xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elfxx-mips.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* MIPS-specific support for ELF
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 
5    Most of the information added by Ian Lance Taylor, Cygnus Support,
6    <ian@cygnus.com>.
7    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
8    <mark@codesourcery.com>
9    Traditional MIPS targets support added by Koundinya.K, Dansk Data
10    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
11 
12    This file is part of BFD, the Binary File Descriptor library.
13 
14    This program is free software; you can redistribute it and/or modify
15    it under the terms of the GNU General Public License as published by
16    the Free Software Foundation; either version 3 of the License, or
17    (at your option) any later version.
18 
19    This program is distributed in the hope that it will be useful,
20    but WITHOUT ANY WARRANTY; without even the implied warranty of
21    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
22    GNU General Public License for more details.
23 
24    You should have received a copy of the GNU General Public License
25    along with this program; if not, write to the Free Software
26    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
27    MA 02110-1301, USA.  */
28 
29 
30 /* This file handles functionality common to the different MIPS ABI's.  */
31 
32 #include "sysdep.h"
33 #include "bfd.h"
34 #include "libbfd.h"
35 #include "libiberty.h"
36 #include "elf-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 
41 /* Get the ECOFF swapping routines.  */
42 #include "coff/sym.h"
43 #include "coff/symconst.h"
44 #include "coff/ecoff.h"
45 #include "coff/mips.h"
46 
47 #include "hashtab.h"
48 
49 /* This structure is used to hold information about one GOT entry.
50    There are three types of entry:
51 
52       (1) absolute addresses
53 	    (abfd == NULL)
54       (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd
55 	    (abfd != NULL, symndx >= 0)
56       (3) SYMBOL addresses, where SYMBOL is not local to an input bfd
57 	    (abfd != NULL, symndx == -1)
58 
59    Type (3) entries are treated differently for different types of GOT.
60    In the "master" GOT -- i.e.  the one that describes every GOT
61    reference needed in the link -- the mips_got_entry is keyed on both
62    the symbol and the input bfd that references it.  If it turns out
63    that we need multiple GOTs, we can then use this information to
64    create separate GOTs for each input bfd.
65 
66    However, we want each of these separate GOTs to have at most one
67    entry for a given symbol, so their type (3) entries are keyed only
68    on the symbol.  The input bfd given by the "abfd" field is somewhat
69    arbitrary in this case.
70 
71    This means that when there are multiple GOTs, each GOT has a unique
72    mips_got_entry for every symbol within it.  We can therefore use the
73    mips_got_entry fields (tls_type and gotidx) to track the symbol's
74    GOT index.
75 
76    However, if it turns out that we need only a single GOT, we continue
77    to use the master GOT to describe it.  There may therefore be several
78    mips_got_entries for the same symbol, each with a different input bfd.
79    We want to make sure that each symbol gets a unique GOT entry, so when
80    there's a single GOT, we use the symbol's hash entry, not the
81    mips_got_entry fields, to track a symbol's GOT index.  */
82 struct mips_got_entry
83 {
84   /* The input bfd in which the symbol is defined.  */
85   bfd *abfd;
86   /* The index of the symbol, as stored in the relocation r_info, if
87      we have a local symbol; -1 otherwise.  */
88   long symndx;
89   union
90   {
91     /* If abfd == NULL, an address that must be stored in the got.  */
92     bfd_vma address;
93     /* If abfd != NULL && symndx != -1, the addend of the relocation
94        that should be added to the symbol value.  */
95     bfd_vma addend;
96     /* If abfd != NULL && symndx == -1, the hash table entry
97        corresponding to symbol in the GOT.  The symbol's entry
98        is in the local area if h->global_got_area is GGA_NONE,
99        otherwise it is in the global area.  */
100     struct mips_elf_link_hash_entry *h;
101   } d;
102 
103   /* The TLS types included in this GOT entry (specifically, GD and
104      IE).  The GD and IE flags can be added as we encounter new
105      relocations.  LDM can also be set; it will always be alone, not
106      combined with any GD or IE flags.  An LDM GOT entry will be
107      a local symbol entry with r_symndx == 0.  */
108   unsigned char tls_type;
109 
110   /* The offset from the beginning of the .got section to the entry
111      corresponding to this symbol+addend.  If it's a global symbol
112      whose offset is yet to be decided, it's going to be -1.  */
113   long gotidx;
114 };
115 
116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
117    The structures form a non-overlapping list that is sorted by increasing
118    MIN_ADDEND.  */
119 struct mips_got_page_range
120 {
121   struct mips_got_page_range *next;
122   bfd_signed_vma min_addend;
123   bfd_signed_vma max_addend;
124 };
125 
126 /* This structure describes the range of addends that are applied to page
127    relocations against a given symbol.  */
128 struct mips_got_page_entry
129 {
130   /* The input bfd in which the symbol is defined.  */
131   bfd *abfd;
132   /* The index of the symbol, as stored in the relocation r_info.  */
133   long symndx;
134   /* The ranges for this page entry.  */
135   struct mips_got_page_range *ranges;
136   /* The maximum number of page entries needed for RANGES.  */
137   bfd_vma num_pages;
138 };
139 
140 /* This structure is used to hold .got information when linking.  */
141 
142 struct mips_got_info
143 {
144   /* The global symbol in the GOT with the lowest index in the dynamic
145      symbol table.  */
146   struct elf_link_hash_entry *global_gotsym;
147   /* The number of global .got entries.  */
148   unsigned int global_gotno;
149   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
150   unsigned int reloc_only_gotno;
151   /* The number of .got slots used for TLS.  */
152   unsigned int tls_gotno;
153   /* The first unused TLS .got entry.  Used only during
154      mips_elf_initialize_tls_index.  */
155   unsigned int tls_assigned_gotno;
156   /* The number of local .got entries, eventually including page entries.  */
157   unsigned int local_gotno;
158   /* The maximum number of page entries needed.  */
159   unsigned int page_gotno;
160   /* The number of local .got entries we have used.  */
161   unsigned int assigned_gotno;
162   /* A hash table holding members of the got.  */
163   struct htab *got_entries;
164   /* A hash table of mips_got_page_entry structures.  */
165   struct htab *got_page_entries;
166   /* A hash table mapping input bfds to other mips_got_info.  NULL
167      unless multi-got was necessary.  */
168   struct htab *bfd2got;
169   /* In multi-got links, a pointer to the next got (err, rather, most
170      of the time, it points to the previous got).  */
171   struct mips_got_info *next;
172   /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE
173      for none, or MINUS_TWO for not yet assigned.  This is needed
174      because a single-GOT link may have multiple hash table entries
175      for the LDM.  It does not get initialized in multi-GOT mode.  */
176   bfd_vma tls_ldm_offset;
177 };
178 
179 /* Map an input bfd to a got in a multi-got link.  */
180 
181 struct mips_elf_bfd2got_hash
182 {
183   bfd *bfd;
184   struct mips_got_info *g;
185 };
186 
187 /* Structure passed when traversing the bfd2got hash table, used to
188    create and merge bfd's gots.  */
189 
190 struct mips_elf_got_per_bfd_arg
191 {
192   /* A hashtable that maps bfds to gots.  */
193   htab_t bfd2got;
194   /* The output bfd.  */
195   bfd *obfd;
196   /* The link information.  */
197   struct bfd_link_info *info;
198   /* A pointer to the primary got, i.e., the one that's going to get
199      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
200      DT_MIPS_GOTSYM.  */
201   struct mips_got_info *primary;
202   /* A non-primary got we're trying to merge with other input bfd's
203      gots.  */
204   struct mips_got_info *current;
205   /* The maximum number of got entries that can be addressed with a
206      16-bit offset.  */
207   unsigned int max_count;
208   /* The maximum number of page entries needed by each got.  */
209   unsigned int max_pages;
210   /* The total number of global entries which will live in the
211      primary got and be automatically relocated.  This includes
212      those not referenced by the primary GOT but included in
213      the "master" GOT.  */
214   unsigned int global_count;
215 };
216 
217 /* Another structure used to pass arguments for got entries traversal.  */
218 
219 struct mips_elf_set_global_got_offset_arg
220 {
221   struct mips_got_info *g;
222   int value;
223   unsigned int needed_relocs;
224   struct bfd_link_info *info;
225 };
226 
227 /* A structure used to count TLS relocations or GOT entries, for GOT
228    entry or ELF symbol table traversal.  */
229 
230 struct mips_elf_count_tls_arg
231 {
232   struct bfd_link_info *info;
233   unsigned int needed;
234 };
235 
236 struct _mips_elf_section_data
237 {
238   struct bfd_elf_section_data elf;
239   union
240   {
241     bfd_byte *tdata;
242   } u;
243 };
244 
245 #define mips_elf_section_data(sec) \
246   ((struct _mips_elf_section_data *) elf_section_data (sec))
247 
248 #define is_mips_elf(bfd)				\
249   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
250    && elf_tdata (bfd) != NULL				\
251    && elf_object_id (bfd) == MIPS_ELF_DATA)
252 
253 /* The ABI says that every symbol used by dynamic relocations must have
254    a global GOT entry.  Among other things, this provides the dynamic
255    linker with a free, directly-indexed cache.  The GOT can therefore
256    contain symbols that are not referenced by GOT relocations themselves
257    (in other words, it may have symbols that are not referenced by things
258    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
259 
260    GOT relocations are less likely to overflow if we put the associated
261    GOT entries towards the beginning.  We therefore divide the global
262    GOT entries into two areas: "normal" and "reloc-only".  Entries in
263    the first area can be used for both dynamic relocations and GP-relative
264    accesses, while those in the "reloc-only" area are for dynamic
265    relocations only.
266 
267    These GGA_* ("Global GOT Area") values are organised so that lower
268    values are more general than higher values.  Also, non-GGA_NONE
269    values are ordered by the position of the area in the GOT.  */
270 #define GGA_NORMAL 0
271 #define GGA_RELOC_ONLY 1
272 #define GGA_NONE 2
273 
274 /* Information about a non-PIC interface to a PIC function.  There are
275    two ways of creating these interfaces.  The first is to add:
276 
277 	lui	$25,%hi(func)
278 	addiu	$25,$25,%lo(func)
279 
280    immediately before a PIC function "func".  The second is to add:
281 
282 	lui	$25,%hi(func)
283 	j	func
284 	addiu	$25,$25,%lo(func)
285 
286    to a separate trampoline section.
287 
288    Stubs of the first kind go in a new section immediately before the
289    target function.  Stubs of the second kind go in a single section
290    pointed to by the hash table's "strampoline" field.  */
291 struct mips_elf_la25_stub {
292   /* The generated section that contains this stub.  */
293   asection *stub_section;
294 
295   /* The offset of the stub from the start of STUB_SECTION.  */
296   bfd_vma offset;
297 
298   /* One symbol for the original function.  Its location is available
299      in H->root.root.u.def.  */
300   struct mips_elf_link_hash_entry *h;
301 };
302 
303 /* Macros for populating a mips_elf_la25_stub.  */
304 
305 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
308 
309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
310    the dynamic symbols.  */
311 
312 struct mips_elf_hash_sort_data
313 {
314   /* The symbol in the global GOT with the lowest dynamic symbol table
315      index.  */
316   struct elf_link_hash_entry *low;
317   /* The least dynamic symbol table index corresponding to a non-TLS
318      symbol with a GOT entry.  */
319   long min_got_dynindx;
320   /* The greatest dynamic symbol table index corresponding to a symbol
321      with a GOT entry that is not referenced (e.g., a dynamic symbol
322      with dynamic relocations pointing to it from non-primary GOTs).  */
323   long max_unref_got_dynindx;
324   /* The greatest dynamic symbol table index not corresponding to a
325      symbol without a GOT entry.  */
326   long max_non_got_dynindx;
327 };
328 
329 /* The MIPS ELF linker needs additional information for each symbol in
330    the global hash table.  */
331 
332 struct mips_elf_link_hash_entry
333 {
334   struct elf_link_hash_entry root;
335 
336   /* External symbol information.  */
337   EXTR esym;
338 
339   /* The la25 stub we have created for ths symbol, if any.  */
340   struct mips_elf_la25_stub *la25_stub;
341 
342   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
343      this symbol.  */
344   unsigned int possibly_dynamic_relocs;
345 
346   /* If there is a stub that 32 bit functions should use to call this
347      16 bit function, this points to the section containing the stub.  */
348   asection *fn_stub;
349 
350   /* If there is a stub that 16 bit functions should use to call this
351      32 bit function, this points to the section containing the stub.  */
352   asection *call_stub;
353 
354   /* This is like the call_stub field, but it is used if the function
355      being called returns a floating point value.  */
356   asection *call_fp_stub;
357 
358 #define GOT_NORMAL	0
359 #define GOT_TLS_GD	1
360 #define GOT_TLS_LDM	2
361 #define GOT_TLS_IE	4
362 #define GOT_TLS_OFFSET_DONE    0x40
363 #define GOT_TLS_DONE    0x80
364   unsigned char tls_type;
365 
366   /* This is only used in single-GOT mode; in multi-GOT mode there
367      is one mips_got_entry per GOT entry, so the offset is stored
368      there.  In single-GOT mode there may be many mips_got_entry
369      structures all referring to the same GOT slot.  It might be
370      possible to use root.got.offset instead, but that field is
371      overloaded already.  */
372   bfd_vma tls_got_offset;
373 
374   /* The highest GGA_* value that satisfies all references to this symbol.  */
375   unsigned int global_got_area : 2;
376 
377   /* True if all GOT relocations against this symbol are for calls.  This is
378      a looser condition than no_fn_stub below, because there may be other
379      non-call non-GOT relocations against the symbol.  */
380   unsigned int got_only_for_calls : 1;
381 
382   /* True if one of the relocations described by possibly_dynamic_relocs
383      is against a readonly section.  */
384   unsigned int readonly_reloc : 1;
385 
386   /* True if there is a relocation against this symbol that must be
387      resolved by the static linker (in other words, if the relocation
388      cannot possibly be made dynamic).  */
389   unsigned int has_static_relocs : 1;
390 
391   /* True if we must not create a .MIPS.stubs entry for this symbol.
392      This is set, for example, if there are relocations related to
393      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
394      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
395   unsigned int no_fn_stub : 1;
396 
397   /* Whether we need the fn_stub; this is true if this symbol appears
398      in any relocs other than a 16 bit call.  */
399   unsigned int need_fn_stub : 1;
400 
401   /* True if this symbol is referenced by branch relocations from
402      any non-PIC input file.  This is used to determine whether an
403      la25 stub is required.  */
404   unsigned int has_nonpic_branches : 1;
405 
406   /* Does this symbol need a traditional MIPS lazy-binding stub
407      (as opposed to a PLT entry)?  */
408   unsigned int needs_lazy_stub : 1;
409 };
410 
411 /* MIPS ELF linker hash table.  */
412 
413 struct mips_elf_link_hash_table
414 {
415   struct elf_link_hash_table root;
416 #if 0
417   /* We no longer use this.  */
418   /* String section indices for the dynamic section symbols.  */
419   bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES];
420 #endif
421 
422   /* The number of .rtproc entries.  */
423   bfd_size_type procedure_count;
424 
425   /* The size of the .compact_rel section (if SGI_COMPAT).  */
426   bfd_size_type compact_rel_size;
427 
428   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic
429      entry is set to the address of __rld_obj_head as in IRIX5.  */
430   bfd_boolean use_rld_obj_head;
431 
432   /* This is the value of the __rld_map or __rld_obj_head symbol.  */
433   bfd_vma rld_value;
434 
435   /* This is set if we see any mips16 stub sections.  */
436   bfd_boolean mips16_stubs_seen;
437 
438   /* True if we can generate copy relocs and PLTs.  */
439   bfd_boolean use_plts_and_copy_relocs;
440 
441   /* True if we're generating code for VxWorks.  */
442   bfd_boolean is_vxworks;
443 
444   /* True if we already reported the small-data section overflow.  */
445   bfd_boolean small_data_overflow_reported;
446 
447   /* Shortcuts to some dynamic sections, or NULL if they are not
448      being used.  */
449   asection *srelbss;
450   asection *sdynbss;
451   asection *srelplt;
452   asection *srelplt2;
453   asection *sgotplt;
454   asection *splt;
455   asection *sstubs;
456   asection *sgot;
457 
458   /* The master GOT information.  */
459   struct mips_got_info *got_info;
460 
461   /* The size of the PLT header in bytes.  */
462   bfd_vma plt_header_size;
463 
464   /* The size of a PLT entry in bytes.  */
465   bfd_vma plt_entry_size;
466 
467   /* The number of functions that need a lazy-binding stub.  */
468   bfd_vma lazy_stub_count;
469 
470   /* The size of a function stub entry in bytes.  */
471   bfd_vma function_stub_size;
472 
473   /* The number of reserved entries at the beginning of the GOT.  */
474   unsigned int reserved_gotno;
475 
476   /* The section used for mips_elf_la25_stub trampolines.
477      See the comment above that structure for details.  */
478   asection *strampoline;
479 
480   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
481      pairs.  */
482   htab_t la25_stubs;
483 
484   /* A function FN (NAME, IS, OS) that creates a new input section
485      called NAME and links it to output section OS.  If IS is nonnull,
486      the new section should go immediately before it, otherwise it
487      should go at the (current) beginning of OS.
488 
489      The function returns the new section on success, otherwise it
490      returns null.  */
491   asection *(*add_stub_section) (const char *, asection *, asection *);
492 };
493 
494 /* Get the MIPS ELF linker hash table from a link_info structure.  */
495 
496 #define mips_elf_hash_table(p) \
497   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
498   == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
499 
500 /* A structure used to communicate with htab_traverse callbacks.  */
501 struct mips_htab_traverse_info
502 {
503   /* The usual link-wide information.  */
504   struct bfd_link_info *info;
505   bfd *output_bfd;
506 
507   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
508   bfd_boolean error;
509 };
510 
511 #define TLS_RELOC_P(r_type) \
512   (r_type == R_MIPS_TLS_DTPMOD32		\
513    || r_type == R_MIPS_TLS_DTPMOD64		\
514    || r_type == R_MIPS_TLS_DTPREL32		\
515    || r_type == R_MIPS_TLS_DTPREL64		\
516    || r_type == R_MIPS_TLS_GD			\
517    || r_type == R_MIPS_TLS_LDM			\
518    || r_type == R_MIPS_TLS_DTPREL_HI16		\
519    || r_type == R_MIPS_TLS_DTPREL_LO16		\
520    || r_type == R_MIPS_TLS_GOTTPREL		\
521    || r_type == R_MIPS_TLS_TPREL32		\
522    || r_type == R_MIPS_TLS_TPREL64		\
523    || r_type == R_MIPS_TLS_TPREL_HI16		\
524    || r_type == R_MIPS_TLS_TPREL_LO16)
525 
526 /* Structure used to pass information to mips_elf_output_extsym.  */
527 
528 struct extsym_info
529 {
530   bfd *abfd;
531   struct bfd_link_info *info;
532   struct ecoff_debug_info *debug;
533   const struct ecoff_debug_swap *swap;
534   bfd_boolean failed;
535 };
536 
537 /* The names of the runtime procedure table symbols used on IRIX5.  */
538 
539 static const char * const mips_elf_dynsym_rtproc_names[] =
540 {
541   "_procedure_table",
542   "_procedure_string_table",
543   "_procedure_table_size",
544   NULL
545 };
546 
547 /* These structures are used to generate the .compact_rel section on
548    IRIX5.  */
549 
550 typedef struct
551 {
552   unsigned long id1;		/* Always one?  */
553   unsigned long num;		/* Number of compact relocation entries.  */
554   unsigned long id2;		/* Always two?  */
555   unsigned long offset;		/* The file offset of the first relocation.  */
556   unsigned long reserved0;	/* Zero?  */
557   unsigned long reserved1;	/* Zero?  */
558 } Elf32_compact_rel;
559 
560 typedef struct
561 {
562   bfd_byte id1[4];
563   bfd_byte num[4];
564   bfd_byte id2[4];
565   bfd_byte offset[4];
566   bfd_byte reserved0[4];
567   bfd_byte reserved1[4];
568 } Elf32_External_compact_rel;
569 
570 typedef struct
571 {
572   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
573   unsigned int rtype : 4;	/* Relocation types. See below.  */
574   unsigned int dist2to : 8;
575   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
576   unsigned long konst;		/* KONST field. See below.  */
577   unsigned long vaddr;		/* VADDR to be relocated.  */
578 } Elf32_crinfo;
579 
580 typedef struct
581 {
582   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
583   unsigned int rtype : 4;	/* Relocation types. See below.  */
584   unsigned int dist2to : 8;
585   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
586   unsigned long konst;		/* KONST field. See below.  */
587 } Elf32_crinfo2;
588 
589 typedef struct
590 {
591   bfd_byte info[4];
592   bfd_byte konst[4];
593   bfd_byte vaddr[4];
594 } Elf32_External_crinfo;
595 
596 typedef struct
597 {
598   bfd_byte info[4];
599   bfd_byte konst[4];
600 } Elf32_External_crinfo2;
601 
602 /* These are the constants used to swap the bitfields in a crinfo.  */
603 
604 #define CRINFO_CTYPE (0x1)
605 #define CRINFO_CTYPE_SH (31)
606 #define CRINFO_RTYPE (0xf)
607 #define CRINFO_RTYPE_SH (27)
608 #define CRINFO_DIST2TO (0xff)
609 #define CRINFO_DIST2TO_SH (19)
610 #define CRINFO_RELVADDR (0x7ffff)
611 #define CRINFO_RELVADDR_SH (0)
612 
613 /* A compact relocation info has long (3 words) or short (2 words)
614    formats.  A short format doesn't have VADDR field and relvaddr
615    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
616 #define CRF_MIPS_LONG			1
617 #define CRF_MIPS_SHORT			0
618 
619 /* There are 4 types of compact relocation at least. The value KONST
620    has different meaning for each type:
621 
622    (type)		(konst)
623    CT_MIPS_REL32	Address in data
624    CT_MIPS_WORD		Address in word (XXX)
625    CT_MIPS_GPHI_LO	GP - vaddr
626    CT_MIPS_JMPAD	Address to jump
627    */
628 
629 #define CRT_MIPS_REL32			0xa
630 #define CRT_MIPS_WORD			0xb
631 #define CRT_MIPS_GPHI_LO		0xc
632 #define CRT_MIPS_JMPAD			0xd
633 
634 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
635 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
636 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
637 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
638 
639 /* The structure of the runtime procedure descriptor created by the
640    loader for use by the static exception system.  */
641 
642 typedef struct runtime_pdr {
643 	bfd_vma	adr;		/* Memory address of start of procedure.  */
644 	long	regmask;	/* Save register mask.  */
645 	long	regoffset;	/* Save register offset.  */
646 	long	fregmask;	/* Save floating point register mask.  */
647 	long	fregoffset;	/* Save floating point register offset.  */
648 	long	frameoffset;	/* Frame size.  */
649 	short	framereg;	/* Frame pointer register.  */
650 	short	pcreg;		/* Offset or reg of return pc.  */
651 	long	irpss;		/* Index into the runtime string table.  */
652 	long	reserved;
653 	struct exception_info *exception_info;/* Pointer to exception array.  */
654 } RPDR, *pRPDR;
655 #define cbRPDR sizeof (RPDR)
656 #define rpdNil ((pRPDR) 0)
657 
658 static struct mips_got_entry *mips_elf_create_local_got_entry
659   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
660    struct mips_elf_link_hash_entry *, int);
661 static bfd_boolean mips_elf_sort_hash_table_f
662   (struct mips_elf_link_hash_entry *, void *);
663 static bfd_vma mips_elf_high
664   (bfd_vma);
665 static bfd_boolean mips_elf_create_dynamic_relocation
666   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
667    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
668    bfd_vma *, asection *);
669 static hashval_t mips_elf_got_entry_hash
670   (const void *);
671 static bfd_vma mips_elf_adjust_gp
672   (bfd *, struct mips_got_info *, bfd *);
673 static struct mips_got_info *mips_elf_got_for_ibfd
674   (struct mips_got_info *, bfd *);
675 
676 /* This will be used when we sort the dynamic relocation records.  */
677 static bfd *reldyn_sorting_bfd;
678 
679 /* True if ABFD is for CPUs with load interlocking that include
680    non-MIPS1 CPUs and R3900.  */
681 #define LOAD_INTERLOCKS_P(abfd) \
682   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
683    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
684 
685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
686    This should be safe for all architectures.  We enable this predicate
687    for RM9000 for now.  */
688 #define JAL_TO_BAL_P(abfd) \
689   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
690 
691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
692    This should be safe for all architectures.  We enable this predicate for
693    all CPUs.  */
694 #define JALR_TO_BAL_P(abfd) 1
695 
696 /* True if ABFD is for CPUs that are faster if JR is converted to B.
697    This should be safe for all architectures.  We enable this predicate for
698    all CPUs.  */
699 #define JR_TO_B_P(abfd) 1
700 
701 /* True if ABFD is a PIC object.  */
702 #define PIC_OBJECT_P(abfd) \
703   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
704 
705 /* Nonzero if ABFD is using the N32 ABI.  */
706 #define ABI_N32_P(abfd) \
707   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
708 
709 /* Nonzero if ABFD is using the N64 ABI.  */
710 #define ABI_64_P(abfd) \
711   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
712 
713 /* Nonzero if ABFD is using NewABI conventions.  */
714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
715 
716 /* The IRIX compatibility level we are striving for.  */
717 #define IRIX_COMPAT(abfd) \
718   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
719 
720 /* Whether we are trying to be compatible with IRIX at all.  */
721 #define SGI_COMPAT(abfd) \
722   (IRIX_COMPAT (abfd) != ict_none)
723 
724 /* The name of the options section.  */
725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
726   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
727 
728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
729    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
731   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
732 
733 /* Whether the section is readonly.  */
734 #define MIPS_ELF_READONLY_SECTION(sec) \
735   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
736    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
737 
738 /* The name of the stub section.  */
739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
740 
741 /* The size of an external REL relocation.  */
742 #define MIPS_ELF_REL_SIZE(abfd) \
743   (get_elf_backend_data (abfd)->s->sizeof_rel)
744 
745 /* The size of an external RELA relocation.  */
746 #define MIPS_ELF_RELA_SIZE(abfd) \
747   (get_elf_backend_data (abfd)->s->sizeof_rela)
748 
749 /* The size of an external dynamic table entry.  */
750 #define MIPS_ELF_DYN_SIZE(abfd) \
751   (get_elf_backend_data (abfd)->s->sizeof_dyn)
752 
753 /* The size of a GOT entry.  */
754 #define MIPS_ELF_GOT_SIZE(abfd) \
755   (get_elf_backend_data (abfd)->s->arch_size / 8)
756 
757 /* The size of a symbol-table entry.  */
758 #define MIPS_ELF_SYM_SIZE(abfd) \
759   (get_elf_backend_data (abfd)->s->sizeof_sym)
760 
761 /* The default alignment for sections, as a power of two.  */
762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
763   (get_elf_backend_data (abfd)->s->log_file_align)
764 
765 /* Get word-sized data.  */
766 #define MIPS_ELF_GET_WORD(abfd, ptr) \
767   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
768 
769 /* Put out word-sized data.  */
770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
771   (ABI_64_P (abfd) 				\
772    ? bfd_put_64 (abfd, val, ptr) 		\
773    : bfd_put_32 (abfd, val, ptr))
774 
775 /* The opcode for word-sized loads (LW or LD).  */
776 #define MIPS_ELF_LOAD_WORD(abfd) \
777   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
778 
779 /* Add a dynamic symbol table-entry.  */
780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
781   _bfd_elf_add_dynamic_entry (info, tag, val)
782 
783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
784   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela))
785 
786 /* The name of the dynamic relocation section.  */
787 #define MIPS_ELF_REL_DYN_NAME(INFO) \
788   (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
789 
790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
791    from smaller values.  Start with zero, widen, *then* decrement.  */
792 #define MINUS_ONE	(((bfd_vma)0) - 1)
793 #define MINUS_TWO	(((bfd_vma)0) - 2)
794 
795 /* The value to write into got[1] for SVR4 targets, to identify it is
796    a GNU object.  The dynamic linker can then use got[1] to store the
797    module pointer.  */
798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
799   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
800 
801 /* The offset of $gp from the beginning of the .got section.  */
802 #define ELF_MIPS_GP_OFFSET(INFO) \
803   (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
804 
805 /* The maximum size of the GOT for it to be addressable using 16-bit
806    offsets from $gp.  */
807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
808 
809 /* Instructions which appear in a stub.  */
810 #define STUB_LW(abfd)							\
811   ((ABI_64_P (abfd)							\
812     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
813     : 0x8f998010))              		/* lw t9,0x8010(gp) */
814 #define STUB_MOVE(abfd)							\
815    ((ABI_64_P (abfd)							\
816      ? 0x03e0782d				/* daddu t7,ra */	\
817      : 0x03e07821))				/* addu t7,ra */
818 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
819 #define STUB_JALR 0x0320f809			/* jalr t9,ra */
820 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
821 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
822 #define STUB_LI16S(abfd, VAL)						\
823    ((ABI_64_P (abfd)							\
824     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
825     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
826 
827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
829 
830 /* The name of the dynamic interpreter.  This is put in the .interp
831    section.  */
832 
833 #define ELF_DYNAMIC_INTERPRETER(abfd) 		\
834    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" 	\
835     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" 	\
836     : "/usr/lib/libc.so.1")
837 
838 #ifdef BFD64
839 #define MNAME(bfd,pre,pos) \
840   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
841 #define ELF_R_SYM(bfd, i)					\
842   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
843 #define ELF_R_TYPE(bfd, i)					\
844   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
845 #define ELF_R_INFO(bfd, s, t)					\
846   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
847 #else
848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
849 #define ELF_R_SYM(bfd, i)					\
850   (ELF32_R_SYM (i))
851 #define ELF_R_TYPE(bfd, i)					\
852   (ELF32_R_TYPE (i))
853 #define ELF_R_INFO(bfd, s, t)					\
854   (ELF32_R_INFO (s, t))
855 #endif
856 
857   /* The mips16 compiler uses a couple of special sections to handle
858      floating point arguments.
859 
860      Section names that look like .mips16.fn.FNNAME contain stubs that
861      copy floating point arguments from the fp regs to the gp regs and
862      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
863      call should be redirected to the stub instead.  If no 32 bit
864      function calls FNNAME, the stub should be discarded.  We need to
865      consider any reference to the function, not just a call, because
866      if the address of the function is taken we will need the stub,
867      since the address might be passed to a 32 bit function.
868 
869      Section names that look like .mips16.call.FNNAME contain stubs
870      that copy floating point arguments from the gp regs to the fp
871      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
872      then any 16 bit function that calls FNNAME should be redirected
873      to the stub instead.  If FNNAME is not a 32 bit function, the
874      stub should be discarded.
875 
876      .mips16.call.fp.FNNAME sections are similar, but contain stubs
877      which call FNNAME and then copy the return value from the fp regs
878      to the gp regs.  These stubs store the return value in $18 while
879      calling FNNAME; any function which might call one of these stubs
880      must arrange to save $18 around the call.  (This case is not
881      needed for 32 bit functions that call 16 bit functions, because
882      16 bit functions always return floating point values in both
883      $f0/$f1 and $2/$3.)
884 
885      Note that in all cases FNNAME might be defined statically.
886      Therefore, FNNAME is not used literally.  Instead, the relocation
887      information will indicate which symbol the section is for.
888 
889      We record any stubs that we find in the symbol table.  */
890 
891 #define FN_STUB ".mips16.fn."
892 #define CALL_STUB ".mips16.call."
893 #define CALL_FP_STUB ".mips16.call.fp."
894 
895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
898 
899 /* The format of the first PLT entry in an O32 executable.  */
900 static const bfd_vma mips_o32_exec_plt0_entry[] =
901 {
902   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
903   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
904   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
905   0x031cc023,	/* subu $24, $24, $28					*/
906   0x03e07821,	/* move $15, $31					*/
907   0x0018c082,	/* srl $24, $24, 2					*/
908   0x0320f809,	/* jalr $25						*/
909   0x2718fffe	/* subu $24, $24, 2					*/
910 };
911 
912 /* The format of the first PLT entry in an N32 executable.  Different
913    because gp ($28) is not available; we use t2 ($14) instead.  */
914 static const bfd_vma mips_n32_exec_plt0_entry[] =
915 {
916   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
917   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
918   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
919   0x030ec023,	/* subu $24, $24, $14					*/
920   0x03e07821,	/* move $15, $31					*/
921   0x0018c082,	/* srl $24, $24, 2					*/
922   0x0320f809,	/* jalr $25						*/
923   0x2718fffe	/* subu $24, $24, 2					*/
924 };
925 
926 /* The format of the first PLT entry in an N64 executable.  Different
927    from N32 because of the increased size of GOT entries.  */
928 static const bfd_vma mips_n64_exec_plt0_entry[] =
929 {
930   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
931   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
932   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
933   0x030ec023,	/* subu $24, $24, $14					*/
934   0x03e07821,	/* move $15, $31					*/
935   0x0018c0c2,	/* srl $24, $24, 3					*/
936   0x0320f809,	/* jalr $25						*/
937   0x2718fffe	/* subu $24, $24, 2					*/
938 };
939 
940 /* The format of subsequent PLT entries.  */
941 static const bfd_vma mips_exec_plt_entry[] =
942 {
943   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
944   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
945   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
946   0x03200008	/* jr $25					*/
947 };
948 
949 /* The format of the first PLT entry in a VxWorks executable.  */
950 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
951 {
952   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
953   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
954   0x8f390008,	/* lw t9, 8(t9)					*/
955   0x00000000,	/* nop						*/
956   0x03200008,	/* jr t9					*/
957   0x00000000	/* nop						*/
958 };
959 
960 /* The format of subsequent PLT entries.  */
961 static const bfd_vma mips_vxworks_exec_plt_entry[] =
962 {
963   0x10000000,	/* b .PLT_resolver			*/
964   0x24180000,	/* li t8, <pltindex>			*/
965   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
966   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
967   0x8f390000,	/* lw t9, 0(t9)				*/
968   0x00000000,	/* nop					*/
969   0x03200008,	/* jr t9				*/
970   0x00000000	/* nop					*/
971 };
972 
973 /* The format of the first PLT entry in a VxWorks shared object.  */
974 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
975 {
976   0x8f990008,	/* lw t9, 8(gp)		*/
977   0x00000000,	/* nop			*/
978   0x03200008,	/* jr t9		*/
979   0x00000000,	/* nop			*/
980   0x00000000,	/* nop			*/
981   0x00000000	/* nop			*/
982 };
983 
984 /* The format of subsequent PLT entries.  */
985 static const bfd_vma mips_vxworks_shared_plt_entry[] =
986 {
987   0x10000000,	/* b .PLT_resolver	*/
988   0x24180000	/* li t8, <pltindex>	*/
989 };
990 
991 /* Look up an entry in a MIPS ELF linker hash table.  */
992 
993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
994   ((struct mips_elf_link_hash_entry *)					\
995    elf_link_hash_lookup (&(table)->root, (string), (create),		\
996 			 (copy), (follow)))
997 
998 /* Traverse a MIPS ELF linker hash table.  */
999 
1000 #define mips_elf_link_hash_traverse(table, func, info)			\
1001   (elf_link_hash_traverse						\
1002    (&(table)->root,							\
1003     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1004     (info)))
1005 
1006 /* Find the base offsets for thread-local storage in this object,
1007    for GD/LD and IE/LE respectively.  */
1008 
1009 #define TP_OFFSET 0x7000
1010 #define DTP_OFFSET 0x8000
1011 
1012 static bfd_vma
1013 dtprel_base (struct bfd_link_info *info)
1014 {
1015   /* If tls_sec is NULL, we should have signalled an error already.  */
1016   if (elf_hash_table (info)->tls_sec == NULL)
1017     return 0;
1018   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1019 }
1020 
1021 static bfd_vma
1022 tprel_base (struct bfd_link_info *info)
1023 {
1024   /* If tls_sec is NULL, we should have signalled an error already.  */
1025   if (elf_hash_table (info)->tls_sec == NULL)
1026     return 0;
1027   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1028 }
1029 
1030 /* Create an entry in a MIPS ELF linker hash table.  */
1031 
1032 static struct bfd_hash_entry *
1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1034 			    struct bfd_hash_table *table, const char *string)
1035 {
1036   struct mips_elf_link_hash_entry *ret =
1037     (struct mips_elf_link_hash_entry *) entry;
1038 
1039   /* Allocate the structure if it has not already been allocated by a
1040      subclass.  */
1041   if (ret == NULL)
1042     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1043   if (ret == NULL)
1044     return (struct bfd_hash_entry *) ret;
1045 
1046   /* Call the allocation method of the superclass.  */
1047   ret = ((struct mips_elf_link_hash_entry *)
1048 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1049 				     table, string));
1050   if (ret != NULL)
1051     {
1052       /* Set local fields.  */
1053       memset (&ret->esym, 0, sizeof (EXTR));
1054       /* We use -2 as a marker to indicate that the information has
1055 	 not been set.  -1 means there is no associated ifd.  */
1056       ret->esym.ifd = -2;
1057       ret->la25_stub = 0;
1058       ret->possibly_dynamic_relocs = 0;
1059       ret->fn_stub = NULL;
1060       ret->call_stub = NULL;
1061       ret->call_fp_stub = NULL;
1062       ret->tls_type = GOT_NORMAL;
1063       ret->global_got_area = GGA_NONE;
1064       ret->got_only_for_calls = TRUE;
1065       ret->readonly_reloc = FALSE;
1066       ret->has_static_relocs = FALSE;
1067       ret->no_fn_stub = FALSE;
1068       ret->need_fn_stub = FALSE;
1069       ret->has_nonpic_branches = FALSE;
1070       ret->needs_lazy_stub = FALSE;
1071     }
1072 
1073   return (struct bfd_hash_entry *) ret;
1074 }
1075 
1076 bfd_boolean
1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1078 {
1079   if (!sec->used_by_bfd)
1080     {
1081       struct _mips_elf_section_data *sdata;
1082       bfd_size_type amt = sizeof (*sdata);
1083 
1084       sdata = bfd_zalloc (abfd, amt);
1085       if (sdata == NULL)
1086 	return FALSE;
1087       sec->used_by_bfd = sdata;
1088     }
1089 
1090   return _bfd_elf_new_section_hook (abfd, sec);
1091 }
1092 
1093 /* Read ECOFF debugging information from a .mdebug section into a
1094    ecoff_debug_info structure.  */
1095 
1096 bfd_boolean
1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1098 			       struct ecoff_debug_info *debug)
1099 {
1100   HDRR *symhdr;
1101   const struct ecoff_debug_swap *swap;
1102   char *ext_hdr;
1103 
1104   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1105   memset (debug, 0, sizeof (*debug));
1106 
1107   ext_hdr = bfd_malloc (swap->external_hdr_size);
1108   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1109     goto error_return;
1110 
1111   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1112 				  swap->external_hdr_size))
1113     goto error_return;
1114 
1115   symhdr = &debug->symbolic_header;
1116   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1117 
1118   /* The symbolic header contains absolute file offsets and sizes to
1119      read.  */
1120 #define READ(ptr, offset, count, size, type)				\
1121   if (symhdr->count == 0)						\
1122     debug->ptr = NULL;							\
1123   else									\
1124     {									\
1125       bfd_size_type amt = (bfd_size_type) size * symhdr->count;		\
1126       debug->ptr = bfd_malloc (amt);					\
1127       if (debug->ptr == NULL)						\
1128 	goto error_return;						\
1129       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0		\
1130 	  || bfd_bread (debug->ptr, amt, abfd) != amt)			\
1131 	goto error_return;						\
1132     }
1133 
1134   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1135   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1136   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1137   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1138   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1139   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1140 	union aux_ext *);
1141   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1142   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1143   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1144   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1145   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1146 #undef READ
1147 
1148   debug->fdr = NULL;
1149 
1150   return TRUE;
1151 
1152  error_return:
1153   if (ext_hdr != NULL)
1154     free (ext_hdr);
1155   if (debug->line != NULL)
1156     free (debug->line);
1157   if (debug->external_dnr != NULL)
1158     free (debug->external_dnr);
1159   if (debug->external_pdr != NULL)
1160     free (debug->external_pdr);
1161   if (debug->external_sym != NULL)
1162     free (debug->external_sym);
1163   if (debug->external_opt != NULL)
1164     free (debug->external_opt);
1165   if (debug->external_aux != NULL)
1166     free (debug->external_aux);
1167   if (debug->ss != NULL)
1168     free (debug->ss);
1169   if (debug->ssext != NULL)
1170     free (debug->ssext);
1171   if (debug->external_fdr != NULL)
1172     free (debug->external_fdr);
1173   if (debug->external_rfd != NULL)
1174     free (debug->external_rfd);
1175   if (debug->external_ext != NULL)
1176     free (debug->external_ext);
1177   return FALSE;
1178 }
1179 
1180 /* Swap RPDR (runtime procedure table entry) for output.  */
1181 
1182 static void
1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1184 {
1185   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1186   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1187   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1188   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1189   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1190   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1191 
1192   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1193   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1194 
1195   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1196 }
1197 
1198 /* Create a runtime procedure table from the .mdebug section.  */
1199 
1200 static bfd_boolean
1201 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1202 				 struct bfd_link_info *info, asection *s,
1203 				 struct ecoff_debug_info *debug)
1204 {
1205   const struct ecoff_debug_swap *swap;
1206   HDRR *hdr = &debug->symbolic_header;
1207   RPDR *rpdr, *rp;
1208   struct rpdr_ext *erp;
1209   void *rtproc;
1210   struct pdr_ext *epdr;
1211   struct sym_ext *esym;
1212   char *ss, **sv;
1213   char *str;
1214   bfd_size_type size;
1215   bfd_size_type count;
1216   unsigned long sindex;
1217   unsigned long i;
1218   PDR pdr;
1219   SYMR sym;
1220   const char *no_name_func = _("static procedure (no name)");
1221 
1222   epdr = NULL;
1223   rpdr = NULL;
1224   esym = NULL;
1225   ss = NULL;
1226   sv = NULL;
1227 
1228   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1229 
1230   sindex = strlen (no_name_func) + 1;
1231   count = hdr->ipdMax;
1232   if (count > 0)
1233     {
1234       size = swap->external_pdr_size;
1235 
1236       epdr = bfd_malloc (size * count);
1237       if (epdr == NULL)
1238 	goto error_return;
1239 
1240       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1241 	goto error_return;
1242 
1243       size = sizeof (RPDR);
1244       rp = rpdr = bfd_malloc (size * count);
1245       if (rpdr == NULL)
1246 	goto error_return;
1247 
1248       size = sizeof (char *);
1249       sv = bfd_malloc (size * count);
1250       if (sv == NULL)
1251 	goto error_return;
1252 
1253       count = hdr->isymMax;
1254       size = swap->external_sym_size;
1255       esym = bfd_malloc (size * count);
1256       if (esym == NULL)
1257 	goto error_return;
1258 
1259       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1260 	goto error_return;
1261 
1262       count = hdr->issMax;
1263       ss = bfd_malloc (count);
1264       if (ss == NULL)
1265 	goto error_return;
1266       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1267 	goto error_return;
1268 
1269       count = hdr->ipdMax;
1270       for (i = 0; i < (unsigned long) count; i++, rp++)
1271 	{
1272 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1273 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1274 	  rp->adr = sym.value;
1275 	  rp->regmask = pdr.regmask;
1276 	  rp->regoffset = pdr.regoffset;
1277 	  rp->fregmask = pdr.fregmask;
1278 	  rp->fregoffset = pdr.fregoffset;
1279 	  rp->frameoffset = pdr.frameoffset;
1280 	  rp->framereg = pdr.framereg;
1281 	  rp->pcreg = pdr.pcreg;
1282 	  rp->irpss = sindex;
1283 	  sv[i] = ss + sym.iss;
1284 	  sindex += strlen (sv[i]) + 1;
1285 	}
1286     }
1287 
1288   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1289   size = BFD_ALIGN (size, 16);
1290   rtproc = bfd_alloc (abfd, size);
1291   if (rtproc == NULL)
1292     {
1293       mips_elf_hash_table (info)->procedure_count = 0;
1294       goto error_return;
1295     }
1296 
1297   mips_elf_hash_table (info)->procedure_count = count + 2;
1298 
1299   erp = rtproc;
1300   memset (erp, 0, sizeof (struct rpdr_ext));
1301   erp++;
1302   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1303   strcpy (str, no_name_func);
1304   str += strlen (no_name_func) + 1;
1305   for (i = 0; i < count; i++)
1306     {
1307       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1308       strcpy (str, sv[i]);
1309       str += strlen (sv[i]) + 1;
1310     }
1311   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1312 
1313   /* Set the size and contents of .rtproc section.  */
1314   s->size = size;
1315   s->contents = rtproc;
1316 
1317   /* Skip this section later on (I don't think this currently
1318      matters, but someday it might).  */
1319   s->map_head.link_order = NULL;
1320 
1321   if (epdr != NULL)
1322     free (epdr);
1323   if (rpdr != NULL)
1324     free (rpdr);
1325   if (esym != NULL)
1326     free (esym);
1327   if (ss != NULL)
1328     free (ss);
1329   if (sv != NULL)
1330     free (sv);
1331 
1332   return TRUE;
1333 
1334  error_return:
1335   if (epdr != NULL)
1336     free (epdr);
1337   if (rpdr != NULL)
1338     free (rpdr);
1339   if (esym != NULL)
1340     free (esym);
1341   if (ss != NULL)
1342     free (ss);
1343   if (sv != NULL)
1344     free (sv);
1345   return FALSE;
1346 }
1347 
1348 /* We're going to create a stub for H.  Create a symbol for the stub's
1349    value and size, to help make the disassembly easier to read.  */
1350 
1351 static bfd_boolean
1352 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1353 			     struct mips_elf_link_hash_entry *h,
1354 			     const char *prefix, asection *s, bfd_vma value,
1355 			     bfd_vma size)
1356 {
1357   struct bfd_link_hash_entry *bh;
1358   struct elf_link_hash_entry *elfh;
1359   const char *name;
1360 
1361   /* Create a new symbol.  */
1362   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1363   bh = NULL;
1364   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1365 					 BSF_LOCAL, s, value, NULL,
1366 					 TRUE, FALSE, &bh))
1367     return FALSE;
1368 
1369   /* Make it a local function.  */
1370   elfh = (struct elf_link_hash_entry *) bh;
1371   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1372   elfh->size = size;
1373   elfh->forced_local = 1;
1374   return TRUE;
1375 }
1376 
1377 /* We're about to redefine H.  Create a symbol to represent H's
1378    current value and size, to help make the disassembly easier
1379    to read.  */
1380 
1381 static bfd_boolean
1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1383 			       struct mips_elf_link_hash_entry *h,
1384 			       const char *prefix)
1385 {
1386   struct bfd_link_hash_entry *bh;
1387   struct elf_link_hash_entry *elfh;
1388   const char *name;
1389   asection *s;
1390   bfd_vma value;
1391 
1392   /* Read the symbol's value.  */
1393   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1394 	      || h->root.root.type == bfd_link_hash_defweak);
1395   s = h->root.root.u.def.section;
1396   value = h->root.root.u.def.value;
1397 
1398   /* Create a new symbol.  */
1399   name = ACONCAT ((prefix, h->root.root.root.string, NULL));
1400   bh = NULL;
1401   if (!_bfd_generic_link_add_one_symbol (info, s->owner, name,
1402 					 BSF_LOCAL, s, value, NULL,
1403 					 TRUE, FALSE, &bh))
1404     return FALSE;
1405 
1406   /* Make it local and copy the other attributes from H.  */
1407   elfh = (struct elf_link_hash_entry *) bh;
1408   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1409   elfh->other = h->root.other;
1410   elfh->size = h->root.size;
1411   elfh->forced_local = 1;
1412   return TRUE;
1413 }
1414 
1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1416    function rather than to a hard-float stub.  */
1417 
1418 static bfd_boolean
1419 section_allows_mips16_refs_p (asection *section)
1420 {
1421   const char *name;
1422 
1423   name = bfd_get_section_name (section->owner, section);
1424   return (FN_STUB_P (name)
1425 	  || CALL_STUB_P (name)
1426 	  || CALL_FP_STUB_P (name)
1427 	  || strcmp (name, ".pdr") == 0);
1428 }
1429 
1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1431    stub section of some kind.  Return the R_SYMNDX of the target
1432    function, or 0 if we can't decide which function that is.  */
1433 
1434 static unsigned long
1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED,
1436 		    const Elf_Internal_Rela *relocs,
1437 		    const Elf_Internal_Rela *relend)
1438 {
1439   const Elf_Internal_Rela *rel;
1440 
1441   /* Trust the first R_MIPS_NONE relocation, if any.  */
1442   for (rel = relocs; rel < relend; rel++)
1443     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1444       return ELF_R_SYM (sec->owner, rel->r_info);
1445 
1446   /* Otherwise trust the first relocation, whatever its kind.  This is
1447      the traditional behavior.  */
1448   if (relocs < relend)
1449     return ELF_R_SYM (sec->owner, relocs->r_info);
1450 
1451   return 0;
1452 }
1453 
1454 /* Check the mips16 stubs for a particular symbol, and see if we can
1455    discard them.  */
1456 
1457 static void
1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1459 			     struct mips_elf_link_hash_entry *h)
1460 {
1461   /* Dynamic symbols must use the standard call interface, in case other
1462      objects try to call them.  */
1463   if (h->fn_stub != NULL
1464       && h->root.dynindx != -1)
1465     {
1466       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1467       h->need_fn_stub = TRUE;
1468     }
1469 
1470   if (h->fn_stub != NULL
1471       && ! h->need_fn_stub)
1472     {
1473       /* We don't need the fn_stub; the only references to this symbol
1474          are 16 bit calls.  Clobber the size to 0 to prevent it from
1475          being included in the link.  */
1476       h->fn_stub->size = 0;
1477       h->fn_stub->flags &= ~SEC_RELOC;
1478       h->fn_stub->reloc_count = 0;
1479       h->fn_stub->flags |= SEC_EXCLUDE;
1480     }
1481 
1482   if (h->call_stub != NULL
1483       && ELF_ST_IS_MIPS16 (h->root.other))
1484     {
1485       /* We don't need the call_stub; this is a 16 bit function, so
1486          calls from other 16 bit functions are OK.  Clobber the size
1487          to 0 to prevent it from being included in the link.  */
1488       h->call_stub->size = 0;
1489       h->call_stub->flags &= ~SEC_RELOC;
1490       h->call_stub->reloc_count = 0;
1491       h->call_stub->flags |= SEC_EXCLUDE;
1492     }
1493 
1494   if (h->call_fp_stub != NULL
1495       && ELF_ST_IS_MIPS16 (h->root.other))
1496     {
1497       /* We don't need the call_stub; this is a 16 bit function, so
1498          calls from other 16 bit functions are OK.  Clobber the size
1499          to 0 to prevent it from being included in the link.  */
1500       h->call_fp_stub->size = 0;
1501       h->call_fp_stub->flags &= ~SEC_RELOC;
1502       h->call_fp_stub->reloc_count = 0;
1503       h->call_fp_stub->flags |= SEC_EXCLUDE;
1504     }
1505 }
1506 
1507 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1508 
1509 static hashval_t
1510 mips_elf_la25_stub_hash (const void *entry_)
1511 {
1512   const struct mips_elf_la25_stub *entry;
1513 
1514   entry = (struct mips_elf_la25_stub *) entry_;
1515   return entry->h->root.root.u.def.section->id
1516     + entry->h->root.root.u.def.value;
1517 }
1518 
1519 static int
1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1521 {
1522   const struct mips_elf_la25_stub *entry1, *entry2;
1523 
1524   entry1 = (struct mips_elf_la25_stub *) entry1_;
1525   entry2 = (struct mips_elf_la25_stub *) entry2_;
1526   return ((entry1->h->root.root.u.def.section
1527 	   == entry2->h->root.root.u.def.section)
1528 	  && (entry1->h->root.root.u.def.value
1529 	      == entry2->h->root.root.u.def.value));
1530 }
1531 
1532 /* Called by the linker to set up the la25 stub-creation code.  FN is
1533    the linker's implementation of add_stub_function.  Return true on
1534    success.  */
1535 
1536 bfd_boolean
1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1538 			  asection *(*fn) (const char *, asection *,
1539 					   asection *))
1540 {
1541   struct mips_elf_link_hash_table *htab;
1542 
1543   htab = mips_elf_hash_table (info);
1544   if (htab == NULL)
1545     return FALSE;
1546 
1547   htab->add_stub_section = fn;
1548   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1549 				      mips_elf_la25_stub_eq, NULL);
1550   if (htab->la25_stubs == NULL)
1551     return FALSE;
1552 
1553   return TRUE;
1554 }
1555 
1556 /* Return true if H is a locally-defined PIC function, in the sense
1557    that it might need $25 to be valid on entry.  Note that MIPS16
1558    functions never need $25 to be valid on entry; they set up $gp
1559    using PC-relative instructions instead.  */
1560 
1561 static bfd_boolean
1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1563 {
1564   return ((h->root.root.type == bfd_link_hash_defined
1565 	   || h->root.root.type == bfd_link_hash_defweak)
1566 	  && h->root.def_regular
1567 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1568 	  && !ELF_ST_IS_MIPS16 (h->root.other)
1569 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1570 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1571 }
1572 
1573 /* STUB describes an la25 stub that we have decided to implement
1574    by inserting an LUI/ADDIU pair before the target function.
