1 /* ELF linking support for BFD. 2 Copyright (C) 1995-2017 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "bfd_stdint.h" 24 #include "bfdlink.h" 25 #include "libbfd.h" 26 #define ARCH_SIZE 0 27 #include "elf-bfd.h" 28 #include "safe-ctype.h" 29 #include "libiberty.h" 30 #include "objalloc.h" 31 #if BFD_SUPPORTS_PLUGINS 32 #include "plugin-api.h" 33 #include "plugin.h" 34 #endif 35 36 /* This struct is used to pass information to routines called via 37 elf_link_hash_traverse which must return failure. */ 38 39 struct elf_info_failed 40 { 41 struct bfd_link_info *info; 42 bfd_boolean failed; 43 }; 44 45 /* This structure is used to pass information to 46 _bfd_elf_link_find_version_dependencies. */ 47 48 struct elf_find_verdep_info 49 { 50 /* General link information. */ 51 struct bfd_link_info *info; 52 /* The number of dependencies. */ 53 unsigned int vers; 54 /* Whether we had a failure. */ 55 bfd_boolean failed; 56 }; 57 58 static bfd_boolean _bfd_elf_fix_symbol_flags 59 (struct elf_link_hash_entry *, struct elf_info_failed *); 60 61 asection * 62 _bfd_elf_section_for_symbol (struct elf_reloc_cookie *cookie, 63 unsigned long r_symndx, 64 bfd_boolean discard) 65 { 66 if (r_symndx >= cookie->locsymcount 67 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 68 { 69 struct elf_link_hash_entry *h; 70 71 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 72 73 while (h->root.type == bfd_link_hash_indirect 74 || h->root.type == bfd_link_hash_warning) 75 h = (struct elf_link_hash_entry *) h->root.u.i.link; 76 77 if ((h->root.type == bfd_link_hash_defined 78 || h->root.type == bfd_link_hash_defweak) 79 && discarded_section (h->root.u.def.section)) 80 return h->root.u.def.section; 81 else 82 return NULL; 83 } 84 else 85 { 86 /* It's not a relocation against a global symbol, 87 but it could be a relocation against a local 88 symbol for a discarded section. */ 89 asection *isec; 90 Elf_Internal_Sym *isym; 91 92 /* Need to: get the symbol; get the section. */ 93 isym = &cookie->locsyms[r_symndx]; 94 isec = bfd_section_from_elf_index (cookie->abfd, isym->st_shndx); 95 if (isec != NULL 96 && discard ? discarded_section (isec) : 1) 97 return isec; 98 } 99 return NULL; 100 } 101 102 /* Define a symbol in a dynamic linkage section. */ 103 104 struct elf_link_hash_entry * 105 _bfd_elf_define_linkage_sym (bfd *abfd, 106 struct bfd_link_info *info, 107 asection *sec, 108 const char *name) 109 { 110 struct elf_link_hash_entry *h; 111 struct bfd_link_hash_entry *bh; 112 const struct elf_backend_data *bed; 113 114 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE); 115 if (h != NULL) 116 { 117 /* Zap symbol defined in an as-needed lib that wasn't linked. 118 This is a symptom of a larger problem: Absolute symbols 119 defined in shared libraries can't be overridden, because we 120 lose the link to the bfd which is via the symbol section. */ 121 h->root.type = bfd_link_hash_new; 122 bh = &h->root; 123 } 124 else 125 bh = NULL; 126 127 bed = get_elf_backend_data (abfd); 128 if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL, 129 sec, 0, NULL, FALSE, bed->collect, 130 &bh)) 131 return NULL; 132 h = (struct elf_link_hash_entry *) bh; 133 BFD_ASSERT (h != NULL); 134 h->def_regular = 1; 135 h->non_elf = 0; 136 h->root.linker_def = 1; 137 h->type = STT_OBJECT; 138 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 139 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 140 141 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 142 return h; 143 } 144 145 bfd_boolean 146 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info) 147 { 148 flagword flags; 149 asection *s; 150 struct elf_link_hash_entry *h; 151 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 152 struct elf_link_hash_table *htab = elf_hash_table (info); 153 154 /* This function may be called more than once. */ 155 if (htab->sgot != NULL) 156 return TRUE; 157 158 flags = bed->dynamic_sec_flags; 159 160 s = bfd_make_section_anyway_with_flags (abfd, 161 (bed->rela_plts_and_copies_p 162 ? ".rela.got" : ".rel.got"), 163 (bed->dynamic_sec_flags 164 | SEC_READONLY)); 165 if (s == NULL 166 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 167 return FALSE; 168 htab->srelgot = s; 169 170 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags); 171 if (s == NULL 172 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 173 return FALSE; 174 htab->sgot = s; 175 176 if (bed->want_got_plt) 177 { 178 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags); 179 if (s == NULL 180 || !bfd_set_section_alignment (abfd, s, 181 bed->s->log_file_align)) 182 return FALSE; 183 htab->sgotplt = s; 184 } 185 186 /* The first bit of the global offset table is the header. */ 187 s->size += bed->got_header_size; 188 189 if (bed->want_got_sym) 190 { 191 /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got 192 (or .got.plt) section. We don't do this in the linker script 193 because we don't want to define the symbol if we are not creating 194 a global offset table. */ 195 h = _bfd_elf_define_linkage_sym (abfd, info, s, 196 "_GLOBAL_OFFSET_TABLE_"); 197 elf_hash_table (info)->hgot = h; 198 if (h == NULL) 199 return FALSE; 200 } 201 202 return TRUE; 203 } 204 205 /* Create a strtab to hold the dynamic symbol names. */ 206 static bfd_boolean 207 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info) 208 { 209 struct elf_link_hash_table *hash_table; 210 211 hash_table = elf_hash_table (info); 212 if (hash_table->dynobj == NULL) 213 { 214 /* We may not set dynobj, an input file holding linker created 215 dynamic sections to abfd, which may be a dynamic object with 216 its own dynamic sections. We need to find a normal input file 217 to hold linker created sections if possible. */ 218 if ((abfd->flags & (DYNAMIC | BFD_PLUGIN)) != 0) 219 { 220 bfd *ibfd; 221 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next) 222 if ((ibfd->flags 223 & (DYNAMIC | BFD_LINKER_CREATED | BFD_PLUGIN)) == 0) 224 { 225 abfd = ibfd; 226 break; 227 } 228 } 229 hash_table->dynobj = abfd; 230 } 231 232 if (hash_table->dynstr == NULL) 233 { 234 hash_table->dynstr = _bfd_elf_strtab_init (); 235 if (hash_table->dynstr == NULL) 236 return FALSE; 237 } 238 return TRUE; 239 } 240 241 /* Create some sections which will be filled in with dynamic linking 242 information. ABFD is an input file which requires dynamic sections 243 to be created. The dynamic sections take up virtual memory space 244 when the final executable is run, so we need to create them before 245 addresses are assigned to the output sections. We work out the 246 actual contents and size of these sections later. */ 247 248 bfd_boolean 249 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 250 { 251 flagword flags; 252 asection *s; 253 const struct elf_backend_data *bed; 254 struct elf_link_hash_entry *h; 255 256 if (! is_elf_hash_table (info->hash)) 257 return FALSE; 258 259 if (elf_hash_table (info)->dynamic_sections_created) 260 return TRUE; 261 262 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 263 return FALSE; 264 265 abfd = elf_hash_table (info)->dynobj; 266 bed = get_elf_backend_data (abfd); 267 268 flags = bed->dynamic_sec_flags; 269 270 /* A dynamically linked executable has a .interp section, but a 271 shared library does not. */ 272 if (bfd_link_executable (info) && !info->nointerp) 273 { 274 s = bfd_make_section_anyway_with_flags (abfd, ".interp", 275 flags | SEC_READONLY); 276 if (s == NULL) 277 return FALSE; 278 } 279 280 /* Create sections to hold version informations. These are removed 281 if they are not needed. */ 282 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d", 283 flags | SEC_READONLY); 284 if (s == NULL 285 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 286 return FALSE; 287 288 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version", 289 flags | SEC_READONLY); 290 if (s == NULL 291 || ! bfd_set_section_alignment (abfd, s, 1)) 292 return FALSE; 293 294 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r", 295 flags | SEC_READONLY); 296 if (s == NULL 297 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 298 return FALSE; 299 300 s = bfd_make_section_anyway_with_flags (abfd, ".dynsym", 301 flags | SEC_READONLY); 302 if (s == NULL 303 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 304 return FALSE; 305 elf_hash_table (info)->dynsym = s; 306 307 s = bfd_make_section_anyway_with_flags (abfd, ".dynstr", 308 flags | SEC_READONLY); 309 if (s == NULL) 310 return FALSE; 311 312 s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags); 313 if (s == NULL 314 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 315 return FALSE; 316 317 /* The special symbol _DYNAMIC is always set to the start of the 318 .dynamic section. We could set _DYNAMIC in a linker script, but we 319 only want to define it if we are, in fact, creating a .dynamic 320 section. We don't want to define it if there is no .dynamic 321 section, since on some ELF platforms the start up code examines it 322 to decide how to initialize the process. */ 323 h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC"); 324 elf_hash_table (info)->hdynamic = h; 325 if (h == NULL) 326 return FALSE; 327 328 if (info->emit_hash) 329 { 330 s = bfd_make_section_anyway_with_flags (abfd, ".hash", 331 flags | SEC_READONLY); 332 if (s == NULL 333 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 334 return FALSE; 335 elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry; 336 } 337 338 if (info->emit_gnu_hash) 339 { 340 s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash", 341 flags | SEC_READONLY); 342 if (s == NULL 343 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 344 return FALSE; 345 /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section: 346 4 32-bit words followed by variable count of 64-bit words, then 347 variable count of 32-bit words. */ 348 if (bed->s->arch_size == 64) 349 elf_section_data (s)->this_hdr.sh_entsize = 0; 350 else 351 elf_section_data (s)->this_hdr.sh_entsize = 4; 352 } 353 354 /* Let the backend create the rest of the sections. This lets the 355 backend set the right flags. The backend will normally create 356 the .got and .plt sections. */ 357 if (bed->elf_backend_create_dynamic_sections == NULL 358 || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info)) 359 return FALSE; 360 361 elf_hash_table (info)->dynamic_sections_created = TRUE; 362 363 return TRUE; 364 } 365 366 /* Create dynamic sections when linking against a dynamic object. */ 367 368 bfd_boolean 369 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info) 370 { 371 flagword flags, pltflags; 372 struct elf_link_hash_entry *h; 373 asection *s; 374 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 375 struct elf_link_hash_table *htab = elf_hash_table (info); 376 377 /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and 378 .rel[a].bss sections. */ 379 flags = bed->dynamic_sec_flags; 380 381 pltflags = flags; 382 if (bed->plt_not_loaded) 383 /* We do not clear SEC_ALLOC here because we still want the OS to 384 allocate space for the section; it's just that there's nothing 385 to read in from the object file. */ 386 pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS); 387 else 388 pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD; 389 if (bed->plt_readonly) 390 pltflags |= SEC_READONLY; 391 392 s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags); 393 if (s == NULL 394 || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment)) 395 return FALSE; 396 htab->splt = s; 397 398 /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the 399 .plt section. */ 400 if (bed->want_plt_sym) 401 { 402 h = _bfd_elf_define_linkage_sym (abfd, info, s, 403 "_PROCEDURE_LINKAGE_TABLE_"); 404 elf_hash_table (info)->hplt = h; 405 if (h == NULL) 406 return FALSE; 407 } 408 409 s = bfd_make_section_anyway_with_flags (abfd, 410 (bed->rela_plts_and_copies_p 411 ? ".rela.plt" : ".rel.plt"), 412 flags | SEC_READONLY); 413 if (s == NULL 414 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 415 return FALSE; 416 htab->srelplt = s; 417 418 if (! _bfd_elf_create_got_section (abfd, info)) 419 return FALSE; 420 421 if (bed->want_dynbss) 422 { 423 /* The .dynbss section is a place to put symbols which are defined 424 by dynamic objects, are referenced by regular objects, and are 425 not functions. We must allocate space for them in the process 426 image and use a R_*_COPY reloc to tell the dynamic linker to 427 initialize them at run time. The linker script puts the .dynbss 428 section into the .bss section of the final image. */ 429 s = bfd_make_section_anyway_with_flags (abfd, ".dynbss", 430 SEC_ALLOC | SEC_LINKER_CREATED); 431 if (s == NULL) 432 return FALSE; 433 htab->sdynbss = s; 434 435 if (bed->want_dynrelro) 436 { 437 /* Similarly, but for symbols that were originally in read-only 438 sections. This section doesn't really need to have contents, 439 but make it like other .data.rel.ro sections. */ 440 s = bfd_make_section_anyway_with_flags (abfd, ".data.rel.ro", 441 flags); 442 if (s == NULL) 443 return FALSE; 444 htab->sdynrelro = s; 445 } 446 447 /* The .rel[a].bss section holds copy relocs. This section is not 448 normally needed. We need to create it here, though, so that the 449 linker will map it to an output section. We can't just create it 450 only if we need it, because we will not know whether we need it 451 until we have seen all the input files, and the first time the 452 main linker code calls BFD after examining all the input files 453 (size_dynamic_sections) the input sections have already been 454 mapped to the output sections. If the section turns out not to 455 be needed, we can discard it later. We will never need this 456 section when generating a shared object, since they do not use 457 copy relocs. */ 458 if (bfd_link_executable (info)) 459 { 460 s = bfd_make_section_anyway_with_flags (abfd, 461 (bed->rela_plts_and_copies_p 462 ? ".rela.bss" : ".rel.bss"), 463 flags | SEC_READONLY); 464 if (s == NULL 465 || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align)) 466 return FALSE; 467 htab->srelbss = s; 468 469 if (bed->want_dynrelro) 470 { 471 s = (bfd_make_section_anyway_with_flags 472 (abfd, (bed->rela_plts_and_copies_p 473 ? ".rela.data.rel.ro" : ".rel.data.rel.ro"), 474 flags | SEC_READONLY)); 475 if (s == NULL 476 || ! bfd_set_section_alignment (abfd, s, 477 bed->s->log_file_align)) 478 return FALSE; 479 htab->sreldynrelro = s; 480 } 481 } 482 } 483 484 return TRUE; 485 } 486 487 /* Record a new dynamic symbol. We record the dynamic symbols as we 488 read the input files, since we need to have a list of all of them 489 before we can determine the final sizes of the output sections. 490 Note that we may actually call this function even though we are not 491 going to output any dynamic symbols; in some cases we know that a 492 symbol should be in the dynamic symbol table, but only if there is 493 one. */ 494 495 bfd_boolean 496 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info, 497 struct elf_link_hash_entry *h) 498 { 499 if (h->dynindx == -1) 500 { 501 struct elf_strtab_hash *dynstr; 502 char *p; 503 const char *name; 504 size_t indx; 505 506 /* XXX: The ABI draft says the linker must turn hidden and 507 internal symbols into STB_LOCAL symbols when producing the 508 DSO. However, if ld.so honors st_other in the dynamic table, 509 this would not be necessary. */ 510 switch (ELF_ST_VISIBILITY (h->other)) 511 { 512 case STV_INTERNAL: 513 case STV_HIDDEN: 514 if (h->root.type != bfd_link_hash_undefined 515 && h->root.type != bfd_link_hash_undefweak) 516 { 517 h->forced_local = 1; 518 if (!elf_hash_table (info)->is_relocatable_executable) 519 return TRUE; 520 } 521 522 default: 523 break; 524 } 525 526 h->dynindx = elf_hash_table (info)->dynsymcount; 527 ++elf_hash_table (info)->dynsymcount; 528 529 dynstr = elf_hash_table (info)->dynstr; 530 if (dynstr == NULL) 531 { 532 /* Create a strtab to hold the dynamic symbol names. */ 533 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 534 if (dynstr == NULL) 535 return FALSE; 536 } 537 538 /* We don't put any version information in the dynamic string 539 table. */ 540 name = h->root.root.string; 541 p = strchr (name, ELF_VER_CHR); 542 if (p != NULL) 543 /* We know that the p points into writable memory. In fact, 544 there are only a few symbols that have read-only names, being 545 those like _GLOBAL_OFFSET_TABLE_ that are created specially 546 by the backends. Most symbols will have names pointing into 547 an ELF string table read from a file, or to objalloc memory. */ 548 *p = 0; 549 550 indx = _bfd_elf_strtab_add (dynstr, name, p != NULL); 551 552 if (p != NULL) 553 *p = ELF_VER_CHR; 554 555 if (indx == (size_t) -1) 556 return FALSE; 557 h->dynstr_index = indx; 558 } 559 560 return TRUE; 561 } 562 563 /* Mark a symbol dynamic. */ 564 565 static void 566 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info, 567 struct elf_link_hash_entry *h, 568 Elf_Internal_Sym *sym) 569 { 570 struct bfd_elf_dynamic_list *d = info->dynamic_list; 571 572 /* It may be called more than once on the same H. */ 573 if(h->dynamic || bfd_link_relocatable (info)) 574 return; 575 576 if ((info->dynamic_data 577 && (h->type == STT_OBJECT 578 || h->type == STT_COMMON 579 || (sym != NULL 580 && (ELF_ST_TYPE (sym->st_info) == STT_OBJECT 581 || ELF_ST_TYPE (sym->st_info) == STT_COMMON)))) 582 || (d != NULL 583 && h->root.type == bfd_link_hash_new 584 && (*d->match) (&d->head, NULL, h->root.root.string))) 585 h->dynamic = 1; 586 } 587 588 /* Record an assignment to a symbol made by a linker script. We need 589 this in case some dynamic object refers to this symbol. */ 590 591 bfd_boolean 592 bfd_elf_record_link_assignment (bfd *output_bfd, 593 struct bfd_link_info *info, 594 const char *name, 595 bfd_boolean provide, 596 bfd_boolean hidden) 597 { 598 struct elf_link_hash_entry *h, *hv; 599 struct elf_link_hash_table *htab; 600 const struct elf_backend_data *bed; 601 602 if (!is_elf_hash_table (info->hash)) 603 return TRUE; 604 605 htab = elf_hash_table (info); 606 h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE); 607 if (h == NULL) 608 return provide; 609 610 if (h->root.type == bfd_link_hash_warning) 611 h = (struct elf_link_hash_entry *) h->root.u.i.link; 612 613 if (h->versioned == unknown) 614 { 615 /* Set versioned if symbol version is unknown. */ 616 char *version = strrchr (name, ELF_VER_CHR); 617 if (version) 618 { 619 if (version > name && version[-1] != ELF_VER_CHR) 620 h->versioned = versioned_hidden; 621 else 622 h->versioned = versioned; 623 } 624 } 625 626 switch (h->root.type) 627 { 628 case bfd_link_hash_defined: 629 case bfd_link_hash_defweak: 630 case bfd_link_hash_common: 631 break; 632 case bfd_link_hash_undefweak: 633 case bfd_link_hash_undefined: 634 /* Since we're defining the symbol, don't let it seem to have not 635 been defined. record_dynamic_symbol and size_dynamic_sections 636 may depend on this. */ 637 h->root.type = bfd_link_hash_new; 638 if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root) 639 bfd_link_repair_undef_list (&htab->root); 640 break; 641 case bfd_link_hash_new: 642 bfd_elf_link_mark_dynamic_symbol (info, h, NULL); 643 h->non_elf = 0; 644 break; 645 case bfd_link_hash_indirect: 646 /* We had a versioned symbol in a dynamic library. We make the 647 the versioned symbol point to this one. */ 648 bed = get_elf_backend_data (output_bfd); 649 hv = h; 650 while (hv->root.type == bfd_link_hash_indirect 651 || hv->root.type == bfd_link_hash_warning) 652 hv = (struct elf_link_hash_entry *) hv->root.u.i.link; 653 /* We don't need to update h->root.u since linker will set them 654 later. */ 655 h->root.type = bfd_link_hash_undefined; 656 hv->root.type = bfd_link_hash_indirect; 657 hv->root.u.i.link = (struct bfd_link_hash_entry *) h; 658 (*bed->elf_backend_copy_indirect_symbol) (info, h, hv); 659 break; 660 default: 661 BFD_FAIL (); 662 return FALSE; 663 } 664 665 /* If this symbol is being provided by the linker script, and it is 666 currently defined by a dynamic object, but not by a regular 667 object, then mark it as undefined so that the generic linker will 668 force the correct value. */ 669 if (provide 670 && h->def_dynamic 671 && !h->def_regular) 672 h->root.type = bfd_link_hash_undefined; 673 674 /* If this symbol is not being provided by the linker script, and it is 675 currently defined by a dynamic object, but not by a regular object, 676 then clear out any version information because the symbol will not be 677 associated with the dynamic object any more. */ 678 if (!provide 679 && h->def_dynamic 680 && !h->def_regular) 681 h->verinfo.verdef = NULL; 682 683 /* Make sure this symbol is not garbage collected. */ 684 h->mark = 1; 685 686 h->def_regular = 1; 687 688 if (hidden) 689 { 690 bed = get_elf_backend_data (output_bfd); 691 if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL) 692 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN; 693 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 694 } 695 696 /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects 697 and executables. */ 698 if (!bfd_link_relocatable (info) 699 && h->dynindx != -1 700 && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 701 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)) 702 h->forced_local = 1; 703 704 if ((h->def_dynamic 705 || h->ref_dynamic 706 || bfd_link_dll (info) 707 || elf_hash_table (info)->is_relocatable_executable) 708 && h->dynindx == -1) 709 { 710 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 711 return FALSE; 712 713 /* If this is a weak defined symbol, and we know a corresponding 714 real symbol from the same dynamic object, make sure the real 715 symbol is also made into a dynamic symbol. */ 716 if (h->u.weakdef != NULL 717 && h->u.weakdef->dynindx == -1) 718 { 719 if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) 720 return FALSE; 721 } 722 } 723 724 return TRUE; 725 } 726 727 /* Record a new local dynamic symbol. Returns 0 on failure, 1 on 728 success, and 2 on a failure caused by attempting to record a symbol 729 in a discarded section, eg. a discarded link-once section symbol. */ 730 731 int 732 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info, 733 bfd *input_bfd, 734 long input_indx) 735 { 736 bfd_size_type amt; 737 struct elf_link_local_dynamic_entry *entry; 738 struct elf_link_hash_table *eht; 739 struct elf_strtab_hash *dynstr; 740 size_t dynstr_index; 741 char *name; 742 Elf_External_Sym_Shndx eshndx; 743 char esym[sizeof (Elf64_External_Sym)]; 744 745 if (! is_elf_hash_table (info->hash)) 746 return 0; 747 748 /* See if the entry exists already. */ 749 for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next) 750 if (entry->input_bfd == input_bfd && entry->input_indx == input_indx) 751 return 1; 752 753 amt = sizeof (*entry); 754 entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt); 755 if (entry == NULL) 756 return 0; 757 758 /* Go find the symbol, so that we can find it's name. */ 759 if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr, 760 1, input_indx, &entry->isym, esym, &eshndx)) 761 { 762 bfd_release (input_bfd, entry); 763 return 0; 764 } 765 766 if (entry->isym.st_shndx != SHN_UNDEF 767 && entry->isym.st_shndx < SHN_LORESERVE) 768 { 769 asection *s; 770 771 s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx); 772 if (s == NULL || bfd_is_abs_section (s->output_section)) 773 { 774 /* We can still bfd_release here as nothing has done another 775 bfd_alloc. We can't do this later in this function. */ 776 bfd_release (input_bfd, entry); 777 return 2; 778 } 779 } 780 781 name = (bfd_elf_string_from_elf_section 782 (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link, 783 entry->isym.st_name)); 784 785 dynstr = elf_hash_table (info)->dynstr; 786 if (dynstr == NULL) 787 { 788 /* Create a strtab to hold the dynamic symbol names. */ 789 elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init (); 790 if (dynstr == NULL) 791 return 0; 792 } 793 794 dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE); 795 if (dynstr_index == (size_t) -1) 796 return 0; 797 entry->isym.st_name = dynstr_index; 798 799 eht = elf_hash_table (info); 800 801 entry->next = eht->dynlocal; 802 eht->dynlocal = entry; 803 entry->input_bfd = input_bfd; 804 entry->input_indx = input_indx; 805 eht->dynsymcount++; 806 807 /* Whatever binding the symbol had before, it's now local. */ 808 entry->isym.st_info 809 = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info)); 810 811 /* The dynindx will be set at the end of size_dynamic_sections. */ 812 813 return 1; 814 } 815 816 /* Return the dynindex of a local dynamic symbol. */ 817 818 long 819 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info, 820 bfd *input_bfd, 821 long input_indx) 822 { 823 struct elf_link_local_dynamic_entry *e; 824 825 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 826 if (e->input_bfd == input_bfd && e->input_indx == input_indx) 827 return e->dynindx; 828 return -1; 829 } 830 831 /* This function is used to renumber the dynamic symbols, if some of 832 them are removed because they are marked as local. This is called 833 via