1 /* MIPS-specific support for ELF 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc. 4 5 Most of the information added by Ian Lance Taylor, Cygnus Support, 6 <ian@cygnus.com>. 7 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC. 8 <mark@codesourcery.com> 9 Traditional MIPS targets support added by Koundinya.K, Dansk Data 10 Elektronik & Operations Research Group. <kk@ddeorg.soft.net> 11 12 This file is part of BFD, the Binary File Descriptor library. 13 14 This program is free software; you can redistribute it and/or modify 15 it under the terms of the GNU General Public License as published by 16 the Free Software Foundation; either version 3 of the License, or 17 (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, 20 but WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 22 GNU General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 27 MA 02110-1301, USA. */ 28 29 30 /* This file handles functionality common to the different MIPS ABI's. */ 31 32 #include "sysdep.h" 33 #include "bfd.h" 34 #include "libbfd.h" 35 #include "libiberty.h" 36 #include "elf-bfd.h" 37 #include "elfxx-mips.h" 38 #include "elf/mips.h" 39 #include "elf-vxworks.h" 40 41 /* Get the ECOFF swapping routines. */ 42 #include "coff/sym.h" 43 #include "coff/symconst.h" 44 #include "coff/ecoff.h" 45 #include "coff/mips.h" 46 47 #include "hashtab.h" 48 49 /* This structure is used to hold information about one GOT entry. 50 There are three types of entry: 51 52 (1) absolute addresses 53 (abfd == NULL) 54 (2) SYMBOL + OFFSET addresses, where SYMBOL is local to an input bfd 55 (abfd != NULL, symndx >= 0) 56 (3) SYMBOL addresses, where SYMBOL is not local to an input bfd 57 (abfd != NULL, symndx == -1) 58 59 Type (3) entries are treated differently for different types of GOT. 60 In the "master" GOT -- i.e. the one that describes every GOT 61 reference needed in the link -- the mips_got_entry is keyed on both 62 the symbol and the input bfd that references it. If it turns out 63 that we need multiple GOTs, we can then use this information to 64 create separate GOTs for each input bfd. 65 66 However, we want each of these separate GOTs to have at most one 67 entry for a given symbol, so their type (3) entries are keyed only 68 on the symbol. The input bfd given by the "abfd" field is somewhat 69 arbitrary in this case. 70 71 This means that when there are multiple GOTs, each GOT has a unique 72 mips_got_entry for every symbol within it. We can therefore use the 73 mips_got_entry fields (tls_type and gotidx) to track the symbol's 74 GOT index. 75 76 However, if it turns out that we need only a single GOT, we continue 77 to use the master GOT to describe it. There may therefore be several 78 mips_got_entries for the same symbol, each with a different input bfd. 79 We want to make sure that each symbol gets a unique GOT entry, so when 80 there's a single GOT, we use the symbol's hash entry, not the 81 mips_got_entry fields, to track a symbol's GOT index. */ 82 struct mips_got_entry 83 { 84 /* The input bfd in which the symbol is defined. */ 85 bfd *abfd; 86 /* The index of the symbol, as stored in the relocation r_info, if 87 we have a local symbol; -1 otherwise. */ 88 long symndx; 89 union 90 { 91 /* If abfd == NULL, an address that must be stored in the got. */ 92 bfd_vma address; 93 /* If abfd != NULL && symndx != -1, the addend of the relocation 94 that should be added to the symbol value. */ 95 bfd_vma addend; 96 /* If abfd != NULL && symndx == -1, the hash table entry 97 corresponding to symbol in the GOT. The symbol's entry 98 is in the local area if h->global_got_area is GGA_NONE, 99 otherwise it is in the global area. */ 100 struct mips_elf_link_hash_entry *h; 101 } d; 102 103 /* The TLS types included in this GOT entry (specifically, GD and 104 IE). The GD and IE flags can be added as we encounter new 105 relocations. LDM can also be set; it will always be alone, not 106 combined with any GD or IE flags. An LDM GOT entry will be 107 a local symbol entry with r_symndx == 0. */ 108 unsigned char tls_type; 109 110 /* The offset from the beginning of the .got section to the entry 111 corresponding to this symbol+addend. If it's a global symbol 112 whose offset is yet to be decided, it's going to be -1. */ 113 long gotidx; 114 }; 115 116 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND]. 117 The structures form a non-overlapping list that is sorted by increasing 118 MIN_ADDEND. */ 119 struct mips_got_page_range 120 { 121 struct mips_got_page_range *next; 122 bfd_signed_vma min_addend; 123 bfd_signed_vma max_addend; 124 }; 125 126 /* This structure describes the range of addends that are applied to page 127 relocations against a given symbol. */ 128 struct mips_got_page_entry 129 { 130 /* The input bfd in which the symbol is defined. */ 131 bfd *abfd; 132 /* The index of the symbol, as stored in the relocation r_info. */ 133 long symndx; 134 /* The ranges for this page entry. */ 135 struct mips_got_page_range *ranges; 136 /* The maximum number of page entries needed for RANGES. */ 137 bfd_vma num_pages; 138 }; 139 140 /* This structure is used to hold .got information when linking. */ 141 142 struct mips_got_info 143 { 144 /* The global symbol in the GOT with the lowest index in the dynamic 145 symbol table. */ 146 struct elf_link_hash_entry *global_gotsym; 147 /* The number of global .got entries. */ 148 unsigned int global_gotno; 149 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */ 150 unsigned int reloc_only_gotno; 151 /* The number of .got slots used for TLS. */ 152 unsigned int tls_gotno; 153 /* The first unused TLS .got entry. Used only during 154 mips_elf_initialize_tls_index. */ 155 unsigned int tls_assigned_gotno; 156 /* The number of local .got entries, eventually including page entries. */ 157 unsigned int local_gotno; 158 /* The maximum number of page entries needed. */ 159 unsigned int page_gotno; 160 /* The number of local .got entries we have used. */ 161 unsigned int assigned_gotno; 162 /* A hash table holding members of the got. */ 163 struct htab *got_entries; 164 /* A hash table of mips_got_page_entry structures. */ 165 struct htab *got_page_entries; 166 /* A hash table mapping input bfds to other mips_got_info. NULL 167 unless multi-got was necessary. */ 168 struct htab *bfd2got; 169 /* In multi-got links, a pointer to the next got (err, rather, most 170 of the time, it points to the previous got). */ 171 struct mips_got_info *next; 172 /* This is the GOT index of the TLS LDM entry for the GOT, MINUS_ONE 173 for none, or MINUS_TWO for not yet assigned. This is needed 174 because a single-GOT link may have multiple hash table entries 175 for the LDM. It does not get initialized in multi-GOT mode. */ 176 bfd_vma tls_ldm_offset; 177 }; 178 179 /* Map an input bfd to a got in a multi-got link. */ 180 181 struct mips_elf_bfd2got_hash 182 { 183 bfd *bfd; 184 struct mips_got_info *g; 185 }; 186 187 /* Structure passed when traversing the bfd2got hash table, used to 188 create and merge bfd's gots. */ 189 190 struct mips_elf_got_per_bfd_arg 191 { 192 /* A hashtable that maps bfds to gots. */ 193 htab_t bfd2got; 194 /* The output bfd. */ 195 bfd *obfd; 196 /* The link information. */ 197 struct bfd_link_info *info; 198 /* A pointer to the primary got, i.e., the one that's going to get 199 the implicit relocations from DT_MIPS_LOCAL_GOTNO and 200 DT_MIPS_GOTSYM. */ 201 struct mips_got_info *primary; 202 /* A non-primary got we're trying to merge with other input bfd's 203 gots. */ 204 struct mips_got_info *current; 205 /* The maximum number of got entries that can be addressed with a 206 16-bit offset. */ 207 unsigned int max_count; 208 /* The maximum number of page entries needed by each got. */ 209 unsigned int max_pages; 210 /* The total number of global entries which will live in the 211 primary got and be automatically relocated. This includes 212 those not referenced by the primary GOT but included in 213 the "master" GOT. */ 214 unsigned int global_count; 215 }; 216 217 /* Another structure used to pass arguments for got entries traversal. */ 218 219 struct mips_elf_set_global_got_offset_arg 220 { 221 struct mips_got_info *g; 222 int value; 223 unsigned int needed_relocs; 224 struct bfd_link_info *info; 225 }; 226 227 /* A structure used to count TLS relocations or GOT entries, for GOT 228 entry or ELF symbol table traversal. */ 229 230 struct mips_elf_count_tls_arg 231 { 232 struct bfd_link_info *info; 233 unsigned int needed; 234 }; 235 236 struct _mips_elf_section_data 237 { 238 struct bfd_elf_section_data elf; 239 union 240 { 241 bfd_byte *tdata; 242 } u; 243 }; 244 245 #define mips_elf_section_data(sec) \ 246 ((struct _mips_elf_section_data *) elf_section_data (sec)) 247 248 #define is_mips_elf(bfd) \ 249 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 250 && elf_tdata (bfd) != NULL \ 251 && elf_object_id (bfd) == MIPS_ELF_DATA) 252 253 /* The ABI says that every symbol used by dynamic relocations must have 254 a global GOT entry. Among other things, this provides the dynamic 255 linker with a free, directly-indexed cache. The GOT can therefore 256 contain symbols that are not referenced by GOT relocations themselves 257 (in other words, it may have symbols that are not referenced by things 258 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE). 259 260 GOT relocations are less likely to overflow if we put the associated 261 GOT entries towards the beginning. We therefore divide the global 262 GOT entries into two areas: "normal" and "reloc-only". Entries in 263 the first area can be used for both dynamic relocations and GP-relative 264 accesses, while those in the "reloc-only" area are for dynamic 265 relocations only. 266 267 These GGA_* ("Global GOT Area") values are organised so that lower 268 values are more general than higher values. Also, non-GGA_NONE 269 values are ordered by the position of the area in the GOT. */ 270 #define GGA_NORMAL 0 271 #define GGA_RELOC_ONLY 1 272 #define GGA_NONE 2 273 274 /* Information about a non-PIC interface to a PIC function. There are 275 two ways of creating these interfaces. The first is to add: 276 277 lui $25,%hi(func) 278 addiu $25,$25,%lo(func) 279 280 immediately before a PIC function "func". The second is to add: 281 282 lui $25,%hi(func) 283 j func 284 addiu $25,$25,%lo(func) 285 286 to a separate trampoline section. 287 288 Stubs of the first kind go in a new section immediately before the 289 target function. Stubs of the second kind go in a single section 290 pointed to by the hash table's "strampoline" field. */ 291 struct mips_elf_la25_stub { 292 /* The generated section that contains this stub. */ 293 asection *stub_section; 294 295 /* The offset of the stub from the start of STUB_SECTION. */ 296 bfd_vma offset; 297 298 /* One symbol for the original function. Its location is available 299 in H->root.root.u.def. */ 300 struct mips_elf_link_hash_entry *h; 301 }; 302 303 /* Macros for populating a mips_elf_la25_stub. */ 304 305 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */ 306 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */ 307 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */ 308 309 /* This structure is passed to mips_elf_sort_hash_table_f when sorting 310 the dynamic symbols. */ 311 312 struct mips_elf_hash_sort_data 313 { 314 /* The symbol in the global GOT with the lowest dynamic symbol table 315 index. */ 316 struct elf_link_hash_entry *low; 317 /* The least dynamic symbol table index corresponding to a non-TLS 318 symbol with a GOT entry. */ 319 long min_got_dynindx; 320 /* The greatest dynamic symbol table index corresponding to a symbol 321 with a GOT entry that is not referenced (e.g., a dynamic symbol 322 with dynamic relocations pointing to it from non-primary GOTs). */ 323 long max_unref_got_dynindx; 324 /* The greatest dynamic symbol table index not corresponding to a 325 symbol without a GOT entry. */ 326 long max_non_got_dynindx; 327 }; 328 329 /* The MIPS ELF linker needs additional information for each symbol in 330 the global hash table. */ 331 332 struct mips_elf_link_hash_entry 333 { 334 struct elf_link_hash_entry root; 335 336 /* External symbol information. */ 337 EXTR esym; 338 339 /* The la25 stub we have created for ths symbol, if any. */ 340 struct mips_elf_la25_stub *la25_stub; 341 342 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against 343 this symbol. */ 344 unsigned int possibly_dynamic_relocs; 345 346 /* If there is a stub that 32 bit functions should use to call this 347 16 bit function, this points to the section containing the stub. */ 348 asection *fn_stub; 349 350 /* If there is a stub that 16 bit functions should use to call this 351 32 bit function, this points to the section containing the stub. */ 352 asection *call_stub; 353 354 /* This is like the call_stub field, but it is used if the function 355 being called returns a floating point value. */ 356 asection *call_fp_stub; 357 358 #define GOT_NORMAL 0 359 #define GOT_TLS_GD 1 360 #define GOT_TLS_LDM 2 361 #define GOT_TLS_IE 4 362 #define GOT_TLS_OFFSET_DONE 0x40 363 #define GOT_TLS_DONE 0x80 364 unsigned char tls_type; 365 366 /* This is only used in single-GOT mode; in multi-GOT mode there 367 is one mips_got_entry per GOT entry, so the offset is stored 368 there. In single-GOT mode there may be many mips_got_entry 369 structures all referring to the same GOT slot. It might be 370 possible to use root.got.offset instead, but that field is 371 overloaded already. */ 372 bfd_vma tls_got_offset; 373 374 /* The highest GGA_* value that satisfies all references to this symbol. */ 375 unsigned int global_got_area : 2; 376 377 /* True if all GOT relocations against this symbol are for calls. This is 378 a looser condition than no_fn_stub below, because there may be other 379 non-call non-GOT relocations against the symbol. */ 380 unsigned int got_only_for_calls : 1; 381 382 /* True if one of the relocations described by possibly_dynamic_relocs 383 is against a readonly section. */ 384 unsigned int readonly_reloc : 1; 385 386 /* True if there is a relocation against this symbol that must be 387 resolved by the static linker (in other words, if the relocation 388 cannot possibly be made dynamic). */ 389 unsigned int has_static_relocs : 1; 390 391 /* True if we must not create a .MIPS.stubs entry for this symbol. 392 This is set, for example, if there are relocations related to 393 taking the function's address, i.e. any but R_MIPS_CALL*16 ones. 394 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */ 395 unsigned int no_fn_stub : 1; 396 397 /* Whether we need the fn_stub; this is true if this symbol appears 398 in any relocs other than a 16 bit call. */ 399 unsigned int need_fn_stub : 1; 400 401 /* True if this symbol is referenced by branch relocations from 402 any non-PIC input file. This is used to determine whether an 403 la25 stub is required. */ 404 unsigned int has_nonpic_branches : 1; 405 406 /* Does this symbol need a traditional MIPS lazy-binding stub 407 (as opposed to a PLT entry)? */ 408 unsigned int needs_lazy_stub : 1; 409 }; 410 411 /* MIPS ELF linker hash table. */ 412 413 struct mips_elf_link_hash_table 414 { 415 struct elf_link_hash_table root; 416 #if 0 417 /* We no longer use this. */ 418 /* String section indices for the dynamic section symbols. */ 419 bfd_size_type dynsym_sec_strindex[SIZEOF_MIPS_DYNSYM_SECNAMES]; 420 #endif 421 422 /* The number of .rtproc entries. */ 423 bfd_size_type procedure_count; 424 425 /* The size of the .compact_rel section (if SGI_COMPAT). */ 426 bfd_size_type compact_rel_size; 427 428 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic 429 entry is set to the address of __rld_obj_head as in IRIX5. */ 430 bfd_boolean use_rld_obj_head; 431 432 /* This is the value of the __rld_map or __rld_obj_head symbol. */ 433 bfd_vma rld_value; 434 435 /* This is set if we see any mips16 stub sections. */ 436 bfd_boolean mips16_stubs_seen; 437 438 /* True if we can generate copy relocs and PLTs. */ 439 bfd_boolean use_plts_and_copy_relocs; 440 441 /* True if we're generating code for VxWorks. */ 442 bfd_boolean is_vxworks; 443 444 /* True if we already reported the small-data section overflow. */ 445 bfd_boolean small_data_overflow_reported; 446 447 /* Shortcuts to some dynamic sections, or NULL if they are not 448 being used. */ 449 asection *srelbss; 450 asection *sdynbss; 451 asection *srelplt; 452 asection *srelplt2; 453 asection *sgotplt; 454 asection *splt; 455 asection *sstubs; 456 asection *sgot; 457 458 /* The master GOT information. */ 459 struct mips_got_info *got_info; 460 461 /* The size of the PLT header in bytes. */ 462 bfd_vma plt_header_size; 463 464 /* The size of a PLT entry in bytes. */ 465 bfd_vma plt_entry_size; 466 467 /* The number of functions that need a lazy-binding stub. */ 468 bfd_vma lazy_stub_count; 469 470 /* The size of a function stub entry in bytes. */ 471 bfd_vma function_stub_size; 472 473 /* The number of reserved entries at the beginning of the GOT. */ 474 unsigned int reserved_gotno; 475 476 /* The section used for mips_elf_la25_stub trampolines. 477 See the comment above that structure for details. */ 478 asection *strampoline; 479 480 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset) 481 pairs. */ 482 htab_t la25_stubs; 483 484 /* A function FN (NAME, IS, OS) that creates a new input section 485 called NAME and links it to output section OS. If IS is nonnull, 486 the new section should go immediately before it, otherwise it 487 should go at the (current) beginning of OS. 488 489 The function returns the new section on success, otherwise it 490 returns null. */ 491 asection *(*add_stub_section) (const char *, asection *, asection *); 492 }; 493 494 /* Get the MIPS ELF linker hash table from a link_info structure. */ 495 496 #define mips_elf_hash_table(p) \ 497 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 498 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL) 499 500 /* A structure used to communicate with htab_traverse callbacks. */ 501 struct mips_htab_traverse_info 502 { 503 /* The usual link-wide information. */ 504 struct bfd_link_info *info; 505 bfd *output_bfd; 506 507 /* Starts off FALSE and is set to TRUE if the link should be aborted. */ 508 bfd_boolean error; 509 }; 510 511 #define TLS_RELOC_P(r_type) \ 512 (r_type == R_MIPS_TLS_DTPMOD32 \ 513 || r_type == R_MIPS_TLS_DTPMOD64 \ 514 || r_type == R_MIPS_TLS_DTPREL32 \ 515 || r_type == R_MIPS_TLS_DTPREL64 \ 516 || r_type == R_MIPS_TLS_GD \ 517 || r_type == R_MIPS_TLS_LDM \ 518 || r_type == R_MIPS_TLS_DTPREL_HI16 \ 519 || r_type == R_MIPS_TLS_DTPREL_LO16 \ 520 || r_type == R_MIPS_TLS_GOTTPREL \ 521 || r_type == R_MIPS_TLS_TPREL32 \ 522 || r_type == R_MIPS_TLS_TPREL64 \ 523 || r_type == R_MIPS_TLS_TPREL_HI16 \ 524 || r_type == R_MIPS_TLS_TPREL_LO16) 525 526 /* Structure used to pass information to mips_elf_output_extsym. */ 527 528 struct extsym_info 529 { 530 bfd *abfd; 531 struct bfd_link_info *info; 532 struct ecoff_debug_info *debug; 533 const struct ecoff_debug_swap *swap; 534 bfd_boolean failed; 535 }; 536 537 /* The names of the runtime procedure table symbols used on IRIX5. */ 538 539 static const char * const mips_elf_dynsym_rtproc_names[] = 540 { 541 "_procedure_table", 542 "_procedure_string_table", 543 "_procedure_table_size", 544 NULL 545 }; 546 547 /* These structures are used to generate the .compact_rel section on 548 IRIX5. */ 549 550 typedef struct 551 { 552 unsigned long id1; /* Always one? */ 553 unsigned long num; /* Number of compact relocation entries. */ 554 unsigned long id2; /* Always two? */ 555 unsigned long offset; /* The file offset of the first relocation. */ 556 unsigned long reserved0; /* Zero? */ 557 unsigned long reserved1; /* Zero? */ 558 } Elf32_compact_rel; 559 560 typedef struct 561 { 562 bfd_byte id1[4]; 563 bfd_byte num[4]; 564 bfd_byte id2[4]; 565 bfd_byte offset[4]; 566 bfd_byte reserved0[4]; 567 bfd_byte reserved1[4]; 568 } Elf32_External_compact_rel; 569 570 typedef struct 571 { 572 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 573 unsigned int rtype : 4; /* Relocation types. See below. */ 574 unsigned int dist2to : 8; 575 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 576 unsigned long konst; /* KONST field. See below. */ 577 unsigned long vaddr; /* VADDR to be relocated. */ 578 } Elf32_crinfo; 579 580 typedef struct 581 { 582 unsigned int ctype : 1; /* 1: long 0: short format. See below. */ 583 unsigned int rtype : 4; /* Relocation types. See below. */ 584 unsigned int dist2to : 8; 585 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */ 586 unsigned long konst; /* KONST field. See below. */ 587 } Elf32_crinfo2; 588 589 typedef struct 590 { 591 bfd_byte info[4]; 592 bfd_byte konst[4]; 593 bfd_byte vaddr[4]; 594 } Elf32_External_crinfo; 595 596 typedef struct 597 { 598 bfd_byte info[4]; 599 bfd_byte konst[4]; 600 } Elf32_External_crinfo2; 601 602 /* These are the constants used to swap the bitfields in a crinfo. */ 603 604 #define CRINFO_CTYPE (0x1) 605 #define CRINFO_CTYPE_SH (31) 606 #define CRINFO_RTYPE (0xf) 607 #define CRINFO_RTYPE_SH (27) 608 #define CRINFO_DIST2TO (0xff) 609 #define CRINFO_DIST2TO_SH (19) 610 #define CRINFO_RELVADDR (0x7ffff) 611 #define CRINFO_RELVADDR_SH (0) 612 613 /* A compact relocation info has long (3 words) or short (2 words) 614 formats. A short format doesn't have VADDR field and relvaddr 615 fields contains ((VADDR - vaddr of the previous entry) >> 2). */ 616 #define CRF_MIPS_LONG 1 617 #define CRF_MIPS_SHORT 0 618 619 /* There are 4 types of compact relocation at least. The value KONST 620 has different meaning for each type: 621 622 (type) (konst) 623 CT_MIPS_REL32 Address in data 624 CT_MIPS_WORD Address in word (XXX) 625 CT_MIPS_GPHI_LO GP - vaddr 626 CT_MIPS_JMPAD Address to jump 627 */ 628 629 #define CRT_MIPS_REL32 0xa 630 #define CRT_MIPS_WORD 0xb 631 #define CRT_MIPS_GPHI_LO 0xc 632 #define CRT_MIPS_JMPAD 0xd 633 634 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format)) 635 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type)) 636 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v)) 637 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2) 638 639 /* The structure of the runtime procedure descriptor created by the 640 loader for use by the static exception system. */ 641 642 typedef struct runtime_pdr { 643 bfd_vma adr; /* Memory address of start of procedure. */ 644 long regmask; /* Save register mask. */ 645 long regoffset; /* Save register offset. */ 646 long fregmask; /* Save floating point register mask. */ 647 long fregoffset; /* Save floating point register offset. */ 648 long frameoffset; /* Frame size. */ 649 short framereg; /* Frame pointer register. */ 650 short pcreg; /* Offset or reg of return pc. */ 651 long irpss; /* Index into the runtime string table. */ 652 long reserved; 653 struct exception_info *exception_info;/* Pointer to exception array. */ 654 } RPDR, *pRPDR; 655 #define cbRPDR sizeof (RPDR) 656 #define rpdNil ((pRPDR) 0) 657 658 static struct mips_got_entry *mips_elf_create_local_got_entry 659 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long, 660 struct mips_elf_link_hash_entry *, int); 661 static bfd_boolean mips_elf_sort_hash_table_f 662 (struct mips_elf_link_hash_entry *, void *); 663 static bfd_vma mips_elf_high 664 (bfd_vma); 665 static bfd_boolean mips_elf_create_dynamic_relocation 666 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *, 667 struct mips_elf_link_hash_entry *, asection *, bfd_vma, 668 bfd_vma *, asection *); 669 static hashval_t mips_elf_got_entry_hash 670 (const void *); 671 static bfd_vma mips_elf_adjust_gp 672 (bfd *, struct mips_got_info *, bfd *); 673 static struct mips_got_info *mips_elf_got_for_ibfd 674 (struct mips_got_info *, bfd *); 675 676 /* This will be used when we sort the dynamic relocation records. */ 677 static bfd *reldyn_sorting_bfd; 678 679 /* True if ABFD is for CPUs with load interlocking that include 680 non-MIPS1 CPUs and R3900. */ 681 #define LOAD_INTERLOCKS_P(abfd) \ 682 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \ 683 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900)) 684 685 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL. 686 This should be safe for all architectures. We enable this predicate 687 for RM9000 for now. */ 688 #define JAL_TO_BAL_P(abfd) \ 689 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000) 690 691 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL. 692 This should be safe for all architectures. We enable this predicate for 693 all CPUs. */ 694 #define JALR_TO_BAL_P(abfd) 1 695 696 /* True if ABFD is for CPUs that are faster if JR is converted to B. 697 This should be safe for all architectures. We enable this predicate for 698 all CPUs. */ 699 #define JR_TO_B_P(abfd) 1 700 701 /* True if ABFD is a PIC object. */ 702 #define PIC_OBJECT_P(abfd) \ 703 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0) 704 705 /* Nonzero if ABFD is using the N32 ABI. */ 706 #define ABI_N32_P(abfd) \ 707 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0) 708 709 /* Nonzero if ABFD is using the N64 ABI. */ 710 #define ABI_64_P(abfd) \ 711 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64) 712 713 /* Nonzero if ABFD is using NewABI conventions. */ 714 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd)) 715 716 /* The IRIX compatibility level we are striving for. */ 717 #define IRIX_COMPAT(abfd) \ 718 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd)) 719 720 /* Whether we are trying to be compatible with IRIX at all. */ 721 #define SGI_COMPAT(abfd) \ 722 (IRIX_COMPAT (abfd) != ict_none) 723 724 /* The name of the options section. */ 725 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \ 726 (NEWABI_P (abfd) ? ".MIPS.options" : ".options") 727 728 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section. 729 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */ 730 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \ 731 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0) 732 733 /* Whether the section is readonly. */ 734 #define MIPS_ELF_READONLY_SECTION(sec) \ 735 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \ 736 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) 737 738 /* The name of the stub section. */ 739 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs" 740 741 /* The size of an external REL relocation. */ 742 #define MIPS_ELF_REL_SIZE(abfd) \ 743 (get_elf_backend_data (abfd)->s->sizeof_rel) 744 745 /* The size of an external RELA relocation. */ 746 #define MIPS_ELF_RELA_SIZE(abfd) \ 747 (get_elf_backend_data (abfd)->s->sizeof_rela) 748 749 /* The size of an external dynamic table entry. */ 750 #define MIPS_ELF_DYN_SIZE(abfd) \ 751 (get_elf_backend_data (abfd)->s->sizeof_dyn) 752 753 /* The size of a GOT entry. */ 754 #define MIPS_ELF_GOT_SIZE(abfd) \ 755 (get_elf_backend_data (abfd)->s->arch_size / 8) 756 757 /* The size of a symbol-table entry. */ 758 #define MIPS_ELF_SYM_SIZE(abfd) \ 759 (get_elf_backend_data (abfd)->s->sizeof_sym) 760 761 /* The default alignment for sections, as a power of two. */ 762 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \ 763 (get_elf_backend_data (abfd)->s->log_file_align) 764 765 /* Get word-sized data. */ 766 #define MIPS_ELF_GET_WORD(abfd, ptr) \ 767 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr)) 768 769 /* Put out word-sized data. */ 770 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \ 771 (ABI_64_P (abfd) \ 772 ? bfd_put_64 (abfd, val, ptr) \ 773 : bfd_put_32 (abfd, val, ptr)) 774 775 /* The opcode for word-sized loads (LW or LD). */ 776 #define MIPS_ELF_LOAD_WORD(abfd) \ 777 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000) 778 779 /* Add a dynamic symbol table-entry. */ 780 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \ 781 _bfd_elf_add_dynamic_entry (info, tag, val) 782 783 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \ 784 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (rtype, rela)) 785 786 /* The name of the dynamic relocation section. */ 787 #define MIPS_ELF_REL_DYN_NAME(INFO) \ 788 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn") 789 790 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value 791 from smaller values. Start with zero, widen, *then* decrement. */ 792 #define MINUS_ONE (((bfd_vma)0) - 1) 793 #define MINUS_TWO (((bfd_vma)0) - 2) 794 795 /* The value to write into got[1] for SVR4 targets, to identify it is 796 a GNU object. The dynamic linker can then use got[1] to store the 797 module pointer. */ 798 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \ 799 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31)) 800 801 /* The offset of $gp from the beginning of the .got section. */ 802 #define ELF_MIPS_GP_OFFSET(INFO) \ 803 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0) 804 805 /* The maximum size of the GOT for it to be addressable using 16-bit 806 offsets from $gp. */ 807 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff) 808 809 /* Instructions which appear in a stub. */ 810 #define STUB_LW(abfd) \ 811 ((ABI_64_P (abfd) \ 812 ? 0xdf998010 /* ld t9,0x8010(gp) */ \ 813 : 0x8f998010)) /* lw t9,0x8010(gp) */ 814 #define STUB_MOVE(abfd) \ 815 ((ABI_64_P (abfd) \ 816 ? 0x03e0782d /* daddu t7,ra */ \ 817 : 0x03e07821)) /* addu t7,ra */ 818 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */ 819 #define STUB_JALR 0x0320f809 /* jalr t9,ra */ 820 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */ 821 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */ 822 #define STUB_LI16S(abfd, VAL) \ 823 ((ABI_64_P (abfd) \ 824 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \ 825 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */ 826 827 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16 828 #define MIPS_FUNCTION_STUB_BIG_SIZE 20 829 830 /* The name of the dynamic interpreter. This is put in the .interp 831 section. */ 832 833 #define ELF_DYNAMIC_INTERPRETER(abfd) \ 834 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \ 835 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \ 836 : "/usr/lib/libc.so.1") 837 838 #ifdef BFD64 839 #define MNAME(bfd,pre,pos) \ 840 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos)) 841 #define ELF_R_SYM(bfd, i) \ 842 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i)) 843 #define ELF_R_TYPE(bfd, i) \ 844 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i)) 845 #define ELF_R_INFO(bfd, s, t) \ 846 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t)) 847 #else 848 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos) 849 #define ELF_R_SYM(bfd, i) \ 850 (ELF32_R_SYM (i)) 851 #define ELF_R_TYPE(bfd, i) \ 852 (ELF32_R_TYPE (i)) 853 #define ELF_R_INFO(bfd, s, t) \ 854 (ELF32_R_INFO (s, t)) 855 #endif 856 857 /* The mips16 compiler uses a couple of special sections to handle 858 floating point arguments. 859 860 Section names that look like .mips16.fn.FNNAME contain stubs that 861 copy floating point arguments from the fp regs to the gp regs and 862 then jump to FNNAME. If any 32 bit function calls FNNAME, the 863 call should be redirected to the stub instead. If no 32 bit 864 function calls FNNAME, the stub should be discarded. We need to 865 consider any reference to the function, not just a call, because 866 if the address of the function is taken we will need the stub, 867 since the address might be passed to a 32 bit function. 868 869 Section names that look like .mips16.call.FNNAME contain stubs 870 that copy floating point arguments from the gp regs to the fp 871 regs and then jump to FNNAME. If FNNAME is a 32 bit function, 872 then any 16 bit function that calls FNNAME should be redirected 873 to the stub instead. If FNNAME is not a 32 bit function, the 874 stub should be discarded. 875 876 .mips16.call.fp.FNNAME sections are similar, but contain stubs 877 which call FNNAME and then copy the return value from the fp regs 878 to the gp regs. These stubs store the return value in $18 while 879 calling FNNAME; any function which might call one of these stubs 880 must arrange to save $18 around the call. (This case is not 881 needed for 32 bit functions that call 16 bit functions, because 882 16 bit functions always return floating point values in both 883 $f0/$f1 and $2/$3.) 884 885 Note that in all cases FNNAME might be defined statically. 886 Therefore, FNNAME is not used literally. Instead, the relocation 887 information will indicate which symbol the section is for. 888 889 We record any stubs that we find in the symbol table. */ 890 891 #define FN_STUB ".mips16.fn." 892 #define CALL_STUB ".mips16.call." 893 #define CALL_FP_STUB ".mips16.call.fp." 894 895 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB) 896 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB) 897 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB) 898 899 /* The format of the first PLT entry in an O32 executable. */ 900 static const bfd_vma mips_o32_exec_plt0_entry[] = 901 { 902 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */ 903 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */ 904 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */ 905 0x031cc023, /* subu $24, $24, $28 */ 906 0x03e07821, /* move $15, $31 */ 907 0x0018c082, /* srl $24, $24, 2 */ 908 0x0320f809, /* jalr $25 */ 909 0x2718fffe /* subu $24, $24, 2 */ 910 }; 911 912 /* The format of the first PLT entry in an N32 executable. Different 913 because gp ($28) is not available; we use t2 ($14) instead. */ 914 static const bfd_vma mips_n32_exec_plt0_entry[] = 915 { 916 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 917 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */ 918 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 919 0x030ec023, /* subu $24, $24, $14 */ 920 0x03e07821, /* move $15, $31 */ 921 0x0018c082, /* srl $24, $24, 2 */ 922 0x0320f809, /* jalr $25 */ 923 0x2718fffe /* subu $24, $24, 2 */ 924 }; 925 926 /* The format of the first PLT entry in an N64 executable. Different 927 from N32 because of the increased size of GOT entries. */ 928 static const bfd_vma mips_n64_exec_plt0_entry[] = 929 { 930 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */ 931 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */ 932 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */ 933 0x030ec023, /* subu $24, $24, $14 */ 934 0x03e07821, /* move $15, $31 */ 935 0x0018c0c2, /* srl $24, $24, 3 */ 936 0x0320f809, /* jalr $25 */ 937 0x2718fffe /* subu $24, $24, 2 */ 938 }; 939 940 /* The format of subsequent PLT entries. */ 941 static const bfd_vma mips_exec_plt_entry[] = 942 { 943 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */ 944 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */ 945 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */ 946 0x03200008 /* jr $25 */ 947 }; 948 949 /* The format of the first PLT entry in a VxWorks executable. */ 950 static const bfd_vma mips_vxworks_exec_plt0_entry[] = 951 { 952 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */ 953 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */ 954 0x8f390008, /* lw t9, 8(t9) */ 955 0x00000000, /* nop */ 956 0x03200008, /* jr t9 */ 957 0x00000000 /* nop */ 958 }; 959 960 /* The format of subsequent PLT entries. */ 961 static const bfd_vma mips_vxworks_exec_plt_entry[] = 962 { 963 0x10000000, /* b .PLT_resolver */ 964 0x24180000, /* li t8, <pltindex> */ 965 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */ 966 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */ 967 0x8f390000, /* lw t9, 0(t9) */ 968 0x00000000, /* nop */ 969 0x03200008, /* jr t9 */ 970 0x00000000 /* nop */ 971 }; 972 973 /* The format of the first PLT entry in a VxWorks shared object. */ 974 static const bfd_vma mips_vxworks_shared_plt0_entry[] = 975 { 976 0x8f990008, /* lw t9, 8(gp) */ 977 0x00000000, /* nop */ 978 0x03200008, /* jr t9 */ 979 0x00000000, /* nop */ 980 0x00000000, /* nop */ 981 0x00000000 /* nop */ 982 }; 983 984 /* The format of subsequent PLT entries. */ 985 static const bfd_vma mips_vxworks_shared_plt_entry[] = 986 { 987 0x10000000, /* b .PLT_resolver */ 988 0x24180000 /* li t8, <pltindex> */ 989 }; 990 991 /* Look up an entry in a MIPS ELF linker hash table. */ 992 993 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \ 994 ((struct mips_elf_link_hash_entry *) \ 995 elf_link_hash_lookup (&(table)->root, (string), (create), \ 996 (copy), (follow))) 997 998 /* Traverse a MIPS ELF linker hash table. */ 999 1000 #define mips_elf_link_hash_traverse(table, func, info) \ 1001 (elf_link_hash_traverse \ 1002 (&(table)->root, \ 1003 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \ 1004 (info))) 1005 1006 /* Find the base offsets for thread-local storage in this object, 1007 for GD/LD and IE/LE respectively. */ 1008 1009 #define TP_OFFSET 0x7000 1010 #define DTP_OFFSET 0x8000 1011 1012 static bfd_vma 1013 dtprel_base (struct bfd_link_info *info) 1014 { 1015 /* If tls_sec is NULL, we should have signalled an error already. */ 1016 if (elf_hash_table (info)->tls_sec == NULL) 1017 return 0; 1018 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 1019 } 1020 1021 static bfd_vma 1022 tprel_base (struct bfd_link_info *info) 1023 { 1024 /* If tls_sec is NULL, we should have signalled an error already. */ 1025 if (elf_hash_table (info)->tls_sec == NULL) 1026 return 0; 1027 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 1028 } 1029 1030 /* Create an entry in a MIPS ELF linker hash table. */ 1031 1032 static struct bfd_hash_entry * 1033 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 1034 struct bfd_hash_table *table, const char *string) 1035 { 1036 struct mips_elf_link_hash_entry *ret = 1037 (struct mips_elf_link_hash_entry *) entry; 1038 1039 /* Allocate the structure if it has not already been allocated by a 1040 subclass. */ 1041 if (ret == NULL) 1042 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry)); 1043 if (ret == NULL) 1044 return (struct bfd_hash_entry *) ret; 1045 1046 /* Call the allocation method of the superclass. */ 1047 ret = ((struct mips_elf_link_hash_entry *) 1048 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1049 table, string)); 1050 if (ret != NULL) 1051 { 1052 /* Set local fields. */ 1053 memset (&ret->esym, 0, sizeof (EXTR)); 1054 /* We use -2 as a marker to indicate that the information has 1055 not been set. -1 means there is no associated ifd. */ 1056 ret->esym.ifd = -2; 1057 ret->la25_stub = 0; 1058 ret->possibly_dynamic_relocs = 0; 1059 ret->fn_stub = NULL; 1060 ret->call_stub = NULL; 1061 ret->call_fp_stub = NULL; 1062 ret->tls_type = GOT_NORMAL; 1063 ret->global_got_area = GGA_NONE; 1064 ret->got_only_for_calls = TRUE; 1065 ret->readonly_reloc = FALSE; 1066 ret->has_static_relocs = FALSE; 1067 ret->no_fn_stub = FALSE; 1068 ret->need_fn_stub = FALSE; 1069 ret->has_nonpic_branches = FALSE; 1070 ret->needs_lazy_stub = FALSE; 1071 } 1072 1073 return (struct bfd_hash_entry *) ret; 1074 } 1075 1076 bfd_boolean 1077 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec) 1078 { 1079 if (!sec->used_by_bfd) 1080 { 1081 struct _mips_elf_section_data *sdata; 1082 bfd_size_type amt = sizeof (*sdata); 1083 1084 sdata = bfd_zalloc (abfd, amt); 1085 if (sdata == NULL) 1086 return FALSE; 1087 sec->used_by_bfd = sdata; 1088 } 1089 1090 return _bfd_elf_new_section_hook (abfd, sec); 1091 } 1092 1093 /* Read ECOFF debugging information from a .mdebug section into a 1094 ecoff_debug_info structure. */ 1095 1096 bfd_boolean 1097 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section, 1098 struct ecoff_debug_info *debug) 1099 { 1100 HDRR *symhdr; 1101 const struct ecoff_debug_swap *swap; 1102 char *ext_hdr; 1103 1104 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1105 memset (debug, 0, sizeof (*debug)); 1106 1107 ext_hdr = bfd_malloc (swap->external_hdr_size); 1108 if (ext_hdr == NULL && swap->external_hdr_size != 0) 1109 goto error_return; 1110 1111 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0, 1112 swap->external_hdr_size)) 1113 goto error_return; 1114 1115 symhdr = &debug->symbolic_header; 1116 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr); 1117 1118 /* The symbolic header contains absolute file offsets and sizes to 1119 read. */ 1120 #define READ(ptr, offset, count, size, type) \ 1121 if (symhdr->count == 0) \ 1122 debug->ptr = NULL; \ 1123 else \ 1124 { \ 1125 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \ 1126 debug->ptr = bfd_malloc (amt); \ 1127 if (debug->ptr == NULL) \ 1128 goto error_return; \ 1129 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \ 1130 || bfd_bread (debug->ptr, amt, abfd) != amt) \ 1131 goto error_return; \ 1132 } 1133 1134 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *); 1135 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *); 1136 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *); 1137 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *); 1138 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *); 1139 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext), 1140 union aux_ext *); 1141 READ (ss, cbSsOffset, issMax, sizeof (char), char *); 1142 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *); 1143 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *); 1144 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *); 1145 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *); 1146 #undef READ 1147 1148 debug->fdr = NULL; 1149 1150 return TRUE; 1151 1152 error_return: 1153 if (ext_hdr != NULL) 1154 free (ext_hdr); 1155 if (debug->line != NULL) 1156 free (debug->line); 1157 if (debug->external_dnr != NULL) 1158 free (debug->external_dnr); 1159 if (debug->external_pdr != NULL) 1160 free (debug->external_pdr); 1161 if (debug->external_sym != NULL) 1162 free (debug->external_sym); 1163 if (debug->external_opt != NULL) 1164 free (debug->external_opt); 1165 if (debug->external_aux != NULL) 1166 free (debug->external_aux); 1167 if (debug->ss != NULL) 1168 free (debug->ss); 1169 if (debug->ssext != NULL) 1170 free (debug->ssext); 1171 if (debug->external_fdr != NULL) 1172 free (debug->external_fdr); 1173 if (debug->external_rfd != NULL) 1174 free (debug->external_rfd); 1175 if (debug->external_ext != NULL) 1176 free (debug->external_ext); 1177 return FALSE; 1178 } 1179 1180 /* Swap RPDR (runtime procedure table entry) for output. */ 1181 1182 static void 1183 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex) 1184 { 1185 H_PUT_S32 (abfd, in->adr, ex->p_adr); 1186 H_PUT_32 (abfd, in->regmask, ex->p_regmask); 1187 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset); 1188 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask); 1189 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset); 1190 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset); 1191 1192 H_PUT_16 (abfd, in->framereg, ex->p_framereg); 1193 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg); 1194 1195 H_PUT_32 (abfd, in->irpss, ex->p_irpss); 1196 } 1197 1198 /* Create a runtime procedure table from the .mdebug section. */ 1199 1200 static bfd_boolean 1201 mips_elf_create_procedure_table (void *handle, bfd *abfd, 1202 struct bfd_link_info *info, asection *s, 1203 struct ecoff_debug_info *debug) 1204 { 1205 const struct ecoff_debug_swap *swap; 1206 HDRR *hdr = &debug->symbolic_header; 1207 RPDR *rpdr, *rp; 1208 struct rpdr_ext *erp; 1209 void *rtproc; 1210 struct pdr_ext *epdr; 1211 struct sym_ext *esym; 1212 char *ss, **sv; 1213 char *str; 1214 bfd_size_type size; 1215 bfd_size_type count; 1216 unsigned long sindex; 1217 unsigned long i; 1218 PDR pdr; 1219 SYMR sym; 1220 const char *no_name_func = _("static procedure (no name)"); 1221 1222 epdr = NULL; 1223 rpdr = NULL; 1224 esym = NULL; 1225 ss = NULL; 1226 sv = NULL; 1227 1228 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 1229 1230 sindex = strlen (no_name_func) + 1; 1231 count = hdr->ipdMax; 1232 if (count > 0) 1233 { 1234 size = swap->external_pdr_size; 1235 1236 epdr = bfd_malloc (size * count); 1237 if (epdr == NULL) 1238 goto error_return; 1239 1240 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr)) 1241 goto error_return; 1242 1243 size = sizeof (RPDR); 1244 rp = rpdr = bfd_malloc (size * count); 1245 if (rpdr == NULL) 1246 goto error_return; 1247 1248 size = sizeof (char *); 1249 sv = bfd_malloc (size * count); 1250 if (sv == NULL) 1251 goto error_return; 1252 1253 count = hdr->isymMax; 1254 size = swap->external_sym_size; 1255 esym = bfd_malloc (size * count); 1256 if (esym == NULL) 1257 goto error_return; 1258 1259 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym)) 1260 goto error_return; 1261 1262 count = hdr->issMax; 1263 ss = bfd_malloc (count); 1264 if (ss == NULL) 1265 goto error_return; 1266 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss)) 1267 goto error_return; 1268 1269 count = hdr->ipdMax; 1270 for (i = 0; i < (unsigned long) count; i++, rp++) 1271 { 1272 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr); 1273 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym); 1274 rp->adr = sym.value; 1275 rp->regmask = pdr.regmask; 1276 rp->regoffset = pdr.regoffset; 1277 rp->fregmask = pdr.fregmask; 1278 rp->fregoffset = pdr.fregoffset; 1279 rp->frameoffset = pdr.frameoffset; 1280 rp->framereg = pdr.framereg; 1281 rp->pcreg = pdr.pcreg; 1282 rp->irpss = sindex; 1283 sv[i] = ss + sym.iss; 1284 sindex += strlen (sv[i]) + 1; 1285 } 1286 } 1287 1288 size = sizeof (struct rpdr_ext) * (count + 2) + sindex; 1289 size = BFD_ALIGN (size, 16); 1290 rtproc = bfd_alloc (abfd, size); 1291 if (rtproc == NULL) 1292 { 1293 mips_elf_hash_table (info)->procedure_count = 0; 1294 goto error_return; 1295 } 1296 1297 mips_elf_hash_table (info)->procedure_count = count + 2; 1298 1299 erp = rtproc; 1300 memset (erp, 0, sizeof (struct rpdr_ext)); 1301 erp++; 1302 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2); 1303 strcpy (str, no_name_func); 1304 str += strlen (no_name_func) + 1; 1305 for (i = 0; i < count; i++) 1306 { 1307 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i); 1308 strcpy (str, sv[i]); 1309 str += strlen (sv[i]) + 1; 1310 } 1311 H_PUT_S32 (abfd, -1, (erp + count)->p_adr); 1312 1313 /* Set the size and contents of .rtproc section. */ 1314 s->size = size; 1315 s->contents = rtproc; 1316 1317 /* Skip this section later on (I don't think this currently 1318 matters, but someday it might). */ 1319 s->map_head.link_order = NULL; 1320 1321 if (epdr != NULL) 1322 free (epdr); 1323 if (rpdr != NULL) 1324 free (rpdr); 1325 if (esym != NULL) 1326 free (esym); 1327 if (ss != NULL) 1328 free (ss); 1329 if (sv != NULL) 1330 free (sv); 1331 1332 return TRUE; 1333 1334 error_return: 1335 if (epdr != NULL) 1336 free (epdr); 1337 if (rpdr != NULL) 1338 free (rpdr); 1339 if (esym != NULL) 1340 free (esym); 1341 if (ss != NULL) 1342 free (ss); 1343 if (sv != NULL) 1344 free (sv); 1345 return FALSE; 1346 } 1347 1348 /* We're going to create a stub for H. Create a symbol for the stub's 1349 value and size, to help make the disassembly easier to read. */ 1350 1351 static bfd_boolean 1352 mips_elf_create_stub_symbol (struct bfd_link_info *info, 1353 struct mips_elf_link_hash_entry *h, 1354 const char *prefix, asection *s, bfd_vma value, 1355 bfd_vma size) 1356 { 1357 struct bfd_link_hash_entry *bh; 1358 struct elf_link_hash_entry *elfh; 1359 const char *name; 1360 1361 /* Create a new symbol. */ 1362 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1363 bh = NULL; 1364 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1365 BSF_LOCAL, s, value, NULL, 1366 TRUE, FALSE, &bh)) 1367 return FALSE; 1368 1369 /* Make it a local function. */ 1370 elfh = (struct elf_link_hash_entry *) bh; 1371 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 1372 elfh->size = size; 1373 elfh->forced_local = 1; 1374 return TRUE; 1375 } 1376 1377 /* We're about to redefine H. Create a symbol to represent H's 1378 current value and size, to help make the disassembly easier 1379 to read. */ 1380 1381 static bfd_boolean 1382 mips_elf_create_shadow_symbol (struct bfd_link_info *info, 1383 struct mips_elf_link_hash_entry *h, 1384 const char *prefix) 1385 { 1386 struct bfd_link_hash_entry *bh; 1387 struct elf_link_hash_entry *elfh; 1388 const char *name; 1389 asection *s; 1390 bfd_vma value; 1391 1392 /* Read the symbol's value. */ 1393 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined 1394 || h->root.root.type == bfd_link_hash_defweak); 1395 s = h->root.root.u.def.section; 1396 value = h->root.root.u.def.value; 1397 1398 /* Create a new symbol. */ 1399 name = ACONCAT ((prefix, h->root.root.root.string, NULL)); 1400 bh = NULL; 1401 if (!_bfd_generic_link_add_one_symbol (info, s->owner, name, 1402 BSF_LOCAL, s, value, NULL, 1403 TRUE, FALSE, &bh)) 1404 return FALSE; 1405 1406 /* Make it local and copy the other attributes from H. */ 1407 elfh = (struct elf_link_hash_entry *) bh; 1408 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type)); 1409 elfh->other = h->root.other; 1410 elfh->size = h->root.size; 1411 elfh->forced_local = 1; 1412 return TRUE; 1413 } 1414 1415 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16 1416 function rather than to a hard-float stub. */ 1417 1418 static bfd_boolean 1419 section_allows_mips16_refs_p (asection *section) 1420 { 1421 const char *name; 1422 1423 name = bfd_get_section_name (section->owner, section); 1424 return (FN_STUB_P (name) 1425 || CALL_STUB_P (name) 1426 || CALL_FP_STUB_P (name) 1427 || strcmp (name, ".pdr") == 0); 1428 } 1429 1430 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16 1431 stub section of some kind. Return the R_SYMNDX of the target 1432 function, or 0 if we can't decide which function that is. */ 1433 1434 static unsigned long 1435 mips16_stub_symndx (asection *sec ATTRIBUTE_UNUSED, 1436 const Elf_Internal_Rela *relocs, 1437 const Elf_Internal_Rela *relend) 1438 { 1439 const Elf_Internal_Rela *rel; 1440 1441 /* Trust the first R_MIPS_NONE relocation, if any. */ 1442 for (rel = relocs; rel < relend; rel++) 1443 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE) 1444 return ELF_R_SYM (sec->owner, rel->r_info); 1445 1446 /* Otherwise trust the first relocation, whatever its kind. This is 1447 the traditional behavior. */ 1448 if (relocs < relend) 1449 return ELF_R_SYM (sec->owner, relocs->r_info); 1450 1451 return 0; 1452 } 1453 1454 /* Check the mips16 stubs for a particular symbol, and see if we can 1455 discard them. */ 1456 1457 static void 1458 mips_elf_check_mips16_stubs (struct bfd_link_info *info, 1459 struct mips_elf_link_hash_entry *h) 1460 { 1461 /* Dynamic symbols must use the standard call interface, in case other 1462 objects try to call them. */ 1463 if (h->fn_stub != NULL 1464 && h->root.dynindx != -1) 1465 { 1466 mips_elf_create_shadow_symbol (info, h, ".mips16."); 1467 h->need_fn_stub = TRUE; 1468 } 1469 1470 if (h->fn_stub != NULL 1471 && ! h->need_fn_stub) 1472 { 1473 /* We don't need the fn_stub; the only references to this symbol 1474 are 16 bit calls. Clobber the size to 0 to prevent it from 1475 being included in the link. */ 1476 h->fn_stub->size = 0; 1477 h->fn_stub->flags &= ~SEC_RELOC; 1478 h->fn_stub->reloc_count = 0; 1479 h->fn_stub->flags |= SEC_EXCLUDE; 1480 } 1481 1482 if (h->call_stub != NULL 1483 && ELF_ST_IS_MIPS16 (h->root.other)) 1484 { 1485 /* We don't need the call_stub; this is a 16 bit function, so 1486 calls from other 16 bit functions are OK. Clobber the size 1487 to 0 to prevent it from being included in the link. */ 1488 h->call_stub->size = 0; 1489 h->call_stub->flags &= ~SEC_RELOC; 1490 h->call_stub->reloc_count = 0; 1491 h->call_stub->flags |= SEC_EXCLUDE; 1492 } 1493 1494 if (h->call_fp_stub != NULL 1495 && ELF_ST_IS_MIPS16 (h->root.other)) 1496 { 1497 /* We don't need the call_stub; this is a 16 bit function, so 1498 calls from other 16 bit functions are OK. Clobber the size 1499 to 0 to prevent it from being included in the link. */ 1500 h->call_fp_stub->size = 0; 1501 h->call_fp_stub->flags &= ~SEC_RELOC; 1502 h->call_fp_stub->reloc_count = 0; 1503 h->call_fp_stub->flags |= SEC_EXCLUDE; 1504 } 1505 } 1506 1507 /* Hashtable callbacks for mips_elf_la25_stubs. */ 1508 1509 static hashval_t 1510 mips_elf_la25_stub_hash (const void *entry_) 1511 { 1512 const struct mips_elf_la25_stub *entry; 1513 1514 entry = (struct mips_elf_la25_stub *) entry_; 1515 return entry->h->root.root.u.def.section->id 1516 + entry->h->root.root.u.def.value; 1517 } 1518 1519 static int 1520 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_) 1521 { 1522 const struct mips_elf_la25_stub *entry1, *entry2; 1523 1524 entry1 = (struct mips_elf_la25_stub *) entry1_; 1525 entry2 = (struct mips_elf_la25_stub *) entry2_; 1526 return ((entry1->h->root.root.u.def.section 1527 == entry2->h->root.root.u.def.section) 1528 && (entry1->h->root.root.u.def.value 1529 == entry2->h->root.root.u.def.value)); 1530 } 1531 1532 /* Called by the linker to set up the la25 stub-creation code. FN is 1533 the linker's implementation of add_stub_function. Return true on 1534 success. */ 1535 1536 bfd_boolean 1537 _bfd_mips_elf_init_stubs (struct bfd_link_info *info, 1538 asection *(*fn) (const char *, asection *, 1539 asection *)) 1540 { 1541 struct mips_elf_link_hash_table *htab; 1542 1543 htab = mips_elf_hash_table (info); 1544 if (htab == NULL) 1545 return FALSE; 1546 1547 htab->add_stub_section = fn; 1548 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash, 1549 mips_elf_la25_stub_eq, NULL); 1550 if (htab->la25_stubs == NULL) 1551 return FALSE; 1552 1553 return TRUE; 1554 } 1555 1556 /* Return true if H is a locally-defined PIC function, in the sense 1557 that it might need $25 to be valid on entry. Note that MIPS16 1558 functions never need $25 to be valid on entry; they set up $gp 1559 using PC-relative instructions instead. */ 1560 1561 static bfd_boolean 1562 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h) 1563 { 1564 return ((h->root.root.type == bfd_link_hash_defined 1565 || h->root.root.type == bfd_link_hash_defweak) 1566 && h->root.def_regular 1567 && !bfd_is_abs_section (h->root.root.u.def.section) 1568 && !ELF_ST_IS_MIPS16 (h->root.other) 1569 && (PIC_OBJECT_P (h->root.root.u.def.section->owner) 1570 || ELF_ST_IS_MIPS_PIC (h->root.other))); 1571 } 1572 1573 /* STUB describes an la25 stub that we have decided to implement 1574 by inserting an LUI/ADDIU pair before the target function. 