xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elflink.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* ELF linking support for BFD.
2    Copyright (C) 1995-2017 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfd_stdint.h"
24 #include "bfdlink.h"
25 #include "libbfd.h"
26 #define ARCH_SIZE 0
27 #include "elf-bfd.h"
28 #include "safe-ctype.h"
29 #include "libiberty.h"
30 #include "objalloc.h"
31 #if BFD_SUPPORTS_PLUGINS
32 #include "plugin-api.h"
33 #include "plugin.h"
34 #endif
35 
36 /* This struct is used to pass information to routines called via
37    elf_link_hash_traverse which must return failure.  */
38 
39 struct elf_info_failed
40 {
41   struct bfd_link_info *info;
42   bfd_boolean failed;
43 };
44 
45 /* This structure is used to pass information to
46    _bfd_elf_link_find_version_dependencies.  */
47 
48 struct elf_find_verdep_info
49 {
50   /* General link information.  */
51   struct bfd_link_info *info;
52   /* The number of dependencies.  */
53   unsigned int vers;
54   /* Whether we had a failure.  */
55   bfd_boolean failed;
56 };
57 
58 static bfd_boolean _bfd_elf_fix_symbol_flags
59   (struct elf_link_hash_entry *, struct elf_info_failed *);
60 
61 asection *
62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie,
63 			     unsigned long r_symndx,
64 			     bfd_boolean discard)
65 {
66   if (r_symndx >= cookie->locsymcount
67       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
68     {
69       struct elf_link_hash_entry *h;
70 
71       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
72 
73       while (h->root.type == bfd_link_hash_indirect
74 	     || h->root.type == bfd_link_hash_warning)
75 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
76 
77       if ((h->root.type == bfd_link_hash_defined
78 	   || h->root.type == bfd_link_hash_defweak)
79 	   && discarded_section (h->root.u.def.section))
80         return h->root.u.def.section;
81       else
82 	return NULL;
83     }
84   else
85     {
86       /* It's not a relocation against a global symbol,
87 	 but it could be a relocation against a local
88 	 symbol for a discarded section.  */
89       asection *isec;
90       Elf_Internal_Sym *isym;
91 
92       /* Need to: get the symbol; get the section.  */
93       isym = &cookie->locsyms[r_symndx];
94       isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx);
95       if (isec != NULL
96 	  && discard ? discarded_section (isec) : 1)
97 	return isec;
98      }
99   return NULL;
100 }
101 
102 /* Define a symbol in a dynamic linkage section.  */
103 
104 struct elf_link_hash_entry *
105 _bfd_elf_define_linkage_sym (bfd *abfd,
106 			     struct bfd_link_info *info,
107 			     asection *sec,
108 			     const char *name)
109 {
110   struct elf_link_hash_entry *h;
111   struct bfd_link_hash_entry *bh;
112   const struct elf_backend_data *bed;
113 
114   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
115   if (h != NULL)
116     {
117       /* Zap symbol defined in an as-needed lib that wasn't linked.
118 	 This is a symptom of a larger problem:  Absolute symbols
119 	 defined in shared libraries can't be overridden, because we
120 	 lose the link to the bfd which is via the symbol section.  */
121       h->root.type = bfd_link_hash_new;
122       bh = &h->root;
123     }
124   else
125     bh = NULL;
126 
127   bed = get_elf_backend_data (abfd);
128   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
129 					 sec, 0, NULL, FALSE, bed->collect,
130 					 &bh))
131     return NULL;
132   h = (struct elf_link_hash_entry *) bh;
133   BFD_ASSERT (h != NULL);
134   h->def_regular = 1;
135   h->non_elf = 0;
136   h->root.linker_def = 1;
137   h->type = STT_OBJECT;
138   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
139     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
140 
141   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
142   return h;
143 }
144 
145 bfd_boolean
146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
147 {
148   flagword flags;
149   asection *s;
150   struct elf_link_hash_entry *h;
151   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
152   struct elf_link_hash_table *htab = elf_hash_table (info);
153 
154   /* This function may be called more than once.  */
155   if (htab->sgot != NULL)
156     return TRUE;
157 
158   flags = bed->dynamic_sec_flags;
159 
160   s = bfd_make_section_anyway_with_flags (abfd,
161 					  (bed->rela_plts_and_copies_p
162 					   ? ".rela.got" : ".rel.got"),
163 					  (bed->dynamic_sec_flags
164 					   | SEC_READONLY));
165   if (s == NULL
166       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
167     return FALSE;
168   htab->srelgot = s;
169 
170   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
171   if (s == NULL
172       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
173     return FALSE;
174   htab->sgot = s;
175 
176   if (bed->want_got_plt)
177     {
178       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
179       if (s == NULL
180 	  || !bfd_set_section_alignment (abfd, s,
181 					 bed->s->log_file_align))
182 	return FALSE;
183       htab->sgotplt = s;
184     }
185 
186   /* The first bit of the global offset table is the header.  */
187   s->size += bed->got_header_size;
188 
189   if (bed->want_got_sym)
190     {
191       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
192 	 (or .got.plt) section.  We don't do this in the linker script
193 	 because we don't want to define the symbol if we are not creating
194 	 a global offset table.  */
195       h = _bfd_elf_define_linkage_sym (abfd, info, s,
196 				       "_GLOBAL_OFFSET_TABLE_");
197       elf_hash_table (info)->hgot = h;
198       if (h == NULL)
199 	return FALSE;
200     }
201 
202   return TRUE;
203 }
204 
205 /* Create a strtab to hold the dynamic symbol names.  */
206 static bfd_boolean
207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
208 {
209   struct elf_link_hash_table *hash_table;
210 
211   hash_table = elf_hash_table (info);
212   if (hash_table->dynobj == NULL)
213     {
214       /* We may not set dynobj, an input file holding linker created
215 	 dynamic sections to abfd, which may be a dynamic object with
216 	 its own dynamic sections.  We need to find a normal input file
217 	 to hold linker created sections if possible.  */
218       if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0)
219 	{
220 	  bfd *ibfd;
221 	  for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
222 	    if ((ibfd->flags
223 		 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0)
224 	      {
225 		abfd = ibfd;
226 		break;
227 	      }
228 	}
229       hash_table->dynobj = abfd;
230     }
231 
232   if (hash_table->dynstr == NULL)
233     {
234       hash_table->dynstr = _bfd_elf_strtab_init ();
235       if (hash_table->dynstr == NULL)
236 	return FALSE;
237     }
238   return TRUE;
239 }
240 
241 /* Create some sections which will be filled in with dynamic linking
242    information.  ABFD is an input file which requires dynamic sections
243    to be created.  The dynamic sections take up virtual memory space
244    when the final executable is run, so we need to create them before
245    addresses are assigned to the output sections.  We work out the
246    actual contents and size of these sections later.  */
247 
248 bfd_boolean
249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
250 {
251   flagword flags;
252   asection *s;
253   const struct elf_backend_data *bed;
254   struct elf_link_hash_entry *h;
255 
256   if (! is_elf_hash_table (info->hash))
257     return FALSE;
258 
259   if (elf_hash_table (info)->dynamic_sections_created)
260     return TRUE;
261 
262   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
263     return FALSE;
264 
265   abfd = elf_hash_table (info)->dynobj;
266   bed = get_elf_backend_data (abfd);
267 
268   flags = bed->dynamic_sec_flags;
269 
270   /* A dynamically linked executable has a .interp section, but a
271      shared library does not.  */
272   if (bfd_link_executable (info) && !info->nointerp)
273     {
274       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
275 					      flags | SEC_READONLY);
276       if (s == NULL)
277 	return FALSE;
278     }
279 
280   /* Create sections to hold version informations.  These are removed
281      if they are not needed.  */
282   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
283 					  flags | SEC_READONLY);
284   if (s == NULL
285       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
286     return FALSE;
287 
288   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
289 					  flags | SEC_READONLY);
290   if (s == NULL
291       || ! bfd_set_section_alignment (abfd, s, 1))
292     return FALSE;
293 
294   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
295 					  flags | SEC_READONLY);
296   if (s == NULL
297       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
298     return FALSE;
299 
300   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
301 					  flags | SEC_READONLY);
302   if (s == NULL
303       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
304     return FALSE;
305   elf_hash_table (info)->dynsym = s;
306 
307   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
308 					  flags | SEC_READONLY);
309   if (s == NULL)
310     return FALSE;
311 
312   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
313   if (s == NULL
314       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
315     return FALSE;
316 
317   /* The special symbol _DYNAMIC is always set to the start of the
318      .dynamic section.  We could set _DYNAMIC in a linker script, but we
319      only want to define it if we are, in fact, creating a .dynamic
320      section.  We don't want to define it if there is no .dynamic
321      section, since on some ELF platforms the start up code examines it
322      to decide how to initialize the process.  */
323   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
324   elf_hash_table (info)->hdynamic = h;
325   if (h == NULL)
326     return FALSE;
327 
328   if (info->emit_hash)
329     {
330       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
331 					      flags | SEC_READONLY);
332       if (s == NULL
333 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
334 	return FALSE;
335       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
336     }
337 
338   if (info->emit_gnu_hash)
339     {
340       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
341 					      flags | SEC_READONLY);
342       if (s == NULL
343 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
344 	return FALSE;
345       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
346 	 4 32-bit words followed by variable count of 64-bit words, then
347 	 variable count of 32-bit words.  */
348       if (bed->s->arch_size == 64)
349 	elf_section_data (s)->this_hdr.sh_entsize = 0;
350       else
351 	elf_section_data (s)->this_hdr.sh_entsize = 4;
352     }
353 
354   /* Let the backend create the rest of the sections.  This lets the
355      backend set the right flags.  The backend will normally create
356      the .got and .plt sections.  */
357   if (bed->elf_backend_create_dynamic_sections == NULL
358       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
359     return FALSE;
360 
361   elf_hash_table (info)->dynamic_sections_created = TRUE;
362 
363   return TRUE;
364 }
365 
366 /* Create dynamic sections when linking against a dynamic object.  */
367 
368 bfd_boolean
369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
370 {
371   flagword flags, pltflags;
372   struct elf_link_hash_entry *h;
373   asection *s;
374   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
375   struct elf_link_hash_table *htab = elf_hash_table (info);
376 
377   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
378      .rel[a].bss sections.  */
379   flags = bed->dynamic_sec_flags;
380 
381   pltflags = flags;
382   if (bed->plt_not_loaded)
383     /* We do not clear SEC_ALLOC here because we still want the OS to
384        allocate space for the section; it's just that there's nothing
385        to read in from the object file.  */
386     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
387   else
388     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
389   if (bed->plt_readonly)
390     pltflags |= SEC_READONLY;
391 
392   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
393   if (s == NULL
394       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
395     return FALSE;
396   htab->splt = s;
397 
398   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
399      .plt section.  */
400   if (bed->want_plt_sym)
401     {
402       h = _bfd_elf_define_linkage_sym (abfd, info, s,
403 				       "_PROCEDURE_LINKAGE_TABLE_");
404       elf_hash_table (info)->hplt = h;
405       if (h == NULL)
406 	return FALSE;
407     }
408 
409   s = bfd_make_section_anyway_with_flags (abfd,
410 					  (bed->rela_plts_and_copies_p
411 					   ? ".rela.plt" : ".rel.plt"),
412 					  flags | SEC_READONLY);
413   if (s == NULL
414       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
415     return FALSE;
416   htab->srelplt = s;
417 
418   if (! _bfd_elf_create_got_section (abfd, info))
419     return FALSE;
420 
421   if (bed->want_dynbss)
422     {
423       /* The .dynbss section is a place to put symbols which are defined
424 	 by dynamic objects, are referenced by regular objects, and are
425 	 not functions.  We must allocate space for them in the process
426 	 image and use a R_*_COPY reloc to tell the dynamic linker to
427 	 initialize them at run time.  The linker script puts the .dynbss
428 	 section into the .bss section of the final image.  */
429       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
430 					      SEC_ALLOC | SEC_LINKER_CREATED);
431       if (s == NULL)
432 	return FALSE;
433       htab->sdynbss = s;
434 
435       if (bed->want_dynrelro)
436 	{
437 	  /* Similarly, but for symbols that were originally in read-only
438 	     sections.  This section doesn't really need to have contents,
439 	     but make it like other .data.rel.ro sections.  */
440 	  s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro",
441 						  flags);
442 	  if (s == NULL)
443 	    return FALSE;
444 	  htab->sdynrelro = s;
445 	}
446 
447       /* The .rel[a].bss section holds copy relocs.  This section is not
448 	 normally needed.  We need to create it here, though, so that the
449 	 linker will map it to an output section.  We can't just create it
450 	 only if we need it, because we will not know whether we need it
451 	 until we have seen all the input files, and the first time the
452 	 main linker code calls BFD after examining all the input files
453 	 (size_dynamic_sections) the input sections have already been
454 	 mapped to the output sections.  If the section turns out not to
455 	 be needed, we can discard it later.  We will never need this
456 	 section when generating a shared object, since they do not use
457 	 copy relocs.  */
458       if (bfd_link_executable (info))
459 	{
460 	  s = bfd_make_section_anyway_with_flags (abfd,
461 						  (bed->rela_plts_and_copies_p
462 						   ? ".rela.bss" : ".rel.bss"),
463 						  flags | SEC_READONLY);
464 	  if (s == NULL
465 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
466 	    return FALSE;
467 	  htab->srelbss = s;
468 
469 	  if (bed->want_dynrelro)
470 	    {
471 	      s = (bfd_make_section_anyway_with_flags
472 		   (abfd, (bed->rela_plts_and_copies_p
473 			   ? ".rela.data.rel.ro" : ".rel.data.rel.ro"),
474 		    flags | SEC_READONLY));
475 	      if (s == NULL
476 		  || ! bfd_set_section_alignment (abfd, s,
477 						  bed->s->log_file_align))
478 		return FALSE;
479 	      htab->sreldynrelro = s;
480 	    }
481 	}
482     }
483 
484   return TRUE;
485 }
486 
487 /* Record a new dynamic symbol.  We record the dynamic symbols as we
488    read the input files, since we need to have a list of all of them
489    before we can determine the final sizes of the output sections.
490    Note that we may actually call this function even though we are not
491    going to output any dynamic symbols; in some cases we know that a
492    symbol should be in the dynamic symbol table, but only if there is
493    one.  */
494 
495 bfd_boolean
496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
497 				    struct elf_link_hash_entry *h)
498 {
499   if (h->dynindx == -1)
500     {
501       struct elf_strtab_hash *dynstr;
502       char *p;
503       const char *name;
504       size_t indx;
505 
506       /* XXX: The ABI draft says the linker must turn hidden and
507 	 internal symbols into STB_LOCAL symbols when producing the
508 	 DSO. However, if ld.so honors st_other in the dynamic table,
509 	 this would not be necessary.  */
510       switch (ELF_ST_VISIBILITY (h->other))
511 	{
512 	case STV_INTERNAL:
513 	case STV_HIDDEN:
514 	  if (h->root.type != bfd_link_hash_undefined
515 	      && h->root.type != bfd_link_hash_undefweak)
516 	    {
517 	      h->forced_local = 1;
518 	      if (!elf_hash_table (info)->is_relocatable_executable)
519 		return TRUE;
520 	    }
521 
522 	default:
523 	  break;
524 	}
525 
526       h->dynindx = elf_hash_table (info)->dynsymcount;
527       ++elf_hash_table (info)->dynsymcount;
528 
529       dynstr = elf_hash_table (info)->dynstr;
530       if (dynstr == NULL)
531 	{
532 	  /* Create a strtab to hold the dynamic symbol names.  */
533 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
534 	  if (dynstr == NULL)
535 	    return FALSE;
536 	}
537 
538       /* We don't put any version information in the dynamic string
539 	 table.  */
540       name = h->root.root.string;
541       p = strchr (name, ELF_VER_CHR);
542       if (p != NULL)
543 	/* We know that the p points into writable memory.  In fact,
544 	   there are only a few symbols that have read-only names, being
545 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
546 	   by the backends.  Most symbols will have names pointing into
547 	   an ELF string table read from a file, or to objalloc memory.  */
548 	*p = 0;
549 
550       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
551 
552       if (p != NULL)
553 	*p = ELF_VER_CHR;
554 
555       if (indx == (size_t) -1)
556 	return FALSE;
557       h->dynstr_index = indx;
558     }
559 
560   return TRUE;
561 }
562 
563 /* Mark a symbol dynamic.  */
564 
565 static void
566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
567 				  struct elf_link_hash_entry *h,
568 				  Elf_Internal_Sym *sym)
569 {
570   struct bfd_elf_dynamic_list *d = info->dynamic_list;
571 
572   /* It may be called more than once on the same H.  */
573   if(h->dynamic || bfd_link_relocatable (info))
574     return;
575 
576   if ((info->dynamic_data
577        && (h->type == STT_OBJECT
578 	   || h->type == STT_COMMON
579 	   || (sym != NULL
580 	       && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT
581 		   || ELF_ST_TYPE (sym->st_info) == STT_COMMON))))
582       || (d != NULL
583 	  && h->root.type == bfd_link_hash_new
584 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
585     h->dynamic = 1;
586 }
587 
588 /* Record an assignment to a symbol made by a linker script.  We need
589    this in case some dynamic object refers to this symbol.  */
590 
591 bfd_boolean
592 bfd_elf_record_link_assignment (bfd *output_bfd,
593 				struct bfd_link_info *info,
594 				const char *name,
595 				bfd_boolean provide,
596 				bfd_boolean hidden)
597 {
598   struct elf_link_hash_entry *h, *hv;
599   struct elf_link_hash_table *htab;
600   const struct elf_backend_data *bed;
601 
602   if (!is_elf_hash_table (info->hash))
603     return TRUE;
604 
605   htab = elf_hash_table (info);
606   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
607   if (h == NULL)
608     return provide;
609 
610   if (h->root.type == bfd_link_hash_warning)
611     h = (struct elf_link_hash_entry *) h->root.u.i.link;
612 
613   if (h->versioned == unknown)
614     {
615       /* Set versioned if symbol version is unknown.  */
616       char *version = strrchr (name, ELF_VER_CHR);
617       if (version)
618 	{
619 	  if (version > name && version[-1] != ELF_VER_CHR)
620 	    h->versioned = versioned_hidden;
621 	  else
622 	    h->versioned = versioned;
623 	}
624     }
625 
626   switch (h->root.type)
627     {
628     case bfd_link_hash_defined:
629     case bfd_link_hash_defweak:
630     case bfd_link_hash_common:
631       break;
632     case bfd_link_hash_undefweak:
633     case bfd_link_hash_undefined:
634       /* Since we're defining the symbol, don't let it seem to have not
635 	 been defined.  record_dynamic_symbol and size_dynamic_sections
636 	 may depend on this.  */
637       h->root.type = bfd_link_hash_new;
638       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
639 	bfd_link_repair_undef_list (&htab->root);
640       break;
641     case bfd_link_hash_new:
642       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
643       h->non_elf = 0;
644       break;
645     case bfd_link_hash_indirect:
646       /* We had a versioned symbol in a dynamic library.  We make the
647 	 the versioned symbol point to this one.  */
648       bed = get_elf_backend_data (output_bfd);
649       hv = h;
650       while (hv->root.type == bfd_link_hash_indirect
651 	     || hv->root.type == bfd_link_hash_warning)
652 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
653       /* We don't need to update h->root.u since linker will set them
654 	 later.  */
655       h->root.type = bfd_link_hash_undefined;
656       hv->root.type = bfd_link_hash_indirect;
657       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
658       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
659       break;
660     default:
661       BFD_FAIL ();
662       return FALSE;
663     }
664 
665   /* If this symbol is being provided by the linker script, and it is
666      currently defined by a dynamic object, but not by a regular
667      object, then mark it as undefined so that the generic linker will
668      force the correct value.  */
669   if (provide
670       && h->def_dynamic
671       && !h->def_regular)
672     h->root.type = bfd_link_hash_undefined;
673 
674   /* If this symbol is not being provided by the linker script, and it is
675      currently defined by a dynamic object, but not by a regular object,
676      then clear out any version information because the symbol will not be
677      associated with the dynamic object any more.  */
678   if (!provide
679       && h->def_dynamic
680       && !h->def_regular)
681     h->verinfo.verdef = NULL;
682 
683   /* Make sure this symbol is not garbage collected.  */
684   h->mark = 1;
685 
686   h->def_regular = 1;
687 
688   if (hidden)
689     {
690       bed = get_elf_backend_data (output_bfd);
691       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
692 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
693       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
694     }
695 
696   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
697      and executables.  */
698   if (!bfd_link_relocatable (info)
699       && h->dynindx != -1
700       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
701 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
702     h->forced_local = 1;
703 
704   if ((h->def_dynamic
705        || h->ref_dynamic
706        || bfd_link_dll (info)
707        || elf_hash_table (info)->is_relocatable_executable)
708       && h->dynindx == -1)
709     {
710       if (! bfd_elf_link_record_dynamic_symbol (info, h))
711 	return FALSE;
712 
713       /* If this is a weak defined symbol, and we know a corresponding
714 	 real symbol from the same dynamic object, make sure the real
715 	 symbol is also made into a dynamic symbol.  */
716       if (h->u.weakdef != NULL
717 	  && h->u.weakdef->dynindx == -1)
718 	{
719 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
720 	    return FALSE;
721 	}
722     }
723 
724   return TRUE;
725 }
726 
727 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
728    success, and 2 on a failure caused by attempting to record a symbol
729    in a discarded section, eg. a discarded link-once section symbol.  */
730 
731 int
732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
733 					  bfd *input_bfd,
734 					  long input_indx)
735 {
736   bfd_size_type amt;
737   struct elf_link_local_dynamic_entry *entry;
738   struct elf_link_hash_table *eht;
739   struct elf_strtab_hash *dynstr;
740   size_t dynstr_index;
741   char *name;
742   Elf_External_Sym_Shndx eshndx;
743   char esym[sizeof (Elf64_External_Sym)];
744 
745   if (! is_elf_hash_table (info->hash))
746     return 0;
747 
748   /* See if the entry exists already.  */
749   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
750     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
751       return 1;
752 
753   amt = sizeof (*entry);
754   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
755   if (entry == NULL)
756     return 0;
757 
758   /* Go find the symbol, so that we can find it's name.  */
759   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
760 			     1, input_indx, &entry->isym, esym, &eshndx))
761     {
762       bfd_release (input_bfd, entry);
763       return 0;
764     }
765 
766   if (entry->isym.st_shndx != SHN_UNDEF
767       && entry->isym.st_shndx < SHN_LORESERVE)
768     {
769       asection *s;
770 
771       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
772       if (s == NULL || bfd_is_abs_section (s->output_section))
773 	{
774 	  /* We can still bfd_release here as nothing has done another
775 	     bfd_alloc.  We can't do this later in this function.  */
776 	  bfd_release (input_bfd, entry);
777 	  return 2;
778 	}
779     }
780 
781   name = (bfd_elf_string_from_elf_section
782 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
783 	   entry->isym.st_name));
784 
785   dynstr = elf_hash_table (info)->dynstr;
786   if (dynstr == NULL)
787     {
788       /* Create a strtab to hold the dynamic symbol names.  */
789       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
790       if (dynstr == NULL)
791 	return 0;
792     }
793 
794   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
795   if (dynstr_index == (size_t) -1)
796     return 0;
797   entry->isym.st_name = dynstr_index;
798 
799   eht = elf_hash_table (info);
800 
801   entry->next = eht->dynlocal;
802   eht->dynlocal = entry;
803   entry->input_bfd = input_bfd;
804   entry->input_indx = input_indx;
805   eht->dynsymcount++;
806 
807   /* Whatever binding the symbol had before, it's now local.  */
808   entry->isym.st_info
809     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
810 
811   /* The dynindx will be set at the end of size_dynamic_sections.  */
812 
813   return 1;
814 }
815 
816 /* Return the dynindex of a local dynamic symbol.  */
817 
818 long
819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
820 				    bfd *input_bfd,
821 				    long input_indx)
822 {
823   struct elf_link_local_dynamic_entry *e;
824 
825   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
826     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
827       return e->dynindx;
828   return -1;
829 }
830 
831 /* This function is used to renumber the dynamic symbols, if some of
832    them are removed because they are marked as local.  This is called
833    via elf_link_hash_traverse.  */
834 
835 static bfd_boolean
836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
837 				      void *data)
838 {
839   size_t *count = (size_t *) data;
840 
841   if (h->forced_local)
842     return TRUE;
843 
844   if (h->dynindx != -1)
845     h->dynindx = ++(*count);
846 
847   return TRUE;
848 }
849 
850 
851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
852    STB_LOCAL binding.  */
853 
854 static bfd_boolean
855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
856 					    void *data)
857 {
858   size_t *count = (size_t *) data;
859 
860   if (!h->forced_local)
861     return TRUE;
862 
863   if (h->dynindx != -1)
864     h->dynindx = ++(*count);
865 
866   return TRUE;
867 }
868 
869 /* Return true if the dynamic symbol for a given section should be
870    omitted when creating a shared library.  */
871 bfd_boolean
872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
873 				   struct bfd_link_info *info,
874 				   asection *p)
875 {
876   struct elf_link_hash_table *htab;
877   asection *ip;
878 
879   switch (elf_section_data (p)->this_hdr.sh_type)
880     {
881     case SHT_PROGBITS:
882     case SHT_NOBITS:
883       /* If sh_type is yet undecided, assume it could be
884 	 SHT_PROGBITS/SHT_NOBITS.  */
885     case SHT_NULL:
886       htab = elf_hash_table (info);
887       if (p == htab->tls_sec)
888 	return FALSE;
889 
890       if (htab->text_index_section != NULL)
891 	return p != htab->text_index_section && p != htab->data_index_section;
892 
893       return (htab->dynobj != NULL
894 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
895 	      && ip->output_section == p);
896 
897       /* There shouldn't be section relative relocations
898 	 against any other section.  */
899     default:
900       return TRUE;
901     }
902 }
903 
904 /* Assign dynsym indices.  In a shared library we generate a section
905    symbol for each output section, which come first.  Next come symbols
906    which have been forced to local binding.  Then all of the back-end
907    allocated local dynamic syms, followed by the rest of the global
908    symbols.  */
909 
910 static unsigned long
911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
912 				struct bfd_link_info *info,
913 				unsigned long *section_sym_count)
914 {
915   unsigned long dynsymcount = 0;
916 
917   if (bfd_link_pic (info)
918       || elf_hash_table (info)->is_relocatable_executable)
919     {
920       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
921       asection *p;
922       for (p = output_bfd->sections; p ; p = p->next)
923 	if ((p->flags & SEC_EXCLUDE) == 0
924 	    && (p->flags & SEC_ALLOC) != 0
925 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
926 	  elf_section_data (p)->dynindx = ++dynsymcount;
927 	else
928 	  elf_section_data (p)->dynindx = 0;
929     }
930   *section_sym_count = dynsymcount;
931 
932   elf_link_hash_traverse (elf_hash_table (info),
933 			  elf_link_renumber_local_hash_table_dynsyms,
934 			  &dynsymcount);
935 
936   if (elf_hash_table (info)->dynlocal)
937     {
938       struct elf_link_local_dynamic_entry *p;
939       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
940 	p->dynindx = ++dynsymcount;
941     }
942   elf_hash_table (info)->local_dynsymcount = dynsymcount;
943 
944   elf_link_hash_traverse (elf_hash_table (info),
945 			  elf_link_renumber_hash_table_dynsyms,
946 			  &dynsymcount);
947 
948   /* There is an unused NULL entry at the head of the table which we
949      must account for in our count even if the table is empty since it
950      is intended for the mandatory DT_SYMTAB tag (.dynsym section) in
951      .dynamic section.  */
952   dynsymcount++;
953 
954   elf_hash_table (info)->dynsymcount = dynsymcount;
955   return dynsymcount;
956 }
957 
958 /* Merge st_other field.  */
959 
960 static void
961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
962 		    const Elf_Internal_Sym *isym, asection *sec,
963 		    bfd_boolean definition, bfd_boolean dynamic)
964 {
965   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
966 
967   /* If st_other has a processor-specific meaning, specific
968      code might be needed here.  */
969   if (bed->elf_backend_merge_symbol_attribute)
970     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
971 						dynamic);
972 
973   if (!dynamic)
974     {
975       unsigned symvis = ELF_ST_VISIBILITY (isym->st_other);
976       unsigned hvis = ELF_ST_VISIBILITY (h->other);
977 
978       /* Keep the most constraining visibility.  Leave the remainder
979 	 of the st_other field to elf_backend_merge_symbol_attribute.  */
980       if (symvis - 1 < hvis - 1)
981 	h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1));
982     }
983   else if (definition
984 	   && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT
985 	   && (sec->flags & SEC_READONLY) == 0)
986     h->protected_def = 1;
987 }
988 
989 /* This function is called when we want to merge a new symbol with an
990    existing symbol.  It handles the various cases which arise when we
991    find a definition in a dynamic object, or when there is already a
992    definition in a dynamic object.  The new symbol is described by
993    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
994    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
995    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
996    of an old common symbol.  We set OVERRIDE if the old symbol is
997    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
998    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
999    to change.  By OK to change, we mean that we shouldn't warn if the
1000    type or size does change.  */
1001 
1002 static bfd_boolean
1003 _bfd_elf_merge_symbol (bfd *abfd,
1004 		       struct bfd_link_info *info,
1005 		       const char *name,
1006 		       Elf_Internal_Sym *sym,
1007 		       asection **psec,
1008 		       bfd_vma *pvalue,
1009 		       struct elf_link_hash_entry **sym_hash,
1010 		       bfd **poldbfd,
1011 		       bfd_boolean *pold_weak,
1012 		       unsigned int *pold_alignment,
1013 		       bfd_boolean *skip,
1014 		       bfd_boolean *override,
1015 		       bfd_boolean *type_change_ok,
1016 		       bfd_boolean *size_change_ok,
1017 		       bfd_boolean *matched)
1018 {
1019   asection *sec, *oldsec;
1020   struct elf_link_hash_entry *h;
1021   struct elf_link_hash_entry *hi;
1022   struct elf_link_hash_entry *flip;
1023   int bind;
1024   bfd *oldbfd;
1025   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
1026   bfd_boolean newweak, oldweak, newfunc, oldfunc;
1027   const struct elf_backend_data *bed;
1028   char *new_version;
1029 
1030   *skip = FALSE;
1031   *override = FALSE;
1032 
1033   sec = *psec;
1034   bind = ELF_ST_BIND (sym->st_info);
1035 
1036   if (! bfd_is_und_section (sec))
1037     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
1038   else
1039     h = ((struct elf_link_hash_entry *)
1040 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
1041   if (h == NULL)
1042     return FALSE;
1043   *sym_hash = h;
1044 
1045   bed = get_elf_backend_data (abfd);
1046 
1047   /* NEW_VERSION is the symbol version of the new symbol.  */
1048   if (h->versioned != unversioned)
1049     {
1050       /* Symbol version is unknown or versioned.  */
1051       new_version = strrchr (name, ELF_VER_CHR);
1052       if (new_version)
1053 	{
1054 	  if (h->versioned == unknown)
1055 	    {
1056 	      if (new_version > name && new_version[-1] != ELF_VER_CHR)
1057 		h->versioned = versioned_hidden;
1058 	      else
1059 		h->versioned = versioned;
1060 	    }
1061 	  new_version += 1;
1062 	  if (new_version[0] == '\0')
1063 	    new_version = NULL;
1064 	}
1065       else
1066 	h->versioned = unversioned;
1067     }
1068   else
1069     new_version = NULL;
1070 
1071   /* For merging, we only care about real symbols.  But we need to make
1072      sure that indirect symbol dynamic flags are updated.  */
1073   hi = h;
1074   while (h->root.type == bfd_link_hash_indirect
1075 	 || h->root.type == bfd_link_hash_warning)
1076     h = (struct elf_link_hash_entry *) h->root.u.i.link;
1077 
1078   if (!*matched)
1079     {
1080       if (hi == h || h->root.type == bfd_link_hash_new)
1081 	*matched = TRUE;
1082       else
1083 	{
1084 	  /* OLD_HIDDEN is true if the existing symbol is only visible
1085 	     to the symbol with the same symbol version.  NEW_HIDDEN is
1086 	     true if the new symbol is only visible to the symbol with
1087 	     the same symbol version.  */
1088 	  bfd_boolean old_hidden = h->versioned == versioned_hidden;
1089 	  bfd_boolean new_hidden = hi->versioned == versioned_hidden;
1090 	  if (!old_hidden && !new_hidden)
1091 	    /* The new symbol matches the existing symbol if both
1092 	       aren't hidden.  */
1093 	    *matched = TRUE;
1094 	  else
1095 	    {
1096 	      /* OLD_VERSION is the symbol version of the existing
1097 		 symbol. */
1098 	      char *old_version;
1099 
1100 	      if (h->versioned >= versioned)
1101 		old_version = strrchr (h->root.root.string,
1102 				       ELF_VER_CHR) + 1;
1103 	      else
1104 		 old_version = NULL;
1105 
1106 	      /* The new symbol matches the existing symbol if they
1107 		 have the same symbol version.  */
1108 	      *matched = (old_version == new_version
1109 			  || (old_version != NULL
1110 			      && new_version != NULL
1111 			      && strcmp (old_version, new_version) == 0));
1112 	    }
1113 	}
1114     }
1115 
1116   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
1117      existing symbol.  */
1118 
1119   oldbfd = NULL;
1120   oldsec = NULL;
1121   switch (h->root.type)
1122     {
1123     default:
1124       break;
1125 
1126     case bfd_link_hash_undefined:
1127     case bfd_link_hash_undefweak:
1128       oldbfd = h->root.u.undef.abfd;
1129       break;
1130 
1131     case bfd_link_hash_defined:
1132     case bfd_link_hash_defweak:
1133       oldbfd = h->root.u.def.section->owner;
1134       oldsec = h->root.u.def.section;
1135       break;
1136 
1137     case bfd_link_hash_common:
1138       oldbfd = h->root.u.c.p->section->owner;
1139       oldsec = h->root.u.c.p->section;
1140       if (pold_alignment)
1141 	*pold_alignment = h->root.u.c.p->alignment_power;
1142       break;
1143     }
1144   if (poldbfd && *poldbfd == NULL)
1145     *poldbfd = oldbfd;
1146 
1147   /* Differentiate strong and weak symbols.  */
1148   newweak = bind == STB_WEAK;
1149   oldweak = (h->root.type == bfd_link_hash_defweak
1150 	     || h->root.type == bfd_link_hash_undefweak);
1151   if (pold_weak)
1152     *pold_weak = oldweak;
1153 
1154   /* This code is for coping with dynamic objects, and is only useful
1155      if we are doing an ELF link.  */
1156   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1157     return TRUE;
1158 
1159   /* We have to check it for every instance since the first few may be
1160      references and not all compilers emit symbol type for undefined
1161      symbols.  */
1162   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1163 
1164   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1165      respectively, is from a dynamic object.  */
1166 
1167   newdyn = (abfd->flags & DYNAMIC) != 0;
1168 
1169   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1170      syms and defined syms in dynamic libraries respectively.
1171      ref_dynamic on the other hand can be set for a symbol defined in
1172      a dynamic library, and def_dynamic may not be set;  When the
1173      definition in a dynamic lib is overridden by a definition in the
1174      executable use of the symbol in the dynamic lib becomes a
1175      reference to the executable symbol.  */
1176   if (newdyn)
1177     {
1178       if (bfd_is_und_section (sec))
1179 	{
1180 	  if (bind != STB_WEAK)
1181 	    {
1182 	      h->ref_dynamic_nonweak = 1;
1183 	      hi->ref_dynamic_nonweak = 1;
1184 	    }
1185 	}
1186       else
1187 	{
1188 	  /* Update the existing symbol only if they match. */
1189 	  if (*matched)
1190 	    h->dynamic_def = 1;
1191 	  hi->dynamic_def = 1;
1192 	}
1193     }
1194 
1195   /* If we just created the symbol, mark it as being an ELF symbol.
1196      Other than that, there is nothing to do--there is no merge issue
1197      with a newly defined symbol--so we just return.  */
1198 
1199   if (h->root.type == bfd_link_hash_new)
1200     {
1201       h->non_elf = 0;
1202       return TRUE;
1203     }
1204 
1205   /* In cases involving weak versioned symbols, we may wind up trying
1206      to merge a symbol with itself.  Catch that here, to avoid the
1207      confusion that results if we try to override a symbol with
1208      itself.  The additional tests catch cases like
1209      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1210      dynamic object, which we do want to handle here.  */
1211   if (abfd == oldbfd
1212       && (newweak || oldweak)
1213       && ((abfd->flags & DYNAMIC) == 0
1214 	  || !h->def_regular))
1215     return TRUE;
1216 
1217   olddyn = FALSE;
1218   if (oldbfd != NULL)
1219     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1220   else if (oldsec != NULL)
1221     {
1222       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1223 	 indices used by MIPS ELF.  */
1224       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1225     }
1226 
1227   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1228      respectively, appear to be a definition rather than reference.  */
1229 
1230   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1231 
1232   olddef = (h->root.type != bfd_link_hash_undefined
1233 	    && h->root.type != bfd_link_hash_undefweak
1234 	    && h->root.type != bfd_link_hash_common);
1235 
1236   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1237      respectively, appear to be a function.  */
1238 
1239   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1240 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1241 
1242   oldfunc = (h->type != STT_NOTYPE
1243 	     && bed->is_function_type (h->type));
1244 
1245   /* If creating a default indirect symbol ("foo" or "foo@") from a
1246      dynamic versioned definition ("foo@@") skip doing so if there is
1247      an existing regular definition with a different type.  We don't
1248      want, for example, a "time" variable in the executable overriding
1249      a "time" function in a shared library.  */
1250   if (pold_alignment == NULL
1251       && newdyn
1252       && newdef
1253       && !olddyn
1254       && (olddef || h->root.type == bfd_link_hash_common)
1255       && ELF_ST_TYPE (sym->st_info) != h->type
1256       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1257       && h->type != STT_NOTYPE
1258       && !(newfunc && oldfunc))
1259     {
1260       *skip = TRUE;
1261       return TRUE;
1262     }
1263 
1264   /* Check TLS symbols.  We don't check undefined symbols introduced
1265      by "ld -u" which have no type (and oldbfd NULL), and we don't
1266      check symbols from plugins because they also have no type.  */
1267   if (oldbfd != NULL
1268       && (oldbfd->flags & BFD_PLUGIN) == 0
1269       && (abfd->flags & BFD_PLUGIN) == 0
1270       && ELF_ST_TYPE (sym->st_info) != h->type
1271       && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1272     {
1273       bfd *ntbfd, *tbfd;
1274       bfd_boolean ntdef, tdef;
1275       asection *ntsec, *tsec;
1276 
1277       if (h->type == STT_TLS)
1278 	{
1279 	  ntbfd = abfd;
1280 	  ntsec = sec;
1281 	  ntdef = newdef;
1282 	  tbfd = oldbfd;
1283 	  tsec = oldsec;
1284 	  tdef = olddef;
1285 	}
1286       else
1287 	{
1288 	  ntbfd = oldbfd;
1289 	  ntsec = oldsec;
1290 	  ntdef = olddef;
1291 	  tbfd = abfd;
1292 	  tsec = sec;
1293 	  tdef = newdef;
1294 	}
1295 
1296       if (tdef && ntdef)
1297 	_bfd_error_handler
1298 	  /* xgettext:c-format */
1299 	  (_("%s: TLS definition in %B section %A "
1300 	     "mismatches non-TLS definition in %B section %A"),
1301 	   h->root.root.string, tbfd, tsec, ntbfd, ntsec);
1302       else if (!tdef && !ntdef)
1303 	_bfd_error_handler
1304 	  /* xgettext:c-format */
1305 	  (_("%s: TLS reference in %B "
1306 	     "mismatches non-TLS reference in %B"),
1307 	   h->root.root.string, tbfd, ntbfd);
1308       else if (tdef)
1309 	_bfd_error_handler
1310 	  /* xgettext:c-format */
1311 	  (_("%s: TLS definition in %B section %A "
1312 	     "mismatches non-TLS reference in %B"),
1313 	   h->root.root.string, tbfd, tsec, ntbfd);
1314       else
1315 	_bfd_error_handler
1316 	  /* xgettext:c-format */
1317 	  (_("%s: TLS reference in %B "
1318 	     "mismatches non-TLS definition in %B section %A"),
1319 	   h->root.root.string, tbfd, ntbfd, ntsec);
1320 
1321       bfd_set_error (bfd_error_bad_value);
1322       return FALSE;
1323     }
1324 
1325   /* If the old symbol has non-default visibility, we ignore the new
1326      definition from a dynamic object.  */
1327   if (newdyn
1328       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1329       && !bfd_is_und_section (sec))
1330     {
1331       *skip = TRUE;
1332       /* Make sure this symbol is dynamic.  */
1333       h->ref_dynamic = 1;
1334       hi->ref_dynamic = 1;
1335       /* A protected symbol has external availability. Make sure it is
1336 	 recorded as dynamic.
1337 
1338 	 FIXME: Should we check type and size for protected symbol?  */
1339       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1340 	return bfd_elf_link_record_dynamic_symbol (info, h);
1341       else
1342 	return TRUE;
1343     }
1344   else if (!newdyn
1345 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1346 	   && h->def_dynamic)
1347     {
1348       /* If the new symbol with non-default visibility comes from a
1349 	 relocatable file and the old definition comes from a dynamic
1350 	 object, we remove the old definition.  */
1351       if (hi->root.type == bfd_link_hash_indirect)
1352 	{
1353 	  /* Handle the case where the old dynamic definition is
1354 	     default versioned.  We need to copy the symbol info from
1355 	     the symbol with default version to the normal one if it
1356 	     was referenced before.  */
1357 	  if (h->ref_regular)
1358 	    {
1359 	      hi->root.type = h->root.type;
1360 	      h->root.type = bfd_link_hash_indirect;
1361 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1362 
1363 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1364 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1365 		{
1366 		  /* If the new symbol is hidden or internal, completely undo
1367 		     any dynamic link state.  */
1368 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1369 		  h->forced_local = 0;
1370 		  h->ref_dynamic = 0;
1371 		}
1372 	      else
1373 		h->ref_dynamic = 1;
1374 
1375 	      h->def_dynamic = 0;
1376 	      /* FIXME: Should we check type and size for protected symbol?  */
1377 	      h->size = 0;
1378 	      h->type = 0;
1379 
1380 	      h = hi;
1381 	    }
1382 	  else
1383 	    h = hi;
1384 	}
1385 
1386       /* If the old symbol was undefined before, then it will still be
1387 	 on the undefs list.  If the new symbol is undefined or
1388 	 common, we can't make it bfd_link_hash_new here, because new
1389 	 undefined or common symbols will be added to the undefs list
1390 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1391 	 added twice to the undefs list.  Also, if the new symbol is
1392 	 undefweak then we don't want to lose the strong undef.  */
1393       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1394 	{
1395 	  h->root.type = bfd_link_hash_undefined;
1396 	  h->root.u.undef.abfd = abfd;
1397 	}
1398       else
1399 	{
1400 	  h->root.type = bfd_link_hash_new;
1401 	  h->root.u.undef.abfd = NULL;
1402 	}
1403 
1404       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1405 	{
1406 	  /* If the new symbol is hidden or internal, completely undo
1407 	     any dynamic link state.  */
1408 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1409 	  h->forced_local = 0;
1410 	  h->ref_dynamic = 0;
1411 	}
1412       else
1413 	h->ref_dynamic = 1;
1414       h->def_dynamic = 0;
1415       /* FIXME: Should we check type and size for protected symbol?  */
1416       h->size = 0;
1417       h->type = 0;
1418       return TRUE;
1419     }
1420 
1421   /* If a new weak symbol definition comes from a regular file and the
1422      old symbol comes from a dynamic library, we treat the new one as
1423      strong.  Similarly, an old weak symbol definition from a regular
1424      file is treated as strong when the new symbol comes from a dynamic
1425      library.  Further, an old weak symbol from a dynamic library is
1426      treated as strong if the new symbol is from a dynamic library.
1427      This reflects the way glibc's ld.so works.
1428 
1429      Do this before setting *type_change_ok or *size_change_ok so that
1430      we warn properly when dynamic library symbols are overridden.  */
1431 
1432   if (newdef && !newdyn && olddyn)
1433     newweak = FALSE;
1434   if (olddef && newdyn)
1435     oldweak = FALSE;
1436 
1437   /* Allow changes between different types of function symbol.  */
1438   if (newfunc && oldfunc)
1439     *type_change_ok = TRUE;
1440 
1441   /* It's OK to change the type if either the existing symbol or the
1442      new symbol is weak.  A type change is also OK if the old symbol
1443      is undefined and the new symbol is defined.  */
1444 
1445   if (oldweak
1446       || newweak
1447       || (newdef
1448 	  && h->root.type == bfd_link_hash_undefined))
1449     *type_change_ok = TRUE;
1450 
1451   /* It's OK to change the size if either the existing symbol or the
1452      new symbol is weak, or if the old symbol is undefined.  */
1453 
1454   if (*type_change_ok
1455       || h->root.type == bfd_link_hash_undefined)
1456     *size_change_ok = TRUE;
1457 
1458   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1459      symbol, respectively, appears to be a common symbol in a dynamic
1460      object.  If a symbol appears in an uninitialized section, and is
1461      not weak, and is not a function, then it may be a common symbol
1462      which was resolved when the dynamic object was created.  We want
1463      to treat such symbols specially, because they raise special
1464      considerations when setting the symbol size: if the symbol
1465      appears as a common symbol in a regular object, and the size in
1466      the regular object is larger, we must make sure that we use the
1467      larger size.  This problematic case can always be avoided in C,
1468      but it must be handled correctly when using Fortran shared
1469      libraries.
1470 
1471      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1472      likewise for OLDDYNCOMMON and OLDDEF.
1473 
1474      Note that this test is just a heuristic, and that it is quite
1475      possible to have an uninitialized symbol in a shared object which
1476      is really a definition, rather than a common symbol.  This could
1477      lead to some minor confusion when the symbol really is a common
1478      symbol in some regular object.  However, I think it will be
1479      harmless.  */
1480 
1481   if (newdyn
1482       && newdef
1483       && !newweak
1484       && (sec->flags & SEC_ALLOC) != 0
1485       && (sec->flags & SEC_LOAD) == 0
1486       && sym->st_size > 0
1487       && !newfunc)
1488     newdyncommon = TRUE;
1489   else
1490     newdyncommon = FALSE;
1491 
1492   if (olddyn
1493       && olddef
1494       && h->root.type == bfd_link_hash_defined
1495       && h->def_dynamic
1496       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1497       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1498       && h->size > 0
1499       && !oldfunc)
1500     olddyncommon = TRUE;
1501   else
1502     olddyncommon = FALSE;
1503 
1504   /* We now know everything about the old and new symbols.  We ask the
1505      backend to check if we can merge them.  */
1506   if (bed->merge_symbol != NULL)
1507     {
1508       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1509 	return FALSE;
1510       sec = *psec;
1511     }
1512 
1513   /* If both the old and the new symbols look like common symbols in a
1514      dynamic object, set the size of the symbol to the larger of the
1515      two.  */
1516 
1517   if (olddyncommon
1518       && newdyncommon
1519       && sym->st_size != h->size)
1520     {
1521       /* Since we think we have two common symbols, issue a multiple
1522 	 common warning if desired.  Note that we only warn if the
1523 	 size is different.  If the size is the same, we simply let
1524 	 the old symbol override the new one as normally happens with
1525 	 symbols defined in dynamic objects.  */
1526 
1527       (*info->callbacks->multiple_common) (info, &h->root, abfd,
1528 					   bfd_link_hash_common, sym->st_size);
1529       if (sym->st_size > h->size)
1530 	h->size = sym->st_size;
1531 
1532       *size_change_ok = TRUE;
1533     }
1534 
1535   /* If we are looking at a dynamic object, and we have found a
1536      definition, we need to see if the symbol was already defined by
1537      some other object.  If so, we want to use the existing
1538      definition, and we do not want to report a multiple symbol
1539      definition error; we do this by clobbering *PSEC to be
1540      bfd_und_section_ptr.
1541 
1542      We treat a common symbol as a definition if the symbol in the
1543      shared library is a function, since common symbols always
1544      represent variables; this can cause confusion in principle, but
1545      any such confusion would seem to indicate an erroneous program or
1546      shared library.  We also permit a common symbol in a regular
1547      object to override a weak symbol in a shared object.  */
1548 
1549   if (newdyn
1550       && newdef
1551       && (olddef
1552 	  || (h->root.type == bfd_link_hash_common
1553 	      && (newweak || newfunc))))
1554     {
1555       *override = TRUE;
1556       newdef = FALSE;
1557       newdyncommon = FALSE;
1558 
1559       *psec = sec = bfd_und_section_ptr;
1560       *size_change_ok = TRUE;
1561 
1562       /* If we get here when the old symbol is a common symbol, then
1563 	 we are explicitly letting it override a weak symbol or
1564 	 function in a dynamic object, and we don't want to warn about
1565 	 a type change.  If the old symbol is a defined symbol, a type
1566 	 change warning may still be appropriate.  */
1567 
1568       if (h->root.type == bfd_link_hash_common)
1569 	*type_change_ok = TRUE;
1570     }
1571 
1572   /* Handle the special case of an old common symbol merging with a
1573      new symbol which looks like a common symbol in a shared object.
1574      We change *PSEC and *PVALUE to make the new symbol look like a
1575      common symbol, and let _bfd_generic_link_add_one_symbol do the
1576      right thing.  */
1577 
1578   if (newdyncommon
1579       && h->root.type == bfd_link_hash_common)
1580     {
1581       *override = TRUE;
1582       newdef = FALSE;
1583       newdyncommon = FALSE;
1584       *pvalue = sym->st_size;
1585       *psec = sec = bed->common_section (oldsec);
1586       *size_change_ok = TRUE;
1587     }
1588 
1589   /* Skip weak definitions of symbols that are already defined.  */
1590   if (newdef && olddef && newweak)
1591     {
1592       /* Don't skip new non-IR weak syms.  */
1593       if (!(oldbfd != NULL
1594 	    && (oldbfd->flags & BFD_PLUGIN) != 0
1595 	    && (abfd->flags & BFD_PLUGIN) == 0))
1596 	{
1597 	  newdef = FALSE;
1598 	  *skip = TRUE;
1599 	}
1600 
1601       /* Merge st_other.  If the symbol already has a dynamic index,
1602 	 but visibility says it should not be visible, turn it into a
1603 	 local symbol.  */
1604       elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn);
1605       if (h->dynindx != -1)
1606 	switch (ELF_ST_VISIBILITY (h->other))
1607 	  {
1608 	  case STV_INTERNAL:
1609 	  case STV_HIDDEN:
1610 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1611 	    break;
1612 	  }
1613     }
1614 
1615   /* If the old symbol is from a dynamic object, and the new symbol is
1616      a definition which is not from a dynamic object, then the new
1617      symbol overrides the old symbol.  Symbols from regular files
1618      always take precedence over symbols from dynamic objects, even if
1619      they are defined after the dynamic object in the link.
1620 
1621      As above, we again permit a common symbol in a regular object to
1622      override a definition in a shared object if the shared object
1623      symbol is a function or is weak.  */
1624 
1625   flip = NULL;
1626   if (!newdyn
1627       && (newdef
1628 	  || (bfd_is_com_section (sec)
1629 	      && (oldweak || oldfunc)))
1630       && olddyn
1631       && olddef
1632       && h->def_dynamic)
1633     {
1634       /* Change the hash table entry to undefined, and let
1635 	 _bfd_generic_link_add_one_symbol do the right thing with the
1636 	 new definition.  */
1637 
1638       h->root.type = bfd_link_hash_undefined;
1639       h->root.u.undef.abfd = h->root.u.def.section->owner;
1640       *size_change_ok = TRUE;
1641 
1642       olddef = FALSE;
1643       olddyncommon = FALSE;
1644 
1645       /* We again permit a type change when a common symbol may be
1646 	 overriding a function.  */
1647 
1648       if (bfd_is_com_section (sec))
1649 	{
1650 	  if (oldfunc)
1651 	    {
1652 	      /* If a common symbol overrides a function, make sure
1653 		 that it isn't defined dynamically nor has type
1654 		 function.  */
1655 	      h->def_dynamic = 0;
1656 	      h->type = STT_NOTYPE;
1657 	    }
1658 	  *type_change_ok = TRUE;
1659 	}
1660 
1661       if (hi->root.type == bfd_link_hash_indirect)
1662 	flip = hi;
1663       else
1664 	/* This union may have been set to be non-NULL when this symbol
1665 	   was seen in a dynamic object.  We must force the union to be
1666 	   NULL, so that it is correct for a regular symbol.  */
1667 	h->verinfo.vertree = NULL;
1668     }
1669 
1670   /* Handle the special case of a new common symbol merging with an
1671      old symbol that looks like it might be a common symbol defined in
1672      a shared object.  Note that we have already handled the case in
1673      which a new common symbol should simply override the definition
1674      in the shared library.  */
1675 
1676   if (! newdyn
1677       && bfd_is_com_section (sec)
1678       && olddyncommon)
1679     {
1680       /* It would be best if we could set the hash table entry to a
1681 	 common symbol, but we don't know what to use for the section
1682 	 or the alignment.  */
1683       (*info->callbacks->multiple_common) (info, &h->root, abfd,
1684 					   bfd_link_hash_common, sym->st_size);
1685 
1686       /* If the presumed common symbol in the dynamic object is
1687 	 larger, pretend that the new symbol has its size.  */
1688 
1689       if (h->size > *pvalue)
1690 	*pvalue = h->size;
1691 
1692       /* We need to remember the alignment required by the symbol
1693 	 in the dynamic object.  */
1694       BFD_ASSERT (pold_alignment);
1695       *pold_alignment = h->root.u.def.section->alignment_power;
1696 
1697       olddef = FALSE;
1698       olddyncommon = FALSE;
1699 
1700       h->root.type = bfd_link_hash_undefined;
1701       h->root.u.undef.abfd = h->root.u.def.section->owner;
1702 
1703       *size_change_ok = TRUE;
1704       *type_change_ok = TRUE;
1705 
1706       if (hi->root.type == bfd_link_hash_indirect)
1707 	flip = hi;
1708       else
1709 	h->verinfo.vertree = NULL;
1710     }
1711 
1712   if (flip != NULL)
1713     {
1714       /* Handle the case where we had a versioned symbol in a dynamic
1715 	 library and now find a definition in a normal object.  In this
1716 	 case, we make the versioned symbol point to the normal one.  */
1717       flip->root.type = h->root.type;
1718       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1719       h->root.type = bfd_link_hash_indirect;
1720       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1721       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1722       if (h->def_dynamic)
1723 	{
1724 	  h->def_dynamic = 0;
1725 	  flip->ref_dynamic = 1;
1726 	}
1727     }
1728 
1729   return TRUE;
1730 }
1731 
1732 /* This function is called to create an indirect symbol from the
1733    default for the symbol with the default version if needed. The
1734    symbol is described by H, NAME, SYM, SEC, and VALUE.  We
1735    set DYNSYM if the new indirect symbol is dynamic.  */
1736 
1737 static bfd_boolean
1738 _bfd_elf_add_default_symbol (bfd *abfd,
1739 			     struct bfd_link_info *info,
1740 			     struct elf_link_hash_entry *h,
1741 			     const char *name,
1742 			     Elf_Internal_Sym *sym,
1743 			     asection *sec,
1744 			     bfd_vma value,
1745 			     bfd **poldbfd,
1746 			     bfd_boolean *dynsym)
1747 {
1748   bfd_boolean type_change_ok;
1749   bfd_boolean size_change_ok;
1750   bfd_boolean skip;
1751   char *shortname;
1752   struct elf_link_hash_entry *hi;
1753   struct bfd_link_hash_entry *bh;
1754   const struct elf_backend_data *bed;
1755   bfd_boolean collect;
1756   bfd_boolean dynamic;
1757   bfd_boolean override;
1758   char *p;
1759   size_t len, shortlen;
1760   asection *tmp_sec;
1761   bfd_boolean matched;
1762 
1763   if (h->versioned == unversioned || h->versioned == versioned_hidden)
1764     return TRUE;
1765 
1766   /* If this symbol has a version, and it is the default version, we
1767      create an indirect symbol from the default name to the fully
1768      decorated name.  This will cause external references which do not
1769      specify a version to be bound to this version of the symbol.  */
1770   p = strchr (name, ELF_VER_CHR);
1771   if (h->versioned == unknown)
1772     {
1773       if (p == NULL)
1774 	{
1775 	  h->versioned = unversioned;
1776 	  return TRUE;
1777 	}
1778       else
1779 	{
1780 	  if (p[1] != ELF_VER_CHR)
1781 	    {
1782 	      h->versioned = versioned_hidden;
1783 	      return TRUE;
1784 	    }
1785 	  else
1786 	    h->versioned = versioned;
1787 	}
1788     }
1789   else
1790     {
1791       /* PR ld/19073: We may see an unversioned definition after the
1792 	 default version.  */
1793       if (p == NULL)
1794 	return TRUE;
1795     }
1796 
1797   bed = get_elf_backend_data (abfd);
1798   collect = bed->collect;
1799   dynamic = (abfd->flags & DYNAMIC) != 0;
1800 
1801   shortlen = p - name;
1802   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1803   if (shortname == NULL)
1804     return FALSE;
1805   memcpy (shortname, name, shortlen);
1806   shortname[shortlen] = '\0';
1807 
1808   /* We are going to create a new symbol.  Merge it with any existing
1809      symbol with this name.  For the purposes of the merge, act as
1810      though we were defining the symbol we just defined, although we
1811      actually going to define an indirect symbol.  */
1812   type_change_ok = FALSE;
1813   size_change_ok = FALSE;
1814   matched = TRUE;
1815   tmp_sec = sec;
1816   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1817 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1818 			      &type_change_ok, &size_change_ok, &matched))
1819     return FALSE;
1820 
1821   if (skip)
1822     goto nondefault;
1823 
1824   if (hi->def_regular)
1825     {
1826       /* If the undecorated symbol will have a version added by a
1827 	 script different to H, then don't indirect to/from the
1828 	 undecorated symbol.  This isn't ideal because we may not yet
1829 	 have seen symbol versions, if given by a script on the
1830 	 command line rather than via --version-script.  */
1831       if (hi->verinfo.vertree == NULL && info->version_info != NULL)
1832 	{
1833 	  bfd_boolean hide;
1834 
1835 	  hi->verinfo.vertree
1836 	    = bfd_find_version_for_sym (info->version_info,
1837 					hi->root.root.string, &hide);
1838 	  if (hi->verinfo.vertree != NULL && hide)
1839 	    {
1840 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
1841 	      goto nondefault;
1842 	    }
1843 	}
1844       if (hi->verinfo.vertree != NULL
1845 	  && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0)
1846 	goto nondefault;
1847     }
1848 
1849   if (! override)
1850     {
1851       /* Add the default symbol if not performing a relocatable link.  */
1852       if (! bfd_link_relocatable (info))
1853 	{
1854 	  bh = &hi->root;
1855 	  if (! (_bfd_generic_link_add_one_symbol
1856 		 (info, abfd, shortname, BSF_INDIRECT,
1857 		  bfd_ind_section_ptr,
1858 		  0, name, FALSE, collect, &bh)))
1859 	    return FALSE;
1860 	  hi = (struct elf_link_hash_entry *) bh;
1861 	}
1862     }
1863   else
1864     {
1865       /* In this case the symbol named SHORTNAME is overriding the
1866 	 indirect symbol we want to add.  We were planning on making
1867 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1868 	 is the name without a version.  NAME is the fully versioned
1869 	 name, and it is the default version.
