1 /* MIPS-specific support for ELF 2 Copyright (C) 1993-2015 Free Software Foundation, Inc. 3 4 Most of the information added by Ian Lance Taylor, Cygnus Support, 5 <ian@cygnus.com>. 6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 7 <mark@codesourcery.com> 8 Traditional MIPS targets support added by Koundinya.K, Dansk Data 9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 10 11 This file is part of BFD, the Binary File Descriptor library. 12 13 This program is free software; you can redistribute it and/or modify 14 it under the terms of the GNU General Public License as published by 15 the Free Software Foundation; either version 3 of the License, or 16 (at your option) any later version. 17 18 This program is distributed in the hope that it will be useful, 19 but WITHOUT ANY WARRANTY; without even the implied warranty of 20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 21 GNU General Public License for more details. 22 23 You should have received a copy of the GNU General Public License 24 along with this program; if not, write to the Free Software 25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 26 MA 02110-1301, USA. */ 27 28 29 /* This file handles functionality common to the different MIPS ABI's. */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "libiberty.h" 35 #include "elf-bfd.h" 36 #include "elfxx-mips.h" 37 #include "elf/mips.h" 38 #include "elf-vxworks.h" 39 40 /* Get the ECOFF swapping routines. */ 41 #include "coff/sym.h" 42 #include "coff/symconst.h" 43 #include "coff/ecoff.h" 44 #include "coff/mips.h" 45 46 #include "hashtab.h" 47 48 /* Types of TLS GOT entry. */ 49 enum mips_got_tls_type { 50 GOT_TLS_NONE, 51 GOT_TLS_GD, 52 GOT_TLS_LDM, 53 GOT_TLS_IE 54 }; 55 56 /* This structure is used to hold information about one GOT entry. 57 There are four types of entry: 58 59 (1) an absolute address 60 requires: abfd == NULL 61 fields: d.address 62 63 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd 64 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM 65 fields: abfd, symndx, d.addend, tls_type 66 67 (3) a SYMBOL address, where SYMBOL is not local to an input bfd 68 requires: abfd != NULL, symndx == -1 69 fields: d.h, tls_type 70 71 (4) a TLS LDM slot 72 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM 73 fields: none; there's only one of these per GOT. */ 74 struct mips_got_entry 75 { 76 /* One input bfd that needs the GOT entry. */ 77 bfd *abfd; 78 /* The index of the symbol, as stored in the relocation r_info, if 79 we have a local symbol; -1 otherwise. */ 80 long symndx; 81 union 82 { 83 /* If abfd == NULL, an address that must be stored in the got. */ 84 bfd_vma address; 85 /* If abfd != NULL && symndx != -1, the addend of the relocation 86 that should be added to the symbol value. */ 87 bfd_vma addend; 88 /* If abfd != NULL && symndx == -1, the hash table entry 89 corresponding to a symbol in the GOT. The symbol's entry 90 is in the local area if h->global_got_area is GGA_NONE, 91 otherwise it is in the global area. */ 92 struct mips_elf_link_hash_entry *h; 93 } d; 94 95 /* The TLS type of this GOT entry. An LDM GOT entry will be a local 96 symbol entry with r_symndx == 0. */ 97 unsigned char tls_type; 98 99 /* True if we have filled in the GOT contents for a TLS entry, 100 and created the associated relocations. */ 101 unsigned char tls_initialized; 102 103 /* The offset from the beginning of the .got section to the entry 104 corresponding to this symbol+addend. If it's a global symbol 105 whose offset is yet to be decided, it's going to be -1. */ 106 long gotidx; 107 }; 108 109 /* This structure represents a GOT page reference from an input bfd. 110 Each instance represents a symbol + ADDEND, where the representation 111 of the symbol depends on whether it is local to the input bfd. 112 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD. 113 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry. 114 115 Page references with SYMNDX >= 0 always become page references 116 in the output. Page references with SYMNDX < 0 only become page 117 references if the symbol binds locally; in other cases, the page 118 reference decays to a global GOT reference. */ 119 struct mips_got_page_ref 120 { 121 long symndx; 122 union 123 { 124 struct mips_elf_link_hash_entry *h; 125 bfd *abfd; 126 } u; 127 bfd_vma addend; 128 }; 129 130 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 131 The structures form a non-overlapping list that is sorted by increasing 132 MIN_ADDEND. */ 133 struct mips_got_page_range 134 { 135 struct mips_got_page_range *next; 136 bfd_signed_vma min_addend; 137 bfd_signed_vma max_addend; 138 }; 139 140 /* This structure describes the range of addends that are applied to page 141 relocations against a given section. */ 142 struct mips_got_page_entry 143 { 144 /* The section that these entries are based on. */ 145 asection *sec; 146 /* The ranges for this page entry. */ 147 struct mips_got_page_range *ranges; 148 /* The maximum number of page entries needed for RANGES. */ 149 bfd_vma num_pages; 150 }; 151 152 /* This structure is used to hold .got information when linking. */ 153 154 struct mips_got_info 155 { 156 /* The number of global .got entries. */ 157 unsigned int global_gotno; 158 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 159 unsigned int reloc_only_gotno; 160 /* The number of .got slots used for TLS. */ 161 unsigned int tls_gotno; 162 /* The first unused TLS .got entry. Used only during 163 mips_elf_initialize_tls_index. */ 164 unsigned int tls_assigned_gotno; 165 /* The number of local .got entries, eventually including page entries. */ 166 unsigned int local_gotno; 167 /* The maximum number of page entries needed. */ 168 unsigned int page_gotno; 169 /* The number of relocations needed for the GOT entries. */ 170 unsigned int relocs; 171 /* The first unused local .got entry. */ 172 unsigned int assigned_low_gotno; 173 /* The last unused local .got entry. */ 174 unsigned int assigned_high_gotno; 175 /* A hash table holding members of the got. */ 176 struct htab *got_entries; 177 /* A hash table holding mips_got_page_ref structures. */ 178 struct htab *got_page_refs; 179 /* A hash table of mips_got_page_entry structures. */ 180 struct htab *got_page_entries; 181 /* In multi-got links, a pointer to the next got (err, rather, most 182 of the time, it points to the previous got). */ 183 struct mips_got_info *next; 184 }; 185 186 /* Structure passed when merging bfds' gots. */ 187 188 struct mips_elf_got_per_bfd_arg 189 { 190 /* The output bfd. */ 191 bfd *obfd; 192 /* The link information. */ 193 struct bfd_link_info *info; 194 /* A pointer to the primary got, i.e., the one that's going to get 195 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 196 DT_MIPS_GOTSYM. */ 197 struct mips_got_info *primary; 198 /* A non-primary got we're trying to merge with other input bfd's 199 gots. */ 200 struct mips_got_info *current; 201 /* The maximum number of got entries that can be addressed with a 202 16-bit offset. */ 203 unsigned int max_count; 204 /* The maximum number of page entries needed by each got. */ 205 unsigned int max_pages; 206 /* The total number of global entries which will live in the 207 primary got and be automatically relocated. This includes 208 those not referenced by the primary GOT but included in 209 the "master" GOT. */ 210 unsigned int global_count; 211 }; 212 213 /* A structure used to pass information to htab_traverse callbacks 214 when laying out the GOT. */ 215 216 struct mips_elf_traverse_got_arg 217 { 218 struct bfd_link_info *info; 219 struct mips_got_info *g; 220 int value; 221 }; 222 223 struct _mips_elf_section_data 224 { 225 struct bfd_elf_section_data elf; 226 union 227 { 228 bfd_byte *tdata; 229 } u; 230 }; 231 232 #define mips_elf_section_data(sec) \ 233 ((struct _mips_elf_section_data *) elf_section_data (sec)) 234 235 #define is_mips_elf(bfd) \ 236 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 237 && elf_tdata (bfd) != NULL \ 238 && elf_object_id (bfd) == MIPS_ELF_DATA) 239 240 /* The ABI says that every symbol used by dynamic relocations must have 241 a global GOT entry. Among other things, this provides the dynamic 242 linker with a free, directly-indexed cache. The GOT can therefore 243 contain symbols that are not referenced by GOT relocations themselves 244 (in other words, it may have symbols that are not referenced by things 245 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 246 247 GOT relocations are less likely to overflow if we put the associated 248 GOT entries towards the beginning. We therefore divide the global 249 GOT entries into two areas: "normal" and "reloc-only". Entries in 250 the first area can be used for both dynamic relocations and GP-relative 251 accesses, while those in the "reloc-only" area are for dynamic 252 relocations only. 253 254 These GGA_* ("Global GOT Area") values are organised so that lower 255 values are more general than higher values. Also, non-GGA_NONE 256 values are ordered by the position of the area in the GOT. */ 257 #define GGA_NORMAL 0 258 #define GGA_RELOC_ONLY 1 259 #define GGA_NONE 2 260 261 /* Information about a non-PIC interface to a PIC function. There are 262 two ways of creating these interfaces. The first is to add: 263 264 lui $25,%hi(func) 265 addiu $25,$25,%lo(func) 266 267 immediately before a PIC function "func". The second is to add: 268 269 lui $25,%hi(func) 270 j func 271 addiu $25,$25,%lo(func) 272 273 to a separate trampoline section. 274 275 Stubs of the first kind go in a new section immediately before the 276 target function. Stubs of the second kind go in a single section 277 pointed to by the hash table's "strampoline" field. */ 278 struct mips_elf_la25_stub { 279 /* The generated section that contains this stub. */ 280 asection *stub_section; 281 282 /* The offset of the stub from the start of STUB_SECTION. */ 283 bfd_vma offset; 284 285 /* One symbol for the original function. Its location is available 286 in H->root.root.u.def. */ 287 struct mips_elf_link_hash_entry *h; 288 }; 289 290 /* Macros for populating a mips_elf_la25_stub. */ 291 292 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 293 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 294 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 295 #define LA25_LUI_MICROMIPS(VAL) \ 296 (0x41b90000 | (VAL)) /* lui t9,VAL */ 297 #define LA25_J_MICROMIPS(VAL) \ 298 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */ 299 #define LA25_ADDIU_MICROMIPS(VAL) \ 300 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */ 301 302 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 303 the dynamic symbols. */ 304 305 struct mips_elf_hash_sort_data 306 { 307 /* The symbol in the global GOT with the lowest dynamic symbol table 308 index. */ 309 struct elf_link_hash_entry *low; 310 /* The least dynamic symbol table index corresponding to a non-TLS 311 symbol with a GOT entry. */ 312 long min_got_dynindx; 313 /* The greatest dynamic symbol table index corresponding to a symbol 314 with a GOT entry that is not referenced (e.g., a dynamic symbol 315 with dynamic relocations pointing to it from non-primary GOTs). */ 316 long max_unref_got_dynindx; 317 /* The greatest dynamic symbol table index not corresponding to a 318 symbol without a GOT entry. */ 319 long max_non_got_dynindx; 320 }; 321 322 /* We make up to two PLT entries if needed, one for standard MIPS code 323 and one for compressed code, either a MIPS16 or microMIPS one. We 324 keep a separate record of traditional lazy-binding stubs, for easier 325 processing. */ 326 327 struct plt_entry 328 { 329 /* Traditional SVR4 stub offset, or -1 if none. */ 330 bfd_vma stub_offset; 331 332 /* Standard PLT entry offset, or -1 if none. */ 333 bfd_vma mips_offset; 334 335 /* Compressed PLT entry offset, or -1 if none. */ 336 bfd_vma comp_offset; 337 338 /* The corresponding .got.plt index, or -1 if none. */ 339 bfd_vma gotplt_index; 340 341 /* Whether we need a standard PLT entry. */ 342 unsigned int need_mips : 1; 343 344 /* Whether we need a compressed PLT entry. */ 345 unsigned int need_comp : 1; 346 }; 347 348 /* The MIPS ELF linker needs additional information for each symbol in 349 the global hash table. */ 350 351 struct mips_elf_link_hash_entry 352 { 353 struct elf_link_hash_entry root; 354 355 /* External symbol information. */ 356 EXTR esym; 357 358 /* The la25 stub we have created for ths symbol, if any. */ 359 struct mips_elf_la25_stub *la25_stub; 360 361 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 362 this symbol. */ 363 unsigned int possibly_dynamic_relocs; 364 365 /* If there is a stub that 32 bit functions should use to call this 366 16 bit function, this points to the section containing the stub. */ 367 asection *fn_stub; 368 369 /* If there is a stub that 16 bit functions should use to call this 370 32 bit function, this points to the section containing the stub. */ 371 asection *call_stub; 372 373 /* This is like the call_stub field, but it is used if the function 374 being called returns a floating point value. */ 375 asection *call_fp_stub; 376 377 /* The highest GGA_* value that satisfies all references to this symbol. */ 378 unsigned int global_got_area : 2; 379 380 /* True if all GOT relocations against this symbol are for calls. This is 381 a looser condition than no_fn_stub below, because there may be other 382 non-call non-GOT relocations against the symbol. */ 383 unsigned int got_only_for_calls : 1; 384 385 /* True if one of the relocations described by possibly_dynamic_relocs 386 is against a readonly section. */ 387 unsigned int readonly_reloc : 1; 388 389 /* True if there is a relocation against this symbol that must be 390 resolved by the static linker (in other words, if the relocation 391 cannot possibly be made dynamic). */ 392 unsigned int has_static_relocs : 1; 393 394 /* True if we must not create a .MIPS.stubs entry for this symbol. 395 This is set, for example, if there are relocations related to 396 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 397 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 398 unsigned int no_fn_stub : 1; 399 400 /* Whether we need the fn_stub; this is true if this symbol appears 401 in any relocs other than a 16 bit call. */ 402 unsigned int need_fn_stub : 1; 403 404 /* True if this symbol is referenced by branch relocations from 405 any non-PIC input file. This is used to determine whether an 406 la25 stub is required. */ 407 unsigned int has_nonpic_branches : 1; 408 409 /* Does this symbol need a traditional MIPS lazy-binding stub 410 (as opposed to a PLT entry)? */ 411 unsigned int needs_lazy_stub : 1; 412 413 /* Does this symbol resolve to a PLT entry? */ 414 unsigned int use_plt_entry : 1; 415 }; 416 417 /* MIPS ELF linker hash table. */ 418 419 struct mips_elf_link_hash_table 420 { 421 struct elf_link_hash_table root; 422 423 /* The number of .rtproc entries. */ 424 bfd_size_type procedure_count; 425 426 /* The size of the .compact_rel section (if SGI_COMPAT). */ 427 bfd_size_type compact_rel_size; 428 429 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry 430 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */ 431 bfd_boolean use_rld_obj_head; 432 433 /* The __rld_map or __rld_obj_head symbol. */ 434 struct elf_link_hash_entry *rld_symbol; 435 436 /* This is set if we see any mips16 stub sections. */ 437 bfd_boolean mips16_stubs_seen; 438 439 /* True if we can generate copy relocs and PLTs. */ 440 bfd_boolean use_plts_and_copy_relocs; 441 442 /* True if we can only use 32-bit microMIPS instructions. */ 443 bfd_boolean insn32; 444 445 /* True if we're generating code for VxWorks. */ 446 bfd_boolean is_vxworks; 447 448 /* True if we already reported the small-data section overflow. */ 449 bfd_boolean small_data_overflow_reported; 450 451 /* Shortcuts to some dynamic sections, or NULL if they are not 452 being used. */ 453 asection *srelbss; 454 asection *sdynbss; 455 asection *srelplt; 456 asection *srelplt2; 457 asection *sgotplt; 458 asection *splt; 459 asection *sstubs; 460 asection *sgot; 461 462 /* The master GOT information. */ 463 struct mips_got_info *got_info; 464 465 /* The global symbol in the GOT with the lowest index in the dynamic 466 symbol table. */ 467 struct elf_link_hash_entry *global_gotsym; 468 469 /* The size of the PLT header in bytes. */ 470 bfd_vma plt_header_size; 471 472 /* The size of a standard PLT entry in bytes. */ 473 bfd_vma plt_mips_entry_size; 474 475 /* The size of a compressed PLT entry in bytes. */ 476 bfd_vma plt_comp_entry_size; 477 478 /* The offset of the next standard PLT entry to create. */ 479 bfd_vma plt_mips_offset; 480 481 /* The offset of the next compressed PLT entry to create. */ 482 bfd_vma plt_comp_offset; 483 484 /* The index of the next .got.plt entry to create. */ 485 bfd_vma plt_got_index; 486 487 /* The number of functions that need a lazy-binding stub. */ 488 bfd_vma lazy_stub_count; 489 490 /* The size of a function stub entry in bytes. */ 491 bfd_vma function_stub_size; 492 493 /* The number of reserved entries at the beginning of the GOT. */ 494 unsigned int reserved_gotno; 495 496 /* The section used for mips_elf_la25_stub trampolines. 497 See the comment above that structure for details. */ 498 asection *strampoline; 499 500 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 501 pairs. */ 502 htab_t la25_stubs; 503 504 /* A function FN (NAME, IS, OS) that creates a new input section 505 called NAME and links it to output section OS. If IS is nonnull, 506 the new section should go immediately before it, otherwise it 507 should go at the (current) beginning of OS. 508 509 The function returns the new section on success, otherwise it 510 returns null. */ 511 asection *(*add_stub_section) (const char *, asection *, asection *); 512 513 /* Small local sym cache. */ 514 struct sym_cache sym_cache; 515 516 /* Is the PLT header compressed? */ 517 unsigned int plt_header_is_comp : 1; 518 }; 519 520 /* Get the MIPS ELF linker hash table from a link_info structure. */ 521 522 #define mips_elf_hash_table(p) \ 523 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 524 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 525 526 /* A structure used to communicate with htab_traverse callbacks. */ 527 struct mips_htab_traverse_info 528 { 529 /* The usual link-wide information. */ 530 struct bfd_link_info *info; 531 bfd *output_bfd; 532 533 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 534 bfd_boolean error; 535 }; 536 537 /* MIPS ELF private object data. */ 538 539 struct mips_elf_obj_tdata 540 { 541 /* Generic ELF private object data. */ 542 struct elf_obj_tdata root; 543 544 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */ 545 bfd *abi_fp_bfd; 546 547 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */ 548 bfd *abi_msa_bfd; 549 550 /* The abiflags for this object. */ 551 Elf_Internal_ABIFlags_v0 abiflags; 552 bfd_boolean abiflags_valid; 553 554 /* The GOT requirements of input bfds. */ 555 struct mips_got_info *got; 556 557 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be 558 included directly in this one, but there's no point to wasting 559 the memory just for the infrequently called find_nearest_line. */ 560 struct mips_elf_find_line *find_line_info; 561 562 /* An array of stub sections indexed by symbol number. */ 563 asection **local_stubs; 564 asection **local_call_stubs; 565 566 /* The Irix 5 support uses two virtual sections, which represent 567 text/data symbols defined in dynamic objects. */ 568 asymbol *elf_data_symbol; 569 asymbol *elf_text_symbol; 570 asection *elf_data_section; 571 asection *elf_text_section; 572 }; 573 574 /* Get MIPS ELF private object data from BFD's tdata. */ 575 576 #define mips_elf_tdata(bfd) \ 577 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any) 578 579 #define TLS_RELOC_P(r_type) \ 580 (r_type == R_MIPS_TLS_DTPMOD32 \ 581 || r_type == R_MIPS_TLS_DTPMOD64 \ 582 || r_type == R_MIPS_TLS_DTPREL32 \ 583 || r_type == R_MIPS_TLS_DTPREL64 \ 584 || r_type == R_MIPS_TLS_GD \ 585 || r_type == R_MIPS_TLS_LDM \ 586 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 587 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 588 || r_type == R_MIPS_TLS_GOTTPREL \ 589 || r_type == R_MIPS_TLS_TPREL32 \ 590 || r_type == R_MIPS_TLS_TPREL64 \ 591 || r_type == R_MIPS_TLS_TPREL_HI16 \ 592 || r_type == R_MIPS_TLS_TPREL_LO16 \ 593 || r_type == R_MIPS16_TLS_GD \ 594 || r_type == R_MIPS16_TLS_LDM \ 595 || r_type == R_MIPS16_TLS_DTPREL_HI16 \ 596 || r_type == R_MIPS16_TLS_DTPREL_LO16 \ 597 || r_type == R_MIPS16_TLS_GOTTPREL \ 598 || r_type == R_MIPS16_TLS_TPREL_HI16 \ 599 || r_type == R_MIPS16_TLS_TPREL_LO16 \ 600 || r_type == R_MICROMIPS_TLS_GD \ 601 || r_type == R_MICROMIPS_TLS_LDM \ 602 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \ 603 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \ 604 || r_type == R_MICROMIPS_TLS_GOTTPREL \ 605 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \ 606 || r_type == R_MICROMIPS_TLS_TPREL_LO16) 607 608 /* Structure used to pass information to mips_elf_output_extsym. */ 609 610 struct extsym_info 611 { 612 bfd *abfd; 613 struct bfd_link_info *info; 614 struct ecoff_debug_info *debug; 615 const struct ecoff_debug_swap *swap; 616 bfd_boolean failed; 617 }; 618 619 /* The names of the runtime procedure table symbols used on IRIX5. */ 620 621 static const char * const mips_elf_dynsym_rtproc_names[] = 622 { 623 "_procedure_table", 624 "_procedure_string_table", 625 "_procedure_table_size", 626 NULL 627 }; 628 629 /* These structures are used to generate the .compact_rel section on 630 IRIX5. */ 631 632 typedef struct 633 { 634 unsigned long id1; /* Always one? */ 635 unsigned long num; /* Number of compact relocation entries. */ 636 unsigned long id2; /* Always two? */ 637 unsigned long offset; /* The file offset of the first relocation. */ 638 unsigned long reserved0; /* Zero? */ 639 unsigned long reserved1; /* Zero? */ 640 } Elf32_compact_rel; 641 642 typedef struct 643 { 644 bfd_byte id1[4]; 645 bfd_byte num[4]; 646 bfd_byte id2[4]; 647 bfd_byte offset[4]; 648 bfd_byte reserved0[4]; 649 bfd_byte reserved1[4]; 650 } Elf32_External_compact_rel; 651 652 typedef struct 653 { 654 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 655 unsigned int rtype : 4; /* Relocation types. See below. */ 656 unsigned int dist2to : 8; 657 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 658 unsigned long konst; /* KONST field. See below. */ 659 unsigned long vaddr; /* VADDR to be relocated. */ 660 } Elf32_crinfo; 661 662 typedef struct 663 { 664 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 665 unsigned int rtype : 4; /* Relocation types. See below. */ 666 unsigned int dist2to : 8; 667 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 668 unsigned long konst; /* KONST field. See below. */ 669 } Elf32_crinfo2; 670 671 typedef struct 672 { 673 bfd_byte info[4]; 674 bfd_byte konst[4]; 675 bfd_byte vaddr[4]; 676 } Elf32_External_crinfo; 677 678 typedef struct 679 { 680 bfd_byte info[4]; 681 bfd_byte konst[4]; 682 } Elf32_External_crinfo2; 683 684 /* These are the constants used to swap the bitfields in a crinfo. */ 685 686 #define CRINFO_CTYPE (0x1) 687 #define CRINFO_CTYPE_SH (31) 688 #define CRINFO_RTYPE (0xf) 689 #define CRINFO_RTYPE_SH (27) 690 #define CRINFO_DIST2TO (0xff) 691 #define CRINFO_DIST2TO_SH (19) 692 #define CRINFO_RELVADDR (0x7ffff) 693 #define CRINFO_RELVADDR_SH (0) 694 695 /* A compact relocation info has long (3 words) or short (2 words) 696 formats. A short format doesn't have VADDR field and relvaddr 697 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 698 #define CRF_MIPS_LONG 1 699 #define CRF_MIPS_SHORT 0 700 701 /* There are 4 types of compact relocation at least. The value KONST 702 has different meaning for each type: 703 704 (type) (konst) 705 CT_MIPS_REL32 Address in data 706 CT_MIPS_WORD Address in word (XXX) 707 CT_MIPS_GPHI_LO GP - vaddr 708 CT_MIPS_JMPAD Address to jump 709 */ 710 711 #define CRT_MIPS_REL32 0xa 712 #define CRT_MIPS_WORD 0xb 713 #define CRT_MIPS_GPHI_LO 0xc 714 #define CRT_MIPS_JMPAD 0xd 715 716 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 717 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 718 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 719 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 720 721 /* The structure of the runtime procedure descriptor created by the 722 loader for use by the static exception system. */ 723 724 typedef struct runtime_pdr { 725 bfd_vma adr; /* Memory address of start of procedure. */ 726 long regmask; /* Save register mask. */ 727 long regoffset; /* Save register offset. */ 728 long fregmask; /* Save floating point register mask. */ 729 long fregoffset; /* Save floating point register offset. */ 730 long frameoffset; /* Frame size. */ 731 short framereg; /* Frame pointer register. */ 732 short pcreg; /* Offset or reg of return pc. */ 733 long irpss; /* Index into the runtime string table. */ 734 long reserved; 735 struct exception_info *exception_info;/* Pointer to exception array. */ 736 } RPDR, *pRPDR; 737 #define cbRPDR sizeof (RPDR) 738 #define rpdNil ((pRPDR) 0) 739 740 static struct mips_got_entry *mips_elf_create_local_got_entry 741 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 742 struct mips_elf_link_hash_entry *, int); 743 static bfd_boolean mips_elf_sort_hash_table_f 744 (struct mips_elf_link_hash_entry *, void *); 745 static bfd_vma mips_elf_high 746 (bfd_vma); 747 static bfd_boolean mips_elf_create_dynamic_relocation 748 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 749 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 750 bfd_vma *, asection *); 751 static bfd_vma mips_elf_adjust_gp 752 (bfd *, struct mips_got_info *, bfd *); 753 754 /* This will be used when we sort the dynamic relocation records. */ 755 static bfd *reldyn_sorting_bfd; 756 757 /* True if ABFD is for CPUs with load interlocking that include 758 non-MIPS1 CPUs and R3900. */ 759 #define LOAD_INTERLOCKS_P(abfd) \ 760 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 761 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 762 763 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 764 This should be safe for all architectures. We enable this predicate 765 for RM9000 for now. */ 766 #define JAL_TO_BAL_P(abfd) \ 767 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 768 769 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 770 This should be safe for all architectures. We enable this predicate for 771 all CPUs. */ 772 #define JALR_TO_BAL_P(abfd) 1 773 774 /* True if ABFD is for CPUs that are faster if JR is converted to B. 775 This should be safe for all architectures. We enable this predicate for 776 all CPUs. */ 777 #define JR_TO_B_P(abfd) 1 778 779 /* True if ABFD is a PIC object. */ 780 #define PIC_OBJECT_P(abfd) \ 781 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 782 783 /* Nonzero if ABFD is using the O32 ABI. */ 784 #define ABI_O32_P(abfd) \ 785 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 786 787 /* Nonzero if ABFD is using the N32 ABI. */ 788 #define ABI_N32_P(abfd) \ 789 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 790 791 /* Nonzero if ABFD is using the N64 ABI. */ 792 #define ABI_64_P(abfd) \ 793 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 794 795 /* Nonzero if ABFD is using NewABI conventions. */ 796 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 797 798 /* Nonzero if ABFD has microMIPS code. */ 799 #define MICROMIPS_P(abfd) \ 800 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0) 801 802 /* Nonzero if ABFD is MIPS R6. */ 803 #define MIPSR6_P(abfd) \ 804 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \ 805 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 806 807 /* The IRIX compatibility level we are striving for. */ 808 #define IRIX_COMPAT(abfd) \ 809 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 810 811 /* Whether we are trying to be compatible with IRIX at all. */ 812 #define SGI_COMPAT(abfd) \ 813 (IRIX_COMPAT (abfd) != ict_none) 814 815 /* The name of the options section. */ 816 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 817 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 818 819 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 820 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 821 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 822 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 823 824 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */ 825 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \ 826 (strcmp (NAME, ".MIPS.abiflags") == 0) 827 828 /* Whether the section is readonly. */ 829 #define MIPS_ELF_READONLY_SECTION(sec) \ 830 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 831 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 832 833 /* The name of the stub section. */ 834 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 835 836 /* The size of an external REL relocation. */ 837 #define MIPS_ELF_REL_SIZE(abfd) \ 838 (get_elf_backend_data (abfd)->s->sizeof_rel) 839 840 /* The size of an external RELA relocation. */ 841 #define MIPS_ELF_RELA_SIZE(abfd) \ 842 (get_elf_backend_data (abfd)->s->sizeof_rela) 843 844 /* The size of an external dynamic table entry. */ 845 #define MIPS_ELF_DYN_SIZE(abfd) \ 846 (get_elf_backend_data (abfd)->s->sizeof_dyn) 847 848 /* The size of a GOT entry. */ 849 #define MIPS_ELF_GOT_SIZE(abfd) \ 850 (get_elf_backend_data (abfd)->s->arch_size / 8) 851 852 /* The size of the .rld_map section. */ 853 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \ 854 (get_elf_backend_data (abfd)->s->arch_size / 8) 855 856 /* The size of a symbol-table entry. */ 857 #define MIPS_ELF_SYM_SIZE(abfd) \ 858 (get_elf_backend_data (abfd)->s->sizeof_sym) 859 860 /* The default alignment for sections, as a power of two. */ 861 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 862 (get_elf_backend_data (abfd)->s->log_file_align) 863 864 /* Get word-sized data. */ 865 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 866 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 867 868 /* Put out word-sized data. */ 869 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 870 (ABI_64_P (abfd) \ 871 ? bfd_put_64 (abfd, val, ptr) \ 872 : bfd_put_32 (abfd, val, ptr)) 873 874 /* The opcode for word-sized loads (LW or LD). */ 875 #define MIPS_ELF_LOAD_WORD(abfd) \ 876 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 877 878 /* Add a dynamic symbol table-entry. */ 879 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 880 _bfd_elf_add_dynamic_entry (info, tag, val) 881 882 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 883 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 884 885 /* The name of the dynamic relocation section. */ 886 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 887 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 888 889 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 890 from smaller values. Start with zero, widen, *then* decrement. */ 891 #define MINUS_ONE (((bfd_vma)0) - 1) 892 #define MINUS_TWO (((bfd_vma)0) - 2) 893 894 /* The value to write into got[1] for SVR4 targets, to identify it is 895 a GNU object. The dynamic linker can then use got[1] to store the 896 module pointer. */ 897 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 898 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 899 900 /* The offset of $gp from the beginning of the .got section. */ 901 #define ELF_MIPS_GP_OFFSET(INFO) \ 902 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 903 904 /* The maximum size of the GOT for it to be addressable using 16-bit 905 offsets from $gp. */ 906 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 907 908 /* Instructions which appear in a stub. */ 909 #define STUB_LW(abfd) \ 910 ((ABI_64_P (abfd) \ 911 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 912 : 0x8f998010)) /* lw t9,0x8010(gp) */ 913 #define STUB_MOVE(abfd) \ 914 ((ABI_64_P (abfd) \ 915 ? 0x03e0782d /* daddu t7,ra */ \ 916 : 0x03e07821)) /* addu t7,ra */ 917 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 918 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 919 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 920 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 921 #define STUB_LI16S(abfd, VAL) \ 922 ((ABI_64_P (abfd) \ 923 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 924 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 925 926 /* Likewise for the microMIPS ASE. */ 927 #define STUB_LW_MICROMIPS(abfd) \ 928 (ABI_64_P (abfd) \ 929 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \ 930 : 0xff3c8010) /* lw t9,0x8010(gp) */ 931 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */ 932 #define STUB_MOVE32_MICROMIPS(abfd) \ 933 (ABI_64_P (abfd) \ 934 ? 0x581f7950 /* daddu t7,ra,zero */ \ 935 : 0x001f7950) /* addu t7,ra,zero */ 936 #define STUB_LUI_MICROMIPS(VAL) \ 937 (0x41b80000 + (VAL)) /* lui t8,VAL */ 938 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */ 939 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */ 940 #define STUB_ORI_MICROMIPS(VAL) \ 941 (0x53180000 + (VAL)) /* ori t8,t8,VAL */ 942 #define STUB_LI16U_MICROMIPS(VAL) \ 943 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */ 944 #define STUB_LI16S_MICROMIPS(abfd, VAL) \ 945 (ABI_64_P (abfd) \ 946 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \ 947 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */ 948 949 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 950 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 951 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12 952 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16 953 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16 954 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20 955 956 /* The name of the dynamic interpreter. This is put in the .interp 957 section. */ 958 959 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 960 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 961 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 962 : "/usr/lib/libc.so.1") 963 964 #ifdef BFD64 965 #define MNAME(bfd,pre,pos) \ 966 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 967 #define ELF_R_SYM(bfd, i) \ 968 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 969 #define ELF_R_TYPE(bfd, i) \ 970 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 971 #define ELF_R_INFO(bfd, s, t) \ 972 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 973 #else 974 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 975 #define ELF_R_SYM(bfd, i) \ 976 (ELF32_R_SYM (i)) 977 #define ELF_R_TYPE(bfd, i) \ 978 (ELF32_R_TYPE (i)) 979 #define ELF_R_INFO(bfd, s, t) \ 980 (ELF32_R_INFO (s, t)) 981 #endif 982 983 /* The mips16 compiler uses a couple of special sections to handle 984 floating point arguments. 985 986 Section names that look like .mips16.fn.FNNAME contain stubs that 987 copy floating point arguments from the fp regs to the gp regs and 988 then jump to FNNAME. If any 32 bit function calls FNNAME, the 989 call should be redirected to the stub instead. If no 32 bit 990 function calls FNNAME, the stub should be discarded. We need to 991 consider any reference to the function, not just a call, because 992 if the address of the function is taken we will need the stub, 993 since the address might be passed to a 32 bit function. 994 995 Section names that look like .mips16.call.FNNAME contain stubs 996 that copy floating point arguments from the gp regs to the fp 997 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 998 then any 16 bit function that calls FNNAME should be redirected 999 to the stub instead. If FNNAME is not a 32 bit function, the 1000 stub should be discarded. 1001 1002 .mips16.call.fp.FNNAME sections are similar, but contain stubs 1003 which call FNNAME and then copy the return value from the fp regs 1004 to the gp regs. These stubs store the return value in $18 while 1005 calling FNNAME; any function which might call one of these stubs 1006 must arrange to save $18 around the call. (This case is not 1007 needed for 32 bit functions that call 16 bit functions, because 1008 16 bit functions always return floating point values in both 1009 $f0/$f1 and $2/$3.) 1010 1011 Note that in all cases FNNAME might be defined statically. 1012 Therefore, FNNAME is not used literally. Instead, the relocation 1013 information will indicate which symbol the section is for. 1014 1015 We record any stubs that we find in the symbol table. */ 1016 1017 #define FN_STUB ".mips16.fn." 1018 #define CALL_STUB ".mips16.call." 1019 #define CALL_FP_STUB ".mips16.call.fp." 1020 1021 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 1022 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 1023 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 1024 1025 /* The format of the first PLT entry in an O32 executable. */ 1026 static const bfd_vma mips_o32_exec_plt0_entry[] = 1027 { 1028 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 1029 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1030 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1031 0x031cc023, /* subu $24, $24, $28 */ 1032 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 1033 0x0018c082, /* srl $24, $24, 2 */ 1034 0x0320f809, /* jalr $25 */ 1035 0x2718fffe /* subu $24, $24, 2 */ 1036 }; 1037 1038 /* The format of the first PLT entry in an N32 executable. Different 1039 because gp ($28) is not available; we use t2 ($14) instead. */ 1040 static const bfd_vma mips_n32_exec_plt0_entry[] = 1041 { 1042 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1043 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 1044 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1045 0x030ec023, /* subu $24, $24, $14 */ 1046 0x03e07821, /* move $15, $31 # 32-bit move (addu) */ 1047 0x0018c082, /* srl $24, $24, 2 */ 1048 0x0320f809, /* jalr $25 */ 1049 0x2718fffe /* subu $24, $24, 2 */ 1050 }; 1051 1052 /* The format of the first PLT entry in an N64 executable. Different 1053 from N32 because of the increased size of GOT entries. */ 1054 static const bfd_vma mips_n64_exec_plt0_entry[] = 1055 { 1056 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 1057 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 1058 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 1059 0x030ec023, /* subu $24, $24, $14 */ 1060 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */ 1061 0x0018c0c2, /* srl $24, $24, 3 */ 1062 0x0320f809, /* jalr $25 */ 1063 0x2718fffe /* subu $24, $24, 2 */ 1064 }; 1065 1066 /* The format of the microMIPS first PLT entry in an O32 executable. 1067 We rely on v0 ($2) rather than t8 ($24) to contain the address 1068 of the GOTPLT entry handled, so this stub may only be used when 1069 all the subsequent PLT entries are microMIPS code too. 1070 1071 The trailing NOP is for alignment and correct disassembly only. */ 1072 static const bfd_vma micromips_o32_exec_plt0_entry[] = 1073 { 1074 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */ 1075 0xff23, 0x0000, /* lw $25, 0($3) */ 1076 0x0535, /* subu $2, $2, $3 */ 1077 0x2525, /* srl $2, $2, 2 */ 1078 0x3302, 0xfffe, /* subu $24, $2, 2 */ 1079 0x0dff, /* move $15, $31 */ 1080 0x45f9, /* jalrs $25 */ 1081 0x0f83, /* move $28, $3 */ 1082 0x0c00 /* nop */ 1083 }; 1084 1085 /* The format of the microMIPS first PLT entry in an O32 executable 1086 in the insn32 mode. */ 1087 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] = 1088 { 1089 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */ 1090 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */ 1091 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 1092 0x0398, 0xc1d0, /* subu $24, $24, $28 */ 1093 0x001f, 0x7950, /* move $15, $31 */ 1094 0x0318, 0x1040, /* srl $24, $24, 2 */ 1095 0x03f9, 0x0f3c, /* jalr $25 */ 1096 0x3318, 0xfffe /* subu $24, $24, 2 */ 1097 }; 1098 1099 /* The format of subsequent standard PLT entries. */ 1100 static const bfd_vma mips_exec_plt_entry[] = 1101 { 1102 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1103 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1104 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1105 0x03200008 /* jr $25 */ 1106 }; 1107 1108 /* In the following PLT entry the JR and ADDIU instructions will 1109 be swapped in _bfd_mips_elf_finish_dynamic_symbol because 1110 LOAD_INTERLOCKS_P will be true for MIPS R6. */ 1111 static const bfd_vma mipsr6_exec_plt_entry[] = 1112 { 1113 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 1114 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 1115 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 1116 0x03200009 /* jr $25 */ 1117 }; 1118 1119 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2) 1120 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not 1121 directly addressable. */ 1122 static const bfd_vma mips16_o32_exec_plt_entry[] = 1123 { 1124 0xb203, /* lw $2, 12($pc) */ 1125 0x9a60, /* lw $3, 0($2) */ 1126 0x651a, /* move $24, $2 */ 1127 0xeb00, /* jr $3 */ 1128 0x653b, /* move $25, $3 */ 1129 0x6500, /* nop */ 1130 0x0000, 0x0000 /* .word (.got.plt entry) */ 1131 }; 1132 1133 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2) 1134 as a temporary because t8 ($24) is not addressable with ADDIUPC. */ 1135 static const bfd_vma micromips_o32_exec_plt_entry[] = 1136 { 1137 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */ 1138 0xff22, 0x0000, /* lw $25, 0($2) */ 1139 0x4599, /* jr $25 */ 1140 0x0f02 /* move $24, $2 */ 1141 }; 1142 1143 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */ 1144 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] = 1145 { 1146 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */ 1147 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */ 1148 0x0019, 0x0f3c, /* jr $25 */ 1149 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */ 1150 }; 1151 1152 /* The format of the first PLT entry in a VxWorks executable. */ 1153 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 1154 { 1155 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 1156 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 1157 0x8f390008, /* lw t9, 8(t9) */ 1158 0x00000000, /* nop */ 1159 0x03200008, /* jr t9 */ 1160 0x00000000 /* nop */ 1161 }; 1162 1163 /* The format of subsequent PLT entries. */ 1164 static const bfd_vma mips_vxworks_exec_plt_entry[] = 1165 { 1166 0x10000000, /* b .PLT_resolver */ 1167 0x24180000, /* li t8, <pltindex> */ 1168 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 1169 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 1170 0x8f390000, /* lw t9, 0(t9) */ 1171 0x00000000, /* nop */ 1172 0x03200008, /* jr t9 */ 1173 0x00000000 /* nop */ 1174 }; 1175 1176 /* The format of the first PLT entry in a VxWorks shared object. */ 1177 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 1178 { 1179 0x8f990008, /* lw t9, 8(gp) */ 1180 0x00000000, /* nop */ 1181 0x03200008, /* jr t9 */ 1182 0x00000000, /* nop */ 1183 0x00000000, /* nop */ 1184 0x00000000 /* nop */ 1185 }; 1186 1187 /* The format of subsequent PLT entries. */ 1188 static const bfd_vma mips_vxworks_shared_plt_entry[] = 1189 { 1190 0x10000000, /* b .PLT_resolver */ 1191 0x24180000 /* li t8, <pltindex> */ 1192 }; 1193 1194 /* microMIPS 32-bit opcode helper installer. */ 1195 1196 static void 1197 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr) 1198 { 1199 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr); 1200 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2); 1201 } 1202 1203 /* microMIPS 32-bit opcode helper retriever. */ 1204 1205 static bfd_vma 1206 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr) 1207 { 1208 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2); 1209 } 1210 1211 /* Look up an entry in a MIPS ELF linker hash table. */ 1212 1213 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 1214 ((struct mips_elf_link_hash_entry *) \ 1215 elf_link_hash_lookup (&(table)->root, (string), (create), \ 1216 (copy), (follow))) 1217 1218 /* Traverse a MIPS ELF linker hash table. */ 1219 1220 #define mips_elf_link_hash_traverse(table, func, info) \ 1221 (elf_link_hash_traverse \ 1222 (&(table)->root, \ 1223 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1224 (info))) 1225 1226 /* Find the base offsets for thread-local storage in this object, 1227 for GD/LD and IE/LE respectively. */ 1228 1229 #define TP_OFFSET 0x7000 1230 #define DTP_OFFSET 0x8000 1231 1232 static bfd_vma 1233 dtprel_base (struct bfd_link_info *info) 1234 { 1235 /* If tls_sec is NULL, we should have signalled an error already. */ 1236 if (elf_hash_table (info)->tls_sec == NULL) 1237 return 0; 1238 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1239 } 1240 1241 static bfd_vma 1242 tprel_base (struct bfd_link_info *info) 1243 { 1244 /* If tls_sec is NULL, we should have signalled an error already. */ 1245 if (elf_hash_table (info)->tls_sec == NULL) 1246 return 0; 1247 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1248 } 1249 1250 /* Create an entry in a MIPS ELF linker hash table. */ 1251 1252 static struct bfd_hash_entry * 1253 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1254 struct bfd_hash_table *table, const char *string) 1255 { 1256 struct mips_elf_link_hash_entry *ret = 1257 (struct mips_elf_link_hash_entry *) entry; 1258 1259 /* Allocate the structure if it has not already been allocated by a 1260 subclass. */ 1261 if (ret == NULL) 1262 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1263 if (ret == NULL) 1264 return (struct bfd_hash_entry *) ret; 1265 1266 /* Call the allocation method of the superclass. */ 1267 ret = ((struct mips_elf_link_hash_entry *) 1268 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1269 table, string)); 1270 if (ret != NULL) 1271 { 1272 /* Set local fields. */ 1273 memset (&ret->esym, 0, sizeof (EXTR)); 1274 /* We use -2 as a marker to indicate that the information has 1275 not been set. -1 means there is no associated ifd. */ 1276 ret->esym.ifd = -2; 1277 ret->la25_stub = 0; 1278 ret->possibly_dynamic_relocs = 0; 1279 ret->fn_stub = NULL; 1280 ret->call_stub = NULL; 1281 ret->call_fp_stub = NULL; 1282 ret->global_got_area = GGA_NONE; 1283 ret->got_only_for_calls = TRUE; 1284 ret->readonly_reloc = FALSE; 1285 ret->has_static_relocs = FALSE; 1286 ret->no_fn_stub = FALSE; 1287 ret->need_fn_stub = FALSE; 1288 ret->has_nonpic_branches = FALSE; 1289 ret->needs_lazy_stub = FALSE; 1290 ret->use_plt_entry = FALSE; 1291 } 1292 1293 return (struct bfd_hash_entry *) ret; 1294 } 1295 1296 /* Allocate MIPS ELF private object data. */ 1297 1298 bfd_boolean 1299 _bfd_mips_elf_mkobject (bfd *abfd) 1300 { 1301 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata), 1302 MIPS_ELF_DATA); 1303 } 1304 1305 bfd_boolean 1306 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1307 { 1308 if (!sec->used_by_bfd) 1309 { 1310 struct _mips_elf_section_data *sdata; 1311 bfd_size_type amt = sizeof (*sdata); 1312 1313 sdata = bfd_zalloc (abfd, amt); 1314 if (sdata == NULL) 1315 return FALSE; 1316 sec->used_by_bfd = sdata; 1317 } 1318 1319 return _bfd_elf_new_section_hook (abfd, sec); 1320 } 1321 1322 /* Read ECOFF debugging information from a .mdebug section into a 1323 ecoff_debug_info structure. */ 1324 1325 bfd_boolean 1326 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1327 struct ecoff_debug_info *debug) 1328 { 1329 HDRR *symhdr; 1330 const struct ecoff_debug_swap *swap; 1331 char *ext_hdr; 1332 1333 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1334 memset (debug, 0, sizeof (*debug)); 1335 1336 ext_hdr = bfd_malloc (swap->external_hdr_size); 1337 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1338 goto error_return; 1339 1340 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1341 swap->external_hdr_size)) 1342 goto error_return; 1343 1344 symhdr = &debug->symbolic_header; 1345 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1346 1347 /* The symbolic header contains absolute file offsets and sizes to 1348 read. */ 1349 #define READ(ptr, offset, count, size, type) \ 1350 if (symhdr->count == 0) \ 1351 debug->ptr = NULL; \ 1352 else \ 1353 { \ 1354 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1355 debug->ptr = bfd_malloc (amt); \ 1356 if (debug->ptr == NULL) \ 1357 goto error_return; \ 1358 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1359 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1360 goto error_return; \ 1361 } 1362 1363 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1364 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1365 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1366 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1367 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1368 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1369 union aux_ext *); 1370 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1371 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1372 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1373 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1374 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1375 #undef READ 1376 1377 debug->fdr = NULL; 1378 1379 return TRUE; 1380 1381 error_return: 1382 if (ext_hdr != NULL) 1383 free (ext_hdr); 1384 if (debug->line != NULL) 1385 free (debug->line); 1386 if (debug->external_dnr != NULL) 1387 free (debug->external_dnr); 1388 if (debug->external_pdr != NULL) 1389 free (debug->external_pdr); 1390 if (debug->external_sym != NULL) 1391 free (debug->external_sym); 1392 if (debug->external_opt != NULL) 1393 free (debug->external_opt); 1394 if (debug->external_aux != NULL) 1395 free (debug->external_aux); 1396 if (debug->ss != NULL) 1397 free (debug->ss); 1398 if (debug->ssext != NULL) 1399 free (debug->ssext); 1400 if (debug->external_fdr != NULL) 1401 free (debug->external_fdr); 1402 if (debug->external_rfd != NULL) 1403 free (debug->external_rfd); 1404 if (debug->external_ext != NULL) 1405 free (debug->external_ext); 1406 return FALSE; 1407 } 1408 1409 /* Swap RPDR (runtime procedure table entry) for output. */ 1410 1411 static void 1412 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1413 { 1414 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1415 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1416 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1417 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1418 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1419 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1420 1421 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1422 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1423 1424 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1425 } 1426 1427 /* Create a runtime procedure table from the .mdebug section. */ 1428 1429 static bfd_boolean 1430 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1431 struct bfd_link_info *info, asection *s, 1432 struct ecoff_debug_info *debug) 1433 { 1434 const struct ecoff_debug_swap *swap; 1435 HDRR *hdr = &debug->symbolic_header; 1436 RPDR *rpdr, *rp; 1437 struct rpdr_ext *erp; 1438 void *rtproc; 1439 struct pdr_ext *epdr; 1440 struct sym_ext *esym; 1441 char *ss, **sv; 1442 char *str; 1443 bfd_size_type size; 1444 bfd_size_type count; 1445 unsigned long sindex; 1446 unsigned long i; 1447 PDR pdr; 1448 SYMR sym; 1449 const char *no_name_func = _("static procedure (no name)"); 1450 1451 epdr = NULL; 1452 rpdr = NULL; 1453 esym = NULL; 1454 ss = NULL; 1455 sv = NULL; 1456 1457 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1458 1459 sindex = strlen (no_name_func) + 1; 1460 count = hdr->ipdMax; 1461 if (count > 0) 1462 { 1463 size = swap->external_pdr_size; 1464 1465 epdr = bfd_malloc (size * count); 1466 if (epdr == NULL) 1467 goto error_return; 1468 1469 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1470 goto error_return; 1471 1472 size = sizeof (RPDR); 1473 rp = rpdr = bfd_malloc (size * count); 1474 if (rpdr == NULL) 1475 goto error_return; 1476 1477 size = sizeof (char *); 1478 sv = bfd_malloc (size * count); 1479 if (sv == NULL) 1480 goto error_return; 1481 1482 count = hdr->isymMax; 1483 size = swap->external_sym_size; 1484 esym = bfd_malloc (size * count); 1485 if (esym == NULL) 1486 goto error_return; 1487 1488 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1489 goto error_return; 1490 1491 count = hdr->issMax; 1492 ss = bfd_malloc (count); 1493 if (ss == NULL) 1494 goto error_return; 1495 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1496 goto error_return; 1497 1498 count = hdr->ipdMax; 1499 for (i = 0; i < (unsigned long) count; i++, rp++) 1500 { 1501 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1502 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1503 rp->adr = sym.value; 1504 rp->regmask = pdr.regmask; 1505 rp->regoffset = pdr.regoffset; 1506 rp->fregmask = pdr.fregmask; 1507 rp->fregoffset = pdr.fregoffset; 1508 rp->frameoffset = pdr.frameoffset; 1509 rp->framereg = pdr.framereg; 1510 rp->pcreg = pdr.pcreg; 1511 rp->irpss = sindex; 1512 sv[i] = ss + sym.iss; 1513 sindex += strlen (sv[i]) + 1; 1514 } 1515 } 1516 1517 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1518 size = BFD_ALIGN (size, 16); 1519 rtproc = bfd_alloc (abfd, size); 1520 if (rtproc == NULL) 1521 { 1522 mips_elf_hash_table (info)->procedure_count = 0; 1523 goto error_return; 1524 } 1525 1526 mips_elf_hash_table (info)->procedure_count = count + 2; 1527 1528 erp = rtproc; 1529 memset (erp, 0, sizeof (struct rpdr_ext)); 1530 erp++; 1531 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1532 strcpy (str, no_name_func); 1533 str += strlen (no_name_func) + 1; 1534 for (i = 0; i < count; i++) 1535 { 1536 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1537 strcpy (str, sv[i]); 1538 str += strlen (sv[i]) + 1; 1539 } 1540 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1541 1542 /* Set the size and contents of .rtproc section. */ 1543 s->size = size; 1544 s->contents = rtproc; 1545 1546 /* Skip this section later on (I don't think this currently 1547 matters, but someday it might). */ 1548 s->map_head.link_order = NULL; 1549 1550 if (epdr != NULL) 1551 free (epdr); 1552 if (rpdr != NULL) 1553 free (rpdr); 1554 if (esym != NULL) 1555 free (esym); 1556 if (ss != NULL) 1557 free (ss); 1558 if (sv != NULL) 1559 free (sv); 1560 1561 return TRUE; 1562 1563 error_return: 1564 if (epdr != NULL) 1565 free (epdr); 1566 if (rpdr != NULL) 1567 free (rpdr); 1568 if (esym != NULL) 1569 free (esym); 1570 if (ss != NULL) 1571 free (ss); 1572 if (sv != NULL) 1573 free (sv); 1574 return FALSE; 1575 } 1576 1577 /* We're going to create a stub for H. Create a symbol for the stub's 1578 value and size, to help make the disassembly easier to read. */ 1579 1580 static bfd_boolean 1581 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1582 struct mips_elf_link_hash_entry *h, 1583 const char *prefix, asection *s, bfd_vma value, 1584 bfd_vma size) 1585 { 1586 struct bfd_link_hash_entry *bh; 1587 struct elf_link_hash_entry *elfh; 1588 const char *name; 1589 1590 if (ELF_ST_IS_MICROMIPS (h->root.other)) 1591 value |= 1; 1592 1593 /* Create a new symbol. */ 1594 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1595 bh = NULL; 1596 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1597 BSF_LOCAL, s, value, NULL, 1598 TRUE, FALSE, &bh)) 1599 return FALSE; 1600 1601 /* Make it a local function. */ 1602 elfh = (struct elf_link_hash_entry *) bh; 1603 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1604 elfh->size = size; 1605 elfh->forced_local = 1; 1606 return TRUE; 1607 } 1608 1609 /* We're about to redefine H. Create a symbol to represent H's 1610 current value and size, to help make the disassembly easier 1611 to read. */ 1612 1613 static bfd_boolean 1614 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1615 struct mips_elf_link_hash_entry *h, 1616 const char *prefix) 1617 { 1618 struct bfd_link_hash_entry *bh; 1619 struct elf_link_hash_entry *elfh; 1620 const char *name; 1621 asection *s; 1622 bfd_vma value; 1623 1624 /* Read the symbol's value. */ 1625 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1626 || h->root.root.type == bfd_link_hash_defweak); 1627 s = h->root.root.u.def.section; 1628 value = h->root.root.u.def.value; 1629 1630 /* Create a new symbol. */ 1631 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1632 bh = NULL; 1633 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1634 BSF_LOCAL, s, value, NULL, 1635 TRUE, FALSE, &bh)) 1636 return FALSE; 1637 1638 /* Make it local and copy the other attributes from H. */ 1639 elfh = (struct elf_link_hash_entry *) bh; 1640 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1641 elfh->other = h->root.other; 1642 elfh->size = h->root.size; 1643 elfh->forced_local = 1; 1644 return TRUE; 1645 } 1646 1647 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1648 function rather than to a hard-float stub. */ 1649 1650 static bfd_boolean 1651 section_allows_mips16_refs_p (asection *section) 1652 { 1653 const char *name; 1654 1655 name = bfd_get_section_name (section->owner, section); 1656 return (FN_STUB_P (name) 1657 || CALL_STUB_P (name) 1658 || CALL_FP_STUB_P (name) 1659 || strcmp (name, ".pdr") == 0); 1660 } 1661 1662 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1663 stub section of some kind. Return the R_SYMNDX of the target 1664 function, or 0 if we can't decide which function that is. */ 1665 1666 static unsigned long 1667 mips16_stub_symndx (const struct elf_backend_data *bed, 1668 asection *sec ATTRIBUTE_UNUSED, 1669 const Elf_Internal_Rela *relocs, 1670 const Elf_Internal_Rela *relend) 1671 { 1672 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel; 1673 const Elf_Internal_Rela *rel; 1674 1675 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent 1676 one in a compound relocation. */ 1677 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel) 1678 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1679 return ELF_R_SYM (sec->owner, rel->r_info); 1680 1681 /* Otherwise trust the first relocation, whatever its kind. This is 1682 the traditional behavior. */ 1683 if (relocs < relend) 1684 return ELF_R_SYM (sec->owner, relocs->r_info); 1685 1686 return 0; 1687 } 1688 1689 /* Check the mips16 stubs for a particular symbol, and see if we can 1690 discard them. */ 1691 1692 static void 1693 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1694 struct mips_elf_link_hash_entry *h) 1695 { 1696 /* Dynamic symbols must use the standard call interface, in case other 1697 objects try to call them. */ 1698 if (h->fn_stub != NULL 1699 && h->root.dynindx != -1) 1700 { 1701 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1702 h->need_fn_stub = TRUE; 1703 } 1704 1705 if (h->fn_stub != NULL 1706 && ! h->need_fn_stub) 1707 { 1708 /* We don't need the fn_stub; the only references to this symbol 1709 are 16 bit calls. Clobber the size to 0 to prevent it from 1710 being included in the link. */ 1711 h->fn_stub->size = 0; 1712 h->fn_stub->flags &= ~SEC_RELOC; 1713 h->fn_stub->reloc_count = 0; 1714 h->fn_stub->flags |= SEC_EXCLUDE; 1715 } 1716 1717 if (h->call_stub != NULL 1718 && ELF_ST_IS_MIPS16 (h->root.other)) 1719 { 1720 /* We don't need the call_stub; this is a 16 bit function, so 1721 calls from other 16 bit functions are OK. Clobber the size 1722 to 0 to prevent it from being included in the link. */ 1723 h->call_stub->size = 0; 1724 h->call_stub->flags &= ~SEC_RELOC; 1725 h->call_stub->reloc_count = 0; 1726 h->call_stub->flags |= SEC_EXCLUDE; 1727 } 1728 1729 if (h->call_fp_stub != NULL 1730 && ELF_ST_IS_MIPS16 (h->root.other)) 1731 { 1732 /* We don't need the call_stub; this is a 16 bit function, so 1733 calls from other 16 bit functions are OK. Clobber the size 1734 to 0 to prevent it from being included in the link. */ 1735 h->call_fp_stub->size = 0; 1736 h->call_fp_stub->flags &= ~SEC_RELOC; 1737 h->call_fp_stub->reloc_count = 0; 1738 h->call_fp_stub->flags |= SEC_EXCLUDE; 1739 } 1740 } 1741 1742 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1743 1744 static hashval_t 1745 mips_elf_la25_stub_hash (const void *entry_) 1746 { 1747 const struct mips_elf_la25_stub *entry; 1748 1749 entry = (struct mips_elf_la25_stub *) entry_; 1750 return entry->h->root.root.u.def.section->id 1751 + entry->h->root.root.u.def.value; 1752 } 1753 1754 static int 1755 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1756 { 1757 const struct mips_elf_la25_stub *entry1, *entry2; 1758 1759 entry1 = (struct mips_elf_la25_stub *) entry1_; 1760 entry2 = (struct mips_elf_la25_stub *) entry2_; 1761 return ((entry1->h->root.root.u.def.section 1762 == entry2->h->root.root.u.def.section) 1763 && (entry1->h->root.root.u.def.value 1764 == entry2->h->root.root.u.def.value)); 1765 } 1766 1767 /* Called by the linker to set up the la25 stub-creation code. FN is 1768 the linker's implementation of add_stub_function. Return true on 1769 success. */ 1770 1771 bfd_boolean 1772 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1773 asection *(*fn) (const char *, asection *, 1774 asection *)) 1775 { 1776 struct mips_elf_link_hash_table *htab; 1777 1778 htab = mips_elf_hash_table (info); 1779 if (htab == NULL) 1780 return FALSE; 1781 1782 htab->add_stub_section = fn; 1783 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1784 mips_elf_la25_stub_eq, NULL); 1785 if (htab->la25_stubs == NULL) 1786 return FALSE; 1787 1788 return TRUE; 1789 } 1790 1791 /* Return true if H is a locally-defined PIC function, in the sense 1792 that it or its fn_stub might need $25 to be valid on entry. 1793 Note that MIPS16 functions set up $gp using PC-relative instructions, 1794 so they themselves never need $25 to be valid. Only non-MIPS16 1795 entry points are of interest here. */ 1796 1797 static bfd_boolean 1798 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1799 { 1800 return ((h->root.root.type == bfd_link_hash_defined 1801 || h->root.root.type == bfd_link_hash_defweak) 1802 && h->root.def_regular 1803 && !bfd_is_abs_section (h->root.root.u.def.section) 1804 && (!ELF_ST_IS_MIPS16 (h->root.other) 1805 || (h->fn_stub && h->need_fn_stub)) 1806 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1807 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1808 } 1809 1810 /* Set *SEC to the input section that contains the target of STUB. 1811 Return the offset of the target from the start of that section. */ 1812 1813 static bfd_vma 1814 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub, 1815 asection **sec) 1816 { 1817 if (ELF_ST_IS_MIPS16 (stub->h->root.other)) 1818 { 1819 BFD_ASSERT (stub->h->need_fn_stub); 1820 *sec = stub->h->fn_stub; 1821 return 0; 1822 } 1823 else 1824 { 1825 *sec = stub->h->root.root.u.def.section; 1826 return stub->h->root.root.u.def.value; 1827 } 1828 } 1829 1830 /* STUB describes an la25 stub that we have decided to implement 1831 by inserting an LUI/ADDIU pair before the target function. 