1 /* AArch64-specific support for NN-bit ELF. 2 Copyright 2009-2013 Free Software Foundation, Inc. 3 Contributed by ARM Ltd. 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; see the file COPYING3. If not, 19 see <http://www.gnu.org/licenses/>. */ 20 21 /* Notes on implementation: 22 23 Thread Local Store (TLS) 24 25 Overview: 26 27 The implementation currently supports both traditional TLS and TLS 28 descriptors, but only general dynamic (GD). 29 30 For traditional TLS the assembler will present us with code 31 fragments of the form: 32 33 adrp x0, :tlsgd:foo 34 R_AARCH64_TLSGD_ADR_PAGE21(foo) 35 add x0, :tlsgd_lo12:foo 36 R_AARCH64_TLSGD_ADD_LO12_NC(foo) 37 bl __tls_get_addr 38 nop 39 40 For TLS descriptors the assembler will present us with code 41 fragments of the form: 42 43 adrp x0, :tlsdesc:foo R_AARCH64_TLSDESC_ADR_PAGE21(foo) 44 ldr x1, [x0, #:tlsdesc_lo12:foo] R_AARCH64_TLSDESC_LD64_LO12(foo) 45 add x0, x0, #:tlsdesc_lo12:foo R_AARCH64_TLSDESC_ADD_LO12(foo) 46 .tlsdesccall foo 47 blr x1 R_AARCH64_TLSDESC_CALL(foo) 48 49 The relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} against foo 50 indicate that foo is thread local and should be accessed via the 51 traditional TLS mechanims. 52 53 The relocations R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} 54 against foo indicate that 'foo' is thread local and should be accessed 55 via a TLS descriptor mechanism. 56 57 The precise instruction sequence is only relevant from the 58 perspective of linker relaxation which is currently not implemented. 59 60 The static linker must detect that 'foo' is a TLS object and 61 allocate a double GOT entry. The GOT entry must be created for both 62 global and local TLS symbols. Note that this is different to none 63 TLS local objects which do not need a GOT entry. 64 65 In the traditional TLS mechanism, the double GOT entry is used to 66 provide the tls_index structure, containing module and offset 67 entries. The static linker places the relocation R_AARCH64_TLS_DTPMOD 68 on the module entry. The loader will subsequently fixup this 69 relocation with the module identity. 70 71 For global traditional TLS symbols the static linker places an 72 R_AARCH64_TLS_DTPREL relocation on the offset entry. The loader 73 will subsequently fixup the offset. For local TLS symbols the static 74 linker fixes up offset. 75 76 In the TLS descriptor mechanism the double GOT entry is used to 77 provide the descriptor. The static linker places the relocation 78 R_AARCH64_TLSDESC on the first GOT slot. The loader will 79 subsequently fix this up. 80 81 Implementation: 82 83 The handling of TLS symbols is implemented across a number of 84 different backend functions. The following is a top level view of 85 what processing is performed where. 86 87 The TLS implementation maintains state information for each TLS 88 symbol. The state information for local and global symbols is kept 89 in different places. Global symbols use generic BFD structures while 90 local symbols use backend specific structures that are allocated and 91 maintained entirely by the backend. 92 93 The flow: 94 95 elfNN_aarch64_check_relocs() 96 97 This function is invoked for each relocation. 98 99 The TLS relocations R_AARCH64_TLSGD_{ADR_PREL21,ADD_LO12_NC} and 100 R_AARCH64_TLSDESC_{ADR_PAGE21,LD64_LO12_NC,ADD_LO12_NC} are 101 spotted. One time creation of local symbol data structures are 102 created when the first local symbol is seen. 103 104 The reference count for a symbol is incremented. The GOT type for 105 each symbol is marked as general dynamic. 106 107 elfNN_aarch64_allocate_dynrelocs () 108 109 For each global with positive reference count we allocate a double 110 GOT slot. For a traditional TLS symbol we allocate space for two 111 relocation entries on the GOT, for a TLS descriptor symbol we 112 allocate space for one relocation on the slot. Record the GOT offset 113 for this symbol. 114 115 elfNN_aarch64_size_dynamic_sections () 116 117 Iterate all input BFDS, look for in the local symbol data structure 118 constructed earlier for local TLS symbols and allocate them double 119 GOT slots along with space for a single GOT relocation. Update the 120 local symbol structure to record the GOT offset allocated. 121 122 elfNN_aarch64_relocate_section () 123 124 Calls elfNN_aarch64_final_link_relocate () 125 126 Emit the relevant TLS relocations against the GOT for each TLS 127 symbol. For local TLS symbols emit the GOT offset directly. The GOT 128 relocations are emitted once the first time a TLS symbol is 129 encountered. The implementation uses the LSB of the GOT offset to 130 flag that the relevant GOT relocations for a symbol have been 131 emitted. All of the TLS code that uses the GOT offset needs to take 132 care to mask out this flag bit before using the offset. 133 134 elfNN_aarch64_final_link_relocate () 135 136 Fixup the R_AARCH64_TLSGD_{ADR_PREL21, ADD_LO12_NC} relocations. */ 137 138 #include "sysdep.h" 139 #include "bfd.h" 140 #include "libiberty.h" 141 #include "libbfd.h" 142 #include "bfd_stdint.h" 143 #include "elf-bfd.h" 144 #include "bfdlink.h" 145 #include "objalloc.h" 146 #include "elf/aarch64.h" 147 #include "elfxx-aarch64.h" 148 149 #define ARCH_SIZE NN 150 151 #if ARCH_SIZE == 64 152 #define AARCH64_R(NAME) R_AARCH64_ ## NAME 153 #define AARCH64_R_STR(NAME) "R_AARCH64_" #NAME 154 #define HOWTO64(...) HOWTO (__VA_ARGS__) 155 #define HOWTO32(...) EMPTY_HOWTO (0) 156 #define LOG_FILE_ALIGN 3 157 #endif 158 159 #if ARCH_SIZE == 32 160 #define AARCH64_R(NAME) R_AARCH64_P32_ ## NAME 161 #define AARCH64_R_STR(NAME) "R_AARCH64_P32_" #NAME 162 #define HOWTO64(...) EMPTY_HOWTO (0) 163 #define HOWTO32(...) HOWTO (__VA_ARGS__) 164 #define LOG_FILE_ALIGN 2 165 #endif 166 167 #define IS_AARCH64_TLS_RELOC(R_TYPE) \ 168 ((R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21 \ 169 || (R_TYPE) == BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC \ 170 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G1 \ 171 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_MOVW_GOTTPREL_G0_NC \ 172 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21 \ 173 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC \ 174 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC \ 175 || (R_TYPE) == BFD_RELOC_AARCH64_TLSIE_LD_GOTTPREL_PREL19 \ 176 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12 \ 177 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12 \ 178 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC \ 179 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2 \ 180 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 \ 181 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC \ 182 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0 \ 183 || (R_TYPE) == BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC \ 184 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPMOD \ 185 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_DTPREL \ 186 || (R_TYPE) == BFD_RELOC_AARCH64_TLS_TPREL \ 187 || IS_AARCH64_TLSDESC_RELOC ((R_TYPE))) 188 189 #define IS_AARCH64_TLSDESC_RELOC(R_TYPE) \ 190 ((R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD_PREL19 \ 191 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PREL21 \ 192 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21 \ 193 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC \ 194 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC \ 195 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC \ 196 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G1 \ 197 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_OFF_G0_NC \ 198 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_LDR \ 199 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_ADD \ 200 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC_CALL \ 201 || (R_TYPE) == BFD_RELOC_AARCH64_TLSDESC) 202 203 #define ELIMINATE_COPY_RELOCS 0 204 205 /* Return size of a relocation entry. HTAB is the bfd's 206 elf_aarch64_link_hash_entry. */ 207 #define RELOC_SIZE(HTAB) (sizeof (ElfNN_External_Rela)) 208 209 /* GOT Entry size - 8 bytes in ELF64 and 4 bytes in ELF32. */ 210 #define GOT_ENTRY_SIZE (ARCH_SIZE / 8) 211 #define PLT_ENTRY_SIZE (32) 212 #define PLT_SMALL_ENTRY_SIZE (16) 213 #define PLT_TLSDESC_ENTRY_SIZE (32) 214 215 /* Encoding of the nop instruction */ 216 #define INSN_NOP 0xd503201f 217 218 #define aarch64_compute_jump_table_size(htab) \ 219 (((htab)->root.srelplt == NULL) ? 0 \ 220 : (htab)->root.srelplt->reloc_count * GOT_ENTRY_SIZE) 221 222 /* The first entry in a procedure linkage table looks like this 223 if the distance between the PLTGOT and the PLT is < 4GB use 224 these PLT entries. Note that the dynamic linker gets &PLTGOT[2] 225 in x16 and needs to work out PLTGOT[1] by using an address of 226 [x16,#-GOT_ENTRY_SIZE]. */ 227 static const bfd_byte elfNN_aarch64_small_plt0_entry[PLT_ENTRY_SIZE] = 228 { 229 0xf0, 0x7b, 0xbf, 0xa9, /* stp x16, x30, [sp, #-16]! */ 230 0x10, 0x00, 0x00, 0x90, /* adrp x16, (GOT+16) */ 231 #if ARCH_SIZE == 64 232 0x11, 0x0A, 0x40, 0xf9, /* ldr x17, [x16, #PLT_GOT+0x10] */ 233 0x10, 0x42, 0x00, 0x91, /* add x16, x16,#PLT_GOT+0x10 */ 234 #else 235 0x11, 0x0A, 0x40, 0xb9, /* ldr w17, [x16, #PLT_GOT+0x8] */ 236 0x10, 0x22, 0x00, 0x11, /* add w16, w16,#PLT_GOT+0x8 */ 237 #endif 238 0x20, 0x02, 0x1f, 0xd6, /* br x17 */ 239 0x1f, 0x20, 0x03, 0xd5, /* nop */ 240 0x1f, 0x20, 0x03, 0xd5, /* nop */ 241 0x1f, 0x20, 0x03, 0xd5, /* nop */ 242 }; 243 244 /* Per function entry in a procedure linkage table looks like this 245 if the distance between the PLTGOT and the PLT is < 4GB use 246 these PLT entries. */ 247 static const bfd_byte elfNN_aarch64_small_plt_entry[PLT_SMALL_ENTRY_SIZE] = 248 { 249 0x10, 0x00, 0x00, 0x90, /* adrp x16, PLTGOT + n * 8 */ 250 #if ARCH_SIZE == 64 251 0x11, 0x02, 0x40, 0xf9, /* ldr x17, [x16, PLTGOT + n * 8] */ 252 0x10, 0x02, 0x00, 0x91, /* add x16, x16, :lo12:PLTGOT + n * 8 */ 253 #else 254 0x11, 0x02, 0x40, 0xb9, /* ldr w17, [x16, PLTGOT + n * 4] */ 255 0x10, 0x02, 0x00, 0x11, /* add w16, w16, :lo12:PLTGOT + n * 4 */ 256 #endif 257 0x20, 0x02, 0x1f, 0xd6, /* br x17. */ 258 }; 259 260 static const bfd_byte 261 elfNN_aarch64_tlsdesc_small_plt_entry[PLT_TLSDESC_ENTRY_SIZE] = 262 { 263 0xe2, 0x0f, 0xbf, 0xa9, /* stp x2, x3, [sp, #-16]! */ 264 0x02, 0x00, 0x00, 0x90, /* adrp x2, 0 */ 265 0x03, 0x00, 0x00, 0x90, /* adrp x3, 0 */ 266 #if ARCH_SIZE == 64 267 0x42, 0x00, 0x40, 0xf9, /* ldr x2, [x2, #0] */ 268 0x63, 0x00, 0x00, 0x91, /* add x3, x3, 0 */ 269 #else 270 0x42, 0x00, 0x40, 0xb9, /* ldr w2, [x2, #0] */ 271 0x63, 0x00, 0x00, 0x11, /* add w3, w3, 0 */ 272 #endif 273 0x40, 0x00, 0x1f, 0xd6, /* br x2 */ 274 0x1f, 0x20, 0x03, 0xd5, /* nop */ 275 0x1f, 0x20, 0x03, 0xd5, /* nop */ 276 }; 277 278 #define elf_info_to_howto elfNN_aarch64_info_to_howto 279 #define elf_info_to_howto_rel elfNN_aarch64_info_to_howto 280 281 #define AARCH64_ELF_ABI_VERSION 0 282 283 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 284 #define ALL_ONES (~ (bfd_vma) 0) 285 286 /* Indexed by the bfd interal reloc enumerators. 287 Therefore, the table needs to be synced with BFD_RELOC_AARCH64_* 288 in reloc.c. */ 289 290 static reloc_howto_type elfNN_aarch64_howto_table[] = 291 { 292 EMPTY_HOWTO (0), 293 294 /* Basic data relocations. */ 295 296 #if ARCH_SIZE == 64 297 HOWTO (R_AARCH64_NULL, /* type */ 298 0, /* rightshift */ 299 0, /* size (0 = byte, 1 = short, 2 = long) */ 300 0, /* bitsize */ 301 FALSE, /* pc_relative */ 302 0, /* bitpos */ 303 complain_overflow_dont, /* complain_on_overflow */ 304 bfd_elf_generic_reloc, /* special_function */ 305 "R_AARCH64_NULL", /* name */ 306 FALSE, /* partial_inplace */ 307 0, /* src_mask */ 308 0, /* dst_mask */ 309 FALSE), /* pcrel_offset */ 310 #else 311 HOWTO (R_AARCH64_NONE, /* type */ 312 0, /* rightshift */ 313 0, /* size (0 = byte, 1 = short, 2 = long) */ 314 0, /* bitsize */ 315 FALSE, /* pc_relative */ 316 0, /* bitpos */ 317 complain_overflow_dont, /* complain_on_overflow */ 318 bfd_elf_generic_reloc, /* special_function */ 319 "R_AARCH64_NONE", /* name */ 320 FALSE, /* partial_inplace */ 321 0, /* src_mask */ 322 0, /* dst_mask */ 323 FALSE), /* pcrel_offset */ 324 #endif 325 326 /* .xword: (S+A) */ 327 HOWTO64 (AARCH64_R (ABS64), /* type */ 328 0, /* rightshift */ 329 4, /* size (4 = long long) */ 330 64, /* bitsize */ 331 FALSE, /* pc_relative */ 332 0, /* bitpos */ 333 complain_overflow_unsigned, /* complain_on_overflow */ 334 bfd_elf_generic_reloc, /* special_function */ 335 AARCH64_R_STR (ABS64), /* name */ 336 FALSE, /* partial_inplace */ 337 ALL_ONES, /* src_mask */ 338 ALL_ONES, /* dst_mask */ 339 FALSE), /* pcrel_offset */ 340 341 /* .word: (S+A) */ 342 HOWTO (AARCH64_R (ABS32), /* type */ 343 0, /* rightshift */ 344 2, /* size (0 = byte, 1 = short, 2 = long) */ 345 32, /* bitsize */ 346 FALSE, /* pc_relative */ 347 0, /* bitpos */ 348 complain_overflow_unsigned, /* complain_on_overflow */ 349 bfd_elf_generic_reloc, /* special_function */ 350 AARCH64_R_STR (ABS32), /* name */ 351 FALSE, /* partial_inplace */ 352 0xffffffff, /* src_mask */ 353 0xffffffff, /* dst_mask */ 354 FALSE), /* pcrel_offset */ 355 356 /* .half: (S+A) */ 357 HOWTO (AARCH64_R (ABS16), /* type */ 358 0, /* rightshift */ 359 1, /* size (0 = byte, 1 = short, 2 = long) */ 360 16, /* bitsize */ 361 FALSE, /* pc_relative */ 362 0, /* bitpos */ 363 complain_overflow_unsigned, /* complain_on_overflow */ 364 bfd_elf_generic_reloc, /* special_function */ 365 AARCH64_R_STR (ABS16), /* name */ 366 FALSE, /* partial_inplace */ 367 0xffff, /* src_mask */ 368 0xffff, /* dst_mask */ 369 FALSE), /* pcrel_offset */ 370 371 /* .xword: (S+A-P) */ 372 HOWTO64 (AARCH64_R (PREL64), /* type */ 373 0, /* rightshift */ 374 4, /* size (4 = long long) */ 375 64, /* bitsize */ 376 TRUE, /* pc_relative */ 377 0, /* bitpos */ 378 complain_overflow_signed, /* complain_on_overflow */ 379 bfd_elf_generic_reloc, /* special_function */ 380 AARCH64_R_STR (PREL64), /* name */ 381 FALSE, /* partial_inplace */ 382 ALL_ONES, /* src_mask */ 383 ALL_ONES, /* dst_mask */ 384 TRUE), /* pcrel_offset */ 385 386 /* .word: (S+A-P) */ 387 HOWTO (AARCH64_R (PREL32), /* type */ 388 0, /* rightshift */ 389 2, /* size (0 = byte, 1 = short, 2 = long) */ 390 32, /* bitsize */ 391 TRUE, /* pc_relative */ 392 0, /* bitpos */ 393 complain_overflow_signed, /* complain_on_overflow */ 394 bfd_elf_generic_reloc, /* special_function */ 395 AARCH64_R_STR (PREL32), /* name */ 396 FALSE, /* partial_inplace */ 397 0xffffffff, /* src_mask */ 398 0xffffffff, /* dst_mask */ 399 TRUE), /* pcrel_offset */ 400 401 /* .half: (S+A-P) */ 402 HOWTO (AARCH64_R (PREL16), /* type */ 403 0, /* rightshift */ 404 1, /* size (0 = byte, 1 = short, 2 = long) */ 405 16, /* bitsize */ 406 TRUE, /* pc_relative */ 407 0, /* bitpos */ 408 complain_overflow_signed, /* complain_on_overflow */ 409 bfd_elf_generic_reloc, /* special_function */ 410 AARCH64_R_STR (PREL16), /* name */ 411 FALSE, /* partial_inplace */ 412 0xffff, /* src_mask */ 413 0xffff, /* dst_mask */ 414 TRUE), /* pcrel_offset */ 415 416 /* Group relocations to create a 16, 32, 48 or 64 bit 417 unsigned data or abs address inline. */ 418 419 /* MOVZ: ((S+A) >> 0) & 0xffff */ 420 HOWTO (AARCH64_R (MOVW_UABS_G0), /* type */ 421 0, /* rightshift */ 422 2, /* size (0 = byte, 1 = short, 2 = long) */ 423 16, /* bitsize */ 424 FALSE, /* pc_relative */ 425 0, /* bitpos */ 426 complain_overflow_unsigned, /* complain_on_overflow */ 427 bfd_elf_generic_reloc, /* special_function */ 428 AARCH64_R_STR (MOVW_UABS_G0), /* name */ 429 FALSE, /* partial_inplace */ 430 0xffff, /* src_mask */ 431 0xffff, /* dst_mask */ 432 FALSE), /* pcrel_offset */ 433 434 /* MOVK: ((S+A) >> 0) & 0xffff [no overflow check] */ 435 HOWTO (AARCH64_R (MOVW_UABS_G0_NC), /* type */ 436 0, /* rightshift */ 437 2, /* size (0 = byte, 1 = short, 2 = long) */ 438 16, /* bitsize */ 439 FALSE, /* pc_relative */ 440 0, /* bitpos */ 441 complain_overflow_dont, /* complain_on_overflow */ 442 bfd_elf_generic_reloc, /* special_function */ 443 AARCH64_R_STR (MOVW_UABS_G0_NC), /* name */ 444 FALSE, /* partial_inplace */ 445 0xffff, /* src_mask */ 446 0xffff, /* dst_mask */ 447 FALSE), /* pcrel_offset */ 448 449 /* MOVZ: ((S+A) >> 16) & 0xffff */ 450 HOWTO (AARCH64_R (MOVW_UABS_G1), /* type */ 451 16, /* rightshift */ 452 2, /* size (0 = byte, 1 = short, 2 = long) */ 453 16, /* bitsize */ 454 FALSE, /* pc_relative */ 455 0, /* bitpos */ 456 complain_overflow_unsigned, /* complain_on_overflow */ 457 bfd_elf_generic_reloc, /* special_function */ 458 AARCH64_R_STR (MOVW_UABS_G1), /* name */ 459 FALSE, /* partial_inplace */ 460 0xffff, /* src_mask */ 461 0xffff, /* dst_mask */ 462 FALSE), /* pcrel_offset */ 463 464 /* MOVK: ((S+A) >> 16) & 0xffff [no overflow check] */ 465 HOWTO64 (AARCH64_R (MOVW_UABS_G1_NC), /* type */ 466 16, /* rightshift */ 467 2, /* size (0 = byte, 1 = short, 2 = long) */ 468 16, /* bitsize */ 469 FALSE, /* pc_relative */ 470 0, /* bitpos */ 471 complain_overflow_dont, /* complain_on_overflow */ 472 bfd_elf_generic_reloc, /* special_function */ 473 AARCH64_R_STR (MOVW_UABS_G1_NC), /* name */ 474 FALSE, /* partial_inplace */ 475 0xffff, /* src_mask */ 476 0xffff, /* dst_mask */ 477 FALSE), /* pcrel_offset */ 478 479 /* MOVZ: ((S+A) >> 32) & 0xffff */ 480 HOWTO64 (AARCH64_R (MOVW_UABS_G2), /* type */ 481 32, /* rightshift */ 482 2, /* size (0 = byte, 1 = short, 2 = long) */ 483 16, /* bitsize */ 484 FALSE, /* pc_relative */ 485 0, /* bitpos */ 486 complain_overflow_unsigned, /* complain_on_overflow */ 487 bfd_elf_generic_reloc, /* special_function */ 488 AARCH64_R_STR (MOVW_UABS_G2), /* name */ 489 FALSE, /* partial_inplace */ 490 0xffff, /* src_mask */ 491 0xffff, /* dst_mask */ 492 FALSE), /* pcrel_offset */ 493 494 /* MOVK: ((S+A) >> 32) & 0xffff [no overflow check] */ 495 HOWTO64 (AARCH64_R (MOVW_UABS_G2_NC), /* type */ 496 32, /* rightshift */ 497 2, /* size (0 = byte, 1 = short, 2 = long) */ 498 16, /* bitsize */ 499 FALSE, /* pc_relative */ 500 0, /* bitpos */ 501 complain_overflow_dont, /* complain_on_overflow */ 502 bfd_elf_generic_reloc, /* special_function */ 503 AARCH64_R_STR (MOVW_UABS_G2_NC), /* name */ 504 FALSE, /* partial_inplace */ 505 0xffff, /* src_mask */ 506 0xffff, /* dst_mask */ 507 FALSE), /* pcrel_offset */ 508 509 /* MOVZ: ((S+A) >> 48) & 0xffff */ 510 HOWTO64 (AARCH64_R (MOVW_UABS_G3), /* type */ 511 48, /* rightshift */ 512 2, /* size (0 = byte, 1 = short, 2 = long) */ 513 16, /* bitsize */ 514 FALSE, /* pc_relative */ 515 0, /* bitpos */ 516 complain_overflow_unsigned, /* complain_on_overflow */ 517 bfd_elf_generic_reloc, /* special_function */ 518 AARCH64_R_STR (MOVW_UABS_G3), /* name */ 519 FALSE, /* partial_inplace */ 520 0xffff, /* src_mask */ 521 0xffff, /* dst_mask */ 522 FALSE), /* pcrel_offset */ 523 524 /* Group relocations to create high part of a 16, 32, 48 or 64 bit 525 signed data or abs address inline. Will change instruction 526 to MOVN or MOVZ depending on sign of calculated value. */ 527 528 /* MOV[ZN]: ((S+A) >> 0) & 0xffff */ 529 HOWTO (AARCH64_R (MOVW_SABS_G0), /* type */ 530 0, /* rightshift */ 531 2, /* size (0 = byte, 1 = short, 2 = long) */ 532 16, /* bitsize */ 533 FALSE, /* pc_relative */ 534 0, /* bitpos */ 535 complain_overflow_signed, /* complain_on_overflow */ 536 bfd_elf_generic_reloc, /* special_function */ 537 AARCH64_R_STR (MOVW_SABS_G0), /* name */ 538 FALSE, /* partial_inplace */ 539 0xffff, /* src_mask */ 540 0xffff, /* dst_mask */ 541 FALSE), /* pcrel_offset */ 542 543 /* MOV[ZN]: ((S+A) >> 16) & 0xffff */ 544 HOWTO64 (AARCH64_R (MOVW_SABS_G1), /* type */ 545 16, /* rightshift */ 546 2, /* size (0 = byte, 1 = short, 2 = long) */ 547 16, /* bitsize */ 548 FALSE, /* pc_relative */ 549 0, /* bitpos */ 550 complain_overflow_signed, /* complain_on_overflow */ 551 bfd_elf_generic_reloc, /* special_function */ 552 AARCH64_R_STR (MOVW_SABS_G1), /* name */ 553 FALSE, /* partial_inplace */ 554 0xffff, /* src_mask */ 555 0xffff, /* dst_mask */ 556 FALSE), /* pcrel_offset */ 557 558 /* MOV[ZN]: ((S+A) >> 32) & 0xffff */ 559 HOWTO64 (AARCH64_R (MOVW_SABS_G2), /* type */ 560 32, /* rightshift */ 561 2, /* size (0 = byte, 1 = short, 2 = long) */ 562 16, /* bitsize */ 563 FALSE, /* pc_relative */ 564 0, /* bitpos */ 565 complain_overflow_signed, /* complain_on_overflow */ 566 bfd_elf_generic_reloc, /* special_function */ 567 AARCH64_R_STR (MOVW_SABS_G2), /* name */ 568 FALSE, /* partial_inplace */ 569 0xffff, /* src_mask */ 570 0xffff, /* dst_mask */ 571 FALSE), /* pcrel_offset */ 572 573 /* Relocations to generate 19, 21 and 33 bit PC-relative load/store 574 addresses: PG(x) is (x & ~0xfff). */ 575 576 /* LD-lit: ((S+A-P) >> 2) & 0x7ffff */ 577 HOWTO (AARCH64_R (LD_PREL_LO19), /* type */ 578 2, /* rightshift */ 579 2, /* size (0 = byte, 1 = short, 2 = long) */ 580 19, /* bitsize */ 581 TRUE, /* pc_relative */ 582 0, /* bitpos */ 583 complain_overflow_signed, /* complain_on_overflow */ 584 bfd_elf_generic_reloc, /* special_function */ 585 AARCH64_R_STR (LD_PREL_LO19), /* name */ 586 FALSE, /* partial_inplace */ 587 0x7ffff, /* src_mask */ 588 0x7ffff, /* dst_mask */ 589 TRUE), /* pcrel_offset */ 590 591 /* ADR: (S+A-P) & 0x1fffff */ 592 HOWTO (AARCH64_R (ADR_PREL_LO21), /* type */ 593 0, /* rightshift */ 594 2, /* size (0 = byte, 1 = short, 2 = long) */ 595 21, /* bitsize */ 596 TRUE, /* pc_relative */ 597 0, /* bitpos */ 598 complain_overflow_signed, /* complain_on_overflow */ 599 bfd_elf_generic_reloc, /* special_function */ 600 AARCH64_R_STR (ADR_PREL_LO21), /* name */ 601 FALSE, /* partial_inplace */ 602 0x1fffff, /* src_mask */ 603 0x1fffff, /* dst_mask */ 604 TRUE), /* pcrel_offset */ 605 606 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 607 HOWTO (AARCH64_R (ADR_PREL_PG_HI21), /* type */ 608 12, /* rightshift */ 609 2, /* size (0 = byte, 1 = short, 2 = long) */ 610 21, /* bitsize */ 611 TRUE, /* pc_relative */ 612 0, /* bitpos */ 613 complain_overflow_signed, /* complain_on_overflow */ 614 bfd_elf_generic_reloc, /* special_function */ 615 AARCH64_R_STR (ADR_PREL_PG_HI21), /* name */ 616 FALSE, /* partial_inplace */ 617 0x1fffff, /* src_mask */ 618 0x1fffff, /* dst_mask */ 619 TRUE), /* pcrel_offset */ 620 621 /* ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff [no overflow check] */ 622 HOWTO64 (AARCH64_R (ADR_PREL_PG_HI21_NC), /* type */ 623 12, /* rightshift */ 624 2, /* size (0 = byte, 1 = short, 2 = long) */ 625 21, /* bitsize */ 626 TRUE, /* pc_relative */ 627 0, /* bitpos */ 628 complain_overflow_dont, /* complain_on_overflow */ 629 bfd_elf_generic_reloc, /* special_function */ 630 AARCH64_R_STR (ADR_PREL_PG_HI21_NC), /* name */ 631 FALSE, /* partial_inplace */ 632 0x1fffff, /* src_mask */ 633 0x1fffff, /* dst_mask */ 634 TRUE), /* pcrel_offset */ 635 636 /* ADD: (S+A) & 0xfff [no overflow check] */ 637 HOWTO (AARCH64_R (ADD_ABS_LO12_NC), /* type */ 638 0, /* rightshift */ 639 2, /* size (0 = byte, 1 = short, 2 = long) */ 640 12, /* bitsize */ 641 FALSE, /* pc_relative */ 642 10, /* bitpos */ 643 complain_overflow_dont, /* complain_on_overflow */ 644 bfd_elf_generic_reloc, /* special_function */ 645 AARCH64_R_STR (ADD_ABS_LO12_NC), /* name */ 646 FALSE, /* partial_inplace */ 647 0x3ffc00, /* src_mask */ 648 0x3ffc00, /* dst_mask */ 649 FALSE), /* pcrel_offset */ 650 651 /* LD/ST8: (S+A) & 0xfff */ 652 HOWTO (AARCH64_R (LDST8_ABS_LO12_NC), /* type */ 653 0, /* rightshift */ 654 2, /* size (0 = byte, 1 = short, 2 = long) */ 655 12, /* bitsize */ 656 FALSE, /* pc_relative */ 657 0, /* bitpos */ 658 complain_overflow_dont, /* complain_on_overflow */ 659 bfd_elf_generic_reloc, /* special_function */ 660 AARCH64_R_STR (LDST8_ABS_LO12_NC), /* name */ 661 FALSE, /* partial_inplace */ 662 0xfff, /* src_mask */ 663 0xfff, /* dst_mask */ 664 FALSE), /* pcrel_offset */ 665 666 /* Relocations for control-flow instructions. */ 667 668 /* TBZ/NZ: ((S+A-P) >> 2) & 0x3fff */ 669 HOWTO (AARCH64_R (TSTBR14), /* type */ 670 2, /* rightshift */ 671 2, /* size (0 = byte, 1 = short, 2 = long) */ 672 14, /* bitsize */ 673 TRUE, /* pc_relative */ 674 0, /* bitpos */ 675 complain_overflow_signed, /* complain_on_overflow */ 676 bfd_elf_generic_reloc, /* special_function */ 677 AARCH64_R_STR (TSTBR14), /* name */ 678 FALSE, /* partial_inplace */ 679 0x3fff, /* src_mask */ 680 0x3fff, /* dst_mask */ 681 TRUE), /* pcrel_offset */ 682 683 /* B.cond: ((S+A-P) >> 2) & 0x7ffff */ 684 HOWTO (AARCH64_R (CONDBR19), /* type */ 685 2, /* rightshift */ 686 2, /* size (0 = byte, 1 = short, 2 = long) */ 687 19, /* bitsize */ 688 TRUE, /* pc_relative */ 689 0, /* bitpos */ 690 complain_overflow_signed, /* complain_on_overflow */ 691 bfd_elf_generic_reloc, /* special_function */ 692 AARCH64_R_STR (CONDBR19), /* name */ 693 FALSE, /* partial_inplace */ 694 0x7ffff, /* src_mask */ 695 0x7ffff, /* dst_mask */ 696 TRUE), /* pcrel_offset */ 697 698 /* B: ((S+A-P) >> 2) & 0x3ffffff */ 699 HOWTO (AARCH64_R (JUMP26), /* type */ 700 2, /* rightshift */ 701 2, /* size (0 = byte, 1 = short, 2 = long) */ 702 26, /* bitsize */ 703 TRUE, /* pc_relative */ 704 0, /* bitpos */ 705 complain_overflow_signed, /* complain_on_overflow */ 706 bfd_elf_generic_reloc, /* special_function */ 707 AARCH64_R_STR (JUMP26), /* name */ 708 FALSE, /* partial_inplace */ 709 0x3ffffff, /* src_mask */ 710 0x3ffffff, /* dst_mask */ 711 TRUE), /* pcrel_offset */ 712 713 /* BL: ((S+A-P) >> 2) & 0x3ffffff */ 714 HOWTO (AARCH64_R (CALL26), /* type */ 715 2, /* rightshift */ 716 2, /* size (0 = byte, 1 = short, 2 = long) */ 717 26, /* bitsize */ 718 TRUE, /* pc_relative */ 719 0, /* bitpos */ 720 complain_overflow_signed, /* complain_on_overflow */ 721 bfd_elf_generic_reloc, /* special_function */ 722 AARCH64_R_STR (CALL26), /* name */ 723 FALSE, /* partial_inplace */ 724 0x3ffffff, /* src_mask */ 725 0x3ffffff, /* dst_mask */ 726 TRUE), /* pcrel_offset */ 727 728 /* LD/ST16: (S+A) & 0xffe */ 729 HOWTO (AARCH64_R (LDST16_ABS_LO12_NC), /* type */ 730 1, /* rightshift */ 731 2, /* size (0 = byte, 1 = short, 2 = long) */ 732 12, /* bitsize */ 733 FALSE, /* pc_relative */ 734 0, /* bitpos */ 735 complain_overflow_dont, /* complain_on_overflow */ 736 bfd_elf_generic_reloc, /* special_function */ 737 AARCH64_R_STR (LDST16_ABS_LO12_NC), /* name */ 738 FALSE, /* partial_inplace */ 739 0xffe, /* src_mask */ 740 0xffe, /* dst_mask */ 741 FALSE), /* pcrel_offset */ 742 743 /* LD/ST32: (S+A) & 0xffc */ 744 HOWTO (AARCH64_R (LDST32_ABS_LO12_NC), /* type */ 745 2, /* rightshift */ 746 2, /* size (0 = byte, 1 = short, 2 = long) */ 747 12, /* bitsize */ 748 FALSE, /* pc_relative */ 749 0, /* bitpos */ 750 complain_overflow_dont, /* complain_on_overflow */ 751 bfd_elf_generic_reloc, /* special_function */ 752 AARCH64_R_STR (LDST32_ABS_LO12_NC), /* name */ 753 FALSE, /* partial_inplace */ 754 0xffc, /* src_mask */ 755 0xffc, /* dst_mask */ 756 FALSE), /* pcrel_offset */ 757 758 /* LD/ST64: (S+A) & 0xff8 */ 759 HOWTO (AARCH64_R (LDST64_ABS_LO12_NC), /* type */ 760 3, /* rightshift */ 761 2, /* size (0 = byte, 1 = short, 2 = long) */ 762 12, /* bitsize */ 763 FALSE, /* pc_relative */ 764 0, /* bitpos */ 765 complain_overflow_dont, /* complain_on_overflow */ 766 bfd_elf_generic_reloc, /* special_function */ 767 AARCH64_R_STR (LDST64_ABS_LO12_NC), /* name */ 768 FALSE, /* partial_inplace */ 769 0xff8, /* src_mask */ 770 0xff8, /* dst_mask */ 771 FALSE), /* pcrel_offset */ 772 773 /* LD/ST128: (S+A) & 0xff0 */ 774 HOWTO (AARCH64_R (LDST128_ABS_LO12_NC), /* type */ 775 4, /* rightshift */ 776 2, /* size (0 = byte, 1 = short, 2 = long) */ 777 12, /* bitsize */ 778 FALSE, /* pc_relative */ 779 0, /* bitpos */ 780 complain_overflow_dont, /* complain_on_overflow */ 781 bfd_elf_generic_reloc, /* special_function */ 782 AARCH64_R_STR (LDST128_ABS_LO12_NC), /* name */ 783 FALSE, /* partial_inplace */ 784 0xff0, /* src_mask */ 785 0xff0, /* dst_mask */ 786 FALSE), /* pcrel_offset */ 787 788 /* Set a load-literal immediate field to bits 789 0x1FFFFC of G(S)-P */ 790 HOWTO (AARCH64_R (GOT_LD_PREL19), /* type */ 791 2, /* rightshift */ 792 2, /* size (0 = byte,1 = short,2 = long) */ 793 19, /* bitsize */ 794 TRUE, /* pc_relative */ 795 0, /* bitpos */ 796 complain_overflow_signed, /* complain_on_overflow */ 797 bfd_elf_generic_reloc, /* special_function */ 798 AARCH64_R_STR (GOT_LD_PREL19), /* name */ 799 FALSE, /* partial_inplace */ 800 0xffffe0, /* src_mask */ 801 0xffffe0, /* dst_mask */ 802 TRUE), /* pcrel_offset */ 803 804 /* Get to the page for the GOT entry for the symbol 805 (G(S) - P) using an ADRP instruction. */ 806 HOWTO (AARCH64_R (ADR_GOT_PAGE), /* type */ 807 12, /* rightshift */ 808 2, /* size (0 = byte, 1 = short, 2 = long) */ 809 21, /* bitsize */ 810 TRUE, /* pc_relative */ 811 0, /* bitpos */ 812 complain_overflow_dont, /* complain_on_overflow */ 813 bfd_elf_generic_reloc, /* special_function */ 814 