd = input_section->owner;
14512 
14513 	      if (!is_mips_elf (input_bfd))
14514 		{
14515 		  /* I don't know what a non MIPS ELF bfd would be
14516 		     doing with a .mdebug section, but I don't really
14517 		     want to deal with it.  */
14518 		  continue;
14519 		}
14520 
14521 	      input_swap = (get_elf_backend_data (input_bfd)
14522 			    ->elf_backend_ecoff_debug_swap);
14523 
14524 	      BFD_ASSERT (p->size == input_section->size);
14525 
14526 	      /* The ECOFF linking code expects that we have already
14527 		 read in the debugging information and set up an
14528 		 ecoff_debug_info structure, so we do that now.  */
14529 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14530 						   &input_debug))
14531 		return FALSE;
14532 
14533 	      if (! (bfd_ecoff_debug_accumulate
14534 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
14535 		      &input_debug, input_swap, info)))
14536 		return FALSE;
14537 
14538 	      /* Loop through the external symbols.  For each one with
14539 		 interesting information, try to find the symbol in
14540 		 the linker global hash table and save the information
14541 		 for the output external symbols.  */
14542 	      eraw_src = input_debug.external_ext;
14543 	      eraw_end = (eraw_src
14544 			  + (input_debug.symbolic_header.iextMax
14545 			     * input_swap->external_ext_size));
14546 	      for (;
14547 		   eraw_src < eraw_end;
14548 		   eraw_src += input_swap->external_ext_size)
14549 		{
14550 		  EXTR ext;
14551 		  const char *name;
14552 		  struct mips_elf_link_hash_entry *h;
14553 
14554 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14555 		  if (ext.asym.sc == scNil
14556 		      || ext.asym.sc == scUndefined
14557 		      || ext.asym.sc == scSUndefined)
14558 		    continue;
14559 
14560 		  name = input_debug.ssext + ext.asym.iss;
14561 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14562 						 name, FALSE, FALSE, TRUE);
14563 		  if (h == NULL || h->esym.ifd != -2)
14564 		    continue;
14565 
14566 		  if (ext.ifd != -1)
14567 		    {
14568 		      BFD_ASSERT (ext.ifd
14569 				  < input_debug.symbolic_header.ifdMax);
14570 		      ext.ifd = input_debug.ifdmap[ext.ifd];
14571 		    }
14572 
14573 		  h->esym = ext;
14574 		}
14575 
14576 	      /* Free up the information we just read.  */
14577 	      free (input_debug.line);
14578 	      free (input_debug.external_dnr);
14579 	      free (input_debug.external_pdr);
14580 	      free (input_debug.external_sym);
14581 	      free (input_debug.external_opt);
14582 	      free (input_debug.external_aux);
14583 	      free (input_debug.ss);
14584 	      free (input_debug.ssext);
14585 	      free (input_debug.external_fdr);
14586 	      free (input_debug.external_rfd);
14587 	      free (input_debug.external_ext);
14588 
14589 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14590 		 elf_link_input_bfd ignores this section.  */
14591 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14592 	    }
14593 
14594 	  if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14595 	    {
14596 	      /* Create .rtproc section.  */
14597 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14598 	      if (rtproc_sec == NULL)
14599 		{
14600 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14601 				    | SEC_LINKER_CREATED | SEC_READONLY);
14602 
14603 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
14604 								   ".rtproc",
14605 								   flags);
14606 		  if (rtproc_sec == NULL
14607 		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
14608 		    return FALSE;
14609 		}
14610 
14611 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
14612 						     info, rtproc_sec,
14613 						     &debug))
14614 		return FALSE;
14615 	    }
14616 
14617 	  /* Build the external symbol information.  */
14618 	  einfo.abfd = abfd;
14619 	  einfo.info = info;
14620 	  einfo.debug = &debug;
14621 	  einfo.swap = swap;
14622 	  einfo.failed = FALSE;
14623 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
14624 				       mips_elf_output_extsym, &einfo);
14625 	  if (einfo.failed)
14626 	    return FALSE;
14627 
14628 	  /* Set the size of the .mdebug section.  */
14629 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
14630 
14631 	  /* Skip this section later on (I don't think this currently
14632 	     matters, but someday it might).  */
14633 	  o->map_head.link_order = NULL;
14634 
14635 	  mdebug_sec = o;
14636 	}
14637 
14638       if (CONST_STRNEQ (o->name, ".gptab."))
14639 	{
14640 	  const char *subname;
14641 	  unsigned int c;
14642 	  Elf32_gptab *tab;
14643 	  Elf32_External_gptab *ext_tab;
14644 	  unsigned int j;
14645 
14646 	  /* The .gptab.sdata and .gptab.sbss sections hold
14647 	     information describing how the small data area would
14648 	     change depending upon the -G switch.  These sections
14649 	     not used in executables files.  */
14650 	  if (! bfd_link_relocatable (info))
14651 	    {
14652 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
14653 		{
14654 		  asection *input_section;
14655 
14656 		  if (p->type != bfd_indirect_link_order)
14657 		    {
14658 		      if (p->type == bfd_data_link_order)
14659 			continue;
14660 		      abort ();
14661 		    }
14662 
14663 		  input_section = p->u.indirect.section;
14664 
14665 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
14666 		     elf_link_input_bfd ignores this section.  */
14667 		  input_section->flags &= ~SEC_HAS_CONTENTS;
14668 		}
14669 
14670 	      /* Skip this section later on (I don't think this
14671 		 currently matters, but someday it might).  */
14672 	      o->map_head.link_order = NULL;
14673 
14674 	      /* Really remove the section.  */
14675 	      bfd_section_list_remove (abfd, o);
14676 	      --abfd->section_count;
14677 
14678 	      continue;
14679 	    }
14680 
14681 	  /* There is one gptab for initialized data, and one for
14682 	     uninitialized data.  */
14683 	  if (strcmp (o->name, ".gptab.sdata") == 0)
14684 	    gptab_data_sec = o;
14685 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
14686 	    gptab_bss_sec = o;
14687 	  else
14688 	    {
14689 	      _bfd_error_handler
14690 		/* xgettext:c-format */
14691 		(_("%B: illegal section name `%A'"), abfd, o);
14692 	      bfd_set_error (bfd_error_nonrepresentable_section);
14693 	      return FALSE;
14694 	    }
14695 
14696 	  /* The linker script always combines .gptab.data and
14697 	     .gptab.sdata into .gptab.sdata, and likewise for
14698 	     .gptab.bss and .gptab.sbss.  It is possible that there is
14699 	     no .sdata or .sbss section in the output file, in which
14700 	     case we must change the name of the output section.  */
14701 	  subname = o->name + sizeof ".gptab" - 1;
14702 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
14703 	    {
14704 	      if (o == gptab_data_sec)
14705 		o->name = ".gptab.data";
14706 	      else
14707 		o->name = ".gptab.bss";
14708 	      subname = o->name + sizeof ".gptab" - 1;
14709 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14710 	    }
14711 
14712 	  /* Set up the first entry.  */
14713 	  c = 1;
14714 	  amt = c * sizeof (Elf32_gptab);
14715 	  tab = bfd_malloc (amt);
14716 	  if (tab == NULL)
14717 	    return FALSE;