1575    Create the section and redirect the function symbol to it.  */
1576 
1577 static bfd_boolean
1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1579 			 struct bfd_link_info *info)
1580 {
1581   struct mips_elf_link_hash_table *htab;
1582   char *name;
1583   asection *s, *input_section;
1584   unsigned int align;
1585 
1586   htab = mips_elf_hash_table (info);
1587   if (htab == NULL)
1588     return FALSE;
1589 
1590   /* Create a unique name for the new section.  */
1591   name = bfd_malloc (11 + sizeof (".text.stub."));
1592   if (name == NULL)
1593     return FALSE;
1594   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1595 
1596   /* Create the section.  */
1597   input_section = stub->h->root.root.u.def.section;
1598   s = htab->add_stub_section (name, input_section,
1599 			      input_section->output_section);
1600   if (s == NULL)
1601     return FALSE;
1602 
1603   /* Make sure that any padding goes before the stub.  */
1604   align = input_section->alignment_power;
1605   if (!bfd_set_section_alignment (s->owner, s, align))
1606     return FALSE;
1607   if (align > 3)
1608     s->size = (1 << align) - 8;
1609 
1610   /* Create a symbol for the stub.  */
1611   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1612   stub->stub_section = s;
1613   stub->offset = s->size;
1614 
1615   /* Allocate room for it.  */
1616   s->size += 8;
1617   return TRUE;
1618 }
1619 
1620 /* STUB describes an la25 stub that we have decided to implement
1621    with a separate trampoline.  Allocate room for it and redirect
1622    the function symbol to it.  */
1623 
1624 static bfd_boolean
1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1626 			      struct bfd_link_info *info)
1627 {
1628   struct mips_elf_link_hash_table *htab;
1629   asection *s;
1630 
1631   htab = mips_elf_hash_table (info);
1632   if (htab == NULL)
1633     return FALSE;
1634 
1635   /* Create a trampoline section, if we haven't already.  */
1636   s = htab->strampoline;
1637   if (s == NULL)
1638     {
1639       asection *input_section = stub->h->root.root.u.def.section;
1640       s = htab->add_stub_section (".text", NULL,
1641 				  input_section->output_section);
1642       if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4))
1643 	return FALSE;
1644       htab->strampoline = s;
1645     }
1646 
1647   /* Create a symbol for the stub.  */
1648   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1649   stub->stub_section = s;
1650   stub->offset = s->size;
1651 
1652   /* Allocate room for it.  */
1653   s->size += 16;
1654   return TRUE;
1655 }
1656 
1657 /* H describes a symbol that needs an la25 stub.  Make sure that an
1658    appropriate stub exists and point H at it.  */
1659 
1660 static bfd_boolean
1661 mips_elf_add_la25_stub (struct bfd_link_info *info,
1662 			struct mips_elf_link_hash_entry *h)
1663 {
1664   struct mips_elf_link_hash_table *htab;
1665   struct mips_elf_la25_stub search, *stub;
1666   bfd_boolean use_trampoline_p;
1667   asection *s;
1668   bfd_vma value;
1669   void **slot;
1670 
1671   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
1672      of the section and if we would need no more than 2 nops.  */
1673   s = h->root.root.u.def.section;
1674   value = h->root.root.u.def.value;
1675   use_trampoline_p = (value != 0 || s->alignment_power > 4);
1676 
1677   /* Describe the stub we want.  */
1678   search.stub_section = NULL;
1679   search.offset = 0;
1680   search.h = h;
1681 
1682   /* See if we've already created an equivalent stub.  */
1683   htab = mips_elf_hash_table (info);
1684   if (htab == NULL)
1685     return FALSE;
1686 
1687   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1688   if (slot == NULL)
1689     return FALSE;
1690 
1691   stub = (struct mips_elf_la25_stub *) *slot;
1692   if (stub != NULL)
1693     {
1694       /* We can reuse the existing stub.  */
1695       h->la25_stub = stub;
1696       return TRUE;
1697     }
1698 
1699   /* Create a permanent copy of ENTRY and add it to the hash table.  */
1700   stub = bfd_malloc (sizeof (search));
1701   if (stub == NULL)
1702     return FALSE;
1703   *stub = search;
1704   *slot = stub;
1705 
1706   h->la25_stub = stub;
1707   return (use_trampoline_p
1708 	  ? mips_elf_add_la25_trampoline (stub, info)
1709 	  : mips_elf_add_la25_intro (stub, info));
1710 }
1711 
1712 /* A mips_elf_link_hash_traverse callback that is called before sizing
1713    sections.  DATA points to a mips_htab_traverse_info structure.  */
1714 
1715 static bfd_boolean
1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
1717 {
1718   struct mips_htab_traverse_info *hti;
1719 
1720   hti = (struct mips_htab_traverse_info *) data;
1721   if (h->root.root.type == bfd_link_hash_warning)
1722     h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
1723 
1724   if (!hti->info->relocatable)
1725     mips_elf_check_mips16_stubs (hti->info, h);
1726 
1727   if (mips_elf_local_pic_function_p (h))
1728     {
1729       /* H is a function that might need $25 to be valid on entry.
1730 	 If we're creating a non-PIC relocatable object, mark H as
1731 	 being PIC.  If we're creating a non-relocatable object with
1732 	 non-PIC branches and jumps to H, make sure that H has an la25
1733 	 stub.  */
1734       if (hti->info->relocatable)
1735 	{
1736 	  if (!PIC_OBJECT_P (hti->output_bfd))
1737 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
1738 	}
1739       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
1740 	{
1741 	  hti->error = TRUE;
1742 	  return FALSE;
1743 	}
1744     }
1745   return TRUE;
1746 }
1747 
1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
1749    Most mips16 instructions are 16 bits, but these instructions
1750    are 32 bits.
1751 
1752    The format of these instructions is:
1753 
1754    +--------------+--------------------------------+
1755    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
1756    +--------------+--------------------------------+
1757    |                Immediate  15:0                |
1758    +-----------------------------------------------+
1759 
1760    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
1761    Note that the immediate value in the first word is swapped.
1762 
1763    When producing a relocatable object file, R_MIPS16_26 is
1764    handled mostly like R_MIPS_26.  In particular, the addend is
1765    stored as a straight 26-bit value in a 32-bit instruction.
1766    (gas makes life simpler for itself by never adjusting a
1767    R_MIPS16_26 reloc to be against a section, so the addend is
1768    always zero).  However, the 32 bit instruction is stored as 2
1769    16-bit values, rather than a single 32-bit value.  In a
1770    big-endian file, the result is the same; in a little-endian
1771    file, the two 16-bit halves of the 32 bit value are swapped.
1772    This is so that a disassembler can recognize the jal
1773    instruction.
1774 
1775    When doing a final link, R_MIPS16_26 is treated as a 32 bit
1776    instruction stored as two 16-bit values.  The addend A is the
1777    contents of the targ26 field.  The calculation is the same as
1778    R_MIPS_26.  When storing the calculated value, reorder the
1779    immediate value as shown above, and don't forget to store the
1780    value as two 16-bit values.
1781 
1782    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
1783    defined as
1784 
1785    big-endian:
1786    +--------+----------------------+
1787    |        |                      |
1788    |        |    targ26-16         |
1789    |31    26|25                   0|
1790    +--------+----------------------+
1791 
1792    little-endian:
1793    +----------+------+-------------+
1794    |          |      |             |
1795    |  sub1    |      |     sub2    |
1796    |0        9|10  15|16         31|
1797    +----------+--------------------+
1798    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
1799    ((sub1 << 16) | sub2)).
1800 
1801    When producing a relocatable object file, the calculation is
1802    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1803    When producing a fully linked file, the calculation is
1804    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
1805    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
1806 
1807    The table below lists the other MIPS16 instruction relocations.
1808    Each one is calculated in the same way as the non-MIPS16 relocation
1809    given on the right, but using the extended MIPS16 layout of 16-bit
1810    immediate fields:
1811 
1812 	R_MIPS16_GPREL		R_MIPS_GPREL16
1813 	R_MIPS16_GOT16		R_MIPS_GOT16
1814 	R_MIPS16_CALL16		R_MIPS_CALL16
1815 	R_MIPS16_HI16		R_MIPS_HI16
1816 	R_MIPS16_LO16		R_MIPS_LO16
1817 
1818    A typical instruction will have a format like this:
1819 
1820    +--------------+--------------------------------+
1821    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
1822    +--------------+--------------------------------+
1823    |    Major     |   rx   |   ry   |   Imm  4:0   |
1824    +--------------+--------------------------------+
1825 
1826    EXTEND is the five bit value 11110.  Major is the instruction
1827    opcode.
1828 
1829    All we need to do here is shuffle the bits appropriately.
1830    As above, the two 16-bit halves must be swapped on a
1831    little-endian system.  */
1832 
1833 static inline bfd_boolean
1834 mips16_reloc_p (int r_type)
1835 {
1836   switch (r_type)
1837     {
1838     case R_MIPS16_26:
1839     case R_MIPS16_GPREL:
1840     case R_MIPS16_GOT16:
1841     case R_MIPS16_CALL16:
1842     case R_MIPS16_HI16:
1843     case R_MIPS16_LO16:
1844       return TRUE;
1845 
1846     default:
1847       return FALSE;
1848     }
1849 }
1850 
1851 static inline bfd_boolean
1852 got16_reloc_p (int r_type)
1853 {
1854   return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16;
1855 }
1856 
1857 static inline bfd_boolean
1858 call16_reloc_p (int r_type)
1859 {
1860   return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16;
1861 }
1862 
1863 static inline bfd_boolean
1864 hi16_reloc_p (int r_type)
1865 {
1866   return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16;
1867 }
1868 
1869 static inline bfd_boolean
1870 lo16_reloc_p (int r_type)
1871 {
1872   return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16;
1873 }
1874 
1875 static inline bfd_boolean
1876 mips16_call_reloc_p (int r_type)
1877 {
1878   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
1879 }
1880 
1881 static inline bfd_boolean
1882 jal_reloc_p (int r_type)
1883 {
1884   return r_type == R_MIPS_26 || r_type == R_MIPS16_26;
1885 }
1886 
1887 void
1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type,
1889 				 bfd_boolean jal_shuffle, bfd_byte *data)
1890 {
1891   bfd_vma extend, insn, val;
1892 
1893   if (!mips16_reloc_p (r_type))
1894     return;
1895 
1896   /* Pick up the mips16 extend instruction and the real instruction.  */
1897   extend = bfd_get_16 (abfd, data);
1898   insn = bfd_get_16 (abfd, data + 2);
1899   if (r_type == R_MIPS16_26)
1900     {
1901       if (jal_shuffle)
1902 	val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11)
1903 	      | ((extend & 0x1f) << 21) | insn;
1904       else
1905 	val = extend << 16 | insn;
1906     }
1907   else
1908     val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11)
1909 	  | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f);
1910   bfd_put_32 (abfd, val, data);
1911 }
1912 
1913 void
1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type,
1915 			       bfd_boolean jal_shuffle, bfd_byte *data)
1916 {
1917   bfd_vma extend, insn, val;
1918 
1919   if (!mips16_reloc_p (r_type))
1920     return;
1921 
1922   val = bfd_get_32 (abfd, data);
1923   if (r_type == R_MIPS16_26)
1924     {
1925       if (jal_shuffle)
1926 	{
1927 	  insn = val & 0xffff;
1928 	  extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
1929 		   | ((val >> 21) & 0x1f);
1930 	}
1931       else
1932 	{
1933 	  insn = val & 0xffff;
1934 	  extend = val >> 16;
1935 	}
1936     }
1937   else
1938     {
1939       insn = ((val >> 11) & 0xffe0) | (val & 0x1f);
1940       extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
1941     }
1942   bfd_put_16 (abfd, insn, data + 2);
1943   bfd_put_16 (abfd, extend, data);
1944 }
1945 
1946 bfd_reloc_status_type
1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
1948 			       arelent *reloc_entry, asection *input_section,
1949 			       bfd_boolean relocatable, void *data, bfd_vma gp)
1950 {
1951   bfd_vma relocation;
1952   bfd_signed_vma val;
1953   bfd_reloc_status_type status;
1954 
1955   if (bfd_is_com_section (symbol->section))
1956     relocation = 0;
1957   else
1958     relocation = symbol->value;
1959 
1960   relocation += symbol->section->output_section->vma;
1961   relocation += symbol->section->output_offset;
1962 
1963   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1964     return bfd_reloc_outofrange;
1965 
1966   /* Set val to the offset into the section or symbol.  */
1967   val = reloc_entry->addend;
1968 
1969   _bfd_mips_elf_sign_extend (val, 16);
1970 
1971   /* Adjust val for the final section location and GP value.  If we
1972      are producing relocatable output, we don't want to do this for
1973      an external symbol.  */
1974   if (! relocatable
1975       || (symbol->flags & BSF_SECTION_SYM) != 0)
1976     val += relocation - gp;
1977 
1978   if (reloc_entry->howto->partial_inplace)
1979     {
1980       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
1981 				       (bfd_byte *) data
1982 				       + reloc_entry->address);
1983       if (status != bfd_reloc_ok)
1984 	return status;
1985     }
1986   else
1987     reloc_entry->addend = val;
1988 
1989   if (relocatable)
1990     reloc_entry->address += input_section->output_offset;
1991 
1992   return bfd_reloc_ok;
1993 }
1994 
1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
1996    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
1997    that contains the relocation field and DATA points to the start of
1998    INPUT_SECTION.  */
1999 
2000 struct mips_hi16
2001 {
2002   struct mips_hi16 *next;
2003   bfd_byte *data;
2004   asection *input_section;
2005   arelent rel;
2006 };
2007 
2008 /* FIXME: This should not be a static variable.  */
2009 
2010 static struct mips_hi16 *mips_hi16_list;
2011 
2012 /* A howto special_function for REL *HI16 relocations.  We can only
2013    calculate the correct value once we've seen the partnering
2014    *LO16 relocation, so just save the information for later.
2015 
2016    The ABI requires that the *LO16 immediately follow the *HI16.
2017    However, as a GNU extension, we permit an arbitrary number of
2018    *HI16s to be associated with a single *LO16.  This significantly
2019    simplies the relocation handling in gcc.  */
2020 
2021 bfd_reloc_status_type
2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2023 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2024 			  asection *input_section, bfd *output_bfd,
2025 			  char **error_message ATTRIBUTE_UNUSED)
2026 {
2027   struct mips_hi16 *n;
2028 
2029   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2030     return bfd_reloc_outofrange;
2031 
2032   n = bfd_malloc (sizeof *n);
2033   if (n == NULL)
2034     return bfd_reloc_outofrange;
2035 
2036   n->next = mips_hi16_list;
2037   n->data = data;
2038   n->input_section = input_section;
2039   n->rel = *reloc_entry;
2040   mips_hi16_list = n;
2041 
2042   if (output_bfd != NULL)
2043     reloc_entry->address += input_section->output_offset;
2044 
2045   return bfd_reloc_ok;
2046 }
2047 
2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2049    like any other 16-bit relocation when applied to global symbols, but is
2050    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2051 
2052 bfd_reloc_status_type
2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2054 			   void *data, asection *input_section,
2055 			   bfd *output_bfd, char **error_message)
2056 {
2057   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2058       || bfd_is_und_section (bfd_get_section (symbol))
2059       || bfd_is_com_section (bfd_get_section (symbol)))
2060     /* The relocation is against a global symbol.  */
2061     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2062 					input_section, output_bfd,
2063 					error_message);
2064 
2065   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2066 				   input_section, output_bfd, error_message);
2067 }
2068 
2069 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2070    is a straightforward 16 bit inplace relocation, but we must deal with
2071    any partnering high-part relocations as well.  */
2072 
2073 bfd_reloc_status_type
2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2075 			  void *data, asection *input_section,
2076 			  bfd *output_bfd, char **error_message)
2077 {
2078   bfd_vma vallo;
2079   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2080 
2081   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2082     return bfd_reloc_outofrange;
2083 
2084   _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2085 				   location);
2086   vallo = bfd_get_32 (abfd, location);
2087   _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2088 				 location);
2089 
2090   while (mips_hi16_list != NULL)
2091     {
2092       bfd_reloc_status_type ret;
2093       struct mips_hi16 *hi;
2094 
2095       hi = mips_hi16_list;
2096 
2097       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2098 	 want to install the addend in the same way as for a R_MIPS*_HI16
2099 	 relocation (with a rightshift of 16).  However, since GOT16
2100 	 relocations can also be used with global symbols, their howto
2101 	 has a rightshift of 0.  */
2102       if (hi->rel.howto->type == R_MIPS_GOT16)
2103 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2104       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2105 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2106 
2107       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2108 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2109       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2110 
2111       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2112 					 hi->input_section, output_bfd,
2113 					 error_message);
2114       if (ret != bfd_reloc_ok)
2115 	return ret;
2116 
2117       mips_hi16_list = hi->next;
2118       free (hi);
2119     }
2120 
2121   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2122 				      input_section, output_bfd,
2123 				      error_message);
2124 }
2125 
2126 /* A generic howto special_function.  This calculates and installs the
2127    relocation itself, thus avoiding the oft-discussed problems in
2128    bfd_perform_relocation and bfd_install_relocation.  */
2129 
2130 bfd_reloc_status_type
2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2132 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2133 			     asection *input_section, bfd *output_bfd,
2134 			     char **error_message ATTRIBUTE_UNUSED)
2135 {
2136   bfd_signed_vma val;
2137   bfd_reloc_status_type status;
2138   bfd_boolean relocatable;
2139 
2140   relocatable = (output_bfd != NULL);
2141 
2142   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2143     return bfd_reloc_outofrange;
2144 
2145   /* Build up the field adjustment in VAL.  */
2146   val = 0;
2147   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2148     {
2149       /* Either we're calculating the final field value or we have a
2150 	 relocation against a section symbol.  Add in the section's
2151 	 offset or address.  */
2152       val += symbol->section->output_section->vma;
2153       val += symbol->section->output_offset;
2154     }
2155 
2156   if (!relocatable)
2157     {
2158       /* We're calculating the final field value.  Add in the symbol's value
2159 	 and, if pc-relative, subtract the address of the field itself.  */
2160       val += symbol->value;
2161       if (reloc_entry->howto->pc_relative)
2162 	{
2163 	  val -= input_section->output_section->vma;
2164 	  val -= input_section->output_offset;
2165 	  val -= reloc_entry->address;
2166 	}
2167     }
2168 
2169   /* VAL is now the final adjustment.  If we're keeping this relocation
2170      in the output file, and if the relocation uses a separate addend,
2171      we just need to add VAL to that addend.  Otherwise we need to add
2172      VAL to the relocation field itself.  */
2173   if (relocatable && !reloc_entry->howto->partial_inplace)
2174     reloc_entry->addend += val;
2175   else
2176     {
2177       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2178 
2179       /* Add in the separate addend, if any.  */
2180       val += reloc_entry->addend;
2181 
2182       /* Add VAL to the relocation field.  */
2183       _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2184 				       location);
2185       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2186 				       location);
2187       _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2188 				     location);
2189 
2190       if (status != bfd_reloc_ok)
2191 	return status;
2192     }
2193 
2194   if (relocatable)
2195     reloc_entry->address += input_section->output_offset;
2196 
2197   return bfd_reloc_ok;
2198 }
2199 
2200 /* Swap an entry in a .gptab section.  Note that these routines rely
2201    on the equivalence of the two elements of the union.  */
2202 
2203 static void
2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2205 			      Elf32_gptab *in)
2206 {
2207   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2208   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2209 }
2210 
2211 static void
2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2213 			       Elf32_External_gptab *ex)
2214 {
2215   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2216   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2217 }
2218 
2219 static void
2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2221 				Elf32_External_compact_rel *ex)
2222 {
2223   H_PUT_32 (abfd, in->id1, ex->id1);
2224   H_PUT_32 (abfd, in->num, ex->num);
2225   H_PUT_32 (abfd, in->id2, ex->id2);
2226   H_PUT_32 (abfd, in->offset, ex->offset);
2227   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2228   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2229 }
2230 
2231 static void
2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2233 			   Elf32_External_crinfo *ex)
2234 {
2235   unsigned long l;
2236 
2237   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2238        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2239        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2240        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2241   H_PUT_32 (abfd, l, ex->info);
2242   H_PUT_32 (abfd, in->konst, ex->konst);
2243   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2244 }
2245 
2246 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2247    routines swap this structure in and out.  They are used outside of
2248    BFD, so they are globally visible.  */
2249 
2250 void
2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2252 				Elf32_RegInfo *in)
2253 {
2254   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2255   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2256   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2257   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2258   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2259   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2260 }
2261 
2262 void
2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2264 				 Elf32_External_RegInfo *ex)
2265 {
2266   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2267   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2268   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2269   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2270   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2271   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2272 }
2273 
2274 /* In the 64 bit ABI, the .MIPS.options section holds register
2275    information in an Elf64_Reginfo structure.  These routines swap
2276    them in and out.  They are globally visible because they are used
2277    outside of BFD.  These routines are here so that gas can call them
2278    without worrying about whether the 64 bit ABI has been included.  */
2279 
2280 void
2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2282 				Elf64_Internal_RegInfo *in)
2283 {
2284   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2285   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2286   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2287   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2288   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2289   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2290   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2291 }
2292 
2293 void
2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2295 				 Elf64_External_RegInfo *ex)
2296 {
2297   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2298   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2299   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2300   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2301   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2302   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2303   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2304 }
2305 
2306 /* Swap in an options header.  */
2307 
2308 void
2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2310 			      Elf_Internal_Options *in)
2311 {
2312   in->kind = H_GET_8 (abfd, ex->kind);
2313   in->size = H_GET_8 (abfd, ex->size);
2314   in->section = H_GET_16 (abfd, ex->section);
2315   in->info = H_GET_32 (abfd, ex->info);
2316 }
2317 
2318 /* Swap out an options header.  */
2319 
2320 void
2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2322 			       Elf_External_Options *ex)
2323 {
2324   H_PUT_8 (abfd, in->kind, ex->kind);
2325   H_PUT_8 (abfd, in->size, ex->size);
2326   H_PUT_16 (abfd, in->section, ex->section);
2327   H_PUT_32 (abfd, in->info, ex->info);
2328 }
2329 
2330 /* This function is called via qsort() to sort the dynamic relocation
2331    entries by increasing r_symndx value.  */
2332 
2333 static int
2334 sort_dynamic_relocs (const void *arg1, const void *arg2)
2335 {
2336   Elf_Internal_Rela int_reloc1;
2337   Elf_Internal_Rela int_reloc2;
2338   int diff;
2339 
2340   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2341   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2342 
2343   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2344   if (diff != 0)
2345     return diff;
2346 
2347   if (int_reloc1.r_offset < int_reloc2.r_offset)
2348     return -1;
2349   if (int_reloc1.r_offset > int_reloc2.r_offset)
2350     return 1;
2351   return 0;
2352 }
2353 
2354 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2355 
2356 static int
2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2358 			const void *arg2 ATTRIBUTE_UNUSED)
2359 {
2360 #ifdef BFD64
2361   Elf_Internal_Rela int_reloc1[3];
2362   Elf_Internal_Rela int_reloc2[3];
2363 
2364   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2365     (reldyn_sorting_bfd, arg1, int_reloc1);
2366   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2367     (reldyn_sorting_bfd, arg2, int_reloc2);
2368 
2369   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2370     return -1;
2371   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2372     return 1;
2373 
2374   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2375     return -1;
2376   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2377     return 1;
2378   return 0;
2379 #else
2380   abort ();
2381 #endif
2382 }
2383 
2384 
2385 /* This routine is used to write out ECOFF debugging external symbol
2386    information.  It is called via mips_elf_link_hash_traverse.  The
2387    ECOFF external symbol information must match the ELF external
2388    symbol information.  Unfortunately, at this point we don't know
2389    whether a symbol is required by reloc information, so the two
2390    tables may wind up being different.  We must sort out the external
2391    symbol information before we can set the final size of the .mdebug
2392    section, and we must set the size of the .mdebug section before we
2393    can relocate any sections, and we can't know which symbols are
2394    required by relocation until we relocate the sections.
2395    Fortunately, it is relatively unlikely that any symbol will be
2396    stripped but required by a reloc.  In particular, it can not happen
2397    when generating a final executable.  */
2398 
2399 static bfd_boolean
2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2401 {
2402   struct extsym_info *einfo = data;
2403   bfd_boolean strip;
2404   asection *sec, *output_section;
2405 
2406   if (h->root.root.type == bfd_link_hash_warning)
2407     h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
2408 
2409   if (h->root.indx == -2)
2410     strip = FALSE;
2411   else if ((h->root.def_dynamic
2412 	    || h->root.ref_dynamic
2413 	    || h->root.type == bfd_link_hash_new)
2414 	   && !h->root.def_regular
2415 	   && !h->root.ref_regular)
2416     strip = TRUE;
2417   else if (einfo->info->strip == strip_all
2418 	   || (einfo->info->strip == strip_some
2419 	       && bfd_hash_lookup (einfo->info->keep_hash,
2420 				   h->root.root.root.string,
2421 				   FALSE, FALSE) == NULL))
2422     strip = TRUE;
2423   else
2424     strip = FALSE;
2425 
2426   if (strip)
2427     return TRUE;
2428 
2429   if (h->esym.ifd == -2)
2430     {
2431       h->esym.jmptbl = 0;
2432       h->esym.cobol_main = 0;
2433       h->esym.weakext = 0;
2434       h->esym.reserved = 0;
2435       h->esym.ifd = ifdNil;
2436       h->esym.asym.value = 0;
2437       h->esym.asym.st = stGlobal;
2438 
2439       if (h->root.root.type == bfd_link_hash_undefined
2440 	  || h->root.root.type == bfd_link_hash_undefweak)
2441 	{
2442 	  const char *name;
2443 
2444 	  /* Use undefined class.  Also, set class and type for some
2445              special symbols.  */
2446 	  name = h->root.root.root.string;
2447 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2448 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2449 	    {
2450 	      h->esym.asym.sc = scData;
2451 	      h->esym.asym.st = stLabel;
2452 	      h->esym.asym.value = 0;
2453 	    }
2454 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2455 	    {
2456 	      h->esym.asym.sc = scAbs;
2457 	      h->esym.asym.st = stLabel;
2458 	      h->esym.asym.value =
2459 		mips_elf_hash_table (einfo->info)->procedure_count;
2460 	    }
2461 	  else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd))
2462 	    {
2463 	      h->esym.asym.sc = scAbs;
2464 	      h->esym.asym.st = stLabel;
2465 	      h->esym.asym.value = elf_gp (einfo->abfd);
2466 	    }
2467 	  else
2468 	    h->esym.asym.sc = scUndefined;
2469 	}
2470       else if (h->root.root.type != bfd_link_hash_defined
2471 	  && h->root.root.type != bfd_link_hash_defweak)
2472 	h->esym.asym.sc = scAbs;
2473       else
2474 	{
2475 	  const char *name;
2476 
2477 	  sec = h->root.root.u.def.section;
2478 	  output_section = sec->output_section;
2479 
2480 	  /* When making a shared library and symbol h is the one from
2481 	     the another shared library, OUTPUT_SECTION may be null.  */
2482 	  if (output_section == NULL)
2483 	    h->esym.asym.sc = scUndefined;
2484 	  else
2485 	    {
2486 	      name = bfd_section_name (output_section->owner, output_section);
2487 
2488 	      if (strcmp (name, ".text") == 0)
2489 		h->esym.asym.sc = scText;
2490 	      else if (strcmp (name, ".data") == 0)
2491 		h->esym.asym.sc = scData;
2492 	      else if (strcmp (name, ".sdata") == 0)
2493 		h->esym.asym.sc = scSData;
2494 	      else if (strcmp (name, ".rodata") == 0
2495 		       || strcmp (name, ".rdata") == 0)
2496 		h->esym.asym.sc = scRData;
2497 	      else if (strcmp (name, ".bss") == 0)
2498 		h->esym.asym.sc = scBss;
2499 	      else if (strcmp (name, ".sbss") == 0)
2500 		h->esym.asym.sc = scSBss;
2501 	      else if (strcmp (name, ".init") == 0)
2502 		h->esym.asym.sc = scInit;
2503 	      else if (strcmp (name, ".fini") == 0)
2504 		h->esym.asym.sc = scFini;
2505 	      else
2506 		h->esym.asym.sc = scAbs;
2507 	    }
2508 	}
2509 
2510       h->esym.asym.reserved = 0;
2511       h->esym.asym.index = indexNil;
2512     }
2513 
2514   if (h->root.root.type == bfd_link_hash_common)
2515     h->esym.asym.value = h->root.root.u.c.size;
2516   else if (h->root.root.type == bfd_link_hash_defined
2517 	   || h->root.root.type == bfd_link_hash_defweak)
2518     {
2519       if (h->esym.asym.sc == scCommon)
2520 	h->esym.asym.sc = scBss;
2521       else if (h->esym.asym.sc == scSCommon)
2522 	h->esym.asym.sc = scSBss;
2523 
2524       sec = h->root.root.u.def.section;
2525       output_section = sec->output_section;
2526       if (output_section != NULL)
2527 	h->esym.asym.value = (h->root.root.u.def.value
2528 			      + sec->output_offset
2529 			      + output_section->vma);
2530       else
2531 	h->esym.asym.value = 0;
2532     }
2533   else
2534     {
2535       struct mips_elf_link_hash_entry *hd = h;
2536 
2537       while (hd->root.root.type == bfd_link_hash_indirect)
2538 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
2539 
2540       if (hd->needs_lazy_stub)
2541 	{
2542 	  /* Set type and value for a symbol with a function stub.  */
2543 	  h->esym.asym.st = stProc;
2544 	  sec = hd->root.root.u.def.section;
2545 	  if (sec == NULL)
2546 	    h->esym.asym.value = 0;
2547 	  else
2548 	    {
2549 	      output_section = sec->output_section;
2550 	      if (output_section != NULL)
2551 		h->esym.asym.value = (hd->root.plt.offset
2552 				      + sec->output_offset
2553 				      + output_section->vma);
2554 	      else
2555 		h->esym.asym.value = 0;
2556 	    }
2557 	}
2558     }
2559 
2560   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
2561 				      h->root.root.root.string,
2562 				      &h->esym))
2563     {
2564       einfo->failed = TRUE;
2565       return FALSE;
2566     }
2567 
2568   return TRUE;
2569 }
2570 
2571 /* A comparison routine used to sort .gptab entries.  */
2572 
2573 static int
2574 gptab_compare (const void *p1, const void *p2)
2575 {
2576   const Elf32_gptab *a1 = p1;
2577   const Elf32_gptab *a2 = p2;
2578 
2579   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
2580 }
2581 
2582 /* Functions to manage the got entry hash table.  */
2583 
2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
2585    hash number.  */
2586 
2587 static INLINE hashval_t
2588 mips_elf_hash_bfd_vma (bfd_vma addr)
2589 {
2590 #ifdef BFD64
2591   return addr + (addr >> 32);
2592 #else
2593   return addr;
2594 #endif
2595 }
2596 
2597 /* got_entries only match if they're identical, except for gotidx, so
2598    use all fields to compute the hash, and compare the appropriate
2599    union members.  */
2600 
2601 static hashval_t
2602 mips_elf_got_entry_hash (const void *entry_)
2603 {
2604   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2605 
2606   return entry->symndx
2607     + ((entry->tls_type & GOT_TLS_LDM) << 17)
2608     + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
2609        : entry->abfd->id
2610          + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend)
2611 	    : entry->d.h->root.root.root.hash));
2612 }
2613 
2614 static int
2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
2616 {
2617   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2618   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2619 
2620   /* An LDM entry can only match another LDM entry.  */
2621   if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2622     return 0;
2623 
2624   return e1->abfd == e2->abfd && e1->symndx == e2->symndx
2625     && (! e1->abfd ? e1->d.address == e2->d.address
2626 	: e1->symndx >= 0 ? e1->d.addend == e2->d.addend
2627 	: e1->d.h == e2->d.h);
2628 }
2629 
2630 /* multi_got_entries are still a match in the case of global objects,
2631    even if the input bfd in which they're referenced differs, so the
2632    hash computation and compare functions are adjusted
2633    accordingly.  */
2634 
2635 static hashval_t
2636 mips_elf_multi_got_entry_hash (const void *entry_)
2637 {
2638   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
2639 
2640   return entry->symndx
2641     + (! entry->abfd
2642        ? mips_elf_hash_bfd_vma (entry->d.address)
2643        : entry->symndx >= 0
2644        ? ((entry->tls_type & GOT_TLS_LDM)
2645 	  ? (GOT_TLS_LDM << 17)
2646 	  : (entry->abfd->id
2647 	     + mips_elf_hash_bfd_vma (entry->d.addend)))
2648        : entry->d.h->root.root.root.hash);
2649 }
2650 
2651 static int
2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2)
2653 {
2654   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
2655   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
2656 
2657   /* Any two LDM entries match.  */
2658   if (e1->tls_type & e2->tls_type & GOT_TLS_LDM)
2659     return 1;
2660 
2661   /* Nothing else matches an LDM entry.  */
2662   if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM)
2663     return 0;
2664 
2665   return e1->symndx == e2->symndx
2666     && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend
2667 	: e1->abfd == NULL || e2->abfd == NULL
2668 	? e1->abfd == e2->abfd && e1->d.address == e2->d.address
2669 	: e1->d.h == e2->d.h);
2670 }
2671 
2672 static hashval_t
2673 mips_got_page_entry_hash (const void *entry_)
2674 {
2675   const struct mips_got_page_entry *entry;
2676 
2677   entry = (const struct mips_got_page_entry *) entry_;
2678   return entry->abfd->id + entry->symndx;
2679 }
2680 
2681 static int
2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
2683 {
2684   const struct mips_got_page_entry *entry1, *entry2;
2685 
2686   entry1 = (const struct mips_got_page_entry *) entry1_;
2687   entry2 = (const struct mips_got_page_entry *) entry2_;
2688   return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx;
2689 }
2690 
2691 /* Return the dynamic relocation section.  If it doesn't exist, try to
2692    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
2693    if creation fails.  */
2694 
2695 static asection *
2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
2697 {
2698   const char *dname;
2699   asection *sreloc;
2700   bfd *dynobj;
2701 
2702   dname = MIPS_ELF_REL_DYN_NAME (info);
2703   dynobj = elf_hash_table (info)->dynobj;
2704   sreloc = bfd_get_section_by_name (dynobj, dname);
2705   if (sreloc == NULL && create_p)
2706     {
2707       sreloc = bfd_make_section_with_flags (dynobj, dname,
2708 					    (SEC_ALLOC
2709 					     | SEC_LOAD
2710 					     | SEC_HAS_CONTENTS
2711 					     | SEC_IN_MEMORY
2712 					     | SEC_LINKER_CREATED
2713 					     | SEC_READONLY));
2714       if (sreloc == NULL
2715 	  || ! bfd_set_section_alignment (dynobj, sreloc,
2716 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
2717 	return NULL;
2718     }
2719   return sreloc;
2720 }
2721 
2722 /* Count the number of relocations needed for a TLS GOT entry, with
2723    access types from TLS_TYPE, and symbol H (or a local symbol if H
2724    is NULL).  */
2725 
2726 static int
2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
2728 		     struct elf_link_hash_entry *h)
2729 {
2730   int indx = 0;
2731   int ret = 0;
2732   bfd_boolean need_relocs = FALSE;
2733   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2734 
2735   if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
2736       && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h)))
2737     indx = h->dynindx;
2738 
2739   if ((info->shared || indx != 0)
2740       && (h == NULL
2741 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
2742 	  || h->root.type != bfd_link_hash_undefweak))
2743     need_relocs = TRUE;
2744 
2745   if (!need_relocs)
2746     return FALSE;
2747 
2748   if (tls_type & GOT_TLS_GD)
2749     {
2750       ret++;
2751       if (indx != 0)
2752 	ret++;
2753     }
2754 
2755   if (tls_type & GOT_TLS_IE)
2756     ret++;
2757 
2758   if ((tls_type & GOT_TLS_LDM) && info->shared)
2759     ret++;
2760 
2761   return ret;
2762 }
2763 
2764 /* Count the number of TLS relocations required for the GOT entry in
2765    ARG1, if it describes a local symbol.  */
2766 
2767 static int
2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2)
2769 {
2770   struct mips_got_entry *entry = * (struct mips_got_entry **) arg1;
2771   struct mips_elf_count_tls_arg *arg = arg2;
2772 
2773   if (entry->abfd != NULL && entry->symndx != -1)
2774     arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL);
2775 
2776   return 1;
2777 }
2778 
2779 /* Count the number of TLS GOT entries required for the global (or
2780    forced-local) symbol in ARG1.  */
2781 
2782 static int
2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2)
2784 {
2785   struct mips_elf_link_hash_entry *hm
2786     = (struct mips_elf_link_hash_entry *) arg1;
2787   struct mips_elf_count_tls_arg *arg = arg2;
2788 
2789   if (hm->tls_type & GOT_TLS_GD)
2790     arg->needed += 2;
2791   if (hm->tls_type & GOT_TLS_IE)
2792     arg->needed += 1;
2793 
2794   return 1;
2795 }
2796 
2797 /* Count the number of TLS relocations required for the global (or
2798    forced-local) symbol in ARG1.  */
2799 
2800 static int
2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2)
2802 {
2803   struct mips_elf_link_hash_entry *hm
2804     = (struct mips_elf_link_hash_entry *) arg1;
2805   struct mips_elf_count_tls_arg *arg = arg2;
2806 
2807   arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root);
2808 
2809   return 1;
2810 }
2811 
2812 /* Output a simple dynamic relocation into SRELOC.  */
2813 
2814 static void
2815 mips_elf_output_dynamic_relocation (bfd *output_bfd,
2816 				    asection *sreloc,
2817 				    unsigned long reloc_index,
2818 				    unsigned long indx,
2819 				    int r_type,
2820 				    bfd_vma offset)
2821 {
2822   Elf_Internal_Rela rel[3];
2823 
2824   memset (rel, 0, sizeof (rel));
2825 
2826   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
2827   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
2828 
2829   if (ABI_64_P (output_bfd))
2830     {
2831       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
2832 	(output_bfd, &rel[0],
2833 	 (sreloc->contents
2834 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
2835     }
2836   else
2837     bfd_elf32_swap_reloc_out
2838       (output_bfd, &rel[0],
2839        (sreloc->contents
2840 	+ reloc_index * sizeof (Elf32_External_Rel)));
2841 }
2842 
2843 /* Initialize a set of TLS GOT entries for one symbol.  */
2844 
2845 static void
2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset,
2847 			       unsigned char *tls_type_p,
2848 			       struct bfd_link_info *info,
2849 			       struct mips_elf_link_hash_entry *h,
2850 			       bfd_vma value)
2851 {
2852   struct mips_elf_link_hash_table *htab;
2853   int indx;
2854   asection *sreloc, *sgot;
2855   bfd_vma offset, offset2;
2856   bfd_boolean need_relocs = FALSE;
2857 
2858   htab = mips_elf_hash_table (info);
2859   if (htab == NULL)
2860     return;
2861 
2862   sgot = htab->sgot;
2863 
2864   indx = 0;
2865   if (h != NULL)
2866     {
2867       bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
2868 
2869       if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root)
2870 	  && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
2871 	indx = h->root.dynindx;
2872     }
2873 
2874   if (*tls_type_p & GOT_TLS_DONE)
2875     return;
2876 
2877   if ((info->shared || indx != 0)
2878       && (h == NULL
2879 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
2880 	  || h->root.type != bfd_link_hash_undefweak))
2881     need_relocs = TRUE;
2882 
2883   /* MINUS_ONE means the symbol is not defined in this object.  It may not
2884      be defined at all; assume that the value doesn't matter in that
2885      case.  Otherwise complain if we would use the value.  */
2886   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
2887 	      || h->root.root.type == bfd_link_hash_undefweak);
2888 
2889   /* Emit necessary relocations.  */
2890   sreloc = mips_elf_rel_dyn_section (info, FALSE);
2891 
2892   /* General Dynamic.  */
2893   if (*tls_type_p & GOT_TLS_GD)
2894     {
2895       offset = got_offset;
2896       offset2 = offset + MIPS_ELF_GOT_SIZE (abfd);
2897 
2898       if (need_relocs)
2899 	{
2900 	  mips_elf_output_dynamic_relocation
2901 	    (abfd, sreloc, sreloc->reloc_count++, indx,
2902 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2903 	     sgot->output_offset + sgot->output_section->vma + offset);
2904 
2905 	  if (indx)
2906 	    mips_elf_output_dynamic_relocation
2907 	      (abfd, sreloc, sreloc->reloc_count++, indx,
2908 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
2909 	       sgot->output_offset + sgot->output_section->vma + offset2);
2910 	  else
2911 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2912 			       sgot->contents + offset2);
2913 	}
2914       else
2915 	{
2916 	  MIPS_ELF_PUT_WORD (abfd, 1,
2917 			     sgot->contents + offset);
2918 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
2919 			     sgot->contents + offset2);
2920 	}
2921 
2922       got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd);
2923     }
2924 
2925   /* Initial Exec model.  */
2926   if (*tls_type_p & GOT_TLS_IE)
2927     {
2928       offset = got_offset;
2929 
2930       if (need_relocs)
2931 	{
2932 	  if (indx == 0)
2933 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
2934 			       sgot->contents + offset);
2935 	  else
2936 	    MIPS_ELF_PUT_WORD (abfd, 0,
2937 			       sgot->contents + offset);
2938 
2939 	  mips_elf_output_dynamic_relocation
2940 	    (abfd, sreloc, sreloc->reloc_count++, indx,
2941 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
2942 	     sgot->output_offset + sgot->output_section->vma + offset);
2943 	}
2944       else
2945 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
2946 			   sgot->contents + offset);
2947     }
2948 
2949   if (*tls_type_p & GOT_TLS_LDM)
2950     {
2951       /* The initial offset is zero, and the LD offsets will include the
2952 	 bias by DTP_OFFSET.  */
2953       MIPS_ELF_PUT_WORD (abfd, 0,
2954 			 sgot->contents + got_offset
2955 			 + MIPS_ELF_GOT_SIZE (abfd));
2956 
2957       if (!info->shared)
2958 	MIPS_ELF_PUT_WORD (abfd, 1,
2959 			   sgot->contents + got_offset);
2960       else
2961 	mips_elf_output_dynamic_relocation
2962 	  (abfd, sreloc, sreloc->reloc_count++, indx,
2963 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
2964 	   sgot->output_offset + sgot->output_section->vma + got_offset);
2965     }
2966 
2967   *tls_type_p |= GOT_TLS_DONE;
2968 }
2969 
2970 /* Return the GOT index to use for a relocation of type R_TYPE against
2971    a symbol accessed using TLS_TYPE models.  The GOT entries for this
2972    symbol in this GOT start at GOT_INDEX.  This function initializes the
2973    GOT entries and corresponding relocations.  */
2974 
2975 static bfd_vma
2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type,
2977 		    int r_type, struct bfd_link_info *info,
2978 		    struct mips_elf_link_hash_entry *h, bfd_vma symbol)
2979 {
2980   BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD
2981 	      || r_type == R_MIPS_TLS_LDM);
2982 
2983   mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol);
2984 
2985   if (r_type == R_MIPS_TLS_GOTTPREL)
2986     {
2987       BFD_ASSERT (*tls_type & GOT_TLS_IE);
2988       if (*tls_type & GOT_TLS_GD)
2989 	return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd);
2990       else
2991 	return got_index;
2992     }
2993 
2994   if (r_type == R_MIPS_TLS_GD)
2995     {
2996       BFD_ASSERT (*tls_type & GOT_TLS_GD);
2997       return got_index;
2998     }
2999 
3000   if (r_type == R_MIPS_TLS_LDM)
3001     {
3002       BFD_ASSERT (*tls_type & GOT_TLS_LDM);
3003       return got_index;
3004     }
3005 
3006   return got_index;
3007 }
3008 
3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3010    for global symbol H.  .got.plt comes before the GOT, so the offset
3011    will be negative.  */
3012 
3013 static bfd_vma
3014 mips_elf_gotplt_index (struct bfd_link_info *info,
3015 		       struct elf_link_hash_entry *h)
3016 {
3017   bfd_vma plt_index, got_address, got_value;
3018   struct mips_elf_link_hash_table *htab;
3019 
3020   htab = mips_elf_hash_table (info);
3021   BFD_ASSERT (htab != NULL);
3022 
3023   BFD_ASSERT (h->plt.offset != (bfd_vma) -1);
3024 
3025   /* This function only works for VxWorks, because a non-VxWorks .got.plt
3026      section starts with reserved entries.  */
3027   BFD_ASSERT (htab->is_vxworks);
3028 
3029   /* Calculate the index of the symbol's PLT entry.  */
3030   plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size;
3031 
3032   /* Calculate the address of the associated .got.plt entry.  */
3033   got_address = (htab->sgotplt->output_section->vma
3034 		 + htab->sgotplt->output_offset
3035 		 + plt_index * 4);
3036 
3037   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3038   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3039 	       + htab->root.hgot->root.u.def.section->output_offset
3040 	       + htab->root.hgot->root.u.def.value);
3041 
3042   return got_address - got_value;
3043 }
3044 
3045 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3046    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3047    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3048    offset can be found.  */
3049 
3050 static bfd_vma
3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3052 			  bfd_vma value, unsigned long r_symndx,
3053 			  struct mips_elf_link_hash_entry *h, int r_type)
3054 {
3055   struct mips_elf_link_hash_table *htab;
3056   struct mips_got_entry *entry;
3057 
3058   htab = mips_elf_hash_table (info);
3059   BFD_ASSERT (htab != NULL);
3060 
3061   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3062 					   r_symndx, h, r_type);
3063   if (!entry)
3064     return MINUS_ONE;
3065 
3066   if (TLS_RELOC_P (r_type))
3067     {
3068       if (entry->symndx == -1 && htab->got_info->next == NULL)
3069 	/* A type (3) entry in the single-GOT case.  We use the symbol's
3070 	   hash table entry to track the index.  */
3071 	return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type,
3072 				   r_type, info, h, value);
3073       else
3074 	return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type,
3075 				   r_type, info, h, value);
3076     }
3077   else
3078     return entry->gotidx;
3079 }
3080 
3081 /* Returns the GOT index for the global symbol indicated by H.  */
3082 
3083 static bfd_vma
3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h,
3085 			   int r_type, struct bfd_link_info *info)
3086 {
3087   struct mips_elf_link_hash_table *htab;
3088   bfd_vma got_index;
3089   struct mips_got_info *g, *gg;
3090   long global_got_dynindx = 0;
3091 
3092   htab = mips_elf_hash_table (info);
3093   BFD_ASSERT (htab != NULL);
3094 
3095   gg = g = htab->got_info;
3096   if (g->bfd2got && ibfd)
3097     {
3098       struct mips_got_entry e, *p;
3099 
3100       BFD_ASSERT (h->dynindx >= 0);
3101 
3102       g = mips_elf_got_for_ibfd (g, ibfd);
3103       if (g->next != gg || TLS_RELOC_P (r_type))
3104 	{
3105 	  e.abfd = ibfd;
3106 	  e.symndx = -1;
3107 	  e.d.h = (struct mips_elf_link_hash_entry *)h;
3108 	  e.tls_type = 0;
3109 
3110 	  p = htab_find (g->got_entries, &e);
3111 
3112 	  BFD_ASSERT (p->gotidx > 0);
3113 
3114 	  if (TLS_RELOC_P (r_type))
3115 	    {
3116 	      bfd_vma value = MINUS_ONE;
3117 	      if ((h->root.type == bfd_link_hash_defined
3118 		   || h->root.type == bfd_link_hash_defweak)
3119 		  && h->root.u.def.section->output_section)
3120 		value = (h->root.u.def.value
3121 			 + h->root.u.def.section->output_offset
3122 			 + h->root.u.def.section->output_section->vma);
3123 
3124 	      return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type,
3125 					 info, e.d.h, value);
3126 	    }
3127 	  else
3128 	    return p->gotidx;
3129 	}
3130     }
3131 
3132   if (gg->global_gotsym != NULL)
3133     global_got_dynindx = gg->global_gotsym->dynindx;
3134 
3135   if (TLS_RELOC_P (r_type))
3136     {
3137       struct mips_elf_link_hash_entry *hm
3138 	= (struct mips_elf_link_hash_entry *) h;
3139       bfd_vma value = MINUS_ONE;
3140 
3141       if ((h->root.type == bfd_link_hash_defined
3142 	   || h->root.type == bfd_link_hash_defweak)
3143 	  && h->root.u.def.section->output_section)
3144 	value = (h->root.u.def.value
3145 		 + h->root.u.def.section->output_offset
3146 		 + h->root.u.def.section->output_section->vma);
3147 
3148       got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type,
3149 				      r_type, info, hm, value);
3150     }
3151   else
3152     {
3153       /* Once we determine the global GOT entry with the lowest dynamic
3154 	 symbol table index, we must put all dynamic symbols with greater
3155 	 indices into the GOT.  That makes it easy to calculate the GOT
3156 	 offset.  */
3157       BFD_ASSERT (h->dynindx >= global_got_dynindx);
3158       got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3159 		   * MIPS_ELF_GOT_SIZE (abfd));
3160     }
3161   BFD_ASSERT (got_index < htab->sgot->size);
3162 
3163   return got_index;
3164 }
3165 
3166 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3167    entries are supposed to be placed at small offsets in the GOT, i.e.,
3168    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3169    entry could be created.  If OFFSETP is nonnull, use it to return the
3170    offset of the GOT entry from VALUE.  */
3171 
3172 static bfd_vma
3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3174 		   bfd_vma value, bfd_vma *offsetp)
3175 {
3176   bfd_vma page, got_index;
3177   struct mips_got_entry *entry;
3178 
3179   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3180   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3181 					   NULL, R_MIPS_GOT_PAGE);
3182 
3183   if (!entry)
3184     return MINUS_ONE;
3185 
3186   got_index = entry->gotidx;
3187 
3188   if (offsetp)
3189     *offsetp = value - entry->d.address;
3190 
3191   return got_index;
3192 }
3193 
3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3195    EXTERNAL is true if the relocation was originally against a global
3196    symbol that binds locally.  */
3197 
3198 static bfd_vma
3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3200 		      bfd_vma value, bfd_boolean external)
3201 {
3202   struct mips_got_entry *entry;
3203 
3204   /* GOT16 relocations against local symbols are followed by a LO16
3205      relocation; those against global symbols are not.  Thus if the
3206      symbol was originally local, the GOT16 relocation should load the
3207      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3208   if (! external)
3209     value = mips_elf_high (value) << 16;
3210 
3211   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3212      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3213      same in all cases.  */
3214   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3215 					   NULL, R_MIPS_GOT16);
3216   if (entry)
3217     return entry->gotidx;
3218   else
3219     return MINUS_ONE;
3220 }
3221 
3222 /* Returns the offset for the entry at the INDEXth position
3223    in the GOT.  */
3224 
3225 static bfd_vma
3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3227 				bfd *input_bfd, bfd_vma got_index)
3228 {
3229   struct mips_elf_link_hash_table *htab;
3230   asection *sgot;
3231   bfd_vma gp;
3232 
3233   htab = mips_elf_hash_table (info);
3234   BFD_ASSERT (htab != NULL);
3235 
3236   sgot = htab->sgot;
3237   gp = _bfd_get_gp_value (output_bfd)
3238     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3239 
3240   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3241 }
3242 
3243 /* Create and return a local GOT entry for VALUE, which was calculated
3244    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3245    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3246    instead.  */
3247 
3248 static struct mips_got_entry *
3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3250 				 bfd *ibfd, bfd_vma value,
3251 				 unsigned long r_symndx,
3252 				 struct mips_elf_link_hash_entry *h,
3253 				 int r_type)
3254 {
3255   struct mips_got_entry entry, **loc;
3256   struct mips_got_info *g;
3257   struct mips_elf_link_hash_table *htab;
3258 
3259   htab = mips_elf_hash_table (info);
3260   BFD_ASSERT (htab != NULL);
3261 
3262   entry.abfd = NULL;
3263   entry.symndx = -1;
3264   entry.d.address = value;
3265   entry.tls_type = 0;
3266 
3267   g = mips_elf_got_for_ibfd (htab->got_info, ibfd);
3268   if (g == NULL)
3269     {
3270       g = mips_elf_got_for_ibfd (htab->got_info, abfd);
3271       BFD_ASSERT (g != NULL);
3272     }
3273 
3274   /* This function shouldn't be called for symbols that live in the global
3275      area of the GOT.  */
3276   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3277   if (TLS_RELOC_P (r_type))
3278     {
3279       struct mips_got_entry *p;
3280 
3281       entry.abfd = ibfd;
3282       if (r_type == R_MIPS_TLS_LDM)
3283 	{
3284 	  entry.tls_type = GOT_TLS_LDM;
3285 	  entry.symndx = 0;
3286 	  entry.d.addend = 0;
3287 	}
3288       else if (h == NULL)
3289 	{
3290 	  entry.symndx = r_symndx;
3291 	  entry.d.addend = 0;
3292 	}
3293       else
3294 	entry.d.h = h;
3295 
3296       p = (struct mips_got_entry *)
3297 	htab_find (g->got_entries, &entry);
3298 
3299       BFD_ASSERT (p);
3300       return p;
3301     }
3302 
3303   loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3304 						   INSERT);
3305   if (*loc)
3306     return *loc;
3307 
3308   entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++;
3309   entry.tls_type = 0;
3310 
3311   *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3312 
3313   if (! *loc)
3314     return NULL;
3315 
3316   memcpy (*loc, &entry, sizeof entry);
3317 
3318   if (g->assigned_gotno > g->local_gotno)
3319     {
3320       (*loc)->gotidx = -1;
3321       /* We didn't allocate enough space in the GOT.  */
3322       (*_bfd_error_handler)
3323 	(_("not enough GOT space for local GOT entries"));
3324       bfd_set_error (bfd_error_bad_value);
3325       return NULL;
3326     }
3327 
3328   MIPS_ELF_PUT_WORD (abfd, value,
3329 		     (htab->sgot->contents + entry.gotidx));
3330 
3331   /* These GOT entries need a dynamic relocation on VxWorks.  */
3332   if (htab->is_vxworks)
3333     {
3334       Elf_Internal_Rela outrel;
3335       asection *s;
3336       bfd_byte *rloc;
3337       bfd_vma got_address;
3338 
3339       s = mips_elf_rel_dyn_section (info, FALSE);
3340       got_address = (htab->sgot->output_section->vma
3341 		     + htab->sgot->output_offset
3342 		     + entry.gotidx);
3343 
3344       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3345       outrel.r_offset = got_address;
3346       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3347       outrel.r_addend = value;
3348       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3349     }
3350 
3351   return *loc;
3352 }
3353 
3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3355    The number might be exact or a worst-case estimate, depending on how
3356    much information is available to elf_backend_omit_section_dynsym at
3357    the current linking stage.  */
3358 
3359 static bfd_size_type
3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3361 {
3362   bfd_size_type count;
3363 
3364   count = 0;
3365   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
3366     {
3367       asection *p;
3368       const struct elf_backend_data *bed;
3369 
3370       bed = get_elf_backend_data (output_bfd);
3371       for (p = output_bfd->sections; p ; p = p->next)
3372 	if ((p->flags & SEC_EXCLUDE) == 0
3373 	    && (p->flags & SEC_ALLOC) != 0
3374 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3375 	  ++count;
3376     }
3377   return count;
3378 }
3379 
3380 /* Sort the dynamic symbol table so that symbols that need GOT entries
3381    appear towards the end.  */
3382 
3383 static bfd_boolean
3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3385 {
3386   struct mips_elf_link_hash_table *htab;
3387   struct mips_elf_hash_sort_data hsd;
3388   struct mips_got_info *g;
3389 
3390   if (elf_hash_table (info)->dynsymcount == 0)
3391     return TRUE;
3392 
3393   htab = mips_elf_hash_table (info);
3394   BFD_ASSERT (htab != NULL);
3395 
3396   g = htab->got_info;
3397   if (g == NULL)
3398     return TRUE;
3399 
3400   hsd.low = NULL;
3401   hsd.max_unref_got_dynindx
3402     = hsd.min_got_dynindx
3403     = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno);
3404   hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1;
3405   mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *)
3406 				elf_hash_table (info)),
3407 			       mips_elf_sort_hash_table_f,
3408 			       &hsd);
3409 
3410   /* There should have been enough room in the symbol table to
3411      accommodate both the GOT and non-GOT symbols.  */
3412   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3413   BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx
3414 	      == elf_hash_table (info)->dynsymcount);
3415   BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx
3416 	      == g->global_gotno);
3417 
3418   /* Now we know which dynamic symbol has the lowest dynamic symbol
3419      table index in the GOT.  */
3420   g->global_gotsym = hsd.low;
3421 
3422   return TRUE;
3423 }
3424 
3425 /* If H needs a GOT entry, assign it the highest available dynamic
3426    index.  Otherwise, assign it the lowest available dynamic
3427    index.  */
3428 
3429 static bfd_boolean
3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3431 {
3432   struct mips_elf_hash_sort_data *hsd = data;
3433 
3434   if (h->root.root.type == bfd_link_hash_warning)
3435     h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3436 
3437   /* Symbols without dynamic symbol table entries aren't interesting
3438      at all.  */
3439   if (h->root.dynindx == -1)
3440     return TRUE;
3441 
3442   switch (h->global_got_area)
3443     {
3444     case GGA_NONE:
3445       h->root.dynindx = hsd->max_non_got_dynindx++;
3446       break;
3447 
3448     case GGA_NORMAL:
3449       BFD_ASSERT (h->tls_type == GOT_NORMAL);
3450 
3451       h->root.dynindx = --hsd->min_got_dynindx;
3452       hsd->low = (struct elf_link_hash_entry *) h;
3453       break;
3454 
3455     case GGA_RELOC_ONLY:
3456       BFD_ASSERT (h->tls_type == GOT_NORMAL);
3457 
3458       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3459 	hsd->low = (struct elf_link_hash_entry *) h;
3460       h->root.dynindx = hsd->max_unref_got_dynindx++;
3461       break;
3462     }
3463 
3464   return TRUE;
3465 }
3466 
3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic
3468    symbol table index lower than any we've seen to date, record it for
3469    posterity.  FOR_CALL is true if the caller is only interested in
3470    using the GOT entry for calls.  */
3471 
3472 static bfd_boolean
3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
3474 				   bfd *abfd, struct bfd_link_info *info,
3475 				   bfd_boolean for_call,
3476 				   unsigned char tls_flag)
3477 {
3478   struct mips_elf_link_hash_table *htab;
3479   struct mips_elf_link_hash_entry *hmips;
3480   struct mips_got_entry entry, **loc;
3481   struct mips_got_info *g;
3482 
3483   htab = mips_elf_hash_table (info);
3484   BFD_ASSERT (htab != NULL);
3485 
3486   hmips = (struct mips_elf_link_hash_entry *) h;
3487   if (!for_call)
3488     hmips->got_only_for_calls = FALSE;
3489 
3490   /* A global symbol in the GOT must also be in the dynamic symbol
3491      table.  */
3492   if (h->dynindx == -1)
3493     {
3494       switch (ELF_ST_VISIBILITY (h->other))
3495 	{
3496 	case STV_INTERNAL:
3497 	case STV_HIDDEN:
3498 	  _bfd_elf_link_hash_hide_symbol (info, h, TRUE);
3499 	  break;
3500 	}
3501       if (!bfd_elf_link_record_dynamic_symbol (info, h))
3502 	return FALSE;
3503     }
3504 
3505   /* Make sure we have a GOT to put this entry into.  */
3506   g = htab->got_info;
3507   BFD_ASSERT (g != NULL);
3508 
3509   entry.abfd = abfd;
3510   entry.symndx = -1;
3511   entry.d.h = (struct mips_elf_link_hash_entry *) h;
3512   entry.tls_type = 0;
3513 
3514   loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry,
3515 						   INSERT);
3516 
3517   /* If we've already marked this entry as needing GOT space, we don't
3518      need to do it again.  */
3519   if (*loc)
3520     {
3521       (*loc)->tls_type |= tls_flag;
3522       return TRUE;
3523     }
3524 
3525   *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3526 
3527   if (! *loc)
3528     return FALSE;
3529 
3530   entry.gotidx = -1;
3531   entry.tls_type = tls_flag;
3532 
3533   memcpy (*loc, &entry, sizeof entry);
3534 
3535   if (tls_flag == 0)
3536     hmips->global_got_area = GGA_NORMAL;
3537 
3538   return TRUE;
3539 }
3540 
3541 /* Reserve space in G for a GOT entry containing the value of symbol
3542    SYMNDX in input bfd ABDF, plus ADDEND.  */
3543 
3544 static bfd_boolean
3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
3546 				  struct bfd_link_info *info,
3547 				  unsigned char tls_flag)
3548 {
3549   struct mips_elf_link_hash_table *htab;
3550   struct mips_got_info *g;
3551   struct mips_got_entry entry, **loc;
3552 
3553   htab = mips_elf_hash_table (info);
3554   BFD_ASSERT (htab != NULL);
3555 
3556   g = htab->got_info;
3557   BFD_ASSERT (g != NULL);
3558 
3559   entry.abfd = abfd;
3560   entry.symndx = symndx;
3561   entry.d.addend = addend;
3562   entry.tls_type = tls_flag;
3563   loc = (struct mips_got_entry **)
3564     htab_find_slot (g->got_entries, &entry, INSERT);
3565 
3566   if (*loc)
3567     {
3568       if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD))
3569 	{
3570 	  g->tls_gotno += 2;
3571 	  (*loc)->tls_type |= tls_flag;
3572 	}
3573       else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE))
3574 	{
3575 	  g->tls_gotno += 1;
3576 	  (*loc)->tls_type |= tls_flag;
3577 	}
3578       return TRUE;
3579     }
3580 
3581   if (tls_flag != 0)
3582     {
3583       entry.gotidx = -1;
3584       entry.tls_type = tls_flag;
3585       if (tls_flag == GOT_TLS_IE)
3586 	g->tls_gotno += 1;
3587       else if (tls_flag == GOT_TLS_GD)
3588 	g->tls_gotno += 2;
3589       else if (g->tls_ldm_offset == MINUS_ONE)
3590 	{
3591 	  g->tls_ldm_offset = MINUS_TWO;
3592 	  g->tls_gotno += 2;
3593 	}
3594     }
3595   else
3596     {
3597       entry.gotidx = g->local_gotno++;
3598       entry.tls_type = 0;
3599     }
3600 
3601   *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry);
3602 
3603   if (! *loc)
3604     return FALSE;
3605 
3606   memcpy (*loc, &entry, sizeof entry);
3607 
3608   return TRUE;
3609 }
3610 
3611 /* Return the maximum number of GOT page entries required for RANGE.  */
3612 
3613 static bfd_vma
3614 mips_elf_pages_for_range (const struct mips_got_page_range *range)
3615 {
3616   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
3617 }
3618 
3619 /* Record that ABFD has a page relocation against symbol SYMNDX and
3620    that ADDEND is the addend for that relocation.