AARCH64_R_STR (ADR_GOT_PAGE), /* name */ 815 FALSE, /* partial_inplace */ 816 0x1fffff, /* src_mask */ 817 0x1fffff, /* dst_mask */ 818 TRUE), /* pcrel_offset */ 819 820 /* LD64: GOT offset G(S) & 0xff8 */ 821 HOWTO64 (AARCH64_R (LD64_GOT_LO12_NC), /* type */ 822 3, /* rightshift */ 823 2, /* size (0 = byte, 1 = short, 2 = long) */ 824 12, /* bitsize */ 825 FALSE, /* pc_relative */ 826 0, /* bitpos */ 827 complain_overflow_dont, /* complain_on_overflow */ 828 bfd_elf_generic_reloc, /* special_function */ 829 AARCH64_R_STR (LD64_GOT_LO12_NC), /* name */ 830 FALSE, /* partial_inplace */ 831 0xff8, /* src_mask */ 832 0xff8, /* dst_mask */ 833 FALSE), /* pcrel_offset */ 834 835 /* LD32: GOT offset G(S) & 0xffc */ 836 HOWTO32 (AARCH64_R (LD32_GOT_LO12_NC), /* type */ 837 2, /* rightshift */ 838 2, /* size (0 = byte, 1 = short, 2 = long) */ 839 12, /* bitsize */ 840 FALSE, /* pc_relative */ 841 0, /* bitpos */ 842 complain_overflow_dont, /* complain_on_overflow */ 843 bfd_elf_generic_reloc, /* special_function */ 844 AARCH64_R_STR (LD32_GOT_LO12_NC), /* name */ 845 FALSE, /* partial_inplace */ 846 0xffc, /* src_mask */ 847 0xffc, /* dst_mask */ 848 FALSE), /* pcrel_offset */ 849 850 /* Get to the page for the GOT entry for the symbol 851 (G(S) - P) using an ADRP instruction. */ 852 HOWTO (AARCH64_R (TLSGD_ADR_PAGE21), /* type */ 853 12, /* rightshift */ 854 2, /* size (0 = byte, 1 = short, 2 = long) */ 855 21, /* bitsize */ 856 TRUE, /* pc_relative */ 857 0, /* bitpos */ 858 complain_overflow_dont, /* complain_on_overflow */ 859 bfd_elf_generic_reloc, /* special_function */ 860 AARCH64_R_STR (TLSGD_ADR_PAGE21), /* name */ 861 FALSE, /* partial_inplace */ 862 0x1fffff, /* src_mask */ 863 0x1fffff, /* dst_mask */ 864 TRUE), /* pcrel_offset */ 865 866 /* ADD: GOT offset G(S) & 0xff8 [no overflow check] */ 867 HOWTO (AARCH64_R (TLSGD_ADD_LO12_NC), /* type */ 868 0, /* rightshift */ 869 2, /* size (0 = byte, 1 = short, 2 = long) */ 870 12, /* bitsize */ 871 FALSE, /* pc_relative */ 872 0, /* bitpos */ 873 complain_overflow_dont, /* complain_on_overflow */ 874 bfd_elf_generic_reloc, /* special_function */ 875 AARCH64_R_STR (TLSGD_ADD_LO12_NC), /* name */ 876 FALSE, /* partial_inplace */ 877 0xfff, /* src_mask */ 878 0xfff, /* dst_mask */ 879 FALSE), /* pcrel_offset */ 880 881 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G1), /* type */ 882 16, /* rightshift */ 883 2, /* size (0 = byte, 1 = short, 2 = long) */ 884 16, /* bitsize */ 885 FALSE, /* pc_relative */ 886 0, /* bitpos */ 887 complain_overflow_dont, /* complain_on_overflow */ 888 bfd_elf_generic_reloc, /* special_function */ 889 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G1), /* name */ 890 FALSE, /* partial_inplace */ 891 0xffff, /* src_mask */ 892 0xffff, /* dst_mask */ 893 FALSE), /* pcrel_offset */ 894 895 HOWTO64 (AARCH64_R (TLSIE_MOVW_GOTTPREL_G0_NC), /* type */ 896 0, /* rightshift */ 897 2, /* size (0 = byte, 1 = short, 2 = long) */ 898 32, /* bitsize */ 899 FALSE, /* pc_relative */ 900 0, /* bitpos */ 901 complain_overflow_dont, /* complain_on_overflow */ 902 bfd_elf_generic_reloc, /* special_function */ 903 AARCH64_R_STR (TLSIE_MOVW_GOTTPREL_G0_NC), /* name */ 904 FALSE, /* partial_inplace */ 905 0xffff, /* src_mask */ 906 0xffff, /* dst_mask */ 907 FALSE), /* pcrel_offset */ 908 909 HOWTO (AARCH64_R (TLSIE_ADR_GOTTPREL_PAGE21), /* type */ 910 12, /* rightshift */ 911 2, /* size (0 = byte, 1 = short, 2 = long) */ 912 21, /* bitsize */ 913 FALSE, /* pc_relative */ 914 0, /* bitpos */ 915 complain_overflow_dont, /* complain_on_overflow */ 916 bfd_elf_generic_reloc, /* special_function */ 917 AARCH64_R_STR (TLSIE_ADR_GOTTPREL_PAGE21), /* name */ 918 FALSE, /* partial_inplace */ 919 0x1fffff, /* src_mask */ 920 0x1fffff, /* dst_mask */ 921 FALSE), /* pcrel_offset */ 922 923 HOWTO64 (AARCH64_R (TLSIE_LD64_GOTTPREL_LO12_NC), /* type */ 924 3, /* rightshift */ 925 2, /* size (0 = byte, 1 = short, 2 = long) */ 926 12, /* bitsize */ 927 FALSE, /* pc_relative */ 928 0, /* bitpos */ 929 complain_overflow_dont, /* complain_on_overflow */ 930 bfd_elf_generic_reloc, /* special_function */ 931 AARCH64_R_STR (TLSIE_LD64_GOTTPREL_LO12_NC), /* name */ 932 FALSE, /* partial_inplace */ 933 0xff8, /* src_mask */ 934 0xff8, /* dst_mask */ 935 FALSE), /* pcrel_offset */ 936 937 HOWTO32 (AARCH64_R (TLSIE_LD32_GOTTPREL_LO12_NC), /* type */ 938 2, /* rightshift */ 939 2, /* size (0 = byte, 1 = short, 2 = long) */ 940 12, /* bitsize */ 941 FALSE, /* pc_relative */ 942 0, /* bitpos */ 943 complain_overflow_dont, /* complain_on_overflow */ 944 bfd_elf_generic_reloc, /* special_function */ 945 AARCH64_R_STR (TLSIE_LD32_GOTTPREL_LO12_NC), /* name */ 946 FALSE, /* partial_inplace */ 947 0xffc, /* src_mask */ 948 0xffc, /* dst_mask */ 949 FALSE), /* pcrel_offset */ 950 951 HOWTO (AARCH64_R (TLSIE_LD_GOTTPREL_PREL19), /* type */ 952 2, /* rightshift */ 953 2, /* size (0 = byte, 1 = short, 2 = long) */ 954 21, /* bitsize */ 955 FALSE, /* pc_relative */ 956 0, /* bitpos */ 957 complain_overflow_dont, /* complain_on_overflow */ 958 bfd_elf_generic_reloc, /* special_function */ 959 AARCH64_R_STR (TLSIE_LD_GOTTPREL_PREL19), /* name */ 960 FALSE, /* partial_inplace */ 961 0x1ffffc, /* src_mask */ 962 0x1ffffc, /* dst_mask */ 963 FALSE), /* pcrel_offset */ 964 965 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G2), /* type */ 966 32, /* rightshift */ 967 2, /* size (0 = byte, 1 = short, 2 = long) */ 968 12, /* bitsize */ 969 FALSE, /* pc_relative */ 970 0, /* bitpos */ 971 complain_overflow_dont, /* complain_on_overflow */ 972 bfd_elf_generic_reloc, /* special_function */ 973 AARCH64_R_STR (TLSLE_MOVW_TPREL_G2), /* name */ 974 FALSE, /* partial_inplace */ 975 0xffff, /* src_mask */ 976 0xffff, /* dst_mask */ 977 FALSE), /* pcrel_offset */ 978 979 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G1), /* type */ 980 16, /* rightshift */ 981 2, /* size (0 = byte, 1 = short, 2 = long) */ 982 12, /* bitsize */ 983 FALSE, /* pc_relative */ 984 0, /* bitpos */ 985 complain_overflow_dont, /* complain_on_overflow */ 986 bfd_elf_generic_reloc, /* special_function */ 987 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1), /* name */ 988 FALSE, /* partial_inplace */ 989 0xffff, /* src_mask */ 990 0xffff, /* dst_mask */ 991 FALSE), /* pcrel_offset */ 992 993 HOWTO64 (AARCH64_R (TLSLE_MOVW_TPREL_G1_NC), /* type */ 994 16, /* rightshift */ 995 2, /* size (0 = byte, 1 = short, 2 = long) */ 996 12, /* bitsize */ 997 FALSE, /* pc_relative */ 998 0, /* bitpos */ 999 complain_overflow_dont, /* complain_on_overflow */ 1000 bfd_elf_generic_reloc, /* special_function */ 1001 AARCH64_R_STR (TLSLE_MOVW_TPREL_G1_NC), /* name */ 1002 FALSE, /* partial_inplace */ 1003 0xffff, /* src_mask */ 1004 0xffff, /* dst_mask */ 1005 FALSE), /* pcrel_offset */ 1006 1007 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0), /* type */ 1008 0, /* rightshift */ 1009 2, /* size (0 = byte, 1 = short, 2 = long) */ 1010 12, /* bitsize */ 1011 FALSE, /* pc_relative */ 1012 0, /* bitpos */ 1013 complain_overflow_dont, /* complain_on_overflow */ 1014 bfd_elf_generic_reloc, /* special_function */ 1015 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0), /* name */ 1016 FALSE, /* partial_inplace */ 1017 0xffff, /* src_mask */ 1018 0xffff, /* dst_mask */ 1019 FALSE), /* pcrel_offset */ 1020 1021 HOWTO (AARCH64_R (TLSLE_MOVW_TPREL_G0_NC), /* type */ 1022 0, /* rightshift */ 1023 2, /* size (0 = byte, 1 = short, 2 = long) */ 1024 12, /* bitsize */ 1025 FALSE, /* pc_relative */ 1026 0, /* bitpos */ 1027 complain_overflow_dont, /* complain_on_overflow */ 1028 bfd_elf_generic_reloc, /* special_function */ 1029 AARCH64_R_STR (TLSLE_MOVW_TPREL_G0_NC), /* name */ 1030 FALSE, /* partial_inplace */ 1031 0xffff, /* src_mask */ 1032 0xffff, /* dst_mask */ 1033 FALSE), /* pcrel_offset */ 1034 1035 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_HI12), /* type */ 1036 12, /* rightshift */ 1037 2, /* size (0 = byte, 1 = short, 2 = long) */ 1038 12, /* bitsize */ 1039 FALSE, /* pc_relative */ 1040 0, /* bitpos */ 1041 complain_overflow_dont, /* complain_on_overflow */ 1042 bfd_elf_generic_reloc, /* special_function */ 1043 AARCH64_R_STR (TLSLE_ADD_TPREL_HI12), /* name */ 1044 FALSE, /* partial_inplace */ 1045 0xfff, /* src_mask */ 1046 0xfff, /* dst_mask */ 1047 FALSE), /* pcrel_offset */ 1048 1049 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12), /* type */ 1050 0, /* rightshift */ 1051 2, /* size (0 = byte, 1 = short, 2 = long) */ 1052 12, /* bitsize */ 1053 FALSE, /* pc_relative */ 1054 0, /* bitpos */ 1055 complain_overflow_dont, /* complain_on_overflow */ 1056 bfd_elf_generic_reloc, /* special_function */ 1057 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12), /* name */ 1058 FALSE, /* partial_inplace */ 1059 0xfff, /* src_mask */ 1060 0xfff, /* dst_mask */ 1061 FALSE), /* pcrel_offset */ 1062 1063 HOWTO (AARCH64_R (TLSLE_ADD_TPREL_LO12_NC), /* type */ 1064 0, /* rightshift */ 1065 2, /* size (0 = byte, 1 = short, 2 = long) */ 1066 12, /* bitsize */ 1067 FALSE, /* pc_relative */ 1068 0, /* bitpos */ 1069 complain_overflow_dont, /* complain_on_overflow */ 1070 bfd_elf_generic_reloc, /* special_function */ 1071 AARCH64_R_STR (TLSLE_ADD_TPREL_LO12_NC), /* name */ 1072 FALSE, /* partial_inplace */ 1073 0xfff, /* src_mask */ 1074 0xfff, /* dst_mask */ 1075 FALSE), /* pcrel_offset */ 1076 1077 HOWTO (AARCH64_R (TLSDESC_LD_PREL19), /* type */ 1078 2, /* rightshift */ 1079 2, /* size (0 = byte, 1 = short, 2 = long) */ 1080 21, /* bitsize */ 1081 TRUE, /* pc_relative */ 1082 0, /* bitpos */ 1083 complain_overflow_dont, /* complain_on_overflow */ 1084 bfd_elf_generic_reloc, /* special_function */ 1085 AARCH64_R_STR (TLSDESC_LD_PREL19), /* name */ 1086 FALSE, /* partial_inplace */ 1087 0x1ffffc, /* src_mask */ 1088 0x1ffffc, /* dst_mask */ 1089 TRUE), /* pcrel_offset */ 1090 1091 HOWTO (AARCH64_R (TLSDESC_ADR_PREL21), /* type */ 1092 0, /* rightshift */ 1093 2, /* size (0 = byte, 1 = short, 2 = long) */ 1094 21, /* bitsize */ 1095 TRUE, /* pc_relative */ 1096 0, /* bitpos */ 1097 complain_overflow_dont, /* complain_on_overflow */ 1098 bfd_elf_generic_reloc, /* special_function */ 1099 AARCH64_R_STR (TLSDESC_ADR_PREL21), /* name */ 1100 FALSE, /* partial_inplace */ 1101 0x1fffff, /* src_mask */ 1102 0x1fffff, /* dst_mask */ 1103 TRUE), /* pcrel_offset */ 1104 1105 /* Get to the page for the GOT entry for the symbol 1106 (G(S) - P) using an ADRP instruction. */ 1107 HOWTO (AARCH64_R (TLSDESC_ADR_PAGE21), /* type */ 1108 12, /* rightshift */ 1109 2, /* size (0 = byte, 1 = short, 2 = long) */ 1110 21, /* bitsize */ 1111 TRUE, /* pc_relative */ 1112 0, /* bitpos */ 1113 complain_overflow_dont, /* complain_on_overflow */ 1114 bfd_elf_generic_reloc, /* special_function */ 1115 AARCH64_R_STR (TLSDESC_ADR_PAGE21), /* name */ 1116 FALSE, /* partial_inplace */ 1117 0x1fffff, /* src_mask */ 1118 0x1fffff, /* dst_mask */ 1119 TRUE), /* pcrel_offset */ 1120 1121 /* LD64: GOT offset G(S) & 0xff8. */ 1122 HOWTO64 (AARCH64_R (TLSDESC_LD64_LO12_NC), /* type */ 1123 3, /* rightshift */ 1124 2, /* size (0 = byte, 1 = short, 2 = long) */ 1125 12, /* bitsize */ 1126 FALSE, /* pc_relative */ 1127 0, /* bitpos */ 1128 complain_overflow_dont, /* complain_on_overflow */ 1129 bfd_elf_generic_reloc, /* special_function */ 1130 AARCH64_R_STR (TLSDESC_LD64_LO12_NC), /* name */ 1131 FALSE, /* partial_inplace */ 1132 0xff8, /* src_mask */ 1133 0xff8, /* dst_mask */ 1134 FALSE), /* pcrel_offset */ 1135 1136 /* LD32: GOT offset G(S) & 0xffc. */ 1137 HOWTO32 (AARCH64_R (TLSDESC_LD32_LO12_NC), /* type */ 1138 2, /* rightshift */ 1139 2, /* size (0 = byte, 1 = short, 2 = long) */ 1140 12, /* bitsize */ 1141 FALSE, /* pc_relative */ 1142 0, /* bitpos */ 1143 complain_overflow_dont, /* complain_on_overflow */ 1144 bfd_elf_generic_reloc, /* special_function */ 1145 AARCH64_R_STR (TLSDESC_LD32_LO12_NC), /* name */ 1146 FALSE, /* partial_inplace */ 1147 0xffc, /* src_mask */ 1148 0xffc, /* dst_mask */ 1149 FALSE), /* pcrel_offset */ 1150 1151 /* ADD: GOT offset G(S) & 0xfff. */ 1152 HOWTO (AARCH64_R (TLSDESC_ADD_LO12_NC), /* type */ 1153 0, /* rightshift */ 1154 2, /* size (0 = byte, 1 = short, 2 = long) */ 1155 12, /* bitsize */ 1156 FALSE, /* pc_relative */ 1157 0, /* bitpos */ 1158 complain_overflow_dont, /* complain_on_overflow */ 1159 bfd_elf_generic_reloc, /* special_function */ 1160 AARCH64_R_STR (TLSDESC_ADD_LO12_NC), /* name */ 1161 FALSE, /* partial_inplace */ 1162 0xfff, /* src_mask */ 1163 0xfff, /* dst_mask */ 1164 FALSE), /* pcrel_offset */ 1165 1166 HOWTO64 (AARCH64_R (TLSDESC_OFF_G1), /* type */ 1167 16, /* rightshift */ 1168 2, /* size (0 = byte, 1 = short, 2 = long) */ 1169 12, /* bitsize */ 1170 FALSE, /* pc_relative */ 1171 0, /* bitpos */ 1172 complain_overflow_dont, /* complain_on_overflow */ 1173 bfd_elf_generic_reloc, /* special_function */ 1174 AARCH64_R_STR (TLSDESC_OFF_G1), /* name */ 1175 FALSE, /* partial_inplace */ 1176 0xffff, /* src_mask */ 1177 0xffff, /* dst_mask */ 1178 FALSE), /* pcrel_offset */ 1179 1180 HOWTO64 (AARCH64_R (TLSDESC_OFF_G0_NC), /* type */ 1181 0, /* rightshift */ 1182 2, /* size (0 = byte, 1 = short, 2 = long) */ 1183 12, /* bitsize */ 1184 FALSE, /* pc_relative */ 1185 0, /* bitpos */ 1186 complain_overflow_dont, /* complain_on_overflow */ 1187 bfd_elf_generic_reloc, /* special_function */ 1188 AARCH64_R_STR (TLSDESC_OFF_G0_NC), /* name */ 1189 FALSE, /* partial_inplace */ 1190 0xffff, /* src_mask */ 1191 0xffff, /* dst_mask */ 1192 FALSE), /* pcrel_offset */ 1193 1194 HOWTO64 (AARCH64_R (TLSDESC_LDR), /* type */ 1195 0, /* rightshift */ 1196 2, /* size (0 = byte, 1 = short, 2 = long) */ 1197 12, /* bitsize */ 1198 FALSE, /* pc_relative */ 1199 0, /* bitpos */ 1200 complain_overflow_dont, /* complain_on_overflow */ 1201 bfd_elf_generic_reloc, /* special_function */ 1202 AARCH64_R_STR (TLSDESC_LDR), /* name */ 1203 FALSE, /* partial_inplace */ 1204 0x0, /* src_mask */ 1205 0x0, /* dst_mask */ 1206 FALSE), /* pcrel_offset */ 1207 1208 HOWTO64 (AARCH64_R (TLSDESC_ADD), /* type */ 1209 0, /* rightshift */ 1210 2, /* size (0 = byte, 1 = short, 2 = long) */ 1211 12, /* bitsize */ 1212 FALSE, /* pc_relative */ 1213 0, /* bitpos */ 1214 complain_overflow_dont, /* complain_on_overflow */ 1215 bfd_elf_generic_reloc, /* special_function */ 1216 AARCH64_R_STR (TLSDESC_ADD), /* name */ 1217 FALSE, /* partial_inplace */ 1218 0x0, /* src_mask */ 1219 0x0, /* dst_mask */ 1220 FALSE), /* pcrel_offset */ 1221 1222 HOWTO (AARCH64_R (TLSDESC_CALL), /* type */ 1223 0, /* rightshift */ 1224 2, /* size (0 = byte, 1 = short, 2 = long) */ 1225 12, /* bitsize */ 1226 FALSE, /* pc_relative */ 1227 0, /* bitpos */ 1228 complain_overflow_dont, /* complain_on_overflow */ 1229 bfd_elf_generic_reloc, /* special_function */ 1230 AARCH64_R_STR (TLSDESC_CALL), /* name */ 1231 FALSE, /* partial_inplace */ 1232 0x0, /* src_mask */ 1233 0x0, /* dst_mask */ 1234 FALSE), /* pcrel_offset */ 1235 1236 HOWTO (AARCH64_R (COPY), /* type */ 1237 0, /* rightshift */ 1238 2, /* size (0 = byte, 1 = short, 2 = long) */ 1239 64, /* bitsize */ 1240 FALSE, /* pc_relative */ 1241 0, /* bitpos */ 1242 complain_overflow_bitfield, /* complain_on_overflow */ 1243 bfd_elf_generic_reloc, /* special_function */ 1244 AARCH64_R_STR (COPY), /* name */ 1245 TRUE, /* partial_inplace */ 1246 0xffffffff, /* src_mask */ 1247 0xffffffff, /* dst_mask */ 1248 FALSE), /* pcrel_offset */ 1249 1250 HOWTO (AARCH64_R (GLOB_DAT), /* type */ 1251 0, /* rightshift */ 1252 2, /* size (0 = byte, 1 = short, 2 = long) */ 1253 64, /* bitsize */ 1254 FALSE, /* pc_relative */ 1255 0, /* bitpos */ 1256 complain_overflow_bitfield, /* complain_on_overflow */ 1257 bfd_elf_generic_reloc, /* special_function */ 1258 AARCH64_R_STR (GLOB_DAT), /* name */ 1259 TRUE, /* partial_inplace */ 1260 0xffffffff, /* src_mask */ 1261 0xffffffff, /* dst_mask */ 1262 FALSE), /* pcrel_offset */ 1263 1264 HOWTO (AARCH64_R (JUMP_SLOT), /* type */ 1265 0, /* rightshift */ 1266 2, /* size (0 = byte, 1 = short, 2 = long) */ 1267 64, /* bitsize */ 1268 FALSE, /* pc_relative */ 1269 0, /* bitpos */ 1270 complain_overflow_bitfield, /* complain_on_overflow */ 1271 bfd_elf_generic_reloc, /* special_function */ 1272 AARCH64_R_STR (JUMP_SLOT), /* name */ 1273 TRUE, /* partial_inplace */ 1274 0xffffffff, /* src_mask */ 1275 0xffffffff, /* dst_mask */ 1276 FALSE), /* pcrel_offset */ 1277 1278 HOWTO (AARCH64_R (RELATIVE), /* type */ 1279 0, /* rightshift */ 1280 2, /* size (0 = byte, 1 = short, 2 = long) */ 1281 64, /* bitsize */ 1282 FALSE, /* pc_relative */ 1283 0, /* bitpos */ 1284 complain_overflow_bitfield, /* complain_on_overflow */ 1285 bfd_elf_generic_reloc, /* special_function */ 1286 AARCH64_R_STR (RELATIVE), /* name */ 1287 TRUE, /* partial_inplace */ 1288 ALL_ONES, /* src_mask */ 1289 ALL_ONES, /* dst_mask */ 1290 FALSE), /* pcrel_offset */ 1291 1292 HOWTO (AARCH64_R (TLS_DTPMOD), /* type */ 1293 0, /* rightshift */ 1294 2, /* size (0 = byte, 1 = short, 2 = long) */ 1295 64, /* bitsize */ 1296 FALSE, /* pc_relative */ 1297 0, /* bitpos */ 1298 complain_overflow_dont, /* complain_on_overflow */ 1299 bfd_elf_generic_reloc, /* special_function */ 1300 #if ARCH_SIZE == 64 1301 AARCH64_R_STR (TLS_DTPMOD64), /* name */ 1302 #else 1303 AARCH64_R_STR (TLS_DTPMOD), /* name */ 1304 #endif 1305 FALSE, /* partial_inplace */ 1306 0, /* src_mask */ 1307 ALL_ONES, /* dst_mask */ 1308 FALSE), /* pc_reloffset */ 1309 1310 HOWTO (AARCH64_R (TLS_DTPREL), /* type */ 1311 0, /* rightshift */ 1312 2, /* size (0 = byte, 1 = short, 2 = long) */ 1313 64, /* bitsize */ 1314 FALSE, /* pc_relative */ 1315 0, /* bitpos */ 1316 complain_overflow_dont, /* complain_on_overflow */ 1317 bfd_elf_generic_reloc, /* special_function */ 1318 #if ARCH_SIZE == 64 1319 AARCH64_R_STR (TLS_DTPREL64), /* name */ 1320 #else 1321 AARCH64_R_STR (TLS_DTPREL), /* name */ 1322 #endif 1323 FALSE, /* partial_inplace */ 1324 0, /* src_mask */ 1325 ALL_ONES, /* dst_mask */ 1326 FALSE), /* pcrel_offset */ 1327 1328 HOWTO (AARCH64_R (TLS_TPREL), /* type */ 1329 0, /* rightshift */ 1330 2, /* size (0 = byte, 1 = short, 2 = long) */ 1331 64, /* bitsize */ 1332 FALSE, /* pc_relative */ 1333 0, /* bitpos */ 1334 complain_overflow_dont, /* complain_on_overflow */ 1335 bfd_elf_generic_reloc, /* special_function */ 1336 #if ARCH_SIZE == 64 1337 AARCH64_R_STR (TLS_TPREL64), /* name */ 1338 #else 1339 AARCH64_R_STR (TLS_TPREL), /* name */ 1340 #endif 1341 FALSE, /* partial_inplace */ 1342 0, /* src_mask */ 1343 ALL_ONES, /* dst_mask */ 1344 FALSE), /* pcrel_offset */ 1345 1346 HOWTO (AARCH64_R (TLSDESC), /* type */ 1347 0, /* rightshift */ 1348 2, /* size (0 = byte, 1 = short, 2 = long) */ 1349 64, /* bitsize */ 1350 FALSE, /* pc_relative */ 1351 0, /* bitpos */ 1352 complain_overflow_dont, /* complain_on_overflow */ 1353 bfd_elf_generic_reloc, /* special_function */ 1354 AARCH64_R_STR (TLSDESC), /* name */ 1355 FALSE, /* partial_inplace */ 1356 0, /* src_mask */ 1357 ALL_ONES, /* dst_mask */ 1358 FALSE), /* pcrel_offset */ 1359 1360 HOWTO (AARCH64_R (IRELATIVE), /* type */ 1361 0, /* rightshift */ 1362 2, /* size (0 = byte, 1 = short, 2 = long) */ 1363 64, /* bitsize */ 1364 FALSE, /* pc_relative */ 1365 0, /* bitpos */ 1366 complain_overflow_bitfield, /* complain_on_overflow */ 1367 bfd_elf_generic_reloc, /* special_function */ 1368 AARCH64_R_STR (IRELATIVE), /* name */ 1369 FALSE, /* partial_inplace */ 1370 0, /* src_mask */ 1371 ALL_ONES, /* dst_mask */ 1372 FALSE), /* pcrel_offset */ 1373 1374 EMPTY_HOWTO (0), 1375 }; 1376 1377 static reloc_howto_type elfNN_aarch64_howto_none = 1378 HOWTO (R_AARCH64_NONE, /* type */ 1379 0, /* rightshift */ 1380 0, /* size (0 = byte, 1 = short, 2 = long) */ 1381 0, /* bitsize */ 1382 FALSE, /* pc_relative */ 1383 0, /* bitpos */ 1384 complain_overflow_dont,/* complain_on_overflow */ 1385 bfd_elf_generic_reloc, /* special_function */ 1386 "R_AARCH64_NONE", /* name */ 1387 FALSE, /* partial_inplace */ 1388 0, /* src_mask */ 1389 0, /* dst_mask */ 1390 FALSE); /* pcrel_offset */ 1391 1392 /* Given HOWTO, return the bfd internal relocation enumerator. */ 1393 1394 static bfd_reloc_code_real_type 1395 elfNN_aarch64_bfd_reloc_from_howto (reloc_howto_type *howto) 1396 { 1397 const int size 1398 = (int) ARRAY_SIZE (elfNN_aarch64_howto_table); 1399 const ptrdiff_t offset 1400 = howto - elfNN_aarch64_howto_table; 1401 1402 if (offset > 0 && offset < size - 1) 1403 return BFD_RELOC_AARCH64_RELOC_START + offset; 1404 1405 if (howto == &elfNN_aarch64_howto_none) 1406 return BFD_RELOC_AARCH64_NONE; 1407 1408 return BFD_RELOC_AARCH64_RELOC_START; 1409 } 1410 1411 /* Given R_TYPE, return the bfd internal relocation enumerator. */ 1412 1413 static bfd_reloc_code_real_type 1414 elfNN_aarch64_bfd_reloc_from_type (unsigned int r_type) 1415 { 1416 static bfd_boolean initialized_p = FALSE; 1417 /* Indexed by R_TYPE, values are offsets in the howto_table. */ 1418 static unsigned int offsets[R_AARCH64_end]; 1419 1420 if (initialized_p == FALSE) 1421 { 1422 unsigned int i; 1423 1424 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i) 1425 if (elfNN_aarch64_howto_table[i].type != 0) 1426 offsets[elfNN_aarch64_howto_table[i].type] = i; 1427 1428 initialized_p = TRUE; 1429 } 1430 1431 if (r_type == R_AARCH64_NONE || r_type == R_AARCH64_NULL) 1432 return BFD_RELOC_AARCH64_NONE; 1433 1434 return BFD_RELOC_AARCH64_RELOC_START + offsets[r_type]; 1435 } 1436 1437 struct elf_aarch64_reloc_map 1438 { 1439 bfd_reloc_code_real_type from; 1440 bfd_reloc_code_real_type to; 1441 }; 1442 1443 /* Map bfd generic reloc to AArch64-specific reloc. */ 1444 static const struct elf_aarch64_reloc_map elf_aarch64_reloc_map[] = 1445 { 1446 {BFD_RELOC_NONE, BFD_RELOC_AARCH64_NONE}, 1447 1448 /* Basic data relocations. */ 1449 {BFD_RELOC_CTOR, BFD_RELOC_AARCH64_NN}, 1450 {BFD_RELOC_64, BFD_RELOC_AARCH64_64}, 1451 {BFD_RELOC_32, BFD_RELOC_AARCH64_32}, 1452 {BFD_RELOC_16, BFD_RELOC_AARCH64_16}, 1453 {BFD_RELOC_64_PCREL, BFD_RELOC_AARCH64_64_PCREL}, 1454 {BFD_RELOC_32_PCREL, BFD_RELOC_AARCH64_32_PCREL}, 1455 {BFD_RELOC_16_PCREL, BFD_RELOC_AARCH64_16_PCREL}, 1456 }; 1457 1458 /* Given the bfd internal relocation enumerator in CODE, return the 1459 corresponding howto entry. */ 1460 1461 static reloc_howto_type * 1462 elfNN_aarch64_howto_from_bfd_reloc (bfd_reloc_code_real_type code) 1463 { 1464 unsigned int i; 1465 1466 /* Convert bfd generic reloc to AArch64-specific reloc. */ 1467 if (code < BFD_RELOC_AARCH64_RELOC_START 1468 || code > BFD_RELOC_AARCH64_RELOC_END) 1469 for (i = 0; i < ARRAY_SIZE (elf_aarch64_reloc_map); i++) 1470 if (elf_aarch64_reloc_map[i].from == code) 1471 { 1472 code = elf_aarch64_reloc_map[i].to; 1473 break; 1474 } 1475 1476 if (code > BFD_RELOC_AARCH64_RELOC_START 1477 && code < BFD_RELOC_AARCH64_RELOC_END) 1478 if (elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START].type) 1479 return &elfNN_aarch64_howto_table[code - BFD_RELOC_AARCH64_RELOC_START]; 1480 1481 if (code == BFD_RELOC_AARCH64_NONE) 1482 return &elfNN_aarch64_howto_none; 1483 1484 return NULL; 1485 } 1486 1487 static reloc_howto_type * 1488 elfNN_aarch64_howto_from_type (unsigned int r_type) 1489 { 1490 bfd_reloc_code_real_type val; 1491 reloc_howto_type *howto; 1492 1493 #if ARCH_SIZE == 32 1494 if (r_type > 256) 1495 { 1496 bfd_set_error (bfd_error_bad_value); 1497 return NULL; 1498 } 1499 #endif 1500 1501 if (r_type == R_AARCH64_NONE) 1502 return &elfNN_aarch64_howto_none; 1503 1504 val = elfNN_aarch64_bfd_reloc_from_type (r_type); 1505 howto = elfNN_aarch64_howto_from_bfd_reloc (val); 1506 1507 if (howto != NULL) 1508 return howto; 1509 1510 bfd_set_error (bfd_error_bad_value); 1511 return NULL; 1512 } 1513 1514 static void 1515 elfNN_aarch64_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED, arelent *bfd_reloc, 1516 Elf_Internal_Rela *elf_reloc) 1517 { 1518 unsigned int r_type; 1519 1520 r_type = ELFNN_R_TYPE (elf_reloc->r_info); 1521 bfd_reloc->howto = elfNN_aarch64_howto_from_type (r_type); 1522 } 1523 1524 static reloc_howto_type * 1525 elfNN_aarch64_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1526 bfd_reloc_code_real_type code) 1527 { 1528 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (code); 1529 1530 if (howto != NULL) 1531 return howto; 1532 1533 bfd_set_error (bfd_error_bad_value); 1534 return NULL; 1535 } 1536 1537 static reloc_howto_type * 1538 elfNN_aarch64_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 1539 const char *r_name) 1540 { 1541 unsigned int i; 1542 1543 for (i = 1; i < ARRAY_SIZE (elfNN_aarch64_howto_table) - 1; ++i) 1544 if (elfNN_aarch64_howto_table[i].name != NULL 1545 && strcasecmp (elfNN_aarch64_howto_table[i].name, r_name) == 0) 1546 return &elfNN_aarch64_howto_table[i]; 1547 1548 return NULL; 1549 } 1550 1551 #define TARGET_LITTLE_SYM bfd_elfNN_littleaarch64_vec 1552 #define TARGET_LITTLE_NAME "elfNN-littleaarch64" 1553 #define TARGET_BIG_SYM bfd_elfNN_bigaarch64_vec 1554 #define TARGET_BIG_NAME "elfNN-bigaarch64" 1555 1556 /* The linker script knows the section names for placement. 1557 The entry_names are used to do simple name mangling on the stubs. 1558 Given a function name, and its type, the stub can be found. The 1559 name can be changed. The only requirement is the %s be present. */ 1560 #define STUB_ENTRY_NAME "__%s_veneer" 1561 1562 /* The name of the dynamic interpreter. This is put in the .interp 1563 section. */ 1564 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so.1" 1565 1566 #define AARCH64_MAX_FWD_BRANCH_OFFSET \ 1567 (((1 << 25) - 1) << 2) 1568 #define AARCH64_MAX_BWD_BRANCH_OFFSET \ 1569 (-((1 << 25) << 2)) 1570 1571 #define AARCH64_MAX_ADRP_IMM ((1 << 20) - 1) 1572 #define AARCH64_MIN_ADRP_IMM (-(1 << 20)) 1573 1574 static int 1575 aarch64_valid_for_adrp_p (bfd_vma value, bfd_vma place) 1576 { 1577 bfd_signed_vma offset = (bfd_signed_vma) (PG (value) - PG (place)) >> 12; 1578 return offset <= AARCH64_MAX_ADRP_IMM && offset >= AARCH64_MIN_ADRP_IMM; 1579 } 1580 1581 static int 1582 aarch64_valid_branch_p (bfd_vma value, bfd_vma place) 1583 { 1584 bfd_signed_vma offset = (bfd_signed_vma) (value - place); 1585 return (offset <= AARCH64_MAX_FWD_BRANCH_OFFSET 1586 && offset >= AARCH64_MAX_BWD_BRANCH_OFFSET); 1587 } 1588 1589 static const uint32_t aarch64_adrp_branch_stub [] = 1590 { 1591 0x90000010, /* adrp ip0, X */ 1592 /* R_AARCH64_ADR_HI21_PCREL(X) */ 1593 0x91000210, /* add ip0, ip0, :lo12:X */ 1594 /* R_AARCH64_ADD_ABS_LO12_NC(X) */ 1595 0xd61f0200, /* br ip0 */ 1596 }; 1597 1598 static const uint32_t aarch64_long_branch_stub[] = 1599 { 1600 #if ARCH_SIZE == 64 1601 0x58000090, /* ldr ip0, 1f */ 1602 #else 1603 0x18000090, /* ldr wip0, 1f */ 1604 #endif 1605 0x10000011, /* adr ip1, #0 */ 1606 0x8b110210, /* add ip0, ip0, ip1 */ 1607 0xd61f0200, /* br ip0 */ 1608 0x00000000, /* 1: .xword or .word 1609 R_AARCH64_PRELNN(X) + 12 1610 */ 1611 0x00000000, 1612 }; 1613 1614 /* Section name for stubs is the associated section name plus this 1615 string. */ 1616 #define STUB_SUFFIX ".stub" 1617 1618 enum elf_aarch64_stub_type 1619 { 1620 aarch64_stub_none, 1621 aarch64_stub_adrp_branch, 1622 aarch64_stub_long_branch, 1623 }; 1624 1625 struct elf_aarch64_stub_hash_entry 1626 { 1627 /* Base hash table entry structure. */ 1628 struct bfd_hash_entry root; 1629 1630 /* The stub section. */ 1631 asection *stub_sec; 1632 1633 /* Offset within stub_sec of the beginning of this stub. */ 1634 bfd_vma stub_offset; 1635 1636 /* Given the symbol's value and its section we can determine its final 1637 value when building the stubs (so the stub knows where to jump). */ 1638 bfd_vma target_value; 1639 asection *target_section; 1640 1641 enum elf_aarch64_stub_type stub_type; 1642 1643 /* The symbol table entry, if any, that this was derived from. */ 1644 struct elf_aarch64_link_hash_entry *h; 1645 1646 /* Destination symbol type */ 1647 unsigned char st_type; 1648 1649 /* Where this stub is being called from, or, in the case of combined 1650 stub sections, the first input section in the group. */ 1651 asection *id_sec; 1652 1653 /* The name for the local symbol at the start of this stub. The 1654 stub name in the hash table has to be unique; this does not, so 1655 it can be friendlier. */ 1656 char *output_name; 1657 }; 1658 1659 /* Used to build a map of a section. This is required for mixed-endian 1660 code/data. */ 1661 1662 typedef struct elf_elf_section_map 1663 { 1664 bfd_vma vma; 1665 char type; 1666 } 1667 elf_aarch64_section_map; 1668 1669 1670 typedef struct _aarch64_elf_section_data 1671 { 1672 struct bfd_elf_section_data elf; 1673 unsigned int mapcount; 1674 unsigned int mapsize; 1675 elf_aarch64_section_map *map; 1676 } 1677 _aarch64_elf_section_data; 1678 1679 #define elf_aarch64_section_data(sec) \ 1680 ((_aarch64_elf_section_data *) elf_section_data (sec)) 1681 1682 /* The size of the thread control block which is defined to be two pointers. */ 1683 #define TCB_SIZE (ARCH_SIZE/8)*2 1684 1685 struct elf_aarch64_local_symbol 1686 { 1687 unsigned int got_type; 1688 bfd_signed_vma got_refcount; 1689 bfd_vma got_offset; 1690 1691 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The 1692 offset is from the end of the jump table and reserved entries 1693 within the PLTGOT. 