14718 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14719 	  tab[0].gt_header.gt_unused = 0;
14720 
14721 	  /* Combine the input sections.  */
14722 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14723 	    {
14724 	      asection *input_section;
14725 	      bfd *input_bfd;
14726 	      bfd_size_type size;
14727 	      unsigned long last;
14728 	      bfd_size_type gpentry;
14729 
14730 	      if (p->type != bfd_indirect_link_order)
14731 		{
14732 		  if (p->type == bfd_data_link_order)
14733 		    continue;
14734 		  abort ();
14735 		}
14736 
14737 	      input_section = p->u.indirect.section;
14738 	      input_bfd = input_section->owner;
14739 
14740 	      /* Combine the gptab entries for this input section one
14741 		 by one.  We know that the input gptab entries are
14742 		 sorted by ascending -G value.  */
14743 	      size = input_section->size;
14744 	      last = 0;
14745 	      for (gpentry = sizeof (Elf32_External_gptab);
14746 		   gpentry < size;
14747 		   gpentry += sizeof (Elf32_External_gptab))
14748 		{
14749 		  Elf32_External_gptab ext_gptab;
14750 		  Elf32_gptab int_gptab;
14751 		  unsigned long val;
14752 		  unsigned long add;
14753 		  bfd_boolean exact;
14754 		  unsigned int look;
14755 
14756 		  if (! (bfd_get_section_contents
14757 			 (input_bfd, input_section, &ext_gptab, gpentry,
14758 			  sizeof (Elf32_External_gptab))))
14759 		    {
14760 		      free (tab);
14761 		      return FALSE;
14762 		    }
14763 
14764 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14765 						&int_gptab);
14766 		  val = int_gptab.gt_entry.gt_g_value;
14767 		  add = int_gptab.gt_entry.gt_bytes - last;
14768 
14769 		  exact = FALSE;
14770 		  for (look = 1; look < c; look++)
14771 		    {
14772 		      if (tab[look].gt_entry.gt_g_value >= val)
14773 			tab[look].gt_entry.gt_bytes += add;
14774 
14775 		      if (tab[look].gt_entry.gt_g_value == val)
14776 			exact = TRUE;
14777 		    }
14778 
14779 		  if (! exact)
14780 		    {
14781 		      Elf32_gptab *new_tab;
14782 		      unsigned int max;
14783 
14784 		      /* We need a new table entry.  */
14785 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14786 		      new_tab = bfd_realloc (tab, amt);
14787 		      if (new_tab == NULL)
14788 			{
14789 			  free (tab);
14790 			  return FALSE;
14791 			}
14792 		      tab = new_tab;
14793 		      tab[c].gt_entry.gt_g_value = val;
14794 		      tab[c].gt_entry.gt_bytes = add;
14795 
14796 		      /* Merge in the size for the next smallest -G
14797 			 value, since that will be implied by this new
14798 			 value.  */
14799 		      max = 0;
14800 		      for (look = 1; look < c; look++)
14801 			{
14802 			  if (tab[look].gt_entry.gt_g_value < val
14803 			      && (max == 0
14804 				  || (tab[look].gt_entry.gt_g_value
14805 				      > tab[max].gt_entry.gt_g_value)))
14806 			    max = look;
14807 			}
14808 		      if (max != 0)
14809 			tab[c].gt_entry.gt_bytes +=
14810 			  tab[max].gt_entry.gt_bytes;
14811 
14812 		      ++c;
14813 		    }
14814 
14815 		  last = int_gptab.gt_entry.gt_bytes;
14816 		}
14817 
14818 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14819 		 elf_link_input_bfd ignores this section.  */
14820 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14821 	    }
14822 
14823 	  /* The table must be sorted by -G value.  */
14824 	  if (c > 2)
14825 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14826 
14827 	  /* Swap out the table.  */
14828 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14829 	  ext_tab = bfd_alloc (abfd, amt);
14830 	  if (ext_tab == NULL)
14831 	    {
14832 	      free (tab);
14833 	      return FALSE;
14834 	    }
14835 
14836 	  for (j = 0; j < c; j++)
14837 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14838 	  free (tab);
14839 
14840 	  o->size = c * sizeof (Elf32_External_gptab);
14841 	  o->contents = (bfd_byte *) ext_tab;
14842 
14843 	  /* Skip this section later on (I don't think this currently
14844 	     matters, but someday it might).  */
14845 	  o->map_head.link_order = NULL;
14846 	}
14847     }
14848 
14849   /* Invoke the regular ELF backend linker to do all the work.  */
14850   if (!bfd_elf_final_link (abfd, info))
14851     return FALSE;
14852 
14853   /* Now write out the computed sections.  */
14854 
14855   if (abiflags_sec != NULL)
14856     {
14857       Elf_External_ABIFlags_v0 ext;
14858       Elf_Internal_ABIFlags_v0 *abiflags;
14859 
14860       abiflags = &mips_elf_tdata (abfd)->abiflags;
14861 
14862       /* Set up the abiflags if no valid input sections were found.  */
14863       if (!mips_elf_tdata (abfd)->abiflags_valid)
14864 	{
14865 	  infer_mips_abiflags (abfd, abiflags);
14866 	  mips_elf_tdata (abfd)->abiflags_valid = TRUE;
14867 	}
14868       bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
14869       if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
14870 	return FALSE;
14871     }
14872 
14873   if (reginfo_sec != NULL)
14874     {
14875       Elf32_External_RegInfo ext;
14876 
14877       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14878       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14879 	return FALSE;
14880     }
14881 
14882   if (mdebug_sec != NULL)
14883     {
14884       BFD_ASSERT (abfd->output_has_begun);
14885       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14886 					       swap, info,
14887 					       mdebug_sec->filepos))
14888 	return FALSE;
14889 
14890       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14891     }
14892 
14893   if (gptab_data_sec != NULL)
14894     {
14895       if (! bfd_set_section_contents (abfd, gptab_data_sec,
14896 				      gptab_data_sec->contents,
14897 				      0, gptab_data_sec->size))
14898 	return FALSE;
14899     }
14900 
14901   if (gptab_bss_sec != NULL)
14902     {
14903       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14904 				      gptab_bss_sec->contents,
14905 				      0, gptab_bss_sec->size))
14906 	return FALSE;
14907     }
14908 
14909   if (SGI_COMPAT (abfd))
14910     {
14911       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14912       if (rtproc_sec != NULL)
14913 	{
14914 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
14915 					  rtproc_sec->contents,
14916 					  0, rtproc_sec->size))
14917 	    return FALSE;
14918 	}
14919     }
14920 
14921   return TRUE;
14922 }
14923 
14924 /* Merge object file header flags from IBFD into OBFD.  Raise an error
14925    if there are conflicting settings.  */
14926 
14927 static bfd_boolean
14928 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
14929 {
14930   bfd *obfd = info->output_bfd;
14931   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
14932   flagword old_flags;
14933   flagword new_flags;
14934   bfd_boolean ok;
14935 
14936   new_flags = elf_elfheader (ibfd)->e_flags;
14937   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14938   old_flags = elf_elfheader (obfd)->e_flags;
14939 
14940   /* Check flag compatibility.  */
14941 
14942   new_flags &= ~EF_MIPS_NOREORDER;
14943   old_flags &= ~EF_MIPS_NOREORDER;
14944 
14945   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
14946      doesn't seem to matter.  */
14947   new_flags &= ~EF_MIPS_XGOT;
14948   old_flags &= ~EF_MIPS_XGOT;
14949 
