xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elfxx-mips.c (revision 4f645668ed707e1f969c546666f8c8e45e6f8888)
1 /* MIPS-specific support for ELF
2    Copyright (C) 1993-2020 Free Software Foundation, Inc.
3 
4    Most of the information added by Ian Lance Taylor, Cygnus Support,
5    <ian@cygnus.com>.
6    N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7    <mark@codesourcery.com>
8    Traditional MIPS targets support added by Koundinya.K, Dansk Data
9    Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10 
11    This file is part of BFD, the Binary File Descriptor library.
12 
13    This program is free software; you can redistribute it and/or modify
14    it under the terms of the GNU General Public License as published by
15    the Free Software Foundation; either version 3 of the License, or
16    (at your option) any later version.
17 
18    This program is distributed in the hope that it will be useful,
19    but WITHOUT ANY WARRANTY; without even the implied warranty of
20    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
21    GNU General Public License for more details.
22 
23    You should have received a copy of the GNU General Public License
24    along with this program; if not, write to the Free Software
25    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26    MA 02110-1301, USA.  */
27 
28 
29 /* This file handles functionality common to the different MIPS ABI's.  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41 
42 /* Get the ECOFF swapping routines.  */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47 
48 #include "hashtab.h"
49 
50 /* Types of TLS GOT entry.  */
51 enum mips_got_tls_type {
52   GOT_TLS_NONE,
53   GOT_TLS_GD,
54   GOT_TLS_LDM,
55   GOT_TLS_IE
56 };
57 
58 /* This structure is used to hold information about one GOT entry.
59    There are four types of entry:
60 
61       (1) an absolute address
62 	    requires: abfd == NULL
63 	    fields: d.address
64 
65       (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 	    requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 	    fields: abfd, symndx, d.addend, tls_type
68 
69       (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 	    requires: abfd != NULL, symndx == -1
71 	    fields: d.h, tls_type
72 
73       (4) a TLS LDM slot
74 	    requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 	    fields: none; there's only one of these per GOT.  */
76 struct mips_got_entry
77 {
78   /* One input bfd that needs the GOT entry.  */
79   bfd *abfd;
80   /* The index of the symbol, as stored in the relocation r_info, if
81      we have a local symbol; -1 otherwise.  */
82   long symndx;
83   union
84   {
85     /* If abfd == NULL, an address that must be stored in the got.  */
86     bfd_vma address;
87     /* If abfd != NULL && symndx != -1, the addend of the relocation
88        that should be added to the symbol value.  */
89     bfd_vma addend;
90     /* If abfd != NULL && symndx == -1, the hash table entry
91        corresponding to a symbol in the GOT.  The symbol's entry
92        is in the local area if h->global_got_area is GGA_NONE,
93        otherwise it is in the global area.  */
94     struct mips_elf_link_hash_entry *h;
95   } d;
96 
97   /* The TLS type of this GOT entry.  An LDM GOT entry will be a local
98      symbol entry with r_symndx == 0.  */
99   unsigned char tls_type;
100 
101   /* True if we have filled in the GOT contents for a TLS entry,
102      and created the associated relocations.  */
103   unsigned char tls_initialized;
104 
105   /* The offset from the beginning of the .got section to the entry
106      corresponding to this symbol+addend.  If it's a global symbol
107      whose offset is yet to be decided, it's going to be -1.  */
108   long gotidx;
109 };
110 
111 /* This structure represents a GOT page reference from an input bfd.
112    Each instance represents a symbol + ADDEND, where the representation
113    of the symbol depends on whether it is local to the input bfd.
114    If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115    Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116 
117    Page references with SYMNDX >= 0 always become page references
118    in the output.  Page references with SYMNDX < 0 only become page
119    references if the symbol binds locally; in other cases, the page
120    reference decays to a global GOT reference.  */
121 struct mips_got_page_ref
122 {
123   long symndx;
124   union
125   {
126     struct mips_elf_link_hash_entry *h;
127     bfd *abfd;
128   } u;
129   bfd_vma addend;
130 };
131 
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133    The structures form a non-overlapping list that is sorted by increasing
134    MIN_ADDEND.  */
135 struct mips_got_page_range
136 {
137   struct mips_got_page_range *next;
138   bfd_signed_vma min_addend;
139   bfd_signed_vma max_addend;
140 };
141 
142 /* This structure describes the range of addends that are applied to page
143    relocations against a given section.  */
144 struct mips_got_page_entry
145 {
146   /* The section that these entries are based on.  */
147   asection *sec;
148   /* The ranges for this page entry.  */
149   struct mips_got_page_range *ranges;
150   /* The maximum number of page entries needed for RANGES.  */
151   bfd_vma num_pages;
152 };
153 
154 /* This structure is used to hold .got information when linking.  */
155 
156 struct mips_got_info
157 {
158   /* The number of global .got entries.  */
159   unsigned int global_gotno;
160   /* The number of global .got entries that are in the GGA_RELOC_ONLY area.  */
161   unsigned int reloc_only_gotno;
162   /* The number of .got slots used for TLS.  */
163   unsigned int tls_gotno;
164   /* The first unused TLS .got entry.  Used only during
165      mips_elf_initialize_tls_index.  */
166   unsigned int tls_assigned_gotno;
167   /* The number of local .got entries, eventually including page entries.  */
168   unsigned int local_gotno;
169   /* The maximum number of page entries needed.  */
170   unsigned int page_gotno;
171   /* The number of relocations needed for the GOT entries.  */
172   unsigned int relocs;
173   /* The first unused local .got entry.  */
174   unsigned int assigned_low_gotno;
175   /* The last unused local .got entry.  */
176   unsigned int assigned_high_gotno;
177   /* A hash table holding members of the got.  */
178   struct htab *got_entries;
179   /* A hash table holding mips_got_page_ref structures.  */
180   struct htab *got_page_refs;
181   /* A hash table of mips_got_page_entry structures.  */
182   struct htab *got_page_entries;
183   /* In multi-got links, a pointer to the next got (err, rather, most
184      of the time, it points to the previous got).  */
185   struct mips_got_info *next;
186 };
187 
188 /* Structure passed when merging bfds' gots.  */
189 
190 struct mips_elf_got_per_bfd_arg
191 {
192   /* The output bfd.  */
193   bfd *obfd;
194   /* The link information.  */
195   struct bfd_link_info *info;
196   /* A pointer to the primary got, i.e., the one that's going to get
197      the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198      DT_MIPS_GOTSYM.  */
199   struct mips_got_info *primary;
200   /* A non-primary got we're trying to merge with other input bfd's
201      gots.  */
202   struct mips_got_info *current;
203   /* The maximum number of got entries that can be addressed with a
204      16-bit offset.  */
205   unsigned int max_count;
206   /* The maximum number of page entries needed by each got.  */
207   unsigned int max_pages;
208   /* The total number of global entries which will live in the
209      primary got and be automatically relocated.  This includes
210      those not referenced by the primary GOT but included in
211      the "master" GOT.  */
212   unsigned int global_count;
213 };
214 
215 /* A structure used to pass information to htab_traverse callbacks
216    when laying out the GOT.  */
217 
218 struct mips_elf_traverse_got_arg
219 {
220   struct bfd_link_info *info;
221   struct mips_got_info *g;
222   int value;
223 };
224 
225 struct _mips_elf_section_data
226 {
227   struct bfd_elf_section_data elf;
228   union
229   {
230     bfd_byte *tdata;
231   } u;
232 };
233 
234 #define mips_elf_section_data(sec) \
235   ((struct _mips_elf_section_data *) elf_section_data (sec))
236 
237 #define is_mips_elf(bfd)				\
238   (bfd_get_flavour (bfd) == bfd_target_elf_flavour	\
239    && elf_tdata (bfd) != NULL				\
240    && elf_object_id (bfd) == MIPS_ELF_DATA)
241 
242 /* The ABI says that every symbol used by dynamic relocations must have
243    a global GOT entry.  Among other things, this provides the dynamic
244    linker with a free, directly-indexed cache.  The GOT can therefore
245    contain symbols that are not referenced by GOT relocations themselves
246    (in other words, it may have symbols that are not referenced by things
247    like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248 
249    GOT relocations are less likely to overflow if we put the associated
250    GOT entries towards the beginning.  We therefore divide the global
251    GOT entries into two areas: "normal" and "reloc-only".  Entries in
252    the first area can be used for both dynamic relocations and GP-relative
253    accesses, while those in the "reloc-only" area are for dynamic
254    relocations only.
255 
256    These GGA_* ("Global GOT Area") values are organised so that lower
257    values are more general than higher values.  Also, non-GGA_NONE
258    values are ordered by the position of the area in the GOT.  */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262 
263 /* Information about a non-PIC interface to a PIC function.  There are
264    two ways of creating these interfaces.  The first is to add:
265 
266 	lui	$25,%hi(func)
267 	addiu	$25,$25,%lo(func)
268 
269    immediately before a PIC function "func".  The second is to add:
270 
271 	lui	$25,%hi(func)
272 	j	func
273 	addiu	$25,$25,%lo(func)
274 
275    to a separate trampoline section.
276 
277    Stubs of the first kind go in a new section immediately before the
278    target function.  Stubs of the second kind go in a single section
279    pointed to by the hash table's "strampoline" field.  */
280 struct mips_elf_la25_stub {
281   /* The generated section that contains this stub.  */
282   asection *stub_section;
283 
284   /* The offset of the stub from the start of STUB_SECTION.  */
285   bfd_vma offset;
286 
287   /* One symbol for the original function.  Its location is available
288      in H->root.root.u.def.  */
289   struct mips_elf_link_hash_entry *h;
290 };
291 
292 /* Macros for populating a mips_elf_la25_stub.  */
293 
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL))	/* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL))	/* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL)						\
299   (0x41b90000 | (VAL))				/* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL)						\
301   (0xd4000000 | (((VAL) >> 1) & 0x3ffffff))	/* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL)					\
303   (0x33390000 | (VAL))				/* addiu t9,t9,VAL */
304 
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306    the dynamic symbols.  */
307 
308 struct mips_elf_hash_sort_data
309 {
310   /* The symbol in the global GOT with the lowest dynamic symbol table
311      index.  */
312   struct elf_link_hash_entry *low;
313   /* The least dynamic symbol table index corresponding to a non-TLS
314      symbol with a GOT entry.  */
315   bfd_size_type min_got_dynindx;
316   /* The greatest dynamic symbol table index corresponding to a symbol
317      with a GOT entry that is not referenced (e.g., a dynamic symbol
318      with dynamic relocations pointing to it from non-primary GOTs).  */
319   bfd_size_type max_unref_got_dynindx;
320   /* The greatest dynamic symbol table index corresponding to a local
321      symbol.  */
322   bfd_size_type max_local_dynindx;
323   /* The greatest dynamic symbol table index corresponding to an external
324      symbol without a GOT entry.  */
325   bfd_size_type max_non_got_dynindx;
326   /* If non-NULL, output BFD for .MIPS.xhash finalization.  */
327   bfd *output_bfd;
328   /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329      real final dynindx.  */
330   bfd_byte *mipsxhash;
331 };
332 
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334    and one for compressed code, either a MIPS16 or microMIPS one.  We
335    keep a separate record of traditional lazy-binding stubs, for easier
336    processing.  */
337 
338 struct plt_entry
339 {
340   /* Traditional SVR4 stub offset, or -1 if none.  */
341   bfd_vma stub_offset;
342 
343   /* Standard PLT entry offset, or -1 if none.  */
344   bfd_vma mips_offset;
345 
346   /* Compressed PLT entry offset, or -1 if none.  */
347   bfd_vma comp_offset;
348 
349   /* The corresponding .got.plt index, or -1 if none.  */
350   bfd_vma gotplt_index;
351 
352   /* Whether we need a standard PLT entry.  */
353   unsigned int need_mips : 1;
354 
355   /* Whether we need a compressed PLT entry.  */
356   unsigned int need_comp : 1;
357 };
358 
359 /* The MIPS ELF linker needs additional information for each symbol in
360    the global hash table.  */
361 
362 struct mips_elf_link_hash_entry
363 {
364   struct elf_link_hash_entry root;
365 
366   /* External symbol information.  */
367   EXTR esym;
368 
369   /* The la25 stub we have created for ths symbol, if any.  */
370   struct mips_elf_la25_stub *la25_stub;
371 
372   /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373      this symbol.  */
374   unsigned int possibly_dynamic_relocs;
375 
376   /* If there is a stub that 32 bit functions should use to call this
377      16 bit function, this points to the section containing the stub.  */
378   asection *fn_stub;
379 
380   /* If there is a stub that 16 bit functions should use to call this
381      32 bit function, this points to the section containing the stub.  */
382   asection *call_stub;
383 
384   /* This is like the call_stub field, but it is used if the function
385      being called returns a floating point value.  */
386   asection *call_fp_stub;
387 
388   /* If non-zero, location in .MIPS.xhash to write real final dynindx.  */
389   bfd_vma mipsxhash_loc;
390 
391   /* The highest GGA_* value that satisfies all references to this symbol.  */
392   unsigned int global_got_area : 2;
393 
394   /* True if all GOT relocations against this symbol are for calls.  This is
395      a looser condition than no_fn_stub below, because there may be other
396      non-call non-GOT relocations against the symbol.  */
397   unsigned int got_only_for_calls : 1;
398 
399   /* True if one of the relocations described by possibly_dynamic_relocs
400      is against a readonly section.  */
401   unsigned int readonly_reloc : 1;
402 
403   /* True if there is a relocation against this symbol that must be
404      resolved by the static linker (in other words, if the relocation
405      cannot possibly be made dynamic).  */
406   unsigned int has_static_relocs : 1;
407 
408   /* True if we must not create a .MIPS.stubs entry for this symbol.
409      This is set, for example, if there are relocations related to
410      taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411      See "MIPS ABI Supplement, 3rd Edition", p. 4-20.  */
412   unsigned int no_fn_stub : 1;
413 
414   /* Whether we need the fn_stub; this is true if this symbol appears
415      in any relocs other than a 16 bit call.  */
416   unsigned int need_fn_stub : 1;
417 
418   /* True if this symbol is referenced by branch relocations from
419      any non-PIC input file.  This is used to determine whether an
420      la25 stub is required.  */
421   unsigned int has_nonpic_branches : 1;
422 
423   /* Does this symbol need a traditional MIPS lazy-binding stub
424      (as opposed to a PLT entry)?  */
425   unsigned int needs_lazy_stub : 1;
426 
427   /* Does this symbol resolve to a PLT entry?  */
428   unsigned int use_plt_entry : 1;
429 };
430 
431 /* MIPS ELF linker hash table.  */
432 
433 struct mips_elf_link_hash_table
434 {
435   struct elf_link_hash_table root;
436 
437   /* The number of .rtproc entries.  */
438   bfd_size_type procedure_count;
439 
440   /* The size of the .compact_rel section (if SGI_COMPAT).  */
441   bfd_size_type compact_rel_size;
442 
443   /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444      is set to the address of __rld_obj_head as in IRIX5 and IRIX6.  */
445   bfd_boolean use_rld_obj_head;
446 
447   /* The  __rld_map or __rld_obj_head symbol. */
448   struct elf_link_hash_entry *rld_symbol;
449 
450   /* This is set if we see any mips16 stub sections.  */
451   bfd_boolean mips16_stubs_seen;
452 
453   /* True if we can generate copy relocs and PLTs.  */
454   bfd_boolean use_plts_and_copy_relocs;
455 
456   /* True if we can only use 32-bit microMIPS instructions.  */
457   bfd_boolean insn32;
458 
459   /* True if we suppress checks for invalid branches between ISA modes.  */
460   bfd_boolean ignore_branch_isa;
461 
462   /* True if we are targetting R6 compact branches.  */
463   bfd_boolean compact_branches;
464 
465   /* True if we already reported the small-data section overflow.  */
466   bfd_boolean small_data_overflow_reported;
467 
468   /* True if we use the special `__gnu_absolute_zero' symbol.  */
469   bfd_boolean use_absolute_zero;
470 
471   /* True if we have been configured for a GNU target.  */
472   bfd_boolean gnu_target;
473 
474   /* Shortcuts to some dynamic sections, or NULL if they are not
475      being used.  */
476   asection *srelplt2;
477   asection *sstubs;
478 
479   /* The master GOT information.  */
480   struct mips_got_info *got_info;
481 
482   /* The global symbol in the GOT with the lowest index in the dynamic
483      symbol table.  */
484   struct elf_link_hash_entry *global_gotsym;
485 
486   /* The size of the PLT header in bytes.  */
487   bfd_vma plt_header_size;
488 
489   /* The size of a standard PLT entry in bytes.  */
490   bfd_vma plt_mips_entry_size;
491 
492   /* The size of a compressed PLT entry in bytes.  */
493   bfd_vma plt_comp_entry_size;
494 
495   /* The offset of the next standard PLT entry to create.  */
496   bfd_vma plt_mips_offset;
497 
498   /* The offset of the next compressed PLT entry to create.  */
499   bfd_vma plt_comp_offset;
500 
501   /* The index of the next .got.plt entry to create.  */
502   bfd_vma plt_got_index;
503 
504   /* The number of functions that need a lazy-binding stub.  */
505   bfd_vma lazy_stub_count;
506 
507   /* The size of a function stub entry in bytes.  */
508   bfd_vma function_stub_size;
509 
510   /* The number of reserved entries at the beginning of the GOT.  */
511   unsigned int reserved_gotno;
512 
513   /* The section used for mips_elf_la25_stub trampolines.
514      See the comment above that structure for details.  */
515   asection *strampoline;
516 
517   /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
518      pairs.  */
519   htab_t la25_stubs;
520 
521   /* A function FN (NAME, IS, OS) that creates a new input section
522      called NAME and links it to output section OS.  If IS is nonnull,
523      the new section should go immediately before it, otherwise it
524      should go at the (current) beginning of OS.
525 
526      The function returns the new section on success, otherwise it
527      returns null.  */
528   asection *(*add_stub_section) (const char *, asection *, asection *);
529 
530   /* Is the PLT header compressed?  */
531   unsigned int plt_header_is_comp : 1;
532 };
533 
534 /* Get the MIPS ELF linker hash table from a link_info structure.  */
535 
536 #define mips_elf_hash_table(p) \
537   ((is_elf_hash_table ((p)->hash)					\
538     && elf_hash_table_id (elf_hash_table (p)) == MIPS_ELF_DATA)		\
539    ? (struct mips_elf_link_hash_table *) (p)->hash : NULL)
540 
541 /* A structure used to communicate with htab_traverse callbacks.  */
542 struct mips_htab_traverse_info
543 {
544   /* The usual link-wide information.  */
545   struct bfd_link_info *info;
546   bfd *output_bfd;
547 
548   /* Starts off FALSE and is set to TRUE if the link should be aborted.  */
549   bfd_boolean error;
550 };
551 
552 /* MIPS ELF private object data.  */
553 
554 struct mips_elf_obj_tdata
555 {
556   /* Generic ELF private object data.  */
557   struct elf_obj_tdata root;
558 
559   /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output.  */
560   bfd *abi_fp_bfd;
561 
562   /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output.  */
563   bfd *abi_msa_bfd;
564 
565   /* The abiflags for this object.  */
566   Elf_Internal_ABIFlags_v0 abiflags;
567   bfd_boolean abiflags_valid;
568 
569   /* The GOT requirements of input bfds.  */
570   struct mips_got_info *got;
571 
572   /* Used by _bfd_mips_elf_find_nearest_line.  The structure could be
573      included directly in this one, but there's no point to wasting
574      the memory just for the infrequently called find_nearest_line.  */
575   struct mips_elf_find_line *find_line_info;
576 
577   /* An array of stub sections indexed by symbol number.  */
578   asection **local_stubs;
579   asection **local_call_stubs;
580 
581   /* The Irix 5 support uses two virtual sections, which represent
582      text/data symbols defined in dynamic objects.  */
583   asymbol *elf_data_symbol;
584   asymbol *elf_text_symbol;
585   asection *elf_data_section;
586   asection *elf_text_section;
587 };
588 
589 /* Get MIPS ELF private object data from BFD's tdata.  */
590 
591 #define mips_elf_tdata(bfd) \
592   ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
593 
594 #define TLS_RELOC_P(r_type) \
595   (r_type == R_MIPS_TLS_DTPMOD32		\
596    || r_type == R_MIPS_TLS_DTPMOD64		\
597    || r_type == R_MIPS_TLS_DTPREL32		\
598    || r_type == R_MIPS_TLS_DTPREL64		\
599    || r_type == R_MIPS_TLS_GD			\
600    || r_type == R_MIPS_TLS_LDM			\
601    || r_type == R_MIPS_TLS_DTPREL_HI16		\
602    || r_type == R_MIPS_TLS_DTPREL_LO16		\
603    || r_type == R_MIPS_TLS_GOTTPREL		\
604    || r_type == R_MIPS_TLS_TPREL32		\
605    || r_type == R_MIPS_TLS_TPREL64		\
606    || r_type == R_MIPS_TLS_TPREL_HI16		\
607    || r_type == R_MIPS_TLS_TPREL_LO16		\
608    || r_type == R_MIPS16_TLS_GD			\
609    || r_type == R_MIPS16_TLS_LDM		\
610    || r_type == R_MIPS16_TLS_DTPREL_HI16	\
611    || r_type == R_MIPS16_TLS_DTPREL_LO16	\
612    || r_type == R_MIPS16_TLS_GOTTPREL		\
613    || r_type == R_MIPS16_TLS_TPREL_HI16		\
614    || r_type == R_MIPS16_TLS_TPREL_LO16		\
615    || r_type == R_MICROMIPS_TLS_GD		\
616    || r_type == R_MICROMIPS_TLS_LDM		\
617    || r_type == R_MICROMIPS_TLS_DTPREL_HI16	\
618    || r_type == R_MICROMIPS_TLS_DTPREL_LO16	\
619    || r_type == R_MICROMIPS_TLS_GOTTPREL	\
620    || r_type == R_MICROMIPS_TLS_TPREL_HI16	\
621    || r_type == R_MICROMIPS_TLS_TPREL_LO16)
622 
623 /* Structure used to pass information to mips_elf_output_extsym.  */
624 
625 struct extsym_info
626 {
627   bfd *abfd;
628   struct bfd_link_info *info;
629   struct ecoff_debug_info *debug;
630   const struct ecoff_debug_swap *swap;
631   bfd_boolean failed;
632 };
633 
634 /* The names of the runtime procedure table symbols used on IRIX5.  */
635 
636 static const char * const mips_elf_dynsym_rtproc_names[] =
637 {
638   "_procedure_table",
639   "_procedure_string_table",
640   "_procedure_table_size",
641   NULL
642 };
643 
644 /* These structures are used to generate the .compact_rel section on
645    IRIX5.  */
646 
647 typedef struct
648 {
649   unsigned long id1;		/* Always one?  */
650   unsigned long num;		/* Number of compact relocation entries.  */
651   unsigned long id2;		/* Always two?  */
652   unsigned long offset;		/* The file offset of the first relocation.  */
653   unsigned long reserved0;	/* Zero?  */
654   unsigned long reserved1;	/* Zero?  */
655 } Elf32_compact_rel;
656 
657 typedef struct
658 {
659   bfd_byte id1[4];
660   bfd_byte num[4];
661   bfd_byte id2[4];
662   bfd_byte offset[4];
663   bfd_byte reserved0[4];
664   bfd_byte reserved1[4];
665 } Elf32_External_compact_rel;
666 
667 typedef struct
668 {
669   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
670   unsigned int rtype : 4;	/* Relocation types. See below.  */
671   unsigned int dist2to : 8;
672   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
673   unsigned long konst;		/* KONST field. See below.  */
674   unsigned long vaddr;		/* VADDR to be relocated.  */
675 } Elf32_crinfo;
676 
677 typedef struct
678 {
679   unsigned int ctype : 1;	/* 1: long 0: short format. See below.  */
680   unsigned int rtype : 4;	/* Relocation types. See below.  */
681   unsigned int dist2to : 8;
682   unsigned int relvaddr : 19;	/* (VADDR - vaddr of the previous entry)/ 4 */
683   unsigned long konst;		/* KONST field. See below.  */
684 } Elf32_crinfo2;
685 
686 typedef struct
687 {
688   bfd_byte info[4];
689   bfd_byte konst[4];
690   bfd_byte vaddr[4];
691 } Elf32_External_crinfo;
692 
693 typedef struct
694 {
695   bfd_byte info[4];
696   bfd_byte konst[4];
697 } Elf32_External_crinfo2;
698 
699 /* These are the constants used to swap the bitfields in a crinfo.  */
700 
701 #define CRINFO_CTYPE (0x1U)
702 #define CRINFO_CTYPE_SH (31)
703 #define CRINFO_RTYPE (0xfU)
704 #define CRINFO_RTYPE_SH (27)
705 #define CRINFO_DIST2TO (0xffU)
706 #define CRINFO_DIST2TO_SH (19)
707 #define CRINFO_RELVADDR (0x7ffffU)
708 #define CRINFO_RELVADDR_SH (0)
709 
710 /* A compact relocation info has long (3 words) or short (2 words)
711    formats.  A short format doesn't have VADDR field and relvaddr
712    fields contains ((VADDR - vaddr of the previous entry) >> 2).  */
713 #define CRF_MIPS_LONG			1
714 #define CRF_MIPS_SHORT			0
715 
716 /* There are 4 types of compact relocation at least. The value KONST
717    has different meaning for each type:
718 
719    (type)		(konst)
720    CT_MIPS_REL32	Address in data
721    CT_MIPS_WORD		Address in word (XXX)
722    CT_MIPS_GPHI_LO	GP - vaddr
723    CT_MIPS_JMPAD	Address to jump
724    */
725 
726 #define CRT_MIPS_REL32			0xa
727 #define CRT_MIPS_WORD			0xb
728 #define CRT_MIPS_GPHI_LO		0xc
729 #define CRT_MIPS_JMPAD			0xd
730 
731 #define mips_elf_set_cr_format(x,format)	((x).ctype = (format))
732 #define mips_elf_set_cr_type(x,type)		((x).rtype = (type))
733 #define mips_elf_set_cr_dist2to(x,v)		((x).dist2to = (v))
734 #define mips_elf_set_cr_relvaddr(x,d)		((x).relvaddr = (d)<<2)
735 
736 /* The structure of the runtime procedure descriptor created by the
737    loader for use by the static exception system.  */
738 
739 typedef struct runtime_pdr {
740 	bfd_vma	adr;		/* Memory address of start of procedure.  */
741 	long	regmask;	/* Save register mask.  */
742 	long	regoffset;	/* Save register offset.  */
743 	long	fregmask;	/* Save floating point register mask.  */
744 	long	fregoffset;	/* Save floating point register offset.  */
745 	long	frameoffset;	/* Frame size.  */
746 	short	framereg;	/* Frame pointer register.  */
747 	short	pcreg;		/* Offset or reg of return pc.  */
748 	long	irpss;		/* Index into the runtime string table.  */
749 	long	reserved;
750 	struct exception_info *exception_info;/* Pointer to exception array.  */
751 } RPDR, *pRPDR;
752 #define cbRPDR sizeof (RPDR)
753 #define rpdNil ((pRPDR) 0)
754 
755 static struct mips_got_entry *mips_elf_create_local_got_entry
756   (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
757    struct mips_elf_link_hash_entry *, int);
758 static bfd_boolean mips_elf_sort_hash_table_f
759   (struct mips_elf_link_hash_entry *, void *);
760 static bfd_vma mips_elf_high
761   (bfd_vma);
762 static bfd_boolean mips_elf_create_dynamic_relocation
763   (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
764    struct mips_elf_link_hash_entry *, asection *, bfd_vma,
765    bfd_vma *, asection *);
766 static bfd_vma mips_elf_adjust_gp
767   (bfd *, struct mips_got_info *, bfd *);
768 
769 /* This will be used when we sort the dynamic relocation records.  */
770 static bfd *reldyn_sorting_bfd;
771 
772 /* True if ABFD is for CPUs with load interlocking that include
773    non-MIPS1 CPUs and R3900.  */
774 #define LOAD_INTERLOCKS_P(abfd) \
775   (   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
776    || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
777 
778 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
779    This should be safe for all architectures.  We enable this predicate
780    for RM9000 for now.  */
781 #define JAL_TO_BAL_P(abfd) \
782   ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
783 
784 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
785    This should be safe for all architectures.  We enable this predicate for
786    all CPUs.  */
787 #define JALR_TO_BAL_P(abfd) 1
788 
789 /* True if ABFD is for CPUs that are faster if JR is converted to B.
790    This should be safe for all architectures.  We enable this predicate for
791    all CPUs.  */
792 #define JR_TO_B_P(abfd) 1
793 
794 /* True if ABFD is a PIC object.  */
795 #define PIC_OBJECT_P(abfd) \
796   ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
797 
798 /* Nonzero if ABFD is using the O32 ABI.  */
799 #define ABI_O32_P(abfd) \
800   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
801 
802 /* Nonzero if ABFD is using the N32 ABI.  */
803 #define ABI_N32_P(abfd) \
804   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
805 
806 /* Nonzero if ABFD is using the N64 ABI.  */
807 #define ABI_64_P(abfd) \
808   (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
809 
810 /* Nonzero if ABFD is using NewABI conventions.  */
811 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
812 
813 /* Nonzero if ABFD has microMIPS code.  */
814 #define MICROMIPS_P(abfd) \
815   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
816 
817 /* Nonzero if ABFD is MIPS R6.  */
818 #define MIPSR6_P(abfd) \
819   ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
820     || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
821 
822 /* The IRIX compatibility level we are striving for.  */
823 #define IRIX_COMPAT(abfd) \
824   (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
825 
826 /* Whether we are trying to be compatible with IRIX at all.  */
827 #define SGI_COMPAT(abfd) \
828   (IRIX_COMPAT (abfd) != ict_none)
829 
830 /* The name of the options section.  */
831 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
832   (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
833 
834 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
835    Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME.  */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
837   (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
838 
839 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section.  */
840 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
841   (strcmp (NAME, ".MIPS.abiflags") == 0)
842 
843 /* Whether the section is readonly.  */
844 #define MIPS_ELF_READONLY_SECTION(sec) \
845   ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))		\
846    == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
847 
848 /* The name of the stub section.  */
849 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
850 
851 /* The size of an external REL relocation.  */
852 #define MIPS_ELF_REL_SIZE(abfd) \
853   (get_elf_backend_data (abfd)->s->sizeof_rel)
854 
855 /* The size of an external RELA relocation.  */
856 #define MIPS_ELF_RELA_SIZE(abfd) \
857   (get_elf_backend_data (abfd)->s->sizeof_rela)
858 
859 /* The size of an external dynamic table entry.  */
860 #define MIPS_ELF_DYN_SIZE(abfd) \
861   (get_elf_backend_data (abfd)->s->sizeof_dyn)
862 
863 /* The size of a GOT entry.  */
864 #define MIPS_ELF_GOT_SIZE(abfd) \
865   (get_elf_backend_data (abfd)->s->arch_size / 8)
866 
867 /* The size of the .rld_map section. */
868 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
869   (get_elf_backend_data (abfd)->s->arch_size / 8)
870 
871 /* The size of a symbol-table entry.  */
872 #define MIPS_ELF_SYM_SIZE(abfd) \
873   (get_elf_backend_data (abfd)->s->sizeof_sym)
874 
875 /* The default alignment for sections, as a power of two.  */
876 #define MIPS_ELF_LOG_FILE_ALIGN(abfd)				\
877   (get_elf_backend_data (abfd)->s->log_file_align)
878 
879 /* Get word-sized data.  */
880 #define MIPS_ELF_GET_WORD(abfd, ptr) \
881   (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
882 
883 /* Put out word-sized data.  */
884 #define MIPS_ELF_PUT_WORD(abfd, val, ptr)	\
885   (ABI_64_P (abfd)				\
886    ? bfd_put_64 (abfd, val, ptr)		\
887    : bfd_put_32 (abfd, val, ptr))
888 
889 /* The opcode for word-sized loads (LW or LD).  */
890 #define MIPS_ELF_LOAD_WORD(abfd) \
891   (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
892 
893 /* Add a dynamic symbol table-entry.  */
894 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val)	\
895   _bfd_elf_add_dynamic_entry (info, tag, val)
896 
897 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela)			\
898   (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
899 
900 /* The name of the dynamic relocation section.  */
901 #define MIPS_ELF_REL_DYN_NAME(INFO) \
902   (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
903    ? ".rela.dyn" : ".rel.dyn")
904 
905 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
906    from smaller values.  Start with zero, widen, *then* decrement.  */
907 #define MINUS_ONE	(((bfd_vma)0) - 1)
908 #define MINUS_TWO	(((bfd_vma)0) - 2)
909 
910 /* The value to write into got[1] for SVR4 targets, to identify it is
911    a GNU object.  The dynamic linker can then use got[1] to store the
912    module pointer.  */
913 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
914   ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
915 
916 /* The offset of $gp from the beginning of the .got section.  */
917 #define ELF_MIPS_GP_OFFSET(INFO) \
918   (mips_elf_hash_table (INFO)->root.target_os == is_vxworks \
919    ? 0x0 : 0x7ff0)
920 
921 /* The maximum size of the GOT for it to be addressable using 16-bit
922    offsets from $gp.  */
923 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
924 
925 /* Instructions which appear in a stub.  */
926 #define STUB_LW(abfd)							\
927   ((ABI_64_P (abfd)							\
928     ? 0xdf998010				/* ld t9,0x8010(gp) */	\
929     : 0x8f998010))				/* lw t9,0x8010(gp) */
930 #define STUB_MOVE 0x03e07825			/* or t7,ra,zero */
931 #define STUB_LUI(VAL) (0x3c180000 + (VAL))	/* lui t8,VAL */
932 #define STUB_JALR 0x0320f809			/* jalr ra,t9 */
933 #define STUB_JALRC 0xf8190000			/* jalrc ra,t9 */
934 #define STUB_ORI(VAL) (0x37180000 + (VAL))	/* ori t8,t8,VAL */
935 #define STUB_LI16U(VAL) (0x34180000 + (VAL))	/* ori t8,zero,VAL unsigned */
936 #define STUB_LI16S(abfd, VAL)						\
937    ((ABI_64_P (abfd)							\
938     ? (0x64180000 + (VAL))	/* daddiu t8,zero,VAL sign extended */	\
939     : (0x24180000 + (VAL))))	/* addiu t8,zero,VAL sign extended */
940 
941 /* Likewise for the microMIPS ASE.  */
942 #define STUB_LW_MICROMIPS(abfd)						\
943   (ABI_64_P (abfd)							\
944    ? 0xdf3c8010					/* ld t9,0x8010(gp) */	\
945    : 0xff3c8010)				/* lw t9,0x8010(gp) */
946 #define STUB_MOVE_MICROMIPS 0x0dff		/* move t7,ra */
947 #define STUB_MOVE32_MICROMIPS 0x001f7a90	/* or t7,ra,zero */
948 #define STUB_LUI_MICROMIPS(VAL)						\
949    (0x41b80000 + (VAL))				/* lui t8,VAL */
950 #define STUB_JALR_MICROMIPS 0x45d9		/* jalr t9 */
951 #define STUB_JALR32_MICROMIPS 0x03f90f3c	/* jalr ra,t9 */
952 #define STUB_ORI_MICROMIPS(VAL)						\
953   (0x53180000 + (VAL))				/* ori t8,t8,VAL */
954 #define STUB_LI16U_MICROMIPS(VAL)					\
955   (0x53000000 + (VAL))				/* ori t8,zero,VAL unsigned */
956 #define STUB_LI16S_MICROMIPS(abfd, VAL)					\
957    (ABI_64_P (abfd)							\
958     ? 0x5f000000 + (VAL)	/* daddiu t8,zero,VAL sign extended */	\
959     : 0x33000000 + (VAL))	/* addiu t8,zero,VAL sign extended */
960 
961 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
962 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
963 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
964 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
965 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
966 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
967 
968 /* The name of the dynamic interpreter.  This is put in the .interp
969    section.  */
970 
971 #define ELF_DYNAMIC_INTERPRETER(abfd)		\
972    (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1"	\
973     : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1"	\
974     : "/usr/lib/libc.so.1")
975 
976 #ifdef BFD64
977 #define MNAME(bfd,pre,pos) \
978   (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
979 #define ELF_R_SYM(bfd, i)					\
980   (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
981 #define ELF_R_TYPE(bfd, i)					\
982   (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
983 #define ELF_R_INFO(bfd, s, t)					\
984   (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
985 #else
986 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
987 #define ELF_R_SYM(bfd, i)					\
988   (ELF32_R_SYM (i))
989 #define ELF_R_TYPE(bfd, i)					\
990   (ELF32_R_TYPE (i))
991 #define ELF_R_INFO(bfd, s, t)					\
992   (ELF32_R_INFO (s, t))
993 #endif
994 
995   /* The mips16 compiler uses a couple of special sections to handle
996      floating point arguments.
997 
998      Section names that look like .mips16.fn.FNNAME contain stubs that
999      copy floating point arguments from the fp regs to the gp regs and
1000      then jump to FNNAME.  If any 32 bit function calls FNNAME, the
1001      call should be redirected to the stub instead.  If no 32 bit
1002      function calls FNNAME, the stub should be discarded.  We need to
1003      consider any reference to the function, not just a call, because
1004      if the address of the function is taken we will need the stub,
1005      since the address might be passed to a 32 bit function.
1006 
1007      Section names that look like .mips16.call.FNNAME contain stubs
1008      that copy floating point arguments from the gp regs to the fp
1009      regs and then jump to FNNAME.  If FNNAME is a 32 bit function,
1010      then any 16 bit function that calls FNNAME should be redirected
1011      to the stub instead.  If FNNAME is not a 32 bit function, the
1012      stub should be discarded.
1013 
1014      .mips16.call.fp.FNNAME sections are similar, but contain stubs
1015      which call FNNAME and then copy the return value from the fp regs
1016      to the gp regs.  These stubs store the return value in $18 while
1017      calling FNNAME; any function which might call one of these stubs
1018      must arrange to save $18 around the call.  (This case is not
1019      needed for 32 bit functions that call 16 bit functions, because
1020      16 bit functions always return floating point values in both
1021      $f0/$f1 and $2/$3.)
1022 
1023      Note that in all cases FNNAME might be defined statically.
1024      Therefore, FNNAME is not used literally.  Instead, the relocation
1025      information will indicate which symbol the section is for.
1026 
1027      We record any stubs that we find in the symbol table.  */
1028 
1029 #define FN_STUB ".mips16.fn."
1030 #define CALL_STUB ".mips16.call."
1031 #define CALL_FP_STUB ".mips16.call.fp."
1032 
1033 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1034 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1035 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1036 
1037 /* The format of the first PLT entry in an O32 executable.  */
1038 static const bfd_vma mips_o32_exec_plt0_entry[] =
1039 {
1040   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1041   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1042   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1043   0x031cc023,	/* subu $24, $24, $28					*/
1044   0x03e07825,	/* or t7, ra, zero					*/
1045   0x0018c082,	/* srl $24, $24, 2					*/
1046   0x0320f809,	/* jalr $25						*/
1047   0x2718fffe	/* subu $24, $24, 2					*/
1048 };
1049 
1050 /* The format of the first PLT entry in an O32 executable using compact
1051    jumps.  */
1052 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1053 {
1054   0x3c1c0000,	/* lui $28, %hi(&GOTPLT[0])				*/
1055   0x8f990000,	/* lw $25, %lo(&GOTPLT[0])($28)				*/
1056   0x279c0000,	/* addiu $28, $28, %lo(&GOTPLT[0])			*/
1057   0x031cc023,	/* subu $24, $24, $28					*/
1058   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1059   0x0018c082,	/* srl $24, $24, 2					*/
1060   0x2718fffe,	/* subu $24, $24, 2					*/
1061   0xf8190000	/* jalrc $25						*/
1062 };
1063 
1064 /* The format of the first PLT entry in an N32 executable.  Different
1065    because gp ($28) is not available; we use t2 ($14) instead.  */
1066 static const bfd_vma mips_n32_exec_plt0_entry[] =
1067 {
1068   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1069   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1070   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1071   0x030ec023,	/* subu $24, $24, $14					*/
1072   0x03e07825,	/* or t7, ra, zero					*/
1073   0x0018c082,	/* srl $24, $24, 2					*/
1074   0x0320f809,	/* jalr $25						*/
1075   0x2718fffe	/* subu $24, $24, 2					*/
1076 };
1077 
1078 /* The format of the first PLT entry in an N32 executable using compact
1079    jumps.  Different because gp ($28) is not available; we use t2 ($14)
1080    instead.  */
1081 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1082 {
1083   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1084   0x8dd90000,	/* lw $25, %lo(&GOTPLT[0])($14)				*/
1085   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1086   0x030ec023,	/* subu $24, $24, $14					*/
1087   0x03e07821,	/* move $15, $31	# 32-bit move (addu)		*/
1088   0x0018c082,	/* srl $24, $24, 2					*/
1089   0x2718fffe,	/* subu $24, $24, 2					*/
1090   0xf8190000	/* jalrc $25						*/
1091 };
1092 
1093 /* The format of the first PLT entry in an N64 executable.  Different
1094    from N32 because of the increased size of GOT entries.  */
1095 static const bfd_vma mips_n64_exec_plt0_entry[] =
1096 {
1097   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1098   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1099   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1100   0x030ec023,	/* subu $24, $24, $14					*/
1101   0x03e07825,	/* or t7, ra, zero					*/
1102   0x0018c0c2,	/* srl $24, $24, 3					*/
1103   0x0320f809,	/* jalr $25						*/
1104   0x2718fffe	/* subu $24, $24, 2					*/
1105 };
1106 
1107 /* The format of the first PLT entry in an N64 executable using compact
1108    jumps.  Different from N32 because of the increased size of GOT
1109    entries.  */
1110 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1111 {
1112   0x3c0e0000,	/* lui $14, %hi(&GOTPLT[0])				*/
1113   0xddd90000,	/* ld $25, %lo(&GOTPLT[0])($14)				*/
1114   0x25ce0000,	/* addiu $14, $14, %lo(&GOTPLT[0])			*/
1115   0x030ec023,	/* subu $24, $24, $14					*/
1116   0x03e0782d,	/* move $15, $31	# 64-bit move (daddu)		*/
1117   0x0018c0c2,	/* srl $24, $24, 3					*/
1118   0x2718fffe,	/* subu $24, $24, 2					*/
1119   0xf8190000	/* jalrc $25						*/
1120 };
1121 
1122 
1123 /* The format of the microMIPS first PLT entry in an O32 executable.
1124    We rely on v0 ($2) rather than t8 ($24) to contain the address
1125    of the GOTPLT entry handled, so this stub may only be used when
1126    all the subsequent PLT entries are microMIPS code too.
1127 
1128    The trailing NOP is for alignment and correct disassembly only.  */
1129 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1130 {
1131   0x7980, 0x0000,	/* addiupc $3, (&GOTPLT[0]) - .			*/
1132   0xff23, 0x0000,	/* lw $25, 0($3)				*/
1133   0x0535,		/* subu $2, $2, $3				*/
1134   0x2525,		/* srl $2, $2, 2				*/
1135   0x3302, 0xfffe,	/* subu $24, $2, 2				*/
1136   0x0dff,		/* move $15, $31				*/
1137   0x45f9,		/* jalrs $25					*/
1138   0x0f83,		/* move $28, $3					*/
1139   0x0c00		/* nop						*/
1140 };
1141 
1142 /* The format of the microMIPS first PLT entry in an O32 executable
1143    in the insn32 mode.  */
1144 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1145 {
1146   0x41bc, 0x0000,	/* lui $28, %hi(&GOTPLT[0])			*/
1147   0xff3c, 0x0000,	/* lw $25, %lo(&GOTPLT[0])($28)			*/
1148   0x339c, 0x0000,	/* addiu $28, $28, %lo(&GOTPLT[0])		*/
1149   0x0398, 0xc1d0,	/* subu $24, $24, $28				*/
1150   0x001f, 0x7a90,	/* or $15, $31, zero				*/
1151   0x0318, 0x1040,	/* srl $24, $24, 2				*/
1152   0x03f9, 0x0f3c,	/* jalr $25					*/
1153   0x3318, 0xfffe	/* subu $24, $24, 2				*/
1154 };
1155 
1156 /* The format of subsequent standard PLT entries.  */
1157 static const bfd_vma mips_exec_plt_entry[] =
1158 {
1159   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1160   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1161   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1162   0x03200008	/* jr $25					*/
1163 };
1164 
1165 static const bfd_vma mipsr6_exec_plt_entry[] =
1166 {
1167   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1168   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1169   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1170   0x03200009	/* jr $25					*/
1171 };
1172 
1173 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1174 {
1175   0x3c0f0000,	/* lui $15, %hi(.got.plt entry)			*/
1176   0x01f90000,	/* l[wd] $25, %lo(.got.plt entry)($15)		*/
1177   0x25f80000,	/* addiu $24, $15, %lo(.got.plt entry)		*/
1178   0xd8190000	/* jic $25, 0					*/
1179 };
1180 
1181 /* The format of subsequent MIPS16 o32 PLT entries.  We use v0 ($2)
1182    and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1183    directly addressable.  */
1184 static const bfd_vma mips16_o32_exec_plt_entry[] =
1185 {
1186   0xb203,		/* lw $2, 12($pc)			*/
1187   0x9a60,		/* lw $3, 0($2)				*/
1188   0x651a,		/* move $24, $2				*/
1189   0xeb00,		/* jr $3				*/
1190   0x653b,		/* move $25, $3				*/
1191   0x6500,		/* nop					*/
1192   0x0000, 0x0000	/* .word (.got.plt entry)		*/
1193 };
1194 
1195 /* The format of subsequent microMIPS o32 PLT entries.  We use v0 ($2)
1196    as a temporary because t8 ($24) is not addressable with ADDIUPC.  */
1197 static const bfd_vma micromips_o32_exec_plt_entry[] =
1198 {
1199   0x7900, 0x0000,	/* addiupc $2, (.got.plt entry) - .	*/
1200   0xff22, 0x0000,	/* lw $25, 0($2)			*/
1201   0x4599,		/* jr $25				*/
1202   0x0f02		/* move $24, $2				*/
1203 };
1204 
1205 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode.  */
1206 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1207 {
1208   0x41af, 0x0000,	/* lui $15, %hi(.got.plt entry)		*/
1209   0xff2f, 0x0000,	/* lw $25, %lo(.got.plt entry)($15)	*/
1210   0x0019, 0x0f3c,	/* jr $25				*/
1211   0x330f, 0x0000	/* addiu $24, $15, %lo(.got.plt entry)	*/
1212 };
1213 
1214 /* The format of the first PLT entry in a VxWorks executable.  */
1215 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1216 {
1217   0x3c190000,	/* lui t9, %hi(_GLOBAL_OFFSET_TABLE_)		*/
1218   0x27390000,	/* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_)	*/
1219   0x8f390008,	/* lw t9, 8(t9)					*/
1220   0x00000000,	/* nop						*/
1221   0x03200008,	/* jr t9					*/
1222   0x00000000	/* nop						*/
1223 };
1224 
1225 /* The format of subsequent PLT entries.  */
1226 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1227 {
1228   0x10000000,	/* b .PLT_resolver			*/
1229   0x24180000,	/* li t8, <pltindex>			*/
1230   0x3c190000,	/* lui t9, %hi(<.got.plt slot>)		*/
1231   0x27390000,	/* addiu t9, t9, %lo(<.got.plt slot>)	*/
1232   0x8f390000,	/* lw t9, 0(t9)				*/
1233   0x00000000,	/* nop					*/
1234   0x03200008,	/* jr t9				*/
1235   0x00000000	/* nop					*/
1236 };
1237 
1238 /* The format of the first PLT entry in a VxWorks shared object.  */
1239 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1240 {
1241   0x8f990008,	/* lw t9, 8(gp)		*/
1242   0x00000000,	/* nop			*/
1243   0x03200008,	/* jr t9		*/
1244   0x00000000,	/* nop			*/
1245   0x00000000,	/* nop			*/
1246   0x00000000	/* nop			*/
1247 };
1248 
1249 /* The format of subsequent PLT entries.  */
1250 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1251 {
1252   0x10000000,	/* b .PLT_resolver	*/
1253   0x24180000	/* li t8, <pltindex>	*/
1254 };
1255 
1256 /* microMIPS 32-bit opcode helper installer.  */
1257 
1258 static void
1259 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1260 {
1261   bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1262   bfd_put_16 (abfd,  opcode	   & 0xffff, ptr + 2);
1263 }
1264 
1265 /* microMIPS 32-bit opcode helper retriever.  */
1266 
1267 static bfd_vma
1268 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1269 {
1270   return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1271 }
1272 
1273 /* Look up an entry in a MIPS ELF linker hash table.  */
1274 
1275 #define mips_elf_link_hash_lookup(table, string, create, copy, follow)	\
1276   ((struct mips_elf_link_hash_entry *)					\
1277    elf_link_hash_lookup (&(table)->root, (string), (create),		\
1278 			 (copy), (follow)))
1279 
1280 /* Traverse a MIPS ELF linker hash table.  */
1281 
1282 #define mips_elf_link_hash_traverse(table, func, info)			\
1283   (elf_link_hash_traverse						\
1284    (&(table)->root,							\
1285     (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func),	\
1286     (info)))
1287 
1288 /* Find the base offsets for thread-local storage in this object,
1289    for GD/LD and IE/LE respectively.  */
1290 
1291 #define TP_OFFSET 0x7000
1292 #define DTP_OFFSET 0x8000
1293 
1294 static bfd_vma
1295 dtprel_base (struct bfd_link_info *info)
1296 {
1297   /* If tls_sec is NULL, we should have signalled an error already.  */
1298   if (elf_hash_table (info)->tls_sec == NULL)
1299     return 0;
1300   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1301 }
1302 
1303 static bfd_vma
1304 tprel_base (struct bfd_link_info *info)
1305 {
1306   /* If tls_sec is NULL, we should have signalled an error already.  */
1307   if (elf_hash_table (info)->tls_sec == NULL)
1308     return 0;
1309   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1310 }
1311 
1312 /* Create an entry in a MIPS ELF linker hash table.  */
1313 
1314 static struct bfd_hash_entry *
1315 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1316 			    struct bfd_hash_table *table, const char *string)
1317 {
1318   struct mips_elf_link_hash_entry *ret =
1319     (struct mips_elf_link_hash_entry *) entry;
1320 
1321   /* Allocate the structure if it has not already been allocated by a
1322      subclass.  */
1323   if (ret == NULL)
1324     ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1325   if (ret == NULL)
1326     return (struct bfd_hash_entry *) ret;
1327 
1328   /* Call the allocation method of the superclass.  */
1329   ret = ((struct mips_elf_link_hash_entry *)
1330 	 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1331 				     table, string));
1332   if (ret != NULL)
1333     {
1334       /* Set local fields.  */
1335       memset (&ret->esym, 0, sizeof (EXTR));
1336       /* We use -2 as a marker to indicate that the information has
1337 	 not been set.  -1 means there is no associated ifd.  */
1338       ret->esym.ifd = -2;
1339       ret->la25_stub = 0;
1340       ret->possibly_dynamic_relocs = 0;
1341       ret->fn_stub = NULL;
1342       ret->call_stub = NULL;
1343       ret->call_fp_stub = NULL;
1344       ret->mipsxhash_loc = 0;
1345       ret->global_got_area = GGA_NONE;
1346       ret->got_only_for_calls = TRUE;
1347       ret->readonly_reloc = FALSE;
1348       ret->has_static_relocs = FALSE;
1349       ret->no_fn_stub = FALSE;
1350       ret->need_fn_stub = FALSE;
1351       ret->has_nonpic_branches = FALSE;
1352       ret->needs_lazy_stub = FALSE;
1353       ret->use_plt_entry = FALSE;
1354     }
1355 
1356   return (struct bfd_hash_entry *) ret;
1357 }
1358 
1359 /* Allocate MIPS ELF private object data.  */
1360 
1361 bfd_boolean
1362 _bfd_mips_elf_mkobject (bfd *abfd)
1363 {
1364   return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1365 				  MIPS_ELF_DATA);
1366 }
1367 
1368 bfd_boolean
1369 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1370 {
1371   if (!sec->used_by_bfd)
1372     {
1373       struct _mips_elf_section_data *sdata;
1374       size_t amt = sizeof (*sdata);
1375 
1376       sdata = bfd_zalloc (abfd, amt);
1377       if (sdata == NULL)
1378 	return FALSE;
1379       sec->used_by_bfd = sdata;
1380     }
1381 
1382   return _bfd_elf_new_section_hook (abfd, sec);
1383 }
1384 
1385 /* Read ECOFF debugging information from a .mdebug section into a
1386    ecoff_debug_info structure.  */
1387 
1388 bfd_boolean
1389 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1390 			       struct ecoff_debug_info *debug)
1391 {
1392   HDRR *symhdr;
1393   const struct ecoff_debug_swap *swap;
1394   char *ext_hdr;
1395 
1396   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1397   memset (debug, 0, sizeof (*debug));
1398 
1399   ext_hdr = bfd_malloc (swap->external_hdr_size);
1400   if (ext_hdr == NULL && swap->external_hdr_size != 0)
1401     goto error_return;
1402 
1403   if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1404 				  swap->external_hdr_size))
1405     goto error_return;
1406 
1407   symhdr = &debug->symbolic_header;
1408   (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1409 
1410   /* The symbolic header contains absolute file offsets and sizes to
1411      read.  */
1412 #define READ(ptr, offset, count, size, type)				\
1413   do									\
1414     {									\
1415       size_t amt;							\
1416       debug->ptr = NULL;						\
1417       if (symhdr->count == 0)						\
1418 	break;								\
1419       if (_bfd_mul_overflow (size, symhdr->count, &amt))		\
1420 	{								\
1421 	  bfd_set_error (bfd_error_file_too_big);			\
1422 	  goto error_return;						\
1423 	}								\
1424       if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0)		\
1425 	goto error_return;						\
1426       debug->ptr = (type) _bfd_malloc_and_read (abfd, amt, amt);	\
1427       if (debug->ptr == NULL)						\
1428 	goto error_return;						\
1429     } while (0)
1430 
1431   READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1432   READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1433   READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1434   READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1435   READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1436   READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1437 	union aux_ext *);
1438   READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1439   READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1440   READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1441   READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1442   READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1443 #undef READ
1444 
1445   debug->fdr = NULL;
1446 
1447   return TRUE;
1448 
1449  error_return:
1450   free (ext_hdr);
1451   free (debug->line);
1452   free (debug->external_dnr);
1453   free (debug->external_pdr);
1454   free (debug->external_sym);
1455   free (debug->external_opt);
1456   free (debug->external_aux);
1457   free (debug->ss);
1458   free (debug->ssext);
1459   free (debug->external_fdr);
1460   free (debug->external_rfd);
1461   free (debug->external_ext);
1462   return FALSE;
1463 }
1464 
1465 /* Swap RPDR (runtime procedure table entry) for output.  */
1466 
1467 static void
1468 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1469 {
1470   H_PUT_S32 (abfd, in->adr, ex->p_adr);
1471   H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1472   H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1473   H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1474   H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1475   H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1476 
1477   H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1478   H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1479 
1480   H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1481 }
1482 
1483 /* Create a runtime procedure table from the .mdebug section.  */
1484 
1485 static bfd_boolean
1486 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1487 				 struct bfd_link_info *info, asection *s,
1488 				 struct ecoff_debug_info *debug)
1489 {
1490   const struct ecoff_debug_swap *swap;
1491   HDRR *hdr = &debug->symbolic_header;
1492   RPDR *rpdr, *rp;
1493   struct rpdr_ext *erp;
1494   void *rtproc;
1495   struct pdr_ext *epdr;
1496   struct sym_ext *esym;
1497   char *ss, **sv;
1498   char *str;
1499   bfd_size_type size;
1500   bfd_size_type count;
1501   unsigned long sindex;
1502   unsigned long i;
1503   PDR pdr;
1504   SYMR sym;
1505   const char *no_name_func = _("static procedure (no name)");
1506 
1507   epdr = NULL;
1508   rpdr = NULL;
1509   esym = NULL;
1510   ss = NULL;
1511   sv = NULL;
1512 
1513   swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1514 
1515   sindex = strlen (no_name_func) + 1;
1516   count = hdr->ipdMax;
1517   if (count > 0)
1518     {
1519       size = swap->external_pdr_size;
1520 
1521       epdr = bfd_malloc (size * count);
1522       if (epdr == NULL)
1523 	goto error_return;
1524 
1525       if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1526 	goto error_return;
1527 
1528       size = sizeof (RPDR);
1529       rp = rpdr = bfd_malloc (size * count);
1530       if (rpdr == NULL)
1531 	goto error_return;
1532 
1533       size = sizeof (char *);
1534       sv = bfd_malloc (size * count);
1535       if (sv == NULL)
1536 	goto error_return;
1537 
1538       count = hdr->isymMax;
1539       size = swap->external_sym_size;
1540       esym = bfd_malloc (size * count);
1541       if (esym == NULL)
1542 	goto error_return;
1543 
1544       if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1545 	goto error_return;
1546 
1547       count = hdr->issMax;
1548       ss = bfd_malloc (count);
1549       if (ss == NULL)
1550 	goto error_return;
1551       if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1552 	goto error_return;
1553 
1554       count = hdr->ipdMax;
1555       for (i = 0; i < (unsigned long) count; i++, rp++)
1556 	{
1557 	  (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1558 	  (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1559 	  rp->adr = sym.value;
1560 	  rp->regmask = pdr.regmask;
1561 	  rp->regoffset = pdr.regoffset;
1562 	  rp->fregmask = pdr.fregmask;
1563 	  rp->fregoffset = pdr.fregoffset;
1564 	  rp->frameoffset = pdr.frameoffset;
1565 	  rp->framereg = pdr.framereg;
1566 	  rp->pcreg = pdr.pcreg;
1567 	  rp->irpss = sindex;
1568 	  sv[i] = ss + sym.iss;
1569 	  sindex += strlen (sv[i]) + 1;
1570 	}
1571     }
1572 
1573   size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1574   size = BFD_ALIGN (size, 16);
1575   rtproc = bfd_alloc (abfd, size);
1576   if (rtproc == NULL)
1577     {
1578       mips_elf_hash_table (info)->procedure_count = 0;
1579       goto error_return;
1580     }
1581 
1582   mips_elf_hash_table (info)->procedure_count = count + 2;
1583 
1584   erp = rtproc;
1585   memset (erp, 0, sizeof (struct rpdr_ext));
1586   erp++;
1587   str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1588   strcpy (str, no_name_func);
1589   str += strlen (no_name_func) + 1;
1590   for (i = 0; i < count; i++)
1591     {
1592       ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1593       strcpy (str, sv[i]);
1594       str += strlen (sv[i]) + 1;
1595     }
1596   H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1597 
1598   /* Set the size and contents of .rtproc section.  */
1599   s->size = size;
1600   s->contents = rtproc;
1601 
1602   /* Skip this section later on (I don't think this currently
1603      matters, but someday it might).  */
1604   s->map_head.link_order = NULL;
1605 
1606   free (epdr);
1607   free (rpdr);
1608   free (esym);
1609   free (ss);
1610   free (sv);
1611   return TRUE;
1612 
1613  error_return:
1614   free (epdr);
1615   free (rpdr);
1616   free (esym);
1617   free (ss);
1618   free (sv);
1619   return FALSE;
1620 }
1621 
1622 /* We're going to create a stub for H.  Create a symbol for the stub's
1623    value and size, to help make the disassembly easier to read.  */
1624 
1625 static bfd_boolean
1626 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1627 			     struct mips_elf_link_hash_entry *h,
1628 			     const char *prefix, asection *s, bfd_vma value,
1629 			     bfd_vma size)
1630 {
1631   bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1632   struct bfd_link_hash_entry *bh;
1633   struct elf_link_hash_entry *elfh;
1634   char *name;
1635   bfd_boolean res;
1636 
1637   if (micromips_p)
1638     value |= 1;
1639 
1640   /* Create a new symbol.  */
1641   name = concat (prefix, h->root.root.root.string, NULL);
1642   bh = NULL;
1643   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1644 					  BSF_LOCAL, s, value, NULL,
1645 					  TRUE, FALSE, &bh);
1646   free (name);
1647   if (! res)
1648     return FALSE;
1649 
1650   /* Make it a local function.  */
1651   elfh = (struct elf_link_hash_entry *) bh;
1652   elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1653   elfh->size = size;
1654   elfh->forced_local = 1;
1655   if (micromips_p)
1656     elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1657   return TRUE;
1658 }
1659 
1660 /* We're about to redefine H.  Create a symbol to represent H's
1661    current value and size, to help make the disassembly easier
1662    to read.  */
1663 
1664 static bfd_boolean
1665 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1666 			       struct mips_elf_link_hash_entry *h,
1667 			       const char *prefix)
1668 {
1669   struct bfd_link_hash_entry *bh;
1670   struct elf_link_hash_entry *elfh;
1671   char *name;
1672   asection *s;
1673   bfd_vma value;
1674   bfd_boolean res;
1675 
1676   /* Read the symbol's value.  */
1677   BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1678 	      || h->root.root.type == bfd_link_hash_defweak);
1679   s = h->root.root.u.def.section;
1680   value = h->root.root.u.def.value;
1681 
1682   /* Create a new symbol.  */
1683   name = concat (prefix, h->root.root.root.string, NULL);
1684   bh = NULL;
1685   res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1686 					  BSF_LOCAL, s, value, NULL,
1687 					  TRUE, FALSE, &bh);
1688   free (name);
1689   if (! res)
1690     return FALSE;
1691 
1692   /* Make it local and copy the other attributes from H.  */
1693   elfh = (struct elf_link_hash_entry *) bh;
1694   elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1695   elfh->other = h->root.other;
1696   elfh->size = h->root.size;
1697   elfh->forced_local = 1;
1698   return TRUE;
1699 }
1700 
1701 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1702    function rather than to a hard-float stub.  */
1703 
1704 static bfd_boolean
1705 section_allows_mips16_refs_p (asection *section)
1706 {
1707   const char *name;
1708 
1709   name = bfd_section_name (section);
1710   return (FN_STUB_P (name)
1711 	  || CALL_STUB_P (name)
1712 	  || CALL_FP_STUB_P (name)
1713 	  || strcmp (name, ".pdr") == 0);
1714 }
1715 
1716 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1717    stub section of some kind.  Return the R_SYMNDX of the target
1718    function, or 0 if we can't decide which function that is.  */
1719 
1720 static unsigned long
1721 mips16_stub_symndx (const struct elf_backend_data *bed,
1722 		    asection *sec ATTRIBUTE_UNUSED,
1723 		    const Elf_Internal_Rela *relocs,
1724 		    const Elf_Internal_Rela *relend)
1725 {
1726   int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1727   const Elf_Internal_Rela *rel;
1728 
1729   /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1730      one in a compound relocation.  */
1731   for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1732     if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1733       return ELF_R_SYM (sec->owner, rel->r_info);
1734 
1735   /* Otherwise trust the first relocation, whatever its kind.  This is
1736      the traditional behavior.  */
1737   if (relocs < relend)
1738     return ELF_R_SYM (sec->owner, relocs->r_info);
1739 
1740   return 0;
1741 }
1742 
1743 /* Check the mips16 stubs for a particular symbol, and see if we can
1744    discard them.  */
1745 
1746 static void
1747 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1748 			     struct mips_elf_link_hash_entry *h)
1749 {
1750   /* Dynamic symbols must use the standard call interface, in case other
1751      objects try to call them.  */
1752   if (h->fn_stub != NULL
1753       && h->root.dynindx != -1)
1754     {
1755       mips_elf_create_shadow_symbol (info, h, ".mips16.");
1756       h->need_fn_stub = TRUE;
1757     }
1758 
1759   if (h->fn_stub != NULL
1760       && ! h->need_fn_stub)
1761     {
1762       /* We don't need the fn_stub; the only references to this symbol
1763 	 are 16 bit calls.  Clobber the size to 0 to prevent it from
1764 	 being included in the link.  */
1765       h->fn_stub->size = 0;
1766       h->fn_stub->flags &= ~SEC_RELOC;
1767       h->fn_stub->reloc_count = 0;
1768       h->fn_stub->flags |= SEC_EXCLUDE;
1769       h->fn_stub->output_section = bfd_abs_section_ptr;
1770     }
1771 
1772   if (h->call_stub != NULL
1773       && ELF_ST_IS_MIPS16 (h->root.other))
1774     {
1775       /* We don't need the call_stub; this is a 16 bit function, so
1776 	 calls from other 16 bit functions are OK.  Clobber the size
1777 	 to 0 to prevent it from being included in the link.  */
1778       h->call_stub->size = 0;
1779       h->call_stub->flags &= ~SEC_RELOC;
1780       h->call_stub->reloc_count = 0;
1781       h->call_stub->flags |= SEC_EXCLUDE;
1782       h->call_stub->output_section = bfd_abs_section_ptr;
1783     }
1784 
1785   if (h->call_fp_stub != NULL
1786       && ELF_ST_IS_MIPS16 (h->root.other))
1787     {
1788       /* We don't need the call_stub; this is a 16 bit function, so
1789 	 calls from other 16 bit functions are OK.  Clobber the size
1790 	 to 0 to prevent it from being included in the link.  */
1791       h->call_fp_stub->size = 0;
1792       h->call_fp_stub->flags &= ~SEC_RELOC;
1793       h->call_fp_stub->reloc_count = 0;
1794       h->call_fp_stub->flags |= SEC_EXCLUDE;
1795       h->call_fp_stub->output_section = bfd_abs_section_ptr;
1796     }
1797 }
1798 
1799 /* Hashtable callbacks for mips_elf_la25_stubs.  */
1800 
1801 static hashval_t
1802 mips_elf_la25_stub_hash (const void *entry_)
1803 {
1804   const struct mips_elf_la25_stub *entry;
1805 
1806   entry = (struct mips_elf_la25_stub *) entry_;
1807   return entry->h->root.root.u.def.section->id
1808     + entry->h->root.root.u.def.value;
1809 }
1810 
1811 static int
1812 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1813 {
1814   const struct mips_elf_la25_stub *entry1, *entry2;
1815 
1816   entry1 = (struct mips_elf_la25_stub *) entry1_;
1817   entry2 = (struct mips_elf_la25_stub *) entry2_;
1818   return ((entry1->h->root.root.u.def.section
1819 	   == entry2->h->root.root.u.def.section)
1820 	  && (entry1->h->root.root.u.def.value
1821 	      == entry2->h->root.root.u.def.value));
1822 }
1823 
1824 /* Called by the linker to set up the la25 stub-creation code.  FN is
1825    the linker's implementation of add_stub_function.  Return true on
1826    success.  */
1827 
1828 bfd_boolean
1829 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1830 			  asection *(*fn) (const char *, asection *,
1831 					   asection *))
1832 {
1833   struct mips_elf_link_hash_table *htab;
1834 
1835   htab = mips_elf_hash_table (info);
1836   if (htab == NULL)
1837     return FALSE;
1838 
1839   htab->add_stub_section = fn;
1840   htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1841 				      mips_elf_la25_stub_eq, NULL);
1842   if (htab->la25_stubs == NULL)
1843     return FALSE;
1844 
1845   return TRUE;
1846 }
1847 
1848 /* Return true if H is a locally-defined PIC function, in the sense
1849    that it or its fn_stub might need $25 to be valid on entry.
1850    Note that MIPS16 functions set up $gp using PC-relative instructions,
1851    so they themselves never need $25 to be valid.  Only non-MIPS16
1852    entry points are of interest here.  */
1853 
1854 static bfd_boolean
1855 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1856 {
1857   return ((h->root.root.type == bfd_link_hash_defined
1858 	   || h->root.root.type == bfd_link_hash_defweak)
1859 	  && h->root.def_regular
1860 	  && !bfd_is_abs_section (h->root.root.u.def.section)
1861 	  && !bfd_is_und_section (h->root.root.u.def.section)
1862 	  && (!ELF_ST_IS_MIPS16 (h->root.other)
1863 	      || (h->fn_stub && h->need_fn_stub))
1864 	  && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1865 	      || ELF_ST_IS_MIPS_PIC (h->root.other)));
1866 }
1867 
1868 /* Set *SEC to the input section that contains the target of STUB.
1869    Return the offset of the target from the start of that section.  */
1870 
1871 static bfd_vma
1872 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1873 			  asection **sec)
1874 {
1875   if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1876     {
1877       BFD_ASSERT (stub->h->need_fn_stub);
1878       *sec = stub->h->fn_stub;
1879       return 0;
1880     }
1881   else
1882     {
1883       *sec = stub->h->root.root.u.def.section;
1884       return stub->h->root.root.u.def.value;
1885     }
1886 }
1887 
1888 /* STUB describes an la25 stub that we have decided to implement
1889    by inserting an LUI/ADDIU pair before the target function.
1890    Create the section and redirect the function symbol to it.  */
1891 
1892 static bfd_boolean
1893 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1894 			 struct bfd_link_info *info)
1895 {
1896   struct mips_elf_link_hash_table *htab;
1897   char *name;
1898   asection *s, *input_section;
1899   unsigned int align;
1900 
1901   htab = mips_elf_hash_table (info);
1902   if (htab == NULL)
1903     return FALSE;
1904 
1905   /* Create a unique name for the new section.  */
1906   name = bfd_malloc (11 + sizeof (".text.stub."));
1907   if (name == NULL)
1908     return FALSE;
1909   sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1910 
1911   /* Create the section.  */
1912   mips_elf_get_la25_target (stub, &input_section);
1913   s = htab->add_stub_section (name, input_section,
1914 			      input_section->output_section);
1915   if (s == NULL)
1916     return FALSE;
1917 
1918   /* Make sure that any padding goes before the stub.  */
1919   align = input_section->alignment_power;
1920   if (!bfd_set_section_alignment (s, align))
1921     return FALSE;
1922   if (align > 3)
1923     s->size = (1 << align) - 8;
1924 
1925   /* Create a symbol for the stub.  */
1926   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1927   stub->stub_section = s;
1928   stub->offset = s->size;
1929 
1930   /* Allocate room for it.  */
1931   s->size += 8;
1932   return TRUE;
1933 }
1934 
1935 /* STUB describes an la25 stub that we have decided to implement
1936    with a separate trampoline.  Allocate room for it and redirect
1937    the function symbol to it.  */
1938 
1939 static bfd_boolean
1940 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1941 			      struct bfd_link_info *info)
1942 {
1943   struct mips_elf_link_hash_table *htab;
1944   asection *s;
1945 
1946   htab = mips_elf_hash_table (info);
1947   if (htab == NULL)
1948     return FALSE;
1949 
1950   /* Create a trampoline section, if we haven't already.  */
1951   s = htab->strampoline;
1952   if (s == NULL)
1953     {
1954       asection *input_section = stub->h->root.root.u.def.section;
1955       s = htab->add_stub_section (".text", NULL,
1956 				  input_section->output_section);
1957       if (s == NULL || !bfd_set_section_alignment (s, 4))
1958 	return FALSE;
1959       htab->strampoline = s;
1960     }
1961 
1962   /* Create a symbol for the stub.  */
1963   mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1964   stub->stub_section = s;
1965   stub->offset = s->size;
1966 
1967   /* Allocate room for it.  */
1968   s->size += 16;
1969   return TRUE;
1970 }
1971 
1972 /* H describes a symbol that needs an la25 stub.  Make sure that an
1973    appropriate stub exists and point H at it.  */
1974 
1975 static bfd_boolean
1976 mips_elf_add_la25_stub (struct bfd_link_info *info,
1977 			struct mips_elf_link_hash_entry *h)
1978 {
1979   struct mips_elf_link_hash_table *htab;
1980   struct mips_elf_la25_stub search, *stub;
1981   bfd_boolean use_trampoline_p;
1982   asection *s;
1983   bfd_vma value;
1984   void **slot;
1985 
1986   /* Describe the stub we want.  */
1987   search.stub_section = NULL;
1988   search.offset = 0;
1989   search.h = h;
1990 
1991   /* See if we've already created an equivalent stub.  */
1992   htab = mips_elf_hash_table (info);
1993   if (htab == NULL)
1994     return FALSE;
1995 
1996   slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
1997   if (slot == NULL)
1998     return FALSE;
1999 
2000   stub = (struct mips_elf_la25_stub *) *slot;
2001   if (stub != NULL)
2002     {
2003       /* We can reuse the existing stub.  */
2004       h->la25_stub = stub;
2005       return TRUE;
2006     }
2007 
2008   /* Create a permanent copy of ENTRY and add it to the hash table.  */
2009   stub = bfd_malloc (sizeof (search));
2010   if (stub == NULL)
2011     return FALSE;
2012   *stub = search;
2013   *slot = stub;
2014 
2015   /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2016      of the section and if we would need no more than 2 nops.  */
2017   value = mips_elf_get_la25_target (stub, &s);
2018   if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2019     value &= ~1;
2020   use_trampoline_p = (value != 0 || s->alignment_power > 4);
2021 
2022   h->la25_stub = stub;
2023   return (use_trampoline_p
2024 	  ? mips_elf_add_la25_trampoline (stub, info)
2025 	  : mips_elf_add_la25_intro (stub, info));
2026 }
2027 
2028 /* A mips_elf_link_hash_traverse callback that is called before sizing
2029    sections.  DATA points to a mips_htab_traverse_info structure.  */
2030 
2031 static bfd_boolean
2032 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2033 {
2034   struct mips_htab_traverse_info *hti;
2035 
2036   hti = (struct mips_htab_traverse_info *) data;
2037   if (!bfd_link_relocatable (hti->info))
2038     mips_elf_check_mips16_stubs (hti->info, h);
2039 
2040   if (mips_elf_local_pic_function_p (h))
2041     {
2042       /* PR 12845: If H is in a section that has been garbage
2043 	 collected it will have its output section set to *ABS*.  */
2044       if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2045 	return TRUE;
2046 
2047       /* H is a function that might need $25 to be valid on entry.