1694 1695 The magic value (bfd_vma) -1 indicates that an offset has not be 1696 allocated. */ 1697 bfd_vma tlsdesc_got_jump_table_offset; 1698 }; 1699 1700 struct elf_aarch64_obj_tdata 1701 { 1702 struct elf_obj_tdata root; 1703 1704 /* local symbol descriptors */ 1705 struct elf_aarch64_local_symbol *locals; 1706 1707 /* Zero to warn when linking objects with incompatible enum sizes. */ 1708 int no_enum_size_warning; 1709 1710 /* Zero to warn when linking objects with incompatible wchar_t sizes. */ 1711 int no_wchar_size_warning; 1712 }; 1713 1714 #define elf_aarch64_tdata(bfd) \ 1715 ((struct elf_aarch64_obj_tdata *) (bfd)->tdata.any) 1716 1717 #define elf_aarch64_locals(bfd) (elf_aarch64_tdata (bfd)->locals) 1718 1719 #define is_aarch64_elf(bfd) \ 1720 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \ 1721 && elf_tdata (bfd) != NULL \ 1722 && elf_object_id (bfd) == AARCH64_ELF_DATA) 1723 1724 static bfd_boolean 1725 elfNN_aarch64_mkobject (bfd *abfd) 1726 { 1727 return bfd_elf_allocate_object (abfd, sizeof (struct elf_aarch64_obj_tdata), 1728 AARCH64_ELF_DATA); 1729 } 1730 1731 #define elf_aarch64_hash_entry(ent) \ 1732 ((struct elf_aarch64_link_hash_entry *)(ent)) 1733 1734 #define GOT_UNKNOWN 0 1735 #define GOT_NORMAL 1 1736 #define GOT_TLS_GD 2 1737 #define GOT_TLS_IE 4 1738 #define GOT_TLSDESC_GD 8 1739 1740 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLSDESC_GD)) 1741 1742 /* AArch64 ELF linker hash entry. */ 1743 struct elf_aarch64_link_hash_entry 1744 { 1745 struct elf_link_hash_entry root; 1746 1747 /* Track dynamic relocs copied for this symbol. */ 1748 struct elf_dyn_relocs *dyn_relocs; 1749 1750 /* Since PLT entries have variable size, we need to record the 1751 index into .got.plt instead of recomputing it from the PLT 1752 offset. */ 1753 bfd_signed_vma plt_got_offset; 1754 1755 /* Bit mask representing the type of GOT entry(s) if any required by 1756 this symbol. */ 1757 unsigned int got_type; 1758 1759 /* A pointer to the most recently used stub hash entry against this 1760 symbol. */ 1761 struct elf_aarch64_stub_hash_entry *stub_cache; 1762 1763 /* Offset of the GOTPLT entry reserved for the TLS descriptor. The offset 1764 is from the end of the jump table and reserved entries within the PLTGOT. 1765 1766 The magic value (bfd_vma) -1 indicates that an offset has not 1767 be allocated. */ 1768 bfd_vma tlsdesc_got_jump_table_offset; 1769 }; 1770 1771 static unsigned int 1772 elfNN_aarch64_symbol_got_type (struct elf_link_hash_entry *h, 1773 bfd *abfd, 1774 unsigned long r_symndx) 1775 { 1776 if (h) 1777 return elf_aarch64_hash_entry (h)->got_type; 1778 1779 if (! elf_aarch64_locals (abfd)) 1780 return GOT_UNKNOWN; 1781 1782 return elf_aarch64_locals (abfd)[r_symndx].got_type; 1783 } 1784 1785 /* Get the AArch64 elf linker hash table from a link_info structure. */ 1786 #define elf_aarch64_hash_table(info) \ 1787 ((struct elf_aarch64_link_hash_table *) ((info)->hash)) 1788 1789 #define aarch64_stub_hash_lookup(table, string, create, copy) \ 1790 ((struct elf_aarch64_stub_hash_entry *) \ 1791 bfd_hash_lookup ((table), (string), (create), (copy))) 1792 1793 /* AArch64 ELF linker hash table. */ 1794 struct elf_aarch64_link_hash_table 1795 { 1796 /* The main hash table. */ 1797 struct elf_link_hash_table root; 1798 1799 /* Nonzero to force PIC branch veneers. */ 1800 int pic_veneer; 1801 1802 /* The number of bytes in the initial entry in the PLT. */ 1803 bfd_size_type plt_header_size; 1804 1805 /* The number of bytes in the subsequent PLT etries. */ 1806 bfd_size_type plt_entry_size; 1807 1808 /* Short-cuts to get to dynamic linker sections. */ 1809 asection *sdynbss; 1810 asection *srelbss; 1811 1812 /* Small local sym cache. */ 1813 struct sym_cache sym_cache; 1814 1815 /* For convenience in allocate_dynrelocs. */ 1816 bfd *obfd; 1817 1818 /* The amount of space used by the reserved portion of the sgotplt 1819 section, plus whatever space is used by the jump slots. */ 1820 bfd_vma sgotplt_jump_table_size; 1821 1822 /* The stub hash table. */ 1823 struct bfd_hash_table stub_hash_table; 1824 1825 /* Linker stub bfd. */ 1826 bfd *stub_bfd; 1827 1828 /* Linker call-backs. */ 1829 asection *(*add_stub_section) (const char *, asection *); 1830 void (*layout_sections_again) (void); 1831 1832 /* Array to keep track of which stub sections have been created, and 1833 information on stub grouping. */ 1834 struct map_stub 1835 { 1836 /* This is the section to which stubs in the group will be 1837 attached. */ 1838 asection *link_sec; 1839 /* The stub section. */ 1840 asection *stub_sec; 1841 } *stub_group; 1842 1843 /* Assorted information used by elfNN_aarch64_size_stubs. */ 1844 unsigned int bfd_count; 1845 int top_index; 1846 asection **input_list; 1847 1848 /* The offset into splt of the PLT entry for the TLS descriptor 1849 resolver. Special values are 0, if not necessary (or not found 1850 to be necessary yet), and -1 if needed but not determined 1851 yet. */ 1852 bfd_vma tlsdesc_plt; 1853 1854 /* The GOT offset for the lazy trampoline. Communicated to the 1855 loader via DT_TLSDESC_GOT. The magic value (bfd_vma) -1 1856 indicates an offset is not allocated. */ 1857 bfd_vma dt_tlsdesc_got; 1858 1859 /* Used by local STT_GNU_IFUNC symbols. */ 1860 htab_t loc_hash_table; 1861 void * loc_hash_memory; 1862 }; 1863 1864 /* Create an entry in an AArch64 ELF linker hash table. */ 1865 1866 static struct bfd_hash_entry * 1867 elfNN_aarch64_link_hash_newfunc (struct bfd_hash_entry *entry, 1868 struct bfd_hash_table *table, 1869 const char *string) 1870 { 1871 struct elf_aarch64_link_hash_entry *ret = 1872 (struct elf_aarch64_link_hash_entry *) entry; 1873 1874 /* Allocate the structure if it has not already been allocated by a 1875 subclass. */ 1876 if (ret == NULL) 1877 ret = bfd_hash_allocate (table, 1878 sizeof (struct elf_aarch64_link_hash_entry)); 1879 if (ret == NULL) 1880 return (struct bfd_hash_entry *) ret; 1881 1882 /* Call the allocation method of the superclass. */ 1883 ret = ((struct elf_aarch64_link_hash_entry *) 1884 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret, 1885 table, string)); 1886 if (ret != NULL) 1887 { 1888 ret->dyn_relocs = NULL; 1889 ret->got_type = GOT_UNKNOWN; 1890 ret->plt_got_offset = (bfd_vma) - 1; 1891 ret->stub_cache = NULL; 1892 ret->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 1893 } 1894 1895 return (struct bfd_hash_entry *) ret; 1896 } 1897 1898 /* Initialize an entry in the stub hash table. */ 1899 1900 static struct bfd_hash_entry * 1901 stub_hash_newfunc (struct bfd_hash_entry *entry, 1902 struct bfd_hash_table *table, const char *string) 1903 { 1904 /* Allocate the structure if it has not already been allocated by a 1905 subclass. */ 1906 if (entry == NULL) 1907 { 1908 entry = bfd_hash_allocate (table, 1909 sizeof (struct 1910 elf_aarch64_stub_hash_entry)); 1911 if (entry == NULL) 1912 return entry; 1913 } 1914 1915 /* Call the allocation method of the superclass. */ 1916 entry = bfd_hash_newfunc (entry, table, string); 1917 if (entry != NULL) 1918 { 1919 struct elf_aarch64_stub_hash_entry *eh; 1920 1921 /* Initialize the local fields. */ 1922 eh = (struct elf_aarch64_stub_hash_entry *) entry; 1923 eh->stub_sec = NULL; 1924 eh->stub_offset = 0; 1925 eh->target_value = 0; 1926 eh->target_section = NULL; 1927 eh->stub_type = aarch64_stub_none; 1928 eh->h = NULL; 1929 eh->id_sec = NULL; 1930 } 1931 1932 return entry; 1933 } 1934 1935 /* Compute a hash of a local hash entry. We use elf_link_hash_entry 1936 for local symbol so that we can handle local STT_GNU_IFUNC symbols 1937 as global symbol. We reuse indx and dynstr_index for local symbol 1938 hash since they aren't used by global symbols in this backend. */ 1939 1940 static hashval_t 1941 elfNN_aarch64_local_htab_hash (const void *ptr) 1942 { 1943 struct elf_link_hash_entry *h 1944 = (struct elf_link_hash_entry *) ptr; 1945 return ELF_LOCAL_SYMBOL_HASH (h->indx, h->dynstr_index); 1946 } 1947 1948 /* Compare local hash entries. */ 1949 1950 static int 1951 elfNN_aarch64_local_htab_eq (const void *ptr1, const void *ptr2) 1952 { 1953 struct elf_link_hash_entry *h1 1954 = (struct elf_link_hash_entry *) ptr1; 1955 struct elf_link_hash_entry *h2 1956 = (struct elf_link_hash_entry *) ptr2; 1957 1958 return h1->indx == h2->indx && h1->dynstr_index == h2->dynstr_index; 1959 } 1960 1961 /* Find and/or create a hash entry for local symbol. */ 1962 1963 static struct elf_link_hash_entry * 1964 elfNN_aarch64_get_local_sym_hash (struct elf_aarch64_link_hash_table *htab, 1965 bfd *abfd, const Elf_Internal_Rela *rel, 1966 bfd_boolean create) 1967 { 1968 struct elf_aarch64_link_hash_entry e, *ret; 1969 asection *sec = abfd->sections; 1970 hashval_t h = ELF_LOCAL_SYMBOL_HASH (sec->id, 1971 ELFNN_R_SYM (rel->r_info)); 1972 void **slot; 1973 1974 e.root.indx = sec->id; 1975 e.root.dynstr_index = ELFNN_R_SYM (rel->r_info); 1976 slot = htab_find_slot_with_hash (htab->loc_hash_table, &e, h, 1977 create ? INSERT : NO_INSERT); 1978 1979 if (!slot) 1980 return NULL; 1981 1982 if (*slot) 1983 { 1984 ret = (struct elf_aarch64_link_hash_entry *) *slot; 1985 return &ret->root; 1986 } 1987 1988 ret = (struct elf_aarch64_link_hash_entry *) 1989 objalloc_alloc ((struct objalloc *) htab->loc_hash_memory, 1990 sizeof (struct elf_aarch64_link_hash_entry)); 1991 if (ret) 1992 { 1993 memset (ret, 0, sizeof (*ret)); 1994 ret->root.indx = sec->id; 1995 ret->root.dynstr_index = ELFNN_R_SYM (rel->r_info); 1996 ret->root.dynindx = -1; 1997 *slot = ret; 1998 } 1999 return &ret->root; 2000 } 2001 2002 /* Copy the extra info we tack onto an elf_link_hash_entry. */ 2003 2004 static void 2005 elfNN_aarch64_copy_indirect_symbol (struct bfd_link_info *info, 2006 struct elf_link_hash_entry *dir, 2007 struct elf_link_hash_entry *ind) 2008 { 2009 struct elf_aarch64_link_hash_entry *edir, *eind; 2010 2011 edir = (struct elf_aarch64_link_hash_entry *) dir; 2012 eind = (struct elf_aarch64_link_hash_entry *) ind; 2013 2014 if (eind->dyn_relocs != NULL) 2015 { 2016 if (edir->dyn_relocs != NULL) 2017 { 2018 struct elf_dyn_relocs **pp; 2019 struct elf_dyn_relocs *p; 2020 2021 /* Add reloc counts against the indirect sym to the direct sym 2022 list. Merge any entries against the same section. */ 2023 for (pp = &eind->dyn_relocs; (p = *pp) != NULL;) 2024 { 2025 struct elf_dyn_relocs *q; 2026 2027 for (q = edir->dyn_relocs; q != NULL; q = q->next) 2028 if (q->sec == p->sec) 2029 { 2030 q->pc_count += p->pc_count; 2031 q->count += p->count; 2032 *pp = p->next; 2033 break; 2034 } 2035 if (q == NULL) 2036 pp = &p->next; 2037 } 2038 *pp = edir->dyn_relocs; 2039 } 2040 2041 edir->dyn_relocs = eind->dyn_relocs; 2042 eind->dyn_relocs = NULL; 2043 } 2044 2045 if (ind->root.type == bfd_link_hash_indirect) 2046 { 2047 /* Copy over PLT info. */ 2048 if (dir->got.refcount <= 0) 2049 { 2050 edir->got_type = eind->got_type; 2051 eind->got_type = GOT_UNKNOWN; 2052 } 2053 } 2054 2055 _bfd_elf_link_hash_copy_indirect (info, dir, ind); 2056 } 2057 2058 /* Create an AArch64 elf linker hash table. */ 2059 2060 static struct bfd_link_hash_table * 2061 elfNN_aarch64_link_hash_table_create (bfd *abfd) 2062 { 2063 struct elf_aarch64_link_hash_table *ret; 2064 bfd_size_type amt = sizeof (struct elf_aarch64_link_hash_table); 2065 2066 ret = bfd_zmalloc (amt); 2067 if (ret == NULL) 2068 return NULL; 2069 2070 if (!_bfd_elf_link_hash_table_init 2071 (&ret->root, abfd, elfNN_aarch64_link_hash_newfunc, 2072 sizeof (struct elf_aarch64_link_hash_entry), AARCH64_ELF_DATA)) 2073 { 2074 free (ret); 2075 return NULL; 2076 } 2077 2078 ret->plt_header_size = PLT_ENTRY_SIZE; 2079 ret->plt_entry_size = PLT_SMALL_ENTRY_SIZE; 2080 ret->obfd = abfd; 2081 ret->dt_tlsdesc_got = (bfd_vma) - 1; 2082 2083 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc, 2084 sizeof (struct elf_aarch64_stub_hash_entry))) 2085 { 2086 free (ret); 2087 return NULL; 2088 } 2089 2090 ret->loc_hash_table = htab_try_create (1024, 2091 elfNN_aarch64_local_htab_hash, 2092 elfNN_aarch64_local_htab_eq, 2093 NULL); 2094 ret->loc_hash_memory = objalloc_create (); 2095 if (!ret->loc_hash_table || !ret->loc_hash_memory) 2096 { 2097 free (ret); 2098 return NULL; 2099 } 2100 2101 return &ret->root.root; 2102 } 2103 2104 /* Free the derived linker hash table. */ 2105 2106 static void 2107 elfNN_aarch64_hash_table_free (struct bfd_link_hash_table *hash) 2108 { 2109 struct elf_aarch64_link_hash_table *ret 2110 = (struct elf_aarch64_link_hash_table *) hash; 2111 2112 if (ret->loc_hash_table) 2113 htab_delete (ret->loc_hash_table); 2114 if (ret->loc_hash_memory) 2115 objalloc_free ((struct objalloc *) ret->loc_hash_memory); 2116 2117 bfd_hash_table_free (&ret->stub_hash_table); 2118 _bfd_elf_link_hash_table_free (hash); 2119 } 2120 2121 static bfd_boolean 2122 aarch64_relocate (unsigned int r_type, bfd *input_bfd, asection *input_section, 2123 bfd_vma offset, bfd_vma value) 2124 { 2125 reloc_howto_type *howto; 2126 bfd_vma place; 2127 2128 howto = elfNN_aarch64_howto_from_type (r_type); 2129 place = (input_section->output_section->vma + input_section->output_offset 2130 + offset); 2131 2132 r_type = elfNN_aarch64_bfd_reloc_from_type (r_type); 2133 value = _bfd_aarch64_elf_resolve_relocation (r_type, place, value, 0, FALSE); 2134 return _bfd_aarch64_elf_put_addend (input_bfd, 2135 input_section->contents + offset, r_type, 2136 howto, value); 2137 } 2138 2139 static enum elf_aarch64_stub_type 2140 aarch64_select_branch_stub (bfd_vma value, bfd_vma place) 2141 { 2142 if (aarch64_valid_for_adrp_p (value, place)) 2143 return aarch64_stub_adrp_branch; 2144 return aarch64_stub_long_branch; 2145 } 2146 2147 /* Determine the type of stub needed, if any, for a call. */ 2148 2149 static enum elf_aarch64_stub_type 2150 aarch64_type_of_stub (struct bfd_link_info *info, 2151 asection *input_sec, 2152 const Elf_Internal_Rela *rel, 2153 unsigned char st_type, 2154 struct elf_aarch64_link_hash_entry *hash, 2155 bfd_vma destination) 2156 { 2157 bfd_vma location; 2158 bfd_signed_vma branch_offset; 2159 unsigned int r_type; 2160 struct elf_aarch64_link_hash_table *globals; 2161 enum elf_aarch64_stub_type stub_type = aarch64_stub_none; 2162 bfd_boolean via_plt_p; 2163 2164 if (st_type != STT_FUNC) 2165 return stub_type; 2166 2167 globals = elf_aarch64_hash_table (info); 2168 via_plt_p = (globals->root.splt != NULL && hash != NULL 2169 && hash->root.plt.offset != (bfd_vma) - 1); 2170 2171 if (via_plt_p) 2172 return stub_type; 2173 2174 /* Determine where the call point is. */ 2175 location = (input_sec->output_offset 2176 + input_sec->output_section->vma + rel->r_offset); 2177 2178 branch_offset = (bfd_signed_vma) (destination - location); 2179 2180 r_type = ELFNN_R_TYPE (rel->r_info); 2181 2182 /* We don't want to redirect any old unconditional jump in this way, 2183 only one which is being used for a sibcall, where it is 2184 acceptable for the IP0 and IP1 registers to be clobbered. */ 2185 if ((r_type == AARCH64_R (CALL26) || r_type == AARCH64_R (JUMP26)) 2186 && (branch_offset > AARCH64_MAX_FWD_BRANCH_OFFSET 2187 || branch_offset < AARCH64_MAX_BWD_BRANCH_OFFSET)) 2188 { 2189 stub_type = aarch64_stub_long_branch; 2190 } 2191 2192 return stub_type; 2193 } 2194 2195 /* Build a name for an entry in the stub hash table. */ 2196 2197 static char * 2198 elfNN_aarch64_stub_name (const asection *input_section, 2199 const asection *sym_sec, 2200 const struct elf_aarch64_link_hash_entry *hash, 2201 const Elf_Internal_Rela *rel) 2202 { 2203 char *stub_name; 2204 bfd_size_type len; 2205 2206 if (hash) 2207 { 2208 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 16 + 1; 2209 stub_name = bfd_malloc (len); 2210 if (stub_name != NULL) 2211 snprintf (stub_name, len, "%08x_%s+%" BFD_VMA_FMT "x", 2212 (unsigned int) input_section->id, 2213 hash->root.root.root.string, 2214 rel->r_addend); 2215 } 2216 else 2217 { 2218 len = 8 + 1 + 8 + 1 + 8 + 1 + 16 + 1; 2219 stub_name = bfd_malloc (len); 2220 if (stub_name != NULL) 2221 snprintf (stub_name, len, "%08x_%x:%x+%" BFD_VMA_FMT "x", 2222 (unsigned int) input_section->id, 2223 (unsigned int) sym_sec->id, 2224 (unsigned int) ELFNN_R_SYM (rel->r_info), 2225 rel->r_addend); 2226 } 2227 2228 return stub_name; 2229 } 2230 2231 /* Look up an entry in the stub hash. Stub entries are cached because 2232 creating the stub name takes a bit of time. */ 2233 2234 static struct elf_aarch64_stub_hash_entry * 2235 elfNN_aarch64_get_stub_entry (const asection *input_section, 2236 const asection *sym_sec, 2237 struct elf_link_hash_entry *hash, 2238 const Elf_Internal_Rela *rel, 2239 struct elf_aarch64_link_hash_table *htab) 2240 { 2241 struct elf_aarch64_stub_hash_entry *stub_entry; 2242 struct elf_aarch64_link_hash_entry *h = 2243 (struct elf_aarch64_link_hash_entry *) hash; 2244 const asection *id_sec; 2245 2246 if ((input_section->flags & SEC_CODE) == 0) 2247 return NULL; 2248 2249 /* If this input section is part of a group of sections sharing one 2250 stub section, then use the id of the first section in the group. 2251 Stub names need to include a section id, as there may well be 2252 more than one stub used to reach say, printf, and we need to 2253 distinguish between them. */ 2254 id_sec = htab->stub_group[input_section->id].link_sec; 2255 2256 if (h != NULL && h->stub_cache != NULL 2257 && h->stub_cache->h == h && h->stub_cache->id_sec == id_sec) 2258 { 2259 stub_entry = h->stub_cache; 2260 } 2261 else 2262 { 2263 char *stub_name; 2264 2265 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, h, rel); 2266 if (stub_name == NULL) 2267 return NULL; 2268 2269 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, 2270 stub_name, FALSE, FALSE); 2271 if (h != NULL) 2272 h->stub_cache = stub_entry; 2273 2274 free (stub_name); 2275 } 2276 2277 return stub_entry; 2278 } 2279 2280 /* Add a new stub entry to the stub hash. Not all fields of the new 2281 stub entry are initialised. */ 2282 2283 static struct elf_aarch64_stub_hash_entry * 2284 elfNN_aarch64_add_stub (const char *stub_name, 2285 asection *section, 2286 struct elf_aarch64_link_hash_table *htab) 2287 { 2288 asection *link_sec; 2289 asection *stub_sec; 2290 struct elf_aarch64_stub_hash_entry *stub_entry; 2291 2292 link_sec = htab->stub_group[section->id].link_sec; 2293 stub_sec = htab->stub_group[section->id].stub_sec; 2294 if (stub_sec == NULL) 2295 { 2296 stub_sec = htab->stub_group[link_sec->id].stub_sec; 2297 if (stub_sec == NULL) 2298 { 2299 size_t namelen; 2300 bfd_size_type len; 2301 char *s_name; 2302 2303 namelen = strlen (link_sec->name); 2304 len = namelen + sizeof (STUB_SUFFIX); 2305 s_name = bfd_alloc (htab->stub_bfd, len); 2306 if (s_name == NULL) 2307 return NULL; 2308 2309 memcpy (s_name, link_sec->name, namelen); 2310 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX)); 2311 stub_sec = (*htab->add_stub_section) (s_name, link_sec); 2312 if (stub_sec == NULL) 2313 return NULL; 2314 htab->stub_group[link_sec->id].stub_sec = stub_sec; 2315 } 2316 htab->stub_group[section->id].stub_sec = stub_sec; 2317 } 2318 2319 /* Enter this entry into the linker stub hash table. */ 2320 stub_entry = aarch64_stub_hash_lookup (&htab->stub_hash_table, stub_name, 2321 TRUE, FALSE); 2322 if (stub_entry == NULL) 2323 { 2324 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"), 2325 section->owner, stub_name); 2326 return NULL; 2327 } 2328 2329 stub_entry->stub_sec = stub_sec; 2330 stub_entry->stub_offset = 0; 2331 stub_entry->id_sec = link_sec; 2332 2333 return stub_entry; 2334 } 2335 2336 static bfd_boolean 2337 aarch64_build_one_stub (struct bfd_hash_entry *gen_entry, 2338 void *in_arg ATTRIBUTE_UNUSED) 2339 { 2340 struct elf_aarch64_stub_hash_entry *stub_entry; 2341 asection *stub_sec; 2342 bfd *stub_bfd; 2343 bfd_byte *loc; 2344 bfd_vma sym_value; 2345 unsigned int template_size; 2346 const uint32_t *template; 2347 unsigned int i; 2348 2349 /* Massage our args to the form they really have. */ 2350 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 2351 2352 stub_sec = stub_entry->stub_sec; 2353 2354 /* Make a note of the offset within the stubs for this entry. */ 2355 stub_entry->stub_offset = stub_sec->size; 2356 loc = stub_sec->contents + stub_entry->stub_offset; 2357 2358 stub_bfd = stub_sec->owner; 2359 2360 /* This is the address of the stub destination. */ 2361 sym_value = (stub_entry->target_value 2362 + stub_entry->target_section->output_offset 2363 + stub_entry->target_section->output_section->vma); 2364 2365 if (stub_entry->stub_type == aarch64_stub_long_branch) 2366 { 2367 bfd_vma place = (stub_entry->stub_offset + stub_sec->output_section->vma 2368 + stub_sec->output_offset); 2369 2370 /* See if we can relax the stub. */ 2371 if (aarch64_valid_for_adrp_p (sym_value, place)) 2372 stub_entry->stub_type = aarch64_select_branch_stub (sym_value, place); 2373 } 2374 2375 switch (stub_entry->stub_type) 2376 { 2377 case aarch64_stub_adrp_branch: 2378 template = aarch64_adrp_branch_stub; 2379 template_size = sizeof (aarch64_adrp_branch_stub); 2380 break; 2381 case aarch64_stub_long_branch: 2382 template = aarch64_long_branch_stub; 2383 template_size = sizeof (aarch64_long_branch_stub); 2384 break; 2385 default: 2386 BFD_FAIL (); 2387 return FALSE; 2388 } 2389 2390 for (i = 0; i < (template_size / sizeof template[0]); i++) 2391 { 2392 bfd_putl32 (template[i], loc); 2393 loc += 4; 2394 } 2395 2396 template_size = (template_size + 7) & ~7; 2397 stub_sec->size += template_size; 2398 2399 switch (stub_entry->stub_type) 2400 { 2401 case aarch64_stub_adrp_branch: 2402 if (aarch64_relocate (AARCH64_R (ADR_PREL_PG_HI21), stub_bfd, stub_sec, 2403 stub_entry->stub_offset, sym_value)) 2404 /* The stub would not have been relaxed if the offset was out 2405 of range. */ 2406 BFD_FAIL (); 2407 2408 _bfd_final_link_relocate 2409 (elfNN_aarch64_howto_from_type (AARCH64_R (ADD_ABS_LO12_NC)), 2410 stub_bfd, 2411 stub_sec, 2412 stub_sec->contents, 2413 stub_entry->stub_offset + 4, 2414 sym_value, 2415 0); 2416 break; 2417 2418 case aarch64_stub_long_branch: 2419 /* We want the value relative to the address 12 bytes back from the 2420 value itself. */ 2421 _bfd_final_link_relocate (elfNN_aarch64_howto_from_type 2422 (AARCH64_R (PRELNN)), stub_bfd, stub_sec, 2423 stub_sec->contents, 2424 stub_entry->stub_offset + 16, 2425 sym_value + 12, 0); 2426 break; 2427 default: 2428 break; 2429 } 2430 2431 return TRUE; 2432 } 2433 2434 /* As above, but don't actually build the stub. Just bump offset so 2435 we know stub section sizes. */ 2436 2437 static bfd_boolean 2438 aarch64_size_one_stub (struct bfd_hash_entry *gen_entry, 2439 void *in_arg ATTRIBUTE_UNUSED) 2440 { 2441 struct elf_aarch64_stub_hash_entry *stub_entry; 2442 int size; 2443 2444 /* Massage our args to the form they really have. */ 2445 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 2446 2447 switch (stub_entry->stub_type) 2448 { 2449 case aarch64_stub_adrp_branch: 2450 size = sizeof (aarch64_adrp_branch_stub); 2451 break; 2452 case aarch64_stub_long_branch: 2453 size = sizeof (aarch64_long_branch_stub); 2454 break; 2455 default: 2456 BFD_FAIL (); 2457 return FALSE; 2458 break; 2459 } 2460 2461 size = (size + 7) & ~7; 2462 stub_entry->stub_sec->size += size; 2463 return TRUE; 2464 } 2465 2466 /* External entry points for sizing and building linker stubs. */ 2467 2468 /* Set up various things so that we can make a list of input sections 2469 for each output section included in the link. Returns -1 on error, 2470 0 when no stubs will be needed, and 1 on success. */ 2471 2472 int 2473 elfNN_aarch64_setup_section_lists (bfd *output_bfd, 2474 struct bfd_link_info *info) 2475 { 2476 bfd *input_bfd; 2477 unsigned int bfd_count; 2478 int top_id, top_index; 2479 asection *section; 2480 asection **input_list, **list; 2481 bfd_size_type amt; 2482 struct elf_aarch64_link_hash_table *htab = 2483 elf_aarch64_hash_table (info); 2484 2485 if (!is_elf_hash_table (htab)) 2486 return 0; 2487 2488 /* Count the number of input BFDs and find the top input section id. */ 2489 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 2490 input_bfd != NULL; input_bfd = input_bfd->link_next) 2491 { 2492 bfd_count += 1; 2493 for (section = input_bfd->sections; 2494 section != NULL; section = section->next) 2495 { 2496 if (top_id < section->id) 2497 top_id = section->id; 2498 } 2499 } 2500 htab->bfd_count = bfd_count; 2501 2502 amt = sizeof (struct map_stub) * (top_id + 1); 2503 htab->stub_group = bfd_zmalloc (amt); 2504 if (htab->stub_group == NULL) 2505 return -1; 2506 2507 /* We can't use output_bfd->section_count here to find the top output 2508 section index as some sections may have been removed, and 2509 _bfd_strip_section_from_output doesn't renumber the indices. */ 2510 for (section = output_bfd->sections, top_index = 0; 2511 section != NULL; section = section->next) 2512 { 2513 if (top_index < section->index) 2514 top_index = section->index; 2515 } 2516 2517 htab->top_index = top_index; 2518 amt = sizeof (asection *) * (top_index + 1); 2519 input_list = bfd_malloc (amt); 2520 htab->input_list = input_list; 2521 if (input_list == NULL) 2522 return -1; 2523 2524 /* For sections we aren't interested in, mark their entries with a 2525 value we can check later. */ 2526 list = input_list + top_index; 2527 do 2528 *list = bfd_abs_section_ptr; 2529 while (list-- != input_list); 2530 2531 for (section = output_bfd->sections; 2532 section != NULL; section = section->next) 2533 { 2534 if ((section->flags & SEC_CODE) != 0) 2535 input_list[section->index] = NULL; 2536 } 2537 2538 return 1; 2539 } 2540 2541 /* Used by elfNN_aarch64_next_input_section and group_sections. */ 2542 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec) 2543 2544 /* The linker repeatedly calls this function for each input section, 2545 in the order that input sections are linked into output sections. 2546 Build lists of input sections to determine groupings between which 2547 we may insert linker stubs. */ 2548 2549 void 2550 elfNN_aarch64_next_input_section (struct bfd_link_info *info, asection *isec) 2551 { 2552 struct elf_aarch64_link_hash_table *htab = 2553 elf_aarch64_hash_table (info); 2554 2555 if (isec->output_section->index <= htab->top_index) 2556 { 2557 asection **list = htab->input_list + isec->output_section->index; 2558 2559 if (*list != bfd_abs_section_ptr) 2560 { 2561 /* Steal the link_sec pointer for our list. */ 2562 /* This happens to make the list in reverse order, 2563 which is what we want. */ 2564 PREV_SEC (isec) = *list; 2565 *list = isec; 2566 } 2567 } 2568 } 2569 2570 /* See whether we can group stub sections together. Grouping stub 2571 sections may result in fewer stubs. More importantly, we need to 2572 put all .init* and .fini* stubs at the beginning of the .init or 2573 .fini output sections respectively, because glibc splits the 2574 _init and _fini functions into multiple parts. Putting a stub in 2575 the middle of a function is not a good idea. */ 2576 2577 static void 2578 group_sections (struct elf_aarch64_link_hash_table *htab, 2579 bfd_size_type stub_group_size, 2580 bfd_boolean stubs_always_before_branch) 2581 { 2582 asection **list = htab->input_list + htab->top_index; 2583 2584 do 2585 { 2586 asection *tail = *list; 2587 2588 if (tail == bfd_abs_section_ptr) 2589 continue; 2590 2591 while (tail != NULL) 2592 { 2593 asection *curr; 2594 asection *prev; 2595 bfd_size_type total; 2596 2597 curr = tail; 2598 total = tail->size; 2599 while ((prev = PREV_SEC (curr)) != NULL 2600 && ((total += curr->output_offset - prev->output_offset) 2601 < stub_group_size)) 2602 curr = prev; 2603 2604 /* OK, the size from the start of CURR to the end is less 2605 than stub_group_size and thus can be handled by one stub 2606 section. (Or the tail section is itself larger than 2607 stub_group_size, in which case we may be toast.) 