3621 
3622    This function creates an upper bound on the number of GOT slots
3623    required; no attempt is made to combine references to non-overridable
3624    global symbols across multiple input files.  */
3625 
3626 static bfd_boolean
3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd,
3628 				long symndx, bfd_signed_vma addend)
3629 {
3630   struct mips_elf_link_hash_table *htab;
3631   struct mips_got_info *g;
3632   struct mips_got_page_entry lookup, *entry;
3633   struct mips_got_page_range **range_ptr, *range;
3634   bfd_vma old_pages, new_pages;
3635   void **loc;
3636 
3637   htab = mips_elf_hash_table (info);
3638   BFD_ASSERT (htab != NULL);
3639 
3640   g = htab->got_info;
3641   BFD_ASSERT (g != NULL);
3642 
3643   /* Find the mips_got_page_entry hash table entry for this symbol.  */
3644   lookup.abfd = abfd;
3645   lookup.symndx = symndx;
3646   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
3647   if (loc == NULL)
3648     return FALSE;
3649 
3650   /* Create a mips_got_page_entry if this is the first time we've
3651      seen the symbol.  */
3652   entry = (struct mips_got_page_entry *) *loc;
3653   if (!entry)
3654     {
3655       entry = bfd_alloc (abfd, sizeof (*entry));
3656       if (!entry)
3657 	return FALSE;
3658 
3659       entry->abfd = abfd;
3660       entry->symndx = symndx;
3661       entry->ranges = NULL;
3662       entry->num_pages = 0;
3663       *loc = entry;
3664     }
3665 
3666   /* Skip over ranges whose maximum extent cannot share a page entry
3667      with ADDEND.  */
3668   range_ptr = &entry->ranges;
3669   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
3670     range_ptr = &(*range_ptr)->next;
3671 
3672   /* If we scanned to the end of the list, or found a range whose
3673      minimum extent cannot share a page entry with ADDEND, create
3674      a new singleton range.  */
3675   range = *range_ptr;
3676   if (!range || addend < range->min_addend - 0xffff)
3677     {
3678       range = bfd_alloc (abfd, sizeof (*range));
3679       if (!range)
3680 	return FALSE;
3681 
3682       range->next = *range_ptr;
3683       range->min_addend = addend;
3684       range->max_addend = addend;
3685 
3686       *range_ptr = range;
3687       entry->num_pages++;
3688       g->page_gotno++;
3689       return TRUE;
3690     }
3691 
3692   /* Remember how many pages the old range contributed.  */
3693   old_pages = mips_elf_pages_for_range (range);
3694 
3695   /* Update the ranges.  */
3696   if (addend < range->min_addend)
3697     range->min_addend = addend;
3698   else if (addend > range->max_addend)
3699     {
3700       if (range->next && addend >= range->next->min_addend - 0xffff)
3701 	{
3702 	  old_pages += mips_elf_pages_for_range (range->next);
3703 	  range->max_addend = range->next->max_addend;
3704 	  range->next = range->next->next;
3705 	}
3706       else
3707 	range->max_addend = addend;
3708     }
3709 
3710   /* Record any change in the total estimate.  */
3711   new_pages = mips_elf_pages_for_range (range);
3712   if (old_pages != new_pages)
3713     {
3714       entry->num_pages += new_pages - old_pages;
3715       g->page_gotno += new_pages - old_pages;
3716     }
3717 
3718   return TRUE;
3719 }
3720 
3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
3722 
3723 static void
3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
3725 				       unsigned int n)
3726 {
3727   asection *s;
3728   struct mips_elf_link_hash_table *htab;
3729 
3730   htab = mips_elf_hash_table (info);
3731   BFD_ASSERT (htab != NULL);
3732 
3733   s = mips_elf_rel_dyn_section (info, FALSE);
3734   BFD_ASSERT (s != NULL);
3735 
3736   if (htab->is_vxworks)
3737     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
3738   else
3739     {
3740       if (s->size == 0)
3741 	{
3742 	  /* Make room for a null element.  */
3743 	  s->size += MIPS_ELF_REL_SIZE (abfd);
3744 	  ++s->reloc_count;
3745 	}
3746       s->size += n * MIPS_ELF_REL_SIZE (abfd);
3747     }
3748 }
3749 
3750 /* A htab_traverse callback for GOT entries.  Set boolean *DATA to true
3751    if the GOT entry is for an indirect or warning symbol.  */
3752 
3753 static int
3754 mips_elf_check_recreate_got (void **entryp, void *data)
3755 {
3756   struct mips_got_entry *entry;
3757   bfd_boolean *must_recreate;
3758 
3759   entry = (struct mips_got_entry *) *entryp;
3760   must_recreate = (bfd_boolean *) data;
3761   if (entry->abfd != NULL && entry->symndx == -1)
3762     {
3763       struct mips_elf_link_hash_entry *h;
3764 
3765       h = entry->d.h;
3766       if (h->root.root.type == bfd_link_hash_indirect
3767 	  || h->root.root.type == bfd_link_hash_warning)
3768 	{
3769 	  *must_recreate = TRUE;
3770 	  return 0;
3771 	}
3772     }
3773   return 1;
3774 }
3775 
3776 /* A htab_traverse callback for GOT entries.  Add all entries to
3777    hash table *DATA, converting entries for indirect and warning
3778    symbols into entries for the target symbol.  Set *DATA to null
3779    on error.  */
3780 
3781 static int
3782 mips_elf_recreate_got (void **entryp, void *data)
3783 {
3784   htab_t *new_got;
3785   struct mips_got_entry *entry;
3786   void **slot;
3787 
3788   new_got = (htab_t *) data;
3789   entry = (struct mips_got_entry *) *entryp;
3790   if (entry->abfd != NULL && entry->symndx == -1)
3791     {
3792       struct mips_elf_link_hash_entry *h;
3793 
3794       h = entry->d.h;
3795       while (h->root.root.type == bfd_link_hash_indirect
3796 	     || h->root.root.type == bfd_link_hash_warning)
3797 	{
3798 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
3799 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
3800 	}
3801       entry->d.h = h;
3802     }
3803   slot = htab_find_slot (*new_got, entry, INSERT);
3804   if (slot == NULL)
3805     {
3806       *new_got = NULL;
3807       return 0;
3808     }
3809   if (*slot == NULL)
3810     *slot = entry;
3811   else
3812     free (entry);
3813   return 1;
3814 }
3815 
3816 /* If any entries in G->got_entries are for indirect or warning symbols,
3817    replace them with entries for the target symbol.  */
3818 
3819 static bfd_boolean
3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g)
3821 {
3822   bfd_boolean must_recreate;
3823   htab_t new_got;
3824 
3825   must_recreate = FALSE;
3826   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate);
3827   if (must_recreate)
3828     {
3829       new_got = htab_create (htab_size (g->got_entries),
3830 			     mips_elf_got_entry_hash,
3831 			     mips_elf_got_entry_eq, NULL);
3832       htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got);
3833       if (new_got == NULL)
3834 	return FALSE;
3835 
3836       /* Each entry in g->got_entries has either been copied to new_got
3837 	 or freed.  Now delete the hash table itself.  */
3838       htab_delete (g->got_entries);
3839       g->got_entries = new_got;
3840     }
3841   return TRUE;
3842 }
3843 
3844 /* A mips_elf_link_hash_traverse callback for which DATA points
3845    to the link_info structure.  Count the number of type (3) entries
3846    in the master GOT.  */
3847 
3848 static int
3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
3850 {
3851   struct bfd_link_info *info;
3852   struct mips_elf_link_hash_table *htab;
3853   struct mips_got_info *g;
3854 
3855   info = (struct bfd_link_info *) data;
3856   htab = mips_elf_hash_table (info);
3857   g = htab->got_info;
3858   if (h->global_got_area != GGA_NONE)
3859     {
3860       /* Make a final decision about whether the symbol belongs in the
3861 	 local or global GOT.  Symbols that bind locally can (and in the
3862 	 case of forced-local symbols, must) live in the local GOT.
3863 	 Those that are aren't in the dynamic symbol table must also
3864 	 live in the local GOT.
3865 
3866 	 Note that the former condition does not always imply the
3867 	 latter: symbols do not bind locally if they are completely
3868 	 undefined.  We'll report undefined symbols later if appropriate.  */
3869       if (h->root.dynindx == -1
3870 	  || (h->got_only_for_calls
3871 	      ? SYMBOL_CALLS_LOCAL (info, &h->root)
3872 	      : SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3873 	{
3874 	  /* The symbol belongs in the local GOT.  We no longer need this
3875 	     entry if it was only used for relocations; those relocations
3876 	     will be against the null or section symbol instead of H.  */
3877 	  if (h->global_got_area != GGA_RELOC_ONLY)
3878 	    g->local_gotno++;
3879 	  h->global_got_area = GGA_NONE;
3880 	}
3881       else if (htab->is_vxworks
3882 	       && h->got_only_for_calls
3883 	       && h->root.plt.offset != MINUS_ONE)
3884 	/* On VxWorks, calls can refer directly to the .got.plt entry;
3885 	   they don't need entries in the regular GOT.  .got.plt entries
3886 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
3887 	h->global_got_area = GGA_NONE;
3888       else
3889 	{
3890 	  g->global_gotno++;
3891 	  if (h->global_got_area == GGA_RELOC_ONLY)
3892 	    g->reloc_only_gotno++;
3893 	}
3894     }
3895   return 1;
3896 }
3897 
3898 /* Compute the hash value of the bfd in a bfd2got hash entry.  */
3899 
3900 static hashval_t
3901 mips_elf_bfd2got_entry_hash (const void *entry_)
3902 {
3903   const struct mips_elf_bfd2got_hash *entry
3904     = (struct mips_elf_bfd2got_hash *)entry_;
3905 
3906   return entry->bfd->id;
3907 }
3908 
3909 /* Check whether two hash entries have the same bfd.  */
3910 
3911 static int
3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2)
3913 {
3914   const struct mips_elf_bfd2got_hash *e1
3915     = (const struct mips_elf_bfd2got_hash *)entry1;
3916   const struct mips_elf_bfd2got_hash *e2
3917     = (const struct mips_elf_bfd2got_hash *)entry2;
3918 
3919   return e1->bfd == e2->bfd;
3920 }
3921 
3922 /* In a multi-got link, determine the GOT to be used for IBFD.  G must
3923    be the master GOT data.  */
3924 
3925 static struct mips_got_info *
3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd)
3927 {
3928   struct mips_elf_bfd2got_hash e, *p;
3929 
3930   if (! g->bfd2got)
3931     return g;
3932 
3933   e.bfd = ibfd;
3934   p = htab_find (g->bfd2got, &e);
3935   return p ? p->g : NULL;
3936 }
3937 
3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists.
3939    Return NULL if an error occured.  */
3940 
3941 static struct mips_got_info *
3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd,
3943 			  bfd *input_bfd)
3944 {
3945   struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot;
3946   struct mips_got_info *g;
3947   void **bfdgotp;
3948 
3949   bfdgot_entry.bfd = input_bfd;
3950   bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT);
3951   bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp;
3952 
3953   if (bfdgot == NULL)
3954     {
3955       bfdgot = ((struct mips_elf_bfd2got_hash *)
3956 		bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash)));
3957       if (bfdgot == NULL)
3958 	return NULL;
3959 
3960       *bfdgotp = bfdgot;
3961 
3962       g = ((struct mips_got_info *)
3963 	   bfd_alloc (output_bfd, sizeof (struct mips_got_info)));
3964       if (g == NULL)
3965 	return NULL;
3966 
3967       bfdgot->bfd = input_bfd;
3968       bfdgot->g = g;
3969 
3970       g->global_gotsym = NULL;
3971       g->global_gotno = 0;
3972       g->reloc_only_gotno = 0;
3973       g->local_gotno = 0;
3974       g->page_gotno = 0;
3975       g->assigned_gotno = -1;
3976       g->tls_gotno = 0;
3977       g->tls_assigned_gotno = 0;
3978       g->tls_ldm_offset = MINUS_ONE;
3979       g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
3980 					mips_elf_multi_got_entry_eq, NULL);
3981       if (g->got_entries == NULL)
3982 	return NULL;
3983 
3984       g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
3985 					     mips_got_page_entry_eq, NULL);
3986       if (g->got_page_entries == NULL)
3987 	return NULL;
3988 
3989       g->bfd2got = NULL;
3990       g->next = NULL;
3991     }
3992 
3993   return bfdgot->g;
3994 }
3995 
3996 /* A htab_traverse callback for the entries in the master got.
3997    Create one separate got for each bfd that has entries in the global
3998    got, such that we can tell how many local and global entries each
3999    bfd requires.  */
4000 
4001 static int
4002 mips_elf_make_got_per_bfd (void **entryp, void *p)
4003 {
4004   struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4005   struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4006   struct mips_got_info *g;
4007 
4008   g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4009   if (g == NULL)
4010     {
4011       arg->obfd = NULL;
4012       return 0;
4013     }
4014 
4015   /* Insert the GOT entry in the bfd's got entry hash table.  */
4016   entryp = htab_find_slot (g->got_entries, entry, INSERT);
4017   if (*entryp != NULL)
4018     return 1;
4019 
4020   *entryp = entry;
4021 
4022   if (entry->tls_type)
4023     {
4024       if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4025 	g->tls_gotno += 2;
4026       if (entry->tls_type & GOT_TLS_IE)
4027 	g->tls_gotno += 1;
4028     }
4029   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
4030     ++g->local_gotno;
4031   else
4032     ++g->global_gotno;
4033 
4034   return 1;
4035 }
4036 
4037 /* A htab_traverse callback for the page entries in the master got.
4038    Associate each page entry with the bfd's got.  */
4039 
4040 static int
4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p)
4042 {
4043   struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp;
4044   struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p;
4045   struct mips_got_info *g;
4046 
4047   g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd);
4048   if (g == NULL)
4049     {
4050       arg->obfd = NULL;
4051       return 0;
4052     }
4053 
4054   /* Insert the GOT entry in the bfd's got entry hash table.  */
4055   entryp = htab_find_slot (g->got_page_entries, entry, INSERT);
4056   if (*entryp != NULL)
4057     return 1;
4058 
4059   *entryp = entry;
4060   g->page_gotno += entry->num_pages;
4061   return 1;
4062 }
4063 
4064 /* Consider merging the got described by BFD2GOT with TO, using the
4065    information given by ARG.  Return -1 if this would lead to overflow,
4066    1 if they were merged successfully, and 0 if a merge failed due to
4067    lack of memory.  (These values are chosen so that nonnegative return
4068    values can be returned by a htab_traverse callback.)  */
4069 
4070 static int
4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got,
4072 			 struct mips_got_info *to,
4073 			 struct mips_elf_got_per_bfd_arg *arg)
4074 {
4075   struct mips_got_info *from = bfd2got->g;
4076   unsigned int estimate;
4077 
4078   /* Work out how many page entries we would need for the combined GOT.  */
4079   estimate = arg->max_pages;
4080   if (estimate >= from->page_gotno + to->page_gotno)
4081     estimate = from->page_gotno + to->page_gotno;
4082 
4083   /* And conservatively estimate how many local, global and TLS entries
4084      would be needed.  */
4085   estimate += (from->local_gotno
4086 	       + from->global_gotno
4087 	       + from->tls_gotno
4088 	       + to->local_gotno
4089 	       + to->global_gotno
4090 	       + to->tls_gotno);
4091 
4092   /* Bail out if the combined GOT might be too big.  */
4093   if (estimate > arg->max_count)
4094     return -1;
4095 
4096   /* Commit to the merge.  Record that TO is now the bfd for this got.  */
4097   bfd2got->g = to;
4098 
4099   /* Transfer the bfd's got information from FROM to TO.  */
4100   htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg);
4101   if (arg->obfd == NULL)
4102     return 0;
4103 
4104   htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg);
4105   if (arg->obfd == NULL)
4106     return 0;
4107 
4108   /* We don't have to worry about releasing memory of the actual
4109      got entries, since they're all in the master got_entries hash
4110      table anyway.  */
4111   htab_delete (from->got_entries);
4112   htab_delete (from->got_page_entries);
4113   return 1;
4114 }
4115 
4116 /* Attempt to merge gots of different input bfds.  Try to use as much
4117    as possible of the primary got, since it doesn't require explicit
4118    dynamic relocations, but don't use bfds that would reference global
4119    symbols out of the addressable range.  Failing the primary got,
4120    attempt to merge with the current got, or finish the current got
4121    and then make make the new got current.  */
4122 
4123 static int
4124 mips_elf_merge_gots (void **bfd2got_, void *p)
4125 {
4126   struct mips_elf_bfd2got_hash *bfd2got
4127     = (struct mips_elf_bfd2got_hash *)*bfd2got_;
4128   struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p;
4129   struct mips_got_info *g;
4130   unsigned int estimate;
4131   int result;
4132 
4133   g = bfd2got->g;
4134 
4135   /* Work out the number of page, local and TLS entries.  */
4136   estimate = arg->max_pages;
4137   if (estimate > g->page_gotno)
4138     estimate = g->page_gotno;
4139   estimate += g->local_gotno + g->tls_gotno;
4140 
4141   /* We place TLS GOT entries after both locals and globals.  The globals
4142      for the primary GOT may overflow the normal GOT size limit, so be
4143      sure not to merge a GOT which requires TLS with the primary GOT in that
4144      case.  This doesn't affect non-primary GOTs.  */
4145   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4146 
4147   if (estimate <= arg->max_count)
4148     {
4149       /* If we don't have a primary GOT, use it as
4150 	 a starting point for the primary GOT.  */
4151       if (!arg->primary)
4152 	{
4153 	  arg->primary = bfd2got->g;
4154 	  return 1;
4155 	}
4156 
4157       /* Try merging with the primary GOT.  */
4158       result = mips_elf_merge_got_with (bfd2got, arg->primary, arg);
4159       if (result >= 0)
4160 	return result;
4161     }
4162 
4163   /* If we can merge with the last-created got, do it.  */
4164   if (arg->current)
4165     {
4166       result = mips_elf_merge_got_with (bfd2got, arg->current, arg);
4167       if (result >= 0)
4168 	return result;
4169     }
4170 
4171   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4172      fits; if it turns out that it doesn't, we'll get relocation
4173      overflows anyway.  */
4174   g->next = arg->current;
4175   arg->current = g;
4176 
4177   return 1;
4178 }
4179 
4180 /* Set the TLS GOT index for the GOT entry in ENTRYP.  ENTRYP's NEXT field
4181    is null iff there is just a single GOT.  */
4182 
4183 static int
4184 mips_elf_initialize_tls_index (void **entryp, void *p)
4185 {
4186   struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4187   struct mips_got_info *g = p;
4188   bfd_vma next_index;
4189   unsigned char tls_type;
4190 
4191   /* We're only interested in TLS symbols.  */
4192   if (entry->tls_type == 0)
4193     return 1;
4194 
4195   next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno;
4196 
4197   if (entry->symndx == -1 && g->next == NULL)
4198     {
4199       /* A type (3) got entry in the single-GOT case.  We use the symbol's
4200 	 hash table entry to track its index.  */
4201       if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE)
4202 	return 1;
4203       entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE;
4204       entry->d.h->tls_got_offset = next_index;
4205       tls_type = entry->d.h->tls_type;
4206     }
4207   else
4208     {
4209       if (entry->tls_type & GOT_TLS_LDM)
4210 	{
4211 	  /* There are separate mips_got_entry objects for each input bfd
4212 	     that requires an LDM entry.  Make sure that all LDM entries in
4213 	     a GOT resolve to the same index.  */
4214 	  if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE)
4215 	    {
4216 	      entry->gotidx = g->tls_ldm_offset;
4217 	      return 1;
4218 	    }
4219 	  g->tls_ldm_offset = next_index;
4220 	}
4221       entry->gotidx = next_index;
4222       tls_type = entry->tls_type;
4223     }
4224 
4225   /* Account for the entries we've just allocated.  */
4226   if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM))
4227     g->tls_assigned_gotno += 2;
4228   if (tls_type & GOT_TLS_IE)
4229     g->tls_assigned_gotno += 1;
4230 
4231   return 1;
4232 }
4233 
4234 /* If passed a NULL mips_got_info in the argument, set the marker used
4235    to tell whether a global symbol needs a got entry (in the primary
4236    got) to the given VALUE.
4237 
4238    If passed a pointer G to a mips_got_info in the argument (it must
4239    not be the primary GOT), compute the offset from the beginning of
4240    the (primary) GOT section to the entry in G corresponding to the
4241    global symbol.  G's assigned_gotno must contain the index of the
4242    first available global GOT entry in G.  VALUE must contain the size
4243    of a GOT entry in bytes.  For each global GOT entry that requires a
4244    dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is
4245    marked as not eligible for lazy resolution through a function
4246    stub.  */
4247 static int
4248 mips_elf_set_global_got_offset (void **entryp, void *p)
4249 {
4250   struct mips_got_entry *entry = (struct mips_got_entry *)*entryp;
4251   struct mips_elf_set_global_got_offset_arg *arg
4252     = (struct mips_elf_set_global_got_offset_arg *)p;
4253   struct mips_got_info *g = arg->g;
4254 
4255   if (g && entry->tls_type != GOT_NORMAL)
4256     arg->needed_relocs +=
4257       mips_tls_got_relocs (arg->info, entry->tls_type,
4258 			   entry->symndx == -1 ? &entry->d.h->root : NULL);
4259 
4260   if (entry->abfd != NULL
4261       && entry->symndx == -1
4262       && entry->d.h->global_got_area != GGA_NONE)
4263     {
4264       if (g)
4265 	{
4266 	  BFD_ASSERT (g->global_gotsym == NULL);
4267 
4268 	  entry->gotidx = arg->value * (long) g->assigned_gotno++;
4269 	  if (arg->info->shared
4270 	      || (elf_hash_table (arg->info)->dynamic_sections_created
4271 		  && entry->d.h->root.def_dynamic
4272 		  && !entry->d.h->root.def_regular))
4273 	    ++arg->needed_relocs;
4274 	}
4275       else
4276 	entry->d.h->global_got_area = arg->value;
4277     }
4278 
4279   return 1;
4280 }
4281 
4282 /* A htab_traverse callback for GOT entries for which DATA is the
4283    bfd_link_info.  Forbid any global symbols from having traditional
4284    lazy-binding stubs.  */
4285 
4286 static int
4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4288 {
4289   struct bfd_link_info *info;
4290   struct mips_elf_link_hash_table *htab;
4291   struct mips_got_entry *entry;
4292 
4293   entry = (struct mips_got_entry *) *entryp;
4294   info = (struct bfd_link_info *) data;
4295   htab = mips_elf_hash_table (info);
4296   BFD_ASSERT (htab != NULL);
4297 
4298   if (entry->abfd != NULL
4299       && entry->symndx == -1
4300       && entry->d.h->needs_lazy_stub)
4301     {
4302       entry->d.h->needs_lazy_stub = FALSE;
4303       htab->lazy_stub_count--;
4304     }
4305 
4306   return 1;
4307 }
4308 
4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4310    the primary GOT.  */
4311 static bfd_vma
4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4313 {
4314   if (g->bfd2got == NULL)
4315     return 0;
4316 
4317   g = mips_elf_got_for_ibfd (g, ibfd);
4318   if (! g)
4319     return 0;
4320 
4321   BFD_ASSERT (g->next);
4322 
4323   g = g->next;
4324 
4325   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4326     * MIPS_ELF_GOT_SIZE (abfd);
4327 }
4328 
4329 /* Turn a single GOT that is too big for 16-bit addressing into
4330    a sequence of GOTs, each one 16-bit addressable.  */
4331 
4332 static bfd_boolean
4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4334 		    asection *got, bfd_size_type pages)
4335 {
4336   struct mips_elf_link_hash_table *htab;
4337   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4338   struct mips_elf_set_global_got_offset_arg set_got_offset_arg;
4339   struct mips_got_info *g, *gg;
4340   unsigned int assign, needed_relocs;
4341   bfd *dynobj;
4342 
4343   dynobj = elf_hash_table (info)->dynobj;
4344   htab = mips_elf_hash_table (info);
4345   BFD_ASSERT (htab != NULL);
4346 
4347   g = htab->got_info;
4348   g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash,
4349 				mips_elf_bfd2got_entry_eq, NULL);
4350   if (g->bfd2got == NULL)
4351     return FALSE;
4352 
4353   got_per_bfd_arg.bfd2got = g->bfd2got;
4354   got_per_bfd_arg.obfd = abfd;
4355   got_per_bfd_arg.info = info;
4356 
4357   /* Count how many GOT entries each input bfd requires, creating a
4358      map from bfd to got info while at that.  */
4359   htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg);
4360   if (got_per_bfd_arg.obfd == NULL)
4361     return FALSE;
4362 
4363   /* Also count how many page entries each input bfd requires.  */
4364   htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd,
4365 		 &got_per_bfd_arg);
4366   if (got_per_bfd_arg.obfd == NULL)
4367     return FALSE;
4368 
4369   got_per_bfd_arg.current = NULL;
4370   got_per_bfd_arg.primary = NULL;
4371   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4372 				/ MIPS_ELF_GOT_SIZE (abfd))
4373 			       - htab->reserved_gotno);
4374   got_per_bfd_arg.max_pages = pages;
4375   /* The number of globals that will be included in the primary GOT.
4376      See the calls to mips_elf_set_global_got_offset below for more
4377      information.  */
4378   got_per_bfd_arg.global_count = g->global_gotno;
4379 
4380   /* Try to merge the GOTs of input bfds together, as long as they
4381      don't seem to exceed the maximum GOT size, choosing one of them
4382      to be the primary GOT.  */
4383   htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg);
4384   if (got_per_bfd_arg.obfd == NULL)
4385     return FALSE;
4386 
4387   /* If we do not find any suitable primary GOT, create an empty one.  */
4388   if (got_per_bfd_arg.primary == NULL)
4389     {
4390       g->next = (struct mips_got_info *)
4391 	bfd_alloc (abfd, sizeof (struct mips_got_info));
4392       if (g->next == NULL)
4393 	return FALSE;
4394 
4395       g->next->global_gotsym = NULL;
4396       g->next->global_gotno = 0;
4397       g->next->reloc_only_gotno = 0;
4398       g->next->local_gotno = 0;
4399       g->next->page_gotno = 0;
4400       g->next->tls_gotno = 0;
4401       g->next->assigned_gotno = 0;
4402       g->next->tls_assigned_gotno = 0;
4403       g->next->tls_ldm_offset = MINUS_ONE;
4404       g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash,
4405 					      mips_elf_multi_got_entry_eq,
4406 					      NULL);
4407       if (g->next->got_entries == NULL)
4408 	return FALSE;
4409       g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4410 						   mips_got_page_entry_eq,
4411 						   NULL);
4412       if (g->next->got_page_entries == NULL)
4413 	return FALSE;
4414       g->next->bfd2got = NULL;
4415     }
4416   else
4417     g->next = got_per_bfd_arg.primary;
4418   g->next->next = got_per_bfd_arg.current;
4419 
4420   /* GG is now the master GOT, and G is the primary GOT.  */
4421   gg = g;
4422   g = g->next;
4423 
4424   /* Map the output bfd to the primary got.  That's what we're going
4425      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4426      didn't mark in check_relocs, and we want a quick way to find it.
4427      We can't just use gg->next because we're going to reverse the
4428      list.  */
4429   {
4430     struct mips_elf_bfd2got_hash *bfdgot;
4431     void **bfdgotp;
4432 
4433     bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc
4434       (abfd, sizeof (struct mips_elf_bfd2got_hash));
4435 
4436     if (bfdgot == NULL)
4437       return FALSE;
4438 
4439     bfdgot->bfd = abfd;
4440     bfdgot->g = g;
4441     bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT);
4442 
4443     BFD_ASSERT (*bfdgotp == NULL);
4444     *bfdgotp = bfdgot;
4445   }
4446 
4447   /* Every symbol that is referenced in a dynamic relocation must be
4448      present in the primary GOT, so arrange for them to appear after
4449      those that are actually referenced.  */
4450   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4451   g->global_gotno = gg->global_gotno;
4452 
4453   set_got_offset_arg.g = NULL;
4454   set_got_offset_arg.value = GGA_RELOC_ONLY;
4455   htab_traverse (gg->got_entries, mips_elf_set_global_got_offset,
4456 		 &set_got_offset_arg);
4457   set_got_offset_arg.value = GGA_NORMAL;
4458   htab_traverse (g->got_entries, mips_elf_set_global_got_offset,
4459 		 &set_got_offset_arg);
4460 
4461   /* Now go through the GOTs assigning them offset ranges.
4462      [assigned_gotno, local_gotno[ will be set to the range of local
4463      entries in each GOT.  We can then compute the end of a GOT by
4464      adding local_gotno to global_gotno.  We reverse the list and make
4465      it circular since then we'll be able to quickly compute the
4466      beginning of a GOT, by computing the end of its predecessor.  To
4467      avoid special cases for the primary GOT, while still preserving
4468      assertions that are valid for both single- and multi-got links,
4469      we arrange for the main got struct to have the right number of
4470      global entries, but set its local_gotno such that the initial
4471      offset of the primary GOT is zero.  Remember that the primary GOT
4472      will become the last item in the circular linked list, so it
4473      points back to the master GOT.  */
4474   gg->local_gotno = -g->global_gotno;
4475   gg->global_gotno = g->global_gotno;
4476   gg->tls_gotno = 0;
4477   assign = 0;
4478   gg->next = gg;
4479 
4480   do
4481     {
4482       struct mips_got_info *gn;
4483 
4484       assign += htab->reserved_gotno;
4485       g->assigned_gotno = assign;
4486       g->local_gotno += assign;
4487       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4488       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4489 
4490       /* Take g out of the direct list, and push it onto the reversed
4491 	 list that gg points to.  g->next is guaranteed to be nonnull after
4492 	 this operation, as required by mips_elf_initialize_tls_index. */
4493       gn = g->next;
4494       g->next = gg->next;
4495       gg->next = g;
4496 
4497       /* Set up any TLS entries.  We always place the TLS entries after
4498 	 all non-TLS entries.  */
4499       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4500       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
4501 
4502       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
4503       g = gn;
4504 
4505       /* Forbid global symbols in every non-primary GOT from having
4506 	 lazy-binding stubs.  */
4507       if (g)
4508 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
4509     }
4510   while (g);
4511 
4512   got->size = (gg->next->local_gotno
4513 	       + gg->next->global_gotno
4514 	       + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd);
4515 
4516   needed_relocs = 0;
4517   set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd);
4518   set_got_offset_arg.info = info;
4519   for (g = gg->next; g && g->next != gg; g = g->next)
4520     {
4521       unsigned int save_assign;
4522 
4523       /* Assign offsets to global GOT entries.  */
4524       save_assign = g->assigned_gotno;
4525       g->assigned_gotno = g->local_gotno;
4526       set_got_offset_arg.g = g;
4527       set_got_offset_arg.needed_relocs = 0;
4528       htab_traverse (g->got_entries,
4529 		     mips_elf_set_global_got_offset,
4530 		     &set_got_offset_arg);
4531       needed_relocs += set_got_offset_arg.needed_relocs;
4532       BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno);
4533 
4534       g->assigned_gotno = save_assign;
4535       if (info->shared)
4536 	{
4537 	  needed_relocs += g->local_gotno - g->assigned_gotno;
4538 	  BFD_ASSERT (g->assigned_gotno == g->next->local_gotno
4539 		      + g->next->global_gotno
4540 		      + g->next->tls_gotno
4541 		      + htab->reserved_gotno);
4542 	}
4543     }
4544 
4545   if (needed_relocs)
4546     mips_elf_allocate_dynamic_relocations (dynobj, info,
4547 					   needed_relocs);
4548 
4549   return TRUE;
4550 }
4551 
4552 
4553 /* Returns the first relocation of type r_type found, beginning with
4554    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
4555 
4556 static const Elf_Internal_Rela *
4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
4558 			  const Elf_Internal_Rela *relocation,
4559 			  const Elf_Internal_Rela *relend)
4560 {
4561   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
4562 
4563   while (relocation < relend)
4564     {
4565       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
4566 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
4567 	return relocation;
4568 
4569       ++relocation;
4570     }
4571 
4572   /* We didn't find it.  */
4573   return NULL;
4574 }
4575 
4576 /* Return whether an input relocation is against a local symbol.  */
4577 
4578 static bfd_boolean
4579 mips_elf_local_relocation_p (bfd *input_bfd,
4580 			     const Elf_Internal_Rela *relocation,
4581 			     asection **local_sections)
4582 {
4583   unsigned long r_symndx;
4584   Elf_Internal_Shdr *symtab_hdr;
4585   size_t extsymoff;
4586 
4587   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4588   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4589   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
4590 
4591   if (r_symndx < extsymoff)
4592     return TRUE;
4593   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
4594     return TRUE;
4595 
4596   return FALSE;
4597 }
4598 
4599 /* Sign-extend VALUE, which has the indicated number of BITS.  */
4600 
4601 bfd_vma
4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
4603 {
4604   if (value & ((bfd_vma) 1 << (bits - 1)))
4605     /* VALUE is negative.  */
4606     value |= ((bfd_vma) - 1) << bits;
4607 
4608   return value;
4609 }
4610 
4611 /* Return non-zero if the indicated VALUE has overflowed the maximum
4612    range expressible by a signed number with the indicated number of
4613    BITS.  */
4614 
4615 static bfd_boolean
4616 mips_elf_overflow_p (bfd_vma value, int bits)
4617 {
4618   bfd_signed_vma svalue = (bfd_signed_vma) value;
4619 
4620   if (svalue > (1 << (bits - 1)) - 1)
4621     /* The value is too big.  */
4622     return TRUE;
4623   else if (svalue < -(1 << (bits - 1)))
4624     /* The value is too small.  */
4625     return TRUE;
4626 
4627   /* All is well.  */
4628   return FALSE;
4629 }
4630 
4631 /* Calculate the %high function.  */
4632 
4633 static bfd_vma
4634 mips_elf_high (bfd_vma value)
4635 {
4636   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
4637 }
4638 
4639 /* Calculate the %higher function.  */
4640 
4641 static bfd_vma
4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
4643 {
4644 #ifdef BFD64
4645   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
4646 #else
4647   abort ();
4648   return MINUS_ONE;
4649 #endif
4650 }
4651 
4652 /* Calculate the %highest function.  */
4653 
4654 static bfd_vma
4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
4656 {
4657 #ifdef BFD64
4658   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
4659 #else
4660   abort ();
4661   return MINUS_ONE;
4662 #endif
4663 }
4664 
4665 /* Create the .compact_rel section.  */
4666 
4667 static bfd_boolean
4668 mips_elf_create_compact_rel_section
4669   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
4670 {
4671   flagword flags;
4672   register asection *s;
4673 
4674   if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL)
4675     {
4676       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
4677 	       | SEC_READONLY);
4678 
4679       s = bfd_make_section_with_flags (abfd, ".compact_rel", flags);
4680       if (s == NULL
4681 	  || ! bfd_set_section_alignment (abfd, s,
4682 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
4683 	return FALSE;
4684 
4685       s->size = sizeof (Elf32_External_compact_rel);
4686     }
4687 
4688   return TRUE;
4689 }
4690 
4691 /* Create the .got section to hold the global offset table.  */
4692 
4693 static bfd_boolean
4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
4695 {
4696   flagword flags;
4697   register asection *s;
4698   struct elf_link_hash_entry *h;
4699   struct bfd_link_hash_entry *bh;
4700   struct mips_got_info *g;
4701   bfd_size_type amt;
4702   struct mips_elf_link_hash_table *htab;
4703 
4704   htab = mips_elf_hash_table (info);
4705   BFD_ASSERT (htab != NULL);
4706 
4707   /* This function may be called more than once.  */
4708   if (htab->sgot)
4709     return TRUE;
4710 
4711   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
4712 	   | SEC_LINKER_CREATED);
4713 
4714   /* We have to use an alignment of 2**4 here because this is hardcoded
4715      in the function stub generation and in the linker script.  */
4716   s = bfd_make_section_with_flags (abfd, ".got", flags);
4717   if (s == NULL
4718       || ! bfd_set_section_alignment (abfd, s, 4))
4719     return FALSE;
4720   htab->sgot = s;
4721 
4722   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
4723      linker script because we don't want to define the symbol if we
4724      are not creating a global offset table.  */
4725   bh = NULL;
4726   if (! (_bfd_generic_link_add_one_symbol
4727 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
4728 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
4729     return FALSE;
4730 
4731   h = (struct elf_link_hash_entry *) bh;
4732   h->non_elf = 0;
4733   h->def_regular = 1;
4734   h->type = STT_OBJECT;
4735   elf_hash_table (info)->hgot = h;
4736 
4737   if (info->shared
4738       && ! bfd_elf_link_record_dynamic_symbol (info, h))
4739     return FALSE;
4740 
4741   amt = sizeof (struct mips_got_info);
4742   g = bfd_alloc (abfd, amt);
4743   if (g == NULL)
4744     return FALSE;
4745   g->global_gotsym = NULL;
4746   g->global_gotno = 0;
4747   g->reloc_only_gotno = 0;
4748   g->tls_gotno = 0;
4749   g->local_gotno = 0;
4750   g->page_gotno = 0;
4751   g->assigned_gotno = 0;
4752   g->bfd2got = NULL;
4753   g->next = NULL;
4754   g->tls_ldm_offset = MINUS_ONE;
4755   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
4756 				    mips_elf_got_entry_eq, NULL);
4757   if (g->got_entries == NULL)
4758     return FALSE;
4759   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4760 					 mips_got_page_entry_eq, NULL);
4761   if (g->got_page_entries == NULL)
4762     return FALSE;
4763   htab->got_info = g;
4764   mips_elf_section_data (s)->elf.this_hdr.sh_flags
4765     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
4766 
4767   /* We also need a .got.plt section when generating PLTs.  */
4768   s = bfd_make_section_with_flags (abfd, ".got.plt",
4769 				   SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
4770 				   | SEC_IN_MEMORY | SEC_LINKER_CREATED);
4771   if (s == NULL)
4772     return FALSE;
4773   htab->sgotplt = s;
4774 
4775   return TRUE;
4776 }
4777 
4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
4779    __GOTT_INDEX__ symbols.  These symbols are only special for
4780    shared objects; they are not used in executables.  */
4781 
4782 static bfd_boolean
4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
4784 {
4785   return (mips_elf_hash_table (info)->is_vxworks
4786 	  && info->shared
4787 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
4788 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
4789 }
4790 
4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
4792    require an la25 stub.  See also mips_elf_local_pic_function_p,
4793    which determines whether the destination function ever requires a
4794    stub.  */
4795 
4796 static bfd_boolean
4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type)
4798 {
4799   /* We specifically ignore branches and jumps from EF_PIC objects,
4800      where the onus is on the compiler or programmer to perform any
4801      necessary initialization of $25.  Sometimes such initialization
4802      is unnecessary; for example, -mno-shared functions do not use
4803      the incoming value of $25, and may therefore be called directly.  */
4804   if (PIC_OBJECT_P (input_bfd))
4805     return FALSE;
4806 
4807   switch (r_type)
4808     {
4809     case R_MIPS_26:
4810     case R_MIPS_PC16:
4811     case R_MIPS16_26:
4812       return TRUE;
4813 
4814     default:
4815       return FALSE;
4816     }
4817 }
4818 
4819 /* Calculate the value produced by the RELOCATION (which comes from
4820    the INPUT_BFD).  The ADDEND is the addend to use for this
4821    RELOCATION; RELOCATION->R_ADDEND is ignored.
4822 
4823    The result of the relocation calculation is stored in VALUEP.
4824    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
4825    is a MIPS16 jump to non-MIPS16 code, or vice versa.
4826 
4827    This function returns bfd_reloc_continue if the caller need take no
4828    further action regarding this relocation, bfd_reloc_notsupported if
4829    something goes dramatically wrong, bfd_reloc_overflow if an
4830    overflow occurs, and bfd_reloc_ok to indicate success.  */
4831 
4832 static bfd_reloc_status_type
4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
4834 			       asection *input_section,
4835 			       struct bfd_link_info *info,
4836 			       const Elf_Internal_Rela *relocation,
4837 			       bfd_vma addend, reloc_howto_type *howto,
4838 			       Elf_Internal_Sym *local_syms,
4839 			       asection **local_sections, bfd_vma *valuep,
4840 			       const char **namep,
4841 			       bfd_boolean *cross_mode_jump_p,
4842 			       bfd_boolean save_addend)
4843 {
4844   /* The eventual value we will return.  */
4845   bfd_vma value;
4846   /* The address of the symbol against which the relocation is
4847      occurring.  */
4848   bfd_vma symbol = 0;
4849   /* The final GP value to be used for the relocatable, executable, or
4850      shared object file being produced.  */
4851   bfd_vma gp;
4852   /* The place (section offset or address) of the storage unit being
4853      relocated.  */
4854   bfd_vma p;
4855   /* The value of GP used to create the relocatable object.  */
4856   bfd_vma gp0;
4857   /* The offset into the global offset table at which the address of
4858      the relocation entry symbol, adjusted by the addend, resides
4859      during execution.  */
4860   bfd_vma g = MINUS_ONE;
4861   /* The section in which the symbol referenced by the relocation is
4862      located.  */
4863   asection *sec = NULL;
4864   struct mips_elf_link_hash_entry *h = NULL;
4865   /* TRUE if the symbol referred to by this relocation is a local
4866      symbol.  */
4867   bfd_boolean local_p, was_local_p;
4868   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
4869   bfd_boolean gp_disp_p = FALSE;
4870   /* TRUE if the symbol referred to by this relocation is
4871      "__gnu_local_gp".  */
4872   bfd_boolean gnu_local_gp_p = FALSE;
4873   Elf_Internal_Shdr *symtab_hdr;
4874   size_t extsymoff;
4875   unsigned long r_symndx;
4876   int r_type;
4877   /* TRUE if overflow occurred during the calculation of the
4878      relocation value.  */
4879   bfd_boolean overflowed_p;
4880   /* TRUE if this relocation refers to a MIPS16 function.  */
4881   bfd_boolean target_is_16_bit_code_p = FALSE;
4882   struct mips_elf_link_hash_table *htab;
4883   bfd *dynobj;
4884 
4885   dynobj = elf_hash_table (info)->dynobj;
4886   htab = mips_elf_hash_table (info);
4887   BFD_ASSERT (htab != NULL);
4888 
4889   /* Parse the relocation.  */
4890   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
4891   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
4892   p = (input_section->output_section->vma
4893        + input_section->output_offset
4894        + relocation->r_offset);
4895 
4896   /* Assume that there will be no overflow.  */
4897   overflowed_p = FALSE;
4898 
4899   /* Figure out whether or not the symbol is local, and get the offset
4900      used in the array of hash table entries.  */
4901   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4902   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
4903 					 local_sections);
4904   was_local_p = local_p;
4905   if (! elf_bad_symtab (input_bfd))
4906     extsymoff = symtab_hdr->sh_info;
4907   else
4908     {
4909       /* The symbol table does not follow the rule that local symbols
4910 	 must come before globals.  */
4911       extsymoff = 0;
4912     }
4913 
4914   /* Figure out the value of the symbol.  */
4915   if (local_p)
4916     {
4917       Elf_Internal_Sym *sym;
4918 
4919       sym = local_syms + r_symndx;
4920       sec = local_sections[r_symndx];
4921 
4922       symbol = sec->output_section->vma + sec->output_offset;
4923       if (ELF_ST_TYPE (sym->st_info) != STT_SECTION
4924 	  || (sec->flags & SEC_MERGE))
4925 	symbol += sym->st_value;
4926       if ((sec->flags & SEC_MERGE)
4927 	  && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
4928 	{
4929 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
4930 	  addend -= symbol;
4931 	  addend += sec->output_section->vma + sec->output_offset;
4932 	}
4933 
4934       /* MIPS16 text labels should be treated as odd.  */
4935       if (ELF_ST_IS_MIPS16 (sym->st_other))
4936 	++symbol;
4937 
4938       /* Record the name of this symbol, for our caller.  */
4939       *namep = bfd_elf_string_from_elf_section (input_bfd,
4940 						symtab_hdr->sh_link,
4941 						sym->st_name);
4942       if (*namep == '\0')
4943 	*namep = bfd_section_name (input_bfd, sec);
4944 
4945       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
4946     }
4947   else
4948     {
4949       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
4950 
4951       /* For global symbols we look up the symbol in the hash-table.  */
4952       h = ((struct mips_elf_link_hash_entry *)
4953 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
4954       /* Find the real hash-table entry for this symbol.  */
4955       while (h->root.root.type == bfd_link_hash_indirect
4956 	     || h->root.root.type == bfd_link_hash_warning)
4957 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4958 
4959       /* Record the name of this symbol, for our caller.  */
4960       *namep = h->root.root.root.string;
4961 
4962       /* See if this is the special _gp_disp symbol.  Note that such a
4963 	 symbol must always be a global symbol.  */
4964       if (strcmp (*namep, "_gp_disp") == 0
4965 	  && ! NEWABI_P (input_bfd))
4966 	{
4967 	  /* Relocations against _gp_disp are permitted only with
4968 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
4969 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
4970 	    return bfd_reloc_notsupported;
4971 
4972 	  gp_disp_p = TRUE;
4973 	}
4974       /* See if this is the special _gp symbol.  Note that such a
4975 	 symbol must always be a global symbol.  */
4976       else if (strcmp (*namep, "__gnu_local_gp") == 0)
4977 	gnu_local_gp_p = TRUE;
4978 
4979 
4980       /* If this symbol is defined, calculate its address.  Note that
4981 	 _gp_disp is a magic symbol, always implicitly defined by the
4982 	 linker, so it's inappropriate to check to see whether or not
4983 	 its defined.  */
4984       else if ((h->root.root.type == bfd_link_hash_defined
4985 		|| h->root.root.type == bfd_link_hash_defweak)
4986 	       && h->root.root.u.def.section)
4987 	{
4988 	  sec = h->root.root.u.def.section;
4989 	  if (sec->output_section)
4990 	    symbol = (h->root.root.u.def.value
4991 		      + sec->output_section->vma
4992 		      + sec->output_offset);
4993 	  else
4994 	    symbol = h->root.root.u.def.value;
4995 	}
4996       else if (h->root.root.type == bfd_link_hash_undefweak)
4997 	/* We allow relocations against undefined weak symbols, giving
4998 	   it the value zero, so that you can undefined weak functions
4999 	   and check to see if they exist by looking at their
5000 	   addresses.  */
5001 	symbol = 0;
5002       else if (info->unresolved_syms_in_objects == RM_IGNORE
5003 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5004 	symbol = 0;
5005       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5006 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5007 	{
5008 	  /* If this is a dynamic link, we should have created a
5009 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5010 	     in in _bfd_mips_elf_create_dynamic_sections.