1575 Create the section and redirect the function symbol to it. */ 1576 1577 static bfd_boolean 1578 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub, 1579 struct bfd_link_info *info) 1580 { 1581 struct mips_elf_link_hash_table *htab; 1582 char *name; 1583 asection *s, *input_section; 1584 unsigned int align; 1585 1586 htab = mips_elf_hash_table (info); 1587 if (htab == NULL) 1588 return FALSE; 1589 1590 /* Create a unique name for the new section. */ 1591 name = bfd_malloc (11 + sizeof (".text.stub.")); 1592 if (name == NULL) 1593 return FALSE; 1594 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs)); 1595 1596 /* Create the section. */ 1597 input_section = stub->h->root.root.u.def.section; 1598 s = htab->add_stub_section (name, input_section, 1599 input_section->output_section); 1600 if (s == NULL) 1601 return FALSE; 1602 1603 /* Make sure that any padding goes before the stub. */ 1604 align = input_section->alignment_power; 1605 if (!bfd_set_section_alignment (s->owner, s, align)) 1606 return FALSE; 1607 if (align > 3) 1608 s->size = (1 << align) - 8; 1609 1610 /* Create a symbol for the stub. */ 1611 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8); 1612 stub->stub_section = s; 1613 stub->offset = s->size; 1614 1615 /* Allocate room for it. */ 1616 s->size += 8; 1617 return TRUE; 1618 } 1619 1620 /* STUB describes an la25 stub that we have decided to implement 1621 with a separate trampoline. Allocate room for it and redirect 1622 the function symbol to it. */ 1623 1624 static bfd_boolean 1625 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub, 1626 struct bfd_link_info *info) 1627 { 1628 struct mips_elf_link_hash_table *htab; 1629 asection *s; 1630 1631 htab = mips_elf_hash_table (info); 1632 if (htab == NULL) 1633 return FALSE; 1634 1635 /* Create a trampoline section, if we haven't already. */ 1636 s = htab->strampoline; 1637 if (s == NULL) 1638 { 1639 asection *input_section = stub->h->root.root.u.def.section; 1640 s = htab->add_stub_section (".text", NULL, 1641 input_section->output_section); 1642 if (s == NULL || !bfd_set_section_alignment (s->owner, s, 4)) 1643 return FALSE; 1644 htab->strampoline = s; 1645 } 1646 1647 /* Create a symbol for the stub. */ 1648 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16); 1649 stub->stub_section = s; 1650 stub->offset = s->size; 1651 1652 /* Allocate room for it. */ 1653 s->size += 16; 1654 return TRUE; 1655 } 1656 1657 /* H describes a symbol that needs an la25 stub. Make sure that an 1658 appropriate stub exists and point H at it. */ 1659 1660 static bfd_boolean 1661 mips_elf_add_la25_stub (struct bfd_link_info *info, 1662 struct mips_elf_link_hash_entry *h) 1663 { 1664 struct mips_elf_link_hash_table *htab; 1665 struct mips_elf_la25_stub search, *stub; 1666 bfd_boolean use_trampoline_p; 1667 asection *s; 1668 bfd_vma value; 1669 void **slot; 1670 1671 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning 1672 of the section and if we would need no more than 2 nops. */ 1673 s = h->root.root.u.def.section; 1674 value = h->root.root.u.def.value; 1675 use_trampoline_p = (value != 0 || s->alignment_power > 4); 1676 1677 /* Describe the stub we want. */ 1678 search.stub_section = NULL; 1679 search.offset = 0; 1680 search.h = h; 1681 1682 /* See if we've already created an equivalent stub. */ 1683 htab = mips_elf_hash_table (info); 1684 if (htab == NULL) 1685 return FALSE; 1686 1687 slot = htab_find_slot (htab->la25_stubs, &search, INSERT); 1688 if (slot == NULL) 1689 return FALSE; 1690 1691 stub = (struct mips_elf_la25_stub *) *slot; 1692 if (stub != NULL) 1693 { 1694 /* We can reuse the existing stub. */ 1695 h->la25_stub = stub; 1696 return TRUE; 1697 } 1698 1699 /* Create a permanent copy of ENTRY and add it to the hash table. */ 1700 stub = bfd_malloc (sizeof (search)); 1701 if (stub == NULL) 1702 return FALSE; 1703 *stub = search; 1704 *slot = stub; 1705 1706 h->la25_stub = stub; 1707 return (use_trampoline_p 1708 ? mips_elf_add_la25_trampoline (stub, info) 1709 : mips_elf_add_la25_intro (stub, info)); 1710 } 1711 1712 /* A mips_elf_link_hash_traverse callback that is called before sizing 1713 sections. DATA points to a mips_htab_traverse_info structure. */ 1714 1715 static bfd_boolean 1716 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data) 1717 { 1718 struct mips_htab_traverse_info *hti; 1719 1720 hti = (struct mips_htab_traverse_info *) data; 1721 if (h->root.root.type == bfd_link_hash_warning) 1722 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 1723 1724 if (!hti->info->relocatable) 1725 mips_elf_check_mips16_stubs (hti->info, h); 1726 1727 if (mips_elf_local_pic_function_p (h)) 1728 { 1729 /* H is a function that might need $25 to be valid on entry. 1730 If we're creating a non-PIC relocatable object, mark H as 1731 being PIC. If we're creating a non-relocatable object with 1732 non-PIC branches and jumps to H, make sure that H has an la25 1733 stub. */ 1734 if (hti->info->relocatable) 1735 { 1736 if (!PIC_OBJECT_P (hti->output_bfd)) 1737 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other); 1738 } 1739 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h)) 1740 { 1741 hti->error = TRUE; 1742 return FALSE; 1743 } 1744 } 1745 return TRUE; 1746 } 1747 1748 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions. 1749 Most mips16 instructions are 16 bits, but these instructions 1750 are 32 bits. 1751 1752 The format of these instructions is: 1753 1754 +--------------+--------------------------------+ 1755 | JALX | X| Imm 20:16 | Imm 25:21 | 1756 +--------------+--------------------------------+ 1757 | Immediate 15:0 | 1758 +-----------------------------------------------+ 1759 1760 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx. 1761 Note that the immediate value in the first word is swapped. 1762 1763 When producing a relocatable object file, R_MIPS16_26 is 1764 handled mostly like R_MIPS_26. In particular, the addend is 1765 stored as a straight 26-bit value in a 32-bit instruction. 1766 (gas makes life simpler for itself by never adjusting a 1767 R_MIPS16_26 reloc to be against a section, so the addend is 1768 always zero). However, the 32 bit instruction is stored as 2 1769 16-bit values, rather than a single 32-bit value. In a 1770 big-endian file, the result is the same; in a little-endian 1771 file, the two 16-bit halves of the 32 bit value are swapped. 1772 This is so that a disassembler can recognize the jal 1773 instruction. 1774 1775 When doing a final link, R_MIPS16_26 is treated as a 32 bit 1776 instruction stored as two 16-bit values. The addend A is the 1777 contents of the targ26 field. The calculation is the same as 1778 R_MIPS_26. When storing the calculated value, reorder the 1779 immediate value as shown above, and don't forget to store the 1780 value as two 16-bit values. 1781 1782 To put it in MIPS ABI terms, the relocation field is T-targ26-16, 1783 defined as 1784 1785 big-endian: 1786 +--------+----------------------+ 1787 | | | 1788 | | targ26-16 | 1789 |31 26|25 0| 1790 +--------+----------------------+ 1791 1792 little-endian: 1793 +----------+------+-------------+ 1794 | | | | 1795 | sub1 | | sub2 | 1796 |0 9|10 15|16 31| 1797 +----------+--------------------+ 1798 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is 1799 ((sub1 << 16) | sub2)). 1800 1801 When producing a relocatable object file, the calculation is 1802 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 1803 When producing a fully linked file, the calculation is 1804 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2) 1805 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff) 1806 1807 The table below lists the other MIPS16 instruction relocations. 1808 Each one is calculated in the same way as the non-MIPS16 relocation 1809 given on the right, but using the extended MIPS16 layout of 16-bit 1810 immediate fields: 1811 1812 R_MIPS16_GPREL R_MIPS_GPREL16 1813 R_MIPS16_GOT16 R_MIPS_GOT16 1814 R_MIPS16_CALL16 R_MIPS_CALL16 1815 R_MIPS16_HI16 R_MIPS_HI16 1816 R_MIPS16_LO16 R_MIPS_LO16 1817 1818 A typical instruction will have a format like this: 1819 1820 +--------------+--------------------------------+ 1821 | EXTEND | Imm 10:5 | Imm 15:11 | 1822 +--------------+--------------------------------+ 1823 | Major | rx | ry | Imm 4:0 | 1824 +--------------+--------------------------------+ 1825 1826 EXTEND is the five bit value 11110. Major is the instruction 1827 opcode. 1828 1829 All we need to do here is shuffle the bits appropriately. 1830 As above, the two 16-bit halves must be swapped on a 1831 little-endian system. */ 1832 1833 static inline bfd_boolean 1834 mips16_reloc_p (int r_type) 1835 { 1836 switch (r_type) 1837 { 1838 case R_MIPS16_26: 1839 case R_MIPS16_GPREL: 1840 case R_MIPS16_GOT16: 1841 case R_MIPS16_CALL16: 1842 case R_MIPS16_HI16: 1843 case R_MIPS16_LO16: 1844 return TRUE; 1845 1846 default: 1847 return FALSE; 1848 } 1849 } 1850 1851 static inline bfd_boolean 1852 got16_reloc_p (int r_type) 1853 { 1854 return r_type == R_MIPS_GOT16 || r_type == R_MIPS16_GOT16; 1855 } 1856 1857 static inline bfd_boolean 1858 call16_reloc_p (int r_type) 1859 { 1860 return r_type == R_MIPS_CALL16 || r_type == R_MIPS16_CALL16; 1861 } 1862 1863 static inline bfd_boolean 1864 hi16_reloc_p (int r_type) 1865 { 1866 return r_type == R_MIPS_HI16 || r_type == R_MIPS16_HI16; 1867 } 1868 1869 static inline bfd_boolean 1870 lo16_reloc_p (int r_type) 1871 { 1872 return r_type == R_MIPS_LO16 || r_type == R_MIPS16_LO16; 1873 } 1874 1875 static inline bfd_boolean 1876 mips16_call_reloc_p (int r_type) 1877 { 1878 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16; 1879 } 1880 1881 static inline bfd_boolean 1882 jal_reloc_p (int r_type) 1883 { 1884 return r_type == R_MIPS_26 || r_type == R_MIPS16_26; 1885 } 1886 1887 void 1888 _bfd_mips16_elf_reloc_unshuffle (bfd *abfd, int r_type, 1889 bfd_boolean jal_shuffle, bfd_byte *data) 1890 { 1891 bfd_vma extend, insn, val; 1892 1893 if (!mips16_reloc_p (r_type)) 1894 return; 1895 1896 /* Pick up the mips16 extend instruction and the real instruction. */ 1897 extend = bfd_get_16 (abfd, data); 1898 insn = bfd_get_16 (abfd, data + 2); 1899 if (r_type == R_MIPS16_26) 1900 { 1901 if (jal_shuffle) 1902 val = ((extend & 0xfc00) << 16) | ((extend & 0x3e0) << 11) 1903 | ((extend & 0x1f) << 21) | insn; 1904 else 1905 val = extend << 16 | insn; 1906 } 1907 else 1908 val = ((extend & 0xf800) << 16) | ((insn & 0xffe0) << 11) 1909 | ((extend & 0x1f) << 11) | (extend & 0x7e0) | (insn & 0x1f); 1910 bfd_put_32 (abfd, val, data); 1911 } 1912 1913 void 1914 _bfd_mips16_elf_reloc_shuffle (bfd *abfd, int r_type, 1915 bfd_boolean jal_shuffle, bfd_byte *data) 1916 { 1917 bfd_vma extend, insn, val; 1918 1919 if (!mips16_reloc_p (r_type)) 1920 return; 1921 1922 val = bfd_get_32 (abfd, data); 1923 if (r_type == R_MIPS16_26) 1924 { 1925 if (jal_shuffle) 1926 { 1927 insn = val & 0xffff; 1928 extend = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0) 1929 | ((val >> 21) & 0x1f); 1930 } 1931 else 1932 { 1933 insn = val & 0xffff; 1934 extend = val >> 16; 1935 } 1936 } 1937 else 1938 { 1939 insn = ((val >> 11) & 0xffe0) | (val & 0x1f); 1940 extend = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0); 1941 } 1942 bfd_put_16 (abfd, insn, data + 2); 1943 bfd_put_16 (abfd, extend, data); 1944 } 1945 1946 bfd_reloc_status_type 1947 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol, 1948 arelent *reloc_entry, asection *input_section, 1949 bfd_boolean relocatable, void *data, bfd_vma gp) 1950 { 1951 bfd_vma relocation; 1952 bfd_signed_vma val; 1953 bfd_reloc_status_type status; 1954 1955 if (bfd_is_com_section (symbol->section)) 1956 relocation = 0; 1957 else 1958 relocation = symbol->value; 1959 1960 relocation += symbol->section->output_section->vma; 1961 relocation += symbol->section->output_offset; 1962 1963 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1964 return bfd_reloc_outofrange; 1965 1966 /* Set val to the offset into the section or symbol. */ 1967 val = reloc_entry->addend; 1968 1969 _bfd_mips_elf_sign_extend (val, 16); 1970 1971 /* Adjust val for the final section location and GP value. If we 1972 are producing relocatable output, we don't want to do this for 1973 an external symbol. */ 1974 if (! relocatable 1975 || (symbol->flags & BSF_SECTION_SYM) != 0) 1976 val += relocation - gp; 1977 1978 if (reloc_entry->howto->partial_inplace) 1979 { 1980 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 1981 (bfd_byte *) data 1982 + reloc_entry->address); 1983 if (status != bfd_reloc_ok) 1984 return status; 1985 } 1986 else 1987 reloc_entry->addend = val; 1988 1989 if (relocatable) 1990 reloc_entry->address += input_section->output_offset; 1991 1992 return bfd_reloc_ok; 1993 } 1994 1995 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or 1996 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section 1997 that contains the relocation field and DATA points to the start of 1998 INPUT_SECTION. */ 1999 2000 struct mips_hi16 2001 { 2002 struct mips_hi16 *next; 2003 bfd_byte *data; 2004 asection *input_section; 2005 arelent rel; 2006 }; 2007 2008 /* FIXME: This should not be a static variable. */ 2009 2010 static struct mips_hi16 *mips_hi16_list; 2011 2012 /* A howto special_function for REL *HI16 relocations. We can only 2013 calculate the correct value once we've seen the partnering 2014 *LO16 relocation, so just save the information for later. 2015 2016 The ABI requires that the *LO16 immediately follow the *HI16. 2017 However, as a GNU extension, we permit an arbitrary number of 2018 *HI16s to be associated with a single *LO16. This significantly 2019 simplies the relocation handling in gcc. */ 2020 2021 bfd_reloc_status_type 2022 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2023 asymbol *symbol ATTRIBUTE_UNUSED, void *data, 2024 asection *input_section, bfd *output_bfd, 2025 char **error_message ATTRIBUTE_UNUSED) 2026 { 2027 struct mips_hi16 *n; 2028 2029 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2030 return bfd_reloc_outofrange; 2031 2032 n = bfd_malloc (sizeof *n); 2033 if (n == NULL) 2034 return bfd_reloc_outofrange; 2035 2036 n->next = mips_hi16_list; 2037 n->data = data; 2038 n->input_section = input_section; 2039 n->rel = *reloc_entry; 2040 mips_hi16_list = n; 2041 2042 if (output_bfd != NULL) 2043 reloc_entry->address += input_section->output_offset; 2044 2045 return bfd_reloc_ok; 2046 } 2047 2048 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just 2049 like any other 16-bit relocation when applied to global symbols, but is 2050 treated in the same as R_MIPS_HI16 when applied to local symbols. */ 2051 2052 bfd_reloc_status_type 2053 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2054 void *data, asection *input_section, 2055 bfd *output_bfd, char **error_message) 2056 { 2057 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0 2058 || bfd_is_und_section (bfd_get_section (symbol)) 2059 || bfd_is_com_section (bfd_get_section (symbol))) 2060 /* The relocation is against a global symbol. */ 2061 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2062 input_section, output_bfd, 2063 error_message); 2064 2065 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data, 2066 input_section, output_bfd, error_message); 2067 } 2068 2069 /* A howto special_function for REL *LO16 relocations. The *LO16 itself 2070 is a straightforward 16 bit inplace relocation, but we must deal with 2071 any partnering high-part relocations as well. */ 2072 2073 bfd_reloc_status_type 2074 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol, 2075 void *data, asection *input_section, 2076 bfd *output_bfd, char **error_message) 2077 { 2078 bfd_vma vallo; 2079 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2080 2081 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2082 return bfd_reloc_outofrange; 2083 2084 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2085 location); 2086 vallo = bfd_get_32 (abfd, location); 2087 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2088 location); 2089 2090 while (mips_hi16_list != NULL) 2091 { 2092 bfd_reloc_status_type ret; 2093 struct mips_hi16 *hi; 2094 2095 hi = mips_hi16_list; 2096 2097 /* R_MIPS*_GOT16 relocations are something of a special case. We 2098 want to install the addend in the same way as for a R_MIPS*_HI16 2099 relocation (with a rightshift of 16). However, since GOT16 2100 relocations can also be used with global symbols, their howto 2101 has a rightshift of 0. */ 2102 if (hi->rel.howto->type == R_MIPS_GOT16) 2103 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE); 2104 else if (hi->rel.howto->type == R_MIPS16_GOT16) 2105 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE); 2106 2107 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any 2108 carry or borrow will induce a change of +1 or -1 in the high part. */ 2109 hi->rel.addend += (vallo + 0x8000) & 0xffff; 2110 2111 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data, 2112 hi->input_section, output_bfd, 2113 error_message); 2114 if (ret != bfd_reloc_ok) 2115 return ret; 2116 2117 mips_hi16_list = hi->next; 2118 free (hi); 2119 } 2120 2121 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data, 2122 input_section, output_bfd, 2123 error_message); 2124 } 2125 2126 /* A generic howto special_function. This calculates and installs the 2127 relocation itself, thus avoiding the oft-discussed problems in 2128 bfd_perform_relocation and bfd_install_relocation. */ 2129 2130 bfd_reloc_status_type 2131 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry, 2132 asymbol *symbol, void *data ATTRIBUTE_UNUSED, 2133 asection *input_section, bfd *output_bfd, 2134 char **error_message ATTRIBUTE_UNUSED) 2135 { 2136 bfd_signed_vma val; 2137 bfd_reloc_status_type status; 2138 bfd_boolean relocatable; 2139 2140 relocatable = (output_bfd != NULL); 2141 2142 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 2143 return bfd_reloc_outofrange; 2144 2145 /* Build up the field adjustment in VAL. */ 2146 val = 0; 2147 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0) 2148 { 2149 /* Either we're calculating the final field value or we have a 2150 relocation against a section symbol. Add in the section's 2151 offset or address. */ 2152 val += symbol->section->output_section->vma; 2153 val += symbol->section->output_offset; 2154 } 2155 2156 if (!relocatable) 2157 { 2158 /* We're calculating the final field value. Add in the symbol's value 2159 and, if pc-relative, subtract the address of the field itself. */ 2160 val += symbol->value; 2161 if (reloc_entry->howto->pc_relative) 2162 { 2163 val -= input_section->output_section->vma; 2164 val -= input_section->output_offset; 2165 val -= reloc_entry->address; 2166 } 2167 } 2168 2169 /* VAL is now the final adjustment. If we're keeping this relocation 2170 in the output file, and if the relocation uses a separate addend, 2171 we just need to add VAL to that addend. Otherwise we need to add 2172 VAL to the relocation field itself. */ 2173 if (relocatable && !reloc_entry->howto->partial_inplace) 2174 reloc_entry->addend += val; 2175 else 2176 { 2177 bfd_byte *location = (bfd_byte *) data + reloc_entry->address; 2178 2179 /* Add in the separate addend, if any. */ 2180 val += reloc_entry->addend; 2181 2182 /* Add VAL to the relocation field. */ 2183 _bfd_mips16_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE, 2184 location); 2185 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val, 2186 location); 2187 _bfd_mips16_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE, 2188 location); 2189 2190 if (status != bfd_reloc_ok) 2191 return status; 2192 } 2193 2194 if (relocatable) 2195 reloc_entry->address += input_section->output_offset; 2196 2197 return bfd_reloc_ok; 2198 } 2199 2200 /* Swap an entry in a .gptab section. Note that these routines rely 2201 on the equivalence of the two elements of the union. */ 2202 2203 static void 2204 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex, 2205 Elf32_gptab *in) 2206 { 2207 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value); 2208 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes); 2209 } 2210 2211 static void 2212 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in, 2213 Elf32_External_gptab *ex) 2214 { 2215 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value); 2216 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes); 2217 } 2218 2219 static void 2220 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in, 2221 Elf32_External_compact_rel *ex) 2222 { 2223 H_PUT_32 (abfd, in->id1, ex->id1); 2224 H_PUT_32 (abfd, in->num, ex->num); 2225 H_PUT_32 (abfd, in->id2, ex->id2); 2226 H_PUT_32 (abfd, in->offset, ex->offset); 2227 H_PUT_32 (abfd, in->reserved0, ex->reserved0); 2228 H_PUT_32 (abfd, in->reserved1, ex->reserved1); 2229 } 2230 2231 static void 2232 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in, 2233 Elf32_External_crinfo *ex) 2234 { 2235 unsigned long l; 2236 2237 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH) 2238 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH) 2239 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH) 2240 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH)); 2241 H_PUT_32 (abfd, l, ex->info); 2242 H_PUT_32 (abfd, in->konst, ex->konst); 2243 H_PUT_32 (abfd, in->vaddr, ex->vaddr); 2244 } 2245 2246 /* A .reginfo section holds a single Elf32_RegInfo structure. These 2247 routines swap this structure in and out. They are used outside of 2248 BFD, so they are globally visible. */ 2249 2250 void 2251 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex, 2252 Elf32_RegInfo *in) 2253 { 2254 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2255 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2256 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2257 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2258 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2259 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value); 2260 } 2261 2262 void 2263 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in, 2264 Elf32_External_RegInfo *ex) 2265 { 2266 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2267 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2268 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2269 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2270 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2271 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value); 2272 } 2273 2274 /* In the 64 bit ABI, the .MIPS.options section holds register 2275 information in an Elf64_Reginfo structure. These routines swap 2276 them in and out. They are globally visible because they are used 2277 outside of BFD. These routines are here so that gas can call them 2278 without worrying about whether the 64 bit ABI has been included. */ 2279 2280 void 2281 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex, 2282 Elf64_Internal_RegInfo *in) 2283 { 2284 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask); 2285 in->ri_pad = H_GET_32 (abfd, ex->ri_pad); 2286 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]); 2287 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]); 2288 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]); 2289 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]); 2290 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value); 2291 } 2292 2293 void 2294 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in, 2295 Elf64_External_RegInfo *ex) 2296 { 2297 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask); 2298 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad); 2299 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]); 2300 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]); 2301 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]); 2302 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]); 2303 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value); 2304 } 2305 2306 /* Swap in an options header. */ 2307 2308 void 2309 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex, 2310 Elf_Internal_Options *in) 2311 { 2312 in->kind = H_GET_8 (abfd, ex->kind); 2313 in->size = H_GET_8 (abfd, ex->size); 2314 in->section = H_GET_16 (abfd, ex->section); 2315 in->info = H_GET_32 (abfd, ex->info); 2316 } 2317 2318 /* Swap out an options header. */ 2319 2320 void 2321 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in, 2322 Elf_External_Options *ex) 2323 { 2324 H_PUT_8 (abfd, in->kind, ex->kind); 2325 H_PUT_8 (abfd, in->size, ex->size); 2326 H_PUT_16 (abfd, in->section, ex->section); 2327 H_PUT_32 (abfd, in->info, ex->info); 2328 } 2329 2330 /* This function is called via qsort() to sort the dynamic relocation 2331 entries by increasing r_symndx value. */ 2332 2333 static int 2334 sort_dynamic_relocs (const void *arg1, const void *arg2) 2335 { 2336 Elf_Internal_Rela int_reloc1; 2337 Elf_Internal_Rela int_reloc2; 2338 int diff; 2339 2340 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1); 2341 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2); 2342 2343 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info); 2344 if (diff != 0) 2345 return diff; 2346 2347 if (int_reloc1.r_offset < int_reloc2.r_offset) 2348 return -1; 2349 if (int_reloc1.r_offset > int_reloc2.r_offset) 2350 return 1; 2351 return 0; 2352 } 2353 2354 /* Like sort_dynamic_relocs, but used for elf64 relocations. */ 2355 2356 static int 2357 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED, 2358 const void *arg2 ATTRIBUTE_UNUSED) 2359 { 2360 #ifdef BFD64 2361 Elf_Internal_Rela int_reloc1[3]; 2362 Elf_Internal_Rela int_reloc2[3]; 2363 2364 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2365 (reldyn_sorting_bfd, arg1, int_reloc1); 2366 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in) 2367 (reldyn_sorting_bfd, arg2, int_reloc2); 2368 2369 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info)) 2370 return -1; 2371 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info)) 2372 return 1; 2373 2374 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset) 2375 return -1; 2376 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset) 2377 return 1; 2378 return 0; 2379 #else 2380 abort (); 2381 #endif 2382 } 2383 2384 2385 /* This routine is used to write out ECOFF debugging external symbol 2386 information. It is called via mips_elf_link_hash_traverse. The 2387 ECOFF external symbol information must match the ELF external 2388 symbol information. Unfortunately, at this point we don't know 2389 whether a symbol is required by reloc information, so the two 2390 tables may wind up being different. We must sort out the external 2391 symbol information before we can set the final size of the .mdebug 2392 section, and we must set the size of the .mdebug section before we 2393 can relocate any sections, and we can't know which symbols are 2394 required by relocation until we relocate the sections. 2395 Fortunately, it is relatively unlikely that any symbol will be 2396 stripped but required by a reloc. In particular, it can not happen 2397 when generating a final executable. */ 2398 2399 static bfd_boolean 2400 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data) 2401 { 2402 struct extsym_info *einfo = data; 2403 bfd_boolean strip; 2404 asection *sec, *output_section; 2405 2406 if (h->root.root.type == bfd_link_hash_warning) 2407 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 2408 2409 if (h->root.indx == -2) 2410 strip = FALSE; 2411 else if ((h->root.def_dynamic 2412 || h->root.ref_dynamic 2413 || h->root.type == bfd_link_hash_new) 2414 && !h->root.def_regular 2415 && !h->root.ref_regular) 2416 strip = TRUE; 2417 else if (einfo->info->strip == strip_all 2418 || (einfo->info->strip == strip_some 2419 && bfd_hash_lookup (einfo->info->keep_hash, 2420 h->root.root.root.string, 2421 FALSE, FALSE) == NULL)) 2422 strip = TRUE; 2423 else 2424 strip = FALSE; 2425 2426 if (strip) 2427 return TRUE; 2428 2429 if (h->esym.ifd == -2) 2430 { 2431 h->esym.jmptbl = 0; 2432 h->esym.cobol_main = 0; 2433 h->esym.weakext = 0; 2434 h->esym.reserved = 0; 2435 h->esym.ifd = ifdNil; 2436 h->esym.asym.value = 0; 2437 h->esym.asym.st = stGlobal; 2438 2439 if (h->root.root.type == bfd_link_hash_undefined 2440 || h->root.root.type == bfd_link_hash_undefweak) 2441 { 2442 const char *name; 2443 2444 /* Use undefined class. Also, set class and type for some 2445 special symbols. */ 2446 name = h->root.root.root.string; 2447 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 2448 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 2449 { 2450 h->esym.asym.sc = scData; 2451 h->esym.asym.st = stLabel; 2452 h->esym.asym.value = 0; 2453 } 2454 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 2455 { 2456 h->esym.asym.sc = scAbs; 2457 h->esym.asym.st = stLabel; 2458 h->esym.asym.value = 2459 mips_elf_hash_table (einfo->info)->procedure_count; 2460 } 2461 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (einfo->abfd)) 2462 { 2463 h->esym.asym.sc = scAbs; 2464 h->esym.asym.st = stLabel; 2465 h->esym.asym.value = elf_gp (einfo->abfd); 2466 } 2467 else 2468 h->esym.asym.sc = scUndefined; 2469 } 2470 else if (h->root.root.type != bfd_link_hash_defined 2471 && h->root.root.type != bfd_link_hash_defweak) 2472 h->esym.asym.sc = scAbs; 2473 else 2474 { 2475 const char *name; 2476 2477 sec = h->root.root.u.def.section; 2478 output_section = sec->output_section; 2479 2480 /* When making a shared library and symbol h is the one from 2481 the another shared library, OUTPUT_SECTION may be null. */ 2482 if (output_section == NULL) 2483 h->esym.asym.sc = scUndefined; 2484 else 2485 { 2486 name = bfd_section_name (output_section->owner, output_section); 2487 2488 if (strcmp (name, ".text") == 0) 2489 h->esym.asym.sc = scText; 2490 else if (strcmp (name, ".data") == 0) 2491 h->esym.asym.sc = scData; 2492 else if (strcmp (name, ".sdata") == 0) 2493 h->esym.asym.sc = scSData; 2494 else if (strcmp (name, ".rodata") == 0 2495 || strcmp (name, ".rdata") == 0) 2496 h->esym.asym.sc = scRData; 2497 else if (strcmp (name, ".bss") == 0) 2498 h->esym.asym.sc = scBss; 2499 else if (strcmp (name, ".sbss") == 0) 2500 h->esym.asym.sc = scSBss; 2501 else if (strcmp (name, ".init") == 0) 2502 h->esym.asym.sc = scInit; 2503 else if (strcmp (name, ".fini") == 0) 2504 h->esym.asym.sc = scFini; 2505 else 2506 h->esym.asym.sc = scAbs; 2507 } 2508 } 2509 2510 h->esym.asym.reserved = 0; 2511 h->esym.asym.index = indexNil; 2512 } 2513 2514 if (h->root.root.type == bfd_link_hash_common) 2515 h->esym.asym.value = h->root.root.u.c.size; 2516 else if (h->root.root.type == bfd_link_hash_defined 2517 || h->root.root.type == bfd_link_hash_defweak) 2518 { 2519 if (h->esym.asym.sc == scCommon) 2520 h->esym.asym.sc = scBss; 2521 else if (h->esym.asym.sc == scSCommon) 2522 h->esym.asym.sc = scSBss; 2523 2524 sec = h->root.root.u.def.section; 2525 output_section = sec->output_section; 2526 if (output_section != NULL) 2527 h->esym.asym.value = (h->root.root.u.def.value 2528 + sec->output_offset 2529 + output_section->vma); 2530 else 2531 h->esym.asym.value = 0; 2532 } 2533 else 2534 { 2535 struct mips_elf_link_hash_entry *hd = h; 2536 2537 while (hd->root.root.type == bfd_link_hash_indirect) 2538 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link; 2539 2540 if (hd->needs_lazy_stub) 2541 { 2542 /* Set type and value for a symbol with a function stub. */ 2543 h->esym.asym.st = stProc; 2544 sec = hd->root.root.u.def.section; 2545 if (sec == NULL) 2546 h->esym.asym.value = 0; 2547 else 2548 { 2549 output_section = sec->output_section; 2550 if (output_section != NULL) 2551 h->esym.asym.value = (hd->root.plt.offset 2552 + sec->output_offset 2553 + output_section->vma); 2554 else 2555 h->esym.asym.value = 0; 2556 } 2557 } 2558 } 2559 2560 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap, 2561 h->root.root.root.string, 2562 &h->esym)) 2563 { 2564 einfo->failed = TRUE; 2565 return FALSE; 2566 } 2567 2568 return TRUE; 2569 } 2570 2571 /* A comparison routine used to sort .gptab entries. */ 2572 2573 static int 2574 gptab_compare (const void *p1, const void *p2) 2575 { 2576 const Elf32_gptab *a1 = p1; 2577 const Elf32_gptab *a2 = p2; 2578 2579 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value; 2580 } 2581 2582 /* Functions to manage the got entry hash table. */ 2583 2584 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit 2585 hash number. */ 2586 2587 static INLINE hashval_t 2588 mips_elf_hash_bfd_vma (bfd_vma addr) 2589 { 2590 #ifdef BFD64 2591 return addr + (addr >> 32); 2592 #else 2593 return addr; 2594 #endif 2595 } 2596 2597 /* got_entries only match if they're identical, except for gotidx, so 2598 use all fields to compute the hash, and compare the appropriate 2599 union members. */ 2600 2601 static hashval_t 2602 mips_elf_got_entry_hash (const void *entry_) 2603 { 2604 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 2605 2606 return entry->symndx 2607 + ((entry->tls_type & GOT_TLS_LDM) << 17) 2608 + (! entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address) 2609 : entry->abfd->id 2610 + (entry->symndx >= 0 ? mips_elf_hash_bfd_vma (entry->d.addend) 2611 : entry->d.h->root.root.root.hash)); 2612 } 2613 2614 static int 2615 mips_elf_got_entry_eq (const void *entry1, const void *entry2) 2616 { 2617 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 2618 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 2619 2620 /* An LDM entry can only match another LDM entry. */ 2621 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) 2622 return 0; 2623 2624 return e1->abfd == e2->abfd && e1->symndx == e2->symndx 2625 && (! e1->abfd ? e1->d.address == e2->d.address 2626 : e1->symndx >= 0 ? e1->d.addend == e2->d.addend 2627 : e1->d.h == e2->d.h); 2628 } 2629 2630 /* multi_got_entries are still a match in the case of global objects, 2631 even if the input bfd in which they're referenced differs, so the 2632 hash computation and compare functions are adjusted 2633 accordingly. */ 2634 2635 static hashval_t 2636 mips_elf_multi_got_entry_hash (const void *entry_) 2637 { 2638 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_; 2639 2640 return entry->symndx 2641 + (! entry->abfd 2642 ? mips_elf_hash_bfd_vma (entry->d.address) 2643 : entry->symndx >= 0 2644 ? ((entry->tls_type & GOT_TLS_LDM) 2645 ? (GOT_TLS_LDM << 17) 2646 : (entry->abfd->id 2647 + mips_elf_hash_bfd_vma (entry->d.addend))) 2648 : entry->d.h->root.root.root.hash); 2649 } 2650 2651 static int 2652 mips_elf_multi_got_entry_eq (const void *entry1, const void *entry2) 2653 { 2654 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1; 2655 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2; 2656 2657 /* Any two LDM entries match. */ 2658 if (e1->tls_type & e2->tls_type & GOT_TLS_LDM) 2659 return 1; 2660 2661 /* Nothing else matches an LDM entry. */ 2662 if ((e1->tls_type ^ e2->tls_type) & GOT_TLS_LDM) 2663 return 0; 2664 2665 return e1->symndx == e2->symndx 2666 && (e1->symndx >= 0 ? e1->abfd == e2->abfd && e1->d.addend == e2->d.addend 2667 : e1->abfd == NULL || e2->abfd == NULL 2668 ? e1->abfd == e2->abfd && e1->d.address == e2->d.address 2669 : e1->d.h == e2->d.h); 2670 } 2671 2672 static hashval_t 2673 mips_got_page_entry_hash (const void *entry_) 2674 { 2675 const struct mips_got_page_entry *entry; 2676 2677 entry = (const struct mips_got_page_entry *) entry_; 2678 return entry->abfd->id + entry->symndx; 2679 } 2680 2681 static int 2682 mips_got_page_entry_eq (const void *entry1_, const void *entry2_) 2683 { 2684 const struct mips_got_page_entry *entry1, *entry2; 2685 2686 entry1 = (const struct mips_got_page_entry *) entry1_; 2687 entry2 = (const struct mips_got_page_entry *) entry2_; 2688 return entry1->abfd == entry2->abfd && entry1->symndx == entry2->symndx; 2689 } 2690 2691 /* Return the dynamic relocation section. If it doesn't exist, try to 2692 create a new it if CREATE_P, otherwise return NULL. Also return NULL 2693 if creation fails. */ 2694 2695 static asection * 2696 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p) 2697 { 2698 const char *dname; 2699 asection *sreloc; 2700 bfd *dynobj; 2701 2702 dname = MIPS_ELF_REL_DYN_NAME (info); 2703 dynobj = elf_hash_table (info)->dynobj; 2704 sreloc = bfd_get_section_by_name (dynobj, dname); 2705 if (sreloc == NULL && create_p) 2706 { 2707 sreloc = bfd_make_section_with_flags (dynobj, dname, 2708 (SEC_ALLOC 2709 | SEC_LOAD 2710 | SEC_HAS_CONTENTS 2711 | SEC_IN_MEMORY 2712 | SEC_LINKER_CREATED 2713 | SEC_READONLY)); 2714 if (sreloc == NULL 2715 || ! bfd_set_section_alignment (dynobj, sreloc, 2716 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 2717 return NULL; 2718 } 2719 return sreloc; 2720 } 2721 2722 /* Count the number of relocations needed for a TLS GOT entry, with 2723 access types from TLS_TYPE, and symbol H (or a local symbol if H 2724 is NULL). */ 2725 2726 static int 2727 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type, 2728 struct elf_link_hash_entry *h) 2729 { 2730 int indx = 0; 2731 int ret = 0; 2732 bfd_boolean need_relocs = FALSE; 2733 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 2734 2735 if (h && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 2736 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, h))) 2737 indx = h->dynindx; 2738 2739 if ((info->shared || indx != 0) 2740 && (h == NULL 2741 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 2742 || h->root.type != bfd_link_hash_undefweak)) 2743 need_relocs = TRUE; 2744 2745 if (!need_relocs) 2746 return FALSE; 2747 2748 if (tls_type & GOT_TLS_GD) 2749 { 2750 ret++; 2751 if (indx != 0) 2752 ret++; 2753 } 2754 2755 if (tls_type & GOT_TLS_IE) 2756 ret++; 2757 2758 if ((tls_type & GOT_TLS_LDM) && info->shared) 2759 ret++; 2760 2761 return ret; 2762 } 2763 2764 /* Count the number of TLS relocations required for the GOT entry in 2765 ARG1, if it describes a local symbol. */ 2766 2767 static int 2768 mips_elf_count_local_tls_relocs (void **arg1, void *arg2) 2769 { 2770 struct mips_got_entry *entry = * (struct mips_got_entry **) arg1; 2771 struct mips_elf_count_tls_arg *arg = arg2; 2772 2773 if (entry->abfd != NULL && entry->symndx != -1) 2774 arg->needed += mips_tls_got_relocs (arg->info, entry->tls_type, NULL); 2775 2776 return 1; 2777 } 2778 2779 /* Count the number of TLS GOT entries required for the global (or 2780 forced-local) symbol in ARG1. */ 2781 2782 static int 2783 mips_elf_count_global_tls_entries (void *arg1, void *arg2) 2784 { 2785 struct mips_elf_link_hash_entry *hm 2786 = (struct mips_elf_link_hash_entry *) arg1; 2787 struct mips_elf_count_tls_arg *arg = arg2; 2788 2789 if (hm->tls_type & GOT_TLS_GD) 2790 arg->needed += 2; 2791 if (hm->tls_type & GOT_TLS_IE) 2792 arg->needed += 1; 2793 2794 return 1; 2795 } 2796 2797 /* Count the number of TLS relocations required for the global (or 2798 forced-local) symbol in ARG1. */ 2799 2800 static int 2801 mips_elf_count_global_tls_relocs (void *arg1, void *arg2) 2802 { 2803 struct mips_elf_link_hash_entry *hm 2804 = (struct mips_elf_link_hash_entry *) arg1; 2805 struct mips_elf_count_tls_arg *arg = arg2; 2806 2807 arg->needed += mips_tls_got_relocs (arg->info, hm->tls_type, &hm->root); 2808 2809 return 1; 2810 } 2811 2812 /* Output a simple dynamic relocation into SRELOC. */ 2813 2814 static void 2815 mips_elf_output_dynamic_relocation (bfd *output_bfd, 2816 asection *sreloc, 2817 unsigned long reloc_index, 2818 unsigned long indx, 2819 int r_type, 2820 bfd_vma offset) 2821 { 2822 Elf_Internal_Rela rel[3]; 2823 2824 memset (rel, 0, sizeof (rel)); 2825 2826 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type); 2827 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 2828 2829 if (ABI_64_P (output_bfd)) 2830 { 2831 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 2832 (output_bfd, &rel[0], 2833 (sreloc->contents 2834 + reloc_index * sizeof (Elf64_Mips_External_Rel))); 2835 } 2836 else 2837 bfd_elf32_swap_reloc_out 2838 (output_bfd, &rel[0], 2839 (sreloc->contents 2840 + reloc_index * sizeof (Elf32_External_Rel))); 2841 } 2842 2843 /* Initialize a set of TLS GOT entries for one symbol. */ 2844 2845 static void 2846 mips_elf_initialize_tls_slots (bfd *abfd, bfd_vma got_offset, 2847 unsigned char *tls_type_p, 2848 struct bfd_link_info *info, 2849 struct mips_elf_link_hash_entry *h, 2850 bfd_vma value) 2851 { 2852 struct mips_elf_link_hash_table *htab; 2853 int indx; 2854 asection *sreloc, *sgot; 2855 bfd_vma offset, offset2; 2856 bfd_boolean need_relocs = FALSE; 2857 2858 htab = mips_elf_hash_table (info); 2859 if (htab == NULL) 2860 return; 2861 2862 sgot = htab->sgot; 2863 2864 indx = 0; 2865 if (h != NULL) 2866 { 2867 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created; 2868 2869 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, &h->root) 2870 && (!info->shared || !SYMBOL_REFERENCES_LOCAL (info, &h->root))) 2871 indx = h->root.dynindx; 2872 } 2873 2874 if (*tls_type_p & GOT_TLS_DONE) 2875 return; 2876 2877 if ((info->shared || indx != 0) 2878 && (h == NULL 2879 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT 2880 || h->root.type != bfd_link_hash_undefweak)) 2881 need_relocs = TRUE; 2882 2883 /* MINUS_ONE means the symbol is not defined in this object. It may not 2884 be defined at all; assume that the value doesn't matter in that 2885 case. Otherwise complain if we would use the value. */ 2886 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs) 2887 || h->root.root.type == bfd_link_hash_undefweak); 2888 2889 /* Emit necessary relocations. */ 2890 sreloc = mips_elf_rel_dyn_section (info, FALSE); 2891 2892 /* General Dynamic. */ 2893 if (*tls_type_p & GOT_TLS_GD) 2894 { 2895 offset = got_offset; 2896 offset2 = offset + MIPS_ELF_GOT_SIZE (abfd); 2897 2898 if (need_relocs) 2899 { 2900 mips_elf_output_dynamic_relocation 2901 (abfd, sreloc, sreloc->reloc_count++, indx, 2902 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 2903 sgot->output_offset + sgot->output_section->vma + offset); 2904 2905 if (indx) 2906 mips_elf_output_dynamic_relocation 2907 (abfd, sreloc, sreloc->reloc_count++, indx, 2908 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32, 2909 sgot->output_offset + sgot->output_section->vma + offset2); 2910 else 2911 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 2912 sgot->contents + offset2); 2913 } 2914 else 2915 { 2916 MIPS_ELF_PUT_WORD (abfd, 1, 2917 sgot->contents + offset); 2918 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info), 2919 sgot->contents + offset2); 2920 } 2921 2922 got_offset += 2 * MIPS_ELF_GOT_SIZE (abfd); 2923 } 2924 2925 /* Initial Exec model. */ 2926 if (*tls_type_p & GOT_TLS_IE) 2927 { 2928 offset = got_offset; 2929 2930 if (need_relocs) 2931 { 2932 if (indx == 0) 2933 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma, 2934 sgot->contents + offset); 2935 else 2936 MIPS_ELF_PUT_WORD (abfd, 0, 2937 sgot->contents + offset); 2938 2939 mips_elf_output_dynamic_relocation 2940 (abfd, sreloc, sreloc->reloc_count++, indx, 2941 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32, 2942 sgot->output_offset + sgot->output_section->vma + offset); 2943 } 2944 else 2945 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info), 2946 sgot->contents + offset); 2947 } 2948 2949 if (*tls_type_p & GOT_TLS_LDM) 2950 { 2951 /* The initial offset is zero, and the LD offsets will include the 2952 bias by DTP_OFFSET. */ 2953 MIPS_ELF_PUT_WORD (abfd, 0, 2954 sgot->contents + got_offset 2955 + MIPS_ELF_GOT_SIZE (abfd)); 2956 2957 if (!info->shared) 2958 MIPS_ELF_PUT_WORD (abfd, 1, 2959 sgot->contents + got_offset); 2960 else 2961 mips_elf_output_dynamic_relocation 2962 (abfd, sreloc, sreloc->reloc_count++, indx, 2963 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32, 2964 sgot->output_offset + sgot->output_section->vma + got_offset); 2965 } 2966 2967 *tls_type_p |= GOT_TLS_DONE; 2968 } 2969 2970 /* Return the GOT index to use for a relocation of type R_TYPE against 2971 a symbol accessed using TLS_TYPE models. The GOT entries for this 2972 symbol in this GOT start at GOT_INDEX. This function initializes the 2973 GOT entries and corresponding relocations. */ 2974 2975 static bfd_vma 2976 mips_tls_got_index (bfd *abfd, bfd_vma got_index, unsigned char *tls_type, 2977 int r_type, struct bfd_link_info *info, 2978 struct mips_elf_link_hash_entry *h, bfd_vma symbol) 2979 { 2980 BFD_ASSERT (r_type == R_MIPS_TLS_GOTTPREL || r_type == R_MIPS_TLS_GD 2981 || r_type == R_MIPS_TLS_LDM); 2982 2983 mips_elf_initialize_tls_slots (abfd, got_index, tls_type, info, h, symbol); 2984 2985 if (r_type == R_MIPS_TLS_GOTTPREL) 2986 { 2987 BFD_ASSERT (*tls_type & GOT_TLS_IE); 2988 if (*tls_type & GOT_TLS_GD) 2989 return got_index + 2 * MIPS_ELF_GOT_SIZE (abfd); 2990 else 2991 return got_index; 2992 } 2993 2994 if (r_type == R_MIPS_TLS_GD) 2995 { 2996 BFD_ASSERT (*tls_type & GOT_TLS_GD); 2997 return got_index; 2998 } 2999 3000 if (r_type == R_MIPS_TLS_LDM) 3001 { 3002 BFD_ASSERT (*tls_type & GOT_TLS_LDM); 3003 return got_index; 3004 } 3005 3006 return got_index; 3007 } 3008 3009 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry 3010 for global symbol H. .got.plt comes before the GOT, so the offset 3011 will be negative. */ 3012 3013 static bfd_vma 3014 mips_elf_gotplt_index (struct bfd_link_info *info, 3015 struct elf_link_hash_entry *h) 3016 { 3017 bfd_vma plt_index, got_address, got_value; 3018 struct mips_elf_link_hash_table *htab; 3019 3020 htab = mips_elf_hash_table (info); 3021 BFD_ASSERT (htab != NULL); 3022 3023 BFD_ASSERT (h->plt.offset != (bfd_vma) -1); 3024 3025 /* This function only works for VxWorks, because a non-VxWorks .got.plt 3026 section starts with reserved entries. */ 3027 BFD_ASSERT (htab->is_vxworks); 3028 3029 /* Calculate the index of the symbol's PLT entry. */ 3030 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; 3031 3032 /* Calculate the address of the associated .got.plt entry. */ 3033 got_address = (htab->sgotplt->output_section->vma 3034 + htab->sgotplt->output_offset 3035 + plt_index * 4); 3036 3037 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 3038 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 3039 + htab->root.hgot->root.u.def.section->output_offset 3040 + htab->root.hgot->root.u.def.value); 3041 3042 return got_address - got_value; 3043 } 3044 3045 /* Return the GOT offset for address VALUE. If there is not yet a GOT 3046 entry for this value, create one. If R_SYMNDX refers to a TLS symbol, 3047 create a TLS GOT entry instead. Return -1 if no satisfactory GOT 3048 offset can be found. */ 3049 3050 static bfd_vma 3051 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3052 bfd_vma value, unsigned long r_symndx, 3053 struct mips_elf_link_hash_entry *h, int r_type) 3054 { 3055 struct mips_elf_link_hash_table *htab; 3056 struct mips_got_entry *entry; 3057 3058 htab = mips_elf_hash_table (info); 3059 BFD_ASSERT (htab != NULL); 3060 3061 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 3062 r_symndx, h, r_type); 3063 if (!entry) 3064 return MINUS_ONE; 3065 3066 if (TLS_RELOC_P (r_type)) 3067 { 3068 if (entry->symndx == -1 && htab->got_info->next == NULL) 3069 /* A type (3) entry in the single-GOT case. We use the symbol's 3070 hash table entry to track the index. */ 3071 return mips_tls_got_index (abfd, h->tls_got_offset, &h->tls_type, 3072 r_type, info, h, value); 3073 else 3074 return mips_tls_got_index (abfd, entry->gotidx, &entry->tls_type, 3075 r_type, info, h, value); 3076 } 3077 else 3078 return entry->gotidx; 3079 } 3080 3081 /* Returns the GOT index for the global symbol indicated by H. */ 3082 3083 static bfd_vma 3084 mips_elf_global_got_index (bfd *abfd, bfd *ibfd, struct elf_link_hash_entry *h, 3085 int r_type, struct bfd_link_info *info) 3086 { 3087 struct mips_elf_link_hash_table *htab; 3088 bfd_vma got_index; 3089 struct mips_got_info *g, *gg; 3090 long global_got_dynindx = 0; 3091 3092 htab = mips_elf_hash_table (info); 3093 BFD_ASSERT (htab != NULL); 3094 3095 gg = g = htab->got_info; 3096 if (g->bfd2got && ibfd) 3097 { 3098 struct mips_got_entry e, *p; 3099 3100 BFD_ASSERT (h->dynindx >= 0); 3101 3102 g = mips_elf_got_for_ibfd (g, ibfd); 3103 if (g->next != gg || TLS_RELOC_P (r_type)) 3104 { 3105 e.abfd = ibfd; 3106 e.symndx = -1; 3107 e.d.h = (struct mips_elf_link_hash_entry *)h; 3108 e.tls_type = 0; 3109 3110 p = htab_find (g->got_entries, &e); 3111 3112 BFD_ASSERT (p->gotidx > 0); 3113 3114 if (TLS_RELOC_P (r_type)) 3115 { 3116 bfd_vma value = MINUS_ONE; 3117 if ((h->root.type == bfd_link_hash_defined 3118 || h->root.type == bfd_link_hash_defweak) 3119 && h->root.u.def.section->output_section) 3120 value = (h->root.u.def.value 3121 + h->root.u.def.section->output_offset 3122 + h->root.u.def.section->output_section->vma); 3123 3124 return mips_tls_got_index (abfd, p->gotidx, &p->tls_type, r_type, 3125 info, e.d.h, value); 3126 } 3127 else 3128 return p->gotidx; 3129 } 3130 } 3131 3132 if (gg->global_gotsym != NULL) 3133 global_got_dynindx = gg->global_gotsym->dynindx; 3134 3135 if (TLS_RELOC_P (r_type)) 3136 { 3137 struct mips_elf_link_hash_entry *hm 3138 = (struct mips_elf_link_hash_entry *) h; 3139 bfd_vma value = MINUS_ONE; 3140 3141 if ((h->root.type == bfd_link_hash_defined 3142 || h->root.type == bfd_link_hash_defweak) 3143 && h->root.u.def.section->output_section) 3144 value = (h->root.u.def.value 3145 + h->root.u.def.section->output_offset 3146 + h->root.u.def.section->output_section->vma); 3147 3148 got_index = mips_tls_got_index (abfd, hm->tls_got_offset, &hm->tls_type, 3149 r_type, info, hm, value); 3150 } 3151 else 3152 { 3153 /* Once we determine the global GOT entry with the lowest dynamic 3154 symbol table index, we must put all dynamic symbols with greater 3155 indices into the GOT. That makes it easy to calculate the GOT 3156 offset. */ 3157 BFD_ASSERT (h->dynindx >= global_got_dynindx); 3158 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno) 3159 * MIPS_ELF_GOT_SIZE (abfd)); 3160 } 3161 BFD_ASSERT (got_index < htab->sgot->size); 3162 3163 return got_index; 3164 } 3165 3166 /* Find a GOT page entry that points to within 32KB of VALUE. These 3167 entries are supposed to be placed at small offsets in the GOT, i.e., 3168 within 32KB of GP. Return the index of the GOT entry, or -1 if no 3169 entry could be created. If OFFSETP is nonnull, use it to return the 3170 offset of the GOT entry from VALUE. */ 3171 3172 static bfd_vma 3173 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3174 bfd_vma value, bfd_vma *offsetp) 3175 { 3176 bfd_vma page, got_index; 3177 struct mips_got_entry *entry; 3178 3179 page = (value + 0x8000) & ~(bfd_vma) 0xffff; 3180 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0, 3181 NULL, R_MIPS_GOT_PAGE); 3182 3183 if (!entry) 3184 return MINUS_ONE; 3185 3186 got_index = entry->gotidx; 3187 3188 if (offsetp) 3189 *offsetp = value - entry->d.address; 3190 3191 return got_index; 3192 } 3193 3194 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE. 3195 EXTERNAL is true if the relocation was originally against a global 3196 symbol that binds locally. */ 3197 3198 static bfd_vma 3199 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info, 3200 bfd_vma value, bfd_boolean external) 3201 { 3202 struct mips_got_entry *entry; 3203 3204 /* GOT16 relocations against local symbols are followed by a LO16 3205 relocation; those against global symbols are not. Thus if the 3206 symbol was originally local, the GOT16 relocation should load the 3207 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */ 3208 if (! external) 3209 value = mips_elf_high (value) << 16; 3210 3211 /* It doesn't matter whether the original relocation was R_MIPS_GOT16, 3212 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the 3213 same in all cases. */ 3214 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0, 3215 NULL, R_MIPS_GOT16); 3216 if (entry) 3217 return entry->gotidx; 3218 else 3219 return MINUS_ONE; 3220 } 3221 3222 /* Returns the offset for the entry at the INDEXth position 3223 in the GOT. */ 3224 3225 static bfd_vma 3226 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd, 3227 bfd *input_bfd, bfd_vma got_index) 3228 { 3229 struct mips_elf_link_hash_table *htab; 3230 asection *sgot; 3231 bfd_vma gp; 3232 3233 htab = mips_elf_hash_table (info); 3234 BFD_ASSERT (htab != NULL); 3235 3236 sgot = htab->sgot; 3237 gp = _bfd_get_gp_value (output_bfd) 3238 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd); 3239 3240 return sgot->output_section->vma + sgot->output_offset + got_index - gp; 3241 } 3242 3243 /* Create and return a local GOT entry for VALUE, which was calculated 3244 from a symbol belonging to INPUT_SECTON. Return NULL if it could not 3245 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry 3246 instead. */ 3247 3248 static struct mips_got_entry * 3249 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info, 3250 bfd *ibfd, bfd_vma value, 3251 unsigned long r_symndx, 3252 struct mips_elf_link_hash_entry *h, 3253 int r_type) 3254 { 3255 struct mips_got_entry entry, **loc; 3256 struct mips_got_info *g; 3257 struct mips_elf_link_hash_table *htab; 3258 3259 htab = mips_elf_hash_table (info); 3260 BFD_ASSERT (htab != NULL); 3261 3262 entry.abfd = NULL; 3263 entry.symndx = -1; 3264 entry.d.address = value; 3265 entry.tls_type = 0; 3266 3267 g = mips_elf_got_for_ibfd (htab->got_info, ibfd); 3268 if (g == NULL) 3269 { 3270 g = mips_elf_got_for_ibfd (htab->got_info, abfd); 3271 BFD_ASSERT (g != NULL); 3272 } 3273 3274 /* This function shouldn't be called for symbols that live in the global 3275 area of the GOT. */ 3276 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE); 3277 if (TLS_RELOC_P (r_type)) 3278 { 3279 struct mips_got_entry *p; 3280 3281 entry.abfd = ibfd; 3282 if (r_type == R_MIPS_TLS_LDM) 3283 { 3284 entry.tls_type = GOT_TLS_LDM; 3285 entry.symndx = 0; 3286 entry.d.addend = 0; 3287 } 3288 else if (h == NULL) 3289 { 3290 entry.symndx = r_symndx; 3291 entry.d.addend = 0; 3292 } 3293 else 3294 entry.d.h = h; 3295 3296 p = (struct mips_got_entry *) 3297 htab_find (g->got_entries, &entry); 3298 3299 BFD_ASSERT (p); 3300 return p; 3301 } 3302 3303 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, 3304 INSERT); 3305 if (*loc) 3306 return *loc; 3307 3308 entry.