2608 We should really be keeping track of the total size of 2609 stubs added here, as stubs contribute to the final output 2610 section size. */ 2611 do 2612 { 2613 prev = PREV_SEC (tail); 2614 /* Set up this stub group. */ 2615 htab->stub_group[tail->id].link_sec = curr; 2616 } 2617 while (tail != curr && (tail = prev) != NULL); 2618 2619 /* But wait, there's more! Input sections up to stub_group_size 2620 bytes before the stub section can be handled by it too. */ 2621 if (!stubs_always_before_branch) 2622 { 2623 total = 0; 2624 while (prev != NULL 2625 && ((total += tail->output_offset - prev->output_offset) 2626 < stub_group_size)) 2627 { 2628 tail = prev; 2629 prev = PREV_SEC (tail); 2630 htab->stub_group[tail->id].link_sec = curr; 2631 } 2632 } 2633 tail = prev; 2634 } 2635 } 2636 while (list-- != htab->input_list); 2637 2638 free (htab->input_list); 2639 } 2640 2641 #undef PREV_SEC 2642 2643 /* Determine and set the size of the stub section for a final link. 2644 2645 The basic idea here is to examine all the relocations looking for 2646 PC-relative calls to a target that is unreachable with a "bl" 2647 instruction. */ 2648 2649 bfd_boolean 2650 elfNN_aarch64_size_stubs (bfd *output_bfd, 2651 bfd *stub_bfd, 2652 struct bfd_link_info *info, 2653 bfd_signed_vma group_size, 2654 asection * (*add_stub_section) (const char *, 2655 asection *), 2656 void (*layout_sections_again) (void)) 2657 { 2658 bfd_size_type stub_group_size; 2659 bfd_boolean stubs_always_before_branch; 2660 bfd_boolean stub_changed = 0; 2661 struct elf_aarch64_link_hash_table *htab = elf_aarch64_hash_table (info); 2662 2663 /* Propagate mach to stub bfd, because it may not have been 2664 finalized when we created stub_bfd. */ 2665 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd), 2666 bfd_get_mach (output_bfd)); 2667 2668 /* Stash our params away. */ 2669 htab->stub_bfd = stub_bfd; 2670 htab->add_stub_section = add_stub_section; 2671 htab->layout_sections_again = layout_sections_again; 2672 stubs_always_before_branch = group_size < 0; 2673 if (group_size < 0) 2674 stub_group_size = -group_size; 2675 else 2676 stub_group_size = group_size; 2677 2678 if (stub_group_size == 1) 2679 { 2680 /* Default values. */ 2681 /* AArch64 branch range is +-128MB. The value used is 1MB less. */ 2682 stub_group_size = 127 * 1024 * 1024; 2683 } 2684 2685 group_sections (htab, stub_group_size, stubs_always_before_branch); 2686 2687 while (1) 2688 { 2689 bfd *input_bfd; 2690 unsigned int bfd_indx; 2691 asection *stub_sec; 2692 2693 for (input_bfd = info->input_bfds, bfd_indx = 0; 2694 input_bfd != NULL; input_bfd = input_bfd->link_next, bfd_indx++) 2695 { 2696 Elf_Internal_Shdr *symtab_hdr; 2697 asection *section; 2698 Elf_Internal_Sym *local_syms = NULL; 2699 2700 /* We'll need the symbol table in a second. */ 2701 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 2702 if (symtab_hdr->sh_info == 0) 2703 continue; 2704 2705 /* Walk over each section attached to the input bfd. */ 2706 for (section = input_bfd->sections; 2707 section != NULL; section = section->next) 2708 { 2709 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 2710 2711 /* If there aren't any relocs, then there's nothing more 2712 to do. */ 2713 if ((section->flags & SEC_RELOC) == 0 2714 || section->reloc_count == 0 2715 || (section->flags & SEC_CODE) == 0) 2716 continue; 2717 2718 /* If this section is a link-once section that will be 2719 discarded, then don't create any stubs. */ 2720 if (section->output_section == NULL 2721 || section->output_section->owner != output_bfd) 2722 continue; 2723 2724 /* Get the relocs. */ 2725 internal_relocs 2726 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 2727 NULL, info->keep_memory); 2728 if (internal_relocs == NULL) 2729 goto error_ret_free_local; 2730 2731 /* Now examine each relocation. */ 2732 irela = internal_relocs; 2733 irelaend = irela + section->reloc_count; 2734 for (; irela < irelaend; irela++) 2735 { 2736 unsigned int r_type, r_indx; 2737 enum elf_aarch64_stub_type stub_type; 2738 struct elf_aarch64_stub_hash_entry *stub_entry; 2739 asection *sym_sec; 2740 bfd_vma sym_value; 2741 bfd_vma destination; 2742 struct elf_aarch64_link_hash_entry *hash; 2743 const char *sym_name; 2744 char *stub_name; 2745 const asection *id_sec; 2746 unsigned char st_type; 2747 bfd_size_type len; 2748 2749 r_type = ELFNN_R_TYPE (irela->r_info); 2750 r_indx = ELFNN_R_SYM (irela->r_info); 2751 2752 if (r_type >= (unsigned int) R_AARCH64_end) 2753 { 2754 bfd_set_error (bfd_error_bad_value); 2755 error_ret_free_internal: 2756 if (elf_section_data (section)->relocs == NULL) 2757 free (internal_relocs); 2758 goto error_ret_free_local; 2759 } 2760 2761 /* Only look for stubs on unconditional branch and 2762 branch and link instructions. */ 2763 if (r_type != (unsigned int) AARCH64_R (CALL26) 2764 && r_type != (unsigned int) AARCH64_R (JUMP26)) 2765 continue; 2766 2767 /* Now determine the call target, its name, value, 2768 section. */ 2769 sym_sec = NULL; 2770 sym_value = 0; 2771 destination = 0; 2772 hash = NULL; 2773 sym_name = NULL; 2774 if (r_indx < symtab_hdr->sh_info) 2775 { 2776 /* It's a local symbol. */ 2777 Elf_Internal_Sym *sym; 2778 Elf_Internal_Shdr *hdr; 2779 2780 if (local_syms == NULL) 2781 { 2782 local_syms 2783 = (Elf_Internal_Sym *) symtab_hdr->contents; 2784 if (local_syms == NULL) 2785 local_syms 2786 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 2787 symtab_hdr->sh_info, 0, 2788 NULL, NULL, NULL); 2789 if (local_syms == NULL) 2790 goto error_ret_free_internal; 2791 } 2792 2793 sym = local_syms + r_indx; 2794 hdr = elf_elfsections (input_bfd)[sym->st_shndx]; 2795 sym_sec = hdr->bfd_section; 2796 if (!sym_sec) 2797 /* This is an undefined symbol. It can never 2798 be resolved. */ 2799 continue; 2800 2801 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION) 2802 sym_value = sym->st_value; 2803 destination = (sym_value + irela->r_addend 2804 + sym_sec->output_offset 2805 + sym_sec->output_section->vma); 2806 st_type = ELF_ST_TYPE (sym->st_info); 2807 sym_name 2808 = bfd_elf_string_from_elf_section (input_bfd, 2809 symtab_hdr->sh_link, 2810 sym->st_name); 2811 } 2812 else 2813 { 2814 int e_indx; 2815 2816 e_indx = r_indx - symtab_hdr->sh_info; 2817 hash = ((struct elf_aarch64_link_hash_entry *) 2818 elf_sym_hashes (input_bfd)[e_indx]); 2819 2820 while (hash->root.root.type == bfd_link_hash_indirect 2821 || hash->root.root.type == bfd_link_hash_warning) 2822 hash = ((struct elf_aarch64_link_hash_entry *) 2823 hash->root.root.u.i.link); 2824 2825 if (hash->root.root.type == bfd_link_hash_defined 2826 || hash->root.root.type == bfd_link_hash_defweak) 2827 { 2828 struct elf_aarch64_link_hash_table *globals = 2829 elf_aarch64_hash_table (info); 2830 sym_sec = hash->root.root.u.def.section; 2831 sym_value = hash->root.root.u.def.value; 2832 /* For a destination in a shared library, 2833 use the PLT stub as target address to 2834 decide whether a branch stub is 2835 needed. */ 2836 if (globals->root.splt != NULL && hash != NULL 2837 && hash->root.plt.offset != (bfd_vma) - 1) 2838 { 2839 sym_sec = globals->root.splt; 2840 sym_value = hash->root.plt.offset; 2841 if (sym_sec->output_section != NULL) 2842 destination = (sym_value 2843 + sym_sec->output_offset 2844 + 2845 sym_sec->output_section->vma); 2846 } 2847 else if (sym_sec->output_section != NULL) 2848 destination = (sym_value + irela->r_addend 2849 + sym_sec->output_offset 2850 + sym_sec->output_section->vma); 2851 } 2852 else if (hash->root.root.type == bfd_link_hash_undefined 2853 || (hash->root.root.type 2854 == bfd_link_hash_undefweak)) 2855 { 2856 /* For a shared library, use the PLT stub as 2857 target address to decide whether a long 2858 branch stub is needed. 2859 For absolute code, they cannot be handled. */ 2860 struct elf_aarch64_link_hash_table *globals = 2861 elf_aarch64_hash_table (info); 2862 2863 if (globals->root.splt != NULL && hash != NULL 2864 && hash->root.plt.offset != (bfd_vma) - 1) 2865 { 2866 sym_sec = globals->root.splt; 2867 sym_value = hash->root.plt.offset; 2868 if (sym_sec->output_section != NULL) 2869 destination = (sym_value 2870 + sym_sec->output_offset 2871 + 2872 sym_sec->output_section->vma); 2873 } 2874 else 2875 continue; 2876 } 2877 else 2878 { 2879 bfd_set_error (bfd_error_bad_value); 2880 goto error_ret_free_internal; 2881 } 2882 st_type = ELF_ST_TYPE (hash->root.type); 2883 sym_name = hash->root.root.root.string; 2884 } 2885 2886 /* Determine what (if any) linker stub is needed. */ 2887 stub_type = aarch64_type_of_stub 2888 (info, section, irela, st_type, hash, destination); 2889 if (stub_type == aarch64_stub_none) 2890 continue; 2891 2892 /* Support for grouping stub sections. */ 2893 id_sec = htab->stub_group[section->id].link_sec; 2894 2895 /* Get the name of this stub. */ 2896 stub_name = elfNN_aarch64_stub_name (id_sec, sym_sec, hash, 2897 irela); 2898 if (!stub_name) 2899 goto error_ret_free_internal; 2900 2901 stub_entry = 2902 aarch64_stub_hash_lookup (&htab->stub_hash_table, 2903 stub_name, FALSE, FALSE); 2904 if (stub_entry != NULL) 2905 { 2906 /* The proper stub has already been created. */ 2907 free (stub_name); 2908 continue; 2909 } 2910 2911 stub_entry = elfNN_aarch64_add_stub (stub_name, section, 2912 htab); 2913 if (stub_entry == NULL) 2914 { 2915 free (stub_name); 2916 goto error_ret_free_internal; 2917 } 2918 2919 stub_entry->target_value = sym_value; 2920 stub_entry->target_section = sym_sec; 2921 stub_entry->stub_type = stub_type; 2922 stub_entry->h = hash; 2923 stub_entry->st_type = st_type; 2924 2925 if (sym_name == NULL) 2926 sym_name = "unnamed"; 2927 len = sizeof (STUB_ENTRY_NAME) + strlen (sym_name); 2928 stub_entry->output_name = bfd_alloc (htab->stub_bfd, len); 2929 if (stub_entry->output_name == NULL) 2930 { 2931 free (stub_name); 2932 goto error_ret_free_internal; 2933 } 2934 2935 snprintf (stub_entry->output_name, len, STUB_ENTRY_NAME, 2936 sym_name); 2937 2938 stub_changed = TRUE; 2939 } 2940 2941 /* We're done with the internal relocs, free them. */ 2942 if (elf_section_data (section)->relocs == NULL) 2943 free (internal_relocs); 2944 } 2945 } 2946 2947 if (!stub_changed) 2948 break; 2949 2950 /* OK, we've added some stubs. Find out the new size of the 2951 stub sections. */ 2952 for (stub_sec = htab->stub_bfd->sections; 2953 stub_sec != NULL; stub_sec = stub_sec->next) 2954 stub_sec->size = 0; 2955 2956 bfd_hash_traverse (&htab->stub_hash_table, aarch64_size_one_stub, htab); 2957 2958 /* Ask the linker to do its stuff. */ 2959 (*htab->layout_sections_again) (); 2960 stub_changed = FALSE; 2961 } 2962 2963 return TRUE; 2964 2965 error_ret_free_local: 2966 return FALSE; 2967 } 2968 2969 /* Build all the stubs associated with the current output file. The 2970 stubs are kept in a hash table attached to the main linker hash 2971 table. We also set up the .plt entries for statically linked PIC 2972 functions here. This function is called via aarch64_elf_finish in the 2973 linker. */ 2974 2975 bfd_boolean 2976 elfNN_aarch64_build_stubs (struct bfd_link_info *info) 2977 { 2978 asection *stub_sec; 2979 struct bfd_hash_table *table; 2980 struct elf_aarch64_link_hash_table *htab; 2981 2982 htab = elf_aarch64_hash_table (info); 2983 2984 for (stub_sec = htab->stub_bfd->sections; 2985 stub_sec != NULL; stub_sec = stub_sec->next) 2986 { 2987 bfd_size_type size; 2988 2989 /* Ignore non-stub sections. */ 2990 if (!strstr (stub_sec->name, STUB_SUFFIX)) 2991 continue; 2992 2993 /* Allocate memory to hold the linker stubs. */ 2994 size = stub_sec->size; 2995 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size); 2996 if (stub_sec->contents == NULL && size != 0) 2997 return FALSE; 2998 stub_sec->size = 0; 2999 } 3000 3001 /* Build the stubs as directed by the stub hash table. */ 3002 table = &htab->stub_hash_table; 3003 bfd_hash_traverse (table, aarch64_build_one_stub, info); 3004 3005 return TRUE; 3006 } 3007 3008 3009 /* Add an entry to the code/data map for section SEC. */ 3010 3011 static void 3012 elfNN_aarch64_section_map_add (asection *sec, char type, bfd_vma vma) 3013 { 3014 struct _aarch64_elf_section_data *sec_data = 3015 elf_aarch64_section_data (sec); 3016 unsigned int newidx; 3017 3018 if (sec_data->map == NULL) 3019 { 3020 sec_data->map = bfd_malloc (sizeof (elf_aarch64_section_map)); 3021 sec_data->mapcount = 0; 3022 sec_data->mapsize = 1; 3023 } 3024 3025 newidx = sec_data->mapcount++; 3026 3027 if (sec_data->mapcount > sec_data->mapsize) 3028 { 3029 sec_data->mapsize *= 2; 3030 sec_data->map = bfd_realloc_or_free 3031 (sec_data->map, sec_data->mapsize * sizeof (elf_aarch64_section_map)); 3032 } 3033 3034 if (sec_data->map) 3035 { 3036 sec_data->map[newidx].vma = vma; 3037 sec_data->map[newidx].type = type; 3038 } 3039 } 3040 3041 3042 /* Initialise maps of insn/data for input BFDs. */ 3043 void 3044 bfd_elfNN_aarch64_init_maps (bfd *abfd) 3045 { 3046 Elf_Internal_Sym *isymbuf; 3047 Elf_Internal_Shdr *hdr; 3048 unsigned int i, localsyms; 3049 3050 /* Make sure that we are dealing with an AArch64 elf binary. */ 3051 if (!is_aarch64_elf (abfd)) 3052 return; 3053 3054 if ((abfd->flags & DYNAMIC) != 0) 3055 return; 3056 3057 hdr = &elf_symtab_hdr (abfd); 3058 localsyms = hdr->sh_info; 3059 3060 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field 3061 should contain the number of local symbols, which should come before any 3062 global symbols. Mapping symbols are always local. */ 3063 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL, NULL); 3064 3065 /* No internal symbols read? Skip this BFD. */ 3066 if (isymbuf == NULL) 3067 return; 3068 3069 for (i = 0; i < localsyms; i++) 3070 { 3071 Elf_Internal_Sym *isym = &isymbuf[i]; 3072 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 3073 const char *name; 3074 3075 if (sec != NULL && ELF_ST_BIND (isym->st_info) == STB_LOCAL) 3076 { 3077 name = bfd_elf_string_from_elf_section (abfd, 3078 hdr->sh_link, 3079 isym->st_name); 3080 3081 if (bfd_is_aarch64_special_symbol_name 3082 (name, BFD_AARCH64_SPECIAL_SYM_TYPE_MAP)) 3083 elfNN_aarch64_section_map_add (sec, name[1], isym->st_value); 3084 } 3085 } 3086 } 3087 3088 /* Set option values needed during linking. */ 3089 void 3090 bfd_elfNN_aarch64_set_options (struct bfd *output_bfd, 3091 struct bfd_link_info *link_info, 3092 int no_enum_warn, 3093 int no_wchar_warn, int pic_veneer) 3094 { 3095 struct elf_aarch64_link_hash_table *globals; 3096 3097 globals = elf_aarch64_hash_table (link_info); 3098 globals->pic_veneer = pic_veneer; 3099 3100 BFD_ASSERT (is_aarch64_elf (output_bfd)); 3101 elf_aarch64_tdata (output_bfd)->no_enum_size_warning = no_enum_warn; 3102 elf_aarch64_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn; 3103 } 3104 3105 static bfd_vma 3106 aarch64_calculate_got_entry_vma (struct elf_link_hash_entry *h, 3107 struct elf_aarch64_link_hash_table 3108 *globals, struct bfd_link_info *info, 3109 bfd_vma value, bfd *output_bfd, 3110 bfd_boolean *unresolved_reloc_p) 3111 { 3112 bfd_vma off = (bfd_vma) - 1; 3113 asection *basegot = globals->root.sgot; 3114 bfd_boolean dyn = globals->root.dynamic_sections_created; 3115 3116 if (h != NULL) 3117 { 3118 BFD_ASSERT (basegot != NULL); 3119 off = h->got.offset; 3120 BFD_ASSERT (off != (bfd_vma) - 1); 3121 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 3122 || (info->shared 3123 && SYMBOL_REFERENCES_LOCAL (info, h)) 3124 || (ELF_ST_VISIBILITY (h->other) 3125 && h->root.type == bfd_link_hash_undefweak)) 3126 { 3127 /* This is actually a static link, or it is a -Bsymbolic link 3128 and the symbol is defined locally. We must initialize this 3129 entry in the global offset table. Since the offset must 3130 always be a multiple of 8 (4 in the case of ILP32), we use 3131 the least significant bit to record whether we have 3132 initialized it already. 3133 When doing a dynamic link, we create a .rel(a).got relocation 3134 entry to initialize the value. This is done in the 3135 finish_dynamic_symbol routine. */ 3136 if ((off & 1) != 0) 3137 off &= ~1; 3138 else 3139 { 3140 bfd_put_NN (output_bfd, value, basegot->contents + off); 3141 h->got.offset |= 1; 3142 } 3143 } 3144 else 3145 *unresolved_reloc_p = FALSE; 3146 3147 off = off + basegot->output_section->vma + basegot->output_offset; 3148 } 3149 3150 return off; 3151 } 3152 3153 /* Change R_TYPE to a more efficient access model where possible, 3154 return the new reloc type. */ 3155 3156 static bfd_reloc_code_real_type 3157 aarch64_tls_transition_without_check (bfd_reloc_code_real_type r_type, 3158 struct elf_link_hash_entry *h) 3159 { 3160 bfd_boolean is_local = h == NULL; 3161 3162 switch (r_type) 3163 { 3164 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 3165 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 3166 return (is_local 3167 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 3168 : BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21); 3169 3170 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 3171 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 3172 return (is_local 3173 ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC 3174 : BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC); 3175 3176 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 3177 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1 : r_type; 3178 3179 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 3180 return is_local ? BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC : r_type; 3181 3182 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 3183 case BFD_RELOC_AARCH64_TLSDESC_CALL: 3184 /* Instructions with these relocations will become NOPs. */ 3185 return BFD_RELOC_AARCH64_NONE; 3186 3187 default: 3188 break; 3189 } 3190 3191 return r_type; 3192 } 3193 3194 static unsigned int 3195 aarch64_reloc_got_type (bfd_reloc_code_real_type r_type) 3196 { 3197 switch (r_type) 3198 { 3199 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 3200 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 3201 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 3202 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 3203 return GOT_NORMAL; 3204 3205 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 3206 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 3207 return GOT_TLS_GD; 3208 3209 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 3210 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 3211 case BFD_RELOC_AARCH64_TLSDESC_CALL: 3212 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC: 3213 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 3214 return GOT_TLSDESC_GD; 3215 3216 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 3217 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 3218 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 3219 return GOT_TLS_IE; 3220 3221 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 3222 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 3223 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 3224 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 3225 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 3226 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 3227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 3228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 3229 return GOT_UNKNOWN; 3230 3231 default: 3232 break; 3233 } 3234 return GOT_UNKNOWN; 3235 } 3236 3237 static bfd_boolean 3238 aarch64_can_relax_tls (bfd *input_bfd, 3239 struct bfd_link_info *info, 3240 bfd_reloc_code_real_type r_type, 3241 struct elf_link_hash_entry *h, 3242 unsigned long r_symndx) 3243 { 3244 unsigned int symbol_got_type; 3245 unsigned int reloc_got_type; 3246 3247 if (! IS_AARCH64_TLS_RELOC (r_type)) 3248 return FALSE; 3249 3250 symbol_got_type = elfNN_aarch64_symbol_got_type (h, input_bfd, r_symndx); 3251 reloc_got_type = aarch64_reloc_got_type (r_type); 3252 3253 if (symbol_got_type == GOT_TLS_IE && GOT_TLS_GD_ANY_P (reloc_got_type)) 3254 return TRUE; 3255 3256 if (info->shared) 3257 return FALSE; 3258 3259 if (h && h->root.type == bfd_link_hash_undefweak) 3260 return FALSE; 3261 3262 return TRUE; 3263 } 3264 3265 /* Given the relocation code R_TYPE, return the relaxed bfd reloc 3266 enumerator. */ 3267 3268 static bfd_reloc_code_real_type 3269 aarch64_tls_transition (bfd *input_bfd, 3270 struct bfd_link_info *info, 3271 unsigned int r_type, 3272 struct elf_link_hash_entry *h, 3273 unsigned long r_symndx) 3274 { 3275 bfd_reloc_code_real_type bfd_r_type 3276 = elfNN_aarch64_bfd_reloc_from_type (r_type); 3277 3278 if (! aarch64_can_relax_tls (input_bfd, info, bfd_r_type, h, r_symndx)) 3279 return bfd_r_type; 3280 3281 return aarch64_tls_transition_without_check (bfd_r_type, h); 3282 } 3283 3284 /* Return the base VMA address which should be subtracted from real addresses 3285 when resolving R_AARCH64_TLS_DTPREL relocation. */ 3286 3287 static bfd_vma 3288 dtpoff_base (struct bfd_link_info *info) 3289 { 3290 /* If tls_sec is NULL, we should have signalled an error already. */ 3291 BFD_ASSERT (elf_hash_table (info)->tls_sec != NULL); 3292 return elf_hash_table (info)->tls_sec->vma; 3293 } 3294 3295 /* Return the base VMA address which should be subtracted from real addresses 3296 when resolving R_AARCH64_TLS_GOTTPREL64 relocations. */ 3297 3298 static bfd_vma 3299 tpoff_base (struct bfd_link_info *info) 3300 { 3301 struct elf_link_hash_table *htab = elf_hash_table (info); 3302 3303 /* If tls_sec is NULL, we should have signalled an error already. */ 3304 if (htab->tls_sec == NULL) 3305 return 0; 3306 3307 bfd_vma base = align_power ((bfd_vma) TCB_SIZE, 3308 htab->tls_sec->alignment_power); 3309 return htab->tls_sec->vma - base; 3310 } 3311 3312 static bfd_vma * 3313 symbol_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, 3314 unsigned long r_symndx) 3315 { 3316 /* Calculate the address of the GOT entry for symbol 3317 referred to in h. */ 3318 if (h != NULL) 3319 return &h->got.offset; 3320 else 3321 { 3322 /* local symbol */ 3323 struct elf_aarch64_local_symbol *l; 3324 3325 l = elf_aarch64_locals (input_bfd); 3326 return &l[r_symndx].got_offset; 3327 } 3328 } 3329 3330 static void 3331 symbol_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, 3332 unsigned long r_symndx) 3333 { 3334 bfd_vma *p; 3335 p = symbol_got_offset_ref (input_bfd, h, r_symndx); 3336 *p |= 1; 3337 } 3338 3339 static int 3340 symbol_got_offset_mark_p (bfd *input_bfd, struct elf_link_hash_entry *h, 3341 unsigned long r_symndx) 3342 { 3343 bfd_vma value; 3344 value = * symbol_got_offset_ref (input_bfd, h, r_symndx); 3345 return value & 1; 3346 } 3347 3348 static bfd_vma 3349 symbol_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, 3350 unsigned long r_symndx) 3351 { 3352 bfd_vma value; 3353 value = * symbol_got_offset_ref (input_bfd, h, r_symndx); 3354 value &= ~1; 3355 return value; 3356 } 3357 3358 static bfd_vma * 3359 symbol_tlsdesc_got_offset_ref (bfd *input_bfd, struct elf_link_hash_entry *h, 3360 unsigned long r_symndx) 3361 { 3362 /* Calculate the address of the GOT entry for symbol 3363 referred to in h. */ 3364 if (h != NULL) 3365 { 3366 struct elf_aarch64_link_hash_entry *eh; 3367 eh = (struct elf_aarch64_link_hash_entry *) h; 3368 return &eh->tlsdesc_got_jump_table_offset; 3369 } 3370 else 3371 { 3372 /* local symbol */ 3373 struct elf_aarch64_local_symbol *l; 3374 3375 l = elf_aarch64_locals (input_bfd); 3376 return &l[r_symndx].tlsdesc_got_jump_table_offset; 3377 } 3378 } 3379 3380 static void 3381 symbol_tlsdesc_got_offset_mark (bfd *input_bfd, struct elf_link_hash_entry *h, 3382 unsigned long r_symndx) 3383 { 3384 bfd_vma *p; 3385 p = symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 3386 *p |= 1; 3387 } 3388 3389 static int 3390 symbol_tlsdesc_got_offset_mark_p (bfd *input_bfd, 3391 struct elf_link_hash_entry *h, 3392 unsigned long r_symndx) 3393 { 3394 bfd_vma value; 3395 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 3396 return value & 1; 3397 } 3398 3399 static bfd_vma 3400 symbol_tlsdesc_got_offset (bfd *input_bfd, struct elf_link_hash_entry *h, 3401 unsigned long r_symndx) 3402 { 3403 bfd_vma value; 3404 value = * symbol_tlsdesc_got_offset_ref (input_bfd, h, r_symndx); 3405 value &= ~1; 3406 return value; 3407 } 3408 3409 /* Perform a relocation as part of a final link. */ 3410 static bfd_reloc_status_type 3411 elfNN_aarch64_final_link_relocate (reloc_howto_type *howto, 3412 bfd *input_bfd, 3413 bfd *output_bfd, 3414 asection *input_section, 3415 bfd_byte *contents, 3416 Elf_Internal_Rela *rel, 3417 bfd_vma value, 3418 struct bfd_link_info *info, 3419 asection *sym_sec, 3420 struct elf_link_hash_entry *h, 3421 bfd_boolean *unresolved_reloc_p, 3422 bfd_boolean save_addend, 3423 bfd_vma *saved_addend, 3424 Elf_Internal_Sym *sym) 3425 { 3426 Elf_Internal_Shdr *symtab_hdr; 3427 unsigned int r_type = howto->type; 3428 bfd_reloc_code_real_type bfd_r_type 3429 = elfNN_aarch64_bfd_reloc_from_howto (howto); 3430 bfd_reloc_code_real_type new_bfd_r_type; 3431 unsigned long r_symndx; 3432 bfd_byte *hit_data = contents + rel->r_offset; 3433 bfd_vma place; 3434 bfd_signed_vma signed_addend; 3435 struct elf_aarch64_link_hash_table *globals; 3436 bfd_boolean weak_undef_p; 3437 3438 globals = elf_aarch64_hash_table (info); 3439 3440 symtab_hdr = &elf_symtab_hdr (input_bfd); 3441 3442 BFD_ASSERT (is_aarch64_elf (input_bfd)); 3443 3444 r_symndx = ELFNN_R_SYM (rel->r_info); 3445 3446 /* It is possible to have linker relaxations on some TLS access 3447 models. Update our information here. */ 3448 new_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, h, r_symndx); 3449 if (new_bfd_r_type != bfd_r_type) 3450 { 3451 bfd_r_type = new_bfd_r_type; 3452 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type); 3453 BFD_ASSERT (howto != NULL); 3454 r_type = howto->type; 3455 } 3456 3457 place = input_section->output_section->vma 3458 + input_section->output_offset + rel->r_offset; 3459 3460 /* Get addend, accumulating the addend for consecutive relocs 3461 which refer to the same offset. */ 3462 signed_addend = saved_addend ? *saved_addend : 0; 3463 signed_addend += rel->r_addend; 3464 3465 weak_undef_p = (h ? h->root.type == bfd_link_hash_undefweak 3466 : bfd_is_und_section (sym_sec)); 3467 3468 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle 3469 it here if it is defined in a non-shared object. */ 3470 if (h != NULL 3471 && h->type == STT_GNU_IFUNC 3472 && h->def_regular) 3473 { 3474 asection *plt; 3475 const char *name; 3476 asection *base_got; 3477 bfd_vma off; 3478 3479 if ((input_section->flags & SEC_ALLOC) == 0 3480 || h->plt.offset == (bfd_vma) -1) 3481 abort (); 3482 3483 /* STT_GNU_IFUNC symbol must go through PLT. */ 3484 plt = globals->root.splt ? globals->root.splt : globals->root.iplt; 3485 value = (plt->output_section->vma + plt->output_offset + h->plt.offset); 3486 3487 switch (bfd_r_type) 3488 { 3489 default: 3490 if (h->root.root.string) 3491 name = h->root.root.string; 3492 else 3493 name = bfd_elf_sym_name (input_bfd, symtab_hdr, sym, 3494 NULL); 3495 (*_bfd_error_handler) 3496 (_("%B: relocation %s against STT_GNU_IFUNC " 3497 "symbol `%s' isn't handled by %s"), input_bfd, 3498 howto->name, name, __FUNCTION__); 3499 bfd_set_error (bfd_error_bad_value); 3500 return FALSE; 3501 3502 case BFD_RELOC_AARCH64_NN: 3503 if (rel->r_addend != 0) 3504 { 3505 if (h->root.root.string) 3506 name = h->root.root.string; 3507 else 3508 name = bfd_elf_sym_name (input_bfd, symtab_hdr, 3509 sym, NULL); 3510 (*_bfd_error_handler) 3511 (_("%B: relocation %s against STT_GNU_IFUNC " 3512 "symbol `%s' has non-zero addend: %d"), 3513 input_bfd, howto->name, name, rel->r_addend); 3514 bfd_set_error (bfd_error_bad_value); 3515 return FALSE; 3516 } 3517 3518 /* Generate dynamic relocation only when there is a 3519 non-GOT reference in a shared object. */ 3520 if (info->shared && h->non_got_ref) 3521 { 3522 Elf_Internal_Rela outrel; 3523 asection *sreloc; 3524 3525 /* Need a dynamic relocation to get the real function 3526 address. */ 3527 outrel.r_offset = _bfd_elf_section_offset (output_bfd, 3528 info, 3529 input_section, 3530 rel->r_offset); 3531 if (outrel.r_offset == (bfd_vma) -1 3532 || outrel.r_offset == (bfd_vma) -2) 3533 abort (); 3534 3535 outrel.r_offset += (input_section->output_section->vma 3536 + input_section->output_offset); 3537 3538 if (h->dynindx == -1 3539 || h->forced_local 3540 || info->executable) 3541 { 3542 /* This symbol is resolved locally. */ 3543 outrel.