1870 
1871 	 Overriding means that we already saw a definition for the
1872 	 symbol SHORTNAME in a regular object, and it is overriding
1873 	 the symbol defined in the dynamic object.
1874 
1875 	 When this happens, we actually want to change NAME, the
1876 	 symbol we just added, to refer to SHORTNAME.  This will cause
1877 	 references to NAME in the shared object to become references
1878 	 to SHORTNAME in the regular object.  This is what we expect
1879 	 when we override a function in a shared object: that the
1880 	 references in the shared object will be mapped to the
1881 	 definition in the regular object.  */
1882 
1883       while (hi->root.type == bfd_link_hash_indirect
1884 	     || hi->root.type == bfd_link_hash_warning)
1885 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1886 
1887       h->root.type = bfd_link_hash_indirect;
1888       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1889       if (h->def_dynamic)
1890 	{
1891 	  h->def_dynamic = 0;
1892 	  hi->ref_dynamic = 1;
1893 	  if (hi->ref_regular
1894 	      || hi->def_regular)
1895 	    {
1896 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1897 		return FALSE;
1898 	    }
1899 	}
1900 
1901       /* Now set HI to H, so that the following code will set the
1902 	 other fields correctly.  */
1903       hi = h;
1904     }
1905 
1906   /* Check if HI is a warning symbol.  */
1907   if (hi->root.type == bfd_link_hash_warning)
1908     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1909 
1910   /* If there is a duplicate definition somewhere, then HI may not
1911      point to an indirect symbol.  We will have reported an error to
1912      the user in that case.  */
1913 
1914   if (hi->root.type == bfd_link_hash_indirect)
1915     {
1916       struct elf_link_hash_entry *ht;
1917 
1918       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1919       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1920 
1921       /* A reference to the SHORTNAME symbol from a dynamic library
1922 	 will be satisfied by the versioned symbol at runtime.  In
1923 	 effect, we have a reference to the versioned symbol.  */
1924       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1925       hi->dynamic_def |= ht->dynamic_def;
1926 
1927       /* See if the new flags lead us to realize that the symbol must
1928 	 be dynamic.  */
1929       if (! *dynsym)
1930 	{
1931 	  if (! dynamic)
1932 	    {
1933 	      if (! bfd_link_executable (info)
1934 		  || hi->def_dynamic
1935 		  || hi->ref_dynamic)
1936 		*dynsym = TRUE;
1937 	    }
1938 	  else
1939 	    {
1940 	      if (hi->ref_regular)
1941 		*dynsym = TRUE;
1942 	    }
1943 	}
1944     }
1945 
1946   /* We also need to define an indirection from the nondefault version
1947      of the symbol.  */
1948 
1949 nondefault:
1950   len = strlen (name);
1951   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1952   if (shortname == NULL)
1953     return FALSE;
1954   memcpy (shortname, name, shortlen);
1955   memcpy (shortname + shortlen, p + 1, len - shortlen);
1956 
1957   /* Once again, merge with any existing symbol.  */
1958   type_change_ok = FALSE;
1959   size_change_ok = FALSE;
1960   tmp_sec = sec;
1961   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1962 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1963 			      &type_change_ok, &size_change_ok, &matched))
1964     return FALSE;
1965 
1966   if (skip)
1967     return TRUE;
1968 
1969   if (override)
1970     {
1971       /* Here SHORTNAME is a versioned name, so we don't expect to see
1972 	 the type of override we do in the case above unless it is
1973 	 overridden by a versioned definition.  */
1974       if (hi->root.type != bfd_link_hash_defined
1975 	  && hi->root.type != bfd_link_hash_defweak)
1976 	_bfd_error_handler
1977 	  /* xgettext:c-format */
1978 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1979 	   abfd, shortname);
1980     }
1981   else
1982     {
1983       bh = &hi->root;
1984       if (! (_bfd_generic_link_add_one_symbol
1985 	     (info, abfd, shortname, BSF_INDIRECT,
1986 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1987 	return FALSE;
1988       hi = (struct elf_link_hash_entry *) bh;
1989 
1990       /* If there is a duplicate definition somewhere, then HI may not
1991 	 point to an indirect symbol.  We will have reported an error
1992 	 to the user in that case.  */
1993 
1994       if (hi->root.type == bfd_link_hash_indirect)
1995 	{
1996 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1997 	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1998 	  hi->dynamic_def |= h->dynamic_def;
1999 
2000 	  /* See if the new flags lead us to realize that the symbol
2001 	     must be dynamic.  */
2002 	  if (! *dynsym)
2003 	    {
2004 	      if (! dynamic)
2005 		{
2006 		  if (! bfd_link_executable (info)
2007 		      || hi->ref_dynamic)
2008 		    *dynsym = TRUE;
2009 		}
2010 	      else
2011 		{
2012 		  if (hi->ref_regular)
2013 		    *dynsym = TRUE;
2014 		}
2015 	    }
2016 	}
2017     }
2018 
2019   return TRUE;
2020 }
2021 
2022 /* This routine is used to export all defined symbols into the dynamic
2023    symbol table.  It is called via elf_link_hash_traverse.  */
2024 
2025 static bfd_boolean
2026 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
2027 {
2028   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2029 
2030   /* Ignore indirect symbols.  These are added by the versioning code.  */
2031   if (h->root.type == bfd_link_hash_indirect)
2032     return TRUE;
2033 
2034   /* Ignore this if we won't export it.  */
2035   if (!eif->info->export_dynamic && !h->dynamic)
2036     return TRUE;
2037 
2038   if (h->dynindx == -1
2039       && (h->def_regular || h->ref_regular)
2040       && ! bfd_hide_sym_by_version (eif->info->version_info,
2041 				    h->root.root.string))
2042     {
2043       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2044 	{
2045 	  eif->failed = TRUE;
2046 	  return FALSE;
2047 	}
2048     }
2049 
2050   return TRUE;
2051 }
2052 
2053 /* Look through the symbols which are defined in other shared
2054    libraries and referenced here.  Update the list of version
2055    dependencies.  This will be put into the .gnu.version_r section.
2056    This function is called via elf_link_hash_traverse.  */
2057 
2058 static bfd_boolean
2059 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
2060 					 void *data)
2061 {
2062   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
2063   Elf_Internal_Verneed *t;
2064   Elf_Internal_Vernaux *a;
2065   bfd_size_type amt;
2066 
2067   /* We only care about symbols defined in shared objects with version
2068      information.  */
2069   if (!h->def_dynamic
2070       || h->def_regular
2071       || h->dynindx == -1
2072       || h->verinfo.verdef == NULL
2073       || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
2074 	  & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
2075     return TRUE;
2076 
2077   /* See if we already know about this version.  */
2078   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
2079        t != NULL;
2080        t = t->vn_nextref)
2081     {
2082       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
2083 	continue;
2084 
2085       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
2086 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
2087 	  return TRUE;
2088 
2089       break;
2090     }
2091 
2092   /* This is a new version.  Add it to tree we are building.  */
2093 
2094   if (t == NULL)
2095     {
2096       amt = sizeof *t;
2097       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
2098       if (t == NULL)
2099 	{
2100 	  rinfo->failed = TRUE;
2101 	  return FALSE;
2102 	}
2103 
2104       t->vn_bfd = h->verinfo.verdef->vd_bfd;
2105       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
2106       elf_tdata (rinfo->info->output_bfd)->verref = t;
2107     }
2108 
2109   amt = sizeof *a;
2110   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
2111   if (a == NULL)
2112     {
2113       rinfo->failed = TRUE;
2114       return FALSE;
2115     }
2116 
2117   /* Note that we are copying a string pointer here, and testing it
2118      above.  If bfd_elf_string_from_elf_section is ever changed to
2119      discard the string data when low in memory, this will have to be
2120      fixed.  */
2121   a->vna_nodename = h->verinfo.verdef->vd_nodename;
2122 
2123   a->vna_flags = h->verinfo.verdef->vd_flags;
2124   a->vna_nextptr = t->vn_auxptr;
2125 
2126   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
2127   ++rinfo->vers;
2128 
2129   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
2130 
2131   t->vn_auxptr = a;
2132 
2133   return TRUE;
2134 }
2135 
2136 /* Figure out appropriate versions for all the symbols.  We may not
2137    have the version number script until we have read all of the input
2138    files, so until that point we don't know which symbols should be
2139    local.  This function is called via elf_link_hash_traverse.  */
2140 
2141 static bfd_boolean
2142 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
2143 {
2144   struct elf_info_failed *sinfo;
2145   struct bfd_link_info *info;
2146   const struct elf_backend_data *bed;
2147   struct elf_info_failed eif;
2148   char *p;
2149 
2150   sinfo = (struct elf_info_failed *) data;
2151   info = sinfo->info;
2152 
2153   /* Fix the symbol flags.  */
2154   eif.failed = FALSE;
2155   eif.info = info;
2156   if (! _bfd_elf_fix_symbol_flags (h, &eif))
2157     {
2158       if (eif.failed)
2159 	sinfo->failed = TRUE;
2160       return FALSE;
2161     }
2162 
2163   /* We only need version numbers for symbols defined in regular
2164      objects.  */
2165   if (!h->def_regular)
2166     return TRUE;
2167 
2168   bed = get_elf_backend_data (info->output_bfd);
2169   p = strchr (h->root.root.string, ELF_VER_CHR);
2170   if (p != NULL && h->verinfo.vertree == NULL)
2171     {
2172       struct bfd_elf_version_tree *t;
2173 
2174       ++p;
2175       if (*p == ELF_VER_CHR)
2176 	++p;
2177 
2178       /* If there is no version string, we can just return out.  */
2179       if (*p == '\0')
2180 	return TRUE;
2181 
2182       /* Look for the version.  If we find it, it is no longer weak.  */
2183       for (t = sinfo->info->version_info; t != NULL; t = t->next)
2184 	{
2185 	  if (strcmp (t->name, p) == 0)
2186 	    {
2187 	      size_t len;
2188 	      char *alc;
2189 	      struct bfd_elf_version_expr *d;
2190 
2191 	      len = p - h->root.root.string;
2192 	      alc = (char *) bfd_malloc (len);
2193 	      if (alc == NULL)
2194 		{
2195 		  sinfo->failed = TRUE;
2196 		  return FALSE;
2197 		}
2198 	      memcpy (alc, h->root.root.string, len - 1);
2199 	      alc[len - 1] = '\0';
2200 	      if (alc[len - 2] == ELF_VER_CHR)
2201 		alc[len - 2] = '\0';
2202 
2203 	      h->verinfo.vertree = t;
2204 	      t->used = TRUE;
2205 	      d = NULL;
2206 
2207 	      if (t->globals.list != NULL)
2208 		d = (*t->match) (&t->globals, NULL, alc);
2209 
2210 	      /* See if there is anything to force this symbol to
2211 		 local scope.  */
2212 	      if (d == NULL && t->locals.list != NULL)
2213 		{
2214 		  d = (*t->match) (&t->locals, NULL, alc);
2215 		  if (d != NULL
2216 		      && h->dynindx != -1
2217 		      && ! info->export_dynamic)
2218 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2219 		}
2220 
2221 	      free (alc);
2222 	      break;
2223 	    }
2224 	}
2225 
2226       /* If we are building an application, we need to create a
2227 	 version node for this version.  */
2228       if (t == NULL && bfd_link_executable (info))
2229 	{
2230 	  struct bfd_elf_version_tree **pp;
2231 	  int version_index;
2232 
2233 	  /* If we aren't going to export this symbol, we don't need
2234 	     to worry about it.  */
2235 	  if (h->dynindx == -1)
2236 	    return TRUE;
2237 
2238 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd,
2239 							  sizeof *t);
2240 	  if (t == NULL)
2241 	    {
2242 	      sinfo->failed = TRUE;
2243 	      return FALSE;
2244 	    }
2245 
2246 	  t->name = p;
2247 	  t->name_indx = (unsigned int) -1;
2248 	  t->used = TRUE;
2249 
2250 	  version_index = 1;
2251 	  /* Don't count anonymous version tag.  */
2252 	  if (sinfo->info->version_info != NULL
2253 	      && sinfo->info->version_info->vernum == 0)
2254 	    version_index = 0;
2255 	  for (pp = &sinfo->info->version_info;
2256 	       *pp != NULL;
2257 	       pp = &(*pp)->next)
2258 	    ++version_index;
2259 	  t->vernum = version_index;
2260 
2261 	  *pp = t;
2262 
2263 	  h->verinfo.vertree = t;
2264 	}
2265       else if (t == NULL)
2266 	{
2267 	  /* We could not find the version for a symbol when
2268 	     generating a shared archive.  Return an error.  */
2269 	  _bfd_error_handler
2270 	    /* xgettext:c-format */
2271 	    (_("%B: version node not found for symbol %s"),
2272 	     info->output_bfd, h->root.root.string);
2273 	  bfd_set_error (bfd_error_bad_value);
2274 	  sinfo->failed = TRUE;
2275 	  return FALSE;
2276 	}
2277     }
2278 
2279   /* If we don't have a version for this symbol, see if we can find
2280      something.  */
2281   if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2282     {
2283       bfd_boolean hide;
2284 
2285       h->verinfo.vertree
2286 	= bfd_find_version_for_sym (sinfo->info->version_info,
2287 				    h->root.root.string, &hide);
2288       if (h->verinfo.vertree != NULL && hide)
2289 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2290     }
2291 
2292   return TRUE;
2293 }
2294 
2295 /* Read and swap the relocs from the section indicated by SHDR.  This
2296    may be either a REL or a RELA section.  The relocations are
2297    translated into RELA relocations and stored in INTERNAL_RELOCS,
2298    which should have already been allocated to contain enough space.
2299    The EXTERNAL_RELOCS are a buffer where the external form of the
2300    relocations should be stored.
2301 
2302    Returns FALSE if something goes wrong.  */
2303 
2304 static bfd_boolean
2305 elf_link_read_relocs_from_section (bfd *abfd,
2306 				   asection *sec,
2307 				   Elf_Internal_Shdr *shdr,
2308 				   void *external_relocs,
2309 				   Elf_Internal_Rela *internal_relocs)
2310 {
2311   const struct elf_backend_data *bed;
2312   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2313   const bfd_byte *erela;
2314   const bfd_byte *erelaend;
2315   Elf_Internal_Rela *irela;
2316   Elf_Internal_Shdr *symtab_hdr;
2317   size_t nsyms;
2318 
2319   /* Position ourselves at the start of the section.  */
2320   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2321     return FALSE;
2322 
2323   /* Read the relocations.  */
2324   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2325     return FALSE;
2326 
2327   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2328   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2329 
2330   bed = get_elf_backend_data (abfd);
2331 
2332   /* Convert the external relocations to the internal format.  */
2333   if (shdr->sh_entsize == bed->s->sizeof_rel)
2334     swap_in = bed->s->swap_reloc_in;
2335   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2336     swap_in = bed->s->swap_reloca_in;
2337   else
2338     {
2339       bfd_set_error (bfd_error_wrong_format);
2340       return FALSE;
2341     }
2342 
2343   erela = (const bfd_byte *) external_relocs;
2344   erelaend = erela + shdr->sh_size;
2345   irela = internal_relocs;
2346   while (erela < erelaend)
2347     {
2348       bfd_vma r_symndx;
2349 
2350       (*swap_in) (abfd, erela, irela);
2351       r_symndx = ELF32_R_SYM (irela->r_info);
2352       if (bed->s->arch_size == 64)
2353 	r_symndx >>= 24;
2354       if (nsyms > 0)
2355 	{
2356 	  if ((size_t) r_symndx >= nsyms)
2357 	    {
2358 	      _bfd_error_handler
2359 		/* xgettext:c-format */
2360 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2361 		   " for offset 0x%lx in section `%A'"),
2362 		 abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2363 		 irela->r_offset, sec);
2364 	      bfd_set_error (bfd_error_bad_value);
2365 	      return FALSE;
2366 	    }
2367 	}
2368       else if (r_symndx != STN_UNDEF)
2369 	{
2370 	  _bfd_error_handler
2371 	    /* xgettext:c-format */
2372 	    (_("%B: non-zero symbol index (0x%lx)"
2373 	       " for offset 0x%lx in section `%A'"
2374 	       " when the object file has no symbol table"),
2375 	     abfd, (unsigned long) r_symndx, (unsigned long) nsyms,
2376 	     irela->r_offset, sec);
2377 	  bfd_set_error (bfd_error_bad_value);
2378 	  return FALSE;
2379 	}
2380       irela += bed->s->int_rels_per_ext_rel;
2381       erela += shdr->sh_entsize;
2382     }
2383 
2384   return TRUE;
2385 }
2386 
2387 /* Read and swap the relocs for a section O.  They may have been
2388    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2389    not NULL, they are used as buffers to read into.  They are known to
2390    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2391    the return value is allocated using either malloc or bfd_alloc,
2392    according to the KEEP_MEMORY argument.  If O has two relocation
2393    sections (both REL and RELA relocations), then the REL_HDR
2394    relocations will appear first in INTERNAL_RELOCS, followed by the
2395    RELA_HDR relocations.  */
2396 
2397 Elf_Internal_Rela *
2398 _bfd_elf_link_read_relocs (bfd *abfd,
2399 			   asection *o,
2400 			   void *external_relocs,
2401 			   Elf_Internal_Rela *internal_relocs,
2402 			   bfd_boolean keep_memory)
2403 {
2404   void *alloc1 = NULL;
2405   Elf_Internal_Rela *alloc2 = NULL;
2406   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2407   struct bfd_elf_section_data *esdo = elf_section_data (o);
2408   Elf_Internal_Rela *internal_rela_relocs;
2409 
2410   if (esdo->relocs != NULL)
2411     return esdo->relocs;
2412 
2413   if (o->reloc_count == 0)
2414     return NULL;
2415 
2416   if (internal_relocs == NULL)
2417     {
2418       bfd_size_type size;
2419 
2420       size = o->reloc_count;
2421       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2422       if (keep_memory)
2423 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2424       else
2425 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2426       if (internal_relocs == NULL)
2427 	goto error_return;
2428     }
2429 
2430   if (external_relocs == NULL)
2431     {
2432       bfd_size_type size = 0;
2433 
2434       if (esdo->rel.hdr)
2435 	size += esdo->rel.hdr->sh_size;
2436       if (esdo->rela.hdr)
2437 	size += esdo->rela.hdr->sh_size;
2438 
2439       alloc1 = bfd_malloc (size);
2440       if (alloc1 == NULL)
2441 	goto error_return;
2442       external_relocs = alloc1;
2443     }
2444 
2445   internal_rela_relocs = internal_relocs;
2446   if (esdo->rel.hdr)
2447     {
2448       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2449 					      external_relocs,
2450 					      internal_relocs))
2451 	goto error_return;
2452       external_relocs = (((bfd_byte *) external_relocs)
2453 			 + esdo->rel.hdr->sh_size);
2454       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2455 			       * bed->s->int_rels_per_ext_rel);
2456     }
2457 
2458   if (esdo->rela.hdr
2459       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2460 					      external_relocs,
2461 					      internal_rela_relocs)))
2462     goto error_return;
2463 
2464   /* Cache the results for next time, if we can.  */
2465   if (keep_memory)
2466     esdo->relocs = internal_relocs;
2467 
2468   if (alloc1 != NULL)
2469     free (alloc1);
2470 
2471   /* Don't free alloc2, since if it was allocated we are passing it
2472      back (under the name of internal_relocs).  */
2473 
2474   return internal_relocs;
2475 
2476  error_return:
2477   if (alloc1 != NULL)
2478     free (alloc1);
2479   if (alloc2 != NULL)
2480     {
2481       if (keep_memory)
2482 	bfd_release (abfd, alloc2);
2483       else
2484 	free (alloc2);
2485     }
2486   return NULL;
2487 }
2488 
2489 /* Compute the size of, and allocate space for, REL_HDR which is the
2490    section header for a section containing relocations for O.  */
2491 
2492 static bfd_boolean
2493 _bfd_elf_link_size_reloc_section (bfd *abfd,
2494 				  struct bfd_elf_section_reloc_data *reldata)
2495 {
2496   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2497 
2498   /* That allows us to calculate the size of the section.  */
2499   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2500 
2501   /* The contents field must last into write_object_contents, so we
2502      allocate it with bfd_alloc rather than malloc.  Also since we
2503      cannot be sure that the contents will actually be filled in,
2504      we zero the allocated space.  */
2505   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2506   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2507     return FALSE;
2508 
2509   if (reldata->hashes == NULL && reldata->count)
2510     {
2511       struct elf_link_hash_entry **p;
2512 
2513       p = ((struct elf_link_hash_entry **)
2514 	   bfd_zmalloc (reldata->count * sizeof (*p)));
2515       if (p == NULL)
2516 	return FALSE;
2517 
2518       reldata->hashes = p;
2519     }
2520 
2521   return TRUE;
2522 }
2523 
2524 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2525    originated from the section given by INPUT_REL_HDR) to the
2526    OUTPUT_BFD.  */
2527 
2528 bfd_boolean
2529 _bfd_elf_link_output_relocs (bfd *output_bfd,
2530 			     asection *input_section,
2531 			     Elf_Internal_Shdr *input_rel_hdr,
2532 			     Elf_Internal_Rela *internal_relocs,
2533 			     struct elf_link_hash_entry **rel_hash
2534 			       ATTRIBUTE_UNUSED)
2535 {
2536   Elf_Internal_Rela *irela;
2537   Elf_Internal_Rela *irelaend;
2538   bfd_byte *erel;
2539   struct bfd_elf_section_reloc_data *output_reldata;
2540   asection *output_section;
2541   const struct elf_backend_data *bed;
2542   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2543   struct bfd_elf_section_data *esdo;
2544 
2545   output_section = input_section->output_section;
2546 
2547   bed = get_elf_backend_data (output_bfd);
2548   esdo = elf_section_data (output_section);
2549   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2550     {
2551       output_reldata = &esdo->rel;
2552       swap_out = bed->s->swap_reloc_out;
2553     }
2554   else if (esdo->rela.hdr
2555 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2556     {
2557       output_reldata = &esdo->rela;
2558       swap_out = bed->s->swap_reloca_out;
2559     }
2560   else
2561     {
2562       _bfd_error_handler
2563 	/* xgettext:c-format */
2564 	(_("%B: relocation size mismatch in %B section %A"),
2565 	 output_bfd, input_section->owner, input_section);
2566       bfd_set_error (bfd_error_wrong_format);
2567       return FALSE;
2568     }
2569 
2570   erel = output_reldata->hdr->contents;
2571   erel += output_reldata->count * input_rel_hdr->sh_entsize;
2572   irela = internal_relocs;
2573   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2574 		      * bed->s->int_rels_per_ext_rel);
2575   while (irela < irelaend)
2576     {
2577       (*swap_out) (output_bfd, irela, erel);
2578       irela += bed->s->int_rels_per_ext_rel;
2579       erel += input_rel_hdr->sh_entsize;
2580     }
2581 
2582   /* Bump the counter, so that we know where to add the next set of
2583      relocations.  */
2584   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2585 
2586   return TRUE;
2587 }
2588 
2589 /* Make weak undefined symbols in PIE dynamic.  */
2590 
2591 bfd_boolean
2592 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2593 				 struct elf_link_hash_entry *h)
2594 {
2595   if (bfd_link_pie (info)
2596       && h->dynindx == -1
2597       && h->root.type == bfd_link_hash_undefweak)
2598     return bfd_elf_link_record_dynamic_symbol (info, h);
2599 
2600   return TRUE;
2601 }
2602 
2603 /* Fix up the flags for a symbol.  This handles various cases which
2604    can only be fixed after all the input files are seen.  This is
2605    currently called by both adjust_dynamic_symbol and
2606    assign_sym_version, which is unnecessary but perhaps more robust in
2607    the face of future changes.  */
2608 
2609 static bfd_boolean
2610 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2611 			   struct elf_info_failed *eif)
2612 {
2613   const struct elf_backend_data *bed;
2614 
2615   /* If this symbol was mentioned in a non-ELF file, try to set
2616      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2617      permit a non-ELF file to correctly refer to a symbol defined in
2618      an ELF dynamic object.  */
2619   if (h->non_elf)
2620     {
2621       while (h->root.type == bfd_link_hash_indirect)
2622 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2623 
2624       if (h->root.type != bfd_link_hash_defined
2625 	  && h->root.type != bfd_link_hash_defweak)
2626 	{
2627 	  h->ref_regular = 1;
2628 	  h->ref_regular_nonweak = 1;
2629 	}
2630       else
2631 	{
2632 	  if (h->root.u.def.section->owner != NULL
2633 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2634 		  == bfd_target_elf_flavour))
2635 	    {
2636 	      h->ref_regular = 1;
2637 	      h->ref_regular_nonweak = 1;
2638 	    }
2639 	  else
2640 	    h->def_regular = 1;
2641 	}
2642 
2643       if (h->dynindx == -1
2644 	  && (h->def_dynamic
2645 	      || h->ref_dynamic))
2646 	{
2647 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2648 	    {
2649 	      eif->failed = TRUE;
2650 	      return FALSE;
2651 	    }
2652 	}
2653     }
2654   else
2655     {
2656       /* Unfortunately, NON_ELF is only correct if the symbol
2657 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2658 	 was first seen in an ELF file, we're probably OK unless the
2659 	 symbol was defined in a non-ELF file.  Catch that case here.
2660 	 FIXME: We're still in trouble if the symbol was first seen in
2661 	 a dynamic object, and then later in a non-ELF regular object.  */
2662       if ((h->root.type == bfd_link_hash_defined
2663 	   || h->root.type == bfd_link_hash_defweak)
2664 	  && !h->def_regular
2665 	  && (h->root.u.def.section->owner != NULL
2666 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2667 		 != bfd_target_elf_flavour)
2668 	      : (bfd_is_abs_section (h->root.u.def.section)
2669 		 && !h->def_dynamic)))
2670 	h->def_regular = 1;
2671     }
2672 
2673   /* Backend specific symbol fixup.  */
2674   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2675   if (bed->elf_backend_fixup_symbol
2676       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2677     return FALSE;
2678 
2679   /* If this is a final link, and the symbol was defined as a common
2680      symbol in a regular object file, and there was no definition in
2681      any dynamic object, then the linker will have allocated space for
2682      the symbol in a common section but the DEF_REGULAR
2683      flag will not have been set.  */
2684   if (h->root.type == bfd_link_hash_defined
2685       && !h->def_regular
2686       && h->ref_regular
2687       && !h->def_dynamic
2688       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2689     h->def_regular = 1;
2690 
2691   /* If a weak undefined symbol has non-default visibility, we also
2692      hide it from the dynamic linker.  */
2693   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2694       && h->root.type == bfd_link_hash_undefweak)
2695     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2696 
2697   /* A hidden versioned symbol in executable should be forced local if
2698      it is is locally defined, not referenced by shared library and not
2699      exported.  */
2700   else if (bfd_link_executable (eif->info)
2701 	   && h->versioned == versioned_hidden
2702 	   && !eif->info->export_dynamic
2703 	   && !h->dynamic
2704 	   && !h->ref_dynamic
2705 	   && h->def_regular)
2706     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2707 
2708   /* If -Bsymbolic was used (which means to bind references to global
2709      symbols to the definition within the shared object), and this
2710      symbol was defined in a regular object, then it actually doesn't
2711      need a PLT entry.  Likewise, if the symbol has non-default
2712      visibility.  If the symbol has hidden or internal visibility, we
2713      will force it local.  */
2714   else if (h->needs_plt
2715 	   && bfd_link_pic (eif->info)
2716 	   && is_elf_hash_table (eif->info->hash)
2717 	   && (SYMBOLIC_BIND (eif->info, h)
2718 	       || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2719 	   && h->def_regular)
2720     {
2721       bfd_boolean force_local;
2722 
2723       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2724 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2725       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2726     }
2727 
2728   /* If this is a weak defined symbol in a dynamic object, and we know
2729      the real definition in the dynamic object, copy interesting flags
2730      over to the real definition.  */
2731   if (h->u.weakdef != NULL)
2732     {
2733       /* If the real definition is defined by a regular object file,
2734 	 don't do anything special.  See the longer description in
2735 	 _bfd_elf_adjust_dynamic_symbol, below.  */
2736       if (h->u.weakdef->def_regular)
2737 	h->u.weakdef = NULL;
2738       else
2739 	{
2740 	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
2741 
2742 	  while (h->root.type == bfd_link_hash_indirect)
2743 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2744 
2745 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2746 		      || h->root.type == bfd_link_hash_defweak);
2747 	  BFD_ASSERT (weakdef->def_dynamic);
2748 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2749 		      || weakdef->root.type == bfd_link_hash_defweak);
2750 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2751 	}
2752     }
2753 
2754   return TRUE;
2755 }
2756 
2757 /* Make the backend pick a good value for a dynamic symbol.  This is
2758    called via elf_link_hash_traverse, and also calls itself
2759    recursively.  */
2760 
2761 static bfd_boolean
2762 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2763 {
2764   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2765   bfd *dynobj;
2766   const struct elf_backend_data *bed;
2767 
2768   if (! is_elf_hash_table (eif->info->hash))
2769     return FALSE;
2770 
2771   /* Ignore indirect symbols.  These are added by the versioning code.  */
2772   if (h->root.type == bfd_link_hash_indirect)
2773     return TRUE;
2774 
2775   /* Fix the symbol flags.  */
2776   if (! _bfd_elf_fix_symbol_flags (h, eif))
2777     return FALSE;
2778 
2779   /* If this symbol does not require a PLT entry, and it is not
2780      defined by a dynamic object, or is not referenced by a regular
2781      object, ignore it.  We do have to handle a weak defined symbol,
2782      even if no regular object refers to it, if we decided to add it
2783      to the dynamic symbol table.  FIXME: Do we normally need to worry
2784      about symbols which are defined by one dynamic object and
2785      referenced by another one?  */
2786   if (!h->needs_plt
2787       && h->type != STT_GNU_IFUNC
2788       && (h->def_regular
2789 	  || !h->def_dynamic
2790 	  || (!h->ref_regular
2791 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2792     {
2793       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2794       return TRUE;
2795     }
2796 
2797   /* If we've already adjusted this symbol, don't do it again.  This
2798      can happen via a recursive call.  */
2799   if (h->dynamic_adjusted)
2800     return TRUE;
2801 
2802   /* Don't look at this symbol again.  Note that we must set this
2803      after checking the above conditions, because we may look at a
2804      symbol once, decide not to do anything, and then get called
2805      recursively later after REF_REGULAR is set below.  */
2806   h->dynamic_adjusted = 1;
2807 
2808   /* If this is a weak definition, and we know a real definition, and
2809      the real symbol is not itself defined by a regular object file,
2810      then get a good value for the real definition.  We handle the
2811      real symbol first, for the convenience of the backend routine.
2812 
2813      Note that there is a confusing case here.  If the real definition
2814      is defined by a regular object file, we don't get the real symbol
2815      from the dynamic object, but we do get the weak symbol.  If the
2816      processor backend uses a COPY reloc, then if some routine in the
2817      dynamic object changes the real symbol, we will not see that
2818      change in the corresponding weak symbol.  This is the way other
2819      ELF linkers work as well, and seems to be a result of the shared
2820      library model.
2821 
2822      I will clarify this issue.  Most SVR4 shared libraries define the
2823      variable _timezone and define timezone as a weak synonym.  The
2824      tzset call changes _timezone.  If you write
2825        extern int timezone;
2826        int _timezone = 5;
2827        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2828      you might expect that, since timezone is a synonym for _timezone,
2829      the same number will print both times.  However, if the processor
2830      backend uses a COPY reloc, then actually timezone will be copied
2831      into your process image, and, since you define _timezone
2832      yourself, _timezone will not.  Thus timezone and _timezone will
2833      wind up at different memory locations.  The tzset call will set
2834      _timezone, leaving timezone unchanged.  */
2835 
2836   if (h->u.weakdef != NULL)
2837     {
2838       /* If we get to this point, there is an implicit reference to
2839 	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2840       h->u.weakdef->ref_regular = 1;
2841 
2842       /* Ensure that the backend adjust_dynamic_symbol function sees
2843 	 H->U.WEAKDEF before H by recursively calling ourselves.  */
2844       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2845 	return FALSE;
2846     }
2847 
2848   /* If a symbol has no type and no size and does not require a PLT
2849      entry, then we are probably about to do the wrong thing here: we
2850      are probably going to create a COPY reloc for an empty object.
2851      This case can arise when a shared object is built with assembly
2852      code, and the assembly code fails to set the symbol type.  */
2853   if (h->size == 0
2854       && h->type == STT_NOTYPE
2855       && !h->needs_plt)
2856     _bfd_error_handler
2857       (_("warning: type and size of dynamic symbol `%s' are not defined"),
2858        h->root.root.string);
2859 
2860   dynobj = elf_hash_table (eif->info)->dynobj;
2861   bed = get_elf_backend_data (dynobj);
2862 
2863   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2864     {
2865       eif->failed = TRUE;
2866       return FALSE;
2867     }
2868 
2869   return TRUE;
2870 }
2871 
2872 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2873    DYNBSS.  */
2874 
2875 bfd_boolean
2876 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info,
2877 			      struct elf_link_hash_entry *h,
2878 			      asection *dynbss)
2879 {
2880   unsigned int power_of_two;
2881   bfd_vma mask;
2882   asection *sec = h->root.u.def.section;
2883 
2884   /* The section aligment of definition is the maximum alignment
2885      requirement of symbols defined in the section.  Since we don't
2886      know the symbol alignment requirement, we start with the
2887      maximum alignment and check low bits of the symbol address
2888      for the minimum alignment.  */
2889   power_of_two = bfd_get_section_alignment (sec->owner, sec);
2890   mask = ((bfd_vma) 1 << power_of_two) - 1;
2891   while ((h->root.u.def.value & mask) != 0)
2892     {
2893        mask >>= 1;
2894        --power_of_two;
2895     }
2896 
2897   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2898 						dynbss))
2899     {
2900       /* Adjust the section alignment if needed.  */
2901       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2902 				       power_of_two))
2903 	return FALSE;
2904     }
2905 
2906   /* We make sure that the symbol will be aligned properly.  */
2907   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2908 
2909   /* Define the symbol as being at this point in DYNBSS.  */
2910   h->root.u.def.section = dynbss;
2911   h->root.u.def.value = dynbss->size;
2912 
2913   /* Increment the size of DYNBSS to make room for the symbol.  */
2914   dynbss->size += h->size;
2915 
2916   /* No error if extern_protected_data is true.  */
2917   if (h->protected_def
2918       && (!info->extern_protected_data
2919 	  || (info->extern_protected_data < 0
2920 	      && !get_elf_backend_data (dynbss->owner)->extern_protected_data)))
2921     info->callbacks->einfo
2922       (_("%P: copy reloc against protected `%T' is dangerous\n"),
2923        h->root.root.string);
2924 
2925   return TRUE;
2926 }
2927 
2928 /* Adjust all external symbols pointing into SEC_MERGE sections
2929    to reflect the object merging within the sections.  */
2930 
2931 static bfd_boolean
2932 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2933 {
2934   asection *sec;
2935 
2936   if ((h->root.type == bfd_link_hash_defined
2937        || h->root.type == bfd_link_hash_defweak)
2938       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2939       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2940     {
2941       bfd *output_bfd = (bfd *) data;
2942 
2943       h->root.u.def.value =
2944 	_bfd_merged_section_offset (output_bfd,
2945 				    &h->root.u.def.section,
2946 				    elf_section_data (sec)->sec_info,
2947 				    h->root.u.def.value);
2948     }
2949 
2950   return TRUE;
2951 }
2952 
2953 /* Returns false if the symbol referred to by H should be considered
2954    to resolve local to the current module, and true if it should be
2955    considered to bind dynamically.  */
2956 
2957 bfd_boolean
2958 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2959 			   struct bfd_link_info *info,
2960 			   bfd_boolean not_local_protected)
2961 {
2962   bfd_boolean binding_stays_local_p;
2963   const struct elf_backend_data *bed;
2964   struct elf_link_hash_table *hash_table;
2965 
2966   if (h == NULL)
2967     return FALSE;
2968 
2969   while (h->root.type == bfd_link_hash_indirect
2970 	 || h->root.type == bfd_link_hash_warning)
2971     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2972 
2973   /* If it was forced local, then clearly it's not dynamic.  */
2974   if (h->dynindx == -1)
2975     return FALSE;
2976   if (h->forced_local)
2977     return FALSE;
2978 
2979   /* Identify the cases where name binding rules say that a
2980      visible symbol resolves locally.  */
2981   binding_stays_local_p = (bfd_link_executable (info)
2982 			   || SYMBOLIC_BIND (info, h));
2983 
2984   switch (ELF_ST_VISIBILITY (h->other))
2985     {
2986     case STV_INTERNAL:
2987     case STV_HIDDEN:
2988       return FALSE;
2989 
2990     case STV_PROTECTED:
2991       hash_table = elf_hash_table (info);
2992       if (!is_elf_hash_table (hash_table))
2993 	return FALSE;
2994 
2995       bed = get_elf_backend_data (hash_table->dynobj);
2996 
2997       /* Proper resolution for function pointer equality may require
2998 	 that these symbols perhaps be resolved dynamically, even though
2999 	 we should be resolving them to the current module.  */
3000       if (!not_local_protected || !bed->is_function_type (h->type))
3001 	binding_stays_local_p = TRUE;
3002       break;
3003 
3004     default:
3005       break;
3006     }
3007 
3008   /* If it isn't defined locally, then clearly it's dynamic.  */
3009   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
3010     return TRUE;
3011 
3012   /* Otherwise, the symbol is dynamic if binding rules don't tell
3013      us that it remains local.  */
3014   return !binding_stays_local_p;
3015 }
3016 
3017 /* Return true if the symbol referred to by H should be considered
3018    to resolve local to the current module, and false otherwise.  Differs
3019    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
3020    undefined symbols.  The two functions are virtually identical except
3021    for the place where forced_local and dynindx == -1 are tested.  If
3022    either of those tests are true, _bfd_elf_dynamic_symbol_p will say
3023    the symbol is local, while _bfd_elf_symbol_refs_local_p will say
3024    the symbol is local only for defined symbols.
3025    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
3026    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
3027    treatment of undefined weak symbols.  For those that do not make
3028    undefined weak symbols dynamic, both functions may return false.  */
3029 
3030 bfd_boolean
3031 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
3032 			      struct bfd_link_info *info,
3033 			      bfd_boolean local_protected)
3034 {
3035   const struct elf_backend_data *bed;
3036   struct elf_link_hash_table *hash_table;
3037 
3038   /* If it's a local sym, of course we resolve locally.  */
3039   if (h == NULL)
3040     return TRUE;
3041 
3042   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
3043   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
3044       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
3045     return TRUE;
3046 
3047   /* Common symbols that become definitions don't get the DEF_REGULAR
3048      flag set, so test it first, and don't bail out.  */
3049   if (ELF_COMMON_DEF_P (h))
3050     /* Do nothing.  */;
3051   /* If we don't have a definition in a regular file, then we can't
3052      resolve locally.  The sym is either undefined or dynamic.  */
3053   else if (!h->def_regular)
3054     return FALSE;
3055 
3056   /* Forced local symbols resolve locally.  */
3057   if (h->forced_local)
3058     return TRUE;
3059 
3060   /* As do non-dynamic symbols.  */
3061   if (h->dynindx == -1)
3062     return TRUE;
3063 
3064   /* At this point, we know the symbol is defined and dynamic.  In an
3065      executable it must resolve locally, likewise when building symbolic
3066      shared libraries.  */
3067   if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h))
3068     return TRUE;
3069 
3070   /* Now deal with defined dynamic symbols in shared libraries.  Ones
3071      with default visibility might not resolve locally.  */
3072   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
3073     return FALSE;
3074 
3075   hash_table = elf_hash_table (info);
3076   if (!is_elf_hash_table (hash_table))
3077     return TRUE;
3078 
3079   bed = get_elf_backend_data (hash_table->dynobj);
3080 
3081   /* If extern_protected_data is false, STV_PROTECTED non-function
3082      symbols are local.  */
3083   if ((!info->extern_protected_data
3084        || (info->extern_protected_data < 0
3085 	   && !bed->extern_protected_data))
3086       && !bed->is_function_type (h->type))
3087     return TRUE;
3088 
3089   /* Function pointer equality tests may require that STV_PROTECTED
3090      symbols be treated as dynamic symbols.  If the address of a
3091      function not defined in an executable is set to that function's
3092      plt entry in the executable, then the address of the function in
3093      a shared library must also be the plt entry in the executable.  */
3094   return local_protected;
3095 }
3096 
3097 /* Caches some TLS segment info, and ensures that the TLS segment vma is
3098    aligned.  Returns the first TLS output section.  */
3099 
3100 struct bfd_section *
3101 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
3102 {
3103   struct bfd_section *sec, *tls;
3104   unsigned int align = 0;
3105 
3106   for (sec = obfd->sections; sec != NULL; sec = sec->next)
3107     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
3108       break;
3109   tls = sec;
3110 
3111   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
3112     if (sec->alignment_power > align)
3113       align = sec->alignment_power;
3114 
3115   elf_hash_table (info)->tls_sec = tls;
3116 
3117   /* Ensure the alignment of the first section is the largest alignment,
3118      so that the tls segment starts aligned.  */
3119   if (tls != NULL)
3120     tls->alignment_power = align;
3121 
3122   return tls;
3123 }
3124 
3125 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
3126 static bfd_boolean
3127 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
3128 				  Elf_Internal_Sym *sym)
3129 {
3130   const struct elf_backend_data *bed;
3131 
3132   /* Local symbols do not count, but target specific ones might.  */
3133   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
3134       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
3135     return FALSE;
3136 
3137   bed = get_elf_backend_data (abfd);
3138   /* Function symbols do not count.  */
3139   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
3140     return FALSE;
3141 
3142   /* If the section is undefined, then so is the symbol.  */
3143   if (sym->st_shndx == SHN_UNDEF)
3144     return FALSE;
3145 
3146   /* If the symbol is defined in the common section, then
3147      it is a common definition and so does not count.  */
3148   if (bed->common_definition (sym))
3149     return FALSE;
3150 
3151   /* If the symbol is in a target specific section then we
3152      must rely upon the backend to tell us what it is.  */
3153   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
3154     /* FIXME - this function is not coded yet:
3155 
3156        return _bfd_is_global_symbol_definition (abfd, sym);
3157 
3158        Instead for now assume that the definition is not global,
3159        Even if this is wrong, at least the linker will behave
3160        in the same way that it used to do.  */
3161     return FALSE;
3162 
3163   return TRUE;
3164 }
3165 
3166 /* Search the symbol table of the archive element of the archive ABFD
3167    whose archive map contains a mention of SYMDEF, and determine if
3168    the symbol is defined in this element.  */
3169 static bfd_boolean
3170 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
3171 {
3172   Elf_Internal_Shdr * hdr;
3173   size_t symcount;
3174   size_t extsymcount;
3175   size_t extsymoff;
3176   Elf_Internal_Sym *isymbuf;
3177   Elf_Internal_Sym *isym;
3178   Elf_Internal_Sym *isymend;
3179   bfd_boolean result;
3180 
3181   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
3182   if (abfd == NULL)
3183     return FALSE;
3184 
3185   if (! bfd_check_format (abfd, bfd_object))
3186     return FALSE;
3187 
3188   /* Select the appropriate symbol table.  If we don't know if the
3189      object file is an IR object, give linker LTO plugin a chance to
3190      get the correct symbol table.  */
3191   if (abfd->plugin_format == bfd_plugin_yes
3192 #if BFD_SUPPORTS_PLUGINS
3193       || (abfd->plugin_format == bfd_plugin_unknown
3194 	  && bfd_link_plugin_object_p (abfd))
3195 #endif
3196       )
3197     {
3198       /* Use the IR symbol table if the object has been claimed by
3199 	 plugin.  */
3200       abfd = abfd->plugin_dummy_bfd;
3201       hdr = &elf_tdata (abfd)->symtab_hdr;
3202     }
3203   else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
3204     hdr = &elf_tdata (abfd)->symtab_hdr;
3205   else
3206     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3207 
3208   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
3209 
3210   /* The sh_info field of the symtab header tells us where the
3211      external symbols start.  We don't care about the local symbols.  */
3212   if (elf_bad_symtab (abfd))
3213     {
3214       extsymcount = symcount;
3215       extsymoff = 0;
3216     }
3217   else
3218     {
3219       extsymcount = symcount - hdr->sh_info;
3220       extsymoff = hdr->sh_info;
3221     }
3222 
3223   if (extsymcount == 0)
3224     return FALSE;
3225 
3226   /* Read in the symbol table.  */
3227   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3228 				  NULL, NULL, NULL);
3229   if (isymbuf == NULL)
3230     return FALSE;
3231 
3232   /* Scan the symbol table looking for SYMDEF.  */
3233   result = FALSE;
3234   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
3235     {
3236       const char *name;
3237 
3238       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3239 					      isym->st_name);
3240       if (name == NULL)
3241 	break;
3242 
3243       if (strcmp (name, symdef->name) == 0)
3244 	{
3245 	  result = is_global_data_symbol_definition (abfd, isym);
3246 	  break;
3247 	}
3248     }
3249 
3250   free (isymbuf);
3251 
3252   return result;
3253 }
3254 
3255 /* Add an entry to the .dynamic table.  */
3256 
3257 bfd_boolean
3258 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3259 			    bfd_vma tag,
3260 			    bfd_vma val)
3261 {
3262   struct elf_link_hash_table *hash_table;
3263   const struct elf_backend_data *bed;
3264   asection *s;
3265   bfd_size_type newsize;
3266   bfd_byte *newcontents;
3267   Elf_Internal_Dyn dyn;
3268 
3269   hash_table = elf_hash_table (info);
3270   if (! is_elf_hash_table (hash_table))
3271     return FALSE;
3272 
3273   bed = get_elf_backend_data (hash_table->dynobj);
3274   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3275   BFD_ASSERT (s != NULL);
3276 
3277   newsize = s->size + bed->s->sizeof_dyn;
3278   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3279   if (newcontents == NULL)
3280     return FALSE;
3281 
3282   dyn.d_tag = tag;
3283   dyn.d_un.d_val = val;
3284   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3285 
3286   s->size = newsize;
3287   s->contents = newcontents;
3288 
3289   return TRUE;
3290 }
3291 
3292 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3293    otherwise just check whether one already exists.  Returns -1 on error,
3294    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3295 
3296 static int
3297 elf_add_dt_needed_tag (bfd *abfd,
3298 		       struct bfd_link_info *info,
3299 		       const char *soname,
3300 		       bfd_boolean do_it)
3301 {
3302   struct elf_link_hash_table *hash_table;
3303   size_t strindex;
3304 
3305   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3306     return -1;
3307 
3308   hash_table = elf_hash_table (info);
3309   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3310   if (strindex == (size_t) -1)
3311     return -1;
3312 
3313   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3314     {
3315       asection *sdyn;
3316       const struct elf_backend_data *bed;
3317       bfd_byte *extdyn;
3318 
3319       bed = get_elf_backend_data (hash_table->dynobj);
3320       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3321       if (sdyn != NULL)
3322 	for (extdyn = sdyn->contents;
3323 	     extdyn < sdyn->contents + sdyn->size;
3324 	     extdyn += bed->s->sizeof_dyn)
3325 	  {
3326 	    Elf_Internal_Dyn dyn;
3327 
3328 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3329 	    if (dyn.d_tag == DT_NEEDED
3330 		&& dyn.d_un.d_val == strindex)
3331 	      {
3332 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3333 		return 1;
3334 	      }
3335 	  }
3336     }
3337 
3338   if (do_it)
3339     {
3340       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3341 	return -1;
3342 
3343       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3344 	return -1;
3345     }
3346   else
3347     /* We were just checking for existence of the tag.  */
3348     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3349 
3350   return 0;
3351 }
3352 
3353 /* Return true if SONAME is on the needed list between NEEDED and STOP
3354    (or the end of list if STOP is NULL), and needed by a library that
3355    will be loaded.  */
3356 
3357 static bfd_boolean
3358 on_needed_list (const char *soname,
3359 		struct bfd_link_needed_list *needed,
3360 		struct bfd_link_needed_list *stop)
3361 {
3362   struct bfd_link_needed_list *look;
3363   for (look = needed; look != stop; look = look->next)
3364     if (strcmp (soname, look->name) == 0
3365 	&& ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0
3366 	    /* If needed by a library that itself is not directly
3367 	       needed, recursively check whether that library is
3368 	       indirectly needed.  Since we add DT_NEEDED entries to
3369 	       the end of the list, library dependencies appear after
3370 	       the library.  Therefore search prior to the current
3371 	       LOOK, preventing possible infinite recursion.  */
3372 	    || on_needed_list (elf_dt_name (look->by), needed, look)))
3373       return TRUE;
3374 
3375   return FALSE;
3376 }
3377 
3378 /* Sort symbol by value, section, and size.  */
3379 static int
3380 elf_sort_symbol (const void *arg1, const void *arg2)
3381 {
3382   const struct elf_link_hash_entry *h1;
3383   const struct elf_link_hash_entry *h2;
3384   bfd_signed_vma vdiff;
3385 
3386   h1 = *(const struct elf_link_hash_entry **) arg1;
3387   h2 = *(const struct elf_link_hash_entry **) arg2;
3388   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3389   if (vdiff != 0)
3390     return vdiff > 0 ? 1 : -1;
3391   else
3392     {
3393       int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3394       if (sdiff != 0)
3395 	return sdiff > 0 ? 1 : -1;
3396     }
3397   vdiff = h1->size - h2->size;
3398   return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3399 }
3400 
3401 /* This function is used to adjust offsets into .dynstr for
3402    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3403 
3404 static bfd_boolean
3405 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3406 {
3407   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3408 
3409   if (h->dynindx != -1)
3410     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3411   return TRUE;
3412 }
3413 
3414 /* Assign string offsets in .dynstr, update all structures referencing
3415    them.  */
3416 
3417 static bfd_boolean
3418 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3419 {
3420   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3421   struct elf_link_local_dynamic_entry *entry;
3422   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3423   bfd *dynobj = hash_table->dynobj;
3424   asection *sdyn;
3425   bfd_size_type size;
3426   const struct elf_backend_data *bed;
3427   bfd_byte *extdyn;
3428 
3429   _bfd_elf_strtab_finalize (dynstr);
3430   size = _bfd_elf_strtab_size (dynstr);
3431 
3432   bed = get_elf_backend_data (dynobj);
3433   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3434   BFD_ASSERT (sdyn != NULL);
3435 
3436   /* Update all .dynamic entries referencing .dynstr strings.  */
3437   for (extdyn = sdyn->contents;
3438        extdyn < sdyn->contents + sdyn->size;
3439        extdyn += bed->s->sizeof_dyn)
3440     {
3441       Elf_Internal_Dyn dyn;
3442 
3443       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3444       switch (dyn.d_tag)
3445 	{
3446 	case DT_STRSZ:
3447 	  dyn.d_un.d_val = size;
3448 	  break;
3449 	case DT_NEEDED:
3450 	case DT_SONAME:
3451 	case DT_RPATH:
3452 	case DT_RUNPATH:
3453 	case DT_FILTER:
3454 	case DT_AUXILIARY:
3455 	case DT_AUDIT:
3456 	case DT_DEPAUDIT:
3457 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3458 	  break;
3459 	default:
3460 	  continue;
3461 	}
3462       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3463     }
3464 
3465   /* Now update local dynamic symbols.  */
3466   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3467     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3468 						  entry->isym.st_name);
3469 
3470   /* And the rest of dynamic symbols.  */
3471   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3472 
3473   /* Adjust version definitions.  */
3474   if (elf_tdata (output_bfd)->cverdefs)
3475     {
3476       asection *s;
3477       bfd_byte *p;
3478       size_t i;
3479       Elf_Internal_Verdef def;
3480       Elf_Internal_Verdaux defaux;
3481 
3482       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3483       p = s->contents;
3484       do
3485 	{
3486 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3487 				   &def);
3488 	  p += sizeof (Elf_External_Verdef);
3489 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3490 	    continue;
3491 	  for (i = 0; i < def.vd_cnt; ++i)
3492 	    {
3493 	      _bfd_elf_swap_verdaux_in (output_bfd,
3494 					(Elf_External_Verdaux *) p, &defaux);
3495 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3496 							defaux.vda_name);
3497 	      _bfd_elf_swap_verdaux_out (output_bfd,
3498 					 &defaux, (Elf_External_Verdaux *) p);
3499 	      p += sizeof (Elf_External_Verdaux);
3500 	    }
3501 	}
3502       while (def.vd_next);
3503     }
3504 
3505   /* Adjust version references.  */
3506   if (elf_tdata (output_bfd)->verref)
3507     {
3508       asection *s;
3509       bfd_byte *p;
3510       size_t i;
3511       Elf_Internal_Verneed need;
3512       Elf_Internal_Vernaux needaux;
3513 
3514       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3515       p = s->contents;
3516       do
3517 	{
3518 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3519 				    &need);
3520 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3521 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3522 				     (Elf_External_Verneed *) p);
3523 	  p += sizeof (Elf_External_Verneed);
3524 	  for (i = 0; i < need.vn_cnt; ++i)
3525 	    {
3526 	      _bfd_elf_swap_vernaux_in (output_bfd,
3527 					(Elf_External_Vernaux *) p, &needaux);
3528 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3529 							 needaux.vna_name);
3530 	      _bfd_elf_swap_vernaux_out (output_bfd,
3531 					 &needaux,
3532 					 (Elf_External_Vernaux *) p);
3533 	      p += sizeof (Elf_External_Vernaux);
3534 	    }
3535 	}
3536       while (need.vn_next);
3537     }
3538 
3539   return TRUE;
3540 }
3541 
3542 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3543    The default is to only match when the INPUT and OUTPUT are exactly
3544    the same target.  */
3545 
3546 bfd_boolean
3547 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3548 				    const bfd_target *output)
3549 {
3550   return input == output;
3551 }
3552 
3553 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3554    This version is used when different targets for the same architecture
3555    are virtually identical.  */
3556 
3557 bfd_boolean
3558 _bfd_elf_relocs_compatible (const bfd_target *input,
3559 			    const bfd_target *output)
3560 {
3561   const struct elf_backend_data *obed, *ibed;
3562 
3563   if (input == output)
3564     return TRUE;
3565 
3566   ibed = xvec_get_elf_backend_data (input);
3567   obed = xvec_get_elf_backend_data (output);
3568 
3569   if (ibed->arch != obed->arch)
3570     return FALSE;
3571 
3572   /* If both backends are using this function, deem them compatible.  */
3573   return ibed->relocs_compatible == obed->relocs_compatible;
3574 }
3575 
3576 /* Make a special call to the linker "notice" function to tell it that
3577    we are about to handle an as-needed lib, or have finished
3578    processing the lib.  */
3579 
3580 bfd_boolean
3581 _bfd_elf_notice_as_needed (bfd *ibfd,
3582 			   struct bfd_link_info *info,
3583 			   enum notice_asneeded_action act)
3584 {
3585   return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0);
3586 }
3587 
3588 /* Check relocations an ELF object file.  */
3589 
3590 bfd_boolean
3591 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info)
3592 {
3593   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3594   struct elf_link_hash_table *htab = elf_hash_table (info);
3595 
3596   /* If this object is the same format as the output object, and it is
3597      not a shared library, then let the backend look through the
3598      relocs.
3599 
3600      This is required to build global offset table entries and to
3601      arrange for dynamic relocs.  It is not required for the
3602      particular common case of linking non PIC code, even when linking
3603      against shared libraries, but unfortunately there is no way of
3604      knowing whether an object file has been compiled PIC or not.
3605      Looking through the relocs is not particularly time consuming.
3606      The problem is that we must either (1) keep the relocs in memory,
3607      which causes the linker to require additional runtime memory or
3608      (2) read the relocs twice from the input file, which wastes time.