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_gotno++; 3309 entry.tls_type = 0; 3310 3311 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); 3312 3313 if (! *loc) 3314 return NULL; 3315 3316 memcpy (*loc, &entry, sizeof entry); 3317 3318 if (g->assigned_gotno > g->local_gotno) 3319 { 3320 (*loc)->gotidx = -1; 3321 /* We didn't allocate enough space in the GOT. */ 3322 (*_bfd_error_handler) 3323 (_("not enough GOT space for local GOT entries")); 3324 bfd_set_error (bfd_error_bad_value); 3325 return NULL; 3326 } 3327 3328 MIPS_ELF_PUT_WORD (abfd, value, 3329 (htab->sgot->contents + entry.gotidx)); 3330 3331 /* These GOT entries need a dynamic relocation on VxWorks. */ 3332 if (htab->is_vxworks) 3333 { 3334 Elf_Internal_Rela outrel; 3335 asection *s; 3336 bfd_byte *rloc; 3337 bfd_vma got_address; 3338 3339 s = mips_elf_rel_dyn_section (info, FALSE); 3340 got_address = (htab->sgot->output_section->vma 3341 + htab->sgot->output_offset 3342 + entry.gotidx); 3343 3344 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 3345 outrel.r_offset = got_address; 3346 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32); 3347 outrel.r_addend = value; 3348 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc); 3349 } 3350 3351 return *loc; 3352 } 3353 3354 /* Return the number of dynamic section symbols required by OUTPUT_BFD. 3355 The number might be exact or a worst-case estimate, depending on how 3356 much information is available to elf_backend_omit_section_dynsym at 3357 the current linking stage. */ 3358 3359 static bfd_size_type 3360 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info) 3361 { 3362 bfd_size_type count; 3363 3364 count = 0; 3365 if (info->shared || elf_hash_table (info)->is_relocatable_executable) 3366 { 3367 asection *p; 3368 const struct elf_backend_data *bed; 3369 3370 bed = get_elf_backend_data (output_bfd); 3371 for (p = output_bfd->sections; p ; p = p->next) 3372 if ((p->flags & SEC_EXCLUDE) == 0 3373 && (p->flags & SEC_ALLOC) != 0 3374 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 3375 ++count; 3376 } 3377 return count; 3378 } 3379 3380 /* Sort the dynamic symbol table so that symbols that need GOT entries 3381 appear towards the end. */ 3382 3383 static bfd_boolean 3384 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info) 3385 { 3386 struct mips_elf_link_hash_table *htab; 3387 struct mips_elf_hash_sort_data hsd; 3388 struct mips_got_info *g; 3389 3390 if (elf_hash_table (info)->dynsymcount == 0) 3391 return TRUE; 3392 3393 htab = mips_elf_hash_table (info); 3394 BFD_ASSERT (htab != NULL); 3395 3396 g = htab->got_info; 3397 if (g == NULL) 3398 return TRUE; 3399 3400 hsd.low = NULL; 3401 hsd.max_unref_got_dynindx 3402 = hsd.min_got_dynindx 3403 = (elf_hash_table (info)->dynsymcount - g->reloc_only_gotno); 3404 hsd.max_non_got_dynindx = count_section_dynsyms (abfd, info) + 1; 3405 mips_elf_link_hash_traverse (((struct mips_elf_link_hash_table *) 3406 elf_hash_table (info)), 3407 mips_elf_sort_hash_table_f, 3408 &hsd); 3409 3410 /* There should have been enough room in the symbol table to 3411 accommodate both the GOT and non-GOT symbols. */ 3412 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx); 3413 BFD_ASSERT ((unsigned long) hsd.max_unref_got_dynindx 3414 == elf_hash_table (info)->dynsymcount); 3415 BFD_ASSERT (elf_hash_table (info)->dynsymcount - hsd.min_got_dynindx 3416 == g->global_gotno); 3417 3418 /* Now we know which dynamic symbol has the lowest dynamic symbol 3419 table index in the GOT. */ 3420 g->global_gotsym = hsd.low; 3421 3422 return TRUE; 3423 } 3424 3425 /* If H needs a GOT entry, assign it the highest available dynamic 3426 index. Otherwise, assign it the lowest available dynamic 3427 index. */ 3428 3429 static bfd_boolean 3430 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data) 3431 { 3432 struct mips_elf_hash_sort_data *hsd = data; 3433 3434 if (h->root.root.type == bfd_link_hash_warning) 3435 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 3436 3437 /* Symbols without dynamic symbol table entries aren't interesting 3438 at all. */ 3439 if (h->root.dynindx == -1) 3440 return TRUE; 3441 3442 switch (h->global_got_area) 3443 { 3444 case GGA_NONE: 3445 h->root.dynindx = hsd->max_non_got_dynindx++; 3446 break; 3447 3448 case GGA_NORMAL: 3449 BFD_ASSERT (h->tls_type == GOT_NORMAL); 3450 3451 h->root.dynindx = --hsd->min_got_dynindx; 3452 hsd->low = (struct elf_link_hash_entry *) h; 3453 break; 3454 3455 case GGA_RELOC_ONLY: 3456 BFD_ASSERT (h->tls_type == GOT_NORMAL); 3457 3458 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx) 3459 hsd->low = (struct elf_link_hash_entry *) h; 3460 h->root.dynindx = hsd->max_unref_got_dynindx++; 3461 break; 3462 } 3463 3464 return TRUE; 3465 } 3466 3467 /* If H is a symbol that needs a global GOT entry, but has a dynamic 3468 symbol table index lower than any we've seen to date, record it for 3469 posterity. FOR_CALL is true if the caller is only interested in 3470 using the GOT entry for calls. */ 3471 3472 static bfd_boolean 3473 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h, 3474 bfd *abfd, struct bfd_link_info *info, 3475 bfd_boolean for_call, 3476 unsigned char tls_flag) 3477 { 3478 struct mips_elf_link_hash_table *htab; 3479 struct mips_elf_link_hash_entry *hmips; 3480 struct mips_got_entry entry, **loc; 3481 struct mips_got_info *g; 3482 3483 htab = mips_elf_hash_table (info); 3484 BFD_ASSERT (htab != NULL); 3485 3486 hmips = (struct mips_elf_link_hash_entry *) h; 3487 if (!for_call) 3488 hmips->got_only_for_calls = FALSE; 3489 3490 /* A global symbol in the GOT must also be in the dynamic symbol 3491 table. */ 3492 if (h->dynindx == -1) 3493 { 3494 switch (ELF_ST_VISIBILITY (h->other)) 3495 { 3496 case STV_INTERNAL: 3497 case STV_HIDDEN: 3498 _bfd_elf_link_hash_hide_symbol (info, h, TRUE); 3499 break; 3500 } 3501 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 3502 return FALSE; 3503 } 3504 3505 /* Make sure we have a GOT to put this entry into. */ 3506 g = htab->got_info; 3507 BFD_ASSERT (g != NULL); 3508 3509 entry.abfd = abfd; 3510 entry.symndx = -1; 3511 entry.d.h = (struct mips_elf_link_hash_entry *) h; 3512 entry.tls_type = 0; 3513 3514 loc = (struct mips_got_entry **) htab_find_slot (g->got_entries, &entry, 3515 INSERT); 3516 3517 /* If we've already marked this entry as needing GOT space, we don't 3518 need to do it again. */ 3519 if (*loc) 3520 { 3521 (*loc)->tls_type |= tls_flag; 3522 return TRUE; 3523 } 3524 3525 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); 3526 3527 if (! *loc) 3528 return FALSE; 3529 3530 entry.gotidx = -1; 3531 entry.tls_type = tls_flag; 3532 3533 memcpy (*loc, &entry, sizeof entry); 3534 3535 if (tls_flag == 0) 3536 hmips->global_got_area = GGA_NORMAL; 3537 3538 return TRUE; 3539 } 3540 3541 /* Reserve space in G for a GOT entry containing the value of symbol 3542 SYMNDX in input bfd ABDF, plus ADDEND. */ 3543 3544 static bfd_boolean 3545 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend, 3546 struct bfd_link_info *info, 3547 unsigned char tls_flag) 3548 { 3549 struct mips_elf_link_hash_table *htab; 3550 struct mips_got_info *g; 3551 struct mips_got_entry entry, **loc; 3552 3553 htab = mips_elf_hash_table (info); 3554 BFD_ASSERT (htab != NULL); 3555 3556 g = htab->got_info; 3557 BFD_ASSERT (g != NULL); 3558 3559 entry.abfd = abfd; 3560 entry.symndx = symndx; 3561 entry.d.addend = addend; 3562 entry.tls_type = tls_flag; 3563 loc = (struct mips_got_entry **) 3564 htab_find_slot (g->got_entries, &entry, INSERT); 3565 3566 if (*loc) 3567 { 3568 if (tls_flag == GOT_TLS_GD && !((*loc)->tls_type & GOT_TLS_GD)) 3569 { 3570 g->tls_gotno += 2; 3571 (*loc)->tls_type |= tls_flag; 3572 } 3573 else if (tls_flag == GOT_TLS_IE && !((*loc)->tls_type & GOT_TLS_IE)) 3574 { 3575 g->tls_gotno += 1; 3576 (*loc)->tls_type |= tls_flag; 3577 } 3578 return TRUE; 3579 } 3580 3581 if (tls_flag != 0) 3582 { 3583 entry.gotidx = -1; 3584 entry.tls_type = tls_flag; 3585 if (tls_flag == GOT_TLS_IE) 3586 g->tls_gotno += 1; 3587 else if (tls_flag == GOT_TLS_GD) 3588 g->tls_gotno += 2; 3589 else if (g->tls_ldm_offset == MINUS_ONE) 3590 { 3591 g->tls_ldm_offset = MINUS_TWO; 3592 g->tls_gotno += 2; 3593 } 3594 } 3595 else 3596 { 3597 entry.gotidx = g->local_gotno++; 3598 entry.tls_type = 0; 3599 } 3600 3601 *loc = (struct mips_got_entry *)bfd_alloc (abfd, sizeof entry); 3602 3603 if (! *loc) 3604 return FALSE; 3605 3606 memcpy (*loc, &entry, sizeof entry); 3607 3608 return TRUE; 3609 } 3610 3611 /* Return the maximum number of GOT page entries required for RANGE. */ 3612 3613 static bfd_vma 3614 mips_elf_pages_for_range (const struct mips_got_page_range *range) 3615 { 3616 return (range->max_addend - range->min_addend + 0x1ffff) >> 16; 3617 } 3618 3619 /* Record that ABFD has a page relocation against symbol SYMNDX and 3620 that ADDEND is the addend for that relocation. 3621 3622 This function creates an upper bound on the number of GOT slots 3623 required; no attempt is made to combine references to non-overridable 3624 global symbols across multiple input files. */ 3625 3626 static bfd_boolean 3627 mips_elf_record_got_page_entry (struct bfd_link_info *info, bfd *abfd, 3628 long symndx, bfd_signed_vma addend) 3629 { 3630 struct mips_elf_link_hash_table *htab; 3631 struct mips_got_info *g; 3632 struct mips_got_page_entry lookup, *entry; 3633 struct mips_got_page_range **range_ptr, *range; 3634 bfd_vma old_pages, new_pages; 3635 void **loc; 3636 3637 htab = mips_elf_hash_table (info); 3638 BFD_ASSERT (htab != NULL); 3639 3640 g = htab->got_info; 3641 BFD_ASSERT (g != NULL); 3642 3643 /* Find the mips_got_page_entry hash table entry for this symbol. */ 3644 lookup.abfd = abfd; 3645 lookup.symndx = symndx; 3646 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT); 3647 if (loc == NULL) 3648 return FALSE; 3649 3650 /* Create a mips_got_page_entry if this is the first time we've 3651 seen the symbol. */ 3652 entry = (struct mips_got_page_entry *) *loc; 3653 if (!entry) 3654 { 3655 entry = bfd_alloc (abfd, sizeof (*entry)); 3656 if (!entry) 3657 return FALSE; 3658 3659 entry->abfd = abfd; 3660 entry->symndx = symndx; 3661 entry->ranges = NULL; 3662 entry->num_pages = 0; 3663 *loc = entry; 3664 } 3665 3666 /* Skip over ranges whose maximum extent cannot share a page entry 3667 with ADDEND. */ 3668 range_ptr = &entry->ranges; 3669 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff) 3670 range_ptr = &(*range_ptr)->next; 3671 3672 /* If we scanned to the end of the list, or found a range whose 3673 minimum extent cannot share a page entry with ADDEND, create 3674 a new singleton range. */ 3675 range = *range_ptr; 3676 if (!range || addend < range->min_addend - 0xffff) 3677 { 3678 range = bfd_alloc (abfd, sizeof (*range)); 3679 if (!range) 3680 return FALSE; 3681 3682 range->next = *range_ptr; 3683 range->min_addend = addend; 3684 range->max_addend = addend; 3685 3686 *range_ptr = range; 3687 entry->num_pages++; 3688 g->page_gotno++; 3689 return TRUE; 3690 } 3691 3692 /* Remember how many pages the old range contributed. */ 3693 old_pages = mips_elf_pages_for_range (range); 3694 3695 /* Update the ranges. */ 3696 if (addend < range->min_addend) 3697 range->min_addend = addend; 3698 else if (addend > range->max_addend) 3699 { 3700 if (range->next && addend >= range->next->min_addend - 0xffff) 3701 { 3702 old_pages += mips_elf_pages_for_range (range->next); 3703 range->max_addend = range->next->max_addend; 3704 range->next = range->next->next; 3705 } 3706 else 3707 range->max_addend = addend; 3708 } 3709 3710 /* Record any change in the total estimate. */ 3711 new_pages = mips_elf_pages_for_range (range); 3712 if (old_pages != new_pages) 3713 { 3714 entry->num_pages += new_pages - old_pages; 3715 g->page_gotno += new_pages - old_pages; 3716 } 3717 3718 return TRUE; 3719 } 3720 3721 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */ 3722 3723 static void 3724 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info, 3725 unsigned int n) 3726 { 3727 asection *s; 3728 struct mips_elf_link_hash_table *htab; 3729 3730 htab = mips_elf_hash_table (info); 3731 BFD_ASSERT (htab != NULL); 3732 3733 s = mips_elf_rel_dyn_section (info, FALSE); 3734 BFD_ASSERT (s != NULL); 3735 3736 if (htab->is_vxworks) 3737 s->size += n * MIPS_ELF_RELA_SIZE (abfd); 3738 else 3739 { 3740 if (s->size == 0) 3741 { 3742 /* Make room for a null element. */ 3743 s->size += MIPS_ELF_REL_SIZE (abfd); 3744 ++s->reloc_count; 3745 } 3746 s->size += n * MIPS_ELF_REL_SIZE (abfd); 3747 } 3748 } 3749 3750 /* A htab_traverse callback for GOT entries. Set boolean *DATA to true 3751 if the GOT entry is for an indirect or warning symbol. */ 3752 3753 static int 3754 mips_elf_check_recreate_got (void **entryp, void *data) 3755 { 3756 struct mips_got_entry *entry; 3757 bfd_boolean *must_recreate; 3758 3759 entry = (struct mips_got_entry *) *entryp; 3760 must_recreate = (bfd_boolean *) data; 3761 if (entry->abfd != NULL && entry->symndx == -1) 3762 { 3763 struct mips_elf_link_hash_entry *h; 3764 3765 h = entry->d.h; 3766 if (h->root.root.type == bfd_link_hash_indirect 3767 || h->root.root.type == bfd_link_hash_warning) 3768 { 3769 *must_recreate = TRUE; 3770 return 0; 3771 } 3772 } 3773 return 1; 3774 } 3775 3776 /* A htab_traverse callback for GOT entries. Add all entries to 3777 hash table *DATA, converting entries for indirect and warning 3778 symbols into entries for the target symbol. Set *DATA to null 3779 on error. */ 3780 3781 static int 3782 mips_elf_recreate_got (void **entryp, void *data) 3783 { 3784 htab_t *new_got; 3785 struct mips_got_entry *entry; 3786 void **slot; 3787 3788 new_got = (htab_t *) data; 3789 entry = (struct mips_got_entry *) *entryp; 3790 if (entry->abfd != NULL && entry->symndx == -1) 3791 { 3792 struct mips_elf_link_hash_entry *h; 3793 3794 h = entry->d.h; 3795 while (h->root.root.type == bfd_link_hash_indirect 3796 || h->root.root.type == bfd_link_hash_warning) 3797 { 3798 BFD_ASSERT (h->global_got_area == GGA_NONE); 3799 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 3800 } 3801 entry->d.h = h; 3802 } 3803 slot = htab_find_slot (*new_got, entry, INSERT); 3804 if (slot == NULL) 3805 { 3806 *new_got = NULL; 3807 return 0; 3808 } 3809 if (*slot == NULL) 3810 *slot = entry; 3811 else 3812 free (entry); 3813 return 1; 3814 } 3815 3816 /* If any entries in G->got_entries are for indirect or warning symbols, 3817 replace them with entries for the target symbol. */ 3818 3819 static bfd_boolean 3820 mips_elf_resolve_final_got_entries (struct mips_got_info *g) 3821 { 3822 bfd_boolean must_recreate; 3823 htab_t new_got; 3824 3825 must_recreate = FALSE; 3826 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &must_recreate); 3827 if (must_recreate) 3828 { 3829 new_got = htab_create (htab_size (g->got_entries), 3830 mips_elf_got_entry_hash, 3831 mips_elf_got_entry_eq, NULL); 3832 htab_traverse (g->got_entries, mips_elf_recreate_got, &new_got); 3833 if (new_got == NULL) 3834 return FALSE; 3835 3836 /* Each entry in g->got_entries has either been copied to new_got 3837 or freed. Now delete the hash table itself. */ 3838 htab_delete (g->got_entries); 3839 g->got_entries = new_got; 3840 } 3841 return TRUE; 3842 } 3843 3844 /* A mips_elf_link_hash_traverse callback for which DATA points 3845 to the link_info structure. Count the number of type (3) entries 3846 in the master GOT. */ 3847 3848 static int 3849 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data) 3850 { 3851 struct bfd_link_info *info; 3852 struct mips_elf_link_hash_table *htab; 3853 struct mips_got_info *g; 3854 3855 info = (struct bfd_link_info *) data; 3856 htab = mips_elf_hash_table (info); 3857 g = htab->got_info; 3858 if (h->global_got_area != GGA_NONE) 3859 { 3860 /* Make a final decision about whether the symbol belongs in the 3861 local or global GOT. Symbols that bind locally can (and in the 3862 case of forced-local symbols, must) live in the local GOT. 3863 Those that are aren't in the dynamic symbol table must also 3864 live in the local GOT. 3865 3866 Note that the former condition does not always imply the 3867 latter: symbols do not bind locally if they are completely 3868 undefined. We'll report undefined symbols later if appropriate. */ 3869 if (h->root.dynindx == -1 3870 || (h->got_only_for_calls 3871 ? SYMBOL_CALLS_LOCAL (info, &h->root) 3872 : SYMBOL_REFERENCES_LOCAL (info, &h->root))) 3873 { 3874 /* The symbol belongs in the local GOT. We no longer need this 3875 entry if it was only used for relocations; those relocations 3876 will be against the null or section symbol instead of H. */ 3877 if (h->global_got_area != GGA_RELOC_ONLY) 3878 g->local_gotno++; 3879 h->global_got_area = GGA_NONE; 3880 } 3881 else if (htab->is_vxworks 3882 && h->got_only_for_calls 3883 && h->root.plt.offset != MINUS_ONE) 3884 /* On VxWorks, calls can refer directly to the .got.plt entry; 3885 they don't need entries in the regular GOT. .got.plt entries 3886 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */ 3887 h->global_got_area = GGA_NONE; 3888 else 3889 { 3890 g->global_gotno++; 3891 if (h->global_got_area == GGA_RELOC_ONLY) 3892 g->reloc_only_gotno++; 3893 } 3894 } 3895 return 1; 3896 } 3897 3898 /* Compute the hash value of the bfd in a bfd2got hash entry. */ 3899 3900 static hashval_t 3901 mips_elf_bfd2got_entry_hash (const void *entry_) 3902 { 3903 const struct mips_elf_bfd2got_hash *entry 3904 = (struct mips_elf_bfd2got_hash *)entry_; 3905 3906 return entry->bfd->id; 3907 } 3908 3909 /* Check whether two hash entries have the same bfd. */ 3910 3911 static int 3912 mips_elf_bfd2got_entry_eq (const void *entry1, const void *entry2) 3913 { 3914 const struct mips_elf_bfd2got_hash *e1 3915 = (const struct mips_elf_bfd2got_hash *)entry1; 3916 const struct mips_elf_bfd2got_hash *e2 3917 = (const struct mips_elf_bfd2got_hash *)entry2; 3918 3919 return e1->bfd == e2->bfd; 3920 } 3921 3922 /* In a multi-got link, determine the GOT to be used for IBFD. G must 3923 be the master GOT data. */ 3924 3925 static struct mips_got_info * 3926 mips_elf_got_for_ibfd (struct mips_got_info *g, bfd *ibfd) 3927 { 3928 struct mips_elf_bfd2got_hash e, *p; 3929 3930 if (! g->bfd2got) 3931 return g; 3932 3933 e.bfd = ibfd; 3934 p = htab_find (g->bfd2got, &e); 3935 return p ? p->g : NULL; 3936 } 3937 3938 /* Use BFD2GOT to find ABFD's got entry, creating one if none exists. 3939 Return NULL if an error occured. */ 3940 3941 static struct mips_got_info * 3942 mips_elf_get_got_for_bfd (struct htab *bfd2got, bfd *output_bfd, 3943 bfd *input_bfd) 3944 { 3945 struct mips_elf_bfd2got_hash bfdgot_entry, *bfdgot; 3946 struct mips_got_info *g; 3947 void **bfdgotp; 3948 3949 bfdgot_entry.bfd = input_bfd; 3950 bfdgotp = htab_find_slot (bfd2got, &bfdgot_entry, INSERT); 3951 bfdgot = (struct mips_elf_bfd2got_hash *) *bfdgotp; 3952 3953 if (bfdgot == NULL) 3954 { 3955 bfdgot = ((struct mips_elf_bfd2got_hash *) 3956 bfd_alloc (output_bfd, sizeof (struct mips_elf_bfd2got_hash))); 3957 if (bfdgot == NULL) 3958 return NULL; 3959 3960 *bfdgotp = bfdgot; 3961 3962 g = ((struct mips_got_info *) 3963 bfd_alloc (output_bfd, sizeof (struct mips_got_info))); 3964 if (g == NULL) 3965 return NULL; 3966 3967 bfdgot->bfd = input_bfd; 3968 bfdgot->g = g; 3969 3970 g->global_gotsym = NULL; 3971 g->global_gotno = 0; 3972 g->reloc_only_gotno = 0; 3973 g->local_gotno = 0; 3974 g->page_gotno = 0; 3975 g->assigned_gotno = -1; 3976 g->tls_gotno = 0; 3977 g->tls_assigned_gotno = 0; 3978 g->tls_ldm_offset = MINUS_ONE; 3979 g->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, 3980 mips_elf_multi_got_entry_eq, NULL); 3981 if (g->got_entries == NULL) 3982 return NULL; 3983 3984 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 3985 mips_got_page_entry_eq, NULL); 3986 if (g->got_page_entries == NULL) 3987 return NULL; 3988 3989 g->bfd2got = NULL; 3990 g->next = NULL; 3991 } 3992 3993 return bfdgot->g; 3994 } 3995 3996 /* A htab_traverse callback for the entries in the master got. 3997 Create one separate got for each bfd that has entries in the global 3998 got, such that we can tell how many local and global entries each 3999 bfd requires. */ 4000 4001 static int 4002 mips_elf_make_got_per_bfd (void **entryp, void *p) 4003 { 4004 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; 4005 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; 4006 struct mips_got_info *g; 4007 4008 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); 4009 if (g == NULL) 4010 { 4011 arg->obfd = NULL; 4012 return 0; 4013 } 4014 4015 /* Insert the GOT entry in the bfd's got entry hash table. */ 4016 entryp = htab_find_slot (g->got_entries, entry, INSERT); 4017 if (*entryp != NULL) 4018 return 1; 4019 4020 *entryp = entry; 4021 4022 if (entry->tls_type) 4023 { 4024 if (entry->tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) 4025 g->tls_gotno += 2; 4026 if (entry->tls_type & GOT_TLS_IE) 4027 g->tls_gotno += 1; 4028 } 4029 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE) 4030 ++g->local_gotno; 4031 else 4032 ++g->global_gotno; 4033 4034 return 1; 4035 } 4036 4037 /* A htab_traverse callback for the page entries in the master got. 4038 Associate each page entry with the bfd's got. */ 4039 4040 static int 4041 mips_elf_make_got_pages_per_bfd (void **entryp, void *p) 4042 { 4043 struct mips_got_page_entry *entry = (struct mips_got_page_entry *) *entryp; 4044 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *) p; 4045 struct mips_got_info *g; 4046 4047 g = mips_elf_get_got_for_bfd (arg->bfd2got, arg->obfd, entry->abfd); 4048 if (g == NULL) 4049 { 4050 arg->obfd = NULL; 4051 return 0; 4052 } 4053 4054 /* Insert the GOT entry in the bfd's got entry hash table. */ 4055 entryp = htab_find_slot (g->got_page_entries, entry, INSERT); 4056 if (*entryp != NULL) 4057 return 1; 4058 4059 *entryp = entry; 4060 g->page_gotno += entry->num_pages; 4061 return 1; 4062 } 4063 4064 /* Consider merging the got described by BFD2GOT with TO, using the 4065 information given by ARG. Return -1 if this would lead to overflow, 4066 1 if they were merged successfully, and 0 if a merge failed due to 4067 lack of memory. (These values are chosen so that nonnegative return 4068 values can be returned by a htab_traverse callback.) */ 4069 4070 static int 4071 mips_elf_merge_got_with (struct mips_elf_bfd2got_hash *bfd2got, 4072 struct mips_got_info *to, 4073 struct mips_elf_got_per_bfd_arg *arg) 4074 { 4075 struct mips_got_info *from = bfd2got->g; 4076 unsigned int estimate; 4077 4078 /* Work out how many page entries we would need for the combined GOT. */ 4079 estimate = arg->max_pages; 4080 if (estimate >= from->page_gotno + to->page_gotno) 4081 estimate = from->page_gotno + to->page_gotno; 4082 4083 /* And conservatively estimate how many local, global and TLS entries 4084 would be needed. */ 4085 estimate += (from->local_gotno 4086 + from->global_gotno 4087 + from->tls_gotno 4088 + to->local_gotno 4089 + to->global_gotno 4090 + to->tls_gotno); 4091 4092 /* Bail out if the combined GOT might be too big. */ 4093 if (estimate > arg->max_count) 4094 return -1; 4095 4096 /* Commit to the merge. Record that TO is now the bfd for this got. */ 4097 bfd2got->g = to; 4098 4099 /* Transfer the bfd's got information from FROM to TO. */ 4100 htab_traverse (from->got_entries, mips_elf_make_got_per_bfd, arg); 4101 if (arg->obfd == NULL) 4102 return 0; 4103 4104 htab_traverse (from->got_page_entries, mips_elf_make_got_pages_per_bfd, arg); 4105 if (arg->obfd == NULL) 4106 return 0; 4107 4108 /* We don't have to worry about releasing memory of the actual 4109 got entries, since they're all in the master got_entries hash 4110 table anyway. */ 4111 htab_delete (from->got_entries); 4112 htab_delete (from->got_page_entries); 4113 return 1; 4114 } 4115 4116 /* Attempt to merge gots of different input bfds. Try to use as much 4117 as possible of the primary got, since it doesn't require explicit 4118 dynamic relocations, but don't use bfds that would reference global 4119 symbols out of the addressable range. Failing the primary got, 4120 attempt to merge with the current got, or finish the current got 4121 and then make make the new got current. */ 4122 4123 static int 4124 mips_elf_merge_gots (void **bfd2got_, void *p) 4125 { 4126 struct mips_elf_bfd2got_hash *bfd2got 4127 = (struct mips_elf_bfd2got_hash *)*bfd2got_; 4128 struct mips_elf_got_per_bfd_arg *arg = (struct mips_elf_got_per_bfd_arg *)p; 4129 struct mips_got_info *g; 4130 unsigned int estimate; 4131 int result; 4132 4133 g = bfd2got->g; 4134 4135 /* Work out the number of page, local and TLS entries. */ 4136 estimate = arg->max_pages; 4137 if (estimate > g->page_gotno) 4138 estimate = g->page_gotno; 4139 estimate += g->local_gotno + g->tls_gotno; 4140 4141 /* We place TLS GOT entries after both locals and globals. The globals 4142 for the primary GOT may overflow the normal GOT size limit, so be 4143 sure not to merge a GOT which requires TLS with the primary GOT in that 4144 case. This doesn't affect non-primary GOTs. */ 4145 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno); 4146 4147 if (estimate <= arg->max_count) 4148 { 4149 /* If we don't have a primary GOT, use it as 4150 a starting point for the primary GOT. */ 4151 if (!arg->primary) 4152 { 4153 arg->primary = bfd2got->g; 4154 return 1; 4155 } 4156 4157 /* Try merging with the primary GOT. */ 4158 result = mips_elf_merge_got_with (bfd2got, arg->primary, arg); 4159 if (result >= 0) 4160 return result; 4161 } 4162 4163 /* If we can merge with the last-created got, do it. */ 4164 if (arg->current) 4165 { 4166 result = mips_elf_merge_got_with (bfd2got, arg->current, arg); 4167 if (result >= 0) 4168 return result; 4169 } 4170 4171 /* Well, we couldn't merge, so create a new GOT. Don't check if it 4172 fits; if it turns out that it doesn't, we'll get relocation 4173 overflows anyway. */ 4174 g->next = arg->current; 4175 arg->current = g; 4176 4177 return 1; 4178 } 4179 4180 /* Set the TLS GOT index for the GOT entry in ENTRYP. ENTRYP's NEXT field 4181 is null iff there is just a single GOT. */ 4182 4183 static int 4184 mips_elf_initialize_tls_index (void **entryp, void *p) 4185 { 4186 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; 4187 struct mips_got_info *g = p; 4188 bfd_vma next_index; 4189 unsigned char tls_type; 4190 4191 /* We're only interested in TLS symbols. */ 4192 if (entry->tls_type == 0) 4193 return 1; 4194 4195 next_index = MIPS_ELF_GOT_SIZE (entry->abfd) * (long) g->tls_assigned_gotno; 4196 4197 if (entry->symndx == -1 && g->next == NULL) 4198 { 4199 /* A type (3) got entry in the single-GOT case. We use the symbol's 4200 hash table entry to track its index. */ 4201 if (entry->d.h->tls_type & GOT_TLS_OFFSET_DONE) 4202 return 1; 4203 entry->d.h->tls_type |= GOT_TLS_OFFSET_DONE; 4204 entry->d.h->tls_got_offset = next_index; 4205 tls_type = entry->d.h->tls_type; 4206 } 4207 else 4208 { 4209 if (entry->tls_type & GOT_TLS_LDM) 4210 { 4211 /* There are separate mips_got_entry objects for each input bfd 4212 that requires an LDM entry. Make sure that all LDM entries in 4213 a GOT resolve to the same index. */ 4214 if (g->tls_ldm_offset != MINUS_TWO && g->tls_ldm_offset != MINUS_ONE) 4215 { 4216 entry->gotidx = g->tls_ldm_offset; 4217 return 1; 4218 } 4219 g->tls_ldm_offset = next_index; 4220 } 4221 entry->gotidx = next_index; 4222 tls_type = entry->tls_type; 4223 } 4224 4225 /* Account for the entries we've just allocated. */ 4226 if (tls_type & (GOT_TLS_GD | GOT_TLS_LDM)) 4227 g->tls_assigned_gotno += 2; 4228 if (tls_type & GOT_TLS_IE) 4229 g->tls_assigned_gotno += 1; 4230 4231 return 1; 4232 } 4233 4234 /* If passed a NULL mips_got_info in the argument, set the marker used 4235 to tell whether a global symbol needs a got entry (in the primary 4236 got) to the given VALUE. 4237 4238 If passed a pointer G to a mips_got_info in the argument (it must 4239 not be the primary GOT), compute the offset from the beginning of 4240 the (primary) GOT section to the entry in G corresponding to the 4241 global symbol. G's assigned_gotno must contain the index of the 4242 first available global GOT entry in G. VALUE must contain the size 4243 of a GOT entry in bytes. For each global GOT entry that requires a 4244 dynamic relocation, NEEDED_RELOCS is incremented, and the symbol is 4245 marked as not eligible for lazy resolution through a function 4246 stub. */ 4247 static int 4248 mips_elf_set_global_got_offset (void **entryp, void *p) 4249 { 4250 struct mips_got_entry *entry = (struct mips_got_entry *)*entryp; 4251 struct mips_elf_set_global_got_offset_arg *arg 4252 = (struct mips_elf_set_global_got_offset_arg *)p; 4253 struct mips_got_info *g = arg->g; 4254 4255 if (g && entry->tls_type != GOT_NORMAL) 4256 arg->needed_relocs += 4257 mips_tls_got_relocs (arg->info, entry->tls_type, 4258 entry->symndx == -1 ? &entry->d.h->root : NULL); 4259 4260 if (entry->abfd != NULL 4261 && entry->symndx == -1 4262 && entry->d.h->global_got_area != GGA_NONE) 4263 { 4264 if (g) 4265 { 4266 BFD_ASSERT (g->global_gotsym == NULL); 4267 4268 entry->gotidx = arg->value * (long) g->assigned_gotno++; 4269 if (arg->info->shared 4270 || (elf_hash_table (arg->info)->dynamic_sections_created 4271 && entry->d.h->root.def_dynamic 4272 && !entry->d.h->root.def_regular)) 4273 ++arg->needed_relocs; 4274 } 4275 else 4276 entry->d.h->global_got_area = arg->value; 4277 } 4278 4279 return 1; 4280 } 4281 4282 /* A htab_traverse callback for GOT entries for which DATA is the 4283 bfd_link_info. Forbid any global symbols from having traditional 4284 lazy-binding stubs. */ 4285 4286 static int 4287 mips_elf_forbid_lazy_stubs (void **entryp, void *data) 4288 { 4289 struct bfd_link_info *info; 4290 struct mips_elf_link_hash_table *htab; 4291 struct mips_got_entry *entry; 4292 4293 entry = (struct mips_got_entry *) *entryp; 4294 info = (struct bfd_link_info *) data; 4295 htab = mips_elf_hash_table (info); 4296 BFD_ASSERT (htab != NULL); 4297 4298 if (entry->abfd != NULL 4299 && entry->symndx == -1 4300 && entry->d.h->needs_lazy_stub) 4301 { 4302 entry->d.h->needs_lazy_stub = FALSE; 4303 htab->lazy_stub_count--; 4304 } 4305 4306 return 1; 4307 } 4308 4309 /* Return the offset of an input bfd IBFD's GOT from the beginning of 4310 the primary GOT. */ 4311 static bfd_vma 4312 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd) 4313 { 4314 if (g->bfd2got == NULL) 4315 return 0; 4316 4317 g = mips_elf_got_for_ibfd (g, ibfd); 4318 if (! g) 4319 return 0; 4320 4321 BFD_ASSERT (g->next); 4322 4323 g = g->next; 4324 4325 return (g->local_gotno + g->global_gotno + g->tls_gotno) 4326 * MIPS_ELF_GOT_SIZE (abfd); 4327 } 4328 4329 /* Turn a single GOT that is too big for 16-bit addressing into 4330 a sequence of GOTs, each one 16-bit addressable. */ 4331 4332 static bfd_boolean 4333 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info, 4334 asection *got, bfd_size_type pages) 4335 { 4336 struct mips_elf_link_hash_table *htab; 4337 struct mips_elf_got_per_bfd_arg got_per_bfd_arg; 4338 struct mips_elf_set_global_got_offset_arg set_got_offset_arg; 4339 struct mips_got_info *g, *gg; 4340 unsigned int assign, needed_relocs; 4341 bfd *dynobj; 4342 4343 dynobj = elf_hash_table (info)->dynobj; 4344 htab = mips_elf_hash_table (info); 4345 BFD_ASSERT (htab != NULL); 4346 4347 g = htab->got_info; 4348 g->bfd2got = htab_try_create (1, mips_elf_bfd2got_entry_hash, 4349 mips_elf_bfd2got_entry_eq, NULL); 4350 if (g->bfd2got == NULL) 4351 return FALSE; 4352 4353 got_per_bfd_arg.bfd2got = g->bfd2got; 4354 got_per_bfd_arg.obfd = abfd; 4355 got_per_bfd_arg.info = info; 4356 4357 /* Count how many GOT entries each input bfd requires, creating a 4358 map from bfd to got info while at that. */ 4359 htab_traverse (g->got_entries, mips_elf_make_got_per_bfd, &got_per_bfd_arg); 4360 if (got_per_bfd_arg.obfd == NULL) 4361 return FALSE; 4362 4363 /* Also count how many page entries each input bfd requires. */ 4364 htab_traverse (g->got_page_entries, mips_elf_make_got_pages_per_bfd, 4365 &got_per_bfd_arg); 4366 if (got_per_bfd_arg.obfd == NULL) 4367 return FALSE; 4368 4369 got_per_bfd_arg.current = NULL; 4370 got_per_bfd_arg.primary = NULL; 4371 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info) 4372 / MIPS_ELF_GOT_SIZE (abfd)) 4373 - htab->reserved_gotno); 4374 got_per_bfd_arg.max_pages = pages; 4375 /* The number of globals that will be included in the primary GOT. 4376 See the calls to mips_elf_set_global_got_offset below for more 4377 information. */ 4378 got_per_bfd_arg.global_count = g->global_gotno; 4379 4380 /* Try to merge the GOTs of input bfds together, as long as they 4381 don't seem to exceed the maximum GOT size, choosing one of them 4382 to be the primary GOT. */ 4383 htab_traverse (g->bfd2got, mips_elf_merge_gots, &got_per_bfd_arg); 4384 if (got_per_bfd_arg.obfd == NULL) 4385 return FALSE; 4386 4387 /* If we do not find any suitable primary GOT, create an empty one. */ 4388 if (got_per_bfd_arg.primary == NULL) 4389 { 4390 g->next = (struct mips_got_info *) 4391 bfd_alloc (abfd, sizeof (struct mips_got_info)); 4392 if (g->next == NULL) 4393 return FALSE; 4394 4395 g->next->global_gotsym = NULL; 4396 g->next->global_gotno = 0; 4397 g->next->reloc_only_gotno = 0; 4398 g->next->local_gotno = 0; 4399 g->next->page_gotno = 0; 4400 g->next->tls_gotno = 0; 4401 g->next->assigned_gotno = 0; 4402 g->next->tls_assigned_gotno = 0; 4403 g->next->tls_ldm_offset = MINUS_ONE; 4404 g->next->got_entries = htab_try_create (1, mips_elf_multi_got_entry_hash, 4405 mips_elf_multi_got_entry_eq, 4406 NULL); 4407 if (g->next->got_entries == NULL) 4408 return FALSE; 4409 g->next->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4410 mips_got_page_entry_eq, 4411 NULL); 4412 if (g->next->got_page_entries == NULL) 4413 return FALSE; 4414 g->next->bfd2got = NULL; 4415 } 4416 else 4417 g->next = got_per_bfd_arg.primary; 4418 g->next->next = got_per_bfd_arg.current; 4419 4420 /* GG is now the master GOT, and G is the primary GOT. */ 4421 gg = g; 4422 g = g->next; 4423 4424 /* Map the output bfd to the primary got. That's what we're going 4425 to use for bfds that use GOT16 or GOT_PAGE relocations that we 4426 didn't mark in check_relocs, and we want a quick way to find it. 4427 We can't just use gg->next because we're going to reverse the 4428 list. */ 4429 { 4430 struct mips_elf_bfd2got_hash *bfdgot; 4431 void **bfdgotp; 4432 4433 bfdgot = (struct mips_elf_bfd2got_hash *)bfd_alloc 4434 (abfd, sizeof (struct mips_elf_bfd2got_hash)); 4435 4436 if (bfdgot == NULL) 4437 return FALSE; 4438 4439 bfdgot->bfd = abfd; 4440 bfdgot->g = g; 4441 bfdgotp = htab_find_slot (gg->bfd2got, bfdgot, INSERT); 4442 4443 BFD_ASSERT (*bfdgotp == NULL); 4444 *bfdgotp = bfdgot; 4445 } 4446 4447 /* Every symbol that is referenced in a dynamic relocation must be 4448 present in the primary GOT, so arrange for them to appear after 4449 those that are actually referenced. */ 4450 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno; 4451 g->global_gotno = gg->global_gotno; 4452 4453 set_got_offset_arg.g = NULL; 4454 set_got_offset_arg.value = GGA_RELOC_ONLY; 4455 htab_traverse (gg->got_entries, mips_elf_set_global_got_offset, 4456 &set_got_offset_arg); 4457 set_got_offset_arg.value = GGA_NORMAL; 4458 htab_traverse (g->got_entries, mips_elf_set_global_got_offset, 4459 &set_got_offset_arg); 4460 4461 /* Now go through the GOTs assigning them offset ranges. 4462 [assigned_gotno, local_gotno[ will be set to the range of local 4463 entries in each GOT. We can then compute the end of a GOT by 4464 adding local_gotno to global_gotno. We reverse the list and make 4465 it circular since then we'll be able to quickly compute the 4466 beginning of a GOT, by computing the end of its predecessor. To 4467 avoid special cases for the primary GOT, while still preserving 4468 assertions that are valid for both single- and multi-got links, 4469 we arrange for the main got struct to have the right number of 4470 global entries, but set its local_gotno such that the initial 4471 offset of the primary GOT is zero. Remember that the primary GOT 4472 will become the last item in the circular linked list, so it 4473 points back to the master GOT. */ 4474 gg->local_gotno = -g->global_gotno; 4475 gg->global_gotno = g->global_gotno; 4476 gg->tls_gotno = 0; 4477 assign = 0; 4478 gg->next = gg; 4479 4480 do 4481 { 4482 struct mips_got_info *gn; 4483 4484 assign += htab->reserved_gotno; 4485 g->assigned_gotno = assign; 4486 g->local_gotno += assign; 4487 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno); 4488 assign = g->local_gotno + g->global_gotno + g->tls_gotno; 4489 4490 /* Take g out of the direct list, and push it onto the reversed 4491 list that gg points to. g->next is guaranteed to be nonnull after 4492 this operation, as required by mips_elf_initialize_tls_index. */ 4493 gn = g->next; 4494 g->next = gg->next; 4495 gg->next = g; 4496 4497 /* Set up any TLS entries. We always place the TLS entries after 4498 all non-TLS entries. */ 4499 g->tls_assigned_gotno = g->local_gotno + g->global_gotno; 4500 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); 4501 4502 /* Move onto the next GOT. It will be a secondary GOT if nonull. */ 4503 g = gn; 4504 4505 /* Forbid global symbols in every non-primary GOT from having 4506 lazy-binding stubs. */ 4507 if (g) 4508 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info); 4509 } 4510 while (g); 4511 4512 got->size = (gg->next->local_gotno 4513 + gg->next->global_gotno 4514 + gg->next->tls_gotno) * MIPS_ELF_GOT_SIZE (abfd); 4515 4516 needed_relocs = 0; 4517 set_got_offset_arg.value = MIPS_ELF_GOT_SIZE (abfd); 4518 set_got_offset_arg.info = info; 4519 for (g = gg->next; g && g->next != gg; g = g->next) 4520 { 4521 unsigned int save_assign; 4522 4523 /* Assign offsets to global GOT entries. */ 4524 save_assign = g->assigned_gotno; 4525 g->assigned_gotno = g->local_gotno; 4526 set_got_offset_arg.g = g; 4527 set_got_offset_arg.needed_relocs = 0; 4528 htab_traverse (g->got_entries, 4529 mips_elf_set_global_got_offset, 4530 &set_got_offset_arg); 4531 needed_relocs += set_got_offset_arg.needed_relocs; 4532 BFD_ASSERT (g->assigned_gotno - g->local_gotno <= g->global_gotno); 4533 4534 g->assigned_gotno = save_assign; 4535 if (info->shared) 4536 { 4537 needed_relocs += g->local_gotno - g->assigned_gotno; 4538 BFD_ASSERT (g->assigned_gotno == g->next->local_gotno 4539 + g->next->global_gotno 4540 + g->next->tls_gotno 4541 + htab->reserved_gotno); 4542 } 4543 } 4544 4545 if (needed_relocs) 4546 mips_elf_allocate_dynamic_relocations (dynobj, info, 4547 needed_relocs); 4548 4549 return TRUE; 4550 } 4551 4552 4553 /* Returns the first relocation of type r_type found, beginning with 4554 RELOCATION. RELEND is one-past-the-end of the relocation table. */ 4555 4556 static const Elf_Internal_Rela * 4557 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type, 4558 const Elf_Internal_Rela *relocation, 4559 const Elf_Internal_Rela *relend) 4560 { 4561 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info); 4562 4563 while (relocation < relend) 4564 { 4565 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type 4566 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx) 4567 return relocation; 4568 4569 ++relocation; 4570 } 4571 4572 /* We didn't find it. */ 4573 return NULL; 4574 } 4575 4576 /* Return whether an input relocation is against a local symbol. */ 4577 4578 static bfd_boolean 4579 mips_elf_local_relocation_p (bfd *input_bfd, 4580 const Elf_Internal_Rela *relocation, 4581 asection **local_sections) 4582 { 4583 unsigned long r_symndx; 4584 Elf_Internal_Shdr *symtab_hdr; 4585 size_t extsymoff; 4586 4587 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 4588 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4589 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info; 4590 4591 if (r_symndx < extsymoff) 4592 return TRUE; 4593 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL) 4594 return TRUE; 4595 4596 return FALSE; 4597 } 4598 4599 /* Sign-extend VALUE, which has the indicated number of BITS. */ 4600 4601 bfd_vma 4602 _bfd_mips_elf_sign_extend (bfd_vma value, int bits) 4603 { 4604 if (value & ((bfd_vma) 1 << (bits - 1))) 4605 /* VALUE is negative. */ 4606 value |= ((bfd_vma) - 1) << bits; 4607 4608 return value; 4609 } 4610 4611 /* Return non-zero if the indicated VALUE has overflowed the maximum 4612 range expressible by a signed number with the indicated number of 4613 BITS. */ 4614 4615 static bfd_boolean 4616 mips_elf_overflow_p (bfd_vma value, int bits) 4617 { 4618 bfd_signed_vma svalue = (bfd_signed_vma) value; 4619 4620 if (svalue > (1 << (bits - 1)) - 1) 4621 /* The value is too big. */ 4622 return TRUE; 4623 else if (svalue < -(1 << (bits - 1))) 4624 /* The value is too small. */ 4625 return TRUE; 4626 4627 /* All is well. */ 4628 return FALSE; 4629 } 4630 4631 /* Calculate the %high function. */ 4632 4633 static bfd_vma 4634 mips_elf_high (bfd_vma value) 4635 { 4636 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff; 4637 } 4638 4639 /* Calculate the %higher function. */ 4640 4641 static bfd_vma 4642 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED) 4643 { 4644 #ifdef BFD64 4645 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff; 4646 #else 4647 abort (); 4648 return MINUS_ONE; 4649 #endif 4650 } 4651 4652 /* Calculate the %highest function. */ 4653 4654 static bfd_vma 4655 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED) 4656 { 4657 #ifdef BFD64 4658 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff; 4659 #else 4660 abort (); 4661 return MINUS_ONE; 4662 #endif 4663 } 4664 4665 /* Create the .compact_rel section. */ 4666 4667 static bfd_boolean 4668 mips_elf_create_compact_rel_section 4669 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED) 4670 { 4671 flagword flags; 4672 register asection *s; 4673 4674 if (bfd_get_section_by_name (abfd, ".compact_rel") == NULL) 4675 { 4676 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED 4677 | SEC_READONLY); 4678 4679 s = bfd_make_section_with_flags (abfd, ".compact_rel", flags); 4680 if (s == NULL 4681 || ! bfd_set_section_alignment (abfd, s, 4682 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 4683 return FALSE; 4684 4685 s->size = sizeof (Elf32_External_compact_rel); 4686 } 4687 4688 return TRUE; 4689 } 4690 4691 /* Create the .got section to hold the global offset table. */ 4692 4693 static bfd_boolean 4694 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 4695 { 4696 flagword flags; 4697 register asection *s; 4698 struct elf_link_hash_entry *h; 4699 struct bfd_link_hash_entry *bh; 4700 struct mips_got_info *g; 4701 bfd_size_type amt; 4702 struct mips_elf_link_hash_table *htab; 4703 4704 htab = mips_elf_hash_table (info); 4705 BFD_ASSERT (htab != NULL); 4706 4707 /* This function may be called more than once. */ 4708 if (htab->sgot) 4709 return TRUE; 4710 4711 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 4712 | SEC_LINKER_CREATED); 4713 4714 /* We have to use an alignment of 2**4 here because this is hardcoded 4715 in the function stub generation and in the linker script. */ 4716 s = bfd_make_section_with_flags (abfd, ".got", flags); 4717 if (s == NULL 4718 || ! bfd_set_section_alignment (abfd, s, 4)) 4719 return FALSE; 4720 htab->sgot = s; 4721 4722 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the 4723 linker script because we don't want to define the symbol if we 4724 are not creating a global offset table. */ 4725 bh = NULL; 4726 if (! (_bfd_generic_link_add_one_symbol 4727 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s, 4728 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 4729 return FALSE; 4730 4731 h = (struct elf_link_hash_entry *) bh; 4732 h->non_elf = 0; 4733 h->def_regular = 1; 4734 h->type = STT_OBJECT; 4735 elf_hash_table (info)->hgot = h; 4736 4737 if (info->shared 4738 && ! bfd_elf_link_record_dynamic_symbol (info, h)) 4739 return FALSE; 4740 4741 amt = sizeof (struct mips_got_info); 4742 g = bfd_alloc (abfd, amt); 4743 if (g == NULL) 4744 return FALSE; 4745 g->global_gotsym = NULL; 4746 g->global_gotno = 0; 4747 g->reloc_only_gotno = 0; 4748 g->tls_gotno = 0; 4749 g->local_gotno = 0; 4750 g->page_gotno = 0; 4751 g->assigned_gotno = 0; 4752 g->bfd2got = NULL; 4753 g->next = NULL; 4754 g->tls_ldm_offset = MINUS_ONE; 4755 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash, 4756 mips_elf_got_entry_eq, NULL); 4757 if (g->got_entries == NULL) 4758 return FALSE; 4759 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash, 4760 mips_got_page_entry_eq, NULL); 4761 if (g->got_page_entries == NULL) 4762 return FALSE; 4763 htab->got_info = g; 4764 mips_elf_section_data (s)->elf.this_hdr.sh_flags 4765 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 4766 4767 /* We also need a .got.plt section when generating PLTs. */ 4768 s = bfd_make_section_with_flags (abfd, ".got.plt", 4769 SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 4770 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 4771 if (s == NULL) 4772 return FALSE; 4773 htab->sgotplt = s; 4774 4775 return TRUE; 4776 } 4777 4778 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or 4779 __GOTT_INDEX__ symbols. These symbols are only special for 4780 shared objects; they are not used in executables. */ 4781 4782 static bfd_boolean 4783 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h) 4784 { 4785 return (mips_elf_hash_table (info)->is_vxworks 4786 && info->shared 4787 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0 4788 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0)); 4789 } 4790 4791 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might 4792 require an la25 stub. See also mips_elf_local_pic_function_p, 4793 which determines whether the destination function ever requires a 4794 stub. */ 4795 4796 static bfd_boolean 4797 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type) 4798 { 4799 /* We specifically ignore branches and jumps from EF_PIC objects, 4800 where the onus is on the compiler or programmer to perform any 4801 necessary initialization of $25. Sometimes such initialization 4802 is unnecessary; for example, -mno-shared functions do not use 4803 the incoming value of $25, and may therefore be called directly. */ 4804 if (PIC_OBJECT_P (input_bfd)) 4805 return FALSE; 4806 4807 switch (r_type) 4808 { 4809 case R_MIPS_26: 4810 case R_MIPS_PC16: 4811 case R_MIPS16_26: 4812 return TRUE; 4813 4814 default: 4815 return FALSE; 4816 } 4817 } 4818 4819 /* Calculate the value produced by the RELOCATION (which comes from 4820 the INPUT_BFD). The ADDEND is the addend to use for this 4821 RELOCATION; RELOCATION->R_ADDEND is ignored. 