xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elfxx-mips.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* MIPS-specific support for ELF
2    Copyright 1993-2013 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "elfxx-mips.h"
37 #include "elf/mips.h"
38 #include "elf-vxworks.h"
39 
40 /* Get the ECOFF swapping routines.  */
41 #include "coff/sym.h"
42 #include "coff/symconst.h"
43 #include "coff/ecoff.h"
44 #include "coff/mips.h"
45 
46 #include "hashtab.h"
47 
48 /* Types of TLS GOT entry.  */
49 enum mips_got_tls_type {
50   GOT_TLS_NONE,
51   GOT_TLS_GD,
52   GOT_TLS_LDM,
53   GOT_TLS_IE
54 };
55 
56 /* This structure is used to hold information about one GOT entry.
57    There are four types of entry:
58 
59       (1) an absolute address
60 	    requires: abfd == NULL
61 	    fields: d.address
62 
63       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
64 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
65 	    fields: abfd, symndx, d.addend, tls_type
66 
67       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
68 	    requires: abfd != NULL, symndx == -1
69 	    fields: d.h, tls_type
70 
71       (4) a TLS LDM slot
72 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
73 	    fields: none; there's only one of these per GOT.  */
74 struct mips_got_entry
75 {
76   /* One input bfd that needs the GOT entry.  */
77   bfd *abfd;
78   /* The index of the symbol, as stored in the relocation r_info, if
79      we have a local symbol; -1 otherwise.  */
80   long symndx;
81   union
82   {
83     /* If abfd == NULL, an address that must be stored in the got.  */
84     bfd_vma address;
85     /* If abfd != NULL && symndx != -1, the addend of the relocation
86        that should be added to the symbol value.  */
87     bfd_vma addend;
88     /* If abfd != NULL && symndx == -1, the hash table entry
89        corresponding to a symbol in the GOT.  The symbol's entry
90        is in the local area if h->global_got_area is GGA_NONE,
91        otherwise it is in the global area.  */
92     struct mips_elf_link_hash_entry *h;
93   } d;
94 
95   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
96      symbol entry with r_symndx == 0.  */
97   unsigned char tls_type;
98 
99   /* True if we have filled in the GOT contents for a TLS entry,
100      and created the associated relocations.  */
101   unsigned char tls_initialized;
102 
103   /* The offset from the beginning of the .got section to the entry
104      corresponding to this symbol+addend.  If it's a global symbol
105      whose offset is yet to be decided, it's going to be -1.  */
106   long gotidx;
107 };
108 
109 /* This structure represents a GOT page reference from an input bfd.
110    Each instance represents a symbol + ADDEND, where the representation
111    of the symbol depends on whether it is local to the input bfd.
112    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
113    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
114 
115    Page references with SYMNDX >= 0 always become page references
116    in the output.  Page references with SYMNDX < 0 only become page
117    references if the symbol binds locally; in other cases, the page
118    reference decays to a global GOT reference.  */
119 struct mips_got_page_ref
120 {
121   long symndx;
122   union
123   {
124     struct mips_elf_link_hash_entry *h;
125     bfd *abfd;
126   } u;
127   bfd_vma addend;
128 };
129 
130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
131    The structures form a non-overlapping list that is sorted by increasing
132    MIN_ADDEND.  */
133 struct mips_got_page_range
134 {
135   struct mips_got_page_range *next;
136   bfd_signed_vma min_addend;
137   bfd_signed_vma max_addend;
138 };
139 
140 /* This structure describes the range of addends that are applied to page
141    relocations against a given section.  */
142 struct mips_got_page_entry
143 {
144   /* The section that these entries are based on.  */
145   asection *sec;
146   /* The ranges for this page entry.  */
147   struct mips_got_page_range *ranges;
148   /* The maximum number of page entries needed for RANGES.  */
149   bfd_vma num_pages;
150 };
151 
152 /* This structure is used to hold .got information when linking.  */
153 
154 struct mips_got_info
155 {
156   /* The number of global .got entries.  */
157   unsigned int global_gotno;
158   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
159   unsigned int reloc_only_gotno;
160   /* The number of .got slots used for TLS.  */
161   unsigned int tls_gotno;
162   /* The first unused TLS .got entry.  Used only during
163      mips_elf_initialize_tls_index.  */
164   unsigned int tls_assigned_gotno;
165   /* The number of local .got entries, eventually including page entries.  */
166   unsigned int local_gotno;
167   /* The maximum number of page entries needed.  */
168   unsigned int page_gotno;
169   /* The number of relocations needed for the GOT entries.  */
170   unsigned int relocs;
171   /* The number of local .got entries we have used.  */
172   unsigned int assigned_gotno;
173   /* A hash table holding members of the got.  */
174   struct htab *got_entries;
175   /* A hash table holding mips_got_page_ref structures.  */
176   struct htab *got_page_refs;
177   /* A hash table of mips_got_page_entry structures.  */
178   struct htab *got_page_entries;
179   /* In multi-got links, a pointer to the next got (err, rather, most
180      of the time, it points to the previous got).  */
181   struct mips_got_info *next;
182 };
183 
184 /* Structure passed when merging bfds' gots.  */
185 
186 struct mips_elf_got_per_bfd_arg
187 {
188   /* The output bfd.  */
189   bfd *obfd;
190   /* The link information.  */
191   struct bfd_link_info *info;
192   /* A pointer to the primary got, i.e., the one that's going to get
193      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
194      DT_MIPS_GOTSYM.  */
195   struct mips_got_info *primary;
196   /* A non-primary got we're trying to merge with other input bfd's
197      gots.  */
198   struct mips_got_info *current;
199   /* The maximum number of got entries that can be addressed with a
200      16-bit offset.  */
201   unsigned int max_count;
202   /* The maximum number of page entries needed by each got.  */
203   unsigned int max_pages;
204   /* The total number of global entries which will live in the
205      primary got and be automatically relocated.  This includes
206      those not referenced by the primary GOT but included in
207      the "master" GOT.  */
208   unsigned int global_count;
209 };
210 
211 /* A structure used to pass information to htab_traverse callbacks
212    when laying out the GOT.  */
213 
214 struct mips_elf_traverse_got_arg
215 {
216   struct bfd_link_info *info;
217   struct mips_got_info *g;
218   int value;
219 };
220 
221 struct _mips_elf_section_data
222 {
223   struct bfd_elf_section_data elf;
224   union
225   {
226     bfd_byte *tdata;
227   } u;
228 };
229 
230 #define mips_elf_section_data(sec) \
231   ((struct _mips_elf_section_data *) elf_section_data (sec))
232 
233 #define is_mips_elf(bfd)				\
234   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
235    && elf_tdata (bfd) != NULL				\
236    && elf_object_id (bfd) == MIPS_ELF_DATA)
237 
238 /* The ABI says that every symbol used by dynamic relocations must have
239    a global GOT entry.  Among other things, this provides the dynamic
240    linker with a free, directly-indexed cache.  The GOT can therefore
241    contain symbols that are not referenced by GOT relocations themselves
242    (in other words, it may have symbols that are not referenced by things
243    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
244 
245    GOT relocations are less likely to overflow if we put the associated
246    GOT entries towards the beginning.  We therefore divide the global
247    GOT entries into two areas: "normal" and "reloc-only".  Entries in
248    the first area can be used for both dynamic relocations and GP-relative
249    accesses, while those in the "reloc-only" area are for dynamic
250    relocations only.
251 
252    These GGA_* ("Global GOT Area") values are organised so that lower
253    values are more general than higher values.  Also, non-GGA_NONE
254    values are ordered by the position of the area in the GOT.  */
255 #define GGA_NORMAL 0
256 #define GGA_RELOC_ONLY 1
257 #define GGA_NONE 2
258 
259 /* Information about a non-PIC interface to a PIC function.  There are
260    two ways of creating these interfaces.  The first is to add:
261 
262 	lui	$25,%hi(func)
263 	addiu	$25,$25,%lo(func)
264 
265    immediately before a PIC function "func".  The second is to add:
266 
267 	lui	$25,%hi(func)
268 	j	func
269 	addiu	$25,$25,%lo(func)
270 
271    to a separate trampoline section.
272 
273    Stubs of the first kind go in a new section immediately before the
274    target function.  Stubs of the second kind go in a single section
275    pointed to by the hash table's "strampoline" field.  */
276 struct mips_elf_la25_stub {
277   /* The generated section that contains this stub.  */
278   asection *stub_section;
279 
280   /* The offset of the stub from the start of STUB_SECTION.  */
281   bfd_vma offset;
282 
283   /* One symbol for the original function.  Its location is available
284      in H->root.root.u.def.  */
285   struct mips_elf_link_hash_entry *h;
286 };
287 
288 /* Macros for populating a mips_elf_la25_stub.  */
289 
290 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
291 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
292 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
293 #define LA25_LUI_MICROMIPS(VAL)						\
294   (0x41b90000 | (VAL))				/* lui t9,VAL */
295 #define LA25_J_MICROMIPS(VAL)						\
296   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
297 #define LA25_ADDIU_MICROMIPS(VAL)					\
298   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
299 
300 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
301    the dynamic symbols.  */
302 
303 struct mips_elf_hash_sort_data
304 {
305   /* The symbol in the global GOT with the lowest dynamic symbol table
306      index.  */
307   struct elf_link_hash_entry *low;
308   /* The least dynamic symbol table index corresponding to a non-TLS
309      symbol with a GOT entry.  */
310   long min_got_dynindx;
311   /* The greatest dynamic symbol table index corresponding to a symbol
312      with a GOT entry that is not referenced (e.g., a dynamic symbol
313      with dynamic relocations pointing to it from non-primary GOTs).  */
314   long max_unref_got_dynindx;
315   /* The greatest dynamic symbol table index not corresponding to a
316      symbol without a GOT entry.  */
317   long max_non_got_dynindx;
318 };
319 
320 /* We make up to two PLT entries if needed, one for standard MIPS code
321    and one for compressed code, either a MIPS16 or microMIPS one.  We
322    keep a separate record of traditional lazy-binding stubs, for easier
323    processing.  */
324 
325 struct plt_entry
326 {
327   /* Traditional SVR4 stub offset, or -1 if none.  */
328   bfd_vma stub_offset;
329 
330   /* Standard PLT entry offset, or -1 if none.  */
331   bfd_vma mips_offset;
332 
333   /* Compressed PLT entry offset, or -1 if none.  */
334   bfd_vma comp_offset;
335 
336   /* The corresponding .got.plt index, or -1 if none.  */
337   bfd_vma gotplt_index;
338 
339   /* Whether we need a standard PLT entry.  */
340   unsigned int need_mips : 1;
341 
342   /* Whether we need a compressed PLT entry.  */
343   unsigned int need_comp : 1;
344 };
345 
346 /* The MIPS ELF linker needs additional information for each symbol in
347    the global hash table.  */
348 
349 struct mips_elf_link_hash_entry
350 {
351   struct elf_link_hash_entry root;
352 
353   /* External symbol information.  */
354   EXTR esym;
355 
356   /* The la25 stub we have created for ths symbol, if any.  */
357   struct mips_elf_la25_stub *la25_stub;
358 
359   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
360      this symbol.  */
361   unsigned int possibly_dynamic_relocs;
362 
363   /* If there is a stub that 32 bit functions should use to call this
364      16 bit function, this points to the section containing the stub.  */
365   asection *fn_stub;
366 
367   /* If there is a stub that 16 bit functions should use to call this
368      32 bit function, this points to the section containing the stub.  */
369   asection *call_stub;
370 
371   /* This is like the call_stub field, but it is used if the function
372      being called returns a floating point value.  */
373   asection *call_fp_stub;
374 
375   /* The highest GGA_* value that satisfies all references to this symbol.  */
376   unsigned int global_got_area : 2;
377 
378   /* True if all GOT relocations against this symbol are for calls.  This is
379      a looser condition than no_fn_stub below, because there may be other
380      non-call non-GOT relocations against the symbol.  */
381   unsigned int got_only_for_calls : 1;
382 
383   /* True if one of the relocations described by possibly_dynamic_relocs
384      is against a readonly section.  */
385   unsigned int readonly_reloc : 1;
386 
387   /* True if there is a relocation against this symbol that must be
388      resolved by the static linker (in other words, if the relocation
389      cannot possibly be made dynamic).  */
390   unsigned int has_static_relocs : 1;
391 
392   /* True if we must not create a .MIPS.stubs entry for this symbol.
393      This is set, for example, if there are relocations related to
394      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
395      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
396   unsigned int no_fn_stub : 1;
397 
398   /* Whether we need the fn_stub; this is true if this symbol appears
399      in any relocs other than a 16 bit call.  */
400   unsigned int need_fn_stub : 1;
401 
402   /* True if this symbol is referenced by branch relocations from
403      any non-PIC input file.  This is used to determine whether an
404      la25 stub is required.  */
405   unsigned int has_nonpic_branches : 1;
406 
407   /* Does this symbol need a traditional MIPS lazy-binding stub
408      (as opposed to a PLT entry)?  */
409   unsigned int needs_lazy_stub : 1;
410 
411   /* Does this symbol resolve to a PLT entry?  */
412   unsigned int use_plt_entry : 1;
413 };
414 
415 /* MIPS ELF linker hash table.  */
416 
417 struct mips_elf_link_hash_table
418 {
419   struct elf_link_hash_table root;
420 
421   /* The number of .rtproc entries.  */
422   bfd_size_type procedure_count;
423 
424   /* The size of the .compact_rel section (if SGI_COMPAT).  */
425   bfd_size_type compact_rel_size;
426 
427   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
428      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
429   bfd_boolean use_rld_obj_head;
430 
431   /* The  __rld_map or __rld_obj_head symbol. */
432   struct elf_link_hash_entry *rld_symbol;
433 
434   /* This is set if we see any mips16 stub sections.  */
435   bfd_boolean mips16_stubs_seen;
436 
437   /* True if we can generate copy relocs and PLTs.  */
438   bfd_boolean use_plts_and_copy_relocs;
439 
440   /* True if we can only use 32-bit microMIPS instructions.  */
441   bfd_boolean insn32;
442 
443   /* True if we're generating code for VxWorks.  */
444   bfd_boolean is_vxworks;
445 
446   /* True if we already reported the small-data section overflow.  */
447   bfd_boolean small_data_overflow_reported;
448 
449   /* Shortcuts to some dynamic sections, or NULL if they are not
450      being used.  */
451   asection *srelbss;
452   asection *sdynbss;
453   asection *srelplt;
454   asection *srelplt2;
455   asection *sgotplt;
456   asection *splt;
457   asection *sstubs;
458   asection *sgot;
459 
460   /* The master GOT information.  */
461   struct mips_got_info *got_info;
462 
463   /* The global symbol in the GOT with the lowest index in the dynamic
464      symbol table.  */
465   struct elf_link_hash_entry *global_gotsym;
466 
467   /* The size of the PLT header in bytes.  */
468   bfd_vma plt_header_size;
469 
470   /* The size of a standard PLT entry in bytes.  */
471   bfd_vma plt_mips_entry_size;
472 
473   /* The size of a compressed PLT entry in bytes.  */
474   bfd_vma plt_comp_entry_size;
475 
476   /* The offset of the next standard PLT entry to create.  */
477   bfd_vma plt_mips_offset;
478 
479   /* The offset of the next compressed PLT entry to create.  */
480   bfd_vma plt_comp_offset;
481 
482   /* The index of the next .got.plt entry to create.  */
483   bfd_vma plt_got_index;
484 
485   /* The number of functions that need a lazy-binding stub.  */
486   bfd_vma lazy_stub_count;
487 
488   /* The size of a function stub entry in bytes.  */
489   bfd_vma function_stub_size;
490 
491   /* The number of reserved entries at the beginning of the GOT.  */
492   unsigned int reserved_gotno;
493 
494   /* The section used for mips_elf_la25_stub trampolines.
495      See the comment above that structure for details.  */
496   asection *strampoline;
497 
498   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
499      pairs.  */
500   htab_t la25_stubs;
501 
502   /* A function FN (NAME, IS, OS) that creates a new input section
503      called NAME and links it to output section OS.  If IS is nonnull,
504      the new section should go immediately before it, otherwise it
505      should go at the (current) beginning of OS.
506 
507      The function returns the new section on success, otherwise it
508      returns null.  */
509   asection *(*add_stub_section) (const char *, asection *, asection *);
510 
511   /* Small local sym cache.  */
512   struct sym_cache sym_cache;
513 
514   /* Is the PLT header compressed?  */
515   unsigned int plt_header_is_comp : 1;
516 };
517 
518 /* Get the MIPS ELF linker hash table from a link_info structure.  */
519 
520 #define mips_elf_hash_table(p) \
521   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
522   == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
523 
524 /* A structure used to communicate with htab_traverse callbacks.  */
525 struct mips_htab_traverse_info
526 {
527   /* The usual link-wide information.  */
528   struct bfd_link_info *info;
529   bfd *output_bfd;
530 
531   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
532   bfd_boolean error;
533 };
534 
535 /* MIPS ELF private object data.  */
536 
537 struct mips_elf_obj_tdata
538 {
539   /* Generic ELF private object data.  */
540   struct elf_obj_tdata root;
541 
542   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
543   bfd *abi_fp_bfd;
544 
545   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
546   bfd *abi_msa_bfd;
547 
548   /* The GOT requirements of input bfds.  */
549   struct mips_got_info *got;
550 
551   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
552      included directly in this one, but there's no point to wasting
553      the memory just for the infrequently called find_nearest_line.  */
554   struct mips_elf_find_line *find_line_info;
555 
556   /* An array of stub sections indexed by symbol number.  */
557   asection **local_stubs;
558   asection **local_call_stubs;
559 
560   /* The Irix 5 support uses two virtual sections, which represent
561      text/data symbols defined in dynamic objects.  */
562   asymbol *elf_data_symbol;
563   asymbol *elf_text_symbol;
564   asection *elf_data_section;
565   asection *elf_text_section;
566 };
567 
568 /* Get MIPS ELF private object data from BFD's tdata.  */
569 
570 #define mips_elf_tdata(bfd) \
571   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
572 
573 #define TLS_RELOC_P(r_type) \
574   (r_type == R_MIPS_TLS_DTPMOD32		\
575    || r_type == R_MIPS_TLS_DTPMOD64		\
576    || r_type == R_MIPS_TLS_DTPREL32		\
577    || r_type == R_MIPS_TLS_DTPREL64		\
578    || r_type == R_MIPS_TLS_GD			\
579    || r_type == R_MIPS_TLS_LDM			\
580    || r_type == R_MIPS_TLS_DTPREL_HI16		\
581    || r_type == R_MIPS_TLS_DTPREL_LO16		\
582    || r_type == R_MIPS_TLS_GOTTPREL		\
583    || r_type == R_MIPS_TLS_TPREL32		\
584    || r_type == R_MIPS_TLS_TPREL64		\
585    || r_type == R_MIPS_TLS_TPREL_HI16		\
586    || r_type == R_MIPS_TLS_TPREL_LO16		\
587    || r_type == R_MIPS16_TLS_GD			\
588    || r_type == R_MIPS16_TLS_LDM		\
589    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
590    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
591    || r_type == R_MIPS16_TLS_GOTTPREL		\
592    || r_type == R_MIPS16_TLS_TPREL_HI16		\
593    || r_type == R_MIPS16_TLS_TPREL_LO16		\
594    || r_type == R_MICROMIPS_TLS_GD		\
595    || r_type == R_MICROMIPS_TLS_LDM		\
596    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
597    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
598    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
599    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
600    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
601 
602 /* Structure used to pass information to mips_elf_output_extsym.  */
603 
604 struct extsym_info
605 {
606   bfd *abfd;
607   struct bfd_link_info *info;
608   struct ecoff_debug_info *debug;
609   const struct ecoff_debug_swap *swap;
610   bfd_boolean failed;
611 };
612 
613 /* The names of the runtime procedure table symbols used on IRIX5.  */
614 
615 static const char * const mips_elf_dynsym_rtproc_names[] =
616 {
617   "_procedure_table",
618   "_procedure_string_table",
619   "_procedure_table_size",
620   NULL
621 };
622 
623 /* These structures are used to generate the .compact_rel section on
624    IRIX5.  */
625 
626 typedef struct
627 {
628   unsigned long id1;		/* Always one?  */
629   unsigned long num;		/* Number of compact relocation entries.  */
630   unsigned long id2;		/* Always two?  */
631   unsigned long offset;		/* The file offset of the first relocation.  */
632   unsigned long reserved0;	/* Zero?  */
633   unsigned long reserved1;	/* Zero?  */
634 } Elf32_compact_rel;
635 
636 typedef struct
637 {
638   bfd_byte id1[4];
639   bfd_byte num[4];
640   bfd_byte id2[4];
641   bfd_byte offset[4];
642   bfd_byte reserved0[4];
643   bfd_byte reserved1[4];
644 } Elf32_External_compact_rel;
645 
646 typedef struct
647 {
648   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
649   unsigned int rtype : 4;	/* Relocation types. See below.  */
650   unsigned int dist2to : 8;
651   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
652   unsigned long konst;		/* KONST field. See below.  */
653   unsigned long vaddr;		/* VADDR to be relocated.  */
654 } Elf32_crinfo;
655 
656 typedef struct
657 {
658   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
659   unsigned int rtype : 4;	/* Relocation types. See below.  */
660   unsigned int dist2to : 8;
661   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
662   unsigned long konst;		/* KONST field. See below.  */
663 } Elf32_crinfo2;
664 
665 typedef struct
666 {
667   bfd_byte info[4];
668   bfd_byte konst[4];
669   bfd_byte vaddr[4];
670 } Elf32_External_crinfo;
671 
672 typedef struct
673 {
674   bfd_byte info[4];
675   bfd_byte konst[4];
676 } Elf32_External_crinfo2;
677 
678 /* These are the constants used to swap the bitfields in a crinfo.  */
679 
680 #define CRINFO_CTYPE (0x1)
681 #define CRINFO_CTYPE_SH (31)
682 #define CRINFO_RTYPE (0xf)
683 #define CRINFO_RTYPE_SH (27)
684 #define CRINFO_DIST2TO (0xff)
685 #define CRINFO_DIST2TO_SH (19)
686 #define CRINFO_RELVADDR (0x7ffff)
687 #define CRINFO_RELVADDR_SH (0)
688 
689 /* A compact relocation info has long (3 words) or short (2 words)
690    formats.  A short format doesn't have VADDR field and relvaddr
691    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
692 #define CRF_MIPS_LONG			1
693 #define CRF_MIPS_SHORT			0
694 
695 /* There are 4 types of compact relocation at least. The value KONST
696    has different meaning for each type:
697 
698    (type)		(konst)
699    CT_MIPS_REL32	Address in data
700    CT_MIPS_WORD		Address in word (XXX)
701    CT_MIPS_GPHI_LO	GP - vaddr
702    CT_MIPS_JMPAD	Address to jump
703    */
704 
705 #define CRT_MIPS_REL32			0xa
706 #define CRT_MIPS_WORD			0xb
707 #define CRT_MIPS_GPHI_LO		0xc
708 #define CRT_MIPS_JMPAD			0xd
709 
710 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
711 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
712 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
713 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
714 
715 /* The structure of the runtime procedure descriptor created by the
716    loader for use by the static exception system.  */
717 
718 typedef struct runtime_pdr {
719 	bfd_vma	adr;		/* Memory address of start of procedure.  */
720 	long	regmask;	/* Save register mask.  */
721 	long	regoffset;	/* Save register offset.  */
722 	long	fregmask;	/* Save floating point register mask.  */
723 	long	fregoffset;	/* Save floating point register offset.  */
724 	long	frameoffset;	/* Frame size.  */
725 	short	framereg;	/* Frame pointer register.  */
726 	short	pcreg;		/* Offset or reg of return pc.  */
727 	long	irpss;		/* Index into the runtime string table.  */
728 	long	reserved;
729 	struct exception_info *exception_info;/* Pointer to exception array.  */
730 } RPDR, *pRPDR;
731 #define cbRPDR sizeof (RPDR)
732 #define rpdNil ((pRPDR) 0)
733 
734 static struct mips_got_entry *mips_elf_create_local_got_entry
735   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
736    struct mips_elf_link_hash_entry *, int);
737 static bfd_boolean mips_elf_sort_hash_table_f
738   (struct mips_elf_link_hash_entry *, void *);
739 static bfd_vma mips_elf_high
740   (bfd_vma);
741 static bfd_boolean mips_elf_create_dynamic_relocation
742   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
743    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
744    bfd_vma *, asection *);
745 static bfd_vma mips_elf_adjust_gp
746   (bfd *, struct mips_got_info *, bfd *);
747 
748 /* This will be used when we sort the dynamic relocation records.  */
749 static bfd *reldyn_sorting_bfd;
750 
751 /* True if ABFD is for CPUs with load interlocking that include
752    non-MIPS1 CPUs and R3900.  */
753 #define LOAD_INTERLOCKS_P(abfd) \
754   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
755    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
756 
757 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
758    This should be safe for all architectures.  We enable this predicate
759    for RM9000 for now.  */
760 #define JAL_TO_BAL_P(abfd) \
761   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
762 
763 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
764    This should be safe for all architectures.  We enable this predicate for
765    all CPUs.  */
766 #define JALR_TO_BAL_P(abfd) 1
767 
768 /* True if ABFD is for CPUs that are faster if JR is converted to B.
769    This should be safe for all architectures.  We enable this predicate for
770    all CPUs.  */
771 #define JR_TO_B_P(abfd) 1
772 
773 /* True if ABFD is a PIC object.  */
774 #define PIC_OBJECT_P(abfd) \
775   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
776 
777 /* Nonzero if ABFD is using the N32 ABI.  */
778 #define ABI_N32_P(abfd) \
779   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
780 
781 /* Nonzero if ABFD is using the N64 ABI.  */
782 #define ABI_64_P(abfd) \
783   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
784 
785 /* Nonzero if ABFD is using NewABI conventions.  */
786 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
787 
788 /* Nonzero if ABFD has microMIPS code.  */
789 #define MICROMIPS_P(abfd) \
790   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
791 
792 /* The IRIX compatibility level we are striving for.  */
793 #define IRIX_COMPAT(abfd) \
794   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
795 
796 /* Whether we are trying to be compatible with IRIX at all.  */
797 #define SGI_COMPAT(abfd) \
798   (IRIX_COMPAT (abfd) != ict_none)
799 
800 /* The name of the options section.  */
801 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
802   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
803 
804 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
805    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
806 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
807   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
808 
809 /* Whether the section is readonly.  */
810 #define MIPS_ELF_READONLY_SECTION(sec) \
811   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
812    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
813 
814 /* The name of the stub section.  */
815 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
816 
817 /* The size of an external REL relocation.  */
818 #define MIPS_ELF_REL_SIZE(abfd) \
819   (get_elf_backend_data (abfd)->s->sizeof_rel)
820 
821 /* The size of an external RELA relocation.  */
822 #define MIPS_ELF_RELA_SIZE(abfd) \
823   (get_elf_backend_data (abfd)->s->sizeof_rela)
824 
825 /* The size of an external dynamic table entry.  */
826 #define MIPS_ELF_DYN_SIZE(abfd) \
827   (get_elf_backend_data (abfd)->s->sizeof_dyn)
828 
829 /* The size of a GOT entry.  */
830 #define MIPS_ELF_GOT_SIZE(abfd) \
831   (get_elf_backend_data (abfd)->s->arch_size / 8)
832 
833 /* The size of the .rld_map section. */
834 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
835   (get_elf_backend_data (abfd)->s->arch_size / 8)
836 
837 /* The size of a symbol-table entry.  */
838 #define MIPS_ELF_SYM_SIZE(abfd) \
839   (get_elf_backend_data (abfd)->s->sizeof_sym)
840 
841 /* The default alignment for sections, as a power of two.  */
842 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
843   (get_elf_backend_data (abfd)->s->log_file_align)
844 
845 /* Get word-sized data.  */
846 #define MIPS_ELF_GET_WORD(abfd, ptr) \
847   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
848 
849 /* Put out word-sized data.  */
850 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
851   (ABI_64_P (abfd) 				\
852    ? bfd_put_64 (abfd, val, ptr) 		\
853    : bfd_put_32 (abfd, val, ptr))
854 
855 /* The opcode for word-sized loads (LW or LD).  */
856 #define MIPS_ELF_LOAD_WORD(abfd) \
857   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
858 
859 /* Add a dynamic symbol table-entry.  */
860 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
861   _bfd_elf_add_dynamic_entry (info, tag, val)
862 
863 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
864   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
865 
866 /* The name of the dynamic relocation section.  */
867 #define MIPS_ELF_REL_DYN_NAME(INFO) \
868   (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
869 
870 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
871    from smaller values.  Start with zero, widen, *then* decrement.  */
872 #define MINUS_ONE	(((bfd_vma)0) - 1)
873 #define MINUS_TWO	(((bfd_vma)0) - 2)
874 
875 /* The value to write into got[1] for SVR4 targets, to identify it is
876    a GNU object.  The dynamic linker can then use got[1] to store the
877    module pointer.  */
878 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
879   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
880 
881 /* The offset of $gp from the beginning of the .got section.  */
882 #define ELF_MIPS_GP_OFFSET(INFO) \
883   (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
884 
885 /* The maximum size of the GOT for it to be addressable using 16-bit
886    offsets from $gp.  */
887 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
888 
889 /* Instructions which appear in a stub.  */
890 #define STUB_LW(abfd)							\
891   ((ABI_64_P (abfd)							\
892     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
893     : 0x8f998010))              		/* lw t9,0x8010(gp) */
894 #define STUB_MOVE(abfd)							\
895    ((ABI_64_P (abfd)							\
896      ? 0x03e0782d				/* daddu t7,ra */	\
897      : 0x03e07821))				/* addu t7,ra */
898 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
899 #define STUB_JALR 0x0320f809			/* jalr t9,ra */
900 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
901 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
902 #define STUB_LI16S(abfd, VAL)						\
903    ((ABI_64_P (abfd)							\
904     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
905     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
906 
907 /* Likewise for the microMIPS ASE.  */
908 #define STUB_LW_MICROMIPS(abfd)						\
909   (ABI_64_P (abfd)							\
910    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
911    : 0xff3c8010)				/* lw t9,0x8010(gp) */
912 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
913 #define STUB_MOVE32_MICROMIPS(abfd)					\
914    (ABI_64_P (abfd)							\
915     ? 0x581f7950				/* daddu t7,ra,zero */	\
916     : 0x001f7950)				/* addu t7,ra,zero */
917 #define STUB_LUI_MICROMIPS(VAL)						\
918    (0x41b80000 + (VAL))				/* lui t8,VAL */
919 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
920 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
921 #define STUB_ORI_MICROMIPS(VAL)						\
922   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
923 #define STUB_LI16U_MICROMIPS(VAL)					\
924   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
925 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
926    (ABI_64_P (abfd)							\
927     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
928     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
929 
930 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
931 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
932 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
933 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
934 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
935 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
936 
937 /* The name of the dynamic interpreter.  This is put in the .interp
938    section.  */
939 
940 #define ELF_DYNAMIC_INTERPRETER(abfd) 		\
941    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
942     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
943     : "/usr/lib/libc.so.1")
944 
945 #ifdef BFD64
946 #define MNAME(bfd,pre,pos) \
947   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
948 #define ELF_R_SYM(bfd, i)					\
949   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
950 #define ELF_R_TYPE(bfd, i)					\
951   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
952 #define ELF_R_INFO(bfd, s, t)					\
953   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
954 #else
955 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
956 #define ELF_R_SYM(bfd, i)					\
957   (ELF32_R_SYM (i))
958 #define ELF_R_TYPE(bfd, i)					\
959   (ELF32_R_TYPE (i))
960 #define ELF_R_INFO(bfd, s, t)					\
961   (ELF32_R_INFO (s, t))
962 #endif
963 
964   /* The mips16 compiler uses a couple of special sections to handle
965      floating point arguments.
966 
967      Section names that look like .mips16.fn.FNNAME contain stubs that
968      copy floating point arguments from the fp regs to the gp regs and
969      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
970      call should be redirected to the stub instead.  If no 32 bit
971      function calls FNNAME, the stub should be discarded.  We need to
972      consider any reference to the function, not just a call, because
973      if the address of the function is taken we will need the stub,
974      since the address might be passed to a 32 bit function.
975 
976      Section names that look like .mips16.call.FNNAME contain stubs
977      that copy floating point arguments from the gp regs to the fp
978      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
979      then any 16 bit function that calls FNNAME should be redirected
980      to the stub instead.  If FNNAME is not a 32 bit function, the
981      stub should be discarded.
982 
983      .mips16.call.fp.FNNAME sections are similar, but contain stubs
984      which call FNNAME and then copy the return value from the fp regs
985      to the gp regs.  These stubs store the return value in $18 while
986      calling FNNAME; any function which might call one of these stubs
987      must arrange to save $18 around the call.  (This case is not
988      needed for 32 bit functions that call 16 bit functions, because
989      16 bit functions always return floating point values in both
990      $f0/$f1 and $2/$3.)
991 
992      Note that in all cases FNNAME might be defined statically.
993      Therefore, FNNAME is not used literally.  Instead, the relocation
994      information will indicate which symbol the section is for.
995 
996      We record any stubs that we find in the symbol table.  */
997 
998 #define FN_STUB ".mips16.fn."
999 #define CALL_STUB ".mips16.call."
1000 #define CALL_FP_STUB ".mips16.call.fp."
1001 
1002 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1003 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1004 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1005 
1006 /* The format of the first PLT entry in an O32 executable.  */
1007 static const bfd_vma mips_o32_exec_plt0_entry[] =
1008 {
1009   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1010   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1011   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1012   0x031cc023,	/* subu $24, $24, $28					*/
1013   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1014   0x0018c082,	/* srl $24, $24, 2					*/
1015   0x0320f809,	/* jalr $25						*/
1016   0x2718fffe	/* subu $24, $24, 2					*/
1017 };
1018 
1019 /* The format of the first PLT entry in an N32 executable.  Different
1020    because gp ($28) is not available; we use t2 ($14) instead.  */
1021 static const bfd_vma mips_n32_exec_plt0_entry[] =
1022 {
1023   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1024   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1025   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1026   0x030ec023,	/* subu $24, $24, $14					*/
1027   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1028   0x0018c082,	/* srl $24, $24, 2					*/
1029   0x0320f809,	/* jalr $25						*/
1030   0x2718fffe	/* subu $24, $24, 2					*/
1031 };
1032 
1033 /* The format of the first PLT entry in an N64 executable.  Different
1034    from N32 because of the increased size of GOT entries.  */
1035 static const bfd_vma mips_n64_exec_plt0_entry[] =
1036 {
1037   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1038   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1039   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1040   0x030ec023,	/* subu $24, $24, $14					*/
1041   0x03e0782d,	/* move $15, $31	# 64-bit move (daddu)		*/
1042   0x0018c0c2,	/* srl $24, $24, 3					*/
1043   0x0320f809,	/* jalr $25						*/
1044   0x2718fffe	/* subu $24, $24, 2					*/
1045 };
1046 
1047 /* The format of the microMIPS first PLT entry in an O32 executable.
1048    We rely on v0 ($2) rather than t8 ($24) to contain the address
1049    of the GOTPLT entry handled, so this stub may only be used when
1050    all the subsequent PLT entries are microMIPS code too.
1051 
1052    The trailing NOP is for alignment and correct disassembly only.  */
1053 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1054 {
1055   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1056   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1057   0x0535,		/* subu $2, $2, $3				*/
1058   0x2525,		/* srl $2, $2, 2				*/
1059   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1060   0x0dff,		/* move $15, $31				*/
1061   0x45f9,		/* jalrs $25					*/
1062   0x0f83,		/* move $28, $3					*/
1063   0x0c00		/* nop						*/
1064 };
1065 
1066 /* The format of the microMIPS first PLT entry in an O32 executable
1067    in the insn32 mode.  */
1068 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1069 {
1070   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1071   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1072   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1073   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1074   0x001f, 0x7950,	/* move $15, $31				*/
1075   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1076   0x03f9, 0x0f3c,	/* jalr $25					*/
1077   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1078 };
1079 
1080 /* The format of subsequent standard PLT entries.  */
1081 static const bfd_vma mips_exec_plt_entry[] =
1082 {
1083   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1084   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1085   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1086   0x03200008	/* jr $25					*/
1087 };
1088 
1089 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1090    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1091    directly addressable.  */
1092 static const bfd_vma mips16_o32_exec_plt_entry[] =
1093 {
1094   0xb203,		/* lw $2, 12($pc)			*/
1095   0x9a60,		/* lw $3, 0($2)				*/
1096   0x651a,		/* move $24, $2				*/
1097   0xeb00,		/* jr $3				*/
1098   0x653b,		/* move $25, $3				*/
1099   0x6500,		/* nop					*/
1100   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1101 };
1102 
1103 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1104    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1105 static const bfd_vma micromips_o32_exec_plt_entry[] =
1106 {
1107   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1108   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1109   0x4599,		/* jr $25				*/
1110   0x0f02		/* move $24, $2				*/
1111 };
1112 
1113 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1114 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1115 {
1116   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1117   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1118   0x0019, 0x0f3c,	/* jr $25				*/
1119   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1120 };
1121 
1122 /* The format of the first PLT entry in a VxWorks executable.  */
1123 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1124 {
1125   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1126   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1127   0x8f390008,	/* lw t9, 8(t9)					*/
1128   0x00000000,	/* nop						*/
1129   0x03200008,	/* jr t9					*/
1130   0x00000000	/* nop						*/
1131 };
1132 
1133 /* The format of subsequent PLT entries.  */
1134 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1135 {
1136   0x10000000,	/* b .PLT_resolver			*/
1137   0x24180000,	/* li t8, <pltindex>			*/
1138   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1139   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1140   0x8f390000,	/* lw t9, 0(t9)				*/
1141   0x00000000,	/* nop					*/
1142   0x03200008,	/* jr t9				*/
1143   0x00000000	/* nop					*/
1144 };
1145 
1146 /* The format of the first PLT entry in a VxWorks shared object.  */
1147 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1148 {
1149   0x8f990008,	/* lw t9, 8(gp)		*/
1150   0x00000000,	/* nop			*/
1151   0x03200008,	/* jr t9		*/
1152   0x00000000,	/* nop			*/
1153   0x00000000,	/* nop			*/
1154   0x00000000	/* nop			*/
1155 };
1156 
1157 /* The format of subsequent PLT entries.  */
1158 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1159 {
1160   0x10000000,	/* b .PLT_resolver	*/
1161   0x24180000	/* li t8, <pltindex>	*/
1162 };
1163 
1164 /* microMIPS 32-bit opcode helper installer.  */
1165 
1166 static void
1167 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1168 {
1169   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1170   bfd_put_16 (abfd,  opcode        & 0xffff, ptr + 2);
1171 }
1172 
1173 /* microMIPS 32-bit opcode helper retriever.  */
1174 
1175 static bfd_vma
1176 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1177 {
1178   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1179 }
1180 
1181 /* Look up an entry in a MIPS ELF linker hash table.  */
1182 
1183 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1184   ((struct mips_elf_link_hash_entry *)					\
1185    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1186 			 (copy), (follow)))
1187 
1188 /* Traverse a MIPS ELF linker hash table.  */
1189 
1190 #define mips_elf_link_hash_traverse(table, func, info)			\
1191   (elf_link_hash_traverse						\
1192    (&(table)->root,							\
1193     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1194     (info)))
1195 
1196 /* Find the base offsets for thread-local storage in this object,
1197    for GD/LD and IE/LE respectively.  */
1198 
1199 #define TP_OFFSET 0x7000
1200 #define DTP_OFFSET 0x8000
1201 
1202 static bfd_vma
1203 dtprel_base (struct bfd_link_info *info)
1204 {
1205   /* If tls_sec is NULL, we should have signalled an error already.  */
1206   if (elf_hash_table (info)->tls_sec == NULL)
1207     return 0;
1208   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1209 }
1210 
1211 static bfd_vma
1212 tprel_base (struct bfd_link_info *info)
1213 {
1214   /* If tls_sec is NULL, we should have signalled an error already.  */
1215   if (elf_hash_table (info)->tls_sec == NULL)
1216     return 0;
1217   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1218 }
1219 
1220 /* Create an entry in a MIPS ELF linker hash table.  */
1221 
1222 static struct bfd_hash_entry *
1223 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1224 			    struct bfd_hash_table *table, const char *string)
1225 {
1226   struct mips_elf_link_hash_entry *ret =
1227     (struct mips_elf_link_hash_entry *) entry;
1228 
1229   /* Allocate the structure if it has not already been allocated by a
1230      subclass.  */
1231   if (ret == NULL)
1232     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1233   if (ret == NULL)
1234     return (struct bfd_hash_entry *) ret;
1235 
1236   /* Call the allocation method of the superclass.  */
1237   ret = ((struct mips_elf_link_hash_entry *)
1238 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1239 				     table, string));
1240   if (ret != NULL)
1241     {
1242       /* Set local fields.  */
1243       memset (&ret->esym, 0, sizeof (EXTR));
1244       /* We use -2 as a marker to indicate that the information has
1245 	 not been set.  -1 means there is no associated ifd.  */
1246       ret->esym.ifd = -2;
1247       ret->la25_stub = 0;
1248       ret->possibly_dynamic_relocs = 0;
1249       ret->fn_stub = NULL;
1250       ret->call_stub = NULL;
1251       ret->call_fp_stub = NULL;
1252       ret->global_got_area = GGA_NONE;
1253       ret->got_only_for_calls = TRUE;
1254       ret->readonly_reloc = FALSE;
1255       ret->has_static_relocs = FALSE;
1256       ret->no_fn_stub = FALSE;
1257       ret->need_fn_stub = FALSE;
1258       ret->has_nonpic_branches = FALSE;
1259       ret->needs_lazy_stub = FALSE;
1260       ret->use_plt_entry = FALSE;
1261     }
1262 
1263   return (struct bfd_hash_entry *) ret;
1264 }
1265 
1266 /* Allocate MIPS ELF private object data.  */
1267 
1268 bfd_boolean
1269 _bfd_mips_elf_mkobject (bfd *abfd)
1270 {
1271   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1272 				  MIPS_ELF_DATA);
1273 }
1274 
1275 bfd_boolean
1276 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1277 {
1278   if (!sec->used_by_bfd)
1279     {
1280       struct _mips_elf_section_data *sdata;
1281       bfd_size_type amt = sizeof (*sdata);
1282 
1283       sdata = bfd_zalloc (abfd, amt);
1284       if (sdata == NULL)
1285 	return FALSE;
1286       sec->used_by_bfd = sdata;
1287     }
1288 
1289   return _bfd_elf_new_section_hook (abfd, sec);
1290 }
1291 
1292 /* Read ECOFF debugging information from a .mdebug section into a
1293    ecoff_debug_info structure.  */
1294 
1295 bfd_boolean
1296 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1297 			       struct ecoff_debug_info *debug)
1298 {
1299   HDRR *symhdr;
1300   const struct ecoff_debug_swap *swap;
1301   char *ext_hdr;
1302 
1303   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1304   memset (debug, 0, sizeof (*debug));
1305 
1306   ext_hdr = bfd_malloc (swap->external_hdr_size);
1307   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1308     goto error_return;
1309 
1310   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1311 				  swap->external_hdr_size))
1312     goto error_return;
1313 
1314   symhdr = &debug->symbolic_header;
1315   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1316 
1317   /* The symbolic header contains absolute file offsets and sizes to
1318      read.  */
1319 #define READ(ptr, offset, count, size, type)				\
1320   if (symhdr->count == 0)						\
1321     debug->ptr = NULL;							\
1322   else									\
1323     {									\
1324       bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
1325       debug->ptr = bfd_malloc (amt);					\
1326       if (debug->ptr == NULL)						\
1327 	goto error_return;						\
1328       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
1329 	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
1330 	goto error_return;						\
1331     }
1332 
1333   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1334   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1335   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1336   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1337   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1338   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1339 	union aux_ext *);
1340   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1341   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1342   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1343   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1344   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1345 #undef READ
1346 
1347   debug->fdr = NULL;
1348 
1349   return TRUE;
1350 
1351  error_return:
1352   if (ext_hdr != NULL)
1353     free (ext_hdr);
1354   if (debug->line != NULL)
1355     free (debug->line);
1356   if (debug->external_dnr != NULL)
1357     free (debug->external_dnr);
1358   if (debug->external_pdr != NULL)
1359     free (debug->external_pdr);
1360   if (debug->external_sym != NULL)
1361     free (debug->external_sym);
1362   if (debug->external_opt != NULL)
1363     free (debug->external_opt);
1364   if (debug->external_aux != NULL)
1365     free (debug->external_aux);
1366   if (debug->ss != NULL)
1367     free (debug->ss);
1368   if (debug->ssext != NULL)
1369     free (debug->ssext);
1370   if (debug->external_fdr != NULL)
1371     free (debug->external_fdr);
1372   if (debug->external_rfd != NULL)
1373     free (debug->external_rfd);
1374   if (debug->external_ext != NULL)
1375     free (debug->external_ext);
1376   return FALSE;
1377 }
1378 
1379 /* Swap RPDR (runtime procedure table entry) for output.  */
1380 
1381 static void
1382 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1383 {
1384   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1385   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1386   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1387   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1388   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1389   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1390 
1391   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1392   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1393 
1394   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1395 }
1396 
1397 /* Create a runtime procedure table from the .mdebug section.  */
1398 
1399 static bfd_boolean
1400 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1401 				 struct bfd_link_info *info, asection *s,
1402 				 struct ecoff_debug_info *debug)
1403 {
1404   const struct ecoff_debug_swap *swap;
1405   HDRR *hdr = &debug->symbolic_header;
1406   RPDR *rpdr, *rp;
1407   struct rpdr_ext *erp;
1408   void *rtproc;
1409   struct pdr_ext *epdr;
1410   struct sym_ext *esym;
1411   char *ss, **sv;
1412   char *str;
1413   bfd_size_type size;
1414   bfd_size_type count;
1415   unsigned long sindex;
1416   unsigned long i;
1417   PDR pdr;
1418   SYMR sym;
1419   const char *no_name_func = _("static procedure (no name)");
1420 
1421   epdr = NULL;
1422   rpdr = NULL;
1423   esym = NULL;
1424   ss = NULL;
1425   sv = NULL;
1426 
1427   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1428 
1429   sindex = strlen (no_name_func) + 1;
1430   count = hdr->ipdMax;
1431   if (count > 0)
1432     {
1433       size = swap->external_pdr_size;
1434 
1435       epdr = bfd_malloc (size * count);
1436       if (epdr == NULL)
1437 	goto error_return;
1438 
1439       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1440 	goto error_return;
1441 
1442       size = sizeof (RPDR);
1443       rp = rpdr = bfd_malloc (size * count);
1444       if (rpdr == NULL)
1445 	goto error_return;
1446 
1447       size = sizeof (char *);
1448       sv = bfd_malloc (size * count);
1449       if (sv == NULL)
1450 	goto error_return;
1451 
1452       count = hdr->isymMax;
1453       size = swap->external_sym_size;
1454       esym = bfd_malloc (size * count);
1455       if (esym == NULL)
1456 	goto error_return;
1457 
1458       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1459 	goto error_return;
1460 
1461       count = hdr->issMax;
1462       ss = bfd_malloc (count);
1463       if (ss == NULL)
1464 	goto error_return;
1465       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1466 	goto error_return;
1467 
1468       count = hdr->ipdMax;
1469       for (i = 0; i < (unsigned long) count; i++, rp++)
1470 	{
1471 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1472 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1473 	  rp->adr = sym.value;
1474 	  rp->regmask = pdr.regmask;
1475 	  rp->regoffset = pdr.regoffset;
1476 	  rp->fregmask = pdr.fregmask;
1477 	  rp->fregoffset = pdr.fregoffset;
1478 	  rp->frameoffset = pdr.frameoffset;
1479 	  rp->framereg = pdr.framereg;
1480 	  rp->pcreg = pdr.pcreg;
1481 	  rp->irpss = sindex;
1482 	  sv[i] = ss + sym.iss;
1483 	  sindex += strlen (sv[i]) + 1;
1484 	}
1485     }
1486 
1487   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1488   size = BFD_ALIGN (size, 16);
1489   rtproc = bfd_alloc (abfd, size);
1490   if (rtproc == NULL)
1491     {
1492       mips_elf_hash_table (info)->procedure_count = 0;
1493       goto error_return;
1494     }
1495 
1496   mips_elf_hash_table (info)->procedure_count = count + 2;
1497 
1498   erp = rtproc;
1499   memset (erp, 0, sizeof (struct rpdr_ext));
1500   erp++;
1501   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1502   strcpy (str, no_name_func);
1503   str += strlen (no_name_func) + 1;
1504   for (i = 0; i < count; i++)
1505     {
1506       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1507       strcpy (str, sv[i]);
1508       str += strlen (sv[i]) + 1;
1509     }
1510   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1511 
1512   /* Set the size and contents of .rtproc section.  */
1513   s->size = size;
1514   s->contents = rtproc;
1515 
1516   /* Skip this section later on (I don't think this currently
1517      matters, but someday it might).  */
1518   s->map_head.link_order = NULL;
1519 
1520   if (epdr != NULL)
1521     free (epdr);
1522   if (rpdr != NULL)
1523     free (rpdr);
1524   if (esym != NULL)
1525     free (esym);
1526   if (ss != NULL)
1527     free (ss);
1528   if (sv != NULL)
1529     free (sv);
1530 
1531   return TRUE;
1532 
1533  error_return:
1534   if (epdr != NULL)
1535     free (epdr);
1536   if (rpdr != NULL)
1537     free (rpdr);
1538   if (esym != NULL)
1539     free (esym);
1540   if (ss != NULL)
1541     free (ss);
1542   if (sv != NULL)
1543     free (sv);
1544   return FALSE;
1545 }
1546 
1547 /* We're going to create a stub for H.  Create a symbol for the stub's
1548    value and size, to help make the disassembly easier to read.  */
1549 
1550 static bfd_boolean
1551 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1552 			     struct mips_elf_link_hash_entry *h,
1553 			     const char *prefix, asection *s, bfd_vma value,
1554 			     bfd_vma size)
1555 {
1556   struct bfd_link_hash_entry *bh;
1557   struct elf_link_hash_entry *elfh;
1558   const char *name;
1559 
1560   if (ELF_ST_IS_MICROMIPS (h->root.other))
1561     value |= 1;
1562 
1563   /* Create a new symbol.  */
1564   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1565   bh = NULL;
1566   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1567 					 BSF_LOCAL, s, value, NULL,
1568 					 TRUE, FALSE, &bh))
1569     return FALSE;
1570 
1571   /* Make it a local function.  */
1572   elfh = (struct elf_link_hash_entry *) bh;
1573   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1574   elfh->size = size;
1575   elfh->forced_local = 1;
1576   return TRUE;
1577 }
1578 
1579 /* We're about to redefine H.  Create a symbol to represent H's
1580    current value and size, to help make the disassembly easier
1581    to read.  */
1582 
1583 static bfd_boolean
1584 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1585 			       struct mips_elf_link_hash_entry *h,
1586 			       const char *prefix)
1587 {
1588   struct bfd_link_hash_entry *bh;
1589   struct elf_link_hash_entry *elfh;
1590   const char *name;
1591   asection *s;
1592   bfd_vma value;
1593 
1594   /* Read the symbol's value.  */
1595   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1596 	      || h->root.root.type == bfd_link_hash_defweak);
1597   s = h->root.root.u.def.section;
1598   value = h->root.root.u.def.value;
1599 
1600   /* Create a new symbol.  */
1601   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1602   bh = NULL;
1603   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1604 					 BSF_LOCAL, s, value, NULL,
1605 					 TRUE, FALSE, &bh))
1606     return FALSE;
1607 
1608   /* Make it local and copy the other attributes from H.  */
1609   elfh = (struct elf_link_hash_entry *) bh;
1610   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1611   elfh->other = h->root.other;
1612   elfh->size = h->root.size;
1613   elfh->forced_local = 1;
1614   return TRUE;
1615 }
1616 
1617 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1618    function rather than to a hard-float stub.  */
1619 
1620 static bfd_boolean
1621 section_allows_mips16_refs_p (asection *section)
1622 {
1623   const char *name;
1624 
1625   name = bfd_get_section_name (section->owner, section);
1626   return (FN_STUB_P (name)
1627 	  || CALL_STUB_P (name)
1628 	  || CALL_FP_STUB_P (name)
1629 	  || strcmp (name, ".pdr") == 0);
1630 }
1631 
1632 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1633    stub section of some kind.  Return the R_SYMNDX of the target
1634    function, or 0 if we can't decide which function that is.  */
1635 
1636 static unsigned long
1637 mips16_stub_symndx (const struct elf_backend_data *bed,
1638 		    asection *sec ATTRIBUTE_UNUSED,
1639 		    const Elf_Internal_Rela *relocs,
1640 		    const Elf_Internal_Rela *relend)
1641 {
1642   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1643   const Elf_Internal_Rela *rel;
1644 
1645   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1646      one in a compound relocation.  */
1647   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1648     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1649       return ELF_R_SYM (sec->owner, rel->r_info);
1650 
1651   /* Otherwise trust the first relocation, whatever its kind.  This is
1652      the traditional behavior.  */
1653   if (relocs < relend)
1654     return ELF_R_SYM (sec->owner, relocs->r_info);
1655 
1656   return 0;
1657 }
1658 
1659 /* Check the mips16 stubs for a particular symbol, and see if we can
1660    discard them.  */
1661 
1662 static void
1663 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1664 			     struct mips_elf_link_hash_entry *h)
1665 {
1666   /* Dynamic symbols must use the standard call interface, in case other
1667      objects try to call them.  */
1668   if (h->fn_stub != NULL
1669       && h->root.dynindx != -1)
1670     {
1671       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1672       h->need_fn_stub = TRUE;
1673     }
1674 
1675   if (h->fn_stub != NULL
1676       && ! h->need_fn_stub)
1677     {
1678       /* We don't need the fn_stub; the only references to this symbol
1679          are 16 bit calls.  Clobber the size to 0 to prevent it from
1680          being included in the link.  */
1681       h->fn_stub->size = 0;
1682       h->fn_stub->flags &= ~SEC_RELOC;
1683       h->fn_stub->reloc_count = 0;
1684       h->fn_stub->flags |= SEC_EXCLUDE;
1685     }
1686 
1687   if (h->call_stub != NULL
1688       && ELF_ST_IS_MIPS16 (h->root.other))
1689     {
1690       /* We don't need the call_stub; this is a 16 bit function, so
1691          calls from other 16 bit functions are OK.  Clobber the size
1692          to 0 to prevent it from being included in the link.  */
1693       h->call_stub->size = 0;
1694       h->call_stub->flags &= ~SEC_RELOC;
1695       h->call_stub->reloc_count = 0;
1696       h->call_stub->flags |= SEC_EXCLUDE;
1697     }
1698 
1699   if (h->call_fp_stub != NULL
1700       && ELF_ST_IS_MIPS16 (h->root.other))
1701     {
1702       /* We don't need the call_stub; this is a 16 bit function, so
1703          calls from other 16 bit functions are OK.  Clobber the size
1704          to 0 to prevent it from being included in the link.  */
1705       h->call_fp_stub->size = 0;
1706       h->call_fp_stub->flags &= ~SEC_RELOC;
1707       h->call_fp_stub->reloc_count = 0;
1708       h->call_fp_stub->flags |= SEC_EXCLUDE;
1709     }
1710 }
1711 
1712 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1713 
1714 static hashval_t
1715 mips_elf_la25_stub_hash (const void *entry_)
1716 {
1717   const struct mips_elf_la25_stub *entry;
1718 
1719   entry = (struct mips_elf_la25_stub *) entry_;
1720   return entry->h->root.root.u.def.section->id
1721     + entry->h->root.root.u.def.value;
1722 }
1723 
1724 static int
1725 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1726 {
1727   const struct mips_elf_la25_stub *entry1, *entry2;
1728 
1729   entry1 = (struct mips_elf_la25_stub *) entry1_;
1730   entry2 = (struct mips_elf_la25_stub *) entry2_;
1731   return ((entry1->h->root.root.u.def.section
1732 	   == entry2->h->root.root.u.def.section)
1733 	  && (entry1->h->root.root.u.def.value
1734 	      == entry2->h->root.root.u.def.value));
1735 }
1736 
1737 /* Called by the linker to set up the la25 stub-creation code.  FN is
1738    the linker's implementation of add_stub_function.  Return true on
1739    success.  */
1740 
1741 bfd_boolean
1742 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1743 			  asection *(*fn) (const char *, asection *,
1744 					   asection *))
1745 {
1746   struct mips_elf_link_hash_table *htab;
1747 
1748   htab = mips_elf_hash_table (info);
1749   if (htab == NULL)
1750     return FALSE;
1751 
1752   htab->add_stub_section = fn;
1753   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1754 				      mips_elf_la25_stub_eq, NULL);
1755   if (htab->la25_stubs == NULL)
1756     return FALSE;
1757 
1758   return TRUE;
1759 }
1760 
1761 /* Return true if H is a locally-defined PIC function, in the sense
1762    that it or its fn_stub might need $25 to be valid on entry.
1763    Note that MIPS16 functions set up $gp using PC-relative instructions,
1764    so they themselves never need $25 to be valid.  Only non-MIPS16
1765    entry points are of interest here.  */
1766 
1767 static bfd_boolean
1768 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1769 {
1770   return ((h->root.root.type == bfd_link_hash_defined
1771 	   || h->root.root.type == bfd_link_hash_defweak)
1772 	  && h->root.def_regular
1773 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1774 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1775 	      || (h->fn_stub && h->need_fn_stub))
1776 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1777 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1778 }
1779 
1780 /* Set *SEC to the input section that contains the target of STUB.
1781    Return the offset of the target from the start of that section.  */
1782 
1783 static bfd_vma
1784 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1785 			  asection **sec)
1786 {
1787   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1788     {
1789       BFD_ASSERT (stub->h->need_fn_stub);
1790       *sec = stub->h->fn_stub;
1791       return 0;
1792     }
1793   else
1794     {
1795       *sec = stub->h->root.root.u.def.section;
1796       return stub->h->root.root.u.def.value;
1797     }
1798 }
1799 
1800 /* STUB describes an la25 stub that we have decided to implement
1801    by inserting an LUI/ADDIU pair before the target function.
1802    Create the section and redirect the function symbol to it.  */
1803 
1804 static bfd_boolean
1805 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1806 			 struct bfd_link_info *info)
1807 {
1808   struct mips_elf_link_hash_table *htab;
1809   char *name;
1810   asection *s, *input_section;
1811   unsigned int align;
1812 
1813   htab = mips_elf_hash_table (info);
1814   if (htab == NULL)
1815     return FALSE;
1816 
1817   /* Create a unique name for the new section.  */
1818   name = bfd_malloc (11 + sizeof (".text.stub."));
1819   if (name == NULL)
1820     return FALSE;
1821   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1822 
1823   /* Create the section.  */
1824   mips_elf_get_la25_target (stub, &input_section);
1825   s = htab->add_stub_section (name, input_section,
1826 			      input_section->output_section);
1827   if (s == NULL)
1828     return FALSE;
1829 
1830   /* Make sure that any padding goes before the stub.  */
1831   align = input_section->alignment_power;
1832   if (!bfd_set_section_alignment (s->owner, s, align))
1833     return FALSE;
1834   if (align > 3)
1835     s->size = (1 << align) - 8;
1836 
1837   /* Create a symbol for the stub.  */
1838   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1839   stub->stub_section = s;
1840   stub->offset = s->size;
1841 
1842   /* Allocate room for it.  */
1843   s->size += 8;
1844   return TRUE;
1845 }
1846 
1847 /* STUB describes an la25 stub that we have decided to implement
1848    with a separate trampoline.  Allocate room for it and redirect
1849    the function symbol to it.  */
1850 
1851 static bfd_boolean
1852 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1853 			      struct bfd_link_info *info)
1854 {
1855   struct mips_elf_link_hash_table *htab;
1856   asection *s;
1857 
1858   htab = mips_elf_hash_table (info);
1859   if (htab == NULL)
1860     return FALSE;
1861 
1862   /* Create a trampoline section, if we haven't already.  */
1863   s = htab->strampoline;
1864   if (s == NULL)
1865     {
1866       asection *input_section = stub->h->root.root.u.def.section;
1867       s = htab->add_stub_section (".text", NULL,
1868 				  input_section->output_section);
1869       if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1870 	return FALSE;
1871       htab->strampoline = s;
1872     }
1873 
1874   /* Create a symbol for the stub.  */
1875   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1876   stub->stub_section = s;
1877   stub->offset = s->size;
1878 
1879   /* Allocate room for it.  */
1880   s->size += 16;
1881   return TRUE;
1882 }
1883 
1884 /* H describes a symbol that needs an la25 stub.  Make sure that an
1885    appropriate stub exists and point H at it.  */
1886 
1887 static bfd_boolean
1888 mips_elf_add_la25_stub (struct bfd_link_info *info,
1889 			struct mips_elf_link_hash_entry *h)
1890 {
1891   struct mips_elf_link_hash_table *htab;
1892   struct mips_elf_la25_stub search, *stub;
1893   bfd_boolean use_trampoline_p;
1894   asection *s;
1895   bfd_vma value;
1896   void **slot;
1897 
1898   /* Describe the stub we want.  */
1899   search.stub_section = NULL;
1900   search.offset = 0;
1901   search.h = h;
1902 
1903   /* See if we've already created an equivalent stub.  */
1904   htab = mips_elf_hash_table (info);
1905   if (htab == NULL)
1906     return FALSE;
1907 
1908   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1909   if (slot == NULL)
1910     return FALSE;
1911 
1912   stub = (struct mips_elf_la25_stub *) *slot;
1913   if (stub != NULL)
1914     {
1915       /* We can reuse the existing stub.  */
1916       h->la25_stub = stub;
1917       return TRUE;
1918     }
1919 
1920   /* Create a permanent copy of ENTRY and add it to the hash table.  */
1921   stub = bfd_malloc (sizeof (search));
1922   if (stub == NULL)
1923     return FALSE;
1924   *stub = search;
1925   *slot = stub;
1926 
1927   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1928      of the section and if we would need no more than 2 nops.  */
1929   value = mips_elf_get_la25_target (stub, &s);
1930   use_trampoline_p = (value != 0 || s->alignment_power > 4);
1931 
1932   h->la25_stub = stub;
1933   return (use_trampoline_p
1934 	  ? mips_elf_add_la25_trampoline (stub, info)
1935 	  : mips_elf_add_la25_intro (stub, info));
1936 }
1937 
1938 /* A mips_elf_link_hash_traverse callback that is called before sizing
1939    sections.  DATA points to a mips_htab_traverse_info structure.  */
1940 
1941 static bfd_boolean
1942 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1943 {
1944   struct mips_htab_traverse_info *hti;
1945 
1946   hti = (struct mips_htab_traverse_info *) data;
1947   if (!hti->info->relocatable)
1948     mips_elf_check_mips16_stubs (hti->info, h);
1949 
1950   if (mips_elf_local_pic_function_p (h))
1951     {
1952       /* PR 12845: If H is in a section that has been garbage
1953 	 collected it will have its output section set to *ABS*.  */
1954       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
1955 	return TRUE;
1956 
1957       /* H is a function that might need $25 to be valid on entry.