5011 	     Otherwise, we should define the symbol with a value of 0.
5012 	     FIXME: It should probably get into the symbol table
5013 	     somehow as well.  */
5014 	  BFD_ASSERT (! info->shared);
5015 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5016 	  symbol = 0;
5017 	}
5018       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5019 	{
5020 	  /* This is an optional symbol - an Irix specific extension to the
5021 	     ELF spec.  Ignore it for now.
5022 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5023 	     than simply ignoring them, but we do not handle this for now.
5024 	     For information see the "64-bit ELF Object File Specification"
5025 	     which is available from here:
5026 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5027 	  symbol = 0;
5028 	}
5029       else if ((*info->callbacks->undefined_symbol)
5030 	       (info, h->root.root.root.string, input_bfd,
5031 		input_section, relocation->r_offset,
5032 		(info->unresolved_syms_in_objects == RM_GENERATE_ERROR)
5033 		 || ELF_ST_VISIBILITY (h->root.other)))
5034 	{
5035 	  return bfd_reloc_undefined;
5036 	}
5037       else
5038 	{
5039 	  return bfd_reloc_notsupported;
5040 	}
5041 
5042       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5043     }
5044 
5045   /* If this is a reference to a 16-bit function with a stub, we need
5046      to redirect the relocation to the stub unless:
5047 
5048      (a) the relocation is for a MIPS16 JAL;
5049 
5050      (b) the relocation is for a MIPS16 PIC call, and there are no
5051 	 non-MIPS16 uses of the GOT slot; or
5052 
5053      (c) the section allows direct references to MIPS16 functions.  */
5054   if (r_type != R_MIPS16_26
5055       && !info->relocatable
5056       && ((h != NULL
5057 	   && h->fn_stub != NULL
5058 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5059 	  || (local_p
5060 	      && elf_tdata (input_bfd)->local_stubs != NULL
5061 	      && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5062       && !section_allows_mips16_refs_p (input_section))
5063     {
5064       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5065 	 have already noticed that we were going to need the
5066 	 stub.  */
5067       if (local_p)
5068 	sec = elf_tdata (input_bfd)->local_stubs[r_symndx];
5069       else
5070 	{
5071 	  BFD_ASSERT (h->need_fn_stub);
5072 	  sec = h->fn_stub;
5073 	}
5074 
5075       symbol = sec->output_section->vma + sec->output_offset;
5076       /* The target is 16-bit, but the stub isn't.  */
5077       target_is_16_bit_code_p = FALSE;
5078     }
5079   /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we
5080      need to redirect the call to the stub.  Note that we specifically
5081      exclude R_MIPS16_CALL16 from this behavior; indirect calls should
5082      use an indirect stub instead.  */
5083   else if (r_type == R_MIPS16_26 && !info->relocatable
5084 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5085 	       || (local_p
5086 		   && elf_tdata (input_bfd)->local_call_stubs != NULL
5087 		   && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5088 	   && !target_is_16_bit_code_p)
5089     {
5090       if (local_p)
5091 	sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5092       else
5093 	{
5094 	  /* If both call_stub and call_fp_stub are defined, we can figure
5095 	     out which one to use by checking which one appears in the input
5096 	     file.  */
5097 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5098 	    {
5099 	      asection *o;
5100 
5101 	      sec = NULL;
5102 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5103 		{
5104 		  if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o)))
5105 		    {
5106 		      sec = h->call_fp_stub;
5107 		      break;
5108 		    }
5109 		}
5110 	      if (sec == NULL)
5111 		sec = h->call_stub;
5112 	    }
5113 	  else if (h->call_stub != NULL)
5114 	    sec = h->call_stub;
5115 	  else
5116 	    sec = h->call_fp_stub;
5117   	}
5118 
5119       BFD_ASSERT (sec->size > 0);
5120       symbol = sec->output_section->vma + sec->output_offset;
5121     }
5122   /* If this is a direct call to a PIC function, redirect to the
5123      non-PIC stub.  */
5124   else if (h != NULL && h->la25_stub
5125 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type))
5126     symbol = (h->la25_stub->stub_section->output_section->vma
5127 	      + h->la25_stub->stub_section->output_offset
5128 	      + h->la25_stub->offset);
5129 
5130   /* Calls from 16-bit code to 32-bit code and vice versa require the
5131      mode change.  */
5132   *cross_mode_jump_p = !info->relocatable
5133 		       && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p)
5134 			   || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR)
5135 			       && target_is_16_bit_code_p));
5136 
5137   local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root);
5138 
5139   gp0 = _bfd_get_gp_value (input_bfd);
5140   gp = _bfd_get_gp_value (abfd);
5141   if (htab->got_info)
5142     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5143 
5144   if (gnu_local_gp_p)
5145     symbol = gp;
5146 
5147   /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP.
5148      The addend is applied by the corresponding R_MIPS_GOT_OFST.  */
5149   if (r_type == R_MIPS_GOT_PAGE && !local_p)
5150     {
5151       r_type = R_MIPS_GOT_DISP;
5152       addend = 0;
5153     }
5154 
5155   /* If we haven't already determined the GOT offset, and we're going
5156      to need it, get it now.  */
5157   switch (r_type)
5158     {
5159     case R_MIPS16_CALL16:
5160     case R_MIPS16_GOT16:
5161     case R_MIPS_CALL16:
5162     case R_MIPS_GOT16:
5163     case R_MIPS_GOT_DISP:
5164     case R_MIPS_GOT_HI16:
5165     case R_MIPS_CALL_HI16:
5166     case R_MIPS_GOT_LO16:
5167     case R_MIPS_CALL_LO16:
5168     case R_MIPS_TLS_GD:
5169     case R_MIPS_TLS_GOTTPREL:
5170     case R_MIPS_TLS_LDM:
5171       /* Find the index into the GOT where this value is located.  */
5172       if (r_type == R_MIPS_TLS_LDM)
5173 	{
5174 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5175 					0, 0, NULL, r_type);
5176 	  if (g == MINUS_ONE)
5177 	    return bfd_reloc_outofrange;
5178 	}
5179       else if (!local_p)
5180 	{
5181 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5182 	     entry, which is initialized to point at the PLT stub.  */
5183 	  if (htab->is_vxworks
5184 	      && (r_type == R_MIPS_CALL_HI16
5185 		  || r_type == R_MIPS_CALL_LO16
5186 		  || call16_reloc_p (r_type)))
5187 	    {
5188 	      BFD_ASSERT (addend == 0);
5189 	      BFD_ASSERT (h->root.needs_plt);
5190 	      g = mips_elf_gotplt_index (info, &h->root);
5191 	    }
5192 	  else
5193 	    {
5194 	      BFD_ASSERT (addend == 0);
5195 	      g = mips_elf_global_got_index (dynobj, input_bfd,
5196 					     &h->root, r_type, info);
5197 	      if (h->tls_type == GOT_NORMAL
5198 		  && !elf_hash_table (info)->dynamic_sections_created)
5199 		/* This is a static link.  We must initialize the GOT entry.  */
5200 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g);
5201 	    }
5202 	}
5203       else if (!htab->is_vxworks
5204 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5205 	/* The calculation below does not involve "g".  */
5206 	break;
5207       else
5208 	{
5209 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5210 					symbol + addend, r_symndx, h, r_type);
5211 	  if (g == MINUS_ONE)
5212 	    return bfd_reloc_outofrange;
5213 	}
5214 
5215       /* Convert GOT indices to actual offsets.  */
5216       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5217       break;
5218     }
5219 
5220   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5221      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5222   if (h != NULL && is_gott_symbol (info, &h->root))
5223     {
5224       Elf_Internal_Rela outrel;
5225       bfd_byte *loc;
5226       asection *s;
5227 
5228       s = mips_elf_rel_dyn_section (info, FALSE);
5229       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5230 
5231       outrel.r_offset = (input_section->output_section->vma
5232 			 + input_section->output_offset
5233 			 + relocation->r_offset);
5234       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5235       outrel.r_addend = addend;
5236       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5237 
5238       /* If we've written this relocation for a readonly section,
5239 	 we need to set DF_TEXTREL again, so that we do not delete the
5240 	 DT_TEXTREL tag.  */
5241       if (MIPS_ELF_READONLY_SECTION (input_section))
5242 	info->flags |= DF_TEXTREL;
5243 
5244       *valuep = 0;
5245       return bfd_reloc_ok;
5246     }
5247 
5248   /* Figure out what kind of relocation is being performed.  */
5249   switch (r_type)
5250     {
5251     case R_MIPS_NONE:
5252       return bfd_reloc_continue;
5253 
5254     case R_MIPS_16:
5255       value = symbol + _bfd_mips_elf_sign_extend (addend, 16);
5256       overflowed_p = mips_elf_overflow_p (value, 16);
5257       break;
5258 
5259     case R_MIPS_32:
5260     case R_MIPS_REL32:
5261     case R_MIPS_64:
5262       if ((info->shared
5263 	   || (htab->root.dynamic_sections_created
5264 	       && h != NULL
5265 	       && h->root.def_dynamic
5266 	       && !h->root.def_regular
5267 	       && !h->has_static_relocs))
5268 	  && r_symndx != STN_UNDEF
5269 	  && (h == NULL
5270 	      || h->root.root.type != bfd_link_hash_undefweak
5271 	      || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5272 	  && (input_section->flags & SEC_ALLOC) != 0)
5273 	{
5274 	  /* If we're creating a shared library, then we can't know
5275 	     where the symbol will end up.  So, we create a relocation
5276 	     record in the output, and leave the job up to the dynamic
5277 	     linker.  We must do the same for executable references to
5278 	     shared library symbols, unless we've decided to use copy
5279 	     relocs or PLTs instead.  */
5280 	  value = addend;
5281 	  if (!mips_elf_create_dynamic_relocation (abfd,
5282 						   info,
5283 						   relocation,
5284 						   h,
5285 						   sec,
5286 						   symbol,
5287 						   &value,
5288 						   input_section))
5289 	    return bfd_reloc_undefined;
5290 	}
5291       else
5292 	{
5293 	  if (r_type != R_MIPS_REL32)
5294 	    value = symbol + addend;
5295 	  else
5296 	    value = addend;
5297 	}
5298       value &= howto->dst_mask;
5299       break;
5300 
5301     case R_MIPS_PC32:
5302       value = symbol + addend - p;
5303       value &= howto->dst_mask;
5304       break;
5305 
5306     case R_MIPS16_26:
5307       /* The calculation for R_MIPS16_26 is just the same as for an
5308 	 R_MIPS_26.  It's only the storage of the relocated field into
5309 	 the output file that's different.  That's handled in
5310 	 mips_elf_perform_relocation.  So, we just fall through to the
5311 	 R_MIPS_26 case here.  */
5312     case R_MIPS_26:
5313       if (was_local_p)
5314 	value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2;
5315       else
5316 	{
5317 	  value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2;
5318 	  if (h->root.root.type != bfd_link_hash_undefweak)
5319 	    overflowed_p = (value >> 26) != ((p + 4) >> 28);
5320 	}
5321       value &= howto->dst_mask;
5322       break;
5323 
5324     case R_MIPS_TLS_DTPREL_HI16:
5325       value = (mips_elf_high (addend + symbol - dtprel_base (info))
5326 	       & howto->dst_mask);
5327       break;
5328 
5329     case R_MIPS_TLS_DTPREL_LO16:
5330     case R_MIPS_TLS_DTPREL32:
5331     case R_MIPS_TLS_DTPREL64:
5332       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
5333       break;
5334 
5335     case R_MIPS_TLS_TPREL_HI16:
5336       value = (mips_elf_high (addend + symbol - tprel_base (info))
5337 	       & howto->dst_mask);
5338       break;
5339 
5340     case R_MIPS_TLS_TPREL_LO16:
5341       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
5342       break;
5343 
5344     case R_MIPS_HI16:
5345     case R_MIPS16_HI16:
5346       if (!gp_disp_p)
5347 	{
5348 	  value = mips_elf_high (addend + symbol);
5349 	  value &= howto->dst_mask;
5350 	}
5351       else
5352 	{
5353 	  /* For MIPS16 ABI code we generate this sequence
5354 	        0: li      $v0,%hi(_gp_disp)
5355 	        4: addiupc $v1,%lo(_gp_disp)
5356 	        8: sll     $v0,16
5357 	       12: addu    $v0,$v1
5358 	       14: move    $gp,$v0
5359 	     So the offsets of hi and lo relocs are the same, but the
5360 	     $pc is four higher than $t9 would be, so reduce
5361 	     both reloc addends by 4. */
5362 	  if (r_type == R_MIPS16_HI16)
5363 	    value = mips_elf_high (addend + gp - p - 4);
5364 	  else
5365 	    value = mips_elf_high (addend + gp - p);
5366 	  overflowed_p = mips_elf_overflow_p (value, 16);
5367 	}
5368       break;
5369 
5370     case R_MIPS_LO16:
5371     case R_MIPS16_LO16:
5372       if (!gp_disp_p)
5373 	value = (symbol + addend) & howto->dst_mask;
5374       else
5375 	{
5376 	  /* See the comment for R_MIPS16_HI16 above for the reason
5377 	     for this conditional.  */
5378 	  if (r_type == R_MIPS16_LO16)
5379 	    value = addend + gp - p;
5380 	  else
5381 	    value = addend + gp - p + 4;
5382 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
5383 	     for overflow.  But, on, say, IRIX5, relocations against
5384 	     _gp_disp are normally generated from the .cpload
5385 	     pseudo-op.  It generates code that normally looks like
5386 	     this:
5387 
5388 	       lui    $gp,%hi(_gp_disp)
5389 	       addiu  $gp,$gp,%lo(_gp_disp)
5390 	       addu   $gp,$gp,$t9
5391 
5392 	     Here $t9 holds the address of the function being called,
5393 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
5394 	     relocation can easily overflow in this situation, but the
5395 	     R_MIPS_HI16 relocation will handle the overflow.
5396 	     Therefore, we consider this a bug in the MIPS ABI, and do
5397 	     not check for overflow here.  */
5398 	}
5399       break;
5400 
5401     case R_MIPS_LITERAL:
5402       /* Because we don't merge literal sections, we can handle this
5403 	 just like R_MIPS_GPREL16.  In the long run, we should merge
5404 	 shared literals, and then we will need to additional work
5405 	 here.  */
5406 
5407       /* Fall through.  */
5408 
5409     case R_MIPS16_GPREL:
5410       /* The R_MIPS16_GPREL performs the same calculation as
5411 	 R_MIPS_GPREL16, but stores the relocated bits in a different
5412 	 order.  We don't need to do anything special here; the
5413 	 differences are handled in mips_elf_perform_relocation.  */
5414     case R_MIPS_GPREL16:
5415       /* Only sign-extend the addend if it was extracted from the
5416 	 instruction.  If the addend was separate, leave it alone,
5417 	 otherwise we may lose significant bits.  */
5418       if (howto->partial_inplace)
5419 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5420       value = symbol + addend - gp;
5421       /* If the symbol was local, any earlier relocatable links will
5422 	 have adjusted its addend with the gp offset, so compensate
5423 	 for that now.  Don't do it for symbols forced local in this
5424 	 link, though, since they won't have had the gp offset applied
5425 	 to them before.  */
5426       if (was_local_p)
5427 	value += gp0;
5428       overflowed_p = mips_elf_overflow_p (value, 16);
5429       break;
5430 
5431     case R_MIPS16_GOT16:
5432     case R_MIPS16_CALL16:
5433     case R_MIPS_GOT16:
5434     case R_MIPS_CALL16:
5435       /* VxWorks does not have separate local and global semantics for
5436 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
5437       if (!htab->is_vxworks && local_p)
5438 	{
5439 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
5440 					symbol + addend, !was_local_p);
5441 	  if (value == MINUS_ONE)
5442 	    return bfd_reloc_outofrange;
5443 	  value
5444 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5445 	  overflowed_p = mips_elf_overflow_p (value, 16);
5446 	  break;
5447 	}
5448 
5449       /* Fall through.  */
5450 
5451     case R_MIPS_TLS_GD:
5452     case R_MIPS_TLS_GOTTPREL:
5453     case R_MIPS_TLS_LDM:
5454     case R_MIPS_GOT_DISP:
5455       value = g;
5456       overflowed_p = mips_elf_overflow_p (value, 16);
5457       break;
5458 
5459     case R_MIPS_GPREL32:
5460       value = (addend + symbol + gp0 - gp);
5461       if (!save_addend)
5462 	value &= howto->dst_mask;
5463       break;
5464 
5465     case R_MIPS_PC16:
5466     case R_MIPS_GNU_REL16_S2:
5467       value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p;
5468       overflowed_p = mips_elf_overflow_p (value, 18);
5469       value >>= howto->rightshift;
5470       value &= howto->dst_mask;
5471       break;
5472 
5473     case R_MIPS_GOT_HI16:
5474     case R_MIPS_CALL_HI16:
5475       /* We're allowed to handle these two relocations identically.
5476 	 The dynamic linker is allowed to handle the CALL relocations
5477 	 differently by creating a lazy evaluation stub.  */
5478       value = g;
5479       value = mips_elf_high (value);
5480       value &= howto->dst_mask;
5481       break;
5482 
5483     case R_MIPS_GOT_LO16:
5484     case R_MIPS_CALL_LO16:
5485       value = g & howto->dst_mask;
5486       break;
5487 
5488     case R_MIPS_GOT_PAGE:
5489       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
5490       if (value == MINUS_ONE)
5491 	return bfd_reloc_outofrange;
5492       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
5493       overflowed_p = mips_elf_overflow_p (value, 16);
5494       break;
5495 
5496     case R_MIPS_GOT_OFST:
5497       if (local_p)
5498 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
5499       else
5500 	value = addend;
5501       overflowed_p = mips_elf_overflow_p (value, 16);
5502       break;
5503 
5504     case R_MIPS_SUB:
5505       value = symbol - addend;
5506       value &= howto->dst_mask;
5507       break;
5508 
5509     case R_MIPS_HIGHER:
5510       value = mips_elf_higher (addend + symbol);
5511       value &= howto->dst_mask;
5512       break;
5513 
5514     case R_MIPS_HIGHEST:
5515       value = mips_elf_highest (addend + symbol);
5516       value &= howto->dst_mask;
5517       break;
5518 
5519     case R_MIPS_SCN_DISP:
5520       value = symbol + addend - sec->output_offset;
5521       value &= howto->dst_mask;
5522       break;
5523 
5524     case R_MIPS_JALR:
5525       /* This relocation is only a hint.  In some cases, we optimize
5526 	 it into a bal instruction.  But we don't try to optimize
5527 	 when the symbol does not resolve locally.  */
5528       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
5529 	return bfd_reloc_continue;
5530       value = symbol + addend;
5531       break;
5532 
5533     case R_MIPS_PJUMP:
5534     case R_MIPS_GNU_VTINHERIT:
5535     case R_MIPS_GNU_VTENTRY:
5536       /* We don't do anything with these at present.  */
5537       return bfd_reloc_continue;
5538 
5539     default:
5540       /* An unrecognized relocation type.  */
5541       return bfd_reloc_notsupported;
5542     }
5543 
5544   /* Store the VALUE for our caller.  */
5545   *valuep = value;
5546   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
5547 }
5548 
5549 /* Obtain the field relocated by RELOCATION.  */
5550 
5551 static bfd_vma
5552 mips_elf_obtain_contents (reloc_howto_type *howto,
5553 			  const Elf_Internal_Rela *relocation,
5554 			  bfd *input_bfd, bfd_byte *contents)
5555 {
5556   bfd_vma x;
5557   bfd_byte *location = contents + relocation->r_offset;
5558 
5559   /* Obtain the bytes.  */
5560   x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location);
5561 
5562   return x;
5563 }
5564 
5565 /* It has been determined that the result of the RELOCATION is the
5566    VALUE.  Use HOWTO to place VALUE into the output file at the
5567    appropriate position.  The SECTION is the section to which the
5568    relocation applies.
5569    CROSS_MODE_JUMP_P is true if the relocation field
5570    is a MIPS16 jump to non-MIPS16 code, or vice versa.
5571 
5572    Returns FALSE if anything goes wrong.  */
5573 
5574 static bfd_boolean
5575 mips_elf_perform_relocation (struct bfd_link_info *info,
5576 			     reloc_howto_type *howto,
5577 			     const Elf_Internal_Rela *relocation,
5578 			     bfd_vma value, bfd *input_bfd,
5579 			     asection *input_section, bfd_byte *contents,
5580 			     bfd_boolean cross_mode_jump_p)
5581 {
5582   bfd_vma x;
5583   bfd_byte *location;
5584   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5585 
5586   /* Figure out where the relocation is occurring.  */
5587   location = contents + relocation->r_offset;
5588 
5589   _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5590 
5591   /* Obtain the current value.  */
5592   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5593 
5594   /* Clear the field we are setting.  */
5595   x &= ~howto->dst_mask;
5596 
5597   /* Set the field.  */
5598   x |= (value & howto->dst_mask);
5599 
5600   /* If required, turn JAL into JALX.  */
5601   if (cross_mode_jump_p && jal_reloc_p (r_type))
5602     {
5603       bfd_boolean ok;
5604       bfd_vma opcode = x >> 26;
5605       bfd_vma jalx_opcode;
5606 
5607       /* Check to see if the opcode is already JAL or JALX.  */
5608       if (r_type == R_MIPS16_26)
5609 	{
5610 	  ok = ((opcode == 0x6) || (opcode == 0x7));
5611 	  jalx_opcode = 0x7;
5612 	}
5613       else
5614 	{
5615 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
5616 	  jalx_opcode = 0x1d;
5617 	}
5618 
5619       /* If the opcode is not JAL or JALX, there's a problem.  */
5620       if (!ok)
5621 	{
5622 	  (*_bfd_error_handler)
5623 	    (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."),
5624 	     input_bfd,
5625 	     input_section,
5626 	     (unsigned long) relocation->r_offset);
5627 	  bfd_set_error (bfd_error_bad_value);
5628 	  return FALSE;
5629 	}
5630 
5631       /* Make this the JALX opcode.  */
5632       x = (x & ~(0x3f << 26)) | (jalx_opcode << 26);
5633     }
5634 
5635   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
5636      range.  */
5637   if (!info->relocatable
5638       && !cross_mode_jump_p
5639       && ((JAL_TO_BAL_P (input_bfd)
5640 	   && r_type == R_MIPS_26
5641 	   && (x >> 26) == 0x3)		/* jal addr */
5642 	  || (JALR_TO_BAL_P (input_bfd)
5643 	      && r_type == R_MIPS_JALR
5644 	      && x == 0x0320f809)	/* jalr t9 */
5645 	  || (JR_TO_B_P (input_bfd)
5646 	      && r_type == R_MIPS_JALR
5647 	      && x == 0x03200008)))	/* jr t9 */
5648     {
5649       bfd_vma addr;
5650       bfd_vma dest;
5651       bfd_signed_vma off;
5652 
5653       addr = (input_section->output_section->vma
5654 	      + input_section->output_offset
5655 	      + relocation->r_offset
5656 	      + 4);
5657       if (r_type == R_MIPS_26)
5658 	dest = (value << 2) | ((addr >> 28) << 28);
5659       else
5660 	dest = value;
5661       off = dest - addr;
5662       if (off <= 0x1ffff && off >= -0x20000)
5663 	{
5664 	  if (x == 0x03200008)	/* jr t9 */
5665 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
5666 	  else
5667 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
5668 	}
5669     }
5670 
5671   /* Put the value into the output.  */
5672   bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location);
5673 
5674   _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable,
5675 				location);
5676 
5677   return TRUE;
5678 }
5679 
5680 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
5681    is the original relocation, which is now being transformed into a
5682    dynamic relocation.  The ADDENDP is adjusted if necessary; the
5683    caller should store the result in place of the original addend.  */
5684 
5685 static bfd_boolean
5686 mips_elf_create_dynamic_relocation (bfd *output_bfd,
5687 				    struct bfd_link_info *info,
5688 				    const Elf_Internal_Rela *rel,
5689 				    struct mips_elf_link_hash_entry *h,
5690 				    asection *sec, bfd_vma symbol,
5691 				    bfd_vma *addendp, asection *input_section)
5692 {
5693   Elf_Internal_Rela outrel[3];
5694   asection *sreloc;
5695   bfd *dynobj;
5696   int r_type;
5697   long indx;
5698   bfd_boolean defined_p;
5699   struct mips_elf_link_hash_table *htab;
5700 
5701   htab = mips_elf_hash_table (info);
5702   BFD_ASSERT (htab != NULL);
5703 
5704   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
5705   dynobj = elf_hash_table (info)->dynobj;
5706   sreloc = mips_elf_rel_dyn_section (info, FALSE);
5707   BFD_ASSERT (sreloc != NULL);
5708   BFD_ASSERT (sreloc->contents != NULL);
5709   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
5710 	      < sreloc->size);
5711 
5712   outrel[0].r_offset =
5713     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
5714   if (ABI_64_P (output_bfd))
5715     {
5716       outrel[1].r_offset =
5717 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
5718       outrel[2].r_offset =
5719 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
5720     }
5721 
5722   if (outrel[0].r_offset == MINUS_ONE)
5723     /* The relocation field has been deleted.  */
5724     return TRUE;
5725 
5726   if (outrel[0].r_offset == MINUS_TWO)
5727     {
5728       /* The relocation field has been converted into a relative value of
5729 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
5730 	 the field to be fully relocated, so add in the symbol's value.  */
5731       *addendp += symbol;
5732       return TRUE;
5733     }
5734 
5735   /* We must now calculate the dynamic symbol table index to use
5736      in the relocation.  */
5737   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
5738     {
5739       BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
5740       indx = h->root.dynindx;
5741       if (SGI_COMPAT (output_bfd))
5742 	defined_p = h->root.def_regular;
5743       else
5744 	/* ??? glibc's ld.so just adds the final GOT entry to the
5745 	   relocation field.  It therefore treats relocs against
5746 	   defined symbols in the same way as relocs against
5747 	   undefined symbols.  */
5748 	defined_p = FALSE;
5749     }
5750   else
5751     {
5752       if (sec != NULL && bfd_is_abs_section (sec))
5753 	indx = 0;
5754       else if (sec == NULL || sec->owner == NULL)
5755 	{
5756 	  bfd_set_error (bfd_error_bad_value);
5757 	  return FALSE;
5758 	}
5759       else
5760 	{
5761 	  indx = elf_section_data (sec->output_section)->dynindx;
5762 	  if (indx == 0)
5763 	    {
5764 	      asection *osec = htab->root.text_index_section;
5765 	      indx = elf_section_data (osec)->dynindx;
5766 	    }
5767 	  if (indx == 0)
5768 	    abort ();
5769 	}
5770 
5771       /* Instead of generating a relocation using the section
5772 	 symbol, we may as well make it a fully relative
5773 	 relocation.  We want to avoid generating relocations to
5774 	 local symbols because we used to generate them
5775 	 incorrectly, without adding the original symbol value,
5776 	 which is mandated by the ABI for section symbols.  In
5777 	 order to give dynamic loaders and applications time to
5778 	 phase out the incorrect use, we refrain from emitting
5779 	 section-relative relocations.  It's not like they're
5780 	 useful, after all.  This should be a bit more efficient
5781 	 as well.  */
5782       /* ??? Although this behavior is compatible with glibc's ld.so,
5783 	 the ABI says that relocations against STN_UNDEF should have
5784 	 a symbol value of 0.  Irix rld honors this, so relocations
5785 	 against STN_UNDEF have no effect.  */
5786       if (!SGI_COMPAT (output_bfd))
5787 	indx = 0;
5788       defined_p = TRUE;
5789     }
5790 
5791   /* If the relocation was previously an absolute relocation and
5792      this symbol will not be referred to by the relocation, we must
5793      adjust it by the value we give it in the dynamic symbol table.
5794      Otherwise leave the job up to the dynamic linker.  */
5795   if (defined_p && r_type != R_MIPS_REL32)
5796     *addendp += symbol;
5797 
5798   if (htab->is_vxworks)
5799     /* VxWorks uses non-relative relocations for this.  */
5800     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
5801   else
5802     /* The relocation is always an REL32 relocation because we don't
5803        know where the shared library will wind up at load-time.  */
5804     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
5805 				   R_MIPS_REL32);
5806 
5807   /* For strict adherence to the ABI specification, we should
5808      generate a R_MIPS_64 relocation record by itself before the
5809      _REL32/_64 record as well, such that the addend is read in as
5810      a 64-bit value (REL32 is a 32-bit relocation, after all).
5811      However, since none of the existing ELF64 MIPS dynamic
5812      loaders seems to care, we don't waste space with these
5813      artificial relocations.  If this turns out to not be true,
5814      mips_elf_allocate_dynamic_relocation() should be tweaked so
5815      as to make room for a pair of dynamic relocations per
5816      invocation if ABI_64_P, and here we should generate an
5817      additional relocation record with R_MIPS_64 by itself for a
5818      NULL symbol before this relocation record.  */
5819   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
5820 				 ABI_64_P (output_bfd)
5821 				 ? R_MIPS_64
5822 				 : R_MIPS_NONE);
5823   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
5824 
5825   /* Adjust the output offset of the relocation to reference the
5826      correct location in the output file.  */
5827   outrel[0].r_offset += (input_section->output_section->vma
5828 			 + input_section->output_offset);
5829   outrel[1].r_offset += (input_section->output_section->vma
5830 			 + input_section->output_offset);
5831   outrel[2].r_offset += (input_section->output_section->vma
5832 			 + input_section->output_offset);
5833 
5834   /* Put the relocation back out.  We have to use the special
5835      relocation outputter in the 64-bit case since the 64-bit
5836      relocation format is non-standard.  */
5837   if (ABI_64_P (output_bfd))
5838     {
5839       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
5840 	(output_bfd, &outrel[0],
5841 	 (sreloc->contents
5842 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
5843     }
5844   else if (htab->is_vxworks)
5845     {
5846       /* VxWorks uses RELA rather than REL dynamic relocations.  */
5847       outrel[0].r_addend = *addendp;
5848       bfd_elf32_swap_reloca_out
5849 	(output_bfd, &outrel[0],
5850 	 (sreloc->contents
5851 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
5852     }
5853   else
5854     bfd_elf32_swap_reloc_out
5855       (output_bfd, &outrel[0],
5856        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
5857 
5858   /* We've now added another relocation.  */
5859   ++sreloc->reloc_count;
5860 
5861   /* Make sure the output section is writable.  The dynamic linker
5862      will be writing to it.  */
5863   elf_section_data (input_section->output_section)->this_hdr.sh_flags
5864     |= SHF_WRITE;
5865 
5866   /* On IRIX5, make an entry of compact relocation info.  */
5867   if (IRIX_COMPAT (output_bfd) == ict_irix5)
5868     {
5869       asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel");
5870       bfd_byte *cr;
5871 
5872       if (scpt)
5873 	{
5874 	  Elf32_crinfo cptrel;
5875 
5876 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
5877 	  cptrel.vaddr = (rel->r_offset
5878 			  + input_section->output_section->vma
5879 			  + input_section->output_offset);
5880 	  if (r_type == R_MIPS_REL32)
5881 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
5882 	  else
5883 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
5884 	  mips_elf_set_cr_dist2to (cptrel, 0);
5885 	  cptrel.konst = *addendp;
5886 
5887 	  cr = (scpt->contents
5888 		+ sizeof (Elf32_External_compact_rel));
5889 	  mips_elf_set_cr_relvaddr (cptrel, 0);
5890 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
5891 				     ((Elf32_External_crinfo *) cr
5892 				      + scpt->reloc_count));
5893 	  ++scpt->reloc_count;
5894 	}
5895     }
5896 
5897   /* If we've written this relocation for a readonly section,
5898      we need to set DF_TEXTREL again, so that we do not delete the
5899      DT_TEXTREL tag.  */
5900   if (MIPS_ELF_READONLY_SECTION (input_section))
5901     info->flags |= DF_TEXTREL;
5902 
5903   return TRUE;
5904 }
5905 
5906 /* Return the MACH for a MIPS e_flags value.  */
5907 
5908 unsigned long
5909 _bfd_elf_mips_mach (flagword flags)
5910 {
5911   switch (flags & EF_MIPS_MACH)
5912     {
5913     case E_MIPS_MACH_3900:
5914       return bfd_mach_mips3900;
5915 
5916     case E_MIPS_MACH_4010:
5917       return bfd_mach_mips4010;
5918 
5919     case E_MIPS_MACH_4100:
5920       return bfd_mach_mips4100;
5921 
5922     case E_MIPS_MACH_4111:
5923       return bfd_mach_mips4111;
5924 
5925     case E_MIPS_MACH_4120:
5926       return bfd_mach_mips4120;
5927 
5928     case E_MIPS_MACH_4650:
5929       return bfd_mach_mips4650;
5930 
5931     case E_MIPS_MACH_5400:
5932       return bfd_mach_mips5400;
5933 
5934     case E_MIPS_MACH_5500:
5935       return bfd_mach_mips5500;
5936 
5937     case E_MIPS_MACH_9000:
5938       return bfd_mach_mips9000;
5939 
5940     case E_MIPS_MACH_SB1:
5941       return bfd_mach_mips_sb1;
5942 
5943     case E_MIPS_MACH_LS2E:
5944       return bfd_mach_mips_loongson_2e;
5945 
5946     case E_MIPS_MACH_LS2F:
5947       return bfd_mach_mips_loongson_2f;
5948 
5949     case E_MIPS_MACH_LS3A:
5950       return bfd_mach_mips_loongson_3a;
5951 
5952     case E_MIPS_MACH_OCTEON:
5953       return bfd_mach_mips_octeon;
5954 
5955     case E_MIPS_MACH_XLR:
5956       return bfd_mach_mips_xlr;
5957 
5958     default:
5959       switch (flags & EF_MIPS_ARCH)
5960 	{
5961 	default:
5962 	case E_MIPS_ARCH_1:
5963 	  return bfd_mach_mips3000;
5964 
5965 	case E_MIPS_ARCH_2:
5966 	  return bfd_mach_mips6000;
5967 
5968 	case E_MIPS_ARCH_3:
5969 	  return bfd_mach_mips4000;
5970 
5971 	case E_MIPS_ARCH_4:
5972 	  return bfd_mach_mips8000;
5973 
5974 	case E_MIPS_ARCH_5:
5975 	  return bfd_mach_mips5;
5976 
5977 	case E_MIPS_ARCH_32:
5978 	  return bfd_mach_mipsisa32;
5979 
5980 	case E_MIPS_ARCH_64:
5981 	  return bfd_mach_mipsisa64;
5982 
5983 	case E_MIPS_ARCH_32R2:
5984 	  return bfd_mach_mipsisa32r2;
5985 
5986 	case E_MIPS_ARCH_64R2:
5987 	  return bfd_mach_mipsisa64r2;
5988 	}
5989     }
5990 
5991   return 0;
5992 }
5993 
5994 /* Return printable name for ABI.  */
5995 
5996 static INLINE char *
5997 elf_mips_abi_name (bfd *abfd)
5998 {
5999   flagword flags;
6000 
6001   flags = elf_elfheader (abfd)->e_flags;
6002   switch (flags & EF_MIPS_ABI)
6003     {
6004     case 0:
6005       if (ABI_N32_P (abfd))
6006 	return "N32";
6007       else if (ABI_64_P (abfd))
6008 	return "64";
6009       else
6010 	return "none";
6011     case E_MIPS_ABI_O32:
6012       return "O32";
6013     case E_MIPS_ABI_O64:
6014       return "O64";
6015     case E_MIPS_ABI_EABI32:
6016       return "EABI32";
6017     case E_MIPS_ABI_EABI64:
6018       return "EABI64";
6019     default:
6020       return "unknown abi";
6021     }
6022 }
6023 
6024 /* MIPS ELF uses two common sections.  One is the usual one, and the
6025    other is for small objects.  All the small objects are kept
6026    together, and then referenced via the gp pointer, which yields
6027    faster assembler code.  This is what we use for the small common
6028    section.  This approach is copied from ecoff.c.  */
6029 static asection mips_elf_scom_section;
6030 static asymbol mips_elf_scom_symbol;
6031 static asymbol *mips_elf_scom_symbol_ptr;
6032 
6033 /* MIPS ELF also uses an acommon section, which represents an
6034    allocated common symbol which may be overridden by a
6035    definition in a shared library.  */
6036 static asection mips_elf_acom_section;
6037 static asymbol mips_elf_acom_symbol;
6038 static asymbol *mips_elf_acom_symbol_ptr;
6039 
6040 /* This is used for both the 32-bit and the 64-bit ABI.  */
6041 
6042 void
6043 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
6044 {
6045   elf_symbol_type *elfsym;
6046 
6047   /* Handle the special MIPS section numbers that a symbol may use.  */
6048   elfsym = (elf_symbol_type *) asym;
6049   switch (elfsym->internal_elf_sym.st_shndx)
6050     {
6051     case SHN_MIPS_ACOMMON:
6052       /* This section is used in a dynamically linked executable file.
6053 	 It is an allocated common section.  The dynamic linker can
6054 	 either resolve these symbols to something in a shared
6055 	 library, or it can just leave them here.  For our purposes,
6056 	 we can consider these symbols to be in a new section.  */
6057       if (mips_elf_acom_section.name == NULL)
6058 	{
6059 	  /* Initialize the acommon section.  */
6060 	  mips_elf_acom_section.name = ".acommon";
6061 	  mips_elf_acom_section.flags = SEC_ALLOC;
6062 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
6063 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
6064 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
6065 	  mips_elf_acom_symbol.name = ".acommon";
6066 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
6067 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
6068 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
6069 	}
6070       asym->section = &mips_elf_acom_section;
6071       break;
6072 
6073     case SHN_COMMON:
6074       /* Common symbols less than the GP size are automatically
6075 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
6076       if (asym->value > elf_gp_size (abfd)
6077 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
6078 	  || IRIX_COMPAT (abfd) == ict_irix6)
6079 	break;
6080       /* Fall through.  */
6081     case SHN_MIPS_SCOMMON:
6082       if (mips_elf_scom_section.name == NULL)
6083 	{
6084 	  /* Initialize the small common section.  */
6085 	  mips_elf_scom_section.name = ".scommon";
6086 	  mips_elf_scom_section.flags = SEC_IS_COMMON;
6087 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
6088 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
6089 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
6090 	  mips_elf_scom_symbol.name = ".scommon";
6091 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
6092 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
6093 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
6094 	}
6095       asym->section = &mips_elf_scom_section;
6096       asym->value = elfsym->internal_elf_sym.st_size;
6097       break;
6098 
6099     case SHN_MIPS_SUNDEFINED:
6100       asym->section = bfd_und_section_ptr;
6101       break;
6102 
6103     case SHN_MIPS_TEXT:
6104       {
6105 	asection *section = bfd_get_section_by_name (abfd, ".text");
6106 
6107 	BFD_ASSERT (SGI_COMPAT (abfd));
6108 	if (section != NULL)
6109 	  {
6110 	    asym->section = section;
6111 	    /* MIPS_TEXT is a bit special, the address is not an offset
6112 	       to the base of the .text section.  So substract the section
6113 	       base address to make it an offset.  */
6114 	    asym->value -= section->vma;
6115 	  }
6116       }
6117       break;
6118 
6119     case SHN_MIPS_DATA:
6120       {
6121 	asection *section = bfd_get_section_by_name (abfd, ".data");
6122 
6123 	BFD_ASSERT (SGI_COMPAT (abfd));
6124 	if (section != NULL)
6125 	  {
6126 	    asym->section = section;
6127 	    /* MIPS_DATA is a bit special, the address is not an offset
6128 	       to the base of the .data section.  So substract the section
6129 	       base address to make it an offset.  */
6130 	    asym->value -= section->vma;
6131 	  }
6132       }
6133       break;
6134     }
6135 
6136   /* If this is an odd-valued function symbol, assume it's a MIPS16 one.  */
6137   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
6138       && (asym->value & 1) != 0)
6139     {
6140       asym->value--;
6141       elfsym->internal_elf_sym.st_other
6142 	= ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
6143     }
6144 }
6145 
6146 /* Implement elf_backend_eh_frame_address_size.  This differs from
6147    the default in the way it handles EABI64.
6148 
6149    EABI64 was originally specified as an LP64 ABI, and that is what
6150    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
6151    historically accepted the combination of -mabi=eabi and -mlong32,
6152    and this ILP32 variation has become semi-official over time.
6153    Both forms use elf32 and have pointer-sized FDE addresses.
6154 
6155    If an EABI object was generated by GCC 4.0 or above, it will have
6156    an empty .gcc_compiled_longXX section, where XX is the size of longs
6157    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
6158    have no special marking to distinguish them from LP64 objects.
6159 
6160    We don't want users of the official LP64 ABI to be punished for the
6161    existence of the ILP32 variant, but at the same time, we don't want
6162    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
6163    We therefore take the following approach:
6164 
6165       - If ABFD contains a .gcc_compiled_longXX section, use it to
6166         determine the pointer size.
6167 
6168       - Otherwise check the type of the first relocation.  Assume that
6169         the LP64 ABI is being used if the relocation is of type R_MIPS_64.
6170 
6171       - Otherwise punt.
6172 
6173    The second check is enough to detect LP64 objects generated by pre-4.0
6174    compilers because, in the kind of output generated by those compilers,
6175    the first relocation will be associated with either a CIE personality
6176    routine or an FDE start address.  Furthermore, the compilers never
6177    used a special (non-pointer) encoding for this ABI.
6178 
6179    Checking the relocation type should also be safe because there is no
6180    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
6181    did so.  */
6182 
6183 unsigned int
6184 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec)
6185 {
6186   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6187     return 8;
6188   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
6189     {
6190       bfd_boolean long32_p, long64_p;
6191 
6192       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
6193       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
6194       if (long32_p && long64_p)
6195 	return 0;
6196       if (long32_p)
6197 	return 4;
6198       if (long64_p)
6199 	return 8;
6200 
6201       if (sec->reloc_count > 0
6202 	  && elf_section_data (sec)->relocs != NULL
6203 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
6204 	      == R_MIPS_64))
6205 	return 8;
6206 
6207       return 0;
6208     }
6209   return 4;
6210 }
6211 
6212 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
6213    relocations against two unnamed section symbols to resolve to the
6214    same address.  For example, if we have code like:
6215 
6216 	lw	$4,%got_disp(.data)($gp)
6217 	lw	$25,%got_disp(.text)($gp)
6218 	jalr	$25
6219 
6220    then the linker will resolve both relocations to .data and the program
6221    will jump there rather than to .text.
6222 
6223    We can work around this problem by giving names to local section symbols.
6224    This is also what the MIPSpro tools do.  */
6225 
6226 bfd_boolean
6227 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
6228 {
6229   return SGI_COMPAT (abfd);
6230 }
6231 
6232 /* Work over a section just before writing it out.  This routine is
6233    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
6234    sections that need the SHF_MIPS_GPREL flag by name; there has to be
6235    a better way.  */
6236 
6237 bfd_boolean
6238 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
6239 {
6240   if (hdr->sh_type == SHT_MIPS_REGINFO
6241       && hdr->sh_size > 0)
6242     {
6243       bfd_byte buf[4];
6244 
6245       BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo));
6246       BFD_ASSERT (hdr->contents == NULL);
6247 
6248       if (bfd_seek (abfd,
6249 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
6250 		    SEEK_SET) != 0)
6251 	return FALSE;
6252       H_PUT_32 (abfd, elf_gp (abfd), buf);
6253       if (bfd_bwrite (buf, 4, abfd) != 4)
6254 	return FALSE;
6255     }
6256 
6257   if (hdr->sh_type == SHT_MIPS_OPTIONS
6258       && hdr->bfd_section != NULL
6259       && mips_elf_section_data (hdr->bfd_section) != NULL
6260       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
6261     {
6262       bfd_byte *contents, *l, *lend;
6263 
6264       /* We stored the section contents in the tdata field in the
6265 	 set_section_contents routine.  We save the section contents
6266 	 so that we don't have to read them again.
6267 	 At this point we know that elf_gp is set, so we can look
6268 	 through the section contents to see if there is an
6269 	 ODK_REGINFO structure.  */
6270 
6271       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
6272       l = contents;
6273       lend = contents + hdr->sh_size;
6274       while (l + sizeof (Elf_External_Options) <= lend)
6275 	{
6276 	  Elf_Internal_Options intopt;
6277 
6278 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6279 					&intopt);
6280 	  if (intopt.size < sizeof (Elf_External_Options))
6281 	    {
6282 	      (*_bfd_error_handler)
6283 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6284 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6285 	      break;
6286 	    }
6287 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6288 	    {
6289 	      bfd_byte buf[8];
6290 
6291 	      if (bfd_seek (abfd,
6292 			    (hdr->sh_offset
6293 			     + (l - contents)
6294 			     + sizeof (Elf_External_Options)
6295 			     + (sizeof (Elf64_External_RegInfo) - 8)),
6296 			     SEEK_SET) != 0)
6297 		return FALSE;
6298 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
6299 	      if (bfd_bwrite (buf, 8, abfd) != 8)
6300 		return FALSE;
6301 	    }
6302 	  else if (intopt.kind == ODK_REGINFO)
6303 	    {
6304 	      bfd_byte buf[4];
6305 
6306 	      if (bfd_seek (abfd,
6307 			    (hdr->sh_offset
6308 			     + (l - contents)
6309 			     + sizeof (Elf_External_Options)
6310 			     + (sizeof (Elf32_External_RegInfo) - 4)),
6311 			    SEEK_SET) != 0)
6312 		return FALSE;
6313 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
6314 	      if (bfd_bwrite (buf, 4, abfd) != 4)
6315 		return FALSE;
6316 	    }
6317 	  l += intopt.size;
6318 	}
6319     }
6320 
6321   if (hdr->bfd_section != NULL)
6322     {
6323       const char *name = bfd_get_section_name (abfd, hdr->bfd_section);
6324 
6325       /* .sbss is not handled specially here because the GNU/Linux
6326 	 prelinker can convert .sbss from NOBITS to PROGBITS and
6327 	 changing it back to NOBITS breaks the binary.  The entry in
6328 	 _bfd_mips_elf_special_sections will ensure the correct flags
6329 	 are set on .sbss if BFD creates it without reading it from an
6330 	 input file, and without special handling here the flags set
6331 	 on it in an input file will be followed.  */
6332       if (strcmp (name, ".sdata") == 0
6333 	  || strcmp (name, ".lit8") == 0
6334 	  || strcmp (name, ".lit4") == 0)
6335 	{
6336 	  hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
6337 	  hdr->sh_type = SHT_PROGBITS;
6338 	}
6339       else if (strcmp (name, ".srdata") == 0)
6340 	{
6341 	  hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
6342 	  hdr->sh_type = SHT_PROGBITS;
6343 	}
6344       else if (strcmp (name, ".compact_rel") == 0)
6345 	{
6346 	  hdr->sh_flags = 0;
6347 	  hdr->sh_type = SHT_PROGBITS;
6348 	}
6349       else if (strcmp (name, ".rtproc") == 0)
6350 	{
6351 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
6352 	    {
6353 	      unsigned int adjust;
6354 
6355 	      adjust = hdr->sh_size % hdr->sh_addralign;
6356 	      if (adjust != 0)
6357 		hdr->sh_size += hdr->sh_addralign - adjust;
6358 	    }
6359 	}
6360     }
6361 
6362   return TRUE;
6363 }
6364 
6365 /* Handle a MIPS specific section when reading an object file.  This
6366    is called when elfcode.h finds a section with an unknown type.
6367    This routine supports both the 32-bit and 64-bit ELF ABI.
6368 
6369    FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
6370    how to.  */
6371 
6372 bfd_boolean
6373 _bfd_mips_elf_section_from_shdr (bfd *abfd,
6374 				 Elf_Internal_Shdr *hdr,
6375 				 const char *name,
6376 				 int shindex)
6377 {
6378   flagword flags = 0;
6379 
6380   /* There ought to be a place to keep ELF backend specific flags, but
6381      at the moment there isn't one.  We just keep track of the
6382      sections by their name, instead.  Fortunately, the ABI gives
6383      suggested names for all the MIPS specific sections, so we will
6384      probably get away with this.  */
6385   switch (hdr->sh_type)
6386     {
6387     case SHT_MIPS_LIBLIST:
6388       if (strcmp (name, ".liblist") != 0)
6389 	return FALSE;
6390       break;
6391     case SHT_MIPS_MSYM:
6392       if (strcmp (name, ".msym") != 0)
6393 	return FALSE;
6394       break;
6395     case SHT_MIPS_CONFLICT:
6396       if (strcmp (name, ".conflict") != 0)
6397 	return FALSE;
6398       break;
6399     case SHT_MIPS_GPTAB:
6400       if (! CONST_STRNEQ (name, ".gptab."))
6401 	return FALSE;
6402       break;
6403     case SHT_MIPS_UCODE:
6404       if (strcmp (name, ".ucode") != 0)
6405 	return FALSE;
6406       break;
6407     case SHT_MIPS_DEBUG:
6408       if (strcmp (name, ".mdebug") != 0)
6409 	return FALSE;
6410       flags = SEC_DEBUGGING;
6411       break;
6412     case SHT_MIPS_REGINFO:
6413       if (strcmp (name, ".reginfo") != 0
6414 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
6415 	return FALSE;
6416       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
6417       break;
6418     case SHT_MIPS_IFACE:
6419       if (strcmp (name, ".MIPS.interfaces") != 0)
6420 	return FALSE;
6421       break;
6422     case SHT_MIPS_CONTENT:
6423       if (! CONST_STRNEQ (name, ".MIPS.content"))
6424 	return FALSE;
6425       break;
6426     case SHT_MIPS_OPTIONS:
6427       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6428 	return FALSE;
6429       break;
6430     case SHT_MIPS_DWARF:
6431       if (! CONST_STRNEQ (name, ".debug_")
6432           && ! CONST_STRNEQ (name, ".zdebug_"))
6433 	return FALSE;
6434       break;
6435     case SHT_MIPS_SYMBOL_LIB:
6436       if (strcmp (name, ".MIPS.symlib") != 0)
6437 	return FALSE;
6438       break;
6439     case SHT_MIPS_EVENTS:
6440       if (! CONST_STRNEQ (name, ".MIPS.events")
6441 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
6442 	return FALSE;
6443       break;
6444     default:
6445       break;
6446     }
6447 
6448   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
6449     return FALSE;
6450 
6451   if (flags)
6452     {
6453       if (! bfd_set_section_flags (abfd, hdr->bfd_section,
6454 				   (bfd_get_section_flags (abfd,
6455 							   hdr->bfd_section)
6456 				    | flags)))
6457 	return FALSE;
6458     }
6459 
6460   /* FIXME: We should record sh_info for a .gptab section.  */
6461 
6462   /* For a .reginfo section, set the gp value in the tdata information
6463      from the contents of this section.  We need the gp value while
6464      processing relocs, so we just get it now.  The .reginfo section
6465      is not used in the 64-bit MIPS ELF ABI.  */
6466   if (hdr->sh_type == SHT_MIPS_REGINFO)
6467     {
6468       Elf32_External_RegInfo ext;
6469       Elf32_RegInfo s;
6470 
6471       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
6472 				      &ext, 0, sizeof ext))
6473 	return FALSE;
6474       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
6475       elf_gp (abfd) = s.ri_gp_value;
6476     }
6477 
6478   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
6479      set the gp value based on what we find.  We may see both
6480      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
6481      they should agree.  */
6482   if (hdr->sh_type == SHT_MIPS_OPTIONS)
6483     {
6484       bfd_byte *contents, *l, *lend;
6485 
6486       contents = bfd_malloc (hdr->sh_size);
6487       if (contents == NULL)
6488 	return FALSE;
6489       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
6490 				      0, hdr->sh_size))
6491 	{
6492 	  free (contents);
6493 	  return FALSE;
6494 	}
6495       l = contents;
6496       lend = contents + hdr->sh_size;
6497       while (l + sizeof (Elf_External_Options) <= lend)
6498 	{
6499 	  Elf_Internal_Options intopt;
6500 
6501 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
6502 					&intopt);
6503 	  if (intopt.size < sizeof (Elf_External_Options))
6504 	    {
6505 	      (*_bfd_error_handler)
6506 		(_("%B: Warning: bad `%s' option size %u smaller than its header"),
6507 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
6508 	      break;
6509 	    }
6510 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
6511 	    {
6512 	      Elf64_Internal_RegInfo intreg;
6513 
6514 	      bfd_mips_elf64_swap_reginfo_in
6515 		(abfd,
6516 		 ((Elf64_External_RegInfo *)
6517 		  (l + sizeof (Elf_External_Options))),
6518 		 &intreg);
6519 	      elf_gp (abfd) = intreg.ri_gp_value;
6520 	    }
6521 	  else if (intopt.kind == ODK_REGINFO)
6522 	    {
6523 	      Elf32_RegInfo intreg;
6524 
6525 	      bfd_mips_elf32_swap_reginfo_in
6526 		(abfd,
6527 		 ((Elf32_External_RegInfo *)
6528 		  (l + sizeof (Elf_External_Options))),
6529 		 &intreg);
6530 	      elf_gp (abfd) = intreg.ri_gp_value;
6531 	    }
6532 	  l += intopt.size;
6533 	}
6534       free (contents);
6535     }
6536 
6537   return TRUE;
6538 }
6539 
6540 /* Set the correct type for a MIPS ELF section.  We do this by the
6541    section name, which is a hack, but ought to work.  This routine is
6542    used by both the 32-bit and the 64-bit ABI.  */
6543 
6544 bfd_boolean
6545 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
6546 {
6547   const char *name = bfd_get_section_name (abfd, sec);
6548 
6549   if (strcmp (name, ".liblist") == 0)
6550     {
6551       hdr->sh_type = SHT_MIPS_LIBLIST;
6552       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
6553       /* The sh_link field is set in final_write_processing.  */
6554     }
6555   else if (strcmp (name, ".conflict") == 0)
6556     hdr->sh_type = SHT_MIPS_CONFLICT;
6557   else if (CONST_STRNEQ (name, ".gptab."))