elf_link_hash_traverse. */ 834 835 static bfd_boolean 836 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h, 837 void *data) 838 { 839 size_t *count = (size_t *) data; 840 841 if (h->forced_local) 842 return TRUE; 843 844 if (h->dynindx != -1) 845 h->dynindx = ++(*count); 846 847 return TRUE; 848 } 849 850 851 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with 852 STB_LOCAL binding. */ 853 854 static bfd_boolean 855 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h, 856 void *data) 857 { 858 size_t *count = (size_t *) data; 859 860 if (!h->forced_local) 861 return TRUE; 862 863 if (h->dynindx != -1) 864 h->dynindx = ++(*count); 865 866 return TRUE; 867 } 868 869 /* Return true if the dynamic symbol for a given section should be 870 omitted when creating a shared library. */ 871 bfd_boolean 872 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED, 873 struct bfd_link_info *info, 874 asection *p) 875 { 876 struct elf_link_hash_table *htab; 877 asection *ip; 878 879 switch (elf_section_data (p)->this_hdr.sh_type) 880 { 881 case SHT_PROGBITS: 882 case SHT_NOBITS: 883 /* If sh_type is yet undecided, assume it could be 884 SHT_PROGBITS/SHT_NOBITS. */ 885 case SHT_NULL: 886 htab = elf_hash_table (info); 887 if (p == htab->tls_sec) 888 return FALSE; 889 890 if (htab->text_index_section != NULL) 891 return p != htab->text_index_section && p != htab->data_index_section; 892 893 return (htab->dynobj != NULL 894 && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL 895 && ip->output_section == p); 896 897 /* There shouldn't be section relative relocations 898 against any other section. */ 899 default: 900 return TRUE; 901 } 902 } 903 904 /* Assign dynsym indices. In a shared library we generate a section 905 symbol for each output section, which come first. Next come symbols 906 which have been forced to local binding. Then all of the back-end 907 allocated local dynamic syms, followed by the rest of the global 908 symbols. */ 909 910 static unsigned long 911 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd, 912 struct bfd_link_info *info, 913 unsigned long *section_sym_count) 914 { 915 unsigned long dynsymcount = 0; 916 917 if (bfd_link_pic (info) 918 || elf_hash_table (info)->is_relocatable_executable) 919 { 920 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 921 asection *p; 922 for (p = output_bfd->sections; p ; p = p->next) 923 if ((p->flags & SEC_EXCLUDE) == 0 924 && (p->flags & SEC_ALLOC) != 0 925 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p)) 926 elf_section_data (p)->dynindx = ++dynsymcount; 927 else 928 elf_section_data (p)->dynindx = 0; 929 } 930 *section_sym_count = dynsymcount; 931 932 elf_link_hash_traverse (elf_hash_table (info), 933 elf_link_renumber_local_hash_table_dynsyms, 934 &dynsymcount); 935 936 if (elf_hash_table (info)->dynlocal) 937 { 938 struct elf_link_local_dynamic_entry *p; 939 for (p = elf_hash_table (info)->dynlocal; p ; p = p->next) 940 p->dynindx = ++dynsymcount; 941 } 942 elf_hash_table (info)->local_dynsymcount = dynsymcount; 943 944 elf_link_hash_traverse (elf_hash_table (info), 945 elf_link_renumber_hash_table_dynsyms, 946 &dynsymcount); 947 948 /* There is an unused NULL entry at the head of the table which we 949 must account for in our count even if the table is empty since it 950 is intended for the mandatory DT_SYMTAB tag (.dynsym section) in 951 .dynamic section. */ 952 dynsymcount++; 953 954 elf_hash_table (info)->dynsymcount = dynsymcount; 955 return dynsymcount; 956 } 957 958 /* Merge st_other field. */ 959 960 static void 961 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h, 962 const Elf_Internal_Sym *isym, asection *sec, 963 bfd_boolean definition, bfd_boolean dynamic) 964 { 965 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 966 967 /* If st_other has a processor-specific meaning, specific 968 code might be needed here. */ 969 if (bed->elf_backend_merge_symbol_attribute) 970 (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition, 971 dynamic); 972 973 if (!dynamic) 974 { 975 unsigned symvis = ELF_ST_VISIBILITY (isym->st_other); 976 unsigned hvis = ELF_ST_VISIBILITY (h->other); 977 978 /* Keep the most constraining visibility. Leave the remainder 979 of the st_other field to elf_backend_merge_symbol_attribute. */ 980 if (symvis - 1 < hvis - 1) 981 h->other = symvis | (h->other & ~ELF_ST_VISIBILITY (-1)); 982 } 983 else if (definition 984 && ELF_ST_VISIBILITY (isym->st_other) != STV_DEFAULT 985 && (sec->flags & SEC_READONLY) == 0) 986 h->protected_def = 1; 987 } 988 989 /* This function is called when we want to merge a new symbol with an 990 existing symbol. It handles the various cases which arise when we 991 find a definition in a dynamic object, or when there is already a 992 definition in a dynamic object. The new symbol is described by 993 NAME, SYM, PSEC, and PVALUE. We set SYM_HASH to the hash table 994 entry. We set POLDBFD to the old symbol's BFD. We set POLD_WEAK 995 if the old symbol was weak. We set POLD_ALIGNMENT to the alignment 996 of an old common symbol. We set OVERRIDE if the old symbol is 997 overriding a new definition. We set TYPE_CHANGE_OK if it is OK for 998 the type to change. We set SIZE_CHANGE_OK if it is OK for the size 999 to change. By OK to change, we mean that we shouldn't warn if the 1000 type or size does change. */ 1001 1002 static bfd_boolean 1003 _bfd_elf_merge_symbol (bfd *abfd, 1004 struct bfd_link_info *info, 1005 const char *name, 1006 Elf_Internal_Sym *sym, 1007 asection **psec, 1008 bfd_vma *pvalue, 1009 struct elf_link_hash_entry **sym_hash, 1010 bfd **poldbfd, 1011 bfd_boolean *pold_weak, 1012 unsigned int *pold_alignment, 1013 bfd_boolean *skip, 1014 bfd_boolean *override, 1015 bfd_boolean *type_change_ok, 1016 bfd_boolean *size_change_ok, 1017 bfd_boolean *matched) 1018 { 1019 asection *sec, *oldsec; 1020 struct elf_link_hash_entry *h; 1021 struct elf_link_hash_entry *hi; 1022 struct elf_link_hash_entry *flip; 1023 int bind; 1024 bfd *oldbfd; 1025 bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon; 1026 bfd_boolean newweak, oldweak, newfunc, oldfunc; 1027 const struct elf_backend_data *bed; 1028 char *new_version; 1029 1030 *skip = FALSE; 1031 *override = FALSE; 1032 1033 sec = *psec; 1034 bind = ELF_ST_BIND (sym->st_info); 1035 1036 if (! bfd_is_und_section (sec)) 1037 h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE); 1038 else 1039 h = ((struct elf_link_hash_entry *) 1040 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE)); 1041 if (h == NULL) 1042 return FALSE; 1043 *sym_hash = h; 1044 1045 bed = get_elf_backend_data (abfd); 1046 1047 /* NEW_VERSION is the symbol version of the new symbol. */ 1048 if (h->versioned != unversioned) 1049 { 1050 /* Symbol version is unknown or versioned. */ 1051 new_version = strrchr (name, ELF_VER_CHR); 1052 if (new_version) 1053 { 1054 if (h->versioned == unknown) 1055 { 1056 if (new_version > name && new_version[-1] != ELF_VER_CHR) 1057 h->versioned = versioned_hidden; 1058 else 1059 h->versioned = versioned; 1060 } 1061 new_version += 1; 1062 if (new_version[0] == '\0') 1063 new_version = NULL; 1064 } 1065 else 1066 h->versioned = unversioned; 1067 } 1068 else 1069 new_version = NULL; 1070 1071 /* For merging, we only care about real symbols. But we need to make 1072 sure that indirect symbol dynamic flags are updated. */ 1073 hi = h; 1074 while (h->root.type == bfd_link_hash_indirect 1075 || h->root.type == bfd_link_hash_warning) 1076 h = (struct elf_link_hash_entry *) h->root.u.i.link; 1077 1078 if (!*matched) 1079 { 1080 if (hi == h || h->root.type == bfd_link_hash_new) 1081 *matched = TRUE; 1082 else 1083 { 1084 /* OLD_HIDDEN is true if the existing symbol is only visible 1085 to the symbol with the same symbol version. NEW_HIDDEN is 1086 true if the new symbol is only visible to the symbol with 1087 the same symbol version. */ 1088 bfd_boolean old_hidden = h->versioned == versioned_hidden; 1089 bfd_boolean new_hidden = hi->versioned == versioned_hidden; 1090 if (!old_hidden && !new_hidden) 1091 /* The new symbol matches the existing symbol if both 1092 aren't hidden. */ 1093 *matched = TRUE; 1094 else 1095 { 1096 /* OLD_VERSION is the symbol version of the existing 1097 symbol. */ 1098 char *old_version; 1099 1100 if (h->versioned >= versioned) 1101 old_version = strrchr (h->root.root.string, 1102 ELF_VER_CHR) + 1; 1103 else 1104 old_version = NULL; 1105 1106 /* The new symbol matches the existing symbol if they 1107 have the same symbol version. */ 1108 *matched = (old_version == new_version 1109 || (old_version != NULL 1110 && new_version != NULL 1111 && strcmp (old_version, new_version) == 0)); 1112 } 1113 } 1114 } 1115 1116 /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the 1117 existing symbol. */ 1118 1119 oldbfd = NULL; 1120 oldsec = NULL; 1121 switch (h->root.type) 1122 { 1123 default: 1124 break; 1125 1126 case bfd_link_hash_undefined: 1127 case bfd_link_hash_undefweak: 1128 oldbfd = h->root.u.undef.abfd; 1129 break; 1130 1131 case bfd_link_hash_defined: 1132 case bfd_link_hash_defweak: 1133 oldbfd = h->root.u.def.section->owner; 1134 oldsec = h->root.u.def.section; 1135 break; 1136 1137 case bfd_link_hash_common: 1138 oldbfd = h->root.u.c.p->section->owner; 1139 oldsec = h->root.u.c.p->section; 1140 if (pold_alignment) 1141 *pold_alignment = h->root.u.c.p->alignment_power; 1142 break; 1143 } 1144 if (poldbfd && *poldbfd == NULL) 1145 *poldbfd = oldbfd; 1146 1147 /* Differentiate strong and weak symbols. */ 1148 newweak = bind == STB_WEAK; 1149 oldweak = (h->root.type == bfd_link_hash_defweak 1150 || h->root.type == bfd_link_hash_undefweak); 1151 if (pold_weak) 1152 *pold_weak = oldweak; 1153 1154 /* This code is for coping with dynamic objects, and is only useful 1155 if we are doing an ELF link. */ 1156 if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) 1157 return TRUE; 1158 1159 /* We have to check it for every instance since the first few may be 1160 references and not all compilers emit symbol type for undefined 1161 symbols. */ 1162 bfd_elf_link_mark_dynamic_symbol (info, h, sym); 1163 1164 /* NEWDYN and OLDDYN indicate whether the new or old symbol, 1165 respectively, is from a dynamic object. */ 1166 1167 newdyn = (abfd->flags & DYNAMIC) != 0; 1168 1169 /* ref_dynamic_nonweak and dynamic_def flags track actual undefined 1170 syms and defined syms in dynamic libraries respectively. 1171 ref_dynamic on the other hand can be set for a symbol defined in 1172 a dynamic library, and def_dynamic may not be set; When the 1173 definition in a dynamic lib is overridden by a definition in the 1174 executable use of the symbol in the dynamic lib becomes a 1175 reference to the executable symbol. */ 1176 if (newdyn) 1177 { 1178 if (bfd_is_und_section (sec)) 1179 { 1180 if (bind != STB_WEAK) 1181 { 1182 h->ref_dynamic_nonweak = 1; 1183 hi->ref_dynamic_nonweak = 1; 1184 } 1185 } 1186 else 1187 { 1188 /* Update the existing symbol only if they match. */ 1189 if (*matched) 1190 h->dynamic_def = 1; 1191 hi->dynamic_def = 1; 1192 } 1193 } 1194 1195 /* If we just created the symbol, mark it as being an ELF symbol. 1196 Other than that, there is nothing to do--there is no merge issue 1197 with a newly defined symbol--so we just return. */ 1198 1199 if (h->root.type == bfd_link_hash_new) 1200 { 1201 h->non_elf = 0; 1202 return TRUE; 1203 } 1204 1205 /* In cases involving weak versioned symbols, we may wind up trying 1206 to merge a symbol with itself. Catch that here, to avoid the 1207 confusion that results if we try to override a symbol with 1208 itself. The additional tests catch cases like 1209 _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a 1210 dynamic object, which we do want to handle here. */ 1211 if (abfd == oldbfd 1212 && (newweak || oldweak) 1213 && ((abfd->flags & DYNAMIC) == 0 1214 || !h->def_regular)) 1215 return TRUE; 1216 1217 olddyn = FALSE; 1218 if (oldbfd != NULL) 1219 olddyn = (oldbfd->flags & DYNAMIC) != 0; 1220 else if (oldsec != NULL) 1221 { 1222 /* This handles the special SHN_MIPS_{TEXT,DATA} section 1223 indices used by MIPS ELF. */ 1224 olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0; 1225 } 1226 1227 /* NEWDEF and OLDDEF indicate whether the new or old symbol, 1228 respectively, appear to be a definition rather than reference. */ 1229 1230 newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec); 1231 1232 olddef = (h->root.type != bfd_link_hash_undefined 1233 && h->root.type != bfd_link_hash_undefweak 1234 && h->root.type != bfd_link_hash_common); 1235 1236 /* NEWFUNC and OLDFUNC indicate whether the new or old symbol, 1237 respectively, appear to be a function. */ 1238 1239 newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1240 && bed->is_function_type (ELF_ST_TYPE (sym->st_info))); 1241 1242 oldfunc = (h->type != STT_NOTYPE 1243 && bed->is_function_type (h->type)); 1244 1245 /* If creating a default indirect symbol ("foo" or "foo@") from a 1246 dynamic versioned definition ("foo@@") skip doing so if there is 1247 an existing regular definition with a different type. We don't 1248 want, for example, a "time" variable in the executable overriding 1249 a "time" function in a shared library. */ 1250 if (pold_alignment == NULL 1251 && newdyn 1252 && newdef 1253 && !olddyn 1254 && (olddef || h->root.type == bfd_link_hash_common) 1255 && ELF_ST_TYPE (sym->st_info) != h->type 1256 && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE 1257 && h->type != STT_NOTYPE 1258 && !