1958 	 If we're creating a non-PIC relocatable object, mark H as
1959 	 being PIC.  If we're creating a non-relocatable object with
1960 	 non-PIC branches and jumps to H, make sure that H has an la25
1961 	 stub.  */
1962       if (hti->info->relocatable)
1963 	{
1964 	  if (!PIC_OBJECT_P (hti->output_bfd))
1965 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1966 	}
1967       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1968 	{
1969 	  hti->error = TRUE;
1970 	  return FALSE;
1971 	}
1972     }
1973   return TRUE;
1974 }
1975 
1976 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1977    Most mips16 instructions are 16 bits, but these instructions
1978    are 32 bits.
1979 
1980    The format of these instructions is:
1981 
1982    +--------------+--------------------------------+
1983    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
1984    +--------------+--------------------------------+
1985    |                Immediate  15:0                |
1986    +-----------------------------------------------+
1987 
1988    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
1989    Note that the immediate value in the first word is swapped.
1990 
1991    When producing a relocatable object file, R_MIPS16_26 is
1992    handled mostly like R_MIPS_26.  In particular, the addend is
1993    stored as a straight 26-bit value in a 32-bit instruction.
1994    (gas makes life simpler for itself by never adjusting a
1995    R_MIPS16_26 reloc to be against a section, so the addend is
1996    always zero).  However, the 32 bit instruction is stored as 2
1997    16-bit values, rather than a single 32-bit value.  In a
1998    big-endian file, the result is the same; in a little-endian
1999    file, the two 16-bit halves of the 32 bit value are swapped.
2000    This is so that a disassembler can recognize the jal
2001    instruction.
2002 
2003    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2004    instruction stored as two 16-bit values.  The addend A is the
2005    contents of the targ26 field.  The calculation is the same as
2006    R_MIPS_26.  When storing the calculated value, reorder the
2007    immediate value as shown above, and don't forget to store the
2008    value as two 16-bit values.
2009 
2010    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2011    defined as
2012 
2013    big-endian:
2014    +--------+----------------------+
2015    |        |                      |
2016    |        |    targ26-16         |
2017    |31    26|25                   0|
2018    +--------+----------------------+
2019 
2020    little-endian:
2021    +----------+------+-------------+
2022    |          |      |             |
2023    |  sub1    |      |     sub2    |
2024    |0        9|10  15|16         31|
2025    +----------+--------------------+
2026    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2027    ((sub1 << 16) | sub2)).
2028 
2029    When producing a relocatable object file, the calculation is
2030    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2031    When producing a fully linked file, the calculation is
2032    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2033    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2034 
2035    The table below lists the other MIPS16 instruction relocations.
2036    Each one is calculated in the same way as the non-MIPS16 relocation
2037    given on the right, but using the extended MIPS16 layout of 16-bit
2038    immediate fields:
2039 
2040 	R_MIPS16_GPREL		R_MIPS_GPREL16
2041 	R_MIPS16_GOT16		R_MIPS_GOT16
2042 	R_MIPS16_CALL16		R_MIPS_CALL16
2043 	R_MIPS16_HI16		R_MIPS_HI16
2044 	R_MIPS16_LO16		R_MIPS_LO16
2045 
2046    A typical instruction will have a format like this:
2047 
2048    +--------------+--------------------------------+
2049    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2050    +--------------+--------------------------------+
2051    |    Major     |   rx   |   ry   |   Imm  4:0   |
2052    +--------------+--------------------------------+
2053 
2054    EXTEND is the five bit value 11110.  Major is the instruction
2055    opcode.
2056 
2057    All we need to do here is shuffle the bits appropriately.
2058    As above, the two 16-bit halves must be swapped on a
2059    little-endian system.  */
2060 
2061 static inline bfd_boolean
2062 mips16_reloc_p (int r_type)
2063 {
2064   switch (r_type)
2065     {
2066     case R_MIPS16_26:
2067     case R_MIPS16_GPREL:
2068     case R_MIPS16_GOT16:
2069     case R_MIPS16_CALL16:
2070     case R_MIPS16_HI16:
2071     case R_MIPS16_LO16:
2072     case R_MIPS16_TLS_GD:
2073     case R_MIPS16_TLS_LDM:
2074     case R_MIPS16_TLS_DTPREL_HI16:
2075     case R_MIPS16_TLS_DTPREL_LO16:
2076     case R_MIPS16_TLS_GOTTPREL:
2077     case R_MIPS16_TLS_TPREL_HI16:
2078     case R_MIPS16_TLS_TPREL_LO16:
2079       return TRUE;
2080 
2081     default:
2082       return FALSE;
2083     }
2084 }
2085 
2086 /* Check if a microMIPS reloc.  */
2087 
2088 static inline bfd_boolean
2089 micromips_reloc_p (unsigned int r_type)
2090 {
2091   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2092 }
2093 
2094 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2095    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2096    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2097 
2098 static inline bfd_boolean
2099 micromips_reloc_shuffle_p (unsigned int r_type)
2100 {
2101   return (micromips_reloc_p (r_type)
2102 	  && r_type != R_MICROMIPS_PC7_S1
2103 	  && r_type != R_MICROMIPS_PC10_S1);
2104 }
2105 
2106 static inline bfd_boolean
2107 got16_reloc_p (int r_type)
2108 {
2109   return (r_type == R_MIPS_GOT16
2110 	  || r_type == R_MIPS16_GOT16
2111 	  || r_type == R_MICROMIPS_GOT16);
2112 }
2113 
2114 static inline bfd_boolean
2115 call16_reloc_p (int r_type)
2116 {
2117   return (r_type == R_MIPS_CALL16
2118 	  || r_type == R_MIPS16_CALL16
2119 	  || r_type == R_MICROMIPS_CALL16);
2120 }
2121 
2122 static inline bfd_boolean
2123 got_disp_reloc_p (unsigned int r_type)
2124 {
2125   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2126 }
2127 
2128 static inline bfd_boolean
2129 got_page_reloc_p (unsigned int r_type)
2130 {
2131   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2132 }
2133 
2134 static inline bfd_boolean
2135 got_ofst_reloc_p (unsigned int r_type)
2136 {
2137   return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST;
2138 }
2139 
2140 static inline bfd_boolean
2141 got_hi16_reloc_p (unsigned int r_type)
2142 {
2143   return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16;
2144 }
2145 
2146 static inline bfd_boolean
2147 got_lo16_reloc_p (unsigned int r_type)
2148 {
2149   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2150 }
2151 
2152 static inline bfd_boolean
2153 call_hi16_reloc_p (unsigned int r_type)
2154 {
2155   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2156 }
2157 
2158 static inline bfd_boolean
2159 call_lo16_reloc_p (unsigned int r_type)
2160 {
2161   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2162 }
2163 
2164 static inline bfd_boolean
2165 hi16_reloc_p (int r_type)
2166 {
2167   return (r_type == R_MIPS_HI16
2168 	  || r_type == R_MIPS16_HI16
2169 	  || r_type == R_MICROMIPS_HI16);
2170 }
2171 
2172 static inline bfd_boolean
2173 lo16_reloc_p (int r_type)
2174 {
2175   return (r_type == R_MIPS_LO16
2176 	  || r_type == R_MIPS16_LO16
2177 	  || r_type == R_MICROMIPS_LO16);
2178 }
2179 
2180 static inline bfd_boolean
2181 mips16_call_reloc_p (int r_type)
2182 {
2183   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2184 }
2185 
2186 static inline bfd_boolean
2187 jal_reloc_p (int r_type)
2188 {
2189   return (r_type == R_MIPS_26
2190 	  || r_type == R_MIPS16_26
2191 	  || r_type == R_MICROMIPS_26_S1);
2192 }
2193 
2194 static inline bfd_boolean
2195 micromips_branch_reloc_p (int r_type)
2196 {
2197   return (r_type == R_MICROMIPS_26_S1
2198 	  || r_type == R_MICROMIPS_PC16_S1
2199 	  || r_type == R_MICROMIPS_PC10_S1
2200 	  || r_type == R_MICROMIPS_PC7_S1);
2201 }
2202 
2203 static inline bfd_boolean
2204 tls_gd_reloc_p (unsigned int r_type)
2205 {
2206   return (r_type == R_MIPS_TLS_GD
2207 	  || r_type == R_MIPS16_TLS_GD
2208 	  || r_type == R_MICROMIPS_TLS_GD);
2209 }
2210 
2211 static inline bfd_boolean
2212 tls_ldm_reloc_p (unsigned int r_type)
2213 {
2214   return (r_type == R_MIPS_TLS_LDM
2215 	  || r_type == R_MIPS16_TLS_LDM
2216 	  || r_type == R_MICROMIPS_TLS_LDM);
2217 }
2218 
2219 static inline bfd_boolean
2220 tls_gottprel_reloc_p (unsigned int r_type)
2221 {
2222   return (r_type == R_MIPS_TLS_GOTTPREL
2223 	  || r_type == R_MIPS16_TLS_GOTTPREL
2224 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2225 }
2226 
2227 void
2228 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2229 			       bfd_boolean jal_shuffle, bfd_byte *data)
2230 {
2231   bfd_vma first, second, val;
2232 
2233   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2234     return;
2235 
2236   /* Pick up the first and second halfwords of the instruction.  */
2237   first = bfd_get_16 (abfd, data);
2238   second = bfd_get_16 (abfd, data + 2);
2239   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2240     val = first << 16 | second;
2241   else if (r_type != R_MIPS16_26)
2242     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2243 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2244   else
2245     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2246 	   | ((first & 0x1f) << 21) | second);
2247   bfd_put_32 (abfd, val, data);
2248 }
2249 
2250 void
2251 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2252 			     bfd_boolean jal_shuffle, bfd_byte *data)
2253 {
2254   bfd_vma first, second, val;
2255 
2256   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2257     return;
2258 
2259   val = bfd_get_32 (abfd, data);
2260   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2261     {
2262       second = val & 0xffff;
2263       first = val >> 16;
2264     }
2265   else if (r_type != R_MIPS16_26)
2266     {
2267       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2268       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2269     }
2270   else
2271     {
2272       second = val & 0xffff;
2273       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2274 	       | ((val >> 21) & 0x1f);
2275     }
2276   bfd_put_16 (abfd, second, data + 2);
2277   bfd_put_16 (abfd, first, data);
2278 }
2279 
2280 bfd_reloc_status_type
2281 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2282 			       arelent *reloc_entry, asection *input_section,
2283 			       bfd_boolean relocatable, void *data, bfd_vma gp)
2284 {
2285   bfd_vma relocation;
2286   bfd_signed_vma val;
2287   bfd_reloc_status_type status;
2288 
2289   if (bfd_is_com_section (symbol->section))
2290     relocation = 0;
2291   else
2292     relocation = symbol->value;
2293 
2294   relocation += symbol->section->output_section->vma;
2295   relocation += symbol->section->output_offset;
2296 
2297   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2298     return bfd_reloc_outofrange;
2299 
2300   /* Set val to the offset into the section or symbol.  */
2301   val = reloc_entry->addend;
2302 
2303   _bfd_mips_elf_sign_extend (val, 16);
2304 
2305   /* Adjust val for the final section location and GP value.  If we
2306      are producing relocatable output, we don't want to do this for
2307      an external symbol.  */
2308   if (! relocatable
2309       || (symbol->flags & BSF_SECTION_SYM) != 0)
2310     val += relocation - gp;
2311 
2312   if (reloc_entry->howto->partial_inplace)
2313     {
2314       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2315 				       (bfd_byte *) data
2316 				       + reloc_entry->address);
2317       if (status != bfd_reloc_ok)
2318 	return status;
2319     }
2320   else
2321     reloc_entry->addend = val;
2322 
2323   if (relocatable)
2324     reloc_entry->address += input_section->output_offset;
2325 
2326   return bfd_reloc_ok;
2327 }
2328 
2329 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2330    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2331    that contains the relocation field and DATA points to the start of
2332    INPUT_SECTION.  */
2333 
2334 struct mips_hi16
2335 {
2336   struct mips_hi16 *next;
2337   bfd_byte *data;
2338   asection *input_section;
2339   arelent rel;
2340 };
2341 
2342 /* FIXME: This should not be a static variable.  */
2343 
2344 static struct mips_hi16 *mips_hi16_list;
2345 
2346 /* A howto special_function for REL *HI16 relocations.  We can only
2347    calculate the correct value once we've seen the partnering
2348    *LO16 relocation, so just save the information for later.
2349 
2350    The ABI requires that the *LO16 immediately follow the *HI16.
2351    However, as a GNU extension, we permit an arbitrary number of
2352    *HI16s to be associated with a single *LO16.  This significantly
2353    simplies the relocation handling in gcc.  */
2354 
2355 bfd_reloc_status_type
2356 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2357 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2358 			  asection *input_section, bfd *output_bfd,
2359 			  char **error_message ATTRIBUTE_UNUSED)
2360 {
2361   struct mips_hi16 *n;
2362 
2363   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2364     return bfd_reloc_outofrange;
2365 
2366   n = bfd_malloc (sizeof *n);
2367   if (n == NULL)
2368     return bfd_reloc_outofrange;
2369 
2370   n->next = mips_hi16_list;
2371   n->data = data;
2372   n->input_section = input_section;
2373   n->rel = *reloc_entry;
2374   mips_hi16_list = n;
2375 
2376   if (output_bfd != NULL)
2377     reloc_entry->address += input_section->output_offset;
2378 
2379   return bfd_reloc_ok;
2380 }
2381 
2382 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2383    like any other 16-bit relocation when applied to global symbols, but is
2384    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2385 
2386 bfd_reloc_status_type
2387 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2388 			   void *data, asection *input_section,
2389 			   bfd *output_bfd, char **error_message)
2390 {
2391   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2392       || bfd_is_und_section (bfd_get_section (symbol))
2393       || bfd_is_com_section (bfd_get_section (symbol)))
2394     /* The relocation is against a global symbol.  */
2395     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2396 					input_section, output_bfd,
2397 					error_message);
2398 
2399   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2400 				   input_section, output_bfd, error_message);
2401 }
2402 
2403 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2404    is a straightforward 16 bit inplace relocation, but we must deal with
2405    any partnering high-part relocations as well.  */
2406 
2407 bfd_reloc_status_type
2408 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2409 			  void *data, asection *input_section,
2410 			  bfd *output_bfd, char **error_message)
2411 {
2412   bfd_vma vallo;
2413   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2414 
2415   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2416     return bfd_reloc_outofrange;
2417 
2418   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2419 				 location);
2420   vallo = bfd_get_32 (abfd, location);
2421   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2422 			       location);
2423 
2424   while (mips_hi16_list != NULL)
2425     {
2426       bfd_reloc_status_type ret;
2427       struct mips_hi16 *hi;
2428 
2429       hi = mips_hi16_list;
2430 
2431       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2432 	 want to install the addend in the same way as for a R_MIPS*_HI16
2433 	 relocation (with a rightshift of 16).  However, since GOT16
2434 	 relocations can also be used with global symbols, their howto
2435 	 has a rightshift of 0.  */
2436       if (hi->rel.howto->type == R_MIPS_GOT16)
2437 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2438       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2439 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2440       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2441 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2442 
2443       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2444 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2445       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2446 
2447       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2448 					 hi->input_section, output_bfd,
2449 					 error_message);
2450       if (ret != bfd_reloc_ok)
2451 	return ret;
2452 
2453       mips_hi16_list = hi->next;
2454       free (hi);
2455     }
2456 
2457   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2458 				      input_section, output_bfd,
2459 				      error_message);
2460 }
2461 
2462 /* A generic howto special_function.  This calculates and installs the
2463    relocation itself, thus avoiding the oft-discussed problems in
2464    bfd_perform_relocation and bfd_install_relocation.  */
2465 
2466 bfd_reloc_status_type
2467 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2468 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2469 			     asection *input_section, bfd *output_bfd,
2470 			     char **error_message ATTRIBUTE_UNUSED)
2471 {
2472   bfd_signed_vma val;
2473   bfd_reloc_status_type status;
2474   bfd_boolean relocatable;
2475 
2476   relocatable = (output_bfd != NULL);
2477 
2478   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2479     return bfd_reloc_outofrange;
2480 
2481   /* Build up the field adjustment in VAL.  */
2482   val = 0;
2483   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2484     {
2485       /* Either we're calculating the final field value or we have a
2486 	 relocation against a section symbol.  Add in the section's
2487 	 offset or address.  */
2488       val += symbol->section->output_section->vma;
2489       val += symbol->section->output_offset;
2490     }
2491 
2492   if (!relocatable)
2493     {
2494       /* We're calculating the final field value.  Add in the symbol's value
2495 	 and, if pc-relative, subtract the address of the field itself.  */
2496       val += symbol->value;
2497       if (reloc_entry->howto->pc_relative)
2498 	{
2499 	  val -= input_section->output_section->vma;
2500 	  val -= input_section->output_offset;
2501 	  val -= reloc_entry->address;
2502 	}
2503     }
2504 
2505   /* VAL is now the final adjustment.  If we're keeping this relocation
2506      in the output file, and if the relocation uses a separate addend,
2507      we just need to add VAL to that addend.  Otherwise we need to add
2508      VAL to the relocation field itself.  */
2509   if (relocatable && !reloc_entry->howto->partial_inplace)
2510     reloc_entry->addend += val;
2511   else
2512     {
2513       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2514 
2515       /* Add in the separate addend, if any.  */
2516       val += reloc_entry->addend;
2517 
2518       /* Add VAL to the relocation field.  */
2519       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2520 				     location);
2521       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2522 				       location);
2523       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2524 				   location);
2525 
2526       if (status != bfd_reloc_ok)
2527 	return status;
2528     }
2529 
2530   if (relocatable)
2531     reloc_entry->address += input_section->output_offset;
2532 
2533   return bfd_reloc_ok;
2534 }
2535 
2536 /* Swap an entry in a .gptab section.  Note that these routines rely
2537    on the equivalence of the two elements of the union.  */
2538 
2539 static void
2540 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2541 			      Elf32_gptab *in)
2542 {
2543   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2544   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2545 }
2546 
2547 static void
2548 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2549 			       Elf32_External_gptab *ex)
2550 {
2551   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2552   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2553 }
2554 
2555 static void
2556 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2557 				Elf32_External_compact_rel *ex)
2558 {
2559   H_PUT_32 (abfd, in->id1, ex->id1);
2560   H_PUT_32 (abfd, in->num, ex->num);
2561   H_PUT_32 (abfd, in->id2, ex->id2);
2562   H_PUT_32 (abfd, in->offset, ex->offset);
2563   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2564   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2565 }
2566 
2567 static void
2568 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2569 			   Elf32_External_crinfo *ex)
2570 {
2571   unsigned long l;
2572 
2573   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2574        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2575        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2576        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2577   H_PUT_32 (abfd, l, ex->info);
2578   H_PUT_32 (abfd, in->konst, ex->konst);
2579   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2580 }
2581 
2582 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2583    routines swap this structure in and out.  They are used outside of
2584    BFD, so they are globally visible.  */
2585 
2586 void
2587 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2588 				Elf32_RegInfo *in)
2589 {
2590   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2591   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2592   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2593   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2594   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2595   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2596 }
2597 
2598 void
2599 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2600 				 Elf32_External_RegInfo *ex)
2601 {
2602   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2603   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2604   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2605   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2606   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2607   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2608 }
2609 
2610 /* In the 64 bit ABI, the .MIPS.options section holds register
2611    information in an Elf64_Reginfo structure.  These routines swap
2612    them in and out.  They are globally visible because they are used
2613    outside of BFD.  These routines are here so that gas can call them
2614    without worrying about whether the 64 bit ABI has been included.  */
2615 
2616 void
2617 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2618 				Elf64_Internal_RegInfo *in)
2619 {
2620   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2621   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2622   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2623   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2624   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2625   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2626   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2627 }
2628 
2629 void
2630 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2631 				 Elf64_External_RegInfo *ex)
2632 {
2633   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2634   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2635   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2636   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2637   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2638   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2639   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2640 }
2641 
2642 /* Swap in an options header.  */
2643 
2644 void
2645 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2646 			      Elf_Internal_Options *in)
2647 {
2648   in->kind = H_GET_8 (abfd, ex->kind);
2649   in->size = H_GET_8 (abfd, ex->size);
2650   in->section = H_GET_16 (abfd, ex->section);
2651   in->info = H_GET_32 (abfd, ex->info);
2652 }
2653 
2654 /* Swap out an options header.  */
2655 
2656 void
2657 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2658 			       Elf_External_Options *ex)
2659 {
2660   H_PUT_8 (abfd, in->kind, ex->kind);
2661   H_PUT_8 (abfd, in->size, ex->size);
2662   H_PUT_16 (abfd, in->section, ex->section);
2663   H_PUT_32 (abfd, in->info, ex->info);
2664 }
2665 
2666 /* This function is called via qsort() to sort the dynamic relocation
2667    entries by increasing r_symndx value.  */
2668 
2669 static int
2670 sort_dynamic_relocs (const void *arg1, const void *arg2)
2671 {
2672   Elf_Internal_Rela int_reloc1;
2673   Elf_Internal_Rela int_reloc2;
2674   int diff;
2675 
2676   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2677   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2678 
2679   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2680   if (diff != 0)
2681     return diff;
2682 
2683   if (int_reloc1.r_offset < int_reloc2.r_offset)
2684     return -1;
2685   if (int_reloc1.r_offset > int_reloc2.r_offset)
2686     return 1;
2687   return 0;
2688 }
2689 
2690 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2691 
2692 static int
2693 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2694 			const void *arg2 ATTRIBUTE_UNUSED)
2695 {
2696 #ifdef BFD64
2697   Elf_Internal_Rela int_reloc1[3];
2698   Elf_Internal_Rela int_reloc2[3];
2699 
2700   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2701     (reldyn_sorting_bfd, arg1, int_reloc1);
2702   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2703     (reldyn_sorting_bfd, arg2, int_reloc2);
2704 
2705   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2706     return -1;
2707   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2708     return 1;
2709 
2710   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2711     return -1;
2712   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2713     return 1;
2714   return 0;
2715 #else
2716   abort ();
2717 #endif
2718 }
2719 
2720 
2721 /* This routine is used to write out ECOFF debugging external symbol
2722    information.  It is called via mips_elf_link_hash_traverse.  The
2723    ECOFF external symbol information must match the ELF external
2724    symbol information.  Unfortunately, at this point we don't know
2725    whether a symbol is required by reloc information, so the two
2726    tables may wind up being different.  We must sort out the external
2727    symbol information before we can set the final size of the .mdebug
2728    section, and we must set the size of the .mdebug section before we
2729    can relocate any sections, and we can't know which symbols are
2730    required by relocation until we relocate the sections.
2731    Fortunately, it is relatively unlikely that any symbol will be
2732    stripped but required by a reloc.  In particular, it can not happen
2733    when generating a final executable.  */
2734 
2735 static bfd_boolean
2736 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2737 {
2738   struct extsym_info *einfo = data;
2739   bfd_boolean strip;
2740   asection *sec, *output_section;
2741 
2742   if (h->root.indx == -2)
2743     strip = FALSE;
2744   else if ((h->root.def_dynamic
2745 	    || h->root.ref_dynamic
2746 	    || h->root.type == bfd_link_hash_new)
2747 	   && !h->root.def_regular
2748 	   && !h->root.ref_regular)
2749     strip = TRUE;
2750   else if (einfo->info->strip == strip_all
2751 	   || (einfo->info->strip == strip_some
2752 	       && bfd_hash_lookup (einfo->info->keep_hash,
2753 				   h->root.root.root.string,
2754 				   FALSE, FALSE) == NULL))
2755     strip = TRUE;
2756   else
2757     strip = FALSE;
2758 
2759   if (strip)
2760     return TRUE;
2761 
2762   if (h->esym.ifd == -2)
2763     {
2764       h->esym.jmptbl = 0;
2765       h->esym.cobol_main = 0;
2766       h->esym.weakext = 0;
2767       h->esym.reserved = 0;
2768       h->esym.ifd = ifdNil;
2769       h->esym.asym.value = 0;
2770       h->esym.asym.st = stGlobal;
2771 
2772       if (h->root.root.type == bfd_link_hash_undefined
2773 	  || h->root.root.type == bfd_link_hash_undefweak)
2774 	{
2775 	  const char *name;
2776 
2777 	  /* Use undefined class.  Also, set class and type for some
2778              special symbols.  */
2779 	  name = h->root.root.root.string;
2780 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2781 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2782 	    {
2783 	      h->esym.asym.sc = scData;
2784 	      h->esym.asym.st = stLabel;
2785 	      h->esym.asym.value = 0;
2786 	    }
2787 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2788 	    {
2789 	      h->esym.asym.sc = scAbs;
2790 	      h->esym.asym.st = stLabel;
2791 	      h->esym.asym.value =
2792 		mips_elf_hash_table (einfo->info)->procedure_count;
2793 	    }
2794 	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2795 	    {
2796 	      h->esym.asym.sc = scAbs;
2797 	      h->esym.asym.st = stLabel;
2798 	      h->esym.asym.value = elf_gp (einfo->abfd);
2799 	    }
2800 	  else
2801 	    h->esym.asym.sc = scUndefined;
2802 	}
2803       else if (h->root.root.type != bfd_link_hash_defined
2804 	  && h->root.root.type != bfd_link_hash_defweak)
2805 	h->esym.asym.sc = scAbs;
2806       else
2807 	{
2808 	  const char *name;
2809 
2810 	  sec = h->root.root.u.def.section;
2811 	  output_section = sec->output_section;
2812 
2813 	  /* When making a shared library and symbol h is the one from
2814 	     the another shared library, OUTPUT_SECTION may be null.  */
2815 	  if (output_section == NULL)
2816 	    h->esym.asym.sc = scUndefined;
2817 	  else
2818 	    {
2819 	      name = bfd_section_name (output_section->owner, output_section);
2820 
2821 	      if (strcmp (name, ".text") == 0)
2822 		h->esym.asym.sc = scText;
2823 	      else if (strcmp (name, ".data") == 0)
2824 		h->esym.asym.sc = scData;
2825 	      else if (strcmp (name, ".sdata") == 0)
2826 		h->esym.asym.sc = scSData;
2827 	      else if (strcmp (name, ".rodata") == 0
2828 		       || strcmp (name, ".rdata") == 0)
2829 		h->esym.asym.sc = scRData;
2830 	      else if (strcmp (name, ".bss") == 0)
2831 		h->esym.asym.sc = scBss;
2832 	      else if (strcmp (name, ".sbss") == 0)
2833 		h->esym.asym.sc = scSBss;
2834 	      else if (strcmp (name, ".init") == 0)
2835 		h->esym.asym.sc = scInit;
2836 	      else if (strcmp (name, ".fini") == 0)
2837 		h->esym.asym.sc = scFini;
2838 	      else
2839 		h->esym.asym.sc = scAbs;
2840 	    }
2841 	}
2842 
2843       h->esym.asym.reserved = 0;
2844       h->esym.asym.index = indexNil;
2845     }
2846 
2847   if (h->root.root.type == bfd_link_hash_common)
2848     h->esym.asym.value = h->root.root.u.c.size;
2849   else if (h->root.root.type == bfd_link_hash_defined
2850 	   || h->root.root.type == bfd_link_hash_defweak)
2851     {
2852       if (h->esym.asym.sc == scCommon)
2853 	h->esym.asym.sc = scBss;
2854       else if (h->esym.asym.sc == scSCommon)
2855 	h->esym.asym.sc = scSBss;
2856 
2857       sec = h->root.root.u.def.section;
2858       output_section = sec->output_section;
2859       if (output_section != NULL)
2860 	h->esym.asym.value = (h->root.root.u.def.value
2861 			      + sec->output_offset
2862 			      + output_section->vma);
2863       else
2864 	h->esym.asym.value = 0;
2865     }
2866   else
2867     {
2868       struct mips_elf_link_hash_entry *hd = h;
2869 
2870       while (hd->root.root.type == bfd_link_hash_indirect)
2871 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2872 
2873       if (hd->needs_lazy_stub)
2874 	{
2875 	  BFD_ASSERT (hd->root.plt.plist != NULL);
2876 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
2877 	  /* Set type and value for a symbol with a function stub.  */
2878 	  h->esym.asym.st = stProc;
2879 	  sec = hd->root.root.u.def.section;
2880 	  if (sec == NULL)
2881 	    h->esym.asym.value = 0;
2882 	  else
2883 	    {
2884 	      output_section = sec->output_section;
2885 	      if (output_section != NULL)
2886 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
2887 				      + sec->output_offset
2888 				      + output_section->vma);
2889 	      else
2890 		h->esym.asym.value = 0;
2891 	    }
2892 	}
2893     }
2894 
2895   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2896 				      h->root.root.root.string,
2897 				      &h->esym))
2898     {
2899       einfo->failed = TRUE;
2900       return FALSE;
2901     }
2902 
2903   return TRUE;
2904 }
2905 
2906 /* A comparison routine used to sort .gptab entries.  */
2907 
2908 static int
2909 gptab_compare (const void *p1, const void *p2)
2910 {
2911   const Elf32_gptab *a1 = p1;
2912   const Elf32_gptab *a2 = p2;
2913 
2914   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2915 }
2916 
2917 /* Functions to manage the got entry hash table.  */
2918 
2919 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2920    hash number.  */
2921 
2922 static INLINE hashval_t
2923 mips_elf_hash_bfd_vma (bfd_vma addr)
2924 {
2925 #ifdef BFD64
2926   return addr + (addr >> 32);
2927 #else
2928   return addr;
2929 #endif
2930 }
2931 
2932 static hashval_t
2933 mips_elf_got_entry_hash (const void *entry_)
2934 {
2935   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2936 
2937   return (entry->symndx
2938 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
2939 	  + (entry->tls_type == GOT_TLS_LDM ? 0
2940 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2941 	     : entry->symndx >= 0 ? (entry->abfd->id
2942 				     + mips_elf_hash_bfd_vma (entry->d.addend))
2943 	     : entry->d.h->root.root.root.hash));
2944 }
2945 
2946 static int
2947 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2948 {
2949   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2950   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2951 
2952   return (e1->symndx == e2->symndx
2953 	  && e1->tls_type == e2->tls_type
2954 	  && (e1->tls_type == GOT_TLS_LDM ? TRUE
2955 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
2956 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
2957 				   && e1->d.addend == e2->d.addend)
2958 	      : e2->abfd && e1->d.h == e2->d.h));
2959 }
2960 
2961 static hashval_t
2962 mips_got_page_ref_hash (const void *ref_)
2963 {
2964   const struct mips_got_page_ref *ref;
2965 
2966   ref = (const struct mips_got_page_ref *) ref_;
2967   return ((ref->symndx >= 0
2968 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
2969 	   : ref->u.h->root.root.root.hash)
2970 	  + mips_elf_hash_bfd_vma (ref->addend));
2971 }
2972 
2973 static int
2974 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
2975 {
2976   const struct mips_got_page_ref *ref1, *ref2;
2977 
2978   ref1 = (const struct mips_got_page_ref *) ref1_;
2979   ref2 = (const struct mips_got_page_ref *) ref2_;
2980   return (ref1->symndx == ref2->symndx
2981 	  && (ref1->symndx < 0
2982 	      ? ref1->u.h == ref2->u.h
2983 	      : ref1->u.abfd == ref2->u.abfd)
2984 	  && ref1->addend == ref2->addend);
2985 }
2986 
2987 static hashval_t
2988 mips_got_page_entry_hash (const void *entry_)
2989 {
2990   const struct mips_got_page_entry *entry;
2991 
2992   entry = (const struct mips_got_page_entry *) entry_;
2993   return entry->sec->id;
2994 }
2995 
2996 static int
2997 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2998 {
2999   const struct mips_got_page_entry *entry1, *entry2;
3000 
3001   entry1 = (const struct mips_got_page_entry *) entry1_;
3002   entry2 = (const struct mips_got_page_entry *) entry2_;
3003   return entry1->sec == entry2->sec;
3004 }
3005 
3006 /* Create and return a new mips_got_info structure.  */
3007 
3008 static struct mips_got_info *
3009 mips_elf_create_got_info (bfd *abfd)
3010 {
3011   struct mips_got_info *g;
3012 
3013   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3014   if (g == NULL)
3015     return NULL;
3016 
3017   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3018 				    mips_elf_got_entry_eq, NULL);
3019   if (g->got_entries == NULL)
3020     return NULL;
3021 
3022   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3023 				      mips_got_page_ref_eq, NULL);
3024   if (g->got_page_refs == NULL)
3025     return NULL;
3026 
3027   return g;
3028 }
3029 
3030 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3031    CREATE_P and if ABFD doesn't already have a GOT.  */
3032 
3033 static struct mips_got_info *
3034 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3035 {
3036   struct mips_elf_obj_tdata *tdata;
3037 
3038   if (!is_mips_elf (abfd))
3039     return NULL;
3040 
3041   tdata = mips_elf_tdata (abfd);
3042   if (!tdata->got && create_p)
3043     tdata->got = mips_elf_create_got_info (abfd);
3044   return tdata->got;
3045 }
3046 
3047 /* Record that ABFD should use output GOT G.  */
3048 
3049 static void
3050 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3051 {
3052   struct mips_elf_obj_tdata *tdata;
3053 
3054   BFD_ASSERT (is_mips_elf (abfd));
3055   tdata = mips_elf_tdata (abfd);
3056   if (tdata->got)
3057     {
3058       /* The GOT structure itself and the hash table entries are
3059 	 allocated to a bfd, but the hash tables aren't.  */
3060       htab_delete (tdata->got->got_entries);
3061       htab_delete (tdata->got->got_page_refs);
3062       if (tdata->got->got_page_entries)
3063 	htab_delete (tdata->got->got_page_entries);
3064     }
3065   tdata->got = g;
3066 }
3067 
3068 /* Return the dynamic relocation section.  If it doesn't exist, try to
3069    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3070    if creation fails.  */
3071 
3072 static asection *
3073 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3074 {
3075   const char *dname;
3076   asection *sreloc;
3077   bfd *dynobj;
3078 
3079   dname = MIPS_ELF_REL_DYN_NAME (info);
3080   dynobj = elf_hash_table (info)->dynobj;
3081   sreloc = bfd_get_linker_section (dynobj, dname);
3082   if (sreloc == NULL && create_p)
3083     {
3084       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3085 						   (SEC_ALLOC
3086 						    | SEC_LOAD
3087 						    | SEC_HAS_CONTENTS
3088 						    | SEC_IN_MEMORY
3089 						    | SEC_LINKER_CREATED
3090 						    | SEC_READONLY));
3091       if (sreloc == NULL
3092 	  || ! bfd_set_section_alignment (dynobj, sreloc,
3093 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3094 	return NULL;
3095     }
3096   return sreloc;
3097 }
3098 
3099 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3100 
3101 static int
3102 mips_elf_reloc_tls_type (unsigned int r_type)
3103 {
3104   if (tls_gd_reloc_p (r_type))
3105     return GOT_TLS_GD;
3106 
3107   if (tls_ldm_reloc_p (r_type))
3108     return GOT_TLS_LDM;
3109 
3110   if (tls_gottprel_reloc_p (r_type))
3111     return GOT_TLS_IE;
3112 
3113   return GOT_TLS_NONE;
3114 }
3115 
3116 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3117 
3118 static int
3119 mips_tls_got_entries (unsigned int type)
3120 {
3121   switch (type)
3122     {
3123     case GOT_TLS_GD:
3124     case GOT_TLS_LDM:
3125       return 2;
3126 
3127     case GOT_TLS_IE:
3128       return 1;
3129 
3130     case GOT_TLS_NONE:
3131       return 0;
3132     }
3133   abort ();
3134 }
3135 
3136 /* Count the number of relocations needed for a TLS GOT entry, with
3137    access types from TLS_TYPE, and symbol H (or a local symbol if H
3138    is NULL).  */
3139 
3140 static int
3141 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3142 		     struct elf_link_hash_entry *h)
3143 {
3144   int indx = 0;
3145   bfd_boolean need_relocs = FALSE;
3146   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3147 
3148   if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3149       && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
3150     indx = h->dynindx;
3151 
3152   if ((info->shared || indx != 0)
3153       && (h == NULL
3154 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3155 	  || h->root.type != bfd_link_hash_undefweak))
3156     need_relocs = TRUE;
3157 
3158   if (!need_relocs)
3159     return 0;
3160 
3161   switch (tls_type)
3162     {
3163     case GOT_TLS_GD:
3164       return indx != 0 ? 2 : 1;
3165 
3166     case GOT_TLS_IE:
3167       return 1;
3168 
3169     case GOT_TLS_LDM:
3170       return info->shared ? 1 : 0;
3171 
3172     default:
3173       return 0;
3174     }
3175 }
3176 
3177 /* Add the number of GOT entries and TLS relocations required by ENTRY
3178    to G.  */
3179 
3180 static void
3181 mips_elf_count_got_entry (struct bfd_link_info *info,
3182 			  struct mips_got_info *g,
3183 			  struct mips_got_entry *entry)
3184 {
3185   if (entry->tls_type)
3186     {
3187       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3188       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3189 					entry->symndx < 0
3190 					? &entry->d.h->root : NULL);
3191     }
3192   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3193     g->local_gotno += 1;
3194   else
3195     g->global_gotno += 1;
3196 }
3197 
3198 /* Output a simple dynamic relocation into SRELOC.  */
3199 
3200 static void
3201 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3202 				    asection *sreloc,
3203 				    unsigned long reloc_index,
3204 				    unsigned long indx,
3205 				    int r_type,
3206 				    bfd_vma offset)
3207 {
3208   Elf_Internal_Rela rel[3];
3209 
3210   memset (rel, 0, sizeof (rel));
3211 
3212   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3213   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3214 
3215   if (ABI_64_P (output_bfd))
3216     {
3217       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3218 	(output_bfd, &rel[0],
3219 	 (sreloc->contents
3220 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3221     }
3222   else
3223     bfd_elf32_swap_reloc_out
3224       (output_bfd, &rel[0],
3225        (sreloc->contents
3226 	+ reloc_index * sizeof (Elf32_External_Rel)));
3227 }
3228 
3229 /* Initialize a set of TLS GOT entries for one symbol.  */
3230 
3231 static void
3232 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3233 			       struct mips_got_entry *entry,
3234 			       struct mips_elf_link_hash_entry *h,
3235 			       bfd_vma value)
3236 {
3237   struct mips_elf_link_hash_table *htab;
3238   int indx;
3239   asection *sreloc, *sgot;
3240   bfd_vma got_offset, got_offset2;
3241   bfd_boolean need_relocs = FALSE;
3242 
3243   htab = mips_elf_hash_table (info);
3244   if (htab == NULL)
3245     return;
3246 
3247   sgot = htab->sgot;
3248 
3249   indx = 0;
3250   if (h != NULL)
3251     {
3252       bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3253 
3254       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
3255 	  && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3256 	indx = h->root.dynindx;
3257     }
3258 
3259   if (entry->tls_initialized)
3260     return;
3261 
3262   if ((info->shared || indx != 0)
3263       && (h == NULL
3264 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3265 	  || h->root.type != bfd_link_hash_undefweak))
3266     need_relocs = TRUE;
3267 
3268   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3269      be defined at all; assume that the value doesn't matter in that
3270      case.  Otherwise complain if we would use the value.  */
3271   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3272 	      || h->root.root.type == bfd_link_hash_undefweak);
3273 
3274   /* Emit necessary relocations.  */
3275   sreloc = mips_elf_rel_dyn_section (info, FALSE);
3276   got_offset = entry->gotidx;
3277 
3278   switch (entry->tls_type)
3279     {
3280     case GOT_TLS_GD:
3281       /* General Dynamic.  */
3282       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3283 
3284       if (need_relocs)
3285 	{
3286 	  mips_elf_output_dynamic_relocation
3287 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3288 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3289 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3290 
3291 	  if (indx)
3292 	    mips_elf_output_dynamic_relocation
3293 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3294 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3295 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3296 	  else
3297 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3298 			       sgot->contents + got_offset2);
3299 	}
3300       else
3301 	{
3302 	  MIPS_ELF_PUT_WORD (abfd, 1,
3303 			     sgot->contents + got_offset);
3304 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3305 			     sgot->contents + got_offset2);
3306 	}
3307       break;
3308 
3309     case GOT_TLS_IE:
3310       /* Initial Exec model.  */
3311       if (need_relocs)
3312 	{
3313 	  if (indx == 0)
3314 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3315 			       sgot->contents + got_offset);
3316 	  else
3317 	    MIPS_ELF_PUT_WORD (abfd, 0,
3318 			       sgot->contents + got_offset);
3319 
3320 	  mips_elf_output_dynamic_relocation
3321 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3322 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3323 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3324 	}
3325       else
3326 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3327 			   sgot->contents + got_offset);
3328       break;
3329 
3330     case GOT_TLS_LDM:
3331       /* The initial offset is zero, and the LD offsets will include the
3332 	 bias by DTP_OFFSET.  */
3333       MIPS_ELF_PUT_WORD (abfd, 0,
3334 			 sgot->contents + got_offset
3335 			 + MIPS_ELF_GOT_SIZE (abfd));
3336 
3337       if (!info->shared)
3338 	MIPS_ELF_PUT_WORD (abfd, 1,
3339 			   sgot->contents + got_offset);
3340       else
3341 	mips_elf_output_dynamic_relocation
3342 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3343 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3344 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3345       break;
3346 
3347     default:
3348       abort ();
3349     }
3350 
3351   entry->tls_initialized = TRUE;
3352 }
3353 
3354 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3355    for global symbol H.  .got.plt comes before the GOT, so the offset
3356    will be negative.  */
3357 
3358 static bfd_vma
3359 mips_elf_gotplt_index (struct bfd_link_info *info,
3360 		       struct elf_link_hash_entry *h)
3361 {
3362   bfd_vma got_address, got_value;
3363   struct mips_elf_link_hash_table *htab;
3364 
3365   htab = mips_elf_hash_table (info);
3366   BFD_ASSERT (htab != NULL);
3367 
3368   BFD_ASSERT (h->plt.plist != NULL);
3369   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3370 
3371   /* Calculate the address of the associated .got.plt entry.  */
3372   got_address = (htab->sgotplt->output_section->vma
3373 		 + htab->sgotplt->output_offset
3374 		 + (h->plt.plist->gotplt_index
3375 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3376 
3377   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3378   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3379 	       + htab->root.hgot->root.u.def.section->output_offset
3380 	       + htab->root.hgot->root.u.def.value);
3381 
3382   return got_address - got_value;
3383 }
3384 
3385 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3386    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3387    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3388    offset can be found.  */
3389 
3390 static bfd_vma
3391 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3392 			  bfd_vma value, unsigned long r_symndx,
3393 			  struct mips_elf_link_hash_entry *h, int r_type)
3394 {
3395   struct mips_elf_link_hash_table *htab;
3396   struct mips_got_entry *entry;
3397 
3398   htab = mips_elf_hash_table (info);
3399   BFD_ASSERT (htab != NULL);
3400 
3401   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3402 					   r_symndx, h, r_type);
3403   if (!entry)
3404     return MINUS_ONE;
3405 
3406   if (entry->tls_type)
3407     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3408   return entry->gotidx;
3409 }
3410 
3411 /* Return the GOT index of global symbol H in the primary GOT.  */
3412 
3413 static bfd_vma
3414 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3415 				   struct elf_link_hash_entry *h)
3416 {
3417   struct mips_elf_link_hash_table *htab;
3418   long global_got_dynindx;
3419   struct mips_got_info *g;
3420   bfd_vma got_index;
3421 
3422   htab = mips_elf_hash_table (info);
3423   BFD_ASSERT (htab != NULL);
3424 
3425   global_got_dynindx = 0;
3426   if (htab->global_gotsym != NULL)
3427     global_got_dynindx = htab->global_gotsym->dynindx;
3428 
3429   /* Once we determine the global GOT entry with the lowest dynamic
3430      symbol table index, we must put all dynamic symbols with greater
3431      indices into the primary GOT.  That makes it easy to calculate the
3432      GOT offset.  */
3433   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3434   g = mips_elf_bfd_got (obfd, FALSE);
3435   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3436 	       * MIPS_ELF_GOT_SIZE (obfd));
3437   BFD_ASSERT (got_index < htab->sgot->size);
3438 
3439   return got_index;
3440 }
3441 
3442 /* Return the GOT index for the global symbol indicated by H, which is
3443    referenced by a relocation of type R_TYPE in IBFD.  */
3444 
3445 static bfd_vma
3446 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3447 			   struct elf_link_hash_entry *h, int r_type)
3448 {
3449   struct mips_elf_link_hash_table *htab;
3450   struct mips_got_info *g;
3451   struct mips_got_entry lookup, *entry;
3452   bfd_vma gotidx;
3453 
3454   htab = mips_elf_hash_table (info);
3455   BFD_ASSERT (htab != NULL);
3456 
3457   g = mips_elf_bfd_got (ibfd, FALSE);
3458   BFD_ASSERT (g);
3459 
3460   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3461   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3462     return mips_elf_primary_global_got_index (obfd, info, h);
3463 
3464   lookup.abfd = ibfd;
3465   lookup.symndx = -1;
3466   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3467   entry = htab_find (g->got_entries, &lookup);
3468   BFD_ASSERT (entry);
3469 
3470   gotidx = entry->gotidx;
3471   BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3472 
3473   if (lookup.tls_type)
3474     {
3475       bfd_vma value = MINUS_ONE;
3476 
3477       if ((h->root.type == bfd_link_hash_defined
3478 	   || h->root.type == bfd_link_hash_defweak)
3479 	  && h->root.u.def.section->output_section)
3480 	value = (h->root.u.def.value
3481 		 + h->root.u.def.section->output_offset
3482 		 + h->root.u.def.section->output_section->vma);
3483 
3484       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3485     }
3486   return gotidx;
3487 }
3488 
3489 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3490    entries are supposed to be placed at small offsets in the GOT, i.e.,
3491    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3492    entry could be created.  If OFFSETP is nonnull, use it to return the
3493    offset of the GOT entry from VALUE.  */
3494 
3495 static bfd_vma
3496 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3497 		   bfd_vma value, bfd_vma *offsetp)
3498 {
3499   bfd_vma page, got_index;
3500   struct mips_got_entry *entry;
3501 
3502   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3503   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3504 					   NULL, R_MIPS_GOT_PAGE);
3505 
3506   if (!entry)
3507     return MINUS_ONE;
3508 
3509   got_index = entry->gotidx;
3510 
3511   if (offsetp)
3512     *offsetp = value - entry->d.address;
3513 
3514   return got_index;
3515 }
3516 
3517 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3518    EXTERNAL is true if the relocation was originally against a global
3519    symbol that binds locally.  */
3520 
3521 static bfd_vma
3522 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3523 		      bfd_vma value, bfd_boolean external)
3524 {
3525   struct mips_got_entry *entry;
3526 
3527   /* GOT16 relocations against local symbols are followed by a LO16
3528      relocation; those against global symbols are not.  Thus if the
3529      symbol was originally local, the GOT16 relocation should load the
3530      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3531   if (! external)
3532     value = mips_elf_high (value) << 16;
3533 
3534   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3535      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3536      same in all cases.  */
3537   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3538 					   NULL, R_MIPS_GOT16);
3539   if (entry)
3540     return entry->gotidx;
3541   else
3542     return MINUS_ONE;
3543 }
3544 
3545 /* Returns the offset for the entry at the INDEXth position
3546    in the GOT.  */
3547 
3548 static bfd_vma
3549 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3550 				bfd *input_bfd, bfd_vma got_index)
3551 {
3552   struct mips_elf_link_hash_table *htab;
3553   asection *sgot;
3554   bfd_vma gp;
3555 
3556   htab = mips_elf_hash_table (info);
3557   BFD_ASSERT (htab != NULL);
3558 
3559   sgot = htab->sgot;
3560   gp = _bfd_get_gp_value (output_bfd)
3561     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3562 
3563   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3564 }
3565 
3566 /* Create and return a local GOT entry for VALUE, which was calculated
3567    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3568    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3569    instead.  */
3570 
3571 static struct mips_got_entry *
3572 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3573 				 bfd *ibfd, bfd_vma value,
3574 				 unsigned long r_symndx,
3575 				 struct mips_elf_link_hash_entry *h,
3576 				 int r_type)
3577 {
3578   struct mips_got_entry lookup, *entry;
3579   void **loc;
3580   struct mips_got_info *g;
3581   struct mips_elf_link_hash_table *htab;
3582   bfd_vma gotidx;
3583 
3584   htab = mips_elf_hash_table (info);
3585   BFD_ASSERT (htab != NULL);
3586 
3587   g = mips_elf_bfd_got (ibfd, FALSE);
3588   if (g == NULL)
3589     {
3590       g = mips_elf_bfd_got (abfd, FALSE);
3591       BFD_ASSERT (g != NULL);
3592     }
3593 
3594   /* This function shouldn't be called for symbols that live in the global
3595      area of the GOT.  */
3596   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3597 
3598   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3599   if (lookup.tls_type)
3600     {
3601       lookup.abfd = ibfd;
3602       if (tls_ldm_reloc_p (r_type))
3603 	{
3604 	  lookup.symndx = 0;
3605 	  lookup.d.addend = 0;
3606 	}
3607       else if (h == NULL)
3608 	{
3609 	  lookup.symndx = r_symndx;
3610 	  lookup.d.addend = 0;
3611 	}
3612       else
3613 	{
3614 	  lookup.symndx = -1;
3615 	  lookup.d.h = h;
3616 	}
3617 
3618       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3619       BFD_ASSERT (entry);
3620 
3621       gotidx = entry->gotidx;
3622       BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size);
3623 
3624       return entry;
3625     }
3626 
3627   lookup.abfd = NULL;
3628   lookup.symndx = -1;
3629   lookup.d.address = value;
3630   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3631   if (!loc)
3632     return NULL;
3633 
3634   entry = (struct mips_got_entry *) *loc;
3635   if (entry)
3636     return entry;
3637 
3638   if (g->assigned_gotno >= g->local_gotno)
3639     {
3640       /* We didn't allocate enough space in the GOT.  */
3641       (*_bfd_error_handler)
3642 	(_("not enough GOT space for local GOT entries"));
3643       bfd_set_error (bfd_error_bad_value);
3644       return NULL;
3645     }
3646 
3647   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3648   if (!entry)
3649     return NULL;
3650 
3651   lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3652   *entry = lookup;
3653   *loc = entry;
3654 
3655   MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx);
3656 
3657   /* These GOT entries need a dynamic relocation on VxWorks.  */
3658   if (htab->is_vxworks)
3659     {
3660       Elf_Internal_Rela outrel;
3661       asection *s;
3662       bfd_byte *rloc;
3663       bfd_vma got_address;
3664 
3665       s = mips_elf_rel_dyn_section (info, FALSE);
3666       got_address = (htab->sgot->output_section->vma
3667 		     + htab->sgot->output_offset
3668 		     + entry->gotidx);
3669 
3670       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3671       outrel.r_offset = got_address;
3672       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3673       outrel.r_addend = value;
3674       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3675     }
3676 
3677   return entry;
3678 }
3679 
3680 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3681    The number might be exact or a worst-case estimate, depending on how
3682    much information is available to elf_backend_omit_section_dynsym at
3683    the current linking stage.  */
3684 
3685 static bfd_size_type
3686 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3687 {
3688   bfd_size_type count;
3689 
3690   count = 0;
3691   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3692     {
3693       asection *p;
3694       const struct elf_backend_data *bed;
3695 
3696       bed = get_elf_backend_data (output_bfd);
3697       for (p = output_bfd->sections; p ; p = p->next)
3698 	if ((p->flags & SEC_EXCLUDE) == 0
3699 	    && (p->flags & SEC_ALLOC) != 0
3700 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3701 	  ++count;
3702     }
3703   return count;
3704 }
3705 
3706 /* Sort the dynamic symbol table so that symbols that need GOT entries
3707    appear towards the end.  */
3708 
3709 static bfd_boolean
3710 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3711 {
3712   struct mips_elf_link_hash_table *htab;
3713   struct mips_elf_hash_sort_data hsd;
3714   struct mips_got_info *g;
3715 
3716   if (elf_hash_table (info)->dynsymcount == 0)
3717     return TRUE;
3718 
3719   htab = mips_elf_hash_table (info);
3720   BFD_ASSERT (htab != NULL);
3721 
3722   g = htab->got_info;
3723   if (g == NULL)
3724     return TRUE;
3725 
3726   hsd.low = NULL;
3727   hsd.max_unref_got_dynindx
3728     = hsd.min_got_dynindx
3729     = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3730   hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3731   mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3732 				elf_hash_table (info)),
3733 			       mips_elf_sort_hash_table_f,
3734 			       &hsd);
3735 
3736   /* There should have been enough room in the symbol table to
3737      accommodate both the GOT and non-GOT symbols.  */
3738   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3739   BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3740 	      == elf_hash_table (info)->dynsymcount);
3741   BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3742 	      == g->global_gotno);
3743 
3744   /* Now we know which dynamic symbol has the lowest dynamic symbol
3745      table index in the GOT.  */
3746   htab->global_gotsym = hsd.low;
3747 
3748   return TRUE;
3749 }
3750 
3751 /* If H needs a GOT entry, assign it the highest available dynamic
3752    index.  Otherwise, assign it the lowest available dynamic
3753    index.  */
3754 
3755 static bfd_boolean
3756 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3757 {
3758   struct mips_elf_hash_sort_data *hsd = data;
3759 
3760   /* Symbols without dynamic symbol table entries aren't interesting
3761      at all.  */
3762   if (h->root.dynindx == -1)
3763     return TRUE;
3764 
3765   switch (h->global_got_area)
3766     {
3767     case GGA_NONE:
3768       h->root.dynindx = hsd->max_non_got_dynindx++;
3769       break;
3770 
3771     case GGA_NORMAL:
3772       h->root.dynindx = --hsd->min_got_dynindx;
3773       hsd->low = (struct elf_link_hash_entry *) h;
3774       break;
3775 
3776     case GGA_RELOC_ONLY:
3777       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3778 	hsd->low = (struct elf_link_hash_entry *) h;
3779       h->root.dynindx = hsd->max_unref_got_dynindx++;
3780       break;
3781     }
3782 
3783   return TRUE;
3784 }
3785 
3786 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3787    (which is owned by the caller and shouldn't be added to the
3788    hash table directly).  */
3789 
3790 static bfd_boolean
3791 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3792 			   struct mips_got_entry *lookup)
3793 {
3794   struct mips_elf_link_hash_table *htab;
3795   struct mips_got_entry *entry;
3796   struct mips_got_info *g;
3797   void **loc, **bfd_loc;
3798 
3799   /* Make sure there's a slot for this entry in the master GOT.  */
3800   htab = mips_elf_hash_table (info);
3801   g = htab->got_info;
3802   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3803   if (!loc)
3804     return FALSE;
3805 
3806   /* Populate the entry if it isn't already.  */
3807   entry = (struct mips_got_entry *) *loc;
3808   if (!entry)
3809     {
3810       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3811       if (!entry)
3812 	return FALSE;
3813 
3814       lookup->tls_initialized = FALSE;
3815       lookup->gotidx = -1;
3816       *entry = *lookup;
3817       *loc = entry;
3818     }
3819 
3820   /* Reuse the same GOT entry for the BFD's GOT.  */
3821   g = mips_elf_bfd_got (abfd, TRUE);
3822   if (!g)
3823     return FALSE;
3824 
3825   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
3826   if (!bfd_loc)
3827     return FALSE;
3828 
3829   if (!*bfd_loc)
3830     *bfd_loc = entry;
3831   return TRUE;
3832 }
3833 
3834 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
3835    entry for it.  FOR_CALL is true if the caller is only interested in
3836    using the GOT entry for calls.  */
3837 
3838 static bfd_boolean
3839 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3840 				   bfd *abfd, struct bfd_link_info *info,
3841 				   bfd_boolean for_call, int r_type)
3842 {
3843   struct mips_elf_link_hash_table *htab;
3844   struct mips_elf_link_hash_entry *hmips;
3845   struct mips_got_entry entry;
3846   unsigned char tls_type;
3847 
3848   htab = mips_elf_hash_table (info);
3849   BFD_ASSERT (htab != NULL);
3850 
3851   hmips = (struct mips_elf_link_hash_entry *) h;
3852   if (!for_call)
3853     hmips->got_only_for_calls = FALSE;
3854 
3855   /* A global symbol in the GOT must also be in the dynamic symbol
3856      table.  */
3857   if (h->dynindx == -1)
3858     {
3859       switch (ELF_ST_VISIBILITY (h->other))
3860 	{
3861 	case STV_INTERNAL:
3862 	case STV_HIDDEN:
3863 	  _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3864 	  break;
3865 	}
3866       if (!bfd_elf_link_record_dynamic_symbol (info, h))
3867 	return FALSE;
3868     }
3869 
3870   tls_type = mips_elf_reloc_tls_type (r_type);
3871   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
3872     hmips->global_got_area = GGA_NORMAL;
3873 
3874   entry.abfd = abfd;
3875   entry.symndx = -1;
3876   entry.d.h = (struct mips_elf_link_hash_entry *) h;
3877   entry.tls_type = tls_type;
3878   return mips_elf_record_got_entry (info, abfd, &entry);
3879 }
3880 
3881 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
3882    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
3883 
3884 static bfd_boolean
3885 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3886 				  struct bfd_link_info *info, int r_type)
3887 {
3888   struct mips_elf_link_hash_table *htab;
3889   struct mips_got_info *g;
3890   struct mips_got_entry entry;
3891 
3892   htab = mips_elf_hash_table (info);
3893   BFD_ASSERT (htab != NULL);
3894 
3895   g = htab->got_info;
3896   BFD_ASSERT (g != NULL);
3897 
3898   entry.abfd = abfd;
3899   entry.symndx = symndx;
3900   entry.d.addend = addend;
3901   entry.tls_type = mips_elf_reloc_tls_type (r_type);
3902   return mips_elf_record_got_entry (info, abfd, &entry);
3903 }
3904 
3905 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
3906    H is the symbol's hash table entry, or null if SYMNDX is local
3907    to ABFD.  */
3908 
3909 static bfd_boolean
3910 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
3911 			      long symndx, struct elf_link_hash_entry *h,
3912 			      bfd_signed_vma addend)
3913 {
3914   struct mips_elf_link_hash_table *htab;
3915   struct mips_got_info *g1, *g2;
3916   struct mips_got_page_ref lookup, *entry;
3917   void **loc, **bfd_loc;
3918 
3919   htab = mips_elf_hash_table (info);
3920   BFD_ASSERT (htab != NULL);
3921 
3922   g1 = htab->got_info;
3923   BFD_ASSERT (g1 != NULL);
3924 
3925   if (h)
3926     {
3927       lookup.symndx = -1;
3928       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
3929     }
3930   else
3931     {
3932       lookup.symndx = symndx;
3933       lookup.u.abfd = abfd;
3934     }
3935   lookup.addend = addend;
3936   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
3937   if (loc == NULL)
3938     return FALSE;
3939 
3940   entry = (struct mips_got_page_ref *) *loc;
3941   if (!entry)
3942     {
3943       entry = bfd_alloc (abfd, sizeof (*entry));
3944       if (!entry)
3945 	return FALSE;
3946 
3947       *entry = lookup;
3948       *loc = entry;
3949     }
3950 
3951   /* Add the same entry to the BFD's GOT.  */
3952   g2 = mips_elf_bfd_got (abfd, TRUE);
3953   if (!g2)
3954     return FALSE;
3955 
3956   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
3957   if (!bfd_loc)
3958     return FALSE;
3959 
3960   if (!*bfd_loc)
3961     *bfd_loc = entry;
3962 
3963   return TRUE;
3964 }
3965 
3966 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
3967 
3968 static void
3969 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3970 				       unsigned int n)
3971 {
3972   asection *s;
3973   struct mips_elf_link_hash_table *htab;
3974 
3975   htab = mips_elf_hash_table (info);
3976   BFD_ASSERT (htab != NULL);
3977 
3978   s = mips_elf_rel_dyn_section (info, FALSE);
3979   BFD_ASSERT (s != NULL);
3980 
3981   if (htab->is_vxworks)
3982     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3983   else
3984     {
3985       if (s->size == 0)
3986 	{
3987 	  /* Make room for a null element.  */
3988 	  s->size += MIPS_ELF_REL_SIZE (abfd);
3989 	  ++s->reloc_count;
3990 	}
3991       s->size += n * MIPS_ELF_REL_SIZE (abfd);
3992     }
3993 }
3994 
3995 /* A htab_traverse callback for GOT entries, with DATA pointing to a
3996    mips_elf_traverse_got_arg structure.  Count the number of GOT
3997    entries and TLS relocs.  Set DATA->value to true if we need
3998    to resolve indirect or warning symbols and then recreate the GOT.  */
3999 
4000 static int
4001 mips_elf_check_recreate_got (void **entryp, void *data)
4002 {
4003   struct mips_got_entry *entry;
4004   struct mips_elf_traverse_got_arg *arg;
4005 
4006   entry = (struct mips_got_entry *) *entryp;
4007   arg = (struct mips_elf_traverse_got_arg *) data;
4008   if (entry->abfd != NULL && entry->symndx == -1)
4009     {
4010       struct mips_elf_link_hash_entry *h;
4011 
4012       h = entry->d.h;
4013       if (h->root.root.type == bfd_link_hash_indirect
4014 	  || h->root.root.type == bfd_link_hash_warning)
4015 	{
4016 	  arg->value = TRUE;
4017 	  return 0;
4018 	}
4019     }
4020   mips_elf_count_got_entry (arg->info, arg->g, entry);
4021   return 1;
4022 }
4023 
4024 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4025    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4026    converting entries for indirect and warning symbols into entries
4027    for the target symbol.  Set DATA->g to null on error.  */
4028 
4029 static int
4030 mips_elf_recreate_got (void **entryp, void *data)
4031 {
4032   struct mips_got_entry new_entry, *entry;
4033   struct mips_elf_traverse_got_arg *arg;
4034   void **slot;
4035 
4036   entry = (struct mips_got_entry *) *entryp;
4037   arg = (struct mips_elf_traverse_got_arg *) data;
4038   if (entry->abfd != NULL
4039       && entry->symndx == -1
4040       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4041 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4042     {
4043       struct mips_elf_link_hash_entry *h;
4044 
4045       new_entry = *entry;
4046       entry = &new_entry;
4047       h = entry->d.h;
4048       do
4049 	{
4050 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4051 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4052 	}
4053       while (h->root.root.type == bfd_link_hash_indirect
4054 	     || h->root.root.type == bfd_link_hash_warning);
4055       entry->d.h = h;
4056     }
4057   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4058   if (slot == NULL)
4059     {
4060       arg->g = NULL;
4061       return 0;
4062     }
4063   if (*slot == NULL)
4064     {
4065       if (entry == &new_entry)
4066 	{
4067 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4068 	  if (!entry)
4069 	    {
4070 	      arg->g = NULL;
4071 	      return 0;
4072 	    }
4073 	  *entry = new_entry;
4074 	}
4075       *slot = entry;
4076       mips_elf_count_got_entry (arg->info, arg->g, entry);
4077     }
4078   return 1;
4079 }
4080 
4081 /* Return the maximum number of GOT page entries required for RANGE.  */
4082 
4083 static bfd_vma
4084 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4085 {
4086   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4087 }
4088 
4089 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4090 
4091 static bfd_boolean
4092 mips_elf_record_got_page_entry (struct mips_got_info *g,
4093 				asection *sec, bfd_signed_vma addend)
4094 {
4095   struct mips_got_page_entry lookup, *entry;
4096   struct mips_got_page_range **range_ptr, *range;
4097   bfd_vma old_pages, new_pages;
4098   void **loc;
4099 
4100   /* Find the mips_got_page_entry hash table entry for this section.  */
4101   lookup.sec = sec;
4102   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4103   if (loc == NULL)
4104     return FALSE;
4105 
4106   /* Create a mips_got_page_entry if this is the first time we've
4107      seen the section.  */
4108   entry = (struct mips_got_page_entry *) *loc;
4109   if (!entry)
4110     {
4111       entry = bfd_zalloc (sec->owner, sizeof (*entry));
4112       if (!entry)
4113 	return FALSE;
4114 
4115       entry->sec = sec;
4116       *loc = entry;
4117     }
4118 
4119   /* Skip over ranges whose maximum extent cannot share a page entry
4120      with ADDEND.  */
4121   range_ptr = &entry->ranges;
4122   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4123     range_ptr = &(*range_ptr)->next;
4124 
4125   /* If we scanned to the end of the list, or found a range whose
4126      minimum extent cannot share a page entry with ADDEND, create
4127      a new singleton range.  */
4128   range = *range_ptr;
4129   if (!range || addend < range->min_addend - 0xffff)
4130     {
4131       range = bfd_zalloc (sec->owner, sizeof (*range));
4132       if (!range)
4133 	return FALSE;
4134 
4135       range->next = *range_ptr;
4136       range->min_addend = addend;
4137       range->max_addend = addend;
4138 
4139       *range_ptr = range;
4140       entry->num_pages++;
4141       g->page_gotno++;
4142       return TRUE;
4143     }
4144 
4145   /* Remember how many pages the old range contributed.  */
4146   old_pages = mips_elf_pages_for_range (range);
4147 
4148   /* Update the ranges.  */
4149   if (addend < range->min_addend)
4150     range->min_addend = addend;
4151   else if (addend > range->max_addend)
4152     {
4153       if (range->next && addend >= range->next->min_addend - 0xffff)
4154 	{
4155 	  old_pages += mips_elf_pages_for_range (range->next);
4156 	  range->max_addend = range->next->max_addend;
4157 	  range->next = range->next->next;
4158 	}
4159       else
4160 	range->max_addend = addend;
4161     }
4162 
4163   /* Record any change in the total estimate.  */
4164   new_pages = mips_elf_pages_for_range (range);
4165   if (old_pages != new_pages)
4166     {
4167       entry->num_pages += new_pages - old_pages;
4168       g->page_gotno += new_pages - old_pages;
4169     }
4170 
4171   return TRUE;
4172 }
4173 
4174 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4175    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4176    whether the page reference described by *REFP needs a GOT page entry,
4177    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4178 
4179 static bfd_boolean
4180 mips_elf_resolve_got_page_ref (void **refp, void *data)
4181 {
4182   struct mips_got_page_ref *ref;
4183   struct mips_elf_traverse_got_arg *arg;
4184   struct mips_elf_link_hash_table *htab;
4185   asection *sec;
4186   bfd_vma addend;
4187 
4188   ref = (struct mips_got_page_ref *) *refp;
4189   arg = (struct mips_elf_traverse_got_arg *) data;
4190   htab = mips_elf_hash_table (arg->info);
4191 
4192   if (ref->symndx < 0)
4193     {
4194       struct mips_elf_link_hash_entry *h;
4195 
4196       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4197       h = ref->u.h;
4198       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4199 	return 1;
4200 
4201       /* Ignore undefined symbols; we'll issue an error later if
4202 	 appropriate.  */
4203       if (!((h->root.root.type == bfd_link_hash_defined
4204 	     || h->root.root.type == bfd_link_hash_defweak)
4205 	    && h->root.root.u.def.section))
4206 	return 1;
4207 
4208       sec = h->root.root.u.def.section;
4209       addend = h->root.root.u.def.value + ref->addend;
4210     }
4211   else
4212     {
4213       Elf_Internal_Sym *isym;
4214 
4215       /* Read in the symbol.  */
4216       isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4217 				    ref->symndx);
4218       if (isym == NULL)
4219 	{
4220 	  arg->g = NULL;
4221 	  return 0;
4222 	}
4223 
4224       /* Get the associated input section.  */
4225       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4226       if (sec == NULL)
4227 	{
4228 	  arg->g = NULL;
4229 	  return 0;
4230 	}
4231 
4232       /* If this is a mergable section, work out the section and offset
4233 	 of the merged data.  For section symbols, the addend specifies
4234 	 of the offset _of_ the first byte in the data, otherwise it
4235 	 specifies the offset _from_ the first byte.  */
4236       if (sec->flags & SEC_MERGE)
4237 	{
4238 	  void *secinfo;
4239 
4240 	  secinfo = elf_section_data (sec)->sec_info;
4241 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4242 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4243 						 isym->st_value + ref->addend);
4244 	  else
4245 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4246 						 isym->st_value) + ref->addend;
4247 	}
4248       else
4249 	addend = isym->st_value + ref->addend;
4250     }
4251   if (!mips_elf_record_got_page_entry (arg->g, sec, addend))
4252     {
4253       arg->g = NULL;
4254       return 0;
4255     }
4256   return 1;
4257 }
4258 
4259 /* If any entries in G->got_entries are for indirect or warning symbols,
4260    replace them with entries for the target symbol.  Convert g->got_page_refs
4261    into got_page_entry structures and estimate the number of page entries
4262    that they require.  */
4263 
4264 static bfd_boolean
4265 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4266 				    struct mips_got_info *g)
4267 {
4268   struct mips_elf_traverse_got_arg tga;
4269   struct mips_got_info oldg;
4270 
4271   oldg = *g;
4272 
4273   tga.info = info;
4274   tga.g = g;
4275   tga.value = FALSE;
4276   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4277   if (tga.value)
4278     {
4279       *g = oldg;
4280       g->got_entries = htab_create (htab_size (oldg.got_entries),
4281 				    mips_elf_got_entry_hash,
4282 				    mips_elf_got_entry_eq, NULL);
4283       if (!g->got_entries)
4284 	return FALSE;
4285 
4286       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4287       if (!tga.g)
4288 	return FALSE;
4289 
4290       htab_delete (oldg.got_entries);
4291     }
4292 
4293   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4294 					 mips_got_page_entry_eq, NULL);
4295   if (g->got_page_entries == NULL)
4296     return FALSE;
4297 
4298   tga.info = info;
4299   tga.g = g;
4300   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4301 
4302   return TRUE;
4303 }
4304 
4305 /* Return true if a GOT entry for H should live in the local rather than
4306    global GOT area.  */
4307 
4308 static bfd_boolean
4309 mips_use_local_got_p (struct bfd_link_info *info,
4310 		      struct mips_elf_link_hash_entry *h)
4311 {
4312   /* Symbols that aren't in the dynamic symbol table must live in the
4313      local GOT.  This includes symbols that are completely undefined
4314      and which therefore don't bind locally.  We'll report undefined
4315      symbols later if appropriate.  */
4316   if (h->root.dynindx == -1)
4317     return TRUE;
4318 
4319   /* Symbols that bind locally can (and in the case of forced-local
4320      symbols, must) live in the local GOT.  */
4321   if (h->got_only_for_calls
4322       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4323       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4324     return TRUE;
4325 
4326   /* If this is an executable that must provide a definition of the symbol,
4327      either though PLTs or copy relocations, then that address should go in
4328      the local rather than global GOT.  */
4329   if (info->executable && h->has_static_relocs)
4330     return TRUE;
4331 
4332   return FALSE;
4333 }
4334 
4335 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4336    link_info structure.  Decide whether the hash entry needs an entry in
4337    the global part of the primary GOT, setting global_got_area accordingly.