2048 	 If we're creating a non-PIC relocatable object, mark H as
2049 	 being PIC.  If we're creating a non-relocatable object with
2050 	 non-PIC branches and jumps to H, make sure that H has an la25
2051 	 stub.  */
2052       if (bfd_link_relocatable (hti->info))
2053 	{
2054 	  if (!PIC_OBJECT_P (hti->output_bfd))
2055 	    h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2056 	}
2057       else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2058 	{
2059 	  hti->error = TRUE;
2060 	  return FALSE;
2061 	}
2062     }
2063   return TRUE;
2064 }
2065 
2066 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2067    Most mips16 instructions are 16 bits, but these instructions
2068    are 32 bits.
2069 
2070    The format of these instructions is:
2071 
2072    +--------------+--------------------------------+
2073    |     JALX     | X|   Imm 20:16  |   Imm 25:21  |
2074    +--------------+--------------------------------+
2075    |		    Immediate  15:0		   |
2076    +-----------------------------------------------+
2077 
2078    JALX is the 5-bit value 00011.  X is 0 for jal, 1 for jalx.
2079    Note that the immediate value in the first word is swapped.
2080 
2081    When producing a relocatable object file, R_MIPS16_26 is
2082    handled mostly like R_MIPS_26.  In particular, the addend is
2083    stored as a straight 26-bit value in a 32-bit instruction.
2084    (gas makes life simpler for itself by never adjusting a
2085    R_MIPS16_26 reloc to be against a section, so the addend is
2086    always zero).  However, the 32 bit instruction is stored as 2
2087    16-bit values, rather than a single 32-bit value.  In a
2088    big-endian file, the result is the same; in a little-endian
2089    file, the two 16-bit halves of the 32 bit value are swapped.
2090    This is so that a disassembler can recognize the jal
2091    instruction.
2092 
2093    When doing a final link, R_MIPS16_26 is treated as a 32 bit
2094    instruction stored as two 16-bit values.  The addend A is the
2095    contents of the targ26 field.  The calculation is the same as
2096    R_MIPS_26.  When storing the calculated value, reorder the
2097    immediate value as shown above, and don't forget to store the
2098    value as two 16-bit values.
2099 
2100    To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2101    defined as
2102 
2103    big-endian:
2104    +--------+----------------------+
2105    |	    |			   |
2106    |	    |	 targ26-16	   |
2107    |31	  26|25			  0|
2108    +--------+----------------------+
2109 
2110    little-endian:
2111    +----------+------+-------------+
2112    |	      |	     |		   |
2113    |  sub1    |	     |	   sub2	   |
2114    |0	     9|10  15|16	 31|
2115    +----------+--------------------+
2116    where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2117    ((sub1 << 16) | sub2)).
2118 
2119    When producing a relocatable object file, the calculation is
2120    (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2121    When producing a fully linked file, the calculation is
2122    let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2123    ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2124 
2125    The table below lists the other MIPS16 instruction relocations.
2126    Each one is calculated in the same way as the non-MIPS16 relocation
2127    given on the right, but using the extended MIPS16 layout of 16-bit
2128    immediate fields:
2129 
2130 	R_MIPS16_GPREL		R_MIPS_GPREL16
2131 	R_MIPS16_GOT16		R_MIPS_GOT16
2132 	R_MIPS16_CALL16		R_MIPS_CALL16
2133 	R_MIPS16_HI16		R_MIPS_HI16
2134 	R_MIPS16_LO16		R_MIPS_LO16
2135 
2136    A typical instruction will have a format like this:
2137 
2138    +--------------+--------------------------------+
2139    |    EXTEND    |     Imm 10:5    |   Imm 15:11  |
2140    +--------------+--------------------------------+
2141    |    Major     |   rx   |   ry   |   Imm  4:0   |
2142    +--------------+--------------------------------+
2143 
2144    EXTEND is the five bit value 11110.  Major is the instruction
2145    opcode.
2146 
2147    All we need to do here is shuffle the bits appropriately.
2148    As above, the two 16-bit halves must be swapped on a
2149    little-endian system.
2150 
2151    Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2152    relocatable field is shifted by 1 rather than 2 and the same bit
2153    shuffling is done as with the relocations above.  */
2154 
2155 static inline bfd_boolean
2156 mips16_reloc_p (int r_type)
2157 {
2158   switch (r_type)
2159     {
2160     case R_MIPS16_26:
2161     case R_MIPS16_GPREL:
2162     case R_MIPS16_GOT16:
2163     case R_MIPS16_CALL16:
2164     case R_MIPS16_HI16:
2165     case R_MIPS16_LO16:
2166     case R_MIPS16_TLS_GD:
2167     case R_MIPS16_TLS_LDM:
2168     case R_MIPS16_TLS_DTPREL_HI16:
2169     case R_MIPS16_TLS_DTPREL_LO16:
2170     case R_MIPS16_TLS_GOTTPREL:
2171     case R_MIPS16_TLS_TPREL_HI16:
2172     case R_MIPS16_TLS_TPREL_LO16:
2173     case R_MIPS16_PC16_S1:
2174       return TRUE;
2175 
2176     default:
2177       return FALSE;
2178     }
2179 }
2180 
2181 /* Check if a microMIPS reloc.  */
2182 
2183 static inline bfd_boolean
2184 micromips_reloc_p (unsigned int r_type)
2185 {
2186   return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2187 }
2188 
2189 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2190    on a little-endian system.  This does not apply to R_MICROMIPS_PC7_S1
2191    and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.  */
2192 
2193 static inline bfd_boolean
2194 micromips_reloc_shuffle_p (unsigned int r_type)
2195 {
2196   return (micromips_reloc_p (r_type)
2197 	  && r_type != R_MICROMIPS_PC7_S1
2198 	  && r_type != R_MICROMIPS_PC10_S1);
2199 }
2200 
2201 static inline bfd_boolean
2202 got16_reloc_p (int r_type)
2203 {
2204   return (r_type == R_MIPS_GOT16
2205 	  || r_type == R_MIPS16_GOT16
2206 	  || r_type == R_MICROMIPS_GOT16);
2207 }
2208 
2209 static inline bfd_boolean
2210 call16_reloc_p (int r_type)
2211 {
2212   return (r_type == R_MIPS_CALL16
2213 	  || r_type == R_MIPS16_CALL16
2214 	  || r_type == R_MICROMIPS_CALL16);
2215 }
2216 
2217 static inline bfd_boolean
2218 got_disp_reloc_p (unsigned int r_type)
2219 {
2220   return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2221 }
2222 
2223 static inline bfd_boolean
2224 got_page_reloc_p (unsigned int r_type)
2225 {
2226   return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2227 }
2228 
2229 static inline bfd_boolean
2230 got_lo16_reloc_p (unsigned int r_type)
2231 {
2232   return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2233 }
2234 
2235 static inline bfd_boolean
2236 call_hi16_reloc_p (unsigned int r_type)
2237 {
2238   return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2239 }
2240 
2241 static inline bfd_boolean
2242 call_lo16_reloc_p (unsigned int r_type)
2243 {
2244   return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2245 }
2246 
2247 static inline bfd_boolean
2248 hi16_reloc_p (int r_type)
2249 {
2250   return (r_type == R_MIPS_HI16
2251 	  || r_type == R_MIPS16_HI16
2252 	  || r_type == R_MICROMIPS_HI16
2253 	  || r_type == R_MIPS_PCHI16);
2254 }
2255 
2256 static inline bfd_boolean
2257 lo16_reloc_p (int r_type)
2258 {
2259   return (r_type == R_MIPS_LO16
2260 	  || r_type == R_MIPS16_LO16
2261 	  || r_type == R_MICROMIPS_LO16
2262 	  || r_type == R_MIPS_PCLO16);
2263 }
2264 
2265 static inline bfd_boolean
2266 mips16_call_reloc_p (int r_type)
2267 {
2268   return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2269 }
2270 
2271 static inline bfd_boolean
2272 jal_reloc_p (int r_type)
2273 {
2274   return (r_type == R_MIPS_26
2275 	  || r_type == R_MIPS16_26
2276 	  || r_type == R_MICROMIPS_26_S1);
2277 }
2278 
2279 static inline bfd_boolean
2280 b_reloc_p (int r_type)
2281 {
2282   return (r_type == R_MIPS_PC26_S2
2283 	  || r_type == R_MIPS_PC21_S2
2284 	  || r_type == R_MIPS_PC16
2285 	  || r_type == R_MIPS_GNU_REL16_S2
2286 	  || r_type == R_MIPS16_PC16_S1
2287 	  || r_type == R_MICROMIPS_PC16_S1
2288 	  || r_type == R_MICROMIPS_PC10_S1
2289 	  || r_type == R_MICROMIPS_PC7_S1);
2290 }
2291 
2292 static inline bfd_boolean
2293 aligned_pcrel_reloc_p (int r_type)
2294 {
2295   return (r_type == R_MIPS_PC18_S3
2296 	  || r_type == R_MIPS_PC19_S2);
2297 }
2298 
2299 static inline bfd_boolean
2300 branch_reloc_p (int r_type)
2301 {
2302   return (r_type == R_MIPS_26
2303 	  || r_type == R_MIPS_PC26_S2
2304 	  || r_type == R_MIPS_PC21_S2
2305 	  || r_type == R_MIPS_PC16
2306 	  || r_type == R_MIPS_GNU_REL16_S2);
2307 }
2308 
2309 static inline bfd_boolean
2310 mips16_branch_reloc_p (int r_type)
2311 {
2312   return (r_type == R_MIPS16_26
2313 	  || r_type == R_MIPS16_PC16_S1);
2314 }
2315 
2316 static inline bfd_boolean
2317 micromips_branch_reloc_p (int r_type)
2318 {
2319   return (r_type == R_MICROMIPS_26_S1
2320 	  || r_type == R_MICROMIPS_PC16_S1
2321 	  || r_type == R_MICROMIPS_PC10_S1
2322 	  || r_type == R_MICROMIPS_PC7_S1);
2323 }
2324 
2325 static inline bfd_boolean
2326 tls_gd_reloc_p (unsigned int r_type)
2327 {
2328   return (r_type == R_MIPS_TLS_GD
2329 	  || r_type == R_MIPS16_TLS_GD
2330 	  || r_type == R_MICROMIPS_TLS_GD);
2331 }
2332 
2333 static inline bfd_boolean
2334 tls_ldm_reloc_p (unsigned int r_type)
2335 {
2336   return (r_type == R_MIPS_TLS_LDM
2337 	  || r_type == R_MIPS16_TLS_LDM
2338 	  || r_type == R_MICROMIPS_TLS_LDM);
2339 }
2340 
2341 static inline bfd_boolean
2342 tls_gottprel_reloc_p (unsigned int r_type)
2343 {
2344   return (r_type == R_MIPS_TLS_GOTTPREL
2345 	  || r_type == R_MIPS16_TLS_GOTTPREL
2346 	  || r_type == R_MICROMIPS_TLS_GOTTPREL);
2347 }
2348 
2349 void
2350 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2351 			       bfd_boolean jal_shuffle, bfd_byte *data)
2352 {
2353   bfd_vma first, second, val;
2354 
2355   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2356     return;
2357 
2358   /* Pick up the first and second halfwords of the instruction.  */
2359   first = bfd_get_16 (abfd, data);
2360   second = bfd_get_16 (abfd, data + 2);
2361   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2362     val = first << 16 | second;
2363   else if (r_type != R_MIPS16_26)
2364     val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2365 	   | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2366   else
2367     val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2368 	   | ((first & 0x1f) << 21) | second);
2369   bfd_put_32 (abfd, val, data);
2370 }
2371 
2372 void
2373 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2374 			     bfd_boolean jal_shuffle, bfd_byte *data)
2375 {
2376   bfd_vma first, second, val;
2377 
2378   if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2379     return;
2380 
2381   val = bfd_get_32 (abfd, data);
2382   if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383     {
2384       second = val & 0xffff;
2385       first = val >> 16;
2386     }
2387   else if (r_type != R_MIPS16_26)
2388     {
2389       second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2390       first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2391     }
2392   else
2393     {
2394       second = val & 0xffff;
2395       first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2396 	       | ((val >> 21) & 0x1f);
2397     }
2398   bfd_put_16 (abfd, second, data + 2);
2399   bfd_put_16 (abfd, first, data);
2400 }
2401 
2402 bfd_reloc_status_type
2403 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2404 			       arelent *reloc_entry, asection *input_section,
2405 			       bfd_boolean relocatable, void *data, bfd_vma gp)
2406 {
2407   bfd_vma relocation;
2408   bfd_signed_vma val;
2409   bfd_reloc_status_type status;
2410 
2411   if (bfd_is_com_section (symbol->section))
2412     relocation = 0;
2413   else
2414     relocation = symbol->value;
2415 
2416   relocation += symbol->section->output_section->vma;
2417   relocation += symbol->section->output_offset;
2418 
2419   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2420     return bfd_reloc_outofrange;
2421 
2422   /* Set val to the offset into the section or symbol.  */
2423   val = reloc_entry->addend;
2424 
2425   _bfd_mips_elf_sign_extend (val, 16);
2426 
2427   /* Adjust val for the final section location and GP value.  If we
2428      are producing relocatable output, we don't want to do this for
2429      an external symbol.  */
2430   if (! relocatable
2431       || (symbol->flags & BSF_SECTION_SYM) != 0)
2432     val += relocation - gp;
2433 
2434   if (reloc_entry->howto->partial_inplace)
2435     {
2436       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2437 				       (bfd_byte *) data
2438 				       + reloc_entry->address);
2439       if (status != bfd_reloc_ok)
2440 	return status;
2441     }
2442   else
2443     reloc_entry->addend = val;
2444 
2445   if (relocatable)
2446     reloc_entry->address += input_section->output_offset;
2447 
2448   return bfd_reloc_ok;
2449 }
2450 
2451 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2452    R_MIPS_GOT16.  REL is the relocation, INPUT_SECTION is the section
2453    that contains the relocation field and DATA points to the start of
2454    INPUT_SECTION.  */
2455 
2456 struct mips_hi16
2457 {
2458   struct mips_hi16 *next;
2459   bfd_byte *data;
2460   asection *input_section;
2461   arelent rel;
2462 };
2463 
2464 /* FIXME: This should not be a static variable.  */
2465 
2466 static struct mips_hi16 *mips_hi16_list;
2467 
2468 /* A howto special_function for REL *HI16 relocations.  We can only
2469    calculate the correct value once we've seen the partnering
2470    *LO16 relocation, so just save the information for later.
2471 
2472    The ABI requires that the *LO16 immediately follow the *HI16.
2473    However, as a GNU extension, we permit an arbitrary number of
2474    *HI16s to be associated with a single *LO16.  This significantly
2475    simplies the relocation handling in gcc.  */
2476 
2477 bfd_reloc_status_type
2478 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2479 			  asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2480 			  asection *input_section, bfd *output_bfd,
2481 			  char **error_message ATTRIBUTE_UNUSED)
2482 {
2483   struct mips_hi16 *n;
2484 
2485   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2486     return bfd_reloc_outofrange;
2487 
2488   n = bfd_malloc (sizeof *n);
2489   if (n == NULL)
2490     return bfd_reloc_outofrange;
2491 
2492   n->next = mips_hi16_list;
2493   n->data = data;
2494   n->input_section = input_section;
2495   n->rel = *reloc_entry;
2496   mips_hi16_list = n;
2497 
2498   if (output_bfd != NULL)
2499     reloc_entry->address += input_section->output_offset;
2500 
2501   return bfd_reloc_ok;
2502 }
2503 
2504 /* A howto special_function for REL R_MIPS*_GOT16 relocations.  This is just
2505    like any other 16-bit relocation when applied to global symbols, but is
2506    treated in the same as R_MIPS_HI16 when applied to local symbols.  */
2507 
2508 bfd_reloc_status_type
2509 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2510 			   void *data, asection *input_section,
2511 			   bfd *output_bfd, char **error_message)
2512 {
2513   if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2514       || bfd_is_und_section (bfd_asymbol_section (symbol))
2515       || bfd_is_com_section (bfd_asymbol_section (symbol)))
2516     /* The relocation is against a global symbol.  */
2517     return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2518 					input_section, output_bfd,
2519 					error_message);
2520 
2521   return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2522 				   input_section, output_bfd, error_message);
2523 }
2524 
2525 /* A howto special_function for REL *LO16 relocations.  The *LO16 itself
2526    is a straightforward 16 bit inplace relocation, but we must deal with
2527    any partnering high-part relocations as well.  */
2528 
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 			  void *data, asection *input_section,
2532 			  bfd *output_bfd, char **error_message)
2533 {
2534   bfd_vma vallo;
2535   bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2536 
2537   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2538     return bfd_reloc_outofrange;
2539 
2540   _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2541 				 location);
2542   vallo = bfd_get_32 (abfd, location);
2543   _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2544 			       location);
2545 
2546   while (mips_hi16_list != NULL)
2547     {
2548       bfd_reloc_status_type ret;
2549       struct mips_hi16 *hi;
2550 
2551       hi = mips_hi16_list;
2552 
2553       /* R_MIPS*_GOT16 relocations are something of a special case.  We
2554 	 want to install the addend in the same way as for a R_MIPS*_HI16
2555 	 relocation (with a rightshift of 16).  However, since GOT16
2556 	 relocations can also be used with global symbols, their howto
2557 	 has a rightshift of 0.  */
2558       if (hi->rel.howto->type == R_MIPS_GOT16)
2559 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2560       else if (hi->rel.howto->type == R_MIPS16_GOT16)
2561 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2562       else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2563 	hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2564 
2565       /* VALLO is a signed 16-bit number.  Bias it by 0x8000 so that any
2566 	 carry or borrow will induce a change of +1 or -1 in the high part.  */
2567       hi->rel.addend += (vallo + 0x8000) & 0xffff;
2568 
2569       ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2570 					 hi->input_section, output_bfd,
2571 					 error_message);
2572       if (ret != bfd_reloc_ok)
2573 	return ret;
2574 
2575       mips_hi16_list = hi->next;
2576       free (hi);
2577     }
2578 
2579   return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2580 				      input_section, output_bfd,
2581 				      error_message);
2582 }
2583 
2584 /* A generic howto special_function.  This calculates and installs the
2585    relocation itself, thus avoiding the oft-discussed problems in
2586    bfd_perform_relocation and bfd_install_relocation.  */
2587 
2588 bfd_reloc_status_type
2589 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2590 			     asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2591 			     asection *input_section, bfd *output_bfd,
2592 			     char **error_message ATTRIBUTE_UNUSED)
2593 {
2594   bfd_signed_vma val;
2595   bfd_reloc_status_type status;
2596   bfd_boolean relocatable;
2597 
2598   relocatable = (output_bfd != NULL);
2599 
2600   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2601     return bfd_reloc_outofrange;
2602 
2603   /* Build up the field adjustment in VAL.  */
2604   val = 0;
2605   if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2606     {
2607       /* Either we're calculating the final field value or we have a
2608 	 relocation against a section symbol.  Add in the section's
2609 	 offset or address.  */
2610       val += symbol->section->output_section->vma;
2611       val += symbol->section->output_offset;
2612     }
2613 
2614   if (!relocatable)
2615     {
2616       /* We're calculating the final field value.  Add in the symbol's value
2617 	 and, if pc-relative, subtract the address of the field itself.  */
2618       val += symbol->value;
2619       if (reloc_entry->howto->pc_relative)
2620 	{
2621 	  val -= input_section->output_section->vma;
2622 	  val -= input_section->output_offset;
2623 	  val -= reloc_entry->address;
2624 	}
2625     }
2626 
2627   /* VAL is now the final adjustment.  If we're keeping this relocation
2628      in the output file, and if the relocation uses a separate addend,
2629      we just need to add VAL to that addend.  Otherwise we need to add
2630      VAL to the relocation field itself.  */
2631   if (relocatable && !reloc_entry->howto->partial_inplace)
2632     reloc_entry->addend += val;
2633   else
2634     {
2635       bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2636 
2637       /* Add in the separate addend, if any.  */
2638       val += reloc_entry->addend;
2639 
2640       /* Add VAL to the relocation field.  */
2641       _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2642 				     location);
2643       status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2644 				       location);
2645       _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2646 				   location);
2647 
2648       if (status != bfd_reloc_ok)
2649 	return status;
2650     }
2651 
2652   if (relocatable)
2653     reloc_entry->address += input_section->output_offset;
2654 
2655   return bfd_reloc_ok;
2656 }
2657 
2658 /* Swap an entry in a .gptab section.  Note that these routines rely
2659    on the equivalence of the two elements of the union.  */
2660 
2661 static void
2662 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2663 			      Elf32_gptab *in)
2664 {
2665   in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2666   in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2667 }
2668 
2669 static void
2670 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2671 			       Elf32_External_gptab *ex)
2672 {
2673   H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2674   H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2675 }
2676 
2677 static void
2678 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2679 				Elf32_External_compact_rel *ex)
2680 {
2681   H_PUT_32 (abfd, in->id1, ex->id1);
2682   H_PUT_32 (abfd, in->num, ex->num);
2683   H_PUT_32 (abfd, in->id2, ex->id2);
2684   H_PUT_32 (abfd, in->offset, ex->offset);
2685   H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2686   H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2687 }
2688 
2689 static void
2690 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2691 			   Elf32_External_crinfo *ex)
2692 {
2693   unsigned long l;
2694 
2695   l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2696        | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2697        | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2698        | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2699   H_PUT_32 (abfd, l, ex->info);
2700   H_PUT_32 (abfd, in->konst, ex->konst);
2701   H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2702 }
2703 
2704 /* A .reginfo section holds a single Elf32_RegInfo structure.  These
2705    routines swap this structure in and out.  They are used outside of
2706    BFD, so they are globally visible.  */
2707 
2708 void
2709 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2710 				Elf32_RegInfo *in)
2711 {
2712   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2713   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2714   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2715   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2716   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2717   in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2718 }
2719 
2720 void
2721 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2722 				 Elf32_External_RegInfo *ex)
2723 {
2724   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2725   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2726   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2727   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2728   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2729   H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2730 }
2731 
2732 /* In the 64 bit ABI, the .MIPS.options section holds register
2733    information in an Elf64_Reginfo structure.  These routines swap
2734    them in and out.  They are globally visible because they are used
2735    outside of BFD.  These routines are here so that gas can call them
2736    without worrying about whether the 64 bit ABI has been included.  */
2737 
2738 void
2739 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2740 				Elf64_Internal_RegInfo *in)
2741 {
2742   in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2743   in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2744   in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2745   in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2746   in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2747   in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2748   in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2749 }
2750 
2751 void
2752 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2753 				 Elf64_External_RegInfo *ex)
2754 {
2755   H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2756   H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2757   H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2758   H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2759   H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2760   H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2761   H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2762 }
2763 
2764 /* Swap in an options header.  */
2765 
2766 void
2767 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2768 			      Elf_Internal_Options *in)
2769 {
2770   in->kind = H_GET_8 (abfd, ex->kind);
2771   in->size = H_GET_8 (abfd, ex->size);
2772   in->section = H_GET_16 (abfd, ex->section);
2773   in->info = H_GET_32 (abfd, ex->info);
2774 }
2775 
2776 /* Swap out an options header.  */
2777 
2778 void
2779 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2780 			       Elf_External_Options *ex)
2781 {
2782   H_PUT_8 (abfd, in->kind, ex->kind);
2783   H_PUT_8 (abfd, in->size, ex->size);
2784   H_PUT_16 (abfd, in->section, ex->section);
2785   H_PUT_32 (abfd, in->info, ex->info);
2786 }
2787 
2788 /* Swap in an abiflags structure.  */
2789 
2790 void
2791 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2792 				  const Elf_External_ABIFlags_v0 *ex,
2793 				  Elf_Internal_ABIFlags_v0 *in)
2794 {
2795   in->version = H_GET_16 (abfd, ex->version);
2796   in->isa_level = H_GET_8 (abfd, ex->isa_level);
2797   in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2798   in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2799   in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2800   in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2801   in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2802   in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2803   in->ases = H_GET_32 (abfd, ex->ases);
2804   in->flags1 = H_GET_32 (abfd, ex->flags1);
2805   in->flags2 = H_GET_32 (abfd, ex->flags2);
2806 }
2807 
2808 /* Swap out an abiflags structure.  */
2809 
2810 void
2811 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2812 				   const Elf_Internal_ABIFlags_v0 *in,
2813 				   Elf_External_ABIFlags_v0 *ex)
2814 {
2815   H_PUT_16 (abfd, in->version, ex->version);
2816   H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2817   H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2818   H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2819   H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2820   H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2821   H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2822   H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2823   H_PUT_32 (abfd, in->ases, ex->ases);
2824   H_PUT_32 (abfd, in->flags1, ex->flags1);
2825   H_PUT_32 (abfd, in->flags2, ex->flags2);
2826 }
2827 
2828 /* This function is called via qsort() to sort the dynamic relocation
2829    entries by increasing r_symndx value.  */
2830 
2831 static int
2832 sort_dynamic_relocs (const void *arg1, const void *arg2)
2833 {
2834   Elf_Internal_Rela int_reloc1;
2835   Elf_Internal_Rela int_reloc2;
2836   int diff;
2837 
2838   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2839   bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2840 
2841   diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2842   if (diff != 0)
2843     return diff;
2844 
2845   if (int_reloc1.r_offset < int_reloc2.r_offset)
2846     return -1;
2847   if (int_reloc1.r_offset > int_reloc2.r_offset)
2848     return 1;
2849   return 0;
2850 }
2851 
2852 /* Like sort_dynamic_relocs, but used for elf64 relocations.  */
2853 
2854 static int
2855 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2856 			const void *arg2 ATTRIBUTE_UNUSED)
2857 {
2858 #ifdef BFD64
2859   Elf_Internal_Rela int_reloc1[3];
2860   Elf_Internal_Rela int_reloc2[3];
2861 
2862   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2863     (reldyn_sorting_bfd, arg1, int_reloc1);
2864   (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2865     (reldyn_sorting_bfd, arg2, int_reloc2);
2866 
2867   if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2868     return -1;
2869   if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2870     return 1;
2871 
2872   if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2873     return -1;
2874   if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2875     return 1;
2876   return 0;
2877 #else
2878   abort ();
2879 #endif
2880 }
2881 
2882 
2883 /* This routine is used to write out ECOFF debugging external symbol
2884    information.  It is called via mips_elf_link_hash_traverse.  The
2885    ECOFF external symbol information must match the ELF external
2886    symbol information.  Unfortunately, at this point we don't know
2887    whether a symbol is required by reloc information, so the two
2888    tables may wind up being different.  We must sort out the external
2889    symbol information before we can set the final size of the .mdebug
2890    section, and we must set the size of the .mdebug section before we
2891    can relocate any sections, and we can't know which symbols are
2892    required by relocation until we relocate the sections.
2893    Fortunately, it is relatively unlikely that any symbol will be
2894    stripped but required by a reloc.  In particular, it can not happen
2895    when generating a final executable.  */
2896 
2897 static bfd_boolean
2898 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2899 {
2900   struct extsym_info *einfo = data;
2901   bfd_boolean strip;
2902   asection *sec, *output_section;
2903 
2904   if (h->root.indx == -2)
2905     strip = FALSE;
2906   else if ((h->root.def_dynamic
2907 	    || h->root.ref_dynamic
2908 	    || h->root.type == bfd_link_hash_new)
2909 	   && !h->root.def_regular
2910 	   && !h->root.ref_regular)
2911     strip = TRUE;
2912   else if (einfo->info->strip == strip_all
2913 	   || (einfo->info->strip == strip_some
2914 	       && bfd_hash_lookup (einfo->info->keep_hash,
2915 				   h->root.root.root.string,
2916 				   FALSE, FALSE) == NULL))
2917     strip = TRUE;
2918   else
2919     strip = FALSE;
2920 
2921   if (strip)
2922     return TRUE;
2923 
2924   if (h->esym.ifd == -2)
2925     {
2926       h->esym.jmptbl = 0;
2927       h->esym.cobol_main = 0;
2928       h->esym.weakext = 0;
2929       h->esym.reserved = 0;
2930       h->esym.ifd = ifdNil;
2931       h->esym.asym.value = 0;
2932       h->esym.asym.st = stGlobal;
2933 
2934       if (h->root.root.type == bfd_link_hash_undefined
2935 	  || h->root.root.type == bfd_link_hash_undefweak)
2936 	{
2937 	  const char *name;
2938 
2939 	  /* Use undefined class.  Also, set class and type for some
2940 	     special symbols.  */
2941 	  name = h->root.root.root.string;
2942 	  if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2943 	      || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2944 	    {
2945 	      h->esym.asym.sc = scData;
2946 	      h->esym.asym.st = stLabel;
2947 	      h->esym.asym.value = 0;
2948 	    }
2949 	  else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2950 	    {
2951 	      h->esym.asym.sc = scAbs;
2952 	      h->esym.asym.st = stLabel;
2953 	      h->esym.asym.value =
2954 		mips_elf_hash_table (einfo->info)->procedure_count;
2955 	    }
2956 	  else
2957 	    h->esym.asym.sc = scUndefined;
2958 	}
2959       else if (h->root.root.type != bfd_link_hash_defined
2960 	  && h->root.root.type != bfd_link_hash_defweak)
2961 	h->esym.asym.sc = scAbs;
2962       else
2963 	{
2964 	  const char *name;
2965 
2966 	  sec = h->root.root.u.def.section;
2967 	  output_section = sec->output_section;
2968 
2969 	  /* When making a shared library and symbol h is the one from
2970 	     the another shared library, OUTPUT_SECTION may be null.  */
2971 	  if (output_section == NULL)
2972 	    h->esym.asym.sc = scUndefined;
2973 	  else
2974 	    {
2975 	      name = bfd_section_name (output_section);
2976 
2977 	      if (strcmp (name, ".text") == 0)
2978 		h->esym.asym.sc = scText;
2979 	      else if (strcmp (name, ".data") == 0)
2980 		h->esym.asym.sc = scData;
2981 	      else if (strcmp (name, ".sdata") == 0)
2982 		h->esym.asym.sc = scSData;
2983 	      else if (strcmp (name, ".rodata") == 0
2984 		       || strcmp (name, ".rdata") == 0)
2985 		h->esym.asym.sc = scRData;
2986 	      else if (strcmp (name, ".bss") == 0)
2987 		h->esym.asym.sc = scBss;
2988 	      else if (strcmp (name, ".sbss") == 0)
2989 		h->esym.asym.sc = scSBss;
2990 	      else if (strcmp (name, ".init") == 0)
2991 		h->esym.asym.sc = scInit;
2992 	      else if (strcmp (name, ".fini") == 0)
2993 		h->esym.asym.sc = scFini;
2994 	      else
2995 		h->esym.asym.sc = scAbs;
2996 	    }
2997 	}
2998 
2999       h->esym.asym.reserved = 0;
3000       h->esym.asym.index = indexNil;
3001     }
3002 
3003   if (h->root.root.type == bfd_link_hash_common)
3004     h->esym.asym.value = h->root.root.u.c.size;
3005   else if (h->root.root.type == bfd_link_hash_defined
3006 	   || h->root.root.type == bfd_link_hash_defweak)
3007     {
3008       if (h->esym.asym.sc == scCommon)
3009 	h->esym.asym.sc = scBss;
3010       else if (h->esym.asym.sc == scSCommon)
3011 	h->esym.asym.sc = scSBss;
3012 
3013       sec = h->root.root.u.def.section;
3014       output_section = sec->output_section;
3015       if (output_section != NULL)
3016 	h->esym.asym.value = (h->root.root.u.def.value
3017 			      + sec->output_offset
3018 			      + output_section->vma);
3019       else
3020 	h->esym.asym.value = 0;
3021     }
3022   else
3023     {
3024       struct mips_elf_link_hash_entry *hd = h;
3025 
3026       while (hd->root.root.type == bfd_link_hash_indirect)
3027 	hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3028 
3029       if (hd->needs_lazy_stub)
3030 	{
3031 	  BFD_ASSERT (hd->root.plt.plist != NULL);
3032 	  BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3033 	  /* Set type and value for a symbol with a function stub.  */
3034 	  h->esym.asym.st = stProc;
3035 	  sec = hd->root.root.u.def.section;
3036 	  if (sec == NULL)
3037 	    h->esym.asym.value = 0;
3038 	  else
3039 	    {
3040 	      output_section = sec->output_section;
3041 	      if (output_section != NULL)
3042 		h->esym.asym.value = (hd->root.plt.plist->stub_offset
3043 				      + sec->output_offset
3044 				      + output_section->vma);
3045 	      else
3046 		h->esym.asym.value = 0;
3047 	    }
3048 	}
3049     }
3050 
3051   if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3052 				      h->root.root.root.string,
3053 				      &h->esym))
3054     {
3055       einfo->failed = TRUE;
3056       return FALSE;
3057     }
3058 
3059   return TRUE;
3060 }
3061 
3062 /* A comparison routine used to sort .gptab entries.  */
3063 
3064 static int
3065 gptab_compare (const void *p1, const void *p2)
3066 {
3067   const Elf32_gptab *a1 = p1;
3068   const Elf32_gptab *a2 = p2;
3069 
3070   return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3071 }
3072 
3073 /* Functions to manage the got entry hash table.  */
3074 
3075 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3076    hash number.  */
3077 
3078 static INLINE hashval_t
3079 mips_elf_hash_bfd_vma (bfd_vma addr)
3080 {
3081 #ifdef BFD64
3082   return addr + (addr >> 32);
3083 #else
3084   return addr;
3085 #endif
3086 }
3087 
3088 static hashval_t
3089 mips_elf_got_entry_hash (const void *entry_)
3090 {
3091   const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3092 
3093   return (entry->symndx
3094 	  + ((entry->tls_type == GOT_TLS_LDM) << 18)
3095 	  + (entry->tls_type == GOT_TLS_LDM ? 0
3096 	     : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3097 	     : entry->symndx >= 0 ? (entry->abfd->id
3098 				     + mips_elf_hash_bfd_vma (entry->d.addend))
3099 	     : entry->d.h->root.root.root.hash));
3100 }
3101 
3102 static int
3103 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3104 {
3105   const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3106   const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3107 
3108   return (e1->symndx == e2->symndx
3109 	  && e1->tls_type == e2->tls_type
3110 	  && (e1->tls_type == GOT_TLS_LDM ? TRUE
3111 	      : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3112 	      : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3113 				   && e1->d.addend == e2->d.addend)
3114 	      : e2->abfd && e1->d.h == e2->d.h));
3115 }
3116 
3117 static hashval_t
3118 mips_got_page_ref_hash (const void *ref_)
3119 {
3120   const struct mips_got_page_ref *ref;
3121 
3122   ref = (const struct mips_got_page_ref *) ref_;
3123   return ((ref->symndx >= 0
3124 	   ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3125 	   : ref->u.h->root.root.root.hash)
3126 	  + mips_elf_hash_bfd_vma (ref->addend));
3127 }
3128 
3129 static int
3130 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3131 {
3132   const struct mips_got_page_ref *ref1, *ref2;
3133 
3134   ref1 = (const struct mips_got_page_ref *) ref1_;
3135   ref2 = (const struct mips_got_page_ref *) ref2_;
3136   return (ref1->symndx == ref2->symndx
3137 	  && (ref1->symndx < 0
3138 	      ? ref1->u.h == ref2->u.h
3139 	      : ref1->u.abfd == ref2->u.abfd)
3140 	  && ref1->addend == ref2->addend);
3141 }
3142 
3143 static hashval_t
3144 mips_got_page_entry_hash (const void *entry_)
3145 {
3146   const struct mips_got_page_entry *entry;
3147 
3148   entry = (const struct mips_got_page_entry *) entry_;
3149   return entry->sec->id;
3150 }
3151 
3152 static int
3153 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3154 {
3155   const struct mips_got_page_entry *entry1, *entry2;
3156 
3157   entry1 = (const struct mips_got_page_entry *) entry1_;
3158   entry2 = (const struct mips_got_page_entry *) entry2_;
3159   return entry1->sec == entry2->sec;
3160 }
3161 
3162 /* Create and return a new mips_got_info structure.  */
3163 
3164 static struct mips_got_info *
3165 mips_elf_create_got_info (bfd *abfd)
3166 {
3167   struct mips_got_info *g;
3168 
3169   g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3170   if (g == NULL)
3171     return NULL;
3172 
3173   g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3174 				    mips_elf_got_entry_eq, NULL);
3175   if (g->got_entries == NULL)
3176     return NULL;
3177 
3178   g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3179 				      mips_got_page_ref_eq, NULL);
3180   if (g->got_page_refs == NULL)
3181     return NULL;
3182 
3183   return g;
3184 }
3185 
3186 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3187    CREATE_P and if ABFD doesn't already have a GOT.  */
3188 
3189 static struct mips_got_info *
3190 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3191 {
3192   struct mips_elf_obj_tdata *tdata;
3193 
3194   if (!is_mips_elf (abfd))
3195     return NULL;
3196 
3197   tdata = mips_elf_tdata (abfd);
3198   if (!tdata->got && create_p)
3199     tdata->got = mips_elf_create_got_info (abfd);
3200   return tdata->got;
3201 }
3202 
3203 /* Record that ABFD should use output GOT G.  */
3204 
3205 static void
3206 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3207 {
3208   struct mips_elf_obj_tdata *tdata;
3209 
3210   BFD_ASSERT (is_mips_elf (abfd));
3211   tdata = mips_elf_tdata (abfd);
3212   if (tdata->got)
3213     {
3214       /* The GOT structure itself and the hash table entries are
3215 	 allocated to a bfd, but the hash tables aren't.  */
3216       htab_delete (tdata->got->got_entries);
3217       htab_delete (tdata->got->got_page_refs);
3218       if (tdata->got->got_page_entries)
3219 	htab_delete (tdata->got->got_page_entries);
3220     }
3221   tdata->got = g;
3222 }
3223 
3224 /* Return the dynamic relocation section.  If it doesn't exist, try to
3225    create a new it if CREATE_P, otherwise return NULL.  Also return NULL
3226    if creation fails.  */
3227 
3228 static asection *
3229 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3230 {
3231   const char *dname;
3232   asection *sreloc;
3233   bfd *dynobj;
3234 
3235   dname = MIPS_ELF_REL_DYN_NAME (info);
3236   dynobj = elf_hash_table (info)->dynobj;
3237   sreloc = bfd_get_linker_section (dynobj, dname);
3238   if (sreloc == NULL && create_p)
3239     {
3240       sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3241 						   (SEC_ALLOC
3242 						    | SEC_LOAD
3243 						    | SEC_HAS_CONTENTS
3244 						    | SEC_IN_MEMORY
3245 						    | SEC_LINKER_CREATED
3246 						    | SEC_READONLY));
3247       if (sreloc == NULL
3248 	  || !bfd_set_section_alignment (sreloc,
3249 					 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3250 	return NULL;
3251     }
3252   return sreloc;
3253 }
3254 
3255 /* Return the GOT_TLS_* type required by relocation type R_TYPE.  */
3256 
3257 static int
3258 mips_elf_reloc_tls_type (unsigned int r_type)
3259 {
3260   if (tls_gd_reloc_p (r_type))
3261     return GOT_TLS_GD;
3262 
3263   if (tls_ldm_reloc_p (r_type))
3264     return GOT_TLS_LDM;
3265 
3266   if (tls_gottprel_reloc_p (r_type))
3267     return GOT_TLS_IE;
3268 
3269   return GOT_TLS_NONE;
3270 }
3271 
3272 /* Return the number of GOT slots needed for GOT TLS type TYPE.  */
3273 
3274 static int
3275 mips_tls_got_entries (unsigned int type)
3276 {
3277   switch (type)
3278     {
3279     case GOT_TLS_GD:
3280     case GOT_TLS_LDM:
3281       return 2;
3282 
3283     case GOT_TLS_IE:
3284       return 1;
3285 
3286     case GOT_TLS_NONE:
3287       return 0;
3288     }
3289   abort ();
3290 }
3291 
3292 /* Count the number of relocations needed for a TLS GOT entry, with
3293    access types from TLS_TYPE, and symbol H (or a local symbol if H
3294    is NULL).  */
3295 
3296 static int
3297 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3298 		     struct elf_link_hash_entry *h)
3299 {
3300   int indx = 0;
3301   bfd_boolean need_relocs = FALSE;
3302   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3303 
3304   if (h != NULL
3305       && h->dynindx != -1
3306       && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3307       && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3308     indx = h->dynindx;
3309 
3310   if ((bfd_link_dll (info) || indx != 0)
3311       && (h == NULL
3312 	  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3313 	  || h->root.type != bfd_link_hash_undefweak))
3314     need_relocs = TRUE;
3315 
3316   if (!need_relocs)
3317     return 0;
3318 
3319   switch (tls_type)
3320     {
3321     case GOT_TLS_GD:
3322       return indx != 0 ? 2 : 1;
3323 
3324     case GOT_TLS_IE:
3325       return 1;
3326 
3327     case GOT_TLS_LDM:
3328       return bfd_link_dll (info) ? 1 : 0;
3329 
3330     default:
3331       return 0;
3332     }
3333 }
3334 
3335 /* Add the number of GOT entries and TLS relocations required by ENTRY
3336    to G.  */
3337 
3338 static void
3339 mips_elf_count_got_entry (struct bfd_link_info *info,
3340 			  struct mips_got_info *g,
3341 			  struct mips_got_entry *entry)
3342 {
3343   if (entry->tls_type)
3344     {
3345       g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3346       g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3347 					entry->symndx < 0
3348 					? &entry->d.h->root : NULL);
3349     }
3350   else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3351     g->local_gotno += 1;
3352   else
3353     g->global_gotno += 1;
3354 }
3355 
3356 /* Output a simple dynamic relocation into SRELOC.  */
3357 
3358 static void
3359 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3360 				    asection *sreloc,
3361 				    unsigned long reloc_index,
3362 				    unsigned long indx,
3363 				    int r_type,
3364 				    bfd_vma offset)
3365 {
3366   Elf_Internal_Rela rel[3];
3367 
3368   memset (rel, 0, sizeof (rel));
3369 
3370   rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3371   rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3372 
3373   if (ABI_64_P (output_bfd))
3374     {
3375       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3376 	(output_bfd, &rel[0],
3377 	 (sreloc->contents
3378 	  + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3379     }
3380   else
3381     bfd_elf32_swap_reloc_out
3382       (output_bfd, &rel[0],
3383        (sreloc->contents
3384 	+ reloc_index * sizeof (Elf32_External_Rel)));
3385 }
3386 
3387 /* Initialize a set of TLS GOT entries for one symbol.  */
3388 
3389 static void
3390 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3391 			       struct mips_got_entry *entry,
3392 			       struct mips_elf_link_hash_entry *h,
3393 			       bfd_vma value)
3394 {
3395   bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3396   struct mips_elf_link_hash_table *htab;
3397   int indx;
3398   asection *sreloc, *sgot;
3399   bfd_vma got_offset, got_offset2;
3400   bfd_boolean need_relocs = FALSE;
3401 
3402   htab = mips_elf_hash_table (info);
3403   if (htab == NULL)
3404     return;
3405 
3406   sgot = htab->root.sgot;
3407 
3408   indx = 0;
3409   if (h != NULL
3410       && h->root.dynindx != -1
3411       && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3412       && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3413     indx = h->root.dynindx;
3414 
3415   if (entry->tls_initialized)
3416     return;
3417 
3418   if ((bfd_link_dll (info) || indx != 0)
3419       && (h == NULL
3420 	  || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3421 	  || h->root.type != bfd_link_hash_undefweak))
3422     need_relocs = TRUE;
3423 
3424   /* MINUS_ONE means the symbol is not defined in this object.  It may not
3425      be defined at all; assume that the value doesn't matter in that
3426      case.  Otherwise complain if we would use the value.  */
3427   BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3428 	      || h->root.root.type == bfd_link_hash_undefweak);
3429 
3430   /* Emit necessary relocations.  */
3431   sreloc = mips_elf_rel_dyn_section (info, FALSE);
3432   got_offset = entry->gotidx;
3433 
3434   switch (entry->tls_type)
3435     {
3436     case GOT_TLS_GD:
3437       /* General Dynamic.  */
3438       got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3439 
3440       if (need_relocs)
3441 	{
3442 	  mips_elf_output_dynamic_relocation
3443 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3444 	     ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3445 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3446 
3447 	  if (indx)
3448 	    mips_elf_output_dynamic_relocation
3449 	      (abfd, sreloc, sreloc->reloc_count++, indx,
3450 	       ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3451 	       sgot->output_offset + sgot->output_section->vma + got_offset2);
3452 	  else
3453 	    MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3454 			       sgot->contents + got_offset2);
3455 	}
3456       else
3457 	{
3458 	  MIPS_ELF_PUT_WORD (abfd, 1,
3459 			     sgot->contents + got_offset);
3460 	  MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3461 			     sgot->contents + got_offset2);
3462 	}
3463       break;
3464 
3465     case GOT_TLS_IE:
3466       /* Initial Exec model.  */
3467       if (need_relocs)
3468 	{
3469 	  if (indx == 0)
3470 	    MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3471 			       sgot->contents + got_offset);
3472 	  else
3473 	    MIPS_ELF_PUT_WORD (abfd, 0,
3474 			       sgot->contents + got_offset);
3475 
3476 	  mips_elf_output_dynamic_relocation
3477 	    (abfd, sreloc, sreloc->reloc_count++, indx,
3478 	     ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3479 	     sgot->output_offset + sgot->output_section->vma + got_offset);
3480 	}
3481       else
3482 	MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3483 			   sgot->contents + got_offset);
3484       break;
3485 
3486     case GOT_TLS_LDM:
3487       /* The initial offset is zero, and the LD offsets will include the
3488 	 bias by DTP_OFFSET.  */
3489       MIPS_ELF_PUT_WORD (abfd, 0,
3490 			 sgot->contents + got_offset
3491 			 + MIPS_ELF_GOT_SIZE (abfd));
3492 
3493       if (!bfd_link_dll (info))
3494 	MIPS_ELF_PUT_WORD (abfd, 1,
3495 			   sgot->contents + got_offset);
3496       else
3497 	mips_elf_output_dynamic_relocation
3498 	  (abfd, sreloc, sreloc->reloc_count++, indx,
3499 	   ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3500 	   sgot->output_offset + sgot->output_section->vma + got_offset);
3501       break;
3502 
3503     default:
3504       abort ();
3505     }
3506 
3507   entry->tls_initialized = TRUE;
3508 }
3509 
3510 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3511    for global symbol H.  .got.plt comes before the GOT, so the offset
3512    will be negative.  */
3513 
3514 static bfd_vma
3515 mips_elf_gotplt_index (struct bfd_link_info *info,
3516 		       struct elf_link_hash_entry *h)
3517 {
3518   bfd_vma got_address, got_value;
3519   struct mips_elf_link_hash_table *htab;
3520 
3521   htab = mips_elf_hash_table (info);
3522   BFD_ASSERT (htab != NULL);
3523 
3524   BFD_ASSERT (h->plt.plist != NULL);
3525   BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3526 
3527   /* Calculate the address of the associated .got.plt entry.  */
3528   got_address = (htab->root.sgotplt->output_section->vma
3529 		 + htab->root.sgotplt->output_offset
3530 		 + (h->plt.plist->gotplt_index
3531 		    * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3532 
3533   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
3534   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3535 	       + htab->root.hgot->root.u.def.section->output_offset
3536 	       + htab->root.hgot->root.u.def.value);
3537 
3538   return got_address - got_value;
3539 }
3540 
3541 /* Return the GOT offset for address VALUE.   If there is not yet a GOT
3542    entry for this value, create one.  If R_SYMNDX refers to a TLS symbol,
3543    create a TLS GOT entry instead.  Return -1 if no satisfactory GOT
3544    offset can be found.  */
3545 
3546 static bfd_vma
3547 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3548 			  bfd_vma value, unsigned long r_symndx,
3549 			  struct mips_elf_link_hash_entry *h, int r_type)
3550 {
3551   struct mips_elf_link_hash_table *htab;
3552   struct mips_got_entry *entry;
3553 
3554   htab = mips_elf_hash_table (info);
3555   BFD_ASSERT (htab != NULL);
3556 
3557   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3558 					   r_symndx, h, r_type);
3559   if (!entry)
3560     return MINUS_ONE;
3561 
3562   if (entry->tls_type)
3563     mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3564   return entry->gotidx;
3565 }
3566 
3567 /* Return the GOT index of global symbol H in the primary GOT.  */
3568 
3569 static bfd_vma
3570 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3571 				   struct elf_link_hash_entry *h)
3572 {
3573   struct mips_elf_link_hash_table *htab;
3574   long global_got_dynindx;
3575   struct mips_got_info *g;
3576   bfd_vma got_index;
3577 
3578   htab = mips_elf_hash_table (info);
3579   BFD_ASSERT (htab != NULL);
3580 
3581   global_got_dynindx = 0;
3582   if (htab->global_gotsym != NULL)
3583     global_got_dynindx = htab->global_gotsym->dynindx;
3584 
3585   /* Once we determine the global GOT entry with the lowest dynamic
3586      symbol table index, we must put all dynamic symbols with greater
3587      indices into the primary GOT.  That makes it easy to calculate the
3588      GOT offset.  */
3589   BFD_ASSERT (h->dynindx >= global_got_dynindx);
3590   g = mips_elf_bfd_got (obfd, FALSE);
3591   got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3592 	       * MIPS_ELF_GOT_SIZE (obfd));
3593   BFD_ASSERT (got_index < htab->root.sgot->size);
3594 
3595   return got_index;
3596 }
3597 
3598 /* Return the GOT index for the global symbol indicated by H, which is
3599    referenced by a relocation of type R_TYPE in IBFD.  */
3600 
3601 static bfd_vma
3602 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3603 			   struct elf_link_hash_entry *h, int r_type)
3604 {
3605   struct mips_elf_link_hash_table *htab;
3606   struct mips_got_info *g;
3607   struct mips_got_entry lookup, *entry;
3608   bfd_vma gotidx;
3609 
3610   htab = mips_elf_hash_table (info);
3611   BFD_ASSERT (htab != NULL);
3612 
3613   g = mips_elf_bfd_got (ibfd, FALSE);
3614   BFD_ASSERT (g);
3615 
3616   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3617   if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3618     return mips_elf_primary_global_got_index (obfd, info, h);
3619 
3620   lookup.abfd = ibfd;
3621   lookup.symndx = -1;
3622   lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3623   entry = htab_find (g->got_entries, &lookup);
3624   BFD_ASSERT (entry);
3625 
3626   gotidx = entry->gotidx;
3627   BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3628 
3629   if (lookup.tls_type)
3630     {
3631       bfd_vma value = MINUS_ONE;
3632 
3633       if ((h->root.type == bfd_link_hash_defined
3634 	   || h->root.type == bfd_link_hash_defweak)
3635 	  && h->root.u.def.section->output_section)
3636 	value = (h->root.u.def.value
3637 		 + h->root.u.def.section->output_offset
3638 		 + h->root.u.def.section->output_section->vma);
3639 
3640       mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3641     }
3642   return gotidx;
3643 }
3644 
3645 /* Find a GOT page entry that points to within 32KB of VALUE.  These
3646    entries are supposed to be placed at small offsets in the GOT, i.e.,
3647    within 32KB of GP.  Return the index of the GOT entry, or -1 if no
3648    entry could be created.  If OFFSETP is nonnull, use it to return the
3649    offset of the GOT entry from VALUE.  */
3650 
3651 static bfd_vma
3652 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3653 		   bfd_vma value, bfd_vma *offsetp)
3654 {
3655   bfd_vma page, got_index;
3656   struct mips_got_entry *entry;
3657 
3658   page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3659   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3660 					   NULL, R_MIPS_GOT_PAGE);
3661 
3662   if (!entry)
3663     return MINUS_ONE;
3664 
3665   got_index = entry->gotidx;
3666 
3667   if (offsetp)
3668     *offsetp = value - entry->d.address;
3669 
3670   return got_index;
3671 }
3672 
3673 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3674    EXTERNAL is true if the relocation was originally against a global
3675    symbol that binds locally.  */
3676 
3677 static bfd_vma
3678 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3679 		      bfd_vma value, bfd_boolean external)
3680 {
3681   struct mips_got_entry *entry;
3682 
3683   /* GOT16 relocations against local symbols are followed by a LO16
3684      relocation; those against global symbols are not.  Thus if the
3685      symbol was originally local, the GOT16 relocation should load the
3686      equivalent of %hi(VALUE), otherwise it should load VALUE itself.  */
3687   if (! external)
3688     value = mips_elf_high (value) << 16;
3689 
3690   /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3691      R_MIPS16_GOT16, R_MIPS_CALL16, etc.  The format of the entry is the
3692      same in all cases.  */
3693   entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3694 					   NULL, R_MIPS_GOT16);
3695   if (entry)
3696     return entry->gotidx;
3697   else
3698     return MINUS_ONE;
3699 }
3700 
3701 /* Returns the offset for the entry at the INDEXth position
3702    in the GOT.  */
3703 
3704 static bfd_vma
3705 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3706 				bfd *input_bfd, bfd_vma got_index)
3707 {
3708   struct mips_elf_link_hash_table *htab;
3709   asection *sgot;
3710   bfd_vma gp;
3711 
3712   htab = mips_elf_hash_table (info);
3713   BFD_ASSERT (htab != NULL);
3714 
3715   sgot = htab->root.sgot;
3716   gp = _bfd_get_gp_value (output_bfd)
3717     + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3718 
3719   return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3720 }
3721 
3722 /* Create and return a local GOT entry for VALUE, which was calculated
3723    from a symbol belonging to INPUT_SECTON.  Return NULL if it could not
3724    be created.  If R_SYMNDX refers to a TLS symbol, create a TLS entry
3725    instead.  */
3726 
3727 static struct mips_got_entry *
3728 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3729 				 bfd *ibfd, bfd_vma value,
3730 				 unsigned long r_symndx,
3731 				 struct mips_elf_link_hash_entry *h,
3732 				 int r_type)
3733 {
3734   struct mips_got_entry lookup, *entry;
3735   void **loc;
3736   struct mips_got_info *g;
3737   struct mips_elf_link_hash_table *htab;
3738   bfd_vma gotidx;
3739 
3740   htab = mips_elf_hash_table (info);
3741   BFD_ASSERT (htab != NULL);
3742 
3743   g = mips_elf_bfd_got (ibfd, FALSE);
3744   if (g == NULL)
3745     {
3746       g = mips_elf_bfd_got (abfd, FALSE);
3747       BFD_ASSERT (g != NULL);
3748     }
3749 
3750   /* This function shouldn't be called for symbols that live in the global
3751      area of the GOT.  */
3752   BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3753 
3754   lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3755   if (lookup.tls_type)
3756     {
3757       lookup.abfd = ibfd;
3758       if (tls_ldm_reloc_p (r_type))
3759 	{
3760 	  lookup.symndx = 0;
3761 	  lookup.d.addend = 0;
3762 	}
3763       else if (h == NULL)
3764 	{
3765 	  lookup.symndx = r_symndx;
3766 	  lookup.d.addend = 0;
3767 	}
3768       else
3769 	{
3770 	  lookup.symndx = -1;
3771 	  lookup.d.h = h;
3772 	}
3773 
3774       entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3775       BFD_ASSERT (entry);
3776 
3777       gotidx = entry->gotidx;
3778       BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3779 
3780       return entry;
3781     }
3782 
3783   lookup.abfd = NULL;
3784   lookup.symndx = -1;
3785   lookup.d.address = value;
3786   loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3787   if (!loc)
3788     return NULL;
3789 
3790   entry = (struct mips_got_entry *) *loc;
3791   if (entry)
3792     return entry;
3793 
3794   if (g->assigned_low_gotno > g->assigned_high_gotno)
3795     {
3796       /* We didn't allocate enough space in the GOT.  */
3797       _bfd_error_handler
3798 	(_("not enough GOT space for local GOT entries"));
3799       bfd_set_error (bfd_error_bad_value);
3800       return NULL;
3801     }
3802 
3803   entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3804   if (!entry)
3805     return NULL;
3806 
3807   if (got16_reloc_p (r_type)
3808       || call16_reloc_p (r_type)
3809       || got_page_reloc_p (r_type)
3810       || got_disp_reloc_p (r_type))
3811     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3812   else
3813     lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3814 
3815   *entry = lookup;
3816   *loc = entry;
3817 
3818   MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3819 
3820   /* These GOT entries need a dynamic relocation on VxWorks.  */
3821   if (htab->root.target_os == is_vxworks)
3822     {
3823       Elf_Internal_Rela outrel;
3824       asection *s;
3825       bfd_byte *rloc;
3826       bfd_vma got_address;
3827 
3828       s = mips_elf_rel_dyn_section (info, FALSE);
3829       got_address = (htab->root.sgot->output_section->vma
3830 		     + htab->root.sgot->output_offset
3831 		     + entry->gotidx);
3832 
3833       rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3834       outrel.r_offset = got_address;
3835       outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3836       outrel.r_addend = value;
3837       bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3838     }
3839 
3840   return entry;
3841 }
3842 
3843 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3844    The number might be exact or a worst-case estimate, depending on how
3845    much information is available to elf_backend_omit_section_dynsym at
3846    the current linking stage.  */
3847 
3848 static bfd_size_type
3849 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3850 {
3851   bfd_size_type count;
3852 
3853   count = 0;
3854   if (bfd_link_pic (info)
3855       || elf_hash_table (info)->is_relocatable_executable)
3856     {
3857       asection *p;
3858       const struct elf_backend_data *bed;
3859 
3860       bed = get_elf_backend_data (output_bfd);
3861       for (p = output_bfd->sections; p ; p = p->next)
3862 	if ((p->flags & SEC_EXCLUDE) == 0
3863 	    && (p->flags & SEC_ALLOC) != 0
3864 	    && elf_hash_table (info)->dynamic_relocs
3865 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3866 	  ++count;
3867     }
3868   return count;
3869 }
3870 
3871 /* Sort the dynamic symbol table so that symbols that need GOT entries
3872    appear towards the end.  */
3873 
3874 static bfd_boolean
3875 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3876 {
3877   struct mips_elf_link_hash_table *htab;
3878   struct mips_elf_hash_sort_data hsd;
3879   struct mips_got_info *g;
3880 
3881   htab = mips_elf_hash_table (info);
3882   BFD_ASSERT (htab != NULL);
3883 
3884   if (htab->root.dynsymcount == 0)
3885     return TRUE;
3886 
3887   g = htab->got_info;
3888   if (g == NULL)
3889     return TRUE;
3890 
3891   hsd.low = NULL;
3892   hsd.max_unref_got_dynindx
3893     = hsd.min_got_dynindx
3894     = (htab->root.dynsymcount - g->reloc_only_gotno);
3895   /* Add 1 to local symbol indices to account for the mandatory NULL entry
3896      at the head of the table; see `_bfd_elf_link_renumber_dynsyms'.  */
3897   hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3898   hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3899   hsd.output_bfd = abfd;
3900   if (htab->root.dynobj != NULL
3901       && htab->root.dynamic_sections_created
3902       && info->emit_gnu_hash)
3903     {
3904       asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3905       BFD_ASSERT (s != NULL);
3906       hsd.mipsxhash = s->contents;
3907       BFD_ASSERT (hsd.mipsxhash != NULL);
3908     }
3909   else
3910     hsd.mipsxhash = NULL;
3911   mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3912 
3913   /* There should have been enough room in the symbol table to
3914      accommodate both the GOT and non-GOT symbols.  */
3915   BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3916   BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3917   BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3918   BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3919 
3920   /* Now we know which dynamic symbol has the lowest dynamic symbol
3921      table index in the GOT.  */
3922   htab->global_gotsym = hsd.low;
3923 
3924   return TRUE;
3925 }
3926 
3927 /* If H needs a GOT entry, assign it the highest available dynamic
3928    index.  Otherwise, assign it the lowest available dynamic
3929    index.  */
3930 
3931 static bfd_boolean
3932 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3933 {
3934   struct mips_elf_hash_sort_data *hsd = data;
3935 
3936   /* Symbols without dynamic symbol table entries aren't interesting
3937      at all.  */
3938   if (h->root.dynindx == -1)
3939     return TRUE;
3940 
3941   switch (h->global_got_area)
3942     {
3943     case GGA_NONE:
3944       if (h->root.forced_local)
3945 	h->root.dynindx = hsd->max_local_dynindx++;
3946       else
3947 	h->root.dynindx = hsd->max_non_got_dynindx++;
3948       break;
3949 
3950     case GGA_NORMAL:
3951       h->root.dynindx = --hsd->min_got_dynindx;
3952       hsd->low = (struct elf_link_hash_entry *) h;
3953       break;
3954 
3955     case GGA_RELOC_ONLY:
3956       if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3957 	hsd->low = (struct elf_link_hash_entry *) h;
3958       h->root.dynindx = hsd->max_unref_got_dynindx++;
3959       break;
3960     }
3961 
3962   /* Populate the .MIPS.xhash translation table entry with
3963      the symbol dynindx.  */
3964   if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3965     bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3966 		hsd->mipsxhash + h->mipsxhash_loc);
3967 
3968   return TRUE;
3969 }
3970 
3971 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3972    (which is owned by the caller and shouldn't be added to the
3973    hash table directly).  */
3974 
3975 static bfd_boolean
3976 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3977 			   struct mips_got_entry *lookup)
3978 {
3979   struct mips_elf_link_hash_table *htab;
3980   struct mips_got_entry *entry;
3981   struct mips_got_info *g;
3982   void **loc, **bfd_loc;
3983 
3984   /* Make sure there's a slot for this entry in the master GOT.  */
3985   htab = mips_elf_hash_table (info);
3986   g = htab->got_info;
3987   loc = htab_find_slot (g->got_entries, lookup, INSERT);
3988   if (!loc)
3989     return FALSE;
3990 
3991   /* Populate the entry if it isn't already.  */
3992   entry = (struct mips_got_entry *) *loc;
3993   if (!entry)
3994     {
3995       entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3996       if (!entry)
3997 	return FALSE;
3998 
3999       lookup->tls_initialized = FALSE;
4000       lookup->gotidx = -1;
4001       *entry = *lookup;
4002       *loc = entry;
4003     }
4004 
4005   /* Reuse the same GOT entry for the BFD's GOT.  */
4006   g = mips_elf_bfd_got (abfd, TRUE);
4007   if (!g)
4008     return FALSE;
4009 
4010   bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4011   if (!bfd_loc)
4012     return FALSE;
4013 
4014   if (!*bfd_loc)
4015     *bfd_loc = entry;
4016   return TRUE;
4017 }
4018 
4019 /* ABFD has a GOT relocation of type R_TYPE against H.  Reserve a GOT
4020    entry for it.  FOR_CALL is true if the caller is only interested in
4021    using the GOT entry for calls.  */
4022 
4023 static bfd_boolean
4024 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4025 				   bfd *abfd, struct bfd_link_info *info,
4026 				   bfd_boolean for_call, int r_type)
4027 {
4028   struct mips_elf_link_hash_table *htab;
4029   struct mips_elf_link_hash_entry *hmips;
4030   struct mips_got_entry entry;
4031   unsigned char tls_type;
4032 
4033   htab = mips_elf_hash_table (info);
4034   BFD_ASSERT (htab != NULL);
4035 
4036   hmips = (struct mips_elf_link_hash_entry *) h;
4037   if (!for_call)
4038     hmips->got_only_for_calls = FALSE;
4039 
4040   /* A global symbol in the GOT must also be in the dynamic symbol
4041      table.  */
4042   if (h->dynindx == -1)
4043     {
4044       switch (ELF_ST_VISIBILITY (h->other))
4045 	{
4046 	case STV_INTERNAL:
4047 	case STV_HIDDEN:
4048 	  _bfd_mips_elf_hide_symbol (info, h, TRUE);
4049 	  break;
4050 	}
4051       if (!bfd_elf_link_record_dynamic_symbol (info, h))
4052 	return FALSE;
4053     }
4054 
4055   tls_type = mips_elf_reloc_tls_type (r_type);
4056   if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4057     hmips->global_got_area = GGA_NORMAL;
4058 
4059   entry.abfd = abfd;
4060   entry.symndx = -1;
4061   entry.d.h = (struct mips_elf_link_hash_entry *) h;
4062   entry.tls_type = tls_type;
4063   return mips_elf_record_got_entry (info, abfd, &entry);
4064 }
4065 
4066 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4067    where SYMNDX is a local symbol.  Reserve a GOT entry for it.  */
4068 
4069 static bfd_boolean
4070 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4071 				  struct bfd_link_info *info, int r_type)
4072 {
4073   struct mips_elf_link_hash_table *htab;
4074   struct mips_got_info *g;
4075   struct mips_got_entry entry;
4076 
4077   htab = mips_elf_hash_table (info);
4078   BFD_ASSERT (htab != NULL);
4079 
4080   g = htab->got_info;
4081   BFD_ASSERT (g != NULL);
4082 
4083   entry.abfd = abfd;
4084   entry.symndx = symndx;
4085   entry.d.addend = addend;
4086   entry.tls_type = mips_elf_reloc_tls_type (r_type);
4087   return mips_elf_record_got_entry (info, abfd, &entry);
4088 }
4089 
4090 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4091    H is the symbol's hash table entry, or null if SYMNDX is local
4092    to ABFD.  */
4093 
4094 static bfd_boolean
4095 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4096 			      long symndx, struct elf_link_hash_entry *h,
4097 			      bfd_signed_vma addend)
4098 {
4099   struct mips_elf_link_hash_table *htab;
4100   struct mips_got_info *g1, *g2;
4101   struct mips_got_page_ref lookup, *entry;
4102   void **loc, **bfd_loc;
4103 
4104   htab = mips_elf_hash_table (info);
4105   BFD_ASSERT (htab != NULL);
4106 
4107   g1 = htab->got_info;
4108   BFD_ASSERT (g1 != NULL);
4109 
4110   if (h)
4111     {
4112       lookup.symndx = -1;
4113       lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4114     }
4115   else
4116     {
4117       lookup.symndx = symndx;
4118       lookup.u.abfd = abfd;
4119     }
4120   lookup.addend = addend;
4121   loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4122   if (loc == NULL)
4123     return FALSE;
4124 
4125   entry = (struct mips_got_page_ref *) *loc;
4126   if (!entry)
4127     {
4128       entry = bfd_alloc (abfd, sizeof (*entry));
4129       if (!entry)
4130 	return FALSE;
4131 
4132       *entry = lookup;
4133       *loc = entry;
4134     }
4135 
4136   /* Add the same entry to the BFD's GOT.  */
4137   g2 = mips_elf_bfd_got (abfd, TRUE);
4138   if (!g2)
4139     return FALSE;
4140 
4141   bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4142   if (!bfd_loc)
4143     return FALSE;
4144 
4145   if (!*bfd_loc)
4146     *bfd_loc = entry;
4147 
4148   return TRUE;
4149 }
4150 
4151 /* Add room for N relocations to the .rel(a).dyn section in ABFD.  */
4152 
4153 static void
4154 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4155 				       unsigned int n)
4156 {
4157   asection *s;
4158   struct mips_elf_link_hash_table *htab;
4159 
4160   htab = mips_elf_hash_table (info);
4161   BFD_ASSERT (htab != NULL);
4162 
4163   s = mips_elf_rel_dyn_section (info, FALSE);
4164   BFD_ASSERT (s != NULL);
4165 
4166   if (htab->root.target_os == is_vxworks)
4167     s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4168   else
4169     {
4170       if (s->size == 0)
4171 	{
4172 	  /* Make room for a null element.  */
4173 	  s->size += MIPS_ELF_REL_SIZE (abfd);
4174 	  ++s->reloc_count;
4175 	}
4176       s->size += n * MIPS_ELF_REL_SIZE (abfd);
4177     }
4178 }
4179 
4180 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4181    mips_elf_traverse_got_arg structure.  Count the number of GOT
4182    entries and TLS relocs.  Set DATA->value to true if we need
4183    to resolve indirect or warning symbols and then recreate the GOT.  */
4184 
4185 static int
4186 mips_elf_check_recreate_got (void **entryp, void *data)
4187 {
4188   struct mips_got_entry *entry;
4189   struct mips_elf_traverse_got_arg *arg;
4190 
4191   entry = (struct mips_got_entry *) *entryp;
4192   arg = (struct mips_elf_traverse_got_arg *) data;
4193   if (entry->abfd != NULL && entry->symndx == -1)
4194     {
4195       struct mips_elf_link_hash_entry *h;
4196 
4197       h = entry->d.h;
4198       if (h->root.root.type == bfd_link_hash_indirect
4199 	  || h->root.root.type == bfd_link_hash_warning)
4200 	{
4201 	  arg->value = TRUE;
4202 	  return 0;
4203 	}
4204     }
4205   mips_elf_count_got_entry (arg->info, arg->g, entry);
4206   return 1;
4207 }
4208 
4209 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4210    mips_elf_traverse_got_arg structure.  Add all entries to DATA->g,
4211    converting entries for indirect and warning symbols into entries
4212    for the target symbol.  Set DATA->g to null on error.  */
4213 
4214 static int
4215 mips_elf_recreate_got (void **entryp, void *data)
4216 {
4217   struct mips_got_entry new_entry, *entry;
4218   struct mips_elf_traverse_got_arg *arg;
4219   void **slot;
4220 
4221   entry = (struct mips_got_entry *) *entryp;
4222   arg = (struct mips_elf_traverse_got_arg *) data;
4223   if (entry->abfd != NULL
4224       && entry->symndx == -1
4225       && (entry->d.h->root.root.type == bfd_link_hash_indirect
4226 	  || entry->d.h->root.root.type == bfd_link_hash_warning))
4227     {
4228       struct mips_elf_link_hash_entry *h;
4229 
4230       new_entry = *entry;
4231       entry = &new_entry;
4232       h = entry->d.h;
4233       do
4234 	{
4235 	  BFD_ASSERT (h->global_got_area == GGA_NONE);
4236 	  h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4237 	}
4238       while (h->root.root.type == bfd_link_hash_indirect
4239 	     || h->root.root.type == bfd_link_hash_warning);
4240       entry->d.h = h;
4241     }
4242   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4243   if (slot == NULL)
4244     {
4245       arg->g = NULL;
4246       return 0;
4247     }
4248   if (*slot == NULL)
4249     {
4250       if (entry == &new_entry)
4251 	{
4252 	  entry = bfd_alloc (entry->abfd, sizeof (*entry));
4253 	  if (!entry)
4254 	    {
4255 	      arg->g = NULL;
4256 	      return 0;
4257 	    }
4258 	  *entry = new_entry;
4259 	}
4260       *slot = entry;
4261       mips_elf_count_got_entry (arg->info, arg->g, entry);
4262     }
4263   return 1;
4264 }
4265 
4266 /* Return the maximum number of GOT page entries required for RANGE.  */
4267 
4268 static bfd_vma
4269 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4270 {
4271   return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4272 }
4273 
4274 /* Record that G requires a page entry that can reach SEC + ADDEND.  */
4275 
4276 static bfd_boolean
4277 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4278 				asection *sec, bfd_signed_vma addend)
4279 {
4280   struct mips_got_info *g = arg->g;
4281   struct mips_got_page_entry lookup, *entry;
4282   struct mips_got_page_range **range_ptr, *range;
4283   bfd_vma old_pages, new_pages;
4284   void **loc;
4285 
4286   /* Find the mips_got_page_entry hash table entry for this section.  */
4287   lookup.sec = sec;
4288   loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4289   if (loc == NULL)
4290     return FALSE;
4291 
4292   /* Create a mips_got_page_entry if this is the first time we've
4293      seen the section.  */
4294   entry = (struct mips_got_page_entry *) *loc;
4295   if (!entry)
4296     {
4297       entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4298       if (!entry)
4299 	return FALSE;
4300 
4301       entry->sec = sec;
4302       *loc = entry;
4303     }
4304 
4305   /* Skip over ranges whose maximum extent cannot share a page entry
4306      with ADDEND.  */
4307   range_ptr = &entry->ranges;
4308   while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4309     range_ptr = &(*range_ptr)->next;
4310 
4311   /* If we scanned to the end of the list, or found a range whose
4312      minimum extent cannot share a page entry with ADDEND, create
4313      a new singleton range.  */
4314   range = *range_ptr;
4315   if (!range || addend < range->min_addend - 0xffff)
4316     {
4317       range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4318       if (!range)
4319 	return FALSE;
4320 
4321       range->next = *range_ptr;
4322       range->min_addend = addend;
4323       range->max_addend = addend;
4324 
4325       *range_ptr = range;
4326       entry->num_pages++;
4327       g->page_gotno++;
4328       return TRUE;
4329     }
4330 
4331   /* Remember how many pages the old range contributed.  */
4332   old_pages = mips_elf_pages_for_range (range);
4333 
4334   /* Update the ranges.  */
4335   if (addend < range->min_addend)
4336     range->min_addend = addend;
4337   else if (addend > range->max_addend)
4338     {
4339       if (range->next && addend >= range->next->min_addend - 0xffff)
4340 	{
4341 	  old_pages += mips_elf_pages_for_range (range->next);
4342 	  range->max_addend = range->next->max_addend;
4343 	  range->next = range->next->next;
4344 	}
4345       else
4346 	range->max_addend = addend;
4347     }
4348 
4349   /* Record any change in the total estimate.  */
4350   new_pages = mips_elf_pages_for_range (range);
4351   if (old_pages != new_pages)
4352     {
4353       entry->num_pages += new_pages - old_pages;
4354       g->page_gotno += new_pages - old_pages;
4355     }
4356 
4357   return TRUE;
4358 }
4359 
4360 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4361    and for which DATA points to a mips_elf_traverse_got_arg.  Work out
4362    whether the page reference described by *REFP needs a GOT page entry,
4363    and record that entry in DATA->g if so.  Set DATA->g to null on failure.  */
4364 
4365 static bfd_boolean
4366 mips_elf_resolve_got_page_ref (void **refp, void *data)
4367 {
4368   struct mips_got_page_ref *ref;
4369   struct mips_elf_traverse_got_arg *arg;
4370   struct mips_elf_link_hash_table *htab;
4371   asection *sec;
4372   bfd_vma addend;
4373 
4374   ref = (struct mips_got_page_ref *) *refp;
4375   arg = (struct mips_elf_traverse_got_arg *) data;
4376   htab = mips_elf_hash_table (arg->info);
4377 
4378   if (ref->symndx < 0)
4379     {
4380       struct mips_elf_link_hash_entry *h;
4381 
4382       /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries.  */
4383       h = ref->u.h;
4384       if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4385 	return 1;
4386 
4387       /* Ignore undefined symbols; we'll issue an error later if
4388 	 appropriate.  */
4389       if (!((h->root.root.type == bfd_link_hash_defined
4390 	     || h->root.root.type == bfd_link_hash_defweak)
4391 	    && h->root.root.u.def.section))
4392 	return 1;
4393 
4394       sec = h->root.root.u.def.section;
4395       addend = h->root.root.u.def.value + ref->addend;
4396     }
4397   else
4398     {
4399       Elf_Internal_Sym *isym;
4400 
4401       /* Read in the symbol.  */
4402       isym = bfd_sym_from_r_symndx (&htab->root.sym_cache, ref->u.abfd,
4403 				    ref->symndx);
4404       if (isym == NULL)
4405 	{
4406 	  arg->g = NULL;
4407 	  return 0;
4408 	}
4409 
4410       /* Get the associated input section.  */
4411       sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4412       if (sec == NULL)
4413 	{
4414 	  arg->g = NULL;
4415 	  return 0;
4416 	}
4417 
4418       /* If this is a mergable section, work out the section and offset
4419 	 of the merged data.  For section symbols, the addend specifies
4420 	 of the offset _of_ the first byte in the data, otherwise it
4421 	 specifies the offset _from_ the first byte.  */
4422       if (sec->flags & SEC_MERGE)
4423 	{
4424 	  void *secinfo;
4425 
4426 	  secinfo = elf_section_data (sec)->sec_info;
4427 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4428 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4429 						 isym->st_value + ref->addend);
4430 	  else
4431 	    addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4432 						 isym->st_value) + ref->addend;
4433 	}
4434       else
4435 	addend = isym->st_value + ref->addend;
4436     }
4437   if (!mips_elf_record_got_page_entry (arg, sec, addend))
4438     {
4439       arg->g = NULL;
4440       return 0;
4441     }
4442   return 1;
4443 }
4444 
4445 /* If any entries in G->got_entries are for indirect or warning symbols,
4446    replace them with entries for the target symbol.  Convert g->got_page_refs
4447    into got_page_entry structures and estimate the number of page entries
4448    that they require.  */
4449 
4450 static bfd_boolean
4451 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4452 				    struct mips_got_info *g)
4453 {
4454   struct mips_elf_traverse_got_arg tga;
4455   struct mips_got_info oldg;
4456 
4457   oldg = *g;
4458 
4459   tga.info = info;
4460   tga.g = g;
4461   tga.value = FALSE;
4462   htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4463   if (tga.value)
4464     {
4465       *g = oldg;
4466       g->got_entries = htab_create (htab_size (oldg.got_entries),
4467 				    mips_elf_got_entry_hash,
4468 				    mips_elf_got_entry_eq, NULL);
4469       if (!g->got_entries)
4470 	return FALSE;
4471 
4472       htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4473       if (!tga.g)
4474 	return FALSE;
4475 
4476       htab_delete (oldg.got_entries);
4477     }
4478 
4479   g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4480 					 mips_got_page_entry_eq, NULL);
4481   if (g->got_page_entries == NULL)
4482     return FALSE;
4483 
4484   tga.info = info;
4485   tga.g = g;
4486   htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4487 
4488   return TRUE;
4489 }
4490 
4491 /* Return true if a GOT entry for H should live in the local rather than
4492    global GOT area.  */
4493 
4494 static bfd_boolean
4495 mips_use_local_got_p (struct bfd_link_info *info,
4496 		      struct mips_elf_link_hash_entry *h)
4497 {
4498   /* Symbols that aren't in the dynamic symbol table must live in the
4499      local GOT.  This includes symbols that are completely undefined
4500      and which therefore don't bind locally.  We'll report undefined
4501      symbols later if appropriate.  */
4502   if (h->root.dynindx == -1)
4503     return TRUE;
4504 
4505   /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4506      to the local GOT, as they would be implicitly relocated by the
4507      base address by the dynamic loader.  */
4508   if (bfd_is_abs_symbol (&h->root.root))
4509     return FALSE;
4510 
4511   /* Symbols that bind locally can (and in the case of forced-local
4512      symbols, must) live in the local GOT.  */
4513   if (h->got_only_for_calls
4514       ? SYMBOL_CALLS_LOCAL (info, &h->root)
4515       : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4516     return TRUE;
4517 
4518   /* If this is an executable that must provide a definition of the symbol,
4519      either though PLTs or copy relocations, then that address should go in
4520      the local rather than global GOT.  */
4521   if (bfd_link_executable (info) && h->has_static_relocs)
4522     return TRUE;
4523 
4524   return FALSE;
4525 }
4526 
4527 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4528    link_info structure.  Decide whether the hash entry needs an entry in
4529    the global part of the primary GOT, setting global_got_area accordingly.