(newfunc && oldfunc)) 1259 { 1260 *skip = TRUE; 1261 return TRUE; 1262 } 1263 1264 /* Check TLS symbols. We don't check undefined symbols introduced 1265 by "ld -u" which have no type (and oldbfd NULL), and we don't 1266 check symbols from plugins because they also have no type. */ 1267 if (oldbfd != NULL 1268 && (oldbfd->flags & BFD_PLUGIN) == 0 1269 && (abfd->flags & BFD_PLUGIN) == 0 1270 && ELF_ST_TYPE (sym->st_info) != h->type 1271 && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS)) 1272 { 1273 bfd *ntbfd, *tbfd; 1274 bfd_boolean ntdef, tdef; 1275 asection *ntsec, *tsec; 1276 1277 if (h->type == STT_TLS) 1278 { 1279 ntbfd = abfd; 1280 ntsec = sec; 1281 ntdef = newdef; 1282 tbfd = oldbfd; 1283 tsec = oldsec; 1284 tdef = olddef; 1285 } 1286 else 1287 { 1288 ntbfd = oldbfd; 1289 ntsec = oldsec; 1290 ntdef = olddef; 1291 tbfd = abfd; 1292 tsec = sec; 1293 tdef = newdef; 1294 } 1295 1296 if (tdef && ntdef) 1297 _bfd_error_handler 1298 /* xgettext:c-format */ 1299 (_("%s: TLS definition in %B section %A " 1300 "mismatches non-TLS definition in %B section %A"), 1301 h->root.root.string, tbfd, tsec, ntbfd, ntsec); 1302 else if (!tdef && !ntdef) 1303 _bfd_error_handler 1304 /* xgettext:c-format */ 1305 (_("%s: TLS reference in %B " 1306 "mismatches non-TLS reference in %B"), 1307 h->root.root.string, tbfd, ntbfd); 1308 else if (tdef) 1309 _bfd_error_handler 1310 /* xgettext:c-format */ 1311 (_("%s: TLS definition in %B section %A " 1312 "mismatches non-TLS reference in %B"), 1313 h->root.root.string, tbfd, tsec, ntbfd); 1314 else 1315 _bfd_error_handler 1316 /* xgettext:c-format */ 1317 (_("%s: TLS reference in %B " 1318 "mismatches non-TLS definition in %B section %A"), 1319 h->root.root.string, tbfd, ntbfd, ntsec); 1320 1321 bfd_set_error (bfd_error_bad_value); 1322 return FALSE; 1323 } 1324 1325 /* If the old symbol has non-default visibility, we ignore the new 1326 definition from a dynamic object. */ 1327 if (newdyn 1328 && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 1329 && !bfd_is_und_section (sec)) 1330 { 1331 *skip = TRUE; 1332 /* Make sure this symbol is dynamic. */ 1333 h->ref_dynamic = 1; 1334 hi->ref_dynamic = 1; 1335 /* A protected symbol has external availability. Make sure it is 1336 recorded as dynamic. 1337 1338 FIXME: Should we check type and size for protected symbol? */ 1339 if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED) 1340 return bfd_elf_link_record_dynamic_symbol (info, h); 1341 else 1342 return TRUE; 1343 } 1344 else if (!newdyn 1345 && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT 1346 && h->def_dynamic) 1347 { 1348 /* If the new symbol with non-default visibility comes from a 1349 relocatable file and the old definition comes from a dynamic 1350 object, we remove the old definition. */ 1351 if (hi->root.type == bfd_link_hash_indirect) 1352 { 1353 /* Handle the case where the old dynamic definition is 1354 default versioned. We need to copy the symbol info from 1355 the symbol with default version to the normal one if it 1356 was referenced before. */ 1357 if (h->ref_regular) 1358 { 1359 hi->root.type = h->root.type; 1360 h->root.type = bfd_link_hash_indirect; 1361 (*bed->elf_backend_copy_indirect_symbol) (info, hi, h); 1362 1363 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1364 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1365 { 1366 /* If the new symbol is hidden or internal, completely undo 1367 any dynamic link state. */ 1368 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1369 h->forced_local = 0; 1370 h->ref_dynamic = 0; 1371 } 1372 else 1373 h->ref_dynamic = 1; 1374 1375 h->def_dynamic = 0; 1376 /* FIXME: Should we check type and size for protected symbol? */ 1377 h->size = 0; 1378 h->type = 0; 1379 1380 h = hi; 1381 } 1382 else 1383 h = hi; 1384 } 1385 1386 /* If the old symbol was undefined before, then it will still be 1387 on the undefs list. If the new symbol is undefined or 1388 common, we can't make it bfd_link_hash_new here, because new 1389 undefined or common symbols will be added to the undefs list 1390 by _bfd_generic_link_add_one_symbol. Symbols may not be 1391 added twice to the undefs list. Also, if the new symbol is 1392 undefweak then we don't want to lose the strong undef. */ 1393 if (h->root.u.undef.next || info->hash->undefs_tail == &h->root) 1394 { 1395 h->root.type = bfd_link_hash_undefined; 1396 h->root.u.undef.abfd = abfd; 1397 } 1398 else 1399 { 1400 h->root.type = bfd_link_hash_new; 1401 h->root.u.undef.abfd = NULL; 1402 } 1403 1404 if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED) 1405 { 1406 /* If the new symbol is hidden or internal, completely undo 1407 any dynamic link state. */ 1408 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1409 h->forced_local = 0; 1410 h->ref_dynamic = 0; 1411 } 1412 else 1413 h->ref_dynamic = 1; 1414 h->def_dynamic = 0; 1415 /* FIXME: Should we check type and size for protected symbol? */ 1416 h->size = 0; 1417 h->type = 0; 1418 return TRUE; 1419 } 1420 1421 /* If a new weak symbol definition comes from a regular file and the 1422 old symbol comes from a dynamic library, we treat the new one as 1423 strong. Similarly, an old weak symbol definition from a regular 1424 file is treated as strong when the new symbol comes from a dynamic 1425 library. Further, an old weak symbol from a dynamic library is 1426 treated as strong if the new symbol is from a dynamic library. 1427 This reflects the way glibc's ld.so works. 1428 1429 Do this before setting *type_change_ok or *size_change_ok so that 1430 we warn properly when dynamic library symbols are overridden. */ 1431 1432 if (newdef && !newdyn && olddyn) 1433 newweak = FALSE; 1434 if (olddef && newdyn) 1435 oldweak = FALSE; 1436 1437 /* Allow changes between different types of function symbol. */ 1438 if (newfunc && oldfunc) 1439 *type_change_ok = TRUE; 1440 1441 /* It's OK to change the type if either the existing symbol or the 1442 new symbol is weak. A type change is also OK if the old symbol 1443 is undefined and the new symbol is defined. */ 1444 1445 if (oldweak 1446 || newweak 1447 || (newdef 1448 && h->root.type == bfd_link_hash_undefined)) 1449 *type_change_ok = TRUE; 1450 1451 /* It's OK to change the size if either the existing symbol or the 1452 new symbol is weak, or if the old symbol is undefined. */ 1453 1454 if (*type_change_ok 1455 || h->root.type == bfd_link_hash_undefined) 1456 *size_change_ok = TRUE; 1457 1458 /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old 1459 symbol, respectively, appears to be a common symbol in a dynamic 1460 object. If a symbol appears in an uninitialized section, and is 1461 not weak, and is not a function, then it may be a common symbol 1462 which was resolved when the dynamic object was created. We want 1463 to treat such symbols specially, because they raise special 1464 considerations when setting the symbol size: if the symbol 1465 appears as a common symbol in a regular object, and the size in 1466 the regular object is larger, we must make sure that we use the 1467 larger size. This problematic case can always be avoided in C, 1468 but it must be handled correctly when using Fortran shared 1469 libraries. 1470 1471 Note that if NEWDYNCOMMON is set, NEWDEF will be set, and 1472 likewise for OLDDYNCOMMON and OLDDEF. 1473 1474 Note that this test is just a heuristic, and that it is quite 1475 possible to have an uninitialized symbol in a shared object which 1476 is really a definition, rather than a common symbol. This could 1477 lead to some minor confusion when the symbol really is a common 1478 symbol in some regular object. However, I think it will be 1479 harmless. */ 1480 1481 if (newdyn 1482 && newdef 1483 && !newweak 1484 && (sec->flags & SEC_ALLOC) != 0 1485 && (sec->flags & SEC_LOAD) == 0 1486 && sym->st_size > 0 1487 && !newfunc) 1488 newdyncommon = TRUE; 1489 else 1490 newdyncommon = FALSE; 1491 1492 if (olddyn 1493 && olddef 1494 && h->root.type == bfd_link_hash_defined 1495 && h->def_dynamic 1496 && (h->root.u.def.section->flags & SEC_ALLOC) != 0 1497 && (h->root.u.def.section->flags & SEC_LOAD) == 0 1498 && h->size > 0 1499 && !oldfunc) 1500 olddyncommon = TRUE; 1501 else 1502 olddyncommon = FALSE; 1503 1504 /* We now know everything about the old and new symbols. We ask the 1505 backend to check if we can merge them. */ 1506 if (bed->merge_symbol != NULL) 1507 { 1508 if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec)) 1509 return FALSE; 1510 sec = *psec; 1511 } 1512 1513 /* If both the old and the new symbols look like common symbols in a 1514 dynamic object, set the size of the symbol to the larger of the 1515 two. */ 1516 1517 if (olddyncommon 1518 && newdyncommon 1519 && sym->st_size != h->size) 1520 { 1521 /* Since we think we have two common symbols, issue a multiple 1522 common warning if desired. Note that we only warn if the 1523 size is different. If the size is the same, we simply let 1524 the old symbol override the new one as normally happens with 1525 symbols defined in dynamic objects. */ 1526 1527 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1528 bfd_link_hash_common, sym->st_size); 1529 if (sym->st_size > h->size) 1530 h->size = sym->st_size; 1531 1532 *size_change_ok = TRUE; 1533 } 1534 1535 /* If we are looking at a dynamic object, and we have found a 1536 definition, we need to see if the symbol was already defined by 1537 some other object. If so, we want to use the existing 1538 definition, and we do not want to report a multiple symbol 1539 definition error; we do this by clobbering *PSEC to be 1540 bfd_und_section_ptr. 1541 1542 We treat a common symbol as a definition if the symbol in the 1543 shared library is a function, since common symbols always 1544 represent variables; this can cause confusion in principle, but 1545 any such confusion would seem to indicate an erroneous program or 1546 shared library. We also permit a common symbol in a regular 1547 object to override a weak symbol in a shared object. */ 1548 1549 if (newdyn 1550 && newdef 1551 && (olddef 1552 || (h->root.type == bfd_link_hash_common 1553 && (newweak || newfunc)))) 1554 { 1555 *override = TRUE; 1556 newdef = FALSE; 1557 newdyncommon = FALSE; 1558 1559 *psec = sec = bfd_und_section_ptr; 1560 *size_change_ok = TRUE; 1561 1562 /* If we get here when the old symbol is a common symbol, then 1563 we are explicitly letting it override a weak symbol or 1564 function in a dynamic object, and we don't want to warn about 1565 a type change. If the old symbol is a defined symbol, a type 1566 change warning may still be appropriate. */ 1567 1568 if (h->root.type == bfd_link_hash_common) 1569 *type_change_ok = TRUE; 1570 } 1571 1572 /* Handle the special case of an old common symbol merging with a 1573 new symbol which looks like a common symbol in a shared object. 1574 We change *PSEC and *PVALUE to make the new symbol look like a 1575 common symbol, and let _bfd_generic_link_add_one_symbol do the 1576 right thing. */ 1577 1578 if (newdyncommon 1579 && h->root.type == bfd_link_hash_common) 1580 { 1581 *override = TRUE; 1582 newdef = FALSE; 1583 newdyncommon = FALSE; 1584 *pvalue = sym->st_size; 1585 *psec = sec = bed->common_section (oldsec); 1586 *size_change_ok = TRUE; 1587 } 1588 1589 /* Skip weak definitions of symbols that are already defined. */ 1590 if (newdef && olddef && newweak) 1591 { 1592 /* Don't skip new non-IR weak syms. */ 1593 if (!