3609      This would be a good case for using mmap.
3610 
3611      I have no idea how to handle linking PIC code into a file of a
3612      different format.  It probably can't be done.  */
3613   if ((abfd->flags & DYNAMIC) == 0
3614       && is_elf_hash_table (htab)
3615       && bed->check_relocs != NULL
3616       && elf_object_id (abfd) == elf_hash_table_id (htab)
3617       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
3618     {
3619       asection *o;
3620 
3621       for (o = abfd->sections; o != NULL; o = o->next)
3622 	{
3623 	  Elf_Internal_Rela *internal_relocs;
3624 	  bfd_boolean ok;
3625 
3626 	  /* Don't check relocations in excluded sections.  */
3627 	  if ((o->flags & SEC_RELOC) == 0
3628 	      || (o->flags & SEC_EXCLUDE) != 0
3629 	      || o->reloc_count == 0
3630 	      || ((info->strip == strip_all || info->strip == strip_debugger)
3631 		  && (o->flags & SEC_DEBUGGING) != 0)
3632 	      || bfd_is_abs_section (o->output_section))
3633 	    continue;
3634 
3635 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
3636 						       info->keep_memory);
3637 	  if (internal_relocs == NULL)
3638 	    return FALSE;
3639 
3640 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
3641 
3642 	  if (elf_section_data (o)->relocs != internal_relocs)
3643 	    free (internal_relocs);
3644 
3645 	  if (! ok)
3646 	    return FALSE;
3647 	}
3648     }
3649 
3650   return TRUE;
3651 }
3652 
3653 /* Add symbols from an ELF object file to the linker hash table.  */
3654 
3655 static bfd_boolean
3656 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3657 {
3658   Elf_Internal_Ehdr *ehdr;
3659   Elf_Internal_Shdr *hdr;
3660   size_t symcount;
3661   size_t extsymcount;
3662   size_t extsymoff;
3663   struct elf_link_hash_entry **sym_hash;
3664   bfd_boolean dynamic;
3665   Elf_External_Versym *extversym = NULL;
3666   Elf_External_Versym *ever;
3667   struct elf_link_hash_entry *weaks;
3668   struct elf_link_hash_entry **nondeflt_vers = NULL;
3669   size_t nondeflt_vers_cnt = 0;
3670   Elf_Internal_Sym *isymbuf = NULL;
3671   Elf_Internal_Sym *isym;
3672   Elf_Internal_Sym *isymend;
3673   const struct elf_backend_data *bed;
3674   bfd_boolean add_needed;
3675   struct elf_link_hash_table *htab;
3676   bfd_size_type amt;
3677   void *alloc_mark = NULL;
3678   struct bfd_hash_entry **old_table = NULL;
3679   unsigned int old_size = 0;
3680   unsigned int old_count = 0;
3681   void *old_tab = NULL;
3682   void *old_ent;
3683   struct bfd_link_hash_entry *old_undefs = NULL;
3684   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3685   void *old_strtab = NULL;
3686   size_t tabsize = 0;
3687   asection *s;
3688   bfd_boolean just_syms;
3689 
3690   htab = elf_hash_table (info);
3691   bed = get_elf_backend_data (abfd);
3692 
3693   if ((abfd->flags & DYNAMIC) == 0)
3694     dynamic = FALSE;
3695   else
3696     {
3697       dynamic = TRUE;
3698 
3699       /* You can't use -r against a dynamic object.  Also, there's no
3700 	 hope of using a dynamic object which does not exactly match
3701 	 the format of the output file.  */
3702       if (bfd_link_relocatable (info)
3703 	  || !is_elf_hash_table (htab)
3704 	  || info->output_bfd->xvec != abfd->xvec)
3705 	{
3706 	  if (bfd_link_relocatable (info))
3707 	    bfd_set_error (bfd_error_invalid_operation);
3708 	  else
3709 	    bfd_set_error (bfd_error_wrong_format);
3710 	  goto error_return;
3711 	}
3712     }
3713 
3714   ehdr = elf_elfheader (abfd);
3715   if (info->warn_alternate_em
3716       && bed->elf_machine_code != ehdr->e_machine
3717       && ((bed->elf_machine_alt1 != 0
3718 	   && ehdr->e_machine == bed->elf_machine_alt1)
3719 	  || (bed->elf_machine_alt2 != 0
3720 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3721     info->callbacks->einfo
3722       /* xgettext:c-format */
3723       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3724        ehdr->e_machine, abfd, bed->elf_machine_code);
3725 
3726   /* As a GNU extension, any input sections which are named
3727      .gnu.warning.SYMBOL are treated as warning symbols for the given
3728      symbol.  This differs from .gnu.warning sections, which generate
3729      warnings when they are included in an output file.  */
3730   /* PR 12761: Also generate this warning when building shared libraries.  */
3731   for (s = abfd->sections; s != NULL; s = s->next)
3732     {
3733       const char *name;
3734 
3735       name = bfd_get_section_name (abfd, s);
3736       if (CONST_STRNEQ (name, ".gnu.warning."))
3737 	{
3738 	  char *msg;
3739 	  bfd_size_type sz;
3740 
3741 	  name += sizeof ".gnu.warning." - 1;
3742 
3743 	  /* If this is a shared object, then look up the symbol
3744 	     in the hash table.  If it is there, and it is already
3745 	     been defined, then we will not be using the entry
3746 	     from this shared object, so we don't need to warn.
3747 	     FIXME: If we see the definition in a regular object
3748 	     later on, we will warn, but we shouldn't.  The only
3749 	     fix is to keep track of what warnings we are supposed
3750 	     to emit, and then handle them all at the end of the
3751 	     link.  */
3752 	  if (dynamic)
3753 	    {
3754 	      struct elf_link_hash_entry *h;
3755 
3756 	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3757 
3758 	      /* FIXME: What about bfd_link_hash_common?  */
3759 	      if (h != NULL
3760 		  && (h->root.type == bfd_link_hash_defined
3761 		      || h->root.type == bfd_link_hash_defweak))
3762 		continue;
3763 	    }
3764 
3765 	  sz = s->size;
3766 	  msg = (char *) bfd_alloc (abfd, sz + 1);
3767 	  if (msg == NULL)
3768 	    goto error_return;
3769 
3770 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3771 	    goto error_return;
3772 
3773 	  msg[sz] = '\0';
3774 
3775 	  if (! (_bfd_generic_link_add_one_symbol
3776 		 (info, abfd, name, BSF_WARNING, s, 0, msg,
3777 		  FALSE, bed->collect, NULL)))
3778 	    goto error_return;
3779 
3780 	  if (bfd_link_executable (info))
3781 	    {
3782 	      /* Clobber the section size so that the warning does
3783 		 not get copied into the output file.  */
3784 	      s->size = 0;
3785 
3786 	      /* Also set SEC_EXCLUDE, so that symbols defined in
3787 		 the warning section don't get copied to the output.  */
3788 	      s->flags |= SEC_EXCLUDE;
3789 	    }
3790 	}
3791     }
3792 
3793   just_syms = ((s = abfd->sections) != NULL
3794 	       && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS);
3795 
3796   add_needed = TRUE;
3797   if (! dynamic)
3798     {
3799       /* If we are creating a shared library, create all the dynamic
3800 	 sections immediately.  We need to attach them to something,
3801 	 so we attach them to this BFD, provided it is the right
3802 	 format and is not from ld --just-symbols.  Always create the
3803 	 dynamic sections for -E/--dynamic-list.  FIXME: If there
3804 	 are no input BFD's of the same format as the output, we can't
3805 	 make a shared library.  */
3806       if (!just_syms
3807 	  && (bfd_link_pic (info)
3808 	      || (!bfd_link_relocatable (info)
3809 		  && (info->export_dynamic || info->dynamic)))
3810 	  && is_elf_hash_table (htab)
3811 	  && info->output_bfd->xvec == abfd->xvec
3812 	  && !htab->dynamic_sections_created)
3813 	{
3814 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3815 	    goto error_return;
3816 	}
3817     }
3818   else if (!is_elf_hash_table (htab))
3819     goto error_return;
3820   else
3821     {
3822       const char *soname = NULL;
3823       char *audit = NULL;
3824       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3825       const Elf_Internal_Phdr *phdr;
3826       int ret;
3827 
3828       /* ld --just-symbols and dynamic objects don't mix very well.
3829 	 ld shouldn't allow it.  */
3830       if (just_syms)
3831 	abort ();
3832 
3833       /* If this dynamic lib was specified on the command line with
3834 	 --as-needed in effect, then we don't want to add a DT_NEEDED
3835 	 tag unless the lib is actually used.  Similary for libs brought
3836 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3837 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3838 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3839 	 all.  */
3840       add_needed = (elf_dyn_lib_class (abfd)
3841 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3842 		       | DYN_NO_NEEDED)) == 0;
3843 
3844       s = bfd_get_section_by_name (abfd, ".dynamic");
3845       if (s != NULL)
3846 	{
3847 	  bfd_byte *dynbuf;
3848 	  bfd_byte *extdyn;
3849 	  unsigned int elfsec;
3850 	  unsigned long shlink;
3851 
3852 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3853 	    {
3854 error_free_dyn:
3855 	      free (dynbuf);
3856 	      goto error_return;
3857 	    }
3858 
3859 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3860 	  if (elfsec == SHN_BAD)
3861 	    goto error_free_dyn;
3862 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3863 
3864 	  for (extdyn = dynbuf;
3865 	       extdyn < dynbuf + s->size;
3866 	       extdyn += bed->s->sizeof_dyn)
3867 	    {
3868 	      Elf_Internal_Dyn dyn;
3869 
3870 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3871 	      if (dyn.d_tag == DT_SONAME)
3872 		{
3873 		  unsigned int tagv = dyn.d_un.d_val;
3874 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3875 		  if (soname == NULL)
3876 		    goto error_free_dyn;
3877 		}
3878 	      if (dyn.d_tag == DT_NEEDED)
3879 		{
3880 		  struct bfd_link_needed_list *n, **pn;
3881 		  char *fnm, *anm;
3882 		  unsigned int tagv = dyn.d_un.d_val;
3883 
3884 		  amt = sizeof (struct bfd_link_needed_list);
3885 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3886 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3887 		  if (n == NULL || fnm == NULL)
3888 		    goto error_free_dyn;
3889 		  amt = strlen (fnm) + 1;
3890 		  anm = (char *) bfd_alloc (abfd, amt);
3891 		  if (anm == NULL)
3892 		    goto error_free_dyn;
3893 		  memcpy (anm, fnm, amt);
3894 		  n->name = anm;
3895 		  n->by = abfd;
3896 		  n->next = NULL;
3897 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3898 		    ;
3899 		  *pn = n;
3900 		}
3901 	      if (dyn.d_tag == DT_RUNPATH)
3902 		{
3903 		  struct bfd_link_needed_list *n, **pn;
3904 		  char *fnm, *anm;
3905 		  unsigned int tagv = dyn.d_un.d_val;
3906 
3907 		  amt = sizeof (struct bfd_link_needed_list);
3908 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3909 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3910 		  if (n == NULL || fnm == NULL)
3911 		    goto error_free_dyn;
3912 		  amt = strlen (fnm) + 1;
3913 		  anm = (char *) bfd_alloc (abfd, amt);
3914 		  if (anm == NULL)
3915 		    goto error_free_dyn;
3916 		  memcpy (anm, fnm, amt);
3917 		  n->name = anm;
3918 		  n->by = abfd;
3919 		  n->next = NULL;
3920 		  for (pn = & runpath;
3921 		       *pn != NULL;
3922 		       pn = &(*pn)->next)
3923 		    ;
3924 		  *pn = n;
3925 		}
3926 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3927 	      if (!runpath && dyn.d_tag == DT_RPATH)
3928 		{
3929 		  struct bfd_link_needed_list *n, **pn;
3930 		  char *fnm, *anm;
3931 		  unsigned int tagv = dyn.d_un.d_val;
3932 
3933 		  amt = sizeof (struct bfd_link_needed_list);
3934 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3935 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3936 		  if (n == NULL || fnm == NULL)
3937 		    goto error_free_dyn;
3938 		  amt = strlen (fnm) + 1;
3939 		  anm = (char *) bfd_alloc (abfd, amt);
3940 		  if (anm == NULL)
3941 		    goto error_free_dyn;
3942 		  memcpy (anm, fnm, amt);
3943 		  n->name = anm;
3944 		  n->by = abfd;
3945 		  n->next = NULL;
3946 		  for (pn = & rpath;
3947 		       *pn != NULL;
3948 		       pn = &(*pn)->next)
3949 		    ;
3950 		  *pn = n;
3951 		}
3952 	      if (dyn.d_tag == DT_AUDIT)
3953 		{
3954 		  unsigned int tagv = dyn.d_un.d_val;
3955 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3956 		}
3957 	    }
3958 
3959 	  free (dynbuf);
3960 	}
3961 
3962       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3963 	 frees all more recently bfd_alloc'd blocks as well.  */
3964       if (runpath)
3965 	rpath = runpath;
3966 
3967       if (rpath)
3968 	{
3969 	  struct bfd_link_needed_list **pn;
3970 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3971 	    ;
3972 	  *pn = rpath;
3973 	}
3974 
3975       /* If we have a PT_GNU_RELRO program header, mark as read-only
3976 	 all sections contained fully therein.  This makes relro
3977 	 shared library sections appear as they will at run-time.  */
3978       phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum;
3979       while (--phdr >= elf_tdata (abfd)->phdr)
3980 	if (phdr->p_type == PT_GNU_RELRO)
3981 	  {
3982 	    for (s = abfd->sections; s != NULL; s = s->next)
3983 	      if ((s->flags & SEC_ALLOC) != 0
3984 		  && s->vma >= phdr->p_vaddr
3985 		  && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz)
3986 		s->flags |= SEC_READONLY;
3987 	    break;
3988 	  }
3989 
3990       /* We do not want to include any of the sections in a dynamic
3991 	 object in the output file.  We hack by simply clobbering the
3992 	 list of sections in the BFD.  This could be handled more
3993 	 cleanly by, say, a new section flag; the existing
3994 	 SEC_NEVER_LOAD flag is not the one we want, because that one
3995 	 still implies that the section takes up space in the output
3996 	 file.  */
3997       bfd_section_list_clear (abfd);
3998 
3999       /* Find the name to use in a DT_NEEDED entry that refers to this
4000 	 object.  If the object has a DT_SONAME entry, we use it.
4001 	 Otherwise, if the generic linker stuck something in
4002 	 elf_dt_name, we use that.  Otherwise, we just use the file
4003 	 name.  */
4004       if (soname == NULL || *soname == '\0')
4005 	{
4006 	  soname = elf_dt_name (abfd);
4007 	  if (soname == NULL || *soname == '\0')
4008 	    soname = bfd_get_filename (abfd);
4009 	}
4010 
4011       /* Save the SONAME because sometimes the linker emulation code
4012 	 will need to know it.  */
4013       elf_dt_name (abfd) = soname;
4014 
4015       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4016       if (ret < 0)
4017 	goto error_return;
4018 
4019       /* If we have already included this dynamic object in the
4020 	 link, just ignore it.  There is no reason to include a
4021 	 particular dynamic object more than once.  */
4022       if (ret > 0)
4023 	return TRUE;
4024 
4025       /* Save the DT_AUDIT entry for the linker emulation code. */
4026       elf_dt_audit (abfd) = audit;
4027     }
4028 
4029   /* If this is a dynamic object, we always link against the .dynsym
4030      symbol table, not the .symtab symbol table.  The dynamic linker
4031      will only see the .dynsym symbol table, so there is no reason to
4032      look at .symtab for a dynamic object.  */
4033 
4034   if (! dynamic || elf_dynsymtab (abfd) == 0)
4035     hdr = &elf_tdata (abfd)->symtab_hdr;
4036   else
4037     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
4038 
4039   symcount = hdr->sh_size / bed->s->sizeof_sym;
4040 
4041   /* The sh_info field of the symtab header tells us where the
4042      external symbols start.  We don't care about the local symbols at
4043      this point.  */
4044   if (elf_bad_symtab (abfd))
4045     {
4046       extsymcount = symcount;
4047       extsymoff = 0;
4048     }
4049   else
4050     {
4051       extsymcount = symcount - hdr->sh_info;
4052       extsymoff = hdr->sh_info;
4053     }
4054 
4055   sym_hash = elf_sym_hashes (abfd);
4056   if (extsymcount != 0)
4057     {
4058       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
4059 				      NULL, NULL, NULL);
4060       if (isymbuf == NULL)
4061 	goto error_return;
4062 
4063       if (sym_hash == NULL)
4064 	{
4065 	  /* We store a pointer to the hash table entry for each
4066 	     external symbol.  */
4067 	  amt = extsymcount;
4068 	  amt *= sizeof (struct elf_link_hash_entry *);
4069 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
4070 	  if (sym_hash == NULL)
4071 	    goto error_free_sym;
4072 	  elf_sym_hashes (abfd) = sym_hash;
4073 	}
4074     }
4075 
4076   if (dynamic)
4077     {
4078       /* Read in any version definitions.  */
4079       if (!_bfd_elf_slurp_version_tables (abfd,
4080 					  info->default_imported_symver))
4081 	goto error_free_sym;
4082 
4083       /* Read in the symbol versions, but don't bother to convert them
4084 	 to internal format.  */
4085       if (elf_dynversym (abfd) != 0)
4086 	{
4087 	  Elf_Internal_Shdr *versymhdr;
4088 
4089 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
4090 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
4091 	  if (extversym == NULL)
4092 	    goto error_free_sym;
4093 	  amt = versymhdr->sh_size;
4094 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
4095 	      || bfd_bread (extversym, amt, abfd) != amt)
4096 	    goto error_free_vers;
4097 	}
4098     }
4099 
4100   /* If we are loading an as-needed shared lib, save the symbol table
4101      state before we start adding symbols.  If the lib turns out
4102      to be unneeded, restore the state.  */
4103   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4104     {
4105       unsigned int i;
4106       size_t entsize;
4107 
4108       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
4109 	{
4110 	  struct bfd_hash_entry *p;
4111 	  struct elf_link_hash_entry *h;
4112 
4113 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4114 	    {
4115 	      h = (struct elf_link_hash_entry *) p;
4116 	      entsize += htab->root.table.entsize;
4117 	      if (h->root.type == bfd_link_hash_warning)
4118 		entsize += htab->root.table.entsize;
4119 	    }
4120 	}
4121 
4122       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
4123       old_tab = bfd_malloc (tabsize + entsize);
4124       if (old_tab == NULL)
4125 	goto error_free_vers;
4126 
4127       /* Remember the current objalloc pointer, so that all mem for
4128 	 symbols added can later be reclaimed.  */
4129       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
4130       if (alloc_mark == NULL)
4131 	goto error_free_vers;
4132 
4133       /* Make a special call to the linker "notice" function to
4134 	 tell it that we are about to handle an as-needed lib.  */
4135       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
4136 	goto error_free_vers;
4137 
4138       /* Clone the symbol table.  Remember some pointers into the
4139 	 symbol table, and dynamic symbol count.  */
4140       old_ent = (char *) old_tab + tabsize;
4141       memcpy (old_tab, htab->root.table.table, tabsize);
4142       old_undefs = htab->root.undefs;
4143       old_undefs_tail = htab->root.undefs_tail;
4144       old_table = htab->root.table.table;
4145       old_size = htab->root.table.size;
4146       old_count = htab->root.table.count;
4147       old_strtab = _bfd_elf_strtab_save (htab->dynstr);
4148       if (old_strtab == NULL)
4149 	goto error_free_vers;
4150 
4151       for (i = 0; i < htab->root.table.size; i++)
4152 	{
4153 	  struct bfd_hash_entry *p;
4154 	  struct elf_link_hash_entry *h;
4155 
4156 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4157 	    {
4158 	      memcpy (old_ent, p, htab->root.table.entsize);
4159 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4160 	      h = (struct elf_link_hash_entry *) p;
4161 	      if (h->root.type == bfd_link_hash_warning)
4162 		{
4163 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
4164 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4165 		}
4166 	    }
4167 	}
4168     }
4169 
4170   weaks = NULL;
4171   ever = extversym != NULL ? extversym + extsymoff : NULL;
4172   for (isym = isymbuf, isymend = isymbuf + extsymcount;
4173        isym < isymend;
4174        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
4175     {
4176       int bind;
4177       bfd_vma value;
4178       asection *sec, *new_sec;
4179       flagword flags;
4180       const char *name;
4181       struct elf_link_hash_entry *h;
4182       struct elf_link_hash_entry *hi;
4183       bfd_boolean definition;
4184       bfd_boolean size_change_ok;
4185       bfd_boolean type_change_ok;
4186       bfd_boolean new_weakdef;
4187       bfd_boolean new_weak;
4188       bfd_boolean old_weak;
4189       bfd_boolean override;
4190       bfd_boolean common;
4191       bfd_boolean discarded;
4192       unsigned int old_alignment;
4193       bfd *old_bfd;
4194       bfd_boolean matched;
4195 
4196       override = FALSE;
4197 
4198       flags = BSF_NO_FLAGS;
4199       sec = NULL;
4200       value = isym->st_value;
4201       common = bed->common_definition (isym);
4202       discarded = FALSE;
4203 
4204       bind = ELF_ST_BIND (isym->st_info);
4205       switch (bind)
4206 	{
4207 	case STB_LOCAL:
4208 	  /* This should be impossible, since ELF requires that all
4209 	     global symbols follow all local symbols, and that sh_info
4210 	     point to the first global symbol.  Unfortunately, Irix 5
4211 	     screws this up.  */
4212 	  continue;
4213 
4214 	case STB_GLOBAL:
4215 	  if (isym->st_shndx != SHN_UNDEF && !common)
4216 	    flags = BSF_GLOBAL;
4217 	  break;
4218 
4219 	case STB_WEAK:
4220 	  flags = BSF_WEAK;
4221 	  break;
4222 
4223 	case STB_GNU_UNIQUE:
4224 	  flags = BSF_GNU_UNIQUE;
4225 	  break;
4226 
4227 	default:
4228 	  /* Leave it up to the processor backend.  */
4229 	  break;
4230 	}
4231 
4232       if (isym->st_shndx == SHN_UNDEF)
4233 	sec = bfd_und_section_ptr;
4234       else if (isym->st_shndx == SHN_ABS)
4235 	sec = bfd_abs_section_ptr;
4236       else if (isym->st_shndx == SHN_COMMON)
4237 	{
4238 	  sec = bfd_com_section_ptr;
4239 	  /* What ELF calls the size we call the value.  What ELF
4240 	     calls the value we call the alignment.  */
4241 	  value = isym->st_size;
4242 	}
4243       else
4244 	{
4245 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4246 	  if (sec == NULL)
4247 	    sec = bfd_abs_section_ptr;
4248 	  else if (discarded_section (sec))
4249 	    {
4250 	      /* Symbols from discarded section are undefined.  We keep
4251 		 its visibility.  */
4252 	      sec = bfd_und_section_ptr;
4253 	      discarded = TRUE;
4254 	      isym->st_shndx = SHN_UNDEF;
4255 	    }
4256 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
4257 	    value -= sec->vma;
4258 	}
4259 
4260       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
4261 					      isym->st_name);
4262       if (name == NULL)
4263 	goto error_free_vers;
4264 
4265       if (isym->st_shndx == SHN_COMMON
4266 	  && (abfd->flags & BFD_PLUGIN) != 0)
4267 	{
4268 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
4269 
4270 	  if (xc == NULL)
4271 	    {
4272 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
4273 				 | SEC_EXCLUDE);
4274 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
4275 	      if (xc == NULL)
4276 		goto error_free_vers;
4277 	    }
4278 	  sec = xc;
4279 	}
4280       else if (isym->st_shndx == SHN_COMMON
4281 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
4282 	       && !bfd_link_relocatable (info))
4283 	{
4284 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
4285 
4286 	  if (tcomm == NULL)
4287 	    {
4288 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
4289 				 | SEC_LINKER_CREATED);
4290 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
4291 	      if (tcomm == NULL)
4292 		goto error_free_vers;
4293 	    }
4294 	  sec = tcomm;
4295 	}
4296       else if (bed->elf_add_symbol_hook)
4297 	{
4298 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
4299 					     &sec, &value))
4300 	    goto error_free_vers;
4301 
4302 	  /* The hook function sets the name to NULL if this symbol
4303 	     should be skipped for some reason.  */
4304 	  if (name == NULL)
4305 	    continue;
4306 	}
4307 
4308       /* Sanity check that all possibilities were handled.  */
4309       if (sec == NULL)
4310 	{
4311 	  bfd_set_error (bfd_error_bad_value);
4312 	  goto error_free_vers;
4313 	}
4314 
4315       /* Silently discard TLS symbols from --just-syms.  There's
4316 	 no way to combine a static TLS block with a new TLS block
4317 	 for this executable.  */
4318       if (ELF_ST_TYPE (isym->st_info) == STT_TLS
4319 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4320 	continue;
4321 
4322       if (bfd_is_und_section (sec)
4323 	  || bfd_is_com_section (sec))
4324 	definition = FALSE;
4325       else
4326 	definition = TRUE;
4327 
4328       size_change_ok = FALSE;
4329       type_change_ok = bed->type_change_ok;
4330       old_weak = FALSE;
4331       matched = FALSE;
4332       old_alignment = 0;
4333       old_bfd = NULL;
4334       new_sec = sec;
4335 
4336       if (is_elf_hash_table (htab))
4337 	{
4338 	  Elf_Internal_Versym iver;
4339 	  unsigned int vernum = 0;
4340 	  bfd_boolean skip;
4341 
4342 	  if (ever == NULL)
4343 	    {
4344 	      if (info->default_imported_symver)
4345 		/* Use the default symbol version created earlier.  */
4346 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
4347 	      else
4348 		iver.vs_vers = 0;
4349 	    }
4350 	  else
4351 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4352 
4353 	  vernum = iver.vs_vers & VERSYM_VERSION;
4354 
4355 	  /* If this is a hidden symbol, or if it is not version
4356 	     1, we append the version name to the symbol name.
4357 	     However, we do not modify a non-hidden absolute symbol
4358 	     if it is not a function, because it might be the version
4359 	     symbol itself.  FIXME: What if it isn't?  */
4360 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4361 	      || (vernum > 1
4362 		  && (!bfd_is_abs_section (sec)
4363 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4364 	    {
4365 	      const char *verstr;
4366 	      size_t namelen, verlen, newlen;
4367 	      char *newname, *p;
4368 
4369 	      if (isym->st_shndx != SHN_UNDEF)
4370 		{
4371 		  if (vernum > elf_tdata (abfd)->cverdefs)
4372 		    verstr = NULL;
4373 		  else if (vernum > 1)
4374 		    verstr =
4375 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4376 		  else
4377 		    verstr = "";
4378 
4379 		  if (verstr == NULL)
4380 		    {
4381 		      _bfd_error_handler
4382 			/* xgettext:c-format */
4383 			(_("%B: %s: invalid version %u (max %d)"),
4384 			 abfd, name, vernum,
4385 			 elf_tdata (abfd)->cverdefs);
4386 		      bfd_set_error (bfd_error_bad_value);
4387 		      goto error_free_vers;
4388 		    }
4389 		}
4390 	      else
4391 		{
4392 		  /* We cannot simply test for the number of
4393 		     entries in the VERNEED section since the
4394 		     numbers for the needed versions do not start
4395 		     at 0.  */
4396 		  Elf_Internal_Verneed *t;
4397 
4398 		  verstr = NULL;
4399 		  for (t = elf_tdata (abfd)->verref;
4400 		       t != NULL;
4401 		       t = t->vn_nextref)
4402 		    {
4403 		      Elf_Internal_Vernaux *a;
4404 
4405 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4406 			{
4407 			  if (a->vna_other == vernum)
4408 			    {
4409 			      verstr = a->vna_nodename;
4410 			      break;
4411 			    }
4412 			}
4413 		      if (a != NULL)
4414 			break;
4415 		    }
4416 		  if (verstr == NULL)
4417 		    {
4418 		      _bfd_error_handler
4419 			/* xgettext:c-format */
4420 			(_("%B: %s: invalid needed version %d"),
4421 			 abfd, name, vernum);
4422 		      bfd_set_error (bfd_error_bad_value);
4423 		      goto error_free_vers;
4424 		    }
4425 		}
4426 
4427 	      namelen = strlen (name);
4428 	      verlen = strlen (verstr);
4429 	      newlen = namelen + verlen + 2;
4430 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4431 		  && isym->st_shndx != SHN_UNDEF)
4432 		++newlen;
4433 
4434 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4435 	      if (newname == NULL)
4436 		goto error_free_vers;
4437 	      memcpy (newname, name, namelen);
4438 	      p = newname + namelen;
4439 	      *p++ = ELF_VER_CHR;
4440 	      /* If this is a defined non-hidden version symbol,
4441 		 we add another @ to the name.  This indicates the
4442 		 default version of the symbol.  */
4443 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4444 		  && isym->st_shndx != SHN_UNDEF)
4445 		*p++ = ELF_VER_CHR;
4446 	      memcpy (p, verstr, verlen + 1);
4447 
4448 	      name = newname;
4449 	    }
4450 
4451 	  /* If this symbol has default visibility and the user has
4452 	     requested we not re-export it, then mark it as hidden.  */
4453 	  if (!bfd_is_und_section (sec)
4454 	      && !dynamic
4455 	      && abfd->no_export
4456 	      && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
4457 	    isym->st_other = (STV_HIDDEN
4458 			      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
4459 
4460 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4461 				      sym_hash, &old_bfd, &old_weak,
4462 				      &old_alignment, &skip, &override,
4463 				      &type_change_ok, &size_change_ok,
4464 				      &matched))
4465 	    goto error_free_vers;
4466 
4467 	  if (skip)
4468 	    continue;
4469 
4470 	  /* Override a definition only if the new symbol matches the
4471 	     existing one.  */
4472 	  if (override && matched)
4473 	    definition = FALSE;
4474 
4475 	  h = *sym_hash;
4476 	  while (h->root.type == bfd_link_hash_indirect
4477 		 || h->root.type == bfd_link_hash_warning)
4478 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4479 
4480 	  if (elf_tdata (abfd)->verdef != NULL
4481 	      && vernum > 1
4482 	      && definition)
4483 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4484 	}
4485 
4486       if (! (_bfd_generic_link_add_one_symbol
4487 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4488 	      (struct bfd_link_hash_entry **) sym_hash)))
4489 	goto error_free_vers;
4490 
4491       if ((flags & BSF_GNU_UNIQUE)
4492 	  && (abfd->flags & DYNAMIC) == 0
4493 	  && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
4494 	elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique;
4495 
4496       h = *sym_hash;
4497       /* We need to make sure that indirect symbol dynamic flags are
4498 	 updated.  */
4499       hi = h;
4500       while (h->root.type == bfd_link_hash_indirect
4501 	     || h->root.type == bfd_link_hash_warning)
4502 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4503 
4504       /* Setting the index to -3 tells elf_link_output_extsym that
4505 	 this symbol is defined in a discarded section.  */
4506       if (discarded)
4507 	h->indx = -3;
4508 
4509       *sym_hash = h;
4510 
4511       new_weak = (flags & BSF_WEAK) != 0;
4512       new_weakdef = FALSE;
4513       if (dynamic
4514 	  && definition
4515 	  && new_weak
4516 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4517 	  && is_elf_hash_table (htab)
4518 	  && h->u.weakdef == NULL)
4519 	{
4520 	  /* Keep a list of all weak defined non function symbols from
4521 	     a dynamic object, using the weakdef field.  Later in this
4522 	     function we will set the weakdef field to the correct
4523 	     value.  We only put non-function symbols from dynamic
4524 	     objects on this list, because that happens to be the only
4525 	     time we need to know the normal symbol corresponding to a
4526 	     weak symbol, and the information is time consuming to
4527 	     figure out.  If the weakdef field is not already NULL,
4528 	     then this symbol was already defined by some previous
4529 	     dynamic object, and we will be using that previous
4530 	     definition anyhow.  */
4531 
4532 	  h->u.weakdef = weaks;
4533 	  weaks = h;
4534 	  new_weakdef = TRUE;
4535 	}
4536 
4537       /* Set the alignment of a common symbol.  */
4538       if ((common || bfd_is_com_section (sec))
4539 	  && h->root.type == bfd_link_hash_common)
4540 	{
4541 	  unsigned int align;
4542 
4543 	  if (common)
4544 	    align = bfd_log2 (isym->st_value);
4545 	  else
4546 	    {
4547 	      /* The new symbol is a common symbol in a shared object.
4548 		 We need to get the alignment from the section.  */
4549 	      align = new_sec->alignment_power;
4550 	    }
4551 	  if (align > old_alignment)
4552 	    h->root.u.c.p->alignment_power = align;
4553 	  else
4554 	    h->root.u.c.p->alignment_power = old_alignment;
4555 	}
4556 
4557       if (is_elf_hash_table (htab))
4558 	{
4559 	  /* Set a flag in the hash table entry indicating the type of
4560 	     reference or definition we just found.  A dynamic symbol
4561 	     is one which is referenced or defined by both a regular
4562 	     object and a shared object.  */
4563 	  bfd_boolean dynsym = FALSE;
4564 
4565 	  /* Plugin symbols aren't normal.  Don't set def_regular or
4566 	     ref_regular for them, or make them dynamic.  */
4567 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4568 	    ;
4569 	  else if (! dynamic)
4570 	    {
4571 	      if (! definition)
4572 		{
4573 		  h->ref_regular = 1;
4574 		  if (bind != STB_WEAK)
4575 		    h->ref_regular_nonweak = 1;
4576 		}
4577 	      else
4578 		{
4579 		  h->def_regular = 1;
4580 		  if (h->def_dynamic)
4581 		    {
4582 		      h->def_dynamic = 0;
4583 		      h->ref_dynamic = 1;
4584 		    }
4585 		}
4586 
4587 	      /* If the indirect symbol has been forced local, don't
4588 		 make the real symbol dynamic.  */
4589 	      if ((h == hi || !hi->forced_local)
4590 		  && (bfd_link_dll (info)
4591 		      || h->def_dynamic
4592 		      || h->ref_dynamic))
4593 		dynsym = TRUE;
4594 	    }
4595 	  else
4596 	    {
4597 	      if (! definition)
4598 		{
4599 		  h->ref_dynamic = 1;
4600 		  hi->ref_dynamic = 1;
4601 		}
4602 	      else
4603 		{
4604 		  h->def_dynamic = 1;
4605 		  hi->def_dynamic = 1;
4606 		}
4607 
4608 	      /* If the indirect symbol has been forced local, don't
4609 		 make the real symbol dynamic.  */
4610 	      if ((h == hi || !hi->forced_local)
4611 		  && (h->def_regular
4612 		      || h->ref_regular
4613 		      || (h->u.weakdef != NULL
4614 			  && ! new_weakdef
4615 			  && h->u.weakdef->dynindx != -1)))
4616 		dynsym = TRUE;
4617 	    }
4618 
4619 	  /* Check to see if we need to add an indirect symbol for
4620 	     the default name.  */
4621 	  if (definition
4622 	      || (!override && h->root.type == bfd_link_hash_common))
4623 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4624 					      sec, value, &old_bfd, &dynsym))
4625 	      goto error_free_vers;
4626 
4627 	  /* Check the alignment when a common symbol is involved. This
4628 	     can change when a common symbol is overridden by a normal
4629 	     definition or a common symbol is ignored due to the old
4630 	     normal definition. We need to make sure the maximum
4631 	     alignment is maintained.  */
4632 	  if ((old_alignment || common)
4633 	      && h->root.type != bfd_link_hash_common)
4634 	    {
4635 	      unsigned int common_align;
4636 	      unsigned int normal_align;
4637 	      unsigned int symbol_align;
4638 	      bfd *normal_bfd;
4639 	      bfd *common_bfd;
4640 
4641 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
4642 			  || h->root.type == bfd_link_hash_defweak);
4643 
4644 	      symbol_align = ffs (h->root.u.def.value) - 1;
4645 	      if (h->root.u.def.section->owner != NULL
4646 		  && (h->root.u.def.section->owner->flags
4647 		       & (DYNAMIC | BFD_PLUGIN)) == 0)
4648 		{
4649 		  normal_align = h->root.u.def.section->alignment_power;
4650 		  if (normal_align > symbol_align)
4651 		    normal_align = symbol_align;
4652 		}
4653 	      else
4654 		normal_align = symbol_align;
4655 
4656 	      if (old_alignment)
4657 		{
4658 		  common_align = old_alignment;
4659 		  common_bfd = old_bfd;
4660 		  normal_bfd = abfd;
4661 		}
4662 	      else
4663 		{
4664 		  common_align = bfd_log2 (isym->st_value);
4665 		  common_bfd = abfd;
4666 		  normal_bfd = old_bfd;
4667 		}
4668 
4669 	      if (normal_align < common_align)
4670 		{
4671 		  /* PR binutils/2735 */
4672 		  if (normal_bfd == NULL)
4673 		    _bfd_error_handler
4674 		      /* xgettext:c-format */
4675 		      (_("Warning: alignment %u of common symbol `%s' in %B is"
4676 			 " greater than the alignment (%u) of its section %A"),
4677 		       1 << common_align, name, common_bfd,
4678 		       1 << normal_align, h->root.u.def.section);
4679 		  else
4680 		    _bfd_error_handler
4681 		      /* xgettext:c-format */
4682 		      (_("Warning: alignment %u of symbol `%s' in %B"
4683 			 " is smaller than %u in %B"),
4684 		       1 << normal_align, name, normal_bfd,
4685 		       1 << common_align, common_bfd);
4686 		}
4687 	    }
4688 
4689 	  /* Remember the symbol size if it isn't undefined.  */
4690 	  if (isym->st_size != 0
4691 	      && isym->st_shndx != SHN_UNDEF
4692 	      && (definition || h->size == 0))
4693 	    {
4694 	      if (h->size != 0
4695 		  && h->size != isym->st_size
4696 		  && ! size_change_ok)
4697 		_bfd_error_handler
4698 		  /* xgettext:c-format */
4699 		  (_("Warning: size of symbol `%s' changed"
4700 		     " from %lu in %B to %lu in %B"),
4701 		   name, (unsigned long) h->size, old_bfd,
4702 		   (unsigned long) isym->st_size, abfd);
4703 
4704 	      h->size = isym->st_size;
4705 	    }
4706 
4707 	  /* If this is a common symbol, then we always want H->SIZE
4708 	     to be the size of the common symbol.  The code just above
4709 	     won't fix the size if a common symbol becomes larger.  We
4710 	     don't warn about a size change here, because that is
4711 	     covered by --warn-common.  Allow changes between different
4712 	     function types.  */
4713 	  if (h->root.type == bfd_link_hash_common)
4714 	    h->size = h->root.u.c.size;
4715 
4716 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4717 	      && ((definition && !new_weak)
4718 		  || (old_weak && h->root.type == bfd_link_hash_common)
4719 		  || h->type == STT_NOTYPE))
4720 	    {
4721 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4722 
4723 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4724 		 symbol.  */
4725 	      if (type == STT_GNU_IFUNC
4726 		  && (abfd->flags & DYNAMIC) != 0)
4727 		type = STT_FUNC;
4728 
4729 	      if (h->type != type)
4730 		{
4731 		  if (h->type != STT_NOTYPE && ! type_change_ok)
4732 		    /* xgettext:c-format */
4733 		    _bfd_error_handler
4734 		      (_("Warning: type of symbol `%s' changed"
4735 			 " from %d to %d in %B"),
4736 		       name, h->type, type, abfd);
4737 
4738 		  h->type = type;
4739 		}
4740 	    }
4741 
4742 	  /* Merge st_other field.  */
4743 	  elf_merge_st_other (abfd, h, isym, sec, definition, dynamic);
4744 
4745 	  /* We don't want to make debug symbol dynamic.  */
4746 	  if (definition
4747 	      && (sec->flags & SEC_DEBUGGING)
4748 	      && !bfd_link_relocatable (info))
4749 	    dynsym = FALSE;
4750 
4751 	  /* Nor should we make plugin symbols dynamic.  */
4752 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4753 	    dynsym = FALSE;
4754 
4755 	  if (definition)
4756 	    {
4757 	      h->target_internal = isym->st_target_internal;
4758 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4759 	    }
4760 
4761 	  if (definition && !dynamic)
4762 	    {
4763 	      char *p = strchr (name, ELF_VER_CHR);
4764 	      if (p != NULL && p[1] != ELF_VER_CHR)
4765 		{
4766 		  /* Queue non-default versions so that .symver x, x@FOO
4767 		     aliases can be checked.  */
4768 		  if (!nondeflt_vers)
4769 		    {
4770 		      amt = ((isymend - isym + 1)
4771 			     * sizeof (struct elf_link_hash_entry *));
4772 		      nondeflt_vers
4773 			= (struct elf_link_hash_entry **) bfd_malloc (amt);
4774 		      if (!nondeflt_vers)
4775 			goto error_free_vers;
4776 		    }
4777 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4778 		}
4779 	    }
4780 
4781 	  if (dynsym && h->dynindx == -1)
4782 	    {
4783 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4784 		goto error_free_vers;
4785 	      if (h->u.weakdef != NULL
4786 		  && ! new_weakdef
4787 		  && h->u.weakdef->dynindx == -1)
4788 		{
4789 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4790 		    goto error_free_vers;
4791 		}
4792 	    }
4793 	  else if (h->dynindx != -1)
4794 	    /* If the symbol already has a dynamic index, but
4795 	       visibility says it should not be visible, turn it into
4796 	       a local symbol.  */
4797 	    switch (ELF_ST_VISIBILITY (h->other))
4798 	      {
4799 	      case STV_INTERNAL:
4800 	      case STV_HIDDEN:
4801 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4802 		dynsym = FALSE;
4803 		break;
4804 	      }
4805 
4806 	  /* Don't add DT_NEEDED for references from the dummy bfd nor
4807 	     for unmatched symbol.  */
4808 	  if (!add_needed
4809 	      && matched
4810 	      && definition
4811 	      && ((dynsym
4812 		   && h->ref_regular_nonweak
4813 		   && (old_bfd == NULL
4814 		       || (old_bfd->flags & BFD_PLUGIN) == 0))
4815 		  || (h->ref_dynamic_nonweak
4816 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4817 		      && !on_needed_list (elf_dt_name (abfd),
4818 					  htab->needed, NULL))))
4819 	    {
4820 	      int ret;
4821 	      const char *soname = elf_dt_name (abfd);
4822 
4823 	      info->callbacks->minfo ("%!", soname, old_bfd,
4824 				      h->root.root.string);
4825 
4826 	      /* A symbol from a library loaded via DT_NEEDED of some
4827 		 other library is referenced by a regular object.
4828 		 Add a DT_NEEDED entry for it.  Issue an error if
4829 		 --no-add-needed is used and the reference was not
4830 		 a weak one.  */
4831 	      if (old_bfd != NULL
4832 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4833 		{
4834 		  _bfd_error_handler
4835 		    /* xgettext:c-format */
4836 		    (_("%B: undefined reference to symbol '%s'"),
4837 		     old_bfd, name);
4838 		  bfd_set_error (bfd_error_missing_dso);
4839 		  goto error_free_vers;
4840 		}
4841 
4842 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4843 		(elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4844 
4845 	      add_needed = TRUE;
4846 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4847 	      if (ret < 0)
4848 		goto error_free_vers;
4849 
4850 	      BFD_ASSERT (ret == 0);
4851 	    }
4852 	}
4853     }
4854 
4855   if (extversym != NULL)
4856     {
4857       free (extversym);
4858       extversym = NULL;
4859     }
4860 
4861   if (isymbuf != NULL)
4862     {
4863       free (isymbuf);
4864       isymbuf = NULL;
4865     }
4866 
4867   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4868     {
4869       unsigned int i;
4870 
4871       /* Restore the symbol table.  */
4872       old_ent = (char *) old_tab + tabsize;
4873       memset (elf_sym_hashes (abfd), 0,
4874 	      extsymcount * sizeof (struct elf_link_hash_entry *));
4875       htab->root.table.table = old_table;
4876       htab->root.table.size = old_size;
4877       htab->root.table.count = old_count;
4878       memcpy (htab->root.table.table, old_tab, tabsize);
4879       htab->root.undefs = old_undefs;
4880       htab->root.undefs_tail = old_undefs_tail;
4881       _bfd_elf_strtab_restore (htab->dynstr, old_strtab);
4882       free (old_strtab);
4883       old_strtab = NULL;
4884       for (i = 0; i < htab->root.table.size; i++)
4885 	{
4886 	  struct bfd_hash_entry *p;
4887 	  struct elf_link_hash_entry *h;
4888 	  bfd_size_type size;
4889 	  unsigned int alignment_power;
4890 
4891 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4892 	    {
4893 	      h = (struct elf_link_hash_entry *) p;
4894 	      if (h->root.type == bfd_link_hash_warning)
4895 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4896 
4897 	      /* Preserve the maximum alignment and size for common
4898 		 symbols even if this dynamic lib isn't on DT_NEEDED
4899 		 since it can still be loaded at run time by another
4900 		 dynamic lib.  */
4901 	      if (h->root.type == bfd_link_hash_common)
4902 		{
4903 		  size = h->root.u.c.size;
4904 		  alignment_power = h->root.u.c.p->alignment_power;
4905 		}
4906 	      else
4907 		{
4908 		  size = 0;
4909 		  alignment_power = 0;
4910 		}
4911 	      memcpy (p, old_ent, htab->root.table.entsize);
4912 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4913 	      h = (struct elf_link_hash_entry *) p;
4914 	      if (h->root.type == bfd_link_hash_warning)
4915 		{
4916 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4917 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4918 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
4919 		}
4920 	      if (h->root.type == bfd_link_hash_common)
4921 		{
4922 		  if (size > h->root.u.c.size)
4923 		    h->root.u.c.size = size;
4924 		  if (alignment_power > h->root.u.c.p->alignment_power)
4925 		    h->root.u.c.p->alignment_power = alignment_power;
4926 		}
4927 	    }
4928 	}
4929 
4930       /* Make a special call to the linker "notice" function to
4931 	 tell it that symbols added for crefs may need to be removed.  */
4932       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4933 	goto error_free_vers;
4934 
4935       free (old_tab);
4936       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4937 			   alloc_mark);
4938       if (nondeflt_vers != NULL)
4939 	free (nondeflt_vers);
4940       return TRUE;
4941     }
4942 
4943   if (old_tab != NULL)
4944     {
4945       if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4946 	goto error_free_vers;
4947       free (old_tab);
4948       old_tab = NULL;
4949     }
4950 
4951   /* Now that all the symbols from this input file are created, if
4952      not performing a relocatable link, handle .symver foo, foo@BAR
4953      such that any relocs against foo become foo@BAR.  */
4954   if (!bfd_link_relocatable (info) && nondeflt_vers != NULL)
4955     {
4956       size_t cnt, symidx;
4957 
4958       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4959 	{
4960 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4961 	  char *shortname, *p;
4962 
4963 	  p = strchr (h->root.root.string, ELF_VER_CHR);
4964 	  if (p == NULL
4965 	      || (h->root.type != bfd_link_hash_defined
4966 		  && h->root.type != bfd_link_hash_defweak))
4967 	    continue;
4968 
4969 	  amt = p - h->root.root.string;
4970 	  shortname = (char *) bfd_malloc (amt + 1);
4971 	  if (!shortname)
4972 	    goto error_free_vers;
4973 	  memcpy (shortname, h->root.root.string, amt);
4974 	  shortname[amt] = '\0';
4975 
4976 	  hi = (struct elf_link_hash_entry *)
4977 	       bfd_link_hash_lookup (&htab->root, shortname,
4978 				     FALSE, FALSE, FALSE);
4979 	  if (hi != NULL
4980 	      && hi->root.type == h->root.type
4981 	      && hi->root.u.def.value == h->root.u.def.value
4982 	      && hi->root.u.def.section == h->root.u.def.section)
4983 	    {
4984 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4985 	      hi->root.type = bfd_link_hash_indirect;
4986 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4987 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4988 	      sym_hash = elf_sym_hashes (abfd);
4989 	      if (sym_hash)
4990 		for (symidx = 0; symidx < extsymcount; ++symidx)
4991 		  if (sym_hash[symidx] == hi)
4992 		    {
4993 		      sym_hash[symidx] = h;
4994 		      break;
4995 		    }
4996 	    }
4997 	  free (shortname);
4998 	}
4999       free (nondeflt_vers);
5000       nondeflt_vers = NULL;
5001     }
5002 
5003   /* Now set the weakdefs field correctly for all the weak defined
5004      symbols we found.  The only way to do this is to search all the
5005      symbols.  Since we only need the information for non functions in
5006      dynamic objects, that's the only time we actually put anything on
5007      the list WEAKS.  We need this information so that if a regular
5008      object refers to a symbol defined weakly in a dynamic object, the
5009      real symbol in the dynamic object is also put in the dynamic
5010      symbols; we also must arrange for both symbols to point to the
5011      same memory location.  We could handle the general case of symbol
5012      aliasing, but a general symbol alias can only be generated in
5013      assembler code, handling it correctly would be very time
5014      consuming, and other ELF linkers don't handle general aliasing
5015      either.  */
5016   if (weaks != NULL)
5017     {
5018       struct elf_link_hash_entry **hpp;
5019       struct elf_link_hash_entry **hppend;
5020       struct elf_link_hash_entry **sorted_sym_hash;
5021       struct elf_link_hash_entry *h;
5022       size_t sym_count;
5023 
5024       /* Since we have to search the whole symbol list for each weak
5025 	 defined symbol, search time for N weak defined symbols will be
5026 	 O(N^2). Binary search will cut it down to O(NlogN).  */
5027       amt = extsymcount;
5028       amt *= sizeof (struct elf_link_hash_entry *);
5029       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
5030       if (sorted_sym_hash == NULL)
5031 	goto error_return;
5032       sym_hash = sorted_sym_hash;
5033       hpp = elf_sym_hashes (abfd);
5034       hppend = hpp + extsymcount;
5035       sym_count = 0;
5036       for (; hpp < hppend; hpp++)
5037 	{
5038 	  h = *hpp;
5039 	  if (h != NULL
5040 	      && h->root.type == bfd_link_hash_defined
5041 	      && !bed->is_function_type (h->type))
5042 	    {
5043 	      *sym_hash = h;
5044 	      sym_hash++;
5045 	      sym_count++;
5046 	    }
5047 	}
5048 
5049       qsort (sorted_sym_hash, sym_count,
5050 	     sizeof (struct elf_link_hash_entry *),
5051 	     elf_sort_symbol);
5052 
5053       while (weaks != NULL)
5054 	{
5055 	  struct elf_link_hash_entry *hlook;
5056 	  asection *slook;
5057 	  bfd_vma vlook;
5058 	  size_t i, j, idx = 0;
5059 
5060 	  hlook = weaks;
5061 	  weaks = hlook->u.weakdef;
5062 	  hlook->u.weakdef = NULL;
5063 
5064 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
5065 		      || hlook->root.type == bfd_link_hash_defweak
5066 		      || hlook->root.type == bfd_link_hash_common
5067 		      || hlook->root.type == bfd_link_hash_indirect);
5068 	  slook = hlook->root.u.def.section;
5069 	  vlook = hlook->root.u.def.value;
5070 
5071 	  i = 0;
5072 	  j = sym_count;
5073 	  while (i != j)
5074 	    {
5075 	      bfd_signed_vma vdiff;
5076 	      idx = (i + j) / 2;
5077 	      h = sorted_sym_hash[idx];
5078 	      vdiff = vlook - h->root.u.def.value;
5079 	      if (vdiff < 0)
5080 		j = idx;
5081 	      else if (vdiff > 0)
5082 		i = idx + 1;
5083 	      else
5084 		{
5085 		  int sdiff = slook->id - h->root.u.def.section->id;
5086 		  if (sdiff < 0)
5087 		    j = idx;
5088 		  else if (sdiff > 0)
5089 		    i = idx + 1;
5090 		  else
5091 		    break;
5092 		}
5093 	    }
5094 
5095 	  /* We didn't find a value/section match.  */
5096 	  if (i == j)
5097 	    continue;
5098 
5099 	  /* With multiple aliases, or when the weak symbol is already
5100 	     strongly defined, we have multiple matching symbols and
5101 	     the binary search above may land on any of them.  Step
5102 	     one past the matching symbol(s).  */
5103 	  while (++idx != j)
5104 	    {
5105 	      h = sorted_sym_hash[idx];
5106 	      if (h->root.u.def.section != slook
5107 		  || h->root.u.def.value != vlook)
5108 		break;
5109 	    }
5110 
5111 	  /* Now look back over the aliases.  Since we sorted by size
5112 	     as well as value and section, we'll choose the one with
5113 	     the largest size.  */
5114 	  while (idx-- != i)
5115 	    {
5116 	      h = sorted_sym_hash[idx];
5117 
5118 	      /* Stop if value or section doesn't match.  */
5119 	      if (h->root.u.def.section != slook
5120 		  || h->root.u.def.value != vlook)
5121 		break;
5122 	      else if (h != hlook)
5123 		{
5124 		  hlook->u.weakdef = h;
5125 
5126 		  /* If the weak definition is in the list of dynamic
5127 		     symbols, make sure the real definition is put
5128 		     there as well.  */
5129 		  if (hlook->dynindx != -1 && h->dynindx == -1)
5130 		    {
5131 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
5132 			{
5133 			err_free_sym_hash:
5134 			  free (sorted_sym_hash);
5135 			  goto error_return;
5136 			}
5137 		    }
5138 
5139 		  /* If the real definition is in the list of dynamic
5140 		     symbols, make sure the weak definition is put
5141 		     there as well.  If we don't do this, then the
5142 		     dynamic loader might not merge the entries for the
5143 		     real definition and the weak definition.  */
5144 		  if (h->dynindx != -1 && hlook->dynindx == -1)
5145 		    {
5146 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
5147 			goto err_free_sym_hash;
5148 		    }
5149 		  break;
5150 		}
5151 	    }
5152 	}
5153 
5154       free (sorted_sym_hash);
5155     }
5156 
5157   if (bed->check_directives
5158       && !(*bed->check_directives) (abfd, info))
5159     return FALSE;
5160 
5161   if (!info->check_relocs_after_open_input
5162       && !_bfd_elf_link_check_relocs (abfd, info))
5163     return FALSE;
5164 
5165   /* If this is a non-traditional link, try to optimize the handling
5166      of the .stab/.stabstr sections.  */
5167   if (! dynamic
5168       && ! info->traditional_format
5169       && is_elf_hash_table (htab)
5170       && (info->strip != strip_all && info->strip != strip_debugger))
5171     {
5172       asection *stabstr;
5173 
5174       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
5175       if (stabstr != NULL)
5176 	{
5177 	  bfd_size_type string_offset = 0;
5178 	  asection *stab;
5179 
5180 	  for (stab = abfd->sections; stab; stab = stab->next)
5181 	    if (CONST_STRNEQ (stab->name, ".stab")
5182 		&& (!stab->name[5] ||
5183 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
5184 		&& (stab->flags & SEC_MERGE) == 0
5185 		&& !bfd_is_abs_section (stab->output_section))
5186 	      {
5187 		struct bfd_elf_section_data *secdata;
5188 
5189 		secdata = elf_section_data (stab);
5190 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
5191 					       stabstr, &secdata->sec_info,
5192 					       &string_offset))
5193 		  goto error_return;
5194 		if (secdata->sec_info)
5195 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
5196 	    }
5197 	}
5198     }
5199 
5200   if (is_elf_hash_table (htab) && add_needed)
5201     {
5202       /* Add this bfd to the loaded list.  */
5203       struct elf_link_loaded_list *n;
5204 
5205       n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n));
5206       if (n == NULL)
5207 	goto error_return;
5208       n->abfd = abfd;
5209       n->next = htab->loaded;
5210       htab->loaded = n;
5211     }
5212 
5213   return TRUE;
5214 
5215  error_free_vers:
5216   if (old_tab != NULL)
5217     free (old_tab);
5218   if (old_strtab != NULL)
5219     free (old_strtab);
5220   if (nondeflt_vers != NULL)
5221     free (nondeflt_vers);
5222   if (extversym != NULL)
5223     free (extversym);
5224  error_free_sym:
5225   if (isymbuf != NULL)
5226     free (isymbuf);
5227  error_return:
5228   return FALSE;
5229 }
5230 
5231 /* Return the linker hash table entry of a symbol that might be
5232    satisfied by an archive symbol.  Return -1 on error.  */
5233 
5234 struct elf_link_hash_entry *
5235 _bfd_elf_archive_symbol_lookup (bfd *abfd,
5236 				struct bfd_link_info *info,
5237 				const char *name)
5238 {
5239   struct elf_link_hash_entry *h;
5240   char *p, *copy;
5241   size_t len, first;
5242 
5243   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
5244   if (h != NULL)
5245     return h;
5246 
5247   /* If this is a default version (the name contains @@), look up the
5248      symbol again with only one `@' as well as without the version.
5249      The effect is that references to the symbol with and without the
5250      version will be matched by the default symbol in the archive.  */
5251 
5252   p = strchr (name, ELF_VER_CHR);
5253   if (p == NULL || p[1] != ELF_VER_CHR)
5254     return h;
5255 
5256   /* First check with only one `@'.  */
5257   len = strlen (name);
5258   copy = (char *) bfd_alloc (abfd, len);
5259   if (copy == NULL)
5260     return (struct elf_link_hash_entry *) 0 - 1;
5261 
5262   first = p - name + 1;
5263   memcpy (copy, name, first);
5264   memcpy (copy + first, name + first + 1, len - first);
5265 
5266   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
5267   if (h == NULL)
5268     {
5269       /* We also need to check references to the symbol without the
5270 	 version.  */
5271       copy[first - 1] = '\0';
5272       h = elf_link_hash_lookup (elf_hash_table (info), copy,
5273 				FALSE, FALSE, TRUE);
5274     }
5275 
5276   bfd_release (abfd, copy);
5277   return h;
5278 }
5279 
5280 /* Add symbols from an ELF archive file to the linker hash table.  We
5281    don't use _bfd_generic_link_add_archive_symbols because we need to
5282    handle versioned symbols.