4530    Count the number of global symbols that are in the primary GOT only
4531    because they have relocations against them (reloc_only_gotno).  */
4532 
4533 static int
4534 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4535 {
4536   struct bfd_link_info *info;
4537   struct mips_elf_link_hash_table *htab;
4538   struct mips_got_info *g;
4539 
4540   info = (struct bfd_link_info *) data;
4541   htab = mips_elf_hash_table (info);
4542   g = htab->got_info;
4543   if (h->global_got_area != GGA_NONE)
4544     {
4545       /* Make a final decision about whether the symbol belongs in the
4546 	 local or global GOT.  */
4547       if (mips_use_local_got_p (info, h))
4548 	/* The symbol belongs in the local GOT.  We no longer need this
4549 	   entry if it was only used for relocations; those relocations
4550 	   will be against the null or section symbol instead of H.  */
4551 	h->global_got_area = GGA_NONE;
4552       else if (htab->root.target_os == is_vxworks
4553 	       && h->got_only_for_calls
4554 	       && h->root.plt.plist->mips_offset != MINUS_ONE)
4555 	/* On VxWorks, calls can refer directly to the .got.plt entry;
4556 	   they don't need entries in the regular GOT.  .got.plt entries
4557 	   will be allocated by _bfd_mips_elf_adjust_dynamic_symbol.  */
4558 	h->global_got_area = GGA_NONE;
4559       else if (h->global_got_area == GGA_RELOC_ONLY)
4560 	{
4561 	  g->reloc_only_gotno++;
4562 	  g->global_gotno++;
4563 	}
4564     }
4565   return 1;
4566 }
4567 
4568 /* A htab_traverse callback for GOT entries.  Add each one to the GOT
4569    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4570 
4571 static int
4572 mips_elf_add_got_entry (void **entryp, void *data)
4573 {
4574   struct mips_got_entry *entry;
4575   struct mips_elf_traverse_got_arg *arg;
4576   void **slot;
4577 
4578   entry = (struct mips_got_entry *) *entryp;
4579   arg = (struct mips_elf_traverse_got_arg *) data;
4580   slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4581   if (!slot)
4582     {
4583       arg->g = NULL;
4584       return 0;
4585     }
4586   if (!*slot)
4587     {
4588       *slot = entry;
4589       mips_elf_count_got_entry (arg->info, arg->g, entry);
4590     }
4591   return 1;
4592 }
4593 
4594 /* A htab_traverse callback for GOT page entries.  Add each one to the GOT
4595    given in mips_elf_traverse_got_arg DATA.  Clear DATA->G on error.  */
4596 
4597 static int
4598 mips_elf_add_got_page_entry (void **entryp, void *data)
4599 {
4600   struct mips_got_page_entry *entry;
4601   struct mips_elf_traverse_got_arg *arg;
4602   void **slot;
4603 
4604   entry = (struct mips_got_page_entry *) *entryp;
4605   arg = (struct mips_elf_traverse_got_arg *) data;
4606   slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4607   if (!slot)
4608     {
4609       arg->g = NULL;
4610       return 0;
4611     }
4612   if (!*slot)
4613     {
4614       *slot = entry;
4615       arg->g->page_gotno += entry->num_pages;
4616     }
4617   return 1;
4618 }
4619 
4620 /* Consider merging FROM, which is ABFD's GOT, into TO.  Return -1 if
4621    this would lead to overflow, 1 if they were merged successfully,
4622    and 0 if a merge failed due to lack of memory.  (These values are chosen
4623    so that nonnegative return values can be returned by a htab_traverse
4624    callback.)  */
4625 
4626 static int
4627 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4628 			 struct mips_got_info *to,
4629 			 struct mips_elf_got_per_bfd_arg *arg)
4630 {
4631   struct mips_elf_traverse_got_arg tga;
4632   unsigned int estimate;
4633 
4634   /* Work out how many page entries we would need for the combined GOT.  */
4635   estimate = arg->max_pages;
4636   if (estimate >= from->page_gotno + to->page_gotno)
4637     estimate = from->page_gotno + to->page_gotno;
4638 
4639   /* And conservatively estimate how many local and TLS entries
4640      would be needed.  */
4641   estimate += from->local_gotno + to->local_gotno;
4642   estimate += from->tls_gotno + to->tls_gotno;
4643 
4644   /* If we're merging with the primary got, any TLS relocations will
4645      come after the full set of global entries.  Otherwise estimate those
4646      conservatively as well.  */
4647   if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4648     estimate += arg->global_count;
4649   else
4650     estimate += from->global_gotno + to->global_gotno;
4651 
4652   /* Bail out if the combined GOT might be too big.  */
4653   if (estimate > arg->max_count)
4654     return -1;
4655 
4656   /* Transfer the bfd's got information from FROM to TO.  */
4657   tga.info = arg->info;
4658   tga.g = to;
4659   htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4660   if (!tga.g)
4661     return 0;
4662 
4663   htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4664   if (!tga.g)
4665     return 0;
4666 
4667   mips_elf_replace_bfd_got (abfd, to);
4668   return 1;
4669 }
4670 
4671 /* Attempt to merge GOT G, which belongs to ABFD.  Try to use as much
4672    as possible of the primary got, since it doesn't require explicit
4673    dynamic relocations, but don't use bfds that would reference global
4674    symbols out of the addressable range.  Failing the primary got,
4675    attempt to merge with the current got, or finish the current got
4676    and then make make the new got current.  */
4677 
4678 static bfd_boolean
4679 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4680 		    struct mips_elf_got_per_bfd_arg *arg)
4681 {
4682   unsigned int estimate;
4683   int result;
4684 
4685   if (!mips_elf_resolve_final_got_entries (arg->info, g))
4686     return FALSE;
4687 
4688   /* Work out the number of page, local and TLS entries.  */
4689   estimate = arg->max_pages;
4690   if (estimate > g->page_gotno)
4691     estimate = g->page_gotno;
4692   estimate += g->local_gotno + g->tls_gotno;
4693 
4694   /* We place TLS GOT entries after both locals and globals.  The globals
4695      for the primary GOT may overflow the normal GOT size limit, so be
4696      sure not to merge a GOT which requires TLS with the primary GOT in that
4697      case.  This doesn't affect non-primary GOTs.  */
4698   estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4699 
4700   if (estimate <= arg->max_count)
4701     {
4702       /* If we don't have a primary GOT, use it as
4703 	 a starting point for the primary GOT.  */
4704       if (!arg->primary)
4705 	{
4706 	  arg->primary = g;
4707 	  return TRUE;
4708 	}
4709 
4710       /* Try merging with the primary GOT.  */
4711       result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4712       if (result >= 0)
4713 	return result;
4714     }
4715 
4716   /* If we can merge with the last-created got, do it.  */
4717   if (arg->current)
4718     {
4719       result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4720       if (result >= 0)
4721 	return result;
4722     }
4723 
4724   /* Well, we couldn't merge, so create a new GOT.  Don't check if it
4725      fits; if it turns out that it doesn't, we'll get relocation
4726      overflows anyway.  */
4727   g->next = arg->current;
4728   arg->current = g;
4729 
4730   return TRUE;
4731 }
4732 
4733 /* ENTRYP is a hash table entry for a mips_got_entry.  Set its gotidx
4734    to GOTIDX, duplicating the entry if it has already been assigned
4735    an index in a different GOT.  */
4736 
4737 static bfd_boolean
4738 mips_elf_set_gotidx (void **entryp, long gotidx)
4739 {
4740   struct mips_got_entry *entry;
4741 
4742   entry = (struct mips_got_entry *) *entryp;
4743   if (entry->gotidx > 0)
4744     {
4745       struct mips_got_entry *new_entry;
4746 
4747       new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4748       if (!new_entry)
4749 	return FALSE;
4750 
4751       *new_entry = *entry;
4752       *entryp = new_entry;
4753       entry = new_entry;
4754     }
4755   entry->gotidx = gotidx;
4756   return TRUE;
4757 }
4758 
4759 /* Set the TLS GOT index for the GOT entry in ENTRYP.  DATA points to a
4760    mips_elf_traverse_got_arg in which DATA->value is the size of one
4761    GOT entry.  Set DATA->g to null on failure.  */
4762 
4763 static int
4764 mips_elf_initialize_tls_index (void **entryp, void *data)
4765 {
4766   struct mips_got_entry *entry;
4767   struct mips_elf_traverse_got_arg *arg;
4768 
4769   /* We're only interested in TLS symbols.  */
4770   entry = (struct mips_got_entry *) *entryp;
4771   if (entry->tls_type == GOT_TLS_NONE)
4772     return 1;
4773 
4774   arg = (struct mips_elf_traverse_got_arg *) data;
4775   if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4776     {
4777       arg->g = NULL;
4778       return 0;
4779     }
4780 
4781   /* Account for the entries we've just allocated.  */
4782   arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4783   return 1;
4784 }
4785 
4786 /* A htab_traverse callback for GOT entries, where DATA points to a
4787    mips_elf_traverse_got_arg.  Set the global_got_area of each global
4788    symbol to DATA->value.  */
4789 
4790 static int
4791 mips_elf_set_global_got_area (void **entryp, void *data)
4792 {
4793   struct mips_got_entry *entry;
4794   struct mips_elf_traverse_got_arg *arg;
4795 
4796   entry = (struct mips_got_entry *) *entryp;
4797   arg = (struct mips_elf_traverse_got_arg *) data;
4798   if (entry->abfd != NULL
4799       && entry->symndx == -1
4800       && entry->d.h->global_got_area != GGA_NONE)
4801     entry->d.h->global_got_area = arg->value;
4802   return 1;
4803 }
4804 
4805 /* A htab_traverse callback for secondary GOT entries, where DATA points
4806    to a mips_elf_traverse_got_arg.  Assign GOT indices to global entries
4807    and record the number of relocations they require.  DATA->value is
4808    the size of one GOT entry.  Set DATA->g to null on failure.  */
4809 
4810 static int
4811 mips_elf_set_global_gotidx (void **entryp, void *data)
4812 {
4813   struct mips_got_entry *entry;
4814   struct mips_elf_traverse_got_arg *arg;
4815 
4816   entry = (struct mips_got_entry *) *entryp;
4817   arg = (struct mips_elf_traverse_got_arg *) data;
4818   if (entry->abfd != NULL
4819       && entry->symndx == -1
4820       && entry->d.h->global_got_area != GGA_NONE)
4821     {
4822       if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4823 	{
4824 	  arg->g = NULL;
4825 	  return 0;
4826 	}
4827       arg->g->assigned_low_gotno += 1;
4828 
4829       if (bfd_link_pic (arg->info)
4830 	  || (elf_hash_table (arg->info)->dynamic_sections_created
4831 	      && entry->d.h->root.def_dynamic
4832 	      && !entry->d.h->root.def_regular))
4833 	arg->g->relocs += 1;
4834     }
4835 
4836   return 1;
4837 }
4838 
4839 /* A htab_traverse callback for GOT entries for which DATA is the
4840    bfd_link_info.  Forbid any global symbols from having traditional
4841    lazy-binding stubs.  */
4842 
4843 static int
4844 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4845 {
4846   struct bfd_link_info *info;
4847   struct mips_elf_link_hash_table *htab;
4848   struct mips_got_entry *entry;
4849 
4850   entry = (struct mips_got_entry *) *entryp;
4851   info = (struct bfd_link_info *) data;
4852   htab = mips_elf_hash_table (info);
4853   BFD_ASSERT (htab != NULL);
4854 
4855   if (entry->abfd != NULL
4856       && entry->symndx == -1
4857       && entry->d.h->needs_lazy_stub)
4858     {
4859       entry->d.h->needs_lazy_stub = FALSE;
4860       htab->lazy_stub_count--;
4861     }
4862 
4863   return 1;
4864 }
4865 
4866 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4867    the primary GOT.  */
4868 static bfd_vma
4869 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4870 {
4871   if (!g->next)
4872     return 0;
4873 
4874   g = mips_elf_bfd_got (ibfd, FALSE);
4875   if (! g)
4876     return 0;
4877 
4878   BFD_ASSERT (g->next);
4879 
4880   g = g->next;
4881 
4882   return (g->local_gotno + g->global_gotno + g->tls_gotno)
4883     * MIPS_ELF_GOT_SIZE (abfd);
4884 }
4885 
4886 /* Turn a single GOT that is too big for 16-bit addressing into
4887    a sequence of GOTs, each one 16-bit addressable.  */
4888 
4889 static bfd_boolean
4890 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4891 		    asection *got, bfd_size_type pages)
4892 {
4893   struct mips_elf_link_hash_table *htab;
4894   struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4895   struct mips_elf_traverse_got_arg tga;
4896   struct mips_got_info *g, *gg;
4897   unsigned int assign, needed_relocs;
4898   bfd *dynobj, *ibfd;
4899 
4900   dynobj = elf_hash_table (info)->dynobj;
4901   htab = mips_elf_hash_table (info);
4902   BFD_ASSERT (htab != NULL);
4903 
4904   g = htab->got_info;
4905 
4906   got_per_bfd_arg.obfd = abfd;
4907   got_per_bfd_arg.info = info;
4908   got_per_bfd_arg.current = NULL;
4909   got_per_bfd_arg.primary = NULL;
4910   got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4911 				/ MIPS_ELF_GOT_SIZE (abfd))
4912 			       - htab->reserved_gotno);
4913   got_per_bfd_arg.max_pages = pages;
4914   /* The number of globals that will be included in the primary GOT.
4915      See the calls to mips_elf_set_global_got_area below for more
4916      information.  */
4917   got_per_bfd_arg.global_count = g->global_gotno;
4918 
4919   /* Try to merge the GOTs of input bfds together, as long as they
4920      don't seem to exceed the maximum GOT size, choosing one of them
4921      to be the primary GOT.  */
4922   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4923     {
4924       gg = mips_elf_bfd_got (ibfd, FALSE);
4925       if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4926 	return FALSE;
4927     }
4928 
4929   /* If we do not find any suitable primary GOT, create an empty one.  */
4930   if (got_per_bfd_arg.primary == NULL)
4931     g->next = mips_elf_create_got_info (abfd);
4932   else
4933     g->next = got_per_bfd_arg.primary;
4934   g->next->next = got_per_bfd_arg.current;
4935 
4936   /* GG is now the master GOT, and G is the primary GOT.  */
4937   gg = g;
4938   g = g->next;
4939 
4940   /* Map the output bfd to the primary got.  That's what we're going
4941      to use for bfds that use GOT16 or GOT_PAGE relocations that we
4942      didn't mark in check_relocs, and we want a quick way to find it.
4943      We can't just use gg->next because we're going to reverse the
4944      list.  */
4945   mips_elf_replace_bfd_got (abfd, g);
4946 
4947   /* Every symbol that is referenced in a dynamic relocation must be
4948      present in the primary GOT, so arrange for them to appear after
4949      those that are actually referenced.  */
4950   gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4951   g->global_gotno = gg->global_gotno;
4952 
4953   tga.info = info;
4954   tga.value = GGA_RELOC_ONLY;
4955   htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4956   tga.value = GGA_NORMAL;
4957   htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4958 
4959   /* Now go through the GOTs assigning them offset ranges.
4960      [assigned_low_gotno, local_gotno[ will be set to the range of local
4961      entries in each GOT.  We can then compute the end of a GOT by
4962      adding local_gotno to global_gotno.  We reverse the list and make
4963      it circular since then we'll be able to quickly compute the
4964      beginning of a GOT, by computing the end of its predecessor.  To
4965      avoid special cases for the primary GOT, while still preserving
4966      assertions that are valid for both single- and multi-got links,
4967      we arrange for the main got struct to have the right number of
4968      global entries, but set its local_gotno such that the initial
4969      offset of the primary GOT is zero.  Remember that the primary GOT
4970      will become the last item in the circular linked list, so it
4971      points back to the master GOT.  */
4972   gg->local_gotno = -g->global_gotno;
4973   gg->global_gotno = g->global_gotno;
4974   gg->tls_gotno = 0;
4975   assign = 0;
4976   gg->next = gg;
4977 
4978   do
4979     {
4980       struct mips_got_info *gn;
4981 
4982       assign += htab->reserved_gotno;
4983       g->assigned_low_gotno = assign;
4984       g->local_gotno += assign;
4985       g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
4986       g->assigned_high_gotno = g->local_gotno - 1;
4987       assign = g->local_gotno + g->global_gotno + g->tls_gotno;
4988 
4989       /* Take g out of the direct list, and push it onto the reversed
4990 	 list that gg points to.  g->next is guaranteed to be nonnull after
4991 	 this operation, as required by mips_elf_initialize_tls_index. */
4992       gn = g->next;
4993       g->next = gg->next;
4994       gg->next = g;
4995 
4996       /* Set up any TLS entries.  We always place the TLS entries after
4997 	 all non-TLS entries.  */
4998       g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
4999       tga.g = g;
5000       tga.value = MIPS_ELF_GOT_SIZE (abfd);
5001       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5002       if (!tga.g)
5003 	return FALSE;
5004       BFD_ASSERT (g->tls_assigned_gotno == assign);
5005 
5006       /* Move onto the next GOT.  It will be a secondary GOT if nonull.  */
5007       g = gn;
5008 
5009       /* Forbid global symbols in every non-primary GOT from having
5010 	 lazy-binding stubs.  */
5011       if (g)
5012 	htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5013     }
5014   while (g);
5015 
5016   got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5017 
5018   needed_relocs = 0;
5019   for (g = gg->next; g && g->next != gg; g = g->next)
5020     {
5021       unsigned int save_assign;
5022 
5023       /* Assign offsets to global GOT entries and count how many
5024 	 relocations they need.  */
5025       save_assign = g->assigned_low_gotno;
5026       g->assigned_low_gotno = g->local_gotno;
5027       tga.info = info;
5028       tga.value = MIPS_ELF_GOT_SIZE (abfd);
5029       tga.g = g;
5030       htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5031       if (!tga.g)
5032 	return FALSE;
5033       BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5034       g->assigned_low_gotno = save_assign;
5035 
5036       if (bfd_link_pic (info))
5037 	{
5038 	  g->relocs += g->local_gotno - g->assigned_low_gotno;
5039 	  BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5040 		      + g->next->global_gotno
5041 		      + g->next->tls_gotno
5042 		      + htab->reserved_gotno);
5043 	}
5044       needed_relocs += g->relocs;
5045     }
5046   needed_relocs += g->relocs;
5047 
5048   if (needed_relocs)
5049     mips_elf_allocate_dynamic_relocations (dynobj, info,
5050 					   needed_relocs);
5051 
5052   return TRUE;
5053 }
5054 
5055 
5056 /* Returns the first relocation of type r_type found, beginning with
5057    RELOCATION.  RELEND is one-past-the-end of the relocation table.  */
5058 
5059 static const Elf_Internal_Rela *
5060 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5061 			  const Elf_Internal_Rela *relocation,
5062 			  const Elf_Internal_Rela *relend)
5063 {
5064   unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5065 
5066   while (relocation < relend)
5067     {
5068       if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5069 	  && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5070 	return relocation;
5071 
5072       ++relocation;
5073     }
5074 
5075   /* We didn't find it.  */
5076   return NULL;
5077 }
5078 
5079 /* Return whether an input relocation is against a local symbol.  */
5080 
5081 static bfd_boolean
5082 mips_elf_local_relocation_p (bfd *input_bfd,
5083 			     const Elf_Internal_Rela *relocation,
5084 			     asection **local_sections)
5085 {
5086   unsigned long r_symndx;
5087   Elf_Internal_Shdr *symtab_hdr;
5088   size_t extsymoff;
5089 
5090   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5091   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5092   extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5093 
5094   if (r_symndx < extsymoff)
5095     return TRUE;
5096   if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5097     return TRUE;
5098 
5099   return FALSE;
5100 }
5101 
5102 /* Sign-extend VALUE, which has the indicated number of BITS.  */
5103 
5104 bfd_vma
5105 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5106 {
5107   if (value & ((bfd_vma) 1 << (bits - 1)))
5108     /* VALUE is negative.  */
5109     value |= ((bfd_vma) - 1) << bits;
5110 
5111   return value;
5112 }
5113 
5114 /* Return non-zero if the indicated VALUE has overflowed the maximum
5115    range expressible by a signed number with the indicated number of
5116    BITS.  */
5117 
5118 static bfd_boolean
5119 mips_elf_overflow_p (bfd_vma value, int bits)
5120 {
5121   bfd_signed_vma svalue = (bfd_signed_vma) value;
5122 
5123   if (svalue > (1 << (bits - 1)) - 1)
5124     /* The value is too big.  */
5125     return TRUE;
5126   else if (svalue < -(1 << (bits - 1)))
5127     /* The value is too small.  */
5128     return TRUE;
5129 
5130   /* All is well.  */
5131   return FALSE;
5132 }
5133 
5134 /* Calculate the %high function.  */
5135 
5136 static bfd_vma
5137 mips_elf_high (bfd_vma value)
5138 {
5139   return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5140 }
5141 
5142 /* Calculate the %higher function.  */
5143 
5144 static bfd_vma
5145 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5146 {
5147 #ifdef BFD64
5148   return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5149 #else
5150   abort ();
5151   return MINUS_ONE;
5152 #endif
5153 }
5154 
5155 /* Calculate the %highest function.  */
5156 
5157 static bfd_vma
5158 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5159 {
5160 #ifdef BFD64
5161   return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5162 #else
5163   abort ();
5164   return MINUS_ONE;
5165 #endif
5166 }
5167 
5168 /* Create the .compact_rel section.  */
5169 
5170 static bfd_boolean
5171 mips_elf_create_compact_rel_section
5172   (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5173 {
5174   flagword flags;
5175   register asection *s;
5176 
5177   if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5178     {
5179       flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5180 	       | SEC_READONLY);
5181 
5182       s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5183       if (s == NULL
5184 	  || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5185 	return FALSE;
5186 
5187       s->size = sizeof (Elf32_External_compact_rel);
5188     }
5189 
5190   return TRUE;
5191 }
5192 
5193 /* Create the .got section to hold the global offset table.  */
5194 
5195 static bfd_boolean
5196 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5197 {
5198   flagword flags;
5199   register asection *s;
5200   struct elf_link_hash_entry *h;
5201   struct bfd_link_hash_entry *bh;
5202   struct mips_elf_link_hash_table *htab;
5203 
5204   htab = mips_elf_hash_table (info);
5205   BFD_ASSERT (htab != NULL);
5206 
5207   /* This function may be called more than once.  */
5208   if (htab->root.sgot)
5209     return TRUE;
5210 
5211   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5212 	   | SEC_LINKER_CREATED);
5213 
5214   /* We have to use an alignment of 2**4 here because this is hardcoded
5215      in the function stub generation and in the linker script.  */
5216   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5217   if (s == NULL
5218       || !bfd_set_section_alignment (s, 4))
5219     return FALSE;
5220   htab->root.sgot = s;
5221 
5222   /* Define the symbol _GLOBAL_OFFSET_TABLE_.  We don't do this in the
5223      linker script because we don't want to define the symbol if we
5224      are not creating a global offset table.  */
5225   bh = NULL;
5226   if (! (_bfd_generic_link_add_one_symbol
5227 	 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5228 	  0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5229     return FALSE;
5230 
5231   h = (struct elf_link_hash_entry *) bh;
5232   h->non_elf = 0;
5233   h->def_regular = 1;
5234   h->type = STT_OBJECT;
5235   h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5236   elf_hash_table (info)->hgot = h;
5237 
5238   if (bfd_link_pic (info)
5239       && ! bfd_elf_link_record_dynamic_symbol (info, h))
5240     return FALSE;
5241 
5242   htab->got_info = mips_elf_create_got_info (abfd);
5243   mips_elf_section_data (s)->elf.this_hdr.sh_flags
5244     |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5245 
5246   /* We also need a .got.plt section when generating PLTs.  */
5247   s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5248 					  SEC_ALLOC | SEC_LOAD
5249 					  | SEC_HAS_CONTENTS
5250 					  | SEC_IN_MEMORY
5251 					  | SEC_LINKER_CREATED);
5252   if (s == NULL)
5253     return FALSE;
5254   htab->root.sgotplt = s;
5255 
5256   return TRUE;
5257 }
5258 
5259 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5260    __GOTT_INDEX__ symbols.  These symbols are only special for
5261    shared objects; they are not used in executables.  */
5262 
5263 static bfd_boolean
5264 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5265 {
5266   return (mips_elf_hash_table (info)->root.target_os == is_vxworks
5267 	  && bfd_link_pic (info)
5268 	  && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5269 	      || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5270 }
5271 
5272 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5273    require an la25 stub.  See also mips_elf_local_pic_function_p,
5274    which determines whether the destination function ever requires a
5275    stub.  */
5276 
5277 static bfd_boolean
5278 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5279 				     bfd_boolean target_is_16_bit_code_p)
5280 {
5281   /* We specifically ignore branches and jumps from EF_PIC objects,
5282      where the onus is on the compiler or programmer to perform any
5283      necessary initialization of $25.  Sometimes such initialization
5284      is unnecessary; for example, -mno-shared functions do not use
5285      the incoming value of $25, and may therefore be called directly.  */
5286   if (PIC_OBJECT_P (input_bfd))
5287     return FALSE;
5288 
5289   switch (r_type)
5290     {
5291     case R_MIPS_26:
5292     case R_MIPS_PC16:
5293     case R_MIPS_PC21_S2:
5294     case R_MIPS_PC26_S2:
5295     case R_MICROMIPS_26_S1:
5296     case R_MICROMIPS_PC7_S1:
5297     case R_MICROMIPS_PC10_S1:
5298     case R_MICROMIPS_PC16_S1:
5299     case R_MICROMIPS_PC23_S2:
5300       return TRUE;
5301 
5302     case R_MIPS16_26:
5303       return !target_is_16_bit_code_p;
5304 
5305     default:
5306       return FALSE;
5307     }
5308 }
5309 
5310 /* Obtain the field relocated by RELOCATION.  */
5311 
5312 static bfd_vma
5313 mips_elf_obtain_contents (reloc_howto_type *howto,
5314 			  const Elf_Internal_Rela *relocation,
5315 			  bfd *input_bfd, bfd_byte *contents)
5316 {
5317   bfd_vma x = 0;
5318   bfd_byte *location = contents + relocation->r_offset;
5319   unsigned int size = bfd_get_reloc_size (howto);
5320 
5321   /* Obtain the bytes.  */
5322   if (size != 0)
5323     x = bfd_get (8 * size, input_bfd, location);
5324 
5325   return x;
5326 }
5327 
5328 /* Store the field relocated by RELOCATION.  */
5329 
5330 static void
5331 mips_elf_store_contents (reloc_howto_type *howto,
5332 			 const Elf_Internal_Rela *relocation,
5333 			 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5334 {
5335   bfd_byte *location = contents + relocation->r_offset;
5336   unsigned int size = bfd_get_reloc_size (howto);
5337 
5338   /* Put the value into the output.  */
5339   if (size != 0)
5340     bfd_put (8 * size, input_bfd, x, location);
5341 }
5342 
5343 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5344    RELOCATION described by HOWTO, with a move of 0 to the load target
5345    register, returning TRUE if that is successful and FALSE otherwise.
5346    If DOIT is FALSE, then only determine it patching is possible and
5347    return status without actually changing CONTENTS.
5348 */
5349 
5350 static bfd_boolean
5351 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5352 			   const Elf_Internal_Rela *relocation,
5353 			   reloc_howto_type *howto, bfd_boolean doit)
5354 {
5355   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5356   bfd_byte *location = contents + relocation->r_offset;
5357   bfd_boolean nullified = TRUE;
5358   bfd_vma x;
5359 
5360   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5361 
5362   /* Obtain the current value.  */
5363   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5364 
5365   /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5366      while RY is at bits [18:16] of the combined 32-bit instruction word.  */
5367   if (mips16_reloc_p (r_type)
5368       && (((x >> 22) & 0x3ff) == 0x3d3				/* LW */
5369 	  || ((x >> 22) & 0x3ff) == 0x3c7))			/* LD */
5370     x = (0x3cdU << 22) | (x & (7 << 16)) << 3;			/* LI */
5371   else if (micromips_reloc_p (r_type)
5372 	   && ((x >> 26) & 0x37) == 0x37)			/* LW/LD */
5373     x = (0xc << 26) | (x & (0x1f << 21));			/* ADDIU */
5374   else if (((x >> 26) & 0x3f) == 0x23				/* LW */
5375 	   || ((x >> 26) & 0x3f) == 0x37)			/* LD */
5376     x = (0x9 << 26) | (x & (0x1f << 16));			/* ADDIU */
5377   else
5378     nullified = FALSE;
5379 
5380   /* Put the value into the output.  */
5381   if (doit && nullified)
5382     mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5383 
5384   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5385 
5386   return nullified;
5387 }
5388 
5389 /* Calculate the value produced by the RELOCATION (which comes from
5390    the INPUT_BFD).  The ADDEND is the addend to use for this
5391    RELOCATION; RELOCATION->R_ADDEND is ignored.
5392 
5393    The result of the relocation calculation is stored in VALUEP.
5394    On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5395    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5396 
5397    This function returns bfd_reloc_continue if the caller need take no
5398    further action regarding this relocation, bfd_reloc_notsupported if
5399    something goes dramatically wrong, bfd_reloc_overflow if an
5400    overflow occurs, and bfd_reloc_ok to indicate success.  */
5401 
5402 static bfd_reloc_status_type
5403 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5404 			       asection *input_section, bfd_byte *contents,
5405 			       struct bfd_link_info *info,
5406 			       const Elf_Internal_Rela *relocation,
5407 			       bfd_vma addend, reloc_howto_type *howto,
5408 			       Elf_Internal_Sym *local_syms,
5409 			       asection **local_sections, bfd_vma *valuep,
5410 			       const char **namep,
5411 			       bfd_boolean *cross_mode_jump_p,
5412 			       bfd_boolean save_addend)
5413 {
5414   /* The eventual value we will return.  */
5415   bfd_vma value;
5416   /* The address of the symbol against which the relocation is
5417      occurring.  */
5418   bfd_vma symbol = 0;
5419   /* The final GP value to be used for the relocatable, executable, or
5420      shared object file being produced.  */
5421   bfd_vma gp;
5422   /* The place (section offset or address) of the storage unit being
5423      relocated.  */
5424   bfd_vma p;
5425   /* The value of GP used to create the relocatable object.  */
5426   bfd_vma gp0;
5427   /* The offset into the global offset table at which the address of
5428      the relocation entry symbol, adjusted by the addend, resides
5429      during execution.  */
5430   bfd_vma g = MINUS_ONE;
5431   /* The section in which the symbol referenced by the relocation is
5432      located.  */
5433   asection *sec = NULL;
5434   struct mips_elf_link_hash_entry *h = NULL;
5435   /* TRUE if the symbol referred to by this relocation is a local
5436      symbol.  */
5437   bfd_boolean local_p, was_local_p;
5438   /* TRUE if the symbol referred to by this relocation is a section
5439      symbol.  */
5440   bfd_boolean section_p = FALSE;
5441   /* TRUE if the symbol referred to by this relocation is "_gp_disp".  */
5442   bfd_boolean gp_disp_p = FALSE;
5443   /* TRUE if the symbol referred to by this relocation is
5444      "__gnu_local_gp".  */
5445   bfd_boolean gnu_local_gp_p = FALSE;
5446   Elf_Internal_Shdr *symtab_hdr;
5447   size_t extsymoff;
5448   unsigned long r_symndx;
5449   int r_type;
5450   /* TRUE if overflow occurred during the calculation of the
5451      relocation value.  */
5452   bfd_boolean overflowed_p;
5453   /* TRUE if this relocation refers to a MIPS16 function.  */
5454   bfd_boolean target_is_16_bit_code_p = FALSE;
5455   bfd_boolean target_is_micromips_code_p = FALSE;
5456   struct mips_elf_link_hash_table *htab;
5457   bfd *dynobj;
5458   bfd_boolean resolved_to_zero;
5459 
5460   dynobj = elf_hash_table (info)->dynobj;
5461   htab = mips_elf_hash_table (info);
5462   BFD_ASSERT (htab != NULL);
5463 
5464   /* Parse the relocation.  */
5465   r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5466   r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5467   p = (input_section->output_section->vma
5468        + input_section->output_offset
5469        + relocation->r_offset);
5470 
5471   /* Assume that there will be no overflow.  */
5472   overflowed_p = FALSE;
5473 
5474   /* Figure out whether or not the symbol is local, and get the offset
5475      used in the array of hash table entries.  */
5476   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5477   local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5478 					 local_sections);
5479   was_local_p = local_p;
5480   if (! elf_bad_symtab (input_bfd))
5481     extsymoff = symtab_hdr->sh_info;
5482   else
5483     {
5484       /* The symbol table does not follow the rule that local symbols
5485 	 must come before globals.  */
5486       extsymoff = 0;
5487     }
5488 
5489   /* Figure out the value of the symbol.  */
5490   if (local_p)
5491     {
5492       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5493       Elf_Internal_Sym *sym;
5494 
5495       sym = local_syms + r_symndx;
5496       sec = local_sections[r_symndx];
5497 
5498       section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5499 
5500       symbol = sec->output_section->vma + sec->output_offset;
5501       if (!section_p || (sec->flags & SEC_MERGE))
5502 	symbol += sym->st_value;
5503       if ((sec->flags & SEC_MERGE) && section_p)
5504 	{
5505 	  addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5506 	  addend -= symbol;
5507 	  addend += sec->output_section->vma + sec->output_offset;
5508 	}
5509 
5510       /* MIPS16/microMIPS text labels should be treated as odd.  */
5511       if (ELF_ST_IS_COMPRESSED (sym->st_other))
5512 	++symbol;
5513 
5514       /* Record the name of this symbol, for our caller.  */
5515       *namep = bfd_elf_string_from_elf_section (input_bfd,
5516 						symtab_hdr->sh_link,
5517 						sym->st_name);
5518       if (*namep == NULL || **namep == '\0')
5519 	*namep = bfd_section_name (sec);
5520 
5521       /* For relocations against a section symbol and ones against no
5522 	 symbol (absolute relocations) infer the ISA mode from the addend.  */
5523       if (section_p || r_symndx == STN_UNDEF)
5524 	{
5525 	  target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5526 	  target_is_micromips_code_p = (addend & 1) && micromips_p;
5527 	}
5528       /* For relocations against an absolute symbol infer the ISA mode
5529 	 from the value of the symbol plus addend.  */
5530       else if (bfd_is_abs_section (sec))
5531 	{
5532 	  target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5533 	  target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5534 	}
5535       /* Otherwise just use the regular symbol annotation available.  */
5536       else
5537 	{
5538 	  target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5539 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5540 	}
5541     }
5542   else
5543     {
5544       /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ?  */
5545 
5546       /* For global symbols we look up the symbol in the hash-table.  */
5547       h = ((struct mips_elf_link_hash_entry *)
5548 	   elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5549       /* Find the real hash-table entry for this symbol.  */
5550       while (h->root.root.type == bfd_link_hash_indirect
5551 	     || h->root.root.type == bfd_link_hash_warning)
5552 	h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5553 
5554       /* Record the name of this symbol, for our caller.  */
5555       *namep = h->root.root.root.string;
5556 
5557       /* See if this is the special _gp_disp symbol.  Note that such a
5558 	 symbol must always be a global symbol.  */
5559       if (strcmp (*namep, "_gp_disp") == 0
5560 	  && ! NEWABI_P (input_bfd))
5561 	{
5562 	  /* Relocations against _gp_disp are permitted only with
5563 	     R_MIPS_HI16 and R_MIPS_LO16 relocations.  */
5564 	  if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5565 	    return bfd_reloc_notsupported;
5566 
5567 	  gp_disp_p = TRUE;
5568 	}
5569       /* See if this is the special _gp symbol.  Note that such a
5570 	 symbol must always be a global symbol.  */
5571       else if (strcmp (*namep, "__gnu_local_gp") == 0)
5572 	gnu_local_gp_p = TRUE;
5573 
5574 
5575       /* If this symbol is defined, calculate its address.  Note that
5576 	 _gp_disp is a magic symbol, always implicitly defined by the
5577 	 linker, so it's inappropriate to check to see whether or not
5578 	 its defined.  */
5579       else if ((h->root.root.type == bfd_link_hash_defined
5580 		|| h->root.root.type == bfd_link_hash_defweak)
5581 	       && h->root.root.u.def.section)
5582 	{
5583 	  sec = h->root.root.u.def.section;
5584 	  if (sec->output_section)
5585 	    symbol = (h->root.root.u.def.value
5586 		      + sec->output_section->vma
5587 		      + sec->output_offset);
5588 	  else
5589 	    symbol = h->root.root.u.def.value;
5590 	}
5591       else if (h->root.root.type == bfd_link_hash_undefweak)
5592 	/* We allow relocations against undefined weak symbols, giving
5593 	   it the value zero, so that you can undefined weak functions
5594 	   and check to see if they exist by looking at their
5595 	   addresses.  */
5596 	symbol = 0;
5597       else if (info->unresolved_syms_in_objects == RM_IGNORE
5598 	       && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5599 	symbol = 0;
5600       else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5601 		       ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5602 	{
5603 	  /* If this is a dynamic link, we should have created a
5604 	     _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5605 	     in _bfd_mips_elf_create_dynamic_sections.
5606 	     Otherwise, we should define the symbol with a value of 0.
5607 	     FIXME: It should probably get into the symbol table
5608 	     somehow as well.  */
5609 	  BFD_ASSERT (! bfd_link_pic (info));
5610 	  BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5611 	  symbol = 0;
5612 	}
5613       else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5614 	{
5615 	  /* This is an optional symbol - an Irix specific extension to the
5616 	     ELF spec.  Ignore it for now.
5617 	     XXX - FIXME - there is more to the spec for OPTIONAL symbols
5618 	     than simply ignoring them, but we do not handle this for now.
5619 	     For information see the "64-bit ELF Object File Specification"
5620 	     which is available from here:
5621 	     http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf  */
5622 	  symbol = 0;
5623 	}
5624       else
5625 	{
5626           bfd_boolean reject_undefined
5627 	    = (info->unresolved_syms_in_objects == RM_DIAGNOSE
5628 	       && !info->warn_unresolved_syms)
5629 	    || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT;
5630 
5631 	  info->callbacks->undefined_symbol
5632 	    (info, h->root.root.root.string, input_bfd,
5633 	     input_section, relocation->r_offset, reject_undefined);
5634 
5635 	  if (reject_undefined)
5636 	    return bfd_reloc_undefined;
5637 
5638 	  symbol = 0;
5639 	}
5640 
5641       target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5642       target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5643     }
5644 
5645   /* If this is a reference to a 16-bit function with a stub, we need
5646      to redirect the relocation to the stub unless:
5647 
5648      (a) the relocation is for a MIPS16 JAL;
5649 
5650      (b) the relocation is for a MIPS16 PIC call, and there are no
5651 	 non-MIPS16 uses of the GOT slot; or
5652 
5653      (c) the section allows direct references to MIPS16 functions.  */
5654   if (r_type != R_MIPS16_26
5655       && !bfd_link_relocatable (info)
5656       && ((h != NULL
5657 	   && h->fn_stub != NULL
5658 	   && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5659 	  || (local_p
5660 	      && mips_elf_tdata (input_bfd)->local_stubs != NULL
5661 	      && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5662       && !section_allows_mips16_refs_p (input_section))
5663     {
5664       /* This is a 32- or 64-bit call to a 16-bit function.  We should
5665 	 have already noticed that we were going to need the
5666 	 stub.  */
5667       if (local_p)
5668 	{
5669 	  sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5670 	  value = 0;
5671 	}
5672       else
5673 	{
5674 	  BFD_ASSERT (h->need_fn_stub);
5675 	  if (h->la25_stub)
5676 	    {
5677 	      /* If a LA25 header for the stub itself exists, point to the
5678 		 prepended LUI/ADDIU sequence.  */
5679 	      sec = h->la25_stub->stub_section;
5680 	      value = h->la25_stub->offset;
5681 	    }
5682 	  else
5683 	    {
5684 	      sec = h->fn_stub;
5685 	      value = 0;
5686 	    }
5687 	}
5688 
5689       symbol = sec->output_section->vma + sec->output_offset + value;
5690       /* The target is 16-bit, but the stub isn't.  */
5691       target_is_16_bit_code_p = FALSE;
5692     }
5693   /* If this is a MIPS16 call with a stub, that is made through the PLT or
5694      to a standard MIPS function, we need to redirect the call to the stub.
5695      Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5696      indirect calls should use an indirect stub instead.  */
5697   else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5698 	   && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5699 	       || (local_p
5700 		   && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5701 		   && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5702 	   && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5703     {
5704       if (local_p)
5705 	sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5706       else
5707 	{
5708 	  /* If both call_stub and call_fp_stub are defined, we can figure
5709 	     out which one to use by checking which one appears in the input
5710 	     file.  */
5711 	  if (h->call_stub != NULL && h->call_fp_stub != NULL)
5712 	    {
5713 	      asection *o;
5714 
5715 	      sec = NULL;
5716 	      for (o = input_bfd->sections; o != NULL; o = o->next)
5717 		{
5718 		  if (CALL_FP_STUB_P (bfd_section_name (o)))
5719 		    {
5720 		      sec = h->call_fp_stub;
5721 		      break;
5722 		    }
5723 		}
5724 	      if (sec == NULL)
5725 		sec = h->call_stub;
5726 	    }
5727 	  else if (h->call_stub != NULL)
5728 	    sec = h->call_stub;
5729 	  else
5730 	    sec = h->call_fp_stub;
5731 	}
5732 
5733       BFD_ASSERT (sec->size > 0);
5734       symbol = sec->output_section->vma + sec->output_offset;
5735     }
5736   /* If this is a direct call to a PIC function, redirect to the
5737      non-PIC stub.  */
5738   else if (h != NULL && h->la25_stub
5739 	   && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5740 						   target_is_16_bit_code_p))
5741     {
5742 	symbol = (h->la25_stub->stub_section->output_section->vma
5743 		  + h->la25_stub->stub_section->output_offset
5744 		  + h->la25_stub->offset);
5745 	if (ELF_ST_IS_MICROMIPS (h->root.other))
5746 	  symbol |= 1;
5747     }
5748   /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5749      entry is used if a standard PLT entry has also been made.  In this
5750      case the symbol will have been set by mips_elf_set_plt_sym_value
5751      to point to the standard PLT entry, so redirect to the compressed
5752      one.  */
5753   else if ((mips16_branch_reloc_p (r_type)
5754 	    || micromips_branch_reloc_p (r_type))
5755 	   && !bfd_link_relocatable (info)
5756 	   && h != NULL
5757 	   && h->use_plt_entry
5758 	   && h->root.plt.plist->comp_offset != MINUS_ONE
5759 	   && h->root.plt.plist->mips_offset != MINUS_ONE)
5760     {
5761       bfd_boolean micromips_p = MICROMIPS_P (abfd);
5762 
5763       sec = htab->root.splt;
5764       symbol = (sec->output_section->vma
5765 		+ sec->output_offset
5766 		+ htab->plt_header_size
5767 		+ htab->plt_mips_offset
5768 		+ h->root.plt.plist->comp_offset
5769 		+ 1);
5770 
5771       target_is_16_bit_code_p = !micromips_p;
5772       target_is_micromips_code_p = micromips_p;
5773     }
5774 
5775   /* Make sure MIPS16 and microMIPS are not used together.  */
5776   if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5777       || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5778    {
5779       _bfd_error_handler
5780 	(_("MIPS16 and microMIPS functions cannot call each other"));
5781       return bfd_reloc_notsupported;
5782    }
5783 
5784   /* Calls from 16-bit code to 32-bit code and vice versa require the
5785      mode change.  However, we can ignore calls to undefined weak symbols,
5786      which should never be executed at runtime.  This exception is important
5787      because the assembly writer may have "known" that any definition of the
5788      symbol would be 16-bit code, and that direct jumps were therefore
5789      acceptable.  */
5790   *cross_mode_jump_p = (!bfd_link_relocatable (info)
5791 			&& !(h && h->root.root.type == bfd_link_hash_undefweak)
5792 			&& ((mips16_branch_reloc_p (r_type)
5793 			     && !target_is_16_bit_code_p)
5794 			    || (micromips_branch_reloc_p (r_type)
5795 				&& !target_is_micromips_code_p)
5796 			    || ((branch_reloc_p (r_type)
5797 				 || r_type == R_MIPS_JALR)
5798 				&& (target_is_16_bit_code_p
5799 				    || target_is_micromips_code_p))));
5800 
5801   resolved_to_zero = (h != NULL
5802 		      && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5803 
5804   switch (r_type)
5805     {
5806     case R_MIPS16_CALL16:
5807     case R_MIPS16_GOT16:
5808     case R_MIPS_CALL16:
5809     case R_MIPS_GOT16:
5810     case R_MIPS_GOT_PAGE:
5811     case R_MIPS_GOT_DISP:
5812     case R_MIPS_GOT_LO16:
5813     case R_MIPS_CALL_LO16:
5814     case R_MICROMIPS_CALL16:
5815     case R_MICROMIPS_GOT16:
5816     case R_MICROMIPS_GOT_PAGE:
5817     case R_MICROMIPS_GOT_DISP:
5818     case R_MICROMIPS_GOT_LO16:
5819     case R_MICROMIPS_CALL_LO16:
5820       if (resolved_to_zero
5821 	  && !bfd_link_relocatable (info)
5822 	  && mips_elf_nullify_got_load (input_bfd, contents,
5823 					relocation, howto, TRUE))
5824 	return bfd_reloc_continue;
5825 
5826       /* Fall through.  */
5827     case R_MIPS_GOT_HI16:
5828     case R_MIPS_CALL_HI16:
5829     case R_MICROMIPS_GOT_HI16:
5830     case R_MICROMIPS_CALL_HI16:
5831       if (resolved_to_zero
5832 	  && htab->use_absolute_zero
5833 	  && bfd_link_pic (info))
5834 	{
5835 	  /* Redirect to the special `__gnu_absolute_zero' symbol.  */
5836 	  h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5837 					 FALSE, FALSE, FALSE);
5838 	  BFD_ASSERT (h != NULL);
5839 	}
5840       break;
5841     }
5842 
5843   local_p = (h == NULL || mips_use_local_got_p (info, h));
5844 
5845   gp0 = _bfd_get_gp_value (input_bfd);
5846   gp = _bfd_get_gp_value (abfd);
5847   if (htab->got_info)
5848     gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5849 
5850   if (gnu_local_gp_p)
5851     symbol = gp;
5852 
5853   /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5854      to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP.  The addend is applied by the
5855      corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.  */
5856   if (got_page_reloc_p (r_type) && !local_p)
5857     {
5858       r_type = (micromips_reloc_p (r_type)
5859 		? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5860       addend = 0;
5861     }
5862 
5863   /* If we haven't already determined the GOT offset, and we're going
5864      to need it, get it now.  */
5865   switch (r_type)
5866     {
5867     case R_MIPS16_CALL16:
5868     case R_MIPS16_GOT16:
5869     case R_MIPS_CALL16:
5870     case R_MIPS_GOT16:
5871     case R_MIPS_GOT_DISP:
5872     case R_MIPS_GOT_HI16:
5873     case R_MIPS_CALL_HI16:
5874     case R_MIPS_GOT_LO16:
5875     case R_MIPS_CALL_LO16:
5876     case R_MICROMIPS_CALL16:
5877     case R_MICROMIPS_GOT16:
5878     case R_MICROMIPS_GOT_DISP:
5879     case R_MICROMIPS_GOT_HI16:
5880     case R_MICROMIPS_CALL_HI16:
5881     case R_MICROMIPS_GOT_LO16:
5882     case R_MICROMIPS_CALL_LO16:
5883     case R_MIPS_TLS_GD:
5884     case R_MIPS_TLS_GOTTPREL:
5885     case R_MIPS_TLS_LDM:
5886     case R_MIPS16_TLS_GD:
5887     case R_MIPS16_TLS_GOTTPREL:
5888     case R_MIPS16_TLS_LDM:
5889     case R_MICROMIPS_TLS_GD:
5890     case R_MICROMIPS_TLS_GOTTPREL:
5891     case R_MICROMIPS_TLS_LDM:
5892       /* Find the index into the GOT where this value is located.  */
5893       if (tls_ldm_reloc_p (r_type))
5894 	{
5895 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5896 					0, 0, NULL, r_type);
5897 	  if (g == MINUS_ONE)
5898 	    return bfd_reloc_outofrange;
5899 	}
5900       else if (!local_p)
5901 	{
5902 	  /* On VxWorks, CALL relocations should refer to the .got.plt
5903 	     entry, which is initialized to point at the PLT stub.  */
5904 	  if (htab->root.target_os == is_vxworks
5905 	      && (call_hi16_reloc_p (r_type)
5906 		  || call_lo16_reloc_p (r_type)
5907 		  || call16_reloc_p (r_type)))
5908 	    {
5909 	      BFD_ASSERT (addend == 0);
5910 	      BFD_ASSERT (h->root.needs_plt);
5911 	      g = mips_elf_gotplt_index (info, &h->root);
5912 	    }
5913 	  else
5914 	    {
5915 	      BFD_ASSERT (addend == 0);
5916 	      g = mips_elf_global_got_index (abfd, info, input_bfd,
5917 					     &h->root, r_type);
5918 	      if (!TLS_RELOC_P (r_type)
5919 		  && !elf_hash_table (info)->dynamic_sections_created)
5920 		/* This is a static link.  We must initialize the GOT entry.  */
5921 		MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5922 	    }
5923 	}
5924       else if (htab->root.target_os != is_vxworks
5925 	       && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5926 	/* The calculation below does not involve "g".  */
5927 	break;
5928       else
5929 	{
5930 	  g = mips_elf_local_got_index (abfd, input_bfd, info,
5931 					symbol + addend, r_symndx, h, r_type);
5932 	  if (g == MINUS_ONE)
5933 	    return bfd_reloc_outofrange;
5934 	}
5935 
5936       /* Convert GOT indices to actual offsets.  */
5937       g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5938       break;
5939     }
5940 
5941   /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5942      symbols are resolved by the loader.  Add them to .rela.dyn.  */
5943   if (h != NULL && is_gott_symbol (info, &h->root))
5944     {
5945       Elf_Internal_Rela outrel;
5946       bfd_byte *loc;
5947       asection *s;
5948 
5949       s = mips_elf_rel_dyn_section (info, FALSE);
5950       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5951 
5952       outrel.r_offset = (input_section->output_section->vma
5953 			 + input_section->output_offset
5954 			 + relocation->r_offset);
5955       outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5956       outrel.r_addend = addend;
5957       bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5958 
5959       /* If we've written this relocation for a readonly section,
5960 	 we need to set DF_TEXTREL again, so that we do not delete the
5961 	 DT_TEXTREL tag.  */
5962       if (MIPS_ELF_READONLY_SECTION (input_section))
5963 	info->flags |= DF_TEXTREL;
5964 
5965       *valuep = 0;
5966       return bfd_reloc_ok;
5967     }
5968 
5969   /* Figure out what kind of relocation is being performed.  */
5970   switch (r_type)
5971     {
5972     case R_MIPS_NONE:
5973       return bfd_reloc_continue;
5974 
5975     case R_MIPS_16:
5976       if (howto->partial_inplace)
5977 	addend = _bfd_mips_elf_sign_extend (addend, 16);
5978       value = symbol + addend;
5979       overflowed_p = mips_elf_overflow_p (value, 16);
5980       break;
5981 
5982     case R_MIPS_32:
5983     case R_MIPS_REL32:
5984     case R_MIPS_64:
5985       if ((bfd_link_pic (info)
5986 	   || (htab->root.dynamic_sections_created
5987 	       && h != NULL
5988 	       && h->root.def_dynamic
5989 	       && !h->root.def_regular
5990 	       && !h->has_static_relocs))
5991 	  && r_symndx != STN_UNDEF
5992 	  && (h == NULL
5993 	      || h->root.root.type != bfd_link_hash_undefweak
5994 	      || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
5995 		  && !resolved_to_zero))
5996 	  && (input_section->flags & SEC_ALLOC) != 0)
5997 	{
5998 	  /* If we're creating a shared library, then we can't know
5999 	     where the symbol will end up.  So, we create a relocation
6000 	     record in the output, and leave the job up to the dynamic
6001 	     linker.  We must do the same for executable references to
6002 	     shared library symbols, unless we've decided to use copy
6003 	     relocs or PLTs instead.  */
6004 	  value = addend;
6005 	  if (!mips_elf_create_dynamic_relocation (abfd,
6006 						   info,
6007 						   relocation,
6008 						   h,
6009 						   sec,
6010 						   symbol,
6011 						   &value,
6012 						   input_section))
6013 	    return bfd_reloc_undefined;
6014 	}
6015       else
6016 	{
6017 	  if (r_type != R_MIPS_REL32)
6018 	    value = symbol + addend;
6019 	  else
6020 	    value = addend;
6021 	}
6022       value &= howto->dst_mask;
6023       break;
6024 
6025     case R_MIPS_PC32:
6026       value = symbol + addend - p;
6027       value &= howto->dst_mask;
6028       break;
6029 
6030     case R_MIPS16_26:
6031       /* The calculation for R_MIPS16_26 is just the same as for an
6032 	 R_MIPS_26.  It's only the storage of the relocated field into
6033 	 the output file that's different.  That's handled in
6034 	 mips_elf_perform_relocation.  So, we just fall through to the
6035 	 R_MIPS_26 case here.  */
6036     case R_MIPS_26:
6037     case R_MICROMIPS_26_S1:
6038       {
6039 	unsigned int shift;
6040 
6041 	/* Shift is 2, unusually, for microMIPS JALX.  */
6042 	shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6043 
6044 	if (howto->partial_inplace && !section_p)
6045 	  value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6046 	else
6047 	  value = addend;
6048 	value += symbol;
6049 
6050 	/* Make sure the target of a jump is suitably aligned.  Bit 0 must
6051 	   be the correct ISA mode selector except for weak undefined
6052 	   symbols.  */
6053 	if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6054 	    && (*cross_mode_jump_p
6055 		? (value & 3) != (r_type == R_MIPS_26)
6056 		: (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6057 	  return bfd_reloc_outofrange;
6058 
6059 	value >>= shift;
6060 	if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6061 	  overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6062 	value &= howto->dst_mask;
6063       }
6064       break;
6065 
6066     case R_MIPS_TLS_DTPREL_HI16:
6067     case R_MIPS16_TLS_DTPREL_HI16:
6068     case R_MICROMIPS_TLS_DTPREL_HI16:
6069       value = (mips_elf_high (addend + symbol - dtprel_base (info))
6070 	       & howto->dst_mask);
6071       break;
6072 
6073     case R_MIPS_TLS_DTPREL_LO16:
6074     case R_MIPS_TLS_DTPREL32:
6075     case R_MIPS_TLS_DTPREL64:
6076     case R_MIPS16_TLS_DTPREL_LO16:
6077     case R_MICROMIPS_TLS_DTPREL_LO16:
6078       value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6079       break;
6080 
6081     case R_MIPS_TLS_TPREL_HI16:
6082     case R_MIPS16_TLS_TPREL_HI16:
6083     case R_MICROMIPS_TLS_TPREL_HI16:
6084       value = (mips_elf_high (addend + symbol - tprel_base (info))
6085 	       & howto->dst_mask);
6086       break;
6087 
6088     case R_MIPS_TLS_TPREL_LO16:
6089     case R_MIPS_TLS_TPREL32:
6090     case R_MIPS_TLS_TPREL64:
6091     case R_MIPS16_TLS_TPREL_LO16:
6092     case R_MICROMIPS_TLS_TPREL_LO16:
6093       value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6094       break;
6095 
6096     case R_MIPS_HI16:
6097     case R_MIPS16_HI16:
6098     case R_MICROMIPS_HI16:
6099       if (!gp_disp_p)
6100 	{
6101 	  value = mips_elf_high (addend + symbol);
6102 	  value &= howto->dst_mask;
6103 	}
6104       else
6105 	{
6106 	  /* For MIPS16 ABI code we generate this sequence
6107 		0: li      $v0,%hi(_gp_disp)
6108 		4: addiupc $v1,%lo(_gp_disp)
6109 		8: sll     $v0,16
6110 	       12: addu    $v0,$v1
6111 	       14: move    $gp,$v0
6112 	     So the offsets of hi and lo relocs are the same, but the
6113 	     base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6114 	     ADDIUPC clears the low two bits of the instruction address,
6115 	     so the base is ($t9 + 4) & ~3.  */
6116 	  if (r_type == R_MIPS16_HI16)
6117 	    value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6118 	  /* The microMIPS .cpload sequence uses the same assembly
6119 	     instructions as the traditional psABI version, but the
6120 	     incoming $t9 has the low bit set.  */
6121 	  else if (r_type == R_MICROMIPS_HI16)
6122 	    value = mips_elf_high (addend + gp - p - 1);
6123 	  else
6124 	    value = mips_elf_high (addend + gp - p);
6125 	}
6126       break;
6127 
6128     case R_MIPS_LO16:
6129     case R_MIPS16_LO16:
6130     case R_MICROMIPS_LO16:
6131     case R_MICROMIPS_HI0_LO16:
6132       if (!gp_disp_p)
6133 	value = (symbol + addend) & howto->dst_mask;
6134       else
6135 	{
6136 	  /* See the comment for R_MIPS16_HI16 above for the reason
6137 	     for this conditional.  */
6138 	  if (r_type == R_MIPS16_LO16)
6139 	    value = addend + gp - (p & ~(bfd_vma) 0x3);
6140 	  else if (r_type == R_MICROMIPS_LO16
6141 		   || r_type == R_MICROMIPS_HI0_LO16)
6142 	    value = addend + gp - p + 3;
6143 	  else
6144 	    value = addend + gp - p + 4;
6145 	  /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6146 	     for overflow.  But, on, say, IRIX5, relocations against
6147 	     _gp_disp are normally generated from the .cpload
6148 	     pseudo-op.  It generates code that normally looks like
6149 	     this:
6150 
6151 	       lui    $gp,%hi(_gp_disp)
6152 	       addiu  $gp,$gp,%lo(_gp_disp)
6153 	       addu   $gp,$gp,$t9
6154 
6155 	     Here $t9 holds the address of the function being called,
6156 	     as required by the MIPS ELF ABI.  The R_MIPS_LO16
6157 	     relocation can easily overflow in this situation, but the
6158 	     R_MIPS_HI16 relocation will handle the overflow.
6159 	     Therefore, we consider this a bug in the MIPS ABI, and do
6160 	     not check for overflow here.  */
6161 	}
6162       break;
6163 
6164     case R_MIPS_LITERAL:
6165     case R_MICROMIPS_LITERAL:
6166       /* Because we don't merge literal sections, we can handle this
6167 	 just like R_MIPS_GPREL16.  In the long run, we should merge
6168 	 shared literals, and then we will need to additional work
6169 	 here.  */
6170 
6171       /* Fall through.  */
6172 
6173     case R_MIPS16_GPREL:
6174       /* The R_MIPS16_GPREL performs the same calculation as
6175 	 R_MIPS_GPREL16, but stores the relocated bits in a different
6176 	 order.  We don't need to do anything special here; the
6177 	 differences are handled in mips_elf_perform_relocation.  */
6178     case R_MIPS_GPREL16:
6179     case R_MICROMIPS_GPREL7_S2:
6180     case R_MICROMIPS_GPREL16:
6181       /* Only sign-extend the addend if it was extracted from the
6182 	 instruction.  If the addend was separate, leave it alone,
6183 	 otherwise we may lose significant bits.  */
6184       if (howto->partial_inplace)
6185 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6186       value = symbol + addend - gp;
6187       /* If the symbol was local, any earlier relocatable links will
6188 	 have adjusted its addend with the gp offset, so compensate
6189 	 for that now.  Don't do it for symbols forced local in this
6190 	 link, though, since they won't have had the gp offset applied
6191 	 to them before.  */
6192       if (was_local_p)
6193 	value += gp0;
6194       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6195 	overflowed_p = mips_elf_overflow_p (value, 16);
6196       break;
6197 
6198     case R_MIPS16_GOT16:
6199     case R_MIPS16_CALL16:
6200     case R_MIPS_GOT16:
6201     case R_MIPS_CALL16:
6202     case R_MICROMIPS_GOT16:
6203     case R_MICROMIPS_CALL16:
6204       /* VxWorks does not have separate local and global semantics for
6205 	 R_MIPS*_GOT16; every relocation evaluates to "G".  */
6206       if (htab->root.target_os != is_vxworks && local_p)
6207 	{
6208 	  value = mips_elf_got16_entry (abfd, input_bfd, info,
6209 					symbol + addend, !was_local_p);
6210 	  if (value == MINUS_ONE)
6211 	    return bfd_reloc_outofrange;
6212 	  value
6213 	    = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6214 	  overflowed_p = mips_elf_overflow_p (value, 16);
6215 	  break;
6216 	}
6217 
6218       /* Fall through.  */
6219 
6220     case R_MIPS_TLS_GD:
6221     case R_MIPS_TLS_GOTTPREL:
6222     case R_MIPS_TLS_LDM:
6223     case R_MIPS_GOT_DISP:
6224     case R_MIPS16_TLS_GD:
6225     case R_MIPS16_TLS_GOTTPREL:
6226     case R_MIPS16_TLS_LDM:
6227     case R_MICROMIPS_TLS_GD:
6228     case R_MICROMIPS_TLS_GOTTPREL:
6229     case R_MICROMIPS_TLS_LDM:
6230     case R_MICROMIPS_GOT_DISP:
6231       value = g;
6232       overflowed_p = mips_elf_overflow_p (value, 16);
6233       break;
6234 
6235     case R_MIPS_GPREL32:
6236       value = (addend + symbol + gp0 - gp);
6237       if (!save_addend)
6238 	value &= howto->dst_mask;
6239       break;
6240 
6241     case R_MIPS_PC16:
6242     case R_MIPS_GNU_REL16_S2:
6243       if (howto->partial_inplace)
6244 	addend = _bfd_mips_elf_sign_extend (addend, 18);
6245 
6246       /* No need to exclude weak undefined symbols here as they resolve
6247 	 to 0 and never set `*cross_mode_jump_p', so this alignment check
6248 	 will never trigger for them.  */
6249       if (*cross_mode_jump_p
6250 	  ? ((symbol + addend) & 3) != 1
6251 	  : ((symbol + addend) & 3) != 0)
6252 	return bfd_reloc_outofrange;
6253 
6254       value = symbol + addend - p;
6255       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6256 	overflowed_p = mips_elf_overflow_p (value, 18);
6257       value >>= howto->rightshift;
6258       value &= howto->dst_mask;
6259       break;
6260 
6261     case R_MIPS16_PC16_S1:
6262       if (howto->partial_inplace)
6263 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6264 
6265       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6266 	  && (*cross_mode_jump_p
6267 	      ? ((symbol + addend) & 3) != 0
6268 	      : ((symbol + addend) & 1) == 0))
6269 	return bfd_reloc_outofrange;
6270 
6271       value = symbol + addend - p;
6272       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6273 	overflowed_p = mips_elf_overflow_p (value, 17);
6274       value >>= howto->rightshift;
6275       value &= howto->dst_mask;
6276       break;
6277 
6278     case R_MIPS_PC21_S2:
6279       if (howto->partial_inplace)
6280 	addend = _bfd_mips_elf_sign_extend (addend, 23);
6281 
6282       if ((symbol + addend) & 3)
6283 	return bfd_reloc_outofrange;
6284 
6285       value = symbol + addend - p;
6286       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6287 	overflowed_p = mips_elf_overflow_p (value, 23);
6288       value >>= howto->rightshift;
6289       value &= howto->dst_mask;
6290       break;
6291 
6292     case R_MIPS_PC26_S2:
6293       if (howto->partial_inplace)
6294 	addend = _bfd_mips_elf_sign_extend (addend, 28);
6295 
6296       if ((symbol + addend) & 3)
6297 	return bfd_reloc_outofrange;
6298 
6299       value = symbol + addend - p;
6300       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6301 	overflowed_p = mips_elf_overflow_p (value, 28);
6302       value >>= howto->rightshift;
6303       value &= howto->dst_mask;
6304       break;
6305 
6306     case R_MIPS_PC18_S3:
6307       if (howto->partial_inplace)
6308 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6309 
6310       if ((symbol + addend) & 7)
6311 	return bfd_reloc_outofrange;
6312 
6313       value = symbol + addend - ((p | 7) ^ 7);
6314       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6315 	overflowed_p = mips_elf_overflow_p (value, 21);
6316       value >>= howto->rightshift;
6317       value &= howto->dst_mask;
6318       break;
6319 
6320     case R_MIPS_PC19_S2:
6321       if (howto->partial_inplace)
6322 	addend = _bfd_mips_elf_sign_extend (addend, 21);
6323 
6324       if ((symbol + addend) & 3)
6325 	return bfd_reloc_outofrange;
6326 
6327       value = symbol + addend - p;
6328       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6329 	overflowed_p = mips_elf_overflow_p (value, 21);
6330       value >>= howto->rightshift;
6331       value &= howto->dst_mask;
6332       break;
6333 
6334     case R_MIPS_PCHI16:
6335       value = mips_elf_high (symbol + addend - p);
6336       value &= howto->dst_mask;
6337       break;
6338 
6339     case R_MIPS_PCLO16:
6340       if (howto->partial_inplace)
6341 	addend = _bfd_mips_elf_sign_extend (addend, 16);
6342       value = symbol + addend - p;
6343       value &= howto->dst_mask;
6344       break;
6345 
6346     case R_MICROMIPS_PC7_S1:
6347       if (howto->partial_inplace)
6348 	addend = _bfd_mips_elf_sign_extend (addend, 8);
6349 
6350       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6351 	  && (*cross_mode_jump_p
6352 	      ? ((symbol + addend + 2) & 3) != 0
6353 	      : ((symbol + addend + 2) & 1) == 0))
6354 	return bfd_reloc_outofrange;
6355 
6356       value = symbol + addend - p;
6357       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6358 	overflowed_p = mips_elf_overflow_p (value, 8);
6359       value >>= howto->rightshift;
6360       value &= howto->dst_mask;
6361       break;
6362 
6363     case R_MICROMIPS_PC10_S1:
6364       if (howto->partial_inplace)
6365 	addend = _bfd_mips_elf_sign_extend (addend, 11);
6366 
6367       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6368 	  && (*cross_mode_jump_p
6369 	      ? ((symbol + addend + 2) & 3) != 0
6370 	      : ((symbol + addend + 2) & 1) == 0))
6371 	return bfd_reloc_outofrange;
6372 
6373       value = symbol + addend - p;
6374       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6375 	overflowed_p = mips_elf_overflow_p (value, 11);
6376       value >>= howto->rightshift;
6377       value &= howto->dst_mask;
6378       break;
6379 
6380     case R_MICROMIPS_PC16_S1:
6381       if (howto->partial_inplace)
6382 	addend = _bfd_mips_elf_sign_extend (addend, 17);
6383 
6384       if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6385 	  && (*cross_mode_jump_p
6386 	      ? ((symbol + addend) & 3) != 0
6387 	      : ((symbol + addend) & 1) == 0))
6388 	return bfd_reloc_outofrange;
6389 
6390       value = symbol + addend - p;
6391       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6392 	overflowed_p = mips_elf_overflow_p (value, 17);
6393       value >>= howto->rightshift;
6394       value &= howto->dst_mask;
6395       break;
6396 
6397     case R_MICROMIPS_PC23_S2:
6398       if (howto->partial_inplace)
6399 	addend = _bfd_mips_elf_sign_extend (addend, 25);
6400       value = symbol + addend - ((p | 3) ^ 3);
6401       if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6402 	overflowed_p = mips_elf_overflow_p (value, 25);
6403       value >>= howto->rightshift;
6404       value &= howto->dst_mask;
6405       break;
6406 
6407     case R_MIPS_GOT_HI16:
6408     case R_MIPS_CALL_HI16:
6409     case R_MICROMIPS_GOT_HI16:
6410     case R_MICROMIPS_CALL_HI16:
6411       /* We're allowed to handle these two relocations identically.