4822 4823 The result of the relocation calculation is stored in VALUEP. 4824 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field 4825 is a MIPS16 jump to non-MIPS16 code, or vice versa. 4826 4827 This function returns bfd_reloc_continue if the caller need take no 4828 further action regarding this relocation, bfd_reloc_notsupported if 4829 something goes dramatically wrong, bfd_reloc_overflow if an 4830 overflow occurs, and bfd_reloc_ok to indicate success. */ 4831 4832 static bfd_reloc_status_type 4833 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd, 4834 asection *input_section, 4835 struct bfd_link_info *info, 4836 const Elf_Internal_Rela *relocation, 4837 bfd_vma addend, reloc_howto_type *howto, 4838 Elf_Internal_Sym *local_syms, 4839 asection **local_sections, bfd_vma *valuep, 4840 const char **namep, 4841 bfd_boolean *cross_mode_jump_p, 4842 bfd_boolean save_addend) 4843 { 4844 /* The eventual value we will return. */ 4845 bfd_vma value; 4846 /* The address of the symbol against which the relocation is 4847 occurring. */ 4848 bfd_vma symbol = 0; 4849 /* The final GP value to be used for the relocatable, executable, or 4850 shared object file being produced. */ 4851 bfd_vma gp; 4852 /* The place (section offset or address) of the storage unit being 4853 relocated. */ 4854 bfd_vma p; 4855 /* The value of GP used to create the relocatable object. */ 4856 bfd_vma gp0; 4857 /* The offset into the global offset table at which the address of 4858 the relocation entry symbol, adjusted by the addend, resides 4859 during execution. */ 4860 bfd_vma g = MINUS_ONE; 4861 /* The section in which the symbol referenced by the relocation is 4862 located. */ 4863 asection *sec = NULL; 4864 struct mips_elf_link_hash_entry *h = NULL; 4865 /* TRUE if the symbol referred to by this relocation is a local 4866 symbol. */ 4867 bfd_boolean local_p, was_local_p; 4868 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */ 4869 bfd_boolean gp_disp_p = FALSE; 4870 /* TRUE if the symbol referred to by this relocation is 4871 "__gnu_local_gp". */ 4872 bfd_boolean gnu_local_gp_p = FALSE; 4873 Elf_Internal_Shdr *symtab_hdr; 4874 size_t extsymoff; 4875 unsigned long r_symndx; 4876 int r_type; 4877 /* TRUE if overflow occurred during the calculation of the 4878 relocation value. */ 4879 bfd_boolean overflowed_p; 4880 /* TRUE if this relocation refers to a MIPS16 function. */ 4881 bfd_boolean target_is_16_bit_code_p = FALSE; 4882 struct mips_elf_link_hash_table *htab; 4883 bfd *dynobj; 4884 4885 dynobj = elf_hash_table (info)->dynobj; 4886 htab = mips_elf_hash_table (info); 4887 BFD_ASSERT (htab != NULL); 4888 4889 /* Parse the relocation. */ 4890 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info); 4891 r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 4892 p = (input_section->output_section->vma 4893 + input_section->output_offset 4894 + relocation->r_offset); 4895 4896 /* Assume that there will be no overflow. */ 4897 overflowed_p = FALSE; 4898 4899 /* Figure out whether or not the symbol is local, and get the offset 4900 used in the array of hash table entries. */ 4901 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 4902 local_p = mips_elf_local_relocation_p (input_bfd, relocation, 4903 local_sections); 4904 was_local_p = local_p; 4905 if (! elf_bad_symtab (input_bfd)) 4906 extsymoff = symtab_hdr->sh_info; 4907 else 4908 { 4909 /* The symbol table does not follow the rule that local symbols 4910 must come before globals. */ 4911 extsymoff = 0; 4912 } 4913 4914 /* Figure out the value of the symbol. */ 4915 if (local_p) 4916 { 4917 Elf_Internal_Sym *sym; 4918 4919 sym = local_syms + r_symndx; 4920 sec = local_sections[r_symndx]; 4921 4922 symbol = sec->output_section->vma + sec->output_offset; 4923 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION 4924 || (sec->flags & SEC_MERGE)) 4925 symbol += sym->st_value; 4926 if ((sec->flags & SEC_MERGE) 4927 && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 4928 { 4929 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend); 4930 addend -= symbol; 4931 addend += sec->output_section->vma + sec->output_offset; 4932 } 4933 4934 /* MIPS16 text labels should be treated as odd. */ 4935 if (ELF_ST_IS_MIPS16 (sym->st_other)) 4936 ++symbol; 4937 4938 /* Record the name of this symbol, for our caller. */ 4939 *namep = bfd_elf_string_from_elf_section (input_bfd, 4940 symtab_hdr->sh_link, 4941 sym->st_name); 4942 if (*namep == '\0') 4943 *namep = bfd_section_name (input_bfd, sec); 4944 4945 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other); 4946 } 4947 else 4948 { 4949 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */ 4950 4951 /* For global symbols we look up the symbol in the hash-table. */ 4952 h = ((struct mips_elf_link_hash_entry *) 4953 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]); 4954 /* Find the real hash-table entry for this symbol. */ 4955 while (h->root.root.type == bfd_link_hash_indirect 4956 || h->root.root.type == bfd_link_hash_warning) 4957 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 4958 4959 /* Record the name of this symbol, for our caller. */ 4960 *namep = h->root.root.root.string; 4961 4962 /* See if this is the special _gp_disp symbol. Note that such a 4963 symbol must always be a global symbol. */ 4964 if (strcmp (*namep, "_gp_disp") == 0 4965 && ! NEWABI_P (input_bfd)) 4966 { 4967 /* Relocations against _gp_disp are permitted only with 4968 R_MIPS_HI16 and R_MIPS_LO16 relocations. */ 4969 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type)) 4970 return bfd_reloc_notsupported; 4971 4972 gp_disp_p = TRUE; 4973 } 4974 /* See if this is the special _gp symbol. Note that such a 4975 symbol must always be a global symbol. */ 4976 else if (strcmp (*namep, "__gnu_local_gp") == 0) 4977 gnu_local_gp_p = TRUE; 4978 4979 4980 /* If this symbol is defined, calculate its address. Note that 4981 _gp_disp is a magic symbol, always implicitly defined by the 4982 linker, so it's inappropriate to check to see whether or not 4983 its defined. */ 4984 else if ((h->root.root.type == bfd_link_hash_defined 4985 || h->root.root.type == bfd_link_hash_defweak) 4986 && h->root.root.u.def.section) 4987 { 4988 sec = h->root.root.u.def.section; 4989 if (sec->output_section) 4990 symbol = (h->root.root.u.def.value 4991 + sec->output_section->vma 4992 + sec->output_offset); 4993 else 4994 symbol = h->root.root.u.def.value; 4995 } 4996 else if (h->root.root.type == bfd_link_hash_undefweak) 4997 /* We allow relocations against undefined weak symbols, giving 4998 it the value zero, so that you can undefined weak functions 4999 and check to see if they exist by looking at their 5000 addresses. */ 5001 symbol = 0; 5002 else if (info->unresolved_syms_in_objects == RM_IGNORE 5003 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5004 symbol = 0; 5005 else if (strcmp (*namep, SGI_COMPAT (input_bfd) 5006 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0) 5007 { 5008 /* If this is a dynamic link, we should have created a 5009 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol 5010 in in _bfd_mips_elf_create_dynamic_sections. 5011 Otherwise, we should define the symbol with a value of 0. 5012 FIXME: It should probably get into the symbol table 5013 somehow as well. */ 5014 BFD_ASSERT (! info->shared); 5015 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL); 5016 symbol = 0; 5017 } 5018 else if (ELF_MIPS_IS_OPTIONAL (h->root.other)) 5019 { 5020 /* This is an optional symbol - an Irix specific extension to the 5021 ELF spec. Ignore it for now. 5022 XXX - FIXME - there is more to the spec for OPTIONAL symbols 5023 than simply ignoring them, but we do not handle this for now. 5024 For information see the "64-bit ELF Object File Specification" 5025 which is available from here: 5026 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */ 5027 symbol = 0; 5028 } 5029 else if ((*info->callbacks->undefined_symbol) 5030 (info, h->root.root.root.string, input_bfd, 5031 input_section, relocation->r_offset, 5032 (info->unresolved_syms_in_objects == RM_GENERATE_ERROR) 5033 || ELF_ST_VISIBILITY (h->root.other))) 5034 { 5035 return bfd_reloc_undefined; 5036 } 5037 else 5038 { 5039 return bfd_reloc_notsupported; 5040 } 5041 5042 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other); 5043 } 5044 5045 /* If this is a reference to a 16-bit function with a stub, we need 5046 to redirect the relocation to the stub unless: 5047 5048 (a) the relocation is for a MIPS16 JAL; 5049 5050 (b) the relocation is for a MIPS16 PIC call, and there are no 5051 non-MIPS16 uses of the GOT slot; or 5052 5053 (c) the section allows direct references to MIPS16 functions. */ 5054 if (r_type != R_MIPS16_26 5055 && !info->relocatable 5056 && ((h != NULL 5057 && h->fn_stub != NULL 5058 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub)) 5059 || (local_p 5060 && elf_tdata (input_bfd)->local_stubs != NULL 5061 && elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL)) 5062 && !section_allows_mips16_refs_p (input_section)) 5063 { 5064 /* This is a 32- or 64-bit call to a 16-bit function. We should 5065 have already noticed that we were going to need the 5066 stub. */ 5067 if (local_p) 5068 sec = elf_tdata (input_bfd)->local_stubs[r_symndx]; 5069 else 5070 { 5071 BFD_ASSERT (h->need_fn_stub); 5072 sec = h->fn_stub; 5073 } 5074 5075 symbol = sec->output_section->vma + sec->output_offset; 5076 /* The target is 16-bit, but the stub isn't. */ 5077 target_is_16_bit_code_p = FALSE; 5078 } 5079 /* If this is a 16-bit call to a 32- or 64-bit function with a stub, we 5080 need to redirect the call to the stub. Note that we specifically 5081 exclude R_MIPS16_CALL16 from this behavior; indirect calls should 5082 use an indirect stub instead. */ 5083 else if (r_type == R_MIPS16_26 && !info->relocatable 5084 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL)) 5085 || (local_p 5086 && elf_tdata (input_bfd)->local_call_stubs != NULL 5087 && elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL)) 5088 && !target_is_16_bit_code_p) 5089 { 5090 if (local_p) 5091 sec = elf_tdata (input_bfd)->local_call_stubs[r_symndx]; 5092 else 5093 { 5094 /* If both call_stub and call_fp_stub are defined, we can figure 5095 out which one to use by checking which one appears in the input 5096 file. */ 5097 if (h->call_stub != NULL && h->call_fp_stub != NULL) 5098 { 5099 asection *o; 5100 5101 sec = NULL; 5102 for (o = input_bfd->sections; o != NULL; o = o->next) 5103 { 5104 if (CALL_FP_STUB_P (bfd_get_section_name (input_bfd, o))) 5105 { 5106 sec = h->call_fp_stub; 5107 break; 5108 } 5109 } 5110 if (sec == NULL) 5111 sec = h->call_stub; 5112 } 5113 else if (h->call_stub != NULL) 5114 sec = h->call_stub; 5115 else 5116 sec = h->call_fp_stub; 5117 } 5118 5119 BFD_ASSERT (sec->size > 0); 5120 symbol = sec->output_section->vma + sec->output_offset; 5121 } 5122 /* If this is a direct call to a PIC function, redirect to the 5123 non-PIC stub. */ 5124 else if (h != NULL && h->la25_stub 5125 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type)) 5126 symbol = (h->la25_stub->stub_section->output_section->vma 5127 + h->la25_stub->stub_section->output_offset 5128 + h->la25_stub->offset); 5129 5130 /* Calls from 16-bit code to 32-bit code and vice versa require the 5131 mode change. */ 5132 *cross_mode_jump_p = !info->relocatable 5133 && ((r_type == R_MIPS16_26 && !target_is_16_bit_code_p) 5134 || ((r_type == R_MIPS_26 || r_type == R_MIPS_JALR) 5135 && target_is_16_bit_code_p)); 5136 5137 local_p = h == NULL || SYMBOL_REFERENCES_LOCAL (info, &h->root); 5138 5139 gp0 = _bfd_get_gp_value (input_bfd); 5140 gp = _bfd_get_gp_value (abfd); 5141 if (htab->got_info) 5142 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd); 5143 5144 if (gnu_local_gp_p) 5145 symbol = gp; 5146 5147 /* Global R_MIPS_GOT_PAGE relocations are equivalent to R_MIPS_GOT_DISP. 5148 The addend is applied by the corresponding R_MIPS_GOT_OFST. */ 5149 if (r_type == R_MIPS_GOT_PAGE && !local_p) 5150 { 5151 r_type = R_MIPS_GOT_DISP; 5152 addend = 0; 5153 } 5154 5155 /* If we haven't already determined the GOT offset, and we're going 5156 to need it, get it now. */ 5157 switch (r_type) 5158 { 5159 case R_MIPS16_CALL16: 5160 case R_MIPS16_GOT16: 5161 case R_MIPS_CALL16: 5162 case R_MIPS_GOT16: 5163 case R_MIPS_GOT_DISP: 5164 case R_MIPS_GOT_HI16: 5165 case R_MIPS_CALL_HI16: 5166 case R_MIPS_GOT_LO16: 5167 case R_MIPS_CALL_LO16: 5168 case R_MIPS_TLS_GD: 5169 case R_MIPS_TLS_GOTTPREL: 5170 case R_MIPS_TLS_LDM: 5171 /* Find the index into the GOT where this value is located. */ 5172 if (r_type == R_MIPS_TLS_LDM) 5173 { 5174 g = mips_elf_local_got_index (abfd, input_bfd, info, 5175 0, 0, NULL, r_type); 5176 if (g == MINUS_ONE) 5177 return bfd_reloc_outofrange; 5178 } 5179 else if (!local_p) 5180 { 5181 /* On VxWorks, CALL relocations should refer to the .got.plt 5182 entry, which is initialized to point at the PLT stub. */ 5183 if (htab->is_vxworks 5184 && (r_type == R_MIPS_CALL_HI16 5185 || r_type == R_MIPS_CALL_LO16 5186 || call16_reloc_p (r_type))) 5187 { 5188 BFD_ASSERT (addend == 0); 5189 BFD_ASSERT (h->root.needs_plt); 5190 g = mips_elf_gotplt_index (info, &h->root); 5191 } 5192 else 5193 { 5194 BFD_ASSERT (addend == 0); 5195 g = mips_elf_global_got_index (dynobj, input_bfd, 5196 &h->root, r_type, info); 5197 if (h->tls_type == GOT_NORMAL 5198 && !elf_hash_table (info)->dynamic_sections_created) 5199 /* This is a static link. We must initialize the GOT entry. */ 5200 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->sgot->contents + g); 5201 } 5202 } 5203 else if (!htab->is_vxworks 5204 && (call16_reloc_p (r_type) || got16_reloc_p (r_type))) 5205 /* The calculation below does not involve "g". */ 5206 break; 5207 else 5208 { 5209 g = mips_elf_local_got_index (abfd, input_bfd, info, 5210 symbol + addend, r_symndx, h, r_type); 5211 if (g == MINUS_ONE) 5212 return bfd_reloc_outofrange; 5213 } 5214 5215 /* Convert GOT indices to actual offsets. */ 5216 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g); 5217 break; 5218 } 5219 5220 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__ 5221 symbols are resolved by the loader. Add them to .rela.dyn. */ 5222 if (h != NULL && is_gott_symbol (info, &h->root)) 5223 { 5224 Elf_Internal_Rela outrel; 5225 bfd_byte *loc; 5226 asection *s; 5227 5228 s = mips_elf_rel_dyn_section (info, FALSE); 5229 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 5230 5231 outrel.r_offset = (input_section->output_section->vma 5232 + input_section->output_offset 5233 + relocation->r_offset); 5234 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type); 5235 outrel.r_addend = addend; 5236 bfd_elf32_swap_reloca_out (abfd, &outrel, loc); 5237 5238 /* If we've written this relocation for a readonly section, 5239 we need to set DF_TEXTREL again, so that we do not delete the 5240 DT_TEXTREL tag. */ 5241 if (MIPS_ELF_READONLY_SECTION (input_section)) 5242 info->flags |= DF_TEXTREL; 5243 5244 *valuep = 0; 5245 return bfd_reloc_ok; 5246 } 5247 5248 /* Figure out what kind of relocation is being performed. */ 5249 switch (r_type) 5250 { 5251 case R_MIPS_NONE: 5252 return bfd_reloc_continue; 5253 5254 case R_MIPS_16: 5255 value = symbol + _bfd_mips_elf_sign_extend (addend, 16); 5256 overflowed_p = mips_elf_overflow_p (value, 16); 5257 break; 5258 5259 case R_MIPS_32: 5260 case R_MIPS_REL32: 5261 case R_MIPS_64: 5262 if ((info->shared 5263 || (htab->root.dynamic_sections_created 5264 && h != NULL 5265 && h->root.def_dynamic 5266 && !h->root.def_regular 5267 && !h->has_static_relocs)) 5268 && r_symndx != STN_UNDEF 5269 && (h == NULL 5270 || h->root.root.type != bfd_link_hash_undefweak 5271 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT) 5272 && (input_section->flags & SEC_ALLOC) != 0) 5273 { 5274 /* If we're creating a shared library, then we can't know 5275 where the symbol will end up. So, we create a relocation 5276 record in the output, and leave the job up to the dynamic 5277 linker. We must do the same for executable references to 5278 shared library symbols, unless we've decided to use copy 5279 relocs or PLTs instead. */ 5280 value = addend; 5281 if (!mips_elf_create_dynamic_relocation (abfd, 5282 info, 5283 relocation, 5284 h, 5285 sec, 5286 symbol, 5287 &value, 5288 input_section)) 5289 return bfd_reloc_undefined; 5290 } 5291 else 5292 { 5293 if (r_type != R_MIPS_REL32) 5294 value = symbol + addend; 5295 else 5296 value = addend; 5297 } 5298 value &= howto->dst_mask; 5299 break; 5300 5301 case R_MIPS_PC32: 5302 value = symbol + addend - p; 5303 value &= howto->dst_mask; 5304 break; 5305 5306 case R_MIPS16_26: 5307 /* The calculation for R_MIPS16_26 is just the same as for an 5308 R_MIPS_26. It's only the storage of the relocated field into 5309 the output file that's different. That's handled in 5310 mips_elf_perform_relocation. So, we just fall through to the 5311 R_MIPS_26 case here. */ 5312 case R_MIPS_26: 5313 if (was_local_p) 5314 value = ((addend | ((p + 4) & 0xf0000000)) + symbol) >> 2; 5315 else 5316 { 5317 value = (_bfd_mips_elf_sign_extend (addend, 28) + symbol) >> 2; 5318 if (h->root.root.type != bfd_link_hash_undefweak) 5319 overflowed_p = (value >> 26) != ((p + 4) >> 28); 5320 } 5321 value &= howto->dst_mask; 5322 break; 5323 5324 case R_MIPS_TLS_DTPREL_HI16: 5325 value = (mips_elf_high (addend + symbol - dtprel_base (info)) 5326 & howto->dst_mask); 5327 break; 5328 5329 case R_MIPS_TLS_DTPREL_LO16: 5330 case R_MIPS_TLS_DTPREL32: 5331 case R_MIPS_TLS_DTPREL64: 5332 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask; 5333 break; 5334 5335 case R_MIPS_TLS_TPREL_HI16: 5336 value = (mips_elf_high (addend + symbol - tprel_base (info)) 5337 & howto->dst_mask); 5338 break; 5339 5340 case R_MIPS_TLS_TPREL_LO16: 5341 value = (symbol + addend - tprel_base (info)) & howto->dst_mask; 5342 break; 5343 5344 case R_MIPS_HI16: 5345 case R_MIPS16_HI16: 5346 if (!gp_disp_p) 5347 { 5348 value = mips_elf_high (addend + symbol); 5349 value &= howto->dst_mask; 5350 } 5351 else 5352 { 5353 /* For MIPS16 ABI code we generate this sequence 5354 0: li $v0,%hi(_gp_disp) 5355 4: addiupc $v1,%lo(_gp_disp) 5356 8: sll $v0,16 5357 12: addu $v0,$v1 5358 14: move $gp,$v0 5359 So the offsets of hi and lo relocs are the same, but the 5360 $pc is four higher than $t9 would be, so reduce 5361 both reloc addends by 4. */ 5362 if (r_type == R_MIPS16_HI16) 5363 value = mips_elf_high (addend + gp - p - 4); 5364 else 5365 value = mips_elf_high (addend + gp - p); 5366 overflowed_p = mips_elf_overflow_p (value, 16); 5367 } 5368 break; 5369 5370 case R_MIPS_LO16: 5371 case R_MIPS16_LO16: 5372 if (!gp_disp_p) 5373 value = (symbol + addend) & howto->dst_mask; 5374 else 5375 { 5376 /* See the comment for R_MIPS16_HI16 above for the reason 5377 for this conditional. */ 5378 if (r_type == R_MIPS16_LO16) 5379 value = addend + gp - p; 5380 else 5381 value = addend + gp - p + 4; 5382 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation 5383 for overflow. But, on, say, IRIX5, relocations against 5384 _gp_disp are normally generated from the .cpload 5385 pseudo-op. It generates code that normally looks like 5386 this: 5387 5388 lui $gp,%hi(_gp_disp) 5389 addiu $gp,$gp,%lo(_gp_disp) 5390 addu $gp,$gp,$t9 5391 5392 Here $t9 holds the address of the function being called, 5393 as required by the MIPS ELF ABI. The R_MIPS_LO16 5394 relocation can easily overflow in this situation, but the 5395 R_MIPS_HI16 relocation will handle the overflow. 5396 Therefore, we consider this a bug in the MIPS ABI, and do 5397 not check for overflow here. */ 5398 } 5399 break; 5400 5401 case R_MIPS_LITERAL: 5402 /* Because we don't merge literal sections, we can handle this 5403 just like R_MIPS_GPREL16. In the long run, we should merge 5404 shared literals, and then we will need to additional work 5405 here. */ 5406 5407 /* Fall through. */ 5408 5409 case R_MIPS16_GPREL: 5410 /* The R_MIPS16_GPREL performs the same calculation as 5411 R_MIPS_GPREL16, but stores the relocated bits in a different 5412 order. We don't need to do anything special here; the 5413 differences are handled in mips_elf_perform_relocation. */ 5414 case R_MIPS_GPREL16: 5415 /* Only sign-extend the addend if it was extracted from the 5416 instruction. If the addend was separate, leave it alone, 5417 otherwise we may lose significant bits. */ 5418 if (howto->partial_inplace) 5419 addend = _bfd_mips_elf_sign_extend (addend, 16); 5420 value = symbol + addend - gp; 5421 /* If the symbol was local, any earlier relocatable links will 5422 have adjusted its addend with the gp offset, so compensate 5423 for that now. Don't do it for symbols forced local in this 5424 link, though, since they won't have had the gp offset applied 5425 to them before. */ 5426 if (was_local_p) 5427 value += gp0; 5428 overflowed_p = mips_elf_overflow_p (value, 16); 5429 break; 5430 5431 case R_MIPS16_GOT16: 5432 case R_MIPS16_CALL16: 5433 case R_MIPS_GOT16: 5434 case R_MIPS_CALL16: 5435 /* VxWorks does not have separate local and global semantics for 5436 R_MIPS*_GOT16; every relocation evaluates to "G". */ 5437 if (!htab->is_vxworks && local_p) 5438 { 5439 value = mips_elf_got16_entry (abfd, input_bfd, info, 5440 symbol + addend, !was_local_p); 5441 if (value == MINUS_ONE) 5442 return bfd_reloc_outofrange; 5443 value 5444 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5445 overflowed_p = mips_elf_overflow_p (value, 16); 5446 break; 5447 } 5448 5449 /* Fall through. */ 5450 5451 case R_MIPS_TLS_GD: 5452 case R_MIPS_TLS_GOTTPREL: 5453 case R_MIPS_TLS_LDM: 5454 case R_MIPS_GOT_DISP: 5455 value = g; 5456 overflowed_p = mips_elf_overflow_p (value, 16); 5457 break; 5458 5459 case R_MIPS_GPREL32: 5460 value = (addend + symbol + gp0 - gp); 5461 if (!save_addend) 5462 value &= howto->dst_mask; 5463 break; 5464 5465 case R_MIPS_PC16: 5466 case R_MIPS_GNU_REL16_S2: 5467 value = symbol + _bfd_mips_elf_sign_extend (addend, 18) - p; 5468 overflowed_p = mips_elf_overflow_p (value, 18); 5469 value >>= howto->rightshift; 5470 value &= howto->dst_mask; 5471 break; 5472 5473 case R_MIPS_GOT_HI16: 5474 case R_MIPS_CALL_HI16: 5475 /* We're allowed to handle these two relocations identically. 5476 The dynamic linker is allowed to handle the CALL relocations 5477 differently by creating a lazy evaluation stub. */ 5478 value = g; 5479 value = mips_elf_high (value); 5480 value &= howto->dst_mask; 5481 break; 5482 5483 case R_MIPS_GOT_LO16: 5484 case R_MIPS_CALL_LO16: 5485 value = g & howto->dst_mask; 5486 break; 5487 5488 case R_MIPS_GOT_PAGE: 5489 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL); 5490 if (value == MINUS_ONE) 5491 return bfd_reloc_outofrange; 5492 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value); 5493 overflowed_p = mips_elf_overflow_p (value, 16); 5494 break; 5495 5496 case R_MIPS_GOT_OFST: 5497 if (local_p) 5498 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value); 5499 else 5500 value = addend; 5501 overflowed_p = mips_elf_overflow_p (value, 16); 5502 break; 5503 5504 case R_MIPS_SUB: 5505 value = symbol - addend; 5506 value &= howto->dst_mask; 5507 break; 5508 5509 case R_MIPS_HIGHER: 5510 value = mips_elf_higher (addend + symbol); 5511 value &= howto->dst_mask; 5512 break; 5513 5514 case R_MIPS_HIGHEST: 5515 value = mips_elf_highest (addend + symbol); 5516 value &= howto->dst_mask; 5517 break; 5518 5519 case R_MIPS_SCN_DISP: 5520 value = symbol + addend - sec->output_offset; 5521 value &= howto->dst_mask; 5522 break; 5523 5524 case R_MIPS_JALR: 5525 /* This relocation is only a hint. In some cases, we optimize 5526 it into a bal instruction. But we don't try to optimize 5527 when the symbol does not resolve locally. */ 5528 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root)) 5529 return bfd_reloc_continue; 5530 value = symbol + addend; 5531 break; 5532 5533 case R_MIPS_PJUMP: 5534 case R_MIPS_GNU_VTINHERIT: 5535 case R_MIPS_GNU_VTENTRY: 5536 /* We don't do anything with these at present. */ 5537 return bfd_reloc_continue; 5538 5539 default: 5540 /* An unrecognized relocation type. */ 5541 return bfd_reloc_notsupported; 5542 } 5543 5544 /* Store the VALUE for our caller. */ 5545 *valuep = value; 5546 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok; 5547 } 5548 5549 /* Obtain the field relocated by RELOCATION. */ 5550 5551 static bfd_vma 5552 mips_elf_obtain_contents (reloc_howto_type *howto, 5553 const Elf_Internal_Rela *relocation, 5554 bfd *input_bfd, bfd_byte *contents) 5555 { 5556 bfd_vma x; 5557 bfd_byte *location = contents + relocation->r_offset; 5558 5559 /* Obtain the bytes. */ 5560 x = bfd_get ((8 * bfd_get_reloc_size (howto)), input_bfd, location); 5561 5562 return x; 5563 } 5564 5565 /* It has been determined that the result of the RELOCATION is the 5566 VALUE. Use HOWTO to place VALUE into the output file at the 5567 appropriate position. The SECTION is the section to which the 5568 relocation applies. 5569 CROSS_MODE_JUMP_P is true if the relocation field 5570 is a MIPS16 jump to non-MIPS16 code, or vice versa. 5571 5572 Returns FALSE if anything goes wrong. */ 5573 5574 static bfd_boolean 5575 mips_elf_perform_relocation (struct bfd_link_info *info, 5576 reloc_howto_type *howto, 5577 const Elf_Internal_Rela *relocation, 5578 bfd_vma value, bfd *input_bfd, 5579 asection *input_section, bfd_byte *contents, 5580 bfd_boolean cross_mode_jump_p) 5581 { 5582 bfd_vma x; 5583 bfd_byte *location; 5584 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info); 5585 5586 /* Figure out where the relocation is occurring. */ 5587 location = contents + relocation->r_offset; 5588 5589 _bfd_mips16_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location); 5590 5591 /* Obtain the current value. */ 5592 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents); 5593 5594 /* Clear the field we are setting. */ 5595 x &= ~howto->dst_mask; 5596 5597 /* Set the field. */ 5598 x |= (value & howto->dst_mask); 5599 5600 /* If required, turn JAL into JALX. */ 5601 if (cross_mode_jump_p && jal_reloc_p (r_type)) 5602 { 5603 bfd_boolean ok; 5604 bfd_vma opcode = x >> 26; 5605 bfd_vma jalx_opcode; 5606 5607 /* Check to see if the opcode is already JAL or JALX. */ 5608 if (r_type == R_MIPS16_26) 5609 { 5610 ok = ((opcode == 0x6) || (opcode == 0x7)); 5611 jalx_opcode = 0x7; 5612 } 5613 else 5614 { 5615 ok = ((opcode == 0x3) || (opcode == 0x1d)); 5616 jalx_opcode = 0x1d; 5617 } 5618 5619 /* If the opcode is not JAL or JALX, there's a problem. */ 5620 if (!ok) 5621 { 5622 (*_bfd_error_handler) 5623 (_("%B: %A+0x%lx: Direct jumps between ISA modes are not allowed; consider recompiling with interlinking enabled."), 5624 input_bfd, 5625 input_section, 5626 (unsigned long) relocation->r_offset); 5627 bfd_set_error (bfd_error_bad_value); 5628 return FALSE; 5629 } 5630 5631 /* Make this the JALX opcode. */ 5632 x = (x & ~(0x3f << 26)) | (jalx_opcode << 26); 5633 } 5634 5635 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in 5636 range. */ 5637 if (!info->relocatable 5638 && !cross_mode_jump_p 5639 && ((JAL_TO_BAL_P (input_bfd) 5640 && r_type == R_MIPS_26 5641 && (x >> 26) == 0x3) /* jal addr */ 5642 || (JALR_TO_BAL_P (input_bfd) 5643 && r_type == R_MIPS_JALR 5644 && x == 0x0320f809) /* jalr t9 */ 5645 || (JR_TO_B_P (input_bfd) 5646 && r_type == R_MIPS_JALR 5647 && x == 0x03200008))) /* jr t9 */ 5648 { 5649 bfd_vma addr; 5650 bfd_vma dest; 5651 bfd_signed_vma off; 5652 5653 addr = (input_section->output_section->vma 5654 + input_section->output_offset 5655 + relocation->r_offset 5656 + 4); 5657 if (r_type == R_MIPS_26) 5658 dest = (value << 2) | ((addr >> 28) << 28); 5659 else 5660 dest = value; 5661 off = dest - addr; 5662 if (off <= 0x1ffff && off >= -0x20000) 5663 { 5664 if (x == 0x03200008) /* jr t9 */ 5665 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */ 5666 else 5667 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */ 5668 } 5669 } 5670 5671 /* Put the value into the output. */ 5672 bfd_put (8 * bfd_get_reloc_size (howto), input_bfd, x, location); 5673 5674 _bfd_mips16_elf_reloc_shuffle(input_bfd, r_type, !info->relocatable, 5675 location); 5676 5677 return TRUE; 5678 } 5679 5680 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL 5681 is the original relocation, which is now being transformed into a 5682 dynamic relocation. The ADDENDP is adjusted if necessary; the 5683 caller should store the result in place of the original addend. */ 5684 5685 static bfd_boolean 5686 mips_elf_create_dynamic_relocation (bfd *output_bfd, 5687 struct bfd_link_info *info, 5688 const Elf_Internal_Rela *rel, 5689 struct mips_elf_link_hash_entry *h, 5690 asection *sec, bfd_vma symbol, 5691 bfd_vma *addendp, asection *input_section) 5692 { 5693 Elf_Internal_Rela outrel[3]; 5694 asection *sreloc; 5695 bfd *dynobj; 5696 int r_type; 5697 long indx; 5698 bfd_boolean defined_p; 5699 struct mips_elf_link_hash_table *htab; 5700 5701 htab = mips_elf_hash_table (info); 5702 BFD_ASSERT (htab != NULL); 5703 5704 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 5705 dynobj = elf_hash_table (info)->dynobj; 5706 sreloc = mips_elf_rel_dyn_section (info, FALSE); 5707 BFD_ASSERT (sreloc != NULL); 5708 BFD_ASSERT (sreloc->contents != NULL); 5709 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd) 5710 < sreloc->size); 5711 5712 outrel[0].r_offset = 5713 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset); 5714 if (ABI_64_P (output_bfd)) 5715 { 5716 outrel[1].r_offset = 5717 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset); 5718 outrel[2].r_offset = 5719 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset); 5720 } 5721 5722 if (outrel[0].r_offset == MINUS_ONE) 5723 /* The relocation field has been deleted. */ 5724 return TRUE; 5725 5726 if (outrel[0].r_offset == MINUS_TWO) 5727 { 5728 /* The relocation field has been converted into a relative value of 5729 some sort. Functions like _bfd_elf_write_section_eh_frame expect 5730 the field to be fully relocated, so add in the symbol's value. */ 5731 *addendp += symbol; 5732 return TRUE; 5733 } 5734 5735 /* We must now calculate the dynamic symbol table index to use 5736 in the relocation. */ 5737 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root)) 5738 { 5739 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE); 5740 indx = h->root.dynindx; 5741 if (SGI_COMPAT (output_bfd)) 5742 defined_p = h->root.def_regular; 5743 else 5744 /* ??? glibc's ld.so just adds the final GOT entry to the 5745 relocation field. It therefore treats relocs against 5746 defined symbols in the same way as relocs against 5747 undefined symbols. */ 5748 defined_p = FALSE; 5749 } 5750 else 5751 { 5752 if (sec != NULL && bfd_is_abs_section (sec)) 5753 indx = 0; 5754 else if (sec == NULL || sec->owner == NULL) 5755 { 5756 bfd_set_error (bfd_error_bad_value); 5757 return FALSE; 5758 } 5759 else 5760 { 5761 indx = elf_section_data (sec->output_section)->dynindx; 5762 if (indx == 0) 5763 { 5764 asection *osec = htab->root.text_index_section; 5765 indx = elf_section_data (osec)->dynindx; 5766 } 5767 if (indx == 0) 5768 abort (); 5769 } 5770 5771 /* Instead of generating a relocation using the section 5772 symbol, we may as well make it a fully relative 5773 relocation. We want to avoid generating relocations to 5774 local symbols because we used to generate them 5775 incorrectly, without adding the original symbol value, 5776 which is mandated by the ABI for section symbols. In 5777 order to give dynamic loaders and applications time to 5778 phase out the incorrect use, we refrain from emitting 5779 section-relative relocations. It's not like they're 5780 useful, after all. This should be a bit more efficient 5781 as well. */ 5782 /* ??? Although this behavior is compatible with glibc's ld.so, 5783 the ABI says that relocations against STN_UNDEF should have 5784 a symbol value of 0. Irix rld honors this, so relocations 5785 against STN_UNDEF have no effect. */ 5786 if (!SGI_COMPAT (output_bfd)) 5787 indx = 0; 5788 defined_p = TRUE; 5789 } 5790 5791 /* If the relocation was previously an absolute relocation and 5792 this symbol will not be referred to by the relocation, we must 5793 adjust it by the value we give it in the dynamic symbol table. 5794 Otherwise leave the job up to the dynamic linker. */ 5795 if (defined_p && r_type != R_MIPS_REL32) 5796 *addendp += symbol; 5797 5798 if (htab->is_vxworks) 5799 /* VxWorks uses non-relative relocations for this. */ 5800 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32); 5801 else 5802 /* The relocation is always an REL32 relocation because we don't 5803 know where the shared library will wind up at load-time. */ 5804 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx, 5805 R_MIPS_REL32); 5806 5807 /* For strict adherence to the ABI specification, we should 5808 generate a R_MIPS_64 relocation record by itself before the 5809 _REL32/_64 record as well, such that the addend is read in as 5810 a 64-bit value (REL32 is a 32-bit relocation, after all). 5811 However, since none of the existing ELF64 MIPS dynamic 5812 loaders seems to care, we don't waste space with these 5813 artificial relocations. If this turns out to not be true, 5814 mips_elf_allocate_dynamic_relocation() should be tweaked so 5815 as to make room for a pair of dynamic relocations per 5816 invocation if ABI_64_P, and here we should generate an 5817 additional relocation record with R_MIPS_64 by itself for a 5818 NULL symbol before this relocation record. */ 5819 outrel[1].r_info = ELF_R_INFO (output_bfd, 0, 5820 ABI_64_P (output_bfd) 5821 ? R_MIPS_64 5822 : R_MIPS_NONE); 5823 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE); 5824 5825 /* Adjust the output offset of the relocation to reference the 5826 correct location in the output file. */ 5827 outrel[0].r_offset += (input_section->output_section->vma 5828 + input_section->output_offset); 5829 outrel[1].r_offset += (input_section->output_section->vma 5830 + input_section->output_offset); 5831 outrel[2].r_offset += (input_section->output_section->vma 5832 + input_section->output_offset); 5833 5834 /* Put the relocation back out. We have to use the special 5835 relocation outputter in the 64-bit case since the 64-bit 5836 relocation format is non-standard. */ 5837 if (ABI_64_P (output_bfd)) 5838 { 5839 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out) 5840 (output_bfd, &outrel[0], 5841 (sreloc->contents 5842 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel))); 5843 } 5844 else if (htab->is_vxworks) 5845 { 5846 /* VxWorks uses RELA rather than REL dynamic relocations. */ 5847 outrel[0].r_addend = *addendp; 5848 bfd_elf32_swap_reloca_out 5849 (output_bfd, &outrel[0], 5850 (sreloc->contents 5851 + sreloc->reloc_count * sizeof (Elf32_External_Rela))); 5852 } 5853 else 5854 bfd_elf32_swap_reloc_out 5855 (output_bfd, &outrel[0], 5856 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel))); 5857 5858 /* We've now added another relocation. */ 5859 ++sreloc->reloc_count; 5860 5861 /* Make sure the output section is writable. The dynamic linker 5862 will be writing to it. */ 5863 elf_section_data (input_section->output_section)->this_hdr.sh_flags 5864 |= SHF_WRITE; 5865 5866 /* On IRIX5, make an entry of compact relocation info. */ 5867 if (IRIX_COMPAT (output_bfd) == ict_irix5) 5868 { 5869 asection *scpt = bfd_get_section_by_name (dynobj, ".compact_rel"); 5870 bfd_byte *cr; 5871 5872 if (scpt) 5873 { 5874 Elf32_crinfo cptrel; 5875 5876 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG); 5877 cptrel.vaddr = (rel->r_offset 5878 + input_section->output_section->vma 5879 + input_section->output_offset); 5880 if (r_type == R_MIPS_REL32) 5881 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32); 5882 else 5883 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD); 5884 mips_elf_set_cr_dist2to (cptrel, 0); 5885 cptrel.konst = *addendp; 5886 5887 cr = (scpt->contents 5888 + sizeof (Elf32_External_compact_rel)); 5889 mips_elf_set_cr_relvaddr (cptrel, 0); 5890 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel, 5891 ((Elf32_External_crinfo *) cr 5892 + scpt->reloc_count)); 5893 ++scpt->reloc_count; 5894 } 5895 } 5896 5897 /* If we've written this relocation for a readonly section, 5898 we need to set DF_TEXTREL again, so that we do not delete the 5899 DT_TEXTREL tag. */ 5900 if (MIPS_ELF_READONLY_SECTION (input_section)) 5901 info->flags |= DF_TEXTREL; 5902 5903 return TRUE; 5904 } 5905 5906 /* Return the MACH for a MIPS e_flags value. */ 5907 5908 unsigned long 5909 _bfd_elf_mips_mach (flagword flags) 5910 { 5911 switch (flags & EF_MIPS_MACH) 5912 { 5913 case E_MIPS_MACH_3900: 5914 return bfd_mach_mips3900; 5915 5916 case E_MIPS_MACH_4010: 5917 return bfd_mach_mips4010; 5918 5919 case E_MIPS_MACH_4100: 5920 return bfd_mach_mips4100; 5921 5922 case E_MIPS_MACH_4111: 5923 return bfd_mach_mips4111; 5924 5925 case E_MIPS_MACH_4120: 5926 return bfd_mach_mips4120; 5927 5928 case E_MIPS_MACH_4650: 5929 return bfd_mach_mips4650; 5930 5931 case E_MIPS_MACH_5400: 5932 return bfd_mach_mips5400; 5933 5934 case E_MIPS_MACH_5500: 5935 return bfd_mach_mips5500; 5936 5937 case E_MIPS_MACH_9000: 5938 return bfd_mach_mips9000; 5939 5940 case E_MIPS_MACH_SB1: 5941 return bfd_mach_mips_sb1; 5942 5943 case E_MIPS_MACH_LS2E: 5944 return bfd_mach_mips_loongson_2e; 5945 5946 case E_MIPS_MACH_LS2F: 5947 return bfd_mach_mips_loongson_2f; 5948 5949 case E_MIPS_MACH_LS3A: 5950 return bfd_mach_mips_loongson_3a; 5951 5952 case E_MIPS_MACH_OCTEON: 5953 return bfd_mach_mips_octeon; 5954 5955 case E_MIPS_MACH_XLR: 5956 return bfd_mach_mips_xlr; 5957 5958 default: 5959 switch (flags & EF_MIPS_ARCH) 5960 { 5961 default: 5962 case E_MIPS_ARCH_1: 5963 return bfd_mach_mips3000; 5964 5965 case E_MIPS_ARCH_2: 5966 return bfd_mach_mips6000; 5967 5968 case E_MIPS_ARCH_3: 5969 return bfd_mach_mips4000; 5970 5971 case E_MIPS_ARCH_4: 5972 return bfd_mach_mips8000; 5973 5974 case E_MIPS_ARCH_5: 5975 return bfd_mach_mips5; 5976 5977 case E_MIPS_ARCH_32: 5978 return bfd_mach_mipsisa32; 5979 5980 case E_MIPS_ARCH_64: 5981 return bfd_mach_mipsisa64; 5982 5983 case E_MIPS_ARCH_32R2: 5984 return bfd_mach_mipsisa32r2; 5985 5986 case E_MIPS_ARCH_64R2: 5987 return bfd_mach_mipsisa64r2; 5988 } 5989 } 5990 5991 return 0; 5992 } 5993 5994 /* Return printable name for ABI. */ 5995 5996 static INLINE char * 5997 elf_mips_abi_name (bfd *abfd) 5998 { 5999 flagword flags; 6000 6001 flags = elf_elfheader (abfd)->e_flags; 6002 switch (flags & EF_MIPS_ABI) 6003 { 6004 case 0: 6005 if (ABI_N32_P (abfd)) 6006 return "N32"; 6007 else if (ABI_64_P (abfd)) 6008 return "64"; 6009 else 6010 return "none"; 6011 case E_MIPS_ABI_O32: 6012 return "O32"; 6013 case E_MIPS_ABI_O64: 6014 return "O64"; 6015 case E_MIPS_ABI_EABI32: 6016 return "EABI32"; 6017 case E_MIPS_ABI_EABI64: 6018 return "EABI64"; 6019 default: 6020 return "unknown abi"; 6021 } 6022 } 6023 6024 /* MIPS ELF uses two common sections. One is the usual one, and the 6025 other is for small objects. All the small objects are kept 6026 together, and then referenced via the gp pointer, which yields 6027 faster assembler code. This is what we use for the small common 6028 section. This approach is copied from ecoff.c. */ 6029 static asection mips_elf_scom_section; 6030 static asymbol mips_elf_scom_symbol; 6031 static asymbol *mips_elf_scom_symbol_ptr; 6032 6033 /* MIPS ELF also uses an acommon section, which represents an 6034 allocated common symbol which may be overridden by a 6035 definition in a shared library. */ 6036 static asection mips_elf_acom_section; 6037 static asymbol mips_elf_acom_symbol; 6038 static asymbol *mips_elf_acom_symbol_ptr; 6039 6040 /* This is used for both the 32-bit and the 64-bit ABI. */ 6041 6042 void 6043 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym) 6044 { 6045 elf_symbol_type *elfsym; 6046 6047 /* Handle the special MIPS section numbers that a symbol may use. */ 6048 elfsym = (elf_symbol_type *) asym; 6049 switch (elfsym->internal_elf_sym.st_shndx) 6050 { 6051 case SHN_MIPS_ACOMMON: 6052 /* This section is used in a dynamically linked executable file. 6053 It is an allocated common section. The dynamic linker can 6054 either resolve these symbols to something in a shared 6055 library, or it can just leave them here. For our purposes, 6056 we can consider these symbols to be in a new section. */ 6057 if (mips_elf_acom_section.name == NULL) 6058 { 6059 /* Initialize the acommon section. */ 6060 mips_elf_acom_section.name = ".acommon"; 6061 mips_elf_acom_section.flags = SEC_ALLOC; 6062 mips_elf_acom_section.output_section = &mips_elf_acom_section; 6063 mips_elf_acom_section.symbol = &mips_elf_acom_symbol; 6064 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr; 6065 mips_elf_acom_symbol.name = ".acommon"; 6066 mips_elf_acom_symbol.flags = BSF_SECTION_SYM; 6067 mips_elf_acom_symbol.section = &mips_elf_acom_section; 6068 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol; 6069 } 6070 asym->section = &mips_elf_acom_section; 6071 break; 6072 6073 case SHN_COMMON: 6074 /* Common symbols less than the GP size are automatically 6075 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */ 6076 if (asym->value > elf_gp_size (abfd) 6077 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS 6078 || IRIX_COMPAT (abfd) == ict_irix6) 6079 break; 6080 /* Fall through. */ 6081 case SHN_MIPS_SCOMMON: 6082 if (mips_elf_scom_section.name == NULL) 6083 { 6084 /* Initialize the small common section. */ 6085 mips_elf_scom_section.name = ".scommon"; 6086 mips_elf_scom_section.flags = SEC_IS_COMMON; 6087 mips_elf_scom_section.output_section = &mips_elf_scom_section; 6088 mips_elf_scom_section.symbol = &mips_elf_scom_symbol; 6089 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr; 6090 mips_elf_scom_symbol.name = ".scommon"; 6091 mips_elf_scom_symbol.flags = BSF_SECTION_SYM; 6092 mips_elf_scom_symbol.section = &mips_elf_scom_section; 6093 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol; 6094 } 6095 asym->section = &mips_elf_scom_section; 6096 asym->value = elfsym->internal_elf_sym.st_size; 6097 break; 6098 6099 case SHN_MIPS_SUNDEFINED: 6100 asym->section = bfd_und_section_ptr; 6101 break; 6102 6103 case SHN_MIPS_TEXT: 6104 { 6105 asection *section = bfd_get_section_by_name (abfd, ".text"); 6106 6107 BFD_ASSERT (SGI_COMPAT (abfd)); 6108 if (section != NULL) 6109 { 6110 asym->section = section; 6111 /* MIPS_TEXT is a bit special, the address is not an offset 6112 to the base of the .text section. So substract the section 6113 base address to make it an offset. */ 6114 asym->value -= section->vma; 6115 } 6116 } 6117 break; 6118 6119 case SHN_MIPS_DATA: 6120 { 6121 asection *section = bfd_get_section_by_name (abfd, ".data"); 6122 6123 BFD_ASSERT (SGI_COMPAT (abfd)); 6124 if (section != NULL) 6125 { 6126 asym->section = section; 6127 /* MIPS_DATA is a bit special, the address is not an offset 6128 to the base of the .data section. So substract the section 6129 base address to make it an offset. */ 6130 asym->value -= section->vma; 6131 } 6132 } 6133 break; 6134 } 6135 6136 /* If this is an odd-valued function symbol, assume it's a MIPS16 one. */ 6137 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC 6138 && (asym->value & 1) != 0) 6139 { 6140 asym->value--; 6141 elfsym->internal_elf_sym.st_other 6142 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other); 6143 } 6144 } 6145 6146 /* Implement elf_backend_eh_frame_address_size. This differs from 6147 the default in the way it handles EABI64. 6148 6149 EABI64 was originally specified as an LP64 ABI, and that is what 6150 -mabi=eabi normally gives on a 64-bit target. However, gcc has 6151 historically accepted the combination of -mabi=eabi and -mlong32, 6152 and this ILP32 variation has become semi-official over time. 6153 Both forms use elf32 and have pointer-sized FDE addresses. 6154 6155 If an EABI object was generated by GCC 4.0 or above, it will have 6156 an empty .gcc_compiled_longXX section, where XX is the size of longs 6157 in bits. Unfortunately, ILP32 objects generated by earlier compilers 6158 have no special marking to distinguish them from LP64 objects. 6159 6160 We don't want users of the official LP64 ABI to be punished for the 6161 existence of the ILP32 variant, but at the same time, we don't want 6162 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects. 6163 We therefore take the following approach: 6164 6165 - If ABFD contains a .gcc_compiled_longXX section, use it to 6166 determine the pointer size. 6167 6168 - Otherwise check the type of the first relocation. Assume that 6169 the LP64 ABI is being used if the relocation is of type R_MIPS_64. 6170 6171 - Otherwise punt. 6172 6173 The second check is enough to detect LP64 objects generated by pre-4.0 6174 compilers because, in the kind of output generated by those compilers, 6175 the first relocation will be associated with either a CIE personality 6176 routine or an FDE start address. Furthermore, the compilers never 6177 used a special (non-pointer) encoding for this ABI. 6178 6179 Checking the relocation type should also be safe because there is no 6180 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never 6181 did so. */ 6182 6183 unsigned int 6184 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, asection *sec) 6185 { 6186 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64) 6187 return 8; 6188 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 6189 { 6190 bfd_boolean long32_p, long64_p; 6191 6192 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0; 6193 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0; 6194 if (long32_p && long64_p) 6195 return 0; 6196 if (long32_p) 6197 return 4; 6198 if (long64_p) 6199 return 8; 6200 6201 if (sec->reloc_count > 0 6202 && elf_section_data (sec)->relocs != NULL 6203 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info) 6204 == R_MIPS_64)) 6205 return 8; 6206 6207 return 0; 6208 } 6209 return 4; 6210 } 6211 6212 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP 6213 relocations against two unnamed section symbols to resolve to the 6214 same address. For example, if we have code like: 6215 6216 lw $4,%got_disp(.data)($gp) 6217 lw $25,%got_disp(.text)($gp) 6218 jalr $25 6219 6220 then the linker will resolve both relocations to .data and the program 6221 will jump there rather than to .text. 6222 6223 We can work around this problem by giving names to local section symbols. 6224 This is also what the MIPSpro tools do. */ 6225 6226 bfd_boolean 6227 _bfd_mips_elf_name_local_section_symbols (bfd *abfd) 6228 { 6229 return SGI_COMPAT (abfd); 6230 } 6231 6232 /* Work over a section just before writing it out. This routine is 6233 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize 6234 sections that need the SHF_MIPS_GPREL flag by name; there has to be 6235 a better way. */ 6236 6237 bfd_boolean 6238 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr) 6239 { 6240 if (hdr->sh_type == SHT_MIPS_REGINFO 6241 && hdr->sh_size > 0) 6242 { 6243 bfd_byte buf[4]; 6244 6245 BFD_ASSERT (hdr->sh_size == sizeof (Elf32_External_RegInfo)); 6246 BFD_ASSERT (hdr->contents == NULL); 6247 6248 if (bfd_seek (abfd, 6249 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4, 6250 SEEK_SET) != 0) 6251 return FALSE; 6252 H_PUT_32 (abfd, elf_gp (abfd), buf); 6253 if (bfd_bwrite (buf, 4, abfd) != 4) 6254 return FALSE; 6255 } 6256 6257 if (hdr->sh_type == SHT_MIPS_OPTIONS 6258 && hdr->bfd_section != NULL 6259 && mips_elf_section_data (hdr->bfd_section) != NULL 6260 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL) 6261 { 6262 bfd_byte *contents, *l, *lend; 6263 6264 /* We stored the section contents in the tdata field in the 6265 set_section_contents routine. We save the section contents 6266 so that we don't have to read them again. 6267 At this point we know that elf_gp is set, so we can look 6268 through the section contents to see if there is an 6269 ODK_REGINFO structure. */ 6270 6271 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata; 6272 l = contents; 6273 lend = contents + hdr->sh_size; 6274 while (l + sizeof (Elf_External_Options) <= lend) 6275 { 6276 Elf_Internal_Options intopt; 6277 6278 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6279 &intopt); 6280 if (intopt.size < sizeof (Elf_External_Options)) 6281 { 6282 (*_bfd_error_handler) 6283 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6284 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6285 break; 6286 } 6287 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6288 { 6289 bfd_byte buf[8]; 6290 6291 if (bfd_seek (abfd, 6292 (hdr->sh_offset 6293 + (l - contents) 6294 + sizeof (Elf_External_Options) 6295 + (sizeof (Elf64_External_RegInfo) - 8)), 6296 SEEK_SET) != 0) 6297 return FALSE; 6298 H_PUT_64 (abfd, elf_gp (abfd), buf); 6299 if (bfd_bwrite (buf, 8, abfd) != 8) 6300 return FALSE; 6301 } 6302 else if (intopt.kind == ODK_REGINFO) 6303 { 6304 bfd_byte buf[4]; 6305 6306 if (bfd_seek (abfd, 6307 (hdr->sh_offset 6308 + (l - contents) 6309 + sizeof (Elf_External_Options) 6310 + (sizeof (Elf32_External_RegInfo) - 4)), 6311 SEEK_SET) != 0) 6312 return FALSE; 6313 H_PUT_32 (abfd, elf_gp (abfd), buf); 6314 if (bfd_bwrite (buf, 4, abfd) != 4) 6315 return FALSE; 6316 } 6317 l += intopt.size; 6318 } 6319 } 6320 6321 if (hdr->bfd_section != NULL) 6322 { 6323 const char *name = bfd_get_section_name (abfd, hdr->bfd_section); 6324 6325 /* .sbss is not handled specially here because the GNU/Linux 6326 prelinker can convert .sbss from NOBITS to PROGBITS and 6327 changing it back to NOBITS breaks the binary. The entry in 6328 _bfd_mips_elf_special_sections will ensure the correct flags 6329 are set on .sbss if BFD creates it without reading it from an 6330 input file, and without special handling here the flags set 6331 on it in an input file will be followed. */ 6332 if (strcmp (name, ".sdata") == 0 6333 || strcmp (name, ".lit8") == 0 6334 || strcmp (name, ".lit4") == 0) 6335 { 6336 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL; 6337 hdr->sh_type = SHT_PROGBITS; 6338 } 6339 else if (strcmp (name, ".srdata") == 0) 6340 { 6341 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL; 6342 hdr->sh_type = SHT_PROGBITS; 6343 } 6344 else if (strcmp (name, ".compact_rel") == 0) 6345 { 6346 hdr->sh_flags = 0; 6347 hdr->sh_type = SHT_PROGBITS; 6348 } 6349 else if (strcmp (name, ".rtproc") == 0) 6350 { 6351 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0) 6352 { 6353 unsigned int adjust; 6354 6355 adjust = hdr->sh_size % hdr->sh_addralign; 6356 if (adjust != 0) 6357 hdr->sh_size += hdr->sh_addralign - adjust; 6358 } 6359 } 6360 } 6361 6362 return TRUE; 6363 } 6364 6365 /* Handle a MIPS specific section when reading an object file. This 6366 is called when elfcode.h finds a section with an unknown type. 6367 This routine supports both the 32-bit and 64-bit ELF ABI. 6368 6369 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure 6370 how to. */ 6371 6372 bfd_boolean 6373 _bfd_mips_elf_section_from_shdr (bfd *abfd, 6374 Elf_Internal_Shdr *hdr, 6375 const char *name, 6376 int shindex) 6377 { 6378 flagword flags = 0; 6379 6380 /* There ought to be a place to keep ELF backend specific flags, but 6381 at the moment there isn't one. We just keep track of the 6382 sections by their name, instead. Fortunately, the ABI gives 6383 suggested names for all the MIPS specific sections, so we will 6384 probably get away with this. */ 6385 switch (hdr->sh_type) 6386 { 6387 case SHT_MIPS_LIBLIST: 6388 if (strcmp (name, ".liblist") != 0) 6389 return FALSE; 6390 break; 6391 case SHT_MIPS_MSYM: 6392 if (strcmp (name, ".msym") != 0) 6393 return FALSE; 6394 break; 6395 case SHT_MIPS_CONFLICT: 6396 if (strcmp (name, ".conflict") != 0) 6397 return FALSE; 6398 break; 6399 case SHT_MIPS_GPTAB: 6400 if (! CONST_STRNEQ (name, ".gptab.")) 