5283 
5284    Fortunately, ELF archive handling is simpler than that done by
5285    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
5286    oddities.  In ELF, if we find a symbol in the archive map, and the
5287    symbol is currently undefined, we know that we must pull in that
5288    object file.
5289 
5290    Unfortunately, we do have to make multiple passes over the symbol
5291    table until nothing further is resolved.  */
5292 
5293 static bfd_boolean
5294 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
5295 {
5296   symindex c;
5297   unsigned char *included = NULL;
5298   carsym *symdefs;
5299   bfd_boolean loop;
5300   bfd_size_type amt;
5301   const struct elf_backend_data *bed;
5302   struct elf_link_hash_entry * (*archive_symbol_lookup)
5303     (bfd *, struct bfd_link_info *, const char *);
5304 
5305   if (! bfd_has_map (abfd))
5306     {
5307       /* An empty archive is a special case.  */
5308       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
5309 	return TRUE;
5310       bfd_set_error (bfd_error_no_armap);
5311       return FALSE;
5312     }
5313 
5314   /* Keep track of all symbols we know to be already defined, and all
5315      files we know to be already included.  This is to speed up the
5316      second and subsequent passes.  */
5317   c = bfd_ardata (abfd)->symdef_count;
5318   if (c == 0)
5319     return TRUE;
5320   amt = c;
5321   amt *= sizeof (*included);
5322   included = (unsigned char *) bfd_zmalloc (amt);
5323   if (included == NULL)
5324     return FALSE;
5325 
5326   symdefs = bfd_ardata (abfd)->symdefs;
5327   bed = get_elf_backend_data (abfd);
5328   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5329 
5330   do
5331     {
5332       file_ptr last;
5333       symindex i;
5334       carsym *symdef;
5335       carsym *symdefend;
5336 
5337       loop = FALSE;
5338       last = -1;
5339 
5340       symdef = symdefs;
5341       symdefend = symdef + c;
5342       for (i = 0; symdef < symdefend; symdef++, i++)
5343 	{
5344 	  struct elf_link_hash_entry *h;
5345 	  bfd *element;
5346 	  struct bfd_link_hash_entry *undefs_tail;
5347 	  symindex mark;
5348 
5349 	  if (included[i])
5350 	    continue;
5351 	  if (symdef->file_offset == last)
5352 	    {
5353 	      included[i] = TRUE;
5354 	      continue;
5355 	    }
5356 
5357 	  h = archive_symbol_lookup (abfd, info, symdef->name);
5358 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5359 	    goto error_return;
5360 
5361 	  if (h == NULL)
5362 	    continue;
5363 
5364 	  if (h->root.type == bfd_link_hash_common)
5365 	    {
5366 	      /* We currently have a common symbol.  The archive map contains
5367 		 a reference to this symbol, so we may want to include it.  We
5368 		 only want to include it however, if this archive element
5369 		 contains a definition of the symbol, not just another common
5370 		 declaration of it.
5371 
5372 		 Unfortunately some archivers (including GNU ar) will put
5373 		 declarations of common symbols into their archive maps, as
5374 		 well as real definitions, so we cannot just go by the archive
5375 		 map alone.  Instead we must read in the element's symbol
5376 		 table and check that to see what kind of symbol definition
5377 		 this is.  */
5378 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5379 		continue;
5380 	    }
5381 	  else if (h->root.type != bfd_link_hash_undefined)
5382 	    {
5383 	      if (h->root.type != bfd_link_hash_undefweak)
5384 		/* Symbol must be defined.  Don't check it again.  */
5385 		included[i] = TRUE;
5386 	      continue;
5387 	    }
5388 
5389 	  /* We need to include this archive member.  */
5390 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5391 	  if (element == NULL)
5392 	    goto error_return;
5393 
5394 	  if (! bfd_check_format (element, bfd_object))
5395 	    goto error_return;
5396 
5397 	  undefs_tail = info->hash->undefs_tail;
5398 
5399 	  if (!(*info->callbacks
5400 		->add_archive_element) (info, element, symdef->name, &element))
5401 	    continue;
5402 	  if (!bfd_link_add_symbols (element, info))
5403 	    goto error_return;
5404 
5405 	  /* If there are any new undefined symbols, we need to make
5406 	     another pass through the archive in order to see whether
5407 	     they can be defined.  FIXME: This isn't perfect, because
5408 	     common symbols wind up on undefs_tail and because an
5409 	     undefined symbol which is defined later on in this pass
5410 	     does not require another pass.  This isn't a bug, but it
5411 	     does make the code less efficient than it could be.  */
5412 	  if (undefs_tail != info->hash->undefs_tail)
5413 	    loop = TRUE;
5414 
5415 	  /* Look backward to mark all symbols from this object file
5416 	     which we have already seen in this pass.  */
5417 	  mark = i;
5418 	  do
5419 	    {
5420 	      included[mark] = TRUE;
5421 	      if (mark == 0)
5422 		break;
5423 	      --mark;
5424 	    }
5425 	  while (symdefs[mark].file_offset == symdef->file_offset);
5426 
5427 	  /* We mark subsequent symbols from this object file as we go
5428 	     on through the loop.  */
5429 	  last = symdef->file_offset;
5430 	}
5431     }
5432   while (loop);
5433 
5434   free (included);
5435 
5436   return TRUE;
5437 
5438  error_return:
5439   if (included != NULL)
5440     free (included);
5441   return FALSE;
5442 }
5443 
5444 /* Given an ELF BFD, add symbols to the global hash table as
5445    appropriate.  */
5446 
5447 bfd_boolean
5448 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5449 {
5450   switch (bfd_get_format (abfd))
5451     {
5452     case bfd_object:
5453       return elf_link_add_object_symbols (abfd, info);
5454     case bfd_archive:
5455       return elf_link_add_archive_symbols (abfd, info);
5456     default:
5457       bfd_set_error (bfd_error_wrong_format);
5458       return FALSE;
5459     }
5460 }
5461 
5462 struct hash_codes_info
5463 {
5464   unsigned long *hashcodes;
5465   bfd_boolean error;
5466 };
5467 
5468 /* This function will be called though elf_link_hash_traverse to store
5469    all hash value of the exported symbols in an array.  */
5470 
5471 static bfd_boolean
5472 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5473 {
5474   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5475   const char *name;
5476   unsigned long ha;
5477   char *alc = NULL;
5478 
5479   /* Ignore indirect symbols.  These are added by the versioning code.  */
5480   if (h->dynindx == -1)
5481     return TRUE;
5482 
5483   name = h->root.root.string;
5484   if (h->versioned >= versioned)
5485     {
5486       char *p = strchr (name, ELF_VER_CHR);
5487       if (p != NULL)
5488 	{
5489 	  alc = (char *) bfd_malloc (p - name + 1);
5490 	  if (alc == NULL)
5491 	    {
5492 	      inf->error = TRUE;
5493 	      return FALSE;
5494 	    }
5495 	  memcpy (alc, name, p - name);
5496 	  alc[p - name] = '\0';
5497 	  name = alc;
5498 	}
5499     }
5500 
5501   /* Compute the hash value.  */
5502   ha = bfd_elf_hash (name);
5503 
5504   /* Store the found hash value in the array given as the argument.  */
5505   *(inf->hashcodes)++ = ha;
5506 
5507   /* And store it in the struct so that we can put it in the hash table
5508      later.  */
5509   h->u.elf_hash_value = ha;
5510 
5511   if (alc != NULL)
5512     free (alc);
5513 
5514   return TRUE;
5515 }
5516 
5517 struct collect_gnu_hash_codes
5518 {
5519   bfd *output_bfd;
5520   const struct elf_backend_data *bed;
5521   unsigned long int nsyms;
5522   unsigned long int maskbits;
5523   unsigned long int *hashcodes;
5524   unsigned long int *hashval;
5525   unsigned long int *indx;
5526   unsigned long int *counts;
5527   bfd_vma *bitmask;
5528   bfd_byte *contents;
5529   long int min_dynindx;
5530   unsigned long int bucketcount;
5531   unsigned long int symindx;
5532   long int local_indx;
5533   long int shift1, shift2;
5534   unsigned long int mask;
5535   bfd_boolean error;
5536 };
5537 
5538 /* This function will be called though elf_link_hash_traverse to store
5539    all hash value of the exported symbols in an array.  */
5540 
5541 static bfd_boolean
5542 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5543 {
5544   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5545   const char *name;
5546   unsigned long ha;
5547   char *alc = NULL;
5548 
5549   /* Ignore indirect symbols.  These are added by the versioning code.  */
5550   if (h->dynindx == -1)
5551     return TRUE;
5552 
5553   /* Ignore also local symbols and undefined symbols.  */
5554   if (! (*s->bed->elf_hash_symbol) (h))
5555     return TRUE;
5556 
5557   name = h->root.root.string;
5558   if (h->versioned >= versioned)
5559     {
5560       char *p = strchr (name, ELF_VER_CHR);
5561       if (p != NULL)
5562 	{
5563 	  alc = (char *) bfd_malloc (p - name + 1);
5564 	  if (alc == NULL)
5565 	    {
5566 	      s->error = TRUE;
5567 	      return FALSE;
5568 	    }
5569 	  memcpy (alc, name, p - name);
5570 	  alc[p - name] = '\0';
5571 	  name = alc;
5572 	}
5573     }
5574 
5575   /* Compute the hash value.  */
5576   ha = bfd_elf_gnu_hash (name);
5577 
5578   /* Store the found hash value in the array for compute_bucket_count,
5579      and also for .dynsym reordering purposes.  */
5580   s->hashcodes[s->nsyms] = ha;
5581   s->hashval[h->dynindx] = ha;
5582   ++s->nsyms;
5583   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5584     s->min_dynindx = h->dynindx;
5585 
5586   if (alc != NULL)
5587     free (alc);
5588 
5589   return TRUE;
5590 }
5591 
5592 /* This function will be called though elf_link_hash_traverse to do
5593    final dynaminc symbol renumbering.  */
5594 
5595 static bfd_boolean
5596 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5597 {
5598   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5599   unsigned long int bucket;
5600   unsigned long int val;
5601 
5602   /* Ignore indirect symbols.  */
5603   if (h->dynindx == -1)
5604     return TRUE;
5605 
5606   /* Ignore also local symbols and undefined symbols.  */
5607   if (! (*s->bed->elf_hash_symbol) (h))
5608     {
5609       if (h->dynindx >= s->min_dynindx)
5610 	h->dynindx = s->local_indx++;
5611       return TRUE;
5612     }
5613 
5614   bucket = s->hashval[h->dynindx] % s->bucketcount;
5615   val = (s->hashval[h->dynindx] >> s->shift1)
5616 	& ((s->maskbits >> s->shift1) - 1);
5617   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5618   s->bitmask[val]
5619     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5620   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5621   if (s->counts[bucket] == 1)
5622     /* Last element terminates the chain.  */
5623     val |= 1;
5624   bfd_put_32 (s->output_bfd, val,
5625 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5626   --s->counts[bucket];
5627   h->dynindx = s->indx[bucket]++;
5628   return TRUE;
5629 }
5630 
5631 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5632 
5633 bfd_boolean
5634 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5635 {
5636   return !(h->forced_local
5637 	   || h->root.type == bfd_link_hash_undefined
5638 	   || h->root.type == bfd_link_hash_undefweak
5639 	   || ((h->root.type == bfd_link_hash_defined
5640 		|| h->root.type == bfd_link_hash_defweak)
5641 	       && h->root.u.def.section->output_section == NULL));
5642 }
5643 
5644 /* Array used to determine the number of hash table buckets to use
5645    based on the number of symbols there are.  If there are fewer than
5646    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5647    fewer than 37 we use 17 buckets, and so forth.  We never use more
5648    than 32771 buckets.  */
5649 
5650 static const size_t elf_buckets[] =
5651 {
5652   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5653   16411, 32771, 0
5654 };
5655 
5656 /* Compute bucket count for hashing table.  We do not use a static set
5657    of possible tables sizes anymore.  Instead we determine for all
5658    possible reasonable sizes of the table the outcome (i.e., the
5659    number of collisions etc) and choose the best solution.  The
5660    weighting functions are not too simple to allow the table to grow
5661    without bounds.  Instead one of the weighting factors is the size.
5662    Therefore the result is always a good payoff between few collisions
5663    (= short chain lengths) and table size.  */
5664 static size_t
5665 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5666 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5667 		      unsigned long int nsyms,
5668 		      int gnu_hash)
5669 {
5670   size_t best_size = 0;
5671   unsigned long int i;
5672 
5673   /* We have a problem here.  The following code to optimize the table
5674      size requires an integer type with more the 32 bits.  If
5675      BFD_HOST_U_64_BIT is set we know about such a type.  */
5676 #ifdef BFD_HOST_U_64_BIT
5677   if (info->optimize)
5678     {
5679       size_t minsize;
5680       size_t maxsize;
5681       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5682       bfd *dynobj = elf_hash_table (info)->dynobj;
5683       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5684       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5685       unsigned long int *counts;
5686       bfd_size_type amt;
5687       unsigned int no_improvement_count = 0;
5688 
5689       /* Possible optimization parameters: if we have NSYMS symbols we say
5690 	 that the hashing table must at least have NSYMS/4 and at most
5691 	 2*NSYMS buckets.  */
5692       minsize = nsyms / 4;
5693       if (minsize == 0)
5694 	minsize = 1;
5695       best_size = maxsize = nsyms * 2;
5696       if (gnu_hash)
5697 	{
5698 	  if (minsize < 2)
5699 	    minsize = 2;
5700 	  if ((best_size & 31) == 0)
5701 	    ++best_size;
5702 	}
5703 
5704       /* Create array where we count the collisions in.  We must use bfd_malloc
5705 	 since the size could be large.  */
5706       amt = maxsize;
5707       amt *= sizeof (unsigned long int);
5708       counts = (unsigned long int *) bfd_malloc (amt);
5709       if (counts == NULL)
5710 	return 0;
5711 
5712       /* Compute the "optimal" size for the hash table.  The criteria is a
5713 	 minimal chain length.  The minor criteria is (of course) the size
5714 	 of the table.  */
5715       for (i = minsize; i < maxsize; ++i)
5716 	{
5717 	  /* Walk through the array of hashcodes and count the collisions.  */
5718 	  BFD_HOST_U_64_BIT max;
5719 	  unsigned long int j;
5720 	  unsigned long int fact;
5721 
5722 	  if (gnu_hash && (i & 31) == 0)
5723 	    continue;
5724 
5725 	  memset (counts, '\0', i * sizeof (unsigned long int));
5726 
5727 	  /* Determine how often each hash bucket is used.  */
5728 	  for (j = 0; j < nsyms; ++j)
5729 	    ++counts[hashcodes[j] % i];
5730 
5731 	  /* For the weight function we need some information about the
5732 	     pagesize on the target.  This is information need not be 100%
5733 	     accurate.  Since this information is not available (so far) we
5734 	     define it here to a reasonable default value.  If it is crucial
5735 	     to have a better value some day simply define this value.  */
5736 # ifndef BFD_TARGET_PAGESIZE
5737 #  define BFD_TARGET_PAGESIZE	(4096)
5738 # endif
5739 
5740 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5741 	     and the chains.  */
5742 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5743 
5744 # if 1
5745 	  /* Variant 1: optimize for short chains.  We add the squares
5746 	     of all the chain lengths (which favors many small chain
5747 	     over a few long chains).  */
5748 	  for (j = 0; j < i; ++j)
5749 	    max += counts[j] * counts[j];
5750 
5751 	  /* This adds penalties for the overall size of the table.  */
5752 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5753 	  max *= fact * fact;
5754 # else
5755 	  /* Variant 2: Optimize a lot more for small table.  Here we
5756 	     also add squares of the size but we also add penalties for
5757 	     empty slots (the +1 term).  */
5758 	  for (j = 0; j < i; ++j)
5759 	    max += (1 + counts[j]) * (1 + counts[j]);
5760 
5761 	  /* The overall size of the table is considered, but not as
5762 	     strong as in variant 1, where it is squared.  */
5763 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5764 	  max *= fact;
5765 # endif
5766 
5767 	  /* Compare with current best results.  */
5768 	  if (max < best_chlen)
5769 	    {
5770 	      best_chlen = max;
5771 	      best_size = i;
5772 	      no_improvement_count = 0;
5773 	    }
5774 	  /* PR 11843: Avoid futile long searches for the best bucket size
5775 	     when there are a large number of symbols.  */
5776 	  else if (++no_improvement_count == 100)
5777 	    break;
5778 	}
5779 
5780       free (counts);
5781     }
5782   else
5783 #endif /* defined (BFD_HOST_U_64_BIT) */
5784     {
5785       /* This is the fallback solution if no 64bit type is available or if we
5786 	 are not supposed to spend much time on optimizations.  We select the
5787 	 bucket count using a fixed set of numbers.  */
5788       for (i = 0; elf_buckets[i] != 0; i++)
5789 	{
5790 	  best_size = elf_buckets[i];
5791 	  if (nsyms < elf_buckets[i + 1])
5792 	    break;
5793 	}
5794       if (gnu_hash && best_size < 2)
5795 	best_size = 2;
5796     }
5797 
5798   return best_size;
5799 }
5800 
5801 /* Size any SHT_GROUP section for ld -r.  */
5802 
5803 bfd_boolean
5804 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5805 {
5806   bfd *ibfd;
5807 
5808   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
5809     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5810 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5811       return FALSE;
5812   return TRUE;
5813 }
5814 
5815 /* Set a default stack segment size.  The value in INFO wins.  If it
5816    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5817    undefined it is initialized.  */
5818 
5819 bfd_boolean
5820 bfd_elf_stack_segment_size (bfd *output_bfd,
5821 			    struct bfd_link_info *info,
5822 			    const char *legacy_symbol,
5823 			    bfd_vma default_size)
5824 {
5825   struct elf_link_hash_entry *h = NULL;
5826 
5827   /* Look for legacy symbol.  */
5828   if (legacy_symbol)
5829     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5830 			      FALSE, FALSE, FALSE);
5831   if (h && (h->root.type == bfd_link_hash_defined
5832 	    || h->root.type == bfd_link_hash_defweak)
5833       && h->def_regular
5834       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5835     {
5836       /* The symbol has no type if specified on the command line.  */
5837       h->type = STT_OBJECT;
5838       if (info->stacksize)
5839 	/* xgettext:c-format */
5840 	_bfd_error_handler (_("%B: stack size specified and %s set"),
5841 			    output_bfd, legacy_symbol);
5842       else if (h->root.u.def.section != bfd_abs_section_ptr)
5843 	/* xgettext:c-format */
5844 	_bfd_error_handler (_("%B: %s not absolute"),
5845 			    output_bfd, legacy_symbol);
5846       else
5847 	info->stacksize = h->root.u.def.value;
5848     }
5849 
5850   if (!info->stacksize)
5851     /* If the user didn't set a size, or explicitly inhibit the
5852        size, set it now.  */
5853     info->stacksize = default_size;
5854 
5855   /* Provide the legacy symbol, if it is referenced.  */
5856   if (h && (h->root.type == bfd_link_hash_undefined
5857 	    || h->root.type == bfd_link_hash_undefweak))
5858     {
5859       struct bfd_link_hash_entry *bh = NULL;
5860 
5861       if (!(_bfd_generic_link_add_one_symbol
5862 	    (info, output_bfd, legacy_symbol,
5863 	     BSF_GLOBAL, bfd_abs_section_ptr,
5864 	     info->stacksize >= 0 ? info->stacksize : 0,
5865 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5866 	return FALSE;
5867 
5868       h = (struct elf_link_hash_entry *) bh;
5869       h->def_regular = 1;
5870       h->type = STT_OBJECT;
5871     }
5872 
5873   return TRUE;
5874 }
5875 
5876 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
5877 
5878 struct elf_gc_sweep_symbol_info
5879 {
5880   struct bfd_link_info *info;
5881   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
5882 		       bfd_boolean);
5883 };
5884 
5885 static bfd_boolean
5886 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
5887 {
5888   if (!h->mark
5889       && (((h->root.type == bfd_link_hash_defined
5890 	    || h->root.type == bfd_link_hash_defweak)
5891 	   && !((h->def_regular || ELF_COMMON_DEF_P (h))
5892 		&& h->root.u.def.section->gc_mark))
5893 	  || h->root.type == bfd_link_hash_undefined
5894 	  || h->root.type == bfd_link_hash_undefweak))
5895     {
5896       struct elf_gc_sweep_symbol_info *inf;
5897 
5898       inf = (struct elf_gc_sweep_symbol_info *) data;
5899       (*inf->hide_symbol) (inf->info, h, TRUE);
5900       h->def_regular = 0;
5901       h->ref_regular = 0;
5902       h->ref_regular_nonweak = 0;
5903     }
5904 
5905   return TRUE;
5906 }
5907 
5908 /* Set up the sizes and contents of the ELF dynamic sections.  This is
5909    called by the ELF linker emulation before_allocation routine.  We
5910    must set the sizes of the sections before the linker sets the
5911    addresses of the various sections.  */
5912 
5913 bfd_boolean
5914 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5915 			       const char *soname,
5916 			       const char *rpath,
5917 			       const char *filter_shlib,
5918 			       const char *audit,
5919 			       const char *depaudit,
5920 			       const char * const *auxiliary_filters,
5921 			       struct bfd_link_info *info,
5922 			       asection **sinterpptr)
5923 {
5924   size_t soname_indx;
5925   bfd *dynobj;
5926   const struct elf_backend_data *bed;
5927 
5928   *sinterpptr = NULL;
5929 
5930   soname_indx = (size_t) -1;
5931 
5932   if (!is_elf_hash_table (info->hash))
5933     return TRUE;
5934 
5935   dynobj = elf_hash_table (info)->dynobj;
5936 
5937   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5938     {
5939       struct bfd_elf_version_tree *verdefs;
5940       struct elf_info_failed asvinfo;
5941       struct bfd_elf_version_tree *t;
5942       struct bfd_elf_version_expr *d;
5943       struct elf_info_failed eif;
5944       bfd_boolean all_defined;
5945       asection *s;
5946 
5947       eif.info = info;
5948       eif.failed = FALSE;
5949 
5950       /* If we are supposed to export all symbols into the dynamic symbol
5951 	 table (this is not the normal case), then do so.  */
5952       if (info->export_dynamic
5953 	  || (bfd_link_executable (info) && info->dynamic))
5954 	{
5955 	  elf_link_hash_traverse (elf_hash_table (info),
5956 				  _bfd_elf_export_symbol,
5957 				  &eif);
5958 	  if (eif.failed)
5959 	    return FALSE;
5960 	}
5961 
5962       /* Make all global versions with definition.  */
5963       for (t = info->version_info; t != NULL; t = t->next)
5964 	for (d = t->globals.list; d != NULL; d = d->next)
5965 	  if (!d->symver && d->literal)
5966 	    {
5967 	      const char *verstr, *name;
5968 	      size_t namelen, verlen, newlen;
5969 	      char *newname, *p, leading_char;
5970 	      struct elf_link_hash_entry *newh;
5971 
5972 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
5973 	      name = d->pattern;
5974 	      namelen = strlen (name) + (leading_char != '\0');
5975 	      verstr = t->name;
5976 	      verlen = strlen (verstr);
5977 	      newlen = namelen + verlen + 3;
5978 
5979 	      newname = (char *) bfd_malloc (newlen);
5980 	      if (newname == NULL)
5981 		return FALSE;
5982 	      newname[0] = leading_char;
5983 	      memcpy (newname + (leading_char != '\0'), name, namelen);
5984 
5985 	      /* Check the hidden versioned definition.  */
5986 	      p = newname + namelen;
5987 	      *p++ = ELF_VER_CHR;
5988 	      memcpy (p, verstr, verlen + 1);
5989 	      newh = elf_link_hash_lookup (elf_hash_table (info),
5990 					   newname, FALSE, FALSE,
5991 					   FALSE);
5992 	      if (newh == NULL
5993 		  || (newh->root.type != bfd_link_hash_defined
5994 		      && newh->root.type != bfd_link_hash_defweak))
5995 		{
5996 		  /* Check the default versioned definition.  */
5997 		  *p++ = ELF_VER_CHR;
5998 		  memcpy (p, verstr, verlen + 1);
5999 		  newh = elf_link_hash_lookup (elf_hash_table (info),
6000 					       newname, FALSE, FALSE,
6001 					       FALSE);
6002 		}
6003 	      free (newname);
6004 
6005 	      /* Mark this version if there is a definition and it is
6006 		 not defined in a shared object.  */
6007 	      if (newh != NULL
6008 		  && !newh->def_dynamic
6009 		  && (newh->root.type == bfd_link_hash_defined
6010 		      || newh->root.type == bfd_link_hash_defweak))
6011 		d->symver = 1;
6012 	    }
6013 
6014       /* Attach all the symbols to their version information.  */
6015       asvinfo.info = info;
6016       asvinfo.failed = FALSE;
6017 
6018       elf_link_hash_traverse (elf_hash_table (info),
6019 			      _bfd_elf_link_assign_sym_version,
6020 			      &asvinfo);
6021       if (asvinfo.failed)
6022 	return FALSE;
6023 
6024       if (!info->allow_undefined_version)
6025 	{
6026 	  /* Check if all global versions have a definition.  */
6027 	  all_defined = TRUE;
6028 	  for (t = info->version_info; t != NULL; t = t->next)
6029 	    for (d = t->globals.list; d != NULL; d = d->next)
6030 	      if (d->literal && !d->symver && !d->script)
6031 		{
6032 		  _bfd_error_handler
6033 		    (_("%s: undefined version: %s"),
6034 		     d->pattern, t->name);
6035 		  all_defined = FALSE;
6036 		}
6037 
6038 	  if (!all_defined)
6039 	    {
6040 	      bfd_set_error (bfd_error_bad_value);
6041 	      return FALSE;
6042 	    }
6043 	}
6044 
6045       /* Set up the version definition section.  */
6046       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
6047       BFD_ASSERT (s != NULL);
6048 
6049       /* We may have created additional version definitions if we are
6050 	 just linking a regular application.  */
6051       verdefs = info->version_info;
6052 
6053       /* Skip anonymous version tag.  */
6054       if (verdefs != NULL && verdefs->vernum == 0)
6055 	verdefs = verdefs->next;
6056 
6057       if (verdefs == NULL && !info->create_default_symver)
6058 	s->flags |= SEC_EXCLUDE;
6059       else
6060 	{
6061 	  unsigned int cdefs;
6062 	  bfd_size_type size;
6063 	  bfd_byte *p;
6064 	  Elf_Internal_Verdef def;
6065 	  Elf_Internal_Verdaux defaux;
6066 	  struct bfd_link_hash_entry *bh;
6067 	  struct elf_link_hash_entry *h;
6068 	  const char *name;
6069 
6070 	  cdefs = 0;
6071 	  size = 0;
6072 
6073 	  /* Make space for the base version.  */
6074 	  size += sizeof (Elf_External_Verdef);
6075 	  size += sizeof (Elf_External_Verdaux);
6076 	  ++cdefs;
6077 
6078 	  /* Make space for the default version.  */
6079 	  if (info->create_default_symver)
6080 	    {
6081 	      size += sizeof (Elf_External_Verdef);
6082 	      ++cdefs;
6083 	    }
6084 
6085 	  for (t = verdefs; t != NULL; t = t->next)
6086 	    {
6087 	      struct bfd_elf_version_deps *n;
6088 
6089 	      /* Don't emit base version twice.  */
6090 	      if (t->vernum == 0)
6091 		continue;
6092 
6093 	      size += sizeof (Elf_External_Verdef);
6094 	      size += sizeof (Elf_External_Verdaux);
6095 	      ++cdefs;
6096 
6097 	      for (n = t->deps; n != NULL; n = n->next)
6098 		size += sizeof (Elf_External_Verdaux);
6099 	    }
6100 
6101 	  s->size = size;
6102 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6103 	  if (s->contents == NULL && s->size != 0)
6104 	    return FALSE;
6105 
6106 	  /* Fill in the version definition section.  */
6107 
6108 	  p = s->contents;
6109 
6110 	  def.vd_version = VER_DEF_CURRENT;
6111 	  def.vd_flags = VER_FLG_BASE;
6112 	  def.vd_ndx = 1;
6113 	  def.vd_cnt = 1;
6114 	  if (info->create_default_symver)
6115 	    {
6116 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6117 	      def.vd_next = sizeof (Elf_External_Verdef);
6118 	    }
6119 	  else
6120 	    {
6121 	      def.vd_aux = sizeof (Elf_External_Verdef);
6122 	      def.vd_next = (sizeof (Elf_External_Verdef)
6123 			     + sizeof (Elf_External_Verdaux));
6124 	    }
6125 
6126 	  if (soname_indx != (size_t) -1)
6127 	    {
6128 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6129 				      soname_indx);
6130 	      def.vd_hash = bfd_elf_hash (soname);
6131 	      defaux.vda_name = soname_indx;
6132 	      name = soname;
6133 	    }
6134 	  else
6135 	    {
6136 	      size_t indx;
6137 
6138 	      name = lbasename (output_bfd->filename);
6139 	      def.vd_hash = bfd_elf_hash (name);
6140 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6141 					  name, FALSE);
6142 	      if (indx == (size_t) -1)
6143 		return FALSE;
6144 	      defaux.vda_name = indx;
6145 	    }
6146 	  defaux.vda_next = 0;
6147 
6148 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6149 				    (Elf_External_Verdef *) p);
6150 	  p += sizeof (Elf_External_Verdef);
6151 	  if (info->create_default_symver)
6152 	    {
6153 	      /* Add a symbol representing this version.  */
6154 	      bh = NULL;
6155 	      if (! (_bfd_generic_link_add_one_symbol
6156 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6157 		      0, NULL, FALSE,
6158 		      get_elf_backend_data (dynobj)->collect, &bh)))
6159 		return FALSE;
6160 	      h = (struct elf_link_hash_entry *) bh;
6161 	      h->non_elf = 0;
6162 	      h->def_regular = 1;
6163 	      h->type = STT_OBJECT;
6164 	      h->verinfo.vertree = NULL;
6165 
6166 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6167 		return FALSE;
6168 
6169 	      /* Create a duplicate of the base version with the same
6170 		 aux block, but different flags.  */
6171 	      def.vd_flags = 0;
6172 	      def.vd_ndx = 2;
6173 	      def.vd_aux = sizeof (Elf_External_Verdef);
6174 	      if (verdefs)
6175 		def.vd_next = (sizeof (Elf_External_Verdef)
6176 			       + sizeof (Elf_External_Verdaux));
6177 	      else
6178 		def.vd_next = 0;
6179 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6180 					(Elf_External_Verdef *) p);
6181 	      p += sizeof (Elf_External_Verdef);
6182 	    }
6183 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6184 				     (Elf_External_Verdaux *) p);
6185 	  p += sizeof (Elf_External_Verdaux);
6186 
6187 	  for (t = verdefs; t != NULL; t = t->next)
6188 	    {
6189 	      unsigned int cdeps;
6190 	      struct bfd_elf_version_deps *n;
6191 
6192 	      /* Don't emit the base version twice.  */
6193 	      if (t->vernum == 0)
6194 		continue;
6195 
6196 	      cdeps = 0;
6197 	      for (n = t->deps; n != NULL; n = n->next)
6198 		++cdeps;
6199 
6200 	      /* Add a symbol representing this version.  */
6201 	      bh = NULL;
6202 	      if (! (_bfd_generic_link_add_one_symbol
6203 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6204 		      0, NULL, FALSE,
6205 		      get_elf_backend_data (dynobj)->collect, &bh)))
6206 		return FALSE;
6207 	      h = (struct elf_link_hash_entry *) bh;
6208 	      h->non_elf = 0;
6209 	      h->def_regular = 1;
6210 	      h->type = STT_OBJECT;
6211 	      h->verinfo.vertree = t;
6212 
6213 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6214 		return FALSE;
6215 
6216 	      def.vd_version = VER_DEF_CURRENT;
6217 	      def.vd_flags = 0;
6218 	      if (t->globals.list == NULL
6219 		  && t->locals.list == NULL
6220 		  && ! t->used)
6221 		def.vd_flags |= VER_FLG_WEAK;
6222 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6223 	      def.vd_cnt = cdeps + 1;
6224 	      def.vd_hash = bfd_elf_hash (t->name);
6225 	      def.vd_aux = sizeof (Elf_External_Verdef);
6226 	      def.vd_next = 0;
6227 
6228 	      /* If a basever node is next, it *must* be the last node in
6229 		 the chain, otherwise Verdef construction breaks.  */
6230 	      if (t->next != NULL && t->next->vernum == 0)
6231 		BFD_ASSERT (t->next->next == NULL);
6232 
6233 	      if (t->next != NULL && t->next->vernum != 0)
6234 		def.vd_next = (sizeof (Elf_External_Verdef)
6235 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6236 
6237 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6238 					(Elf_External_Verdef *) p);
6239 	      p += sizeof (Elf_External_Verdef);
6240 
6241 	      defaux.vda_name = h->dynstr_index;
6242 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6243 				      h->dynstr_index);
6244 	      defaux.vda_next = 0;
6245 	      if (t->deps != NULL)
6246 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6247 	      t->name_indx = defaux.vda_name;
6248 
6249 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6250 					 (Elf_External_Verdaux *) p);
6251 	      p += sizeof (Elf_External_Verdaux);
6252 
6253 	      for (n = t->deps; n != NULL; n = n->next)
6254 		{
6255 		  if (n->version_needed == NULL)
6256 		    {
6257 		      /* This can happen if there was an error in the
6258 			 version script.  */
6259 		      defaux.vda_name = 0;
6260 		    }
6261 		  else
6262 		    {
6263 		      defaux.vda_name = n->version_needed->name_indx;
6264 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6265 					      defaux.vda_name);
6266 		    }
6267 		  if (n->next == NULL)
6268 		    defaux.vda_next = 0;
6269 		  else
6270 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6271 
6272 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6273 					     (Elf_External_Verdaux *) p);
6274 		  p += sizeof (Elf_External_Verdaux);
6275 		}
6276 	    }
6277 
6278 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6279 	}
6280 
6281       /* Work out the size of the version reference section.  */
6282 
6283       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6284       BFD_ASSERT (s != NULL);
6285       {
6286 	struct elf_find_verdep_info sinfo;
6287 
6288 	sinfo.info = info;
6289 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6290 	if (sinfo.vers == 0)
6291 	  sinfo.vers = 1;
6292 	sinfo.failed = FALSE;
6293 
6294 	elf_link_hash_traverse (elf_hash_table (info),
6295 				_bfd_elf_link_find_version_dependencies,
6296 				&sinfo);
6297 	if (sinfo.failed)
6298 	  return FALSE;
6299 
6300 	if (elf_tdata (output_bfd)->verref == NULL)
6301 	  s->flags |= SEC_EXCLUDE;
6302 	else
6303 	  {
6304 	    Elf_Internal_Verneed *vn;
6305 	    unsigned int size;
6306 	    unsigned int crefs;
6307 	    bfd_byte *p;
6308 
6309 	    /* Build the version dependency section.  */
6310 	    size = 0;
6311 	    crefs = 0;
6312 	    for (vn = elf_tdata (output_bfd)->verref;
6313 		 vn != NULL;
6314 		 vn = vn->vn_nextref)
6315 	      {
6316 		Elf_Internal_Vernaux *a;
6317 
6318 		size += sizeof (Elf_External_Verneed);
6319 		++crefs;
6320 		for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6321 		  size += sizeof (Elf_External_Vernaux);
6322 	      }
6323 
6324 	    s->size = size;
6325 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6326 	    if (s->contents == NULL)
6327 	      return FALSE;
6328 
6329 	    p = s->contents;
6330 	    for (vn = elf_tdata (output_bfd)->verref;
6331 		 vn != NULL;
6332 		 vn = vn->vn_nextref)
6333 	      {
6334 		unsigned int caux;
6335 		Elf_Internal_Vernaux *a;
6336 		size_t indx;
6337 
6338 		caux = 0;
6339 		for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6340 		  ++caux;
6341 
6342 		vn->vn_version = VER_NEED_CURRENT;
6343 		vn->vn_cnt = caux;
6344 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6345 					    elf_dt_name (vn->vn_bfd) != NULL
6346 					    ? elf_dt_name (vn->vn_bfd)
6347 					    : lbasename (vn->vn_bfd->filename),
6348 					    FALSE);
6349 		if (indx == (size_t) -1)
6350 		  return FALSE;
6351 		vn->vn_file = indx;
6352 		vn->vn_aux = sizeof (Elf_External_Verneed);
6353 		if (vn->vn_nextref == NULL)
6354 		  vn->vn_next = 0;
6355 		else
6356 		  vn->vn_next = (sizeof (Elf_External_Verneed)
6357 				+ caux * sizeof (Elf_External_Vernaux));
6358 
6359 		_bfd_elf_swap_verneed_out (output_bfd, vn,
6360 					   (Elf_External_Verneed *) p);
6361 		p += sizeof (Elf_External_Verneed);
6362 
6363 		for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr)
6364 		  {
6365 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6366 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6367 						a->vna_nodename, FALSE);
6368 		    if (indx == (size_t) -1)
6369 		      return FALSE;
6370 		    a->vna_name = indx;
6371 		    if (a->vna_nextptr == NULL)
6372 		      a->vna_next = 0;
6373 		    else
6374 		      a->vna_next = sizeof (Elf_External_Vernaux);
6375 
6376 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6377 					       (Elf_External_Vernaux *) p);
6378 		    p += sizeof (Elf_External_Vernaux);
6379 		  }
6380 	      }
6381 
6382 	    elf_tdata (output_bfd)->cverrefs = crefs;
6383 	  }
6384       }
6385     }
6386 
6387   bed = get_elf_backend_data (output_bfd);
6388 
6389   if (info->gc_sections && bed->can_gc_sections)
6390     {
6391       struct elf_gc_sweep_symbol_info sweep_info;
6392       unsigned long section_sym_count;
6393 
6394       /* Remove the symbols that were in the swept sections from the
6395 	 dynamic symbol table.  GCFIXME: Anyone know how to get them
6396 	 out of the static symbol table as well?  */
6397       sweep_info.info = info;
6398       sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
6399       elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
6400 			      &sweep_info);
6401 
6402       _bfd_elf_link_renumber_dynsyms (output_bfd, info, &section_sym_count);
6403     }
6404 
6405   /* Any syms created from now on start with -1 in
6406      got.refcount/offset and plt.refcount/offset.  */
6407   elf_hash_table (info)->init_got_refcount
6408     = elf_hash_table (info)->init_got_offset;
6409   elf_hash_table (info)->init_plt_refcount
6410     = elf_hash_table (info)->init_plt_offset;
6411 
6412   if (bfd_link_relocatable (info)
6413       && !_bfd_elf_size_group_sections (info))
6414     return FALSE;
6415 
6416   /* The backend may have to create some sections regardless of whether
6417      we're dynamic or not.  */
6418   if (bed->elf_backend_always_size_sections
6419       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
6420     return FALSE;
6421 
6422   /* Determine any GNU_STACK segment requirements, after the backend
6423      has had a chance to set a default segment size.  */
6424   if (info->execstack)
6425     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
6426   else if (info->noexecstack)
6427     elf_stack_flags (output_bfd) = PF_R | PF_W;
6428   else
6429     {
6430       bfd *inputobj;
6431       asection *notesec = NULL;
6432       int exec = 0;
6433 
6434       for (inputobj = info->input_bfds;
6435 	   inputobj;
6436 	   inputobj = inputobj->link.next)
6437 	{
6438 	  asection *s;
6439 
6440 	  if (inputobj->flags
6441 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
6442 	    continue;
6443 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
6444 	  if (s)
6445 	    {
6446 	      if (s->flags & SEC_CODE)
6447 		exec = PF_X;
6448 	      notesec = s;
6449 	    }
6450 	  else if (bed->default_execstack)
6451 	    exec = PF_X;
6452 	}
6453       if (notesec || info->stacksize > 0)
6454 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
6455       if (notesec && exec && bfd_link_relocatable (info)
6456 	  && notesec->output_section != bfd_abs_section_ptr)
6457 	notesec->output_section->flags |= SEC_CODE;
6458     }
6459 
6460   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6461     {
6462       struct elf_info_failed eif;
6463       struct elf_link_hash_entry *h;
6464       asection *dynstr;
6465       asection *s;
6466 
6467       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
6468       BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp);
6469 
6470       if (soname != NULL)
6471 	{
6472 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6473 					     soname, TRUE);
6474 	  if (soname_indx == (size_t) -1
6475 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
6476 	    return FALSE;
6477 	}
6478 
6479       if (info->symbolic)
6480 	{
6481 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
6482 	    return FALSE;
6483 	  info->flags |= DF_SYMBOLIC;
6484 	}
6485 
6486       if (rpath != NULL)
6487 	{
6488 	  size_t indx;
6489 	  bfd_vma tag;
6490 
6491 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
6492 				      TRUE);
6493 	  if (indx == (size_t) -1)
6494 	    return FALSE;
6495 
6496 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
6497 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
6498 	    return FALSE;
6499 	}
6500 
6501       if (filter_shlib != NULL)
6502 	{
6503 	  size_t indx;
6504 
6505 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6506 				      filter_shlib, TRUE);
6507 	  if (indx == (size_t) -1
6508 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
6509 	    return FALSE;
6510 	}
6511 
6512       if (auxiliary_filters != NULL)
6513 	{
6514 	  const char * const *p;
6515 
6516 	  for (p = auxiliary_filters; *p != NULL; p++)
6517 	    {
6518 	      size_t indx;
6519 
6520 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6521 					  *p, TRUE);
6522 	      if (indx == (size_t) -1
6523 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
6524 		return FALSE;
6525 	    }
6526 	}
6527 
6528       if (audit != NULL)
6529 	{
6530 	  size_t indx;
6531 
6532 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
6533 				      TRUE);
6534 	  if (indx == (size_t) -1
6535 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
6536 	    return FALSE;
6537 	}
6538 
6539       if (depaudit != NULL)
6540 	{
6541 	  size_t indx;
6542 
6543 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
6544 				      TRUE);
6545 	  if (indx == (size_t) -1
6546 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
6547 	    return FALSE;
6548 	}
6549 
6550       eif.info = info;
6551       eif.failed = FALSE;
6552 
6553       /* Find all symbols which were defined in a dynamic object and make
6554 	 the backend pick a reasonable value for them.  */
6555       elf_link_hash_traverse (elf_hash_table (info),
6556 			      _bfd_elf_adjust_dynamic_symbol,
6557 			      &eif);
6558       if (eif.failed)
6559 	return FALSE;
6560 
6561       /* Add some entries to the .dynamic section.  We fill in some of the
6562 	 values later, in bfd_elf_final_link, but we must add the entries
6563 	 now so that we know the final size of the .dynamic section.  */
6564 
6565       /* If there are initialization and/or finalization functions to
6566 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
6567       h = (info->init_function
6568 	   ? elf_link_hash_lookup (elf_hash_table (info),
6569 				   info->init_function, FALSE,
6570 				   FALSE, FALSE)
6571 	   : NULL);
6572       if (h != NULL
6573 	  && (h->ref_regular
6574 	      || h->def_regular))
6575 	{
6576 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
6577 	    return FALSE;
6578 	}
6579       h = (info->fini_function
6580 	   ? elf_link_hash_lookup (elf_hash_table (info),
6581 				   info->fini_function, FALSE,
6582 				   FALSE, FALSE)
6583 	   : NULL);
6584       if (h != NULL
6585 	  && (h->ref_regular
6586 	      || h->def_regular))
6587 	{
6588 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
6589 	    return FALSE;
6590 	}
6591 
6592       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
6593       if (s != NULL && s->linker_has_input)
6594 	{
6595 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
6596 	  if (! bfd_link_executable (info))
6597 	    {
6598 	      bfd *sub;
6599 	      asection *o;
6600 
6601 	      for (sub = info->input_bfds; sub != NULL;
6602 		   sub = sub->link.next)
6603 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
6604 		  for (o = sub->sections; o != NULL; o = o->next)
6605 		    if (elf_section_data (o)->this_hdr.sh_type
6606 			== SHT_PREINIT_ARRAY)
6607 		      {
6608 			_bfd_error_handler
6609 			  (_("%B: .preinit_array section is not allowed in DSO"),
6610 			   sub);
6611 			break;
6612 		      }
6613 
6614 	      bfd_set_error (bfd_error_nonrepresentable_section);
6615 	      return FALSE;
6616 	    }
6617 
6618 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
6619 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
6620 	    return FALSE;
6621 	}
6622       s = bfd_get_section_by_name (output_bfd, ".init_array");
6623       if (s != NULL && s->linker_has_input)
6624 	{
6625 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
6626 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
6627 	    return FALSE;
6628 	}
6629       s = bfd_get_section_by_name (output_bfd, ".fini_array");
6630       if (s != NULL && s->linker_has_input)
6631 	{
6632 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
6633 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
6634 	    return FALSE;
6635 	}
6636 
6637       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
6638       /* If .dynstr is excluded from the link, we don't want any of
6639 	 these tags.  Strictly, we should be checking each section
6640 	 individually;  This quick check covers for the case where
6641 	 someone does a /DISCARD/ : { *(*) }.  */
6642       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
6643 	{
6644 	  bfd_size_type strsize;
6645 
6646 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6647 	  if ((info->emit_hash
6648 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
6649 	      || (info->emit_gnu_hash
6650 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
6651 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
6652 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
6653 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
6654 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
6655 					      bed->s->sizeof_sym))
6656 	    return FALSE;
6657 	}
6658     }
6659 
6660   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
6661     return FALSE;
6662 
6663   /* The backend must work out the sizes of all the other dynamic
6664      sections.  */
6665   if (dynobj != NULL
6666       && bed->elf_backend_size_dynamic_sections != NULL
6667       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
6668     return FALSE;
6669 
6670   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
6671     {
6672       unsigned long section_sym_count;
6673 
6674       if (elf_tdata (output_bfd)->cverdefs)
6675 	{
6676 	  unsigned int crefs = elf_tdata (output_bfd)->cverdefs;
6677 
6678 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6679 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs))
6680 	    return FALSE;
6681 	}
6682 
6683       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6684 	{
6685 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6686 	    return FALSE;
6687 	}
6688       else if (info->flags & DF_BIND_NOW)
6689 	{
6690 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6691 	    return FALSE;
6692 	}
6693 
6694       if (info->flags_1)
6695 	{
6696 	  if (bfd_link_executable (info))
6697 	    info->flags_1 &= ~ (DF_1_INITFIRST
6698 				| DF_1_NODELETE
6699 				| DF_1_NOOPEN);
6700 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6701 	    return FALSE;
6702 	}
6703 
6704       if (elf_tdata (output_bfd)->cverrefs)
6705 	{
6706 	  unsigned int crefs = elf_tdata (output_bfd)->cverrefs;
6707 
6708 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6709 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6710 	    return FALSE;
6711 	}
6712 
6713       if ((elf_tdata (output_bfd)->cverrefs == 0
6714 	   && elf_tdata (output_bfd)->cverdefs == 0)
6715 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6716 					     &section_sym_count) == 0)
6717 	{
6718 	  asection *s;
6719 
6720 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
6721 	  s->flags |= SEC_EXCLUDE;
6722 	}
6723     }
6724   return TRUE;
6725 }
6726 
6727 /* Find the first non-excluded output section.  We'll use its
6728    section symbol for some emitted relocs.  */
6729 void
6730 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6731 {
6732   asection *s;
6733 
6734   for (s = output_bfd->sections; s != NULL; s = s->next)
6735     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6736 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6737       {
6738 	elf_hash_table (info)->text_index_section = s;
6739 	break;
6740       }
6741 }
6742 
6743 /* Find two non-excluded output sections, one for code, one for data.
6744    We'll use their section symbols for some emitted relocs.  */
6745 void
6746 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6747 {
6748   asection *s;
6749 
6750   /* Data first, since setting text_index_section changes
6751      _bfd_elf_link_omit_section_dynsym.  */
6752   for (s = output_bfd->sections; s != NULL; s = s->next)
6753     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6754 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6755       {
6756 	elf_hash_table (info)->data_index_section = s;
6757 	break;
6758       }
6759 
6760   for (s = output_bfd->sections; s != NULL; s = s->next)
6761     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6762 	 == (SEC_ALLOC | SEC_READONLY))
6763 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6764       {
6765 	elf_hash_table (info)->text_index_section = s;
6766 	break;
6767       }
6768 
6769   if (elf_hash_table (info)->text_index_section == NULL)
6770     elf_hash_table (info)->text_index_section
6771       = elf_hash_table (info)->data_index_section;
6772 }
6773 
6774 bfd_boolean
6775 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6776 {
6777   const struct elf_backend_data *bed;
6778 
6779   if (!is_elf_hash_table (info->hash))
6780     return TRUE;
6781 
6782   bed = get_elf_backend_data (output_bfd);
6783   (*bed->elf_backend_init_index_section) (output_bfd, info);
6784 
6785   if (elf_hash_table (info)->dynamic_sections_created)
6786     {
6787       bfd *dynobj;
6788       asection *s;
6789       bfd_size_type dynsymcount;
6790       unsigned long section_sym_count;
6791       unsigned int dtagcount;
6792 
6793       dynobj = elf_hash_table (info)->dynobj;
6794 
6795       /* Assign dynsym indicies.  In a shared library we generate a
6796 	 section symbol for each output section, which come first.
6797 	 Next come all of the back-end allocated local dynamic syms,
6798 	 followed by the rest of the global symbols.  */
6799 
6800       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6801 						    &section_sym_count);
6802 
6803       /* Work out the size of the symbol version section.  */
6804       s = bfd_get_linker_section (dynobj, ".gnu.version");
6805       BFD_ASSERT (s != NULL);
6806       if ((s->flags & SEC_EXCLUDE) == 0)
6807 	{
6808 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6809 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6810 	  if (s->contents == NULL)
6811 	    return FALSE;
6812 
6813 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6814 	    return FALSE;
6815 	}
6816 
6817       /* Set the size of the .dynsym and .hash sections.  We counted
6818 	 the number of dynamic symbols in elf_link_add_object_symbols.
6819 	 We will build the contents of .dynsym and .hash when we build
6820 	 the final symbol table, because until then we do not know the
6821 	 correct value to give the symbols.  We built the .dynstr
6822 	 section as we went along in elf_link_add_object_symbols.  */
6823       s = elf_hash_table (info)->dynsym;
6824       BFD_ASSERT (s != NULL);
6825       s->size = dynsymcount * bed->s->sizeof_sym;
6826 
6827       s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6828       if (s->contents == NULL)
6829 	return FALSE;
6830 
6831       /* The first entry in .dynsym is a dummy symbol.  Clear all the
6832 	 section syms, in case we don't output them all.  */
6833       ++section_sym_count;
6834       memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6835 
6836       elf_hash_table (info)->bucketcount = 0;
6837 
6838       /* Compute the size of the hashing table.  As a side effect this
6839 	 computes the hash values for all the names we export.  */
6840       if (info->emit_hash)
6841 	{
6842 	  unsigned long int *hashcodes;
6843 	  struct hash_codes_info hashinf;
6844 	  bfd_size_type amt;
6845 	  unsigned long int nsyms;
6846 	  size_t bucketcount;
6847 	  size_t hash_entry_size;
6848 
6849 	  /* Compute the hash values for all exported symbols.  At the same
6850 	     time store the values in an array so that we could use them for
6851 	     optimizations.  */
6852 	  amt = dynsymcount * sizeof (unsigned long int);
6853 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6854 	  if (hashcodes == NULL)
6855 	    return FALSE;
6856 	  hashinf.hashcodes = hashcodes;
6857 	  hashinf.error = FALSE;
6858 
6859 	  /* Put all hash values in HASHCODES.  */
6860 	  elf_link_hash_traverse (elf_hash_table (info),
6861 				  elf_collect_hash_codes, &hashinf);
6862 	  if (hashinf.error)
6863 	    {
6864 	      free (hashcodes);
6865 	      return FALSE;
6866 	    }
6867 
6868 	  nsyms = hashinf.hashcodes - hashcodes;
6869 	  bucketcount
6870 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6871 	  free (hashcodes);
6872 
6873 	  if (bucketcount == 0)
6874 	    return FALSE;
6875 
6876 	  elf_hash_table (info)->bucketcount = bucketcount;
6877 
6878 	  s = bfd_get_linker_section (dynobj, ".hash");
6879 	  BFD_ASSERT (s != NULL);
6880 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6881 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6882 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6883 	  if (s->contents == NULL)
6884 	    return FALSE;
6885 
6886 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6887 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6888 		   s->contents + hash_entry_size);
6889 	}
6890 
6891       if (info->emit_gnu_hash)
6892 	{
6893 	  size_t i, cnt;
6894 	  unsigned char *contents;
6895 	  struct collect_gnu_hash_codes cinfo;
6896 	  bfd_size_type amt;
6897 	  size_t bucketcount;
6898 
6899 	  memset (&cinfo, 0, sizeof (cinfo));
6900 
6901 	  /* Compute the hash values for all exported symbols.  At the same
6902 	     time store the values in an array so that we could use them for
6903 	     optimizations.  */
6904 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6905 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6906 	  if (cinfo.hashcodes == NULL)
6907 	    return FALSE;
6908 
6909 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6910 	  cinfo.min_dynindx = -1;
6911 	  cinfo.output_bfd = output_bfd;
6912 	  cinfo.bed = bed;
6913 
6914 	  /* Put all hash values in HASHCODES.  */
6915 	  elf_link_hash_traverse (elf_hash_table (info),
6916 				  elf_collect_gnu_hash_codes, &cinfo);
6917 	  if (cinfo.error)
6918 	    {
6919 	      free (cinfo.hashcodes);
6920 	      return FALSE;
6921 	    }
6922 
6923 	  bucketcount
6924 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6925 
6926 	  if (bucketcount == 0)
6927 	    {
6928 	      free (cinfo.hashcodes);
6929 	      return FALSE;
6930 	    }
6931 
6932 	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
6933 	  BFD_ASSERT (s != NULL);
6934 
6935 	  if (cinfo.nsyms == 0)
6936 	    {
6937 	      /* Empty .gnu.hash section is special.  */
6938 	      BFD_ASSERT (cinfo.min_dynindx == -1);
6939 	      free (cinfo.hashcodes);
6940 	      s->size = 5 * 4 + bed->s->arch_size / 8;
6941 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6942 	      if (contents == NULL)
6943 		return FALSE;
6944 	      s->contents = contents;
6945 	      /* 1 empty bucket.  */
6946 	      bfd_put_32 (output_bfd, 1, contents);
6947 	      /* SYMIDX above the special symbol 0.  */
6948 	      bfd_put_32 (output_bfd, 1, contents + 4);
6949 	      /* Just one word for bitmask.  */
6950 	      bfd_put_32 (output_bfd, 1, contents + 8);
6951 	      /* Only hash fn bloom filter.  */
6952 	      bfd_put_32 (output_bfd, 0, contents + 12);
6953 	      /* No hashes are valid - empty bitmask.  */
6954 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6955 	      /* No hashes in the only bucket.  */
6956 	      bfd_put_32 (output_bfd, 0,
6957 			  contents + 16 + bed->s->arch_size / 8);
6958 	    }
6959 	  else
6960 	    {
6961 	      unsigned long int maskwords, maskbitslog2, x;
6962 	      BFD_ASSERT (cinfo.min_dynindx != -1);
6963 
6964 	      x = cinfo.nsyms;
6965 	      maskbitslog2 = 1;
6966 	      while ((x >>= 1) != 0)
6967 		++maskbitslog2;
6968 	      if (maskbitslog2 < 3)
6969 		maskbitslog2 = 5;
6970 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6971 		maskbitslog2 = maskbitslog2 + 3;
6972 	      else
6973 		maskbitslog2 = maskbitslog2 + 2;
6974 	      if (bed->s->arch_size == 64)
6975 		{
6976 		  if (maskbitslog2 == 5)
6977 		    maskbitslog2 = 6;
6978 		  cinfo.shift1 = 6;
6979 		}
6980 	      else
6981 		cinfo.shift1 = 5;
6982 	      cinfo.mask = (1 << cinfo.shift1) - 1;
6983 	      cinfo.shift2 = maskbitslog2;
6984 	      cinfo.maskbits = 1 << maskbitslog2;
6985 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6986 	      amt = bucketcount * sizeof (unsigned long int) * 2;
6987 	      amt += maskwords * sizeof (bfd_vma);
6988 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6989 	      if (cinfo.bitmask == NULL)
6990 		{
6991 		  free (cinfo.hashcodes);
6992 		  return FALSE;
6993 		}
6994 
6995 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6996 	      cinfo.indx = cinfo.counts + bucketcount;
6997 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6998 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6999 
7000 	      /* Determine how often each hash bucket is used.  */
7001 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
7002 	      for (i = 0; i < cinfo.nsyms; ++i)
7003 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
7004 
7005 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
7006 		if (cinfo.counts[i] != 0)
7007 		  {
7008 		    cinfo.indx[i] = cnt;
7009 		    cnt += cinfo.counts[i];
7010 		  }
7011 	      BFD_ASSERT (cnt == dynsymcount);
7012 	      cinfo.bucketcount = bucketcount;
7013 	      cinfo.local_indx = cinfo.min_dynindx;
7014 
7015 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
7016 	      s->size += cinfo.maskbits / 8;
7017 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
7018 	      if (contents == NULL)
7019 		{
7020 		  free (cinfo.bitmask);
7021 		  free (cinfo.hashcodes);
7022 		  return FALSE;
7023 		}
7024 
7025 	      s->contents = contents;
7026 	      bfd_put_32 (output_bfd, bucketcount, contents);
7027 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
7028 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
7029 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
7030 	      contents += 16 + cinfo.maskbits / 8;
7031 
7032 	      for (i = 0; i < bucketcount; ++i)
7033 		{
7034 		  if (cinfo.counts[i] == 0)
7035 		    bfd_put_32 (output_bfd, 0, contents);
7036 		  else
7037 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
7038 		  contents += 4;
7039 		}
7040 
7041 	      cinfo.contents = contents;
7042 
7043 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
7044 	      elf_link_hash_traverse (elf_hash_table (info),
7045 				      elf_renumber_gnu_hash_syms, &cinfo);
7046 
7047 	      contents = s->contents + 16;
7048 	      for (i = 0; i < maskwords; ++i)
7049 		{
7050 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
7051 			   contents);
7052 		  contents += bed->s->arch_size / 8;
7053 		}
7054 
7055 	      free (cinfo.bitmask);
7056 	      free (cinfo.hashcodes);
7057 	    }
7058 	}
7059 
7060       s = bfd_get_linker_section (dynobj, ".dynstr");
7061       BFD_ASSERT (s != NULL);
7062 
7063       elf_finalize_dynstr (output_bfd, info);
7064 
7065       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
7066 
7067       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
7068 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
7069 	  return FALSE;
7070     }
7071 
7072   return TRUE;
7073 }
7074 
7075 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
7076 
7077 static void
7078 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
7079 			    asection *sec)
7080 {
7081   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
7082   sec->sec_info_type = SEC_INFO_TYPE_NONE;
7083 }
7084 
7085 /* Finish SHF_MERGE section merging.  */
7086 
7087 bfd_boolean
7088 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info)
7089 {
7090   bfd *ibfd;
7091   asection *sec;
7092 
7093   if (!is_elf_hash_table (info->hash))
7094     return FALSE;
7095 
7096   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
7097     if ((ibfd->flags & DYNAMIC) == 0
7098 	&& bfd_get_flavour (ibfd) == bfd_target_elf_flavour
7099 	&& (elf_elfheader (ibfd)->e_ident[EI_CLASS]
7100 	    == get_elf_backend_data (obfd)->s->elfclass))
7101       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7102 	if ((sec->flags & SEC_MERGE) != 0
7103 	    && !bfd_is_abs_section (sec->output_section))
7104 	  {
7105 	    struct bfd_elf_section_data *secdata;
7106 
7107 	    secdata = elf_section_data (sec);
7108 	    if (! _bfd_add_merge_section (obfd,
7109 					  &elf_hash_table (info)->merge_info,
7110 					  sec, &secdata->sec_info))
7111 	      return FALSE;
7112 	    else if (secdata->sec_info)
7113 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
7114 	  }
7115 
7116   if (elf_hash_table (info)->merge_info != NULL)
7117     _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info,
7118 			 merge_sections_remove_hook);
7119   return TRUE;
7120 }
7121 
7122 /* Create an entry in an ELF linker hash table.  */
7123 
7124 struct bfd_hash_entry *
7125 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
7126 			    struct bfd_hash_table *table,
7127 			    const char *string)
7128 {
7129   /* Allocate the structure if it has not already been allocated by a
7130      subclass.  */
7131   if (entry == NULL)
7132     {
7133       entry = (struct bfd_hash_entry *)
7134 	bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
7135       if (entry == NULL)
7136 	return entry;
7137     }
7138 
7139   /* Call the allocation method of the superclass.  */
7140   entry = _bfd_link_hash_newfunc (entry, table, string);
7141   if (entry != NULL)
7142     {
7143       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
7144       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
7145 
7146       /* Set local fields.  */
7147       ret->indx = -1;
7148       ret->dynindx = -1;
7149       ret->got = htab->init_got_refcount;
7150       ret->plt = htab->init_plt_refcount;
7151       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
7152 			      - offsetof (struct elf_link_hash_entry, size)));
7153       /* Assume that we have been called by a non-ELF symbol reader.