6558     {
6559       hdr->sh_type = SHT_MIPS_GPTAB;
6560       hdr->sh_entsize = sizeof (Elf32_External_gptab);
6561       /* The sh_info field is set in final_write_processing.  */
6562     }
6563   else if (strcmp (name, ".ucode") == 0)
6564     hdr->sh_type = SHT_MIPS_UCODE;
6565   else if (strcmp (name, ".mdebug") == 0)
6566     {
6567       hdr->sh_type = SHT_MIPS_DEBUG;
6568       /* In a shared object on IRIX 5.3, the .mdebug section has an
6569          entsize of 0.  FIXME: Does this matter?  */
6570       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
6571 	hdr->sh_entsize = 0;
6572       else
6573 	hdr->sh_entsize = 1;
6574     }
6575   else if (strcmp (name, ".reginfo") == 0)
6576     {
6577       hdr->sh_type = SHT_MIPS_REGINFO;
6578       /* In a shared object on IRIX 5.3, the .reginfo section has an
6579          entsize of 0x18.  FIXME: Does this matter?  */
6580       if (SGI_COMPAT (abfd))
6581 	{
6582 	  if ((abfd->flags & DYNAMIC) != 0)
6583 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6584 	  else
6585 	    hdr->sh_entsize = 1;
6586 	}
6587       else
6588 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
6589     }
6590   else if (SGI_COMPAT (abfd)
6591 	   && (strcmp (name, ".hash") == 0
6592 	       || strcmp (name, ".dynamic") == 0
6593 	       || strcmp (name, ".dynstr") == 0))
6594     {
6595       if (SGI_COMPAT (abfd))
6596 	hdr->sh_entsize = 0;
6597 #if 0
6598       /* This isn't how the IRIX6 linker behaves.  */
6599       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
6600 #endif
6601     }
6602   else if (strcmp (name, ".got") == 0
6603 	   || strcmp (name, ".srdata") == 0
6604 	   || strcmp (name, ".sdata") == 0
6605 	   || strcmp (name, ".sbss") == 0
6606 	   || strcmp (name, ".lit4") == 0
6607 	   || strcmp (name, ".lit8") == 0)
6608     hdr->sh_flags |= SHF_MIPS_GPREL;
6609   else if (strcmp (name, ".MIPS.interfaces") == 0)
6610     {
6611       hdr->sh_type = SHT_MIPS_IFACE;
6612       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6613     }
6614   else if (CONST_STRNEQ (name, ".MIPS.content"))
6615     {
6616       hdr->sh_type = SHT_MIPS_CONTENT;
6617       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6618       /* The sh_info field is set in final_write_processing.  */
6619     }
6620   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
6621     {
6622       hdr->sh_type = SHT_MIPS_OPTIONS;
6623       hdr->sh_entsize = 1;
6624       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6625     }
6626   else if (CONST_STRNEQ (name, ".debug_")
6627            || CONST_STRNEQ (name, ".zdebug_"))
6628     {
6629       hdr->sh_type = SHT_MIPS_DWARF;
6630 
6631       /* Irix facilities such as libexc expect a single .debug_frame
6632 	 per executable, the system ones have NOSTRIP set and the linker
6633 	 doesn't merge sections with different flags so ...  */
6634       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
6635 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6636     }
6637   else if (strcmp (name, ".MIPS.symlib") == 0)
6638     {
6639       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
6640       /* The sh_link and sh_info fields are set in
6641          final_write_processing.  */
6642     }
6643   else if (CONST_STRNEQ (name, ".MIPS.events")
6644 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
6645     {
6646       hdr->sh_type = SHT_MIPS_EVENTS;
6647       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
6648       /* The sh_link field is set in final_write_processing.  */
6649     }
6650   else if (strcmp (name, ".msym") == 0)
6651     {
6652       hdr->sh_type = SHT_MIPS_MSYM;
6653       hdr->sh_flags |= SHF_ALLOC;
6654       hdr->sh_entsize = 8;
6655     }
6656 
6657   /* The generic elf_fake_sections will set up REL_HDR using the default
6658    kind of relocations.  We used to set up a second header for the
6659    non-default kind of relocations here, but only NewABI would use
6660    these, and the IRIX ld doesn't like resulting empty RELA sections.
6661    Thus we create those header only on demand now.  */
6662 
6663   return TRUE;
6664 }
6665 
6666 /* Given a BFD section, try to locate the corresponding ELF section
6667    index.  This is used by both the 32-bit and the 64-bit ABI.
6668    Actually, it's not clear to me that the 64-bit ABI supports these,
6669    but for non-PIC objects we will certainly want support for at least
6670    the .scommon section.  */
6671 
6672 bfd_boolean
6673 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
6674 					asection *sec, int *retval)
6675 {
6676   if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0)
6677     {
6678       *retval = SHN_MIPS_SCOMMON;
6679       return TRUE;
6680     }
6681   if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0)
6682     {
6683       *retval = SHN_MIPS_ACOMMON;
6684       return TRUE;
6685     }
6686   return FALSE;
6687 }
6688 
6689 /* Hook called by the linker routine which adds symbols from an object
6690    file.  We must handle the special MIPS section numbers here.  */
6691 
6692 bfd_boolean
6693 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
6694 			       Elf_Internal_Sym *sym, const char **namep,
6695 			       flagword *flagsp ATTRIBUTE_UNUSED,
6696 			       asection **secp, bfd_vma *valp)
6697 {
6698   if (SGI_COMPAT (abfd)
6699       && (abfd->flags & DYNAMIC) != 0
6700       && strcmp (*namep, "_rld_new_interface") == 0)
6701     {
6702       /* Skip IRIX5 rld entry name.  */
6703       *namep = NULL;
6704       return TRUE;
6705     }
6706 
6707   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
6708      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
6709      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
6710      a magic symbol resolved by the linker, we ignore this bogus definition
6711      of _gp_disp.  New ABI objects do not suffer from this problem so this
6712      is not done for them. */
6713   if (!NEWABI_P(abfd)
6714       && (sym->st_shndx == SHN_ABS)
6715       && (strcmp (*namep, "_gp_disp") == 0))
6716     {
6717       *namep = NULL;
6718       return TRUE;
6719     }
6720 
6721   switch (sym->st_shndx)
6722     {
6723     case SHN_COMMON:
6724       /* Common symbols less than the GP size are automatically
6725 	 treated as SHN_MIPS_SCOMMON symbols.  */
6726       if (sym->st_size > elf_gp_size (abfd)
6727 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
6728 	  || IRIX_COMPAT (abfd) == ict_irix6)
6729 	break;
6730       /* Fall through.  */
6731     case SHN_MIPS_SCOMMON:
6732       *secp = bfd_make_section_old_way (abfd, ".scommon");
6733       (*secp)->flags |= SEC_IS_COMMON;
6734       *valp = sym->st_size;
6735       break;
6736 
6737     case SHN_MIPS_TEXT:
6738       /* This section is used in a shared object.  */
6739       if (elf_tdata (abfd)->elf_text_section == NULL)
6740 	{
6741 	  asymbol *elf_text_symbol;
6742 	  asection *elf_text_section;
6743 	  bfd_size_type amt = sizeof (asection);
6744 
6745 	  elf_text_section = bfd_zalloc (abfd, amt);
6746 	  if (elf_text_section == NULL)
6747 	    return FALSE;
6748 
6749 	  amt = sizeof (asymbol);
6750 	  elf_text_symbol = bfd_zalloc (abfd, amt);
6751 	  if (elf_text_symbol == NULL)
6752 	    return FALSE;
6753 
6754 	  /* Initialize the section.  */
6755 
6756 	  elf_tdata (abfd)->elf_text_section = elf_text_section;
6757 	  elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
6758 
6759 	  elf_text_section->symbol = elf_text_symbol;
6760 	  elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol;
6761 
6762 	  elf_text_section->name = ".text";
6763 	  elf_text_section->flags = SEC_NO_FLAGS;
6764 	  elf_text_section->output_section = NULL;
6765 	  elf_text_section->owner = abfd;
6766 	  elf_text_symbol->name = ".text";
6767 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6768 	  elf_text_symbol->section = elf_text_section;
6769 	}
6770       /* This code used to do *secp = bfd_und_section_ptr if
6771          info->shared.  I don't know why, and that doesn't make sense,
6772          so I took it out.  */
6773       *secp = elf_tdata (abfd)->elf_text_section;
6774       break;
6775 
6776     case SHN_MIPS_ACOMMON:
6777       /* Fall through. XXX Can we treat this as allocated data?  */
6778     case SHN_MIPS_DATA:
6779       /* This section is used in a shared object.  */
6780       if (elf_tdata (abfd)->elf_data_section == NULL)
6781 	{
6782 	  asymbol *elf_data_symbol;
6783 	  asection *elf_data_section;
6784 	  bfd_size_type amt = sizeof (asection);
6785 
6786 	  elf_data_section = bfd_zalloc (abfd, amt);
6787 	  if (elf_data_section == NULL)
6788 	    return FALSE;
6789 
6790 	  amt = sizeof (asymbol);
6791 	  elf_data_symbol = bfd_zalloc (abfd, amt);
6792 	  if (elf_data_symbol == NULL)
6793 	    return FALSE;
6794 
6795 	  /* Initialize the section.  */
6796 
6797 	  elf_tdata (abfd)->elf_data_section = elf_data_section;
6798 	  elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
6799 
6800 	  elf_data_section->symbol = elf_data_symbol;
6801 	  elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol;
6802 
6803 	  elf_data_section->name = ".data";
6804 	  elf_data_section->flags = SEC_NO_FLAGS;
6805 	  elf_data_section->output_section = NULL;
6806 	  elf_data_section->owner = abfd;
6807 	  elf_data_symbol->name = ".data";
6808 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
6809 	  elf_data_symbol->section = elf_data_section;
6810 	}
6811       /* This code used to do *secp = bfd_und_section_ptr if
6812          info->shared.  I don't know why, and that doesn't make sense,
6813          so I took it out.  */
6814       *secp = elf_tdata (abfd)->elf_data_section;
6815       break;
6816 
6817     case SHN_MIPS_SUNDEFINED:
6818       *secp = bfd_und_section_ptr;
6819       break;
6820     }
6821 
6822   if (SGI_COMPAT (abfd)
6823       && ! info->shared
6824       && info->output_bfd->xvec == abfd->xvec
6825       && strcmp (*namep, "__rld_obj_head") == 0)
6826     {
6827       struct elf_link_hash_entry *h;
6828       struct bfd_link_hash_entry *bh;
6829 
6830       /* Mark __rld_obj_head as dynamic.  */
6831       bh = NULL;
6832       if (! (_bfd_generic_link_add_one_symbol
6833 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
6834 	      get_elf_backend_data (abfd)->collect, &bh)))
6835 	return FALSE;
6836 
6837       h = (struct elf_link_hash_entry *) bh;
6838       h->non_elf = 0;
6839       h->def_regular = 1;
6840       h->type = STT_OBJECT;
6841 
6842       if (! bfd_elf_link_record_dynamic_symbol (info, h))
6843 	return FALSE;
6844 
6845       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
6846     }
6847 
6848   /* If this is a mips16 text symbol, add 1 to the value to make it
6849      odd.  This will cause something like .word SYM to come up with
6850      the right value when it is loaded into the PC.  */
6851   if (ELF_ST_IS_MIPS16 (sym->st_other))
6852     ++*valp;
6853 
6854   return TRUE;
6855 }
6856 
6857 /* This hook function is called before the linker writes out a global
6858    symbol.  We mark symbols as small common if appropriate.  This is
6859    also where we undo the increment of the value for a mips16 symbol.  */
6860 
6861 int
6862 _bfd_mips_elf_link_output_symbol_hook
6863   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
6864    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
6865    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
6866 {
6867   /* If we see a common symbol, which implies a relocatable link, then
6868      if a symbol was small common in an input file, mark it as small
6869      common in the output file.  */
6870   if (sym->st_shndx == SHN_COMMON
6871       && strcmp (input_sec->name, ".scommon") == 0)
6872     sym->st_shndx = SHN_MIPS_SCOMMON;
6873 
6874   if (ELF_ST_IS_MIPS16 (sym->st_other))
6875     sym->st_value &= ~1;
6876 
6877   return 1;
6878 }
6879 
6880 /* Functions for the dynamic linker.  */
6881 
6882 /* Create dynamic sections when linking against a dynamic object.  */
6883 
6884 bfd_boolean
6885 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
6886 {
6887   struct elf_link_hash_entry *h;
6888   struct bfd_link_hash_entry *bh;
6889   flagword flags;
6890   register asection *s;
6891   const char * const *namep;
6892   struct mips_elf_link_hash_table *htab;
6893 
6894   htab = mips_elf_hash_table (info);
6895   BFD_ASSERT (htab != NULL);
6896 
6897   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
6898 	   | SEC_LINKER_CREATED | SEC_READONLY);
6899 
6900   /* The psABI requires a read-only .dynamic section, but the VxWorks
6901      EABI doesn't.  */
6902   if (!htab->is_vxworks)
6903     {
6904       s = bfd_get_section_by_name (abfd, ".dynamic");
6905       if (s != NULL)
6906 	{
6907 	  if (! bfd_set_section_flags (abfd, s, flags))
6908 	    return FALSE;
6909 	}
6910     }
6911 
6912   /* We need to create .got section.  */
6913   if (!mips_elf_create_got_section (abfd, info))
6914     return FALSE;
6915 
6916   if (! mips_elf_rel_dyn_section (info, TRUE))
6917     return FALSE;
6918 
6919   /* Create .stub section.  */
6920   s = bfd_make_section_with_flags (abfd,
6921 				   MIPS_ELF_STUB_SECTION_NAME (abfd),
6922 				   flags | SEC_CODE);
6923   if (s == NULL
6924       || ! bfd_set_section_alignment (abfd, s,
6925 				      MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6926     return FALSE;
6927   htab->sstubs = s;
6928 
6929   if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none)
6930       && !info->shared
6931       && bfd_get_section_by_name (abfd, ".rld_map") == NULL)
6932     {
6933       s = bfd_make_section_with_flags (abfd, ".rld_map",
6934 				       flags &~ (flagword) SEC_READONLY);
6935       if (s == NULL
6936 	  || ! bfd_set_section_alignment (abfd, s,
6937 					  MIPS_ELF_LOG_FILE_ALIGN (abfd)))
6938 	return FALSE;
6939     }
6940 
6941   /* On IRIX5, we adjust add some additional symbols and change the
6942      alignments of several sections.  There is no ABI documentation
6943      indicating that this is necessary on IRIX6, nor any evidence that
6944      the linker takes such action.  */
6945   if (IRIX_COMPAT (abfd) == ict_irix5)
6946     {
6947       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
6948 	{
6949 	  bh = NULL;
6950 	  if (! (_bfd_generic_link_add_one_symbol
6951 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
6952 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6953 	    return FALSE;
6954 
6955 	  h = (struct elf_link_hash_entry *) bh;
6956 	  h->non_elf = 0;
6957 	  h->def_regular = 1;
6958 	  h->type = STT_SECTION;
6959 
6960 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
6961 	    return FALSE;
6962 	}
6963 
6964       /* We need to create a .compact_rel section.  */
6965       if (SGI_COMPAT (abfd))
6966 	{
6967 	  if (!mips_elf_create_compact_rel_section (abfd, info))
6968 	    return FALSE;
6969 	}
6970 
6971       /* Change alignments of some sections.  */
6972       s = bfd_get_section_by_name (abfd, ".hash");
6973       if (s != NULL)
6974 	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6975       s = bfd_get_section_by_name (abfd, ".dynsym");
6976       if (s != NULL)
6977 	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6978       s = bfd_get_section_by_name (abfd, ".dynstr");
6979       if (s != NULL)
6980 	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6981       s = bfd_get_section_by_name (abfd, ".reginfo");
6982       if (s != NULL)
6983 	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6984       s = bfd_get_section_by_name (abfd, ".dynamic");
6985       if (s != NULL)
6986 	bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
6987     }
6988 
6989   if (!info->shared)
6990     {
6991       const char *name;
6992 
6993       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
6994       bh = NULL;
6995       if (!(_bfd_generic_link_add_one_symbol
6996 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
6997 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
6998 	return FALSE;
6999 
7000       h = (struct elf_link_hash_entry *) bh;
7001       h->non_elf = 0;
7002       h->def_regular = 1;
7003       h->type = STT_SECTION;
7004 
7005       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7006 	return FALSE;
7007 
7008       if (! mips_elf_hash_table (info)->use_rld_obj_head)
7009 	{
7010 	  /* __rld_map is a four byte word located in the .data section
7011 	     and is filled in by the rtld to contain a pointer to
7012 	     the _r_debug structure. Its symbol value will be set in
7013 	     _bfd_mips_elf_finish_dynamic_symbol.  */
7014 	  s = bfd_get_section_by_name (abfd, ".rld_map");
7015 	  BFD_ASSERT (s != NULL);
7016 
7017 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
7018 	  bh = NULL;
7019 	  if (!(_bfd_generic_link_add_one_symbol
7020 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
7021 		 get_elf_backend_data (abfd)->collect, &bh)))
7022 	    return FALSE;
7023 
7024 	  h = (struct elf_link_hash_entry *) bh;
7025 	  h->non_elf = 0;
7026 	  h->def_regular = 1;
7027 	  h->type = STT_OBJECT;
7028 
7029 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
7030 	    return FALSE;
7031 	}
7032     }
7033 
7034   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
7035      Also create the _PROCEDURE_LINKAGE_TABLE symbol.  */
7036   if (!_bfd_elf_create_dynamic_sections (abfd, info))
7037     return FALSE;
7038 
7039   /* Cache the sections created above.  */
7040   htab->splt = bfd_get_section_by_name (abfd, ".plt");
7041   htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss");
7042   if (htab->is_vxworks)
7043     {
7044       htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss");
7045       htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt");
7046     }
7047   else
7048     htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt");
7049   if (!htab->sdynbss
7050       || (htab->is_vxworks && !htab->srelbss && !info->shared)
7051       || !htab->srelplt
7052       || !htab->splt)
7053     abort ();
7054 
7055   if (htab->is_vxworks)
7056     {
7057       /* Do the usual VxWorks handling.  */
7058       if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
7059 	return FALSE;
7060 
7061       /* Work out the PLT sizes.  */
7062       if (info->shared)
7063 	{
7064 	  htab->plt_header_size
7065 	    = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
7066 	  htab->plt_entry_size
7067 	    = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
7068 	}
7069       else
7070 	{
7071 	  htab->plt_header_size
7072 	    = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
7073 	  htab->plt_entry_size
7074 	    = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
7075 	}
7076     }
7077   else if (!info->shared)
7078     {
7079       /* All variants of the plt0 entry are the same size.  */
7080       htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
7081       htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
7082     }
7083 
7084   return TRUE;
7085 }
7086 
7087 /* Return true if relocation REL against section SEC is a REL rather than
7088    RELA relocation.  RELOCS is the first relocation in the section and
7089    ABFD is the bfd that contains SEC.  */
7090 
7091 static bfd_boolean
7092 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
7093 			   const Elf_Internal_Rela *relocs,
7094 			   const Elf_Internal_Rela *rel)
7095 {
7096   Elf_Internal_Shdr *rel_hdr;
7097   const struct elf_backend_data *bed;
7098 
7099   /* To determine which flavor of relocation this is, we depend on the
7100      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
7101   rel_hdr = elf_section_data (sec)->rel.hdr;
7102   if (rel_hdr == NULL)
7103     return FALSE;
7104   bed = get_elf_backend_data (abfd);
7105   return ((size_t) (rel - relocs)
7106 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
7107 }
7108 
7109 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
7110    HOWTO is the relocation's howto and CONTENTS points to the contents
7111    of the section that REL is against.  */
7112 
7113 static bfd_vma
7114 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
7115 			  reloc_howto_type *howto, bfd_byte *contents)
7116 {
7117   bfd_byte *location;
7118   unsigned int r_type;
7119   bfd_vma addend;
7120 
7121   r_type = ELF_R_TYPE (abfd, rel->r_info);
7122   location = contents + rel->r_offset;
7123 
7124   /* Get the addend, which is stored in the input file.  */
7125   _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
7126   addend = mips_elf_obtain_contents (howto, rel, abfd, contents);
7127   _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location);
7128 
7129   return addend & howto->src_mask;
7130 }
7131 
7132 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
7133    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
7134    and update *ADDEND with the final addend.  Return true on success
7135    or false if the LO16 could not be found.  RELEND is the exclusive
7136    upper bound on the relocations for REL's section.  */
7137 
7138 static bfd_boolean
7139 mips_elf_add_lo16_rel_addend (bfd *abfd,
7140 			      const Elf_Internal_Rela *rel,
7141 			      const Elf_Internal_Rela *relend,
7142 			      bfd_byte *contents, bfd_vma *addend)
7143 {
7144   unsigned int r_type, lo16_type;
7145   const Elf_Internal_Rela *lo16_relocation;
7146   reloc_howto_type *lo16_howto;
7147   bfd_vma l;
7148 
7149   r_type = ELF_R_TYPE (abfd, rel->r_info);
7150   if (mips16_reloc_p (r_type))
7151     lo16_type = R_MIPS16_LO16;
7152   else
7153     lo16_type = R_MIPS_LO16;
7154 
7155   /* The combined value is the sum of the HI16 addend, left-shifted by
7156      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
7157      code does a `lui' of the HI16 value, and then an `addiu' of the
7158      LO16 value.)
7159 
7160      Scan ahead to find a matching LO16 relocation.
7161 
7162      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
7163      be immediately following.  However, for the IRIX6 ABI, the next
7164      relocation may be a composed relocation consisting of several
7165      relocations for the same address.  In that case, the R_MIPS_LO16
7166      relocation may occur as one of these.  We permit a similar
7167      extension in general, as that is useful for GCC.
7168 
7169      In some cases GCC dead code elimination removes the LO16 but keeps
7170      the corresponding HI16.  This is strictly speaking a violation of
7171      the ABI but not immediately harmful.  */
7172   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
7173   if (lo16_relocation == NULL)
7174     return FALSE;
7175 
7176   /* Obtain the addend kept there.  */
7177   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
7178   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
7179 
7180   l <<= lo16_howto->rightshift;
7181   l = _bfd_mips_elf_sign_extend (l, 16);
7182 
7183   *addend <<= 16;
7184   *addend += l;
7185   return TRUE;
7186 }
7187 
7188 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
7189    store the contents in *CONTENTS on success.  Assume that *CONTENTS
7190    already holds the contents if it is nonull on entry.  */
7191 
7192 static bfd_boolean
7193 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
7194 {
7195   if (*contents)
7196     return TRUE;
7197 
7198   /* Get cached copy if it exists.  */
7199   if (elf_section_data (sec)->this_hdr.contents != NULL)
7200     {
7201       *contents = elf_section_data (sec)->this_hdr.contents;
7202       return TRUE;
7203     }
7204 
7205   return bfd_malloc_and_get_section (abfd, sec, contents);
7206 }
7207 
7208 /* Look through the relocs for a section during the first phase, and
7209    allocate space in the global offset table.  */
7210 
7211 bfd_boolean
7212 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
7213 			    asection *sec, const Elf_Internal_Rela *relocs)
7214 {
7215   const char *name;
7216   bfd *dynobj;
7217   Elf_Internal_Shdr *symtab_hdr;
7218   struct elf_link_hash_entry **sym_hashes;
7219   size_t extsymoff;
7220   const Elf_Internal_Rela *rel;
7221   const Elf_Internal_Rela *rel_end;
7222   asection *sreloc;
7223   const struct elf_backend_data *bed;
7224   struct mips_elf_link_hash_table *htab;
7225   bfd_byte *contents;
7226   bfd_vma addend;
7227   reloc_howto_type *howto;
7228 
7229   if (info->relocatable)
7230     return TRUE;
7231 
7232   htab = mips_elf_hash_table (info);
7233   BFD_ASSERT (htab != NULL);
7234 
7235   dynobj = elf_hash_table (info)->dynobj;
7236   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7237   sym_hashes = elf_sym_hashes (abfd);
7238   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7239 
7240   bed = get_elf_backend_data (abfd);
7241   rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel;
7242 
7243   /* Check for the mips16 stub sections.  */
7244 
7245   name = bfd_get_section_name (abfd, sec);
7246   if (FN_STUB_P (name))
7247     {
7248       unsigned long r_symndx;
7249 
7250       /* Look at the relocation information to figure out which symbol
7251          this is for.  */
7252 
7253       r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7254       if (r_symndx == 0)
7255 	{
7256 	  (*_bfd_error_handler)
7257 	    (_("%B: Warning: cannot determine the target function for"
7258 	       " stub section `%s'"),
7259 	     abfd, name);
7260 	  bfd_set_error (bfd_error_bad_value);
7261 	  return FALSE;
7262 	}
7263 
7264       if (r_symndx < extsymoff
7265 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7266 	{
7267 	  asection *o;
7268 
7269 	  /* This stub is for a local symbol.  This stub will only be
7270              needed if there is some relocation in this BFD, other
7271              than a 16 bit function call, which refers to this symbol.  */
7272 	  for (o = abfd->sections; o != NULL; o = o->next)
7273 	    {
7274 	      Elf_Internal_Rela *sec_relocs;
7275 	      const Elf_Internal_Rela *r, *rend;
7276 
7277 	      /* We can ignore stub sections when looking for relocs.  */
7278 	      if ((o->flags & SEC_RELOC) == 0
7279 		  || o->reloc_count == 0
7280 		  || section_allows_mips16_refs_p (o))
7281 		continue;
7282 
7283 	      sec_relocs
7284 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7285 					     info->keep_memory);
7286 	      if (sec_relocs == NULL)
7287 		return FALSE;
7288 
7289 	      rend = sec_relocs + o->reloc_count;
7290 	      for (r = sec_relocs; r < rend; r++)
7291 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7292 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
7293 		  break;
7294 
7295 	      if (elf_section_data (o)->relocs != sec_relocs)
7296 		free (sec_relocs);
7297 
7298 	      if (r < rend)
7299 		break;
7300 	    }
7301 
7302 	  if (o == NULL)
7303 	    {
7304 	      /* There is no non-call reloc for this stub, so we do
7305                  not need it.  Since this function is called before
7306                  the linker maps input sections to output sections, we
7307                  can easily discard it by setting the SEC_EXCLUDE
7308                  flag.  */
7309 	      sec->flags |= SEC_EXCLUDE;
7310 	      return TRUE;
7311 	    }
7312 
7313 	  /* Record this stub in an array of local symbol stubs for
7314              this BFD.  */
7315 	  if (elf_tdata (abfd)->local_stubs == NULL)
7316 	    {
7317 	      unsigned long symcount;
7318 	      asection **n;
7319 	      bfd_size_type amt;
7320 
7321 	      if (elf_bad_symtab (abfd))
7322 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7323 	      else
7324 		symcount = symtab_hdr->sh_info;
7325 	      amt = symcount * sizeof (asection *);
7326 	      n = bfd_zalloc (abfd, amt);
7327 	      if (n == NULL)
7328 		return FALSE;
7329 	      elf_tdata (abfd)->local_stubs = n;
7330 	    }
7331 
7332 	  sec->flags |= SEC_KEEP;
7333 	  elf_tdata (abfd)->local_stubs[r_symndx] = sec;
7334 
7335 	  /* We don't need to set mips16_stubs_seen in this case.
7336              That flag is used to see whether we need to look through
7337              the global symbol table for stubs.  We don't need to set
7338              it here, because we just have a local stub.  */
7339 	}
7340       else
7341 	{
7342 	  struct mips_elf_link_hash_entry *h;
7343 
7344 	  h = ((struct mips_elf_link_hash_entry *)
7345 	       sym_hashes[r_symndx - extsymoff]);
7346 
7347 	  while (h->root.root.type == bfd_link_hash_indirect
7348 		 || h->root.root.type == bfd_link_hash_warning)
7349 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
7350 
7351 	  /* H is the symbol this stub is for.  */
7352 
7353 	  /* If we already have an appropriate stub for this function, we
7354 	     don't need another one, so we can discard this one.  Since
7355 	     this function is called before the linker maps input sections
7356 	     to output sections, we can easily discard it by setting the
7357 	     SEC_EXCLUDE flag.  */
7358 	  if (h->fn_stub != NULL)
7359 	    {
7360 	      sec->flags |= SEC_EXCLUDE;
7361 	      return TRUE;
7362 	    }
7363 
7364 	  sec->flags |= SEC_KEEP;
7365 	  h->fn_stub = sec;
7366 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7367 	}
7368     }
7369   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
7370     {
7371       unsigned long r_symndx;
7372       struct mips_elf_link_hash_entry *h;
7373       asection **loc;
7374 
7375       /* Look at the relocation information to figure out which symbol
7376          this is for.  */
7377 
7378       r_symndx = mips16_stub_symndx (sec, relocs, rel_end);
7379       if (r_symndx == 0)
7380 	{
7381 	  (*_bfd_error_handler)
7382 	    (_("%B: Warning: cannot determine the target function for"
7383 	       " stub section `%s'"),
7384 	     abfd, name);
7385 	  bfd_set_error (bfd_error_bad_value);
7386 	  return FALSE;
7387 	}
7388 
7389       if (r_symndx < extsymoff
7390 	  || sym_hashes[r_symndx - extsymoff] == NULL)
7391 	{
7392 	  asection *o;
7393 
7394 	  /* This stub is for a local symbol.  This stub will only be
7395              needed if there is some relocation (R_MIPS16_26) in this BFD
7396              that refers to this symbol.  */
7397 	  for (o = abfd->sections; o != NULL; o = o->next)
7398 	    {
7399 	      Elf_Internal_Rela *sec_relocs;
7400 	      const Elf_Internal_Rela *r, *rend;
7401 
7402 	      /* We can ignore stub sections when looking for relocs.  */
7403 	      if ((o->flags & SEC_RELOC) == 0
7404 		  || o->reloc_count == 0
7405 		  || section_allows_mips16_refs_p (o))
7406 		continue;
7407 
7408 	      sec_relocs
7409 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
7410 					     info->keep_memory);
7411 	      if (sec_relocs == NULL)
7412 		return FALSE;
7413 
7414 	      rend = sec_relocs + o->reloc_count;
7415 	      for (r = sec_relocs; r < rend; r++)
7416 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
7417 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
7418 		    break;
7419 
7420 	      if (elf_section_data (o)->relocs != sec_relocs)
7421 		free (sec_relocs);
7422 
7423 	      if (r < rend)
7424 		break;
7425 	    }
7426 
7427 	  if (o == NULL)
7428 	    {
7429 	      /* There is no non-call reloc for this stub, so we do
7430                  not need it.  Since this function is called before
7431                  the linker maps input sections to output sections, we
7432                  can easily discard it by setting the SEC_EXCLUDE
7433                  flag.  */
7434 	      sec->flags |= SEC_EXCLUDE;
7435 	      return TRUE;
7436 	    }
7437 
7438 	  /* Record this stub in an array of local symbol call_stubs for
7439              this BFD.  */
7440 	  if (elf_tdata (abfd)->local_call_stubs == NULL)
7441 	    {
7442 	      unsigned long symcount;
7443 	      asection **n;
7444 	      bfd_size_type amt;
7445 
7446 	      if (elf_bad_symtab (abfd))
7447 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
7448 	      else
7449 		symcount = symtab_hdr->sh_info;
7450 	      amt = symcount * sizeof (asection *);
7451 	      n = bfd_zalloc (abfd, amt);
7452 	      if (n == NULL)
7453 		return FALSE;
7454 	      elf_tdata (abfd)->local_call_stubs = n;
7455 	    }
7456 
7457 	  sec->flags |= SEC_KEEP;
7458 	  elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
7459 
7460 	  /* We don't need to set mips16_stubs_seen in this case.
7461              That flag is used to see whether we need to look through
7462              the global symbol table for stubs.  We don't need to set
7463              it here, because we just have a local stub.  */
7464 	}
7465       else
7466 	{
7467 	  h = ((struct mips_elf_link_hash_entry *)
7468 	       sym_hashes[r_symndx - extsymoff]);
7469 
7470 	  /* H is the symbol this stub is for.  */
7471 
7472 	  if (CALL_FP_STUB_P (name))
7473 	    loc = &h->call_fp_stub;
7474 	  else
7475 	    loc = &h->call_stub;
7476 
7477 	  /* If we already have an appropriate stub for this function, we
7478 	     don't need another one, so we can discard this one.  Since
7479 	     this function is called before the linker maps input sections
7480 	     to output sections, we can easily discard it by setting the
7481 	     SEC_EXCLUDE flag.  */
7482 	  if (*loc != NULL)
7483 	    {
7484 	      sec->flags |= SEC_EXCLUDE;
7485 	      return TRUE;
7486 	    }
7487 
7488 	  sec->flags |= SEC_KEEP;
7489 	  *loc = sec;
7490 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
7491 	}
7492     }
7493 
7494   sreloc = NULL;
7495   contents = NULL;
7496   for (rel = relocs; rel < rel_end; ++rel)
7497     {
7498       unsigned long r_symndx;
7499       unsigned int r_type;
7500       struct elf_link_hash_entry *h;
7501       bfd_boolean can_make_dynamic_p;
7502 
7503       r_symndx = ELF_R_SYM (abfd, rel->r_info);
7504       r_type = ELF_R_TYPE (abfd, rel->r_info);
7505 
7506       if (r_symndx < extsymoff)
7507 	h = NULL;
7508       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
7509 	{
7510 	  (*_bfd_error_handler)
7511 	    (_("%B: Malformed reloc detected for section %s"),
7512 	     abfd, name);
7513 	  bfd_set_error (bfd_error_bad_value);
7514 	  return FALSE;
7515 	}
7516       else
7517 	{
7518 	  h = sym_hashes[r_symndx - extsymoff];
7519 	  while (h != NULL
7520 		 && (h->root.type == bfd_link_hash_indirect
7521 		     || h->root.type == bfd_link_hash_warning))
7522 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
7523 	}
7524 
7525       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
7526 	 relocation into a dynamic one.  */
7527       can_make_dynamic_p = FALSE;
7528       switch (r_type)
7529 	{
7530 	case R_MIPS16_GOT16:
7531 	case R_MIPS16_CALL16:
7532 	case R_MIPS_GOT16:
7533 	case R_MIPS_CALL16:
7534 	case R_MIPS_CALL_HI16:
7535 	case R_MIPS_CALL_LO16:
7536 	case R_MIPS_GOT_HI16:
7537 	case R_MIPS_GOT_LO16:
7538 	case R_MIPS_GOT_PAGE:
7539 	case R_MIPS_GOT_OFST:
7540 	case R_MIPS_GOT_DISP:
7541 	case R_MIPS_TLS_GOTTPREL:
7542 	case R_MIPS_TLS_GD:
7543 	case R_MIPS_TLS_LDM:
7544 	  if (dynobj == NULL)
7545 	    elf_hash_table (info)->dynobj = dynobj = abfd;
7546 	  if (!mips_elf_create_got_section (dynobj, info))
7547 	    return FALSE;
7548 	  if (htab->is_vxworks && !info->shared)
7549 	    {
7550 	      (*_bfd_error_handler)
7551 		(_("%B: GOT reloc at 0x%lx not expected in executables"),
7552 		 abfd, (unsigned long) rel->r_offset);
7553 	      bfd_set_error (bfd_error_bad_value);
7554 	      return FALSE;
7555 	    }
7556 	  break;
7557 
7558 	  /* This is just a hint; it can safely be ignored.  Don't set
7559 	     has_static_relocs for the corresponding symbol.  */
7560 	case R_MIPS_JALR:
7561 	  break;
7562 
7563 	case R_MIPS_32:
7564 	case R_MIPS_REL32:
7565 	case R_MIPS_64:
7566 	  /* In VxWorks executables, references to external symbols
7567 	     must be handled using copy relocs or PLT entries; it is not
7568 	     possible to convert this relocation into a dynamic one.
7569 
7570 	     For executables that use PLTs and copy-relocs, we have a
7571 	     choice between converting the relocation into a dynamic
7572 	     one or using copy relocations or PLT entries.  It is
7573 	     usually better to do the former, unless the relocation is
7574 	     against a read-only section.  */
7575 	  if ((info->shared
7576 	       || (h != NULL
7577 		   && !htab->is_vxworks
7578 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
7579 		   && !(!info->nocopyreloc
7580 			&& !PIC_OBJECT_P (abfd)
7581 			&& MIPS_ELF_READONLY_SECTION (sec))))
7582 	      && (sec->flags & SEC_ALLOC) != 0)
7583 	    {
7584 	      can_make_dynamic_p = TRUE;
7585 	      if (dynobj == NULL)
7586 		elf_hash_table (info)->dynobj = dynobj = abfd;
7587 	      break;
7588 	    }
7589 	  /* For sections that are not SEC_ALLOC a copy reloc would be
7590 	     output if possible (implying questionable semantics for
7591 	     read-only data objects) or otherwise the final link would
7592 	     fail as ld.so will not process them and could not therefore
7593 	     handle any outstanding dynamic relocations.
7594 
7595 	     For such sections that are also SEC_DEBUGGING, we can avoid
7596 	     these problems by simply ignoring any relocs as these
7597 	     sections have a predefined use and we know it is safe to do
7598 	     so.
7599 
7600 	     This is needed in cases such as a global symbol definition
7601 	     in a shared library causing a common symbol from an object
7602 	     file to be converted to an undefined reference.  If that
7603 	     happens, then all the relocations against this symbol from
7604 	     SEC_DEBUGGING sections in the object file will resolve to
7605 	     nil.  */
7606 	  if ((sec->flags & SEC_DEBUGGING) != 0)
7607 	    break;
7608 	  /* Fall through.  */
7609 
7610 	default:
7611 	  /* Most static relocations require pointer equality, except
7612 	     for branches.  */
7613 	  if (h)
7614 	    h->pointer_equality_needed = TRUE;
7615 	  /* Fall through.  */
7616 
7617 	case R_MIPS_26:
7618 	case R_MIPS_PC16:
7619 	case R_MIPS16_26:
7620 	  if (h)
7621 	    ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE;
7622 	  break;
7623 	}
7624 
7625       if (h)
7626 	{
7627 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
7628 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
7629 	     room for them in .rela.dyn.  */
7630 	  if (is_gott_symbol (info, h))
7631 	    {
7632 	      if (sreloc == NULL)
7633 		{
7634 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
7635 		  if (sreloc == NULL)
7636 		    return FALSE;
7637 		}
7638 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7639 	      if (MIPS_ELF_READONLY_SECTION (sec))
7640 		/* We tell the dynamic linker that there are
7641 		   relocations against the text segment.  */
7642 		info->flags |= DF_TEXTREL;
7643 	    }
7644 	}
7645       else if (r_type == R_MIPS_CALL_LO16
7646 	       || r_type == R_MIPS_GOT_LO16
7647 	       || r_type == R_MIPS_GOT_DISP
7648 	       || (got16_reloc_p (r_type) && htab->is_vxworks))
7649 	{
7650 	  /* We may need a local GOT entry for this relocation.  We
7651 	     don't count R_MIPS_GOT_PAGE because we can estimate the
7652 	     maximum number of pages needed by looking at the size of
7653 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
7654 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
7655 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
7656 	     R_MIPS_CALL_HI16 because these are always followed by an
7657 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
7658 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7659 						 rel->r_addend, info, 0))
7660 	    return FALSE;
7661 	}
7662 
7663       if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type))
7664 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
7665 
7666       switch (r_type)
7667 	{
7668 	case R_MIPS_CALL16:
7669 	case R_MIPS16_CALL16:
7670 	  if (h == NULL)
7671 	    {
7672 	      (*_bfd_error_handler)
7673 		(_("%B: CALL16 reloc at 0x%lx not against global symbol"),
7674 		 abfd, (unsigned long) rel->r_offset);
7675 	      bfd_set_error (bfd_error_bad_value);
7676 	      return FALSE;
7677 	    }
7678 	  /* Fall through.  */
7679 
7680 	case R_MIPS_CALL_HI16:
7681 	case R_MIPS_CALL_LO16:
7682 	  if (h != NULL)
7683 	    {
7684 	      /* Make sure there is room in the regular GOT to hold the
7685 		 function's address.  We may eliminate it in favour of
7686 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
7687 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0))
7688 		return FALSE;
7689 
7690 	      /* We need a stub, not a plt entry for the undefined
7691 		 function.  But we record it as if it needs plt.  See
7692 		 _bfd_elf_adjust_dynamic_symbol.  */
7693 	      h->needs_plt = 1;
7694 	      h->type = STT_FUNC;
7695 	    }
7696 	  break;
7697 
7698 	case R_MIPS_GOT_PAGE:
7699 	  /* If this is a global, overridable symbol, GOT_PAGE will
7700 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
7701 	  if (h)
7702 	    {
7703 	      struct mips_elf_link_hash_entry *hmips =
7704 		(struct mips_elf_link_hash_entry *) h;
7705 
7706 	      /* This symbol is definitely not overridable.  */
7707 	      if (hmips->root.def_regular
7708 		  && ! (info->shared && ! info->symbolic
7709 			&& ! hmips->root.forced_local))
7710 		h = NULL;
7711 	    }
7712 	  /* Fall through.  */
7713 
7714 	case R_MIPS16_GOT16:
7715 	case R_MIPS_GOT16:
7716 	case R_MIPS_GOT_HI16:
7717 	case R_MIPS_GOT_LO16:
7718 	  if (!h || r_type == R_MIPS_GOT_PAGE)
7719 	    {
7720 	      /* This relocation needs (or may need, if h != NULL) a
7721 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
7722 		 know for sure until we know whether the symbol is
7723 		 preemptible.  */
7724 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
7725 		{
7726 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
7727 		    return FALSE;
7728 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7729 		  addend = mips_elf_read_rel_addend (abfd, rel,
7730 						     howto, contents);
7731 		  if (got16_reloc_p (r_type))
7732 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
7733 						  contents, &addend);
7734 		  else
7735 		    addend <<= howto->rightshift;
7736 		}
7737 	      else
7738 		addend = rel->r_addend;
7739 	      if (!mips_elf_record_got_page_entry (info, abfd, r_symndx,
7740 						   addend))
7741 		return FALSE;
7742 	      break;
7743 	    }
7744 	  /* Fall through.  */
7745 
7746 	case R_MIPS_GOT_DISP:
7747 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7748 						       FALSE, 0))
7749 	    return FALSE;
7750 	  break;
7751 
7752 	case R_MIPS_TLS_GOTTPREL:
7753 	  if (info->shared)
7754 	    info->flags |= DF_STATIC_TLS;
7755 	  /* Fall through */
7756 
7757 	case R_MIPS_TLS_LDM:
7758 	  if (r_type == R_MIPS_TLS_LDM)
7759 	    {
7760 	      r_symndx = STN_UNDEF;
7761 	      h = NULL;
7762 	    }
7763 	  /* Fall through */
7764 
7765 	case R_MIPS_TLS_GD:
7766 	  /* This symbol requires a global offset table entry, or two
7767 	     for TLS GD relocations.  */
7768 	  {
7769 	    unsigned char flag = (r_type == R_MIPS_TLS_GD
7770 				  ? GOT_TLS_GD
7771 				  : r_type == R_MIPS_TLS_LDM
7772 				  ? GOT_TLS_LDM
7773 				  : GOT_TLS_IE);
7774 	    if (h != NULL)
7775 	      {
7776 		struct mips_elf_link_hash_entry *hmips =
7777 		  (struct mips_elf_link_hash_entry *) h;
7778 		hmips->tls_type |= flag;
7779 
7780 		if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
7781 							     FALSE, flag))
7782 		  return FALSE;
7783 	      }
7784 	    else
7785 	      {
7786 		BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF);
7787 
7788 		if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
7789 						       rel->r_addend,
7790 						       info, flag))
7791 		  return FALSE;
7792 	      }
7793 	  }
7794 	  break;
7795 
7796 	case R_MIPS_32:
7797 	case R_MIPS_REL32:
7798 	case R_MIPS_64:
7799 	  /* In VxWorks executables, references to external symbols
7800 	     are handled using copy relocs or PLT stubs, so there's
7801 	     no need to add a .rela.dyn entry for this relocation.  */
7802 	  if (can_make_dynamic_p)
7803 	    {
7804 	      if (sreloc == NULL)
7805 		{
7806 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
7807 		  if (sreloc == NULL)
7808 		    return FALSE;
7809 		}
7810 	      if (info->shared && h == NULL)
7811 		{
7812 		  /* When creating a shared object, we must copy these
7813 		     reloc types into the output file as R_MIPS_REL32
7814 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
7815 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
7816 		  if (MIPS_ELF_READONLY_SECTION (sec))
7817 		    /* We tell the dynamic linker that there are
7818 		       relocations against the text segment.  */
7819 		    info->flags |= DF_TEXTREL;
7820 		}
7821 	      else
7822 		{
7823 		  struct mips_elf_link_hash_entry *hmips;
7824 
7825 		  /* For a shared object, we must copy this relocation
7826 		     unless the symbol turns out to be undefined and
7827 		     weak with non-default visibility, in which case
7828 		     it will be left as zero.
7829 
7830 		     We could elide R_MIPS_REL32 for locally binding symbols
7831 		     in shared libraries, but do not yet do so.
7832 
7833 		     For an executable, we only need to copy this
7834 		     reloc if the symbol is defined in a dynamic
7835 		     object.  */
7836 		  hmips = (struct mips_elf_link_hash_entry *) h;
7837 		  ++hmips->possibly_dynamic_relocs;
7838 		  if (MIPS_ELF_READONLY_SECTION (sec))
7839 		    /* We need it to tell the dynamic linker if there
7840 		       are relocations against the text segment.  */
7841 		    hmips->readonly_reloc = TRUE;
7842 		}
7843 	    }
7844 
7845 	  if (SGI_COMPAT (abfd))
7846 	    mips_elf_hash_table (info)->compact_rel_size +=
7847 	      sizeof (Elf32_External_crinfo);
7848 	  break;
7849 
7850 	case R_MIPS_26:
7851 	case R_MIPS_GPREL16:
7852 	case R_MIPS_LITERAL:
7853 	case R_MIPS_GPREL32:
7854 	  if (SGI_COMPAT (abfd))
7855 	    mips_elf_hash_table (info)->compact_rel_size +=
7856 	      sizeof (Elf32_External_crinfo);
7857 	  break;
7858 
7859 	  /* This relocation describes the C++ object vtable hierarchy.
7860 	     Reconstruct it for later use during GC.  */
7861 	case R_MIPS_GNU_VTINHERIT:
7862 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7863 	    return FALSE;
7864 	  break;
7865 
7866 	  /* This relocation describes which C++ vtable entries are actually
7867 	     used.  Record for later use during GC.  */
7868 	case R_MIPS_GNU_VTENTRY:
7869 	  BFD_ASSERT (h != NULL);
7870 	  if (h != NULL
7871 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7872 	    return FALSE;
7873 	  break;
7874 
7875 	default:
7876 	  break;
7877 	}
7878 
7879       /* We must not create a stub for a symbol that has relocations
7880 	 related to taking the function's address.  This doesn't apply to
7881 	 VxWorks, where CALL relocs refer to a .got.plt entry instead of
7882 	 a normal .got entry.  */
7883       if (!htab->is_vxworks && h != NULL)
7884 	switch (r_type)
7885 	  {
7886 	  default:
7887 	    ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
7888 	    break;
7889 	  case R_MIPS16_CALL16:
7890 	  case R_MIPS_CALL16:
7891 	  case R_MIPS_CALL_HI16:
7892 	  case R_MIPS_CALL_LO16:
7893 	  case R_MIPS_JALR:
7894 	    break;
7895 	  }
7896 
7897       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
7898 	 if there is one.  We only need to handle global symbols here;
7899 	 we decide whether to keep or delete stubs for local symbols
7900 	 when processing the stub's relocations.  */
7901       if (h != NULL
7902 	  && !mips16_call_reloc_p (r_type)
7903 	  && !section_allows_mips16_refs_p (sec))
7904 	{
7905 	  struct mips_elf_link_hash_entry *mh;
7906 
7907 	  mh = (struct mips_elf_link_hash_entry *) h;
7908 	  mh->need_fn_stub = TRUE;
7909 	}
7910 
7911       /* Refuse some position-dependent relocations when creating a
7912 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
7913 	 not PIC, but we can create dynamic relocations and the result
7914 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
7915 	 combined with R_MIPS_GOT16.  */
7916       if (info->shared)
7917 	{
7918 	  switch (r_type)
7919 	    {
7920 	    case R_MIPS16_HI16:
7921 	    case R_MIPS_HI16:
7922 	    case R_MIPS_HIGHER:
7923 	    case R_MIPS_HIGHEST:
7924 	      /* Don't refuse a high part relocation if it's against
7925 		 no symbol (e.g. part of a compound relocation).  */
7926 	      if (r_symndx == STN_UNDEF)
7927 		break;
7928 
7929 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
7930 		 and has a special meaning.  */
7931 	      if (!NEWABI_P (abfd) && h != NULL
7932 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
7933 		break;
7934 
7935 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
7936 	      if (is_gott_symbol (info, h))
7937 		break;
7938 
7939 	      /* FALLTHROUGH */
7940 
7941 	    case R_MIPS16_26:
7942 	    case R_MIPS_26:
7943 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
7944 	      (*_bfd_error_handler)
7945 		(_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
7946 		 abfd, howto->name,
7947 		 (h) ? h->root.root.string : "a local symbol");
7948 	      bfd_set_error (bfd_error_bad_value);
7949 	      return FALSE;
7950 	    default:
7951 	      break;
7952 	    }
7953 	}
7954     }
7955 
7956   return TRUE;
7957 }
7958 
7959 bfd_boolean
7960 _bfd_mips_relax_section (bfd *abfd, asection *sec,
7961 			 struct bfd_link_info *link_info,
7962 			 bfd_boolean *again)
7963 {
7964   Elf_Internal_Rela *internal_relocs;
7965   Elf_Internal_Rela *irel, *irelend;
7966   Elf_Internal_Shdr *symtab_hdr;
7967   bfd_byte *contents = NULL;
7968   size_t extsymoff;
7969   bfd_boolean changed_contents = FALSE;
7970   bfd_vma sec_start = sec->output_section->vma + sec->output_offset;
7971   Elf_Internal_Sym *isymbuf = NULL;
7972 
7973   /* We are not currently changing any sizes, so only one pass.  */
7974   *again = FALSE;
7975 
7976   if (link_info->relocatable)
7977     return TRUE;
7978 
7979   internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
7980 					       link_info->keep_memory);
7981   if (internal_relocs == NULL)
7982     return TRUE;
7983 
7984   irelend = internal_relocs + sec->reloc_count
7985     * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel;
7986   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7987   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
7988 
7989   for (irel = internal_relocs; irel < irelend; irel++)
7990     {
7991       bfd_vma symval;
7992       bfd_signed_vma sym_offset;
7993       unsigned int r_type;
7994       unsigned long r_symndx;
7995       asection *sym_sec;
7996       unsigned long instruction;
7997 
7998       /* Turn jalr into bgezal, and jr into beq, if they're marked
7999 	 with a JALR relocation, that indicate where they jump to.