(oldbfd != NULL 1594 && (oldbfd->flags & BFD_PLUGIN) != 0 1595 && (abfd->flags & BFD_PLUGIN) == 0)) 1596 { 1597 newdef = FALSE; 1598 *skip = TRUE; 1599 } 1600 1601 /* Merge st_other. If the symbol already has a dynamic index, 1602 but visibility says it should not be visible, turn it into a 1603 local symbol. */ 1604 elf_merge_st_other (abfd, h, sym, sec, newdef, newdyn); 1605 if (h->dynindx != -1) 1606 switch (ELF_ST_VISIBILITY (h->other)) 1607 { 1608 case STV_INTERNAL: 1609 case STV_HIDDEN: 1610 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 1611 break; 1612 } 1613 } 1614 1615 /* If the old symbol is from a dynamic object, and the new symbol is 1616 a definition which is not from a dynamic object, then the new 1617 symbol overrides the old symbol. Symbols from regular files 1618 always take precedence over symbols from dynamic objects, even if 1619 they are defined after the dynamic object in the link. 1620 1621 As above, we again permit a common symbol in a regular object to 1622 override a definition in a shared object if the shared object 1623 symbol is a function or is weak. */ 1624 1625 flip = NULL; 1626 if (!newdyn 1627 && (newdef 1628 || (bfd_is_com_section (sec) 1629 && (oldweak || oldfunc))) 1630 && olddyn 1631 && olddef 1632 && h->def_dynamic) 1633 { 1634 /* Change the hash table entry to undefined, and let 1635 _bfd_generic_link_add_one_symbol do the right thing with the 1636 new definition. */ 1637 1638 h->root.type = bfd_link_hash_undefined; 1639 h->root.u.undef.abfd = h->root.u.def.section->owner; 1640 *size_change_ok = TRUE; 1641 1642 olddef = FALSE; 1643 olddyncommon = FALSE; 1644 1645 /* We again permit a type change when a common symbol may be 1646 overriding a function. */ 1647 1648 if (bfd_is_com_section (sec)) 1649 { 1650 if (oldfunc) 1651 { 1652 /* If a common symbol overrides a function, make sure 1653 that it isn't defined dynamically nor has type 1654 function. */ 1655 h->def_dynamic = 0; 1656 h->type = STT_NOTYPE; 1657 } 1658 *type_change_ok = TRUE; 1659 } 1660 1661 if (hi->root.type == bfd_link_hash_indirect) 1662 flip = hi; 1663 else 1664 /* This union may have been set to be non-NULL when this symbol 1665 was seen in a dynamic object. We must force the union to be 1666 NULL, so that it is correct for a regular symbol. */ 1667 h->verinfo.vertree = NULL; 1668 } 1669 1670 /* Handle the special case of a new common symbol merging with an 1671 old symbol that looks like it might be a common symbol defined in 1672 a shared object. Note that we have already handled the case in 1673 which a new common symbol should simply override the definition 1674 in the shared library. */ 1675 1676 if (! newdyn 1677 && bfd_is_com_section (sec) 1678 && olddyncommon) 1679 { 1680 /* It would be best if we could set the hash table entry to a 1681 common symbol, but we don't know what to use for the section 1682 or the alignment. */ 1683 (*info->callbacks->multiple_common) (info, &h->root, abfd, 1684 bfd_link_hash_common, sym->st_size); 1685 1686 /* If the presumed common symbol in the dynamic object is 1687 larger, pretend that the new symbol has its size. */ 1688 1689 if (h->size > *pvalue) 1690 *pvalue = h->size; 1691 1692 /* We need to remember the alignment required by the symbol 1693 in the dynamic object. */ 1694 BFD_ASSERT (pold_alignment); 1695 *pold_alignment = h->root.u.def.section->alignment_power; 1696 1697 olddef = FALSE; 1698 olddyncommon = FALSE; 1699 1700 h->root.type = bfd_link_hash_undefined; 1701 h->root.u.undef.abfd = h->root.u.def.section->owner; 1702 1703 *size_change_ok = TRUE; 1704 *type_change_ok = TRUE; 1705 1706 if (hi->root.type == bfd_link_hash_indirect) 1707 flip = hi; 1708 else 1709 h->verinfo.vertree = NULL; 1710 } 1711 1712 if (flip != NULL) 1713 { 1714 /* Handle the case where we had a versioned symbol in a dynamic 1715 library and now find a definition in a normal object. In this 1716 case, we make the versioned symbol point to the normal one. */ 1717 flip->root.type = h->root.type; 1718 flip->root.u.undef.abfd = h->root.u.undef.abfd; 1719 h->root.type = bfd_link_hash_indirect; 1720 h->root.u.i.link = (struct bfd_link_hash_entry *) flip; 1721 (*bed->elf_backend_copy_indirect_symbol) (info, flip, h); 1722 if (h->def_dynamic) 1723 { 1724 h->def_dynamic = 0; 1725 flip->ref_dynamic = 1; 1726 } 1727 } 1728 1729 return TRUE; 1730 } 1731 1732 /* This function is called to create an indirect symbol from the 1733 default for the symbol with the default version if needed. The 1734 symbol is described by H, NAME, SYM, SEC, and VALUE. We 1735 set DYNSYM if the new indirect symbol is dynamic. */ 1736 1737 static bfd_boolean 1738 _bfd_elf_add_default_symbol (bfd *abfd, 1739 struct bfd_link_info *info, 1740 struct elf_link_hash_entry *h, 1741 const char *name, 1742 Elf_Internal_Sym *sym, 1743 asection *sec, 1744 bfd_vma value, 1745 bfd **poldbfd, 1746 bfd_boolean *dynsym) 1747 { 1748 bfd_boolean type_change_ok; 1749 bfd_boolean size_change_ok; 1750 bfd_boolean skip; 1751 char *shortname; 1752 struct elf_link_hash_entry *hi; 1753 struct bfd_link_hash_entry *bh; 1754 const struct elf_backend_data *bed; 1755 bfd_boolean collect; 1756 bfd_boolean dynamic; 1757 bfd_boolean override; 1758 char *p; 1759 size_t len, shortlen; 1760 asection *tmp_sec; 1761 bfd_boolean matched; 1762 1763 if (h->versioned == unversioned || h->versioned == versioned_hidden) 1764 return TRUE; 1765 1766 /* If this symbol has a version, and it is the default version, we 1767 create an indirect symbol from the default name to the fully 1768 decorated name. This will cause external references which do not 1769 specify a version to be bound to this version of the symbol. */ 1770 p = strchr (name, ELF_VER_CHR); 1771 if (h->versioned == unknown) 1772 { 1773 if (p == NULL) 1774 { 1775 h->versioned = unversioned; 1776 return TRUE; 1777 } 1778 else 1779 { 1780 if (p[1] != ELF_VER_CHR) 1781 { 1782 h->versioned = versioned_hidden; 1783 return TRUE; 1784 } 1785 else 1786 h->versioned = versioned; 1787 } 1788 } 1789 else 1790 { 1791 /* PR ld/19073: We may see an unversioned definition after the 1792 default version. */ 1793 if (p == NULL) 1794 return TRUE; 1795 } 1796 1797 bed = get_elf_backend_data (abfd); 1798 collect = bed->collect; 1799 dynamic = (abfd->flags & DYNAMIC) != 0; 1800 1801 shortlen = p - name; 1802 shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1); 1803 if (shortname == NULL) 1804 return FALSE; 1805 memcpy (shortname, name, shortlen); 1806 shortname[shortlen] = '\0'; 1807 1808 /* We are going to create a new symbol. Merge it with any existing 1809 symbol with this name. For the purposes of the merge, act as 1810 though we were defining the symbol we just defined, although we 1811 actually going to define an indirect symbol. */ 1812 type_change_ok = FALSE; 1813 size_change_ok = FALSE; 1814 matched = TRUE; 1815 tmp_sec = sec; 1816 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 1817 &hi, poldbfd, NULL, NULL, &skip, &override, 1818 &type_change_ok, &size_change_ok, &matched)) 1819 return FALSE; 1820 1821 if (skip) 1822 goto nondefault; 1823 1824 if (hi->def_regular) 1825 { 1826 /* If the undecorated symbol will have a version added by a 1827 script different to H, then don't indirect to/from the 1828 undecorated symbol. This isn't ideal because we may not yet 1829 have seen symbol versions, if given by a script on the 1830 command line rather than via --version-script. */ 1831 if (hi->verinfo.vertree == NULL && info->version_info != NULL) 1832 { 1833 bfd_boolean hide; 1834 1835 hi->verinfo.vertree 1836 = bfd_find_version_for_sym (info->version_info, 1837 hi->root.root.string, &hide); 1838 if (hi->verinfo.vertree != NULL && hide) 1839 { 1840 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 1841 goto nondefault; 1842 } 1843 } 1844 if (hi->verinfo.vertree != NULL 1845 && strcmp (p + 1 + (p[1] == '@'), hi->verinfo.vertree->name) != 0) 1846 goto nondefault; 1847 } 1848 1849 if (! override) 1850 { 1851 /* Add the default symbol if not performing a relocatable link. */ 1852 if (! bfd_link_relocatable (info)) 1853 { 1854 bh = &hi->root; 1855 if (! (_bfd_generic_link_add_one_symbol 1856 (info, abfd, shortname, BSF_INDIRECT, 1857 bfd_ind_section_ptr, 1858 0, name, FALSE, collect, &bh))) 1859 return FALSE; 1860 hi = (struct elf_link_hash_entry *) bh; 1861 } 1862 } 1863 else 1864 { 1865 /* In this case the symbol named SHORTNAME is overriding the 1866 indirect symbol we want to add. We were planning on making 1867 SHORTNAME an indirect symbol referring to NAME. SHORTNAME 1868 is the name without a version. NAME is the fully versioned 1869 name, and it is the default version. 1870 1871 Overriding means that we already saw a definition for the 1872 symbol SHORTNAME in a regular object, and it is overriding 1873 the symbol defined in the dynamic object. 1874 1875 When this happens, we actually want to change NAME, the 1876 symbol we just added, to refer to SHORTNAME. This will cause 1877 references to NAME in the shared object to become references 1878 to SHORTNAME in the regular object. This is what we expect 1879 when we override a function in a shared object: that the 1880 references in the shared object will be mapped to the 1881 definition in the regular object. */ 1882 1883 while (hi->root.type == bfd_link_hash_indirect 1884 || hi->root.type == bfd_link_hash_warning) 1885 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1886 1887 h->root.type = bfd_link_hash_indirect; 1888 h->root.u.i.link = (struct bfd_link_hash_entry *) hi; 1889 if (h->def_dynamic) 1890 { 1891 h->def_dynamic = 0; 1892 hi->ref_dynamic = 1; 1893 if (hi->ref_regular 1894 || hi->def_regular) 1895 { 1896 if (! bfd_elf_link_record_dynamic_symbol (info, hi)) 1897 return FALSE; 1898 } 1899 } 1900 1901 /* Now set HI to H, so that the following code will set the 1902 other fields correctly. */ 1903 hi = h; 1904 } 1905 1906 /* Check if HI is a warning symbol. */ 1907 if (hi->root.type == bfd_link_hash_warning) 1908 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 1909 1910 /* If there is a duplicate definition somewhere, then HI may not 1911 point to an indirect symbol. We will have reported an error to 1912 the user in that case. */ 1913 1914 if (hi->root.type == bfd_link_hash_indirect) 1915 { 1916 struct elf_link_hash_entry *ht; 1917 1918 ht = (struct elf_link_hash_entry *) hi->root.u.i.link; 1919 (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi); 1920 1921 /* A reference to the SHORTNAME symbol from a dynamic library 1922 will be satisfied by the versioned symbol at runtime. In 1923 effect, we have a reference to the versioned symbol. */ 1924 ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 1925 hi->dynamic_def |= ht->dynamic_def; 1926 1927 /* See if the new flags lead us to realize that the symbol must 1928 be dynamic. */ 1929 if (! *dynsym) 1930 { 1931 if (! dynamic) 1932 { 1933 if (! bfd_link_executable (info) 1934 || hi->def_dynamic 1935 || hi->ref_dynamic) 1936 *dynsym = TRUE; 1937 } 1938 else 1939 { 1940 if (hi->ref_regular) 1941 *dynsym = TRUE; 1942 } 1943 } 1944 } 1945 1946 /* We also need to define an indirection from the nondefault version 1947 of the symbol. */ 1948 1949 nondefault: 1950 len = strlen (name); 1951 shortname = (char *) bfd_hash_allocate (&info->hash->table, len); 1952 if (shortname == NULL) 1953 return FALSE; 1954 memcpy (shortname, name, shortlen); 1955 memcpy (shortname + shortlen, p + 1, len - shortlen); 1956 1957 /* Once again, merge with any existing symbol. */ 1958 type_change_ok = FALSE; 1959 size_change_ok = FALSE; 1960 tmp_sec = sec; 1961 if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value, 1962 &hi, poldbfd, NULL, NULL, &skip, &override, 1963 &type_change_ok, &size_change_ok, &matched)) 1964 return FALSE; 1965 1966 if (skip) 1967 return TRUE; 1968 1969 if (override) 1970 { 1971 /* Here SHORTNAME is a versioned name, so we don't expect to see 1972 the type of override we do in the case above unless it is 1973 overridden by a versioned definition. */ 1974 if (hi->root.type != bfd_link_hash_defined 1975 && hi->root.type != bfd_link_hash_defweak) 1976 _bfd_error_handler 1977 /* xgettext:c-format */ 1978 (_("%B: unexpected redefinition of indirect versioned symbol `%s'"), 1979 abfd, shortname); 1980 } 1981 else 1982 { 1983 bh = &hi->root; 1984 if (! (_bfd_generic_link_add_one_symbol 1985 (info, abfd, shortname, BSF_INDIRECT, 1986 bfd_ind_section_ptr, 0, name, FALSE, collect, &bh))) 1987 return FALSE; 1988 hi = (struct elf_link_hash_entry *) bh; 1989 1990 /* If there is a duplicate definition somewhere, then HI may not 1991 point to an indirect symbol. We will have reported an error 1992 to the user in that case. */ 1993 1994 if (hi->root.type == bfd_link_hash_indirect) 1995 { 1996 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 1997 h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak; 1998 hi->dynamic_def |= h->dynamic_def; 1999 2000 /* See if the new flags lead us to realize that the symbol 2001 must be dynamic. */ 2002 if (! *dynsym) 2003 { 2004 if (! dynamic) 2005 { 2006 if (! bfd_link_executable (info) 2007 || hi->ref_dynamic) 2008 *dynsym = TRUE; 2009 } 2010 else 2011 { 2012 if (hi->ref_regular) 2013 *dynsym = TRUE; 2014 } 2015 } 2016 } 2017 } 2018 2019 return TRUE; 2020 } 2021 2022 /* This routine is used to export all defined symbols into the dynamic 2023 symbol table. It is called via elf_link_hash_traverse. */ 2024 2025 static bfd_boolean 2026 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data) 2027 { 2028 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2029 2030 /* Ignore indirect symbols. These are added by the versioning code. */ 2031 if (h->root.type == bfd_link_hash_indirect) 2032 return TRUE; 2033 2034 /* Ignore this if we won't export it. */ 2035 if (!eif->info->export_dynamic && !h->dynamic) 2036 return TRUE; 2037 2038 if (h->dynindx == -1 2039 && (h->def_regular || h->ref_regular) 2040 && ! bfd_hide_sym_by_version (eif->info->version_info, 2041 h->root.root.string)) 2042 { 2043 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2044 { 2045 eif->failed = TRUE; 2046 return FALSE; 2047 } 2048 } 2049 2050 return TRUE; 2051 } 2052 2053 /* Look through the symbols which are defined in other shared 2054 libraries and referenced here. Update the list of version 2055 dependencies. This will be put into the .gnu.version_r section. 