4338    Count the number of global symbols that are in the primary GOT only
4339    because they have relocations against them (reloc_only_gotno).  */
4340 
4341 static int
4342 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4343 {
4344   struct bfd_link_info *info;
4345   struct mips_elf_link_hash_table *htab;
4346   struct mips_got_info *g;
4347 
4348   info = (struct bfd_link_info *) data;
4349   htab = mips_elf_hash_table (info);
4350   g = htab->got_info;
4351   if (h->global_got_area != GGA_NONE)
4352     {
4353       /* Make a final decision about whether the symbol belongs in the
4354 	 local or global GOT.  */
4355       if (mips_use_local_got_p (info, h))
4356 	/* The symbol belongs in the local GOT.  We no longer need this
4357 	   entry if it was only used for relocations; those relocations
4358 	   will be against the null or section symbol instead of H.  */
4359 	h->global_got_area = GGA_NONE;
4360       else if (htab->is_vxworks
4361 	       && h->got_only_for_calls
4362 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4363 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4364 	   they don't need entries in the regular GOT.  .got.plt entries
4365 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4366 	h->global_got_area = GGA_NONE;
4367       else if (h->global_got_area == GGA_RELOC_ONLY)
4368 	{
4369 	  g->reloc_only_gotno++;
4370 	  g->global_gotno++;
4371 	}
4372     }
4373   return 1;
4374 }
4375 
4376 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4377    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4378 
4379 static int
4380 mips_elf_add_got_entry (void **entryp, void *data)
4381 {
4382   struct mips_got_entry *entry;
4383   struct mips_elf_traverse_got_arg *arg;
4384   void **slot;
4385 
4386   entry = (struct mips_got_entry *) *entryp;
4387   arg = (struct mips_elf_traverse_got_arg *) data;
4388   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4389   if (!slot)
4390     {
4391       arg->g = NULL;
4392       return 0;
4393     }
4394   if (!*slot)
4395     {
4396       *slot = entry;
4397       mips_elf_count_got_entry (arg->info, arg->g, entry);
4398     }
4399   return 1;
4400 }
4401 
4402 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4403    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4404 
4405 static int
4406 mips_elf_add_got_page_entry (void **entryp, void *data)
4407 {
4408   struct mips_got_page_entry *entry;
4409   struct mips_elf_traverse_got_arg *arg;
4410   void **slot;
4411 
4412   entry = (struct mips_got_page_entry *) *entryp;
4413   arg = (struct mips_elf_traverse_got_arg *) data;
4414   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4415   if (!slot)
4416     {
4417       arg->g = NULL;
4418       return 0;
4419     }
4420   if (!*slot)
4421     {
4422       *slot = entry;
4423       arg->g->page_gotno += entry->num_pages;
4424     }
4425   return 1;
4426 }
4427 
4428 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4429    this would lead to overflow, 1 if they were merged successfully,
4430    and 0 if a merge failed due to lack of memory.  (These values are chosen
4431    so that nonnegative return values can be returned by a htab_traverse
4432    callback.)  */
4433 
4434 static int
4435 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4436 			 struct mips_got_info *to,
4437 			 struct mips_elf_got_per_bfd_arg *arg)
4438 {
4439   struct mips_elf_traverse_got_arg tga;
4440   unsigned int estimate;
4441 
4442   /* Work out how many page entries we would need for the combined GOT.  */
4443   estimate = arg->max_pages;
4444   if (estimate >= from->page_gotno + to->page_gotno)
4445     estimate = from->page_gotno + to->page_gotno;
4446 
4447   /* And conservatively estimate how many local and TLS entries
4448      would be needed.  */
4449   estimate += from->local_gotno + to->local_gotno;
4450   estimate += from->tls_gotno + to->tls_gotno;
4451 
4452   /* If we're merging with the primary got, any TLS relocations will
4453      come after the full set of global entries.  Otherwise estimate those
4454      conservatively as well.  */
4455   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4456     estimate += arg->global_count;
4457   else
4458     estimate += from->global_gotno + to->global_gotno;
4459 
4460   /* Bail out if the combined GOT might be too big.  */
4461   if (estimate > arg->max_count)
4462     return -1;
4463 
4464   /* Transfer the bfd's got information from FROM to TO.  */
4465   tga.info = arg->info;
4466   tga.g = to;
4467   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4468   if (!tga.g)
4469     return 0;
4470 
4471   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4472   if (!tga.g)
4473     return 0;
4474 
4475   mips_elf_replace_bfd_got (abfd, to);
4476   return 1;
4477 }
4478 
4479 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4480    as possible of the primary got, since it doesn't require explicit
4481    dynamic relocations, but don't use bfds that would reference global
4482    symbols out of the addressable range.  Failing the primary got,
4483    attempt to merge with the current got, or finish the current got
4484    and then make make the new got current.  */
4485 
4486 static bfd_boolean
4487 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4488 		    struct mips_elf_got_per_bfd_arg *arg)
4489 {
4490   unsigned int estimate;
4491   int result;
4492 
4493   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4494     return FALSE;
4495 
4496   /* Work out the number of page, local and TLS entries.  */
4497   estimate = arg->max_pages;
4498   if (estimate > g->page_gotno)
4499     estimate = g->page_gotno;
4500   estimate += g->local_gotno + g->tls_gotno;
4501 
4502   /* We place TLS GOT entries after both locals and globals.  The globals
4503      for the primary GOT may overflow the normal GOT size limit, so be
4504      sure not to merge a GOT which requires TLS with the primary GOT in that
4505      case.  This doesn't affect non-primary GOTs.  */
4506   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4507 
4508   if (estimate <= arg->max_count)
4509     {
4510       /* If we don't have a primary GOT, use it as
4511 	 a starting point for the primary GOT.  */
4512       if (!arg->primary)
4513 	{
4514 	  arg->primary = g;
4515 	  return TRUE;
4516 	}
4517 
4518       /* Try merging with the primary GOT.  */
4519       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4520       if (result >= 0)
4521 	return result;
4522     }
4523 
4524   /* If we can merge with the last-created got, do it.  */
4525   if (arg->current)
4526     {
4527       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4528       if (result >= 0)
4529 	return result;
4530     }
4531 
4532   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4533      fits; if it turns out that it doesn't, we'll get relocation
4534      overflows anyway.  */
4535   g->next = arg->current;
4536   arg->current = g;
4537 
4538   return TRUE;
4539 }
4540 
4541 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4542    to GOTIDX, duplicating the entry if it has already been assigned
4543    an index in a different GOT.  */
4544 
4545 static bfd_boolean
4546 mips_elf_set_gotidx (void **entryp, long gotidx)
4547 {
4548   struct mips_got_entry *entry;
4549 
4550   entry = (struct mips_got_entry *) *entryp;
4551   if (entry->gotidx > 0)
4552     {
4553       struct mips_got_entry *new_entry;
4554 
4555       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4556       if (!new_entry)
4557 	return FALSE;
4558 
4559       *new_entry = *entry;
4560       *entryp = new_entry;
4561       entry = new_entry;
4562     }
4563   entry->gotidx = gotidx;
4564   return TRUE;
4565 }
4566 
4567 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4568    mips_elf_traverse_got_arg in which DATA->value is the size of one
4569    GOT entry.  Set DATA->g to null on failure.  */
4570 
4571 static int
4572 mips_elf_initialize_tls_index (void **entryp, void *data)
4573 {
4574   struct mips_got_entry *entry;
4575   struct mips_elf_traverse_got_arg *arg;
4576 
4577   /* We're only interested in TLS symbols.  */
4578   entry = (struct mips_got_entry *) *entryp;
4579   if (entry->tls_type == GOT_TLS_NONE)
4580     return 1;
4581 
4582   arg = (struct mips_elf_traverse_got_arg *) data;
4583   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4584     {
4585       arg->g = NULL;
4586       return 0;
4587     }
4588 
4589   /* Account for the entries we've just allocated.  */
4590   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4591   return 1;
4592 }
4593 
4594 /* A htab_traverse callback for GOT entries, where DATA points to a
4595    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4596    symbol to DATA->value.  */
4597 
4598 static int
4599 mips_elf_set_global_got_area (void **entryp, void *data)
4600 {
4601   struct mips_got_entry *entry;
4602   struct mips_elf_traverse_got_arg *arg;
4603 
4604   entry = (struct mips_got_entry *) *entryp;
4605   arg = (struct mips_elf_traverse_got_arg *) data;
4606   if (entry->abfd != NULL
4607       && entry->symndx == -1
4608       && entry->d.h->global_got_area != GGA_NONE)
4609     entry->d.h->global_got_area = arg->value;
4610   return 1;
4611 }
4612 
4613 /* A htab_traverse callback for secondary GOT entries, where DATA points
4614    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4615    and record the number of relocations they require.  DATA->value is
4616    the size of one GOT entry.  Set DATA->g to null on failure.  */
4617 
4618 static int
4619 mips_elf_set_global_gotidx (void **entryp, void *data)
4620 {
4621   struct mips_got_entry *entry;
4622   struct mips_elf_traverse_got_arg *arg;
4623 
4624   entry = (struct mips_got_entry *) *entryp;
4625   arg = (struct mips_elf_traverse_got_arg *) data;
4626   if (entry->abfd != NULL
4627       && entry->symndx == -1
4628       && entry->d.h->global_got_area != GGA_NONE)
4629     {
4630       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_gotno))
4631 	{
4632 	  arg->g = NULL;
4633 	  return 0;
4634 	}
4635       arg->g->assigned_gotno += 1;
4636 
4637       if (arg->info->shared
4638 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4639 	      && entry->d.h->root.def_dynamic
4640 	      && !entry->d.h->root.def_regular))
4641 	arg->g->relocs += 1;
4642     }
4643 
4644   return 1;
4645 }
4646 
4647 /* A htab_traverse callback for GOT entries for which DATA is the
4648    bfd_link_info.  Forbid any global symbols from having traditional
4649    lazy-binding stubs.  */
4650 
4651 static int
4652 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4653 {
4654   struct bfd_link_info *info;
4655   struct mips_elf_link_hash_table *htab;
4656   struct mips_got_entry *entry;
4657 
4658   entry = (struct mips_got_entry *) *entryp;
4659   info = (struct bfd_link_info *) data;
4660   htab = mips_elf_hash_table (info);
4661   BFD_ASSERT (htab != NULL);
4662 
4663   if (entry->abfd != NULL
4664       && entry->symndx == -1
4665       && entry->d.h->needs_lazy_stub)
4666     {
4667       entry->d.h->needs_lazy_stub = FALSE;
4668       htab->lazy_stub_count--;
4669     }
4670 
4671   return 1;
4672 }
4673 
4674 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4675    the primary GOT.  */
4676 static bfd_vma
4677 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4678 {
4679   if (!g->next)
4680     return 0;
4681 
4682   g = mips_elf_bfd_got (ibfd, FALSE);
4683   if (! g)
4684     return 0;
4685 
4686   BFD_ASSERT (g->next);
4687 
4688   g = g->next;
4689 
4690   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4691     * MIPS_ELF_GOT_SIZE (abfd);
4692 }
4693 
4694 /* Turn a single GOT that is too big for 16-bit addressing into
4695    a sequence of GOTs, each one 16-bit addressable.  */
4696 
4697 static bfd_boolean
4698 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4699 		    asection *got, bfd_size_type pages)
4700 {
4701   struct mips_elf_link_hash_table *htab;
4702   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4703   struct mips_elf_traverse_got_arg tga;
4704   struct mips_got_info *g, *gg;
4705   unsigned int assign, needed_relocs;
4706   bfd *dynobj, *ibfd;
4707 
4708   dynobj = elf_hash_table (info)->dynobj;
4709   htab = mips_elf_hash_table (info);
4710   BFD_ASSERT (htab != NULL);
4711 
4712   g = htab->got_info;
4713 
4714   got_per_bfd_arg.obfd = abfd;
4715   got_per_bfd_arg.info = info;
4716   got_per_bfd_arg.current = NULL;
4717   got_per_bfd_arg.primary = NULL;
4718   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4719 				/ MIPS_ELF_GOT_SIZE (abfd))
4720 			       - htab->reserved_gotno);
4721   got_per_bfd_arg.max_pages = pages;
4722   /* The number of globals that will be included in the primary GOT.
4723      See the calls to mips_elf_set_global_got_area below for more
4724      information.  */
4725   got_per_bfd_arg.global_count = g->global_gotno;
4726 
4727   /* Try to merge the GOTs of input bfds together, as long as they
4728      don't seem to exceed the maximum GOT size, choosing one of them
4729      to be the primary GOT.  */
4730   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
4731     {
4732       gg = mips_elf_bfd_got (ibfd, FALSE);
4733       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4734 	return FALSE;
4735     }
4736 
4737   /* If we do not find any suitable primary GOT, create an empty one.  */
4738   if (got_per_bfd_arg.primary == NULL)
4739     g->next = mips_elf_create_got_info (abfd);
4740   else
4741     g->next = got_per_bfd_arg.primary;
4742   g->next->next = got_per_bfd_arg.current;
4743 
4744   /* GG is now the master GOT, and G is the primary GOT.  */
4745   gg = g;
4746   g = g->next;
4747 
4748   /* Map the output bfd to the primary got.  That's what we're going
4749      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4750      didn't mark in check_relocs, and we want a quick way to find it.
4751      We can't just use gg->next because we're going to reverse the
4752      list.  */
4753   mips_elf_replace_bfd_got (abfd, g);
4754 
4755   /* Every symbol that is referenced in a dynamic relocation must be
4756      present in the primary GOT, so arrange for them to appear after
4757      those that are actually referenced.  */
4758   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4759   g->global_gotno = gg->global_gotno;
4760 
4761   tga.info = info;
4762   tga.value = GGA_RELOC_ONLY;
4763   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4764   tga.value = GGA_NORMAL;
4765   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4766 
4767   /* Now go through the GOTs assigning them offset ranges.
4768      [assigned_gotno, local_gotno[ will be set to the range of local
4769      entries in each GOT.  We can then compute the end of a GOT by
4770      adding local_gotno to global_gotno.  We reverse the list and make
4771      it circular since then we'll be able to quickly compute the
4772      beginning of a GOT, by computing the end of its predecessor.  To
4773      avoid special cases for the primary GOT, while still preserving
4774      assertions that are valid for both single- and multi-got links,
4775      we arrange for the main got struct to have the right number of
4776      global entries, but set its local_gotno such that the initial
4777      offset of the primary GOT is zero.  Remember that the primary GOT
4778      will become the last item in the circular linked list, so it
4779      points back to the master GOT.  */
4780   gg->local_gotno = -g->global_gotno;
4781   gg->global_gotno = g->global_gotno;
4782   gg->tls_gotno = 0;
4783   assign = 0;
4784   gg->next = gg;
4785 
4786   do
4787     {
4788       struct mips_got_info *gn;
4789 
4790       assign += htab->reserved_gotno;
4791       g->assigned_gotno = assign;
4792       g->local_gotno += assign;
4793       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4794       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4795 
4796       /* Take g out of the direct list, and push it onto the reversed
4797 	 list that gg points to.  g->next is guaranteed to be nonnull after
4798 	 this operation, as required by mips_elf_initialize_tls_index. */
4799       gn = g->next;
4800       g->next = gg->next;
4801       gg->next = g;
4802 
4803       /* Set up any TLS entries.  We always place the TLS entries after
4804 	 all non-TLS entries.  */
4805       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4806       tga.g = g;
4807       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4808       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
4809       if (!tga.g)
4810 	return FALSE;
4811       BFD_ASSERT (g->tls_assigned_gotno == assign);
4812 
4813       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4814       g = gn;
4815 
4816       /* Forbid global symbols in every non-primary GOT from having
4817 	 lazy-binding stubs.  */
4818       if (g)
4819 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4820     }
4821   while (g);
4822 
4823   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
4824 
4825   needed_relocs = 0;
4826   for (g = gg->next; g && g->next != gg; g = g->next)
4827     {
4828       unsigned int save_assign;
4829 
4830       /* Assign offsets to global GOT entries and count how many
4831 	 relocations they need.  */
4832       save_assign = g->assigned_gotno;
4833       g->assigned_gotno = g->local_gotno;
4834       tga.info = info;
4835       tga.value = MIPS_ELF_GOT_SIZE (abfd);
4836       tga.g = g;
4837       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
4838       if (!tga.g)
4839 	return FALSE;
4840       BFD_ASSERT (g->assigned_gotno == g->local_gotno + g->global_gotno);
4841       g->assigned_gotno = save_assign;
4842 
4843       if (info->shared)
4844 	{
4845 	  g->relocs += g->local_gotno - g->assigned_gotno;
4846 	  BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4847 		      + g->next->global_gotno
4848 		      + g->next->tls_gotno
4849 		      + htab->reserved_gotno);
4850 	}
4851       needed_relocs += g->relocs;
4852     }
4853   needed_relocs += g->relocs;
4854 
4855   if (needed_relocs)
4856     mips_elf_allocate_dynamic_relocations (dynobj, info,
4857 					   needed_relocs);
4858 
4859   return TRUE;
4860 }
4861 
4862 
4863 /* Returns the first relocation of type r_type found, beginning with
4864    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4865 
4866 static const Elf_Internal_Rela *
4867 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4868 			  const Elf_Internal_Rela *relocation,
4869 			  const Elf_Internal_Rela *relend)
4870 {
4871   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4872 
4873   while (relocation < relend)
4874     {
4875       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4876 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4877 	return relocation;
4878 
4879       ++relocation;
4880     }
4881 
4882   /* We didn't find it.  */
4883   return NULL;
4884 }
4885 
4886 /* Return whether an input relocation is against a local symbol.  */
4887 
4888 static bfd_boolean
4889 mips_elf_local_relocation_p (bfd *input_bfd,
4890 			     const Elf_Internal_Rela *relocation,
4891 			     asection **local_sections)
4892 {
4893   unsigned long r_symndx;
4894   Elf_Internal_Shdr *symtab_hdr;
4895   size_t extsymoff;
4896 
4897   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4898   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4899   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4900 
4901   if (r_symndx < extsymoff)
4902     return TRUE;
4903   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4904     return TRUE;
4905 
4906   return FALSE;
4907 }
4908 
4909 /* Sign-extend VALUE, which has the indicated number of BITS.  */
4910 
4911 bfd_vma
4912 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4913 {
4914   if (value & ((bfd_vma) 1 << (bits - 1)))
4915     /* VALUE is negative.  */
4916     value |= ((bfd_vma) - 1) << bits;
4917 
4918   return value;
4919 }
4920 
4921 /* Return non-zero if the indicated VALUE has overflowed the maximum
4922    range expressible by a signed number with the indicated number of
4923    BITS.  */
4924 
4925 static bfd_boolean
4926 mips_elf_overflow_p (bfd_vma value, int bits)
4927 {
4928   bfd_signed_vma svalue = (bfd_signed_vma) value;
4929 
4930   if (svalue > (1 << (bits - 1)) - 1)
4931     /* The value is too big.  */
4932     return TRUE;
4933   else if (svalue < -(1 << (bits - 1)))
4934     /* The value is too small.  */
4935     return TRUE;
4936 
4937   /* All is well.  */
4938   return FALSE;
4939 }
4940 
4941 /* Calculate the %high function.  */
4942 
4943 static bfd_vma
4944 mips_elf_high (bfd_vma value)
4945 {
4946   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4947 }
4948 
4949 /* Calculate the %higher function.  */
4950 
4951 static bfd_vma
4952 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4953 {
4954 #ifdef BFD64
4955   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4956 #else
4957   abort ();
4958   return MINUS_ONE;
4959 #endif
4960 }
4961 
4962 /* Calculate the %highest function.  */
4963 
4964 static bfd_vma
4965 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4966 {
4967 #ifdef BFD64
4968   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4969 #else
4970   abort ();
4971   return MINUS_ONE;
4972 #endif
4973 }
4974 
4975 /* Create the .compact_rel section.  */
4976 
4977 static bfd_boolean
4978 mips_elf_create_compact_rel_section
4979   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4980 {
4981   flagword flags;
4982   register asection *s;
4983 
4984   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
4985     {
4986       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4987 	       | SEC_READONLY);
4988 
4989       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
4990       if (s == NULL
4991 	  || ! bfd_set_section_alignment (abfd, s,
4992 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4993 	return FALSE;
4994 
4995       s->size = sizeof (Elf32_External_compact_rel);
4996     }
4997 
4998   return TRUE;
4999 }
5000 
5001 /* Create the .got section to hold the global offset table.  */
5002 
5003 static bfd_boolean
5004 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5005 {
5006   flagword flags;
5007   register asection *s;
5008   struct elf_link_hash_entry *h;
5009   struct bfd_link_hash_entry *bh;
5010   struct mips_elf_link_hash_table *htab;
5011 
5012   htab = mips_elf_hash_table (info);
5013   BFD_ASSERT (htab != NULL);
5014 
5015   /* This function may be called more than once.  */
5016   if (htab->sgot)
5017     return TRUE;
5018 
5019   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5020 	   | SEC_LINKER_CREATED);
5021 
5022   /* We have to use an alignment of 2**4 here because this is hardcoded
5023      in the function stub generation and in the linker script.  */
5024   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5025   if (s == NULL
5026       || ! bfd_set_section_alignment (abfd, s, 4))
5027     return FALSE;
5028   htab->sgot = s;
5029 
5030   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5031      linker script because we don't want to define the symbol if we
5032      are not creating a global offset table.  */
5033   bh = NULL;
5034   if (! (_bfd_generic_link_add_one_symbol
5035 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5036 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5037     return FALSE;
5038 
5039   h = (struct elf_link_hash_entry *) bh;
5040   h->non_elf = 0;
5041   h->def_regular = 1;
5042   h->type = STT_OBJECT;
5043   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5044   elf_hash_table (info)->hgot = h;
5045 
5046   if (info->shared
5047       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5048     return FALSE;
5049 
5050   htab->got_info = mips_elf_create_got_info (abfd);
5051   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5052     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5053 
5054   /* We also need a .got.plt section when generating PLTs.  */
5055   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5056 					  SEC_ALLOC | SEC_LOAD
5057 					  | SEC_HAS_CONTENTS
5058 					  | SEC_IN_MEMORY
5059 					  | SEC_LINKER_CREATED);
5060   if (s == NULL)
5061     return FALSE;
5062   htab->sgotplt = s;
5063 
5064   return TRUE;
5065 }
5066 
5067 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5068    __GOTT_INDEX__ symbols.  These symbols are only special for
5069    shared objects; they are not used in executables.  */
5070 
5071 static bfd_boolean
5072 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5073 {
5074   return (mips_elf_hash_table (info)->is_vxworks
5075 	  && info->shared
5076 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5077 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5078 }
5079 
5080 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5081    require an la25 stub.  See also mips_elf_local_pic_function_p,
5082    which determines whether the destination function ever requires a
5083    stub.  */
5084 
5085 static bfd_boolean
5086 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5087 				     bfd_boolean target_is_16_bit_code_p)
5088 {
5089   /* We specifically ignore branches and jumps from EF_PIC objects,
5090      where the onus is on the compiler or programmer to perform any
5091      necessary initialization of $25.  Sometimes such initialization
5092      is unnecessary; for example, -mno-shared functions do not use
5093      the incoming value of $25, and may therefore be called directly.  */
5094   if (PIC_OBJECT_P (input_bfd))
5095     return FALSE;
5096 
5097   switch (r_type)
5098     {
5099     case R_MIPS_26:
5100     case R_MIPS_PC16:
5101     case R_MICROMIPS_26_S1:
5102     case R_MICROMIPS_PC7_S1:
5103     case R_MICROMIPS_PC10_S1:
5104     case R_MICROMIPS_PC16_S1:
5105     case R_MICROMIPS_PC23_S2:
5106       return TRUE;
5107 
5108     case R_MIPS16_26:
5109       return !target_is_16_bit_code_p;
5110 
5111     default:
5112       return FALSE;
5113     }
5114 }
5115 
5116 /* Calculate the value produced by the RELOCATION (which comes from
5117    the INPUT_BFD).  The ADDEND is the addend to use for this
5118    RELOCATION; RELOCATION->R_ADDEND is ignored.
5119 
5120    The result of the relocation calculation is stored in VALUEP.
5121    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5122    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5123 
5124    This function returns bfd_reloc_continue if the caller need take no
5125    further action regarding this relocation, bfd_reloc_notsupported if
5126    something goes dramatically wrong, bfd_reloc_overflow if an
5127    overflow occurs, and bfd_reloc_ok to indicate success.  */
5128 
5129 static bfd_reloc_status_type
5130 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5131 			       asection *input_section,
5132 			       struct bfd_link_info *info,
5133 			       const Elf_Internal_Rela *relocation,
5134 			       bfd_vma addend, reloc_howto_type *howto,
5135 			       Elf_Internal_Sym *local_syms,
5136 			       asection **local_sections, bfd_vma *valuep,
5137 			       const char **namep,
5138 			       bfd_boolean *cross_mode_jump_p,
5139 			       bfd_boolean save_addend)
5140 {
5141   /* The eventual value we will return.  */
5142   bfd_vma value;
5143   /* The address of the symbol against which the relocation is
5144      occurring.  */
5145   bfd_vma symbol = 0;
5146   /* The final GP value to be used for the relocatable, executable, or
5147      shared object file being produced.  */
5148   bfd_vma gp;
5149   /* The place (section offset or address) of the storage unit being
5150      relocated.  */
5151   bfd_vma p;
5152   /* The value of GP used to create the relocatable object.  */
5153   bfd_vma gp0;
5154   /* The offset into the global offset table at which the address of
5155      the relocation entry symbol, adjusted by the addend, resides
5156      during execution.  */
5157   bfd_vma g = MINUS_ONE;
5158   /* The section in which the symbol referenced by the relocation is
5159      located.  */
5160   asection *sec = NULL;
5161   struct mips_elf_link_hash_entry *h = NULL;
5162   /* TRUE if the symbol referred to by this relocation is a local
5163      symbol.  */
5164   bfd_boolean local_p, was_local_p;
5165   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5166   bfd_boolean gp_disp_p = FALSE;
5167   /* TRUE if the symbol referred to by this relocation is
5168      "__gnu_local_gp".  */
5169   bfd_boolean gnu_local_gp_p = FALSE;
5170   Elf_Internal_Shdr *symtab_hdr;
5171   size_t extsymoff;
5172   unsigned long r_symndx;
5173   int r_type;
5174   /* TRUE if overflow occurred during the calculation of the
5175      relocation value.  */
5176   bfd_boolean overflowed_p;
5177   /* TRUE if this relocation refers to a MIPS16 function.  */
5178   bfd_boolean target_is_16_bit_code_p = FALSE;
5179   bfd_boolean target_is_micromips_code_p = FALSE;
5180   struct mips_elf_link_hash_table *htab;
5181   bfd *dynobj;
5182 
5183   dynobj = elf_hash_table (info)->dynobj;
5184   htab = mips_elf_hash_table (info);
5185   BFD_ASSERT (htab != NULL);
5186 
5187   /* Parse the relocation.  */
5188   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5189   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5190   p = (input_section->output_section->vma
5191        + input_section->output_offset
5192        + relocation->r_offset);
5193 
5194   /* Assume that there will be no overflow.  */
5195   overflowed_p = FALSE;
5196 
5197   /* Figure out whether or not the symbol is local, and get the offset
5198      used in the array of hash table entries.  */
5199   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5200   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5201 					 local_sections);
5202   was_local_p = local_p;
5203   if (! elf_bad_symtab (input_bfd))
5204     extsymoff = symtab_hdr->sh_info;
5205   else
5206     {
5207       /* The symbol table does not follow the rule that local symbols
5208 	 must come before globals.  */
5209       extsymoff = 0;
5210     }
5211 
5212   /* Figure out the value of the symbol.  */
5213   if (local_p)
5214     {
5215       Elf_Internal_Sym *sym;
5216 
5217       sym = local_syms + r_symndx;
5218       sec = local_sections[r_symndx];
5219 
5220       symbol = sec->output_section->vma + sec->output_offset;
5221       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
5222 	  || (sec->flags & SEC_MERGE))
5223 	symbol += sym->st_value;
5224       if ((sec->flags & SEC_MERGE)
5225 	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
5226 	{
5227 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5228 	  addend -= symbol;
5229 	  addend += sec->output_section->vma + sec->output_offset;
5230 	}
5231 
5232       /* MIPS16/microMIPS text labels should be treated as odd.  */
5233       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5234 	++symbol;
5235 
5236       /* Record the name of this symbol, for our caller.  */
5237       *namep = bfd_elf_string_from_elf_section (input_bfd,
5238 						symtab_hdr->sh_link,
5239 						sym->st_name);
5240       if (*namep == '\0')
5241 	*namep = bfd_section_name (input_bfd, sec);
5242 
5243       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5244       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5245     }
5246   else
5247     {
5248       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5249 
5250       /* For global symbols we look up the symbol in the hash-table.  */
5251       h = ((struct mips_elf_link_hash_entry *)
5252 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5253       /* Find the real hash-table entry for this symbol.  */
5254       while (h->root.root.type == bfd_link_hash_indirect
5255 	     || h->root.root.type == bfd_link_hash_warning)
5256 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5257 
5258       /* Record the name of this symbol, for our caller.  */
5259       *namep = h->root.root.root.string;
5260 
5261       /* See if this is the special _gp_disp symbol.  Note that such a
5262 	 symbol must always be a global symbol.  */
5263       if (strcmp (*namep, "_gp_disp") == 0
5264 	  && ! NEWABI_P (input_bfd))
5265 	{
5266 	  /* Relocations against _gp_disp are permitted only with
5267 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5268 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5269 	    return bfd_reloc_notsupported;
5270 
5271 	  gp_disp_p = TRUE;
5272 	}
5273       /* See if this is the special _gp symbol.  Note that such a
5274 	 symbol must always be a global symbol.  */
5275       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5276 	gnu_local_gp_p = TRUE;
5277 
5278 
5279       /* If this symbol is defined, calculate its address.  Note that
5280 	 _gp_disp is a magic symbol, always implicitly defined by the
5281 	 linker, so it's inappropriate to check to see whether or not
5282 	 its defined.  */
5283       else if ((h->root.root.type == bfd_link_hash_defined
5284 		|| h->root.root.type == bfd_link_hash_defweak)
5285 	       && h->root.root.u.def.section)
5286 	{
5287 	  sec = h->root.root.u.def.section;
5288 	  if (sec->output_section)
5289 	    symbol = (h->root.root.u.def.value
5290 		      + sec->output_section->vma
5291 		      + sec->output_offset);
5292 	  else
5293 	    symbol = h->root.root.u.def.value;
5294 	}
5295       else if (h->root.root.type == bfd_link_hash_undefweak)
5296 	/* We allow relocations against undefined weak symbols, giving
5297 	   it the value zero, so that you can undefined weak functions
5298 	   and check to see if they exist by looking at their
5299 	   addresses.  */
5300 	symbol = 0;
5301       else if (info->unresolved_syms_in_objects == RM_IGNORE
5302 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5303 	symbol = 0;
5304       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5305 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5306 	{
5307 	  /* If this is a dynamic link, we should have created a
5308 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5309 	     in in _bfd_mips_elf_create_dynamic_sections.
5310 	     Otherwise, we should define the symbol with a value of 0.
5311 	     FIXME: It should probably get into the symbol table
5312 	     somehow as well.  */
5313 	  BFD_ASSERT (! info->shared);
5314 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5315 	  symbol = 0;
5316 	}
5317       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5318 	{
5319 	  /* This is an optional symbol - an Irix specific extension to the
5320 	     ELF spec.  Ignore it for now.
5321 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5322 	     than simply ignoring them, but we do not handle this for now.
5323 	     For information see the "64-bit ELF Object File Specification"
5324 	     which is available from here:
5325 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5326 	  symbol = 0;
5327 	}
5328       else if ((*info->callbacks->undefined_symbol)
5329 	       (info, h->root.root.root.string, input_bfd,
5330 		input_section, relocation->r_offset,
5331 		(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5332 		 || ELF_ST_VISIBILITY (h->root.other)))
5333 	{
5334 	  return bfd_reloc_undefined;
5335 	}
5336       else
5337 	{
5338 	  return bfd_reloc_notsupported;
5339 	}
5340 
5341       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5342       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5343     }
5344 
5345   /* If this is a reference to a 16-bit function with a stub, we need
5346      to redirect the relocation to the stub unless:
5347 
5348      (a) the relocation is for a MIPS16 JAL;
5349 
5350      (b) the relocation is for a MIPS16 PIC call, and there are no
5351 	 non-MIPS16 uses of the GOT slot; or
5352 
5353      (c) the section allows direct references to MIPS16 functions.  */
5354   if (r_type != R_MIPS16_26
5355       && !info->relocatable
5356       && ((h != NULL
5357 	   && h->fn_stub != NULL
5358 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5359 	  || (local_p
5360 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5361 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5362       && !section_allows_mips16_refs_p (input_section))
5363     {
5364       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5365 	 have already noticed that we were going to need the
5366 	 stub.  */
5367       if (local_p)
5368 	{
5369 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5370 	  value = 0;
5371 	}
5372       else
5373 	{
5374 	  BFD_ASSERT (h->need_fn_stub);
5375 	  if (h->la25_stub)
5376 	    {
5377 	      /* If a LA25 header for the stub itself exists, point to the
5378 		 prepended LUI/ADDIU sequence.  */
5379 	      sec = h->la25_stub->stub_section;
5380 	      value = h->la25_stub->offset;
5381 	    }
5382 	  else
5383 	    {
5384 	      sec = h->fn_stub;
5385 	      value = 0;
5386 	    }
5387 	}
5388 
5389       symbol = sec->output_section->vma + sec->output_offset + value;
5390       /* The target is 16-bit, but the stub isn't.  */
5391       target_is_16_bit_code_p = FALSE;
5392     }
5393   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5394      to a standard MIPS function, we need to redirect the call to the stub.
5395      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5396      indirect calls should use an indirect stub instead.  */
5397   else if (r_type == R_MIPS16_26 && !info->relocatable
5398 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5399 	       || (local_p
5400 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5401 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5402 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5403     {
5404       if (local_p)
5405 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5406       else
5407 	{
5408 	  /* If both call_stub and call_fp_stub are defined, we can figure
5409 	     out which one to use by checking which one appears in the input
5410 	     file.  */
5411 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5412 	    {
5413 	      asection *o;
5414 
5415 	      sec = NULL;
5416 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5417 		{
5418 		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5419 		    {
5420 		      sec = h->call_fp_stub;
5421 		      break;
5422 		    }
5423 		}
5424 	      if (sec == NULL)
5425 		sec = h->call_stub;
5426 	    }
5427 	  else if (h->call_stub != NULL)
5428 	    sec = h->call_stub;
5429 	  else
5430 	    sec = h->call_fp_stub;
5431   	}
5432 
5433       BFD_ASSERT (sec->size > 0);
5434       symbol = sec->output_section->vma + sec->output_offset;
5435     }
5436   /* If this is a direct call to a PIC function, redirect to the
5437      non-PIC stub.  */
5438   else if (h != NULL && h->la25_stub
5439 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5440 						   target_is_16_bit_code_p))
5441     symbol = (h->la25_stub->stub_section->output_section->vma
5442 	      + h->la25_stub->stub_section->output_offset
5443 	      + h->la25_stub->offset);
5444   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5445      entry is used if a standard PLT entry has also been made.  In this
5446      case the symbol will have been set by mips_elf_set_plt_sym_value
5447      to point to the standard PLT entry, so redirect to the compressed
5448      one.  */
5449   else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1)
5450 	   && !info->relocatable
5451 	   && h != NULL
5452 	   && h->use_plt_entry
5453 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5454 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5455     {
5456       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5457 
5458       sec = htab->splt;
5459       symbol = (sec->output_section->vma
5460 		+ sec->output_offset
5461 		+ htab->plt_header_size
5462 		+ htab->plt_mips_offset
5463 		+ h->root.plt.plist->comp_offset
5464 		+ 1);
5465 
5466       target_is_16_bit_code_p = !micromips_p;
5467       target_is_micromips_code_p = micromips_p;
5468     }
5469 
5470   /* Make sure MIPS16 and microMIPS are not used together.  */
5471   if ((r_type == R_MIPS16_26 && target_is_micromips_code_p)
5472       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5473    {
5474       (*_bfd_error_handler)
5475 	(_("MIPS16 and microMIPS functions cannot call each other"));
5476       return bfd_reloc_notsupported;
5477    }
5478 
5479   /* Calls from 16-bit code to 32-bit code and vice versa require the
5480      mode change.  However, we can ignore calls to undefined weak symbols,
5481      which should never be executed at runtime.  This exception is important
5482      because the assembly writer may have "known" that any definition of the
5483      symbol would be 16-bit code, and that direct jumps were therefore
5484      acceptable.  */
5485   *cross_mode_jump_p = (!info->relocatable
5486 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5487 			&& ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5488 			    || (r_type == R_MICROMIPS_26_S1
5489 				&& !target_is_micromips_code_p)
5490 			    || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5491 				&& (target_is_16_bit_code_p
5492 				    || target_is_micromips_code_p))));
5493 
5494   local_p = (h == NULL || mips_use_local_got_p (info, h));
5495 
5496   gp0 = _bfd_get_gp_value (input_bfd);
5497   gp = _bfd_get_gp_value (abfd);
5498   if (htab->got_info)
5499     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5500 
5501   if (gnu_local_gp_p)
5502     symbol = gp;
5503 
5504   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5505      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5506      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5507   if (got_page_reloc_p (r_type) && !local_p)
5508     {
5509       r_type = (micromips_reloc_p (r_type)
5510 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5511       addend = 0;
5512     }
5513 
5514   /* If we haven't already determined the GOT offset, and we're going
5515      to need it, get it now.  */
5516   switch (r_type)
5517     {
5518     case R_MIPS16_CALL16:
5519     case R_MIPS16_GOT16:
5520     case R_MIPS_CALL16:
5521     case R_MIPS_GOT16:
5522     case R_MIPS_GOT_DISP:
5523     case R_MIPS_GOT_HI16:
5524     case R_MIPS_CALL_HI16:
5525     case R_MIPS_GOT_LO16:
5526     case R_MIPS_CALL_LO16:
5527     case R_MICROMIPS_CALL16:
5528     case R_MICROMIPS_GOT16:
5529     case R_MICROMIPS_GOT_DISP:
5530     case R_MICROMIPS_GOT_HI16:
5531     case R_MICROMIPS_CALL_HI16:
5532     case R_MICROMIPS_GOT_LO16:
5533     case R_MICROMIPS_CALL_LO16:
5534     case R_MIPS_TLS_GD:
5535     case R_MIPS_TLS_GOTTPREL:
5536     case R_MIPS_TLS_LDM:
5537     case R_MIPS16_TLS_GD:
5538     case R_MIPS16_TLS_GOTTPREL:
5539     case R_MIPS16_TLS_LDM:
5540     case R_MICROMIPS_TLS_GD:
5541     case R_MICROMIPS_TLS_GOTTPREL:
5542     case R_MICROMIPS_TLS_LDM:
5543       /* Find the index into the GOT where this value is located.  */
5544       if (tls_ldm_reloc_p (r_type))
5545 	{
5546 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5547 					0, 0, NULL, r_type);
5548 	  if (g == MINUS_ONE)
5549 	    return bfd_reloc_outofrange;
5550 	}
5551       else if (!local_p)
5552 	{
5553 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5554 	     entry, which is initialized to point at the PLT stub.  */
5555 	  if (htab->is_vxworks
5556 	      && (call_hi16_reloc_p (r_type)
5557 		  || call_lo16_reloc_p (r_type)
5558 		  || call16_reloc_p (r_type)))
5559 	    {
5560 	      BFD_ASSERT (addend == 0);
5561 	      BFD_ASSERT (h->root.needs_plt);
5562 	      g = mips_elf_gotplt_index (info, &h->root);
5563 	    }
5564 	  else
5565 	    {
5566 	      BFD_ASSERT (addend == 0);
5567 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5568 					     &h->root, r_type);
5569 	      if (!TLS_RELOC_P (r_type)
5570 		  && !elf_hash_table (info)->dynamic_sections_created)
5571 		/* This is a static link.  We must initialize the GOT entry.  */
5572 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5573 	    }
5574 	}
5575       else if (!htab->is_vxworks
5576 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5577 	/* The calculation below does not involve "g".  */
5578 	break;
5579       else
5580 	{
5581 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5582 					symbol + addend, r_symndx, h, r_type);
5583 	  if (g == MINUS_ONE)
5584 	    return bfd_reloc_outofrange;
5585 	}
5586 
5587       /* Convert GOT indices to actual offsets.  */
5588       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5589       break;
5590     }
5591 
5592   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5593      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5594   if (h != NULL && is_gott_symbol (info, &h->root))
5595     {
5596       Elf_Internal_Rela outrel;
5597       bfd_byte *loc;
5598       asection *s;
5599 
5600       s = mips_elf_rel_dyn_section (info, FALSE);
5601       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5602 
5603       outrel.r_offset = (input_section->output_section->vma
5604 			 + input_section->output_offset
5605 			 + relocation->r_offset);
5606       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5607       outrel.r_addend = addend;
5608       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5609 
5610       /* If we've written this relocation for a readonly section,
5611 	 we need to set DF_TEXTREL again, so that we do not delete the
5612 	 DT_TEXTREL tag.  */
5613       if (MIPS_ELF_READONLY_SECTION (input_section))
5614 	info->flags |= DF_TEXTREL;
5615 
5616       *valuep = 0;
5617       return bfd_reloc_ok;
5618     }
5619 
5620   /* Figure out what kind of relocation is being performed.  */
5621   switch (r_type)
5622     {
5623     case R_MIPS_NONE:
5624       return bfd_reloc_continue;
5625 
5626     case R_MIPS_16:
5627       value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5628       overflowed_p = mips_elf_overflow_p (value, 16);
5629       break;
5630 
5631     case R_MIPS_32:
5632     case R_MIPS_REL32:
5633     case R_MIPS_64:
5634       if ((info->shared
5635 	   || (htab->root.dynamic_sections_created
5636 	       && h != NULL
5637 	       && h->root.def_dynamic
5638 	       && !h->root.def_regular
5639 	       && !h->has_static_relocs))
5640 	  && r_symndx != STN_UNDEF
5641 	  && (h == NULL
5642 	      || h->root.root.type != bfd_link_hash_undefweak
5643 	      || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5644 	  && (input_section->flags & SEC_ALLOC) != 0)
5645 	{
5646 	  /* If we're creating a shared library, then we can't know
5647 	     where the symbol will end up.  So, we create a relocation
5648 	     record in the output, and leave the job up to the dynamic
5649 	     linker.  We must do the same for executable references to
5650 	     shared library symbols, unless we've decided to use copy
5651 	     relocs or PLTs instead.  */
5652 	  value = addend;
5653 	  if (!mips_elf_create_dynamic_relocation (abfd,
5654 						   info,
5655 						   relocation,
5656 						   h,
5657 						   sec,
5658 						   symbol,
5659 						   &value,
5660 						   input_section))
5661 	    return bfd_reloc_undefined;
5662 	}
5663       else
5664 	{
5665 	  if (r_type != R_MIPS_REL32)
5666 	    value = symbol + addend;
5667 	  else
5668 	    value = addend;
5669 	}
5670       value &= howto->dst_mask;
5671       break;
5672 
5673     case R_MIPS_PC32:
5674       value = symbol + addend - p;
5675       value &= howto->dst_mask;
5676       break;
5677 
5678     case R_MIPS16_26:
5679       /* The calculation for R_MIPS16_26 is just the same as for an
5680 	 R_MIPS_26.  It's only the storage of the relocated field into
5681 	 the output file that's different.  That's handled in
5682 	 mips_elf_perform_relocation.  So, we just fall through to the
5683 	 R_MIPS_26 case here.  */
5684     case R_MIPS_26:
5685     case R_MICROMIPS_26_S1:
5686       {
5687 	unsigned int shift;
5688 
5689 	/* Make sure the target of JALX is word-aligned.  Bit 0 must be
5690 	   the correct ISA mode selector and bit 1 must be 0.  */
5691 	if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26))
5692 	  return bfd_reloc_outofrange;
5693 
5694 	/* Shift is 2, unusually, for microMIPS JALX.  */
5695 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
5696 
5697 	if (was_local_p)
5698 	  value = addend | ((p + 4) & (0xfc000000 << shift));
5699 	else
5700 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
5701 	value = (value + symbol) >> shift;
5702 	if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak)
5703 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
5704 	value &= howto->dst_mask;
5705       }
5706       break;
5707 
5708     case R_MIPS_TLS_DTPREL_HI16:
5709     case R_MIPS16_TLS_DTPREL_HI16:
5710     case R_MICROMIPS_TLS_DTPREL_HI16:
5711       value = (mips_elf_high (addend + symbol - dtprel_base (info))
5712 	       & howto->dst_mask);
5713       break;
5714 
5715     case R_MIPS_TLS_DTPREL_LO16:
5716     case R_MIPS_TLS_DTPREL32:
5717     case R_MIPS_TLS_DTPREL64:
5718     case R_MIPS16_TLS_DTPREL_LO16:
5719     case R_MICROMIPS_TLS_DTPREL_LO16:
5720       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5721       break;
5722 
5723     case R_MIPS_TLS_TPREL_HI16:
5724     case R_MIPS16_TLS_TPREL_HI16:
5725     case R_MICROMIPS_TLS_TPREL_HI16:
5726       value = (mips_elf_high (addend + symbol - tprel_base (info))
5727 	       & howto->dst_mask);
5728       break;
5729 
5730     case R_MIPS_TLS_TPREL_LO16:
5731     case R_MIPS_TLS_TPREL32:
5732     case R_MIPS_TLS_TPREL64:
5733     case R_MIPS16_TLS_TPREL_LO16:
5734     case R_MICROMIPS_TLS_TPREL_LO16:
5735       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5736       break;
5737 
5738     case R_MIPS_HI16:
5739     case R_MIPS16_HI16:
5740     case R_MICROMIPS_HI16:
5741       if (!gp_disp_p)
5742 	{
5743 	  value = mips_elf_high (addend + symbol);
5744 	  value &= howto->dst_mask;
5745 	}
5746       else
5747 	{
5748 	  /* For MIPS16 ABI code we generate this sequence
5749 	        0: li      $v0,%hi(_gp_disp)
5750 	        4: addiupc $v1,%lo(_gp_disp)
5751 	        8: sll     $v0,16
5752 	       12: addu    $v0,$v1
5753 	       14: move    $gp,$v0
5754 	     So the offsets of hi and lo relocs are the same, but the
5755 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
5756 	     ADDIUPC clears the low two bits of the instruction address,
5757 	     so the base is ($t9 + 4) & ~3.  */
5758 	  if (r_type == R_MIPS16_HI16)
5759 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
5760 	  /* The microMIPS .cpload sequence uses the same assembly
5761 	     instructions as the traditional psABI version, but the
5762 	     incoming $t9 has the low bit set.  */
5763 	  else if (r_type == R_MICROMIPS_HI16)
5764 	    value = mips_elf_high (addend + gp - p - 1);
5765 	  else
5766 	    value = mips_elf_high (addend + gp - p);
5767 	  overflowed_p = mips_elf_overflow_p (value, 16);
5768 	}
5769       break;
5770 
5771     case R_MIPS_LO16:
5772     case R_MIPS16_LO16:
5773     case R_MICROMIPS_LO16:
5774     case R_MICROMIPS_HI0_LO16:
5775       if (!gp_disp_p)
5776 	value = (symbol + addend) & howto->dst_mask;
5777       else
5778 	{
5779 	  /* See the comment for R_MIPS16_HI16 above for the reason
5780 	     for this conditional.  */
5781 	  if (r_type == R_MIPS16_LO16)
5782 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
5783 	  else if (r_type == R_MICROMIPS_LO16
5784 		   || r_type == R_MICROMIPS_HI0_LO16)
5785 	    value = addend + gp - p + 3;
5786 	  else
5787 	    value = addend + gp - p + 4;
5788 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5789 	     for overflow.  But, on, say, IRIX5, relocations against
5790 	     _gp_disp are normally generated from the .cpload
5791 	     pseudo-op.  It generates code that normally looks like
5792 	     this:
5793 
5794 	       lui    $gp,%hi(_gp_disp)
5795 	       addiu  $gp,$gp,%lo(_gp_disp)
5796 	       addu   $gp,$gp,$t9
5797 
5798 	     Here $t9 holds the address of the function being called,
5799 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
5800 	     relocation can easily overflow in this situation, but the
5801 	     R_MIPS_HI16 relocation will handle the overflow.
5802 	     Therefore, we consider this a bug in the MIPS ABI, and do
5803 	     not check for overflow here.  */
5804 	}
5805       break;
5806 
5807     case R_MIPS_LITERAL:
5808     case R_MICROMIPS_LITERAL:
5809       /* Because we don't merge literal sections, we can handle this
5810 	 just like R_MIPS_GPREL16.  In the long run, we should merge
5811 	 shared literals, and then we will need to additional work
5812 	 here.  */
5813 
5814       /* Fall through.  */
5815 
5816     case R_MIPS16_GPREL:
5817       /* The R_MIPS16_GPREL performs the same calculation as
5818 	 R_MIPS_GPREL16, but stores the relocated bits in a different
5819 	 order.  We don't need to do anything special here; the
5820 	 differences are handled in mips_elf_perform_relocation.  */
5821     case R_MIPS_GPREL16:
5822     case R_MICROMIPS_GPREL7_S2:
5823     case R_MICROMIPS_GPREL16:
5824       /* Only sign-extend the addend if it was extracted from the
5825 	 instruction.  If the addend was separate, leave it alone,
5826 	 otherwise we may lose significant bits.  */
5827       if (howto->partial_inplace)
5828 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5829       value = symbol + addend - gp;
5830       /* If the symbol was local, any earlier relocatable links will
5831 	 have adjusted its addend with the gp offset, so compensate
5832 	 for that now.  Don't do it for symbols forced local in this
5833 	 link, though, since they won't have had the gp offset applied
5834 	 to them before.  */
5835       if (was_local_p)
5836 	value += gp0;
5837       overflowed_p = mips_elf_overflow_p (value, 16);
5838       break;
5839 
5840     case R_MIPS16_GOT16:
5841     case R_MIPS16_CALL16:
5842     case R_MIPS_GOT16:
5843     case R_MIPS_CALL16:
5844     case R_MICROMIPS_GOT16:
5845     case R_MICROMIPS_CALL16:
5846       /* VxWorks does not have separate local and global semantics for
5847 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
5848       if (!htab->is_vxworks && local_p)
5849 	{
5850 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
5851 					symbol + addend, !was_local_p);
5852 	  if (value == MINUS_ONE)
5853 	    return bfd_reloc_outofrange;
5854 	  value
5855 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5856 	  overflowed_p = mips_elf_overflow_p (value, 16);
5857 	  break;
5858 	}
5859 
5860       /* Fall through.  */
5861 
5862     case R_MIPS_TLS_GD:
5863     case R_MIPS_TLS_GOTTPREL:
5864     case R_MIPS_TLS_LDM:
5865     case R_MIPS_GOT_DISP:
5866     case R_MIPS16_TLS_GD:
5867     case R_MIPS16_TLS_GOTTPREL:
5868     case R_MIPS16_TLS_LDM:
5869     case R_MICROMIPS_TLS_GD:
5870     case R_MICROMIPS_TLS_GOTTPREL:
5871     case R_MICROMIPS_TLS_LDM:
5872     case R_MICROMIPS_GOT_DISP:
5873       value = g;
5874       overflowed_p = mips_elf_overflow_p (value, 16);
5875       break;
5876 
5877     case R_MIPS_GPREL32:
5878       value = (addend + symbol + gp0 - gp);
5879       if (!save_addend)
5880 	value &= howto->dst_mask;
5881       break;
5882 
5883     case R_MIPS_PC16:
5884     case R_MIPS_GNU_REL16_S2:
5885       value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5886       overflowed_p = mips_elf_overflow_p (value, 18);
5887       value >>= howto->rightshift;
5888       value &= howto->dst_mask;
5889       break;
5890 
5891     case R_MICROMIPS_PC7_S1:
5892       value = symbol + _bfd_mips_elf_sign_extend (addend, 8) - p;
5893       overflowed_p = mips_elf_overflow_p (value, 8);
5894       value >>= howto->rightshift;
5895       value &= howto->dst_mask;
5896       break;
5897 
5898     case R_MICROMIPS_PC10_S1:
5899       value = symbol + _bfd_mips_elf_sign_extend (addend, 11) - p;
5900       overflowed_p = mips_elf_overflow_p (value, 11);
5901       value >>= howto->rightshift;
5902       value &= howto->dst_mask;
5903       break;
5904 
5905     case R_MICROMIPS_PC16_S1:
5906       value = symbol + _bfd_mips_elf_sign_extend (addend, 17) - p;
5907       overflowed_p = mips_elf_overflow_p (value, 17);
5908       value >>= howto->rightshift;
5909       value &= howto->dst_mask;
5910       break;
5911 
5912     case R_MICROMIPS_PC23_S2:
5913       value = symbol + _bfd_mips_elf_sign_extend (addend, 25) - ((p | 3) ^ 3);
5914       overflowed_p = mips_elf_overflow_p (value, 25);
5915       value >>= howto->rightshift;
5916       value &= howto->dst_mask;
5917       break;
5918 
5919     case R_MIPS_GOT_HI16:
5920     case R_MIPS_CALL_HI16:
5921     case R_MICROMIPS_GOT_HI16:
5922     case R_MICROMIPS_CALL_HI16:
5923       /* We're allowed to handle these two relocations identically.