1832 Create the section and redirect the function symbol to it. */ 1833 1834 static bfd_boolean 1835 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1836 struct bfd_link_info *info) 1837 { 1838 struct mips_elf_link_hash_table *htab; 1839 char *name; 1840 asection *s, *input_section; 1841 unsigned int align; 1842 1843 htab = mips_elf_hash_table (info); 1844 if (htab == NULL) 1845 return FALSE; 1846 1847 /* Create a unique name for the new section. */ 1848 name = bfd_malloc (11 + sizeof (".text.stub.")); 1849 if (name == NULL) 1850 return FALSE; 1851 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1852 1853 /* Create the section. */ 1854 mips_elf_get_la25_target (stub, &input_section); 1855 s = htab->add_stub_section (name, input_section, 1856 input_section->output_section); 1857 if (s == NULL) 1858 return FALSE; 1859 1860 /* Make sure that any padding goes before the stub. */ 1861 align = input_section->alignment_power; 1862 if (!bfd_set_section_alignment (s->owner, s, align)) 1863 return FALSE; 1864 if (align > 3) 1865 s->size = (1 << align) - 8; 1866 1867 /* Create a symbol for the stub. */ 1868 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1869 stub->stub_section = s; 1870 stub->offset = s->size; 1871 1872 /* Allocate room for it. */ 1873 s->size += 8; 1874 return TRUE; 1875 } 1876 1877 /* STUB describes an la25 stub that we have decided to implement 1878 with a separate trampoline. Allocate room for it and redirect 1879 the function symbol to it. */ 1880 1881 static bfd_boolean 1882 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1883 struct bfd_link_info *info) 1884 { 1885 struct mips_elf_link_hash_table *htab; 1886 asection *s; 1887 1888 htab = mips_elf_hash_table (info); 1889 if (htab == NULL) 1890 return FALSE; 1891 1892 /* Create a trampoline section, if we haven't already. */ 1893 s = htab->strampoline; 1894 if (s == NULL) 1895 { 1896 asection *input_section = stub->h->root.root.u.def.section; 1897 s = htab->add_stub_section (".text", NULL, 1898 input_section->output_section); 1899 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1900 return FALSE; 1901 htab->strampoline = s; 1902 } 1903 1904 /* Create a symbol for the stub. */ 1905 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1906 stub->stub_section = s; 1907 stub->offset = s->size; 1908 1909 /* Allocate room for it. */ 1910 s->size += 16; 1911 return TRUE; 1912 } 1913 1914 /* H describes a symbol that needs an la25 stub. Make sure that an 1915 appropriate stub exists and point H at it. */ 1916 1917 static bfd_boolean 1918 mips_elf_add_la25_stub (struct bfd_link_info *info, 1919 struct mips_elf_link_hash_entry *h) 1920 { 1921 struct mips_elf_link_hash_table *htab; 1922 struct mips_elf_la25_stub search, *stub; 1923 bfd_boolean use_trampoline_p; 1924 asection *s; 1925 bfd_vma value; 1926 void **slot; 1927 1928 /* Describe the stub we want. */ 1929 search.stub_section = NULL; 1930 search.offset = 0; 1931 search.h = h; 1932 1933 /* See if we've already created an equivalent stub. */ 1934 htab = mips_elf_hash_table (info); 1935 if (htab == NULL) 1936 return FALSE; 1937 1938 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1939 if (slot == NULL) 1940 return FALSE; 1941 1942 stub = (struct mips_elf_la25_stub *) *slot; 1943 if (stub != NULL) 1944 { 1945 /* We can reuse the existing stub. */ 1946 h->la25_stub = stub; 1947 return TRUE; 1948 } 1949 1950 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1951 stub = bfd_malloc (sizeof (search)); 1952 if (stub == NULL) 1953 return FALSE; 1954 *stub = search; 1955 *slot = stub; 1956 1957 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1958 of the section and if we would need no more than 2 nops. */ 1959 value = mips_elf_get_la25_target (stub, &s); 1960 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1961 1962 h->la25_stub = stub; 1963 return (use_trampoline_p 1964 ? mips_elf_add_la25_trampoline (stub, info) 1965 : mips_elf_add_la25_intro (stub, info)); 1966 } 1967 1968 /* A mips_elf_link_hash_traverse callback that is called before sizing 1969 sections. DATA points to a mips_htab_traverse_info structure. */ 1970 1971 static bfd_boolean 1972 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1973 { 1974 struct mips_htab_traverse_info *hti; 1975 1976 hti = (struct mips_htab_traverse_info *) data; 1977 if (!hti->info->relocatable) 1978 mips_elf_check_mips16_stubs (hti->info, h); 1979 1980 if (mips_elf_local_pic_function_p (h)) 1981 { 1982 /* PR 12845: If H is in a section that has been garbage 1983 collected it will have its output section set to *ABS*. */ 1984 if (bfd_is_abs_section (h->root.root.u.def.section->output_section)) 1985 return TRUE; 1986 1987 /* H is a function that might need $25 to be valid on entry. 1988 If we're creating a non-PIC relocatable object, mark H as 1989 being PIC. If we're creating a non-relocatable object with 1990 non-PIC branches and jumps to H, make sure that H has an la25 1991 stub. */ 1992 if (hti->info->relocatable) 1993 { 1994 if (!PIC_OBJECT_P (hti->output_bfd)) 1995 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 1996 } 1997 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 1998 { 1999 hti->error = TRUE; 2000 return FALSE; 2001 } 2002 } 2003 return TRUE; 2004 } 2005 2006 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 2007 Most mips16 instructions are 16 bits, but these instructions 2008 are 32 bits. 2009 2010 The format of these instructions is: 2011 2012 +--------------+--------------------------------+ 2013 | JALX | X| Imm 20:16 | Imm 25:21 | 2014 +--------------+--------------------------------+ 2015 | Immediate 15:0 | 2016 +-----------------------------------------------+ 2017 2018 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 2019 Note that the immediate value in the first word is swapped. 2020 2021 When producing a relocatable object file, R_MIPS16_26 is 2022 handled mostly like R_MIPS_26. In particular, the addend is 2023 stored as a straight 26-bit value in a 32-bit instruction. 2024 (gas makes life simpler for itself by never adjusting a 2025 R_MIPS16_26 reloc to be against a section, so the addend is 2026 always zero). However, the 32 bit instruction is stored as 2 2027 16-bit values, rather than a single 32-bit value. In a 2028 big-endian file, the result is the same; in a little-endian 2029 file, the two 16-bit halves of the 32 bit value are swapped. 2030 This is so that a disassembler can recognize the jal 2031 instruction. 2032 2033 When doing a final link, R_MIPS16_26 is treated as a 32 bit 2034 instruction stored as two 16-bit values. The addend A is the 2035 contents of the targ26 field. The calculation is the same as 2036 R_MIPS_26. When storing the calculated value, reorder the 2037 immediate value as shown above, and don't forget to store the 2038 value as two 16-bit values. 2039 2040 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 2041 defined as 2042 2043 big-endian: 2044 +--------+----------------------+ 2045 | | | 2046 | | targ26-16 | 2047 |31 26|25 0| 2048 +--------+----------------------+ 2049 2050 little-endian: 2051 +----------+------+-------------+ 2052 | | | | 2053 | sub1 | | sub2 | 2054 |0 9|10 15|16 31| 2055 +----------+--------------------+ 2056 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 2057 ((sub1 << 16) | sub2)). 2058 2059 When producing a relocatable object file, the calculation is 2060 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2061 When producing a fully linked file, the calculation is 2062 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 2063 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 2064 2065 The table below lists the other MIPS16 instruction relocations. 2066 Each one is calculated in the same way as the non-MIPS16 relocation 2067 given on the right, but using the extended MIPS16 layout of 16-bit 2068 immediate fields: 2069 2070 R_MIPS16_GPREL R_MIPS_GPREL16 2071 R_MIPS16_GOT16 R_MIPS_GOT16 2072 R_MIPS16_CALL16 R_MIPS_CALL16 2073 R_MIPS16_HI16 R_MIPS_HI16 2074 R_MIPS16_LO16 R_MIPS_LO16 2075 2076 A typical instruction will have a format like this: 2077 2078 +--------------+--------------------------------+ 2079 | EXTEND | Imm 10:5 | Imm 15:11 | 2080 +--------------+--------------------------------+ 2081 | Major | rx | ry | Imm 4:0 | 2082 +--------------+--------------------------------+ 2083 2084 EXTEND is the five bit value 11110. Major is the instruction 2085 opcode. 2086 2087 All we need to do here is shuffle the bits appropriately. 2088 As above, the two 16-bit halves must be swapped on a 2089 little-endian system. */ 2090 2091 static inline bfd_boolean 2092 mips16_reloc_p (int r_type) 2093 { 2094 switch (r_type) 2095 { 2096 case R_MIPS16_26: 2097 case R_MIPS16_GPREL: 2098 case R_MIPS16_GOT16: 2099 case R_MIPS16_CALL16: 2100 case R_MIPS16_HI16: 2101 case R_MIPS16_LO16: 2102 case R_MIPS16_TLS_GD: 2103 case R_MIPS16_TLS_LDM: 2104 case R_MIPS16_TLS_DTPREL_HI16: 2105 case R_MIPS16_TLS_DTPREL_LO16: 2106 case R_MIPS16_TLS_GOTTPREL: 2107 case R_MIPS16_TLS_TPREL_HI16: 2108 case R_MIPS16_TLS_TPREL_LO16: 2109 return TRUE; 2110 2111 default: 2112 return FALSE; 2113 } 2114 } 2115 2116 /* Check if a microMIPS reloc. */ 2117 2118 static inline bfd_boolean 2119 micromips_reloc_p (unsigned int r_type) 2120 { 2121 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max; 2122 } 2123 2124 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped 2125 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1 2126 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */ 2127 2128 static inline bfd_boolean 2129 micromips_reloc_shuffle_p (unsigned int r_type) 2130 { 2131 return (micromips_reloc_p (r_type) 2132 && r_type != R_MICROMIPS_PC7_S1 2133 && r_type != R_MICROMIPS_PC10_S1); 2134 } 2135 2136 static inline bfd_boolean 2137 got16_reloc_p (int r_type) 2138 { 2139 return (r_type == R_MIPS_GOT16 2140 || r_type == R_MIPS16_GOT16 2141 || r_type == R_MICROMIPS_GOT16); 2142 } 2143 2144 static inline bfd_boolean 2145 call16_reloc_p (int r_type) 2146 { 2147 return (r_type == R_MIPS_CALL16 2148 || r_type == R_MIPS16_CALL16 2149 || r_type == R_MICROMIPS_CALL16); 2150 } 2151 2152 static inline bfd_boolean 2153 got_disp_reloc_p (unsigned int r_type) 2154 { 2155 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP; 2156 } 2157 2158 static inline bfd_boolean 2159 got_page_reloc_p (unsigned int r_type) 2160 { 2161 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE; 2162 } 2163 2164 static inline bfd_boolean 2165 got_ofst_reloc_p (unsigned int r_type) 2166 { 2167 return r_type == R_MIPS_GOT_OFST || r_type == R_MICROMIPS_GOT_OFST; 2168 } 2169 2170 static inline bfd_boolean 2171 got_hi16_reloc_p (unsigned int r_type) 2172 { 2173 return r_type == R_MIPS_GOT_HI16 || r_type == R_MICROMIPS_GOT_HI16; 2174 } 2175 2176 static inline bfd_boolean 2177 got_lo16_reloc_p (unsigned int r_type) 2178 { 2179 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16; 2180 } 2181 2182 static inline bfd_boolean 2183 call_hi16_reloc_p (unsigned int r_type) 2184 { 2185 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16; 2186 } 2187 2188 static inline bfd_boolean 2189 call_lo16_reloc_p (unsigned int r_type) 2190 { 2191 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16; 2192 } 2193 2194 static inline bfd_boolean 2195 hi16_reloc_p (int r_type) 2196 { 2197 return (r_type == R_MIPS_HI16 2198 || r_type == R_MIPS16_HI16 2199 || r_type == R_MICROMIPS_HI16 2200 || r_type == R_MIPS_PCHI16); 2201 } 2202 2203 static inline bfd_boolean 2204 lo16_reloc_p (int r_type) 2205 { 2206 return (r_type == R_MIPS_LO16 2207 || r_type == R_MIPS16_LO16 2208 || r_type == R_MICROMIPS_LO16 2209 || r_type == R_MIPS_PCLO16); 2210 } 2211 2212 static inline bfd_boolean 2213 mips16_call_reloc_p (int r_type) 2214 { 2215 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 2216 } 2217 2218 static inline bfd_boolean 2219 jal_reloc_p (int r_type) 2220 { 2221 return (r_type == R_MIPS_26 2222 || r_type == R_MIPS16_26 2223 || r_type == R_MICROMIPS_26_S1); 2224 } 2225 2226 static inline bfd_boolean 2227 aligned_pcrel_reloc_p (int r_type) 2228 { 2229 return (r_type == R_MIPS_PC18_S3 2230 || r_type == R_MIPS_PC19_S2); 2231 } 2232 2233 static inline bfd_boolean 2234 micromips_branch_reloc_p (int r_type) 2235 { 2236 return (r_type == R_MICROMIPS_26_S1 2237 || r_type == R_MICROMIPS_PC16_S1 2238 || r_type == R_MICROMIPS_PC10_S1 2239 || r_type == R_MICROMIPS_PC7_S1); 2240 } 2241 2242 static inline bfd_boolean 2243 tls_gd_reloc_p (unsigned int r_type) 2244 { 2245 return (r_type == R_MIPS_TLS_GD 2246 || r_type == R_MIPS16_TLS_GD 2247 || r_type == R_MICROMIPS_TLS_GD); 2248 } 2249 2250 static inline bfd_boolean 2251 tls_ldm_reloc_p (unsigned int r_type) 2252 { 2253 return (r_type == R_MIPS_TLS_LDM 2254 || r_type == R_MIPS16_TLS_LDM 2255 || r_type == R_MICROMIPS_TLS_LDM); 2256 } 2257 2258 static inline bfd_boolean 2259 tls_gottprel_reloc_p (unsigned int r_type) 2260 { 2261 return (r_type == R_MIPS_TLS_GOTTPREL 2262 || r_type == R_MIPS16_TLS_GOTTPREL 2263 || r_type == R_MICROMIPS_TLS_GOTTPREL); 2264 } 2265 2266 void 2267 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type, 2268 bfd_boolean jal_shuffle, bfd_byte *data) 2269 { 2270 bfd_vma first, second, val; 2271 2272 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2273 return; 2274 2275 /* Pick up the first and second halfwords of the instruction. */ 2276 first = bfd_get_16 (abfd, data); 2277 second = bfd_get_16 (abfd, data + 2); 2278 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2279 val = first << 16 | second; 2280 else if (r_type != R_MIPS16_26) 2281 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11) 2282 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f)); 2283 else 2284 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11) 2285 | ((first & 0x1f) << 21) | second); 2286 bfd_put_32 (abfd, val, data); 2287 } 2288 2289 void 2290 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type, 2291 bfd_boolean jal_shuffle, bfd_byte *data) 2292 { 2293 bfd_vma first, second, val; 2294 2295 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type)) 2296 return; 2297 2298 val = bfd_get_32 (abfd, data); 2299 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle)) 2300 { 2301 second = val & 0xffff; 2302 first = val >> 16; 2303 } 2304 else if (r_type != R_MIPS16_26) 2305 { 2306 second = ((val >> 11) & 0xffe0) | (val & 0x1f); 2307 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 2308 } 2309 else 2310 { 2311 second = val & 0xffff; 2312 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 2313 | ((val >> 21) & 0x1f); 2314 } 2315 bfd_put_16 (abfd, second, data + 2); 2316 bfd_put_16 (abfd, first, data); 2317 } 2318 2319 bfd_reloc_status_type 2320 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 2321 arelent *reloc_entry, asection *input_section, 2322 bfd_boolean relocatable, void *data, bfd_vma gp) 2323 { 2324 bfd_vma relocation; 2325 bfd_signed_vma val; 2326 bfd_reloc_status_type status; 2327 2328 if (bfd_is_com_section (symbol->section)) 2329 relocation = 0; 2330 else 2331 relocation = symbol->value; 2332 2333 relocation += symbol->section->output_section->vma; 2334 relocation += symbol->section->output_offset; 2335 2336 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2337 return bfd_reloc_outofrange; 2338 2339 /* Set val to the offset into the section or symbol. */ 2340 val = reloc_entry->addend; 2341 2342 _bfd_mips_elf_sign_extend (val, 16); 2343 2344 /* Adjust val for the final section location and GP value. If we 2345 are producing relocatable output, we don't want to do this for 2346 an external symbol. */ 2347 if (! relocatable 2348 || (symbol->flags & BSF_SECTION_SYM) != 0) 2349 val += relocation - gp; 2350 2351 if (reloc_entry->howto->partial_inplace) 2352 { 2353 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2354 (bfd_byte *) data 2355 + reloc_entry->address); 2356 if (status != bfd_reloc_ok) 2357 return status; 2358 } 2359 else 2360 reloc_entry->addend = val; 2361 2362 if (relocatable) 2363 reloc_entry->address += input_section->output_offset; 2364 2365 return bfd_reloc_ok; 2366 } 2367 2368 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 2369 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 2370 that contains the relocation field and DATA points to the start of 2371 INPUT_SECTION. */ 2372 2373 struct mips_hi16 2374 { 2375 struct mips_hi16 *next; 2376 bfd_byte *data; 2377 asection *input_section; 2378 arelent rel; 2379 }; 2380 2381 /* FIXME: This should not be a static variable. */ 2382 2383 static struct mips_hi16 *mips_hi16_list; 2384 2385 /* A howto special_function for REL *HI16 relocations. We can only 2386 calculate the correct value once we've seen the partnering 2387 *LO16 relocation, so just save the information for later. 2388 2389 The ABI requires that the *LO16 immediately follow the *HI16. 2390 However, as a GNU extension, we permit an arbitrary number of 2391 *HI16s to be associated with a single *LO16. This significantly 2392 simplies the relocation handling in gcc. */ 2393 2394 bfd_reloc_status_type 2395 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2396 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2397 asection *input_section, bfd *output_bfd, 2398 char **error_message ATTRIBUTE_UNUSED) 2399 { 2400 struct mips_hi16 *n; 2401 2402 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2403 return bfd_reloc_outofrange; 2404 2405 n = bfd_malloc (sizeof *n); 2406 if (n == NULL) 2407 return bfd_reloc_outofrange; 2408 2409 n->next = mips_hi16_list; 2410 n->data = data; 2411 n->input_section = input_section; 2412 n->rel = *reloc_entry; 2413 mips_hi16_list = n; 2414 2415 if (output_bfd != NULL) 2416 reloc_entry->address += input_section->output_offset; 2417 2418 return bfd_reloc_ok; 2419 } 2420 2421 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2422 like any other 16-bit relocation when applied to global symbols, but is 2423 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2424 2425 bfd_reloc_status_type 2426 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2427 void *data, asection *input_section, 2428 bfd *output_bfd, char **error_message) 2429 { 2430 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2431 || bfd_is_und_section (bfd_get_section (symbol)) 2432 || bfd_is_com_section (bfd_get_section (symbol))) 2433 /* The relocation is against a global symbol. */ 2434 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2435 input_section, output_bfd, 2436 error_message); 2437 2438 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2439 input_section, output_bfd, error_message); 2440 } 2441 2442 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2443 is a straightforward 16 bit inplace relocation, but we must deal with 2444 any partnering high-part relocations as well. */ 2445 2446 bfd_reloc_status_type 2447 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2448 void *data, asection *input_section, 2449 bfd *output_bfd, char **error_message) 2450 { 2451 bfd_vma vallo; 2452 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2453 2454 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2455 return bfd_reloc_outofrange; 2456 2457 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2458 location); 2459 vallo = bfd_get_32 (abfd, location); 2460 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2461 location); 2462 2463 while (mips_hi16_list != NULL) 2464 { 2465 bfd_reloc_status_type ret; 2466 struct mips_hi16 *hi; 2467 2468 hi = mips_hi16_list; 2469 2470 /* R_MIPS*_GOT16 relocations are something of a special case. We 2471 want to install the addend in the same way as for a R_MIPS*_HI16 2472 relocation (with a rightshift of 16). However, since GOT16 2473 relocations can also be used with global symbols, their howto 2474 has a rightshift of 0. */ 2475 if (hi->rel.howto->type == R_MIPS_GOT16) 2476 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2477 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2478 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2479 else if (hi->rel.howto->type == R_MICROMIPS_GOT16) 2480 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE); 2481 2482 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2483 carry or borrow will induce a change of +1 or -1 in the high part. */ 2484 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2485 2486 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2487 hi->input_section, output_bfd, 2488 error_message); 2489 if (ret != bfd_reloc_ok) 2490 return ret; 2491 2492 mips_hi16_list = hi->next; 2493 free (hi); 2494 } 2495 2496 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2497 input_section, output_bfd, 2498 error_message); 2499 } 2500 2501 /* A generic howto special_function. This calculates and installs the 2502 relocation itself, thus avoiding the oft-discussed problems in 2503 bfd_perform_relocation and bfd_install_relocation. */ 2504 2505 bfd_reloc_status_type 2506 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2507 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2508 asection *input_section, bfd *output_bfd, 2509 char **error_message ATTRIBUTE_UNUSED) 2510 { 2511 bfd_signed_vma val; 2512 bfd_reloc_status_type status; 2513 bfd_boolean relocatable; 2514 2515 relocatable = (output_bfd != NULL); 2516 2517 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2518 return bfd_reloc_outofrange; 2519 2520 /* Build up the field adjustment in VAL. */ 2521 val = 0; 2522 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2523 { 2524 /* Either we're calculating the final field value or we have a 2525 relocation against a section symbol. Add in the section's 2526 offset or address. */ 2527 val += symbol->section->output_section->vma; 2528 val += symbol->section->output_offset; 2529 } 2530 2531 if (!relocatable) 2532 { 2533 /* We're calculating the final field value. Add in the symbol's value 2534 and, if pc-relative, subtract the address of the field itself. */ 2535 val += symbol->value; 2536 if (reloc_entry->howto->pc_relative) 2537 { 2538 val -= input_section->output_section->vma; 2539 val -= input_section->output_offset; 2540 val -= reloc_entry->address; 2541 } 2542 } 2543 2544 /* VAL is now the final adjustment. If we're keeping this relocation 2545 in the output file, and if the relocation uses a separate addend, 2546 we just need to add VAL to that addend. Otherwise we need to add 2547 VAL to the relocation field itself. */ 2548 if (relocatable && !reloc_entry->howto->partial_inplace) 2549 reloc_entry->addend += val; 2550 else 2551 { 2552 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2553 2554 /* Add in the separate addend, if any. */ 2555 val += reloc_entry->addend; 2556 2557 /* Add VAL to the relocation field. */ 2558 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2559 location); 2560 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2561 location); 2562 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2563 location); 2564 2565 if (status != bfd_reloc_ok) 2566 return status; 2567 } 2568 2569 if (relocatable) 2570 reloc_entry->address += input_section->output_offset; 2571 2572 return bfd_reloc_ok; 2573 } 2574 2575 /* Swap an entry in a .gptab section. Note that these routines rely 2576 on the equivalence of the two elements of the union. */ 2577 2578 static void 2579 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2580 Elf32_gptab *in) 2581 { 2582 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2583 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2584 } 2585 2586 static void 2587 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2588 Elf32_External_gptab *ex) 2589 { 2590 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2591 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2592 } 2593 2594 static void 2595 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2596 Elf32_External_compact_rel *ex) 2597 { 2598 H_PUT_32 (abfd, in->id1, ex->id1); 2599 H_PUT_32 (abfd, in->num, ex->num); 2600 H_PUT_32 (abfd, in->id2, ex->id2); 2601 H_PUT_32 (abfd, in->offset, ex->offset); 2602 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2603 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2604 } 2605 2606 static void 2607 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2608 Elf32_External_crinfo *ex) 2609 { 2610 unsigned long l; 2611 2612 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2613 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2614 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2615 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2616 H_PUT_32 (abfd, l, ex->info); 2617 H_PUT_32 (abfd, in->konst, ex->konst); 2618 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2619 } 2620 2621 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2622 routines swap this structure in and out. They are used outside of 2623 BFD, so they are globally visible. */ 2624 2625 void 2626 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2627 Elf32_RegInfo *in) 2628 { 2629 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2630 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2631 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2632 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2633 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2634 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2635 } 2636 2637 void 2638 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2639 Elf32_External_RegInfo *ex) 2640 { 2641 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2642 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2643 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2644 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2645 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2646 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2647 } 2648 2649 /* In the 64 bit ABI, the .MIPS.options section holds register 2650 information in an Elf64_Reginfo structure. These routines swap 2651 them in and out. They are globally visible because they are used 2652 outside of BFD. These routines are here so that gas can call them 2653 without worrying about whether the 64 bit ABI has been included. */ 2654 2655 void 2656 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2657 Elf64_Internal_RegInfo *in) 2658 { 2659 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2660 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2661 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2662 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2663 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2664 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2665 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2666 } 2667 2668 void 2669 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2670 Elf64_External_RegInfo *ex) 2671 { 2672 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2673 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2674 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2675 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2676 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2677 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2678 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2679 } 2680 2681 /* Swap in an options header. */ 2682 2683 void 2684 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2685 Elf_Internal_Options *in) 2686 { 2687 in->kind = H_GET_8 (abfd, ex->kind); 2688 in->size = H_GET_8 (abfd, ex->size); 2689 in->section = H_GET_16 (abfd, ex->section); 2690 in->info = H_GET_32 (abfd, ex->info); 2691 } 2692 2693 /* Swap out an options header. */ 2694 2695 void 2696 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2697 Elf_External_Options *ex) 2698 { 2699 H_PUT_8 (abfd, in->kind, ex->kind); 2700 H_PUT_8 (abfd, in->size, ex->size); 2701 H_PUT_16 (abfd, in->section, ex->section); 2702 H_PUT_32 (abfd, in->info, ex->info); 2703 } 2704 2705 /* Swap in an abiflags structure. */ 2706 2707 void 2708 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd, 2709 const Elf_External_ABIFlags_v0 *ex, 2710 Elf_Internal_ABIFlags_v0 *in) 2711 { 2712 in->version = H_GET_16 (abfd, ex->version); 2713 in->isa_level = H_GET_8 (abfd, ex->isa_level); 2714 in->isa_rev = H_GET_8 (abfd, ex->isa_rev); 2715 in->gpr_size = H_GET_8 (abfd, ex->gpr_size); 2716 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size); 2717 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size); 2718 in->fp_abi = H_GET_8 (abfd, ex->fp_abi); 2719 in->isa_ext = H_GET_32 (abfd, ex->isa_ext); 2720 in->ases = H_GET_32 (abfd, ex->ases); 2721 in->flags1 = H_GET_32 (abfd, ex->flags1); 2722 in->flags2 = H_GET_32 (abfd, ex->flags2); 2723 } 2724 2725 /* Swap out an abiflags structure. */ 2726 2727 void 2728 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd, 2729 const Elf_Internal_ABIFlags_v0 *in, 2730 Elf_External_ABIFlags_v0 *ex) 2731 { 2732 H_PUT_16 (abfd, in->version, ex->version); 2733 H_PUT_8 (abfd, in->isa_level, ex->isa_level); 2734 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev); 2735 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size); 2736 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size); 2737 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size); 2738 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi); 2739 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext); 2740 H_PUT_32 (abfd, in->ases, ex->ases); 2741 H_PUT_32 (abfd, in->flags1, ex->flags1); 2742 H_PUT_32 (abfd, in->flags2, ex->flags2); 2743 } 2744 2745 /* This function is called via qsort() to sort the dynamic relocation 2746 entries by increasing r_symndx value. */ 2747 2748 static int 2749 sort_dynamic_relocs (const void *arg1, const void *arg2) 2750 { 2751 Elf_Internal_Rela int_reloc1; 2752 Elf_Internal_Rela int_reloc2; 2753 int diff; 2754 2755 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2756 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2757 2758 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2759 if (diff != 0) 2760 return diff; 2761 2762 if (int_reloc1.r_offset < int_reloc2.r_offset) 2763 return -1; 2764 if (int_reloc1.r_offset > int_reloc2.r_offset) 2765 return 1; 2766 return 0; 2767 } 2768 2769 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2770 2771 static int 2772 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2773 const void *arg2 ATTRIBUTE_UNUSED) 2774 { 2775 #ifdef BFD64 2776 Elf_Internal_Rela int_reloc1[3]; 2777 Elf_Internal_Rela int_reloc2[3]; 2778 2779 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2780 (reldyn_sorting_bfd, arg1, int_reloc1); 2781 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2782 (reldyn_sorting_bfd, arg2, int_reloc2); 2783 2784 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2785 return -1; 2786 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2787 return 1; 2788 2789 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2790 return -1; 2791 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2792 return 1; 2793 return 0; 2794 #else 2795 abort (); 2796 #endif 2797 } 2798 2799 2800 /* This routine is used to write out ECOFF debugging external symbol 2801 information. It is called via mips_elf_link_hash_traverse. The 2802 ECOFF external symbol information must match the ELF external 2803 symbol information. Unfortunately, at this point we don't know 2804 whether a symbol is required by reloc information, so the two 2805 tables may wind up being different. We must sort out the external 2806 symbol information before we can set the final size of the .mdebug 2807 section, and we must set the size of the .mdebug section before we 2808 can relocate any sections, and we can't know which symbols are 2809 required by relocation until we relocate the sections. 2810 Fortunately, it is relatively unlikely that any symbol will be 2811 stripped but required by a reloc. In particular, it can not happen 2812 when generating a final executable. */ 2813 2814 static bfd_boolean 2815 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2816 { 2817 struct extsym_info *einfo = data; 2818 bfd_boolean strip; 2819 asection *sec, *output_section; 2820 2821 if (h->root.indx == -2) 2822 strip = FALSE; 2823 else if ((h->root.def_dynamic 2824 || h->root.ref_dynamic 2825 || h->root.type == bfd_link_hash_new) 2826 && !h->root.def_regular 2827 && !h->root.ref_regular) 2828 strip = TRUE; 2829 else if (einfo->info->strip == strip_all 2830 || (einfo->info->strip == strip_some 2831 && bfd_hash_lookup (einfo->info->keep_hash, 2832 h->root.root.root.string, 2833 FALSE, FALSE) == NULL)) 2834 strip = TRUE; 2835 else 2836 strip = FALSE; 2837 2838 if (strip) 2839 return TRUE; 2840 2841 if (h->esym.ifd == -2) 2842 { 2843 h->esym.jmptbl = 0; 2844 h->esym.cobol_main = 0; 2845 h->esym.weakext = 0; 2846 h->esym.reserved = 0; 2847 h->esym.ifd = ifdNil; 2848 h->esym.asym.value = 0; 2849 h->esym.asym.st = stGlobal; 2850 2851 if (h->root.root.type == bfd_link_hash_undefined 2852 || h->root.root.type == bfd_link_hash_undefweak) 2853 { 2854 const char *name; 2855 2856 /* Use undefined class. Also, set class and type for some 2857 special symbols. */ 2858 name = h->root.root.root.string; 2859 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2860 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2861 { 2862 h->esym.asym.sc = scData; 2863 h->esym.asym.st = stLabel; 2864 h->esym.asym.value = 0; 2865 } 2866 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2867 { 2868 h->esym.asym.sc = scAbs; 2869 h->esym.asym.st = stLabel; 2870 h->esym.asym.value = 2871 mips_elf_hash_table (einfo->info)->procedure_count; 2872 } 2873 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2874 { 2875 h->esym.asym.sc = scAbs; 2876 h->esym.asym.st = stLabel; 2877 h->esym.asym.value = elf_gp (einfo->abfd); 2878 } 2879 else 2880 h->esym.asym.sc = scUndefined; 2881 } 2882 else if (h->root.root.type != bfd_link_hash_defined 2883 && h->root.root.type != bfd_link_hash_defweak) 2884 h->esym.asym.sc = scAbs; 2885 else 2886 { 2887 const char *name; 2888 2889 sec = h->root.root.u.def.section; 2890 output_section = sec->output_section; 2891 2892 /* When making a shared library and symbol h is the one from 2893 the another shared library, OUTPUT_SECTION may be null. */ 2894 if (output_section == NULL) 2895 h->esym.asym.sc = scUndefined; 2896 else 2897 { 2898 name = bfd_section_name (output_section->owner, output_section); 2899 2900 if (strcmp (name, ".text") == 0) 2901 h->esym.asym.sc = scText; 2902 else if (strcmp (name, ".data") == 0) 2903 h->esym.asym.sc = scData; 2904 else if (strcmp (name, ".sdata") == 0) 2905 h->esym.asym.sc = scSData; 2906 else if (strcmp (name, ".rodata") == 0 2907 || strcmp (name, ".rdata") == 0) 2908 h->esym.asym.sc = scRData; 2909 else if (strcmp (name, ".bss") == 0) 2910 h->esym.asym.sc = scBss; 2911 else if (strcmp (name, ".sbss") == 0) 2912 h->esym.asym.sc = scSBss; 2913 else if (strcmp (name, ".init") == 0) 2914 h->esym.asym.sc = scInit; 2915 else if (strcmp (name, ".fini") == 0) 2916 h->esym.asym.sc = scFini; 2917 else 2918 h->esym.asym.sc = scAbs; 2919 } 2920 } 2921 2922 h->esym.asym.reserved = 0; 2923 h->esym.asym.index = indexNil; 2924 } 2925 2926 if (h->root.root.type == bfd_link_hash_common) 2927 h->esym.asym.value = h->root.root.u.c.size; 2928 else if (h->root.root.type == bfd_link_hash_defined 2929 || h->root.root.type == bfd_link_hash_defweak) 2930 { 2931 if (h->esym.asym.sc == scCommon) 2932 h->esym.asym.sc = scBss; 2933 else if (h->esym.asym.sc == scSCommon) 2934 h->esym.asym.sc = scSBss; 2935 2936 sec = h->root.root.u.def.section; 2937 output_section = sec->output_section; 2938 if (output_section != NULL) 2939 h->esym.asym.value = (h->root.root.u.def.value 2940 + sec->output_offset 2941 + output_section->vma); 2942 else 2943 h->esym.asym.value = 0; 2944 } 2945 else 2946 { 2947 struct mips_elf_link_hash_entry *hd = h; 2948 2949 while (hd->root.root.type == bfd_link_hash_indirect) 2950 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2951 2952 if (hd->needs_lazy_stub) 2953 { 2954 BFD_ASSERT (hd->root.plt.plist != NULL); 2955 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE); 2956 /* Set type and value for a symbol with a function stub. */ 2957 h->esym.asym.st = stProc; 2958 sec = hd->root.root.u.def.section; 2959 if (sec == NULL) 2960 h->esym.asym.value = 0; 2961 else 2962 { 2963 output_section = sec->output_section; 2964 if (output_section != NULL) 2965 h->esym.asym.value = (hd->root.plt.plist->stub_offset 2966 + sec->output_offset 2967 + output_section->vma); 2968 else 2969 h->esym.asym.value = 0; 2970 } 2971 } 2972 } 2973 2974 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 2975 h->root.root.root.string, 2976 &h->esym)) 2977 { 2978 einfo->failed = TRUE; 2979 return FALSE; 2980 } 2981 2982 return TRUE; 2983 } 2984 2985 /* A comparison routine used to sort .gptab entries. */ 2986 2987 static int 2988 gptab_compare (const void *p1, const void *p2) 2989 { 2990 const Elf32_gptab *a1 = p1; 2991 const Elf32_gptab *a2 = p2; 2992 2993 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 2994 } 2995 2996 /* Functions to manage the got entry hash table. */ 2997 2998 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 2999 hash number. */ 3000 3001 static INLINE hashval_t 3002 mips_elf_hash_bfd_vma (bfd_vma addr) 3003 { 3004 #ifdef BFD64 3005 return addr + (addr >> 32); 3006 #else 3007 return addr; 3008 #endif 3009 } 3010 3011 static hashval_t 3012 mips_elf_got_entry_hash (const void *entry_) 3013 { 3014 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 3015 3016 return (entry->symndx 3017 + ((entry->tls_type == GOT_TLS_LDM) << 18) 3018 + (entry->tls_type == GOT_TLS_LDM ? 0 3019 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 3020 : entry->symndx >= 0 ? (entry->abfd->id 3021 + mips_elf_hash_bfd_vma (entry->d.addend)) 3022 : entry->d.h->root.root.root.hash)); 3023 } 3024 3025 static int 3026 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 3027 { 3028 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 3029 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 3030 3031 return (e1->symndx == e2->symndx 3032 && e1->tls_type == e2->tls_type 3033 && (e1->tls_type == GOT_TLS_LDM ? TRUE 3034 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address 3035 : e1->symndx >= 0 ? (e1->abfd == e2->abfd 3036 && e1->d.addend == e2->d.addend) 3037 : e2->abfd && e1->d.h == e2->d.h)); 3038 } 3039 3040 static hashval_t 3041 mips_got_page_ref_hash (const void *ref_) 3042 { 3043 const struct mips_got_page_ref *ref; 3044 3045 ref = (const struct mips_got_page_ref *) ref_; 3046 return ((ref->symndx >= 0 3047 ? (hashval_t) (ref->u.abfd->id + ref->symndx) 3048 : ref->u.h->root.root.root.hash) 3049 + mips_elf_hash_bfd_vma (ref->addend)); 3050 } 3051 3052 static int 3053 mips_got_page_ref_eq (const void *ref1_, const void *ref2_) 3054 { 3055 const struct mips_got_page_ref *ref1, *ref2; 3056 3057 ref1 = (const struct mips_got_page_ref *) ref1_; 3058 ref2 = (const struct mips_got_page_ref *) ref2_; 3059 return (ref1->symndx == ref2->symndx 3060 && (ref1->symndx < 0 3061 ? ref1->u.h == ref2->u.h 3062 : ref1->u.abfd == ref2->u.abfd) 3063 && ref1->addend == ref2->addend); 3064 } 3065 3066 static hashval_t 3067 mips_got_page_entry_hash (const void *entry_) 3068 { 3069 const struct mips_got_page_entry *entry; 3070 3071 entry = (const struct mips_got_page_entry *) entry_; 3072 return entry->sec->id; 3073 } 3074 3075 static int 3076 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 3077 { 3078 const struct mips_got_page_entry *entry1, *entry2; 3079 3080 entry1 = (const struct mips_got_page_entry *) entry1_; 3081 entry2 = (const struct mips_got_page_entry *) entry2_; 3082 return entry1->sec == entry2->sec; 3083 } 3084 3085 /* Create and return a new mips_got_info structure. */ 3086 3087 static struct mips_got_info * 3088 mips_elf_create_got_info (bfd *abfd) 3089 { 3090 struct mips_got_info *g; 3091 3092 g = bfd_zalloc (abfd, sizeof (struct mips_got_info)); 3093 if (g == NULL) 3094 return NULL; 3095 3096 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 3097 mips_elf_got_entry_eq, NULL); 3098 if (g->got_entries == NULL) 3099 return NULL; 3100 3101 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash, 3102 mips_got_page_ref_eq, NULL); 3103 if (g->got_page_refs == NULL) 3104 return NULL; 3105 3106 return g; 3107 } 3108 3109 /* Return the GOT info for input bfd ABFD, trying to create a new one if 3110 CREATE_P and if ABFD doesn't already have a GOT. */ 3111 3112 static struct mips_got_info * 3113 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p) 3114 { 3115 struct mips_elf_obj_tdata *tdata; 3116 3117 if (!is_mips_elf (abfd)) 3118 return NULL; 3119 3120 tdata = mips_elf_tdata (abfd); 3121 if (!tdata->got && create_p) 3122 tdata->got = mips_elf_create_got_info (abfd); 3123 return tdata->got; 3124 } 3125 3126 /* Record that ABFD should use output GOT G. */ 3127 3128 static void 3129 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g) 3130 { 3131 struct mips_elf_obj_tdata *tdata; 3132 3133 BFD_ASSERT (is_mips_elf (abfd)); 3134 tdata = mips_elf_tdata (abfd); 3135 if (tdata->got) 3136 { 3137 /* The GOT structure itself and the hash table entries are 3138 allocated to a bfd, but the hash tables aren't. */ 3139 htab_delete (tdata->got->got_entries); 3140 htab_delete (tdata->got->got_page_refs); 3141 if (tdata->got->got_page_entries) 3142 htab_delete (tdata->got->got_page_entries); 3143 } 3144 tdata->got = g; 3145 } 3146 3147 /* Return the dynamic relocation section. If it doesn't exist, try to 3148 create a new it if CREATE_P, otherwise return NULL. Also return NULL 3149 if creation fails. */ 3150 3151 static asection * 3152 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 3153 { 3154 const char *dname; 3155 asection *sreloc; 3156 bfd *dynobj; 3157 3158 dname = MIPS_ELF_REL_DYN_NAME (info); 3159 dynobj = elf_hash_table (info)->dynobj; 3160 sreloc = bfd_get_linker_section (dynobj, dname); 3161 if (sreloc == NULL && create_p) 3162 { 3163 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname, 3164 (SEC_ALLOC 3165 | SEC_LOAD 3166 | SEC_HAS_CONTENTS 3167 | SEC_IN_MEMORY 3168 | SEC_LINKER_CREATED 3169 | SEC_READONLY)); 3170 if (sreloc == NULL 3171 || ! bfd_set_section_alignment (dynobj, sreloc, 3172 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 3173 return NULL; 3174 } 3175 return sreloc; 3176 } 3177 3178 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */ 3179 3180 static int 3181 mips_elf_reloc_tls_type (unsigned int r_type) 3182 { 3183 if (tls_gd_reloc_p (r_type)) 3184 return GOT_TLS_GD; 3185 3186 if (tls_ldm_reloc_p (r_type)) 3187 return GOT_TLS_LDM; 3188 3189 if (tls_gottprel_reloc_p (r_type)) 3190 return GOT_TLS_IE; 3191 3192 return GOT_TLS_NONE; 3193 } 3194 3195 /* Return the number of GOT slots needed for GOT TLS type TYPE. */ 3196 3197 static int 3198 mips_tls_got_entries (unsigned int type) 3199 { 3200 switch (type) 3201 { 3202 case GOT_TLS_GD: 3203 case GOT_TLS_LDM: 3204 return 2; 3205 3206 case GOT_TLS_IE: 3207 return 1; 3208 3209 case GOT_TLS_NONE: 3210 return 0; 3211 } 3212 abort (); 3213 } 3214 3215 /* Count the number of relocations needed for a TLS GOT entry, with 3216 access types from TLS_TYPE, and symbol H (or a local symbol if H 3217 is NULL). */ 3218 3219 static int 3220 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 3221 struct elf_link_hash_entry *h) 3222 { 3223 int indx = 0; 3224 bfd_boolean need_relocs = FALSE; 3225 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3226 3227 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 3228 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) 3229 indx = h->dynindx; 3230 3231 if ((info->shared || indx != 0) 3232 && (h == NULL 3233 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3234 || h->root.type != bfd_link_hash_undefweak)) 3235 need_relocs = TRUE; 3236 3237 if (!need_relocs) 3238 return 0; 3239 3240 switch (tls_type) 3241 { 3242 case GOT_TLS_GD: 3243 return indx != 0 ? 2 : 1; 3244 3245 case GOT_TLS_IE: 3246 return 1; 3247 3248 case GOT_TLS_LDM: 3249 return info->shared ? 1 : 0; 3250 3251 default: 3252 return 0; 3253 } 3254 } 3255 3256 /* Add the number of GOT entries and TLS relocations required by ENTRY 3257 to G. */ 3258 3259 static void 3260 mips_elf_count_got_entry (struct bfd_link_info *info, 3261 struct mips_got_info *g, 3262 struct mips_got_entry *entry) 3263 { 3264 if (entry->tls_type) 3265 { 3266 g->tls_gotno += mips_tls_got_entries (entry->tls_type); 3267 g->relocs += mips_tls_got_relocs (info, entry->tls_type, 3268 entry->symndx < 0 3269 ? &entry->d.h->root : NULL); 3270 } 3271 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 3272 g->local_gotno += 1; 3273 else 3274 g->global_gotno += 1; 3275 } 3276 3277 /* Output a simple dynamic relocation into SRELOC. */ 3278 3279 static void 3280 mips_elf_output_dynamic_relocation (bfd *output_bfd, 3281 asection *sreloc, 3282 unsigned long reloc_index, 3283 unsigned long indx, 3284 int r_type, 3285 bfd_vma offset) 3286 { 3287 Elf_Internal_Rela rel[3]; 3288 3289 memset (rel, 0, sizeof (rel)); 3290 3291 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 3292 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 3293 3294 if (ABI_64_P (output_bfd)) 3295 { 3296 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 3297 (output_bfd, &rel[0], 3298 (sreloc->contents 3299 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 3300 } 3301 else 3302 bfd_elf32_swap_reloc_out 3303 (output_bfd, &rel[0], 3304 (sreloc->contents 3305 + reloc_index * sizeof (Elf32_External_Rel))); 3306 } 3307 3308 /* Initialize a set of TLS GOT entries for one symbol. */ 3309 3310 static void 3311 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info, 3312 struct mips_got_entry *entry, 3313 struct mips_elf_link_hash_entry *h, 3314 bfd_vma value) 3315 { 3316 struct mips_elf_link_hash_table *htab; 3317 int indx; 3318 asection *sreloc, *sgot; 3319 bfd_vma got_offset, got_offset2; 3320 bfd_boolean need_relocs = FALSE; 3321 3322 htab = mips_elf_hash_table (info); 3323 if (htab == NULL) 3324 return; 3325 3326 sgot = htab->sgot; 3327 3328 indx = 0; 3329 if (h != NULL) 3330 { 3331 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 3332 3333 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) 3334 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3335 indx = h->root.dynindx; 3336 } 3337 3338 if (entry->tls_initialized) 3339 return; 3340 3341 if ((info->shared || indx != 0) 3342 && (h == NULL 3343 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 3344 || h->root.type != bfd_link_hash_undefweak)) 3345 need_relocs = TRUE; 3346 3347 /* MINUS_ONE means the symbol is not defined in this object. It may not 3348 be defined at all; assume that the value doesn't matter in that 3349 case. Otherwise complain if we would use the value. */ 3350 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 3351 || h->root.root.type == bfd_link_hash_undefweak); 3352 3353 /* Emit necessary relocations. */ 3354 sreloc = mips_elf_rel_dyn_section (info, FALSE); 3355 got_offset = entry->gotidx; 3356 3357 switch (entry->tls_type) 3358 { 3359 case GOT_TLS_GD: 3360 /* General Dynamic. */ 3361 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd); 3362 3363 if (need_relocs) 3364 { 3365 mips_elf_output_dynamic_relocation 3366 (abfd, sreloc, sreloc->reloc_count++, indx, 3367 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3368 sgot->output_offset + sgot->output_section->vma + got_offset); 3369 3370 if (indx) 3371 mips_elf_output_dynamic_relocation 3372 (abfd, sreloc, sreloc->reloc_count++, indx, 3373 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 3374 sgot->output_offset + sgot->output_section->vma + got_offset2); 3375 else 3376 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3377 sgot->contents + got_offset2); 3378 } 3379 else 3380 { 3381 MIPS_ELF_PUT_WORD (abfd, 1, 3382 sgot->contents + got_offset); 3383 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 3384 sgot->contents + got_offset2); 3385 } 3386 break; 3387 3388 case GOT_TLS_IE: 3389 /* Initial Exec model. */ 3390 if (need_relocs) 3391 { 3392 if (indx == 0) 3393 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 3394 sgot->contents + got_offset); 3395 else 3396 MIPS_ELF_PUT_WORD (abfd, 0, 3397 sgot->contents + got_offset); 3398 3399 mips_elf_output_dynamic_relocation 3400 (abfd, sreloc, sreloc->reloc_count++, indx, 3401 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 3402 sgot->output_offset + sgot->output_section->vma + got_offset); 3403 } 3404 else 3405 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 3406 sgot->contents + got_offset); 3407 break; 3408 3409 case GOT_TLS_LDM: 3410 /* The initial offset is zero, and the LD offsets will include the 3411 bias by DTP_OFFSET. */ 3412 MIPS_ELF_PUT_WORD (abfd, 0, 3413 sgot->contents + got_offset 3414 + MIPS_ELF_GOT_SIZE (abfd)); 3415 3416 if (!info->shared) 3417 MIPS_ELF_PUT_WORD (abfd, 1, 3418 sgot->contents + got_offset); 3419 else 3420 mips_elf_output_dynamic_relocation 3421 (abfd, sreloc, sreloc->reloc_count++, indx, 3422 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 3423 sgot->output_offset + sgot->output_section->vma + got_offset); 3424 break; 3425 3426 default: 3427 abort (); 3428 } 3429 3430 entry->tls_initialized = TRUE; 3431 } 3432 3433 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3434 for global symbol H. .got.plt comes before the GOT, so the offset 3435 will be negative. */ 3436 3437 static bfd_vma 3438 mips_elf_gotplt_index (struct bfd_link_info *info, 3439 struct elf_link_hash_entry *h) 3440 { 3441 bfd_vma got_address, got_value; 3442 struct mips_elf_link_hash_table *htab; 3443 3444 htab = mips_elf_hash_table (info); 3445 BFD_ASSERT (htab != NULL); 3446 3447 BFD_ASSERT (h->plt.plist != NULL); 3448 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE); 3449 3450 /* Calculate the address of the associated .got.plt entry. */ 3451 got_address = (htab->sgotplt->output_section->vma 3452 + htab->sgotplt->output_offset 3453 + (h->plt.plist->gotplt_index 3454 * MIPS_ELF_GOT_SIZE (info->output_bfd))); 3455 3456 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3457 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3458 + htab->root.hgot->root.u.def.section->output_offset 3459 + htab->root.hgot->root.u.def.value); 3460 3461 return got_address - got_value; 3462 } 3463 3464 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3465 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3466 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3467 offset can be found. */ 3468 3469 static bfd_vma 3470 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3471 bfd_vma value, unsigned long r_symndx, 3472 struct mips_elf_link_hash_entry *h, int r_type) 3473 { 3474 struct mips_elf_link_hash_table *htab; 3475 struct mips_got_entry *entry; 3476 3477 htab = mips_elf_hash_table (info); 3478 BFD_ASSERT (htab != NULL); 3479 3480 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3481 r_symndx, h, r_type); 3482 if (!entry) 3483 return MINUS_ONE; 3484 3485 if (entry->tls_type) 3486 mips_elf_initialize_tls_slots (abfd, info, entry, h, value); 3487 return entry->gotidx; 3488 } 3489 3490 /* Return the GOT index of global symbol H in the primary GOT. */ 3491 3492 static bfd_vma 3493 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info, 3494 struct elf_link_hash_entry *h) 3495 { 3496 struct mips_elf_link_hash_table *htab; 3497 long global_got_dynindx; 3498 struct mips_got_info *g; 3499 bfd_vma got_index; 3500 3501 htab = mips_elf_hash_table (info); 3502 BFD_ASSERT (htab != NULL); 3503 3504 global_got_dynindx = 0; 3505 if (htab->global_gotsym != NULL) 3506 global_got_dynindx = htab->global_gotsym->dynindx; 3507 3508 /* Once we determine the global GOT entry with the lowest dynamic 3509 symbol table index, we must put all dynamic symbols with greater 3510 indices into the primary GOT. That makes it easy to calculate the 3511 GOT offset. */ 3512 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3513 g = mips_elf_bfd_got (obfd, FALSE); 3514 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3515 * MIPS_ELF_GOT_SIZE (obfd)); 3516 BFD_ASSERT (got_index < htab->sgot->size); 3517 3518 return got_index; 3519 } 3520 3521 /* Return the GOT index for the global symbol indicated by H, which is 3522 referenced by a relocation of type R_TYPE in IBFD. */ 3523 3524 static bfd_vma 3525 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd, 3526 struct elf_link_hash_entry *h, int r_type) 3527 { 3528 struct mips_elf_link_hash_table *htab; 3529 struct mips_got_info *g; 3530 struct mips_got_entry lookup, *entry; 3531 bfd_vma gotidx; 3532 3533 htab = mips_elf_hash_table (info); 3534 BFD_ASSERT (htab != NULL); 3535 3536 g = mips_elf_bfd_got (ibfd, FALSE); 3537 BFD_ASSERT (g); 3538 3539 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3540 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE)) 3541 return mips_elf_primary_global_got_index (obfd, info, h); 3542 3543 lookup.abfd = ibfd; 3544 lookup.symndx = -1; 3545 lookup.d.h = (struct mips_elf_link_hash_entry *) h; 3546 entry = htab_find (g->got_entries, &lookup); 3547 BFD_ASSERT (entry); 3548 3549 gotidx = entry->gotidx; 3550 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3551 3552 if (lookup.tls_type) 3553 { 3554 bfd_vma value = MINUS_ONE; 3555 3556 if ((h->root.type == bfd_link_hash_defined 3557 || h->root.type == bfd_link_hash_defweak) 3558 && h->root.u.def.section->output_section) 3559 value = (h->root.u.def.value 3560 + h->root.u.def.section->output_offset 3561 + h->root.u.def.section->output_section->vma); 3562 3563 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value); 3564 } 3565 return gotidx; 3566 } 3567 3568 /* Find a GOT page entry that points to within 32KB of VALUE. These 3569 entries are supposed to be placed at small offsets in the GOT, i.e., 3570 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3571 entry could be created. If OFFSETP is nonnull, use it to return the 3572 offset of the GOT entry from VALUE. */ 3573 3574 static bfd_vma 3575 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3576 bfd_vma value, bfd_vma *offsetp) 3577 { 3578 bfd_vma page, got_index; 3579 struct mips_got_entry *entry; 3580 3581 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3582 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3583 NULL, R_MIPS_GOT_PAGE); 3584 3585 if (!entry) 3586 return MINUS_ONE; 3587 3588 got_index = entry->gotidx; 3589 3590 if (offsetp) 3591 *offsetp = value - entry->d.address; 3592 3593 return got_index; 3594 } 3595 3596 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3597 EXTERNAL is true if the relocation was originally against a global 3598 symbol that binds locally. */ 3599 3600 static bfd_vma 3601 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3602 bfd_vma value, bfd_boolean external) 3603 { 3604 struct mips_got_entry *entry; 3605 3606 /* GOT16 relocations against local symbols are followed by a LO16 3607 relocation; those against global symbols are not. Thus if the 3608 symbol was originally local, the GOT16 relocation should load the 3609 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3610 if (! external) 3611 value = mips_elf_high (value) << 16; 3612 3613 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3614 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3615 same in all cases. */ 3616 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3617 NULL, R_MIPS_GOT16); 3618 if (entry) 3619 return entry->gotidx; 3620 else 3621 return MINUS_ONE; 3622 } 3623 3624 /* Returns the offset for the entry at the INDEXth position 3625 in the GOT. */ 3626 3627 static bfd_vma 3628 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3629 bfd *input_bfd, bfd_vma got_index) 3630 { 3631 struct mips_elf_link_hash_table *htab; 3632 asection *sgot; 3633 bfd_vma gp; 3634 3635 htab = mips_elf_hash_table (info); 3636 BFD_ASSERT (htab != NULL); 3637 3638 sgot = htab->sgot; 3639 gp = _bfd_get_gp_value (output_bfd) 3640 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3641 3642 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3643 } 3644 3645 /* Create and return a local GOT entry for VALUE, which was calculated 3646 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3647 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3648 instead. */ 3649 3650 static struct mips_got_entry * 3651 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3652 bfd *ibfd, bfd_vma value, 3653 unsigned long r_symndx, 3654 struct mips_elf_link_hash_entry *h, 3655 int r_type) 3656 { 3657 struct mips_got_entry lookup, *entry; 3658 void **loc; 3659 struct mips_got_info *g; 3660 struct mips_elf_link_hash_table *htab; 3661 bfd_vma gotidx; 3662 3663 htab = mips_elf_hash_table (info); 3664 BFD_ASSERT (htab != NULL); 3665 3666 g = mips_elf_bfd_got (ibfd, FALSE); 3667 if (g == NULL) 3668 { 3669 g = mips_elf_bfd_got (abfd, FALSE); 3670 BFD_ASSERT (g != NULL); 3671 } 3672 3673 /* This function shouldn't be called for symbols that live in the global 3674 area of the GOT. */ 3675 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3676 3677 lookup.tls_type = mips_elf_reloc_tls_type (r_type); 3678 if (lookup.tls_type) 3679 { 3680 lookup.abfd = ibfd; 3681 if (tls_ldm_reloc_p (r_type)) 3682 { 3683 lookup.symndx = 0; 3684 lookup.d.addend = 0; 3685 } 3686 else if (h == NULL) 3687 { 3688 lookup.symndx = r_symndx; 3689 lookup.d.addend = 0; 3690 } 3691 else 3692 { 3693 lookup.symndx = -1; 3694 lookup.d.h = h; 3695 } 3696 3697 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup); 3698 BFD_ASSERT (entry); 3699 3700 gotidx = entry->gotidx; 3701 BFD_ASSERT (gotidx > 0 && gotidx < htab->sgot->size); 3702 3703 return entry; 3704 } 3705 3706 lookup.abfd = NULL; 3707 lookup.symndx = -1; 3708 lookup.d.address = value; 3709 loc = htab_find_slot (g->got_entries, &lookup, INSERT); 3710 if (!loc) 3711 return NULL; 3712 3713 entry = (struct mips_got_entry *) *loc; 3714 if (entry) 3715 return entry; 3716 3717 if (g->assigned_low_gotno > g->assigned_high_gotno) 3718 { 3719 /* We didn't allocate enough space in the GOT. */ 3720 (*_bfd_error_handler) 3721 (_("not enough GOT space for local GOT entries")); 3722 bfd_set_error (bfd_error_bad_value); 3723 return NULL; 3724 } 3725 3726 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3727 if (!entry) 3728 return NULL; 3729 3730 if (got16_reloc_p (r_type) 3731 || call16_reloc_p (r_type) 3732 || got_page_reloc_p (r_type) 3733 || got_disp_reloc_p (r_type)) 3734 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++; 3735 else 3736 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--; 3737 3738 *entry = lookup; 3739 *loc = entry; 3740 3741 MIPS_ELF_PUT_WORD (abfd, value, htab->sgot->contents + entry->gotidx); 3742 3743 /* These GOT entries need a dynamic relocation on VxWorks. */ 3744 if (htab->is_vxworks) 3745 { 3746 Elf_Internal_Rela outrel; 3747 asection *s; 3748 bfd_byte *rloc; 3749 bfd_vma got_address; 3750 3751 s = mips_elf_rel_dyn_section (info, FALSE); 3752 got_address = (htab->sgot->output_section->vma 3753 + htab->sgot->output_offset 3754 + entry->gotidx); 3755 3756 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3757 outrel.r_offset = got_address; 3758 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3759 outrel.r_addend = value; 3760 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3761 } 3762 3763 return entry; 3764 } 3765 3766 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3767 The number might be exact or a worst-case estimate, depending on how 3768 much information is available to elf_backend_omit_section_dynsym at 3769 the current linking stage. */ 3770 3771 static bfd_size_type 3772 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3773 { 3774 bfd_size_type count; 3775 3776 count = 0; 3777 if (info->shared || elf_hash_table (info)->is_relocatable_executable) 3778 { 3779 asection *p; 3780 const struct elf_backend_data *bed; 3781 3782 bed = get_elf_backend_data (output_bfd); 3783 for (p = output_bfd->sections; p ; p = p->next) 3784 if ((p->flags & SEC_EXCLUDE) == 0 3785 && (p->flags & SEC_ALLOC) != 0 3786 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3787 ++count; 3788 } 3789 return count; 3790 } 3791 3792 /* Sort the dynamic symbol table so that symbols that need GOT entries 3793 appear towards the end. */ 3794 3795 static bfd_boolean 3796 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3797 { 3798 struct mips_elf_link_hash_table *htab; 3799 struct mips_elf_hash_sort_data hsd; 3800 struct mips_got_info *g; 3801 3802 if (elf_hash_table (info)->dynsymcount == 0) 3803 return TRUE; 3804 3805 htab = mips_elf_hash_table (info); 3806 BFD_ASSERT (htab != NULL); 3807 3808 g = htab->got_info; 3809 if (g == NULL) 3810 return TRUE; 3811 3812 hsd.low = NULL; 3813 hsd.max_unref_got_dynindx 3814 = hsd.min_got_dynindx 3815 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3816 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3817 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3818 elf_hash_table (info)), 3819 mips_elf_sort_hash_table_f, 3820 &hsd); 3821 3822 /* There should have been enough room in the symbol table to 3823 accommodate both the GOT and non-GOT symbols. */ 3824 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3825 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3826 == elf_hash_table (info)->dynsymcount); 3827 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3828 == g->global_gotno); 3829 3830 /* Now we know which dynamic symbol has the lowest dynamic symbol 3831 table index in the GOT. */ 3832 htab->global_gotsym = hsd.low; 3833 3834 return TRUE; 3835 } 3836 3837 /* If H needs a GOT entry, assign it the highest available dynamic 3838 index. Otherwise, assign it the lowest available dynamic 3839 index. */ 3840 3841 static bfd_boolean 3842 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3843 { 3844 struct mips_elf_hash_sort_data *hsd = data; 3845 3846 /* Symbols without dynamic symbol table entries aren't interesting 3847 at all. */ 3848 if (h->root.dynindx == -1) 3849 return TRUE; 3850 3851 switch (h->global_got_area) 3852 { 3853 case GGA_NONE: 3854 h->root.dynindx = hsd->max_non_got_dynindx++; 3855 break; 3856 3857 case GGA_NORMAL: 3858 h->root.dynindx = --hsd->min_got_dynindx; 3859 hsd->low = (struct elf_link_hash_entry *) h; 3860 break; 3861 3862 case GGA_RELOC_ONLY: 3863 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3864 hsd->low = (struct elf_link_hash_entry *) h; 3865 h->root.dynindx = hsd->max_unref_got_dynindx++; 3866 break; 3867 } 3868 3869 return TRUE; 3870 } 3871 3872 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP 3873 (which is owned by the caller and shouldn't be added to the 3874 hash table directly). */ 3875 3876 static bfd_boolean 3877 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd, 3878 struct mips_got_entry *lookup) 3879 { 3880 struct mips_elf_link_hash_table *htab; 3881 struct mips_got_entry *entry; 3882 struct mips_got_info *g; 3883 void **loc, **bfd_loc; 3884 3885 /* Make sure there's a slot for this entry in the master GOT. */ 3886 htab = mips_elf_hash_table (info); 3887 g = htab->got_info; 3888 loc = htab_find_slot (g->got_entries, lookup, INSERT); 3889 if (!loc) 3890 return FALSE; 3891 3892 /* Populate the entry if it isn't already. */ 3893 entry = (struct mips_got_entry *) *loc; 3894 if (!entry) 3895 { 3896 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry)); 3897 if (!entry) 3898 return FALSE; 3899 3900 lookup->tls_initialized = FALSE; 3901 lookup->gotidx = -1; 3902 *entry = *lookup; 3903 *loc = entry; 3904 } 3905 3906 /* Reuse the same GOT entry for the BFD's GOT. */ 3907 g = mips_elf_bfd_got (abfd, TRUE); 3908 if (!g) 3909 return FALSE; 3910 3911 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT); 3912 if (!bfd_loc) 3913 return FALSE; 3914 3915 if (!*bfd_loc) 3916 *bfd_loc = entry; 3917 return TRUE; 3918 } 3919 3920 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT 3921 entry for it. FOR_CALL is true if the caller is only interested in 3922 using the GOT entry for calls. */ 3923 3924 static bfd_boolean 3925 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3926 bfd *abfd, struct bfd_link_info *info, 3927 bfd_boolean for_call, int r_type) 3928 { 3929 struct mips_elf_link_hash_table *htab; 3930 struct mips_elf_link_hash_entry *hmips; 3931 struct mips_got_entry entry; 3932 unsigned char tls_type; 3933 3934 htab = mips_elf_hash_table (info); 3935 BFD_ASSERT (htab != NULL); 3936 3937 hmips = (struct mips_elf_link_hash_entry *) h; 3938 if (!for_call) 3939 hmips->got_only_for_calls = FALSE; 3940 3941 /* A global symbol in the GOT must also be in the dynamic symbol 3942 table. */ 3943 if (h->dynindx == -1) 3944 { 3945 switch (ELF_ST_VISIBILITY (h->other)) 3946 { 3947 case STV_INTERNAL: 3948 case STV_HIDDEN: 3949 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3950 break; 3951 } 3952 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3953 return FALSE; 3954 } 3955 3956 tls_type = mips_elf_reloc_tls_type (r_type); 3957 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL) 3958 hmips->global_got_area = GGA_NORMAL; 3959 3960 entry.abfd = abfd; 3961 entry.symndx = -1; 3962 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3963 entry.tls_type = tls_type; 3964 return mips_elf_record_got_entry (info, abfd, &entry); 3965 } 3966 3967 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND, 3968 where SYMNDX is a local symbol. Reserve a GOT entry for it. */ 3969 3970 static bfd_boolean 3971 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 3972 struct bfd_link_info *info, int r_type) 3973 { 3974 struct mips_elf_link_hash_table *htab; 3975 struct mips_got_info *g; 3976 struct mips_got_entry entry; 3977 3978 htab = mips_elf_hash_table (info); 3979 BFD_ASSERT (htab != NULL); 3980 3981 g = htab->got_info; 3982 BFD_ASSERT (g != NULL); 3983 3984 entry.abfd = abfd; 3985 entry.symndx = symndx; 3986 entry.d.addend = addend; 3987 entry.tls_type = mips_elf_reloc_tls_type (r_type); 3988 return mips_elf_record_got_entry (info, abfd, &entry); 3989 } 3990 3991 /* Record that ABFD has a page relocation against SYMNDX + ADDEND. 