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE)); 3544 outrel.r_addend = (h->root.u.def.value 3545 + h->root.u.def.section->output_section->vma 3546 + h->root.u.def.section->output_offset); 3547 } 3548 else 3549 { 3550 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); 3551 outrel.r_addend = 0; 3552 } 3553 3554 sreloc = globals->root.irelifunc; 3555 elf_append_rela (output_bfd, sreloc, &outrel); 3556 3557 /* If this reloc is against an external symbol, we 3558 do not want to fiddle with the addend. Otherwise, 3559 we need to include the symbol value so that it 3560 becomes an addend for the dynamic reloc. For an 3561 internal symbol, we have updated addend. */ 3562 return bfd_reloc_ok; 3563 } 3564 /* FALLTHROUGH */ 3565 case BFD_RELOC_AARCH64_JUMP26: 3566 case BFD_RELOC_AARCH64_CALL26: 3567 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3568 signed_addend, 3569 weak_undef_p); 3570 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, 3571 howto, value); 3572 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 3573 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 3574 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 3575 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 3576 base_got = globals->root.sgot; 3577 off = h->got.offset; 3578 3579 if (base_got == NULL) 3580 abort (); 3581 3582 if (off == (bfd_vma) -1) 3583 { 3584 bfd_vma plt_index; 3585 3586 /* We can't use h->got.offset here to save state, or 3587 even just remember the offset, as finish_dynamic_symbol 3588 would use that as offset into .got. */ 3589 3590 if (globals->root.splt != NULL) 3591 { 3592 plt_index = ((h->plt.offset - globals->plt_header_size) / 3593 globals->plt_entry_size); 3594 off = (plt_index + 3) * GOT_ENTRY_SIZE; 3595 base_got = globals->root.sgotplt; 3596 } 3597 else 3598 { 3599 plt_index = h->plt.offset / globals->plt_entry_size; 3600 off = plt_index * GOT_ENTRY_SIZE; 3601 base_got = globals->root.igotplt; 3602 } 3603 3604 if (h->dynindx == -1 3605 || h->forced_local 3606 || info->symbolic) 3607 { 3608 /* This references the local definition. We must 3609 initialize this entry in the global offset table. 3610 Since the offset must always be a multiple of 8, 3611 we use the least significant bit to record 3612 whether we have initialized it already. 3613 3614 When doing a dynamic link, we create a .rela.got 3615 relocation entry to initialize the value. This 3616 is done in the finish_dynamic_symbol routine. */ 3617 if ((off & 1) != 0) 3618 off &= ~1; 3619 else 3620 { 3621 bfd_put_NN (output_bfd, value, 3622 base_got->contents + off); 3623 /* Note that this is harmless as -1 | 1 still is -1. */ 3624 h->got.offset |= 1; 3625 } 3626 } 3627 value = (base_got->output_section->vma 3628 + base_got->output_offset + off); 3629 } 3630 else 3631 value = aarch64_calculate_got_entry_vma (h, globals, info, 3632 value, output_bfd, 3633 unresolved_reloc_p); 3634 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3635 0, weak_undef_p); 3636 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, howto, value); 3637 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 3638 case BFD_RELOC_AARCH64_ADD_LO12: 3639 break; 3640 } 3641 } 3642 3643 switch (bfd_r_type) 3644 { 3645 case BFD_RELOC_AARCH64_NONE: 3646 case BFD_RELOC_AARCH64_TLSDESC_CALL: 3647 *unresolved_reloc_p = FALSE; 3648 return bfd_reloc_ok; 3649 3650 case BFD_RELOC_AARCH64_NN: 3651 3652 /* When generating a shared object or relocatable executable, these 3653 relocations are copied into the output file to be resolved at 3654 run time. */ 3655 if (((info->shared == TRUE) || globals->root.is_relocatable_executable) 3656 && (input_section->flags & SEC_ALLOC) 3657 && (h == NULL 3658 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3659 || h->root.type != bfd_link_hash_undefweak)) 3660 { 3661 Elf_Internal_Rela outrel; 3662 bfd_byte *loc; 3663 bfd_boolean skip, relocate; 3664 asection *sreloc; 3665 3666 *unresolved_reloc_p = FALSE; 3667 3668 skip = FALSE; 3669 relocate = FALSE; 3670 3671 outrel.r_addend = signed_addend; 3672 outrel.r_offset = 3673 _bfd_elf_section_offset (output_bfd, info, input_section, 3674 rel->r_offset); 3675 if (outrel.r_offset == (bfd_vma) - 1) 3676 skip = TRUE; 3677 else if (outrel.r_offset == (bfd_vma) - 2) 3678 { 3679 skip = TRUE; 3680 relocate = TRUE; 3681 } 3682 3683 outrel.r_offset += (input_section->output_section->vma 3684 + input_section->output_offset); 3685 3686 if (skip) 3687 memset (&outrel, 0, sizeof outrel); 3688 else if (h != NULL 3689 && h->dynindx != -1 3690 && (!info->shared || !info->symbolic || !h->def_regular)) 3691 outrel.r_info = ELFNN_R_INFO (h->dynindx, r_type); 3692 else 3693 { 3694 int symbol; 3695 3696 /* On SVR4-ish systems, the dynamic loader cannot 3697 relocate the text and data segments independently, 3698 so the symbol does not matter. */ 3699 symbol = 0; 3700 outrel.r_info = ELFNN_R_INFO (symbol, AARCH64_R (RELATIVE)); 3701 outrel.r_addend += value; 3702 } 3703 3704 sreloc = elf_section_data (input_section)->sreloc; 3705 if (sreloc == NULL || sreloc->contents == NULL) 3706 return bfd_reloc_notsupported; 3707 3708 loc = sreloc->contents + sreloc->reloc_count++ * RELOC_SIZE (globals); 3709 bfd_elfNN_swap_reloca_out (output_bfd, &outrel, loc); 3710 3711 if (sreloc->reloc_count * RELOC_SIZE (globals) > sreloc->size) 3712 { 3713 /* Sanity to check that we have previously allocated 3714 sufficient space in the relocation section for the 3715 number of relocations we actually want to emit. */ 3716 abort (); 3717 } 3718 3719 /* If this reloc is against an external symbol, we do not want to 3720 fiddle with the addend. Otherwise, we need to include the symbol 3721 value so that it becomes an addend for the dynamic reloc. */ 3722 if (!relocate) 3723 return bfd_reloc_ok; 3724 3725 return _bfd_final_link_relocate (howto, input_bfd, input_section, 3726 contents, rel->r_offset, value, 3727 signed_addend); 3728 } 3729 else 3730 value += signed_addend; 3731 break; 3732 3733 case BFD_RELOC_AARCH64_JUMP26: 3734 case BFD_RELOC_AARCH64_CALL26: 3735 { 3736 asection *splt = globals->root.splt; 3737 bfd_boolean via_plt_p = 3738 splt != NULL && h != NULL && h->plt.offset != (bfd_vma) - 1; 3739 3740 /* A call to an undefined weak symbol is converted to a jump to 3741 the next instruction unless a PLT entry will be created. 3742 The jump to the next instruction is optimized as a NOP. 3743 Do the same for local undefined symbols. */ 3744 if (weak_undef_p && ! via_plt_p) 3745 { 3746 bfd_putl32 (INSN_NOP, hit_data); 3747 return bfd_reloc_ok; 3748 } 3749 3750 /* If the call goes through a PLT entry, make sure to 3751 check distance to the right destination address. */ 3752 if (via_plt_p) 3753 { 3754 value = (splt->output_section->vma 3755 + splt->output_offset + h->plt.offset); 3756 *unresolved_reloc_p = FALSE; 3757 } 3758 3759 /* If the target symbol is global and marked as a function the 3760 relocation applies a function call or a tail call. In this 3761 situation we can veneer out of range branches. The veneers 3762 use IP0 and IP1 hence cannot be used arbitrary out of range 3763 branches that occur within the body of a function. */ 3764 if (h && h->type == STT_FUNC) 3765 { 3766 /* Check if a stub has to be inserted because the destination 3767 is too far away. */ 3768 if (! aarch64_valid_branch_p (value, place)) 3769 { 3770 /* The target is out of reach, so redirect the branch to 3771 the local stub for this function. */ 3772 struct elf_aarch64_stub_hash_entry *stub_entry; 3773 stub_entry = elfNN_aarch64_get_stub_entry (input_section, 3774 sym_sec, h, 3775 rel, globals); 3776 if (stub_entry != NULL) 3777 value = (stub_entry->stub_offset 3778 + stub_entry->stub_sec->output_offset 3779 + stub_entry->stub_sec->output_section->vma); 3780 } 3781 } 3782 } 3783 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3784 signed_addend, weak_undef_p); 3785 break; 3786 3787 case BFD_RELOC_AARCH64_16: 3788 #if ARCH_SIZE == 64 3789 case BFD_RELOC_AARCH64_32: 3790 #endif 3791 case BFD_RELOC_AARCH64_ADD_LO12: 3792 case BFD_RELOC_AARCH64_ADR_LO21_PCREL: 3793 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 3794 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL: 3795 case BFD_RELOC_AARCH64_BRANCH19: 3796 case BFD_RELOC_AARCH64_LD_LO19_PCREL: 3797 case BFD_RELOC_AARCH64_LDST8_LO12: 3798 case BFD_RELOC_AARCH64_LDST16_LO12: 3799 case BFD_RELOC_AARCH64_LDST32_LO12: 3800 case BFD_RELOC_AARCH64_LDST64_LO12: 3801 case BFD_RELOC_AARCH64_LDST128_LO12: 3802 case BFD_RELOC_AARCH64_MOVW_G0_S: 3803 case BFD_RELOC_AARCH64_MOVW_G1_S: 3804 case BFD_RELOC_AARCH64_MOVW_G2_S: 3805 case BFD_RELOC_AARCH64_MOVW_G0: 3806 case BFD_RELOC_AARCH64_MOVW_G0_NC: 3807 case BFD_RELOC_AARCH64_MOVW_G1: 3808 case BFD_RELOC_AARCH64_MOVW_G1_NC: 3809 case BFD_RELOC_AARCH64_MOVW_G2: 3810 case BFD_RELOC_AARCH64_MOVW_G2_NC: 3811 case BFD_RELOC_AARCH64_MOVW_G3: 3812 case BFD_RELOC_AARCH64_16_PCREL: 3813 case BFD_RELOC_AARCH64_32_PCREL: 3814 case BFD_RELOC_AARCH64_64_PCREL: 3815 case BFD_RELOC_AARCH64_TSTBR14: 3816 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3817 signed_addend, weak_undef_p); 3818 break; 3819 3820 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 3821 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 3822 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 3823 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 3824 if (globals->root.sgot == NULL) 3825 BFD_ASSERT (h != NULL); 3826 3827 if (h != NULL) 3828 { 3829 value = aarch64_calculate_got_entry_vma (h, globals, info, value, 3830 output_bfd, 3831 unresolved_reloc_p); 3832 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3833 0, weak_undef_p); 3834 } 3835 break; 3836 3837 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 3838 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 3839 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 3840 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 3841 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 3842 if (globals->root.sgot == NULL) 3843 return bfd_reloc_notsupported; 3844 3845 value = (symbol_got_offset (input_bfd, h, r_symndx) 3846 + globals->root.sgot->output_section->vma 3847 + globals->root.sgot->output_section->output_offset); 3848 3849 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3850 0, weak_undef_p); 3851 *unresolved_reloc_p = FALSE; 3852 break; 3853 3854 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 3855 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 3856 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 3857 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 3858 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 3859 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 3860 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 3861 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 3862 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3863 signed_addend - tpoff_base (info), 3864 weak_undef_p); 3865 *unresolved_reloc_p = FALSE; 3866 break; 3867 3868 case BFD_RELOC_AARCH64_TLSDESC_ADD: 3869 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 3870 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 3871 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 3872 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC: 3873 case BFD_RELOC_AARCH64_TLSDESC_LDR: 3874 if (globals->root.sgot == NULL) 3875 return bfd_reloc_notsupported; 3876 3877 value = (symbol_tlsdesc_got_offset (input_bfd, h, r_symndx) 3878 + globals->root.sgotplt->output_section->vma 3879 + globals->root.sgotplt->output_section->output_offset 3880 + globals->sgotplt_jump_table_size); 3881 3882 value = _bfd_aarch64_elf_resolve_relocation (bfd_r_type, place, value, 3883 0, weak_undef_p); 3884 *unresolved_reloc_p = FALSE; 3885 break; 3886 3887 default: 3888 return bfd_reloc_notsupported; 3889 } 3890 3891 if (saved_addend) 3892 *saved_addend = value; 3893 3894 /* Only apply the final relocation in a sequence. */ 3895 if (save_addend) 3896 return bfd_reloc_continue; 3897 3898 return _bfd_aarch64_elf_put_addend (input_bfd, hit_data, bfd_r_type, 3899 howto, value); 3900 } 3901 3902 /* Handle TLS relaxations. Relaxing is possible for symbols that use 3903 R_AARCH64_TLSDESC_ADR_{PAGE, LD64_LO12_NC, ADD_LO12_NC} during a static 3904 link. 3905 3906 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller 3907 is to then call final_link_relocate. Return other values in the 3908 case of error. */ 3909 3910 static bfd_reloc_status_type 3911 elfNN_aarch64_tls_relax (struct elf_aarch64_link_hash_table *globals, 3912 bfd *input_bfd, bfd_byte *contents, 3913 Elf_Internal_Rela *rel, struct elf_link_hash_entry *h) 3914 { 3915 bfd_boolean is_local = h == NULL; 3916 unsigned int r_type = ELFNN_R_TYPE (rel->r_info); 3917 unsigned long insn; 3918 3919 BFD_ASSERT (globals && input_bfd && contents && rel); 3920 3921 switch (elfNN_aarch64_bfd_reloc_from_type (r_type)) 3922 { 3923 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 3924 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 3925 if (is_local) 3926 { 3927 /* GD->LE relaxation: 3928 adrp x0, :tlsgd:var => movz x0, :tprel_g1:var 3929 or 3930 adrp x0, :tlsdesc:var => movz x0, :tprel_g1:var 3931 */ 3932 bfd_putl32 (0xd2a00000, contents + rel->r_offset); 3933 return bfd_reloc_continue; 3934 } 3935 else 3936 { 3937 /* GD->IE relaxation: 3938 adrp x0, :tlsgd:var => adrp x0, :gottprel:var 3939 or 3940 adrp x0, :tlsdesc:var => adrp x0, :gottprel:var 3941 */ 3942 insn = bfd_getl32 (contents + rel->r_offset); 3943 return bfd_reloc_continue; 3944 } 3945 3946 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 3947 if (is_local) 3948 { 3949 /* GD->LE relaxation: 3950 ldr xd, [x0, #:tlsdesc_lo12:var] => movk x0, :tprel_g0_nc:var 3951 */ 3952 bfd_putl32 (0xf2800000, contents + rel->r_offset); 3953 return bfd_reloc_continue; 3954 } 3955 else 3956 { 3957 /* GD->IE relaxation: 3958 ldr xd, [x0, #:tlsdesc_lo12:var] => ldr x0, [x0, #:gottprel_lo12:var] 3959 */ 3960 insn = bfd_getl32 (contents + rel->r_offset); 3961 insn &= 0xfffffff0; 3962 bfd_putl32 (insn, contents + rel->r_offset); 3963 return bfd_reloc_continue; 3964 } 3965 3966 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 3967 if (is_local) 3968 { 3969 /* GD->LE relaxation 3970 add x0, #:tlsgd_lo12:var => movk x0, :tprel_g0_nc:var 3971 bl __tls_get_addr => mrs x1, tpidr_el0 3972 nop => add x0, x1, x0 3973 */ 3974 3975 /* First kill the tls_get_addr reloc on the bl instruction. */ 3976 BFD_ASSERT (rel->r_offset + 4 == rel[1].r_offset); 3977 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 3978 3979 bfd_putl32 (0xf2800000, contents + rel->r_offset); 3980 bfd_putl32 (0xd53bd041, contents + rel->r_offset + 4); 3981 bfd_putl32 (0x8b000020, contents + rel->r_offset + 8); 3982 return bfd_reloc_continue; 3983 } 3984 else 3985 { 3986 /* GD->IE relaxation 3987 ADD x0, #:tlsgd_lo12:var => ldr x0, [x0, #:gottprel_lo12:var] 3988 BL __tls_get_addr => mrs x1, tpidr_el0 3989 R_AARCH64_CALL26 3990 NOP => add x0, x1, x0 3991 */ 3992 3993 BFD_ASSERT (ELFNN_R_TYPE (rel[1].r_info) == AARCH64_R (CALL26)); 3994 3995 /* Remove the relocation on the BL instruction. */ 3996 rel[1].r_info = ELFNN_R_INFO (STN_UNDEF, R_AARCH64_NONE); 3997 3998 bfd_putl32 (0xf9400000, contents + rel->r_offset); 3999 4000 /* We choose to fixup the BL and NOP instructions using the 4001 offset from the second relocation to allow flexibility in 4002 scheduling instructions between the ADD and BL. */ 4003 bfd_putl32 (0xd53bd041, contents + rel[1].r_offset); 4004 bfd_putl32 (0x8b000020, contents + rel[1].r_offset + 4); 4005 return bfd_reloc_continue; 4006 } 4007 4008 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 4009 case BFD_RELOC_AARCH64_TLSDESC_CALL: 4010 /* GD->IE/LE relaxation: 4011 add x0, x0, #:tlsdesc_lo12:var => nop 4012 blr xd => nop 4013 */ 4014 bfd_putl32 (INSN_NOP, contents + rel->r_offset); 4015 return bfd_reloc_ok; 4016 4017 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 4018 /* IE->LE relaxation: 4019 adrp xd, :gottprel:var => movz xd, :tprel_g1:var 4020 */ 4021 if (is_local) 4022 { 4023 insn = bfd_getl32 (contents + rel->r_offset); 4024 bfd_putl32 (0xd2a00000 | (insn & 0x1f), contents + rel->r_offset); 4025 } 4026 return bfd_reloc_continue; 4027 4028 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 4029 /* IE->LE relaxation: 4030 ldr xd, [xm, #:gottprel_lo12:var] => movk xd, :tprel_g0_nc:var 4031 */ 4032 if (is_local) 4033 { 4034 insn = bfd_getl32 (contents + rel->r_offset); 4035 bfd_putl32 (0xf2800000 | (insn & 0x1f), contents + rel->r_offset); 4036 } 4037 return bfd_reloc_continue; 4038 4039 default: 4040 return bfd_reloc_continue; 4041 } 4042 4043 return bfd_reloc_ok; 4044 } 4045 4046 /* Relocate an AArch64 ELF section. */ 4047 4048 static bfd_boolean 4049 elfNN_aarch64_relocate_section (bfd *output_bfd, 4050 struct bfd_link_info *info, 4051 bfd *input_bfd, 4052 asection *input_section, 4053 bfd_byte *contents, 4054 Elf_Internal_Rela *relocs, 4055 Elf_Internal_Sym *local_syms, 4056 asection **local_sections) 4057 { 4058 Elf_Internal_Shdr *symtab_hdr; 4059 struct elf_link_hash_entry **sym_hashes; 4060 Elf_Internal_Rela *rel; 4061 Elf_Internal_Rela *relend; 4062 const char *name; 4063 struct elf_aarch64_link_hash_table *globals; 4064 bfd_boolean save_addend = FALSE; 4065 bfd_vma addend = 0; 4066 4067 globals = elf_aarch64_hash_table (info); 4068 4069 symtab_hdr = &elf_symtab_hdr (input_bfd); 4070 sym_hashes = elf_sym_hashes (input_bfd); 4071 4072 rel = relocs; 4073 relend = relocs + input_section->reloc_count; 4074 for (; rel < relend; rel++) 4075 { 4076 unsigned int r_type; 4077 bfd_reloc_code_real_type bfd_r_type; 4078 bfd_reloc_code_real_type relaxed_bfd_r_type; 4079 reloc_howto_type *howto; 4080 unsigned long r_symndx; 4081 Elf_Internal_Sym *sym; 4082 asection *sec; 4083 struct elf_link_hash_entry *h; 4084 bfd_vma relocation; 4085 bfd_reloc_status_type r; 4086 arelent bfd_reloc; 4087 char sym_type; 4088 bfd_boolean unresolved_reloc = FALSE; 4089 char *error_message = NULL; 4090 4091 r_symndx = ELFNN_R_SYM (rel->r_info); 4092 r_type = ELFNN_R_TYPE (rel->r_info); 4093 4094 bfd_reloc.howto = elfNN_aarch64_howto_from_type (r_type); 4095 howto = bfd_reloc.howto; 4096 4097 if (howto == NULL) 4098 { 4099 (*_bfd_error_handler) 4100 (_("%B: unrecognized relocation (0x%x) in section `%A'"), 4101 input_bfd, input_section, r_type); 4102 return FALSE; 4103 } 4104 bfd_r_type = elfNN_aarch64_bfd_reloc_from_howto (howto); 4105 4106 h = NULL; 4107 sym = NULL; 4108 sec = NULL; 4109 4110 if (r_symndx < symtab_hdr->sh_info) 4111 { 4112 sym = local_syms + r_symndx; 4113 sym_type = ELFNN_ST_TYPE (sym->st_info); 4114 sec = local_sections[r_symndx]; 4115 4116 /* An object file might have a reference to a local 4117 undefined symbol. This is a daft object file, but we 4118 should at least do something about it. */ 4119 if (r_type != R_AARCH64_NONE && r_type != R_AARCH64_NULL 4120 && bfd_is_und_section (sec) 4121 && ELF_ST_BIND (sym->st_info) != STB_WEAK) 4122 { 4123 if (!info->callbacks->undefined_symbol 4124 (info, bfd_elf_string_from_elf_section 4125 (input_bfd, symtab_hdr->sh_link, sym->st_name), 4126 input_bfd, input_section, rel->r_offset, TRUE)) 4127 return FALSE; 4128 } 4129 4130 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 4131 4132 /* Relocate against local STT_GNU_IFUNC symbol. */ 4133 if (!info->relocatable 4134 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC) 4135 { 4136 h = elfNN_aarch64_get_local_sym_hash (globals, input_bfd, 4137 rel, FALSE); 4138 if (h == NULL) 4139 abort (); 4140 4141 /* Set STT_GNU_IFUNC symbol value. */ 4142 h->root.u.def.value = sym->st_value; 4143 h->root.u.def.section = sec; 4144 } 4145 } 4146 else 4147 { 4148 bfd_boolean warned, ignored; 4149 4150 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 4151 r_symndx, symtab_hdr, sym_hashes, 4152 h, sec, relocation, 4153 unresolved_reloc, warned, ignored); 4154 4155 sym_type = h->type; 4156 } 4157 4158 if (sec != NULL && discarded_section (sec)) 4159 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 4160 rel, 1, relend, howto, 0, contents); 4161 4162 if (info->relocatable) 4163 { 4164 /* This is a relocatable link. We don't have to change 4165 anything, unless the reloc is against a section symbol, 4166 in which case we have to adjust according to where the 4167 section symbol winds up in the output section. */ 4168 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 4169 rel->r_addend += sec->output_offset; 4170 continue; 4171 } 4172 4173 if (h != NULL) 4174 name = h->root.root.string; 4175 else 4176 { 4177 name = (bfd_elf_string_from_elf_section 4178 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 4179 if (name == NULL || *name == '\0') 4180 name = bfd_section_name (input_bfd, sec); 4181 } 4182 4183 if (r_symndx != 0 4184 && r_type != R_AARCH64_NONE 4185 && r_type != R_AARCH64_NULL 4186 && (h == NULL 4187 || h->root.type == bfd_link_hash_defined 4188 || h->root.type == bfd_link_hash_defweak) 4189 && IS_AARCH64_TLS_RELOC (bfd_r_type) != (sym_type == STT_TLS)) 4190 { 4191 (*_bfd_error_handler) 4192 ((sym_type == STT_TLS 4193 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 4194 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 4195 input_bfd, 4196 input_section, (long) rel->r_offset, howto->name, name); 4197 } 4198 4199 /* We relax only if we can see that there can be a valid transition 4200 from a reloc type to another. 4201 We call elfNN_aarch64_final_link_relocate unless we're completely 4202 done, i.e., the relaxation produced the final output we want. */ 4203 4204 relaxed_bfd_r_type = aarch64_tls_transition (input_bfd, info, r_type, 4205 h, r_symndx); 4206 if (relaxed_bfd_r_type != bfd_r_type) 4207 { 4208 bfd_r_type = relaxed_bfd_r_type; 4209 howto = elfNN_aarch64_howto_from_bfd_reloc (bfd_r_type); 4210 BFD_ASSERT (howto != NULL); 4211 r_type = howto->type; 4212 r = elfNN_aarch64_tls_relax (globals, input_bfd, contents, rel, h); 4213 unresolved_reloc = 0; 4214 } 4215 else 4216 r = bfd_reloc_continue; 4217 4218 /* There may be multiple consecutive relocations for the 4219 same offset. In that case we are supposed to treat the 4220 output of each relocation as the addend for the next. */ 4221 if (rel + 1 < relend 4222 && rel->r_offset == rel[1].r_offset 4223 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NONE 4224 && ELFNN_R_TYPE (rel[1].r_info) != R_AARCH64_NULL) 4225 save_addend = TRUE; 4226 else 4227 save_addend = FALSE; 4228 4229 if (r == bfd_reloc_continue) 4230 r = elfNN_aarch64_final_link_relocate (howto, input_bfd, output_bfd, 4231 input_section, contents, rel, 4232 relocation, info, sec, 4233 h, &unresolved_reloc, 4234 save_addend, &addend, sym); 4235 4236 switch (elfNN_aarch64_bfd_reloc_from_type (r_type)) 4237 { 4238 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 4239 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 4240 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 4241 { 4242 bfd_boolean need_relocs = FALSE; 4243 bfd_byte *loc; 4244 int indx; 4245 bfd_vma off; 4246 4247 off = symbol_got_offset (input_bfd, h, r_symndx); 4248 indx = h && h->dynindx != -1 ? h->dynindx : 0; 4249 4250 need_relocs = 4251 (info->shared || indx != 0) && 4252 (h == NULL 4253 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 4254 || h->root.type != bfd_link_hash_undefweak); 4255 4256 BFD_ASSERT (globals->root.srelgot != NULL); 4257 4258 if (need_relocs) 4259 { 4260 Elf_Internal_Rela rela; 4261 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPMOD)); 4262 rela.r_addend = 0; 4263 rela.r_offset = globals->root.sgot->output_section->vma + 4264 globals->root.sgot->output_offset + off; 4265 4266 4267 loc = globals->root.srelgot->contents; 4268 loc += globals->root.srelgot->reloc_count++ 4269 * RELOC_SIZE (htab); 4270 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 4271 4272 if (indx == 0) 4273 { 4274 bfd_put_NN (output_bfd, 4275 relocation - dtpoff_base (info), 4276 globals->root.sgot->contents + off 4277 + GOT_ENTRY_SIZE); 4278 } 4279 else 4280 { 4281 /* This TLS symbol is global. We emit a 4282 relocation to fixup the tls offset at load 4283 time. */ 4284 rela.r_info = 4285 ELFNN_R_INFO (indx, AARCH64_R (TLS_DTPREL)); 4286 rela.r_addend = 0; 4287 rela.r_offset = 4288 (globals->root.sgot->output_section->vma 4289 + globals->root.sgot->output_offset + off 4290 + GOT_ENTRY_SIZE); 4291 4292 loc = globals->root.srelgot->contents; 4293 loc += globals->root.srelgot->reloc_count++ 4294 * RELOC_SIZE (globals); 4295 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 4296 bfd_put_NN (output_bfd, (bfd_vma) 0, 4297 globals->root.sgot->contents + off 4298 + GOT_ENTRY_SIZE); 4299 } 4300 } 4301 else 4302 { 4303 bfd_put_NN (output_bfd, (bfd_vma) 1, 4304 globals->root.sgot->contents + off); 4305 bfd_put_NN (output_bfd, 4306 relocation - dtpoff_base (info), 4307 globals->root.sgot->contents + off 4308 + GOT_ENTRY_SIZE); 4309 } 4310 4311 symbol_got_offset_mark (input_bfd, h, r_symndx); 4312 } 4313 break; 4314 4315 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 4316 case BFD_RELOC_AARCH64_TLSIE_LDNN_GOTTPREL_LO12_NC: 4317 if (! symbol_got_offset_mark_p (input_bfd, h, r_symndx)) 4318 { 4319 bfd_boolean need_relocs = FALSE; 4320 bfd_byte *loc; 4321 int indx; 4322 bfd_vma off; 4323 4324 off = symbol_got_offset (input_bfd, h, r_symndx); 4325 4326 indx = h && h->dynindx != -1 ? h->dynindx : 0; 4327 4328 need_relocs = 4329 (info->shared || indx != 0) && 4330 (h == NULL 4331 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 4332 || h->root.type != bfd_link_hash_undefweak); 4333 4334 BFD_ASSERT (globals->root.srelgot != NULL); 4335 4336 if (need_relocs) 4337 { 4338 Elf_Internal_Rela rela; 4339 4340 if (indx == 0) 4341 rela.r_addend = relocation - dtpoff_base (info); 4342 else 4343 rela.r_addend = 0; 4344 4345 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLS_TPREL)); 4346 rela.r_offset = globals->root.sgot->output_section->vma + 4347 globals->root.sgot->output_offset + off; 4348 4349 loc = globals->root.srelgot->contents; 4350 loc += globals->root.srelgot->reloc_count++ 4351 * RELOC_SIZE (htab); 4352 4353 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 4354 4355 bfd_put_NN (output_bfd, rela.r_addend, 4356 globals->root.sgot->contents + off); 4357 } 4358 else 4359 bfd_put_NN (output_bfd, relocation - tpoff_base (info), 4360 globals->root.sgot->contents + off); 4361 4362 symbol_got_offset_mark (input_bfd, h, r_symndx); 4363 } 4364 break; 4365 4366 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 4367 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 4368 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 4369 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 4370 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 4371 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 4372 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 4373 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 4374 break; 4375 4376 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 4377 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 4378 case BFD_RELOC_AARCH64_TLSDESC_LDNN_LO12_NC: 4379 if (! symbol_tlsdesc_got_offset_mark_p (input_bfd, h, r_symndx)) 4380 { 4381 bfd_boolean need_relocs = FALSE; 4382 int indx = h && h->dynindx != -1 ? h->dynindx : 0; 4383 bfd_vma off = symbol_tlsdesc_got_offset (input_bfd, h, r_symndx); 4384 4385 need_relocs = (h == NULL 4386 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 4387 || h->root.type != bfd_link_hash_undefweak); 4388 4389 BFD_ASSERT (globals->root.srelgot != NULL); 4390 BFD_ASSERT (globals->root.sgot != NULL); 4391 4392 if (need_relocs) 4393 { 4394 bfd_byte *loc; 4395 Elf_Internal_Rela rela; 4396 rela.r_info = ELFNN_R_INFO (indx, AARCH64_R (TLSDESC)); 4397 4398 rela.r_addend = 0; 4399 rela.r_offset = (globals->root.sgotplt->output_section->vma 4400 + globals->root.sgotplt->output_offset 4401 + off + globals->sgotplt_jump_table_size); 4402 4403 if (indx == 0) 4404 rela.r_addend = relocation - dtpoff_base (info); 4405 4406 /* Allocate the next available slot in the PLT reloc 4407 section to hold our R_AARCH64_TLSDESC, the next 4408 available slot is determined from reloc_count, 4409 which we step. But note, reloc_count was 4410 artifically moved down while allocating slots for 4411 real PLT relocs such that all of the PLT relocs 4412 will fit above the initial reloc_count and the 4413 extra stuff will fit below. */ 4414 loc = globals->root.srelplt->contents; 4415 loc += globals->root.srelplt->reloc_count++ 4416 * RELOC_SIZE (globals); 4417 4418 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 4419 4420 bfd_put_NN (output_bfd, (bfd_vma) 0, 4421 globals->root.sgotplt->contents + off + 4422 globals->sgotplt_jump_table_size); 4423 bfd_put_NN (output_bfd, (bfd_vma) 0, 4424 globals->root.sgotplt->contents + off + 4425 globals->sgotplt_jump_table_size + 4426 GOT_ENTRY_SIZE); 4427 } 4428 4429 symbol_tlsdesc_got_offset_mark (input_bfd, h, r_symndx); 4430 } 4431 break; 4432 default: 4433 break; 4434 } 4435 4436 if (!save_addend) 4437 addend = 0; 4438 4439 4440 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 4441 because such sections are not SEC_ALLOC and thus ld.so will 4442 not process them. */ 4443 if (unresolved_reloc 4444 && !((input_section->flags & SEC_DEBUGGING) != 0 4445 && h->def_dynamic) 4446 && _bfd_elf_section_offset (output_bfd, info, input_section, 4447 +rel->r_offset) != (bfd_vma) - 1) 4448 { 4449 (*_bfd_error_handler) 4450 (_ 4451 ("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 4452 input_bfd, input_section, (long) rel->r_offset, howto->name, 4453 h->root.root.string); 4454 return FALSE; 4455 } 4456 4457 if (r != bfd_reloc_ok && r != bfd_reloc_continue) 4458 { 4459 switch (r) 4460 { 4461 case bfd_reloc_overflow: 4462 /* If the overflowing reloc was to an undefined symbol, 4463 we have already printed one error message and there 4464 is no point complaining again. */ 4465 if ((!h || 4466 h->root.type != bfd_link_hash_undefined) 4467 && (!