6412 	 The dynamic linker is allowed to handle the CALL relocations
6413 	 differently by creating a lazy evaluation stub.  */
6414       value = g;
6415       value = mips_elf_high (value);
6416       value &= howto->dst_mask;
6417       break;
6418 
6419     case R_MIPS_GOT_LO16:
6420     case R_MIPS_CALL_LO16:
6421     case R_MICROMIPS_GOT_LO16:
6422     case R_MICROMIPS_CALL_LO16:
6423       value = g & howto->dst_mask;
6424       break;
6425 
6426     case R_MIPS_GOT_PAGE:
6427     case R_MICROMIPS_GOT_PAGE:
6428       value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6429       if (value == MINUS_ONE)
6430 	return bfd_reloc_outofrange;
6431       value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6432       overflowed_p = mips_elf_overflow_p (value, 16);
6433       break;
6434 
6435     case R_MIPS_GOT_OFST:
6436     case R_MICROMIPS_GOT_OFST:
6437       if (local_p)
6438 	mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6439       else
6440 	value = addend;
6441       overflowed_p = mips_elf_overflow_p (value, 16);
6442       break;
6443 
6444     case R_MIPS_SUB:
6445     case R_MICROMIPS_SUB:
6446       value = symbol - addend;
6447       value &= howto->dst_mask;
6448       break;
6449 
6450     case R_MIPS_HIGHER:
6451     case R_MICROMIPS_HIGHER:
6452       value = mips_elf_higher (addend + symbol);
6453       value &= howto->dst_mask;
6454       break;
6455 
6456     case R_MIPS_HIGHEST:
6457     case R_MICROMIPS_HIGHEST:
6458       value = mips_elf_highest (addend + symbol);
6459       value &= howto->dst_mask;
6460       break;
6461 
6462     case R_MIPS_SCN_DISP:
6463     case R_MICROMIPS_SCN_DISP:
6464       value = symbol + addend - sec->output_offset;
6465       value &= howto->dst_mask;
6466       break;
6467 
6468     case R_MIPS_JALR:
6469     case R_MICROMIPS_JALR:
6470       /* This relocation is only a hint.  In some cases, we optimize
6471 	 it into a bal instruction.  But we don't try to optimize
6472 	 when the symbol does not resolve locally.  */
6473       if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6474 	return bfd_reloc_continue;
6475       /* We can't optimize cross-mode jumps either.  */
6476       if (*cross_mode_jump_p)
6477 	return bfd_reloc_continue;
6478       value = symbol + addend;
6479       /* Neither we can non-instruction-aligned targets.  */
6480       if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6481 	return bfd_reloc_continue;
6482       break;
6483 
6484     case R_MIPS_PJUMP:
6485     case R_MIPS_GNU_VTINHERIT:
6486     case R_MIPS_GNU_VTENTRY:
6487       /* We don't do anything with these at present.  */
6488       return bfd_reloc_continue;
6489 
6490     default:
6491       /* An unrecognized relocation type.  */
6492       return bfd_reloc_notsupported;
6493     }
6494 
6495   /* Store the VALUE for our caller.  */
6496   *valuep = value;
6497   return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6498 }
6499 
6500 /* It has been determined that the result of the RELOCATION is the
6501    VALUE.  Use HOWTO to place VALUE into the output file at the
6502    appropriate position.  The SECTION is the section to which the
6503    relocation applies.
6504    CROSS_MODE_JUMP_P is true if the relocation field
6505    is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6506 
6507    Returns FALSE if anything goes wrong.  */
6508 
6509 static bfd_boolean
6510 mips_elf_perform_relocation (struct bfd_link_info *info,
6511 			     reloc_howto_type *howto,
6512 			     const Elf_Internal_Rela *relocation,
6513 			     bfd_vma value, bfd *input_bfd,
6514 			     asection *input_section, bfd_byte *contents,
6515 			     bfd_boolean cross_mode_jump_p)
6516 {
6517   bfd_vma x;
6518   bfd_byte *location;
6519   int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6520 
6521   /* Figure out where the relocation is occurring.  */
6522   location = contents + relocation->r_offset;
6523 
6524   _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6525 
6526   /* Obtain the current value.  */
6527   x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6528 
6529   /* Clear the field we are setting.  */
6530   x &= ~howto->dst_mask;
6531 
6532   /* Set the field.  */
6533   x |= (value & howto->dst_mask);
6534 
6535   /* Detect incorrect JALX usage.  If required, turn JAL or BAL into JALX.  */
6536   if (!cross_mode_jump_p && jal_reloc_p (r_type))
6537     {
6538       bfd_vma opcode = x >> 26;
6539 
6540       if (r_type == R_MIPS16_26 ? opcode == 0x7
6541 	  : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6542 	  : opcode == 0x1d)
6543 	{
6544 	  info->callbacks->einfo
6545 	    (_("%X%H: unsupported JALX to the same ISA mode\n"),
6546 	     input_bfd, input_section, relocation->r_offset);
6547 	  return TRUE;
6548 	}
6549     }
6550   if (cross_mode_jump_p && jal_reloc_p (r_type))
6551     {
6552       bfd_boolean ok;
6553       bfd_vma opcode = x >> 26;
6554       bfd_vma jalx_opcode;
6555 
6556       /* Check to see if the opcode is already JAL or JALX.  */
6557       if (r_type == R_MIPS16_26)
6558 	{
6559 	  ok = ((opcode == 0x6) || (opcode == 0x7));
6560 	  jalx_opcode = 0x7;
6561 	}
6562       else if (r_type == R_MICROMIPS_26_S1)
6563 	{
6564 	  ok = ((opcode == 0x3d) || (opcode == 0x3c));
6565 	  jalx_opcode = 0x3c;
6566 	}
6567       else
6568 	{
6569 	  ok = ((opcode == 0x3) || (opcode == 0x1d));
6570 	  jalx_opcode = 0x1d;
6571 	}
6572 
6573       /* If the opcode is not JAL or JALX, there's a problem.  We cannot
6574 	 convert J or JALS to JALX.  */
6575       if (!ok)
6576 	{
6577 	  info->callbacks->einfo
6578 	    (_("%X%H: unsupported jump between ISA modes; "
6579 	       "consider recompiling with interlinking enabled\n"),
6580 	     input_bfd, input_section, relocation->r_offset);
6581 	  return TRUE;
6582 	}
6583 
6584       /* Make this the JALX opcode.  */
6585       x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6586     }
6587   else if (cross_mode_jump_p && b_reloc_p (r_type))
6588     {
6589       bfd_boolean ok = FALSE;
6590       bfd_vma opcode = x >> 16;
6591       bfd_vma jalx_opcode = 0;
6592       bfd_vma sign_bit = 0;
6593       bfd_vma addr;
6594       bfd_vma dest;
6595 
6596       if (r_type == R_MICROMIPS_PC16_S1)
6597 	{
6598 	  ok = opcode == 0x4060;
6599 	  jalx_opcode = 0x3c;
6600 	  sign_bit = 0x10000;
6601 	  value <<= 1;
6602 	}
6603       else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6604 	{
6605 	  ok = opcode == 0x411;
6606 	  jalx_opcode = 0x1d;
6607 	  sign_bit = 0x20000;
6608 	  value <<= 2;
6609 	}
6610 
6611       if (ok && !bfd_link_pic (info))
6612 	{
6613 	  addr = (input_section->output_section->vma
6614 		  + input_section->output_offset
6615 		  + relocation->r_offset
6616 		  + 4);
6617 	  dest = (addr
6618 		  + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6619 
6620 	  if ((addr >> 28) << 28 != (dest >> 28) << 28)
6621 	    {
6622 	      info->callbacks->einfo
6623 		(_("%X%H: cannot convert branch between ISA modes "
6624 		   "to JALX: relocation out of range\n"),
6625 		 input_bfd, input_section, relocation->r_offset);
6626 	      return TRUE;
6627 	    }
6628 
6629 	  /* Make this the JALX opcode.  */
6630 	  x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6631 	}
6632       else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6633 	{
6634 	  info->callbacks->einfo
6635 	    (_("%X%H: unsupported branch between ISA modes\n"),
6636 	     input_bfd, input_section, relocation->r_offset);
6637 	  return TRUE;
6638 	}
6639     }
6640 
6641   /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6642      range.  */
6643   if (!bfd_link_relocatable (info)
6644       && !cross_mode_jump_p
6645       && ((JAL_TO_BAL_P (input_bfd)
6646 	   && r_type == R_MIPS_26
6647 	   && (x >> 26) == 0x3)			/* jal addr */
6648 	  || (JALR_TO_BAL_P (input_bfd)
6649 	      && r_type == R_MIPS_JALR
6650 	      && x == 0x0320f809)		/* jalr t9 */
6651 	  || (JR_TO_B_P (input_bfd)
6652 	      && r_type == R_MIPS_JALR
6653 	      && (x & ~1) == 0x03200008)))	/* jr t9 / jalr zero, t9 */
6654     {
6655       bfd_vma addr;
6656       bfd_vma dest;
6657       bfd_signed_vma off;
6658 
6659       addr = (input_section->output_section->vma
6660 	      + input_section->output_offset
6661 	      + relocation->r_offset
6662 	      + 4);
6663       if (r_type == R_MIPS_26)
6664 	dest = (value << 2) | ((addr >> 28) << 28);
6665       else
6666 	dest = value;
6667       off = dest - addr;
6668       if (off <= 0x1ffff && off >= -0x20000)
6669 	{
6670 	  if ((x & ~1) == 0x03200008)		/* jr t9 / jalr zero, t9 */
6671 	    x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff);   /* b addr */
6672 	  else
6673 	    x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff);   /* bal addr */
6674 	}
6675     }
6676 
6677   /* Put the value into the output.  */
6678   mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6679 
6680   _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6681 			       location);
6682 
6683   return TRUE;
6684 }
6685 
6686 /* Create a rel.dyn relocation for the dynamic linker to resolve.  REL
6687    is the original relocation, which is now being transformed into a
6688    dynamic relocation.  The ADDENDP is adjusted if necessary; the
6689    caller should store the result in place of the original addend.  */
6690 
6691 static bfd_boolean
6692 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6693 				    struct bfd_link_info *info,
6694 				    const Elf_Internal_Rela *rel,
6695 				    struct mips_elf_link_hash_entry *h,
6696 				    asection *sec, bfd_vma symbol,
6697 				    bfd_vma *addendp, asection *input_section)
6698 {
6699   Elf_Internal_Rela outrel[3];
6700   asection *sreloc;
6701   bfd *dynobj;
6702   int r_type;
6703   long indx;
6704   bfd_boolean defined_p;
6705   struct mips_elf_link_hash_table *htab;
6706 
6707   htab = mips_elf_hash_table (info);
6708   BFD_ASSERT (htab != NULL);
6709 
6710   r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6711   dynobj = elf_hash_table (info)->dynobj;
6712   sreloc = mips_elf_rel_dyn_section (info, FALSE);
6713   BFD_ASSERT (sreloc != NULL);
6714   BFD_ASSERT (sreloc->contents != NULL);
6715   BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6716 	      < sreloc->size);
6717 
6718   outrel[0].r_offset =
6719     _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6720   if (ABI_64_P (output_bfd))
6721     {
6722       outrel[1].r_offset =
6723 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6724       outrel[2].r_offset =
6725 	_bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6726     }
6727 
6728   if (outrel[0].r_offset == MINUS_ONE)
6729     /* The relocation field has been deleted.  */
6730     return TRUE;
6731 
6732   if (outrel[0].r_offset == MINUS_TWO)
6733     {
6734       /* The relocation field has been converted into a relative value of
6735 	 some sort.  Functions like _bfd_elf_write_section_eh_frame expect
6736 	 the field to be fully relocated, so add in the symbol's value.  */
6737       *addendp += symbol;
6738       return TRUE;
6739     }
6740 
6741   /* We must now calculate the dynamic symbol table index to use
6742      in the relocation.  */
6743   if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6744     {
6745       BFD_ASSERT (htab->root.target_os == is_vxworks
6746 		  || h->global_got_area != GGA_NONE);
6747       indx = h->root.dynindx;
6748       if (SGI_COMPAT (output_bfd))
6749 	defined_p = h->root.def_regular;
6750       else
6751 	/* ??? glibc's ld.so just adds the final GOT entry to the
6752 	   relocation field.  It therefore treats relocs against
6753 	   defined symbols in the same way as relocs against
6754 	   undefined symbols.  */
6755 	defined_p = FALSE;
6756     }
6757   else
6758     {
6759       if (sec != NULL && bfd_is_abs_section (sec))
6760 	indx = 0;
6761       else if (sec == NULL || sec->owner == NULL)
6762 	{
6763 	  bfd_set_error (bfd_error_bad_value);
6764 	  return FALSE;
6765 	}
6766       else
6767 	{
6768 	  indx = elf_section_data (sec->output_section)->dynindx;
6769 	  if (indx == 0)
6770 	    {
6771 	      asection *osec = htab->root.text_index_section;
6772 	      indx = elf_section_data (osec)->dynindx;
6773 	    }
6774 	  if (indx == 0)
6775 	    abort ();
6776 	}
6777 
6778       /* Instead of generating a relocation using the section
6779 	 symbol, we may as well make it a fully relative
6780 	 relocation.  We want to avoid generating relocations to
6781 	 local symbols because we used to generate them
6782 	 incorrectly, without adding the original symbol value,
6783 	 which is mandated by the ABI for section symbols.  In
6784 	 order to give dynamic loaders and applications time to
6785 	 phase out the incorrect use, we refrain from emitting
6786 	 section-relative relocations.  It's not like they're
6787 	 useful, after all.  This should be a bit more efficient
6788 	 as well.  */
6789       /* ??? Although this behavior is compatible with glibc's ld.so,
6790 	 the ABI says that relocations against STN_UNDEF should have
6791 	 a symbol value of 0.  Irix rld honors this, so relocations
6792 	 against STN_UNDEF have no effect.  */
6793       if (!SGI_COMPAT (output_bfd))
6794 	indx = 0;
6795       defined_p = TRUE;
6796     }
6797 
6798   /* If the relocation was previously an absolute relocation and
6799      this symbol will not be referred to by the relocation, we must
6800      adjust it by the value we give it in the dynamic symbol table.
6801      Otherwise leave the job up to the dynamic linker.  */
6802   if (defined_p && r_type != R_MIPS_REL32)
6803     *addendp += symbol;
6804 
6805   if (htab->root.target_os == is_vxworks)
6806     /* VxWorks uses non-relative relocations for this.  */
6807     outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6808   else
6809     /* The relocation is always an REL32 relocation because we don't
6810        know where the shared library will wind up at load-time.  */
6811     outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6812 				   R_MIPS_REL32);
6813 
6814   /* For strict adherence to the ABI specification, we should
6815      generate a R_MIPS_64 relocation record by itself before the
6816      _REL32/_64 record as well, such that the addend is read in as
6817      a 64-bit value (REL32 is a 32-bit relocation, after all).
6818      However, since none of the existing ELF64 MIPS dynamic
6819      loaders seems to care, we don't waste space with these
6820      artificial relocations.  If this turns out to not be true,
6821      mips_elf_allocate_dynamic_relocation() should be tweaked so
6822      as to make room for a pair of dynamic relocations per
6823      invocation if ABI_64_P, and here we should generate an
6824      additional relocation record with R_MIPS_64 by itself for a
6825      NULL symbol before this relocation record.  */
6826   outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6827 				 ABI_64_P (output_bfd)
6828 				 ? R_MIPS_64
6829 				 : R_MIPS_NONE);
6830   outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6831 
6832   /* Adjust the output offset of the relocation to reference the
6833      correct location in the output file.  */
6834   outrel[0].r_offset += (input_section->output_section->vma
6835 			 + input_section->output_offset);
6836   outrel[1].r_offset += (input_section->output_section->vma
6837 			 + input_section->output_offset);
6838   outrel[2].r_offset += (input_section->output_section->vma
6839 			 + input_section->output_offset);
6840 
6841   /* Put the relocation back out.  We have to use the special
6842      relocation outputter in the 64-bit case since the 64-bit
6843      relocation format is non-standard.  */
6844   if (ABI_64_P (output_bfd))
6845     {
6846       (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6847 	(output_bfd, &outrel[0],
6848 	 (sreloc->contents
6849 	  + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6850     }
6851   else if (htab->root.target_os == is_vxworks)
6852     {
6853       /* VxWorks uses RELA rather than REL dynamic relocations.  */
6854       outrel[0].r_addend = *addendp;
6855       bfd_elf32_swap_reloca_out
6856 	(output_bfd, &outrel[0],
6857 	 (sreloc->contents
6858 	  + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6859     }
6860   else
6861     bfd_elf32_swap_reloc_out
6862       (output_bfd, &outrel[0],
6863        (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6864 
6865   /* We've now added another relocation.  */
6866   ++sreloc->reloc_count;
6867 
6868   /* Make sure the output section is writable.  The dynamic linker
6869      will be writing to it.  */
6870   elf_section_data (input_section->output_section)->this_hdr.sh_flags
6871     |= SHF_WRITE;
6872 
6873   /* On IRIX5, make an entry of compact relocation info.  */
6874   if (IRIX_COMPAT (output_bfd) == ict_irix5)
6875     {
6876       asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6877       bfd_byte *cr;
6878 
6879       if (scpt)
6880 	{
6881 	  Elf32_crinfo cptrel;
6882 
6883 	  mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6884 	  cptrel.vaddr = (rel->r_offset
6885 			  + input_section->output_section->vma
6886 			  + input_section->output_offset);
6887 	  if (r_type == R_MIPS_REL32)
6888 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6889 	  else
6890 	    mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6891 	  mips_elf_set_cr_dist2to (cptrel, 0);
6892 	  cptrel.konst = *addendp;
6893 
6894 	  cr = (scpt->contents
6895 		+ sizeof (Elf32_External_compact_rel));
6896 	  mips_elf_set_cr_relvaddr (cptrel, 0);
6897 	  bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6898 				     ((Elf32_External_crinfo *) cr
6899 				      + scpt->reloc_count));
6900 	  ++scpt->reloc_count;
6901 	}
6902     }
6903 
6904   /* If we've written this relocation for a readonly section,
6905      we need to set DF_TEXTREL again, so that we do not delete the
6906      DT_TEXTREL tag.  */
6907   if (MIPS_ELF_READONLY_SECTION (input_section))
6908     info->flags |= DF_TEXTREL;
6909 
6910   return TRUE;
6911 }
6912 
6913 /* Return the MACH for a MIPS e_flags value.  */
6914 
6915 unsigned long
6916 _bfd_elf_mips_mach (flagword flags)
6917 {
6918   switch (flags & EF_MIPS_MACH)
6919     {
6920     case E_MIPS_MACH_3900:
6921       return bfd_mach_mips3900;
6922 
6923     case E_MIPS_MACH_4010:
6924       return bfd_mach_mips4010;
6925 
6926     case E_MIPS_MACH_4100:
6927       return bfd_mach_mips4100;
6928 
6929     case E_MIPS_MACH_4111:
6930       return bfd_mach_mips4111;
6931 
6932     case E_MIPS_MACH_4120:
6933       return bfd_mach_mips4120;
6934 
6935     case E_MIPS_MACH_4650:
6936       return bfd_mach_mips4650;
6937 
6938     case E_MIPS_MACH_5400:
6939       return bfd_mach_mips5400;
6940 
6941     case E_MIPS_MACH_5500:
6942       return bfd_mach_mips5500;
6943 
6944     case E_MIPS_MACH_5900:
6945       return bfd_mach_mips5900;
6946 
6947     case E_MIPS_MACH_9000:
6948       return bfd_mach_mips9000;
6949 
6950     case E_MIPS_MACH_SB1:
6951       return bfd_mach_mips_sb1;
6952 
6953     case E_MIPS_MACH_LS2E:
6954       return bfd_mach_mips_loongson_2e;
6955 
6956     case E_MIPS_MACH_LS2F:
6957       return bfd_mach_mips_loongson_2f;
6958 
6959     case E_MIPS_MACH_GS464:
6960       return bfd_mach_mips_gs464;
6961 
6962     case E_MIPS_MACH_GS464E:
6963       return bfd_mach_mips_gs464e;
6964 
6965     case E_MIPS_MACH_GS264E:
6966       return bfd_mach_mips_gs264e;
6967 
6968     case E_MIPS_MACH_OCTEON3:
6969       return bfd_mach_mips_octeon3;
6970 
6971     case E_MIPS_MACH_OCTEON2:
6972       return bfd_mach_mips_octeon2;
6973 
6974     case E_MIPS_MACH_OCTEON:
6975       return bfd_mach_mips_octeon;
6976 
6977     case E_MIPS_MACH_XLR:
6978       return bfd_mach_mips_xlr;
6979 
6980     case E_MIPS_MACH_IAMR2:
6981       return bfd_mach_mips_interaptiv_mr2;
6982 
6983     default:
6984       switch (flags & EF_MIPS_ARCH)
6985 	{
6986 	default:
6987 	case E_MIPS_ARCH_1:
6988 	  return bfd_mach_mips3000;
6989 
6990 	case E_MIPS_ARCH_2:
6991 	  return bfd_mach_mips6000;
6992 
6993 	case E_MIPS_ARCH_3:
6994 	  return bfd_mach_mips4000;
6995 
6996 	case E_MIPS_ARCH_4:
6997 	  return bfd_mach_mips8000;
6998 
6999 	case E_MIPS_ARCH_5:
7000 	  return bfd_mach_mips5;
7001 
7002 	case E_MIPS_ARCH_32:
7003 	  return bfd_mach_mipsisa32;
7004 
7005 	case E_MIPS_ARCH_64:
7006 	  return bfd_mach_mipsisa64;
7007 
7008 	case E_MIPS_ARCH_32R2:
7009 	  return bfd_mach_mipsisa32r2;
7010 
7011 	case E_MIPS_ARCH_64R2:
7012 	  return bfd_mach_mipsisa64r2;
7013 
7014 	case E_MIPS_ARCH_32R6:
7015 	  return bfd_mach_mipsisa32r6;
7016 
7017 	case E_MIPS_ARCH_64R6:
7018 	  return bfd_mach_mipsisa64r6;
7019 	}
7020     }
7021 
7022   return 0;
7023 }
7024 
7025 /* Return printable name for ABI.  */
7026 
7027 static INLINE char *
7028 elf_mips_abi_name (bfd *abfd)
7029 {
7030   flagword flags;
7031 
7032   flags = elf_elfheader (abfd)->e_flags;
7033   switch (flags & EF_MIPS_ABI)
7034     {
7035     case 0:
7036       if (ABI_N32_P (abfd))
7037 	return "N32";
7038       else if (ABI_64_P (abfd))
7039 	return "64";
7040       else
7041 	return "none";
7042     case E_MIPS_ABI_O32:
7043       return "O32";
7044     case E_MIPS_ABI_O64:
7045       return "O64";
7046     case E_MIPS_ABI_EABI32:
7047       return "EABI32";
7048     case E_MIPS_ABI_EABI64:
7049       return "EABI64";
7050     default:
7051       return "unknown abi";
7052     }
7053 }
7054 
7055 /* MIPS ELF uses two common sections.  One is the usual one, and the
7056    other is for small objects.  All the small objects are kept
7057    together, and then referenced via the gp pointer, which yields
7058    faster assembler code.  This is what we use for the small common
7059    section.  This approach is copied from ecoff.c.  */
7060 static asection mips_elf_scom_section;
7061 static asymbol mips_elf_scom_symbol;
7062 static asymbol *mips_elf_scom_symbol_ptr;
7063 
7064 /* MIPS ELF also uses an acommon section, which represents an
7065    allocated common symbol which may be overridden by a
7066    definition in a shared library.  */
7067 static asection mips_elf_acom_section;
7068 static asymbol mips_elf_acom_symbol;
7069 static asymbol *mips_elf_acom_symbol_ptr;
7070 
7071 /* This is used for both the 32-bit and the 64-bit ABI.  */
7072 
7073 void
7074 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7075 {
7076   elf_symbol_type *elfsym;
7077 
7078   /* Handle the special MIPS section numbers that a symbol may use.  */
7079   elfsym = (elf_symbol_type *) asym;
7080   switch (elfsym->internal_elf_sym.st_shndx)
7081     {
7082     case SHN_MIPS_ACOMMON:
7083       /* This section is used in a dynamically linked executable file.
7084 	 It is an allocated common section.  The dynamic linker can
7085 	 either resolve these symbols to something in a shared
7086 	 library, or it can just leave them here.  For our purposes,
7087 	 we can consider these symbols to be in a new section.  */
7088       if (mips_elf_acom_section.name == NULL)
7089 	{
7090 	  /* Initialize the acommon section.  */
7091 	  mips_elf_acom_section.name = ".acommon";
7092 	  mips_elf_acom_section.flags = SEC_ALLOC;
7093 	  mips_elf_acom_section.output_section = &mips_elf_acom_section;
7094 	  mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7095 	  mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7096 	  mips_elf_acom_symbol.name = ".acommon";
7097 	  mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7098 	  mips_elf_acom_symbol.section = &mips_elf_acom_section;
7099 	  mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7100 	}
7101       asym->section = &mips_elf_acom_section;
7102       break;
7103 
7104     case SHN_COMMON:
7105       /* Common symbols less than the GP size are automatically
7106 	 treated as SHN_MIPS_SCOMMON symbols on IRIX5.  */
7107       if (asym->value > elf_gp_size (abfd)
7108 	  || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7109 	  || IRIX_COMPAT (abfd) == ict_irix6)
7110 	break;
7111       /* Fall through.  */
7112     case SHN_MIPS_SCOMMON:
7113       if (mips_elf_scom_section.name == NULL)
7114 	{
7115 	  /* Initialize the small common section.  */
7116 	  mips_elf_scom_section.name = ".scommon";
7117 	  mips_elf_scom_section.flags = SEC_IS_COMMON | SEC_SMALL_DATA;
7118 	  mips_elf_scom_section.output_section = &mips_elf_scom_section;
7119 	  mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7120 	  mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7121 	  mips_elf_scom_symbol.name = ".scommon";
7122 	  mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7123 	  mips_elf_scom_symbol.section = &mips_elf_scom_section;
7124 	  mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7125 	}
7126       asym->section = &mips_elf_scom_section;
7127       asym->value = elfsym->internal_elf_sym.st_size;
7128       break;
7129 
7130     case SHN_MIPS_SUNDEFINED:
7131       asym->section = bfd_und_section_ptr;
7132       break;
7133 
7134     case SHN_MIPS_TEXT:
7135       {
7136 	asection *section = bfd_get_section_by_name (abfd, ".text");
7137 
7138 	if (section != NULL)
7139 	  {
7140 	    asym->section = section;
7141 	    /* MIPS_TEXT is a bit special, the address is not an offset
7142 	       to the base of the .text section.  So subtract the section
7143 	       base address to make it an offset.  */
7144 	    asym->value -= section->vma;
7145 	  }
7146       }
7147       break;
7148 
7149     case SHN_MIPS_DATA:
7150       {
7151 	asection *section = bfd_get_section_by_name (abfd, ".data");
7152 
7153 	if (section != NULL)
7154 	  {
7155 	    asym->section = section;
7156 	    /* MIPS_DATA is a bit special, the address is not an offset
7157 	       to the base of the .data section.  So subtract the section
7158 	       base address to make it an offset.  */
7159 	    asym->value -= section->vma;
7160 	  }
7161       }
7162       break;
7163     }
7164 
7165   /* If this is an odd-valued function symbol, assume it's a MIPS16
7166      or microMIPS one.  */
7167   if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7168       && (asym->value & 1) != 0)
7169     {
7170       asym->value--;
7171       if (MICROMIPS_P (abfd))
7172 	elfsym->internal_elf_sym.st_other
7173 	  = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7174       else
7175 	elfsym->internal_elf_sym.st_other
7176 	  = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7177     }
7178 }
7179 
7180 /* Implement elf_backend_eh_frame_address_size.  This differs from
7181    the default in the way it handles EABI64.
7182 
7183    EABI64 was originally specified as an LP64 ABI, and that is what
7184    -mabi=eabi normally gives on a 64-bit target.  However, gcc has
7185    historically accepted the combination of -mabi=eabi and -mlong32,
7186    and this ILP32 variation has become semi-official over time.
7187    Both forms use elf32 and have pointer-sized FDE addresses.
7188 
7189    If an EABI object was generated by GCC 4.0 or above, it will have
7190    an empty .gcc_compiled_longXX section, where XX is the size of longs
7191    in bits.  Unfortunately, ILP32 objects generated by earlier compilers
7192    have no special marking to distinguish them from LP64 objects.
7193 
7194    We don't want users of the official LP64 ABI to be punished for the
7195    existence of the ILP32 variant, but at the same time, we don't want
7196    to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7197    We therefore take the following approach:
7198 
7199       - If ABFD contains a .gcc_compiled_longXX section, use it to
7200 	determine the pointer size.
7201 
7202       - Otherwise check the type of the first relocation.  Assume that
7203 	the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7204 
7205       - Otherwise punt.
7206 
7207    The second check is enough to detect LP64 objects generated by pre-4.0
7208    compilers because, in the kind of output generated by those compilers,
7209    the first relocation will be associated with either a CIE personality
7210    routine or an FDE start address.  Furthermore, the compilers never
7211    used a special (non-pointer) encoding for this ABI.
7212 
7213    Checking the relocation type should also be safe because there is no
7214    reason to use R_MIPS_64 in an ILP32 object.  Pre-4.0 compilers never
7215    did so.  */
7216 
7217 unsigned int
7218 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7219 {
7220   if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7221     return 8;
7222   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7223     {
7224       bfd_boolean long32_p, long64_p;
7225 
7226       long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7227       long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7228       if (long32_p && long64_p)
7229 	return 0;
7230       if (long32_p)
7231 	return 4;
7232       if (long64_p)
7233 	return 8;
7234 
7235       if (sec->reloc_count > 0
7236 	  && elf_section_data (sec)->relocs != NULL
7237 	  && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7238 	      == R_MIPS_64))
7239 	return 8;
7240 
7241       return 0;
7242     }
7243   return 4;
7244 }
7245 
7246 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7247    relocations against two unnamed section symbols to resolve to the
7248    same address.  For example, if we have code like:
7249 
7250 	lw	$4,%got_disp(.data)($gp)
7251 	lw	$25,%got_disp(.text)($gp)
7252 	jalr	$25
7253 
7254    then the linker will resolve both relocations to .data and the program
7255    will jump there rather than to .text.
7256 
7257    We can work around this problem by giving names to local section symbols.
7258    This is also what the MIPSpro tools do.  */
7259 
7260 bfd_boolean
7261 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7262 {
7263   return elf_elfheader (abfd)->e_type == ET_REL && SGI_COMPAT (abfd);
7264 }
7265 
7266 /* Work over a section just before writing it out.  This routine is
7267    used by both the 32-bit and the 64-bit ABI.  FIXME: We recognize
7268    sections that need the SHF_MIPS_GPREL flag by name; there has to be
7269    a better way.  */
7270 
7271 bfd_boolean
7272 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7273 {
7274   if (hdr->sh_type == SHT_MIPS_REGINFO
7275       && hdr->sh_size > 0)
7276     {
7277       bfd_byte buf[4];
7278 
7279       BFD_ASSERT (hdr->contents == NULL);
7280 
7281       if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7282 	{
7283 	  _bfd_error_handler
7284 	    (_("%pB: incorrect `.reginfo' section size; "
7285 	       "expected %" PRIu64 ", got %" PRIu64),
7286 	     abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7287 	     (uint64_t) hdr->sh_size);
7288 	  bfd_set_error (bfd_error_bad_value);
7289 	  return FALSE;
7290 	}
7291 
7292       if (bfd_seek (abfd,
7293 		    hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7294 		    SEEK_SET) != 0)
7295 	return FALSE;
7296       H_PUT_32 (abfd, elf_gp (abfd), buf);
7297       if (bfd_bwrite (buf, 4, abfd) != 4)
7298 	return FALSE;
7299     }
7300 
7301   if (hdr->sh_type == SHT_MIPS_OPTIONS
7302       && hdr->bfd_section != NULL
7303       && mips_elf_section_data (hdr->bfd_section) != NULL
7304       && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7305     {
7306       bfd_byte *contents, *l, *lend;
7307 
7308       /* We stored the section contents in the tdata field in the
7309 	 set_section_contents routine.  We save the section contents
7310 	 so that we don't have to read them again.
7311 	 At this point we know that elf_gp is set, so we can look
7312 	 through the section contents to see if there is an
7313 	 ODK_REGINFO structure.  */
7314 
7315       contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7316       l = contents;
7317       lend = contents + hdr->sh_size;
7318       while (l + sizeof (Elf_External_Options) <= lend)
7319 	{
7320 	  Elf_Internal_Options intopt;
7321 
7322 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7323 					&intopt);
7324 	  if (intopt.size < sizeof (Elf_External_Options))
7325 	    {
7326 	      _bfd_error_handler
7327 		/* xgettext:c-format */
7328 		(_("%pB: warning: bad `%s' option size %u smaller than"
7329 		   " its header"),
7330 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7331 	      break;
7332 	    }
7333 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7334 	    {
7335 	      bfd_byte buf[8];
7336 
7337 	      if (bfd_seek (abfd,
7338 			    (hdr->sh_offset
7339 			     + (l - contents)
7340 			     + sizeof (Elf_External_Options)
7341 			     + (sizeof (Elf64_External_RegInfo) - 8)),
7342 			     SEEK_SET) != 0)
7343 		return FALSE;
7344 	      H_PUT_64 (abfd, elf_gp (abfd), buf);
7345 	      if (bfd_bwrite (buf, 8, abfd) != 8)
7346 		return FALSE;
7347 	    }
7348 	  else if (intopt.kind == ODK_REGINFO)
7349 	    {
7350 	      bfd_byte buf[4];
7351 
7352 	      if (bfd_seek (abfd,
7353 			    (hdr->sh_offset
7354 			     + (l - contents)
7355 			     + sizeof (Elf_External_Options)
7356 			     + (sizeof (Elf32_External_RegInfo) - 4)),
7357 			    SEEK_SET) != 0)
7358 		return FALSE;
7359 	      H_PUT_32 (abfd, elf_gp (abfd), buf);
7360 	      if (bfd_bwrite (buf, 4, abfd) != 4)
7361 		return FALSE;
7362 	    }
7363 	  l += intopt.size;
7364 	}
7365     }
7366 
7367   if (hdr->bfd_section != NULL)
7368     {
7369       const char *name = bfd_section_name (hdr->bfd_section);
7370 
7371       /* .sbss is not handled specially here because the GNU/Linux
7372 	 prelinker can convert .sbss from NOBITS to PROGBITS and
7373 	 changing it back to NOBITS breaks the binary.  The entry in
7374 	 _bfd_mips_elf_special_sections will ensure the correct flags
7375 	 are set on .sbss if BFD creates it without reading it from an
7376 	 input file, and without special handling here the flags set
7377 	 on it in an input file will be followed.  */
7378       if (strcmp (name, ".sdata") == 0
7379 	  || strcmp (name, ".lit8") == 0
7380 	  || strcmp (name, ".lit4") == 0)
7381 	hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7382       else if (strcmp (name, ".srdata") == 0)
7383 	hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7384       else if (strcmp (name, ".compact_rel") == 0)
7385 	hdr->sh_flags = 0;
7386       else if (strcmp (name, ".rtproc") == 0)
7387 	{
7388 	  if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7389 	    {
7390 	      unsigned int adjust;
7391 
7392 	      adjust = hdr->sh_size % hdr->sh_addralign;
7393 	      if (adjust != 0)
7394 		hdr->sh_size += hdr->sh_addralign - adjust;
7395 	    }
7396 	}
7397     }
7398 
7399   return TRUE;
7400 }
7401 
7402 /* Handle a MIPS specific section when reading an object file.  This
7403    is called when elfcode.h finds a section with an unknown type.
7404    This routine supports both the 32-bit and 64-bit ELF ABI.  */
7405 
7406 bfd_boolean
7407 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7408 				 Elf_Internal_Shdr *hdr,
7409 				 const char *name,
7410 				 int shindex)
7411 {
7412   flagword flags = 0;
7413 
7414   /* There ought to be a place to keep ELF backend specific flags, but
7415      at the moment there isn't one.  We just keep track of the
7416      sections by their name, instead.  Fortunately, the ABI gives
7417      suggested names for all the MIPS specific sections, so we will
7418      probably get away with this.  */
7419   switch (hdr->sh_type)
7420     {
7421     case SHT_MIPS_LIBLIST:
7422       if (strcmp (name, ".liblist") != 0)
7423 	return FALSE;
7424       break;
7425     case SHT_MIPS_MSYM:
7426       if (strcmp (name, ".msym") != 0)
7427 	return FALSE;
7428       break;
7429     case SHT_MIPS_CONFLICT:
7430       if (strcmp (name, ".conflict") != 0)
7431 	return FALSE;
7432       break;
7433     case SHT_MIPS_GPTAB:
7434       if (! CONST_STRNEQ (name, ".gptab."))
7435 	return FALSE;
7436       break;
7437     case SHT_MIPS_UCODE:
7438       if (strcmp (name, ".ucode") != 0)
7439 	return FALSE;
7440       break;
7441     case SHT_MIPS_DEBUG:
7442       if (strcmp (name, ".mdebug") != 0)
7443 	return FALSE;
7444       flags = SEC_DEBUGGING;
7445       break;
7446     case SHT_MIPS_REGINFO:
7447       if (strcmp (name, ".reginfo") != 0
7448 	  || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7449 	return FALSE;
7450       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7451       break;
7452     case SHT_MIPS_IFACE:
7453       if (strcmp (name, ".MIPS.interfaces") != 0)
7454 	return FALSE;
7455       break;
7456     case SHT_MIPS_CONTENT:
7457       if (! CONST_STRNEQ (name, ".MIPS.content"))
7458 	return FALSE;
7459       break;
7460     case SHT_MIPS_OPTIONS:
7461       if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7462 	return FALSE;
7463       break;
7464     case SHT_MIPS_ABIFLAGS:
7465       if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7466 	return FALSE;
7467       flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7468       break;
7469     case SHT_MIPS_DWARF:
7470       if (! CONST_STRNEQ (name, ".debug_")
7471 	  && ! CONST_STRNEQ (name, ".zdebug_"))
7472 	return FALSE;
7473       break;
7474     case SHT_MIPS_SYMBOL_LIB:
7475       if (strcmp (name, ".MIPS.symlib") != 0)
7476 	return FALSE;
7477       break;
7478     case SHT_MIPS_EVENTS:
7479       if (! CONST_STRNEQ (name, ".MIPS.events")
7480 	  && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7481 	return FALSE;
7482       break;
7483     case SHT_MIPS_XHASH:
7484       if (strcmp (name, ".MIPS.xhash") != 0)
7485 	return FALSE;
7486     default:
7487       break;
7488     }
7489 
7490   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7491     return FALSE;
7492 
7493   if (hdr->sh_flags & SHF_MIPS_GPREL)
7494     flags |= SEC_SMALL_DATA;
7495 
7496   if (flags)
7497     {
7498       if (!bfd_set_section_flags (hdr->bfd_section,
7499 				  (bfd_section_flags (hdr->bfd_section)
7500 				   | flags)))
7501 	return FALSE;
7502     }
7503 
7504   if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7505     {
7506       Elf_External_ABIFlags_v0 ext;
7507 
7508       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7509 				      &ext, 0, sizeof ext))
7510 	return FALSE;
7511       bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7512 					&mips_elf_tdata (abfd)->abiflags);
7513       if (mips_elf_tdata (abfd)->abiflags.version != 0)
7514 	return FALSE;
7515       mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7516     }
7517 
7518   /* FIXME: We should record sh_info for a .gptab section.  */
7519 
7520   /* For a .reginfo section, set the gp value in the tdata information
7521      from the contents of this section.  We need the gp value while
7522      processing relocs, so we just get it now.  The .reginfo section
7523      is not used in the 64-bit MIPS ELF ABI.  */
7524   if (hdr->sh_type == SHT_MIPS_REGINFO)
7525     {
7526       Elf32_External_RegInfo ext;
7527       Elf32_RegInfo s;
7528 
7529       if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7530 				      &ext, 0, sizeof ext))
7531 	return FALSE;
7532       bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7533       elf_gp (abfd) = s.ri_gp_value;
7534     }
7535 
7536   /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7537      set the gp value based on what we find.  We may see both
7538      SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7539      they should agree.  */
7540   if (hdr->sh_type == SHT_MIPS_OPTIONS)
7541     {
7542       bfd_byte *contents, *l, *lend;
7543 
7544       contents = bfd_malloc (hdr->sh_size);
7545       if (contents == NULL)
7546 	return FALSE;
7547       if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7548 				      0, hdr->sh_size))
7549 	{
7550 	  free (contents);
7551 	  return FALSE;
7552 	}
7553       l = contents;
7554       lend = contents + hdr->sh_size;
7555       while (l + sizeof (Elf_External_Options) <= lend)
7556 	{
7557 	  Elf_Internal_Options intopt;
7558 
7559 	  bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7560 					&intopt);
7561 	  if (intopt.size < sizeof (Elf_External_Options))
7562 	    {
7563 	      _bfd_error_handler
7564 		/* xgettext:c-format */
7565 		(_("%pB: warning: bad `%s' option size %u smaller than"
7566 		   " its header"),
7567 		abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7568 	      break;
7569 	    }
7570 	  if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7571 	    {
7572 	      Elf64_Internal_RegInfo intreg;
7573 
7574 	      bfd_mips_elf64_swap_reginfo_in
7575 		(abfd,
7576 		 ((Elf64_External_RegInfo *)
7577 		  (l + sizeof (Elf_External_Options))),
7578 		 &intreg);
7579 	      elf_gp (abfd) = intreg.ri_gp_value;
7580 	    }
7581 	  else if (intopt.kind == ODK_REGINFO)
7582 	    {
7583 	      Elf32_RegInfo intreg;
7584 
7585 	      bfd_mips_elf32_swap_reginfo_in
7586 		(abfd,
7587 		 ((Elf32_External_RegInfo *)
7588 		  (l + sizeof (Elf_External_Options))),
7589 		 &intreg);
7590 	      elf_gp (abfd) = intreg.ri_gp_value;
7591 	    }
7592 	  l += intopt.size;
7593 	}
7594       free (contents);
7595     }
7596 
7597   return TRUE;
7598 }
7599 
7600 /* Set the correct type for a MIPS ELF section.  We do this by the
7601    section name, which is a hack, but ought to work.  This routine is
7602    used by both the 32-bit and the 64-bit ABI.  */
7603 
7604 bfd_boolean
7605 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7606 {
7607   const char *name = bfd_section_name (sec);
7608 
7609   if (strcmp (name, ".liblist") == 0)
7610     {
7611       hdr->sh_type = SHT_MIPS_LIBLIST;
7612       hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7613       /* The sh_link field is set in final_write_processing.  */
7614     }
7615   else if (strcmp (name, ".conflict") == 0)
7616     hdr->sh_type = SHT_MIPS_CONFLICT;
7617   else if (CONST_STRNEQ (name, ".gptab."))
7618     {
7619       hdr->sh_type = SHT_MIPS_GPTAB;
7620       hdr->sh_entsize = sizeof (Elf32_External_gptab);
7621       /* The sh_info field is set in final_write_processing.  */
7622     }
7623   else if (strcmp (name, ".ucode") == 0)
7624     hdr->sh_type = SHT_MIPS_UCODE;
7625   else if (strcmp (name, ".mdebug") == 0)
7626     {
7627       hdr->sh_type = SHT_MIPS_DEBUG;
7628       /* In a shared object on IRIX 5.3, the .mdebug section has an
7629 	 entsize of 0.  FIXME: Does this matter?  */
7630       if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7631 	hdr->sh_entsize = 0;
7632       else
7633 	hdr->sh_entsize = 1;
7634     }
7635   else if (strcmp (name, ".reginfo") == 0)
7636     {
7637       hdr->sh_type = SHT_MIPS_REGINFO;
7638       /* In a shared object on IRIX 5.3, the .reginfo section has an
7639 	 entsize of 0x18.  FIXME: Does this matter?  */
7640       if (SGI_COMPAT (abfd))
7641 	{
7642 	  if ((abfd->flags & DYNAMIC) != 0)
7643 	    hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7644 	  else
7645 	    hdr->sh_entsize = 1;
7646 	}
7647       else
7648 	hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7649     }
7650   else if (SGI_COMPAT (abfd)
7651 	   && (strcmp (name, ".hash") == 0
7652 	       || strcmp (name, ".dynamic") == 0
7653 	       || strcmp (name, ".dynstr") == 0))
7654     {
7655       if (SGI_COMPAT (abfd))
7656 	hdr->sh_entsize = 0;
7657 #if 0
7658       /* This isn't how the IRIX6 linker behaves.  */
7659       hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7660 #endif
7661     }
7662   else if (strcmp (name, ".got") == 0
7663 	   || strcmp (name, ".srdata") == 0
7664 	   || strcmp (name, ".sdata") == 0
7665 	   || strcmp (name, ".sbss") == 0
7666 	   || strcmp (name, ".lit4") == 0
7667 	   || strcmp (name, ".lit8") == 0)
7668     hdr->sh_flags |= SHF_MIPS_GPREL;
7669   else if (strcmp (name, ".MIPS.interfaces") == 0)
7670     {
7671       hdr->sh_type = SHT_MIPS_IFACE;
7672       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7673     }
7674   else if (CONST_STRNEQ (name, ".MIPS.content"))
7675     {
7676       hdr->sh_type = SHT_MIPS_CONTENT;
7677       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7678       /* The sh_info field is set in final_write_processing.  */
7679     }
7680   else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7681     {
7682       hdr->sh_type = SHT_MIPS_OPTIONS;
7683       hdr->sh_entsize = 1;
7684       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7685     }
7686   else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7687     {
7688       hdr->sh_type = SHT_MIPS_ABIFLAGS;
7689       hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7690     }
7691   else if (CONST_STRNEQ (name, ".debug_")
7692 	   || CONST_STRNEQ (name, ".zdebug_"))
7693     {
7694       hdr->sh_type = SHT_MIPS_DWARF;
7695 
7696       /* Irix facilities such as libexc expect a single .debug_frame
7697 	 per executable, the system ones have NOSTRIP set and the linker
7698 	 doesn't merge sections with different flags so ...  */
7699       if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7700 	hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7701     }
7702   else if (strcmp (name, ".MIPS.symlib") == 0)
7703     {
7704       hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7705       /* The sh_link and sh_info fields are set in
7706 	 final_write_processing.  */
7707     }
7708   else if (CONST_STRNEQ (name, ".MIPS.events")
7709 	   || CONST_STRNEQ (name, ".MIPS.post_rel"))
7710     {
7711       hdr->sh_type = SHT_MIPS_EVENTS;
7712       hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7713       /* The sh_link field is set in final_write_processing.  */
7714     }
7715   else if (strcmp (name, ".msym") == 0)
7716     {
7717       hdr->sh_type = SHT_MIPS_MSYM;
7718       hdr->sh_flags |= SHF_ALLOC;
7719       hdr->sh_entsize = 8;
7720     }
7721   else if (strcmp (name, ".MIPS.xhash") == 0)
7722     {
7723       hdr->sh_type = SHT_MIPS_XHASH;
7724       hdr->sh_flags |= SHF_ALLOC;
7725       hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7726     }
7727 
7728   /* The generic elf_fake_sections will set up REL_HDR using the default
7729    kind of relocations.  We used to set up a second header for the
7730    non-default kind of relocations here, but only NewABI would use
7731    these, and the IRIX ld doesn't like resulting empty RELA sections.
7732    Thus we create those header only on demand now.  */
7733 
7734   return TRUE;
7735 }
7736 
7737 /* Given a BFD section, try to locate the corresponding ELF section
7738    index.  This is used by both the 32-bit and the 64-bit ABI.
7739    Actually, it's not clear to me that the 64-bit ABI supports these,
7740    but for non-PIC objects we will certainly want support for at least
7741    the .scommon section.  */
7742 
7743 bfd_boolean
7744 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7745 					asection *sec, int *retval)
7746 {
7747   if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7748     {
7749       *retval = SHN_MIPS_SCOMMON;
7750       return TRUE;
7751     }
7752   if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7753     {
7754       *retval = SHN_MIPS_ACOMMON;
7755       return TRUE;
7756     }
7757   return FALSE;
7758 }
7759 
7760 /* Hook called by the linker routine which adds symbols from an object
7761    file.  We must handle the special MIPS section numbers here.  */
7762 
7763 bfd_boolean
7764 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7765 			       Elf_Internal_Sym *sym, const char **namep,
7766 			       flagword *flagsp ATTRIBUTE_UNUSED,
7767 			       asection **secp, bfd_vma *valp)
7768 {
7769   if (SGI_COMPAT (abfd)
7770       && (abfd->flags & DYNAMIC) != 0
7771       && strcmp (*namep, "_rld_new_interface") == 0)
7772     {
7773       /* Skip IRIX5 rld entry name.  */
7774       *namep = NULL;
7775       return TRUE;
7776     }
7777 
7778   /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7779      a SECTION *ABS*.  This causes ld to think it can resolve _gp_disp
7780      by setting a DT_NEEDED for the shared object.  Since _gp_disp is
7781      a magic symbol resolved by the linker, we ignore this bogus definition
7782      of _gp_disp.  New ABI objects do not suffer from this problem so this
7783      is not done for them. */
7784   if (!NEWABI_P(abfd)
7785       && (sym->st_shndx == SHN_ABS)
7786       && (strcmp (*namep, "_gp_disp") == 0))
7787     {
7788       *namep = NULL;
7789       return TRUE;
7790     }
7791 
7792   switch (sym->st_shndx)
7793     {
7794     case SHN_COMMON:
7795       /* Common symbols less than the GP size are automatically
7796 	 treated as SHN_MIPS_SCOMMON symbols.  */
7797       if (sym->st_size > elf_gp_size (abfd)
7798 	  || ELF_ST_TYPE (sym->st_info) == STT_TLS
7799 	  || IRIX_COMPAT (abfd) == ict_irix6)
7800 	break;
7801       /* Fall through.  */
7802     case SHN_MIPS_SCOMMON:
7803       *secp = bfd_make_section_old_way (abfd, ".scommon");
7804       (*secp)->flags |= SEC_IS_COMMON | SEC_SMALL_DATA;
7805       *valp = sym->st_size;
7806       break;
7807 
7808     case SHN_MIPS_TEXT:
7809       /* This section is used in a shared object.  */
7810       if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7811 	{
7812 	  asymbol *elf_text_symbol;
7813 	  asection *elf_text_section;
7814 	  size_t amt = sizeof (asection);
7815 
7816 	  elf_text_section = bfd_zalloc (abfd, amt);
7817 	  if (elf_text_section == NULL)
7818 	    return FALSE;
7819 
7820 	  amt = sizeof (asymbol);
7821 	  elf_text_symbol = bfd_zalloc (abfd, amt);
7822 	  if (elf_text_symbol == NULL)
7823 	    return FALSE;
7824 
7825 	  /* Initialize the section.  */
7826 
7827 	  mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7828 	  mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7829 
7830 	  elf_text_section->symbol = elf_text_symbol;
7831 	  elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7832 
7833 	  elf_text_section->name = ".text";
7834 	  elf_text_section->flags = SEC_NO_FLAGS;
7835 	  elf_text_section->output_section = NULL;
7836 	  elf_text_section->owner = abfd;
7837 	  elf_text_symbol->name = ".text";
7838 	  elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7839 	  elf_text_symbol->section = elf_text_section;
7840 	}
7841       /* This code used to do *secp = bfd_und_section_ptr if
7842 	 bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7843 	 so I took it out.  */
7844       *secp = mips_elf_tdata (abfd)->elf_text_section;
7845       break;
7846 
7847     case SHN_MIPS_ACOMMON:
7848       /* Fall through. XXX Can we treat this as allocated data?  */
7849     case SHN_MIPS_DATA:
7850       /* This section is used in a shared object.  */
7851       if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7852 	{
7853 	  asymbol *elf_data_symbol;
7854 	  asection *elf_data_section;
7855 	  size_t amt = sizeof (asection);
7856 
7857 	  elf_data_section = bfd_zalloc (abfd, amt);
7858 	  if (elf_data_section == NULL)
7859 	    return FALSE;
7860 
7861 	  amt = sizeof (asymbol);
7862 	  elf_data_symbol = bfd_zalloc (abfd, amt);
7863 	  if (elf_data_symbol == NULL)
7864 	    return FALSE;
7865 
7866 	  /* Initialize the section.  */
7867 
7868 	  mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7869 	  mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7870 
7871 	  elf_data_section->symbol = elf_data_symbol;
7872 	  elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7873 
7874 	  elf_data_section->name = ".data";
7875 	  elf_data_section->flags = SEC_NO_FLAGS;
7876 	  elf_data_section->output_section = NULL;
7877 	  elf_data_section->owner = abfd;
7878 	  elf_data_symbol->name = ".data";
7879 	  elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7880 	  elf_data_symbol->section = elf_data_section;
7881 	}
7882       /* This code used to do *secp = bfd_und_section_ptr if
7883 	 bfd_link_pic (info).  I don't know why, and that doesn't make sense,
7884 	 so I took it out.  */
7885       *secp = mips_elf_tdata (abfd)->elf_data_section;
7886       break;
7887 
7888     case SHN_MIPS_SUNDEFINED:
7889       *secp = bfd_und_section_ptr;
7890       break;
7891     }
7892 
7893   if (SGI_COMPAT (abfd)
7894       && ! bfd_link_pic (info)
7895       && info->output_bfd->xvec == abfd->xvec
7896       && strcmp (*namep, "__rld_obj_head") == 0)
7897     {
7898       struct elf_link_hash_entry *h;
7899       struct bfd_link_hash_entry *bh;
7900 
7901       /* Mark __rld_obj_head as dynamic.  */
7902       bh = NULL;
7903       if (! (_bfd_generic_link_add_one_symbol
7904 	     (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7905 	      get_elf_backend_data (abfd)->collect, &bh)))
7906 	return FALSE;
7907 
7908       h = (struct elf_link_hash_entry *) bh;
7909       h->non_elf = 0;
7910       h->def_regular = 1;
7911       h->type = STT_OBJECT;
7912 
7913       if (! bfd_elf_link_record_dynamic_symbol (info, h))
7914 	return FALSE;
7915 
7916       mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7917       mips_elf_hash_table (info)->rld_symbol = h;
7918     }
7919 
7920   /* If this is a mips16 text symbol, add 1 to the value to make it
7921      odd.  This will cause something like .word SYM to come up with
7922      the right value when it is loaded into the PC.  */
7923   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7924     ++*valp;
7925 
7926   return TRUE;
7927 }
7928 
7929 /* This hook function is called before the linker writes out a global
7930    symbol.  We mark symbols as small common if appropriate.  This is
7931    also where we undo the increment of the value for a mips16 symbol.  */
7932 
7933 int
7934 _bfd_mips_elf_link_output_symbol_hook
7935   (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7936    const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7937    asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7938 {
7939   /* If we see a common symbol, which implies a relocatable link, then
7940      if a symbol was small common in an input file, mark it as small
7941      common in the output file.  */
7942   if (sym->st_shndx == SHN_COMMON
7943       && strcmp (input_sec->name, ".scommon") == 0)
7944     sym->st_shndx = SHN_MIPS_SCOMMON;
7945 
7946   if (ELF_ST_IS_COMPRESSED (sym->st_other))
7947     sym->st_value &= ~1;
7948 
7949   return 1;
7950 }
7951 
7952 /* Functions for the dynamic linker.  */
7953 
7954 /* Create dynamic sections when linking against a dynamic object.  */
7955 
7956 bfd_boolean
7957 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7958 {
7959   struct elf_link_hash_entry *h;
7960   struct bfd_link_hash_entry *bh;
7961   flagword flags;
7962   register asection *s;
7963   const char * const *namep;
7964   struct mips_elf_link_hash_table *htab;
7965 
7966   htab = mips_elf_hash_table (info);
7967   BFD_ASSERT (htab != NULL);
7968 
7969   flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7970 	   | SEC_LINKER_CREATED | SEC_READONLY);
7971 
7972   /* The psABI requires a read-only .dynamic section, but the VxWorks
7973      EABI doesn't.  */
7974   if (htab->root.target_os != is_vxworks)
7975     {
7976       s = bfd_get_linker_section (abfd, ".dynamic");
7977       if (s != NULL)
7978 	{
7979 	  if (!bfd_set_section_flags (s, flags))
7980 	    return FALSE;
7981 	}
7982     }
7983 
7984   /* We need to create .got section.  */
7985   if (!mips_elf_create_got_section (abfd, info))
7986     return FALSE;
7987 
7988   if (! mips_elf_rel_dyn_section (info, TRUE))
7989     return FALSE;
7990 
7991   /* Create .stub section.  */
7992   s = bfd_make_section_anyway_with_flags (abfd,
7993 					  MIPS_ELF_STUB_SECTION_NAME (abfd),
7994 					  flags | SEC_CODE);
7995   if (s == NULL
7996       || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
7997     return FALSE;
7998   htab->sstubs = s;
7999 
8000   if (!mips_elf_hash_table (info)->use_rld_obj_head
8001       && bfd_link_executable (info)
8002       && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8003     {
8004       s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8005 					      flags &~ (flagword) SEC_READONLY);
8006       if (s == NULL
8007 	  || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8008 	return FALSE;
8009     }
8010 
8011   /* Create .MIPS.xhash section.  */
8012   if (info->emit_gnu_hash)
8013     s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8014 					    flags | SEC_READONLY);
8015 
8016   /* On IRIX5, we adjust add some additional symbols and change the
8017      alignments of several sections.  There is no ABI documentation
8018      indicating that this is necessary on IRIX6, nor any evidence that
8019      the linker takes such action.  */
8020   if (IRIX_COMPAT (abfd) == ict_irix5)
8021     {
8022       for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8023 	{
8024 	  bh = NULL;
8025 	  if (! (_bfd_generic_link_add_one_symbol
8026 		 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8027 		  NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8028 	    return FALSE;
8029 
8030 	  h = (struct elf_link_hash_entry *) bh;
8031 	  h->mark = 1;
8032 	  h->non_elf = 0;
8033 	  h->def_regular = 1;
8034 	  h->type = STT_SECTION;
8035 
8036 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
8037 	    return FALSE;
8038 	}
8039 
8040       /* We need to create a .compact_rel section.  */
8041       if (SGI_COMPAT (abfd))
8042 	{
8043 	  if (!mips_elf_create_compact_rel_section (abfd, info))
8044 	    return FALSE;
8045 	}
8046 
8047       /* Change alignments of some sections.  */
8048       s = bfd_get_linker_section (abfd, ".hash");
8049       if (s != NULL)
8050 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8051 
8052       s = bfd_get_linker_section (abfd, ".dynsym");
8053       if (s != NULL)
8054 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8055 
8056       s = bfd_get_linker_section (abfd, ".dynstr");
8057       if (s != NULL)
8058 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8059 
8060       /* ??? */
8061       s = bfd_get_section_by_name (abfd, ".reginfo");
8062       if (s != NULL)
8063 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8064 
8065       s = bfd_get_linker_section (abfd, ".dynamic");
8066       if (s != NULL)
8067 	bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8068     }
8069 
8070   if (bfd_link_executable (info))
8071     {
8072       const char *name;
8073 
8074       name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8075       bh = NULL;
8076       if (!(_bfd_generic_link_add_one_symbol
8077 	    (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8078 	     NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8079 	return FALSE;
8080 
8081       h = (struct elf_link_hash_entry *) bh;
8082       h->non_elf = 0;
8083       h->def_regular = 1;
8084       h->type = STT_SECTION;
8085 
8086       if (! bfd_elf_link_record_dynamic_symbol (info, h))
8087 	return FALSE;
8088 
8089       if (! mips_elf_hash_table (info)->use_rld_obj_head)
8090 	{
8091 	  /* __rld_map is a four byte word located in the .data section
8092 	     and is filled in by the rtld to contain a pointer to
8093 	     the _r_debug structure. Its symbol value will be set in
8094 	     _bfd_mips_elf_finish_dynamic_symbol.  */
8095 	  s = bfd_get_linker_section (abfd, ".rld_map");
8096 	  BFD_ASSERT (s != NULL);
8097 
8098 	  name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8099 	  bh = NULL;
8100 	  if (!(_bfd_generic_link_add_one_symbol
8101 		(info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8102 		 get_elf_backend_data (abfd)->collect, &bh)))
8103 	    return FALSE;
8104 
8105 	  h = (struct elf_link_hash_entry *) bh;
8106 	  h->non_elf = 0;
8107 	  h->def_regular = 1;
8108 	  h->type = STT_OBJECT;
8109 
8110 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
8111 	    return FALSE;
8112 	  mips_elf_hash_table (info)->rld_symbol = h;
8113 	}
8114     }
8115 
8116   /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8117      Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol.  */
8118   if (!_bfd_elf_create_dynamic_sections (abfd, info))
8119     return FALSE;
8120 
8121   /* Do the usual VxWorks handling.  */
8122   if (htab->root.target_os == is_vxworks
8123       && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8124     return FALSE;
8125 
8126   return TRUE;
8127 }
8128 
8129 /* Return true if relocation REL against section SEC is a REL rather than
8130    RELA relocation.  RELOCS is the first relocation in the section and
8131    ABFD is the bfd that contains SEC.  */
8132 
8133 static bfd_boolean
8134 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8135 			   const Elf_Internal_Rela *relocs,
8136 			   const Elf_Internal_Rela *rel)
8137 {
8138   Elf_Internal_Shdr *rel_hdr;
8139   const struct elf_backend_data *bed;
8140 
8141   /* To determine which flavor of relocation this is, we depend on the
8142      fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR.  */
8143   rel_hdr = elf_section_data (sec)->rel.hdr;
8144   if (rel_hdr == NULL)
8145     return FALSE;
8146   bed = get_elf_backend_data (abfd);
8147   return ((size_t) (rel - relocs)
8148 	  < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8149 }
8150 
8151 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8152    HOWTO is the relocation's howto and CONTENTS points to the contents
8153    of the section that REL is against.  */
8154 
8155 static bfd_vma
8156 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8157 			  reloc_howto_type *howto, bfd_byte *contents)
8158 {
8159   bfd_byte *location;
8160   unsigned int r_type;
8161   bfd_vma addend;
8162   bfd_vma bytes;
8163 
8164   r_type = ELF_R_TYPE (abfd, rel->r_info);
8165   location = contents + rel->r_offset;
8166 
8167   /* Get the addend, which is stored in the input file.  */
8168   _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8169   bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8170   _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8171 
8172   addend = bytes & howto->src_mask;
8173 
8174   /* Shift is 2, unusually, for microMIPS JALX.  Adjust the addend
8175      accordingly.  */
8176   if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8177     addend <<= 1;
8178 
8179   return addend;
8180 }
8181 
8182 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8183    and *ADDEND is the addend for REL itself.  Look for the LO16 relocation
8184    and update *ADDEND with the final addend.  Return true on success
8185    or false if the LO16 could not be found.  RELEND is the exclusive
8186    upper bound on the relocations for REL's section.  */
8187 
8188 static bfd_boolean
8189 mips_elf_add_lo16_rel_addend (bfd *abfd,
8190 			      const Elf_Internal_Rela *rel,
8191 			      const Elf_Internal_Rela *relend,
8192 			      bfd_byte *contents, bfd_vma *addend)
8193 {
8194   unsigned int r_type, lo16_type;
8195   const Elf_Internal_Rela *lo16_relocation;
8196   reloc_howto_type *lo16_howto;
8197   bfd_vma l;
8198 
8199   r_type = ELF_R_TYPE (abfd, rel->r_info);
8200   if (mips16_reloc_p (r_type))
8201     lo16_type = R_MIPS16_LO16;
8202   else if (micromips_reloc_p (r_type))
8203     lo16_type = R_MICROMIPS_LO16;
8204   else if (r_type == R_MIPS_PCHI16)
8205     lo16_type = R_MIPS_PCLO16;
8206   else
8207     lo16_type = R_MIPS_LO16;
8208 
8209   /* The combined value is the sum of the HI16 addend, left-shifted by
8210      sixteen bits, and the LO16 addend, sign extended.  (Usually, the
8211      code does a `lui' of the HI16 value, and then an `addiu' of the
8212      LO16 value.)
8213 
8214      Scan ahead to find a matching LO16 relocation.
8215 
8216      According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8217      be immediately following.  However, for the IRIX6 ABI, the next
8218      relocation may be a composed relocation consisting of several
8219      relocations for the same address.  In that case, the R_MIPS_LO16
8220      relocation may occur as one of these.  We permit a similar
8221      extension in general, as that is useful for GCC.