6401 return FALSE; 6402 break; 6403 case SHT_MIPS_UCODE: 6404 if (strcmp (name, ".ucode") != 0) 6405 return FALSE; 6406 break; 6407 case SHT_MIPS_DEBUG: 6408 if (strcmp (name, ".mdebug") != 0) 6409 return FALSE; 6410 flags = SEC_DEBUGGING; 6411 break; 6412 case SHT_MIPS_REGINFO: 6413 if (strcmp (name, ".reginfo") != 0 6414 || hdr->sh_size != sizeof (Elf32_External_RegInfo)) 6415 return FALSE; 6416 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE); 6417 break; 6418 case SHT_MIPS_IFACE: 6419 if (strcmp (name, ".MIPS.interfaces") != 0) 6420 return FALSE; 6421 break; 6422 case SHT_MIPS_CONTENT: 6423 if (! CONST_STRNEQ (name, ".MIPS.content")) 6424 return FALSE; 6425 break; 6426 case SHT_MIPS_OPTIONS: 6427 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 6428 return FALSE; 6429 break; 6430 case SHT_MIPS_DWARF: 6431 if (! CONST_STRNEQ (name, ".debug_") 6432 && ! CONST_STRNEQ (name, ".zdebug_")) 6433 return FALSE; 6434 break; 6435 case SHT_MIPS_SYMBOL_LIB: 6436 if (strcmp (name, ".MIPS.symlib") != 0) 6437 return FALSE; 6438 break; 6439 case SHT_MIPS_EVENTS: 6440 if (! CONST_STRNEQ (name, ".MIPS.events") 6441 && ! CONST_STRNEQ (name, ".MIPS.post_rel")) 6442 return FALSE; 6443 break; 6444 default: 6445 break; 6446 } 6447 6448 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 6449 return FALSE; 6450 6451 if (flags) 6452 { 6453 if (! bfd_set_section_flags (abfd, hdr->bfd_section, 6454 (bfd_get_section_flags (abfd, 6455 hdr->bfd_section) 6456 | flags))) 6457 return FALSE; 6458 } 6459 6460 /* FIXME: We should record sh_info for a .gptab section. */ 6461 6462 /* For a .reginfo section, set the gp value in the tdata information 6463 from the contents of this section. We need the gp value while 6464 processing relocs, so we just get it now. The .reginfo section 6465 is not used in the 64-bit MIPS ELF ABI. */ 6466 if (hdr->sh_type == SHT_MIPS_REGINFO) 6467 { 6468 Elf32_External_RegInfo ext; 6469 Elf32_RegInfo s; 6470 6471 if (! bfd_get_section_contents (abfd, hdr->bfd_section, 6472 &ext, 0, sizeof ext)) 6473 return FALSE; 6474 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s); 6475 elf_gp (abfd) = s.ri_gp_value; 6476 } 6477 6478 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and 6479 set the gp value based on what we find. We may see both 6480 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case, 6481 they should agree. */ 6482 if (hdr->sh_type == SHT_MIPS_OPTIONS) 6483 { 6484 bfd_byte *contents, *l, *lend; 6485 6486 contents = bfd_malloc (hdr->sh_size); 6487 if (contents == NULL) 6488 return FALSE; 6489 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents, 6490 0, hdr->sh_size)) 6491 { 6492 free (contents); 6493 return FALSE; 6494 } 6495 l = contents; 6496 lend = contents + hdr->sh_size; 6497 while (l + sizeof (Elf_External_Options) <= lend) 6498 { 6499 Elf_Internal_Options intopt; 6500 6501 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l, 6502 &intopt); 6503 if (intopt.size < sizeof (Elf_External_Options)) 6504 { 6505 (*_bfd_error_handler) 6506 (_("%B: Warning: bad `%s' option size %u smaller than its header"), 6507 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size); 6508 break; 6509 } 6510 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO) 6511 { 6512 Elf64_Internal_RegInfo intreg; 6513 6514 bfd_mips_elf64_swap_reginfo_in 6515 (abfd, 6516 ((Elf64_External_RegInfo *) 6517 (l + sizeof (Elf_External_Options))), 6518 &intreg); 6519 elf_gp (abfd) = intreg.ri_gp_value; 6520 } 6521 else if (intopt.kind == ODK_REGINFO) 6522 { 6523 Elf32_RegInfo intreg; 6524 6525 bfd_mips_elf32_swap_reginfo_in 6526 (abfd, 6527 ((Elf32_External_RegInfo *) 6528 (l + sizeof (Elf_External_Options))), 6529 &intreg); 6530 elf_gp (abfd) = intreg.ri_gp_value; 6531 } 6532 l += intopt.size; 6533 } 6534 free (contents); 6535 } 6536 6537 return TRUE; 6538 } 6539 6540 /* Set the correct type for a MIPS ELF section. We do this by the 6541 section name, which is a hack, but ought to work. This routine is 6542 used by both the 32-bit and the 64-bit ABI. */ 6543 6544 bfd_boolean 6545 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec) 6546 { 6547 const char *name = bfd_get_section_name (abfd, sec); 6548 6549 if (strcmp (name, ".liblist") == 0) 6550 { 6551 hdr->sh_type = SHT_MIPS_LIBLIST; 6552 hdr->sh_info = sec->size / sizeof (Elf32_Lib); 6553 /* The sh_link field is set in final_write_processing. */ 6554 } 6555 else if (strcmp (name, ".conflict") == 0) 6556 hdr->sh_type = SHT_MIPS_CONFLICT; 6557 else if (CONST_STRNEQ (name, ".gptab.")) 6558 { 6559 hdr->sh_type = SHT_MIPS_GPTAB; 6560 hdr->sh_entsize = sizeof (Elf32_External_gptab); 6561 /* The sh_info field is set in final_write_processing. */ 6562 } 6563 else if (strcmp (name, ".ucode") == 0) 6564 hdr->sh_type = SHT_MIPS_UCODE; 6565 else if (strcmp (name, ".mdebug") == 0) 6566 { 6567 hdr->sh_type = SHT_MIPS_DEBUG; 6568 /* In a shared object on IRIX 5.3, the .mdebug section has an 6569 entsize of 0. FIXME: Does this matter? */ 6570 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0) 6571 hdr->sh_entsize = 0; 6572 else 6573 hdr->sh_entsize = 1; 6574 } 6575 else if (strcmp (name, ".reginfo") == 0) 6576 { 6577 hdr->sh_type = SHT_MIPS_REGINFO; 6578 /* In a shared object on IRIX 5.3, the .reginfo section has an 6579 entsize of 0x18. FIXME: Does this matter? */ 6580 if (SGI_COMPAT (abfd)) 6581 { 6582 if ((abfd->flags & DYNAMIC) != 0) 6583 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 6584 else 6585 hdr->sh_entsize = 1; 6586 } 6587 else 6588 hdr->sh_entsize = sizeof (Elf32_External_RegInfo); 6589 } 6590 else if (SGI_COMPAT (abfd) 6591 && (strcmp (name, ".hash") == 0 6592 || strcmp (name, ".dynamic") == 0 6593 || strcmp (name, ".dynstr") == 0)) 6594 { 6595 if (SGI_COMPAT (abfd)) 6596 hdr->sh_entsize = 0; 6597 #if 0 6598 /* This isn't how the IRIX6 linker behaves. */ 6599 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES; 6600 #endif 6601 } 6602 else if (strcmp (name, ".got") == 0 6603 || strcmp (name, ".srdata") == 0 6604 || strcmp (name, ".sdata") == 0 6605 || strcmp (name, ".sbss") == 0 6606 || strcmp (name, ".lit4") == 0 6607 || strcmp (name, ".lit8") == 0) 6608 hdr->sh_flags |= SHF_MIPS_GPREL; 6609 else if (strcmp (name, ".MIPS.interfaces") == 0) 6610 { 6611 hdr->sh_type = SHT_MIPS_IFACE; 6612 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 6613 } 6614 else if (CONST_STRNEQ (name, ".MIPS.content")) 6615 { 6616 hdr->sh_type = SHT_MIPS_CONTENT; 6617 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 6618 /* The sh_info field is set in final_write_processing. */ 6619 } 6620 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name)) 6621 { 6622 hdr->sh_type = SHT_MIPS_OPTIONS; 6623 hdr->sh_entsize = 1; 6624 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 6625 } 6626 else if (CONST_STRNEQ (name, ".debug_") 6627 || CONST_STRNEQ (name, ".zdebug_")) 6628 { 6629 hdr->sh_type = SHT_MIPS_DWARF; 6630 6631 /* Irix facilities such as libexc expect a single .debug_frame 6632 per executable, the system ones have NOSTRIP set and the linker 6633 doesn't merge sections with different flags so ... */ 6634 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame")) 6635 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 6636 } 6637 else if (strcmp (name, ".MIPS.symlib") == 0) 6638 { 6639 hdr->sh_type = SHT_MIPS_SYMBOL_LIB; 6640 /* The sh_link and sh_info fields are set in 6641 final_write_processing. */ 6642 } 6643 else if (CONST_STRNEQ (name, ".MIPS.events") 6644 || CONST_STRNEQ (name, ".MIPS.post_rel")) 6645 { 6646 hdr->sh_type = SHT_MIPS_EVENTS; 6647 hdr->sh_flags |= SHF_MIPS_NOSTRIP; 6648 /* The sh_link field is set in final_write_processing. */ 6649 } 6650 else if (strcmp (name, ".msym") == 0) 6651 { 6652 hdr->sh_type = SHT_MIPS_MSYM; 6653 hdr->sh_flags |= SHF_ALLOC; 6654 hdr->sh_entsize = 8; 6655 } 6656 6657 /* The generic elf_fake_sections will set up REL_HDR using the default 6658 kind of relocations. We used to set up a second header for the 6659 non-default kind of relocations here, but only NewABI would use 6660 these, and the IRIX ld doesn't like resulting empty RELA sections. 6661 Thus we create those header only on demand now. */ 6662 6663 return TRUE; 6664 } 6665 6666 /* Given a BFD section, try to locate the corresponding ELF section 6667 index. This is used by both the 32-bit and the 64-bit ABI. 6668 Actually, it's not clear to me that the 64-bit ABI supports these, 6669 but for non-PIC objects we will certainly want support for at least 6670 the .scommon section. */ 6671 6672 bfd_boolean 6673 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED, 6674 asection *sec, int *retval) 6675 { 6676 if (strcmp (bfd_get_section_name (abfd, sec), ".scommon") == 0) 6677 { 6678 *retval = SHN_MIPS_SCOMMON; 6679 return TRUE; 6680 } 6681 if (strcmp (bfd_get_section_name (abfd, sec), ".acommon") == 0) 6682 { 6683 *retval = SHN_MIPS_ACOMMON; 6684 return TRUE; 6685 } 6686 return FALSE; 6687 } 6688 6689 /* Hook called by the linker routine which adds symbols from an object 6690 file. We must handle the special MIPS section numbers here. */ 6691 6692 bfd_boolean 6693 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 6694 Elf_Internal_Sym *sym, const char **namep, 6695 flagword *flagsp ATTRIBUTE_UNUSED, 6696 asection **secp, bfd_vma *valp) 6697 { 6698 if (SGI_COMPAT (abfd) 6699 && (abfd->flags & DYNAMIC) != 0 6700 && strcmp (*namep, "_rld_new_interface") == 0) 6701 { 6702 /* Skip IRIX5 rld entry name. */ 6703 *namep = NULL; 6704 return TRUE; 6705 } 6706 6707 /* Shared objects may have a dynamic symbol '_gp_disp' defined as 6708 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp 6709 by setting a DT_NEEDED for the shared object. Since _gp_disp is 6710 a magic symbol resolved by the linker, we ignore this bogus definition 6711 of _gp_disp. New ABI objects do not suffer from this problem so this 6712 is not done for them. */ 6713 if (!NEWABI_P(abfd) 6714 && (sym->st_shndx == SHN_ABS) 6715 && (strcmp (*namep, "_gp_disp") == 0)) 6716 { 6717 *namep = NULL; 6718 return TRUE; 6719 } 6720 6721 switch (sym->st_shndx) 6722 { 6723 case SHN_COMMON: 6724 /* Common symbols less than the GP size are automatically 6725 treated as SHN_MIPS_SCOMMON symbols. */ 6726 if (sym->st_size > elf_gp_size (abfd) 6727 || ELF_ST_TYPE (sym->st_info) == STT_TLS 6728 || IRIX_COMPAT (abfd) == ict_irix6) 6729 break; 6730 /* Fall through. */ 6731 case SHN_MIPS_SCOMMON: 6732 *secp = bfd_make_section_old_way (abfd, ".scommon"); 6733 (*secp)->flags |= SEC_IS_COMMON; 6734 *valp = sym->st_size; 6735 break; 6736 6737 case SHN_MIPS_TEXT: 6738 /* This section is used in a shared object. */ 6739 if (elf_tdata (abfd)->elf_text_section == NULL) 6740 { 6741 asymbol *elf_text_symbol; 6742 asection *elf_text_section; 6743 bfd_size_type amt = sizeof (asection); 6744 6745 elf_text_section = bfd_zalloc (abfd, amt); 6746 if (elf_text_section == NULL) 6747 return FALSE; 6748 6749 amt = sizeof (asymbol); 6750 elf_text_symbol = bfd_zalloc (abfd, amt); 6751 if (elf_text_symbol == NULL) 6752 return FALSE; 6753 6754 /* Initialize the section. */ 6755 6756 elf_tdata (abfd)->elf_text_section = elf_text_section; 6757 elf_tdata (abfd)->elf_text_symbol = elf_text_symbol; 6758 6759 elf_text_section->symbol = elf_text_symbol; 6760 elf_text_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_text_symbol; 6761 6762 elf_text_section->name = ".text"; 6763 elf_text_section->flags = SEC_NO_FLAGS; 6764 elf_text_section->output_section = NULL; 6765 elf_text_section->owner = abfd; 6766 elf_text_symbol->name = ".text"; 6767 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 6768 elf_text_symbol->section = elf_text_section; 6769 } 6770 /* This code used to do *secp = bfd_und_section_ptr if 6771 info->shared. I don't know why, and that doesn't make sense, 6772 so I took it out. */ 6773 *secp = elf_tdata (abfd)->elf_text_section; 6774 break; 6775 6776 case SHN_MIPS_ACOMMON: 6777 /* Fall through. XXX Can we treat this as allocated data? */ 6778 case SHN_MIPS_DATA: 6779 /* This section is used in a shared object. */ 6780 if (elf_tdata (abfd)->elf_data_section == NULL) 6781 { 6782 asymbol *elf_data_symbol; 6783 asection *elf_data_section; 6784 bfd_size_type amt = sizeof (asection); 6785 6786 elf_data_section = bfd_zalloc (abfd, amt); 6787 if (elf_data_section == NULL) 6788 return FALSE; 6789 6790 amt = sizeof (asymbol); 6791 elf_data_symbol = bfd_zalloc (abfd, amt); 6792 if (elf_data_symbol == NULL) 6793 return FALSE; 6794 6795 /* Initialize the section. */ 6796 6797 elf_tdata (abfd)->elf_data_section = elf_data_section; 6798 elf_tdata (abfd)->elf_data_symbol = elf_data_symbol; 6799 6800 elf_data_section->symbol = elf_data_symbol; 6801 elf_data_section->symbol_ptr_ptr = &elf_tdata (abfd)->elf_data_symbol; 6802 6803 elf_data_section->name = ".data"; 6804 elf_data_section->flags = SEC_NO_FLAGS; 6805 elf_data_section->output_section = NULL; 6806 elf_data_section->owner = abfd; 6807 elf_data_symbol->name = ".data"; 6808 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC; 6809 elf_data_symbol->section = elf_data_section; 6810 } 6811 /* This code used to do *secp = bfd_und_section_ptr if 6812 info->shared. I don't know why, and that doesn't make sense, 6813 so I took it out. */ 6814 *secp = elf_tdata (abfd)->elf_data_section; 6815 break; 6816 6817 case SHN_MIPS_SUNDEFINED: 6818 *secp = bfd_und_section_ptr; 6819 break; 6820 } 6821 6822 if (SGI_COMPAT (abfd) 6823 && ! info->shared 6824 && info->output_bfd->xvec == abfd->xvec 6825 && strcmp (*namep, "__rld_obj_head") == 0) 6826 { 6827 struct elf_link_hash_entry *h; 6828 struct bfd_link_hash_entry *bh; 6829 6830 /* Mark __rld_obj_head as dynamic. */ 6831 bh = NULL; 6832 if (! (_bfd_generic_link_add_one_symbol 6833 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE, 6834 get_elf_backend_data (abfd)->collect, &bh))) 6835 return FALSE; 6836 6837 h = (struct elf_link_hash_entry *) bh; 6838 h->non_elf = 0; 6839 h->def_regular = 1; 6840 h->type = STT_OBJECT; 6841 6842 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6843 return FALSE; 6844 6845 mips_elf_hash_table (info)->use_rld_obj_head = TRUE; 6846 } 6847 6848 /* If this is a mips16 text symbol, add 1 to the value to make it 6849 odd. This will cause something like .word SYM to come up with 6850 the right value when it is loaded into the PC. */ 6851 if (ELF_ST_IS_MIPS16 (sym->st_other)) 6852 ++*valp; 6853 6854 return TRUE; 6855 } 6856 6857 /* This hook function is called before the linker writes out a global 6858 symbol. We mark symbols as small common if appropriate. This is 6859 also where we undo the increment of the value for a mips16 symbol. */ 6860 6861 int 6862 _bfd_mips_elf_link_output_symbol_hook 6863 (struct bfd_link_info *info ATTRIBUTE_UNUSED, 6864 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym, 6865 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 6866 { 6867 /* If we see a common symbol, which implies a relocatable link, then 6868 if a symbol was small common in an input file, mark it as small 6869 common in the output file. */ 6870 if (sym->st_shndx == SHN_COMMON 6871 && strcmp (input_sec->name, ".scommon") == 0) 6872 sym->st_shndx = SHN_MIPS_SCOMMON; 6873 6874 if (ELF_ST_IS_MIPS16 (sym->st_other)) 6875 sym->st_value &= ~1; 6876 6877 return 1; 6878 } 6879 6880 /* Functions for the dynamic linker. */ 6881 6882 /* Create dynamic sections when linking against a dynamic object. */ 6883 6884 bfd_boolean 6885 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 6886 { 6887 struct elf_link_hash_entry *h; 6888 struct bfd_link_hash_entry *bh; 6889 flagword flags; 6890 register asection *s; 6891 const char * const *namep; 6892 struct mips_elf_link_hash_table *htab; 6893 6894 htab = mips_elf_hash_table (info); 6895 BFD_ASSERT (htab != NULL); 6896 6897 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY 6898 | SEC_LINKER_CREATED | SEC_READONLY); 6899 6900 /* The psABI requires a read-only .dynamic section, but the VxWorks 6901 EABI doesn't. */ 6902 if (!htab->is_vxworks) 6903 { 6904 s = bfd_get_section_by_name (abfd, ".dynamic"); 6905 if (s != NULL) 6906 { 6907 if (! bfd_set_section_flags (abfd, s, flags)) 6908 return FALSE; 6909 } 6910 } 6911 6912 /* We need to create .got section. */ 6913 if (!mips_elf_create_got_section (abfd, info)) 6914 return FALSE; 6915 6916 if (! mips_elf_rel_dyn_section (info, TRUE)) 6917 return FALSE; 6918 6919 /* Create .stub section. */ 6920 s = bfd_make_section_with_flags (abfd, 6921 MIPS_ELF_STUB_SECTION_NAME (abfd), 6922 flags | SEC_CODE); 6923 if (s == NULL 6924 || ! bfd_set_section_alignment (abfd, s, 6925 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 6926 return FALSE; 6927 htab->sstubs = s; 6928 6929 if ((IRIX_COMPAT (abfd) == ict_irix5 || IRIX_COMPAT (abfd) == ict_none) 6930 && !info->shared 6931 && bfd_get_section_by_name (abfd, ".rld_map") == NULL) 6932 { 6933 s = bfd_make_section_with_flags (abfd, ".rld_map", 6934 flags &~ (flagword) SEC_READONLY); 6935 if (s == NULL 6936 || ! bfd_set_section_alignment (abfd, s, 6937 MIPS_ELF_LOG_FILE_ALIGN (abfd))) 6938 return FALSE; 6939 } 6940 6941 /* On IRIX5, we adjust add some additional symbols and change the 6942 alignments of several sections. There is no ABI documentation 6943 indicating that this is necessary on IRIX6, nor any evidence that 6944 the linker takes such action. */ 6945 if (IRIX_COMPAT (abfd) == ict_irix5) 6946 { 6947 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++) 6948 { 6949 bh = NULL; 6950 if (! (_bfd_generic_link_add_one_symbol 6951 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0, 6952 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 6953 return FALSE; 6954 6955 h = (struct elf_link_hash_entry *) bh; 6956 h->non_elf = 0; 6957 h->def_regular = 1; 6958 h->type = STT_SECTION; 6959 6960 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6961 return FALSE; 6962 } 6963 6964 /* We need to create a .compact_rel section. */ 6965 if (SGI_COMPAT (abfd)) 6966 { 6967 if (!mips_elf_create_compact_rel_section (abfd, info)) 6968 return FALSE; 6969 } 6970 6971 /* Change alignments of some sections. */ 6972 s = bfd_get_section_by_name (abfd, ".hash"); 6973 if (s != NULL) 6974 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 6975 s = bfd_get_section_by_name (abfd, ".dynsym"); 6976 if (s != NULL) 6977 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 6978 s = bfd_get_section_by_name (abfd, ".dynstr"); 6979 if (s != NULL) 6980 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 6981 s = bfd_get_section_by_name (abfd, ".reginfo"); 6982 if (s != NULL) 6983 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 6984 s = bfd_get_section_by_name (abfd, ".dynamic"); 6985 if (s != NULL) 6986 bfd_set_section_alignment (abfd, s, MIPS_ELF_LOG_FILE_ALIGN (abfd)); 6987 } 6988 6989 if (!info->shared) 6990 { 6991 const char *name; 6992 6993 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING"; 6994 bh = NULL; 6995 if (!(_bfd_generic_link_add_one_symbol 6996 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0, 6997 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh))) 6998 return FALSE; 6999 7000 h = (struct elf_link_hash_entry *) bh; 7001 h->non_elf = 0; 7002 h->def_regular = 1; 7003 h->type = STT_SECTION; 7004 7005 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7006 return FALSE; 7007 7008 if (! mips_elf_hash_table (info)->use_rld_obj_head) 7009 { 7010 /* __rld_map is a four byte word located in the .data section 7011 and is filled in by the rtld to contain a pointer to 7012 the _r_debug structure. Its symbol value will be set in 7013 _bfd_mips_elf_finish_dynamic_symbol. */ 7014 s = bfd_get_section_by_name (abfd, ".rld_map"); 7015 BFD_ASSERT (s != NULL); 7016 7017 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP"; 7018 bh = NULL; 7019 if (!(_bfd_generic_link_add_one_symbol 7020 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE, 7021 get_elf_backend_data (abfd)->collect, &bh))) 7022 return FALSE; 7023 7024 h = (struct elf_link_hash_entry *) bh; 7025 h->non_elf = 0; 7026 h->def_regular = 1; 7027 h->type = STT_OBJECT; 7028 7029 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 7030 return FALSE; 7031 } 7032 } 7033 7034 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections. 7035 Also create the _PROCEDURE_LINKAGE_TABLE symbol. */ 7036 if (!_bfd_elf_create_dynamic_sections (abfd, info)) 7037 return FALSE; 7038 7039 /* Cache the sections created above. */ 7040 htab->splt = bfd_get_section_by_name (abfd, ".plt"); 7041 htab->sdynbss = bfd_get_section_by_name (abfd, ".dynbss"); 7042 if (htab->is_vxworks) 7043 { 7044 htab->srelbss = bfd_get_section_by_name (abfd, ".rela.bss"); 7045 htab->srelplt = bfd_get_section_by_name (abfd, ".rela.plt"); 7046 } 7047 else 7048 htab->srelplt = bfd_get_section_by_name (abfd, ".rel.plt"); 7049 if (!htab->sdynbss 7050 || (htab->is_vxworks && !htab->srelbss && !info->shared) 7051 || !htab->srelplt 7052 || !htab->splt) 7053 abort (); 7054 7055 if (htab->is_vxworks) 7056 { 7057 /* Do the usual VxWorks handling. */ 7058 if (!elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2)) 7059 return FALSE; 7060 7061 /* Work out the PLT sizes. */ 7062 if (info->shared) 7063 { 7064 htab->plt_header_size 7065 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry); 7066 htab->plt_entry_size 7067 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry); 7068 } 7069 else 7070 { 7071 htab->plt_header_size 7072 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry); 7073 htab->plt_entry_size 7074 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry); 7075 } 7076 } 7077 else if (!info->shared) 7078 { 7079 /* All variants of the plt0 entry are the same size. */ 7080 htab->plt_header_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry); 7081 htab->plt_entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry); 7082 } 7083 7084 return TRUE; 7085 } 7086 7087 /* Return true if relocation REL against section SEC is a REL rather than 7088 RELA relocation. RELOCS is the first relocation in the section and 7089 ABFD is the bfd that contains SEC. */ 7090 7091 static bfd_boolean 7092 mips_elf_rel_relocation_p (bfd *abfd, asection *sec, 7093 const Elf_Internal_Rela *relocs, 7094 const Elf_Internal_Rela *rel) 7095 { 7096 Elf_Internal_Shdr *rel_hdr; 7097 const struct elf_backend_data *bed; 7098 7099 /* To determine which flavor of relocation this is, we depend on the 7100 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */ 7101 rel_hdr = elf_section_data (sec)->rel.hdr; 7102 if (rel_hdr == NULL) 7103 return FALSE; 7104 bed = get_elf_backend_data (abfd); 7105 return ((size_t) (rel - relocs) 7106 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel); 7107 } 7108 7109 /* Read the addend for REL relocation REL, which belongs to bfd ABFD. 7110 HOWTO is the relocation's howto and CONTENTS points to the contents 7111 of the section that REL is against. */ 7112 7113 static bfd_vma 7114 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel, 7115 reloc_howto_type *howto, bfd_byte *contents) 7116 { 7117 bfd_byte *location; 7118 unsigned int r_type; 7119 bfd_vma addend; 7120 7121 r_type = ELF_R_TYPE (abfd, rel->r_info); 7122 location = contents + rel->r_offset; 7123 7124 /* Get the addend, which is stored in the input file. */ 7125 _bfd_mips16_elf_reloc_unshuffle (abfd, r_type, FALSE, location); 7126 addend = mips_elf_obtain_contents (howto, rel, abfd, contents); 7127 _bfd_mips16_elf_reloc_shuffle (abfd, r_type, FALSE, location); 7128 7129 return addend & howto->src_mask; 7130 } 7131 7132 /* REL is a relocation in ABFD that needs a partnering LO16 relocation 7133 and *ADDEND is the addend for REL itself. Look for the LO16 relocation 7134 and update *ADDEND with the final addend. Return true on success 7135 or false if the LO16 could not be found. RELEND is the exclusive 7136 upper bound on the relocations for REL's section. */ 7137 7138 static bfd_boolean 7139 mips_elf_add_lo16_rel_addend (bfd *abfd, 7140 const Elf_Internal_Rela *rel, 7141 const Elf_Internal_Rela *relend, 7142 bfd_byte *contents, bfd_vma *addend) 7143 { 7144 unsigned int r_type, lo16_type; 7145 const Elf_Internal_Rela *lo16_relocation; 7146 reloc_howto_type *lo16_howto; 7147 bfd_vma l; 7148 7149 r_type = ELF_R_TYPE (abfd, rel->r_info); 7150 if (mips16_reloc_p (r_type)) 7151 lo16_type = R_MIPS16_LO16; 7152 else 7153 lo16_type = R_MIPS_LO16; 7154 7155 /* The combined value is the sum of the HI16 addend, left-shifted by 7156 sixteen bits, and the LO16 addend, sign extended. (Usually, the 7157 code does a `lui' of the HI16 value, and then an `addiu' of the 7158 LO16 value.) 7159 7160 Scan ahead to find a matching LO16 relocation. 7161 7162 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must 7163 be immediately following. However, for the IRIX6 ABI, the next 7164 relocation may be a composed relocation consisting of several 7165 relocations for the same address. In that case, the R_MIPS_LO16 7166 relocation may occur as one of these. We permit a similar 7167 extension in general, as that is useful for GCC. 7168 7169 In some cases GCC dead code elimination removes the LO16 but keeps 7170 the corresponding HI16. This is strictly speaking a violation of 7171 the ABI but not immediately harmful. */ 7172 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend); 7173 if (lo16_relocation == NULL) 7174 return FALSE; 7175 7176 /* Obtain the addend kept there. */ 7177 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE); 7178 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents); 7179 7180 l <<= lo16_howto->rightshift; 7181 l = _bfd_mips_elf_sign_extend (l, 16); 7182 7183 *addend <<= 16; 7184 *addend += l; 7185 return TRUE; 7186 } 7187 7188 /* Try to read the contents of section SEC in bfd ABFD. Return true and 7189 store the contents in *CONTENTS on success. Assume that *CONTENTS 7190 already holds the contents if it is nonull on entry. */ 7191 7192 static bfd_boolean 7193 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents) 7194 { 7195 if (*contents) 7196 return TRUE; 7197 7198 /* Get cached copy if it exists. */ 7199 if (elf_section_data (sec)->this_hdr.contents != NULL) 7200 { 7201 *contents = elf_section_data (sec)->this_hdr.contents; 7202 return TRUE; 7203 } 7204 7205 return bfd_malloc_and_get_section (abfd, sec, contents); 7206 } 7207 7208 /* Look through the relocs for a section during the first phase, and 7209 allocate space in the global offset table. */ 7210 7211 bfd_boolean 7212 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info, 7213 asection *sec, const Elf_Internal_Rela *relocs) 7214 { 7215 const char *name; 7216 bfd *dynobj; 7217 Elf_Internal_Shdr *symtab_hdr; 7218 struct elf_link_hash_entry **sym_hashes; 7219 size_t extsymoff; 7220 const Elf_Internal_Rela *rel; 7221 const Elf_Internal_Rela *rel_end; 7222 asection *sreloc; 7223 const struct elf_backend_data *bed; 7224 struct mips_elf_link_hash_table *htab; 7225 bfd_byte *contents; 7226 bfd_vma addend; 7227 reloc_howto_type *howto; 7228 7229 if (info->relocatable) 7230 return TRUE; 7231 7232 htab = mips_elf_hash_table (info); 7233 BFD_ASSERT (htab != NULL); 7234 7235 dynobj = elf_hash_table (info)->dynobj; 7236 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7237 sym_hashes = elf_sym_hashes (abfd); 7238 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7239 7240 bed = get_elf_backend_data (abfd); 7241 rel_end = relocs + sec->reloc_count * bed->s->int_rels_per_ext_rel; 7242 7243 /* Check for the mips16 stub sections. */ 7244 7245 name = bfd_get_section_name (abfd, sec); 7246 if (FN_STUB_P (name)) 7247 { 7248 unsigned long r_symndx; 7249 7250 /* Look at the relocation information to figure out which symbol 7251 this is for. */ 7252 7253 r_symndx = mips16_stub_symndx (sec, relocs, rel_end); 7254 if (r_symndx == 0) 7255 { 7256 (*_bfd_error_handler) 7257 (_("%B: Warning: cannot determine the target function for" 7258 " stub section `%s'"), 7259 abfd, name); 7260 bfd_set_error (bfd_error_bad_value); 7261 return FALSE; 7262 } 7263 7264 if (r_symndx < extsymoff 7265 || sym_hashes[r_symndx - extsymoff] == NULL) 7266 { 7267 asection *o; 7268 7269 /* This stub is for a local symbol. This stub will only be 7270 needed if there is some relocation in this BFD, other 7271 than a 16 bit function call, which refers to this symbol. */ 7272 for (o = abfd->sections; o != NULL; o = o->next) 7273 { 7274 Elf_Internal_Rela *sec_relocs; 7275 const Elf_Internal_Rela *r, *rend; 7276 7277 /* We can ignore stub sections when looking for relocs. */ 7278 if ((o->flags & SEC_RELOC) == 0 7279 || o->reloc_count == 0 7280 || section_allows_mips16_refs_p (o)) 7281 continue; 7282 7283 sec_relocs 7284 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 7285 info->keep_memory); 7286 if (sec_relocs == NULL) 7287 return FALSE; 7288 7289 rend = sec_relocs + o->reloc_count; 7290 for (r = sec_relocs; r < rend; r++) 7291 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 7292 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info))) 7293 break; 7294 7295 if (elf_section_data (o)->relocs != sec_relocs) 7296 free (sec_relocs); 7297 7298 if (r < rend) 7299 break; 7300 } 7301 7302 if (o == NULL) 7303 { 7304 /* There is no non-call reloc for this stub, so we do 7305 not need it. Since this function is called before 7306 the linker maps input sections to output sections, we 7307 can easily discard it by setting the SEC_EXCLUDE 7308 flag. */ 7309 sec->flags |= SEC_EXCLUDE; 7310 return TRUE; 7311 } 7312 7313 /* Record this stub in an array of local symbol stubs for 7314 this BFD. */ 7315 if (elf_tdata (abfd)->local_stubs == NULL) 7316 { 7317 unsigned long symcount; 7318 asection **n; 7319 bfd_size_type amt; 7320 7321 if (elf_bad_symtab (abfd)) 7322 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 7323 else 7324 symcount = symtab_hdr->sh_info; 7325 amt = symcount * sizeof (asection *); 7326 n = bfd_zalloc (abfd, amt); 7327 if (n == NULL) 7328 return FALSE; 7329 elf_tdata (abfd)->local_stubs = n; 7330 } 7331 7332 sec->flags |= SEC_KEEP; 7333 elf_tdata (abfd)->local_stubs[r_symndx] = sec; 7334 7335 /* We don't need to set mips16_stubs_seen in this case. 7336 That flag is used to see whether we need to look through 7337 the global symbol table for stubs. We don't need to set 7338 it here, because we just have a local stub. */ 7339 } 7340 else 7341 { 7342 struct mips_elf_link_hash_entry *h; 7343 7344 h = ((struct mips_elf_link_hash_entry *) 7345 sym_hashes[r_symndx - extsymoff]); 7346 7347 while (h->root.root.type == bfd_link_hash_indirect 7348 || h->root.root.type == bfd_link_hash_warning) 7349 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 7350 7351 /* H is the symbol this stub is for. */ 7352 7353 /* If we already have an appropriate stub for this function, we 7354 don't need another one, so we can discard this one. Since 7355 this function is called before the linker maps input sections 7356 to output sections, we can easily discard it by setting the 7357 SEC_EXCLUDE flag. */ 7358 if (h->fn_stub != NULL) 7359 { 7360 sec->flags |= SEC_EXCLUDE; 7361 return TRUE; 7362 } 7363 7364 sec->flags |= SEC_KEEP; 7365 h->fn_stub = sec; 7366 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 7367 } 7368 } 7369 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name)) 7370 { 7371 unsigned long r_symndx; 7372 struct mips_elf_link_hash_entry *h; 7373 asection **loc; 7374 7375 /* Look at the relocation information to figure out which symbol 7376 this is for. */ 7377 7378 r_symndx = mips16_stub_symndx (sec, relocs, rel_end); 7379 if (r_symndx == 0) 7380 { 7381 (*_bfd_error_handler) 7382 (_("%B: Warning: cannot determine the target function for" 7383 " stub section `%s'"), 7384 abfd, name); 7385 bfd_set_error (bfd_error_bad_value); 7386 return FALSE; 7387 } 7388 7389 if (r_symndx < extsymoff 7390 || sym_hashes[r_symndx - extsymoff] == NULL) 7391 { 7392 asection *o; 7393 7394 /* This stub is for a local symbol. This stub will only be 7395 needed if there is some relocation (R_MIPS16_26) in this BFD 7396 that refers to this symbol. */ 7397 for (o = abfd->sections; o != NULL; o = o->next) 7398 { 7399 Elf_Internal_Rela *sec_relocs; 7400 const Elf_Internal_Rela *r, *rend; 7401 7402 /* We can ignore stub sections when looking for relocs. */ 7403 if ((o->flags & SEC_RELOC) == 0 7404 || o->reloc_count == 0 7405 || section_allows_mips16_refs_p (o)) 7406 continue; 7407 7408 sec_relocs 7409 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 7410 info->keep_memory); 7411 if (sec_relocs == NULL) 7412 return FALSE; 7413 7414 rend = sec_relocs + o->reloc_count; 7415 for (r = sec_relocs; r < rend; r++) 7416 if (ELF_R_SYM (abfd, r->r_info) == r_symndx 7417 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26) 7418 break; 7419 7420 if (elf_section_data (o)->relocs != sec_relocs) 7421 free (sec_relocs); 7422 7423 if (r < rend) 7424 break; 7425 } 7426 7427 if (o == NULL) 7428 { 7429 /* There is no non-call reloc for this stub, so we do 7430 not need it. Since this function is called before 7431 the linker maps input sections to output sections, we 7432 can easily discard it by setting the SEC_EXCLUDE 7433 flag. */ 7434 sec->flags |= SEC_EXCLUDE; 7435 return TRUE; 7436 } 7437 7438 /* Record this stub in an array of local symbol call_stubs for 7439 this BFD. */ 7440 if (elf_tdata (abfd)->local_call_stubs == NULL) 7441 { 7442 unsigned long symcount; 7443 asection **n; 7444 bfd_size_type amt; 7445 7446 if (elf_bad_symtab (abfd)) 7447 symcount = NUM_SHDR_ENTRIES (symtab_hdr); 7448 else 7449 symcount = symtab_hdr->sh_info; 7450 amt = symcount * sizeof (asection *); 7451 n = bfd_zalloc (abfd, amt); 7452 if (n == NULL) 7453 return FALSE; 7454 elf_tdata (abfd)->local_call_stubs = n; 7455 } 7456 7457 sec->flags |= SEC_KEEP; 7458 elf_tdata (abfd)->local_call_stubs[r_symndx] = sec; 7459 7460 /* We don't need to set mips16_stubs_seen in this case. 7461 That flag is used to see whether we need to look through 7462 the global symbol table for stubs. We don't need to set 7463 it here, because we just have a local stub. */ 7464 } 7465 else 7466 { 7467 h = ((struct mips_elf_link_hash_entry *) 7468 sym_hashes[r_symndx - extsymoff]); 7469 7470 /* H is the symbol this stub is for. */ 7471 7472 if (CALL_FP_STUB_P (name)) 7473 loc = &h->call_fp_stub; 7474 else 7475 loc = &h->call_stub; 7476 7477 /* If we already have an appropriate stub for this function, we 7478 don't need another one, so we can discard this one. Since 7479 this function is called before the linker maps input sections 7480 to output sections, we can easily discard it by setting the 7481 SEC_EXCLUDE flag. */ 7482 if (*loc != NULL) 7483 { 7484 sec->flags |= SEC_EXCLUDE; 7485 return TRUE; 7486 } 7487 7488 sec->flags |= SEC_KEEP; 7489 *loc = sec; 7490 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE; 7491 } 7492 } 7493 7494 sreloc = NULL; 7495 contents = NULL; 7496 for (rel = relocs; rel < rel_end; ++rel) 7497 { 7498 unsigned long r_symndx; 7499 unsigned int r_type; 7500 struct elf_link_hash_entry *h; 7501 bfd_boolean can_make_dynamic_p; 7502 7503 r_symndx = ELF_R_SYM (abfd, rel->r_info); 7504 r_type = ELF_R_TYPE (abfd, rel->r_info); 7505 7506 if (r_symndx < extsymoff) 7507 h = NULL; 7508 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr)) 7509 { 7510 (*_bfd_error_handler) 7511 (_("%B: Malformed reloc detected for section %s"), 7512 abfd, name); 7513 bfd_set_error (bfd_error_bad_value); 7514 return FALSE; 7515 } 7516 else 7517 { 7518 h = sym_hashes[r_symndx - extsymoff]; 7519 while (h != NULL 7520 && (h->root.type == bfd_link_hash_indirect 7521 || h->root.type == bfd_link_hash_warning)) 7522 h = (struct elf_link_hash_entry *) h->root.u.i.link; 7523 } 7524 7525 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this 7526 relocation into a dynamic one. */ 7527 can_make_dynamic_p = FALSE; 7528 switch (r_type) 7529 { 7530 case R_MIPS16_GOT16: 7531 case R_MIPS16_CALL16: 7532 case R_MIPS_GOT16: 7533 case R_MIPS_CALL16: 7534 case R_MIPS_CALL_HI16: 7535 case R_MIPS_CALL_LO16: 7536 case R_MIPS_GOT_HI16: 7537 case R_MIPS_GOT_LO16: 7538 case R_MIPS_GOT_PAGE: 7539 case R_MIPS_GOT_OFST: 7540 case R_MIPS_GOT_DISP: 7541 case R_MIPS_TLS_GOTTPREL: 7542 case R_MIPS_TLS_GD: 7543 case R_MIPS_TLS_LDM: 7544 if (dynobj == NULL) 7545 elf_hash_table (info)->dynobj = dynobj = abfd; 7546 if (!mips_elf_create_got_section (dynobj, info)) 7547 return FALSE; 7548 if (htab->is_vxworks && !info->shared) 7549 { 7550 (*_bfd_error_handler) 7551 (_("%B: GOT reloc at 0x%lx not expected in executables"), 7552 abfd, (unsigned long) rel->r_offset); 7553 bfd_set_error (bfd_error_bad_value); 7554 return FALSE; 7555 } 7556 break; 7557 7558 /* This is just a hint; it can safely be ignored. Don't set 7559 has_static_relocs for the corresponding symbol. */ 7560 case R_MIPS_JALR: 7561 break; 7562 7563 case R_MIPS_32: 7564 case R_MIPS_REL32: 7565 case R_MIPS_64: 7566 /* In VxWorks executables, references to external symbols 7567 must be handled using copy relocs or PLT entries; it is not 7568 possible to convert this relocation into a dynamic one. 7569 7570 For executables that use PLTs and copy-relocs, we have a 7571 choice between converting the relocation into a dynamic 7572 one or using copy relocations or PLT entries. It is 7573 usually better to do the former, unless the relocation is 7574 against a read-only section. */ 7575 if ((info->shared 7576 || (h != NULL 7577 && !htab->is_vxworks 7578 && strcmp (h->root.root.string, "__gnu_local_gp") != 0 7579 && !(!info->nocopyreloc 7580 && !PIC_OBJECT_P (abfd) 7581 && MIPS_ELF_READONLY_SECTION (sec)))) 7582 && (sec->flags & SEC_ALLOC) != 0) 7583 { 7584 can_make_dynamic_p = TRUE; 7585 if (dynobj == NULL) 7586 elf_hash_table (info)->dynobj = dynobj = abfd; 7587 break; 7588 } 7589 /* For sections that are not SEC_ALLOC a copy reloc would be 7590 output if possible (implying questionable semantics for 7591 read-only data objects) or otherwise the final link would 7592 fail as ld.so will not process them and could not therefore 7593 handle any outstanding dynamic relocations. 7594 7595 For such sections that are also SEC_DEBUGGING, we can avoid 7596 these problems by simply ignoring any relocs as these 7597 sections have a predefined use and we know it is safe to do 7598 so. 7599 7600 This is needed in cases such as a global symbol definition 7601 in a shared library causing a common symbol from an object 7602 file to be converted to an undefined reference. If that 7603 happens, then all the relocations against this symbol from 7604 SEC_DEBUGGING sections in the object file will resolve to 7605 nil. */ 7606 if ((sec->flags & SEC_DEBUGGING) != 0) 7607 break; 7608 /* Fall through. */ 7609 7610 default: 7611 /* Most static relocations require pointer equality, except 7612 for branches. */ 7613 if (h) 7614 h->pointer_equality_needed = TRUE; 7615 /* Fall through. */ 7616 7617 case R_MIPS_26: 7618 case R_MIPS_PC16: 7619 case R_MIPS16_26: 7620 if (h) 7621 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = TRUE; 7622 break; 7623 } 7624 7625 if (h) 7626 { 7627 /* Relocations against the special VxWorks __GOTT_BASE__ and 7628 __GOTT_INDEX__ symbols must be left to the loader. Allocate 7629 room for them in .rela.dyn. */ 7630 if (is_gott_symbol (info, h)) 7631 { 7632 if (sreloc == NULL) 7633 { 7634 sreloc = mips_elf_rel_dyn_section (info, TRUE); 7635 if (sreloc == NULL) 7636 return FALSE; 7637 } 7638 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 7639 if (MIPS_ELF_READONLY_SECTION (sec)) 7640 /* We tell the dynamic linker that there are 7641 relocations against the text segment. */ 7642 info->flags |= DF_TEXTREL; 7643 } 7644 } 7645 else if (r_type == R_MIPS_CALL_LO16 7646 || r_type == R_MIPS_GOT_LO16 7647 || r_type == R_MIPS_GOT_DISP 7648 || (got16_reloc_p (r_type) && htab->is_vxworks)) 7649 { 7650 /* We may need a local GOT entry for this relocation. We 7651 don't count R_MIPS_GOT_PAGE because we can estimate the 7652 maximum number of pages needed by looking at the size of 7653 the segment. Similar comments apply to R_MIPS*_GOT16 and 7654 R_MIPS*_CALL16, except on VxWorks, where GOT relocations 7655 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or 7656 R_MIPS_CALL_HI16 because these are always followed by an 7657 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */ 7658 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 7659 rel->r_addend, info, 0)) 7660 return FALSE; 7661 } 7662 7663 if (h != NULL && mips_elf_relocation_needs_la25_stub (abfd, r_type)) 7664 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE; 7665 7666 switch (r_type) 7667 { 7668 case R_MIPS_CALL16: 7669 case R_MIPS16_CALL16: 7670 if (h == NULL) 7671 { 7672 (*_bfd_error_handler) 7673 (_("%B: CALL16 reloc at 0x%lx not against global symbol"), 7674 abfd, (unsigned long) rel->r_offset); 7675 bfd_set_error (bfd_error_bad_value); 7676 return FALSE; 7677 } 7678 /* Fall through. */ 7679 7680 case R_MIPS_CALL_HI16: 7681 case R_MIPS_CALL_LO16: 7682 if (h != NULL) 7683 { 7684 /* Make sure there is room in the regular GOT to hold the 7685 function's address. We may eliminate it in favour of 7686 a .got.plt entry later; see mips_elf_count_got_symbols. */ 7687 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE, 0)) 7688 return FALSE; 7689 7690 /* We need a stub, not a plt entry for the undefined 7691 function. But we record it as if it needs plt. See 7692 _bfd_elf_adjust_dynamic_symbol. */ 7693 h->needs_plt = 1; 7694 h->type = STT_FUNC; 7695 } 7696 break; 7697 7698 case R_MIPS_GOT_PAGE: 7699 /* If this is a global, overridable symbol, GOT_PAGE will 7700 decay to GOT_DISP, so we'll need a GOT entry for it. */ 7701 if (h) 7702 { 7703 struct mips_elf_link_hash_entry *hmips = 7704 (struct mips_elf_link_hash_entry *) h; 7705 7706 /* This symbol is definitely not overridable. */ 7707 if (hmips->root.def_regular 7708 && ! (info->shared && ! info->symbolic 7709 && ! hmips->root.forced_local)) 7710 h = NULL; 7711 } 7712 /* Fall through. */ 7713 7714 case R_MIPS16_GOT16: 7715 case R_MIPS_GOT16: 7716 case R_MIPS_GOT_HI16: 7717 case R_MIPS_GOT_LO16: 7718 if (!h || r_type == R_MIPS_GOT_PAGE) 7719 { 7720 /* This relocation needs (or may need, if h != NULL) a 7721 page entry in the GOT. For R_MIPS_GOT_PAGE we do not 7722 know for sure until we know whether the symbol is 7723 preemptible. */ 7724 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel)) 7725 { 7726 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 7727 return FALSE; 7728 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 7729 addend = mips_elf_read_rel_addend (abfd, rel, 7730 howto, contents); 7731 if (got16_reloc_p (r_type)) 7732 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end, 7733 contents, &addend); 7734 else 7735 addend <<= howto->rightshift; 7736 } 7737 else 7738 addend = rel->r_addend; 7739 if (!mips_elf_record_got_page_entry (info, abfd, r_symndx, 7740 addend)) 7741 return FALSE; 7742 break; 7743 } 7744 /* Fall through. */ 7745 7746 case R_MIPS_GOT_DISP: 7747 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 7748 FALSE, 0)) 7749 return FALSE; 7750 break; 7751 7752 case R_MIPS_TLS_GOTTPREL: 7753 if (info->shared) 7754 info->flags |= DF_STATIC_TLS; 7755 /* Fall through */ 7756 7757 case R_MIPS_TLS_LDM: 7758 if (r_type == R_MIPS_TLS_LDM) 7759 { 7760 r_symndx = STN_UNDEF; 7761 h = NULL; 7762 } 7763 /* Fall through */ 7764 7765 case R_MIPS_TLS_GD: 7766 /* This symbol requires a global offset table entry, or two 7767 for TLS GD relocations. */ 7768 { 7769 unsigned char flag = (r_type == R_MIPS_TLS_GD 7770 ? GOT_TLS_GD 7771 : r_type == R_MIPS_TLS_LDM 7772 ? GOT_TLS_LDM 7773 : GOT_TLS_IE); 7774 if (h != NULL) 7775 { 7776 struct mips_elf_link_hash_entry *hmips = 7777 (struct mips_elf_link_hash_entry *) h; 7778 hmips->tls_type |= flag; 7779 7780 if (h && !mips_elf_record_global_got_symbol (h, abfd, info, 7781 FALSE, flag)) 7782 return FALSE; 7783 } 7784 else 7785 { 7786 BFD_ASSERT (flag == GOT_TLS_LDM || r_symndx != STN_UNDEF); 7787 7788 if (!mips_elf_record_local_got_symbol (abfd, r_symndx, 7789 rel->r_addend, 7790 info, flag)) 7791 return FALSE; 7792 } 7793 } 7794 break; 7795 7796 case R_MIPS_32: 7797 case R_MIPS_REL32: 7798 case R_MIPS_64: 7799 /* In VxWorks executables, references to external symbols 7800 are handled using copy relocs or PLT stubs, so there's 7801 no need to add a .rela.dyn entry for this relocation. */ 7802 if (can_make_dynamic_p) 7803 { 7804 if (sreloc == NULL) 7805 { 7806 sreloc = mips_elf_rel_dyn_section (info, TRUE); 7807 if (sreloc == NULL) 7808 return FALSE; 7809 } 7810 if (info->shared && h == NULL) 7811 { 7812 /* When creating a shared object, we must copy these 7813 reloc types into the output file as R_MIPS_REL32 7814 relocs. Make room for this reloc in .rel(a).dyn. */ 7815 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 7816 if (MIPS_ELF_READONLY_SECTION (sec)) 7817 /* We tell the dynamic linker that there are 7818 relocations against the text segment. */ 7819 info->flags |= DF_TEXTREL; 7820 } 7821 else 7822 { 7823 struct mips_elf_link_hash_entry *hmips; 7824 7825 /* For a shared object, we must copy this relocation 7826 unless the symbol turns out to be undefined and 7827 weak with non-default visibility, in which case 7828 it will be left as zero. 7829 7830 We could elide R_MIPS_REL32 for locally binding symbols 7831 in shared libraries, but do not yet do so. 7832 7833 For an executable, we only need to copy this 7834 reloc if the symbol is defined in a dynamic 7835 object. */ 7836 hmips = (struct mips_elf_link_hash_entry *) h; 7837 ++hmips->possibly_dynamic_relocs; 7838 if (MIPS_ELF_READONLY_SECTION (sec)) 7839 /* We need it to tell the dynamic linker if there 7840 are relocations against the text segment. */ 7841 hmips->readonly_reloc = TRUE; 7842 } 7843 } 7844 7845 if (SGI_COMPAT (abfd)) 7846 mips_elf_hash_table (info)->compact_rel_size += 7847 sizeof (Elf32_External_crinfo); 7848 break; 7849 7850 case R_MIPS_26: 7851 case R_MIPS_GPREL16: 7852 case R_MIPS_LITERAL: 7853 case R_MIPS_GPREL32: 7854 if (SGI_COMPAT (abfd)) 7855 mips_elf_hash_table (info)->compact_rel_size += 7856 sizeof (Elf32_External_crinfo); 7857 break; 7858 7859 /* This relocation describes the C++ object vtable hierarchy. 