5924 	 The dynamic linker is allowed to handle the CALL relocations
5925 	 differently by creating a lazy evaluation stub.  */
5926       value = g;
5927       value = mips_elf_high (value);
5928       value &= howto->dst_mask;
5929       break;
5930 
5931     case R_MIPS_GOT_LO16:
5932     case R_MIPS_CALL_LO16:
5933     case R_MICROMIPS_GOT_LO16:
5934     case R_MICROMIPS_CALL_LO16:
5935       value = g & howto->dst_mask;
5936       break;
5937 
5938     case R_MIPS_GOT_PAGE:
5939     case R_MICROMIPS_GOT_PAGE:
5940       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5941       if (value == MINUS_ONE)
5942 	return bfd_reloc_outofrange;
5943       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5944       overflowed_p = mips_elf_overflow_p (value, 16);
5945       break;
5946 
5947     case R_MIPS_GOT_OFST:
5948     case R_MICROMIPS_GOT_OFST:
5949       if (local_p)
5950 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5951       else
5952 	value = addend;
5953       overflowed_p = mips_elf_overflow_p (value, 16);
5954       break;
5955 
5956     case R_MIPS_SUB:
5957     case R_MICROMIPS_SUB:
5958       value = symbol - addend;
5959       value &= howto->dst_mask;
5960       break;
5961 
5962     case R_MIPS_HIGHER:
5963     case R_MICROMIPS_HIGHER:
5964       value = mips_elf_higher (addend + symbol);
5965       value &= howto->dst_mask;
5966       break;
5967 
5968     case R_MIPS_HIGHEST:
5969     case R_MICROMIPS_HIGHEST:
5970       value = mips_elf_highest (addend + symbol);
5971       value &= howto->dst_mask;
5972       break;
5973 
5974     case R_MIPS_SCN_DISP:
5975     case R_MICROMIPS_SCN_DISP:
5976       value = symbol + addend - sec->output_offset;
5977       value &= howto->dst_mask;
5978       break;
5979 
5980     case R_MIPS_JALR:
5981     case R_MICROMIPS_JALR:
5982       /* This relocation is only a hint.  In some cases, we optimize
5983 	 it into a bal instruction.  But we don't try to optimize
5984 	 when the symbol does not resolve locally.  */
5985       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5986 	return bfd_reloc_continue;
5987       value = symbol + addend;
5988       break;
5989 
5990     case R_MIPS_PJUMP:
5991     case R_MIPS_GNU_VTINHERIT:
5992     case R_MIPS_GNU_VTENTRY:
5993       /* We don't do anything with these at present.  */
5994       return bfd_reloc_continue;
5995 
5996     default:
5997       /* An unrecognized relocation type.  */
5998       return bfd_reloc_notsupported;
5999     }
6000 
6001   /* Store the VALUE for our caller.  */
6002   *valuep = value;
6003   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6004 }
6005 
6006 /* Obtain the field relocated by RELOCATION.  */
6007 
6008 static bfd_vma
6009 mips_elf_obtain_contents (reloc_howto_type *howto,
6010 			  const Elf_Internal_Rela *relocation,
6011 			  bfd *input_bfd, bfd_byte *contents)
6012 {
6013   bfd_vma x;
6014   bfd_byte *location = contents + relocation->r_offset;
6015 
6016   /* Obtain the bytes.  */
6017   x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
6018 
6019   return x;
6020 }
6021 
6022 /* It has been determined that the result of the RELOCATION is the
6023    VALUE.  Use HOWTO to place VALUE into the output file at the
6024    appropriate position.  The SECTION is the section to which the
6025    relocation applies.
6026    CROSS_MODE_JUMP_P is true if the relocation field
6027    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6028 
6029    Returns FALSE if anything goes wrong.  */
6030 
6031 static bfd_boolean
6032 mips_elf_perform_relocation (struct bfd_link_info *info,
6033 			     reloc_howto_type *howto,
6034 			     const Elf_Internal_Rela *relocation,
6035 			     bfd_vma value, bfd *input_bfd,
6036 			     asection *input_section, bfd_byte *contents,
6037 			     bfd_boolean cross_mode_jump_p)
6038 {
6039   bfd_vma x;
6040   bfd_byte *location;
6041   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6042 
6043   /* Figure out where the relocation is occurring.  */
6044   location = contents + relocation->r_offset;
6045 
6046   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6047 
6048   /* Obtain the current value.  */
6049   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6050 
6051   /* Clear the field we are setting.  */
6052   x &= ~howto->dst_mask;
6053 
6054   /* Set the field.  */
6055   x |= (value & howto->dst_mask);
6056 
6057   /* If required, turn JAL into JALX.  */
6058   if (cross_mode_jump_p && jal_reloc_p (r_type))
6059     {
6060       bfd_boolean ok;
6061       bfd_vma opcode = x >> 26;
6062       bfd_vma jalx_opcode;
6063 
6064       /* Check to see if the opcode is already JAL or JALX.  */
6065       if (r_type == R_MIPS16_26)
6066 	{
6067 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6068 	  jalx_opcode = 0x7;
6069 	}
6070       else if (r_type == R_MICROMIPS_26_S1)
6071 	{
6072 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6073 	  jalx_opcode = 0x3c;
6074 	}
6075       else
6076 	{
6077 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6078 	  jalx_opcode = 0x1d;
6079 	}
6080 
6081       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6082          convert J or JALS to JALX.  */
6083       if (!ok)
6084 	{
6085 	  (*_bfd_error_handler)
6086 	    (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."),
6087 	     input_bfd,
6088 	     input_section,
6089 	     (unsigned long) relocation->r_offset);
6090 	  bfd_set_error (bfd_error_bad_value);
6091 	  return FALSE;
6092 	}
6093 
6094       /* Make this the JALX opcode.  */
6095       x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
6096     }
6097 
6098   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6099      range.  */
6100   if (!info->relocatable
6101       && !cross_mode_jump_p
6102       && ((JAL_TO_BAL_P (input_bfd)
6103 	   && r_type == R_MIPS_26
6104 	   && (x >> 26) == 0x3)		/* jal addr */
6105 	  || (JALR_TO_BAL_P (input_bfd)
6106 	      && r_type == R_MIPS_JALR
6107 	      && x == 0x0320f809)	/* jalr t9 */
6108 	  || (JR_TO_B_P (input_bfd)
6109 	      && r_type == R_MIPS_JALR
6110 	      && x == 0x03200008)))	/* jr t9 */
6111     {
6112       bfd_vma addr;
6113       bfd_vma dest;
6114       bfd_signed_vma off;
6115 
6116       addr = (input_section->output_section->vma
6117 	      + input_section->output_offset
6118 	      + relocation->r_offset
6119 	      + 4);
6120       if (r_type == R_MIPS_26)
6121 	dest = (value << 2) | ((addr >> 28) << 28);
6122       else
6123 	dest = value;
6124       off = dest - addr;
6125       if (off <= 0x1ffff && off >= -0x20000)
6126 	{
6127 	  if (x == 0x03200008)	/* jr t9 */
6128 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6129 	  else
6130 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6131 	}
6132     }
6133 
6134   /* Put the value into the output.  */
6135   bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
6136 
6137   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable,
6138 			       location);
6139 
6140   return TRUE;
6141 }
6142 
6143 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6144    is the original relocation, which is now being transformed into a
6145    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6146    caller should store the result in place of the original addend.  */
6147 
6148 static bfd_boolean
6149 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6150 				    struct bfd_link_info *info,
6151 				    const Elf_Internal_Rela *rel,
6152 				    struct mips_elf_link_hash_entry *h,
6153 				    asection *sec, bfd_vma symbol,
6154 				    bfd_vma *addendp, asection *input_section)
6155 {
6156   Elf_Internal_Rela outrel[3];
6157   asection *sreloc;
6158   bfd *dynobj;
6159   int r_type;
6160   long indx;
6161   bfd_boolean defined_p;
6162   struct mips_elf_link_hash_table *htab;
6163 
6164   htab = mips_elf_hash_table (info);
6165   BFD_ASSERT (htab != NULL);
6166 
6167   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6168   dynobj = elf_hash_table (info)->dynobj;
6169   sreloc = mips_elf_rel_dyn_section (info, FALSE);
6170   BFD_ASSERT (sreloc != NULL);
6171   BFD_ASSERT (sreloc->contents != NULL);
6172   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6173 	      < sreloc->size);
6174 
6175   outrel[0].r_offset =
6176     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6177   if (ABI_64_P (output_bfd))
6178     {
6179       outrel[1].r_offset =
6180 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6181       outrel[2].r_offset =
6182 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6183     }
6184 
6185   if (outrel[0].r_offset == MINUS_ONE)
6186     /* The relocation field has been deleted.  */
6187     return TRUE;
6188 
6189   if (outrel[0].r_offset == MINUS_TWO)
6190     {
6191       /* The relocation field has been converted into a relative value of
6192 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6193 	 the field to be fully relocated, so add in the symbol's value.  */
6194       *addendp += symbol;
6195       return TRUE;
6196     }
6197 
6198   /* We must now calculate the dynamic symbol table index to use
6199      in the relocation.  */
6200   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6201     {
6202       BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6203       indx = h->root.dynindx;
6204       if (SGI_COMPAT (output_bfd))
6205 	defined_p = h->root.def_regular;
6206       else
6207 	/* ??? glibc's ld.so just adds the final GOT entry to the
6208 	   relocation field.  It therefore treats relocs against
6209 	   defined symbols in the same way as relocs against
6210 	   undefined symbols.  */
6211 	defined_p = FALSE;
6212     }
6213   else
6214     {
6215       if (sec != NULL && bfd_is_abs_section (sec))
6216 	indx = 0;
6217       else if (sec == NULL || sec->owner == NULL)
6218 	{
6219 	  bfd_set_error (bfd_error_bad_value);
6220 	  return FALSE;
6221 	}
6222       else
6223 	{
6224 	  indx = elf_section_data (sec->output_section)->dynindx;
6225 	  if (indx == 0)
6226 	    {
6227 	      asection *osec = htab->root.text_index_section;
6228 	      indx = elf_section_data (osec)->dynindx;
6229 	    }
6230 	  if (indx == 0)
6231 	    abort ();
6232 	}
6233 
6234       /* Instead of generating a relocation using the section
6235 	 symbol, we may as well make it a fully relative
6236 	 relocation.  We want to avoid generating relocations to
6237 	 local symbols because we used to generate them
6238 	 incorrectly, without adding the original symbol value,
6239 	 which is mandated by the ABI for section symbols.  In
6240 	 order to give dynamic loaders and applications time to
6241 	 phase out the incorrect use, we refrain from emitting
6242 	 section-relative relocations.  It's not like they're
6243 	 useful, after all.  This should be a bit more efficient
6244 	 as well.  */
6245       /* ??? Although this behavior is compatible with glibc's ld.so,
6246 	 the ABI says that relocations against STN_UNDEF should have
6247 	 a symbol value of 0.  Irix rld honors this, so relocations
6248 	 against STN_UNDEF have no effect.  */
6249       if (!SGI_COMPAT (output_bfd))
6250 	indx = 0;
6251       defined_p = TRUE;
6252     }
6253 
6254   /* If the relocation was previously an absolute relocation and
6255      this symbol will not be referred to by the relocation, we must
6256      adjust it by the value we give it in the dynamic symbol table.
6257      Otherwise leave the job up to the dynamic linker.  */
6258   if (defined_p && r_type != R_MIPS_REL32)
6259     *addendp += symbol;
6260 
6261   if (htab->is_vxworks)
6262     /* VxWorks uses non-relative relocations for this.  */
6263     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6264   else
6265     /* The relocation is always an REL32 relocation because we don't
6266        know where the shared library will wind up at load-time.  */
6267     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6268 				   R_MIPS_REL32);
6269 
6270   /* For strict adherence to the ABI specification, we should
6271      generate a R_MIPS_64 relocation record by itself before the
6272      _REL32/_64 record as well, such that the addend is read in as
6273      a 64-bit value (REL32 is a 32-bit relocation, after all).
6274      However, since none of the existing ELF64 MIPS dynamic
6275      loaders seems to care, we don't waste space with these
6276      artificial relocations.  If this turns out to not be true,
6277      mips_elf_allocate_dynamic_relocation() should be tweaked so
6278      as to make room for a pair of dynamic relocations per
6279      invocation if ABI_64_P, and here we should generate an
6280      additional relocation record with R_MIPS_64 by itself for a
6281      NULL symbol before this relocation record.  */
6282   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6283 				 ABI_64_P (output_bfd)
6284 				 ? R_MIPS_64
6285 				 : R_MIPS_NONE);
6286   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6287 
6288   /* Adjust the output offset of the relocation to reference the
6289      correct location in the output file.  */
6290   outrel[0].r_offset += (input_section->output_section->vma
6291 			 + input_section->output_offset);
6292   outrel[1].r_offset += (input_section->output_section->vma
6293 			 + input_section->output_offset);
6294   outrel[2].r_offset += (input_section->output_section->vma
6295 			 + input_section->output_offset);
6296 
6297   /* Put the relocation back out.  We have to use the special
6298      relocation outputter in the 64-bit case since the 64-bit
6299      relocation format is non-standard.  */
6300   if (ABI_64_P (output_bfd))
6301     {
6302       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6303 	(output_bfd, &outrel[0],
6304 	 (sreloc->contents
6305 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6306     }
6307   else if (htab->is_vxworks)
6308     {
6309       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6310       outrel[0].r_addend = *addendp;
6311       bfd_elf32_swap_reloca_out
6312 	(output_bfd, &outrel[0],
6313 	 (sreloc->contents
6314 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6315     }
6316   else
6317     bfd_elf32_swap_reloc_out
6318       (output_bfd, &outrel[0],
6319        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6320 
6321   /* We've now added another relocation.  */
6322   ++sreloc->reloc_count;
6323 
6324   /* Make sure the output section is writable.  The dynamic linker
6325      will be writing to it.  */
6326   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6327     |= SHF_WRITE;
6328 
6329   /* On IRIX5, make an entry of compact relocation info.  */
6330   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6331     {
6332       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6333       bfd_byte *cr;
6334 
6335       if (scpt)
6336 	{
6337 	  Elf32_crinfo cptrel;
6338 
6339 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6340 	  cptrel.vaddr = (rel->r_offset
6341 			  + input_section->output_section->vma
6342 			  + input_section->output_offset);
6343 	  if (r_type == R_MIPS_REL32)
6344 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6345 	  else
6346 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6347 	  mips_elf_set_cr_dist2to (cptrel, 0);
6348 	  cptrel.konst = *addendp;
6349 
6350 	  cr = (scpt->contents
6351 		+ sizeof (Elf32_External_compact_rel));
6352 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6353 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6354 				     ((Elf32_External_crinfo *) cr
6355 				      + scpt->reloc_count));
6356 	  ++scpt->reloc_count;
6357 	}
6358     }
6359 
6360   /* If we've written this relocation for a readonly section,
6361      we need to set DF_TEXTREL again, so that we do not delete the
6362      DT_TEXTREL tag.  */
6363   if (MIPS_ELF_READONLY_SECTION (input_section))
6364     info->flags |= DF_TEXTREL;
6365 
6366   return TRUE;
6367 }
6368 
6369 /* Return the MACH for a MIPS e_flags value.  */
6370 
6371 unsigned long
6372 _bfd_elf_mips_mach (flagword flags)
6373 {
6374   switch (flags & EF_MIPS_MACH)
6375     {
6376     case E_MIPS_MACH_3900:
6377       return bfd_mach_mips3900;
6378 
6379     case E_MIPS_MACH_4010:
6380       return bfd_mach_mips4010;
6381 
6382     case E_MIPS_MACH_4100:
6383       return bfd_mach_mips4100;
6384 
6385     case E_MIPS_MACH_4111:
6386       return bfd_mach_mips4111;
6387 
6388     case E_MIPS_MACH_4120:
6389       return bfd_mach_mips4120;
6390 
6391     case E_MIPS_MACH_4650:
6392       return bfd_mach_mips4650;
6393 
6394     case E_MIPS_MACH_5400:
6395       return bfd_mach_mips5400;
6396 
6397     case E_MIPS_MACH_5500:
6398       return bfd_mach_mips5500;
6399 
6400     case E_MIPS_MACH_5900:
6401       return bfd_mach_mips5900;
6402 
6403     case E_MIPS_MACH_9000:
6404       return bfd_mach_mips9000;
6405 
6406     case E_MIPS_MACH_SB1:
6407       return bfd_mach_mips_sb1;
6408 
6409     case E_MIPS_MACH_LS2E:
6410       return bfd_mach_mips_loongson_2e;
6411 
6412     case E_MIPS_MACH_LS2F:
6413       return bfd_mach_mips_loongson_2f;
6414 
6415     case E_MIPS_MACH_LS3A:
6416       return bfd_mach_mips_loongson_3a;
6417 
6418     case E_MIPS_MACH_OCTEON2:
6419       return bfd_mach_mips_octeon2;
6420 
6421     case E_MIPS_MACH_OCTEON:
6422       return bfd_mach_mips_octeon;
6423 
6424     case E_MIPS_MACH_XLR:
6425       return bfd_mach_mips_xlr;
6426 
6427     default:
6428       switch (flags & EF_MIPS_ARCH)
6429 	{
6430 	default:
6431 	case E_MIPS_ARCH_1:
6432 	  return bfd_mach_mips3000;
6433 
6434 	case E_MIPS_ARCH_2:
6435 	  return bfd_mach_mips6000;
6436 
6437 	case E_MIPS_ARCH_3:
6438 	  return bfd_mach_mips4000;
6439 
6440 	case E_MIPS_ARCH_4:
6441 	  return bfd_mach_mips8000;
6442 
6443 	case E_MIPS_ARCH_5:
6444 	  return bfd_mach_mips5;
6445 
6446 	case E_MIPS_ARCH_32:
6447 	  return bfd_mach_mipsisa32;
6448 
6449 	case E_MIPS_ARCH_64:
6450 	  return bfd_mach_mipsisa64;
6451 
6452 	case E_MIPS_ARCH_32R2:
6453 	  return bfd_mach_mipsisa32r2;
6454 
6455 	case E_MIPS_ARCH_64R2:
6456 	  return bfd_mach_mipsisa64r2;
6457 	}
6458     }
6459 
6460   return 0;
6461 }
6462 
6463 /* Return printable name for ABI.  */
6464 
6465 static INLINE char *
6466 elf_mips_abi_name (bfd *abfd)
6467 {
6468   flagword flags;
6469 
6470   flags = elf_elfheader (abfd)->e_flags;
6471   switch (flags & EF_MIPS_ABI)
6472     {
6473     case 0:
6474       if (ABI_N32_P (abfd))
6475 	return "N32";
6476       else if (ABI_64_P (abfd))
6477 	return "64";
6478       else
6479 	return "none";
6480     case E_MIPS_ABI_O32:
6481       return "O32";
6482     case E_MIPS_ABI_O64:
6483       return "O64";
6484     case E_MIPS_ABI_EABI32:
6485       return "EABI32";
6486     case E_MIPS_ABI_EABI64:
6487       return "EABI64";
6488     default:
6489       return "unknown abi";
6490     }
6491 }
6492 
6493 /* MIPS ELF uses two common sections.  One is the usual one, and the
6494    other is for small objects.  All the small objects are kept
6495    together, and then referenced via the gp pointer, which yields
6496    faster assembler code.  This is what we use for the small common
6497    section.  This approach is copied from ecoff.c.  */
6498 static asection mips_elf_scom_section;
6499 static asymbol mips_elf_scom_symbol;
6500 static asymbol *mips_elf_scom_symbol_ptr;
6501 
6502 /* MIPS ELF also uses an acommon section, which represents an
6503    allocated common symbol which may be overridden by a
6504    definition in a shared library.  */
6505 static asection mips_elf_acom_section;
6506 static asymbol mips_elf_acom_symbol;
6507 static asymbol *mips_elf_acom_symbol_ptr;
6508 
6509 /* This is used for both the 32-bit and the 64-bit ABI.  */
6510 
6511 void
6512 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6513 {
6514   elf_symbol_type *elfsym;
6515 
6516   /* Handle the special MIPS section numbers that a symbol may use.  */
6517   elfsym = (elf_symbol_type *) asym;
6518   switch (elfsym->internal_elf_sym.st_shndx)
6519     {
6520     case SHN_MIPS_ACOMMON:
6521       /* This section is used in a dynamically linked executable file.
6522 	 It is an allocated common section.  The dynamic linker can
6523 	 either resolve these symbols to something in a shared
6524 	 library, or it can just leave them here.  For our purposes,
6525 	 we can consider these symbols to be in a new section.  */
6526       if (mips_elf_acom_section.name == NULL)
6527 	{
6528 	  /* Initialize the acommon section.  */
6529 	  mips_elf_acom_section.name = ".acommon";
6530 	  mips_elf_acom_section.flags = SEC_ALLOC;
6531 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
6532 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6533 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6534 	  mips_elf_acom_symbol.name = ".acommon";
6535 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6536 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
6537 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6538 	}
6539       asym->section = &mips_elf_acom_section;
6540       break;
6541 
6542     case SHN_COMMON:
6543       /* Common symbols less than the GP size are automatically
6544 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6545       if (asym->value > elf_gp_size (abfd)
6546 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6547 	  || IRIX_COMPAT (abfd) == ict_irix6)
6548 	break;
6549       /* Fall through.  */
6550     case SHN_MIPS_SCOMMON:
6551       if (mips_elf_scom_section.name == NULL)
6552 	{
6553 	  /* Initialize the small common section.  */
6554 	  mips_elf_scom_section.name = ".scommon";
6555 	  mips_elf_scom_section.flags = SEC_IS_COMMON;
6556 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
6557 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6558 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6559 	  mips_elf_scom_symbol.name = ".scommon";
6560 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6561 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
6562 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6563 	}
6564       asym->section = &mips_elf_scom_section;
6565       asym->value = elfsym->internal_elf_sym.st_size;
6566       break;
6567 
6568     case SHN_MIPS_SUNDEFINED:
6569       asym->section = bfd_und_section_ptr;
6570       break;
6571 
6572     case SHN_MIPS_TEXT:
6573       {
6574 	asection *section = bfd_get_section_by_name (abfd, ".text");
6575 
6576 	if (section != NULL)
6577 	  {
6578 	    asym->section = section;
6579 	    /* MIPS_TEXT is a bit special, the address is not an offset
6580 	       to the base of the .text section.  So substract the section
6581 	       base address to make it an offset.  */
6582 	    asym->value -= section->vma;
6583 	  }
6584       }
6585       break;
6586 
6587     case SHN_MIPS_DATA:
6588       {
6589 	asection *section = bfd_get_section_by_name (abfd, ".data");
6590 
6591 	if (section != NULL)
6592 	  {
6593 	    asym->section = section;
6594 	    /* MIPS_DATA is a bit special, the address is not an offset
6595 	       to the base of the .data section.  So substract the section
6596 	       base address to make it an offset.  */
6597 	    asym->value -= section->vma;
6598 	  }
6599       }
6600       break;
6601     }
6602 
6603   /* If this is an odd-valued function symbol, assume it's a MIPS16
6604      or microMIPS one.  */
6605   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6606       && (asym->value & 1) != 0)
6607     {
6608       asym->value--;
6609       if (MICROMIPS_P (abfd))
6610 	elfsym->internal_elf_sym.st_other
6611 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
6612       else
6613 	elfsym->internal_elf_sym.st_other
6614 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6615     }
6616 }
6617 
6618 /* Implement elf_backend_eh_frame_address_size.  This differs from
6619    the default in the way it handles EABI64.
6620 
6621    EABI64 was originally specified as an LP64 ABI, and that is what
6622    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6623    historically accepted the combination of -mabi=eabi and -mlong32,
6624    and this ILP32 variation has become semi-official over time.
6625    Both forms use elf32 and have pointer-sized FDE addresses.
6626 
6627    If an EABI object was generated by GCC 4.0 or above, it will have
6628    an empty .gcc_compiled_longXX section, where XX is the size of longs
6629    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
6630    have no special marking to distinguish them from LP64 objects.
6631 
6632    We don't want users of the official LP64 ABI to be punished for the
6633    existence of the ILP32 variant, but at the same time, we don't want
6634    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6635    We therefore take the following approach:
6636 
6637       - If ABFD contains a .gcc_compiled_longXX section, use it to
6638         determine the pointer size.
6639 
6640       - Otherwise check the type of the first relocation.  Assume that
6641         the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6642 
6643       - Otherwise punt.
6644 
6645    The second check is enough to detect LP64 objects generated by pre-4.0
6646    compilers because, in the kind of output generated by those compilers,
6647    the first relocation will be associated with either a CIE personality
6648    routine or an FDE start address.  Furthermore, the compilers never
6649    used a special (non-pointer) encoding for this ABI.
6650 
6651    Checking the relocation type should also be safe because there is no
6652    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
6653    did so.  */
6654 
6655 unsigned int
6656 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6657 {
6658   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6659     return 8;
6660   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6661     {
6662       bfd_boolean long32_p, long64_p;
6663 
6664       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6665       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6666       if (long32_p && long64_p)
6667 	return 0;
6668       if (long32_p)
6669 	return 4;
6670       if (long64_p)
6671 	return 8;
6672 
6673       if (sec->reloc_count > 0
6674 	  && elf_section_data (sec)->relocs != NULL
6675 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6676 	      == R_MIPS_64))
6677 	return 8;
6678 
6679       return 0;
6680     }
6681   return 4;
6682 }
6683 
6684 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6685    relocations against two unnamed section symbols to resolve to the
6686    same address.  For example, if we have code like:
6687 
6688 	lw	$4,%got_disp(.data)($gp)
6689 	lw	$25,%got_disp(.text)($gp)
6690 	jalr	$25
6691 
6692    then the linker will resolve both relocations to .data and the program
6693    will jump there rather than to .text.
6694 
6695    We can work around this problem by giving names to local section symbols.
6696    This is also what the MIPSpro tools do.  */
6697 
6698 bfd_boolean
6699 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6700 {
6701   return SGI_COMPAT (abfd);
6702 }
6703 
6704 /* Work over a section just before writing it out.  This routine is
6705    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
6706    sections that need the SHF_MIPS_GPREL flag by name; there has to be
6707    a better way.  */
6708 
6709 bfd_boolean
6710 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6711 {
6712   if (hdr->sh_type == SHT_MIPS_REGINFO
6713       && hdr->sh_size > 0)
6714     {
6715       bfd_byte buf[4];
6716 
6717       BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6718       BFD_ASSERT (hdr->contents == NULL);
6719 
6720       if (bfd_seek (abfd,
6721 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6722 		    SEEK_SET) != 0)
6723 	return FALSE;
6724       H_PUT_32 (abfd, elf_gp (abfd), buf);
6725       if (bfd_bwrite (buf, 4, abfd) != 4)
6726 	return FALSE;
6727     }
6728 
6729   if (hdr->sh_type == SHT_MIPS_OPTIONS
6730       && hdr->bfd_section != NULL
6731       && mips_elf_section_data (hdr->bfd_section) != NULL
6732       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6733     {
6734       bfd_byte *contents, *l, *lend;
6735 
6736       /* We stored the section contents in the tdata field in the
6737 	 set_section_contents routine.  We save the section contents
6738 	 so that we don't have to read them again.
6739 	 At this point we know that elf_gp is set, so we can look
6740 	 through the section contents to see if there is an
6741 	 ODK_REGINFO structure.  */
6742 
6743       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6744       l = contents;
6745       lend = contents + hdr->sh_size;
6746       while (l + sizeof (Elf_External_Options) <= lend)
6747 	{
6748 	  Elf_Internal_Options intopt;
6749 
6750 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6751 					&intopt);
6752 	  if (intopt.size < sizeof (Elf_External_Options))
6753 	    {
6754 	      (*_bfd_error_handler)
6755 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6756 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6757 	      break;
6758 	    }
6759 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6760 	    {
6761 	      bfd_byte buf[8];
6762 
6763 	      if (bfd_seek (abfd,
6764 			    (hdr->sh_offset
6765 			     + (l - contents)
6766 			     + sizeof (Elf_External_Options)
6767 			     + (sizeof (Elf64_External_RegInfo) - 8)),
6768 			     SEEK_SET) != 0)
6769 		return FALSE;
6770 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
6771 	      if (bfd_bwrite (buf, 8, abfd) != 8)
6772 		return FALSE;
6773 	    }
6774 	  else if (intopt.kind == ODK_REGINFO)
6775 	    {
6776 	      bfd_byte buf[4];
6777 
6778 	      if (bfd_seek (abfd,
6779 			    (hdr->sh_offset
6780 			     + (l - contents)
6781 			     + sizeof (Elf_External_Options)
6782 			     + (sizeof (Elf32_External_RegInfo) - 4)),
6783 			    SEEK_SET) != 0)
6784 		return FALSE;
6785 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
6786 	      if (bfd_bwrite (buf, 4, abfd) != 4)
6787 		return FALSE;
6788 	    }
6789 	  l += intopt.size;
6790 	}
6791     }
6792 
6793   if (hdr->bfd_section != NULL)
6794     {
6795       const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6796 
6797       /* .sbss is not handled specially here because the GNU/Linux
6798 	 prelinker can convert .sbss from NOBITS to PROGBITS and
6799 	 changing it back to NOBITS breaks the binary.  The entry in
6800 	 _bfd_mips_elf_special_sections will ensure the correct flags
6801 	 are set on .sbss if BFD creates it without reading it from an
6802 	 input file, and without special handling here the flags set
6803 	 on it in an input file will be followed.  */
6804       if (strcmp (name, ".sdata") == 0
6805 	  || strcmp (name, ".lit8") == 0
6806 	  || strcmp (name, ".lit4") == 0)
6807 	{
6808 	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6809 	  hdr->sh_type = SHT_PROGBITS;
6810 	}
6811       else if (strcmp (name, ".srdata") == 0)
6812 	{
6813 	  hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6814 	  hdr->sh_type = SHT_PROGBITS;
6815 	}
6816       else if (strcmp (name, ".compact_rel") == 0)
6817 	{
6818 	  hdr->sh_flags = 0;
6819 	  hdr->sh_type = SHT_PROGBITS;
6820 	}
6821       else if (strcmp (name, ".rtproc") == 0)
6822 	{
6823 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6824 	    {
6825 	      unsigned int adjust;
6826 
6827 	      adjust = hdr->sh_size % hdr->sh_addralign;
6828 	      if (adjust != 0)
6829 		hdr->sh_size += hdr->sh_addralign - adjust;
6830 	    }
6831 	}
6832     }
6833 
6834   return TRUE;
6835 }
6836 
6837 /* Handle a MIPS specific section when reading an object file.  This
6838    is called when elfcode.h finds a section with an unknown type.
6839    This routine supports both the 32-bit and 64-bit ELF ABI.
6840 
6841    FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6842    how to.  */
6843 
6844 bfd_boolean
6845 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6846 				 Elf_Internal_Shdr *hdr,
6847 				 const char *name,
6848 				 int shindex)
6849 {
6850   flagword flags = 0;
6851 
6852   /* There ought to be a place to keep ELF backend specific flags, but
6853      at the moment there isn't one.  We just keep track of the
6854      sections by their name, instead.  Fortunately, the ABI gives
6855      suggested names for all the MIPS specific sections, so we will
6856      probably get away with this.  */
6857   switch (hdr->sh_type)
6858     {
6859     case SHT_MIPS_LIBLIST:
6860       if (strcmp (name, ".liblist") != 0)
6861 	return FALSE;
6862       break;
6863     case SHT_MIPS_MSYM:
6864       if (strcmp (name, ".msym") != 0)
6865 	return FALSE;
6866       break;
6867     case SHT_MIPS_CONFLICT:
6868       if (strcmp (name, ".conflict") != 0)
6869 	return FALSE;
6870       break;
6871     case SHT_MIPS_GPTAB:
6872       if (! CONST_STRNEQ (name, ".gptab."))
6873 	return FALSE;
6874       break;
6875     case SHT_MIPS_UCODE:
6876       if (strcmp (name, ".ucode") != 0)
6877 	return FALSE;
6878       break;
6879     case SHT_MIPS_DEBUG:
6880       if (strcmp (name, ".mdebug") != 0)
6881 	return FALSE;
6882       flags = SEC_DEBUGGING;
6883       break;
6884     case SHT_MIPS_REGINFO:
6885       if (strcmp (name, ".reginfo") != 0
6886 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6887 	return FALSE;
6888       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6889       break;
6890     case SHT_MIPS_IFACE:
6891       if (strcmp (name, ".MIPS.interfaces") != 0)
6892 	return FALSE;
6893       break;
6894     case SHT_MIPS_CONTENT:
6895       if (! CONST_STRNEQ (name, ".MIPS.content"))
6896 	return FALSE;
6897       break;
6898     case SHT_MIPS_OPTIONS:
6899       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6900 	return FALSE;
6901       break;
6902     case SHT_MIPS_DWARF:
6903       if (! CONST_STRNEQ (name, ".debug_")
6904           && ! CONST_STRNEQ (name, ".zdebug_"))
6905 	return FALSE;
6906       break;
6907     case SHT_MIPS_SYMBOL_LIB:
6908       if (strcmp (name, ".MIPS.symlib") != 0)
6909 	return FALSE;
6910       break;
6911     case SHT_MIPS_EVENTS:
6912       if (! CONST_STRNEQ (name, ".MIPS.events")
6913 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6914 	return FALSE;
6915       break;
6916     default:
6917       break;
6918     }
6919 
6920   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6921     return FALSE;
6922 
6923   if (flags)
6924     {
6925       if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6926 				   (bfd_get_section_flags (abfd,
6927 							   hdr->bfd_section)
6928 				    | flags)))
6929 	return FALSE;
6930     }
6931 
6932   /* FIXME: We should record sh_info for a .gptab section.  */
6933 
6934   /* For a .reginfo section, set the gp value in the tdata information
6935      from the contents of this section.  We need the gp value while
6936      processing relocs, so we just get it now.  The .reginfo section
6937      is not used in the 64-bit MIPS ELF ABI.  */
6938   if (hdr->sh_type == SHT_MIPS_REGINFO)
6939     {
6940       Elf32_External_RegInfo ext;
6941       Elf32_RegInfo s;
6942 
6943       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6944 				      &ext, 0, sizeof ext))
6945 	return FALSE;
6946       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6947       elf_gp (abfd) = s.ri_gp_value;
6948     }
6949 
6950   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6951      set the gp value based on what we find.  We may see both
6952      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6953      they should agree.  */
6954   if (hdr->sh_type == SHT_MIPS_OPTIONS)
6955     {
6956       bfd_byte *contents, *l, *lend;
6957 
6958       contents = bfd_malloc (hdr->sh_size);
6959       if (contents == NULL)
6960 	return FALSE;
6961       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6962 				      0, hdr->sh_size))
6963 	{
6964 	  free (contents);
6965 	  return FALSE;
6966 	}
6967       l = contents;
6968       lend = contents + hdr->sh_size;
6969       while (l + sizeof (Elf_External_Options) <= lend)
6970 	{
6971 	  Elf_Internal_Options intopt;
6972 
6973 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6974 					&intopt);
6975 	  if (intopt.size < sizeof (Elf_External_Options))
6976 	    {
6977 	      (*_bfd_error_handler)
6978 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6979 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6980 	      break;
6981 	    }
6982 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6983 	    {
6984 	      Elf64_Internal_RegInfo intreg;
6985 
6986 	      bfd_mips_elf64_swap_reginfo_in
6987 		(abfd,
6988 		 ((Elf64_External_RegInfo *)
6989 		  (l + sizeof (Elf_External_Options))),
6990 		 &intreg);
6991 	      elf_gp (abfd) = intreg.ri_gp_value;
6992 	    }
6993 	  else if (intopt.kind == ODK_REGINFO)
6994 	    {
6995 	      Elf32_RegInfo intreg;
6996 
6997 	      bfd_mips_elf32_swap_reginfo_in
6998 		(abfd,
6999 		 ((Elf32_External_RegInfo *)
7000 		  (l + sizeof (Elf_External_Options))),
7001 		 &intreg);
7002 	      elf_gp (abfd) = intreg.ri_gp_value;
7003 	    }
7004 	  l += intopt.size;
7005 	}
7006       free (contents);
7007     }
7008 
7009   return TRUE;
7010 }
7011 
7012 /* Set the correct type for a MIPS ELF section.  We do this by the
7013    section name, which is a hack, but ought to work.  This routine is
7014    used by both the 32-bit and the 64-bit ABI.  */
7015 
7016 bfd_boolean
7017 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7018 {
7019   const char *name = bfd_get_section_name (abfd, sec);
7020 
7021   if (strcmp (name, ".liblist") == 0)
7022     {
7023       hdr->sh_type = SHT_MIPS_LIBLIST;
7024       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7025       /* The sh_link field is set in final_write_processing.  */
7026     }
7027   else if (strcmp (name, ".conflict") == 0)
7028     hdr->sh_type = SHT_MIPS_CONFLICT;
7029   else if (CONST_STRNEQ (name, ".gptab."))
7030     {
7031       hdr->sh_type = SHT_MIPS_GPTAB;
7032       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7033       /* The sh_info field is set in final_write_processing.  */
7034     }
7035   else if (strcmp (name, ".ucode") == 0)
7036     hdr->sh_type = SHT_MIPS_UCODE;
7037   else if (strcmp (name, ".mdebug") == 0)
7038     {
7039       hdr->sh_type = SHT_MIPS_DEBUG;
7040       /* In a shared object on IRIX 5.3, the .mdebug section has an
7041          entsize of 0.  FIXME: Does this matter?  */
7042       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7043 	hdr->sh_entsize = 0;
7044       else
7045 	hdr->sh_entsize = 1;
7046     }
7047   else if (strcmp (name, ".reginfo") == 0)
7048     {
7049       hdr->sh_type = SHT_MIPS_REGINFO;
7050       /* In a shared object on IRIX 5.3, the .reginfo section has an
7051          entsize of 0x18.  FIXME: Does this matter?  */
7052       if (SGI_COMPAT (abfd))
7053 	{
7054 	  if ((abfd->flags & DYNAMIC) != 0)
7055 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7056 	  else
7057 	    hdr->sh_entsize = 1;
7058 	}
7059       else
7060 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7061     }
7062   else if (SGI_COMPAT (abfd)
7063 	   && (strcmp (name, ".hash") == 0
7064 	       || strcmp (name, ".dynamic") == 0
7065 	       || strcmp (name, ".dynstr") == 0))
7066     {
7067       if (SGI_COMPAT (abfd))
7068 	hdr->sh_entsize = 0;
7069 #if 0
7070       /* This isn't how the IRIX6 linker behaves.  */
7071       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7072 #endif
7073     }
7074   else if (strcmp (name, ".got") == 0
7075 	   || strcmp (name, ".srdata") == 0
7076 	   || strcmp (name, ".sdata") == 0
7077 	   || strcmp (name, ".sbss") == 0
7078 	   || strcmp (name, ".lit4") == 0
7079 	   || strcmp (name, ".lit8") == 0)
7080     hdr->sh_flags |= SHF_MIPS_GPREL;
7081   else if (strcmp (name, ".MIPS.interfaces") == 0)
7082     {
7083       hdr->sh_type = SHT_MIPS_IFACE;
7084       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7085     }
7086   else if (CONST_STRNEQ (name, ".MIPS.content"))
7087     {
7088       hdr->sh_type = SHT_MIPS_CONTENT;
7089       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7090       /* The sh_info field is set in final_write_processing.  */
7091     }
7092   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7093     {
7094       hdr->sh_type = SHT_MIPS_OPTIONS;
7095       hdr->sh_entsize = 1;
7096       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7097     }
7098   else if (CONST_STRNEQ (name, ".debug_")
7099            || CONST_STRNEQ (name, ".zdebug_"))
7100     {
7101       hdr->sh_type = SHT_MIPS_DWARF;
7102 
7103       /* Irix facilities such as libexc expect a single .debug_frame
7104 	 per executable, the system ones have NOSTRIP set and the linker
7105 	 doesn't merge sections with different flags so ...  */
7106       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7107 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7108     }
7109   else if (strcmp (name, ".MIPS.symlib") == 0)
7110     {
7111       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7112       /* The sh_link and sh_info fields are set in
7113          final_write_processing.  */
7114     }
7115   else if (CONST_STRNEQ (name, ".MIPS.events")
7116 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
7117     {
7118       hdr->sh_type = SHT_MIPS_EVENTS;
7119       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7120       /* The sh_link field is set in final_write_processing.  */
7121     }
7122   else if (strcmp (name, ".msym") == 0)
7123     {
7124       hdr->sh_type = SHT_MIPS_MSYM;
7125       hdr->sh_flags |= SHF_ALLOC;
7126       hdr->sh_entsize = 8;
7127     }
7128 
7129   /* The generic elf_fake_sections will set up REL_HDR using the default
7130    kind of relocations.  We used to set up a second header for the
7131    non-default kind of relocations here, but only NewABI would use
7132    these, and the IRIX ld doesn't like resulting empty RELA sections.
7133    Thus we create those header only on demand now.  */
7134 
7135   return TRUE;
7136 }
7137 
7138 /* Given a BFD section, try to locate the corresponding ELF section
7139    index.  This is used by both the 32-bit and the 64-bit ABI.
7140    Actually, it's not clear to me that the 64-bit ABI supports these,
7141    but for non-PIC objects we will certainly want support for at least
7142    the .scommon section.  */
7143 
7144 bfd_boolean
7145 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7146 					asection *sec, int *retval)
7147 {
7148   if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
7149     {
7150       *retval = SHN_MIPS_SCOMMON;
7151       return TRUE;
7152     }
7153   if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
7154     {
7155       *retval = SHN_MIPS_ACOMMON;
7156       return TRUE;
7157     }
7158   return FALSE;
7159 }
7160 
7161 /* Hook called by the linker routine which adds symbols from an object
7162    file.  We must handle the special MIPS section numbers here.  */
7163 
7164 bfd_boolean
7165 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7166 			       Elf_Internal_Sym *sym, const char **namep,
7167 			       flagword *flagsp ATTRIBUTE_UNUSED,
7168 			       asection **secp, bfd_vma *valp)
7169 {
7170   if (SGI_COMPAT (abfd)
7171       && (abfd->flags & DYNAMIC) != 0
7172       && strcmp (*namep, "_rld_new_interface") == 0)
7173     {
7174       /* Skip IRIX5 rld entry name.  */
7175       *namep = NULL;
7176       return TRUE;
7177     }
7178 
7179   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7180      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7181      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7182      a magic symbol resolved by the linker, we ignore this bogus definition
7183      of _gp_disp.  New ABI objects do not suffer from this problem so this
7184      is not done for them. */
7185   if (!NEWABI_P(abfd)
7186       && (sym->st_shndx == SHN_ABS)
7187       && (strcmp (*namep, "_gp_disp") == 0))
7188     {
7189       *namep = NULL;
7190       return TRUE;
7191     }
7192 
7193   switch (sym->st_shndx)
7194     {
7195     case SHN_COMMON:
7196       /* Common symbols less than the GP size are automatically
7197 	 treated as SHN_MIPS_SCOMMON symbols.  */
7198       if (sym->st_size > elf_gp_size (abfd)
7199 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7200 	  || IRIX_COMPAT (abfd) == ict_irix6)
7201 	break;
7202       /* Fall through.  */
7203     case SHN_MIPS_SCOMMON:
7204       *secp = bfd_make_section_old_way (abfd, ".scommon");
7205       (*secp)->flags |= SEC_IS_COMMON;
7206       *valp = sym->st_size;
7207       break;
7208 
7209     case SHN_MIPS_TEXT:
7210       /* This section is used in a shared object.  */
7211       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7212 	{
7213 	  asymbol *elf_text_symbol;
7214 	  asection *elf_text_section;
7215 	  bfd_size_type amt = sizeof (asection);
7216 
7217 	  elf_text_section = bfd_zalloc (abfd, amt);
7218 	  if (elf_text_section == NULL)
7219 	    return FALSE;
7220 
7221 	  amt = sizeof (asymbol);
7222 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7223 	  if (elf_text_symbol == NULL)
7224 	    return FALSE;
7225 
7226 	  /* Initialize the section.  */
7227 
7228 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7229 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7230 
7231 	  elf_text_section->symbol = elf_text_symbol;
7232 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7233 
7234 	  elf_text_section->name = ".text";
7235 	  elf_text_section->flags = SEC_NO_FLAGS;
7236 	  elf_text_section->output_section = NULL;
7237 	  elf_text_section->owner = abfd;
7238 	  elf_text_symbol->name = ".text";
7239 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7240 	  elf_text_symbol->section = elf_text_section;
7241 	}
7242       /* This code used to do *secp = bfd_und_section_ptr if
7243          info->shared.  I don't know why, and that doesn't make sense,
7244          so I took it out.  */
7245       *secp = mips_elf_tdata (abfd)->elf_text_section;
7246       break;
7247 
7248     case SHN_MIPS_ACOMMON:
7249       /* Fall through. XXX Can we treat this as allocated data?  */
7250     case SHN_MIPS_DATA:
7251       /* This section is used in a shared object.  */
7252       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7253 	{
7254 	  asymbol *elf_data_symbol;
7255 	  asection *elf_data_section;
7256 	  bfd_size_type amt = sizeof (asection);
7257 
7258 	  elf_data_section = bfd_zalloc (abfd, amt);
7259 	  if (elf_data_section == NULL)
7260 	    return FALSE;
7261 
7262 	  amt = sizeof (asymbol);
7263 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7264 	  if (elf_data_symbol == NULL)
7265 	    return FALSE;
7266 
7267 	  /* Initialize the section.  */
7268 
7269 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7270 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7271 
7272 	  elf_data_section->symbol = elf_data_symbol;
7273 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7274 
7275 	  elf_data_section->name = ".data";
7276 	  elf_data_section->flags = SEC_NO_FLAGS;
7277 	  elf_data_section->output_section = NULL;
7278 	  elf_data_section->owner = abfd;
7279 	  elf_data_symbol->name = ".data";
7280 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7281 	  elf_data_symbol->section = elf_data_section;
7282 	}
7283       /* This code used to do *secp = bfd_und_section_ptr if
7284          info->shared.  I don't know why, and that doesn't make sense,
7285          so I took it out.  */
7286       *secp = mips_elf_tdata (abfd)->elf_data_section;
7287       break;
7288 
7289     case SHN_MIPS_SUNDEFINED:
7290       *secp = bfd_und_section_ptr;
7291       break;
7292     }
7293 
7294   if (SGI_COMPAT (abfd)
7295       && ! info->shared
7296       && info->output_bfd->xvec == abfd->xvec
7297       && strcmp (*namep, "__rld_obj_head") == 0)
7298     {
7299       struct elf_link_hash_entry *h;
7300       struct bfd_link_hash_entry *bh;
7301 
7302       /* Mark __rld_obj_head as dynamic.  */
7303       bh = NULL;
7304       if (! (_bfd_generic_link_add_one_symbol
7305 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7306 	      get_elf_backend_data (abfd)->collect, &bh)))
7307 	return FALSE;
7308 
7309       h = (struct elf_link_hash_entry *) bh;
7310       h->non_elf = 0;
7311       h->def_regular = 1;
7312       h->type = STT_OBJECT;
7313 
7314       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7315 	return FALSE;
7316 
7317       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7318       mips_elf_hash_table (info)->rld_symbol = h;
7319     }
7320 
7321   /* If this is a mips16 text symbol, add 1 to the value to make it
7322      odd.  This will cause something like .word SYM to come up with
7323      the right value when it is loaded into the PC.  */
7324   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7325     ++*valp;
7326 
7327   return TRUE;
7328 }
7329 
7330 /* This hook function is called before the linker writes out a global
7331    symbol.  We mark symbols as small common if appropriate.  This is
7332    also where we undo the increment of the value for a mips16 symbol.  */
7333 
7334 int
7335 _bfd_mips_elf_link_output_symbol_hook
7336   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7337    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7338    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7339 {
7340   /* If we see a common symbol, which implies a relocatable link, then
7341      if a symbol was small common in an input file, mark it as small
7342      common in the output file.  */
7343   if (sym->st_shndx == SHN_COMMON
7344       && strcmp (input_sec->name, ".scommon") == 0)
7345     sym->st_shndx = SHN_MIPS_SCOMMON;
7346 
7347   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7348     sym->st_value &= ~1;
7349 
7350   return 1;
7351 }
7352 
7353 /* Functions for the dynamic linker.  */
7354 
7355 /* Create dynamic sections when linking against a dynamic object.  */
7356 
7357 bfd_boolean
7358 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7359 {
7360   struct elf_link_hash_entry *h;
7361   struct bfd_link_hash_entry *bh;
7362   flagword flags;
7363   register asection *s;
7364   const char * const *namep;
7365   struct mips_elf_link_hash_table *htab;
7366 
7367   htab = mips_elf_hash_table (info);
7368   BFD_ASSERT (htab != NULL);
7369 
7370   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7371 	   | SEC_LINKER_CREATED | SEC_READONLY);
7372 
7373   /* The psABI requires a read-only .dynamic section, but the VxWorks
7374      EABI doesn't.  */
7375   if (!htab->is_vxworks)
7376     {
7377       s = bfd_get_linker_section (abfd, ".dynamic");
7378       if (s != NULL)
7379 	{
7380 	  if (! bfd_set_section_flags (abfd, s, flags))
7381 	    return FALSE;
7382 	}
7383     }
7384 
7385   /* We need to create .got section.  */
7386   if (!mips_elf_create_got_section (abfd, info))
7387     return FALSE;
7388 
7389   if (! mips_elf_rel_dyn_section (info, TRUE))
7390     return FALSE;
7391 
7392   /* Create .stub section.  */
7393   s = bfd_make_section_anyway_with_flags (abfd,
7394 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7395 					  flags | SEC_CODE);
7396   if (s == NULL
7397       || ! bfd_set_section_alignment (abfd, s,
7398 				      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7399     return FALSE;
7400   htab->sstubs = s;
7401 
7402   if (!mips_elf_hash_table (info)->use_rld_obj_head
7403       && !info->shared
7404       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
7405     {
7406       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
7407 					      flags &~ (flagword) SEC_READONLY);
7408       if (s == NULL
7409 	  || ! bfd_set_section_alignment (abfd, s,
7410 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7411 	return FALSE;
7412     }
7413 
7414   /* On IRIX5, we adjust add some additional symbols and change the
7415      alignments of several sections.  There is no ABI documentation
7416      indicating that this is necessary on IRIX6, nor any evidence that
7417      the linker takes such action.  */
7418   if (IRIX_COMPAT (abfd) == ict_irix5)
7419     {
7420       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
7421 	{
7422 	  bh = NULL;
7423 	  if (! (_bfd_generic_link_add_one_symbol
7424 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
7425 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7426 	    return FALSE;
7427 
7428 	  h = (struct elf_link_hash_entry *) bh;
7429 	  h->non_elf = 0;
7430 	  h->def_regular = 1;
7431 	  h->type = STT_SECTION;
7432 
7433 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7434 	    return FALSE;
7435 	}
7436 
7437       /* We need to create a .compact_rel section.  */
7438       if (SGI_COMPAT (abfd))
7439 	{
7440 	  if (!mips_elf_create_compact_rel_section (abfd, info))
7441 	    return FALSE;
7442 	}
7443 
7444       /* Change alignments of some sections.  */
7445       s = bfd_get_linker_section (abfd, ".hash");
7446       if (s != NULL)
7447 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7448 
7449       s = bfd_get_linker_section (abfd, ".dynsym");
7450       if (s != NULL)
7451 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7452 
7453       s = bfd_get_linker_section (abfd, ".dynstr");
7454       if (s != NULL)
7455 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7456 
7457       /* ??? */
7458       s = bfd_get_section_by_name (abfd, ".reginfo");
7459       if (s != NULL)
7460 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7461 
7462       s = bfd_get_linker_section (abfd, ".dynamic");
7463       if (s != NULL)
7464 	(void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
7465     }
7466 
7467   if (!info->shared)
7468     {
7469       const char *name;
7470 
7471       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
7472       bh = NULL;
7473       if (!(_bfd_generic_link_add_one_symbol
7474 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
7475 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
7476 	return FALSE;
7477 
7478       h = (struct elf_link_hash_entry *) bh;
7479       h->non_elf = 0;
7480       h->def_regular = 1;
7481       h->type = STT_SECTION;
7482 
7483       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7484 	return FALSE;
7485 
7486       if (! mips_elf_hash_table (info)->use_rld_obj_head)
7487 	{
7488 	  /* __rld_map is a four byte word located in the .data section
7489 	     and is filled in by the rtld to contain a pointer to
7490 	     the _r_debug structure. Its symbol value will be set in
7491 	     _bfd_mips_elf_finish_dynamic_symbol.  */
7492 	  s = bfd_get_linker_section (abfd, ".rld_map");
7493 	  BFD_ASSERT (s != NULL);
7494 
7495 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7496 	  bh = NULL;
7497 	  if (!(_bfd_generic_link_add_one_symbol
7498 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7499 		 get_elf_backend_data (abfd)->collect, &bh)))
7500 	    return FALSE;
7501 
7502 	  h = (struct elf_link_hash_entry *) bh;
7503 	  h->non_elf = 0;
7504 	  h->def_regular = 1;
7505 	  h->type = STT_OBJECT;
7506 
7507 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7508 	    return FALSE;
7509 	  mips_elf_hash_table (info)->rld_symbol = h;
7510 	}
7511     }
7512 
7513   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7514      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
7515   if (!_bfd_elf_create_dynamic_sections (abfd, info))
7516     return FALSE;
7517 
7518   /* Cache the sections created above.  */
7519   htab->splt = bfd_get_linker_section (abfd, ".plt");
7520   htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss");
7521   if (htab->is_vxworks)
7522     {
7523       htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss");
7524       htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt");
7525     }
7526   else
7527     htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt");
7528   if (!htab->sdynbss
7529       || (htab->is_vxworks && !htab->srelbss && !info->shared)
7530       || !htab->srelplt
7531       || !htab->splt)
7532     abort ();
7533 
7534   /* Do the usual VxWorks handling.  */
7535   if (htab->is_vxworks
7536       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7537     return FALSE;
7538 
7539   return TRUE;
7540 }
7541 
7542 /* Return true if relocation REL against section SEC is a REL rather than
7543    RELA relocation.  RELOCS is the first relocation in the section and
7544    ABFD is the bfd that contains SEC.  */
7545 
7546 static bfd_boolean
7547 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7548 			   const Elf_Internal_Rela *relocs,
7549 			   const Elf_Internal_Rela *rel)
7550 {
7551   Elf_Internal_Shdr *rel_hdr;
7552   const struct elf_backend_data *bed;
7553 
7554   /* To determine which flavor of relocation this is, we depend on the
7555      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7556   rel_hdr = elf_section_data (sec)->rel.hdr;
7557   if (rel_hdr == NULL)
7558     return FALSE;
7559   bed = get_elf_backend_data (abfd);
7560   return ((size_t) (rel - relocs)
7561 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7562 }
7563 
7564 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7565    HOWTO is the relocation's howto and CONTENTS points to the contents
7566    of the section that REL is against.  */
7567 
7568 static bfd_vma
7569 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7570 			  reloc_howto_type *howto, bfd_byte *contents)
7571 {
7572   bfd_byte *location;
7573   unsigned int r_type;
7574   bfd_vma addend;
7575 
7576   r_type = ELF_R_TYPE (abfd, rel->r_info);
7577   location = contents + rel->r_offset;
7578 
7579   /* Get the addend, which is stored in the input file.  */
7580   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7581   addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7582   _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7583 
7584   return addend & howto->src_mask;
7585 }
7586 
7587 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7588    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7589    and update *ADDEND with the final addend.  Return true on success
7590    or false if the LO16 could not be found.  RELEND is the exclusive
7591    upper bound on the relocations for REL's section.  */
7592 
7593 static bfd_boolean
7594 mips_elf_add_lo16_rel_addend (bfd *abfd,
7595 			      const Elf_Internal_Rela *rel,
7596 			      const Elf_Internal_Rela *relend,
7597 			      bfd_byte *contents, bfd_vma *addend)
7598 {
7599   unsigned int r_type, lo16_type;
7600   const Elf_Internal_Rela *lo16_relocation;
7601   reloc_howto_type *lo16_howto;
7602   bfd_vma l;
7603 
7604   r_type = ELF_R_TYPE (abfd, rel->r_info);
7605   if (mips16_reloc_p (r_type))
7606     lo16_type = R_MIPS16_LO16;
7607   else if (micromips_reloc_p (r_type))
7608     lo16_type = R_MICROMIPS_LO16;
7609   else
7610     lo16_type = R_MIPS_LO16;
7611 
7612   /* The combined value is the sum of the HI16 addend, left-shifted by
7613      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
7614      code does a `lui' of the HI16 value, and then an `addiu' of the
7615      LO16 value.)
7616 
7617      Scan ahead to find a matching LO16 relocation.
7618 
7619      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7620      be immediately following.  However, for the IRIX6 ABI, the next
7621      relocation may be a composed relocation consisting of several
7622      relocations for the same address.  In that case, the R_MIPS_LO16
7623      relocation may occur as one of these.  We permit a similar
7624      extension in general, as that is useful for GCC.