7154 	 This flag is then reset by the code which reads an ELF input
7155 	 file.  This ensures that a symbol created by a non-ELF symbol
7156 	 reader will have the flag set correctly.  */
7157       ret->non_elf = 1;
7158     }
7159 
7160   return entry;
7161 }
7162 
7163 /* Copy data from an indirect symbol to its direct symbol, hiding the
7164    old indirect symbol.  Also used for copying flags to a weakdef.  */
7165 
7166 void
7167 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
7168 				  struct elf_link_hash_entry *dir,
7169 				  struct elf_link_hash_entry *ind)
7170 {
7171   struct elf_link_hash_table *htab;
7172 
7173   /* Copy down any references that we may have already seen to the
7174      symbol which just became indirect.  */
7175 
7176   if (dir->versioned != versioned_hidden)
7177     dir->ref_dynamic |= ind->ref_dynamic;
7178   dir->ref_regular |= ind->ref_regular;
7179   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
7180   dir->non_got_ref |= ind->non_got_ref;
7181   dir->needs_plt |= ind->needs_plt;
7182   dir->pointer_equality_needed |= ind->pointer_equality_needed;
7183 
7184   if (ind->root.type != bfd_link_hash_indirect)
7185     return;
7186 
7187   /* Copy over the global and procedure linkage table refcount entries.
7188      These may have been already set up by a check_relocs routine.  */
7189   htab = elf_hash_table (info);
7190   if (ind->got.refcount > htab->init_got_refcount.refcount)
7191     {
7192       if (dir->got.refcount < 0)
7193 	dir->got.refcount = 0;
7194       dir->got.refcount += ind->got.refcount;
7195       ind->got.refcount = htab->init_got_refcount.refcount;
7196     }
7197 
7198   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
7199     {
7200       if (dir->plt.refcount < 0)
7201 	dir->plt.refcount = 0;
7202       dir->plt.refcount += ind->plt.refcount;
7203       ind->plt.refcount = htab->init_plt_refcount.refcount;
7204     }
7205 
7206   if (ind->dynindx != -1)
7207     {
7208       if (dir->dynindx != -1)
7209 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
7210       dir->dynindx = ind->dynindx;
7211       dir->dynstr_index = ind->dynstr_index;
7212       ind->dynindx = -1;
7213       ind->dynstr_index = 0;
7214     }
7215 }
7216 
7217 void
7218 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
7219 				struct elf_link_hash_entry *h,
7220 				bfd_boolean force_local)
7221 {
7222   /* STT_GNU_IFUNC symbol must go through PLT.  */
7223   if (h->type != STT_GNU_IFUNC)
7224     {
7225       h->plt = elf_hash_table (info)->init_plt_offset;
7226       h->needs_plt = 0;
7227     }
7228   if (force_local)
7229     {
7230       h->forced_local = 1;
7231       if (h->dynindx != -1)
7232 	{
7233 	  h->dynindx = -1;
7234 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
7235 				  h->dynstr_index);
7236 	}
7237     }
7238 }
7239 
7240 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
7241    caller.  */
7242 
7243 bfd_boolean
7244 _bfd_elf_link_hash_table_init
7245   (struct elf_link_hash_table *table,
7246    bfd *abfd,
7247    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
7248 				      struct bfd_hash_table *,
7249 				      const char *),
7250    unsigned int entsize,
7251    enum elf_target_id target_id)
7252 {
7253   bfd_boolean ret;
7254   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
7255 
7256   table->init_got_refcount.refcount = can_refcount - 1;
7257   table->init_plt_refcount.refcount = can_refcount - 1;
7258   table->init_got_offset.offset = -(bfd_vma) 1;
7259   table->init_plt_offset.offset = -(bfd_vma) 1;
7260   /* The first dynamic symbol is a dummy.  */
7261   table->dynsymcount = 1;
7262 
7263   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
7264 
7265   table->root.type = bfd_link_elf_hash_table;
7266   table->hash_table_id = target_id;
7267 
7268   return ret;
7269 }
7270 
7271 /* Create an ELF linker hash table.  */
7272 
7273 struct bfd_link_hash_table *
7274 _bfd_elf_link_hash_table_create (bfd *abfd)
7275 {
7276   struct elf_link_hash_table *ret;
7277   bfd_size_type amt = sizeof (struct elf_link_hash_table);
7278 
7279   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
7280   if (ret == NULL)
7281     return NULL;
7282 
7283   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
7284 				       sizeof (struct elf_link_hash_entry),
7285 				       GENERIC_ELF_DATA))
7286     {
7287       free (ret);
7288       return NULL;
7289     }
7290   ret->root.hash_table_free = _bfd_elf_link_hash_table_free;
7291 
7292   return &ret->root;
7293 }
7294 
7295 /* Destroy an ELF linker hash table.  */
7296 
7297 void
7298 _bfd_elf_link_hash_table_free (bfd *obfd)
7299 {
7300   struct elf_link_hash_table *htab;
7301 
7302   htab = (struct elf_link_hash_table *) obfd->link.hash;
7303   if (htab->dynstr != NULL)
7304     _bfd_elf_strtab_free (htab->dynstr);
7305   _bfd_merge_sections_free (htab->merge_info);
7306   _bfd_generic_link_hash_table_free (obfd);
7307 }
7308 
7309 /* This is a hook for the ELF emulation code in the generic linker to
7310    tell the backend linker what file name to use for the DT_NEEDED
7311    entry for a dynamic object.  */
7312 
7313 void
7314 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
7315 {
7316   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7317       && bfd_get_format (abfd) == bfd_object)
7318     elf_dt_name (abfd) = name;
7319 }
7320 
7321 int
7322 bfd_elf_get_dyn_lib_class (bfd *abfd)
7323 {
7324   int lib_class;
7325   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7326       && bfd_get_format (abfd) == bfd_object)
7327     lib_class = elf_dyn_lib_class (abfd);
7328   else
7329     lib_class = 0;
7330   return lib_class;
7331 }
7332 
7333 void
7334 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
7335 {
7336   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7337       && bfd_get_format (abfd) == bfd_object)
7338     elf_dyn_lib_class (abfd) = lib_class;
7339 }
7340 
7341 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
7342    the linker ELF emulation code.  */
7343 
7344 struct bfd_link_needed_list *
7345 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
7346 			 struct bfd_link_info *info)
7347 {
7348   if (! is_elf_hash_table (info->hash))
7349     return NULL;
7350   return elf_hash_table (info)->needed;
7351 }
7352 
7353 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
7354    hook for the linker ELF emulation code.  */
7355 
7356 struct bfd_link_needed_list *
7357 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
7358 			  struct bfd_link_info *info)
7359 {
7360   if (! is_elf_hash_table (info->hash))
7361     return NULL;
7362   return elf_hash_table (info)->runpath;
7363 }
7364 
7365 /* Get the name actually used for a dynamic object for a link.  This
7366    is the SONAME entry if there is one.  Otherwise, it is the string
7367    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
7368 
7369 const char *
7370 bfd_elf_get_dt_soname (bfd *abfd)
7371 {
7372   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
7373       && bfd_get_format (abfd) == bfd_object)
7374     return elf_dt_name (abfd);
7375   return NULL;
7376 }
7377 
7378 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
7379    the ELF linker emulation code.  */
7380 
7381 bfd_boolean
7382 bfd_elf_get_bfd_needed_list (bfd *abfd,
7383 			     struct bfd_link_needed_list **pneeded)
7384 {
7385   asection *s;
7386   bfd_byte *dynbuf = NULL;
7387   unsigned int elfsec;
7388   unsigned long shlink;
7389   bfd_byte *extdyn, *extdynend;
7390   size_t extdynsize;
7391   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7392 
7393   *pneeded = NULL;
7394 
7395   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7396       || bfd_get_format (abfd) != bfd_object)
7397     return TRUE;
7398 
7399   s = bfd_get_section_by_name (abfd, ".dynamic");
7400   if (s == NULL || s->size == 0)
7401     return TRUE;
7402 
7403   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7404     goto error_return;
7405 
7406   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7407   if (elfsec == SHN_BAD)
7408     goto error_return;
7409 
7410   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7411 
7412   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7413   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7414 
7415   extdyn = dynbuf;
7416   extdynend = extdyn + s->size;
7417   for (; extdyn < extdynend; extdyn += extdynsize)
7418     {
7419       Elf_Internal_Dyn dyn;
7420 
7421       (*swap_dyn_in) (abfd, extdyn, &dyn);
7422 
7423       if (dyn.d_tag == DT_NULL)
7424 	break;
7425 
7426       if (dyn.d_tag == DT_NEEDED)
7427 	{
7428 	  const char *string;
7429 	  struct bfd_link_needed_list *l;
7430 	  unsigned int tagv = dyn.d_un.d_val;
7431 	  bfd_size_type amt;
7432 
7433 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7434 	  if (string == NULL)
7435 	    goto error_return;
7436 
7437 	  amt = sizeof *l;
7438 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7439 	  if (l == NULL)
7440 	    goto error_return;
7441 
7442 	  l->by = abfd;
7443 	  l->name = string;
7444 	  l->next = *pneeded;
7445 	  *pneeded = l;
7446 	}
7447     }
7448 
7449   free (dynbuf);
7450 
7451   return TRUE;
7452 
7453  error_return:
7454   if (dynbuf != NULL)
7455     free (dynbuf);
7456   return FALSE;
7457 }
7458 
7459 struct elf_symbuf_symbol
7460 {
7461   unsigned long st_name;	/* Symbol name, index in string tbl */
7462   unsigned char st_info;	/* Type and binding attributes */
7463   unsigned char st_other;	/* Visibilty, and target specific */
7464 };
7465 
7466 struct elf_symbuf_head
7467 {
7468   struct elf_symbuf_symbol *ssym;
7469   size_t count;
7470   unsigned int st_shndx;
7471 };
7472 
7473 struct elf_symbol
7474 {
7475   union
7476     {
7477       Elf_Internal_Sym *isym;
7478       struct elf_symbuf_symbol *ssym;
7479     } u;
7480   const char *name;
7481 };
7482 
7483 /* Sort references to symbols by ascending section number.  */
7484 
7485 static int
7486 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7487 {
7488   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7489   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7490 
7491   return s1->st_shndx - s2->st_shndx;
7492 }
7493 
7494 static int
7495 elf_sym_name_compare (const void *arg1, const void *arg2)
7496 {
7497   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7498   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7499   return strcmp (s1->name, s2->name);
7500 }
7501 
7502 static struct elf_symbuf_head *
7503 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf)
7504 {
7505   Elf_Internal_Sym **ind, **indbufend, **indbuf;
7506   struct elf_symbuf_symbol *ssym;
7507   struct elf_symbuf_head *ssymbuf, *ssymhead;
7508   size_t i, shndx_count, total_size;
7509 
7510   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7511   if (indbuf == NULL)
7512     return NULL;
7513 
7514   for (ind = indbuf, i = 0; i < symcount; i++)
7515     if (isymbuf[i].st_shndx != SHN_UNDEF)
7516       *ind++ = &isymbuf[i];
7517   indbufend = ind;
7518 
7519   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7520 	 elf_sort_elf_symbol);
7521 
7522   shndx_count = 0;
7523   if (indbufend > indbuf)
7524     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7525       if (ind[0]->st_shndx != ind[1]->st_shndx)
7526 	shndx_count++;
7527 
7528   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7529 		+ (indbufend - indbuf) * sizeof (*ssym));
7530   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7531   if (ssymbuf == NULL)
7532     {
7533       free (indbuf);
7534       return NULL;
7535     }
7536 
7537   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7538   ssymbuf->ssym = NULL;
7539   ssymbuf->count = shndx_count;
7540   ssymbuf->st_shndx = 0;
7541   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7542     {
7543       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7544 	{
7545 	  ssymhead++;
7546 	  ssymhead->ssym = ssym;
7547 	  ssymhead->count = 0;
7548 	  ssymhead->st_shndx = (*ind)->st_shndx;
7549 	}
7550       ssym->st_name = (*ind)->st_name;
7551       ssym->st_info = (*ind)->st_info;
7552       ssym->st_other = (*ind)->st_other;
7553       ssymhead->count++;
7554     }
7555   BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count
7556 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7557 		  == total_size));
7558 
7559   free (indbuf);
7560   return ssymbuf;
7561 }
7562 
7563 /* Check if 2 sections define the same set of local and global
7564    symbols.  */
7565 
7566 static bfd_boolean
7567 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7568 				   struct bfd_link_info *info)
7569 {
7570   bfd *bfd1, *bfd2;
7571   const struct elf_backend_data *bed1, *bed2;
7572   Elf_Internal_Shdr *hdr1, *hdr2;
7573   size_t symcount1, symcount2;
7574   Elf_Internal_Sym *isymbuf1, *isymbuf2;
7575   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7576   Elf_Internal_Sym *isym, *isymend;
7577   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7578   size_t count1, count2, i;
7579   unsigned int shndx1, shndx2;
7580   bfd_boolean result;
7581 
7582   bfd1 = sec1->owner;
7583   bfd2 = sec2->owner;
7584 
7585   /* Both sections have to be in ELF.  */
7586   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7587       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7588     return FALSE;
7589 
7590   if (elf_section_type (sec1) != elf_section_type (sec2))
7591     return FALSE;
7592 
7593   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7594   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7595   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7596     return FALSE;
7597 
7598   bed1 = get_elf_backend_data (bfd1);
7599   bed2 = get_elf_backend_data (bfd2);
7600   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7601   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7602   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7603   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7604 
7605   if (symcount1 == 0 || symcount2 == 0)
7606     return FALSE;
7607 
7608   result = FALSE;
7609   isymbuf1 = NULL;
7610   isymbuf2 = NULL;
7611   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7612   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7613 
7614   if (ssymbuf1 == NULL)
7615     {
7616       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7617 				       NULL, NULL, NULL);
7618       if (isymbuf1 == NULL)
7619 	goto done;
7620 
7621       if (!info->reduce_memory_overheads)
7622 	elf_tdata (bfd1)->symbuf = ssymbuf1
7623 	  = elf_create_symbuf (symcount1, isymbuf1);
7624     }
7625 
7626   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7627     {
7628       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7629 				       NULL, NULL, NULL);
7630       if (isymbuf2 == NULL)
7631 	goto done;
7632 
7633       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7634 	elf_tdata (bfd2)->symbuf = ssymbuf2
7635 	  = elf_create_symbuf (symcount2, isymbuf2);
7636     }
7637 
7638   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7639     {
7640       /* Optimized faster version.  */
7641       size_t lo, hi, mid;
7642       struct elf_symbol *symp;
7643       struct elf_symbuf_symbol *ssym, *ssymend;
7644 
7645       lo = 0;
7646       hi = ssymbuf1->count;
7647       ssymbuf1++;
7648       count1 = 0;
7649       while (lo < hi)
7650 	{
7651 	  mid = (lo + hi) / 2;
7652 	  if (shndx1 < ssymbuf1[mid].st_shndx)
7653 	    hi = mid;
7654 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7655 	    lo = mid + 1;
7656 	  else
7657 	    {
7658 	      count1 = ssymbuf1[mid].count;
7659 	      ssymbuf1 += mid;
7660 	      break;
7661 	    }
7662 	}
7663 
7664       lo = 0;
7665       hi = ssymbuf2->count;
7666       ssymbuf2++;
7667       count2 = 0;
7668       while (lo < hi)
7669 	{
7670 	  mid = (lo + hi) / 2;
7671 	  if (shndx2 < ssymbuf2[mid].st_shndx)
7672 	    hi = mid;
7673 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7674 	    lo = mid + 1;
7675 	  else
7676 	    {
7677 	      count2 = ssymbuf2[mid].count;
7678 	      ssymbuf2 += mid;
7679 	      break;
7680 	    }
7681 	}
7682 
7683       if (count1 == 0 || count2 == 0 || count1 != count2)
7684 	goto done;
7685 
7686       symtable1
7687 	= (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1));
7688       symtable2
7689 	= (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2));
7690       if (symtable1 == NULL || symtable2 == NULL)
7691 	goto done;
7692 
7693       symp = symtable1;
7694       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7695 	   ssym < ssymend; ssym++, symp++)
7696 	{
7697 	  symp->u.ssym = ssym;
7698 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7699 							hdr1->sh_link,
7700 							ssym->st_name);
7701 	}
7702 
7703       symp = symtable2;
7704       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7705 	   ssym < ssymend; ssym++, symp++)
7706 	{
7707 	  symp->u.ssym = ssym;
7708 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7709 							hdr2->sh_link,
7710 							ssym->st_name);
7711 	}
7712 
7713       /* Sort symbol by name.  */
7714       qsort (symtable1, count1, sizeof (struct elf_symbol),
7715 	     elf_sym_name_compare);
7716       qsort (symtable2, count1, sizeof (struct elf_symbol),
7717 	     elf_sym_name_compare);
7718 
7719       for (i = 0; i < count1; i++)
7720 	/* Two symbols must have the same binding, type and name.  */
7721 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7722 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7723 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7724 	  goto done;
7725 
7726       result = TRUE;
7727       goto done;
7728     }
7729 
7730   symtable1 = (struct elf_symbol *)
7731       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7732   symtable2 = (struct elf_symbol *)
7733       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7734   if (symtable1 == NULL || symtable2 == NULL)
7735     goto done;
7736 
7737   /* Count definitions in the section.  */
7738   count1 = 0;
7739   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7740     if (isym->st_shndx == shndx1)
7741       symtable1[count1++].u.isym = isym;
7742 
7743   count2 = 0;
7744   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7745     if (isym->st_shndx == shndx2)
7746       symtable2[count2++].u.isym = isym;
7747 
7748   if (count1 == 0 || count2 == 0 || count1 != count2)
7749     goto done;
7750 
7751   for (i = 0; i < count1; i++)
7752     symtable1[i].name
7753       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7754 					 symtable1[i].u.isym->st_name);
7755 
7756   for (i = 0; i < count2; i++)
7757     symtable2[i].name
7758       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7759 					 symtable2[i].u.isym->st_name);
7760 
7761   /* Sort symbol by name.  */
7762   qsort (symtable1, count1, sizeof (struct elf_symbol),
7763 	 elf_sym_name_compare);
7764   qsort (symtable2, count1, sizeof (struct elf_symbol),
7765 	 elf_sym_name_compare);
7766 
7767   for (i = 0; i < count1; i++)
7768     /* Two symbols must have the same binding, type and name.  */
7769     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7770 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7771 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7772       goto done;
7773 
7774   result = TRUE;
7775 
7776 done:
7777   if (symtable1)
7778     free (symtable1);
7779   if (symtable2)
7780     free (symtable2);
7781   if (isymbuf1)
7782     free (isymbuf1);
7783   if (isymbuf2)
7784     free (isymbuf2);
7785 
7786   return result;
7787 }
7788 
7789 /* Return TRUE if 2 section types are compatible.  */
7790 
7791 bfd_boolean
7792 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7793 				 bfd *bbfd, const asection *bsec)
7794 {
7795   if (asec == NULL
7796       || bsec == NULL
7797       || abfd->xvec->flavour != bfd_target_elf_flavour
7798       || bbfd->xvec->flavour != bfd_target_elf_flavour)
7799     return TRUE;
7800 
7801   return elf_section_type (asec) == elf_section_type (bsec);
7802 }
7803 
7804 /* Final phase of ELF linker.  */
7805 
7806 /* A structure we use to avoid passing large numbers of arguments.  */
7807 
7808 struct elf_final_link_info
7809 {
7810   /* General link information.  */
7811   struct bfd_link_info *info;
7812   /* Output BFD.  */
7813   bfd *output_bfd;
7814   /* Symbol string table.  */
7815   struct elf_strtab_hash *symstrtab;
7816   /* .hash section.  */
7817   asection *hash_sec;
7818   /* symbol version section (.gnu.version).  */
7819   asection *symver_sec;
7820   /* Buffer large enough to hold contents of any section.  */
7821   bfd_byte *contents;
7822   /* Buffer large enough to hold external relocs of any section.  */
7823   void *external_relocs;
7824   /* Buffer large enough to hold internal relocs of any section.  */
7825   Elf_Internal_Rela *internal_relocs;
7826   /* Buffer large enough to hold external local symbols of any input
7827      BFD.  */
7828   bfd_byte *external_syms;
7829   /* And a buffer for symbol section indices.  */
7830   Elf_External_Sym_Shndx *locsym_shndx;
7831   /* Buffer large enough to hold internal local symbols of any input
7832      BFD.  */
7833   Elf_Internal_Sym *internal_syms;
7834   /* Array large enough to hold a symbol index for each local symbol
7835      of any input BFD.  */
7836   long *indices;
7837   /* Array large enough to hold a section pointer for each local
7838      symbol of any input BFD.  */
7839   asection **sections;
7840   /* Buffer for SHT_SYMTAB_SHNDX section.  */
7841   Elf_External_Sym_Shndx *symshndxbuf;
7842   /* Number of STT_FILE syms seen.  */
7843   size_t filesym_count;
7844 };
7845 
7846 /* This struct is used to pass information to elf_link_output_extsym.  */
7847 
7848 struct elf_outext_info
7849 {
7850   bfd_boolean failed;
7851   bfd_boolean localsyms;
7852   bfd_boolean file_sym_done;
7853   struct elf_final_link_info *flinfo;
7854 };
7855 
7856 
7857 /* Support for evaluating a complex relocation.
7858 
7859    Complex relocations are generalized, self-describing relocations.  The
7860    implementation of them consists of two parts: complex symbols, and the
7861    relocations themselves.
7862 
7863    The relocations are use a reserved elf-wide relocation type code (R_RELC
7864    external / BFD_RELOC_RELC internal) and an encoding of relocation field
7865    information (start bit, end bit, word width, etc) into the addend.  This
7866    information is extracted from CGEN-generated operand tables within gas.
7867 
7868    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7869    internal) representing prefix-notation expressions, including but not
7870    limited to those sorts of expressions normally encoded as addends in the
7871    addend field.  The symbol mangling format is:
7872 
7873    <node> := <literal>
7874           |  <unary-operator> ':' <node>
7875           |  <binary-operator> ':' <node> ':' <node>
7876 	  ;
7877 
7878    <literal> := 's' <digits=N> ':' <N character symbol name>
7879              |  'S' <digits=N> ':' <N character section name>
7880 	     |  '#' <hexdigits>
7881 	     ;
7882 
7883    <binary-operator> := as in C
7884    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7885 
7886 static void
7887 set_symbol_value (bfd *bfd_with_globals,
7888 		  Elf_Internal_Sym *isymbuf,
7889 		  size_t locsymcount,
7890 		  size_t symidx,
7891 		  bfd_vma val)
7892 {
7893   struct elf_link_hash_entry **sym_hashes;
7894   struct elf_link_hash_entry *h;
7895   size_t extsymoff = locsymcount;
7896 
7897   if (symidx < locsymcount)
7898     {
7899       Elf_Internal_Sym *sym;
7900 
7901       sym = isymbuf + symidx;
7902       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7903 	{
7904 	  /* It is a local symbol: move it to the
7905 	     "absolute" section and give it a value.  */
7906 	  sym->st_shndx = SHN_ABS;
7907 	  sym->st_value = val;
7908 	  return;
7909 	}
7910       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7911       extsymoff = 0;
7912     }
7913 
7914   /* It is a global symbol: set its link type
7915      to "defined" and give it a value.  */
7916 
7917   sym_hashes = elf_sym_hashes (bfd_with_globals);
7918   h = sym_hashes [symidx - extsymoff];
7919   while (h->root.type == bfd_link_hash_indirect
7920 	 || h->root.type == bfd_link_hash_warning)
7921     h = (struct elf_link_hash_entry *) h->root.u.i.link;
7922   h->root.type = bfd_link_hash_defined;
7923   h->root.u.def.value = val;
7924   h->root.u.def.section = bfd_abs_section_ptr;
7925 }
7926 
7927 static bfd_boolean
7928 resolve_symbol (const char *name,
7929 		bfd *input_bfd,
7930 		struct elf_final_link_info *flinfo,
7931 		bfd_vma *result,
7932 		Elf_Internal_Sym *isymbuf,
7933 		size_t locsymcount)
7934 {
7935   Elf_Internal_Sym *sym;
7936   struct bfd_link_hash_entry *global_entry;
7937   const char *candidate = NULL;
7938   Elf_Internal_Shdr *symtab_hdr;
7939   size_t i;
7940 
7941   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7942 
7943   for (i = 0; i < locsymcount; ++ i)
7944     {
7945       sym = isymbuf + i;
7946 
7947       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7948 	continue;
7949 
7950       candidate = bfd_elf_string_from_elf_section (input_bfd,
7951 						   symtab_hdr->sh_link,
7952 						   sym->st_name);
7953 #ifdef DEBUG
7954       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7955 	      name, candidate, (unsigned long) sym->st_value);
7956 #endif
7957       if (candidate && strcmp (candidate, name) == 0)
7958 	{
7959 	  asection *sec = flinfo->sections [i];
7960 
7961 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7962 	  *result += sec->output_offset + sec->output_section->vma;
7963 #ifdef DEBUG
7964 	  printf ("Found symbol with value %8.8lx\n",
7965 		  (unsigned long) *result);
7966 #endif
7967 	  return TRUE;
7968 	}
7969     }
7970 
7971   /* Hmm, haven't found it yet. perhaps it is a global.  */
7972   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7973 				       FALSE, FALSE, TRUE);
7974   if (!global_entry)
7975     return FALSE;
7976 
7977   if (global_entry->type == bfd_link_hash_defined
7978       || global_entry->type == bfd_link_hash_defweak)
7979     {
7980       *result = (global_entry->u.def.value
7981 		 + global_entry->u.def.section->output_section->vma
7982 		 + global_entry->u.def.section->output_offset);
7983 #ifdef DEBUG
7984       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7985 	      global_entry->root.string, (unsigned long) *result);
7986 #endif
7987       return TRUE;
7988     }
7989 
7990   return FALSE;
7991 }
7992 
7993 /* Looks up NAME in SECTIONS.  If found sets RESULT to NAME's address (in
7994    bytes) and returns TRUE, otherwise returns FALSE.  Accepts pseudo-section
7995    names like "foo.end" which is the end address of section "foo".  */
7996 
7997 static bfd_boolean
7998 resolve_section (const char *name,
7999 		 asection *sections,
8000 		 bfd_vma *result,
8001 		 bfd * abfd)
8002 {
8003   asection *curr;
8004   unsigned int len;
8005 
8006   for (curr = sections; curr; curr = curr->next)
8007     if (strcmp (curr->name, name) == 0)
8008       {
8009 	*result = curr->vma;
8010 	return TRUE;
8011       }
8012 
8013   /* Hmm. still haven't found it. try pseudo-section names.  */
8014   /* FIXME: This could be coded more efficiently...  */
8015   for (curr = sections; curr; curr = curr->next)
8016     {
8017       len = strlen (curr->name);
8018       if (len > strlen (name))
8019 	continue;
8020 
8021       if (strncmp (curr->name, name, len) == 0)
8022 	{
8023 	  if (strncmp (".end", name + len, 4) == 0)
8024 	    {
8025 	      *result = curr->vma + curr->size / bfd_octets_per_byte (abfd);
8026 	      return TRUE;
8027 	    }
8028 
8029 	  /* Insert more pseudo-section names here, if you like.  */
8030 	}
8031     }
8032 
8033   return FALSE;
8034 }
8035 
8036 static void
8037 undefined_reference (const char *reftype, const char *name)
8038 {
8039   /* xgettext:c-format */
8040   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
8041 		      reftype, name);
8042 }
8043 
8044 static bfd_boolean
8045 eval_symbol (bfd_vma *result,
8046 	     const char **symp,
8047 	     bfd *input_bfd,
8048 	     struct elf_final_link_info *flinfo,
8049 	     bfd_vma dot,
8050 	     Elf_Internal_Sym *isymbuf,
8051 	     size_t locsymcount,
8052 	     int signed_p)
8053 {
8054   size_t len;
8055   size_t symlen;
8056   bfd_vma a;
8057   bfd_vma b;
8058   char symbuf[4096];
8059   const char *sym = *symp;
8060   const char *symend;
8061   bfd_boolean symbol_is_section = FALSE;
8062 
8063   len = strlen (sym);
8064   symend = sym + len;
8065 
8066   if (len < 1 || len > sizeof (symbuf))
8067     {
8068       bfd_set_error (bfd_error_invalid_operation);
8069       return FALSE;
8070     }
8071 
8072   switch (* sym)
8073     {
8074     case '.':
8075       *result = dot;
8076       *symp = sym + 1;
8077       return TRUE;
8078 
8079     case '#':
8080       ++sym;
8081       *result = strtoul (sym, (char **) symp, 16);
8082       return TRUE;
8083 
8084     case 'S':
8085       symbol_is_section = TRUE;
8086       /* Fall through.  */
8087     case 's':
8088       ++sym;
8089       symlen = strtol (sym, (char **) symp, 10);
8090       sym = *symp + 1; /* Skip the trailing ':'.  */
8091 
8092       if (symend < sym || symlen + 1 > sizeof (symbuf))
8093 	{
8094 	  bfd_set_error (bfd_error_invalid_operation);
8095 	  return FALSE;
8096 	}
8097 
8098       memcpy (symbuf, sym, symlen);
8099       symbuf[symlen] = '\0';
8100       *symp = sym + symlen;
8101 
8102       /* Is it always possible, with complex symbols, that gas "mis-guessed"
8103 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
8104 	 interpretation here; section means "try section first", not "must be a
8105 	 section", and likewise with symbol.  */
8106 
8107       if (symbol_is_section)
8108 	{
8109 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd)
8110 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
8111 				  isymbuf, locsymcount))
8112 	    {
8113 	      undefined_reference ("section", symbuf);
8114 	      return FALSE;
8115 	    }
8116 	}
8117       else
8118 	{
8119 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
8120 			       isymbuf, locsymcount)
8121 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
8122 				   result, input_bfd))
8123 	    {
8124 	      undefined_reference ("symbol", symbuf);
8125 	      return FALSE;
8126 	    }
8127 	}
8128 
8129       return TRUE;
8130 
8131       /* All that remains are operators.  */
8132 
8133 #define UNARY_OP(op)						\
8134   if (strncmp (sym, #op, strlen (#op)) == 0)			\
8135     {								\
8136       sym += strlen (#op);					\
8137       if (*sym == ':')						\
8138 	++sym;							\
8139       *symp = sym;						\
8140       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8141 			isymbuf, locsymcount, signed_p))	\
8142 	return FALSE;						\
8143       if (signed_p)						\
8144 	*result = op ((bfd_signed_vma) a);			\
8145       else							\
8146 	*result = op a;						\
8147       return TRUE;						\
8148     }
8149 
8150 #define BINARY_OP(op)						\
8151   if (strncmp (sym, #op, strlen (#op)) == 0)			\
8152     {								\
8153       sym += strlen (#op);					\
8154       if (*sym == ':')						\
8155 	++sym;							\
8156       *symp = sym;						\
8157       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
8158 			isymbuf, locsymcount, signed_p))	\
8159 	return FALSE;						\
8160       ++*symp;							\
8161       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
8162 			isymbuf, locsymcount, signed_p))	\
8163 	return FALSE;						\
8164       if (signed_p)						\
8165 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
8166       else							\
8167 	*result = a op b;					\
8168       return TRUE;						\
8169     }
8170 
8171     default:
8172       UNARY_OP  (0-);
8173       BINARY_OP (<<);
8174       BINARY_OP (>>);
8175       BINARY_OP (==);
8176       BINARY_OP (!=);
8177       BINARY_OP (<=);
8178       BINARY_OP (>=);
8179       BINARY_OP (&&);
8180       BINARY_OP (||);
8181       UNARY_OP  (~);
8182       UNARY_OP  (!);
8183       BINARY_OP (*);
8184       BINARY_OP (/);
8185       BINARY_OP (%);
8186       BINARY_OP (^);
8187       BINARY_OP (|);
8188       BINARY_OP (&);
8189       BINARY_OP (+);
8190       BINARY_OP (-);
8191       BINARY_OP (<);
8192       BINARY_OP (>);
8193 #undef UNARY_OP
8194 #undef BINARY_OP
8195       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
8196       bfd_set_error (bfd_error_invalid_operation);
8197       return FALSE;
8198     }
8199 }
8200 
8201 static void
8202 put_value (bfd_vma size,
8203 	   unsigned long chunksz,
8204 	   bfd *input_bfd,
8205 	   bfd_vma x,
8206 	   bfd_byte *location)
8207 {
8208   location += (size - chunksz);
8209 
8210   for (; size; size -= chunksz, location -= chunksz)
8211     {
8212       switch (chunksz)
8213 	{
8214 	case 1:
8215 	  bfd_put_8 (input_bfd, x, location);
8216 	  x >>= 8;
8217 	  break;
8218 	case 2:
8219 	  bfd_put_16 (input_bfd, x, location);
8220 	  x >>= 16;
8221 	  break;
8222 	case 4:
8223 	  bfd_put_32 (input_bfd, x, location);
8224 	  /* Computed this way because x >>= 32 is undefined if x is a 32-bit value.  */
8225 	  x >>= 16;
8226 	  x >>= 16;
8227 	  break;
8228 #ifdef BFD64
8229 	case 8:
8230 	  bfd_put_64 (input_bfd, x, location);
8231 	  /* Computed this way because x >>= 64 is undefined if x is a 64-bit value.  */
8232 	  x >>= 32;
8233 	  x >>= 32;
8234 	  break;
8235 #endif
8236 	default:
8237 	  abort ();
8238 	  break;
8239 	}
8240     }
8241 }
8242 
8243 static bfd_vma
8244 get_value (bfd_vma size,
8245 	   unsigned long chunksz,
8246 	   bfd *input_bfd,
8247 	   bfd_byte *location)
8248 {
8249   int shift;
8250   bfd_vma x = 0;
8251 
8252   /* Sanity checks.  */
8253   BFD_ASSERT (chunksz <= sizeof (x)
8254 	      && size >= chunksz
8255 	      && chunksz != 0
8256 	      && (size % chunksz) == 0
8257 	      && input_bfd != NULL
8258 	      && location != NULL);
8259 
8260   if (chunksz == sizeof (x))
8261     {
8262       BFD_ASSERT (size == chunksz);
8263 
8264       /* Make sure that we do not perform an undefined shift operation.
8265 	 We know that size == chunksz so there will only be one iteration
8266 	 of the loop below.  */
8267       shift = 0;
8268     }
8269   else
8270     shift = 8 * chunksz;
8271 
8272   for (; size; size -= chunksz, location += chunksz)
8273     {
8274       switch (chunksz)
8275 	{
8276 	case 1:
8277 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
8278 	  break;
8279 	case 2:
8280 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
8281 	  break;
8282 	case 4:
8283 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
8284 	  break;
8285 #ifdef BFD64
8286 	case 8:
8287 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
8288 	  break;
8289 #endif
8290 	default:
8291 	  abort ();
8292 	}
8293     }
8294   return x;
8295 }
8296 
8297 static void
8298 decode_complex_addend (unsigned long *start,   /* in bits */
8299 		       unsigned long *oplen,   /* in bits */
8300 		       unsigned long *len,     /* in bits */
8301 		       unsigned long *wordsz,  /* in bytes */
8302 		       unsigned long *chunksz, /* in bytes */
8303 		       unsigned long *lsb0_p,
8304 		       unsigned long *signed_p,
8305 		       unsigned long *trunc_p,
8306 		       unsigned long encoded)
8307 {
8308   * start     =  encoded        & 0x3F;
8309   * len       = (encoded >>  6) & 0x3F;
8310   * oplen     = (encoded >> 12) & 0x3F;
8311   * wordsz    = (encoded >> 18) & 0xF;
8312   * chunksz   = (encoded >> 22) & 0xF;
8313   * lsb0_p    = (encoded >> 27) & 1;
8314   * signed_p  = (encoded >> 28) & 1;
8315   * trunc_p   = (encoded >> 29) & 1;
8316 }
8317 
8318 bfd_reloc_status_type
8319 bfd_elf_perform_complex_relocation (bfd *input_bfd,
8320 				    asection *input_section ATTRIBUTE_UNUSED,
8321 				    bfd_byte *contents,
8322 				    Elf_Internal_Rela *rel,
8323 				    bfd_vma relocation)
8324 {
8325   bfd_vma shift, x, mask;
8326   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
8327   bfd_reloc_status_type r;
8328 
8329   /*  Perform this reloc, since it is complex.
8330       (this is not to say that it necessarily refers to a complex
8331       symbol; merely that it is a self-describing CGEN based reloc.
8332       i.e. the addend has the complete reloc information (bit start, end,
8333       word size, etc) encoded within it.).  */
8334 
8335   decode_complex_addend (&start, &oplen, &len, &wordsz,
8336 			 &chunksz, &lsb0_p, &signed_p,
8337 			 &trunc_p, rel->r_addend);
8338 
8339   mask = (((1L << (len - 1)) - 1) << 1) | 1;
8340 
8341   if (lsb0_p)
8342     shift = (start + 1) - len;
8343   else
8344     shift = (8 * wordsz) - (start + len);
8345 
8346   x = get_value (wordsz, chunksz, input_bfd,
8347 		 contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8348 
8349 #ifdef DEBUG
8350   printf ("Doing complex reloc: "
8351 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
8352 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
8353 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
8354 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
8355 	  oplen, (unsigned long) x, (unsigned long) mask,
8356 	  (unsigned long) relocation);
8357 #endif
8358 
8359   r = bfd_reloc_ok;
8360   if (! trunc_p)
8361     /* Now do an overflow check.  */
8362     r = bfd_check_overflow ((signed_p
8363 			     ? complain_overflow_signed
8364 			     : complain_overflow_unsigned),
8365 			    len, 0, (8 * wordsz),
8366 			    relocation);
8367 
8368   /* Do the deed.  */
8369   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
8370 
8371 #ifdef DEBUG
8372   printf ("           relocation: %8.8lx\n"
8373 	  "         shifted mask: %8.8lx\n"
8374 	  " shifted/masked reloc: %8.8lx\n"
8375 	  "               result: %8.8lx\n",
8376 	  (unsigned long) relocation, (unsigned long) (mask << shift),
8377 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
8378 #endif
8379   put_value (wordsz, chunksz, input_bfd, x,
8380 	     contents + rel->r_offset * bfd_octets_per_byte (input_bfd));
8381   return r;
8382 }
8383 
8384 /* Functions to read r_offset from external (target order) reloc
8385    entry.  Faster than bfd_getl32 et al, because we let the compiler
8386    know the value is aligned.  */
8387 
8388 static bfd_vma
8389 ext32l_r_offset (const void *p)
8390 {
8391   union aligned32
8392   {
8393     uint32_t v;
8394     unsigned char c[4];
8395   };
8396   const union aligned32 *a
8397     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8398 
8399   uint32_t aval = (  (uint32_t) a->c[0]
8400 		   | (uint32_t) a->c[1] << 8
8401 		   | (uint32_t) a->c[2] << 16
8402 		   | (uint32_t) a->c[3] << 24);
8403   return aval;
8404 }
8405 
8406 static bfd_vma
8407 ext32b_r_offset (const void *p)
8408 {
8409   union aligned32
8410   {
8411     uint32_t v;
8412     unsigned char c[4];
8413   };
8414   const union aligned32 *a
8415     = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset;
8416 
8417   uint32_t aval = (  (uint32_t) a->c[0] << 24
8418 		   | (uint32_t) a->c[1] << 16
8419 		   | (uint32_t) a->c[2] << 8
8420 		   | (uint32_t) a->c[3]);
8421   return aval;
8422 }
8423 
8424 #ifdef BFD_HOST_64_BIT
8425 static bfd_vma
8426 ext64l_r_offset (const void *p)
8427 {
8428   union aligned64
8429   {
8430     uint64_t v;
8431     unsigned char c[8];
8432   };
8433   const union aligned64 *a
8434     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8435 
8436   uint64_t aval = (  (uint64_t) a->c[0]
8437 		   | (uint64_t) a->c[1] << 8
8438 		   | (uint64_t) a->c[2] << 16
8439 		   | (uint64_t) a->c[3] << 24
8440 		   | (uint64_t) a->c[4] << 32
8441 		   | (uint64_t) a->c[5] << 40
8442 		   | (uint64_t) a->c[6] << 48
8443 		   | (uint64_t) a->c[7] << 56);
8444   return aval;
8445 }
8446 
8447 static bfd_vma
8448 ext64b_r_offset (const void *p)
8449 {
8450   union aligned64
8451   {
8452     uint64_t v;
8453     unsigned char c[8];
8454   };
8455   const union aligned64 *a
8456     = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset;
8457 
8458   uint64_t aval = (  (uint64_t) a->c[0] << 56
8459 		   | (uint64_t) a->c[1] << 48
8460 		   | (uint64_t) a->c[2] << 40
8461 		   | (uint64_t) a->c[3] << 32
8462 		   | (uint64_t) a->c[4] << 24
8463 		   | (uint64_t) a->c[5] << 16
8464 		   | (uint64_t) a->c[6] << 8
8465 		   | (uint64_t) a->c[7]);
8466   return aval;
8467 }
8468 #endif
8469 
8470 /* When performing a relocatable link, the input relocations are
8471    preserved.  But, if they reference global symbols, the indices
8472    referenced must be updated.  Update all the relocations found in
8473    RELDATA.  */
8474 
8475 static bfd_boolean
8476 elf_link_adjust_relocs (bfd *abfd,
8477 			asection *sec,
8478 			struct bfd_elf_section_reloc_data *reldata,
8479 			bfd_boolean sort)
8480 {
8481   unsigned int i;
8482   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8483   bfd_byte *erela;
8484   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8485   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8486   bfd_vma r_type_mask;
8487   int r_sym_shift;
8488   unsigned int count = reldata->count;
8489   struct elf_link_hash_entry **rel_hash = reldata->hashes;
8490 
8491   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8492     {
8493       swap_in = bed->s->swap_reloc_in;
8494       swap_out = bed->s->swap_reloc_out;
8495     }
8496   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8497     {
8498       swap_in = bed->s->swap_reloca_in;
8499       swap_out = bed->s->swap_reloca_out;
8500     }
8501   else
8502     abort ();
8503 
8504   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8505     abort ();
8506 
8507   if (bed->s->arch_size == 32)
8508     {
8509       r_type_mask = 0xff;
8510       r_sym_shift = 8;
8511     }
8512   else
8513     {
8514       r_type_mask = 0xffffffff;
8515       r_sym_shift = 32;
8516     }
8517 
8518   erela = reldata->hdr->contents;
8519   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8520     {
8521       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8522       unsigned int j;
8523 
8524       if (*rel_hash == NULL)
8525 	continue;
8526 
8527       BFD_ASSERT ((*rel_hash)->indx >= 0);
8528 
8529       (*swap_in) (abfd, erela, irela);
8530       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8531 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8532 			   | (irela[j].r_info & r_type_mask));
8533       (*swap_out) (abfd, irela, erela);
8534     }
8535 
8536   if (bed->elf_backend_update_relocs)
8537     (*bed->elf_backend_update_relocs) (sec, reldata);
8538 
8539   if (sort && count != 0)
8540     {
8541       bfd_vma (*ext_r_off) (const void *);
8542       bfd_vma r_off;
8543       size_t elt_size;
8544       bfd_byte *base, *end, *p, *loc;
8545       bfd_byte *buf = NULL;
8546 
8547       if (bed->s->arch_size == 32)
8548 	{
8549 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8550 	    ext_r_off = ext32l_r_offset;
8551 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8552 	    ext_r_off = ext32b_r_offset;
8553 	  else
8554 	    abort ();
8555 	}
8556       else
8557 	{
8558 #ifdef BFD_HOST_64_BIT
8559 	  if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE)
8560 	    ext_r_off = ext64l_r_offset;
8561 	  else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG)
8562 	    ext_r_off = ext64b_r_offset;
8563 	  else
8564 #endif
8565 	    abort ();
8566 	}
8567 
8568       /*  Must use a stable sort here.  A modified insertion sort,
8569 	  since the relocs are mostly sorted already.  */
8570       elt_size = reldata->hdr->sh_entsize;
8571       base = reldata->hdr->contents;
8572       end = base + count * elt_size;
8573       if (elt_size > sizeof (Elf64_External_Rela))
8574 	abort ();
8575 
8576       /* Ensure the first element is lowest.  This acts as a sentinel,
8577 	 speeding the main loop below.  */
8578       r_off = (*ext_r_off) (base);
8579       for (p = loc = base; (p += elt_size) < end; )
8580 	{
8581 	  bfd_vma r_off2 = (*ext_r_off) (p);
8582 	  if (r_off > r_off2)
8583 	    {
8584 	      r_off = r_off2;
8585 	      loc = p;
8586 	    }
8587 	}
8588       if (loc != base)
8589 	{
8590 	  /* Don't just swap *base and *loc as that changes the order
8591 	     of the original base[0] and base[1] if they happen to
8592 	     have the same r_offset.  */
8593 	  bfd_byte onebuf[sizeof (Elf64_External_Rela)];
8594 	  memcpy (onebuf, loc, elt_size);
8595 	  memmove (base + elt_size, base, loc - base);
8596 	  memcpy (base, onebuf, elt_size);
8597 	}
8598 
8599       for (p = base + elt_size; (p += elt_size) < end; )
8600 	{
8601 	  /* base to p is sorted, *p is next to insert.  */
8602 	  r_off = (*ext_r_off) (p);
8603 	  /* Search the sorted region for location to insert.  */
8604 	  loc = p - elt_size;
8605 	  while (r_off < (*ext_r_off) (loc))
8606 	    loc -= elt_size;
8607 	  loc += elt_size;
8608 	  if (loc != p)
8609 	    {
8610 	      /* Chances are there is a run of relocs to insert here,
8611 		 from one of more input files.  Files are not always
8612 		 linked in order due to the way elf_link_input_bfd is
8613 		 called.  See pr17666.  */
8614 	      size_t sortlen = p - loc;
8615 	      bfd_vma r_off2 = (*ext_r_off) (loc);
8616 	      size_t runlen = elt_size;
8617 	      size_t buf_size = 96 * 1024;
8618 	      while (p + runlen < end
8619 		     && (sortlen <= buf_size
8620 			 || runlen + elt_size <= buf_size)
8621 		     && r_off2 > (*ext_r_off) (p + runlen))
8622 		runlen += elt_size;
8623 	      if (buf == NULL)
8624 		{
8625 		  buf = bfd_malloc (buf_size);
8626 		  if (buf == NULL)
8627 		    return FALSE;
8628 		}
8629 	      if (runlen < sortlen)
8630 		{
8631 		  memcpy (buf, p, runlen);
8632 		  memmove (loc + runlen, loc, sortlen);
8633 		  memcpy (loc, buf, runlen);
8634 		}
8635 	      else
8636 		{
8637 		  memcpy (buf, loc, sortlen);
8638 		  memmove (loc, p, runlen);
8639 		  memcpy (loc + runlen, buf, sortlen);
8640 		}
8641 	      p += runlen - elt_size;
8642 	    }
8643 	}
8644       /* Hashes are no longer valid.  */
8645       free (reldata->hashes);
8646       reldata->hashes = NULL;
8647       free (buf);
8648     }
8649   return TRUE;
8650 }
8651 
8652 struct elf_link_sort_rela
8653 {
8654   union {
8655     bfd_vma offset;
8656     bfd_vma sym_mask;
8657   } u;
8658   enum elf_reloc_type_class type;
8659   /* We use this as an array of size int_rels_per_ext_rel.  */
8660   Elf_Internal_Rela rela[1];
8661 };
8662 
8663 static int
8664 elf_link_sort_cmp1 (const void *A, const void *B)
8665 {
8666   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8667   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8668   int relativea, relativeb;
8669 
8670   relativea = a->type == reloc_class_relative;
8671   relativeb = b->type == reloc_class_relative;
8672 
8673   if (relativea < relativeb)
8674     return 1;
8675   if (relativea > relativeb)
8676     return -1;
8677   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8678     return -1;
8679   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8680     return 1;
8681   if (a->rela->r_offset < b->rela->r_offset)
8682     return -1;
8683   if (a->rela->r_offset > b->rela->r_offset)
8684     return 1;
8685   return 0;
8686 }
8687 
8688 static int
8689 elf_link_sort_cmp2 (const void *A, const void *B)
8690 {
8691   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8692   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8693 
8694   if (a->type < b->type)
8695     return -1;
8696   if (a->type > b->type)
8697     return 1;
8698   if (a->u.offset < b->u.offset)
8699     return -1;
8700   if (a->u.offset > b->u.offset)
8701     return 1;
8702   if (a->rela->r_offset < b->rela->r_offset)
8703     return -1;
8704   if (a->rela->r_offset > b->rela->r_offset)
8705     return 1;
8706   return 0;
8707 }
8708 
8709 static size_t
8710 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8711 {
8712   asection *dynamic_relocs;
8713   asection *rela_dyn;
8714   asection *rel_dyn;
8715   bfd_size_type count, size;
8716   size_t i, ret, sort_elt, ext_size;
8717   bfd_byte *sort, *s_non_relative, *p;
8718   struct elf_link_sort_rela *sq;
8719   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8720   int i2e = bed->s->int_rels_per_ext_rel;
8721   unsigned int opb = bfd_octets_per_byte (abfd);
8722   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8723   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8724   struct bfd_link_order *lo;
8725   bfd_vma r_sym_mask;
8726   bfd_boolean use_rela;
8727 
8728   /* Find a dynamic reloc section.  */
8729   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8730   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8731   if (rela_dyn != NULL && rela_dyn->size > 0
8732       && rel_dyn != NULL && rel_dyn->size > 0)
8733     {
8734       bfd_boolean use_rela_initialised = FALSE;
8735 
8736       /* This is just here to stop gcc from complaining.
8737 	 Its initialization checking code is not perfect.  */
8738       use_rela = TRUE;
8739 
8740       /* Both sections are present.  Examine the sizes
8741 	 of the indirect sections to help us choose.  */
8742       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8743 	if (lo->type == bfd_indirect_link_order)
8744 	  {
8745 	    asection *o = lo->u.indirect.section;
8746 
8747 	    if ((o->size % bed->s->sizeof_rela) == 0)
8748 	      {
8749 		if ((o->size % bed->s->sizeof_rel) == 0)
8750 		  /* Section size is divisible by both rel and rela sizes.
8751 		     It is of no help to us.  */
8752 		  ;
8753 		else
8754 		  {
8755 		    /* Section size is only divisible by rela.  */
8756 		    if (use_rela_initialised && (use_rela == FALSE))
8757 		      {
8758 			_bfd_error_handler (_("%B: Unable to sort relocs - "
8759 					      "they are in more than one size"),
8760 					    abfd);
8761 			bfd_set_error (bfd_error_invalid_operation);
8762 			return 0;
8763 		      }
8764 		    else
8765 		      {
8766 			use_rela = TRUE;
8767 			use_rela_initialised = TRUE;
8768 		      }
8769 		  }
8770 	      }
8771 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8772 	      {
8773 		/* Section size is only divisible by rel.  */
8774 		if (use_rela_initialised && (use_rela == TRUE))
8775 		  {
8776 		    _bfd_error_handler (_("%B: Unable to sort relocs - "
8777 					  "they are in more than one size"),
8778 					abfd);
8779 		    bfd_set_error (bfd_error_invalid_operation);
8780 		    return 0;
8781 		  }
8782 		else
8783 		  {
8784 		    use_rela = FALSE;
8785 		    use_rela_initialised = TRUE;
8786 		  }
8787 	      }
8788 	    else
8789 	      {
8790 		/* The section size is not divisible by either -
8791 		   something is wrong.  */
8792 		_bfd_error_handler (_("%B: Unable to sort relocs - "
8793 				      "they are of an unknown size"), abfd);
8794 		bfd_set_error (bfd_error_invalid_operation);
8795 		return 0;
8796 	      }
8797 	  }
8798 
8799       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8800 	if (lo->type == bfd_indirect_link_order)
8801 	  {
8802 	    asection *o = lo->u.indirect.section;
8803 
8804 	    if ((o->size % bed->s->sizeof_rela) == 0)
8805 	      {
8806 		if ((o->size % bed->s->sizeof_rel) == 0)
8807 		  /* Section size is divisible by both rel and rela sizes.