2056 This function is called via elf_link_hash_traverse. */ 2057 2058 static bfd_boolean 2059 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h, 2060 void *data) 2061 { 2062 struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data; 2063 Elf_Internal_Verneed *t; 2064 Elf_Internal_Vernaux *a; 2065 bfd_size_type amt; 2066 2067 /* We only care about symbols defined in shared objects with version 2068 information. */ 2069 if (!h->def_dynamic 2070 || h->def_regular 2071 || h->dynindx == -1 2072 || h->verinfo.verdef == NULL 2073 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 2074 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 2075 return TRUE; 2076 2077 /* See if we already know about this version. */ 2078 for (t = elf_tdata (rinfo->info->output_bfd)->verref; 2079 t != NULL; 2080 t = t->vn_nextref) 2081 { 2082 if (t->vn_bfd != h->verinfo.verdef->vd_bfd) 2083 continue; 2084 2085 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 2086 if (a->vna_nodename == h->verinfo.verdef->vd_nodename) 2087 return TRUE; 2088 2089 break; 2090 } 2091 2092 /* This is a new version. Add it to tree we are building. */ 2093 2094 if (t == NULL) 2095 { 2096 amt = sizeof *t; 2097 t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt); 2098 if (t == NULL) 2099 { 2100 rinfo->failed = TRUE; 2101 return FALSE; 2102 } 2103 2104 t->vn_bfd = h->verinfo.verdef->vd_bfd; 2105 t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref; 2106 elf_tdata (rinfo->info->output_bfd)->verref = t; 2107 } 2108 2109 amt = sizeof *a; 2110 a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt); 2111 if (a == NULL) 2112 { 2113 rinfo->failed = TRUE; 2114 return FALSE; 2115 } 2116 2117 /* Note that we are copying a string pointer here, and testing it 2118 above. If bfd_elf_string_from_elf_section is ever changed to 2119 discard the string data when low in memory, this will have to be 2120 fixed. */ 2121 a->vna_nodename = h->verinfo.verdef->vd_nodename; 2122 2123 a->vna_flags = h->verinfo.verdef->vd_flags; 2124 a->vna_nextptr = t->vn_auxptr; 2125 2126 h->verinfo.verdef->vd_exp_refno = rinfo->vers; 2127 ++rinfo->vers; 2128 2129 a->vna_other = h->verinfo.verdef->vd_exp_refno + 1; 2130 2131 t->vn_auxptr = a; 2132 2133 return TRUE; 2134 } 2135 2136 /* Figure out appropriate versions for all the symbols. We may not 2137 have the version number script until we have read all of the input 2138 files, so until that point we don't know which symbols should be 2139 local. This function is called via elf_link_hash_traverse. */ 2140 2141 static bfd_boolean 2142 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data) 2143 { 2144 struct elf_info_failed *sinfo; 2145 struct bfd_link_info *info; 2146 const struct elf_backend_data *bed; 2147 struct elf_info_failed eif; 2148 char *p; 2149 2150 sinfo = (struct elf_info_failed *) data; 2151 info = sinfo->info; 2152 2153 /* Fix the symbol flags. */ 2154 eif.failed = FALSE; 2155 eif.info = info; 2156 if (! _bfd_elf_fix_symbol_flags (h, &eif)) 2157 { 2158 if (eif.failed) 2159 sinfo->failed = TRUE; 2160 return FALSE; 2161 } 2162 2163 /* We only need version numbers for symbols defined in regular 2164 objects. */ 2165 if (!h->def_regular) 2166 return TRUE; 2167 2168 bed = get_elf_backend_data (info->output_bfd); 2169 p = strchr (h->root.root.string, ELF_VER_CHR); 2170 if (p != NULL && h->verinfo.vertree == NULL) 2171 { 2172 struct bfd_elf_version_tree *t; 2173 2174 ++p; 2175 if (*p == ELF_VER_CHR) 2176 ++p; 2177 2178 /* If there is no version string, we can just return out. */ 2179 if (*p == '\0') 2180 return TRUE; 2181 2182 /* Look for the version. If we find it, it is no longer weak. */ 2183 for (t = sinfo->info->version_info; t != NULL; t = t->next) 2184 { 2185 if (strcmp (t->name, p) == 0) 2186 { 2187 size_t len; 2188 char *alc; 2189 struct bfd_elf_version_expr *d; 2190 2191 len = p - h->root.root.string; 2192 alc = (char *) bfd_malloc (len); 2193 if (alc == NULL) 2194 { 2195 sinfo->failed = TRUE; 2196 return FALSE; 2197 } 2198 memcpy (alc, h->root.root.string, len - 1); 2199 alc[len - 1] = '\0'; 2200 if (alc[len - 2] == ELF_VER_CHR) 2201 alc[len - 2] = '\0'; 2202 2203 h->verinfo.vertree = t; 2204 t->used = TRUE; 2205 d = NULL; 2206 2207 if (t->globals.list != NULL) 2208 d = (*t->match) (&t->globals, NULL, alc); 2209 2210 /* See if there is anything to force this symbol to 2211 local scope. */ 2212 if (d == NULL && t->locals.list != NULL) 2213 { 2214 d = (*t->match) (&t->locals, NULL, alc); 2215 if (d != NULL 2216 && h->dynindx != -1 2217 && ! info->export_dynamic) 2218 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2219 } 2220 2221 free (alc); 2222 break; 2223 } 2224 } 2225 2226 /* If we are building an application, we need to create a 2227 version node for this version. */ 2228 if (t == NULL && bfd_link_executable (info)) 2229 { 2230 struct bfd_elf_version_tree **pp; 2231 int version_index; 2232 2233 /* If we aren't going to export this symbol, we don't need 2234 to worry about it. */ 2235 if (h->dynindx == -1) 2236 return TRUE; 2237 2238 t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, 2239 sizeof *t); 2240 if (t == NULL) 2241 { 2242 sinfo->failed = TRUE; 2243 return FALSE; 2244 } 2245 2246 t->name = p; 2247 t->name_indx = (unsigned int) -1; 2248 t->used = TRUE; 2249 2250 version_index = 1; 2251 /* Don't count anonymous version tag. */ 2252 if (sinfo->info->version_info != NULL 2253 && sinfo->info->version_info->vernum == 0) 2254 version_index = 0; 2255 for (pp = &sinfo->info->version_info; 2256 *pp != NULL; 2257 pp = &(*pp)->next) 2258 ++version_index; 2259 t->vernum = version_index; 2260 2261 *pp = t; 2262 2263 h->verinfo.vertree = t; 2264 } 2265 else if (t == NULL) 2266 { 2267 /* We could not find the version for a symbol when 2268 generating a shared archive. Return an error. */ 2269 _bfd_error_handler 2270 /* xgettext:c-format */ 2271 (_("%B: version node not found for symbol %s"), 2272 info->output_bfd, h->root.root.string); 2273 bfd_set_error (bfd_error_bad_value); 2274 sinfo->failed = TRUE; 2275 return FALSE; 2276 } 2277 } 2278 2279 /* If we don't have a version for this symbol, see if we can find 2280 something. */ 2281 if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL) 2282 { 2283 bfd_boolean hide; 2284 2285 h->verinfo.vertree 2286 = bfd_find_version_for_sym (sinfo->info->version_info, 2287 h->root.root.string, &hide); 2288 if (h->verinfo.vertree != NULL && hide) 2289 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 2290 } 2291 2292 return TRUE; 2293 } 2294 2295 /* Read and swap the relocs from the section indicated by SHDR. This 2296 may be either a REL or a RELA section. The relocations are 2297 translated into RELA relocations and stored in INTERNAL_RELOCS, 2298 which should have already been allocated to contain enough space. 2299 The EXTERNAL_RELOCS are a buffer where the external form of the 2300 relocations should be stored. 2301 2302 Returns FALSE if something goes wrong. */ 2303 2304 static bfd_boolean 2305 elf_link_read_relocs_from_section (bfd *abfd, 2306 asection *sec, 2307 Elf_Internal_Shdr *shdr, 2308 void *external_relocs, 2309 Elf_Internal_Rela *internal_relocs) 2310 { 2311 const struct elf_backend_data *bed; 2312 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 2313 const bfd_byte *erela; 2314 const bfd_byte *erelaend; 2315 Elf_Internal_Rela *irela; 2316 Elf_Internal_Shdr *symtab_hdr; 2317 size_t nsyms; 2318 2319 /* Position ourselves at the start of the section. */ 2320 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0) 2321 return FALSE; 2322 2323 /* Read the relocations. */ 2324 if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size) 2325 return FALSE; 2326 2327 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2328 nsyms = NUM_SHDR_ENTRIES (symtab_hdr); 2329 2330 bed = get_elf_backend_data (abfd); 2331 2332 /* Convert the external relocations to the internal format. */ 2333 if (shdr->sh_entsize == bed->s->sizeof_rel) 2334 swap_in = bed->s->swap_reloc_in; 2335 else if (shdr->sh_entsize == bed->s->sizeof_rela) 2336 swap_in = bed->s->swap_reloca_in; 2337 else 2338 { 2339 bfd_set_error (bfd_error_wrong_format); 2340 return FALSE; 2341 } 2342 2343 erela = (const bfd_byte *) external_relocs; 2344 erelaend = erela + shdr->sh_size; 2345 irela = internal_relocs; 2346 while (erela < erelaend) 2347 { 2348 bfd_vma r_symndx; 2349 2350 (*swap_in) (abfd, erela, irela); 2351 r_symndx = ELF32_R_SYM (irela->r_info); 2352 if (bed->s->arch_size == 64) 2353 r_symndx >>= 24; 2354 if (nsyms > 0) 2355 { 2356 if ((size_t) r_symndx >= nsyms) 2357 { 2358 _bfd_error_handler 2359 /* xgettext:c-format */ 2360 (_("%B: bad reloc symbol index (0x%lx >= 0x%lx)" 2361 " for offset 0x%lx in section `%A'"), 2362 abfd, (unsigned long) r_symndx, (unsigned long) nsyms, 2363 irela->r_offset, sec); 2364 bfd_set_error (bfd_error_bad_value); 2365 return FALSE; 2366 } 2367 } 2368 else if (r_symndx != STN_UNDEF) 2369 { 2370 _bfd_error_handler 2371 /* xgettext:c-format */ 2372 (_("%B: non-zero symbol index (0x%lx)" 2373 " for offset 0x%lx in section `%A'" 2374 " when the object file has no symbol table"), 2375 abfd, (unsigned long) r_symndx, (unsigned long) nsyms, 2376 irela->r_offset, sec); 2377 bfd_set_error (bfd_error_bad_value); 2378 return FALSE; 2379 } 2380 irela += bed->s->int_rels_per_ext_rel; 2381 erela += shdr->sh_entsize; 2382 } 2383 2384 return TRUE; 2385 } 2386 2387 /* Read and swap the relocs for a section O. They may have been 2388 cached. If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are 2389 not NULL, they are used as buffers to read into. They are known to 2390 be large enough. If the INTERNAL_RELOCS relocs argument is NULL, 2391 the return value is allocated using either malloc or bfd_alloc, 2392 according to the KEEP_MEMORY argument. If O has two relocation 2393 sections (both REL and RELA relocations), then the REL_HDR 2394 relocations will appear first in INTERNAL_RELOCS, followed by the 2395 RELA_HDR relocations. */ 2396 2397 Elf_Internal_Rela * 2398 _bfd_elf_link_read_relocs (bfd *abfd, 2399 asection *o, 2400 void *external_relocs, 2401 Elf_Internal_Rela *internal_relocs, 2402 bfd_boolean keep_memory) 2403 { 2404 void *alloc1 = NULL; 2405 Elf_Internal_Rela *alloc2 = NULL; 2406 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 2407 struct bfd_elf_section_data *esdo = elf_section_data (o); 2408 Elf_Internal_Rela *internal_rela_relocs; 2409 2410 if (esdo->relocs != NULL) 2411 return esdo->relocs; 2412 2413 if (o->reloc_count == 0) 2414 return NULL; 2415 2416 if (internal_relocs == NULL) 2417 { 2418 bfd_size_type size; 2419 2420 size = o->reloc_count; 2421 size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela); 2422 if (keep_memory) 2423 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size); 2424 else 2425 internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size); 2426 if (internal_relocs == NULL) 2427 goto error_return; 2428 } 2429 2430 if (external_relocs == NULL) 2431 { 2432 bfd_size_type size = 0; 2433 2434 if (esdo->rel.hdr) 2435 size += esdo->rel.hdr->sh_size; 