7625 
7626      In some cases GCC dead code elimination removes the LO16 but keeps
7627      the corresponding HI16.  This is strictly speaking a violation of
7628      the ABI but not immediately harmful.  */
7629   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7630   if (lo16_relocation == NULL)
7631     return FALSE;
7632 
7633   /* Obtain the addend kept there.  */
7634   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7635   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7636 
7637   l <<= lo16_howto->rightshift;
7638   l = _bfd_mips_elf_sign_extend (l, 16);
7639 
7640   *addend <<= 16;
7641   *addend += l;
7642   return TRUE;
7643 }
7644 
7645 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
7646    store the contents in *CONTENTS on success.  Assume that *CONTENTS
7647    already holds the contents if it is nonull on entry.  */
7648 
7649 static bfd_boolean
7650 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7651 {
7652   if (*contents)
7653     return TRUE;
7654 
7655   /* Get cached copy if it exists.  */
7656   if (elf_section_data (sec)->this_hdr.contents != NULL)
7657     {
7658       *contents = elf_section_data (sec)->this_hdr.contents;
7659       return TRUE;
7660     }
7661 
7662   return bfd_malloc_and_get_section (abfd, sec, contents);
7663 }
7664 
7665 /* Make a new PLT record to keep internal data.  */
7666 
7667 static struct plt_entry *
7668 mips_elf_make_plt_record (bfd *abfd)
7669 {
7670   struct plt_entry *entry;
7671 
7672   entry = bfd_zalloc (abfd, sizeof (*entry));
7673   if (entry == NULL)
7674     return NULL;
7675 
7676   entry->stub_offset = MINUS_ONE;
7677   entry->mips_offset = MINUS_ONE;
7678   entry->comp_offset = MINUS_ONE;
7679   entry->gotplt_index = MINUS_ONE;
7680   return entry;
7681 }
7682 
7683 /* Look through the relocs for a section during the first phase, and
7684    allocate space in the global offset table and record the need for
7685    standard MIPS and compressed procedure linkage table entries.  */
7686 
7687 bfd_boolean
7688 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7689 			    asection *sec, const Elf_Internal_Rela *relocs)
7690 {
7691   const char *name;
7692   bfd *dynobj;
7693   Elf_Internal_Shdr *symtab_hdr;
7694   struct elf_link_hash_entry **sym_hashes;
7695   size_t extsymoff;
7696   const Elf_Internal_Rela *rel;
7697   const Elf_Internal_Rela *rel_end;
7698   asection *sreloc;
7699   const struct elf_backend_data *bed;
7700   struct mips_elf_link_hash_table *htab;
7701   bfd_byte *contents;
7702   bfd_vma addend;
7703   reloc_howto_type *howto;
7704 
7705   if (info->relocatable)
7706     return TRUE;
7707 
7708   htab = mips_elf_hash_table (info);
7709   BFD_ASSERT (htab != NULL);
7710 
7711   dynobj = elf_hash_table (info)->dynobj;
7712   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7713   sym_hashes = elf_sym_hashes (abfd);
7714   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7715 
7716   bed = get_elf_backend_data (abfd);
7717   rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7718 
7719   /* Check for the mips16 stub sections.  */
7720 
7721   name = bfd_get_section_name (abfd, sec);
7722   if (FN_STUB_P (name))
7723     {
7724       unsigned long r_symndx;
7725 
7726       /* Look at the relocation information to figure out which symbol
7727          this is for.  */
7728 
7729       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7730       if (r_symndx == 0)
7731 	{
7732 	  (*_bfd_error_handler)
7733 	    (_("%B: Warning: cannot determine the target function for"
7734 	       " stub section `%s'"),
7735 	     abfd, name);
7736 	  bfd_set_error (bfd_error_bad_value);
7737 	  return FALSE;
7738 	}
7739 
7740       if (r_symndx < extsymoff
7741 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7742 	{
7743 	  asection *o;
7744 
7745 	  /* This stub is for a local symbol.  This stub will only be
7746              needed if there is some relocation in this BFD, other
7747              than a 16 bit function call, which refers to this symbol.  */
7748 	  for (o = abfd->sections; o != NULL; o = o->next)
7749 	    {
7750 	      Elf_Internal_Rela *sec_relocs;
7751 	      const Elf_Internal_Rela *r, *rend;
7752 
7753 	      /* We can ignore stub sections when looking for relocs.  */
7754 	      if ((o->flags & SEC_RELOC) == 0
7755 		  || o->reloc_count == 0
7756 		  || section_allows_mips16_refs_p (o))
7757 		continue;
7758 
7759 	      sec_relocs
7760 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7761 					     info->keep_memory);
7762 	      if (sec_relocs == NULL)
7763 		return FALSE;
7764 
7765 	      rend = sec_relocs + o->reloc_count;
7766 	      for (r = sec_relocs; r < rend; r++)
7767 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7768 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7769 		  break;
7770 
7771 	      if (elf_section_data (o)->relocs != sec_relocs)
7772 		free (sec_relocs);
7773 
7774 	      if (r < rend)
7775 		break;
7776 	    }
7777 
7778 	  if (o == NULL)
7779 	    {
7780 	      /* There is no non-call reloc for this stub, so we do
7781                  not need it.  Since this function is called before
7782                  the linker maps input sections to output sections, we
7783                  can easily discard it by setting the SEC_EXCLUDE
7784                  flag.  */
7785 	      sec->flags |= SEC_EXCLUDE;
7786 	      return TRUE;
7787 	    }
7788 
7789 	  /* Record this stub in an array of local symbol stubs for
7790              this BFD.  */
7791 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
7792 	    {
7793 	      unsigned long symcount;
7794 	      asection **n;
7795 	      bfd_size_type amt;
7796 
7797 	      if (elf_bad_symtab (abfd))
7798 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7799 	      else
7800 		symcount = symtab_hdr->sh_info;
7801 	      amt = symcount * sizeof (asection *);
7802 	      n = bfd_zalloc (abfd, amt);
7803 	      if (n == NULL)
7804 		return FALSE;
7805 	      mips_elf_tdata (abfd)->local_stubs = n;
7806 	    }
7807 
7808 	  sec->flags |= SEC_KEEP;
7809 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7810 
7811 	  /* We don't need to set mips16_stubs_seen in this case.
7812              That flag is used to see whether we need to look through
7813              the global symbol table for stubs.  We don't need to set
7814              it here, because we just have a local stub.  */
7815 	}
7816       else
7817 	{
7818 	  struct mips_elf_link_hash_entry *h;
7819 
7820 	  h = ((struct mips_elf_link_hash_entry *)
7821 	       sym_hashes[r_symndx - extsymoff]);
7822 
7823 	  while (h->root.root.type == bfd_link_hash_indirect
7824 		 || h->root.root.type == bfd_link_hash_warning)
7825 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7826 
7827 	  /* H is the symbol this stub is for.  */
7828 
7829 	  /* If we already have an appropriate stub for this function, we
7830 	     don't need another one, so we can discard this one.  Since
7831 	     this function is called before the linker maps input sections
7832 	     to output sections, we can easily discard it by setting the
7833 	     SEC_EXCLUDE flag.  */
7834 	  if (h->fn_stub != NULL)
7835 	    {
7836 	      sec->flags |= SEC_EXCLUDE;
7837 	      return TRUE;
7838 	    }
7839 
7840 	  sec->flags |= SEC_KEEP;
7841 	  h->fn_stub = sec;
7842 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7843 	}
7844     }
7845   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7846     {
7847       unsigned long r_symndx;
7848       struct mips_elf_link_hash_entry *h;
7849       asection **loc;
7850 
7851       /* Look at the relocation information to figure out which symbol
7852          this is for.  */
7853 
7854       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
7855       if (r_symndx == 0)
7856 	{
7857 	  (*_bfd_error_handler)
7858 	    (_("%B: Warning: cannot determine the target function for"
7859 	       " stub section `%s'"),
7860 	     abfd, name);
7861 	  bfd_set_error (bfd_error_bad_value);
7862 	  return FALSE;
7863 	}
7864 
7865       if (r_symndx < extsymoff
7866 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7867 	{
7868 	  asection *o;
7869 
7870 	  /* This stub is for a local symbol.  This stub will only be
7871              needed if there is some relocation (R_MIPS16_26) in this BFD
7872              that refers to this symbol.  */
7873 	  for (o = abfd->sections; o != NULL; o = o->next)
7874 	    {
7875 	      Elf_Internal_Rela *sec_relocs;
7876 	      const Elf_Internal_Rela *r, *rend;
7877 
7878 	      /* We can ignore stub sections when looking for relocs.  */
7879 	      if ((o->flags & SEC_RELOC) == 0
7880 		  || o->reloc_count == 0
7881 		  || section_allows_mips16_refs_p (o))
7882 		continue;
7883 
7884 	      sec_relocs
7885 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7886 					     info->keep_memory);
7887 	      if (sec_relocs == NULL)
7888 		return FALSE;
7889 
7890 	      rend = sec_relocs + o->reloc_count;
7891 	      for (r = sec_relocs; r < rend; r++)
7892 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7893 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7894 		    break;
7895 
7896 	      if (elf_section_data (o)->relocs != sec_relocs)
7897 		free (sec_relocs);
7898 
7899 	      if (r < rend)
7900 		break;
7901 	    }
7902 
7903 	  if (o == NULL)
7904 	    {
7905 	      /* There is no non-call reloc for this stub, so we do
7906                  not need it.  Since this function is called before
7907                  the linker maps input sections to output sections, we
7908                  can easily discard it by setting the SEC_EXCLUDE
7909                  flag.  */
7910 	      sec->flags |= SEC_EXCLUDE;
7911 	      return TRUE;
7912 	    }
7913 
7914 	  /* Record this stub in an array of local symbol call_stubs for
7915              this BFD.  */
7916 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
7917 	    {
7918 	      unsigned long symcount;
7919 	      asection **n;
7920 	      bfd_size_type amt;
7921 
7922 	      if (elf_bad_symtab (abfd))
7923 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7924 	      else
7925 		symcount = symtab_hdr->sh_info;
7926 	      amt = symcount * sizeof (asection *);
7927 	      n = bfd_zalloc (abfd, amt);
7928 	      if (n == NULL)
7929 		return FALSE;
7930 	      mips_elf_tdata (abfd)->local_call_stubs = n;
7931 	    }
7932 
7933 	  sec->flags |= SEC_KEEP;
7934 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7935 
7936 	  /* We don't need to set mips16_stubs_seen in this case.
7937              That flag is used to see whether we need to look through
7938              the global symbol table for stubs.  We don't need to set
7939              it here, because we just have a local stub.  */
7940 	}
7941       else
7942 	{
7943 	  h = ((struct mips_elf_link_hash_entry *)
7944 	       sym_hashes[r_symndx - extsymoff]);
7945 
7946 	  /* H is the symbol this stub is for.  */
7947 
7948 	  if (CALL_FP_STUB_P (name))
7949 	    loc = &h->call_fp_stub;
7950 	  else
7951 	    loc = &h->call_stub;
7952 
7953 	  /* If we already have an appropriate stub for this function, we
7954 	     don't need another one, so we can discard this one.  Since
7955 	     this function is called before the linker maps input sections
7956 	     to output sections, we can easily discard it by setting the
7957 	     SEC_EXCLUDE flag.  */
7958 	  if (*loc != NULL)
7959 	    {
7960 	      sec->flags |= SEC_EXCLUDE;
7961 	      return TRUE;
7962 	    }
7963 
7964 	  sec->flags |= SEC_KEEP;
7965 	  *loc = sec;
7966 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7967 	}
7968     }
7969 
7970   sreloc = NULL;
7971   contents = NULL;
7972   for (rel = relocs; rel < rel_end; ++rel)
7973     {
7974       unsigned long r_symndx;
7975       unsigned int r_type;
7976       struct elf_link_hash_entry *h;
7977       bfd_boolean can_make_dynamic_p;
7978       bfd_boolean call_reloc_p;
7979       bfd_boolean constrain_symbol_p;
7980 
7981       r_symndx = ELF_R_SYM (abfd, rel->r_info);
7982       r_type = ELF_R_TYPE (abfd, rel->r_info);
7983 
7984       if (r_symndx < extsymoff)
7985 	h = NULL;
7986       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7987 	{
7988 	  (*_bfd_error_handler)
7989 	    (_("%B: Malformed reloc detected for section %s"),
7990 	     abfd, name);
7991 	  bfd_set_error (bfd_error_bad_value);
7992 	  return FALSE;
7993 	}
7994       else
7995 	{
7996 	  h = sym_hashes[r_symndx - extsymoff];
7997 	  if (h != NULL)
7998 	    {
7999 	      while (h->root.type == bfd_link_hash_indirect
8000 		     || h->root.type == bfd_link_hash_warning)
8001 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8002 
8003 	      /* PR15323, ref flags aren't set for references in the
8004 		 same object.  */
8005 	      h->root.non_ir_ref = 1;
8006 	    }
8007 	}
8008 
8009       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8010 	 relocation into a dynamic one.  */
8011       can_make_dynamic_p = FALSE;
8012 
8013       /* Set CALL_RELOC_P to true if the relocation is for a call,
8014 	 and if pointer equality therefore doesn't matter.  */
8015       call_reloc_p = FALSE;
8016 
8017       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8018 	 into account when deciding how to define the symbol.
8019 	 Relocations in nonallocatable sections such as .pdr and
8020 	 .debug* should have no effect.  */
8021       constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8022 
8023       switch (r_type)
8024 	{
8025 	case R_MIPS_CALL16:
8026 	case R_MIPS_CALL_HI16:
8027 	case R_MIPS_CALL_LO16:
8028 	case R_MIPS16_CALL16:
8029 	case R_MICROMIPS_CALL16:
8030 	case R_MICROMIPS_CALL_HI16:
8031 	case R_MICROMIPS_CALL_LO16:
8032 	  call_reloc_p = TRUE;
8033 	  /* Fall through.  */
8034 
8035 	case R_MIPS_GOT16:
8036 	case R_MIPS_GOT_HI16:
8037 	case R_MIPS_GOT_LO16:
8038 	case R_MIPS_GOT_PAGE:
8039 	case R_MIPS_GOT_OFST:
8040 	case R_MIPS_GOT_DISP:
8041 	case R_MIPS_TLS_GOTTPREL:
8042 	case R_MIPS_TLS_GD:
8043 	case R_MIPS_TLS_LDM:
8044 	case R_MIPS16_GOT16:
8045 	case R_MIPS16_TLS_GOTTPREL:
8046 	case R_MIPS16_TLS_GD:
8047 	case R_MIPS16_TLS_LDM:
8048 	case R_MICROMIPS_GOT16:
8049 	case R_MICROMIPS_GOT_HI16:
8050 	case R_MICROMIPS_GOT_LO16:
8051 	case R_MICROMIPS_GOT_PAGE:
8052 	case R_MICROMIPS_GOT_OFST:
8053 	case R_MICROMIPS_GOT_DISP:
8054 	case R_MICROMIPS_TLS_GOTTPREL:
8055 	case R_MICROMIPS_TLS_GD:
8056 	case R_MICROMIPS_TLS_LDM:
8057 	  if (dynobj == NULL)
8058 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8059 	  if (!mips_elf_create_got_section (dynobj, info))
8060 	    return FALSE;
8061 	  if (htab->is_vxworks && !info->shared)
8062 	    {
8063 	      (*_bfd_error_handler)
8064 		(_("%B: GOT reloc at 0x%lx not expected in executables"),
8065 		 abfd, (unsigned long) rel->r_offset);
8066 	      bfd_set_error (bfd_error_bad_value);
8067 	      return FALSE;
8068 	    }
8069 	  can_make_dynamic_p = TRUE;
8070 	  break;
8071 
8072 	case R_MIPS_NONE:
8073 	case R_MIPS_JALR:
8074 	case R_MICROMIPS_JALR:
8075 	  /* These relocations have empty fields and are purely there to
8076 	     provide link information.  The symbol value doesn't matter.  */
8077 	  constrain_symbol_p = FALSE;
8078 	  break;
8079 
8080 	case R_MIPS_GPREL16:
8081 	case R_MIPS_GPREL32:
8082 	case R_MIPS16_GPREL:
8083 	case R_MICROMIPS_GPREL16:
8084 	  /* GP-relative relocations always resolve to a definition in a
8085 	     regular input file, ignoring the one-definition rule.  This is
8086 	     important for the GP setup sequence in NewABI code, which
8087 	     always resolves to a local function even if other relocations
8088 	     against the symbol wouldn't.  */
8089 	  constrain_symbol_p = FALSE;
8090 	  break;
8091 
8092 	case R_MIPS_32:
8093 	case R_MIPS_REL32:
8094 	case R_MIPS_64:
8095 	  /* In VxWorks executables, references to external symbols
8096 	     must be handled using copy relocs or PLT entries; it is not
8097 	     possible to convert this relocation into a dynamic one.
8098 
8099 	     For executables that use PLTs and copy-relocs, we have a
8100 	     choice between converting the relocation into a dynamic
8101 	     one or using copy relocations or PLT entries.  It is
8102 	     usually better to do the former, unless the relocation is
8103 	     against a read-only section.  */
8104 	  if ((info->shared
8105 	       || (h != NULL
8106 		   && !htab->is_vxworks
8107 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8108 		   && !(!info->nocopyreloc
8109 			&& !PIC_OBJECT_P (abfd)
8110 			&& MIPS_ELF_READONLY_SECTION (sec))))
8111 	      && (sec->flags & SEC_ALLOC) != 0)
8112 	    {
8113 	      can_make_dynamic_p = TRUE;
8114 	      if (dynobj == NULL)
8115 		elf_hash_table (info)->dynobj = dynobj = abfd;
8116 	    }
8117 	  break;
8118 
8119 	case R_MIPS_26:
8120 	case R_MIPS_PC16:
8121 	case R_MIPS16_26:
8122 	case R_MICROMIPS_26_S1:
8123 	case R_MICROMIPS_PC7_S1:
8124 	case R_MICROMIPS_PC10_S1:
8125 	case R_MICROMIPS_PC16_S1:
8126 	case R_MICROMIPS_PC23_S2:
8127 	  call_reloc_p = TRUE;
8128 	  break;
8129 	}
8130 
8131       if (h)
8132 	{
8133 	  if (constrain_symbol_p)
8134 	    {
8135 	      if (!can_make_dynamic_p)
8136 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8137 
8138 	      if (!call_reloc_p)
8139 		h->pointer_equality_needed = 1;
8140 
8141 	      /* We must not create a stub for a symbol that has
8142 		 relocations related to taking the function's address.
8143 		 This doesn't apply to VxWorks, where CALL relocs refer
8144 		 to a .got.plt entry instead of a normal .got entry.  */
8145 	      if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8146 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8147 	    }
8148 
8149 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8150 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8151 	     room for them in .rela.dyn.  */
8152 	  if (is_gott_symbol (info, h))
8153 	    {
8154 	      if (sreloc == NULL)
8155 		{
8156 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8157 		  if (sreloc == NULL)
8158 		    return FALSE;
8159 		}
8160 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8161 	      if (MIPS_ELF_READONLY_SECTION (sec))
8162 		/* We tell the dynamic linker that there are
8163 		   relocations against the text segment.  */
8164 		info->flags |= DF_TEXTREL;
8165 	    }
8166 	}
8167       else if (call_lo16_reloc_p (r_type)
8168 	       || got_lo16_reloc_p (r_type)
8169 	       || got_disp_reloc_p (r_type)
8170 	       || (got16_reloc_p (r_type) && htab->is_vxworks))
8171 	{
8172 	  /* We may need a local GOT entry for this relocation.  We
8173 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8174 	     maximum number of pages needed by looking at the size of
8175 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8176 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8177 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8178 	     R_MIPS_CALL_HI16 because these are always followed by an
8179 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8180 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8181 						 rel->r_addend, info, r_type))
8182 	    return FALSE;
8183 	}
8184 
8185       if (h != NULL
8186 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8187 						  ELF_ST_IS_MIPS16 (h->other)))
8188 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8189 
8190       switch (r_type)
8191 	{
8192 	case R_MIPS_CALL16:
8193 	case R_MIPS16_CALL16:
8194 	case R_MICROMIPS_CALL16:
8195 	  if (h == NULL)
8196 	    {
8197 	      (*_bfd_error_handler)
8198 		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
8199 		 abfd, (unsigned long) rel->r_offset);
8200 	      bfd_set_error (bfd_error_bad_value);
8201 	      return FALSE;
8202 	    }
8203 	  /* Fall through.  */
8204 
8205 	case R_MIPS_CALL_HI16:
8206 	case R_MIPS_CALL_LO16:
8207 	case R_MICROMIPS_CALL_HI16:
8208 	case R_MICROMIPS_CALL_LO16:
8209 	  if (h != NULL)
8210 	    {
8211 	      /* Make sure there is room in the regular GOT to hold the
8212 		 function's address.  We may eliminate it in favour of
8213 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8214 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8215 						      r_type))
8216 		return FALSE;
8217 
8218 	      /* We need a stub, not a plt entry for the undefined
8219 		 function.  But we record it as if it needs plt.  See
8220 		 _bfd_elf_adjust_dynamic_symbol.  */
8221 	      h->needs_plt = 1;
8222 	      h->type = STT_FUNC;
8223 	    }
8224 	  break;
8225 
8226 	case R_MIPS_GOT_PAGE:
8227 	case R_MICROMIPS_GOT_PAGE:
8228 	case R_MIPS16_GOT16:
8229 	case R_MIPS_GOT16:
8230 	case R_MIPS_GOT_HI16:
8231 	case R_MIPS_GOT_LO16:
8232 	case R_MICROMIPS_GOT16:
8233 	case R_MICROMIPS_GOT_HI16:
8234 	case R_MICROMIPS_GOT_LO16:
8235 	  if (!h || got_page_reloc_p (r_type))
8236 	    {
8237 	      /* This relocation needs (or may need, if h != NULL) a
8238 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8239 		 know for sure until we know whether the symbol is
8240 		 preemptible.  */
8241 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8242 		{
8243 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8244 		    return FALSE;
8245 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8246 		  addend = mips_elf_read_rel_addend (abfd, rel,
8247 						     howto, contents);
8248 		  if (got16_reloc_p (r_type))
8249 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8250 						  contents, &addend);
8251 		  else
8252 		    addend <<= howto->rightshift;
8253 		}
8254 	      else
8255 		addend = rel->r_addend;
8256 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8257 						 h, addend))
8258 		return FALSE;
8259 
8260 	      if (h)
8261 		{
8262 		  struct mips_elf_link_hash_entry *hmips =
8263 		    (struct mips_elf_link_hash_entry *) h;
8264 
8265 		  /* This symbol is definitely not overridable.  */
8266 		  if (hmips->root.def_regular
8267 		      && ! (info->shared && ! info->symbolic
8268 			    && ! hmips->root.forced_local))
8269 		    h = NULL;
8270 		}
8271 	    }
8272 	  /* If this is a global, overridable symbol, GOT_PAGE will
8273 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8274 	  /* Fall through.  */
8275 
8276 	case R_MIPS_GOT_DISP:
8277 	case R_MICROMIPS_GOT_DISP:
8278 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8279 						       FALSE, r_type))
8280 	    return FALSE;
8281 	  break;
8282 
8283 	case R_MIPS_TLS_GOTTPREL:
8284 	case R_MIPS16_TLS_GOTTPREL:
8285 	case R_MICROMIPS_TLS_GOTTPREL:
8286 	  if (info->shared)
8287 	    info->flags |= DF_STATIC_TLS;
8288 	  /* Fall through */
8289 
8290 	case R_MIPS_TLS_LDM:
8291 	case R_MIPS16_TLS_LDM:
8292 	case R_MICROMIPS_TLS_LDM:
8293 	  if (tls_ldm_reloc_p (r_type))
8294 	    {
8295 	      r_symndx = STN_UNDEF;
8296 	      h = NULL;
8297 	    }
8298 	  /* Fall through */
8299 
8300 	case R_MIPS_TLS_GD:
8301 	case R_MIPS16_TLS_GD:
8302 	case R_MICROMIPS_TLS_GD:
8303 	  /* This symbol requires a global offset table entry, or two
8304 	     for TLS GD relocations.  */
8305 	  if (h != NULL)
8306 	    {
8307 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8308 						      FALSE, r_type))
8309 		return FALSE;
8310 	    }
8311 	  else
8312 	    {
8313 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8314 						     rel->r_addend,
8315 						     info, r_type))
8316 		return FALSE;
8317 	    }
8318 	  break;
8319 
8320 	case R_MIPS_32:
8321 	case R_MIPS_REL32:
8322 	case R_MIPS_64:
8323 	  /* In VxWorks executables, references to external symbols
8324 	     are handled using copy relocs or PLT stubs, so there's
8325 	     no need to add a .rela.dyn entry for this relocation.  */
8326 	  if (can_make_dynamic_p)
8327 	    {
8328 	      if (sreloc == NULL)
8329 		{
8330 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8331 		  if (sreloc == NULL)
8332 		    return FALSE;
8333 		}
8334 	      if (info->shared && h == NULL)
8335 		{
8336 		  /* When creating a shared object, we must copy these
8337 		     reloc types into the output file as R_MIPS_REL32
8338 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
8339 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8340 		  if (MIPS_ELF_READONLY_SECTION (sec))
8341 		    /* We tell the dynamic linker that there are
8342 		       relocations against the text segment.  */
8343 		    info->flags |= DF_TEXTREL;
8344 		}
8345 	      else
8346 		{
8347 		  struct mips_elf_link_hash_entry *hmips;
8348 
8349 		  /* For a shared object, we must copy this relocation
8350 		     unless the symbol turns out to be undefined and
8351 		     weak with non-default visibility, in which case
8352 		     it will be left as zero.
8353 
8354 		     We could elide R_MIPS_REL32 for locally binding symbols
8355 		     in shared libraries, but do not yet do so.
8356 
8357 		     For an executable, we only need to copy this
8358 		     reloc if the symbol is defined in a dynamic
8359 		     object.  */
8360 		  hmips = (struct mips_elf_link_hash_entry *) h;
8361 		  ++hmips->possibly_dynamic_relocs;
8362 		  if (MIPS_ELF_READONLY_SECTION (sec))
8363 		    /* We need it to tell the dynamic linker if there
8364 		       are relocations against the text segment.  */
8365 		    hmips->readonly_reloc = TRUE;
8366 		}
8367 	    }
8368 
8369 	  if (SGI_COMPAT (abfd))
8370 	    mips_elf_hash_table (info)->compact_rel_size +=
8371 	      sizeof (Elf32_External_crinfo);
8372 	  break;
8373 
8374 	case R_MIPS_26:
8375 	case R_MIPS_GPREL16:
8376 	case R_MIPS_LITERAL:
8377 	case R_MIPS_GPREL32:
8378 	case R_MICROMIPS_26_S1:
8379 	case R_MICROMIPS_GPREL16:
8380 	case R_MICROMIPS_LITERAL:
8381 	case R_MICROMIPS_GPREL7_S2:
8382 	  if (SGI_COMPAT (abfd))
8383 	    mips_elf_hash_table (info)->compact_rel_size +=
8384 	      sizeof (Elf32_External_crinfo);
8385 	  break;
8386 
8387 	  /* This relocation describes the C++ object vtable hierarchy.
8388 	     Reconstruct it for later use during GC.  */
8389 	case R_MIPS_GNU_VTINHERIT:
8390 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8391 	    return FALSE;
8392 	  break;
8393 
8394 	  /* This relocation describes which C++ vtable entries are actually
8395 	     used.  Record for later use during GC.  */
8396 	case R_MIPS_GNU_VTENTRY:
8397 	  BFD_ASSERT (h != NULL);
8398 	  if (h != NULL
8399 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8400 	    return FALSE;
8401 	  break;
8402 
8403 	default:
8404 	  break;
8405 	}
8406 
8407       /* Record the need for a PLT entry.  At this point we don't know
8408          yet if we are going to create a PLT in the first place, but
8409          we only record whether the relocation requires a standard MIPS
8410          or a compressed code entry anyway.  If we don't make a PLT after
8411          all, then we'll just ignore these arrangements.  Likewise if
8412          a PLT entry is not created because the symbol is satisfied
8413          locally.  */
8414       if (h != NULL
8415 	  && jal_reloc_p (r_type)
8416 	  && !SYMBOL_CALLS_LOCAL (info, h))
8417 	{
8418 	  if (h->plt.plist == NULL)
8419 	    h->plt.plist = mips_elf_make_plt_record (abfd);
8420 	  if (h->plt.plist == NULL)
8421 	    return FALSE;
8422 
8423 	  if (r_type == R_MIPS_26)
8424 	    h->plt.plist->need_mips = TRUE;
8425 	  else
8426 	    h->plt.plist->need_comp = TRUE;
8427 	}
8428 
8429       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
8430 	 if there is one.  We only need to handle global symbols here;
8431 	 we decide whether to keep or delete stubs for local symbols
8432 	 when processing the stub's relocations.  */
8433       if (h != NULL
8434 	  && !mips16_call_reloc_p (r_type)
8435 	  && !section_allows_mips16_refs_p (sec))
8436 	{
8437 	  struct mips_elf_link_hash_entry *mh;
8438 
8439 	  mh = (struct mips_elf_link_hash_entry *) h;
8440 	  mh->need_fn_stub = TRUE;
8441 	}
8442 
8443       /* Refuse some position-dependent relocations when creating a
8444 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
8445 	 not PIC, but we can create dynamic relocations and the result
8446 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
8447 	 combined with R_MIPS_GOT16.  */
8448       if (info->shared)
8449 	{
8450 	  switch (r_type)
8451 	    {
8452 	    case R_MIPS16_HI16:
8453 	    case R_MIPS_HI16:
8454 	    case R_MIPS_HIGHER:
8455 	    case R_MIPS_HIGHEST:
8456 	    case R_MICROMIPS_HI16:
8457 	    case R_MICROMIPS_HIGHER:
8458 	    case R_MICROMIPS_HIGHEST:
8459 	      /* Don't refuse a high part relocation if it's against
8460 		 no symbol (e.g. part of a compound relocation).  */
8461 	      if (r_symndx == STN_UNDEF)
8462 		break;
8463 
8464 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
8465 		 and has a special meaning.  */
8466 	      if (!NEWABI_P (abfd) && h != NULL
8467 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
8468 		break;
8469 
8470 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
8471 	      if (is_gott_symbol (info, h))
8472 		break;
8473 
8474 	      /* FALLTHROUGH */
8475 
8476 	    case R_MIPS16_26:
8477 	    case R_MIPS_26:
8478 	    case R_MICROMIPS_26_S1:
8479 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8480 	      (*_bfd_error_handler)
8481 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
8482 		 abfd, howto->name,
8483 		 (h) ? h->root.root.string : "a local symbol");
8484 	      bfd_set_error (bfd_error_bad_value);
8485 	      return FALSE;
8486 	    default:
8487 	      break;
8488 	    }
8489 	}
8490     }
8491 
8492   return TRUE;
8493 }
8494 
8495 bfd_boolean
8496 _bfd_mips_relax_section (bfd *abfd, asection *sec,
8497 			 struct bfd_link_info *link_info,
8498 			 bfd_boolean *again)
8499 {
8500   Elf_Internal_Rela *internal_relocs;
8501   Elf_Internal_Rela *irel, *irelend;
8502   Elf_Internal_Shdr *symtab_hdr;
8503   bfd_byte *contents = NULL;
8504   size_t extsymoff;
8505   bfd_boolean changed_contents = FALSE;
8506   bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
8507   Elf_Internal_Sym *isymbuf = NULL;
8508 
8509   /* We are not currently changing any sizes, so only one pass.  */
8510   *again = FALSE;
8511 
8512   if (link_info->relocatable)
8513     return TRUE;
8514 
8515   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
8516 					       link_info->keep_memory);
8517   if (internal_relocs == NULL)
8518     return TRUE;
8519 
8520   irelend = internal_relocs + sec->reloc_count
8521     * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
8522   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8523   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8524 
8525   for (irel = internal_relocs; irel < irelend; irel++)
8526     {
8527       bfd_vma symval;
8528       bfd_signed_vma sym_offset;
8529       unsigned int r_type;
8530       unsigned long r_symndx;
8531       asection *sym_sec;
8532       unsigned long instruction;
8533 
8534       /* Turn jalr into bgezal, and jr into beq, if they're marked
8535 	 with a JALR relocation, that indicate where they jump to.
8536 	 This saves some pipeline bubbles.  */
8537       r_type = ELF_R_TYPE (abfd, irel->r_info);
8538       if (r_type != R_MIPS_JALR)
8539 	continue;
8540 
8541       r_symndx = ELF_R_SYM (abfd, irel->r_info);
8542       /* Compute the address of the jump target.  */
8543       if (r_symndx >= extsymoff)
8544 	{
8545 	  struct mips_elf_link_hash_entry *h
8546 	    = ((struct mips_elf_link_hash_entry *)
8547 	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8548 
8549 	  while (h->root.root.type == bfd_link_hash_indirect
8550 		 || h->root.root.type == bfd_link_hash_warning)
8551 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8552 
8553 	  /* If a symbol is undefined, or if it may be overridden,
8554 	     skip it.  */
8555 	  if (! ((h->root.root.type == bfd_link_hash_defined
8556 		  || h->root.root.type == bfd_link_hash_defweak)
8557 		 && h->root.root.u.def.section)
8558 	      || (link_info->shared && ! link_info->symbolic
8559 		  && !h->root.forced_local))
8560 	    continue;
8561 
8562 	  sym_sec = h->root.root.u.def.section;
8563 	  if (sym_sec->output_section)
8564 	    symval = (h->root.root.u.def.value
8565 		      + sym_sec->output_section->vma
8566 		      + sym_sec->output_offset);
8567 	  else
8568 	    symval = h->root.root.u.def.value;
8569 	}
8570       else
8571 	{
8572 	  Elf_Internal_Sym *isym;
8573 
8574 	  /* Read this BFD's symbols if we haven't done so already.  */
8575 	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8576 	    {
8577 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8578 	      if (isymbuf == NULL)
8579 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8580 						symtab_hdr->sh_info, 0,
8581 						NULL, NULL, NULL);
8582 	      if (isymbuf == NULL)
8583 		goto relax_return;
8584 	    }
8585 
8586 	  isym = isymbuf + r_symndx;
8587 	  if (isym->st_shndx == SHN_UNDEF)
8588 	    continue;
8589 	  else if (isym->st_shndx == SHN_ABS)
8590 	    sym_sec = bfd_abs_section_ptr;
8591 	  else if (isym->st_shndx == SHN_COMMON)
8592 	    sym_sec = bfd_com_section_ptr;
8593 	  else
8594 	    sym_sec
8595 	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
8596 	  symval = isym->st_value
8597 	    + sym_sec->output_section->vma
8598 	    + sym_sec->output_offset;
8599 	}
8600 
8601       /* Compute branch offset, from delay slot of the jump to the
8602 	 branch target.  */
8603       sym_offset = (symval + irel->r_addend)
8604 	- (sec_start + irel->r_offset + 4);
8605 
8606       /* Branch offset must be properly aligned.  */
8607       if ((sym_offset & 3) != 0)
8608 	continue;
8609 
8610       sym_offset >>= 2;
8611 
8612       /* Check that it's in range.  */
8613       if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8614 	continue;
8615 
8616       /* Get the section contents if we haven't done so already.  */
8617       if (!mips_elf_get_section_contents (abfd, sec, &contents))
8618 	goto relax_return;
8619 
8620       instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8621 
8622       /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
8623       if ((instruction & 0xfc1fffff) == 0x0000f809)
8624 	instruction = 0x04110000;
8625       /* If it was jr <reg>, turn it into b <target>.  */
8626       else if ((instruction & 0xfc1fffff) == 0x00000008)
8627 	instruction = 0x10000000;
8628       else
8629 	continue;
8630 
8631       instruction |= (sym_offset & 0xffff);
8632       bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8633       changed_contents = TRUE;
8634     }
8635 
8636   if (contents != NULL
8637       && elf_section_data (sec)->this_hdr.contents != contents)
8638     {
8639       if (!changed_contents && !link_info->keep_memory)
8640         free (contents);
8641       else
8642         {
8643           /* Cache the section contents for elf_link_input_bfd.  */
8644           elf_section_data (sec)->this_hdr.contents = contents;
8645         }
8646     }
8647   return TRUE;
8648 
8649  relax_return:
8650   if (contents != NULL
8651       && elf_section_data (sec)->this_hdr.contents != contents)
8652     free (contents);
8653   return FALSE;
8654 }
8655 
8656 /* Allocate space for global sym dynamic relocs.  */
8657 
8658 static bfd_boolean
8659 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8660 {
8661   struct bfd_link_info *info = inf;
8662   bfd *dynobj;
8663   struct mips_elf_link_hash_entry *hmips;
8664   struct mips_elf_link_hash_table *htab;
8665 
8666   htab = mips_elf_hash_table (info);
8667   BFD_ASSERT (htab != NULL);
8668 
8669   dynobj = elf_hash_table (info)->dynobj;
8670   hmips = (struct mips_elf_link_hash_entry *) h;
8671 
8672   /* VxWorks executables are handled elsewhere; we only need to
8673      allocate relocations in shared objects.  */
8674   if (htab->is_vxworks && !info->shared)
8675     return TRUE;
8676 
8677   /* Ignore indirect symbols.  All relocations against such symbols
8678      will be redirected to the target symbol.  */
8679   if (h->root.type == bfd_link_hash_indirect)
8680     return TRUE;
8681 
8682   /* If this symbol is defined in a dynamic object, or we are creating
8683      a shared library, we will need to copy any R_MIPS_32 or
8684      R_MIPS_REL32 relocs against it into the output file.  */
8685   if (! info->relocatable
8686       && hmips->possibly_dynamic_relocs != 0
8687       && (h->root.type == bfd_link_hash_defweak
8688 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
8689 	  || info->shared))
8690     {
8691       bfd_boolean do_copy = TRUE;
8692 
8693       if (h->root.type == bfd_link_hash_undefweak)
8694 	{
8695 	  /* Do not copy relocations for undefined weak symbols with
8696 	     non-default visibility.  */
8697 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8698 	    do_copy = FALSE;
8699 
8700 	  /* Make sure undefined weak symbols are output as a dynamic
8701 	     symbol in PIEs.  */
8702 	  else if (h->dynindx == -1 && !h->forced_local)
8703 	    {
8704 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
8705 		return FALSE;
8706 	    }
8707 	}
8708 
8709       if (do_copy)
8710 	{
8711 	  /* Even though we don't directly need a GOT entry for this symbol,
8712 	     the SVR4 psABI requires it to have a dynamic symbol table
8713 	     index greater that DT_MIPS_GOTSYM if there are dynamic
8714 	     relocations against it.
8715 
8716 	     VxWorks does not enforce the same mapping between the GOT
8717 	     and the symbol table, so the same requirement does not
8718 	     apply there.  */
8719 	  if (!htab->is_vxworks)
8720 	    {
8721 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
8722 		hmips->global_got_area = GGA_RELOC_ONLY;
8723 	      hmips->got_only_for_calls = FALSE;
8724 	    }
8725 
8726 	  mips_elf_allocate_dynamic_relocations
8727 	    (dynobj, info, hmips->possibly_dynamic_relocs);
8728 	  if (hmips->readonly_reloc)
8729 	    /* We tell the dynamic linker that there are relocations
8730 	       against the text segment.  */
8731 	    info->flags |= DF_TEXTREL;
8732 	}
8733     }
8734 
8735   return TRUE;
8736 }
8737 
8738 /* Adjust a symbol defined by a dynamic object and referenced by a
8739    regular object.  The current definition is in some section of the
8740    dynamic object, but we're not including those sections.  We have to
8741    change the definition to something the rest of the link can
8742    understand.  */
8743 
8744 bfd_boolean
8745 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8746 				     struct elf_link_hash_entry *h)
8747 {
8748   bfd *dynobj;
8749   struct mips_elf_link_hash_entry *hmips;
8750   struct mips_elf_link_hash_table *htab;
8751 
8752   htab = mips_elf_hash_table (info);
8753   BFD_ASSERT (htab != NULL);
8754 
8755   dynobj = elf_hash_table (info)->dynobj;
8756   hmips = (struct mips_elf_link_hash_entry *) h;
8757 
8758   /* Make sure we know what is going on here.  */
8759   BFD_ASSERT (dynobj != NULL
8760 	      && (h->needs_plt
8761 		  || h->u.weakdef != NULL
8762 		  || (h->def_dynamic
8763 		      && h->ref_regular
8764 		      && !h->def_regular)));
8765 
8766   hmips = (struct mips_elf_link_hash_entry *) h;
8767 
8768   /* If there are call relocations against an externally-defined symbol,
8769      see whether we can create a MIPS lazy-binding stub for it.  We can
8770      only do this if all references to the function are through call
8771      relocations, and in that case, the traditional lazy-binding stubs
8772      are much more efficient than PLT entries.
8773 
8774      Traditional stubs are only available on SVR4 psABI-based systems;
8775      VxWorks always uses PLTs instead.  */
8776   if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8777     {
8778       if (! elf_hash_table (info)->dynamic_sections_created)
8779 	return TRUE;
8780 
8781       /* If this symbol is not defined in a regular file, then set
8782 	 the symbol to the stub location.  This is required to make
8783 	 function pointers compare as equal between the normal
8784 	 executable and the shared library.  */
8785       if (!h->def_regular)
8786 	{
8787 	  hmips->needs_lazy_stub = TRUE;
8788 	  htab->lazy_stub_count++;
8789 	  return TRUE;
8790 	}
8791     }
8792   /* As above, VxWorks requires PLT entries for externally-defined
8793      functions that are only accessed through call relocations.
8794 
8795      Both VxWorks and non-VxWorks targets also need PLT entries if there
8796      are static-only relocations against an externally-defined function.
8797      This can technically occur for shared libraries if there are
8798      branches to the symbol, although it is unlikely that this will be
8799      used in practice due to the short ranges involved.  It can occur
8800      for any relative or absolute relocation in executables; in that
8801      case, the PLT entry becomes the function's canonical address.  */
8802   else if (((h->needs_plt && !hmips->no_fn_stub)
8803 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
8804 	   && htab->use_plts_and_copy_relocs
8805 	   && !SYMBOL_CALLS_LOCAL (info, h)
8806 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8807 		&& h->root.type == bfd_link_hash_undefweak))
8808     {
8809       bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
8810       bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
8811 
8812       /* If this is the first symbol to need a PLT entry, then make some
8813          basic setup.  Also work out PLT entry sizes.  We'll need them
8814          for PLT offset calculations.  */
8815       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
8816 	{
8817 	  BFD_ASSERT (htab->sgotplt->size == 0);
8818 	  BFD_ASSERT (htab->plt_got_index == 0);
8819 
8820 	  /* If we're using the PLT additions to the psABI, each PLT
8821 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
8822 	     Encourage better cache usage by aligning.  We do this
8823 	     lazily to avoid pessimizing traditional objects.  */
8824 	  if (!htab->is_vxworks
8825 	      && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8826 	    return FALSE;
8827 
8828 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
8829 	     for the same reason as above.  */
8830 	  if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8831 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8832 	    return FALSE;
8833 
8834 	  /* On non-VxWorks targets, the first two entries in .got.plt
8835 	     are reserved.  */
8836 	  if (!htab->is_vxworks)
8837 	    htab->plt_got_index
8838 	      += (get_elf_backend_data (dynobj)->got_header_size
8839 		  / MIPS_ELF_GOT_SIZE (dynobj));
8840 
8841 	  /* On VxWorks, also allocate room for the header's
8842 	     .rela.plt.unloaded entries.  */
8843 	  if (htab->is_vxworks && !info->shared)
8844 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8845 
8846 	  /* Now work out the sizes of individual PLT entries.  */
8847 	  if (htab->is_vxworks && info->shared)
8848 	    htab->plt_mips_entry_size
8849 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
8850 	  else if (htab->is_vxworks)
8851 	    htab->plt_mips_entry_size
8852 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
8853 	  else if (newabi_p)
8854 	    htab->plt_mips_entry_size
8855 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
8856 	  else if (!micromips_p)
8857 	    {
8858 	      htab->plt_mips_entry_size
8859 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
8860 	      htab->plt_comp_entry_size
8861 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
8862 	    }
8863 	  else if (htab->insn32)
8864 	    {
8865 	      htab->plt_mips_entry_size
8866 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
8867 	      htab->plt_comp_entry_size
8868 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
8869 	    }
8870 	  else
8871 	    {
8872 	      htab->plt_mips_entry_size
8873 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
8874 	      htab->plt_comp_entry_size
8875 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
8876 	    }
8877 	}
8878 
8879       if (h->plt.plist == NULL)
8880 	h->plt.plist = mips_elf_make_plt_record (dynobj);
8881       if (h->plt.plist == NULL)
8882 	return FALSE;
8883 
8884       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
8885          n32 or n64, so always use a standard entry there.
8886 
8887          If the symbol has a MIPS16 call stub and gets a PLT entry, then
8888          all MIPS16 calls will go via that stub, and there is no benefit
8889          to having a MIPS16 entry.  And in the case of call_stub a
8890          standard entry actually has to be used as the stub ends with a J
8891          instruction.  */
8892       if (newabi_p
8893 	  || htab->is_vxworks
8894 	  || hmips->call_stub
8895 	  || hmips->call_fp_stub)
8896 	{
8897 	  h->plt.plist->need_mips = TRUE;
8898 	  h->plt.plist->need_comp = FALSE;
8899 	}
8900 
8901       /* Otherwise, if there are no direct calls to the function, we
8902          have a free choice of whether to use standard or compressed
8903          entries.  Prefer microMIPS entries if the object is known to
8904          contain microMIPS code, so that it becomes possible to create
8905          pure microMIPS binaries.  Prefer standard entries otherwise,
8906          because MIPS16 ones are no smaller and are usually slower.  */
8907       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
8908 	{
8909 	  if (micromips_p)
8910 	    h->plt.plist->need_comp = TRUE;
8911 	  else
8912 	    h->plt.plist->need_mips = TRUE;
8913 	}
8914 
8915       if (h->plt.plist->need_mips)
8916 	{
8917 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
8918 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
8919 	}
8920       if (h->plt.plist->need_comp)
8921 	{
8922 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
8923 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
8924 	}
8925 
8926       /* Reserve the corresponding .got.plt entry now too.  */
8927       h->plt.plist->gotplt_index = htab->plt_got_index++;
8928 
8929       /* If the output file has no definition of the symbol, set the
8930 	 symbol's value to the address of the stub.  */
8931       if (!info->shared && !h->def_regular)
8932 	hmips->use_plt_entry = TRUE;
8933 
8934       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
8935       htab->srelplt->size += (htab->is_vxworks
8936 			      ? MIPS_ELF_RELA_SIZE (dynobj)
8937 			      : MIPS_ELF_REL_SIZE (dynobj));
8938 
8939       /* Make room for the .rela.plt.unloaded relocations.  */
8940       if (htab->is_vxworks && !info->shared)
8941 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8942 
8943       /* All relocations against this symbol that could have been made
8944 	 dynamic will now refer to the PLT entry instead.  */
8945       hmips->possibly_dynamic_relocs = 0;
8946 
8947       return TRUE;
8948     }
8949 
8950   /* If this is a weak symbol, and there is a real definition, the
8951      processor independent code will have arranged for us to see the
8952      real definition first, and we can just use the same value.  */
8953   if (h->u.weakdef != NULL)
8954     {
8955       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8956 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
8957       h->root.u.def.section = h->u.weakdef->root.u.def.section;
8958       h->root.u.def.value = h->u.weakdef->root.u.def.value;
8959       return TRUE;
8960     }
8961 
8962   /* Otherwise, there is nothing further to do for symbols defined
8963      in regular objects.  */
8964   if (h->def_regular)
8965     return TRUE;
8966 
8967   /* There's also nothing more to do if we'll convert all relocations
8968      against this symbol into dynamic relocations.  */
8969   if (!hmips->has_static_relocs)
8970     return TRUE;
8971 
8972   /* We're now relying on copy relocations.  Complain if we have
8973      some that we can't convert.  */
8974   if (!htab->use_plts_and_copy_relocs || info->shared)
8975     {
8976       (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8977 			       "dynamic symbol %s"),
8978 			     h->root.root.string);
8979       bfd_set_error (bfd_error_bad_value);
8980       return FALSE;
8981     }
8982 
8983   /* We must allocate the symbol in our .dynbss section, which will
8984      become part of the .bss section of the executable.  There will be
8985      an entry for this symbol in the .dynsym section.  The dynamic
8986      object will contain position independent code, so all references
8987      from the dynamic object to this symbol will go through the global
8988      offset table.  The dynamic linker will use the .dynsym entry to
8989      determine the address it must put in the global offset table, so
8990      both the dynamic object and the regular object will refer to the
8991      same memory location for the variable.  */
8992 
8993   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8994     {
8995       if (htab->is_vxworks)
8996 	htab->srelbss->size += sizeof (Elf32_External_Rela);
8997       else
8998 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8999       h->needs_copy = 1;
9000     }
9001 
9002   /* All relocations against this symbol that could have been made
9003      dynamic will now refer to the local copy instead.  */
9004   hmips->possibly_dynamic_relocs = 0;
9005 
9006   return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
9007 }
9008 
9009 /* This function is called after all the input files have been read,
9010    and the input sections have been assigned to output sections.  We
9011    check for any mips16 stub sections that we can discard.  */
9012 
9013 bfd_boolean
9014 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9015 				    struct bfd_link_info *info)
9016 {
9017   asection *ri;
9018   struct mips_elf_link_hash_table *htab;
9019   struct mips_htab_traverse_info hti;
9020 
9021   htab = mips_elf_hash_table (info);
9022   BFD_ASSERT (htab != NULL);
9023 
9024   /* The .reginfo section has a fixed size.  */
9025   ri = bfd_get_section_by_name (output_bfd, ".reginfo");
9026   if (ri != NULL)
9027     bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
9028 
9029   hti.info = info;
9030   hti.output_bfd = output_bfd;
9031   hti.error = FALSE;
9032   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9033 			       mips_elf_check_symbols, &hti);
9034   if (hti.error)
9035     return FALSE;
9036 
9037   return TRUE;
9038 }
9039 
9040 /* If the link uses a GOT, lay it out and work out its size.  */
9041 
9042 static bfd_boolean
9043 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9044 {
9045   bfd *dynobj;
9046   asection *s;
9047   struct mips_got_info *g;
9048   bfd_size_type loadable_size = 0;
9049   bfd_size_type page_gotno;
9050   bfd *ibfd;
9051   struct mips_elf_traverse_got_arg tga;
9052   struct mips_elf_link_hash_table *htab;
9053 
9054   htab = mips_elf_hash_table (info);
9055   BFD_ASSERT (htab != NULL);
9056 
9057   s = htab->sgot;
9058   if (s == NULL)
9059     return TRUE;
9060 
9061   dynobj = elf_hash_table (info)->dynobj;
9062   g = htab->got_info;
9063 
9064   /* Allocate room for the reserved entries.  VxWorks always reserves
9065      3 entries; other objects only reserve 2 entries.  */
9066   BFD_ASSERT (g->assigned_gotno == 0);
9067   if (htab->is_vxworks)
9068     htab->reserved_gotno = 3;
9069   else
9070     htab->reserved_gotno = 2;
9071   g->local_gotno += htab->reserved_gotno;
9072   g->assigned_gotno = htab->reserved_gotno;
9073 
9074   /* Decide which symbols need to go in the global part of the GOT and
9075      count the number of reloc-only GOT symbols.  */
9076   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9077 
9078   if (!mips_elf_resolve_final_got_entries (info, g))
9079     return FALSE;
9080 
9081   /* Calculate the total loadable size of the output.  That
9082      will give us the maximum number of GOT_PAGE entries
9083      required.  */
9084   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
9085     {
9086       asection *subsection;
9087 
9088       for (subsection = ibfd->sections;
9089 	   subsection;
9090 	   subsection = subsection->next)
9091 	{
9092 	  if ((subsection->flags & SEC_ALLOC) == 0)
9093 	    continue;
9094 	  loadable_size += ((subsection->size + 0xf)
9095 			    &~ (bfd_size_type) 0xf);
9096 	}
9097     }
9098 
9099   if (htab->is_vxworks)
9100     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9101        relocations against local symbols evaluate to "G", and the EABI does
9102        not include R_MIPS_GOT_PAGE.  */
9103     page_gotno = 0;
9104   else
9105     /* Assume there are two loadable segments consisting of contiguous
9106        sections.  Is 5 enough?  */
9107     page_gotno = (loadable_size >> 16) + 5;
9108 
9109   /* Choose the smaller of the two page estimates; both are intended to be
9110      conservative.  */
9111   if (page_gotno > g->page_gotno)
9112     page_gotno = g->page_gotno;
9113 
9114   g->local_gotno += page_gotno;
9115 
9116   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9117   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9118   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9119 
9120   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9121      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9122      dynamic loader.  */
9123   if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9124     {
9125       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9126 	return FALSE;
9127     }
9128   else
9129     {
9130       /* Record that all bfds use G.  This also has the effect of freeing
9131 	 the per-bfd GOTs, which we no longer need.  */
9132       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link_next)
9133 	if (mips_elf_bfd_got (ibfd, FALSE))
9134 	  mips_elf_replace_bfd_got (ibfd, g);
9135       mips_elf_replace_bfd_got (output_bfd, g);
9136 
9137       /* Set up TLS entries.  */
9138       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9139       tga.info = info;
9140       tga.g = g;
9141       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9142       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9143       if (!tga.g)
9144 	return FALSE;
9145       BFD_ASSERT (g->tls_assigned_gotno
9146 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9147 
9148       /* Each VxWorks GOT entry needs an explicit relocation.  */
9149       if (htab->is_vxworks && info->shared)
9150 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9151 
9152       /* Allocate room for the TLS relocations.  */
9153       if (g->relocs)
9154 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9155     }
9156 
9157   return TRUE;
9158 }
9159 
9160 /* Estimate the size of the .MIPS.stubs section.  */
9161 
9162 static void
9163 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9164 {
9165   struct mips_elf_link_hash_table *htab;
9166   bfd_size_type dynsymcount;
9167 
9168   htab = mips_elf_hash_table (info);
9169   BFD_ASSERT (htab != NULL);
9170 
9171   if (htab->lazy_stub_count == 0)
9172     return;
9173 
9174   /* IRIX rld assumes that a function stub isn't at the end of the .text
9175      section, so add a dummy entry to the end.  */
9176   htab->lazy_stub_count++;
9177 
9178   /* Get a worst-case estimate of the number of dynamic symbols needed.
9179      At this point, dynsymcount does not account for section symbols
9180      and count_section_dynsyms may overestimate the number that will
9181      be needed.  */
9182   dynsymcount = (elf_hash_table (info)->dynsymcount
9183 		 + count_section_dynsyms (output_bfd, info));
9184 
9185   /* Determine the size of one stub entry.  There's no disadvantage
9186      from using microMIPS code here, so for the sake of pure-microMIPS
9187      binaries we prefer it whenever there's any microMIPS code in
9188      output produced at all.  This has a benefit of stubs being
9189      shorter by 4 bytes each too, unless in the insn32 mode.  */
9190   if (!MICROMIPS_P (output_bfd))
9191     htab->function_stub_size = (dynsymcount > 0x10000
9192 				? MIPS_FUNCTION_STUB_BIG_SIZE
9193 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9194   else if (htab->insn32)
9195     htab->function_stub_size = (dynsymcount > 0x10000
9196 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9197 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9198   else
9199     htab->function_stub_size = (dynsymcount > 0x10000
9200 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9201 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9202 
9203   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9204 }
9205 
9206 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9207    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9208    stub, allocate an entry in the stubs section.  */
9209 
9210 static bfd_boolean
9211 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9212 {
9213   struct mips_htab_traverse_info *hti = data;
9214   struct mips_elf_link_hash_table *htab;
9215   struct bfd_link_info *info;
9216   bfd *output_bfd;
9217 
9218   info = hti->info;
9219   output_bfd = hti->output_bfd;
9220   htab = mips_elf_hash_table (info);
9221   BFD_ASSERT (htab != NULL);
9222 
9223   if (h->needs_lazy_stub)
9224     {
9225       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9226       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9227       bfd_vma isa_bit = micromips_p;
9228 
9229       BFD_ASSERT (htab->root.dynobj != NULL);
9230       if (h->root.plt.plist == NULL)
9231 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9232       if (h->root.plt.plist == NULL)
9233 	{
9234 	  hti->error = TRUE;
9235 	  return FALSE;
9236 	}
9237       h->root.root.u.def.section = htab->sstubs;
9238       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9239       h->root.plt.plist->stub_offset = htab->sstubs->size;
9240       h->root.other = other;
9241       htab->sstubs->size += htab->function_stub_size;
9242     }
9243   return TRUE;
9244 }
9245 
9246 /* Allocate offsets in the stubs section to each symbol that needs one.
9247    Set the final size of the .MIPS.stub section.  */
9248 
9249 static bfd_boolean
9250 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9251 {
9252   bfd *output_bfd = info->output_bfd;
9253   bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9254   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9255   bfd_vma isa_bit = micromips_p;
9256   struct mips_elf_link_hash_table *htab;
9257   struct mips_htab_traverse_info hti;
9258   struct elf_link_hash_entry *h;
9259   bfd *dynobj;
9260 
9261   htab = mips_elf_hash_table (info);
9262   BFD_ASSERT (htab != NULL);
9263 
9264   if (htab->lazy_stub_count == 0)
9265     return TRUE;
9266 
9267   htab->sstubs->size = 0;
9268   hti.info = info;
9269   hti.output_bfd = output_bfd;
9270   hti.error = FALSE;
9271   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9272   if (hti.error)
9273     return FALSE;
9274   htab->sstubs->size += htab->function_stub_size;
9275   BFD_ASSERT (htab->sstubs->size
9276 	      == htab->lazy_stub_count * htab->function_stub_size);
9277 
9278   dynobj = elf_hash_table (info)->dynobj;
9279   BFD_ASSERT (dynobj != NULL);
9280   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9281   if (h == NULL)
9282     return FALSE;
9283   h->root.u.def.value = isa_bit;
9284   h->other = other;
9285   h->type = STT_FUNC;
9286 
9287   return TRUE;
9288 }
9289 
9290 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9291    bfd_link_info.  If H uses the address of a PLT entry as the value
9292    of the symbol, then set the entry in the symbol table now.  Prefer
9293    a standard MIPS PLT entry.  */
9294 
9295 static bfd_boolean
9296 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9297 {
9298   struct bfd_link_info *info = data;
9299   bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9300   struct mips_elf_link_hash_table *htab;
9301   unsigned int other;
9302   bfd_vma isa_bit;
9303   bfd_vma val;
9304 
9305   htab = mips_elf_hash_table (info);
9306   BFD_ASSERT (htab != NULL);
9307 
9308   if (h->use_plt_entry)
9309     {
9310       BFD_ASSERT (h->root.plt.plist != NULL);
9311       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9312 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9313 
9314       val = htab->plt_header_size;
9315       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9316 	{
9317 	  isa_bit = 0;
9318 	  val += h->root.plt.plist->mips_offset;
9319 	  other = 0;
9320 	}
9321       else
9322 	{
9323 	  isa_bit = 1;
9324 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9325 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9326 	}
9327       val += isa_bit;
9328       /* For VxWorks, point at the PLT load stub rather than the lazy
9329          resolution stub; this stub will become the canonical function
9330          address.  */
9331       if (htab->is_vxworks)
9332 	val += 8;
9333 
9334       h->root.root.u.def.section = htab->splt;
9335       h->root.root.u.def.value = val;
9336       h->root.other = other;
9337     }
9338 
9339   return TRUE;
9340 }
9341 
9342 /* Set the sizes of the dynamic sections.  */
9343 
9344 bfd_boolean
9345 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9346 				     struct bfd_link_info *info)
9347 {
9348   bfd *dynobj;
9349   asection *s, *sreldyn;
9350   bfd_boolean reltext;
9351   struct mips_elf_link_hash_table *htab;
9352 
9353   htab = mips_elf_hash_table (info);
9354   BFD_ASSERT (htab != NULL);
9355   dynobj = elf_hash_table (info)->dynobj;
9356   BFD_ASSERT (dynobj != NULL);
9357 
9358   if (elf_hash_table (info)->dynamic_sections_created)
9359     {
9360       /* Set the contents of the .interp section to the interpreter.  */
9361       if (info->executable)
9362 	{
9363 	  s = bfd_get_linker_section (dynobj, ".interp");
9364 	  BFD_ASSERT (s != NULL);
9365 	  s->size
9366 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9367 	  s->contents
9368 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9369 	}
9370 
9371       /* Figure out the size of the PLT header if we know that we
9372          are using it.  For the sake of cache alignment always use
9373          a standard header whenever any standard entries are present
9374          even if microMIPS entries are present as well.  This also
9375          lets the microMIPS header rely on the value of $v0 only set
9376          by microMIPS entries, for a small size reduction.
9377 
9378          Set symbol table entry values for symbols that use the
9379          address of their PLT entry now that we can calculate it.
9380 
9381          Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9382          haven't already in _bfd_elf_create_dynamic_sections.  */
9383       if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9384 	{
9385 	  bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9386 				     && !htab->plt_mips_offset);
9387 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9388 	  bfd_vma isa_bit = micromips_p;
9389 	  struct elf_link_hash_entry *h;
9390 	  bfd_vma size;
9391 
9392 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9393 	  BFD_ASSERT (htab->sgotplt->size == 0);
9394 	  BFD_ASSERT (htab->splt->size == 0);
9395 
9396 	  if (htab->is_vxworks && info->shared)
9397 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9398 	  else if (htab->is_vxworks)
9399 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9400 	  else if (ABI_64_P (output_bfd))
9401 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9402 	  else if (ABI_N32_P (output_bfd))
9403 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9404 	  else if (!micromips_p)
9405 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9406 	  else if (htab->insn32)
9407 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9408 	  else
9409 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9410 
9411 	  htab->plt_header_is_comp = micromips_p;
9412 	  htab->plt_header_size = size;
9413 	  htab->splt->size = (size
9414 			      + htab->plt_mips_offset
9415 			      + htab->plt_comp_offset);
9416 	  htab->sgotplt->size = (htab->plt_got_index
9417 				 * MIPS_ELF_GOT_SIZE (dynobj));
9418 
9419 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9420 
9421 	  if (htab->root.hplt == NULL)
9422 	    {
9423 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
9424 					       "_PROCEDURE_LINKAGE_TABLE_");
9425 	      htab->root.hplt = h;
9426 	      if (h == NULL)
9427 		return FALSE;
9428 	    }
9429 
9430 	  h = htab->root.hplt;
9431 	  h->root.u.def.value = isa_bit;
9432 	  h->other = other;
9433 	  h->type = STT_FUNC;
9434 	}
9435     }
9436 
9437   /* Allocate space for global sym dynamic relocs.  */
9438   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
9439 
9440   mips_elf_estimate_stub_size (output_bfd, info);
9441 
9442   if (!mips_elf_lay_out_got (output_bfd, info))
9443     return FALSE;
9444 
9445   mips_elf_lay_out_lazy_stubs (info);
9446 
9447   /* The check_relocs and adjust_dynamic_symbol entry points have
9448      determined the sizes of the various dynamic sections.  Allocate
9449      memory for them.  */
9450   reltext = FALSE;
9451   for (s = dynobj->sections; s != NULL; s = s->next)
9452     {
9453       const char *name;
9454 
9455       /* It's OK to base decisions on the section name, because none
9456 	 of the dynobj section names depend upon the input files.  */
9457       name = bfd_get_section_name (dynobj, s);
9458 
9459       if ((s->flags & SEC_LINKER_CREATED) == 0)
9460 	continue;
9461 
9462       if (CONST_STRNEQ (name, ".rel"))
9463 	{
9464 	  if (s->size != 0)
9465 	    {
9466 	      const char *outname;
9467 	      asection *target;
9468 
9469 	      /* If this relocation section applies to a read only
9470                  section, then we probably need a DT_TEXTREL entry.