14950   /* MIPSpro generates ucode info in n64 objects.  Again, we should
14951      just be able to ignore this.  */
14952   new_flags &= ~EF_MIPS_UCODE;
14953   old_flags &= ~EF_MIPS_UCODE;
14954 
14955   /* DSOs should only be linked with CPIC code.  */
14956   if ((ibfd->flags & DYNAMIC) != 0)
14957     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14958 
14959   if (new_flags == old_flags)
14960     return TRUE;
14961 
14962   ok = TRUE;
14963 
14964   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14965       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14966     {
14967       _bfd_error_handler
14968 	(_("%B: warning: linking abicalls files with non-abicalls files"),
14969 	 ibfd);
14970       ok = TRUE;
14971     }
14972 
14973   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14974     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14975   if (! (new_flags & EF_MIPS_PIC))
14976     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14977 
14978   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14979   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14980 
14981   /* Compare the ISAs.  */
14982   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14983     {
14984       _bfd_error_handler
14985 	(_("%B: linking 32-bit code with 64-bit code"),
14986 	 ibfd);
14987       ok = FALSE;
14988     }
14989   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14990     {
14991       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
14992       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14993 	{
14994 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
14995 	     the 32-bit flag (if set) so that we continue to recognise
14996 	     OBFD as a 32-bit binary.  */
14997 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14998 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14999 	  elf_elfheader (obfd)->e_flags
15000 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15001 
15002 	  /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */
15003 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15004 
15005 	  /* Copy across the ABI flags if OBFD doesn't use them
15006 	     and if that was what caused us to treat IBFD as 32-bit.  */
15007 	  if ((old_flags & EF_MIPS_ABI) == 0
15008 	      && mips_32bit_flags_p (new_flags)
15009 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15010 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15011 	}
15012       else
15013 	{
15014 	  /* The ISAs aren't compatible.  */
15015 	  _bfd_error_handler
15016 	    /* xgettext:c-format */
15017 	    (_("%B: linking %s module with previous %s modules"),
15018 	     ibfd,
15019 	     bfd_printable_name (ibfd),
15020 	     bfd_printable_name (obfd));
15021 	  ok = FALSE;
15022 	}
15023     }
15024 
15025   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15026   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15027 
15028   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
15029      does set EI_CLASS differently from any 32-bit ABI.  */
15030   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15031       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15032 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15033     {
15034       /* Only error if both are set (to different values).  */
15035       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15036 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15037 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15038 	{
15039 	  _bfd_error_handler
15040 	    /* xgettext:c-format */
15041 	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
15042 	     ibfd,
15043 	     elf_mips_abi_name (ibfd),
15044 	     elf_mips_abi_name (obfd));
15045 	  ok = FALSE;
15046 	}
15047       new_flags &= ~EF_MIPS_ABI;
15048       old_flags &= ~EF_MIPS_ABI;
15049     }
15050 
15051   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
15052      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
15053   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15054     {
15055       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15056       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15057       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15058       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15059       int micro_mis = old_m16 && new_micro;
15060       int m16_mis = old_micro && new_m16;
15061 
15062       if (m16_mis || micro_mis)
15063 	{
15064 	  _bfd_error_handler
15065 	    /* xgettext:c-format */
15066 	    (_("%B: ASE mismatch: linking %s module with previous %s modules"),
15067 	     ibfd,
15068 	     m16_mis ? "MIPS16" : "microMIPS",
15069 	     m16_mis ? "microMIPS" : "MIPS16");
15070 	  ok = FALSE;
15071 	}
15072 
15073       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15074 
15075       new_flags &= ~ EF_MIPS_ARCH_ASE;
15076       old_flags &= ~ EF_MIPS_ARCH_ASE;
15077     }
15078 
15079   /* Compare NaN encodings.  */
15080   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15081     {
15082       /* xgettext:c-format */
15083       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15084 			  ibfd,
15085 			  (new_flags & EF_MIPS_NAN2008
15086 			   ? "-mnan=2008" : "-mnan=legacy"),
15087 			  (old_flags & EF_MIPS_NAN2008
15088 			   ? "-mnan=2008" : "-mnan=legacy"));
15089       ok = FALSE;
15090       new_flags &= ~EF_MIPS_NAN2008;
15091       old_flags &= ~EF_MIPS_NAN2008;
15092     }
15093 
15094   /* Compare FP64 state.  */
15095   if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15096     {
15097       /* xgettext:c-format */
15098       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
15099 			  ibfd,
15100 			  (new_flags & EF_MIPS_FP64
15101 			   ? "-mfp64" : "-mfp32"),
15102 			  (old_flags & EF_MIPS_FP64
15103 			   ? "-mfp64" : "-mfp32"));
15104       ok = FALSE;
15105       new_flags &= ~EF_MIPS_FP64;
15106       old_flags &= ~EF_MIPS_FP64;
15107     }
15108 
15109   /* Warn about any other mismatches */
15110   if (new_flags != old_flags)
15111     {
15112       /* xgettext:c-format */
15113       _bfd_error_handler
15114 	(_("%B: uses different e_flags (0x%lx) fields than previous modules "
15115 	   "(0x%lx)"),
15116 	 ibfd, (unsigned long) new_flags,
15117 	 (unsigned long) old_flags);
15118       ok = FALSE;
15119     }
15120 
15121   return ok;
15122 }
15123 
15124 /* Merge object attributes from IBFD into OBFD.  Raise an error if
15125    there are conflicting attributes.  */
15126 static bfd_boolean
15127 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15128 {
15129   bfd *obfd = info->output_bfd;
15130   obj_attribute *in_attr;
15131   obj_attribute *out_attr;
15132   bfd *abi_fp_bfd;
15133   bfd *abi_msa_bfd;
15134 
15135   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15136   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15137   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15138     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15139 
15140   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15141   if (!abi_msa_bfd
15142       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15143     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15144 
15145   if (!elf_known_obj_attributes_proc (obfd)[0].i)