2436 if (esdo->rela.hdr) 2437 size += esdo->rela.hdr->sh_size; 2438 2439 alloc1 = bfd_malloc (size); 2440 if (alloc1 == NULL) 2441 goto error_return; 2442 external_relocs = alloc1; 2443 } 2444 2445 internal_rela_relocs = internal_relocs; 2446 if (esdo->rel.hdr) 2447 { 2448 if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr, 2449 external_relocs, 2450 internal_relocs)) 2451 goto error_return; 2452 external_relocs = (((bfd_byte *) external_relocs) 2453 + esdo->rel.hdr->sh_size); 2454 internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr) 2455 * bed->s->int_rels_per_ext_rel); 2456 } 2457 2458 if (esdo->rela.hdr 2459 && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr, 2460 external_relocs, 2461 internal_rela_relocs))) 2462 goto error_return; 2463 2464 /* Cache the results for next time, if we can. */ 2465 if (keep_memory) 2466 esdo->relocs = internal_relocs; 2467 2468 if (alloc1 != NULL) 2469 free (alloc1); 2470 2471 /* Don't free alloc2, since if it was allocated we are passing it 2472 back (under the name of internal_relocs). */ 2473 2474 return internal_relocs; 2475 2476 error_return: 2477 if (alloc1 != NULL) 2478 free (alloc1); 2479 if (alloc2 != NULL) 2480 { 2481 if (keep_memory) 2482 bfd_release (abfd, alloc2); 2483 else 2484 free (alloc2); 2485 } 2486 return NULL; 2487 } 2488 2489 /* Compute the size of, and allocate space for, REL_HDR which is the 2490 section header for a section containing relocations for O. */ 2491 2492 static bfd_boolean 2493 _bfd_elf_link_size_reloc_section (bfd *abfd, 2494 struct bfd_elf_section_reloc_data *reldata) 2495 { 2496 Elf_Internal_Shdr *rel_hdr = reldata->hdr; 2497 2498 /* That allows us to calculate the size of the section. */ 2499 rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count; 2500 2501 /* The contents field must last into write_object_contents, so we 2502 allocate it with bfd_alloc rather than malloc. Also since we 2503 cannot be sure that the contents will actually be filled in, 2504 we zero the allocated space. */ 2505 rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size); 2506 if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0) 2507 return FALSE; 2508 2509 if (reldata->hashes == NULL && reldata->count) 2510 { 2511 struct elf_link_hash_entry **p; 2512 2513 p = ((struct elf_link_hash_entry **) 2514 bfd_zmalloc (reldata->count * sizeof (*p))); 2515 if (p == NULL) 2516 return FALSE; 2517 2518 reldata->hashes = p; 2519 } 2520 2521 return TRUE; 2522 } 2523 2524 /* Copy the relocations indicated by the INTERNAL_RELOCS (which 2525 originated from the section given by INPUT_REL_HDR) to the 2526 OUTPUT_BFD. */ 2527 2528 bfd_boolean 2529 _bfd_elf_link_output_relocs (bfd *output_bfd, 2530 asection *input_section, 2531 Elf_Internal_Shdr *input_rel_hdr, 2532 Elf_Internal_Rela *internal_relocs, 2533 struct elf_link_hash_entry **rel_hash 2534 ATTRIBUTE_UNUSED) 2535 { 2536 Elf_Internal_Rela *irela; 2537 Elf_Internal_Rela *irelaend; 2538 bfd_byte *erel; 2539 struct bfd_elf_section_reloc_data *output_reldata; 2540 asection *output_section; 2541 const struct elf_backend_data *bed; 2542 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 2543 struct bfd_elf_section_data *esdo; 2544 2545 output_section = input_section->output_section; 2546 2547 bed = get_elf_backend_data (output_bfd); 2548 esdo = elf_section_data (output_section); 2549 if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2550 { 2551 output_reldata = &esdo->rel; 2552 swap_out = bed->s->swap_reloc_out; 2553 } 2554 else if (esdo->rela.hdr 2555 && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize) 2556 { 2557 output_reldata = &esdo->rela; 2558 swap_out = bed->s->swap_reloca_out; 2559 } 2560 else 2561 { 2562 _bfd_error_handler 2563 /* xgettext:c-format */ 2564 (_("%B: relocation size mismatch in %B section %A"), 2565 output_bfd, input_section->owner, input_section); 2566 bfd_set_error (bfd_error_wrong_format); 2567 return FALSE; 2568 } 2569 2570 erel = output_reldata->hdr->contents; 2571 erel += output_reldata->count * input_rel_hdr->sh_entsize; 2572 irela = internal_relocs; 2573 irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr) 2574 * bed->s->int_rels_per_ext_rel); 2575 while (irela < irelaend) 2576 { 2577 (*swap_out) (output_bfd, irela, erel); 2578 irela += bed->s->int_rels_per_ext_rel; 2579 erel += input_rel_hdr->sh_entsize; 2580 } 2581 2582 /* Bump the counter, so that we know where to add the next set of 2583 relocations. */ 2584 output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr); 2585 2586 return TRUE; 2587 } 2588 2589 /* Make weak undefined symbols in PIE dynamic. */ 2590 2591 bfd_boolean 2592 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info, 2593 struct elf_link_hash_entry *h) 2594 { 2595 if (bfd_link_pie (info) 2596 && h->dynindx == -1 2597 && h->root.type == bfd_link_hash_undefweak) 2598 return bfd_elf_link_record_dynamic_symbol (info, h); 2599 2600 return TRUE; 2601 } 2602 2603 /* Fix up the flags for a symbol. This handles various cases which 2604 can only be fixed after all the input files are seen. This is 2605 currently called by both adjust_dynamic_symbol and 2606 assign_sym_version, which is unnecessary but perhaps more robust in 2607 the face of future changes. */ 2608 2609 static bfd_boolean 2610 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h, 2611 struct elf_info_failed *eif) 2612 { 2613 const struct elf_backend_data *bed; 2614 2615 /* If this symbol was mentioned in a non-ELF file, try to set 2616 DEF_REGULAR and REF_REGULAR correctly. This is the only way to 2617 permit a non-ELF file to correctly refer to a symbol defined in 2618 an ELF dynamic object. */ 2619 if (h->non_elf) 2620 { 2621 while (h->root.type == bfd_link_hash_indirect) 2622 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2623 2624 if (h->root.type != bfd_link_hash_defined 2625 && h->root.type != bfd_link_hash_defweak) 2626 { 2627 h->ref_regular = 1; 2628 h->ref_regular_nonweak = 1; 2629 } 2630 else 2631 { 2632 if (h->root.u.def.section->owner != NULL 2633 && (bfd_get_flavour (h->root.u.def.section->owner) 2634 == bfd_target_elf_flavour)) 2635 { 2636 h->ref_regular = 1; 2637 h->ref_regular_nonweak = 1; 2638 } 2639 else 2640 h->def_regular = 1; 2641 } 2642 2643 if (h->dynindx == -1 2644 && (h->def_dynamic 2645 || h->ref_dynamic)) 2646 { 2647 if (! bfd_elf_link_record_dynamic_symbol (eif->info, h)) 2648 { 2649 eif->failed = TRUE; 2650 return FALSE; 2651 } 2652 } 2653 } 2654 else 2655 { 2656 /* Unfortunately, NON_ELF is only correct if the symbol 2657 was first seen in a non-ELF file. Fortunately, if the symbol 2658 was first seen in an ELF file, we're probably OK unless the 2659 symbol was defined in a non-ELF file. Catch that case here. 2660 FIXME: We're still in trouble if the symbol was first seen in 2661 a dynamic object, and then later in a non-ELF regular object. */ 2662 if ((h->root.type == bfd_link_hash_defined 2663 || h->root.type == bfd_link_hash_defweak) 2664 && !h->def_regular 2665 && (h->root.u.def.section->owner != NULL 2666 ? (bfd_get_flavour (h->root.u.def.section->owner) 2667 != bfd_target_elf_flavour) 2668 : (bfd_is_abs_section (h->root.u.def.section) 2669 && !h->def_dynamic))) 2670 h->def_regular = 1; 2671 } 2672 2673 /* Backend specific symbol fixup. */ 2674 bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj); 2675 if (bed->elf_backend_fixup_symbol 2676 && !(*bed->elf_backend_fixup_symbol) (eif->info, h)) 2677 return FALSE; 2678 2679 /* If this is a final link, and the symbol was defined as a common 2680 symbol in a regular object file, and there was no definition in 2681 any dynamic object, then the linker will have allocated space for 2682 the symbol in a common section but the DEF_REGULAR 2683 flag will not have been set. */ 2684 if (h->root.type == bfd_link_hash_defined 2685 && !h->def_regular 2686 && h->ref_regular 2687 && !h->def_dynamic 2688 && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0) 2689 h->def_regular = 1; 2690 2691 /* If a weak undefined symbol has non-default visibility, we also 2692 hide it from the dynamic linker. */ 2693 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 2694 && h->root.type == bfd_link_hash_undefweak) 2695 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2696 2697 /* A hidden versioned symbol in executable should be forced local if 2698 it is is locally defined, not referenced by shared library and not 2699 exported. */ 2700 else if (bfd_link_executable (eif->info) 2701 && h->versioned == versioned_hidden 2702 && !eif->info->export_dynamic 2703 && !h->dynamic 2704 && !h->ref_dynamic 2705 && h->def_regular) 2706 (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE); 2707 2708 /* If -Bsymbolic was used (which means to bind references to global 2709 symbols to the definition within the shared object), and this 2710 symbol was defined in a regular object, then it actually doesn't 2711 need a PLT entry. Likewise, if the symbol has non-default 2712 visibility. If the symbol has hidden or internal visibility, we 2713 will force it local. */ 2714 else if (h->needs_plt 2715 && bfd_link_pic (eif->info) 2716 && is_elf_hash_table (eif->info->hash) 2717 && (SYMBOLIC_BIND (eif->info, h) 2718 || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT) 2719 && h->def_regular) 2720 { 2721 bfd_boolean force_local; 2722 2723 force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL 2724 || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN); 2725 (*bed->elf_backend_hide_symbol) (eif->info, h, force_local); 2726 } 2727 2728 /* If this is a weak defined symbol in a dynamic object, and we know 2729 the real definition in the dynamic object, copy interesting flags 2730 over to the real definition. */ 2731 if (h->u.weakdef != NULL) 2732 { 2733 /* If the real definition is defined by a regular object file, 2734 don't do anything special. See the longer description in 2735 _bfd_elf_adjust_dynamic_symbol, below. */ 2736 if (h->u.weakdef->def_regular) 2737 h->u.weakdef = NULL; 2738 else 2739 { 2740 struct elf_link_hash_entry *weakdef = h->u.weakdef; 2741 2742 while (h->root.type == bfd_link_hash_indirect) 2743 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2744 2745 BFD_ASSERT (h->root.type == bfd_link_hash_defined 2746 || h->root.type == bfd_link_hash_defweak); 2747 BFD_ASSERT (weakdef->def_dynamic); 2748 BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined 2749 || weakdef->root.type == bfd_link_hash_defweak); 2750 (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h); 2751 } 2752 } 2753 2754 return TRUE; 2755 } 2756 2757 /* Make the backend pick a good value for a dynamic symbol. This is 2758 called via elf_link_hash_traverse, and also calls itself 2759 recursively. */ 2760 2761 static bfd_boolean 2762 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data) 2763 { 2764 struct elf_info_failed *eif = (struct elf_info_failed *) data; 2765 bfd *dynobj; 2766 const struct elf_backend_data *bed; 2767 2768 if (! is_elf_hash_table (eif->info->hash)) 2769 return FALSE; 2770 2771 /* Ignore indirect symbols. These are added by the versioning code. */ 2772 if (h->root.type == bfd_link_hash_indirect) 2773 return TRUE; 2774 2775 /* Fix the symbol flags. */ 2776 if (! _bfd_elf_fix_symbol_flags (h, eif)) 2777 return FALSE; 2778 2779 /* If this symbol does not require a PLT entry, and it is not 2780 defined by a dynamic object, or is not referenced by a regular 2781 object, ignore it. We do have to handle a weak defined symbol, 2782 even if no regular object refers to it, if we decided to add it 2783 to the dynamic symbol table. FIXME: Do we normally need to worry 2784 about symbols which are defined by one dynamic object and 2785 referenced by another one? */ 2786 if (!h->needs_plt 2787 && h->type != STT_GNU_IFUNC 2788 && (h->def_regular 2789 || !h->def_dynamic 2790 || (!h->ref_regular 2791 && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1)))) 2792 { 2793 h->plt = elf_hash_table (eif->info)->init_plt_offset; 2794 return TRUE; 2795 } 2796 2797 /* If we've already adjusted this symbol, don't do it again. This 2798 can happen via a recursive call. */ 2799 if (h->dynamic_adjusted) 2800 return TRUE; 2801 2802 /* Don't look at this symbol again. Note that we must set this 2803 after checking the above conditions, because we may look at a 2804 symbol once, decide not to do anything, and then get called 2805 recursively later after REF_REGULAR is set below. */ 2806 h->dynamic_adjusted = 1; 2807 2808 /* If this is a weak definition, and we know a real definition, and 2809 the real symbol is not itself defined by a regular object file, 2810 then get a good value for the real definition. We handle the 2811 real symbol first, for the convenience of the backend routine. 