8222 
8223      In some cases GCC dead code elimination removes the LO16 but keeps
8224      the corresponding HI16.  This is strictly speaking a violation of
8225      the ABI but not immediately harmful.  */
8226   lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8227   if (lo16_relocation == NULL)
8228     return FALSE;
8229 
8230   /* Obtain the addend kept there.  */
8231   lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8232   l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8233 
8234   l <<= lo16_howto->rightshift;
8235   l = _bfd_mips_elf_sign_extend (l, 16);
8236 
8237   *addend <<= 16;
8238   *addend += l;
8239   return TRUE;
8240 }
8241 
8242 /* Try to read the contents of section SEC in bfd ABFD.  Return true and
8243    store the contents in *CONTENTS on success.  Assume that *CONTENTS
8244    already holds the contents if it is nonull on entry.  */
8245 
8246 static bfd_boolean
8247 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8248 {
8249   if (*contents)
8250     return TRUE;
8251 
8252   /* Get cached copy if it exists.  */
8253   if (elf_section_data (sec)->this_hdr.contents != NULL)
8254     {
8255       *contents = elf_section_data (sec)->this_hdr.contents;
8256       return TRUE;
8257     }
8258 
8259   return bfd_malloc_and_get_section (abfd, sec, contents);
8260 }
8261 
8262 /* Make a new PLT record to keep internal data.  */
8263 
8264 static struct plt_entry *
8265 mips_elf_make_plt_record (bfd *abfd)
8266 {
8267   struct plt_entry *entry;
8268 
8269   entry = bfd_zalloc (abfd, sizeof (*entry));
8270   if (entry == NULL)
8271     return NULL;
8272 
8273   entry->stub_offset = MINUS_ONE;
8274   entry->mips_offset = MINUS_ONE;
8275   entry->comp_offset = MINUS_ONE;
8276   entry->gotplt_index = MINUS_ONE;
8277   return entry;
8278 }
8279 
8280 /* Define the special `__gnu_absolute_zero' symbol.  We only need this
8281    for PIC code, as otherwise there is no load-time relocation involved
8282    and local GOT entries whose value is zero at static link time will
8283    retain their value at load time.  */
8284 
8285 static bfd_boolean
8286 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8287 			       struct mips_elf_link_hash_table *htab,
8288 			       unsigned int r_type)
8289 {
8290   union
8291     {
8292       struct elf_link_hash_entry *eh;
8293       struct bfd_link_hash_entry *bh;
8294     }
8295   hzero;
8296 
8297   BFD_ASSERT (!htab->use_absolute_zero);
8298   BFD_ASSERT (bfd_link_pic (info));
8299 
8300   hzero.bh = NULL;
8301   if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8302 					 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8303 					 NULL, FALSE, FALSE, &hzero.bh))
8304     return FALSE;
8305 
8306   BFD_ASSERT (hzero.bh != NULL);
8307   hzero.eh->size = 0;
8308   hzero.eh->type = STT_NOTYPE;
8309   hzero.eh->other = STV_PROTECTED;
8310   hzero.eh->def_regular = 1;
8311   hzero.eh->non_elf = 0;
8312 
8313   if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8314     return FALSE;
8315 
8316   htab->use_absolute_zero = TRUE;
8317 
8318   return TRUE;
8319 }
8320 
8321 /* Look through the relocs for a section during the first phase, and
8322    allocate space in the global offset table and record the need for
8323    standard MIPS and compressed procedure linkage table entries.  */
8324 
8325 bfd_boolean
8326 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8327 			    asection *sec, const Elf_Internal_Rela *relocs)
8328 {
8329   const char *name;
8330   bfd *dynobj;
8331   Elf_Internal_Shdr *symtab_hdr;
8332   struct elf_link_hash_entry **sym_hashes;
8333   size_t extsymoff;
8334   const Elf_Internal_Rela *rel;
8335   const Elf_Internal_Rela *rel_end;
8336   asection *sreloc;
8337   const struct elf_backend_data *bed;
8338   struct mips_elf_link_hash_table *htab;
8339   bfd_byte *contents;
8340   bfd_vma addend;
8341   reloc_howto_type *howto;
8342 
8343   if (bfd_link_relocatable (info))
8344     return TRUE;
8345 
8346   htab = mips_elf_hash_table (info);
8347   BFD_ASSERT (htab != NULL);
8348 
8349   dynobj = elf_hash_table (info)->dynobj;
8350   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8351   sym_hashes = elf_sym_hashes (abfd);
8352   extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8353 
8354   bed = get_elf_backend_data (abfd);
8355   rel_end = relocs + sec->reloc_count;
8356 
8357   /* Check for the mips16 stub sections.  */
8358 
8359   name = bfd_section_name (sec);
8360   if (FN_STUB_P (name))
8361     {
8362       unsigned long r_symndx;
8363 
8364       /* Look at the relocation information to figure out which symbol
8365 	 this is for.  */
8366 
8367       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8368       if (r_symndx == 0)
8369 	{
8370 	  _bfd_error_handler
8371 	    /* xgettext:c-format */
8372 	    (_("%pB: warning: cannot determine the target function for"
8373 	       " stub section `%s'"),
8374 	     abfd, name);
8375 	  bfd_set_error (bfd_error_bad_value);
8376 	  return FALSE;
8377 	}
8378 
8379       if (r_symndx < extsymoff
8380 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8381 	{
8382 	  asection *o;
8383 
8384 	  /* This stub is for a local symbol.  This stub will only be
8385 	     needed if there is some relocation in this BFD, other
8386 	     than a 16 bit function call, which refers to this symbol.  */
8387 	  for (o = abfd->sections; o != NULL; o = o->next)
8388 	    {
8389 	      Elf_Internal_Rela *sec_relocs;
8390 	      const Elf_Internal_Rela *r, *rend;
8391 
8392 	      /* We can ignore stub sections when looking for relocs.  */
8393 	      if ((o->flags & SEC_RELOC) == 0
8394 		  || o->reloc_count == 0
8395 		  || section_allows_mips16_refs_p (o))
8396 		continue;
8397 
8398 	      sec_relocs
8399 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8400 					     info->keep_memory);
8401 	      if (sec_relocs == NULL)
8402 		return FALSE;
8403 
8404 	      rend = sec_relocs + o->reloc_count;
8405 	      for (r = sec_relocs; r < rend; r++)
8406 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8407 		    && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8408 		  break;
8409 
8410 	      if (elf_section_data (o)->relocs != sec_relocs)
8411 		free (sec_relocs);
8412 
8413 	      if (r < rend)
8414 		break;
8415 	    }
8416 
8417 	  if (o == NULL)
8418 	    {
8419 	      /* There is no non-call reloc for this stub, so we do
8420 		 not need it.  Since this function is called before
8421 		 the linker maps input sections to output sections, we
8422 		 can easily discard it by setting the SEC_EXCLUDE
8423 		 flag.  */
8424 	      sec->flags |= SEC_EXCLUDE;
8425 	      return TRUE;
8426 	    }
8427 
8428 	  /* Record this stub in an array of local symbol stubs for
8429 	     this BFD.  */
8430 	  if (mips_elf_tdata (abfd)->local_stubs == NULL)
8431 	    {
8432 	      unsigned long symcount;
8433 	      asection **n;
8434 	      bfd_size_type amt;
8435 
8436 	      if (elf_bad_symtab (abfd))
8437 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8438 	      else
8439 		symcount = symtab_hdr->sh_info;
8440 	      amt = symcount * sizeof (asection *);
8441 	      n = bfd_zalloc (abfd, amt);
8442 	      if (n == NULL)
8443 		return FALSE;
8444 	      mips_elf_tdata (abfd)->local_stubs = n;
8445 	    }
8446 
8447 	  sec->flags |= SEC_KEEP;
8448 	  mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8449 
8450 	  /* We don't need to set mips16_stubs_seen in this case.
8451 	     That flag is used to see whether we need to look through
8452 	     the global symbol table for stubs.  We don't need to set
8453 	     it here, because we just have a local stub.  */
8454 	}
8455       else
8456 	{
8457 	  struct mips_elf_link_hash_entry *h;
8458 
8459 	  h = ((struct mips_elf_link_hash_entry *)
8460 	       sym_hashes[r_symndx - extsymoff]);
8461 
8462 	  while (h->root.root.type == bfd_link_hash_indirect
8463 		 || h->root.root.type == bfd_link_hash_warning)
8464 	    h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8465 
8466 	  /* H is the symbol this stub is for.  */
8467 
8468 	  /* If we already have an appropriate stub for this function, we
8469 	     don't need another one, so we can discard this one.  Since
8470 	     this function is called before the linker maps input sections
8471 	     to output sections, we can easily discard it by setting the
8472 	     SEC_EXCLUDE flag.  */
8473 	  if (h->fn_stub != NULL)
8474 	    {
8475 	      sec->flags |= SEC_EXCLUDE;
8476 	      return TRUE;
8477 	    }
8478 
8479 	  sec->flags |= SEC_KEEP;
8480 	  h->fn_stub = sec;
8481 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8482 	}
8483     }
8484   else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8485     {
8486       unsigned long r_symndx;
8487       struct mips_elf_link_hash_entry *h;
8488       asection **loc;
8489 
8490       /* Look at the relocation information to figure out which symbol
8491 	 this is for.  */
8492 
8493       r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8494       if (r_symndx == 0)
8495 	{
8496 	  _bfd_error_handler
8497 	    /* xgettext:c-format */
8498 	    (_("%pB: warning: cannot determine the target function for"
8499 	       " stub section `%s'"),
8500 	     abfd, name);
8501 	  bfd_set_error (bfd_error_bad_value);
8502 	  return FALSE;
8503 	}
8504 
8505       if (r_symndx < extsymoff
8506 	  || sym_hashes[r_symndx - extsymoff] == NULL)
8507 	{
8508 	  asection *o;
8509 
8510 	  /* This stub is for a local symbol.  This stub will only be
8511 	     needed if there is some relocation (R_MIPS16_26) in this BFD
8512 	     that refers to this symbol.  */
8513 	  for (o = abfd->sections; o != NULL; o = o->next)
8514 	    {
8515 	      Elf_Internal_Rela *sec_relocs;
8516 	      const Elf_Internal_Rela *r, *rend;
8517 
8518 	      /* We can ignore stub sections when looking for relocs.  */
8519 	      if ((o->flags & SEC_RELOC) == 0
8520 		  || o->reloc_count == 0
8521 		  || section_allows_mips16_refs_p (o))
8522 		continue;
8523 
8524 	      sec_relocs
8525 		= _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8526 					     info->keep_memory);
8527 	      if (sec_relocs == NULL)
8528 		return FALSE;
8529 
8530 	      rend = sec_relocs + o->reloc_count;
8531 	      for (r = sec_relocs; r < rend; r++)
8532 		if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8533 		    && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8534 		    break;
8535 
8536 	      if (elf_section_data (o)->relocs != sec_relocs)
8537 		free (sec_relocs);
8538 
8539 	      if (r < rend)
8540 		break;
8541 	    }
8542 
8543 	  if (o == NULL)
8544 	    {
8545 	      /* There is no non-call reloc for this stub, so we do
8546 		 not need it.  Since this function is called before
8547 		 the linker maps input sections to output sections, we
8548 		 can easily discard it by setting the SEC_EXCLUDE
8549 		 flag.  */
8550 	      sec->flags |= SEC_EXCLUDE;
8551 	      return TRUE;
8552 	    }
8553 
8554 	  /* Record this stub in an array of local symbol call_stubs for
8555 	     this BFD.  */
8556 	  if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8557 	    {
8558 	      unsigned long symcount;
8559 	      asection **n;
8560 	      bfd_size_type amt;
8561 
8562 	      if (elf_bad_symtab (abfd))
8563 		symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8564 	      else
8565 		symcount = symtab_hdr->sh_info;
8566 	      amt = symcount * sizeof (asection *);
8567 	      n = bfd_zalloc (abfd, amt);
8568 	      if (n == NULL)
8569 		return FALSE;
8570 	      mips_elf_tdata (abfd)->local_call_stubs = n;
8571 	    }
8572 
8573 	  sec->flags |= SEC_KEEP;
8574 	  mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8575 
8576 	  /* We don't need to set mips16_stubs_seen in this case.
8577 	     That flag is used to see whether we need to look through
8578 	     the global symbol table for stubs.  We don't need to set
8579 	     it here, because we just have a local stub.  */
8580 	}
8581       else
8582 	{
8583 	  h = ((struct mips_elf_link_hash_entry *)
8584 	       sym_hashes[r_symndx - extsymoff]);
8585 
8586 	  /* H is the symbol this stub is for.  */
8587 
8588 	  if (CALL_FP_STUB_P (name))
8589 	    loc = &h->call_fp_stub;
8590 	  else
8591 	    loc = &h->call_stub;
8592 
8593 	  /* If we already have an appropriate stub for this function, we
8594 	     don't need another one, so we can discard this one.  Since
8595 	     this function is called before the linker maps input sections
8596 	     to output sections, we can easily discard it by setting the
8597 	     SEC_EXCLUDE flag.  */
8598 	  if (*loc != NULL)
8599 	    {
8600 	      sec->flags |= SEC_EXCLUDE;
8601 	      return TRUE;
8602 	    }
8603 
8604 	  sec->flags |= SEC_KEEP;
8605 	  *loc = sec;
8606 	  mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8607 	}
8608     }
8609 
8610   sreloc = NULL;
8611   contents = NULL;
8612   for (rel = relocs; rel < rel_end; ++rel)
8613     {
8614       unsigned long r_symndx;
8615       unsigned int r_type;
8616       struct elf_link_hash_entry *h;
8617       bfd_boolean can_make_dynamic_p;
8618       bfd_boolean call_reloc_p;
8619       bfd_boolean constrain_symbol_p;
8620 
8621       r_symndx = ELF_R_SYM (abfd, rel->r_info);
8622       r_type = ELF_R_TYPE (abfd, rel->r_info);
8623 
8624       if (r_symndx < extsymoff)
8625 	h = NULL;
8626       else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8627 	{
8628 	  _bfd_error_handler
8629 	    /* xgettext:c-format */
8630 	    (_("%pB: malformed reloc detected for section %s"),
8631 	     abfd, name);
8632 	  bfd_set_error (bfd_error_bad_value);
8633 	  return FALSE;
8634 	}
8635       else
8636 	{
8637 	  h = sym_hashes[r_symndx - extsymoff];
8638 	  if (h != NULL)
8639 	    {
8640 	      while (h->root.type == bfd_link_hash_indirect
8641 		     || h->root.type == bfd_link_hash_warning)
8642 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
8643 	    }
8644 	}
8645 
8646       /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8647 	 relocation into a dynamic one.  */
8648       can_make_dynamic_p = FALSE;
8649 
8650       /* Set CALL_RELOC_P to true if the relocation is for a call,
8651 	 and if pointer equality therefore doesn't matter.  */
8652       call_reloc_p = FALSE;
8653 
8654       /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8655 	 into account when deciding how to define the symbol.  */
8656       constrain_symbol_p = TRUE;
8657 
8658       switch (r_type)
8659 	{
8660 	case R_MIPS_CALL16:
8661 	case R_MIPS_CALL_HI16:
8662 	case R_MIPS_CALL_LO16:
8663 	case R_MIPS16_CALL16:
8664 	case R_MICROMIPS_CALL16:
8665 	case R_MICROMIPS_CALL_HI16:
8666 	case R_MICROMIPS_CALL_LO16:
8667 	  call_reloc_p = TRUE;
8668 	  /* Fall through.  */
8669 
8670 	case R_MIPS_GOT16:
8671 	case R_MIPS_GOT_LO16:
8672 	case R_MIPS_GOT_PAGE:
8673 	case R_MIPS_GOT_DISP:
8674 	case R_MIPS16_GOT16:
8675 	case R_MICROMIPS_GOT16:
8676 	case R_MICROMIPS_GOT_LO16:
8677 	case R_MICROMIPS_GOT_PAGE:
8678 	case R_MICROMIPS_GOT_DISP:
8679 	  /* If we have a symbol that will resolve to zero at static link
8680 	     time and it is used by a GOT relocation applied to code we
8681 	     cannot relax to an immediate zero load, then we will be using
8682 	     the special `__gnu_absolute_zero' symbol whose value is zero
8683 	     at dynamic load time.  We ignore HI16-type GOT relocations at
8684 	     this stage, because their handling will depend entirely on
8685 	     the corresponding LO16-type GOT relocation.  */
8686 	  if (!call_hi16_reloc_p (r_type)
8687 	      && h != NULL
8688 	      && bfd_link_pic (info)
8689 	      && !htab->use_absolute_zero
8690 	      && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8691 	    {
8692 	      bfd_boolean rel_reloc;
8693 
8694 	      if (!mips_elf_get_section_contents (abfd, sec, &contents))
8695 		return FALSE;
8696 
8697 	      rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8698 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8699 
8700 	      if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8701 					      FALSE))
8702 		if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8703 		  return FALSE;
8704 	    }
8705 
8706 	  /* Fall through.  */
8707 	case R_MIPS_GOT_HI16:
8708 	case R_MIPS_GOT_OFST:
8709 	case R_MIPS_TLS_GOTTPREL:
8710 	case R_MIPS_TLS_GD:
8711 	case R_MIPS_TLS_LDM:
8712 	case R_MIPS16_TLS_GOTTPREL:
8713 	case R_MIPS16_TLS_GD:
8714 	case R_MIPS16_TLS_LDM:
8715 	case R_MICROMIPS_GOT_HI16:
8716 	case R_MICROMIPS_GOT_OFST:
8717 	case R_MICROMIPS_TLS_GOTTPREL:
8718 	case R_MICROMIPS_TLS_GD:
8719 	case R_MICROMIPS_TLS_LDM:
8720 	  if (dynobj == NULL)
8721 	    elf_hash_table (info)->dynobj = dynobj = abfd;
8722 	  if (!mips_elf_create_got_section (dynobj, info))
8723 	    return FALSE;
8724 	  if (htab->root.target_os == is_vxworks
8725 	      && !bfd_link_pic (info))
8726 	    {
8727 	      _bfd_error_handler
8728 		/* xgettext:c-format */
8729 		(_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8730 		 abfd, (uint64_t) rel->r_offset);
8731 	      bfd_set_error (bfd_error_bad_value);
8732 	      return FALSE;
8733 	    }
8734 	  can_make_dynamic_p = TRUE;
8735 	  break;
8736 
8737 	case R_MIPS_NONE:
8738 	case R_MIPS_JALR:
8739 	case R_MICROMIPS_JALR:
8740 	  /* These relocations have empty fields and are purely there to
8741 	     provide link information.  The symbol value doesn't matter.  */
8742 	  constrain_symbol_p = FALSE;
8743 	  break;
8744 
8745 	case R_MIPS_GPREL16:
8746 	case R_MIPS_GPREL32:
8747 	case R_MIPS16_GPREL:
8748 	case R_MICROMIPS_GPREL16:
8749 	  /* GP-relative relocations always resolve to a definition in a
8750 	     regular input file, ignoring the one-definition rule.  This is
8751 	     important for the GP setup sequence in NewABI code, which
8752 	     always resolves to a local function even if other relocations
8753 	     against the symbol wouldn't.  */
8754 	  constrain_symbol_p = FALSE;
8755 	  break;
8756 
8757 	case R_MIPS_32:
8758 	case R_MIPS_REL32:
8759 	case R_MIPS_64:
8760 	  /* In VxWorks executables, references to external symbols
8761 	     must be handled using copy relocs or PLT entries; it is not
8762 	     possible to convert this relocation into a dynamic one.
8763 
8764 	     For executables that use PLTs and copy-relocs, we have a
8765 	     choice between converting the relocation into a dynamic
8766 	     one or using copy relocations or PLT entries.  It is
8767 	     usually better to do the former, unless the relocation is
8768 	     against a read-only section.  */
8769 	  if ((bfd_link_pic (info)
8770 	       || (h != NULL
8771 		   && htab->root.target_os != is_vxworks
8772 		   && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8773 		   && !(!info->nocopyreloc
8774 			&& !PIC_OBJECT_P (abfd)
8775 			&& MIPS_ELF_READONLY_SECTION (sec))))
8776 	      && (sec->flags & SEC_ALLOC) != 0)
8777 	    {
8778 	      can_make_dynamic_p = TRUE;
8779 	      if (dynobj == NULL)
8780 		elf_hash_table (info)->dynobj = dynobj = abfd;
8781 	    }
8782 	  break;
8783 
8784 	case R_MIPS_26:
8785 	case R_MIPS_PC16:
8786 	case R_MIPS_PC21_S2:
8787 	case R_MIPS_PC26_S2:
8788 	case R_MIPS16_26:
8789 	case R_MIPS16_PC16_S1:
8790 	case R_MICROMIPS_26_S1:
8791 	case R_MICROMIPS_PC7_S1:
8792 	case R_MICROMIPS_PC10_S1:
8793 	case R_MICROMIPS_PC16_S1:
8794 	case R_MICROMIPS_PC23_S2:
8795 	  call_reloc_p = TRUE;
8796 	  break;
8797 	}
8798 
8799       if (h)
8800 	{
8801 	  if (constrain_symbol_p)
8802 	    {
8803 	      if (!can_make_dynamic_p)
8804 		((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8805 
8806 	      if (!call_reloc_p)
8807 		h->pointer_equality_needed = 1;
8808 
8809 	      /* We must not create a stub for a symbol that has
8810 		 relocations related to taking the function's address.
8811 		 This doesn't apply to VxWorks, where CALL relocs refer
8812 		 to a .got.plt entry instead of a normal .got entry.  */
8813 	      if (htab->root.target_os != is_vxworks
8814 		  && (!can_make_dynamic_p || !call_reloc_p))
8815 		((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8816 	    }
8817 
8818 	  /* Relocations against the special VxWorks __GOTT_BASE__ and
8819 	     __GOTT_INDEX__ symbols must be left to the loader.  Allocate
8820 	     room for them in .rela.dyn.  */
8821 	  if (is_gott_symbol (info, h))
8822 	    {
8823 	      if (sreloc == NULL)
8824 		{
8825 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
8826 		  if (sreloc == NULL)
8827 		    return FALSE;
8828 		}
8829 	      mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8830 	      if (MIPS_ELF_READONLY_SECTION (sec))
8831 		/* We tell the dynamic linker that there are
8832 		   relocations against the text segment.  */
8833 		info->flags |= DF_TEXTREL;
8834 	    }
8835 	}
8836       else if (call_lo16_reloc_p (r_type)
8837 	       || got_lo16_reloc_p (r_type)
8838 	       || got_disp_reloc_p (r_type)
8839 	       || (got16_reloc_p (r_type)
8840 		   && htab->root.target_os == is_vxworks))
8841 	{
8842 	  /* We may need a local GOT entry for this relocation.  We
8843 	     don't count R_MIPS_GOT_PAGE because we can estimate the
8844 	     maximum number of pages needed by looking at the size of
8845 	     the segment.  Similar comments apply to R_MIPS*_GOT16 and
8846 	     R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8847 	     always evaluate to "G".  We don't count R_MIPS_GOT_HI16, or
8848 	     R_MIPS_CALL_HI16 because these are always followed by an
8849 	     R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.  */
8850 	  if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8851 						 rel->r_addend, info, r_type))
8852 	    return FALSE;
8853 	}
8854 
8855       if (h != NULL
8856 	  && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8857 						  ELF_ST_IS_MIPS16 (h->other)))
8858 	((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8859 
8860       switch (r_type)
8861 	{
8862 	case R_MIPS_CALL16:
8863 	case R_MIPS16_CALL16:
8864 	case R_MICROMIPS_CALL16:
8865 	  if (h == NULL)
8866 	    {
8867 	      _bfd_error_handler
8868 		/* xgettext:c-format */
8869 		(_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8870 		 abfd, (uint64_t) rel->r_offset);
8871 	      bfd_set_error (bfd_error_bad_value);
8872 	      return FALSE;
8873 	    }
8874 	  /* Fall through.  */
8875 
8876 	case R_MIPS_CALL_HI16:
8877 	case R_MIPS_CALL_LO16:
8878 	case R_MICROMIPS_CALL_HI16:
8879 	case R_MICROMIPS_CALL_LO16:
8880 	  if (h != NULL)
8881 	    {
8882 	      /* Make sure there is room in the regular GOT to hold the
8883 		 function's address.  We may eliminate it in favour of
8884 		 a .got.plt entry later; see mips_elf_count_got_symbols.  */
8885 	      if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8886 						      r_type))
8887 		return FALSE;
8888 
8889 	      /* We need a stub, not a plt entry for the undefined
8890 		 function.  But we record it as if it needs plt.  See
8891 		 _bfd_elf_adjust_dynamic_symbol.  */
8892 	      h->needs_plt = 1;
8893 	      h->type = STT_FUNC;
8894 	    }
8895 	  break;
8896 
8897 	case R_MIPS_GOT_PAGE:
8898 	case R_MICROMIPS_GOT_PAGE:
8899 	case R_MIPS16_GOT16:
8900 	case R_MIPS_GOT16:
8901 	case R_MIPS_GOT_HI16:
8902 	case R_MIPS_GOT_LO16:
8903 	case R_MICROMIPS_GOT16:
8904 	case R_MICROMIPS_GOT_HI16:
8905 	case R_MICROMIPS_GOT_LO16:
8906 	  if (!h || got_page_reloc_p (r_type))
8907 	    {
8908 	      /* This relocation needs (or may need, if h != NULL) a
8909 		 page entry in the GOT.  For R_MIPS_GOT_PAGE we do not
8910 		 know for sure until we know whether the symbol is
8911 		 preemptible.  */
8912 	      if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8913 		{
8914 		  if (!mips_elf_get_section_contents (abfd, sec, &contents))
8915 		    return FALSE;
8916 		  howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8917 		  addend = mips_elf_read_rel_addend (abfd, rel,
8918 						     howto, contents);
8919 		  if (got16_reloc_p (r_type))
8920 		    mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8921 						  contents, &addend);
8922 		  else
8923 		    addend <<= howto->rightshift;
8924 		}
8925 	      else
8926 		addend = rel->r_addend;
8927 	      if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8928 						 h, addend))
8929 		return FALSE;
8930 
8931 	      if (h)
8932 		{
8933 		  struct mips_elf_link_hash_entry *hmips =
8934 		    (struct mips_elf_link_hash_entry *) h;
8935 
8936 		  /* This symbol is definitely not overridable.  */
8937 		  if (hmips->root.def_regular
8938 		      && ! (bfd_link_pic (info) && ! info->symbolic
8939 			    && ! hmips->root.forced_local))
8940 		    h = NULL;
8941 		}
8942 	    }
8943 	  /* If this is a global, overridable symbol, GOT_PAGE will
8944 	     decay to GOT_DISP, so we'll need a GOT entry for it.  */
8945 	  /* Fall through.  */
8946 
8947 	case R_MIPS_GOT_DISP:
8948 	case R_MICROMIPS_GOT_DISP:
8949 	  if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8950 						       FALSE, r_type))
8951 	    return FALSE;
8952 	  break;
8953 
8954 	case R_MIPS_TLS_GOTTPREL:
8955 	case R_MIPS16_TLS_GOTTPREL:
8956 	case R_MICROMIPS_TLS_GOTTPREL:
8957 	  if (bfd_link_pic (info))
8958 	    info->flags |= DF_STATIC_TLS;
8959 	  /* Fall through */
8960 
8961 	case R_MIPS_TLS_LDM:
8962 	case R_MIPS16_TLS_LDM:
8963 	case R_MICROMIPS_TLS_LDM:
8964 	  if (tls_ldm_reloc_p (r_type))
8965 	    {
8966 	      r_symndx = STN_UNDEF;
8967 	      h = NULL;
8968 	    }
8969 	  /* Fall through */
8970 
8971 	case R_MIPS_TLS_GD:
8972 	case R_MIPS16_TLS_GD:
8973 	case R_MICROMIPS_TLS_GD:
8974 	  /* This symbol requires a global offset table entry, or two
8975 	     for TLS GD relocations.  */
8976 	  if (h != NULL)
8977 	    {
8978 	      if (!mips_elf_record_global_got_symbol (h, abfd, info,
8979 						      FALSE, r_type))
8980 		return FALSE;
8981 	    }
8982 	  else
8983 	    {
8984 	      if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8985 						     rel->r_addend,
8986 						     info, r_type))
8987 		return FALSE;
8988 	    }
8989 	  break;
8990 
8991 	case R_MIPS_32:
8992 	case R_MIPS_REL32:
8993 	case R_MIPS_64:
8994 	  /* In VxWorks executables, references to external symbols
8995 	     are handled using copy relocs or PLT stubs, so there's
8996 	     no need to add a .rela.dyn entry for this relocation.  */
8997 	  if (can_make_dynamic_p)
8998 	    {
8999 	      if (sreloc == NULL)
9000 		{
9001 		  sreloc = mips_elf_rel_dyn_section (info, TRUE);
9002 		  if (sreloc == NULL)
9003 		    return FALSE;
9004 		}
9005 	      if (bfd_link_pic (info) && h == NULL)
9006 		{
9007 		  /* When creating a shared object, we must copy these
9008 		     reloc types into the output file as R_MIPS_REL32
9009 		     relocs.  Make room for this reloc in .rel(a).dyn.  */
9010 		  mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9011 		  if (MIPS_ELF_READONLY_SECTION (sec))
9012 		    /* We tell the dynamic linker that there are
9013 		       relocations against the text segment.  */
9014 		    info->flags |= DF_TEXTREL;
9015 		}
9016 	      else
9017 		{
9018 		  struct mips_elf_link_hash_entry *hmips;
9019 
9020 		  /* For a shared object, we must copy this relocation
9021 		     unless the symbol turns out to be undefined and
9022 		     weak with non-default visibility, in which case
9023 		     it will be left as zero.
9024 
9025 		     We could elide R_MIPS_REL32 for locally binding symbols
9026 		     in shared libraries, but do not yet do so.
9027 
9028 		     For an executable, we only need to copy this
9029 		     reloc if the symbol is defined in a dynamic
9030 		     object.  */
9031 		  hmips = (struct mips_elf_link_hash_entry *) h;
9032 		  ++hmips->possibly_dynamic_relocs;
9033 		  if (MIPS_ELF_READONLY_SECTION (sec))
9034 		    /* We need it to tell the dynamic linker if there
9035 		       are relocations against the text segment.  */
9036 		    hmips->readonly_reloc = TRUE;
9037 		}
9038 	    }
9039 
9040 	  if (SGI_COMPAT (abfd))
9041 	    mips_elf_hash_table (info)->compact_rel_size +=
9042 	      sizeof (Elf32_External_crinfo);
9043 	  break;
9044 
9045 	case R_MIPS_26:
9046 	case R_MIPS_GPREL16:
9047 	case R_MIPS_LITERAL:
9048 	case R_MIPS_GPREL32:
9049 	case R_MICROMIPS_26_S1:
9050 	case R_MICROMIPS_GPREL16:
9051 	case R_MICROMIPS_LITERAL:
9052 	case R_MICROMIPS_GPREL7_S2:
9053 	  if (SGI_COMPAT (abfd))
9054 	    mips_elf_hash_table (info)->compact_rel_size +=
9055 	      sizeof (Elf32_External_crinfo);
9056 	  break;
9057 
9058 	  /* This relocation describes the C++ object vtable hierarchy.
9059 	     Reconstruct it for later use during GC.  */
9060 	case R_MIPS_GNU_VTINHERIT:
9061 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9062 	    return FALSE;
9063 	  break;
9064 
9065 	  /* This relocation describes which C++ vtable entries are actually
9066 	     used.  Record for later use during GC.  */
9067 	case R_MIPS_GNU_VTENTRY:
9068 	  if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9069 	    return FALSE;
9070 	  break;
9071 
9072 	default:
9073 	  break;
9074 	}
9075 
9076       /* Record the need for a PLT entry.  At this point we don't know
9077 	 yet if we are going to create a PLT in the first place, but
9078 	 we only record whether the relocation requires a standard MIPS
9079 	 or a compressed code entry anyway.  If we don't make a PLT after
9080 	 all, then we'll just ignore these arrangements.  Likewise if
9081 	 a PLT entry is not created because the symbol is satisfied
9082 	 locally.  */
9083       if (h != NULL
9084 	  && (branch_reloc_p (r_type)
9085 	      || mips16_branch_reloc_p (r_type)
9086 	      || micromips_branch_reloc_p (r_type))
9087 	  && !SYMBOL_CALLS_LOCAL (info, h))
9088 	{
9089 	  if (h->plt.plist == NULL)
9090 	    h->plt.plist = mips_elf_make_plt_record (abfd);
9091 	  if (h->plt.plist == NULL)
9092 	    return FALSE;
9093 
9094 	  if (branch_reloc_p (r_type))
9095 	    h->plt.plist->need_mips = TRUE;
9096 	  else
9097 	    h->plt.plist->need_comp = TRUE;
9098 	}
9099 
9100       /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9101 	 if there is one.  We only need to handle global symbols here;
9102 	 we decide whether to keep or delete stubs for local symbols
9103 	 when processing the stub's relocations.  */
9104       if (h != NULL
9105 	  && !mips16_call_reloc_p (r_type)
9106 	  && !section_allows_mips16_refs_p (sec))
9107 	{
9108 	  struct mips_elf_link_hash_entry *mh;
9109 
9110 	  mh = (struct mips_elf_link_hash_entry *) h;
9111 	  mh->need_fn_stub = TRUE;
9112 	}
9113 
9114       /* Refuse some position-dependent relocations when creating a
9115 	 shared library.  Do not refuse R_MIPS_32 / R_MIPS_64; they're
9116 	 not PIC, but we can create dynamic relocations and the result
9117 	 will be fine.  Also do not refuse R_MIPS_LO16, which can be
9118 	 combined with R_MIPS_GOT16.  */
9119       if (bfd_link_pic (info))
9120 	{
9121 	  switch (r_type)
9122 	    {
9123 	    case R_MIPS_TLS_TPREL_HI16:
9124 	    case R_MIPS16_TLS_TPREL_HI16:
9125 	    case R_MICROMIPS_TLS_TPREL_HI16:
9126 	    case R_MIPS_TLS_TPREL_LO16:
9127 	    case R_MIPS16_TLS_TPREL_LO16:
9128 	    case R_MICROMIPS_TLS_TPREL_LO16:
9129 	      /* These are okay in PIE, but not in a shared library.  */
9130 	      if (bfd_link_executable (info))
9131 		break;
9132 
9133 	      /* FALLTHROUGH */
9134 
9135 	    case R_MIPS16_HI16:
9136 	    case R_MIPS_HI16:
9137 	    case R_MIPS_HIGHER:
9138 	    case R_MIPS_HIGHEST:
9139 	    case R_MICROMIPS_HI16:
9140 	    case R_MICROMIPS_HIGHER:
9141 	    case R_MICROMIPS_HIGHEST:
9142 	      /* Don't refuse a high part relocation if it's against
9143 		 no symbol (e.g. part of a compound relocation).  */
9144 	      if (r_symndx == STN_UNDEF)
9145 		break;
9146 
9147 	      /* Likewise an absolute symbol.  */
9148 	      if (h != NULL && bfd_is_abs_symbol (&h->root))
9149 		break;
9150 
9151 	      /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9152 		 and has a special meaning.  */
9153 	      if (!NEWABI_P (abfd) && h != NULL
9154 		  && strcmp (h->root.root.string, "_gp_disp") == 0)
9155 		break;
9156 
9157 	      /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks.  */
9158 	      if (is_gott_symbol (info, h))
9159 		break;
9160 
9161 	      /* FALLTHROUGH */
9162 
9163 	    case R_MIPS16_26:
9164 	    case R_MIPS_26:
9165 	    case R_MICROMIPS_26_S1:
9166 	      howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9167 	      /* An error for unsupported relocations is raised as part
9168 		 of the above search, so we can skip the following.  */
9169 	      if (howto != NULL)
9170 		info->callbacks->einfo
9171 		  /* xgettext:c-format */
9172 		  (_("%X%H: relocation %s against `%s' cannot be used"
9173 		     " when making a shared object; recompile with -fPIC\n"),
9174 		   abfd, sec, rel->r_offset, howto->name,
9175 		   (h) ? h->root.root.string : "a local symbol");
9176 	      break;
9177 	    default:
9178 	      break;
9179 	    }
9180 	}
9181     }
9182 
9183   return TRUE;
9184 }
9185 
9186 /* Allocate space for global sym dynamic relocs.  */
9187 
9188 static bfd_boolean
9189 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9190 {
9191   struct bfd_link_info *info = inf;
9192   bfd *dynobj;
9193   struct mips_elf_link_hash_entry *hmips;
9194   struct mips_elf_link_hash_table *htab;
9195 
9196   htab = mips_elf_hash_table (info);
9197   BFD_ASSERT (htab != NULL);
9198 
9199   dynobj = elf_hash_table (info)->dynobj;
9200   hmips = (struct mips_elf_link_hash_entry *) h;
9201 
9202   /* VxWorks executables are handled elsewhere; we only need to
9203      allocate relocations in shared objects.  */
9204   if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9205     return TRUE;
9206 
9207   /* Ignore indirect symbols.  All relocations against such symbols
9208      will be redirected to the target symbol.  */
9209   if (h->root.type == bfd_link_hash_indirect)
9210     return TRUE;
9211 
9212   /* If this symbol is defined in a dynamic object, or we are creating
9213      a shared library, we will need to copy any R_MIPS_32 or
9214      R_MIPS_REL32 relocs against it into the output file.  */
9215   if (! bfd_link_relocatable (info)
9216       && hmips->possibly_dynamic_relocs != 0
9217       && (h->root.type == bfd_link_hash_defweak
9218 	  || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9219 	  || bfd_link_pic (info)))
9220     {
9221       bfd_boolean do_copy = TRUE;
9222 
9223       if (h->root.type == bfd_link_hash_undefweak)
9224 	{
9225 	  /* Do not copy relocations for undefined weak symbols that
9226 	     we are not going to export.  */
9227 	  if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9228 	    do_copy = FALSE;
9229 
9230 	  /* Make sure undefined weak symbols are output as a dynamic
9231 	     symbol in PIEs.  */
9232 	  else if (h->dynindx == -1 && !h->forced_local)
9233 	    {
9234 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
9235 		return FALSE;
9236 	    }
9237 	}
9238 
9239       if (do_copy)
9240 	{
9241 	  /* Even though we don't directly need a GOT entry for this symbol,
9242 	     the SVR4 psABI requires it to have a dynamic symbol table
9243 	     index greater that DT_MIPS_GOTSYM if there are dynamic
9244 	     relocations against it.
9245 
9246 	     VxWorks does not enforce the same mapping between the GOT
9247 	     and the symbol table, so the same requirement does not
9248 	     apply there.  */
9249 	  if (htab->root.target_os != is_vxworks)
9250 	    {
9251 	      if (hmips->global_got_area > GGA_RELOC_ONLY)
9252 		hmips->global_got_area = GGA_RELOC_ONLY;
9253 	      hmips->got_only_for_calls = FALSE;
9254 	    }
9255 
9256 	  mips_elf_allocate_dynamic_relocations
9257 	    (dynobj, info, hmips->possibly_dynamic_relocs);
9258 	  if (hmips->readonly_reloc)
9259 	    /* We tell the dynamic linker that there are relocations
9260 	       against the text segment.  */
9261 	    info->flags |= DF_TEXTREL;
9262 	}
9263     }
9264 
9265   return TRUE;
9266 }
9267 
9268 /* Adjust a symbol defined by a dynamic object and referenced by a
9269    regular object.  The current definition is in some section of the
9270    dynamic object, but we're not including those sections.  We have to
9271    change the definition to something the rest of the link can
9272    understand.  */
9273 
9274 bfd_boolean
9275 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9276 				     struct elf_link_hash_entry *h)
9277 {
9278   bfd *dynobj;
9279   struct mips_elf_link_hash_entry *hmips;
9280   struct mips_elf_link_hash_table *htab;
9281   asection *s, *srel;
9282 
9283   htab = mips_elf_hash_table (info);
9284   BFD_ASSERT (htab != NULL);
9285 
9286   dynobj = elf_hash_table (info)->dynobj;
9287   hmips = (struct mips_elf_link_hash_entry *) h;
9288 
9289   /* Make sure we know what is going on here.  */
9290   if (dynobj == NULL
9291       || (! h->needs_plt
9292 	  && ! h->is_weakalias
9293 	  && (! h->def_dynamic
9294 	      || ! h->ref_regular
9295 	      || h->def_regular)))
9296     {
9297       if (h->type == STT_GNU_IFUNC)
9298 	_bfd_error_handler (_("IFUNC symbol %s in dynamic symbol table - IFUNCS are not supported"),
9299 			    h->root.root.string);
9300       else
9301 	_bfd_error_handler (_("non-dynamic symbol %s in dynamic symbol table"),
9302 			    h->root.root.string);
9303       return TRUE;
9304     }
9305 
9306   hmips = (struct mips_elf_link_hash_entry *) h;
9307 
9308   /* If there are call relocations against an externally-defined symbol,
9309      see whether we can create a MIPS lazy-binding stub for it.  We can
9310      only do this if all references to the function are through call
9311      relocations, and in that case, the traditional lazy-binding stubs
9312      are much more efficient than PLT entries.
9313 
9314      Traditional stubs are only available on SVR4 psABI-based systems;
9315      VxWorks always uses PLTs instead.  */
9316   if (htab->root.target_os != is_vxworks
9317       && h->needs_plt
9318       && !hmips->no_fn_stub)
9319     {
9320       if (! elf_hash_table (info)->dynamic_sections_created)
9321 	return TRUE;
9322 
9323       /* If this symbol is not defined in a regular file, then set
9324 	 the symbol to the stub location.  This is required to make
9325 	 function pointers compare as equal between the normal
9326 	 executable and the shared library.  */
9327       if (!h->def_regular
9328 	  && !bfd_is_abs_section (htab->sstubs->output_section))
9329 	{
9330 	  hmips->needs_lazy_stub = TRUE;
9331 	  htab->lazy_stub_count++;
9332 	  return TRUE;
9333 	}
9334     }
9335   /* As above, VxWorks requires PLT entries for externally-defined
9336      functions that are only accessed through call relocations.
9337 
9338      Both VxWorks and non-VxWorks targets also need PLT entries if there
9339      are static-only relocations against an externally-defined function.
9340      This can technically occur for shared libraries if there are
9341      branches to the symbol, although it is unlikely that this will be
9342      used in practice due to the short ranges involved.  It can occur
9343      for any relative or absolute relocation in executables; in that
9344      case, the PLT entry becomes the function's canonical address.  */
9345   else if (((h->needs_plt && !hmips->no_fn_stub)
9346 	    || (h->type == STT_FUNC && hmips->has_static_relocs))
9347 	   && htab->use_plts_and_copy_relocs
9348 	   && !SYMBOL_CALLS_LOCAL (info, h)
9349 	   && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9350 		&& h->root.type == bfd_link_hash_undefweak))
9351     {
9352       bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9353       bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9354 
9355       /* If this is the first symbol to need a PLT entry, then make some
9356 	 basic setup.  Also work out PLT entry sizes.  We'll need them
9357 	 for PLT offset calculations.  */
9358       if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9359 	{
9360 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9361 	  BFD_ASSERT (htab->plt_got_index == 0);
9362 
9363 	  /* If we're using the PLT additions to the psABI, each PLT
9364 	     entry is 16 bytes and the PLT0 entry is 32 bytes.
9365 	     Encourage better cache usage by aligning.  We do this
9366 	     lazily to avoid pessimizing traditional objects.  */
9367 	  if (htab->root.target_os != is_vxworks
9368 	      && !bfd_set_section_alignment (htab->root.splt, 5))
9369 	    return FALSE;
9370 
9371 	  /* Make sure that .got.plt is word-aligned.  We do this lazily
9372 	     for the same reason as above.  */
9373 	  if (!bfd_set_section_alignment (htab->root.sgotplt,
9374 					  MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9375 	    return FALSE;
9376 
9377 	  /* On non-VxWorks targets, the first two entries in .got.plt
9378 	     are reserved.  */
9379 	  if (htab->root.target_os != is_vxworks)
9380 	    htab->plt_got_index
9381 	      += (get_elf_backend_data (dynobj)->got_header_size
9382 		  / MIPS_ELF_GOT_SIZE (dynobj));
9383 
9384 	  /* On VxWorks, also allocate room for the header's
9385 	     .rela.plt.unloaded entries.  */
9386 	  if (htab->root.target_os == is_vxworks
9387 	      && !bfd_link_pic (info))
9388 	    htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9389 
9390 	  /* Now work out the sizes of individual PLT entries.  */
9391 	  if (htab->root.target_os == is_vxworks
9392 	      && bfd_link_pic (info))
9393 	    htab->plt_mips_entry_size
9394 	      = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9395 	  else if (htab->root.target_os == is_vxworks)
9396 	    htab->plt_mips_entry_size
9397 	      = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9398 	  else if (newabi_p)
9399 	    htab->plt_mips_entry_size
9400 	      = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9401 	  else if (!micromips_p)
9402 	    {
9403 	      htab->plt_mips_entry_size
9404 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9405 	      htab->plt_comp_entry_size
9406 		= 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9407 	    }
9408 	  else if (htab->insn32)
9409 	    {
9410 	      htab->plt_mips_entry_size
9411 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9412 	      htab->plt_comp_entry_size
9413 		= 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9414 	    }
9415 	  else
9416 	    {
9417 	      htab->plt_mips_entry_size
9418 		= 4 * ARRAY_SIZE (mips_exec_plt_entry);
9419 	      htab->plt_comp_entry_size
9420 		= 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9421 	    }
9422 	}
9423 
9424       if (h->plt.plist == NULL)
9425 	h->plt.plist = mips_elf_make_plt_record (dynobj);
9426       if (h->plt.plist == NULL)
9427 	return FALSE;
9428 
9429       /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9430 	 n32 or n64, so always use a standard entry there.
9431 
9432 	 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9433 	 all MIPS16 calls will go via that stub, and there is no benefit
9434 	 to having a MIPS16 entry.  And in the case of call_stub a
9435 	 standard entry actually has to be used as the stub ends with a J
9436 	 instruction.  */
9437       if (newabi_p
9438 	  || htab->root.target_os == is_vxworks
9439 	  || hmips->call_stub
9440 	  || hmips->call_fp_stub)
9441 	{
9442 	  h->plt.plist->need_mips = TRUE;
9443 	  h->plt.plist->need_comp = FALSE;
9444 	}
9445 
9446       /* Otherwise, if there are no direct calls to the function, we
9447 	 have a free choice of whether to use standard or compressed
9448 	 entries.  Prefer microMIPS entries if the object is known to
9449 	 contain microMIPS code, so that it becomes possible to create
9450 	 pure microMIPS binaries.  Prefer standard entries otherwise,
9451 	 because MIPS16 ones are no smaller and are usually slower.  */
9452       if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9453 	{
9454 	  if (micromips_p)
9455 	    h->plt.plist->need_comp = TRUE;
9456 	  else
9457 	    h->plt.plist->need_mips = TRUE;
9458 	}
9459 
9460       if (h->plt.plist->need_mips)
9461 	{
9462 	  h->plt.plist->mips_offset = htab->plt_mips_offset;
9463 	  htab->plt_mips_offset += htab->plt_mips_entry_size;
9464 	}
9465       if (h->plt.plist->need_comp)
9466 	{
9467 	  h->plt.plist->comp_offset = htab->plt_comp_offset;
9468 	  htab->plt_comp_offset += htab->plt_comp_entry_size;
9469 	}
9470 
9471       /* Reserve the corresponding .got.plt entry now too.  */
9472       h->plt.plist->gotplt_index = htab->plt_got_index++;
9473 
9474       /* If the output file has no definition of the symbol, set the
9475 	 symbol's value to the address of the stub.  */
9476       if (!bfd_link_pic (info) && !h->def_regular)
9477 	hmips->use_plt_entry = TRUE;
9478 
9479       /* Make room for the R_MIPS_JUMP_SLOT relocation.  */
9480       htab->root.srelplt->size += (htab->root.target_os == is_vxworks
9481 				   ? MIPS_ELF_RELA_SIZE (dynobj)
9482 				   : MIPS_ELF_REL_SIZE (dynobj));
9483 
9484       /* Make room for the .rela.plt.unloaded relocations.  */
9485       if (htab->root.target_os == is_vxworks && !bfd_link_pic (info))
9486 	htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9487 
9488       /* All relocations against this symbol that could have been made
9489 	 dynamic will now refer to the PLT entry instead.  */
9490       hmips->possibly_dynamic_relocs = 0;
9491 
9492       return TRUE;
9493     }
9494 
9495   /* If this is a weak symbol, and there is a real definition, the
9496      processor independent code will have arranged for us to see the
9497      real definition first, and we can just use the same value.  */
9498   if (h->is_weakalias)
9499     {
9500       struct elf_link_hash_entry *def = weakdef (h);
9501       BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9502       h->root.u.def.section = def->root.u.def.section;
9503       h->root.u.def.value = def->root.u.def.value;
9504       return TRUE;
9505     }
9506 
9507   /* Otherwise, there is nothing further to do for symbols defined
9508      in regular objects.  */
9509   if (h->def_regular)
9510     return TRUE;
9511 
9512   /* There's also nothing more to do if we'll convert all relocations
9513      against this symbol into dynamic relocations.  */
9514   if (!hmips->has_static_relocs)
9515     return TRUE;
9516 
9517   /* We're now relying on copy relocations.  Complain if we have
9518      some that we can't convert.  */
9519   if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9520     {
9521       _bfd_error_handler (_("non-dynamic relocations refer to "
9522 			    "dynamic symbol %s"),
9523 			  h->root.root.string);
9524       bfd_set_error (bfd_error_bad_value);
9525       return FALSE;
9526     }
9527 
9528   /* We must allocate the symbol in our .dynbss section, which will
9529      become part of the .bss section of the executable.  There will be
9530      an entry for this symbol in the .dynsym section.  The dynamic
9531      object will contain position independent code, so all references
9532      from the dynamic object to this symbol will go through the global
9533      offset table.  The dynamic linker will use the .dynsym entry to
9534      determine the address it must put in the global offset table, so
9535      both the dynamic object and the regular object will refer to the
9536      same memory location for the variable.  */
9537 
9538   if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9539     {
9540       s = htab->root.sdynrelro;
9541       srel = htab->root.sreldynrelro;
9542     }
9543   else
9544     {
9545       s = htab->root.sdynbss;
9546       srel = htab->root.srelbss;
9547     }
9548   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9549     {
9550       if (htab->root.target_os == is_vxworks)
9551 	srel->size += sizeof (Elf32_External_Rela);
9552       else
9553 	mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9554       h->needs_copy = 1;
9555     }
9556 
9557   /* All relocations against this symbol that could have been made
9558      dynamic will now refer to the local copy instead.  */
9559   hmips->possibly_dynamic_relocs = 0;
9560 
9561   return _bfd_elf_adjust_dynamic_copy (info, h, s);
9562 }
9563 
9564 /* This function is called after all the input files have been read,
9565    and the input sections have been assigned to output sections.  We
9566    check for any mips16 stub sections that we can discard.  */
9567 
9568 bfd_boolean
9569 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9570 				    struct bfd_link_info *info)
9571 {
9572   asection *sect;
9573   struct mips_elf_link_hash_table *htab;
9574   struct mips_htab_traverse_info hti;
9575 
9576   htab = mips_elf_hash_table (info);
9577   BFD_ASSERT (htab != NULL);
9578 
9579   /* The .reginfo section has a fixed size.  */
9580   sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9581   if (sect != NULL)
9582     {
9583       bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9584       sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9585     }
9586 
9587   /* The .MIPS.abiflags section has a fixed size.  */
9588   sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9589   if (sect != NULL)
9590     {
9591       bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9592       sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9593     }
9594 
9595   hti.info = info;
9596   hti.output_bfd = output_bfd;
9597   hti.error = FALSE;
9598   mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9599 			       mips_elf_check_symbols, &hti);
9600   if (hti.error)
9601     return FALSE;
9602 
9603   return TRUE;
9604 }
9605 
9606 /* If the link uses a GOT, lay it out and work out its size.  */
9607 
9608 static bfd_boolean
9609 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9610 {
9611   bfd *dynobj;
9612   asection *s;
9613   struct mips_got_info *g;
9614   bfd_size_type loadable_size = 0;
9615   bfd_size_type page_gotno;
9616   bfd *ibfd;
9617   struct mips_elf_traverse_got_arg tga;
9618   struct mips_elf_link_hash_table *htab;
9619 
9620   htab = mips_elf_hash_table (info);
9621   BFD_ASSERT (htab != NULL);
9622 
9623   s = htab->root.sgot;
9624   if (s == NULL)
9625     return TRUE;
9626 
9627   dynobj = elf_hash_table (info)->dynobj;
9628   g = htab->got_info;
9629 
9630   /* Allocate room for the reserved entries.  VxWorks always reserves
9631      3 entries; other objects only reserve 2 entries.  */
9632   BFD_ASSERT (g->assigned_low_gotno == 0);
9633   if (htab->root.target_os == is_vxworks)
9634     htab->reserved_gotno = 3;
9635   else
9636     htab->reserved_gotno = 2;
9637   g->local_gotno += htab->reserved_gotno;
9638   g->assigned_low_gotno = htab->reserved_gotno;
9639 
9640   /* Decide which symbols need to go in the global part of the GOT and
9641      count the number of reloc-only GOT symbols.  */
9642   mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9643 
9644   if (!mips_elf_resolve_final_got_entries (info, g))
9645     return FALSE;
9646 
9647   /* Calculate the total loadable size of the output.  That
9648      will give us the maximum number of GOT_PAGE entries
9649      required.  */
9650   for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9651     {
9652       asection *subsection;
9653 
9654       for (subsection = ibfd->sections;
9655 	   subsection;
9656 	   subsection = subsection->next)
9657 	{
9658 	  if ((subsection->flags & SEC_ALLOC) == 0)
9659 	    continue;
9660 	  loadable_size += ((subsection->size + 0xf)
9661 			    &~ (bfd_size_type) 0xf);
9662 	}
9663     }
9664 
9665   if (htab->root.target_os == is_vxworks)
9666     /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9667        relocations against local symbols evaluate to "G", and the EABI does
9668        not include R_MIPS_GOT_PAGE.  */
9669     page_gotno = 0;
9670   else
9671     /* Assume there are two loadable segments consisting of contiguous
9672        sections.  Is 5 enough?  */
9673     page_gotno = (loadable_size >> 16) + 5;
9674 
9675   /* Choose the smaller of the two page estimates; both are intended to be
9676      conservative.  */
9677   if (page_gotno > g->page_gotno)
9678     page_gotno = g->page_gotno;
9679 
9680   g->local_gotno += page_gotno;
9681   g->assigned_high_gotno = g->local_gotno - 1;
9682 
9683   s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9684   s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9685   s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9686 
9687   /* VxWorks does not support multiple GOTs.  It initializes $gp to
9688      __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9689      dynamic loader.  */
9690   if (htab->root.target_os != is_vxworks
9691       && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9692     {
9693       if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9694 	return FALSE;
9695     }
9696   else
9697     {
9698       /* Record that all bfds use G.  This also has the effect of freeing
9699 	 the per-bfd GOTs, which we no longer need.  */
9700       for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9701 	if (mips_elf_bfd_got (ibfd, FALSE))
9702 	  mips_elf_replace_bfd_got (ibfd, g);
9703       mips_elf_replace_bfd_got (output_bfd, g);
9704 
9705       /* Set up TLS entries.  */
9706       g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9707       tga.info = info;
9708       tga.g = g;
9709       tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9710       htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9711       if (!tga.g)
9712 	return FALSE;
9713       BFD_ASSERT (g->tls_assigned_gotno
9714 		  == g->global_gotno + g->local_gotno + g->tls_gotno);
9715 
9716       /* Each VxWorks GOT entry needs an explicit relocation.  */
9717       if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9718 	g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9719 
9720       /* Allocate room for the TLS relocations.  */
9721       if (g->relocs)
9722 	mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9723     }
9724 
9725   return TRUE;
9726 }
9727 
9728 /* Estimate the size of the .MIPS.stubs section.  */
9729 
9730 static void
9731 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9732 {
9733   struct mips_elf_link_hash_table *htab;
9734   bfd_size_type dynsymcount;
9735 
9736   htab = mips_elf_hash_table (info);
9737   BFD_ASSERT (htab != NULL);
9738 
9739   if (htab->lazy_stub_count == 0)
9740     return;
9741 
9742   /* IRIX rld assumes that a function stub isn't at the end of the .text
9743      section, so add a dummy entry to the end.  */
9744   htab->lazy_stub_count++;
9745 
9746   /* Get a worst-case estimate of the number of dynamic symbols needed.
9747      At this point, dynsymcount does not account for section symbols
9748      and count_section_dynsyms may overestimate the number that will
9749      be needed.  */
9750   dynsymcount = (elf_hash_table (info)->dynsymcount
9751 		 + count_section_dynsyms (output_bfd, info));
9752 
9753   /* Determine the size of one stub entry.  There's no disadvantage
9754      from using microMIPS code here, so for the sake of pure-microMIPS
9755      binaries we prefer it whenever there's any microMIPS code in
9756      output produced at all.  This has a benefit of stubs being
9757      shorter by 4 bytes each too, unless in the insn32 mode.  */
9758   if (!MICROMIPS_P (output_bfd))
9759     htab->function_stub_size = (dynsymcount > 0x10000
9760 				? MIPS_FUNCTION_STUB_BIG_SIZE
9761 				: MIPS_FUNCTION_STUB_NORMAL_SIZE);
9762   else if (htab->insn32)
9763     htab->function_stub_size = (dynsymcount > 0x10000
9764 				? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9765 				: MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9766   else
9767     htab->function_stub_size = (dynsymcount > 0x10000
9768 				? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9769 				: MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9770 
9771   htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9772 }
9773 
9774 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9775    mips_htab_traverse_info.  If H needs a traditional MIPS lazy-binding
9776    stub, allocate an entry in the stubs section.  */
9777 
9778 static bfd_boolean
9779 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9780 {
9781   struct mips_htab_traverse_info *hti = data;
9782   struct mips_elf_link_hash_table *htab;
9783   struct bfd_link_info *info;
9784   bfd *output_bfd;
9785 
9786   info = hti->info;
9787   output_bfd = hti->output_bfd;
9788   htab = mips_elf_hash_table (info);
9789   BFD_ASSERT (htab != NULL);
9790 
9791   if (h->needs_lazy_stub)
9792     {
9793       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9794       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9795       bfd_vma isa_bit = micromips_p;
9796 
9797       BFD_ASSERT (htab->root.dynobj != NULL);
9798       if (h->root.plt.plist == NULL)
9799 	h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9800       if (h->root.plt.plist == NULL)
9801 	{
9802 	  hti->error = TRUE;
9803 	  return FALSE;
9804 	}
9805       h->root.root.u.def.section = htab->sstubs;
9806       h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9807       h->root.plt.plist->stub_offset = htab->sstubs->size;
9808       h->root.other = other;
9809       htab->sstubs->size += htab->function_stub_size;
9810     }
9811   return TRUE;
9812 }
9813 
9814 /* Allocate offsets in the stubs section to each symbol that needs one.
9815    Set the final size of the .MIPS.stub section.  */
9816 
9817 static bfd_boolean
9818 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9819 {
9820   bfd *output_bfd = info->output_bfd;
9821   bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9822   unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9823   bfd_vma isa_bit = micromips_p;
9824   struct mips_elf_link_hash_table *htab;
9825   struct mips_htab_traverse_info hti;
9826   struct elf_link_hash_entry *h;
9827   bfd *dynobj;
9828 
9829   htab = mips_elf_hash_table (info);
9830   BFD_ASSERT (htab != NULL);
9831 
9832   if (htab->lazy_stub_count == 0)
9833     return TRUE;
9834 
9835   htab->sstubs->size = 0;
9836   hti.info = info;
9837   hti.output_bfd = output_bfd;
9838   hti.error = FALSE;
9839   mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9840   if (hti.error)
9841     return FALSE;
9842   htab->sstubs->size += htab->function_stub_size;
9843   BFD_ASSERT (htab->sstubs->size
9844 	      == htab->lazy_stub_count * htab->function_stub_size);
9845 
9846   dynobj = elf_hash_table (info)->dynobj;
9847   BFD_ASSERT (dynobj != NULL);
9848   h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9849   if (h == NULL)
9850     return FALSE;
9851   h->root.u.def.value = isa_bit;
9852   h->other = other;
9853   h->type = STT_FUNC;
9854 
9855   return TRUE;
9856 }
9857 
9858 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9859    bfd_link_info.  If H uses the address of a PLT entry as the value
9860    of the symbol, then set the entry in the symbol table now.  Prefer
9861    a standard MIPS PLT entry.  */
9862 
9863 static bfd_boolean
9864 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9865 {
9866   struct bfd_link_info *info = data;
9867   bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9868   struct mips_elf_link_hash_table *htab;
9869   unsigned int other;
9870   bfd_vma isa_bit;
9871   bfd_vma val;
9872 
9873   htab = mips_elf_hash_table (info);
9874   BFD_ASSERT (htab != NULL);
9875 
9876   if (h->use_plt_entry)
9877     {
9878       BFD_ASSERT (h->root.plt.plist != NULL);
9879       BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9880 		  || h->root.plt.plist->comp_offset != MINUS_ONE);
9881 
9882       val = htab->plt_header_size;
9883       if (h->root.plt.plist->mips_offset != MINUS_ONE)
9884 	{
9885 	  isa_bit = 0;
9886 	  val += h->root.plt.plist->mips_offset;
9887 	  other = 0;
9888 	}
9889       else
9890 	{
9891 	  isa_bit = 1;
9892 	  val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9893 	  other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9894 	}
9895       val += isa_bit;
9896       /* For VxWorks, point at the PLT load stub rather than the lazy
9897 	 resolution stub; this stub will become the canonical function
9898 	 address.  */
9899       if (htab->root.target_os == is_vxworks)
9900 	val += 8;
9901 
9902       h->root.root.u.def.section = htab->root.splt;
9903       h->root.root.u.def.value = val;
9904       h->root.other = other;
9905     }
9906 
9907   return TRUE;
9908 }
9909 
9910 /* Set the sizes of the dynamic sections.  */
9911 
9912 bfd_boolean
9913 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9914 				     struct bfd_link_info *info)
9915 {
9916   bfd *dynobj;
9917   asection *s, *sreldyn;
9918   bfd_boolean reltext;
9919   struct mips_elf_link_hash_table *htab;
9920 
9921   htab = mips_elf_hash_table (info);
9922   BFD_ASSERT (htab != NULL);
9923   dynobj = elf_hash_table (info)->dynobj;
9924   BFD_ASSERT (dynobj != NULL);
9925 
9926   if (elf_hash_table (info)->dynamic_sections_created)
9927     {
9928       /* Set the contents of the .interp section to the interpreter.  */
9929       if (bfd_link_executable (info) && !info->nointerp)
9930 	{
9931 	  s = bfd_get_linker_section (dynobj, ".interp");
9932 	  BFD_ASSERT (s != NULL);
9933 	  s->size
9934 	    = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9935 	  s->contents
9936 	    = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9937 	}
9938 
9939       /* Figure out the size of the PLT header if we know that we
9940 	 are using it.  For the sake of cache alignment always use
9941 	 a standard header whenever any standard entries are present
9942 	 even if microMIPS entries are present as well.  This also
9943 	 lets the microMIPS header rely on the value of $v0 only set
9944 	 by microMIPS entries, for a small size reduction.
9945 
9946 	 Set symbol table entry values for symbols that use the
9947 	 address of their PLT entry now that we can calculate it.
9948 
9949 	 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9950 	 haven't already in _bfd_elf_create_dynamic_sections.  */
9951       if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9952 	{
9953 	  bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9954 				     && !htab->plt_mips_offset);
9955 	  unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9956 	  bfd_vma isa_bit = micromips_p;
9957 	  struct elf_link_hash_entry *h;
9958 	  bfd_vma size;
9959 
9960 	  BFD_ASSERT (htab->use_plts_and_copy_relocs);
9961 	  BFD_ASSERT (htab->root.sgotplt->size == 0);
9962 	  BFD_ASSERT (htab->root.splt->size == 0);
9963 
9964 	  if (htab->root.target_os == is_vxworks && bfd_link_pic (info))
9965 	    size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9966 	  else if (htab->root.target_os == is_vxworks)
9967 	    size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9968 	  else if (ABI_64_P (output_bfd))
9969 	    size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9970 	  else if (ABI_N32_P (output_bfd))
9971 	    size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9972 	  else if (!micromips_p)
9973 	    size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9974 	  else if (htab->insn32)
9975 	    size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9976 	  else
9977 	    size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9978 
9979 	  htab->plt_header_is_comp = micromips_p;
9980 	  htab->plt_header_size = size;
9981 	  htab->root.splt->size = (size
9982 				   + htab->plt_mips_offset
9983 				   + htab->plt_comp_offset);
9984 	  htab->root.sgotplt->size = (htab->plt_got_index
9985 				      * MIPS_ELF_GOT_SIZE (dynobj));
9986 
9987 	  mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9988 
9989 	  if (htab->root.hplt == NULL)
9990 	    {
9991 	      h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9992 					       "_PROCEDURE_LINKAGE_TABLE_");
9993 	      htab->root.hplt = h;
9994 	      if (h == NULL)
9995 		return FALSE;
9996 	    }
9997 
9998 	  h = htab->root.hplt;
9999 	  h->root.u.def.value = isa_bit;
10000 	  h->other = other;
10001 	  h->type = STT_FUNC;
10002 	}
10003     }
10004 
10005   /* Allocate space for global sym dynamic relocs.  */
10006   elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10007 
10008   mips_elf_estimate_stub_size (output_bfd, info);
10009 
10010   if (!mips_elf_lay_out_got (output_bfd, info))
10011     return FALSE;
10012 
10013   mips_elf_lay_out_lazy_stubs (info);
10014 
10015   /* The check_relocs and adjust_dynamic_symbol entry points have
10016      determined the sizes of the various dynamic sections.  Allocate
10017      memory for them.  */
10018   reltext = FALSE;
10019   for (s = dynobj->sections; s != NULL; s = s->next)
10020     {
10021       const char *name;
10022 
10023       /* It's OK to base decisions on the section name, because none
10024 	 of the dynobj section names depend upon the input files.  */
10025       name = bfd_section_name (s);
10026 
10027       if ((s->flags & SEC_LINKER_CREATED) == 0)
10028 	continue;
10029 
10030       if (CONST_STRNEQ (name, ".rel"))
10031 	{
10032 	  if (s->size != 0)
10033 	    {
10034 	      const char *outname;
10035 	      asection *target;
10036 
10037 	      /* If this relocation section applies to a read only
10038 		 section, then we probably need a DT_TEXTREL entry.
10039 		 If the relocation section is .rel(a).dyn, we always
10040 		 assert a DT_TEXTREL entry rather than testing whether
10041 		 there exists a relocation to a read only section or
10042 		 not.  */
10043 	      outname = bfd_section_name (s->output_section);
10044 	      target = bfd_get_section_by_name (output_bfd, outname + 4);
10045 	      if ((target != NULL
10046 		   && (target->flags & SEC_READONLY) != 0
10047 		   && (target->flags & SEC_ALLOC) != 0)
10048 		  || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10049 		reltext = TRUE;
10050 
10051 	      /* We use the reloc_count field as a counter if we need
10052 		 to copy relocs into the output file.  */
10053 	      if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10054 		s->reloc_count = 0;
10055 
10056 	      /* If combreloc is enabled, elf_link_sort_relocs() will
10057 		 sort relocations, but in a different way than we do,
10058 		 and before we're done creating relocations.  Also, it
10059 		 will move them around between input sections'
10060 		 relocation's contents, so our sorting would be
10061 		 broken, so don't let it run.  */
10062 	      info->combreloc = 0;
10063 	    }
10064 	}
10065       else if (bfd_link_executable (info)
10066 	       && ! mips_elf_hash_table (info)->use_rld_obj_head
10067 	       && CONST_STRNEQ (name, ".rld_map"))
10068 	{
10069 	  /* We add a room for __rld_map.  It will be filled in by the
10070 	     rtld to contain a pointer to the _r_debug structure.  */
10071 	  s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10072 	}
10073       else if (SGI_COMPAT (output_bfd)
10074 	       && CONST_STRNEQ (name, ".compact_rel"))
10075 	s->size += mips_elf_hash_table (info)->compact_rel_size;
10076       else if (s == htab->root.splt)
10077 	{
10078 	  /* If the last PLT entry has a branch delay slot, allocate
10079 	     room for an extra nop to fill the delay slot.  This is
10080 	     for CPUs without load interlocking.  */
10081 	  if (! LOAD_INTERLOCKS_P (output_bfd)
10082 	      && htab->root.target_os != is_vxworks
10083 	      && s->size > 0)
10084 	    s->size += 4;
10085 	}
10086       else if (! CONST_STRNEQ (name, ".init")
10087 	       && s != htab->root.sgot
10088 	       && s != htab->root.sgotplt
10089 	       && s != htab->sstubs
10090 	       && s != htab->root.sdynbss
10091 	       && s != htab->root.sdynrelro)
10092 	{
10093 	  /* It's not one of our sections, so don't allocate space.  */
10094 	  continue;
10095 	}
10096 
10097       if (s->size == 0)
10098 	{
10099 	  s->flags |= SEC_EXCLUDE;
10100 	  continue;
10101 	}
10102 
10103       if ((s->flags & SEC_HAS_CONTENTS) == 0)
10104 	continue;
10105 
10106       /* Allocate memory for the section contents.  */
10107       s->contents = bfd_zalloc (dynobj, s->size);
10108       if (s->contents == NULL)
10109 	{
10110 	  bfd_set_error (bfd_error_no_memory);
10111 	  return FALSE;
10112 	}
10113     }
10114 
10115   if (elf_hash_table (info)->dynamic_sections_created)
10116     {
10117       /* Add some entries to the .dynamic section.  We fill in the
10118 	 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10119 	 must add the entries now so that we get the correct size for
10120 	 the .dynamic section.  */
10121 
10122       /* SGI object has the equivalence of DT_DEBUG in the
10123 	 DT_MIPS_RLD_MAP entry.  This must come first because glibc
10124 	 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10125 	 may only look at the first one they see.  */
10126       if (!bfd_link_pic (info)
10127 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10128 	return FALSE;
10129 
10130       if (bfd_link_executable (info)
10131 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10132 	return FALSE;
10133 
10134       /* The DT_DEBUG entry may be filled in by the dynamic linker and
10135 	 used by the debugger.  */
10136       if (bfd_link_executable (info)
10137 	  && !SGI_COMPAT (output_bfd)
10138 	  && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10139 	return FALSE;
10140 
10141       if (reltext
10142 	  && (SGI_COMPAT (output_bfd)
10143 	      || htab->root.target_os == is_vxworks))
10144 	info->flags |= DF_TEXTREL;
10145 
10146       if ((info->flags & DF_TEXTREL) != 0)
10147 	{
10148 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10149 	    return FALSE;
10150 
10151 	  /* Clear the DF_TEXTREL flag.  It will be set again if we
10152 	     write out an actual text relocation; we may not, because
10153 	     at this point we do not know whether e.g. any .eh_frame
10154 	     absolute relocations have been converted to PC-relative.  */
10155 	  info->flags &= ~DF_TEXTREL;
10156 	}
10157 
10158       if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10159 	return FALSE;
10160 
10161       sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10162       if (htab->root.target_os == is_vxworks)
10163 	{
10164 	  /* VxWorks uses .rela.dyn instead of .rel.dyn.  It does not
10165 	     use any of the DT_MIPS_* tags.  */
10166 	  if (sreldyn && sreldyn->size > 0)
10167 	    {
10168 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10169 		return FALSE;
10170 
10171 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10172 		return FALSE;
10173 
10174 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10175 		return FALSE;
10176 	    }
10177 	}
10178       else
10179 	{
10180 	  if (sreldyn && sreldyn->size > 0
10181 	      && !bfd_is_abs_section (sreldyn->output_section))
10182 	    {
10183 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10184 		return FALSE;
10185 
10186 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10187 		return FALSE;
10188 
10189 	      if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10190 		return FALSE;
10191 	    }
10192 
10193 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10194 	    return FALSE;
10195 
10196 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10197 	    return FALSE;
10198 
10199 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10200 	    return FALSE;
10201 
10202 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10203 	    return FALSE;
10204 
10205 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10206 	    return FALSE;
10207 
10208 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10209 	    return FALSE;
10210 
10211 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10212 	    return FALSE;
10213 
10214 	  if (info->emit_gnu_hash
10215 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10216 	    return FALSE;
10217 
10218 	  if (IRIX_COMPAT (dynobj) == ict_irix5
10219 	      && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10220 	    return FALSE;
10221 
10222 	  if (IRIX_COMPAT (dynobj) == ict_irix6
10223 	      && (bfd_get_section_by_name
10224 		  (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10225 	      && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10226 	    return FALSE;
10227 	}
10228       if (htab->root.splt->size > 0)
10229 	{
10230 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10231 	    return FALSE;
10232 
10233 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10234 	    return FALSE;
10235 
10236 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10237 	    return FALSE;
10238 
10239 	  if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10240 	    return FALSE;
10241 	}
10242       if (htab->root.target_os == is_vxworks
10243 	  && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10244 	return FALSE;
10245     }
10246 
10247   return TRUE;
10248 }
10249 
10250 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10251    Adjust its R_ADDEND field so that it is correct for the output file.