3992 H is the symbol's hash table entry, or null if SYMNDX is local 3993 to ABFD. */ 3994 3995 static bfd_boolean 3996 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd, 3997 long symndx, struct elf_link_hash_entry *h, 3998 bfd_signed_vma addend) 3999 { 4000 struct mips_elf_link_hash_table *htab; 4001 struct mips_got_info *g1, *g2; 4002 struct mips_got_page_ref lookup, *entry; 4003 void **loc, **bfd_loc; 4004 4005 htab = mips_elf_hash_table (info); 4006 BFD_ASSERT (htab != NULL); 4007 4008 g1 = htab->got_info; 4009 BFD_ASSERT (g1 != NULL); 4010 4011 if (h) 4012 { 4013 lookup.symndx = -1; 4014 lookup.u.h = (struct mips_elf_link_hash_entry *) h; 4015 } 4016 else 4017 { 4018 lookup.symndx = symndx; 4019 lookup.u.abfd = abfd; 4020 } 4021 lookup.addend = addend; 4022 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT); 4023 if (loc == NULL) 4024 return FALSE; 4025 4026 entry = (struct mips_got_page_ref *) *loc; 4027 if (!entry) 4028 { 4029 entry = bfd_alloc (abfd, sizeof (*entry)); 4030 if (!entry) 4031 return FALSE; 4032 4033 *entry = lookup; 4034 *loc = entry; 4035 } 4036 4037 /* Add the same entry to the BFD's GOT. */ 4038 g2 = mips_elf_bfd_got (abfd, TRUE); 4039 if (!g2) 4040 return FALSE; 4041 4042 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT); 4043 if (!bfd_loc) 4044 return FALSE; 4045 4046 if (!*bfd_loc) 4047 *bfd_loc = entry; 4048 4049 return TRUE; 4050 } 4051 4052 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 4053 4054 static void 4055 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 4056 unsigned int n) 4057 { 4058 asection *s; 4059 struct mips_elf_link_hash_table *htab; 4060 4061 htab = mips_elf_hash_table (info); 4062 BFD_ASSERT (htab != NULL); 4063 4064 s = mips_elf_rel_dyn_section (info, FALSE); 4065 BFD_ASSERT (s != NULL); 4066 4067 if (htab->is_vxworks) 4068 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 4069 else 4070 { 4071 if (s->size == 0) 4072 { 4073 /* Make room for a null element. */ 4074 s->size += MIPS_ELF_REL_SIZE (abfd); 4075 ++s->reloc_count; 4076 } 4077 s->size += n * MIPS_ELF_REL_SIZE (abfd); 4078 } 4079 } 4080 4081 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4082 mips_elf_traverse_got_arg structure. Count the number of GOT 4083 entries and TLS relocs. Set DATA->value to true if we need 4084 to resolve indirect or warning symbols and then recreate the GOT. */ 4085 4086 static int 4087 mips_elf_check_recreate_got (void **entryp, void *data) 4088 { 4089 struct mips_got_entry *entry; 4090 struct mips_elf_traverse_got_arg *arg; 4091 4092 entry = (struct mips_got_entry *) *entryp; 4093 arg = (struct mips_elf_traverse_got_arg *) data; 4094 if (entry->abfd != NULL && entry->symndx == -1) 4095 { 4096 struct mips_elf_link_hash_entry *h; 4097 4098 h = entry->d.h; 4099 if (h->root.root.type == bfd_link_hash_indirect 4100 || h->root.root.type == bfd_link_hash_warning) 4101 { 4102 arg->value = TRUE; 4103 return 0; 4104 } 4105 } 4106 mips_elf_count_got_entry (arg->info, arg->g, entry); 4107 return 1; 4108 } 4109 4110 /* A htab_traverse callback for GOT entries, with DATA pointing to a 4111 mips_elf_traverse_got_arg structure. Add all entries to DATA->g, 4112 converting entries for indirect and warning symbols into entries 4113 for the target symbol. Set DATA->g to null on error. */ 4114 4115 static int 4116 mips_elf_recreate_got (void **entryp, void *data) 4117 { 4118 struct mips_got_entry new_entry, *entry; 4119 struct mips_elf_traverse_got_arg *arg; 4120 void **slot; 4121 4122 entry = (struct mips_got_entry *) *entryp; 4123 arg = (struct mips_elf_traverse_got_arg *) data; 4124 if (entry->abfd != NULL 4125 && entry->symndx == -1 4126 && (entry->d.h->root.root.type == bfd_link_hash_indirect 4127 || entry->d.h->root.root.type == bfd_link_hash_warning)) 4128 { 4129 struct mips_elf_link_hash_entry *h; 4130 4131 new_entry = *entry; 4132 entry = &new_entry; 4133 h = entry->d.h; 4134 do 4135 { 4136 BFD_ASSERT (h->global_got_area == GGA_NONE); 4137 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4138 } 4139 while (h->root.root.type == bfd_link_hash_indirect 4140 || h->root.root.type == bfd_link_hash_warning); 4141 entry->d.h = h; 4142 } 4143 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4144 if (slot == NULL) 4145 { 4146 arg->g = NULL; 4147 return 0; 4148 } 4149 if (*slot == NULL) 4150 { 4151 if (entry == &new_entry) 4152 { 4153 entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4154 if (!entry) 4155 { 4156 arg->g = NULL; 4157 return 0; 4158 } 4159 *entry = new_entry; 4160 } 4161 *slot = entry; 4162 mips_elf_count_got_entry (arg->info, arg->g, entry); 4163 } 4164 return 1; 4165 } 4166 4167 /* Return the maximum number of GOT page entries required for RANGE. */ 4168 4169 static bfd_vma 4170 mips_elf_pages_for_range (const struct mips_got_page_range *range) 4171 { 4172 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 4173 } 4174 4175 /* Record that G requires a page entry that can reach SEC + ADDEND. */ 4176 4177 static bfd_boolean 4178 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg, 4179 asection *sec, bfd_signed_vma addend) 4180 { 4181 struct mips_got_info *g = arg->g; 4182 struct mips_got_page_entry lookup, *entry; 4183 struct mips_got_page_range **range_ptr, *range; 4184 bfd_vma old_pages, new_pages; 4185 void **loc; 4186 4187 /* Find the mips_got_page_entry hash table entry for this section. */ 4188 lookup.sec = sec; 4189 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 4190 if (loc == NULL) 4191 return FALSE; 4192 4193 /* Create a mips_got_page_entry if this is the first time we've 4194 seen the section. */ 4195 entry = (struct mips_got_page_entry *) *loc; 4196 if (!entry) 4197 { 4198 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry)); 4199 if (!entry) 4200 return FALSE; 4201 4202 entry->sec = sec; 4203 *loc = entry; 4204 } 4205 4206 /* Skip over ranges whose maximum extent cannot share a page entry 4207 with ADDEND. */ 4208 range_ptr = &entry->ranges; 4209 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 4210 range_ptr = &(*range_ptr)->next; 4211 4212 /* If we scanned to the end of the list, or found a range whose 4213 minimum extent cannot share a page entry with ADDEND, create 4214 a new singleton range. */ 4215 range = *range_ptr; 4216 if (!range || addend < range->min_addend - 0xffff) 4217 { 4218 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range)); 4219 if (!range) 4220 return FALSE; 4221 4222 range->next = *range_ptr; 4223 range->min_addend = addend; 4224 range->max_addend = addend; 4225 4226 *range_ptr = range; 4227 entry->num_pages++; 4228 g->page_gotno++; 4229 return TRUE; 4230 } 4231 4232 /* Remember how many pages the old range contributed. */ 4233 old_pages = mips_elf_pages_for_range (range); 4234 4235 /* Update the ranges. */ 4236 if (addend < range->min_addend) 4237 range->min_addend = addend; 4238 else if (addend > range->max_addend) 4239 { 4240 if (range->next && addend >= range->next->min_addend - 0xffff) 4241 { 4242 old_pages += mips_elf_pages_for_range (range->next); 4243 range->max_addend = range->next->max_addend; 4244 range->next = range->next->next; 4245 } 4246 else 4247 range->max_addend = addend; 4248 } 4249 4250 /* Record any change in the total estimate. */ 4251 new_pages = mips_elf_pages_for_range (range); 4252 if (old_pages != new_pages) 4253 { 4254 entry->num_pages += new_pages - old_pages; 4255 g->page_gotno += new_pages - old_pages; 4256 } 4257 4258 return TRUE; 4259 } 4260 4261 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref 4262 and for which DATA points to a mips_elf_traverse_got_arg. Work out 4263 whether the page reference described by *REFP needs a GOT page entry, 4264 and record that entry in DATA->g if so. Set DATA->g to null on failure. */ 4265 4266 static bfd_boolean 4267 mips_elf_resolve_got_page_ref (void **refp, void *data) 4268 { 4269 struct mips_got_page_ref *ref; 4270 struct mips_elf_traverse_got_arg *arg; 4271 struct mips_elf_link_hash_table *htab; 4272 asection *sec; 4273 bfd_vma addend; 4274 4275 ref = (struct mips_got_page_ref *) *refp; 4276 arg = (struct mips_elf_traverse_got_arg *) data; 4277 htab = mips_elf_hash_table (arg->info); 4278 4279 if (ref->symndx < 0) 4280 { 4281 struct mips_elf_link_hash_entry *h; 4282 4283 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */ 4284 h = ref->u.h; 4285 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root)) 4286 return 1; 4287 4288 /* Ignore undefined symbols; we'll issue an error later if 4289 appropriate. */ 4290 if (!((h->root.root.type == bfd_link_hash_defined 4291 || h->root.root.type == bfd_link_hash_defweak) 4292 && h->root.root.u.def.section)) 4293 return 1; 4294 4295 sec = h->root.root.u.def.section; 4296 addend = h->root.root.u.def.value + ref->addend; 4297 } 4298 else 4299 { 4300 Elf_Internal_Sym *isym; 4301 4302 /* Read in the symbol. */ 4303 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd, 4304 ref->symndx); 4305 if (isym == NULL) 4306 { 4307 arg->g = NULL; 4308 return 0; 4309 } 4310 4311 /* Get the associated input section. */ 4312 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx); 4313 if (sec == NULL) 4314 { 4315 arg->g = NULL; 4316 return 0; 4317 } 4318 4319 /* If this is a mergable section, work out the section and offset 4320 of the merged data. For section symbols, the addend specifies 4321 of the offset _of_ the first byte in the data, otherwise it 4322 specifies the offset _from_ the first byte. */ 4323 if (sec->flags & SEC_MERGE) 4324 { 4325 void *secinfo; 4326 4327 secinfo = elf_section_data (sec)->sec_info; 4328 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 4329 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4330 isym->st_value + ref->addend); 4331 else 4332 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo, 4333 isym->st_value) + ref->addend; 4334 } 4335 else 4336 addend = isym->st_value + ref->addend; 4337 } 4338 if (!mips_elf_record_got_page_entry (arg, sec, addend)) 4339 { 4340 arg->g = NULL; 4341 return 0; 4342 } 4343 return 1; 4344 } 4345 4346 /* If any entries in G->got_entries are for indirect or warning symbols, 4347 replace them with entries for the target symbol. Convert g->got_page_refs 4348 into got_page_entry structures and estimate the number of page entries 4349 that they require. */ 4350 4351 static bfd_boolean 4352 mips_elf_resolve_final_got_entries (struct bfd_link_info *info, 4353 struct mips_got_info *g) 4354 { 4355 struct mips_elf_traverse_got_arg tga; 4356 struct mips_got_info oldg; 4357 4358 oldg = *g; 4359 4360 tga.info = info; 4361 tga.g = g; 4362 tga.value = FALSE; 4363 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga); 4364 if (tga.value) 4365 { 4366 *g = oldg; 4367 g->got_entries = htab_create (htab_size (oldg.got_entries), 4368 mips_elf_got_entry_hash, 4369 mips_elf_got_entry_eq, NULL); 4370 if (!g->got_entries) 4371 return FALSE; 4372 4373 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga); 4374 if (!tga.g) 4375 return FALSE; 4376 4377 htab_delete (oldg.got_entries); 4378 } 4379 4380 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4381 mips_got_page_entry_eq, NULL); 4382 if (g->got_page_entries == NULL) 4383 return FALSE; 4384 4385 tga.info = info; 4386 tga.g = g; 4387 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga); 4388 4389 return TRUE; 4390 } 4391 4392 /* Return true if a GOT entry for H should live in the local rather than 4393 global GOT area. */ 4394 4395 static bfd_boolean 4396 mips_use_local_got_p (struct bfd_link_info *info, 4397 struct mips_elf_link_hash_entry *h) 4398 { 4399 /* Symbols that aren't in the dynamic symbol table must live in the 4400 local GOT. This includes symbols that are completely undefined 4401 and which therefore don't bind locally. We'll report undefined 4402 symbols later if appropriate. */ 4403 if (h->root.dynindx == -1) 4404 return TRUE; 4405 4406 /* Symbols that bind locally can (and in the case of forced-local 4407 symbols, must) live in the local GOT. */ 4408 if (h->got_only_for_calls 4409 ? SYMBOL_CALLS_LOCAL (info, &h->root) 4410 : SYMBOL_REFERENCES_LOCAL (info, &h->root)) 4411 return TRUE; 4412 4413 /* If this is an executable that must provide a definition of the symbol, 4414 either though PLTs or copy relocations, then that address should go in 4415 the local rather than global GOT. */ 4416 if (info->executable && h->has_static_relocs) 4417 return TRUE; 4418 4419 return FALSE; 4420 } 4421 4422 /* A mips_elf_link_hash_traverse callback for which DATA points to the 4423 link_info structure. Decide whether the hash entry needs an entry in 4424 the global part of the primary GOT, setting global_got_area accordingly. 4425 Count the number of global symbols that are in the primary GOT only 4426 because they have relocations against them (reloc_only_gotno). */ 4427 4428 static int 4429 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 4430 { 4431 struct bfd_link_info *info; 4432 struct mips_elf_link_hash_table *htab; 4433 struct mips_got_info *g; 4434 4435 info = (struct bfd_link_info *) data; 4436 htab = mips_elf_hash_table (info); 4437 g = htab->got_info; 4438 if (h->global_got_area != GGA_NONE) 4439 { 4440 /* Make a final decision about whether the symbol belongs in the 4441 local or global GOT. */ 4442 if (mips_use_local_got_p (info, h)) 4443 /* The symbol belongs in the local GOT. We no longer need this 4444 entry if it was only used for relocations; those relocations 4445 will be against the null or section symbol instead of H. */ 4446 h->global_got_area = GGA_NONE; 4447 else if (htab->is_vxworks 4448 && h->got_only_for_calls 4449 && h->root.plt.plist->mips_offset != MINUS_ONE) 4450 /* On VxWorks, calls can refer directly to the .got.plt entry; 4451 they don't need entries in the regular GOT. .got.plt entries 4452 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 4453 h->global_got_area = GGA_NONE; 4454 else if (h->global_got_area == GGA_RELOC_ONLY) 4455 { 4456 g->reloc_only_gotno++; 4457 g->global_gotno++; 4458 } 4459 } 4460 return 1; 4461 } 4462 4463 /* A htab_traverse callback for GOT entries. Add each one to the GOT 4464 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4465 4466 static int 4467 mips_elf_add_got_entry (void **entryp, void *data) 4468 { 4469 struct mips_got_entry *entry; 4470 struct mips_elf_traverse_got_arg *arg; 4471 void **slot; 4472 4473 entry = (struct mips_got_entry *) *entryp; 4474 arg = (struct mips_elf_traverse_got_arg *) data; 4475 slot = htab_find_slot (arg->g->got_entries, entry, INSERT); 4476 if (!slot) 4477 { 4478 arg->g = NULL; 4479 return 0; 4480 } 4481 if (!*slot) 4482 { 4483 *slot = entry; 4484 mips_elf_count_got_entry (arg->info, arg->g, entry); 4485 } 4486 return 1; 4487 } 4488 4489 /* A htab_traverse callback for GOT page entries. Add each one to the GOT 4490 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */ 4491 4492 static int 4493 mips_elf_add_got_page_entry (void **entryp, void *data) 4494 { 4495 struct mips_got_page_entry *entry; 4496 struct mips_elf_traverse_got_arg *arg; 4497 void **slot; 4498 4499 entry = (struct mips_got_page_entry *) *entryp; 4500 arg = (struct mips_elf_traverse_got_arg *) data; 4501 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT); 4502 if (!slot) 4503 { 4504 arg->g = NULL; 4505 return 0; 4506 } 4507 if (!*slot) 4508 { 4509 *slot = entry; 4510 arg->g->page_gotno += entry->num_pages; 4511 } 4512 return 1; 4513 } 4514 4515 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if 4516 this would lead to overflow, 1 if they were merged successfully, 4517 and 0 if a merge failed due to lack of memory. (These values are chosen 4518 so that nonnegative return values can be returned by a htab_traverse 4519 callback.) */ 4520 4521 static int 4522 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from, 4523 struct mips_got_info *to, 4524 struct mips_elf_got_per_bfd_arg *arg) 4525 { 4526 struct mips_elf_traverse_got_arg tga; 4527 unsigned int estimate; 4528 4529 /* Work out how many page entries we would need for the combined GOT. */ 4530 estimate = arg->max_pages; 4531 if (estimate >= from->page_gotno + to->page_gotno) 4532 estimate = from->page_gotno + to->page_gotno; 4533 4534 /* And conservatively estimate how many local and TLS entries 4535 would be needed. */ 4536 estimate += from->local_gotno + to->local_gotno; 4537 estimate += from->tls_gotno + to->tls_gotno; 4538 4539 /* If we're merging with the primary got, any TLS relocations will 4540 come after the full set of global entries. Otherwise estimate those 4541 conservatively as well. */ 4542 if (to == arg->primary && from->tls_gotno + to->tls_gotno) 4543 estimate += arg->global_count; 4544 else 4545 estimate += from->global_gotno + to->global_gotno; 4546 4547 /* Bail out if the combined GOT might be too big. */ 4548 if (estimate > arg->max_count) 4549 return -1; 4550 4551 /* Transfer the bfd's got information from FROM to TO. */ 4552 tga.info = arg->info; 4553 tga.g = to; 4554 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga); 4555 if (!tga.g) 4556 return 0; 4557 4558 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga); 4559 if (!tga.g) 4560 return 0; 4561 4562 mips_elf_replace_bfd_got (abfd, to); 4563 return 1; 4564 } 4565 4566 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much 4567 as possible of the primary got, since it doesn't require explicit 4568 dynamic relocations, but don't use bfds that would reference global 4569 symbols out of the addressable range. Failing the primary got, 4570 attempt to merge with the current got, or finish the current got 4571 and then make make the new got current. */ 4572 4573 static bfd_boolean 4574 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g, 4575 struct mips_elf_got_per_bfd_arg *arg) 4576 { 4577 unsigned int estimate; 4578 int result; 4579 4580 if (!mips_elf_resolve_final_got_entries (arg->info, g)) 4581 return FALSE; 4582 4583 /* Work out the number of page, local and TLS entries. */ 4584 estimate = arg->max_pages; 4585 if (estimate > g->page_gotno) 4586 estimate = g->page_gotno; 4587 estimate += g->local_gotno + g->tls_gotno; 4588 4589 /* We place TLS GOT entries after both locals and globals. The globals 4590 for the primary GOT may overflow the normal GOT size limit, so be 4591 sure not to merge a GOT which requires TLS with the primary GOT in that 4592 case. This doesn't affect non-primary GOTs. */ 4593 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4594 4595 if (estimate <= arg->max_count) 4596 { 4597 /* If we don't have a primary GOT, use it as 4598 a starting point for the primary GOT. */ 4599 if (!arg->primary) 4600 { 4601 arg->primary = g; 4602 return TRUE; 4603 } 4604 4605 /* Try merging with the primary GOT. */ 4606 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg); 4607 if (result >= 0) 4608 return result; 4609 } 4610 4611 /* If we can merge with the last-created got, do it. */ 4612 if (arg->current) 4613 { 4614 result = mips_elf_merge_got_with (abfd, g, arg->current, arg); 4615 if (result >= 0) 4616 return result; 4617 } 4618 4619 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4620 fits; if it turns out that it doesn't, we'll get relocation 4621 overflows anyway. */ 4622 g->next = arg->current; 4623 arg->current = g; 4624 4625 return TRUE; 4626 } 4627 4628 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx 4629 to GOTIDX, duplicating the entry if it has already been assigned 4630 an index in a different GOT. */ 4631 4632 static bfd_boolean 4633 mips_elf_set_gotidx (void **entryp, long gotidx) 4634 { 4635 struct mips_got_entry *entry; 4636 4637 entry = (struct mips_got_entry *) *entryp; 4638 if (entry->gotidx > 0) 4639 { 4640 struct mips_got_entry *new_entry; 4641 4642 new_entry = bfd_alloc (entry->abfd, sizeof (*entry)); 4643 if (!new_entry) 4644 return FALSE; 4645 4646 *new_entry = *entry; 4647 *entryp = new_entry; 4648 entry = new_entry; 4649 } 4650 entry->gotidx = gotidx; 4651 return TRUE; 4652 } 4653 4654 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a 4655 mips_elf_traverse_got_arg in which DATA->value is the size of one 4656 GOT entry. Set DATA->g to null on failure. */ 4657 4658 static int 4659 mips_elf_initialize_tls_index (void **entryp, void *data) 4660 { 4661 struct mips_got_entry *entry; 4662 struct mips_elf_traverse_got_arg *arg; 4663 4664 /* We're only interested in TLS symbols. */ 4665 entry = (struct mips_got_entry *) *entryp; 4666 if (entry->tls_type == GOT_TLS_NONE) 4667 return 1; 4668 4669 arg = (struct mips_elf_traverse_got_arg *) data; 4670 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno)) 4671 { 4672 arg->g = NULL; 4673 return 0; 4674 } 4675 4676 /* Account for the entries we've just allocated. */ 4677 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type); 4678 return 1; 4679 } 4680 4681 /* A htab_traverse callback for GOT entries, where DATA points to a 4682 mips_elf_traverse_got_arg. Set the global_got_area of each global 4683 symbol to DATA->value. */ 4684 4685 static int 4686 mips_elf_set_global_got_area (void **entryp, void *data) 4687 { 4688 struct mips_got_entry *entry; 4689 struct mips_elf_traverse_got_arg *arg; 4690 4691 entry = (struct mips_got_entry *) *entryp; 4692 arg = (struct mips_elf_traverse_got_arg *) data; 4693 if (entry->abfd != NULL 4694 && entry->symndx == -1 4695 && entry->d.h->global_got_area != GGA_NONE) 4696 entry->d.h->global_got_area = arg->value; 4697 return 1; 4698 } 4699 4700 /* A htab_traverse callback for secondary GOT entries, where DATA points 4701 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries 4702 and record the number of relocations they require. DATA->value is 4703 the size of one GOT entry. Set DATA->g to null on failure. */ 4704 4705 static int 4706 mips_elf_set_global_gotidx (void **entryp, void *data) 4707 { 4708 struct mips_got_entry *entry; 4709 struct mips_elf_traverse_got_arg *arg; 4710 4711 entry = (struct mips_got_entry *) *entryp; 4712 arg = (struct mips_elf_traverse_got_arg *) data; 4713 if (entry->abfd != NULL 4714 && entry->symndx == -1 4715 && entry->d.h->global_got_area != GGA_NONE) 4716 { 4717 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno)) 4718 { 4719 arg->g = NULL; 4720 return 0; 4721 } 4722 arg->g->assigned_low_gotno += 1; 4723 4724 if (arg->info->shared 4725 || (elf_hash_table (arg->info)->dynamic_sections_created 4726 && entry->d.h->root.def_dynamic 4727 && !entry->d.h->root.def_regular)) 4728 arg->g->relocs += 1; 4729 } 4730 4731 return 1; 4732 } 4733 4734 /* A htab_traverse callback for GOT entries for which DATA is the 4735 bfd_link_info. Forbid any global symbols from having traditional 4736 lazy-binding stubs. */ 4737 4738 static int 4739 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4740 { 4741 struct bfd_link_info *info; 4742 struct mips_elf_link_hash_table *htab; 4743 struct mips_got_entry *entry; 4744 4745 entry = (struct mips_got_entry *) *entryp; 4746 info = (struct bfd_link_info *) data; 4747 htab = mips_elf_hash_table (info); 4748 BFD_ASSERT (htab != NULL); 4749 4750 if (entry->abfd != NULL 4751 && entry->symndx == -1 4752 && entry->d.h->needs_lazy_stub) 4753 { 4754 entry->d.h->needs_lazy_stub = FALSE; 4755 htab->lazy_stub_count--; 4756 } 4757 4758 return 1; 4759 } 4760 4761 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4762 the primary GOT. */ 4763 static bfd_vma 4764 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4765 { 4766 if (!g->next) 4767 return 0; 4768 4769 g = mips_elf_bfd_got (ibfd, FALSE); 4770 if (! g) 4771 return 0; 4772 4773 BFD_ASSERT (g->next); 4774 4775 g = g->next; 4776 4777 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4778 * MIPS_ELF_GOT_SIZE (abfd); 4779 } 4780 4781 /* Turn a single GOT that is too big for 16-bit addressing into 4782 a sequence of GOTs, each one 16-bit addressable. */ 4783 4784 static bfd_boolean 4785 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4786 asection *got, bfd_size_type pages) 4787 { 4788 struct mips_elf_link_hash_table *htab; 4789 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4790 struct mips_elf_traverse_got_arg tga; 4791 struct mips_got_info *g, *gg; 4792 unsigned int assign, needed_relocs; 4793 bfd *dynobj, *ibfd; 4794 4795 dynobj = elf_hash_table (info)->dynobj; 4796 htab = mips_elf_hash_table (info); 4797 BFD_ASSERT (htab != NULL); 4798 4799 g = htab->got_info; 4800 4801 got_per_bfd_arg.obfd = abfd; 4802 got_per_bfd_arg.info = info; 4803 got_per_bfd_arg.current = NULL; 4804 got_per_bfd_arg.primary = NULL; 4805 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4806 / MIPS_ELF_GOT_SIZE (abfd)) 4807 - htab->reserved_gotno); 4808 got_per_bfd_arg.max_pages = pages; 4809 /* The number of globals that will be included in the primary GOT. 4810 See the calls to mips_elf_set_global_got_area below for more 4811 information. */ 4812 got_per_bfd_arg.global_count = g->global_gotno; 4813 4814 /* Try to merge the GOTs of input bfds together, as long as they 4815 don't seem to exceed the maximum GOT size, choosing one of them 4816 to be the primary GOT. */ 4817 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 4818 { 4819 gg = mips_elf_bfd_got (ibfd, FALSE); 4820 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg)) 4821 return FALSE; 4822 } 4823 4824 /* If we do not find any suitable primary GOT, create an empty one. */ 4825 if (got_per_bfd_arg.primary == NULL) 4826 g->next = mips_elf_create_got_info (abfd); 4827 else 4828 g->next = got_per_bfd_arg.primary; 4829 g->next->next = got_per_bfd_arg.current; 4830 4831 /* GG is now the master GOT, and G is the primary GOT. */ 4832 gg = g; 4833 g = g->next; 4834 4835 /* Map the output bfd to the primary got. That's what we're going 4836 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4837 didn't mark in check_relocs, and we want a quick way to find it. 4838 We can't just use gg->next because we're going to reverse the 4839 list. */ 4840 mips_elf_replace_bfd_got (abfd, g); 4841 4842 /* Every symbol that is referenced in a dynamic relocation must be 4843 present in the primary GOT, so arrange for them to appear after 4844 those that are actually referenced. */ 4845 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4846 g->global_gotno = gg->global_gotno; 4847 4848 tga.info = info; 4849 tga.value = GGA_RELOC_ONLY; 4850 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga); 4851 tga.value = GGA_NORMAL; 4852 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga); 4853 4854 /* Now go through the GOTs assigning them offset ranges. 4855 [assigned_low_gotno, local_gotno[ will be set to the range of local 4856 entries in each GOT. We can then compute the end of a GOT by 4857 adding local_gotno to global_gotno. We reverse the list and make 4858 it circular since then we'll be able to quickly compute the 4859 beginning of a GOT, by computing the end of its predecessor. To 4860 avoid special cases for the primary GOT, while still preserving 4861 assertions that are valid for both single- and multi-got links, 4862 we arrange for the main got struct to have the right number of 4863 global entries, but set its local_gotno such that the initial 4864 offset of the primary GOT is zero. Remember that the primary GOT 4865 will become the last item in the circular linked list, so it 4866 points back to the master GOT. */ 4867 gg->local_gotno = -g->global_gotno; 4868 gg->global_gotno = g->global_gotno; 4869 gg->tls_gotno = 0; 4870 assign = 0; 4871 gg->next = gg; 4872 4873 do 4874 { 4875 struct mips_got_info *gn; 4876 4877 assign += htab->reserved_gotno; 4878 g->assigned_low_gotno = assign; 4879 g->local_gotno += assign; 4880 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4881 g->assigned_high_gotno = g->local_gotno - 1; 4882 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4883 4884 /* Take g out of the direct list, and push it onto the reversed 4885 list that gg points to. g->next is guaranteed to be nonnull after 4886 this operation, as required by mips_elf_initialize_tls_index. */ 4887 gn = g->next; 4888 g->next = gg->next; 4889 gg->next = g; 4890 4891 /* Set up any TLS entries. We always place the TLS entries after 4892 all non-TLS entries. */ 4893 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4894 tga.g = g; 4895 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4896 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 4897 if (!tga.g) 4898 return FALSE; 4899 BFD_ASSERT (g->tls_assigned_gotno == assign); 4900 4901 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4902 g = gn; 4903 4904 /* Forbid global symbols in every non-primary GOT from having 4905 lazy-binding stubs. */ 4906 if (g) 4907 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4908 } 4909 while (g); 4910 4911 got->size = assign * MIPS_ELF_GOT_SIZE (abfd); 4912 4913 needed_relocs = 0; 4914 for (g = gg->next; g && g->next != gg; g = g->next) 4915 { 4916 unsigned int save_assign; 4917 4918 /* Assign offsets to global GOT entries and count how many 4919 relocations they need. */ 4920 save_assign = g->assigned_low_gotno; 4921 g->assigned_low_gotno = g->local_gotno; 4922 tga.info = info; 4923 tga.value = MIPS_ELF_GOT_SIZE (abfd); 4924 tga.g = g; 4925 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga); 4926 if (!tga.g) 4927 return FALSE; 4928 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno); 4929 g->assigned_low_gotno = save_assign; 4930 4931 if (info->shared) 4932 { 4933 g->relocs += g->local_gotno - g->assigned_low_gotno; 4934 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno 4935 + g->next->global_gotno 4936 + g->next->tls_gotno 4937 + htab->reserved_gotno); 4938 } 4939 needed_relocs += g->relocs; 4940 } 4941 needed_relocs += g->relocs; 4942 4943 if (needed_relocs) 4944 mips_elf_allocate_dynamic_relocations (dynobj, info, 4945 needed_relocs); 4946 4947 return TRUE; 4948 } 4949 4950 4951 /* Returns the first relocation of type r_type found, beginning with 4952 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4953 4954 static const Elf_Internal_Rela * 4955 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4956 const Elf_Internal_Rela *relocation, 4957 const Elf_Internal_Rela *relend) 4958 { 4959 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4960 4961 while (relocation < relend) 4962 { 4963 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4964 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 4965 return relocation; 4966 4967 ++relocation; 4968 } 4969 4970 /* We didn't find it. */ 4971 return NULL; 4972 } 4973 4974 /* Return whether an input relocation is against a local symbol. */ 4975 4976 static bfd_boolean 4977 mips_elf_local_relocation_p (bfd *input_bfd, 4978 const Elf_Internal_Rela *relocation, 4979 asection **local_sections) 4980 { 4981 unsigned long r_symndx; 4982 Elf_Internal_Shdr *symtab_hdr; 4983 size_t extsymoff; 4984 4985 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 4986 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4987 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 4988 4989 if (r_symndx < extsymoff) 4990 return TRUE; 4991 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 4992 return TRUE; 4993 4994 return FALSE; 4995 } 4996 4997 /* Sign-extend VALUE, which has the indicated number of BITS. */ 4998 4999 bfd_vma 5000 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 5001 { 5002 if (value & ((bfd_vma) 1 << (bits - 1))) 5003 /* VALUE is negative. */ 5004 value |= ((bfd_vma) - 1) << bits; 5005 5006 return value; 5007 } 5008 5009 /* Return non-zero if the indicated VALUE has overflowed the maximum 5010 range expressible by a signed number with the indicated number of 5011 BITS. */ 5012 5013 static bfd_boolean 5014 mips_elf_overflow_p (bfd_vma value, int bits) 5015 { 5016 bfd_signed_vma svalue = (bfd_signed_vma) value; 5017 5018 if (svalue > (1 << (bits - 1)) - 1) 5019 /* The value is too big. */ 5020 return TRUE; 5021 else if (svalue < -(1 << (bits - 1))) 5022 /* The value is too small. */ 5023 return TRUE; 5024 5025 /* All is well. */ 5026 return FALSE; 5027 } 5028 5029 /* Calculate the %high function. */ 5030 5031 static bfd_vma 5032 mips_elf_high (bfd_vma value) 5033 { 5034 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 5035 } 5036 5037 /* Calculate the %higher function. */ 5038 5039 static bfd_vma 5040 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 5041 { 5042 #ifdef BFD64 5043 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 5044 #else 5045 abort (); 5046 return MINUS_ONE; 5047 #endif 5048 } 5049 5050 /* Calculate the %highest function. */ 5051 5052 static bfd_vma 5053 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 5054 { 5055 #ifdef BFD64 5056 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 5057 #else 5058 abort (); 5059 return MINUS_ONE; 5060 #endif 5061 } 5062 5063 /* Create the .compact_rel section. */ 5064 5065 static bfd_boolean 5066 mips_elf_create_compact_rel_section 5067 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 5068 { 5069 flagword flags; 5070 register asection *s; 5071 5072 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL) 5073 { 5074 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 5075 | SEC_READONLY); 5076 5077 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags); 5078 if (s == NULL 5079 || ! bfd_set_section_alignment (abfd, s, 5080 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 5081 return FALSE; 5082 5083 s->size = sizeof (Elf32_External_compact_rel); 5084 } 5085 5086 return TRUE; 5087 } 5088 5089 /* Create the .got section to hold the global offset table. */ 5090 5091 static bfd_boolean 5092 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 5093 { 5094 flagword flags; 5095 register asection *s; 5096 struct elf_link_hash_entry *h; 5097 struct bfd_link_hash_entry *bh; 5098 struct mips_elf_link_hash_table *htab; 5099 5100 htab = mips_elf_hash_table (info); 5101 BFD_ASSERT (htab != NULL); 5102 5103 /* This function may be called more than once. */ 5104 if (htab->sgot) 5105 return TRUE; 5106 5107 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 5108 | SEC_LINKER_CREATED); 5109 5110 /* We have to use an alignment of 2**4 here because this is hardcoded 5111 in the function stub generation and in the linker script. */ 5112 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 5113 if (s == NULL 5114 || ! bfd_set_section_alignment (abfd, s, 4)) 5115 return FALSE; 5116 htab->sgot = s; 5117 5118 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 5119 linker script because we don't want to define the symbol if we 5120 are not creating a global offset table. */ 5121 bh = NULL; 5122 if (! (_bfd_generic_link_add_one_symbol 5123 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 5124 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 5125 return FALSE; 5126 5127 h = (struct elf_link_hash_entry *) bh; 5128 h->non_elf = 0; 5129 h->def_regular = 1; 5130 h->type = STT_OBJECT; 5131 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 5132 elf_hash_table (info)->hgot = h; 5133 5134 if (info->shared 5135 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 5136 return FALSE; 5137 5138 htab->got_info = mips_elf_create_got_info (abfd); 5139 mips_elf_section_data (s)->elf.this_hdr.sh_flags 5140 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 5141 5142 /* We also need a .got.plt section when generating PLTs. */ 5143 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", 5144 SEC_ALLOC | SEC_LOAD 5145 | SEC_HAS_CONTENTS 5146 | SEC_IN_MEMORY 5147 | SEC_LINKER_CREATED); 5148 if (s == NULL) 5149 return FALSE; 5150 htab->sgotplt = s; 5151 5152 return TRUE; 5153 } 5154 5155 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 5156 __GOTT_INDEX__ symbols. These symbols are only special for 5157 shared objects; they are not used in executables. */ 5158 5159 static bfd_boolean 5160 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 5161 { 5162 return (mips_elf_hash_table (info)->is_vxworks 5163 && info->shared 5164 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 5165 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 5166 } 5167 5168 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 5169 require an la25 stub. See also mips_elf_local_pic_function_p, 5170 which determines whether the destination function ever requires a 5171 stub. */ 5172 5173 static bfd_boolean 5174 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type, 5175 bfd_boolean target_is_16_bit_code_p) 5176 { 5177 /* We specifically ignore branches and jumps from EF_PIC objects, 5178 where the onus is on the compiler or programmer to perform any 5179 necessary initialization of $25. Sometimes such initialization 5180 is unnecessary; for example, -mno-shared functions do not use 5181 the incoming value of $25, and may therefore be called directly. */ 5182 if (PIC_OBJECT_P (input_bfd)) 5183 return FALSE; 5184 5185 switch (r_type) 5186 { 5187 case R_MIPS_26: 5188 case R_MIPS_PC16: 5189 case R_MIPS_PC21_S2: 5190 case R_MIPS_PC26_S2: 5191 case R_MICROMIPS_26_S1: 5192 case R_MICROMIPS_PC7_S1: 5193 case R_MICROMIPS_PC10_S1: 5194 case R_MICROMIPS_PC16_S1: 5195 case R_MICROMIPS_PC23_S2: 5196 return TRUE; 5197 5198 case R_MIPS16_26: 5199 return !target_is_16_bit_code_p; 5200 5201 default: 5202 return FALSE; 5203 } 5204 } 5205 5206 /* Calculate the value produced by the RELOCATION (which comes from 5207 the INPUT_BFD). The ADDEND is the addend to use for this 5208 RELOCATION; RELOCATION->R_ADDEND is ignored. 5209 5210 The result of the relocation calculation is stored in VALUEP. 5211 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 5212 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 5213 5214 This function returns bfd_reloc_continue if the caller need take no 5215 further action regarding this relocation, bfd_reloc_notsupported if 5216 something goes dramatically wrong, bfd_reloc_overflow if an 5217 overflow occurs, and bfd_reloc_ok to indicate success. */ 5218 5219 static bfd_reloc_status_type 5220 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 5221 asection *input_section, 5222 struct bfd_link_info *info, 5223 const Elf_Internal_Rela *relocation, 5224 bfd_vma addend, reloc_howto_type *howto, 5225 Elf_Internal_Sym *local_syms, 5226 asection **local_sections, bfd_vma *valuep, 5227 const char **namep, 5228 bfd_boolean *cross_mode_jump_p, 5229 bfd_boolean save_addend) 5230 { 5231 /* The eventual value we will return. */ 5232 bfd_vma value; 5233 /* The address of the symbol against which the relocation is 5234 occurring. */ 5235 bfd_vma symbol = 0; 5236 /* The final GP value to be used for the relocatable, executable, or 5237 shared object file being produced. */ 5238 bfd_vma gp; 5239 /* The place (section offset or address) of the storage unit being 5240 relocated. */ 5241 bfd_vma p; 5242 /* The value of GP used to create the relocatable object. */ 5243 bfd_vma gp0; 5244 /* The offset into the global offset table at which the address of 5245 the relocation entry symbol, adjusted by the addend, resides 5246 during execution. */ 5247 bfd_vma g = MINUS_ONE; 5248 /* The section in which the symbol referenced by the relocation is 5249 located. */ 5250 asection *sec = NULL; 5251 struct mips_elf_link_hash_entry *h = NULL; 5252 /* TRUE if the symbol referred to by this relocation is a local 5253 symbol. */ 5254 bfd_boolean local_p, was_local_p; 5255 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 5256 bfd_boolean gp_disp_p = FALSE; 5257 /* TRUE if the symbol referred to by this relocation is 5258 "__gnu_local_gp". */ 5259 bfd_boolean gnu_local_gp_p = FALSE; 5260 Elf_Internal_Shdr *symtab_hdr; 5261 size_t extsymoff; 5262 unsigned long r_symndx; 5263 int r_type; 5264 /* TRUE if overflow occurred during the calculation of the 5265 relocation value. */ 5266 bfd_boolean overflowed_p; 5267 /* TRUE if this relocation refers to a MIPS16 function. */ 5268 bfd_boolean target_is_16_bit_code_p = FALSE; 5269 bfd_boolean target_is_micromips_code_p = FALSE; 5270 struct mips_elf_link_hash_table *htab; 5271 bfd *dynobj; 5272 5273 dynobj = elf_hash_table (info)->dynobj; 5274 htab = mips_elf_hash_table (info); 5275 BFD_ASSERT (htab != NULL); 5276 5277 /* Parse the relocation. */ 5278 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 5279 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5280 p = (input_section->output_section->vma 5281 + input_section->output_offset 5282 + relocation->r_offset); 5283 5284 /* Assume that there will be no overflow. */ 5285 overflowed_p = FALSE; 5286 5287 /* Figure out whether or not the symbol is local, and get the offset 5288 used in the array of hash table entries. */ 5289 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 5290 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 5291 local_sections); 5292 was_local_p = local_p; 5293 if (! elf_bad_symtab (input_bfd)) 5294 extsymoff = symtab_hdr->sh_info; 5295 else 5296 { 5297 /* The symbol table does not follow the rule that local symbols 5298 must come before globals. */ 5299 extsymoff = 0; 5300 } 5301 5302 /* Figure out the value of the symbol. */ 5303 if (local_p) 5304 { 5305 Elf_Internal_Sym *sym; 5306 5307 sym = local_syms + r_symndx; 5308 sec = local_sections[r_symndx]; 5309 5310 symbol = sec->output_section->vma + sec->output_offset; 5311 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION 5312 || (sec->flags & SEC_MERGE)) 5313 symbol += sym->st_value; 5314 if ((sec->flags & SEC_MERGE) 5315 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 5316 { 5317 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 5318 addend -= symbol; 5319 addend += sec->output_section->vma + sec->output_offset; 5320 } 5321 5322 /* MIPS16/microMIPS text labels should be treated as odd. */ 5323 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 5324 ++symbol; 5325 5326 /* Record the name of this symbol, for our caller. */ 5327 *namep = bfd_elf_string_from_elf_section (input_bfd, 5328 symtab_hdr->sh_link, 5329 sym->st_name); 5330 if (*namep == '\0') 5331 *namep = bfd_section_name (input_bfd, sec); 5332 5333 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 5334 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other); 5335 } 5336 else 5337 { 5338 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 5339 5340 /* For global symbols we look up the symbol in the hash-table. */ 5341 h = ((struct mips_elf_link_hash_entry *) 5342 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 5343 /* Find the real hash-table entry for this symbol. */ 5344 while (h->root.root.type == bfd_link_hash_indirect 5345 || h->root.root.type == bfd_link_hash_warning) 5346 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 5347 5348 /* Record the name of this symbol, for our caller. */ 5349 *namep = h->root.root.root.string; 5350 5351 /* See if this is the special _gp_disp symbol. Note that such a 5352 symbol must always be a global symbol. */ 5353 if (strcmp (*namep, "_gp_disp") == 0 5354 && ! NEWABI_P (input_bfd)) 5355 { 5356 /* Relocations against _gp_disp are permitted only with 5357 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 5358 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 5359 return bfd_reloc_notsupported; 5360 5361 gp_disp_p = TRUE; 5362 } 5363 /* See if this is the special _gp symbol. Note that such a 5364 symbol must always be a global symbol. */ 5365 else if (strcmp (*namep, "__gnu_local_gp") == 0) 5366 gnu_local_gp_p = TRUE; 5367 5368 5369 /* If this symbol is defined, calculate its address. Note that 5370 _gp_disp is a magic symbol, always implicitly defined by the 5371 linker, so it's inappropriate to check to see whether or not 5372 its defined. */ 5373 else if ((h->root.root.type == bfd_link_hash_defined 5374 || h->root.root.type == bfd_link_hash_defweak) 5375 && h->root.root.u.def.section) 5376 { 5377 sec = h->root.root.u.def.section; 5378 if (sec->output_section) 5379 symbol = (h->root.root.u.def.value 5380 + sec->output_section->vma 5381 + sec->output_offset); 5382 else 5383 symbol = h->root.root.u.def.value; 5384 } 5385 else if (h->root.root.type == bfd_link_hash_undefweak) 5386 /* We allow relocations against undefined weak symbols, giving 5387 it the value zero, so that you can undefined weak functions 5388 and check to see if they exist by looking at their 5389 addresses. */ 5390 symbol = 0; 5391 else if (info->unresolved_syms_in_objects == RM_IGNORE 5392 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5393 symbol = 0; 5394 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5395 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5396 { 5397 /* If this is a dynamic link, we should have created a 5398 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5399 in in _bfd_mips_elf_create_dynamic_sections. 5400 Otherwise, we should define the symbol with a value of 0. 5401 FIXME: It should probably get into the symbol table 5402 somehow as well. */ 5403 BFD_ASSERT (! info->shared); 5404 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5405 symbol = 0; 5406 } 5407 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5408 { 5409 /* This is an optional symbol - an Irix specific extension to the 5410 ELF spec. Ignore it for now. 5411 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5412 than simply ignoring them, but we do not handle this for now. 5413 For information see the "64-bit ELF Object File Specification" 5414 which is available from here: 5415 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5416 symbol = 0; 5417 } 5418 else if ((*info->callbacks->undefined_symbol) 5419 (info, h->root.root.root.string, input_bfd, 5420 input_section, relocation->r_offset, 5421 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5422 || ELF_ST_VISIBILITY (h->root.other))) 5423 { 5424 return bfd_reloc_undefined; 5425 } 5426 else 5427 { 5428 return bfd_reloc_notsupported; 5429 } 5430 5431 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5432 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other); 5433 } 5434 5435 /* If this is a reference to a 16-bit function with a stub, we need 5436 to redirect the relocation to the stub unless: 5437 5438 (a) the relocation is for a MIPS16 JAL; 5439 5440 (b) the relocation is for a MIPS16 PIC call, and there are no 5441 non-MIPS16 uses of the GOT slot; or 5442 5443 (c) the section allows direct references to MIPS16 functions. */ 5444 if (r_type != R_MIPS16_26 5445 && !info->relocatable 5446 && ((h != NULL 5447 && h->fn_stub != NULL 5448 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5449 || (local_p 5450 && mips_elf_tdata (input_bfd)->local_stubs != NULL 5451 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5452 && !section_allows_mips16_refs_p (input_section)) 5453 { 5454 /* This is a 32- or 64-bit call to a 16-bit function. We should 5455 have already noticed that we were going to need the 5456 stub. */ 5457 if (local_p) 5458 { 5459 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx]; 5460 value = 0; 5461 } 5462 else 5463 { 5464 BFD_ASSERT (h->need_fn_stub); 5465 if (h->la25_stub) 5466 { 5467 /* If a LA25 header for the stub itself exists, point to the 5468 prepended LUI/ADDIU sequence. */ 5469 sec = h->la25_stub->stub_section; 5470 value = h->la25_stub->offset; 5471 } 5472 else 5473 { 5474 sec = h->fn_stub; 5475 value = 0; 5476 } 5477 } 5478 5479 symbol = sec->output_section->vma + sec->output_offset + value; 5480 /* The target is 16-bit, but the stub isn't. */ 5481 target_is_16_bit_code_p = FALSE; 5482 } 5483 /* If this is a MIPS16 call with a stub, that is made through the PLT or 5484 to a standard MIPS function, we need to redirect the call to the stub. 5485 Note that we specifically exclude R_MIPS16_CALL16 from this behavior; 5486 indirect calls should use an indirect stub instead. */ 5487 else if (r_type == R_MIPS16_26 && !info->relocatable 5488 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5489 || (local_p 5490 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL 5491 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5492 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p)) 5493 { 5494 if (local_p) 5495 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5496 else 5497 { 5498 /* If both call_stub and call_fp_stub are defined, we can figure 5499 out which one to use by checking which one appears in the input 5500 file. */ 5501 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5502 { 5503 asection *o; 5504 5505 sec = NULL; 5506 for (o = input_bfd->sections; o != NULL; o = o->next) 5507 { 5508 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5509 { 5510 sec = h->call_fp_stub; 5511 break; 5512 } 5513 } 5514 if (sec == NULL) 5515 sec = h->call_stub; 5516 } 5517 else if (h->call_stub != NULL) 5518 sec = h->call_stub; 5519 else 5520 sec = h->call_fp_stub; 5521 } 5522 5523 BFD_ASSERT (sec->size > 0); 5524 symbol = sec->output_section->vma + sec->output_offset; 5525 } 5526 /* If this is a direct call to a PIC function, redirect to the 5527 non-PIC stub. */ 5528 else if (h != NULL && h->la25_stub 5529 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type, 5530 target_is_16_bit_code_p)) 5531 symbol = (h->la25_stub->stub_section->output_section->vma 5532 + h->la25_stub->stub_section->output_offset 5533 + h->la25_stub->offset); 5534 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT 5535 entry is used if a standard PLT entry has also been made. In this 5536 case the symbol will have been set by mips_elf_set_plt_sym_value 5537 to point to the standard PLT entry, so redirect to the compressed 5538 one. */ 5539 else if ((r_type == R_MIPS16_26 || r_type == R_MICROMIPS_26_S1) 5540 && !info->relocatable 5541 && h != NULL 5542 && h->use_plt_entry 5543 && h->root.plt.plist->comp_offset != MINUS_ONE 5544 && h->root.plt.plist->mips_offset != MINUS_ONE) 5545 { 5546 bfd_boolean micromips_p = MICROMIPS_P (abfd); 5547 5548 sec = htab->splt; 5549 symbol = (sec->output_section->vma 5550 + sec->output_offset 5551 + htab->plt_header_size 5552 + htab->plt_mips_offset 5553 + h->root.plt.plist->comp_offset 5554 + 1); 5555 5556 target_is_16_bit_code_p = !micromips_p; 5557 target_is_micromips_code_p = micromips_p; 5558 } 5559 5560 /* Make sure MIPS16 and microMIPS are not used together. */ 5561 if ((r_type == R_MIPS16_26 && target_is_micromips_code_p) 5562 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p)) 5563 { 5564 (*_bfd_error_handler) 5565 (_("MIPS16 and microMIPS functions cannot call each other")); 5566 return bfd_reloc_notsupported; 5567 } 5568 5569 /* Calls from 16-bit code to 32-bit code and vice versa require the 5570 mode change. However, we can ignore calls to undefined weak symbols, 5571 which should never be executed at runtime. This exception is important 5572 because the assembly writer may have "known" that any definition of the 5573 symbol would be 16-bit code, and that direct jumps were therefore 5574 acceptable. */ 5575 *cross_mode_jump_p = (!info->relocatable 5576 && !(h && h->root.root.type == bfd_link_hash_undefweak) 5577 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5578 || (r_type == R_MICROMIPS_26_S1 5579 && !target_is_micromips_code_p) 5580 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5581 && (target_is_16_bit_code_p 5582 || target_is_micromips_code_p)))); 5583 5584 local_p = (h == NULL || mips_use_local_got_p (info, h)); 5585 5586 gp0 = _bfd_get_gp_value (input_bfd); 5587 gp = _bfd_get_gp_value (abfd); 5588 if (htab->got_info) 5589 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5590 5591 if (gnu_local_gp_p) 5592 symbol = gp; 5593 5594 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent 5595 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the 5596 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */ 5597 if (got_page_reloc_p (r_type) && !local_p) 5598 { 5599 r_type = (micromips_reloc_p (r_type) 5600 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP); 5601 addend = 0; 5602 } 5603 5604 /* If we haven't already determined the GOT offset, and we're going 5605 to need it, get it now. */ 5606 switch (r_type) 5607 { 5608 case R_MIPS16_CALL16: 5609 case R_MIPS16_GOT16: 5610 case R_MIPS_CALL16: 5611 case R_MIPS_GOT16: 5612 case R_MIPS_GOT_DISP: 5613 case R_MIPS_GOT_HI16: 5614 case R_MIPS_CALL_HI16: 5615 case R_MIPS_GOT_LO16: 5616 case R_MIPS_CALL_LO16: 5617 case R_MICROMIPS_CALL16: 5618 case R_MICROMIPS_GOT16: 5619 case R_MICROMIPS_GOT_DISP: 5620 case R_MICROMIPS_GOT_HI16: 5621 case R_MICROMIPS_CALL_HI16: 5622 case R_MICROMIPS_GOT_LO16: 5623 case R_MICROMIPS_CALL_LO16: 5624 case R_MIPS_TLS_GD: 5625 case R_MIPS_TLS_GOTTPREL: 5626 case R_MIPS_TLS_LDM: 5627 case R_MIPS16_TLS_GD: 5628 case R_MIPS16_TLS_GOTTPREL: 5629 case R_MIPS16_TLS_LDM: 5630 case R_MICROMIPS_TLS_GD: 5631 case R_MICROMIPS_TLS_GOTTPREL: 5632 case R_MICROMIPS_TLS_LDM: 5633 /* Find the index into the GOT where this value is located. */ 5634 if (tls_ldm_reloc_p (r_type)) 5635 { 5636 g = mips_elf_local_got_index (abfd, input_bfd, info, 5637 0, 0, NULL, r_type); 5638 if (g == MINUS_ONE) 5639 return bfd_reloc_outofrange; 5640 } 5641 else if (!local_p) 5642 { 5643 /* On VxWorks, CALL relocations should refer to the .got.plt 5644 entry, which is initialized to point at the PLT stub. */ 5645 if (htab->is_vxworks 5646 && (call_hi16_reloc_p (r_type) 5647 || call_lo16_reloc_p (r_type) 5648 || call16_reloc_p (r_type))) 5649 { 5650 BFD_ASSERT (addend == 0); 5651 BFD_ASSERT (h->root.needs_plt); 5652 g = mips_elf_gotplt_index (info, &h->root); 5653 } 5654 else 5655 { 5656 BFD_ASSERT (addend == 0); 5657 g = mips_elf_global_got_index (abfd, info, input_bfd, 5658 &h->root, r_type); 5659 if (!TLS_RELOC_P (r_type) 5660 && !elf_hash_table (info)->dynamic_sections_created) 5661 /* This is a static link. We must initialize the GOT entry. */ 5662 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5663 } 5664 } 5665 else if (!htab->is_vxworks 5666 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5667 /* The calculation below does not involve "g". */ 5668 break; 5669 else 5670 { 5671 g = mips_elf_local_got_index (abfd, input_bfd, info, 5672 symbol + addend, r_symndx, h, r_type); 5673 if (g == MINUS_ONE) 5674 return bfd_reloc_outofrange; 5675 } 5676 5677 /* Convert GOT indices to actual offsets. */ 5678 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5679 break; 5680 } 5681 5682 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5683 symbols are resolved by the loader. Add them to .rela.dyn. */ 5684 if (h != NULL && is_gott_symbol (info, &h->root)) 5685 { 5686 Elf_Internal_Rela outrel; 5687 bfd_byte *loc; 5688 asection *s; 5689 5690 s = mips_elf_rel_dyn_section (info, FALSE); 5691 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5692 5693 outrel.r_offset = (input_section->output_section->vma 5694 + input_section->output_offset 5695 + relocation->r_offset); 5696 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5697 outrel.r_addend = addend; 5698 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5699 5700 /* If we've written this relocation for a readonly section, 5701 we need to set DF_TEXTREL again, so that we do not delete the 5702 DT_TEXTREL tag. */ 5703 if (MIPS_ELF_READONLY_SECTION (input_section)) 5704 info->flags |= DF_TEXTREL; 5705 5706 *valuep = 0; 5707 return bfd_reloc_ok; 5708 } 5709 5710 /* Figure out what kind of relocation is being performed. */ 5711 switch (r_type) 5712 { 5713 case R_MIPS_NONE: 5714 return bfd_reloc_continue; 5715 5716 case R_MIPS_16: 5717 if (howto->partial_inplace) 5718 addend = _bfd_mips_elf_sign_extend (addend, 16); 5719 value = symbol + addend; 5720 overflowed_p = mips_elf_overflow_p (value, 16); 5721 break; 5722 5723 case R_MIPS_32: 5724 case R_MIPS_REL32: 5725 case R_MIPS_64: 5726 if ((info->shared 5727 || (htab->root.dynamic_sections_created 5728 && h != NULL 5729 && h->root.def_dynamic 5730 && !h->root.def_regular 5731 && !h->has_static_relocs)) 5732 && r_symndx != STN_UNDEF 5733 && (h == NULL 5734 || h->root.root.type != bfd_link_hash_undefweak 5735 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5736 && (input_section->flags & SEC_ALLOC) != 0) 5737 { 5738 /* If we're creating a shared library, then we can't know 5739 where the symbol will end up. So, we create a relocation 5740 record in the output, and leave the job up to the dynamic 5741 linker. We must do the same for executable references to 5742 shared library symbols, unless we've decided to use copy 5743 relocs or PLTs instead. */ 5744 value = addend; 5745 if (!mips_elf_create_dynamic_relocation (abfd, 5746 info, 5747 relocation, 5748 h, 5749 sec, 5750 symbol, 5751 &value, 5752 input_section)) 5753 return bfd_reloc_undefined; 5754 } 5755 else 5756 { 5757 if (r_type != R_MIPS_REL32) 5758 value = symbol + addend; 5759 else 5760 value = addend; 5761 } 5762 value &= howto->dst_mask; 5763 break; 5764 5765 case R_MIPS_PC32: 5766 value = symbol + addend - p; 5767 value &= howto->dst_mask; 5768 break; 5769 5770 case R_MIPS16_26: 5771 /* The calculation for R_MIPS16_26 is just the same as for an 5772 R_MIPS_26. It's only the storage of the relocated field into 5773 the output file that's different. That's handled in 5774 mips_elf_perform_relocation. So, we just fall through to the 5775 R_MIPS_26 case here. */ 5776 case R_MIPS_26: 5777 case R_MICROMIPS_26_S1: 5778 { 5779 unsigned int shift; 5780 5781 /* Make sure the target of JALX is word-aligned. Bit 0 must be 5782 the correct ISA mode selector and bit 1 must be 0. */ 5783 if (*cross_mode_jump_p && (symbol & 3) != (r_type == R_MIPS_26)) 5784 return bfd_reloc_outofrange; 5785 5786 /* Shift is 2, unusually, for microMIPS JALX. */ 5787 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2; 5788 5789 if (was_local_p) 5790 value = addend | ((p + 4) & (0xfc000000 << shift)); 5791 else if (howto->partial_inplace) 5792 value = _bfd_mips_elf_sign_extend (addend, 26 + shift); 5793 else 5794 value = addend; 5795 value = (value + symbol) >> shift; 5796 if (!was_local_p && h->root.root.type != bfd_link_hash_undefweak) 5797 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift)); 5798 value &= howto->dst_mask; 5799 } 5800 break; 5801 5802 case R_MIPS_TLS_DTPREL_HI16: 5803 case R_MIPS16_TLS_DTPREL_HI16: 5804 case R_MICROMIPS_TLS_DTPREL_HI16: 5805 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5806 & howto->dst_mask); 5807 break; 5808 5809 case R_MIPS_TLS_DTPREL_LO16: 5810 case R_MIPS_TLS_DTPREL32: 5811 case R_MIPS_TLS_DTPREL64: 5812 case R_MIPS16_TLS_DTPREL_LO16: 5813 case R_MICROMIPS_TLS_DTPREL_LO16: 5814 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5815 break; 5816 5817 case R_MIPS_TLS_TPREL_HI16: 5818 case R_MIPS16_TLS_TPREL_HI16: 5819 case R_MICROMIPS_TLS_TPREL_HI16: 5820 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5821 & howto->dst_mask); 5822 break; 5823 5824 case R_MIPS_TLS_TPREL_LO16: 5825 case R_MIPS_TLS_TPREL32: 5826 case R_MIPS_TLS_TPREL64: 5827 case R_MIPS16_TLS_TPREL_LO16: 5828 case R_MICROMIPS_TLS_TPREL_LO16: 5829 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5830 break; 5831 5832 case R_MIPS_HI16: 5833 case R_MIPS16_HI16: 5834 case R_MICROMIPS_HI16: 5835 if (!gp_disp_p) 5836 { 5837 value = mips_elf_high (addend + symbol); 5838 value &= howto->dst_mask; 5839 } 5840 else 5841 { 5842 /* For MIPS16 ABI code we generate this sequence 5843 0: li $v0,%hi(_gp_disp) 5844 4: addiupc $v1,%lo(_gp_disp) 5845 8: sll $v0,16 5846 12: addu $v0,$v1 5847 14: move $gp,$v0 5848 So the offsets of hi and lo relocs are the same, but the 5849 base $pc is that used by the ADDIUPC instruction at $t9 + 4. 5850 ADDIUPC clears the low two bits of the instruction address, 5851 so the base is ($t9 + 4) & ~3. */ 5852 if (r_type == R_MIPS16_HI16) 5853 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3)); 5854 /* The microMIPS .cpload sequence uses the same assembly 5855 instructions as the traditional psABI version, but the 5856 incoming $t9 has the low bit set. */ 5857 else if (r_type == R_MICROMIPS_HI16) 5858 value = mips_elf_high (addend + gp - p - 1); 5859 else 5860 value = mips_elf_high (addend + gp - p); 5861 overflowed_p = mips_elf_overflow_p (value, 16); 5862 } 5863 break; 5864 5865 case R_MIPS_LO16: 5866 case R_MIPS16_LO16: 5867 case R_MICROMIPS_LO16: 5868 case R_MICROMIPS_HI0_LO16: 5869 if (!gp_disp_p) 5870 value = (symbol + addend) & howto->dst_mask; 5871 else 5872 { 5873 /* See the comment for R_MIPS16_HI16 above for the reason 5874 for this conditional. */ 5875 if (r_type == R_MIPS16_LO16) 5876 value = addend + gp - (p & ~(bfd_vma) 0x3); 5877 else if (r_type == R_MICROMIPS_LO16 5878 || r_type == R_MICROMIPS_HI0_LO16) 5879 value = addend + gp - p + 3; 5880 else 5881 value = addend + gp - p + 4; 5882 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5883 for overflow. But, on, say, IRIX5, relocations against 5884 _gp_disp are normally generated from the .cpload 5885 pseudo-op. It generates code that normally looks like 5886 this: 5887 5888 lui $gp,%hi(_gp_disp) 5889 addiu $gp,$gp,%lo(_gp_disp) 5890 addu $gp,$gp,$t9 5891 5892 Here $t9 holds the address of the function being called, 5893 as required by the MIPS ELF ABI. The R_MIPS_LO16 5894 relocation can easily overflow in this situation, but the 5895 R_MIPS_HI16 relocation will handle the overflow. 5896 Therefore, we consider this a bug in the MIPS ABI, and do 5897 not check for overflow here. */ 5898 } 5899 break; 5900 5901 case R_MIPS_LITERAL: 5902 case R_MICROMIPS_LITERAL: 5903 /* Because we don't merge literal sections, we can handle this 5904 just like R_MIPS_GPREL16. In the long run, we should merge 5905 shared literals, and then we will need to additional work 5906 here. */ 5907 5908 /* Fall through. */ 5909 5910 case R_MIPS16_GPREL: 5911 /* The R_MIPS16_GPREL performs the same calculation as 5912 R_MIPS_GPREL16, but stores the relocated bits in a different 5913 order. We don't need to do anything special here; the 5914 differences are handled in mips_elf_perform_relocation. */ 5915 case R_MIPS_GPREL16: 5916 case R_MICROMIPS_GPREL7_S2: 5917 case R_MICROMIPS_GPREL16: 5918 /* Only sign-extend the addend if it was extracted from the 5919 instruction. If the addend was separate, leave it alone, 5920 otherwise we may lose significant bits. */ 5921 if (howto->partial_inplace) 5922 addend = _bfd_mips_elf_sign_extend (addend, 16); 5923 value = symbol + addend - gp; 5924 /* If the symbol was local, any earlier relocatable links will 5925 have adjusted its addend with the gp offset, so compensate 5926 for that now. Don't do it for symbols forced local in this 5927 link, though, since they won't have had the gp offset applied 5928 to them before. */ 5929 if (was_local_p) 5930 value += gp0; 5931 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5932 overflowed_p = mips_elf_overflow_p (value, 16); 5933 break; 5934 5935 case R_MIPS16_GOT16: 5936 case R_MIPS16_CALL16: 5937 case R_MIPS_GOT16: 5938 case R_MIPS_CALL16: 5939 case R_MICROMIPS_GOT16: 5940 case R_MICROMIPS_CALL16: 5941 /* VxWorks does not have separate local and global semantics for 5942 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5943 if (!htab->is_vxworks && local_p) 5944 { 5945 value = mips_elf_got16_entry (abfd, input_bfd, info, 5946 symbol + addend, !was_local_p); 5947 if (value == MINUS_ONE) 5948 return bfd_reloc_outofrange; 5949 value 5950 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5951 overflowed_p = mips_elf_overflow_p (value, 16); 5952 break; 5953 } 5954 5955 /* Fall through. */ 5956 5957 case R_MIPS_TLS_GD: 5958 case R_MIPS_TLS_GOTTPREL: 5959 case R_MIPS_TLS_LDM: 5960 case R_MIPS_GOT_DISP: 5961 case R_MIPS16_TLS_GD: 5962 case R_MIPS16_TLS_GOTTPREL: 5963 case R_MIPS16_TLS_LDM: 5964 case R_MICROMIPS_TLS_GD: 5965 case R_MICROMIPS_TLS_GOTTPREL: 5966 case R_MICROMIPS_TLS_LDM: 5967 case R_MICROMIPS_GOT_DISP: 5968 value = g; 5969 overflowed_p = mips_elf_overflow_p (value, 16); 5970 break; 5971 5972 case R_MIPS_GPREL32: 5973 value = (addend + symbol + gp0 - gp); 5974 if (!save_addend) 5975 value &= howto->dst_mask; 5976 break; 5977 5978 case R_MIPS_PC16: 5979 case R_MIPS_GNU_REL16_S2: 5980 if (howto->partial_inplace) 5981 addend = _bfd_mips_elf_sign_extend (addend, 18); 5982 5983 if ((symbol + addend) & 3) 5984 return bfd_reloc_outofrange; 5985 5986 value = symbol + addend - p; 5987 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 5988 overflowed_p = mips_elf_overflow_p (value, 18); 5989 value >>= howto->rightshift; 5990 value &= howto->dst_mask; 5991 break; 5992 5993 case R_MIPS_PC21_S2: 5994 if (howto->partial_inplace) 5995 addend = _bfd_mips_elf_sign_extend (addend, 23); 5996 5997 if ((symbol + addend) & 3) 5998 return bfd_reloc_outofrange; 5999 6000 value = symbol + addend - p; 6001 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6002 overflowed_p = mips_elf_overflow_p (value, 23); 6003 value >>= howto->rightshift; 6004 value &= howto->dst_mask; 6005 break; 6006 6007 case R_MIPS_PC26_S2: 6008 if (howto->partial_inplace) 6009 addend = _bfd_mips_elf_sign_extend (addend, 28); 6010 6011 if ((symbol + addend) & 3) 6012 return bfd_reloc_outofrange; 6013 6014 value = symbol + addend - p; 6015 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6016 overflowed_p = mips_elf_overflow_p (value, 28); 6017 value >>= howto->rightshift; 6018 value &= howto->dst_mask; 6019 break; 6020 6021 case R_MIPS_PC18_S3: 6022 if (howto->partial_inplace) 6023 addend = _bfd_mips_elf_sign_extend (addend, 21); 6024 6025 if ((symbol + addend) & 7) 6026 return bfd_reloc_outofrange; 6027 6028 value = symbol + addend - ((p | 7) ^ 7); 6029 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6030 overflowed_p = mips_elf_overflow_p (value, 21); 6031 value >>= howto->rightshift; 6032 value &= howto->dst_mask; 6033 break; 6034 6035 case R_MIPS_PC19_S2: 6036 if (howto->partial_inplace) 6037 addend = _bfd_mips_elf_sign_extend (addend, 21); 6038 6039 if ((symbol + addend) & 3) 6040 return bfd_reloc_outofrange; 6041 6042 value = symbol + addend - p; 6043 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6044 overflowed_p = mips_elf_overflow_p (value, 21); 6045 value >>= howto->rightshift; 6046 value &= howto->dst_mask; 6047 break; 6048 6049 case R_MIPS_PCHI16: 6050 value = mips_elf_high (symbol + addend - p); 6051 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6052 overflowed_p = mips_elf_overflow_p (value, 16); 6053 value &= howto->dst_mask; 6054 break; 6055 6056 case R_MIPS_PCLO16: 6057 if (howto->partial_inplace) 6058 addend = _bfd_mips_elf_sign_extend (addend, 16); 6059 value = symbol + addend - p; 6060 value &= howto->dst_mask; 6061 break; 6062 6063 case R_MICROMIPS_PC7_S1: 6064 if (howto->partial_inplace) 6065 addend = _bfd_mips_elf_sign_extend (addend, 8); 6066 value = symbol + addend - p; 6067 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6068 overflowed_p = mips_elf_overflow_p (value, 8); 6069 value >>= howto->rightshift; 6070 value &= howto->dst_mask; 6071 break; 6072 6073 case R_MICROMIPS_PC10_S1: 6074 if (howto->partial_inplace) 6075 addend = _bfd_mips_elf_sign_extend (addend, 11); 6076 value = symbol + addend - p; 6077 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6078 overflowed_p = mips_elf_overflow_p (value, 11); 6079 value >>= howto->rightshift; 6080 value &= howto->dst_mask; 6081 break; 6082 6083 case R_MICROMIPS_PC16_S1: 6084 if (howto->partial_inplace) 6085 addend = _bfd_mips_elf_sign_extend (addend, 17); 6086 value = symbol + addend - p; 6087 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6088 overflowed_p = mips_elf_overflow_p (value, 17); 6089 value >>= howto->rightshift; 6090 value &= howto->dst_mask; 6091 break; 6092 6093 case R_MICROMIPS_PC23_S2: 6094 if (howto->partial_inplace) 6095 addend = _bfd_mips_elf_sign_extend (addend, 25); 6096 value = symbol + addend - ((p | 3) ^ 3); 6097 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak) 6098 overflowed_p = mips_elf_overflow_p (value, 25); 6099 value >>= howto->rightshift; 6100 value &= howto->dst_mask; 6101 break; 6102 6103 case R_MIPS_GOT_HI16: 6104 case R_MIPS_CALL_HI16: 6105 case R_MICROMIPS_GOT_HI16: 6106 case R_MICROMIPS_CALL_HI16: 6107 /* We're allowed to handle these two relocations identically. 