((*info->callbacks->reloc_overflow) 4468 (info, (h ? &h->root : NULL), name, howto->name, 4469 (bfd_vma) 0, input_bfd, input_section, 4470 rel->r_offset)))) 4471 return FALSE; 4472 break; 4473 4474 case bfd_reloc_undefined: 4475 if (!((*info->callbacks->undefined_symbol) 4476 (info, name, input_bfd, input_section, 4477 rel->r_offset, TRUE))) 4478 return FALSE; 4479 break; 4480 4481 case bfd_reloc_outofrange: 4482 error_message = _("out of range"); 4483 goto common_error; 4484 4485 case bfd_reloc_notsupported: 4486 error_message = _("unsupported relocation"); 4487 goto common_error; 4488 4489 case bfd_reloc_dangerous: 4490 /* error_message should already be set. */ 4491 goto common_error; 4492 4493 default: 4494 error_message = _("unknown error"); 4495 /* Fall through. */ 4496 4497 common_error: 4498 BFD_ASSERT (error_message != NULL); 4499 if (!((*info->callbacks->reloc_dangerous) 4500 (info, error_message, input_bfd, input_section, 4501 rel->r_offset))) 4502 return FALSE; 4503 break; 4504 } 4505 } 4506 } 4507 4508 return TRUE; 4509 } 4510 4511 /* Set the right machine number. */ 4512 4513 static bfd_boolean 4514 elfNN_aarch64_object_p (bfd *abfd) 4515 { 4516 #if ARCH_SIZE == 32 4517 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64_ilp32); 4518 #else 4519 bfd_default_set_arch_mach (abfd, bfd_arch_aarch64, bfd_mach_aarch64); 4520 #endif 4521 return TRUE; 4522 } 4523 4524 /* Function to keep AArch64 specific flags in the ELF header. */ 4525 4526 static bfd_boolean 4527 elfNN_aarch64_set_private_flags (bfd *abfd, flagword flags) 4528 { 4529 if (elf_flags_init (abfd) && elf_elfheader (abfd)->e_flags != flags) 4530 { 4531 } 4532 else 4533 { 4534 elf_elfheader (abfd)->e_flags = flags; 4535 elf_flags_init (abfd) = TRUE; 4536 } 4537 4538 return TRUE; 4539 } 4540 4541 /* Merge backend specific data from an object file to the output 4542 object file when linking. */ 4543 4544 static bfd_boolean 4545 elfNN_aarch64_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 4546 { 4547 flagword out_flags; 4548 flagword in_flags; 4549 bfd_boolean flags_compatible = TRUE; 4550 asection *sec; 4551 4552 /* Check if we have the same endianess. */ 4553 if (!_bfd_generic_verify_endian_match (ibfd, obfd)) 4554 return FALSE; 4555 4556 if (!is_aarch64_elf (ibfd) || !is_aarch64_elf (obfd)) 4557 return TRUE; 4558 4559 /* The input BFD must have had its flags initialised. */ 4560 /* The following seems bogus to me -- The flags are initialized in 4561 the assembler but I don't think an elf_flags_init field is 4562 written into the object. */ 4563 /* BFD_ASSERT (elf_flags_init (ibfd)); */ 4564 4565 in_flags = elf_elfheader (ibfd)->e_flags; 4566 out_flags = elf_elfheader (obfd)->e_flags; 4567 4568 if (!elf_flags_init (obfd)) 4569 { 4570 /* If the input is the default architecture and had the default 4571 flags then do not bother setting the flags for the output 4572 architecture, instead allow future merges to do this. If no 4573 future merges ever set these flags then they will retain their 4574 uninitialised values, which surprise surprise, correspond 4575 to the default values. */ 4576 if (bfd_get_arch_info (ibfd)->the_default 4577 && elf_elfheader (ibfd)->e_flags == 0) 4578 return TRUE; 4579 4580 elf_flags_init (obfd) = TRUE; 4581 elf_elfheader (obfd)->e_flags = in_flags; 4582 4583 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 4584 && bfd_get_arch_info (obfd)->the_default) 4585 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 4586 bfd_get_mach (ibfd)); 4587 4588 return TRUE; 4589 } 4590 4591 /* Identical flags must be compatible. */ 4592 if (in_flags == out_flags) 4593 return TRUE; 4594 4595 /* Check to see if the input BFD actually contains any sections. If 4596 not, its flags may not have been initialised either, but it 4597 cannot actually cause any incompatiblity. Do not short-circuit 4598 dynamic objects; their section list may be emptied by 4599 elf_link_add_object_symbols. 4600 4601 Also check to see if there are no code sections in the input. 4602 In this case there is no need to check for code specific flags. 4603 XXX - do we need to worry about floating-point format compatability 4604 in data sections ? */ 4605 if (!(ibfd->flags & DYNAMIC)) 4606 { 4607 bfd_boolean null_input_bfd = TRUE; 4608 bfd_boolean only_data_sections = TRUE; 4609 4610 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 4611 { 4612 if ((bfd_get_section_flags (ibfd, sec) 4613 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 4614 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS)) 4615 only_data_sections = FALSE; 4616 4617 null_input_bfd = FALSE; 4618 break; 4619 } 4620 4621 if (null_input_bfd || only_data_sections) 4622 return TRUE; 4623 } 4624 4625 return flags_compatible; 4626 } 4627 4628 /* Display the flags field. */ 4629 4630 static bfd_boolean 4631 elfNN_aarch64_print_private_bfd_data (bfd *abfd, void *ptr) 4632 { 4633 FILE *file = (FILE *) ptr; 4634 unsigned long flags; 4635 4636 BFD_ASSERT (abfd != NULL && ptr != NULL); 4637 4638 /* Print normal ELF private data. */ 4639 _bfd_elf_print_private_bfd_data (abfd, ptr); 4640 4641 flags = elf_elfheader (abfd)->e_flags; 4642 /* Ignore init flag - it may not be set, despite the flags field 4643 containing valid data. */ 4644 4645 /* xgettext:c-format */ 4646 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 4647 4648 if (flags) 4649 fprintf (file, _("<Unrecognised flag bits set>")); 4650 4651 fputc ('\n', file); 4652 4653 return TRUE; 4654 } 4655 4656 /* Update the got entry reference counts for the section being removed. */ 4657 4658 static bfd_boolean 4659 elfNN_aarch64_gc_sweep_hook (bfd *abfd, 4660 struct bfd_link_info *info, 4661 asection *sec, 4662 const Elf_Internal_Rela * relocs) 4663 { 4664 struct elf_aarch64_link_hash_table *htab; 4665 Elf_Internal_Shdr *symtab_hdr; 4666 struct elf_link_hash_entry **sym_hashes; 4667 struct elf_aarch64_local_symbol *locals; 4668 const Elf_Internal_Rela *rel, *relend; 4669 4670 if (info->relocatable) 4671 return TRUE; 4672 4673 htab = elf_aarch64_hash_table (info); 4674 4675 if (htab == NULL) 4676 return FALSE; 4677 4678 elf_section_data (sec)->local_dynrel = NULL; 4679 4680 symtab_hdr = &elf_symtab_hdr (abfd); 4681 sym_hashes = elf_sym_hashes (abfd); 4682 4683 locals = elf_aarch64_locals (abfd); 4684 4685 relend = relocs + sec->reloc_count; 4686 for (rel = relocs; rel < relend; rel++) 4687 { 4688 unsigned long r_symndx; 4689 unsigned int r_type; 4690 struct elf_link_hash_entry *h = NULL; 4691 4692 r_symndx = ELFNN_R_SYM (rel->r_info); 4693 4694 if (r_symndx >= symtab_hdr->sh_info) 4695 { 4696 4697 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 4698 while (h->root.type == bfd_link_hash_indirect 4699 || h->root.type == bfd_link_hash_warning) 4700 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4701 } 4702 else 4703 { 4704 Elf_Internal_Sym *isym; 4705 4706 /* A local symbol. */ 4707 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 4708 abfd, r_symndx); 4709 4710 /* Check relocation against local STT_GNU_IFUNC symbol. */ 4711 if (isym != NULL 4712 && ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 4713 { 4714 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, FALSE); 4715 if (h == NULL) 4716 abort (); 4717 } 4718 } 4719 4720 if (h) 4721 { 4722 struct elf_aarch64_link_hash_entry *eh; 4723 struct elf_dyn_relocs **pp; 4724 struct elf_dyn_relocs *p; 4725 4726 eh = (struct elf_aarch64_link_hash_entry *) h; 4727 4728 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next) 4729 if (p->sec == sec) 4730 { 4731 /* Everything must go for SEC. */ 4732 *pp = p->next; 4733 break; 4734 } 4735 } 4736 4737 r_type = ELFNN_R_TYPE (rel->r_info); 4738 switch (aarch64_tls_transition (abfd,info, r_type, h ,r_symndx)) 4739 { 4740 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 4741 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 4742 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 4743 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 4744 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 4745 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 4746 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 4747 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC: 4748 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 4749 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 4750 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 4751 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 4752 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 4753 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 4754 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 4755 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 4756 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 4757 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 4758 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 4759 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 4760 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 4761 if (h != NULL) 4762 { 4763 if (h->got.refcount > 0) 4764 h->got.refcount -= 1; 4765 4766 if (h->type == STT_GNU_IFUNC) 4767 { 4768 if (h->plt.refcount > 0) 4769 h->plt.refcount -= 1; 4770 } 4771 } 4772 else if (locals != NULL) 4773 { 4774 if (locals[r_symndx].got_refcount > 0) 4775 locals[r_symndx].got_refcount -= 1; 4776 } 4777 break; 4778 4779 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL: 4780 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 4781 case BFD_RELOC_AARCH64_ADR_LO21_PCREL: 4782 if (h != NULL && info->executable) 4783 { 4784 if (h->plt.refcount > 0) 4785 h->plt.refcount -= 1; 4786 } 4787 break; 4788 4789 case BFD_RELOC_AARCH64_CALL26: 4790 case BFD_RELOC_AARCH64_JUMP26: 4791 /* If this is a local symbol then we resolve it 4792 directly without creating a PLT entry. */ 4793 if (h == NULL) 4794 continue; 4795 4796 if (h->plt.refcount > 0) 4797 h->plt.refcount -= 1; 4798 break; 4799 4800 case BFD_RELOC_AARCH64_NN: 4801 if (h != NULL && info->executable) 4802 { 4803 if (h->plt.refcount > 0) 4804 h->plt.refcount -= 1; 4805 } 4806 break; 4807 4808 default: 4809 break; 4810 } 4811 } 4812 4813 return TRUE; 4814 } 4815 4816 /* Adjust a symbol defined by a dynamic object and referenced by a 4817 regular object. The current definition is in some section of the 4818 dynamic object, but we're not including those sections. We have to 4819 change the definition to something the rest of the link can 4820 understand. */ 4821 4822 static bfd_boolean 4823 elfNN_aarch64_adjust_dynamic_symbol (struct bfd_link_info *info, 4824 struct elf_link_hash_entry *h) 4825 { 4826 struct elf_aarch64_link_hash_table *htab; 4827 asection *s; 4828 4829 /* If this is a function, put it in the procedure linkage table. We 4830 will fill in the contents of the procedure linkage table later, 4831 when we know the address of the .got section. */ 4832 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt) 4833 { 4834 if (h->plt.refcount <= 0 4835 || (h->type != STT_GNU_IFUNC 4836 && (SYMBOL_CALLS_LOCAL (info, h) 4837 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 4838 && h->root.type == bfd_link_hash_undefweak)))) 4839 { 4840 /* This case can occur if we saw a CALL26 reloc in 4841 an input file, but the symbol wasn't referred to 4842 by a dynamic object or all references were 4843 garbage collected. In which case we can end up 4844 resolving. */ 4845 h->plt.offset = (bfd_vma) - 1; 4846 h->needs_plt = 0; 4847 } 4848 4849 return TRUE; 4850 } 4851 else 4852 /* It's possible that we incorrectly decided a .plt reloc was 4853 needed for an R_X86_64_PC32 reloc to a non-function sym in 4854 check_relocs. We can't decide accurately between function and 4855 non-function syms in check-relocs; Objects loaded later in 4856 the link may change h->type. So fix it now. */ 4857 h->plt.offset = (bfd_vma) - 1; 4858 4859 4860 /* If this is a weak symbol, and there is a real definition, the 4861 processor independent code will have arranged for us to see the 4862 real definition first, and we can just use the same value. */ 4863 if (h->u.weakdef != NULL) 4864 { 4865 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 4866 || h->u.weakdef->root.type == bfd_link_hash_defweak); 4867 h->root.u.def.section = h->u.weakdef->root.u.def.section; 4868 h->root.u.def.value = h->u.weakdef->root.u.def.value; 4869 if (ELIMINATE_COPY_RELOCS || info->nocopyreloc) 4870 h->non_got_ref = h->u.weakdef->non_got_ref; 4871 return TRUE; 4872 } 4873 4874 /* If we are creating a shared library, we must presume that the 4875 only references to the symbol are via the global offset table. 4876 For such cases we need not do anything here; the relocations will 4877 be handled correctly by relocate_section. */ 4878 if (info->shared) 4879 return TRUE; 4880 4881 /* If there are no references to this symbol that do not use the 4882 GOT, we don't need to generate a copy reloc. */ 4883 if (!h->non_got_ref) 4884 return TRUE; 4885 4886 /* If -z nocopyreloc was given, we won't generate them either. */ 4887 if (info->nocopyreloc) 4888 { 4889 h->non_got_ref = 0; 4890 return TRUE; 4891 } 4892 4893 /* We must allocate the symbol in our .dynbss section, which will 4894 become part of the .bss section of the executable. There will be 4895 an entry for this symbol in the .dynsym section. The dynamic 4896 object will contain position independent code, so all references 4897 from the dynamic object to this symbol will go through the global 4898 offset table. The dynamic linker will use the .dynsym entry to 4899 determine the address it must put in the global offset table, so 4900 both the dynamic object and the regular object will refer to the 4901 same memory location for the variable. */ 4902 4903 htab = elf_aarch64_hash_table (info); 4904 4905 /* We must generate a R_AARCH64_COPY reloc to tell the dynamic linker 4906 to copy the initial value out of the dynamic object and into the 4907 runtime process image. */ 4908 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 4909 { 4910 htab->srelbss->size += RELOC_SIZE (htab); 4911 h->needs_copy = 1; 4912 } 4913 4914 s = htab->sdynbss; 4915 4916 return _bfd_elf_adjust_dynamic_copy (h, s); 4917 4918 } 4919 4920 static bfd_boolean 4921 elfNN_aarch64_allocate_local_symbols (bfd *abfd, unsigned number) 4922 { 4923 struct elf_aarch64_local_symbol *locals; 4924 locals = elf_aarch64_locals (abfd); 4925 if (locals == NULL) 4926 { 4927 locals = (struct elf_aarch64_local_symbol *) 4928 bfd_zalloc (abfd, number * sizeof (struct elf_aarch64_local_symbol)); 4929 if (locals == NULL) 4930 return FALSE; 4931 elf_aarch64_locals (abfd) = locals; 4932 } 4933 return TRUE; 4934 } 4935 4936 /* Create the .got section to hold the global offset table. */ 4937 4938 static bfd_boolean 4939 aarch64_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 4940 { 4941 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 4942 flagword flags; 4943 asection *s; 4944 struct elf_link_hash_entry *h; 4945 struct elf_link_hash_table *htab = elf_hash_table (info); 4946 4947 /* This function may be called more than once. */ 4948 s = bfd_get_linker_section (abfd, ".got"); 4949 if (s != NULL) 4950 return TRUE; 4951 4952 flags = bed->dynamic_sec_flags; 4953 4954 s = bfd_make_section_anyway_with_flags (abfd, 4955 (bed->rela_plts_and_copies_p 4956 ? ".rela.got" : ".rel.got"), 4957 (bed->dynamic_sec_flags 4958 | SEC_READONLY)); 4959 if (s == NULL 4960 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 4961 return FALSE; 4962 htab->srelgot = s; 4963 4964 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 4965 if (s == NULL 4966 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 4967 return FALSE; 4968 htab->sgot = s; 4969 htab->sgot->size += GOT_ENTRY_SIZE; 4970 4971 if (bed->want_got_sym) 4972 { 4973 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 4974 (or .got.plt) section. We don't do this in the linker script 4975 because we don't want to define the symbol if we are not creating 4976 a global offset table. */ 4977 h = _bfd_elf_define_linkage_sym (abfd, info, s, 4978 "_GLOBAL_OFFSET_TABLE_"); 4979 elf_hash_table (info)->hgot = h; 4980 if (h == NULL) 4981 return FALSE; 4982 } 4983 4984 if (bed->want_got_plt) 4985 { 4986 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 4987 if (s == NULL 4988 || !bfd_set_section_alignment (abfd, s, 4989 bed->s->log_file_align)) 4990 return FALSE; 4991 htab->sgotplt = s; 4992 } 4993 4994 /* The first bit of the global offset table is the header. */ 4995 s->size += bed->got_header_size; 4996 4997 return TRUE; 4998 } 4999 5000 /* Look through the relocs for a section during the first phase. */ 5001 5002 static bfd_boolean 5003 elfNN_aarch64_check_relocs (bfd *abfd, struct bfd_link_info *info, 5004 asection *sec, const Elf_Internal_Rela *relocs) 5005 { 5006 Elf_Internal_Shdr *symtab_hdr; 5007 struct elf_link_hash_entry **sym_hashes; 5008 const Elf_Internal_Rela *rel; 5009 const Elf_Internal_Rela *rel_end; 5010 asection *sreloc; 5011 5012 struct elf_aarch64_link_hash_table *htab; 5013 5014 if (info->relocatable) 5015 return TRUE; 5016 5017 BFD_ASSERT (is_aarch64_elf (abfd)); 5018 5019 htab = elf_aarch64_hash_table (info); 5020 sreloc = NULL; 5021 5022 symtab_hdr = &elf_symtab_hdr (abfd); 5023 sym_hashes = elf_sym_hashes (abfd); 5024 5025 rel_end = relocs + sec->reloc_count; 5026 for (rel = relocs; rel < rel_end; rel++) 5027 { 5028 struct elf_link_hash_entry *h; 5029 unsigned long r_symndx; 5030 unsigned int r_type; 5031 bfd_reloc_code_real_type bfd_r_type; 5032 Elf_Internal_Sym *isym; 5033 5034 r_symndx = ELFNN_R_SYM (rel->r_info); 5035 r_type = ELFNN_R_TYPE (rel->r_info); 5036 5037 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr)) 5038 { 5039 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd, 5040 r_symndx); 5041 return FALSE; 5042 } 5043 5044 if (r_symndx < symtab_hdr->sh_info) 5045 { 5046 /* A local symbol. */ 5047 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5048 abfd, r_symndx); 5049 if (isym == NULL) 5050 return FALSE; 5051 5052 /* Check relocation against local STT_GNU_IFUNC symbol. */ 5053 if (ELF_ST_TYPE (isym->st_info) == STT_GNU_IFUNC) 5054 { 5055 h = elfNN_aarch64_get_local_sym_hash (htab, abfd, rel, 5056 TRUE); 5057 if (h == NULL) 5058 return FALSE; 5059 5060 /* Fake a STT_GNU_IFUNC symbol. */ 5061 h->type = STT_GNU_IFUNC; 5062 h->def_regular = 1; 5063 h->ref_regular = 1; 5064 h->forced_local = 1; 5065 h->root.type = bfd_link_hash_defined; 5066 } 5067 else 5068 h = NULL; 5069 } 5070 else 5071 { 5072 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 5073 while (h->root.type == bfd_link_hash_indirect 5074 || h->root.type == bfd_link_hash_warning) 5075 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5076 5077 /* PR15323, ref flags aren't set for references in the same 5078 object. */ 5079 h->root.non_ir_ref = 1; 5080 } 5081 5082 /* Could be done earlier, if h were already available. */ 5083 bfd_r_type = aarch64_tls_transition (abfd, info, r_type, h, r_symndx); 5084 5085 if (h != NULL) 5086 { 5087 /* Create the ifunc sections for static executables. If we 5088 never see an indirect function symbol nor we are building 5089 a static executable, those sections will be empty and 5090 won't appear in output. */ 5091 switch (bfd_r_type) 5092 { 5093 default: 5094 break; 5095 5096 case BFD_RELOC_AARCH64_NN: 5097 case BFD_RELOC_AARCH64_CALL26: 5098 case BFD_RELOC_AARCH64_JUMP26: 5099 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 5100 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 5101 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 5102 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 5103 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 5104 case BFD_RELOC_AARCH64_ADD_LO12: 5105 if (htab->root.dynobj == NULL) 5106 htab->root.dynobj = abfd; 5107 if (!_bfd_elf_create_ifunc_sections (htab->root.dynobj, info)) 5108 return FALSE; 5109 break; 5110 } 5111 5112 /* It is referenced by a non-shared object. */ 5113 h->ref_regular = 1; 5114 h->root.non_ir_ref = 1; 5115 } 5116 5117 switch (bfd_r_type) 5118 { 5119 case BFD_RELOC_AARCH64_NN: 5120 5121 /* We don't need to handle relocs into sections not going into 5122 the "real" output. */ 5123 if ((sec->flags & SEC_ALLOC) == 0) 5124 break; 5125 5126 if (h != NULL) 5127 { 5128 if (!info->shared) 5129 h->non_got_ref = 1; 5130 5131 h->plt.refcount += 1; 5132 h->pointer_equality_needed = 1; 5133 } 5134 5135 /* No need to do anything if we're not creating a shared 5136 object. */ 5137 if (! info->shared) 5138 break; 5139 5140 { 5141 struct elf_dyn_relocs *p; 5142 struct elf_dyn_relocs **head; 5143 5144 /* We must copy these reloc types into the output file. 5145 Create a reloc section in dynobj and make room for 5146 this reloc. */ 5147 if (sreloc == NULL) 5148 { 5149 if (htab->root.dynobj == NULL) 5150 htab->root.dynobj = abfd; 5151 5152 sreloc = _bfd_elf_make_dynamic_reloc_section 5153 (sec, htab->root.dynobj, LOG_FILE_ALIGN, abfd, /*rela? */ TRUE); 5154 5155 if (sreloc == NULL) 5156 return FALSE; 5157 } 5158 5159 /* If this is a global symbol, we count the number of 5160 relocations we need for this symbol. */ 5161 if (h != NULL) 5162 { 5163 struct elf_aarch64_link_hash_entry *eh; 5164 eh = (struct elf_aarch64_link_hash_entry *) h; 5165 head = &eh->dyn_relocs; 5166 } 5167 else 5168 { 5169 /* Track dynamic relocs needed for local syms too. 5170 We really need local syms available to do this 5171 easily. Oh well. */ 5172 5173 asection *s; 5174 void **vpp; 5175 5176 isym = bfd_sym_from_r_symndx (&htab->sym_cache, 5177 abfd, r_symndx); 5178 if (isym == NULL) 5179 return FALSE; 5180 5181 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 5182 if (s == NULL) 5183 s = sec; 5184 5185 /* Beware of type punned pointers vs strict aliasing 5186 rules. */ 5187 vpp = &(elf_section_data (s)->local_dynrel); 5188 head = (struct elf_dyn_relocs **) vpp; 5189 } 5190 5191 p = *head; 5192 if (p == NULL || p->sec != sec) 5193 { 5194 bfd_size_type amt = sizeof *p; 5195 p = ((struct elf_dyn_relocs *) 5196 bfd_zalloc (htab->root.dynobj, amt)); 5197 if (p == NULL) 5198 return FALSE; 5199 p->next = *head; 5200 *head = p; 5201 p->sec = sec; 5202 } 5203 5204 p->count += 1; 5205 5206 } 5207 break; 5208 5209 /* RR: We probably want to keep a consistency check that 5210 there are no dangling GOT_PAGE relocs. */ 5211 case BFD_RELOC_AARCH64_ADR_GOT_PAGE: 5212 case BFD_RELOC_AARCH64_GOT_LD_PREL19: 5213 case BFD_RELOC_AARCH64_LD32_GOT_LO12_NC: 5214 case BFD_RELOC_AARCH64_LD64_GOT_LO12_NC: 5215 case BFD_RELOC_AARCH64_TLSDESC_ADD_LO12_NC: 5216 case BFD_RELOC_AARCH64_TLSDESC_ADR_PAGE21: 5217 case BFD_RELOC_AARCH64_TLSDESC_LD32_LO12_NC: 5218 case BFD_RELOC_AARCH64_TLSDESC_LD64_LO12_NC: 5219 case BFD_RELOC_AARCH64_TLSGD_ADD_LO12_NC: 5220 case BFD_RELOC_AARCH64_TLSGD_ADR_PAGE21: 5221 case BFD_RELOC_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21: 5222 case BFD_RELOC_AARCH64_TLSIE_LD32_GOTTPREL_LO12_NC: 5223 case BFD_RELOC_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC: 5224 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_HI12: 5225 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12: 5226 case BFD_RELOC_AARCH64_TLSLE_ADD_TPREL_LO12_NC: 5227 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0: 5228 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G0_NC: 5229 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1: 5230 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G1_NC: 5231 case BFD_RELOC_AARCH64_TLSLE_MOVW_TPREL_G2: 5232 { 5233 unsigned got_type; 5234 unsigned old_got_type; 5235 5236 got_type = aarch64_reloc_got_type (bfd_r_type); 5237 5238 if (h) 5239 { 5240 h->got.refcount += 1; 5241 old_got_type = elf_aarch64_hash_entry (h)->got_type; 5242 } 5243 else 5244 { 5245 struct elf_aarch64_local_symbol *locals; 5246 5247 if (!elfNN_aarch64_allocate_local_symbols 5248 (abfd, symtab_hdr->sh_info)) 5249 return FALSE; 5250 5251 locals = elf_aarch64_locals (abfd); 5252 BFD_ASSERT (r_symndx < symtab_hdr->sh_info); 5253 locals[r_symndx].got_refcount += 1; 5254 old_got_type = locals[r_symndx].got_type; 5255 } 5256 5257 /* If a variable is accessed with both general dynamic TLS 5258 methods, two slots may be created. */ 5259 if (GOT_TLS_GD_ANY_P (old_got_type) && GOT_TLS_GD_ANY_P (got_type)) 5260 got_type |= old_got_type; 5261 5262 /* We will already have issued an error message if there 5263 is a TLS/non-TLS mismatch, based on the symbol type. 5264 So just combine any TLS types needed. */ 5265 if (old_got_type != GOT_UNKNOWN && old_got_type != GOT_NORMAL 5266 && got_type != GOT_NORMAL) 5267 got_type |= old_got_type; 5268 5269 /* If the symbol is accessed by both IE and GD methods, we 5270 are able to relax. Turn off the GD flag, without 5271 messing up with any other kind of TLS types that may be 5272 involved. */ 5273 if ((got_type & GOT_TLS_IE) && GOT_TLS_GD_ANY_P (got_type)) 5274 got_type &= ~ (GOT_TLSDESC_GD | GOT_TLS_GD); 5275 5276 if (old_got_type != got_type) 5277 { 5278 if (h != NULL) 5279 elf_aarch64_hash_entry (h)->got_type = got_type; 5280 else 5281 { 5282 struct elf_aarch64_local_symbol *locals; 5283 locals = elf_aarch64_locals (abfd); 5284 BFD_ASSERT (r_symndx < symtab_hdr->sh_info); 5285 locals[r_symndx].got_type = got_type; 5286 } 5287 } 5288 5289 if (htab->root.dynobj == NULL) 5290 htab->root.dynobj = abfd; 5291 if (! aarch64_elf_create_got_section (htab->root.dynobj, info)) 5292 return FALSE; 5293 break; 5294 } 5295 5296 case BFD_RELOC_AARCH64_ADR_HI21_NC_PCREL: 5297 case BFD_RELOC_AARCH64_ADR_HI21_PCREL: 5298 case BFD_RELOC_AARCH64_ADR_LO21_PCREL: 5299 if (h != NULL && info->executable) 5300 { 5301 /* If this reloc is in a read-only section, we might 5302 need a copy reloc. We can't check reliably at this 5303 stage whether the section is read-only, as input 5304 sections have not yet been mapped to output sections. 5305 Tentatively set the flag for now, and correct in 5306 adjust_dynamic_symbol. */ 5307 h->non_got_ref = 1; 5308 h->plt.refcount += 1; 5309 h->pointer_equality_needed = 1; 5310 } 5311 /* FIXME:: RR need to handle these in shared libraries 5312 and essentially bomb out as these being non-PIC 5313 relocations in shared libraries. */ 5314 break; 5315 5316 case BFD_RELOC_AARCH64_CALL26: 5317 case BFD_RELOC_AARCH64_JUMP26: 5318 /* If this is a local symbol then we resolve it 5319 directly without creating a PLT entry. */ 5320 if (h == NULL) 5321 continue; 5322 5323 h->needs_plt = 1; 5324 if (h->plt.refcount <= 0) 5325 h->plt.refcount = 1; 5326 else 5327 h->plt.refcount += 1; 5328 break; 5329 5330 default: 5331 break; 5332 } 5333 } 5334 5335 return TRUE; 5336 } 5337 5338 /* Treat mapping symbols as special target symbols. */ 5339 5340 static bfd_boolean 5341 elfNN_aarch64_is_target_special_symbol (bfd *abfd ATTRIBUTE_UNUSED, 5342 asymbol *sym) 5343 { 5344 return bfd_is_aarch64_special_symbol_name (sym->name, 5345 BFD_AARCH64_SPECIAL_SYM_TYPE_ANY); 5346 } 5347 5348 /* This is a copy of elf_find_function () from elf.c except that 5349 AArch64 mapping symbols are ignored when looking for function names. */ 5350 5351 static bfd_boolean 5352 aarch64_elf_find_function (bfd *abfd ATTRIBUTE_UNUSED, 5353 asection *section, 5354 asymbol **symbols, 5355 bfd_vma offset, 5356 const char **filename_ptr, 5357 const char **functionname_ptr) 5358 { 5359 const char *filename = NULL; 5360 asymbol *func = NULL; 5361 bfd_vma low_func = 0; 5362 asymbol **p; 5363 5364 for (p = symbols; *p != NULL; p++) 5365 { 5366 elf_symbol_type *q; 5367 5368 q = (elf_symbol_type *) * p; 5369 5370 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info)) 5371 { 5372 default: 5373 break; 5374 case STT_FILE: 5375 filename = bfd_asymbol_name (&q->symbol); 5376 break; 5377 case STT_FUNC: 5378 case STT_NOTYPE: 5379 /* Skip mapping symbols. */ 5380 if ((q->symbol.flags & BSF_LOCAL) 5381 && (bfd_is_aarch64_special_symbol_name 5382 (q->symbol.name, BFD_AARCH64_SPECIAL_SYM_TYPE_ANY))) 5383 continue; 5384 /* Fall through. */ 5385 if (bfd_get_section (&q->symbol) == section 5386 && q->symbol.value >= low_func && q->symbol.value <= offset) 5387 { 5388 func = (asymbol *) q; 5389 low_func = q->symbol.value; 5390 } 5391 break; 5392 } 5393 } 5394 5395 if (func == NULL) 5396 return FALSE; 5397 5398 if (filename_ptr) 5399 *filename_ptr = filename; 5400 if (functionname_ptr) 5401 *functionname_ptr = bfd_asymbol_name (func); 5402 5403 return TRUE; 5404 } 5405 5406 5407 /* Find the nearest line to a particular section and offset, for error 5408 reporting. This code is a duplicate of the code in elf.c, except 5409 that it uses aarch64_elf_find_function. */ 5410 5411 static bfd_boolean 5412 elfNN_aarch64_find_nearest_line (bfd *abfd, 5413 asection *section, 5414 asymbol **symbols, 5415 bfd_vma offset, 5416 const char **filename_ptr, 5417 const char **functionname_ptr, 5418 unsigned int *line_ptr) 5419 { 5420 bfd_boolean found = FALSE; 5421 5422 /* We skip _bfd_dwarf1_find_nearest_line since no known AArch64 5423 toolchain uses it. */ 5424 5425 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections, 5426 section, symbols, offset, 5427 filename_ptr, functionname_ptr, 5428 line_ptr, NULL, 0, 5429 &elf_tdata (abfd)->dwarf2_find_line_info)) 5430 { 5431 if (!