10252    LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10253    and sections respectively; both use symbol indexes.  */
10254 
10255 static void
10256 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10257 			bfd *input_bfd, Elf_Internal_Sym *local_syms,
10258 			asection **local_sections, Elf_Internal_Rela *rel)
10259 {
10260   unsigned int r_type, r_symndx;
10261   Elf_Internal_Sym *sym;
10262   asection *sec;
10263 
10264   if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10265     {
10266       r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10267       if (gprel16_reloc_p (r_type)
10268 	  || r_type == R_MIPS_GPREL32
10269 	  || literal_reloc_p (r_type))
10270 	{
10271 	  rel->r_addend += _bfd_get_gp_value (input_bfd);
10272 	  rel->r_addend -= _bfd_get_gp_value (output_bfd);
10273 	}
10274 
10275       r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10276       sym = local_syms + r_symndx;
10277 
10278       /* Adjust REL's addend to account for section merging.  */
10279       if (!bfd_link_relocatable (info))
10280 	{
10281 	  sec = local_sections[r_symndx];
10282 	  _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10283 	}
10284 
10285       /* This would normally be done by the rela_normal code in elflink.c.  */
10286       if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10287 	rel->r_addend += local_sections[r_symndx]->output_offset;
10288     }
10289 }
10290 
10291 /* Handle relocations against symbols from removed linkonce sections,
10292    or sections discarded by a linker script.  We use this wrapper around
10293    RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10294    on 64-bit ELF targets.  In this case for any relocation handled, which
10295    always be the first in a triplet, the remaining two have to be processed
10296    together with the first, even if they are R_MIPS_NONE.  It is the symbol
10297    index referred by the first reloc that applies to all the three and the
10298    remaining two never refer to an object symbol.  And it is the final
10299    relocation (the last non-null one) that determines the output field of
10300    the whole relocation so retrieve the corresponding howto structure for
10301    the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10302 
10303    Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10304    and therefore requires to be pasted in a loop.  It also defines a block
10305    and does not protect any of its arguments, hence the extra brackets.  */
10306 
10307 static void
10308 mips_reloc_against_discarded_section (bfd *output_bfd,
10309 				      struct bfd_link_info *info,
10310 				      bfd *input_bfd, asection *input_section,
10311 				      Elf_Internal_Rela **rel,
10312 				      const Elf_Internal_Rela **relend,
10313 				      bfd_boolean rel_reloc,
10314 				      reloc_howto_type *howto,
10315 				      bfd_byte *contents)
10316 {
10317   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10318   int count = bed->s->int_rels_per_ext_rel;
10319   unsigned int r_type;
10320   int i;
10321 
10322   for (i = count - 1; i > 0; i--)
10323     {
10324       r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10325       if (r_type != R_MIPS_NONE)
10326 	{
10327 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10328 	  break;
10329 	}
10330     }
10331   do
10332     {
10333        RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10334 					(*rel), count, (*relend),
10335 					howto, i, contents);
10336     }
10337   while (0);
10338 }
10339 
10340 /* Relocate a MIPS ELF section.  */
10341 
10342 bfd_boolean
10343 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10344 				bfd *input_bfd, asection *input_section,
10345 				bfd_byte *contents, Elf_Internal_Rela *relocs,
10346 				Elf_Internal_Sym *local_syms,
10347 				asection **local_sections)
10348 {
10349   Elf_Internal_Rela *rel;
10350   const Elf_Internal_Rela *relend;
10351   bfd_vma addend = 0;
10352   bfd_boolean use_saved_addend_p = FALSE;
10353 
10354   relend = relocs + input_section->reloc_count;
10355   for (rel = relocs; rel < relend; ++rel)
10356     {
10357       const char *name;
10358       bfd_vma value = 0;
10359       reloc_howto_type *howto;
10360       bfd_boolean cross_mode_jump_p = FALSE;
10361       /* TRUE if the relocation is a RELA relocation, rather than a
10362 	 REL relocation.  */
10363       bfd_boolean rela_relocation_p = TRUE;
10364       unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10365       const char *msg;
10366       unsigned long r_symndx;
10367       asection *sec;
10368       Elf_Internal_Shdr *symtab_hdr;
10369       struct elf_link_hash_entry *h;
10370       bfd_boolean rel_reloc;
10371 
10372       rel_reloc = (NEWABI_P (input_bfd)
10373 		   && mips_elf_rel_relocation_p (input_bfd, input_section,
10374 						 relocs, rel));
10375       /* Find the relocation howto for this relocation.  */
10376       howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10377 
10378       r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10379       symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10380       if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10381 	{
10382 	  sec = local_sections[r_symndx];
10383 	  h = NULL;
10384 	}
10385       else
10386 	{
10387 	  unsigned long extsymoff;
10388 
10389 	  extsymoff = 0;
10390 	  if (!elf_bad_symtab (input_bfd))
10391 	    extsymoff = symtab_hdr->sh_info;
10392 	  h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10393 	  while (h->root.type == bfd_link_hash_indirect
10394 		 || h->root.type == bfd_link_hash_warning)
10395 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10396 
10397 	  sec = NULL;
10398 	  if (h->root.type == bfd_link_hash_defined
10399 	      || h->root.type == bfd_link_hash_defweak)
10400 	    sec = h->root.u.def.section;
10401 	}
10402 
10403       if (sec != NULL && discarded_section (sec))
10404 	{
10405 	  mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10406 						input_section, &rel, &relend,
10407 						rel_reloc, howto, contents);
10408 	  continue;
10409 	}
10410 
10411       if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10412 	{
10413 	  /* Some 32-bit code uses R_MIPS_64.  In particular, people use
10414 	     64-bit code, but make sure all their addresses are in the
10415 	     lowermost or uppermost 32-bit section of the 64-bit address
10416 	     space.  Thus, when they use an R_MIPS_64 they mean what is
10417 	     usually meant by R_MIPS_32, with the exception that the
10418 	     stored value is sign-extended to 64 bits.  */
10419 	  howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10420 
10421 	  /* On big-endian systems, we need to lie about the position
10422 	     of the reloc.  */
10423 	  if (bfd_big_endian (input_bfd))
10424 	    rel->r_offset += 4;
10425 	}
10426 
10427       if (!use_saved_addend_p)
10428 	{
10429 	  /* If these relocations were originally of the REL variety,
10430 	     we must pull the addend out of the field that will be
10431 	     relocated.  Otherwise, we simply use the contents of the
10432 	     RELA relocation.  */
10433 	  if (mips_elf_rel_relocation_p (input_bfd, input_section,
10434 					 relocs, rel))
10435 	    {
10436 	      rela_relocation_p = FALSE;
10437 	      addend = mips_elf_read_rel_addend (input_bfd, rel,
10438 						 howto, contents);
10439 	      if (hi16_reloc_p (r_type)
10440 		  || (got16_reloc_p (r_type)
10441 		      && mips_elf_local_relocation_p (input_bfd, rel,
10442 						      local_sections)))
10443 		{
10444 		  if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10445 						     contents, &addend))
10446 		    {
10447 		      if (h)
10448 			name = h->root.root.string;
10449 		      else
10450 			name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10451 						 local_syms + r_symndx,
10452 						 sec);
10453 		      _bfd_error_handler
10454 			/* xgettext:c-format */
10455 			(_("%pB: can't find matching LO16 reloc against `%s'"
10456 			   " for %s at %#" PRIx64 " in section `%pA'"),
10457 			 input_bfd, name,
10458 			 howto->name, (uint64_t) rel->r_offset, input_section);
10459 		    }
10460 		}
10461 	      else
10462 		addend <<= howto->rightshift;
10463 	    }
10464 	  else
10465 	    addend = rel->r_addend;
10466 	  mips_elf_adjust_addend (output_bfd, info, input_bfd,
10467 				  local_syms, local_sections, rel);
10468 	}
10469 
10470       if (bfd_link_relocatable (info))
10471 	{
10472 	  if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10473 	      && bfd_big_endian (input_bfd))
10474 	    rel->r_offset -= 4;
10475 
10476 	  if (!rela_relocation_p && rel->r_addend)
10477 	    {
10478 	      addend += rel->r_addend;
10479 	      if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10480 		addend = mips_elf_high (addend);
10481 	      else if (r_type == R_MIPS_HIGHER)
10482 		addend = mips_elf_higher (addend);
10483 	      else if (r_type == R_MIPS_HIGHEST)
10484 		addend = mips_elf_highest (addend);
10485 	      else
10486 		addend >>= howto->rightshift;
10487 
10488 	      /* We use the source mask, rather than the destination
10489 		 mask because the place to which we are writing will be
10490 		 source of the addend in the final link.  */
10491 	      addend &= howto->src_mask;
10492 
10493 	      if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10494 		/* See the comment above about using R_MIPS_64 in the 32-bit
10495 		   ABI.  Here, we need to update the addend.  It would be
10496 		   possible to get away with just using the R_MIPS_32 reloc
10497 		   but for endianness.  */
10498 		{
10499 		  bfd_vma sign_bits;
10500 		  bfd_vma low_bits;
10501 		  bfd_vma high_bits;
10502 
10503 		  if (addend & ((bfd_vma) 1 << 31))
10504 #ifdef BFD64
10505 		    sign_bits = ((bfd_vma) 1 << 32) - 1;
10506 #else
10507 		    sign_bits = -1;
10508 #endif
10509 		  else
10510 		    sign_bits = 0;
10511 
10512 		  /* If we don't know that we have a 64-bit type,
10513 		     do two separate stores.  */
10514 		  if (bfd_big_endian (input_bfd))
10515 		    {
10516 		      /* Store the sign-bits (which are most significant)
10517 			 first.  */
10518 		      low_bits = sign_bits;
10519 		      high_bits = addend;
10520 		    }
10521 		  else
10522 		    {
10523 		      low_bits = addend;
10524 		      high_bits = sign_bits;
10525 		    }
10526 		  bfd_put_32 (input_bfd, low_bits,
10527 			      contents + rel->r_offset);
10528 		  bfd_put_32 (input_bfd, high_bits,
10529 			      contents + rel->r_offset + 4);
10530 		  continue;
10531 		}
10532 
10533 	      if (! mips_elf_perform_relocation (info, howto, rel, addend,
10534 						 input_bfd, input_section,
10535 						 contents, FALSE))
10536 		return FALSE;
10537 	    }
10538 
10539 	  /* Go on to the next relocation.  */
10540 	  continue;
10541 	}
10542 
10543       /* In the N32 and 64-bit ABIs there may be multiple consecutive
10544 	 relocations for the same offset.  In that case we are
10545 	 supposed to treat the output of each relocation as the addend
10546 	 for the next.  */
10547       if (rel + 1 < relend
10548 	  && rel->r_offset == rel[1].r_offset
10549 	  && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10550 	use_saved_addend_p = TRUE;
10551       else
10552 	use_saved_addend_p = FALSE;
10553 
10554       /* Figure out what value we are supposed to relocate.  */
10555       switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10556 					     input_section, contents,
10557 					     info, rel, addend, howto,
10558 					     local_syms, local_sections,
10559 					     &value, &name, &cross_mode_jump_p,
10560 					     use_saved_addend_p))
10561 	{
10562 	case bfd_reloc_continue:
10563 	  /* There's nothing to do.  */
10564 	  continue;
10565 
10566 	case bfd_reloc_undefined:
10567 	  /* mips_elf_calculate_relocation already called the
10568 	     undefined_symbol callback.  There's no real point in
10569 	     trying to perform the relocation at this point, so we
10570 	     just skip ahead to the next relocation.  */
10571 	  continue;
10572 
10573 	case bfd_reloc_notsupported:
10574 	  msg = _("internal error: unsupported relocation error");
10575 	  info->callbacks->warning
10576 	    (info, msg, name, input_bfd, input_section, rel->r_offset);
10577 	  return FALSE;
10578 
10579 	case bfd_reloc_overflow:
10580 	  if (use_saved_addend_p)
10581 	    /* Ignore overflow until we reach the last relocation for
10582 	       a given location.  */
10583 	    ;
10584 	  else
10585 	    {
10586 	      struct mips_elf_link_hash_table *htab;
10587 
10588 	      htab = mips_elf_hash_table (info);
10589 	      BFD_ASSERT (htab != NULL);
10590 	      BFD_ASSERT (name != NULL);
10591 	      if (!htab->small_data_overflow_reported
10592 		  && (gprel16_reloc_p (howto->type)
10593 		      || literal_reloc_p (howto->type)))
10594 		{
10595 		  msg = _("small-data section exceeds 64KB;"
10596 			  " lower small-data size limit (see option -G)");
10597 
10598 		  htab->small_data_overflow_reported = TRUE;
10599 		  (*info->callbacks->einfo) ("%P: %s\n", msg);
10600 		}
10601 	      (*info->callbacks->reloc_overflow)
10602 		(info, NULL, name, howto->name, (bfd_vma) 0,
10603 		 input_bfd, input_section, rel->r_offset);
10604 	    }
10605 	  break;
10606 
10607 	case bfd_reloc_ok:
10608 	  break;
10609 
10610 	case bfd_reloc_outofrange:
10611 	  msg = NULL;
10612 	  if (jal_reloc_p (howto->type))
10613 	    msg = (cross_mode_jump_p
10614 		   ? _("cannot convert a jump to JALX "
10615 		       "for a non-word-aligned address")
10616 		   : (howto->type == R_MIPS16_26
10617 		      ? _("jump to a non-word-aligned address")
10618 		      : _("jump to a non-instruction-aligned address")));
10619 	  else if (b_reloc_p (howto->type))
10620 	    msg = (cross_mode_jump_p
10621 		   ? _("cannot convert a branch to JALX "
10622 		       "for a non-word-aligned address")
10623 		   : _("branch to a non-instruction-aligned address"));
10624 	  else if (aligned_pcrel_reloc_p (howto->type))
10625 	    msg = _("PC-relative load from unaligned address");
10626 	  if (msg)
10627 	    {
10628 	      info->callbacks->einfo
10629 		("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10630 	      break;
10631 	    }
10632 	  /* Fall through.  */
10633 
10634 	default:
10635 	  abort ();
10636 	  break;
10637 	}
10638 
10639       /* If we've got another relocation for the address, keep going
10640 	 until we reach the last one.  */
10641       if (use_saved_addend_p)
10642 	{
10643 	  addend = value;
10644 	  continue;
10645 	}
10646 
10647       if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10648 	/* See the comment above about using R_MIPS_64 in the 32-bit
10649 	   ABI.  Until now, we've been using the HOWTO for R_MIPS_32;
10650 	   that calculated the right value.  Now, however, we
10651 	   sign-extend the 32-bit result to 64-bits, and store it as a
10652 	   64-bit value.  We are especially generous here in that we
10653 	   go to extreme lengths to support this usage on systems with
10654 	   only a 32-bit VMA.  */
10655 	{
10656 	  bfd_vma sign_bits;
10657 	  bfd_vma low_bits;
10658 	  bfd_vma high_bits;
10659 
10660 	  if (value & ((bfd_vma) 1 << 31))
10661 #ifdef BFD64
10662 	    sign_bits = ((bfd_vma) 1 << 32) - 1;
10663 #else
10664 	    sign_bits = -1;
10665 #endif
10666 	  else
10667 	    sign_bits = 0;
10668 
10669 	  /* If we don't know that we have a 64-bit type,
10670 	     do two separate stores.  */
10671 	  if (bfd_big_endian (input_bfd))
10672 	    {
10673 	      /* Undo what we did above.  */
10674 	      rel->r_offset -= 4;
10675 	      /* Store the sign-bits (which are most significant)
10676 		 first.  */
10677 	      low_bits = sign_bits;
10678 	      high_bits = value;
10679 	    }
10680 	  else
10681 	    {
10682 	      low_bits = value;
10683 	      high_bits = sign_bits;
10684 	    }
10685 	  bfd_put_32 (input_bfd, low_bits,
10686 		      contents + rel->r_offset);
10687 	  bfd_put_32 (input_bfd, high_bits,
10688 		      contents + rel->r_offset + 4);
10689 	  continue;
10690 	}
10691 
10692       /* Actually perform the relocation.  */
10693       if (! mips_elf_perform_relocation (info, howto, rel, value,
10694 					 input_bfd, input_section,
10695 					 contents, cross_mode_jump_p))
10696 	return FALSE;
10697     }
10698 
10699   return TRUE;
10700 }
10701 
10702 /* A function that iterates over each entry in la25_stubs and fills
10703    in the code for each one.  DATA points to a mips_htab_traverse_info.  */
10704 
10705 static int
10706 mips_elf_create_la25_stub (void **slot, void *data)
10707 {
10708   struct mips_htab_traverse_info *hti;
10709   struct mips_elf_link_hash_table *htab;
10710   struct mips_elf_la25_stub *stub;
10711   asection *s;
10712   bfd_byte *loc;
10713   bfd_vma offset, target, target_high, target_low;
10714   bfd_vma branch_pc;
10715   bfd_signed_vma pcrel_offset = 0;
10716 
10717   stub = (struct mips_elf_la25_stub *) *slot;
10718   hti = (struct mips_htab_traverse_info *) data;
10719   htab = mips_elf_hash_table (hti->info);
10720   BFD_ASSERT (htab != NULL);
10721 
10722   /* Create the section contents, if we haven't already.  */
10723   s = stub->stub_section;
10724   loc = s->contents;
10725   if (loc == NULL)
10726     {
10727       loc = bfd_malloc (s->size);
10728       if (loc == NULL)
10729 	{
10730 	  hti->error = TRUE;
10731 	  return FALSE;
10732 	}
10733       s->contents = loc;
10734     }
10735 
10736   /* Work out where in the section this stub should go.  */
10737   offset = stub->offset;
10738 
10739   /* We add 8 here to account for the LUI/ADDIU instructions
10740      before the branch instruction.  This cannot be moved down to
10741      where pcrel_offset is calculated as 's' is updated in
10742      mips_elf_get_la25_target.  */
10743   branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10744 
10745   /* Work out the target address.  */
10746   target = mips_elf_get_la25_target (stub, &s);
10747   target += s->output_section->vma + s->output_offset;
10748 
10749   target_high = ((target + 0x8000) >> 16) & 0xffff;
10750   target_low = (target & 0xffff);
10751 
10752   /* Calculate the PC of the compact branch instruction (for the case where
10753      compact branches are used for either microMIPSR6 or MIPSR6 with
10754      compact branches.  Add 4-bytes to account for BC using the PC of the
10755      next instruction as the base.  */
10756   pcrel_offset = target - (branch_pc + 4);
10757 
10758   if (stub->stub_section != htab->strampoline)
10759     {
10760       /* This is a simple LUI/ADDIU stub.  Zero out the beginning
10761 	 of the section and write the two instructions at the end.  */
10762       memset (loc, 0, offset);
10763       loc += offset;
10764       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10765 	{
10766 	  bfd_put_micromips_32 (hti->output_bfd,
10767 				LA25_LUI_MICROMIPS (target_high),
10768 				loc);
10769 	  bfd_put_micromips_32 (hti->output_bfd,
10770 				LA25_ADDIU_MICROMIPS (target_low),
10771 				loc + 4);
10772 	}
10773       else
10774 	{
10775 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10776 	  bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10777 	}
10778     }
10779   else
10780     {
10781       /* This is trampoline.  */
10782       loc += offset;
10783       if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10784 	{
10785 	  bfd_put_micromips_32 (hti->output_bfd,
10786 				LA25_LUI_MICROMIPS (target_high), loc);
10787 	  bfd_put_micromips_32 (hti->output_bfd,
10788 				LA25_J_MICROMIPS (target), loc + 4);
10789 	  bfd_put_micromips_32 (hti->output_bfd,
10790 				LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10791 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10792 	}
10793       else
10794 	{
10795 	  bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10796 	  if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10797 	    {
10798 	      bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10799 	      bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10800 	    }
10801 	  else
10802 	    {
10803 	      bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10804 	      bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10805 	    }
10806 	  bfd_put_32 (hti->output_bfd, 0, loc + 12);
10807 	}
10808     }
10809   return TRUE;
10810 }
10811 
10812 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10813    adjust it appropriately now.  */
10814 
10815 static void
10816 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10817 				      const char *name, Elf_Internal_Sym *sym)
10818 {
10819   /* The linker script takes care of providing names and values for
10820      these, but we must place them into the right sections.  */
10821   static const char* const text_section_symbols[] = {
10822     "_ftext",
10823     "_etext",
10824     "__dso_displacement",
10825     "__elf_header",
10826     "__program_header_table",
10827     NULL
10828   };
10829 
10830   static const char* const data_section_symbols[] = {
10831     "_fdata",
10832     "_edata",
10833     "_end",
10834     "_fbss",
10835     NULL
10836   };
10837 
10838   const char* const *p;
10839   int i;
10840 
10841   for (i = 0; i < 2; ++i)
10842     for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10843 	 *p;
10844 	 ++p)
10845       if (strcmp (*p, name) == 0)
10846 	{
10847 	  /* All of these symbols are given type STT_SECTION by the
10848 	     IRIX6 linker.  */
10849 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10850 	  sym->st_other = STO_PROTECTED;
10851 
10852 	  /* The IRIX linker puts these symbols in special sections.  */
10853 	  if (i == 0)
10854 	    sym->st_shndx = SHN_MIPS_TEXT;
10855 	  else
10856 	    sym->st_shndx = SHN_MIPS_DATA;
10857 
10858 	  break;
10859 	}
10860 }
10861 
10862 /* Finish up dynamic symbol handling.  We set the contents of various
10863    dynamic sections here.  */
10864 
10865 bfd_boolean
10866 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10867 				     struct bfd_link_info *info,
10868 				     struct elf_link_hash_entry *h,
10869 				     Elf_Internal_Sym *sym)
10870 {
10871   bfd *dynobj;
10872   asection *sgot;
10873   struct mips_got_info *g, *gg;
10874   const char *name;
10875   int idx;
10876   struct mips_elf_link_hash_table *htab;
10877   struct mips_elf_link_hash_entry *hmips;
10878 
10879   htab = mips_elf_hash_table (info);
10880   BFD_ASSERT (htab != NULL);
10881   dynobj = elf_hash_table (info)->dynobj;
10882   hmips = (struct mips_elf_link_hash_entry *) h;
10883 
10884   BFD_ASSERT (htab->root.target_os != is_vxworks);
10885 
10886   if (h->plt.plist != NULL
10887       && (h->plt.plist->mips_offset != MINUS_ONE
10888 	  || h->plt.plist->comp_offset != MINUS_ONE))
10889     {
10890       /* We've decided to create a PLT entry for this symbol.  */
10891       bfd_byte *loc;
10892       bfd_vma header_address, got_address;
10893       bfd_vma got_address_high, got_address_low, load;
10894       bfd_vma got_index;
10895       bfd_vma isa_bit;
10896 
10897       got_index = h->plt.plist->gotplt_index;
10898 
10899       BFD_ASSERT (htab->use_plts_and_copy_relocs);
10900       BFD_ASSERT (h->dynindx != -1);
10901       BFD_ASSERT (htab->root.splt != NULL);
10902       BFD_ASSERT (got_index != MINUS_ONE);
10903       BFD_ASSERT (!h->def_regular);
10904 
10905       /* Calculate the address of the PLT header.  */
10906       isa_bit = htab->plt_header_is_comp;
10907       header_address = (htab->root.splt->output_section->vma
10908 			+ htab->root.splt->output_offset + isa_bit);
10909 
10910       /* Calculate the address of the .got.plt entry.  */
10911       got_address = (htab->root.sgotplt->output_section->vma
10912 		     + htab->root.sgotplt->output_offset
10913 		     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10914 
10915       got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10916       got_address_low = got_address & 0xffff;
10917 
10918       /* The PLT sequence is not safe for N64 if .got.plt entry's address
10919 	 cannot be loaded in two instructions.  */
10920       if (ABI_64_P (output_bfd)
10921 	  && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10922 	{
10923 	  _bfd_error_handler
10924 	    /* xgettext:c-format */
10925 	    (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10926 	       "supported; consider using `-Ttext-segment=...'"),
10927 	     output_bfd,
10928 	     htab->root.sgotplt->output_section,
10929 	     (int64_t) got_address);
10930 	  bfd_set_error (bfd_error_no_error);
10931 	  return FALSE;
10932 	}
10933 
10934       /* Initially point the .got.plt entry at the PLT header.  */
10935       loc = (htab->root.sgotplt->contents
10936 	     + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10937       if (ABI_64_P (output_bfd))
10938 	bfd_put_64 (output_bfd, header_address, loc);
10939       else
10940 	bfd_put_32 (output_bfd, header_address, loc);
10941 
10942       /* Now handle the PLT itself.  First the standard entry (the order
10943 	 does not matter, we just have to pick one).  */
10944       if (h->plt.plist->mips_offset != MINUS_ONE)
10945 	{
10946 	  const bfd_vma *plt_entry;
10947 	  bfd_vma plt_offset;
10948 
10949 	  plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10950 
10951 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
10952 
10953 	  /* Find out where the .plt entry should go.  */
10954 	  loc = htab->root.splt->contents + plt_offset;
10955 
10956 	  /* Pick the load opcode.  */
10957 	  load = MIPS_ELF_LOAD_WORD (output_bfd);
10958 
10959 	  /* Fill in the PLT entry itself.  */
10960 
10961 	  if (MIPSR6_P (output_bfd))
10962 	    plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10963 					       : mipsr6_exec_plt_entry;
10964 	  else
10965 	    plt_entry = mips_exec_plt_entry;
10966 	  bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10967 	  bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10968 		      loc + 4);
10969 
10970 	  if (! LOAD_INTERLOCKS_P (output_bfd)
10971 	      || (MIPSR6_P (output_bfd) && htab->compact_branches))
10972 	    {
10973 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10974 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10975 	    }
10976 	  else
10977 	    {
10978 	      bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10979 	      bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10980 			  loc + 12);
10981 	    }
10982 	}
10983 
10984       /* Now the compressed entry.  They come after any standard ones.  */
10985       if (h->plt.plist->comp_offset != MINUS_ONE)
10986 	{
10987 	  bfd_vma plt_offset;
10988 
10989 	  plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10990 			+ h->plt.plist->comp_offset);
10991 
10992 	  BFD_ASSERT (plt_offset <= htab->root.splt->size);
10993 
10994 	  /* Find out where the .plt entry should go.  */
10995 	  loc = htab->root.splt->contents + plt_offset;
10996 
10997 	  /* Fill in the PLT entry itself.  */
10998 	  if (!MICROMIPS_P (output_bfd))
10999 	    {
11000 	      const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11001 
11002 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
11003 	      bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11004 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11005 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11006 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11007 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11008 	      bfd_put_32 (output_bfd, got_address, loc + 12);
11009 	    }
11010 	  else if (htab->insn32)
11011 	    {
11012 	      const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11013 
11014 	      bfd_put_16 (output_bfd, plt_entry[0], loc);
11015 	      bfd_put_16 (output_bfd, got_address_high, loc + 2);
11016 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11017 	      bfd_put_16 (output_bfd, got_address_low, loc + 6);
11018 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11019 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11020 	      bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11021 	      bfd_put_16 (output_bfd, got_address_low, loc + 14);
11022 	    }
11023 	  else
11024 	    {
11025 	      const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11026 	      bfd_signed_vma gotpc_offset;
11027 	      bfd_vma loc_address;
11028 
11029 	      BFD_ASSERT (got_address % 4 == 0);
11030 
11031 	      loc_address = (htab->root.splt->output_section->vma
11032 			     + htab->root.splt->output_offset + plt_offset);
11033 	      gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11034 
11035 	      /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11036 	      if (gotpc_offset + 0x1000000 >= 0x2000000)
11037 		{
11038 		  _bfd_error_handler
11039 		    /* xgettext:c-format */
11040 		    (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11041 		       "beyond the range of ADDIUPC"),
11042 		     output_bfd,
11043 		     htab->root.sgotplt->output_section,
11044 		     (int64_t) gotpc_offset,
11045 		     htab->root.splt->output_section);
11046 		  bfd_set_error (bfd_error_no_error);
11047 		  return FALSE;
11048 		}
11049 	      bfd_put_16 (output_bfd,
11050 			  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11051 	      bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11052 	      bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11053 	      bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11054 	      bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11055 	      bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11056 	    }
11057 	}
11058 
11059       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11060       mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11061 					  got_index - 2, h->dynindx,
11062 					  R_MIPS_JUMP_SLOT, got_address);
11063 
11064       /* We distinguish between PLT entries and lazy-binding stubs by
11065 	 giving the former an st_other value of STO_MIPS_PLT.  Set the
11066 	 flag and leave the value if there are any relocations in the
11067 	 binary where pointer equality matters.  */
11068       sym->st_shndx = SHN_UNDEF;
11069       if (h->pointer_equality_needed)
11070 	sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11071       else
11072 	{
11073 	  sym->st_value = 0;
11074 	  sym->st_other = 0;
11075 	}
11076     }
11077 
11078   if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11079     {
11080       /* We've decided to create a lazy-binding stub.  */
11081       bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11082       unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11083       bfd_vma stub_size = htab->function_stub_size;
11084       bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11085       bfd_vma isa_bit = micromips_p;
11086       bfd_vma stub_big_size;
11087 
11088       if (!micromips_p)
11089 	stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11090       else if (htab->insn32)
11091 	stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11092       else
11093 	stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11094 
11095       /* This symbol has a stub.  Set it up.  */
11096 
11097       BFD_ASSERT (h->dynindx != -1);
11098 
11099       BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11100 
11101       /* Values up to 2^31 - 1 are allowed.  Larger values would cause
11102 	 sign extension at runtime in the stub, resulting in a negative
11103 	 index value.  */
11104       if (h->dynindx & ~0x7fffffff)
11105 	return FALSE;
11106 
11107       /* Fill the stub.  */
11108       if (micromips_p)
11109 	{
11110 	  idx = 0;
11111 	  bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11112 				stub + idx);
11113 	  idx += 4;
11114 	  if (htab->insn32)
11115 	    {
11116 	      bfd_put_micromips_32 (output_bfd,
11117 				    STUB_MOVE32_MICROMIPS, stub + idx);
11118 	      idx += 4;
11119 	    }
11120 	  else
11121 	    {
11122 	      bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11123 	      idx += 2;
11124 	    }
11125 	  if (stub_size == stub_big_size)
11126 	    {
11127 	      long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11128 
11129 	      bfd_put_micromips_32 (output_bfd,
11130 				    STUB_LUI_MICROMIPS (dynindx_hi),
11131 				    stub + idx);
11132 	      idx += 4;
11133 	    }
11134 	  if (htab->insn32)
11135 	    {
11136 	      bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11137 				    stub + idx);
11138 	      idx += 4;
11139 	    }
11140 	  else
11141 	    {
11142 	      bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11143 	      idx += 2;
11144 	    }
11145 
11146 	  /* If a large stub is not required and sign extension is not a
11147 	     problem, then use legacy code in the stub.  */
11148 	  if (stub_size == stub_big_size)
11149 	    bfd_put_micromips_32 (output_bfd,
11150 				  STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11151 				  stub + idx);
11152 	  else if (h->dynindx & ~0x7fff)
11153 	    bfd_put_micromips_32 (output_bfd,
11154 				  STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11155 				  stub + idx);
11156 	  else
11157 	    bfd_put_micromips_32 (output_bfd,
11158 				  STUB_LI16S_MICROMIPS (output_bfd,
11159 							h->dynindx),
11160 				  stub + idx);
11161 	}
11162       else
11163 	{
11164 	  idx = 0;
11165 	  bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11166 	  idx += 4;
11167 	  bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11168 	  idx += 4;
11169 	  if (stub_size == stub_big_size)
11170 	    {
11171 	      bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11172 			  stub + idx);
11173 	      idx += 4;
11174 	    }
11175 
11176 	  if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11177 	    {
11178 	      bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11179 	      idx += 4;
11180 	    }
11181 
11182 	  /* If a large stub is not required and sign extension is not a
11183 	     problem, then use legacy code in the stub.  */
11184 	  if (stub_size == stub_big_size)
11185 	    bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11186 			stub + idx);
11187 	  else if (h->dynindx & ~0x7fff)
11188 	    bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11189 			stub + idx);
11190 	  else
11191 	    bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11192 			stub + idx);
11193 	  idx += 4;
11194 
11195 	  if (MIPSR6_P (output_bfd) && htab->compact_branches)
11196 	    bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11197 	}
11198 
11199       BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11200       memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11201 	      stub, stub_size);
11202 
11203       /* Mark the symbol as undefined.  stub_offset != -1 occurs
11204 	 only for the referenced symbol.  */
11205       sym->st_shndx = SHN_UNDEF;
11206 
11207       /* The run-time linker uses the st_value field of the symbol
11208 	 to reset the global offset table entry for this external
11209 	 to its stub address when unlinking a shared object.  */
11210       sym->st_value = (htab->sstubs->output_section->vma
11211 		       + htab->sstubs->output_offset
11212 		       + h->plt.plist->stub_offset
11213 		       + isa_bit);
11214       sym->st_other = other;
11215     }
11216 
11217   /* If we have a MIPS16 function with a stub, the dynamic symbol must
11218      refer to the stub, since only the stub uses the standard calling
11219      conventions.  */
11220   if (h->dynindx != -1 && hmips->fn_stub != NULL)
11221     {
11222       BFD_ASSERT (hmips->need_fn_stub);
11223       sym->st_value = (hmips->fn_stub->output_section->vma
11224 		       + hmips->fn_stub->output_offset);
11225       sym->st_size = hmips->fn_stub->size;
11226       sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11227     }
11228 
11229   BFD_ASSERT (h->dynindx != -1
11230 	      || h->forced_local);
11231 
11232   sgot = htab->root.sgot;
11233   g = htab->got_info;
11234   BFD_ASSERT (g != NULL);
11235 
11236   /* Run through the global symbol table, creating GOT entries for all
11237      the symbols that need them.  */
11238   if (hmips->global_got_area != GGA_NONE)
11239     {
11240       bfd_vma offset;
11241       bfd_vma value;
11242 
11243       value = sym->st_value;
11244       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11245       MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11246     }
11247 
11248   if (hmips->global_got_area != GGA_NONE && g->next)
11249     {
11250       struct mips_got_entry e, *p;
11251       bfd_vma entry;
11252       bfd_vma offset;
11253 
11254       gg = g;
11255 
11256       e.abfd = output_bfd;
11257       e.symndx = -1;
11258       e.d.h = hmips;
11259       e.tls_type = GOT_TLS_NONE;
11260 
11261       for (g = g->next; g->next != gg; g = g->next)
11262 	{
11263 	  if (g->got_entries
11264 	      && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11265 							   &e)))
11266 	    {
11267 	      offset = p->gotidx;
11268 	      BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11269 	      if (bfd_link_pic (info)
11270 		  || (elf_hash_table (info)->dynamic_sections_created
11271 		      && p->d.h != NULL
11272 		      && p->d.h->root.def_dynamic
11273 		      && !p->d.h->root.def_regular))
11274 		{
11275 		  /* Create an R_MIPS_REL32 relocation for this entry.  Due to
11276 		     the various compatibility problems, it's easier to mock
11277 		     up an R_MIPS_32 or R_MIPS_64 relocation and leave
11278 		     mips_elf_create_dynamic_relocation to calculate the
11279 		     appropriate addend.  */
11280 		  Elf_Internal_Rela rel[3];
11281 
11282 		  memset (rel, 0, sizeof (rel));
11283 		  if (ABI_64_P (output_bfd))
11284 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11285 		  else
11286 		    rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11287 		  rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11288 
11289 		  entry = 0;
11290 		  if (! (mips_elf_create_dynamic_relocation
11291 			 (output_bfd, info, rel,
11292 			  e.d.h, NULL, sym->st_value, &entry, sgot)))
11293 		    return FALSE;
11294 		}
11295 	      else
11296 		entry = sym->st_value;
11297 	      MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11298 	    }
11299 	}
11300     }
11301 
11302   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
11303   name = h->root.root.string;
11304   if (h == elf_hash_table (info)->hdynamic
11305       || h == elf_hash_table (info)->hgot)
11306     sym->st_shndx = SHN_ABS;
11307   else if (strcmp (name, "_DYNAMIC_LINK") == 0
11308 	   || strcmp (name, "_DYNAMIC_LINKING") == 0)
11309     {
11310       sym->st_shndx = SHN_ABS;
11311       sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11312       sym->st_value = 1;
11313     }
11314   else if (SGI_COMPAT (output_bfd))
11315     {
11316       if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11317 	  || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11318 	{
11319 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11320 	  sym->st_other = STO_PROTECTED;
11321 	  sym->st_value = 0;
11322 	  sym->st_shndx = SHN_MIPS_DATA;
11323 	}
11324       else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11325 	{
11326 	  sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11327 	  sym->st_other = STO_PROTECTED;
11328 	  sym->st_value = mips_elf_hash_table (info)->procedure_count;
11329 	  sym->st_shndx = SHN_ABS;
11330 	}
11331       else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11332 	{
11333 	  if (h->type == STT_FUNC)
11334 	    sym->st_shndx = SHN_MIPS_TEXT;
11335 	  else if (h->type == STT_OBJECT)
11336 	    sym->st_shndx = SHN_MIPS_DATA;
11337 	}
11338     }
11339 
11340   /* Emit a copy reloc, if needed.  */
11341   if (h->needs_copy)
11342     {
11343       asection *s;
11344       bfd_vma symval;
11345 
11346       BFD_ASSERT (h->dynindx != -1);
11347       BFD_ASSERT (htab->use_plts_and_copy_relocs);
11348 
11349       s = mips_elf_rel_dyn_section (info, FALSE);
11350       symval = (h->root.u.def.section->output_section->vma
11351 		+ h->root.u.def.section->output_offset
11352 		+ h->root.u.def.value);
11353       mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11354 					  h->dynindx, R_MIPS_COPY, symval);
11355     }
11356 
11357   /* Handle the IRIX6-specific symbols.  */
11358   if (IRIX_COMPAT (output_bfd) == ict_irix6)
11359     mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11360 
11361   /* Keep dynamic compressed symbols odd.  This allows the dynamic linker
11362      to treat compressed symbols like any other.  */
11363   if (ELF_ST_IS_MIPS16 (sym->st_other))
11364     {
11365       BFD_ASSERT (sym->st_value & 1);
11366       sym->st_other -= STO_MIPS16;
11367     }
11368   else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11369     {
11370       BFD_ASSERT (sym->st_value & 1);
11371       sym->st_other -= STO_MICROMIPS;
11372     }
11373 
11374   return TRUE;
11375 }
11376 
11377 /* Likewise, for VxWorks.  */
11378 
11379 bfd_boolean
11380 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11381 					 struct bfd_link_info *info,
11382 					 struct elf_link_hash_entry *h,
11383 					 Elf_Internal_Sym *sym)
11384 {
11385   bfd *dynobj;
11386   asection *sgot;
11387   struct mips_got_info *g;
11388   struct mips_elf_link_hash_table *htab;
11389   struct mips_elf_link_hash_entry *hmips;
11390 
11391   htab = mips_elf_hash_table (info);
11392   BFD_ASSERT (htab != NULL);
11393   dynobj = elf_hash_table (info)->dynobj;
11394   hmips = (struct mips_elf_link_hash_entry *) h;
11395 
11396   if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11397     {
11398       bfd_byte *loc;
11399       bfd_vma plt_address, got_address, got_offset, branch_offset;
11400       Elf_Internal_Rela rel;
11401       static const bfd_vma *plt_entry;
11402       bfd_vma gotplt_index;
11403       bfd_vma plt_offset;
11404 
11405       plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11406       gotplt_index = h->plt.plist->gotplt_index;
11407 
11408       BFD_ASSERT (h->dynindx != -1);
11409       BFD_ASSERT (htab->root.splt != NULL);
11410       BFD_ASSERT (gotplt_index != MINUS_ONE);
11411       BFD_ASSERT (plt_offset <= htab->root.splt->size);
11412 
11413       /* Calculate the address of the .plt entry.  */
11414       plt_address = (htab->root.splt->output_section->vma
11415 		     + htab->root.splt->output_offset
11416 		     + plt_offset);
11417 
11418       /* Calculate the address of the .got.plt entry.  */
11419       got_address = (htab->root.sgotplt->output_section->vma
11420 		     + htab->root.sgotplt->output_offset
11421 		     + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11422 
11423       /* Calculate the offset of the .got.plt entry from
11424 	 _GLOBAL_OFFSET_TABLE_.  */
11425       got_offset = mips_elf_gotplt_index (info, h);
11426 
11427       /* Calculate the offset for the branch at the start of the PLT
11428 	 entry.  The branch jumps to the beginning of .plt.  */
11429       branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11430 
11431       /* Fill in the initial value of the .got.plt entry.  */
11432       bfd_put_32 (output_bfd, plt_address,
11433 		  (htab->root.sgotplt->contents
11434 		   + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11435 
11436       /* Find out where the .plt entry should go.  */
11437       loc = htab->root.splt->contents + plt_offset;
11438 
11439       if (bfd_link_pic (info))
11440 	{
11441 	  plt_entry = mips_vxworks_shared_plt_entry;
11442 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11443 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11444 	}
11445       else
11446 	{
11447 	  bfd_vma got_address_high, got_address_low;
11448 
11449 	  plt_entry = mips_vxworks_exec_plt_entry;
11450 	  got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11451 	  got_address_low = got_address & 0xffff;
11452 
11453 	  bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11454 	  bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11455 	  bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11456 	  bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11457 	  bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11458 	  bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11459 	  bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11460 	  bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11461 
11462 	  loc = (htab->srelplt2->contents
11463 		 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11464 
11465 	  /* Emit a relocation for the .got.plt entry.  */
11466 	  rel.r_offset = got_address;
11467 	  rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11468 	  rel.r_addend = plt_offset;
11469 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11470 
11471 	  /* Emit a relocation for the lui of %hi(<.got.plt slot>).  */
11472 	  loc += sizeof (Elf32_External_Rela);
11473 	  rel.r_offset = plt_address + 8;
11474 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11475 	  rel.r_addend = got_offset;
11476 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11477 
11478 	  /* Emit a relocation for the addiu of %lo(<.got.plt slot>).  */
11479 	  loc += sizeof (Elf32_External_Rela);
11480 	  rel.r_offset += 4;
11481 	  rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11482 	  bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11483 	}
11484 
11485       /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry.  */
11486       loc = (htab->root.srelplt->contents
11487 	     + gotplt_index * sizeof (Elf32_External_Rela));
11488       rel.r_offset = got_address;
11489       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11490       rel.r_addend = 0;
11491       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11492 
11493       if (!h->def_regular)
11494 	sym->st_shndx = SHN_UNDEF;
11495     }
11496 
11497   BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11498 
11499   sgot = htab->root.sgot;
11500   g = htab->got_info;
11501   BFD_ASSERT (g != NULL);
11502 
11503   /* See if this symbol has an entry in the GOT.  */
11504   if (hmips->global_got_area != GGA_NONE)
11505     {
11506       bfd_vma offset;
11507       Elf_Internal_Rela outrel;
11508       bfd_byte *loc;
11509       asection *s;
11510 
11511       /* Install the symbol value in the GOT.   */
11512       offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11513       MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11514 
11515       /* Add a dynamic relocation for it.  */
11516       s = mips_elf_rel_dyn_section (info, FALSE);
11517       loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11518       outrel.r_offset = (sgot->output_section->vma
11519 			 + sgot->output_offset
11520 			 + offset);
11521       outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11522       outrel.r_addend = 0;
11523       bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11524     }
11525 
11526   /* Emit a copy reloc, if needed.  */
11527   if (h->needs_copy)
11528     {
11529       Elf_Internal_Rela rel;
11530       asection *srel;
11531       bfd_byte *loc;
11532 
11533       BFD_ASSERT (h->dynindx != -1);
11534 
11535       rel.r_offset = (h->root.u.def.section->output_section->vma
11536 		      + h->root.u.def.section->output_offset
11537 		      + h->root.u.def.value);
11538       rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11539       rel.r_addend = 0;
11540       if (h->root.u.def.section == htab->root.sdynrelro)
11541 	srel = htab->root.sreldynrelro;
11542       else
11543 	srel = htab->root.srelbss;
11544       loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11545       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11546       ++srel->reloc_count;
11547     }
11548 
11549   /* If this is a mips16/microMIPS symbol, force the value to be even.  */
11550   if (ELF_ST_IS_COMPRESSED (sym->st_other))
11551     sym->st_value &= ~1;
11552 
11553   return TRUE;
11554 }
11555 
11556 /* Write out a plt0 entry to the beginning of .plt.  */
11557 
11558 static bfd_boolean
11559 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11560 {
11561   bfd_byte *loc;
11562   bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11563   static const bfd_vma *plt_entry;
11564   struct mips_elf_link_hash_table *htab;
11565 
11566   htab = mips_elf_hash_table (info);
11567   BFD_ASSERT (htab != NULL);
11568 
11569   if (ABI_64_P (output_bfd))
11570     plt_entry = (htab->compact_branches
11571 		 ? mipsr6_n64_exec_plt0_entry_compact
11572 		 : mips_n64_exec_plt0_entry);
11573   else if (ABI_N32_P (output_bfd))
11574     plt_entry = (htab->compact_branches
11575 		 ? mipsr6_n32_exec_plt0_entry_compact
11576 		 : mips_n32_exec_plt0_entry);
11577   else if (!htab->plt_header_is_comp)
11578     plt_entry = (htab->compact_branches
11579 		 ? mipsr6_o32_exec_plt0_entry_compact
11580 		 : mips_o32_exec_plt0_entry);
11581   else if (htab->insn32)
11582     plt_entry = micromips_insn32_o32_exec_plt0_entry;
11583   else
11584     plt_entry = micromips_o32_exec_plt0_entry;
11585 
11586   /* Calculate the value of .got.plt.  */
11587   gotplt_value = (htab->root.sgotplt->output_section->vma
11588 		  + htab->root.sgotplt->output_offset);
11589   gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11590   gotplt_value_low = gotplt_value & 0xffff;
11591 
11592   /* The PLT sequence is not safe for N64 if .got.plt's address can
11593      not be loaded in two instructions.  */
11594   if (ABI_64_P (output_bfd)
11595       && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11596     {
11597       _bfd_error_handler
11598 	/* xgettext:c-format */
11599 	(_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11600 	   "supported; consider using `-Ttext-segment=...'"),
11601 	 output_bfd,
11602 	 htab->root.sgotplt->output_section,
11603 	 (int64_t) gotplt_value);
11604       bfd_set_error (bfd_error_no_error);
11605       return FALSE;
11606     }
11607 
11608   /* Install the PLT header.  */
11609   loc = htab->root.splt->contents;
11610   if (plt_entry == micromips_o32_exec_plt0_entry)
11611     {
11612       bfd_vma gotpc_offset;
11613       bfd_vma loc_address;
11614       size_t i;
11615 
11616       BFD_ASSERT (gotplt_value % 4 == 0);
11617 
11618       loc_address = (htab->root.splt->output_section->vma
11619 		     + htab->root.splt->output_offset);
11620       gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11621 
11622       /* ADDIUPC has a span of +/-16MB, check we're in range.  */
11623       if (gotpc_offset + 0x1000000 >= 0x2000000)
11624 	{
11625 	  _bfd_error_handler
11626 	    /* xgettext:c-format */
11627 	    (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11628 	       "beyond the range of ADDIUPC"),
11629 	     output_bfd,
11630 	     htab->root.sgotplt->output_section,
11631 	     (int64_t) gotpc_offset,
11632 	     htab->root.splt->output_section);
11633 	  bfd_set_error (bfd_error_no_error);
11634 	  return FALSE;
11635 	}
11636       bfd_put_16 (output_bfd,
11637 		  plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11638       bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11639       for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11640 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11641     }
11642   else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11643     {
11644       size_t i;
11645 
11646       bfd_put_16 (output_bfd, plt_entry[0], loc);
11647       bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11648       bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11649       bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11650       bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11651       bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11652       for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11653 	bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11654     }
11655   else
11656     {
11657       bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11658       bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11659       bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11660       bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11661       bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11662       bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11663       bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11664       bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11665     }
11666 
11667   return TRUE;
11668 }
11669 
11670 /* Install the PLT header for a VxWorks executable and finalize the
11671    contents of .rela.plt.unloaded.  */
11672 
11673 static void
11674 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11675 {
11676   Elf_Internal_Rela rela;
11677   bfd_byte *loc;
11678   bfd_vma got_value, got_value_high, got_value_low, plt_address;
11679   static const bfd_vma *plt_entry;
11680   struct mips_elf_link_hash_table *htab;
11681 
11682   htab = mips_elf_hash_table (info);
11683   BFD_ASSERT (htab != NULL);
11684 
11685   plt_entry = mips_vxworks_exec_plt0_entry;
11686 
11687   /* Calculate the value of _GLOBAL_OFFSET_TABLE_.  */
11688   got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11689 	       + htab->root.hgot->root.u.def.section->output_offset
11690 	       + htab->root.hgot->root.u.def.value);
11691 
11692   got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11693   got_value_low = got_value & 0xffff;
11694 
11695   /* Calculate the address of the PLT header.  */
11696   plt_address = (htab->root.splt->output_section->vma
11697 		 + htab->root.splt->output_offset);
11698 
11699   /* Install the PLT header.  */
11700   loc = htab->root.splt->contents;
11701   bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11702   bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11703   bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11704   bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11705   bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11706   bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11707 
11708   /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_).  */
11709   loc = htab->srelplt2->contents;
11710   rela.r_offset = plt_address;
11711   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11712   rela.r_addend = 0;
11713   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11714   loc += sizeof (Elf32_External_Rela);
11715 
11716   /* Output the relocation for the following addiu of
11717      %lo(_GLOBAL_OFFSET_TABLE_).  */
11718   rela.r_offset += 4;
11719   rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11720   bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11721   loc += sizeof (Elf32_External_Rela);
11722 
11723   /* Fix up the remaining relocations.  They may have the wrong
11724      symbol index for _G_O_T_ or _P_L_T_ depending on the order
11725      in which symbols were output.  */
11726   while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11727     {
11728       Elf_Internal_Rela rel;
11729 
11730       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11731       rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11732       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11733       loc += sizeof (Elf32_External_Rela);
11734 
11735       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11736       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11737       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11738       loc += sizeof (Elf32_External_Rela);
11739 
11740       bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11741       rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11742       bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11743       loc += sizeof (Elf32_External_Rela);
11744     }
11745 }
11746 
11747 /* Install the PLT header for a VxWorks shared library.  */
11748 
11749 static void
11750 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11751 {
11752   unsigned int i;
11753   struct mips_elf_link_hash_table *htab;
11754 
11755   htab = mips_elf_hash_table (info);
11756   BFD_ASSERT (htab != NULL);
11757 
11758   /* We just need to copy the entry byte-by-byte.  */
11759   for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11760     bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11761 		htab->root.splt->contents + i * 4);
11762 }
11763 
11764 /* Finish up the dynamic sections.  */
11765 
11766 bfd_boolean
11767 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11768 				       struct bfd_link_info *info)
11769 {
11770   bfd *dynobj;
11771   asection *sdyn;
11772   asection *sgot;
11773   struct mips_got_info *gg, *g;
11774   struct mips_elf_link_hash_table *htab;
11775 
11776   htab = mips_elf_hash_table (info);
11777   BFD_ASSERT (htab != NULL);
11778 
11779   dynobj = elf_hash_table (info)->dynobj;
11780 
11781   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11782 
11783   sgot = htab->root.sgot;
11784   gg = htab->got_info;
11785 
11786   if (elf_hash_table (info)->dynamic_sections_created)
11787     {
11788       bfd_byte *b;
11789       int dyn_to_skip = 0, dyn_skipped = 0;
11790 
11791       BFD_ASSERT (sdyn != NULL);
11792       BFD_ASSERT (gg != NULL);
11793 
11794       g = mips_elf_bfd_got (output_bfd, FALSE);
11795       BFD_ASSERT (g != NULL);
11796 
11797       for (b = sdyn->contents;
11798 	   b < sdyn->contents + sdyn->size;
11799 	   b += MIPS_ELF_DYN_SIZE (dynobj))
11800 	{
11801 	  Elf_Internal_Dyn dyn;
11802 	  const char *name;
11803 	  size_t elemsize;
11804 	  asection *s;
11805 	  bfd_boolean swap_out_p;
11806 
11807 	  /* Read in the current dynamic entry.  */
11808 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11809 
11810 	  /* Assume that we're going to modify it and write it out.  */
11811 	  swap_out_p = TRUE;
11812 
11813 	  switch (dyn.d_tag)
11814 	    {
11815 	    case DT_RELENT:
11816 	      dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11817 	      break;
11818 
11819 	    case DT_RELAENT:
11820 	      BFD_ASSERT (htab->root.target_os == is_vxworks);
11821 	      dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11822 	      break;
11823 
11824 	    case DT_STRSZ:
11825 	      /* Rewrite DT_STRSZ.  */
11826 	      dyn.d_un.d_val =
11827 		_bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11828 	      break;
11829 
11830 	    case DT_PLTGOT:
11831 	      s = htab->root.sgot;
11832 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11833 	      break;
11834 
11835 	    case DT_MIPS_PLTGOT:
11836 	      s = htab->root.sgotplt;
11837 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11838 	      break;
11839 
11840 	    case DT_MIPS_RLD_VERSION:
11841 	      dyn.d_un.d_val = 1; /* XXX */
11842 	      break;
11843 
11844 	    case DT_MIPS_FLAGS:
11845 	      dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11846 	      break;
11847 
11848 	    case DT_MIPS_TIME_STAMP:
11849 	      {
11850 		time_t t;
11851 		time (&t);
11852 		dyn.d_un.d_val = t;
11853 	      }
11854 	      break;
11855 
11856 	    case DT_MIPS_ICHECKSUM:
11857 	      /* XXX FIXME: */
11858 	      swap_out_p = FALSE;
11859 	      break;
11860 
11861 	    case DT_MIPS_IVERSION:
11862 	      /* XXX FIXME: */
11863 	      swap_out_p = FALSE;
11864 	      break;
11865 
11866 	    case DT_MIPS_BASE_ADDRESS:
11867 	      s = output_bfd->sections;
11868 	      BFD_ASSERT (s != NULL);
11869 	      dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11870 	      break;
11871 
11872 	    case DT_MIPS_LOCAL_GOTNO:
11873 	      dyn.d_un.d_val = g->local_gotno;
11874 	      break;
11875 
11876 	    case DT_MIPS_UNREFEXTNO:
11877 	      /* The index into the dynamic symbol table which is the
11878 		 entry of the first external symbol that is not
11879 		 referenced within the same object.  */
11880 	      dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11881 	      break;
11882 
11883 	    case DT_MIPS_GOTSYM:
11884 	      if (htab->global_gotsym)
11885 		{
11886 		  dyn.d_un.d_val = htab->global_gotsym->dynindx;
11887 		  break;
11888 		}
11889 	      /* In case if we don't have global got symbols we default
11890 		 to setting DT_MIPS_GOTSYM to the same value as
11891 		 DT_MIPS_SYMTABNO.  */
11892 	      /* Fall through.  */
11893 
11894 	    case DT_MIPS_SYMTABNO:
11895 	      name = ".dynsym";
11896 	      elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11897 	      s = bfd_get_linker_section (dynobj, name);
11898 
11899 	      if (s != NULL)
11900 		dyn.d_un.d_val = s->size / elemsize;
11901 	      else
11902 		dyn.d_un.d_val = 0;
11903 	      break;
11904 
11905 	    case DT_MIPS_HIPAGENO:
11906 	      dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11907 	      break;
11908 
11909 	    case DT_MIPS_RLD_MAP:
11910 	      {
11911 		struct elf_link_hash_entry *h;
11912 		h = mips_elf_hash_table (info)->rld_symbol;
11913 		if (!h)
11914 		  {
11915 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11916 		    swap_out_p = FALSE;
11917 		    break;
11918 		  }
11919 		s = h->root.u.def.section;
11920 
11921 		/* The MIPS_RLD_MAP tag stores the absolute address of the
11922 		   debug pointer.  */
11923 		dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11924 				  + h->root.u.def.value);
11925 	      }
11926 	      break;
11927 
11928 	    case DT_MIPS_RLD_MAP_REL:
11929 	      {
11930 		struct elf_link_hash_entry *h;
11931 		bfd_vma dt_addr, rld_addr;
11932 		h = mips_elf_hash_table (info)->rld_symbol;
11933 		if (!h)
11934 		  {
11935 		    dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11936 		    swap_out_p = FALSE;
11937 		    break;
11938 		  }
11939 		s = h->root.u.def.section;
11940 
11941 		/* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11942 		   pointer, relative to the address of the tag.  */
11943 		dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11944 			   + (b - sdyn->contents));
11945 		rld_addr = (s->output_section->vma + s->output_offset
11946 			    + h->root.u.def.value);
11947 		dyn.d_un.d_ptr = rld_addr - dt_addr;
11948 	      }
11949 	      break;
11950 
11951 	    case DT_MIPS_OPTIONS:
11952 	      s = (bfd_get_section_by_name
11953 		   (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11954 	      dyn.d_un.d_ptr = s->vma;
11955 	      break;
11956 
11957 	    case DT_PLTREL:
11958 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11959 	      if (htab->root.target_os == is_vxworks)
11960 		dyn.d_un.d_val = DT_RELA;
11961 	      else
11962 		dyn.d_un.d_val = DT_REL;
11963 	      break;
11964 
11965 	    case DT_PLTRELSZ:
11966 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11967 	      dyn.d_un.d_val = htab->root.srelplt->size;
11968 	      break;
11969 
11970 	    case DT_JMPREL:
11971 	      BFD_ASSERT (htab->use_plts_and_copy_relocs);
11972 	      dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11973 				+ htab->root.srelplt->output_offset);
11974 	      break;
11975 
11976 	    case DT_TEXTREL:
11977 	      /* If we didn't need any text relocations after all, delete
11978 		 the dynamic tag.  */
11979 	      if (!(info->flags & DF_TEXTREL))
11980 		{
11981 		  dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11982 		  swap_out_p = FALSE;
11983 		}
11984 	      break;
11985 
11986 	    case DT_FLAGS:
11987 	      /* If we didn't need any text relocations after all, clear
11988 		 DF_TEXTREL from DT_FLAGS.  */
11989 	      if (!(info->flags & DF_TEXTREL))
11990 		dyn.d_un.d_val &= ~DF_TEXTREL;
11991 	      else
11992 		swap_out_p = FALSE;
11993 	      break;
11994 
11995 	    case DT_MIPS_XHASH:
11996 	      name = ".MIPS.xhash";
11997 	      s = bfd_get_linker_section (dynobj, name);
11998 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11999 	      break;
12000 
12001 	    default:
12002 	      swap_out_p = FALSE;
12003 	      if (htab->root.target_os == is_vxworks
12004 		  && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12005 		swap_out_p = TRUE;
12006 	      break;
12007 	    }
12008 
12009 	  if (swap_out_p || dyn_skipped)
12010 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12011 	      (dynobj, &dyn, b - dyn_skipped);
12012 
12013 	  if (dyn_to_skip)
12014 	    {
12015 	      dyn_skipped += dyn_to_skip;
12016 	      dyn_to_skip = 0;
12017 	    }
12018 	}
12019 
12020       /* Wipe out any trailing entries if we shifted down a dynamic tag.  */
12021       if (dyn_skipped > 0)
12022 	memset (b - dyn_skipped, 0, dyn_skipped);
12023     }
12024 
12025   if (sgot != NULL && sgot->size > 0
12026       && !bfd_is_abs_section (sgot->output_section))
12027     {
12028       if (htab->root.target_os == is_vxworks)
12029 	{
12030 	  /* The first entry of the global offset table points to the
12031 	     ".dynamic" section.  The second is initialized by the
12032 	     loader and contains the shared library identifier.
12033 	     The third is also initialized by the loader and points
12034 	     to the lazy resolution stub.  */
12035 	  MIPS_ELF_PUT_WORD (output_bfd,
12036 			     sdyn->output_offset + sdyn->output_section->vma,
12037 			     sgot->contents);
12038 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
12039 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12040 	  MIPS_ELF_PUT_WORD (output_bfd, 0,
12041 			     sgot->contents
12042 			     + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12043 	}
12044       else
12045 	{
12046 	  /* The first entry of the global offset table will be filled at
12047 	     runtime. The second entry will be used by some runtime loaders.
12048 	     This isn't the case of IRIX rld.  */
12049 	  MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12050 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12051 			     sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12052 	}
12053 
12054       elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12055 	 = MIPS_ELF_GOT_SIZE (output_bfd);
12056     }
12057 
12058   /* Generate dynamic relocations for the non-primary gots.  */
12059   if (gg != NULL && gg->next)
12060     {
12061       Elf_Internal_Rela rel[3];
12062       bfd_vma addend = 0;
12063 
12064       memset (rel, 0, sizeof (rel));
12065       rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12066 
12067       for (g = gg->next; g->next != gg; g = g->next)
12068 	{
12069 	  bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12070 	    + g->next->tls_gotno;
12071 
12072 	  MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12073 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12074 	  MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12075 			     sgot->contents
12076 			     + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12077 
12078 	  if (! bfd_link_pic (info))
12079 	    continue;
12080 
12081 	  for (; got_index < g->local_gotno; got_index++)
12082 	    {
12083 	      if (got_index >= g->assigned_low_gotno
12084 		  && got_index <= g->assigned_high_gotno)
12085 		continue;
12086 
12087 	      rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12088 		= got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12089 	      if (!(mips_elf_create_dynamic_relocation
12090 		    (output_bfd, info, rel, NULL,
12091 		     bfd_abs_section_ptr,
12092 		     0, &addend, sgot)))
12093 		return FALSE;
12094 	      BFD_ASSERT (addend == 0);
12095 	    }
12096 	}
12097     }
12098 
12099   /* The generation of dynamic relocations for the non-primary gots
12100      adds more dynamic relocations.  We cannot count them until
12101      here.  */
12102 
12103   if (elf_hash_table (info)->dynamic_sections_created)
12104     {
12105       bfd_byte *b;
12106       bfd_boolean swap_out_p;
12107 
12108       BFD_ASSERT (sdyn != NULL);
12109 
12110       for (b = sdyn->contents;
12111 	   b < sdyn->contents + sdyn->size;
12112 	   b += MIPS_ELF_DYN_SIZE (dynobj))
12113 	{
12114 	  Elf_Internal_Dyn dyn;
12115 	  asection *s;
12116 
12117 	  /* Read in the current dynamic entry.  */
12118 	  (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12119 
12120 	  /* Assume that we're going to modify it and write it out.  */
12121 	  swap_out_p = TRUE;
12122 
12123 	  switch (dyn.d_tag)
12124 	    {
12125 	    case DT_RELSZ:
12126 	      /* Reduce DT_RELSZ to account for any relocations we
12127 		 decided not to make.  This is for the n64 irix rld,
12128 		 which doesn't seem to apply any relocations if there
12129 		 are trailing null entries.  */
12130 	      s = mips_elf_rel_dyn_section (info, FALSE);
12131 	      dyn.d_un.d_val = (s->reloc_count
12132 				* (ABI_64_P (output_bfd)
12133 				   ? sizeof (Elf64_Mips_External_Rel)
12134 				   : sizeof (Elf32_External_Rel)));
12135 	      /* Adjust the section size too.  Tools like the prelinker
12136 		 can reasonably expect the values to the same.  */
12137 	      BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12138 	      elf_section_data (s->output_section)->this_hdr.sh_size
12139 		= dyn.d_un.d_val;
12140 	      break;
12141 
12142 	    default:
12143 	      swap_out_p = FALSE;
12144 	      break;
12145 	    }
12146 
12147 	  if (swap_out_p)
12148 	    (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12149 	      (dynobj, &dyn, b);
12150 	}
12151     }
12152 
12153   {
12154     asection *s;
12155     Elf32_compact_rel cpt;
12156 
12157     if (SGI_COMPAT (output_bfd))
12158       {
12159 	/* Write .compact_rel section out.  */
12160 	s = bfd_get_linker_section (dynobj, ".compact_rel");
12161 	if (s != NULL)
12162 	  {
12163 	    cpt.id1 = 1;
12164 	    cpt.num = s->reloc_count;
12165 	    cpt.id2 = 2;
12166 	    cpt.offset = (s->output_section->filepos
12167 			  + sizeof (Elf32_External_compact_rel));
12168 	    cpt.reserved0 = 0;
12169 	    cpt.reserved1 = 0;
12170 	    bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12171 					    ((Elf32_External_compact_rel *)
12172 					     s->contents));
12173 
12174 	    /* Clean up a dummy stub function entry in .text.  */
12175 	    if (htab->sstubs != NULL
12176 		&& htab->sstubs->contents != NULL)
12177 	      {
12178 		file_ptr dummy_offset;
12179 
12180 		BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12181 		dummy_offset = htab->sstubs->size - htab->function_stub_size;
12182 		memset (htab->sstubs->contents + dummy_offset, 0,
12183 			htab->function_stub_size);
12184 	      }
12185 	  }
12186       }
12187 
12188     /* The psABI says that the dynamic relocations must be sorted in
12189        increasing order of r_symndx.  The VxWorks EABI doesn't require
12190        this, and because the code below handles REL rather than RELA
12191        relocations, using it for VxWorks would be outright harmful.  */
12192     if (htab->root.target_os != is_vxworks)
12193       {
12194 	s = mips_elf_rel_dyn_section (info, FALSE);
12195 	if (s != NULL
12196 	    && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12197 	  {
12198 	    reldyn_sorting_bfd = output_bfd;
12199 
12200 	    if (ABI_64_P (output_bfd))
12201 	      qsort ((Elf64_External_Rel *) s->contents + 1,
12202 		     s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12203 		     sort_dynamic_relocs_64);
12204 	    else
12205 	      qsort ((Elf32_External_Rel *) s->contents + 1,
12206 		     s->reloc_count - 1, sizeof (Elf32_External_Rel),
12207 		     sort_dynamic_relocs);
12208 	  }
12209       }
12210   }
12211 
12212   if (htab->root.splt && htab->root.splt->size > 0)
12213     {
12214       if (htab->root.target_os == is_vxworks)
12215 	{
12216 	  if (bfd_link_pic (info))
12217 	    mips_vxworks_finish_shared_plt (output_bfd, info);
12218 	  else
12219 	    mips_vxworks_finish_exec_plt (output_bfd, info);
12220 	}
12221       else
12222 	{
12223 	  BFD_ASSERT (!bfd_link_pic (info));
12224 	  if (!mips_finish_exec_plt (output_bfd, info))
12225 	    return FALSE;
12226 	}
12227     }
12228   return TRUE;
12229 }
12230 
12231 
12232 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags.  */
12233 
12234 static void
12235 mips_set_isa_flags (bfd *abfd)
12236 {
12237   flagword val;
12238 
12239   switch (bfd_get_mach (abfd))
12240     {
12241     default:
12242       if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12243         val = E_MIPS_ARCH_3;
12244       else
12245         val = E_MIPS_ARCH_1;
12246       break;
12247 
12248     case bfd_mach_mips3000:
12249       val = E_MIPS_ARCH_1;
12250       break;
12251 
12252     case bfd_mach_mips3900:
12253       val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12254       break;
12255 
12256     case bfd_mach_mips6000:
12257       val = E_MIPS_ARCH_2;
12258       break;
12259 
12260     case bfd_mach_mips4010:
12261       val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12262       break;
12263 
12264     case bfd_mach_mips4000:
12265     case bfd_mach_mips4300:
12266     case bfd_mach_mips4400:
12267     case bfd_mach_mips4600:
12268       val = E_MIPS_ARCH_3;
12269       break;
12270 
12271     case bfd_mach_mips4100:
12272       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12273       break;
12274 
12275     case bfd_mach_mips4111:
12276       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12277       break;
12278 
12279     case bfd_mach_mips4120:
12280       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12281       break;
12282 
12283     case bfd_mach_mips4650:
12284       val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12285       break;
12286 
12287     case bfd_mach_mips5400:
12288       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12289       break;
12290 
12291     case bfd_mach_mips5500:
12292       val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12293       break;
12294 
12295     case bfd_mach_mips5900:
12296       val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12297       break;
12298 
12299     case bfd_mach_mips9000:
12300       val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12301       break;
12302 
12303     case bfd_mach_mips5000:
12304     case bfd_mach_mips7000:
12305     case bfd_mach_mips8000:
12306     case bfd_mach_mips10000:
12307     case bfd_mach_mips12000:
12308     case bfd_mach_mips14000:
12309     case bfd_mach_mips16000:
12310       val = E_MIPS_ARCH_4;
12311       break;
12312 
12313     case bfd_mach_mips5:
12314       val = E_MIPS_ARCH_5;
12315       break;
12316 
12317     case bfd_mach_mips_loongson_2e:
12318       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12319       break;
12320 
12321     case bfd_mach_mips_loongson_2f:
12322       val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12323       break;
12324 
12325     case bfd_mach_mips_sb1:
12326       val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12327       break;
12328 
12329     case bfd_mach_mips_gs464:
12330       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12331       break;
12332 
12333     case bfd_mach_mips_gs464e:
12334       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12335       break;
12336 
12337     case bfd_mach_mips_gs264e:
12338       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12339       break;
12340 
12341     case bfd_mach_mips_octeon:
12342     case bfd_mach_mips_octeonp:
12343       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12344       break;
12345 
12346     case bfd_mach_mips_octeon3:
12347       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12348       break;
12349 
12350     case bfd_mach_mips_xlr:
12351       val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12352       break;
12353 
12354     case bfd_mach_mips_octeon2:
12355       val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12356       break;
12357 
12358     case bfd_mach_mipsisa32:
12359       val = E_MIPS_ARCH_32;
12360       break;
12361 
12362     case bfd_mach_mipsisa64:
12363       val = E_MIPS_ARCH_64;
12364       break;
12365 
12366     case bfd_mach_mipsisa32r2:
12367     case bfd_mach_mipsisa32r3:
12368     case bfd_mach_mipsisa32r5:
12369       val = E_MIPS_ARCH_32R2;
12370       break;
12371 
12372     case bfd_mach_mips_interaptiv_mr2:
12373       val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12374       break;
12375 
12376     case bfd_mach_mipsisa64r2:
12377     case bfd_mach_mipsisa64r3:
12378     case bfd_mach_mipsisa64r5:
12379       val = E_MIPS_ARCH_64R2;
12380       break;
12381 
12382     case bfd_mach_mipsisa32r6:
12383       val = E_MIPS_ARCH_32R6;
12384       break;
12385 
12386     case bfd_mach_mipsisa64r6:
12387       val = E_MIPS_ARCH_64R6;
12388       break;
12389     }
12390   elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12391   elf_elfheader (abfd)->e_flags |= val;
12392 
12393 }
12394 
12395 
12396 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397    Don't do so for code sections.  We want to keep ordering of HI16/LO16
12398    as is.  On the other hand, elf-eh-frame.c processing requires .eh_frame
12399    relocs to be sorted.  */
12400 
12401 bfd_boolean
12402 _bfd_mips_elf_sort_relocs_p (asection *sec)
12403 {
12404   return (sec->flags & SEC_CODE) == 0;
12405 }
12406 
12407 
12408 /* The final processing done just before writing out a MIPS ELF object
12409    file.  This gets the MIPS architecture right based on the machine
12410    number.  This is used by both the 32-bit and the 64-bit ABI.  */
12411 
12412 void
12413 _bfd_mips_final_write_processing (bfd *abfd)
12414 {
12415   unsigned int i;
12416   Elf_Internal_Shdr **hdrpp;
12417   const char *name;
12418   asection *sec;
12419 
12420   /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421      is nonzero.  This is for compatibility with old objects, which used
12422      a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH.  */
12423   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12424     mips_set_isa_flags (abfd);
12425 
12426   /* Set the sh_info field for .gptab sections and other appropriate
12427      info for each special section.  */
12428   for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12429        i < elf_numsections (abfd);
12430        i++, hdrpp++)
12431     {
12432       switch ((*hdrpp)->sh_type)
12433 	{
12434 	case SHT_MIPS_MSYM:
12435 	case SHT_MIPS_LIBLIST:
12436 	  sec = bfd_get_section_by_name (abfd, ".dynstr");
12437 	  if (sec != NULL)
12438 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12439 	  break;
12440 
12441 	case SHT_MIPS_GPTAB:
12442 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12443 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12444 	  BFD_ASSERT (name != NULL
12445 		      && CONST_STRNEQ (name, ".gptab."));
12446 	  sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12447 	  BFD_ASSERT (sec != NULL);
12448 	  (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 	  break;
12450 
12451 	case SHT_MIPS_CONTENT:
12452 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12453 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12454 	  BFD_ASSERT (name != NULL
12455 		      && CONST_STRNEQ (name, ".MIPS.content"));
12456 	  sec = bfd_get_section_by_name (abfd,
12457 					 name + sizeof ".MIPS.content" - 1);
12458 	  BFD_ASSERT (sec != NULL);
12459 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12460 	  break;
12461 
12462 	case SHT_MIPS_SYMBOL_LIB:
12463 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12464 	  if (sec != NULL)
12465 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12466 	  sec = bfd_get_section_by_name (abfd, ".liblist");
12467 	  if (sec != NULL)
12468 	    (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12469 	  break;
12470 
12471 	case SHT_MIPS_EVENTS:
12472 	  BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12473 	  name = bfd_section_name ((*hdrpp)->bfd_section);
12474 	  BFD_ASSERT (name != NULL);
12475 	  if (CONST_STRNEQ (name, ".MIPS.events"))
12476 	    sec = bfd_get_section_by_name (abfd,
12477 					   name + sizeof ".MIPS.events" - 1);
12478 	  else
12479 	    {
12480 	      BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12481 	      sec = bfd_get_section_by_name (abfd,
12482 					     (name
12483 					      + sizeof ".MIPS.post_rel" - 1));
12484 	    }
12485 	  BFD_ASSERT (sec != NULL);
12486 	  (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12487 	  break;
12488 
12489 	case SHT_MIPS_XHASH:
12490 	  sec = bfd_get_section_by_name (abfd, ".dynsym");
12491 	  if (sec != NULL)
12492 	    (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12493 	}
12494     }
12495 }
12496 
12497 bfd_boolean
12498 _bfd_mips_elf_final_write_processing (bfd *abfd)
12499 {
12500   _bfd_mips_final_write_processing (abfd);
12501   return _bfd_elf_final_write_processing (abfd);
12502 }
12503 
12504 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12505    segments.  */
12506 
12507 int
12508 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12509 					  struct bfd_link_info *info ATTRIBUTE_UNUSED)
12510 {
12511   asection *s;
12512   int ret = 0;
12513 
12514   /* See if we need a PT_MIPS_REGINFO segment.  */
12515   s = bfd_get_section_by_name (abfd, ".reginfo");
12516   if (s && (s->flags & SEC_LOAD))
12517     ++ret;
12518 
12519   /* See if we need a PT_MIPS_ABIFLAGS segment.  */
12520   if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12521     ++ret;
12522 
12523   /* See if we need a PT_MIPS_OPTIONS segment.  */
12524   if (IRIX_COMPAT (abfd) == ict_irix6
12525       && bfd_get_section_by_name (abfd,
12526 				  MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12527     ++ret;
12528 
12529   /* See if we need a PT_MIPS_RTPROC segment.  */
12530   if (IRIX_COMPAT (abfd) == ict_irix5
12531       && bfd_get_section_by_name (abfd, ".dynamic")
12532       && bfd_get_section_by_name (abfd, ".mdebug"))
12533     ++ret;
12534 
12535   /* Allocate a PT_NULL header in dynamic objects.  See
12536      _bfd_mips_elf_modify_segment_map for details.  */
12537   if (!SGI_COMPAT (abfd)
12538       && bfd_get_section_by_name (abfd, ".dynamic"))
12539     ++ret;
12540 
12541   return ret;
12542 }
12543 
12544 /* Modify the segment map for an IRIX5 executable.  */
12545 
12546 bfd_boolean
12547 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12548 				  struct bfd_link_info *info)
12549 {
12550   asection *s;
12551   struct elf_segment_map *m, **pm;
12552   size_t amt;
12553 
12554   /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12555      segment.  */
12556   s = bfd_get_section_by_name (abfd, ".reginfo");
12557   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12558     {
12559       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12560 	if (m->p_type == PT_MIPS_REGINFO)
12561 	  break;
12562       if (m == NULL)
12563 	{
12564 	  amt = sizeof *m;
12565 	  m = bfd_zalloc (abfd, amt);
12566 	  if (m == NULL)
12567 	    return FALSE;
12568 
12569 	  m->p_type = PT_MIPS_REGINFO;
12570 	  m->count = 1;
12571 	  m->sections[0] = s;
12572 
12573 	  /* We want to put it after the PHDR and INTERP segments.  */
12574 	  pm = &elf_seg_map (abfd);
12575 	  while (*pm != NULL
12576 		 && ((*pm)->p_type == PT_PHDR
12577 		     || (*pm)->p_type == PT_INTERP))
12578 	    pm = &(*pm)->next;
12579 
12580 	  m->next = *pm;
12581 	  *pm = m;
12582 	}
12583     }
12584 
12585   /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12586      segment.  */
12587   s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12588   if (s != NULL && (s->flags & SEC_LOAD) != 0)
12589     {
12590       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12591 	if (m->p_type == PT_MIPS_ABIFLAGS)
12592 	  break;
12593       if (m == NULL)
12594 	{
12595 	  amt = sizeof *m;
12596 	  m = bfd_zalloc (abfd, amt);
12597 	  if (m == NULL)
12598 	    return FALSE;
12599 
12600 	  m->p_type = PT_MIPS_ABIFLAGS;
12601 	  m->count = 1;
12602 	  m->sections[0] = s;
12603 
12604 	  /* We want to put it after the PHDR and INTERP segments.  */
12605 	  pm = &elf_seg_map (abfd);
12606 	  while (*pm != NULL
12607 		 && ((*pm)->p_type == PT_PHDR
12608 		     || (*pm)->p_type == PT_INTERP))
12609 	    pm = &(*pm)->next;
12610 
12611 	  m->next = *pm;
12612 	  *pm = m;
12613 	}
12614     }
12615 
12616   /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617      .dynamic end up in PT_DYNAMIC.  However, we do have to insert a
12618      PT_MIPS_OPTIONS segment immediately following the program header
12619      table.  */
12620   if (NEWABI_P (abfd)
12621       /* On non-IRIX6 new abi, we'll have already created a segment
12622 	 for this section, so don't create another.  I'm not sure this
12623 	 is not also the case for IRIX 6, but I can't test it right
12624 	 now.  */
12625       && IRIX_COMPAT (abfd) == ict_irix6)
12626     {
12627       for (s = abfd->sections; s; s = s->next)
12628 	if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12629 	  break;
12630 
12631       if (s)
12632 	{
12633 	  struct elf_segment_map *options_segment;
12634 
12635 	  pm = &elf_seg_map (abfd);
12636 	  while (*pm != NULL
12637 		 && ((*pm)->p_type == PT_PHDR
12638 		     || (*pm)->p_type == PT_INTERP))
12639 	    pm = &(*pm)->next;
12640 
12641 	  if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12642 	    {
12643 	      amt = sizeof (struct elf_segment_map);
12644 	      options_segment = bfd_zalloc (abfd, amt);
12645 	      options_segment->next = *pm;
12646 	      options_segment->p_type = PT_MIPS_OPTIONS;
12647 	      options_segment->p_flags = PF_R;
12648 	      options_segment->p_flags_valid = TRUE;
12649 	      options_segment->count = 1;
12650 	      options_segment->sections[0] = s;
12651 	      *pm = options_segment;
12652 	    }
12653 	}
12654     }
12655   else
12656     {
12657       if (IRIX_COMPAT (abfd) == ict_irix5)
12658 	{
12659 	  /* If there are .dynamic and .mdebug sections, we make a room
12660 	     for the RTPROC header.  FIXME: Rewrite without section names.  */
12661 	  if (bfd_get_section_by_name (abfd, ".interp") == NULL
12662 	      && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12663 	      && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12664 	    {
12665 	      for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12666 		if (m->p_type == PT_MIPS_RTPROC)
12667 		  break;
12668 	      if (m == NULL)
12669 		{
12670 		  amt = sizeof *m;
12671 		  m = bfd_zalloc (abfd, amt);
12672 		  if (m == NULL)
12673 		    return FALSE;
12674 
12675 		  m->p_type = PT_MIPS_RTPROC;
12676 
12677 		  s = bfd_get_section_by_name (abfd, ".rtproc");
12678 		  if (s == NULL)
12679 		    {
12680 		      m->count = 0;
12681 		      m->p_flags = 0;
12682 		      m->p_flags_valid = 1;
12683 		    }
12684 		  else
12685 		    {
12686 		      m->count = 1;
12687 		      m->sections[0] = s;
12688 		    }
12689 
12690 		  /* We want to put it after the DYNAMIC segment.  */
12691 		  pm = &elf_seg_map (abfd);
12692 		  while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12693 		    pm = &(*pm)->next;
12694 		  if (*pm != NULL)
12695 		    pm = &(*pm)->next;
12696 
12697 		  m->next = *pm;
12698 		  *pm = m;
12699 		}
12700 	    }
12701 	}
12702       /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12703 	 .dynstr, .dynsym, and .hash sections, and everything in
12704 	 between.  */
12705       for (pm = &elf_seg_map (abfd); *pm != NULL;
12706 	   pm = &(*pm)->next)
12707 	if ((*pm)->p_type == PT_DYNAMIC)
12708 	  break;
12709       m = *pm;
12710       /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 	 glibc's dynamic linker has traditionally derived the number of
12712 	 tags from the p_filesz field, and sometimes allocates stack
12713 	 arrays of that size.  An overly-big PT_DYNAMIC segment can
12714 	 be actively harmful in such cases.  Making PT_DYNAMIC contain
12715 	 other sections can also make life hard for the prelinker,
12716 	 which might move one of the other sections to a different
12717 	 PT_LOAD segment.  */
12718       if (SGI_COMPAT (abfd)
12719 	  && m != NULL
12720 	  && m->count == 1
12721 	  && strcmp (m->sections[0]->name, ".dynamic") == 0)
12722 	{
12723 	  static const char *sec_names[] =
12724 	  {
12725 	    ".dynamic", ".dynstr", ".dynsym", ".hash"
12726 	  };
12727 	  bfd_vma low, high;
12728 	  unsigned int i, c;
12729 	  struct elf_segment_map *n;
12730 
12731 	  low = ~(bfd_vma) 0;
12732 	  high = 0;
12733 	  for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12734 	    {
12735 	      s = bfd_get_section_by_name (abfd, sec_names[i]);
12736 	      if (s != NULL && (s->flags & SEC_LOAD) != 0)
12737 		{
12738 		  bfd_size_type sz;
12739 
12740 		  if (low > s->vma)
12741 		    low = s->vma;
12742 		  sz = s->size;
12743 		  if (high < s->vma + sz)
12744 		    high = s->vma + sz;
12745 		}
12746 	    }
12747 
12748 	  c = 0;
12749 	  for (s = abfd->sections; s != NULL; s = s->next)
12750 	    if ((s->flags & SEC_LOAD) != 0
12751 		&& s->vma >= low
12752 		&& s->vma + s->size <= high)
12753 	      ++c;
12754 
12755 	  amt = sizeof *n - sizeof (asection *) + c * sizeof (asection *);
12756 	  n = bfd_zalloc (abfd, amt);
12757 	  if (n == NULL)
12758 	    return FALSE;
12759 	  *n = *m;
12760 	  n->count = c;
12761 
12762 	  i = 0;
12763 	  for (s = abfd->sections; s != NULL; s = s->next)
12764 	    {
12765 	      if ((s->flags & SEC_LOAD) != 0
12766 		  && s->vma >= low
12767 		  && s->vma + s->size <= high)
12768 		{
12769 		  n->sections[i] = s;
12770 		  ++i;
12771 		}
12772 	    }
12773 
12774 	  *pm = n;
12775 	}
12776     }
12777 
12778   /* Allocate a spare program header in dynamic objects so that tools
12779      like the prelinker can add an extra PT_LOAD entry.