8808 		     It is of no help to us.  */
8809 		  ;
8810 		else
8811 		  {
8812 		    /* Section size is only divisible by rela.  */
8813 		    if (use_rela_initialised && (use_rela == FALSE))
8814 		      {
8815 			_bfd_error_handler (_("%B: Unable to sort relocs - "
8816 					      "they are in more than one size"),
8817 					    abfd);
8818 			bfd_set_error (bfd_error_invalid_operation);
8819 			return 0;
8820 		      }
8821 		    else
8822 		      {
8823 			use_rela = TRUE;
8824 			use_rela_initialised = TRUE;
8825 		      }
8826 		  }
8827 	      }
8828 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8829 	      {
8830 		/* Section size is only divisible by rel.  */
8831 		if (use_rela_initialised && (use_rela == TRUE))
8832 		  {
8833 		    _bfd_error_handler (_("%B: Unable to sort relocs - "
8834 					  "they are in more than one size"),
8835 					abfd);
8836 		    bfd_set_error (bfd_error_invalid_operation);
8837 		    return 0;
8838 		  }
8839 		else
8840 		  {
8841 		    use_rela = FALSE;
8842 		    use_rela_initialised = TRUE;
8843 		  }
8844 	      }
8845 	    else
8846 	      {
8847 		/* The section size is not divisible by either -
8848 		   something is wrong.  */
8849 		_bfd_error_handler (_("%B: Unable to sort relocs - "
8850 				      "they are of an unknown size"), abfd);
8851 		bfd_set_error (bfd_error_invalid_operation);
8852 		return 0;
8853 	      }
8854 	  }
8855 
8856       if (! use_rela_initialised)
8857 	/* Make a guess.  */
8858 	use_rela = TRUE;
8859     }
8860   else if (rela_dyn != NULL && rela_dyn->size > 0)
8861     use_rela = TRUE;
8862   else if (rel_dyn != NULL && rel_dyn->size > 0)
8863     use_rela = FALSE;
8864   else
8865     return 0;
8866 
8867   if (use_rela)
8868     {
8869       dynamic_relocs = rela_dyn;
8870       ext_size = bed->s->sizeof_rela;
8871       swap_in = bed->s->swap_reloca_in;
8872       swap_out = bed->s->swap_reloca_out;
8873     }
8874   else
8875     {
8876       dynamic_relocs = rel_dyn;
8877       ext_size = bed->s->sizeof_rel;
8878       swap_in = bed->s->swap_reloc_in;
8879       swap_out = bed->s->swap_reloc_out;
8880     }
8881 
8882   size = 0;
8883   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8884     if (lo->type == bfd_indirect_link_order)
8885       size += lo->u.indirect.section->size;
8886 
8887   if (size != dynamic_relocs->size)
8888     return 0;
8889 
8890   sort_elt = (sizeof (struct elf_link_sort_rela)
8891 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8892 
8893   count = dynamic_relocs->size / ext_size;
8894   if (count == 0)
8895     return 0;
8896   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8897 
8898   if (sort == NULL)
8899     {
8900       (*info->callbacks->warning)
8901 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8902       return 0;
8903     }
8904 
8905   if (bed->s->arch_size == 32)
8906     r_sym_mask = ~(bfd_vma) 0xff;
8907   else
8908     r_sym_mask = ~(bfd_vma) 0xffffffff;
8909 
8910   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8911     if (lo->type == bfd_indirect_link_order)
8912       {
8913 	bfd_byte *erel, *erelend;
8914 	asection *o = lo->u.indirect.section;
8915 
8916 	if (o->contents == NULL && o->size != 0)
8917 	  {
8918 	    /* This is a reloc section that is being handled as a normal
8919 	       section.  See bfd_section_from_shdr.  We can't combine
8920 	       relocs in this case.  */
8921 	    free (sort);
8922 	    return 0;
8923 	  }
8924 	erel = o->contents;
8925 	erelend = o->contents + o->size;
8926 	p = sort + o->output_offset * opb / ext_size * sort_elt;
8927 
8928 	while (erel < erelend)
8929 	  {
8930 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8931 
8932 	    (*swap_in) (abfd, erel, s->rela);
8933 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8934 	    s->u.sym_mask = r_sym_mask;
8935 	    p += sort_elt;
8936 	    erel += ext_size;
8937 	  }
8938       }
8939 
8940   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8941 
8942   for (i = 0, p = sort; i < count; i++, p += sort_elt)
8943     {
8944       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8945       if (s->type != reloc_class_relative)
8946 	break;
8947     }
8948   ret = i;
8949   s_non_relative = p;
8950 
8951   sq = (struct elf_link_sort_rela *) s_non_relative;
8952   for (; i < count; i++, p += sort_elt)
8953     {
8954       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8955       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8956 	sq = sp;
8957       sp->u.offset = sq->rela->r_offset;
8958     }
8959 
8960   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8961 
8962   struct elf_link_hash_table *htab = elf_hash_table (info);
8963   if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs)
8964     {
8965       /* We have plt relocs in .rela.dyn.  */
8966       sq = (struct elf_link_sort_rela *) sort;
8967       for (i = 0; i < count; i++)
8968 	if (sq[count - i - 1].type != reloc_class_plt)
8969 	  break;
8970       if (i != 0 && htab->srelplt->size == i * ext_size)
8971 	{
8972 	  struct bfd_link_order **plo;
8973 	  /* Put srelplt link_order last.  This is so the output_offset
8974 	     set in the next loop is correct for DT_JMPREL.  */
8975 	  for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; )
8976 	    if ((*plo)->type == bfd_indirect_link_order
8977 		&& (*plo)->u.indirect.section == htab->srelplt)
8978 	      {
8979 		lo = *plo;
8980 		*plo = lo->next;
8981 	      }
8982 	    else
8983 	      plo = &(*plo)->next;
8984 	  *plo = lo;
8985 	  lo->next = NULL;
8986 	  dynamic_relocs->map_tail.link_order = lo;
8987 	}
8988     }
8989 
8990   p = sort;
8991   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8992     if (lo->type == bfd_indirect_link_order)
8993       {
8994 	bfd_byte *erel, *erelend;
8995 	asection *o = lo->u.indirect.section;
8996 
8997 	erel = o->contents;
8998 	erelend = o->contents + o->size;
8999 	o->output_offset = (p - sort) / sort_elt * ext_size / opb;
9000 	while (erel < erelend)
9001 	  {
9002 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
9003 	    (*swap_out) (abfd, s->rela, erel);
9004 	    p += sort_elt;
9005 	    erel += ext_size;
9006 	  }
9007       }
9008 
9009   free (sort);
9010   *psec = dynamic_relocs;
9011   return ret;
9012 }
9013 
9014 /* Add a symbol to the output symbol string table.  */
9015 
9016 static int
9017 elf_link_output_symstrtab (struct elf_final_link_info *flinfo,
9018 			   const char *name,
9019 			   Elf_Internal_Sym *elfsym,
9020 			   asection *input_sec,
9021 			   struct elf_link_hash_entry *h)
9022 {
9023   int (*output_symbol_hook)
9024     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
9025      struct elf_link_hash_entry *);
9026   struct elf_link_hash_table *hash_table;
9027   const struct elf_backend_data *bed;
9028   bfd_size_type strtabsize;
9029 
9030   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9031 
9032   bed = get_elf_backend_data (flinfo->output_bfd);
9033   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
9034   if (output_symbol_hook != NULL)
9035     {
9036       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
9037       if (ret != 1)
9038 	return ret;
9039     }
9040 
9041   if (name == NULL
9042       || *name == '\0'
9043       || (input_sec->flags & SEC_EXCLUDE))
9044     elfsym->st_name = (unsigned long) -1;
9045   else
9046     {
9047       /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
9048 	 to get the final offset for st_name.  */
9049       elfsym->st_name
9050 	= (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab,
9051 					       name, FALSE);
9052       if (elfsym->st_name == (unsigned long) -1)
9053 	return 0;
9054     }
9055 
9056   hash_table = elf_hash_table (flinfo->info);
9057   strtabsize = hash_table->strtabsize;
9058   if (strtabsize <= hash_table->strtabcount)
9059     {
9060       strtabsize += strtabsize;
9061       hash_table->strtabsize = strtabsize;
9062       strtabsize *= sizeof (*hash_table->strtab);
9063       hash_table->strtab
9064 	= (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab,
9065 						 strtabsize);
9066       if (hash_table->strtab == NULL)
9067 	return 0;
9068     }
9069   hash_table->strtab[hash_table->strtabcount].sym = *elfsym;
9070   hash_table->strtab[hash_table->strtabcount].dest_index
9071     = hash_table->strtabcount;
9072   hash_table->strtab[hash_table->strtabcount].destshndx_index
9073     = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0;
9074 
9075   bfd_get_symcount (flinfo->output_bfd) += 1;
9076   hash_table->strtabcount += 1;
9077 
9078   return 1;
9079 }
9080 
9081 /* Swap symbols out to the symbol table and flush the output symbols to
9082    the file.  */
9083 
9084 static bfd_boolean
9085 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo)
9086 {
9087   struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info);
9088   bfd_size_type amt;
9089   size_t i;
9090   const struct elf_backend_data *bed;
9091   bfd_byte *symbuf;
9092   Elf_Internal_Shdr *hdr;
9093   file_ptr pos;
9094   bfd_boolean ret;
9095 
9096   if (!hash_table->strtabcount)
9097     return TRUE;
9098 
9099   BFD_ASSERT (elf_onesymtab (flinfo->output_bfd));
9100 
9101   bed = get_elf_backend_data (flinfo->output_bfd);
9102 
9103   amt = bed->s->sizeof_sym * hash_table->strtabcount;
9104   symbuf = (bfd_byte *) bfd_malloc (amt);
9105   if (symbuf == NULL)
9106     return FALSE;
9107 
9108   if (flinfo->symshndxbuf)
9109     {
9110       amt = sizeof (Elf_External_Sym_Shndx);
9111       amt *= bfd_get_symcount (flinfo->output_bfd);
9112       flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
9113       if (flinfo->symshndxbuf == NULL)
9114 	{
9115 	  free (symbuf);
9116 	  return FALSE;
9117 	}
9118     }
9119 
9120   for (i = 0; i < hash_table->strtabcount; i++)
9121     {
9122       struct elf_sym_strtab *elfsym = &hash_table->strtab[i];
9123       if (elfsym->sym.st_name == (unsigned long) -1)
9124 	elfsym->sym.st_name = 0;
9125       else
9126 	elfsym->sym.st_name
9127 	  = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab,
9128 						    elfsym->sym.st_name);
9129       bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym,
9130 			       ((bfd_byte *) symbuf
9131 				+ (elfsym->dest_index
9132 				   * bed->s->sizeof_sym)),
9133 			       (flinfo->symshndxbuf
9134 				+ elfsym->destshndx_index));
9135     }
9136 
9137   hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
9138   pos = hdr->sh_offset + hdr->sh_size;
9139   amt = hash_table->strtabcount * bed->s->sizeof_sym;
9140   if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0
9141       && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt)
9142     {
9143       hdr->sh_size += amt;
9144       ret = TRUE;
9145     }
9146   else
9147     ret = FALSE;
9148 
9149   free (symbuf);
9150 
9151   free (hash_table->strtab);
9152   hash_table->strtab = NULL;
9153 
9154   return ret;
9155 }
9156 
9157 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
9158 
9159 static bfd_boolean
9160 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
9161 {
9162   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
9163       && sym->st_shndx < SHN_LORESERVE)
9164     {
9165       /* The gABI doesn't support dynamic symbols in output sections
9166 	 beyond 64k.  */
9167       _bfd_error_handler
9168 	/* xgettext:c-format */
9169 	(_("%B: Too many sections: %d (>= %d)"),
9170 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
9171       bfd_set_error (bfd_error_nonrepresentable_section);
9172       return FALSE;
9173     }
9174   return TRUE;
9175 }
9176 
9177 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
9178    allowing an unsatisfied unversioned symbol in the DSO to match a
9179    versioned symbol that would normally require an explicit version.
9180    We also handle the case that a DSO references a hidden symbol
9181    which may be satisfied by a versioned symbol in another DSO.  */
9182 
9183 static bfd_boolean
9184 elf_link_check_versioned_symbol (struct bfd_link_info *info,
9185 				 const struct elf_backend_data *bed,
9186 				 struct elf_link_hash_entry *h)
9187 {
9188   bfd *abfd;
9189   struct elf_link_loaded_list *loaded;
9190 
9191   if (!is_elf_hash_table (info->hash))
9192     return FALSE;
9193 
9194   /* Check indirect symbol.  */
9195   while (h->root.type == bfd_link_hash_indirect)
9196     h = (struct elf_link_hash_entry *) h->root.u.i.link;
9197 
9198   switch (h->root.type)
9199     {
9200     default:
9201       abfd = NULL;
9202       break;
9203 
9204     case bfd_link_hash_undefined:
9205     case bfd_link_hash_undefweak:
9206       abfd = h->root.u.undef.abfd;
9207       if (abfd == NULL
9208 	  || (abfd->flags & DYNAMIC) == 0
9209 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
9210 	return FALSE;
9211       break;
9212 
9213     case bfd_link_hash_defined:
9214     case bfd_link_hash_defweak:
9215       abfd = h->root.u.def.section->owner;
9216       break;
9217 
9218     case bfd_link_hash_common:
9219       abfd = h->root.u.c.p->section->owner;
9220       break;
9221     }
9222   BFD_ASSERT (abfd != NULL);
9223 
9224   for (loaded = elf_hash_table (info)->loaded;
9225        loaded != NULL;
9226        loaded = loaded->next)
9227     {
9228       bfd *input;
9229       Elf_Internal_Shdr *hdr;
9230       size_t symcount;
9231       size_t extsymcount;
9232       size_t extsymoff;
9233       Elf_Internal_Shdr *versymhdr;
9234       Elf_Internal_Sym *isym;
9235       Elf_Internal_Sym *isymend;
9236       Elf_Internal_Sym *isymbuf;
9237       Elf_External_Versym *ever;
9238       Elf_External_Versym *extversym;
9239 
9240       input = loaded->abfd;
9241 
9242       /* We check each DSO for a possible hidden versioned definition.  */
9243       if (input == abfd
9244 	  || (input->flags & DYNAMIC) == 0
9245 	  || elf_dynversym (input) == 0)
9246 	continue;
9247 
9248       hdr = &elf_tdata (input)->dynsymtab_hdr;
9249 
9250       symcount = hdr->sh_size / bed->s->sizeof_sym;
9251       if (elf_bad_symtab (input))
9252 	{
9253 	  extsymcount = symcount;
9254 	  extsymoff = 0;
9255 	}
9256       else
9257 	{
9258 	  extsymcount = symcount - hdr->sh_info;
9259 	  extsymoff = hdr->sh_info;
9260 	}
9261 
9262       if (extsymcount == 0)
9263 	continue;
9264 
9265       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
9266 				      NULL, NULL, NULL);
9267       if (isymbuf == NULL)
9268 	return FALSE;
9269 
9270       /* Read in any version definitions.  */
9271       versymhdr = &elf_tdata (input)->dynversym_hdr;
9272       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
9273       if (extversym == NULL)
9274 	goto error_ret;
9275 
9276       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
9277 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
9278 	      != versymhdr->sh_size))
9279 	{
9280 	  free (extversym);
9281 	error_ret:
9282 	  free (isymbuf);
9283 	  return FALSE;
9284 	}
9285 
9286       ever = extversym + extsymoff;
9287       isymend = isymbuf + extsymcount;
9288       for (isym = isymbuf; isym < isymend; isym++, ever++)
9289 	{
9290 	  const char *name;
9291 	  Elf_Internal_Versym iver;
9292 	  unsigned short version_index;
9293 
9294 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
9295 	      || isym->st_shndx == SHN_UNDEF)
9296 	    continue;
9297 
9298 	  name = bfd_elf_string_from_elf_section (input,
9299 						  hdr->sh_link,
9300 						  isym->st_name);
9301 	  if (strcmp (name, h->root.root.string) != 0)
9302 	    continue;
9303 
9304 	  _bfd_elf_swap_versym_in (input, ever, &iver);
9305 
9306 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
9307 	      && !(h->def_regular
9308 		   && h->forced_local))
9309 	    {
9310 	      /* If we have a non-hidden versioned sym, then it should
9311 		 have provided a definition for the undefined sym unless
9312 		 it is defined in a non-shared object and forced local.
9313 	       */
9314 	      abort ();
9315 	    }
9316 
9317 	  version_index = iver.vs_vers & VERSYM_VERSION;
9318 	  if (version_index == 1 || version_index == 2)
9319 	    {
9320 	      /* This is the base or first version.  We can use it.  */
9321 	      free (extversym);
9322 	      free (isymbuf);
9323 	      return TRUE;
9324 	    }
9325 	}
9326 
9327       free (extversym);
9328       free (isymbuf);
9329     }
9330 
9331   return FALSE;
9332 }
9333 
9334 /* Convert ELF common symbol TYPE.  */
9335 
9336 static int
9337 elf_link_convert_common_type (struct bfd_link_info *info, int type)
9338 {
9339   /* Commom symbol can only appear in relocatable link.  */
9340   if (!bfd_link_relocatable (info))
9341     abort ();
9342   switch (info->elf_stt_common)
9343     {
9344     case unchanged:
9345       break;
9346     case elf_stt_common:
9347       type = STT_COMMON;
9348       break;
9349     case no_elf_stt_common:
9350       type = STT_OBJECT;
9351       break;
9352     }
9353   return type;
9354 }
9355 
9356 /* Add an external symbol to the symbol table.  This is called from
9357    the hash table traversal routine.  When generating a shared object,
9358    we go through the symbol table twice.  The first time we output
9359    anything that might have been forced to local scope in a version
9360    script.  The second time we output the symbols that are still
9361    global symbols.  */
9362 
9363 static bfd_boolean
9364 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
9365 {
9366   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
9367   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
9368   struct elf_final_link_info *flinfo = eoinfo->flinfo;
9369   bfd_boolean strip;
9370   Elf_Internal_Sym sym;
9371   asection *input_sec;
9372   const struct elf_backend_data *bed;
9373   long indx;
9374   int ret;
9375   unsigned int type;
9376 
9377   if (h->root.type == bfd_link_hash_warning)
9378     {
9379       h = (struct elf_link_hash_entry *) h->root.u.i.link;
9380       if (h->root.type == bfd_link_hash_new)
9381 	return TRUE;
9382     }
9383 
9384   /* Decide whether to output this symbol in this pass.  */
9385   if (eoinfo->localsyms)
9386     {
9387       if (!h->forced_local)
9388 	return TRUE;
9389     }
9390   else
9391     {
9392       if (h->forced_local)
9393 	return TRUE;
9394     }
9395 
9396   bed = get_elf_backend_data (flinfo->output_bfd);
9397 
9398   if (h->root.type == bfd_link_hash_undefined)
9399     {
9400       /* If we have an undefined symbol reference here then it must have
9401 	 come from a shared library that is being linked in.  (Undefined
9402 	 references in regular files have already been handled unless
9403 	 they are in unreferenced sections which are removed by garbage
9404 	 collection).  */
9405       bfd_boolean ignore_undef = FALSE;
9406 
9407       /* Some symbols may be special in that the fact that they're
9408 	 undefined can be safely ignored - let backend determine that.  */
9409       if (bed->elf_backend_ignore_undef_symbol)
9410 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
9411 
9412       /* If we are reporting errors for this situation then do so now.  */
9413       if (!ignore_undef
9414 	  && h->ref_dynamic
9415 	  && (!h->ref_regular || flinfo->info->gc_sections)
9416 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
9417 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
9418 	(*flinfo->info->callbacks->undefined_symbol)
9419 	  (flinfo->info, h->root.root.string,
9420 	   h->ref_regular ? NULL : h->root.u.undef.abfd,
9421 	   NULL, 0,
9422 	   flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR);
9423 
9424       /* Strip a global symbol defined in a discarded section.  */
9425       if (h->indx == -3)
9426 	return TRUE;
9427     }
9428 
9429   /* We should also warn if a forced local symbol is referenced from
9430      shared libraries.  */
9431   if (bfd_link_executable (flinfo->info)
9432       && h->forced_local
9433       && h->ref_dynamic
9434       && h->def_regular
9435       && !h->dynamic_def
9436       && h->ref_dynamic_nonweak
9437       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
9438     {
9439       bfd *def_bfd;
9440       const char *msg;
9441       struct elf_link_hash_entry *hi = h;
9442 
9443       /* Check indirect symbol.  */
9444       while (hi->root.type == bfd_link_hash_indirect)
9445 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
9446 
9447       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
9448 	/* xgettext:c-format */
9449 	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
9450       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
9451 	/* xgettext:c-format */
9452 	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
9453       else
9454 	/* xgettext:c-format */
9455 	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
9456       def_bfd = flinfo->output_bfd;
9457       if (hi->root.u.def.section != bfd_abs_section_ptr)
9458 	def_bfd = hi->root.u.def.section->owner;
9459       _bfd_error_handler (msg, flinfo->output_bfd,
9460 			  h->root.root.string, def_bfd);
9461       bfd_set_error (bfd_error_bad_value);
9462       eoinfo->failed = TRUE;
9463       return FALSE;
9464     }
9465 
9466   /* We don't want to output symbols that have never been mentioned by
9467      a regular file, or that we have been told to strip.  However, if
9468      h->indx is set to -2, the symbol is used by a reloc and we must
9469      output it.  */
9470   strip = FALSE;
9471   if (h->indx == -2)
9472     ;
9473   else if ((h->def_dynamic
9474 	    || h->ref_dynamic
9475 	    || h->root.type == bfd_link_hash_new)
9476 	   && !h->def_regular
9477 	   && !h->ref_regular)
9478     strip = TRUE;
9479   else if (flinfo->info->strip == strip_all)
9480     strip = TRUE;
9481   else if (flinfo->info->strip == strip_some
9482 	   && bfd_hash_lookup (flinfo->info->keep_hash,
9483 			       h->root.root.string, FALSE, FALSE) == NULL)
9484     strip = TRUE;
9485   else if ((h->root.type == bfd_link_hash_defined
9486 	    || h->root.type == bfd_link_hash_defweak)
9487 	   && ((flinfo->info->strip_discarded
9488 		&& discarded_section (h->root.u.def.section))
9489 	       || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0
9490 		   && h->root.u.def.section->owner != NULL
9491 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
9492     strip = TRUE;
9493   else if ((h->root.type == bfd_link_hash_undefined
9494 	    || h->root.type == bfd_link_hash_undefweak)
9495 	   && h->root.u.undef.abfd != NULL
9496 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
9497     strip = TRUE;
9498 
9499   type = h->type;
9500 
9501   /* If we're stripping it, and it's not a dynamic symbol, there's
9502      nothing else to do.   However, if it is a forced local symbol or
9503      an ifunc symbol we need to give the backend finish_dynamic_symbol
9504      function a chance to make it dynamic.  */
9505   if (strip
9506       && h->dynindx == -1
9507       && type != STT_GNU_IFUNC
9508       && !h->forced_local)
9509     return TRUE;
9510 
9511   sym.st_value = 0;
9512   sym.st_size = h->size;
9513   sym.st_other = h->other;
9514   switch (h->root.type)
9515     {
9516     default:
9517     case bfd_link_hash_new:
9518     case bfd_link_hash_warning:
9519       abort ();
9520       return FALSE;
9521 
9522     case bfd_link_hash_undefined:
9523     case bfd_link_hash_undefweak:
9524       input_sec = bfd_und_section_ptr;
9525       sym.st_shndx = SHN_UNDEF;
9526       break;
9527 
9528     case bfd_link_hash_defined:
9529     case bfd_link_hash_defweak:
9530       {
9531 	input_sec = h->root.u.def.section;
9532 	if (input_sec->output_section != NULL)
9533 	  {
9534 	    sym.st_shndx =
9535 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
9536 						 input_sec->output_section);
9537 	    if (sym.st_shndx == SHN_BAD)
9538 	      {
9539 		_bfd_error_handler
9540 		  /* xgettext:c-format */
9541 		  (_("%B: could not find output section %A for input section %A"),
9542 		   flinfo->output_bfd, input_sec->output_section, input_sec);
9543 		bfd_set_error (bfd_error_nonrepresentable_section);
9544 		eoinfo->failed = TRUE;
9545 		return FALSE;
9546 	      }
9547 
9548 	    /* ELF symbols in relocatable files are section relative,
9549 	       but in nonrelocatable files they are virtual
9550 	       addresses.  */
9551 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
9552 	    if (!bfd_link_relocatable (flinfo->info))
9553 	      {
9554 		sym.st_value += input_sec->output_section->vma;
9555 		if (h->type == STT_TLS)
9556 		  {
9557 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
9558 		    if (tls_sec != NULL)
9559 		      sym.st_value -= tls_sec->vma;
9560 		  }
9561 	      }
9562 	  }
9563 	else
9564 	  {
9565 	    BFD_ASSERT (input_sec->owner == NULL
9566 			|| (input_sec->owner->flags & DYNAMIC) != 0);
9567 	    sym.st_shndx = SHN_UNDEF;
9568 	    input_sec = bfd_und_section_ptr;
9569 	  }
9570       }
9571       break;
9572 
9573     case bfd_link_hash_common:
9574       input_sec = h->root.u.c.p->section;
9575       sym.st_shndx = bed->common_section_index (input_sec);
9576       sym.st_value = 1 << h->root.u.c.p->alignment_power;
9577       break;
9578 
9579     case bfd_link_hash_indirect:
9580       /* These symbols are created by symbol versioning.  They point
9581 	 to the decorated version of the name.  For example, if the
9582 	 symbol foo@@GNU_1.2 is the default, which should be used when
9583 	 foo is used with no version, then we add an indirect symbol
9584 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
9585 	 since the indirected symbol is already in the hash table.  */
9586       return TRUE;
9587     }
9588 
9589   if (type == STT_COMMON || type == STT_OBJECT)
9590     switch (h->root.type)
9591       {
9592       case bfd_link_hash_common:
9593 	type = elf_link_convert_common_type (flinfo->info, type);
9594 	break;
9595       case bfd_link_hash_defined:
9596       case bfd_link_hash_defweak:
9597 	if (bed->common_definition (&sym))
9598 	  type = elf_link_convert_common_type (flinfo->info, type);
9599 	else
9600 	  type = STT_OBJECT;
9601 	break;
9602       case bfd_link_hash_undefined:
9603       case bfd_link_hash_undefweak:
9604 	break;
9605       default:
9606 	abort ();
9607       }
9608 
9609   if (h->forced_local)
9610     {
9611       sym.st_info = ELF_ST_INFO (STB_LOCAL, type);
9612       /* Turn off visibility on local symbol.  */
9613       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
9614     }
9615   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
9616   else if (h->unique_global && h->def_regular)
9617     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type);
9618   else if (h->root.type == bfd_link_hash_undefweak
9619 	   || h->root.type == bfd_link_hash_defweak)
9620     sym.st_info = ELF_ST_INFO (STB_WEAK, type);
9621   else
9622     sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
9623   sym.st_target_internal = h->target_internal;
9624 
9625   /* Give the processor backend a chance to tweak the symbol value,
9626      and also to finish up anything that needs to be done for this
9627      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
9628      forced local syms when non-shared is due to a historical quirk.
9629      STT_GNU_IFUNC symbol must go through PLT.  */
9630   if ((h->type == STT_GNU_IFUNC
9631        && h->def_regular
9632        && !bfd_link_relocatable (flinfo->info))
9633       || ((h->dynindx != -1
9634 	   || h->forced_local)
9635 	  && ((bfd_link_pic (flinfo->info)
9636 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9637 		   || h->root.type != bfd_link_hash_undefweak))
9638 	      || !h->forced_local)
9639 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
9640     {
9641       if (! ((*bed->elf_backend_finish_dynamic_symbol)
9642 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
9643 	{
9644 	  eoinfo->failed = TRUE;
9645 	  return FALSE;
9646 	}
9647     }
9648 
9649   /* If we are marking the symbol as undefined, and there are no
9650      non-weak references to this symbol from a regular object, then
9651      mark the symbol as weak undefined; if there are non-weak
9652      references, mark the symbol as strong.  We can't do this earlier,
9653      because it might not be marked as undefined until the
9654      finish_dynamic_symbol routine gets through with it.  */
9655   if (sym.st_shndx == SHN_UNDEF
9656       && h->ref_regular
9657       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
9658 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
9659     {
9660       int bindtype;
9661       type = ELF_ST_TYPE (sym.st_info);
9662 
9663       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
9664       if (type == STT_GNU_IFUNC)
9665 	type = STT_FUNC;
9666 
9667       if (h->ref_regular_nonweak)
9668 	bindtype = STB_GLOBAL;
9669       else
9670 	bindtype = STB_WEAK;
9671       sym.st_info = ELF_ST_INFO (bindtype, type);
9672     }
9673 
9674   /* If this is a symbol defined in a dynamic library, don't use the
9675      symbol size from the dynamic library.  Relinking an executable
9676      against a new library may introduce gratuitous changes in the
9677      executable's symbols if we keep the size.  */
9678   if (sym.st_shndx == SHN_UNDEF
9679       && !h->def_regular
9680       && h->def_dynamic)
9681     sym.st_size = 0;
9682 
9683   /* If a non-weak symbol with non-default visibility is not defined
9684      locally, it is a fatal error.  */
9685   if (!bfd_link_relocatable (flinfo->info)
9686       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9687       && ELF_ST_BIND (sym.st_info) != STB_WEAK
9688       && h->root.type == bfd_link_hash_undefined
9689       && !h->def_regular)
9690     {
9691       const char *msg;
9692 
9693       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9694 	/* xgettext:c-format */
9695 	msg = _("%B: protected symbol `%s' isn't defined");
9696       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9697 	/* xgettext:c-format */
9698 	msg = _("%B: internal symbol `%s' isn't defined");
9699       else
9700 	/* xgettext:c-format */
9701 	msg = _("%B: hidden symbol `%s' isn't defined");
9702       _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string);
9703       bfd_set_error (bfd_error_bad_value);
9704       eoinfo->failed = TRUE;
9705       return FALSE;
9706     }
9707 
9708   /* If this symbol should be put in the .dynsym section, then put it
9709      there now.  We already know the symbol index.  We also fill in
9710      the entry in the .hash section.  */
9711   if (elf_hash_table (flinfo->info)->dynsym != NULL
9712       && h->dynindx != -1
9713       && elf_hash_table (flinfo->info)->dynamic_sections_created)
9714     {
9715       bfd_byte *esym;
9716 
9717       /* Since there is no version information in the dynamic string,
9718 	 if there is no version info in symbol version section, we will
9719 	 have a run-time problem if not linking executable, referenced
9720 	 by shared library, or not bound locally.  */
9721       if (h->verinfo.verdef == NULL
9722 	  && (!bfd_link_executable (flinfo->info)
9723 	      || h->ref_dynamic
9724 	      || !h->def_regular))
9725 	{
9726 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9727 
9728 	  if (p && p [1] != '\0')
9729 	    {
9730 	      _bfd_error_handler
9731 		/* xgettext:c-format */
9732 		(_("%B: No symbol version section for versioned symbol `%s'"),
9733 		 flinfo->output_bfd, h->root.root.string);
9734 	      eoinfo->failed = TRUE;
9735 	      return FALSE;
9736 	    }
9737 	}
9738 
9739       sym.st_name = h->dynstr_index;
9740       esym = (elf_hash_table (flinfo->info)->dynsym->contents
9741 	      + h->dynindx * bed->s->sizeof_sym);
9742       if (!check_dynsym (flinfo->output_bfd, &sym))
9743 	{
9744 	  eoinfo->failed = TRUE;
9745 	  return FALSE;
9746 	}
9747       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9748 
9749       if (flinfo->hash_sec != NULL)
9750 	{
9751 	  size_t hash_entry_size;
9752 	  bfd_byte *bucketpos;
9753 	  bfd_vma chain;
9754 	  size_t bucketcount;
9755 	  size_t bucket;
9756 
9757 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9758 	  bucket = h->u.elf_hash_value % bucketcount;
9759 
9760 	  hash_entry_size
9761 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9762 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9763 		       + (bucket + 2) * hash_entry_size);
9764 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9765 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9766 		   bucketpos);
9767 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9768 		   ((bfd_byte *) flinfo->hash_sec->contents
9769 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9770 	}
9771 
9772       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9773 	{
9774 	  Elf_Internal_Versym iversym;
9775 	  Elf_External_Versym *eversym;
9776 
9777 	  if (!h->def_regular)
9778 	    {
9779 	      if (h->verinfo.verdef == NULL
9780 		  || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd)
9781 		      & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED)))
9782 		iversym.vs_vers = 0;
9783 	      else
9784 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9785 	    }
9786 	  else
9787 	    {
9788 	      if (h->verinfo.vertree == NULL)
9789 		iversym.vs_vers = 1;
9790 	      else
9791 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9792 	      if (flinfo->info->create_default_symver)
9793 		iversym.vs_vers++;
9794 	    }
9795 
9796 	  /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is
9797 	     defined locally.  */
9798 	  if (h->versioned == versioned_hidden && h->def_regular)
9799 	    iversym.vs_vers |= VERSYM_HIDDEN;
9800 
9801 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9802 	  eversym += h->dynindx;
9803 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9804 	}
9805     }
9806 
9807   /* If the symbol is undefined, and we didn't output it to .dynsym,
9808      strip it from .symtab too.  Obviously we can't do this for
9809      relocatable output or when needed for --emit-relocs.  */
9810   else if (input_sec == bfd_und_section_ptr
9811 	   && h->indx != -2
9812 	   && !bfd_link_relocatable (flinfo->info))
9813     return TRUE;
9814   /* Also strip others that we couldn't earlier due to dynamic symbol
9815      processing.  */
9816   if (strip)
9817     return TRUE;
9818   if ((input_sec->flags & SEC_EXCLUDE) != 0)
9819     return TRUE;
9820 
9821   /* Output a FILE symbol so that following locals are not associated
9822      with the wrong input file.  We need one for forced local symbols
9823      if we've seen more than one FILE symbol or when we have exactly
9824      one FILE symbol but global symbols are present in a file other
9825      than the one with the FILE symbol.  We also need one if linker
9826      defined symbols are present.  In practice these conditions are
9827      always met, so just emit the FILE symbol unconditionally.  */
9828   if (eoinfo->localsyms
9829       && !eoinfo->file_sym_done
9830       && eoinfo->flinfo->filesym_count != 0)
9831     {
9832       Elf_Internal_Sym fsym;
9833 
9834       memset (&fsym, 0, sizeof (fsym));
9835       fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9836       fsym.st_shndx = SHN_ABS;
9837       if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym,
9838 				      bfd_und_section_ptr, NULL))
9839 	return FALSE;
9840 
9841       eoinfo->file_sym_done = TRUE;
9842     }
9843 
9844   indx = bfd_get_symcount (flinfo->output_bfd);
9845   ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym,
9846 				   input_sec, h);
9847   if (ret == 0)
9848     {
9849       eoinfo->failed = TRUE;
9850       return FALSE;
9851     }
9852   else if (ret == 1)
9853     h->indx = indx;
9854   else if (h->indx == -2)
9855     abort();
9856 
9857   return TRUE;
9858 }
9859 
9860 /* Return TRUE if special handling is done for relocs in SEC against
9861    symbols defined in discarded sections.  */
9862 
9863 static bfd_boolean
9864 elf_section_ignore_discarded_relocs (asection *sec)
9865 {
9866   const struct elf_backend_data *bed;
9867 
9868   switch (sec->sec_info_type)
9869     {
9870     case SEC_INFO_TYPE_STABS:
9871     case SEC_INFO_TYPE_EH_FRAME:
9872     case SEC_INFO_TYPE_EH_FRAME_ENTRY:
9873       return TRUE;
9874     default:
9875       break;
9876     }
9877 
9878   bed = get_elf_backend_data (sec->owner);
9879   if (bed->elf_backend_ignore_discarded_relocs != NULL
9880       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9881     return TRUE;
9882 
9883   return FALSE;
9884 }
9885 
9886 /* Return a mask saying how ld should treat relocations in SEC against
9887    symbols defined in discarded sections.  If this function returns
9888    COMPLAIN set, ld will issue a warning message.  If this function
9889    returns PRETEND set, and the discarded section was link-once and the
9890    same size as the kept link-once section, ld will pretend that the
9891    symbol was actually defined in the kept section.  Otherwise ld will
9892    zero the reloc (at least that is the intent, but some cooperation by
9893    the target dependent code is needed, particularly for REL targets).  */
9894 
9895 unsigned int
9896 _bfd_elf_default_action_discarded (asection *sec)
9897 {
9898   if (sec->flags & SEC_DEBUGGING)
9899     return PRETEND;
9900 
9901   if (strcmp (".eh_frame", sec->name) == 0)
9902     return 0;
9903 
9904   if (strcmp (".gcc_except_table", sec->name) == 0)
9905     return 0;
9906 
9907   return COMPLAIN | PRETEND;
9908 }
9909 
9910 /* Find a match between a section and a member of a section group.  */
9911 
9912 static asection *
9913 match_group_member (asection *sec, asection *group,
9914 		    struct bfd_link_info *info)
9915 {
9916   asection *first = elf_next_in_group (group);
9917   asection *s = first;
9918 
9919   while (s != NULL)
9920     {
9921       if (bfd_elf_match_symbols_in_sections (s, sec, info))
9922 	return s;
9923 
9924       s = elf_next_in_group (s);
9925       if (s == first)
9926 	break;
9927     }
9928 
9929   return NULL;
9930 }
9931 
9932 /* Check if the kept section of a discarded section SEC can be used
9933    to replace it.  Return the replacement if it is OK.  Otherwise return
9934    NULL.  */
9935 
9936 asection *
9937 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9938 {
9939   asection *kept;
9940 
9941   kept = sec->kept_section;
9942   if (kept != NULL)
9943     {
9944       if ((kept->flags & SEC_GROUP) != 0)
9945 	kept = match_group_member (sec, kept, info);
9946       if (kept != NULL
9947 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9948 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9949 	kept = NULL;
9950       sec->kept_section = kept;
9951     }
9952   return kept;
9953 }
9954 
9955 /* Link an input file into the linker output file.  This function
9956    handles all the sections and relocations of the input file at once.
9957    This is so that we only have to read the local symbols once, and
9958    don't have to keep them in memory.  */
9959 
9960 static bfd_boolean
9961 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9962 {
9963   int (*relocate_section)
9964     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9965      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9966   bfd *output_bfd;
9967   Elf_Internal_Shdr *symtab_hdr;
9968   size_t locsymcount;
9969   size_t extsymoff;
9970   Elf_Internal_Sym *isymbuf;
9971   Elf_Internal_Sym *isym;
9972   Elf_Internal_Sym *isymend;
9973   long *pindex;
9974   asection **ppsection;
9975   asection *o;
9976   const struct elf_backend_data *bed;
9977   struct elf_link_hash_entry **sym_hashes;
9978   bfd_size_type address_size;
9979   bfd_vma r_type_mask;
9980   int r_sym_shift;
9981   bfd_boolean have_file_sym = FALSE;
9982 
9983   output_bfd = flinfo->output_bfd;
9984   bed = get_elf_backend_data (output_bfd);
9985   relocate_section = bed->elf_backend_relocate_section;
9986 
9987   /* If this is a dynamic object, we don't want to do anything here:
9988      we don't want the local symbols, and we don't want the section
9989      contents.  */
9990   if ((input_bfd->flags & DYNAMIC) != 0)
9991     return TRUE;
9992 
9993   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9994   if (elf_bad_symtab (input_bfd))
9995     {
9996       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9997       extsymoff = 0;
9998     }
9999   else
10000     {
10001       locsymcount = symtab_hdr->sh_info;
10002       extsymoff = symtab_hdr->sh_info;
10003     }
10004 
10005   /* Read the local symbols.  */
10006   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
10007   if (isymbuf == NULL && locsymcount != 0)
10008     {
10009       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
10010 				      flinfo->internal_syms,
10011 				      flinfo->external_syms,
10012 				      flinfo->locsym_shndx);
10013       if (isymbuf == NULL)
10014 	return FALSE;
10015     }
10016 
10017   /* Find local symbol sections and adjust values of symbols in
10018      SEC_MERGE sections.  Write out those local symbols we know are
10019      going into the output file.  */
10020   isymend = isymbuf + locsymcount;
10021   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
10022        isym < isymend;
10023        isym++, pindex++, ppsection++)
10024     {
10025       asection *isec;
10026       const char *name;
10027       Elf_Internal_Sym osym;
10028       long indx;
10029       int ret;
10030 
10031       *pindex = -1;
10032 
10033       if (elf_bad_symtab (input_bfd))
10034 	{
10035 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
10036 	    {
10037 	      *ppsection = NULL;
10038 	      continue;
10039 	    }
10040 	}
10041 
10042       if (isym->st_shndx == SHN_UNDEF)
10043 	isec = bfd_und_section_ptr;
10044       else if (isym->st_shndx == SHN_ABS)
10045 	isec = bfd_abs_section_ptr;
10046       else if (isym->st_shndx == SHN_COMMON)
10047 	isec = bfd_com_section_ptr;
10048       else
10049 	{
10050 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
10051 	  if (isec == NULL)
10052 	    {
10053 	      /* Don't attempt to output symbols with st_shnx in the
10054 		 reserved range other than SHN_ABS and SHN_COMMON.  */
10055 	      *ppsection = NULL;
10056 	      continue;
10057 	    }
10058 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
10059 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
10060 	    isym->st_value =
10061 	      _bfd_merged_section_offset (output_bfd, &isec,
10062 					  elf_section_data (isec)->sec_info,
10063 					  isym->st_value);
10064 	}
10065 
10066       *ppsection = isec;
10067 
10068       /* Don't output the first, undefined, symbol.  In fact, don't
10069 	 output any undefined local symbol.  */
10070       if (isec == bfd_und_section_ptr)
10071 	continue;
10072 
10073       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
10074 	{
10075 	  /* We never output section symbols.  Instead, we use the
10076 	     section symbol of the corresponding section in the output
10077 	     file.  */
10078 	  continue;
10079 	}
10080 
10081       /* If we are stripping all symbols, we don't want to output this
10082 	 one.  */
10083       if (flinfo->info->strip == strip_all)
10084 	continue;
10085 
10086       /* If we are discarding all local symbols, we don't want to
10087 	 output this one.  If we are generating a relocatable output
10088 	 file, then some of the local symbols may be required by
10089 	 relocs; we output them below as we discover that they are
10090 	 needed.  */
10091       if (flinfo->info->discard == discard_all)
10092 	continue;
10093 
10094       /* If this symbol is defined in a section which we are
10095 	 discarding, we don't need to keep it.  */
10096       if (isym->st_shndx != SHN_UNDEF
10097 	  && isym->st_shndx < SHN_LORESERVE
10098 	  && bfd_section_removed_from_list (output_bfd,
10099 					    isec->output_section))
10100 	continue;
10101 
10102       /* Get the name of the symbol.  */
10103       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
10104 					      isym->st_name);
10105       if (name == NULL)
10106 	return FALSE;
10107 
10108       /* See if we are discarding symbols with this name.  */
10109       if ((flinfo->info->strip == strip_some
10110 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
10111 	       == NULL))
10112 	  || (((flinfo->info->discard == discard_sec_merge
10113 		&& (isec->flags & SEC_MERGE)
10114 		&& !bfd_link_relocatable (flinfo->info))
10115 	       || flinfo->info->discard == discard_l)
10116 	      && bfd_is_local_label_name (input_bfd, name)))
10117 	continue;
10118 
10119       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
10120 	{
10121 	  if (input_bfd->lto_output)
10122 	    /* -flto puts a temp file name here.  This means builds
10123 	       are not reproducible.  Discard the symbol.  */
10124 	    continue;
10125 	  have_file_sym = TRUE;
10126 	  flinfo->filesym_count += 1;
10127 	}
10128       if (!have_file_sym)
10129 	{
10130 	  /* In the absence of debug info, bfd_find_nearest_line uses
10131 	     FILE symbols to determine the source file for local
10132 	     function symbols.  Provide a FILE symbol here if input
10133 	     files lack such, so that their symbols won't be
10134 	     associated with a previous input file.  It's not the
10135 	     source file, but the best we can do.  */
10136 	  have_file_sym = TRUE;
10137 	  flinfo->filesym_count += 1;
10138 	  memset (&osym, 0, sizeof (osym));
10139 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
10140 	  osym.st_shndx = SHN_ABS;
10141 	  if (!elf_link_output_symstrtab (flinfo,
10142 					  (input_bfd->lto_output ? NULL
10143 					   : input_bfd->filename),
10144 					  &osym, bfd_abs_section_ptr,
10145 					  NULL))
10146 	    return FALSE;
10147 	}
10148 
10149       osym = *isym;
10150 
10151       /* Adjust the section index for the output file.  */
10152       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10153 							 isec->output_section);
10154       if (osym.st_shndx == SHN_BAD)
10155 	return FALSE;
10156 
10157       /* ELF symbols in relocatable files are section relative, but
10158 	 in executable files they are virtual addresses.  Note that
10159 	 this code assumes that all ELF sections have an associated
10160 	 BFD section with a reasonable value for output_offset; below
10161 	 we assume that they also have a reasonable value for
10162 	 output_section.  Any special sections must be set up to meet
10163 	 these requirements.  */
10164       osym.st_value += isec->output_offset;
10165       if (!bfd_link_relocatable (flinfo->info))
10166 	{
10167 	  osym.st_value += isec->output_section->vma;
10168 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
10169 	    {
10170 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
10171 	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
10172 	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
10173 	    }
10174 	}
10175 
10176       indx = bfd_get_symcount (output_bfd);
10177       ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL);
10178       if (ret == 0)
10179 	return FALSE;
10180       else if (ret == 1)
10181 	*pindex = indx;
10182     }
10183 
10184   if (bed->s->arch_size == 32)
10185     {
10186       r_type_mask = 0xff;
10187       r_sym_shift = 8;
10188       address_size = 4;
10189     }
10190   else
10191     {
10192       r_type_mask = 0xffffffff;
10193       r_sym_shift = 32;
10194       address_size = 8;
10195     }
10196 
10197   /* Relocate the contents of each section.  */
10198   sym_hashes = elf_sym_hashes (input_bfd);
10199   for (o = input_bfd->sections; o != NULL; o = o->next)
10200     {
10201       bfd_byte *contents;
10202 
10203       if (! o->linker_mark)
10204 	{
10205 	  /* This section was omitted from the link.  */
10206 	  continue;
10207 	}
10208 
10209       if (bfd_link_relocatable (flinfo->info)
10210 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
10211 	{
10212 	  /* Deal with the group signature symbol.  */
10213 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
10214 	  unsigned long symndx = sec_data->this_hdr.sh_info;
10215 	  asection *osec = o->output_section;
10216 
10217 	  if (symndx >= locsymcount
10218 	      || (elf_bad_symtab (input_bfd)
10219 		  && flinfo->sections[symndx] == NULL))
10220 	    {
10221 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
10222 	      while (h->root.type == bfd_link_hash_indirect
10223 		     || h->root.type == bfd_link_hash_warning)
10224 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
10225 	      /* Arrange for symbol to be output.  */
10226 	      h->indx = -2;
10227 	      elf_section_data (osec)->this_hdr.sh_info = -2;
10228 	    }
10229 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
10230 	    {
10231 	      /* We'll use the output section target_index.  */
10232 	      asection *sec = flinfo->sections[symndx]->output_section;
10233 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
10234 	    }
10235 	  else
10236 	    {
10237 	      if (flinfo->indices[symndx] == -1)
10238 		{
10239 		  /* Otherwise output the local symbol now.  */
10240 		  Elf_Internal_Sym sym = isymbuf[symndx];
10241 		  asection *sec = flinfo->sections[symndx]->output_section;
10242 		  const char *name;
10243 		  long indx;
10244 		  int ret;
10245 
10246 		  name = bfd_elf_string_from_elf_section (input_bfd,
10247 							  symtab_hdr->sh_link,
10248 							  sym.st_name);
10249 		  if (name == NULL)
10250 		    return FALSE;
10251 
10252 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10253 								    sec);
10254 		  if (sym.st_shndx == SHN_BAD)
10255 		    return FALSE;
10256 
10257 		  sym.st_value += o->output_offset;
10258 
10259 		  indx = bfd_get_symcount (output_bfd);
10260 		  ret = elf_link_output_symstrtab (flinfo, name, &sym, o,
10261 						   NULL);
10262 		  if (ret == 0)
10263 		    return FALSE;
10264 		  else if (ret == 1)
10265 		    flinfo->indices[symndx] = indx;
10266 		  else
10267 		    abort ();
10268 		}
10269 	      elf_section_data (osec)->this_hdr.sh_info
10270 		= flinfo->indices[symndx];
10271 	    }
10272 	}
10273 
10274       if ((o->flags & SEC_HAS_CONTENTS) == 0
10275 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
10276 	continue;
10277 
10278       if ((o->flags & SEC_LINKER_CREATED) != 0)
10279 	{
10280 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
10281 	     or somesuch.  */
10282 	  continue;
10283 	}
10284 
10285       /* Get the contents of the section.  They have been cached by a
10286 	 relaxation routine.  Note that o is a section in an input
10287 	 file, so the contents field will not have been set by any of
10288 	 the routines which work on output files.  */
10289       if (elf_section_data (o)->this_hdr.contents != NULL)
10290 	{
10291 	  contents = elf_section_data (o)->this_hdr.contents;
10292 	  if (bed->caches_rawsize
10293 	      && o->rawsize != 0
10294 	      && o->rawsize < o->size)
10295 	    {
10296 	      memcpy (flinfo->contents, contents, o->rawsize);
10297 	      contents = flinfo->contents;
10298 	    }
10299 	}
10300       else
10301 	{
10302 	  contents = flinfo->contents;
10303 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
10304 	    return FALSE;
10305 	}
10306 
10307       if ((o->flags & SEC_RELOC) != 0)
10308 	{
10309 	  Elf_Internal_Rela *internal_relocs;
10310 	  Elf_Internal_Rela *rel, *relend;
10311 	  int action_discarded;
10312 	  int ret;
10313 
10314 	  /* Get the swapped relocs.  */
10315 	  internal_relocs
10316 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
10317 					 flinfo->internal_relocs, FALSE);
10318 	  if (internal_relocs == NULL
10319 	      && o->reloc_count > 0)
10320 	    return FALSE;
10321 
10322 	  /* We need to reverse-copy input .ctors/.dtors sections if
10323 	     they are placed in .init_array/.finit_array for output.  */
10324 	  if (o->size > address_size
10325 	      && ((strncmp (o->name, ".ctors", 6) == 0
10326 		   && strcmp (o->output_section->name,
10327 			      ".init_array") == 0)
10328 		  || (strncmp (o->name, ".dtors", 6) == 0
10329 		      && strcmp (o->output_section->name,
10330 				 ".fini_array") == 0))
10331 	      && (o->name[6] == 0 || o->name[6] == '.'))
10332 	    {
10333 	      if (o->size != o->reloc_count * address_size)
10334 		{
10335 		  _bfd_error_handler
10336 		    /* xgettext:c-format */
10337 		    (_("error: %B: size of section %A is not "
10338 		       "multiple of address size"),
10339 		     input_bfd, o);
10340 		  bfd_set_error (bfd_error_on_input);
10341 		  return FALSE;
10342 		}
10343 	      o->flags |= SEC_ELF_REVERSE_COPY;
10344 	    }
10345 
10346 	  action_discarded = -1;
10347 	  if (!elf_section_ignore_discarded_relocs (o))
10348 	    action_discarded = (*bed->action_discarded) (o);
10349 
10350 	  /* Run through the relocs evaluating complex reloc symbols and
10351 	     looking for relocs against symbols from discarded sections
10352 	     or section symbols from removed link-once sections.
10353 	     Complain about relocs against discarded sections.  Zero
10354 	     relocs against removed link-once sections.  */
10355 
10356 	  rel = internal_relocs;
10357 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
10358 	  for ( ; rel < relend; rel++)
10359 	    {
10360 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
10361 	      unsigned int s_type;
10362 	      asection **ps, *sec;
10363 	      struct elf_link_hash_entry *h = NULL;
10364 	      const char *sym_name;
10365 
10366 	      if (r_symndx == STN_UNDEF)
10367 		continue;
10368 
10369 	      if (r_symndx >= locsymcount
10370 		  || (elf_bad_symtab (input_bfd)
10371 		      && flinfo->sections[r_symndx] == NULL))
10372 		{
10373 		  h = sym_hashes[r_symndx - extsymoff];
10374 
10375 		  /* Badly formatted input files can contain relocs that
10376 		     reference non-existant symbols.  Check here so that
10377 		     we do not seg fault.  */
10378 		  if (h == NULL)
10379 		    {
10380 		      char buffer [32];
10381 
10382 		      sprintf_vma (buffer, rel->r_info);
10383 		      _bfd_error_handler
10384 			/* xgettext:c-format */
10385 			(_("error: %B contains a reloc (0x%s) for section %A "
10386 			   "that references a non-existent global symbol"),
10387 			 input_bfd, buffer, o);
10388 		      bfd_set_error (bfd_error_bad_value);
10389 		      return FALSE;
10390 		    }
10391 
10392 		  while (h->root.type == bfd_link_hash_indirect
10393 			 || h->root.type == bfd_link_hash_warning)
10394 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
10395 
10396 		  s_type = h->type;
10397 
10398 		  /* If a plugin symbol is referenced from a non-IR file,
10399 		     mark the symbol as undefined.  Note that the
10400 		     linker may attach linker created dynamic sections
10401 		     to the plugin bfd.  Symbols defined in linker
10402 		     created sections are not plugin symbols.  */
10403 		  if (h->root.non_ir_ref
10404 		      && (h->root.type == bfd_link_hash_defined
10405 			  || h->root.type == bfd_link_hash_defweak)
10406 		      && (h->root.u.def.section->flags
10407 			  & SEC_LINKER_CREATED) == 0
10408 		      && h->root.u.def.section->owner != NULL
10409 		      && (h->root.u.def.section->owner->flags
10410 			  & BFD_PLUGIN) != 0)
10411 		    {
10412 		      h->root.type = bfd_link_hash_undefined;
10413 		      h->root.u.undef.abfd = h->root.u.def.section->owner;
10414 		    }
10415 
10416 		  ps = NULL;
10417 		  if (h->root.type == bfd_link_hash_defined
10418 		      || h->root.type == bfd_link_hash_defweak)
10419 		    ps = &h->root.u.def.section;
10420 
10421 		  sym_name = h->root.root.string;
10422 		}
10423 	      else
10424 		{
10425 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
10426 
10427 		  s_type = ELF_ST_TYPE (sym->st_info);
10428 		  ps = &flinfo->sections[r_symndx];
10429 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10430 					       sym, *ps);
10431 		}
10432 
10433 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
10434 		  && !bfd_link_relocatable (flinfo->info))
10435 		{
10436 		  bfd_vma val;
10437 		  bfd_vma dot = (rel->r_offset
10438 				 + o->output_offset + o->output_section->vma);
10439 #ifdef DEBUG
10440 		  printf ("Encountered a complex symbol!");
10441 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
10442 			  input_bfd->filename, o->name,
10443 			  (long) (rel - internal_relocs));
10444 		  printf (" symbol: idx  %8.8lx, name %s\n",
10445 			  r_symndx, sym_name);
10446 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
10447 			  (unsigned long) rel->r_info,
10448 			  (unsigned long) rel->r_offset);
10449 #endif
10450 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
10451 				    isymbuf, locsymcount, s_type == STT_SRELC))
10452 		    return FALSE;
10453 
10454 		  /* Symbol evaluated OK.  Update to absolute value.  */
10455 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
10456 				    r_symndx, val);
10457 		  continue;
10458 		}
10459 
10460 	      if (action_discarded != -1 && ps != NULL)
10461 		{
10462 		  /* Complain if the definition comes from a
10463 		     discarded section.  */
10464 		  if ((sec = *ps) != NULL && discarded_section (sec))
10465 		    {
10466 		      BFD_ASSERT (r_symndx != STN_UNDEF);
10467 		      if (action_discarded & COMPLAIN)
10468 			(*flinfo->info->callbacks->einfo)
10469 			  /* xgettext:c-format */
10470 			  (_("%X`%s' referenced in section `%A' of %B: "
10471 			     "defined in discarded section `%A' of %B\n"),
10472 			   sym_name, o, input_bfd, sec, sec->owner);
10473 
10474 		      /* Try to do the best we can to support buggy old
10475 			 versions of gcc.  Pretend that the symbol is
10476 			 really defined in the kept linkonce section.
10477 			 FIXME: This is quite broken.  Modifying the
10478 			 symbol here means we will be changing all later
10479 			 uses of the symbol, not just in this section.  */
10480 		      if (action_discarded & PRETEND)
10481 			{
10482 			  asection *kept;
10483 
10484 			  kept = _bfd_elf_check_kept_section (sec,
10485 							      flinfo->info);
10486 			  if (kept != NULL)
10487 			    {
10488 			      *ps = kept;
10489 			      continue;
10490 			    }
10491 			}
10492 		    }
10493 		}
10494 	    }
10495 
10496 	  /* Relocate the section by invoking a back end routine.
10497 
10498 	     The back end routine is responsible for adjusting the
10499 	     section contents as necessary, and (if using Rela relocs
10500 	     and generating a relocatable output file) adjusting the
10501 	     reloc addend as necessary.
10502 
10503 	     The back end routine does not have to worry about setting
10504 	     the reloc address or the reloc symbol index.
10505 
10506 	     The back end routine is given a pointer to the swapped in
10507 	     internal symbols, and can access the hash table entries
10508 	     for the external symbols via elf_sym_hashes (input_bfd).
10509 
10510 	     When generating relocatable output, the back end routine
10511 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
10512 	     output symbol is going to be a section symbol
10513 	     corresponding to the output section, which will require
10514 	     the addend to be adjusted.  */
10515 
10516 	  ret = (*relocate_section) (output_bfd, flinfo->info,
10517 				     input_bfd, o, contents,
10518 				     internal_relocs,
10519 				     isymbuf,
10520 				     flinfo->sections);
10521 	  if (!ret)
10522 	    return FALSE;
10523 
10524 	  if (ret == 2
10525 	      || bfd_link_relocatable (flinfo->info)
10526 	      || flinfo->info->emitrelocations)
10527 	    {
10528 	      Elf_Internal_Rela *irela;
10529 	      Elf_Internal_Rela *irelaend, *irelamid;
10530 	      bfd_vma last_offset;
10531 	      struct elf_link_hash_entry **rel_hash;
10532 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
10533 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
10534 	      unsigned int next_erel;
10535 	      bfd_boolean rela_normal;
10536 	      struct bfd_elf_section_data *esdi, *esdo;
10537 
10538 	      esdi = elf_section_data (o);
10539 	      esdo = elf_section_data (o->output_section);
10540 	      rela_normal = FALSE;
10541 
10542 	      /* Adjust the reloc addresses and symbol indices.  */
10543 
10544 	      irela = internal_relocs;
10545 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
10546 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
10547 	      /* We start processing the REL relocs, if any.  When we reach
10548 		 IRELAMID in the loop, we switch to the RELA relocs.  */
10549 	      irelamid = irela;
10550 	      if (esdi->rel.hdr != NULL)
10551 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
10552 			     * bed->s->int_rels_per_ext_rel);
10553 	      rel_hash_list = rel_hash;
10554 	      rela_hash_list = NULL;
10555 	      last_offset = o->output_offset;
10556 	      if (!bfd_link_relocatable (flinfo->info))
10557 		last_offset += o->output_section->vma;
10558 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
10559 		{
10560 		  unsigned long r_symndx;
10561 		  asection *sec;
10562 		  Elf_Internal_Sym sym;
10563 
10564 		  if (next_erel == bed->s->int_rels_per_ext_rel)
10565 		    {
10566 		      rel_hash++;
10567 		      next_erel = 0;
10568 		    }
10569 
10570 		  if (irela == irelamid)
10571 		    {
10572 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
10573 		      rela_hash_list = rel_hash;
10574 		      rela_normal = bed->rela_normal;
10575 		    }
10576 
10577 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
10578 							     flinfo->info, o,
10579 							     irela->r_offset);
10580 		  if (irela->r_offset >= (bfd_vma) -2)
10581 		    {
10582 		      /* This is a reloc for a deleted entry or somesuch.