6108 The dynamic linker is allowed to handle the CALL relocations 6109 differently by creating a lazy evaluation stub. */ 6110 value = g; 6111 value = mips_elf_high (value); 6112 value &= howto->dst_mask; 6113 break; 6114 6115 case R_MIPS_GOT_LO16: 6116 case R_MIPS_CALL_LO16: 6117 case R_MICROMIPS_GOT_LO16: 6118 case R_MICROMIPS_CALL_LO16: 6119 value = g & howto->dst_mask; 6120 break; 6121 6122 case R_MIPS_GOT_PAGE: 6123 case R_MICROMIPS_GOT_PAGE: 6124 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 6125 if (value == MINUS_ONE) 6126 return bfd_reloc_outofrange; 6127 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 6128 overflowed_p = mips_elf_overflow_p (value, 16); 6129 break; 6130 6131 case R_MIPS_GOT_OFST: 6132 case R_MICROMIPS_GOT_OFST: 6133 if (local_p) 6134 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 6135 else 6136 value = addend; 6137 overflowed_p = mips_elf_overflow_p (value, 16); 6138 break; 6139 6140 case R_MIPS_SUB: 6141 case R_MICROMIPS_SUB: 6142 value = symbol - addend; 6143 value &= howto->dst_mask; 6144 break; 6145 6146 case R_MIPS_HIGHER: 6147 case R_MICROMIPS_HIGHER: 6148 value = mips_elf_higher (addend + symbol); 6149 value &= howto->dst_mask; 6150 break; 6151 6152 case R_MIPS_HIGHEST: 6153 case R_MICROMIPS_HIGHEST: 6154 value = mips_elf_highest (addend + symbol); 6155 value &= howto->dst_mask; 6156 break; 6157 6158 case R_MIPS_SCN_DISP: 6159 case R_MICROMIPS_SCN_DISP: 6160 value = symbol + addend - sec->output_offset; 6161 value &= howto->dst_mask; 6162 break; 6163 6164 case R_MIPS_JALR: 6165 case R_MICROMIPS_JALR: 6166 /* This relocation is only a hint. In some cases, we optimize 6167 it into a bal instruction. But we don't try to optimize 6168 when the symbol does not resolve locally. */ 6169 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 6170 return bfd_reloc_continue; 6171 value = symbol + addend; 6172 break; 6173 6174 case R_MIPS_PJUMP: 6175 case R_MIPS_GNU_VTINHERIT: 6176 case R_MIPS_GNU_VTENTRY: 6177 /* We don't do anything with these at present. */ 6178 return bfd_reloc_continue; 6179 6180 default: 6181 /* An unrecognized relocation type. */ 6182 return bfd_reloc_notsupported; 6183 } 6184 6185 /* Store the VALUE for our caller. */ 6186 *valuep = value; 6187 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 6188 } 6189 6190 /* Obtain the field relocated by RELOCATION. */ 6191 6192 static bfd_vma 6193 mips_elf_obtain_contents (reloc_howto_type *howto, 6194 const Elf_Internal_Rela *relocation, 6195 bfd *input_bfd, bfd_byte *contents) 6196 { 6197 bfd_vma x; 6198 bfd_byte *location = contents + relocation->r_offset; 6199 6200 /* Obtain the bytes. */ 6201 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); 6202 6203 return x; 6204 } 6205 6206 /* It has been determined that the result of the RELOCATION is the 6207 VALUE. Use HOWTO to place VALUE into the output file at the 6208 appropriate position. The SECTION is the section to which the 6209 relocation applies. 6210 CROSS_MODE_JUMP_P is true if the relocation field 6211 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa. 6212 6213 Returns FALSE if anything goes wrong. */ 6214 6215 static bfd_boolean 6216 mips_elf_perform_relocation (struct bfd_link_info *info, 6217 reloc_howto_type *howto, 6218 const Elf_Internal_Rela *relocation, 6219 bfd_vma value, bfd *input_bfd, 6220 asection *input_section, bfd_byte *contents, 6221 bfd_boolean cross_mode_jump_p) 6222 { 6223 bfd_vma x; 6224 bfd_byte *location; 6225 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 6226 6227 /* Figure out where the relocation is occurring. */ 6228 location = contents + relocation->r_offset; 6229 6230 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 6231 6232 /* Obtain the current value. */ 6233 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 6234 6235 /* Clear the field we are setting. */ 6236 x &= ~howto->dst_mask; 6237 6238 /* Set the field. */ 6239 x |= (value & howto->dst_mask); 6240 6241 /* If required, turn JAL into JALX. */ 6242 if (cross_mode_jump_p && jal_reloc_p (r_type)) 6243 { 6244 bfd_boolean ok; 6245 bfd_vma opcode = x >> 26; 6246 bfd_vma jalx_opcode; 6247 6248 /* Check to see if the opcode is already JAL or JALX. */ 6249 if (r_type == R_MIPS16_26) 6250 { 6251 ok = ((opcode == 0x6) || (opcode == 0x7)); 6252 jalx_opcode = 0x7; 6253 } 6254 else if (r_type == R_MICROMIPS_26_S1) 6255 { 6256 ok = ((opcode == 0x3d) || (opcode == 0x3c)); 6257 jalx_opcode = 0x3c; 6258 } 6259 else 6260 { 6261 ok = ((opcode == 0x3) || (opcode == 0x1d)); 6262 jalx_opcode = 0x1d; 6263 } 6264 6265 /* If the opcode is not JAL or JALX, there's a problem. We cannot 6266 convert J or JALS to JALX. */ 6267 if (!ok) 6268 { 6269 (*_bfd_error_handler) 6270 (_("%B: %A+0x%lx: Unsupported jump between ISA modes; consider recompiling with interlinking enabled."), 6271 input_bfd, 6272 input_section, 6273 (unsigned long) relocation->r_offset); 6274 bfd_set_error (bfd_error_bad_value); 6275 return FALSE; 6276 } 6277 6278 /* Make this the JALX opcode. */ 6279 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 6280 } 6281 6282 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 6283 range. */ 6284 if (!info->relocatable 6285 && !cross_mode_jump_p 6286 && ((JAL_TO_BAL_P (input_bfd) 6287 && r_type == R_MIPS_26 6288 && (x >> 26) == 0x3) /* jal addr */ 6289 || (JALR_TO_BAL_P (input_bfd) 6290 && r_type == R_MIPS_JALR 6291 && x == 0x0320f809) /* jalr t9 */ 6292 || (JR_TO_B_P (input_bfd) 6293 && r_type == R_MIPS_JALR 6294 && x == 0x03200008))) /* jr t9 */ 6295 { 6296 bfd_vma addr; 6297 bfd_vma dest; 6298 bfd_signed_vma off; 6299 6300 addr = (input_section->output_section->vma 6301 + input_section->output_offset 6302 + relocation->r_offset 6303 + 4); 6304 if (r_type == R_MIPS_26) 6305 dest = (value << 2) | ((addr >> 28) << 28); 6306 else 6307 dest = value; 6308 off = dest - addr; 6309 if (off <= 0x1ffff && off >= -0x20000) 6310 { 6311 if (x == 0x03200008) /* jr t9 */ 6312 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 6313 else 6314 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 6315 } 6316 } 6317 6318 /* Put the value into the output. */ 6319 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); 6320 6321 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !info->relocatable, 6322 location); 6323 6324 return TRUE; 6325 } 6326 6327 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 6328 is the original relocation, which is now being transformed into a 6329 dynamic relocation. The ADDENDP is adjusted if necessary; the 6330 caller should store the result in place of the original addend. */ 6331 6332 static bfd_boolean 6333 mips_elf_create_dynamic_relocation (bfd *output_bfd, 6334 struct bfd_link_info *info, 6335 const Elf_Internal_Rela *rel, 6336 struct mips_elf_link_hash_entry *h, 6337 asection *sec, bfd_vma symbol, 6338 bfd_vma *addendp, asection *input_section) 6339 { 6340 Elf_Internal_Rela outrel[3]; 6341 asection *sreloc; 6342 bfd *dynobj; 6343 int r_type; 6344 long indx; 6345 bfd_boolean defined_p; 6346 struct mips_elf_link_hash_table *htab; 6347 6348 htab = mips_elf_hash_table (info); 6349 BFD_ASSERT (htab != NULL); 6350 6351 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 6352 dynobj = elf_hash_table (info)->dynobj; 6353 sreloc = mips_elf_rel_dyn_section (info, FALSE); 6354 BFD_ASSERT (sreloc != NULL); 6355 BFD_ASSERT (sreloc->contents != NULL); 6356 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 6357 < sreloc->size); 6358 6359 outrel[0].r_offset = 6360 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 6361 if (ABI_64_P (output_bfd)) 6362 { 6363 outrel[1].r_offset = 6364 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 6365 outrel[2].r_offset = 6366 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 6367 } 6368 6369 if (outrel[0].r_offset == MINUS_ONE) 6370 /* The relocation field has been deleted. */ 6371 return TRUE; 6372 6373 if (outrel[0].r_offset == MINUS_TWO) 6374 { 6375 /* The relocation field has been converted into a relative value of 6376 some sort. Functions like _bfd_elf_write_section_eh_frame expect 6377 the field to be fully relocated, so add in the symbol's value. */ 6378 *addendp += symbol; 6379 return TRUE; 6380 } 6381 6382 /* We must now calculate the dynamic symbol table index to use 6383 in the relocation. */ 6384 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 6385 { 6386 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 6387 indx = h->root.dynindx; 6388 if (SGI_COMPAT (output_bfd)) 6389 defined_p = h->root.def_regular; 6390 else 6391 /* ??? glibc's ld.so just adds the final GOT entry to the 6392 relocation field. It therefore treats relocs against 6393 defined symbols in the same way as relocs against 6394 undefined symbols. */ 6395 defined_p = FALSE; 6396 } 6397 else 6398 { 6399 if (sec != NULL && bfd_is_abs_section (sec)) 6400 indx = 0; 6401 else if (sec == NULL || sec->owner == NULL) 6402 { 6403 bfd_set_error (bfd_error_bad_value); 6404 return FALSE; 6405 } 6406 else 6407 { 6408 indx = elf_section_data (sec->output_section)->dynindx; 6409 if (indx == 0) 6410 { 6411 asection *osec = htab->root.text_index_section; 6412 indx = elf_section_data (osec)->dynindx; 6413 } 6414 if (indx == 0) 6415 abort (); 6416 } 6417 6418 /* Instead of generating a relocation using the section 6419 symbol, we may as well make it a fully relative 6420 relocation. We want to avoid generating relocations to 6421 local symbols because we used to generate them 6422 incorrectly, without adding the original symbol value, 6423 which is mandated by the ABI for section symbols. In 6424 order to give dynamic loaders and applications time to 6425 phase out the incorrect use, we refrain from emitting 6426 section-relative relocations. It's not like they're 6427 useful, after all. This should be a bit more efficient 6428 as well. */ 6429 /* ??? Although this behavior is compatible with glibc's ld.so, 6430 the ABI says that relocations against STN_UNDEF should have 6431 a symbol value of 0. Irix rld honors this, so relocations 6432 against STN_UNDEF have no effect. */ 6433 if (!SGI_COMPAT (output_bfd)) 6434 indx = 0; 6435 defined_p = TRUE; 6436 } 6437 6438 /* If the relocation was previously an absolute relocation and 6439 this symbol will not be referred to by the relocation, we must 6440 adjust it by the value we give it in the dynamic symbol table. 6441 Otherwise leave the job up to the dynamic linker. */ 6442 if (defined_p && r_type != R_MIPS_REL32) 6443 *addendp += symbol; 6444 6445 if (htab->is_vxworks) 6446 /* VxWorks uses non-relative relocations for this. */ 6447 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 6448 else 6449 /* The relocation is always an REL32 relocation because we don't 6450 know where the shared library will wind up at load-time. */ 6451 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 6452 R_MIPS_REL32); 6453 6454 /* For strict adherence to the ABI specification, we should 6455 generate a R_MIPS_64 relocation record by itself before the 6456 _REL32/_64 record as well, such that the addend is read in as 6457 a 64-bit value (REL32 is a 32-bit relocation, after all). 6458 However, since none of the existing ELF64 MIPS dynamic 6459 loaders seems to care, we don't waste space with these 6460 artificial relocations. If this turns out to not be true, 6461 mips_elf_allocate_dynamic_relocation() should be tweaked so 6462 as to make room for a pair of dynamic relocations per 6463 invocation if ABI_64_P, and here we should generate an 6464 additional relocation record with R_MIPS_64 by itself for a 6465 NULL symbol before this relocation record. */ 6466 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 6467 ABI_64_P (output_bfd) 6468 ? R_MIPS_64 6469 : R_MIPS_NONE); 6470 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 6471 6472 /* Adjust the output offset of the relocation to reference the 6473 correct location in the output file. */ 6474 outrel[0].r_offset += (input_section->output_section->vma 6475 + input_section->output_offset); 6476 outrel[1].r_offset += (input_section->output_section->vma 6477 + input_section->output_offset); 6478 outrel[2].r_offset += (input_section->output_section->vma 6479 + input_section->output_offset); 6480 6481 /* Put the relocation back out. We have to use the special 6482 relocation outputter in the 64-bit case since the 64-bit 6483 relocation format is non-standard. */ 6484 if (ABI_64_P (output_bfd)) 6485 { 6486 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 6487 (output_bfd, &outrel[0], 6488 (sreloc->contents 6489 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 6490 } 6491 else if (htab->is_vxworks) 6492 { 6493 /* VxWorks uses RELA rather than REL dynamic relocations. */ 6494 outrel[0].r_addend = *addendp; 6495 bfd_elf32_swap_reloca_out 6496 (output_bfd, &outrel[0], 6497 (sreloc->contents 6498 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 6499 } 6500 else 6501 bfd_elf32_swap_reloc_out 6502 (output_bfd, &outrel[0], 6503 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 6504 6505 /* We've now added another relocation. */ 6506 ++sreloc->reloc_count; 6507 6508 /* Make sure the output section is writable. The dynamic linker 6509 will be writing to it. */ 6510 elf_section_data (input_section->output_section)->this_hdr.sh_flags 6511 |= SHF_WRITE; 6512 6513 /* On IRIX5, make an entry of compact relocation info. */ 6514 if (IRIX_COMPAT (output_bfd) == ict_irix5) 6515 { 6516 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel"); 6517 bfd_byte *cr; 6518 6519 if (scpt) 6520 { 6521 Elf32_crinfo cptrel; 6522 6523 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 6524 cptrel.vaddr = (rel->r_offset 6525 + input_section->output_section->vma 6526 + input_section->output_offset); 6527 if (r_type == R_MIPS_REL32) 6528 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 6529 else 6530 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 6531 mips_elf_set_cr_dist2to (cptrel, 0); 6532 cptrel.konst = *addendp; 6533 6534 cr = (scpt->contents 6535 + sizeof (Elf32_External_compact_rel)); 6536 mips_elf_set_cr_relvaddr (cptrel, 0); 6537 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 6538 ((Elf32_External_crinfo *) cr 6539 + scpt->reloc_count)); 6540 ++scpt->reloc_count; 6541 } 6542 } 6543 6544 /* If we've written this relocation for a readonly section, 6545 we need to set DF_TEXTREL again, so that we do not delete the 6546 DT_TEXTREL tag. */ 6547 if (MIPS_ELF_READONLY_SECTION (input_section)) 6548 info->flags |= DF_TEXTREL; 6549 6550 return TRUE; 6551 } 6552 6553 /* Return the MACH for a MIPS e_flags value. */ 6554 6555 unsigned long 6556 _bfd_elf_mips_mach (flagword flags) 6557 { 6558 switch (flags & EF_MIPS_MACH) 6559 { 6560 case E_MIPS_MACH_3900: 6561 return bfd_mach_mips3900; 6562 6563 case E_MIPS_MACH_4010: 6564 return bfd_mach_mips4010; 6565 6566 case E_MIPS_MACH_4100: 6567 return bfd_mach_mips4100; 6568 6569 case E_MIPS_MACH_4111: 6570 return bfd_mach_mips4111; 6571 6572 case E_MIPS_MACH_4120: 6573 return bfd_mach_mips4120; 6574 6575 case E_MIPS_MACH_4650: 6576 return bfd_mach_mips4650; 6577 6578 case E_MIPS_MACH_5400: 6579 return bfd_mach_mips5400; 6580 6581 case E_MIPS_MACH_5500: 6582 return bfd_mach_mips5500; 6583 6584 case E_MIPS_MACH_5900: 6585 return bfd_mach_mips5900; 6586 6587 case E_MIPS_MACH_9000: 6588 return bfd_mach_mips9000; 6589 6590 case E_MIPS_MACH_SB1: 6591 return bfd_mach_mips_sb1; 6592 6593 case E_MIPS_MACH_LS2E: 6594 return bfd_mach_mips_loongson_2e; 6595 6596 case E_MIPS_MACH_LS2F: 6597 return bfd_mach_mips_loongson_2f; 6598 6599 case E_MIPS_MACH_LS3A: 6600 return bfd_mach_mips_loongson_3a; 6601 6602 case E_MIPS_MACH_OCTEON3: 6603 return bfd_mach_mips_octeon3; 6604 6605 case E_MIPS_MACH_OCTEON2: 6606 return bfd_mach_mips_octeon2; 6607 6608 case E_MIPS_MACH_OCTEON: 6609 return bfd_mach_mips_octeon; 6610 6611 case E_MIPS_MACH_XLR: 6612 return bfd_mach_mips_xlr; 6613 6614 default: 6615 switch (flags & EF_MIPS_ARCH) 6616 { 6617 default: 6618 case E_MIPS_ARCH_1: 6619 return bfd_mach_mips3000; 6620 6621 case E_MIPS_ARCH_2: 6622 return bfd_mach_mips6000; 6623 6624 case E_MIPS_ARCH_3: 6625 return bfd_mach_mips4000; 6626 6627 case E_MIPS_ARCH_4: 6628 return bfd_mach_mips8000; 6629 6630 case E_MIPS_ARCH_5: 6631 return bfd_mach_mips5; 6632 6633 case E_MIPS_ARCH_32: 6634 return bfd_mach_mipsisa32; 6635 6636 case E_MIPS_ARCH_64: 6637 return bfd_mach_mipsisa64; 6638 6639 case E_MIPS_ARCH_32R2: 6640 return bfd_mach_mipsisa32r2; 6641 6642 case E_MIPS_ARCH_64R2: 6643 return bfd_mach_mipsisa64r2; 6644 6645 case E_MIPS_ARCH_32R6: 6646 return bfd_mach_mipsisa32r6; 6647 6648 case E_MIPS_ARCH_64R6: 6649 return bfd_mach_mipsisa64r6; 6650 } 6651 } 6652 6653 return 0; 6654 } 6655 6656 /* Return printable name for ABI. */ 6657 6658 static INLINE char * 6659 elf_mips_abi_name (bfd *abfd) 6660 { 6661 flagword flags; 6662 6663 flags = elf_elfheader (abfd)->e_flags; 6664 switch (flags & EF_MIPS_ABI) 6665 { 6666 case 0: 6667 if (ABI_N32_P (abfd)) 6668 return "N32"; 6669 else if (ABI_64_P (abfd)) 6670 return "64"; 6671 else 6672 return "none"; 6673 case E_MIPS_ABI_O32: 6674 return "O32"; 6675 case E_MIPS_ABI_O64: 6676 return "O64"; 6677 case E_MIPS_ABI_EABI32: 6678 return "EABI32"; 6679 case E_MIPS_ABI_EABI64: 6680 return "EABI64"; 6681 default: 6682 return "unknown abi"; 6683 } 6684 } 6685 6686 /* MIPS ELF uses two common sections. One is the usual one, and the 6687 other is for small objects. All the small objects are kept 6688 together, and then referenced via the gp pointer, which yields 6689 faster assembler code. This is what we use for the small common 6690 section. This approach is copied from ecoff.c. */ 6691 static asection mips_elf_scom_section; 6692 static asymbol mips_elf_scom_symbol; 6693 static asymbol *mips_elf_scom_symbol_ptr; 6694 6695 /* MIPS ELF also uses an acommon section, which represents an 6696 allocated common symbol which may be overridden by a 6697 definition in a shared library. */ 6698 static asection mips_elf_acom_section; 6699 static asymbol mips_elf_acom_symbol; 6700 static asymbol *mips_elf_acom_symbol_ptr; 6701 6702 /* This is used for both the 32-bit and the 64-bit ABI. */ 6703 6704 void 6705 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6706 { 6707 elf_symbol_type *elfsym; 6708 6709 /* Handle the special MIPS section numbers that a symbol may use. */ 6710 elfsym = (elf_symbol_type *) asym; 6711 switch (elfsym->internal_elf_sym.st_shndx) 6712 { 6713 case SHN_MIPS_ACOMMON: 6714 /* This section is used in a dynamically linked executable file. 6715 It is an allocated common section. The dynamic linker can 6716 either resolve these symbols to something in a shared 6717 library, or it can just leave them here. For our purposes, 6718 we can consider these symbols to be in a new section. */ 6719 if (mips_elf_acom_section.name == NULL) 6720 { 6721 /* Initialize the acommon section. */ 6722 mips_elf_acom_section.name = ".acommon"; 6723 mips_elf_acom_section.flags = SEC_ALLOC; 6724 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6725 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6726 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6727 mips_elf_acom_symbol.name = ".acommon"; 6728 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6729 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6730 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6731 } 6732 asym->section = &mips_elf_acom_section; 6733 break; 6734 6735 case SHN_COMMON: 6736 /* Common symbols less than the GP size are automatically 6737 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6738 if (asym->value > elf_gp_size (abfd) 6739 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6740 || IRIX_COMPAT (abfd) == ict_irix6) 6741 break; 6742 /* Fall through. */ 6743 case SHN_MIPS_SCOMMON: 6744 if (mips_elf_scom_section.name == NULL) 6745 { 6746 /* Initialize the small common section. */ 6747 mips_elf_scom_section.name = ".scommon"; 6748 mips_elf_scom_section.flags = SEC_IS_COMMON; 6749 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6750 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6751 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6752 mips_elf_scom_symbol.name = ".scommon"; 6753 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6754 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6755 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6756 } 6757 asym->section = &mips_elf_scom_section; 6758 asym->value = elfsym->internal_elf_sym.st_size; 6759 break; 6760 6761 case SHN_MIPS_SUNDEFINED: 6762 asym->section = bfd_und_section_ptr; 6763 break; 6764 6765 case SHN_MIPS_TEXT: 6766 { 6767 asection *section = bfd_get_section_by_name (abfd, ".text"); 6768 6769 if (section != NULL) 6770 { 6771 asym->section = section; 6772 /* MIPS_TEXT is a bit special, the address is not an offset 6773 to the base of the .text section. So substract the section 6774 base address to make it an offset. */ 6775 asym->value -= section->vma; 6776 } 6777 } 6778 break; 6779 6780 case SHN_MIPS_DATA: 6781 { 6782 asection *section = bfd_get_section_by_name (abfd, ".data"); 6783 6784 if (section != NULL) 6785 { 6786 asym->section = section; 6787 /* MIPS_DATA is a bit special, the address is not an offset 6788 to the base of the .data section. So substract the section 6789 base address to make it an offset. */ 6790 asym->value -= section->vma; 6791 } 6792 } 6793 break; 6794 } 6795 6796 /* If this is an odd-valued function symbol, assume it's a MIPS16 6797 or microMIPS one. */ 6798 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6799 && (asym->value & 1) != 0) 6800 { 6801 asym->value--; 6802 if (MICROMIPS_P (abfd)) 6803 elfsym->internal_elf_sym.st_other 6804 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other); 6805 else 6806 elfsym->internal_elf_sym.st_other 6807 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6808 } 6809 } 6810 6811 /* Implement elf_backend_eh_frame_address_size. This differs from 6812 the default in the way it handles EABI64. 6813 6814 EABI64 was originally specified as an LP64 ABI, and that is what 6815 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6816 historically accepted the combination of -mabi=eabi and -mlong32, 6817 and this ILP32 variation has become semi-official over time. 6818 Both forms use elf32 and have pointer-sized FDE addresses. 6819 6820 If an EABI object was generated by GCC 4.0 or above, it will have 6821 an empty .gcc_compiled_longXX section, where XX is the size of longs 6822 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6823 have no special marking to distinguish them from LP64 objects. 6824 6825 We don't want users of the official LP64 ABI to be punished for the 6826 existence of the ILP32 variant, but at the same time, we don't want 6827 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6828 We therefore take the following approach: 6829 6830 - If ABFD contains a .gcc_compiled_longXX section, use it to 6831 determine the pointer size. 6832 6833 - Otherwise check the type of the first relocation. Assume that 6834 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6835 6836 - Otherwise punt. 6837 6838 The second check is enough to detect LP64 objects generated by pre-4.0 6839 compilers because, in the kind of output generated by those compilers, 6840 the first relocation will be associated with either a CIE personality 6841 routine or an FDE start address. Furthermore, the compilers never 6842 used a special (non-pointer) encoding for this ABI. 6843 6844 Checking the relocation type should also be safe because there is no 6845 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6846 did so. */ 6847 6848 unsigned int 6849 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6850 { 6851 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6852 return 8; 6853 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6854 { 6855 bfd_boolean long32_p, long64_p; 6856 6857 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6858 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6859 if (long32_p && long64_p) 6860 return 0; 6861 if (long32_p) 6862 return 4; 6863 if (long64_p) 6864 return 8; 6865 6866 if (sec->reloc_count > 0 6867 && elf_section_data (sec)->relocs != NULL 6868 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6869 == R_MIPS_64)) 6870 return 8; 6871 6872 return 0; 6873 } 6874 return 4; 6875 } 6876 6877 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6878 relocations against two unnamed section symbols to resolve to the 6879 same address. For example, if we have code like: 6880 6881 lw $4,%got_disp(.data)($gp) 6882 lw $25,%got_disp(.text)($gp) 6883 jalr $25 6884 6885 then the linker will resolve both relocations to .data and the program 6886 will jump there rather than to .text. 6887 6888 We can work around this problem by giving names to local section symbols. 6889 This is also what the MIPSpro tools do. */ 6890 6891 bfd_boolean 6892 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6893 { 6894 return SGI_COMPAT (abfd); 6895 } 6896 6897 /* Work over a section just before writing it out. This routine is 6898 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6899 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6900 a better way. */ 6901 6902 bfd_boolean 6903 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6904 { 6905 if (hdr->sh_type == SHT_MIPS_REGINFO 6906 && hdr->sh_size > 0) 6907 { 6908 bfd_byte buf[4]; 6909 6910 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6911 BFD_ASSERT (hdr->contents == NULL); 6912 6913 if (bfd_seek (abfd, 6914 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6915 SEEK_SET) != 0) 6916 return FALSE; 6917 H_PUT_32 (abfd, elf_gp (abfd), buf); 6918 if (bfd_bwrite (buf, 4, abfd) != 4) 6919 return FALSE; 6920 } 6921 6922 if (hdr->sh_type == SHT_MIPS_OPTIONS 6923 && hdr->bfd_section != NULL 6924 && mips_elf_section_data (hdr->bfd_section) != NULL 6925 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6926 { 6927 bfd_byte *contents, *l, *lend; 6928 6929 /* We stored the section contents in the tdata field in the 6930 set_section_contents routine. We save the section contents 6931 so that we don't have to read them again. 6932 At this point we know that elf_gp is set, so we can look 6933 through the section contents to see if there is an 6934 ODK_REGINFO structure. */ 6935 6936 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 6937 l = contents; 6938 lend = contents + hdr->sh_size; 6939 while (l + sizeof (Elf_External_Options) <= lend) 6940 { 6941 Elf_Internal_Options intopt; 6942 6943 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6944 &intopt); 6945 if (intopt.size < sizeof (Elf_External_Options)) 6946 { 6947 (*_bfd_error_handler) 6948 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6949 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6950 break; 6951 } 6952 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6953 { 6954 bfd_byte buf[8]; 6955 6956 if (bfd_seek (abfd, 6957 (hdr->sh_offset 6958 + (l - contents) 6959 + sizeof (Elf_External_Options) 6960 + (sizeof (Elf64_External_RegInfo) - 8)), 6961 SEEK_SET) != 0) 6962 return FALSE; 6963 H_PUT_64 (abfd, elf_gp (abfd), buf); 6964 if (bfd_bwrite (buf, 8, abfd) != 8) 6965 return FALSE; 6966 } 6967 else if (intopt.kind == ODK_REGINFO) 6968 { 6969 bfd_byte buf[4]; 6970 6971 if (bfd_seek (abfd, 6972 (hdr->sh_offset 6973 + (l - contents) 6974 + sizeof (Elf_External_Options) 6975 + (sizeof (Elf32_External_RegInfo) - 4)), 6976 SEEK_SET) != 0) 6977 return FALSE; 6978 H_PUT_32 (abfd, elf_gp (abfd), buf); 6979 if (bfd_bwrite (buf, 4, abfd) != 4) 6980 return FALSE; 6981 } 6982 l += intopt.size; 6983 } 6984 } 6985 6986 if (hdr->bfd_section != NULL) 6987 { 6988 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 6989 6990 /* .sbss is not handled specially here because the GNU/Linux 6991 prelinker can convert .sbss from NOBITS to PROGBITS and 6992 changing it back to NOBITS breaks the binary. The entry in 6993 _bfd_mips_elf_special_sections will ensure the correct flags 6994 are set on .sbss if BFD creates it without reading it from an 6995 input file, and without special handling here the flags set 6996 on it in an input file will be followed. */ 6997 if (strcmp (name, ".sdata") == 0 6998 || strcmp (name, ".lit8") == 0 6999 || strcmp (name, ".lit4") == 0) 7000 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 7001 else if (strcmp (name, ".srdata") == 0) 7002 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 7003 else if (strcmp (name, ".compact_rel") == 0) 7004 hdr->sh_flags = 0; 7005 else if (strcmp (name, ".rtproc") == 0) 7006 { 7007 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 7008 { 7009 unsigned int adjust; 7010 7011 adjust = hdr->sh_size % hdr->sh_addralign; 7012 if (adjust != 0) 7013 hdr->sh_size += hdr->sh_addralign - adjust; 7014 } 7015 } 7016 } 7017 7018 return TRUE; 7019 } 7020 7021 /* Handle a MIPS specific section when reading an object file. This 7022 is called when elfcode.h finds a section with an unknown type. 7023 This routine supports both the 32-bit and 64-bit ELF ABI. 7024 7025 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 7026 how to. */ 7027 7028 bfd_boolean 7029 _bfd_mips_elf_section_from_shdr (bfd *abfd, 7030 Elf_Internal_Shdr *hdr, 7031 const char *name, 7032 int shindex) 7033 { 7034 flagword flags = 0; 7035 7036 /* There ought to be a place to keep ELF backend specific flags, but 7037 at the moment there isn't one. We just keep track of the 7038 sections by their name, instead. Fortunately, the ABI gives 7039 suggested names for all the MIPS specific sections, so we will 7040 probably get away with this. */ 7041 switch (hdr->sh_type) 7042 { 7043 case SHT_MIPS_LIBLIST: 7044 if (strcmp (name, ".liblist") != 0) 7045 return FALSE; 7046 break; 7047 case SHT_MIPS_MSYM: 7048 if (strcmp (name, ".msym") != 0) 7049 return FALSE; 7050 break; 7051 case SHT_MIPS_CONFLICT: 7052 if (strcmp (name, ".conflict") != 0) 7053 return FALSE; 7054 break; 7055 case SHT_MIPS_GPTAB: 7056 if (! CONST_STRNEQ (name, ".gptab.")) 7057 return FALSE; 7058 break; 7059 case SHT_MIPS_UCODE: 7060 if (strcmp (name, ".ucode") != 0) 7061 return FALSE; 7062 break; 7063 case SHT_MIPS_DEBUG: 7064 if (strcmp (name, ".mdebug") != 0) 7065 return FALSE; 7066 flags = SEC_DEBUGGING; 7067 break; 7068 case SHT_MIPS_REGINFO: 7069 if (strcmp (name, ".reginfo") != 0 7070 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 7071 return FALSE; 7072 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7073 break; 7074 case SHT_MIPS_IFACE: 7075 if (strcmp (name, ".MIPS.interfaces") != 0) 7076 return FALSE; 7077 break; 7078 case SHT_MIPS_CONTENT: 7079 if (! CONST_STRNEQ (name, ".MIPS.content")) 7080 return FALSE; 7081 break; 7082 case SHT_MIPS_OPTIONS: 7083 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7084 return FALSE; 7085 break; 7086 case SHT_MIPS_ABIFLAGS: 7087 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name)) 7088 return FALSE; 7089 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 7090 break; 7091 case SHT_MIPS_DWARF: 7092 if (! CONST_STRNEQ (name, ".debug_") 7093 && ! CONST_STRNEQ (name, ".zdebug_")) 7094 return FALSE; 7095 break; 7096 case SHT_MIPS_SYMBOL_LIB: 7097 if (strcmp (name, ".MIPS.symlib") != 0) 7098 return FALSE; 7099 break; 7100 case SHT_MIPS_EVENTS: 7101 if (! CONST_STRNEQ (name, ".MIPS.events") 7102 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 7103 return FALSE; 7104 break; 7105 default: 7106 break; 7107 } 7108 7109 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 7110 return FALSE; 7111 7112 if (flags) 7113 { 7114 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 7115 (bfd_get_section_flags (abfd, 7116 hdr->bfd_section) 7117 | flags))) 7118 return FALSE; 7119 } 7120 7121 if (hdr->sh_type == SHT_MIPS_ABIFLAGS) 7122 { 7123 Elf_External_ABIFlags_v0 ext; 7124 7125 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7126 &ext, 0, sizeof ext)) 7127 return FALSE; 7128 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext, 7129 &mips_elf_tdata (abfd)->abiflags); 7130 if (mips_elf_tdata (abfd)->abiflags.version != 0) 7131 return FALSE; 7132 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 7133 } 7134 7135 /* FIXME: We should record sh_info for a .gptab section. */ 7136 7137 /* For a .reginfo section, set the gp value in the tdata information 7138 from the contents of this section. We need the gp value while 7139 processing relocs, so we just get it now. The .reginfo section 7140 is not used in the 64-bit MIPS ELF ABI. */ 7141 if (hdr->sh_type == SHT_MIPS_REGINFO) 7142 { 7143 Elf32_External_RegInfo ext; 7144 Elf32_RegInfo s; 7145 7146 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 7147 &ext, 0, sizeof ext)) 7148 return FALSE; 7149 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 7150 elf_gp (abfd) = s.ri_gp_value; 7151 } 7152 7153 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 7154 set the gp value based on what we find. We may see both 7155 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 7156 they should agree. */ 7157 if (hdr->sh_type == SHT_MIPS_OPTIONS) 7158 { 7159 bfd_byte *contents, *l, *lend; 7160 7161 contents = bfd_malloc (hdr->sh_size); 7162 if (contents == NULL) 7163 return FALSE; 7164 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 7165 0, hdr->sh_size)) 7166 { 7167 free (contents); 7168 return FALSE; 7169 } 7170 l = contents; 7171 lend = contents + hdr->sh_size; 7172 while (l + sizeof (Elf_External_Options) <= lend) 7173 { 7174 Elf_Internal_Options intopt; 7175 7176 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 7177 &intopt); 7178 if (intopt.size < sizeof (Elf_External_Options)) 7179 { 7180 (*_bfd_error_handler) 7181 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 7182 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 7183 break; 7184 } 7185 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 7186 { 7187 Elf64_Internal_RegInfo intreg; 7188 7189 bfd_mips_elf64_swap_reginfo_in 7190 (abfd, 7191 ((Elf64_External_RegInfo *) 7192 (l + sizeof (Elf_External_Options))), 7193 &intreg); 7194 elf_gp (abfd) = intreg.ri_gp_value; 7195 } 7196 else if (intopt.kind == ODK_REGINFO) 7197 { 7198 Elf32_RegInfo intreg; 7199 7200 bfd_mips_elf32_swap_reginfo_in 7201 (abfd, 7202 ((Elf32_External_RegInfo *) 7203 (l + sizeof (Elf_External_Options))), 7204 &intreg); 7205 elf_gp (abfd) = intreg.ri_gp_value; 7206 } 7207 l += intopt.size; 7208 } 7209 free (contents); 7210 } 7211 7212 return TRUE; 7213 } 7214 7215 /* Set the correct type for a MIPS ELF section. We do this by the 7216 section name, which is a hack, but ought to work. This routine is 7217 used by both the 32-bit and the 64-bit ABI. */ 7218 7219 bfd_boolean 7220 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 7221 { 7222 const char *name = bfd_get_section_name (abfd, sec); 7223 7224 if (strcmp (name, ".liblist") == 0) 7225 { 7226 hdr->sh_type = SHT_MIPS_LIBLIST; 7227 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 7228 /* The sh_link field is set in final_write_processing. */ 7229 } 7230 else if (strcmp (name, ".conflict") == 0) 7231 hdr->sh_type = SHT_MIPS_CONFLICT; 7232 else if (CONST_STRNEQ (name, ".gptab.")) 7233 { 7234 hdr->sh_type = SHT_MIPS_GPTAB; 7235 hdr->sh_entsize = sizeof (Elf32_External_gptab); 7236 /* The sh_info field is set in final_write_processing. */ 7237 } 7238 else if (strcmp (name, ".ucode") == 0) 7239 hdr->sh_type = SHT_MIPS_UCODE; 7240 else if (strcmp (name, ".mdebug") == 0) 7241 { 7242 hdr->sh_type = SHT_MIPS_DEBUG; 7243 /* In a shared object on IRIX 5.3, the .mdebug section has an 7244 entsize of 0. FIXME: Does this matter? */ 7245 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 7246 hdr->sh_entsize = 0; 7247 else 7248 hdr->sh_entsize = 1; 7249 } 7250 else if (strcmp (name, ".reginfo") == 0) 7251 { 7252 hdr->sh_type = SHT_MIPS_REGINFO; 7253 /* In a shared object on IRIX 5.3, the .reginfo section has an 7254 entsize of 0x18. FIXME: Does this matter? */ 7255 if (SGI_COMPAT (abfd)) 7256 { 7257 if ((abfd->flags & DYNAMIC) != 0) 7258 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7259 else 7260 hdr->sh_entsize = 1; 7261 } 7262 else 7263 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 7264 } 7265 else if (SGI_COMPAT (abfd) 7266 && (strcmp (name, ".hash") == 0 7267 || strcmp (name, ".dynamic") == 0 7268 || strcmp (name, ".dynstr") == 0)) 7269 { 7270 if (SGI_COMPAT (abfd)) 7271 hdr->sh_entsize = 0; 7272 #if 0 7273 /* This isn't how the IRIX6 linker behaves. */ 7274 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 7275 #endif 7276 } 7277 else if (strcmp (name, ".got") == 0 7278 || strcmp (name, ".srdata") == 0 7279 || strcmp (name, ".sdata") == 0 7280 || strcmp (name, ".sbss") == 0 7281 || strcmp (name, ".lit4") == 0 7282 || strcmp (name, ".lit8") == 0) 7283 hdr->sh_flags |= SHF_MIPS_GPREL; 7284 else if (strcmp (name, ".MIPS.interfaces") == 0) 7285 { 7286 hdr->sh_type = SHT_MIPS_IFACE; 7287 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7288 } 7289 else if (CONST_STRNEQ (name, ".MIPS.content")) 7290 { 7291 hdr->sh_type = SHT_MIPS_CONTENT; 7292 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7293 /* The sh_info field is set in final_write_processing. */ 7294 } 7295 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 7296 { 7297 hdr->sh_type = SHT_MIPS_OPTIONS; 7298 hdr->sh_entsize = 1; 7299 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7300 } 7301 else if (CONST_STRNEQ (name, ".MIPS.abiflags")) 7302 { 7303 hdr->sh_type = SHT_MIPS_ABIFLAGS; 7304 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0); 7305 } 7306 else if (CONST_STRNEQ (name, ".debug_") 7307 || CONST_STRNEQ (name, ".zdebug_")) 7308 { 7309 hdr->sh_type = SHT_MIPS_DWARF; 7310 7311 /* Irix facilities such as libexc expect a single .debug_frame 7312 per executable, the system ones have NOSTRIP set and the linker 7313 doesn't merge sections with different flags so ... */ 7314 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 7315 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7316 } 7317 else if (strcmp (name, ".MIPS.symlib") == 0) 7318 { 7319 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 7320 /* The sh_link and sh_info fields are set in 7321 final_write_processing. */ 7322 } 7323 else if (CONST_STRNEQ (name, ".MIPS.events") 7324 || CONST_STRNEQ (name, ".MIPS.post_rel")) 7325 { 7326 hdr->sh_type = SHT_MIPS_EVENTS; 7327 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 7328 /* The sh_link field is set in final_write_processing. */ 7329 } 7330 else if (strcmp (name, ".msym") == 0) 7331 { 7332 hdr->sh_type = SHT_MIPS_MSYM; 7333 hdr->sh_flags |= SHF_ALLOC; 7334 hdr->sh_entsize = 8; 7335 } 7336 7337 /* The generic elf_fake_sections will set up REL_HDR using the default 7338 kind of relocations. We used to set up a second header for the 7339 non-default kind of relocations here, but only NewABI would use 7340 these, and the IRIX ld doesn't like resulting empty RELA sections. 7341 Thus we create those header only on demand now. */ 7342 7343 return TRUE; 7344 } 7345 7346 /* Given a BFD section, try to locate the corresponding ELF section 7347 index. This is used by both the 32-bit and the 64-bit ABI. 7348 Actually, it's not clear to me that the 64-bit ABI supports these, 7349 but for non-PIC objects we will certainly want support for at least 7350 the .scommon section. */ 7351 7352 bfd_boolean 7353 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 7354 asection *sec, int *retval) 7355 { 7356 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 7357 { 7358 *retval = SHN_MIPS_SCOMMON; 7359 return TRUE; 7360 } 7361 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 7362 { 7363 *retval = SHN_MIPS_ACOMMON; 7364 return TRUE; 7365 } 7366 return FALSE; 7367 } 7368 7369 /* Hook called by the linker routine which adds symbols from an object 7370 file. We must handle the special MIPS section numbers here. */ 7371 7372 bfd_boolean 7373 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 7374 Elf_Internal_Sym *sym, const char **namep, 7375 flagword *flagsp ATTRIBUTE_UNUSED, 7376 asection **secp, bfd_vma *valp) 7377 { 7378 if (SGI_COMPAT (abfd) 7379 && (abfd->flags & DYNAMIC) != 0 7380 && strcmp (*namep, "_rld_new_interface") == 0) 7381 { 7382 /* Skip IRIX5 rld entry name. */ 7383 *namep = NULL; 7384 return TRUE; 7385 } 7386 7387 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 7388 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 7389 by setting a DT_NEEDED for the shared object. Since _gp_disp is 7390 a magic symbol resolved by the linker, we ignore this bogus definition 7391 of _gp_disp. New ABI objects do not suffer from this problem so this 7392 is not done for them. */ 7393 if (!NEWABI_P(abfd) 7394 && (sym->st_shndx == SHN_ABS) 7395 && (strcmp (*namep, "_gp_disp") == 0)) 7396 { 7397 *namep = NULL; 7398 return TRUE; 7399 } 7400 7401 switch (sym->st_shndx) 7402 { 7403 case SHN_COMMON: 7404 /* Common symbols less than the GP size are automatically 7405 treated as SHN_MIPS_SCOMMON symbols. */ 7406 if (sym->st_size > elf_gp_size (abfd) 7407 || ELF_ST_TYPE (sym->st_info) == STT_TLS 7408 || IRIX_COMPAT (abfd) == ict_irix6) 7409 break; 7410 /* Fall through. */ 7411 case SHN_MIPS_SCOMMON: 7412 *secp = bfd_make_section_old_way (abfd, ".scommon"); 7413 (*secp)->flags |= SEC_IS_COMMON; 7414 *valp = sym->st_size; 7415 break; 7416 7417 case SHN_MIPS_TEXT: 7418 /* This section is used in a shared object. */ 7419 if (mips_elf_tdata (abfd)->elf_text_section == NULL) 7420 { 7421 asymbol *elf_text_symbol; 7422 asection *elf_text_section; 7423 bfd_size_type amt = sizeof (asection); 7424 7425 elf_text_section = bfd_zalloc (abfd, amt); 7426 if (elf_text_section == NULL) 7427 return FALSE; 7428 7429 amt = sizeof (asymbol); 7430 elf_text_symbol = bfd_zalloc (abfd, amt); 7431 if (elf_text_symbol == NULL) 7432 return FALSE; 7433 7434 /* Initialize the section. */ 7435 7436 mips_elf_tdata (abfd)->elf_text_section = elf_text_section; 7437 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 7438 7439 elf_text_section->symbol = elf_text_symbol; 7440 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol; 7441 7442 elf_text_section->name = ".text"; 7443 elf_text_section->flags = SEC_NO_FLAGS; 7444 elf_text_section->output_section = NULL; 7445 elf_text_section->owner = abfd; 7446 elf_text_symbol->name = ".text"; 7447 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7448 elf_text_symbol->section = elf_text_section; 7449 } 7450 /* This code used to do *secp = bfd_und_section_ptr if 7451 info->shared. I don't know why, and that doesn't make sense, 7452 so I took it out. */ 7453 *secp = mips_elf_tdata (abfd)->elf_text_section; 7454 break; 7455 7456 case SHN_MIPS_ACOMMON: 7457 /* Fall through. XXX Can we treat this as allocated data? */ 7458 case SHN_MIPS_DATA: 7459 /* This section is used in a shared object. */ 7460 if (mips_elf_tdata (abfd)->elf_data_section == NULL) 7461 { 7462 asymbol *elf_data_symbol; 7463 asection *elf_data_section; 7464 bfd_size_type amt = sizeof (asection); 7465 7466 elf_data_section = bfd_zalloc (abfd, amt); 7467 if (elf_data_section == NULL) 7468 return FALSE; 7469 7470 amt = sizeof (asymbol); 7471 elf_data_symbol = bfd_zalloc (abfd, amt); 7472 if (elf_data_symbol == NULL) 7473 return FALSE; 7474 7475 /* Initialize the section. */ 7476 7477 mips_elf_tdata (abfd)->elf_data_section = elf_data_section; 7478 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 7479 7480 elf_data_section->symbol = elf_data_symbol; 7481 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol; 7482 7483 elf_data_section->name = ".data"; 7484 elf_data_section->flags = SEC_NO_FLAGS; 7485 elf_data_section->output_section = NULL; 7486 elf_data_section->owner = abfd; 7487 elf_data_symbol->name = ".data"; 7488 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 7489 elf_data_symbol->section = elf_data_section; 7490 } 7491 /* This code used to do *secp = bfd_und_section_ptr if 7492 info->shared. I don't know why, and that doesn't make sense, 7493 so I took it out. */ 7494 *secp = mips_elf_tdata (abfd)->elf_data_section; 7495 break; 7496 7497 case SHN_MIPS_SUNDEFINED: 7498 *secp = bfd_und_section_ptr; 7499 break; 7500 } 7501 7502 if (SGI_COMPAT (abfd) 7503 && ! info->shared 7504 && info->output_bfd->xvec == abfd->xvec 7505 && strcmp (*namep, "__rld_obj_head") == 0) 7506 { 7507 struct elf_link_hash_entry *h; 7508 struct bfd_link_hash_entry *bh; 7509 7510 /* Mark __rld_obj_head as dynamic. */ 7511 bh = NULL; 7512 if (! (_bfd_generic_link_add_one_symbol 7513 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 7514 get_elf_backend_data (abfd)->collect, &bh))) 7515 return FALSE; 7516 7517 h = (struct elf_link_hash_entry *) bh; 7518 h->non_elf = 0; 7519 h->def_regular = 1; 7520 h->type = STT_OBJECT; 7521 7522 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7523 return FALSE; 7524 7525 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 7526 mips_elf_hash_table (info)->rld_symbol = h; 7527 } 7528 7529 /* If this is a mips16 text symbol, add 1 to the value to make it 7530 odd. This will cause something like .word SYM to come up with 7531 the right value when it is loaded into the PC. */ 7532 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7533 ++*valp; 7534 7535 return TRUE; 7536 } 7537 7538 /* This hook function is called before the linker writes out a global 7539 symbol. We mark symbols as small common if appropriate. This is 7540 also where we undo the increment of the value for a mips16 symbol. */ 7541 7542 int 7543 _bfd_mips_elf_link_output_symbol_hook 7544 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 7545 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 7546 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 7547 { 7548 /* If we see a common symbol, which implies a relocatable link, then 7549 if a symbol was small common in an input file, mark it as small 7550 common in the output file. */ 7551 if (sym->st_shndx == SHN_COMMON 7552 && strcmp (input_sec->name, ".scommon") == 0) 7553 sym->st_shndx = SHN_MIPS_SCOMMON; 7554 7555 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 7556 sym->st_value &= ~1; 7557 7558 return 1; 7559 } 7560 7561 /* Functions for the dynamic linker. */ 7562 7563 /* Create dynamic sections when linking against a dynamic object. */ 7564 7565 bfd_boolean 7566 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 7567 { 7568 struct elf_link_hash_entry *h; 7569 struct bfd_link_hash_entry *bh; 7570 flagword flags; 7571 register asection *s; 7572 const char * const *namep; 7573 struct mips_elf_link_hash_table *htab; 7574 7575 htab = mips_elf_hash_table (info); 7576 BFD_ASSERT (htab != NULL); 7577 7578 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 7579 | SEC_LINKER_CREATED | SEC_READONLY); 7580 7581 /* The psABI requires a read-only .dynamic section, but the VxWorks 7582 EABI doesn't. */ 7583 if (!htab->is_vxworks) 7584 { 7585 s = bfd_get_linker_section (abfd, ".dynamic"); 7586 if (s != NULL) 7587 { 7588 if (! bfd_set_section_flags (abfd, s, flags)) 7589 return FALSE; 7590 } 7591 } 7592 7593 /* We need to create .got section. */ 7594 if (!mips_elf_create_got_section (abfd, info)) 7595 return FALSE; 7596 7597 if (! mips_elf_rel_dyn_section (info, TRUE)) 7598 return FALSE; 7599 7600 /* Create .stub section. */ 7601 s = bfd_make_section_anyway_with_flags (abfd, 7602 MIPS_ELF_STUB_SECTION_NAME (abfd), 7603 flags | SEC_CODE); 7604 if (s == NULL 7605 || ! bfd_set_section_alignment (abfd, s, 7606 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7607 return FALSE; 7608 htab->sstubs = s; 7609 7610 if (!mips_elf_hash_table (info)->use_rld_obj_head 7611 && !info->shared 7612 && bfd_get_linker_section (abfd, ".rld_map") == NULL) 7613 { 7614 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map", 7615 flags &~ (flagword) SEC_READONLY); 7616 if (s == NULL 7617 || ! bfd_set_section_alignment (abfd, s, 7618 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 7619 return FALSE; 7620 } 7621 7622 /* On IRIX5, we adjust add some additional symbols and change the 7623 alignments of several sections. There is no ABI documentation 7624 indicating that this is necessary on IRIX6, nor any evidence that 7625 the linker takes such action. */ 7626 if (IRIX_COMPAT (abfd) == ict_irix5) 7627 { 7628 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 7629 { 7630 bh = NULL; 7631 if (! (_bfd_generic_link_add_one_symbol 7632 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 7633 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7634 return FALSE; 7635 7636 h = (struct elf_link_hash_entry *) bh; 7637 h->non_elf = 0; 7638 h->def_regular = 1; 7639 h->type = STT_SECTION; 7640 7641 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7642 return FALSE; 7643 } 7644 7645 /* We need to create a .compact_rel section. */ 7646 if (SGI_COMPAT (abfd)) 7647 { 7648 if (!mips_elf_create_compact_rel_section (abfd, info)) 7649 return FALSE; 7650 } 7651 7652 /* Change alignments of some sections. */ 7653 s = bfd_get_linker_section (abfd, ".hash"); 7654 if (s != NULL) 7655 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7656 7657 s = bfd_get_linker_section (abfd, ".dynsym"); 7658 if (s != NULL) 7659 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7660 7661 s = bfd_get_linker_section (abfd, ".dynstr"); 7662 if (s != NULL) 7663 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7664 7665 /* ??? */ 7666 s = bfd_get_section_by_name (abfd, ".reginfo"); 7667 if (s != NULL) 7668 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7669 7670 s = bfd_get_linker_section (abfd, ".dynamic"); 7671 if (s != NULL) 7672 (void) bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 7673 } 7674 7675 if (!info->shared) 7676 { 7677 const char *name; 7678 7679 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 7680 bh = NULL; 7681 if (!(_bfd_generic_link_add_one_symbol 7682 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 7683 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 7684 return FALSE; 7685 7686 h = (struct elf_link_hash_entry *) bh; 7687 h->non_elf = 0; 7688 h->def_regular = 1; 7689 h->type = STT_SECTION; 7690 7691 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7692 return FALSE; 7693 7694 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7695 { 7696 /* __rld_map is a four byte word located in the .data section 7697 and is filled in by the rtld to contain a pointer to 7698 the _r_debug structure. Its symbol value will be set in 7699 _bfd_mips_elf_finish_dynamic_symbol. */ 7700 s = bfd_get_linker_section (abfd, ".rld_map"); 7701 BFD_ASSERT (s != NULL); 7702 7703 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7704 bh = NULL; 7705 if (!(_bfd_generic_link_add_one_symbol 7706 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7707 get_elf_backend_data (abfd)->collect, &bh))) 7708 return FALSE; 7709 7710 h = (struct elf_link_hash_entry *) bh; 7711 h->non_elf = 0; 7712 h->def_regular = 1; 7713 h->type = STT_OBJECT; 7714 7715 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7716 return FALSE; 7717 mips_elf_hash_table (info)->rld_symbol = h; 7718 } 7719 } 7720 7721 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7722 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */ 7723 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7724 return FALSE; 7725 7726 /* Cache the sections created above. */ 7727 htab->splt = bfd_get_linker_section (abfd, ".plt"); 7728 htab->sdynbss = bfd_get_linker_section (abfd, ".dynbss"); 7729 if (htab->is_vxworks) 7730 { 7731 htab->srelbss = bfd_get_linker_section (abfd, ".rela.bss"); 7732 htab->srelplt = bfd_get_linker_section (abfd, ".rela.plt"); 7733 } 7734 else 7735 htab->srelplt = bfd_get_linker_section (abfd, ".rel.plt"); 7736 if (!htab->sdynbss 7737 || (htab->is_vxworks && !htab->srelbss && !info->shared) 7738 || !htab->srelplt 7739 || !htab->splt) 7740 abort (); 7741 7742 /* Do the usual VxWorks handling. */ 7743 if (htab->is_vxworks 7744 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7745 return FALSE; 7746 7747 return TRUE; 7748 } 7749 7750 /* Return true if relocation REL against section SEC is a REL rather than 7751 RELA relocation. RELOCS is the first relocation in the section and 7752 ABFD is the bfd that contains SEC. */ 7753 7754 static bfd_boolean 7755 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7756 const Elf_Internal_Rela *relocs, 7757 const Elf_Internal_Rela *rel) 7758 { 7759 Elf_Internal_Shdr *rel_hdr; 7760 const struct elf_backend_data *bed; 7761 7762 /* To determine which flavor of relocation this is, we depend on the 7763 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7764 rel_hdr = elf_section_data (sec)->rel.hdr; 7765 if (rel_hdr == NULL) 7766 return FALSE; 7767 bed = get_elf_backend_data (abfd); 7768 return ((size_t) (rel - relocs) 7769 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7770 } 7771 7772 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7773 HOWTO is the relocation's howto and CONTENTS points to the contents 7774 of the section that REL is against. */ 7775 7776 static bfd_vma 7777 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7778 reloc_howto_type *howto, bfd_byte *contents) 7779 { 7780 bfd_byte *location; 7781 unsigned int r_type; 7782 bfd_vma addend; 7783 7784 r_type = ELF_R_TYPE (abfd, rel->r_info); 7785 location = contents + rel->r_offset; 7786 7787 /* Get the addend, which is stored in the input file. */ 7788 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7789 addend = mips_elf_obtain_contents (howto, rel, abfd, contents); 7790 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7791 7792 return addend & howto->src_mask; 7793 } 7794 7795 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7796 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7797 and update *ADDEND with the final addend. Return true on success 7798 or false if the LO16 could not be found. RELEND is the exclusive 7799 upper bound on the relocations for REL's section. */ 7800 7801 static bfd_boolean 7802 mips_elf_add_lo16_rel_addend (bfd *abfd, 7803 const Elf_Internal_Rela *rel, 7804 const Elf_Internal_Rela *relend, 7805 bfd_byte *contents, bfd_vma *addend) 7806 { 7807 unsigned int r_type, lo16_type; 7808 const Elf_Internal_Rela *lo16_relocation; 7809 reloc_howto_type *lo16_howto; 7810 bfd_vma l; 7811 7812 r_type = ELF_R_TYPE (abfd, rel->r_info); 7813 if (mips16_reloc_p (r_type)) 7814 lo16_type = R_MIPS16_LO16; 7815 else if (micromips_reloc_p (r_type)) 7816 lo16_type = R_MICROMIPS_LO16; 7817 else if (r_type == R_MIPS_PCHI16) 7818 lo16_type = R_MIPS_PCLO16; 7819 else 7820 lo16_type = R_MIPS_LO16; 7821 7822 /* The combined value is the sum of the HI16 addend, left-shifted by 7823 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7824 code does a `lui' of the HI16 value, and then an `addiu' of the 7825 LO16 value.) 7826 7827 Scan ahead to find a matching LO16 relocation. 7828 7829 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7830 be immediately following. However, for the IRIX6 ABI, the next 7831 relocation may be a composed relocation consisting of several 7832 relocations for the same address. In that case, the R_MIPS_LO16 7833 relocation may occur as one of these. We permit a similar 7834 extension in general, as that is useful for GCC. 7835 7836 In some cases GCC dead code elimination removes the LO16 but keeps 7837 the corresponding HI16. This is strictly speaking a violation of 7838 the ABI but not immediately harmful. */ 7839 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7840 if (lo16_relocation == NULL) 7841 return FALSE; 7842 7843 /* Obtain the addend kept there. */ 7844 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7845 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7846 7847 l <<= lo16_howto->rightshift; 7848 l = _bfd_mips_elf_sign_extend (l, 16); 7849 7850 *addend <<= 16; 7851 *addend += l; 7852 return TRUE; 7853 } 7854 7855 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7856 store the contents in *CONTENTS on success. Assume that *CONTENTS 7857 already holds the contents if it is nonull on entry. */ 7858 7859 static bfd_boolean 7860 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7861 { 7862 if (*contents) 7863 return TRUE; 7864 7865 /* Get cached copy if it exists. */ 7866 if (elf_section_data (sec)->this_hdr.contents != NULL) 7867 { 7868 *contents = elf_section_data (sec)->this_hdr.contents; 7869 return TRUE; 7870 } 7871 7872 return bfd_malloc_and_get_section (abfd, sec, contents); 7873 } 7874 7875 /* Make a new PLT record to keep internal data. */ 7876 7877 static struct plt_entry * 7878 mips_elf_make_plt_record (bfd *abfd) 7879 { 7880 struct plt_entry *entry; 7881 7882 entry = bfd_zalloc (abfd, sizeof (*entry)); 7883 if (entry == NULL) 7884 return NULL; 7885 7886 entry->stub_offset = MINUS_ONE; 7887 entry->mips_offset = MINUS_ONE; 7888 entry->comp_offset = MINUS_ONE; 7889 entry->gotplt_index = MINUS_ONE; 7890 return entry; 7891 } 7892 7893 /* Look through the relocs for a section during the first phase, and 7894 allocate space in the global offset table and record the need for 7895 standard MIPS and compressed procedure linkage table entries. */ 7896 7897 bfd_boolean 7898 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7899 asection *sec, const Elf_Internal_Rela *relocs) 7900 { 7901 const char *name; 7902 bfd *dynobj; 7903 Elf_Internal_Shdr *symtab_hdr; 7904 struct elf_link_hash_entry **sym_hashes; 7905 size_t extsymoff; 7906 const Elf_Internal_Rela *rel; 7907 const Elf_Internal_Rela *rel_end; 7908 asection *sreloc; 7909 const struct elf_backend_data *bed; 7910 struct mips_elf_link_hash_table *htab; 7911 bfd_byte *contents; 7912 bfd_vma addend; 7913 reloc_howto_type *howto; 7914 7915 if (info->relocatable) 7916 return TRUE; 7917 7918 htab = mips_elf_hash_table (info); 7919 BFD_ASSERT (htab != NULL); 7920 7921 dynobj = elf_hash_table (info)->dynobj; 7922 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7923 sym_hashes = elf_sym_hashes (abfd); 7924 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7925 7926 bed = get_elf_backend_data (abfd); 7927 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 7928 7929 /* Check for the mips16 stub sections. */ 7930 7931 name = bfd_get_section_name (abfd, sec); 7932 if (FN_STUB_P (name)) 7933 { 7934 unsigned long r_symndx; 7935 7936 /* Look at the relocation information to figure out which symbol 7937 this is for. */ 7938 7939 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 7940 if (r_symndx == 0) 7941 { 7942 (*_bfd_error_handler) 7943 (_("%B: Warning: cannot determine the target function for" 7944 " stub section `%s'"), 7945 abfd, name); 7946 bfd_set_error (bfd_error_bad_value); 7947 return FALSE; 7948 } 7949 7950 if (r_symndx < extsymoff 7951 || sym_hashes[r_symndx - extsymoff] == NULL) 7952 { 7953 asection *o; 7954 7955 /* This stub is for a local symbol. This stub will only be 7956 needed if there is some relocation in this BFD, other 7957 than a 16 bit function call, which refers to this symbol. */ 7958 for (o = abfd->sections; o != NULL; o = o->next) 7959 { 7960 Elf_Internal_Rela *sec_relocs; 7961 const Elf_Internal_Rela *r, *rend; 7962 7963 /* We can ignore stub sections when looking for relocs. */ 7964 if ((o->flags & SEC_RELOC) == 0 7965 || o->reloc_count == 0 7966 || section_allows_mips16_refs_p (o)) 7967 continue; 7968 7969 sec_relocs 7970 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 7971 info->keep_memory); 7972 if (sec_relocs == NULL) 7973 return FALSE; 7974 7975 rend = sec_relocs + o->reloc_count; 7976 for (r = sec_relocs; r < rend; r++) 7977 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 7978 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 7979 break; 7980 7981 if (elf_section_data (o)->relocs != sec_relocs) 7982 free (sec_relocs); 7983 7984 if (r < rend) 7985 break; 7986 } 7987 7988 if (o == NULL) 7989 { 7990 /* There is no non-call reloc for this stub, so we do 7991 not need it. Since this function is called before 7992 the linker maps input sections to output sections, we 7993 can easily discard it by setting the SEC_EXCLUDE 7994 flag. */ 7995 sec->flags |= SEC_EXCLUDE; 7996 return TRUE; 7997 } 7998 7999 /* Record this stub in an array of local symbol stubs for 8000 this BFD. */ 8001 if (mips_elf_tdata (abfd)->local_stubs == NULL) 8002 { 8003 unsigned long symcount; 8004 asection **n; 8005 bfd_size_type amt; 8006 8007 if (elf_bad_symtab (abfd)) 8008 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8009 else 8010 symcount = symtab_hdr->sh_info; 8011 amt = symcount * sizeof (asection *); 8012 n = bfd_zalloc (abfd, amt); 8013 if (n == NULL) 8014 return FALSE; 8015 mips_elf_tdata (abfd)->local_stubs = n; 8016 } 8017 8018 sec->flags |= SEC_KEEP; 8019 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec; 8020 8021 /* We don't need to set mips16_stubs_seen in this case. 8022 That flag is used to see whether we need to look through 8023 the global symbol table for stubs. We don't need to set 8024 it here, because we just have a local stub. */ 8025 } 8026 else 8027 { 8028 struct mips_elf_link_hash_entry *h; 8029 8030 h = ((struct mips_elf_link_hash_entry *) 8031 sym_hashes[r_symndx - extsymoff]); 8032 8033 while (h->root.root.type == bfd_link_hash_indirect 8034 || h->root.root.type == bfd_link_hash_warning) 8035 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8036 8037 /* H is the symbol this stub is for. */ 8038 8039 /* If we already have an appropriate stub for this function, we 8040 don't need another one, so we can discard this one. Since 8041 this function is called before the linker maps input sections 8042 to output sections, we can easily discard it by setting the 8043 SEC_EXCLUDE flag. */ 8044 if (h->fn_stub != NULL) 8045 { 8046 sec->flags |= SEC_EXCLUDE; 8047 return TRUE; 8048 } 8049 8050 sec->flags |= SEC_KEEP; 8051 h->fn_stub = sec; 8052 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8053 } 8054 } 8055 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 8056 { 8057 unsigned long r_symndx; 8058 struct mips_elf_link_hash_entry *h; 8059 asection **loc; 8060 8061 /* Look at the relocation information to figure out which symbol 8062 this is for. */ 8063 8064 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end); 8065 if (r_symndx == 0) 8066 { 8067 (*_bfd_error_handler) 8068 (_("%B: Warning: cannot determine the target function for" 8069 " stub section `%s'"), 8070 abfd, name); 8071 bfd_set_error (bfd_error_bad_value); 8072 return FALSE; 8073 } 8074 8075 if (r_symndx < extsymoff 8076 || sym_hashes[r_symndx - extsymoff] == NULL) 8077 { 8078 asection *o; 8079 8080 /* This stub is for a local symbol. This stub will only be 8081 needed if there is some relocation (R_MIPS16_26) in this BFD 8082 that refers to this symbol. */ 8083 for (o = abfd->sections; o != NULL; o = o->next) 8084 { 8085 Elf_Internal_Rela *sec_relocs; 8086 const Elf_Internal_Rela *r, *rend; 8087 8088 /* We can ignore stub sections when looking for relocs. */ 8089 if ((o->flags & SEC_RELOC) == 0 8090 || o->reloc_count == 0 8091 || section_allows_mips16_refs_p (o)) 8092 continue; 8093 8094 sec_relocs 8095 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 8096 info->keep_memory); 8097 if (sec_relocs == NULL) 8098 return FALSE; 8099 8100 rend = sec_relocs + o->reloc_count; 8101 for (r = sec_relocs; r < rend; r++) 8102 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 8103 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 8104 break; 8105 8106 if (elf_section_data (o)->relocs != sec_relocs) 8107 free (sec_relocs); 8108 8109 if (r < rend) 8110 break; 8111 } 8112 8113 if (o == NULL) 8114 { 8115 /* There is no non-call reloc for this stub, so we do 8116 not need it. Since this function is called before 8117 the linker maps input sections to output sections, we 8118 can easily discard it by setting the SEC_EXCLUDE 8119 flag. */ 8120 sec->flags |= SEC_EXCLUDE; 8121 return TRUE; 8122 } 8123 8124 /* Record this stub in an array of local symbol call_stubs for 8125 this BFD. */ 8126 if (mips_elf_tdata (abfd)->local_call_stubs == NULL) 8127 { 8128 unsigned long symcount; 8129 asection **n; 8130 bfd_size_type amt; 8131 8132 if (elf_bad_symtab (abfd)) 8133 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 8134 else 8135 symcount = symtab_hdr->sh_info; 8136 amt = symcount * sizeof (asection *); 8137 n = bfd_zalloc (abfd, amt); 8138 if (n == NULL) 8139 return FALSE; 8140 mips_elf_tdata (abfd)->local_call_stubs = n; 8141 } 8142 8143 sec->flags |= SEC_KEEP; 8144 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 8145 8146 /* We don't need to set mips16_stubs_seen in this case. 8147 That flag is used to see whether we need to look through 8148 the global symbol table for stubs. We don't need to set 8149 it here, because we just have a local stub. */ 8150 } 8151 else 8152 { 8153 h = ((struct mips_elf_link_hash_entry *) 8154 sym_hashes[r_symndx - extsymoff]); 8155 8156 /* H is the symbol this stub is for. */ 8157 8158 if (CALL_FP_STUB_P (name)) 8159 loc = &h->call_fp_stub; 8160 else 8161 loc = &h->call_stub; 8162 8163 /* If we already have an appropriate stub for this function, we 8164 don't need another one, so we can discard this one. Since 8165 this function is called before the linker maps input sections 8166 to output sections, we can easily discard it by setting the 8167 SEC_EXCLUDE flag. */ 8168 if (*loc != NULL) 8169 { 8170 sec->flags |= SEC_EXCLUDE; 8171 return TRUE; 8172 } 8173 8174 sec->flags |= SEC_KEEP; 8175 *loc = sec; 8176 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 8177 } 8178 } 8179 8180 sreloc = NULL; 8181 contents = NULL; 8182 for (rel = relocs; rel < rel_end; ++rel) 8183 { 8184 unsigned long r_symndx; 8185 unsigned int r_type; 8186 struct elf_link_hash_entry *h; 8187 bfd_boolean can_make_dynamic_p; 8188 bfd_boolean call_reloc_p; 8189 bfd_boolean constrain_symbol_p; 8190 8191 r_symndx = ELF_R_SYM (abfd, rel->r_info); 8192 r_type = ELF_R_TYPE (abfd, rel->r_info); 8193 8194 if (r_symndx < extsymoff) 8195 h = NULL; 8196 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 8197 { 8198 (*_bfd_error_handler) 8199 (_("%B: Malformed reloc detected for section %s"), 8200 abfd, name); 8201 bfd_set_error (bfd_error_bad_value); 8202 return FALSE; 8203 } 8204 else 8205 { 8206 h = sym_hashes[r_symndx - extsymoff]; 8207 if (h != NULL) 8208 { 8209 while (h->root.type == bfd_link_hash_indirect 8210 || h->root.type == bfd_link_hash_warning) 8211 h = (struct elf_link_hash_entry *) h->root.u.i.link; 8212 8213 /* PR15323, ref flags aren't set for references in the 8214 same object. */ 8215 h->root.non_ir_ref = 1; 8216 } 8217 } 8218 8219 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 8220 relocation into a dynamic one. */ 8221 can_make_dynamic_p = FALSE; 8222 8223 /* Set CALL_RELOC_P to true if the relocation is for a call, 8224 and if pointer equality therefore doesn't matter. */ 8225 call_reloc_p = FALSE; 8226 8227 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation 8228 into account when deciding how to define the symbol. 