9471                  If the relocation section is .rel(a).dyn, we always
9472                  assert a DT_TEXTREL entry rather than testing whether
9473                  there exists a relocation to a read only section or
9474                  not.  */
9475 	      outname = bfd_get_section_name (output_bfd,
9476 					      s->output_section);
9477 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
9478 	      if ((target != NULL
9479 		   && (target->flags & SEC_READONLY) != 0
9480 		   && (target->flags & SEC_ALLOC) != 0)
9481 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
9482 		reltext = TRUE;
9483 
9484 	      /* We use the reloc_count field as a counter if we need
9485 		 to copy relocs into the output file.  */
9486 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
9487 		s->reloc_count = 0;
9488 
9489 	      /* If combreloc is enabled, elf_link_sort_relocs() will
9490 		 sort relocations, but in a different way than we do,
9491 		 and before we're done creating relocations.  Also, it
9492 		 will move them around between input sections'
9493 		 relocation's contents, so our sorting would be
9494 		 broken, so don't let it run.  */
9495 	      info->combreloc = 0;
9496 	    }
9497 	}
9498       else if (! info->shared
9499 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
9500 	       && CONST_STRNEQ (name, ".rld_map"))
9501 	{
9502 	  /* We add a room for __rld_map.  It will be filled in by the
9503 	     rtld to contain a pointer to the _r_debug structure.  */
9504 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
9505 	}
9506       else if (SGI_COMPAT (output_bfd)
9507 	       && CONST_STRNEQ (name, ".compact_rel"))
9508 	s->size += mips_elf_hash_table (info)->compact_rel_size;
9509       else if (s == htab->splt)
9510 	{
9511 	  /* If the last PLT entry has a branch delay slot, allocate
9512 	     room for an extra nop to fill the delay slot.  This is
9513 	     for CPUs without load interlocking.  */
9514 	  if (! LOAD_INTERLOCKS_P (output_bfd)
9515 	      && ! htab->is_vxworks && s->size > 0)
9516 	    s->size += 4;
9517 	}
9518       else if (! CONST_STRNEQ (name, ".init")
9519 	       && s != htab->sgot
9520 	       && s != htab->sgotplt
9521 	       && s != htab->sstubs
9522 	       && s != htab->sdynbss)
9523 	{
9524 	  /* It's not one of our sections, so don't allocate space.  */
9525 	  continue;
9526 	}
9527 
9528       if (s->size == 0)
9529 	{
9530 	  s->flags |= SEC_EXCLUDE;
9531 	  continue;
9532 	}
9533 
9534       if ((s->flags & SEC_HAS_CONTENTS) == 0)
9535 	continue;
9536 
9537       /* Allocate memory for the section contents.  */
9538       s->contents = bfd_zalloc (dynobj, s->size);
9539       if (s->contents == NULL)
9540 	{
9541 	  bfd_set_error (bfd_error_no_memory);
9542 	  return FALSE;
9543 	}
9544     }
9545 
9546   if (elf_hash_table (info)->dynamic_sections_created)
9547     {
9548       /* Add some entries to the .dynamic section.  We fill in the
9549 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
9550 	 must add the entries now so that we get the correct size for
9551 	 the .dynamic section.  */
9552 
9553       /* SGI object has the equivalence of DT_DEBUG in the
9554 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
9555 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
9556 	 may only look at the first one they see.  */
9557       if (!info->shared
9558 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
9559 	return FALSE;
9560 
9561       /* The DT_DEBUG entry may be filled in by the dynamic linker and
9562 	 used by the debugger.  */
9563       if (info->executable
9564 	  && !SGI_COMPAT (output_bfd)
9565 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
9566 	return FALSE;
9567 
9568       if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
9569 	info->flags |= DF_TEXTREL;
9570 
9571       if ((info->flags & DF_TEXTREL) != 0)
9572 	{
9573 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
9574 	    return FALSE;
9575 
9576 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
9577 	     write out an actual text relocation; we may not, because
9578 	     at this point we do not know whether e.g. any .eh_frame
9579 	     absolute relocations have been converted to PC-relative.  */
9580 	  info->flags &= ~DF_TEXTREL;
9581 	}
9582 
9583       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
9584 	return FALSE;
9585 
9586       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
9587       if (htab->is_vxworks)
9588 	{
9589 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
9590 	     use any of the DT_MIPS_* tags.  */
9591 	  if (sreldyn && sreldyn->size > 0)
9592 	    {
9593 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
9594 		return FALSE;
9595 
9596 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
9597 		return FALSE;
9598 
9599 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
9600 		return FALSE;
9601 	    }
9602 	}
9603       else
9604 	{
9605 	  if (sreldyn && sreldyn->size > 0)
9606 	    {
9607 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
9608 		return FALSE;
9609 
9610 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
9611 		return FALSE;
9612 
9613 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
9614 		return FALSE;
9615 	    }
9616 
9617 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
9618 	    return FALSE;
9619 
9620 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
9621 	    return FALSE;
9622 
9623 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
9624 	    return FALSE;
9625 
9626 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
9627 	    return FALSE;
9628 
9629 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
9630 	    return FALSE;
9631 
9632 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
9633 	    return FALSE;
9634 
9635 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
9636 	    return FALSE;
9637 
9638 	  if (IRIX_COMPAT (dynobj) == ict_irix5
9639 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
9640 	    return FALSE;
9641 
9642 	  if (IRIX_COMPAT (dynobj) == ict_irix6
9643 	      && (bfd_get_section_by_name
9644 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
9645 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
9646 	    return FALSE;
9647 	}
9648       if (htab->splt->size > 0)
9649 	{
9650 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
9651 	    return FALSE;
9652 
9653 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
9654 	    return FALSE;
9655 
9656 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
9657 	    return FALSE;
9658 
9659 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
9660 	    return FALSE;
9661 	}
9662       if (htab->is_vxworks
9663 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
9664 	return FALSE;
9665     }
9666 
9667   return TRUE;
9668 }
9669 
9670 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
9671    Adjust its R_ADDEND field so that it is correct for the output file.
9672    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
9673    and sections respectively; both use symbol indexes.  */
9674 
9675 static void
9676 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
9677 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
9678 			asection **local_sections, Elf_Internal_Rela *rel)
9679 {
9680   unsigned int r_type, r_symndx;
9681   Elf_Internal_Sym *sym;
9682   asection *sec;
9683 
9684   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9685     {
9686       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9687       if (gprel16_reloc_p (r_type)
9688 	  || r_type == R_MIPS_GPREL32
9689 	  || literal_reloc_p (r_type))
9690 	{
9691 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
9692 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
9693 	}
9694 
9695       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
9696       sym = local_syms + r_symndx;
9697 
9698       /* Adjust REL's addend to account for section merging.  */
9699       if (!info->relocatable)
9700 	{
9701 	  sec = local_sections[r_symndx];
9702 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
9703 	}
9704 
9705       /* This would normally be done by the rela_normal code in elflink.c.  */
9706       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
9707 	rel->r_addend += local_sections[r_symndx]->output_offset;
9708     }
9709 }
9710 
9711 /* Handle relocations against symbols from removed linkonce sections,
9712    or sections discarded by a linker script.  We use this wrapper around
9713    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
9714    on 64-bit ELF targets.  In this case for any relocation handled, which
9715    always be the first in a triplet, the remaining two have to be processed
9716    together with the first, even if they are R_MIPS_NONE.  It is the symbol
9717    index referred by the first reloc that applies to all the three and the
9718    remaining two never refer to an object symbol.  And it is the final
9719    relocation (the last non-null one) that determines the output field of
9720    the whole relocation so retrieve the corresponding howto structure for
9721    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
9722 
9723    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
9724    and therefore requires to be pasted in a loop.  It also defines a block
9725    and does not protect any of its arguments, hence the extra brackets.  */
9726 
9727 static void
9728 mips_reloc_against_discarded_section (bfd *output_bfd,
9729 				      struct bfd_link_info *info,
9730 				      bfd *input_bfd, asection *input_section,
9731 				      Elf_Internal_Rela **rel,
9732 				      const Elf_Internal_Rela **relend,
9733 				      bfd_boolean rel_reloc,
9734 				      reloc_howto_type *howto,
9735 				      bfd_byte *contents)
9736 {
9737   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
9738   int count = bed->s->int_rels_per_ext_rel;
9739   unsigned int r_type;
9740   int i;
9741 
9742   for (i = count - 1; i > 0; i--)
9743     {
9744       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
9745       if (r_type != R_MIPS_NONE)
9746 	{
9747 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9748 	  break;
9749 	}
9750     }
9751   do
9752     {
9753        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9754 					(*rel), count, (*relend),
9755 					howto, i, contents);
9756     }
9757   while (0);
9758 }
9759 
9760 /* Relocate a MIPS ELF section.  */
9761 
9762 bfd_boolean
9763 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
9764 				bfd *input_bfd, asection *input_section,
9765 				bfd_byte *contents, Elf_Internal_Rela *relocs,
9766 				Elf_Internal_Sym *local_syms,
9767 				asection **local_sections)
9768 {
9769   Elf_Internal_Rela *rel;
9770   const Elf_Internal_Rela *relend;
9771   bfd_vma addend = 0;
9772   bfd_boolean use_saved_addend_p = FALSE;
9773   const struct elf_backend_data *bed;
9774 
9775   bed = get_elf_backend_data (output_bfd);
9776   relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
9777   for (rel = relocs; rel < relend; ++rel)
9778     {
9779       const char *name;
9780       bfd_vma value = 0;
9781       reloc_howto_type *howto;
9782       bfd_boolean cross_mode_jump_p = FALSE;
9783       /* TRUE if the relocation is a RELA relocation, rather than a
9784          REL relocation.  */
9785       bfd_boolean rela_relocation_p = TRUE;
9786       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
9787       const char *msg;
9788       unsigned long r_symndx;
9789       asection *sec;
9790       Elf_Internal_Shdr *symtab_hdr;
9791       struct elf_link_hash_entry *h;
9792       bfd_boolean rel_reloc;
9793 
9794       rel_reloc = (NEWABI_P (input_bfd)
9795 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
9796 						 relocs, rel));
9797       /* Find the relocation howto for this relocation.  */
9798       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
9799 
9800       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9801       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9802       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9803 	{
9804 	  sec = local_sections[r_symndx];
9805 	  h = NULL;
9806 	}
9807       else
9808 	{
9809 	  unsigned long extsymoff;
9810 
9811 	  extsymoff = 0;
9812 	  if (!elf_bad_symtab (input_bfd))
9813 	    extsymoff = symtab_hdr->sh_info;
9814 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9815 	  while (h->root.type == bfd_link_hash_indirect
9816 		 || h->root.type == bfd_link_hash_warning)
9817 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9818 
9819 	  sec = NULL;
9820 	  if (h->root.type == bfd_link_hash_defined
9821 	      || h->root.type == bfd_link_hash_defweak)
9822 	    sec = h->root.u.def.section;
9823 	}
9824 
9825       if (sec != NULL && discarded_section (sec))
9826 	{
9827 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
9828 						input_section, &rel, &relend,
9829 						rel_reloc, howto, contents);
9830 	  continue;
9831 	}
9832 
9833       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9834 	{
9835 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
9836 	     64-bit code, but make sure all their addresses are in the
9837 	     lowermost or uppermost 32-bit section of the 64-bit address
9838 	     space.  Thus, when they use an R_MIPS_64 they mean what is
9839 	     usually meant by R_MIPS_32, with the exception that the
9840 	     stored value is sign-extended to 64 bits.  */
9841 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9842 
9843 	  /* On big-endian systems, we need to lie about the position
9844 	     of the reloc.  */
9845 	  if (bfd_big_endian (input_bfd))
9846 	    rel->r_offset += 4;
9847 	}
9848 
9849       if (!use_saved_addend_p)
9850 	{
9851 	  /* If these relocations were originally of the REL variety,
9852 	     we must pull the addend out of the field that will be
9853 	     relocated.  Otherwise, we simply use the contents of the
9854 	     RELA relocation.  */
9855 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
9856 					 relocs, rel))
9857 	    {
9858 	      rela_relocation_p = FALSE;
9859 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
9860 						 howto, contents);
9861 	      if (hi16_reloc_p (r_type)
9862 		  || (got16_reloc_p (r_type)
9863 		      && mips_elf_local_relocation_p (input_bfd, rel,
9864 						      local_sections)))
9865 		{
9866 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9867 						     contents, &addend))
9868 		    {
9869 		      if (h)
9870 			name = h->root.root.string;
9871 		      else
9872 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9873 						 local_syms + r_symndx,
9874 						 sec);
9875 		      (*_bfd_error_handler)
9876 			(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9877 			 input_bfd, input_section, name, howto->name,
9878 			 rel->r_offset);
9879 		    }
9880 		}
9881 	      else
9882 		addend <<= howto->rightshift;
9883 	    }
9884 	  else
9885 	    addend = rel->r_addend;
9886 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
9887 				  local_syms, local_sections, rel);
9888 	}
9889 
9890       if (info->relocatable)
9891 	{
9892 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9893 	      && bfd_big_endian (input_bfd))
9894 	    rel->r_offset -= 4;
9895 
9896 	  if (!rela_relocation_p && rel->r_addend)
9897 	    {
9898 	      addend += rel->r_addend;
9899 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9900 		addend = mips_elf_high (addend);
9901 	      else if (r_type == R_MIPS_HIGHER)
9902 		addend = mips_elf_higher (addend);
9903 	      else if (r_type == R_MIPS_HIGHEST)
9904 		addend = mips_elf_highest (addend);
9905 	      else
9906 		addend >>= howto->rightshift;
9907 
9908 	      /* We use the source mask, rather than the destination
9909 		 mask because the place to which we are writing will be
9910 		 source of the addend in the final link.  */
9911 	      addend &= howto->src_mask;
9912 
9913 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9914 		/* See the comment above about using R_MIPS_64 in the 32-bit
9915 		   ABI.  Here, we need to update the addend.  It would be
9916 		   possible to get away with just using the R_MIPS_32 reloc
9917 		   but for endianness.  */
9918 		{
9919 		  bfd_vma sign_bits;
9920 		  bfd_vma low_bits;
9921 		  bfd_vma high_bits;
9922 
9923 		  if (addend & ((bfd_vma) 1 << 31))
9924 #ifdef BFD64
9925 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
9926 #else
9927 		    sign_bits = -1;
9928 #endif
9929 		  else
9930 		    sign_bits = 0;
9931 
9932 		  /* If we don't know that we have a 64-bit type,
9933 		     do two separate stores.  */
9934 		  if (bfd_big_endian (input_bfd))
9935 		    {
9936 		      /* Store the sign-bits (which are most significant)
9937 			 first.  */
9938 		      low_bits = sign_bits;
9939 		      high_bits = addend;
9940 		    }
9941 		  else
9942 		    {
9943 		      low_bits = addend;
9944 		      high_bits = sign_bits;
9945 		    }
9946 		  bfd_put_32 (input_bfd, low_bits,
9947 			      contents + rel->r_offset);
9948 		  bfd_put_32 (input_bfd, high_bits,
9949 			      contents + rel->r_offset + 4);
9950 		  continue;
9951 		}
9952 
9953 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
9954 						 input_bfd, input_section,
9955 						 contents, FALSE))
9956 		return FALSE;
9957 	    }
9958 
9959 	  /* Go on to the next relocation.  */
9960 	  continue;
9961 	}
9962 
9963       /* In the N32 and 64-bit ABIs there may be multiple consecutive
9964 	 relocations for the same offset.  In that case we are
9965 	 supposed to treat the output of each relocation as the addend
9966 	 for the next.  */
9967       if (rel + 1 < relend
9968 	  && rel->r_offset == rel[1].r_offset
9969 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9970 	use_saved_addend_p = TRUE;
9971       else
9972 	use_saved_addend_p = FALSE;
9973 
9974       /* Figure out what value we are supposed to relocate.  */
9975       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9976 					     input_section, info, rel,
9977 					     addend, howto, local_syms,
9978 					     local_sections, &value,
9979 					     &name, &cross_mode_jump_p,
9980 					     use_saved_addend_p))
9981 	{
9982 	case bfd_reloc_continue:
9983 	  /* There's nothing to do.  */
9984 	  continue;
9985 
9986 	case bfd_reloc_undefined:
9987 	  /* mips_elf_calculate_relocation already called the
9988 	     undefined_symbol callback.  There's no real point in
9989 	     trying to perform the relocation at this point, so we
9990 	     just skip ahead to the next relocation.  */
9991 	  continue;
9992 
9993 	case bfd_reloc_notsupported:
9994 	  msg = _("internal error: unsupported relocation error");
9995 	  info->callbacks->warning
9996 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
9997 	  return FALSE;
9998 
9999 	case bfd_reloc_overflow:
10000 	  if (use_saved_addend_p)
10001 	    /* Ignore overflow until we reach the last relocation for
10002 	       a given location.  */
10003 	    ;
10004 	  else
10005 	    {
10006 	      struct mips_elf_link_hash_table *htab;
10007 
10008 	      htab = mips_elf_hash_table (info);
10009 	      BFD_ASSERT (htab != NULL);
10010 	      BFD_ASSERT (name != NULL);
10011 	      if (!htab->small_data_overflow_reported
10012 		  && (gprel16_reloc_p (howto->type)
10013 		      || literal_reloc_p (howto->type)))
10014 		{
10015 		  msg = _("small-data section exceeds 64KB;"
10016 			  " lower small-data size limit (see option -G)");
10017 
10018 		  htab->small_data_overflow_reported = TRUE;
10019 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10020 		}
10021 	      if (! ((*info->callbacks->reloc_overflow)
10022 		     (info, NULL, name, howto->name, (bfd_vma) 0,
10023 		      input_bfd, input_section, rel->r_offset)))
10024 		return FALSE;
10025 	    }
10026 	  break;
10027 
10028 	case bfd_reloc_ok:
10029 	  break;
10030 
10031 	case bfd_reloc_outofrange:
10032 	  if (jal_reloc_p (howto->type))
10033 	    {
10034 	      msg = _("JALX to a non-word-aligned address");
10035 	      info->callbacks->warning
10036 		(info, msg, name, input_bfd, input_section, rel->r_offset);
10037 	      return FALSE;
10038 	    }
10039 	  /* Fall through.  */
10040 
10041 	default:
10042 	  abort ();
10043 	  break;
10044 	}
10045 
10046       /* If we've got another relocation for the address, keep going
10047 	 until we reach the last one.  */
10048       if (use_saved_addend_p)
10049 	{
10050 	  addend = value;
10051 	  continue;
10052 	}
10053 
10054       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10055 	/* See the comment above about using R_MIPS_64 in the 32-bit
10056 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10057 	   that calculated the right value.  Now, however, we
10058 	   sign-extend the 32-bit result to 64-bits, and store it as a
10059 	   64-bit value.  We are especially generous here in that we
10060 	   go to extreme lengths to support this usage on systems with
10061 	   only a 32-bit VMA.  */
10062 	{
10063 	  bfd_vma sign_bits;
10064 	  bfd_vma low_bits;
10065 	  bfd_vma high_bits;
10066 
10067 	  if (value & ((bfd_vma) 1 << 31))
10068 #ifdef BFD64
10069 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10070 #else
10071 	    sign_bits = -1;
10072 #endif
10073 	  else
10074 	    sign_bits = 0;
10075 
10076 	  /* If we don't know that we have a 64-bit type,
10077 	     do two separate stores.  */
10078 	  if (bfd_big_endian (input_bfd))
10079 	    {
10080 	      /* Undo what we did above.  */
10081 	      rel->r_offset -= 4;
10082 	      /* Store the sign-bits (which are most significant)
10083 		 first.  */
10084 	      low_bits = sign_bits;
10085 	      high_bits = value;
10086 	    }
10087 	  else
10088 	    {
10089 	      low_bits = value;
10090 	      high_bits = sign_bits;
10091 	    }
10092 	  bfd_put_32 (input_bfd, low_bits,
10093 		      contents + rel->r_offset);
10094 	  bfd_put_32 (input_bfd, high_bits,
10095 		      contents + rel->r_offset + 4);
10096 	  continue;
10097 	}
10098 
10099       /* Actually perform the relocation.  */
10100       if (! mips_elf_perform_relocation (info, howto, rel, value,
10101 					 input_bfd, input_section,
10102 					 contents, cross_mode_jump_p))
10103 	return FALSE;
10104     }
10105 
10106   return TRUE;
10107 }
10108 
10109 /* A function that iterates over each entry in la25_stubs and fills
10110    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10111 
10112 static int
10113 mips_elf_create_la25_stub (void **slot, void *data)
10114 {
10115   struct mips_htab_traverse_info *hti;
10116   struct mips_elf_link_hash_table *htab;
10117   struct mips_elf_la25_stub *stub;
10118   asection *s;
10119   bfd_byte *loc;
10120   bfd_vma offset, target, target_high, target_low;
10121 
10122   stub = (struct mips_elf_la25_stub *) *slot;
10123   hti = (struct mips_htab_traverse_info *) data;
10124   htab = mips_elf_hash_table (hti->info);
10125   BFD_ASSERT (htab != NULL);
10126 
10127   /* Create the section contents, if we haven't already.  */
10128   s = stub->stub_section;
10129   loc = s->contents;
10130   if (loc == NULL)
10131     {
10132       loc = bfd_malloc (s->size);
10133       if (loc == NULL)
10134 	{
10135 	  hti->error = TRUE;
10136 	  return FALSE;
10137 	}
10138       s->contents = loc;
10139     }
10140 
10141   /* Work out where in the section this stub should go.  */
10142   offset = stub->offset;
10143 
10144   /* Work out the target address.  */
10145   target = mips_elf_get_la25_target (stub, &s);
10146   target += s->output_section->vma + s->output_offset;
10147 
10148   target_high = ((target + 0x8000) >> 16) & 0xffff;
10149   target_low = (target & 0xffff);
10150 
10151   if (stub->stub_section != htab->strampoline)
10152     {
10153       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10154 	 of the section and write the two instructions at the end.  */
10155       memset (loc, 0, offset);
10156       loc += offset;
10157       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10158 	{
10159 	  bfd_put_micromips_32 (hti->output_bfd,
10160 				LA25_LUI_MICROMIPS (target_high),
10161 				loc);
10162 	  bfd_put_micromips_32 (hti->output_bfd,
10163 				LA25_ADDIU_MICROMIPS (target_low),
10164 				loc + 4);
10165 	}
10166       else
10167 	{
10168 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10169 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10170 	}
10171     }
10172   else
10173     {
10174       /* This is trampoline.  */
10175       loc += offset;
10176       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10177 	{
10178 	  bfd_put_micromips_32 (hti->output_bfd,
10179 				LA25_LUI_MICROMIPS (target_high), loc);
10180 	  bfd_put_micromips_32 (hti->output_bfd,
10181 				LA25_J_MICROMIPS (target), loc + 4);
10182 	  bfd_put_micromips_32 (hti->output_bfd,
10183 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10184 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10185 	}
10186       else
10187 	{
10188 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10189 	  bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10190 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10191 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10192 	}
10193     }
10194   return TRUE;
10195 }
10196 
10197 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10198    adjust it appropriately now.  */
10199 
10200 static void
10201 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10202 				      const char *name, Elf_Internal_Sym *sym)
10203 {
10204   /* The linker script takes care of providing names and values for
10205      these, but we must place them into the right sections.  */
10206   static const char* const text_section_symbols[] = {
10207     "_ftext",
10208     "_etext",
10209     "__dso_displacement",
10210     "__elf_header",
10211     "__program_header_table",
10212     NULL
10213   };
10214 
10215   static const char* const data_section_symbols[] = {
10216     "_fdata",
10217     "_edata",
10218     "_end",
10219     "_fbss",
10220     NULL
10221   };
10222 
10223   const char* const *p;
10224   int i;
10225 
10226   for (i = 0; i < 2; ++i)
10227     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10228 	 *p;
10229 	 ++p)
10230       if (strcmp (*p, name) == 0)
10231 	{
10232 	  /* All of these symbols are given type STT_SECTION by the
10233 	     IRIX6 linker.  */
10234 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10235 	  sym->st_other = STO_PROTECTED;
10236 
10237 	  /* The IRIX linker puts these symbols in special sections.  */
10238 	  if (i == 0)
10239 	    sym->st_shndx = SHN_MIPS_TEXT;
10240 	  else
10241 	    sym->st_shndx = SHN_MIPS_DATA;
10242 
10243 	  break;
10244 	}
10245 }
10246 
10247 /* Finish up dynamic symbol handling.  We set the contents of various
10248    dynamic sections here.  */
10249 
10250 bfd_boolean
10251 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10252 				     struct bfd_link_info *info,
10253 				     struct elf_link_hash_entry *h,
10254 				     Elf_Internal_Sym *sym)
10255 {
10256   bfd *dynobj;
10257   asection *sgot;
10258   struct mips_got_info *g, *gg;
10259   const char *name;
10260   int idx;
10261   struct mips_elf_link_hash_table *htab;
10262   struct mips_elf_link_hash_entry *hmips;
10263 
10264   htab = mips_elf_hash_table (info);
10265   BFD_ASSERT (htab != NULL);
10266   dynobj = elf_hash_table (info)->dynobj;
10267   hmips = (struct mips_elf_link_hash_entry *) h;
10268 
10269   BFD_ASSERT (!htab->is_vxworks);
10270 
10271   if (h->plt.plist != NULL
10272       && (h->plt.plist->mips_offset != MINUS_ONE
10273 	  || h->plt.plist->comp_offset != MINUS_ONE))
10274     {
10275       /* We've decided to create a PLT entry for this symbol.  */
10276       bfd_byte *loc;
10277       bfd_vma header_address, got_address;
10278       bfd_vma got_address_high, got_address_low, load;
10279       bfd_vma got_index;
10280       bfd_vma isa_bit;
10281 
10282       got_index = h->plt.plist->gotplt_index;
10283 
10284       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10285       BFD_ASSERT (h->dynindx != -1);
10286       BFD_ASSERT (htab->splt != NULL);
10287       BFD_ASSERT (got_index != MINUS_ONE);
10288       BFD_ASSERT (!h->def_regular);
10289 
10290       /* Calculate the address of the PLT header.  */
10291       isa_bit = htab->plt_header_is_comp;
10292       header_address = (htab->splt->output_section->vma
10293 			+ htab->splt->output_offset + isa_bit);
10294 
10295       /* Calculate the address of the .got.plt entry.  */
10296       got_address = (htab->sgotplt->output_section->vma
10297 		     + htab->sgotplt->output_offset
10298 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10299 
10300       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10301       got_address_low = got_address & 0xffff;
10302 
10303       /* Initially point the .got.plt entry at the PLT header.  */
10304       loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10305       if (ABI_64_P (output_bfd))
10306 	bfd_put_64 (output_bfd, header_address, loc);
10307       else
10308 	bfd_put_32 (output_bfd, header_address, loc);
10309 
10310       /* Now handle the PLT itself.  First the standard entry (the order
10311          does not matter, we just have to pick one).  */
10312       if (h->plt.plist->mips_offset != MINUS_ONE)
10313 	{
10314 	  const bfd_vma *plt_entry;
10315 	  bfd_vma plt_offset;
10316 
10317 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10318 
10319 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10320 
10321 	  /* Find out where the .plt entry should go.  */
10322 	  loc = htab->splt->contents + plt_offset;
10323 
10324 	  /* Pick the load opcode.  */
10325 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10326 
10327 	  /* Fill in the PLT entry itself.  */
10328 	  plt_entry = mips_exec_plt_entry;
10329 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10330 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10331 		      loc + 4);
10332 
10333 	  if (! LOAD_INTERLOCKS_P (output_bfd))
10334 	    {
10335 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10336 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10337 	    }
10338 	  else
10339 	    {
10340 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10341 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10342 			  loc + 12);
10343 	    }
10344 	}
10345 
10346       /* Now the compressed entry.  They come after any standard ones.  */
10347       if (h->plt.plist->comp_offset != MINUS_ONE)
10348 	{
10349 	  bfd_vma plt_offset;
10350 
10351 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10352 			+ h->plt.plist->comp_offset);
10353 
10354 	  BFD_ASSERT (plt_offset <= htab->splt->size);
10355 
10356 	  /* Find out where the .plt entry should go.  */
10357 	  loc = htab->splt->contents + plt_offset;
10358 
10359 	  /* Fill in the PLT entry itself.  */
10360 	  if (!MICROMIPS_P (output_bfd))
10361 	    {
10362 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
10363 
10364 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10365 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
10366 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10367 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10368 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10369 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10370 	      bfd_put_32 (output_bfd, got_address, loc + 12);
10371 	    }
10372 	  else if (htab->insn32)
10373 	    {
10374 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
10375 
10376 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
10377 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
10378 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10379 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
10380 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10381 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10382 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
10383 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
10384 	    }
10385 	  else
10386 	    {
10387 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
10388 	      bfd_signed_vma gotpc_offset;
10389 	      bfd_vma loc_address;
10390 
10391 	      BFD_ASSERT (got_address % 4 == 0);
10392 
10393 	      loc_address = (htab->splt->output_section->vma
10394 			     + htab->splt->output_offset + plt_offset);
10395 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
10396 
10397 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
10398 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
10399 		{
10400 		  (*_bfd_error_handler)
10401 		    (_("%B: `%A' offset of %ld from `%A' "
10402 		       "beyond the range of ADDIUPC"),
10403 		     output_bfd,
10404 		     htab->sgotplt->output_section,
10405 		     htab->splt->output_section,
10406 		     (long) gotpc_offset);
10407 		  bfd_set_error (bfd_error_no_error);
10408 		  return FALSE;
10409 		}
10410 	      bfd_put_16 (output_bfd,
10411 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10412 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10413 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10414 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
10415 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10416 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
10417 	    }
10418 	}
10419 
10420       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10421       mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
10422 					  got_index - 2, h->dynindx,
10423 					  R_MIPS_JUMP_SLOT, got_address);
10424 
10425       /* We distinguish between PLT entries and lazy-binding stubs by
10426 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
10427 	 flag and leave the value if there are any relocations in the
10428 	 binary where pointer equality matters.  */
10429       sym->st_shndx = SHN_UNDEF;
10430       if (h->pointer_equality_needed)
10431 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
10432       else
10433 	{
10434 	  sym->st_value = 0;
10435 	  sym->st_other = 0;
10436 	}
10437     }
10438 
10439   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
10440     {
10441       /* We've decided to create a lazy-binding stub.  */
10442       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
10443       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
10444       bfd_vma stub_size = htab->function_stub_size;
10445       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
10446       bfd_vma isa_bit = micromips_p;
10447       bfd_vma stub_big_size;
10448 
10449       if (!micromips_p)
10450 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
10451       else if (htab->insn32)
10452 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
10453       else
10454 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
10455 
10456       /* This symbol has a stub.  Set it up.  */
10457 
10458       BFD_ASSERT (h->dynindx != -1);
10459 
10460       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
10461 
10462       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
10463 	 sign extension at runtime in the stub, resulting in a negative
10464 	 index value.  */
10465       if (h->dynindx & ~0x7fffffff)
10466 	return FALSE;
10467 
10468       /* Fill the stub.  */
10469       if (micromips_p)
10470 	{
10471 	  idx = 0;
10472 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
10473 				stub + idx);
10474 	  idx += 4;
10475 	  if (htab->insn32)
10476 	    {
10477 	      bfd_put_micromips_32 (output_bfd,
10478 				    STUB_MOVE32_MICROMIPS (output_bfd),
10479 				    stub + idx);
10480 	      idx += 4;
10481 	    }
10482 	  else
10483 	    {
10484 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
10485 	      idx += 2;
10486 	    }
10487 	  if (stub_size == stub_big_size)
10488 	    {
10489 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
10490 
10491 	      bfd_put_micromips_32 (output_bfd,
10492 				    STUB_LUI_MICROMIPS (dynindx_hi),
10493 				    stub + idx);
10494 	      idx += 4;
10495 	    }
10496 	  if (htab->insn32)
10497 	    {
10498 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
10499 				    stub + idx);
10500 	      idx += 4;
10501 	    }
10502 	  else
10503 	    {
10504 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
10505 	      idx += 2;
10506 	    }
10507 
10508 	  /* If a large stub is not required and sign extension is not a
10509 	     problem, then use legacy code in the stub.  */
10510 	  if (stub_size == stub_big_size)
10511 	    bfd_put_micromips_32 (output_bfd,
10512 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
10513 				  stub + idx);
10514 	  else if (h->dynindx & ~0x7fff)
10515 	    bfd_put_micromips_32 (output_bfd,
10516 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
10517 				  stub + idx);
10518 	  else
10519 	    bfd_put_micromips_32 (output_bfd,
10520 				  STUB_LI16S_MICROMIPS (output_bfd,
10521 							h->dynindx),
10522 				  stub + idx);
10523 	}
10524       else
10525 	{
10526 	  idx = 0;
10527 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
10528 	  idx += 4;
10529 	  bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
10530 	  idx += 4;
10531 	  if (stub_size == stub_big_size)
10532 	    {
10533 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
10534 			  stub + idx);
10535 	      idx += 4;
10536 	    }
10537 	  bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
10538 	  idx += 4;
10539 
10540 	  /* If a large stub is not required and sign extension is not a
10541 	     problem, then use legacy code in the stub.  */
10542 	  if (stub_size == stub_big_size)
10543 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
10544 			stub + idx);
10545 	  else if (h->dynindx & ~0x7fff)
10546 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
10547 			stub + idx);
10548 	  else
10549 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
10550 			stub + idx);
10551 	}
10552 
10553       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
10554       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
10555 	      stub, stub_size);
10556 
10557       /* Mark the symbol as undefined.  stub_offset != -1 occurs
10558 	 only for the referenced symbol.  */
10559       sym->st_shndx = SHN_UNDEF;
10560 
10561       /* The run-time linker uses the st_value field of the symbol
10562 	 to reset the global offset table entry for this external
10563 	 to its stub address when unlinking a shared object.  */
10564       sym->st_value = (htab->sstubs->output_section->vma
10565 		       + htab->sstubs->output_offset
10566 		       + h->plt.plist->stub_offset
10567 		       + isa_bit);
10568       sym->st_other = other;
10569     }
10570 
10571   /* If we have a MIPS16 function with a stub, the dynamic symbol must
10572      refer to the stub, since only the stub uses the standard calling
10573      conventions.  */
10574   if (h->dynindx != -1 && hmips->fn_stub != NULL)
10575     {
10576       BFD_ASSERT (hmips->need_fn_stub);
10577       sym->st_value = (hmips->fn_stub->output_section->vma
10578 		       + hmips->fn_stub->output_offset);
10579       sym->st_size = hmips->fn_stub->size;
10580       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
10581     }
10582 
10583   BFD_ASSERT (h->dynindx != -1
10584 	      || h->forced_local);
10585 
10586   sgot = htab->sgot;
10587   g = htab->got_info;
10588   BFD_ASSERT (g != NULL);
10589 
10590   /* Run through the global symbol table, creating GOT entries for all
10591      the symbols that need them.  */
10592   if (hmips->global_got_area != GGA_NONE)
10593     {
10594       bfd_vma offset;
10595       bfd_vma value;
10596 
10597       value = sym->st_value;
10598       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10599       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
10600     }
10601 
10602   if (hmips->global_got_area != GGA_NONE && g->next)
10603     {
10604       struct mips_got_entry e, *p;
10605       bfd_vma entry;
10606       bfd_vma offset;
10607 
10608       gg = g;
10609 
10610       e.abfd = output_bfd;
10611       e.symndx = -1;
10612       e.d.h = hmips;
10613       e.tls_type = GOT_TLS_NONE;
10614 
10615       for (g = g->next; g->next != gg; g = g->next)
10616 	{
10617 	  if (g->got_entries
10618 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
10619 							   &e)))
10620 	    {
10621 	      offset = p->gotidx;
10622 	      BFD_ASSERT (offset > 0 && offset < htab->sgot->size);
10623 	      if (info->shared
10624 		  || (elf_hash_table (info)->dynamic_sections_created
10625 		      && p->d.h != NULL
10626 		      && p->d.h->root.def_dynamic
10627 		      && !p->d.h->root.def_regular))
10628 		{
10629 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
10630 		     the various compatibility problems, it's easier to mock
10631 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
10632 		     mips_elf_create_dynamic_relocation to calculate the
10633 		     appropriate addend.  */
10634 		  Elf_Internal_Rela rel[3];
10635 
10636 		  memset (rel, 0, sizeof (rel));
10637 		  if (ABI_64_P (output_bfd))
10638 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
10639 		  else
10640 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
10641 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
10642 
10643 		  entry = 0;
10644 		  if (! (mips_elf_create_dynamic_relocation
10645 			 (output_bfd, info, rel,
10646 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
10647 		    return FALSE;
10648 		}
10649 	      else
10650 		entry = sym->st_value;
10651 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
10652 	    }
10653 	}
10654     }
10655 
10656   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
10657   name = h->root.root.string;
10658   if (h == elf_hash_table (info)->hdynamic
10659       || h == elf_hash_table (info)->hgot)
10660     sym->st_shndx = SHN_ABS;
10661   else if (strcmp (name, "_DYNAMIC_LINK") == 0
10662 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
10663     {
10664       sym->st_shndx = SHN_ABS;
10665       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10666       sym->st_value = 1;
10667     }
10668   else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
10669     {
10670       sym->st_shndx = SHN_ABS;
10671       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10672       sym->st_value = elf_gp (output_bfd);
10673     }
10674   else if (SGI_COMPAT (output_bfd))
10675     {
10676       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
10677 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
10678 	{
10679 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10680 	  sym->st_other = STO_PROTECTED;
10681 	  sym->st_value = 0;
10682 	  sym->st_shndx = SHN_MIPS_DATA;
10683 	}
10684       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
10685 	{
10686 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10687 	  sym->st_other = STO_PROTECTED;
10688 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
10689 	  sym->st_shndx = SHN_ABS;
10690 	}
10691       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
10692 	{
10693 	  if (h->type == STT_FUNC)
10694 	    sym->st_shndx = SHN_MIPS_TEXT;
10695 	  else if (h->type == STT_OBJECT)
10696 	    sym->st_shndx = SHN_MIPS_DATA;
10697 	}
10698     }
10699 
10700   /* Emit a copy reloc, if needed.  */
10701   if (h->needs_copy)
10702     {
10703       asection *s;
10704       bfd_vma symval;
10705 
10706       BFD_ASSERT (h->dynindx != -1);
10707       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10708 
10709       s = mips_elf_rel_dyn_section (info, FALSE);
10710       symval = (h->root.u.def.section->output_section->vma
10711 		+ h->root.u.def.section->output_offset
10712 		+ h->root.u.def.value);
10713       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
10714 					  h->dynindx, R_MIPS_COPY, symval);
10715     }
10716 
10717   /* Handle the IRIX6-specific symbols.  */
10718   if (IRIX_COMPAT (output_bfd) == ict_irix6)
10719     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
10720 
10721   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
10722      to treat compressed symbols like any other.  */
10723   if (ELF_ST_IS_MIPS16 (sym->st_other))
10724     {
10725       BFD_ASSERT (sym->st_value & 1);
10726       sym->st_other -= STO_MIPS16;
10727     }
10728   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
10729     {
10730       BFD_ASSERT (sym->st_value & 1);
10731       sym->st_other -= STO_MICROMIPS;
10732     }
10733 
10734   return TRUE;
10735 }
10736 
10737 /* Likewise, for VxWorks.  */
10738 
10739 bfd_boolean
10740 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
10741 					 struct bfd_link_info *info,
10742 					 struct elf_link_hash_entry *h,
10743 					 Elf_Internal_Sym *sym)
10744 {
10745   bfd *dynobj;
10746   asection *sgot;
10747   struct mips_got_info *g;
10748   struct mips_elf_link_hash_table *htab;
10749   struct mips_elf_link_hash_entry *hmips;
10750 
10751   htab = mips_elf_hash_table (info);
10752   BFD_ASSERT (htab != NULL);
10753   dynobj = elf_hash_table (info)->dynobj;
10754   hmips = (struct mips_elf_link_hash_entry *) h;
10755 
10756   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
10757     {
10758       bfd_byte *loc;
10759       bfd_vma plt_address, got_address, got_offset, branch_offset;
10760       Elf_Internal_Rela rel;
10761       static const bfd_vma *plt_entry;
10762       bfd_vma gotplt_index;
10763       bfd_vma plt_offset;
10764 
10765       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10766       gotplt_index = h->plt.plist->gotplt_index;
10767 
10768       BFD_ASSERT (h->dynindx != -1);
10769       BFD_ASSERT (htab->splt != NULL);
10770       BFD_ASSERT (gotplt_index != MINUS_ONE);
10771       BFD_ASSERT (plt_offset <= htab->splt->size);
10772 
10773       /* Calculate the address of the .plt entry.  */
10774       plt_address = (htab->splt->output_section->vma
10775 		     + htab->splt->output_offset
10776 		     + plt_offset);
10777 
10778       /* Calculate the address of the .got.plt entry.  */
10779       got_address = (htab->sgotplt->output_section->vma
10780 		     + htab->sgotplt->output_offset
10781 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
10782 
10783       /* Calculate the offset of the .got.plt entry from
10784 	 _GLOBAL_OFFSET_TABLE_.  */
10785       got_offset = mips_elf_gotplt_index (info, h);
10786 
10787       /* Calculate the offset for the branch at the start of the PLT
10788 	 entry.  The branch jumps to the beginning of .plt.  */
10789       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
10790 
10791       /* Fill in the initial value of the .got.plt entry.  */
10792       bfd_put_32 (output_bfd, plt_address,
10793 		  (htab->sgotplt->contents
10794 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
10795 
10796       /* Find out where the .plt entry should go.  */
10797       loc = htab->splt->contents + plt_offset;
10798 
10799       if (info->shared)
10800 	{
10801 	  plt_entry = mips_vxworks_shared_plt_entry;
10802 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10803 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10804 	}
10805       else
10806 	{
10807 	  bfd_vma got_address_high, got_address_low;
10808 
10809 	  plt_entry = mips_vxworks_exec_plt_entry;
10810 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10811 	  got_address_low = got_address & 0xffff;
10812 
10813 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
10814 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
10815 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
10816 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
10817 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10818 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10819 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
10820 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
10821 
10822 	  loc = (htab->srelplt2->contents
10823 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
10824 
10825 	  /* Emit a relocation for the .got.plt entry.  */
10826 	  rel.r_offset = got_address;
10827 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10828 	  rel.r_addend = plt_offset;
10829 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10830 
10831 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
10832 	  loc += sizeof (Elf32_External_Rela);
10833 	  rel.r_offset = plt_address + 8;
10834 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10835 	  rel.r_addend = got_offset;
10836 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10837 
10838 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
10839 	  loc += sizeof (Elf32_External_Rela);
10840 	  rel.r_offset += 4;
10841 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10842 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10843 	}
10844 
10845       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
10846       loc = (htab->srelplt->contents
10847 	     + gotplt_index * sizeof (Elf32_External_Rela));
10848       rel.r_offset = got_address;
10849       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
10850       rel.r_addend = 0;
10851       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10852 
10853       if (!h->def_regular)
10854 	sym->st_shndx = SHN_UNDEF;
10855     }
10856 
10857   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
10858 
10859   sgot = htab->sgot;
10860   g = htab->got_info;
10861   BFD_ASSERT (g != NULL);
10862 
10863   /* See if this symbol has an entry in the GOT.  */
10864   if (hmips->global_got_area != GGA_NONE)
10865     {
10866       bfd_vma offset;
10867       Elf_Internal_Rela outrel;
10868       bfd_byte *loc;
10869       asection *s;
10870 
10871       /* Install the symbol value in the GOT.   */
10872       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
10873       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
10874 
10875       /* Add a dynamic relocation for it.  */
10876       s = mips_elf_rel_dyn_section (info, FALSE);
10877       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
10878       outrel.r_offset = (sgot->output_section->vma
10879 			 + sgot->output_offset
10880 			 + offset);
10881       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
10882       outrel.r_addend = 0;
10883       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
10884     }
10885 
10886   /* Emit a copy reloc, if needed.  */
10887   if (h->needs_copy)
10888     {
10889       Elf_Internal_Rela rel;
10890 
10891       BFD_ASSERT (h->dynindx != -1);
10892 
10893       rel.r_offset = (h->root.u.def.section->output_section->vma
10894 		      + h->root.u.def.section->output_offset
10895 		      + h->root.u.def.value);
10896       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
10897       rel.r_addend = 0;
10898       bfd_elf32_swap_reloca_out (output_bfd, &rel,
10899 				 htab->srelbss->contents
10900 				 + (htab->srelbss->reloc_count
10901 				    * sizeof (Elf32_External_Rela)));
10902       ++htab->srelbss->reloc_count;
10903     }
10904 
10905   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
10906   if (ELF_ST_IS_COMPRESSED (sym->st_other))
10907     sym->st_value &= ~1;
10908 
10909   return TRUE;
10910 }
10911 
10912 /* Write out a plt0 entry to the beginning of .plt.  */
10913 
10914 static bfd_boolean
10915 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
10916 {
10917   bfd_byte *loc;
10918   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
10919   static const bfd_vma *plt_entry;
10920   struct mips_elf_link_hash_table *htab;
10921 
10922   htab = mips_elf_hash_table (info);
10923   BFD_ASSERT (htab != NULL);
10924 
10925   if (ABI_64_P (output_bfd))
10926     plt_entry = mips_n64_exec_plt0_entry;
10927   else if (ABI_N32_P (output_bfd))
10928     plt_entry = mips_n32_exec_plt0_entry;
10929   else if (!htab->plt_header_is_comp)
10930     plt_entry = mips_o32_exec_plt0_entry;
10931   else if (htab->insn32)
10932     plt_entry = micromips_insn32_o32_exec_plt0_entry;
10933   else
10934     plt_entry = micromips_o32_exec_plt0_entry;
10935 
10936   /* Calculate the value of .got.plt.  */
10937   gotplt_value = (htab->sgotplt->output_section->vma
10938 		  + htab->sgotplt->output_offset);
10939   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
10940   gotplt_value_low = gotplt_value & 0xffff;
10941 
10942   /* The PLT sequence is not safe for N64 if .got.plt's address can
10943      not be loaded in two instructions.  */
10944   BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
10945 	      || ~(gotplt_value | 0x7fffffff) == 0);
10946 
10947   /* Install the PLT header.  */
10948   loc = htab->splt->contents;
10949   if (plt_entry == micromips_o32_exec_plt0_entry)
10950     {
10951       bfd_vma gotpc_offset;
10952       bfd_vma loc_address;
10953       size_t i;
10954 
10955       BFD_ASSERT (gotplt_value % 4 == 0);
10956 
10957       loc_address = (htab->splt->output_section->vma
10958 		     + htab->splt->output_offset);
10959       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
10960 
10961       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
10962       if (gotpc_offset + 0x1000000 >= 0x2000000)
10963 	{
10964 	  (*_bfd_error_handler)
10965 	    (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"),
10966 	     output_bfd,
10967 	     htab->sgotplt->output_section,
10968 	     htab->splt->output_section,
10969 	     (long) gotpc_offset);
10970 	  bfd_set_error (bfd_error_no_error);
10971 	  return FALSE;
10972 	}
10973       bfd_put_16 (output_bfd,
10974 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
10975       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
10976       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
10977 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
10978     }
10979   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
10980     {
10981       size_t i;
10982 
10983       bfd_put_16 (output_bfd, plt_entry[0], loc);
10984       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
10985       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
10986       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
10987       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
10988       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
10989       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
10990 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
10991     }
10992   else
10993     {
10994       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
10995       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
10996       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
10997       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10998       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10999       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11000       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11001       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11002     }
11003 
11004   return TRUE;
11005 }
11006 
11007 /* Install the PLT header for a VxWorks executable and finalize the
11008    contents of .rela.plt.unloaded.  */
11009 
11010 static void
11011 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11012 {
11013   Elf_Internal_Rela rela;
11014   bfd_byte *loc;
11015   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11016   static const bfd_vma *plt_entry;
11017   struct mips_elf_link_hash_table *htab;
11018 
11019   htab = mips_elf_hash_table (info);
11020   BFD_ASSERT (htab != NULL);
11021 
11022   plt_entry = mips_vxworks_exec_plt0_entry;
11023 
11024   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11025   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11026 	       + htab->root.hgot->root.u.def.section->output_offset
11027 	       + htab->root.hgot->root.u.def.value);
11028 
11029   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11030   got_value_low = got_value & 0xffff;
11031 
11032   /* Calculate the address of the PLT header.  */
11033   plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
11034 
11035   /* Install the PLT header.  */
11036   loc = htab->splt->contents;
11037   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11038   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11039   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11040   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11041   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11042   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11043 
11044   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11045   loc = htab->srelplt2->contents;
11046   rela.r_offset = plt_address;
11047   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11048   rela.r_addend = 0;
11049   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11050   loc += sizeof (Elf32_External_Rela);
11051 
11052   /* Output the relocation for the following addiu of
11053      %lo(_GLOBAL_OFFSET_TABLE_).  */
11054   rela.r_offset += 4;
11055   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11056   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11057   loc += sizeof (Elf32_External_Rela);
11058 
11059   /* Fix up the remaining relocations.  They may have the wrong
11060      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11061      in which symbols were output.  */
11062   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11063     {
11064       Elf_Internal_Rela rel;
11065 
11066       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11067       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11068       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11069       loc += sizeof (Elf32_External_Rela);
11070 
11071       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11072       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11073       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11074       loc += sizeof (Elf32_External_Rela);
11075 
11076       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11077       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11078       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11079       loc += sizeof (Elf32_External_Rela);
11080     }
11081 }
11082 
11083 /* Install the PLT header for a VxWorks shared library.  */
11084 
11085 static void
11086 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11087 {
11088   unsigned int i;
11089   struct mips_elf_link_hash_table *htab;
11090 
11091   htab = mips_elf_hash_table (info);
11092   BFD_ASSERT (htab != NULL);
11093 
11094   /* We just need to copy the entry byte-by-byte.  */
11095   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11096     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11097 		htab->splt->contents + i * 4);
11098 }
11099 
11100 /* Finish up the dynamic sections.  */
11101 
11102 bfd_boolean
11103 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11104 				       struct bfd_link_info *info)
11105 {
11106   bfd *dynobj;
11107   asection *sdyn;
11108   asection *sgot;
11109   struct mips_got_info *gg, *g;
11110   struct mips_elf_link_hash_table *htab;
11111 
11112   htab = mips_elf_hash_table (info);
11113   BFD_ASSERT (htab != NULL);
11114 
11115   dynobj = elf_hash_table (info)->dynobj;
11116 
11117   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11118 
11119   sgot = htab->sgot;
11120   gg = htab->got_info;
11121 
11122   if (elf_hash_table (info)->dynamic_sections_created)
11123     {
11124       bfd_byte *b;
11125       int dyn_to_skip = 0, dyn_skipped = 0;
11126 
11127       BFD_ASSERT (sdyn != NULL);
11128       BFD_ASSERT (gg != NULL);
11129 
11130       g = mips_elf_bfd_got (output_bfd, FALSE);
11131       BFD_ASSERT (g != NULL);
11132 
11133       for (b = sdyn->contents;
11134 	   b < sdyn->contents + sdyn->size;
11135 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11136 	{
11137 	  Elf_Internal_Dyn dyn;
11138 	  const char *name;
11139 	  size_t elemsize;
11140 	  asection *s;
11141 	  bfd_boolean swap_out_p;
11142 
11143 	  /* Read in the current dynamic entry.  */
11144 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11145 
11146 	  /* Assume that we're going to modify it and write it out.  */
11147 	  swap_out_p = TRUE;
11148 
11149 	  switch (dyn.d_tag)
11150 	    {
11151 	    case DT_RELENT:
11152 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11153 	      break;
11154 
11155 	    case DT_RELAENT:
11156 	      BFD_ASSERT (htab->is_vxworks);
11157 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11158 	      break;
11159 
11160 	    case DT_STRSZ:
11161 	      /* Rewrite DT_STRSZ.  */
11162 	      dyn.d_un.d_val =
11163 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11164 	      break;
11165 
11166 	    case DT_PLTGOT:
11167 	      s = htab->sgot;
11168 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11169 	      break;
11170 
11171 	    case DT_MIPS_PLTGOT:
11172 	      s = htab->sgotplt;
11173 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11174 	      break;
11175 
11176 	    case DT_MIPS_RLD_VERSION:
11177 	      dyn.d_un.d_val = 1; /* XXX */
11178 	      break;
11179 
11180 	    case DT_MIPS_FLAGS:
11181 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11182 	      break;
11183 
11184 	    case DT_MIPS_TIME_STAMP:
11185 	      {
11186 		time_t t;
11187 		time (&t);
11188 		dyn.d_un.d_val = t;
11189 	      }
11190 	      break;
11191 
11192 	    case DT_MIPS_ICHECKSUM:
11193 	      /* XXX FIXME: */
11194 	      swap_out_p = FALSE;
11195 	      break;
11196 
11197 	    case DT_MIPS_IVERSION:
11198 	      /* XXX FIXME: */
11199 	      swap_out_p = FALSE;
11200 	      break;
11201 
11202 	    case DT_MIPS_BASE_ADDRESS:
11203 	      s = output_bfd->sections;
11204 	      BFD_ASSERT (s != NULL);
11205 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11206 	      break;
11207 
11208 	    case DT_MIPS_LOCAL_GOTNO:
11209 	      dyn.d_un.d_val = g->local_gotno;
11210 	      break;
11211 
11212 	    case DT_MIPS_UNREFEXTNO:
11213 	      /* The index into the dynamic symbol table which is the
11214 		 entry of the first external symbol that is not
11215 		 referenced within the same object.  */
11216 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11217 	      break;
11218 
11219 	    case DT_MIPS_GOTSYM:
11220 	      if (htab->global_gotsym)
11221 		{
11222 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11223 		  break;
11224 		}
11225 	      /* In case if we don't have global got symbols we default
11226 		 to setting DT_MIPS_GOTSYM to the same value as
11227 		 DT_MIPS_SYMTABNO, so we just fall through.  */
11228 
11229 	    case DT_MIPS_SYMTABNO:
11230 	      name = ".dynsym";
11231 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11232 	      s = bfd_get_section_by_name (output_bfd, name);
11233 	      BFD_ASSERT (s != NULL);
11234 
11235 	      dyn.d_un.d_val = s->size / elemsize;
11236 	      break;
11237 
11238 	    case DT_MIPS_HIPAGENO:
11239 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11240 	      break;
11241 
11242 	    case DT_MIPS_RLD_MAP:
11243 	      {
11244 		struct elf_link_hash_entry *h;
11245 		h = mips_elf_hash_table (info)->rld_symbol;
11246 		if (!h)
11247 		  {
11248 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11249 		    swap_out_p = FALSE;
11250 		    break;
11251 		  }
11252 		s = h->root.u.def.section;
11253 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11254 				  + h->root.u.def.value);
11255 	      }
11256 	      break;
11257 
11258 	    case DT_MIPS_OPTIONS:
11259 	      s = (bfd_get_section_by_name
11260 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11261 	      dyn.d_un.d_ptr = s->vma;
11262 	      break;
11263 
11264 	    case DT_RELASZ:
11265 	      BFD_ASSERT (htab->is_vxworks);
11266 	      /* The count does not include the JUMP_SLOT relocations.  */
11267 	      if (htab->srelplt)
11268 		dyn.d_un.d_val -= htab->srelplt->size;
11269 	      break;
11270 
11271 	    case DT_PLTREL:
11272 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11273 	      if (htab->is_vxworks)
11274 		dyn.d_un.d_val = DT_RELA;
11275 	      else
11276 		dyn.d_un.d_val = DT_REL;
11277 	      break;
11278 
11279 	    case DT_PLTRELSZ:
11280 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11281 	      dyn.d_un.d_val = htab->srelplt->size;
11282 	      break;
11283 
11284 	    case DT_JMPREL:
11285 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11286 	      dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
11287 				+ htab->srelplt->output_offset);
11288 	      break;
11289 
11290 	    case DT_TEXTREL:
11291 	      /* If we didn't need any text relocations after all, delete
11292 		 the dynamic tag.  */
11293 	      if (!(info->flags & DF_TEXTREL))
11294 		{
11295 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11296 		  swap_out_p = FALSE;
11297 		}
11298 	      break;
11299 
11300 	    case DT_FLAGS:
11301 	      /* If we didn't need any text relocations after all, clear
11302 		 DF_TEXTREL from DT_FLAGS.  */
11303 	      if (!(info->flags & DF_TEXTREL))
11304 		dyn.d_un.d_val &= ~DF_TEXTREL;
11305 	      else
11306 		swap_out_p = FALSE;
11307 	      break;
11308 
11309 	    default:
11310 	      swap_out_p = FALSE;
11311 	      if (htab->is_vxworks
11312 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11313 		swap_out_p = TRUE;
11314 	      break;
11315 	    }
11316 
11317 	  if (swap_out_p || dyn_skipped)
11318 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11319 	      (dynobj, &dyn, b - dyn_skipped);
11320 
11321 	  if (dyn_to_skip)
11322 	    {
11323 	      dyn_skipped += dyn_to_skip;
11324 	      dyn_to_skip = 0;
11325 	    }
11326 	}
11327 
11328       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
11329       if (dyn_skipped > 0)
11330 	memset (b - dyn_skipped, 0, dyn_skipped);
11331     }
11332 
11333   if (sgot != NULL && sgot->size > 0
11334       && !bfd_is_abs_section (sgot->output_section))
11335     {
11336       if (htab->is_vxworks)
11337 	{
11338 	  /* The first entry of the global offset table points to the
11339 	     ".dynamic" section.  The second is initialized by the
11340 	     loader and contains the shared library identifier.
11341 	     The third is also initialized by the loader and points
11342 	     to the lazy resolution stub.  */
11343 	  MIPS_ELF_PUT_WORD (output_bfd,
11344 			     sdyn->output_offset + sdyn->output_section->vma,
11345 			     sgot->contents);
11346 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11347 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11348 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
11349 			     sgot->contents
11350 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
11351 	}
11352       else
11353 	{
11354 	  /* The first entry of the global offset table will be filled at
11355 	     runtime. The second entry will be used by some runtime loaders.