12780 
12781      If the prelinker needs to make room for a new PT_LOAD entry, its
12782      standard procedure is to move the first (read-only) sections into
12783      the new (writable) segment.  However, the MIPS ABI requires
12784      .dynamic to be in a read-only segment, and the section will often
12785      start within sizeof (ElfNN_Phdr) bytes of the last program header.
12786 
12787      Although the prelinker could in principle move .dynamic to a
12788      writable segment, it seems better to allocate a spare program
12789      header instead, and avoid the need to move any sections.
12790      There is a long tradition of allocating spare dynamic tags,
12791      so allocating a spare program header seems like a natural
12792      extension.
12793 
12794      If INFO is NULL, we may be copying an already prelinked binary
12795      with objcopy or strip, so do not add this header.  */
12796   if (info != NULL
12797       && !SGI_COMPAT (abfd)
12798       && bfd_get_section_by_name (abfd, ".dynamic"))
12799     {
12800       for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12801 	if ((*pm)->p_type == PT_NULL)
12802 	  break;
12803       if (*pm == NULL)
12804 	{
12805 	  m = bfd_zalloc (abfd, sizeof (*m));
12806 	  if (m == NULL)
12807 	    return FALSE;
12808 
12809 	  m->p_type = PT_NULL;
12810 	  *pm = m;
12811 	}
12812     }
12813 
12814   return TRUE;
12815 }
12816 
12817 /* Return the section that should be marked against GC for a given
12818    relocation.  */
12819 
12820 asection *
12821 _bfd_mips_elf_gc_mark_hook (asection *sec,
12822 			    struct bfd_link_info *info,
12823 			    Elf_Internal_Rela *rel,
12824 			    struct elf_link_hash_entry *h,
12825 			    Elf_Internal_Sym *sym)
12826 {
12827   /* ??? Do mips16 stub sections need to be handled special?  */
12828 
12829   if (h != NULL)
12830     switch (ELF_R_TYPE (sec->owner, rel->r_info))
12831       {
12832       case R_MIPS_GNU_VTINHERIT:
12833       case R_MIPS_GNU_VTENTRY:
12834 	return NULL;
12835       }
12836 
12837   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12838 }
12839 
12840 /* Prevent .MIPS.abiflags from being discarded with --gc-sections.  */
12841 
12842 bfd_boolean
12843 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12844 				      elf_gc_mark_hook_fn gc_mark_hook)
12845 {
12846   bfd *sub;
12847 
12848   _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12849 
12850   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12851     {
12852       asection *o;
12853 
12854       if (! is_mips_elf (sub))
12855 	continue;
12856 
12857       for (o = sub->sections; o != NULL; o = o->next)
12858 	if (!o->gc_mark
12859 	    && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12860 	  {
12861 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12862 	      return FALSE;
12863 	  }
12864     }
12865 
12866   return TRUE;
12867 }
12868 
12869 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870    hiding the old indirect symbol.  Process additional relocation
12871    information.  Also called for weakdefs, in which case we just let
12872    _bfd_elf_link_hash_copy_indirect copy the flags for us.  */
12873 
12874 void
12875 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12876 				    struct elf_link_hash_entry *dir,
12877 				    struct elf_link_hash_entry *ind)
12878 {
12879   struct mips_elf_link_hash_entry *dirmips, *indmips;
12880 
12881   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12882 
12883   dirmips = (struct mips_elf_link_hash_entry *) dir;
12884   indmips = (struct mips_elf_link_hash_entry *) ind;
12885   /* Any absolute non-dynamic relocations against an indirect or weak
12886      definition will be against the target symbol.  */
12887   if (indmips->has_static_relocs)
12888     dirmips->has_static_relocs = TRUE;
12889 
12890   if (ind->root.type != bfd_link_hash_indirect)
12891     return;
12892 
12893   dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12894   if (indmips->readonly_reloc)
12895     dirmips->readonly_reloc = TRUE;
12896   if (indmips->no_fn_stub)
12897     dirmips->no_fn_stub = TRUE;
12898   if (indmips->fn_stub)
12899     {
12900       dirmips->fn_stub = indmips->fn_stub;
12901       indmips->fn_stub = NULL;
12902     }
12903   if (indmips->need_fn_stub)
12904     {
12905       dirmips->need_fn_stub = TRUE;
12906       indmips->need_fn_stub = FALSE;
12907     }
12908   if (indmips->call_stub)
12909     {
12910       dirmips->call_stub = indmips->call_stub;
12911       indmips->call_stub = NULL;
12912     }
12913   if (indmips->call_fp_stub)
12914     {
12915       dirmips->call_fp_stub = indmips->call_fp_stub;
12916       indmips->call_fp_stub = NULL;
12917     }
12918   if (indmips->global_got_area < dirmips->global_got_area)
12919     dirmips->global_got_area = indmips->global_got_area;
12920   if (indmips->global_got_area < GGA_NONE)
12921     indmips->global_got_area = GGA_NONE;
12922   if (indmips->has_nonpic_branches)
12923     dirmips->has_nonpic_branches = TRUE;
12924 }
12925 
12926 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927    to hide it.  It has to remain global (it will also be protected) so as to
12928    be assigned a global GOT entry, which will then remain unchanged at load
12929    time.  */
12930 
12931 void
12932 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12933 			   struct elf_link_hash_entry *entry,
12934 			   bfd_boolean force_local)
12935 {
12936   struct mips_elf_link_hash_table *htab;
12937 
12938   htab = mips_elf_hash_table (info);
12939   BFD_ASSERT (htab != NULL);
12940   if (htab->use_absolute_zero
12941       && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12942     return;
12943 
12944   _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12945 }
12946 
12947 #define PDR_SIZE 32
12948 
12949 bfd_boolean
12950 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12951 			    struct bfd_link_info *info)
12952 {
12953   asection *o;
12954   bfd_boolean ret = FALSE;
12955   unsigned char *tdata;
12956   size_t i, skip;
12957 
12958   o = bfd_get_section_by_name (abfd, ".pdr");
12959   if (! o)
12960     return FALSE;
12961   if (o->size == 0)
12962     return FALSE;
12963   if (o->size % PDR_SIZE != 0)
12964     return FALSE;
12965   if (o->output_section != NULL
12966       && bfd_is_abs_section (o->output_section))
12967     return FALSE;
12968 
12969   tdata = bfd_zmalloc (o->size / PDR_SIZE);
12970   if (! tdata)
12971     return FALSE;
12972 
12973   cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12974 					    info->keep_memory);
12975   if (!cookie->rels)
12976     {
12977       free (tdata);
12978       return FALSE;
12979     }
12980 
12981   cookie->rel = cookie->rels;
12982   cookie->relend = cookie->rels + o->reloc_count;
12983 
12984   for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12985     {
12986       if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12987 	{
12988 	  tdata[i] = 1;
12989 	  skip ++;
12990 	}
12991     }
12992 
12993   if (skip != 0)
12994     {
12995       mips_elf_section_data (o)->u.tdata = tdata;
12996       if (o->rawsize == 0)
12997 	o->rawsize = o->size;
12998       o->size -= skip * PDR_SIZE;
12999       ret = TRUE;
13000     }
13001   else
13002     free (tdata);
13003 
13004   if (! info->keep_memory)
13005     free (cookie->rels);
13006 
13007   return ret;
13008 }
13009 
13010 bfd_boolean
13011 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13012 {
13013   if (strcmp (sec->name, ".pdr") == 0)
13014     return TRUE;
13015   return FALSE;
13016 }
13017 
13018 bfd_boolean
13019 _bfd_mips_elf_write_section (bfd *output_bfd,
13020 			     struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13021 			     asection *sec, bfd_byte *contents)
13022 {
13023   bfd_byte *to, *from, *end;
13024   int i;
13025 
13026   if (strcmp (sec->name, ".pdr") != 0)
13027     return FALSE;
13028 
13029   if (mips_elf_section_data (sec)->u.tdata == NULL)
13030     return FALSE;
13031 
13032   to = contents;
13033   end = contents + sec->size;
13034   for (from = contents, i = 0;
13035        from < end;
13036        from += PDR_SIZE, i++)
13037     {
13038       if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13039 	continue;
13040       if (to != from)
13041 	memcpy (to, from, PDR_SIZE);
13042       to += PDR_SIZE;
13043     }
13044   bfd_set_section_contents (output_bfd, sec->output_section, contents,
13045 			    sec->output_offset, sec->size);
13046   return TRUE;
13047 }
13048 
13049 /* microMIPS code retains local labels for linker relaxation.  Omit them
13050    from output by default for clarity.  */
13051 
13052 bfd_boolean
13053 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13054 {
13055   return _bfd_elf_is_local_label_name (abfd, sym->name);
13056 }
13057 
13058 /* MIPS ELF uses a special find_nearest_line routine in order the
13059    handle the ECOFF debugging information.  */
13060 
13061 struct mips_elf_find_line
13062 {
13063   struct ecoff_debug_info d;
13064   struct ecoff_find_line i;
13065 };
13066 
13067 bfd_boolean
13068 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13069 				 asection *section, bfd_vma offset,
13070 				 const char **filename_ptr,
13071 				 const char **functionname_ptr,
13072 				 unsigned int *line_ptr,
13073 				 unsigned int *discriminator_ptr)
13074 {
13075   asection *msec;
13076 
13077   if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13078 				     filename_ptr, functionname_ptr,
13079 				     line_ptr, discriminator_ptr,
13080 				     dwarf_debug_sections,
13081 				     &elf_tdata (abfd)->dwarf2_find_line_info)
13082       == 1)
13083     return TRUE;
13084 
13085   if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13086 				     filename_ptr, functionname_ptr,
13087 				     line_ptr))
13088     {
13089       if (!*functionname_ptr)
13090 	_bfd_elf_find_function (abfd, symbols, section, offset,
13091 				*filename_ptr ? NULL : filename_ptr,
13092 				functionname_ptr);
13093       return TRUE;
13094     }
13095 
13096   msec = bfd_get_section_by_name (abfd, ".mdebug");
13097   if (msec != NULL)
13098     {
13099       flagword origflags;
13100       struct mips_elf_find_line *fi;
13101       const struct ecoff_debug_swap * const swap =
13102 	get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13103 
13104       /* If we are called during a link, mips_elf_final_link may have
13105 	 cleared the SEC_HAS_CONTENTS field.  We force it back on here
13106 	 if appropriate (which it normally will be).  */
13107       origflags = msec->flags;
13108       if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13109 	msec->flags |= SEC_HAS_CONTENTS;
13110 
13111       fi = mips_elf_tdata (abfd)->find_line_info;
13112       if (fi == NULL)
13113 	{
13114 	  bfd_size_type external_fdr_size;
13115 	  char *fraw_src;
13116 	  char *fraw_end;
13117 	  struct fdr *fdr_ptr;
13118 	  bfd_size_type amt = sizeof (struct mips_elf_find_line);
13119 
13120 	  fi = bfd_zalloc (abfd, amt);
13121 	  if (fi == NULL)
13122 	    {
13123 	      msec->flags = origflags;
13124 	      return FALSE;
13125 	    }
13126 
13127 	  if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13128 	    {
13129 	      msec->flags = origflags;
13130 	      return FALSE;
13131 	    }
13132 
13133 	  /* Swap in the FDR information.  */
13134 	  amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13135 	  fi->d.fdr = bfd_alloc (abfd, amt);
13136 	  if (fi->d.fdr == NULL)
13137 	    {
13138 	      msec->flags = origflags;
13139 	      return FALSE;
13140 	    }
13141 	  external_fdr_size = swap->external_fdr_size;
13142 	  fdr_ptr = fi->d.fdr;
13143 	  fraw_src = (char *) fi->d.external_fdr;
13144 	  fraw_end = (fraw_src
13145 		      + fi->d.symbolic_header.ifdMax * external_fdr_size);
13146 	  for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13147 	    (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13148 
13149 	  mips_elf_tdata (abfd)->find_line_info = fi;
13150 
13151 	  /* Note that we don't bother to ever free this information.
13152 	     find_nearest_line is either called all the time, as in
13153 	     objdump -l, so the information should be saved, or it is
13154 	     rarely called, as in ld error messages, so the memory
13155 	     wasted is unimportant.  Still, it would probably be a
13156 	     good idea for free_cached_info to throw it away.  */
13157 	}
13158 
13159       if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13160 				  &fi->i, filename_ptr, functionname_ptr,
13161 				  line_ptr))
13162 	{
13163 	  msec->flags = origflags;
13164 	  return TRUE;
13165 	}
13166 
13167       msec->flags = origflags;
13168     }
13169 
13170   /* Fall back on the generic ELF find_nearest_line routine.  */
13171 
13172   return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13173 				     filename_ptr, functionname_ptr,
13174 				     line_ptr, discriminator_ptr);
13175 }
13176 
13177 bfd_boolean
13178 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13179 				 const char **filename_ptr,
13180 				 const char **functionname_ptr,
13181 				 unsigned int *line_ptr)
13182 {
13183   bfd_boolean found;
13184   found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13185 					 functionname_ptr, line_ptr,
13186 					 & elf_tdata (abfd)->dwarf2_find_line_info);
13187   return found;
13188 }
13189 
13190 
13191 /* When are writing out the .options or .MIPS.options section,
13192    remember the bytes we are writing out, so that we can install the
13193    GP value in the section_processing routine.  */
13194 
13195 bfd_boolean
13196 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13197 				    const void *location,
13198 				    file_ptr offset, bfd_size_type count)
13199 {
13200   if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13201     {
13202       bfd_byte *c;
13203 
13204       if (elf_section_data (section) == NULL)
13205 	{
13206 	  size_t amt = sizeof (struct bfd_elf_section_data);
13207 	  section->used_by_bfd = bfd_zalloc (abfd, amt);
13208 	  if (elf_section_data (section) == NULL)
13209 	    return FALSE;
13210 	}
13211       c = mips_elf_section_data (section)->u.tdata;
13212       if (c == NULL)
13213 	{
13214 	  c = bfd_zalloc (abfd, section->size);
13215 	  if (c == NULL)
13216 	    return FALSE;
13217 	  mips_elf_section_data (section)->u.tdata = c;
13218 	}
13219 
13220       memcpy (c + offset, location, count);
13221     }
13222 
13223   return _bfd_elf_set_section_contents (abfd, section, location, offset,
13224 					count);
13225 }
13226 
13227 /* This is almost identical to bfd_generic_get_... except that some
13228    MIPS relocations need to be handled specially.  Sigh.  */
13229 
13230 bfd_byte *
13231 _bfd_elf_mips_get_relocated_section_contents
13232   (bfd *abfd,
13233    struct bfd_link_info *link_info,
13234    struct bfd_link_order *link_order,
13235    bfd_byte *data,
13236    bfd_boolean relocatable,
13237    asymbol **symbols)
13238 {
13239   /* Get enough memory to hold the stuff */
13240   bfd *input_bfd = link_order->u.indirect.section->owner;
13241   asection *input_section = link_order->u.indirect.section;
13242   bfd_size_type sz;
13243 
13244   long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13245   arelent **reloc_vector = NULL;
13246   long reloc_count;
13247 
13248   if (reloc_size < 0)
13249     goto error_return;
13250 
13251   reloc_vector = bfd_malloc (reloc_size);
13252   if (reloc_vector == NULL && reloc_size != 0)
13253     goto error_return;
13254 
13255   /* read in the section */
13256   sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13257   if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13258     goto error_return;
13259 
13260   reloc_count = bfd_canonicalize_reloc (input_bfd,
13261 					input_section,
13262 					reloc_vector,
13263 					symbols);
13264   if (reloc_count < 0)
13265     goto error_return;
13266 
13267   if (reloc_count > 0)
13268     {
13269       arelent **parent;
13270       /* for mips */
13271       int gp_found;
13272       bfd_vma gp = 0x12345678;	/* initialize just to shut gcc up */
13273 
13274       {
13275 	struct bfd_hash_entry *h;
13276 	struct bfd_link_hash_entry *lh;
13277 	/* Skip all this stuff if we aren't mixing formats.  */
13278 	if (abfd && input_bfd
13279 	    && abfd->xvec == input_bfd->xvec)
13280 	  lh = 0;
13281 	else
13282 	  {
13283 	    h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13284 	    lh = (struct bfd_link_hash_entry *) h;
13285 	  }
13286       lookup:
13287 	if (lh)
13288 	  {
13289 	    switch (lh->type)
13290 	      {
13291 	      case bfd_link_hash_undefined:
13292 	      case bfd_link_hash_undefweak:
13293 	      case bfd_link_hash_common:
13294 		gp_found = 0;
13295 		break;
13296 	      case bfd_link_hash_defined:
13297 	      case bfd_link_hash_defweak:
13298 		gp_found = 1;
13299 		gp = lh->u.def.value;
13300 		break;
13301 	      case bfd_link_hash_indirect:
13302 	      case bfd_link_hash_warning:
13303 		lh = lh->u.i.link;
13304 		/* @@FIXME  ignoring warning for now */
13305 		goto lookup;
13306 	      case bfd_link_hash_new:
13307 	      default:
13308 		abort ();
13309 	      }
13310 	  }
13311 	else
13312 	  gp_found = 0;
13313       }
13314       /* end mips */
13315       for (parent = reloc_vector; *parent != NULL; parent++)
13316 	{
13317 	  char *error_message = NULL;
13318 	  bfd_reloc_status_type r;
13319 
13320 	  /* Specific to MIPS: Deal with relocation types that require
13321 	     knowing the gp of the output bfd.  */
13322 	  asymbol *sym = *(*parent)->sym_ptr_ptr;
13323 
13324 	  /* If we've managed to find the gp and have a special
13325 	     function for the relocation then go ahead, else default
13326 	     to the generic handling.  */
13327 	  if (gp_found
13328 	      && (*parent)->howto->special_function
13329 	      == _bfd_mips_elf32_gprel16_reloc)
13330 	    r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13331 					       input_section, relocatable,
13332 					       data, gp);
13333 	  else
13334 	    r = bfd_perform_relocation (input_bfd, *parent, data,
13335 					input_section,
13336 					relocatable ? abfd : NULL,
13337 					&error_message);
13338 
13339 	  if (relocatable)
13340 	    {
13341 	      asection *os = input_section->output_section;
13342 
13343 	      /* A partial link, so keep the relocs */
13344 	      os->orelocation[os->reloc_count] = *parent;
13345 	      os->reloc_count++;
13346 	    }
13347 
13348 	  if (r != bfd_reloc_ok)
13349 	    {
13350 	      switch (r)
13351 		{
13352 		case bfd_reloc_undefined:
13353 		  (*link_info->callbacks->undefined_symbol)
13354 		    (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13355 		     input_bfd, input_section, (*parent)->address, TRUE);
13356 		  break;
13357 		case bfd_reloc_dangerous:
13358 		  BFD_ASSERT (error_message != NULL);
13359 		  (*link_info->callbacks->reloc_dangerous)
13360 		    (link_info, error_message,
13361 		     input_bfd, input_section, (*parent)->address);
13362 		  break;
13363 		case bfd_reloc_overflow:
13364 		  (*link_info->callbacks->reloc_overflow)
13365 		    (link_info, NULL,
13366 		     bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13367 		     (*parent)->howto->name, (*parent)->addend,
13368 		     input_bfd, input_section, (*parent)->address);
13369 		  break;
13370 		case bfd_reloc_outofrange:
13371 		default:
13372 		  abort ();
13373 		  break;
13374 		}
13375 
13376 	    }
13377 	}
13378     }
13379   free (reloc_vector);
13380   return data;
13381 
13382  error_return:
13383   free (reloc_vector);
13384   return NULL;
13385 }
13386 
13387 static bfd_boolean
13388 mips_elf_relax_delete_bytes (bfd *abfd,
13389 			     asection *sec, bfd_vma addr, int count)
13390 {
13391   Elf_Internal_Shdr *symtab_hdr;
13392   unsigned int sec_shndx;
13393   bfd_byte *contents;
13394   Elf_Internal_Rela *irel, *irelend;
13395   Elf_Internal_Sym *isym;
13396   Elf_Internal_Sym *isymend;
13397   struct elf_link_hash_entry **sym_hashes;
13398   struct elf_link_hash_entry **end_hashes;
13399   struct elf_link_hash_entry **start_hashes;
13400   unsigned int symcount;
13401 
13402   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13403   contents = elf_section_data (sec)->this_hdr.contents;
13404 
13405   irel = elf_section_data (sec)->relocs;
13406   irelend = irel + sec->reloc_count;
13407 
13408   /* Actually delete the bytes.  */
13409   memmove (contents + addr, contents + addr + count,
13410 	   (size_t) (sec->size - addr - count));
13411   sec->size -= count;
13412 
13413   /* Adjust all the relocs.  */
13414   for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13415     {
13416       /* Get the new reloc address.  */
13417       if (irel->r_offset > addr)
13418 	irel->r_offset -= count;
13419     }
13420 
13421   BFD_ASSERT (addr % 2 == 0);
13422   BFD_ASSERT (count % 2 == 0);
13423 
13424   /* Adjust the local symbols defined in this section.  */
13425   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13426   isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13427   for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13428     if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13429       isym->st_value -= count;
13430 
13431   /* Now adjust the global symbols defined in this section.  */
13432   symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13433 	      - symtab_hdr->sh_info);
13434   sym_hashes = start_hashes = elf_sym_hashes (abfd);
13435   end_hashes = sym_hashes + symcount;
13436 
13437   for (; sym_hashes < end_hashes; sym_hashes++)
13438     {
13439       struct elf_link_hash_entry *sym_hash = *sym_hashes;
13440 
13441       if ((sym_hash->root.type == bfd_link_hash_defined
13442 	   || sym_hash->root.type == bfd_link_hash_defweak)
13443 	  && sym_hash->root.u.def.section == sec)
13444 	{
13445 	  bfd_vma value = sym_hash->root.u.def.value;
13446 
13447 	  if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13448 	    value &= MINUS_TWO;
13449 	  if (value > addr)
13450 	    sym_hash->root.u.def.value -= count;
13451 	}
13452     }
13453 
13454   return TRUE;
13455 }
13456 
13457 
13458 /* Opcodes needed for microMIPS relaxation as found in
13459    opcodes/micromips-opc.c.  */
13460 
13461 struct opcode_descriptor {
13462   unsigned long match;
13463   unsigned long mask;
13464 };
13465 
13466 /* The $ra register aka $31.  */
13467 
13468 #define RA 31
13469 
13470 /* 32-bit instruction format register fields.  */
13471 
13472 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13473 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13474 
13475 /* Check if a 5-bit register index can be abbreviated to 3 bits.  */
13476 
13477 #define OP16_VALID_REG(r) \
13478   ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13479 
13480 
13481 /* 32-bit and 16-bit branches.  */
13482 
13483 static const struct opcode_descriptor b_insns_32[] = {
13484   { /* "b",	"p",		*/ 0x40400000, 0xffff0000 }, /* bgez 0 */
13485   { /* "b",	"p",		*/ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13486   { 0, 0 }  /* End marker for find_match().  */
13487 };
13488 
13489 static const struct opcode_descriptor bc_insn_32 =
13490   { /* "bc(1|2)(ft)", "N,p",	*/ 0x42800000, 0xfec30000 };
13491 
13492 static const struct opcode_descriptor bz_insn_32 =
13493   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 };
13494 
13495 static const struct opcode_descriptor bzal_insn_32 =
13496   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 };
13497 
13498 static const struct opcode_descriptor beq_insn_32 =
13499   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 };
13500 
13501 static const struct opcode_descriptor b_insn_16 =
13502   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 };
13503 
13504 static const struct opcode_descriptor bz_insn_16 =
13505   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 };
13506 
13507 
13508 /* 32-bit and 16-bit branch EQ and NE zero.  */
13509 
13510 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13511    eq and second the ne.  This convention is used when replacing a
13512    32-bit BEQ/BNE with the 16-bit version.  */
13513 
13514 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13515 
13516 static const struct opcode_descriptor bz_rs_insns_32[] = {
13517   { /* "beqz",	"s,p",		*/ 0x94000000, 0xffe00000 },
13518   { /* "bnez",	"s,p",		*/ 0xb4000000, 0xffe00000 },
13519   { 0, 0 }  /* End marker for find_match().  */
13520 };
13521 
13522 static const struct opcode_descriptor bz_rt_insns_32[] = {
13523   { /* "beqz",	"t,p",		*/ 0x94000000, 0xfc01f000 },
13524   { /* "bnez",	"t,p",		*/ 0xb4000000, 0xfc01f000 },
13525   { 0, 0 }  /* End marker for find_match().  */
13526 };
13527 
13528 static const struct opcode_descriptor bzc_insns_32[] = {
13529   { /* "beqzc",	"s,p",		*/ 0x40e00000, 0xffe00000 },
13530   { /* "bnezc",	"s,p",		*/ 0x40a00000, 0xffe00000 },
13531   { 0, 0 }  /* End marker for find_match().  */
13532 };
13533 
13534 static const struct opcode_descriptor bz_insns_16[] = {
13535   { /* "beqz",	"md,mE",	*/ 0x8c00,     0xfc00 },
13536   { /* "bnez",	"md,mE",	*/ 0xac00,     0xfc00 },
13537   { 0, 0 }  /* End marker for find_match().  */
13538 };
13539 
13540 /* Switch between a 5-bit register index and its 3-bit shorthand.  */
13541 
13542 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13543 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13544 
13545 
13546 /* 32-bit instructions with a delay slot.  */
13547 
13548 static const struct opcode_descriptor jal_insn_32_bd16 =
13549   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 };
13550 
13551 static const struct opcode_descriptor jal_insn_32_bd32 =
13552   { /* "jal",	"a",		*/ 0xf4000000, 0xfc000000 };
13553 
13554 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13555   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 };
13556 
13557 static const struct opcode_descriptor j_insn_32 =
13558   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 };
13559 
13560 static const struct opcode_descriptor jalr_insn_32 =
13561   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff };
13562 
13563 /* This table can be compacted, because no opcode replacement is made.  */
13564 
13565 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13566   { /* "jals",	"a",		*/ 0x74000000, 0xfc000000 },
13567 
13568   { /* "jalrs[.hb]", "t,s",	*/ 0x00004f3c, 0xfc00efff },
13569   { /* "b(ge|lt)zals", "s,p",	*/ 0x42200000, 0xffa00000 },
13570 
13571   { /* "b(g|l)(e|t)z", "s,p",	*/ 0x40000000, 0xff200000 },
13572   { /* "b(eq|ne)", "s,t,p",	*/ 0x94000000, 0xdc000000 },
13573   { /* "j",	"a",		*/ 0xd4000000, 0xfc000000 },
13574   { 0, 0 }  /* End marker for find_match().  */
13575 };
13576 
13577 /* This table can be compacted, because no opcode replacement is made.  */
13578 
13579 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13580   { /* "jal[x]", "a",		*/ 0xf0000000, 0xf8000000 },
13581 
13582   { /* "jalr[.hb]", "t,s",	*/ 0x00000f3c, 0xfc00efff },
13583   { /* "b(ge|lt)zal", "s,p",	*/ 0x40200000, 0xffa00000 },
13584   { 0, 0 }  /* End marker for find_match().  */
13585 };
13586 
13587 
13588 /* 16-bit instructions with a delay slot.  */
13589 
13590 static const struct opcode_descriptor jalr_insn_16_bd16 =
13591   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 };
13592 
13593 static const struct opcode_descriptor jalr_insn_16_bd32 =
13594   { /* "jalr",	"my,mj",	*/ 0x45c0,     0xffe0 };
13595 
13596 static const struct opcode_descriptor jr_insn_16 =
13597   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 };
13598 
13599 #define JR16_REG(opcode) ((opcode) & 0x1f)
13600 
13601 /* This table can be compacted, because no opcode replacement is made.  */
13602 
13603 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13604   { /* "jalrs",	"my,mj",	*/ 0x45e0,     0xffe0 },
13605 
13606   { /* "b",	"mD",		*/ 0xcc00,     0xfc00 },
13607   { /* "b(eq|ne)z", "md,mE",	*/ 0x8c00,     0xdc00 },
13608   { /* "jr",	"mj",		*/ 0x4580,     0xffe0 },
13609   { 0, 0 }  /* End marker for find_match().  */
13610 };
13611 
13612 
13613 /* LUI instruction.  */
13614 
13615 static const struct opcode_descriptor lui_insn =
13616  { /* "lui",	"s,u",		*/ 0x41a00000, 0xffe00000 };
13617 
13618 
13619 /* ADDIU instruction.  */
13620 
13621 static const struct opcode_descriptor addiu_insn =
13622   { /* "addiu",	"t,r,j",	*/ 0x30000000, 0xfc000000 };
13623 
13624 static const struct opcode_descriptor addiupc_insn =
13625   { /* "addiu",	"mb,$pc,mQ",	*/ 0x78000000, 0xfc000000 };
13626 
13627 #define ADDIUPC_REG_FIELD(r) \
13628   (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13629 
13630 
13631 /* Relaxable instructions in a JAL delay slot: MOVE.  */
13632 
13633 /* The 16-bit move has rd in 9:5 and rs in 4:0.  The 32-bit moves
13634    (ADDU, OR) have rd in 15:11 and rs in 10:16.  */
13635 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13636 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13637 
13638 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13639 #define MOVE16_RS_FIELD(r) (((r) & 0x1f)     )
13640 
13641 static const struct opcode_descriptor move_insns_32[] = {
13642   { /* "move",	"d,s",		*/ 0x00000290, 0xffe007ff }, /* or   d,s,$0 */
13643   { /* "move",	"d,s",		*/ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13644   { 0, 0 }  /* End marker for find_match().  */
13645 };
13646 
13647 static const struct opcode_descriptor move_insn_16 =
13648   { /* "move",	"mp,mj",	*/ 0x0c00,     0xfc00 };
13649 
13650 
13651 /* NOP instructions.  */
13652 
13653 static const struct opcode_descriptor nop_insn_32 =
13654   { /* "nop",	"",		*/ 0x00000000, 0xffffffff };
13655 
13656 static const struct opcode_descriptor nop_insn_16 =
13657   { /* "nop",	"",		*/ 0x0c00,     0xffff };
13658 
13659 
13660 /* Instruction match support.  */
13661 
13662 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13663 
13664 static int
13665 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13666 {
13667   unsigned long indx;
13668 
13669   for (indx = 0; insn[indx].mask != 0; indx++)
13670     if (MATCH (opcode, insn[indx]))
13671       return indx;
13672 
13673   return -1;
13674 }
13675 
13676 
13677 /* Branch and delay slot decoding support.  */
13678 
13679 /* If PTR points to what *might* be a 16-bit branch or jump, then
13680    return the minimum length of its delay slot, otherwise return 0.
13681    Non-zero results are not definitive as we might be checking against
13682    the second half of another instruction.  */
13683 
13684 static int
13685 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13686 {
13687   unsigned long opcode;
13688   int bdsize;
13689 
13690   opcode = bfd_get_16 (abfd, ptr);
13691   if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13692     /* 16-bit branch/jump with a 32-bit delay slot.  */
13693     bdsize = 4;
13694   else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13695 	   || find_match (opcode, ds_insns_16_bd16) >= 0)
13696     /* 16-bit branch/jump with a 16-bit delay slot.  */
13697     bdsize = 2;
13698   else
13699     /* No delay slot.  */
13700     bdsize = 0;
13701 
13702   return bdsize;
13703 }
13704 
13705 /* If PTR points to what *might* be a 32-bit branch or jump, then
13706    return the minimum length of its delay slot, otherwise return 0.
13707    Non-zero results are not definitive as we might be checking against
13708    the second half of another instruction.  */
13709 
13710 static int
13711 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13712 {
13713   unsigned long opcode;
13714   int bdsize;
13715 
13716   opcode = bfd_get_micromips_32 (abfd, ptr);
13717   if (find_match (opcode, ds_insns_32_bd32) >= 0)
13718     /* 32-bit branch/jump with a 32-bit delay slot.  */
13719     bdsize = 4;
13720   else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13721     /* 32-bit branch/jump with a 16-bit delay slot.  */
13722     bdsize = 2;
13723   else
13724     /* No delay slot.  */
13725     bdsize = 0;
13726 
13727   return bdsize;
13728 }
13729 
13730 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13731    that doesn't fiddle with REG, then return TRUE, otherwise FALSE.  */
13732 
13733 static bfd_boolean
13734 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13735 {
13736   unsigned long opcode;
13737 
13738   opcode = bfd_get_16 (abfd, ptr);
13739   if (MATCH (opcode, b_insn_16)
13740 						/* B16  */
13741       || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13742 						/* JR16  */
13743       || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13744 						/* BEQZ16, BNEZ16  */
13745       || (MATCH (opcode, jalr_insn_16_bd32)
13746 						/* JALR16  */
13747 	  && reg != JR16_REG (opcode) && reg != RA))
13748     return TRUE;
13749 
13750   return FALSE;
13751 }
13752 
13753 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13754    then return TRUE, otherwise FALSE.  */
13755 
13756 static bfd_boolean
13757 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13758 {
13759   unsigned long opcode;
13760 
13761   opcode = bfd_get_micromips_32 (abfd, ptr);
13762   if (MATCH (opcode, j_insn_32)
13763 						/* J  */
13764       || MATCH (opcode, bc_insn_32)
13765 						/* BC1F, BC1T, BC2F, BC2T  */
13766       || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13767 						/* JAL, JALX  */
13768       || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13769 						/* BGEZ, BGTZ, BLEZ, BLTZ  */
13770       || (MATCH (opcode, bzal_insn_32)
13771 						/* BGEZAL, BLTZAL  */
13772 	  && reg != OP32_SREG (opcode) && reg != RA)
13773       || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13774 						/* JALR, JALR.HB, BEQ, BNE  */
13775 	  && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13776     return TRUE;
13777 
13778   return FALSE;
13779 }
13780 
13781 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13782    IRELEND) at OFFSET indicate that there must be a compact branch there,
13783    then return TRUE, otherwise FALSE.  */
13784 
13785 static bfd_boolean
13786 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13787 		     const Elf_Internal_Rela *internal_relocs,
13788 		     const Elf_Internal_Rela *irelend)
13789 {
13790   const Elf_Internal_Rela *irel;
13791   unsigned long opcode;
13792 
13793   opcode = bfd_get_micromips_32 (abfd, ptr);
13794   if (find_match (opcode, bzc_insns_32) < 0)
13795     return FALSE;
13796 
13797   for (irel = internal_relocs; irel < irelend; irel++)
13798     if (irel->r_offset == offset
13799 	&& ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13800       return TRUE;
13801 
13802   return FALSE;
13803 }
13804 
13805 /* Bitsize checking.  */
13806 #define IS_BITSIZE(val, N)						\
13807   (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1)))		\
13808     - (1ULL << ((N) - 1))) == (val))
13809 
13810 
13811 bfd_boolean
13812 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13813 			     struct bfd_link_info *link_info,
13814 			     bfd_boolean *again)
13815 {
13816   bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13817   Elf_Internal_Shdr *symtab_hdr;
13818   Elf_Internal_Rela *internal_relocs;
13819   Elf_Internal_Rela *irel, *irelend;
13820   bfd_byte *contents = NULL;
13821   Elf_Internal_Sym *isymbuf = NULL;
13822 
13823   /* Assume nothing changes.  */
13824   *again = FALSE;
13825 
13826   /* We don't have to do anything for a relocatable link, if
13827      this section does not have relocs, or if this is not a
13828      code section.  */
13829 
13830   if (bfd_link_relocatable (link_info)
13831       || (sec->flags & SEC_RELOC) == 0
13832       || sec->reloc_count == 0
13833       || (sec->flags & SEC_CODE) == 0)
13834     return TRUE;
13835 
13836   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13837 
13838   /* Get a copy of the native relocations.  */
13839   internal_relocs = (_bfd_elf_link_read_relocs
13840 		     (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13841 		      link_info->keep_memory));
13842   if (internal_relocs == NULL)
13843     goto error_return;
13844 
13845   /* Walk through them looking for relaxing opportunities.  */
13846   irelend = internal_relocs + sec->reloc_count;
13847   for (irel = internal_relocs; irel < irelend; irel++)
13848     {
13849       unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13850       unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13851       bfd_boolean target_is_micromips_code_p;
13852       unsigned long opcode;
13853       bfd_vma symval;
13854       bfd_vma pcrval;
13855       bfd_byte *ptr;
13856       int fndopc;
13857 
13858       /* The number of bytes to delete for relaxation and from where
13859 	 to delete these bytes starting at irel->r_offset.  */
13860       int delcnt = 0;
13861       int deloff = 0;
13862 
13863       /* If this isn't something that can be relaxed, then ignore
13864 	 this reloc.  */
13865       if (r_type != R_MICROMIPS_HI16
13866 	  && r_type != R_MICROMIPS_PC16_S1
13867 	  && r_type != R_MICROMIPS_26_S1)
13868 	continue;
13869 
13870       /* Get the section contents if we haven't done so already.  */
13871       if (contents == NULL)
13872 	{
13873 	  /* Get cached copy if it exists.  */
13874 	  if (elf_section_data (sec)->this_hdr.contents != NULL)
13875 	    contents = elf_section_data (sec)->this_hdr.contents;
13876 	  /* Go get them off disk.  */
13877 	  else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13878 	    goto error_return;
13879 	}
13880       ptr = contents + irel->r_offset;
13881 
13882       /* Read this BFD's local symbols if we haven't done so already.  */
13883       if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13884 	{
13885 	  isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13886 	  if (isymbuf == NULL)
13887 	    isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13888 					    symtab_hdr->sh_info, 0,
13889 					    NULL, NULL, NULL);
13890 	  if (isymbuf == NULL)
13891 	    goto error_return;
13892 	}
13893 
13894       /* Get the value of the symbol referred to by the reloc.  */
13895       if (r_symndx < symtab_hdr->sh_info)
13896 	{
13897 	  /* A local symbol.  */
13898 	  Elf_Internal_Sym *isym;
13899 	  asection *sym_sec;
13900 
13901 	  isym = isymbuf + r_symndx;
13902 	  if (isym->st_shndx == SHN_UNDEF)
13903 	    sym_sec = bfd_und_section_ptr;
13904 	  else if (isym->st_shndx == SHN_ABS)
13905 	    sym_sec = bfd_abs_section_ptr;
13906 	  else if (isym->st_shndx == SHN_COMMON)
13907 	    sym_sec = bfd_com_section_ptr;
13908 	  else
13909 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13910 	  symval = (isym->st_value
13911 		    + sym_sec->output_section->vma
13912 		    + sym_sec->output_offset);
13913 	  target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13914 	}
13915       else
13916 	{
13917 	  unsigned long indx;
13918 	  struct elf_link_hash_entry *h;
13919 
13920 	  /* An external symbol.  */
13921 	  indx = r_symndx - symtab_hdr->sh_info;
13922 	  h = elf_sym_hashes (abfd)[indx];
13923 	  BFD_ASSERT (h != NULL);
13924 
13925 	  if (h->root.type != bfd_link_hash_defined
13926 	      && h->root.type != bfd_link_hash_defweak)
13927 	    /* This appears to be a reference to an undefined
13928 	       symbol.  Just ignore it -- it will be caught by the
13929 	       regular reloc processing.  */
13930 	    continue;
13931 
13932 	  symval = (h->root.u.def.value
13933 		    + h->root.u.def.section->output_section->vma
13934 		    + h->root.u.def.section->output_offset);
13935 	  target_is_micromips_code_p = (!h->needs_plt
13936 					&& ELF_ST_IS_MICROMIPS (h->other));
13937 	}
13938 
13939 
13940       /* For simplicity of coding, we are going to modify the
13941 	 section contents, the section relocs, and the BFD symbol
13942 	 table.  We must tell the rest of the code not to free up this
13943 	 information.  It would be possible to instead create a table
13944 	 of changes which have to be made, as is done in coff-mips.c;
13945 	 that would be more work, but would require less memory when
13946 	 the linker is run.  */
13947 
13948       /* Only 32-bit instructions relaxed.  */
13949       if (irel->r_offset + 4 > sec->size)
13950 	continue;
13951 
13952       opcode = bfd_get_micromips_32 (abfd, ptr);
13953 
13954       /* This is the pc-relative distance from the instruction the
13955 	 relocation is applied to, to the symbol referred.  */
13956       pcrval = (symval
13957 		- (sec->output_section->vma + sec->output_offset)
13958 		- irel->r_offset);
13959 
13960       /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13961 	 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13962 	 R_MICROMIPS_PC23_S2.  The R_MICROMIPS_PC23_S2 condition is
13963 
13964 	   (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13965 
13966 	 where pcrval has first to be adjusted to apply against the LO16
13967 	 location (we make the adjustment later on, when we have figured
13968 	 out the offset).  */
13969       if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13970 	{
13971 	  bfd_boolean bzc = FALSE;
13972 	  unsigned long nextopc;
13973 	  unsigned long reg;
13974 	  bfd_vma offset;
13975 
13976 	  /* Give up if the previous reloc was a HI16 against this symbol
13977 	     too.  */
13978 	  if (irel > internal_relocs
13979 	      && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13980 	      && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13981 	    continue;
13982 
13983 	  /* Or if the next reloc is not a LO16 against this symbol.  */
13984 	  if (irel + 1 >= irelend
13985 	      || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13986 	      || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13987 	    continue;
13988 
13989 	  /* Or if the second next reloc is a LO16 against this symbol too.  */
13990 	  if (irel + 2 >= irelend
13991 	      && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13992 	      && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13993 	    continue;
13994 
13995 	  /* See if the LUI instruction *might* be in a branch delay slot.
13996 	     We check whether what looks like a 16-bit branch or jump is
13997 	     actually an immediate argument to a compact branch, and let
13998 	     it through if so.  */
13999 	  if (irel->r_offset >= 2
14000 	      && check_br16_dslot (abfd, ptr - 2)
14001 	      && !(irel->r_offset >= 4
14002 		   && (bzc = check_relocated_bzc (abfd,
14003 						  ptr - 4, irel->r_offset - 4,
14004 						  internal_relocs, irelend))))
14005 	    continue;
14006 	  if (irel->r_offset >= 4
14007 	      && !bzc
14008 	      && check_br32_dslot (abfd, ptr - 4))
14009 	    continue;
14010 
14011 	  reg = OP32_SREG (opcode);
14012 
14013 	  /* We only relax adjacent instructions or ones separated with
14014 	     a branch or jump that has a delay slot.  The branch or jump
14015 	     must not fiddle with the register used to hold the address.
14016 	     Subtract 4 for the LUI itself.  */
14017 	  offset = irel[1].r_offset - irel[0].r_offset;
14018 	  switch (offset - 4)
14019 	    {
14020 	    case 0:
14021 	      break;
14022 	    case 2:
14023 	      if (check_br16 (abfd, ptr + 4, reg))
14024 		break;
14025 	      continue;
14026 	    case 4:
14027 	      if (check_br32 (abfd, ptr + 4, reg))
14028 		break;
14029 	      continue;
14030 	    default:
14031 	      continue;
14032 	    }
14033 
14034 	  nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14035 
14036 	  /* Give up unless the same register is used with both
14037 	     relocations.  */
14038 	  if (OP32_SREG (nextopc) != reg)
14039 	    continue;
14040 
14041 	  /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14042 	     and rounding up to take masking of the two LSBs into account.  */
14043 	  pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14044 
14045 	  /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16.  */
14046 	  if (IS_BITSIZE (symval, 16))
14047 	    {
14048 	      /* Fix the relocation's type.  */
14049 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14050 
14051 	      /* Instructions using R_MICROMIPS_LO16 have the base or
14052 		 source register in bits 20:16.  This register becomes $0
14053 		 (zero) as the result of the R_MICROMIPS_HI16 being 0.  */
14054 	      nextopc &= ~0x001f0000;
14055 	      bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14056 			  contents + irel[1].r_offset);
14057 	    }
14058 
14059 	  /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14060 	     We add 4 to take LUI deletion into account while checking
14061 	     the PC-relative distance.  */
14062 	  else if (symval % 4 == 0
14063 		   && IS_BITSIZE (pcrval + 4, 25)
14064 		   && MATCH (nextopc, addiu_insn)
14065 		   && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14066 		   && OP16_VALID_REG (OP32_TREG (nextopc)))
14067 	    {
14068 	      /* Fix the relocation's type.  */
14069 	      irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14070 
14071 	      /* Replace ADDIU with the ADDIUPC version.  */
14072 	      nextopc = (addiupc_insn.match
14073 			 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14074 
14075 	      bfd_put_micromips_32 (abfd, nextopc,
14076 				    contents + irel[1].r_offset);
14077 	    }
14078 
14079 	  /* Can't do anything, give up, sigh...  */
14080 	  else
14081 	    continue;
14082 
14083 	  /* Fix the relocation's type.  */
14084 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14085 
14086 	  /* Delete the LUI instruction: 4 bytes at irel->r_offset.  */
14087 	  delcnt = 4;
14088 	  deloff = 0;
14089 	}
14090 
14091       /* Compact branch relaxation -- due to the multitude of macros
14092 	 employed by the compiler/assembler, compact branches are not
14093 	 always generated.  Obviously, this can/will be fixed elsewhere,
14094 	 but there is no drawback in double checking it here.  */
14095       else if (r_type == R_MICROMIPS_PC16_S1
14096 	       && irel->r_offset + 5 < sec->size
14097 	       && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14098 		   || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14099 	       && ((!insn32
14100 		    && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14101 					nop_insn_16) ? 2 : 0))
14102 		   || (irel->r_offset + 7 < sec->size
14103 		       && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14104 								 ptr + 4),
14105 					   nop_insn_32) ? 4 : 0))))
14106 	{
14107 	  unsigned long reg;
14108 
14109 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14110 
14111 	  /* Replace BEQZ/BNEZ with the compact version.  */
14112 	  opcode = (bzc_insns_32[fndopc].match
14113 		    | BZC32_REG_FIELD (reg)
14114 		    | (opcode & 0xffff));		/* Addend value.  */
14115 
14116 	  bfd_put_micromips_32 (abfd, opcode, ptr);
14117 
14118 	  /* Delete the delay slot NOP: two or four bytes from
14119 	     irel->offset + 4; delcnt has already been set above.  */
14120 	  deloff = 4;
14121 	}
14122 
14123       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1.  We need
14124 	 to check the distance from the next instruction, so subtract 2.  */
14125       else if (!insn32
14126 	       && r_type == R_MICROMIPS_PC16_S1
14127 	       && IS_BITSIZE (pcrval - 2, 11)
14128 	       && find_match (opcode, b_insns_32) >= 0)
14129 	{
14130 	  /* Fix the relocation's type.  */
14131 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14132 
14133 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
14134 	  bfd_put_16 (abfd,
14135 		      (b_insn_16.match
14136 		       | (opcode & 0x3ff)),		/* Addend value.  */
14137 		      ptr);
14138 
14139 	  /* Delete 2 bytes from irel->r_offset + 2.  */
14140 	  delcnt = 2;
14141 	  deloff = 2;
14142 	}
14143 
14144       /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1.  We need
14145 	 to check the distance from the next instruction, so subtract 2.  */
14146       else if (!insn32
14147 	       && r_type == R_MICROMIPS_PC16_S1
14148 	       && IS_BITSIZE (pcrval - 2, 8)
14149 	       && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14150 		    && OP16_VALID_REG (OP32_SREG (opcode)))
14151 		   || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14152 		       && OP16_VALID_REG (OP32_TREG (opcode)))))
14153 	{
14154 	  unsigned long reg;
14155 
14156 	  reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14157 
14158 	  /* Fix the relocation's type.  */
14159 	  irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14160 
14161 	  /* Replace the 32-bit opcode with a 16-bit opcode.  */
14162 	  bfd_put_16 (abfd,
14163 		      (bz_insns_16[fndopc].match
14164 		       | BZ16_REG_FIELD (reg)
14165 		       | (opcode & 0x7f)),		/* Addend value.  */
14166 		      ptr);
14167 
14168 	  /* Delete 2 bytes from irel->r_offset + 2.  */
14169 	  delcnt = 2;
14170 	  deloff = 2;
14171 	}
14172 
14173       /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets.  */
14174       else if (!insn32
14175 	       && r_type == R_MICROMIPS_26_S1
14176 	       && target_is_micromips_code_p
14177 	       && irel->r_offset + 7 < sec->size
14178 	       && MATCH (opcode, jal_insn_32_bd32))
14179 	{
14180 	  unsigned long n32opc;
14181 	  bfd_boolean relaxed = FALSE;
14182 
14183 	  n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14184 
14185 	  if (MATCH (n32opc, nop_insn_32))
14186 	    {
14187 	      /* Replace delay slot 32-bit NOP with a 16-bit NOP.  */
14188 	      bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14189 
14190 	      relaxed = TRUE;
14191 	    }
14192 	  else if (find_match (n32opc, move_insns_32) >= 0)
14193 	    {
14194 	      /* Replace delay slot 32-bit MOVE with 16-bit MOVE.  */
14195 	      bfd_put_16 (abfd,
14196 			  (move_insn_16.match
14197 			   | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14198 			   | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14199 			  ptr + 4);
14200 
14201 	      relaxed = TRUE;
14202 	    }
14203 	  /* Other 32-bit instructions relaxable to 16-bit
14204 	     instructions will be handled here later.  */
14205 
14206 	  if (relaxed)
14207 	    {
14208 	      /* JAL with 32-bit delay slot that is changed to a JALS
14209 		 with 16-bit delay slot.  */
14210 	      bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14211 
14212 	      /* Delete 2 bytes from irel->r_offset + 6.  */
14213 	      delcnt = 2;
14214 	      deloff = 6;
14215 	    }
14216 	}
14217 
14218       if (delcnt != 0)
14219 	{
14220 	  /* Note that we've changed the relocs, section contents, etc.  */
14221 	  elf_section_data (sec)->relocs = internal_relocs;
14222 	  elf_section_data (sec)->this_hdr.contents = contents;
14223 	  symtab_hdr->contents = (unsigned char *) isymbuf;
14224 
14225 	  /* Delete bytes depending on the delcnt and deloff.  */
14226 	  if (!mips_elf_relax_delete_bytes (abfd, sec,
14227 					    irel->r_offset + deloff, delcnt))
14228 	    goto error_return;
14229 
14230 	  /* That will change things, so we should relax again.
14231 	     Note that this is not required, and it may be slow.  */
14232 	  *again = TRUE;
14233 	}
14234     }
14235 
14236   if (isymbuf != NULL
14237       && symtab_hdr->contents != (unsigned char *) isymbuf)
14238     {
14239       if (! link_info->keep_memory)
14240 	free (isymbuf);
14241       else
14242 	{
14243 	  /* Cache the symbols for elf_link_input_bfd.  */
14244 	  symtab_hdr->contents = (unsigned char *) isymbuf;
14245 	}
14246     }
14247 
14248   if (contents != NULL
14249       && elf_section_data (sec)->this_hdr.contents != contents)
14250     {
14251       if (! link_info->keep_memory)
14252 	free (contents);
14253       else
14254 	{
14255 	  /* Cache the section contents for elf_link_input_bfd.  */
14256 	  elf_section_data (sec)->this_hdr.contents = contents;
14257 	}
14258     }
14259 
14260   if (elf_section_data (sec)->relocs != internal_relocs)
14261     free (internal_relocs);
14262 
14263   return TRUE;
14264 
14265  error_return:
14266   if (symtab_hdr->contents != (unsigned char *) isymbuf)
14267     free (isymbuf);
14268   if (elf_section_data (sec)->this_hdr.contents != contents)
14269     free (contents);
14270   if (elf_section_data (sec)->relocs != internal_relocs)
14271     free (internal_relocs);
14272 
14273   return FALSE;
14274 }
14275 
14276 /* Create a MIPS ELF linker hash table.  */
14277 
14278 struct bfd_link_hash_table *
14279 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14280 {
14281   struct mips_elf_link_hash_table *ret;
14282   size_t amt = sizeof (struct mips_elf_link_hash_table);
14283 
14284   ret = bfd_zmalloc (amt);
14285   if (ret == NULL)
14286     return NULL;
14287 
14288   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14289 				      mips_elf_link_hash_newfunc,
14290 				      sizeof (struct mips_elf_link_hash_entry),
14291 				      MIPS_ELF_DATA))
14292     {
14293       free (ret);
14294       return NULL;
14295     }
14296   ret->root.init_plt_refcount.plist = NULL;
14297   ret->root.init_plt_offset.plist = NULL;
14298 
14299   return &ret->root.root;
14300 }
14301 
14302 /* Likewise, but indicate that the target is VxWorks.  */
14303 
14304 struct bfd_link_hash_table *
14305 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14306 {
14307   struct bfd_link_hash_table *ret;
14308 
14309   ret = _bfd_mips_elf_link_hash_table_create (abfd);
14310   if (ret)
14311     {
14312       struct mips_elf_link_hash_table *htab;
14313 
14314       htab = (struct mips_elf_link_hash_table *) ret;
14315       htab->use_plts_and_copy_relocs = TRUE;
14316     }
14317   return ret;
14318 }
14319 
14320 /* A function that the linker calls if we are allowed to use PLTs
14321    and copy relocs.  */
14322 
14323 void
14324 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14325 {
14326   mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14327 }
14328 
14329 /* A function that the linker calls to select between all or only
14330    32-bit microMIPS instructions, and between making or ignoring
14331    branch relocation checks for invalid transitions between ISA modes.
14332    Also record whether we have been configured for a GNU target.  */
14333 
14334 void
14335 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14336 			    bfd_boolean ignore_branch_isa,
14337 			    bfd_boolean gnu_target)
14338 {
14339   mips_elf_hash_table (info)->insn32 = insn32;
14340   mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14341   mips_elf_hash_table (info)->gnu_target = gnu_target;
14342 }
14343 
14344 /* A function that the linker calls to enable use of compact branches in
14345    linker generated code for MIPSR6.  */
14346 
14347 void
14348 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14349 {
14350   mips_elf_hash_table (info)->compact_branches = on;
14351 }
14352 
14353 
14354 /* Structure for saying that BFD machine EXTENSION extends BASE.  */
14355 
14356 struct mips_mach_extension
14357 {
14358   unsigned long extension, base;
14359 };
14360 
14361 
14362 /* An array describing how BFD machines relate to one another.  The entries
14363    are ordered topologically with MIPS I extensions listed last.  */
14364 
14365 static const struct mips_mach_extension mips_mach_extensions[] =
14366 {
14367   /* MIPS64r2 extensions.  */
14368   { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14369   { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14370   { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14371   { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14372   { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14373   { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14374   { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14375 
14376   /* MIPS64 extensions.  */
14377   { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14378   { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14379   { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14380 
14381   /* MIPS V extensions.  */
14382   { bfd_mach_mipsisa64, bfd_mach_mips5 },
14383 
14384   /* R10000 extensions.  */
14385   { bfd_mach_mips12000, bfd_mach_mips10000 },
14386   { bfd_mach_mips14000, bfd_mach_mips10000 },
14387   { bfd_mach_mips16000, bfd_mach_mips10000 },
14388 
14389   /* R5000 extensions.  Note: the vr5500 ISA is an extension of the core
14390      vr5400 ISA, but doesn't include the multimedia stuff.  It seems
14391      better to allow vr5400 and vr5500 code to be merged anyway, since
14392      many libraries will just use the core ISA.  Perhaps we could add
14393      some sort of ASE flag if this ever proves a problem.  */
14394   { bfd_mach_mips5500, bfd_mach_mips5400 },
14395   { bfd_mach_mips5400, bfd_mach_mips5000 },
14396 
14397   /* MIPS IV extensions.  */
14398   { bfd_mach_mips5, bfd_mach_mips8000 },
14399   { bfd_mach_mips10000, bfd_mach_mips8000 },
14400   { bfd_mach_mips5000, bfd_mach_mips8000 },
14401   { bfd_mach_mips7000, bfd_mach_mips8000 },
14402   { bfd_mach_mips9000, bfd_mach_mips8000 },
14403 
14404   /* VR4100 extensions.  */
14405   { bfd_mach_mips4120, bfd_mach_mips4100 },
14406   { bfd_mach_mips4111, bfd_mach_mips4100 },
14407 
14408   /* MIPS III extensions.  */
14409   { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14410   { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14411   { bfd_mach_mips8000, bfd_mach_mips4000 },
14412   { bfd_mach_mips4650, bfd_mach_mips4000 },
14413   { bfd_mach_mips4600, bfd_mach_mips4000 },
14414   { bfd_mach_mips4400, bfd_mach_mips4000 },
14415   { bfd_mach_mips4300, bfd_mach_mips4000 },
14416   { bfd_mach_mips4100, bfd_mach_mips4000 },
14417   { bfd_mach_mips5900, bfd_mach_mips4000 },
14418 
14419   /* MIPS32r3 extensions.  */
14420   { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14421 
14422   /* MIPS32r2 extensions.  */
14423   { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14424 
14425   /* MIPS32 extensions.  */
14426   { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14427 
14428   /* MIPS II extensions.  */
14429   { bfd_mach_mips4000, bfd_mach_mips6000 },
14430   { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14431   { bfd_mach_mips4010, bfd_mach_mips6000 },
14432 
14433   /* MIPS I extensions.  */
14434   { bfd_mach_mips6000, bfd_mach_mips3000 },
14435   { bfd_mach_mips3900, bfd_mach_mips3000 }
14436 };
14437 
14438 /* Return true if bfd machine EXTENSION is an extension of machine BASE.  */
14439 
14440 static bfd_boolean
14441 mips_mach_extends_p (unsigned long base, unsigned long extension)
14442 {
14443   size_t i;
14444 
14445   if (extension == base)
14446     return TRUE;
14447 
14448   if (base == bfd_mach_mipsisa32
14449       && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14450     return TRUE;
14451 
14452   if (base == bfd_mach_mipsisa32r2
14453       && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14454     return TRUE;
14455 
14456   for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14457     if (extension == mips_mach_extensions[i].extension)
14458       {
14459 	extension = mips_mach_extensions[i].base;
14460 	if (extension == base)
14461 	  return TRUE;
14462       }
14463 
14464   return FALSE;
14465 }
14466 
14467 /* Return the BFD mach for each .MIPS.abiflags ISA Extension.  */
14468 
14469 static unsigned long
14470 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14471 {
14472   switch (isa_ext)
14473     {
14474     case AFL_EXT_3900:	      return bfd_mach_mips3900;
14475     case AFL_EXT_4010:	      return bfd_mach_mips4010;
14476     case AFL_EXT_4100:	      return bfd_mach_mips4100;
14477     case AFL_EXT_4111:	      return bfd_mach_mips4111;
14478     case AFL_EXT_4120:	      return bfd_mach_mips4120;
14479     case AFL_EXT_4650:	      return bfd_mach_mips4650;
14480     case AFL_EXT_5400:	      return bfd_mach_mips5400;
14481     case AFL_EXT_5500:	      return bfd_mach_mips5500;
14482     case AFL_EXT_5900:	      return bfd_mach_mips5900;
14483     case AFL_EXT_10000:	      return bfd_mach_mips10000;
14484     case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14485     case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14486     case AFL_EXT_SB1:	      return bfd_mach_mips_sb1;
14487     case AFL_EXT_OCTEON:      return bfd_mach_mips_octeon;
14488     case AFL_EXT_OCTEONP:     return bfd_mach_mips_octeonp;
14489     case AFL_EXT_OCTEON2:     return bfd_mach_mips_octeon2;
14490     case AFL_EXT_XLR:	      return bfd_mach_mips_xlr;
14491     default:		      return bfd_mach_mips3000;
14492     }
14493 }
14494 
14495 /* Return the .MIPS.abiflags value representing each ISA Extension.  */
14496 
14497 unsigned int
14498 bfd_mips_isa_ext (bfd *abfd)
14499 {
14500   switch (bfd_get_mach (abfd))
14501     {
14502     case bfd_mach_mips3900:	    return AFL_EXT_3900;
14503     case bfd_mach_mips4010:	    return AFL_EXT_4010;
14504     case bfd_mach_mips4100:	    return AFL_EXT_4100;
14505     case bfd_mach_mips4111:	    return AFL_EXT_4111;
14506     case bfd_mach_mips4120:	    return AFL_EXT_4120;
14507     case bfd_mach_mips4650:	    return AFL_EXT_4650;
14508     case bfd_mach_mips5400:	    return AFL_EXT_5400;
14509     case bfd_mach_mips5500:	    return AFL_EXT_5500;
14510     case bfd_mach_mips5900:	    return AFL_EXT_5900;
14511     case bfd_mach_mips10000:	    return AFL_EXT_10000;
14512     case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14513     case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14514     case bfd_mach_mips_sb1:	    return AFL_EXT_SB1;
14515     case bfd_mach_mips_octeon:	    return AFL_EXT_OCTEON;
14516     case bfd_mach_mips_octeonp:	    return AFL_EXT_OCTEONP;
14517     case bfd_mach_mips_octeon3:	    return AFL_EXT_OCTEON3;
14518     case bfd_mach_mips_octeon2:	    return AFL_EXT_OCTEON2;
14519     case bfd_mach_mips_xlr:	    return AFL_EXT_XLR;
14520     case bfd_mach_mips_interaptiv_mr2:
14521       return AFL_EXT_INTERAPTIV_MR2;
14522     default:			    return 0;
14523     }
14524 }
14525 
14526 /* Encode ISA level and revision as a single value.  */
14527 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14528 
14529 /* Decode a single value into level and revision.  */
14530 #define ISA_LEVEL(LEVREV)  ((LEVREV) >> 3)
14531 #define ISA_REV(LEVREV)    ((LEVREV) & 0x7)
14532 
14533 /* Update the isa_level, isa_rev, isa_ext fields of abiflags.  */
14534 
14535 static void
14536 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14537 {
14538   int new_isa = 0;
14539   switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14540     {
14541     case E_MIPS_ARCH_1:    new_isa = LEVEL_REV (1, 0); break;
14542     case E_MIPS_ARCH_2:    new_isa = LEVEL_REV (2, 0); break;
14543     case E_MIPS_ARCH_3:    new_isa = LEVEL_REV (3, 0); break;
14544     case E_MIPS_ARCH_4:    new_isa = LEVEL_REV (4, 0); break;
14545     case E_MIPS_ARCH_5:    new_isa = LEVEL_REV (5, 0); break;
14546     case E_MIPS_ARCH_32:   new_isa = LEVEL_REV (32, 1); break;
14547     case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14548     case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14549     case E_MIPS_ARCH_64:   new_isa = LEVEL_REV (64, 1); break;
14550     case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14551     case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14552     default:
14553       _bfd_error_handler
14554 	/* xgettext:c-format */
14555 	(_("%pB: unknown architecture %s"),
14556 	 abfd, bfd_printable_name (abfd));
14557     }
14558 
14559   if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14560     {
14561       abiflags->isa_level = ISA_LEVEL (new_isa);
14562       abiflags->isa_rev = ISA_REV (new_isa);
14563     }
14564 
14565   /* Update the isa_ext if ABFD describes a further extension.  */
14566   if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14567 			   bfd_get_mach (abfd)))
14568     abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14569 }
14570 
14571 /* Return true if the given ELF header flags describe a 32-bit binary.  */
14572 
14573 static bfd_boolean
14574 mips_32bit_flags_p (flagword flags)
14575 {
14576   return ((flags & EF_MIPS_32BITMODE) != 0
14577 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14578 	  || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14579 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14580 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14581 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14582 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14583 	  || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14584 }
14585 
14586 /* Infer the content of the ABI flags based on the elf header.  */
14587 
14588 static void
14589 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14590 {
14591   obj_attribute *in_attr;
14592 
14593   memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14594   update_mips_abiflags_isa (abfd, abiflags);
14595 
14596   if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14597     abiflags->gpr_size = AFL_REG_32;
14598   else
14599     abiflags->gpr_size = AFL_REG_64;
14600 
14601   abiflags->cpr1_size = AFL_REG_NONE;
14602 
14603   in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14604   abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14605 
14606   if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14607       || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14608       || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14609 	  && abiflags->gpr_size == AFL_REG_32))
14610     abiflags->cpr1_size = AFL_REG_32;
14611   else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14612 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14613 	   || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14614     abiflags->cpr1_size = AFL_REG_64;
14615 
14616   abiflags->cpr2_size = AFL_REG_NONE;
14617 
14618   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14619     abiflags->ases |= AFL_ASE_MDMX;
14620   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14621     abiflags->ases |= AFL_ASE_MIPS16;
14622   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14623     abiflags->ases |= AFL_ASE_MICROMIPS;
14624 
14625   if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14626       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14627       && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14628       && abiflags->isa_level >= 32
14629       && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14630     abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14631 }
14632 
14633 /* We need to use a special link routine to handle the .reginfo and
14634    the .mdebug sections.  We need to merge all instances of these
14635    sections together, not write them all out sequentially.  */
14636 
14637 bfd_boolean
14638 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14639 {
14640   asection *o;
14641   struct bfd_link_order *p;
14642   asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14643   asection *rtproc_sec, *abiflags_sec;
14644   Elf32_RegInfo reginfo;
14645   struct ecoff_debug_info debug;
14646   struct mips_htab_traverse_info hti;
14647   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14648   const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14649   HDRR *symhdr = &debug.symbolic_header;
14650   void *mdebug_handle = NULL;
14651   asection *s;
14652   EXTR esym;
14653   unsigned int i;
14654   bfd_size_type amt;
14655   struct mips_elf_link_hash_table *htab;
14656 
14657   static const char * const secname[] =
14658   {
14659     ".text", ".init", ".fini", ".data",
14660     ".rodata", ".sdata", ".sbss", ".bss"
14661   };
14662   static const int sc[] =
14663   {
14664     scText, scInit, scFini, scData,
14665     scRData, scSData, scSBss, scBss
14666   };
14667 
14668   htab = mips_elf_hash_table (info);
14669   BFD_ASSERT (htab != NULL);
14670 
14671   /* Sort the dynamic symbols so that those with GOT entries come after
14672      those without.  */
14673   if (!mips_elf_sort_hash_table (abfd, info))
14674     return FALSE;
14675 
14676   /* Create any scheduled LA25 stubs.  */
14677   hti.info = info;
14678   hti.output_bfd = abfd;
14679   hti.error = FALSE;
14680   htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14681   if (hti.error)
14682     return FALSE;
14683 
14684   /* Get a value for the GP register.  */
14685   if (elf_gp (abfd) == 0)
14686     {
14687       struct bfd_link_hash_entry *h;
14688 
14689       h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14690       if (h != NULL && h->type == bfd_link_hash_defined)
14691 	elf_gp (abfd) = (h->u.def.value
14692 			 + h->u.def.section->output_section->vma
14693 			 + h->u.def.section->output_offset);
14694       else if (htab->root.target_os == is_vxworks
14695 	       && (h = bfd_link_hash_lookup (info->hash,
14696 					     "_GLOBAL_OFFSET_TABLE_",
14697 					     FALSE, FALSE, TRUE))
14698 	       && h->type == bfd_link_hash_defined)
14699 	elf_gp (abfd) = (h->u.def.section->output_section->vma
14700 			 + h->u.def.section->output_offset
14701 			 + h->u.def.value);
14702       else if (bfd_link_relocatable (info))
14703 	{
14704 	  bfd_vma lo = MINUS_ONE;
14705 
14706 	  /* Find the GP-relative section with the lowest offset.  */
14707 	  for (o = abfd->sections; o != NULL; o = o->next)
14708 	    if (o->vma < lo
14709 		&& (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14710 	      lo = o->vma;
14711 
14712 	  /* And calculate GP relative to that.  */
14713 	  elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14714 	}
14715       else
14716 	{
14717 	  /* If the relocate_section function needs to do a reloc
14718 	     involving the GP value, it should make a reloc_dangerous
14719 	     callback to warn that GP is not defined.  */
14720 	}
14721     }
14722 
14723   /* Go through the sections and collect the .reginfo and .mdebug
14724      information.  */
14725   abiflags_sec = NULL;
14726   reginfo_sec = NULL;
14727   mdebug_sec = NULL;
14728   gptab_data_sec = NULL;
14729   gptab_bss_sec = NULL;
14730   for (o = abfd->sections; o != NULL; o = o->next)
14731     {
14732       if (strcmp (o->name, ".MIPS.abiflags") == 0)
14733 	{
14734 	  /* We have found the .MIPS.abiflags section in the output file.