*functionname_ptr) 5432 aarch64_elf_find_function (abfd, section, symbols, offset, 5433 *filename_ptr ? NULL : filename_ptr, 5434 functionname_ptr); 5435 5436 return TRUE; 5437 } 5438 5439 if (!_bfd_stab_section_find_nearest_line (abfd, symbols, section, offset, 5440 &found, filename_ptr, 5441 functionname_ptr, line_ptr, 5442 &elf_tdata (abfd)->line_info)) 5443 return FALSE; 5444 5445 if (found && (*functionname_ptr || *line_ptr)) 5446 return TRUE; 5447 5448 if (symbols == NULL) 5449 return FALSE; 5450 5451 if (!aarch64_elf_find_function (abfd, section, symbols, offset, 5452 filename_ptr, functionname_ptr)) 5453 return FALSE; 5454 5455 *line_ptr = 0; 5456 return TRUE; 5457 } 5458 5459 static bfd_boolean 5460 elfNN_aarch64_find_inliner_info (bfd *abfd, 5461 const char **filename_ptr, 5462 const char **functionname_ptr, 5463 unsigned int *line_ptr) 5464 { 5465 bfd_boolean found; 5466 found = _bfd_dwarf2_find_inliner_info 5467 (abfd, filename_ptr, 5468 functionname_ptr, line_ptr, &elf_tdata (abfd)->dwarf2_find_line_info); 5469 return found; 5470 } 5471 5472 5473 static void 5474 elfNN_aarch64_post_process_headers (bfd *abfd, 5475 struct bfd_link_info *link_info) 5476 { 5477 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */ 5478 5479 i_ehdrp = elf_elfheader (abfd); 5480 i_ehdrp->e_ident[EI_ABIVERSION] = AARCH64_ELF_ABI_VERSION; 5481 5482 _bfd_elf_post_process_headers (abfd, link_info); 5483 } 5484 5485 static enum elf_reloc_type_class 5486 elfNN_aarch64_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 5487 const asection *rel_sec ATTRIBUTE_UNUSED, 5488 const Elf_Internal_Rela *rela) 5489 { 5490 switch ((int) ELFNN_R_TYPE (rela->r_info)) 5491 { 5492 case AARCH64_R (RELATIVE): 5493 return reloc_class_relative; 5494 case AARCH64_R (JUMP_SLOT): 5495 return reloc_class_plt; 5496 case AARCH64_R (COPY): 5497 return reloc_class_copy; 5498 default: 5499 return reloc_class_normal; 5500 } 5501 } 5502 5503 /* Set the right machine number for an AArch64 ELF file. */ 5504 5505 static bfd_boolean 5506 elfNN_aarch64_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr) 5507 { 5508 if (hdr->sh_type == SHT_NOTE) 5509 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS; 5510 5511 return TRUE; 5512 } 5513 5514 /* Handle an AArch64 specific section when reading an object file. This is 5515 called when bfd_section_from_shdr finds a section with an unknown 5516 type. */ 5517 5518 static bfd_boolean 5519 elfNN_aarch64_section_from_shdr (bfd *abfd, 5520 Elf_Internal_Shdr *hdr, 5521 const char *name, int shindex) 5522 { 5523 /* There ought to be a place to keep ELF backend specific flags, but 5524 at the moment there isn't one. We just keep track of the 5525 sections by their name, instead. Fortunately, the ABI gives 5526 names for all the AArch64 specific sections, so we will probably get 5527 away with this. */ 5528 switch (hdr->sh_type) 5529 { 5530 case SHT_AARCH64_ATTRIBUTES: 5531 break; 5532 5533 default: 5534 return FALSE; 5535 } 5536 5537 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex)) 5538 return FALSE; 5539 5540 return TRUE; 5541 } 5542 5543 /* A structure used to record a list of sections, independently 5544 of the next and prev fields in the asection structure. */ 5545 typedef struct section_list 5546 { 5547 asection *sec; 5548 struct section_list *next; 5549 struct section_list *prev; 5550 } 5551 section_list; 5552 5553 /* Unfortunately we need to keep a list of sections for which 5554 an _aarch64_elf_section_data structure has been allocated. This 5555 is because it is possible for functions like elfNN_aarch64_write_section 5556 to be called on a section which has had an elf_data_structure 5557 allocated for it (and so the used_by_bfd field is valid) but 5558 for which the AArch64 extended version of this structure - the 5559 _aarch64_elf_section_data structure - has not been allocated. */ 5560 static section_list *sections_with_aarch64_elf_section_data = NULL; 5561 5562 static void 5563 record_section_with_aarch64_elf_section_data (asection *sec) 5564 { 5565 struct section_list *entry; 5566 5567 entry = bfd_malloc (sizeof (*entry)); 5568 if (entry == NULL) 5569 return; 5570 entry->sec = sec; 5571 entry->next = sections_with_aarch64_elf_section_data; 5572 entry->prev = NULL; 5573 if (entry->next != NULL) 5574 entry->next->prev = entry; 5575 sections_with_aarch64_elf_section_data = entry; 5576 } 5577 5578 static struct section_list * 5579 find_aarch64_elf_section_entry (asection *sec) 5580 { 5581 struct section_list *entry; 5582 static struct section_list *last_entry = NULL; 5583 5584 /* This is a short cut for the typical case where the sections are added 5585 to the sections_with_aarch64_elf_section_data list in forward order and 5586 then looked up here in backwards order. This makes a real difference 5587 to the ld-srec/sec64k.exp linker test. */ 5588 entry = sections_with_aarch64_elf_section_data; 5589 if (last_entry != NULL) 5590 { 5591 if (last_entry->sec == sec) 5592 entry = last_entry; 5593 else if (last_entry->next != NULL && last_entry->next->sec == sec) 5594 entry = last_entry->next; 5595 } 5596 5597 for (; entry; entry = entry->next) 5598 if (entry->sec == sec) 5599 break; 5600 5601 if (entry) 5602 /* Record the entry prior to this one - it is the entry we are 5603 most likely to want to locate next time. Also this way if we 5604 have been called from 5605 unrecord_section_with_aarch64_elf_section_data () we will not 5606 be caching a pointer that is about to be freed. */ 5607 last_entry = entry->prev; 5608 5609 return entry; 5610 } 5611 5612 static void 5613 unrecord_section_with_aarch64_elf_section_data (asection *sec) 5614 { 5615 struct section_list *entry; 5616 5617 entry = find_aarch64_elf_section_entry (sec); 5618 5619 if (entry) 5620 { 5621 if (entry->prev != NULL) 5622 entry->prev->next = entry->next; 5623 if (entry->next != NULL) 5624 entry->next->prev = entry->prev; 5625 if (entry == sections_with_aarch64_elf_section_data) 5626 sections_with_aarch64_elf_section_data = entry->next; 5627 free (entry); 5628 } 5629 } 5630 5631 5632 typedef struct 5633 { 5634 void *finfo; 5635 struct bfd_link_info *info; 5636 asection *sec; 5637 int sec_shndx; 5638 int (*func) (void *, const char *, Elf_Internal_Sym *, 5639 asection *, struct elf_link_hash_entry *); 5640 } output_arch_syminfo; 5641 5642 enum map_symbol_type 5643 { 5644 AARCH64_MAP_INSN, 5645 AARCH64_MAP_DATA 5646 }; 5647 5648 5649 /* Output a single mapping symbol. */ 5650 5651 static bfd_boolean 5652 elfNN_aarch64_output_map_sym (output_arch_syminfo *osi, 5653 enum map_symbol_type type, bfd_vma offset) 5654 { 5655 static const char *names[2] = { "$x", "$d" }; 5656 Elf_Internal_Sym sym; 5657 5658 sym.st_value = (osi->sec->output_section->vma 5659 + osi->sec->output_offset + offset); 5660 sym.st_size = 0; 5661 sym.st_other = 0; 5662 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE); 5663 sym.st_shndx = osi->sec_shndx; 5664 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1; 5665 } 5666 5667 5668 5669 /* Output mapping symbols for PLT entries associated with H. */ 5670 5671 static bfd_boolean 5672 elfNN_aarch64_output_plt_map (struct elf_link_hash_entry *h, void *inf) 5673 { 5674 output_arch_syminfo *osi = (output_arch_syminfo *) inf; 5675 bfd_vma addr; 5676 5677 if (h->root.type == bfd_link_hash_indirect) 5678 return TRUE; 5679 5680 if (h->root.type == bfd_link_hash_warning) 5681 /* When warning symbols are created, they **replace** the "real" 5682 entry in the hash table, thus we never get to see the real 5683 symbol in a hash traversal. So look at it now. */ 5684 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5685 5686 if (h->plt.offset == (bfd_vma) - 1) 5687 return TRUE; 5688 5689 addr = h->plt.offset; 5690 if (addr == 32) 5691 { 5692 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 5693 return FALSE; 5694 } 5695 return TRUE; 5696 } 5697 5698 5699 /* Output a single local symbol for a generated stub. */ 5700 5701 static bfd_boolean 5702 elfNN_aarch64_output_stub_sym (output_arch_syminfo *osi, const char *name, 5703 bfd_vma offset, bfd_vma size) 5704 { 5705 Elf_Internal_Sym sym; 5706 5707 sym.st_value = (osi->sec->output_section->vma 5708 + osi->sec->output_offset + offset); 5709 sym.st_size = size; 5710 sym.st_other = 0; 5711 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC); 5712 sym.st_shndx = osi->sec_shndx; 5713 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1; 5714 } 5715 5716 static bfd_boolean 5717 aarch64_map_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) 5718 { 5719 struct elf_aarch64_stub_hash_entry *stub_entry; 5720 asection *stub_sec; 5721 bfd_vma addr; 5722 char *stub_name; 5723 output_arch_syminfo *osi; 5724 5725 /* Massage our args to the form they really have. */ 5726 stub_entry = (struct elf_aarch64_stub_hash_entry *) gen_entry; 5727 osi = (output_arch_syminfo *) in_arg; 5728 5729 stub_sec = stub_entry->stub_sec; 5730 5731 /* Ensure this stub is attached to the current section being 5732 processed. */ 5733 if (stub_sec != osi->sec) 5734 return TRUE; 5735 5736 addr = (bfd_vma) stub_entry->stub_offset; 5737 5738 stub_name = stub_entry->output_name; 5739 5740 switch (stub_entry->stub_type) 5741 { 5742 case aarch64_stub_adrp_branch: 5743 if (!elfNN_aarch64_output_stub_sym (osi, stub_name, addr, 5744 sizeof (aarch64_adrp_branch_stub))) 5745 return FALSE; 5746 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 5747 return FALSE; 5748 break; 5749 case aarch64_stub_long_branch: 5750 if (!elfNN_aarch64_output_stub_sym 5751 (osi, stub_name, addr, sizeof (aarch64_long_branch_stub))) 5752 return FALSE; 5753 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_INSN, addr)) 5754 return FALSE; 5755 if (!elfNN_aarch64_output_map_sym (osi, AARCH64_MAP_DATA, addr + 16)) 5756 return FALSE; 5757 break; 5758 default: 5759 BFD_FAIL (); 5760 } 5761 5762 return TRUE; 5763 } 5764 5765 /* Output mapping symbols for linker generated sections. */ 5766 5767 static bfd_boolean 5768 elfNN_aarch64_output_arch_local_syms (bfd *output_bfd, 5769 struct bfd_link_info *info, 5770 void *finfo, 5771 int (*func) (void *, const char *, 5772 Elf_Internal_Sym *, 5773 asection *, 5774 struct elf_link_hash_entry 5775 *)) 5776 { 5777 output_arch_syminfo osi; 5778 struct elf_aarch64_link_hash_table *htab; 5779 5780 htab = elf_aarch64_hash_table (info); 5781 5782 osi.finfo = finfo; 5783 osi.info = info; 5784 osi.func = func; 5785 5786 /* Long calls stubs. */ 5787 if (htab->stub_bfd && htab->stub_bfd->sections) 5788 { 5789 asection *stub_sec; 5790 5791 for (stub_sec = htab->stub_bfd->sections; 5792 stub_sec != NULL; stub_sec = stub_sec->next) 5793 { 5794 /* Ignore non-stub sections. */ 5795 if (!strstr (stub_sec->name, STUB_SUFFIX)) 5796 continue; 5797 5798 osi.sec = stub_sec; 5799 5800 osi.sec_shndx = _bfd_elf_section_from_bfd_section 5801 (output_bfd, osi.sec->output_section); 5802 5803 bfd_hash_traverse (&htab->stub_hash_table, aarch64_map_one_stub, 5804 &osi); 5805 } 5806 } 5807 5808 /* Finally, output mapping symbols for the PLT. */ 5809 if (!htab->root.splt || htab->root.splt->size == 0) 5810 return TRUE; 5811 5812 /* For now live without mapping symbols for the plt. */ 5813 osi.sec_shndx = _bfd_elf_section_from_bfd_section 5814 (output_bfd, htab->root.splt->output_section); 5815 osi.sec = htab->root.splt; 5816 5817 elf_link_hash_traverse (&htab->root, elfNN_aarch64_output_plt_map, 5818 (void *) &osi); 5819 5820 return TRUE; 5821 5822 } 5823 5824 /* Allocate target specific section data. */ 5825 5826 static bfd_boolean 5827 elfNN_aarch64_new_section_hook (bfd *abfd, asection *sec) 5828 { 5829 if (!sec->used_by_bfd) 5830 { 5831 _aarch64_elf_section_data *sdata; 5832 bfd_size_type amt = sizeof (*sdata); 5833 5834 sdata = bfd_zalloc (abfd, amt); 5835 if (sdata == NULL) 5836 return FALSE; 5837 sec->used_by_bfd = sdata; 5838 } 5839 5840 record_section_with_aarch64_elf_section_data (sec); 5841 5842 return _bfd_elf_new_section_hook (abfd, sec); 5843 } 5844 5845 5846 static void 5847 unrecord_section_via_map_over_sections (bfd *abfd ATTRIBUTE_UNUSED, 5848 asection *sec, 5849 void *ignore ATTRIBUTE_UNUSED) 5850 { 5851 unrecord_section_with_aarch64_elf_section_data (sec); 5852 } 5853 5854 static bfd_boolean 5855 elfNN_aarch64_close_and_cleanup (bfd *abfd) 5856 { 5857 if (abfd->sections) 5858 bfd_map_over_sections (abfd, 5859 unrecord_section_via_map_over_sections, NULL); 5860 5861 return _bfd_elf_close_and_cleanup (abfd); 5862 } 5863 5864 static bfd_boolean 5865 elfNN_aarch64_bfd_free_cached_info (bfd *abfd) 5866 { 5867 if (abfd->sections) 5868 bfd_map_over_sections (abfd, 5869 unrecord_section_via_map_over_sections, NULL); 5870 5871 return _bfd_free_cached_info (abfd); 5872 } 5873 5874 /* Create dynamic sections. This is different from the ARM backend in that 5875 the got, plt, gotplt and their relocation sections are all created in the 5876 standard part of the bfd elf backend. */ 5877 5878 static bfd_boolean 5879 elfNN_aarch64_create_dynamic_sections (bfd *dynobj, 5880 struct bfd_link_info *info) 5881 { 5882 struct elf_aarch64_link_hash_table *htab; 5883 5884 /* We need to create .got section. */ 5885 if (!aarch64_elf_create_got_section (dynobj, info)) 5886 return FALSE; 5887 5888 if (!_bfd_elf_create_dynamic_sections (dynobj, info)) 5889 return FALSE; 5890 5891 htab = elf_aarch64_hash_table (info); 5892 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss"); 5893 if (!info->shared) 5894 htab->srelbss = bfd_get_linker_section (dynobj, ".rela.bss"); 5895 5896 if (!htab->sdynbss || (!info->shared && !htab->srelbss)) 5897 abort (); 5898 5899 return TRUE; 5900 } 5901 5902 5903 /* Allocate space in .plt, .got and associated reloc sections for 5904 dynamic relocs. */ 5905 5906 static bfd_boolean 5907 elfNN_aarch64_allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf) 5908 { 5909 struct bfd_link_info *info; 5910 struct elf_aarch64_link_hash_table *htab; 5911 struct elf_aarch64_link_hash_entry *eh; 5912 struct elf_dyn_relocs *p; 5913 5914 /* An example of a bfd_link_hash_indirect symbol is versioned 5915 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) 5916 -> __gxx_personality_v0(bfd_link_hash_defined) 5917 5918 There is no need to process bfd_link_hash_indirect symbols here 5919 because we will also be presented with the concrete instance of 5920 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been 5921 called to copy all relevant data from the generic to the concrete 5922 symbol instance. 5923 */ 5924 if (h->root.type == bfd_link_hash_indirect) 5925 return TRUE; 5926 5927 if (h->root.type == bfd_link_hash_warning) 5928 h = (struct elf_link_hash_entry *) h->root.u.i.link; 5929 5930 info = (struct bfd_link_info *) inf; 5931 htab = elf_aarch64_hash_table (info); 5932 5933 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it 5934 here if it is defined and referenced in a non-shared object. */ 5935 if (h->type == STT_GNU_IFUNC 5936 && h->def_regular) 5937 return TRUE; 5938 else if (htab->root.dynamic_sections_created && h->plt.refcount > 0) 5939 { 5940 /* Make sure this symbol is output as a dynamic symbol. 5941 Undefined weak syms won't yet be marked as dynamic. */ 5942 if (h->dynindx == -1 && !h->forced_local) 5943 { 5944 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 5945 return FALSE; 5946 } 5947 5948 if (info->shared || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h)) 5949 { 5950 asection *s = htab->root.splt; 5951 5952 /* If this is the first .plt entry, make room for the special 5953 first entry. */ 5954 if (s->size == 0) 5955 s->size += htab->plt_header_size; 5956 5957 h->plt.offset = s->size; 5958 5959 /* If this symbol is not defined in a regular file, and we are 5960 not generating a shared library, then set the symbol to this 5961 location in the .plt. This is required to make function 5962 pointers compare as equal between the normal executable and 5963 the shared library. */ 5964 if (!info->shared && !h->def_regular) 5965 { 5966 h->root.u.def.section = s; 5967 h->root.u.def.value = h->plt.offset; 5968 } 5969 5970 /* Make room for this entry. For now we only create the 5971 small model PLT entries. We later need to find a way 5972 of relaxing into these from the large model PLT entries. */ 5973 s->size += PLT_SMALL_ENTRY_SIZE; 5974 5975 /* We also need to make an entry in the .got.plt section, which 5976 will be placed in the .got section by the linker script. */ 5977 htab->root.sgotplt->size += GOT_ENTRY_SIZE; 5978 5979 /* We also need to make an entry in the .rela.plt section. */ 5980 htab->root.srelplt->size += RELOC_SIZE (htab); 5981 5982 /* We need to ensure that all GOT entries that serve the PLT 5983 are consecutive with the special GOT slots [0] [1] and 5984 [2]. Any addtional relocations, such as 5985 R_AARCH64_TLSDESC, must be placed after the PLT related 5986 entries. We abuse the reloc_count such that during 5987 sizing we adjust reloc_count to indicate the number of 5988 PLT related reserved entries. In subsequent phases when 5989 filling in the contents of the reloc entries, PLT related 5990 entries are placed by computing their PLT index (0 5991 .. reloc_count). While other none PLT relocs are placed 5992 at the slot indicated by reloc_count and reloc_count is 5993 updated. */ 5994 5995 htab->root.srelplt->reloc_count++; 5996 } 5997 else 5998 { 5999 h->plt.offset = (bfd_vma) - 1; 6000 h->needs_plt = 0; 6001 } 6002 } 6003 else 6004 { 6005 h->plt.offset = (bfd_vma) - 1; 6006 h->needs_plt = 0; 6007 } 6008 6009 eh = (struct elf_aarch64_link_hash_entry *) h; 6010 eh->tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 6011 6012 if (h->got.refcount > 0) 6013 { 6014 bfd_boolean dyn; 6015 unsigned got_type = elf_aarch64_hash_entry (h)->got_type; 6016 6017 h->got.offset = (bfd_vma) - 1; 6018 6019 dyn = htab->root.dynamic_sections_created; 6020 6021 /* Make sure this symbol is output as a dynamic symbol. 6022 Undefined weak syms won't yet be marked as dynamic. */ 6023 if (dyn && h->dynindx == -1 && !h->forced_local) 6024 { 6025 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 6026 return FALSE; 6027 } 6028 6029 if (got_type == GOT_UNKNOWN) 6030 { 6031 } 6032 else if (got_type == GOT_NORMAL) 6033 { 6034 h->got.offset = htab->root.sgot->size; 6035 htab->root.sgot->size += GOT_ENTRY_SIZE; 6036 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6037 || h->root.type != bfd_link_hash_undefweak) 6038 && (info->shared 6039 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) 6040 { 6041 htab->root.srelgot->size += RELOC_SIZE (htab); 6042 } 6043 } 6044 else 6045 { 6046 int indx; 6047 if (got_type & GOT_TLSDESC_GD) 6048 { 6049 eh->tlsdesc_got_jump_table_offset = 6050 (htab->root.sgotplt->size 6051 - aarch64_compute_jump_table_size (htab)); 6052 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; 6053 h->got.offset = (bfd_vma) - 2; 6054 } 6055 6056 if (got_type & GOT_TLS_GD) 6057 { 6058 h->got.offset = htab->root.sgot->size; 6059 htab->root.sgot->size += GOT_ENTRY_SIZE * 2; 6060 } 6061 6062 if (got_type & GOT_TLS_IE) 6063 { 6064 h->got.offset = htab->root.sgot->size; 6065 htab->root.sgot->size += GOT_ENTRY_SIZE; 6066 } 6067 6068 indx = h && h->dynindx != -1 ? h->dynindx : 0; 6069 if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 6070 || h->root.type != bfd_link_hash_undefweak) 6071 && (info->shared 6072 || indx != 0 6073 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h))) 6074 { 6075 if (got_type & GOT_TLSDESC_GD) 6076 { 6077 htab->root.srelplt->size += RELOC_SIZE (htab); 6078 /* Note reloc_count not incremented here! We have 6079 already adjusted reloc_count for this relocation 6080 type. */ 6081 6082 /* TLSDESC PLT is now needed, but not yet determined. */ 6083 htab->tlsdesc_plt = (bfd_vma) - 1; 6084 } 6085 6086 if (got_type & GOT_TLS_GD) 6087 htab->root.srelgot->size += RELOC_SIZE (htab) * 2; 6088 6089 if (got_type & GOT_TLS_IE) 6090 htab->root.srelgot->size += RELOC_SIZE (htab); 6091 } 6092 } 6093 } 6094 else 6095 { 6096 h->got.offset = (bfd_vma) - 1; 6097 } 6098 6099 if (eh->dyn_relocs == NULL) 6100 return TRUE; 6101 6102 /* In the shared -Bsymbolic case, discard space allocated for 6103 dynamic pc-relative relocs against symbols which turn out to be 6104 defined in regular objects. For the normal shared case, discard 6105 space for pc-relative relocs that have become local due to symbol 6106 visibility changes. */ 6107 6108 if (info->shared) 6109 { 6110 /* Relocs that use pc_count are those that appear on a call 6111 insn, or certain REL relocs that can generated via assembly. 6112 We want calls to protected symbols to resolve directly to the 6113 function rather than going via the plt. If people want 6114 function pointer comparisons to work as expected then they 6115 should avoid writing weird assembly. */ 6116 if (SYMBOL_CALLS_LOCAL (info, h)) 6117 { 6118 struct elf_dyn_relocs **pp; 6119 6120 for (pp = &eh->dyn_relocs; (p = *pp) != NULL;) 6121 { 6122 p->count -= p->pc_count; 6123 p->pc_count = 0; 6124 if (p->count == 0) 6125 *pp = p->next; 6126 else 6127 pp = &p->next; 6128 } 6129 } 6130 6131 /* Also discard relocs on undefined weak syms with non-default 6132 visibility. */ 6133 if (eh->dyn_relocs != NULL && h->root.type == bfd_link_hash_undefweak) 6134 { 6135 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 6136 eh->dyn_relocs = NULL; 6137 6138 /* Make sure undefined weak symbols are output as a dynamic 6139 symbol in PIEs. */ 6140 else if (h->dynindx == -1 6141 && !h->forced_local 6142 && !bfd_elf_link_record_dynamic_symbol (info, h)) 6143 return FALSE; 6144 } 6145 6146 } 6147 else if (ELIMINATE_COPY_RELOCS) 6148 { 6149 /* For the non-shared case, discard space for relocs against 6150 symbols which turn out to need copy relocs or are not 6151 dynamic. */ 6152 6153 if (!h->non_got_ref 6154 && ((h->def_dynamic 6155 && !h->def_regular) 6156 || (htab->root.dynamic_sections_created 6157 && (h->root.type == bfd_link_hash_undefweak 6158 || h->root.type == bfd_link_hash_undefined)))) 6159 { 6160 /* Make sure this symbol is output as a dynamic symbol. 6161 Undefined weak syms won't yet be marked as dynamic. */ 6162 if (h->dynindx == -1 6163 && !h->forced_local 6164 && !bfd_elf_link_record_dynamic_symbol (info, h)) 6165 return FALSE; 6166 6167 /* If that succeeded, we know we'll be keeping all the 6168 relocs. */ 6169 if (h->dynindx != -1) 6170 goto keep; 6171 } 6172 6173 eh->dyn_relocs = NULL; 6174 6175 keep:; 6176 } 6177 6178 /* Finally, allocate space. */ 6179 for (p = eh->dyn_relocs; p != NULL; p = p->next) 6180 { 6181 asection *sreloc; 6182 6183 sreloc = elf_section_data (p->sec)->sreloc; 6184 6185 BFD_ASSERT (sreloc != NULL); 6186 6187 sreloc->size += p->count * RELOC_SIZE (htab); 6188 } 6189 6190 return TRUE; 6191 } 6192 6193 /* Allocate space in .plt, .got and associated reloc sections for 6194 ifunc dynamic relocs. */ 6195 6196 static bfd_boolean 6197 elfNN_aarch64_allocate_ifunc_dynrelocs (struct elf_link_hash_entry *h, 6198 void *inf) 6199 { 6200 struct bfd_link_info *info; 6201 struct elf_aarch64_link_hash_table *htab; 6202 struct elf_aarch64_link_hash_entry *eh; 6203 6204 /* An example of a bfd_link_hash_indirect symbol is versioned 6205 symbol. For example: __gxx_personality_v0(bfd_link_hash_indirect) 6206 -> __gxx_personality_v0(bfd_link_hash_defined) 6207 6208 There is no need to process bfd_link_hash_indirect symbols here 6209 because we will also be presented with the concrete instance of 6210 the symbol and elfNN_aarch64_copy_indirect_symbol () will have been 6211 called to copy all relevant data from the generic to the concrete 6212 symbol instance. 6213 */ 6214 if (h->root.type == bfd_link_hash_indirect) 6215 return TRUE; 6216 6217 if (h->root.type == bfd_link_hash_warning) 6218 h = (struct elf_link_hash_entry *) h->root.u.i.link; 6219 6220 info = (struct bfd_link_info *) inf; 6221 htab = elf_aarch64_hash_table (info); 6222 6223 eh = (struct elf_aarch64_link_hash_entry *) h; 6224 6225 /* Since STT_GNU_IFUNC symbol must go through PLT, we handle it 6226 here if it is defined and referenced in a non-shared object. */ 6227 if (h->type == STT_GNU_IFUNC 6228 && h->def_regular) 6229 return _bfd_elf_allocate_ifunc_dyn_relocs (info, h, 6230 &eh->dyn_relocs, 6231 htab->plt_entry_size, 6232 htab->plt_header_size, 6233 GOT_ENTRY_SIZE); 6234 return TRUE; 6235 } 6236 6237 /* Allocate space in .plt, .got and associated reloc sections for 6238 local dynamic relocs. */ 6239 6240 static bfd_boolean 6241 elfNN_aarch64_allocate_local_dynrelocs (void **slot, void *inf) 6242 { 6243 struct elf_link_hash_entry *h 6244 = (struct elf_link_hash_entry *) *slot; 6245 6246 if (h->type != STT_GNU_IFUNC 6247 || !h->def_regular 6248 || !h->ref_regular 6249 || !h->forced_local 6250 || h->root.type != bfd_link_hash_defined) 6251 abort (); 6252 6253 return elfNN_aarch64_allocate_dynrelocs (h, inf); 6254 } 6255 6256 /* Allocate space in .plt, .got and associated reloc sections for 6257 local ifunc dynamic relocs. */ 6258 6259 static bfd_boolean 6260 elfNN_aarch64_allocate_local_ifunc_dynrelocs (void **slot, void *inf) 6261 { 6262 struct elf_link_hash_entry *h 6263 = (struct elf_link_hash_entry *) *slot; 6264 6265 if (h->type != STT_GNU_IFUNC 6266 || !h->def_regular 6267 || !h->ref_regular 6268 || !h->forced_local 6269 || h->root.type != bfd_link_hash_defined) 6270 abort (); 6271 6272 return elfNN_aarch64_allocate_ifunc_dynrelocs (h, inf); 6273 } 6274 6275 /* This is the most important function of all . Innocuosly named 6276 though ! */ 6277 static bfd_boolean 6278 elfNN_aarch64_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 6279 struct bfd_link_info *info) 6280 { 6281 struct elf_aarch64_link_hash_table *htab; 6282 bfd *dynobj; 6283 asection *s; 6284 bfd_boolean relocs; 6285 bfd *ibfd; 6286 6287 htab = elf_aarch64_hash_table ((info)); 6288 dynobj = htab->root.dynobj; 6289 6290 BFD_ASSERT (dynobj != NULL); 6291 6292 if (htab->root.dynamic_sections_created) 6293 { 6294 if (info->executable) 6295 { 6296 s = bfd_get_linker_section (dynobj, ".interp"); 6297 if (s == NULL) 6298 abort (); 6299 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 6300 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 6301 } 6302 } 6303 6304 /* Set up .got offsets for local syms, and space for local dynamic 6305 relocs. */ 6306 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 6307 { 6308 struct elf_aarch64_local_symbol *locals = NULL; 6309 Elf_Internal_Shdr *symtab_hdr; 6310 asection *srel; 6311 unsigned int i; 6312 6313 if (!is_aarch64_elf (ibfd)) 6314 continue; 6315 6316 for (s = ibfd->sections; s != NULL; s = s->next) 6317 { 6318 struct elf_dyn_relocs *p; 6319 6320 for (p = (struct elf_dyn_relocs *) 6321 (elf_section_data (s)->local_dynrel); p != NULL; p = p->next) 6322 { 6323 if (!bfd_is_abs_section (p->sec) 6324 && bfd_is_abs_section (p->sec->output_section)) 6325 { 6326 /* Input section has been discarded, either because 6327 it is a copy of a linkonce section or due to 6328 linker script /DISCARD/, so we'll be discarding 6329 the relocs too. */ 6330 } 6331 else if (p->count != 0) 6332 { 6333 srel = elf_section_data (p->sec)->sreloc; 6334 srel->size += p->count * RELOC_SIZE (htab); 6335 if ((p->sec->output_section->flags & SEC_READONLY) != 0) 6336 info->flags |= DF_TEXTREL; 6337 } 6338 } 6339 } 6340 6341 locals = elf_aarch64_locals (ibfd); 6342 if (!locals) 6343 continue; 6344 6345 symtab_hdr = &elf_symtab_hdr (ibfd); 6346 srel = htab->root.srelgot; 6347 for (i = 0; i < symtab_hdr->sh_info; i++) 6348 { 6349 locals[i].got_offset = (bfd_vma) - 1; 6350 locals[i].tlsdesc_got_jump_table_offset = (bfd_vma) - 1; 6351 if (locals[i].got_refcount > 0) 6352 { 6353 unsigned got_type = locals[i].got_type; 6354 if (got_type & GOT_TLSDESC_GD) 6355 { 6356 locals[i].tlsdesc_got_jump_table_offset = 6357 (htab->root.sgotplt->size 6358 - aarch64_compute_jump_table_size (htab)); 6359 htab->root.sgotplt->size += GOT_ENTRY_SIZE * 2; 6360 locals[i].got_offset = (bfd_vma) - 2; 6361 } 6362 6363 if (got_type & GOT_TLS_GD) 6364 { 6365 locals[i].got_offset = htab->root.sgot->size; 6366 htab->root.sgot->size += GOT_ENTRY_SIZE * 2; 6367 } 6368 6369 if (got_type & GOT_TLS_IE) 6370 { 6371 locals[i].got_offset = htab->root.sgot->size; 6372 htab->root.sgot->size += GOT_ENTRY_SIZE; 6373 } 6374 6375 if (got_type == GOT_UNKNOWN) 6376 { 6377 } 6378 6379 if (got_type == GOT_NORMAL) 6380 { 6381 } 6382 6383 if (info->shared) 6384 { 6385 if (got_type & GOT_TLSDESC_GD) 6386 { 6387 htab->root.srelplt->size += RELOC_SIZE (htab); 6388 /* Note RELOC_COUNT not incremented here! */ 6389 htab->tlsdesc_plt = (bfd_vma) - 1; 6390 } 6391 6392 if (got_type & GOT_TLS_GD) 6393 htab->root.srelgot->size += RELOC_SIZE (htab) * 2; 6394 6395 if (got_type & GOT_TLS_IE) 6396 htab->root.srelgot->size += RELOC_SIZE (htab); 6397 } 6398 } 6399 else 6400 { 6401 locals[i].got_refcount = (bfd_vma) - 1; 6402 } 6403 } 6404 } 6405 6406 6407 /* Allocate global sym .plt and .got entries, and space for global 6408 sym dynamic relocs. */ 6409 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_dynrelocs, 6410 info); 6411 6412 /* Allocate global ifunc sym .plt and .got entries, and space for global 6413 ifunc sym dynamic relocs. */ 6414 elf_link_hash_traverse (&htab->root, elfNN_aarch64_allocate_ifunc_dynrelocs, 6415 info); 6416 6417 /* Allocate .plt and .got entries, and space for local symbols. */ 6418 htab_traverse (htab->loc_hash_table, 6419 elfNN_aarch64_allocate_local_dynrelocs, 6420 info); 6421 6422 /* Allocate .plt and .got entries, and space for local ifunc symbols. */ 6423 htab_traverse (htab->loc_hash_table, 6424 elfNN_aarch64_allocate_local_ifunc_dynrelocs, 6425 info); 6426 6427 /* For every jump slot reserved in the sgotplt, reloc_count is 6428 incremented. However, when we reserve space for TLS descriptors, 6429 it's not incremented, so in order to compute the space reserved 6430 for them, it suffices to multiply the reloc count by the jump 6431 slot size. */ 6432 6433 if (htab->root.srelplt) 6434 htab->sgotplt_jump_table_size = aarch64_compute_jump_table_size (htab); 6435 6436 if (htab->tlsdesc_plt) 6437 { 6438 if (htab->root.splt->size == 0) 6439 htab->root.splt->size += PLT_ENTRY_SIZE; 6440 6441 htab->tlsdesc_plt = htab->root.splt->size; 6442 htab->root.splt->size += PLT_TLSDESC_ENTRY_SIZE; 6443 6444 /* If we're not using lazy TLS relocations, don't generate the 6445 GOT entry required. */ 6446 if (!