8229 Relocations in nonallocatable sections such as .pdr and 8230 .debug* should have no effect. */ 8231 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0); 8232 8233 switch (r_type) 8234 { 8235 case R_MIPS_CALL16: 8236 case R_MIPS_CALL_HI16: 8237 case R_MIPS_CALL_LO16: 8238 case R_MIPS16_CALL16: 8239 case R_MICROMIPS_CALL16: 8240 case R_MICROMIPS_CALL_HI16: 8241 case R_MICROMIPS_CALL_LO16: 8242 call_reloc_p = TRUE; 8243 /* Fall through. */ 8244 8245 case R_MIPS_GOT16: 8246 case R_MIPS_GOT_HI16: 8247 case R_MIPS_GOT_LO16: 8248 case R_MIPS_GOT_PAGE: 8249 case R_MIPS_GOT_OFST: 8250 case R_MIPS_GOT_DISP: 8251 case R_MIPS_TLS_GOTTPREL: 8252 case R_MIPS_TLS_GD: 8253 case R_MIPS_TLS_LDM: 8254 case R_MIPS16_GOT16: 8255 case R_MIPS16_TLS_GOTTPREL: 8256 case R_MIPS16_TLS_GD: 8257 case R_MIPS16_TLS_LDM: 8258 case R_MICROMIPS_GOT16: 8259 case R_MICROMIPS_GOT_HI16: 8260 case R_MICROMIPS_GOT_LO16: 8261 case R_MICROMIPS_GOT_PAGE: 8262 case R_MICROMIPS_GOT_OFST: 8263 case R_MICROMIPS_GOT_DISP: 8264 case R_MICROMIPS_TLS_GOTTPREL: 8265 case R_MICROMIPS_TLS_GD: 8266 case R_MICROMIPS_TLS_LDM: 8267 if (dynobj == NULL) 8268 elf_hash_table (info)->dynobj = dynobj = abfd; 8269 if (!mips_elf_create_got_section (dynobj, info)) 8270 return FALSE; 8271 if (htab->is_vxworks && !info->shared) 8272 { 8273 (*_bfd_error_handler) 8274 (_("%B: GOT reloc at 0x%lx not expected in executables"), 8275 abfd, (unsigned long) rel->r_offset); 8276 bfd_set_error (bfd_error_bad_value); 8277 return FALSE; 8278 } 8279 can_make_dynamic_p = TRUE; 8280 break; 8281 8282 case R_MIPS_NONE: 8283 case R_MIPS_JALR: 8284 case R_MICROMIPS_JALR: 8285 /* These relocations have empty fields and are purely there to 8286 provide link information. The symbol value doesn't matter. */ 8287 constrain_symbol_p = FALSE; 8288 break; 8289 8290 case R_MIPS_GPREL16: 8291 case R_MIPS_GPREL32: 8292 case R_MIPS16_GPREL: 8293 case R_MICROMIPS_GPREL16: 8294 /* GP-relative relocations always resolve to a definition in a 8295 regular input file, ignoring the one-definition rule. This is 8296 important for the GP setup sequence in NewABI code, which 8297 always resolves to a local function even if other relocations 8298 against the symbol wouldn't. */ 8299 constrain_symbol_p = FALSE; 8300 break; 8301 8302 case R_MIPS_32: 8303 case R_MIPS_REL32: 8304 case R_MIPS_64: 8305 /* In VxWorks executables, references to external symbols 8306 must be handled using copy relocs or PLT entries; it is not 8307 possible to convert this relocation into a dynamic one. 8308 8309 For executables that use PLTs and copy-relocs, we have a 8310 choice between converting the relocation into a dynamic 8311 one or using copy relocations or PLT entries. It is 8312 usually better to do the former, unless the relocation is 8313 against a read-only section. */ 8314 if ((info->shared 8315 || (h != NULL 8316 && !htab->is_vxworks 8317 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 8318 && !(!info->nocopyreloc 8319 && !PIC_OBJECT_P (abfd) 8320 && MIPS_ELF_READONLY_SECTION (sec)))) 8321 && (sec->flags & SEC_ALLOC) != 0) 8322 { 8323 can_make_dynamic_p = TRUE; 8324 if (dynobj == NULL) 8325 elf_hash_table (info)->dynobj = dynobj = abfd; 8326 } 8327 break; 8328 8329 case R_MIPS_26: 8330 case R_MIPS_PC16: 8331 case R_MIPS_PC21_S2: 8332 case R_MIPS_PC26_S2: 8333 case R_MIPS16_26: 8334 case R_MICROMIPS_26_S1: 8335 case R_MICROMIPS_PC7_S1: 8336 case R_MICROMIPS_PC10_S1: 8337 case R_MICROMIPS_PC16_S1: 8338 case R_MICROMIPS_PC23_S2: 8339 call_reloc_p = TRUE; 8340 break; 8341 } 8342 8343 if (h) 8344 { 8345 if (constrain_symbol_p) 8346 { 8347 if (!can_make_dynamic_p) 8348 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1; 8349 8350 if (!call_reloc_p) 8351 h->pointer_equality_needed = 1; 8352 8353 /* We must not create a stub for a symbol that has 8354 relocations related to taking the function's address. 8355 This doesn't apply to VxWorks, where CALL relocs refer 8356 to a .got.plt entry instead of a normal .got entry. */ 8357 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p)) 8358 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 8359 } 8360 8361 /* Relocations against the special VxWorks __GOTT_BASE__ and 8362 __GOTT_INDEX__ symbols must be left to the loader. Allocate 8363 room for them in .rela.dyn. */ 8364 if (is_gott_symbol (info, h)) 8365 { 8366 if (sreloc == NULL) 8367 { 8368 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8369 if (sreloc == NULL) 8370 return FALSE; 8371 } 8372 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8373 if (MIPS_ELF_READONLY_SECTION (sec)) 8374 /* We tell the dynamic linker that there are 8375 relocations against the text segment. */ 8376 info->flags |= DF_TEXTREL; 8377 } 8378 } 8379 else if (call_lo16_reloc_p (r_type) 8380 || got_lo16_reloc_p (r_type) 8381 || got_disp_reloc_p (r_type) 8382 || (got16_reloc_p (r_type) && htab->is_vxworks)) 8383 { 8384 /* We may need a local GOT entry for this relocation. We 8385 don't count R_MIPS_GOT_PAGE because we can estimate the 8386 maximum number of pages needed by looking at the size of 8387 the segment. Similar comments apply to R_MIPS*_GOT16 and 8388 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 8389 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 8390 R_MIPS_CALL_HI16 because these are always followed by an 8391 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 8392 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8393 rel->r_addend, info, r_type)) 8394 return FALSE; 8395 } 8396 8397 if (h != NULL 8398 && mips_elf_relocation_needs_la25_stub (abfd, r_type, 8399 ELF_ST_IS_MIPS16 (h->other))) 8400 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 8401 8402 switch (r_type) 8403 { 8404 case R_MIPS_CALL16: 8405 case R_MIPS16_CALL16: 8406 case R_MICROMIPS_CALL16: 8407 if (h == NULL) 8408 { 8409 (*_bfd_error_handler) 8410 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 8411 abfd, (unsigned long) rel->r_offset); 8412 bfd_set_error (bfd_error_bad_value); 8413 return FALSE; 8414 } 8415 /* Fall through. */ 8416 8417 case R_MIPS_CALL_HI16: 8418 case R_MIPS_CALL_LO16: 8419 case R_MICROMIPS_CALL_HI16: 8420 case R_MICROMIPS_CALL_LO16: 8421 if (h != NULL) 8422 { 8423 /* Make sure there is room in the regular GOT to hold the 8424 function's address. We may eliminate it in favour of 8425 a .got.plt entry later; see mips_elf_count_got_symbols. */ 8426 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 8427 r_type)) 8428 return FALSE; 8429 8430 /* We need a stub, not a plt entry for the undefined 8431 function. But we record it as if it needs plt. See 8432 _bfd_elf_adjust_dynamic_symbol. */ 8433 h->needs_plt = 1; 8434 h->type = STT_FUNC; 8435 } 8436 break; 8437 8438 case R_MIPS_GOT_PAGE: 8439 case R_MICROMIPS_GOT_PAGE: 8440 case R_MIPS16_GOT16: 8441 case R_MIPS_GOT16: 8442 case R_MIPS_GOT_HI16: 8443 case R_MIPS_GOT_LO16: 8444 case R_MICROMIPS_GOT16: 8445 case R_MICROMIPS_GOT_HI16: 8446 case R_MICROMIPS_GOT_LO16: 8447 if (!h || got_page_reloc_p (r_type)) 8448 { 8449 /* This relocation needs (or may need, if h != NULL) a 8450 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 8451 know for sure until we know whether the symbol is 8452 preemptible. */ 8453 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 8454 { 8455 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8456 return FALSE; 8457 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8458 addend = mips_elf_read_rel_addend (abfd, rel, 8459 howto, contents); 8460 if (got16_reloc_p (r_type)) 8461 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 8462 contents, &addend); 8463 else 8464 addend <<= howto->rightshift; 8465 } 8466 else 8467 addend = rel->r_addend; 8468 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx, 8469 h, addend)) 8470 return FALSE; 8471 8472 if (h) 8473 { 8474 struct mips_elf_link_hash_entry *hmips = 8475 (struct mips_elf_link_hash_entry *) h; 8476 8477 /* This symbol is definitely not overridable. */ 8478 if (hmips->root.def_regular 8479 && ! (info->shared && ! info->symbolic 8480 && ! hmips->root.forced_local)) 8481 h = NULL; 8482 } 8483 } 8484 /* If this is a global, overridable symbol, GOT_PAGE will 8485 decay to GOT_DISP, so we'll need a GOT entry for it. */ 8486 /* Fall through. */ 8487 8488 case R_MIPS_GOT_DISP: 8489 case R_MICROMIPS_GOT_DISP: 8490 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 8491 FALSE, r_type)) 8492 return FALSE; 8493 break; 8494 8495 case R_MIPS_TLS_GOTTPREL: 8496 case R_MIPS16_TLS_GOTTPREL: 8497 case R_MICROMIPS_TLS_GOTTPREL: 8498 if (info->shared) 8499 info->flags |= DF_STATIC_TLS; 8500 /* Fall through */ 8501 8502 case R_MIPS_TLS_LDM: 8503 case R_MIPS16_TLS_LDM: 8504 case R_MICROMIPS_TLS_LDM: 8505 if (tls_ldm_reloc_p (r_type)) 8506 { 8507 r_symndx = STN_UNDEF; 8508 h = NULL; 8509 } 8510 /* Fall through */ 8511 8512 case R_MIPS_TLS_GD: 8513 case R_MIPS16_TLS_GD: 8514 case R_MICROMIPS_TLS_GD: 8515 /* This symbol requires a global offset table entry, or two 8516 for TLS GD relocations. */ 8517 if (h != NULL) 8518 { 8519 if (!mips_elf_record_global_got_symbol (h, abfd, info, 8520 FALSE, r_type)) 8521 return FALSE; 8522 } 8523 else 8524 { 8525 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 8526 rel->r_addend, 8527 info, r_type)) 8528 return FALSE; 8529 } 8530 break; 8531 8532 case R_MIPS_32: 8533 case R_MIPS_REL32: 8534 case R_MIPS_64: 8535 /* In VxWorks executables, references to external symbols 8536 are handled using copy relocs or PLT stubs, so there's 8537 no need to add a .rela.dyn entry for this relocation. */ 8538 if (can_make_dynamic_p) 8539 { 8540 if (sreloc == NULL) 8541 { 8542 sreloc = mips_elf_rel_dyn_section (info, TRUE); 8543 if (sreloc == NULL) 8544 return FALSE; 8545 } 8546 if (info->shared && h == NULL) 8547 { 8548 /* When creating a shared object, we must copy these 8549 reloc types into the output file as R_MIPS_REL32 8550 relocs. Make room for this reloc in .rel(a).dyn. */ 8551 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8552 if (MIPS_ELF_READONLY_SECTION (sec)) 8553 /* We tell the dynamic linker that there are 8554 relocations against the text segment. */ 8555 info->flags |= DF_TEXTREL; 8556 } 8557 else 8558 { 8559 struct mips_elf_link_hash_entry *hmips; 8560 8561 /* For a shared object, we must copy this relocation 8562 unless the symbol turns out to be undefined and 8563 weak with non-default visibility, in which case 8564 it will be left as zero. 8565 8566 We could elide R_MIPS_REL32 for locally binding symbols 8567 in shared libraries, but do not yet do so. 8568 8569 For an executable, we only need to copy this 8570 reloc if the symbol is defined in a dynamic 8571 object. */ 8572 hmips = (struct mips_elf_link_hash_entry *) h; 8573 ++hmips->possibly_dynamic_relocs; 8574 if (MIPS_ELF_READONLY_SECTION (sec)) 8575 /* We need it to tell the dynamic linker if there 8576 are relocations against the text segment. */ 8577 hmips->readonly_reloc = TRUE; 8578 } 8579 } 8580 8581 if (SGI_COMPAT (abfd)) 8582 mips_elf_hash_table (info)->compact_rel_size += 8583 sizeof (Elf32_External_crinfo); 8584 break; 8585 8586 case R_MIPS_26: 8587 case R_MIPS_GPREL16: 8588 case R_MIPS_LITERAL: 8589 case R_MIPS_GPREL32: 8590 case R_MICROMIPS_26_S1: 8591 case R_MICROMIPS_GPREL16: 8592 case R_MICROMIPS_LITERAL: 8593 case R_MICROMIPS_GPREL7_S2: 8594 if (SGI_COMPAT (abfd)) 8595 mips_elf_hash_table (info)->compact_rel_size += 8596 sizeof (Elf32_External_crinfo); 8597 break; 8598 8599 /* This relocation describes the C++ object vtable hierarchy. 8600 Reconstruct it for later use during GC. */ 8601 case R_MIPS_GNU_VTINHERIT: 8602 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 8603 return FALSE; 8604 break; 8605 8606 /* This relocation describes which C++ vtable entries are actually 8607 used. Record for later use during GC. */ 8608 case R_MIPS_GNU_VTENTRY: 8609 BFD_ASSERT (h != NULL); 8610 if (h != NULL 8611 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 8612 return FALSE; 8613 break; 8614 8615 default: 8616 break; 8617 } 8618 8619 /* Record the need for a PLT entry. At this point we don't know 8620 yet if we are going to create a PLT in the first place, but 8621 we only record whether the relocation requires a standard MIPS 8622 or a compressed code entry anyway. If we don't make a PLT after 8623 all, then we'll just ignore these arrangements. Likewise if 8624 a PLT entry is not created because the symbol is satisfied 8625 locally. */ 8626 if (h != NULL 8627 && jal_reloc_p (r_type) 8628 && !SYMBOL_CALLS_LOCAL (info, h)) 8629 { 8630 if (h->plt.plist == NULL) 8631 h->plt.plist = mips_elf_make_plt_record (abfd); 8632 if (h->plt.plist == NULL) 8633 return FALSE; 8634 8635 if (r_type == R_MIPS_26) 8636 h->plt.plist->need_mips = TRUE; 8637 else 8638 h->plt.plist->need_comp = TRUE; 8639 } 8640 8641 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 8642 if there is one. We only need to handle global symbols here; 8643 we decide whether to keep or delete stubs for local symbols 8644 when processing the stub's relocations. */ 8645 if (h != NULL 8646 && !mips16_call_reloc_p (r_type) 8647 && !section_allows_mips16_refs_p (sec)) 8648 { 8649 struct mips_elf_link_hash_entry *mh; 8650 8651 mh = (struct mips_elf_link_hash_entry *) h; 8652 mh->need_fn_stub = TRUE; 8653 } 8654 8655 /* Refuse some position-dependent relocations when creating a 8656 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 8657 not PIC, but we can create dynamic relocations and the result 8658 will be fine. Also do not refuse R_MIPS_LO16, which can be 8659 combined with R_MIPS_GOT16. */ 8660 if (info->shared) 8661 { 8662 switch (r_type) 8663 { 8664 case R_MIPS16_HI16: 8665 case R_MIPS_HI16: 8666 case R_MIPS_HIGHER: 8667 case R_MIPS_HIGHEST: 8668 case R_MICROMIPS_HI16: 8669 case R_MICROMIPS_HIGHER: 8670 case R_MICROMIPS_HIGHEST: 8671 /* Don't refuse a high part relocation if it's against 8672 no symbol (e.g. part of a compound relocation). */ 8673 if (r_symndx == STN_UNDEF) 8674 break; 8675 8676 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 8677 and has a special meaning. */ 8678 if (!NEWABI_P (abfd) && h != NULL 8679 && strcmp (h->root.root.string, "_gp_disp") == 0) 8680 break; 8681 8682 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 8683 if (is_gott_symbol (info, h)) 8684 break; 8685 8686 /* FALLTHROUGH */ 8687 8688 case R_MIPS16_26: 8689 case R_MIPS_26: 8690 case R_MICROMIPS_26_S1: 8691 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 8692 (*_bfd_error_handler) 8693 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 8694 abfd, howto->name, 8695 (h) ? h->root.root.string : "a local symbol"); 8696 bfd_set_error (bfd_error_bad_value); 8697 return FALSE; 8698 default: 8699 break; 8700 } 8701 } 8702 } 8703 8704 return TRUE; 8705 } 8706 8707 bfd_boolean 8708 _bfd_mips_relax_section (bfd *abfd, asection *sec, 8709 struct bfd_link_info *link_info, 8710 bfd_boolean *again) 8711 { 8712 Elf_Internal_Rela *internal_relocs; 8713 Elf_Internal_Rela *irel, *irelend; 8714 Elf_Internal_Shdr *symtab_hdr; 8715 bfd_byte *contents = NULL; 8716 size_t extsymoff; 8717 bfd_boolean changed_contents = FALSE; 8718 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 8719 Elf_Internal_Sym *isymbuf = NULL; 8720 8721 /* We are not currently changing any sizes, so only one pass. */ 8722 *again = FALSE; 8723 8724 if (link_info->relocatable) 8725 return TRUE; 8726 8727 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 8728 link_info->keep_memory); 8729 if (internal_relocs == NULL) 8730 return TRUE; 8731 8732 irelend = internal_relocs + sec->reloc_count 8733 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 8734 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 8735 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 8736 8737 for (irel = internal_relocs; irel < irelend; irel++) 8738 { 8739 bfd_vma symval; 8740 bfd_signed_vma sym_offset; 8741 unsigned int r_type; 8742 unsigned long r_symndx; 8743 asection *sym_sec; 8744 unsigned long instruction; 8745 8746 /* Turn jalr into bgezal, and jr into beq, if they're marked 8747 with a JALR relocation, that indicate where they jump to. 8748 This saves some pipeline bubbles. */ 8749 r_type = ELF_R_TYPE (abfd, irel->r_info); 8750 if (r_type != R_MIPS_JALR) 8751 continue; 8752 8753 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8754 /* Compute the address of the jump target. */ 8755 if (r_symndx >= extsymoff) 8756 { 8757 struct mips_elf_link_hash_entry *h 8758 = ((struct mips_elf_link_hash_entry *) 8759 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8760 8761 while (h->root.root.type == bfd_link_hash_indirect 8762 || h->root.root.type == bfd_link_hash_warning) 8763 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8764 8765 /* If a symbol is undefined, or if it may be overridden, 8766 skip it. */ 8767 if (! ((h->root.root.type == bfd_link_hash_defined 8768 || h->root.root.type == bfd_link_hash_defweak) 8769 && h->root.root.u.def.section) 8770 || (link_info->shared && ! link_info->symbolic 8771 && !h->root.forced_local)) 8772 continue; 8773 8774 sym_sec = h->root.root.u.def.section; 8775 if (sym_sec->output_section) 8776 symval = (h->root.root.u.def.value 8777 + sym_sec->output_section->vma 8778 + sym_sec->output_offset); 8779 else 8780 symval = h->root.root.u.def.value; 8781 } 8782 else 8783 { 8784 Elf_Internal_Sym *isym; 8785 8786 /* Read this BFD's symbols if we haven't done so already. */ 8787 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8788 { 8789 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8790 if (isymbuf == NULL) 8791 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8792 symtab_hdr->sh_info, 0, 8793 NULL, NULL, NULL); 8794 if (isymbuf == NULL) 8795 goto relax_return; 8796 } 8797 8798 isym = isymbuf + r_symndx; 8799 if (isym->st_shndx == SHN_UNDEF) 8800 continue; 8801 else if (isym->st_shndx == SHN_ABS) 8802 sym_sec = bfd_abs_section_ptr; 8803 else if (isym->st_shndx == SHN_COMMON) 8804 sym_sec = bfd_com_section_ptr; 8805 else 8806 sym_sec 8807 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8808 symval = isym->st_value 8809 + sym_sec->output_section->vma 8810 + sym_sec->output_offset; 8811 } 8812 8813 /* Compute branch offset, from delay slot of the jump to the 8814 branch target. */ 8815 sym_offset = (symval + irel->r_addend) 8816 - (sec_start + irel->r_offset + 4); 8817 8818 /* Branch offset must be properly aligned. */ 8819 if ((sym_offset & 3) != 0) 8820 continue; 8821 8822 sym_offset >>= 2; 8823 8824 /* Check that it's in range. */ 8825 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8826 continue; 8827 8828 /* Get the section contents if we haven't done so already. */ 8829 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8830 goto relax_return; 8831 8832 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8833 8834 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8835 if ((instruction & 0xfc1fffff) == 0x0000f809) 8836 instruction = 0x04110000; 8837 /* If it was jr <reg>, turn it into b <target>. */ 8838 else if ((instruction & 0xfc1fffff) == 0x00000008) 8839 instruction = 0x10000000; 8840 else 8841 continue; 8842 8843 instruction |= (sym_offset & 0xffff); 8844 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8845 changed_contents = TRUE; 8846 } 8847 8848 if (contents != NULL 8849 && elf_section_data (sec)->this_hdr.contents != contents) 8850 { 8851 if (!changed_contents && !link_info->keep_memory) 8852 free (contents); 8853 else 8854 { 8855 /* Cache the section contents for elf_link_input_bfd. */ 8856 elf_section_data (sec)->this_hdr.contents = contents; 8857 } 8858 } 8859 return TRUE; 8860 8861 relax_return: 8862 if (contents != NULL 8863 && elf_section_data (sec)->this_hdr.contents != contents) 8864 free (contents); 8865 return FALSE; 8866 } 8867 8868 /* Allocate space for global sym dynamic relocs. */ 8869 8870 static bfd_boolean 8871 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8872 { 8873 struct bfd_link_info *info = inf; 8874 bfd *dynobj; 8875 struct mips_elf_link_hash_entry *hmips; 8876 struct mips_elf_link_hash_table *htab; 8877 8878 htab = mips_elf_hash_table (info); 8879 BFD_ASSERT (htab != NULL); 8880 8881 dynobj = elf_hash_table (info)->dynobj; 8882 hmips = (struct mips_elf_link_hash_entry *) h; 8883 8884 /* VxWorks executables are handled elsewhere; we only need to 8885 allocate relocations in shared objects. */ 8886 if (htab->is_vxworks && !info->shared) 8887 return TRUE; 8888 8889 /* Ignore indirect symbols. All relocations against such symbols 8890 will be redirected to the target symbol. */ 8891 if (h->root.type == bfd_link_hash_indirect) 8892 return TRUE; 8893 8894 /* If this symbol is defined in a dynamic object, or we are creating 8895 a shared library, we will need to copy any R_MIPS_32 or 8896 R_MIPS_REL32 relocs against it into the output file. */ 8897 if (! info->relocatable 8898 && hmips->possibly_dynamic_relocs != 0 8899 && (h->root.type == bfd_link_hash_defweak 8900 || (!h->def_regular && !ELF_COMMON_DEF_P (h)) 8901 || info->shared)) 8902 { 8903 bfd_boolean do_copy = TRUE; 8904 8905 if (h->root.type == bfd_link_hash_undefweak) 8906 { 8907 /* Do not copy relocations for undefined weak symbols with 8908 non-default visibility. */ 8909 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8910 do_copy = FALSE; 8911 8912 /* Make sure undefined weak symbols are output as a dynamic 8913 symbol in PIEs. */ 8914 else if (h->dynindx == -1 && !h->forced_local) 8915 { 8916 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8917 return FALSE; 8918 } 8919 } 8920 8921 if (do_copy) 8922 { 8923 /* Even though we don't directly need a GOT entry for this symbol, 8924 the SVR4 psABI requires it to have a dynamic symbol table 8925 index greater that DT_MIPS_GOTSYM if there are dynamic 8926 relocations against it. 8927 8928 VxWorks does not enforce the same mapping between the GOT 8929 and the symbol table, so the same requirement does not 8930 apply there. */ 8931 if (!htab->is_vxworks) 8932 { 8933 if (hmips->global_got_area > GGA_RELOC_ONLY) 8934 hmips->global_got_area = GGA_RELOC_ONLY; 8935 hmips->got_only_for_calls = FALSE; 8936 } 8937 8938 mips_elf_allocate_dynamic_relocations 8939 (dynobj, info, hmips->possibly_dynamic_relocs); 8940 if (hmips->readonly_reloc) 8941 /* We tell the dynamic linker that there are relocations 8942 against the text segment. */ 8943 info->flags |= DF_TEXTREL; 8944 } 8945 } 8946 8947 return TRUE; 8948 } 8949 8950 /* Adjust a symbol defined by a dynamic object and referenced by a 8951 regular object. The current definition is in some section of the 8952 dynamic object, but we're not including those sections. We have to 8953 change the definition to something the rest of the link can 8954 understand. */ 8955 8956 bfd_boolean 8957 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 8958 struct elf_link_hash_entry *h) 8959 { 8960 bfd *dynobj; 8961 struct mips_elf_link_hash_entry *hmips; 8962 struct mips_elf_link_hash_table *htab; 8963 8964 htab = mips_elf_hash_table (info); 8965 BFD_ASSERT (htab != NULL); 8966 8967 dynobj = elf_hash_table (info)->dynobj; 8968 hmips = (struct mips_elf_link_hash_entry *) h; 8969 8970 /* Make sure we know what is going on here. */ 8971 BFD_ASSERT (dynobj != NULL 8972 && (h->needs_plt 8973 || h->u.weakdef != NULL 8974 || (h->def_dynamic 8975 && h->ref_regular 8976 && !h->def_regular))); 8977 8978 hmips = (struct mips_elf_link_hash_entry *) h; 8979 8980 /* If there are call relocations against an externally-defined symbol, 8981 see whether we can create a MIPS lazy-binding stub for it. We can 8982 only do this if all references to the function are through call 8983 relocations, and in that case, the traditional lazy-binding stubs 8984 are much more efficient than PLT entries. 8985 8986 Traditional stubs are only available on SVR4 psABI-based systems; 8987 VxWorks always uses PLTs instead. */ 8988 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 8989 { 8990 if (! elf_hash_table (info)->dynamic_sections_created) 8991 return TRUE; 8992 8993 /* If this symbol is not defined in a regular file, then set 8994 the symbol to the stub location. This is required to make 8995 function pointers compare as equal between the normal 8996 executable and the shared library. */ 8997 if (!h->def_regular) 8998 { 8999 hmips->needs_lazy_stub = TRUE; 9000 htab->lazy_stub_count++; 9001 return TRUE; 9002 } 9003 } 9004 /* As above, VxWorks requires PLT entries for externally-defined 9005 functions that are only accessed through call relocations. 9006 9007 Both VxWorks and non-VxWorks targets also need PLT entries if there 9008 are static-only relocations against an externally-defined function. 9009 This can technically occur for shared libraries if there are 9010 branches to the symbol, although it is unlikely that this will be 9011 used in practice due to the short ranges involved. It can occur 9012 for any relative or absolute relocation in executables; in that 9013 case, the PLT entry becomes the function's canonical address. */ 9014 else if (((h->needs_plt && !hmips->no_fn_stub) 9015 || (h->type == STT_FUNC && hmips->has_static_relocs)) 9016 && htab->use_plts_and_copy_relocs 9017 && !SYMBOL_CALLS_LOCAL (info, h) 9018 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 9019 && h->root.type == bfd_link_hash_undefweak)) 9020 { 9021 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9022 bfd_boolean newabi_p = NEWABI_P (info->output_bfd); 9023 9024 /* If this is the first symbol to need a PLT entry, then make some 9025 basic setup. Also work out PLT entry sizes. We'll need them 9026 for PLT offset calculations. */ 9027 if (htab->plt_mips_offset + htab->plt_comp_offset == 0) 9028 { 9029 BFD_ASSERT (htab->sgotplt->size == 0); 9030 BFD_ASSERT (htab->plt_got_index == 0); 9031 9032 /* If we're using the PLT additions to the psABI, each PLT 9033 entry is 16 bytes and the PLT0 entry is 32 bytes. 9034 Encourage better cache usage by aligning. We do this 9035 lazily to avoid pessimizing traditional objects. */ 9036 if (!htab->is_vxworks 9037 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 9038 return FALSE; 9039 9040 /* Make sure that .got.plt is word-aligned. We do this lazily 9041 for the same reason as above. */ 9042 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 9043 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 9044 return FALSE; 9045 9046 /* On non-VxWorks targets, the first two entries in .got.plt 9047 are reserved. */ 9048 if (!htab->is_vxworks) 9049 htab->plt_got_index 9050 += (get_elf_backend_data (dynobj)->got_header_size 9051 / MIPS_ELF_GOT_SIZE (dynobj)); 9052 9053 /* On VxWorks, also allocate room for the header's 9054 .rela.plt.unloaded entries. */ 9055 if (htab->is_vxworks && !info->shared) 9056 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 9057 9058 /* Now work out the sizes of individual PLT entries. */ 9059 if (htab->is_vxworks && info->shared) 9060 htab->plt_mips_entry_size 9061 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 9062 else if (htab->is_vxworks) 9063 htab->plt_mips_entry_size 9064 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 9065 else if (newabi_p) 9066 htab->plt_mips_entry_size 9067 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9068 else if (!micromips_p) 9069 { 9070 htab->plt_mips_entry_size 9071 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9072 htab->plt_comp_entry_size 9073 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 9074 } 9075 else if (htab->insn32) 9076 { 9077 htab->plt_mips_entry_size 9078 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9079 htab->plt_comp_entry_size 9080 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 9081 } 9082 else 9083 { 9084 htab->plt_mips_entry_size 9085 = 4 * ARRAY_SIZE (mips_exec_plt_entry); 9086 htab->plt_comp_entry_size 9087 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 9088 } 9089 } 9090 9091 if (h->plt.plist == NULL) 9092 h->plt.plist = mips_elf_make_plt_record (dynobj); 9093 if (h->plt.plist == NULL) 9094 return FALSE; 9095 9096 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks, 9097 n32 or n64, so always use a standard entry there. 9098 9099 If the symbol has a MIPS16 call stub and gets a PLT entry, then 9100 all MIPS16 calls will go via that stub, and there is no benefit 9101 to having a MIPS16 entry. And in the case of call_stub a 9102 standard entry actually has to be used as the stub ends with a J 9103 instruction. */ 9104 if (newabi_p 9105 || htab->is_vxworks 9106 || hmips->call_stub 9107 || hmips->call_fp_stub) 9108 { 9109 h->plt.plist->need_mips = TRUE; 9110 h->plt.plist->need_comp = FALSE; 9111 } 9112 9113 /* Otherwise, if there are no direct calls to the function, we 9114 have a free choice of whether to use standard or compressed 9115 entries. Prefer microMIPS entries if the object is known to 9116 contain microMIPS code, so that it becomes possible to create 9117 pure microMIPS binaries. Prefer standard entries otherwise, 9118 because MIPS16 ones are no smaller and are usually slower. */ 9119 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp) 9120 { 9121 if (micromips_p) 9122 h->plt.plist->need_comp = TRUE; 9123 else 9124 h->plt.plist->need_mips = TRUE; 9125 } 9126 9127 if (h->plt.plist->need_mips) 9128 { 9129 h->plt.plist->mips_offset = htab->plt_mips_offset; 9130 htab->plt_mips_offset += htab->plt_mips_entry_size; 9131 } 9132 if (h->plt.plist->need_comp) 9133 { 9134 h->plt.plist->comp_offset = htab->plt_comp_offset; 9135 htab->plt_comp_offset += htab->plt_comp_entry_size; 9136 } 9137 9138 /* Reserve the corresponding .got.plt entry now too. */ 9139 h->plt.plist->gotplt_index = htab->plt_got_index++; 9140 9141 /* If the output file has no definition of the symbol, set the 9142 symbol's value to the address of the stub. */ 9143 if (!info->shared && !h->def_regular) 9144 hmips->use_plt_entry = TRUE; 9145 9146 /* Make room for the R_MIPS_JUMP_SLOT relocation. */ 9147 htab->srelplt->size += (htab->is_vxworks 9148 ? MIPS_ELF_RELA_SIZE (dynobj) 9149 : MIPS_ELF_REL_SIZE (dynobj)); 9150 9151 /* Make room for the .rela.plt.unloaded relocations. */ 9152 if (htab->is_vxworks && !info->shared) 9153 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 9154 9155 /* All relocations against this symbol that could have been made 9156 dynamic will now refer to the PLT entry instead. */ 9157 hmips->possibly_dynamic_relocs = 0; 9158 9159 return TRUE; 9160 } 9161 9162 /* If this is a weak symbol, and there is a real definition, the 9163 processor independent code will have arranged for us to see the 9164 real definition first, and we can just use the same value. */ 9165 if (h->u.weakdef != NULL) 9166 { 9167 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 9168 || h->u.weakdef->root.type == bfd_link_hash_defweak); 9169 h->root.u.def.section = h->u.weakdef->root.u.def.section; 9170 h->root.u.def.value = h->u.weakdef->root.u.def.value; 9171 return TRUE; 9172 } 9173 9174 /* Otherwise, there is nothing further to do for symbols defined 9175 in regular objects. */ 9176 if (h->def_regular) 9177 return TRUE; 9178 9179 /* There's also nothing more to do if we'll convert all relocations 9180 against this symbol into dynamic relocations. */ 9181 if (!hmips->has_static_relocs) 9182 return TRUE; 9183 9184 /* We're now relying on copy relocations. Complain if we have 9185 some that we can't convert. */ 9186 if (!htab->use_plts_and_copy_relocs || info->shared) 9187 { 9188 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 9189 "dynamic symbol %s"), 9190 h->root.root.string); 9191 bfd_set_error (bfd_error_bad_value); 9192 return FALSE; 9193 } 9194 9195 /* We must allocate the symbol in our .dynbss section, which will 9196 become part of the .bss section of the executable. There will be 9197 an entry for this symbol in the .dynsym section. The dynamic 9198 object will contain position independent code, so all references 9199 from the dynamic object to this symbol will go through the global 9200 offset table. The dynamic linker will use the .dynsym entry to 9201 determine the address it must put in the global offset table, so 9202 both the dynamic object and the regular object will refer to the 9203 same memory location for the variable. */ 9204 9205 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 9206 { 9207 if (htab->is_vxworks) 9208 htab->srelbss->size += sizeof (Elf32_External_Rela); 9209 else 9210 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 9211 h->needs_copy = 1; 9212 } 9213 9214 /* All relocations against this symbol that could have been made 9215 dynamic will now refer to the local copy instead. */ 9216 hmips->possibly_dynamic_relocs = 0; 9217 9218 return _bfd_elf_adjust_dynamic_copy (info, h, htab->sdynbss); 9219 } 9220 9221 /* This function is called after all the input files have been read, 9222 and the input sections have been assigned to output sections. We 9223 check for any mips16 stub sections that we can discard. */ 9224 9225 bfd_boolean 9226 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 9227 struct bfd_link_info *info) 9228 { 9229 asection *sect; 9230 struct mips_elf_link_hash_table *htab; 9231 struct mips_htab_traverse_info hti; 9232 9233 htab = mips_elf_hash_table (info); 9234 BFD_ASSERT (htab != NULL); 9235 9236 /* The .reginfo section has a fixed size. */ 9237 sect = bfd_get_section_by_name (output_bfd, ".reginfo"); 9238 if (sect != NULL) 9239 bfd_set_section_size (output_bfd, sect, sizeof (Elf32_External_RegInfo)); 9240 9241 /* The .MIPS.abiflags section has a fixed size. */ 9242 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags"); 9243 if (sect != NULL) 9244 bfd_set_section_size (output_bfd, sect, sizeof (Elf_External_ABIFlags_v0)); 9245 9246 hti.info = info; 9247 hti.output_bfd = output_bfd; 9248 hti.error = FALSE; 9249 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 9250 mips_elf_check_symbols, &hti); 9251 if (hti.error) 9252 return FALSE; 9253 9254 return TRUE; 9255 } 9256 9257 /* If the link uses a GOT, lay it out and work out its size. */ 9258 9259 static bfd_boolean 9260 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 9261 { 9262 bfd *dynobj; 9263 asection *s; 9264 struct mips_got_info *g; 9265 bfd_size_type loadable_size = 0; 9266 bfd_size_type page_gotno; 9267 bfd *ibfd; 9268 struct mips_elf_traverse_got_arg tga; 9269 struct mips_elf_link_hash_table *htab; 9270 9271 htab = mips_elf_hash_table (info); 9272 BFD_ASSERT (htab != NULL); 9273 9274 s = htab->sgot; 9275 if (s == NULL) 9276 return TRUE; 9277 9278 dynobj = elf_hash_table (info)->dynobj; 9279 g = htab->got_info; 9280 9281 /* Allocate room for the reserved entries. VxWorks always reserves 9282 3 entries; other objects only reserve 2 entries. */ 9283 BFD_ASSERT (g->assigned_low_gotno == 0); 9284 if (htab->is_vxworks) 9285 htab->reserved_gotno = 3; 9286 else 9287 htab->reserved_gotno = 2; 9288 g->local_gotno += htab->reserved_gotno; 9289 g->assigned_low_gotno = htab->reserved_gotno; 9290 9291 /* Decide which symbols need to go in the global part of the GOT and 9292 count the number of reloc-only GOT symbols. */ 9293 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 9294 9295 if (!mips_elf_resolve_final_got_entries (info, g)) 9296 return FALSE; 9297 9298 /* Calculate the total loadable size of the output. That 9299 will give us the maximum number of GOT_PAGE entries 9300 required. */ 9301 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9302 { 9303 asection *subsection; 9304 9305 for (subsection = ibfd->sections; 9306 subsection; 9307 subsection = subsection->next) 9308 { 9309 if ((subsection->flags & SEC_ALLOC) == 0) 9310 continue; 9311 loadable_size += ((subsection->size + 0xf) 9312 &~ (bfd_size_type) 0xf); 9313 } 9314 } 9315 9316 if (htab->is_vxworks) 9317 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 9318 relocations against local symbols evaluate to "G", and the EABI does 9319 not include R_MIPS_GOT_PAGE. */ 9320 page_gotno = 0; 9321 else 9322 /* Assume there are two loadable segments consisting of contiguous 9323 sections. Is 5 enough? */ 9324 page_gotno = (loadable_size >> 16) + 5; 9325 9326 /* Choose the smaller of the two page estimates; both are intended to be 9327 conservative. */ 9328 if (page_gotno > g->page_gotno) 9329 page_gotno = g->page_gotno; 9330 9331 g->local_gotno += page_gotno; 9332 g->assigned_high_gotno = g->local_gotno - 1; 9333 9334 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9335 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9336 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 9337 9338 /* VxWorks does not support multiple GOTs. It initializes $gp to 9339 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 9340 dynamic loader. */ 9341 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 9342 { 9343 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 9344 return FALSE; 9345 } 9346 else 9347 { 9348 /* Record that all bfds use G. This also has the effect of freeing 9349 the per-bfd GOTs, which we no longer need. */ 9350 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 9351 if (mips_elf_bfd_got (ibfd, FALSE)) 9352 mips_elf_replace_bfd_got (ibfd, g); 9353 mips_elf_replace_bfd_got (output_bfd, g); 9354 9355 /* Set up TLS entries. */ 9356 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 9357 tga.info = info; 9358 tga.g = g; 9359 tga.value = MIPS_ELF_GOT_SIZE (output_bfd); 9360 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga); 9361 if (!tga.g) 9362 return FALSE; 9363 BFD_ASSERT (g->tls_assigned_gotno 9364 == g->global_gotno + g->local_gotno + g->tls_gotno); 9365 9366 /* Each VxWorks GOT entry needs an explicit relocation. */ 9367 if (htab->is_vxworks && info->shared) 9368 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno; 9369 9370 /* Allocate room for the TLS relocations. */ 9371 if (g->relocs) 9372 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs); 9373 } 9374 9375 return TRUE; 9376 } 9377 9378 /* Estimate the size of the .MIPS.stubs section. */ 9379 9380 static void 9381 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 9382 { 9383 struct mips_elf_link_hash_table *htab; 9384 bfd_size_type dynsymcount; 9385 9386 htab = mips_elf_hash_table (info); 9387 BFD_ASSERT (htab != NULL); 9388 9389 if (htab->lazy_stub_count == 0) 9390 return; 9391 9392 /* IRIX rld assumes that a function stub isn't at the end of the .text 9393 section, so add a dummy entry to the end. */ 9394 htab->lazy_stub_count++; 9395 9396 /* Get a worst-case estimate of the number of dynamic symbols needed. 9397 At this point, dynsymcount does not account for section symbols 9398 and count_section_dynsyms may overestimate the number that will 9399 be needed. */ 9400 dynsymcount = (elf_hash_table (info)->dynsymcount 9401 + count_section_dynsyms (output_bfd, info)); 9402 9403 /* Determine the size of one stub entry. There's no disadvantage 9404 from using microMIPS code here, so for the sake of pure-microMIPS 9405 binaries we prefer it whenever there's any microMIPS code in 9406 output produced at all. This has a benefit of stubs being 9407 shorter by 4 bytes each too, unless in the insn32 mode. */ 9408 if (!MICROMIPS_P (output_bfd)) 9409 htab->function_stub_size = (dynsymcount > 0x10000 9410 ? MIPS_FUNCTION_STUB_BIG_SIZE 9411 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 9412 else if (htab->insn32) 9413 htab->function_stub_size = (dynsymcount > 0x10000 9414 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 9415 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE); 9416 else 9417 htab->function_stub_size = (dynsymcount > 0x10000 9418 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE 9419 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE); 9420 9421 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 9422 } 9423 9424 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9425 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding 9426 stub, allocate an entry in the stubs section. */ 9427 9428 static bfd_boolean 9429 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data) 9430 { 9431 struct mips_htab_traverse_info *hti = data; 9432 struct mips_elf_link_hash_table *htab; 9433 struct bfd_link_info *info; 9434 bfd *output_bfd; 9435 9436 info = hti->info; 9437 output_bfd = hti->output_bfd; 9438 htab = mips_elf_hash_table (info); 9439 BFD_ASSERT (htab != NULL); 9440 9441 if (h->needs_lazy_stub) 9442 { 9443 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9444 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9445 bfd_vma isa_bit = micromips_p; 9446 9447 BFD_ASSERT (htab->root.dynobj != NULL); 9448 if (h->root.plt.plist == NULL) 9449 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner); 9450 if (h->root.plt.plist == NULL) 9451 { 9452 hti->error = TRUE; 9453 return FALSE; 9454 } 9455 h->root.root.u.def.section = htab->sstubs; 9456 h->root.root.u.def.value = htab->sstubs->size + isa_bit; 9457 h->root.plt.plist->stub_offset = htab->sstubs->size; 9458 h->root.other = other; 9459 htab->sstubs->size += htab->function_stub_size; 9460 } 9461 return TRUE; 9462 } 9463 9464 /* Allocate offsets in the stubs section to each symbol that needs one. 9465 Set the final size of the .MIPS.stub section. */ 9466 9467 static bfd_boolean 9468 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 9469 { 9470 bfd *output_bfd = info->output_bfd; 9471 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 9472 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9473 bfd_vma isa_bit = micromips_p; 9474 struct mips_elf_link_hash_table *htab; 9475 struct mips_htab_traverse_info hti; 9476 struct elf_link_hash_entry *h; 9477 bfd *dynobj; 9478 9479 htab = mips_elf_hash_table (info); 9480 BFD_ASSERT (htab != NULL); 9481 9482 if (htab->lazy_stub_count == 0) 9483 return TRUE; 9484 9485 htab->sstubs->size = 0; 9486 hti.info = info; 9487 hti.output_bfd = output_bfd; 9488 hti.error = FALSE; 9489 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti); 9490 if (hti.error) 9491 return FALSE; 9492 htab->sstubs->size += htab->function_stub_size; 9493 BFD_ASSERT (htab->sstubs->size 9494 == htab->lazy_stub_count * htab->function_stub_size); 9495 9496 dynobj = elf_hash_table (info)->dynobj; 9497 BFD_ASSERT (dynobj != NULL); 9498 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_"); 9499 if (h == NULL) 9500 return FALSE; 9501 h->root.u.def.value = isa_bit; 9502 h->other = other; 9503 h->type = STT_FUNC; 9504 9505 return TRUE; 9506 } 9507 9508 /* A mips_elf_link_hash_traverse callback for which DATA points to a 9509 bfd_link_info. If H uses the address of a PLT entry as the value 9510 of the symbol, then set the entry in the symbol table now. Prefer 9511 a standard MIPS PLT entry. */ 9512 9513 static bfd_boolean 9514 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data) 9515 { 9516 struct bfd_link_info *info = data; 9517 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd); 9518 struct mips_elf_link_hash_table *htab; 9519 unsigned int other; 9520 bfd_vma isa_bit; 9521 bfd_vma val; 9522 9523 htab = mips_elf_hash_table (info); 9524 BFD_ASSERT (htab != NULL); 9525 9526 if (h->use_plt_entry) 9527 { 9528 BFD_ASSERT (h->root.plt.plist != NULL); 9529 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE 9530 || h->root.plt.plist->comp_offset != MINUS_ONE); 9531 9532 val = htab->plt_header_size; 9533 if (h->root.plt.plist->mips_offset != MINUS_ONE) 9534 { 9535 isa_bit = 0; 9536 val += h->root.plt.plist->mips_offset; 9537 other = 0; 9538 } 9539 else 9540 { 9541 isa_bit = 1; 9542 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset; 9543 other = micromips_p ? STO_MICROMIPS : STO_MIPS16; 9544 } 9545 val += isa_bit; 9546 /* For VxWorks, point at the PLT load stub rather than the lazy 9547 resolution stub; this stub will become the canonical function 9548 address. */ 9549 if (htab->is_vxworks) 9550 val += 8; 9551 9552 h->root.root.u.def.section = htab->splt; 9553 h->root.root.u.def.value = val; 9554 h->root.other = other; 9555 } 9556 9557 return TRUE; 9558 } 9559 9560 /* Set the sizes of the dynamic sections. */ 9561 9562 bfd_boolean 9563 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 9564 struct bfd_link_info *info) 9565 { 9566 bfd *dynobj; 9567 asection *s, *sreldyn; 9568 bfd_boolean reltext; 9569 struct mips_elf_link_hash_table *htab; 9570 9571 htab = mips_elf_hash_table (info); 9572 BFD_ASSERT (htab != NULL); 9573 dynobj = elf_hash_table (info)->dynobj; 9574 BFD_ASSERT (dynobj != NULL); 9575 9576 if (elf_hash_table (info)->dynamic_sections_created) 9577 { 9578 /* Set the contents of the .interp section to the interpreter. */ 9579 if (info->executable) 9580 { 9581 s = bfd_get_linker_section (dynobj, ".interp"); 9582 BFD_ASSERT (s != NULL); 9583 s->size 9584 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 9585 s->contents 9586 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 9587 } 9588 9589 /* Figure out the size of the PLT header if we know that we 9590 are using it. For the sake of cache alignment always use 9591 a standard header whenever any standard entries are present 9592 even if microMIPS entries are present as well. This also 9593 lets the microMIPS header rely on the value of $v0 only set 9594 by microMIPS entries, for a small size reduction. 9595 9596 Set symbol table entry values for symbols that use the 9597 address of their PLT entry now that we can calculate it. 9598 9599 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we 9600 haven't already in _bfd_elf_create_dynamic_sections. */ 9601 if (htab->splt && htab->plt_mips_offset + htab->plt_comp_offset != 0) 9602 { 9603 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd) 9604 && !htab->plt_mips_offset); 9605 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 9606 bfd_vma isa_bit = micromips_p; 9607 struct elf_link_hash_entry *h; 9608 bfd_vma size; 9609 9610 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9611 BFD_ASSERT (htab->sgotplt->size == 0); 9612 BFD_ASSERT (htab->splt->size == 0); 9613 9614 if (htab->is_vxworks && info->shared) 9615 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 9616 else if (htab->is_vxworks) 9617 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 9618 else if (ABI_64_P (output_bfd)) 9619 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry); 9620 else if (ABI_N32_P (output_bfd)) 9621 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry); 9622 else if (!micromips_p) 9623 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 9624 else if (htab->insn32) 9625 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 9626 else 9627 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 9628 9629 htab->plt_header_is_comp = micromips_p; 9630 htab->plt_header_size = size; 9631 htab->splt->size = (size 9632 + htab->plt_mips_offset 9633 + htab->plt_comp_offset); 9634 htab->sgotplt->size = (htab->plt_got_index 9635 * MIPS_ELF_GOT_SIZE (dynobj)); 9636 9637 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info); 9638 9639 if (htab->root.hplt == NULL) 9640 { 9641 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 9642 "_PROCEDURE_LINKAGE_TABLE_"); 9643 htab->root.hplt = h; 9644 if (h == NULL) 9645 return FALSE; 9646 } 9647 9648 h = htab->root.hplt; 9649 h->root.u.def.value = isa_bit; 9650 h->other = other; 9651 h->type = STT_FUNC; 9652 } 9653 } 9654 9655 /* Allocate space for global sym dynamic relocs. */ 9656 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info); 9657 9658 mips_elf_estimate_stub_size (output_bfd, info); 9659 9660 if (!mips_elf_lay_out_got (output_bfd, info)) 9661 return FALSE; 9662 9663 mips_elf_lay_out_lazy_stubs (info); 9664 9665 /* The check_relocs and adjust_dynamic_symbol entry points have 9666 determined the sizes of the various dynamic sections. Allocate 9667 memory for them. */ 9668 reltext = FALSE; 9669 for (s = dynobj->sections; s != NULL; s = s->next) 9670 { 9671 const char *name; 9672 9673 /* It's OK to base decisions on the section name, because none 9674 of the dynobj section names depend upon the input files. */ 9675 name = bfd_get_section_name (dynobj, s); 9676 9677 if ((s->flags & SEC_LINKER_CREATED) == 0) 9678 continue; 9679 9680 if (CONST_STRNEQ (name, ".rel")) 9681 { 9682 if (s->size != 0) 9683 { 9684 const char *outname; 9685 asection *target; 9686 9687 /* If this relocation section applies to a read only 9688 section, then we probably need a DT_TEXTREL entry. 9689 If the relocation section is .rel(a).dyn, we always 9690 assert a DT_TEXTREL entry rather than testing whether 9691 there exists a relocation to a read only section or 9692 not. */ 9693 outname = bfd_get_section_name (output_bfd, 9694 s->output_section); 9695 target = bfd_get_section_by_name (output_bfd, outname + 4); 9696 if ((target != NULL 9697 && (target->flags & SEC_READONLY) != 0 9698 && (target->flags & SEC_ALLOC) != 0) 9699 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 9700 reltext = TRUE; 9701 9702 /* We use the reloc_count field as a counter if we need 9703 to copy relocs into the output file. */ 9704 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 9705 s->reloc_count = 0; 9706 9707 /* If combreloc is enabled, elf_link_sort_relocs() will 9708 sort relocations, but in a different way than we do, 9709 and before we're done creating relocations. Also, it 9710 will move them around between input sections' 9711 relocation's contents, so our sorting would be 9712 broken, so don't let it run. */ 9713 info->combreloc = 0; 9714 } 9715 } 9716 else if (! info->shared 9717 && ! mips_elf_hash_table (info)->use_rld_obj_head 9718 && CONST_STRNEQ (name, ".rld_map")) 9719 { 9720 /* We add a room for __rld_map. It will be filled in by the 9721 rtld to contain a pointer to the _r_debug structure. */ 9722 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd); 9723 } 9724 else if (SGI_COMPAT (output_bfd) 9725 && CONST_STRNEQ (name, ".compact_rel")) 9726 s->size += mips_elf_hash_table (info)->compact_rel_size; 9727 else if (s == htab->splt) 9728 { 9729 /* If the last PLT entry has a branch delay slot, allocate 9730 room for an extra nop to fill the delay slot. This is 9731 for CPUs without load interlocking. */ 9732 if (! LOAD_INTERLOCKS_P (output_bfd) 9733 && ! htab->is_vxworks && s->size > 0) 9734 s->size += 4; 9735 } 9736 else if (! CONST_STRNEQ (name, ".init") 9737 && s != htab->sgot 9738 && s != htab->sgotplt 9739 && s != htab->sstubs 9740 && s != htab->sdynbss) 9741 { 9742 /* It's not one of our sections, so don't allocate space. */ 9743 continue; 9744 } 9745 9746 if (s->size == 0) 9747 { 9748 s->flags |= SEC_EXCLUDE; 9749 continue; 9750 } 9751 9752 if ((s->flags & SEC_HAS_CONTENTS) == 0) 9753 continue; 9754 9755 /* Allocate memory for the section contents. */ 9756 s->contents = bfd_zalloc (dynobj, s->size); 9757 if (s->contents == NULL) 9758 { 9759 bfd_set_error (bfd_error_no_memory); 9760 return FALSE; 9761 } 9762 } 9763 9764 if (elf_hash_table (info)->dynamic_sections_created) 9765 { 9766 /* Add some entries to the .dynamic section. We fill in the 9767 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 9768 must add the entries now so that we get the correct size for 9769 the .dynamic section. */ 9770 9771 /* SGI object has the equivalence of DT_DEBUG in the 9772 DT_MIPS_RLD_MAP entry. This must come first because glibc 9773 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools 9774 may only look at the first one they see. */ 9775 if (!info->shared 9776 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 9777 return FALSE; 9778 9779 /* The DT_DEBUG entry may be filled in by the dynamic linker and 9780 used by the debugger. */ 9781 if (info->executable 9782 && !SGI_COMPAT (output_bfd) 9783 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 9784 return FALSE; 9785 9786 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 9787 info->flags |= DF_TEXTREL; 9788 9789 if ((info->flags & DF_TEXTREL) != 0) 9790 { 9791 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 9792 return FALSE; 9793 9794 /* Clear the DF_TEXTREL flag. It will be set again if we 9795 write out an actual text relocation; we may not, because 9796 at this point we do not know whether e.g. any .eh_frame 9797 absolute relocations have been converted to PC-relative. */ 9798 info->flags &= ~DF_TEXTREL; 9799 } 9800 9801 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 9802 return FALSE; 9803 9804 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 9805 if (htab->is_vxworks) 9806 { 9807 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 9808 use any of the DT_MIPS_* tags. */ 9809 if (sreldyn && sreldyn->size > 0) 9810 { 9811 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 9812 return FALSE; 9813 9814 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 9815 return FALSE; 9816 9817 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 9818 return FALSE; 9819 } 9820 } 9821 else 9822 { 9823 if (sreldyn && sreldyn->size > 0) 9824 { 9825 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 9826 return FALSE; 9827 9828 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 9829 return FALSE; 9830 9831 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 9832 return FALSE; 9833 } 9834 9835 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 9836 return FALSE; 9837 9838 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 9839 return FALSE; 9840 9841 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 9842 return FALSE; 9843 9844 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 9845 return FALSE; 9846 9847 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 9848 return FALSE; 9849 9850 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 9851 return FALSE; 9852 9853 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 9854 return FALSE; 9855 9856 if (IRIX_COMPAT (dynobj) == ict_irix5 9857 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 9858 return FALSE; 9859 9860 if (IRIX_COMPAT (dynobj) == ict_irix6 9861 && (bfd_get_section_by_name 9862 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 9863 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 9864 return FALSE; 9865 } 9866 if (htab->splt->size > 0) 9867 { 9868 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 9869 return FALSE; 9870 9871 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 9872 return FALSE; 9873 9874 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 9875 return FALSE; 9876 9877 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 9878 return FALSE; 9879 } 9880 if (htab->is_vxworks 9881 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 9882 return FALSE; 9883 } 9884 9885 return TRUE; 9886 } 9887 9888 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 9889 Adjust its R_ADDEND field so that it is correct for the output file. 9890 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 9891 and sections respectively; both use symbol indexes. */ 9892 9893 static void 9894 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 9895 bfd *input_bfd, Elf_Internal_Sym *local_syms, 9896 asection **local_sections, Elf_Internal_Rela *rel) 9897 { 9898 unsigned int r_type, r_symndx; 9899 Elf_Internal_Sym *sym; 9900 asection *sec; 9901 9902 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9903 { 9904 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 9905 if (gprel16_reloc_p (r_type) 9906 || r_type == R_MIPS_GPREL32 9907 || literal_reloc_p (r_type)) 9908 { 9909 rel->r_addend += _bfd_get_gp_value (input_bfd); 9910 rel->r_addend -= _bfd_get_gp_value (output_bfd); 9911 } 9912 9913 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 9914 sym = local_syms + r_symndx; 9915 9916 /* Adjust REL's addend to account for section merging. */ 9917 if (!info->relocatable) 9918 { 9919 sec = local_sections[r_symndx]; 9920 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 9921 } 9922 9923 /* This would normally be done by the rela_normal code in elflink.c. */ 9924 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 9925 rel->r_addend += local_sections[r_symndx]->output_offset; 9926 } 9927 } 9928 9929 /* Handle relocations against symbols from removed linkonce sections, 9930 or sections discarded by a linker script. We use this wrapper around 9931 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs 9932 on 64-bit ELF targets. In this case for any relocation handled, which 9933 always be the first in a triplet, the remaining two have to be processed 9934 together with the first, even if they are R_MIPS_NONE. It is the symbol 9935 index referred by the first reloc that applies to all the three and the 9936 remaining two never refer to an object symbol. And it is the final 9937 relocation (the last non-null one) that determines the output field of 9938 the whole relocation so retrieve the corresponding howto structure for 9939 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION. 9940 9941 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue" 9942 and therefore requires to be pasted in a loop. It also defines a block 9943 and does not protect any of its arguments, hence the extra brackets. */ 9944 9945 static void 9946 mips_reloc_against_discarded_section (bfd *output_bfd, 9947 struct bfd_link_info *info, 9948 bfd *input_bfd, asection *input_section, 9949 Elf_Internal_Rela **rel, 9950 const Elf_Internal_Rela **relend, 9951 bfd_boolean rel_reloc, 9952 reloc_howto_type *howto, 9953 bfd_byte *contents) 9954 { 9955 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 9956 int count = bed->s->int_rels_per_ext_rel; 9957 unsigned int r_type; 9958 int i; 9959 9960 for (i = count - 1; i > 0; i--) 9961 { 9962 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info); 9963 if (r_type != R_MIPS_NONE) 9964 { 9965 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 9966 break; 9967 } 9968 } 9969 do 9970 { 9971 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 9972 (*rel), count, (*relend), 9973 howto, i, contents); 9974 } 9975 while (0); 9976 } 9977 9978 /* Relocate a MIPS ELF section. */ 9979 9980 bfd_boolean 9981 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 9982 bfd *input_bfd, asection *input_section, 9983 bfd_byte *contents, Elf_Internal_Rela *relocs, 9984 Elf_Internal_Sym *local_syms, 9985 asection **local_sections) 9986 { 9987 Elf_Internal_Rela *rel; 9988 const Elf_Internal_Rela *relend; 9989 bfd_vma addend = 0; 9990 bfd_boolean use_saved_addend_p = FALSE; 9991 const struct elf_backend_data *bed; 9992 9993 bed = get_elf_backend_data (output_bfd); 9994 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 9995 for (rel = relocs; rel < relend; ++rel) 9996 { 9997 const char *name; 9998 bfd_vma value = 0; 9999 reloc_howto_type *howto; 10000 bfd_boolean cross_mode_jump_p = FALSE; 10001 /* TRUE if the relocation is a RELA relocation, rather than a 10002 REL relocation. */ 10003 bfd_boolean rela_relocation_p = TRUE; 10004 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 10005 const char *msg; 10006 unsigned long r_symndx; 10007 asection *sec; 10008 