7860 Reconstruct it for later use during GC. */ 7861 case R_MIPS_GNU_VTINHERIT: 7862 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 7863 return FALSE; 7864 break; 7865 7866 /* This relocation describes which C++ vtable entries are actually 7867 used. Record for later use during GC. */ 7868 case R_MIPS_GNU_VTENTRY: 7869 BFD_ASSERT (h != NULL); 7870 if (h != NULL 7871 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset)) 7872 return FALSE; 7873 break; 7874 7875 default: 7876 break; 7877 } 7878 7879 /* We must not create a stub for a symbol that has relocations 7880 related to taking the function's address. This doesn't apply to 7881 VxWorks, where CALL relocs refer to a .got.plt entry instead of 7882 a normal .got entry. */ 7883 if (!htab->is_vxworks && h != NULL) 7884 switch (r_type) 7885 { 7886 default: 7887 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE; 7888 break; 7889 case R_MIPS16_CALL16: 7890 case R_MIPS_CALL16: 7891 case R_MIPS_CALL_HI16: 7892 case R_MIPS_CALL_LO16: 7893 case R_MIPS_JALR: 7894 break; 7895 } 7896 7897 /* See if this reloc would need to refer to a MIPS16 hard-float stub, 7898 if there is one. We only need to handle global symbols here; 7899 we decide whether to keep or delete stubs for local symbols 7900 when processing the stub's relocations. */ 7901 if (h != NULL 7902 && !mips16_call_reloc_p (r_type) 7903 && !section_allows_mips16_refs_p (sec)) 7904 { 7905 struct mips_elf_link_hash_entry *mh; 7906 7907 mh = (struct mips_elf_link_hash_entry *) h; 7908 mh->need_fn_stub = TRUE; 7909 } 7910 7911 /* Refuse some position-dependent relocations when creating a 7912 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're 7913 not PIC, but we can create dynamic relocations and the result 7914 will be fine. Also do not refuse R_MIPS_LO16, which can be 7915 combined with R_MIPS_GOT16. */ 7916 if (info->shared) 7917 { 7918 switch (r_type) 7919 { 7920 case R_MIPS16_HI16: 7921 case R_MIPS_HI16: 7922 case R_MIPS_HIGHER: 7923 case R_MIPS_HIGHEST: 7924 /* Don't refuse a high part relocation if it's against 7925 no symbol (e.g. part of a compound relocation). */ 7926 if (r_symndx == STN_UNDEF) 7927 break; 7928 7929 /* R_MIPS_HI16 against _gp_disp is used for $gp setup, 7930 and has a special meaning. */ 7931 if (!NEWABI_P (abfd) && h != NULL 7932 && strcmp (h->root.root.string, "_gp_disp") == 0) 7933 break; 7934 7935 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */ 7936 if (is_gott_symbol (info, h)) 7937 break; 7938 7939 /* FALLTHROUGH */ 7940 7941 case R_MIPS16_26: 7942 case R_MIPS_26: 7943 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE); 7944 (*_bfd_error_handler) 7945 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"), 7946 abfd, howto->name, 7947 (h) ? h->root.root.string : "a local symbol"); 7948 bfd_set_error (bfd_error_bad_value); 7949 return FALSE; 7950 default: 7951 break; 7952 } 7953 } 7954 } 7955 7956 return TRUE; 7957 } 7958 7959 bfd_boolean 7960 _bfd_mips_relax_section (bfd *abfd, asection *sec, 7961 struct bfd_link_info *link_info, 7962 bfd_boolean *again) 7963 { 7964 Elf_Internal_Rela *internal_relocs; 7965 Elf_Internal_Rela *irel, *irelend; 7966 Elf_Internal_Shdr *symtab_hdr; 7967 bfd_byte *contents = NULL; 7968 size_t extsymoff; 7969 bfd_boolean changed_contents = FALSE; 7970 bfd_vma sec_start = sec->output_section->vma + sec->output_offset; 7971 Elf_Internal_Sym *isymbuf = NULL; 7972 7973 /* We are not currently changing any sizes, so only one pass. */ 7974 *again = FALSE; 7975 7976 if (link_info->relocatable) 7977 return TRUE; 7978 7979 internal_relocs = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 7980 link_info->keep_memory); 7981 if (internal_relocs == NULL) 7982 return TRUE; 7983 7984 irelend = internal_relocs + sec->reloc_count 7985 * get_elf_backend_data (abfd)->s->int_rels_per_ext_rel; 7986 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 7987 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info; 7988 7989 for (irel = internal_relocs; irel < irelend; irel++) 7990 { 7991 bfd_vma symval; 7992 bfd_signed_vma sym_offset; 7993 unsigned int r_type; 7994 unsigned long r_symndx; 7995 asection *sym_sec; 7996 unsigned long instruction; 7997 7998 /* Turn jalr into bgezal, and jr into beq, if they're marked 7999 with a JALR relocation, that indicate where they jump to. 8000 This saves some pipeline bubbles. */ 8001 r_type = ELF_R_TYPE (abfd, irel->r_info); 8002 if (r_type != R_MIPS_JALR) 8003 continue; 8004 8005 r_symndx = ELF_R_SYM (abfd, irel->r_info); 8006 /* Compute the address of the jump target. */ 8007 if (r_symndx >= extsymoff) 8008 { 8009 struct mips_elf_link_hash_entry *h 8010 = ((struct mips_elf_link_hash_entry *) 8011 elf_sym_hashes (abfd) [r_symndx - extsymoff]); 8012 8013 while (h->root.root.type == bfd_link_hash_indirect 8014 || h->root.root.type == bfd_link_hash_warning) 8015 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link; 8016 8017 /* If a symbol is undefined, or if it may be overridden, 8018 skip it. */ 8019 if (! ((h->root.root.type == bfd_link_hash_defined 8020 || h->root.root.type == bfd_link_hash_defweak) 8021 && h->root.root.u.def.section) 8022 || (link_info->shared && ! link_info->symbolic 8023 && !h->root.forced_local)) 8024 continue; 8025 8026 sym_sec = h->root.root.u.def.section; 8027 if (sym_sec->output_section) 8028 symval = (h->root.root.u.def.value 8029 + sym_sec->output_section->vma 8030 + sym_sec->output_offset); 8031 else 8032 symval = h->root.root.u.def.value; 8033 } 8034 else 8035 { 8036 Elf_Internal_Sym *isym; 8037 8038 /* Read this BFD's symbols if we haven't done so already. */ 8039 if (isymbuf == NULL && symtab_hdr->sh_info != 0) 8040 { 8041 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 8042 if (isymbuf == NULL) 8043 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 8044 symtab_hdr->sh_info, 0, 8045 NULL, NULL, NULL); 8046 if (isymbuf == NULL) 8047 goto relax_return; 8048 } 8049 8050 isym = isymbuf + r_symndx; 8051 if (isym->st_shndx == SHN_UNDEF) 8052 continue; 8053 else if (isym->st_shndx == SHN_ABS) 8054 sym_sec = bfd_abs_section_ptr; 8055 else if (isym->st_shndx == SHN_COMMON) 8056 sym_sec = bfd_com_section_ptr; 8057 else 8058 sym_sec 8059 = bfd_section_from_elf_index (abfd, isym->st_shndx); 8060 symval = isym->st_value 8061 + sym_sec->output_section->vma 8062 + sym_sec->output_offset; 8063 } 8064 8065 /* Compute branch offset, from delay slot of the jump to the 8066 branch target. */ 8067 sym_offset = (symval + irel->r_addend) 8068 - (sec_start + irel->r_offset + 4); 8069 8070 /* Branch offset must be properly aligned. */ 8071 if ((sym_offset & 3) != 0) 8072 continue; 8073 8074 sym_offset >>= 2; 8075 8076 /* Check that it's in range. */ 8077 if (sym_offset < -0x8000 || sym_offset >= 0x8000) 8078 continue; 8079 8080 /* Get the section contents if we haven't done so already. */ 8081 if (!mips_elf_get_section_contents (abfd, sec, &contents)) 8082 goto relax_return; 8083 8084 instruction = bfd_get_32 (abfd, contents + irel->r_offset); 8085 8086 /* If it was jalr <reg>, turn it into bgezal $zero, <target>. */ 8087 if ((instruction & 0xfc1fffff) == 0x0000f809) 8088 instruction = 0x04110000; 8089 /* If it was jr <reg>, turn it into b <target>. */ 8090 else if ((instruction & 0xfc1fffff) == 0x00000008) 8091 instruction = 0x10000000; 8092 else 8093 continue; 8094 8095 instruction |= (sym_offset & 0xffff); 8096 bfd_put_32 (abfd, instruction, contents + irel->r_offset); 8097 changed_contents = TRUE; 8098 } 8099 8100 if (contents != NULL 8101 && elf_section_data (sec)->this_hdr.contents != contents) 8102 { 8103 if (!changed_contents && !link_info->keep_memory) 8104 free (contents); 8105 else 8106 { 8107 /* Cache the section contents for elf_link_input_bfd. */ 8108 elf_section_data (sec)->this_hdr.contents = contents; 8109 } 8110 } 8111 return TRUE; 8112 8113 relax_return: 8114 if (contents != NULL 8115 && elf_section_data (sec)->this_hdr.contents != contents) 8116 free (contents); 8117 return FALSE; 8118 } 8119 8120 /* Allocate space for global sym dynamic relocs. */ 8121 8122 static bfd_boolean 8123 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 8124 { 8125 struct bfd_link_info *info = inf; 8126 bfd *dynobj; 8127 struct mips_elf_link_hash_entry *hmips; 8128 struct mips_elf_link_hash_table *htab; 8129 8130 htab = mips_elf_hash_table (info); 8131 BFD_ASSERT (htab != NULL); 8132 8133 dynobj = elf_hash_table (info)->dynobj; 8134 hmips = (struct mips_elf_link_hash_entry *) h; 8135 8136 /* VxWorks executables are handled elsewhere; we only need to 8137 allocate relocations in shared objects. */ 8138 if (htab->is_vxworks && !info->shared) 8139 return TRUE; 8140 8141 /* Ignore indirect and warning symbols. All relocations against 8142 such symbols will be redirected to the target symbol. */ 8143 if (h->root.type == bfd_link_hash_indirect 8144 || h->root.type == bfd_link_hash_warning) 8145 return TRUE; 8146 8147 /* If this symbol is defined in a dynamic object, or we are creating 8148 a shared library, we will need to copy any R_MIPS_32 or 8149 R_MIPS_REL32 relocs against it into the output file. */ 8150 if (! info->relocatable 8151 && hmips->possibly_dynamic_relocs != 0 8152 && (h->root.type == bfd_link_hash_defweak 8153 || !h->def_regular 8154 || info->shared)) 8155 { 8156 bfd_boolean do_copy = TRUE; 8157 8158 if (h->root.type == bfd_link_hash_undefweak) 8159 { 8160 /* Do not copy relocations for undefined weak symbols with 8161 non-default visibility. */ 8162 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 8163 do_copy = FALSE; 8164 8165 /* Make sure undefined weak symbols are output as a dynamic 8166 symbol in PIEs. */ 8167 else if (h->dynindx == -1 && !h->forced_local) 8168 { 8169 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 8170 return FALSE; 8171 } 8172 } 8173 8174 if (do_copy) 8175 { 8176 /* Even though we don't directly need a GOT entry for this symbol, 8177 the SVR4 psABI requires it to have a dynamic symbol table 8178 index greater that DT_MIPS_GOTSYM if there are dynamic 8179 relocations against it. 8180 8181 VxWorks does not enforce the same mapping between the GOT 8182 and the symbol table, so the same requirement does not 8183 apply there. */ 8184 if (!htab->is_vxworks) 8185 { 8186 if (hmips->global_got_area > GGA_RELOC_ONLY) 8187 hmips->global_got_area = GGA_RELOC_ONLY; 8188 hmips->got_only_for_calls = FALSE; 8189 } 8190 8191 mips_elf_allocate_dynamic_relocations 8192 (dynobj, info, hmips->possibly_dynamic_relocs); 8193 if (hmips->readonly_reloc) 8194 /* We tell the dynamic linker that there are relocations 8195 against the text segment. */ 8196 info->flags |= DF_TEXTREL; 8197 } 8198 } 8199 8200 return TRUE; 8201 } 8202 8203 /* Adjust a symbol defined by a dynamic object and referenced by a 8204 regular object. The current definition is in some section of the 8205 dynamic object, but we're not including those sections. We have to 8206 change the definition to something the rest of the link can 8207 understand. */ 8208 8209 bfd_boolean 8210 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info, 8211 struct elf_link_hash_entry *h) 8212 { 8213 bfd *dynobj; 8214 struct mips_elf_link_hash_entry *hmips; 8215 struct mips_elf_link_hash_table *htab; 8216 8217 htab = mips_elf_hash_table (info); 8218 BFD_ASSERT (htab != NULL); 8219 8220 dynobj = elf_hash_table (info)->dynobj; 8221 hmips = (struct mips_elf_link_hash_entry *) h; 8222 8223 /* Make sure we know what is going on here. */ 8224 BFD_ASSERT (dynobj != NULL 8225 && (h->needs_plt 8226 || h->u.weakdef != NULL 8227 || (h->def_dynamic 8228 && h->ref_regular 8229 && !h->def_regular))); 8230 8231 hmips = (struct mips_elf_link_hash_entry *) h; 8232 8233 /* If there are call relocations against an externally-defined symbol, 8234 see whether we can create a MIPS lazy-binding stub for it. We can 8235 only do this if all references to the function are through call 8236 relocations, and in that case, the traditional lazy-binding stubs 8237 are much more efficient than PLT entries. 8238 8239 Traditional stubs are only available on SVR4 psABI-based systems; 8240 VxWorks always uses PLTs instead. */ 8241 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub) 8242 { 8243 if (! elf_hash_table (info)->dynamic_sections_created) 8244 return TRUE; 8245 8246 /* If this symbol is not defined in a regular file, then set 8247 the symbol to the stub location. This is required to make 8248 function pointers compare as equal between the normal 8249 executable and the shared library. */ 8250 if (!h->def_regular) 8251 { 8252 hmips->needs_lazy_stub = TRUE; 8253 htab->lazy_stub_count++; 8254 return TRUE; 8255 } 8256 } 8257 /* As above, VxWorks requires PLT entries for externally-defined 8258 functions that are only accessed through call relocations. 8259 8260 Both VxWorks and non-VxWorks targets also need PLT entries if there 8261 are static-only relocations against an externally-defined function. 8262 This can technically occur for shared libraries if there are 8263 branches to the symbol, although it is unlikely that this will be 8264 used in practice due to the short ranges involved. It can occur 8265 for any relative or absolute relocation in executables; in that 8266 case, the PLT entry becomes the function's canonical address. */ 8267 else if (((h->needs_plt && !hmips->no_fn_stub) 8268 || (h->type == STT_FUNC && hmips->has_static_relocs)) 8269 && htab->use_plts_and_copy_relocs 8270 && !SYMBOL_CALLS_LOCAL (info, h) 8271 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 8272 && h->root.type == bfd_link_hash_undefweak)) 8273 { 8274 /* If this is the first symbol to need a PLT entry, allocate room 8275 for the header. */ 8276 if (htab->splt->size == 0) 8277 { 8278 BFD_ASSERT (htab->sgotplt->size == 0); 8279 8280 /* If we're using the PLT additions to the psABI, each PLT 8281 entry is 16 bytes and the PLT0 entry is 32 bytes. 8282 Encourage better cache usage by aligning. We do this 8283 lazily to avoid pessimizing traditional objects. */ 8284 if (!htab->is_vxworks 8285 && !bfd_set_section_alignment (dynobj, htab->splt, 5)) 8286 return FALSE; 8287 8288 /* Make sure that .got.plt is word-aligned. We do this lazily 8289 for the same reason as above. */ 8290 if (!bfd_set_section_alignment (dynobj, htab->sgotplt, 8291 MIPS_ELF_LOG_FILE_ALIGN (dynobj))) 8292 return FALSE; 8293 8294 htab->splt->size += htab->plt_header_size; 8295 8296 /* On non-VxWorks targets, the first two entries in .got.plt 8297 are reserved. */ 8298 if (!htab->is_vxworks) 8299 htab->sgotplt->size += 2 * MIPS_ELF_GOT_SIZE (dynobj); 8300 8301 /* On VxWorks, also allocate room for the header's 8302 .rela.plt.unloaded entries. */ 8303 if (htab->is_vxworks && !info->shared) 8304 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela); 8305 } 8306 8307 /* Assign the next .plt entry to this symbol. */ 8308 h->plt.offset = htab->splt->size; 8309 htab->splt->size += htab->plt_entry_size; 8310 8311 /* If the output file has no definition of the symbol, set the 8312 symbol's value to the address of the stub. */ 8313 if (!info->shared && !h->def_regular) 8314 { 8315 h->root.u.def.section = htab->splt; 8316 h->root.u.def.value = h->plt.offset; 8317 /* For VxWorks, point at the PLT load stub rather than the 8318 lazy resolution stub; this stub will become the canonical 8319 function address. */ 8320 if (htab->is_vxworks) 8321 h->root.u.def.value += 8; 8322 } 8323 8324 /* Make room for the .got.plt entry and the R_MIPS_JUMP_SLOT 8325 relocation. */ 8326 htab->sgotplt->size += MIPS_ELF_GOT_SIZE (dynobj); 8327 htab->srelplt->size += (htab->is_vxworks 8328 ? MIPS_ELF_RELA_SIZE (dynobj) 8329 : MIPS_ELF_REL_SIZE (dynobj)); 8330 8331 /* Make room for the .rela.plt.unloaded relocations. */ 8332 if (htab->is_vxworks && !info->shared) 8333 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela); 8334 8335 /* All relocations against this symbol that could have been made 8336 dynamic will now refer to the PLT entry instead. */ 8337 hmips->possibly_dynamic_relocs = 0; 8338 8339 return TRUE; 8340 } 8341 8342 /* If this is a weak symbol, and there is a real definition, the 8343 processor independent code will have arranged for us to see the 8344 real definition first, and we can just use the same value. */ 8345 if (h->u.weakdef != NULL) 8346 { 8347 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 8348 || h->u.weakdef->root.type == bfd_link_hash_defweak); 8349 h->root.u.def.section = h->u.weakdef->root.u.def.section; 8350 h->root.u.def.value = h->u.weakdef->root.u.def.value; 8351 return TRUE; 8352 } 8353 8354 /* Otherwise, there is nothing further to do for symbols defined 8355 in regular objects. */ 8356 if (h->def_regular) 8357 return TRUE; 8358 8359 /* There's also nothing more to do if we'll convert all relocations 8360 against this symbol into dynamic relocations. */ 8361 if (!hmips->has_static_relocs) 8362 return TRUE; 8363 8364 /* We're now relying on copy relocations. Complain if we have 8365 some that we can't convert. */ 8366 if (!htab->use_plts_and_copy_relocs || info->shared) 8367 { 8368 (*_bfd_error_handler) (_("non-dynamic relocations refer to " 8369 "dynamic symbol %s"), 8370 h->root.root.string); 8371 bfd_set_error (bfd_error_bad_value); 8372 return FALSE; 8373 } 8374 8375 /* We must allocate the symbol in our .dynbss section, which will 8376 become part of the .bss section of the executable. There will be 8377 an entry for this symbol in the .dynsym section. The dynamic 8378 object will contain position independent code, so all references 8379 from the dynamic object to this symbol will go through the global 8380 offset table. The dynamic linker will use the .dynsym entry to 8381 determine the address it must put in the global offset table, so 8382 both the dynamic object and the regular object will refer to the 8383 same memory location for the variable. */ 8384 8385 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0) 8386 { 8387 if (htab->is_vxworks) 8388 htab->srelbss->size += sizeof (Elf32_External_Rela); 8389 else 8390 mips_elf_allocate_dynamic_relocations (dynobj, info, 1); 8391 h->needs_copy = 1; 8392 } 8393 8394 /* All relocations against this symbol that could have been made 8395 dynamic will now refer to the local copy instead. */ 8396 hmips->possibly_dynamic_relocs = 0; 8397 8398 return _bfd_elf_adjust_dynamic_copy (h, htab->sdynbss); 8399 } 8400 8401 /* This function is called after all the input files have been read, 8402 and the input sections have been assigned to output sections. We 8403 check for any mips16 stub sections that we can discard. */ 8404 8405 bfd_boolean 8406 _bfd_mips_elf_always_size_sections (bfd *output_bfd, 8407 struct bfd_link_info *info) 8408 { 8409 asection *ri; 8410 struct mips_elf_link_hash_table *htab; 8411 struct mips_htab_traverse_info hti; 8412 8413 htab = mips_elf_hash_table (info); 8414 BFD_ASSERT (htab != NULL); 8415 8416 /* The .reginfo section has a fixed size. */ 8417 ri = bfd_get_section_by_name (output_bfd, ".reginfo"); 8418 if (ri != NULL) 8419 bfd_set_section_size (output_bfd, ri, sizeof (Elf32_External_RegInfo)); 8420 8421 hti.info = info; 8422 hti.output_bfd = output_bfd; 8423 hti.error = FALSE; 8424 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 8425 mips_elf_check_symbols, &hti); 8426 if (hti.error) 8427 return FALSE; 8428 8429 return TRUE; 8430 } 8431 8432 /* If the link uses a GOT, lay it out and work out its size. */ 8433 8434 static bfd_boolean 8435 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info) 8436 { 8437 bfd *dynobj; 8438 asection *s; 8439 struct mips_got_info *g; 8440 bfd_size_type loadable_size = 0; 8441 bfd_size_type page_gotno; 8442 bfd *sub; 8443 struct mips_elf_count_tls_arg count_tls_arg; 8444 struct mips_elf_link_hash_table *htab; 8445 8446 htab = mips_elf_hash_table (info); 8447 BFD_ASSERT (htab != NULL); 8448 8449 s = htab->sgot; 8450 if (s == NULL) 8451 return TRUE; 8452 8453 dynobj = elf_hash_table (info)->dynobj; 8454 g = htab->got_info; 8455 8456 /* Allocate room for the reserved entries. VxWorks always reserves 8457 3 entries; other objects only reserve 2 entries. */ 8458 BFD_ASSERT (g->assigned_gotno == 0); 8459 if (htab->is_vxworks) 8460 htab->reserved_gotno = 3; 8461 else 8462 htab->reserved_gotno = 2; 8463 g->local_gotno += htab->reserved_gotno; 8464 g->assigned_gotno = htab->reserved_gotno; 8465 8466 /* Replace entries for indirect and warning symbols with entries for 8467 the target symbol. */ 8468 if (!mips_elf_resolve_final_got_entries (g)) 8469 return FALSE; 8470 8471 /* Count the number of GOT symbols. */ 8472 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info); 8473 8474 /* Calculate the total loadable size of the output. That 8475 will give us the maximum number of GOT_PAGE entries 8476 required. */ 8477 for (sub = info->input_bfds; sub; sub = sub->link_next) 8478 { 8479 asection *subsection; 8480 8481 for (subsection = sub->sections; 8482 subsection; 8483 subsection = subsection->next) 8484 { 8485 if ((subsection->flags & SEC_ALLOC) == 0) 8486 continue; 8487 loadable_size += ((subsection->size + 0xf) 8488 &~ (bfd_size_type) 0xf); 8489 } 8490 } 8491 8492 if (htab->is_vxworks) 8493 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16 8494 relocations against local symbols evaluate to "G", and the EABI does 8495 not include R_MIPS_GOT_PAGE. */ 8496 page_gotno = 0; 8497 else 8498 /* Assume there are two loadable segments consisting of contiguous 8499 sections. Is 5 enough? */ 8500 page_gotno = (loadable_size >> 16) + 5; 8501 8502 /* Choose the smaller of the two estimates; both are intended to be 8503 conservative. */ 8504 if (page_gotno > g->page_gotno) 8505 page_gotno = g->page_gotno; 8506 8507 g->local_gotno += page_gotno; 8508 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 8509 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 8510 8511 /* We need to calculate tls_gotno for global symbols at this point 8512 instead of building it up earlier, to avoid doublecounting 8513 entries for one global symbol from multiple input files. */ 8514 count_tls_arg.info = info; 8515 count_tls_arg.needed = 0; 8516 elf_link_hash_traverse (elf_hash_table (info), 8517 mips_elf_count_global_tls_entries, 8518 &count_tls_arg); 8519 g->tls_gotno += count_tls_arg.needed; 8520 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd); 8521 8522 /* VxWorks does not support multiple GOTs. It initializes $gp to 8523 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the 8524 dynamic loader. */ 8525 if (htab->is_vxworks) 8526 { 8527 /* VxWorks executables do not need a GOT. */ 8528 if (info->shared) 8529 { 8530 /* Each VxWorks GOT entry needs an explicit relocation. */ 8531 unsigned int count; 8532 8533 count = g->global_gotno + g->local_gotno - htab->reserved_gotno; 8534 if (count) 8535 mips_elf_allocate_dynamic_relocations (dynobj, info, count); 8536 } 8537 } 8538 else if (s->size > MIPS_ELF_GOT_MAX_SIZE (info)) 8539 { 8540 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno)) 8541 return FALSE; 8542 } 8543 else 8544 { 8545 struct mips_elf_count_tls_arg arg; 8546 8547 /* Set up TLS entries. */ 8548 g->tls_assigned_gotno = g->global_gotno + g->local_gotno; 8549 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, g); 8550 8551 /* Allocate room for the TLS relocations. */ 8552 arg.info = info; 8553 arg.needed = 0; 8554 htab_traverse (g->got_entries, mips_elf_count_local_tls_relocs, &arg); 8555 elf_link_hash_traverse (elf_hash_table (info), 8556 mips_elf_count_global_tls_relocs, 8557 &arg); 8558 if (arg.needed) 8559 mips_elf_allocate_dynamic_relocations (dynobj, info, arg.needed); 8560 } 8561 8562 return TRUE; 8563 } 8564 8565 /* Estimate the size of the .MIPS.stubs section. */ 8566 8567 static void 8568 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info) 8569 { 8570 struct mips_elf_link_hash_table *htab; 8571 bfd_size_type dynsymcount; 8572 8573 htab = mips_elf_hash_table (info); 8574 BFD_ASSERT (htab != NULL); 8575 8576 if (htab->lazy_stub_count == 0) 8577 return; 8578 8579 /* IRIX rld assumes that a function stub isn't at the end of the .text 8580 section, so add a dummy entry to the end. */ 8581 htab->lazy_stub_count++; 8582 8583 /* Get a worst-case estimate of the number of dynamic symbols needed. 8584 At this point, dynsymcount does not account for section symbols 8585 and count_section_dynsyms may overestimate the number that will 8586 be needed. */ 8587 dynsymcount = (elf_hash_table (info)->dynsymcount 8588 + count_section_dynsyms (output_bfd, info)); 8589 8590 /* Determine the size of one stub entry. */ 8591 htab->function_stub_size = (dynsymcount > 0x10000 8592 ? MIPS_FUNCTION_STUB_BIG_SIZE 8593 : MIPS_FUNCTION_STUB_NORMAL_SIZE); 8594 8595 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size; 8596 } 8597 8598 /* A mips_elf_link_hash_traverse callback for which DATA points to the 8599 MIPS hash table. If H needs a traditional MIPS lazy-binding stub, 8600 allocate an entry in the stubs section. */ 8601 8602 static bfd_boolean 8603 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void **data) 8604 { 8605 struct mips_elf_link_hash_table *htab; 8606 8607 htab = (struct mips_elf_link_hash_table *) data; 8608 if (h->needs_lazy_stub) 8609 { 8610 h->root.root.u.def.section = htab->sstubs; 8611 h->root.root.u.def.value = htab->sstubs->size; 8612 h->root.plt.offset = htab->sstubs->size; 8613 htab->sstubs->size += htab->function_stub_size; 8614 } 8615 return TRUE; 8616 } 8617 8618 /* Allocate offsets in the stubs section to each symbol that needs one. 8619 Set the final size of the .MIPS.stub section. */ 8620 8621 static void 8622 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info) 8623 { 8624 struct mips_elf_link_hash_table *htab; 8625 8626 htab = mips_elf_hash_table (info); 8627 BFD_ASSERT (htab != NULL); 8628 8629 if (htab->lazy_stub_count == 0) 8630 return; 8631 8632 htab->sstubs->size = 0; 8633 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, htab); 8634 htab->sstubs->size += htab->function_stub_size; 8635 BFD_ASSERT (htab->sstubs->size 8636 == htab->lazy_stub_count * htab->function_stub_size); 8637 } 8638 8639 /* Set the sizes of the dynamic sections. */ 8640 8641 bfd_boolean 8642 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd, 8643 struct bfd_link_info *info) 8644 { 8645 bfd *dynobj; 8646 asection *s, *sreldyn; 8647 bfd_boolean reltext; 8648 struct mips_elf_link_hash_table *htab; 8649 8650 htab = mips_elf_hash_table (info); 8651 BFD_ASSERT (htab != NULL); 8652 dynobj = elf_hash_table (info)->dynobj; 8653 BFD_ASSERT (dynobj != NULL); 8654 8655 if (elf_hash_table (info)->dynamic_sections_created) 8656 { 8657 /* Set the contents of the .interp section to the interpreter. */ 8658 if (info->executable) 8659 { 8660 s = bfd_get_section_by_name (dynobj, ".interp"); 8661 BFD_ASSERT (s != NULL); 8662 s->size 8663 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1; 8664 s->contents 8665 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd); 8666 } 8667 8668 /* Create a symbol for the PLT, if we know that we are using it. */ 8669 if (htab->splt && htab->splt->size > 0 && htab->root.hplt == NULL) 8670 { 8671 struct elf_link_hash_entry *h; 8672 8673 BFD_ASSERT (htab->use_plts_and_copy_relocs); 8674 8675 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->splt, 8676 "_PROCEDURE_LINKAGE_TABLE_"); 8677 htab->root.hplt = h; 8678 if (h == NULL) 8679 return FALSE; 8680 h->type = STT_FUNC; 8681 } 8682 } 8683 8684 /* Allocate space for global sym dynamic relocs. */ 8685 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, (PTR) info); 8686 8687 mips_elf_estimate_stub_size (output_bfd, info); 8688 8689 if (!mips_elf_lay_out_got (output_bfd, info)) 8690 return FALSE; 8691 8692 mips_elf_lay_out_lazy_stubs (info); 8693 8694 /* The check_relocs and adjust_dynamic_symbol entry points have 8695 determined the sizes of the various dynamic sections. Allocate 8696 memory for them. */ 8697 reltext = FALSE; 8698 for (s = dynobj->sections; s != NULL; s = s->next) 8699 { 8700 const char *name; 8701 8702 /* It's OK to base decisions on the section name, because none 8703 of the dynobj section names depend upon the input files. */ 8704 name = bfd_get_section_name (dynobj, s); 8705 8706 if ((s->flags & SEC_LINKER_CREATED) == 0) 8707 continue; 8708 8709 if (CONST_STRNEQ (name, ".rel")) 8710 { 8711 if (s->size != 0) 8712 { 8713 const char *outname; 8714 asection *target; 8715 8716 /* If this relocation section applies to a read only 8717 section, then we probably need a DT_TEXTREL entry. 8718 If the relocation section is .rel(a).dyn, we always 8719 assert a DT_TEXTREL entry rather than testing whether 8720 there exists a relocation to a read only section or 8721 not. */ 8722 outname = bfd_get_section_name (output_bfd, 8723 s->output_section); 8724 target = bfd_get_section_by_name (output_bfd, outname + 4); 8725 if ((target != NULL 8726 && (target->flags & SEC_READONLY) != 0 8727 && (target->flags & SEC_ALLOC) != 0) 8728 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0) 8729 reltext = TRUE; 8730 8731 /* We use the reloc_count field as a counter if we need 8732 to copy relocs into the output file. */ 8733 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0) 8734 s->reloc_count = 0; 8735 8736 /* If combreloc is enabled, elf_link_sort_relocs() will 8737 sort relocations, but in a different way than we do, 8738 and before we're done creating relocations. Also, it 8739 will move them around between input sections' 8740 relocation's contents, so our sorting would be 8741 broken, so don't let it run. */ 8742 info->combreloc = 0; 8743 } 8744 } 8745 else if (! info->shared 8746 && ! mips_elf_hash_table (info)->use_rld_obj_head 8747 && CONST_STRNEQ (name, ".rld_map")) 8748 { 8749 /* We add a room for __rld_map. It will be filled in by the 8750 rtld to contain a pointer to the _r_debug structure. */ 8751 s->size += 4; 8752 } 8753 else if (SGI_COMPAT (output_bfd) 8754 && CONST_STRNEQ (name, ".compact_rel")) 8755 s->size += mips_elf_hash_table (info)->compact_rel_size; 8756 else if (s == htab->splt) 8757 { 8758 /* If the last PLT entry has a branch delay slot, allocate 8759 room for an extra nop to fill the delay slot. This is 8760 for CPUs without load interlocking. */ 8761 if (! LOAD_INTERLOCKS_P (output_bfd) 8762 && ! htab->is_vxworks && s->size > 0) 8763 s->size += 4; 8764 } 8765 else if (! CONST_STRNEQ (name, ".init") 8766 && s != htab->sgot 8767 && s != htab->sgotplt 8768 && s != htab->sstubs 8769 && s != htab->sdynbss) 8770 { 8771 /* It's not one of our sections, so don't allocate space. */ 8772 continue; 8773 } 8774 8775 if (s->size == 0) 8776 { 8777 s->flags |= SEC_EXCLUDE; 8778 continue; 8779 } 8780 8781 if ((s->flags & SEC_HAS_CONTENTS) == 0) 8782 continue; 8783 8784 /* Allocate memory for the section contents. */ 8785 s->contents = bfd_zalloc (dynobj, s->size); 8786 if (s->contents == NULL) 8787 { 8788 bfd_set_error (bfd_error_no_memory); 8789 return FALSE; 8790 } 8791 } 8792 8793 if (elf_hash_table (info)->dynamic_sections_created) 8794 { 8795 /* Add some entries to the .dynamic section. We fill in the 8796 values later, in _bfd_mips_elf_finish_dynamic_sections, but we 8797 must add the entries now so that we get the correct size for 8798 the .dynamic section. */ 8799 8800 /* SGI object has the equivalence of DT_DEBUG in the 8801 DT_MIPS_RLD_MAP entry. This must come first because glibc 8802 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and GDB only 8803 looks at the first one it sees. */ 8804 if (!info->shared 8805 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0)) 8806 return FALSE; 8807 8808 /* The DT_DEBUG entry may be filled in by the dynamic linker and 8809 used by the debugger. */ 8810 if (info->executable 8811 && !SGI_COMPAT (output_bfd) 8812 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0)) 8813 return FALSE; 8814 8815 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks)) 8816 info->flags |= DF_TEXTREL; 8817 8818 if ((info->flags & DF_TEXTREL) != 0) 8819 { 8820 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0)) 8821 return FALSE; 8822 8823 /* Clear the DF_TEXTREL flag. It will be set again if we 8824 write out an actual text relocation; we may not, because 8825 at this point we do not know whether e.g. any .eh_frame 8826 absolute relocations have been converted to PC-relative. */ 8827 info->flags &= ~DF_TEXTREL; 8828 } 8829 8830 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0)) 8831 return FALSE; 8832 8833 sreldyn = mips_elf_rel_dyn_section (info, FALSE); 8834 if (htab->is_vxworks) 8835 { 8836 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not 8837 use any of the DT_MIPS_* tags. */ 8838 if (sreldyn && sreldyn->size > 0) 8839 { 8840 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0)) 8841 return FALSE; 8842 8843 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0)) 8844 return FALSE; 8845 8846 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0)) 8847 return FALSE; 8848 } 8849 } 8850 else 8851 { 8852 if (sreldyn && sreldyn->size > 0) 8853 { 8854 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0)) 8855 return FALSE; 8856 8857 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0)) 8858 return FALSE; 8859 8860 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0)) 8861 return FALSE; 8862 } 8863 8864 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0)) 8865 return FALSE; 8866 8867 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0)) 8868 return FALSE; 8869 8870 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0)) 8871 return FALSE; 8872 8873 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0)) 8874 return FALSE; 8875 8876 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0)) 8877 return FALSE; 8878 8879 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0)) 8880 return FALSE; 8881 8882 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0)) 8883 return FALSE; 8884 8885 if (IRIX_COMPAT (dynobj) == ict_irix5 8886 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0)) 8887 return FALSE; 8888 8889 if (IRIX_COMPAT (dynobj) == ict_irix6 8890 && (bfd_get_section_by_name 8891 (dynobj, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj))) 8892 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0)) 8893 return FALSE; 8894 } 8895 if (htab->splt->size > 0) 8896 { 8897 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0)) 8898 return FALSE; 8899 8900 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0)) 8901 return FALSE; 8902 8903 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0)) 8904 return FALSE; 8905 8906 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0)) 8907 return FALSE; 8908 } 8909 if (htab->is_vxworks 8910 && !elf_vxworks_add_dynamic_entries (output_bfd, info)) 8911 return FALSE; 8912 } 8913 8914 return TRUE; 8915 } 8916 8917 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD. 8918 Adjust its R_ADDEND field so that it is correct for the output file. 8919 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols 8920 and sections respectively; both use symbol indexes. */ 8921 8922 static void 8923 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info, 8924 bfd *input_bfd, Elf_Internal_Sym *local_syms, 8925 asection **local_sections, Elf_Internal_Rela *rel) 8926 { 8927 unsigned int r_type, r_symndx; 8928 Elf_Internal_Sym *sym; 8929 asection *sec; 8930 8931 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 8932 { 8933 r_type = ELF_R_TYPE (output_bfd, rel->r_info); 8934 if (r_type == R_MIPS16_GPREL 8935 || r_type == R_MIPS_GPREL16 8936 || r_type == R_MIPS_GPREL32 8937 || r_type == R_MIPS_LITERAL) 8938 { 8939 rel->r_addend += _bfd_get_gp_value (input_bfd); 8940 rel->r_addend -= _bfd_get_gp_value (output_bfd); 8941 } 8942 8943 r_symndx = ELF_R_SYM (output_bfd, rel->r_info); 8944 sym = local_syms + r_symndx; 8945 8946 /* Adjust REL's addend to account for section merging. */ 8947 if (!info->relocatable) 8948 { 8949 sec = local_sections[r_symndx]; 8950 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 8951 } 8952 8953 /* This would normally be done by the rela_normal code in elflink.c. */ 8954 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION) 8955 rel->r_addend += local_sections[r_symndx]->output_offset; 8956 } 8957 } 8958 8959 /* Relocate a MIPS ELF section. */ 8960 8961 bfd_boolean 8962 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info, 8963 bfd *input_bfd, asection *input_section, 8964 bfd_byte *contents, Elf_Internal_Rela *relocs, 8965 Elf_Internal_Sym *local_syms, 8966 asection **local_sections) 8967 { 8968 Elf_Internal_Rela *rel; 8969 const Elf_Internal_Rela *relend; 8970 bfd_vma addend = 0; 8971 bfd_boolean use_saved_addend_p = FALSE; 8972 const struct elf_backend_data *bed; 8973 8974 bed = get_elf_backend_data (output_bfd); 8975 relend = relocs + input_section->reloc_count * bed->s->int_rels_per_ext_rel; 8976 for (rel = relocs; rel < relend; ++rel) 8977 { 8978 const char *name; 8979 bfd_vma value = 0; 8980 reloc_howto_type *howto; 8981 bfd_boolean cross_mode_jump_p; 8982 /* TRUE if the relocation is a RELA relocation, rather than a 8983 REL relocation. */ 8984 bfd_boolean rela_relocation_p = TRUE; 8985 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info); 8986 const char *msg; 8987 unsigned long r_symndx; 8988 asection *sec; 8989 Elf_Internal_Shdr *symtab_hdr; 8990 struct elf_link_hash_entry *h; 8991 bfd_boolean rel_reloc; 8992 8993 rel_reloc = (NEWABI_P (input_bfd) 8994 && mips_elf_rel_relocation_p (input_bfd, input_section, 8995 relocs, rel)); 8996 /* Find the relocation howto for this relocation. */ 8997 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc); 8998 8999 r_symndx = ELF_R_SYM (input_bfd, rel->r_info); 9000 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 9001 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections)) 9002 { 9003 sec = local_sections[r_symndx]; 9004 h = NULL; 9005 } 9006 else 9007 { 9008 unsigned long extsymoff; 9009 9010 extsymoff = 0; 9011 if (!elf_bad_symtab (input_bfd)) 9012 extsymoff = symtab_hdr->sh_info; 9013 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff]; 9014 while (h->root.type == bfd_link_hash_indirect 9015 || h->root.type == bfd_link_hash_warning) 9016 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9017 9018 sec = NULL; 9019 if (h->root.type == bfd_link_hash_defined 9020 || h->root.type == bfd_link_hash_defweak) 9021 sec = h->root.u.def.section; 9022 } 9023 9024 if (sec != NULL && elf_discarded_section (sec)) 9025 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 9026 rel, relend, howto, contents); 9027 9028 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd)) 9029 { 9030 /* Some 32-bit code uses R_MIPS_64. In particular, people use 9031 64-bit code, but make sure all their addresses are in the 9032 lowermost or uppermost 32-bit section of the 64-bit address 9033 space. Thus, when they use an R_MIPS_64 they mean what is 9034 usually meant by R_MIPS_32, with the exception that the 9035 stored value is sign-extended to 64 bits. */ 9036 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE); 9037 9038 /* On big-endian systems, we need to lie about the position 9039 of the reloc. */ 9040 if (bfd_big_endian (input_bfd)) 9041 rel->r_offset += 4; 9042 } 9043 9044 if (!use_saved_addend_p) 9045 { 9046 /* If these relocations were originally of the REL variety, 9047 we must pull the addend out of the field that will be 9048 relocated. Otherwise, we simply use the contents of the 9049 RELA relocation. */ 9050 if (mips_elf_rel_relocation_p (input_bfd, input_section, 9051 relocs, rel)) 9052 { 9053 rela_relocation_p = FALSE; 9054 addend = mips_elf_read_rel_addend (input_bfd, rel, 9055 howto, contents); 9056 if (hi16_reloc_p (r_type) 9057 || (got16_reloc_p (r_type) 9058 && mips_elf_local_relocation_p (input_bfd, rel, 9059 local_sections))) 9060 { 9061 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend, 9062 contents, &addend)) 9063 { 9064 if (h) 9065 name = h->root.root.string; 9066 else 9067 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 9068 local_syms + r_symndx, 9069 sec); 9070 (*_bfd_error_handler) 9071 (_("%B: Can't find matching LO16 reloc against `%s' for %s at 0x%lx in section `%A'"), 9072 input_bfd, input_section, name, howto->name, 9073 rel->r_offset); 9074 } 9075 } 9076 else 9077 addend <<= howto->rightshift; 9078 } 9079 else 9080 addend = rel->r_addend; 9081 mips_elf_adjust_addend (output_bfd, info, input_bfd, 9082 local_syms, local_sections, rel); 9083 } 9084 9085 if (info->relocatable) 9086 { 9087 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd) 9088 && bfd_big_endian (input_bfd)) 9089 rel->r_offset -= 4; 9090 9091 if (!rela_relocation_p && rel->r_addend) 9092 { 9093 addend += rel->r_addend; 9094 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type)) 9095 addend = mips_elf_high (addend); 9096 else if (r_type == R_MIPS_HIGHER) 9097 addend = mips_elf_higher (addend); 9098 else if (r_type == R_MIPS_HIGHEST) 9099 addend = mips_elf_highest (addend); 9100 else 9101 addend >>= howto->rightshift; 9102 9103 /* We use the source mask, rather than the destination 9104 mask because the place to which we are writing will be 9105 source of the addend in the final link. */ 9106 addend &= howto->src_mask; 9107 9108 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 9109 /* See the comment above about using R_MIPS_64 in the 32-bit 9110 ABI. Here, we need to update the addend. It would be 9111 possible to get away with just using the R_MIPS_32 reloc 9112 but for endianness. */ 9113 { 9114 bfd_vma sign_bits; 9115 bfd_vma low_bits; 9116 bfd_vma high_bits; 9117 9118 if (addend & ((bfd_vma) 1 << 31)) 9119 #ifdef BFD64 9120 sign_bits = ((bfd_vma) 1 << 32) - 1; 9121 #else 9122 sign_bits = -1; 9123 #endif 9124 else 9125 sign_bits = 0; 9126 9127 /* If we don't know that we have a 64-bit type, 9128 do two separate stores. */ 9129 if (bfd_big_endian (input_bfd)) 9130 { 9131 /* Store the sign-bits (which are most significant) 9132 first. */ 9133 low_bits = sign_bits; 9134 high_bits = addend; 9135 } 9136 else 9137 { 9138 low_bits = addend; 9139 high_bits = sign_bits; 9140 } 9141 bfd_put_32 (input_bfd, low_bits, 9142 contents + rel->r_offset); 9143 bfd_put_32 (input_bfd, high_bits, 9144 contents + rel->r_offset + 4); 9145 continue; 9146 } 9147 9148 if (! mips_elf_perform_relocation (info, howto, rel, addend, 9149 input_bfd, input_section, 9150 contents, FALSE)) 9151 return FALSE; 9152 } 9153 9154 /* Go on to the next relocation. */ 9155 continue; 9156 } 9157 9158 /* In the N32 and 64-bit ABIs there may be multiple consecutive 9159 relocations for the same offset. In that case we are 9160 supposed to treat the output of each relocation as the addend 9161 for the next. */ 9162 if (rel + 1 < relend 9163 && rel->r_offset == rel[1].r_offset 9164 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE) 9165 use_saved_addend_p = TRUE; 9166 else 9167 use_saved_addend_p = FALSE; 9168 9169 /* Figure out what value we are supposed to relocate. */ 9170 switch (mips_elf_calculate_relocation (output_bfd, input_bfd, 9171 input_section, info, rel, 9172 addend, howto, local_syms, 9173 local_sections, &value, 9174 &name, &cross_mode_jump_p, 9175 use_saved_addend_p)) 9176 { 9177 case bfd_reloc_continue: 9178 /* There's nothing to do. */ 9179 continue; 9180 9181 case bfd_reloc_undefined: 9182 /* mips_elf_calculate_relocation already called the 9183 undefined_symbol callback. There's no real point in 9184 trying to perform the relocation at this point, so we 9185 just skip ahead to the next relocation. */ 9186 continue; 9187 9188 case bfd_reloc_notsupported: 9189 msg = _("internal error: unsupported relocation error"); 9190 info->callbacks->warning 9191 (info, msg, name, input_bfd, input_section, rel->r_offset); 9192 return FALSE; 9193 9194 case bfd_reloc_overflow: 9195 if (use_saved_addend_p) 9196 /* Ignore overflow until we reach the last relocation for 9197 a given location. */ 9198 ; 9199 else 9200 { 9201 struct mips_elf_link_hash_table *htab; 9202 9203 htab = mips_elf_hash_table (info); 9204 BFD_ASSERT (htab != NULL); 9205 BFD_ASSERT (name != NULL); 9206 if (!htab->small_data_overflow_reported 9207 && (gprel16_reloc_p (howto->type) 9208 || howto->type == R_MIPS_LITERAL)) 9209 { 9210 msg = _("small-data section exceeds 64KB;" 9211 " lower small-data size limit (see option -G)"); 9212 9213 htab->small_data_overflow_reported = TRUE; 9214 (*info->callbacks->einfo) ("%P: %s\n", msg); 9215 } 9216 if (! ((*info->callbacks->reloc_overflow) 9217 (info, NULL, name, howto->name, (bfd_vma) 0, 9218 input_bfd, input_section, rel->r_offset))) 9219 return FALSE; 9220 } 9221 break; 9222 9223 case bfd_reloc_ok: 9224 break; 9225 9226 default: 9227 abort (); 9228 break; 9229 } 9230 9231 /* If we've got another relocation for the address, keep going 9232 until we reach the last one. */ 9233 if (use_saved_addend_p) 9234 { 9235 addend = value; 9236 continue; 9237 } 9238 9239 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)) 9240 /* See the comment above about using R_MIPS_64 in the 32-bit 9241 ABI. Until now, we've been using the HOWTO for R_MIPS_32; 9242 that calculated the right value. Now, however, we 9243 sign-extend the 32-bit result to 64-bits, and store it as a 9244 64-bit value. We are especially generous here in that we 9245 go to extreme lengths to support this usage on systems with 9246 only a 32-bit VMA. */ 9247 { 9248 bfd_vma sign_bits; 9249 bfd_vma low_bits; 9250 bfd_vma high_bits; 9251 9252 if (value & ((bfd_vma) 1 << 31)) 9253 #ifdef BFD64 9254 sign_bits = ((bfd_vma) 1 << 32) - 1; 9255 #else 9256 sign_bits = -1; 9257 #endif 9258 else 9259 sign_bits = 0; 9260 9261 /* If we don't know that we have a 64-bit type, 9262 do two separate stores. */ 9263 if (bfd_big_endian (input_bfd)) 9264 { 9265 /* Undo what we did above. */ 9266 rel->r_offset -= 4; 9267 /* Store the sign-bits (which are most significant) 9268 first. */ 9269 low_bits = sign_bits; 9270 high_bits = value; 9271 } 9272 else 9273 { 9274 low_bits = value; 9275 high_bits = sign_bits; 9276 } 9277 bfd_put_32 (input_bfd, low_bits, 9278 contents + rel->r_offset); 9279 bfd_put_32 (input_bfd, high_bits, 9280 contents + rel->r_offset + 4); 9281 continue; 9282 } 9283 9284 /* Actually perform the relocation. */ 9285 if (! mips_elf_perform_relocation (info, howto, rel, value, 9286 input_bfd, input_section, 9287 contents, cross_mode_jump_p)) 9288 return FALSE; 9289 } 9290 9291 return TRUE; 9292 } 9293 9294 /* A function that iterates over each entry in la25_stubs and fills 9295 in the code for each one. DATA points to a mips_htab_traverse_info. */ 9296 9297 static int 9298 mips_elf_create_la25_stub (void **slot, void *data) 9299 { 9300 struct mips_htab_traverse_info *hti; 9301 struct mips_elf_link_hash_table *htab; 9302 struct mips_elf_la25_stub *stub; 9303 asection *s; 9304 bfd_byte *loc; 9305 bfd_vma offset, target, target_high, target_low; 9306 9307 stub = (struct mips_elf_la25_stub *) *slot; 9308 hti = (struct mips_htab_traverse_info *) data; 9309 htab = mips_elf_hash_table (hti->info); 9310 BFD_ASSERT (htab != NULL); 9311 9312 /* Create the section contents, if we haven't already. */ 9313 s = stub->stub_section; 9314 loc = s->contents; 9315 if (loc == NULL) 9316 { 9317 loc = bfd_malloc (s->size); 9318 if (loc == NULL) 9319 { 9320 hti->error = TRUE; 9321 return FALSE; 9322 } 9323 s->contents = loc; 9324 } 9325 9326 /* Work out where in the section this stub should go. */ 9327 offset = stub->offset; 9328 9329 /* Work out the target address. */ 9330 target = (stub->h->root.root.u.def.section->output_section->vma 9331 + stub->h->root.root.u.def.section->output_offset 9332 + stub->h->root.root.u.def.value); 9333 target_high = ((target + 0x8000) >> 16) & 0xffff; 9334 target_low = (target & 0xffff); 9335 9336 if (stub->stub_section != htab->strampoline) 9337 { 9338 /* This is a simple LUI/ADIDU stub. Zero out the beginning 9339 of the section and write the two instructions at the end. */ 9340 memset (loc, 0, offset); 9341 loc += offset; 9342 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 9343 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4); 9344 } 9345 else 9346 { 9347 /* This is trampoline. */ 9348 loc += offset; 9349 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc); 9350 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4); 9351 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8); 9352 bfd_put_32 (hti->output_bfd, 0, loc + 12); 9353 } 9354 return TRUE; 9355 } 9356 9357 /* If NAME is one of the special IRIX6 symbols defined by the linker, 9358 adjust it appropriately now. */ 9359 9360 static void 9361 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED, 9362 const char *name, Elf_Internal_Sym *sym) 9363 { 9364 /* The linker script takes care of providing names and values for 9365 these, but we must place them into the right sections. */ 9366 static const char* const text_section_symbols[] = { 9367 "_ftext", 9368 "_etext", 9369 "__dso_displacement", 9370 "__elf_header", 9371 "__program_header_table", 9372 NULL 9373 }; 9374 9375 static const char* const data_section_symbols[] = { 9376 "_fdata", 9377 "_edata", 9378 "_end", 9379 "_fbss", 9380 NULL 9381 }; 9382 9383 const char* const *p; 9384 int i; 9385 9386 for (i = 0; i < 2; ++i) 9387 for (p = (i == 0) ? text_section_symbols : data_section_symbols; 9388 *p; 9389 ++p) 9390 if (strcmp (*p, name) == 0) 9391 { 9392 /* All of these symbols are given type STT_SECTION by the 9393 IRIX6 linker. */ 9394 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 9395 sym->st_other = STO_PROTECTED; 9396 9397 /* The IRIX linker puts these symbols in special sections. */ 9398 if (i == 0) 9399 sym->st_shndx = SHN_MIPS_TEXT; 9400 else 9401 sym->st_shndx = SHN_MIPS_DATA; 9402 9403 break; 9404 } 9405 } 9406 9407 /* Finish up dynamic symbol handling. We set the contents of various 9408 dynamic sections here. */ 9409 9410 bfd_boolean 9411 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd, 9412 struct bfd_link_info *info, 9413 struct elf_link_hash_entry *h, 9414 Elf_Internal_Sym *sym) 9415 { 9416 bfd *dynobj; 9417 asection *sgot; 9418 struct mips_got_info *g, *gg; 9419 const char *name; 9420 int idx; 9421 struct mips_elf_link_hash_table *htab; 9422 struct mips_elf_link_hash_entry *hmips; 9423 9424 htab = mips_elf_hash_table (info); 9425 BFD_ASSERT (htab != NULL); 9426 dynobj = elf_hash_table (info)->dynobj; 9427 hmips = (struct mips_elf_link_hash_entry *) h; 9428 9429 BFD_ASSERT (!htab->is_vxworks); 9430 9431 if (h->plt.offset != MINUS_ONE && hmips->no_fn_stub) 9432 { 9433 /* We've decided to create a PLT entry for this symbol. */ 9434 bfd_byte *loc; 9435 bfd_vma header_address, plt_index, got_address; 9436 bfd_vma got_address_high, got_address_low, load; 9437 const bfd_vma *plt_entry; 9438 9439 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9440 BFD_ASSERT (h->dynindx != -1); 9441 BFD_ASSERT (htab->splt != NULL); 9442 BFD_ASSERT (h->plt.offset <= htab->splt->size); 9443 BFD_ASSERT (!h->def_regular); 9444 9445 /* Calculate the address of the PLT header. */ 9446 header_address = (htab->splt->output_section->vma 9447 + htab->splt->output_offset); 9448 9449 /* Calculate the index of the entry. */ 9450 plt_index = ((h->plt.offset - htab->plt_header_size) 9451 / htab->plt_entry_size); 9452 9453 /* Calculate the address of the .got.plt entry. */ 9454 got_address = (htab->sgotplt->output_section->vma 9455 + htab->sgotplt->output_offset 9456 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj)); 9457 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 9458 got_address_low = got_address & 0xffff; 9459 9460 /* Initially point the .got.plt entry at the PLT header. */ 9461 loc = (htab->sgotplt->contents 9462 + (2 + plt_index) * MIPS_ELF_GOT_SIZE (dynobj)); 9463 if (ABI_64_P (output_bfd)) 9464 bfd_put_64 (output_bfd, header_address, loc); 9465 else 9466 bfd_put_32 (output_bfd, header_address, loc); 9467 9468 /* Find out where the .plt entry should go. */ 9469 loc = htab->splt->contents + h->plt.offset; 9470 9471 /* Pick the load opcode. */ 9472 load = MIPS_ELF_LOAD_WORD (output_bfd); 9473 9474 /* Fill in the PLT entry itself. */ 9475 plt_entry = mips_exec_plt_entry; 9476 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc); 9477 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load, loc + 4); 9478 9479 if (! LOAD_INTERLOCKS_P (output_bfd)) 9480 { 9481 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8); 9482 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 9483 } 9484 else 9485 { 9486 bfd_put_32 (output_bfd, plt_entry[3], loc + 8); 9487 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 12); 9488 } 9489 9490 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 9491 mips_elf_output_dynamic_relocation (output_bfd, htab->srelplt, 9492 plt_index, h->dynindx, 9493 R_MIPS_JUMP_SLOT, got_address); 9494 9495 /* We distinguish between PLT entries and lazy-binding stubs by 9496 giving the former an st_other value of STO_MIPS_PLT. Set the 9497 flag and leave the value if there are any relocations in the 9498 binary where pointer equality matters. */ 9499 sym->st_shndx = SHN_UNDEF; 9500 if (h->pointer_equality_needed) 9501 sym->st_other = STO_MIPS_PLT; 9502 else 9503 sym->st_value = 0; 9504 } 9505 else if (h->plt.offset != MINUS_ONE) 9506 { 9507 /* We've decided to create a lazy-binding stub. */ 9508 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE]; 9509 9510 /* This symbol has a stub. Set it up. */ 9511 9512 BFD_ASSERT (h->dynindx != -1); 9513 9514 BFD_ASSERT ((htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) 9515 || (h->dynindx <= 0xffff)); 9516 9517 /* Values up to 2^31 - 1 are allowed. Larger values would cause 9518 sign extension at runtime in the stub, resulting in a negative 9519 index value. */ 9520 if (h->dynindx & ~0x7fffffff) 9521 return FALSE; 9522 9523 /* Fill the stub. */ 9524 idx = 0; 9525 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx); 9526 idx += 4; 9527 bfd_put_32 (output_bfd, STUB_MOVE (output_bfd), stub + idx); 9528 idx += 4; 9529 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) 9530 { 9531 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff), 9532 stub + idx); 9533 idx += 4; 9534 } 9535 bfd_put_32 (output_bfd, STUB_JALR, stub + idx); 9536 idx += 4; 9537 9538 /* If a large stub is not required and sign extension is not a 9539 problem, then use legacy code in the stub. */ 9540 if (htab->function_stub_size == MIPS_FUNCTION_STUB_BIG_SIZE) 9541 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff), stub + idx); 9542 else if (h->dynindx & ~0x7fff) 9543 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff), stub + idx); 9544 else 9545 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx), 9546 stub + idx); 9547 9548 BFD_ASSERT (h->plt.offset <= htab->sstubs->size); 9549 memcpy (htab->sstubs->contents + h->plt.offset, 9550 stub, htab->function_stub_size); 9551 9552 /* Mark the symbol as undefined. plt.offset != -1 occurs 9553 only for the referenced symbol. */ 9554 sym->st_shndx = SHN_UNDEF; 9555 9556 /* The run-time linker uses the st_value field of the symbol 9557 to reset the global offset table entry for this external 9558 to its stub address when unlinking a shared object. */ 9559 sym->st_value = (htab->sstubs->output_section->vma 9560 + htab->sstubs->output_offset 9561 + h->plt.offset); 9562 } 9563 9564 /* If we have a MIPS16 function with a stub, the dynamic symbol must 9565 refer to the stub, since only the stub uses the standard calling 9566 conventions. */ 9567 if (h->dynindx != -1 && hmips->fn_stub != NULL) 9568 { 9569 BFD_ASSERT (hmips->need_fn_stub); 9570 sym->st_value = (hmips->fn_stub->output_section->vma 9571 + hmips->fn_stub->output_offset); 9572 sym->st_size = hmips->fn_stub->size; 9573 sym->st_other = ELF_ST_VISIBILITY (sym->st_other); 9574 } 9575 9576 BFD_ASSERT (h->dynindx != -1 9577 || h->forced_local); 9578 9579 sgot = htab->sgot; 9580 g = htab->got_info; 9581 BFD_ASSERT (g != NULL); 9582 9583 /* Run through the global symbol table, creating GOT entries for all 9584 the symbols that need them. */ 9585 if (hmips->global_got_area != GGA_NONE) 9586 { 9587 bfd_vma offset; 9588 bfd_vma value; 9589 9590 value = sym->st_value; 9591 offset = mips_elf_global_got_index (dynobj, output_bfd, h, 9592 R_MIPS_GOT16, info); 9593 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset); 9594 } 9595 9596 if (hmips->global_got_area != GGA_NONE && g->next && h->type != STT_TLS) 9597 { 9598 struct mips_got_entry e, *p; 9599 bfd_vma entry; 9600 bfd_vma offset; 9601 9602 gg = g; 9603 9604 e.abfd = output_bfd; 9605 e.symndx = -1; 9606 e.d.h = hmips; 9607 e.tls_type = 0; 9608 9609 for (g = g->next; g->next != gg; g = g->next) 9610 { 9611 if (g->got_entries 9612 && (p = (struct mips_got_entry *) htab_find (g->got_entries, 9613 &e))) 9614 { 9615 offset = p->gotidx; 9616 if (info->shared 9617 || (elf_hash_table (info)->dynamic_sections_created 9618 && p->d.h != NULL 9619 && p->d.h->root.def_dynamic 9620 && !p->d.h->root.def_regular)) 9621 { 9622 /* Create an R_MIPS_REL32 relocation for this entry. Due to 9623 the various compatibility problems, it's easier to mock 9624 up an R_MIPS_32 or R_MIPS_64 relocation and leave 9625 mips_elf_create_dynamic_relocation to calculate the 9626 appropriate addend. */ 9627 Elf_Internal_Rela rel[3]; 9628 9629 memset (rel, 0, sizeof (rel)); 9630 if (ABI_64_P (output_bfd)) 9631 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64); 