8000 	 This saves some pipeline bubbles.  */
8001       r_type = ELF_R_TYPE (abfd, irel->r_info);
8002       if (r_type != R_MIPS_JALR)
8003 	continue;
8004 
8005       r_symndx = ELF_R_SYM (abfd, irel->r_info);
8006       /* Compute the address of the jump target.  */
8007       if (r_symndx >= extsymoff)
8008 	{
8009 	  struct mips_elf_link_hash_entry *h
8010 	    = ((struct mips_elf_link_hash_entry *)
8011 	       elf_sym_hashes (abfd) [r_symndx - extsymoff]);
8012 
8013 	  while (h->root.root.type == bfd_link_hash_indirect
8014 		 || h->root.root.type == bfd_link_hash_warning)
8015 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8016 
8017 	  /* If a symbol is undefined, or if it may be overridden,
8018 	     skip it.  */
8019 	  if (! ((h->root.root.type == bfd_link_hash_defined
8020 		  || h->root.root.type == bfd_link_hash_defweak)
8021 		 && h->root.root.u.def.section)
8022 	      || (link_info->shared && ! link_info->symbolic
8023 		  && !h->root.forced_local))
8024 	    continue;
8025 
8026 	  sym_sec = h->root.root.u.def.section;
8027 	  if (sym_sec->output_section)
8028 	    symval = (h->root.root.u.def.value
8029 		      + sym_sec->output_section->vma
8030 		      + sym_sec->output_offset);
8031 	  else
8032 	    symval = h->root.root.u.def.value;
8033 	}
8034       else
8035 	{
8036 	  Elf_Internal_Sym *isym;
8037 
8038 	  /* Read this BFD's symbols if we haven't done so already.  */
8039 	  if (isymbuf == NULL && symtab_hdr->sh_info != 0)
8040 	    {
8041 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
8042 	      if (isymbuf == NULL)
8043 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
8044 						symtab_hdr->sh_info, 0,
8045 						NULL, NULL, NULL);
8046 	      if (isymbuf == NULL)
8047 		goto relax_return;
8048 	    }
8049 
8050 	  isym = isymbuf + r_symndx;
8051 	  if (isym->st_shndx == SHN_UNDEF)
8052 	    continue;
8053 	  else if (isym->st_shndx == SHN_ABS)
8054 	    sym_sec = bfd_abs_section_ptr;
8055 	  else if (isym->st_shndx == SHN_COMMON)
8056 	    sym_sec = bfd_com_section_ptr;
8057 	  else
8058 	    sym_sec
8059 	      = bfd_section_from_elf_index (abfd, isym->st_shndx);
8060 	  symval = isym->st_value
8061 	    + sym_sec->output_section->vma
8062 	    + sym_sec->output_offset;
8063 	}
8064 
8065       /* Compute branch offset, from delay slot of the jump to the
8066 	 branch target.  */
8067       sym_offset = (symval + irel->r_addend)
8068 	- (sec_start + irel->r_offset + 4);
8069 
8070       /* Branch offset must be properly aligned.  */
8071       if ((sym_offset & 3) != 0)
8072 	continue;
8073 
8074       sym_offset >>= 2;
8075 
8076       /* Check that it's in range.  */
8077       if (sym_offset < -0x8000 || sym_offset >= 0x8000)
8078 	continue;
8079 
8080       /* Get the section contents if we haven't done so already.  */
8081       if (!mips_elf_get_section_contents (abfd, sec, &contents))
8082 	goto relax_return;
8083 
8084       instruction = bfd_get_32 (abfd, contents + irel->r_offset);
8085 
8086       /* If it was jalr <reg>, turn it into bgezal $zero, <target>.  */
8087       if ((instruction & 0xfc1fffff) == 0x0000f809)
8088 	instruction = 0x04110000;
8089       /* If it was jr <reg>, turn it into b <target>.  */
8090       else if ((instruction & 0xfc1fffff) == 0x00000008)
8091 	instruction = 0x10000000;
8092       else
8093 	continue;
8094 
8095       instruction |= (sym_offset & 0xffff);
8096       bfd_put_32 (abfd, instruction, contents + irel->r_offset);
8097       changed_contents = TRUE;
8098     }
8099 
8100   if (contents != NULL
8101       && elf_section_data (sec)->this_hdr.contents != contents)
8102     {
8103       if (!changed_contents && !link_info->keep_memory)
8104         free (contents);
8105       else
8106         {
8107           /* Cache the section contents for elf_link_input_bfd.  */
8108           elf_section_data (sec)->this_hdr.contents = contents;
8109         }
8110     }
8111   return TRUE;
8112 
8113  relax_return:
8114   if (contents != NULL
8115       && elf_section_data (sec)->this_hdr.contents != contents)
8116     free (contents);
8117   return FALSE;
8118 }
8119 
8120 /* Allocate space for global sym dynamic relocs.  */
8121 
8122 static bfd_boolean
8123 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
8124 {
8125   struct bfd_link_info *info = inf;
8126   bfd *dynobj;
8127   struct mips_elf_link_hash_entry *hmips;
8128   struct mips_elf_link_hash_table *htab;
8129 
8130   htab = mips_elf_hash_table (info);
8131   BFD_ASSERT (htab != NULL);
8132 
8133   dynobj = elf_hash_table (info)->dynobj;
8134   hmips = (struct mips_elf_link_hash_entry *) h;
8135 
8136   /* VxWorks executables are handled elsewhere; we only need to
8137      allocate relocations in shared objects.  */
8138   if (htab->is_vxworks && !info->shared)
8139     return TRUE;
8140 
8141   /* Ignore indirect and warning symbols.  All relocations against
8142      such symbols will be redirected to the target symbol.  */
8143   if (h->root.type == bfd_link_hash_indirect
8144       || h->root.type == bfd_link_hash_warning)
8145     return TRUE;
8146 
8147   /* If this symbol is defined in a dynamic object, or we are creating
8148      a shared library, we will need to copy any R_MIPS_32 or
8149      R_MIPS_REL32 relocs against it into the output file.  */
8150   if (! info->relocatable
8151       && hmips->possibly_dynamic_relocs != 0
8152       && (h->root.type == bfd_link_hash_defweak
8153 	  || !h->def_regular
8154 	  || info->shared))
8155     {
8156       bfd_boolean do_copy = TRUE;
8157 
8158       if (h->root.type == bfd_link_hash_undefweak)
8159 	{
8160 	  /* Do not copy relocations for undefined weak symbols with
8161 	     non-default visibility.  */
8162 	  if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8163 	    do_copy = FALSE;
8164 
8165 	  /* Make sure undefined weak symbols are output as a dynamic
8166 	     symbol in PIEs.  */
8167 	  else if (h->dynindx == -1 && !h->forced_local)
8168 	    {
8169 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
8170 		return FALSE;
8171 	    }
8172 	}
8173 
8174       if (do_copy)
8175 	{
8176 	  /* Even though we don't directly need a GOT entry for this symbol,
8177 	     the SVR4 psABI requires it to have a dynamic symbol table
8178 	     index greater that DT_MIPS_GOTSYM if there are dynamic
8179 	     relocations against it.
8180 
8181 	     VxWorks does not enforce the same mapping between the GOT
8182 	     and the symbol table, so the same requirement does not
8183 	     apply there.  */
8184 	  if (!htab->is_vxworks)
8185 	    {
8186 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
8187 		hmips->global_got_area = GGA_RELOC_ONLY;
8188 	      hmips->got_only_for_calls = FALSE;
8189 	    }
8190 
8191 	  mips_elf_allocate_dynamic_relocations
8192 	    (dynobj, info, hmips->possibly_dynamic_relocs);
8193 	  if (hmips->readonly_reloc)
8194 	    /* We tell the dynamic linker that there are relocations
8195 	       against the text segment.  */
8196 	    info->flags |= DF_TEXTREL;
8197 	}
8198     }
8199 
8200   return TRUE;
8201 }
8202 
8203 /* Adjust a symbol defined by a dynamic object and referenced by a
8204    regular object.  The current definition is in some section of the
8205    dynamic object, but we're not including those sections.  We have to
8206    change the definition to something the rest of the link can
8207    understand.  */
8208 
8209 bfd_boolean
8210 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
8211 				     struct elf_link_hash_entry *h)
8212 {
8213   bfd *dynobj;
8214   struct mips_elf_link_hash_entry *hmips;
8215   struct mips_elf_link_hash_table *htab;
8216 
8217   htab = mips_elf_hash_table (info);
8218   BFD_ASSERT (htab != NULL);
8219 
8220   dynobj = elf_hash_table (info)->dynobj;
8221   hmips = (struct mips_elf_link_hash_entry *) h;
8222 
8223   /* Make sure we know what is going on here.  */
8224   BFD_ASSERT (dynobj != NULL
8225 	      && (h->needs_plt
8226 		  || h->u.weakdef != NULL
8227 		  || (h->def_dynamic
8228 		      && h->ref_regular
8229 		      && !h->def_regular)));
8230 
8231   hmips = (struct mips_elf_link_hash_entry *) h;
8232 
8233   /* If there are call relocations against an externally-defined symbol,
8234      see whether we can create a MIPS lazy-binding stub for it.  We can
8235      only do this if all references to the function are through call
8236      relocations, and in that case, the traditional lazy-binding stubs
8237      are much more efficient than PLT entries.
8238 
8239      Traditional stubs are only available on SVR4 psABI-based systems;
8240      VxWorks always uses PLTs instead.  */
8241   if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
8242     {
8243       if (! elf_hash_table (info)->dynamic_sections_created)
8244 	return TRUE;
8245 
8246       /* If this symbol is not defined in a regular file, then set
8247 	 the symbol to the stub location.  This is required to make
8248 	 function pointers compare as equal between the normal
8249 	 executable and the shared library.  */
8250       if (!h->def_regular)
8251 	{
8252 	  hmips->needs_lazy_stub = TRUE;
8253 	  htab->lazy_stub_count++;
8254 	  return TRUE;
8255 	}
8256     }
8257   /* As above, VxWorks requires PLT entries for externally-defined
8258      functions that are only accessed through call relocations.
8259 
8260      Both VxWorks and non-VxWorks targets also need PLT entries if there
8261      are static-only relocations against an externally-defined function.
8262      This can technically occur for shared libraries if there are
8263      branches to the symbol, although it is unlikely that this will be
8264      used in practice due to the short ranges involved.  It can occur
8265      for any relative or absolute relocation in executables; in that
8266      case, the PLT entry becomes the function's canonical address.  */
8267   else if (((h->needs_plt && !hmips->no_fn_stub)
8268 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
8269 	   && htab->use_plts_and_copy_relocs
8270 	   && !SYMBOL_CALLS_LOCAL (info, h)
8271 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8272 		&& h->root.type == bfd_link_hash_undefweak))
8273     {
8274       /* If this is the first symbol to need a PLT entry, allocate room
8275 	 for the header.  */
8276       if (htab->splt->size == 0)
8277 	{
8278 	  BFD_ASSERT (htab->sgotplt->size == 0);
8279 
8280 	  /* If we're using the PLT additions to the psABI, each PLT
8281 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
8282 	     Encourage better cache usage by aligning.  We do this
8283 	     lazily to avoid pessimizing traditional objects.  */
8284 	  if (!htab->is_vxworks
8285 	      && !bfd_set_section_alignment (dynobj, htab->splt, 5))
8286 	    return FALSE;
8287 
8288 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
8289 	     for the same reason as above.  */
8290 	  if (!bfd_set_section_alignment (dynobj, htab->sgotplt,
8291 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
8292 	    return FALSE;
8293 
8294 	  htab->splt->size += htab->plt_header_size;
8295 
8296 	  /* On non-VxWorks targets, the first two entries in .got.plt
8297 	     are reserved.  */
8298 	  if (!htab->is_vxworks)
8299 	    htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj);
8300 
8301 	  /* On VxWorks, also allocate room for the header's
8302 	     .rela.plt.unloaded entries.  */
8303 	  if (htab->is_vxworks && !info->shared)
8304 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
8305 	}
8306 
8307       /* Assign the next .plt entry to this symbol.  */
8308       h->plt.offset = htab->splt->size;
8309       htab->splt->size += htab->plt_entry_size;
8310 
8311       /* If the output file has no definition of the symbol, set the
8312 	 symbol's value to the address of the stub.  */
8313       if (!info->shared && !h->def_regular)
8314 	{
8315 	  h->root.u.def.section = htab->splt;
8316 	  h->root.u.def.value = h->plt.offset;
8317 	  /* For VxWorks, point at the PLT load stub rather than the
8318 	     lazy resolution stub; this stub will become the canonical
8319 	     function address.  */
8320 	  if (htab->is_vxworks)
8321 	    h->root.u.def.value += 8;
8322 	}
8323 
8324       /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT
8325 	 relocation.  */
8326       htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj);
8327       htab->srelplt->size += (htab->is_vxworks
8328 			      ? MIPS_ELF_RELA_SIZE (dynobj)
8329 			      : MIPS_ELF_REL_SIZE (dynobj));
8330 
8331       /* Make room for the .rela.plt.unloaded relocations.  */
8332       if (htab->is_vxworks && !info->shared)
8333 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
8334 
8335       /* All relocations against this symbol that could have been made
8336 	 dynamic will now refer to the PLT entry instead.  */
8337       hmips->possibly_dynamic_relocs = 0;
8338 
8339       return TRUE;
8340     }
8341 
8342   /* If this is a weak symbol, and there is a real definition, the
8343      processor independent code will have arranged for us to see the
8344      real definition first, and we can just use the same value.  */
8345   if (h->u.weakdef != NULL)
8346     {
8347       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8348 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
8349       h->root.u.def.section = h->u.weakdef->root.u.def.section;
8350       h->root.u.def.value = h->u.weakdef->root.u.def.value;
8351       return TRUE;
8352     }
8353 
8354   /* Otherwise, there is nothing further to do for symbols defined
8355      in regular objects.  */
8356   if (h->def_regular)
8357     return TRUE;
8358 
8359   /* There's also nothing more to do if we'll convert all relocations
8360      against this symbol into dynamic relocations.  */
8361   if (!hmips->has_static_relocs)
8362     return TRUE;
8363 
8364   /* We're now relying on copy relocations.  Complain if we have
8365      some that we can't convert.  */
8366   if (!htab->use_plts_and_copy_relocs || info->shared)
8367     {
8368       (*_bfd_error_handler) (_("non-dynamic relocations refer to "
8369 			       "dynamic symbol %s"),
8370 			     h->root.root.string);
8371       bfd_set_error (bfd_error_bad_value);
8372       return FALSE;
8373     }
8374 
8375   /* We must allocate the symbol in our .dynbss section, which will
8376      become part of the .bss section of the executable.  There will be
8377      an entry for this symbol in the .dynsym section.  The dynamic
8378      object will contain position independent code, so all references
8379      from the dynamic object to this symbol will go through the global
8380      offset table.  The dynamic linker will use the .dynsym entry to
8381      determine the address it must put in the global offset table, so
8382      both the dynamic object and the regular object will refer to the
8383      same memory location for the variable.  */
8384 
8385   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8386     {
8387       if (htab->is_vxworks)
8388 	htab->srelbss->size += sizeof (Elf32_External_Rela);
8389       else
8390 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8391       h->needs_copy = 1;
8392     }
8393 
8394   /* All relocations against this symbol that could have been made
8395      dynamic will now refer to the local copy instead.  */
8396   hmips->possibly_dynamic_relocs = 0;
8397 
8398   return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss);
8399 }
8400 
8401 /* This function is called after all the input files have been read,
8402    and the input sections have been assigned to output sections.  We
8403    check for any mips16 stub sections that we can discard.  */
8404 
8405 bfd_boolean
8406 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
8407 				    struct bfd_link_info *info)
8408 {
8409   asection *ri;
8410   struct mips_elf_link_hash_table *htab;
8411   struct mips_htab_traverse_info hti;
8412 
8413   htab = mips_elf_hash_table (info);
8414   BFD_ASSERT (htab != NULL);
8415 
8416   /* The .reginfo section has a fixed size.  */
8417   ri = bfd_get_section_by_name (output_bfd, ".reginfo");
8418   if (ri != NULL)
8419     bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo));
8420 
8421   hti.info = info;
8422   hti.output_bfd = output_bfd;
8423   hti.error = FALSE;
8424   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
8425 			       mips_elf_check_symbols, &hti);
8426   if (hti.error)
8427     return FALSE;
8428 
8429   return TRUE;
8430 }
8431 
8432 /* If the link uses a GOT, lay it out and work out its size.  */
8433 
8434 static bfd_boolean
8435 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
8436 {
8437   bfd *dynobj;
8438   asection *s;
8439   struct mips_got_info *g;
8440   bfd_size_type loadable_size = 0;
8441   bfd_size_type page_gotno;
8442   bfd *sub;
8443   struct mips_elf_count_tls_arg count_tls_arg;
8444   struct mips_elf_link_hash_table *htab;
8445 
8446   htab = mips_elf_hash_table (info);
8447   BFD_ASSERT (htab != NULL);
8448 
8449   s = htab->sgot;
8450   if (s == NULL)
8451     return TRUE;
8452 
8453   dynobj = elf_hash_table (info)->dynobj;
8454   g = htab->got_info;
8455 
8456   /* Allocate room for the reserved entries.  VxWorks always reserves
8457      3 entries; other objects only reserve 2 entries.  */
8458   BFD_ASSERT (g->assigned_gotno == 0);
8459   if (htab->is_vxworks)
8460     htab->reserved_gotno = 3;
8461   else
8462     htab->reserved_gotno = 2;
8463   g->local_gotno += htab->reserved_gotno;
8464   g->assigned_gotno = htab->reserved_gotno;
8465 
8466   /* Replace entries for indirect and warning symbols with entries for
8467      the target symbol.  */
8468   if (!mips_elf_resolve_final_got_entries (g))
8469     return FALSE;
8470 
8471   /* Count the number of GOT symbols.  */
8472   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
8473 
8474   /* Calculate the total loadable size of the output.  That
8475      will give us the maximum number of GOT_PAGE entries
8476      required.  */
8477   for (sub = info->input_bfds; sub; sub = sub->link_next)
8478     {
8479       asection *subsection;
8480 
8481       for (subsection = sub->sections;
8482 	   subsection;
8483 	   subsection = subsection->next)
8484 	{
8485 	  if ((subsection->flags & SEC_ALLOC) == 0)
8486 	    continue;
8487 	  loadable_size += ((subsection->size + 0xf)
8488 			    &~ (bfd_size_type) 0xf);
8489 	}
8490     }
8491 
8492   if (htab->is_vxworks)
8493     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
8494        relocations against local symbols evaluate to "G", and the EABI does
8495        not include R_MIPS_GOT_PAGE.  */
8496     page_gotno = 0;
8497   else
8498     /* Assume there are two loadable segments consisting of contiguous
8499        sections.  Is 5 enough?  */
8500     page_gotno = (loadable_size >> 16) + 5;
8501 
8502   /* Choose the smaller of the two estimates; both are intended to be
8503      conservative.  */
8504   if (page_gotno > g->page_gotno)
8505     page_gotno = g->page_gotno;
8506 
8507   g->local_gotno += page_gotno;
8508   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8509   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8510 
8511   /* We need to calculate tls_gotno for global symbols at this point
8512      instead of building it up earlier, to avoid doublecounting
8513      entries for one global symbol from multiple input files.  */
8514   count_tls_arg.info = info;
8515   count_tls_arg.needed = 0;
8516   elf_link_hash_traverse (elf_hash_table (info),
8517 			  mips_elf_count_global_tls_entries,
8518 			  &count_tls_arg);
8519   g->tls_gotno += count_tls_arg.needed;
8520   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
8521 
8522   /* VxWorks does not support multiple GOTs.  It initializes $gp to
8523      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
8524      dynamic loader.  */
8525   if (htab->is_vxworks)
8526     {
8527       /* VxWorks executables do not need a GOT.  */
8528       if (info->shared)
8529 	{
8530 	  /* Each VxWorks GOT entry needs an explicit relocation.  */
8531 	  unsigned int count;
8532 
8533 	  count = g->global_gotno + g->local_gotno - htab->reserved_gotno;
8534 	  if (count)
8535 	    mips_elf_allocate_dynamic_relocations (dynobj, info, count);
8536 	}
8537     }
8538   else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info))
8539     {
8540       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
8541 	return FALSE;
8542     }
8543   else
8544     {
8545       struct mips_elf_count_tls_arg arg;
8546 
8547       /* Set up TLS entries.  */
8548       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
8549       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g);
8550 
8551       /* Allocate room for the TLS relocations.  */
8552       arg.info = info;
8553       arg.needed = 0;
8554       htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg);
8555       elf_link_hash_traverse (elf_hash_table (info),
8556 			      mips_elf_count_global_tls_relocs,
8557 			      &arg);
8558       if (arg.needed)
8559 	mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed);
8560     }
8561 
8562   return TRUE;
8563 }
8564 
8565 /* Estimate the size of the .MIPS.stubs section.  */
8566 
8567 static void
8568 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
8569 {
8570   struct mips_elf_link_hash_table *htab;
8571   bfd_size_type dynsymcount;
8572 
8573   htab = mips_elf_hash_table (info);
8574   BFD_ASSERT (htab != NULL);
8575 
8576   if (htab->lazy_stub_count == 0)
8577     return;
8578 
8579   /* IRIX rld assumes that a function stub isn't at the end of the .text
8580      section, so add a dummy entry to the end.  */
8581   htab->lazy_stub_count++;
8582 
8583   /* Get a worst-case estimate of the number of dynamic symbols needed.
8584      At this point, dynsymcount does not account for section symbols
8585      and count_section_dynsyms may overestimate the number that will
8586      be needed.  */
8587   dynsymcount = (elf_hash_table (info)->dynsymcount
8588 		 + count_section_dynsyms (output_bfd, info));
8589 
8590   /* Determine the size of one stub entry.  */
8591   htab->function_stub_size = (dynsymcount > 0x10000
8592 			      ? MIPS_FUNCTION_STUB_BIG_SIZE
8593 			      : MIPS_FUNCTION_STUB_NORMAL_SIZE);
8594 
8595   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
8596 }
8597 
8598 /* A mips_elf_link_hash_traverse callback for which DATA points to the
8599    MIPS hash table.  If H needs a traditional MIPS lazy-binding stub,
8600    allocate an entry in the stubs section.  */
8601 
8602 static bfd_boolean
8603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data)
8604 {
8605   struct mips_elf_link_hash_table *htab;
8606 
8607   htab = (struct mips_elf_link_hash_table *) data;
8608   if (h->needs_lazy_stub)
8609     {
8610       h->root.root.u.def.section = htab->sstubs;
8611       h->root.root.u.def.value = htab->sstubs->size;
8612       h->root.plt.offset = htab->sstubs->size;
8613       htab->sstubs->size += htab->function_stub_size;
8614     }
8615   return TRUE;
8616 }
8617 
8618 /* Allocate offsets in the stubs section to each symbol that needs one.
8619    Set the final size of the .MIPS.stub section.  */
8620 
8621 static void
8622 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
8623 {
8624   struct mips_elf_link_hash_table *htab;
8625 
8626   htab = mips_elf_hash_table (info);
8627   BFD_ASSERT (htab != NULL);
8628 
8629   if (htab->lazy_stub_count == 0)
8630     return;
8631 
8632   htab->sstubs->size = 0;
8633   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab);
8634   htab->sstubs->size += htab->function_stub_size;
8635   BFD_ASSERT (htab->sstubs->size
8636 	      == htab->lazy_stub_count * htab->function_stub_size);
8637 }
8638 
8639 /* Set the sizes of the dynamic sections.  */
8640 
8641 bfd_boolean
8642 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
8643 				     struct bfd_link_info *info)
8644 {
8645   bfd *dynobj;
8646   asection *s, *sreldyn;
8647   bfd_boolean reltext;
8648   struct mips_elf_link_hash_table *htab;
8649 
8650   htab = mips_elf_hash_table (info);
8651   BFD_ASSERT (htab != NULL);
8652   dynobj = elf_hash_table (info)->dynobj;
8653   BFD_ASSERT (dynobj != NULL);
8654 
8655   if (elf_hash_table (info)->dynamic_sections_created)
8656     {
8657       /* Set the contents of the .interp section to the interpreter.  */
8658       if (info->executable)
8659 	{
8660 	  s = bfd_get_section_by_name (dynobj, ".interp");
8661 	  BFD_ASSERT (s != NULL);
8662 	  s->size
8663 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
8664 	  s->contents
8665 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
8666 	}
8667 
8668       /* Create a symbol for the PLT, if we know that we are using it.  */
8669       if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL)
8670 	{
8671 	  struct elf_link_hash_entry *h;
8672 
8673 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
8674 
8675 	  h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt,
8676 					   "_PROCEDURE_LINKAGE_TABLE_");
8677 	  htab->root.hplt = h;
8678 	  if (h == NULL)
8679 	    return FALSE;
8680 	  h->type = STT_FUNC;
8681 	}
8682     }
8683 
8684   /* Allocate space for global sym dynamic relocs.  */
8685   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info);
8686 
8687   mips_elf_estimate_stub_size (output_bfd, info);
8688 
8689   if (!mips_elf_lay_out_got (output_bfd, info))
8690     return FALSE;
8691 
8692   mips_elf_lay_out_lazy_stubs (info);
8693 
8694   /* The check_relocs and adjust_dynamic_symbol entry points have
8695      determined the sizes of the various dynamic sections.  Allocate
8696      memory for them.  */
8697   reltext = FALSE;
8698   for (s = dynobj->sections; s != NULL; s = s->next)
8699     {
8700       const char *name;
8701 
8702       /* It's OK to base decisions on the section name, because none
8703 	 of the dynobj section names depend upon the input files.  */
8704       name = bfd_get_section_name (dynobj, s);
8705 
8706       if ((s->flags & SEC_LINKER_CREATED) == 0)
8707 	continue;
8708 
8709       if (CONST_STRNEQ (name, ".rel"))
8710 	{
8711 	  if (s->size != 0)
8712 	    {
8713 	      const char *outname;
8714 	      asection *target;
8715 
8716 	      /* If this relocation section applies to a read only
8717                  section, then we probably need a DT_TEXTREL entry.
8718                  If the relocation section is .rel(a).dyn, we always
8719                  assert a DT_TEXTREL entry rather than testing whether
8720                  there exists a relocation to a read only section or
8721                  not.  */
8722 	      outname = bfd_get_section_name (output_bfd,
8723 					      s->output_section);
8724 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
8725 	      if ((target != NULL
8726 		   && (target->flags & SEC_READONLY) != 0
8727 		   && (target->flags & SEC_ALLOC) != 0)
8728 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
8729 		reltext = TRUE;
8730 
8731 	      /* We use the reloc_count field as a counter if we need
8732 		 to copy relocs into the output file.  */
8733 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
8734 		s->reloc_count = 0;
8735 
8736 	      /* If combreloc is enabled, elf_link_sort_relocs() will
8737 		 sort relocations, but in a different way than we do,
8738 		 and before we're done creating relocations.  Also, it
8739 		 will move them around between input sections'
8740 		 relocation's contents, so our sorting would be
8741 		 broken, so don't let it run.  */
8742 	      info->combreloc = 0;
8743 	    }
8744 	}
8745       else if (! info->shared
8746 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
8747 	       && CONST_STRNEQ (name, ".rld_map"))
8748 	{
8749 	  /* We add a room for __rld_map.  It will be filled in by the
8750 	     rtld to contain a pointer to the _r_debug structure.  */
8751 	  s->size += 4;
8752 	}
8753       else if (SGI_COMPAT (output_bfd)
8754 	       && CONST_STRNEQ (name, ".compact_rel"))
8755 	s->size += mips_elf_hash_table (info)->compact_rel_size;
8756       else if (s == htab->splt)
8757 	{
8758 	  /* If the last PLT entry has a branch delay slot, allocate
8759 	     room for an extra nop to fill the delay slot.  This is
8760 	     for CPUs without load interlocking.  */
8761 	  if (! LOAD_INTERLOCKS_P (output_bfd)
8762 	      && ! htab->is_vxworks && s->size > 0)
8763 	    s->size += 4;
8764 	}
8765       else if (! CONST_STRNEQ (name, ".init")
8766 	       && s != htab->sgot
8767 	       && s != htab->sgotplt
8768 	       && s != htab->sstubs
8769 	       && s != htab->sdynbss)
8770 	{
8771 	  /* It's not one of our sections, so don't allocate space.  */
8772 	  continue;
8773 	}
8774 
8775       if (s->size == 0)
8776 	{
8777 	  s->flags |= SEC_EXCLUDE;
8778 	  continue;
8779 	}
8780 
8781       if ((s->flags & SEC_HAS_CONTENTS) == 0)
8782 	continue;
8783 
8784       /* Allocate memory for the section contents.  */
8785       s->contents = bfd_zalloc (dynobj, s->size);
8786       if (s->contents == NULL)
8787 	{
8788 	  bfd_set_error (bfd_error_no_memory);
8789 	  return FALSE;
8790 	}
8791     }
8792 
8793   if (elf_hash_table (info)->dynamic_sections_created)
8794     {
8795       /* Add some entries to the .dynamic section.  We fill in the
8796 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
8797 	 must add the entries now so that we get the correct size for
8798 	 the .dynamic section.  */
8799 
8800       /* SGI object has the equivalence of DT_DEBUG in the
8801 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
8802 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only
8803 	 looks at the first one it sees.  */
8804       if (!info->shared
8805 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
8806 	return FALSE;
8807 
8808       /* The DT_DEBUG entry may be filled in by the dynamic linker and
8809 	 used by the debugger.  */
8810       if (info->executable
8811 	  && !SGI_COMPAT (output_bfd)
8812 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
8813 	return FALSE;
8814 
8815       if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
8816 	info->flags |= DF_TEXTREL;
8817 
8818       if ((info->flags & DF_TEXTREL) != 0)
8819 	{
8820 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
8821 	    return FALSE;
8822 
8823 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
8824 	     write out an actual text relocation; we may not, because
8825 	     at this point we do not know whether e.g. any .eh_frame
8826 	     absolute relocations have been converted to PC-relative.  */
8827 	  info->flags &= ~DF_TEXTREL;
8828 	}
8829 
8830       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
8831 	return FALSE;
8832 
8833       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
8834       if (htab->is_vxworks)
8835 	{
8836 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
8837 	     use any of the DT_MIPS_* tags.  */
8838 	  if (sreldyn && sreldyn->size > 0)
8839 	    {
8840 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
8841 		return FALSE;
8842 
8843 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
8844 		return FALSE;
8845 
8846 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
8847 		return FALSE;
8848 	    }
8849 	}
8850       else
8851 	{
8852 	  if (sreldyn && sreldyn->size > 0)
8853 	    {
8854 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
8855 		return FALSE;
8856 
8857 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
8858 		return FALSE;
8859 
8860 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
8861 		return FALSE;
8862 	    }
8863 
8864 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
8865 	    return FALSE;
8866 
8867 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
8868 	    return FALSE;
8869 
8870 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
8871 	    return FALSE;
8872 
8873 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
8874 	    return FALSE;
8875 
8876 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
8877 	    return FALSE;
8878 
8879 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
8880 	    return FALSE;
8881 
8882 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
8883 	    return FALSE;
8884 
8885 	  if (IRIX_COMPAT (dynobj) == ict_irix5
8886 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
8887 	    return FALSE;
8888 
8889 	  if (IRIX_COMPAT (dynobj) == ict_irix6
8890 	      && (bfd_get_section_by_name
8891 		  (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
8892 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
8893 	    return FALSE;
8894 	}
8895       if (htab->splt->size > 0)
8896 	{
8897 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
8898 	    return FALSE;
8899 
8900 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
8901 	    return FALSE;
8902 
8903 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
8904 	    return FALSE;
8905 
8906 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
8907 	    return FALSE;
8908 	}
8909       if (htab->is_vxworks
8910 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8911 	return FALSE;
8912     }
8913 
8914   return TRUE;
8915 }
8916 
8917 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
8918    Adjust its R_ADDEND field so that it is correct for the output file.
8919    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
8920    and sections respectively; both use symbol indexes.  */
8921 
8922 static void
8923 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
8924 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
8925 			asection **local_sections, Elf_Internal_Rela *rel)
8926 {
8927   unsigned int r_type, r_symndx;
8928   Elf_Internal_Sym *sym;
8929   asection *sec;
8930 
8931   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
8932     {
8933       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8934       if (r_type == R_MIPS16_GPREL
8935 	  || r_type == R_MIPS_GPREL16
8936 	  || r_type == R_MIPS_GPREL32
8937 	  || r_type == R_MIPS_LITERAL)
8938 	{
8939 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
8940 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
8941 	}
8942 
8943       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
8944       sym = local_syms + r_symndx;
8945 
8946       /* Adjust REL's addend to account for section merging.  */
8947       if (!info->relocatable)
8948 	{
8949 	  sec = local_sections[r_symndx];
8950 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8951 	}
8952 
8953       /* This would normally be done by the rela_normal code in elflink.c.  */
8954       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8955 	rel->r_addend += local_sections[r_symndx]->output_offset;
8956     }
8957 }
8958 
8959 /* Relocate a MIPS ELF section.  */
8960 
8961 bfd_boolean
8962 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
8963 				bfd *input_bfd, asection *input_section,
8964 				bfd_byte *contents, Elf_Internal_Rela *relocs,
8965 				Elf_Internal_Sym *local_syms,
8966 				asection **local_sections)
8967 {
8968   Elf_Internal_Rela *rel;
8969   const Elf_Internal_Rela *relend;
8970   bfd_vma addend = 0;
8971   bfd_boolean use_saved_addend_p = FALSE;
8972   const struct elf_backend_data *bed;
8973 
8974   bed = get_elf_backend_data (output_bfd);
8975   relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel;
8976   for (rel = relocs; rel < relend; ++rel)
8977     {
8978       const char *name;
8979       bfd_vma value = 0;
8980       reloc_howto_type *howto;
8981       bfd_boolean cross_mode_jump_p;
8982       /* TRUE if the relocation is a RELA relocation, rather than a
8983          REL relocation.  */
8984       bfd_boolean rela_relocation_p = TRUE;
8985       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
8986       const char *msg;
8987       unsigned long r_symndx;
8988       asection *sec;
8989       Elf_Internal_Shdr *symtab_hdr;
8990       struct elf_link_hash_entry *h;
8991       bfd_boolean rel_reloc;
8992 
8993       rel_reloc = (NEWABI_P (input_bfd)
8994 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
8995 						 relocs, rel));
8996       /* Find the relocation howto for this relocation.  */
8997       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
8998 
8999       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
9000       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9001       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
9002 	{
9003 	  sec = local_sections[r_symndx];
9004 	  h = NULL;
9005 	}
9006       else
9007 	{
9008 	  unsigned long extsymoff;
9009 
9010 	  extsymoff = 0;
9011 	  if (!elf_bad_symtab (input_bfd))
9012 	    extsymoff = symtab_hdr->sh_info;
9013 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
9014 	  while (h->root.type == bfd_link_hash_indirect
9015 		 || h->root.type == bfd_link_hash_warning)
9016 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9017 
9018 	  sec = NULL;
9019 	  if (h->root.type == bfd_link_hash_defined
9020 	      || h->root.type == bfd_link_hash_defweak)
9021 	    sec = h->root.u.def.section;
9022 	}
9023 
9024       if (sec != NULL && elf_discarded_section (sec))
9025 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
9026 					 rel, relend, howto, contents);
9027 
9028       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
9029 	{
9030 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
9031 	     64-bit code, but make sure all their addresses are in the
9032 	     lowermost or uppermost 32-bit section of the 64-bit address
9033 	     space.  Thus, when they use an R_MIPS_64 they mean what is
9034 	     usually meant by R_MIPS_32, with the exception that the
9035 	     stored value is sign-extended to 64 bits.  */
9036 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
9037 
9038 	  /* On big-endian systems, we need to lie about the position
9039 	     of the reloc.  */
9040 	  if (bfd_big_endian (input_bfd))
9041 	    rel->r_offset += 4;
9042 	}
9043 
9044       if (!use_saved_addend_p)
9045 	{
9046 	  /* If these relocations were originally of the REL variety,
9047 	     we must pull the addend out of the field that will be
9048 	     relocated.  Otherwise, we simply use the contents of the
9049 	     RELA relocation.  */
9050 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
9051 					 relocs, rel))
9052 	    {
9053 	      rela_relocation_p = FALSE;
9054 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
9055 						 howto, contents);
9056 	      if (hi16_reloc_p (r_type)
9057 		  || (got16_reloc_p (r_type)
9058 		      && mips_elf_local_relocation_p (input_bfd, rel,
9059 						      local_sections)))
9060 		{
9061 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
9062 						     contents, &addend))
9063 		    {
9064 		      if (h)
9065 			name = h->root.root.string;
9066 		      else
9067 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9068 						 local_syms + r_symndx,
9069 						 sec);
9070 		      (*_bfd_error_handler)
9071 			(_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"),
9072 			 input_bfd, input_section, name, howto->name,
9073 			 rel->r_offset);
9074 		    }
9075 		}
9076 	      else
9077 		addend <<= howto->rightshift;
9078 	    }
9079 	  else
9080 	    addend = rel->r_addend;
9081 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
9082 				  local_syms, local_sections, rel);
9083 	}
9084 
9085       if (info->relocatable)
9086 	{
9087 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
9088 	      && bfd_big_endian (input_bfd))
9089 	    rel->r_offset -= 4;
9090 
9091 	  if (!rela_relocation_p && rel->r_addend)
9092 	    {
9093 	      addend += rel->r_addend;
9094 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
9095 		addend = mips_elf_high (addend);
9096 	      else if (r_type == R_MIPS_HIGHER)
9097 		addend = mips_elf_higher (addend);
9098 	      else if (r_type == R_MIPS_HIGHEST)
9099 		addend = mips_elf_highest (addend);
9100 	      else
9101 		addend >>= howto->rightshift;
9102 
9103 	      /* We use the source mask, rather than the destination
9104 		 mask because the place to which we are writing will be
9105 		 source of the addend in the final link.  */
9106 	      addend &= howto->src_mask;
9107 
9108 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9109 		/* See the comment above about using R_MIPS_64 in the 32-bit
9110 		   ABI.  Here, we need to update the addend.  It would be
9111 		   possible to get away with just using the R_MIPS_32 reloc
9112 		   but for endianness.  */
9113 		{
9114 		  bfd_vma sign_bits;
9115 		  bfd_vma low_bits;
9116 		  bfd_vma high_bits;
9117 
9118 		  if (addend & ((bfd_vma) 1 << 31))
9119 #ifdef BFD64
9120 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
9121 #else
9122 		    sign_bits = -1;
9123 #endif
9124 		  else
9125 		    sign_bits = 0;
9126 
9127 		  /* If we don't know that we have a 64-bit type,
9128 		     do two separate stores.  */
9129 		  if (bfd_big_endian (input_bfd))
9130 		    {
9131 		      /* Store the sign-bits (which are most significant)
9132 			 first.  */
9133 		      low_bits = sign_bits;
9134 		      high_bits = addend;
9135 		    }
9136 		  else
9137 		    {
9138 		      low_bits = addend;
9139 		      high_bits = sign_bits;
9140 		    }
9141 		  bfd_put_32 (input_bfd, low_bits,
9142 			      contents + rel->r_offset);
9143 		  bfd_put_32 (input_bfd, high_bits,
9144 			      contents + rel->r_offset + 4);
9145 		  continue;
9146 		}
9147 
9148 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
9149 						 input_bfd, input_section,
9150 						 contents, FALSE))
9151 		return FALSE;
9152 	    }
9153 
9154 	  /* Go on to the next relocation.  */
9155 	  continue;
9156 	}
9157 
9158       /* In the N32 and 64-bit ABIs there may be multiple consecutive
9159 	 relocations for the same offset.  In that case we are
9160 	 supposed to treat the output of each relocation as the addend
9161 	 for the next.  */
9162       if (rel + 1 < relend
9163 	  && rel->r_offset == rel[1].r_offset
9164 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
9165 	use_saved_addend_p = TRUE;
9166       else
9167 	use_saved_addend_p = FALSE;
9168 
9169       /* Figure out what value we are supposed to relocate.  */
9170       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
9171 					     input_section, info, rel,
9172 					     addend, howto, local_syms,
9173 					     local_sections, &value,
9174 					     &name, &cross_mode_jump_p,
9175 					     use_saved_addend_p))
9176 	{
9177 	case bfd_reloc_continue:
9178 	  /* There's nothing to do.  */
9179 	  continue;
9180 
9181 	case bfd_reloc_undefined:
9182 	  /* mips_elf_calculate_relocation already called the
9183 	     undefined_symbol callback.  There's no real point in
9184 	     trying to perform the relocation at this point, so we
9185 	     just skip ahead to the next relocation.  */
9186 	  continue;
9187 
9188 	case bfd_reloc_notsupported:
9189 	  msg = _("internal error: unsupported relocation error");
9190 	  info->callbacks->warning
9191 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
9192 	  return FALSE;
9193 
9194 	case bfd_reloc_overflow:
9195 	  if (use_saved_addend_p)
9196 	    /* Ignore overflow until we reach the last relocation for
9197 	       a given location.  */
9198 	    ;
9199 	  else
9200 	    {
9201 	      struct mips_elf_link_hash_table *htab;
9202 
9203 	      htab = mips_elf_hash_table (info);
9204 	      BFD_ASSERT (htab != NULL);
9205 	      BFD_ASSERT (name != NULL);
9206 	      if (!htab->small_data_overflow_reported
9207 		  && (gprel16_reloc_p (howto->type)
9208 		      || howto->type == R_MIPS_LITERAL))
9209 		{
9210 		  msg = _("small-data section exceeds 64KB;"
9211 			  " lower small-data size limit (see option -G)");
9212 
9213 		  htab->small_data_overflow_reported = TRUE;
9214 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
9215 		}
9216 	      if (! ((*info->callbacks->reloc_overflow)
9217 		     (info, NULL, name, howto->name, (bfd_vma) 0,
9218 		      input_bfd, input_section, rel->r_offset)))
9219 		return FALSE;
9220 	    }
9221 	  break;
9222 
9223 	case bfd_reloc_ok:
9224 	  break;
9225 
9226 	default:
9227 	  abort ();
9228 	  break;
9229 	}
9230 
9231       /* If we've got another relocation for the address, keep going
9232 	 until we reach the last one.  */
9233       if (use_saved_addend_p)
9234 	{
9235 	  addend = value;
9236 	  continue;
9237 	}
9238 
9239       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
9240 	/* See the comment above about using R_MIPS_64 in the 32-bit
9241 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
9242 	   that calculated the right value.  Now, however, we
9243 	   sign-extend the 32-bit result to 64-bits, and store it as a
9244 	   64-bit value.  We are especially generous here in that we
9245 	   go to extreme lengths to support this usage on systems with
9246 	   only a 32-bit VMA.  */
9247 	{
9248 	  bfd_vma sign_bits;
9249 	  bfd_vma low_bits;
9250 	  bfd_vma high_bits;
9251 
9252 	  if (value & ((bfd_vma) 1 << 31))
9253 #ifdef BFD64
9254 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
9255 #else
9256 	    sign_bits = -1;
9257 #endif
9258 	  else
9259 	    sign_bits = 0;
9260 
9261 	  /* If we don't know that we have a 64-bit type,
9262 	     do two separate stores.  */
9263 	  if (bfd_big_endian (input_bfd))
9264 	    {
9265 	      /* Undo what we did above.  */
9266 	      rel->r_offset -= 4;
9267 	      /* Store the sign-bits (which are most significant)
9268 		 first.  */
9269 	      low_bits = sign_bits;
9270 	      high_bits = value;
9271 	    }
9272 	  else
9273 	    {
9274 	      low_bits = value;
9275 	      high_bits = sign_bits;
9276 	    }
9277 	  bfd_put_32 (input_bfd, low_bits,
9278 		      contents + rel->r_offset);
9279 	  bfd_put_32 (input_bfd, high_bits,
9280 		      contents + rel->r_offset + 4);
9281 	  continue;
9282 	}
9283 
9284       /* Actually perform the relocation.  */
9285       if (! mips_elf_perform_relocation (info, howto, rel, value,
9286 					 input_bfd, input_section,
9287 					 contents, cross_mode_jump_p))
9288 	return FALSE;
9289     }
9290 
9291   return TRUE;
9292 }
9293 
9294 /* A function that iterates over each entry in la25_stubs and fills
9295    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
9296 
9297 static int
9298 mips_elf_create_la25_stub (void **slot, void *data)
9299 {
9300   struct mips_htab_traverse_info *hti;
9301   struct mips_elf_link_hash_table *htab;
9302   struct mips_elf_la25_stub *stub;
9303   asection *s;
9304   bfd_byte *loc;
9305   bfd_vma offset, target, target_high, target_low;
9306 
9307   stub = (struct mips_elf_la25_stub *) *slot;
9308   hti = (struct mips_htab_traverse_info *) data;
9309   htab = mips_elf_hash_table (hti->info);
9310   BFD_ASSERT (htab != NULL);
9311 
9312   /* Create the section contents, if we haven't already.  */
9313   s = stub->stub_section;
9314   loc = s->contents;
9315   if (loc == NULL)
9316     {
9317       loc = bfd_malloc (s->size);
9318       if (loc == NULL)
9319 	{
9320 	  hti->error = TRUE;
9321 	  return FALSE;
9322 	}
9323       s->contents = loc;
9324     }
9325 
9326   /* Work out where in the section this stub should go.  */
9327   offset = stub->offset;
9328 
9329   /* Work out the target address.  */
9330   target = (stub->h->root.root.u.def.section->output_section->vma
9331 	    + stub->h->root.root.u.def.section->output_offset
9332 	    + stub->h->root.root.u.def.value);
9333   target_high = ((target + 0x8000) >> 16) & 0xffff;
9334   target_low = (target & 0xffff);
9335 
9336   if (stub->stub_section != htab->strampoline)
9337     {
9338       /* This is a simple LUI/ADIDU stub.  Zero out the beginning
9339 	 of the section and write the two instructions at the end.  */
9340       memset (loc, 0, offset);
9341       loc += offset;
9342       bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9343       bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
9344     }
9345   else
9346     {
9347       /* This is trampoline.  */
9348       loc += offset;
9349       bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
9350       bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
9351       bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
9352       bfd_put_32 (hti->output_bfd, 0, loc + 12);
9353     }
9354   return TRUE;
9355 }
9356 
9357 /* If NAME is one of the special IRIX6 symbols defined by the linker,
9358    adjust it appropriately now.  */
9359 
9360 static void
9361 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
9362 				      const char *name, Elf_Internal_Sym *sym)
9363 {
9364   /* The linker script takes care of providing names and values for
9365      these, but we must place them into the right sections.  */
9366   static const char* const text_section_symbols[] = {
9367     "_ftext",
9368     "_etext",
9369     "__dso_displacement",
9370     "__elf_header",
9371     "__program_header_table",
9372     NULL
9373   };
9374 
9375   static const char* const data_section_symbols[] = {
9376     "_fdata",
9377     "_edata",
9378     "_end",
9379     "_fbss",
9380     NULL
9381   };
9382 
9383   const char* const *p;
9384   int i;
9385 
9386   for (i = 0; i < 2; ++i)
9387     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
9388 	 *p;
9389 	 ++p)
9390       if (strcmp (*p, name) == 0)
9391 	{
9392 	  /* All of these symbols are given type STT_SECTION by the
9393 	     IRIX6 linker.  */
9394 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9395 	  sym->st_other = STO_PROTECTED;
9396 
9397 	  /* The IRIX linker puts these symbols in special sections.  */
9398 	  if (i == 0)
9399 	    sym->st_shndx = SHN_MIPS_TEXT;
9400 	  else
9401 	    sym->st_shndx = SHN_MIPS_DATA;
9402 
9403 	  break;
9404 	}
9405 }
9406 
9407 /* Finish up dynamic symbol handling.  We set the contents of various
9408    dynamic sections here.  */
9409 
9410 bfd_boolean
9411 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
9412 				     struct bfd_link_info *info,
9413 				     struct elf_link_hash_entry *h,
9414 				     Elf_Internal_Sym *sym)
9415 {
9416   bfd *dynobj;
9417   asection *sgot;
9418   struct mips_got_info *g, *gg;
9419   const char *name;
9420   int idx;
9421   struct mips_elf_link_hash_table *htab;
9422   struct mips_elf_link_hash_entry *hmips;
9423 
9424   htab = mips_elf_hash_table (info);
9425   BFD_ASSERT (htab != NULL);
9426   dynobj = elf_hash_table (info)->dynobj;
9427   hmips = (struct mips_elf_link_hash_entry *) h;
9428 
9429   BFD_ASSERT (!htab->is_vxworks);
9430 
9431   if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub)
9432     {
9433       /* We've decided to create a PLT entry for this symbol.  */
9434       bfd_byte *loc;
9435       bfd_vma header_address, plt_index, got_address;
9436       bfd_vma got_address_high, got_address_low, load;
9437       const bfd_vma *plt_entry;
9438 
9439       BFD_ASSERT (htab->use_plts_and_copy_relocs);
9440       BFD_ASSERT (h->dynindx != -1);
9441       BFD_ASSERT (htab->splt != NULL);
9442       BFD_ASSERT (h->plt.offset <= htab->splt->size);
9443       BFD_ASSERT (!h->def_regular);
9444 
9445       /* Calculate the address of the PLT header.  */
9446       header_address = (htab->splt->output_section->vma
9447 			+ htab->splt->output_offset);
9448 
9449       /* Calculate the index of the entry.  */
9450       plt_index = ((h->plt.offset - htab->plt_header_size)
9451 		   / htab->plt_entry_size);
9452 
9453       /* Calculate the address of the .got.plt entry.  */
9454       got_address = (htab->sgotplt->output_section->vma
9455 		     + htab->sgotplt->output_offset
9456 		     + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9457       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9458       got_address_low = got_address & 0xffff;
9459 
9460       /* Initially point the .got.plt entry at the PLT header.  */
9461       loc = (htab->sgotplt->contents
9462 	     + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj));
9463       if (ABI_64_P (output_bfd))
9464 	bfd_put_64 (output_bfd, header_address, loc);
9465       else
9466 	bfd_put_32 (output_bfd, header_address, loc);
9467 
9468       /* Find out where the .plt entry should go.  */
9469       loc = htab->splt->contents + h->plt.offset;
9470 
9471       /* Pick the load opcode.  */
9472       load = MIPS_ELF_LOAD_WORD (output_bfd);
9473 
9474       /* Fill in the PLT entry itself.  */
9475       plt_entry = mips_exec_plt_entry;
9476       bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
9477       bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4);
9478 
9479       if (! LOAD_INTERLOCKS_P (output_bfd))
9480 	{
9481 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
9482 	  bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9483 	}
9484       else
9485 	{
9486 	  bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
9487 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12);
9488 	}
9489 
9490       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
9491       mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt,
9492 					  plt_index, h->dynindx,
9493 					  R_MIPS_JUMP_SLOT, got_address);
9494 
9495       /* We distinguish between PLT entries and lazy-binding stubs by
9496 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
9497 	 flag and leave the value if there are any relocations in the
9498 	 binary where pointer equality matters.  */
9499       sym->st_shndx = SHN_UNDEF;
9500       if (h->pointer_equality_needed)
9501 	sym->st_other = STO_MIPS_PLT;
9502       else
9503 	sym->st_value = 0;
9504     }
9505   else if (h->plt.offset != MINUS_ONE)
9506     {
9507       /* We've decided to create a lazy-binding stub.  */
9508       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
9509 
9510       /* This symbol has a stub.  Set it up.  */
9511 
9512       BFD_ASSERT (h->dynindx != -1);
9513 
9514       BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9515                   || (h->dynindx <= 0xffff));
9516 
9517       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
9518 	 sign extension at runtime in the stub, resulting in a negative
9519 	 index value.  */
9520       if (h->dynindx & ~0x7fffffff)
9521 	return FALSE;
9522 
9523       /* Fill the stub.  */
9524       idx = 0;
9525       bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
9526       idx += 4;
9527       bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx);
9528       idx += 4;
9529       if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9530         {
9531           bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
9532                       stub + idx);
9533           idx += 4;
9534         }
9535       bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
9536       idx += 4;
9537 
9538       /* If a large stub is not required and sign extension is not a
9539          problem, then use legacy code in the stub.  */
9540       if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE)
9541 	bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx);
9542       else if (h->dynindx & ~0x7fff)
9543         bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx);
9544       else
9545         bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
9546 		    stub + idx);
9547 
9548       BFD_ASSERT (h->plt.offset <= htab->sstubs->size);
9549       memcpy (htab->sstubs->contents + h->plt.offset,
9550 	      stub, htab->function_stub_size);
9551 
9552       /* Mark the symbol as undefined.  plt.offset != -1 occurs
9553 	 only for the referenced symbol.  */
9554       sym->st_shndx = SHN_UNDEF;
9555 
9556       /* The run-time linker uses the st_value field of the symbol
9557 	 to reset the global offset table entry for this external
9558 	 to its stub address when unlinking a shared object.  */
9559       sym->st_value = (htab->sstubs->output_section->vma
9560 		       + htab->sstubs->output_offset
9561 		       + h->plt.offset);
9562     }
9563 
9564   /* If we have a MIPS16 function with a stub, the dynamic symbol must
9565      refer to the stub, since only the stub uses the standard calling
9566      conventions.  */
9567   if (h->dynindx != -1 && hmips->fn_stub != NULL)
9568     {
9569       BFD_ASSERT (hmips->need_fn_stub);
9570       sym->st_value = (hmips->fn_stub->output_section->vma
9571 		       + hmips->fn_stub->output_offset);
9572       sym->st_size = hmips->fn_stub->size;
9573       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
9574     }
9575 
9576   BFD_ASSERT (h->dynindx != -1
9577 	      || h->forced_local);
9578 
9579   sgot = htab->sgot;
9580   g = htab->got_info;
9581   BFD_ASSERT (g != NULL);
9582 
9583   /* Run through the global symbol table, creating GOT entries for all
9584      the symbols that need them.  */
9585   if (hmips->global_got_area != GGA_NONE)
9586     {
9587       bfd_vma offset;
9588       bfd_vma value;
9589 
9590       value = sym->st_value;
9591       offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9592 					  R_MIPS_GOT16, info);
9593       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
9594     }
9595 
9596   if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS)
9597     {
9598       struct mips_got_entry e, *p;
9599       bfd_vma entry;
9600       bfd_vma offset;
9601 
9602       gg = g;
9603 
9604       e.abfd = output_bfd;