15146     {
15147       /* This is the first object.  Copy the attributes.  */
15148       _bfd_elf_copy_obj_attributes (ibfd, obfd);
15149 
15150       /* Use the Tag_null value to indicate the attributes have been
15151 	 initialized.  */
15152       elf_known_obj_attributes_proc (obfd)[0].i = 1;
15153 
15154       return TRUE;
15155     }
15156 
15157   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15158      non-conflicting ones.  */
15159   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15160   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15161     {
15162       int out_fp, in_fp;
15163 
15164       out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15165       in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15166       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15167       if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15168 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15169       else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15170 	       && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15171 		   || in_fp == Val_GNU_MIPS_ABI_FP_64
15172 		   || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15173 	{
15174 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15175 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15176 	}
15177       else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15178 	       && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15179 		   || out_fp == Val_GNU_MIPS_ABI_FP_64
15180 		   || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15181 	/* Keep the current setting.  */;
15182       else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15183 	       && in_fp == Val_GNU_MIPS_ABI_FP_64)
15184 	{
15185 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15186 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15187 	}
15188       else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15189 	       && out_fp == Val_GNU_MIPS_ABI_FP_64)
15190 	/* Keep the current setting.  */;
15191       else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15192 	{
15193 	  const char *out_string, *in_string;
15194 
15195 	  out_string = _bfd_mips_fp_abi_string (out_fp);
15196 	  in_string = _bfd_mips_fp_abi_string (in_fp);
15197 	  /* First warn about cases involving unrecognised ABIs.  */
15198 	  if (!out_string && !in_string)
15199 	    /* xgettext:c-format */
15200 	    _bfd_error_handler
15201 	      (_("Warning: %B uses unknown floating point ABI %d "
15202 		 "(set by %B), %B uses unknown floating point ABI %d"),
15203 	       obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15204 	  else if (!out_string)
15205 	    _bfd_error_handler
15206 	      /* xgettext:c-format */
15207 	      (_("Warning: %B uses unknown floating point ABI %d "
15208 		 "(set by %B), %B uses %s"),
15209 	       obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15210 	  else if (!in_string)
15211 	    _bfd_error_handler
15212 	      /* xgettext:c-format */
15213 	      (_("Warning: %B uses %s (set by %B), "
15214 		 "%B uses unknown floating point ABI %d"),
15215 	       obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15216 	  else
15217 	    {
15218 	      /* If one of the bfds is soft-float, the other must be
15219 		 hard-float.  The exact choice of hard-float ABI isn't
15220 		 really relevant to the error message.  */
15221 	      if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15222 		out_string = "-mhard-float";
15223 	      else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15224 		in_string = "-mhard-float";
15225 	      _bfd_error_handler
15226 		/* xgettext:c-format */
15227 		(_("Warning: %B uses %s (set by %B), %B uses %s"),
15228 		 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15229 	    }
15230 	}
15231     }
15232 
15233   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15234      non-conflicting ones.  */
15235   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15236     {
15237       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15238       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15239 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15240       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15241 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15242 	  {
15243 	  case Val_GNU_MIPS_ABI_MSA_128:
15244 	    _bfd_error_handler
15245 	      /* xgettext:c-format */
15246 	      (_("Warning: %B uses %s (set by %B), "
15247 		 "%B uses unknown MSA ABI %d"),
15248 	       obfd, "-mmsa", abi_msa_bfd,
15249 	       ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15250 	    break;
15251 
15252 	  default:
15253 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15254 	      {
15255 	      case Val_GNU_MIPS_ABI_MSA_128:
15256 		_bfd_error_handler
15257 		  /* xgettext:c-format */
15258 		  (_("Warning: %B uses unknown MSA ABI %d "
15259 		     "(set by %B), %B uses %s"),
15260 		     obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15261 		   abi_msa_bfd, ibfd, "-mmsa");
15262 		  break;
15263 
15264 	      default:
15265 		_bfd_error_handler
15266 		  /* xgettext:c-format */
15267 		  (_("Warning: %B uses unknown MSA ABI %d "
15268 		     "(set by %B), %B uses unknown MSA ABI %d"),
15269 		   obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15270 		   abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15271 		break;
15272 	      }
15273 	  }
15274     }
15275 
15276   /* Merge Tag_compatibility attributes and any common GNU ones.  */
15277   return _bfd_elf_merge_object_attributes (ibfd, info);
15278 }
15279 
15280 /* Merge object ABI flags from IBFD into OBFD.  Raise an error if
15281    there are conflicting settings.  */
15282 
15283 static bfd_boolean
15284 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15285 {
15286   obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15287   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15288   struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15289 
15290   /* Update the output abiflags fp_abi using the computed fp_abi.  */
15291   out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15292 
15293 #define max(a, b) ((a) > (b) ? (a) : (b))
15294   /* Merge abiflags.  */
15295   out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15296 				       in_tdata->abiflags.isa_level);
15297   out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15298 				     in_tdata->abiflags.isa_rev);
15299   out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15300 				      in_tdata->abiflags.gpr_size);
15301   out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15302 				       in_tdata->abiflags.cpr1_size);
15303   out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15304 				       in_tdata->abiflags.cpr2_size);
15305 #undef max
15306   out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15307   out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15308 
15309   return TRUE;
15310 }
15311 
15312 /* Merge backend specific data from an object file to the output
15313    object file when linking.  */
15314 
15315 bfd_boolean
15316 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15317 {
15318   bfd *obfd = info->output_bfd;
15319   struct mips_elf_obj_tdata *out_tdata;