14735 	     Look through all the link_orders comprising it and remove them.
14736 	     The data is merged in _bfd_mips_elf_merge_private_bfd_data.  */
14737 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14738 	    {
14739 	      asection *input_section;
14740 
14741 	      if (p->type != bfd_indirect_link_order)
14742 		{
14743 		  if (p->type == bfd_data_link_order)
14744 		    continue;
14745 		  abort ();
14746 		}
14747 
14748 	      input_section = p->u.indirect.section;
14749 
14750 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14751 		 elf_link_input_bfd ignores this section.  */
14752 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14753 	    }
14754 
14755 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14756 	  BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14757 
14758 	  /* Skip this section later on (I don't think this currently
14759 	     matters, but someday it might).  */
14760 	  o->map_head.link_order = NULL;
14761 
14762 	  abiflags_sec = o;
14763 	}
14764 
14765       if (strcmp (o->name, ".reginfo") == 0)
14766 	{
14767 	  memset (&reginfo, 0, sizeof reginfo);
14768 
14769 	  /* We have found the .reginfo section in the output file.
14770 	     Look through all the link_orders comprising it and merge
14771 	     the information together.  */
14772 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14773 	    {
14774 	      asection *input_section;
14775 	      bfd *input_bfd;
14776 	      Elf32_External_RegInfo ext;
14777 	      Elf32_RegInfo sub;
14778 	      bfd_size_type sz;
14779 
14780 	      if (p->type != bfd_indirect_link_order)
14781 		{
14782 		  if (p->type == bfd_data_link_order)
14783 		    continue;
14784 		  abort ();
14785 		}
14786 
14787 	      input_section = p->u.indirect.section;
14788 	      input_bfd = input_section->owner;
14789 
14790 	      sz = (input_section->size < sizeof (ext)
14791 		    ? input_section->size : sizeof (ext));
14792 	      memset (&ext, 0, sizeof (ext));
14793 	      if (! bfd_get_section_contents (input_bfd, input_section,
14794 					      &ext, 0, sz))
14795 		return FALSE;
14796 
14797 	      bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14798 
14799 	      reginfo.ri_gprmask |= sub.ri_gprmask;
14800 	      reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14801 	      reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14802 	      reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14803 	      reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14804 
14805 	      /* ri_gp_value is set by the function
14806 		 `_bfd_mips_elf_section_processing' when the section is
14807 		 finally written out.  */
14808 
14809 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14810 		 elf_link_input_bfd ignores this section.  */
14811 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14812 	    }
14813 
14814 	  /* Size has been set in _bfd_mips_elf_always_size_sections.  */
14815 	  BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14816 
14817 	  /* Skip this section later on (I don't think this currently
14818 	     matters, but someday it might).  */
14819 	  o->map_head.link_order = NULL;
14820 
14821 	  reginfo_sec = o;
14822 	}
14823 
14824       if (strcmp (o->name, ".mdebug") == 0)
14825 	{
14826 	  struct extsym_info einfo;
14827 	  bfd_vma last;
14828 
14829 	  /* We have found the .mdebug section in the output file.
14830 	     Look through all the link_orders comprising it and merge
14831 	     the information together.  */
14832 	  symhdr->magic = swap->sym_magic;
14833 	  /* FIXME: What should the version stamp be?  */
14834 	  symhdr->vstamp = 0;
14835 	  symhdr->ilineMax = 0;
14836 	  symhdr->cbLine = 0;
14837 	  symhdr->idnMax = 0;
14838 	  symhdr->ipdMax = 0;
14839 	  symhdr->isymMax = 0;
14840 	  symhdr->ioptMax = 0;
14841 	  symhdr->iauxMax = 0;
14842 	  symhdr->issMax = 0;
14843 	  symhdr->issExtMax = 0;
14844 	  symhdr->ifdMax = 0;
14845 	  symhdr->crfd = 0;
14846 	  symhdr->iextMax = 0;
14847 
14848 	  /* We accumulate the debugging information itself in the
14849 	     debug_info structure.  */
14850 	  debug.line = NULL;
14851 	  debug.external_dnr = NULL;
14852 	  debug.external_pdr = NULL;
14853 	  debug.external_sym = NULL;
14854 	  debug.external_opt = NULL;
14855 	  debug.external_aux = NULL;
14856 	  debug.ss = NULL;
14857 	  debug.ssext = debug.ssext_end = NULL;
14858 	  debug.external_fdr = NULL;
14859 	  debug.external_rfd = NULL;
14860 	  debug.external_ext = debug.external_ext_end = NULL;
14861 
14862 	  mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14863 	  if (mdebug_handle == NULL)
14864 	    return FALSE;
14865 
14866 	  esym.jmptbl = 0;
14867 	  esym.cobol_main = 0;
14868 	  esym.weakext = 0;
14869 	  esym.reserved = 0;
14870 	  esym.ifd = ifdNil;
14871 	  esym.asym.iss = issNil;
14872 	  esym.asym.st = stLocal;
14873 	  esym.asym.reserved = 0;
14874 	  esym.asym.index = indexNil;
14875 	  last = 0;
14876 	  for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14877 	    {
14878 	      esym.asym.sc = sc[i];
14879 	      s = bfd_get_section_by_name (abfd, secname[i]);
14880 	      if (s != NULL)
14881 		{
14882 		  esym.asym.value = s->vma;
14883 		  last = s->vma + s->size;
14884 		}
14885 	      else
14886 		esym.asym.value = last;
14887 	      if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14888 						 secname[i], &esym))
14889 		return FALSE;
14890 	    }
14891 
14892 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
14893 	    {
14894 	      asection *input_section;
14895 	      bfd *input_bfd;
14896 	      const struct ecoff_debug_swap *input_swap;
14897 	      struct ecoff_debug_info input_debug;
14898 	      char *eraw_src;
14899 	      char *eraw_end;
14900 
14901 	      if (p->type != bfd_indirect_link_order)
14902 		{
14903 		  if (p->type == bfd_data_link_order)
14904 		    continue;
14905 		  abort ();
14906 		}
14907 
14908 	      input_section = p->u.indirect.section;
14909 	      input_bfd = input_section->owner;
14910 
14911 	      if (!is_mips_elf (input_bfd))
14912 		{
14913 		  /* I don't know what a non MIPS ELF bfd would be
14914 		     doing with a .mdebug section, but I don't really
14915 		     want to deal with it.  */
14916 		  continue;
14917 		}
14918 
14919 	      input_swap = (get_elf_backend_data (input_bfd)
14920 			    ->elf_backend_ecoff_debug_swap);
14921 
14922 	      BFD_ASSERT (p->size == input_section->size);
14923 
14924 	      /* The ECOFF linking code expects that we have already
14925 		 read in the debugging information and set up an
14926 		 ecoff_debug_info structure, so we do that now.  */
14927 	      if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14928 						   &input_debug))
14929 		return FALSE;
14930 
14931 	      if (! (bfd_ecoff_debug_accumulate
14932 		     (mdebug_handle, abfd, &debug, swap, input_bfd,
14933 		      &input_debug, input_swap, info)))
14934 		return FALSE;
14935 
14936 	      /* Loop through the external symbols.  For each one with
14937 		 interesting information, try to find the symbol in
14938 		 the linker global hash table and save the information
14939 		 for the output external symbols.  */
14940 	      eraw_src = input_debug.external_ext;
14941 	      eraw_end = (eraw_src
14942 			  + (input_debug.symbolic_header.iextMax
14943 			     * input_swap->external_ext_size));
14944 	      for (;
14945 		   eraw_src < eraw_end;
14946 		   eraw_src += input_swap->external_ext_size)
14947 		{
14948 		  EXTR ext;
14949 		  const char *name;
14950 		  struct mips_elf_link_hash_entry *h;
14951 
14952 		  (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14953 		  if (ext.asym.sc == scNil
14954 		      || ext.asym.sc == scUndefined
14955 		      || ext.asym.sc == scSUndefined)
14956 		    continue;
14957 
14958 		  name = input_debug.ssext + ext.asym.iss;
14959 		  h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14960 						 name, FALSE, FALSE, TRUE);
14961 		  if (h == NULL || h->esym.ifd != -2)
14962 		    continue;
14963 
14964 		  if (ext.ifd != -1)
14965 		    {
14966 		      BFD_ASSERT (ext.ifd
14967 				  < input_debug.symbolic_header.ifdMax);
14968 		      ext.ifd = input_debug.ifdmap[ext.ifd];
14969 		    }
14970 
14971 		  h->esym = ext;
14972 		}
14973 
14974 	      /* Free up the information we just read.  */
14975 	      free (input_debug.line);
14976 	      free (input_debug.external_dnr);
14977 	      free (input_debug.external_pdr);
14978 	      free (input_debug.external_sym);
14979 	      free (input_debug.external_opt);
14980 	      free (input_debug.external_aux);
14981 	      free (input_debug.ss);
14982 	      free (input_debug.ssext);
14983 	      free (input_debug.external_fdr);
14984 	      free (input_debug.external_rfd);
14985 	      free (input_debug.external_ext);
14986 
14987 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
14988 		 elf_link_input_bfd ignores this section.  */
14989 	      input_section->flags &= ~SEC_HAS_CONTENTS;
14990 	    }
14991 
14992 	  if (SGI_COMPAT (abfd) && bfd_link_pic (info))
14993 	    {
14994 	      /* Create .rtproc section.  */
14995 	      rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
14996 	      if (rtproc_sec == NULL)
14997 		{
14998 		  flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
14999 				    | SEC_LINKER_CREATED | SEC_READONLY);
15000 
15001 		  rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15002 								   ".rtproc",
15003 								   flags);
15004 		  if (rtproc_sec == NULL
15005 		      || !bfd_set_section_alignment (rtproc_sec, 4))
15006 		    return FALSE;
15007 		}
15008 
15009 	      if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15010 						     info, rtproc_sec,
15011 						     &debug))
15012 		return FALSE;
15013 	    }
15014 
15015 	  /* Build the external symbol information.  */
15016 	  einfo.abfd = abfd;
15017 	  einfo.info = info;
15018 	  einfo.debug = &debug;
15019 	  einfo.swap = swap;
15020 	  einfo.failed = FALSE;
15021 	  mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15022 				       mips_elf_output_extsym, &einfo);
15023 	  if (einfo.failed)
15024 	    return FALSE;
15025 
15026 	  /* Set the size of the .mdebug section.  */
15027 	  o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15028 
15029 	  /* Skip this section later on (I don't think this currently
15030 	     matters, but someday it might).  */
15031 	  o->map_head.link_order = NULL;
15032 
15033 	  mdebug_sec = o;
15034 	}
15035 
15036       if (CONST_STRNEQ (o->name, ".gptab."))
15037 	{
15038 	  const char *subname;
15039 	  unsigned int c;
15040 	  Elf32_gptab *tab;
15041 	  Elf32_External_gptab *ext_tab;
15042 	  unsigned int j;
15043 
15044 	  /* The .gptab.sdata and .gptab.sbss sections hold
15045 	     information describing how the small data area would
15046 	     change depending upon the -G switch.  These sections
15047 	     not used in executables files.  */
15048 	  if (! bfd_link_relocatable (info))
15049 	    {
15050 	      for (p = o->map_head.link_order; p != NULL; p = p->next)
15051 		{
15052 		  asection *input_section;
15053 
15054 		  if (p->type != bfd_indirect_link_order)
15055 		    {
15056 		      if (p->type == bfd_data_link_order)
15057 			continue;
15058 		      abort ();
15059 		    }
15060 
15061 		  input_section = p->u.indirect.section;
15062 
15063 		  /* Hack: reset the SEC_HAS_CONTENTS flag so that
15064 		     elf_link_input_bfd ignores this section.  */
15065 		  input_section->flags &= ~SEC_HAS_CONTENTS;
15066 		}
15067 
15068 	      /* Skip this section later on (I don't think this
15069 		 currently matters, but someday it might).  */
15070 	      o->map_head.link_order = NULL;
15071 
15072 	      /* Really remove the section.  */
15073 	      bfd_section_list_remove (abfd, o);
15074 	      --abfd->section_count;
15075 
15076 	      continue;
15077 	    }
15078 
15079 	  /* There is one gptab for initialized data, and one for
15080 	     uninitialized data.  */
15081 	  if (strcmp (o->name, ".gptab.sdata") == 0)
15082 	    gptab_data_sec = o;
15083 	  else if (strcmp (o->name, ".gptab.sbss") == 0)
15084 	    gptab_bss_sec = o;
15085 	  else
15086 	    {
15087 	      _bfd_error_handler
15088 		/* xgettext:c-format */
15089 		(_("%pB: illegal section name `%pA'"), abfd, o);
15090 	      bfd_set_error (bfd_error_nonrepresentable_section);
15091 	      return FALSE;
15092 	    }
15093 
15094 	  /* The linker script always combines .gptab.data and
15095 	     .gptab.sdata into .gptab.sdata, and likewise for
15096 	     .gptab.bss and .gptab.sbss.  It is possible that there is
15097 	     no .sdata or .sbss section in the output file, in which
15098 	     case we must change the name of the output section.  */
15099 	  subname = o->name + sizeof ".gptab" - 1;
15100 	  if (bfd_get_section_by_name (abfd, subname) == NULL)
15101 	    {
15102 	      if (o == gptab_data_sec)
15103 		o->name = ".gptab.data";
15104 	      else
15105 		o->name = ".gptab.bss";
15106 	      subname = o->name + sizeof ".gptab" - 1;
15107 	      BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15108 	    }
15109 
15110 	  /* Set up the first entry.  */
15111 	  c = 1;
15112 	  amt = c * sizeof (Elf32_gptab);
15113 	  tab = bfd_malloc (amt);
15114 	  if (tab == NULL)
15115 	    return FALSE;
15116 	  tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15117 	  tab[0].gt_header.gt_unused = 0;
15118 
15119 	  /* Combine the input sections.  */
15120 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
15121 	    {
15122 	      asection *input_section;
15123 	      bfd *input_bfd;
15124 	      bfd_size_type size;
15125 	      unsigned long last;
15126 	      bfd_size_type gpentry;
15127 
15128 	      if (p->type != bfd_indirect_link_order)
15129 		{
15130 		  if (p->type == bfd_data_link_order)
15131 		    continue;
15132 		  abort ();
15133 		}
15134 
15135 	      input_section = p->u.indirect.section;
15136 	      input_bfd = input_section->owner;
15137 
15138 	      /* Combine the gptab entries for this input section one
15139 		 by one.  We know that the input gptab entries are
15140 		 sorted by ascending -G value.  */
15141 	      size = input_section->size;
15142 	      last = 0;
15143 	      for (gpentry = sizeof (Elf32_External_gptab);
15144 		   gpentry < size;
15145 		   gpentry += sizeof (Elf32_External_gptab))
15146 		{
15147 		  Elf32_External_gptab ext_gptab;
15148 		  Elf32_gptab int_gptab;
15149 		  unsigned long val;
15150 		  unsigned long add;
15151 		  bfd_boolean exact;
15152 		  unsigned int look;
15153 
15154 		  if (! (bfd_get_section_contents
15155 			 (input_bfd, input_section, &ext_gptab, gpentry,
15156 			  sizeof (Elf32_External_gptab))))
15157 		    {
15158 		      free (tab);
15159 		      return FALSE;
15160 		    }
15161 
15162 		  bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15163 						&int_gptab);
15164 		  val = int_gptab.gt_entry.gt_g_value;
15165 		  add = int_gptab.gt_entry.gt_bytes - last;
15166 
15167 		  exact = FALSE;
15168 		  for (look = 1; look < c; look++)
15169 		    {
15170 		      if (tab[look].gt_entry.gt_g_value >= val)
15171 			tab[look].gt_entry.gt_bytes += add;
15172 
15173 		      if (tab[look].gt_entry.gt_g_value == val)
15174 			exact = TRUE;
15175 		    }
15176 
15177 		  if (! exact)
15178 		    {
15179 		      Elf32_gptab *new_tab;
15180 		      unsigned int max;
15181 
15182 		      /* We need a new table entry.  */
15183 		      amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15184 		      new_tab = bfd_realloc (tab, amt);
15185 		      if (new_tab == NULL)
15186 			{
15187 			  free (tab);
15188 			  return FALSE;
15189 			}
15190 		      tab = new_tab;
15191 		      tab[c].gt_entry.gt_g_value = val;
15192 		      tab[c].gt_entry.gt_bytes = add;
15193 
15194 		      /* Merge in the size for the next smallest -G
15195 			 value, since that will be implied by this new
15196 			 value.  */
15197 		      max = 0;
15198 		      for (look = 1; look < c; look++)
15199 			{
15200 			  if (tab[look].gt_entry.gt_g_value < val
15201 			      && (max == 0
15202 				  || (tab[look].gt_entry.gt_g_value
15203 				      > tab[max].gt_entry.gt_g_value)))
15204 			    max = look;
15205 			}
15206 		      if (max != 0)
15207 			tab[c].gt_entry.gt_bytes +=
15208 			  tab[max].gt_entry.gt_bytes;
15209 
15210 		      ++c;
15211 		    }
15212 
15213 		  last = int_gptab.gt_entry.gt_bytes;
15214 		}
15215 
15216 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
15217 		 elf_link_input_bfd ignores this section.  */
15218 	      input_section->flags &= ~SEC_HAS_CONTENTS;
15219 	    }
15220 
15221 	  /* The table must be sorted by -G value.  */
15222 	  if (c > 2)
15223 	    qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15224 
15225 	  /* Swap out the table.  */
15226 	  amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15227 	  ext_tab = bfd_alloc (abfd, amt);
15228 	  if (ext_tab == NULL)
15229 	    {
15230 	      free (tab);
15231 	      return FALSE;
15232 	    }
15233 
15234 	  for (j = 0; j < c; j++)
15235 	    bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15236 	  free (tab);
15237 
15238 	  o->size = c * sizeof (Elf32_External_gptab);
15239 	  o->contents = (bfd_byte *) ext_tab;
15240 
15241 	  /* Skip this section later on (I don't think this currently
15242 	     matters, but someday it might).  */
15243 	  o->map_head.link_order = NULL;
15244 	}
15245     }
15246 
15247   /* Invoke the regular ELF backend linker to do all the work.  */
15248   if (!bfd_elf_final_link (abfd, info))
15249     return FALSE;
15250 
15251   /* Now write out the computed sections.  */
15252 
15253   if (abiflags_sec != NULL)
15254     {
15255       Elf_External_ABIFlags_v0 ext;
15256       Elf_Internal_ABIFlags_v0 *abiflags;
15257 
15258       abiflags = &mips_elf_tdata (abfd)->abiflags;
15259 
15260       /* Set up the abiflags if no valid input sections were found.  */
15261       if (!mips_elf_tdata (abfd)->abiflags_valid)
15262 	{
15263 	  infer_mips_abiflags (abfd, abiflags);
15264 	  mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15265 	}
15266       bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15267       if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15268 	return FALSE;
15269     }
15270 
15271   if (reginfo_sec != NULL)
15272     {
15273       Elf32_External_RegInfo ext;
15274 
15275       bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15276       if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15277 	return FALSE;
15278     }
15279 
15280   if (mdebug_sec != NULL)
15281     {
15282       BFD_ASSERT (abfd->output_has_begun);
15283       if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15284 					       swap, info,
15285 					       mdebug_sec->filepos))
15286 	return FALSE;
15287 
15288       bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15289     }
15290 
15291   if (gptab_data_sec != NULL)
15292     {
15293       if (! bfd_set_section_contents (abfd, gptab_data_sec,
15294 				      gptab_data_sec->contents,
15295 				      0, gptab_data_sec->size))
15296 	return FALSE;
15297     }
15298 
15299   if (gptab_bss_sec != NULL)
15300     {
15301       if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15302 				      gptab_bss_sec->contents,
15303 				      0, gptab_bss_sec->size))
15304 	return FALSE;
15305     }
15306 
15307   if (SGI_COMPAT (abfd))
15308     {
15309       rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15310       if (rtproc_sec != NULL)
15311 	{
15312 	  if (! bfd_set_section_contents (abfd, rtproc_sec,
15313 					  rtproc_sec->contents,
15314 					  0, rtproc_sec->size))
15315 	    return FALSE;
15316 	}
15317     }
15318 
15319   return TRUE;
15320 }
15321 
15322 /* Merge object file header flags from IBFD into OBFD.  Raise an error
15323    if there are conflicting settings.  */
15324 
15325 static bfd_boolean
15326 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15327 {
15328   bfd *obfd = info->output_bfd;
15329   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15330   flagword old_flags;
15331   flagword new_flags;
15332   bfd_boolean ok;
15333 
15334   new_flags = elf_elfheader (ibfd)->e_flags;
15335   elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15336   old_flags = elf_elfheader (obfd)->e_flags;
15337 
15338   /* Check flag compatibility.  */
15339 
15340   new_flags &= ~EF_MIPS_NOREORDER;
15341   old_flags &= ~EF_MIPS_NOREORDER;
15342 
15343   /* Some IRIX 6 BSD-compatibility objects have this bit set.  It
15344      doesn't seem to matter.  */
15345   new_flags &= ~EF_MIPS_XGOT;
15346   old_flags &= ~EF_MIPS_XGOT;
15347 
15348   /* MIPSpro generates ucode info in n64 objects.  Again, we should
15349      just be able to ignore this.  */
15350   new_flags &= ~EF_MIPS_UCODE;
15351   old_flags &= ~EF_MIPS_UCODE;
15352 
15353   /* DSOs should only be linked with CPIC code.  */
15354   if ((ibfd->flags & DYNAMIC) != 0)
15355     new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15356 
15357   if (new_flags == old_flags)
15358     return TRUE;
15359 
15360   ok = TRUE;
15361 
15362   if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15363       != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15364     {
15365       _bfd_error_handler
15366 	(_("%pB: warning: linking abicalls files with non-abicalls files"),
15367 	 ibfd);
15368       ok = TRUE;
15369     }
15370 
15371   if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15372     elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15373   if (! (new_flags & EF_MIPS_PIC))
15374     elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15375 
15376   new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15377   old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15378 
15379   /* Compare the ISAs.  */
15380   if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15381     {
15382       _bfd_error_handler
15383 	(_("%pB: linking 32-bit code with 64-bit code"),
15384 	 ibfd);
15385       ok = FALSE;
15386     }
15387   else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15388     {
15389       /* OBFD's ISA isn't the same as, or an extension of, IBFD's.  */
15390       if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15391 	{
15392 	  /* Copy the architecture info from IBFD to OBFD.  Also copy
15393 	     the 32-bit flag (if set) so that we continue to recognise
15394 	     OBFD as a 32-bit binary.  */
15395 	  bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15396 	  elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15397 	  elf_elfheader (obfd)->e_flags
15398 	    |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15399 
15400 	  /* Update the ABI flags isa_level, isa_rev, isa_ext fields.  */
15401 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15402 
15403 	  /* Copy across the ABI flags if OBFD doesn't use them
15404 	     and if that was what caused us to treat IBFD as 32-bit.  */
15405 	  if ((old_flags & EF_MIPS_ABI) == 0
15406 	      && mips_32bit_flags_p (new_flags)
15407 	      && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15408 	    elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15409 	}
15410       else
15411 	{
15412 	  /* The ISAs aren't compatible.  */
15413 	  _bfd_error_handler
15414 	    /* xgettext:c-format */
15415 	    (_("%pB: linking %s module with previous %s modules"),
15416 	     ibfd,
15417 	     bfd_printable_name (ibfd),
15418 	     bfd_printable_name (obfd));
15419 	  ok = FALSE;
15420 	}
15421     }
15422 
15423   new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15424   old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15425 
15426   /* Compare ABIs.  The 64-bit ABI does not use EF_MIPS_ABI.  But, it
15427      does set EI_CLASS differently from any 32-bit ABI.  */
15428   if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15429       || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15430 	  != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15431     {
15432       /* Only error if both are set (to different values).  */
15433       if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15434 	  || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15435 	      != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15436 	{
15437 	  _bfd_error_handler
15438 	    /* xgettext:c-format */
15439 	    (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15440 	     ibfd,
15441 	     elf_mips_abi_name (ibfd),
15442 	     elf_mips_abi_name (obfd));
15443 	  ok = FALSE;
15444 	}
15445       new_flags &= ~EF_MIPS_ABI;
15446       old_flags &= ~EF_MIPS_ABI;
15447     }
15448 
15449   /* Compare ASEs.  Forbid linking MIPS16 and microMIPS ASE modules together
15450      and allow arbitrary mixing of the remaining ASEs (retain the union).  */
15451   if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15452     {
15453       int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15454       int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15455       int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15456       int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15457       int micro_mis = old_m16 && new_micro;
15458       int m16_mis = old_micro && new_m16;
15459 
15460       if (m16_mis || micro_mis)
15461 	{
15462 	  _bfd_error_handler
15463 	    /* xgettext:c-format */
15464 	    (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15465 	     ibfd,
15466 	     m16_mis ? "MIPS16" : "microMIPS",
15467 	     m16_mis ? "microMIPS" : "MIPS16");
15468 	  ok = FALSE;
15469 	}
15470 
15471       elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15472 
15473       new_flags &= ~ EF_MIPS_ARCH_ASE;
15474       old_flags &= ~ EF_MIPS_ARCH_ASE;
15475     }
15476 
15477   /* Compare NaN encodings.  */
15478   if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15479     {
15480       /* xgettext:c-format */
15481       _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15482 			  ibfd,
15483 			  (new_flags & EF_MIPS_NAN2008
15484 			   ? "-mnan=2008" : "-mnan=legacy"),
15485 			  (old_flags & EF_MIPS_NAN2008
15486 			   ? "-mnan=2008" : "-mnan=legacy"));
15487       ok = FALSE;
15488       new_flags &= ~EF_MIPS_NAN2008;
15489       old_flags &= ~EF_MIPS_NAN2008;
15490     }
15491 
15492   /* Compare FP64 state.  */
15493   if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15494     {
15495       /* xgettext:c-format */
15496       _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15497 			  ibfd,
15498 			  (new_flags & EF_MIPS_FP64
15499 			   ? "-mfp64" : "-mfp32"),
15500 			  (old_flags & EF_MIPS_FP64
15501 			   ? "-mfp64" : "-mfp32"));
15502       ok = FALSE;
15503       new_flags &= ~EF_MIPS_FP64;
15504       old_flags &= ~EF_MIPS_FP64;
15505     }
15506 
15507   /* Warn about any other mismatches */
15508   if (new_flags != old_flags)
15509     {
15510       /* xgettext:c-format */
15511       _bfd_error_handler
15512 	(_("%pB: uses different e_flags (%#x) fields than previous modules "
15513 	   "(%#x)"),
15514 	 ibfd, new_flags, old_flags);
15515       ok = FALSE;
15516     }
15517 
15518   return ok;
15519 }
15520 
15521 /* Merge object attributes from IBFD into OBFD.  Raise an error if
15522    there are conflicting attributes.  */
15523 static bfd_boolean
15524 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15525 {
15526   bfd *obfd = info->output_bfd;
15527   obj_attribute *in_attr;
15528   obj_attribute *out_attr;
15529   bfd *abi_fp_bfd;
15530   bfd *abi_msa_bfd;
15531 
15532   abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15533   in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15534   if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15535     mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15536 
15537   abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15538   if (!abi_msa_bfd
15539       && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15540     mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15541 
15542   if (!elf_known_obj_attributes_proc (obfd)[0].i)
15543     {
15544       /* This is the first object.  Copy the attributes.  */
15545       _bfd_elf_copy_obj_attributes (ibfd, obfd);
15546 
15547       /* Use the Tag_null value to indicate the attributes have been
15548 	 initialized.  */
15549       elf_known_obj_attributes_proc (obfd)[0].i = 1;
15550 
15551       return TRUE;
15552     }
15553 
15554   /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15555      non-conflicting ones.  */
15556   out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15557   if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15558     {
15559       int out_fp, in_fp;
15560 
15561       out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15562       in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15563       out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15564       if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15565 	out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15566       else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15567 	       && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15568 		   || in_fp == Val_GNU_MIPS_ABI_FP_64
15569 		   || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15570 	{
15571 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15572 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15573 	}
15574       else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15575 	       && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15576 		   || out_fp == Val_GNU_MIPS_ABI_FP_64
15577 		   || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15578 	/* Keep the current setting.  */;
15579       else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15580 	       && in_fp == Val_GNU_MIPS_ABI_FP_64)
15581 	{
15582 	  mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15583 	  out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15584 	}
15585       else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15586 	       && out_fp == Val_GNU_MIPS_ABI_FP_64)
15587 	/* Keep the current setting.  */;
15588       else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15589 	{
15590 	  const char *out_string, *in_string;
15591 
15592 	  out_string = _bfd_mips_fp_abi_string (out_fp);
15593 	  in_string = _bfd_mips_fp_abi_string (in_fp);
15594 	  /* First warn about cases involving unrecognised ABIs.  */
15595 	  if (!out_string && !in_string)
15596 	    /* xgettext:c-format */
15597 	    _bfd_error_handler
15598 	      (_("warning: %pB uses unknown floating point ABI %d "
15599 		 "(set by %pB), %pB uses unknown floating point ABI %d"),
15600 	       obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15601 	  else if (!out_string)
15602 	    _bfd_error_handler
15603 	      /* xgettext:c-format */
15604 	      (_("warning: %pB uses unknown floating point ABI %d "
15605 		 "(set by %pB), %pB uses %s"),
15606 	       obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15607 	  else if (!in_string)
15608 	    _bfd_error_handler
15609 	      /* xgettext:c-format */
15610 	      (_("warning: %pB uses %s (set by %pB), "
15611 		 "%pB uses unknown floating point ABI %d"),
15612 	       obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15613 	  else
15614 	    {
15615 	      /* If one of the bfds is soft-float, the other must be
15616 		 hard-float.  The exact choice of hard-float ABI isn't
15617 		 really relevant to the error message.  */
15618 	      if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15619 		out_string = "-mhard-float";
15620 	      else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15621 		in_string = "-mhard-float";
15622 	      _bfd_error_handler
15623 		/* xgettext:c-format */
15624 		(_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15625 		 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15626 	    }
15627 	}
15628     }
15629 
15630   /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15631      non-conflicting ones.  */
15632   if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15633     {
15634       out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15635       if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15636 	out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15637       else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15638 	switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15639 	  {
15640 	  case Val_GNU_MIPS_ABI_MSA_128:
15641 	    _bfd_error_handler
15642 	      /* xgettext:c-format */
15643 	      (_("warning: %pB uses %s (set by %pB), "
15644 		 "%pB uses unknown MSA ABI %d"),
15645 	       obfd, "-mmsa", abi_msa_bfd,
15646 	       ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15647 	    break;
15648 
15649 	  default:
15650 	    switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15651 	      {
15652 	      case Val_GNU_MIPS_ABI_MSA_128:
15653 		_bfd_error_handler
15654 		  /* xgettext:c-format */
15655 		  (_("warning: %pB uses unknown MSA ABI %d "
15656 		     "(set by %pB), %pB uses %s"),
15657 		     obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15658 		   abi_msa_bfd, ibfd, "-mmsa");
15659 		  break;
15660 
15661 	      default:
15662 		_bfd_error_handler
15663 		  /* xgettext:c-format */
15664 		  (_("warning: %pB uses unknown MSA ABI %d "
15665 		     "(set by %pB), %pB uses unknown MSA ABI %d"),
15666 		   obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15667 		   abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15668 		break;
15669 	      }
15670 	  }
15671     }
15672 
15673   /* Merge Tag_compatibility attributes and any common GNU ones.  */
15674   return _bfd_elf_merge_object_attributes (ibfd, info);
15675 }
15676 
15677 /* Merge object ABI flags from IBFD into OBFD.  Raise an error if
15678    there are conflicting settings.  */
15679 
15680 static bfd_boolean
15681 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15682 {
15683   obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15684   struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15685   struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15686 
15687   /* Update the output abiflags fp_abi using the computed fp_abi.  */
15688   out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15689 
15690 #define max(a, b) ((a) > (b) ? (a) : (b))
15691   /* Merge abiflags.  */
15692   out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15693 				       in_tdata->abiflags.isa_level);
15694   out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15695 				     in_tdata->abiflags.isa_rev);
15696   out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15697 				      in_tdata->abiflags.gpr_size);
15698   out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15699 				       in_tdata->abiflags.cpr1_size);
15700   out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15701 				       in_tdata->abiflags.cpr2_size);
15702 #undef max
15703   out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15704   out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15705 
15706   return TRUE;
15707 }
15708 
15709 /* Merge backend specific data from an object file to the output
15710    object file when linking.  */
15711 
15712 bfd_boolean
15713 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15714 {
15715   bfd *obfd = info->output_bfd;
15716   struct mips_elf_obj_tdata *out_tdata;
15717   struct mips_elf_obj_tdata *in_tdata;
15718   bfd_boolean null_input_bfd = TRUE;
15719   asection *sec;
15720   bfd_boolean ok;
15721 
15722   /* Check if we have the same endianness.  */
15723   if (! _bfd_generic_verify_endian_match (ibfd, info))
15724     {
15725       _bfd_error_handler
15726 	(_("%pB: endianness incompatible with that of the selected emulation"),
15727 	 ibfd);
15728       return FALSE;
15729     }
15730 
15731   if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15732     return TRUE;
15733 
15734   in_tdata = mips_elf_tdata (ibfd);
15735   out_tdata = mips_elf_tdata (obfd);
15736 
15737   if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15738     {
15739       _bfd_error_handler
15740 	(_("%pB: ABI is incompatible with that of the selected emulation"),
15741 	 ibfd);
15742       return FALSE;
15743     }
15744 
15745   /* Check to see if the input BFD actually contains any sections.  If not,
15746      then it has no attributes, and its flags may not have been initialized
15747      either, but it cannot actually cause any incompatibility.  */
15748   /* FIXME: This excludes any input shared library from consideration.  */
15749   for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15750     {
15751       /* Ignore synthetic sections and empty .text, .data and .bss sections
15752 	 which are automatically generated by gas.  Also ignore fake
15753 	 (s)common sections, since merely defining a common symbol does
15754 	 not affect compatibility.  */
15755       if ((sec->flags & SEC_IS_COMMON) == 0
15756 	  && strcmp (sec->name, ".reginfo")
15757 	  && strcmp (sec->name, ".mdebug")
15758 	  && (sec->size != 0
15759 	      || (strcmp (sec->name, ".text")
15760 		  && strcmp (sec->name, ".data")
15761 		  && strcmp (sec->name, ".bss"))))
15762 	{
15763 	  null_input_bfd = FALSE;
15764 	  break;
15765 	}
15766     }
15767   if (null_input_bfd)
15768     return TRUE;
15769 
15770   /* Populate abiflags using existing information.  */
15771   if (in_tdata->abiflags_valid)
15772     {
15773       obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15774       Elf_Internal_ABIFlags_v0 in_abiflags;
15775       Elf_Internal_ABIFlags_v0 abiflags;
15776 
15777       /* Set up the FP ABI attribute from the abiflags if it is not already
15778 	 set.  */
15779       if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15780 	in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15781 
15782       infer_mips_abiflags (ibfd, &abiflags);
15783       in_abiflags = in_tdata->abiflags;
15784 
15785       /* It is not possible to infer the correct ISA revision
15786 	 for R3 or R5 so drop down to R2 for the checks.  */
15787       if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15788 	in_abiflags.isa_rev = 2;
15789 
15790       if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15791 	  < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15792 	_bfd_error_handler
15793 	  (_("%pB: warning: inconsistent ISA between e_flags and "
15794 	     ".MIPS.abiflags"), ibfd);
15795       if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15796 	  && in_abiflags.fp_abi != abiflags.fp_abi)
15797 	_bfd_error_handler
15798 	  (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15799 	     ".MIPS.abiflags"), ibfd);
15800       if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15801 	_bfd_error_handler
15802 	  (_("%pB: warning: inconsistent ASEs between e_flags and "
15803 	     ".MIPS.abiflags"), ibfd);
15804       /* The isa_ext is allowed to be an extension of what can be inferred
15805 	 from e_flags.  */
15806       if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15807 				bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15808 	_bfd_error_handler
15809 	  (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15810 	     ".MIPS.abiflags"), ibfd);
15811       if (in_abiflags.flags2 != 0)
15812 	_bfd_error_handler
15813 	  (_("%pB: warning: unexpected flag in the flags2 field of "
15814 	     ".MIPS.abiflags (0x%lx)"), ibfd,
15815 	   in_abiflags.flags2);
15816     }
15817   else
15818     {
15819       infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15820       in_tdata->abiflags_valid = TRUE;
15821     }
15822 
15823   if (!out_tdata->abiflags_valid)
15824     {
15825       /* Copy input abiflags if output abiflags are not already valid.  */
15826       out_tdata->abiflags = in_tdata->abiflags;
15827       out_tdata->abiflags_valid = TRUE;
15828     }
15829 
15830   if (! elf_flags_init (obfd))
15831     {
15832       elf_flags_init (obfd) = TRUE;
15833       elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15834       elf_elfheader (obfd)->e_ident[EI_CLASS]
15835 	= elf_elfheader (ibfd)->e_ident[EI_CLASS];
15836 
15837       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15838 	  && (bfd_get_arch_info (obfd)->the_default
15839 	      || mips_mach_extends_p (bfd_get_mach (obfd),
15840 				      bfd_get_mach (ibfd))))
15841 	{
15842 	  if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15843 				   bfd_get_mach (ibfd)))
15844 	    return FALSE;
15845 
15846 	  /* Update the ABI flags isa_level, isa_rev and isa_ext fields.  */
15847 	  update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15848 	}
15849 
15850       ok = TRUE;
15851     }
15852   else
15853     ok = mips_elf_merge_obj_e_flags (ibfd, info);
15854 
15855   ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15856 
15857   ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15858 
15859   if (!ok)
15860     {
15861       bfd_set_error (bfd_error_bad_value);
15862       return FALSE;
15863     }
15864 
15865   return TRUE;
15866 }
15867 
15868 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC.  */
15869 
15870 bfd_boolean
15871 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15872 {
15873   BFD_ASSERT (!elf_flags_init (abfd)
15874 	      || elf_elfheader (abfd)->e_flags == flags);
15875 
15876   elf_elfheader (abfd)->e_flags = flags;
15877   elf_flags_init (abfd) = TRUE;
15878   return TRUE;
15879 }
15880 
15881 char *
15882 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15883 {
15884   switch (dtag)
15885     {
15886     default: return "";
15887     case DT_MIPS_RLD_VERSION:
15888       return "MIPS_RLD_VERSION";
15889     case DT_MIPS_TIME_STAMP:
15890       return "MIPS_TIME_STAMP";
15891     case DT_MIPS_ICHECKSUM:
15892       return "MIPS_ICHECKSUM";
15893     case DT_MIPS_IVERSION:
15894       return "MIPS_IVERSION";
15895     case DT_MIPS_FLAGS:
15896       return "MIPS_FLAGS";
15897     case DT_MIPS_BASE_ADDRESS:
15898       return "MIPS_BASE_ADDRESS";
15899     case DT_MIPS_MSYM:
15900       return "MIPS_MSYM";
15901     case DT_MIPS_CONFLICT:
15902       return "MIPS_CONFLICT";
15903     case DT_MIPS_LIBLIST:
15904       return "MIPS_LIBLIST";
15905     case DT_MIPS_LOCAL_GOTNO:
15906       return "MIPS_LOCAL_GOTNO";
15907     case DT_MIPS_CONFLICTNO:
15908       return "MIPS_CONFLICTNO";
15909     case DT_MIPS_LIBLISTNO:
15910       return "MIPS_LIBLISTNO";
15911     case DT_MIPS_SYMTABNO:
15912       return "MIPS_SYMTABNO";
15913     case DT_MIPS_UNREFEXTNO:
15914       return "MIPS_UNREFEXTNO";
15915     case DT_MIPS_GOTSYM:
15916       return "MIPS_GOTSYM";
15917     case DT_MIPS_HIPAGENO:
15918       return "MIPS_HIPAGENO";
15919     case DT_MIPS_RLD_MAP:
15920       return "MIPS_RLD_MAP";
15921     case DT_MIPS_RLD_MAP_REL:
15922       return "MIPS_RLD_MAP_REL";
15923     case DT_MIPS_DELTA_CLASS:
15924       return "MIPS_DELTA_CLASS";
15925     case DT_MIPS_DELTA_CLASS_NO:
15926       return "MIPS_DELTA_CLASS_NO";
15927     case DT_MIPS_DELTA_INSTANCE:
15928       return "MIPS_DELTA_INSTANCE";
15929     case DT_MIPS_DELTA_INSTANCE_NO:
15930       return "MIPS_DELTA_INSTANCE_NO";
15931     case DT_MIPS_DELTA_RELOC:
15932       return "MIPS_DELTA_RELOC";
15933     case DT_MIPS_DELTA_RELOC_NO:
15934       return "MIPS_DELTA_RELOC_NO";
15935     case DT_MIPS_DELTA_SYM:
15936       return "MIPS_DELTA_SYM";
15937     case DT_MIPS_DELTA_SYM_NO:
15938       return "MIPS_DELTA_SYM_NO";
15939     case DT_MIPS_DELTA_CLASSSYM:
15940       return "MIPS_DELTA_CLASSSYM";
15941     case DT_MIPS_DELTA_CLASSSYM_NO:
15942       return "MIPS_DELTA_CLASSSYM_NO";
15943     case DT_MIPS_CXX_FLAGS:
15944       return "MIPS_CXX_FLAGS";
15945     case DT_MIPS_PIXIE_INIT:
15946       return "MIPS_PIXIE_INIT";
15947     case DT_MIPS_SYMBOL_LIB:
15948       return "MIPS_SYMBOL_LIB";
15949     case DT_MIPS_LOCALPAGE_GOTIDX:
15950       return "MIPS_LOCALPAGE_GOTIDX";
15951     case DT_MIPS_LOCAL_GOTIDX:
15952       return "MIPS_LOCAL_GOTIDX";
15953     case DT_MIPS_HIDDEN_GOTIDX:
15954       return "MIPS_HIDDEN_GOTIDX";
15955     case DT_MIPS_PROTECTED_GOTIDX:
15956       return "MIPS_PROTECTED_GOT_IDX";
15957     case DT_MIPS_OPTIONS:
15958       return "MIPS_OPTIONS";
15959     case DT_MIPS_INTERFACE:
15960       return "MIPS_INTERFACE";
15961     case DT_MIPS_DYNSTR_ALIGN:
15962       return "DT_MIPS_DYNSTR_ALIGN";
15963     case DT_MIPS_INTERFACE_SIZE:
15964       return "DT_MIPS_INTERFACE_SIZE";
15965     case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15966       return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15967     case DT_MIPS_PERF_SUFFIX:
15968       return "DT_MIPS_PERF_SUFFIX";
15969     case DT_MIPS_COMPACT_SIZE:
15970       return "DT_MIPS_COMPACT_SIZE";
15971     case DT_MIPS_GP_VALUE:
15972       return "DT_MIPS_GP_VALUE";
15973     case DT_MIPS_AUX_DYNAMIC:
15974       return "DT_MIPS_AUX_DYNAMIC";
15975     case DT_MIPS_PLTGOT:
15976       return "DT_MIPS_PLTGOT";
15977     case DT_MIPS_RWPLT:
15978       return "DT_MIPS_RWPLT";
15979     case DT_MIPS_XHASH:
15980       return "DT_MIPS_XHASH";
15981     }
15982 }
15983 
15984 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15985    not known.  */
15986 
15987 const char *
15988 _bfd_mips_fp_abi_string (int fp)
15989 {
15990   switch (fp)
15991     {
15992       /* These strings aren't translated because they're simply
15993 	 option lists.  */
15994     case Val_GNU_MIPS_ABI_FP_DOUBLE:
15995       return "-mdouble-float";
15996 
15997     case Val_GNU_MIPS_ABI_FP_SINGLE:
15998       return "-msingle-float";
15999 
16000     case Val_GNU_MIPS_ABI_FP_SOFT:
16001       return "-msoft-float";
16002 
16003     case Val_GNU_MIPS_ABI_FP_OLD_64:
16004       return _("-mips32r2 -mfp64 (12 callee-saved)");
16005 
16006     case Val_GNU_MIPS_ABI_FP_XX:
16007       return "-mfpxx";
16008 
16009     case Val_GNU_MIPS_ABI_FP_64:
16010       return "-mgp32 -mfp64";
16011 
16012     case Val_GNU_MIPS_ABI_FP_64A:
16013       return "-mgp32 -mfp64 -mno-odd-spreg";
16014 
16015     default:
16016       return 0;
16017     }
16018 }
16019 
16020 static void
16021 print_mips_ases (FILE *file, unsigned int mask)
16022 {
16023   if (mask & AFL_ASE_DSP)
16024     fputs ("\n\tDSP ASE", file);
16025   if (mask & AFL_ASE_DSPR2)
16026     fputs ("\n\tDSP R2 ASE", file);
16027   if (mask & AFL_ASE_DSPR3)
16028     fputs ("\n\tDSP R3 ASE", file);
16029   if (mask & AFL_ASE_EVA)
16030     fputs ("\n\tEnhanced VA Scheme", file);
16031   if (mask & AFL_ASE_MCU)
16032     fputs ("\n\tMCU (MicroController) ASE", file);
16033   if (mask & AFL_ASE_MDMX)
16034     fputs ("\n\tMDMX ASE", file);
16035   if (mask & AFL_ASE_MIPS3D)
16036     fputs ("\n\tMIPS-3D ASE", file);
16037   if (mask & AFL_ASE_MT)
16038     fputs ("\n\tMT ASE", file);
16039   if (mask & AFL_ASE_SMARTMIPS)
16040     fputs ("\n\tSmartMIPS ASE", file);
16041   if (mask & AFL_ASE_VIRT)
16042     fputs ("\n\tVZ ASE", file);
16043   if (mask & AFL_ASE_MSA)
16044     fputs ("\n\tMSA ASE", file);
16045   if (mask & AFL_ASE_MIPS16)
16046     fputs ("\n\tMIPS16 ASE", file);
16047   if (mask & AFL_ASE_MICROMIPS)
16048     fputs ("\n\tMICROMIPS ASE", file);
16049   if (mask & AFL_ASE_XPA)
16050     fputs ("\n\tXPA ASE", file);
16051   if (mask & AFL_ASE_MIPS16E2)
16052     fputs ("\n\tMIPS16e2 ASE", file);
16053   if (mask & AFL_ASE_CRC)
16054     fputs ("\n\tCRC ASE", file);
16055   if (mask & AFL_ASE_GINV)
16056     fputs ("\n\tGINV ASE", file);
16057   if (mask & AFL_ASE_LOONGSON_MMI)
16058     fputs ("\n\tLoongson MMI ASE", file);
16059   if (mask & AFL_ASE_LOONGSON_CAM)
16060     fputs ("\n\tLoongson CAM ASE", file);
16061   if (mask & AFL_ASE_LOONGSON_EXT)
16062     fputs ("\n\tLoongson EXT ASE", file);
16063   if (mask & AFL_ASE_LOONGSON_EXT2)
16064     fputs ("\n\tLoongson EXT2 ASE", file);
16065   if (mask == 0)
16066     fprintf (file, "\n\t%s", _("None"));
16067   else if ((mask & ~AFL_ASE_MASK) != 0)
16068     fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16069 }
16070 
16071 static void
16072 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16073 {
16074   switch (isa_ext)
16075     {
16076     case 0:
16077       fputs (_("None"), file);
16078       break;
16079     case AFL_EXT_XLR:
16080       fputs ("RMI XLR", file);
16081       break;
16082     case AFL_EXT_OCTEON3:
16083       fputs ("Cavium Networks Octeon3", file);
16084       break;
16085     case AFL_EXT_OCTEON2:
16086       fputs ("Cavium Networks Octeon2", file);
16087       break;
16088     case AFL_EXT_OCTEONP:
16089       fputs ("Cavium Networks OcteonP", file);
16090       break;
16091     case AFL_EXT_OCTEON:
16092       fputs ("Cavium Networks Octeon", file);
16093       break;
16094     case AFL_EXT_5900:
16095       fputs ("Toshiba R5900", file);
16096       break;
16097     case AFL_EXT_4650:
16098       fputs ("MIPS R4650", file);
16099       break;
16100     case AFL_EXT_4010:
16101       fputs ("LSI R4010", file);
16102       break;
16103     case AFL_EXT_4100:
16104       fputs ("NEC VR4100", file);
16105       break;
16106     case AFL_EXT_3900:
16107       fputs ("Toshiba R3900", file);
16108       break;
16109     case AFL_EXT_10000:
16110       fputs ("MIPS R10000", file);
16111       break;
16112     case AFL_EXT_SB1:
16113       fputs ("Broadcom SB-1", file);
16114       break;
16115     case AFL_EXT_4111:
16116       fputs ("NEC VR4111/VR4181", file);
16117       break;
16118     case AFL_EXT_4120:
16119       fputs ("NEC VR4120", file);
16120       break;
16121     case AFL_EXT_5400:
16122       fputs ("NEC VR5400", file);
16123       break;
16124     case AFL_EXT_5500:
16125       fputs ("NEC VR5500", file);
16126       break;
16127     case AFL_EXT_LOONGSON_2E:
16128       fputs ("ST Microelectronics Loongson 2E", file);
16129       break;
16130     case AFL_EXT_LOONGSON_2F:
16131       fputs ("ST Microelectronics Loongson 2F", file);
16132       break;
16133     case AFL_EXT_INTERAPTIV_MR2:
16134       fputs ("Imagination interAptiv MR2", file);
16135       break;
16136     default:
16137       fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16138       break;
16139     }
16140 }
16141 
16142 static void
16143 print_mips_fp_abi_value (FILE *file, int val)
16144 {
16145   switch (val)
16146     {
16147     case Val_GNU_MIPS_ABI_FP_ANY:
16148       fprintf (file, _("Hard or soft float\n"));
16149       break;
16150     case Val_GNU_MIPS_ABI_FP_DOUBLE:
16151       fprintf (file, _("Hard float (double precision)\n"));
16152       break;
16153     case Val_GNU_MIPS_ABI_FP_SINGLE:
16154       fprintf (file, _("Hard float (single precision)\n"));
16155       break;
16156     case Val_GNU_MIPS_ABI_FP_SOFT:
16157       fprintf (file, _("Soft float\n"));
16158       break;
16159     case Val_GNU_MIPS_ABI_FP_OLD_64:
16160       fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16161       break;
16162     case Val_GNU_MIPS_ABI_FP_XX:
16163       fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16164       break;
16165     case Val_GNU_MIPS_ABI_FP_64:
16166       fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16167       break;
16168     case Val_GNU_MIPS_ABI_FP_64A:
16169       fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16170       break;
16171     default:
16172       fprintf (file, "??? (%d)\n", val);
16173       break;
16174     }
16175 }
16176 
16177 static int
16178 get_mips_reg_size (int reg_size)
16179 {
16180   return (reg_size == AFL_REG_NONE) ? 0
16181 	 : (reg_size == AFL_REG_32) ? 32
16182 	 : (reg_size == AFL_REG_64) ? 64
16183 	 : (reg_size == AFL_REG_128) ? 128
16184 	 : -1;
16185 }
16186 
16187 bfd_boolean
16188 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16189 {
16190   FILE *file = ptr;
16191 
16192   BFD_ASSERT (abfd != NULL && ptr != NULL);
16193 
16194   /* Print normal ELF private data.  */
16195   _bfd_elf_print_private_bfd_data (abfd, ptr);
16196 
16197   /* xgettext:c-format */
16198   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16199 
16200   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16201     fprintf (file, _(" [abi=O32]"));
16202   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16203     fprintf (file, _(" [abi=O64]"));
16204   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16205     fprintf (file, _(" [abi=EABI32]"));
16206   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16207     fprintf (file, _(" [abi=EABI64]"));
16208   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16209     fprintf (file, _(" [abi unknown]"));
16210   else if (ABI_N32_P (abfd))
16211     fprintf (file, _(" [abi=N32]"));
16212   else if (ABI_64_P (abfd))
16213     fprintf (file, _(" [abi=64]"));
16214   else
16215     fprintf (file, _(" [no abi set]"));
16216 
16217   if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16218     fprintf (file, " [mips1]");
16219   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16220     fprintf (file, " [mips2]");
16221   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16222     fprintf (file, " [mips3]");
16223   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16224     fprintf (file, " [mips4]");
16225   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16226     fprintf (file, " [mips5]");
16227   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16228     fprintf (file, " [mips32]");
16229   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16230     fprintf (file, " [mips64]");
16231   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16232     fprintf (file, " [mips32r2]");
16233   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16234     fprintf (file, " [mips64r2]");
16235   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16236     fprintf (file, " [mips32r6]");
16237   else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16238     fprintf (file, " [mips64r6]");
16239   else
16240     fprintf (file, _(" [unknown ISA]"));
16241 
16242   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16243     fprintf (file, " [mdmx]");
16244 
16245   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16246     fprintf (file, " [mips16]");
16247 
16248   if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16249     fprintf (file, " [micromips]");
16250 
16251   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16252     fprintf (file, " [nan2008]");
16253 
16254   if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16255     fprintf (file, " [old fp64]");
16256 
16257   if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16258     fprintf (file, " [32bitmode]");
16259   else
16260     fprintf (file, _(" [not 32bitmode]"));
16261 
16262   if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16263     fprintf (file, " [noreorder]");
16264 
16265   if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16266     fprintf (file, " [PIC]");
16267 
16268   if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16269     fprintf (file, " [CPIC]");
16270 
16271   if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16272     fprintf (file, " [XGOT]");
16273 
16274   if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16275     fprintf (file, " [UCODE]");
16276 
16277   fputc ('\n', file);
16278 
16279   if (mips_elf_tdata (abfd)->abiflags_valid)
16280     {
16281       Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16282       fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16283       fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16284       if (abiflags->isa_rev > 1)
16285 	fprintf (file, "r%d", abiflags->isa_rev);
16286       fprintf (file, "\nGPR size: %d",
16287 	       get_mips_reg_size (abiflags->gpr_size));
16288       fprintf (file, "\nCPR1 size: %d",
16289 	       get_mips_reg_size (abiflags->cpr1_size));
16290       fprintf (file, "\nCPR2 size: %d",
16291 	       get_mips_reg_size (abiflags->cpr2_size));
16292       fputs ("\nFP ABI: ", file);
16293       print_mips_fp_abi_value (file, abiflags->fp_abi);
16294       fputs ("ISA Extension: ", file);
16295       print_mips_isa_ext (file, abiflags->isa_ext);
16296       fputs ("\nASEs:", file);
16297       print_mips_ases (file, abiflags->ases);
16298       fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16299       fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16300       fputc ('\n', file);
16301     }
16302 
16303   return TRUE;
16304 }
16305 
16306 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16307 {
16308   { STRING_COMMA_LEN (".lit4"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16309   { STRING_COMMA_LEN (".lit8"),	  0, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16310   { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16311   { STRING_COMMA_LEN (".sbss"),	 -2, SHT_NOBITS,     SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16312   { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS,   SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16313   { STRING_COMMA_LEN (".ucode"),  0, SHT_MIPS_UCODE, 0 },
16314   { STRING_COMMA_LEN (".MIPS.xhash"),  0, SHT_MIPS_XHASH,   SHF_ALLOC },
16315   { NULL,		      0,  0, 0,		     0 }
16316 };
16317 
16318 /* Merge non visibility st_other attributes.  Ensure that the
16319    STO_OPTIONAL flag is copied into h->other, even if this is not a
16320    definiton of the symbol.  */
16321 void
16322 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16323 				      const Elf_Internal_Sym *isym,
16324 				      bfd_boolean definition,
16325 				      bfd_boolean dynamic ATTRIBUTE_UNUSED)
16326 {
16327   if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16328     {
16329       unsigned char other;
16330 
16331       other = (definition ? isym->st_other : h->other);
16332       other &= ~ELF_ST_VISIBILITY (-1);
16333       h->other = other | ELF_ST_VISIBILITY (h->other);
16334     }
16335 
16336   if (!definition
16337       && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16338     h->other |= STO_OPTIONAL;
16339 }
16340 
16341 /* Decide whether an undefined symbol is special and can be ignored.
16342    This is the case for OPTIONAL symbols on IRIX.  */
16343 bfd_boolean
16344 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16345 {
16346   return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16347 }
16348 
16349 bfd_boolean
16350 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16351 {
16352   return (sym->st_shndx == SHN_COMMON
16353 	  || sym->st_shndx == SHN_MIPS_ACOMMON
16354 	  || sym->st_shndx == SHN_MIPS_SCOMMON);
16355 }
16356 
16357 /* Return address for Ith PLT stub in section PLT, for relocation REL
16358    or (bfd_vma) -1 if it should not be included.  */
16359 
16360 bfd_vma
16361 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16362 			   const arelent *rel ATTRIBUTE_UNUSED)
16363 {
16364   return (plt->vma
16365 	  + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16366 	  + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16367 }
16368 
16369 /* Build a table of synthetic symbols to represent the PLT.  As with MIPS16
16370    and microMIPS PLT slots we may have a many-to-one mapping between .plt
16371    and .got.plt and also the slots may be of a different size each we walk
16372    the PLT manually fetching instructions and matching them against known
16373    patterns.  To make things easier standard MIPS slots, if any, always come
16374    first.  As we don't create proper ELF symbols we use the UDATA.I member
16375    of ASYMBOL to carry ISA annotation.  The encoding used is the same as
16376    with the ST_OTHER member of the ELF symbol.  */
16377 
16378 long
16379 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16380 				    long symcount ATTRIBUTE_UNUSED,
16381 				    asymbol **syms ATTRIBUTE_UNUSED,
16382 				    long dynsymcount, asymbol **dynsyms,
16383 				    asymbol **ret)
16384 {
16385   static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16386   static const char microsuffix[] = "@micromipsplt";
16387   static const char m16suffix[] = "@mips16plt";
16388   static const char mipssuffix[] = "@plt";
16389 
16390   bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16391   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16392   bfd_boolean micromips_p = MICROMIPS_P (abfd);
16393   Elf_Internal_Shdr *hdr;
16394   bfd_byte *plt_data;
16395   bfd_vma plt_offset;
16396   unsigned int other;
16397   bfd_vma entry_size;
16398   bfd_vma plt0_size;
16399   asection *relplt;
16400   bfd_vma opcode;
16401   asection *plt;
16402   asymbol *send;
16403   size_t size;
16404   char *names;
16405   long counti;
16406   arelent *p;
16407   asymbol *s;
16408   char *nend;
16409   long count;
16410   long pi;
16411   long i;
16412   long n;
16413 
16414   *ret = NULL;
16415 
16416   if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16417     return 0;
16418 
16419   relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16420   if (relplt == NULL)
16421     return 0;
16422 
16423   hdr = &elf_section_data (relplt)->this_hdr;
16424   if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16425     return 0;
16426 
16427   plt = bfd_get_section_by_name (abfd, ".plt");
16428   if (plt == NULL)
16429     return 0;
16430 
16431   slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16432   if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16433     return -1;
16434   p = relplt->relocation;
16435 
16436   /* Calculating the exact amount of space required for symbols would
16437      require two passes over the PLT, so just pessimise assuming two
16438      PLT slots per relocation.  */
16439   count = relplt->size / hdr->sh_entsize;
16440   counti = count * bed->s->int_rels_per_ext_rel;
16441   size = 2 * count * sizeof (asymbol);
16442   size += count * (sizeof (mipssuffix) +
16443 		   (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16444   for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16445     size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16446 
16447   /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too.  */
16448   size += sizeof (asymbol) + sizeof (pltname);
16449 
16450   if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16451     return -1;
16452 
16453   if (plt->size < 16)
16454     return -1;
16455 
16456   s = *ret = bfd_malloc (size);
16457   if (s == NULL)
16458     return -1;
16459   send = s + 2 * count + 1;
16460 
16461   names = (char *) send;
16462   nend = (char *) s + size;
16463   n = 0;
16464 
16465   opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16466   if (opcode == 0x3302fffe)
16467     {
16468       if (!micromips_p)
16469 	return -1;
16470       plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16471       other = STO_MICROMIPS;
16472     }
16473   else if (opcode == 0x0398c1d0)
16474     {
16475       if (!micromips_p)
16476 	return -1;
16477       plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16478       other = STO_MICROMIPS;
16479     }
16480   else
16481     {
16482       plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16483       other = 0;
16484     }
16485 
16486   s->the_bfd = abfd;
16487   s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16488   s->section = plt;
16489   s->value = 0;
16490   s->name = names;
16491   s->udata.i = other;
16492   memcpy (names, pltname, sizeof (pltname));
16493   names += sizeof (pltname);
16494   ++s, ++n;
16495 
16496   pi = 0;
16497   for (plt_offset = plt0_size;
16498        plt_offset + 8 <= plt->size && s < send;
16499        plt_offset += entry_size)
16500     {
16501       bfd_vma gotplt_addr;
16502       const char *suffix;
16503       bfd_vma gotplt_hi;
16504       bfd_vma gotplt_lo;
16505       size_t suffixlen;
16506 
16507       opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16508 
16509       /* Check if the second word matches the expected MIPS16 instruction.  */
16510       if (opcode == 0x651aeb00)
16511 	{
16512 	  if (micromips_p)
16513 	    return -1;
16514 	  /* Truncated table???  */
16515 	  if (plt_offset + 16 > plt->size)
16516 	    break;
16517 	  gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16518 	  entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16519 	  suffixlen = sizeof (m16suffix);
16520 	  suffix = m16suffix;
16521 	  other = STO_MIPS16;
16522 	}
16523       /* Likewise the expected microMIPS instruction (no insn32 mode).  */
16524       else if (opcode == 0xff220000)
16525 	{
16526 	  if (!micromips_p)
16527 	    return -1;
16528 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16529 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16530 	  gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16531 	  gotplt_lo <<= 2;
16532 	  gotplt_addr = gotplt_hi + gotplt_lo;
16533 	  gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16534 	  entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16535 	  suffixlen = sizeof (microsuffix);
16536 	  suffix = microsuffix;
16537 	  other = STO_MICROMIPS;
16538 	}
16539       /* Likewise the expected microMIPS instruction (insn32 mode).  */
16540       else if ((opcode & 0xffff0000) == 0xff2f0000)
16541 	{
16542 	  gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16543 	  gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16544 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16545 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16546 	  gotplt_addr = gotplt_hi + gotplt_lo;
16547 	  entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16548 	  suffixlen = sizeof (microsuffix);
16549 	  suffix = microsuffix;
16550 	  other = STO_MICROMIPS;
16551 	}
16552       /* Otherwise assume standard MIPS code.  */
16553       else
16554 	{
16555 	  gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16556 	  gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16557 	  gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16558 	  gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16559 	  gotplt_addr = gotplt_hi + gotplt_lo;
16560 	  entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16561 	  suffixlen = sizeof (mipssuffix);
16562 	  suffix = mipssuffix;
16563 	  other = 0;
16564 	}
16565       /* Truncated table???  */
16566       if (plt_offset + entry_size > plt->size)
16567 	break;
16568 
16569       for (i = 0;
16570 	   i < count && p[pi].address != gotplt_addr;
16571 	   i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16572 
16573       if (i < count)
16574 	{
16575 	  size_t namelen;
16576 	  size_t len;
16577 
16578 	  *s = **p[pi].sym_ptr_ptr;
16579 	  /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set.  Since
16580 	     we are defining a symbol, ensure one of them is set.  */
16581 	  if ((s->flags & BSF_LOCAL) == 0)
16582 	    s->flags |= BSF_GLOBAL;
16583 	  s->flags |= BSF_SYNTHETIC;
16584 	  s->section = plt;
16585 	  s->value = plt_offset;
16586 	  s->name = names;
16587 	  s->udata.i = other;
16588 
16589 	  len = strlen ((*p[pi].sym_ptr_ptr)->name);
16590 	  namelen = len + suffixlen;
16591 	  if (names + namelen > nend)
16592 	    break;
16593 
16594 	  memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16595 	  names += len;
16596 	  memcpy (names, suffix, suffixlen);
16597 	  names += suffixlen;
16598 
16599 	  ++s, ++n;
16600 	  pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16601 	}
16602     }
16603 
16604   free (plt_data);
16605 
16606   return n;
16607 }
16608 
16609 /* Return the ABI flags associated with ABFD if available.  */
16610 
16611 Elf_Internal_ABIFlags_v0 *
16612 bfd_mips_elf_get_abiflags (bfd *abfd)
16613 {
16614   struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16615 
16616   return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16617 }
16618 
16619 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16620    field.  Taken from `libc-abis.h' generated at GNU libc build time.
16621    Using a MIPS_ prefix as other libc targets use different values.  */
16622 enum
16623 {
16624   MIPS_LIBC_ABI_DEFAULT = 0,
16625   MIPS_LIBC_ABI_MIPS_PLT,
16626   MIPS_LIBC_ABI_UNIQUE,
16627   MIPS_LIBC_ABI_MIPS_O32_FP64,
16628   MIPS_LIBC_ABI_ABSOLUTE,
16629   MIPS_LIBC_ABI_XHASH,
16630   MIPS_LIBC_ABI_MAX
16631 };
16632 
16633 bfd_boolean
16634 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16635 {
16636   struct mips_elf_link_hash_table *htab = NULL;
16637   Elf_Internal_Ehdr *i_ehdrp;
16638 
16639   if (!_bfd_elf_init_file_header (abfd, link_info))
16640     return FALSE;
16641 
16642   i_ehdrp = elf_elfheader (abfd);
16643   if (link_info)
16644     {
16645       htab = mips_elf_hash_table (link_info);
16646       BFD_ASSERT (htab != NULL);
16647     }
16648 
16649   if (htab != NULL
16650       && htab->use_plts_and_copy_relocs
16651       && htab->root.target_os != is_vxworks)
16652     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16653 
16654   if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16655       || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16656     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16657 
16658   /* Mark that we need support for absolute symbols in the dynamic loader.  */
16659   if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16660     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16661 
16662   /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16663      if it is the only hash section that will be created.  */
16664   if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16665     i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16666   return TRUE;
16667 }
16668 
16669 int
16670 _bfd_mips_elf_compact_eh_encoding
16671   (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16672 {
16673   return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16674 }
16675 
16676 /* Return the opcode for can't unwind.  */
16677 
16678 int
16679 _bfd_mips_elf_cant_unwind_opcode
16680   (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16681 {
16682   return COMPACT_EH_CANT_UNWIND_OPCODE;
16683 }
16684 
16685 /* Record a position XLAT_LOC in the xlat translation table, associated with
16686    the hash entry H.  The entry in the translation table will later be
16687    populated with the real symbol dynindx.  */
16688 
16689 void
16690 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16691 				   bfd_vma xlat_loc)
16692 {
16693   struct mips_elf_link_hash_entry *hmips;
16694 
16695   hmips = (struct mips_elf_link_hash_entry *) h;
16696   hmips->mipsxhash_loc = xlat_loc;
16697 }
16698