9605       e.symndx = -1;
9606       e.d.h = hmips;
9607       e.tls_type = 0;
9608 
9609       for (g = g->next; g->next != gg; g = g->next)
9610 	{
9611 	  if (g->got_entries
9612 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
9613 							   &e)))
9614 	    {
9615 	      offset = p->gotidx;
9616 	      if (info->shared
9617 		  || (elf_hash_table (info)->dynamic_sections_created
9618 		      && p->d.h != NULL
9619 		      && p->d.h->root.def_dynamic
9620 		      && !p->d.h->root.def_regular))
9621 		{
9622 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
9623 		     the various compatibility problems, it's easier to mock
9624 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
9625 		     mips_elf_create_dynamic_relocation to calculate the
9626 		     appropriate addend.  */
9627 		  Elf_Internal_Rela rel[3];
9628 
9629 		  memset (rel, 0, sizeof (rel));
9630 		  if (ABI_64_P (output_bfd))
9631 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
9632 		  else
9633 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
9634 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
9635 
9636 		  entry = 0;
9637 		  if (! (mips_elf_create_dynamic_relocation
9638 			 (output_bfd, info, rel,
9639 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
9640 		    return FALSE;
9641 		}
9642 	      else
9643 		entry = sym->st_value;
9644 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
9645 	    }
9646 	}
9647     }
9648 
9649   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
9650   name = h->root.root.string;
9651   if (strcmp (name, "_DYNAMIC") == 0
9652       || h == elf_hash_table (info)->hgot)
9653     sym->st_shndx = SHN_ABS;
9654   else if (strcmp (name, "_DYNAMIC_LINK") == 0
9655 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
9656     {
9657       sym->st_shndx = SHN_ABS;
9658       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9659       sym->st_value = 1;
9660     }
9661   else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd))
9662     {
9663       sym->st_shndx = SHN_ABS;
9664       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9665       sym->st_value = elf_gp (output_bfd);
9666     }
9667   else if (SGI_COMPAT (output_bfd))
9668     {
9669       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
9670 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
9671 	{
9672 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9673 	  sym->st_other = STO_PROTECTED;
9674 	  sym->st_value = 0;
9675 	  sym->st_shndx = SHN_MIPS_DATA;
9676 	}
9677       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
9678 	{
9679 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
9680 	  sym->st_other = STO_PROTECTED;
9681 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
9682 	  sym->st_shndx = SHN_ABS;
9683 	}
9684       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
9685 	{
9686 	  if (h->type == STT_FUNC)
9687 	    sym->st_shndx = SHN_MIPS_TEXT;
9688 	  else if (h->type == STT_OBJECT)
9689 	    sym->st_shndx = SHN_MIPS_DATA;
9690 	}
9691     }
9692 
9693   /* Emit a copy reloc, if needed.  */
9694   if (h->needs_copy)
9695     {
9696       asection *s;
9697       bfd_vma symval;
9698 
9699       BFD_ASSERT (h->dynindx != -1);
9700       BFD_ASSERT (htab->use_plts_and_copy_relocs);
9701 
9702       s = mips_elf_rel_dyn_section (info, FALSE);
9703       symval = (h->root.u.def.section->output_section->vma
9704 		+ h->root.u.def.section->output_offset
9705 		+ h->root.u.def.value);
9706       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
9707 					  h->dynindx, R_MIPS_COPY, symval);
9708     }
9709 
9710   /* Handle the IRIX6-specific symbols.  */
9711   if (IRIX_COMPAT (output_bfd) == ict_irix6)
9712     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
9713 
9714   if (! info->shared)
9715     {
9716       if (! mips_elf_hash_table (info)->use_rld_obj_head
9717 	  && (strcmp (name, "__rld_map") == 0
9718 	      || strcmp (name, "__RLD_MAP") == 0))
9719 	{
9720 	  asection *s = bfd_get_section_by_name (dynobj, ".rld_map");
9721 	  BFD_ASSERT (s != NULL);
9722 	  sym->st_value = s->output_section->vma + s->output_offset;
9723 	  bfd_put_32 (output_bfd, 0, s->contents);
9724 	  if (mips_elf_hash_table (info)->rld_value == 0)
9725 	    mips_elf_hash_table (info)->rld_value = sym->st_value;
9726 	}
9727       else if (mips_elf_hash_table (info)->use_rld_obj_head
9728 	       && strcmp (name, "__rld_obj_head") == 0)
9729 	{
9730 	  /* IRIX6 does not use a .rld_map section.  */
9731 	  if (IRIX_COMPAT (output_bfd) == ict_irix5
9732               || IRIX_COMPAT (output_bfd) == ict_none)
9733 	    BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map")
9734 			!= NULL);
9735 	  mips_elf_hash_table (info)->rld_value = sym->st_value;
9736 	}
9737     }
9738 
9739   /* Keep dynamic MIPS16 symbols odd.  This allows the dynamic linker to
9740      treat MIPS16 symbols like any other.  */
9741   if (ELF_ST_IS_MIPS16 (sym->st_other))
9742     {
9743       BFD_ASSERT (sym->st_value & 1);
9744       sym->st_other -= STO_MIPS16;
9745     }
9746 
9747   return TRUE;
9748 }
9749 
9750 /* Likewise, for VxWorks.  */
9751 
9752 bfd_boolean
9753 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
9754 					 struct bfd_link_info *info,
9755 					 struct elf_link_hash_entry *h,
9756 					 Elf_Internal_Sym *sym)
9757 {
9758   bfd *dynobj;
9759   asection *sgot;
9760   struct mips_got_info *g;
9761   struct mips_elf_link_hash_table *htab;
9762   struct mips_elf_link_hash_entry *hmips;
9763 
9764   htab = mips_elf_hash_table (info);
9765   BFD_ASSERT (htab != NULL);
9766   dynobj = elf_hash_table (info)->dynobj;
9767   hmips = (struct mips_elf_link_hash_entry *) h;
9768 
9769   if (h->plt.offset != (bfd_vma) -1)
9770     {
9771       bfd_byte *loc;
9772       bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset;
9773       Elf_Internal_Rela rel;
9774       static const bfd_vma *plt_entry;
9775 
9776       BFD_ASSERT (h->dynindx != -1);
9777       BFD_ASSERT (htab->splt != NULL);
9778       BFD_ASSERT (h->plt.offset <= htab->splt->size);
9779 
9780       /* Calculate the address of the .plt entry.  */
9781       plt_address = (htab->splt->output_section->vma
9782 		     + htab->splt->output_offset
9783 		     + h->plt.offset);
9784 
9785       /* Calculate the index of the entry.  */
9786       plt_index = ((h->plt.offset - htab->plt_header_size)
9787 		   / htab->plt_entry_size);
9788 
9789       /* Calculate the address of the .got.plt entry.  */
9790       got_address = (htab->sgotplt->output_section->vma
9791 		     + htab->sgotplt->output_offset
9792 		     + plt_index * 4);
9793 
9794       /* Calculate the offset of the .got.plt entry from
9795 	 _GLOBAL_OFFSET_TABLE_.  */
9796       got_offset = mips_elf_gotplt_index (info, h);
9797 
9798       /* Calculate the offset for the branch at the start of the PLT
9799 	 entry.  The branch jumps to the beginning of .plt.  */
9800       branch_offset = -(h->plt.offset / 4 + 1) & 0xffff;
9801 
9802       /* Fill in the initial value of the .got.plt entry.  */
9803       bfd_put_32 (output_bfd, plt_address,
9804 		  htab->sgotplt->contents + plt_index * 4);
9805 
9806       /* Find out where the .plt entry should go.  */
9807       loc = htab->splt->contents + h->plt.offset;
9808 
9809       if (info->shared)
9810 	{
9811 	  plt_entry = mips_vxworks_shared_plt_entry;
9812 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9813 	  bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9814 	}
9815       else
9816 	{
9817 	  bfd_vma got_address_high, got_address_low;
9818 
9819 	  plt_entry = mips_vxworks_exec_plt_entry;
9820 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
9821 	  got_address_low = got_address & 0xffff;
9822 
9823 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
9824 	  bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4);
9825 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
9826 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
9827 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9828 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9829 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9830 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9831 
9832 	  loc = (htab->srelplt2->contents
9833 		 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela));
9834 
9835 	  /* Emit a relocation for the .got.plt entry.  */
9836 	  rel.r_offset = got_address;
9837 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
9838 	  rel.r_addend = h->plt.offset;
9839 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9840 
9841 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
9842 	  loc += sizeof (Elf32_External_Rela);
9843 	  rel.r_offset = plt_address + 8;
9844 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
9845 	  rel.r_addend = got_offset;
9846 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9847 
9848 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
9849 	  loc += sizeof (Elf32_External_Rela);
9850 	  rel.r_offset += 4;
9851 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
9852 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9853 	}
9854 
9855       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
9856       loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela);
9857       rel.r_offset = got_address;
9858       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
9859       rel.r_addend = 0;
9860       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
9861 
9862       if (!h->def_regular)
9863 	sym->st_shndx = SHN_UNDEF;
9864     }
9865 
9866   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
9867 
9868   sgot = htab->sgot;
9869   g = htab->got_info;
9870   BFD_ASSERT (g != NULL);
9871 
9872   /* See if this symbol has an entry in the GOT.  */
9873   if (hmips->global_got_area != GGA_NONE)
9874     {
9875       bfd_vma offset;
9876       Elf_Internal_Rela outrel;
9877       bfd_byte *loc;
9878       asection *s;
9879 
9880       /* Install the symbol value in the GOT.   */
9881       offset = mips_elf_global_got_index (dynobj, output_bfd, h,
9882 					  R_MIPS_GOT16, info);
9883       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
9884 
9885       /* Add a dynamic relocation for it.  */
9886       s = mips_elf_rel_dyn_section (info, FALSE);
9887       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
9888       outrel.r_offset = (sgot->output_section->vma
9889 			 + sgot->output_offset
9890 			 + offset);
9891       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
9892       outrel.r_addend = 0;
9893       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
9894     }
9895 
9896   /* Emit a copy reloc, if needed.  */
9897   if (h->needs_copy)
9898     {
9899       Elf_Internal_Rela rel;
9900 
9901       BFD_ASSERT (h->dynindx != -1);
9902 
9903       rel.r_offset = (h->root.u.def.section->output_section->vma
9904 		      + h->root.u.def.section->output_offset
9905 		      + h->root.u.def.value);
9906       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
9907       rel.r_addend = 0;
9908       bfd_elf32_swap_reloca_out (output_bfd, &rel,
9909 				 htab->srelbss->contents
9910 				 + (htab->srelbss->reloc_count
9911 				    * sizeof (Elf32_External_Rela)));
9912       ++htab->srelbss->reloc_count;
9913     }
9914 
9915   /* If this is a mips16 symbol, force the value to be even.  */
9916   if (ELF_ST_IS_MIPS16 (sym->st_other))
9917     sym->st_value &= ~1;
9918 
9919   return TRUE;
9920 }
9921 
9922 /* Write out a plt0 entry to the beginning of .plt.  */
9923 
9924 static void
9925 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9926 {
9927   bfd_byte *loc;
9928   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
9929   static const bfd_vma *plt_entry;
9930   struct mips_elf_link_hash_table *htab;
9931 
9932   htab = mips_elf_hash_table (info);
9933   BFD_ASSERT (htab != NULL);
9934 
9935   if (ABI_64_P (output_bfd))
9936     plt_entry = mips_n64_exec_plt0_entry;
9937   else if (ABI_N32_P (output_bfd))
9938     plt_entry = mips_n32_exec_plt0_entry;
9939   else
9940     plt_entry = mips_o32_exec_plt0_entry;
9941 
9942   /* Calculate the value of .got.plt.  */
9943   gotplt_value = (htab->sgotplt->output_section->vma
9944 		  + htab->sgotplt->output_offset);
9945   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
9946   gotplt_value_low = gotplt_value & 0xffff;
9947 
9948   /* The PLT sequence is not safe for N64 if .got.plt's address can
9949      not be loaded in two instructions.  */
9950   BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0
9951 	      || ~(gotplt_value | 0x7fffffff) == 0);
9952 
9953   /* Install the PLT header.  */
9954   loc = htab->splt->contents;
9955   bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
9956   bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
9957   bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
9958   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9959   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
9960   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
9961   bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
9962   bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
9963 }
9964 
9965 /* Install the PLT header for a VxWorks executable and finalize the
9966    contents of .rela.plt.unloaded.  */
9967 
9968 static void
9969 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
9970 {
9971   Elf_Internal_Rela rela;
9972   bfd_byte *loc;
9973   bfd_vma got_value, got_value_high, got_value_low, plt_address;
9974   static const bfd_vma *plt_entry;
9975   struct mips_elf_link_hash_table *htab;
9976 
9977   htab = mips_elf_hash_table (info);
9978   BFD_ASSERT (htab != NULL);
9979 
9980   plt_entry = mips_vxworks_exec_plt0_entry;
9981 
9982   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
9983   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
9984 	       + htab->root.hgot->root.u.def.section->output_offset
9985 	       + htab->root.hgot->root.u.def.value);
9986 
9987   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
9988   got_value_low = got_value & 0xffff;
9989 
9990   /* Calculate the address of the PLT header.  */
9991   plt_address = htab->splt->output_section->vma + htab->splt->output_offset;
9992 
9993   /* Install the PLT header.  */
9994   loc = htab->splt->contents;
9995   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
9996   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
9997   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
9998   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
9999   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
10000   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
10001 
10002   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
10003   loc = htab->srelplt2->contents;
10004   rela.r_offset = plt_address;
10005   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10006   rela.r_addend = 0;
10007   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10008   loc += sizeof (Elf32_External_Rela);
10009 
10010   /* Output the relocation for the following addiu of
10011      %lo(_GLOBAL_OFFSET_TABLE_).  */
10012   rela.r_offset += 4;
10013   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10014   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
10015   loc += sizeof (Elf32_External_Rela);
10016 
10017   /* Fix up the remaining relocations.  They may have the wrong
10018      symbol index for _G_O_T_ or _P_L_T_ depending on the order
10019      in which symbols were output.  */
10020   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
10021     {
10022       Elf_Internal_Rela rel;
10023 
10024       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10025       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
10026       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10027       loc += sizeof (Elf32_External_Rela);
10028 
10029       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10030       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
10031       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10032       loc += sizeof (Elf32_External_Rela);
10033 
10034       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
10035       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
10036       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
10037       loc += sizeof (Elf32_External_Rela);
10038     }
10039 }
10040 
10041 /* Install the PLT header for a VxWorks shared library.  */
10042 
10043 static void
10044 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
10045 {
10046   unsigned int i;
10047   struct mips_elf_link_hash_table *htab;
10048 
10049   htab = mips_elf_hash_table (info);
10050   BFD_ASSERT (htab != NULL);
10051 
10052   /* We just need to copy the entry byte-by-byte.  */
10053   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
10054     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
10055 		htab->splt->contents + i * 4);
10056 }
10057 
10058 /* Finish up the dynamic sections.  */
10059 
10060 bfd_boolean
10061 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
10062 				       struct bfd_link_info *info)
10063 {
10064   bfd *dynobj;
10065   asection *sdyn;
10066   asection *sgot;
10067   struct mips_got_info *gg, *g;
10068   struct mips_elf_link_hash_table *htab;
10069 
10070   htab = mips_elf_hash_table (info);
10071   BFD_ASSERT (htab != NULL);
10072 
10073   dynobj = elf_hash_table (info)->dynobj;
10074 
10075   sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10076 
10077   sgot = htab->sgot;
10078   gg = htab->got_info;
10079 
10080   if (elf_hash_table (info)->dynamic_sections_created)
10081     {
10082       bfd_byte *b;
10083       int dyn_to_skip = 0, dyn_skipped = 0;
10084 
10085       BFD_ASSERT (sdyn != NULL);
10086       BFD_ASSERT (gg != NULL);
10087 
10088       g = mips_elf_got_for_ibfd (gg, output_bfd);
10089       BFD_ASSERT (g != NULL);
10090 
10091       for (b = sdyn->contents;
10092 	   b < sdyn->contents + sdyn->size;
10093 	   b += MIPS_ELF_DYN_SIZE (dynobj))
10094 	{
10095 	  Elf_Internal_Dyn dyn;
10096 	  const char *name;
10097 	  size_t elemsize;
10098 	  asection *s;
10099 	  bfd_boolean swap_out_p;
10100 
10101 	  /* Read in the current dynamic entry.  */
10102 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10103 
10104 	  /* Assume that we're going to modify it and write it out.  */
10105 	  swap_out_p = TRUE;
10106 
10107 	  switch (dyn.d_tag)
10108 	    {
10109 	    case DT_RELENT:
10110 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
10111 	      break;
10112 
10113 	    case DT_RELAENT:
10114 	      BFD_ASSERT (htab->is_vxworks);
10115 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
10116 	      break;
10117 
10118 	    case DT_STRSZ:
10119 	      /* Rewrite DT_STRSZ.  */
10120 	      dyn.d_un.d_val =
10121 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
10122 	      break;
10123 
10124 	    case DT_PLTGOT:
10125 	      s = htab->sgot;
10126 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10127 	      break;
10128 
10129 	    case DT_MIPS_PLTGOT:
10130 	      s = htab->sgotplt;
10131 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
10132 	      break;
10133 
10134 	    case DT_MIPS_RLD_VERSION:
10135 	      dyn.d_un.d_val = 1; /* XXX */
10136 	      break;
10137 
10138 	    case DT_MIPS_FLAGS:
10139 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
10140 	      break;
10141 
10142 	    case DT_MIPS_TIME_STAMP:
10143 	      {
10144 		time_t t;
10145 		time (&t);
10146 		dyn.d_un.d_val = t;
10147 	      }
10148 	      break;
10149 
10150 	    case DT_MIPS_ICHECKSUM:
10151 	      /* XXX FIXME: */
10152 	      swap_out_p = FALSE;
10153 	      break;
10154 
10155 	    case DT_MIPS_IVERSION:
10156 	      /* XXX FIXME: */
10157 	      swap_out_p = FALSE;
10158 	      break;
10159 
10160 	    case DT_MIPS_BASE_ADDRESS:
10161 	      s = output_bfd->sections;
10162 	      BFD_ASSERT (s != NULL);
10163 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
10164 	      break;
10165 
10166 	    case DT_MIPS_LOCAL_GOTNO:
10167 	      dyn.d_un.d_val = g->local_gotno;
10168 	      break;
10169 
10170 	    case DT_MIPS_UNREFEXTNO:
10171 	      /* The index into the dynamic symbol table which is the
10172 		 entry of the first external symbol that is not
10173 		 referenced within the same object.  */
10174 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
10175 	      break;
10176 
10177 	    case DT_MIPS_GOTSYM:
10178 	      if (gg->global_gotsym)
10179 		{
10180 		  dyn.d_un.d_val = gg->global_gotsym->dynindx;
10181 		  break;
10182 		}
10183 	      /* In case if we don't have global got symbols we default
10184 		 to setting DT_MIPS_GOTSYM to the same value as
10185 		 DT_MIPS_SYMTABNO, so we just fall through.  */
10186 
10187 	    case DT_MIPS_SYMTABNO:
10188 	      name = ".dynsym";
10189 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
10190 	      s = bfd_get_section_by_name (output_bfd, name);
10191 	      BFD_ASSERT (s != NULL);
10192 
10193 	      dyn.d_un.d_val = s->size / elemsize;
10194 	      break;
10195 
10196 	    case DT_MIPS_HIPAGENO:
10197 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
10198 	      break;
10199 
10200 	    case DT_MIPS_RLD_MAP:
10201 	      dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value;
10202 	      break;
10203 
10204 	    case DT_MIPS_OPTIONS:
10205 	      s = (bfd_get_section_by_name
10206 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
10207 	      dyn.d_un.d_ptr = s->vma;
10208 	      break;
10209 
10210 	    case DT_RELASZ:
10211 	      BFD_ASSERT (htab->is_vxworks);
10212 	      /* The count does not include the JUMP_SLOT relocations.  */
10213 	      if (htab->srelplt)
10214 		dyn.d_un.d_val -= htab->srelplt->size;
10215 	      break;
10216 
10217 	    case DT_PLTREL:
10218 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
10219 	      if (htab->is_vxworks)
10220 		dyn.d_un.d_val = DT_RELA;
10221 	      else
10222 		dyn.d_un.d_val = DT_REL;
10223 	      break;
10224 
10225 	    case DT_PLTRELSZ:
10226 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
10227 	      dyn.d_un.d_val = htab->srelplt->size;
10228 	      break;
10229 
10230 	    case DT_JMPREL:
10231 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
10232 	      dyn.d_un.d_ptr = (htab->srelplt->output_section->vma
10233 				+ htab->srelplt->output_offset);
10234 	      break;
10235 
10236 	    case DT_TEXTREL:
10237 	      /* If we didn't need any text relocations after all, delete
10238 		 the dynamic tag.  */
10239 	      if (!(info->flags & DF_TEXTREL))
10240 		{
10241 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
10242 		  swap_out_p = FALSE;
10243 		}
10244 	      break;
10245 
10246 	    case DT_FLAGS:
10247 	      /* If we didn't need any text relocations after all, clear
10248 		 DF_TEXTREL from DT_FLAGS.  */
10249 	      if (!(info->flags & DF_TEXTREL))
10250 		dyn.d_un.d_val &= ~DF_TEXTREL;
10251 	      else
10252 		swap_out_p = FALSE;
10253 	      break;
10254 
10255 	    default:
10256 	      swap_out_p = FALSE;
10257 	      if (htab->is_vxworks
10258 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10259 		swap_out_p = TRUE;
10260 	      break;
10261 	    }
10262 
10263 	  if (swap_out_p || dyn_skipped)
10264 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10265 	      (dynobj, &dyn, b - dyn_skipped);
10266 
10267 	  if (dyn_to_skip)
10268 	    {
10269 	      dyn_skipped += dyn_to_skip;
10270 	      dyn_to_skip = 0;
10271 	    }
10272 	}
10273 
10274       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
10275       if (dyn_skipped > 0)
10276 	memset (b - dyn_skipped, 0, dyn_skipped);
10277     }
10278 
10279   if (sgot != NULL && sgot->size > 0
10280       && !bfd_is_abs_section (sgot->output_section))
10281     {
10282       if (htab->is_vxworks)
10283 	{
10284 	  /* The first entry of the global offset table points to the
10285 	     ".dynamic" section.  The second is initialized by the
10286 	     loader and contains the shared library identifier.
10287 	     The third is also initialized by the loader and points
10288 	     to the lazy resolution stub.  */
10289 	  MIPS_ELF_PUT_WORD (output_bfd,
10290 			     sdyn->output_offset + sdyn->output_section->vma,
10291 			     sgot->contents);
10292 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
10293 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10294 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
10295 			     sgot->contents
10296 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
10297 	}
10298       else
10299 	{
10300 	  /* The first entry of the global offset table will be filled at
10301 	     runtime. The second entry will be used by some runtime loaders.
10302 	     This isn't the case of IRIX rld.  */
10303 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
10304 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10305 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
10306 	}
10307 
10308       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
10309 	 = MIPS_ELF_GOT_SIZE (output_bfd);
10310     }
10311 
10312   /* Generate dynamic relocations for the non-primary gots.  */
10313   if (gg != NULL && gg->next)
10314     {
10315       Elf_Internal_Rela rel[3];
10316       bfd_vma addend = 0;
10317 
10318       memset (rel, 0, sizeof (rel));
10319       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
10320 
10321       for (g = gg->next; g->next != gg; g = g->next)
10322 	{
10323 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
10324 	    + g->next->tls_gotno;
10325 
10326 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
10327 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10328 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
10329 			     sgot->contents
10330 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
10331 
10332 	  if (! info->shared)
10333 	    continue;
10334 
10335 	  while (got_index < g->assigned_gotno)
10336 	    {
10337 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
10338 		= got_index++ * MIPS_ELF_GOT_SIZE (output_bfd);
10339 	      if (!(mips_elf_create_dynamic_relocation
10340 		    (output_bfd, info, rel, NULL,
10341 		     bfd_abs_section_ptr,
10342 		     0, &addend, sgot)))
10343 		return FALSE;
10344 	      BFD_ASSERT (addend == 0);
10345 	    }
10346 	}
10347     }
10348 
10349   /* The generation of dynamic relocations for the non-primary gots
10350      adds more dynamic relocations.  We cannot count them until
10351      here.  */
10352 
10353   if (elf_hash_table (info)->dynamic_sections_created)
10354     {
10355       bfd_byte *b;
10356       bfd_boolean swap_out_p;
10357 
10358       BFD_ASSERT (sdyn != NULL);
10359 
10360       for (b = sdyn->contents;
10361 	   b < sdyn->contents + sdyn->size;
10362 	   b += MIPS_ELF_DYN_SIZE (dynobj))
10363 	{
10364 	  Elf_Internal_Dyn dyn;
10365 	  asection *s;
10366 
10367 	  /* Read in the current dynamic entry.  */
10368 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
10369 
10370 	  /* Assume that we're going to modify it and write it out.  */
10371 	  swap_out_p = TRUE;
10372 
10373 	  switch (dyn.d_tag)
10374 	    {
10375 	    case DT_RELSZ:
10376 	      /* Reduce DT_RELSZ to account for any relocations we
10377 		 decided not to make.  This is for the n64 irix rld,
10378 		 which doesn't seem to apply any relocations if there
10379 		 are trailing null entries.  */
10380 	      s = mips_elf_rel_dyn_section (info, FALSE);
10381 	      dyn.d_un.d_val = (s->reloc_count
10382 				* (ABI_64_P (output_bfd)
10383 				   ? sizeof (Elf64_Mips_External_Rel)
10384 				   : sizeof (Elf32_External_Rel)));
10385 	      /* Adjust the section size too.  Tools like the prelinker
10386 		 can reasonably expect the values to the same.  */
10387 	      elf_section_data (s->output_section)->this_hdr.sh_size
10388 		= dyn.d_un.d_val;
10389 	      break;
10390 
10391 	    default:
10392 	      swap_out_p = FALSE;
10393 	      break;
10394 	    }
10395 
10396 	  if (swap_out_p)
10397 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
10398 	      (dynobj, &dyn, b);
10399 	}
10400     }
10401 
10402   {
10403     asection *s;
10404     Elf32_compact_rel cpt;
10405 
10406     if (SGI_COMPAT (output_bfd))
10407       {
10408 	/* Write .compact_rel section out.  */
10409 	s = bfd_get_section_by_name (dynobj, ".compact_rel");
10410 	if (s != NULL)
10411 	  {
10412 	    cpt.id1 = 1;
10413 	    cpt.num = s->reloc_count;
10414 	    cpt.id2 = 2;
10415 	    cpt.offset = (s->output_section->filepos
10416 			  + sizeof (Elf32_External_compact_rel));
10417 	    cpt.reserved0 = 0;
10418 	    cpt.reserved1 = 0;
10419 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
10420 					    ((Elf32_External_compact_rel *)
10421 					     s->contents));
10422 
10423 	    /* Clean up a dummy stub function entry in .text.  */
10424 	    if (htab->sstubs != NULL)
10425 	      {
10426 		file_ptr dummy_offset;
10427 
10428 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
10429 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
10430 		memset (htab->sstubs->contents + dummy_offset, 0,
10431 			htab->function_stub_size);
10432 	      }
10433 	  }
10434       }
10435 
10436     /* The psABI says that the dynamic relocations must be sorted in
10437        increasing order of r_symndx.  The VxWorks EABI doesn't require
10438        this, and because the code below handles REL rather than RELA
10439        relocations, using it for VxWorks would be outright harmful.  */
10440     if (!htab->is_vxworks)
10441       {
10442 	s = mips_elf_rel_dyn_section (info, FALSE);
10443 	if (s != NULL
10444 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
10445 	  {
10446 	    reldyn_sorting_bfd = output_bfd;
10447 
10448 	    if (ABI_64_P (output_bfd))
10449 	      qsort ((Elf64_External_Rel *) s->contents + 1,
10450 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
10451 		     sort_dynamic_relocs_64);
10452 	    else
10453 	      qsort ((Elf32_External_Rel *) s->contents + 1,
10454 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
10455 		     sort_dynamic_relocs);
10456 	  }
10457       }
10458   }
10459 
10460   if (htab->splt && htab->splt->size > 0)
10461     {
10462       if (htab->is_vxworks)
10463 	{
10464 	  if (info->shared)
10465 	    mips_vxworks_finish_shared_plt (output_bfd, info);
10466 	  else
10467 	    mips_vxworks_finish_exec_plt (output_bfd, info);
10468 	}
10469       else
10470 	{
10471 	  BFD_ASSERT (!info->shared);
10472 	  mips_finish_exec_plt (output_bfd, info);
10473 	}
10474     }
10475   return TRUE;
10476 }
10477 
10478 
10479 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
10480 
10481 static void
10482 mips_set_isa_flags (bfd *abfd)
10483 {
10484   flagword val;
10485 
10486   switch (bfd_get_mach (abfd))
10487     {
10488     default:
10489     case bfd_mach_mips3000:
10490       val = E_MIPS_ARCH_1;
10491       break;
10492 
10493     case bfd_mach_mips3900:
10494       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
10495       break;
10496 
10497     case bfd_mach_mips6000:
10498       val = E_MIPS_ARCH_2;
10499       break;
10500 
10501     case bfd_mach_mips4000:
10502     case bfd_mach_mips4300:
10503     case bfd_mach_mips4400:
10504     case bfd_mach_mips4600:
10505       val = E_MIPS_ARCH_3;
10506       break;
10507 
10508     case bfd_mach_mips4010:
10509       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010;
10510       break;
10511 
10512     case bfd_mach_mips4100:
10513       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
10514       break;
10515 
10516     case bfd_mach_mips4111:
10517       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
10518       break;
10519 
10520     case bfd_mach_mips4120:
10521       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
10522       break;
10523 
10524     case bfd_mach_mips4650:
10525       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
10526       break;
10527 
10528     case bfd_mach_mips5400:
10529       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
10530       break;
10531 
10532     case bfd_mach_mips5500:
10533       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
10534       break;
10535 
10536     case bfd_mach_mips9000:
10537       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
10538       break;
10539 
10540     case bfd_mach_mips5000:
10541     case bfd_mach_mips7000:
10542     case bfd_mach_mips8000:
10543     case bfd_mach_mips10000:
10544     case bfd_mach_mips12000:
10545     case bfd_mach_mips14000:
10546     case bfd_mach_mips16000:
10547       val = E_MIPS_ARCH_4;
10548       break;
10549 
10550     case bfd_mach_mips5:
10551       val = E_MIPS_ARCH_5;
10552       break;
10553 
10554     case bfd_mach_mips_loongson_2e:
10555       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
10556       break;
10557 
10558     case bfd_mach_mips_loongson_2f:
10559       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
10560       break;
10561 
10562     case bfd_mach_mips_sb1:
10563       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
10564       break;
10565 
10566     case bfd_mach_mips_loongson_3a:
10567       val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A;
10568       break;
10569 
10570     case bfd_mach_mips_octeon:
10571       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
10572       break;
10573 
10574     case bfd_mach_mips_xlr:
10575       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
10576       break;
10577 
10578     case bfd_mach_mipsisa32:
10579       val = E_MIPS_ARCH_32;
10580       break;
10581 
10582     case bfd_mach_mipsisa64:
10583       val = E_MIPS_ARCH_64;
10584       break;
10585 
10586     case bfd_mach_mipsisa32r2:
10587       val = E_MIPS_ARCH_32R2;
10588       break;
10589 
10590     case bfd_mach_mipsisa64r2:
10591       val = E_MIPS_ARCH_64R2;
10592       break;
10593     }
10594   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
10595   elf_elfheader (abfd)->e_flags |= val;
10596 
10597 }
10598 
10599 
10600 /* The final processing done just before writing out a MIPS ELF object
10601    file.  This gets the MIPS architecture right based on the machine
10602    number.  This is used by both the 32-bit and the 64-bit ABI.  */
10603 
10604 void
10605 _bfd_mips_elf_final_write_processing (bfd *abfd,
10606 				      bfd_boolean linker ATTRIBUTE_UNUSED)
10607 {
10608   unsigned int i;
10609   Elf_Internal_Shdr **hdrpp;
10610   const char *name;
10611   asection *sec;
10612 
10613   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
10614      is nonzero.  This is for compatibility with old objects, which used
10615      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
10616   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
10617     mips_set_isa_flags (abfd);
10618 
10619   /* Set the sh_info field for .gptab sections and other appropriate
10620      info for each special section.  */
10621   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
10622        i < elf_numsections (abfd);
10623        i++, hdrpp++)
10624     {
10625       switch ((*hdrpp)->sh_type)
10626 	{
10627 	case SHT_MIPS_MSYM:
10628 	case SHT_MIPS_LIBLIST:
10629 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
10630 	  if (sec != NULL)
10631 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10632 	  break;
10633 
10634 	case SHT_MIPS_GPTAB:
10635 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10636 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10637 	  BFD_ASSERT (name != NULL
10638 		      && CONST_STRNEQ (name, ".gptab."));
10639 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
10640 	  BFD_ASSERT (sec != NULL);
10641 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10642 	  break;
10643 
10644 	case SHT_MIPS_CONTENT:
10645 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10646 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10647 	  BFD_ASSERT (name != NULL
10648 		      && CONST_STRNEQ (name, ".MIPS.content"));
10649 	  sec = bfd_get_section_by_name (abfd,
10650 					 name + sizeof ".MIPS.content" - 1);
10651 	  BFD_ASSERT (sec != NULL);
10652 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10653 	  break;
10654 
10655 	case SHT_MIPS_SYMBOL_LIB:
10656 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
10657 	  if (sec != NULL)
10658 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10659 	  sec = bfd_get_section_by_name (abfd, ".liblist");
10660 	  if (sec != NULL)
10661 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
10662 	  break;
10663 
10664 	case SHT_MIPS_EVENTS:
10665 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
10666 	  name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section);
10667 	  BFD_ASSERT (name != NULL);
10668 	  if (CONST_STRNEQ (name, ".MIPS.events"))
10669 	    sec = bfd_get_section_by_name (abfd,
10670 					   name + sizeof ".MIPS.events" - 1);
10671 	  else
10672 	    {
10673 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
10674 	      sec = bfd_get_section_by_name (abfd,
10675 					     (name
10676 					      + sizeof ".MIPS.post_rel" - 1));
10677 	    }
10678 	  BFD_ASSERT (sec != NULL);
10679 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
10680 	  break;
10681 
10682 	}
10683     }
10684 }
10685 
10686 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
10687    segments.  */
10688 
10689 int
10690 _bfd_mips_elf_additional_program_headers (bfd *abfd,
10691 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
10692 {
10693   asection *s;
10694   int ret = 0;
10695 
10696   /* See if we need a PT_MIPS_REGINFO segment.  */
10697   s = bfd_get_section_by_name (abfd, ".reginfo");
10698   if (s && (s->flags & SEC_LOAD))
10699     ++ret;
10700 
10701   /* See if we need a PT_MIPS_OPTIONS segment.  */
10702   if (IRIX_COMPAT (abfd) == ict_irix6
10703       && bfd_get_section_by_name (abfd,
10704 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
10705     ++ret;
10706 
10707   /* See if we need a PT_MIPS_RTPROC segment.  */
10708   if (IRIX_COMPAT (abfd) == ict_irix5
10709       && bfd_get_section_by_name (abfd, ".dynamic")
10710       && bfd_get_section_by_name (abfd, ".mdebug"))
10711     ++ret;
10712 
10713   /* Allocate a PT_NULL header in dynamic objects.  See
10714      _bfd_mips_elf_modify_segment_map for details.  */
10715   if (!SGI_COMPAT (abfd)
10716       && bfd_get_section_by_name (abfd, ".dynamic"))
10717     ++ret;
10718 
10719   return ret;
10720 }
10721 
10722 /* Modify the segment map for an IRIX5 executable.  */
10723 
10724 bfd_boolean
10725 _bfd_mips_elf_modify_segment_map (bfd *abfd,
10726 				  struct bfd_link_info *info)
10727 {
10728   asection *s;
10729   struct elf_segment_map *m, **pm;
10730   bfd_size_type amt;
10731 
10732   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
10733      segment.  */
10734   s = bfd_get_section_by_name (abfd, ".reginfo");
10735   if (s != NULL && (s->flags & SEC_LOAD) != 0)
10736     {
10737       for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10738 	if (m->p_type == PT_MIPS_REGINFO)
10739 	  break;
10740       if (m == NULL)
10741 	{
10742 	  amt = sizeof *m;
10743 	  m = bfd_zalloc (abfd, amt);
10744 	  if (m == NULL)
10745 	    return FALSE;
10746 
10747 	  m->p_type = PT_MIPS_REGINFO;
10748 	  m->count = 1;
10749 	  m->sections[0] = s;
10750 
10751 	  /* We want to put it after the PHDR and INTERP segments.  */
10752 	  pm = &elf_tdata (abfd)->segment_map;
10753 	  while (*pm != NULL
10754 		 && ((*pm)->p_type == PT_PHDR
10755 		     || (*pm)->p_type == PT_INTERP))
10756 	    pm = &(*pm)->next;
10757 
10758 	  m->next = *pm;
10759 	  *pm = m;
10760 	}
10761     }
10762 
10763   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
10764      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
10765      PT_MIPS_OPTIONS segment immediately following the program header
10766      table.  */
10767   if (NEWABI_P (abfd)
10768       /* On non-IRIX6 new abi, we'll have already created a segment
10769 	 for this section, so don't create another.  I'm not sure this
10770 	 is not also the case for IRIX 6, but I can't test it right
10771 	 now.  */
10772       && IRIX_COMPAT (abfd) == ict_irix6)
10773     {
10774       for (s = abfd->sections; s; s = s->next)
10775 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
10776 	  break;
10777 
10778       if (s)
10779 	{
10780 	  struct elf_segment_map *options_segment;
10781 
10782 	  pm = &elf_tdata (abfd)->segment_map;
10783 	  while (*pm != NULL
10784 		 && ((*pm)->p_type == PT_PHDR
10785 		     || (*pm)->p_type == PT_INTERP))
10786 	    pm = &(*pm)->next;
10787 
10788 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
10789 	    {
10790 	      amt = sizeof (struct elf_segment_map);
10791 	      options_segment = bfd_zalloc (abfd, amt);
10792 	      options_segment->next = *pm;
10793 	      options_segment->p_type = PT_MIPS_OPTIONS;
10794 	      options_segment->p_flags = PF_R;
10795 	      options_segment->p_flags_valid = TRUE;
10796 	      options_segment->count = 1;
10797 	      options_segment->sections[0] = s;
10798 	      *pm = options_segment;
10799 	    }
10800 	}
10801     }
10802   else
10803     {
10804       if (IRIX_COMPAT (abfd) == ict_irix5)
10805 	{
10806 	  /* If there are .dynamic and .mdebug sections, we make a room
10807 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
10808 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
10809 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
10810 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
10811 	    {
10812 	      for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10813 		if (m->p_type == PT_MIPS_RTPROC)
10814 		  break;
10815 	      if (m == NULL)
10816 		{
10817 		  amt = sizeof *m;
10818 		  m = bfd_zalloc (abfd, amt);
10819 		  if (m == NULL)
10820 		    return FALSE;
10821 
10822 		  m->p_type = PT_MIPS_RTPROC;
10823 
10824 		  s = bfd_get_section_by_name (abfd, ".rtproc");
10825 		  if (s == NULL)
10826 		    {
10827 		      m->count = 0;
10828 		      m->p_flags = 0;
10829 		      m->p_flags_valid = 1;
10830 		    }
10831 		  else
10832 		    {
10833 		      m->count = 1;
10834 		      m->sections[0] = s;
10835 		    }
10836 
10837 		  /* We want to put it after the DYNAMIC segment.  */
10838 		  pm = &elf_tdata (abfd)->segment_map;
10839 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
10840 		    pm = &(*pm)->next;
10841 		  if (*pm != NULL)
10842 		    pm = &(*pm)->next;
10843 
10844 		  m->next = *pm;
10845 		  *pm = m;
10846 		}
10847 	    }
10848 	}
10849       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
10850 	 .dynstr, .dynsym, and .hash sections, and everything in
10851 	 between.  */
10852       for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL;
10853 	   pm = &(*pm)->next)
10854 	if ((*pm)->p_type == PT_DYNAMIC)
10855 	  break;
10856       m = *pm;
10857       if (m != NULL && IRIX_COMPAT (abfd) == ict_none)
10858 	{
10859 	  /* For a normal mips executable the permissions for the PT_DYNAMIC
10860 	     segment are read, write and execute. We do that here since
10861 	     the code in elf.c sets only the read permission. This matters
10862 	     sometimes for the dynamic linker.  */
10863 	  if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
10864 	    {
10865 	      m->p_flags = PF_R | PF_W | PF_X;
10866 	      m->p_flags_valid = 1;
10867 	    }
10868 	}
10869       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
10870 	 glibc's dynamic linker has traditionally derived the number of
10871 	 tags from the p_filesz field, and sometimes allocates stack
10872 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
10873 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
10874 	 other sections can also make life hard for the prelinker,
10875 	 which might move one of the other sections to a different
10876 	 PT_LOAD segment.  */
10877       if (SGI_COMPAT (abfd)
10878 	  && m != NULL
10879 	  && m->count == 1
10880 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
10881 	{
10882 	  static const char *sec_names[] =
10883 	  {
10884 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
10885 	  };
10886 	  bfd_vma low, high;
10887 	  unsigned int i, c;
10888 	  struct elf_segment_map *n;
10889 
10890 	  low = ~(bfd_vma) 0;
10891 	  high = 0;
10892 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
10893 	    {
10894 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
10895 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
10896 		{
10897 		  bfd_size_type sz;
10898 
10899 		  if (low > s->vma)
10900 		    low = s->vma;
10901 		  sz = s->size;
10902 		  if (high < s->vma + sz)
10903 		    high = s->vma + sz;
10904 		}
10905 	    }
10906 
10907 	  c = 0;
10908 	  for (s = abfd->sections; s != NULL; s = s->next)
10909 	    if ((s->flags & SEC_LOAD) != 0
10910 		&& s->vma >= low
10911 		&& s->vma + s->size <= high)
10912 	      ++c;
10913 
10914 	  amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
10915 	  n = bfd_zalloc (abfd, amt);
10916 	  if (n == NULL)
10917 	    return FALSE;
10918 	  *n = *m;
10919 	  n->count = c;
10920 
10921 	  i = 0;
10922 	  for (s = abfd->sections; s != NULL; s = s->next)
10923 	    {
10924 	      if ((s->flags & SEC_LOAD) != 0
10925 		  && s->vma >= low
10926 		  && s->vma + s->size <= high)
10927 		{
10928 		  n->sections[i] = s;
10929 		  ++i;
10930 		}
10931 	    }
10932 
10933 	  *pm = n;
10934 	}
10935     }
10936 
10937   /* Allocate a spare program header in dynamic objects so that tools
10938      like the prelinker can add an extra PT_LOAD entry.
10939 
10940      If the prelinker needs to make room for a new PT_LOAD entry, its
10941      standard procedure is to move the first (read-only) sections into
10942      the new (writable) segment.  However, the MIPS ABI requires
10943      .dynamic to be in a read-only segment, and the section will often
10944      start within sizeof (ElfNN_Phdr) bytes of the last program header.
10945 
10946      Although the prelinker could in principle move .dynamic to a
10947      writable segment, it seems better to allocate a spare program
10948      header instead, and avoid the need to move any sections.
10949      There is a long tradition of allocating spare dynamic tags,
10950      so allocating a spare program header seems like a natural
10951      extension.
10952 
10953      If INFO is NULL, we may be copying an already prelinked binary
10954      with objcopy or strip, so do not add this header.  */
10955   if (info != NULL
10956       && !SGI_COMPAT (abfd)
10957       && bfd_get_section_by_name (abfd, ".dynamic"))
10958     {
10959       for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next)
10960 	if ((*pm)->p_type == PT_NULL)
10961 	  break;
10962       if (*pm == NULL)
10963 	{
10964 	  m = bfd_zalloc (abfd, sizeof (*m));
10965 	  if (m == NULL)
10966 	    return FALSE;
10967 
10968 	  m->p_type = PT_NULL;
10969 	  *pm = m;
10970 	}
10971     }
10972 
10973   return TRUE;
10974 }
10975 
10976 /* Return the section that should be marked against GC for a given
10977    relocation.  */
10978 
10979 asection *
10980 _bfd_mips_elf_gc_mark_hook (asection *sec,
10981 			    struct bfd_link_info *info,
10982 			    Elf_Internal_Rela *rel,
10983 			    struct elf_link_hash_entry *h,
10984 			    Elf_Internal_Sym *sym)
10985 {
10986   /* ??? Do mips16 stub sections need to be handled special?  */
10987 
10988   if (h != NULL)
10989     switch (ELF_R_TYPE (sec->owner, rel->r_info))
10990       {
10991       case R_MIPS_GNU_VTINHERIT:
10992       case R_MIPS_GNU_VTENTRY:
10993 	return NULL;
10994       }
10995 
10996   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10997 }
10998 
10999 /* Update the got entry reference counts for the section being removed.  */
11000 
11001 bfd_boolean
11002 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
11003 			     struct bfd_link_info *info ATTRIBUTE_UNUSED,
11004 			     asection *sec ATTRIBUTE_UNUSED,
11005 			     const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
11006 {
11007 #if 0
11008   Elf_Internal_Shdr *symtab_hdr;
11009   struct elf_link_hash_entry **sym_hashes;
11010   bfd_signed_vma *local_got_refcounts;
11011   const Elf_Internal_Rela *rel, *relend;
11012   unsigned long r_symndx;
11013   struct elf_link_hash_entry *h;
11014 
11015   if (info->relocatable)
11016     return TRUE;
11017 
11018   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11019   sym_hashes = elf_sym_hashes (abfd);
11020   local_got_refcounts = elf_local_got_refcounts (abfd);
11021 
11022   relend = relocs + sec->reloc_count;
11023   for (rel = relocs; rel < relend; rel++)
11024     switch (ELF_R_TYPE (abfd, rel->r_info))
11025       {
11026       case R_MIPS16_GOT16:
11027       case R_MIPS16_CALL16:
11028       case R_MIPS_GOT16:
11029       case R_MIPS_CALL16:
11030       case R_MIPS_CALL_HI16:
11031       case R_MIPS_CALL_LO16:
11032       case R_MIPS_GOT_HI16:
11033       case R_MIPS_GOT_LO16:
11034       case R_MIPS_GOT_DISP:
11035       case R_MIPS_GOT_PAGE:
11036       case R_MIPS_GOT_OFST:
11037 	/* ??? It would seem that the existing MIPS code does no sort
11038 	   of reference counting or whatnot on its GOT and PLT entries,
11039 	   so it is not possible to garbage collect them at this time.  */
11040 	break;
11041 
11042       default:
11043 	break;
11044       }
11045 #endif
11046 
11047   return TRUE;
11048 }
11049 
11050 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
11051    hiding the old indirect symbol.  Process additional relocation
11052    information.  Also called for weakdefs, in which case we just let
11053    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
11054 
11055 void
11056 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
11057 				    struct elf_link_hash_entry *dir,
11058 				    struct elf_link_hash_entry *ind)
11059 {
11060   struct mips_elf_link_hash_entry *dirmips, *indmips;
11061 
11062   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
11063 
11064   dirmips = (struct mips_elf_link_hash_entry *) dir;
11065   indmips = (struct mips_elf_link_hash_entry *) ind;
11066   /* Any absolute non-dynamic relocations against an indirect or weak
11067      definition will be against the target symbol.  */
11068   if (indmips->has_static_relocs)
11069     dirmips->has_static_relocs = TRUE;
11070 
11071   if (ind->root.type != bfd_link_hash_indirect)
11072     return;
11073 
11074   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
11075   if (indmips->readonly_reloc)
11076     dirmips->readonly_reloc = TRUE;
11077   if (indmips->no_fn_stub)
11078     dirmips->no_fn_stub = TRUE;
11079   if (indmips->fn_stub)
11080     {
11081       dirmips->fn_stub = indmips->fn_stub;
11082       indmips->fn_stub = NULL;
11083     }
11084   if (indmips->need_fn_stub)
11085     {
11086       dirmips->need_fn_stub = TRUE;
11087       indmips->need_fn_stub = FALSE;
11088     }
11089   if (indmips->call_stub)
11090     {
11091       dirmips->call_stub = indmips->call_stub;
11092       indmips->call_stub = NULL;
11093     }
11094   if (indmips->call_fp_stub)
11095     {
11096       dirmips->call_fp_stub = indmips->call_fp_stub;
11097       indmips->call_fp_stub = NULL;
11098     }
11099   if (indmips->global_got_area < dirmips->global_got_area)
11100     dirmips->global_got_area = indmips->global_got_area;
11101   if (indmips->global_got_area < GGA_NONE)
11102     indmips->global_got_area = GGA_NONE;
11103   if (indmips->has_nonpic_branches)
11104     dirmips->has_nonpic_branches = TRUE;
11105 
11106   if (dirmips->tls_type == 0)
11107     dirmips->tls_type = indmips->tls_type;
11108 }
11109 
11110 #define PDR_SIZE 32
11111 
11112 bfd_boolean
11113 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
11114 			    struct bfd_link_info *info)
11115 {
11116   asection *o;
11117   bfd_boolean ret = FALSE;
11118   unsigned char *tdata;
11119   size_t i, skip;
11120 
11121   o = bfd_get_section_by_name (abfd, ".pdr");
11122   if (! o)
11123     return FALSE;
11124   if (o->size == 0)
11125     return FALSE;
11126   if (o->size % PDR_SIZE != 0)
11127     return FALSE;
11128   if (o->output_section != NULL
11129       && bfd_is_abs_section (o->output_section))
11130     return FALSE;
11131 
11132   tdata = bfd_zmalloc (o->size / PDR_SIZE);
11133   if (! tdata)
11134     return FALSE;
11135 
11136   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
11137 					    info->keep_memory);
11138   if (!cookie->rels)
11139     {
11140       free (tdata);
11141       return FALSE;
11142     }
11143 
11144   cookie->rel = cookie->rels;
11145   cookie->relend = cookie->rels + o->reloc_count;
11146 
11147   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
11148     {
11149       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
11150 	{
11151 	  tdata[i] = 1;
11152 	  skip ++;
11153 	}
11154     }
11155 
11156   if (skip != 0)
11157     {
11158       mips_elf_section_data (o)->u.tdata = tdata;
11159       o->size -= skip * PDR_SIZE;
11160       ret = TRUE;
11161     }
11162   else
11163     free (tdata);
11164 
11165   if (! info->keep_memory)
11166     free (cookie->rels);
11167 
11168   return ret;
11169 }
11170 
11171 bfd_boolean
11172 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
11173 {
11174   if (strcmp (sec->name, ".pdr") == 0)
11175     return TRUE;
11176   return FALSE;
11177 }
11178 
11179 bfd_boolean
11180 _bfd_mips_elf_write_section (bfd *output_bfd,
11181 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
11182                              asection *sec, bfd_byte *contents)
11183 {
11184   bfd_byte *to, *from, *end;
11185   int i;
11186 
11187   if (strcmp (sec->name, ".pdr") != 0)
11188     return FALSE;
11189 
11190   if (mips_elf_section_data (sec)->u.tdata == NULL)
11191     return FALSE;
11192 
11193   to = contents;
11194   end = contents + sec->size;
11195   for (from = contents, i = 0;
11196        from < end;
11197        from += PDR_SIZE, i++)
11198     {
11199       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
11200 	continue;
11201       if (to != from)
11202 	memcpy (to, from, PDR_SIZE);
11203       to += PDR_SIZE;
11204     }
11205   bfd_set_section_contents (output_bfd, sec->output_section, contents,
11206 			    sec->output_offset, sec->size);
11207   return TRUE;
11208 }
11209 
11210 /* MIPS ELF uses a special find_nearest_line routine in order the
11211    handle the ECOFF debugging information.  */
11212 
11213 struct mips_elf_find_line
11214 {
11215   struct ecoff_debug_info d;
11216   struct ecoff_find_line i;
11217 };
11218 
11219 bfd_boolean
11220 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section,
11221 				 asymbol **symbols, bfd_vma offset,
11222 				 const char **filename_ptr,
11223 				 const char **functionname_ptr,
11224 				 unsigned int *line_ptr)
11225 {
11226   asection *msec;
11227 
11228   if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
11229 				     filename_ptr, functionname_ptr,
11230 				     line_ptr))
11231     return TRUE;
11232 
11233   if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11234 				     filename_ptr, functionname_ptr,
11235 				     line_ptr, ABI_64_P (abfd) ? 8 : 0,
11236 				     &elf_tdata (abfd)->dwarf2_find_line_info))
11237     return TRUE;
11238 
11239   msec = bfd_get_section_by_name (abfd, ".mdebug");
11240   if (msec != NULL)
11241     {
11242       flagword origflags;
11243       struct mips_elf_find_line *fi;
11244       const struct ecoff_debug_swap * const swap =
11245 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
11246 
11247       /* If we are called during a link, mips_elf_final_link may have
11248 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
11249 	 if appropriate (which it normally will be).  */
11250       origflags = msec->flags;
11251       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
11252 	msec->flags |= SEC_HAS_CONTENTS;
11253 
11254       fi = elf_tdata (abfd)->find_line_info;
11255       if (fi == NULL)
11256 	{
11257 	  bfd_size_type external_fdr_size;
11258 	  char *fraw_src;
11259 	  char *fraw_end;
11260 	  struct fdr *fdr_ptr;
11261 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
11262 
11263 	  fi = bfd_zalloc (abfd, amt);
11264 	  if (fi == NULL)
11265 	    {
11266 	      msec->flags = origflags;
11267 	      return FALSE;
11268 	    }
11269 
11270 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
11271 	    {
11272 	      msec->flags = origflags;
11273 	      return FALSE;
11274 	    }
11275 
11276 	  /* Swap in the FDR information.  */
11277 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
11278 	  fi->d.fdr = bfd_alloc (abfd, amt);
11279 	  if (fi->d.fdr == NULL)
11280 	    {
11281 	      msec->flags = origflags;
11282 	      return FALSE;
11283 	    }
11284 	  external_fdr_size = swap->external_fdr_size;
11285 	  fdr_ptr = fi->d.fdr;
11286 	  fraw_src = (char *) fi->d.external_fdr;
11287 	  fraw_end = (fraw_src
11288 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
11289 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
11290 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
11291 
11292 	  elf_tdata (abfd)->find_line_info = fi;
11293 
11294 	  /* Note that we don't bother to ever free this information.