10583 			 Turn it into an R_*_NONE reloc, at the same
10584 			 offset as the last reloc.  elf_eh_frame.c and
10585 			 bfd_elf_discard_info rely on reloc offsets
10586 			 being ordered.  */
10587 		      irela->r_offset = last_offset;
10588 		      irela->r_info = 0;
10589 		      irela->r_addend = 0;
10590 		      continue;
10591 		    }
10592 
10593 		  irela->r_offset += o->output_offset;
10594 
10595 		  /* Relocs in an executable have to be virtual addresses.  */
10596 		  if (!bfd_link_relocatable (flinfo->info))
10597 		    irela->r_offset += o->output_section->vma;
10598 
10599 		  last_offset = irela->r_offset;
10600 
10601 		  r_symndx = irela->r_info >> r_sym_shift;
10602 		  if (r_symndx == STN_UNDEF)
10603 		    continue;
10604 
10605 		  if (r_symndx >= locsymcount
10606 		      || (elf_bad_symtab (input_bfd)
10607 			  && flinfo->sections[r_symndx] == NULL))
10608 		    {
10609 		      struct elf_link_hash_entry *rh;
10610 		      unsigned long indx;
10611 
10612 		      /* This is a reloc against a global symbol.  We
10613 			 have not yet output all the local symbols, so
10614 			 we do not know the symbol index of any global
10615 			 symbol.  We set the rel_hash entry for this
10616 			 reloc to point to the global hash table entry
10617 			 for this symbol.  The symbol index is then
10618 			 set at the end of bfd_elf_final_link.  */
10619 		      indx = r_symndx - extsymoff;
10620 		      rh = elf_sym_hashes (input_bfd)[indx];
10621 		      while (rh->root.type == bfd_link_hash_indirect
10622 			     || rh->root.type == bfd_link_hash_warning)
10623 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
10624 
10625 		      /* Setting the index to -2 tells
10626 			 elf_link_output_extsym that this symbol is
10627 			 used by a reloc.  */
10628 		      BFD_ASSERT (rh->indx < 0);
10629 		      rh->indx = -2;
10630 
10631 		      *rel_hash = rh;
10632 
10633 		      continue;
10634 		    }
10635 
10636 		  /* This is a reloc against a local symbol.  */
10637 
10638 		  *rel_hash = NULL;
10639 		  sym = isymbuf[r_symndx];
10640 		  sec = flinfo->sections[r_symndx];
10641 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
10642 		    {
10643 		      /* I suppose the backend ought to fill in the
10644 			 section of any STT_SECTION symbol against a
10645 			 processor specific section.  */
10646 		      r_symndx = STN_UNDEF;
10647 		      if (bfd_is_abs_section (sec))
10648 			;
10649 		      else if (sec == NULL || sec->owner == NULL)
10650 			{
10651 			  bfd_set_error (bfd_error_bad_value);
10652 			  return FALSE;
10653 			}
10654 		      else
10655 			{
10656 			  asection *osec = sec->output_section;
10657 
10658 			  /* If we have discarded a section, the output
10659 			     section will be the absolute section.  In
10660 			     case of discarded SEC_MERGE sections, use
10661 			     the kept section.  relocate_section should
10662 			     have already handled discarded linkonce
10663 			     sections.  */
10664 			  if (bfd_is_abs_section (osec)
10665 			      && sec->kept_section != NULL
10666 			      && sec->kept_section->output_section != NULL)
10667 			    {
10668 			      osec = sec->kept_section->output_section;
10669 			      irela->r_addend -= osec->vma;
10670 			    }
10671 
10672 			  if (!bfd_is_abs_section (osec))
10673 			    {
10674 			      r_symndx = osec->target_index;
10675 			      if (r_symndx == STN_UNDEF)
10676 				{
10677 				  irela->r_addend += osec->vma;
10678 				  osec = _bfd_nearby_section (output_bfd, osec,
10679 							      osec->vma);
10680 				  irela->r_addend -= osec->vma;
10681 				  r_symndx = osec->target_index;
10682 				}
10683 			    }
10684 			}
10685 
10686 		      /* Adjust the addend according to where the
10687 			 section winds up in the output section.  */
10688 		      if (rela_normal)
10689 			irela->r_addend += sec->output_offset;
10690 		    }
10691 		  else
10692 		    {
10693 		      if (flinfo->indices[r_symndx] == -1)
10694 			{
10695 			  unsigned long shlink;
10696 			  const char *name;
10697 			  asection *osec;
10698 			  long indx;
10699 
10700 			  if (flinfo->info->strip == strip_all)
10701 			    {
10702 			      /* You can't do ld -r -s.  */
10703 			      bfd_set_error (bfd_error_invalid_operation);
10704 			      return FALSE;
10705 			    }
10706 
10707 			  /* This symbol was skipped earlier, but
10708 			     since it is needed by a reloc, we
10709 			     must output it now.  */
10710 			  shlink = symtab_hdr->sh_link;
10711 			  name = (bfd_elf_string_from_elf_section
10712 				  (input_bfd, shlink, sym.st_name));
10713 			  if (name == NULL)
10714 			    return FALSE;
10715 
10716 			  osec = sec->output_section;
10717 			  sym.st_shndx =
10718 			    _bfd_elf_section_from_bfd_section (output_bfd,
10719 							       osec);
10720 			  if (sym.st_shndx == SHN_BAD)
10721 			    return FALSE;
10722 
10723 			  sym.st_value += sec->output_offset;
10724 			  if (!bfd_link_relocatable (flinfo->info))
10725 			    {
10726 			      sym.st_value += osec->vma;
10727 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
10728 				{
10729 				  /* STT_TLS symbols are relative to PT_TLS
10730 				     segment base.  */
10731 				  BFD_ASSERT (elf_hash_table (flinfo->info)
10732 					      ->tls_sec != NULL);
10733 				  sym.st_value -= (elf_hash_table (flinfo->info)
10734 						   ->tls_sec->vma);
10735 				}
10736 			    }
10737 
10738 			  indx = bfd_get_symcount (output_bfd);
10739 			  ret = elf_link_output_symstrtab (flinfo, name,
10740 							   &sym, sec,
10741 							   NULL);
10742 			  if (ret == 0)
10743 			    return FALSE;
10744 			  else if (ret == 1)
10745 			    flinfo->indices[r_symndx] = indx;
10746 			  else
10747 			    abort ();
10748 			}
10749 
10750 		      r_symndx = flinfo->indices[r_symndx];
10751 		    }
10752 
10753 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
10754 				   | (irela->r_info & r_type_mask));
10755 		}
10756 
10757 	      /* Swap out the relocs.  */
10758 	      input_rel_hdr = esdi->rel.hdr;
10759 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
10760 		{
10761 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10762 						     input_rel_hdr,
10763 						     internal_relocs,
10764 						     rel_hash_list))
10765 		    return FALSE;
10766 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
10767 				      * bed->s->int_rels_per_ext_rel);
10768 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
10769 		}
10770 
10771 	      input_rela_hdr = esdi->rela.hdr;
10772 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10773 		{
10774 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10775 						     input_rela_hdr,
10776 						     internal_relocs,
10777 						     rela_hash_list))
10778 		    return FALSE;
10779 		}
10780 	    }
10781 	}
10782 
10783       /* Write out the modified section contents.  */
10784       if (bed->elf_backend_write_section
10785 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10786 						contents))
10787 	{
10788 	  /* Section written out.  */
10789 	}
10790       else switch (o->sec_info_type)
10791 	{
10792 	case SEC_INFO_TYPE_STABS:
10793 	  if (! (_bfd_write_section_stabs
10794 		 (output_bfd,
10795 		  &elf_hash_table (flinfo->info)->stab_info,
10796 		  o, &elf_section_data (o)->sec_info, contents)))
10797 	    return FALSE;
10798 	  break;
10799 	case SEC_INFO_TYPE_MERGE:
10800 	  if (! _bfd_write_merged_section (output_bfd, o,
10801 					   elf_section_data (o)->sec_info))
10802 	    return FALSE;
10803 	  break;
10804 	case SEC_INFO_TYPE_EH_FRAME:
10805 	  {
10806 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10807 						   o, contents))
10808 	      return FALSE;
10809 	  }
10810 	  break;
10811 	case SEC_INFO_TYPE_EH_FRAME_ENTRY:
10812 	  {
10813 	    if (! _bfd_elf_write_section_eh_frame_entry (output_bfd,
10814 							 flinfo->info,
10815 							 o, contents))
10816 	      return FALSE;
10817 	  }
10818 	  break;
10819 	default:
10820 	  {
10821 	    if (! (o->flags & SEC_EXCLUDE))
10822 	      {
10823 		file_ptr offset = (file_ptr) o->output_offset;
10824 		bfd_size_type todo = o->size;
10825 
10826 		offset *= bfd_octets_per_byte (output_bfd);
10827 
10828 		if ((o->flags & SEC_ELF_REVERSE_COPY))
10829 		  {
10830 		    /* Reverse-copy input section to output.  */
10831 		    do
10832 		      {
10833 			todo -= address_size;
10834 			if (! bfd_set_section_contents (output_bfd,
10835 							o->output_section,
10836 							contents + todo,
10837 							offset,
10838 							address_size))
10839 			  return FALSE;
10840 			if (todo == 0)
10841 			  break;
10842 			offset += address_size;
10843 		      }
10844 		    while (1);
10845 		  }
10846 		else if (! bfd_set_section_contents (output_bfd,
10847 						     o->output_section,
10848 						     contents,
10849 						     offset, todo))
10850 		  return FALSE;
10851 	      }
10852 	  }
10853 	  break;
10854 	}
10855     }
10856 
10857   return TRUE;
10858 }
10859 
10860 /* Generate a reloc when linking an ELF file.  This is a reloc
10861    requested by the linker, and does not come from any input file.  This
10862    is used to build constructor and destructor tables when linking
10863    with -Ur.  */
10864 
10865 static bfd_boolean
10866 elf_reloc_link_order (bfd *output_bfd,
10867 		      struct bfd_link_info *info,
10868 		      asection *output_section,
10869 		      struct bfd_link_order *link_order)
10870 {
10871   reloc_howto_type *howto;
10872   long indx;
10873   bfd_vma offset;
10874   bfd_vma addend;
10875   struct bfd_elf_section_reloc_data *reldata;
10876   struct elf_link_hash_entry **rel_hash_ptr;
10877   Elf_Internal_Shdr *rel_hdr;
10878   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10879   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10880   bfd_byte *erel;
10881   unsigned int i;
10882   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10883 
10884   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10885   if (howto == NULL)
10886     {
10887       bfd_set_error (bfd_error_bad_value);
10888       return FALSE;
10889     }
10890 
10891   addend = link_order->u.reloc.p->addend;
10892 
10893   if (esdo->rel.hdr)
10894     reldata = &esdo->rel;
10895   else if (esdo->rela.hdr)
10896     reldata = &esdo->rela;
10897   else
10898     {
10899       reldata = NULL;
10900       BFD_ASSERT (0);
10901     }
10902 
10903   /* Figure out the symbol index.  */
10904   rel_hash_ptr = reldata->hashes + reldata->count;
10905   if (link_order->type == bfd_section_reloc_link_order)
10906     {
10907       indx = link_order->u.reloc.p->u.section->target_index;
10908       BFD_ASSERT (indx != 0);
10909       *rel_hash_ptr = NULL;
10910     }
10911   else
10912     {
10913       struct elf_link_hash_entry *h;
10914 
10915       /* Treat a reloc against a defined symbol as though it were
10916 	 actually against the section.  */
10917       h = ((struct elf_link_hash_entry *)
10918 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
10919 					 link_order->u.reloc.p->u.name,
10920 					 FALSE, FALSE, TRUE));
10921       if (h != NULL
10922 	  && (h->root.type == bfd_link_hash_defined
10923 	      || h->root.type == bfd_link_hash_defweak))
10924 	{
10925 	  asection *section;
10926 
10927 	  section = h->root.u.def.section;
10928 	  indx = section->output_section->target_index;
10929 	  *rel_hash_ptr = NULL;
10930 	  /* It seems that we ought to add the symbol value to the
10931 	     addend here, but in practice it has already been added
10932 	     because it was passed to constructor_callback.  */
10933 	  addend += section->output_section->vma + section->output_offset;
10934 	}
10935       else if (h != NULL)
10936 	{
10937 	  /* Setting the index to -2 tells elf_link_output_extsym that
10938 	     this symbol is used by a reloc.  */
10939 	  h->indx = -2;
10940 	  *rel_hash_ptr = h;
10941 	  indx = 0;
10942 	}
10943       else
10944 	{
10945 	  (*info->callbacks->unattached_reloc)
10946 	    (info, link_order->u.reloc.p->u.name, NULL, NULL, 0);
10947 	  indx = 0;
10948 	}
10949     }
10950 
10951   /* If this is an inplace reloc, we must write the addend into the
10952      object file.  */
10953   if (howto->partial_inplace && addend != 0)
10954     {
10955       bfd_size_type size;
10956       bfd_reloc_status_type rstat;
10957       bfd_byte *buf;
10958       bfd_boolean ok;
10959       const char *sym_name;
10960 
10961       size = (bfd_size_type) bfd_get_reloc_size (howto);
10962       buf = (bfd_byte *) bfd_zmalloc (size);
10963       if (buf == NULL && size != 0)
10964 	return FALSE;
10965       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10966       switch (rstat)
10967 	{
10968 	case bfd_reloc_ok:
10969 	  break;
10970 
10971 	default:
10972 	case bfd_reloc_outofrange:
10973 	  abort ();
10974 
10975 	case bfd_reloc_overflow:
10976 	  if (link_order->type == bfd_section_reloc_link_order)
10977 	    sym_name = bfd_section_name (output_bfd,
10978 					 link_order->u.reloc.p->u.section);
10979 	  else
10980 	    sym_name = link_order->u.reloc.p->u.name;
10981 	  (*info->callbacks->reloc_overflow) (info, NULL, sym_name,
10982 					      howto->name, addend, NULL, NULL,
10983 					      (bfd_vma) 0);
10984 	  break;
10985 	}
10986 
10987       ok = bfd_set_section_contents (output_bfd, output_section, buf,
10988 				     link_order->offset
10989 				     * bfd_octets_per_byte (output_bfd),
10990 				     size);
10991       free (buf);
10992       if (! ok)
10993 	return FALSE;
10994     }
10995 
10996   /* The address of a reloc is relative to the section in a
10997      relocatable file, and is a virtual address in an executable
10998      file.  */
10999   offset = link_order->offset;
11000   if (! bfd_link_relocatable (info))
11001     offset += output_section->vma;
11002 
11003   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
11004     {
11005       irel[i].r_offset = offset;
11006       irel[i].r_info = 0;
11007       irel[i].r_addend = 0;
11008     }
11009   if (bed->s->arch_size == 32)
11010     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
11011   else
11012     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
11013 
11014   rel_hdr = reldata->hdr;
11015   erel = rel_hdr->contents;
11016   if (rel_hdr->sh_type == SHT_REL)
11017     {
11018       erel += reldata->count * bed->s->sizeof_rel;
11019       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
11020     }
11021   else
11022     {
11023       irel[0].r_addend = addend;
11024       erel += reldata->count * bed->s->sizeof_rela;
11025       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
11026     }
11027 
11028   ++reldata->count;
11029 
11030   return TRUE;
11031 }
11032 
11033 
11034 /* Get the output vma of the section pointed to by the sh_link field.  */
11035 
11036 static bfd_vma
11037 elf_get_linked_section_vma (struct bfd_link_order *p)
11038 {
11039   Elf_Internal_Shdr **elf_shdrp;
11040   asection *s;
11041   int elfsec;
11042 
11043   s = p->u.indirect.section;
11044   elf_shdrp = elf_elfsections (s->owner);
11045   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
11046   elfsec = elf_shdrp[elfsec]->sh_link;
11047   /* PR 290:
11048      The Intel C compiler generates SHT_IA_64_UNWIND with
11049      SHF_LINK_ORDER.  But it doesn't set the sh_link or
11050      sh_info fields.  Hence we could get the situation
11051      where elfsec is 0.  */
11052   if (elfsec == 0)
11053     {
11054       const struct elf_backend_data *bed
11055 	= get_elf_backend_data (s->owner);
11056       if (bed->link_order_error_handler)
11057 	bed->link_order_error_handler
11058 	  /* xgettext:c-format */
11059 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
11060       return 0;
11061     }
11062   else
11063     {
11064       s = elf_shdrp[elfsec]->bfd_section;
11065       return s->output_section->vma + s->output_offset;
11066     }
11067 }
11068 
11069 
11070 /* Compare two sections based on the locations of the sections they are
11071    linked to.  Used by elf_fixup_link_order.  */
11072 
11073 static int
11074 compare_link_order (const void * a, const void * b)
11075 {
11076   bfd_vma apos;
11077   bfd_vma bpos;
11078 
11079   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
11080   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
11081   if (apos < bpos)
11082     return -1;
11083   return apos > bpos;
11084 }
11085 
11086 
11087 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
11088    order as their linked sections.  Returns false if this could not be done
11089    because an output section includes both ordered and unordered
11090    sections.  Ideally we'd do this in the linker proper.  */
11091 
11092 static bfd_boolean
11093 elf_fixup_link_order (bfd *abfd, asection *o)
11094 {
11095   int seen_linkorder;
11096   int seen_other;
11097   int n;
11098   struct bfd_link_order *p;
11099   bfd *sub;
11100   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11101   unsigned elfsec;
11102   struct bfd_link_order **sections;
11103   asection *s, *other_sec, *linkorder_sec;
11104   bfd_vma offset;
11105 
11106   other_sec = NULL;
11107   linkorder_sec = NULL;
11108   seen_other = 0;
11109   seen_linkorder = 0;
11110   for (p = o->map_head.link_order; p != NULL; p = p->next)
11111     {
11112       if (p->type == bfd_indirect_link_order)
11113 	{
11114 	  s = p->u.indirect.section;
11115 	  sub = s->owner;
11116 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11117 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
11118 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
11119 	      && elfsec < elf_numsections (sub)
11120 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
11121 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
11122 	    {
11123 	      seen_linkorder++;
11124 	      linkorder_sec = s;
11125 	    }
11126 	  else
11127 	    {
11128 	      seen_other++;
11129 	      other_sec = s;
11130 	    }
11131 	}
11132       else
11133 	seen_other++;
11134 
11135       if (seen_other && seen_linkorder)
11136 	{
11137 	  if (other_sec && linkorder_sec)
11138 	    _bfd_error_handler
11139 	      /* xgettext:c-format */
11140 	      (_("%A has both ordered [`%A' in %B] "
11141 		 "and unordered [`%A' in %B] sections"),
11142 	       o, linkorder_sec, linkorder_sec->owner,
11143 	       other_sec, other_sec->owner);
11144 	  else
11145 	    _bfd_error_handler
11146 	      (_("%A has both ordered and unordered sections"), o);
11147 	  bfd_set_error (bfd_error_bad_value);
11148 	  return FALSE;
11149 	}
11150     }
11151 
11152   if (!seen_linkorder)
11153     return TRUE;
11154 
11155   sections = (struct bfd_link_order **)
11156     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
11157   if (sections == NULL)
11158     return FALSE;
11159   seen_linkorder = 0;
11160 
11161   for (p = o->map_head.link_order; p != NULL; p = p->next)
11162     {
11163       sections[seen_linkorder++] = p;
11164     }
11165   /* Sort the input sections in the order of their linked section.  */
11166   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
11167 	 compare_link_order);
11168 
11169   /* Change the offsets of the sections.  */
11170   offset = 0;
11171   for (n = 0; n < seen_linkorder; n++)
11172     {
11173       s = sections[n]->u.indirect.section;
11174       offset &= ~(bfd_vma) 0 << s->alignment_power;
11175       s->output_offset = offset / bfd_octets_per_byte (abfd);
11176       sections[n]->offset = offset;
11177       offset += sections[n]->size;
11178     }
11179 
11180   free (sections);
11181   return TRUE;
11182 }
11183 
11184 /* Generate an import library in INFO->implib_bfd from symbols in ABFD.
11185    Returns TRUE upon success, FALSE otherwise.  */
11186 
11187 static bfd_boolean
11188 elf_output_implib (bfd *abfd, struct bfd_link_info *info)
11189 {
11190   bfd_boolean ret = FALSE;
11191   bfd *implib_bfd;
11192   const struct elf_backend_data *bed;
11193   flagword flags;
11194   enum bfd_architecture arch;
11195   unsigned int mach;
11196   asymbol **sympp = NULL;
11197   long symsize;
11198   long symcount;
11199   long src_count;
11200   elf_symbol_type *osymbuf;
11201 
11202   implib_bfd = info->out_implib_bfd;
11203   bed = get_elf_backend_data (abfd);
11204 
11205   if (!bfd_set_format (implib_bfd, bfd_object))
11206     return FALSE;
11207 
11208   flags = bfd_get_file_flags (abfd);
11209   flags &= ~HAS_RELOC;
11210   if (!bfd_set_start_address (implib_bfd, 0)
11211       || !bfd_set_file_flags (implib_bfd, flags))
11212     return FALSE;
11213 
11214   /* Copy architecture of output file to import library file.  */
11215   arch = bfd_get_arch (abfd);
11216   mach = bfd_get_mach (abfd);
11217   if (!bfd_set_arch_mach (implib_bfd, arch, mach)
11218       && (abfd->target_defaulted
11219 	  || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd)))
11220     return FALSE;
11221 
11222   /* Get symbol table size.  */
11223   symsize = bfd_get_symtab_upper_bound (abfd);
11224   if (symsize < 0)
11225     return FALSE;
11226 
11227   /* Read in the symbol table.  */
11228   sympp = (asymbol **) xmalloc (symsize);
11229   symcount = bfd_canonicalize_symtab (abfd, sympp);
11230   if (symcount < 0)
11231     goto free_sym_buf;
11232 
11233   /* Allow the BFD backend to copy any private header data it
11234      understands from the output BFD to the import library BFD.  */
11235   if (! bfd_copy_private_header_data (abfd, implib_bfd))
11236     goto free_sym_buf;
11237 
11238   /* Filter symbols to appear in the import library.  */
11239   if (bed->elf_backend_filter_implib_symbols)
11240     symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp,
11241 						       symcount);
11242   else
11243     symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount);
11244   if (symcount == 0)
11245     {
11246       bfd_set_error (bfd_error_no_symbols);
11247       _bfd_error_handler (_("%B: no symbol found for import library"),
11248 			  implib_bfd);
11249       goto free_sym_buf;
11250     }
11251 
11252 
11253   /* Make symbols absolute.  */
11254   osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount,
11255 					    sizeof (*osymbuf));
11256   for (src_count = 0; src_count < symcount; src_count++)
11257     {
11258       memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count],
11259 	      sizeof (*osymbuf));
11260       osymbuf[src_count].symbol.section = bfd_abs_section_ptr;
11261       osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS;
11262       osymbuf[src_count].symbol.value += sympp[src_count]->section->vma;
11263       osymbuf[src_count].internal_elf_sym.st_value =
11264 	osymbuf[src_count].symbol.value;
11265       sympp[src_count] = &osymbuf[src_count].symbol;
11266     }
11267 
11268   bfd_set_symtab (implib_bfd, sympp, symcount);
11269 
11270   /* Allow the BFD backend to copy any private data it understands
11271      from the output BFD to the import library BFD.  This is done last
11272      to permit the routine to look at the filtered symbol table.  */
11273   if (! bfd_copy_private_bfd_data (abfd, implib_bfd))
11274     goto free_sym_buf;
11275 
11276   if (!bfd_close (implib_bfd))
11277     goto free_sym_buf;
11278 
11279   ret = TRUE;
11280 
11281 free_sym_buf:
11282   free (sympp);
11283   return ret;
11284 }
11285 
11286 static void
11287 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
11288 {
11289   asection *o;
11290 
11291   if (flinfo->symstrtab != NULL)
11292     _bfd_elf_strtab_free (flinfo->symstrtab);
11293   if (flinfo->contents != NULL)
11294     free (flinfo->contents);
11295   if (flinfo->external_relocs != NULL)
11296     free (flinfo->external_relocs);
11297   if (flinfo->internal_relocs != NULL)
11298     free (flinfo->internal_relocs);
11299   if (flinfo->external_syms != NULL)
11300     free (flinfo->external_syms);
11301   if (flinfo->locsym_shndx != NULL)
11302     free (flinfo->locsym_shndx);
11303   if (flinfo->internal_syms != NULL)
11304     free (flinfo->internal_syms);
11305   if (flinfo->indices != NULL)
11306     free (flinfo->indices);
11307   if (flinfo->sections != NULL)
11308     free (flinfo->sections);
11309   if (flinfo->symshndxbuf != NULL)
11310     free (flinfo->symshndxbuf);
11311   for (o = obfd->sections; o != NULL; o = o->next)
11312     {
11313       struct bfd_elf_section_data *esdo = elf_section_data (o);
11314       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
11315 	free (esdo->rel.hashes);
11316       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
11317 	free (esdo->rela.hashes);
11318     }
11319 }
11320 
11321 /* Do the final step of an ELF link.  */
11322 
11323 bfd_boolean
11324 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
11325 {
11326   bfd_boolean dynamic;
11327   bfd_boolean emit_relocs;
11328   bfd *dynobj;
11329   struct elf_final_link_info flinfo;
11330   asection *o;
11331   struct bfd_link_order *p;
11332   bfd *sub;
11333   bfd_size_type max_contents_size;
11334   bfd_size_type max_external_reloc_size;
11335   bfd_size_type max_internal_reloc_count;
11336   bfd_size_type max_sym_count;
11337   bfd_size_type max_sym_shndx_count;
11338   Elf_Internal_Sym elfsym;
11339   unsigned int i;
11340   Elf_Internal_Shdr *symtab_hdr;
11341   Elf_Internal_Shdr *symtab_shndx_hdr;
11342   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11343   struct elf_outext_info eoinfo;
11344   bfd_boolean merged;
11345   size_t relativecount = 0;
11346   asection *reldyn = 0;
11347   bfd_size_type amt;
11348   asection *attr_section = NULL;
11349   bfd_vma attr_size = 0;
11350   const char *std_attrs_section;
11351   struct elf_link_hash_table *htab = elf_hash_table (info);
11352 
11353   if (!is_elf_hash_table (htab))
11354     return FALSE;
11355 
11356   if (bfd_link_pic (info))
11357     abfd->flags |= DYNAMIC;
11358 
11359   dynamic = htab->dynamic_sections_created;
11360   dynobj = htab->dynobj;
11361 
11362   emit_relocs = (bfd_link_relocatable (info)
11363 		 || info->emitrelocations);
11364 
11365   flinfo.info = info;
11366   flinfo.output_bfd = abfd;
11367   flinfo.symstrtab = _bfd_elf_strtab_init ();
11368   if (flinfo.symstrtab == NULL)
11369     return FALSE;
11370 
11371   if (! dynamic)
11372     {
11373       flinfo.hash_sec = NULL;
11374       flinfo.symver_sec = NULL;
11375     }
11376   else
11377     {
11378       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
11379       /* Note that dynsym_sec can be NULL (on VMS).  */
11380       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
11381       /* Note that it is OK if symver_sec is NULL.  */
11382     }
11383 
11384   flinfo.contents = NULL;
11385   flinfo.external_relocs = NULL;
11386   flinfo.internal_relocs = NULL;
11387   flinfo.external_syms = NULL;
11388   flinfo.locsym_shndx = NULL;
11389   flinfo.internal_syms = NULL;
11390   flinfo.indices = NULL;
11391   flinfo.sections = NULL;
11392   flinfo.symshndxbuf = NULL;
11393   flinfo.filesym_count = 0;
11394 
11395   /* The object attributes have been merged.  Remove the input
11396      sections from the link, and set the contents of the output
11397      secton.  */
11398   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
11399   for (o = abfd->sections; o != NULL; o = o->next)
11400     {
11401       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
11402 	  || strcmp (o->name, ".gnu.attributes") == 0)
11403 	{
11404 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
11405 	    {
11406 	      asection *input_section;
11407 
11408 	      if (p->type != bfd_indirect_link_order)
11409 		continue;
11410 	      input_section = p->u.indirect.section;
11411 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
11412 		 elf_link_input_bfd ignores this section.  */
11413 	      input_section->flags &= ~SEC_HAS_CONTENTS;
11414 	    }
11415 
11416 	  attr_size = bfd_elf_obj_attr_size (abfd);
11417 	  if (attr_size)
11418 	    {
11419 	      bfd_set_section_size (abfd, o, attr_size);
11420 	      attr_section = o;
11421 	      /* Skip this section later on.  */
11422 	      o->map_head.link_order = NULL;
11423 	    }
11424 	  else
11425 	    o->flags |= SEC_EXCLUDE;
11426 	}
11427     }
11428 
11429   /* Count up the number of relocations we will output for each output
11430      section, so that we know the sizes of the reloc sections.  We
11431      also figure out some maximum sizes.  */
11432   max_contents_size = 0;
11433   max_external_reloc_size = 0;
11434   max_internal_reloc_count = 0;
11435   max_sym_count = 0;
11436   max_sym_shndx_count = 0;
11437   merged = FALSE;
11438   for (o = abfd->sections; o != NULL; o = o->next)
11439     {
11440       struct bfd_elf_section_data *esdo = elf_section_data (o);
11441       o->reloc_count = 0;
11442 
11443       for (p = o->map_head.link_order; p != NULL; p = p->next)
11444 	{
11445 	  unsigned int reloc_count = 0;
11446 	  unsigned int additional_reloc_count = 0;
11447 	  struct bfd_elf_section_data *esdi = NULL;
11448 
11449 	  if (p->type == bfd_section_reloc_link_order
11450 	      || p->type == bfd_symbol_reloc_link_order)
11451 	    reloc_count = 1;
11452 	  else if (p->type == bfd_indirect_link_order)
11453 	    {
11454 	      asection *sec;
11455 
11456 	      sec = p->u.indirect.section;
11457 
11458 	      /* Mark all sections which are to be included in the
11459 		 link.  This will normally be every section.  We need
11460 		 to do this so that we can identify any sections which
11461 		 the linker has decided to not include.  */
11462 	      sec->linker_mark = TRUE;
11463 
11464 	      if (sec->flags & SEC_MERGE)
11465 		merged = TRUE;
11466 
11467 	      if (sec->rawsize > max_contents_size)
11468 		max_contents_size = sec->rawsize;
11469 	      if (sec->size > max_contents_size)
11470 		max_contents_size = sec->size;
11471 
11472 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
11473 		  && (sec->owner->flags & DYNAMIC) == 0)
11474 		{
11475 		  size_t sym_count;
11476 
11477 		  /* We are interested in just local symbols, not all
11478 		     symbols.  */
11479 		  if (elf_bad_symtab (sec->owner))
11480 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
11481 				 / bed->s->sizeof_sym);
11482 		  else
11483 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
11484 
11485 		  if (sym_count > max_sym_count)
11486 		    max_sym_count = sym_count;
11487 
11488 		  if (sym_count > max_sym_shndx_count
11489 		      && elf_symtab_shndx_list (sec->owner) != NULL)
11490 		    max_sym_shndx_count = sym_count;
11491 
11492 		  if (esdo->this_hdr.sh_type == SHT_REL
11493 		      || esdo->this_hdr.sh_type == SHT_RELA)
11494 		    /* Some backends use reloc_count in relocation sections
11495 		       to count particular types of relocs.  Of course,
11496 		       reloc sections themselves can't have relocations.  */
11497 		    ;
11498 		  else if (emit_relocs)
11499 		    {
11500 		      reloc_count = sec->reloc_count;
11501 		      if (bed->elf_backend_count_additional_relocs)
11502 			{
11503 			  int c;
11504 			  c = (*bed->elf_backend_count_additional_relocs) (sec);
11505 			  additional_reloc_count += c;
11506 			}
11507 		    }
11508 		  else if (bed->elf_backend_count_relocs)
11509 		    reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
11510 
11511 		  esdi = elf_section_data (sec);
11512 
11513 		  if ((sec->flags & SEC_RELOC) != 0)
11514 		    {
11515 		      size_t ext_size = 0;
11516 
11517 		      if (esdi->rel.hdr != NULL)
11518 			ext_size = esdi->rel.hdr->sh_size;
11519 		      if (esdi->rela.hdr != NULL)
11520 			ext_size += esdi->rela.hdr->sh_size;
11521 
11522 		      if (ext_size > max_external_reloc_size)
11523 			max_external_reloc_size = ext_size;
11524 		      if (sec->reloc_count > max_internal_reloc_count)
11525 			max_internal_reloc_count = sec->reloc_count;
11526 		    }
11527 		}
11528 	    }
11529 
11530 	  if (reloc_count == 0)
11531 	    continue;
11532 
11533 	  reloc_count += additional_reloc_count;
11534 	  o->reloc_count += reloc_count;
11535 
11536 	  if (p->type == bfd_indirect_link_order && emit_relocs)
11537 	    {
11538 	      if (esdi->rel.hdr)
11539 		{
11540 		  esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
11541 		  esdo->rel.count += additional_reloc_count;
11542 		}
11543 	      if (esdi->rela.hdr)
11544 		{
11545 		  esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
11546 		  esdo->rela.count += additional_reloc_count;
11547 		}
11548 	    }
11549 	  else
11550 	    {
11551 	      if (o->use_rela_p)
11552 		esdo->rela.count += reloc_count;
11553 	      else
11554 		esdo->rel.count += reloc_count;
11555 	    }
11556 	}
11557 
11558       if (o->reloc_count > 0)
11559 	o->flags |= SEC_RELOC;
11560       else
11561 	{
11562 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
11563 	     set it (this is probably a bug) and if it is set
11564 	     assign_section_numbers will create a reloc section.  */
11565 	  o->flags &=~ SEC_RELOC;
11566 	}
11567 
11568       /* If the SEC_ALLOC flag is not set, force the section VMA to
11569 	 zero.  This is done in elf_fake_sections as well, but forcing
11570 	 the VMA to 0 here will ensure that relocs against these
11571 	 sections are handled correctly.  */
11572       if ((o->flags & SEC_ALLOC) == 0
11573 	  && ! o->user_set_vma)
11574 	o->vma = 0;
11575     }
11576 
11577   if (! bfd_link_relocatable (info) && merged)
11578     elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd);
11579 
11580   /* Figure out the file positions for everything but the symbol table
11581      and the relocs.  We set symcount to force assign_section_numbers
11582      to create a symbol table.  */
11583   bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs;
11584   BFD_ASSERT (! abfd->output_has_begun);
11585   if (! _bfd_elf_compute_section_file_positions (abfd, info))
11586     goto error_return;
11587 
11588   /* Set sizes, and assign file positions for reloc sections.  */
11589   for (o = abfd->sections; o != NULL; o = o->next)
11590     {
11591       struct bfd_elf_section_data *esdo = elf_section_data (o);
11592       if ((o->flags & SEC_RELOC) != 0)
11593 	{
11594 	  if (esdo->rel.hdr
11595 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
11596 	    goto error_return;
11597 
11598 	  if (esdo->rela.hdr
11599 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
11600 	    goto error_return;
11601 	}
11602 
11603       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
11604 	 to count upwards while actually outputting the relocations.  */
11605       esdo->rel.count = 0;
11606       esdo->rela.count = 0;
11607 
11608       if (esdo->this_hdr.sh_offset == (file_ptr) -1)
11609 	{
11610 	  /* Cache the section contents so that they can be compressed
11611 	     later.  Use bfd_malloc since it will be freed by
11612 	     bfd_compress_section_contents.  */
11613 	  unsigned char *contents = esdo->this_hdr.contents;
11614 	  if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL)
11615 	    abort ();
11616 	  contents
11617 	    = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size);
11618 	  if (contents == NULL)
11619 	    goto error_return;
11620 	  esdo->this_hdr.contents = contents;
11621 	}
11622     }
11623 
11624   /* We have now assigned file positions for all the sections except
11625      .symtab, .strtab, and non-loaded reloc sections.  We start the
11626      .symtab section at the current file position, and write directly
11627      to it.  We build the .strtab section in memory.  */
11628   bfd_get_symcount (abfd) = 0;
11629   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11630   /* sh_name is set in prep_headers.  */
11631   symtab_hdr->sh_type = SHT_SYMTAB;
11632   /* sh_flags, sh_addr and sh_size all start off zero.  */
11633   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
11634   /* sh_link is set in assign_section_numbers.  */
11635   /* sh_info is set below.  */
11636   /* sh_offset is set just below.  */
11637   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
11638 
11639   if (max_sym_count < 20)
11640     max_sym_count = 20;
11641   htab->strtabsize = max_sym_count;
11642   amt = max_sym_count * sizeof (struct elf_sym_strtab);
11643   htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt);
11644   if (htab->strtab == NULL)
11645     goto error_return;
11646   /* The real buffer will be allocated in elf_link_swap_symbols_out.  */
11647   flinfo.symshndxbuf
11648     = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF)
11649        ? (Elf_External_Sym_Shndx *) -1 : NULL);
11650 
11651   if (info->strip != strip_all || emit_relocs)
11652     {
11653       file_ptr off = elf_next_file_pos (abfd);
11654 
11655       _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
11656 
11657       /* Note that at this point elf_next_file_pos (abfd) is
11658 	 incorrect.  We do not yet know the size of the .symtab section.
11659 	 We correct next_file_pos below, after we do know the size.  */
11660 
11661       /* Start writing out the symbol table.  The first symbol is always a
11662 	 dummy symbol.  */
11663       elfsym.st_value = 0;
11664       elfsym.st_size = 0;
11665       elfsym.st_info = 0;
11666       elfsym.st_other = 0;
11667       elfsym.st_shndx = SHN_UNDEF;
11668       elfsym.st_target_internal = 0;
11669       if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym,
11670 				     bfd_und_section_ptr, NULL) != 1)
11671 	goto error_return;
11672 
11673       /* Output a symbol for each section.  We output these even if we are
11674 	 discarding local symbols, since they are used for relocs.  These
11675 	 symbols have no names.  We store the index of each one in the
11676 	 index field of the section, so that we can find it again when
11677 	 outputting relocs.  */
11678 
11679       elfsym.st_size = 0;
11680       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11681       elfsym.st_other = 0;
11682       elfsym.st_value = 0;
11683       elfsym.st_target_internal = 0;
11684       for (i = 1; i < elf_numsections (abfd); i++)
11685 	{
11686 	  o = bfd_section_from_elf_index (abfd, i);
11687 	  if (o != NULL)
11688 	    {
11689 	      o->target_index = bfd_get_symcount (abfd);
11690 	      elfsym.st_shndx = i;
11691 	      if (!bfd_link_relocatable (info))
11692 		elfsym.st_value = o->vma;
11693 	      if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o,
11694 					     NULL) != 1)
11695 		goto error_return;
11696 	    }
11697 	}
11698     }
11699 
11700   /* Allocate some memory to hold information read in from the input
11701      files.  */
11702   if (max_contents_size != 0)
11703     {
11704       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
11705       if (flinfo.contents == NULL)
11706 	goto error_return;
11707     }
11708 
11709   if (max_external_reloc_size != 0)
11710     {
11711       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
11712       if (flinfo.external_relocs == NULL)
11713 	goto error_return;
11714     }
11715 
11716   if (max_internal_reloc_count != 0)
11717     {
11718       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
11719       amt *= sizeof (Elf_Internal_Rela);
11720       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
11721       if (flinfo.internal_relocs == NULL)
11722 	goto error_return;
11723     }
11724 
11725   if (max_sym_count != 0)
11726     {
11727       amt = max_sym_count * bed->s->sizeof_sym;
11728       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
11729       if (flinfo.external_syms == NULL)
11730 	goto error_return;
11731 
11732       amt = max_sym_count * sizeof (Elf_Internal_Sym);
11733       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
11734       if (flinfo.internal_syms == NULL)
11735 	goto error_return;
11736 
11737       amt = max_sym_count * sizeof (long);
11738       flinfo.indices = (long int *) bfd_malloc (amt);
11739       if (flinfo.indices == NULL)
11740 	goto error_return;
11741 
11742       amt = max_sym_count * sizeof (asection *);
11743       flinfo.sections = (asection **) bfd_malloc (amt);
11744       if (flinfo.sections == NULL)
11745 	goto error_return;
11746     }
11747 
11748   if (max_sym_shndx_count != 0)
11749     {
11750       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
11751       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
11752       if (flinfo.locsym_shndx == NULL)
11753 	goto error_return;
11754     }
11755 
11756   if (htab->tls_sec)
11757     {
11758       bfd_vma base, end = 0;
11759       asection *sec;
11760 
11761       for (sec = htab->tls_sec;
11762 	   sec && (sec->flags & SEC_THREAD_LOCAL);
11763 	   sec = sec->next)
11764 	{
11765 	  bfd_size_type size = sec->size;
11766 
11767 	  if (size == 0
11768 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
11769 	    {
11770 	      struct bfd_link_order *ord = sec->map_tail.link_order;
11771 
11772 	      if (ord != NULL)
11773 		size = ord->offset + ord->size;
11774 	    }
11775 	  end = sec->vma + size;
11776 	}
11777       base = htab->tls_sec->vma;
11778       /* Only align end of TLS section if static TLS doesn't have special
11779 	 alignment requirements.  */
11780       if (bed->static_tls_alignment == 1)
11781 	end = align_power (end, htab->tls_sec->alignment_power);
11782       htab->tls_size = end - base;
11783     }
11784 
11785   /* Reorder SHF_LINK_ORDER sections.  */
11786   for (o = abfd->sections; o != NULL; o = o->next)
11787     {
11788       if (!elf_fixup_link_order (abfd, o))
11789 	return FALSE;
11790     }
11791 
11792   if (!_bfd_elf_fixup_eh_frame_hdr (info))
11793     return FALSE;
11794 
11795   /* Since ELF permits relocations to be against local symbols, we
11796      must have the local symbols available when we do the relocations.
11797      Since we would rather only read the local symbols once, and we
11798      would rather not keep them in memory, we handle all the
11799      relocations for a single input file at the same time.
11800 
11801      Unfortunately, there is no way to know the total number of local
11802      symbols until we have seen all of them, and the local symbol
11803      indices precede the global symbol indices.  This means that when
11804      we are generating relocatable output, and we see a reloc against
11805      a global symbol, we can not know the symbol index until we have
11806      finished examining all the local symbols to see which ones we are
11807      going to output.  To deal with this, we keep the relocations in
11808      memory, and don't output them until the end of the link.  This is
11809      an unfortunate waste of memory, but I don't see a good way around
11810      it.  Fortunately, it only happens when performing a relocatable
11811      link, which is not the common case.  FIXME: If keep_memory is set
11812      we could write the relocs out and then read them again; I don't
11813      know how bad the memory loss will be.  */
11814 
11815   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11816     sub->output_has_begun = FALSE;
11817   for (o = abfd->sections; o != NULL; o = o->next)
11818     {
11819       for (p = o->map_head.link_order; p != NULL; p = p->next)
11820 	{
11821 	  if (p->type == bfd_indirect_link_order
11822 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
11823 		  == bfd_target_elf_flavour)
11824 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
11825 	    {
11826 	      if (! sub->output_has_begun)
11827 		{
11828 		  if (! elf_link_input_bfd (&flinfo, sub))
11829 		    goto error_return;
11830 		  sub->output_has_begun = TRUE;
11831 		}
11832 	    }
11833 	  else if (p->type == bfd_section_reloc_link_order
11834 		   || p->type == bfd_symbol_reloc_link_order)
11835 	    {
11836 	      if (! elf_reloc_link_order (abfd, info, o, p))
11837 		goto error_return;
11838 	    }
11839 	  else
11840 	    {
11841 	      if (! _bfd_default_link_order (abfd, info, o, p))
11842 		{
11843 		  if (p->type == bfd_indirect_link_order
11844 		      && (bfd_get_flavour (sub)
11845 			  == bfd_target_elf_flavour)
11846 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
11847 			  != bed->s->elfclass))
11848 		    {
11849 		      const char *iclass, *oclass;
11850 
11851 		      switch (bed->s->elfclass)
11852 			{
11853 			case ELFCLASS64: oclass = "ELFCLASS64"; break;
11854 			case ELFCLASS32: oclass = "ELFCLASS32"; break;
11855 			case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break;
11856 			default: abort ();
11857 			}
11858 
11859 		      switch (elf_elfheader (sub)->e_ident[EI_CLASS])
11860 			{
11861 			case ELFCLASS64: iclass = "ELFCLASS64"; break;
11862 			case ELFCLASS32: iclass = "ELFCLASS32"; break;
11863 			case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break;
11864 			default: abort ();
11865 			}
11866 
11867 		      bfd_set_error (bfd_error_wrong_format);
11868 		      _bfd_error_handler
11869 			/* xgettext:c-format */
11870 			(_("%B: file class %s incompatible with %s"),
11871 			 sub, iclass, oclass);
11872 		    }
11873 
11874 		  goto error_return;
11875 		}
11876 	    }
11877 	}
11878     }
11879 
11880   /* Free symbol buffer if needed.  */
11881   if (!info->reduce_memory_overheads)
11882     {
11883       for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
11884 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
11885 	    && elf_tdata (sub)->symbuf)
11886 	  {
11887 	    free (elf_tdata (sub)->symbuf);
11888 	    elf_tdata (sub)->symbuf = NULL;
11889 	  }
11890     }
11891 
11892   /* Output any global symbols that got converted to local in a
11893      version script or due to symbol visibility.  We do this in a
11894      separate step since ELF requires all local symbols to appear
11895      prior to any global symbols.  FIXME: We should only do this if
11896      some global symbols were, in fact, converted to become local.
11897      FIXME: Will this work correctly with the Irix 5 linker?  */
11898   eoinfo.failed = FALSE;
11899   eoinfo.flinfo = &flinfo;
11900   eoinfo.localsyms = TRUE;
11901   eoinfo.file_sym_done = FALSE;
11902   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11903   if (eoinfo.failed)
11904     return FALSE;
11905 
11906   /* If backend needs to output some local symbols not present in the hash
11907      table, do it now.  */
11908   if (bed->elf_backend_output_arch_local_syms
11909       && (info->strip != strip_all || emit_relocs))
11910     {
11911       typedef int (*out_sym_func)
11912 	(void *, const char *, Elf_Internal_Sym *, asection *,
11913 	 struct elf_link_hash_entry *);
11914 
11915       if (! ((*bed->elf_backend_output_arch_local_syms)
11916 	     (abfd, info, &flinfo,
11917 	      (out_sym_func) elf_link_output_symstrtab)))
11918 	return FALSE;
11919     }
11920 
11921   /* That wrote out all the local symbols.  Finish up the symbol table
11922      with the global symbols. Even if we want to strip everything we
11923      can, we still need to deal with those global symbols that got
11924      converted to local in a version script.  */
11925 
11926   /* The sh_info field records the index of the first non local symbol.  */
11927   symtab_hdr->sh_info = bfd_get_symcount (abfd);
11928 
11929   if (dynamic
11930       && htab->dynsym != NULL
11931       && htab->dynsym->output_section != bfd_abs_section_ptr)
11932     {
11933       Elf_Internal_Sym sym;
11934       bfd_byte *dynsym = htab->dynsym->contents;
11935 
11936       o = htab->dynsym->output_section;
11937       elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1;
11938 
11939       /* Write out the section symbols for the output sections.  */
11940       if (bfd_link_pic (info)
11941 	  || htab->is_relocatable_executable)
11942 	{
11943 	  asection *s;
11944 
11945 	  sym.st_size = 0;
11946 	  sym.st_name = 0;
11947 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11948 	  sym.st_other = 0;
11949 	  sym.st_target_internal = 0;
11950 
11951 	  for (s = abfd->sections; s != NULL; s = s->next)
11952 	    {
11953 	      int indx;
11954 	      bfd_byte *dest;
11955 	      long dynindx;
11956 
11957 	      dynindx = elf_section_data (s)->dynindx;
11958 	      if (dynindx <= 0)
11959 		continue;
11960 	      indx = elf_section_data (s)->this_idx;
11961 	      BFD_ASSERT (indx > 0);
11962 	      sym.st_shndx = indx;
11963 	      if (! check_dynsym (abfd, &sym))
11964 		return FALSE;
11965 	      sym.st_value = s->vma;
11966 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
11967 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11968 	    }
11969 	}
11970 
11971       /* Write out the local dynsyms.  */
11972       if (htab->dynlocal)
11973 	{
11974 	  struct elf_link_local_dynamic_entry *e;
11975 	  for (e = htab->dynlocal; e ; e = e->next)
11976 	    {
11977 	      asection *s;
11978 	      bfd_byte *dest;
11979 
11980 	      /* Copy the internal symbol and turn off visibility.
11981 		 Note that we saved a word of storage and overwrote
11982 		 the original st_name with the dynstr_index.  */
11983 	      sym = e->isym;
11984 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11985 
11986 	      s = bfd_section_from_elf_index (e->input_bfd,
11987 					      e->isym.st_shndx);
11988 	      if (s != NULL)
11989 		{
11990 		  sym.st_shndx =
11991 		    elf_section_data (s->output_section)->this_idx;
11992 		  if (! check_dynsym (abfd, &sym))
11993 		    return FALSE;
11994 		  sym.st_value = (s->output_section->vma
11995 				  + s->output_offset
11996 				  + e->isym.st_value);
11997 		}
11998 
11999 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
12000 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
12001 	    }
12002 	}
12003     }
12004 
12005   /* We get the global symbols from the hash table.  */
12006   eoinfo.failed = FALSE;
12007   eoinfo.localsyms = FALSE;
12008   eoinfo.flinfo = &flinfo;
12009   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
12010   if (eoinfo.failed)
12011     return FALSE;
12012 
12013   /* If backend needs to output some symbols not present in the hash
12014      table, do it now.  */
12015   if (bed->elf_backend_output_arch_syms
12016       && (info->strip != strip_all || emit_relocs))
12017     {
12018       typedef int (*out_sym_func)
12019 	(void *, const char *, Elf_Internal_Sym *, asection *,
12020 	 struct elf_link_hash_entry *);
12021 
12022       if (! ((*bed->elf_backend_output_arch_syms)
12023 	     (abfd, info, &flinfo,
12024 	      (out_sym_func) elf_link_output_symstrtab)))
12025 	return FALSE;
12026     }
12027 
12028   /* Finalize the .strtab section.  */
12029   _bfd_elf_strtab_finalize (flinfo.symstrtab);
12030 
12031   /* Swap out the .strtab section. */
12032   if (!elf_link_swap_symbols_out (&flinfo))
12033     return FALSE;
12034 
12035   /* Now we know the size of the symtab section.  */
12036   if (bfd_get_symcount (abfd) > 0)
12037     {
12038       /* Finish up and write out the symbol string table (.strtab)
12039 	 section.  */
12040       Elf_Internal_Shdr *symstrtab_hdr = NULL;
12041       file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size;
12042 
12043       if (elf_symtab_shndx_list (abfd))
12044 	{
12045 	  symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
12046 
12047 	  if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0)
12048 	    {
12049 	      symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
12050 	      symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
12051 	      symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
12052 	      amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
12053 	      symtab_shndx_hdr->sh_size = amt;
12054 
12055 	      off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
12056 							       off, TRUE);
12057 
12058 	      if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
12059 		  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
12060 		return FALSE;
12061 	    }
12062 	}
12063 
12064       symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
12065       /* sh_name was set in prep_headers.  */
12066       symstrtab_hdr->sh_type = SHT_STRTAB;
12067       symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
12068       symstrtab_hdr->sh_addr = 0;
12069       symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab);
12070       symstrtab_hdr->sh_entsize = 0;
12071       symstrtab_hdr->sh_link = 0;
12072       symstrtab_hdr->sh_info = 0;
12073       /* sh_offset is set just below.  */
12074       symstrtab_hdr->sh_addralign = 1;
12075 
12076       off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr,
12077 						       off, TRUE);
12078       elf_next_file_pos (abfd) = off;
12079 
12080       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
12081 	  || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab))
12082 	return FALSE;
12083     }
12084 
12085   if (info->out_implib_bfd && !elf_output_implib (abfd, info))
12086     {
12087       _bfd_error_handler (_("%B: failed to generate import library"),
12088 			  info->out_implib_bfd);
12089       return FALSE;
12090     }
12091 
12092   /* Adjust the relocs to have the correct symbol indices.  */
12093   for (o = abfd->sections; o != NULL; o = o->next)
12094     {
12095       struct bfd_elf_section_data *esdo = elf_section_data (o);
12096       bfd_boolean sort;
12097       if ((o->flags & SEC_RELOC) == 0)
12098 	continue;
12099 
12100       sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o);
12101       if (esdo->rel.hdr != NULL
12102 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort))
12103 	return FALSE;
12104       if (esdo->rela.hdr != NULL
12105 	  && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort))
12106 	return FALSE;
12107 
12108       /* Set the reloc_count field to 0 to prevent write_relocs from
12109 	 trying to swap the relocs out itself.  */
12110       o->reloc_count = 0;
12111     }
12112 
12113   if (dynamic && info->combreloc && dynobj != NULL)
12114     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
12115 
12116   /* If we are linking against a dynamic object, or generating a
12117      shared library, finish up the dynamic linking information.  */
12118   if (dynamic)
12119     {
12120       bfd_byte *dyncon, *dynconend;
12121 
12122       /* Fix up .dynamic entries.  */
12123       o = bfd_get_linker_section (dynobj, ".dynamic");
12124       BFD_ASSERT (o != NULL);
12125 
12126       dyncon = o->contents;
12127       dynconend = o->contents + o->size;
12128       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12129 	{
12130 	  Elf_Internal_Dyn dyn;
12131 	  const char *name;
12132 	  unsigned int type;
12133 	  bfd_size_type sh_size;
12134 	  bfd_vma sh_addr;
12135 
12136 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12137 
12138 	  switch (dyn.d_tag)
12139 	    {
12140 	    default:
12141 	      continue;
12142 	    case DT_NULL:
12143 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
12144 		{
12145 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
12146 		    {
12147 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
12148 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
12149 		    default: continue;
12150 		    }
12151 		  dyn.d_un.d_val = relativecount;
12152 		  relativecount = 0;
12153 		  break;
12154 		}
12155 	      continue;
12156 
12157 	    case DT_INIT:
12158 	      name = info->init_function;
12159 	      goto get_sym;
12160 	    case DT_FINI:
12161 	      name = info->fini_function;
12162 	    get_sym:
12163 	      {
12164 		struct elf_link_hash_entry *h;
12165 
12166 		h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
12167 		if (h != NULL
12168 		    && (h->root.type == bfd_link_hash_defined
12169 			|| h->root.type == bfd_link_hash_defweak))
12170 		  {
12171 		    dyn.d_un.d_ptr = h->root.u.def.value;
12172 		    o = h->root.u.def.section;
12173 		    if (o->output_section != NULL)
12174 		      dyn.d_un.d_ptr += (o->output_section->vma
12175 					 + o->output_offset);
12176 		    else
12177 		      {
12178 			/* The symbol is imported from another shared
12179 			   library and does not apply to this one.  */
12180 			dyn.d_un.d_ptr = 0;
12181 		      }
12182 		    break;
12183 		  }
12184 	      }
12185 	      continue;
12186 
12187 	    case DT_PREINIT_ARRAYSZ:
12188 	      name = ".preinit_array";
12189 	      goto get_out_size;
12190 	    case DT_INIT_ARRAYSZ:
12191 	      name = ".init_array";
12192 	      goto get_out_size;
12193 	    case DT_FINI_ARRAYSZ:
12194 	      name = ".fini_array";
12195 	    get_out_size:
12196 	      o = bfd_get_section_by_name (abfd, name);
12197 	      if (o == NULL)
12198 		{
12199 		  _bfd_error_handler
12200 		    (_("could not find section %s"), name);
12201 		  goto error_return;
12202 		}
12203 	      if (o->size == 0)
12204 		_bfd_error_handler
12205 		  (_("warning: %s section has zero size"), name);
12206 	      dyn.d_un.d_val = o->size;
12207 	      break;
12208 
12209 	    case DT_PREINIT_ARRAY:
12210 	      name = ".preinit_array";
12211 	      goto get_out_vma;
12212 	    case DT_INIT_ARRAY:
12213 	      name = ".init_array";
12214 	      goto get_out_vma;
12215 	    case DT_FINI_ARRAY:
12216 	      name = ".fini_array";
12217 	    get_out_vma:
12218 	      o = bfd_get_section_by_name (abfd, name);
12219 	      goto do_vma;
12220 
12221 	    case DT_HASH:
12222 	      name = ".hash";
12223 	      goto get_vma;
12224 	    case DT_GNU_HASH:
12225 	      name = ".gnu.hash";
12226 	      goto get_vma;
12227 	    case DT_STRTAB:
12228 	      name = ".dynstr";
12229 	      goto get_vma;
12230 	    case DT_SYMTAB:
12231 	      name = ".dynsym";
12232 	      goto get_vma;
12233 	    case DT_VERDEF:
12234 	      name = ".gnu.version_d";
12235 	      goto get_vma;
12236 	    case DT_VERNEED:
12237 	      name = ".gnu.version_r";
12238 	      goto get_vma;
12239 	    case DT_VERSYM:
12240 	      name = ".gnu.version";
12241 	    get_vma:
12242 	      o = bfd_get_linker_section (dynobj, name);
12243 	    do_vma:
12244 	      if (o == NULL)
12245 		{
12246 		  _bfd_error_handler
12247 		    (_("could not find section %s"), name);
12248 		  goto error_return;
12249 		}
12250 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
12251 		{
12252 		  _bfd_error_handler
12253 		    (_("warning: section '%s' is being made into a note"), name);
12254 		  bfd_set_error (bfd_error_nonrepresentable_section);
12255 		  goto error_return;
12256 		}
12257 	      dyn.d_un.d_ptr = o->output_section->vma + o->output_offset;
12258 	      break;
12259 
12260 	    case DT_REL:
12261 	    case DT_RELA:
12262 	    case DT_RELSZ:
12263 	    case DT_RELASZ:
12264 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12265 		type = SHT_REL;
12266 	      else
12267 		type = SHT_RELA;
12268 	      sh_size = 0;
12269 	      sh_addr = 0;
12270 	      for (i = 1; i < elf_numsections (abfd); i++)
12271 		{
12272 		  Elf_Internal_Shdr *hdr;
12273 
12274 		  hdr = elf_elfsections (abfd)[i];
12275 		  if (hdr->sh_type == type
12276 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
12277 		    {
12278 		      sh_size += hdr->sh_size;
12279 		      if (sh_addr == 0
12280 			  || sh_addr > hdr->sh_addr)
12281 			sh_addr = hdr->sh_addr;
12282 		    }
12283 		}
12284 
12285 	      if (bed->dtrel_excludes_plt && htab->srelplt != NULL)
12286 		{
12287 		  /* Don't count procedure linkage table relocs in the
12288 		     overall reloc count.  */
12289 		  sh_size -= htab->srelplt->size;
12290 		  if (sh_size == 0)
12291 		    /* If the size is zero, make the address zero too.