9632 else 9633 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32); 9634 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset; 9635 9636 entry = 0; 9637 if (! (mips_elf_create_dynamic_relocation 9638 (output_bfd, info, rel, 9639 e.d.h, NULL, sym->st_value, &entry, sgot))) 9640 return FALSE; 9641 } 9642 else 9643 entry = sym->st_value; 9644 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset); 9645 } 9646 } 9647 } 9648 9649 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */ 9650 name = h->root.root.string; 9651 if (strcmp (name, "_DYNAMIC") == 0 9652 || h == elf_hash_table (info)->hgot) 9653 sym->st_shndx = SHN_ABS; 9654 else if (strcmp (name, "_DYNAMIC_LINK") == 0 9655 || strcmp (name, "_DYNAMIC_LINKING") == 0) 9656 { 9657 sym->st_shndx = SHN_ABS; 9658 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 9659 sym->st_value = 1; 9660 } 9661 else if (strcmp (name, "_gp_disp") == 0 && ! NEWABI_P (output_bfd)) 9662 { 9663 sym->st_shndx = SHN_ABS; 9664 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 9665 sym->st_value = elf_gp (output_bfd); 9666 } 9667 else if (SGI_COMPAT (output_bfd)) 9668 { 9669 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0 9670 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0) 9671 { 9672 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 9673 sym->st_other = STO_PROTECTED; 9674 sym->st_value = 0; 9675 sym->st_shndx = SHN_MIPS_DATA; 9676 } 9677 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0) 9678 { 9679 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION); 9680 sym->st_other = STO_PROTECTED; 9681 sym->st_value = mips_elf_hash_table (info)->procedure_count; 9682 sym->st_shndx = SHN_ABS; 9683 } 9684 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS) 9685 { 9686 if (h->type == STT_FUNC) 9687 sym->st_shndx = SHN_MIPS_TEXT; 9688 else if (h->type == STT_OBJECT) 9689 sym->st_shndx = SHN_MIPS_DATA; 9690 } 9691 } 9692 9693 /* Emit a copy reloc, if needed. */ 9694 if (h->needs_copy) 9695 { 9696 asection *s; 9697 bfd_vma symval; 9698 9699 BFD_ASSERT (h->dynindx != -1); 9700 BFD_ASSERT (htab->use_plts_and_copy_relocs); 9701 9702 s = mips_elf_rel_dyn_section (info, FALSE); 9703 symval = (h->root.u.def.section->output_section->vma 9704 + h->root.u.def.section->output_offset 9705 + h->root.u.def.value); 9706 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++, 9707 h->dynindx, R_MIPS_COPY, symval); 9708 } 9709 9710 /* Handle the IRIX6-specific symbols. */ 9711 if (IRIX_COMPAT (output_bfd) == ict_irix6) 9712 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym); 9713 9714 if (! info->shared) 9715 { 9716 if (! mips_elf_hash_table (info)->use_rld_obj_head 9717 && (strcmp (name, "__rld_map") == 0 9718 || strcmp (name, "__RLD_MAP") == 0)) 9719 { 9720 asection *s = bfd_get_section_by_name (dynobj, ".rld_map"); 9721 BFD_ASSERT (s != NULL); 9722 sym->st_value = s->output_section->vma + s->output_offset; 9723 bfd_put_32 (output_bfd, 0, s->contents); 9724 if (mips_elf_hash_table (info)->rld_value == 0) 9725 mips_elf_hash_table (info)->rld_value = sym->st_value; 9726 } 9727 else if (mips_elf_hash_table (info)->use_rld_obj_head 9728 && strcmp (name, "__rld_obj_head") == 0) 9729 { 9730 /* IRIX6 does not use a .rld_map section. */ 9731 if (IRIX_COMPAT (output_bfd) == ict_irix5 9732 || IRIX_COMPAT (output_bfd) == ict_none) 9733 BFD_ASSERT (bfd_get_section_by_name (dynobj, ".rld_map") 9734 != NULL); 9735 mips_elf_hash_table (info)->rld_value = sym->st_value; 9736 } 9737 } 9738 9739 /* Keep dynamic MIPS16 symbols odd. This allows the dynamic linker to 9740 treat MIPS16 symbols like any other. */ 9741 if (ELF_ST_IS_MIPS16 (sym->st_other)) 9742 { 9743 BFD_ASSERT (sym->st_value & 1); 9744 sym->st_other -= STO_MIPS16; 9745 } 9746 9747 return TRUE; 9748 } 9749 9750 /* Likewise, for VxWorks. */ 9751 9752 bfd_boolean 9753 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd, 9754 struct bfd_link_info *info, 9755 struct elf_link_hash_entry *h, 9756 Elf_Internal_Sym *sym) 9757 { 9758 bfd *dynobj; 9759 asection *sgot; 9760 struct mips_got_info *g; 9761 struct mips_elf_link_hash_table *htab; 9762 struct mips_elf_link_hash_entry *hmips; 9763 9764 htab = mips_elf_hash_table (info); 9765 BFD_ASSERT (htab != NULL); 9766 dynobj = elf_hash_table (info)->dynobj; 9767 hmips = (struct mips_elf_link_hash_entry *) h; 9768 9769 if (h->plt.offset != (bfd_vma) -1) 9770 { 9771 bfd_byte *loc; 9772 bfd_vma plt_address, plt_index, got_address, got_offset, branch_offset; 9773 Elf_Internal_Rela rel; 9774 static const bfd_vma *plt_entry; 9775 9776 BFD_ASSERT (h->dynindx != -1); 9777 BFD_ASSERT (htab->splt != NULL); 9778 BFD_ASSERT (h->plt.offset <= htab->splt->size); 9779 9780 /* Calculate the address of the .plt entry. */ 9781 plt_address = (htab->splt->output_section->vma 9782 + htab->splt->output_offset 9783 + h->plt.offset); 9784 9785 /* Calculate the index of the entry. */ 9786 plt_index = ((h->plt.offset - htab->plt_header_size) 9787 / htab->plt_entry_size); 9788 9789 /* Calculate the address of the .got.plt entry. */ 9790 got_address = (htab->sgotplt->output_section->vma 9791 + htab->sgotplt->output_offset 9792 + plt_index * 4); 9793 9794 /* Calculate the offset of the .got.plt entry from 9795 _GLOBAL_OFFSET_TABLE_. */ 9796 got_offset = mips_elf_gotplt_index (info, h); 9797 9798 /* Calculate the offset for the branch at the start of the PLT 9799 entry. The branch jumps to the beginning of .plt. */ 9800 branch_offset = -(h->plt.offset / 4 + 1) & 0xffff; 9801 9802 /* Fill in the initial value of the .got.plt entry. */ 9803 bfd_put_32 (output_bfd, plt_address, 9804 htab->sgotplt->contents + plt_index * 4); 9805 9806 /* Find out where the .plt entry should go. */ 9807 loc = htab->splt->contents + h->plt.offset; 9808 9809 if (info->shared) 9810 { 9811 plt_entry = mips_vxworks_shared_plt_entry; 9812 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 9813 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); 9814 } 9815 else 9816 { 9817 bfd_vma got_address_high, got_address_low; 9818 9819 plt_entry = mips_vxworks_exec_plt_entry; 9820 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff; 9821 got_address_low = got_address & 0xffff; 9822 9823 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc); 9824 bfd_put_32 (output_bfd, plt_entry[1] | plt_index, loc + 4); 9825 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8); 9826 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12); 9827 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 9828 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 9829 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 9830 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 9831 9832 loc = (htab->srelplt2->contents 9833 + (plt_index * 3 + 2) * sizeof (Elf32_External_Rela)); 9834 9835 /* Emit a relocation for the .got.plt entry. */ 9836 rel.r_offset = got_address; 9837 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 9838 rel.r_addend = h->plt.offset; 9839 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 9840 9841 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */ 9842 loc += sizeof (Elf32_External_Rela); 9843 rel.r_offset = plt_address + 8; 9844 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 9845 rel.r_addend = got_offset; 9846 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 9847 9848 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */ 9849 loc += sizeof (Elf32_External_Rela); 9850 rel.r_offset += 4; 9851 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 9852 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 9853 } 9854 9855 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */ 9856 loc = htab->srelplt->contents + plt_index * sizeof (Elf32_External_Rela); 9857 rel.r_offset = got_address; 9858 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT); 9859 rel.r_addend = 0; 9860 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 9861 9862 if (!h->def_regular) 9863 sym->st_shndx = SHN_UNDEF; 9864 } 9865 9866 BFD_ASSERT (h->dynindx != -1 || h->forced_local); 9867 9868 sgot = htab->sgot; 9869 g = htab->got_info; 9870 BFD_ASSERT (g != NULL); 9871 9872 /* See if this symbol has an entry in the GOT. */ 9873 if (hmips->global_got_area != GGA_NONE) 9874 { 9875 bfd_vma offset; 9876 Elf_Internal_Rela outrel; 9877 bfd_byte *loc; 9878 asection *s; 9879 9880 /* Install the symbol value in the GOT. */ 9881 offset = mips_elf_global_got_index (dynobj, output_bfd, h, 9882 R_MIPS_GOT16, info); 9883 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset); 9884 9885 /* Add a dynamic relocation for it. */ 9886 s = mips_elf_rel_dyn_section (info, FALSE); 9887 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela)); 9888 outrel.r_offset = (sgot->output_section->vma 9889 + sgot->output_offset 9890 + offset); 9891 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32); 9892 outrel.r_addend = 0; 9893 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc); 9894 } 9895 9896 /* Emit a copy reloc, if needed. */ 9897 if (h->needs_copy) 9898 { 9899 Elf_Internal_Rela rel; 9900 9901 BFD_ASSERT (h->dynindx != -1); 9902 9903 rel.r_offset = (h->root.u.def.section->output_section->vma 9904 + h->root.u.def.section->output_offset 9905 + h->root.u.def.value); 9906 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY); 9907 rel.r_addend = 0; 9908 bfd_elf32_swap_reloca_out (output_bfd, &rel, 9909 htab->srelbss->contents 9910 + (htab->srelbss->reloc_count 9911 * sizeof (Elf32_External_Rela))); 9912 ++htab->srelbss->reloc_count; 9913 } 9914 9915 /* If this is a mips16 symbol, force the value to be even. */ 9916 if (ELF_ST_IS_MIPS16 (sym->st_other)) 9917 sym->st_value &= ~1; 9918 9919 return TRUE; 9920 } 9921 9922 /* Write out a plt0 entry to the beginning of .plt. */ 9923 9924 static void 9925 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 9926 { 9927 bfd_byte *loc; 9928 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low; 9929 static const bfd_vma *plt_entry; 9930 struct mips_elf_link_hash_table *htab; 9931 9932 htab = mips_elf_hash_table (info); 9933 BFD_ASSERT (htab != NULL); 9934 9935 if (ABI_64_P (output_bfd)) 9936 plt_entry = mips_n64_exec_plt0_entry; 9937 else if (ABI_N32_P (output_bfd)) 9938 plt_entry = mips_n32_exec_plt0_entry; 9939 else 9940 plt_entry = mips_o32_exec_plt0_entry; 9941 9942 /* Calculate the value of .got.plt. */ 9943 gotplt_value = (htab->sgotplt->output_section->vma 9944 + htab->sgotplt->output_offset); 9945 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff; 9946 gotplt_value_low = gotplt_value & 0xffff; 9947 9948 /* The PLT sequence is not safe for N64 if .got.plt's address can 9949 not be loaded in two instructions. */ 9950 BFD_ASSERT ((gotplt_value & ~(bfd_vma) 0x7fffffff) == 0 9951 || ~(gotplt_value | 0x7fffffff) == 0); 9952 9953 /* Install the PLT header. */ 9954 loc = htab->splt->contents; 9955 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc); 9956 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4); 9957 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8); 9958 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 9959 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 9960 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 9961 bfd_put_32 (output_bfd, plt_entry[6], loc + 24); 9962 bfd_put_32 (output_bfd, plt_entry[7], loc + 28); 9963 } 9964 9965 /* Install the PLT header for a VxWorks executable and finalize the 9966 contents of .rela.plt.unloaded. */ 9967 9968 static void 9969 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info) 9970 { 9971 Elf_Internal_Rela rela; 9972 bfd_byte *loc; 9973 bfd_vma got_value, got_value_high, got_value_low, plt_address; 9974 static const bfd_vma *plt_entry; 9975 struct mips_elf_link_hash_table *htab; 9976 9977 htab = mips_elf_hash_table (info); 9978 BFD_ASSERT (htab != NULL); 9979 9980 plt_entry = mips_vxworks_exec_plt0_entry; 9981 9982 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */ 9983 got_value = (htab->root.hgot->root.u.def.section->output_section->vma 9984 + htab->root.hgot->root.u.def.section->output_offset 9985 + htab->root.hgot->root.u.def.value); 9986 9987 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff; 9988 got_value_low = got_value & 0xffff; 9989 9990 /* Calculate the address of the PLT header. */ 9991 plt_address = htab->splt->output_section->vma + htab->splt->output_offset; 9992 9993 /* Install the PLT header. */ 9994 loc = htab->splt->contents; 9995 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc); 9996 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4); 9997 bfd_put_32 (output_bfd, plt_entry[2], loc + 8); 9998 bfd_put_32 (output_bfd, plt_entry[3], loc + 12); 9999 bfd_put_32 (output_bfd, plt_entry[4], loc + 16); 10000 bfd_put_32 (output_bfd, plt_entry[5], loc + 20); 10001 10002 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */ 10003 loc = htab->srelplt2->contents; 10004 rela.r_offset = plt_address; 10005 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 10006 rela.r_addend = 0; 10007 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 10008 loc += sizeof (Elf32_External_Rela); 10009 10010 /* Output the relocation for the following addiu of 10011 %lo(_GLOBAL_OFFSET_TABLE_). */ 10012 rela.r_offset += 4; 10013 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 10014 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 10015 loc += sizeof (Elf32_External_Rela); 10016 10017 /* Fix up the remaining relocations. They may have the wrong 10018 symbol index for _G_O_T_ or _P_L_T_ depending on the order 10019 in which symbols were output. */ 10020 while (loc < htab->srelplt2->contents + htab->srelplt2->size) 10021 { 10022 Elf_Internal_Rela rel; 10023 10024 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 10025 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32); 10026 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 10027 loc += sizeof (Elf32_External_Rela); 10028 10029 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 10030 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16); 10031 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 10032 loc += sizeof (Elf32_External_Rela); 10033 10034 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel); 10035 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16); 10036 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc); 10037 loc += sizeof (Elf32_External_Rela); 10038 } 10039 } 10040 10041 /* Install the PLT header for a VxWorks shared library. */ 10042 10043 static void 10044 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info) 10045 { 10046 unsigned int i; 10047 struct mips_elf_link_hash_table *htab; 10048 10049 htab = mips_elf_hash_table (info); 10050 BFD_ASSERT (htab != NULL); 10051 10052 /* We just need to copy the entry byte-by-byte. */ 10053 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++) 10054 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i], 10055 htab->splt->contents + i * 4); 10056 } 10057 10058 /* Finish up the dynamic sections. */ 10059 10060 bfd_boolean 10061 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd, 10062 struct bfd_link_info *info) 10063 { 10064 bfd *dynobj; 10065 asection *sdyn; 10066 asection *sgot; 10067 struct mips_got_info *gg, *g; 10068 struct mips_elf_link_hash_table *htab; 10069 10070 htab = mips_elf_hash_table (info); 10071 BFD_ASSERT (htab != NULL); 10072 10073 dynobj = elf_hash_table (info)->dynobj; 10074 10075 sdyn = bfd_get_section_by_name (dynobj, ".dynamic"); 10076 10077 sgot = htab->sgot; 10078 gg = htab->got_info; 10079 10080 if (elf_hash_table (info)->dynamic_sections_created) 10081 { 10082 bfd_byte *b; 10083 int dyn_to_skip = 0, dyn_skipped = 0; 10084 10085 BFD_ASSERT (sdyn != NULL); 10086 BFD_ASSERT (gg != NULL); 10087 10088 g = mips_elf_got_for_ibfd (gg, output_bfd); 10089 BFD_ASSERT (g != NULL); 10090 10091 for (b = sdyn->contents; 10092 b < sdyn->contents + sdyn->size; 10093 b += MIPS_ELF_DYN_SIZE (dynobj)) 10094 { 10095 Elf_Internal_Dyn dyn; 10096 const char *name; 10097 size_t elemsize; 10098 asection *s; 10099 bfd_boolean swap_out_p; 10100 10101 /* Read in the current dynamic entry. */ 10102 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 10103 10104 /* Assume that we're going to modify it and write it out. */ 10105 swap_out_p = TRUE; 10106 10107 switch (dyn.d_tag) 10108 { 10109 case DT_RELENT: 10110 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj); 10111 break; 10112 10113 case DT_RELAENT: 10114 BFD_ASSERT (htab->is_vxworks); 10115 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj); 10116 break; 10117 10118 case DT_STRSZ: 10119 /* Rewrite DT_STRSZ. */ 10120 dyn.d_un.d_val = 10121 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 10122 break; 10123 10124 case DT_PLTGOT: 10125 s = htab->sgot; 10126 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 10127 break; 10128 10129 case DT_MIPS_PLTGOT: 10130 s = htab->sgotplt; 10131 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 10132 break; 10133 10134 case DT_MIPS_RLD_VERSION: 10135 dyn.d_un.d_val = 1; /* XXX */ 10136 break; 10137 10138 case DT_MIPS_FLAGS: 10139 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */ 10140 break; 10141 10142 case DT_MIPS_TIME_STAMP: 10143 { 10144 time_t t; 10145 time (&t); 10146 dyn.d_un.d_val = t; 10147 } 10148 break; 10149 10150 case DT_MIPS_ICHECKSUM: 10151 /* XXX FIXME: */ 10152 swap_out_p = FALSE; 10153 break; 10154 10155 case DT_MIPS_IVERSION: 10156 /* XXX FIXME: */ 10157 swap_out_p = FALSE; 10158 break; 10159 10160 case DT_MIPS_BASE_ADDRESS: 10161 s = output_bfd->sections; 10162 BFD_ASSERT (s != NULL); 10163 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff; 10164 break; 10165 10166 case DT_MIPS_LOCAL_GOTNO: 10167 dyn.d_un.d_val = g->local_gotno; 10168 break; 10169 10170 case DT_MIPS_UNREFEXTNO: 10171 /* The index into the dynamic symbol table which is the 10172 entry of the first external symbol that is not 10173 referenced within the same object. */ 10174 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1; 10175 break; 10176 10177 case DT_MIPS_GOTSYM: 10178 if (gg->global_gotsym) 10179 { 10180 dyn.d_un.d_val = gg->global_gotsym->dynindx; 10181 break; 10182 } 10183 /* In case if we don't have global got symbols we default 10184 to setting DT_MIPS_GOTSYM to the same value as 10185 DT_MIPS_SYMTABNO, so we just fall through. */ 10186 10187 case DT_MIPS_SYMTABNO: 10188 name = ".dynsym"; 10189 elemsize = MIPS_ELF_SYM_SIZE (output_bfd); 10190 s = bfd_get_section_by_name (output_bfd, name); 10191 BFD_ASSERT (s != NULL); 10192 10193 dyn.d_un.d_val = s->size / elemsize; 10194 break; 10195 10196 case DT_MIPS_HIPAGENO: 10197 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno; 10198 break; 10199 10200 case DT_MIPS_RLD_MAP: 10201 dyn.d_un.d_ptr = mips_elf_hash_table (info)->rld_value; 10202 break; 10203 10204 case DT_MIPS_OPTIONS: 10205 s = (bfd_get_section_by_name 10206 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd))); 10207 dyn.d_un.d_ptr = s->vma; 10208 break; 10209 10210 case DT_RELASZ: 10211 BFD_ASSERT (htab->is_vxworks); 10212 /* The count does not include the JUMP_SLOT relocations. */ 10213 if (htab->srelplt) 10214 dyn.d_un.d_val -= htab->srelplt->size; 10215 break; 10216 10217 case DT_PLTREL: 10218 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10219 if (htab->is_vxworks) 10220 dyn.d_un.d_val = DT_RELA; 10221 else 10222 dyn.d_un.d_val = DT_REL; 10223 break; 10224 10225 case DT_PLTRELSZ: 10226 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10227 dyn.d_un.d_val = htab->srelplt->size; 10228 break; 10229 10230 case DT_JMPREL: 10231 BFD_ASSERT (htab->use_plts_and_copy_relocs); 10232 dyn.d_un.d_ptr = (htab->srelplt->output_section->vma 10233 + htab->srelplt->output_offset); 10234 break; 10235 10236 case DT_TEXTREL: 10237 /* If we didn't need any text relocations after all, delete 10238 the dynamic tag. */ 10239 if (!(info->flags & DF_TEXTREL)) 10240 { 10241 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj); 10242 swap_out_p = FALSE; 10243 } 10244 break; 10245 10246 case DT_FLAGS: 10247 /* If we didn't need any text relocations after all, clear 10248 DF_TEXTREL from DT_FLAGS. */ 10249 if (!(info->flags & DF_TEXTREL)) 10250 dyn.d_un.d_val &= ~DF_TEXTREL; 10251 else 10252 swap_out_p = FALSE; 10253 break; 10254 10255 default: 10256 swap_out_p = FALSE; 10257 if (htab->is_vxworks 10258 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn)) 10259 swap_out_p = TRUE; 10260 break; 10261 } 10262 10263 if (swap_out_p || dyn_skipped) 10264 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 10265 (dynobj, &dyn, b - dyn_skipped); 10266 10267 if (dyn_to_skip) 10268 { 10269 dyn_skipped += dyn_to_skip; 10270 dyn_to_skip = 0; 10271 } 10272 } 10273 10274 /* Wipe out any trailing entries if we shifted down a dynamic tag. */ 10275 if (dyn_skipped > 0) 10276 memset (b - dyn_skipped, 0, dyn_skipped); 10277 } 10278 10279 if (sgot != NULL && sgot->size > 0 10280 && !bfd_is_abs_section (sgot->output_section)) 10281 { 10282 if (htab->is_vxworks) 10283 { 10284 /* The first entry of the global offset table points to the 10285 ".dynamic" section. The second is initialized by the 10286 loader and contains the shared library identifier. 10287 The third is also initialized by the loader and points 10288 to the lazy resolution stub. */ 10289 MIPS_ELF_PUT_WORD (output_bfd, 10290 sdyn->output_offset + sdyn->output_section->vma, 10291 sgot->contents); 10292 MIPS_ELF_PUT_WORD (output_bfd, 0, 10293 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 10294 MIPS_ELF_PUT_WORD (output_bfd, 0, 10295 sgot->contents 10296 + 2 * MIPS_ELF_GOT_SIZE (output_bfd)); 10297 } 10298 else 10299 { 10300 /* The first entry of the global offset table will be filled at 10301 runtime. The second entry will be used by some runtime loaders. 10302 This isn't the case of IRIX rld. */ 10303 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents); 10304 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 10305 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd)); 10306 } 10307 10308 elf_section_data (sgot->output_section)->this_hdr.sh_entsize 10309 = MIPS_ELF_GOT_SIZE (output_bfd); 10310 } 10311 10312 /* Generate dynamic relocations for the non-primary gots. */ 10313 if (gg != NULL && gg->next) 10314 { 10315 Elf_Internal_Rela rel[3]; 10316 bfd_vma addend = 0; 10317 10318 memset (rel, 0, sizeof (rel)); 10319 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32); 10320 10321 for (g = gg->next; g->next != gg; g = g->next) 10322 { 10323 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno 10324 + g->next->tls_gotno; 10325 10326 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents 10327 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 10328 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd), 10329 sgot->contents 10330 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd)); 10331 10332 if (! info->shared) 10333 continue; 10334 10335 while (got_index < g->assigned_gotno) 10336 { 10337 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset 10338 = got_index++ * MIPS_ELF_GOT_SIZE (output_bfd); 10339 if (!(mips_elf_create_dynamic_relocation 10340 (output_bfd, info, rel, NULL, 10341 bfd_abs_section_ptr, 10342 0, &addend, sgot))) 10343 return FALSE; 10344 BFD_ASSERT (addend == 0); 10345 } 10346 } 10347 } 10348 10349 /* The generation of dynamic relocations for the non-primary gots 10350 adds more dynamic relocations. We cannot count them until 10351 here. */ 10352 10353 if (elf_hash_table (info)->dynamic_sections_created) 10354 { 10355 bfd_byte *b; 10356 bfd_boolean swap_out_p; 10357 10358 BFD_ASSERT (sdyn != NULL); 10359 10360 for (b = sdyn->contents; 10361 b < sdyn->contents + sdyn->size; 10362 b += MIPS_ELF_DYN_SIZE (dynobj)) 10363 { 10364 Elf_Internal_Dyn dyn; 10365 asection *s; 10366 10367 /* Read in the current dynamic entry. */ 10368 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn); 10369 10370 /* Assume that we're going to modify it and write it out. */ 10371 swap_out_p = TRUE; 10372 10373 switch (dyn.d_tag) 10374 { 10375 case DT_RELSZ: 10376 /* Reduce DT_RELSZ to account for any relocations we 10377 decided not to make. This is for the n64 irix rld, 10378 which doesn't seem to apply any relocations if there 10379 are trailing null entries. */ 10380 s = mips_elf_rel_dyn_section (info, FALSE); 10381 dyn.d_un.d_val = (s->reloc_count 10382 * (ABI_64_P (output_bfd) 10383 ? sizeof (Elf64_Mips_External_Rel) 10384 : sizeof (Elf32_External_Rel))); 10385 /* Adjust the section size too. Tools like the prelinker 10386 can reasonably expect the values to the same. */ 10387 elf_section_data (s->output_section)->this_hdr.sh_size 10388 = dyn.d_un.d_val; 10389 break; 10390 10391 default: 10392 swap_out_p = FALSE; 10393 break; 10394 } 10395 10396 if (swap_out_p) 10397 (*get_elf_backend_data (dynobj)->s->swap_dyn_out) 10398 (dynobj, &dyn, b); 10399 } 10400 } 10401 10402 { 10403 asection *s; 10404 Elf32_compact_rel cpt; 10405 10406 if (SGI_COMPAT (output_bfd)) 10407 { 10408 /* Write .compact_rel section out. */ 10409 s = bfd_get_section_by_name (dynobj, ".compact_rel"); 10410 if (s != NULL) 10411 { 10412 cpt.id1 = 1; 10413 cpt.num = s->reloc_count; 10414 cpt.id2 = 2; 10415 cpt.offset = (s->output_section->filepos 10416 + sizeof (Elf32_External_compact_rel)); 10417 cpt.reserved0 = 0; 10418 cpt.reserved1 = 0; 10419 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt, 10420 ((Elf32_External_compact_rel *) 10421 s->contents)); 10422 10423 /* Clean up a dummy stub function entry in .text. */ 10424 if (htab->sstubs != NULL) 10425 { 10426 file_ptr dummy_offset; 10427 10428 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size); 10429 dummy_offset = htab->sstubs->size - htab->function_stub_size; 10430 memset (htab->sstubs->contents + dummy_offset, 0, 10431 htab->function_stub_size); 10432 } 10433 } 10434 } 10435 10436 /* The psABI says that the dynamic relocations must be sorted in 10437 increasing order of r_symndx. The VxWorks EABI doesn't require 10438 this, and because the code below handles REL rather than RELA 10439 relocations, using it for VxWorks would be outright harmful. */ 10440 if (!htab->is_vxworks) 10441 { 10442 s = mips_elf_rel_dyn_section (info, FALSE); 10443 if (s != NULL 10444 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd)) 10445 { 10446 reldyn_sorting_bfd = output_bfd; 10447 10448 if (ABI_64_P (output_bfd)) 10449 qsort ((Elf64_External_Rel *) s->contents + 1, 10450 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel), 10451 sort_dynamic_relocs_64); 10452 else 10453 qsort ((Elf32_External_Rel *) s->contents + 1, 10454 s->reloc_count - 1, sizeof (Elf32_External_Rel), 10455 sort_dynamic_relocs); 10456 } 10457 } 10458 } 10459 10460 if (htab->splt && htab->splt->size > 0) 10461 { 10462 if (htab->is_vxworks) 10463 { 10464 if (info->shared) 10465 mips_vxworks_finish_shared_plt (output_bfd, info); 10466 else 10467 mips_vxworks_finish_exec_plt (output_bfd, info); 10468 } 10469 else 10470 { 10471 BFD_ASSERT (!info->shared); 10472 mips_finish_exec_plt (output_bfd, info); 10473 } 10474 } 10475 return TRUE; 10476 } 10477 10478 10479 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */ 10480 10481 static void 10482 mips_set_isa_flags (bfd *abfd) 10483 { 10484 flagword val; 10485 10486 switch (bfd_get_mach (abfd)) 10487 { 10488 default: 10489 case bfd_mach_mips3000: 10490 val = E_MIPS_ARCH_1; 10491 break; 10492 10493 case bfd_mach_mips3900: 10494 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900; 10495 break; 10496 10497 case bfd_mach_mips6000: 10498 val = E_MIPS_ARCH_2; 10499 break; 10500 10501 case bfd_mach_mips4000: 10502 case bfd_mach_mips4300: 10503 case bfd_mach_mips4400: 10504 case bfd_mach_mips4600: 10505 val = E_MIPS_ARCH_3; 10506 break; 10507 10508 case bfd_mach_mips4010: 10509 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4010; 10510 break; 10511 10512 case bfd_mach_mips4100: 10513 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100; 10514 break; 10515 10516 case bfd_mach_mips4111: 10517 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111; 10518 break; 10519 10520 case bfd_mach_mips4120: 10521 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120; 10522 break; 10523 10524 case bfd_mach_mips4650: 10525 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650; 10526 break; 10527 10528 case bfd_mach_mips5400: 10529 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400; 10530 break; 10531 10532 case bfd_mach_mips5500: 10533 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500; 10534 break; 10535 10536 case bfd_mach_mips9000: 10537 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000; 10538 break; 10539 10540 case bfd_mach_mips5000: 10541 case bfd_mach_mips7000: 10542 case bfd_mach_mips8000: 10543 case bfd_mach_mips10000: 10544 case bfd_mach_mips12000: 10545 case bfd_mach_mips14000: 10546 case bfd_mach_mips16000: 10547 val = E_MIPS_ARCH_4; 10548 break; 10549 10550 case bfd_mach_mips5: 10551 val = E_MIPS_ARCH_5; 10552 break; 10553 10554 case bfd_mach_mips_loongson_2e: 10555 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E; 10556 break; 10557 10558 case bfd_mach_mips_loongson_2f: 10559 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F; 10560 break; 10561 10562 case bfd_mach_mips_sb1: 10563 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1; 10564 break; 10565 10566 case bfd_mach_mips_loongson_3a: 10567 val = E_MIPS_ARCH_64 | E_MIPS_MACH_LS3A; 10568 break; 10569 10570 case bfd_mach_mips_octeon: 10571 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON; 10572 break; 10573 10574 case bfd_mach_mips_xlr: 10575 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR; 10576 break; 10577 10578 case bfd_mach_mipsisa32: 10579 val = E_MIPS_ARCH_32; 10580 break; 10581 10582 case bfd_mach_mipsisa64: 10583 val = E_MIPS_ARCH_64; 10584 break; 10585 10586 case bfd_mach_mipsisa32r2: 10587 val = E_MIPS_ARCH_32R2; 10588 break; 10589 10590 case bfd_mach_mipsisa64r2: 10591 val = E_MIPS_ARCH_64R2; 10592 break; 10593 } 10594 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 10595 elf_elfheader (abfd)->e_flags |= val; 10596 10597 } 10598 10599 10600 /* The final processing done just before writing out a MIPS ELF object 10601 file. This gets the MIPS architecture right based on the machine 10602 number. This is used by both the 32-bit and the 64-bit ABI. */ 10603 10604 void 10605 _bfd_mips_elf_final_write_processing (bfd *abfd, 10606 bfd_boolean linker ATTRIBUTE_UNUSED) 10607 { 10608 unsigned int i; 10609 Elf_Internal_Shdr **hdrpp; 10610 const char *name; 10611 asection *sec; 10612 10613 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former 10614 is nonzero. This is for compatibility with old objects, which used 10615 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */ 10616 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0) 10617 mips_set_isa_flags (abfd); 10618 10619 /* Set the sh_info field for .gptab sections and other appropriate 10620 info for each special section. */ 10621 for (i = 1, hdrpp = elf_elfsections (abfd) + 1; 10622 i < elf_numsections (abfd); 10623 i++, hdrpp++) 10624 { 10625 switch ((*hdrpp)->sh_type) 10626 { 10627 case SHT_MIPS_MSYM: 10628 case SHT_MIPS_LIBLIST: 10629 sec = bfd_get_section_by_name (abfd, ".dynstr"); 10630 if (sec != NULL) 10631 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 10632 break; 10633 10634 case SHT_MIPS_GPTAB: 10635 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 10636 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 10637 BFD_ASSERT (name != NULL 10638 && CONST_STRNEQ (name, ".gptab.")); 10639 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1); 10640 BFD_ASSERT (sec != NULL); 10641 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 10642 break; 10643 10644 case SHT_MIPS_CONTENT: 10645 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 10646 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 10647 BFD_ASSERT (name != NULL 10648 && CONST_STRNEQ (name, ".MIPS.content")); 10649 sec = bfd_get_section_by_name (abfd, 10650 name + sizeof ".MIPS.content" - 1); 10651 BFD_ASSERT (sec != NULL); 10652 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 10653 break; 10654 10655 case SHT_MIPS_SYMBOL_LIB: 10656 sec = bfd_get_section_by_name (abfd, ".dynsym"); 10657 if (sec != NULL) 10658 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 10659 sec = bfd_get_section_by_name (abfd, ".liblist"); 10660 if (sec != NULL) 10661 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx; 10662 break; 10663 10664 case SHT_MIPS_EVENTS: 10665 BFD_ASSERT ((*hdrpp)->bfd_section != NULL); 10666 name = bfd_get_section_name (abfd, (*hdrpp)->bfd_section); 10667 BFD_ASSERT (name != NULL); 10668 if (CONST_STRNEQ (name, ".MIPS.events")) 10669 sec = bfd_get_section_by_name (abfd, 10670 name + sizeof ".MIPS.events" - 1); 10671 else 10672 { 10673 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel")); 10674 sec = bfd_get_section_by_name (abfd, 10675 (name 10676 + sizeof ".MIPS.post_rel" - 1)); 10677 } 10678 BFD_ASSERT (sec != NULL); 10679 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx; 10680 break; 10681 10682 } 10683 } 10684 } 10685 10686 /* When creating an IRIX5 executable, we need REGINFO and RTPROC 10687 segments. */ 10688 10689 int 10690 _bfd_mips_elf_additional_program_headers (bfd *abfd, 10691 struct bfd_link_info *info ATTRIBUTE_UNUSED) 10692 { 10693 asection *s; 10694 int ret = 0; 10695 10696 /* See if we need a PT_MIPS_REGINFO segment. */ 10697 s = bfd_get_section_by_name (abfd, ".reginfo"); 10698 if (s && (s->flags & SEC_LOAD)) 10699 ++ret; 10700 10701 /* See if we need a PT_MIPS_OPTIONS segment. */ 10702 if (IRIX_COMPAT (abfd) == ict_irix6 10703 && bfd_get_section_by_name (abfd, 10704 MIPS_ELF_OPTIONS_SECTION_NAME (abfd))) 10705 ++ret; 10706 10707 /* See if we need a PT_MIPS_RTPROC segment. */ 10708 if (IRIX_COMPAT (abfd) == ict_irix5 10709 && bfd_get_section_by_name (abfd, ".dynamic") 10710 && bfd_get_section_by_name (abfd, ".mdebug")) 10711 ++ret; 10712 10713 /* Allocate a PT_NULL header in dynamic objects. See 10714 _bfd_mips_elf_modify_segment_map for details. */ 10715 if (!SGI_COMPAT (abfd) 10716 && bfd_get_section_by_name (abfd, ".dynamic")) 10717 ++ret; 10718 10719 return ret; 10720 } 10721 10722 /* Modify the segment map for an IRIX5 executable. */ 10723 10724 bfd_boolean 10725 _bfd_mips_elf_modify_segment_map (bfd *abfd, 10726 struct bfd_link_info *info) 10727 { 10728 asection *s; 10729 struct elf_segment_map *m, **pm; 10730 bfd_size_type amt; 10731 10732 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO 10733 segment. */ 10734 s = bfd_get_section_by_name (abfd, ".reginfo"); 10735 if (s != NULL && (s->flags & SEC_LOAD) != 0) 10736 { 10737 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 10738 if (m->p_type == PT_MIPS_REGINFO) 10739 break; 10740 if (m == NULL) 10741 { 10742 amt = sizeof *m; 10743 m = bfd_zalloc (abfd, amt); 10744 if (m == NULL) 10745 return FALSE; 10746 10747 m->p_type = PT_MIPS_REGINFO; 10748 m->count = 1; 10749 m->sections[0] = s; 10750 10751 /* We want to put it after the PHDR and INTERP segments. */ 10752 pm = &elf_tdata (abfd)->segment_map; 10753 while (*pm != NULL 10754 && ((*pm)->p_type == PT_PHDR 10755 || (*pm)->p_type == PT_INTERP)) 10756 pm = &(*pm)->next; 10757 10758 m->next = *pm; 10759 *pm = m; 10760 } 10761 } 10762 10763 /* For IRIX 6, we don't have .mdebug sections, nor does anything but 10764 .dynamic end up in PT_DYNAMIC. However, we do have to insert a 10765 PT_MIPS_OPTIONS segment immediately following the program header 10766 table. */ 10767 if (NEWABI_P (abfd) 10768 /* On non-IRIX6 new abi, we'll have already created a segment 10769 for this section, so don't create another. I'm not sure this 10770 is not also the case for IRIX 6, but I can't test it right 10771 now. */ 10772 && IRIX_COMPAT (abfd) == ict_irix6) 10773 { 10774 for (s = abfd->sections; s; s = s->next) 10775 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS) 10776 break; 10777 10778 if (s) 10779 { 10780 struct elf_segment_map *options_segment; 10781 10782 pm = &elf_tdata (abfd)->segment_map; 10783 while (*pm != NULL 10784 && ((*pm)->p_type == PT_PHDR 10785 || (*pm)->p_type == PT_INTERP)) 10786 pm = &(*pm)->next; 10787 10788 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS) 10789 { 10790 amt = sizeof (struct elf_segment_map); 10791 options_segment = bfd_zalloc (abfd, amt); 10792 options_segment->next = *pm; 10793 options_segment->p_type = PT_MIPS_OPTIONS; 10794 options_segment->p_flags = PF_R; 10795 options_segment->p_flags_valid = TRUE; 10796 options_segment->count = 1; 10797 options_segment->sections[0] = s; 10798 *pm = options_segment; 10799 } 10800 } 10801 } 10802 else 10803 { 10804 if (IRIX_COMPAT (abfd) == ict_irix5) 10805 { 10806 /* If there are .dynamic and .mdebug sections, we make a room 10807 for the RTPROC header. FIXME: Rewrite without section names. */ 10808 if (bfd_get_section_by_name (abfd, ".interp") == NULL 10809 && bfd_get_section_by_name (abfd, ".dynamic") != NULL 10810 && bfd_get_section_by_name (abfd, ".mdebug") != NULL) 10811 { 10812 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next) 10813 if (m->p_type == PT_MIPS_RTPROC) 10814 break; 10815 if (m == NULL) 10816 { 10817 amt = sizeof *m; 10818 m = bfd_zalloc (abfd, amt); 10819 if (m == NULL) 10820 return FALSE; 10821 10822 m->p_type = PT_MIPS_RTPROC; 10823 10824 s = bfd_get_section_by_name (abfd, ".rtproc"); 10825 if (s == NULL) 10826 { 10827 m->count = 0; 10828 m->p_flags = 0; 10829 m->p_flags_valid = 1; 10830 } 10831 else 10832 { 10833 m->count = 1; 10834 m->sections[0] = s; 10835 } 10836 10837 /* We want to put it after the DYNAMIC segment. */ 10838 pm = &elf_tdata (abfd)->segment_map; 10839 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC) 10840 pm = &(*pm)->next; 10841 if (*pm != NULL) 10842 pm = &(*pm)->next; 10843 10844 m->next = *pm; 10845 *pm = m; 10846 } 10847 } 10848 } 10849 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic, 10850 .dynstr, .dynsym, and .hash sections, and everything in 10851 between. */ 10852 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; 10853 pm = &(*pm)->next) 10854 if ((*pm)->p_type == PT_DYNAMIC) 10855 break; 10856 m = *pm; 10857 if (m != NULL && IRIX_COMPAT (abfd) == ict_none) 10858 { 10859 /* For a normal mips executable the permissions for the PT_DYNAMIC 10860 segment are read, write and execute. We do that here since 10861 the code in elf.c sets only the read permission. This matters 10862 sometimes for the dynamic linker. */ 10863 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL) 10864 { 10865 m->p_flags = PF_R | PF_W | PF_X; 10866 m->p_flags_valid = 1; 10867 } 10868 } 10869 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section. 10870 glibc's dynamic linker has traditionally derived the number of 10871 tags from the p_filesz field, and sometimes allocates stack 10872 arrays of that size. An overly-big PT_DYNAMIC segment can 10873 be actively harmful in such cases. Making PT_DYNAMIC contain 10874 other sections can also make life hard for the prelinker, 10875 which might move one of the other sections to a different 10876 PT_LOAD segment. */ 10877 if (SGI_COMPAT (abfd) 10878 && m != NULL 10879 && m->count == 1 10880 && strcmp (m->sections[0]->name, ".dynamic") == 0) 10881 { 10882 static const char *sec_names[] = 10883 { 10884 ".dynamic", ".dynstr", ".dynsym", ".hash" 10885 }; 10886 bfd_vma low, high; 10887 unsigned int i, c; 10888 struct elf_segment_map *n; 10889 10890 low = ~(bfd_vma) 0; 10891 high = 0; 10892 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++) 10893 { 10894 s = bfd_get_section_by_name (abfd, sec_names[i]); 10895 if (s != NULL && (s->flags & SEC_LOAD) != 0) 10896 { 10897 bfd_size_type sz; 10898 10899 if (low > s->vma) 10900 low = s->vma; 10901 sz = s->size; 10902 if (high < s->vma + sz) 10903 high = s->vma + sz; 10904 } 10905 } 10906 10907 c = 0; 10908 for (s = abfd->sections; s != NULL; s = s->next) 10909 if ((s->flags & SEC_LOAD) != 0 10910 && s->vma >= low 10911 && s->vma + s->size <= high) 10912 ++c; 10913 10914 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *); 10915 n = bfd_zalloc (abfd, amt); 10916 if (n == NULL) 10917 return FALSE; 10918 *n = *m; 10919 n->count = c; 10920 10921 i = 0; 10922 for (s = abfd->sections; s != NULL; s = s->next) 10923 { 10924 if ((s->flags & SEC_LOAD) != 0 10925 && s->vma >= low 10926 && s->vma + s->size <= high) 10927 { 10928 n->sections[i] = s; 10929 ++i; 10930 } 10931 } 10932 10933 *pm = n; 10934 } 10935 } 10936 10937 /* Allocate a spare program header in dynamic objects so that tools 10938 like the prelinker can add an extra PT_LOAD entry. 10939 10940 If the prelinker needs to make room for a new PT_LOAD entry, its 10941 standard procedure is to move the first (read-only) sections into 10942 the new (writable) segment. However, the MIPS ABI requires 10943 .dynamic to be in a read-only segment, and the section will often 10944 start within sizeof (ElfNN_Phdr) bytes of the last program header. 10945 10946 Although the prelinker could in principle move .dynamic to a 10947 writable segment, it seems better to allocate a spare program 10948 header instead, and avoid the need to move any sections. 10949 There is a long tradition of allocating spare dynamic tags, 10950 so allocating a spare program header seems like a natural 10951 extension. 10952 10953 If INFO is NULL, we may be copying an already prelinked binary 10954 with objcopy or strip, so do not add this header. */ 10955 if (info != NULL 10956 && !SGI_COMPAT (abfd) 10957 && bfd_get_section_by_name (abfd, ".dynamic")) 10958 { 10959 for (pm = &elf_tdata (abfd)->segment_map; *pm != NULL; pm = &(*pm)->next) 10960 if ((*pm)->p_type == PT_NULL) 10961 break; 10962 if (*pm == NULL) 10963 { 10964 m = bfd_zalloc (abfd, sizeof (*m)); 10965 if (m == NULL) 10966 return FALSE; 10967 10968 m->p_type = PT_NULL; 10969 *pm = m; 10970 } 10971 } 10972 10973 return TRUE; 10974 } 10975 10976 /* Return the section that should be marked against GC for a given 10977 relocation. */ 10978 10979 asection * 10980 _bfd_mips_elf_gc_mark_hook (asection *sec, 10981 struct bfd_link_info *info, 10982 Elf_Internal_Rela *rel, 10983 struct elf_link_hash_entry *h, 10984 Elf_Internal_Sym *sym) 10985 { 10986 /* ??? Do mips16 stub sections need to be handled special? */ 10987 10988 if (h != NULL) 10989 switch (ELF_R_TYPE (sec->owner, rel->r_info)) 10990 { 10991 case R_MIPS_GNU_VTINHERIT: 10992 case R_MIPS_GNU_VTENTRY: 10993 return NULL; 10994 } 10995 10996 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 10997 } 10998 10999 /* Update the got entry reference counts for the section being removed. */ 11000 11001 bfd_boolean 11002 _bfd_mips_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 11003 struct bfd_link_info *info ATTRIBUTE_UNUSED, 11004 asection *sec ATTRIBUTE_UNUSED, 11005 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 11006 { 11007 #if 0 11008 Elf_Internal_Shdr *symtab_hdr; 11009 struct elf_link_hash_entry **sym_hashes; 11010 bfd_signed_vma *local_got_refcounts; 11011 const Elf_Internal_Rela *rel, *relend; 11012 unsigned long r_symndx; 11013 struct elf_link_hash_entry *h; 11014 11015 if (info->relocatable) 11016 return TRUE; 11017 11018 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 11019 sym_hashes = elf_sym_hashes (abfd); 11020 local_got_refcounts = elf_local_got_refcounts (abfd); 11021 11022 relend = relocs + sec->reloc_count; 11023 for (rel = relocs; rel < relend; rel++) 11024 switch (ELF_R_TYPE (abfd, rel->r_info)) 11025 { 11026 case R_MIPS16_GOT16: 11027 case R_MIPS16_CALL16: 11028 case R_MIPS_GOT16: 11029 case R_MIPS_CALL16: 11030 case R_MIPS_CALL_HI16: 11031 case R_MIPS_CALL_LO16: 11032 case R_MIPS_GOT_HI16: 11033 case R_MIPS_GOT_LO16: 11034 case R_MIPS_GOT_DISP: 11035 case R_MIPS_GOT_PAGE: 11036 case R_MIPS_GOT_OFST: 11037 /* ??? It would seem that the existing MIPS code does no sort 11038 of reference counting or whatnot on its GOT and PLT entries, 11039 so it is not possible to garbage collect them at this time. */ 11040 break; 11041 11042 default: 11043 break; 11044 } 11045 #endif 11046 11047 return TRUE; 11048 } 11049 11050 /* Copy data from a MIPS ELF indirect symbol to its direct symbol, 11051 hiding the old indirect symbol. Process additional relocation 11052 information. Also called for weakdefs, in which case we just let 11053 _bfd_elf_link_hash_copy_indirect copy the flags for us. */ 11054 11055 void 11056 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info, 11057 struct elf_link_hash_entry *dir, 11058 struct elf_link_hash_entry *ind) 11059 { 11060 struct mips_elf_link_hash_entry *dirmips, *indmips; 11061 11062 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 11063 11064 dirmips = (struct mips_elf_link_hash_entry *) dir; 11065 indmips = (struct mips_elf_link_hash_entry *) ind; 11066 /* Any absolute non-dynamic relocations against an indirect or weak 11067 definition will be against the target symbol. */ 11068 if (indmips->has_static_relocs) 11069 dirmips->has_static_relocs = TRUE; 11070 11071 if (ind->root.type != bfd_link_hash_indirect) 11072 return; 11073 11074 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs; 11075 if (indmips->readonly_reloc) 11076 dirmips->readonly_reloc = TRUE; 11077 if (indmips->no_fn_stub) 11078 dirmips->no_fn_stub = TRUE; 11079 if (indmips->fn_stub) 11080 { 11081 dirmips->fn_stub = indmips->fn_stub; 11082 indmips->fn_stub = NULL; 11083 } 11084 if (indmips->need_fn_stub) 11085 { 11086 dirmips->need_fn_stub = TRUE; 11087 indmips->need_fn_stub = FALSE; 11088 } 11089 if (indmips->call_stub) 11090 { 11091 dirmips->call_stub = indmips->call_stub; 11092 indmips->call_stub = NULL; 11093 } 11094 if (indmips->call_fp_stub) 11095 { 11096 dirmips->call_fp_stub = indmips->call_fp_stub; 11097 indmips->call_fp_stub = NULL; 11098 } 11099 if (indmips->global_got_area < dirmips->global_got_area) 11100 dirmips->global_got_area = indmips->global_got_area; 11101 if (indmips->global_got_area < GGA_NONE) 11102 indmips->global_got_area = GGA_NONE; 11103 if (indmips->has_nonpic_branches) 11104 dirmips->has_nonpic_branches = TRUE; 11105 11106 if (dirmips->tls_type == 0) 11107 dirmips->tls_type = indmips->tls_type; 11108 } 11109 11110 #define PDR_SIZE 32 11111 11112 bfd_boolean 11113 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie, 11114 struct bfd_link_info *info) 11115 { 11116 asection *o; 11117 bfd_boolean ret = FALSE; 11118 unsigned char *tdata; 11119 size_t i, skip; 11120 11121 o = bfd_get_section_by_name (abfd, ".pdr"); 11122 if (! o) 11123 return FALSE; 11124 if (o->size == 0) 11125 return FALSE; 11126 if (o->size % PDR_SIZE != 0) 11127 return FALSE; 11128 if (o->output_section != NULL 11129 && bfd_is_abs_section (o->output_section)) 11130 return FALSE; 11131 11132 tdata = bfd_zmalloc (o->size / PDR_SIZE); 11133 if (! tdata) 11134 return FALSE; 11135 11136 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 11137 info->keep_memory); 11138 if (!cookie->rels) 11139 { 11140 free (tdata); 11141 return FALSE; 11142 } 11143 11144 cookie->rel = cookie->rels; 11145 cookie->relend = cookie->rels + o->reloc_count; 11146 11147 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++) 11148 { 11149 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie)) 11150 { 11151 tdata[i] = 1; 11152 skip ++; 11153 } 11154 } 11155 11156 if (skip != 0) 11157 { 11158 mips_elf_section_data (o)->u.tdata = tdata; 11159 o->size -= skip * PDR_SIZE; 11160 ret = TRUE; 11161 } 11162 else 11163 free (tdata); 11164 11165 if (! info->keep_memory) 11166 free (cookie->rels); 11167 11168 return ret; 11169 } 11170 11171 bfd_boolean 11172 _bfd_mips_elf_ignore_discarded_relocs (asection *sec) 11173 { 11174 if (strcmp (sec->name, ".pdr") == 0) 11175 return TRUE; 11176 return FALSE; 11177 } 11178 11179 bfd_boolean 11180 _bfd_mips_elf_write_section (bfd *output_bfd, 11181 struct bfd_link_info *link_info ATTRIBUTE_UNUSED, 11182 asection *sec, bfd_byte *contents) 11183 { 11184 bfd_byte *to, *from, *end; 11185 int i; 11186 11187 if (strcmp (sec->name, ".pdr") != 0) 11188 return FALSE; 11189 11190 if (mips_elf_section_data (sec)->u.tdata == NULL) 11191 return FALSE; 11192 11193 to = contents; 11194 end = contents + sec->size; 11195 for (from = contents, i = 0; 11196 from < end; 11197 from += PDR_SIZE, i++) 11198 { 11199 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1) 11200 continue; 11201 if (to != from) 11202 memcpy (to, from, PDR_SIZE); 11203 to += PDR_SIZE; 11204 } 11205 bfd_set_section_contents (output_bfd, sec->output_section, contents, 11206 sec->output_offset, sec->size); 11207 return TRUE; 11208 } 11209 11210 /* MIPS ELF uses a special find_nearest_line routine in order the 11211 handle the ECOFF debugging information. */ 11212 11213 struct mips_elf_find_line 11214 { 11215 struct ecoff_debug_info d; 11216 struct ecoff_find_line i; 11217 }; 11218 11219 bfd_boolean 11220 _bfd_mips_elf_find_nearest_line (bfd *abfd, asection *section, 11221 asymbol **symbols, bfd_vma offset, 11222 const char **filename_ptr, 11223 const char **functionname_ptr, 11224 unsigned int *line_ptr) 11225 { 11226 asection *msec; 11227 11228 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset, 11229 filename_ptr, functionname_ptr, 11230 line_ptr)) 11231 return TRUE; 11232 11233 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset, 11234 filename_ptr, functionname_ptr, 11235 line_ptr, ABI_64_P (abfd) ? 8 : 0, 11236 &elf_tdata (abfd)->dwarf2_find_line_info)) 11237 return TRUE; 11238 11239 msec = bfd_get_section_by_name (abfd, ".mdebug"); 11240 if (msec != NULL) 11241 { 11242 flagword origflags; 11243 struct mips_elf_find_line *fi; 11244 const struct ecoff_debug_swap * const swap = 11245 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap; 11246 11247 /* If we are called during a link, mips_elf_final_link may have 11248 cleared the SEC_HAS_CONTENTS field. We force it back on here 11249 if appropriate (which it normally will be). */ 11250 origflags = msec->flags; 11251 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS) 11252 msec->flags |= SEC_HAS_CONTENTS; 11253 11254 fi = elf_tdata (abfd)->find_line_info; 11255 if (fi == NULL) 11256 { 11257 bfd_size_type external_fdr_size; 11258 char *fraw_src; 11259 char *fraw_end; 11260 struct fdr *fdr_ptr; 11261 bfd_size_type amt = sizeof (struct mips_elf_find_line); 11262 11263 fi = bfd_zalloc (abfd, amt); 11264 if (fi == NULL) 11265 { 11266 msec->flags = origflags; 11267 return FALSE; 11268 } 11269 11270 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d)) 11271 { 11272 msec->flags = origflags; 11273 return FALSE; 11274 } 11275 11276 /* Swap in the FDR information. */ 11277 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr); 11278 fi->d.fdr = bfd_alloc (abfd, amt); 11279 if (fi->d.fdr == NULL) 11280 { 11281 msec->flags = origflags; 11282 return FALSE; 11283 } 11284 external_fdr_size = swap->external_fdr_size; 11285 fdr_ptr = fi->d.fdr; 11286 fraw_src = (char *) fi->d.external_fdr; 11287 fraw_end = (fraw_src 11288 + fi->d.symbolic_header.ifdMax * external_fdr_size); 11289 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++) 11290 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr); 11291 11292 elf_tdata (abfd)->find_line_info = fi; 11293 11294 /* Note that we don't bother to ever free this information. 