11295              find_nearest_line is either called all the time, as in
11296              objdump -l, so the information should be saved, or it is
11297              rarely called, as in ld error messages, so the memory
11298              wasted is unimportant.  Still, it would probably be a
11299              good idea for free_cached_info to throw it away.  */
11300 	}
11301 
11302       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
11303 				  &fi->i, filename_ptr, functionname_ptr,
11304 				  line_ptr))
11305 	{
11306 	  msec->flags = origflags;
11307 	  return TRUE;
11308 	}
11309 
11310       msec->flags = origflags;
11311     }
11312 
11313   /* Fall back on the generic ELF find_nearest_line routine.  */
11314 
11315   return _bfd_elf_find_nearest_line (abfd, section, symbols, offset,
11316 				     filename_ptr, functionname_ptr,
11317 				     line_ptr);
11318 }
11319 
11320 bfd_boolean
11321 _bfd_mips_elf_find_inliner_info (bfd *abfd,
11322 				 const char **filename_ptr,
11323 				 const char **functionname_ptr,
11324 				 unsigned int *line_ptr)
11325 {
11326   bfd_boolean found;
11327   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11328 					 functionname_ptr, line_ptr,
11329 					 & elf_tdata (abfd)->dwarf2_find_line_info);
11330   return found;
11331 }
11332 
11333 
11334 /* When are writing out the .options or .MIPS.options section,
11335    remember the bytes we are writing out, so that we can install the
11336    GP value in the section_processing routine.  */
11337 
11338 bfd_boolean
11339 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
11340 				    const void *location,
11341 				    file_ptr offset, bfd_size_type count)
11342 {
11343   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
11344     {
11345       bfd_byte *c;
11346 
11347       if (elf_section_data (section) == NULL)
11348 	{
11349 	  bfd_size_type amt = sizeof (struct bfd_elf_section_data);
11350 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
11351 	  if (elf_section_data (section) == NULL)
11352 	    return FALSE;
11353 	}
11354       c = mips_elf_section_data (section)->u.tdata;
11355       if (c == NULL)
11356 	{
11357 	  c = bfd_zalloc (abfd, section->size);
11358 	  if (c == NULL)
11359 	    return FALSE;
11360 	  mips_elf_section_data (section)->u.tdata = c;
11361 	}
11362 
11363       memcpy (c + offset, location, count);
11364     }
11365 
11366   return _bfd_elf_set_section_contents (abfd, section, location, offset,
11367 					count);
11368 }
11369 
11370 /* This is almost identical to bfd_generic_get_... except that some
11371    MIPS relocations need to be handled specially.  Sigh.  */
11372 
11373 bfd_byte *
11374 _bfd_elf_mips_get_relocated_section_contents
11375   (bfd *abfd,
11376    struct bfd_link_info *link_info,
11377    struct bfd_link_order *link_order,
11378    bfd_byte *data,
11379    bfd_boolean relocatable,
11380    asymbol **symbols)
11381 {
11382   /* Get enough memory to hold the stuff */
11383   bfd *input_bfd = link_order->u.indirect.section->owner;
11384   asection *input_section = link_order->u.indirect.section;
11385   bfd_size_type sz;
11386 
11387   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
11388   arelent **reloc_vector = NULL;
11389   long reloc_count;
11390 
11391   if (reloc_size < 0)
11392     goto error_return;
11393 
11394   reloc_vector = bfd_malloc (reloc_size);
11395   if (reloc_vector == NULL && reloc_size != 0)
11396     goto error_return;
11397 
11398   /* read in the section */
11399   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
11400   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
11401     goto error_return;
11402 
11403   reloc_count = bfd_canonicalize_reloc (input_bfd,
11404 					input_section,
11405 					reloc_vector,
11406 					symbols);
11407   if (reloc_count < 0)
11408     goto error_return;
11409 
11410   if (reloc_count > 0)
11411     {
11412       arelent **parent;
11413       /* for mips */
11414       int gp_found;
11415       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
11416 
11417       {
11418 	struct bfd_hash_entry *h;
11419 	struct bfd_link_hash_entry *lh;
11420 	/* Skip all this stuff if we aren't mixing formats.  */
11421 	if (abfd && input_bfd
11422 	    && abfd->xvec == input_bfd->xvec)
11423 	  lh = 0;
11424 	else
11425 	  {
11426 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
11427 	    lh = (struct bfd_link_hash_entry *) h;
11428 	  }
11429       lookup:
11430 	if (lh)
11431 	  {
11432 	    switch (lh->type)
11433 	      {
11434 	      case bfd_link_hash_undefined:
11435 	      case bfd_link_hash_undefweak:
11436 	      case bfd_link_hash_common:
11437 		gp_found = 0;
11438 		break;
11439 	      case bfd_link_hash_defined:
11440 	      case bfd_link_hash_defweak:
11441 		gp_found = 1;
11442 		gp = lh->u.def.value;
11443 		break;
11444 	      case bfd_link_hash_indirect:
11445 	      case bfd_link_hash_warning:
11446 		lh = lh->u.i.link;
11447 		/* @@FIXME  ignoring warning for now */
11448 		goto lookup;
11449 	      case bfd_link_hash_new:
11450 	      default:
11451 		abort ();
11452 	      }
11453 	  }
11454 	else
11455 	  gp_found = 0;
11456       }
11457       /* end mips */
11458       for (parent = reloc_vector; *parent != NULL; parent++)
11459 	{
11460 	  char *error_message = NULL;
11461 	  bfd_reloc_status_type r;
11462 
11463 	  /* Specific to MIPS: Deal with relocation types that require
11464 	     knowing the gp of the output bfd.  */
11465 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
11466 
11467 	  /* If we've managed to find the gp and have a special
11468 	     function for the relocation then go ahead, else default
11469 	     to the generic handling.  */
11470 	  if (gp_found
11471 	      && (*parent)->howto->special_function
11472 	      == _bfd_mips_elf32_gprel16_reloc)
11473 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
11474 					       input_section, relocatable,
11475 					       data, gp);
11476 	  else
11477 	    r = bfd_perform_relocation (input_bfd, *parent, data,
11478 					input_section,
11479 					relocatable ? abfd : NULL,
11480 					&error_message);
11481 
11482 	  if (relocatable)
11483 	    {
11484 	      asection *os = input_section->output_section;
11485 
11486 	      /* A partial link, so keep the relocs */
11487 	      os->orelocation[os->reloc_count] = *parent;
11488 	      os->reloc_count++;
11489 	    }
11490 
11491 	  if (r != bfd_reloc_ok)
11492 	    {
11493 	      switch (r)
11494 		{
11495 		case bfd_reloc_undefined:
11496 		  if (!((*link_info->callbacks->undefined_symbol)
11497 			(link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11498 			 input_bfd, input_section, (*parent)->address, TRUE)))
11499 		    goto error_return;
11500 		  break;
11501 		case bfd_reloc_dangerous:
11502 		  BFD_ASSERT (error_message != NULL);
11503 		  if (!((*link_info->callbacks->reloc_dangerous)
11504 			(link_info, error_message, input_bfd, input_section,
11505 			 (*parent)->address)))
11506 		    goto error_return;
11507 		  break;
11508 		case bfd_reloc_overflow:
11509 		  if (!((*link_info->callbacks->reloc_overflow)
11510 			(link_info, NULL,
11511 			 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
11512 			 (*parent)->howto->name, (*parent)->addend,
11513 			 input_bfd, input_section, (*parent)->address)))
11514 		    goto error_return;
11515 		  break;
11516 		case bfd_reloc_outofrange:
11517 		default:
11518 		  abort ();
11519 		  break;
11520 		}
11521 
11522 	    }
11523 	}
11524     }
11525   if (reloc_vector != NULL)
11526     free (reloc_vector);
11527   return data;
11528 
11529 error_return:
11530   if (reloc_vector != NULL)
11531     free (reloc_vector);
11532   return NULL;
11533 }
11534 
11535 /* Create a MIPS ELF linker hash table.  */
11536 
11537 struct bfd_link_hash_table *
11538 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
11539 {
11540   struct mips_elf_link_hash_table *ret;
11541   bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
11542 
11543   ret = bfd_malloc (amt);
11544   if (ret == NULL)
11545     return NULL;
11546 
11547   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
11548 				      mips_elf_link_hash_newfunc,
11549 				      sizeof (struct mips_elf_link_hash_entry),
11550 				      MIPS_ELF_DATA))
11551     {
11552       free (ret);
11553       return NULL;
11554     }
11555 
11556 #if 0
11557   /* We no longer use this.  */
11558   for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++)
11559     ret->dynsym_sec_strindex[i] = (bfd_size_type) -1;
11560 #endif
11561   ret->procedure_count = 0;
11562   ret->compact_rel_size = 0;
11563   ret->use_rld_obj_head = FALSE;
11564   ret->rld_value = 0;
11565   ret->mips16_stubs_seen = FALSE;
11566   ret->use_plts_and_copy_relocs = FALSE;
11567   ret->is_vxworks = FALSE;
11568   ret->small_data_overflow_reported = FALSE;
11569   ret->srelbss = NULL;
11570   ret->sdynbss = NULL;
11571   ret->srelplt = NULL;
11572   ret->srelplt2 = NULL;
11573   ret->sgotplt = NULL;
11574   ret->splt = NULL;
11575   ret->sstubs = NULL;
11576   ret->sgot = NULL;
11577   ret->got_info = NULL;
11578   ret->plt_header_size = 0;
11579   ret->plt_entry_size = 0;
11580   ret->lazy_stub_count = 0;
11581   ret->function_stub_size = 0;
11582   ret->strampoline = NULL;
11583   ret->la25_stubs = NULL;
11584   ret->add_stub_section = NULL;
11585 
11586   return &ret->root.root;
11587 }
11588 
11589 /* Likewise, but indicate that the target is VxWorks.  */
11590 
11591 struct bfd_link_hash_table *
11592 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
11593 {
11594   struct bfd_link_hash_table *ret;
11595 
11596   ret = _bfd_mips_elf_link_hash_table_create (abfd);
11597   if (ret)
11598     {
11599       struct mips_elf_link_hash_table *htab;
11600 
11601       htab = (struct mips_elf_link_hash_table *) ret;
11602       htab->use_plts_and_copy_relocs = TRUE;
11603       htab->is_vxworks = TRUE;
11604     }
11605   return ret;
11606 }
11607 
11608 /* A function that the linker calls if we are allowed to use PLTs
11609    and copy relocs.  */
11610 
11611 void
11612 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
11613 {
11614   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
11615 }
11616 
11617 /* We need to use a special link routine to handle the .reginfo and
11618    the .mdebug sections.  We need to merge all instances of these
11619    sections together, not write them all out sequentially.  */
11620 
11621 bfd_boolean
11622 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11623 {
11624   asection *o;
11625   struct bfd_link_order *p;
11626   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
11627   asection *rtproc_sec;
11628   Elf32_RegInfo reginfo;
11629   struct ecoff_debug_info debug;
11630   struct mips_htab_traverse_info hti;
11631   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11632   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
11633   HDRR *symhdr = &debug.symbolic_header;
11634   void *mdebug_handle = NULL;
11635   asection *s;
11636   EXTR esym;
11637   unsigned int i;
11638   bfd_size_type amt;
11639   struct mips_elf_link_hash_table *htab;
11640 
11641   static const char * const secname[] =
11642   {
11643     ".text", ".init", ".fini", ".data",
11644     ".rodata", ".sdata", ".sbss", ".bss"
11645   };
11646   static const int sc[] =
11647   {
11648     scText, scInit, scFini, scData,
11649     scRData, scSData, scSBss, scBss
11650   };
11651 
11652   /* Sort the dynamic symbols so that those with GOT entries come after
11653      those without.  */
11654   htab = mips_elf_hash_table (info);
11655   BFD_ASSERT (htab != NULL);
11656 
11657   if (!mips_elf_sort_hash_table (abfd, info))
11658     return FALSE;
11659 
11660   /* Create any scheduled LA25 stubs.  */
11661   hti.info = info;
11662   hti.output_bfd = abfd;
11663   hti.error = FALSE;
11664   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
11665   if (hti.error)
11666     return FALSE;
11667 
11668   /* Get a value for the GP register.  */
11669   if (elf_gp (abfd) == 0)
11670     {
11671       struct bfd_link_hash_entry *h;
11672 
11673       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
11674       if (h != NULL && h->type == bfd_link_hash_defined)
11675 	elf_gp (abfd) = (h->u.def.value
11676 			 + h->u.def.section->output_section->vma
11677 			 + h->u.def.section->output_offset);
11678       else if (htab->is_vxworks
11679 	       && (h = bfd_link_hash_lookup (info->hash,
11680 					     "_GLOBAL_OFFSET_TABLE_",
11681 					     FALSE, FALSE, TRUE))
11682 	       && h->type == bfd_link_hash_defined)
11683 	elf_gp (abfd) = (h->u.def.section->output_section->vma
11684 			 + h->u.def.section->output_offset
11685 			 + h->u.def.value);
11686       else if (info->relocatable)
11687 	{
11688 	  bfd_vma lo = MINUS_ONE;
11689 
11690 	  /* Find the GP-relative section with the lowest offset.  */
11691 	  for (o = abfd->sections; o != NULL; o = o->next)
11692 	    if (o->vma < lo
11693 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
11694 	      lo = o->vma;
11695 
11696 	  /* And calculate GP relative to that.  */
11697 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
11698 	}
11699       else
11700 	{
11701 	  /* If the relocate_section function needs to do a reloc
11702 	     involving the GP value, it should make a reloc_dangerous
11703 	     callback to warn that GP is not defined.  */
11704 	}
11705     }
11706 
11707   /* Go through the sections and collect the .reginfo and .mdebug
11708      information.  */
11709   reginfo_sec = NULL;
11710   mdebug_sec = NULL;
11711   gptab_data_sec = NULL;
11712   gptab_bss_sec = NULL;
11713   for (o = abfd->sections; o != NULL; o = o->next)
11714     {
11715       if (strcmp (o->name, ".reginfo") == 0)
11716 	{
11717 	  memset (&reginfo, 0, sizeof reginfo);
11718 
11719 	  /* We have found the .reginfo section in the output file.
11720 	     Look through all the link_orders comprising it and merge
11721 	     the information together.  */
11722 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
11723 	    {
11724 	      asection *input_section;
11725 	      bfd *input_bfd;
11726 	      Elf32_External_RegInfo ext;
11727 	      Elf32_RegInfo sub;
11728 
11729 	      if (p->type != bfd_indirect_link_order)
11730 		{
11731 		  if (p->type == bfd_data_link_order)
11732 		    continue;
11733 		  abort ();
11734 		}
11735 
11736 	      input_section = p->u.indirect.section;
11737 	      input_bfd = input_section->owner;
11738 
11739 	      if (! bfd_get_section_contents (input_bfd, input_section,
11740 					      &ext, 0, sizeof ext))
11741 		return FALSE;
11742 
11743 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
11744 
11745 	      reginfo.ri_gprmask |= sub.ri_gprmask;
11746 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
11747 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
11748 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
11749 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
11750 
11751 	      /* ri_gp_value is set by the function
11752 		 mips_elf32_section_processing when the section is
11753 		 finally written out.  */
11754 
11755 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
11756 		 elf_link_input_bfd ignores this section.  */
11757 	      input_section->flags &= ~SEC_HAS_CONTENTS;
11758 	    }
11759 
11760 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
11761 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
11762 
11763 	  /* Skip this section later on (I don't think this currently
11764 	     matters, but someday it might).  */
11765 	  o->map_head.link_order = NULL;
11766 
11767 	  reginfo_sec = o;
11768 	}
11769 
11770       if (strcmp (o->name, ".mdebug") == 0)
11771 	{
11772 	  struct extsym_info einfo;
11773 	  bfd_vma last;
11774 
11775 	  /* We have found the .mdebug section in the output file.
11776 	     Look through all the link_orders comprising it and merge
11777 	     the information together.  */
11778 	  symhdr->magic = swap->sym_magic;
11779 	  /* FIXME: What should the version stamp be?  */
11780 	  symhdr->vstamp = 0;
11781 	  symhdr->ilineMax = 0;
11782 	  symhdr->cbLine = 0;
11783 	  symhdr->idnMax = 0;
11784 	  symhdr->ipdMax = 0;
11785 	  symhdr->isymMax = 0;
11786 	  symhdr->ioptMax = 0;
11787 	  symhdr->iauxMax = 0;
11788 	  symhdr->issMax = 0;
11789 	  symhdr->issExtMax = 0;
11790 	  symhdr->ifdMax = 0;
11791 	  symhdr->crfd = 0;
11792 	  symhdr->iextMax = 0;
11793 
11794 	  /* We accumulate the debugging information itself in the
11795 	     debug_info structure.  */
11796 	  debug.line = NULL;
11797 	  debug.external_dnr = NULL;
11798 	  debug.external_pdr = NULL;
11799 	  debug.external_sym = NULL;
11800 	  debug.external_opt = NULL;
11801 	  debug.external_aux = NULL;
11802 	  debug.ss = NULL;
11803 	  debug.ssext = debug.ssext_end = NULL;
11804 	  debug.external_fdr = NULL;
11805 	  debug.external_rfd = NULL;
11806 	  debug.external_ext = debug.external_ext_end = NULL;
11807 
11808 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
11809 	  if (mdebug_handle == NULL)
11810 	    return FALSE;
11811 
11812 	  esym.jmptbl = 0;
11813 	  esym.cobol_main = 0;
11814 	  esym.weakext = 0;
11815 	  esym.reserved = 0;
11816 	  esym.ifd = ifdNil;
11817 	  esym.asym.iss = issNil;
11818 	  esym.asym.st = stLocal;
11819 	  esym.asym.reserved = 0;
11820 	  esym.asym.index = indexNil;
11821 	  last = 0;
11822 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
11823 	    {
11824 	      esym.asym.sc = sc[i];
11825 	      s = bfd_get_section_by_name (abfd, secname[i]);
11826 	      if (s != NULL)
11827 		{
11828 		  esym.asym.value = s->vma;
11829 		  last = s->vma + s->size;
11830 		}
11831 	      else
11832 		esym.asym.value = last;
11833 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
11834 						 secname[i], &esym))
11835 		return FALSE;
11836 	    }
11837 
11838 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
11839 	    {
11840 	      asection *input_section;
11841 	      bfd *input_bfd;
11842 	      const struct ecoff_debug_swap *input_swap;
11843 	      struct ecoff_debug_info input_debug;
11844 	      char *eraw_src;
11845 	      char *eraw_end;
11846 
11847 	      if (p->type != bfd_indirect_link_order)
11848 		{
11849 		  if (p->type == bfd_data_link_order)
11850 		    continue;
11851 		  abort ();
11852 		}
11853 
11854 	      input_section = p->u.indirect.section;
11855 	      input_bfd = input_section->owner;
11856 
11857 	      if (!is_mips_elf (input_bfd))
11858 		{
11859 		  /* I don't know what a non MIPS ELF bfd would be
11860 		     doing with a .mdebug section, but I don't really
11861 		     want to deal with it.  */
11862 		  continue;
11863 		}
11864 
11865 	      input_swap = (get_elf_backend_data (input_bfd)
11866 			    ->elf_backend_ecoff_debug_swap);
11867 
11868 	      BFD_ASSERT (p->size == input_section->size);
11869 
11870 	      /* The ECOFF linking code expects that we have already
11871 		 read in the debugging information and set up an
11872 		 ecoff_debug_info structure, so we do that now.  */
11873 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
11874 						   &input_debug))
11875 		return FALSE;
11876 
11877 	      if (! (bfd_ecoff_debug_accumulate
11878 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
11879 		      &input_debug, input_swap, info)))
11880 		return FALSE;
11881 
11882 	      /* Loop through the external symbols.  For each one with
11883 		 interesting information, try to find the symbol in
11884 		 the linker global hash table and save the information
11885 		 for the output external symbols.  */
11886 	      eraw_src = input_debug.external_ext;
11887 	      eraw_end = (eraw_src
11888 			  + (input_debug.symbolic_header.iextMax
11889 			     * input_swap->external_ext_size));
11890 	      for (;
11891 		   eraw_src < eraw_end;
11892 		   eraw_src += input_swap->external_ext_size)
11893 		{
11894 		  EXTR ext;
11895 		  const char *name;
11896 		  struct mips_elf_link_hash_entry *h;
11897 
11898 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
11899 		  if (ext.asym.sc == scNil
11900 		      || ext.asym.sc == scUndefined
11901 		      || ext.asym.sc == scSUndefined)
11902 		    continue;
11903 
11904 		  name = input_debug.ssext + ext.asym.iss;
11905 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
11906 						 name, FALSE, FALSE, TRUE);
11907 		  if (h == NULL || h->esym.ifd != -2)
11908 		    continue;
11909 
11910 		  if (ext.ifd != -1)
11911 		    {
11912 		      BFD_ASSERT (ext.ifd
11913 				  < input_debug.symbolic_header.ifdMax);
11914 		      ext.ifd = input_debug.ifdmap[ext.ifd];
11915 		    }
11916 
11917 		  h->esym = ext;
11918 		}
11919 
11920 	      /* Free up the information we just read.  */
11921 	      free (input_debug.line);
11922 	      free (input_debug.external_dnr);
11923 	      free (input_debug.external_pdr);
11924 	      free (input_debug.external_sym);
11925 	      free (input_debug.external_opt);
11926 	      free (input_debug.external_aux);
11927 	      free (input_debug.ss);
11928 	      free (input_debug.ssext);
11929 	      free (input_debug.external_fdr);
11930 	      free (input_debug.external_rfd);
11931 	      free (input_debug.external_ext);
11932 
11933 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
11934 		 elf_link_input_bfd ignores this section.  */
11935 	      input_section->flags &= ~SEC_HAS_CONTENTS;
11936 	    }
11937 
11938 	  if (SGI_COMPAT (abfd) && info->shared)
11939 	    {
11940 	      /* Create .rtproc section.  */
11941 	      rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
11942 	      if (rtproc_sec == NULL)
11943 		{
11944 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
11945 				    | SEC_LINKER_CREATED | SEC_READONLY);
11946 
11947 		  rtproc_sec = bfd_make_section_with_flags (abfd,
11948 							    ".rtproc",
11949 							    flags);
11950 		  if (rtproc_sec == NULL
11951 		      || ! bfd_set_section_alignment (abfd, rtproc_sec, 4))
11952 		    return FALSE;
11953 		}
11954 
11955 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
11956 						     info, rtproc_sec,
11957 						     &debug))
11958 		return FALSE;
11959 	    }
11960 
11961 	  /* Build the external symbol information.  */
11962 	  einfo.abfd = abfd;
11963 	  einfo.info = info;
11964 	  einfo.debug = &debug;
11965 	  einfo.swap = swap;
11966 	  einfo.failed = FALSE;
11967 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
11968 				       mips_elf_output_extsym, &einfo);
11969 	  if (einfo.failed)
11970 	    return FALSE;
11971 
11972 	  /* Set the size of the .mdebug section.  */
11973 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
11974 
11975 	  /* Skip this section later on (I don't think this currently
11976 	     matters, but someday it might).  */
11977 	  o->map_head.link_order = NULL;
11978 
11979 	  mdebug_sec = o;
11980 	}
11981 
11982       if (CONST_STRNEQ (o->name, ".gptab."))
11983 	{
11984 	  const char *subname;
11985 	  unsigned int c;
11986 	  Elf32_gptab *tab;
11987 	  Elf32_External_gptab *ext_tab;
11988 	  unsigned int j;
11989 
11990 	  /* The .gptab.sdata and .gptab.sbss sections hold
11991 	     information describing how the small data area would
11992 	     change depending upon the -G switch.  These sections
11993 	     not used in executables files.  */
11994 	  if (! info->relocatable)
11995 	    {
11996 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
11997 		{
11998 		  asection *input_section;
11999 
12000 		  if (p->type != bfd_indirect_link_order)
12001 		    {
12002 		      if (p->type == bfd_data_link_order)
12003 			continue;
12004 		      abort ();
12005 		    }
12006 
12007 		  input_section = p->u.indirect.section;
12008 
12009 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
12010 		     elf_link_input_bfd ignores this section.  */
12011 		  input_section->flags &= ~SEC_HAS_CONTENTS;
12012 		}
12013 
12014 	      /* Skip this section later on (I don't think this
12015 		 currently matters, but someday it might).  */
12016 	      o->map_head.link_order = NULL;
12017 
12018 	      /* Really remove the section.  */
12019 	      bfd_section_list_remove (abfd, o);
12020 	      --abfd->section_count;
12021 
12022 	      continue;
12023 	    }
12024 
12025 	  /* There is one gptab for initialized data, and one for
12026 	     uninitialized data.  */
12027 	  if (strcmp (o->name, ".gptab.sdata") == 0)
12028 	    gptab_data_sec = o;
12029 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
12030 	    gptab_bss_sec = o;
12031 	  else
12032 	    {
12033 	      (*_bfd_error_handler)
12034 		(_("%s: illegal section name `%s'"),
12035 		 bfd_get_filename (abfd), o->name);
12036 	      bfd_set_error (bfd_error_nonrepresentable_section);
12037 	      return FALSE;
12038 	    }
12039 
12040 	  /* The linker script always combines .gptab.data and
12041 	     .gptab.sdata into .gptab.sdata, and likewise for
12042 	     .gptab.bss and .gptab.sbss.  It is possible that there is
12043 	     no .sdata or .sbss section in the output file, in which
12044 	     case we must change the name of the output section.  */
12045 	  subname = o->name + sizeof ".gptab" - 1;
12046 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
12047 	    {
12048 	      if (o == gptab_data_sec)
12049 		o->name = ".gptab.data";
12050 	      else
12051 		o->name = ".gptab.bss";
12052 	      subname = o->name + sizeof ".gptab" - 1;
12053 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
12054 	    }
12055 
12056 	  /* Set up the first entry.  */
12057 	  c = 1;
12058 	  amt = c * sizeof (Elf32_gptab);
12059 	  tab = bfd_malloc (amt);
12060 	  if (tab == NULL)
12061 	    return FALSE;
12062 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
12063 	  tab[0].gt_header.gt_unused = 0;
12064 
12065 	  /* Combine the input sections.  */
12066 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
12067 	    {
12068 	      asection *input_section;
12069 	      bfd *input_bfd;
12070 	      bfd_size_type size;
12071 	      unsigned long last;
12072 	      bfd_size_type gpentry;
12073 
12074 	      if (p->type != bfd_indirect_link_order)
12075 		{
12076 		  if (p->type == bfd_data_link_order)
12077 		    continue;
12078 		  abort ();
12079 		}
12080 
12081 	      input_section = p->u.indirect.section;
12082 	      input_bfd = input_section->owner;
12083 
12084 	      /* Combine the gptab entries for this input section one
12085 		 by one.  We know that the input gptab entries are
12086 		 sorted by ascending -G value.  */
12087 	      size = input_section->size;
12088 	      last = 0;
12089 	      for (gpentry = sizeof (Elf32_External_gptab);
12090 		   gpentry < size;
12091 		   gpentry += sizeof (Elf32_External_gptab))
12092 		{
12093 		  Elf32_External_gptab ext_gptab;
12094 		  Elf32_gptab int_gptab;
12095 		  unsigned long val;
12096 		  unsigned long add;
12097 		  bfd_boolean exact;
12098 		  unsigned int look;
12099 
12100 		  if (! (bfd_get_section_contents
12101 			 (input_bfd, input_section, &ext_gptab, gpentry,
12102 			  sizeof (Elf32_External_gptab))))
12103 		    {
12104 		      free (tab);
12105 		      return FALSE;
12106 		    }
12107 
12108 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
12109 						&int_gptab);
12110 		  val = int_gptab.gt_entry.gt_g_value;
12111 		  add = int_gptab.gt_entry.gt_bytes - last;
12112 
12113 		  exact = FALSE;
12114 		  for (look = 1; look < c; look++)
12115 		    {
12116 		      if (tab[look].gt_entry.gt_g_value >= val)
12117 			tab[look].gt_entry.gt_bytes += add;
12118 
12119 		      if (tab[look].gt_entry.gt_g_value == val)
12120 			exact = TRUE;
12121 		    }
12122 
12123 		  if (! exact)
12124 		    {
12125 		      Elf32_gptab *new_tab;
12126 		      unsigned int max;
12127 
12128 		      /* We need a new table entry.  */
12129 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
12130 		      new_tab = bfd_realloc (tab, amt);
12131 		      if (new_tab == NULL)
12132 			{
12133 			  free (tab);
12134 			  return FALSE;
12135 			}
12136 		      tab = new_tab;
12137 		      tab[c].gt_entry.gt_g_value = val;
12138 		      tab[c].gt_entry.gt_bytes = add;
12139 
12140 		      /* Merge in the size for the next smallest -G
12141 			 value, since that will be implied by this new
12142 			 value.  */
12143 		      max = 0;
12144 		      for (look = 1; look < c; look++)
12145 			{
12146 			  if (tab[look].gt_entry.gt_g_value < val
12147 			      && (max == 0
12148 				  || (tab[look].gt_entry.gt_g_value
12149 				      > tab[max].gt_entry.gt_g_value)))
12150 			    max = look;
12151 			}
12152 		      if (max != 0)
12153 			tab[c].gt_entry.gt_bytes +=
12154 			  tab[max].gt_entry.gt_bytes;
12155 
12156 		      ++c;
12157 		    }
12158 
12159 		  last = int_gptab.gt_entry.gt_bytes;
12160 		}
12161 
12162 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
12163 		 elf_link_input_bfd ignores this section.  */
12164 	      input_section->flags &= ~SEC_HAS_CONTENTS;
12165 	    }
12166 
12167 	  /* The table must be sorted by -G value.  */
12168 	  if (c > 2)
12169 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
12170 
12171 	  /* Swap out the table.  */
12172 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
12173 	  ext_tab = bfd_alloc (abfd, amt);
12174 	  if (ext_tab == NULL)
12175 	    {
12176 	      free (tab);
12177 	      return FALSE;
12178 	    }
12179 
12180 	  for (j = 0; j < c; j++)
12181 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
12182 	  free (tab);
12183 
12184 	  o->size = c * sizeof (Elf32_External_gptab);
12185 	  o->contents = (bfd_byte *) ext_tab;
12186 
12187 	  /* Skip this section later on (I don't think this currently
12188 	     matters, but someday it might).  */
12189 	  o->map_head.link_order = NULL;
12190 	}
12191     }
12192 
12193   /* Invoke the regular ELF backend linker to do all the work.  */
12194   if (!bfd_elf_final_link (abfd, info))
12195     return FALSE;
12196 
12197   /* Now write out the computed sections.  */
12198 
12199   if (reginfo_sec != NULL)
12200     {
12201       Elf32_External_RegInfo ext;
12202 
12203       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
12204       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
12205 	return FALSE;
12206     }
12207 
12208   if (mdebug_sec != NULL)
12209     {
12210       BFD_ASSERT (abfd->output_has_begun);
12211       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
12212 					       swap, info,
12213 					       mdebug_sec->filepos))
12214 	return FALSE;
12215 
12216       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
12217     }
12218 
12219   if (gptab_data_sec != NULL)
12220     {
12221       if (! bfd_set_section_contents (abfd, gptab_data_sec,
12222 				      gptab_data_sec->contents,
12223 				      0, gptab_data_sec->size))
12224 	return FALSE;
12225     }
12226 
12227   if (gptab_bss_sec != NULL)
12228     {
12229       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
12230 				      gptab_bss_sec->contents,
12231 				      0, gptab_bss_sec->size))
12232 	return FALSE;
12233     }
12234 
12235   if (SGI_COMPAT (abfd))
12236     {
12237       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
12238       if (rtproc_sec != NULL)
12239 	{
12240 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
12241 					  rtproc_sec->contents,
12242 					  0, rtproc_sec->size))
12243 	    return FALSE;
12244 	}
12245     }
12246 
12247   return TRUE;
12248 }
12249 
12250 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
12251 
12252 struct mips_mach_extension {
12253   unsigned long extension, base;
12254 };
12255 
12256 
12257 /* An array describing how BFD machines relate to one another.  The entries
12258    are ordered topologically with MIPS I extensions listed last.  */
12259 
12260 static const struct mips_mach_extension mips_mach_extensions[] = {
12261   /* MIPS64r2 extensions.  */
12262   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
12263 
12264   /* MIPS64 extensions.  */
12265   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
12266   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
12267   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
12268   { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 },
12269 
12270   /* MIPS V extensions.  */
12271   { bfd_mach_mipsisa64, bfd_mach_mips5 },
12272 
12273   /* R10000 extensions.  */
12274   { bfd_mach_mips12000, bfd_mach_mips10000 },
12275   { bfd_mach_mips14000, bfd_mach_mips10000 },
12276   { bfd_mach_mips16000, bfd_mach_mips10000 },
12277 
12278   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
12279      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
12280      better to allow vr5400 and vr5500 code to be merged anyway, since
12281      many libraries will just use the core ISA.  Perhaps we could add
12282      some sort of ASE flag if this ever proves a problem.  */
12283   { bfd_mach_mips5500, bfd_mach_mips5400 },
12284   { bfd_mach_mips5400, bfd_mach_mips5000 },
12285 
12286   /* MIPS IV extensions.  */
12287   { bfd_mach_mips5, bfd_mach_mips8000 },
12288   { bfd_mach_mips10000, bfd_mach_mips8000 },
12289   { bfd_mach_mips5000, bfd_mach_mips8000 },
12290   { bfd_mach_mips7000, bfd_mach_mips8000 },
12291   { bfd_mach_mips9000, bfd_mach_mips8000 },
12292 
12293   /* VR4100 extensions.  */
12294   { bfd_mach_mips4120, bfd_mach_mips4100 },
12295   { bfd_mach_mips4111, bfd_mach_mips4100 },
12296 
12297   /* MIPS III extensions.  */
12298   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
12299   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
12300   { bfd_mach_mips8000, bfd_mach_mips4000 },
12301   { bfd_mach_mips4650, bfd_mach_mips4000 },
12302   { bfd_mach_mips4600, bfd_mach_mips4000 },
12303   { bfd_mach_mips4400, bfd_mach_mips4000 },
12304   { bfd_mach_mips4300, bfd_mach_mips4000 },
12305   { bfd_mach_mips4100, bfd_mach_mips4000 },
12306   { bfd_mach_mips4010, bfd_mach_mips4000 },
12307 
12308   /* MIPS32 extensions.  */
12309   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
12310 
12311   /* MIPS II extensions.  */
12312   { bfd_mach_mips4000, bfd_mach_mips6000 },
12313   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
12314 
12315   /* MIPS I extensions.  */
12316   { bfd_mach_mips6000, bfd_mach_mips3000 },
12317   { bfd_mach_mips3900, bfd_mach_mips3000 }
12318 };
12319 
12320 
12321 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
12322 
12323 static bfd_boolean
12324 mips_mach_extends_p (unsigned long base, unsigned long extension)
12325 {
12326   size_t i;
12327 
12328   if (extension == base)
12329     return TRUE;
12330 
12331   if (base == bfd_mach_mipsisa32
12332       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
12333     return TRUE;
12334 
12335   if (base == bfd_mach_mipsisa32r2
12336       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
12337     return TRUE;
12338 
12339   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
12340     if (extension == mips_mach_extensions[i].extension)
12341       {
12342 	extension = mips_mach_extensions[i].base;
12343 	if (extension == base)
12344 	  return TRUE;
12345       }
12346 
12347   return FALSE;
12348 }
12349 
12350 
12351 /* Return true if the given ELF header flags describe a 32-bit binary.  */
12352 
12353 static bfd_boolean
12354 mips_32bit_flags_p (flagword flags)
12355 {
12356   return ((flags & EF_MIPS_32BITMODE) != 0
12357 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
12358 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
12359 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
12360 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
12361 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
12362 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2);
12363 }
12364 
12365 
12366 /* Merge object attributes from IBFD into OBFD.  Raise an error if
12367    there are conflicting attributes.  */
12368 static bfd_boolean
12369 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd)
12370 {
12371   obj_attribute *in_attr;
12372   obj_attribute *out_attr;
12373 
12374   if (!elf_known_obj_attributes_proc (obfd)[0].i)
12375     {
12376       /* This is the first object.  Copy the attributes.  */
12377       _bfd_elf_copy_obj_attributes (ibfd, obfd);
12378 
12379       /* Use the Tag_null value to indicate the attributes have been
12380 	 initialized.  */
12381       elf_known_obj_attributes_proc (obfd)[0].i = 1;
12382 
12383       return TRUE;
12384     }
12385 
12386   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
12387      non-conflicting ones.  */
12388   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
12389   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
12390   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
12391     {
12392       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
12393       if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12394 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
12395       else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0)
12396 	;
12397       else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12398 	_bfd_error_handler
12399 	  (_("Warning: %B uses unknown floating point ABI %d"), ibfd,
12400 	   in_attr[Tag_GNU_MIPS_ABI_FP].i);
12401       else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4)
12402 	_bfd_error_handler
12403 	  (_("Warning: %B uses unknown floating point ABI %d"), obfd,
12404 	   out_attr[Tag_GNU_MIPS_ABI_FP].i);
12405       else
12406 	switch (out_attr[Tag_GNU_MIPS_ABI_FP].i)
12407 	  {
12408 	  case 1:
12409 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12410 	      {
12411 	      case 2:
12412 		_bfd_error_handler
12413 		  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12414 		   obfd, ibfd);
12415 		break;
12416 
12417 	      case 3:
12418 		_bfd_error_handler
12419 		  (_("Warning: %B uses hard float, %B uses soft float"),
12420 		   obfd, ibfd);
12421 		break;
12422 
12423 	      case 4:
12424 		_bfd_error_handler
12425 		  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12426 		   obfd, ibfd);
12427 		break;
12428 
12429 	      default:
12430 		abort ();
12431 	      }
12432 	    break;
12433 
12434 	  case 2:
12435 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12436 	      {
12437 	      case 1:
12438 		_bfd_error_handler
12439 		  (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"),
12440 		   ibfd, obfd);
12441 		break;
12442 
12443 	      case 3:
12444 		_bfd_error_handler
12445 		  (_("Warning: %B uses hard float, %B uses soft float"),
12446 		   obfd, ibfd);
12447 		break;
12448 
12449 	      case 4:
12450 		_bfd_error_handler
12451 		  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12452 		   obfd, ibfd);
12453 		break;
12454 
12455 	      default:
12456 		abort ();
12457 	      }
12458 	    break;
12459 
12460 	  case 3:
12461 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12462 	      {
12463 	      case 1:
12464 	      case 2:
12465 	      case 4:
12466 		_bfd_error_handler
12467 		  (_("Warning: %B uses hard float, %B uses soft float"),
12468 		   ibfd, obfd);
12469 		break;
12470 
12471 	      default:
12472 		abort ();
12473 	      }
12474 	    break;
12475 
12476 	  case 4:
12477 	    switch (in_attr[Tag_GNU_MIPS_ABI_FP].i)
12478 	      {
12479 	      case 1:
12480 		_bfd_error_handler
12481 		  (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"),
12482 		   ibfd, obfd);
12483 		break;
12484 
12485 	      case 2:
12486 		_bfd_error_handler
12487 		  (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"),
12488 		   ibfd, obfd);
12489 		break;
12490 
12491 	      case 3:
12492 		_bfd_error_handler
12493 		  (_("Warning: %B uses hard float, %B uses soft float"),
12494 		   obfd, ibfd);
12495 		break;
12496 
12497 	      default:
12498 		abort ();
12499 	      }
12500 	    break;
12501 
12502 	  default:
12503 	    abort ();
12504 	  }
12505     }
12506 
12507   /* Merge Tag_compatibility attributes and any common GNU ones.  */
12508   _bfd_elf_merge_object_attributes (ibfd, obfd);
12509 
12510   return TRUE;
12511 }
12512 
12513 /* Merge backend specific data from an object file to the output
12514    object file when linking.  */
12515 
12516 bfd_boolean
12517 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
12518 {
12519   flagword old_flags;
12520   flagword new_flags;
12521   bfd_boolean ok;
12522   bfd_boolean null_input_bfd = TRUE;
12523   asection *sec;
12524 
12525   /* Check if we have the same endianess */
12526   if (! _bfd_generic_verify_endian_match (ibfd, obfd))
12527     {
12528       (*_bfd_error_handler)
12529 	(_("%B: endianness incompatible with that of the selected emulation"),
12530 	 ibfd);
12531       return FALSE;
12532     }
12533 
12534   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
12535     return TRUE;
12536 
12537   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
12538     {
12539       (*_bfd_error_handler)
12540 	(_("%B: ABI is incompatible with that of the selected emulation"),
12541 	 ibfd);
12542       return FALSE;
12543     }
12544 
12545   if (!mips_elf_merge_obj_attributes (ibfd, obfd))
12546     return FALSE;
12547 
12548   new_flags = elf_elfheader (ibfd)->e_flags;
12549   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
12550   old_flags = elf_elfheader (obfd)->e_flags;
12551 
12552   if (! elf_flags_init (obfd))
12553     {
12554       elf_flags_init (obfd) = TRUE;
12555       elf_elfheader (obfd)->e_flags = new_flags;
12556       elf_elfheader (obfd)->e_ident[EI_CLASS]
12557 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
12558 
12559       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
12560 	  && (bfd_get_arch_info (obfd)->the_default
12561 	      || mips_mach_extends_p (bfd_get_mach (obfd),
12562 				      bfd_get_mach (ibfd))))
12563 	{
12564 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
12565 				   bfd_get_mach (ibfd)))
12566 	    return FALSE;
12567 	}
12568 
12569       return TRUE;
12570     }
12571 
12572   /* Check flag compatibility.  */
12573 
12574   new_flags &= ~EF_MIPS_NOREORDER;
12575   old_flags &= ~EF_MIPS_NOREORDER;
12576 
12577   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
12578      doesn't seem to matter.  */
12579   new_flags &= ~EF_MIPS_XGOT;
12580   old_flags &= ~EF_MIPS_XGOT;
12581 
12582   /* MIPSpro generates ucode info in n64 objects.  Again, we should
12583      just be able to ignore this.  */
12584   new_flags &= ~EF_MIPS_UCODE;
12585   old_flags &= ~EF_MIPS_UCODE;
12586 
12587   /* DSOs should only be linked with CPIC code.  */
12588   if ((ibfd->flags & DYNAMIC) != 0)
12589     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
12590 
12591   if (new_flags == old_flags)
12592     return TRUE;
12593 
12594   /* Check to see if the input BFD actually contains any sections.
12595      If not, its flags may not have been initialised either, but it cannot
12596      actually cause any incompatibility.  */
12597   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
12598     {
12599       /* Ignore synthetic sections and empty .text, .data and .bss sections
12600 	 which are automatically generated by gas.  Also ignore fake
12601 	 (s)common sections, since merely defining a common symbol does
12602 	 not affect compatibility.  */
12603       if ((sec->flags & SEC_IS_COMMON) == 0
12604 	  && strcmp (sec->name, ".reginfo")
12605 	  && strcmp (sec->name, ".mdebug")
12606 	  && (sec->size != 0
12607 	      || (strcmp (sec->name, ".text")
12608 		  && strcmp (sec->name, ".data")
12609 		  && strcmp (sec->name, ".bss"))))
12610 	{
12611 	  null_input_bfd = FALSE;
12612 	  break;
12613 	}
12614     }
12615   if (null_input_bfd)
12616     return TRUE;
12617 
12618   ok = TRUE;
12619 
12620   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
12621       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
12622     {
12623       (*_bfd_error_handler)
12624 	(_("%B: warning: linking abicalls files with non-abicalls files"),
12625 	 ibfd);
12626       ok = TRUE;
12627     }
12628 
12629   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
12630     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
12631   if (! (new_flags & EF_MIPS_PIC))
12632     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
12633 
12634   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12635   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
12636 
12637   /* Compare the ISAs.  */
12638   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
12639     {
12640       (*_bfd_error_handler)
12641 	(_("%B: linking 32-bit code with 64-bit code"),
12642 	 ibfd);
12643       ok = FALSE;
12644     }
12645   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
12646     {
12647       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
12648       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
12649 	{
12650 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
12651 	     the 32-bit flag (if set) so that we continue to recognise
12652 	     OBFD as a 32-bit binary.  */
12653 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
12654 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12655 	  elf_elfheader (obfd)->e_flags
12656 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12657 
12658 	  /* Copy across the ABI flags if OBFD doesn't use them
12659 	     and if that was what caused us to treat IBFD as 32-bit.  */
12660 	  if ((old_flags & EF_MIPS_ABI) == 0
12661 	      && mips_32bit_flags_p (new_flags)
12662 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
12663 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
12664 	}
12665       else
12666 	{
12667 	  /* The ISAs aren't compatible.  */
12668 	  (*_bfd_error_handler)
12669 	    (_("%B: linking %s module with previous %s modules"),
12670 	     ibfd,
12671 	     bfd_printable_name (ibfd),
12672 	     bfd_printable_name (obfd));
12673 	  ok = FALSE;
12674 	}
12675     }
12676 
12677   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12678   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
12679 
12680   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
12681      does set EI_CLASS differently from any 32-bit ABI.  */
12682   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
12683       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12684 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12685     {
12686       /* Only error if both are set (to different values).  */
12687       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
12688 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
12689 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
12690 	{
12691 	  (*_bfd_error_handler)
12692 	    (_("%B: ABI mismatch: linking %s module with previous %s modules"),
12693 	     ibfd,
12694 	     elf_mips_abi_name (ibfd),
12695 	     elf_mips_abi_name (obfd));
12696 	  ok = FALSE;
12697 	}
12698       new_flags &= ~EF_MIPS_ABI;
12699       old_flags &= ~EF_MIPS_ABI;
12700     }
12701 
12702   /* For now, allow arbitrary mixing of ASEs (retain the union).  */
12703   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
12704     {
12705       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
12706 
12707       new_flags &= ~ EF_MIPS_ARCH_ASE;
12708       old_flags &= ~ EF_MIPS_ARCH_ASE;
12709     }
12710 
12711   /* Warn about any other mismatches */
12712   if (new_flags != old_flags)
12713     {
12714       (*_bfd_error_handler)
12715 	(_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
12716 	 ibfd, (unsigned long) new_flags,
12717 	 (unsigned long) old_flags);
12718       ok = FALSE;
12719     }
12720 
12721   if (! ok)
12722     {
12723       bfd_set_error (bfd_error_bad_value);
12724       return FALSE;
12725     }
12726 
12727   return TRUE;
12728 }
12729 
12730 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
12731 
12732 bfd_boolean
12733 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
12734 {
12735   BFD_ASSERT (!elf_flags_init (abfd)
12736 	      || elf_elfheader (abfd)->e_flags == flags);
12737 
12738   elf_elfheader (abfd)->e_flags = flags;
12739   elf_flags_init (abfd) = TRUE;
12740   return TRUE;
12741 }
12742 
12743 char *
12744 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
12745 {
12746   switch (dtag)
12747     {
12748     default: return "";
12749     case DT_MIPS_RLD_VERSION:
12750       return "MIPS_RLD_VERSION";
12751     case DT_MIPS_TIME_STAMP:
12752       return "MIPS_TIME_STAMP";
12753     case DT_MIPS_ICHECKSUM:
12754       return "MIPS_ICHECKSUM";
12755     case DT_MIPS_IVERSION:
12756       return "MIPS_IVERSION";
12757     case DT_MIPS_FLAGS:
12758       return "MIPS_FLAGS";
12759     case DT_MIPS_BASE_ADDRESS:
12760       return "MIPS_BASE_ADDRESS";
12761     case DT_MIPS_MSYM:
12762       return "MIPS_MSYM";
12763     case DT_MIPS_CONFLICT:
12764       return "MIPS_CONFLICT";
12765     case DT_MIPS_LIBLIST:
12766       return "MIPS_LIBLIST";
12767     case DT_MIPS_LOCAL_GOTNO:
12768       return "MIPS_LOCAL_GOTNO";
12769     case DT_MIPS_CONFLICTNO:
12770       return "MIPS_CONFLICTNO";
12771     case DT_MIPS_LIBLISTNO:
12772       return "MIPS_LIBLISTNO";
12773     case DT_MIPS_SYMTABNO:
12774       return "MIPS_SYMTABNO";
12775     case DT_MIPS_UNREFEXTNO:
12776       return "MIPS_UNREFEXTNO";
12777     case DT_MIPS_GOTSYM:
12778       return "MIPS_GOTSYM";
12779     case DT_MIPS_HIPAGENO:
12780       return "MIPS_HIPAGENO";
12781     case DT_MIPS_RLD_MAP:
12782       return "MIPS_RLD_MAP";
12783     case DT_MIPS_DELTA_CLASS:
12784       return "MIPS_DELTA_CLASS";
12785     case DT_MIPS_DELTA_CLASS_NO:
12786       return "MIPS_DELTA_CLASS_NO";
12787     case DT_MIPS_DELTA_INSTANCE:
12788       return "MIPS_DELTA_INSTANCE";
12789     case DT_MIPS_DELTA_INSTANCE_NO:
12790       return "MIPS_DELTA_INSTANCE_NO";
12791     case DT_MIPS_DELTA_RELOC:
12792       return "MIPS_DELTA_RELOC";
12793     case DT_MIPS_DELTA_RELOC_NO:
12794       return "MIPS_DELTA_RELOC_NO";
12795     case DT_MIPS_DELTA_SYM:
12796       return "MIPS_DELTA_SYM";
12797     case DT_MIPS_DELTA_SYM_NO:
12798       return "MIPS_DELTA_SYM_NO";
12799     case DT_MIPS_DELTA_CLASSSYM:
12800       return "MIPS_DELTA_CLASSSYM";
12801     case DT_MIPS_DELTA_CLASSSYM_NO:
12802       return "MIPS_DELTA_CLASSSYM_NO";
12803     case DT_MIPS_CXX_FLAGS:
12804       return "MIPS_CXX_FLAGS";
12805     case DT_MIPS_PIXIE_INIT:
12806       return "MIPS_PIXIE_INIT";
12807     case DT_MIPS_SYMBOL_LIB:
12808       return "MIPS_SYMBOL_LIB";
12809     case DT_MIPS_LOCALPAGE_GOTIDX:
12810       return "MIPS_LOCALPAGE_GOTIDX";
12811     case DT_MIPS_LOCAL_GOTIDX:
12812       return "MIPS_LOCAL_GOTIDX";
12813     case DT_MIPS_HIDDEN_GOTIDX:
12814       return "MIPS_HIDDEN_GOTIDX";
12815     case DT_MIPS_PROTECTED_GOTIDX:
12816       return "MIPS_PROTECTED_GOT_IDX";
12817     case DT_MIPS_OPTIONS:
12818       return "MIPS_OPTIONS";
12819     case DT_MIPS_INTERFACE:
12820       return "MIPS_INTERFACE";
12821     case DT_MIPS_DYNSTR_ALIGN:
12822       return "DT_MIPS_DYNSTR_ALIGN";
12823     case DT_MIPS_INTERFACE_SIZE:
12824       return "DT_MIPS_INTERFACE_SIZE";
12825     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
12826       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
12827     case DT_MIPS_PERF_SUFFIX:
12828       return "DT_MIPS_PERF_SUFFIX";
12829     case DT_MIPS_COMPACT_SIZE:
12830       return "DT_MIPS_COMPACT_SIZE";
12831     case DT_MIPS_GP_VALUE:
12832       return "DT_MIPS_GP_VALUE";
12833     case DT_MIPS_AUX_DYNAMIC:
12834       return "DT_MIPS_AUX_DYNAMIC";
12835     case DT_MIPS_PLTGOT:
12836       return "DT_MIPS_PLTGOT";
12837     case DT_MIPS_RWPLT:
12838       return "DT_MIPS_RWPLT";
12839     }
12840 }
12841 
12842 bfd_boolean
12843 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
12844 {
12845   FILE *file = ptr;
12846 
12847   BFD_ASSERT (abfd != NULL && ptr != NULL);
12848 
12849   /* Print normal ELF private data.  */
12850   _bfd_elf_print_private_bfd_data (abfd, ptr);
12851 
12852   /* xgettext:c-format */
12853   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12854 
12855   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
12856     fprintf (file, _(" [abi=O32]"));
12857   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
12858     fprintf (file, _(" [abi=O64]"));
12859   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
12860     fprintf (file, _(" [abi=EABI32]"));
12861   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
12862     fprintf (file, _(" [abi=EABI64]"));
12863   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
12864     fprintf (file, _(" [abi unknown]"));
12865   else if (ABI_N32_P (abfd))
12866     fprintf (file, _(" [abi=N32]"));
12867   else if (ABI_64_P (abfd))
12868     fprintf (file, _(" [abi=64]"));
12869   else
12870     fprintf (file, _(" [no abi set]"));
12871 
12872   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
12873     fprintf (file, " [mips1]");
12874   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
12875     fprintf (file, " [mips2]");
12876   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
12877     fprintf (file, " [mips3]");
12878   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
12879     fprintf (file, " [mips4]");
12880   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
12881     fprintf (file, " [mips5]");
12882   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
12883     fprintf (file, " [mips32]");
12884   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
12885     fprintf (file, " [mips64]");
12886   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
12887     fprintf (file, " [mips32r2]");
12888   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
12889     fprintf (file, " [mips64r2]");
12890   else
12891     fprintf (file, _(" [unknown ISA]"));
12892 
12893   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
12894     fprintf (file, " [mdmx]");
12895 
12896   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
12897     fprintf (file, " [mips16]");
12898 
12899   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
12900     fprintf (file, " [32bitmode]");
12901   else
12902     fprintf (file, _(" [not 32bitmode]"));
12903 
12904   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
12905     fprintf (file, " [noreorder]");
12906 
12907   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
12908     fprintf (file, " [PIC]");
12909 
12910   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
12911     fprintf (file, " [CPIC]");
12912 
12913   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
12914     fprintf (file, " [XGOT]");
12915 
12916   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
12917     fprintf (file, " [UCODE]");
12918 
12919   fputc ('\n', file);
12920 
12921   return TRUE;
12922 }
12923 
12924 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
12925 {
12926   { STRING_COMMA_LEN (".lit4"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12927   { STRING_COMMA_LEN (".lit8"),   0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12928   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
12929   { STRING_COMMA_LEN (".sbss"),  -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12930   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
12931   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
12932   { NULL,                     0,  0, 0,              0 }
12933 };
12934 
12935 /* Merge non visibility st_other attributes.  Ensure that the
12936    STO_OPTIONAL flag is copied into h->other, even if this is not a
12937    definiton of the symbol.  */
12938 void
12939 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
12940 				      const Elf_Internal_Sym *isym,
12941 				      bfd_boolean definition,
12942 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
12943 {
12944   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
12945     {
12946       unsigned char other;
12947 
12948       other = (definition ? isym->st_other : h->other);
12949       other &= ~ELF_ST_VISIBILITY (-1);
12950       h->other = other | ELF_ST_VISIBILITY (h->other);
12951     }
12952 
12953   if (!definition
12954       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
12955     h->other |= STO_OPTIONAL;
12956 }
12957 
12958 /* Decide whether an undefined symbol is special and can be ignored.
12959    This is the case for OPTIONAL symbols on IRIX.  */
12960 bfd_boolean
12961 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
12962 {
12963   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
12964 }
12965 
12966 bfd_boolean
12967 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
12968 {
12969   return (sym->st_shndx == SHN_COMMON
12970 	  || sym->st_shndx == SHN_MIPS_ACOMMON
12971 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
12972 }
12973 
12974 /* Return address for Ith PLT stub in section PLT, for relocation REL
12975    or (bfd_vma) -1 if it should not be included.  */
12976 
12977 bfd_vma
12978 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
12979 			   const arelent *rel ATTRIBUTE_UNUSED)
12980 {
12981   return (plt->vma
12982 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
12983 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
12984 }
12985 
12986 void
12987 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info)
12988 {
12989   struct mips_elf_link_hash_table *htab;
12990   Elf_Internal_Ehdr *i_ehdrp;
12991 
12992   i_ehdrp = elf_elfheader (abfd);
12993   if (link_info)
12994     {
12995       htab = mips_elf_hash_table (link_info);
12996       BFD_ASSERT (htab != NULL);
12997 
12998       if (htab->use_plts_and_copy_relocs && !htab->is_vxworks)
12999 	i_ehdrp->e_ident[EI_ABIVERSION] = 1;
13000     }
13001 }
13002