Elf_Internal_Shdr *symtab_hdr; 10009 struct elf_link_hash_entry *h; 10010 bfd_boolean rel_reloc; 10011 10012 rel_reloc = (NEWABI_P (input_bfd) 10013 && mips_elf_rel_relocation_p (input_bfd, input_section, 10014 relocs, rel)); 10015 /* Find the relocation howto for this relocation. */ 10016 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 10017 10018 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 10019 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 10020 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 10021 { 10022 sec = local_sections[r_symndx]; 10023 h = NULL; 10024 } 10025 else 10026 { 10027 unsigned long extsymoff; 10028 10029 extsymoff = 0; 10030 if (!elf_bad_symtab (input_bfd)) 10031 extsymoff = symtab_hdr->sh_info; 10032 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 10033 while (h->root.type == bfd_link_hash_indirect 10034 || h->root.type == bfd_link_hash_warning) 10035 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10036 10037 sec = NULL; 10038 if (h->root.type == bfd_link_hash_defined 10039 || h->root.type == bfd_link_hash_defweak) 10040 sec = h->root.u.def.section; 10041 } 10042 10043 if (sec != NULL && discarded_section (sec)) 10044 { 10045 mips_reloc_against_discarded_section (output_bfd, info, input_bfd, 10046 input_section, &rel, &relend, 10047 rel_reloc, howto, contents); 10048 continue; 10049 } 10050 10051 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 10052 { 10053 /* Some 32-bit code uses R_MIPS_64. In particular, people use 10054 64-bit code, but make sure all their addresses are in the 10055 lowermost or uppermost 32-bit section of the 64-bit address 10056 space. Thus, when they use an R_MIPS_64 they mean what is 10057 usually meant by R_MIPS_32, with the exception that the 10058 stored value is sign-extended to 64 bits. */ 10059 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 10060 10061 /* On big-endian systems, we need to lie about the position 10062 of the reloc. */ 10063 if (bfd_big_endian (input_bfd)) 10064 rel->r_offset += 4; 10065 } 10066 10067 if (!use_saved_addend_p) 10068 { 10069 /* If these relocations were originally of the REL variety, 10070 we must pull the addend out of the field that will be 10071 relocated. Otherwise, we simply use the contents of the 10072 RELA relocation. */ 10073 if (mips_elf_rel_relocation_p (input_bfd, input_section, 10074 relocs, rel)) 10075 { 10076 rela_relocation_p = FALSE; 10077 addend = mips_elf_read_rel_addend (input_bfd, rel, 10078 howto, contents); 10079 if (hi16_reloc_p (r_type) 10080 || (got16_reloc_p (r_type) 10081 && mips_elf_local_relocation_p (input_bfd, rel, 10082 local_sections))) 10083 { 10084 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 10085 contents, &addend)) 10086 { 10087 if (h) 10088 name = h->root.root.string; 10089 else 10090 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10091 local_syms + r_symndx, 10092 sec); 10093 (*_bfd_error_handler) 10094 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 10095 input_bfd, input_section, name, howto->name, 10096 rel->r_offset); 10097 } 10098 } 10099 else 10100 addend <<= howto->rightshift; 10101 } 10102 else 10103 addend = rel->r_addend; 10104 mips_elf_adjust_addend (output_bfd, info, input_bfd, 10105 local_syms, local_sections, rel); 10106 } 10107 10108 if (info->relocatable) 10109 { 10110 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 10111 && bfd_big_endian (input_bfd)) 10112 rel->r_offset -= 4; 10113 10114 if (!rela_relocation_p && rel->r_addend) 10115 { 10116 addend += rel->r_addend; 10117 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 10118 addend = mips_elf_high (addend); 10119 else if (r_type == R_MIPS_HIGHER) 10120 addend = mips_elf_higher (addend); 10121 else if (r_type == R_MIPS_HIGHEST) 10122 addend = mips_elf_highest (addend); 10123 else 10124 addend >>= howto->rightshift; 10125 10126 /* We use the source mask, rather than the destination 10127 mask because the place to which we are writing will be 10128 source of the addend in the final link. */ 10129 addend &= howto->src_mask; 10130 10131 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10132 /* See the comment above about using R_MIPS_64 in the 32-bit 10133 ABI. Here, we need to update the addend. It would be 10134 possible to get away with just using the R_MIPS_32 reloc 10135 but for endianness. */ 10136 { 10137 bfd_vma sign_bits; 10138 bfd_vma low_bits; 10139 bfd_vma high_bits; 10140 10141 if (addend & ((bfd_vma) 1 << 31)) 10142 #ifdef BFD64 10143 sign_bits = ((bfd_vma) 1 << 32) - 1; 10144 #else 10145 sign_bits = -1; 10146 #endif 10147 else 10148 sign_bits = 0; 10149 10150 /* If we don't know that we have a 64-bit type, 10151 do two separate stores. */ 10152 if (bfd_big_endian (input_bfd)) 10153 { 10154 /* Store the sign-bits (which are most significant) 10155 first. */ 10156 low_bits = sign_bits; 10157 high_bits = addend; 10158 } 10159 else 10160 { 10161 low_bits = addend; 10162 high_bits = sign_bits; 10163 } 10164 bfd_put_32 (input_bfd, low_bits, 10165 contents + rel->r_offset); 10166 bfd_put_32 (input_bfd, high_bits, 10167 contents + rel->r_offset + 4); 10168 continue; 10169 } 10170 10171 if (! mips_elf_perform_relocation (info, howto, rel, addend, 10172 input_bfd, input_section, 10173 contents, FALSE)) 10174 return FALSE; 10175 } 10176 10177 /* Go on to the next relocation. */ 10178 continue; 10179 } 10180 10181 /* In the N32 and 64-bit ABIs there may be multiple consecutive 10182 relocations for the same offset. In that case we are 10183 supposed to treat the output of each relocation as the addend 10184 for the next. */ 10185 if (rel + 1 < relend 10186 && rel->r_offset == rel[1].r_offset 10187 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 10188 use_saved_addend_p = TRUE; 10189 else 10190 use_saved_addend_p = FALSE; 10191 10192 /* Figure out what value we are supposed to relocate. */ 10193 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 10194 input_section, info, rel, 10195 addend, howto, local_syms, 10196 local_sections, &value, 10197 &name, &cross_mode_jump_p, 10198 use_saved_addend_p)) 10199 { 10200 case bfd_reloc_continue: 10201 /* There's nothing to do. */ 10202 continue; 10203 10204 case bfd_reloc_undefined: 10205 /* mips_elf_calculate_relocation already called the 10206 undefined_symbol callback. There's no real point in 10207 trying to perform the relocation at this point, so we 10208 just skip ahead to the next relocation. */ 10209 continue; 10210 10211 case bfd_reloc_notsupported: 10212 msg = _("internal error: unsupported relocation error"); 10213 info->callbacks->warning 10214 (info, msg, name, input_bfd, input_section, rel->r_offset); 10215 return FALSE; 10216 10217 case bfd_reloc_overflow: 10218 if (use_saved_addend_p) 10219 /* Ignore overflow until we reach the last relocation for 10220 a given location. */ 10221 ; 10222 else 10223 { 10224 struct mips_elf_link_hash_table *htab; 10225 10226 htab = mips_elf_hash_table (info); 10227 BFD_ASSERT (htab != NULL); 10228 BFD_ASSERT (name != NULL); 10229 if (!htab->small_data_overflow_reported 10230 && (gprel16_reloc_p (howto->type) 10231 || literal_reloc_p (howto->type))) 10232 { 10233 msg = _("small-data section exceeds 64KB;" 10234 " lower small-data size limit (see option -G)"); 10235 10236 htab->small_data_overflow_reported = TRUE; 10237 (*info->callbacks->einfo) ("%P: %s\n", msg); 10238 } 10239 if (! ((*info->callbacks->reloc_overflow) 10240 (info, NULL, name, howto->name, (bfd_vma) 0, 10241 input_bfd, input_section, rel->r_offset))) 10242 return FALSE; 10243 } 10244 break; 10245 10246 case bfd_reloc_ok: 10247 break; 10248 10249 case bfd_reloc_outofrange: 10250 if (jal_reloc_p (howto->type)) 10251 { 10252 msg = _("JALX to a non-word-aligned address"); 10253 info->callbacks->warning 10254 (info, msg, name, input_bfd, input_section, rel->r_offset); 10255 return FALSE; 10256 } 10257 if (aligned_pcrel_reloc_p (howto->type)) 10258 { 10259 msg = _("PC-relative load from unaligned address"); 10260 info->callbacks->warning 10261 (info, msg, name, input_bfd, input_section, rel->r_offset); 10262 return FALSE; 10263 } 10264 /* Fall through. */ 10265 10266 default: 10267 abort (); 10268 break; 10269 } 10270 10271 /* If we've got another relocation for the address, keep going 10272 until we reach the last one. */ 10273 if (use_saved_addend_p) 10274 { 10275 addend = value; 10276 continue; 10277 } 10278 10279 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 10280 /* See the comment above about using R_MIPS_64 in the 32-bit 10281 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 10282 that calculated the right value. Now, however, we 10283 sign-extend the 32-bit result to 64-bits, and store it as a 10284 64-bit value. We are especially generous here in that we 10285 go to extreme lengths to support this usage on systems with 10286 only a 32-bit VMA. */ 10287 { 10288 bfd_vma sign_bits; 10289 bfd_vma low_bits; 10290 bfd_vma high_bits; 10291 10292 if (value & ((bfd_vma) 1 << 31)) 10293 #ifdef BFD64 10294 sign_bits = ((bfd_vma) 1 << 32) - 1; 10295 #else 10296 sign_bits = -1; 10297 #endif 10298 else 10299 sign_bits = 0; 10300 10301 /* If we don't know that we have a 64-bit type, 10302 do two separate stores. */ 10303 if (bfd_big_endian (input_bfd)) 10304 { 10305 /* Undo what we did above. */ 10306 rel->r_offset -= 4; 10307 /* Store the sign-bits (which are most significant) 10308 first. */ 10309 low_bits = sign_bits; 10310 high_bits = value; 10311 } 10312 else 10313 { 10314 low_bits = value; 10315 high_bits = sign_bits; 10316 } 10317 bfd_put_32 (input_bfd, low_bits, 10318 contents + rel->r_offset); 10319 bfd_put_32 (input_bfd, high_bits, 10320 contents + rel->r_offset + 4); 10321 continue; 10322 } 10323 10324 /* Actually perform the relocation. */ 10325 if (! mips_elf_perform_relocation (info, howto, rel, value, 10326 input_bfd, input_section, 10327 contents, cross_mode_jump_p)) 10328 return FALSE; 10329 } 10330 10331 return TRUE; 10332 } 10333 10334 /* A function that iterates over each entry in la25_stubs and fills 10335 in the code for each one. DATA points to a mips_htab_traverse_info. */ 10336 10337 static int 10338 mips_elf_create_la25_stub (void **slot, void *data) 10339 { 10340 struct mips_htab_traverse_info *hti; 10341 struct mips_elf_link_hash_table *htab; 10342 struct mips_elf_la25_stub *stub; 10343 asection *s; 10344 bfd_byte *loc; 10345 bfd_vma offset, target, target_high, target_low; 10346 10347 stub = (struct mips_elf_la25_stub *) *slot; 10348 hti = (struct mips_htab_traverse_info *) data; 10349 htab = mips_elf_hash_table (hti->info); 10350 BFD_ASSERT (htab != NULL); 10351 10352 /* Create the section contents, if we haven't already. */ 10353 s = stub->stub_section; 10354 loc = s->contents; 10355 if (loc == NULL) 10356 { 10357 loc = bfd_malloc (s->size); 10358 if (loc == NULL) 10359 { 10360 hti->error = TRUE; 10361 return FALSE; 10362 } 10363 s->contents = loc; 10364 } 10365 10366 /* Work out where in the section this stub should go. */ 10367 offset = stub->offset; 10368 10369 /* Work out the target address. */ 10370 target = mips_elf_get_la25_target (stub, &s); 10371 target += s->output_section->vma + s->output_offset; 10372 10373 target_high = ((target + 0x8000) >> 16) & 0xffff; 10374 target_low = (target & 0xffff); 10375 10376 if (stub->stub_section != htab->strampoline) 10377 { 10378 /* This is a simple LUI/ADDIU stub. Zero out the beginning 10379 of the section and write the two instructions at the end. */ 10380 memset (loc, 0, offset); 10381 loc += offset; 10382 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10383 { 10384 bfd_put_micromips_32 (hti->output_bfd, 10385 LA25_LUI_MICROMIPS (target_high), 10386 loc); 10387 bfd_put_micromips_32 (hti->output_bfd, 10388 LA25_ADDIU_MICROMIPS (target_low), 10389 loc + 4); 10390 } 10391 else 10392 { 10393 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10394 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 10395 } 10396 } 10397 else 10398 { 10399 /* This is trampoline. */ 10400 loc += offset; 10401 if (ELF_ST_IS_MICROMIPS (stub->h->root.other)) 10402 { 10403 bfd_put_micromips_32 (hti->output_bfd, 10404 LA25_LUI_MICROMIPS (target_high), loc); 10405 bfd_put_micromips_32 (hti->output_bfd, 10406 LA25_J_MICROMIPS (target), loc + 4); 10407 bfd_put_micromips_32 (hti->output_bfd, 10408 LA25_ADDIU_MICROMIPS (target_low), loc + 8); 10409 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10410 } 10411 else 10412 { 10413 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 10414 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 10415 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 10416 bfd_put_32 (hti->output_bfd, 0, loc + 12); 10417 } 10418 } 10419 return TRUE; 10420 } 10421 10422 /* If NAME is one of the special IRIX6 symbols defined by the linker, 10423 adjust it appropriately now. */ 10424 10425 static void 10426 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 10427 const char *name, Elf_Internal_Sym *sym) 10428 { 10429 /* The linker script takes care of providing names and values for 10430 these, but we must place them into the right sections. */ 10431 static const char* const text_section_symbols[] = { 10432 "_ftext", 10433 "_etext", 10434 "__dso_displacement", 10435 "__elf_header", 10436 "__program_header_table", 10437 NULL 10438 }; 10439 10440 static const char* const data_section_symbols[] = { 10441 "_fdata", 10442 "_edata", 10443 "_end", 10444 "_fbss", 10445 NULL 10446 }; 10447 10448 const char* const *p; 10449 int i; 10450 10451 for (i = 0; i < 2; ++i) 10452 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 10453 *p; 10454 ++p) 10455 if (strcmp (*p, name) == 0) 10456 { 10457 /* All of these symbols are given type STT_SECTION by the 10458 IRIX6 linker. */ 10459 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10460 sym->st_other = STO_PROTECTED; 10461 10462 /* The IRIX linker puts these symbols in special sections. */ 10463 if (i == 0) 10464 sym->st_shndx = SHN_MIPS_TEXT; 10465 else 10466 sym->st_shndx = SHN_MIPS_DATA; 10467 10468 break; 10469 } 10470 } 10471 10472 /* Finish up dynamic symbol handling. We set the contents of various 10473 dynamic sections here. */ 10474 10475 bfd_boolean 10476 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 10477 struct bfd_link_info *info, 10478 struct elf_link_hash_entry *h, 10479 Elf_Internal_Sym *sym) 10480 { 10481 bfd *dynobj; 10482 asection *sgot; 10483 struct mips_got_info *g, *gg; 10484 const char *name; 10485 int idx; 10486 struct mips_elf_link_hash_table *htab; 10487 struct mips_elf_link_hash_entry *hmips; 10488 10489 htab = mips_elf_hash_table (info); 10490 BFD_ASSERT (htab != NULL); 10491 dynobj = elf_hash_table (info)->dynobj; 10492 hmips = (struct mips_elf_link_hash_entry *) h; 10493 10494 BFD_ASSERT (!htab->is_vxworks); 10495 10496 if (h->plt.plist != NULL 10497 && (h->plt.plist->mips_offset != MINUS_ONE 10498 || h->plt.plist->comp_offset != MINUS_ONE)) 10499 { 10500 /* We've decided to create a PLT entry for this symbol. */ 10501 bfd_byte *loc; 10502 bfd_vma header_address, got_address; 10503 bfd_vma got_address_high, got_address_low, load; 10504 bfd_vma got_index; 10505 bfd_vma isa_bit; 10506 10507 got_index = h->plt.plist->gotplt_index; 10508 10509 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10510 BFD_ASSERT (h->dynindx != -1); 10511 BFD_ASSERT (htab->splt != NULL); 10512 BFD_ASSERT (got_index != MINUS_ONE); 10513 BFD_ASSERT (!h->def_regular); 10514 10515 /* Calculate the address of the PLT header. */ 10516 isa_bit = htab->plt_header_is_comp; 10517 header_address = (htab->splt->output_section->vma 10518 + htab->splt->output_offset + isa_bit); 10519 10520 /* Calculate the address of the .got.plt entry. */ 10521 got_address = (htab->sgotplt->output_section->vma 10522 + htab->sgotplt->output_offset 10523 + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10524 10525 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 10526 got_address_low = got_address & 0xffff; 10527 10528 /* Initially point the .got.plt entry at the PLT header. */ 10529 loc = (htab->sgotplt->contents + got_index * MIPS_ELF_GOT_SIZE (dynobj)); 10530 if (ABI_64_P (output_bfd)) 10531 bfd_put_64 (output_bfd, header_address, loc); 10532 else 10533 bfd_put_32 (output_bfd, header_address, loc); 10534 10535 /* Now handle the PLT itself. First the standard entry (the order 10536 does not matter, we just have to pick one). */ 10537 if (h->plt.plist->mips_offset != MINUS_ONE) 10538 { 10539 const bfd_vma *plt_entry; 10540 bfd_vma plt_offset; 10541 10542 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10543 10544 BFD_ASSERT (plt_offset <= htab->splt->size); 10545 10546 /* Find out where the .plt entry should go. */ 10547 loc = htab->splt->contents + plt_offset; 10548 10549 /* Pick the load opcode. */ 10550 load = MIPS_ELF_LOAD_WORD (output_bfd); 10551 10552 /* Fill in the PLT entry itself. */ 10553 10554 if (MIPSR6_P (output_bfd)) 10555 plt_entry = mipsr6_exec_plt_entry; 10556 else 10557 plt_entry = mips_exec_plt_entry; 10558 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 10559 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, 10560 loc + 4); 10561 10562 if (! LOAD_INTERLOCKS_P (output_bfd)) 10563 { 10564 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 10565 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 10566 } 10567 else 10568 { 10569 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 10570 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, 10571 loc + 12); 10572 } 10573 } 10574 10575 /* Now the compressed entry. They come after any standard ones. */ 10576 if (h->plt.plist->comp_offset != MINUS_ONE) 10577 { 10578 bfd_vma plt_offset; 10579 10580 plt_offset = (htab->plt_header_size + htab->plt_mips_offset 10581 + h->plt.plist->comp_offset); 10582 10583 BFD_ASSERT (plt_offset <= htab->splt->size); 10584 10585 /* Find out where the .plt entry should go. */ 10586 loc = htab->splt->contents + plt_offset; 10587 10588 /* Fill in the PLT entry itself. */ 10589 if (!MICROMIPS_P (output_bfd)) 10590 { 10591 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry; 10592 10593 bfd_put_16 (output_bfd, plt_entry[0], loc); 10594 bfd_put_16 (output_bfd, plt_entry[1], loc + 2); 10595 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10596 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10597 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10598 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10599 bfd_put_32 (output_bfd, got_address, loc + 12); 10600 } 10601 else if (htab->insn32) 10602 { 10603 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry; 10604 10605 bfd_put_16 (output_bfd, plt_entry[0], loc); 10606 bfd_put_16 (output_bfd, got_address_high, loc + 2); 10607 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10608 bfd_put_16 (output_bfd, got_address_low, loc + 6); 10609 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10610 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10611 bfd_put_16 (output_bfd, plt_entry[6], loc + 12); 10612 bfd_put_16 (output_bfd, got_address_low, loc + 14); 10613 } 10614 else 10615 { 10616 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry; 10617 bfd_signed_vma gotpc_offset; 10618 bfd_vma loc_address; 10619 10620 BFD_ASSERT (got_address % 4 == 0); 10621 10622 loc_address = (htab->splt->output_section->vma 10623 + htab->splt->output_offset + plt_offset); 10624 gotpc_offset = got_address - ((loc_address | 3) ^ 3); 10625 10626 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 10627 if (gotpc_offset + 0x1000000 >= 0x2000000) 10628 { 10629 (*_bfd_error_handler) 10630 (_("%B: `%A' offset of %ld from `%A' " 10631 "beyond the range of ADDIUPC"), 10632 output_bfd, 10633 htab->sgotplt->output_section, 10634 htab->splt->output_section, 10635 (long) gotpc_offset); 10636 bfd_set_error (bfd_error_no_error); 10637 return FALSE; 10638 } 10639 bfd_put_16 (output_bfd, 10640 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 10641 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 10642 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 10643 bfd_put_16 (output_bfd, plt_entry[3], loc + 6); 10644 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 10645 bfd_put_16 (output_bfd, plt_entry[5], loc + 10); 10646 } 10647 } 10648 10649 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 10650 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 10651 got_index - 2, h->dynindx, 10652 R_MIPS_JUMP_SLOT, got_address); 10653 10654 /* We distinguish between PLT entries and lazy-binding stubs by 10655 giving the former an st_other value of STO_MIPS_PLT. Set the 10656 flag and leave the value if there are any relocations in the 10657 binary where pointer equality matters. */ 10658 sym->st_shndx = SHN_UNDEF; 10659 if (h->pointer_equality_needed) 10660 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other); 10661 else 10662 { 10663 sym->st_value = 0; 10664 sym->st_other = 0; 10665 } 10666 } 10667 10668 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE) 10669 { 10670 /* We've decided to create a lazy-binding stub. */ 10671 bfd_boolean micromips_p = MICROMIPS_P (output_bfd); 10672 unsigned int other = micromips_p ? STO_MICROMIPS : 0; 10673 bfd_vma stub_size = htab->function_stub_size; 10674 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 10675 bfd_vma isa_bit = micromips_p; 10676 bfd_vma stub_big_size; 10677 10678 if (!micromips_p) 10679 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE; 10680 else if (htab->insn32) 10681 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE; 10682 else 10683 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE; 10684 10685 /* This symbol has a stub. Set it up. */ 10686 10687 BFD_ASSERT (h->dynindx != -1); 10688 10689 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff); 10690 10691 /* Values up to 2^31 - 1 are allowed. Larger values would cause 10692 sign extension at runtime in the stub, resulting in a negative 10693 index value. */ 10694 if (h->dynindx & ~0x7fffffff) 10695 return FALSE; 10696 10697 /* Fill the stub. */ 10698 if (micromips_p) 10699 { 10700 idx = 0; 10701 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd), 10702 stub + idx); 10703 idx += 4; 10704 if (htab->insn32) 10705 { 10706 bfd_put_micromips_32 (output_bfd, 10707 STUB_MOVE32_MICROMIPS (output_bfd), 10708 stub + idx); 10709 idx += 4; 10710 } 10711 else 10712 { 10713 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx); 10714 idx += 2; 10715 } 10716 if (stub_size == stub_big_size) 10717 { 10718 long dynindx_hi = (h->dynindx >> 16) & 0x7fff; 10719 10720 bfd_put_micromips_32 (output_bfd, 10721 STUB_LUI_MICROMIPS (dynindx_hi), 10722 stub + idx); 10723 idx += 4; 10724 } 10725 if (htab->insn32) 10726 { 10727 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS, 10728 stub + idx); 10729 idx += 4; 10730 } 10731 else 10732 { 10733 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx); 10734 idx += 2; 10735 } 10736 10737 /* If a large stub is not required and sign extension is not a 10738 problem, then use legacy code in the stub. */ 10739 if (stub_size == stub_big_size) 10740 bfd_put_micromips_32 (output_bfd, 10741 STUB_ORI_MICROMIPS (h->dynindx & 0xffff), 10742 stub + idx); 10743 else if (h->dynindx & ~0x7fff) 10744 bfd_put_micromips_32 (output_bfd, 10745 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff), 10746 stub + idx); 10747 else 10748 bfd_put_micromips_32 (output_bfd, 10749 STUB_LI16S_MICROMIPS (output_bfd, 10750 h->dynindx), 10751 stub + idx); 10752 } 10753 else 10754 { 10755 idx = 0; 10756 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 10757 idx += 4; 10758 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); 10759 idx += 4; 10760 if (stub_size == stub_big_size) 10761 { 10762 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 10763 stub + idx); 10764 idx += 4; 10765 } 10766 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 10767 idx += 4; 10768 10769 /* If a large stub is not required and sign extension is not a 10770 problem, then use legacy code in the stub. */ 10771 if (stub_size == stub_big_size) 10772 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), 10773 stub + idx); 10774 else if (h->dynindx & ~0x7fff) 10775 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), 10776 stub + idx); 10777 else 10778 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 10779 stub + idx); 10780 } 10781 10782 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size); 10783 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset, 10784 stub, stub_size); 10785 10786 /* Mark the symbol as undefined. stub_offset != -1 occurs 10787 only for the referenced symbol. */ 10788 sym->st_shndx = SHN_UNDEF; 10789 10790 /* The run-time linker uses the st_value field of the symbol 10791 to reset the global offset table entry for this external 10792 to its stub address when unlinking a shared object. */ 10793 sym->st_value = (htab->sstubs->output_section->vma 10794 + htab->sstubs->output_offset 10795 + h->plt.plist->stub_offset 10796 + isa_bit); 10797 sym->st_other = other; 10798 } 10799 10800 /* If we have a MIPS16 function with a stub, the dynamic symbol must 10801 refer to the stub, since only the stub uses the standard calling 10802 conventions. */ 10803 if (h->dynindx != -1 && hmips->fn_stub != NULL) 10804 { 10805 BFD_ASSERT (hmips->need_fn_stub); 10806 sym->st_value = (hmips->fn_stub->output_section->vma 10807 + hmips->fn_stub->output_offset); 10808 sym->st_size = hmips->fn_stub->size; 10809 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 10810 } 10811 10812 BFD_ASSERT (h->dynindx != -1 10813 || h->forced_local); 10814 10815 sgot = htab->sgot; 10816 g = htab->got_info; 10817 BFD_ASSERT (g != NULL); 10818 10819 /* Run through the global symbol table, creating GOT entries for all 10820 the symbols that need them. */ 10821 if (hmips->global_got_area != GGA_NONE) 10822 { 10823 bfd_vma offset; 10824 bfd_vma value; 10825 10826 value = sym->st_value; 10827 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 10828 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 10829 } 10830 10831 if (hmips->global_got_area != GGA_NONE && g->next) 10832 { 10833 struct mips_got_entry e, *p; 10834 bfd_vma entry; 10835 bfd_vma offset; 10836 10837 gg = g; 10838 10839 e.abfd = output_bfd; 10840 e.symndx = -1; 10841 e.d.h = hmips; 10842 e.tls_type = GOT_TLS_NONE; 10843 10844 for (g = g->next; g->next != gg; g = g->next) 10845 { 10846 if (g->got_entries 10847 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 10848 &e))) 10849 { 10850 offset = p->gotidx; 10851 BFD_ASSERT (offset > 0 && offset < htab->sgot->size); 10852 if (info->shared 10853 || (elf_hash_table (info)->dynamic_sections_created 10854 && p->d.h != NULL 10855 && p->d.h->root.def_dynamic 10856 && !p->d.h->root.def_regular)) 10857 { 10858 /* Create an R_MIPS_REL32 relocation for this entry. Due to 10859 the various compatibility problems, it's easier to mock 10860 up an R_MIPS_32 or R_MIPS_64 relocation and leave 10861 mips_elf_create_dynamic_relocation to calculate the 10862 appropriate addend. */ 10863 Elf_Internal_Rela rel[3]; 10864 10865 memset (rel, 0, sizeof (rel)); 10866 if (ABI_64_P (output_bfd)) 10867 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 10868 else 10869 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 10870 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 10871 10872 entry = 0; 10873 if (! (mips_elf_create_dynamic_relocation 10874 (output_bfd, info, rel, 10875 e.d.h, NULL, sym->st_value, &entry, sgot))) 10876 return FALSE; 10877 } 10878 else 10879 entry = sym->st_value; 10880 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 10881 } 10882 } 10883 } 10884 10885 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 10886 name = h->root.root.string; 10887 if (h == elf_hash_table (info)->hdynamic 10888 || h == elf_hash_table (info)->hgot) 10889 sym->st_shndx = SHN_ABS; 10890 else if (strcmp (name, "_DYNAMIC_LINK") == 0 10891 || strcmp (name, "_DYNAMIC_LINKING") == 0) 10892 { 10893 sym->st_shndx = SHN_ABS; 10894 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10895 sym->st_value = 1; 10896 } 10897 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 10898 { 10899 sym->st_shndx = SHN_ABS; 10900 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10901 sym->st_value = elf_gp (output_bfd); 10902 } 10903 else if (SGI_COMPAT (output_bfd)) 10904 { 10905 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 10906 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 10907 { 10908 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10909 sym->st_other = STO_PROTECTED; 10910 sym->st_value = 0; 10911 sym->st_shndx = SHN_MIPS_DATA; 10912 } 10913 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 10914 { 10915 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 10916 sym->st_other = STO_PROTECTED; 10917 sym->st_value = mips_elf_hash_table (info)->procedure_count; 10918 sym->st_shndx = SHN_ABS; 10919 } 10920 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 10921 { 10922 if (h->type == STT_FUNC) 10923 sym->st_shndx = SHN_MIPS_TEXT; 10924 else if (h->type == STT_OBJECT) 10925 sym->st_shndx = SHN_MIPS_DATA; 10926 } 10927 } 10928 10929 /* Emit a copy reloc, if needed. */ 10930 if (h->needs_copy) 10931 { 10932 asection *s; 10933 bfd_vma symval; 10934 10935 BFD_ASSERT (h->dynindx != -1); 10936 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10937 10938 s = mips_elf_rel_dyn_section (info, FALSE); 10939 symval = (h->root.u.def.section->output_section->vma 10940 + h->root.u.def.section->output_offset 10941 + h->root.u.def.value); 10942 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 10943 h->dynindx, R_MIPS_COPY, symval); 10944 } 10945 10946 /* Handle the IRIX6-specific symbols. */ 10947 if (IRIX_COMPAT (output_bfd) == ict_irix6) 10948 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 10949 10950 /* Keep dynamic compressed symbols odd. This allows the dynamic linker 10951 to treat compressed symbols like any other. */ 10952 if (ELF_ST_IS_MIPS16 (sym->st_other)) 10953 { 10954 BFD_ASSERT (sym->st_value & 1); 10955 sym->st_other -= STO_MIPS16; 10956 } 10957 else if (ELF_ST_IS_MICROMIPS (sym->st_other)) 10958 { 10959 BFD_ASSERT (sym->st_value & 1); 10960 sym->st_other -= STO_MICROMIPS; 10961 } 10962 10963 return TRUE; 10964 } 10965 10966 /* Likewise, for VxWorks. */ 10967 10968 bfd_boolean 10969 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 10970 struct bfd_link_info *info, 10971 struct elf_link_hash_entry *h, 10972 Elf_Internal_Sym *sym) 10973 { 10974 bfd *dynobj; 10975 asection *sgot; 10976 struct mips_got_info *g; 10977 struct mips_elf_link_hash_table *htab; 10978 struct mips_elf_link_hash_entry *hmips; 10979 10980 htab = mips_elf_hash_table (info); 10981 BFD_ASSERT (htab != NULL); 10982 dynobj = elf_hash_table (info)->dynobj; 10983 hmips = (struct mips_elf_link_hash_entry *) h; 10984 10985 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE) 10986 { 10987 bfd_byte *loc; 10988 bfd_vma plt_address, got_address, got_offset, branch_offset; 10989 Elf_Internal_Rela rel; 10990 static const bfd_vma *plt_entry; 10991 bfd_vma gotplt_index; 10992 bfd_vma plt_offset; 10993 10994 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset; 10995 gotplt_index = h->plt.plist->gotplt_index; 10996 10997 BFD_ASSERT (h->dynindx != -1); 10998 BFD_ASSERT (htab->splt != NULL); 10999 BFD_ASSERT (gotplt_index != MINUS_ONE); 11000 BFD_ASSERT (plt_offset <= htab->splt->size); 11001 11002 /* Calculate the address of the .plt entry. */ 11003 plt_address = (htab->splt->output_section->vma 11004 + htab->splt->output_offset 11005 + plt_offset); 11006 11007 /* Calculate the address of the .got.plt entry. */ 11008 got_address = (htab->sgotplt->output_section->vma 11009 + htab->sgotplt->output_offset 11010 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)); 11011 11012 /* Calculate the offset of the .got.plt entry from 11013 _GLOBAL_OFFSET_TABLE_. */ 11014 got_offset = mips_elf_gotplt_index (info, h); 11015 11016 /* Calculate the offset for the branch at the start of the PLT 11017 entry. The branch jumps to the beginning of .plt. */ 11018 branch_offset = -(plt_offset / 4 + 1) & 0xffff; 11019 11020 /* Fill in the initial value of the .got.plt entry. */ 11021 bfd_put_32 (output_bfd, plt_address, 11022 (htab->sgotplt->contents 11023 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd))); 11024 11025 /* Find out where the .plt entry should go. */ 11026 loc = htab->splt->contents + plt_offset; 11027 11028 if (info->shared) 11029 { 11030 plt_entry = mips_vxworks_shared_plt_entry; 11031 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11032 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11033 } 11034 else 11035 { 11036 bfd_vma got_address_high, got_address_low; 11037 11038 plt_entry = mips_vxworks_exec_plt_entry; 11039 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 11040 got_address_low = got_address & 0xffff; 11041 11042 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 11043 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4); 11044 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 11045 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 11046 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11047 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11048 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11049 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11050 11051 loc = (htab->srelplt2->contents 11052 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 11053 11054 /* Emit a relocation for the .got.plt entry. */ 11055 rel.r_offset = got_address; 11056 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11057 rel.r_addend = plt_offset; 11058 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11059 11060 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 11061 loc += sizeof (Elf32_External_Rela); 11062 rel.r_offset = plt_address + 8; 11063 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11064 rel.r_addend = got_offset; 11065 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11066 11067 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 11068 loc += sizeof (Elf32_External_Rela); 11069 rel.r_offset += 4; 11070 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11071 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11072 } 11073 11074 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 11075 loc = (htab->srelplt->contents 11076 + gotplt_index * sizeof (Elf32_External_Rela)); 11077 rel.r_offset = got_address; 11078 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 11079 rel.r_addend = 0; 11080 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11081 11082 if (!h->def_regular) 11083 sym->st_shndx = SHN_UNDEF; 11084 } 11085 11086 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 11087 11088 sgot = htab->sgot; 11089 g = htab->got_info; 11090 BFD_ASSERT (g != NULL); 11091 11092 /* See if this symbol has an entry in the GOT. */ 11093 if (hmips->global_got_area != GGA_NONE) 11094 { 11095 bfd_vma offset; 11096 Elf_Internal_Rela outrel; 11097 bfd_byte *loc; 11098 asection *s; 11099 11100 /* Install the symbol value in the GOT. */ 11101 offset = mips_elf_primary_global_got_index (output_bfd, info, h); 11102 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 11103 11104 /* Add a dynamic relocation for it. */ 11105 s = mips_elf_rel_dyn_section (info, FALSE); 11106 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 11107 outrel.r_offset = (sgot->output_section->vma 11108 + sgot->output_offset 11109 + offset); 11110 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 11111 outrel.r_addend = 0; 11112 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 11113 } 11114 11115 /* Emit a copy reloc, if needed. */ 11116 if (h->needs_copy) 11117 { 11118 Elf_Internal_Rela rel; 11119 11120 BFD_ASSERT (h->dynindx != -1); 11121 11122 rel.r_offset = (h->root.u.def.section->output_section->vma 11123 + h->root.u.def.section->output_offset 11124 + h->root.u.def.value); 11125 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 11126 rel.r_addend = 0; 11127 bfd_elf32_swap_reloca_out (output_bfd, &rel, 11128 htab->srelbss->contents 11129 + (htab->srelbss->reloc_count 11130 * sizeof (Elf32_External_Rela))); 11131 ++htab->srelbss->reloc_count; 11132 } 11133 11134 /* If this is a mips16/microMIPS symbol, force the value to be even. */ 11135 if (ELF_ST_IS_COMPRESSED (sym->st_other)) 11136 sym->st_value &= ~1; 11137 11138 return TRUE; 11139 } 11140 11141 /* Write out a plt0 entry to the beginning of .plt. */ 11142 11143 static bfd_boolean 11144 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11145 { 11146 bfd_byte *loc; 11147 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 11148 static const bfd_vma *plt_entry; 11149 struct mips_elf_link_hash_table *htab; 11150 11151 htab = mips_elf_hash_table (info); 11152 BFD_ASSERT (htab != NULL); 11153 11154 if (ABI_64_P (output_bfd)) 11155 plt_entry = mips_n64_exec_plt0_entry; 11156 else if (ABI_N32_P (output_bfd)) 11157 plt_entry = mips_n32_exec_plt0_entry; 11158 else if (!htab->plt_header_is_comp) 11159 plt_entry = mips_o32_exec_plt0_entry; 11160 else if (htab->insn32) 11161 plt_entry = micromips_insn32_o32_exec_plt0_entry; 11162 else 11163 plt_entry = micromips_o32_exec_plt0_entry; 11164 11165 /* Calculate the value of .got.plt. */ 11166 gotplt_value = (htab->sgotplt->output_section->vma 11167 + htab->sgotplt->output_offset); 11168 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 11169 gotplt_value_low = gotplt_value & 0xffff; 11170 11171 /* The PLT sequence is not safe for N64 if .got.plt's address can 11172 not be loaded in two instructions. */ 11173 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 11174 || ~(gotplt_value | 0x7fffffff) == 0); 11175 11176 /* Install the PLT header. */ 11177 loc = htab->splt->contents; 11178 if (plt_entry == micromips_o32_exec_plt0_entry) 11179 { 11180 bfd_vma gotpc_offset; 11181 bfd_vma loc_address; 11182 size_t i; 11183 11184 BFD_ASSERT (gotplt_value % 4 == 0); 11185 11186 loc_address = (htab->splt->output_section->vma 11187 + htab->splt->output_offset); 11188 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3); 11189 11190 /* ADDIUPC has a span of +/-16MB, check we're in range. */ 11191 if (gotpc_offset + 0x1000000 >= 0x2000000) 11192 { 11193 (*_bfd_error_handler) 11194 (_("%B: `%A' offset of %ld from `%A' beyond the range of ADDIUPC"), 11195 output_bfd, 11196 htab->sgotplt->output_section, 11197 htab->splt->output_section, 11198 (long) gotpc_offset); 11199 bfd_set_error (bfd_error_no_error); 11200 return FALSE; 11201 } 11202 bfd_put_16 (output_bfd, 11203 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc); 11204 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2); 11205 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++) 11206 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11207 } 11208 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry) 11209 { 11210 size_t i; 11211 11212 bfd_put_16 (output_bfd, plt_entry[0], loc); 11213 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2); 11214 bfd_put_16 (output_bfd, plt_entry[2], loc + 4); 11215 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6); 11216 bfd_put_16 (output_bfd, plt_entry[4], loc + 8); 11217 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10); 11218 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++) 11219 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2)); 11220 } 11221 else 11222 { 11223 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 11224 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 11225 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 11226 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11227 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11228 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11229 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 11230 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 11231 } 11232 11233 return TRUE; 11234 } 11235 11236 /* Install the PLT header for a VxWorks executable and finalize the 11237 contents of .rela.plt.unloaded. */ 11238 11239 static void 11240 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 11241 { 11242 Elf_Internal_Rela rela; 11243 bfd_byte *loc; 11244 bfd_vma got_value, got_value_high, got_value_low, plt_address; 11245 static const bfd_vma *plt_entry; 11246 struct mips_elf_link_hash_table *htab; 11247 11248 htab = mips_elf_hash_table (info); 11249 BFD_ASSERT (htab != NULL); 11250 11251 plt_entry = mips_vxworks_exec_plt0_entry; 11252 11253 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 11254 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 11255 + htab->root.hgot->root.u.def.section->output_offset 11256 + htab->root.hgot->root.u.def.value); 11257 11258 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 11259 got_value_low = got_value & 0xffff; 11260 11261 /* Calculate the address of the PLT header. */ 11262 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 11263 11264 /* Install the PLT header. */ 11265 loc = htab->splt->contents; 11266 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 11267 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 11268 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 11269 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 11270 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 11271 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 11272 11273 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 11274 loc = htab->srelplt2->contents; 11275 rela.r_offset = plt_address; 11276 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11277 rela.r_addend = 0; 11278 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11279 loc += sizeof (Elf32_External_Rela); 11280 11281 /* Output the relocation for the following addiu of 11282 %lo(_GLOBAL_OFFSET_TABLE_). */ 11283 rela.r_offset += 4; 11284 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11285 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 11286 loc += sizeof (Elf32_External_Rela); 11287 11288 /* Fix up the remaining relocations. They may have the wrong 11289 symbol index for _G_O_T_ or _P_L_T_ depending on the order 11290 in which symbols were output. */ 11291 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 11292 { 11293 Elf_Internal_Rela rel; 11294 11295 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11296 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 11297 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11298 loc += sizeof (Elf32_External_Rela); 11299 11300 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11301 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 11302 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11303 loc += sizeof (Elf32_External_Rela); 11304 11305 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 11306 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 11307 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 11308 loc += sizeof (Elf32_External_Rela); 11309 } 11310 } 11311 11312 /* Install the PLT header for a VxWorks shared library. */ 11313 11314 static void 11315 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 11316 { 11317 unsigned int i; 11318 struct mips_elf_link_hash_table *htab; 11319 11320 htab = mips_elf_hash_table (info); 11321 BFD_ASSERT (htab != NULL); 11322 11323 /* We just need to copy the entry byte-by-byte. */ 11324 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 11325 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 11326 htab->splt->contents + i * 4); 11327 } 11328 11329 /* Finish up the dynamic sections. */ 11330 11331 bfd_boolean 11332 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 11333 struct bfd_link_info *info) 11334 { 11335 bfd *dynobj; 11336 asection *sdyn; 11337 asection *sgot; 11338 struct mips_got_info *gg, *g; 11339 struct mips_elf_link_hash_table *htab; 11340 11341 htab = mips_elf_hash_table (info); 11342 BFD_ASSERT (htab != NULL); 11343 11344 dynobj = elf_hash_table (info)->dynobj; 11345 11346 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 11347 11348 sgot = htab->sgot; 11349 gg = htab->got_info; 11350 11351 if (elf_hash_table (info)->dynamic_sections_created) 11352 { 11353 bfd_byte *b; 11354 int dyn_to_skip = 0, dyn_skipped = 0; 11355 11356 BFD_ASSERT (sdyn != NULL); 11357 BFD_ASSERT (gg != NULL); 11358 11359 g = mips_elf_bfd_got (output_bfd, FALSE); 11360 BFD_ASSERT (g != NULL); 11361 11362 for (b = sdyn->contents; 11363 b < sdyn->contents + sdyn->size; 11364 b += MIPS_ELF_DYN_SIZE (dynobj)) 11365 { 11366 Elf_Internal_Dyn dyn; 11367 const char *name; 11368 size_t elemsize; 11369 asection *s; 11370 bfd_boolean swap_out_p; 11371 11372 /* Read in the current dynamic entry. */ 11373 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11374 11375 /* Assume that we're going to modify it and write it out. */ 11376 swap_out_p = TRUE; 11377 11378 switch (dyn.d_tag) 11379 { 11380 case DT_RELENT: 11381 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 11382 break; 11383 11384 case DT_RELAENT: 11385 BFD_ASSERT (htab->is_vxworks); 11386 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 11387 break; 11388 11389 case DT_STRSZ: 11390 /* Rewrite DT_STRSZ. */ 11391 dyn.d_un.d_val = 11392 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 11393 break; 11394 11395 case DT_PLTGOT: 11396 s = htab->sgot; 11397 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11398 break; 11399 11400 case DT_MIPS_PLTGOT: 11401 s = htab->sgotplt; 11402 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 11403 break; 11404 11405 case DT_MIPS_RLD_VERSION: 11406 dyn.d_un.d_val = 1; /* XXX */ 11407 break; 11408 11409 case DT_MIPS_FLAGS: 11410 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 11411 break; 11412 11413 case DT_MIPS_TIME_STAMP: 11414 { 11415 time_t t; 11416 time (&t); 11417 dyn.d_un.d_val = t; 11418 } 11419 break; 11420 11421 case DT_MIPS_ICHECKSUM: 11422 /* XXX FIXME: */ 11423 swap_out_p = FALSE; 11424 break; 11425 11426 case DT_MIPS_IVERSION: 11427 /* XXX FIXME: */ 11428 swap_out_p = FALSE; 11429 break; 11430 11431 case DT_MIPS_BASE_ADDRESS: 11432 s = output_bfd->sections; 11433 BFD_ASSERT (s != NULL); 11434 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 11435 break; 11436 11437 case DT_MIPS_LOCAL_GOTNO: 11438 dyn.d_un.d_val = g->local_gotno; 11439 break; 11440 11441 case DT_MIPS_UNREFEXTNO: 11442 /* The index into the dynamic symbol table which is the 11443 entry of the first external symbol that is not 11444 referenced within the same object. */ 11445 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 11446 break; 11447 11448 case DT_MIPS_GOTSYM: 11449 if (htab->global_gotsym) 11450 { 11451 dyn.d_un.d_val = htab->global_gotsym->dynindx; 11452 break; 11453 } 11454 /* In case if we don't have global got symbols we default 11455 to setting DT_MIPS_GOTSYM to the same value as 11456 DT_MIPS_SYMTABNO, so we just fall through. */ 11457 11458 case DT_MIPS_SYMTABNO: 11459 name = ".dynsym"; 11460 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 11461 s = bfd_get_section_by_name (output_bfd, name); 11462 11463 if (s != NULL) 11464 dyn.d_un.d_val = s->size / elemsize; 11465 else 11466 dyn.d_un.d_val = 0; 11467 break; 11468 11469 case DT_MIPS_HIPAGENO: 11470 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 11471 break; 11472 11473 case DT_MIPS_RLD_MAP: 11474 { 11475 struct elf_link_hash_entry *h; 11476 h = mips_elf_hash_table (info)->rld_symbol; 11477 if (!h) 11478 { 11479 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11480 swap_out_p = FALSE; 11481 break; 11482 } 11483 s = h->root.u.def.section; 11484 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset 11485 + h->root.u.def.value); 11486 } 11487 break; 11488 11489 case DT_MIPS_OPTIONS: 11490 s = (bfd_get_section_by_name 11491 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 11492 dyn.d_un.d_ptr = s->vma; 11493 break; 11494 11495 case DT_RELASZ: 11496 BFD_ASSERT (htab->is_vxworks); 11497 /* The count does not include the JUMP_SLOT relocations. */ 11498 if (htab->srelplt) 11499 dyn.d_un.d_val -= htab->srelplt->size; 11500 break; 11501 11502 case DT_PLTREL: 11503 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11504 if (htab->is_vxworks) 11505 dyn.d_un.d_val = DT_RELA; 11506 else 11507 dyn.d_un.d_val = DT_REL; 11508 break; 11509 11510 case DT_PLTRELSZ: 11511 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11512 dyn.d_un.d_val = htab->srelplt->size; 11513 break; 11514 11515 case DT_JMPREL: 11516 BFD_ASSERT (htab->use_plts_and_copy_relocs); 11517 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 11518 + htab->srelplt->output_offset); 11519 break; 11520 11521 case DT_TEXTREL: 11522 /* If we didn't need any text relocations after all, delete 11523 the dynamic tag. */ 11524 if (!(info->flags & DF_TEXTREL)) 11525 { 11526 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 11527 swap_out_p = FALSE; 11528 } 11529 break; 11530 11531 case DT_FLAGS: 11532 /* If we didn't need any text relocations after all, clear 11533 DF_TEXTREL from DT_FLAGS. */ 11534 if (!(info->flags & DF_TEXTREL)) 11535 dyn.d_un.d_val &= ~DF_TEXTREL; 11536 else 11537 swap_out_p = FALSE; 11538 break; 11539 11540 default: 11541 swap_out_p = FALSE; 11542 if (htab->is_vxworks 11543 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 11544 swap_out_p = TRUE; 11545 break; 11546 } 11547 11548 if (swap_out_p || dyn_skipped) 11549 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11550 (dynobj, &dyn, b - dyn_skipped); 11551 11552 if (dyn_to_skip) 11553 { 11554 dyn_skipped += dyn_to_skip; 11555 dyn_to_skip = 0; 11556 } 11557 } 11558 11559 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 11560 if (dyn_skipped > 0) 11561 memset (b - dyn_skipped, 0, dyn_skipped); 11562 } 11563 11564 if (sgot != NULL && sgot->size > 0 11565 && !bfd_is_abs_section (sgot->output_section)) 11566 { 11567 if (htab->is_vxworks) 11568 { 11569 /* The first entry of the global offset table points to the 11570 ".dynamic" section. The second is initialized by the 11571 loader and contains the shared library identifier. 11572 The third is also initialized by the loader and points 11573 to the lazy resolution stub. */ 11574 MIPS_ELF_PUT_WORD (output_bfd, 11575 sdyn->output_offset + sdyn->output_section->vma, 11576 sgot->contents); 11577 MIPS_ELF_PUT_WORD (output_bfd, 0, 11578 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11579 MIPS_ELF_PUT_WORD (output_bfd, 0, 11580 sgot->contents 11581 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 11582 } 11583 else 11584 { 11585 /* The first entry of the global offset table will be filled at 11586 runtime. The second entry will be used by some runtime loaders. 11587 This isn't the case of IRIX rld. */ 11588 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 11589 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11590 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 11591 } 11592 11593 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 11594 = MIPS_ELF_GOT_SIZE (output_bfd); 11595 } 11596 11597 /* Generate dynamic relocations for the non-primary gots. */ 11598 if (gg != NULL && gg->next) 11599 { 11600 Elf_Internal_Rela rel[3]; 11601 bfd_vma addend = 0; 11602 11603 memset (rel, 0, sizeof (rel)); 11604 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 11605 11606 for (g = gg->next; g->next != gg; g = g->next) 11607 { 11608 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 11609 + g->next->tls_gotno; 11610 11611 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 11612 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11613 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 11614 sgot->contents 11615 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 11616 11617 if (! info->shared) 11618 continue; 11619 11620 for (; got_index < g->local_gotno; got_index++) 11621 { 11622 if (got_index >= g->assigned_low_gotno 11623 && got_index <= g->assigned_high_gotno) 11624 continue; 11625 11626 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 11627 = got_index * MIPS_ELF_GOT_SIZE (output_bfd); 11628 if (!(mips_elf_create_dynamic_relocation 11629 (output_bfd, info, rel, NULL, 11630 bfd_abs_section_ptr, 11631 0, &addend, sgot))) 11632 return FALSE; 11633 BFD_ASSERT (addend == 0); 11634 } 11635 } 11636 } 11637 11638 /* The generation of dynamic relocations for the non-primary gots 11639 adds more dynamic relocations. We cannot count them until 11640 here. */ 11641 11642 if (elf_hash_table (info)->dynamic_sections_created) 11643 { 11644 bfd_byte *b; 11645 bfd_boolean swap_out_p; 11646 11647 BFD_ASSERT (sdyn != NULL); 11648 11649 for (b = sdyn->contents; 11650 b < sdyn->contents + sdyn->size; 11651 b += MIPS_ELF_DYN_SIZE (dynobj)) 11652 { 11653 Elf_Internal_Dyn dyn; 11654 asection *s; 11655 11656 /* Read in the current dynamic entry. */ 11657 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 11658 11659 /* Assume that we're going to modify it and write it out. */ 11660 swap_out_p = TRUE; 11661 11662 switch (dyn.d_tag) 11663 { 11664 case DT_RELSZ: 11665 /* Reduce DT_RELSZ to account for any relocations we 11666 decided not to make. This is for the n64 irix rld, 11667 which doesn't seem to apply any relocations if there 11668 are trailing null entries. */ 11669 s = mips_elf_rel_dyn_section (info, FALSE); 11670 dyn.d_un.d_val = (s->reloc_count 11671 * (ABI_64_P (output_bfd) 11672 ? sizeof (Elf64_Mips_External_Rel) 11673 : sizeof (Elf32_External_Rel))); 11674 /* Adjust the section size too. Tools like the prelinker 11675 can reasonably expect the values to the same. */ 11676 elf_section_data (s->output_section)->this_hdr.sh_size 11677 = dyn.d_un.d_val; 11678 break; 11679 11680 default: 11681 swap_out_p = FALSE; 11682 break; 11683 } 11684 11685 if (swap_out_p) 11686 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 11687 (dynobj, &dyn, b); 11688 } 11689 } 11690 11691 { 11692 asection *s; 11693 Elf32_compact_rel cpt; 11694 11695 if (SGI_COMPAT (output_bfd)) 11696 { 11697 /* Write .compact_rel section out. */ 11698 s = bfd_get_linker_section (dynobj, ".compact_rel"); 11699 if (s != NULL) 11700 { 11701 cpt.id1 = 1; 11702 cpt.num = s->reloc_count; 11703 cpt.id2 = 2; 11704 cpt.offset = (s->output_section->filepos 11705 + sizeof (Elf32_External_compact_rel)); 11706 cpt.reserved0 = 0; 11707 cpt.reserved1 = 0; 11708 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 11709 ((Elf32_External_compact_rel *) 11710 s->contents)); 11711 11712 /* Clean up a dummy stub function entry in .text. */ 11713 if (htab->sstubs != NULL) 11714 { 11715 file_ptr dummy_offset; 11716 11717 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 11718 dummy_offset = htab->sstubs->size - htab->function_stub_size; 11719 memset (htab->sstubs->contents + dummy_offset, 0, 11720 htab->function_stub_size); 11721 } 11722 } 11723 } 11724 11725 /* The psABI says that the dynamic relocations must be sorted in 11726 increasing order of r_symndx. The VxWorks EABI doesn't require 11727 this, and because the code below handles REL rather than RELA 11728 relocations, using it for VxWorks would be outright harmful. */ 11729 if (!htab->is_vxworks) 11730 { 11731 s = mips_elf_rel_dyn_section (info, FALSE); 11732 if (s != NULL 11733 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 11734 { 11735 reldyn_sorting_bfd = output_bfd; 11736 11737 if (ABI_64_P (output_bfd)) 11738 qsort ((Elf64_External_Rel *) s->contents + 1, 11739 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 11740 sort_dynamic_relocs_64); 11741 else 11742 qsort ((Elf32_External_Rel *) s->contents + 1, 11743 s->reloc_count - 1, sizeof (Elf32_External_Rel), 11744 sort_dynamic_relocs); 11745 } 11746 } 11747 } 11748 11749 if (htab->splt && htab->splt->size > 0) 11750 { 11751 if (htab->is_vxworks) 11752 { 11753 if (info->shared) 11754 mips_vxworks_finish_shared_plt (output_bfd, info); 11755 else 11756 mips_vxworks_finish_exec_plt (output_bfd, info); 11757 } 11758 else 11759 { 11760 BFD_ASSERT (!info->shared); 11761 if (!mips_finish_exec_plt (output_bfd, info)) 11762 return FALSE; 11763 } 11764 } 11765 return TRUE; 11766 } 11767 11768 11769 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 11770 11771 static void 11772 mips_set_isa_flags (bfd *abfd) 11773 { 11774 flagword val; 11775 11776 switch (bfd_get_mach (abfd)) 11777 { 11778 default: 11779 case bfd_mach_mips3000: 11780 val = E_MIPS_ARCH_1; 11781 break; 11782 11783 case bfd_mach_mips3900: 11784 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 11785 break; 11786 11787 case bfd_mach_mips6000: 11788 val = E_MIPS_ARCH_2; 11789 break; 11790 11791 case bfd_mach_mips4000: 11792 case bfd_mach_mips4300: 11793 case bfd_mach_mips4400: 11794 case bfd_mach_mips4600: 11795 val = E_MIPS_ARCH_3; 11796 break; 11797 11798 case bfd_mach_mips4010: 11799 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 11800 break; 11801 11802 case bfd_mach_mips4100: 11803 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 11804 break; 11805 11806 case bfd_mach_mips4111: 11807 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 11808 break; 11809 11810 case bfd_mach_mips4120: 11811 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 11812 break; 11813 11814 case bfd_mach_mips4650: 11815 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 11816 break; 11817 11818 case bfd_mach_mips5400: 11819 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 11820 break; 11821 11822 case bfd_mach_mips5500: 11823 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 11824 break; 11825 11826 case bfd_mach_mips5900: 11827 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900; 11828 break; 11829 11830 case bfd_mach_mips9000: 11831 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 11832 break; 11833 11834 case bfd_mach_mips5000: 11835 case bfd_mach_mips7000: 11836 case bfd_mach_mips8000: 11837 case bfd_mach_mips10000: 11838 case bfd_mach_mips12000: 11839 case bfd_mach_mips14000: 11840 case bfd_mach_mips16000: 11841 val = E_MIPS_ARCH_4; 11842 break; 11843 11844 case bfd_mach_mips5: 11845 val = E_MIPS_ARCH_5; 11846 break; 11847 11848 case bfd_mach_mips_loongson_2e: 11849 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 11850 break; 11851 11852 case bfd_mach_mips_loongson_2f: 11853 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 11854 break; 11855 11856 case bfd_mach_mips_sb1: 11857 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 11858 break; 11859 11860 case bfd_mach_mips_loongson_3a: 11861 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_LS3A; 11862 break; 11863 11864 case bfd_mach_mips_octeon: 11865 case bfd_mach_mips_octeonp: 11866 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 11867 break; 11868 11869 case bfd_mach_mips_octeon3: 11870 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3; 11871 break; 11872 11873 case bfd_mach_mips_xlr: 11874 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 11875 break; 11876 11877 case bfd_mach_mips_octeon2: 11878 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2; 11879 break; 11880 11881 case bfd_mach_mipsisa32: 11882 val = E_MIPS_ARCH_32; 11883 break; 11884 11885 case bfd_mach_mipsisa64: 11886 val = E_MIPS_ARCH_64; 11887 break; 11888 11889 case bfd_mach_mipsisa32r2: 11890 case bfd_mach_mipsisa32r3: 11891 case bfd_mach_mipsisa32r5: 11892 val = E_MIPS_ARCH_32R2; 11893 break; 11894 11895 case bfd_mach_mipsisa64r2: 11896 case bfd_mach_mipsisa64r3: 11897 case bfd_mach_mipsisa64r5: 11898 val = E_MIPS_ARCH_64R2; 11899 break; 11900 11901 case bfd_mach_mipsisa32r6: 11902 val = E_MIPS_ARCH_32R6; 11903 break; 11904 11905 case bfd_mach_mipsisa64r6: 11906 val = E_MIPS_ARCH_64R6; 11907 break; 11908 } 11909 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 11910 elf_elfheader (abfd)->e_flags |= val; 11911 11912 } 11913 11914 11915 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset. 11916 Don't do so for code sections. We want to keep ordering of HI16/LO16 11917 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame 11918 relocs to be sorted. */ 11919 11920 bfd_boolean 11921 _bfd_mips_elf_sort_relocs_p (asection *sec) 11922 { 11923 return (sec->flags & SEC_CODE) == 0; 11924 } 11925 11926 11927 /* The final processing done just before writing out a MIPS ELF object 11928 file. This gets the MIPS architecture right based on the machine 11929 number. This is used by both the 32-bit and the 64-bit ABI. */ 11930 11931 void 11932 _bfd_mips_elf_final_write_processing (bfd *abfd, 11933 bfd_boolean linker ATTRIBUTE_UNUSED) 11934 { 11935 unsigned int i; 11936 Elf_Internal_Shdr **hdrpp; 11937 const char *name; 11938 asection *sec; 11939 11940 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 11941 is nonzero. This is for compatibility with old objects, which used 11942 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 11943 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 11944 mips_set_isa_flags (abfd); 11945 11946 /* Set the sh_info field for .gptab sections and other appropriate 11947 info for each special section. */ 11948 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 11949 i < elf_numsections (abfd); 11950 i++, hdrpp++) 11951 { 11952 switch ((*hdrpp)->sh_type) 11953 { 11954 case SHT_MIPS_MSYM: 11955 case SHT_MIPS_LIBLIST: 11956 sec = bfd_get_section_by_name (abfd, ".dynstr"); 11957 if (sec != NULL) 11958 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 11959 break; 11960 11961 case SHT_MIPS_GPTAB: 11962 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 11963 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 11964 BFD_ASSERT (name != NULL 11965 && CONST_STRNEQ (name, ".gptab.")); 11966 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 11967 BFD_ASSERT (sec != NULL); 11968 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 11969 break; 11970 11971 case SHT_MIPS_CONTENT: 11972 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 11973 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 11974 BFD_ASSERT (name != NULL 11975 && CONST_STRNEQ (name, ".MIPS.content")); 11976 sec = bfd_get_section_by_name (abfd, 11977 name + sizeof ".MIPS.content" - 1); 11978 BFD_ASSERT (sec != NULL); 11979 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 11980 break; 11981 11982 case SHT_MIPS_SYMBOL_LIB: 11983 sec = bfd_get_section_by_name (abfd, ".dynsym"); 11984 if (sec != NULL) 11985 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 11986 sec = bfd_get_section_by_name (abfd, ".liblist"); 11987 if (sec != NULL) 11988 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 11989 break; 11990 11991 case SHT_MIPS_EVENTS: 11992 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 11993 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 11994 BFD_ASSERT (name != NULL); 11995 if (CONST_STRNEQ (name, ".MIPS.events")) 11996 sec = bfd_get_section_by_name (abfd, 11997 name + sizeof ".MIPS.events" - 1); 11998 else 11999 { 12000 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 12001 sec = bfd_get_section_by_name (abfd, 12002 (name 12003 + sizeof ".MIPS.post_rel" - 1)); 12004 } 12005 BFD_ASSERT (sec != NULL); 12006 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 12007 break; 12008 12009 } 12010 } 12011 } 12012 12013 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 12014 segments. */ 12015 12016 int 12017 _bfd_mips_elf_additional_program_headers (bfd *abfd, 12018 struct bfd_link_info *info ATTRIBUTE_UNUSED) 12019 { 12020 asection *s; 12021 int ret = 0; 12022 12023 /* See if we need a PT_MIPS_REGINFO segment. */ 12024 s = bfd_get_section_by_name (abfd, ".reginfo"); 12025 if (s && (s->flags & SEC_LOAD)) 12026 ++ret; 12027 12028 /* See if we need a PT_MIPS_ABIFLAGS segment. */ 12029 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags")) 12030 ++ret; 12031 12032 /* See if we need a PT_MIPS_OPTIONS segment. */ 12033 if (IRIX_COMPAT (abfd) == ict_irix6 12034 && bfd_get_section_by_name (abfd, 12035 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 12036 ++ret; 12037 12038 /* See if we need a PT_MIPS_RTPROC segment. */ 12039 if (IRIX_COMPAT (abfd) == ict_irix5 12040 && bfd_get_section_by_name (abfd, ".dynamic") 12041 && bfd_get_section_by_name (abfd, ".mdebug")) 12042 ++ret; 12043 12044 /* Allocate a PT_NULL header in dynamic objects. See 12045 _bfd_mips_elf_modify_segment_map for details. */ 12046 if (!SGI_COMPAT (abfd) 12047 && bfd_get_section_by_name (abfd, ".dynamic")) 12048 ++ret; 12049 12050 return ret; 12051 } 12052 12053 /* Modify the segment map for an IRIX5 executable. */ 12054 12055 bfd_boolean 12056 _bfd_mips_elf_modify_segment_map (bfd *abfd, 12057 struct bfd_link_info *info) 12058 { 12059 asection *s; 12060 struct elf_segment_map *m, **pm; 12061 bfd_size_type amt; 12062 12063 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 12064 segment. */ 12065 s = bfd_get_section_by_name (abfd, ".reginfo"); 12066 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12067 { 12068 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12069 if (m->p_type == PT_MIPS_REGINFO) 12070 break; 12071 if (m == NULL) 12072 { 12073 amt = sizeof *m; 12074 m = bfd_zalloc (abfd, amt); 12075 if (m == NULL) 12076 return FALSE; 12077 12078 m->p_type = PT_MIPS_REGINFO; 12079 m->count = 1; 12080 m->sections[0] = s; 12081 12082 /* We want to put it after the PHDR and INTERP segments. */ 12083 pm = &elf_seg_map (abfd); 12084 while (*pm != NULL 12085 && ((*pm)->p_type == PT_PHDR 12086 || (*pm)->p_type == PT_INTERP)) 12087 pm = &(*pm)->next; 12088 12089 m->next = *pm; 12090 *pm = m; 12091 } 12092 } 12093 12094 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS 12095 segment. */ 12096 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags"); 12097 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12098 { 12099 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12100 if (m->p_type == PT_MIPS_ABIFLAGS) 12101 break; 12102 if (m == NULL) 12103 { 12104 amt = sizeof *m; 12105 m = bfd_zalloc (abfd, amt); 12106 if (m == NULL) 12107 return FALSE; 12108 12109 m->p_type = PT_MIPS_ABIFLAGS; 12110 m->count = 1; 12111 m->sections[0] = s; 12112 12113 /* We want to put it after the PHDR and INTERP segments. */ 12114 pm = &elf_seg_map (abfd); 12115 while (*pm != NULL 12116 && ((*pm)->p_type == PT_PHDR 12117 || (*pm)->p_type == PT_INTERP)) 12118 pm = &(*pm)->next; 12119 12120 m->next = *pm; 12121 *pm = m; 12122 } 12123 } 12124 12125 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 12126 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 12127 PT_MIPS_OPTIONS segment immediately following the program header 12128 table. */ 12129 if (NEWABI_P (abfd) 12130 /* On non-IRIX6 new abi, we'll have already created a segment 12131 for this section, so don't create another. I'm not sure this 12132 is not also the case for IRIX 6, but I can't test it right 12133 now. */ 12134 && IRIX_COMPAT (abfd) == ict_irix6) 12135 { 12136 for (s = abfd->sections; s; s = s->next) 12137 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 12138 break; 12139 12140 if (s) 12141 { 12142 struct elf_segment_map *options_segment; 12143 12144 pm = &elf_seg_map (abfd); 12145 while (*pm != NULL 12146 && ((*pm)->p_type == PT_PHDR 12147 || (*pm)->p_type == PT_INTERP)) 12148 pm = &(*pm)->next; 12149 12150 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 12151 { 12152 amt = sizeof (struct elf_segment_map); 12153 options_segment = bfd_zalloc (abfd, amt); 12154 options_segment->next = *pm; 12155 options_segment->p_type = PT_MIPS_OPTIONS; 12156 options_segment->p_flags = PF_R; 12157 options_segment->p_flags_valid = TRUE; 12158 options_segment->count = 1; 12159 options_segment->sections[0] = s; 12160 *pm = options_segment; 12161 } 12162 } 12163 } 12164 else 12165 { 12166 if (IRIX_COMPAT (abfd) == ict_irix5) 12167 { 12168 /* If there are .dynamic and .mdebug sections, we make a room 12169 for the RTPROC header. FIXME: Rewrite without section names. */ 12170 if (bfd_get_section_by_name (abfd, ".interp") == NULL 12171 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 12172 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 12173 { 12174 for (m = elf_seg_map (abfd); m != NULL; m = m->next) 12175 if (m->p_type == PT_MIPS_RTPROC) 12176 break; 12177 if (m == NULL) 12178 { 12179 amt = sizeof *m; 12180 m = bfd_zalloc (abfd, amt); 12181 if (m == NULL) 12182 return FALSE; 12183 12184 m->p_type = PT_MIPS_RTPROC; 12185 12186 s = bfd_get_section_by_name (abfd, ".rtproc"); 12187 if (s == NULL) 12188 { 12189 m->count = 0; 12190 m->p_flags = 0; 12191 m->p_flags_valid = 1; 12192 } 12193 else 12194 { 12195 m->count = 1; 12196 m->sections[0] = s; 12197 } 12198 12199 /* We want to put it after the DYNAMIC segment. */ 12200 pm = &elf_seg_map (abfd); 12201 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 12202 pm = &(*pm)->next; 12203 if (*pm != NULL) 12204 pm = &(*pm)->next; 12205 12206 m->next = *pm; 12207 *pm = m; 12208 } 12209 } 12210 } 12211 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 12212 .dynstr, .dynsym, and .hash sections, and everything in 12213 between. */ 12214 for (pm = &elf_seg_map (abfd); *pm != NULL; 12215 pm = &(*pm)->next) 12216 if ((*pm)->p_type == PT_DYNAMIC) 12217 break; 12218 m = *pm; 12219 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 12220 glibc's dynamic linker has traditionally derived the number of 12221 tags from the p_filesz field, and sometimes allocates stack 12222 arrays of that size. An overly-big PT_DYNAMIC segment can 12223 be actively harmful in such cases. Making PT_DYNAMIC contain 12224 other sections can also make life hard for the prelinker, 12225 which might move one of the other sections to a different 12226 PT_LOAD segment. */ 12227 if (SGI_COMPAT (abfd) 12228 && m != NULL 12229 && m->count == 1 12230 && strcmp (m->sections[0]->name, ".dynamic") == 0) 12231 { 12232 static const char *sec_names[] = 12233 { 12234 ".dynamic", ".dynstr", ".dynsym", ".hash" 12235 }; 12236 bfd_vma low, high; 12237 unsigned int i, c; 12238 struct elf_segment_map *n; 12239 12240 low = ~(bfd_vma) 0; 12241 high = 0; 12242 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 12243 { 12244 s = bfd_get_section_by_name (abfd, sec_names[i]); 12245 if (s != NULL && (s->flags & SEC_LOAD) != 0) 12246 { 12247 bfd_size_type sz; 12248 12249 if (low > s->vma) 12250 low = s->vma; 12251 sz = s->size; 12252 if (high < s->vma + sz) 12253 high = s->vma + sz; 12254 } 12255 } 12256 12257 c = 0; 12258 for (s = abfd->sections; s != NULL; s = s->next) 12259 if ((s->flags & SEC_LOAD) != 0 12260 && s->vma >= low 12261 && s->vma + s->size <= high) 12262 ++c; 12263 12264 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 12265 n = bfd_zalloc (abfd, amt); 12266 if (n == NULL) 12267 return FALSE; 12268 *n = *m; 12269 n->count = c; 12270 12271 i = 0; 12272 for (s = abfd->sections; s != NULL; s = s->next) 12273 { 12274 if ((s->flags & SEC_LOAD) != 0 12275 && s->vma >= low 12276 && s->vma + s->size <= high) 12277 { 12278 n->sections[i] = s; 12279 ++i; 12280 } 12281 } 12282 12283 *pm = n; 12284 } 12285 } 12286 12287 /* Allocate a spare program header in dynamic objects so that tools 12288 like the prelinker can add an extra PT_LOAD entry. 