(info->flags & DF_BIND_NOW)) 6447 { 6448 htab->dt_tlsdesc_got = htab->root.sgot->size; 6449 htab->root.sgot->size += GOT_ENTRY_SIZE; 6450 } 6451 } 6452 6453 /* We now have determined the sizes of the various dynamic sections. 6454 Allocate memory for them. */ 6455 relocs = FALSE; 6456 for (s = dynobj->sections; s != NULL; s = s->next) 6457 { 6458 if ((s->flags & SEC_LINKER_CREATED) == 0) 6459 continue; 6460 6461 if (s == htab->root.splt 6462 || s == htab->root.sgot 6463 || s == htab->root.sgotplt 6464 || s == htab->root.iplt 6465 || s == htab->root.igotplt || s == htab->sdynbss) 6466 { 6467 /* Strip this section if we don't need it; see the 6468 comment below. */ 6469 } 6470 else if (CONST_STRNEQ (bfd_get_section_name (dynobj, s), ".rela")) 6471 { 6472 if (s->size != 0 && s != htab->root.srelplt) 6473 relocs = TRUE; 6474 6475 /* We use the reloc_count field as a counter if we need 6476 to copy relocs into the output file. */ 6477 if (s != htab->root.srelplt) 6478 s->reloc_count = 0; 6479 } 6480 else 6481 { 6482 /* It's not one of our sections, so don't allocate space. */ 6483 continue; 6484 } 6485 6486 if (s->size == 0) 6487 { 6488 /* If we don't need this section, strip it from the 6489 output file. This is mostly to handle .rela.bss and 6490 .rela.plt. We must create both sections in 6491 create_dynamic_sections, because they must be created 6492 before the linker maps input sections to output 6493 sections. The linker does that before 6494 adjust_dynamic_symbol is called, and it is that 6495 function which decides whether anything needs to go 6496 into these sections. */ 6497 6498 s->flags |= SEC_EXCLUDE; 6499 continue; 6500 } 6501 6502 if ((s->flags & SEC_HAS_CONTENTS) == 0) 6503 continue; 6504 6505 /* Allocate memory for the section contents. We use bfd_zalloc 6506 here in case unused entries are not reclaimed before the 6507 section's contents are written out. This should not happen, 6508 but this way if it does, we get a R_AARCH64_NONE reloc instead 6509 of garbage. */ 6510 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 6511 if (s->contents == NULL) 6512 return FALSE; 6513 } 6514 6515 if (htab->root.dynamic_sections_created) 6516 { 6517 /* Add some entries to the .dynamic section. We fill in the 6518 values later, in elfNN_aarch64_finish_dynamic_sections, but we 6519 must add the entries now so that we get the correct size for 6520 the .dynamic section. The DT_DEBUG entry is filled in by the 6521 dynamic linker and used by the debugger. */ 6522 #define add_dynamic_entry(TAG, VAL) \ 6523 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 6524 6525 if (info->executable) 6526 { 6527 if (!add_dynamic_entry (DT_DEBUG, 0)) 6528 return FALSE; 6529 } 6530 6531 if (htab->root.splt->size != 0) 6532 { 6533 if (!add_dynamic_entry (DT_PLTGOT, 0) 6534 || !add_dynamic_entry (DT_PLTRELSZ, 0) 6535 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 6536 || !add_dynamic_entry (DT_JMPREL, 0)) 6537 return FALSE; 6538 6539 if (htab->tlsdesc_plt 6540 && (!add_dynamic_entry (DT_TLSDESC_PLT, 0) 6541 || !add_dynamic_entry (DT_TLSDESC_GOT, 0))) 6542 return FALSE; 6543 } 6544 6545 if (relocs) 6546 { 6547 if (!add_dynamic_entry (DT_RELA, 0) 6548 || !add_dynamic_entry (DT_RELASZ, 0) 6549 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab))) 6550 return FALSE; 6551 6552 /* If any dynamic relocs apply to a read-only section, 6553 then we need a DT_TEXTREL entry. */ 6554 if ((info->flags & DF_TEXTREL) != 0) 6555 { 6556 if (!add_dynamic_entry (DT_TEXTREL, 0)) 6557 return FALSE; 6558 } 6559 } 6560 } 6561 #undef add_dynamic_entry 6562 6563 return TRUE; 6564 } 6565 6566 static inline void 6567 elf_aarch64_update_plt_entry (bfd *output_bfd, 6568 bfd_reloc_code_real_type r_type, 6569 bfd_byte *plt_entry, bfd_vma value) 6570 { 6571 reloc_howto_type *howto = elfNN_aarch64_howto_from_bfd_reloc (r_type); 6572 6573 _bfd_aarch64_elf_put_addend (output_bfd, plt_entry, r_type, howto, value); 6574 } 6575 6576 static void 6577 elfNN_aarch64_create_small_pltn_entry (struct elf_link_hash_entry *h, 6578 struct elf_aarch64_link_hash_table 6579 *htab, bfd *output_bfd, 6580 struct bfd_link_info *info) 6581 { 6582 bfd_byte *plt_entry; 6583 bfd_vma plt_index; 6584 bfd_vma got_offset; 6585 bfd_vma gotplt_entry_address; 6586 bfd_vma plt_entry_address; 6587 Elf_Internal_Rela rela; 6588 bfd_byte *loc; 6589 asection *plt, *gotplt, *relplt; 6590 6591 /* When building a static executable, use .iplt, .igot.plt and 6592 .rela.iplt sections for STT_GNU_IFUNC symbols. */ 6593 if (htab->root.splt != NULL) 6594 { 6595 plt = htab->root.splt; 6596 gotplt = htab->root.sgotplt; 6597 relplt = htab->root.srelplt; 6598 } 6599 else 6600 { 6601 plt = htab->root.iplt; 6602 gotplt = htab->root.igotplt; 6603 relplt = htab->root.irelplt; 6604 } 6605 6606 /* Get the index in the procedure linkage table which 6607 corresponds to this symbol. This is the index of this symbol 6608 in all the symbols for which we are making plt entries. The 6609 first entry in the procedure linkage table is reserved. 6610 6611 Get the offset into the .got table of the entry that 6612 corresponds to this function. Each .got entry is GOT_ENTRY_SIZE 6613 bytes. The first three are reserved for the dynamic linker. 6614 6615 For static executables, we don't reserve anything. */ 6616 6617 if (plt == htab->root.splt) 6618 { 6619 plt_index = (h->plt.offset - htab->plt_header_size) / htab->plt_entry_size; 6620 got_offset = (plt_index + 3) * GOT_ENTRY_SIZE; 6621 } 6622 else 6623 { 6624 plt_index = h->plt.offset / htab->plt_entry_size; 6625 got_offset = plt_index * GOT_ENTRY_SIZE; 6626 } 6627 6628 plt_entry = plt->contents + h->plt.offset; 6629 plt_entry_address = plt->output_section->vma 6630 + plt->output_section->output_offset + h->plt.offset; 6631 gotplt_entry_address = gotplt->output_section->vma + 6632 gotplt->output_offset + got_offset; 6633 6634 /* Copy in the boiler-plate for the PLTn entry. */ 6635 memcpy (plt_entry, elfNN_aarch64_small_plt_entry, PLT_SMALL_ENTRY_SIZE); 6636 6637 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. 6638 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 6639 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL, 6640 plt_entry, 6641 PG (gotplt_entry_address) - 6642 PG (plt_entry_address)); 6643 6644 /* Fill in the lo12 bits for the load from the pltgot. */ 6645 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12, 6646 plt_entry + 4, 6647 PG_OFFSET (gotplt_entry_address)); 6648 6649 /* Fill in the lo12 bits for the add from the pltgot entry. */ 6650 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12, 6651 plt_entry + 8, 6652 PG_OFFSET (gotplt_entry_address)); 6653 6654 /* All the GOTPLT Entries are essentially initialized to PLT0. */ 6655 bfd_put_NN (output_bfd, 6656 plt->output_section->vma + plt->output_offset, 6657 gotplt->contents + got_offset); 6658 6659 rela.r_offset = gotplt_entry_address; 6660 6661 if (h->dynindx == -1 6662 || ((info->executable 6663 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 6664 && h->def_regular 6665 && h->type == STT_GNU_IFUNC)) 6666 { 6667 /* If an STT_GNU_IFUNC symbol is locally defined, generate 6668 R_AARCH64_IRELATIVE instead of R_AARCH64_JUMP_SLOT. */ 6669 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (IRELATIVE)); 6670 rela.r_addend = (h->root.u.def.value 6671 + h->root.u.def.section->output_section->vma 6672 + h->root.u.def.section->output_offset); 6673 } 6674 else 6675 { 6676 /* Fill in the entry in the .rela.plt section. */ 6677 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (JUMP_SLOT)); 6678 rela.r_addend = 0; 6679 } 6680 6681 /* Compute the relocation entry to used based on PLT index and do 6682 not adjust reloc_count. The reloc_count has already been adjusted 6683 to account for this entry. */ 6684 loc = relplt->contents + plt_index * RELOC_SIZE (htab); 6685 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6686 } 6687 6688 /* Size sections even though they're not dynamic. We use it to setup 6689 _TLS_MODULE_BASE_, if needed. */ 6690 6691 static bfd_boolean 6692 elfNN_aarch64_always_size_sections (bfd *output_bfd, 6693 struct bfd_link_info *info) 6694 { 6695 asection *tls_sec; 6696 6697 if (info->relocatable) 6698 return TRUE; 6699 6700 tls_sec = elf_hash_table (info)->tls_sec; 6701 6702 if (tls_sec) 6703 { 6704 struct elf_link_hash_entry *tlsbase; 6705 6706 tlsbase = elf_link_hash_lookup (elf_hash_table (info), 6707 "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE); 6708 6709 if (tlsbase) 6710 { 6711 struct bfd_link_hash_entry *h = NULL; 6712 const struct elf_backend_data *bed = 6713 get_elf_backend_data (output_bfd); 6714 6715 if (!(_bfd_generic_link_add_one_symbol 6716 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL, 6717 tls_sec, 0, NULL, FALSE, bed->collect, &h))) 6718 return FALSE; 6719 6720 tlsbase->type = STT_TLS; 6721 tlsbase = (struct elf_link_hash_entry *) h; 6722 tlsbase->def_regular = 1; 6723 tlsbase->other = STV_HIDDEN; 6724 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE); 6725 } 6726 } 6727 6728 return TRUE; 6729 } 6730 6731 /* Finish up dynamic symbol handling. We set the contents of various 6732 dynamic sections here. */ 6733 static bfd_boolean 6734 elfNN_aarch64_finish_dynamic_symbol (bfd *output_bfd, 6735 struct bfd_link_info *info, 6736 struct elf_link_hash_entry *h, 6737 Elf_Internal_Sym *sym) 6738 { 6739 struct elf_aarch64_link_hash_table *htab; 6740 htab = elf_aarch64_hash_table (info); 6741 6742 if (h->plt.offset != (bfd_vma) - 1) 6743 { 6744 asection *plt, *gotplt, *relplt; 6745 6746 /* This symbol has an entry in the procedure linkage table. Set 6747 it up. */ 6748 6749 /* When building a static executable, use .iplt, .igot.plt and 6750 .rela.iplt sections for STT_GNU_IFUNC symbols. */ 6751 if (htab->root.splt != NULL) 6752 { 6753 plt = htab->root.splt; 6754 gotplt = htab->root.sgotplt; 6755 relplt = htab->root.srelplt; 6756 } 6757 else 6758 { 6759 plt = htab->root.iplt; 6760 gotplt = htab->root.igotplt; 6761 relplt = htab->root.irelplt; 6762 } 6763 6764 /* This symbol has an entry in the procedure linkage table. Set 6765 it up. */ 6766 if ((h->dynindx == -1 6767 && !((h->forced_local || info->executable) 6768 && h->def_regular 6769 && h->type == STT_GNU_IFUNC)) 6770 || plt == NULL 6771 || gotplt == NULL 6772 || relplt == NULL) 6773 abort (); 6774 6775 elfNN_aarch64_create_small_pltn_entry (h, htab, output_bfd, info); 6776 if (!h->def_regular) 6777 { 6778 /* Mark the symbol as undefined, rather than as defined in 6779 the .plt section. Leave the value alone. This is a clue 6780 for the dynamic linker, to make function pointer 6781 comparisons work between an application and shared 6782 library. */ 6783 sym->st_shndx = SHN_UNDEF; 6784 } 6785 } 6786 6787 if (h->got.offset != (bfd_vma) - 1 6788 && elf_aarch64_hash_entry (h)->got_type == GOT_NORMAL) 6789 { 6790 Elf_Internal_Rela rela; 6791 bfd_byte *loc; 6792 6793 /* This symbol has an entry in the global offset table. Set it 6794 up. */ 6795 if (htab->root.sgot == NULL || htab->root.srelgot == NULL) 6796 abort (); 6797 6798 rela.r_offset = (htab->root.sgot->output_section->vma 6799 + htab->root.sgot->output_offset 6800 + (h->got.offset & ~(bfd_vma) 1)); 6801 6802 if (h->def_regular 6803 && h->type == STT_GNU_IFUNC) 6804 { 6805 if (info->shared) 6806 { 6807 /* Generate R_AARCH64_GLOB_DAT. */ 6808 goto do_glob_dat; 6809 } 6810 else 6811 { 6812 asection *plt; 6813 6814 if (!h->pointer_equality_needed) 6815 abort (); 6816 6817 /* For non-shared object, we can't use .got.plt, which 6818 contains the real function address if we need pointer 6819 equality. We load the GOT entry with the PLT entry. */ 6820 plt = htab->root.splt ? htab->root.splt : htab->root.iplt; 6821 bfd_put_NN (output_bfd, (plt->output_section->vma 6822 + plt->output_offset 6823 + h->plt.offset), 6824 htab->root.sgot->contents 6825 + (h->got.offset & ~(bfd_vma) 1)); 6826 return TRUE; 6827 } 6828 } 6829 else if (info->shared && SYMBOL_REFERENCES_LOCAL (info, h)) 6830 { 6831 if (!h->def_regular) 6832 return FALSE; 6833 6834 BFD_ASSERT ((h->got.offset & 1) != 0); 6835 rela.r_info = ELFNN_R_INFO (0, AARCH64_R (RELATIVE)); 6836 rela.r_addend = (h->root.u.def.value 6837 + h->root.u.def.section->output_section->vma 6838 + h->root.u.def.section->output_offset); 6839 } 6840 else 6841 { 6842 do_glob_dat: 6843 BFD_ASSERT ((h->got.offset & 1) == 0); 6844 bfd_put_NN (output_bfd, (bfd_vma) 0, 6845 htab->root.sgot->contents + h->got.offset); 6846 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (GLOB_DAT)); 6847 rela.r_addend = 0; 6848 } 6849 6850 loc = htab->root.srelgot->contents; 6851 loc += htab->root.srelgot->reloc_count++ * RELOC_SIZE (htab); 6852 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6853 } 6854 6855 if (h->needs_copy) 6856 { 6857 Elf_Internal_Rela rela; 6858 bfd_byte *loc; 6859 6860 /* This symbol needs a copy reloc. Set it up. */ 6861 6862 if (h->dynindx == -1 6863 || (h->root.type != bfd_link_hash_defined 6864 && h->root.type != bfd_link_hash_defweak) 6865 || htab->srelbss == NULL) 6866 abort (); 6867 6868 rela.r_offset = (h->root.u.def.value 6869 + h->root.u.def.section->output_section->vma 6870 + h->root.u.def.section->output_offset); 6871 rela.r_info = ELFNN_R_INFO (h->dynindx, AARCH64_R (COPY)); 6872 rela.r_addend = 0; 6873 loc = htab->srelbss->contents; 6874 loc += htab->srelbss->reloc_count++ * RELOC_SIZE (htab); 6875 bfd_elfNN_swap_reloca_out (output_bfd, &rela, loc); 6876 } 6877 6878 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. SYM may 6879 be NULL for local symbols. */ 6880 if (sym != NULL 6881 && (h == elf_hash_table (info)->hdynamic 6882 || h == elf_hash_table (info)->hgot)) 6883 sym->st_shndx = SHN_ABS; 6884 6885 return TRUE; 6886 } 6887 6888 /* Finish up local dynamic symbol handling. We set the contents of 6889 various dynamic sections here. */ 6890 6891 static bfd_boolean 6892 elfNN_aarch64_finish_local_dynamic_symbol (void **slot, void *inf) 6893 { 6894 struct elf_link_hash_entry *h 6895 = (struct elf_link_hash_entry *) *slot; 6896 struct bfd_link_info *info 6897 = (struct bfd_link_info *) inf; 6898 6899 return elfNN_aarch64_finish_dynamic_symbol (info->output_bfd, 6900 info, h, NULL); 6901 } 6902 6903 static void 6904 elfNN_aarch64_init_small_plt0_entry (bfd *output_bfd ATTRIBUTE_UNUSED, 6905 struct elf_aarch64_link_hash_table 6906 *htab) 6907 { 6908 /* Fill in PLT0. Fixme:RR Note this doesn't distinguish between 6909 small and large plts and at the minute just generates 6910 the small PLT. */ 6911 6912 /* PLT0 of the small PLT looks like this in ELF64 - 6913 stp x16, x30, [sp, #-16]! // Save the reloc and lr on stack. 6914 adrp x16, PLT_GOT + 16 // Get the page base of the GOTPLT 6915 ldr x17, [x16, #:lo12:PLT_GOT+16] // Load the address of the 6916 // symbol resolver 6917 add x16, x16, #:lo12:PLT_GOT+16 // Load the lo12 bits of the 6918 // GOTPLT entry for this. 6919 br x17 6920 PLT0 will be slightly different in ELF32 due to different got entry 6921 size. 6922 */ 6923 bfd_vma plt_got_2nd_ent; /* Address of GOT[2]. */ 6924 bfd_vma plt_base; 6925 6926 6927 memcpy (htab->root.splt->contents, elfNN_aarch64_small_plt0_entry, 6928 PLT_ENTRY_SIZE); 6929 elf_section_data (htab->root.splt->output_section)->this_hdr.sh_entsize = 6930 PLT_ENTRY_SIZE; 6931 6932 plt_got_2nd_ent = (htab->root.sgotplt->output_section->vma 6933 + htab->root.sgotplt->output_offset 6934 + GOT_ENTRY_SIZE * 2); 6935 6936 plt_base = htab->root.splt->output_section->vma + 6937 htab->root.splt->output_section->output_offset; 6938 6939 /* Fill in the top 21 bits for this: ADRP x16, PLT_GOT + n * 8. 6940 ADRP: ((PG(S+A)-PG(P)) >> 12) & 0x1fffff */ 6941 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADR_HI21_PCREL, 6942 htab->root.splt->contents + 4, 6943 PG (plt_got_2nd_ent) - PG (plt_base + 4)); 6944 6945 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_LDSTNN_LO12, 6946 htab->root.splt->contents + 8, 6947 PG_OFFSET (plt_got_2nd_ent)); 6948 6949 elf_aarch64_update_plt_entry (output_bfd, BFD_RELOC_AARCH64_ADD_LO12, 6950 htab->root.splt->contents + 12, 6951 PG_OFFSET (plt_got_2nd_ent)); 6952 } 6953 6954 static bfd_boolean 6955 elfNN_aarch64_finish_dynamic_sections (bfd *output_bfd, 6956 struct bfd_link_info *info) 6957 { 6958 struct elf_aarch64_link_hash_table *htab; 6959 bfd *dynobj; 6960 asection *sdyn; 6961 6962 htab = elf_aarch64_hash_table (info); 6963 dynobj = htab->root.dynobj; 6964 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 6965 6966 if (htab->root.dynamic_sections_created) 6967 { 6968 ElfNN_External_Dyn *dyncon, *dynconend; 6969 6970 if (sdyn == NULL || htab->root.sgot == NULL) 6971 abort (); 6972 6973 dyncon = (ElfNN_External_Dyn *) sdyn->contents; 6974 dynconend = (ElfNN_External_Dyn *) (sdyn->contents + sdyn->size); 6975 for (; dyncon < dynconend; dyncon++) 6976 { 6977 Elf_Internal_Dyn dyn; 6978 asection *s; 6979 6980 bfd_elfNN_swap_dyn_in (dynobj, dyncon, &dyn); 6981 6982 switch (dyn.d_tag) 6983 { 6984 default: 6985 continue; 6986 6987 case DT_PLTGOT: 6988 s = htab->root.sgotplt; 6989 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset; 6990 break; 6991 6992 case DT_JMPREL: 6993 dyn.d_un.d_ptr = htab->root.srelplt->output_section->vma; 6994 break; 6995 6996 case DT_PLTRELSZ: 6997 s = htab->root.srelplt->output_section; 6998 dyn.d_un.d_val = s->size; 6999 break; 7000 7001 case DT_RELASZ: 7002 /* The procedure linkage table relocs (DT_JMPREL) should 7003 not be included in the overall relocs (DT_RELA). 7004 Therefore, we override the DT_RELASZ entry here to 7005 make it not include the JMPREL relocs. Since the 7006 linker script arranges for .rela.plt to follow all 7007 other relocation sections, we don't have to worry 7008 about changing the DT_RELA entry. */ 7009 if (htab->root.srelplt != NULL) 7010 { 7011 s = htab->root.srelplt->output_section; 7012 dyn.d_un.d_val -= s->size; 7013 } 7014 break; 7015 7016 case DT_TLSDESC_PLT: 7017 s = htab->root.splt; 7018 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 7019 + htab->tlsdesc_plt; 7020 break; 7021 7022 case DT_TLSDESC_GOT: 7023 s = htab->root.sgot; 7024 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset 7025 + htab->dt_tlsdesc_got; 7026 break; 7027 } 7028 7029 bfd_elfNN_swap_dyn_out (output_bfd, &dyn, dyncon); 7030 } 7031 7032 } 7033 7034 /* Fill in the special first entry in the procedure linkage table. */ 7035 if (htab->root.splt && htab->root.splt->size > 0) 7036 { 7037 elfNN_aarch64_init_small_plt0_entry (output_bfd, htab); 7038 7039 elf_section_data (htab->root.splt->output_section)-> 7040 this_hdr.sh_entsize = htab->plt_entry_size; 7041 7042 7043 if (htab->tlsdesc_plt) 7044 { 7045 bfd_put_NN (output_bfd, (bfd_vma) 0, 7046 htab->root.sgot->contents + htab->dt_tlsdesc_got); 7047 7048 memcpy (htab->root.splt->contents + htab->tlsdesc_plt, 7049 elfNN_aarch64_tlsdesc_small_plt_entry, 7050 sizeof (elfNN_aarch64_tlsdesc_small_plt_entry)); 7051 7052 { 7053 bfd_vma adrp1_addr = 7054 htab->root.splt->output_section->vma 7055 + htab->root.splt->output_offset + htab->tlsdesc_plt + 4; 7056 7057 bfd_vma adrp2_addr = adrp1_addr + 4; 7058 7059 bfd_vma got_addr = 7060 htab->root.sgot->output_section->vma 7061 + htab->root.sgot->output_offset; 7062 7063 bfd_vma pltgot_addr = 7064 htab->root.sgotplt->output_section->vma 7065 + htab->root.sgotplt->output_offset; 7066 7067 bfd_vma dt_tlsdesc_got = got_addr + htab->dt_tlsdesc_got; 7068 7069 bfd_byte *plt_entry = 7070 htab->root.splt->contents + htab->tlsdesc_plt; 7071 7072 /* adrp x2, DT_TLSDESC_GOT */ 7073 elf_aarch64_update_plt_entry (output_bfd, 7074 BFD_RELOC_AARCH64_ADR_HI21_PCREL, 7075 plt_entry + 4, 7076 (PG (dt_tlsdesc_got) 7077 - PG (adrp1_addr))); 7078 7079 /* adrp x3, 0 */ 7080 elf_aarch64_update_plt_entry (output_bfd, 7081 BFD_RELOC_AARCH64_ADR_HI21_PCREL, 7082 plt_entry + 8, 7083 (PG (pltgot_addr) 7084 - PG (adrp2_addr))); 7085 7086 /* ldr x2, [x2, #0] */ 7087 elf_aarch64_update_plt_entry (output_bfd, 7088 BFD_RELOC_AARCH64_LDSTNN_LO12, 7089 plt_entry + 12, 7090 PG_OFFSET (dt_tlsdesc_got)); 7091 7092 /* add x3, x3, 0 */ 7093 elf_aarch64_update_plt_entry (output_bfd, 7094 BFD_RELOC_AARCH64_ADD_LO12, 7095 plt_entry + 16, 7096 PG_OFFSET (pltgot_addr)); 7097 } 7098 } 7099 } 7100 7101 if (htab->root.sgotplt) 7102 { 7103 if (bfd_is_abs_section (htab->root.sgotplt->output_section)) 7104 { 7105 (*_bfd_error_handler) 7106 (_("discarded output section: `%A'"), htab->root.sgotplt); 7107 return FALSE; 7108 } 7109 7110 /* Fill in the first three entries in the global offset table. */ 7111 if (htab->root.sgotplt->size > 0) 7112 { 7113 bfd_put_NN (output_bfd, (bfd_vma) 0, htab->root.sgotplt->contents); 7114 7115 /* Write GOT[1] and GOT[2], needed for the dynamic linker. */ 7116 bfd_put_NN (output_bfd, 7117 (bfd_vma) 0, 7118 htab->root.sgotplt->contents + GOT_ENTRY_SIZE); 7119 bfd_put_NN (output_bfd, 7120 (bfd_vma) 0, 7121 htab->root.sgotplt->contents + GOT_ENTRY_SIZE * 2); 7122 } 7123 7124 if (htab->root.sgot) 7125 { 7126 if (htab->root.sgot->size > 0) 7127 { 7128 bfd_vma addr = 7129 sdyn ? sdyn->output_section->vma + sdyn->output_offset : 0; 7130 bfd_put_NN (output_bfd, addr, htab->root.sgot->contents); 7131 } 7132 } 7133 7134 elf_section_data (htab->root.sgotplt->output_section)-> 7135 this_hdr.sh_entsize = GOT_ENTRY_SIZE; 7136 } 7137 7138 if (htab->root.sgot && htab->root.sgot->size > 0) 7139 elf_section_data (htab->root.sgot->output_section)->this_hdr.sh_entsize 7140 = GOT_ENTRY_SIZE; 7141 7142 /* Fill PLT and GOT entries for local STT_GNU_IFUNC symbols. */ 7143 htab_traverse (htab->loc_hash_table, 7144 elfNN_aarch64_finish_local_dynamic_symbol, 7145 info); 7146 7147 return TRUE; 7148 } 7149 7150 /* Return address for Ith PLT stub in section PLT, for relocation REL 7151 or (bfd_vma) -1 if it should not be included. */ 7152 7153 static bfd_vma 7154 elfNN_aarch64_plt_sym_val (bfd_vma i, const asection *plt, 7155 const arelent *rel ATTRIBUTE_UNUSED) 7156 { 7157 return plt->vma + PLT_ENTRY_SIZE + i * PLT_SMALL_ENTRY_SIZE; 7158 } 7159 7160 7161 /* We use this so we can override certain functions 7162 (though currently we don't). */ 7163 7164 const struct elf_size_info elfNN_aarch64_size_info = 7165 { 7166 sizeof (ElfNN_External_Ehdr), 7167 sizeof (ElfNN_External_Phdr), 7168 sizeof (ElfNN_External_Shdr), 7169 sizeof (ElfNN_External_Rel), 7170 sizeof (ElfNN_External_Rela), 7171 sizeof (ElfNN_External_Sym), 7172 sizeof (ElfNN_External_Dyn), 7173 sizeof (Elf_External_Note), 7174 4, /* Hash table entry size. */ 7175 1, /* Internal relocs per external relocs. */ 7176 ARCH_SIZE, /* Arch size. */ 7177 LOG_FILE_ALIGN, /* Log_file_align. */ 7178 ELFCLASSNN, EV_CURRENT, 7179 bfd_elfNN_write_out_phdrs, 7180 bfd_elfNN_write_shdrs_and_ehdr, 7181 bfd_elfNN_checksum_contents, 7182 bfd_elfNN_write_relocs, 7183 bfd_elfNN_swap_symbol_in, 7184 bfd_elfNN_swap_symbol_out, 7185 bfd_elfNN_slurp_reloc_table, 7186 bfd_elfNN_slurp_symbol_table, 7187 bfd_elfNN_swap_dyn_in, 7188 bfd_elfNN_swap_dyn_out, 7189 bfd_elfNN_swap_reloc_in, 7190 bfd_elfNN_swap_reloc_out, 7191 bfd_elfNN_swap_reloca_in, 7192 bfd_elfNN_swap_reloca_out 7193 }; 7194 7195 #define ELF_ARCH bfd_arch_aarch64 7196 #define ELF_MACHINE_CODE EM_AARCH64 7197 #define ELF_MAXPAGESIZE 0x10000 7198 #define ELF_MINPAGESIZE 0x1000 7199 #define ELF_COMMONPAGESIZE 0x1000 7200 7201 #define bfd_elfNN_close_and_cleanup \ 7202 elfNN_aarch64_close_and_cleanup 7203 7204 #define bfd_elfNN_bfd_free_cached_info \ 7205 elfNN_aarch64_bfd_free_cached_info 7206 7207 #define bfd_elfNN_bfd_is_target_special_symbol \ 7208 elfNN_aarch64_is_target_special_symbol 7209 7210 #define bfd_elfNN_bfd_link_hash_table_create \ 7211 elfNN_aarch64_link_hash_table_create 7212 7213 #define bfd_elfNN_bfd_link_hash_table_free \ 7214 elfNN_aarch64_hash_table_free 7215 7216 #define bfd_elfNN_bfd_merge_private_bfd_data \ 7217 elfNN_aarch64_merge_private_bfd_data 7218 7219 #define bfd_elfNN_bfd_print_private_bfd_data \ 7220 elfNN_aarch64_print_private_bfd_data 7221 7222 #define bfd_elfNN_bfd_reloc_type_lookup \ 7223 elfNN_aarch64_reloc_type_lookup 7224 7225 #define bfd_elfNN_bfd_reloc_name_lookup \ 7226 elfNN_aarch64_reloc_name_lookup 7227 7228 #define bfd_elfNN_bfd_set_private_flags \ 7229 elfNN_aarch64_set_private_flags 7230 7231 #define bfd_elfNN_find_inliner_info \ 7232 elfNN_aarch64_find_inliner_info 7233 7234 #define bfd_elfNN_find_nearest_line \ 7235 elfNN_aarch64_find_nearest_line 7236 7237 #define bfd_elfNN_mkobject \ 7238 elfNN_aarch64_mkobject 7239 7240 #define bfd_elfNN_new_section_hook \ 7241 elfNN_aarch64_new_section_hook 7242 7243 #define elf_backend_adjust_dynamic_symbol \ 7244 elfNN_aarch64_adjust_dynamic_symbol 7245 7246 #define elf_backend_always_size_sections \ 7247 elfNN_aarch64_always_size_sections 7248 7249 #define elf_backend_check_relocs \ 7250 elfNN_aarch64_check_relocs 7251 7252 #define elf_backend_copy_indirect_symbol \ 7253 elfNN_aarch64_copy_indirect_symbol 7254 7255 /* Create .dynbss, and .rela.bss sections in DYNOBJ, and set up shortcuts 7256 to them in our hash. */ 7257 #define elf_backend_create_dynamic_sections \ 7258 elfNN_aarch64_create_dynamic_sections 7259 7260 #define elf_backend_init_index_section \ 7261 _bfd_elf_init_2_index_sections 7262 7263 #define elf_backend_finish_dynamic_sections \ 7264 elfNN_aarch64_finish_dynamic_sections 7265 7266 #define elf_backend_finish_dynamic_symbol \ 7267 elfNN_aarch64_finish_dynamic_symbol 7268 7269 #define elf_backend_gc_sweep_hook \ 7270 elfNN_aarch64_gc_sweep_hook 7271 7272 #define elf_backend_object_p \ 7273 elfNN_aarch64_object_p 7274 7275 #define elf_backend_output_arch_local_syms \ 7276 elfNN_aarch64_output_arch_local_syms 7277 7278 #define elf_backend_plt_sym_val \ 7279 elfNN_aarch64_plt_sym_val 7280 7281 #define elf_backend_post_process_headers \ 7282 elfNN_aarch64_post_process_headers 7283 7284 #define elf_backend_relocate_section \ 7285 elfNN_aarch64_relocate_section 7286 7287 #define elf_backend_reloc_type_class \ 7288 elfNN_aarch64_reloc_type_class 7289 7290 #define elf_backend_section_flags \ 7291 elfNN_aarch64_section_flags 7292 7293 #define elf_backend_section_from_shdr \ 7294 elfNN_aarch64_section_from_shdr 7295 7296 #define elf_backend_size_dynamic_sections \ 7297 elfNN_aarch64_size_dynamic_sections 7298 7299 #define elf_backend_size_info \ 7300 elfNN_aarch64_size_info 7301 7302 #define elf_backend_can_refcount 1 7303 #define elf_backend_can_gc_sections 1 7304 #define elf_backend_plt_readonly 1 7305 #define elf_backend_want_got_plt 1 7306 #define elf_backend_want_plt_sym 0 7307 #define elf_backend_may_use_rel_p 0 7308 #define elf_backend_may_use_rela_p 1 7309 #define elf_backend_default_use_rela_p 1 7310 #define elf_backend_got_header_size (GOT_ENTRY_SIZE * 3) 7311 #define elf_backend_default_execstack 0 7312 7313 #undef elf_backend_obj_attrs_section 7314 #define elf_backend_obj_attrs_section ".ARM.attributes" 7315 7316 #include "elfNN-target.h" 7317