11295 find_nearest_line is either called all the time, as in 11296 objdump -l, so the information should be saved, or it is 11297 rarely called, as in ld error messages, so the memory 11298 wasted is unimportant. Still, it would probably be a 11299 good idea for free_cached_info to throw it away. */ 11300 } 11301 11302 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap, 11303 &fi->i, filename_ptr, functionname_ptr, 11304 line_ptr)) 11305 { 11306 msec->flags = origflags; 11307 return TRUE; 11308 } 11309 11310 msec->flags = origflags; 11311 } 11312 11313 /* Fall back on the generic ELF find_nearest_line routine. */ 11314 11315 return _bfd_elf_find_nearest_line (abfd, section, symbols, offset, 11316 filename_ptr, functionname_ptr, 11317 line_ptr); 11318 } 11319 11320 bfd_boolean 11321 _bfd_mips_elf_find_inliner_info (bfd *abfd, 11322 const char **filename_ptr, 11323 const char **functionname_ptr, 11324 unsigned int *line_ptr) 11325 { 11326 bfd_boolean found; 11327 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr, 11328 functionname_ptr, line_ptr, 11329 & elf_tdata (abfd)->dwarf2_find_line_info); 11330 return found; 11331 } 11332 11333 11334 /* When are writing out the .options or .MIPS.options section, 11335 remember the bytes we are writing out, so that we can install the 11336 GP value in the section_processing routine. */ 11337 11338 bfd_boolean 11339 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section, 11340 const void *location, 11341 file_ptr offset, bfd_size_type count) 11342 { 11343 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name)) 11344 { 11345 bfd_byte *c; 11346 11347 if (elf_section_data (section) == NULL) 11348 { 11349 bfd_size_type amt = sizeof (struct bfd_elf_section_data); 11350 section->used_by_bfd = bfd_zalloc (abfd, amt); 11351 if (elf_section_data (section) == NULL) 11352 return FALSE; 11353 } 11354 c = mips_elf_section_data (section)->u.tdata; 11355 if (c == NULL) 11356 { 11357 c = bfd_zalloc (abfd, section->size); 11358 if (c == NULL) 11359 return FALSE; 11360 mips_elf_section_data (section)->u.tdata = c; 11361 } 11362 11363 memcpy (c + offset, location, count); 11364 } 11365 11366 return _bfd_elf_set_section_contents (abfd, section, location, offset, 11367 count); 11368 } 11369 11370 /* This is almost identical to bfd_generic_get_... except that some 11371 MIPS relocations need to be handled specially. Sigh. */ 11372 11373 bfd_byte * 11374 _bfd_elf_mips_get_relocated_section_contents 11375 (bfd *abfd, 11376 struct bfd_link_info *link_info, 11377 struct bfd_link_order *link_order, 11378 bfd_byte *data, 11379 bfd_boolean relocatable, 11380 asymbol **symbols) 11381 { 11382 /* Get enough memory to hold the stuff */ 11383 bfd *input_bfd = link_order->u.indirect.section->owner; 11384 asection *input_section = link_order->u.indirect.section; 11385 bfd_size_type sz; 11386 11387 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section); 11388 arelent **reloc_vector = NULL; 11389 long reloc_count; 11390 11391 if (reloc_size < 0) 11392 goto error_return; 11393 11394 reloc_vector = bfd_malloc (reloc_size); 11395 if (reloc_vector == NULL && reloc_size != 0) 11396 goto error_return; 11397 11398 /* read in the section */ 11399 sz = input_section->rawsize ? input_section->rawsize : input_section->size; 11400 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz)) 11401 goto error_return; 11402 11403 reloc_count = bfd_canonicalize_reloc (input_bfd, 11404 input_section, 11405 reloc_vector, 11406 symbols); 11407 if (reloc_count < 0) 11408 goto error_return; 11409 11410 if (reloc_count > 0) 11411 { 11412 arelent **parent; 11413 /* for mips */ 11414 int gp_found; 11415 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */ 11416 11417 { 11418 struct bfd_hash_entry *h; 11419 struct bfd_link_hash_entry *lh; 11420 /* Skip all this stuff if we aren't mixing formats. */ 11421 if (abfd && input_bfd 11422 && abfd->xvec == input_bfd->xvec) 11423 lh = 0; 11424 else 11425 { 11426 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE); 11427 lh = (struct bfd_link_hash_entry *) h; 11428 } 11429 lookup: 11430 if (lh) 11431 { 11432 switch (lh->type) 11433 { 11434 case bfd_link_hash_undefined: 11435 case bfd_link_hash_undefweak: 11436 case bfd_link_hash_common: 11437 gp_found = 0; 11438 break; 11439 case bfd_link_hash_defined: 11440 case bfd_link_hash_defweak: 11441 gp_found = 1; 11442 gp = lh->u.def.value; 11443 break; 11444 case bfd_link_hash_indirect: 11445 case bfd_link_hash_warning: 11446 lh = lh->u.i.link; 11447 /* @@FIXME ignoring warning for now */ 11448 goto lookup; 11449 case bfd_link_hash_new: 11450 default: 11451 abort (); 11452 } 11453 } 11454 else 11455 gp_found = 0; 11456 } 11457 /* end mips */ 11458 for (parent = reloc_vector; *parent != NULL; parent++) 11459 { 11460 char *error_message = NULL; 11461 bfd_reloc_status_type r; 11462 11463 /* Specific to MIPS: Deal with relocation types that require 11464 knowing the gp of the output bfd. */ 11465 asymbol *sym = *(*parent)->sym_ptr_ptr; 11466 11467 /* If we've managed to find the gp and have a special 11468 function for the relocation then go ahead, else default 11469 to the generic handling. */ 11470 if (gp_found 11471 && (*parent)->howto->special_function 11472 == _bfd_mips_elf32_gprel16_reloc) 11473 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent, 11474 input_section, relocatable, 11475 data, gp); 11476 else 11477 r = bfd_perform_relocation (input_bfd, *parent, data, 11478 input_section, 11479 relocatable ? abfd : NULL, 11480 &error_message); 11481 11482 if (relocatable) 11483 { 11484 asection *os = input_section->output_section; 11485 11486 /* A partial link, so keep the relocs */ 11487 os->orelocation[os->reloc_count] = *parent; 11488 os->reloc_count++; 11489 } 11490 11491 if (r != bfd_reloc_ok) 11492 { 11493 switch (r) 11494 { 11495 case bfd_reloc_undefined: 11496 if (!((*link_info->callbacks->undefined_symbol) 11497 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 11498 input_bfd, input_section, (*parent)->address, TRUE))) 11499 goto error_return; 11500 break; 11501 case bfd_reloc_dangerous: 11502 BFD_ASSERT (error_message != NULL); 11503 if (!((*link_info->callbacks->reloc_dangerous) 11504 (link_info, error_message, input_bfd, input_section, 11505 (*parent)->address))) 11506 goto error_return; 11507 break; 11508 case bfd_reloc_overflow: 11509 if (!((*link_info->callbacks->reloc_overflow) 11510 (link_info, NULL, 11511 bfd_asymbol_name (*(*parent)->sym_ptr_ptr), 11512 (*parent)->howto->name, (*parent)->addend, 11513 input_bfd, input_section, (*parent)->address))) 11514 goto error_return; 11515 break; 11516 case bfd_reloc_outofrange: 11517 default: 11518 abort (); 11519 break; 11520 } 11521 11522 } 11523 } 11524 } 11525 if (reloc_vector != NULL) 11526 free (reloc_vector); 11527 return data; 11528 11529 error_return: 11530 if (reloc_vector != NULL) 11531 free (reloc_vector); 11532 return NULL; 11533 } 11534 11535 /* Create a MIPS ELF linker hash table. */ 11536 11537 struct bfd_link_hash_table * 11538 _bfd_mips_elf_link_hash_table_create (bfd *abfd) 11539 { 11540 struct mips_elf_link_hash_table *ret; 11541 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table); 11542 11543 ret = bfd_malloc (amt); 11544 if (ret == NULL) 11545 return NULL; 11546 11547 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 11548 mips_elf_link_hash_newfunc, 11549 sizeof (struct mips_elf_link_hash_entry), 11550 MIPS_ELF_DATA)) 11551 { 11552 free (ret); 11553 return NULL; 11554 } 11555 11556 #if 0 11557 /* We no longer use this. */ 11558 for (i = 0; i < SIZEOF_MIPS_DYNSYM_SECNAMES; i++) 11559 ret->dynsym_sec_strindex[i] = (bfd_size_type) -1; 11560 #endif 11561 ret->procedure_count = 0; 11562 ret->compact_rel_size = 0; 11563 ret->use_rld_obj_head = FALSE; 11564 ret->rld_value = 0; 11565 ret->mips16_stubs_seen = FALSE; 11566 ret->use_plts_and_copy_relocs = FALSE; 11567 ret->is_vxworks = FALSE; 11568 ret->small_data_overflow_reported = FALSE; 11569 ret->srelbss = NULL; 11570 ret->sdynbss = NULL; 11571 ret->srelplt = NULL; 11572 ret->srelplt2 = NULL; 11573 ret->sgotplt = NULL; 11574 ret->splt = NULL; 11575 ret->sstubs = NULL; 11576 ret->sgot = NULL; 11577 ret->got_info = NULL; 11578 ret->plt_header_size = 0; 11579 ret->plt_entry_size = 0; 11580 ret->lazy_stub_count = 0; 11581 ret->function_stub_size = 0; 11582 ret->strampoline = NULL; 11583 ret->la25_stubs = NULL; 11584 ret->add_stub_section = NULL; 11585 11586 return &ret->root.root; 11587 } 11588 11589 /* Likewise, but indicate that the target is VxWorks. */ 11590 11591 struct bfd_link_hash_table * 11592 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd) 11593 { 11594 struct bfd_link_hash_table *ret; 11595 11596 ret = _bfd_mips_elf_link_hash_table_create (abfd); 11597 if (ret) 11598 { 11599 struct mips_elf_link_hash_table *htab; 11600 11601 htab = (struct mips_elf_link_hash_table *) ret; 11602 htab->use_plts_and_copy_relocs = TRUE; 11603 htab->is_vxworks = TRUE; 11604 } 11605 return ret; 11606 } 11607 11608 /* A function that the linker calls if we are allowed to use PLTs 11609 and copy relocs. */ 11610 11611 void 11612 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info) 11613 { 11614 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE; 11615 } 11616 11617 /* We need to use a special link routine to handle the .reginfo and 11618 the .mdebug sections. We need to merge all instances of these 11619 sections together, not write them all out sequentially. */ 11620 11621 bfd_boolean 11622 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info) 11623 { 11624 asection *o; 11625 struct bfd_link_order *p; 11626 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec; 11627 asection *rtproc_sec; 11628 Elf32_RegInfo reginfo; 11629 struct ecoff_debug_info debug; 11630 struct mips_htab_traverse_info hti; 11631 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 11632 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap; 11633 HDRR *symhdr = &debug.symbolic_header; 11634 void *mdebug_handle = NULL; 11635 asection *s; 11636 EXTR esym; 11637 unsigned int i; 11638 bfd_size_type amt; 11639 struct mips_elf_link_hash_table *htab; 11640 11641 static const char * const secname[] = 11642 { 11643 ".text", ".init", ".fini", ".data", 11644 ".rodata", ".sdata", ".sbss", ".bss" 11645 }; 11646 static const int sc[] = 11647 { 11648 scText, scInit, scFini, scData, 11649 scRData, scSData, scSBss, scBss 11650 }; 11651 11652 /* Sort the dynamic symbols so that those with GOT entries come after 11653 those without. */ 11654 htab = mips_elf_hash_table (info); 11655 BFD_ASSERT (htab != NULL); 11656 11657 if (!mips_elf_sort_hash_table (abfd, info)) 11658 return FALSE; 11659 11660 /* Create any scheduled LA25 stubs. */ 11661 hti.info = info; 11662 hti.output_bfd = abfd; 11663 hti.error = FALSE; 11664 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti); 11665 if (hti.error) 11666 return FALSE; 11667 11668 /* Get a value for the GP register. */ 11669 if (elf_gp (abfd) == 0) 11670 { 11671 struct bfd_link_hash_entry *h; 11672 11673 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE); 11674 if (h != NULL && h->type == bfd_link_hash_defined) 11675 elf_gp (abfd) = (h->u.def.value 11676 + h->u.def.section->output_section->vma 11677 + h->u.def.section->output_offset); 11678 else if (htab->is_vxworks 11679 && (h = bfd_link_hash_lookup (info->hash, 11680 "_GLOBAL_OFFSET_TABLE_", 11681 FALSE, FALSE, TRUE)) 11682 && h->type == bfd_link_hash_defined) 11683 elf_gp (abfd) = (h->u.def.section->output_section->vma 11684 + h->u.def.section->output_offset 11685 + h->u.def.value); 11686 else if (info->relocatable) 11687 { 11688 bfd_vma lo = MINUS_ONE; 11689 11690 /* Find the GP-relative section with the lowest offset. */ 11691 for (o = abfd->sections; o != NULL; o = o->next) 11692 if (o->vma < lo 11693 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL)) 11694 lo = o->vma; 11695 11696 /* And calculate GP relative to that. */ 11697 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info); 11698 } 11699 else 11700 { 11701 /* If the relocate_section function needs to do a reloc 11702 involving the GP value, it should make a reloc_dangerous 11703 callback to warn that GP is not defined. */ 11704 } 11705 } 11706 11707 /* Go through the sections and collect the .reginfo and .mdebug 11708 information. */ 11709 reginfo_sec = NULL; 11710 mdebug_sec = NULL; 11711 gptab_data_sec = NULL; 11712 gptab_bss_sec = NULL; 11713 for (o = abfd->sections; o != NULL; o = o->next) 11714 { 11715 if (strcmp (o->name, ".reginfo") == 0) 11716 { 11717 memset (®info, 0, sizeof reginfo); 11718 11719 /* We have found the .reginfo section in the output file. 11720 Look through all the link_orders comprising it and merge 11721 the information together. */ 11722 for (p = o->map_head.link_order; p != NULL; p = p->next) 11723 { 11724 asection *input_section; 11725 bfd *input_bfd; 11726 Elf32_External_RegInfo ext; 11727 Elf32_RegInfo sub; 11728 11729 if (p->type != bfd_indirect_link_order) 11730 { 11731 if (p->type == bfd_data_link_order) 11732 continue; 11733 abort (); 11734 } 11735 11736 input_section = p->u.indirect.section; 11737 input_bfd = input_section->owner; 11738 11739 if (! bfd_get_section_contents (input_bfd, input_section, 11740 &ext, 0, sizeof ext)) 11741 return FALSE; 11742 11743 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub); 11744 11745 reginfo.ri_gprmask |= sub.ri_gprmask; 11746 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0]; 11747 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1]; 11748 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2]; 11749 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3]; 11750 11751 /* ri_gp_value is set by the function 11752 mips_elf32_section_processing when the section is 11753 finally written out. */ 11754 11755 /* Hack: reset the SEC_HAS_CONTENTS flag so that 11756 elf_link_input_bfd ignores this section. */ 11757 input_section->flags &= ~SEC_HAS_CONTENTS; 11758 } 11759 11760 /* Size has been set in _bfd_mips_elf_always_size_sections. */ 11761 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo)); 11762 11763 /* Skip this section later on (I don't think this currently 11764 matters, but someday it might). */ 11765 o->map_head.link_order = NULL; 11766 11767 reginfo_sec = o; 11768 } 11769 11770 if (strcmp (o->name, ".mdebug") == 0) 11771 { 11772 struct extsym_info einfo; 11773 bfd_vma last; 11774 11775 /* We have found the .mdebug section in the output file. 11776 Look through all the link_orders comprising it and merge 11777 the information together. */ 11778 symhdr->magic = swap->sym_magic; 11779 /* FIXME: What should the version stamp be? */ 11780 symhdr->vstamp = 0; 11781 symhdr->ilineMax = 0; 11782 symhdr->cbLine = 0; 11783 symhdr->idnMax = 0; 11784 symhdr->ipdMax = 0; 11785 symhdr->isymMax = 0; 11786 symhdr->ioptMax = 0; 11787 symhdr->iauxMax = 0; 11788 symhdr->issMax = 0; 11789 symhdr->issExtMax = 0; 11790 symhdr->ifdMax = 0; 11791 symhdr->crfd = 0; 11792 symhdr->iextMax = 0; 11793 11794 /* We accumulate the debugging information itself in the 11795 debug_info structure. */ 11796 debug.line = NULL; 11797 debug.external_dnr = NULL; 11798 debug.external_pdr = NULL; 11799 debug.external_sym = NULL; 11800 debug.external_opt = NULL; 11801 debug.external_aux = NULL; 11802 debug.ss = NULL; 11803 debug.ssext = debug.ssext_end = NULL; 11804 debug.external_fdr = NULL; 11805 debug.external_rfd = NULL; 11806 debug.external_ext = debug.external_ext_end = NULL; 11807 11808 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info); 11809 if (mdebug_handle == NULL) 11810 return FALSE; 11811 11812 esym.jmptbl = 0; 11813 esym.cobol_main = 0; 11814 esym.weakext = 0; 11815 esym.reserved = 0; 11816 esym.ifd = ifdNil; 11817 esym.asym.iss = issNil; 11818 esym.asym.st = stLocal; 11819 esym.asym.reserved = 0; 11820 esym.asym.index = indexNil; 11821 last = 0; 11822 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++) 11823 { 11824 esym.asym.sc = sc[i]; 11825 s = bfd_get_section_by_name (abfd, secname[i]); 11826 if (s != NULL) 11827 { 11828 esym.asym.value = s->vma; 11829 last = s->vma + s->size; 11830 } 11831 else 11832 esym.asym.value = last; 11833 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap, 11834 secname[i], &esym)) 11835 return FALSE; 11836 } 11837 11838 for (p = o->map_head.link_order; p != NULL; p = p->next) 11839 { 11840 asection *input_section; 11841 bfd *input_bfd; 11842 const struct ecoff_debug_swap *input_swap; 11843 struct ecoff_debug_info input_debug; 11844 char *eraw_src; 11845 char *eraw_end; 11846 11847 if (p->type != bfd_indirect_link_order) 11848 { 11849 if (p->type == bfd_data_link_order) 11850 continue; 11851 abort (); 11852 } 11853 11854 input_section = p->u.indirect.section; 11855 input_bfd = input_section->owner; 11856 11857 if (!is_mips_elf (input_bfd)) 11858 { 11859 /* I don't know what a non MIPS ELF bfd would be 11860 doing with a .mdebug section, but I don't really 11861 want to deal with it. */ 11862 continue; 11863 } 11864 11865 input_swap = (get_elf_backend_data (input_bfd) 11866 ->elf_backend_ecoff_debug_swap); 11867 11868 BFD_ASSERT (p->size == input_section->size); 11869 11870 /* The ECOFF linking code expects that we have already 11871 read in the debugging information and set up an 11872 ecoff_debug_info structure, so we do that now. */ 11873 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section, 11874 &input_debug)) 11875 return FALSE; 11876 11877 if (! (bfd_ecoff_debug_accumulate 11878 (mdebug_handle, abfd, &debug, swap, input_bfd, 11879 &input_debug, input_swap, info))) 11880 return FALSE; 11881 11882 /* Loop through the external symbols. For each one with 11883 interesting information, try to find the symbol in 11884 the linker global hash table and save the information 11885 for the output external symbols. */ 11886 eraw_src = input_debug.external_ext; 11887 eraw_end = (eraw_src 11888 + (input_debug.symbolic_header.iextMax 11889 * input_swap->external_ext_size)); 11890 for (; 11891 eraw_src < eraw_end; 11892 eraw_src += input_swap->external_ext_size) 11893 { 11894 EXTR ext; 11895 const char *name; 11896 struct mips_elf_link_hash_entry *h; 11897 11898 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext); 11899 if (ext.asym.sc == scNil 11900 || ext.asym.sc == scUndefined 11901 || ext.asym.sc == scSUndefined) 11902 continue; 11903 11904 name = input_debug.ssext + ext.asym.iss; 11905 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info), 11906 name, FALSE, FALSE, TRUE); 11907 if (h == NULL || h->esym.ifd != -2) 11908 continue; 11909 11910 if (ext.ifd != -1) 11911 { 11912 BFD_ASSERT (ext.ifd 11913 < input_debug.symbolic_header.ifdMax); 11914 ext.ifd = input_debug.ifdmap[ext.ifd]; 11915 } 11916 11917 h->esym = ext; 11918 } 11919 11920 /* Free up the information we just read. */ 11921 free (input_debug.line); 11922 free (input_debug.external_dnr); 11923 free (input_debug.external_pdr); 11924 free (input_debug.external_sym); 11925 free (input_debug.external_opt); 11926 free (input_debug.external_aux); 11927 free (input_debug.ss); 11928 free (input_debug.ssext); 11929 free (input_debug.external_fdr); 11930 free (input_debug.external_rfd); 11931 free (input_debug.external_ext); 11932 11933 /* Hack: reset the SEC_HAS_CONTENTS flag so that 11934 elf_link_input_bfd ignores this section. */ 11935 input_section->flags &= ~SEC_HAS_CONTENTS; 11936 } 11937 11938 if (SGI_COMPAT (abfd) && info->shared) 11939 { 11940 /* Create .rtproc section. */ 11941 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 11942 if (rtproc_sec == NULL) 11943 { 11944 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY 11945 | SEC_LINKER_CREATED | SEC_READONLY); 11946 11947 rtproc_sec = bfd_make_section_with_flags (abfd, 11948 ".rtproc", 11949 flags); 11950 if (rtproc_sec == NULL 11951 || ! bfd_set_section_alignment (abfd, rtproc_sec, 4)) 11952 return FALSE; 11953 } 11954 11955 if (! mips_elf_create_procedure_table (mdebug_handle, abfd, 11956 info, rtproc_sec, 11957 &debug)) 11958 return FALSE; 11959 } 11960 11961 /* Build the external symbol information. */ 11962 einfo.abfd = abfd; 11963 einfo.info = info; 11964 einfo.debug = &debug; 11965 einfo.swap = swap; 11966 einfo.failed = FALSE; 11967 mips_elf_link_hash_traverse (mips_elf_hash_table (info), 11968 mips_elf_output_extsym, &einfo); 11969 if (einfo.failed) 11970 return FALSE; 11971 11972 /* Set the size of the .mdebug section. */ 11973 o->size = bfd_ecoff_debug_size (abfd, &debug, swap); 11974 11975 /* Skip this section later on (I don't think this currently 11976 matters, but someday it might). */ 11977 o->map_head.link_order = NULL; 11978 11979 mdebug_sec = o; 11980 } 11981 11982 if (CONST_STRNEQ (o->name, ".gptab.")) 11983 { 11984 const char *subname; 11985 unsigned int c; 11986 Elf32_gptab *tab; 11987 Elf32_External_gptab *ext_tab; 11988 unsigned int j; 11989 11990 /* The .gptab.sdata and .gptab.sbss sections hold 11991 information describing how the small data area would 11992 change depending upon the -G switch. These sections 11993 not used in executables files. */ 11994 if (! info->relocatable) 11995 { 11996 for (p = o->map_head.link_order; p != NULL; p = p->next) 11997 { 11998 asection *input_section; 11999 12000 if (p->type != bfd_indirect_link_order) 12001 { 12002 if (p->type == bfd_data_link_order) 12003 continue; 12004 abort (); 12005 } 12006 12007 input_section = p->u.indirect.section; 12008 12009 /* Hack: reset the SEC_HAS_CONTENTS flag so that 12010 elf_link_input_bfd ignores this section. */ 12011 input_section->flags &= ~SEC_HAS_CONTENTS; 12012 } 12013 12014 /* Skip this section later on (I don't think this 12015 currently matters, but someday it might). */ 12016 o->map_head.link_order = NULL; 12017 12018 /* Really remove the section. */ 12019 bfd_section_list_remove (abfd, o); 12020 --abfd->section_count; 12021 12022 continue; 12023 } 12024 12025 /* There is one gptab for initialized data, and one for 12026 uninitialized data. */ 12027 if (strcmp (o->name, ".gptab.sdata") == 0) 12028 gptab_data_sec = o; 12029 else if (strcmp (o->name, ".gptab.sbss") == 0) 12030 gptab_bss_sec = o; 12031 else 12032 { 12033 (*_bfd_error_handler) 12034 (_("%s: illegal section name `%s'"), 12035 bfd_get_filename (abfd), o->name); 12036 bfd_set_error (bfd_error_nonrepresentable_section); 12037 return FALSE; 12038 } 12039 12040 /* The linker script always combines .gptab.data and 12041 .gptab.sdata into .gptab.sdata, and likewise for 12042 .gptab.bss and .gptab.sbss. It is possible that there is 12043 no .sdata or .sbss section in the output file, in which 12044 case we must change the name of the output section. */ 12045 subname = o->name + sizeof ".gptab" - 1; 12046 if (bfd_get_section_by_name (abfd, subname) == NULL) 12047 { 12048 if (o == gptab_data_sec) 12049 o->name = ".gptab.data"; 12050 else 12051 o->name = ".gptab.bss"; 12052 subname = o->name + sizeof ".gptab" - 1; 12053 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL); 12054 } 12055 12056 /* Set up the first entry. */ 12057 c = 1; 12058 amt = c * sizeof (Elf32_gptab); 12059 tab = bfd_malloc (amt); 12060 if (tab == NULL) 12061 return FALSE; 12062 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd); 12063 tab[0].gt_header.gt_unused = 0; 12064 12065 /* Combine the input sections. */ 12066 for (p = o->map_head.link_order; p != NULL; p = p->next) 12067 { 12068 asection *input_section; 12069 bfd *input_bfd; 12070 bfd_size_type size; 12071 unsigned long last; 12072 bfd_size_type gpentry; 12073 12074 if (p->type != bfd_indirect_link_order) 12075 { 12076 if (p->type == bfd_data_link_order) 12077 continue; 12078 abort (); 12079 } 12080 12081 input_section = p->u.indirect.section; 12082 input_bfd = input_section->owner; 12083 12084 /* Combine the gptab entries for this input section one 12085 by one. We know that the input gptab entries are 12086 sorted by ascending -G value. */ 12087 size = input_section->size; 12088 last = 0; 12089 for (gpentry = sizeof (Elf32_External_gptab); 12090 gpentry < size; 12091 gpentry += sizeof (Elf32_External_gptab)) 12092 { 12093 Elf32_External_gptab ext_gptab; 12094 Elf32_gptab int_gptab; 12095 unsigned long val; 12096 unsigned long add; 12097 bfd_boolean exact; 12098 unsigned int look; 12099 12100 if (! (bfd_get_section_contents 12101 (input_bfd, input_section, &ext_gptab, gpentry, 12102 sizeof (Elf32_External_gptab)))) 12103 { 12104 free (tab); 12105 return FALSE; 12106 } 12107 12108 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab, 12109 &int_gptab); 12110 val = int_gptab.gt_entry.gt_g_value; 12111 add = int_gptab.gt_entry.gt_bytes - last; 12112 12113 exact = FALSE; 12114 for (look = 1; look < c; look++) 12115 { 12116 if (tab[look].gt_entry.gt_g_value >= val) 12117 tab[look].gt_entry.gt_bytes += add; 12118 12119 if (tab[look].gt_entry.gt_g_value == val) 12120 exact = TRUE; 12121 } 12122 12123 if (! exact) 12124 { 12125 Elf32_gptab *new_tab; 12126 unsigned int max; 12127 12128 /* We need a new table entry. */ 12129 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab); 12130 new_tab = bfd_realloc (tab, amt); 12131 if (new_tab == NULL) 12132 { 12133 free (tab); 12134 return FALSE; 12135 } 12136 tab = new_tab; 12137 tab[c].gt_entry.gt_g_value = val; 12138 tab[c].gt_entry.gt_bytes = add; 12139 12140 /* Merge in the size for the next smallest -G 12141 value, since that will be implied by this new 12142 value. */ 12143 max = 0; 12144 for (look = 1; look < c; look++) 12145 { 12146 if (tab[look].gt_entry.gt_g_value < val 12147 && (max == 0 12148 || (tab[look].gt_entry.gt_g_value 12149 > tab[max].gt_entry.gt_g_value))) 12150 max = look; 12151 } 12152 if (max != 0) 12153 tab[c].gt_entry.gt_bytes += 12154 tab[max].gt_entry.gt_bytes; 12155 12156 ++c; 12157 } 12158 12159 last = int_gptab.gt_entry.gt_bytes; 12160 } 12161 12162 /* Hack: reset the SEC_HAS_CONTENTS flag so that 12163 elf_link_input_bfd ignores this section. */ 12164 input_section->flags &= ~SEC_HAS_CONTENTS; 12165 } 12166 12167 /* The table must be sorted by -G value. */ 12168 if (c > 2) 12169 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare); 12170 12171 /* Swap out the table. */ 12172 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab); 12173 ext_tab = bfd_alloc (abfd, amt); 12174 if (ext_tab == NULL) 12175 { 12176 free (tab); 12177 return FALSE; 12178 } 12179 12180 for (j = 0; j < c; j++) 12181 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j); 12182 free (tab); 12183 12184 o->size = c * sizeof (Elf32_External_gptab); 12185 o->contents = (bfd_byte *) ext_tab; 12186 12187 /* Skip this section later on (I don't think this currently 12188 matters, but someday it might). */ 12189 o->map_head.link_order = NULL; 12190 } 12191 } 12192 12193 /* Invoke the regular ELF backend linker to do all the work. */ 12194 if (!bfd_elf_final_link (abfd, info)) 12195 return FALSE; 12196 12197 /* Now write out the computed sections. */ 12198 12199 if (reginfo_sec != NULL) 12200 { 12201 Elf32_External_RegInfo ext; 12202 12203 bfd_mips_elf32_swap_reginfo_out (abfd, ®info, &ext); 12204 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext)) 12205 return FALSE; 12206 } 12207 12208 if (mdebug_sec != NULL) 12209 { 12210 BFD_ASSERT (abfd->output_has_begun); 12211 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug, 12212 swap, info, 12213 mdebug_sec->filepos)) 12214 return FALSE; 12215 12216 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info); 12217 } 12218 12219 if (gptab_data_sec != NULL) 12220 { 12221 if (! bfd_set_section_contents (abfd, gptab_data_sec, 12222 gptab_data_sec->contents, 12223 0, gptab_data_sec->size)) 12224 return FALSE; 12225 } 12226 12227 if (gptab_bss_sec != NULL) 12228 { 12229 if (! bfd_set_section_contents (abfd, gptab_bss_sec, 12230 gptab_bss_sec->contents, 12231 0, gptab_bss_sec->size)) 12232 return FALSE; 12233 } 12234 12235 if (SGI_COMPAT (abfd)) 12236 { 12237 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc"); 12238 if (rtproc_sec != NULL) 12239 { 12240 if (! bfd_set_section_contents (abfd, rtproc_sec, 12241 rtproc_sec->contents, 12242 0, rtproc_sec->size)) 12243 return FALSE; 12244 } 12245 } 12246 12247 return TRUE; 12248 } 12249 12250 /* Structure for saying that BFD machine EXTENSION extends BASE. */ 12251 12252 struct mips_mach_extension { 12253 unsigned long extension, base; 12254 }; 12255 12256 12257 /* An array describing how BFD machines relate to one another. The entries 12258 are ordered topologically with MIPS I extensions listed last. */ 12259 12260 static const struct mips_mach_extension mips_mach_extensions[] = { 12261 /* MIPS64r2 extensions. */ 12262 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 }, 12263 12264 /* MIPS64 extensions. */ 12265 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 }, 12266 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 }, 12267 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 }, 12268 { bfd_mach_mips_loongson_3a, bfd_mach_mipsisa64 }, 12269 12270 /* MIPS V extensions. */ 12271 { bfd_mach_mipsisa64, bfd_mach_mips5 }, 12272 12273 /* R10000 extensions. */ 12274 { bfd_mach_mips12000, bfd_mach_mips10000 }, 12275 { bfd_mach_mips14000, bfd_mach_mips10000 }, 12276 { bfd_mach_mips16000, bfd_mach_mips10000 }, 12277 12278 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core 12279 vr5400 ISA, but doesn't include the multimedia stuff. It seems 12280 better to allow vr5400 and vr5500 code to be merged anyway, since 12281 many libraries will just use the core ISA. Perhaps we could add 12282 some sort of ASE flag if this ever proves a problem. */ 12283 { bfd_mach_mips5500, bfd_mach_mips5400 }, 12284 { bfd_mach_mips5400, bfd_mach_mips5000 }, 12285 12286 /* MIPS IV extensions. */ 12287 { bfd_mach_mips5, bfd_mach_mips8000 }, 12288 { bfd_mach_mips10000, bfd_mach_mips8000 }, 12289 { bfd_mach_mips5000, bfd_mach_mips8000 }, 12290 { bfd_mach_mips7000, bfd_mach_mips8000 }, 12291 { bfd_mach_mips9000, bfd_mach_mips8000 }, 12292 12293 /* VR4100 extensions. */ 12294 { bfd_mach_mips4120, bfd_mach_mips4100 }, 12295 { bfd_mach_mips4111, bfd_mach_mips4100 }, 12296 12297 /* MIPS III extensions. */ 12298 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 }, 12299 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 }, 12300 { bfd_mach_mips8000, bfd_mach_mips4000 }, 12301 { bfd_mach_mips4650, bfd_mach_mips4000 }, 12302 { bfd_mach_mips4600, bfd_mach_mips4000 }, 12303 { bfd_mach_mips4400, bfd_mach_mips4000 }, 12304 { bfd_mach_mips4300, bfd_mach_mips4000 }, 12305 { bfd_mach_mips4100, bfd_mach_mips4000 }, 12306 { bfd_mach_mips4010, bfd_mach_mips4000 }, 12307 12308 /* MIPS32 extensions. */ 12309 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 }, 12310 12311 /* MIPS II extensions. */ 12312 { bfd_mach_mips4000, bfd_mach_mips6000 }, 12313 { bfd_mach_mipsisa32, bfd_mach_mips6000 }, 12314 12315 /* MIPS I extensions. */ 12316 { bfd_mach_mips6000, bfd_mach_mips3000 }, 12317 { bfd_mach_mips3900, bfd_mach_mips3000 } 12318 }; 12319 12320 12321 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */ 12322 12323 static bfd_boolean 12324 mips_mach_extends_p (unsigned long base, unsigned long extension) 12325 { 12326 size_t i; 12327 12328 if (extension == base) 12329 return TRUE; 12330 12331 if (base == bfd_mach_mipsisa32 12332 && mips_mach_extends_p (bfd_mach_mipsisa64, extension)) 12333 return TRUE; 12334 12335 if (base == bfd_mach_mipsisa32r2 12336 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension)) 12337 return TRUE; 12338 12339 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++) 12340 if (extension == mips_mach_extensions[i].extension) 12341 { 12342 extension = mips_mach_extensions[i].base; 12343 if (extension == base) 12344 return TRUE; 12345 } 12346 12347 return FALSE; 12348 } 12349 12350 12351 /* Return true if the given ELF header flags describe a 32-bit binary. */ 12352 12353 static bfd_boolean 12354 mips_32bit_flags_p (flagword flags) 12355 { 12356 return ((flags & EF_MIPS_32BITMODE) != 0 12357 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32 12358 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32 12359 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1 12360 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2 12361 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32 12362 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2); 12363 } 12364 12365 12366 /* Merge object attributes from IBFD into OBFD. Raise an error if 12367 there are conflicting attributes. */ 12368 static bfd_boolean 12369 mips_elf_merge_obj_attributes (bfd *ibfd, bfd *obfd) 12370 { 12371 obj_attribute *in_attr; 12372 obj_attribute *out_attr; 12373 12374 if (!elf_known_obj_attributes_proc (obfd)[0].i) 12375 { 12376 /* This is the first object. Copy the attributes. */ 12377 _bfd_elf_copy_obj_attributes (ibfd, obfd); 12378 12379 /* Use the Tag_null value to indicate the attributes have been 12380 initialized. */ 12381 elf_known_obj_attributes_proc (obfd)[0].i = 1; 12382 12383 return TRUE; 12384 } 12385 12386 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge 12387 non-conflicting ones. */ 12388 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU]; 12389 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU]; 12390 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i) 12391 { 12392 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1; 12393 if (out_attr[Tag_GNU_MIPS_ABI_FP].i == 0) 12394 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i; 12395 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i == 0) 12396 ; 12397 else if (in_attr[Tag_GNU_MIPS_ABI_FP].i > 4) 12398 _bfd_error_handler 12399 (_("Warning: %B uses unknown floating point ABI %d"), ibfd, 12400 in_attr[Tag_GNU_MIPS_ABI_FP].i); 12401 else if (out_attr[Tag_GNU_MIPS_ABI_FP].i > 4) 12402 _bfd_error_handler 12403 (_("Warning: %B uses unknown floating point ABI %d"), obfd, 12404 out_attr[Tag_GNU_MIPS_ABI_FP].i); 12405 else 12406 switch (out_attr[Tag_GNU_MIPS_ABI_FP].i) 12407 { 12408 case 1: 12409 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) 12410 { 12411 case 2: 12412 _bfd_error_handler 12413 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), 12414 obfd, ibfd); 12415 break; 12416 12417 case 3: 12418 _bfd_error_handler 12419 (_("Warning: %B uses hard float, %B uses soft float"), 12420 obfd, ibfd); 12421 break; 12422 12423 case 4: 12424 _bfd_error_handler 12425 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), 12426 obfd, ibfd); 12427 break; 12428 12429 default: 12430 abort (); 12431 } 12432 break; 12433 12434 case 2: 12435 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) 12436 { 12437 case 1: 12438 _bfd_error_handler 12439 (_("Warning: %B uses -msingle-float, %B uses -mdouble-float"), 12440 ibfd, obfd); 12441 break; 12442 12443 case 3: 12444 _bfd_error_handler 12445 (_("Warning: %B uses hard float, %B uses soft float"), 12446 obfd, ibfd); 12447 break; 12448 12449 case 4: 12450 _bfd_error_handler 12451 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), 12452 obfd, ibfd); 12453 break; 12454 12455 default: 12456 abort (); 12457 } 12458 break; 12459 12460 case 3: 12461 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) 12462 { 12463 case 1: 12464 case 2: 12465 case 4: 12466 _bfd_error_handler 12467 (_("Warning: %B uses hard float, %B uses soft float"), 12468 ibfd, obfd); 12469 break; 12470 12471 default: 12472 abort (); 12473 } 12474 break; 12475 12476 case 4: 12477 switch (in_attr[Tag_GNU_MIPS_ABI_FP].i) 12478 { 12479 case 1: 12480 _bfd_error_handler 12481 (_("Warning: %B uses -msingle-float, %B uses -mips32r2 -mfp64"), 12482 ibfd, obfd); 12483 break; 12484 12485 case 2: 12486 _bfd_error_handler 12487 (_("Warning: %B uses -mdouble-float, %B uses -mips32r2 -mfp64"), 12488 ibfd, obfd); 12489 break; 12490 12491 case 3: 12492 _bfd_error_handler 12493 (_("Warning: %B uses hard float, %B uses soft float"), 12494 obfd, ibfd); 12495 break; 12496 12497 default: 12498 abort (); 12499 } 12500 break; 12501 12502 default: 12503 abort (); 12504 } 12505 } 12506 12507 /* Merge Tag_compatibility attributes and any common GNU ones. */ 12508 _bfd_elf_merge_object_attributes (ibfd, obfd); 12509 12510 return TRUE; 12511 } 12512 12513 /* Merge backend specific data from an object file to the output 12514 object file when linking. */ 12515 12516 bfd_boolean 12517 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 12518 { 12519 flagword old_flags; 12520 flagword new_flags; 12521 bfd_boolean ok; 12522 bfd_boolean null_input_bfd = TRUE; 12523 asection *sec; 12524 12525 /* Check if we have the same endianess */ 12526 if (! _bfd_generic_verify_endian_match (ibfd, obfd)) 12527 { 12528 (*_bfd_error_handler) 12529 (_("%B: endianness incompatible with that of the selected emulation"), 12530 ibfd); 12531 return FALSE; 12532 } 12533 12534 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd)) 12535 return TRUE; 12536 12537 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0) 12538 { 12539 (*_bfd_error_handler) 12540 (_("%B: ABI is incompatible with that of the selected emulation"), 12541 ibfd); 12542 return FALSE; 12543 } 12544 12545 if (!mips_elf_merge_obj_attributes (ibfd, obfd)) 12546 return FALSE; 12547 12548 new_flags = elf_elfheader (ibfd)->e_flags; 12549 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER; 12550 old_flags = elf_elfheader (obfd)->e_flags; 12551 12552 if (! elf_flags_init (obfd)) 12553 { 12554 elf_flags_init (obfd) = TRUE; 12555 elf_elfheader (obfd)->e_flags = new_flags; 12556 elf_elfheader (obfd)->e_ident[EI_CLASS] 12557 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 12558 12559 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 12560 && (bfd_get_arch_info (obfd)->the_default 12561 || mips_mach_extends_p (bfd_get_mach (obfd), 12562 bfd_get_mach (ibfd)))) 12563 { 12564 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 12565 bfd_get_mach (ibfd))) 12566 return FALSE; 12567 } 12568 12569 return TRUE; 12570 } 12571 12572 /* Check flag compatibility. */ 12573 12574 new_flags &= ~EF_MIPS_NOREORDER; 12575 old_flags &= ~EF_MIPS_NOREORDER; 12576 12577 /* Some IRIX 6 BSD-compatibility objects have this bit set. It 12578 doesn't seem to matter. */ 12579 new_flags &= ~EF_MIPS_XGOT; 12580 old_flags &= ~EF_MIPS_XGOT; 12581 12582 /* MIPSpro generates ucode info in n64 objects. Again, we should 12583 just be able to ignore this. */ 12584 new_flags &= ~EF_MIPS_UCODE; 12585 old_flags &= ~EF_MIPS_UCODE; 12586 12587 /* DSOs should only be linked with CPIC code. */ 12588 if ((ibfd->flags & DYNAMIC) != 0) 12589 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC; 12590 12591 if (new_flags == old_flags) 12592 return TRUE; 12593 12594 /* Check to see if the input BFD actually contains any sections. 12595 If not, its flags may not have been initialised either, but it cannot 12596 actually cause any incompatibility. */ 12597 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 12598 { 12599 /* Ignore synthetic sections and empty .text, .data and .bss sections 12600 which are automatically generated by gas. Also ignore fake 12601 (s)common sections, since merely defining a common symbol does 12602 not affect compatibility. */ 12603 if ((sec->flags & SEC_IS_COMMON) == 0 12604 && strcmp (sec->name, ".reginfo") 12605 && strcmp (sec->name, ".mdebug") 12606 && (sec->size != 0 12607 || (strcmp (sec->name, ".text") 12608 && strcmp (sec->name, ".data") 12609 && strcmp (sec->name, ".bss")))) 12610 { 12611 null_input_bfd = FALSE; 12612 break; 12613 } 12614 } 12615 if (null_input_bfd) 12616 return TRUE; 12617 12618 ok = TRUE; 12619 12620 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0) 12621 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)) 12622 { 12623 (*_bfd_error_handler) 12624 (_("%B: warning: linking abicalls files with non-abicalls files"), 12625 ibfd); 12626 ok = TRUE; 12627 } 12628 12629 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) 12630 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC; 12631 if (! (new_flags & EF_MIPS_PIC)) 12632 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC; 12633 12634 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 12635 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC); 12636 12637 /* Compare the ISAs. */ 12638 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags)) 12639 { 12640 (*_bfd_error_handler) 12641 (_("%B: linking 32-bit code with 64-bit code"), 12642 ibfd); 12643 ok = FALSE; 12644 } 12645 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd))) 12646 { 12647 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */ 12648 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd))) 12649 { 12650 /* Copy the architecture info from IBFD to OBFD. Also copy 12651 the 32-bit flag (if set) so that we continue to recognise 12652 OBFD as a 32-bit binary. */ 12653 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd)); 12654 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH); 12655 elf_elfheader (obfd)->e_flags 12656 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 12657 12658 /* Copy across the ABI flags if OBFD doesn't use them 12659 and if that was what caused us to treat IBFD as 32-bit. */ 12660 if ((old_flags & EF_MIPS_ABI) == 0 12661 && mips_32bit_flags_p (new_flags) 12662 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI)) 12663 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI; 12664 } 12665 else 12666 { 12667 /* The ISAs aren't compatible. */ 12668 (*_bfd_error_handler) 12669 (_("%B: linking %s module with previous %s modules"), 12670 ibfd, 12671 bfd_printable_name (ibfd), 12672 bfd_printable_name (obfd)); 12673 ok = FALSE; 12674 } 12675 } 12676 12677 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 12678 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE); 12679 12680 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it 12681 does set EI_CLASS differently from any 32-bit ABI. */ 12682 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI) 12683 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 12684 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 12685 { 12686 /* Only error if both are set (to different values). */ 12687 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI)) 12688 || (elf_elfheader (ibfd)->e_ident[EI_CLASS] 12689 != elf_elfheader (obfd)->e_ident[EI_CLASS])) 12690 { 12691 (*_bfd_error_handler) 12692 (_("%B: ABI mismatch: linking %s module with previous %s modules"), 12693 ibfd, 12694 elf_mips_abi_name (ibfd), 12695 elf_mips_abi_name (obfd)); 12696 ok = FALSE; 12697 } 12698 new_flags &= ~EF_MIPS_ABI; 12699 old_flags &= ~EF_MIPS_ABI; 12700 } 12701 12702 /* For now, allow arbitrary mixing of ASEs (retain the union). */ 12703 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE)) 12704 { 12705 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE; 12706 12707 new_flags &= ~ EF_MIPS_ARCH_ASE; 12708 old_flags &= ~ EF_MIPS_ARCH_ASE; 12709 } 12710 12711 /* Warn about any other mismatches */ 12712 if (new_flags != old_flags) 12713 { 12714 (*_bfd_error_handler) 12715 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 12716 ibfd, (unsigned long) new_flags, 12717 (unsigned long) old_flags); 12718 ok = FALSE; 12719 } 12720 12721 if (! ok) 12722 { 12723 bfd_set_error (bfd_error_bad_value); 12724 return FALSE; 12725 } 12726 12727 return TRUE; 12728 } 12729 12730 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */ 12731 12732 bfd_boolean 12733 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags) 12734 { 12735 BFD_ASSERT (!elf_flags_init (abfd) 12736 || elf_elfheader (abfd)->e_flags == flags); 12737 12738 elf_elfheader (abfd)->e_flags = flags; 12739 elf_flags_init (abfd) = TRUE; 12740 return TRUE; 12741 } 12742 12743 char * 12744 _bfd_mips_elf_get_target_dtag (bfd_vma dtag) 12745 { 12746 switch (dtag) 12747 { 12748 default: return ""; 12749 case DT_MIPS_RLD_VERSION: 12750 return "MIPS_RLD_VERSION"; 12751 case DT_MIPS_TIME_STAMP: 12752 return "MIPS_TIME_STAMP"; 12753 case DT_MIPS_ICHECKSUM: 12754 return "MIPS_ICHECKSUM"; 12755 case DT_MIPS_IVERSION: 12756 return "MIPS_IVERSION"; 12757 case DT_MIPS_FLAGS: 12758 return "MIPS_FLAGS"; 12759 case DT_MIPS_BASE_ADDRESS: 12760 return "MIPS_BASE_ADDRESS"; 12761 case DT_MIPS_MSYM: 12762 return "MIPS_MSYM"; 12763 case DT_MIPS_CONFLICT: 12764 return "MIPS_CONFLICT"; 12765 case DT_MIPS_LIBLIST: 12766 return "MIPS_LIBLIST"; 12767 case DT_MIPS_LOCAL_GOTNO: 12768 return "MIPS_LOCAL_GOTNO"; 12769 case DT_MIPS_CONFLICTNO: 12770 return "MIPS_CONFLICTNO"; 12771 case DT_MIPS_LIBLISTNO: 12772 return "MIPS_LIBLISTNO"; 12773 case DT_MIPS_SYMTABNO: 12774 return "MIPS_SYMTABNO"; 12775 case DT_MIPS_UNREFEXTNO: 12776 return "MIPS_UNREFEXTNO"; 12777 case DT_MIPS_GOTSYM: 12778 return "MIPS_GOTSYM"; 12779 case DT_MIPS_HIPAGENO: 12780 return "MIPS_HIPAGENO"; 12781 case DT_MIPS_RLD_MAP: 12782 return "MIPS_RLD_MAP"; 12783 case DT_MIPS_DELTA_CLASS: 12784 return "MIPS_DELTA_CLASS"; 12785 case DT_MIPS_DELTA_CLASS_NO: 12786 return "MIPS_DELTA_CLASS_NO"; 12787 case DT_MIPS_DELTA_INSTANCE: 12788 return "MIPS_DELTA_INSTANCE"; 12789 case DT_MIPS_DELTA_INSTANCE_NO: 12790 return "MIPS_DELTA_INSTANCE_NO"; 12791 case DT_MIPS_DELTA_RELOC: 12792 return "MIPS_DELTA_RELOC"; 12793 case DT_MIPS_DELTA_RELOC_NO: 12794 return "MIPS_DELTA_RELOC_NO"; 12795 case DT_MIPS_DELTA_SYM: 12796 return "MIPS_DELTA_SYM"; 12797 case DT_MIPS_DELTA_SYM_NO: 12798 return "MIPS_DELTA_SYM_NO"; 12799 case DT_MIPS_DELTA_CLASSSYM: 12800 return "MIPS_DELTA_CLASSSYM"; 12801 case DT_MIPS_DELTA_CLASSSYM_NO: 12802 return "MIPS_DELTA_CLASSSYM_NO"; 12803 case DT_MIPS_CXX_FLAGS: 12804 return "MIPS_CXX_FLAGS"; 12805 case DT_MIPS_PIXIE_INIT: 12806 return "MIPS_PIXIE_INIT"; 12807 case DT_MIPS_SYMBOL_LIB: 12808 return "MIPS_SYMBOL_LIB"; 12809 case DT_MIPS_LOCALPAGE_GOTIDX: 12810 return "MIPS_LOCALPAGE_GOTIDX"; 12811 case DT_MIPS_LOCAL_GOTIDX: 12812 return "MIPS_LOCAL_GOTIDX"; 12813 case DT_MIPS_HIDDEN_GOTIDX: 12814 return "MIPS_HIDDEN_GOTIDX"; 12815 case DT_MIPS_PROTECTED_GOTIDX: 12816 return "MIPS_PROTECTED_GOT_IDX"; 12817 case DT_MIPS_OPTIONS: 12818 return "MIPS_OPTIONS"; 12819 case DT_MIPS_INTERFACE: 12820 return "MIPS_INTERFACE"; 12821 case DT_MIPS_DYNSTR_ALIGN: 12822 return "DT_MIPS_DYNSTR_ALIGN"; 12823 case DT_MIPS_INTERFACE_SIZE: 12824 return "DT_MIPS_INTERFACE_SIZE"; 12825 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR: 12826 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR"; 12827 case DT_MIPS_PERF_SUFFIX: 12828 return "DT_MIPS_PERF_SUFFIX"; 12829 case DT_MIPS_COMPACT_SIZE: 12830 return "DT_MIPS_COMPACT_SIZE"; 12831 case DT_MIPS_GP_VALUE: 12832 return "DT_MIPS_GP_VALUE"; 12833 case DT_MIPS_AUX_DYNAMIC: 12834 return "DT_MIPS_AUX_DYNAMIC"; 12835 case DT_MIPS_PLTGOT: 12836 return "DT_MIPS_PLTGOT"; 12837 case DT_MIPS_RWPLT: 12838 return "DT_MIPS_RWPLT"; 12839 } 12840 } 12841 12842 bfd_boolean 12843 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr) 12844 { 12845 FILE *file = ptr; 12846 12847 BFD_ASSERT (abfd != NULL && ptr != NULL); 12848 12849 /* Print normal ELF private data. */ 12850 _bfd_elf_print_private_bfd_data (abfd, ptr); 12851 12852 /* xgettext:c-format */ 12853 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 12854 12855 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32) 12856 fprintf (file, _(" [abi=O32]")); 12857 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64) 12858 fprintf (file, _(" [abi=O64]")); 12859 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32) 12860 fprintf (file, _(" [abi=EABI32]")); 12861 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64) 12862 fprintf (file, _(" [abi=EABI64]")); 12863 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI)) 12864 fprintf (file, _(" [abi unknown]")); 12865 else if (ABI_N32_P (abfd)) 12866 fprintf (file, _(" [abi=N32]")); 12867 else if (ABI_64_P (abfd)) 12868 fprintf (file, _(" [abi=64]")); 12869 else 12870 fprintf (file, _(" [no abi set]")); 12871 12872 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1) 12873 fprintf (file, " [mips1]"); 12874 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2) 12875 fprintf (file, " [mips2]"); 12876 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3) 12877 fprintf (file, " [mips3]"); 12878 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4) 12879 fprintf (file, " [mips4]"); 12880 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5) 12881 fprintf (file, " [mips5]"); 12882 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32) 12883 fprintf (file, " [mips32]"); 12884 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64) 12885 fprintf (file, " [mips64]"); 12886 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2) 12887 fprintf (file, " [mips32r2]"); 12888 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2) 12889 fprintf (file, " [mips64r2]"); 12890 else 12891 fprintf (file, _(" [unknown ISA]")); 12892 12893 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX) 12894 fprintf (file, " [mdmx]"); 12895 12896 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16) 12897 fprintf (file, " [mips16]"); 12898 12899 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE) 12900 fprintf (file, " [32bitmode]"); 12901 else 12902 fprintf (file, _(" [not 32bitmode]")); 12903 12904 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER) 12905 fprintf (file, " [noreorder]"); 12906 12907 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) 12908 fprintf (file, " [PIC]"); 12909 12910 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC) 12911 fprintf (file, " [CPIC]"); 12912 12913 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT) 12914 fprintf (file, " [XGOT]"); 12915 12916 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE) 12917 fprintf (file, " [UCODE]"); 12918 12919 fputc ('\n', file); 12920 12921 return TRUE; 12922 } 12923 12924 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] = 12925 { 12926 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 12927 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 12928 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 }, 12929 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 12930 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL }, 12931 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 }, 12932 { NULL, 0, 0, 0, 0 } 12933 }; 12934 12935 /* Merge non visibility st_other attributes. Ensure that the 12936 STO_OPTIONAL flag is copied into h->other, even if this is not a 12937 definiton of the symbol. */ 12938 void 12939 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h, 12940 const Elf_Internal_Sym *isym, 12941 bfd_boolean definition, 12942 bfd_boolean dynamic ATTRIBUTE_UNUSED) 12943 { 12944 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0) 12945 { 12946 unsigned char other; 12947 12948 other = (definition ? isym->st_other : h->other); 12949 other &= ~ELF_ST_VISIBILITY (-1); 12950 h->other = other | ELF_ST_VISIBILITY (h->other); 12951 } 12952 12953 if (!definition 12954 && ELF_MIPS_IS_OPTIONAL (isym->st_other)) 12955 h->other |= STO_OPTIONAL; 12956 } 12957 12958 /* Decide whether an undefined symbol is special and can be ignored. 12959 This is the case for OPTIONAL symbols on IRIX. */ 12960 bfd_boolean 12961 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h) 12962 { 12963 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE; 12964 } 12965 12966 bfd_boolean 12967 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym) 12968 { 12969 return (sym->st_shndx == SHN_COMMON 12970 || sym->st_shndx == SHN_MIPS_ACOMMON 12971 || sym->st_shndx == SHN_MIPS_SCOMMON); 12972 } 12973 12974 /* Return address for Ith PLT stub in section PLT, for relocation REL 12975 or (bfd_vma) -1 if it should not be included. */ 12976 12977 bfd_vma 12978 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt, 12979 const arelent *rel ATTRIBUTE_UNUSED) 12980 { 12981 return (plt->vma 12982 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry) 12983 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry)); 12984 } 12985 12986 void 12987 _bfd_mips_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 12988 { 12989 struct mips_elf_link_hash_table *htab; 12990 Elf_Internal_Ehdr *i_ehdrp; 12991 12992 i_ehdrp = elf_elfheader (abfd); 12993 if (link_info) 12994 { 12995 htab = mips_elf_hash_table (link_info); 12996 BFD_ASSERT (htab != NULL); 12997 12998 if (htab->use_plts_and_copy_relocs && !htab->is_vxworks) 12999 i_ehdrp->e_ident[EI_ABIVERSION] = 1; 13000 } 13001 } 13002