12292 		       This is to avoid a glibc bug.  If the backend
12293 		       emits DT_RELA/DT_RELASZ even when DT_RELASZ is
12294 		       zero, then we'll put DT_RELA at the end of
12295 		       DT_JMPREL.  glibc will interpret the end of
12296 		       DT_RELA matching the end of DT_JMPREL as the
12297 		       case where DT_RELA includes DT_JMPREL, and for
12298 		       LD_BIND_NOW will decide that processing DT_RELA
12299 		       will process the PLT relocs too.  Net result:
12300 		       No PLT relocs applied.  */
12301 		    sh_addr = 0;
12302 
12303 		  /* If .rela.plt is the first .rela section, exclude
12304 		     it from DT_RELA.  */
12305 		  else if (sh_addr == (htab->srelplt->output_section->vma
12306 				       + htab->srelplt->output_offset))
12307 		    sh_addr += htab->srelplt->size;
12308 		}
12309 
12310 	      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
12311 		dyn.d_un.d_val = sh_size;
12312 	      else
12313 		dyn.d_un.d_ptr = sh_addr;
12314 	      break;
12315 	    }
12316 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
12317 	}
12318     }
12319 
12320   /* If we have created any dynamic sections, then output them.  */
12321   if (dynobj != NULL)
12322     {
12323       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
12324 	goto error_return;
12325 
12326       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
12327       if (((info->warn_shared_textrel && bfd_link_pic (info))
12328 	   || info->error_textrel)
12329 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
12330 	{
12331 	  bfd_byte *dyncon, *dynconend;
12332 
12333 	  dyncon = o->contents;
12334 	  dynconend = o->contents + o->size;
12335 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
12336 	    {
12337 	      Elf_Internal_Dyn dyn;
12338 
12339 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
12340 
12341 	      if (dyn.d_tag == DT_TEXTREL)
12342 		{
12343 		  if (info->error_textrel)
12344 		    info->callbacks->einfo
12345 		      (_("%P%X: read-only segment has dynamic relocations.\n"));
12346 		  else
12347 		    info->callbacks->einfo
12348 		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
12349 		  break;
12350 		}
12351 	    }
12352 	}
12353 
12354       for (o = dynobj->sections; o != NULL; o = o->next)
12355 	{
12356 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
12357 	      || o->size == 0
12358 	      || o->output_section == bfd_abs_section_ptr)
12359 	    continue;
12360 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
12361 	    {
12362 	      /* At this point, we are only interested in sections
12363 		 created by _bfd_elf_link_create_dynamic_sections.  */
12364 	      continue;
12365 	    }
12366 	  if (htab->stab_info.stabstr == o)
12367 	    continue;
12368 	  if (htab->eh_info.hdr_sec == o)
12369 	    continue;
12370 	  if (strcmp (o->name, ".dynstr") != 0)
12371 	    {
12372 	      if (! bfd_set_section_contents (abfd, o->output_section,
12373 					      o->contents,
12374 					      (file_ptr) o->output_offset
12375 					      * bfd_octets_per_byte (abfd),
12376 					      o->size))
12377 		goto error_return;
12378 	    }
12379 	  else
12380 	    {
12381 	      /* The contents of the .dynstr section are actually in a
12382 		 stringtab.  */
12383 	      file_ptr off;
12384 
12385 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
12386 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
12387 		  || !_bfd_elf_strtab_emit (abfd, htab->dynstr))
12388 		goto error_return;
12389 	    }
12390 	}
12391     }
12392 
12393   if (bfd_link_relocatable (info))
12394     {
12395       bfd_boolean failed = FALSE;
12396 
12397       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
12398       if (failed)
12399 	goto error_return;
12400     }
12401 
12402   /* If we have optimized stabs strings, output them.  */
12403   if (htab->stab_info.stabstr != NULL)
12404     {
12405       if (!_bfd_write_stab_strings (abfd, &htab->stab_info))
12406 	goto error_return;
12407     }
12408 
12409   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
12410     goto error_return;
12411 
12412   elf_final_link_free (abfd, &flinfo);
12413 
12414   elf_linker (abfd) = TRUE;
12415 
12416   if (attr_section)
12417     {
12418       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
12419       if (contents == NULL)
12420 	return FALSE;	/* Bail out and fail.  */
12421       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
12422       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
12423       free (contents);
12424     }
12425 
12426   return TRUE;
12427 
12428  error_return:
12429   elf_final_link_free (abfd, &flinfo);
12430   return FALSE;
12431 }
12432 
12433 /* Initialize COOKIE for input bfd ABFD.  */
12434 
12435 static bfd_boolean
12436 init_reloc_cookie (struct elf_reloc_cookie *cookie,
12437 		   struct bfd_link_info *info, bfd *abfd)
12438 {
12439   Elf_Internal_Shdr *symtab_hdr;
12440   const struct elf_backend_data *bed;
12441 
12442   bed = get_elf_backend_data (abfd);
12443   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12444 
12445   cookie->abfd = abfd;
12446   cookie->sym_hashes = elf_sym_hashes (abfd);
12447   cookie->bad_symtab = elf_bad_symtab (abfd);
12448   if (cookie->bad_symtab)
12449     {
12450       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12451       cookie->extsymoff = 0;
12452     }
12453   else
12454     {
12455       cookie->locsymcount = symtab_hdr->sh_info;
12456       cookie->extsymoff = symtab_hdr->sh_info;
12457     }
12458 
12459   if (bed->s->arch_size == 32)
12460     cookie->r_sym_shift = 8;
12461   else
12462     cookie->r_sym_shift = 32;
12463 
12464   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
12465   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
12466     {
12467       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
12468 					      cookie->locsymcount, 0,
12469 					      NULL, NULL, NULL);
12470       if (cookie->locsyms == NULL)
12471 	{
12472 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
12473 	  return FALSE;
12474 	}
12475       if (info->keep_memory)
12476 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
12477     }
12478   return TRUE;
12479 }
12480 
12481 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
12482 
12483 static void
12484 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
12485 {
12486   Elf_Internal_Shdr *symtab_hdr;
12487 
12488   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
12489   if (cookie->locsyms != NULL
12490       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
12491     free (cookie->locsyms);
12492 }
12493 
12494 /* Initialize the relocation information in COOKIE for input section SEC
12495    of input bfd ABFD.  */
12496 
12497 static bfd_boolean
12498 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12499 			struct bfd_link_info *info, bfd *abfd,
12500 			asection *sec)
12501 {
12502   const struct elf_backend_data *bed;
12503 
12504   if (sec->reloc_count == 0)
12505     {
12506       cookie->rels = NULL;
12507       cookie->relend = NULL;
12508     }
12509   else
12510     {
12511       bed = get_elf_backend_data (abfd);
12512 
12513       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
12514 						info->keep_memory);
12515       if (cookie->rels == NULL)
12516 	return FALSE;
12517       cookie->rel = cookie->rels;
12518       cookie->relend = (cookie->rels
12519 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
12520     }
12521   cookie->rel = cookie->rels;
12522   return TRUE;
12523 }
12524 
12525 /* Free the memory allocated by init_reloc_cookie_rels,
12526    if appropriate.  */
12527 
12528 static void
12529 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
12530 			asection *sec)
12531 {
12532   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
12533     free (cookie->rels);
12534 }
12535 
12536 /* Initialize the whole of COOKIE for input section SEC.  */
12537 
12538 static bfd_boolean
12539 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12540 			       struct bfd_link_info *info,
12541 			       asection *sec)
12542 {
12543   if (!init_reloc_cookie (cookie, info, sec->owner))
12544     goto error1;
12545   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
12546     goto error2;
12547   return TRUE;
12548 
12549  error2:
12550   fini_reloc_cookie (cookie, sec->owner);
12551  error1:
12552   return FALSE;
12553 }
12554 
12555 /* Free the memory allocated by init_reloc_cookie_for_section,
12556    if appropriate.  */
12557 
12558 static void
12559 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
12560 			       asection *sec)
12561 {
12562   fini_reloc_cookie_rels (cookie, sec);
12563   fini_reloc_cookie (cookie, sec->owner);
12564 }
12565 
12566 /* Garbage collect unused sections.  */
12567 
12568 /* Default gc_mark_hook.  */
12569 
12570 asection *
12571 _bfd_elf_gc_mark_hook (asection *sec,
12572 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12573 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
12574 		       struct elf_link_hash_entry *h,
12575 		       Elf_Internal_Sym *sym)
12576 {
12577   if (h != NULL)
12578     {
12579       switch (h->root.type)
12580 	{
12581 	case bfd_link_hash_defined:
12582 	case bfd_link_hash_defweak:
12583 	  return h->root.u.def.section;
12584 
12585 	case bfd_link_hash_common:
12586 	  return h->root.u.c.p->section;
12587 
12588 	default:
12589 	  break;
12590 	}
12591     }
12592   else
12593     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
12594 
12595   return NULL;
12596 }
12597 
12598 /* For undefined __start_<name> and __stop_<name> symbols, return the
12599    first input section matching <name>.  Return NULL otherwise.  */
12600 
12601 asection *
12602 _bfd_elf_is_start_stop (const struct bfd_link_info *info,
12603 			struct elf_link_hash_entry *h)
12604 {
12605   asection *s;
12606   const char *sec_name;
12607 
12608   if (h->root.type != bfd_link_hash_undefined
12609       && h->root.type != bfd_link_hash_undefweak)
12610     return NULL;
12611 
12612   s = h->root.u.undef.section;
12613   if (s != NULL)
12614     {
12615       if (s == (asection *) 0 - 1)
12616 	return NULL;
12617       return s;
12618     }
12619 
12620   sec_name = NULL;
12621   if (strncmp (h->root.root.string, "__start_", 8) == 0)
12622     sec_name = h->root.root.string + 8;
12623   else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
12624     sec_name = h->root.root.string + 7;
12625 
12626   if (sec_name != NULL && *sec_name != '\0')
12627     {
12628       bfd *i;
12629 
12630       for (i = info->input_bfds; i != NULL; i = i->link.next)
12631 	{
12632 	  s = bfd_get_section_by_name (i, sec_name);
12633 	  if (s != NULL)
12634 	    {
12635 	      h->root.u.undef.section = s;
12636 	      break;
12637 	    }
12638 	}
12639     }
12640 
12641   if (s == NULL)
12642     h->root.u.undef.section = (asection *) 0 - 1;
12643 
12644   return s;
12645 }
12646 
12647 /* COOKIE->rel describes a relocation against section SEC, which is
12648    a section we've decided to keep.  Return the section that contains
12649    the relocation symbol, or NULL if no section contains it.  */
12650 
12651 asection *
12652 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
12653 		       elf_gc_mark_hook_fn gc_mark_hook,
12654 		       struct elf_reloc_cookie *cookie,
12655 		       bfd_boolean *start_stop)
12656 {
12657   unsigned long r_symndx;
12658   struct elf_link_hash_entry *h;
12659 
12660   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
12661   if (r_symndx == STN_UNDEF)
12662     return NULL;
12663 
12664   if (r_symndx >= cookie->locsymcount
12665       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12666     {
12667       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
12668       if (h == NULL)
12669 	{
12670 	  info->callbacks->einfo (_("%F%P: corrupt input: %B\n"),
12671 				  sec->owner);
12672 	  return NULL;
12673 	}
12674       while (h->root.type == bfd_link_hash_indirect
12675 	     || h->root.type == bfd_link_hash_warning)
12676 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
12677       h->mark = 1;
12678       /* If this symbol is weak and there is a non-weak definition, we
12679 	 keep the non-weak definition because many backends put
12680 	 dynamic reloc info on the non-weak definition for code
12681 	 handling copy relocs.  */
12682       if (h->u.weakdef != NULL)
12683 	h->u.weakdef->mark = 1;
12684 
12685       if (start_stop != NULL)
12686 	{
12687 	  /* To work around a glibc bug, mark all XXX input sections
12688 	     when there is an as yet undefined reference to __start_XXX
12689 	     or __stop_XXX symbols.  The linker will later define such
12690 	     symbols for orphan input sections that have a name
12691 	     representable as a C identifier.  */
12692 	  asection *s = _bfd_elf_is_start_stop (info, h);
12693 
12694 	  if (s != NULL)
12695 	    {
12696 	      *start_stop = !s->gc_mark;
12697 	      return s;
12698 	    }
12699 	}
12700 
12701       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
12702     }
12703 
12704   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
12705 			  &cookie->locsyms[r_symndx]);
12706 }
12707 
12708 /* COOKIE->rel describes a relocation against section SEC, which is
12709    a section we've decided to keep.  Mark the section that contains
12710    the relocation symbol.  */
12711 
12712 bfd_boolean
12713 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
12714 			asection *sec,
12715 			elf_gc_mark_hook_fn gc_mark_hook,
12716 			struct elf_reloc_cookie *cookie)
12717 {
12718   asection *rsec;
12719   bfd_boolean start_stop = FALSE;
12720 
12721   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop);
12722   while (rsec != NULL)
12723     {
12724       if (!rsec->gc_mark)
12725 	{
12726 	  if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
12727 	      || (rsec->owner->flags & DYNAMIC) != 0)
12728 	    rsec->gc_mark = 1;
12729 	  else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
12730 	    return FALSE;
12731 	}
12732       if (!start_stop)
12733 	break;
12734       rsec = bfd_get_next_section_by_name (rsec->owner, rsec);
12735     }
12736   return TRUE;
12737 }
12738 
12739 /* The mark phase of garbage collection.  For a given section, mark
12740    it and any sections in this section's group, and all the sections
12741    which define symbols to which it refers.  */
12742 
12743 bfd_boolean
12744 _bfd_elf_gc_mark (struct bfd_link_info *info,
12745 		  asection *sec,
12746 		  elf_gc_mark_hook_fn gc_mark_hook)
12747 {
12748   bfd_boolean ret;
12749   asection *group_sec, *eh_frame;
12750 
12751   sec->gc_mark = 1;
12752 
12753   /* Mark all the sections in the group.  */
12754   group_sec = elf_section_data (sec)->next_in_group;
12755   if (group_sec && !group_sec->gc_mark)
12756     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
12757       return FALSE;
12758 
12759   /* Look through the section relocs.  */
12760   ret = TRUE;
12761   eh_frame = elf_eh_frame_section (sec->owner);
12762   if ((sec->flags & SEC_RELOC) != 0
12763       && sec->reloc_count > 0
12764       && sec != eh_frame)
12765     {
12766       struct elf_reloc_cookie cookie;
12767 
12768       if (!init_reloc_cookie_for_section (&cookie, info, sec))
12769 	ret = FALSE;
12770       else
12771 	{
12772 	  for (; cookie.rel < cookie.relend; cookie.rel++)
12773 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
12774 	      {
12775 		ret = FALSE;
12776 		break;
12777 	      }
12778 	  fini_reloc_cookie_for_section (&cookie, sec);
12779 	}
12780     }
12781 
12782   if (ret && eh_frame && elf_fde_list (sec))
12783     {
12784       struct elf_reloc_cookie cookie;
12785 
12786       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
12787 	ret = FALSE;
12788       else
12789 	{
12790 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
12791 				      gc_mark_hook, &cookie))
12792 	    ret = FALSE;
12793 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
12794 	}
12795     }
12796 
12797   eh_frame = elf_section_eh_frame_entry (sec);
12798   if (ret && eh_frame && !eh_frame->gc_mark)
12799     if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook))
12800       ret = FALSE;
12801 
12802   return ret;
12803 }
12804 
12805 /* Scan and mark sections in a special or debug section group.  */
12806 
12807 static void
12808 _bfd_elf_gc_mark_debug_special_section_group (asection *grp)
12809 {
12810   /* Point to first section of section group.  */
12811   asection *ssec;
12812   /* Used to iterate the section group.  */
12813   asection *msec;
12814 
12815   bfd_boolean is_special_grp = TRUE;
12816   bfd_boolean is_debug_grp = TRUE;
12817 
12818   /* First scan to see if group contains any section other than debug
12819      and special section.  */
12820   ssec = msec = elf_next_in_group (grp);
12821   do
12822     {
12823       if ((msec->flags & SEC_DEBUGGING) == 0)
12824 	is_debug_grp = FALSE;
12825 
12826       if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0)
12827 	is_special_grp = FALSE;
12828 
12829       msec = elf_next_in_group (msec);
12830     }
12831   while (msec != ssec);
12832 
12833   /* If this is a pure debug section group or pure special section group,
12834      keep all sections in this group.  */
12835   if (is_debug_grp || is_special_grp)
12836     {
12837       do
12838 	{
12839 	  msec->gc_mark = 1;
12840 	  msec = elf_next_in_group (msec);
12841 	}
12842       while (msec != ssec);
12843     }
12844 }
12845 
12846 /* Keep debug and special sections.  */
12847 
12848 bfd_boolean
12849 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12850 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
12851 {
12852   bfd *ibfd;
12853 
12854   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
12855     {
12856       asection *isec;
12857       bfd_boolean some_kept;
12858       bfd_boolean debug_frag_seen;
12859 
12860       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
12861 	continue;
12862 
12863       /* Ensure all linker created sections are kept,
12864 	 see if any other section is already marked,
12865 	 and note if we have any fragmented debug sections.  */
12866       debug_frag_seen = some_kept = FALSE;
12867       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12868 	{
12869 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
12870 	    isec->gc_mark = 1;
12871 	  else if (isec->gc_mark)
12872 	    some_kept = TRUE;
12873 
12874 	  if (debug_frag_seen == FALSE
12875 	      && (isec->flags & SEC_DEBUGGING)
12876 	      && CONST_STRNEQ (isec->name, ".debug_line."))
12877 	    debug_frag_seen = TRUE;
12878 	}
12879 
12880       /* If no section in this file will be kept, then we can
12881 	 toss out the debug and special sections.  */
12882       if (!some_kept)
12883 	continue;
12884 
12885       /* Keep debug and special sections like .comment when they are
12886 	 not part of a group.  Also keep section groups that contain
12887 	 just debug sections or special sections.  */
12888       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12889 	{
12890 	  if ((isec->flags & SEC_GROUP) != 0)
12891 	    _bfd_elf_gc_mark_debug_special_section_group (isec);
12892 	  else if (((isec->flags & SEC_DEBUGGING) != 0
12893 		    || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0)
12894 		   && elf_next_in_group (isec) == NULL)
12895 	    isec->gc_mark = 1;
12896 	}
12897 
12898       if (! debug_frag_seen)
12899 	continue;
12900 
12901       /* Look for CODE sections which are going to be discarded,
12902 	 and find and discard any fragmented debug sections which
12903 	 are associated with that code section.  */
12904       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
12905 	if ((isec->flags & SEC_CODE) != 0
12906 	    && isec->gc_mark == 0)
12907 	  {
12908 	    unsigned int ilen;
12909 	    asection *dsec;
12910 
12911 	    ilen = strlen (isec->name);
12912 
12913 	    /* Association is determined by the name of the debug section
12914 	       containing the name of the code section as a suffix.  For
12915 	       example .debug_line.text.foo is a debug section associated
12916 	       with .text.foo.  */
12917 	    for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
12918 	      {
12919 		unsigned int dlen;
12920 
12921 		if (dsec->gc_mark == 0
12922 		    || (dsec->flags & SEC_DEBUGGING) == 0)
12923 		  continue;
12924 
12925 		dlen = strlen (dsec->name);
12926 
12927 		if (dlen > ilen
12928 		    && strncmp (dsec->name + (dlen - ilen),
12929 				isec->name, ilen) == 0)
12930 		  {
12931 		    dsec->gc_mark = 0;
12932 		  }
12933 	      }
12934 	  }
12935     }
12936   return TRUE;
12937 }
12938 
12939 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
12940 
12941 typedef bfd_boolean (*gc_sweep_hook_fn)
12942   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
12943 
12944 static bfd_boolean
12945 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
12946 {
12947   bfd *sub;
12948   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12949   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
12950 
12951   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12952     {
12953       asection *o;
12954 
12955       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
12956 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
12957 	continue;
12958 
12959       for (o = sub->sections; o != NULL; o = o->next)
12960 	{
12961 	  /* When any section in a section group is kept, we keep all
12962 	     sections in the section group.  If the first member of
12963 	     the section group is excluded, we will also exclude the
12964 	     group section.  */
12965 	  if (o->flags & SEC_GROUP)
12966 	    {
12967 	      asection *first = elf_next_in_group (o);
12968 	      o->gc_mark = first->gc_mark;
12969 	    }
12970 
12971 	  if (o->gc_mark)
12972 	    continue;
12973 
12974 	  /* Skip sweeping sections already excluded.  */
12975 	  if (o->flags & SEC_EXCLUDE)
12976 	    continue;
12977 
12978 	  /* Since this is early in the link process, it is simple
12979 	     to remove a section from the output.  */
12980 	  o->flags |= SEC_EXCLUDE;
12981 
12982 	  if (info->print_gc_sections && o->size != 0)
12983 	    /* xgettext:c-format */
12984 	    _bfd_error_handler (_("Removing unused section '%A' in file '%B'"),
12985 				o, sub);
12986 
12987 	  /* But we also have to update some of the relocation
12988 	     info we collected before.  */
12989 	  if (gc_sweep_hook
12990 	      && (o->flags & SEC_RELOC) != 0
12991 	      && o->reloc_count != 0
12992 	      && !((info->strip == strip_all || info->strip == strip_debugger)
12993 		   && (o->flags & SEC_DEBUGGING) != 0)
12994 	      && !bfd_is_abs_section (o->output_section))
12995 	    {
12996 	      Elf_Internal_Rela *internal_relocs;
12997 	      bfd_boolean r;
12998 
12999 	      internal_relocs
13000 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
13001 					     info->keep_memory);
13002 	      if (internal_relocs == NULL)
13003 		return FALSE;
13004 
13005 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
13006 
13007 	      if (elf_section_data (o)->relocs != internal_relocs)
13008 		free (internal_relocs);
13009 
13010 	      if (!r)
13011 		return FALSE;
13012 	    }
13013 	}
13014     }
13015 
13016   return TRUE;
13017 }
13018 
13019 /* Propagate collected vtable information.  This is called through
13020    elf_link_hash_traverse.  */
13021 
13022 static bfd_boolean
13023 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
13024 {
13025   /* Those that are not vtables.  */
13026   if (h->vtable == NULL || h->vtable->parent == NULL)
13027     return TRUE;
13028 
13029   /* Those vtables that do not have parents, we cannot merge.  */
13030   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
13031     return TRUE;
13032 
13033   /* If we've already been done, exit.  */
13034   if (h->vtable->used && h->vtable->used[-1])
13035     return TRUE;
13036 
13037   /* Make sure the parent's table is up to date.  */
13038   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
13039 
13040   if (h->vtable->used == NULL)
13041     {
13042       /* None of this table's entries were referenced.  Re-use the
13043 	 parent's table.  */
13044       h->vtable->used = h->vtable->parent->vtable->used;
13045       h->vtable->size = h->vtable->parent->vtable->size;
13046     }
13047   else
13048     {
13049       size_t n;
13050       bfd_boolean *cu, *pu;
13051 
13052       /* Or the parent's entries into ours.  */
13053       cu = h->vtable->used;
13054       cu[-1] = TRUE;
13055       pu = h->vtable->parent->vtable->used;
13056       if (pu != NULL)
13057 	{
13058 	  const struct elf_backend_data *bed;
13059 	  unsigned int log_file_align;
13060 
13061 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
13062 	  log_file_align = bed->s->log_file_align;
13063 	  n = h->vtable->parent->vtable->size >> log_file_align;
13064 	  while (n--)
13065 	    {
13066 	      if (*pu)
13067 		*cu = TRUE;
13068 	      pu++;
13069 	      cu++;
13070 	    }
13071 	}
13072     }
13073 
13074   return TRUE;
13075 }
13076 
13077 static bfd_boolean
13078 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
13079 {
13080   asection *sec;
13081   bfd_vma hstart, hend;
13082   Elf_Internal_Rela *relstart, *relend, *rel;
13083   const struct elf_backend_data *bed;
13084   unsigned int log_file_align;
13085 
13086   /* Take care of both those symbols that do not describe vtables as
13087      well as those that are not loaded.  */
13088   if (h->vtable == NULL || h->vtable->parent == NULL)
13089     return TRUE;
13090 
13091   BFD_ASSERT (h->root.type == bfd_link_hash_defined
13092 	      || h->root.type == bfd_link_hash_defweak);
13093 
13094   sec = h->root.u.def.section;
13095   hstart = h->root.u.def.value;
13096   hend = hstart + h->size;
13097 
13098   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
13099   if (!relstart)
13100     return *(bfd_boolean *) okp = FALSE;
13101   bed = get_elf_backend_data (sec->owner);
13102   log_file_align = bed->s->log_file_align;
13103 
13104   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
13105 
13106   for (rel = relstart; rel < relend; ++rel)
13107     if (rel->r_offset >= hstart && rel->r_offset < hend)
13108       {
13109 	/* If the entry is in use, do nothing.  */
13110 	if (h->vtable->used
13111 	    && (rel->r_offset - hstart) < h->vtable->size)
13112 	  {
13113 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
13114 	    if (h->vtable->used[entry])
13115 	      continue;
13116 	  }
13117 	/* Otherwise, kill it.  */
13118 	rel->r_offset = rel->r_info = rel->r_addend = 0;
13119       }
13120 
13121   return TRUE;
13122 }
13123 
13124 /* Mark sections containing dynamically referenced symbols.  When
13125    building shared libraries, we must assume that any visible symbol is
13126    referenced.  */
13127 
13128 bfd_boolean
13129 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
13130 {
13131   struct bfd_link_info *info = (struct bfd_link_info *) inf;
13132   struct bfd_elf_dynamic_list *d = info->dynamic_list;
13133 
13134   if ((h->root.type == bfd_link_hash_defined
13135        || h->root.type == bfd_link_hash_defweak)
13136       && (h->ref_dynamic
13137 	  || ((h->def_regular || ELF_COMMON_DEF_P (h))
13138 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
13139 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
13140 	      && (!bfd_link_executable (info)
13141 		  || info->gc_keep_exported
13142 		  || info->export_dynamic
13143 		  || (h->dynamic
13144 		      && d != NULL
13145 		      && (*d->match) (&d->head, NULL, h->root.root.string)))
13146 	      && (h->versioned >= versioned
13147 		  || !bfd_hide_sym_by_version (info->version_info,
13148 					       h->root.root.string)))))
13149     h->root.u.def.section->flags |= SEC_KEEP;
13150 
13151   return TRUE;
13152 }
13153 
13154 /* Keep all sections containing symbols undefined on the command-line,
13155    and the section containing the entry symbol.  */
13156 
13157 void
13158 _bfd_elf_gc_keep (struct bfd_link_info *info)
13159 {
13160   struct bfd_sym_chain *sym;
13161 
13162   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
13163     {
13164       struct elf_link_hash_entry *h;
13165 
13166       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
13167 				FALSE, FALSE, FALSE);
13168 
13169       if (h != NULL
13170 	  && (h->root.type == bfd_link_hash_defined
13171 	      || h->root.type == bfd_link_hash_defweak)
13172 	  && !bfd_is_abs_section (h->root.u.def.section)
13173 	  && !bfd_is_und_section (h->root.u.def.section))
13174 	h->root.u.def.section->flags |= SEC_KEEP;
13175     }
13176 }
13177 
13178 bfd_boolean
13179 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED,
13180 				struct bfd_link_info *info)
13181 {
13182   bfd *ibfd = info->input_bfds;
13183 
13184   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13185     {
13186       asection *sec;
13187       struct elf_reloc_cookie cookie;
13188 
13189       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
13190 	continue;
13191 
13192       if (!init_reloc_cookie (&cookie, info, ibfd))
13193 	return FALSE;
13194 
13195       for (sec = ibfd->sections; sec; sec = sec->next)
13196 	{
13197 	  if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry")
13198 	      && init_reloc_cookie_rels (&cookie, info, ibfd, sec))
13199 	    {
13200 	      _bfd_elf_parse_eh_frame_entry (info, sec, &cookie);
13201 	      fini_reloc_cookie_rels (&cookie, sec);
13202 	    }
13203 	}
13204     }
13205   return TRUE;
13206 }
13207 
13208 /* Do mark and sweep of unused sections.  */
13209 
13210 bfd_boolean
13211 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
13212 {
13213   bfd_boolean ok = TRUE;
13214   bfd *sub;
13215   elf_gc_mark_hook_fn gc_mark_hook;
13216   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13217   struct elf_link_hash_table *htab;
13218 
13219   if (!bed->can_gc_sections
13220       || !is_elf_hash_table (info->hash))
13221     {
13222       _bfd_error_handler(_("Warning: gc-sections option ignored"));
13223       return TRUE;
13224     }
13225 
13226   bed->gc_keep (info);
13227   htab = elf_hash_table (info);
13228 
13229   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
13230      at the .eh_frame section if we can mark the FDEs individually.  */
13231   for (sub = info->input_bfds;
13232        info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL;
13233        sub = sub->link.next)
13234     {
13235       asection *sec;
13236       struct elf_reloc_cookie cookie;
13237 
13238       sec = bfd_get_section_by_name (sub, ".eh_frame");
13239       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
13240 	{
13241 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
13242 	  if (elf_section_data (sec)->sec_info
13243 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
13244 	    elf_eh_frame_section (sub) = sec;
13245 	  fini_reloc_cookie_for_section (&cookie, sec);
13246 	  sec = bfd_get_next_section_by_name (NULL, sec);
13247 	}
13248     }
13249 
13250   /* Apply transitive closure to the vtable entry usage info.  */
13251   elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok);
13252   if (!ok)
13253     return FALSE;
13254 
13255   /* Kill the vtable relocations that were not used.  */
13256   elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok);
13257   if (!ok)
13258     return FALSE;
13259 
13260   /* Mark dynamically referenced symbols.  */
13261   if (htab->dynamic_sections_created || info->gc_keep_exported)
13262     elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info);
13263 
13264   /* Grovel through relocs to find out who stays ...  */
13265   gc_mark_hook = bed->gc_mark_hook;
13266   for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13267     {
13268       asection *o;
13269 
13270       if (bfd_get_flavour (sub) != bfd_target_elf_flavour
13271 	  || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec))
13272 	continue;
13273 
13274       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
13275 	 Also treat note sections as a root, if the section is not part
13276 	 of a group.  */
13277       for (o = sub->sections; o != NULL; o = o->next)
13278 	if (!o->gc_mark
13279 	    && (o->flags & SEC_EXCLUDE) == 0
13280 	    && ((o->flags & SEC_KEEP) != 0
13281 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
13282 		    && elf_next_in_group (o) == NULL )))
13283 	  {
13284 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13285 	      return FALSE;
13286 	  }
13287     }
13288 
13289   /* Allow the backend to mark additional target specific sections.  */
13290   bed->gc_mark_extra_sections (info, gc_mark_hook);
13291 
13292   /* ... and mark SEC_EXCLUDE for those that go.  */
13293   return elf_gc_sweep (abfd, info);
13294 }
13295 
13296 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
13297 
13298 bfd_boolean
13299 bfd_elf_gc_record_vtinherit (bfd *abfd,
13300 			     asection *sec,
13301 			     struct elf_link_hash_entry *h,
13302 			     bfd_vma offset)
13303 {
13304   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
13305   struct elf_link_hash_entry **search, *child;
13306   size_t extsymcount;
13307   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13308 
13309   /* The sh_info field of the symtab header tells us where the
13310      external symbols start.  We don't care about the local symbols at
13311      this point.  */
13312   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
13313   if (!elf_bad_symtab (abfd))
13314     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
13315 
13316   sym_hashes = elf_sym_hashes (abfd);
13317   sym_hashes_end = sym_hashes + extsymcount;
13318 
13319   /* Hunt down the child symbol, which is in this section at the same
13320      offset as the relocation.  */
13321   for (search = sym_hashes; search != sym_hashes_end; ++search)
13322     {
13323       if ((child = *search) != NULL
13324 	  && (child->root.type == bfd_link_hash_defined
13325 	      || child->root.type == bfd_link_hash_defweak)
13326 	  && child->root.u.def.section == sec
13327 	  && child->root.u.def.value == offset)
13328 	goto win;
13329     }
13330 
13331   /* xgettext:c-format */
13332   _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"),
13333 		      abfd, sec, (unsigned long) offset);
13334   bfd_set_error (bfd_error_invalid_operation);
13335   return FALSE;
13336 
13337  win:
13338   if (!child->vtable)
13339     {
13340       child->vtable = ((struct elf_link_virtual_table_entry *)
13341 		       bfd_zalloc (abfd, sizeof (*child->vtable)));
13342       if (!child->vtable)
13343 	return FALSE;
13344     }
13345   if (!h)
13346     {
13347       /* This *should* only be the absolute section.  It could potentially
13348 	 be that someone has defined a non-global vtable though, which
13349 	 would be bad.  It isn't worth paging in the local symbols to be
13350 	 sure though; that case should simply be handled by the assembler.  */
13351 
13352       child->vtable->parent = (struct elf_link_hash_entry *) -1;
13353     }
13354   else
13355     child->vtable->parent = h;
13356 
13357   return TRUE;
13358 }
13359 
13360 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
13361 
13362 bfd_boolean
13363 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
13364 			   asection *sec ATTRIBUTE_UNUSED,
13365 			   struct elf_link_hash_entry *h,
13366 			   bfd_vma addend)
13367 {
13368   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13369   unsigned int log_file_align = bed->s->log_file_align;
13370 
13371   if (!h->vtable)
13372     {
13373       h->vtable = ((struct elf_link_virtual_table_entry *)
13374 		   bfd_zalloc (abfd, sizeof (*h->vtable)));
13375       if (!h->vtable)
13376 	return FALSE;
13377     }
13378 
13379   if (addend >= h->vtable->size)
13380     {
13381       size_t size, bytes, file_align;
13382       bfd_boolean *ptr = h->vtable->used;
13383 
13384       /* While the symbol is undefined, we have to be prepared to handle
13385 	 a zero size.  */
13386       file_align = 1 << log_file_align;
13387       if (h->root.type == bfd_link_hash_undefined)
13388 	size = addend + file_align;
13389       else
13390 	{
13391 	  size = h->size;
13392 	  if (addend >= size)
13393 	    {
13394 	      /* Oops!  We've got a reference past the defined end of
13395 		 the table.  This is probably a bug -- shall we warn?  */
13396 	      size = addend + file_align;
13397 	    }
13398 	}
13399       size = (size + file_align - 1) & -file_align;
13400 
13401       /* Allocate one extra entry for use as a "done" flag for the
13402 	 consolidation pass.  */
13403       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
13404 
13405       if (ptr)
13406 	{
13407 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
13408 
13409 	  if (ptr != NULL)
13410 	    {
13411 	      size_t oldbytes;
13412 
13413 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
13414 			  * sizeof (bfd_boolean));
13415 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
13416 	    }
13417 	}
13418       else
13419 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
13420 
13421       if (ptr == NULL)
13422 	return FALSE;
13423 
13424       /* And arrange for that done flag to be at index -1.  */
13425       h->vtable->used = ptr + 1;
13426       h->vtable->size = size;
13427     }
13428 
13429   h->vtable->used[addend >> log_file_align] = TRUE;
13430 
13431   return TRUE;
13432 }
13433 
13434 /* Map an ELF section header flag to its corresponding string.  */
13435 typedef struct
13436 {
13437   char *flag_name;
13438   flagword flag_value;
13439 } elf_flags_to_name_table;
13440 
13441 static elf_flags_to_name_table elf_flags_to_names [] =
13442 {
13443   { "SHF_WRITE", SHF_WRITE },
13444   { "SHF_ALLOC", SHF_ALLOC },
13445   { "SHF_EXECINSTR", SHF_EXECINSTR },
13446   { "SHF_MERGE", SHF_MERGE },
13447   { "SHF_STRINGS", SHF_STRINGS },
13448   { "SHF_INFO_LINK", SHF_INFO_LINK},
13449   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
13450   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
13451   { "SHF_GROUP", SHF_GROUP },
13452   { "SHF_TLS", SHF_TLS },
13453   { "SHF_MASKOS", SHF_MASKOS },
13454   { "SHF_EXCLUDE", SHF_EXCLUDE },
13455 };
13456 
13457 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
13458 bfd_boolean
13459 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
13460 			      struct flag_info *flaginfo,
13461 			      asection *section)
13462 {
13463   const bfd_vma sh_flags = elf_section_flags (section);
13464 
13465   if (!flaginfo->flags_initialized)
13466     {
13467       bfd *obfd = info->output_bfd;
13468       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13469       struct flag_info_list *tf = flaginfo->flag_list;
13470       int with_hex = 0;
13471       int without_hex = 0;
13472 
13473       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
13474 	{
13475 	  unsigned i;
13476 	  flagword (*lookup) (char *);
13477 
13478 	  lookup = bed->elf_backend_lookup_section_flags_hook;
13479 	  if (lookup != NULL)
13480 	    {
13481 	      flagword hexval = (*lookup) ((char *) tf->name);
13482 
13483 	      if (hexval != 0)
13484 		{
13485 		  if (tf->with == with_flags)
13486 		    with_hex |= hexval;
13487 		  else if (tf->with == without_flags)
13488 		    without_hex |= hexval;
13489 		  tf->valid = TRUE;
13490 		  continue;
13491 		}
13492 	    }
13493 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
13494 	    {
13495 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
13496 		{
13497 		  if (tf->with == with_flags)
13498 		    with_hex |= elf_flags_to_names[i].flag_value;
13499 		  else if (tf->with == without_flags)
13500 		    without_hex |= elf_flags_to_names[i].flag_value;
13501 		  tf->valid = TRUE;
13502 		  break;
13503 		}
13504 	    }
13505 	  if (!tf->valid)
13506 	    {
13507 	      info->callbacks->einfo
13508 		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
13509 	      return FALSE;
13510 	    }
13511 	}
13512       flaginfo->flags_initialized = TRUE;
13513       flaginfo->only_with_flags |= with_hex;
13514       flaginfo->not_with_flags |= without_hex;
13515     }
13516 
13517   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
13518     return FALSE;
13519 
13520   if ((flaginfo->not_with_flags & sh_flags) != 0)
13521     return FALSE;
13522 
13523   return TRUE;
13524 }
13525 
13526 struct alloc_got_off_arg {
13527   bfd_vma gotoff;
13528   struct bfd_link_info *info;
13529 };
13530 
13531 /* We need a special top-level link routine to convert got reference counts
13532    to real got offsets.  */
13533 
13534 static bfd_boolean
13535 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
13536 {
13537   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
13538   bfd *obfd = gofarg->info->output_bfd;
13539   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
13540 
13541   if (h->got.refcount > 0)
13542     {
13543       h->got.offset = gofarg->gotoff;
13544       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
13545     }
13546   else
13547     h->got.offset = (bfd_vma) -1;
13548 
13549   return TRUE;
13550 }
13551 
13552 /* And an accompanying bit to work out final got entry offsets once
13553    we're done.  Should be called from final_link.  */
13554 
13555 bfd_boolean
13556 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
13557 					struct bfd_link_info *info)
13558 {
13559   bfd *i;
13560   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13561   bfd_vma gotoff;
13562   struct alloc_got_off_arg gofarg;
13563 
13564   BFD_ASSERT (abfd == info->output_bfd);
13565 
13566   if (! is_elf_hash_table (info->hash))
13567     return FALSE;
13568 
13569   /* The GOT offset is relative to the .got section, but the GOT header is
13570      put into the .got.plt section, if the backend uses it.  */
13571   if (bed->want_got_plt)
13572     gotoff = 0;
13573   else
13574     gotoff = bed->got_header_size;
13575 
13576   /* Do the local .got entries first.  */
13577   for (i = info->input_bfds; i; i = i->link.next)
13578     {
13579       bfd_signed_vma *local_got;
13580       size_t j, locsymcount;
13581       Elf_Internal_Shdr *symtab_hdr;
13582 
13583       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
13584 	continue;
13585 
13586       local_got = elf_local_got_refcounts (i);
13587       if (!local_got)
13588 	continue;
13589 
13590       symtab_hdr = &elf_tdata (i)->symtab_hdr;
13591       if (elf_bad_symtab (i))
13592 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
13593       else
13594 	locsymcount = symtab_hdr->sh_info;
13595 
13596       for (j = 0; j < locsymcount; ++j)
13597 	{
13598 	  if (local_got[j] > 0)
13599 	    {
13600 	      local_got[j] = gotoff;
13601 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
13602 	    }
13603 	  else
13604 	    local_got[j] = (bfd_vma) -1;
13605 	}
13606     }
13607 
13608   /* Then the global .got entries.  .plt refcounts are handled by
13609      adjust_dynamic_symbol  */
13610   gofarg.gotoff = gotoff;
13611   gofarg.info = info;
13612   elf_link_hash_traverse (elf_hash_table (info),
13613 			  elf_gc_allocate_got_offsets,
13614 			  &gofarg);
13615   return TRUE;
13616 }
13617 
13618 /* Many folk need no more in the way of final link than this, once
13619    got entry reference counting is enabled.  */
13620 
13621 bfd_boolean
13622 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
13623 {
13624   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
13625     return FALSE;
13626 
13627   /* Invoke the regular ELF backend linker to do all the work.  */
13628   return bfd_elf_final_link (abfd, info);
13629 }
13630 
13631 bfd_boolean
13632 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
13633 {
13634   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
13635 
13636   if (rcookie->bad_symtab)
13637     rcookie->rel = rcookie->rels;
13638 
13639   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
13640     {
13641       unsigned long r_symndx;
13642 
13643       if (! rcookie->bad_symtab)
13644 	if (rcookie->rel->r_offset > offset)
13645 	  return FALSE;
13646       if (rcookie->rel->r_offset != offset)
13647 	continue;
13648 
13649       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
13650       if (r_symndx == STN_UNDEF)
13651 	return TRUE;
13652 
13653       if (r_symndx >= rcookie->locsymcount
13654 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
13655 	{
13656 	  struct elf_link_hash_entry *h;
13657 
13658 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
13659 
13660 	  while (h->root.type == bfd_link_hash_indirect
13661 		 || h->root.type == bfd_link_hash_warning)
13662 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
13663 
13664 	  if ((h->root.type == bfd_link_hash_defined
13665 	       || h->root.type == bfd_link_hash_defweak)
13666 	      && (h->root.u.def.section->owner != rcookie->abfd
13667 		  || h->root.u.def.section->kept_section != NULL
13668 		  || discarded_section (h->root.u.def.section)))
13669 	    return TRUE;
13670 	}
13671       else
13672 	{
13673 	  /* It's not a relocation against a global symbol,
13674 	     but it could be a relocation against a local
13675 	     symbol for a discarded section.  */
13676 	  asection *isec;
13677 	  Elf_Internal_Sym *isym;
13678 
13679 	  /* Need to: get the symbol; get the section.  */
13680 	  isym = &rcookie->locsyms[r_symndx];
13681 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
13682 	  if (isec != NULL
13683 	      && (isec->kept_section != NULL
13684 		  || discarded_section (isec)))
13685 	    return TRUE;
13686 	}
13687       return FALSE;
13688     }
13689   return FALSE;
13690 }
13691 
13692 /* Discard unneeded references to discarded sections.
13693    Returns -1 on error, 1 if any section's size was changed, 0 if
13694    nothing changed.  This function assumes that the relocations are in
13695    sorted order, which is true for all known assemblers.  */
13696 
13697 int
13698 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
13699 {
13700   struct elf_reloc_cookie cookie;
13701   asection *o;
13702   bfd *abfd;
13703   int changed = 0;
13704 
13705   if (info->traditional_format
13706       || !is_elf_hash_table (info->hash))
13707     return 0;
13708 
13709   o = bfd_get_section_by_name (output_bfd, ".stab");
13710   if (o != NULL)
13711     {
13712       asection *i;
13713 
13714       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13715 	{
13716 	  if (i->size == 0
13717 	      || i->reloc_count == 0
13718 	      || i->sec_info_type != SEC_INFO_TYPE_STABS)
13719 	    continue;
13720 
13721 	  abfd = i->owner;
13722 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13723 	    continue;
13724 
13725 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
13726 	    return -1;
13727 
13728 	  if (_bfd_discard_section_stabs (abfd, i,
13729 					  elf_section_data (i)->sec_info,
13730 					  bfd_elf_reloc_symbol_deleted_p,
13731 					  &cookie))
13732 	    changed = 1;
13733 
13734 	  fini_reloc_cookie_for_section (&cookie, i);
13735 	}
13736     }
13737 
13738   o = NULL;
13739   if (info->eh_frame_hdr_type != COMPACT_EH_HDR)
13740     o = bfd_get_section_by_name (output_bfd, ".eh_frame");
13741   if (o != NULL)
13742     {
13743       asection *i;
13744 
13745       for (i = o->map_head.s; i != NULL; i = i->map_head.s)
13746 	{
13747 	  if (i->size == 0)
13748 	    continue;
13749 
13750 	  abfd = i->owner;
13751 	  if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13752 	    continue;
13753 
13754 	  if (!init_reloc_cookie_for_section (&cookie, info, i))
13755 	    return -1;
13756 
13757 	  _bfd_elf_parse_eh_frame (abfd, info, i, &cookie);
13758 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, i,
13759 						 bfd_elf_reloc_symbol_deleted_p,
13760 						 &cookie))
13761 	    changed = 1;
13762 
13763 	  fini_reloc_cookie_for_section (&cookie, i);
13764 	}
13765     }
13766 
13767   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
13768     {
13769       const struct elf_backend_data *bed;
13770 
13771       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
13772 	continue;
13773 
13774       bed = get_elf_backend_data (abfd);
13775 
13776       if (bed->elf_backend_discard_info != NULL)
13777 	{
13778 	  if (!init_reloc_cookie (&cookie, info, abfd))
13779 	    return -1;
13780 
13781 	  if ((*bed->elf_backend_discard_info) (abfd, &cookie, info))
13782 	    changed = 1;
13783 
13784 	  fini_reloc_cookie (&cookie, abfd);
13785 	}
13786     }
13787 
13788   if (info->eh_frame_hdr_type == COMPACT_EH_HDR)
13789     _bfd_elf_end_eh_frame_parsing (info);
13790 
13791   if (info->eh_frame_hdr_type
13792       && !bfd_link_relocatable (info)
13793       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
13794     changed = 1;
13795 
13796   return changed;
13797 }
13798 
13799 bfd_boolean
13800 _bfd_elf_section_already_linked (bfd *abfd,
13801 				 asection *sec,
13802 				 struct bfd_link_info *info)
13803 {
13804   flagword flags;
13805   const char *name, *key;
13806   struct bfd_section_already_linked *l;
13807   struct bfd_section_already_linked_hash_entry *already_linked_list;
13808 
13809   if (sec->output_section == bfd_abs_section_ptr)
13810     return FALSE;
13811 
13812   flags = sec->flags;
13813 
13814   /* Return if it isn't a linkonce section.  A comdat group section
13815      also has SEC_LINK_ONCE set.  */
13816   if ((flags & SEC_LINK_ONCE) == 0)
13817     return FALSE;
13818 
13819   /* Don't put group member sections on our list of already linked
13820      sections.  They are handled as a group via their group section.  */
13821   if (elf_sec_group (sec) != NULL)
13822     return FALSE;
13823 
13824   /* For a SHT_GROUP section, use the group signature as the key.  */
13825   name = sec->name;
13826   if ((flags & SEC_GROUP) != 0
13827       && elf_next_in_group (sec) != NULL
13828       && elf_group_name (elf_next_in_group (sec)) != NULL)
13829     key = elf_group_name (elf_next_in_group (sec));
13830   else
13831     {
13832       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
13833       if (CONST_STRNEQ (name, ".gnu.linkonce.")
13834 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
13835 	key++;
13836       else
13837 	/* Must be a user linkonce section that doesn't follow gcc's
13838 	   naming convention.  In this case we won't be matching
13839 	   single member groups.  */
13840 	key = name;
13841     }
13842 
13843   already_linked_list = bfd_section_already_linked_table_lookup (key);
13844 
13845   for (l = already_linked_list->entry; l != NULL; l = l->next)
13846     {
13847       /* We may have 2 different types of sections on the list: group
13848 	 sections with a signature of <key> (<key> is some string),
13849 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
13850 	 Match like sections.  LTO plugin sections are an exception.
13851 	 They are always named .gnu.linkonce.t.<key> and match either
13852 	 type of section.  */
13853       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
13854 	   && ((flags & SEC_GROUP) != 0
13855 	       || strcmp (name, l->sec->name) == 0))
13856 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
13857 	{
13858 	  /* The section has already been linked.  See if we should
13859 	     issue a warning.  */
13860 	  if (!_bfd_handle_already_linked (sec, l, info))
13861 	    return FALSE;
13862 
13863 	  if (flags & SEC_GROUP)
13864 	    {
13865 	      asection *first = elf_next_in_group (sec);
13866 	      asection *s = first;
13867 
13868 	      while (s != NULL)
13869 		{
13870 		  s->output_section = bfd_abs_section_ptr;
13871 		  /* Record which group discards it.  */
13872 		  s->kept_section = l->sec;
13873 		  s = elf_next_in_group (s);
13874 		  /* These lists are circular.  */
13875 		  if (s == first)
13876 		    break;
13877 		}
13878 	    }
13879 
13880 	  return TRUE;
13881 	}
13882     }
13883 
13884   /* A single member comdat group section may be discarded by a
13885      linkonce section and vice versa.  */
13886   if ((flags & SEC_GROUP) != 0)
13887     {
13888       asection *first = elf_next_in_group (sec);
13889 
13890       if (first != NULL && elf_next_in_group (first) == first)
13891 	/* Check this single member group against linkonce sections.  */
13892 	for (l = already_linked_list->entry; l != NULL; l = l->next)
13893 	  if ((l->sec->flags & SEC_GROUP) == 0
13894 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
13895 	    {
13896 	      first->output_section = bfd_abs_section_ptr;
13897 	      first->kept_section = l->sec;
13898 	      sec->output_section = bfd_abs_section_ptr;
13899 	      break;
13900 	    }
13901     }
13902   else
13903     /* Check this linkonce section against single member groups.  */
13904     for (l = already_linked_list->entry; l != NULL; l = l->next)
13905       if (l->sec->flags & SEC_GROUP)
13906 	{
13907 	  asection *first = elf_next_in_group (l->sec);
13908 
13909 	  if (first != NULL
13910 	      && elf_next_in_group (first) == first
13911 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
13912 	    {
13913 	      sec->output_section = bfd_abs_section_ptr;
13914 	      sec->kept_section = first;
13915 	      break;
13916 	    }
13917 	}
13918 
13919   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
13920      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
13921      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
13922      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
13923      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
13924      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
13925      `.gnu.linkonce.t.F' section from a different bfd not requiring any
13926      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
13927      The reverse order cannot happen as there is never a bfd with only the
13928      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
13929      matter as here were are looking only for cross-bfd sections.  */
13930 
13931   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
13932     for (l = already_linked_list->entry; l != NULL; l = l->next)
13933       if ((l->sec->flags & SEC_GROUP) == 0
13934 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
13935 	{
13936 	  if (abfd != l->sec->owner)
13937 	    sec->output_section = bfd_abs_section_ptr;
13938 	  break;
13939 	}
13940 
13941   /* This is the first section with this name.  Record it.  */
13942   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
13943     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
13944   return sec->output_section == bfd_abs_section_ptr;
13945 }
13946 
13947 bfd_boolean
13948 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
13949 {
13950   return sym->st_shndx == SHN_COMMON;
13951 }
13952 
13953 unsigned int
13954 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
13955 {
13956   return SHN_COMMON;
13957 }
13958 
13959 asection *
13960 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
13961 {
13962   return bfd_com_section_ptr;
13963 }
13964 
13965 bfd_vma
13966 _bfd_elf_default_got_elt_size (bfd *abfd,
13967 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
13968 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
13969 			       bfd *ibfd ATTRIBUTE_UNUSED,
13970 			       unsigned long symndx ATTRIBUTE_UNUSED)
13971 {
13972   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13973   return bed->s->arch_size / 8;
13974 }
13975 
13976 /* Routines to support the creation of dynamic relocs.  */
13977 
13978 /* Returns the name of the dynamic reloc section associated with SEC.  */
13979 
13980 static const char *
13981 get_dynamic_reloc_section_name (bfd *       abfd,
13982 				asection *  sec,
13983 				bfd_boolean is_rela)
13984 {
13985   char *name;
13986   const char *old_name = bfd_get_section_name (NULL, sec);
13987   const char *prefix = is_rela ? ".rela" : ".rel";
13988 
13989   if (old_name == NULL)
13990     return NULL;
13991 
13992   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
13993   sprintf (name, "%s%s", prefix, old_name);
13994 
13995   return name;
13996 }
13997 
13998 /* Returns the dynamic reloc section associated with SEC.
13999    If necessary compute the name of the dynamic reloc section based
14000    on SEC's name (looked up in ABFD's string table) and the setting
14001    of IS_RELA.  */
14002 
14003 asection *
14004 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
14005 				    asection *  sec,
14006 				    bfd_boolean is_rela)
14007 {
14008   asection * reloc_sec = elf_section_data (sec)->sreloc;
14009 
14010   if (reloc_sec == NULL)
14011     {
14012       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14013 
14014       if (name != NULL)
14015 	{
14016 	  reloc_sec = bfd_get_linker_section (abfd, name);
14017 
14018 	  if (reloc_sec != NULL)
14019 	    elf_section_data (sec)->sreloc = reloc_sec;
14020 	}
14021     }
14022 
14023   return reloc_sec;
14024 }
14025 
14026 /* Returns the dynamic reloc section associated with SEC.  If the
14027    section does not exist it is created and attached to the DYNOBJ
14028    bfd and stored in the SRELOC field of SEC's elf_section_data
14029    structure.
14030 
14031    ALIGNMENT is the alignment for the newly created section and
14032    IS_RELA defines whether the name should be .rela.<SEC's name>
14033    or .rel.<SEC's name>.  The section name is looked up in the
14034    string table associated with ABFD.  */
14035 
14036 asection *
14037 _bfd_elf_make_dynamic_reloc_section (asection *sec,
14038 				     bfd *dynobj,
14039 				     unsigned int alignment,
14040 				     bfd *abfd,
14041 				     bfd_boolean is_rela)
14042 {
14043   asection * reloc_sec = elf_section_data (sec)->sreloc;
14044 
14045   if (reloc_sec == NULL)
14046     {
14047       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
14048 
14049       if (name == NULL)
14050 	return NULL;
14051 
14052       reloc_sec = bfd_get_linker_section (dynobj, name);
14053 
14054       if (reloc_sec == NULL)
14055 	{
14056 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
14057 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
14058 	  if ((sec->flags & SEC_ALLOC) != 0)
14059 	    flags |= SEC_ALLOC | SEC_LOAD;
14060 
14061 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
14062 	  if (reloc_sec != NULL)
14063 	    {
14064 	      /* _bfd_elf_get_sec_type_attr chooses a section type by
14065 		 name.  Override as it may be wrong, eg. for a user
14066 		 section named "auto" we'll get ".relauto" which is
14067 		 seen to be a .rela section.  */
14068 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
14069 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
14070 		reloc_sec = NULL;
14071 	    }
14072 	}
14073 
14074       elf_section_data (sec)->sreloc = reloc_sec;
14075     }
14076 
14077   return reloc_sec;
14078 }
14079 
14080 /* Copy the ELF symbol type and other attributes for a linker script
14081    assignment from HSRC to HDEST.  Generally this should be treated as
14082    if we found a strong non-dynamic definition for HDEST (except that
14083    ld ignores multiple definition errors).  */
14084 void
14085 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd,
14086 				     struct bfd_link_hash_entry *hdest,
14087 				     struct bfd_link_hash_entry *hsrc)
14088 {
14089   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest;
14090   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc;
14091   Elf_Internal_Sym isym;
14092 
14093   ehdest->type = ehsrc->type;
14094   ehdest->target_internal = ehsrc->target_internal;
14095 
14096   isym.st_other = ehsrc->other;
14097   elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE);
14098 }
14099 
14100 /* Append a RELA relocation REL to section S in BFD.  */
14101 
14102 void
14103 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14104 {
14105   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14106   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
14107   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
14108   bed->s->swap_reloca_out (abfd, rel, loc);
14109 }
14110 
14111 /* Append a REL relocation REL to section S in BFD.  */
14112 
14113 void
14114 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
14115 {
14116   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14117   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
14118   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
14119   bed->s->swap_reloc_out (abfd, rel, loc);
14120 }
14121