15320   struct mips_elf_obj_tdata *in_tdata;
15321   bfd_boolean null_input_bfd = TRUE;
15322   asection *sec;
15323   bfd_boolean ok;
15324 
15325   /* Check if we have the same endianness.  */
15326   if (! _bfd_generic_verify_endian_match (ibfd, info))
15327     {
15328       _bfd_error_handler
15329 	(_("%B: endianness incompatible with that of the selected emulation"),
15330 	 ibfd);
15331       return FALSE;
15332     }
15333 
15334   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15335     return TRUE;
15336 
15337   in_tdata = mips_elf_tdata (ibfd);
15338   out_tdata = mips_elf_tdata (obfd);
15339 
15340   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15341     {
15342       _bfd_error_handler
15343 	(_("%B: ABI is incompatible with that of the selected emulation"),
15344 	 ibfd);
15345       return FALSE;
15346     }
15347 
15348   /* Check to see if the input BFD actually contains any sections.  If not,
15349      then it has no attributes, and its flags may not have been initialized
15350      either, but it cannot actually cause any incompatibility.  */
15351   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15352     {
15353       /* Ignore synthetic sections and empty .text, .data and .bss sections
15354 	 which are automatically generated by gas.  Also ignore fake
15355 	 (s)common sections, since merely defining a common symbol does
15356 	 not affect compatibility.  */
15357       if ((sec->flags & SEC_IS_COMMON) == 0
15358 	  && strcmp (sec->name, ".reginfo")
15359 	  && strcmp (sec->name, ".mdebug")
15360 	  && (sec->size != 0
15361 	      || (strcmp (sec->name, ".text")
15362 		  && strcmp (sec->name, ".data")
15363 		  && strcmp (sec->name, ".bss"))))
15364 	{
15365 	  null_input_bfd = FALSE;
15366 	  break;
15367 	}
15368     }
15369   if (null_input_bfd)
15370     return TRUE;
15371 
15372   /* Populate abiflags using existing information.  */
15373   if (in_tdata->abiflags_valid)
15374     {
15375       obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15376       Elf_Internal_ABIFlags_v0 in_abiflags;
15377       Elf_Internal_ABIFlags_v0 abiflags;
15378 
15379       /* Set up the FP ABI attribute from the abiflags if it is not already
15380          set.  */
15381       if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15382         in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15383 
15384       infer_mips_abiflags (ibfd, &abiflags);
15385       in_abiflags = in_tdata->abiflags;
15386 
15387       /* It is not possible to infer the correct ISA revision
15388          for R3 or R5 so drop down to R2 for the checks.  */
15389       if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15390 	in_abiflags.isa_rev = 2;
15391 
15392       if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15393 	  < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15394 	_bfd_error_handler
15395 	  (_("%B: warning: Inconsistent ISA between e_flags and "
15396 	     ".MIPS.abiflags"), ibfd);
15397       if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15398 	  && in_abiflags.fp_abi != abiflags.fp_abi)
15399 	_bfd_error_handler
15400 	  (_("%B: warning: Inconsistent FP ABI between .gnu.attributes and "
15401 	     ".MIPS.abiflags"), ibfd);
15402       if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15403 	_bfd_error_handler
15404 	  (_("%B: warning: Inconsistent ASEs between e_flags and "
15405 	     ".MIPS.abiflags"), ibfd);
15406       /* The isa_ext is allowed to be an extension of what can be inferred
15407 	 from e_flags.  */
15408       if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15409 				bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15410 	_bfd_error_handler
15411 	  (_("%B: warning: Inconsistent ISA extensions between e_flags and "
15412 	     ".MIPS.abiflags"), ibfd);
15413       if (in_abiflags.flags2 != 0)
15414 	_bfd_error_handler
15415 	  (_("%B: warning: Unexpected flag in the flags2 field of "
15416 	     ".MIPS.abiflags (0x%lx)"), ibfd,
15417 	   (unsigned long) in_abiflags.flags2);
15418     }
15419   else
15420     {
15421       infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15422       in_tdata->abiflags_valid = TRUE;
15423     }
15424 
15425   if (!out_tdata->abiflags_valid)
15426     {
15427       /* Copy input abiflags if output abiflags are not already valid.  */
15428       out_tdata->abiflags = in_tdata->abiflags;
15429       out_tdata->abiflags_valid = TRUE;
15430     }
15431 
15432   if (! elf_flags_init (obfd))
15433     {
15434       elf_flags_init (obfd) = TRUE;
15435       elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15436       elf_elfheader (obfd)->e_ident[EI_CLASS]
15437 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
15438 
15439       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15440 	  && (bfd_get_arch_info (obfd)->the_default
15441 	      || mips_mach_extends_p (bfd_get_mach (obfd),
15442 				      bfd_get_mach (ibfd))))
15443 	{
15444 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15445 				   bfd_get_mach (ibfd)))
15446 	    return FALSE;
15447 
15448 	  /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */
15449 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15450 	}
15451 
15452       ok = TRUE;
15453     }
15454   else
15455     ok = mips_elf_merge_obj_e_flags (ibfd, info);
15456 
15457   ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15458 
15459   ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15460 
15461   if (!ok)
15462     {
15463       bfd_set_error (bfd_error_bad_value);
15464       return FALSE;
15465     }
15466 
15467   return TRUE;
15468 }
15469 
15470 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
15471 
15472 bfd_boolean
15473 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15474 {
15475   BFD_ASSERT (!elf_flags_init (abfd)
15476 	      || elf_elfheader (abfd)->e_flags == flags);
15477 
15478   elf_elfheader (abfd)->e_flags = flags;
15479   elf_flags_init (abfd) = TRUE;
15480   return TRUE;
15481 }
15482 
15483 char *
15484 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15485 {
15486   switch (dtag)
15487     {
15488     default: return "";
15489     case DT_MIPS_RLD_VERSION:
15490       return "MIPS_RLD_VERSION";
15491     case DT_MIPS_TIME_STAMP:
15492       return "MIPS_TIME_STAMP";
15493     case DT_MIPS_ICHECKSUM:
15494       return "MIPS_ICHECKSUM";
15495     case DT_MIPS_IVERSION:
15496       return "MIPS_IVERSION";
15497     case DT_MIPS_FLAGS:
15498       return "MIPS_FLAGS";
15499     case DT_MIPS_BASE_ADDRESS:
15500       return "MIPS_BASE_ADDRESS";
15501     case DT_MIPS_MSYM:
15502       return "MIPS_MSYM";
15503     case DT_MIPS_CONFLICT:
15504       return "MIPS_CONFLICT";
15505     case DT_MIPS_LIBLIST:
15506       return "MIPS_LIBLIST";
15507     case DT_MIPS_LOCAL_GOTNO:
15508       return "MIPS_LOCAL_GOTNO";
15509     case DT_MIPS_CONFLICTNO:
15510       return "MIPS_CONFLICTNO";
15511     case DT_MIPS_LIBLISTNO:
15512       return "MIPS_LIBLISTNO";
15513     case DT_MIPS_SYMTABNO:
15514       return "MIPS_SYMTABNO";
15515     case DT_MIPS_UNREFEXTNO:
15516       return "MIPS_UNREFEXTNO";
15517     case DT_MIPS_GOTSYM:
15518       return "MIPS_GOTSYM";
15519     case DT_MIPS_HIPAGENO:
15520       return "MIPS_HIPAGENO";
15521     case DT_MIPS_RLD_MAP:
15522       return "MIPS_RLD_MAP";
15523     case DT_MIPS_RLD_MAP_REL:
15524       return "MIPS_RLD_MAP_REL";
15525     case DT_MIPS_DELTA_CLASS:
15526       return "MIPS_DELTA_CLASS";
15527     case DT_MIPS_DELTA_CLASS_NO:
15528       return "MIPS_DELTA_CLASS_NO";
15529     case DT_MIPS_DELTA_INSTANCE:
15530       return "MIPS_DELTA_INSTANCE";
15531     case DT_MIPS_DELTA_INSTANCE_NO:
15532       return "MIPS_DELTA_INSTANCE_NO";
15533     case DT_MIPS_DELTA_RELOC:
15534       return "MIPS_DELTA_RELOC";
15535     case DT_MIPS_DELTA_RELOC_NO:
15536       return "MIPS_DELTA_RELOC_NO";
15537     case DT_MIPS_DELTA_SYM:
15538       return "MIPS_DELTA_SYM";
15539     case DT_MIPS_DELTA_SYM_NO:
15540       return "MIPS_DELTA_SYM_NO";
15541     case DT_MIPS_DELTA_CLASSSYM:
15542       return "MIPS_DELTA_CLASSSYM";
15543     case DT_MIPS_DELTA_CLASSSYM_NO:
15544       return "MIPS_DELTA_CLASSSYM_NO";
15545     case DT_MIPS_CXX_FLAGS:
15546       return "MIPS_CXX_FLAGS";
15547     case DT_MIPS_PIXIE_INIT:
15548       return "MIPS_PIXIE_INIT";
15549     case DT_MIPS_SYMBOL_LIB:
15550       return "MIPS_SYMBOL_LIB";
15551     case DT_MIPS_LOCALPAGE_GOTIDX:
15552       return "MIPS_LOCALPAGE_GOTIDX";
15553     case DT_MIPS_LOCAL_GOTIDX:
15554       return "MIPS_LOCAL_GOTIDX";
15555     case DT_MIPS_HIDDEN_GOTIDX:
15556       return "MIPS_HIDDEN_GOTIDX";
15557     case DT_MIPS_PROTECTED_GOTIDX:
15558       return "MIPS_PROTECTED_GOT_IDX";
15559     case DT_MIPS_OPTIONS:
15560       return "MIPS_OPTIONS";
15561     case DT_MIPS_INTERFACE:
15562       return "MIPS_INTERFACE";
15563     case DT_MIPS_DYNSTR_ALIGN:
15564       return "DT_MIPS_DYNSTR_ALIGN";
15565     case DT_MIPS_INTERFACE_SIZE:
15566       return "DT_MIPS_INTERFACE_SIZE";
15567     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15568       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15569     case DT_MIPS_PERF_SUFFIX:
15570       return "DT_MIPS_PERF_SUFFIX";
15571     case DT_MIPS_COMPACT_SIZE:
15572       return "DT_MIPS_COMPACT_SIZE";
15573     case DT_MIPS_GP_VALUE:
15574       return "DT_MIPS_GP_VALUE";
15575     case DT_MIPS_AUX_DYNAMIC:
15576       return "DT_MIPS_AUX_DYNAMIC";
15577     case DT_MIPS_PLTGOT:
15578       return "DT_MIPS_PLTGOT";
15579     case DT_MIPS_RWPLT:
15580       return "DT_MIPS_RWPLT";
15581     }
15582 }
15583 
15584 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15585    not known.  */
15586 
15587 const char *
15588 _bfd_mips_fp_abi_string (int fp)
15589 {
15590   switch (fp)
15591     {
15592       /* These strings aren't translated because they're simply
15593 	 option lists.  */
15594     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15595       return "-mdouble-float";
15596 
15597     case Val_GNU_MIPS_ABI_FP_SINGLE:
15598       return "-msingle-float";
15599 
15600     case Val_GNU_MIPS_ABI_FP_SOFT:
15601       return "-msoft-float";
15602 
15603     case Val_GNU_MIPS_ABI_FP_OLD_64:
15604       return _("-mips32r2 -mfp64 (12 callee-saved)");
15605 
15606     case Val_GNU_MIPS_ABI_FP_XX:
15607       return "-mfpxx";
15608 
15609     case Val_GNU_MIPS_ABI_FP_64:
15610       return "-mgp32 -mfp64";
15611 
15612     case Val_GNU_MIPS_ABI_FP_64A:
15613       return "-mgp32 -mfp64 -mno-odd-spreg";
15614 
15615     default:
15616       return 0;
15617     }
15618 }
15619 
15620 static void
15621 print_mips_ases (FILE *file, unsigned int mask)
15622 {
15623   if (mask & AFL_ASE_DSP)
15624     fputs ("\n\tDSP ASE", file);
15625   if (mask & AFL_ASE_DSPR2)
15626     fputs ("\n\tDSP R2 ASE", file);
15627   if (mask & AFL_ASE_DSPR3)
15628     fputs ("\n\tDSP R3 ASE", file);
15629   if (mask & AFL_ASE_EVA)
15630     fputs ("\n\tEnhanced VA Scheme", file);
15631   if (mask & AFL_ASE_MCU)
15632     fputs ("\n\tMCU (MicroController) ASE", file);
15633   if (mask & AFL_ASE_MDMX)
15634     fputs ("\n\tMDMX ASE", file);
15635   if (mask & AFL_ASE_MIPS3D)
15636     fputs ("\n\tMIPS-3D ASE", file);
15637   if (mask & AFL_ASE_MT)
15638     fputs ("\n\tMT ASE", file);
15639   if (mask & AFL_ASE_SMARTMIPS)
15640     fputs ("\n\tSmartMIPS ASE", file);
15641   if (mask & AFL_ASE_VIRT)
15642     fputs ("\n\tVZ ASE", file);
15643   if (mask & AFL_ASE_MSA)
15644     fputs ("\n\tMSA ASE", file);
15645   if (mask & AFL_ASE_MIPS16)
15646     fputs ("\n\tMIPS16 ASE", file);
15647   if (mask & AFL_ASE_MICROMIPS)
15648     fputs ("\n\tMICROMIPS ASE", file);
15649   if (mask & AFL_ASE_XPA)
15650     fputs ("\n\tXPA ASE", file);
15651   if (mask == 0)
15652     fprintf (file, "\n\t%s", _("None"));
15653   else if ((mask & ~AFL_ASE_MASK) != 0)
15654     fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
15655 }
15656 
15657 static void
15658 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
15659 {
15660   switch (isa_ext)
15661     {
15662     case 0:
15663       fputs (_("None"), file);
15664       break;
15665     case AFL_EXT_XLR:
15666       fputs ("RMI XLR", file);
15667       break;
15668     case AFL_EXT_OCTEON3:
15669       fputs ("Cavium Networks Octeon3", file);
15670       break;
15671     case AFL_EXT_OCTEON2:
15672       fputs ("Cavium Networks Octeon2", file);
15673       break;
15674     case AFL_EXT_OCTEONP:
15675       fputs ("Cavium Networks OcteonP", file);
15676       break;
15677     case AFL_EXT_LOONGSON_3A:
15678       fputs ("Loongson 3A", file);
15679       break;
15680     case AFL_EXT_OCTEON:
15681       fputs ("Cavium Networks Octeon", file);
15682       break;
15683     case AFL_EXT_5900:
15684       fputs ("Toshiba R5900", file);
15685       break;
15686     case AFL_EXT_4650:
15687       fputs ("MIPS R4650", file);
15688       break;
15689     case AFL_EXT_4010:
15690       fputs ("LSI R4010", file);
15691       break;
15692     case AFL_EXT_4100:
15693       fputs ("NEC VR4100", file);
15694       break;
15695     case AFL_EXT_3900:
15696       fputs ("Toshiba R3900", file);
15697       break;
15698     case AFL_EXT_10000:
15699       fputs ("MIPS R10000", file);
15700       break;
15701     case AFL_EXT_SB1:
15702       fputs ("Broadcom SB-1", file);
15703       break;
15704     case AFL_EXT_4111:
15705       fputs ("NEC VR4111/VR4181", file);
15706       break;
15707     case AFL_EXT_4120:
15708       fputs ("NEC VR4120", file);
15709       break;
15710     case AFL_EXT_5400:
15711       fputs ("NEC VR5400", file);
15712       break;
15713     case AFL_EXT_5500:
15714       fputs ("NEC VR5500", file);
15715       break;
15716     case AFL_EXT_LOONGSON_2E:
15717       fputs ("ST Microelectronics Loongson 2E", file);
15718       break;
15719     case AFL_EXT_LOONGSON_2F:
15720       fputs ("ST Microelectronics Loongson 2F", file);
15721       break;
15722     default:
15723       fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
15724       break;
15725     }
15726 }
15727 
15728 static void
15729 print_mips_fp_abi_value (FILE *file, int val)
15730 {
15731   switch (val)
15732     {
15733     case Val_GNU_MIPS_ABI_FP_ANY:
15734       fprintf (file, _("Hard or soft float\n"));
15735       break;
15736     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15737       fprintf (file, _("Hard float (double precision)\n"));
15738       break;
15739     case Val_GNU_MIPS_ABI_FP_SINGLE:
15740       fprintf (file, _("Hard float (single precision)\n"));
15741       break;
15742     case Val_GNU_MIPS_ABI_FP_SOFT:
15743       fprintf (file, _("Soft float\n"));
15744       break;
15745     case Val_GNU_MIPS_ABI_FP_OLD_64:
15746       fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
15747       break;
15748     case Val_GNU_MIPS_ABI_FP_XX:
15749       fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
15750       break;
15751     case Val_GNU_MIPS_ABI_FP_64:
15752       fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
15753       break;
15754     case Val_GNU_MIPS_ABI_FP_64A:
15755       fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
15756       break;
15757     default:
15758       fprintf (file, "??? (%d)\n", val);
15759       break;
15760     }
15761 }
15762 
15763 static int
15764 get_mips_reg_size (int reg_size)
15765 {
15766   return (reg_size == AFL_REG_NONE) ? 0
15767 	 : (reg_size == AFL_REG_32) ? 32
15768 	 : (reg_size == AFL_REG_64) ? 64
15769 	 : (reg_size == AFL_REG_128) ? 128
15770 	 : -1;
15771 }
15772 
15773 bfd_boolean
15774 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
15775 {
15776   FILE *file = ptr;
15777 
15778   BFD_ASSERT (abfd != NULL && ptr != NULL);
15779 
15780   /* Print normal ELF private data.  */
15781   _bfd_elf_print_private_bfd_data (abfd, ptr);
15782 
15783   /* xgettext:c-format */
15784   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15785 
15786   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
15787     fprintf (file, _(" [abi=O32]"));
15788   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
15789     fprintf (file, _(" [abi=O64]"));
15790   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
15791     fprintf (file, _(" [abi=EABI32]"));
15792   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
15793     fprintf (file, _(" [abi=EABI64]"));
15794   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
15795     fprintf (file, _(" [abi unknown]"));
15796   else if (ABI_N32_P (abfd))
15797     fprintf (file, _(" [abi=N32]"));
15798   else if (ABI_64_P (abfd))
15799     fprintf (file, _(" [abi=64]"));
15800   else
15801     fprintf (file, _(" [no abi set]"));
15802 
15803   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
15804     fprintf (file, " [mips1]");
15805   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
15806     fprintf (file, " [mips2]");
15807   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
15808     fprintf (file, " [mips3]");
15809   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
15810     fprintf (file, " [mips4]");
15811   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
15812     fprintf (file, " [mips5]");
15813   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
15814     fprintf (file, " [mips32]");
15815   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
15816     fprintf (file, " [mips64]");
15817   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
15818     fprintf (file, " [mips32r2]");
15819   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
15820     fprintf (file, " [mips64r2]");
15821   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
15822     fprintf (file, " [mips32r6]");
15823   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
15824     fprintf (file, " [mips64r6]");
15825   else
15826     fprintf (file, _(" [unknown ISA]"));
15827 
15828   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
15829     fprintf (file, " [mdmx]");
15830 
15831   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
15832     fprintf (file, " [mips16]");
15833 
15834   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15835     fprintf (file, " [micromips]");
15836 
15837   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15838     fprintf (file, " [nan2008]");
15839 
15840   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15841     fprintf (file, " [old fp64]");
15842 
15843   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15844     fprintf (file, " [32bitmode]");
15845   else
15846     fprintf (file, _(" [not 32bitmode]"));
15847 
15848   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15849     fprintf (file, " [noreorder]");
15850 
15851   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15852     fprintf (file, " [PIC]");
15853 
15854   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15855     fprintf (file, " [CPIC]");
15856 
15857   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15858     fprintf (file, " [XGOT]");
15859 
15860   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15861     fprintf (file, " [UCODE]");
15862 
15863   fputc ('\n', file);
15864 
15865   if (mips_elf_tdata (abfd)->abiflags_valid)
15866     {
15867       Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
15868       fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
15869       fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
15870       if (abiflags->isa_rev > 1)
15871 	fprintf (file, "r%d", abiflags->isa_rev);
15872       fprintf (file, "\nGPR size: %d",
15873 	       get_mips_reg_size (abiflags->gpr_size));
15874       fprintf (file, "\nCPR1 size: %d",
15875 	       get_mips_reg_size (abiflags->cpr1_size));
15876       fprintf (file, "\nCPR2 size: %d",
15877 	       get_mips_reg_size (abiflags->cpr2_size));
15878       fputs ("\nFP ABI: ", file);
15879       print_mips_fp_abi_value (file, abiflags->fp_abi);
15880       fputs ("ISA Extension: ", file);
15881       print_mips_isa_ext (file, abiflags->isa_ext);
15882       fputs ("\nASEs:", file);
15883       print_mips_ases (file, abiflags->ases);
15884       fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
15885       fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
15886       fputc ('\n', file);
15887     }
15888 
15889   return TRUE;
15890 }
15891 
15892 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15893 {
15894   { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15895   { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15896   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15897   { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15898   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15899   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
15900   { NULL,                     0,  0, 0,              0 }
15901 };
15902 
15903 /* Merge non visibility st_other attributes.  Ensure that the
15904    STO_OPTIONAL flag is copied into h->other, even if this is not a
15905    definiton of the symbol.  */
15906 void
15907 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15908 				      const Elf_Internal_Sym *isym,
15909 				      bfd_boolean definition,
15910 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
15911 {
15912   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15913     {
15914       unsigned char other;
15915 
15916       other = (definition ? isym->st_other : h->other);
15917       other &= ~ELF_ST_VISIBILITY (-1);
15918       h->other = other | ELF_ST_VISIBILITY (h->other);
15919     }
15920 
15921   if (!definition
15922       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15923     h->other |= STO_OPTIONAL;
15924 }
15925 
15926 /* Decide whether an undefined symbol is special and can be ignored.