11356 	     This isn't the case of IRIX rld.  */
11357 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
11358 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11359 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
11360 	}
11361 
11362       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
11363 	 = MIPS_ELF_GOT_SIZE (output_bfd);
11364     }
11365 
11366   /* Generate dynamic relocations for the non-primary gots.  */
11367   if (gg != NULL && gg->next)
11368     {
11369       Elf_Internal_Rela rel[3];
11370       bfd_vma addend = 0;
11371 
11372       memset (rel, 0, sizeof (rel));
11373       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
11374 
11375       for (g = gg->next; g->next != gg; g = g->next)
11376 	{
11377 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
11378 	    + g->next->tls_gotno;
11379 
11380 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
11381 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11382 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
11383 			     sgot->contents
11384 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
11385 
11386 	  if (! info->shared)
11387 	    continue;
11388 
11389 	  while (got_index < g->assigned_gotno)
11390 	    {
11391 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
11392 		= got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
11393 	      if (!(mips_elf_create_dynamic_relocation
11394 		    (output_bfd, info, rel, NULL,
11395 		     bfd_abs_section_ptr,
11396 		     0, &addend, sgot)))
11397 		return FALSE;
11398 	      BFD_ASSERT (addend == 0);
11399 	    }
11400 	}
11401     }
11402 
11403   /* The generation of dynamic relocations for the non-primary gots
11404      adds more dynamic relocations.  We cannot count them until
11405      here.  */
11406 
11407   if (elf_hash_table (info)->dynamic_sections_created)
11408     {
11409       bfd_byte *b;
11410       bfd_boolean swap_out_p;
11411 
11412       BFD_ASSERT (sdyn != NULL);
11413 
11414       for (b = sdyn->contents;
11415 	   b < sdyn->contents + sdyn->size;
11416 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11417 	{
11418 	  Elf_Internal_Dyn dyn;
11419 	  asection *s;
11420 
11421 	  /* Read in the current dynamic entry.  */
11422 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11423 
11424 	  /* Assume that we're going to modify it and write it out.  */
11425 	  swap_out_p = TRUE;
11426 
11427 	  switch (dyn.d_tag)
11428 	    {
11429 	    case DT_RELSZ:
11430 	      /* Reduce DT_RELSZ to account for any relocations we
11431 		 decided not to make.  This is for the n64 irix rld,
11432 		 which doesn't seem to apply any relocations if there
11433 		 are trailing null entries.  */
11434 	      s = mips_elf_rel_dyn_section (info, FALSE);
11435 	      dyn.d_un.d_val = (s->reloc_count
11436 				* (ABI_64_P (output_bfd)
11437 				   ? sizeof (Elf64_Mips_External_Rel)
11438 				   : sizeof (Elf32_External_Rel)));
11439 	      /* Adjust the section size too.  Tools like the prelinker
11440 		 can reasonably expect the values to the same.  */
11441 	      elf_section_data (s->output_section)->this_hdr.sh_size
11442 		= dyn.d_un.d_val;
11443 	      break;
11444 
11445 	    default:
11446 	      swap_out_p = FALSE;
11447 	      break;
11448 	    }
11449 
11450 	  if (swap_out_p)
11451 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
11452 	      (dynobj, &dyn, b);
11453 	}
11454     }
11455 
11456   {
11457     asection *s;
11458     Elf32_compact_rel cpt;
11459 
11460     if (SGI_COMPAT (output_bfd))
11461       {
11462 	/* Write .compact_rel section out.  */
11463 	s = bfd_get_linker_section (dynobj, ".compact_rel");
11464 	if (s != NULL)
11465 	  {
11466 	    cpt.id1 = 1;
11467 	    cpt.num = s->reloc_count;
11468 	    cpt.id2 = 2;
11469 	    cpt.offset = (s->output_section->filepos
11470 			  + sizeof (Elf32_External_compact_rel));
11471 	    cpt.reserved0 = 0;
11472 	    cpt.reserved1 = 0;
11473 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
11474 					    ((Elf32_External_compact_rel *)
11475 					     s->contents));
11476 
11477 	    /* Clean up a dummy stub function entry in .text.  */
11478 	    if (htab->sstubs != NULL)
11479 	      {
11480 		file_ptr dummy_offset;
11481 
11482 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
11483 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
11484 		memset (htab->sstubs->contents + dummy_offset, 0,
11485 			htab->function_stub_size);
11486 	      }
11487 	  }
11488       }
11489 
11490     /* The psABI says that the dynamic relocations must be sorted in
11491        increasing order of r_symndx.  The VxWorks EABI doesn't require
11492        this, and because the code below handles REL rather than RELA
11493        relocations, using it for VxWorks would be outright harmful.  */
11494     if (!htab->is_vxworks)
11495       {
11496 	s = mips_elf_rel_dyn_section (info, FALSE);
11497 	if (s != NULL
11498 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
11499 	  {
11500 	    reldyn_sorting_bfd = output_bfd;
11501 
11502 	    if (ABI_64_P (output_bfd))
11503 	      qsort ((Elf64_External_Rel *) s->contents + 1,
11504 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
11505 		     sort_dynamic_relocs_64);
11506 	    else
11507 	      qsort ((Elf32_External_Rel *) s->contents + 1,
11508 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
11509 		     sort_dynamic_relocs);
11510 	  }
11511       }
11512   }
11513 
11514   if (htab->splt && htab->splt->size > 0)
11515     {
11516       if (htab->is_vxworks)
11517 	{
11518 	  if (info->shared)
11519 	    mips_vxworks_finish_shared_plt (output_bfd, info);
11520 	  else
11521 	    mips_vxworks_finish_exec_plt (output_bfd, info);
11522 	}
11523       else
11524 	{
11525 	  BFD_ASSERT (!info->shared);
11526 	  if (!mips_finish_exec_plt (output_bfd, info))
11527 	    return FALSE;
11528 	}
11529     }
11530   return TRUE;
11531 }
11532 
11533 
11534 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
11535 
11536 static void
11537 mips_set_isa_flags (bfd *abfd)
11538 {
11539   flagword val;
11540 
11541   switch (bfd_get_mach (abfd))
11542     {
11543     default:
11544     case bfd_mach_mips3000:
11545       val = E_MIPS_ARCH_1;
11546       break;
11547 
11548     case bfd_mach_mips3900:
11549       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
11550       break;
11551 
11552     case bfd_mach_mips6000:
11553       val = E_MIPS_ARCH_2;
11554       break;
11555 
11556     case bfd_mach_mips4000:
11557     case bfd_mach_mips4300:
11558     case bfd_mach_mips4400:
11559     case bfd_mach_mips4600:
11560       val = E_MIPS_ARCH_3;
11561       break;
11562 
11563     case bfd_mach_mips4010:
11564       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
11565       break;
11566 
11567     case bfd_mach_mips4100:
11568       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
11569       break;
11570 
11571     case bfd_mach_mips4111:
11572       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
11573       break;
11574 
11575     case bfd_mach_mips4120:
11576       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
11577       break;
11578 
11579     case bfd_mach_mips4650:
11580       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
11581       break;
11582 
11583     case bfd_mach_mips5400:
11584       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
11585       break;
11586 
11587     case bfd_mach_mips5500:
11588       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
11589       break;
11590 
11591     case bfd_mach_mips5900:
11592       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
11593       break;
11594 
11595     case bfd_mach_mips9000:
11596       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
11597       break;
11598 
11599     case bfd_mach_mips5000:
11600     case bfd_mach_mips7000:
11601     case bfd_mach_mips8000:
11602     case bfd_mach_mips10000:
11603     case bfd_mach_mips12000:
11604     case bfd_mach_mips14000:
11605     case bfd_mach_mips16000:
11606       val = E_MIPS_ARCH_4;
11607       break;
11608 
11609     case bfd_mach_mips5:
11610       val = E_MIPS_ARCH_5;
11611       break;
11612 
11613     case bfd_mach_mips_loongson_2e:
11614       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
11615       break;
11616 
11617     case bfd_mach_mips_loongson_2f:
11618       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
11619       break;
11620 
11621     case bfd_mach_mips_sb1:
11622       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
11623       break;
11624 
11625     case bfd_mach_mips_loongson_3a:
11626       val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
11627       break;
11628 
11629     case bfd_mach_mips_octeon:
11630     case bfd_mach_mips_octeonp:
11631       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
11632       break;
11633 
11634     case bfd_mach_mips_xlr:
11635       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
11636       break;
11637 
11638     case bfd_mach_mips_octeon2:
11639       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
11640       break;
11641 
11642     case bfd_mach_mipsisa32:
11643       val = E_MIPS_ARCH_32;
11644       break;
11645 
11646     case bfd_mach_mipsisa64:
11647       val = E_MIPS_ARCH_64;
11648       break;
11649 
11650     case bfd_mach_mipsisa32r2:
11651       val = E_MIPS_ARCH_32R2;
11652       break;
11653 
11654     case bfd_mach_mipsisa64r2:
11655       val = E_MIPS_ARCH_64R2;
11656       break;
11657     }
11658   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
11659   elf_elfheader (abfd)->e_flags |= val;
11660 
11661 }
11662 
11663 
11664 /* The final processing done just before writing out a MIPS ELF object
11665    file.  This gets the MIPS architecture right based on the machine
11666    number.  This is used by both the 32-bit and the 64-bit ABI.  */
11667 
11668 void
11669 _bfd_mips_elf_final_write_processing (bfd *abfd,
11670 				      bfd_boolean linker ATTRIBUTE_UNUSED)
11671 {
11672   unsigned int i;
11673   Elf_Internal_Shdr **hdrpp;
11674   const char *name;
11675   asection *sec;
11676 
11677   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
11678      is nonzero.  This is for compatibility with old objects, which used
11679      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
11680   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
11681     mips_set_isa_flags (abfd);
11682 
11683   /* Set the sh_info field for .gptab sections and other appropriate
11684      info for each special section.  */
11685   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
11686        i < elf_numsections (abfd);
11687        i++, hdrpp++)
11688     {
11689       switch ((*hdrpp)->sh_type)
11690 	{
11691 	case SHT_MIPS_MSYM:
11692 	case SHT_MIPS_LIBLIST:
11693 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
11694 	  if (sec != NULL)
11695 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11696 	  break;
11697 
11698 	case SHT_MIPS_GPTAB:
11699 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11700 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11701 	  BFD_ASSERT (name != NULL
11702 		      && CONST_STRNEQ (name, ".gptab."));
11703 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
11704 	  BFD_ASSERT (sec != NULL);
11705 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11706 	  break;
11707 
11708 	case SHT_MIPS_CONTENT:
11709 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11710 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11711 	  BFD_ASSERT (name != NULL
11712 		      && CONST_STRNEQ (name, ".MIPS.content"));
11713 	  sec = bfd_get_section_by_name (abfd,
11714 					 name + sizeof ".MIPS.content" - 1);
11715 	  BFD_ASSERT (sec != NULL);
11716 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11717 	  break;
11718 
11719 	case SHT_MIPS_SYMBOL_LIB:
11720 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
11721 	  if (sec != NULL)
11722 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11723 	  sec = bfd_get_section_by_name (abfd, ".liblist");
11724 	  if (sec != NULL)
11725 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
11726 	  break;
11727 
11728 	case SHT_MIPS_EVENTS:
11729 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
11730 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
11731 	  BFD_ASSERT (name != NULL);
11732 	  if (CONST_STRNEQ (name, ".MIPS.events"))
11733 	    sec = bfd_get_section_by_name (abfd,
11734 					   name + sizeof ".MIPS.events" - 1);
11735 	  else
11736 	    {
11737 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
11738 	      sec = bfd_get_section_by_name (abfd,
11739 					     (name
11740 					      + sizeof ".MIPS.post_rel" - 1));
11741 	    }
11742 	  BFD_ASSERT (sec != NULL);
11743 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
11744 	  break;
11745 
11746 	}
11747     }
11748 }
11749 
11750 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
11751    segments.  */
11752 
11753 int
11754 _bfd_mips_elf_additional_program_headers (bfd *abfd,
11755 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
11756 {
11757   asection *s;
11758   int ret = 0;
11759 
11760   /* See if we need a PT_MIPS_REGINFO segment.  */
11761   s = bfd_get_section_by_name (abfd, ".reginfo");
11762   if (s && (s->flags & SEC_LOAD))
11763     ++ret;
11764 
11765   /* See if we need a PT_MIPS_OPTIONS segment.  */
11766   if (IRIX_COMPAT (abfd) == ict_irix6
11767       && bfd_get_section_by_name (abfd,
11768 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
11769     ++ret;
11770 
11771   /* See if we need a PT_MIPS_RTPROC segment.  */
11772   if (IRIX_COMPAT (abfd) == ict_irix5
11773       && bfd_get_section_by_name (abfd, ".dynamic")
11774       && bfd_get_section_by_name (abfd, ".mdebug"))
11775     ++ret;
11776 
11777   /* Allocate a PT_NULL header in dynamic objects.  See
11778      _bfd_mips_elf_modify_segment_map for details.  */
11779   if (!SGI_COMPAT (abfd)
11780       && bfd_get_section_by_name (abfd, ".dynamic"))
11781     ++ret;
11782 
11783   return ret;
11784 }
11785 
11786 /* Modify the segment map for an IRIX5 executable.  */
11787 
11788 bfd_boolean
11789 _bfd_mips_elf_modify_segment_map (bfd *abfd,
11790 				  struct bfd_link_info *info)
11791 {
11792   asection *s;
11793   struct elf_segment_map *m, **pm;
11794   bfd_size_type amt;
11795 
11796   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
11797      segment.  */
11798   s = bfd_get_section_by_name (abfd, ".reginfo");
11799   if (s != NULL && (s->flags & SEC_LOAD) != 0)
11800     {
11801       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11802 	if (m->p_type == PT_MIPS_REGINFO)
11803 	  break;
11804       if (m == NULL)
11805 	{
11806 	  amt = sizeof *m;
11807 	  m = bfd_zalloc (abfd, amt);
11808 	  if (m == NULL)
11809 	    return FALSE;
11810 
11811 	  m->p_type = PT_MIPS_REGINFO;
11812 	  m->count = 1;
11813 	  m->sections[0] = s;
11814 
11815 	  /* We want to put it after the PHDR and INTERP segments.  */
11816 	  pm = &elf_seg_map (abfd);
11817 	  while (*pm != NULL
11818 		 && ((*pm)->p_type == PT_PHDR
11819 		     || (*pm)->p_type == PT_INTERP))
11820 	    pm = &(*pm)->next;
11821 
11822 	  m->next = *pm;
11823 	  *pm = m;
11824 	}
11825     }
11826 
11827   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
11828      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
11829      PT_MIPS_OPTIONS segment immediately following the program header
11830      table.  */
11831   if (NEWABI_P (abfd)
11832       /* On non-IRIX6 new abi, we'll have already created a segment
11833 	 for this section, so don't create another.  I'm not sure this
11834 	 is not also the case for IRIX 6, but I can't test it right
11835 	 now.  */
11836       && IRIX_COMPAT (abfd) == ict_irix6)
11837     {
11838       for (s = abfd->sections; s; s = s->next)
11839 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
11840 	  break;
11841 
11842       if (s)
11843 	{
11844 	  struct elf_segment_map *options_segment;
11845 
11846 	  pm = &elf_seg_map (abfd);
11847 	  while (*pm != NULL
11848 		 && ((*pm)->p_type == PT_PHDR
11849 		     || (*pm)->p_type == PT_INTERP))
11850 	    pm = &(*pm)->next;
11851 
11852 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
11853 	    {
11854 	      amt = sizeof (struct elf_segment_map);
11855 	      options_segment = bfd_zalloc (abfd, amt);
11856 	      options_segment->next = *pm;
11857 	      options_segment->p_type = PT_MIPS_OPTIONS;
11858 	      options_segment->p_flags = PF_R;
11859 	      options_segment->p_flags_valid = TRUE;
11860 	      options_segment->count = 1;
11861 	      options_segment->sections[0] = s;
11862 	      *pm = options_segment;
11863 	    }
11864 	}
11865     }
11866   else
11867     {
11868       if (IRIX_COMPAT (abfd) == ict_irix5)
11869 	{
11870 	  /* If there are .dynamic and .mdebug sections, we make a room
11871 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
11872 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
11873 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
11874 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
11875 	    {
11876 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
11877 		if (m->p_type == PT_MIPS_RTPROC)
11878 		  break;
11879 	      if (m == NULL)
11880 		{
11881 		  amt = sizeof *m;
11882 		  m = bfd_zalloc (abfd, amt);
11883 		  if (m == NULL)
11884 		    return FALSE;
11885 
11886 		  m->p_type = PT_MIPS_RTPROC;
11887 
11888 		  s = bfd_get_section_by_name (abfd, ".rtproc");
11889 		  if (s == NULL)
11890 		    {
11891 		      m->count = 0;
11892 		      m->p_flags = 0;
11893 		      m->p_flags_valid = 1;
11894 		    }
11895 		  else
11896 		    {
11897 		      m->count = 1;
11898 		      m->sections[0] = s;
11899 		    }
11900 
11901 		  /* We want to put it after the DYNAMIC segment.  */
11902 		  pm = &elf_seg_map (abfd);
11903 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
11904 		    pm = &(*pm)->next;
11905 		  if (*pm != NULL)
11906 		    pm = &(*pm)->next;
11907 
11908 		  m->next = *pm;
11909 		  *pm = m;
11910 		}
11911 	    }
11912 	}
11913       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
11914 	 .dynstr, .dynsym, and .hash sections, and everything in
11915 	 between.  */
11916       for (pm = &elf_seg_map (abfd); *pm != NULL;
11917 	   pm = &(*pm)->next)
11918 	if ((*pm)->p_type == PT_DYNAMIC)
11919 	  break;
11920       m = *pm;
11921       if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
11922 	{
11923 	  /* For a normal mips executable the permissions for the PT_DYNAMIC
11924 	     segment are read, write and execute. We do that here since
11925 	     the code in elf.c sets only the read permission. This matters
11926 	     sometimes for the dynamic linker.  */
11927 	  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
11928 	    {
11929 	      m->p_flags = PF_R | PF_W | PF_X;
11930 	      m->p_flags_valid = 1;
11931 	    }
11932 	}
11933       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
11934 	 glibc's dynamic linker has traditionally derived the number of
11935 	 tags from the p_filesz field, and sometimes allocates stack
11936 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
11937 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
11938 	 other sections can also make life hard for the prelinker,
11939 	 which might move one of the other sections to a different
11940 	 PT_LOAD segment.  */
11941       if (SGI_COMPAT (abfd)
11942 	  && m != NULL
11943 	  && m->count == 1
11944 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
11945 	{
11946 	  static const char *sec_names[] =
11947 	  {
11948 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
11949 	  };
11950 	  bfd_vma low, high;
11951 	  unsigned int i, c;
11952 	  struct elf_segment_map *n;
11953 
11954 	  low = ~(bfd_vma) 0;
11955 	  high = 0;
11956 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
11957 	    {
11958 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
11959 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
11960 		{
11961 		  bfd_size_type sz;
11962 
11963 		  if (low > s->vma)
11964 		    low = s->vma;
11965 		  sz = s->size;
11966 		  if (high < s->vma + sz)
11967 		    high = s->vma + sz;
11968 		}
11969 	    }
11970 
11971 	  c = 0;
11972 	  for (s = abfd->sections; s != NULL; s = s->next)
11973 	    if ((s->flags & SEC_LOAD) != 0
11974 		&& s->vma >= low
11975 		&& s->vma + s->size <= high)
11976 	      ++c;
11977 
11978 	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
11979 	  n = bfd_zalloc (abfd, amt);
11980 	  if (n == NULL)
11981 	    return FALSE;
11982 	  *n = *m;
11983 	  n->count = c;
11984 
11985 	  i = 0;
11986 	  for (s = abfd->sections; s != NULL; s = s->next)
11987 	    {
11988 	      if ((s->flags & SEC_LOAD) != 0
11989 		  && s->vma >= low
11990 		  && s->vma + s->size <= high)
11991 		{
11992 		  n->sections[i] = s;
11993 		  ++i;
11994 		}
11995 	    }
11996 
11997 	  *pm = n;
11998 	}
11999     }
12000 
12001   /* Allocate a spare program header in dynamic objects so that tools
12002      like the prelinker can add an extra PT_LOAD entry.
12003 
12004      If the prelinker needs to make room for a new PT_LOAD entry, its
12005      standard procedure is to move the first (read-only) sections into
12006      the new (writable) segment.  However, the MIPS ABI requires
12007      .dynamic to be in a read-only segment, and the section will often
12008      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12009 
12010      Although the prelinker could in principle move .dynamic to a
12011      writable segment, it seems better to allocate a spare program
12012      header instead, and avoid the need to move any sections.
12013      There is a long tradition of allocating spare dynamic tags,
12014      so allocating a spare program header seems like a natural
12015      extension.
12016 
12017      If INFO is NULL, we may be copying an already prelinked binary
12018      with objcopy or strip, so do not add this header.  */
12019   if (info != NULL
12020       && !SGI_COMPAT (abfd)
12021       && bfd_get_section_by_name (abfd, ".dynamic"))
12022     {
12023       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12024 	if ((*pm)->p_type == PT_NULL)
12025 	  break;
12026       if (*pm == NULL)
12027 	{
12028 	  m = bfd_zalloc (abfd, sizeof (*m));
12029 	  if (m == NULL)
12030 	    return FALSE;
12031 
12032 	  m->p_type = PT_NULL;
12033 	  *pm = m;
12034 	}
12035     }
12036 
12037   return TRUE;
12038 }
12039 
12040 /* Return the section that should be marked against GC for a given
12041    relocation.  */
12042 
12043 asection *
12044 _bfd_mips_elf_gc_mark_hook (asection *sec,
12045 			    struct bfd_link_info *info,
12046 			    Elf_Internal_Rela *rel,
12047 			    struct elf_link_hash_entry *h,
12048 			    Elf_Internal_Sym *sym)
12049 {
12050   /* ??? Do mips16 stub sections need to be handled special?  */
12051 
12052   if (h != NULL)
12053     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12054       {
12055       case R_MIPS_GNU_VTINHERIT:
12056       case R_MIPS_GNU_VTENTRY:
12057 	return NULL;
12058       }
12059 
12060   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12061 }
12062 
12063 /* Update the got entry reference counts for the section being removed.  */
12064 
12065 bfd_boolean
12066 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
12067 			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
12068 			     asection *sec ATTRIBUTE_UNUSED,
12069 			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
12070 {
12071 #if 0
12072   Elf_Internal_Shdr *symtab_hdr;
12073   struct elf_link_hash_entry **sym_hashes;
12074   bfd_signed_vma *local_got_refcounts;
12075   const Elf_Internal_Rela *rel, *relend;
12076   unsigned long r_symndx;
12077   struct elf_link_hash_entry *h;
12078 
12079   if (info->relocatable)
12080     return TRUE;
12081 
12082   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12083   sym_hashes = elf_sym_hashes (abfd);
12084   local_got_refcounts = elf_local_got_refcounts (abfd);
12085 
12086   relend = relocs + sec->reloc_count;
12087   for (rel = relocs; rel < relend; rel++)
12088     switch (ELF_R_TYPE (abfd, rel->r_info))
12089       {
12090       case R_MIPS16_GOT16:
12091       case R_MIPS16_CALL16:
12092       case R_MIPS_GOT16:
12093       case R_MIPS_CALL16:
12094       case R_MIPS_CALL_HI16:
12095       case R_MIPS_CALL_LO16:
12096       case R_MIPS_GOT_HI16:
12097       case R_MIPS_GOT_LO16:
12098       case R_MIPS_GOT_DISP:
12099       case R_MIPS_GOT_PAGE:
12100       case R_MIPS_GOT_OFST:
12101       case R_MICROMIPS_GOT16:
12102       case R_MICROMIPS_CALL16:
12103       case R_MICROMIPS_CALL_HI16:
12104       case R_MICROMIPS_CALL_LO16:
12105       case R_MICROMIPS_GOT_HI16:
12106       case R_MICROMIPS_GOT_LO16:
12107       case R_MICROMIPS_GOT_DISP:
12108       case R_MICROMIPS_GOT_PAGE:
12109       case R_MICROMIPS_GOT_OFST:
12110 	/* ??? It would seem that the existing MIPS code does no sort
12111 	   of reference counting or whatnot on its GOT and PLT entries,
12112 	   so it is not possible to garbage collect them at this time.  */
12113 	break;
12114 
12115       default:
12116 	break;
12117       }
12118 #endif
12119 
12120   return TRUE;
12121 }
12122 
12123 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12124    hiding the old indirect symbol.  Process additional relocation
12125    information.  Also called for weakdefs, in which case we just let
12126    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12127 
12128 void
12129 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12130 				    struct elf_link_hash_entry *dir,
12131 				    struct elf_link_hash_entry *ind)
12132 {
12133   struct mips_elf_link_hash_entry *dirmips, *indmips;
12134 
12135   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12136 
12137   dirmips = (struct mips_elf_link_hash_entry *) dir;
12138   indmips = (struct mips_elf_link_hash_entry *) ind;
12139   /* Any absolute non-dynamic relocations against an indirect or weak
12140      definition will be against the target symbol.  */
12141   if (indmips->has_static_relocs)
12142     dirmips->has_static_relocs = TRUE;
12143 
12144   if (ind->root.type != bfd_link_hash_indirect)
12145     return;
12146 
12147   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12148   if (indmips->readonly_reloc)
12149     dirmips->readonly_reloc = TRUE;
12150   if (indmips->no_fn_stub)
12151     dirmips->no_fn_stub = TRUE;
12152   if (indmips->fn_stub)
12153     {
12154       dirmips->fn_stub = indmips->fn_stub;
12155       indmips->fn_stub = NULL;
12156     }
12157   if (indmips->need_fn_stub)
12158     {
12159       dirmips->need_fn_stub = TRUE;
12160       indmips->need_fn_stub = FALSE;
12161     }
12162   if (indmips->call_stub)
12163     {
12164       dirmips->call_stub = indmips->call_stub;
12165       indmips->call_stub = NULL;
12166     }
12167   if (indmips->call_fp_stub)
12168     {
12169       dirmips->call_fp_stub = indmips->call_fp_stub;
12170       indmips->call_fp_stub = NULL;
12171     }
12172   if (indmips->global_got_area < dirmips->global_got_area)
12173     dirmips->global_got_area = indmips->global_got_area;
12174   if (indmips->global_got_area < GGA_NONE)
12175     indmips->global_got_area = GGA_NONE;
12176   if (indmips->has_nonpic_branches)
12177     dirmips->has_nonpic_branches = TRUE;
12178 }
12179 
12180 #define PDR_SIZE 32
12181 
12182 bfd_boolean
12183 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12184 			    struct bfd_link_info *info)
12185 {
12186   asection *o;
12187   bfd_boolean ret = FALSE;
12188   unsigned char *tdata;
12189   size_t i, skip;
12190 
12191   o = bfd_get_section_by_name (abfd, ".pdr");
12192   if (! o)
12193     return FALSE;
12194   if (o->size == 0)
12195     return FALSE;
12196   if (o->size % PDR_SIZE != 0)
12197     return FALSE;
12198   if (o->output_section != NULL
12199       && bfd_is_abs_section (o->output_section))
12200     return FALSE;
12201 
12202   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12203   if (! tdata)
12204     return FALSE;
12205 
12206   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12207 					    info->keep_memory);
12208   if (!cookie->rels)
12209     {
12210       free (tdata);
12211       return FALSE;
12212     }
12213 
12214   cookie->rel = cookie->rels;
12215   cookie->relend = cookie->rels + o->reloc_count;
12216 
12217   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12218     {
12219       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12220 	{
12221 	  tdata[i] = 1;
12222 	  skip ++;
12223 	}
12224     }
12225 
12226   if (skip != 0)
12227     {
12228       mips_elf_section_data (o)->u.tdata = tdata;
12229       o->size -= skip * PDR_SIZE;
12230       ret = TRUE;
12231     }
12232   else
12233     free (tdata);
12234 
12235   if (! info->keep_memory)
12236     free (cookie->rels);
12237 
12238   return ret;
12239 }
12240 
12241 bfd_boolean
12242 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
12243 {
12244   if (strcmp (sec->name, ".pdr") == 0)
12245     return TRUE;
12246   return FALSE;
12247 }
12248 
12249 bfd_boolean
12250 _bfd_mips_elf_write_section (bfd *output_bfd,
12251 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
12252                              asection *sec, bfd_byte *contents)
12253 {
12254   bfd_byte *to, *from, *end;
12255   int i;
12256 
12257   if (strcmp (sec->name, ".pdr") != 0)
12258     return FALSE;
12259 
12260   if (mips_elf_section_data (sec)->u.tdata == NULL)
12261     return FALSE;
12262 
12263   to = contents;
12264   end = contents + sec->size;
12265   for (from = contents, i = 0;
12266        from < end;
12267        from += PDR_SIZE, i++)
12268     {
12269       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
12270 	continue;
12271       if (to != from)
12272 	memcpy (to, from, PDR_SIZE);
12273       to += PDR_SIZE;
12274     }
12275   bfd_set_section_contents (output_bfd, sec->output_section, contents,
12276 			    sec->output_offset, sec->size);
12277   return TRUE;
12278 }
12279 
12280 /* microMIPS code retains local labels for linker relaxation.  Omit them
12281    from output by default for clarity.  */
12282 
12283 bfd_boolean
12284 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
12285 {
12286   return _bfd_elf_is_local_label_name (abfd, sym->name);
12287 }
12288 
12289 /* MIPS ELF uses a special find_nearest_line routine in order the
12290    handle the ECOFF debugging information.  */
12291 
12292 struct mips_elf_find_line
12293 {
12294   struct ecoff_debug_info d;
12295   struct ecoff_find_line i;
12296 };
12297 
12298 bfd_boolean
12299 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
12300 				 asymbol **symbols, bfd_vma offset,
12301 				 const char **filename_ptr,
12302 				 const char **functionname_ptr,
12303 				 unsigned int *line_ptr)
12304 {
12305   asection *msec;
12306 
12307   if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
12308 				     filename_ptr, functionname_ptr,
12309 				     line_ptr))
12310     return TRUE;
12311 
12312   if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12313                                      section, symbols, offset,
12314 				     filename_ptr, functionname_ptr,
12315 				     line_ptr, NULL, ABI_64_P (abfd) ? 8 : 0,
12316 				     &elf_tdata (abfd)->dwarf2_find_line_info))
12317     return TRUE;
12318 
12319   msec = bfd_get_section_by_name (abfd, ".mdebug");
12320   if (msec != NULL)
12321     {
12322       flagword origflags;
12323       struct mips_elf_find_line *fi;
12324       const struct ecoff_debug_swap * const swap =
12325 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
12326 
12327       /* If we are called during a link, mips_elf_final_link may have
12328 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
12329 	 if appropriate (which it normally will be).  */
12330       origflags = msec->flags;
12331       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
12332 	msec->flags |= SEC_HAS_CONTENTS;
12333 
12334       fi = mips_elf_tdata (abfd)->find_line_info;
12335       if (fi == NULL)
12336 	{
12337 	  bfd_size_type external_fdr_size;
12338 	  char *fraw_src;
12339 	  char *fraw_end;
12340 	  struct fdr *fdr_ptr;
12341 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
12342 
12343 	  fi = bfd_zalloc (abfd, amt);
12344 	  if (fi == NULL)
12345 	    {
12346 	      msec->flags = origflags;
12347 	      return FALSE;
12348 	    }
12349 
12350 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
12351 	    {
12352 	      msec->flags = origflags;
12353 	      return FALSE;
12354 	    }
12355 
12356 	  /* Swap in the FDR information.  */
12357 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
12358 	  fi->d.fdr = bfd_alloc (abfd, amt);
12359 	  if (fi->d.fdr == NULL)
12360 	    {
12361 	      msec->flags = origflags;
12362 	      return FALSE;
12363 	    }
12364 	  external_fdr_size = swap->external_fdr_size;
12365 	  fdr_ptr = fi->d.fdr;
12366 	  fraw_src = (char *) fi->d.external_fdr;
12367 	  fraw_end = (fraw_src
12368 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
12369 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
12370 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
12371 
12372 	  mips_elf_tdata (abfd)->find_line_info = fi;
12373 
12374 	  /* Note that we don't bother to ever free this information.
12375              find_nearest_line is either called all the time, as in
12376              objdump -l, so the information should be saved, or it is
12377              rarely called, as in ld error messages, so the memory
12378              wasted is unimportant.  Still, it would probably be a
12379              good idea for free_cached_info to throw it away.  */
12380 	}
12381 
12382       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
12383 				  &fi->i, filename_ptr, functionname_ptr,
12384 				  line_ptr))
12385 	{
12386 	  msec->flags = origflags;
12387 	  return TRUE;
12388 	}
12389 
12390       msec->flags = origflags;
12391     }
12392 
12393   /* Fall back on the generic ELF find_nearest_line routine.  */
12394 
12395   return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
12396 				     filename_ptr, functionname_ptr,
12397 				     line_ptr);
12398 }
12399 
12400 bfd_boolean
12401 _bfd_mips_elf_find_inliner_info (bfd *abfd,
12402 				 const char **filename_ptr,
12403 				 const char **functionname_ptr,
12404 				 unsigned int *line_ptr)
12405 {
12406   bfd_boolean found;
12407   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12408 					 functionname_ptr, line_ptr,
12409 					 & elf_tdata (abfd)->dwarf2_find_line_info);
12410   return found;
12411 }
12412 
12413 
12414 /* When are writing out the .options or .MIPS.options section,
12415    remember the bytes we are writing out, so that we can install the
12416    GP value in the section_processing routine.  */
12417 
12418 bfd_boolean
12419 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
12420 				    const void *location,
12421 				    file_ptr offset, bfd_size_type count)
12422 {
12423   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
12424     {
12425       bfd_byte *c;
12426 
12427       if (elf_section_data (section) == NULL)
12428 	{
12429 	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
12430 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
12431 	  if (elf_section_data (section) == NULL)
12432 	    return FALSE;
12433 	}
12434       c = mips_elf_section_data (section)->u.tdata;
12435       if (c == NULL)
12436 	{
12437 	  c = bfd_zalloc (abfd, section->size);
12438 	  if (c == NULL)
12439 	    return FALSE;
12440 	  mips_elf_section_data (section)->u.tdata = c;
12441 	}
12442 
12443       memcpy (c + offset, location, count);
12444     }
12445 
12446   return _bfd_elf_set_section_contents (abfd, section, location, offset,
12447 					count);
12448 }
12449 
12450 /* This is almost identical to bfd_generic_get_... except that some
12451    MIPS relocations need to be handled specially.  Sigh.  */
12452 
12453 bfd_byte *
12454 _bfd_elf_mips_get_relocated_section_contents
12455   (bfd *abfd,
12456    struct bfd_link_info *link_info,
12457    struct bfd_link_order *link_order,
12458    bfd_byte *data,
12459    bfd_boolean relocatable,
12460    asymbol **symbols)
12461 {
12462   /* Get enough memory to hold the stuff */
12463   bfd *input_bfd = link_order->u.indirect.section->owner;
12464   asection *input_section = link_order->u.indirect.section;
12465   bfd_size_type sz;
12466 
12467   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
12468   arelent **reloc_vector = NULL;
12469   long reloc_count;
12470 
12471   if (reloc_size < 0)
12472     goto error_return;
12473 
12474   reloc_vector = bfd_malloc (reloc_size);
12475   if (reloc_vector == NULL && reloc_size != 0)
12476     goto error_return;
12477 
12478   /* read in the section */
12479   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
12480   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
12481     goto error_return;
12482 
12483   reloc_count = bfd_canonicalize_reloc (input_bfd,
12484 					input_section,
12485 					reloc_vector,
12486 					symbols);
12487   if (reloc_count < 0)
12488     goto error_return;
12489 
12490   if (reloc_count > 0)
12491     {
12492       arelent **parent;
12493       /* for mips */
12494       int gp_found;
12495       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
12496 
12497       {
12498 	struct bfd_hash_entry *h;
12499 	struct bfd_link_hash_entry *lh;
12500 	/* Skip all this stuff if we aren't mixing formats.  */
12501 	if (abfd && input_bfd
12502 	    && abfd->xvec == input_bfd->xvec)
12503 	  lh = 0;
12504 	else
12505 	  {
12506 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
12507 	    lh = (struct bfd_link_hash_entry *) h;
12508 	  }
12509       lookup:
12510 	if (lh)
12511 	  {
12512 	    switch (lh->type)
12513 	      {
12514 	      case bfd_link_hash_undefined:
12515 	      case bfd_link_hash_undefweak:
12516 	      case bfd_link_hash_common:
12517 		gp_found = 0;
12518 		break;
12519 	      case bfd_link_hash_defined:
12520 	      case bfd_link_hash_defweak:
12521 		gp_found = 1;
12522 		gp = lh->u.def.value;
12523 		break;
12524 	      case bfd_link_hash_indirect:
12525 	      case bfd_link_hash_warning:
12526 		lh = lh->u.i.link;
12527 		/* @@FIXME  ignoring warning for now */
12528 		goto lookup;
12529 	      case bfd_link_hash_new:
12530 	      default:
12531 		abort ();
12532 	      }
12533 	  }
12534 	else
12535 	  gp_found = 0;
12536       }
12537       /* end mips */
12538       for (parent = reloc_vector; *parent != NULL; parent++)
12539 	{
12540 	  char *error_message = NULL;
12541 	  bfd_reloc_status_type r;
12542 
12543 	  /* Specific to MIPS: Deal with relocation types that require
12544 	     knowing the gp of the output bfd.  */
12545 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
12546 
12547 	  /* If we've managed to find the gp and have a special
12548 	     function for the relocation then go ahead, else default
12549 	     to the generic handling.  */
12550 	  if (gp_found
12551 	      && (*parent)->howto->special_function
12552 	      == _bfd_mips_elf32_gprel16_reloc)
12553 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
12554 					       input_section, relocatable,
12555 					       data, gp);
12556 	  else
12557 	    r = bfd_perform_relocation (input_bfd, *parent, data,
12558 					input_section,
12559 					relocatable ? abfd : NULL,
12560 					&error_message);
12561 
12562 	  if (relocatable)
12563 	    {
12564 	      asection *os = input_section->output_section;
12565 
12566 	      /* A partial link, so keep the relocs */
12567 	      os->orelocation[os->reloc_count] = *parent;
12568 	      os->reloc_count++;
12569 	    }
12570 
12571 	  if (r != bfd_reloc_ok)
12572 	    {
12573 	      switch (r)
12574 		{
12575 		case bfd_reloc_undefined:
12576 		  if (!((*link_info->callbacks->undefined_symbol)
12577 			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12578 			 input_bfd, input_section, (*parent)->address, TRUE)))
12579 		    goto error_return;
12580 		  break;
12581 		case bfd_reloc_dangerous:
12582 		  BFD_ASSERT (error_message != NULL);
12583 		  if (!((*link_info->callbacks->reloc_dangerous)
12584 			(link_info, error_message, input_bfd, input_section,
12585 			 (*parent)->address)))
12586 		    goto error_return;
12587 		  break;
12588 		case bfd_reloc_overflow:
12589 		  if (!((*link_info->callbacks->reloc_overflow)
12590 			(link_info, NULL,
12591 			 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
12592 			 (*parent)->howto->name, (*parent)->addend,
12593 			 input_bfd, input_section, (*parent)->address)))
12594 		    goto error_return;
12595 		  break;
12596 		case bfd_reloc_outofrange:
12597 		default:
12598 		  abort ();
12599 		  break;
12600 		}
12601 
12602 	    }
12603 	}
12604     }
12605   if (reloc_vector != NULL)
12606     free (reloc_vector);
12607   return data;
12608 
12609 error_return:
12610   if (reloc_vector != NULL)
12611     free (reloc_vector);
12612   return NULL;
12613 }
12614 
12615 static bfd_boolean
12616 mips_elf_relax_delete_bytes (bfd *abfd,
12617 			     asection *sec, bfd_vma addr, int count)
12618 {
12619   Elf_Internal_Shdr *symtab_hdr;
12620   unsigned int sec_shndx;
12621   bfd_byte *contents;
12622   Elf_Internal_Rela *irel, *irelend;
12623   Elf_Internal_Sym *isym;
12624   Elf_Internal_Sym *isymend;
12625   struct elf_link_hash_entry **sym_hashes;
12626   struct elf_link_hash_entry **end_hashes;
12627   struct elf_link_hash_entry **start_hashes;
12628   unsigned int symcount;
12629 
12630   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
12631   contents = elf_section_data (sec)->this_hdr.contents;
12632 
12633   irel = elf_section_data (sec)->relocs;
12634   irelend = irel + sec->reloc_count;
12635 
12636   /* Actually delete the bytes.  */
12637   memmove (contents + addr, contents + addr + count,
12638 	   (size_t) (sec->size - addr - count));
12639   sec->size -= count;
12640 
12641   /* Adjust all the relocs.  */
12642   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
12643     {
12644       /* Get the new reloc address.  */
12645       if (irel->r_offset > addr)
12646 	irel->r_offset -= count;
12647     }
12648 
12649   BFD_ASSERT (addr % 2 == 0);
12650   BFD_ASSERT (count % 2 == 0);
12651 
12652   /* Adjust the local symbols defined in this section.  */
12653   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12654   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
12655   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
12656     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
12657       isym->st_value -= count;
12658 
12659   /* Now adjust the global symbols defined in this section.  */
12660   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
12661 	      - symtab_hdr->sh_info);
12662   sym_hashes = start_hashes = elf_sym_hashes (abfd);
12663   end_hashes = sym_hashes + symcount;
12664 
12665   for (; sym_hashes < end_hashes; sym_hashes++)
12666     {
12667       struct elf_link_hash_entry *sym_hash = *sym_hashes;
12668 
12669       if ((sym_hash->root.type == bfd_link_hash_defined
12670 	   || sym_hash->root.type == bfd_link_hash_defweak)
12671 	  && sym_hash->root.u.def.section == sec)
12672 	{
12673 	  bfd_vma value = sym_hash->root.u.def.value;
12674 
12675 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
12676 	    value &= MINUS_TWO;
12677 	  if (value > addr)
12678 	    sym_hash->root.u.def.value -= count;
12679 	}
12680     }
12681 
12682   return TRUE;
12683 }
12684 
12685 
12686 /* Opcodes needed for microMIPS relaxation as found in
12687    opcodes/micromips-opc.c.  */
12688 
12689 struct opcode_descriptor {
12690   unsigned long match;
12691   unsigned long mask;
12692 };
12693 
12694 /* The $ra register aka $31.  */
12695 
12696 #define RA 31
12697 
12698 /* 32-bit instruction format register fields.  */
12699 
12700 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
12701 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
12702 
12703 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
12704 
12705 #define OP16_VALID_REG(r) \
12706   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
12707 
12708 
12709 /* 32-bit and 16-bit branches.  */
12710 
12711 static const struct opcode_descriptor b_insns_32[] = {
12712   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
12713   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
12714   { 0, 0 }  /* End marker for find_match().  */
12715 };
12716 
12717 static const struct opcode_descriptor bc_insn_32 =
12718   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
12719 
12720 static const struct opcode_descriptor bz_insn_32 =
12721   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
12722 
12723 static const struct opcode_descriptor bzal_insn_32 =
12724   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
12725 
12726 static const struct opcode_descriptor beq_insn_32 =
12727   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
12728 
12729 static const struct opcode_descriptor b_insn_16 =
12730   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
12731 
12732 static const struct opcode_descriptor bz_insn_16 =
12733   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
12734 
12735 
12736 /* 32-bit and 16-bit branch EQ and NE zero.  */
12737 
12738 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
12739    eq and second the ne.  This convention is used when replacing a
12740    32-bit BEQ/BNE with the 16-bit version.  */
12741 
12742 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
12743 
12744 static const struct opcode_descriptor bz_rs_insns_32[] = {
12745   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
12746   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
12747   { 0, 0 }  /* End marker for find_match().  */
12748 };
12749 
12750 static const struct opcode_descriptor bz_rt_insns_32[] = {
12751   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
12752   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
12753   { 0, 0 }  /* End marker for find_match().  */
12754 };
12755 
12756 static const struct opcode_descriptor bzc_insns_32[] = {
12757   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
12758   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
12759   { 0, 0 }  /* End marker for find_match().  */
12760 };
12761 
12762 static const struct opcode_descriptor bz_insns_16[] = {
12763   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
12764   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
12765   { 0, 0 }  /* End marker for find_match().  */
12766 };
12767 
12768 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
12769 
12770 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2)
12771 #define BZ16_REG_FIELD(r) \
12772   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7)
12773 
12774 
12775 /* 32-bit instructions with a delay slot.  */
12776 
12777 static const struct opcode_descriptor jal_insn_32_bd16 =
12778   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
12779 
12780 static const struct opcode_descriptor jal_insn_32_bd32 =
12781   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
12782 
12783 static const struct opcode_descriptor jal_x_insn_32_bd32 =
12784   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
12785 
12786 static const struct opcode_descriptor j_insn_32 =
12787   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
12788 
12789 static const struct opcode_descriptor jalr_insn_32 =
12790   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
12791 
12792 /* This table can be compacted, because no opcode replacement is made.  */
12793 
12794 static const struct opcode_descriptor ds_insns_32_bd16[] = {
12795   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
12796 
12797   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
12798   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
12799 
12800   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
12801   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
12802   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
12803   { 0, 0 }  /* End marker for find_match().  */
12804 };
12805 
12806 /* This table can be compacted, because no opcode replacement is made.  */
12807 
12808 static const struct opcode_descriptor ds_insns_32_bd32[] = {
12809   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
12810 
12811   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
12812   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
12813   { 0, 0 }  /* End marker for find_match().  */
12814 };
12815 
12816 
12817 /* 16-bit instructions with a delay slot.  */
12818 
12819 static const struct opcode_descriptor jalr_insn_16_bd16 =
12820   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
12821 
12822 static const struct opcode_descriptor jalr_insn_16_bd32 =
12823   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
12824 
12825 static const struct opcode_descriptor jr_insn_16 =
12826   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
12827 
12828 #define JR16_REG(opcode) ((opcode) & 0x1f)
12829 
12830 /* This table can be compacted, because no opcode replacement is made.  */
12831 
12832 static const struct opcode_descriptor ds_insns_16_bd16[] = {
12833   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
12834 
12835   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
12836   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
12837   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
12838   { 0, 0 }  /* End marker for find_match().  */
12839 };
12840 
12841 
12842 /* LUI instruction.  */
12843 
12844 static const struct opcode_descriptor lui_insn =
12845  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
12846 
12847 
12848 /* ADDIU instruction.  */
12849 
12850 static const struct opcode_descriptor addiu_insn =
12851   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
12852 
12853 static const struct opcode_descriptor addiupc_insn =
12854   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
12855 
12856 #define ADDIUPC_REG_FIELD(r) \
12857   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
12858 
12859 
12860 /* Relaxable instructions in a JAL delay slot: MOVE.  */
12861 
12862 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
12863    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
12864 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
12865 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
12866 
12867 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
12868 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
12869 
12870 static const struct opcode_descriptor move_insns_32[] = {
12871   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
12872   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
12873   { 0, 0 }  /* End marker for find_match().  */
12874 };
12875 
12876 static const struct opcode_descriptor move_insn_16 =
12877   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
12878 
12879 
12880 /* NOP instructions.  */
12881 
12882 static const struct opcode_descriptor nop_insn_32 =
12883   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
12884 
12885 static const struct opcode_descriptor nop_insn_16 =
12886   { /* "nop",	"",		*/ 0x0c00,     0xffff };
12887 
12888 
12889 /* Instruction match support.  */
12890 
12891 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
12892 
12893 static int
12894 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
12895 {
12896   unsigned long indx;
12897 
12898   for (indx = 0; insn[indx].mask != 0; indx++)
12899     if (MATCH (opcode, insn[indx]))
12900       return indx;
12901 
12902   return -1;
12903 }
12904 
12905 
12906 /* Branch and delay slot decoding support.  */
12907 
12908 /* If PTR points to what *might* be a 16-bit branch or jump, then
12909    return the minimum length of its delay slot, otherwise return 0.
12910    Non-zero results are not definitive as we might be checking against
12911    the second half of another instruction.  */
12912 
12913 static int
12914 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
12915 {
12916   unsigned long opcode;
12917   int bdsize;
12918 
12919   opcode = bfd_get_16 (abfd, ptr);
12920   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
12921     /* 16-bit branch/jump with a 32-bit delay slot.  */
12922     bdsize = 4;
12923   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
12924 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
12925     /* 16-bit branch/jump with a 16-bit delay slot.  */
12926     bdsize = 2;
12927   else
12928     /* No delay slot.  */
12929     bdsize = 0;
12930 
12931   return bdsize;
12932 }
12933 
12934 /* If PTR points to what *might* be a 32-bit branch or jump, then
12935    return the minimum length of its delay slot, otherwise return 0.
12936    Non-zero results are not definitive as we might be checking against
12937    the second half of another instruction.  */
12938 
12939 static int
12940 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
12941 {
12942   unsigned long opcode;
12943   int bdsize;
12944 
12945   opcode = bfd_get_micromips_32 (abfd, ptr);
12946   if (find_match (opcode, ds_insns_32_bd32) >= 0)
12947     /* 32-bit branch/jump with a 32-bit delay slot.  */
12948     bdsize = 4;
12949   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
12950     /* 32-bit branch/jump with a 16-bit delay slot.  */
12951     bdsize = 2;
12952   else
12953     /* No delay slot.  */
12954     bdsize = 0;
12955 
12956   return bdsize;
12957 }
12958 
12959 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
12960    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
12961 
12962 static bfd_boolean
12963 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12964 {
12965   unsigned long opcode;
12966 
12967   opcode = bfd_get_16 (abfd, ptr);
12968   if (MATCH (opcode, b_insn_16)
12969 						/* B16  */
12970       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
12971 						/* JR16  */
12972       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
12973 						/* BEQZ16, BNEZ16  */
12974       || (MATCH (opcode, jalr_insn_16_bd32)
12975 						/* JALR16  */
12976 	  && reg != JR16_REG (opcode) && reg != RA))
12977     return TRUE;
12978 
12979   return FALSE;
12980 }
12981 
12982 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
12983    then return TRUE, otherwise FALSE.  */
12984 
12985 static bfd_boolean
12986 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
12987 {
12988   unsigned long opcode;
12989 
12990   opcode = bfd_get_micromips_32 (abfd, ptr);
12991   if (MATCH (opcode, j_insn_32)
12992 						/* J  */
12993       || MATCH (opcode, bc_insn_32)
12994 						/* BC1F, BC1T, BC2F, BC2T  */
12995       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
12996 						/* JAL, JALX  */
12997       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
12998 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
12999       || (MATCH (opcode, bzal_insn_32)
13000 						/* BGEZAL, BLTZAL  */
13001 	  && reg != OP32_SREG (opcode) && reg != RA)
13002       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13003 						/* JALR, JALR.HB, BEQ, BNE  */
13004 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13005     return TRUE;
13006 
13007   return FALSE;
13008 }
13009 
13010 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13011    IRELEND) at OFFSET indicate that there must be a compact branch there,
13012    then return TRUE, otherwise FALSE.  */
13013 
13014 static bfd_boolean
13015 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13016 		     const Elf_Internal_Rela *internal_relocs,
13017 		     const Elf_Internal_Rela *irelend)
13018 {
13019   const Elf_Internal_Rela *irel;
13020   unsigned long opcode;
13021 
13022   opcode = bfd_get_micromips_32 (abfd, ptr);
13023   if (find_match (opcode, bzc_insns_32) < 0)
13024     return FALSE;
13025 
13026   for (irel = internal_relocs; irel < irelend; irel++)
13027     if (irel->r_offset == offset
13028 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13029       return TRUE;
13030 
13031   return FALSE;
13032 }
13033 
13034 /* Bitsize checking.  */
13035 #define IS_BITSIZE(val, N)						\
13036   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13037     - (1ULL << ((N) - 1))) == (val))
13038 
13039 
13040 bfd_boolean
13041 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13042 			     struct bfd_link_info *link_info,
13043 			     bfd_boolean *again)
13044 {
13045   bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13046   Elf_Internal_Shdr *symtab_hdr;
13047   Elf_Internal_Rela *internal_relocs;
13048   Elf_Internal_Rela *irel, *irelend;
13049   bfd_byte *contents = NULL;
13050   Elf_Internal_Sym *isymbuf = NULL;
13051 
13052   /* Assume nothing changes.  */
13053   *again = FALSE;
13054 
13055   /* We don't have to do anything for a relocatable link, if
13056      this section does not have relocs, or if this is not a
13057      code section.  */
13058 
13059   if (link_info->relocatable
13060       || (sec->flags & SEC_RELOC) == 0
13061       || sec->reloc_count == 0
13062       || (sec->flags & SEC_CODE) == 0)
13063     return TRUE;
13064 
13065   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13066 
13067   /* Get a copy of the native relocations.  */
13068   internal_relocs = (_bfd_elf_link_read_relocs
13069 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13070 		      link_info->keep_memory));
13071   if (internal_relocs == NULL)
13072     goto error_return;
13073 
13074   /* Walk through them looking for relaxing opportunities.  */
13075   irelend = internal_relocs + sec->reloc_count;
13076   for (irel = internal_relocs; irel < irelend; irel++)
13077     {
13078       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13079       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13080       bfd_boolean target_is_micromips_code_p;
13081       unsigned long opcode;
13082       bfd_vma symval;
13083       bfd_vma pcrval;
13084       bfd_byte *ptr;
13085       int fndopc;
13086 
13087       /* The number of bytes to delete for relaxation and from where
13088          to delete these bytes starting at irel->r_offset.  */
13089       int delcnt = 0;
13090       int deloff = 0;
13091 
13092       /* If this isn't something that can be relaxed, then ignore
13093          this reloc.  */
13094       if (r_type != R_MICROMIPS_HI16
13095 	  && r_type != R_MICROMIPS_PC16_S1
13096 	  && r_type != R_MICROMIPS_26_S1)
13097 	continue;
13098 
13099       /* Get the section contents if we haven't done so already.  */
13100       if (contents == NULL)
13101 	{
13102 	  /* Get cached copy if it exists.  */
13103 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13104 	    contents = elf_section_data (sec)->this_hdr.contents;
13105 	  /* Go get them off disk.  */
13106 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13107 	    goto error_return;
13108 	}
13109       ptr = contents + irel->r_offset;
13110 
13111       /* Read this BFD's local symbols if we haven't done so already.  */
13112       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13113 	{
13114 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13115 	  if (isymbuf == NULL)
13116 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13117 					    symtab_hdr->sh_info, 0,
13118 					    NULL, NULL, NULL);
13119 	  if (isymbuf == NULL)
13120 	    goto error_return;
13121 	}
13122 
13123       /* Get the value of the symbol referred to by the reloc.  */
13124       if (r_symndx < symtab_hdr->sh_info)
13125 	{
13126 	  /* A local symbol.  */
13127 	  Elf_Internal_Sym *isym;
13128 	  asection *sym_sec;
13129 
13130 	  isym = isymbuf + r_symndx;
13131 	  if (isym->st_shndx == SHN_UNDEF)
13132 	    sym_sec = bfd_und_section_ptr;
13133 	  else if (isym->st_shndx == SHN_ABS)
13134 	    sym_sec = bfd_abs_section_ptr;
13135 	  else if (isym->st_shndx == SHN_COMMON)
13136 	    sym_sec = bfd_com_section_ptr;
13137 	  else
13138 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13139 	  symval = (isym->st_value
13140 		    + sym_sec->output_section->vma
13141 		    + sym_sec->output_offset);
13142 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13143 	}
13144       else
13145 	{
13146 	  unsigned long indx;
13147 	  struct elf_link_hash_entry *h;
13148 
13149 	  /* An external symbol.  */
13150 	  indx = r_symndx - symtab_hdr->sh_info;
13151 	  h = elf_sym_hashes (abfd)[indx];
13152 	  BFD_ASSERT (h != NULL);
13153 
13154 	  if (h->root.type != bfd_link_hash_defined
13155 	      && h->root.type != bfd_link_hash_defweak)
13156 	    /* This appears to be a reference to an undefined
13157 	       symbol.  Just ignore it -- it will be caught by the
13158 	       regular reloc processing.  */
13159 	    continue;
13160 
13161 	  symval = (h->root.u.def.value
13162 		    + h->root.u.def.section->output_section->vma
13163 		    + h->root.u.def.section->output_offset);
13164 	  target_is_micromips_code_p = (!h->needs_plt
13165 					&& ELF_ST_IS_MICROMIPS (h->other));
13166 	}
13167 
13168 
13169       /* For simplicity of coding, we are going to modify the
13170          section contents, the section relocs, and the BFD symbol
13171          table.  We must tell the rest of the code not to free up this
13172          information.  It would be possible to instead create a table
13173          of changes which have to be made, as is done in coff-mips.c;
13174          that would be more work, but would require less memory when
13175          the linker is run.  */
13176 
13177       /* Only 32-bit instructions relaxed.  */
13178       if (irel->r_offset + 4 > sec->size)
13179 	continue;
13180 
13181       opcode = bfd_get_micromips_32 (abfd, ptr);
13182 
13183       /* This is the pc-relative distance from the instruction the
13184          relocation is applied to, to the symbol referred.  */
13185       pcrval = (symval
13186 		- (sec->output_section->vma + sec->output_offset)
13187 		- irel->r_offset);
13188 
13189       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13190          of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13191          R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
13192 
13193            (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13194 
13195          where pcrval has first to be adjusted to apply against the LO16
13196          location (we make the adjustment later on, when we have figured
13197          out the offset).  */
13198       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13199 	{
13200 	  bfd_boolean bzc = FALSE;
13201 	  unsigned long nextopc;
13202 	  unsigned long reg;
13203 	  bfd_vma offset;
13204 
13205 	  /* Give up if the previous reloc was a HI16 against this symbol
13206 	     too.  */
13207 	  if (irel > internal_relocs
13208 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13209 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13210 	    continue;
13211 
13212 	  /* Or if the next reloc is not a LO16 against this symbol.  */
13213 	  if (irel + 1 >= irelend
13214 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13215 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13216 	    continue;
13217 
13218 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
13219 	  if (irel + 2 >= irelend
13220 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13221 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13222 	    continue;
13223 
13224 	  /* See if the LUI instruction *might* be in a branch delay slot.
13225 	     We check whether what looks like a 16-bit branch or jump is
13226 	     actually an immediate argument to a compact branch, and let
13227 	     it through if so.  */
13228 	  if (irel->r_offset >= 2
13229 	      && check_br16_dslot (abfd, ptr - 2)
13230 	      && !(irel->r_offset >= 4
13231 		   && (bzc = check_relocated_bzc (abfd,
13232 						  ptr - 4, irel->r_offset - 4,
13233 						  internal_relocs, irelend))))
13234 	    continue;
13235 	  if (irel->r_offset >= 4
13236 	      && !bzc
13237 	      && check_br32_dslot (abfd, ptr - 4))
13238 	    continue;
13239 
13240 	  reg = OP32_SREG (opcode);
13241 
13242 	  /* We only relax adjacent instructions or ones separated with
13243 	     a branch or jump that has a delay slot.  The branch or jump
13244 	     must not fiddle with the register used to hold the address.
13245 	     Subtract 4 for the LUI itself.  */
13246 	  offset = irel[1].r_offset - irel[0].r_offset;
13247 	  switch (offset - 4)
13248 	    {
13249 	    case 0:
13250 	      break;
13251 	    case 2:
13252 	      if (check_br16 (abfd, ptr + 4, reg))
13253 		break;
13254 	      continue;
13255 	    case 4:
13256 	      if (check_br32 (abfd, ptr + 4, reg))
13257 		break;
13258 	      continue;
13259 	    default:
13260 	      continue;
13261 	    }
13262 
13263 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
13264 
13265 	  /* Give up unless the same register is used with both
13266 	     relocations.  */
13267 	  if (OP32_SREG (nextopc) != reg)
13268 	    continue;
13269 
13270 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
13271 	     and rounding up to take masking of the two LSBs into account.  */
13272 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
13273 
13274 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
13275 	  if (IS_BITSIZE (symval, 16))
13276 	    {
13277 	      /* Fix the relocation's type.  */
13278 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
13279 
13280 	      /* Instructions using R_MICROMIPS_LO16 have the base or
13281 	         source register in bits 20:16.  This register becomes $0
13282 	         (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
13283 	      nextopc &= ~0x001f0000;
13284 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
13285 			  contents + irel[1].r_offset);
13286 	    }
13287 
13288 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
13289 	     We add 4 to take LUI deletion into account while checking
13290 	     the PC-relative distance.  */
13291 	  else if (symval % 4 == 0
13292 		   && IS_BITSIZE (pcrval + 4, 25)
13293 		   && MATCH (nextopc, addiu_insn)
13294 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
13295 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
13296 	    {
13297 	      /* Fix the relocation's type.  */
13298 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
13299 
13300 	      /* Replace ADDIU with the ADDIUPC version.  */
13301 	      nextopc = (addiupc_insn.match
13302 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
13303 
13304 	      bfd_put_micromips_32 (abfd, nextopc,
13305 				    contents + irel[1].r_offset);
13306 	    }
13307 
13308 	  /* Can't do anything, give up, sigh...  */
13309 	  else
13310 	    continue;
13311 
13312 	  /* Fix the relocation's type.  */
13313 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
13314 
13315 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
13316 	  delcnt = 4;
13317 	  deloff = 0;
13318 	}
13319 
13320       /* Compact branch relaxation -- due to the multitude of macros
13321          employed by the compiler/assembler, compact branches are not
13322          always generated.  Obviously, this can/will be fixed elsewhere,
13323          but there is no drawback in double checking it here.  */
13324       else if (r_type == R_MICROMIPS_PC16_S1
13325 	       && irel->r_offset + 5 < sec->size
13326 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13327 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
13328 	       && ((!insn32
13329 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
13330 					nop_insn_16) ? 2 : 0))
13331 		   || (irel->r_offset + 7 < sec->size
13332 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
13333 								 ptr + 4),
13334 					   nop_insn_32) ? 4 : 0))))
13335 	{
13336 	  unsigned long reg;
13337 
13338 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13339 
13340 	  /* Replace BEQZ/BNEZ with the compact version.  */
13341 	  opcode = (bzc_insns_32[fndopc].match
13342 		    | BZC32_REG_FIELD (reg)
13343 		    | (opcode & 0xffff));		/* Addend value.  */
13344 
13345 	  bfd_put_micromips_32 (abfd, opcode, ptr);
13346 
13347 	  /* Delete the delay slot NOP: two or four bytes from
13348 	     irel->offset + 4; delcnt has already been set above.  */
13349 	  deloff = 4;
13350 	}
13351 
13352       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
13353          to check the distance from the next instruction, so subtract 2.  */
13354       else if (!insn32
13355 	       && r_type == R_MICROMIPS_PC16_S1
13356 	       && IS_BITSIZE (pcrval - 2, 11)
13357 	       && find_match (opcode, b_insns_32) >= 0)
13358 	{
13359 	  /* Fix the relocation's type.  */
13360 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
13361 
13362 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13363 	  bfd_put_16 (abfd,
13364 		      (b_insn_16.match
13365 		       | (opcode & 0x3ff)),		/* Addend value.  */
13366 		      ptr);
13367 
13368 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13369 	  delcnt = 2;
13370 	  deloff = 2;
13371 	}
13372 
13373       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
13374          to check the distance from the next instruction, so subtract 2.  */
13375       else if (!insn32
13376 	       && r_type == R_MICROMIPS_PC16_S1
13377 	       && IS_BITSIZE (pcrval - 2, 8)
13378 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
13379 		    && OP16_VALID_REG (OP32_SREG (opcode)))
13380 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
13381 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
13382 	{
13383 	  unsigned long reg;
13384 
13385 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
13386 
13387 	  /* Fix the relocation's type.  */
13388 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
13389 
13390 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
13391 	  bfd_put_16 (abfd,
13392 		      (bz_insns_16[fndopc].match
13393 		       | BZ16_REG_FIELD (reg)
13394 		       | (opcode & 0x7f)),		/* Addend value.  */
13395 		      ptr);
13396 
13397 	  /* Delete 2 bytes from irel->r_offset + 2.  */
13398 	  delcnt = 2;
13399 	  deloff = 2;
13400 	}
13401 
13402       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
13403       else if (!insn32
13404 	       && r_type == R_MICROMIPS_26_S1
13405 	       && target_is_micromips_code_p
13406 	       && irel->r_offset + 7 < sec->size
13407 	       && MATCH (opcode, jal_insn_32_bd32))
13408 	{
13409 	  unsigned long n32opc;
13410 	  bfd_boolean relaxed = FALSE;
13411 
13412 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
13413 
13414 	  if (MATCH (n32opc, nop_insn_32))
13415 	    {
13416 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
13417 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
13418 
13419 	      relaxed = TRUE;
13420 	    }
13421 	  else if (find_match (n32opc, move_insns_32) >= 0)
13422 	    {
13423 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
13424 	      bfd_put_16 (abfd,
13425 			  (move_insn_16.match
13426 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
13427 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
13428 			  ptr + 4);
13429 
13430 	      relaxed = TRUE;
13431 	    }
13432 	  /* Other 32-bit instructions relaxable to 16-bit
13433 	     instructions will be handled here later.  */
13434 
13435 	  if (relaxed)
13436 	    {
13437 	      /* JAL with 32-bit delay slot that is changed to a JALS
13438 	         with 16-bit delay slot.  */
13439 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
13440 
13441 	      /* Delete 2 bytes from irel->r_offset + 6.  */
13442 	      delcnt = 2;
13443 	      deloff = 6;
13444 	    }
13445 	}
13446 
13447       if (delcnt != 0)
13448 	{
13449 	  /* Note that we've changed the relocs, section contents, etc.  */
13450 	  elf_section_data (sec)->relocs = internal_relocs;
13451 	  elf_section_data (sec)->this_hdr.contents = contents;
13452 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13453 
13454 	  /* Delete bytes depending on the delcnt and deloff.  */
13455 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
13456 					    irel->r_offset + deloff, delcnt))
13457 	    goto error_return;
13458 
13459 	  /* That will change things, so we should relax again.