12289 12290 If the prelinker needs to make room for a new PT_LOAD entry, its 12291 standard procedure is to move the first (read-only) sections into 12292 the new (writable) segment. However, the MIPS ABI requires 12293 .dynamic to be in a read-only segment, and the section will often 12294 start within sizeof (ElfNN_Phdr) bytes of the last program header. 12295 12296 Although the prelinker could in principle move .dynamic to a 12297 writable segment, it seems better to allocate a spare program 12298 header instead, and avoid the need to move any sections. 12299 There is a long tradition of allocating spare dynamic tags, 12300 so allocating a spare program header seems like a natural 12301 extension. 12302 12303 If INFO is NULL, we may be copying an already prelinked binary 12304 with objcopy or strip, so do not add this header. */ 12305 if (info != NULL 12306 && !SGI_COMPAT (abfd) 12307 && bfd_get_section_by_name (abfd, ".dynamic")) 12308 { 12309 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next) 12310 if ((*pm)->p_type == PT_NULL) 12311 break; 12312 if (*pm == NULL) 12313 { 12314 m = bfd_zalloc (abfd, sizeof (*m)); 12315 if (m == NULL) 12316 return FALSE; 12317 12318 m->p_type = PT_NULL; 12319 *pm = m; 12320 } 12321 } 12322 12323 return TRUE; 12324 } 12325 12326 /* Return the section that should be marked against GC for a given 12327 relocation. */ 12328 12329 asection * 12330 _bfd_mips_elf_gc_mark_hook (asection *sec, 12331 struct bfd_link_info *info, 12332 Elf_Internal_Rela *rel, 12333 struct elf_link_hash_entry *h, 12334 Elf_Internal_Sym *sym) 12335 { 12336 /* ??? Do mips16 stub sections need to be handled special? */ 12337 12338 if (h != NULL) 12339 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 12340 { 12341 case R_MIPS_GNU_VTINHERIT: 12342 case R_MIPS_GNU_VTENTRY: 12343 return NULL; 12344 } 12345 12346 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 12347 } 12348 12349 /* Update the got entry reference counts for the section being removed. */ 12350 12351 bfd_boolean 12352 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 12353 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12354 asection *sec ATTRIBUTE_UNUSED, 12355 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 12356 { 12357 #if 0 12358 Elf_Internal_Shdr *symtab_hdr; 12359 struct elf_link_hash_entry **sym_hashes; 12360 bfd_signed_vma *local_got_refcounts; 12361 const Elf_Internal_Rela *rel, *relend; 12362 unsigned long r_symndx; 12363 struct elf_link_hash_entry *h; 12364 12365 if (info->relocatable) 12366 return TRUE; 12367 12368 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12369 sym_hashes = elf_sym_hashes (abfd); 12370 local_got_refcounts = elf_local_got_refcounts (abfd); 12371 12372 relend = relocs + sec->reloc_count; 12373 for (rel = relocs; rel < relend; rel++) 12374 switch (ELF_R_TYPE (abfd, rel->r_info)) 12375 { 12376 case R_MIPS16_GOT16: 12377 case R_MIPS16_CALL16: 12378 case R_MIPS_GOT16: 12379 case R_MIPS_CALL16: 12380 case R_MIPS_CALL_HI16: 12381 case R_MIPS_CALL_LO16: 12382 case R_MIPS_GOT_HI16: 12383 case R_MIPS_GOT_LO16: 12384 case R_MIPS_GOT_DISP: 12385 case R_MIPS_GOT_PAGE: 12386 case R_MIPS_GOT_OFST: 12387 case R_MICROMIPS_GOT16: 12388 case R_MICROMIPS_CALL16: 12389 case R_MICROMIPS_CALL_HI16: 12390 case R_MICROMIPS_CALL_LO16: 12391 case R_MICROMIPS_GOT_HI16: 12392 case R_MICROMIPS_GOT_LO16: 12393 case R_MICROMIPS_GOT_DISP: 12394 case R_MICROMIPS_GOT_PAGE: 12395 case R_MICROMIPS_GOT_OFST: 12396 /* ??? It would seem that the existing MIPS code does no sort 12397 of reference counting or whatnot on its GOT and PLT entries, 12398 so it is not possible to garbage collect them at this time. */ 12399 break; 12400 12401 default: 12402 break; 12403 } 12404 #endif 12405 12406 return TRUE; 12407 } 12408 12409 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */ 12410 12411 bfd_boolean 12412 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12413 elf_gc_mark_hook_fn gc_mark_hook) 12414 { 12415 bfd *sub; 12416 12417 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook); 12418 12419 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12420 { 12421 asection *o; 12422 12423 if (! is_mips_elf (sub)) 12424 continue; 12425 12426 for (o = sub->sections; o != NULL; o = o->next) 12427 if (!o->gc_mark 12428 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P 12429 (bfd_get_section_name (sub, o))) 12430 { 12431 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 12432 return FALSE; 12433 } 12434 } 12435 12436 return TRUE; 12437 } 12438 12439 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 12440 hiding the old indirect symbol. Process additional relocation 12441 information. Also called for weakdefs, in which case we just let 12442 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 12443 12444 void 12445 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 12446 struct elf_link_hash_entry *dir, 12447 struct elf_link_hash_entry *ind) 12448 { 12449 struct mips_elf_link_hash_entry *dirmips, *indmips; 12450 12451 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 12452 12453 dirmips = (struct mips_elf_link_hash_entry *) dir; 12454 indmips = (struct mips_elf_link_hash_entry *) ind; 12455 /* Any absolute non-dynamic relocations against an indirect or weak 12456 definition will be against the target symbol. */ 12457 if (indmips->has_static_relocs) 12458 dirmips->has_static_relocs = TRUE; 12459 12460 if (ind->root.type != bfd_link_hash_indirect) 12461 return; 12462 12463 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 12464 if (indmips->readonly_reloc) 12465 dirmips->readonly_reloc = TRUE; 12466 if (indmips->no_fn_stub) 12467 dirmips->no_fn_stub = TRUE; 12468 if (indmips->fn_stub) 12469 { 12470 dirmips->fn_stub = indmips->fn_stub; 12471 indmips->fn_stub = NULL; 12472 } 12473 if (indmips->need_fn_stub) 12474 { 12475 dirmips->need_fn_stub = TRUE; 12476 indmips->need_fn_stub = FALSE; 12477 } 12478 if (indmips->call_stub) 12479 { 12480 dirmips->call_stub = indmips->call_stub; 12481 indmips->call_stub = NULL; 12482 } 12483 if (indmips->call_fp_stub) 12484 { 12485 dirmips->call_fp_stub = indmips->call_fp_stub; 12486 indmips->call_fp_stub = NULL; 12487 } 12488 if (indmips->global_got_area < dirmips->global_got_area) 12489 dirmips->global_got_area = indmips->global_got_area; 12490 if (indmips->global_got_area < GGA_NONE) 12491 indmips->global_got_area = GGA_NONE; 12492 if (indmips->has_nonpic_branches) 12493 dirmips->has_nonpic_branches = TRUE; 12494 } 12495 12496 #define PDR_SIZE 32 12497 12498 bfd_boolean 12499 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 12500 struct bfd_link_info *info) 12501 { 12502 asection *o; 12503 bfd_boolean ret = FALSE; 12504 unsigned char *tdata; 12505 size_t i, skip; 12506 12507 o = bfd_get_section_by_name (abfd, ".pdr"); 12508 if (! o) 12509 return FALSE; 12510 if (o->size == 0) 12511 return FALSE; 12512 if (o->size % PDR_SIZE != 0) 12513 return FALSE; 12514 if (o->output_section != NULL 12515 && bfd_is_abs_section (o->output_section)) 12516 return FALSE; 12517 12518 tdata = bfd_zmalloc (o->size / PDR_SIZE); 12519 if (! tdata) 12520 return FALSE; 12521 12522 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 12523 info->keep_memory); 12524 if (!cookie->rels) 12525 { 12526 free (tdata); 12527 return FALSE; 12528 } 12529 12530 cookie->rel = cookie->rels; 12531 cookie->relend = cookie->rels + o->reloc_count; 12532 12533 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 12534 { 12535 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 12536 { 12537 tdata[i] = 1; 12538 skip ++; 12539 } 12540 } 12541 12542 if (skip != 0) 12543 { 12544 mips_elf_section_data (o)->u.tdata = tdata; 12545 if (o->rawsize == 0) 12546 o->rawsize = o->size; 12547 o->size -= skip * PDR_SIZE; 12548 ret = TRUE; 12549 } 12550 else 12551 free (tdata); 12552 12553 if (! info->keep_memory) 12554 free (cookie->rels); 12555 12556 return ret; 12557 } 12558 12559 bfd_boolean 12560 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 12561 { 12562 if (strcmp (sec->name, ".pdr") == 0) 12563 return TRUE; 12564 return FALSE; 12565 } 12566 12567 bfd_boolean 12568 _bfd_mips_elf_write_section (bfd *output_bfd, 12569 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 12570 asection *sec, bfd_byte *contents) 12571 { 12572 bfd_byte *to, *from, *end; 12573 int i; 12574 12575 if (strcmp (sec->name, ".pdr") != 0) 12576 return FALSE; 12577 12578 if (mips_elf_section_data (sec)->u.tdata == NULL) 12579 return FALSE; 12580 12581 to = contents; 12582 end = contents + sec->size; 12583 for (from = contents, i = 0; 12584 from < end; 12585 from += PDR_SIZE, i++) 12586 { 12587 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 12588 continue; 12589 if (to != from) 12590 memcpy (to, from, PDR_SIZE); 12591 to += PDR_SIZE; 12592 } 12593 bfd_set_section_contents (output_bfd, sec->output_section, contents, 12594 sec->output_offset, sec->size); 12595 return TRUE; 12596 } 12597 12598 /* microMIPS code retains local labels for linker relaxation. Omit them 12599 from output by default for clarity. */ 12600 12601 bfd_boolean 12602 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym) 12603 { 12604 return _bfd_elf_is_local_label_name (abfd, sym->name); 12605 } 12606 12607 /* MIPS ELF uses a special find_nearest_line routine in order the 12608 handle the ECOFF debugging information. */ 12609 12610 struct mips_elf_find_line 12611 { 12612 struct ecoff_debug_info d; 12613 struct ecoff_find_line i; 12614 }; 12615 12616 bfd_boolean 12617 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols, 12618 asection *section, bfd_vma offset, 12619 const char **filename_ptr, 12620 const char **functionname_ptr, 12621 unsigned int *line_ptr, 12622 unsigned int *discriminator_ptr) 12623 { 12624 asection *msec; 12625 12626 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset, 12627 filename_ptr, functionname_ptr, 12628 line_ptr, discriminator_ptr, 12629 dwarf_debug_sections, 12630 ABI_64_P (abfd) ? 8 : 0, 12631 &elf_tdata (abfd)->dwarf2_find_line_info)) 12632 return TRUE; 12633 12634 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset, 12635 filename_ptr, functionname_ptr, 12636 line_ptr)) 12637 return TRUE; 12638 12639 msec = bfd_get_section_by_name (abfd, ".mdebug"); 12640 if (msec != NULL) 12641 { 12642 flagword origflags; 12643 struct mips_elf_find_line *fi; 12644 const struct ecoff_debug_swap * const swap = 12645 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 12646 12647 /* If we are called during a link, mips_elf_final_link may have 12648 cleared the SEC_HAS_CONTENTS field. We force it back on here 12649 if appropriate (which it normally will be). */ 12650 origflags = msec->flags; 12651 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 12652 msec->flags |= SEC_HAS_CONTENTS; 12653 12654 fi = mips_elf_tdata (abfd)->find_line_info; 12655 if (fi == NULL) 12656 { 12657 bfd_size_type external_fdr_size; 12658 char *fraw_src; 12659 char *fraw_end; 12660 struct fdr *fdr_ptr; 12661 bfd_size_type amt = sizeof (struct mips_elf_find_line); 12662 12663 fi = bfd_zalloc (abfd, amt); 12664 if (fi == NULL) 12665 { 12666 msec->flags = origflags; 12667 return FALSE; 12668 } 12669 12670 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 12671 { 12672 msec->flags = origflags; 12673 return FALSE; 12674 } 12675 12676 /* Swap in the FDR information. */ 12677 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 12678 fi->d.fdr = bfd_alloc (abfd, amt); 12679 if (fi->d.fdr == NULL) 12680 { 12681 msec->flags = origflags; 12682 return FALSE; 12683 } 12684 external_fdr_size = swap->external_fdr_size; 12685 fdr_ptr = fi->d.fdr; 12686 fraw_src = (char *) fi->d.external_fdr; 12687 fraw_end = (fraw_src 12688 + fi->d.symbolic_header.ifdMax * external_fdr_size); 12689 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 12690 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 12691 12692 mips_elf_tdata (abfd)->find_line_info = fi; 12693 12694 /* Note that we don't bother to ever free this information. 12695 find_nearest_line is either called all the time, as in 12696 objdump -l, so the information should be saved, or it is 12697 rarely called, as in ld error messages, so the memory 12698 wasted is unimportant. Still, it would probably be a 12699 good idea for free_cached_info to throw it away. */ 12700 } 12701 12702 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 12703 &fi->i, filename_ptr, functionname_ptr, 12704 line_ptr)) 12705 { 12706 msec->flags = origflags; 12707 return TRUE; 12708 } 12709 12710 msec->flags = origflags; 12711 } 12712 12713 /* Fall back on the generic ELF find_nearest_line routine. */ 12714 12715 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset, 12716 filename_ptr, functionname_ptr, 12717 line_ptr, discriminator_ptr); 12718 } 12719 12720 bfd_boolean 12721 _bfd_mips_elf_find_inliner_info (bfd *abfd, 12722 const char **filename_ptr, 12723 const char **functionname_ptr, 12724 unsigned int *line_ptr) 12725 { 12726 bfd_boolean found; 12727 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 12728 functionname_ptr, line_ptr, 12729 & elf_tdata (abfd)->dwarf2_find_line_info); 12730 return found; 12731 } 12732 12733 12734 /* When are writing out the .options or .MIPS.options section, 12735 remember the bytes we are writing out, so that we can install the 12736 GP value in the section_processing routine. */ 12737 12738 bfd_boolean 12739 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 12740 const void *location, 12741 file_ptr offset, bfd_size_type count) 12742 { 12743 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 12744 { 12745 bfd_byte *c; 12746 12747 if (elf_section_data (section) == NULL) 12748 { 12749 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 12750 section->used_by_bfd = bfd_zalloc (abfd, amt); 12751 if (elf_section_data (section) == NULL) 12752 return FALSE; 12753 } 12754 c = mips_elf_section_data (section)->u.tdata; 12755 if (c == NULL) 12756 { 12757 c = bfd_zalloc (abfd, section->size); 12758 if (c == NULL) 12759 return FALSE; 12760 mips_elf_section_data (section)->u.tdata = c; 12761 } 12762 12763 memcpy (c + offset, location, count); 12764 } 12765 12766 return _bfd_elf_set_section_contents (abfd, section, location, offset, 12767 count); 12768 } 12769 12770 /* This is almost identical to bfd_generic_get_... except that some 12771 MIPS relocations need to be handled specially. Sigh. */ 12772 12773 bfd_byte * 12774 _bfd_elf_mips_get_relocated_section_contents 12775 (bfd *abfd, 12776 struct bfd_link_info *link_info, 12777 struct bfd_link_order *link_order, 12778 bfd_byte *data, 12779 bfd_boolean relocatable, 12780 asymbol **symbols) 12781 { 12782 /* Get enough memory to hold the stuff */ 12783 bfd *input_bfd = link_order->u.indirect.section->owner; 12784 asection *input_section = link_order->u.indirect.section; 12785 bfd_size_type sz; 12786 12787 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 12788 arelent **reloc_vector = NULL; 12789 long reloc_count; 12790 12791 if (reloc_size < 0) 12792 goto error_return; 12793 12794 reloc_vector = bfd_malloc (reloc_size); 12795 if (reloc_vector == NULL && reloc_size != 0) 12796 goto error_return; 12797 12798 /* read in the section */ 12799 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 12800 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 12801 goto error_return; 12802 12803 reloc_count = bfd_canonicalize_reloc (input_bfd, 12804 input_section, 12805 reloc_vector, 12806 symbols); 12807 if (reloc_count < 0) 12808 goto error_return; 12809 12810 if (reloc_count > 0) 12811 { 12812 arelent **parent; 12813 /* for mips */ 12814 int gp_found; 12815 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 12816 12817 { 12818 struct bfd_hash_entry *h; 12819 struct bfd_link_hash_entry *lh; 12820 /* Skip all this stuff if we aren't mixing formats. */ 12821 if (abfd && input_bfd 12822 && abfd->xvec == input_bfd->xvec) 12823 lh = 0; 12824 else 12825 { 12826 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 12827 lh = (struct bfd_link_hash_entry *) h; 12828 } 12829 lookup: 12830 if (lh) 12831 { 12832 switch (lh->type) 12833 { 12834 case bfd_link_hash_undefined: 12835 case bfd_link_hash_undefweak: 12836 case bfd_link_hash_common: 12837 gp_found = 0; 12838 break; 12839 case bfd_link_hash_defined: 12840 case bfd_link_hash_defweak: 12841 gp_found = 1; 12842 gp = lh->u.def.value; 12843 break; 12844 case bfd_link_hash_indirect: 12845 case bfd_link_hash_warning: 12846 lh = lh->u.i.link; 12847 /* @@FIXME ignoring warning for now */ 12848 goto lookup; 12849 case bfd_link_hash_new: 12850 default: 12851 abort (); 12852 } 12853 } 12854 else 12855 gp_found = 0; 12856 } 12857 /* end mips */ 12858 for (parent = reloc_vector; *parent != NULL; parent++) 12859 { 12860 char *error_message = NULL; 12861 bfd_reloc_status_type r; 12862 12863 /* Specific to MIPS: Deal with relocation types that require 12864 knowing the gp of the output bfd. */ 12865 asymbol *sym = *(*parent)->sym_ptr_ptr; 12866 12867 /* If we've managed to find the gp and have a special 12868 function for the relocation then go ahead, else default 12869 to the generic handling. */ 12870 if (gp_found 12871 && (*parent)->howto->special_function 12872 == _bfd_mips_elf32_gprel16_reloc) 12873 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 12874 input_section, relocatable, 12875 data, gp); 12876 else 12877 r = bfd_perform_relocation (input_bfd, *parent, data, 12878 input_section, 12879 relocatable ? abfd : NULL, 12880 &error_message); 12881 12882 if (relocatable) 12883 { 12884 asection *os = input_section->output_section; 12885 12886 /* A partial link, so keep the relocs */ 12887 os->orelocation[os->reloc_count] = *parent; 12888 os->reloc_count++; 12889 } 12890 12891 if (r != bfd_reloc_ok) 12892 { 12893 switch (r) 12894 { 12895 case bfd_reloc_undefined: 12896 if (!((*link_info->callbacks->undefined_symbol) 12897 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12898 input_bfd, input_section, (*parent)->address, TRUE))) 12899 goto error_return; 12900 break; 12901 case bfd_reloc_dangerous: 12902 BFD_ASSERT (error_message != NULL); 12903 if (!((*link_info->callbacks->reloc_dangerous) 12904 (link_info, error_message, input_bfd, input_section, 12905 (*parent)->address))) 12906 goto error_return; 12907 break; 12908 case bfd_reloc_overflow: 12909 if (!((*link_info->callbacks->reloc_overflow) 12910 (link_info, NULL, 12911 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 12912 (*parent)->howto->name, (*parent)->addend, 12913 input_bfd, input_section, (*parent)->address))) 12914 goto error_return; 12915 break; 12916 case bfd_reloc_outofrange: 12917 default: 12918 abort (); 12919 break; 12920 } 12921 12922 } 12923 } 12924 } 12925 if (reloc_vector != NULL) 12926 free (reloc_vector); 12927 return data; 12928 12929 error_return: 12930 if (reloc_vector != NULL) 12931 free (reloc_vector); 12932 return NULL; 12933 } 12934 12935 static bfd_boolean 12936 mips_elf_relax_delete_bytes (bfd *abfd, 12937 asection *sec, bfd_vma addr, int count) 12938 { 12939 Elf_Internal_Shdr *symtab_hdr; 12940 unsigned int sec_shndx; 12941 bfd_byte *contents; 12942 Elf_Internal_Rela *irel, *irelend; 12943 Elf_Internal_Sym *isym; 12944 Elf_Internal_Sym *isymend; 12945 struct elf_link_hash_entry **sym_hashes; 12946 struct elf_link_hash_entry **end_hashes; 12947 struct elf_link_hash_entry **start_hashes; 12948 unsigned int symcount; 12949 12950 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 12951 contents = elf_section_data (sec)->this_hdr.contents; 12952 12953 irel = elf_section_data (sec)->relocs; 12954 irelend = irel + sec->reloc_count; 12955 12956 /* Actually delete the bytes. */ 12957 memmove (contents + addr, contents + addr + count, 12958 (size_t) (sec->size - addr - count)); 12959 sec->size -= count; 12960 12961 /* Adjust all the relocs. */ 12962 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++) 12963 { 12964 /* Get the new reloc address. */ 12965 if (irel->r_offset > addr) 12966 irel->r_offset -= count; 12967 } 12968 12969 BFD_ASSERT (addr % 2 == 0); 12970 BFD_ASSERT (count % 2 == 0); 12971 12972 /* Adjust the local symbols defined in this section. */ 12973 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12974 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 12975 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++) 12976 if (isym->st_shndx == sec_shndx && isym->st_value > addr) 12977 isym->st_value -= count; 12978 12979 /* Now adjust the global symbols defined in this section. */ 12980 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 12981 - symtab_hdr->sh_info); 12982 sym_hashes = start_hashes = elf_sym_hashes (abfd); 12983 end_hashes = sym_hashes + symcount; 12984 12985 for (; sym_hashes < end_hashes; sym_hashes++) 12986 { 12987 struct elf_link_hash_entry *sym_hash = *sym_hashes; 12988 12989 if ((sym_hash->root.type == bfd_link_hash_defined 12990 || sym_hash->root.type == bfd_link_hash_defweak) 12991 && sym_hash->root.u.def.section == sec) 12992 { 12993 bfd_vma value = sym_hash->root.u.def.value; 12994 12995 if (ELF_ST_IS_MICROMIPS (sym_hash->other)) 12996 value &= MINUS_TWO; 12997 if (value > addr) 12998 sym_hash->root.u.def.value -= count; 12999 } 13000 } 13001 13002 return TRUE; 13003 } 13004 13005 13006 /* Opcodes needed for microMIPS relaxation as found in 13007 opcodes/micromips-opc.c. */ 13008 13009 struct opcode_descriptor { 13010 unsigned long match; 13011 unsigned long mask; 13012 }; 13013 13014 /* The $ra register aka $31. */ 13015 13016 #define RA 31 13017 13018 /* 32-bit instruction format register fields. */ 13019 13020 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f) 13021 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f) 13022 13023 /* Check if a 5-bit register index can be abbreviated to 3 bits. */ 13024 13025 #define OP16_VALID_REG(r) \ 13026 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17)) 13027 13028 13029 /* 32-bit and 16-bit branches. */ 13030 13031 static const struct opcode_descriptor b_insns_32[] = { 13032 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */ 13033 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */ 13034 { 0, 0 } /* End marker for find_match(). */ 13035 }; 13036 13037 static const struct opcode_descriptor bc_insn_32 = 13038 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 }; 13039 13040 static const struct opcode_descriptor bz_insn_32 = 13041 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }; 13042 13043 static const struct opcode_descriptor bzal_insn_32 = 13044 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }; 13045 13046 static const struct opcode_descriptor beq_insn_32 = 13047 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }; 13048 13049 static const struct opcode_descriptor b_insn_16 = 13050 { /* "b", "mD", */ 0xcc00, 0xfc00 }; 13051 13052 static const struct opcode_descriptor bz_insn_16 = 13053 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }; 13054 13055 13056 /* 32-bit and 16-bit branch EQ and NE zero. */ 13057 13058 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the 13059 eq and second the ne. This convention is used when replacing a 13060 32-bit BEQ/BNE with the 16-bit version. */ 13061 13062 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16) 13063 13064 static const struct opcode_descriptor bz_rs_insns_32[] = { 13065 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 }, 13066 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 }, 13067 { 0, 0 } /* End marker for find_match(). */ 13068 }; 13069 13070 static const struct opcode_descriptor bz_rt_insns_32[] = { 13071 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 }, 13072 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 }, 13073 { 0, 0 } /* End marker for find_match(). */ 13074 }; 13075 13076 static const struct opcode_descriptor bzc_insns_32[] = { 13077 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 }, 13078 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 }, 13079 { 0, 0 } /* End marker for find_match(). */ 13080 }; 13081 13082 static const struct opcode_descriptor bz_insns_16[] = { 13083 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 }, 13084 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 }, 13085 { 0, 0 } /* End marker for find_match(). */ 13086 }; 13087 13088 /* Switch between a 5-bit register index and its 3-bit shorthand. */ 13089 13090 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0x17) + 2) 13091 #define BZ16_REG_FIELD(r) \ 13092 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 7) 13093 13094 13095 /* 32-bit instructions with a delay slot. */ 13096 13097 static const struct opcode_descriptor jal_insn_32_bd16 = 13098 { /* "jals", "a", */ 0x74000000, 0xfc000000 }; 13099 13100 static const struct opcode_descriptor jal_insn_32_bd32 = 13101 { /* "jal", "a", */ 0xf4000000, 0xfc000000 }; 13102 13103 static const struct opcode_descriptor jal_x_insn_32_bd32 = 13104 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }; 13105 13106 static const struct opcode_descriptor j_insn_32 = 13107 { /* "j", "a", */ 0xd4000000, 0xfc000000 }; 13108 13109 static const struct opcode_descriptor jalr_insn_32 = 13110 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }; 13111 13112 /* This table can be compacted, because no opcode replacement is made. */ 13113 13114 static const struct opcode_descriptor ds_insns_32_bd16[] = { 13115 { /* "jals", "a", */ 0x74000000, 0xfc000000 }, 13116 13117 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff }, 13118 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 }, 13119 13120 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 }, 13121 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 }, 13122 { /* "j", "a", */ 0xd4000000, 0xfc000000 }, 13123 { 0, 0 } /* End marker for find_match(). */ 13124 }; 13125 13126 /* This table can be compacted, because no opcode replacement is made. */ 13127 13128 static const struct opcode_descriptor ds_insns_32_bd32[] = { 13129 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 }, 13130 13131 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff }, 13132 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 }, 13133 { 0, 0 } /* End marker for find_match(). */ 13134 }; 13135 13136 13137 /* 16-bit instructions with a delay slot. */ 13138 13139 static const struct opcode_descriptor jalr_insn_16_bd16 = 13140 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }; 13141 13142 static const struct opcode_descriptor jalr_insn_16_bd32 = 13143 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 }; 13144 13145 static const struct opcode_descriptor jr_insn_16 = 13146 { /* "jr", "mj", */ 0x4580, 0xffe0 }; 13147 13148 #define JR16_REG(opcode) ((opcode) & 0x1f) 13149 13150 /* This table can be compacted, because no opcode replacement is made. */ 13151 13152 static const struct opcode_descriptor ds_insns_16_bd16[] = { 13153 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 }, 13154 13155 { /* "b", "mD", */ 0xcc00, 0xfc00 }, 13156 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 }, 13157 { /* "jr", "mj", */ 0x4580, 0xffe0 }, 13158 { 0, 0 } /* End marker for find_match(). */ 13159 }; 13160 13161 13162 /* LUI instruction. */ 13163 13164 static const struct opcode_descriptor lui_insn = 13165 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 }; 13166 13167 13168 /* ADDIU instruction. */ 13169 13170 static const struct opcode_descriptor addiu_insn = 13171 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 }; 13172 13173 static const struct opcode_descriptor addiupc_insn = 13174 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 }; 13175 13176 #define ADDIUPC_REG_FIELD(r) \ 13177 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23) 13178 13179 13180 /* Relaxable instructions in a JAL delay slot: MOVE. */ 13181 13182 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves 13183 (ADDU, OR) have rd in 15:11 and rs in 10:16. */ 13184 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f) 13185 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f) 13186 13187 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5) 13188 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) ) 13189 13190 static const struct opcode_descriptor move_insns_32[] = { 13191 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */ 13192 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */ 13193 { 0, 0 } /* End marker for find_match(). */ 13194 }; 13195 13196 static const struct opcode_descriptor move_insn_16 = 13197 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 }; 13198 13199 13200 /* NOP instructions. */ 13201 13202 static const struct opcode_descriptor nop_insn_32 = 13203 { /* "nop", "", */ 0x00000000, 0xffffffff }; 13204 13205 static const struct opcode_descriptor nop_insn_16 = 13206 { /* "nop", "", */ 0x0c00, 0xffff }; 13207 13208 13209 /* Instruction match support. */ 13210 13211 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match) 13212 13213 static int 13214 find_match (unsigned long opcode, const struct opcode_descriptor insn[]) 13215 { 13216 unsigned long indx; 13217 13218 for (indx = 0; insn[indx].mask != 0; indx++) 13219 if (MATCH (opcode, insn[indx])) 13220 return indx; 13221 13222 return -1; 13223 } 13224 13225 13226 /* Branch and delay slot decoding support. */ 13227 13228 /* If PTR points to what *might* be a 16-bit branch or jump, then 13229 return the minimum length of its delay slot, otherwise return 0. 13230 Non-zero results are not definitive as we might be checking against 13231 the second half of another instruction. */ 13232 13233 static int 13234 check_br16_dslot (bfd *abfd, bfd_byte *ptr) 13235 { 13236 unsigned long opcode; 13237 int bdsize; 13238 13239 opcode = bfd_get_16 (abfd, ptr); 13240 if (MATCH (opcode, jalr_insn_16_bd32) != 0) 13241 /* 16-bit branch/jump with a 32-bit delay slot. */ 13242 bdsize = 4; 13243 else if (MATCH (opcode, jalr_insn_16_bd16) != 0 13244 || find_match (opcode, ds_insns_16_bd16) >= 0) 13245 /* 16-bit branch/jump with a 16-bit delay slot. */ 13246 bdsize = 2; 13247 else 13248 /* No delay slot. */ 13249 bdsize = 0; 13250 13251 return bdsize; 13252 } 13253 13254 /* If PTR points to what *might* be a 32-bit branch or jump, then 13255 return the minimum length of its delay slot, otherwise return 0. 13256 Non-zero results are not definitive as we might be checking against 13257 the second half of another instruction. */ 13258 13259 static int 13260 check_br32_dslot (bfd *abfd, bfd_byte *ptr) 13261 { 13262 unsigned long opcode; 13263 int bdsize; 13264 13265 opcode = bfd_get_micromips_32 (abfd, ptr); 13266 if (find_match (opcode, ds_insns_32_bd32) >= 0) 13267 /* 32-bit branch/jump with a 32-bit delay slot. */ 13268 bdsize = 4; 13269 else if (find_match (opcode, ds_insns_32_bd16) >= 0) 13270 /* 32-bit branch/jump with a 16-bit delay slot. */ 13271 bdsize = 2; 13272 else 13273 /* No delay slot. */ 13274 bdsize = 0; 13275 13276 return bdsize; 13277 } 13278 13279 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot 13280 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */ 13281 13282 static bfd_boolean 13283 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13284 { 13285 unsigned long opcode; 13286 13287 opcode = bfd_get_16 (abfd, ptr); 13288 if (MATCH (opcode, b_insn_16) 13289 /* B16 */ 13290 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode)) 13291 /* JR16 */ 13292 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode)) 13293 /* BEQZ16, BNEZ16 */ 13294 || (MATCH (opcode, jalr_insn_16_bd32) 13295 /* JALR16 */ 13296 && reg != JR16_REG (opcode) && reg != RA)) 13297 return TRUE; 13298 13299 return FALSE; 13300 } 13301 13302 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG, 13303 then return TRUE, otherwise FALSE. */ 13304 13305 static bfd_boolean 13306 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg) 13307 { 13308 unsigned long opcode; 13309 13310 opcode = bfd_get_micromips_32 (abfd, ptr); 13311 if (MATCH (opcode, j_insn_32) 13312 /* J */ 13313 || MATCH (opcode, bc_insn_32) 13314 /* BC1F, BC1T, BC2F, BC2T */ 13315 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA) 13316 /* JAL, JALX */ 13317 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode)) 13318 /* BGEZ, BGTZ, BLEZ, BLTZ */ 13319 || (MATCH (opcode, bzal_insn_32) 13320 /* BGEZAL, BLTZAL */ 13321 && reg != OP32_SREG (opcode) && reg != RA) 13322 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32)) 13323 /* JALR, JALR.HB, BEQ, BNE */ 13324 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode))) 13325 return TRUE; 13326 13327 return FALSE; 13328 } 13329 13330 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS, 13331 IRELEND) at OFFSET indicate that there must be a compact branch there, 13332 then return TRUE, otherwise FALSE. */ 13333 13334 static bfd_boolean 13335 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset, 13336 const Elf_Internal_Rela *internal_relocs, 13337 const Elf_Internal_Rela *irelend) 13338 { 13339 const Elf_Internal_Rela *irel; 13340 unsigned long opcode; 13341 13342 opcode = bfd_get_micromips_32 (abfd, ptr); 13343 if (find_match (opcode, bzc_insns_32) < 0) 13344 return FALSE; 13345 13346 for (irel = internal_relocs; irel < irelend; irel++) 13347 if (irel->r_offset == offset 13348 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1) 13349 return TRUE; 13350 13351 return FALSE; 13352 } 13353 13354 /* Bitsize checking. */ 13355 #define IS_BITSIZE(val, N) \ 13356 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \ 13357 - (1ULL << ((N) - 1))) == (val)) 13358 13359 13360 bfd_boolean 13361 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec, 13362 struct bfd_link_info *link_info, 13363 bfd_boolean *again) 13364 { 13365 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32; 13366 Elf_Internal_Shdr *symtab_hdr; 13367 Elf_Internal_Rela *internal_relocs; 13368 Elf_Internal_Rela *irel, *irelend; 13369 bfd_byte *contents = NULL; 13370 Elf_Internal_Sym *isymbuf = NULL; 13371 13372 /* Assume nothing changes. */ 13373 *again = FALSE; 13374 13375 /* We don't have to do anything for a relocatable link, if 13376 this section does not have relocs, or if this is not a 13377 code section. */ 13378 13379 if (link_info->relocatable 13380 || (sec->flags & SEC_RELOC) == 0 13381 || sec->reloc_count == 0 13382 || (sec->flags & SEC_CODE) == 0) 13383 return TRUE; 13384 13385 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 13386 13387 /* Get a copy of the native relocations. */ 13388 internal_relocs = (_bfd_elf_link_read_relocs 13389 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, 13390 link_info->keep_memory)); 13391 if (internal_relocs == NULL) 13392 goto error_return; 13393 13394 /* Walk through them looking for relaxing opportunities. */ 13395 irelend = internal_relocs + sec->reloc_count; 13396 for (irel = internal_relocs; irel < irelend; irel++) 13397 { 13398 unsigned long r_symndx = ELF32_R_SYM (irel->r_info); 13399 unsigned int r_type = ELF32_R_TYPE (irel->r_info); 13400 bfd_boolean target_is_micromips_code_p; 13401 unsigned long opcode; 13402 bfd_vma symval; 13403 bfd_vma pcrval; 13404 bfd_byte *ptr; 13405 int fndopc; 13406 13407 /* The number of bytes to delete for relaxation and from where 13408 to delete these bytes starting at irel->r_offset. */ 13409 int delcnt = 0; 13410 int deloff = 0; 13411 13412 /* If this isn't something that can be relaxed, then ignore 13413 this reloc. */ 13414 if (r_type != R_MICROMIPS_HI16 13415 && r_type != R_MICROMIPS_PC16_S1 13416 && r_type != R_MICROMIPS_26_S1) 13417 continue; 13418 13419 /* Get the section contents if we haven't done so already. */ 13420 if (contents == NULL) 13421 { 13422 /* Get cached copy if it exists. */ 13423 if (elf_section_data (sec)->this_hdr.contents != NULL) 13424 contents = elf_section_data (sec)->this_hdr.contents; 13425 /* Go get them off disk. */ 13426 else if (!bfd_malloc_and_get_section (abfd, sec, &contents)) 13427 goto error_return; 13428 } 13429 ptr = contents + irel->r_offset; 13430 13431 /* Read this BFD's local symbols if we haven't done so already. */ 13432 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 13433 { 13434 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 13435 if (isymbuf == NULL) 13436 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 13437 symtab_hdr->sh_info, 0, 13438 NULL, NULL, NULL); 13439 if (isymbuf == NULL) 13440 goto error_return; 13441 } 13442 13443 /* Get the value of the symbol referred to by the reloc. */ 13444 if (r_symndx < symtab_hdr->sh_info) 13445 { 13446 /* A local symbol. */ 13447 Elf_Internal_Sym *isym; 13448 asection *sym_sec; 13449 13450 isym = isymbuf + r_symndx; 13451 if (isym->st_shndx == SHN_UNDEF) 13452 sym_sec = bfd_und_section_ptr; 13453 else if (isym->st_shndx == SHN_ABS) 13454 sym_sec = bfd_abs_section_ptr; 13455 else if (isym->st_shndx == SHN_COMMON) 13456 sym_sec = bfd_com_section_ptr; 13457 else 13458 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 13459 symval = (isym->st_value 13460 + sym_sec->output_section->vma 13461 + sym_sec->output_offset); 13462 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other); 13463 } 13464 else 13465 { 13466 unsigned long indx; 13467 struct elf_link_hash_entry *h; 13468 13469 /* An external symbol. */ 13470 indx = r_symndx - symtab_hdr->sh_info; 13471 h = elf_sym_hashes (abfd)[indx]; 13472 BFD_ASSERT (h != NULL); 13473 13474 if (h->root.type != bfd_link_hash_defined 13475 && h->root.type != bfd_link_hash_defweak) 13476 /* This appears to be a reference to an undefined 13477 symbol. Just ignore it -- it will be caught by the 13478 regular reloc processing. */ 13479 continue; 13480 13481 symval = (h->root.u.def.value 13482 + h->root.u.def.section->output_section->vma 13483 + h->root.u.def.section->output_offset); 13484 target_is_micromips_code_p = (!h->needs_plt 13485 && ELF_ST_IS_MICROMIPS (h->other)); 13486 } 13487 13488 13489 /* For simplicity of coding, we are going to modify the 13490 section contents, the section relocs, and the BFD symbol 13491 table. We must tell the rest of the code not to free up this 13492 information. It would be possible to instead create a table 13493 of changes which have to be made, as is done in coff-mips.c; 13494 that would be more work, but would require less memory when 13495 the linker is run. */ 13496 13497 /* Only 32-bit instructions relaxed. */ 13498 if (irel->r_offset + 4 > sec->size) 13499 continue; 13500 13501 opcode = bfd_get_micromips_32 (abfd, ptr); 13502 13503 /* This is the pc-relative distance from the instruction the 13504 relocation is applied to, to the symbol referred. */ 13505 pcrval = (symval 13506 - (sec->output_section->vma + sec->output_offset) 13507 - irel->r_offset); 13508 13509 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation 13510 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or 13511 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is 13512 13513 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25)) 13514 13515 where pcrval has first to be adjusted to apply against the LO16 13516 location (we make the adjustment later on, when we have figured 13517 out the offset). */ 13518 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn)) 13519 { 13520 bfd_boolean bzc = FALSE; 13521 unsigned long nextopc; 13522 unsigned long reg; 13523 bfd_vma offset; 13524 13525 /* Give up if the previous reloc was a HI16 against this symbol 13526 too. */ 13527 if (irel > internal_relocs 13528 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16 13529 && ELF32_R_SYM (irel[-1].r_info) == r_symndx) 13530 continue; 13531 13532 /* Or if the next reloc is not a LO16 against this symbol. */ 13533 if (irel + 1 >= irelend 13534 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16 13535 || ELF32_R_SYM (irel[1].r_info) != r_symndx) 13536 continue; 13537 13538 /* Or if the second next reloc is a LO16 against this symbol too. */ 13539 if (irel + 2 >= irelend 13540 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16 13541 && ELF32_R_SYM (irel[2].r_info) == r_symndx) 13542 continue; 13543 13544 /* See if the LUI instruction *might* be in a branch delay slot. 13545 We check whether what looks like a 16-bit branch or jump is 13546 actually an immediate argument to a compact branch, and let 13547 it through if so. */ 13548 if (irel->r_offset >= 2 13549 && check_br16_dslot (abfd, ptr - 2) 13550 && !(irel->r_offset >= 4 13551 && (bzc = check_relocated_bzc (abfd, 13552 ptr - 4, irel->r_offset - 4, 13553 internal_relocs, irelend)))) 13554 continue; 13555 if (irel->r_offset >= 4 13556 && !bzc 13557 && check_br32_dslot (abfd, ptr - 4)) 13558 continue; 13559 13560 reg = OP32_SREG (opcode); 13561 13562 /* We only relax adjacent instructions or ones separated with 13563 a branch or jump that has a delay slot. The branch or jump 13564 must not fiddle with the register used to hold the address. 13565 Subtract 4 for the LUI itself. */ 13566 offset = irel[1].r_offset - irel[0].r_offset; 13567 switch (offset - 4) 13568 { 13569 case 0: 13570 break; 13571 case 2: 13572 if (check_br16 (abfd, ptr + 4, reg)) 13573 break; 13574 continue; 13575 case 4: 13576 if (check_br32 (abfd, ptr + 4, reg)) 13577 break; 13578 continue; 13579 default: 13580 continue; 13581 } 13582 13583 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset); 13584 13585 /* Give up unless the same register is used with both 13586 relocations. */ 13587 if (OP32_SREG (nextopc) != reg) 13588 continue; 13589 13590 /* Now adjust pcrval, subtracting the offset to the LO16 reloc 13591 and rounding up to take masking of the two LSBs into account. */ 13592 pcrval = ((pcrval - offset + 3) | 3) ^ 3; 13593 13594 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */ 13595 if (IS_BITSIZE (symval, 16)) 13596 { 13597 /* Fix the relocation's type. */ 13598 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16); 13599 13600 /* Instructions using R_MICROMIPS_LO16 have the base or 13601 source register in bits 20:16. This register becomes $0 13602 (zero) as the result of the R_MICROMIPS_HI16 being 0. */ 13603 nextopc &= ~0x001f0000; 13604 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff, 13605 contents + irel[1].r_offset); 13606 } 13607 13608 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2. 13609 We add 4 to take LUI deletion into account while checking 13610 the PC-relative distance. */ 13611 else if (symval % 4 == 0 13612 && IS_BITSIZE (pcrval + 4, 25) 13613 && MATCH (nextopc, addiu_insn) 13614 && OP32_TREG (nextopc) == OP32_SREG (nextopc) 13615 && OP16_VALID_REG (OP32_TREG (nextopc))) 13616 { 13617 /* Fix the relocation's type. */ 13618 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2); 13619 13620 /* Replace ADDIU with the ADDIUPC version. */ 13621 nextopc = (addiupc_insn.match 13622 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc))); 13623 13624 bfd_put_micromips_32 (abfd, nextopc, 13625 contents + irel[1].r_offset); 13626 } 13627 13628 /* Can't do anything, give up, sigh... */ 13629 else 13630 continue; 13631 13632 /* Fix the relocation's type. */ 13633 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE); 13634 13635 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */ 13636 delcnt = 4; 13637 deloff = 0; 13638 } 13639 13640 /* Compact branch relaxation -- due to the multitude of macros 13641 employed by the compiler/assembler, compact branches are not 13642 always generated. Obviously, this can/will be fixed elsewhere, 13643 but there is no drawback in double checking it here. */ 13644 else if (r_type == R_MICROMIPS_PC16_S1 13645 && irel->r_offset + 5 < sec->size 13646 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13647 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0) 13648 && ((!insn32 13649 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4), 13650 nop_insn_16) ? 2 : 0)) 13651 || (irel->r_offset + 7 < sec->size 13652 && (delcnt = MATCH (bfd_get_micromips_32 (abfd, 13653 ptr + 4), 13654 nop_insn_32) ? 4 : 0)))) 13655 { 13656 unsigned long reg; 13657 13658 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13659 13660 /* Replace BEQZ/BNEZ with the compact version. */ 13661 opcode = (bzc_insns_32[fndopc].match 13662 | BZC32_REG_FIELD (reg) 13663 | (opcode & 0xffff)); /* Addend value. */ 13664 13665 bfd_put_micromips_32 (abfd, opcode, ptr); 13666 13667 /* Delete the delay slot NOP: two or four bytes from 13668 irel->offset + 4; delcnt has already been set above. */ 13669 deloff = 4; 13670 } 13671 13672 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need 13673 to check the distance from the next instruction, so subtract 2. */ 13674 else if (!insn32 13675 && r_type == R_MICROMIPS_PC16_S1 13676 && IS_BITSIZE (pcrval - 2, 11) 13677 && find_match (opcode, b_insns_32) >= 0) 13678 { 13679 /* Fix the relocation's type. */ 13680 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1); 13681 13682 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13683 bfd_put_16 (abfd, 13684 (b_insn_16.match 13685 | (opcode & 0x3ff)), /* Addend value. */ 13686 ptr); 13687 13688 /* Delete 2 bytes from irel->r_offset + 2. */ 13689 delcnt = 2; 13690 deloff = 2; 13691 } 13692 13693 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need 13694 to check the distance from the next instruction, so subtract 2. */ 13695 else if (!insn32 13696 && r_type == R_MICROMIPS_PC16_S1 13697 && IS_BITSIZE (pcrval - 2, 8) 13698 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0 13699 && OP16_VALID_REG (OP32_SREG (opcode))) 13700 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0 13701 && OP16_VALID_REG (OP32_TREG (opcode))))) 13702 { 13703 unsigned long reg; 13704 13705 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode); 13706 13707 /* Fix the relocation's type. */ 13708 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1); 13709 13710 /* Replace the 32-bit opcode with a 16-bit opcode. */ 13711 bfd_put_16 (abfd, 13712 (bz_insns_16[fndopc].match 13713 | BZ16_REG_FIELD (reg) 13714 | (opcode & 0x7f)), /* Addend value. */ 13715 ptr); 13716 13717 /* Delete 2 bytes from irel->r_offset + 2. */ 13718 delcnt = 2; 13719 deloff = 2; 13720 } 13721 13722 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */ 13723 else if (!insn32 13724 && r_type == R_MICROMIPS_26_S1 13725 && target_is_micromips_code_p 13726 && irel->r_offset + 7 < sec->size 13727 && MATCH (opcode, jal_insn_32_bd32)) 13728 { 13729 unsigned long n32opc; 13730 bfd_boolean relaxed = FALSE; 13731 13732 n32opc = bfd_get_micromips_32 (abfd, ptr + 4); 13733 13734 if (MATCH (n32opc, nop_insn_32)) 13735 { 13736 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */ 13737 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4); 13738 13739 relaxed = TRUE; 13740 } 13741 else if (find_match (n32opc, move_insns_32) >= 0) 13742 { 13743 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */ 13744 bfd_put_16 (abfd, 13745 (move_insn_16.match 13746 | MOVE16_RD_FIELD (MOVE32_RD (n32opc)) 13747 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))), 13748 ptr + 4); 13749 13750 relaxed = TRUE; 13751 } 13752 /* Other 32-bit instructions relaxable to 16-bit 13753 instructions will be handled here later. */ 13754 13755 if (relaxed) 13756 { 13757 /* JAL with 32-bit delay slot that is changed to a JALS 13758 with 16-bit delay slot. */ 13759 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr); 13760 13761 /* Delete 2 bytes from irel->r_offset + 6. */ 13762 delcnt = 2; 13763 deloff = 6; 13764 } 13765 } 13766 13767 if (delcnt != 0) 13768 { 13769 /* Note that we've changed the relocs, section contents, etc. */ 13770 elf_section_data (sec)->relocs = internal_relocs; 13771 elf_section_data (sec)->this_hdr.contents = contents; 13772 symtab_hdr->contents = (unsigned char *) isymbuf; 13773 13774 /* Delete bytes depending on the delcnt and deloff. */ 13775 if (!mips_elf_relax_delete_bytes (abfd, sec, 13776 irel->r_offset + deloff, delcnt)) 13777 goto error_return; 13778 13779 /* That will change things, so we should relax again. 13780 Note that this is not required, and it may be slow. */ 13781 *again = TRUE; 13782 } 13783 } 13784 13785 if (isymbuf != NULL 13786 && symtab_hdr->contents != (unsigned char *) isymbuf) 13787 { 13788 if (! link_info->keep_memory) 13789 free (isymbuf); 13790 else 13791 { 13792 /* Cache the symbols for elf_link_input_bfd. */ 13793 symtab_hdr->contents = (unsigned char *) isymbuf; 13794 } 13795 } 13796 13797 if (contents != NULL 13798 && elf_section_data (sec)->this_hdr.contents != contents) 13799 { 13800 if (! link_info->keep_memory) 13801 free (contents); 13802 else 13803 { 13804 /* Cache the section contents for elf_link_input_bfd. */ 13805 elf_section_data (sec)->this_hdr.contents = contents; 13806 } 13807 } 13808 13809 if (internal_relocs != NULL 13810 && elf_section_data (sec)->relocs != internal_relocs) 13811 free (internal_relocs); 13812 13813 return TRUE; 13814 13815 error_return: 13816 if (isymbuf != NULL 13817 && symtab_hdr->contents != (unsigned char *) isymbuf) 13818 free (isymbuf); 13819 if (contents != NULL 13820 && elf_section_data (sec)->this_hdr.contents != contents) 13821 free (contents); 13822 if (internal_relocs != NULL 13823 && elf_section_data (sec)->relocs != internal_relocs) 13824 free (internal_relocs); 13825 13826 return FALSE; 13827 } 13828 13829 /* Create a MIPS ELF linker hash table. */ 13830 13831 struct bfd_link_hash_table * 13832 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 13833 { 13834 struct mips_elf_link_hash_table *ret; 13835 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 13836 13837 ret = bfd_zmalloc (amt); 13838 if (ret == NULL) 13839 return NULL; 13840 13841 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 13842 mips_elf_link_hash_newfunc, 13843 sizeof (struct mips_elf_link_hash_entry), 13844 MIPS_ELF_DATA)) 13845 { 13846 free (ret); 13847 return NULL; 13848 } 13849 ret->root.init_plt_refcount.plist = NULL; 13850 ret->root.init_plt_offset.plist = NULL; 13851 13852 return &ret->root.root; 13853 } 13854 13855 /* Likewise, but indicate that the target is VxWorks. */ 13856 13857 struct bfd_link_hash_table * 13858 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 13859 { 13860 struct bfd_link_hash_table *ret; 13861 13862 ret = _bfd_mips_elf_link_hash_table_create (abfd); 13863 if (ret) 13864 { 13865 struct mips_elf_link_hash_table *htab; 13866 13867 htab = (struct mips_elf_link_hash_table *) ret; 13868 htab->use_plts_and_copy_relocs = TRUE; 13869 htab->is_vxworks = TRUE; 13870 } 13871 return ret; 13872 } 13873 13874 /* A function that the linker calls if we are allowed to use PLTs 13875 and copy relocs. */ 13876 13877 void 13878 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 13879 { 13880 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 13881 } 13882 13883 /* A function that the linker calls to select between all or only 13884 32-bit microMIPS instructions. */ 13885 13886 void 13887 _bfd_mips_elf_insn32 (struct bfd_link_info *info, bfd_boolean on) 13888 { 13889 mips_elf_hash_table (info)->insn32 = on; 13890 } 13891 13892 /* Return the .MIPS.abiflags value representing each ISA Extension. */ 13893 13894 unsigned int 13895 bfd_mips_isa_ext (bfd *abfd) 13896 { 13897 switch (bfd_get_mach (abfd)) 13898 { 13899 case bfd_mach_mips3900: 13900 return AFL_EXT_3900; 13901 case bfd_mach_mips4010: 13902 return AFL_EXT_4010; 13903 case bfd_mach_mips4100: 13904 return AFL_EXT_4100; 13905 case bfd_mach_mips4111: 13906 return AFL_EXT_4111; 13907 case bfd_mach_mips4120: 13908 return AFL_EXT_4120; 13909 case bfd_mach_mips4650: 13910 return AFL_EXT_4650; 13911 case bfd_mach_mips5400: 13912 return AFL_EXT_5400; 13913 case bfd_mach_mips5500: 13914 return AFL_EXT_5500; 13915 case bfd_mach_mips5900: 13916 return AFL_EXT_5900; 13917 case bfd_mach_mips10000: 13918 return AFL_EXT_10000; 13919 case bfd_mach_mips_loongson_2e: 13920 return AFL_EXT_LOONGSON_2E; 13921 case bfd_mach_mips_loongson_2f: 13922 return AFL_EXT_LOONGSON_2F; 13923 case bfd_mach_mips_loongson_3a: 13924 return AFL_EXT_LOONGSON_3A; 13925 case bfd_mach_mips_sb1: 13926 return AFL_EXT_SB1; 13927 case bfd_mach_mips_octeon: 13928 return AFL_EXT_OCTEON; 13929 case bfd_mach_mips_octeonp: 13930 return AFL_EXT_OCTEONP; 13931 case bfd_mach_mips_octeon3: 13932 return AFL_EXT_OCTEON3; 13933 case bfd_mach_mips_octeon2: 13934 return AFL_EXT_OCTEON2; 13935 case bfd_mach_mips_xlr: 13936 return AFL_EXT_XLR; 13937 } 13938 return 0; 13939 } 13940 13941 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */ 13942 13943 static void 13944 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags) 13945 { 13946 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) 13947 { 13948 case E_MIPS_ARCH_1: 13949 abiflags->isa_level = 1; 13950 abiflags->isa_rev = 0; 13951 break; 13952 case E_MIPS_ARCH_2: 13953 abiflags->isa_level = 2; 13954 abiflags->isa_rev = 0; 13955 break; 13956 case E_MIPS_ARCH_3: 13957 abiflags->isa_level = 3; 13958 abiflags->isa_rev = 0; 13959 break; 13960 case E_MIPS_ARCH_4: 13961 abiflags->isa_level = 4; 13962 abiflags->isa_rev = 0; 13963 break; 13964 case E_MIPS_ARCH_5: 13965 abiflags->isa_level = 5; 13966 abiflags->isa_rev = 0; 13967 break; 13968 case E_MIPS_ARCH_32: 13969 abiflags->isa_level = 32; 13970 abiflags->isa_rev = 1; 13971 break; 13972 case E_MIPS_ARCH_32R2: 13973 abiflags->isa_level = 32; 13974 /* Handle MIPS32r3 and MIPS32r5 which do not have a header flag. */ 13975 if (abiflags->isa_rev < 2) 13976 abiflags->isa_rev = 2; 13977 break; 13978 case E_MIPS_ARCH_32R6: 13979 abiflags->isa_level = 32; 13980 abiflags->isa_rev = 6; 13981 break; 13982 case E_MIPS_ARCH_64: 13983 abiflags->isa_level = 64; 13984 abiflags->isa_rev = 1; 13985 break; 13986 case E_MIPS_ARCH_64R2: 13987 /* Handle MIPS64r3 and MIPS64r5 which do not have a header flag. */ 13988 abiflags->isa_level = 64; 13989 if (abiflags->isa_rev < 2) 13990 abiflags->isa_rev = 2; 13991 break; 13992 case E_MIPS_ARCH_64R6: 13993 abiflags->isa_level = 64; 13994 abiflags->isa_rev = 6; 13995 break; 13996 default: 13997 (*_bfd_error_handler) 13998 (_("%B: Unknown architecture %s"), 13999 abfd, bfd_printable_name (abfd)); 14000 } 14001 14002 abiflags->isa_ext = bfd_mips_isa_ext (abfd); 14003 } 14004 14005 /* Return true if the given ELF header flags describe a 32-bit binary. */ 14006 14007 static bfd_boolean 14008 mips_32bit_flags_p (flagword flags) 14009 { 14010 return ((flags & EF_MIPS_32BITMODE) != 0 14011 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 14012 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 14013 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 14014 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 14015 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 14016 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2 14017 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6); 14018 } 14019 14020 /* Infer the content of the ABI flags based on the elf header. */ 14021 14022 static void 14023 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags) 14024 { 14025 obj_attribute *in_attr; 14026 14027 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0)); 14028 update_mips_abiflags_isa (abfd, abiflags); 14029 14030 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags)) 14031 abiflags->gpr_size = AFL_REG_32; 14032 else 14033 abiflags->gpr_size = AFL_REG_64; 14034 14035 abiflags->cpr1_size = AFL_REG_NONE; 14036 14037 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU]; 14038 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14039 14040 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE 14041 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX 14042 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14043 && abiflags->gpr_size == AFL_REG_32)) 14044 abiflags->cpr1_size = AFL_REG_32; 14045 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE 14046 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64 14047 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A) 14048 abiflags->cpr1_size = AFL_REG_64; 14049 14050 abiflags->cpr2_size = AFL_REG_NONE; 14051 14052 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 14053 abiflags->ases |= AFL_ASE_MDMX; 14054 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 14055 abiflags->ases |= AFL_ASE_MIPS16; 14056 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 14057 abiflags->ases |= AFL_ASE_MICROMIPS; 14058 14059 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY 14060 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT 14061 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A 14062 && abiflags->isa_level >= 32 14063 && abiflags->isa_ext != AFL_EXT_LOONGSON_3A) 14064 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG; 14065 } 14066 14067 /* We need to use a special link routine to handle the .reginfo and 14068 the .mdebug sections. We need to merge all instances of these 14069 sections together, not write them all out sequentially. */ 14070 14071 bfd_boolean 14072 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 14073 { 14074 asection *o; 14075 struct bfd_link_order *p; 14076 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 14077 asection *rtproc_sec, *abiflags_sec; 14078 Elf32_RegInfo reginfo; 14079 struct ecoff_debug_info debug; 14080 struct mips_htab_traverse_info hti; 14081 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14082 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 14083 HDRR *symhdr = &debug.symbolic_header; 14084 void *mdebug_handle = NULL; 14085 asection *s; 14086 EXTR esym; 14087 unsigned int i; 14088 bfd_size_type amt; 14089 struct mips_elf_link_hash_table *htab; 14090 14091 static const char * const secname[] = 14092 { 14093 ".text", ".init", ".fini", ".data", 14094 ".rodata", ".sdata", ".sbss", ".bss" 14095 }; 14096 static const int sc[] = 14097 { 14098 scText, scInit, scFini, scData, 14099 scRData, scSData, scSBss, scBss 14100 }; 14101 14102 /* Sort the dynamic symbols so that those with GOT entries come after 14103 those without. */ 14104 htab = mips_elf_hash_table (info); 14105 BFD_ASSERT (htab != NULL); 14106 14107 if (!mips_elf_sort_hash_table (abfd, info)) 14108 return FALSE; 14109 14110 /* Create any scheduled LA25 stubs. */ 14111 hti.info = info; 14112 