15927    This is the case for OPTIONAL symbols on IRIX.  */
15928 bfd_boolean
15929 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15930 {
15931   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15932 }
15933 
15934 bfd_boolean
15935 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15936 {
15937   return (sym->st_shndx == SHN_COMMON
15938 	  || sym->st_shndx == SHN_MIPS_ACOMMON
15939 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
15940 }
15941 
15942 /* Return address for Ith PLT stub in section PLT, for relocation REL
15943    or (bfd_vma) -1 if it should not be included.  */
15944 
15945 bfd_vma
15946 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15947 			   const arelent *rel ATTRIBUTE_UNUSED)
15948 {
15949   return (plt->vma
15950 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15951 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15952 }
15953 
15954 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
15955    and microMIPS PLT slots we may have a many-to-one mapping between .plt
15956    and .got.plt and also the slots may be of a different size each we walk
15957    the PLT manually fetching instructions and matching them against known
15958    patterns.  To make things easier standard MIPS slots, if any, always come
15959    first.  As we don't create proper ELF symbols we use the UDATA.I member
15960    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
15961    with the ST_OTHER member of the ELF symbol.  */
15962 
15963 long
15964 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15965 				    long symcount ATTRIBUTE_UNUSED,
15966 				    asymbol **syms ATTRIBUTE_UNUSED,
15967 				    long dynsymcount, asymbol **dynsyms,
15968 				    asymbol **ret)
15969 {
15970   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15971   static const char microsuffix[] = "@micromipsplt";
15972   static const char m16suffix[] = "@mips16plt";
15973   static const char mipssuffix[] = "@plt";
15974 
15975   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15976   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15977   bfd_boolean micromips_p = MICROMIPS_P (abfd);
15978   Elf_Internal_Shdr *hdr;
15979   bfd_byte *plt_data;
15980   bfd_vma plt_offset;
15981   unsigned int other;
15982   bfd_vma entry_size;
15983   bfd_vma plt0_size;
15984   asection *relplt;
15985   bfd_vma opcode;
15986   asection *plt;
15987   asymbol *send;
15988   size_t size;
15989   char *names;
15990   long counti;
15991   arelent *p;
15992   asymbol *s;
15993   char *nend;
15994   long count;
15995   long pi;
15996   long i;
15997   long n;
15998 
15999   *ret = NULL;
16000 
16001   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16002     return 0;
16003 
16004   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16005   if (relplt == NULL)
16006     return 0;
16007 
16008   hdr = &elf_section_data (relplt)->this_hdr;
16009   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16010     return 0;
16011 
16012   plt = bfd_get_section_by_name (abfd, ".plt");
16013   if (plt == NULL)
16014     return 0;
16015 
16016   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16017   if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16018     return -1;
16019   p = relplt->relocation;
16020 
16021   /* Calculating the exact amount of space required for symbols would
16022      require two passes over the PLT, so just pessimise assuming two
16023      PLT slots per relocation.  */
16024   count = relplt->size / hdr->sh_entsize;
16025   counti = count * bed->s->int_rels_per_ext_rel;
16026   size = 2 * count * sizeof (asymbol);
16027   size += count * (sizeof (mipssuffix) +
16028 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16029   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16030     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16031 
16032   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
16033   size += sizeof (asymbol) + sizeof (pltname);
16034 
16035   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16036     return -1;
16037 
16038   if (plt->size < 16)
16039     return -1;
16040 
16041   s = *ret = bfd_malloc (size);
16042   if (s == NULL)
16043     return -1;
16044   send = s + 2 * count + 1;
16045 
16046   names = (char *) send;
16047   nend = (char *) s + size;
16048   n = 0;
16049 
16050   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16051   if (opcode == 0x3302fffe)
16052     {
16053       if (!micromips_p)
16054 	return -1;
16055       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16056       other = STO_MICROMIPS;
16057     }
16058   else if (opcode == 0x0398c1d0)
16059     {
16060       if (!micromips_p)
16061 	return -1;
16062       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16063       other = STO_MICROMIPS;
16064     }
16065   else
16066     {
16067       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16068       other = 0;
16069     }
16070 
16071   s->the_bfd = abfd;
16072   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16073   s->section = plt;
16074   s->value = 0;
16075   s->name = names;
16076   s->udata.i = other;
16077   memcpy (names, pltname, sizeof (pltname));
16078   names += sizeof (pltname);
16079   ++s, ++n;
16080 
16081   pi = 0;
16082   for (plt_offset = plt0_size;
16083        plt_offset + 8 <= plt->size && s < send;
16084        plt_offset += entry_size)
16085     {
16086       bfd_vma gotplt_addr;
16087       const char *suffix;
16088       bfd_vma gotplt_hi;
16089       bfd_vma gotplt_lo;
16090       size_t suffixlen;
16091 
16092       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16093 
16094       /* Check if the second word matches the expected MIPS16 instruction.  */
16095       if (opcode == 0x651aeb00)
16096 	{
16097 	  if (micromips_p)
16098 	    return -1;
16099 	  /* Truncated table???  */
16100 	  if (plt_offset + 16 > plt->size)
16101 	    break;
16102 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16103 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16104 	  suffixlen = sizeof (m16suffix);
16105 	  suffix = m16suffix;
16106 	  other = STO_MIPS16;
16107 	}
16108       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
16109       else if (opcode == 0xff220000)
16110 	{
16111 	  if (!micromips_p)
16112 	    return -1;
16113 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16114 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16115 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16116 	  gotplt_lo <<= 2;
16117 	  gotplt_addr = gotplt_hi + gotplt_lo;
16118 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16119 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16120 	  suffixlen = sizeof (microsuffix);
16121 	  suffix = microsuffix;
16122 	  other = STO_MICROMIPS;
16123 	}
16124       /* Likewise the expected microMIPS instruction (insn32 mode).  */
16125       else if ((opcode & 0xffff0000) == 0xff2f0000)
16126 	{
16127 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16128 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16129 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16130 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16131 	  gotplt_addr = gotplt_hi + gotplt_lo;
16132 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16133 	  suffixlen = sizeof (microsuffix);
16134 	  suffix = microsuffix;
16135 	  other = STO_MICROMIPS;
16136 	}
16137       /* Otherwise assume standard MIPS code.  */
16138       else
16139 	{
16140 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16141 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16142 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16143 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16144 	  gotplt_addr = gotplt_hi + gotplt_lo;
16145 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16146 	  suffixlen = sizeof (mipssuffix);
16147 	  suffix = mipssuffix;
16148 	  other = 0;
16149 	}
16150       /* Truncated table???  */
16151       if (plt_offset + entry_size > plt->size)
16152 	break;
16153 
16154       for (i = 0;
16155 	   i < count && p[pi].address != gotplt_addr;
16156 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16157 
16158       if (i < count)
16159 	{
16160 	  size_t namelen;
16161 	  size_t len;
16162 
16163 	  *s = **p[pi].sym_ptr_ptr;
16164 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
16165 	     we are defining a symbol, ensure one of them is set.  */
16166 	  if ((s->flags & BSF_LOCAL) == 0)
16167 	    s->flags |= BSF_GLOBAL;
16168 	  s->flags |= BSF_SYNTHETIC;
16169 	  s->section = plt;
16170 	  s->value = plt_offset;
16171 	  s->name = names;
16172 	  s->udata.i = other;
16173 
16174 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
16175 	  namelen = len + suffixlen;
16176 	  if (names + namelen > nend)
16177 	    break;
16178 
16179 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16180 	  names += len;
16181 	  memcpy (names, suffix, suffixlen);
16182 	  names += suffixlen;
16183 
16184 	  ++s, ++n;
16185 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16186 	}
16187     }
16188 
16189   free (plt_data);
16190 
16191   return n;
16192 }
16193 
16194 /* Return the ABI flags associated with ABFD if available.  */
16195 
16196 Elf_Internal_ABIFlags_v0 *
16197 bfd_mips_elf_get_abiflags (bfd *abfd)
16198 {
16199   struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16200 
16201   return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16202 }
16203 
16204 void
16205 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
16206 {
16207   struct mips_elf_link_hash_table *htab;
16208   Elf_Internal_Ehdr *i_ehdrp;
16209 
16210   i_ehdrp = elf_elfheader (abfd);
16211   if (link_info)
16212     {
16213       htab = mips_elf_hash_table (link_info);
16214       BFD_ASSERT (htab != NULL);
16215 
16216       if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16217 	i_ehdrp->e_ident[EI_ABIVERSION] = 1;
16218     }
16219 
16220   _bfd_elf_post_process_headers (abfd, link_info);
16221 
16222   if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16223       || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16224     i_ehdrp->e_ident[EI_ABIVERSION] = 3;
16225 }
16226 
16227 int
16228 _bfd_mips_elf_compact_eh_encoding (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16229 {
16230   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16231 }
16232 
16233 /* Return the opcode for can't unwind.  */
16234 
16235 int
16236 _bfd_mips_elf_cant_unwind_opcode (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16237 {
16238   return COMPACT_EH_CANT_UNWIND_OPCODE;
16239 }
16240