13460 	     Note that this is not required, and it may be slow.  */
13461 	  *again = TRUE;
13462 	}
13463     }
13464 
13465   if (isymbuf != NULL
13466       && symtab_hdr->contents != (unsigned char *) isymbuf)
13467     {
13468       if (! link_info->keep_memory)
13469 	free (isymbuf);
13470       else
13471 	{
13472 	  /* Cache the symbols for elf_link_input_bfd.  */
13473 	  symtab_hdr->contents = (unsigned char *) isymbuf;
13474 	}
13475     }
13476 
13477   if (contents != NULL
13478       && elf_section_data (sec)->this_hdr.contents != contents)
13479     {
13480       if (! link_info->keep_memory)
13481 	free (contents);
13482       else
13483 	{
13484 	  /* Cache the section contents for elf_link_input_bfd.  */
13485 	  elf_section_data (sec)->this_hdr.contents = contents;
13486 	}
13487     }
13488 
13489   if (internal_relocs != NULL
13490       && elf_section_data (sec)->relocs != internal_relocs)
13491     free (internal_relocs);
13492 
13493   return TRUE;
13494 
13495  error_return:
13496   if (isymbuf != NULL
13497       && symtab_hdr->contents != (unsigned char *) isymbuf)
13498     free (isymbuf);
13499   if (contents != NULL
13500       && elf_section_data (sec)->this_hdr.contents != contents)
13501     free (contents);
13502   if (internal_relocs != NULL
13503       && elf_section_data (sec)->relocs != internal_relocs)
13504     free (internal_relocs);
13505 
13506   return FALSE;
13507 }
13508 
13509 /* Create a MIPS ELF linker hash table.  */
13510 
13511 struct bfd_link_hash_table *
13512 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
13513 {
13514   struct mips_elf_link_hash_table *ret;
13515   bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
13516 
13517   ret = bfd_zmalloc (amt);
13518   if (ret == NULL)
13519     return NULL;
13520 
13521   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
13522 				      mips_elf_link_hash_newfunc,
13523 				      sizeof (struct mips_elf_link_hash_entry),
13524 				      MIPS_ELF_DATA))
13525     {
13526       free (ret);
13527       return NULL;
13528     }
13529   ret->root.init_plt_refcount.plist = NULL;
13530   ret->root.init_plt_offset.plist = NULL;
13531 
13532   return &ret->root.root;
13533 }
13534 
13535 /* Likewise, but indicate that the target is VxWorks.  */
13536 
13537 struct bfd_link_hash_table *
13538 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
13539 {
13540   struct bfd_link_hash_table *ret;
13541 
13542   ret = _bfd_mips_elf_link_hash_table_create (abfd);
13543   if (ret)
13544     {
13545       struct mips_elf_link_hash_table *htab;
13546 
13547       htab = (struct mips_elf_link_hash_table *) ret;
13548       htab->use_plts_and_copy_relocs = TRUE;
13549       htab->is_vxworks = TRUE;
13550     }
13551   return ret;
13552 }
13553 
13554 /* A function that the linker calls if we are allowed to use PLTs
13555    and copy relocs.  */
13556 
13557 void
13558 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
13559 {
13560   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
13561 }
13562 
13563 /* A function that the linker calls to select between all or only
13564    32-bit microMIPS instructions.  */
13565 
13566 void
13567 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on)
13568 {
13569   mips_elf_hash_table (info)->insn32 = on;
13570 }
13571 
13572 /* We need to use a special link routine to handle the .reginfo and
13573    the .mdebug sections.  We need to merge all instances of these
13574    sections together, not write them all out sequentially.  */
13575 
13576 bfd_boolean
13577 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
13578 {
13579   asection *o;
13580   struct bfd_link_order *p;
13581   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
13582   asection *rtproc_sec;
13583   Elf32_RegInfo reginfo;
13584   struct ecoff_debug_info debug;
13585   struct mips_htab_traverse_info hti;
13586   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13587   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
13588   HDRR *symhdr = &debug.symbolic_header;
13589   void *mdebug_handle = NULL;
13590   asection *s;
13591   EXTR esym;
13592   unsigned int i;
13593   bfd_size_type amt;
13594   struct mips_elf_link_hash_table *htab;
13595 
13596   static const char * const secname[] =
13597   {
13598     ".text", ".init", ".fini", ".data",
13599     ".rodata", ".sdata", ".sbss", ".bss"
13600   };
13601   static const int sc[] =
13602   {
13603     scText, scInit, scFini, scData,
13604     scRData, scSData, scSBss, scBss
13605   };
13606 
13607   /* Sort the dynamic symbols so that those with GOT entries come after
13608      those without.  */
13609   htab = mips_elf_hash_table (info);
13610   BFD_ASSERT (htab != NULL);
13611 
13612   if (!mips_elf_sort_hash_table (abfd, info))
13613     return FALSE;
13614 
13615   /* Create any scheduled LA25 stubs.  */
13616   hti.info = info;
13617   hti.output_bfd = abfd;
13618   hti.error = FALSE;
13619   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
13620   if (hti.error)
13621     return FALSE;
13622 
13623   /* Get a value for the GP register.  */
13624   if (elf_gp (abfd) == 0)
13625     {
13626       struct bfd_link_hash_entry *h;
13627 
13628       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
13629       if (h != NULL && h->type == bfd_link_hash_defined)
13630 	elf_gp (abfd) = (h->u.def.value
13631 			 + h->u.def.section->output_section->vma
13632 			 + h->u.def.section->output_offset);
13633       else if (htab->is_vxworks
13634 	       && (h = bfd_link_hash_lookup (info->hash,
13635 					     "_GLOBAL_OFFSET_TABLE_",
13636 					     FALSE, FALSE, TRUE))
13637 	       && h->type == bfd_link_hash_defined)
13638 	elf_gp (abfd) = (h->u.def.section->output_section->vma
13639 			 + h->u.def.section->output_offset
13640 			 + h->u.def.value);
13641       else if (info->relocatable)
13642 	{
13643 	  bfd_vma lo = MINUS_ONE;
13644 
13645 	  /* Find the GP-relative section with the lowest offset.  */
13646 	  for (o = abfd->sections; o != NULL; o = o->next)
13647 	    if (o->vma < lo
13648 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
13649 	      lo = o->vma;
13650 
13651 	  /* And calculate GP relative to that.  */
13652 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
13653 	}
13654       else
13655 	{
13656 	  /* If the relocate_section function needs to do a reloc
13657 	     involving the GP value, it should make a reloc_dangerous
13658 	     callback to warn that GP is not defined.  */
13659 	}
13660     }
13661 
13662   /* Go through the sections and collect the .reginfo and .mdebug
13663      information.  */
13664   reginfo_sec = NULL;
13665   mdebug_sec = NULL;
13666   gptab_data_sec = NULL;
13667   gptab_bss_sec = NULL;
13668   for (o = abfd->sections; o != NULL; o = o->next)
13669     {
13670       if (strcmp (o->name, ".reginfo") == 0)
13671 	{
13672 	  memset (&reginfo, 0, sizeof reginfo);
13673 
13674 	  /* We have found the .reginfo section in the output file.
13675 	     Look through all the link_orders comprising it and merge
13676 	     the information together.  */
13677 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
13678 	    {
13679 	      asection *input_section;
13680 	      bfd *input_bfd;
13681 	      Elf32_External_RegInfo ext;
13682 	      Elf32_RegInfo sub;
13683 
13684 	      if (p->type != bfd_indirect_link_order)
13685 		{
13686 		  if (p->type == bfd_data_link_order)
13687 		    continue;
13688 		  abort ();
13689 		}
13690 
13691 	      input_section = p->u.indirect.section;
13692 	      input_bfd = input_section->owner;
13693 
13694 	      if (! bfd_get_section_contents (input_bfd, input_section,
13695 					      &ext, 0, sizeof ext))
13696 		return FALSE;
13697 
13698 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
13699 
13700 	      reginfo.ri_gprmask |= sub.ri_gprmask;
13701 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
13702 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
13703 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
13704 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
13705 
13706 	      /* ri_gp_value is set by the function
13707 		 mips_elf32_section_processing when the section is
13708 		 finally written out.  */
13709 
13710 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
13711 		 elf_link_input_bfd ignores this section.  */
13712 	      input_section->flags &= ~SEC_HAS_CONTENTS;
13713 	    }
13714 
13715 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
13716 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
13717 
13718 	  /* Skip this section later on (I don't think this currently
13719 	     matters, but someday it might).  */
13720 	  o->map_head.link_order = NULL;
13721 
13722 	  reginfo_sec = o;
13723 	}
13724 
13725       if (strcmp (o->name, ".mdebug") == 0)
13726 	{
13727 	  struct extsym_info einfo;
13728 	  bfd_vma last;
13729 
13730 	  /* We have found the .mdebug section in the output file.
13731 	     Look through all the link_orders comprising it and merge
13732 	     the information together.  */
13733 	  symhdr->magic = swap->sym_magic;
13734 	  /* FIXME: What should the version stamp be?  */
13735 	  symhdr->vstamp = 0;
13736 	  symhdr->ilineMax = 0;
13737 	  symhdr->cbLine = 0;
13738 	  symhdr->idnMax = 0;
13739 	  symhdr->ipdMax = 0;
13740 	  symhdr->isymMax = 0;
13741 	  symhdr->ioptMax = 0;
13742 	  symhdr->iauxMax = 0;
13743 	  symhdr->issMax = 0;
13744 	  symhdr->issExtMax = 0;
13745 	  symhdr->ifdMax = 0;
13746 	  symhdr->crfd = 0;
13747 	  symhdr->iextMax = 0;
13748 
13749 	  /* We accumulate the debugging information itself in the
13750 	     debug_info structure.  */
13751 	  debug.line = NULL;
13752 	  debug.external_dnr = NULL;
13753 	  debug.external_pdr = NULL;
13754 	  debug.external_sym = NULL;
13755 	  debug.external_opt = NULL;
13756 	  debug.external_aux = NULL;
13757 	  debug.ss = NULL;
13758 	  debug.ssext = debug.ssext_end = NULL;
13759 	  debug.external_fdr = NULL;
13760 	  debug.external_rfd = NULL;
13761 	  debug.external_ext = debug.external_ext_end = NULL;
13762 
13763 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
13764 	  if (mdebug_handle == NULL)
13765 	    return FALSE;
13766 
13767 	  esym.jmptbl = 0;
13768 	  esym.cobol_main = 0;
13769 	  esym.weakext = 0;
13770 	  esym.reserved = 0;
13771 	  esym.ifd = ifdNil;
13772 	  esym.asym.iss = issNil;
13773 	  esym.asym.st = stLocal;
13774 	  esym.asym.reserved = 0;
13775 	  esym.asym.index = indexNil;
13776 	  last = 0;
13777 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
13778 	    {
13779 	      esym.asym.sc = sc[i];
13780 	      s = bfd_get_section_by_name (abfd, secname[i]);
13781 	      if (s != NULL)
13782 		{
13783 		  esym.asym.value = s->vma;
13784 		  last = s->vma + s->size;
13785 		}
13786 	      else
13787 		esym.asym.value = last;
13788 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
13789 						 secname[i], &esym))
13790 		return FALSE;
13791 	    }
13792 
13793 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
13794 	    {
13795 	      asection *input_section;
13796 	      bfd *input_bfd;
13797 	      const struct ecoff_debug_swap *input_swap;
13798 	      struct ecoff_debug_info input_debug;
13799 	      char *eraw_src;
13800 	      char *eraw_end;
13801 
13802 	      if (p->type != bfd_indirect_link_order)
13803 		{
13804 		  if (p->type == bfd_data_link_order)
13805 		    continue;
13806 		  abort ();
13807 		}
13808 
13809 	      input_section = p->u.indirect.section;
13810 	      input_bfd = input_section->owner;
13811 
13812 	      if (!is_mips_elf (input_bfd))
13813 		{
13814 		  /* I don't know what a non MIPS ELF bfd would be
13815 		     doing with a .mdebug section, but I don't really
13816 		     want to deal with it.  */
13817 		  continue;
13818 		}
13819 
13820 	      input_swap = (get_elf_backend_data (input_bfd)
13821 			    ->elf_backend_ecoff_debug_swap);
13822 
13823 	      BFD_ASSERT (p->size == input_section->size);
13824 
13825 	      /* The ECOFF linking code expects that we have already
13826 		 read in the debugging information and set up an
13827 		 ecoff_debug_info structure, so we do that now.  */
13828 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
13829 						   &input_debug))
13830 		return FALSE;
13831 
13832 	      if (! (bfd_ecoff_debug_accumulate
13833 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
13834 		      &input_debug, input_swap, info)))
13835 		return FALSE;
13836 
13837 	      /* Loop through the external symbols.  For each one with
13838 		 interesting information, try to find the symbol in
13839 		 the linker global hash table and save the information
13840 		 for the output external symbols.  */
13841 	      eraw_src = input_debug.external_ext;
13842 	      eraw_end = (eraw_src
13843 			  + (input_debug.symbolic_header.iextMax
13844 			     * input_swap->external_ext_size));
13845 	      for (;
13846 		   eraw_src < eraw_end;
13847 		   eraw_src += input_swap->external_ext_size)
13848 		{
13849 		  EXTR ext;
13850 		  const char *name;
13851 		  struct mips_elf_link_hash_entry *h;
13852 
13853 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
13854 		  if (ext.asym.sc == scNil
13855 		      || ext.asym.sc == scUndefined
13856 		      || ext.asym.sc == scSUndefined)
13857 		    continue;
13858 
13859 		  name = input_debug.ssext + ext.asym.iss;
13860 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
13861 						 name, FALSE, FALSE, TRUE);
13862 		  if (h == NULL || h->esym.ifd != -2)
13863 		    continue;
13864 
13865 		  if (ext.ifd != -1)
13866 		    {
13867 		      BFD_ASSERT (ext.ifd
13868 				  < input_debug.symbolic_header.ifdMax);
13869 		      ext.ifd = input_debug.ifdmap[ext.ifd];
13870 		    }
13871 
13872 		  h->esym = ext;
13873 		}
13874 
13875 	      /* Free up the information we just read.  */
13876 	      free (input_debug.line);
13877 	      free (input_debug.external_dnr);
13878 	      free (input_debug.external_pdr);
13879 	      free (input_debug.external_sym);
13880 	      free (input_debug.external_opt);
13881 	      free (input_debug.external_aux);
13882 	      free (input_debug.ss);
13883 	      free (input_debug.ssext);
13884 	      free (input_debug.external_fdr);
13885 	      free (input_debug.external_rfd);
13886 	      free (input_debug.external_ext);
13887 
13888 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
13889 		 elf_link_input_bfd ignores this section.  */
13890 	      input_section->flags &= ~SEC_HAS_CONTENTS;
13891 	    }
13892 
13893 	  if (SGI_COMPAT (abfd) && info->shared)
13894 	    {
13895 	      /* Create .rtproc section.  */
13896 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
13897 	      if (rtproc_sec == NULL)
13898 		{
13899 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
13900 				    | SEC_LINKER_CREATED | SEC_READONLY);
13901 
13902 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
13903 								   ".rtproc",
13904 								   flags);
13905 		  if (rtproc_sec == NULL
13906 		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
13907 		    return FALSE;
13908 		}
13909 
13910 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
13911 						     info, rtproc_sec,
13912 						     &debug))
13913 		return FALSE;
13914 	    }
13915 
13916 	  /* Build the external symbol information.  */
13917 	  einfo.abfd = abfd;
13918 	  einfo.info = info;
13919 	  einfo.debug = &debug;
13920 	  einfo.swap = swap;
13921 	  einfo.failed = FALSE;
13922 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
13923 				       mips_elf_output_extsym, &einfo);
13924 	  if (einfo.failed)
13925 	    return FALSE;
13926 
13927 	  /* Set the size of the .mdebug section.  */
13928 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
13929 
13930 	  /* Skip this section later on (I don't think this currently
13931 	     matters, but someday it might).  */
13932 	  o->map_head.link_order = NULL;
13933 
13934 	  mdebug_sec = o;
13935 	}
13936 
13937       if (CONST_STRNEQ (o->name, ".gptab."))
13938 	{
13939 	  const char *subname;
13940 	  unsigned int c;
13941 	  Elf32_gptab *tab;
13942 	  Elf32_External_gptab *ext_tab;
13943 	  unsigned int j;
13944 
13945 	  /* The .gptab.sdata and .gptab.sbss sections hold
13946 	     information describing how the small data area would
13947 	     change depending upon the -G switch.  These sections
13948 	     not used in executables files.  */
13949 	  if (! info->relocatable)
13950 	    {
13951 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
13952 		{
13953 		  asection *input_section;
13954 
13955 		  if (p->type != bfd_indirect_link_order)
13956 		    {
13957 		      if (p->type == bfd_data_link_order)
13958 			continue;
13959 		      abort ();
13960 		    }
13961 
13962 		  input_section = p->u.indirect.section;
13963 
13964 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
13965 		     elf_link_input_bfd ignores this section.  */
13966 		  input_section->flags &= ~SEC_HAS_CONTENTS;
13967 		}
13968 
13969 	      /* Skip this section later on (I don't think this
13970 		 currently matters, but someday it might).  */
13971 	      o->map_head.link_order = NULL;
13972 
13973 	      /* Really remove the section.  */
13974 	      bfd_section_list_remove (abfd, o);
13975 	      --abfd->section_count;
13976 
13977 	      continue;
13978 	    }
13979 
13980 	  /* There is one gptab for initialized data, and one for
13981 	     uninitialized data.  */
13982 	  if (strcmp (o->name, ".gptab.sdata") == 0)
13983 	    gptab_data_sec = o;
13984 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
13985 	    gptab_bss_sec = o;
13986 	  else
13987 	    {
13988 	      (*_bfd_error_handler)
13989 		(_("%s: illegal section name `%s'"),
13990 		 bfd_get_filename (abfd), o->name);
13991 	      bfd_set_error (bfd_error_nonrepresentable_section);
13992 	      return FALSE;
13993 	    }
13994 
13995 	  /* The linker script always combines .gptab.data and
13996 	     .gptab.sdata into .gptab.sdata, and likewise for
13997 	     .gptab.bss and .gptab.sbss.  It is possible that there is
13998 	     no .sdata or .sbss section in the output file, in which
13999 	     case we must change the name of the output section.  */
14000 	  subname = o->name + sizeof ".gptab" - 1;
14001 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
14002 	    {
14003 	      if (o == gptab_data_sec)
14004 		o->name = ".gptab.data";
14005 	      else
14006 		o->name = ".gptab.bss";
14007 	      subname = o->name + sizeof ".gptab" - 1;
14008 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
14009 	    }
14010 
14011 	  /* Set up the first entry.  */
14012 	  c = 1;
14013 	  amt = c * sizeof (Elf32_gptab);
14014 	  tab = bfd_malloc (amt);
14015 	  if (tab == NULL)
14016 	    return FALSE;
14017 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
14018 	  tab[0].gt_header.gt_unused = 0;
14019 
14020 	  /* Combine the input sections.  */
14021 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14022 	    {
14023 	      asection *input_section;
14024 	      bfd *input_bfd;
14025 	      bfd_size_type size;
14026 	      unsigned long last;
14027 	      bfd_size_type gpentry;
14028 
14029 	      if (p->type != bfd_indirect_link_order)
14030 		{
14031 		  if (p->type == bfd_data_link_order)
14032 		    continue;
14033 		  abort ();
14034 		}
14035 
14036 	      input_section = p->u.indirect.section;
14037 	      input_bfd = input_section->owner;
14038 
14039 	      /* Combine the gptab entries for this input section one
14040 		 by one.  We know that the input gptab entries are
14041 		 sorted by ascending -G value.  */
14042 	      size = input_section->size;
14043 	      last = 0;
14044 	      for (gpentry = sizeof (Elf32_External_gptab);
14045 		   gpentry < size;
14046 		   gpentry += sizeof (Elf32_External_gptab))
14047 		{
14048 		  Elf32_External_gptab ext_gptab;
14049 		  Elf32_gptab int_gptab;
14050 		  unsigned long val;
14051 		  unsigned long add;
14052 		  bfd_boolean exact;
14053 		  unsigned int look;
14054 
14055 		  if (! (bfd_get_section_contents
14056 			 (input_bfd, input_section, &ext_gptab, gpentry,
14057 			  sizeof (Elf32_External_gptab))))
14058 		    {
14059 		      free (tab);
14060 		      return FALSE;
14061 		    }
14062 
14063 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
14064 						&int_gptab);
14065 		  val = int_gptab.gt_entry.gt_g_value;
14066 		  add = int_gptab.gt_entry.gt_bytes - last;
14067 
14068 		  exact = FALSE;
14069 		  for (look = 1; look < c; look++)
14070 		    {
14071 		      if (tab[look].gt_entry.gt_g_value >= val)
14072 			tab[look].gt_entry.gt_bytes += add;
14073 
14074 		      if (tab[look].gt_entry.gt_g_value == val)
14075 			exact = TRUE;
14076 		    }
14077 
14078 		  if (! exact)
14079 		    {
14080 		      Elf32_gptab *new_tab;
14081 		      unsigned int max;
14082 
14083 		      /* We need a new table entry.  */
14084 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
14085 		      new_tab = bfd_realloc (tab, amt);
14086 		      if (new_tab == NULL)
14087 			{
14088 			  free (tab);
14089 			  return FALSE;
14090 			}
14091 		      tab = new_tab;
14092 		      tab[c].gt_entry.gt_g_value = val;
14093 		      tab[c].gt_entry.gt_bytes = add;
14094 
14095 		      /* Merge in the size for the next smallest -G
14096 			 value, since that will be implied by this new
14097 			 value.  */
14098 		      max = 0;
14099 		      for (look = 1; look < c; look++)
14100 			{
14101 			  if (tab[look].gt_entry.gt_g_value < val
14102 			      && (max == 0
14103 				  || (tab[look].gt_entry.gt_g_value
14104 				      > tab[max].gt_entry.gt_g_value)))
14105 			    max = look;
14106 			}
14107 		      if (max != 0)
14108 			tab[c].gt_entry.gt_bytes +=
14109 			  tab[max].gt_entry.gt_bytes;
14110 
14111 		      ++c;
14112 		    }
14113 
14114 		  last = int_gptab.gt_entry.gt_bytes;
14115 		}
14116 
14117 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14118 		 elf_link_input_bfd ignores this section.  */
14119 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14120 	    }
14121 
14122 	  /* The table must be sorted by -G value.  */
14123 	  if (c > 2)
14124 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
14125 
14126 	  /* Swap out the table.  */
14127 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
14128 	  ext_tab = bfd_alloc (abfd, amt);
14129 	  if (ext_tab == NULL)
14130 	    {
14131 	      free (tab);
14132 	      return FALSE;
14133 	    }
14134 
14135 	  for (j = 0; j < c; j++)
14136 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
14137 	  free (tab);
14138 
14139 	  o->size = c * sizeof (Elf32_External_gptab);
14140 	  o->contents = (bfd_byte *) ext_tab;
14141 
14142 	  /* Skip this section later on (I don't think this currently
14143 	     matters, but someday it might).  */
14144 	  o->map_head.link_order = NULL;
14145 	}
14146     }
14147 
14148   /* Invoke the regular ELF backend linker to do all the work.  */
14149   if (!bfd_elf_final_link (abfd, info))
14150     return FALSE;
14151 
14152   /* Now write out the computed sections.  */
14153 
14154   if (reginfo_sec != NULL)
14155     {
14156       Elf32_External_RegInfo ext;
14157 
14158       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
14159       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
14160 	return FALSE;
14161     }
14162 
14163   if (mdebug_sec != NULL)
14164     {
14165       BFD_ASSERT (abfd->output_has_begun);
14166       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
14167 					       swap, info,
14168 					       mdebug_sec->filepos))
14169 	return FALSE;
14170 
14171       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
14172     }
14173 
14174   if (gptab_data_sec != NULL)
14175     {
14176       if (! bfd_set_section_contents (abfd, gptab_data_sec,
14177 				      gptab_data_sec->contents,
14178 				      0, gptab_data_sec->size))
14179 	return FALSE;
14180     }
14181 
14182   if (gptab_bss_sec != NULL)
14183     {
14184       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
14185 				      gptab_bss_sec->contents,
14186 				      0, gptab_bss_sec->size))
14187 	return FALSE;
14188     }
14189 
14190   if (SGI_COMPAT (abfd))
14191     {
14192       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
14193       if (rtproc_sec != NULL)
14194 	{
14195 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
14196 					  rtproc_sec->contents,
14197 					  0, rtproc_sec->size))
14198 	    return FALSE;
14199 	}
14200     }
14201 
14202   return TRUE;
14203 }
14204 
14205 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
14206 
14207 struct mips_mach_extension
14208 {
14209   unsigned long extension, base;
14210 };
14211 
14212 
14213 /* An array describing how BFD machines relate to one another.  The entries
14214    are ordered topologically with MIPS I extensions listed last.  */
14215 
14216 static const struct mips_mach_extension mips_mach_extensions[] =
14217 {
14218   /* MIPS64r2 extensions.  */
14219   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14220   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14221   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14222 
14223   /* MIPS64 extensions.  */
14224   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14225   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14226   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14227   { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
14228 
14229   /* MIPS V extensions.  */
14230   { bfd_mach_mipsisa64, bfd_mach_mips5 },
14231 
14232   /* R10000 extensions.  */
14233   { bfd_mach_mips12000, bfd_mach_mips10000 },
14234   { bfd_mach_mips14000, bfd_mach_mips10000 },
14235   { bfd_mach_mips16000, bfd_mach_mips10000 },
14236 
14237   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
14238      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
14239      better to allow vr5400 and vr5500 code to be merged anyway, since
14240      many libraries will just use the core ISA.  Perhaps we could add
14241      some sort of ASE flag if this ever proves a problem.  */
14242   { bfd_mach_mips5500, bfd_mach_mips5400 },
14243   { bfd_mach_mips5400, bfd_mach_mips5000 },
14244 
14245   /* MIPS IV extensions.  */
14246   { bfd_mach_mips5, bfd_mach_mips8000 },
14247   { bfd_mach_mips10000, bfd_mach_mips8000 },
14248   { bfd_mach_mips5000, bfd_mach_mips8000 },
14249   { bfd_mach_mips7000, bfd_mach_mips8000 },
14250   { bfd_mach_mips9000, bfd_mach_mips8000 },
14251 
14252   /* VR4100 extensions.  */
14253   { bfd_mach_mips4120, bfd_mach_mips4100 },
14254   { bfd_mach_mips4111, bfd_mach_mips4100 },
14255 
14256   /* MIPS III extensions.  */
14257   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14258   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14259   { bfd_mach_mips8000, bfd_mach_mips4000 },
14260   { bfd_mach_mips4650, bfd_mach_mips4000 },
14261   { bfd_mach_mips4600, bfd_mach_mips4000 },
14262   { bfd_mach_mips4400, bfd_mach_mips4000 },
14263   { bfd_mach_mips4300, bfd_mach_mips4000 },
14264   { bfd_mach_mips4100, bfd_mach_mips4000 },
14265   { bfd_mach_mips4010, bfd_mach_mips4000 },
14266   { bfd_mach_mips5900, bfd_mach_mips4000 },
14267 
14268   /* MIPS32 extensions.  */
14269   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14270 
14271   /* MIPS II extensions.  */
14272   { bfd_mach_mips4000, bfd_mach_mips6000 },
14273   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14274 
14275   /* MIPS I extensions.  */
14276   { bfd_mach_mips6000, bfd_mach_mips3000 },
14277   { bfd_mach_mips3900, bfd_mach_mips3000 }
14278 };
14279 
14280 
14281 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14282 
14283 static bfd_boolean
14284 mips_mach_extends_p (unsigned long base, unsigned long extension)
14285 {
14286   size_t i;
14287 
14288   if (extension == base)
14289     return TRUE;
14290 
14291   if (base == bfd_mach_mipsisa32
14292       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14293     return TRUE;
14294 
14295   if (base == bfd_mach_mipsisa32r2
14296       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14297     return TRUE;
14298 
14299   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14300     if (extension == mips_mach_extensions[i].extension)
14301       {
14302 	extension = mips_mach_extensions[i].base;
14303 	if (extension == base)
14304 	  return TRUE;
14305       }
14306 
14307   return FALSE;
14308 }
14309 
14310 
14311 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14312 
14313 static bfd_boolean
14314 mips_32bit_flags_p (flagword flags)
14315 {
14316   return ((flags & EF_MIPS_32BITMODE) != 0
14317 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14318 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14319 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14320 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14321 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14322 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
14323 }
14324 
14325 
14326 /* Merge object attributes from IBFD into OBFD.  Raise an error if
14327    there are conflicting attributes.  */
14328 static bfd_boolean
14329 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
14330 {
14331   obj_attribute *in_attr;
14332   obj_attribute *out_attr;
14333   bfd *abi_fp_bfd;
14334   bfd *abi_msa_bfd;
14335 
14336   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
14337   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
14338   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14339     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
14340 
14341   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
14342   if (!abi_msa_bfd
14343       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14344     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
14345 
14346   if (!elf_known_obj_attributes_proc (obfd)[0].i)
14347     {
14348       /* This is the first object.  Copy the attributes.  */
14349       _bfd_elf_copy_obj_attributes (ibfd, obfd);
14350 
14351       /* Use the Tag_null value to indicate the attributes have been
14352 	 initialized.  */
14353       elf_known_obj_attributes_proc (obfd)[0].i = 1;
14354 
14355       return TRUE;
14356     }
14357 
14358   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
14359      non-conflicting ones.  */
14360   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
14361   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
14362     {
14363       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
14364       if (out_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
14365 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14366       else if (in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
14367 	switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
14368 	  {
14369 	  case Val_GNU_MIPS_ABI_FP_DOUBLE:
14370 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14371 	      {
14372 	      case Val_GNU_MIPS_ABI_FP_SINGLE:
14373 		_bfd_error_handler
14374 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14375 		   obfd, abi_fp_bfd, ibfd, "-mdouble-float", "-msingle-float");
14376 		break;
14377 
14378 	      case Val_GNU_MIPS_ABI_FP_SOFT:
14379 		_bfd_error_handler
14380 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14381 		   obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14382 		break;
14383 
14384 	      case Val_GNU_MIPS_ABI_FP_64:
14385 		_bfd_error_handler
14386 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14387 		   obfd, abi_fp_bfd, ibfd,
14388 		   "-mdouble-float", "-mips32r2 -mfp64");
14389 		break;
14390 
14391 	      default:
14392 		_bfd_error_handler
14393 		  (_("Warning: %B uses %s (set by %B), "
14394 		     "%B uses unknown floating point ABI %d"),
14395 		   obfd, abi_fp_bfd, ibfd,
14396 		   "-mdouble-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14397 		break;
14398 	      }
14399 	    break;
14400 
14401 	  case Val_GNU_MIPS_ABI_FP_SINGLE:
14402 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14403 	      {
14404 	      case Val_GNU_MIPS_ABI_FP_DOUBLE:
14405 		_bfd_error_handler
14406 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14407 		   obfd, abi_fp_bfd, ibfd, "-msingle-float", "-mdouble-float");
14408 		break;
14409 
14410 	      case Val_GNU_MIPS_ABI_FP_SOFT:
14411 		_bfd_error_handler
14412 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14413 		   obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14414 		break;
14415 
14416 	      case Val_GNU_MIPS_ABI_FP_64:
14417 		_bfd_error_handler
14418 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14419 		   obfd, abi_fp_bfd, ibfd,
14420 		   "-msingle-float", "-mips32r2 -mfp64");
14421 		break;
14422 
14423 	      default:
14424 		_bfd_error_handler
14425 		  (_("Warning: %B uses %s (set by %B), "
14426 		     "%B uses unknown floating point ABI %d"),
14427 		   obfd, abi_fp_bfd, ibfd,
14428 		   "-msingle-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14429 		break;
14430 	      }
14431 	    break;
14432 
14433 	  case Val_GNU_MIPS_ABI_FP_SOFT:
14434 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14435 	      {
14436 	      case Val_GNU_MIPS_ABI_FP_DOUBLE:
14437 	      case Val_GNU_MIPS_ABI_FP_SINGLE:
14438 	      case Val_GNU_MIPS_ABI_FP_64:
14439 		_bfd_error_handler
14440 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14441 		   obfd, abi_fp_bfd, ibfd, "-msoft-float", "-mhard-float");
14442 		break;
14443 
14444 	      default:
14445 		_bfd_error_handler
14446 		  (_("Warning: %B uses %s (set by %B), "
14447 		     "%B uses unknown floating point ABI %d"),
14448 		   obfd, abi_fp_bfd, ibfd,
14449 		   "-msoft-float", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14450 		break;
14451 	      }
14452 	    break;
14453 
14454 	  case Val_GNU_MIPS_ABI_FP_64:
14455 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14456 	      {
14457 	      case Val_GNU_MIPS_ABI_FP_DOUBLE:
14458 		_bfd_error_handler
14459 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14460 		   obfd, abi_fp_bfd, ibfd,
14461 		   "-mips32r2 -mfp64", "-mdouble-float");
14462 		break;
14463 
14464 	      case Val_GNU_MIPS_ABI_FP_SINGLE:
14465 		_bfd_error_handler
14466 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14467 		   obfd, abi_fp_bfd, ibfd,
14468 		   "-mips32r2 -mfp64", "-msingle-float");
14469 		break;
14470 
14471 	      case Val_GNU_MIPS_ABI_FP_SOFT:
14472 		_bfd_error_handler
14473 		  (_("Warning: %B uses %s (set by %B), %B uses %s"),
14474 		   obfd, abi_fp_bfd, ibfd, "-mhard-float", "-msoft-float");
14475 		break;
14476 
14477 	      default:
14478 		_bfd_error_handler
14479 		  (_("Warning: %B uses %s (set by %B), "
14480 		     "%B uses unknown floating point ABI %d"),
14481 		   obfd, abi_fp_bfd, ibfd,
14482 		   "-mips32r2 -mfp64", in_attr[Tag_GNU_MIPS_ABI_FP].i);
14483 		break;
14484 	      }
14485 	    break;
14486 
14487 	  default:
14488 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
14489 	      {
14490 	      case Val_GNU_MIPS_ABI_FP_DOUBLE:
14491 		_bfd_error_handler
14492 		  (_("Warning: %B uses unknown floating point ABI %d "
14493 		     "(set by %B), %B uses %s"),
14494 		   obfd, abi_fp_bfd, ibfd,
14495 		   out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mdouble-float");
14496 		break;
14497 
14498 	      case Val_GNU_MIPS_ABI_FP_SINGLE:
14499 		_bfd_error_handler
14500 		  (_("Warning: %B uses unknown floating point ABI %d "
14501 		     "(set by %B), %B uses %s"),
14502 		   obfd, abi_fp_bfd, ibfd,
14503 		   out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msingle-float");
14504 		break;
14505 
14506 	      case Val_GNU_MIPS_ABI_FP_SOFT:
14507 		_bfd_error_handler
14508 		  (_("Warning: %B uses unknown floating point ABI %d "
14509 		     "(set by %B), %B uses %s"),
14510 		   obfd, abi_fp_bfd, ibfd,
14511 		   out_attr[Tag_GNU_MIPS_ABI_FP].i, "-msoft-float");
14512 		break;
14513 
14514 	      case Val_GNU_MIPS_ABI_FP_64:
14515 		_bfd_error_handler
14516 		  (_("Warning: %B uses unknown floating point ABI %d "
14517 		     "(set by %B), %B uses %s"),
14518 		   obfd, abi_fp_bfd, ibfd,
14519 		   out_attr[Tag_GNU_MIPS_ABI_FP].i, "-mips32r2 -mfp64");
14520 		break;
14521 
14522 	      default:
14523 		_bfd_error_handler
14524 		  (_("Warning: %B uses unknown floating point ABI %d "
14525 		     "(set by %B), %B uses unknown floating point ABI %d"),
14526 		   obfd, abi_fp_bfd, ibfd,
14527 		   out_attr[Tag_GNU_MIPS_ABI_FP].i,
14528 		   in_attr[Tag_GNU_MIPS_ABI_FP].i);
14529 		break;
14530 	      }
14531 	    break;
14532 	  }
14533     }
14534 
14535   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
14536      non-conflicting ones.  */
14537   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14538     {
14539       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
14540       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
14541 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
14542       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
14543 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
14544 	  {
14545 	  case Val_GNU_MIPS_ABI_MSA_128:
14546 	    _bfd_error_handler
14547 	      (_("Warning: %B uses %s (set by %B), "
14548 		 "%B uses unknown MSA ABI %d"),
14549 	       obfd, abi_msa_bfd, ibfd,
14550 	       "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14551 	    break;
14552 
14553 	  default:
14554 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
14555 	      {
14556 	      case Val_GNU_MIPS_ABI_MSA_128:
14557 		_bfd_error_handler
14558 		  (_("Warning: %B uses unknown MSA ABI %d "
14559 		     "(set by %B), %B uses %s"),
14560 		     obfd, abi_msa_bfd, ibfd,
14561 		     out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa");
14562 		  break;
14563 
14564 	      default:
14565 		_bfd_error_handler
14566 		  (_("Warning: %B uses unknown MSA ABI %d "
14567 		     "(set by %B), %B uses unknown MSA ABI %d"),
14568 		   obfd, abi_msa_bfd, ibfd,
14569 		   out_attr[Tag_GNU_MIPS_ABI_MSA].i,
14570 		   in_attr[Tag_GNU_MIPS_ABI_MSA].i);
14571 		break;
14572 	      }
14573 	  }
14574     }
14575 
14576   /* Merge Tag_compatibility attributes and any common GNU ones.  */
14577   _bfd_elf_merge_object_attributes (ibfd, obfd);
14578 
14579   return TRUE;
14580 }
14581 
14582 /* Merge backend specific data from an object file to the output
14583    object file when linking.  */
14584 
14585 bfd_boolean
14586 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
14587 {
14588   flagword old_flags;
14589   flagword new_flags;
14590   bfd_boolean ok;
14591   bfd_boolean null_input_bfd = TRUE;
14592   asection *sec;
14593 
14594   /* Check if we have the same endianness.  */
14595   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
14596     {
14597       (*_bfd_error_handler)
14598 	(_("%B: endianness incompatible with that of the selected emulation"),
14599 	 ibfd);
14600       return FALSE;
14601     }
14602 
14603   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
14604     return TRUE;
14605 
14606   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
14607     {
14608       (*_bfd_error_handler)
14609 	(_("%B: ABI is incompatible with that of the selected emulation"),
14610 	 ibfd);
14611       return FALSE;
14612     }
14613 
14614   if (!mips_elf_merge_obj_attributes (ibfd, obfd))
14615     return FALSE;
14616 
14617   new_flags = elf_elfheader (ibfd)->e_flags;
14618   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
14619   old_flags = elf_elfheader (obfd)->e_flags;
14620 
14621   if (! elf_flags_init (obfd))
14622     {
14623       elf_flags_init (obfd) = TRUE;
14624       elf_elfheader (obfd)->e_flags = new_flags;
14625       elf_elfheader (obfd)->e_ident[EI_CLASS]
14626 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
14627 
14628       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
14629 	  && (bfd_get_arch_info (obfd)->the_default
14630 	      || mips_mach_extends_p (bfd_get_mach (obfd),
14631 				      bfd_get_mach (ibfd))))
14632 	{
14633 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
14634 				   bfd_get_mach (ibfd)))
14635 	    return FALSE;
14636 	}
14637 
14638       return TRUE;
14639     }
14640 
14641   /* Check flag compatibility.  */
14642 
14643   new_flags &= ~EF_MIPS_NOREORDER;
14644   old_flags &= ~EF_MIPS_NOREORDER;
14645 
14646   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
14647      doesn't seem to matter.  */
14648   new_flags &= ~EF_MIPS_XGOT;
14649   old_flags &= ~EF_MIPS_XGOT;
14650 
14651   /* MIPSpro generates ucode info in n64 objects.  Again, we should
14652      just be able to ignore this.  */
14653   new_flags &= ~EF_MIPS_UCODE;
14654   old_flags &= ~EF_MIPS_UCODE;
14655 
14656   /* DSOs should only be linked with CPIC code.  */
14657   if ((ibfd->flags & DYNAMIC) != 0)
14658     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
14659 
14660   if (new_flags == old_flags)
14661     return TRUE;
14662 
14663   /* Check to see if the input BFD actually contains any sections.
14664      If not, its flags may not have been initialised either, but it cannot
14665      actually cause any incompatibility.  */
14666   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
14667     {
14668       /* Ignore synthetic sections and empty .text, .data and .bss sections
14669 	 which are automatically generated by gas.  Also ignore fake
14670 	 (s)common sections, since merely defining a common symbol does
14671 	 not affect compatibility.  */
14672       if ((sec->flags & SEC_IS_COMMON) == 0
14673 	  && strcmp (sec->name, ".reginfo")
14674 	  && strcmp (sec->name, ".mdebug")
14675 	  && (sec->size != 0
14676 	      || (strcmp (sec->name, ".text")
14677 		  && strcmp (sec->name, ".data")
14678 		  && strcmp (sec->name, ".bss"))))
14679 	{
14680 	  null_input_bfd = FALSE;
14681 	  break;
14682 	}
14683     }
14684   if (null_input_bfd)
14685     return TRUE;
14686 
14687   ok = TRUE;
14688 
14689   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
14690       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
14691     {
14692       (*_bfd_error_handler)
14693 	(_("%B: warning: linking abicalls files with non-abicalls files"),
14694 	 ibfd);
14695       ok = TRUE;
14696     }
14697 
14698   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
14699     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
14700   if (! (new_flags & EF_MIPS_PIC))
14701     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
14702 
14703   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14704   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
14705 
14706   /* Compare the ISAs.  */
14707   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
14708     {
14709       (*_bfd_error_handler)
14710 	(_("%B: linking 32-bit code with 64-bit code"),
14711 	 ibfd);
14712       ok = FALSE;
14713     }
14714   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
14715     {
14716       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
14717       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
14718 	{
14719 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
14720 	     the 32-bit flag (if set) so that we continue to recognise
14721 	     OBFD as a 32-bit binary.  */
14722 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
14723 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
14724 	  elf_elfheader (obfd)->e_flags
14725 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14726 
14727 	  /* Copy across the ABI flags if OBFD doesn't use them
14728 	     and if that was what caused us to treat IBFD as 32-bit.  */
14729 	  if ((old_flags & EF_MIPS_ABI) == 0
14730 	      && mips_32bit_flags_p (new_flags)
14731 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
14732 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
14733 	}
14734       else
14735 	{
14736 	  /* The ISAs aren't compatible.  */
14737 	  (*_bfd_error_handler)
14738 	    (_("%B: linking %s module with previous %s modules"),
14739 	     ibfd,
14740 	     bfd_printable_name (ibfd),
14741 	     bfd_printable_name (obfd));
14742 	  ok = FALSE;
14743 	}
14744     }
14745 
14746   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14747   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
14748 
14749   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
14750      does set EI_CLASS differently from any 32-bit ABI.  */
14751   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
14752       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14753 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14754     {
14755       /* Only error if both are set (to different values).  */
14756       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
14757 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
14758 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
14759 	{
14760 	  (*_bfd_error_handler)
14761 	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
14762 	     ibfd,
14763 	     elf_mips_abi_name (ibfd),
14764 	     elf_mips_abi_name (obfd));
14765 	  ok = FALSE;
14766 	}
14767       new_flags &= ~EF_MIPS_ABI;
14768       old_flags &= ~EF_MIPS_ABI;
14769     }
14770 
14771   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
14772      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
14773   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
14774     {
14775       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14776       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
14777       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
14778       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
14779       int micro_mis = old_m16 && new_micro;
14780       int m16_mis = old_micro && new_m16;
14781 
14782       if (m16_mis || micro_mis)
14783 	{
14784 	  (*_bfd_error_handler)
14785 	    (_("%B: ASE mismatch: linking %s module with previous %s modules"),
14786 	     ibfd,
14787 	     m16_mis ? "MIPS16" : "microMIPS",
14788 	     m16_mis ? "microMIPS" : "MIPS16");
14789 	  ok = FALSE;
14790 	}
14791 
14792       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
14793 
14794       new_flags &= ~ EF_MIPS_ARCH_ASE;
14795       old_flags &= ~ EF_MIPS_ARCH_ASE;
14796     }
14797 
14798   /* Compare NaN encodings.  */
14799   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
14800     {
14801       _bfd_error_handler (_("%B: linking %s module with previous %s modules"),
14802 			  ibfd,
14803 			  (new_flags & EF_MIPS_NAN2008
14804 			   ? "-mnan=2008" : "-mnan=legacy"),
14805 			  (old_flags & EF_MIPS_NAN2008
14806 			   ? "-mnan=2008" : "-mnan=legacy"));
14807       ok = FALSE;
14808       new_flags &= ~EF_MIPS_NAN2008;
14809       old_flags &= ~EF_MIPS_NAN2008;
14810     }
14811 
14812   /* Warn about any other mismatches */
14813   if (new_flags != old_flags)
14814     {
14815       (*_bfd_error_handler)
14816 	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
14817 	 ibfd, (unsigned long) new_flags,
14818 	 (unsigned long) old_flags);
14819       ok = FALSE;
14820     }
14821 
14822   if (! ok)
14823     {
14824       bfd_set_error (bfd_error_bad_value);
14825       return FALSE;
14826     }
14827 
14828   return TRUE;
14829 }
14830 
14831 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
14832 
14833 bfd_boolean
14834 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
14835 {
14836   BFD_ASSERT (!elf_flags_init (abfd)
14837 	      || elf_elfheader (abfd)->e_flags == flags);
14838 
14839   elf_elfheader (abfd)->e_flags = flags;
14840   elf_flags_init (abfd) = TRUE;
14841   return TRUE;
14842 }
14843 
14844 char *
14845 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
14846 {
14847   switch (dtag)
14848     {
14849     default: return "";
14850     case DT_MIPS_RLD_VERSION:
14851       return "MIPS_RLD_VERSION";
14852     case DT_MIPS_TIME_STAMP:
14853       return "MIPS_TIME_STAMP";
14854     case DT_MIPS_ICHECKSUM:
14855       return "MIPS_ICHECKSUM";
14856     case DT_MIPS_IVERSION:
14857       return "MIPS_IVERSION";
14858     case DT_MIPS_FLAGS:
14859       return "MIPS_FLAGS";
14860     case DT_MIPS_BASE_ADDRESS:
14861       return "MIPS_BASE_ADDRESS";
14862     case DT_MIPS_MSYM:
14863       return "MIPS_MSYM";
14864     case DT_MIPS_CONFLICT:
14865       return "MIPS_CONFLICT";
14866     case DT_MIPS_LIBLIST:
14867       return "MIPS_LIBLIST";
14868     case DT_MIPS_LOCAL_GOTNO:
14869       return "MIPS_LOCAL_GOTNO";
14870     case DT_MIPS_CONFLICTNO:
14871       return "MIPS_CONFLICTNO";
14872     case DT_MIPS_LIBLISTNO:
14873       return "MIPS_LIBLISTNO";
14874     case DT_MIPS_SYMTABNO:
14875       return "MIPS_SYMTABNO";
14876     case DT_MIPS_UNREFEXTNO:
14877       return "MIPS_UNREFEXTNO";
14878     case DT_MIPS_GOTSYM:
14879       return "MIPS_GOTSYM";
14880     case DT_MIPS_HIPAGENO:
14881       return "MIPS_HIPAGENO";
14882     case DT_MIPS_RLD_MAP:
14883       return "MIPS_RLD_MAP";
14884     case DT_MIPS_DELTA_CLASS:
14885       return "MIPS_DELTA_CLASS";
14886     case DT_MIPS_DELTA_CLASS_NO:
14887       return "MIPS_DELTA_CLASS_NO";
14888     case DT_MIPS_DELTA_INSTANCE:
14889       return "MIPS_DELTA_INSTANCE";
14890     case DT_MIPS_DELTA_INSTANCE_NO:
14891       return "MIPS_DELTA_INSTANCE_NO";
14892     case DT_MIPS_DELTA_RELOC:
14893       return "MIPS_DELTA_RELOC";
14894     case DT_MIPS_DELTA_RELOC_NO:
14895       return "MIPS_DELTA_RELOC_NO";
14896     case DT_MIPS_DELTA_SYM:
14897       return "MIPS_DELTA_SYM";
14898     case DT_MIPS_DELTA_SYM_NO:
14899       return "MIPS_DELTA_SYM_NO";
14900     case DT_MIPS_DELTA_CLASSSYM:
14901       return "MIPS_DELTA_CLASSSYM";
14902     case DT_MIPS_DELTA_CLASSSYM_NO:
14903       return "MIPS_DELTA_CLASSSYM_NO";
14904     case DT_MIPS_CXX_FLAGS:
14905       return "MIPS_CXX_FLAGS";
14906     case DT_MIPS_PIXIE_INIT:
14907       return "MIPS_PIXIE_INIT";
14908     case DT_MIPS_SYMBOL_LIB:
14909       return "MIPS_SYMBOL_LIB";
14910     case DT_MIPS_LOCALPAGE_GOTIDX:
14911       return "MIPS_LOCALPAGE_GOTIDX";
14912     case DT_MIPS_LOCAL_GOTIDX:
14913       return "MIPS_LOCAL_GOTIDX";
14914     case DT_MIPS_HIDDEN_GOTIDX:
14915       return "MIPS_HIDDEN_GOTIDX";
14916     case DT_MIPS_PROTECTED_GOTIDX:
14917       return "MIPS_PROTECTED_GOT_IDX";
14918     case DT_MIPS_OPTIONS:
14919       return "MIPS_OPTIONS";
14920     case DT_MIPS_INTERFACE:
14921       return "MIPS_INTERFACE";
14922     case DT_MIPS_DYNSTR_ALIGN:
14923       return "DT_MIPS_DYNSTR_ALIGN";
14924     case DT_MIPS_INTERFACE_SIZE:
14925       return "DT_MIPS_INTERFACE_SIZE";
14926     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
14927       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
14928     case DT_MIPS_PERF_SUFFIX:
14929       return "DT_MIPS_PERF_SUFFIX";
14930     case DT_MIPS_COMPACT_SIZE:
14931       return "DT_MIPS_COMPACT_SIZE";
14932     case DT_MIPS_GP_VALUE:
14933       return "DT_MIPS_GP_VALUE";
14934     case DT_MIPS_AUX_DYNAMIC:
14935       return "DT_MIPS_AUX_DYNAMIC";
14936     case DT_MIPS_PLTGOT:
14937       return "DT_MIPS_PLTGOT";
14938     case DT_MIPS_RWPLT:
14939       return "DT_MIPS_RWPLT";
14940     }
14941 }
14942 
14943 bfd_boolean
14944 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
14945 {
14946   FILE *file = ptr;
14947 
14948   BFD_ASSERT (abfd != NULL && ptr != NULL);
14949 
14950   /* Print normal ELF private data.  */
14951   _bfd_elf_print_private_bfd_data (abfd, ptr);
14952 
14953   /* xgettext:c-format */
14954   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14955 
14956   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
14957     fprintf (file, _(" [abi=O32]"));
14958   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
14959     fprintf (file, _(" [abi=O64]"));
14960   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
14961     fprintf (file, _(" [abi=EABI32]"));
14962   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
14963     fprintf (file, _(" [abi=EABI64]"));
14964   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
14965     fprintf (file, _(" [abi unknown]"));
14966   else if (ABI_N32_P (abfd))
14967     fprintf (file, _(" [abi=N32]"));
14968   else if (ABI_64_P (abfd))
14969     fprintf (file, _(" [abi=64]"));
14970   else
14971     fprintf (file, _(" [no abi set]"));
14972 
14973   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
14974     fprintf (file, " [mips1]");
14975   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
14976     fprintf (file, " [mips2]");
14977   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
14978     fprintf (file, " [mips3]");
14979   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
14980     fprintf (file, " [mips4]");
14981   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
14982     fprintf (file, " [mips5]");
14983   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
14984     fprintf (file, " [mips32]");
14985   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
14986     fprintf (file, " [mips64]");
14987   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
14988     fprintf (file, " [mips32r2]");
14989   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
14990     fprintf (file, " [mips64r2]");
14991   else
14992     fprintf (file, _(" [unknown ISA]"));
14993 
14994   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14995     fprintf (file, " [mdmx]");
14996 
14997   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14998     fprintf (file, " [mips16]");
14999 
15000   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
15001     fprintf (file, " [micromips]");
15002 
15003   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
15004     fprintf (file, " [nan2008]");
15005 
15006   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
15007     fprintf (file, " [fp64]");
15008 
15009   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
15010     fprintf (file, " [32bitmode]");
15011   else
15012     fprintf (file, _(" [not 32bitmode]"));
15013 
15014   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
15015     fprintf (file, " [noreorder]");
15016 
15017   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
15018     fprintf (file, " [PIC]");
15019 
15020   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
15021     fprintf (file, " [CPIC]");
15022 
15023   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
15024     fprintf (file, " [XGOT]");
15025 
15026   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
15027     fprintf (file, " [UCODE]");
15028 
15029   fputc ('\n', file);
15030 
15031   return TRUE;
15032 }
15033 
15034 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
15035 {
15036   { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15037   { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15038   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
15039   { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15040   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
15041   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
15042   { NULL,                     0,  0, 0,              0 }
15043 };
15044 
15045 /* Merge non visibility st_other attributes.  Ensure that the
15046    STO_OPTIONAL flag is copied into h->other, even if this is not a
15047    definiton of the symbol.  */
15048 void
15049 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
15050 				      const Elf_Internal_Sym *isym,
15051 				      bfd_boolean definition,
15052 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
15053 {
15054   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
15055     {
15056       unsigned char other;
15057 
15058       other = (definition ? isym->st_other : h->other);
15059       other &= ~ELF_ST_VISIBILITY (-1);
15060       h->other = other | ELF_ST_VISIBILITY (h->other);
15061     }
15062 
15063   if (!definition
15064       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
15065     h->other |= STO_OPTIONAL;
15066 }
15067 
15068 /* Decide whether an undefined symbol is special and can be ignored.
15069    This is the case for OPTIONAL symbols on IRIX.  */
15070 bfd_boolean
15071 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
15072 {
15073   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
15074 }
15075 
15076 bfd_boolean
15077 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
15078 {
15079   return (sym->st_shndx == SHN_COMMON
15080 	  || sym->st_shndx == SHN_MIPS_ACOMMON
15081 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
15082 }
15083 
15084 /* Return address for Ith PLT stub in section PLT, for relocation REL
15085    or (bfd_vma) -1 if it should not be included.  */
15086 
15087 bfd_vma
15088 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
15089 			   const arelent *rel ATTRIBUTE_UNUSED)
15090 {
15091   return (plt->vma
15092 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
15093 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
15094 }
15095 
15096 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
15097    and microMIPS PLT slots we may have a many-to-one mapping between .plt
15098    and .got.plt and also the slots may be of a different size each we walk
15099    the PLT manually fetching instructions and matching them against known
15100    patterns.  To make things easier standard MIPS slots, if any, always come
15101    first.  As we don't create proper ELF symbols we use the UDATA.I member
15102    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
15103    with the ST_OTHER member of the ELF symbol.  */
15104 
15105 long
15106 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
15107 				    long symcount ATTRIBUTE_UNUSED,
15108 				    asymbol **syms ATTRIBUTE_UNUSED,
15109 				    long dynsymcount, asymbol **dynsyms,
15110 				    asymbol **ret)
15111 {
15112   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
15113   static const char microsuffix[] = "@micromipsplt";
15114   static const char m16suffix[] = "@mips16plt";
15115   static const char mipssuffix[] = "@plt";
15116 
15117   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
15118   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
15119   bfd_boolean micromips_p = MICROMIPS_P (abfd);
15120   Elf_Internal_Shdr *hdr;
15121   bfd_byte *plt_data;
15122   bfd_vma plt_offset;
15123   unsigned int other;
15124   bfd_vma entry_size;
15125   bfd_vma plt0_size;
15126   asection *relplt;
15127   bfd_vma opcode;
15128   asection *plt;
15129   asymbol *send;
15130   size_t size;
15131   char *names;
15132   long counti;
15133   arelent *p;
15134   asymbol *s;
15135   char *nend;
15136   long count;
15137   long pi;
15138   long i;
15139   long n;
15140 
15141   *ret = NULL;
15142 
15143   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
15144     return 0;
15145 
15146   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
15147   if (relplt == NULL)
15148     return 0;
15149 
15150   hdr = &elf_section_data (relplt)->this_hdr;
15151   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
15152     return 0;
15153 
15154   plt = bfd_get_section_by_name (abfd, ".plt");
15155   if (plt == NULL)
15156     return 0;
15157 
15158   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
15159   if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
15160     return -1;
15161   p = relplt->relocation;
15162 
15163   /* Calculating the exact amount of space required for symbols would
15164      require two passes over the PLT, so just pessimise assuming two
15165      PLT slots per relocation.  */
15166   count = relplt->size / hdr->sh_entsize;
15167   counti = count * bed->s->int_rels_per_ext_rel;
15168   size = 2 * count * sizeof (asymbol);
15169   size += count * (sizeof (mipssuffix) +
15170 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
15171   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
15172     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
15173 
15174   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
15175   size += sizeof (asymbol) + sizeof (pltname);
15176 
15177   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
15178     return -1;
15179 
15180   if (plt->size < 16)
15181     return -1;
15182 
15183   s = *ret = bfd_malloc (size);
15184   if (s == NULL)
15185     return -1;
15186   send = s + 2 * count + 1;
15187 
15188   names = (char *) send;
15189   nend = (char *) s + size;
15190   n = 0;
15191 
15192   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
15193   if (opcode == 0x3302fffe)
15194     {
15195       if (!micromips_p)
15196 	return -1;
15197       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
15198       other = STO_MICROMIPS;
15199     }
15200   else if (opcode == 0x0398c1d0)
15201     {
15202       if (!micromips_p)
15203 	return -1;
15204       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
15205       other = STO_MICROMIPS;
15206     }
15207   else
15208     {
15209       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
15210       other = 0;
15211     }
15212 
15213   s->the_bfd = abfd;
15214   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
15215   s->section = plt;
15216   s->value = 0;
15217   s->name = names;
15218   s->udata.i = other;
15219   memcpy (names, pltname, sizeof (pltname));
15220   names += sizeof (pltname);
15221   ++s, ++n;
15222 
15223   pi = 0;
15224   for (plt_offset = plt0_size;
15225        plt_offset + 8 <= plt->size && s < send;
15226        plt_offset += entry_size)
15227     {
15228       bfd_vma gotplt_addr;
15229       const char *suffix;
15230       bfd_vma gotplt_hi;
15231       bfd_vma gotplt_lo;
15232       size_t suffixlen;
15233 
15234       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
15235 
15236       /* Check if the second word matches the expected MIPS16 instruction.  */
15237       if (opcode == 0x651aeb00)
15238 	{
15239 	  if (micromips_p)
15240 	    return -1;
15241 	  /* Truncated table???  */
15242 	  if (plt_offset + 16 > plt->size)
15243 	    break;
15244 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
15245 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
15246 	  suffixlen = sizeof (m16suffix);
15247 	  suffix = m16suffix;
15248 	  other = STO_MIPS16;
15249 	}
15250       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
15251       else if (opcode == 0xff220000)
15252 	{
15253 	  if (!micromips_p)
15254 	    return -1;
15255 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
15256 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15257 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
15258 	  gotplt_lo <<= 2;
15259 	  gotplt_addr = gotplt_hi + gotplt_lo;
15260 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
15261 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
15262 	  suffixlen = sizeof (microsuffix);
15263 	  suffix = microsuffix;
15264 	  other = STO_MICROMIPS;
15265 	}
15266       /* Likewise the expected microMIPS instruction (insn32 mode).  */
15267       else if ((opcode & 0xffff0000) == 0xff2f0000)
15268 	{
15269 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
15270 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
15271 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15272 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15273 	  gotplt_addr = gotplt_hi + gotplt_lo;
15274 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
15275 	  suffixlen = sizeof (microsuffix);
15276 	  suffix = microsuffix;
15277 	  other = STO_MICROMIPS;
15278 	}
15279       /* Otherwise assume standard MIPS code.  */
15280       else
15281 	{
15282 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
15283 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
15284 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
15285 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
15286 	  gotplt_addr = gotplt_hi + gotplt_lo;
15287 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
15288 	  suffixlen = sizeof (mipssuffix);
15289 	  suffix = mipssuffix;
15290 	  other = 0;
15291 	}
15292       /* Truncated table???  */
15293       if (plt_offset + entry_size > plt->size)
15294 	break;
15295 
15296       for (i = 0;
15297 	   i < count && p[pi].address != gotplt_addr;
15298 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
15299 
15300       if (i < count)
15301 	{
15302 	  size_t namelen;
15303 	  size_t len;
15304 
15305 	  *s = **p[pi].sym_ptr_ptr;
15306 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
15307 	     we are defining a symbol, ensure one of them is set.  */
15308 	  if ((s->flags & BSF_LOCAL) == 0)
15309 	    s->flags |= BSF_GLOBAL;
15310 	  s->flags |= BSF_SYNTHETIC;
15311 	  s->section = plt;
15312 	  s->value = plt_offset;
15313 	  s->name = names;
15314 	  s->udata.i = other;
15315 
15316 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
15317 	  namelen = len + suffixlen;
15318 	  if (names + namelen > nend)
15319 	    break;
15320 
15321 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
15322 	  names += len;
15323 	  memcpy (names, suffix, suffixlen);
15324 	  names += suffixlen;
15325 
15326 	  ++s, ++n;
15327 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
15328 	}
15329     }
15330 
15331   free (plt_data);
15332 
15333   return n;
15334 }
15335 
15336 void
15337 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
15338 {
15339   struct mips_elf_link_hash_table *htab;
15340   Elf_Internal_Ehdr *i_ehdrp;
15341 
15342   i_ehdrp = elf_elfheader (abfd);
15343   if (link_info)
15344     {
15345       htab = mips_elf_hash_table (link_info);
15346       BFD_ASSERT (htab != NULL);
15347 
15348       if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
15349 	i_ehdrp->e_ident[EI_ABIVERSION] = 1;
15350     }
15351 
15352   _bfd_elf_post_process_headers (abfd, link_info);
15353 }
15354