hti.output_bfd = abfd; 14113 hti.error = FALSE; 14114 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 14115 if (hti.error) 14116 return FALSE; 14117 14118 /* Get a value for the GP register. */ 14119 if (elf_gp (abfd) == 0) 14120 { 14121 struct bfd_link_hash_entry *h; 14122 14123 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 14124 if (h != NULL && h->type == bfd_link_hash_defined) 14125 elf_gp (abfd) = (h->u.def.value 14126 + h->u.def.section->output_section->vma 14127 + h->u.def.section->output_offset); 14128 else if (htab->is_vxworks 14129 && (h = bfd_link_hash_lookup (info->hash, 14130 "_GLOBAL_OFFSET_TABLE_", 14131 FALSE, FALSE, TRUE)) 14132 && h->type == bfd_link_hash_defined) 14133 elf_gp (abfd) = (h->u.def.section->output_section->vma 14134 + h->u.def.section->output_offset 14135 + h->u.def.value); 14136 else if (info->relocatable) 14137 { 14138 bfd_vma lo = MINUS_ONE; 14139 14140 /* Find the GP-relative section with the lowest offset. */ 14141 for (o = abfd->sections; o != NULL; o = o->next) 14142 if (o->vma < lo 14143 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 14144 lo = o->vma; 14145 14146 /* And calculate GP relative to that. */ 14147 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 14148 } 14149 else 14150 { 14151 /* If the relocate_section function needs to do a reloc 14152 involving the GP value, it should make a reloc_dangerous 14153 callback to warn that GP is not defined. */ 14154 } 14155 } 14156 14157 /* Go through the sections and collect the .reginfo and .mdebug 14158 information. */ 14159 abiflags_sec = NULL; 14160 reginfo_sec = NULL; 14161 mdebug_sec = NULL; 14162 gptab_data_sec = NULL; 14163 gptab_bss_sec = NULL; 14164 for (o = abfd->sections; o != NULL; o = o->next) 14165 { 14166 if (strcmp (o->name, ".MIPS.abiflags") == 0) 14167 { 14168 /* We have found the .MIPS.abiflags section in the output file. 14169 Look through all the link_orders comprising it and remove them. 14170 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */ 14171 for (p = o->map_head.link_order; p != NULL; p = p->next) 14172 { 14173 asection *input_section; 14174 14175 if (p->type != bfd_indirect_link_order) 14176 { 14177 if (p->type == bfd_data_link_order) 14178 continue; 14179 abort (); 14180 } 14181 14182 input_section = p->u.indirect.section; 14183 14184 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14185 elf_link_input_bfd ignores this section. */ 14186 input_section->flags &= ~SEC_HAS_CONTENTS; 14187 } 14188 14189 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14190 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0)); 14191 14192 /* Skip this section later on (I don't think this currently 14193 matters, but someday it might). */ 14194 o->map_head.link_order = NULL; 14195 14196 abiflags_sec = o; 14197 } 14198 14199 if (strcmp (o->name, ".reginfo") == 0) 14200 { 14201 memset (®info, 0, sizeof reginfo); 14202 14203 /* We have found the .reginfo section in the output file. 14204 Look through all the link_orders comprising it and merge 14205 the information together. */ 14206 for (p = o->map_head.link_order; p != NULL; p = p->next) 14207 { 14208 asection *input_section; 14209 bfd *input_bfd; 14210 Elf32_External_RegInfo ext; 14211 Elf32_RegInfo sub; 14212 14213 if (p->type != bfd_indirect_link_order) 14214 { 14215 if (p->type == bfd_data_link_order) 14216 continue; 14217 abort (); 14218 } 14219 14220 input_section = p->u.indirect.section; 14221 input_bfd = input_section->owner; 14222 14223 if (! bfd_get_section_contents (input_bfd, input_section, 14224 &ext, 0, sizeof ext)) 14225 return FALSE; 14226 14227 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 14228 14229 reginfo.ri_gprmask |= sub.ri_gprmask; 14230 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 14231 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 14232 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 14233 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 14234 14235 /* ri_gp_value is set by the function 14236 mips_elf32_section_processing when the section is 14237 finally written out. */ 14238 14239 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14240 elf_link_input_bfd ignores this section. */ 14241 input_section->flags &= ~SEC_HAS_CONTENTS; 14242 } 14243 14244 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 14245 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 14246 14247 /* Skip this section later on (I don't think this currently 14248 matters, but someday it might). */ 14249 o->map_head.link_order = NULL; 14250 14251 reginfo_sec = o; 14252 } 14253 14254 if (strcmp (o->name, ".mdebug") == 0) 14255 { 14256 struct extsym_info einfo; 14257 bfd_vma last; 14258 14259 /* We have found the .mdebug section in the output file. 14260 Look through all the link_orders comprising it and merge 14261 the information together. */ 14262 symhdr->magic = swap->sym_magic; 14263 /* FIXME: What should the version stamp be? */ 14264 symhdr->vstamp = 0; 14265 symhdr->ilineMax = 0; 14266 symhdr->cbLine = 0; 14267 symhdr->idnMax = 0; 14268 symhdr->ipdMax = 0; 14269 symhdr->isymMax = 0; 14270 symhdr->ioptMax = 0; 14271 symhdr->iauxMax = 0; 14272 symhdr->issMax = 0; 14273 symhdr->issExtMax = 0; 14274 symhdr->ifdMax = 0; 14275 symhdr->crfd = 0; 14276 symhdr->iextMax = 0; 14277 14278 /* We accumulate the debugging information itself in the 14279 debug_info structure. */ 14280 debug.line = NULL; 14281 debug.external_dnr = NULL; 14282 debug.external_pdr = NULL; 14283 debug.external_sym = NULL; 14284 debug.external_opt = NULL; 14285 debug.external_aux = NULL; 14286 debug.ss = NULL; 14287 debug.ssext = debug.ssext_end = NULL; 14288 debug.external_fdr = NULL; 14289 debug.external_rfd = NULL; 14290 debug.external_ext = debug.external_ext_end = NULL; 14291 14292 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 14293 if (mdebug_handle == NULL) 14294 return FALSE; 14295 14296 esym.jmptbl = 0; 14297 esym.cobol_main = 0; 14298 esym.weakext = 0; 14299 esym.reserved = 0; 14300 esym.ifd = ifdNil; 14301 esym.asym.iss = issNil; 14302 esym.asym.st = stLocal; 14303 esym.asym.reserved = 0; 14304 esym.asym.index = indexNil; 14305 last = 0; 14306 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 14307 { 14308 esym.asym.sc = sc[i]; 14309 s = bfd_get_section_by_name (abfd, secname[i]); 14310 if (s != NULL) 14311 { 14312 esym.asym.value = s->vma; 14313 last = s->vma + s->size; 14314 } 14315 else 14316 esym.asym.value = last; 14317 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 14318 secname[i], &esym)) 14319 return FALSE; 14320 } 14321 14322 for (p = o->map_head.link_order; p != NULL; p = p->next) 14323 { 14324 asection *input_section; 14325 bfd *input_bfd; 14326 const struct ecoff_debug_swap *input_swap; 14327 struct ecoff_debug_info input_debug; 14328 char *eraw_src; 14329 char *eraw_end; 14330 14331 if (p->type != bfd_indirect_link_order) 14332 { 14333 if (p->type == bfd_data_link_order) 14334 continue; 14335 abort (); 14336 } 14337 14338 input_section = p->u.indirect.section; 14339 input_bfd = input_section->owner; 14340 14341 if (!is_mips_elf (input_bfd)) 14342 { 14343 /* I don't know what a non MIPS ELF bfd would be 14344 doing with a .mdebug section, but I don't really 14345 want to deal with it. */ 14346 continue; 14347 } 14348 14349 input_swap = (get_elf_backend_data (input_bfd) 14350 ->elf_backend_ecoff_debug_swap); 14351 14352 BFD_ASSERT (p->size == input_section->size); 14353 14354 /* The ECOFF linking code expects that we have already 14355 read in the debugging information and set up an 14356 ecoff_debug_info structure, so we do that now. */ 14357 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 14358 &input_debug)) 14359 return FALSE; 14360 14361 if (! (bfd_ecoff_debug_accumulate 14362 (mdebug_handle, abfd, &debug, swap, input_bfd, 14363 &input_debug, input_swap, info))) 14364 return FALSE; 14365 14366 /* Loop through the external symbols. For each one with 14367 interesting information, try to find the symbol in 14368 the linker global hash table and save the information 14369 for the output external symbols. */ 14370 eraw_src = input_debug.external_ext; 14371 eraw_end = (eraw_src 14372 + (input_debug.symbolic_header.iextMax 14373 * input_swap->external_ext_size)); 14374 for (; 14375 eraw_src < eraw_end; 14376 eraw_src += input_swap->external_ext_size) 14377 { 14378 EXTR ext; 14379 const char *name; 14380 struct mips_elf_link_hash_entry *h; 14381 14382 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 14383 if (ext.asym.sc == scNil 14384 || ext.asym.sc == scUndefined 14385 || ext.asym.sc == scSUndefined) 14386 continue; 14387 14388 name = input_debug.ssext + ext.asym.iss; 14389 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 14390 name, FALSE, FALSE, TRUE); 14391 if (h == NULL || h->esym.ifd != -2) 14392 continue; 14393 14394 if (ext.ifd != -1) 14395 { 14396 BFD_ASSERT (ext.ifd 14397 < input_debug.symbolic_header.ifdMax); 14398 ext.ifd = input_debug.ifdmap[ext.ifd]; 14399 } 14400 14401 h->esym = ext; 14402 } 14403 14404 /* Free up the information we just read. */ 14405 free (input_debug.line); 14406 free (input_debug.external_dnr); 14407 free (input_debug.external_pdr); 14408 free (input_debug.external_sym); 14409 free (input_debug.external_opt); 14410 free (input_debug.external_aux); 14411 free (input_debug.ss); 14412 free (input_debug.ssext); 14413 free (input_debug.external_fdr); 14414 free (input_debug.external_rfd); 14415 free (input_debug.external_ext); 14416 14417 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14418 elf_link_input_bfd ignores this section. */ 14419 input_section->flags &= ~SEC_HAS_CONTENTS; 14420 } 14421 14422 if (SGI_COMPAT (abfd) && info->shared) 14423 { 14424 /* Create .rtproc section. */ 14425 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc"); 14426 if (rtproc_sec == NULL) 14427 { 14428 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 14429 | SEC_LINKER_CREATED | SEC_READONLY); 14430 14431 rtproc_sec = bfd_make_section_anyway_with_flags (abfd, 14432 ".rtproc", 14433 flags); 14434 if (rtproc_sec == NULL 14435 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 14436 return FALSE; 14437 } 14438 14439 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 14440 info, rtproc_sec, 14441 &debug)) 14442 return FALSE; 14443 } 14444 14445 /* Build the external symbol information. */ 14446 einfo.abfd = abfd; 14447 einfo.info = info; 14448 einfo.debug = &debug; 14449 einfo.swap = swap; 14450 einfo.failed = FALSE; 14451 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 14452 mips_elf_output_extsym, &einfo); 14453 if (einfo.failed) 14454 return FALSE; 14455 14456 /* Set the size of the .mdebug section. */ 14457 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 14458 14459 /* Skip this section later on (I don't think this currently 14460 matters, but someday it might). */ 14461 o->map_head.link_order = NULL; 14462 14463 mdebug_sec = o; 14464 } 14465 14466 if (CONST_STRNEQ (o->name, ".gptab.")) 14467 { 14468 const char *subname; 14469 unsigned int c; 14470 Elf32_gptab *tab; 14471 Elf32_External_gptab *ext_tab; 14472 unsigned int j; 14473 14474 /* The .gptab.sdata and .gptab.sbss sections hold 14475 information describing how the small data area would 14476 change depending upon the -G switch. These sections 14477 not used in executables files. */ 14478 if (! info->relocatable) 14479 { 14480 for (p = o->map_head.link_order; p != NULL; p = p->next) 14481 { 14482 asection *input_section; 14483 14484 if (p->type != bfd_indirect_link_order) 14485 { 14486 if (p->type == bfd_data_link_order) 14487 continue; 14488 abort (); 14489 } 14490 14491 input_section = p->u.indirect.section; 14492 14493 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14494 elf_link_input_bfd ignores this section. */ 14495 input_section->flags &= ~SEC_HAS_CONTENTS; 14496 } 14497 14498 /* Skip this section later on (I don't think this 14499 currently matters, but someday it might). */ 14500 o->map_head.link_order = NULL; 14501 14502 /* Really remove the section. */ 14503 bfd_section_list_remove (abfd, o); 14504 --abfd->section_count; 14505 14506 continue; 14507 } 14508 14509 /* There is one gptab for initialized data, and one for 14510 uninitialized data. */ 14511 if (strcmp (o->name, ".gptab.sdata") == 0) 14512 gptab_data_sec = o; 14513 else if (strcmp (o->name, ".gptab.sbss") == 0) 14514 gptab_bss_sec = o; 14515 else 14516 { 14517 (*_bfd_error_handler) 14518 (_("%s: illegal section name `%s'"), 14519 bfd_get_filename (abfd), o->name); 14520 bfd_set_error (bfd_error_nonrepresentable_section); 14521 return FALSE; 14522 } 14523 14524 /* The linker script always combines .gptab.data and 14525 .gptab.sdata into .gptab.sdata, and likewise for 14526 .gptab.bss and .gptab.sbss. It is possible that there is 14527 no .sdata or .sbss section in the output file, in which 14528 case we must change the name of the output section. */ 14529 subname = o->name + sizeof ".gptab" - 1; 14530 if (bfd_get_section_by_name (abfd, subname) == NULL) 14531 { 14532 if (o == gptab_data_sec) 14533 o->name = ".gptab.data"; 14534 else 14535 o->name = ".gptab.bss"; 14536 subname = o->name + sizeof ".gptab" - 1; 14537 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 14538 } 14539 14540 /* Set up the first entry. */ 14541 c = 1; 14542 amt = c * sizeof (Elf32_gptab); 14543 tab = bfd_malloc (amt); 14544 if (tab == NULL) 14545 return FALSE; 14546 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 14547 tab[0].gt_header.gt_unused = 0; 14548 14549 /* Combine the input sections. */ 14550 for (p = o->map_head.link_order; p != NULL; p = p->next) 14551 { 14552 asection *input_section; 14553 bfd *input_bfd; 14554 bfd_size_type size; 14555 unsigned long last; 14556 bfd_size_type gpentry; 14557 14558 if (p->type != bfd_indirect_link_order) 14559 { 14560 if (p->type == bfd_data_link_order) 14561 continue; 14562 abort (); 14563 } 14564 14565 input_section = p->u.indirect.section; 14566 input_bfd = input_section->owner; 14567 14568 /* Combine the gptab entries for this input section one 14569 by one. We know that the input gptab entries are 14570 sorted by ascending -G value. */ 14571 size = input_section->size; 14572 last = 0; 14573 for (gpentry = sizeof (Elf32_External_gptab); 14574 gpentry < size; 14575 gpentry += sizeof (Elf32_External_gptab)) 14576 { 14577 Elf32_External_gptab ext_gptab; 14578 Elf32_gptab int_gptab; 14579 unsigned long val; 14580 unsigned long add; 14581 bfd_boolean exact; 14582 unsigned int look; 14583 14584 if (! (bfd_get_section_contents 14585 (input_bfd, input_section, &ext_gptab, gpentry, 14586 sizeof (Elf32_External_gptab)))) 14587 { 14588 free (tab); 14589 return FALSE; 14590 } 14591 14592 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 14593 &int_gptab); 14594 val = int_gptab.gt_entry.gt_g_value; 14595 add = int_gptab.gt_entry.gt_bytes - last; 14596 14597 exact = FALSE; 14598 for (look = 1; look < c; look++) 14599 { 14600 if (tab[look].gt_entry.gt_g_value >= val) 14601 tab[look].gt_entry.gt_bytes += add; 14602 14603 if (tab[look].gt_entry.gt_g_value == val) 14604 exact = TRUE; 14605 } 14606 14607 if (! exact) 14608 { 14609 Elf32_gptab *new_tab; 14610 unsigned int max; 14611 14612 /* We need a new table entry. */ 14613 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 14614 new_tab = bfd_realloc (tab, amt); 14615 if (new_tab == NULL) 14616 { 14617 free (tab); 14618 return FALSE; 14619 } 14620 tab = new_tab; 14621 tab[c].gt_entry.gt_g_value = val; 14622 tab[c].gt_entry.gt_bytes = add; 14623 14624 /* Merge in the size for the next smallest -G 14625 value, since that will be implied by this new 14626 value. */ 14627 max = 0; 14628 for (look = 1; look < c; look++) 14629 { 14630 if (tab[look].gt_entry.gt_g_value < val 14631 && (max == 0 14632 || (tab[look].gt_entry.gt_g_value 14633 > tab[max].gt_entry.gt_g_value))) 14634 max = look; 14635 } 14636 if (max != 0) 14637 tab[c].gt_entry.gt_bytes += 14638 tab[max].gt_entry.gt_bytes; 14639 14640 ++c; 14641 } 14642 14643 last = int_gptab.gt_entry.gt_bytes; 14644 } 14645 14646 /* Hack: reset the SEC_HAS_CONTENTS flag so that 14647 elf_link_input_bfd ignores this section. */ 14648 input_section->flags &= ~SEC_HAS_CONTENTS; 14649 } 14650 14651 /* The table must be sorted by -G value. */ 14652 if (c > 2) 14653 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 14654 14655 /* Swap out the table. */ 14656 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 14657 ext_tab = bfd_alloc (abfd, amt); 14658 if (ext_tab == NULL) 14659 { 14660 free (tab); 14661 return FALSE; 14662 } 14663 14664 for (j = 0; j < c; j++) 14665 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 14666 free (tab); 14667 14668 o->size = c * sizeof (Elf32_External_gptab); 14669 o->contents = (bfd_byte *) ext_tab; 14670 14671 /* Skip this section later on (I don't think this currently 14672 matters, but someday it might). */ 14673 o->map_head.link_order = NULL; 14674 } 14675 } 14676 14677 /* Invoke the regular ELF backend linker to do all the work. */ 14678 if (!bfd_elf_final_link (abfd, info)) 14679 return FALSE; 14680 14681 /* Now write out the computed sections. */ 14682 14683 if (abiflags_sec != NULL) 14684 { 14685 Elf_External_ABIFlags_v0 ext; 14686 Elf_Internal_ABIFlags_v0 *abiflags; 14687 14688 abiflags = &mips_elf_tdata (abfd)->abiflags; 14689 14690 /* Set up the abiflags if no valid input sections were found. */ 14691 if (!mips_elf_tdata (abfd)->abiflags_valid) 14692 { 14693 infer_mips_abiflags (abfd, abiflags); 14694 mips_elf_tdata (abfd)->abiflags_valid = TRUE; 14695 } 14696 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext); 14697 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext)) 14698 return FALSE; 14699 } 14700 14701 if (reginfo_sec != NULL) 14702 { 14703 Elf32_External_RegInfo ext; 14704 14705 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 14706 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 14707 return FALSE; 14708 } 14709 14710 if (mdebug_sec != NULL) 14711 { 14712 BFD_ASSERT (abfd->output_has_begun); 14713 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 14714 swap, info, 14715 mdebug_sec->filepos)) 14716 return FALSE; 14717 14718 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 14719 } 14720 14721 if (gptab_data_sec != NULL) 14722 { 14723 if (! bfd_set_section_contents (abfd, gptab_data_sec, 14724 gptab_data_sec->contents, 14725 0, gptab_data_sec->size)) 14726 return FALSE; 14727 } 14728 14729 if (gptab_bss_sec != NULL) 14730 { 14731 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 14732 gptab_bss_sec->contents, 14733 0, gptab_bss_sec->size)) 14734 return FALSE; 14735 } 14736 14737 if (SGI_COMPAT (abfd)) 14738 { 14739 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 14740 if (rtproc_sec != NULL) 14741 { 14742 if (! bfd_set_section_contents (abfd, rtproc_sec, 14743 rtproc_sec->contents, 14744 0, rtproc_sec->size)) 14745 return FALSE; 14746 } 14747 } 14748 14749 return TRUE; 14750 } 14751 14752 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 14753 14754 struct mips_mach_extension 14755 { 14756 unsigned long extension, base; 14757 }; 14758 14759 14760 /* An array describing how BFD machines relate to one another. The entries 14761 are ordered topologically with MIPS I extensions listed last. */ 14762 14763 static const struct mips_mach_extension mips_mach_extensions[] = 14764 { 14765 /* MIPS64r2 extensions. */ 14766 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 }, 14767 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp }, 14768 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon }, 14769 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 14770 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64r2 }, 14771 14772 /* MIPS64 extensions. */ 14773 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 14774 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 14775 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 14776 14777 /* MIPS V extensions. */ 14778 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 14779 14780 /* R10000 extensions. */ 14781 { bfd_mach_mips12000, bfd_mach_mips10000 }, 14782 { bfd_mach_mips14000, bfd_mach_mips10000 }, 14783 { bfd_mach_mips16000, bfd_mach_mips10000 }, 14784 14785 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 14786 vr5400 ISA, but doesn't include the multimedia stuff. It seems 14787 better to allow vr5400 and vr5500 code to be merged anyway, since 14788 many libraries will just use the core ISA. Perhaps we could add 14789 some sort of ASE flag if this ever proves a problem. */ 14790 { bfd_mach_mips5500, bfd_mach_mips5400 }, 14791 { bfd_mach_mips5400, bfd_mach_mips5000 }, 14792 14793 /* MIPS IV extensions. */ 14794 { bfd_mach_mips5, bfd_mach_mips8000 }, 14795 { bfd_mach_mips10000, bfd_mach_mips8000 }, 14796 { bfd_mach_mips5000, bfd_mach_mips8000 }, 14797 { bfd_mach_mips7000, bfd_mach_mips8000 }, 14798 { bfd_mach_mips9000, bfd_mach_mips8000 }, 14799 14800 /* VR4100 extensions. */ 14801 { bfd_mach_mips4120, bfd_mach_mips4100 }, 14802 { bfd_mach_mips4111, bfd_mach_mips4100 }, 14803 14804 /* MIPS III extensions. */ 14805 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 14806 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 14807 { bfd_mach_mips8000, bfd_mach_mips4000 }, 14808 { bfd_mach_mips4650, bfd_mach_mips4000 }, 14809 { bfd_mach_mips4600, bfd_mach_mips4000 }, 14810 { bfd_mach_mips4400, bfd_mach_mips4000 }, 14811 { bfd_mach_mips4300, bfd_mach_mips4000 }, 14812 { bfd_mach_mips4100, bfd_mach_mips4000 }, 14813 { bfd_mach_mips4010, bfd_mach_mips4000 }, 14814 { bfd_mach_mips5900, bfd_mach_mips4000 }, 14815 14816 /* MIPS32 extensions. */ 14817 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 14818 14819 /* MIPS II extensions. */ 14820 { bfd_mach_mips4000, bfd_mach_mips6000 }, 14821 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 14822 14823 /* MIPS I extensions. */ 14824 { bfd_mach_mips6000, bfd_mach_mips3000 }, 14825 { bfd_mach_mips3900, bfd_mach_mips3000 } 14826 }; 14827 14828 14829 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 14830 14831 static bfd_boolean 14832 mips_mach_extends_p (unsigned long base, unsigned long extension) 14833 { 14834 size_t i; 14835 14836 if (extension == base) 14837 return TRUE; 14838 14839 if (base == bfd_mach_mipsisa32 14840 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 14841 return TRUE; 14842 14843 if (base == bfd_mach_mipsisa32r2 14844 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 14845 return TRUE; 14846 14847 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 14848 if (extension == mips_mach_extensions[i].extension) 14849 { 14850 extension = mips_mach_extensions[i].base; 14851 if (extension == base) 14852 return TRUE; 14853 } 14854 14855 return FALSE; 14856 } 14857 14858 14859 /* Merge object attributes from IBFD into OBFD. Raise an error if 14860 there are conflicting attributes. */ 14861 static bfd_boolean 14862 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 14863 { 14864 obj_attribute *in_attr; 14865 obj_attribute *out_attr; 14866 bfd *abi_fp_bfd; 14867 bfd *abi_msa_bfd; 14868 14869 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd; 14870 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 14871 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY) 14872 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14873 14874 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd; 14875 if (!abi_msa_bfd 14876 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 14877 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd; 14878 14879 if (!elf_known_obj_attributes_proc (obfd)[0].i) 14880 { 14881 /* This is the first object. Copy the attributes. */ 14882 _bfd_elf_copy_obj_attributes (ibfd, obfd); 14883 14884 /* Use the Tag_null value to indicate the attributes have been 14885 initialized. */ 14886 elf_known_obj_attributes_proc (obfd)[0].i = 1; 14887 14888 return TRUE; 14889 } 14890 14891 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 14892 non-conflicting ones. */ 14893 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 14894 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 14895 { 14896 int out_fp, in_fp; 14897 14898 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i; 14899 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14900 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 14901 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY) 14902 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp; 14903 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX 14904 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 14905 || in_fp == Val_GNU_MIPS_ABI_FP_64 14906 || in_fp == Val_GNU_MIPS_ABI_FP_64A)) 14907 { 14908 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14909 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14910 } 14911 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX 14912 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE 14913 || out_fp == Val_GNU_MIPS_ABI_FP_64 14914 || out_fp == Val_GNU_MIPS_ABI_FP_64A)) 14915 /* Keep the current setting. */; 14916 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A 14917 && in_fp == Val_GNU_MIPS_ABI_FP_64) 14918 { 14919 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd; 14920 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 14921 } 14922 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A 14923 && out_fp == Val_GNU_MIPS_ABI_FP_64) 14924 /* Keep the current setting. */; 14925 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY) 14926 { 14927 const char *out_string, *in_string; 14928 14929 out_string = _bfd_mips_fp_abi_string (out_fp); 14930 in_string = _bfd_mips_fp_abi_string (in_fp); 14931 /* First warn about cases involving unrecognised ABIs. */ 14932 if (!out_string && !in_string) 14933 _bfd_error_handler 14934 (_("Warning: %B uses unknown floating point ABI %d " 14935 "(set by %B), %B uses unknown floating point ABI %d"), 14936 obfd, abi_fp_bfd, ibfd, out_fp, in_fp); 14937 else if (!out_string) 14938 _bfd_error_handler 14939 (_("Warning: %B uses unknown floating point ABI %d " 14940 "(set by %B), %B uses %s"), 14941 obfd, abi_fp_bfd, ibfd, out_fp, in_string); 14942 else if (!in_string) 14943 _bfd_error_handler 14944 (_("Warning: %B uses %s (set by %B), " 14945 "%B uses unknown floating point ABI %d"), 14946 obfd, abi_fp_bfd, ibfd, out_string, in_fp); 14947 else 14948 { 14949 /* If one of the bfds is soft-float, the other must be 14950 hard-float. The exact choice of hard-float ABI isn't 14951 really relevant to the error message. */ 14952 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT) 14953 out_string = "-mhard-float"; 14954 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT) 14955 in_string = "-mhard-float"; 14956 _bfd_error_handler 14957 (_("Warning: %B uses %s (set by %B), %B uses %s"), 14958 obfd, abi_fp_bfd, ibfd, out_string, in_string); 14959 } 14960 } 14961 } 14962 14963 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge 14964 non-conflicting ones. */ 14965 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i) 14966 { 14967 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1; 14968 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY) 14969 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i; 14970 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY) 14971 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i) 14972 { 14973 case Val_GNU_MIPS_ABI_MSA_128: 14974 _bfd_error_handler 14975 (_("Warning: %B uses %s (set by %B), " 14976 "%B uses unknown MSA ABI %d"), 14977 obfd, abi_msa_bfd, ibfd, 14978 "-mmsa", in_attr[Tag_GNU_MIPS_ABI_MSA].i); 14979 break; 14980 14981 default: 14982 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i) 14983 { 14984 case Val_GNU_MIPS_ABI_MSA_128: 14985 _bfd_error_handler 14986 (_("Warning: %B uses unknown MSA ABI %d " 14987 "(set by %B), %B uses %s"), 14988 obfd, abi_msa_bfd, ibfd, 14989 out_attr[Tag_GNU_MIPS_ABI_MSA].i, "-mmsa"); 14990 break; 14991 14992 default: 14993 _bfd_error_handler 14994 (_("Warning: %B uses unknown MSA ABI %d " 14995 "(set by %B), %B uses unknown MSA ABI %d"), 14996 obfd, abi_msa_bfd, ibfd, 14997 out_attr[Tag_GNU_MIPS_ABI_MSA].i, 14998 in_attr[Tag_GNU_MIPS_ABI_MSA].i); 14999 break; 15000 } 15001 } 15002 } 15003 15004 /* Merge Tag_compatibility attributes and any common GNU ones. */ 15005 _bfd_elf_merge_object_attributes (ibfd, obfd); 15006 15007 return TRUE; 15008 } 15009 15010 /* Merge backend specific data from an object file to the output 15011 object file when linking. */ 15012 15013 bfd_boolean 15014 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 15015 { 15016 flagword old_flags; 15017 flagword new_flags; 15018 bfd_boolean ok; 15019 bfd_boolean null_input_bfd = TRUE; 15020 asection *sec; 15021 obj_attribute *out_attr; 15022 15023 /* Check if we have the same endianness. */ 15024 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 15025 { 15026 (*_bfd_error_handler) 15027 (_("%B: endianness incompatible with that of the selected emulation"), 15028 ibfd); 15029 return FALSE; 15030 } 15031 15032 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 15033 return TRUE; 15034 15035 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 15036 { 15037 (*_bfd_error_handler) 15038 (_("%B: ABI is incompatible with that of the selected emulation"), 15039 ibfd); 15040 return FALSE; 15041 } 15042 15043 /* Set up the FP ABI attribute from the abiflags if it is not already 15044 set. */ 15045 if (mips_elf_tdata (ibfd)->abiflags_valid) 15046 { 15047 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 15048 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY) 15049 in_attr[Tag_GNU_MIPS_ABI_FP].i = 15050 mips_elf_tdata (ibfd)->abiflags.fp_abi; 15051 } 15052 15053 if (!mips_elf_merge_obj_attributes (ibfd, obfd)) 15054 return FALSE; 15055 15056 /* Check to see if the input BFD actually contains any sections. 15057 If not, its flags may not have been initialised either, but it cannot 15058 actually cause any incompatibility. */ 15059 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 15060 { 15061 /* Ignore synthetic sections and empty .text, .data and .bss sections 15062 which are automatically generated by gas. Also ignore fake 15063 (s)common sections, since merely defining a common symbol does 15064 not affect compatibility. */ 15065 if ((sec->flags & SEC_IS_COMMON) == 0 15066 && strcmp (sec->name, ".reginfo") 15067 && strcmp (sec->name, ".mdebug") 15068 && (sec->size != 0 15069 || (strcmp (sec->name, ".text") 15070 && strcmp (sec->name, ".data") 15071 && strcmp (sec->name, ".bss")))) 15072 { 15073 null_input_bfd = FALSE; 15074 break; 15075 } 15076 } 15077 if (null_input_bfd) 15078 return TRUE; 15079 15080 /* Populate abiflags using existing information. */ 15081 if (!mips_elf_tdata (ibfd)->abiflags_valid) 15082 { 15083 infer_mips_abiflags (ibfd, &mips_elf_tdata (ibfd)->abiflags); 15084 mips_elf_tdata (ibfd)->abiflags_valid = TRUE; 15085 } 15086 else 15087 { 15088 Elf_Internal_ABIFlags_v0 abiflags; 15089 Elf_Internal_ABIFlags_v0 in_abiflags; 15090 infer_mips_abiflags (ibfd, &abiflags); 15091 in_abiflags = mips_elf_tdata (ibfd)->abiflags; 15092 15093 /* It is not possible to infer the correct ISA revision 15094 for R3 or R5 so drop down to R2 for the checks. */ 15095 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5) 15096 in_abiflags.isa_rev = 2; 15097 15098 if (in_abiflags.isa_level != abiflags.isa_level 15099 || in_abiflags.isa_rev != abiflags.isa_rev 15100 || in_abiflags.isa_ext != abiflags.isa_ext) 15101 (*_bfd_error_handler) 15102 (_("%B: warning: Inconsistent ISA between e_flags and " 15103 ".MIPS.abiflags"), ibfd); 15104 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY 15105 && in_abiflags.fp_abi != abiflags.fp_abi) 15106 (*_bfd_error_handler) 15107 (_("%B: warning: Inconsistent FP ABI between e_flags and " 15108 ".MIPS.abiflags"), ibfd); 15109 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases) 15110 (*_bfd_error_handler) 15111 (_("%B: warning: Inconsistent ASEs between e_flags and " 15112 ".MIPS.abiflags"), ibfd); 15113 if (in_abiflags.isa_ext != abiflags.isa_ext) 15114 (*_bfd_error_handler) 15115 (_("%B: warning: Inconsistent ISA extensions between e_flags and " 15116 ".MIPS.abiflags"), ibfd); 15117 if (in_abiflags.flags2 != 0) 15118 (*_bfd_error_handler) 15119 (_("%B: warning: Unexpected flag in the flags2 field of " 15120 ".MIPS.abiflags (0x%lx)"), ibfd, 15121 (unsigned long) in_abiflags.flags2); 15122 } 15123 15124 if (!mips_elf_tdata (obfd)->abiflags_valid) 15125 { 15126 /* Copy input abiflags if output abiflags are not already valid. */ 15127 mips_elf_tdata (obfd)->abiflags = mips_elf_tdata (ibfd)->abiflags; 15128 mips_elf_tdata (obfd)->abiflags_valid = TRUE; 15129 } 15130 15131 if (! elf_flags_init (obfd)) 15132 { 15133 elf_flags_init (obfd) = TRUE; 15134 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags; 15135 elf_elfheader (obfd)->e_ident[EI_CLASS] 15136 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 15137 15138 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 15139 && (bfd_get_arch_info (obfd)->the_default 15140 || mips_mach_extends_p (bfd_get_mach (obfd), 15141 bfd_get_mach (ibfd)))) 15142 { 15143 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 15144 bfd_get_mach (ibfd))) 15145 return FALSE; 15146 15147 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */ 15148 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); 15149 } 15150 15151 return TRUE; 15152 } 15153 15154 /* Update the output abiflags fp_abi using the computed fp_abi. */ 15155 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 15156 mips_elf_tdata (obfd)->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i; 15157 15158 #define max(a,b) ((a) > (b) ? (a) : (b)) 15159 /* Merge abiflags. */ 15160 mips_elf_tdata (obfd)->abiflags.isa_rev 15161 = max (mips_elf_tdata (obfd)->abiflags.isa_rev, 15162 mips_elf_tdata (ibfd)->abiflags.isa_rev); 15163 mips_elf_tdata (obfd)->abiflags.gpr_size 15164 = max (mips_elf_tdata (obfd)->abiflags.gpr_size, 15165 mips_elf_tdata (ibfd)->abiflags.gpr_size); 15166 mips_elf_tdata (obfd)->abiflags.cpr1_size 15167 = max (mips_elf_tdata (obfd)->abiflags.cpr1_size, 15168 mips_elf_tdata (ibfd)->abiflags.cpr1_size); 15169 mips_elf_tdata (obfd)->abiflags.cpr2_size 15170 = max (mips_elf_tdata (obfd)->abiflags.cpr2_size, 15171 mips_elf_tdata (ibfd)->abiflags.cpr2_size); 15172 #undef max 15173 mips_elf_tdata (obfd)->abiflags.ases 15174 |= mips_elf_tdata (ibfd)->abiflags.ases; 15175 mips_elf_tdata (obfd)->abiflags.flags1 15176 |= mips_elf_tdata (ibfd)->abiflags.flags1; 15177 15178 new_flags = elf_elfheader (ibfd)->e_flags; 15179 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 15180 old_flags = elf_elfheader (obfd)->e_flags; 15181 15182 /* Check flag compatibility. */ 15183 15184 new_flags &= ~EF_MIPS_NOREORDER; 15185 old_flags &= ~EF_MIPS_NOREORDER; 15186 15187 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 15188 doesn't seem to matter. */ 15189 new_flags &= ~EF_MIPS_XGOT; 15190 old_flags &= ~EF_MIPS_XGOT; 15191 15192 /* MIPSpro generates ucode info in n64 objects. Again, we should 15193 just be able to ignore this. */ 15194 new_flags &= ~EF_MIPS_UCODE; 15195 old_flags &= ~EF_MIPS_UCODE; 15196 15197 /* DSOs should only be linked with CPIC code. */ 15198 if ((ibfd->flags & DYNAMIC) != 0) 15199 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 15200 15201 if (new_flags == old_flags) 15202 return TRUE; 15203 15204 ok = TRUE; 15205 15206 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 15207 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 15208 { 15209 (*_bfd_error_handler) 15210 (_("%B: warning: linking abicalls files with non-abicalls files"), 15211 ibfd); 15212 ok = TRUE; 15213 } 15214 15215 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 15216 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 15217 if (! (new_flags & EF_MIPS_PIC)) 15218 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 15219 15220 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15221 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 15222 15223 /* Compare the ISAs. */ 15224 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 15225 { 15226 (*_bfd_error_handler) 15227 (_("%B: linking 32-bit code with 64-bit code"), 15228 ibfd); 15229 ok = FALSE; 15230 } 15231 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 15232 { 15233 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 15234 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 15235 { 15236 /* Copy the architecture info from IBFD to OBFD. Also copy 15237 the 32-bit flag (if set) so that we continue to recognise 15238 OBFD as a 32-bit binary. */ 15239 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 15240 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 15241 elf_elfheader (obfd)->e_flags 15242 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15243 15244 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */ 15245 update_mips_abiflags_isa (obfd, &mips_elf_tdata (obfd)->abiflags); 15246 15247 /* Copy across the ABI flags if OBFD doesn't use them 15248 and if that was what caused us to treat IBFD as 32-bit. */ 15249 if ((old_flags & EF_MIPS_ABI) == 0 15250 && mips_32bit_flags_p (new_flags) 15251 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 15252 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 15253 } 15254 else 15255 { 15256 /* The ISAs aren't compatible. */ 15257 (*_bfd_error_handler) 15258 (_("%B: linking %s module with previous %s modules"), 15259 ibfd, 15260 bfd_printable_name (ibfd), 15261 bfd_printable_name (obfd)); 15262 ok = FALSE; 15263 } 15264 } 15265 15266 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15267 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 15268 15269 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 15270 does set EI_CLASS differently from any 32-bit ABI. */ 15271 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 15272 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15273 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15274 { 15275 /* Only error if both are set (to different values). */ 15276 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 15277 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 15278 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 15279 { 15280 (*_bfd_error_handler) 15281 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 15282 ibfd, 15283 elf_mips_abi_name (ibfd), 15284 elf_mips_abi_name (obfd)); 15285 ok = FALSE; 15286 } 15287 new_flags &= ~EF_MIPS_ABI; 15288 old_flags &= ~EF_MIPS_ABI; 15289 } 15290 15291 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together 15292 and allow arbitrary mixing of the remaining ASEs (retain the union). */ 15293 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 15294 { 15295 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15296 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS; 15297 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16; 15298 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16; 15299 int micro_mis = old_m16 && new_micro; 15300 int m16_mis = old_micro && new_m16; 15301 15302 if (m16_mis || micro_mis) 15303 { 15304 (*_bfd_error_handler) 15305 (_("%B: ASE mismatch: linking %s module with previous %s modules"), 15306 ibfd, 15307 m16_mis ? "MIPS16" : "microMIPS", 15308 m16_mis ? "microMIPS" : "MIPS16"); 15309 ok = FALSE; 15310 } 15311 15312 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 15313 15314 new_flags &= ~ EF_MIPS_ARCH_ASE; 15315 old_flags &= ~ EF_MIPS_ARCH_ASE; 15316 } 15317 15318 /* Compare NaN encodings. */ 15319 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008)) 15320 { 15321 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15322 ibfd, 15323 (new_flags & EF_MIPS_NAN2008 15324 ? "-mnan=2008" : "-mnan=legacy"), 15325 (old_flags & EF_MIPS_NAN2008 15326 ? "-mnan=2008" : "-mnan=legacy")); 15327 ok = FALSE; 15328 new_flags &= ~EF_MIPS_NAN2008; 15329 old_flags &= ~EF_MIPS_NAN2008; 15330 } 15331 15332 /* Compare FP64 state. */ 15333 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64)) 15334 { 15335 _bfd_error_handler (_("%B: linking %s module with previous %s modules"), 15336 ibfd, 15337 (new_flags & EF_MIPS_FP64 15338 ? "-mfp64" : "-mfp32"), 15339 (old_flags & EF_MIPS_FP64 15340 ? "-mfp64" : "-mfp32")); 15341 ok = FALSE; 15342 new_flags &= ~EF_MIPS_FP64; 15343 old_flags &= ~EF_MIPS_FP64; 15344 } 15345 15346 /* Warn about any other mismatches */ 15347 if (new_flags != old_flags) 15348 { 15349 (*_bfd_error_handler) 15350 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 15351 ibfd, (unsigned long) new_flags, 15352 (unsigned long) old_flags); 15353 ok = FALSE; 15354 } 15355 15356 if (! ok) 15357 { 15358 bfd_set_error (bfd_error_bad_value); 15359 return FALSE; 15360 } 15361 15362 return TRUE; 15363 } 15364 15365 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 15366 15367 bfd_boolean 15368 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 15369 { 15370 BFD_ASSERT (!elf_flags_init (abfd) 15371 || elf_elfheader (abfd)->e_flags == flags); 15372 15373 elf_elfheader (abfd)->e_flags = flags; 15374 elf_flags_init (abfd) = TRUE; 15375 return TRUE; 15376 } 15377 15378 char * 15379 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 15380 { 15381 switch (dtag) 15382 { 15383 default: return ""; 15384 case DT_MIPS_RLD_VERSION: 15385 return "MIPS_RLD_VERSION"; 15386 case DT_MIPS_TIME_STAMP: 15387 return "MIPS_TIME_STAMP"; 15388 case DT_MIPS_ICHECKSUM: 15389 return "MIPS_ICHECKSUM"; 15390 case DT_MIPS_IVERSION: 15391 return "MIPS_IVERSION"; 15392 case DT_MIPS_FLAGS: 15393 return "MIPS_FLAGS"; 15394 case DT_MIPS_BASE_ADDRESS: 15395 return "MIPS_BASE_ADDRESS"; 15396 case DT_MIPS_MSYM: 15397 return "MIPS_MSYM"; 15398 case DT_MIPS_CONFLICT: 15399 return "MIPS_CONFLICT"; 15400 case DT_MIPS_LIBLIST: 15401 return "MIPS_LIBLIST"; 15402 case DT_MIPS_LOCAL_GOTNO: 15403 return "MIPS_LOCAL_GOTNO"; 15404 case DT_MIPS_CONFLICTNO: 15405 return "MIPS_CONFLICTNO"; 15406 case DT_MIPS_LIBLISTNO: 15407 return "MIPS_LIBLISTNO"; 15408 case DT_MIPS_SYMTABNO: 15409 return "MIPS_SYMTABNO"; 15410 case DT_MIPS_UNREFEXTNO: 15411 return "MIPS_UNREFEXTNO"; 15412 case DT_MIPS_GOTSYM: 15413 return "MIPS_GOTSYM"; 15414 case DT_MIPS_HIPAGENO: 15415 return "MIPS_HIPAGENO"; 15416 case DT_MIPS_RLD_MAP: 15417 return "MIPS_RLD_MAP"; 15418 case DT_MIPS_DELTA_CLASS: 15419 return "MIPS_DELTA_CLASS"; 15420 case DT_MIPS_DELTA_CLASS_NO: 15421 return "MIPS_DELTA_CLASS_NO"; 15422 case DT_MIPS_DELTA_INSTANCE: 15423 return "MIPS_DELTA_INSTANCE"; 15424 case DT_MIPS_DELTA_INSTANCE_NO: 15425 return "MIPS_DELTA_INSTANCE_NO"; 15426 case DT_MIPS_DELTA_RELOC: 15427 return "MIPS_DELTA_RELOC"; 15428 case DT_MIPS_DELTA_RELOC_NO: 15429 return "MIPS_DELTA_RELOC_NO"; 15430 case DT_MIPS_DELTA_SYM: 15431 return "MIPS_DELTA_SYM"; 15432 case DT_MIPS_DELTA_SYM_NO: 15433 return "MIPS_DELTA_SYM_NO"; 15434 case DT_MIPS_DELTA_CLASSSYM: 15435 return "MIPS_DELTA_CLASSSYM"; 15436 case DT_MIPS_DELTA_CLASSSYM_NO: 15437 return "MIPS_DELTA_CLASSSYM_NO"; 15438 case DT_MIPS_CXX_FLAGS: 15439 return "MIPS_CXX_FLAGS"; 15440 case DT_MIPS_PIXIE_INIT: 15441 return "MIPS_PIXIE_INIT"; 15442 case DT_MIPS_SYMBOL_LIB: 15443 return "MIPS_SYMBOL_LIB"; 15444 case DT_MIPS_LOCALPAGE_GOTIDX: 15445 return "MIPS_LOCALPAGE_GOTIDX"; 15446 case DT_MIPS_LOCAL_GOTIDX: 15447 return "MIPS_LOCAL_GOTIDX"; 15448 case DT_MIPS_HIDDEN_GOTIDX: 15449 return "MIPS_HIDDEN_GOTIDX"; 15450 case DT_MIPS_PROTECTED_GOTIDX: 15451 return "MIPS_PROTECTED_GOT_IDX"; 15452 case DT_MIPS_OPTIONS: 15453 return "MIPS_OPTIONS"; 15454 case DT_MIPS_INTERFACE: 15455 return "MIPS_INTERFACE"; 15456 case DT_MIPS_DYNSTR_ALIGN: 15457 return "DT_MIPS_DYNSTR_ALIGN"; 15458 case DT_MIPS_INTERFACE_SIZE: 15459 return "DT_MIPS_INTERFACE_SIZE"; 15460 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 15461 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 15462 case DT_MIPS_PERF_SUFFIX: 15463 return "DT_MIPS_PERF_SUFFIX"; 15464 case DT_MIPS_COMPACT_SIZE: 15465 return "DT_MIPS_COMPACT_SIZE"; 15466 case DT_MIPS_GP_VALUE: 15467 return "DT_MIPS_GP_VALUE"; 15468 case DT_MIPS_AUX_DYNAMIC: 15469 return "DT_MIPS_AUX_DYNAMIC"; 15470 case DT_MIPS_PLTGOT: 15471 return "DT_MIPS_PLTGOT"; 15472 case DT_MIPS_RWPLT: 15473 return "DT_MIPS_RWPLT"; 15474 } 15475 } 15476 15477 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if 15478 not known. */ 15479 15480 const char * 15481 _bfd_mips_fp_abi_string (int fp) 15482 { 15483 switch (fp) 15484 { 15485 /* These strings aren't translated because they're simply 15486 option lists. */ 15487 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15488 return "-mdouble-float"; 15489 15490 case Val_GNU_MIPS_ABI_FP_SINGLE: 15491 return "-msingle-float"; 15492 15493 case Val_GNU_MIPS_ABI_FP_SOFT: 15494 return "-msoft-float"; 15495 15496 case Val_GNU_MIPS_ABI_FP_OLD_64: 15497 return _("-mips32r2 -mfp64 (12 callee-saved)"); 15498 15499 case Val_GNU_MIPS_ABI_FP_XX: 15500 return "-mfpxx"; 15501 15502 case Val_GNU_MIPS_ABI_FP_64: 15503 return "-mgp32 -mfp64"; 15504 15505 case Val_GNU_MIPS_ABI_FP_64A: 15506 return "-mgp32 -mfp64 -mno-odd-spreg"; 15507 15508 default: 15509 return 0; 15510 } 15511 } 15512 15513 static void 15514 print_mips_ases (FILE *file, unsigned int mask) 15515 { 15516 if (mask & AFL_ASE_DSP) 15517 fputs ("\n\tDSP ASE", file); 15518 if (mask & AFL_ASE_DSPR2) 15519 fputs ("\n\tDSP R2 ASE", file); 15520 if (mask & AFL_ASE_EVA) 15521 fputs ("\n\tEnhanced VA Scheme", file); 15522 if (mask & AFL_ASE_MCU) 15523 fputs ("\n\tMCU (MicroController) ASE", file); 15524 if (mask & AFL_ASE_MDMX) 15525 fputs ("\n\tMDMX ASE", file); 15526 if (mask & AFL_ASE_MIPS3D) 15527 fputs ("\n\tMIPS-3D ASE", file); 15528 if (mask & AFL_ASE_MT) 15529 fputs ("\n\tMT ASE", file); 15530 if (mask & AFL_ASE_SMARTMIPS) 15531 fputs ("\n\tSmartMIPS ASE", file); 15532 if (mask & AFL_ASE_VIRT) 15533 fputs ("\n\tVZ ASE", file); 15534 if (mask & AFL_ASE_MSA) 15535 fputs ("\n\tMSA ASE", file); 15536 if (mask & AFL_ASE_MIPS16) 15537 fputs ("\n\tMIPS16 ASE", file); 15538 if (mask & AFL_ASE_MICROMIPS) 15539 fputs ("\n\tMICROMIPS ASE", file); 15540 if (mask & AFL_ASE_XPA) 15541 fputs ("\n\tXPA ASE", file); 15542 if (mask == 0) 15543 fprintf (file, "\n\t%s", _("None")); 15544 else if ((mask & ~AFL_ASE_MASK) != 0) 15545 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK); 15546 } 15547 15548 static void 15549 print_mips_isa_ext (FILE *file, unsigned int isa_ext) 15550 { 15551 switch (isa_ext) 15552 { 15553 case 0: 15554 fputs (_("None"), file); 15555 break; 15556 case AFL_EXT_XLR: 15557 fputs ("RMI XLR", file); 15558 break; 15559 case AFL_EXT_OCTEON3: 15560 fputs ("Cavium Networks Octeon3", file); 15561 break; 15562 case AFL_EXT_OCTEON2: 15563 fputs ("Cavium Networks Octeon2", file); 15564 break; 15565 case AFL_EXT_OCTEONP: 15566 fputs ("Cavium Networks OcteonP", file); 15567 break; 15568 case AFL_EXT_LOONGSON_3A: 15569 fputs ("Loongson 3A", file); 15570 break; 15571 case AFL_EXT_OCTEON: 15572 fputs ("Cavium Networks Octeon", file); 15573 break; 15574 case AFL_EXT_5900: 15575 fputs ("Toshiba R5900", file); 15576 break; 15577 case AFL_EXT_4650: 15578 fputs ("MIPS R4650", file); 15579 break; 15580 case AFL_EXT_4010: 15581 fputs ("LSI R4010", file); 15582 break; 15583 case AFL_EXT_4100: 15584 fputs ("NEC VR4100", file); 15585 break; 15586 case AFL_EXT_3900: 15587 fputs ("Toshiba R3900", file); 15588 break; 15589 case AFL_EXT_10000: 15590 fputs ("MIPS R10000", file); 15591 break; 15592 case AFL_EXT_SB1: 15593 fputs ("Broadcom SB-1", file); 15594 break; 15595 case AFL_EXT_4111: 15596 fputs ("NEC VR4111/VR4181", file); 15597 break; 15598 case AFL_EXT_4120: 15599 fputs ("NEC VR4120", file); 15600 break; 15601 case AFL_EXT_5400: 15602 fputs ("NEC VR5400", file); 15603 break; 15604 case AFL_EXT_5500: 15605 fputs ("NEC VR5500", file); 15606 break; 15607 case AFL_EXT_LOONGSON_2E: 15608 fputs ("ST Microelectronics Loongson 2E", file); 15609 break; 15610 case AFL_EXT_LOONGSON_2F: 15611 fputs ("ST Microelectronics Loongson 2F", file); 15612 break; 15613 default: 15614 fprintf (file, "%s (%d)", _("Unknown"), isa_ext); 15615 break; 15616 } 15617 } 15618 15619 static void 15620 print_mips_fp_abi_value (FILE *file, int val) 15621 { 15622 switch (val) 15623 { 15624 case Val_GNU_MIPS_ABI_FP_ANY: 15625 fprintf (file, _("Hard or soft float\n")); 15626 break; 15627 case Val_GNU_MIPS_ABI_FP_DOUBLE: 15628 fprintf (file, _("Hard float (double precision)\n")); 15629 break; 15630 case Val_GNU_MIPS_ABI_FP_SINGLE: 15631 fprintf (file, _("Hard float (single precision)\n")); 15632 break; 15633 case Val_GNU_MIPS_ABI_FP_SOFT: 15634 fprintf (file, _("Soft float\n")); 15635 break; 15636 case Val_GNU_MIPS_ABI_FP_OLD_64: 15637 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n")); 15638 break; 15639 case Val_GNU_MIPS_ABI_FP_XX: 15640 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n")); 15641 break; 15642 case Val_GNU_MIPS_ABI_FP_64: 15643 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n")); 15644 break; 15645 case Val_GNU_MIPS_ABI_FP_64A: 15646 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n")); 15647 break; 15648 default: 15649 fprintf (file, "??? (%d)\n", val); 15650 break; 15651 } 15652 } 15653 15654 static int 15655 get_mips_reg_size (int reg_size) 15656 { 15657 return (reg_size == AFL_REG_NONE) ? 0 15658 : (reg_size == AFL_REG_32) ? 32 15659 : (reg_size == AFL_REG_64) ? 64 15660 : (reg_size == AFL_REG_128) ? 128 15661 : -1; 15662 } 15663 15664 bfd_boolean 15665 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 15666 { 15667 FILE *file = ptr; 15668 15669 BFD_ASSERT (abfd != NULL && ptr != NULL); 15670 15671 /* Print normal ELF private data. */ 15672 _bfd_elf_print_private_bfd_data (abfd, ptr); 15673 15674 /* xgettext:c-format */ 15675 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 15676 15677 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 15678 fprintf (file, _(" [abi=O32]")); 15679 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 15680 fprintf (file, _(" [abi=O64]")); 15681 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 15682 fprintf (file, _(" [abi=EABI32]")); 15683 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 15684 fprintf (file, _(" [abi=EABI64]")); 15685 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 15686 fprintf (file, _(" [abi unknown]")); 15687 else if (ABI_N32_P (abfd)) 15688 fprintf (file, _(" [abi=N32]")); 15689 else if (ABI_64_P (abfd)) 15690 fprintf (file, _(" [abi=64]")); 15691 else 15692 fprintf (file, _(" [no abi set]")); 15693 15694 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 15695 fprintf (file, " [mips1]"); 15696 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 15697 fprintf (file, " [mips2]"); 15698 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 15699 fprintf (file, " [mips3]"); 15700 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 15701 fprintf (file, " [mips4]"); 15702 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 15703 fprintf (file, " [mips5]"); 15704 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 15705 fprintf (file, " [mips32]"); 15706 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 15707 fprintf (file, " [mips64]"); 15708 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 15709 fprintf (file, " [mips32r2]"); 15710 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 15711 fprintf (file, " [mips64r2]"); 15712 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6) 15713 fprintf (file, " [mips32r6]"); 15714 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6) 15715 fprintf (file, " [mips64r6]"); 15716 else 15717 fprintf (file, _(" [unknown ISA]")); 15718 15719 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 15720 fprintf (file, " [mdmx]"); 15721 15722 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 15723 fprintf (file, " [mips16]"); 15724 15725 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) 15726 fprintf (file, " [micromips]"); 15727 15728 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008) 15729 fprintf (file, " [nan2008]"); 15730 15731 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64) 15732 fprintf (file, " [old fp64]"); 15733 15734 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 15735 fprintf (file, " [32bitmode]"); 15736 else 15737 fprintf (file, _(" [not 32bitmode]")); 15738 15739 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 15740 fprintf (file, " [noreorder]"); 15741 15742 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 15743 fprintf (file, " [PIC]"); 15744 15745 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 15746 fprintf (file, " [CPIC]"); 15747 15748 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 15749 fprintf (file, " [XGOT]"); 15750 15751 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 15752 fprintf (file, " [UCODE]"); 15753 15754 fputc ('\n', file); 15755 15756 if (mips_elf_tdata (abfd)->abiflags_valid) 15757 { 15758 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags; 15759 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version); 15760 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level); 15761 if (abiflags->isa_rev > 1) 15762 fprintf (file, "r%d", abiflags->isa_rev); 15763 fprintf (file, "\nGPR size: %d", 15764 get_mips_reg_size (abiflags->gpr_size)); 15765 fprintf (file, "\nCPR1 size: %d", 15766 get_mips_reg_size (abiflags->cpr1_size)); 15767 fprintf (file, "\nCPR2 size: %d", 15768 get_mips_reg_size (abiflags->cpr2_size)); 15769 fputs ("\nFP ABI: ", file); 15770 print_mips_fp_abi_value (file, abiflags->fp_abi); 15771 fputs ("ISA Extension: ", file); 15772 print_mips_isa_ext (file, abiflags->isa_ext); 15773 fputs ("\nASEs:", file); 15774 print_mips_ases (file, abiflags->ases); 15775 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1); 15776 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2); 15777 fputc ('\n', file); 15778 } 15779 15780 return TRUE; 15781 } 15782 15783 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 15784 { 15785 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15786 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15787 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 15788 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15789 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 15790 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 15791 { NULL, 0, 0, 0, 0 } 15792 }; 15793 15794 /* Merge non visibility st_other attributes. Ensure that the 15795 STO_OPTIONAL flag is copied into h->other, even if this is not a 15796 definiton of the symbol. */ 15797 void 15798 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 15799 const Elf_Internal_Sym *isym, 15800 bfd_boolean definition, 15801 bfd_boolean dynamic ATTRIBUTE_UNUSED) 15802 { 15803 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 15804 { 15805 unsigned char other; 15806 15807 other = (definition ? isym->st_other : h->other); 15808 other &= ~ELF_ST_VISIBILITY (-1); 15809 h->other = other | ELF_ST_VISIBILITY (h->other); 15810 } 15811 15812 if (!definition 15813 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 15814 h->other |= STO_OPTIONAL; 15815 } 15816 15817 /* Decide whether an undefined symbol is special and can be ignored. 15818 This is the case for OPTIONAL symbols on IRIX. */ 15819 bfd_boolean 15820 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 15821 { 15822 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 15823 } 15824 15825 bfd_boolean 15826 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 15827 { 15828 return (sym->st_shndx == SHN_COMMON 15829 || sym->st_shndx == SHN_MIPS_ACOMMON 15830 || sym->st_shndx == SHN_MIPS_SCOMMON); 15831 } 15832 15833 /* Return address for Ith PLT stub in section PLT, for relocation REL 15834 or (bfd_vma) -1 if it should not be included. */ 15835 15836 bfd_vma 15837 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 15838 const arelent *rel ATTRIBUTE_UNUSED) 15839 { 15840 return (plt->vma 15841 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 15842 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 15843 } 15844 15845 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16 15846 and microMIPS PLT slots we may have a many-to-one mapping between .plt 15847 and .got.plt and also the slots may be of a different size each we walk 15848 the PLT manually fetching instructions and matching them against known 15849 patterns. To make things easier standard MIPS slots, if any, always come 15850 first. As we don't create proper ELF symbols we use the UDATA.I member 15851 of ASYMBOL to carry ISA annotation. The encoding used is the same as 15852 with the ST_OTHER member of the ELF symbol. */ 15853 15854 long 15855 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd, 15856 long symcount ATTRIBUTE_UNUSED, 15857 asymbol **syms ATTRIBUTE_UNUSED, 15858 long dynsymcount, asymbol **dynsyms, 15859 asymbol **ret) 15860 { 15861 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_"; 15862 static const char microsuffix[] = "@micromipsplt"; 15863 static const char m16suffix[] = "@mips16plt"; 15864 static const char mipssuffix[] = "@plt"; 15865 15866 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean); 15867 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 15868 bfd_boolean micromips_p = MICROMIPS_P (abfd); 15869 Elf_Internal_Shdr *hdr; 15870 bfd_byte *plt_data; 15871 bfd_vma plt_offset; 15872 unsigned int other; 15873 bfd_vma entry_size; 15874 bfd_vma plt0_size; 15875 asection *relplt; 15876 bfd_vma opcode; 15877 asection *plt; 15878 asymbol *send; 15879 size_t size; 15880 char *names; 15881 long counti; 15882 arelent *p; 15883 asymbol *s; 15884 char *nend; 15885 long count; 15886 long pi; 15887 long i; 15888 long n; 15889 15890 *ret = NULL; 15891 15892 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0) 15893 return 0; 15894 15895 relplt = bfd_get_section_by_name (abfd, ".rel.plt"); 15896 if (relplt == NULL) 15897 return 0; 15898 15899 hdr = &elf_section_data (relplt)->this_hdr; 15900 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL) 15901 return 0; 15902 15903 plt = bfd_get_section_by_name (abfd, ".plt"); 15904 if (plt == NULL) 15905 return 0; 15906 15907 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table; 15908 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE)) 15909 return -1; 15910 p = relplt->relocation; 15911 15912 /* Calculating the exact amount of space required for symbols would 15913 require two passes over the PLT, so just pessimise assuming two 15914 PLT slots per relocation. */ 15915 count = relplt->size / hdr->sh_entsize; 15916 counti = count * bed->s->int_rels_per_ext_rel; 15917 size = 2 * count * sizeof (asymbol); 15918 size += count * (sizeof (mipssuffix) + 15919 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix))); 15920 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel) 15921 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name); 15922 15923 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */ 15924 size += sizeof (asymbol) + sizeof (pltname); 15925 15926 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data)) 15927 return -1; 15928 15929 if (plt->size < 16) 15930 return -1; 15931 15932 s = *ret = bfd_malloc (size); 15933 if (s == NULL) 15934 return -1; 15935 send = s + 2 * count + 1; 15936 15937 names = (char *) send; 15938 nend = (char *) s + size; 15939 n = 0; 15940 15941 opcode = bfd_get_micromips_32 (abfd, plt_data + 12); 15942 if (opcode == 0x3302fffe) 15943 { 15944 if (!micromips_p) 15945 return -1; 15946 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry); 15947 other = STO_MICROMIPS; 15948 } 15949 else if (opcode == 0x0398c1d0) 15950 { 15951 if (!micromips_p) 15952 return -1; 15953 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); 15954 other = STO_MICROMIPS; 15955 } 15956 else 15957 { 15958 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 15959 other = 0; 15960 } 15961 15962 s->the_bfd = abfd; 15963 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL; 15964 s->section = plt; 15965 s->value = 0; 15966 s->name = names; 15967 s->udata.i = other; 15968 memcpy (names, pltname, sizeof (pltname)); 15969 names += sizeof (pltname); 15970 ++s, ++n; 15971 15972 pi = 0; 15973 for (plt_offset = plt0_size; 15974 plt_offset + 8 <= plt->size && s < send; 15975 plt_offset += entry_size) 15976 { 15977 bfd_vma gotplt_addr; 15978 const char *suffix; 15979 bfd_vma gotplt_hi; 15980 bfd_vma gotplt_lo; 15981 size_t suffixlen; 15982 15983 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4); 15984 15985 /* Check if the second word matches the expected MIPS16 instruction. */ 15986 if (opcode == 0x651aeb00) 15987 { 15988 if (micromips_p) 15989 return -1; 15990 /* Truncated table??? */ 15991 if (plt_offset + 16 > plt->size) 15992 break; 15993 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12); 15994 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry); 15995 suffixlen = sizeof (m16suffix); 15996 suffix = m16suffix; 15997 other = STO_MIPS16; 15998 } 15999 /* Likewise the expected microMIPS instruction (no insn32 mode). */ 16000 else if (opcode == 0xff220000) 16001 { 16002 if (!micromips_p) 16003 return -1; 16004 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f; 16005 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16006 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18; 16007 gotplt_lo <<= 2; 16008 gotplt_addr = gotplt_hi + gotplt_lo; 16009 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3; 16010 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry); 16011 suffixlen = sizeof (microsuffix); 16012 suffix = microsuffix; 16013 other = STO_MICROMIPS; 16014 } 16015 /* Likewise the expected microMIPS instruction (insn32 mode). */ 16016 else if ((opcode & 0xffff0000) == 0xff2f0000) 16017 { 16018 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff; 16019 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff; 16020 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16021 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16022 gotplt_addr = gotplt_hi + gotplt_lo; 16023 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry); 16024 suffixlen = sizeof (microsuffix); 16025 suffix = microsuffix; 16026 other = STO_MICROMIPS; 16027 } 16028 /* Otherwise assume standard MIPS code. */ 16029 else 16030 { 16031 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff; 16032 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff; 16033 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16; 16034 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000; 16035 gotplt_addr = gotplt_hi + gotplt_lo; 16036 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 16037 suffixlen = sizeof (mipssuffix); 16038 suffix = mipssuffix; 16039 other = 0; 16040 } 16041 /* Truncated table??? */ 16042 if (plt_offset + entry_size > plt->size) 16043 break; 16044 16045 for (i = 0; 16046 i < count && p[pi].address != gotplt_addr; 16047 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti); 16048 16049 if (i < count) 16050 { 16051 size_t namelen; 16052 size_t len; 16053 16054 *s = **p[pi].sym_ptr_ptr; 16055 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since 16056 we are defining a symbol, ensure one of them is set. */ 16057 if ((s->flags & BSF_LOCAL) == 0) 16058 s->flags |= BSF_GLOBAL; 16059 s->flags |= BSF_SYNTHETIC; 16060 s->section = plt; 16061 s->value = plt_offset; 16062 s->name = names; 16063 s->udata.i = other; 16064 16065 len = strlen ((*p[pi].sym_ptr_ptr)->name); 16066 namelen = len + suffixlen; 16067 if (names + namelen > nend) 16068 break; 16069 16070 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len); 16071 names += len; 16072 memcpy (names, suffix, suffixlen); 16073 names += suffixlen; 16074 16075 ++s, ++n; 16076 pi = (pi + bed->s->int_rels_per_ext_rel) % counti; 16077 } 16078 } 16079 16080 free (plt_data); 16081 16082 return n; 16083 } 16084 16085 void 16086 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 16087 { 16088 struct mips_elf_link_hash_table *htab; 16089 Elf_Internal_Ehdr *i_ehdrp; 16090 16091 i_ehdrp = elf_elfheader (abfd); 16092 if (link_info) 16093 { 16094 htab = mips_elf_hash_table (link_info); 16095 BFD_ASSERT (htab != NULL); 16096 16097 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 16098 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 16099 } 16100 16101 _bfd_elf_post_process_headers (abfd, link_info); 16102 16103 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64 16104 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A) 16105 i_ehdrp->e_ident[EI_ABIVERSION] = 3; 16106 } 16107