2812 2813 Note that there is a confusing case here. If the real definition 2814 is defined by a regular object file, we don't get the real symbol 2815 from the dynamic object, but we do get the weak symbol. If the 2816 processor backend uses a COPY reloc, then if some routine in the 2817 dynamic object changes the real symbol, we will not see that 2818 change in the corresponding weak symbol. This is the way other 2819 ELF linkers work as well, and seems to be a result of the shared 2820 library model. 2821 2822 I will clarify this issue. Most SVR4 shared libraries define the 2823 variable _timezone and define timezone as a weak synonym. The 2824 tzset call changes _timezone. If you write 2825 extern int timezone; 2826 int _timezone = 5; 2827 int main () { tzset (); printf ("%d %d\n", timezone, _timezone); } 2828 you might expect that, since timezone is a synonym for _timezone, 2829 the same number will print both times. However, if the processor 2830 backend uses a COPY reloc, then actually timezone will be copied 2831 into your process image, and, since you define _timezone 2832 yourself, _timezone will not. Thus timezone and _timezone will 2833 wind up at different memory locations. The tzset call will set 2834 _timezone, leaving timezone unchanged. */ 2835 2836 if (h->u.weakdef != NULL) 2837 { 2838 /* If we get to this point, there is an implicit reference to 2839 H->U.WEAKDEF by a regular object file via the weak symbol H. */ 2840 h->u.weakdef->ref_regular = 1; 2841 2842 /* Ensure that the backend adjust_dynamic_symbol function sees 2843 H->U.WEAKDEF before H by recursively calling ourselves. */ 2844 if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif)) 2845 return FALSE; 2846 } 2847 2848 /* If a symbol has no type and no size and does not require a PLT 2849 entry, then we are probably about to do the wrong thing here: we 2850 are probably going to create a COPY reloc for an empty object. 2851 This case can arise when a shared object is built with assembly 2852 code, and the assembly code fails to set the symbol type. */ 2853 if (h->size == 0 2854 && h->type == STT_NOTYPE 2855 && !h->needs_plt) 2856 _bfd_error_handler 2857 (_("warning: type and size of dynamic symbol `%s' are not defined"), 2858 h->root.root.string); 2859 2860 dynobj = elf_hash_table (eif->info)->dynobj; 2861 bed = get_elf_backend_data (dynobj); 2862 2863 if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h)) 2864 { 2865 eif->failed = TRUE; 2866 return FALSE; 2867 } 2868 2869 return TRUE; 2870 } 2871 2872 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section, 2873 DYNBSS. */ 2874 2875 bfd_boolean 2876 _bfd_elf_adjust_dynamic_copy (struct bfd_link_info *info, 2877 struct elf_link_hash_entry *h, 2878 asection *dynbss) 2879 { 2880 unsigned int power_of_two; 2881 bfd_vma mask; 2882 asection *sec = h->root.u.def.section; 2883 2884 /* The section aligment of definition is the maximum alignment 2885 requirement of symbols defined in the section. Since we don't 2886 know the symbol alignment requirement, we start with the 2887 maximum alignment and check low bits of the symbol address 2888 for the minimum alignment. */ 2889 power_of_two = bfd_get_section_alignment (sec->owner, sec); 2890 mask = ((bfd_vma) 1 << power_of_two) - 1; 2891 while ((h->root.u.def.value & mask) != 0) 2892 { 2893 mask >>= 1; 2894 --power_of_two; 2895 } 2896 2897 if (power_of_two > bfd_get_section_alignment (dynbss->owner, 2898 dynbss)) 2899 { 2900 /* Adjust the section alignment if needed. */ 2901 if (! bfd_set_section_alignment (dynbss->owner, dynbss, 2902 power_of_two)) 2903 return FALSE; 2904 } 2905 2906 /* We make sure that the symbol will be aligned properly. */ 2907 dynbss->size = BFD_ALIGN (dynbss->size, mask + 1); 2908 2909 /* Define the symbol as being at this point in DYNBSS. */ 2910 h->root.u.def.section = dynbss; 2911 h->root.u.def.value = dynbss->size; 2912 2913 /* Increment the size of DYNBSS to make room for the symbol. */ 2914 dynbss->size += h->size; 2915 2916 /* No error if extern_protected_data is true. */ 2917 if (h->protected_def 2918 && (!info->extern_protected_data 2919 || (info->extern_protected_data < 0 2920 && !get_elf_backend_data (dynbss->owner)->extern_protected_data))) 2921 info->callbacks->einfo 2922 (_("%P: copy reloc against protected `%T' is dangerous\n"), 2923 h->root.root.string); 2924 2925 return TRUE; 2926 } 2927 2928 /* Adjust all external symbols pointing into SEC_MERGE sections 2929 to reflect the object merging within the sections. */ 2930 2931 static bfd_boolean 2932 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data) 2933 { 2934 asection *sec; 2935 2936 if ((h->root.type == bfd_link_hash_defined 2937 || h->root.type == bfd_link_hash_defweak) 2938 && ((sec = h->root.u.def.section)->flags & SEC_MERGE) 2939 && sec->sec_info_type == SEC_INFO_TYPE_MERGE) 2940 { 2941 bfd *output_bfd = (bfd *) data; 2942 2943 h->root.u.def.value = 2944 _bfd_merged_section_offset (output_bfd, 2945 &h->root.u.def.section, 2946 elf_section_data (sec)->sec_info, 2947 h->root.u.def.value); 2948 } 2949 2950 return TRUE; 2951 } 2952 2953 /* Returns false if the symbol referred to by H should be considered 2954 to resolve local to the current module, and true if it should be 2955 considered to bind dynamically. */ 2956 2957 bfd_boolean 2958 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h, 2959 struct bfd_link_info *info, 2960 bfd_boolean not_local_protected) 2961 { 2962 bfd_boolean binding_stays_local_p; 2963 const struct elf_backend_data *bed; 2964 struct elf_link_hash_table *hash_table; 2965 2966 if (h == NULL) 2967 return FALSE; 2968 2969 while (h->root.type == bfd_link_hash_indirect 2970 || h->root.type == bfd_link_hash_warning) 2971 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2972 2973 /* If it was forced local, then clearly it's not dynamic. */ 2974 if (h->dynindx == -1) 2975 return FALSE; 2976 if (h->forced_local) 2977 return FALSE; 2978 2979 /* Identify the cases where name binding rules say that a 2980 visible symbol resolves locally. */ 2981 binding_stays_local_p = (bfd_link_executable (info) 2982 || SYMBOLIC_BIND (info, h)); 2983 2984 switch (ELF_ST_VISIBILITY (h->other)) 2985 { 2986 case STV_INTERNAL: 2987 case STV_HIDDEN: 2988 return FALSE; 2989 2990 case STV_PROTECTED: 2991 hash_table = elf_hash_table (info); 2992 if (!is_elf_hash_table (hash_table)) 2993 return FALSE; 2994 2995 bed = get_elf_backend_data (hash_table->dynobj); 2996 2997 /* Proper resolution for function pointer equality may require 2998 that these symbols perhaps be resolved dynamically, even though 2999 we should be resolving them to the current module. */ 3000 if (!not_local_protected || !bed->is_function_type (h->type)) 3001 binding_stays_local_p = TRUE; 3002 break; 3003 3004 default: 3005 break; 3006 } 3007 3008 /* If it isn't defined locally, then clearly it's dynamic. */ 3009 if (!h->def_regular && !ELF_COMMON_DEF_P (h)) 3010 return TRUE; 3011 3012 /* Otherwise, the symbol is dynamic if binding rules don't tell 3013 us that it remains local. */ 3014 return !binding_stays_local_p; 3015 } 3016 3017 /* Return true if the symbol referred to by H should be considered 3018 to resolve local to the current module, and false otherwise. Differs 3019 from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of 3020 undefined symbols. The two functions are virtually identical except 3021 for the place where forced_local and dynindx == -1 are tested. If 3022 either of those tests are true, _bfd_elf_dynamic_symbol_p will say 3023 the symbol is local, while _bfd_elf_symbol_refs_local_p will say 3024 the symbol is local only for defined symbols. 3025 It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as 3026 !_bfd_elf_symbol_refs_local_p, except that targets differ in their 3027 treatment of undefined weak symbols. For those that do not make 3028 undefined weak symbols dynamic, both functions may return false. */ 3029 3030 bfd_boolean 3031 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h, 3032 struct bfd_link_info *info, 3033 bfd_boolean local_protected) 3034 { 3035 const struct elf_backend_data *bed; 3036 struct elf_link_hash_table *hash_table; 3037 3038 /* If it's a local sym, of course we resolve locally. */ 3039 if (h == NULL) 3040 return TRUE; 3041 3042 /* STV_HIDDEN or STV_INTERNAL ones must be local. */ 3043 if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN 3044 || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 3045 return TRUE; 3046 3047 /* Common symbols that become definitions don't get the DEF_REGULAR 3048 flag set, so test it first, and don't bail out. */ 3049 if (ELF_COMMON_DEF_P (h)) 3050 /* Do nothing. */; 3051 /* If we don't have a definition in a regular file, then we can't 3052 resolve locally. The sym is either undefined or dynamic. */ 3053 else if (!h->def_regular) 3054 return FALSE; 3055 3056 /* Forced local symbols resolve locally. */ 3057 if (h->forced_local) 3058 return TRUE; 3059 3060 /* As do non-dynamic symbols. */ 3061 if (h->dynindx == -1) 3062 return TRUE; 3063 3064 /* At this point, we know the symbol is defined and dynamic. In an 3065 executable it must resolve locally, likewise when building symbolic 3066 shared libraries. */ 3067 if (bfd_link_executable (info) || SYMBOLIC_BIND (info, h)) 3068 return TRUE; 3069 3070 /* Now deal with defined dynamic symbols in shared libraries. Ones 3071 with default visibility might not resolve locally. */ 3072 if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT) 3073 return FALSE; 3074 3075 hash_table = elf_hash_table (info); 3076 if (!is_elf_hash_table (hash_table)) 3077 return TRUE; 3078 3079 bed = get_elf_backend_data (hash_table->dynobj); 3080 3081 /* If extern_protected_data is false, STV_PROTECTED non-function 3082 symbols are local. */ 3083 if ((!info->extern_protected_data 3084 || (info->extern_protected_data < 0 3085 && !bed->extern_protected_data)) 3086 && !bed->is_function_type (h->type)) 3087 return TRUE; 3088 3089 /* Function pointer equality tests may require that STV_PROTECTED 3090 symbols be treated as dynamic symbols. If the address of a 3091 function not defined in an executable is set to that function's 3092 plt entry in the executable, then the address of the function in 3093 a shared library must also be the plt entry in the executable. */ 3094 return local_protected; 3095 } 3096 3097 /* Caches some TLS segment info, and ensures that the TLS segment vma is 3098 aligned. Returns the first TLS output section. */ 3099 3100 struct bfd_section * 3101 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info) 3102 { 3103 struct bfd_section *sec, *tls; 3104 unsigned int align = 0; 3105 3106 for (sec = obfd->sections; sec != NULL; sec = sec->next) 3107 if ((sec->flags & SEC_THREAD_LOCAL) != 0) 3108 break; 3109 tls = sec; 3110 3111 for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next) 3112 if (sec->alignment_power > align) 3113 align = sec->alignment_power; 3114 3115 elf_hash_table (info)->tls_sec = tls; 3116 3117 /* Ensure the alignment of the first section is the largest alignment, 3118 so that the tls segment starts aligned. */ 3119 if (tls != NULL) 3120 tls->alignment_power = align; 3121 3122 return tls; 3123 } 3124 3125 /* Return TRUE iff this is a non-common, definition of a non-function symbol. */ 3126 static bfd_boolean 3127 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED, 3128 Elf_Internal_Sym *sym) 3129 { 3130 const struct elf_backend_data *bed; 3131 3132 /* Local symbols do not count, but target specific ones might. */ 3133 if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL 3134 && ELF_ST_BIND (sym->st_info) < STB_LOOS) 3135 return FALSE; 3136 3137 bed = get_elf_backend_data (abfd); 3138 /* Function symbols do not count. */ 3139 if (bed->is_function_type (ELF_ST_TYPE (sym->st_info))) 3140 return FALSE; 3141 3142 /* If the section is undefined, then so is the symbol. */ 3143 if (sym->st_shndx == SHN_UNDEF) 3144 return FALSE; 3145 3146 /* If the symbol is defined in the common section, then 3147 it is a common definition and so does not count. */ 3148 if (bed->common_definition (sym)) 3149 return FALSE; 3150 3151 /* If the symbol is in a target specific section then we 3152 must rely upon the backend to tell us what it is. */ 3153 if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS) 3154 /* FIXME - this function is not coded yet: 3155 3156 return _bfd_is_global_symbol_definition (abfd, sym); 3157 3158 Instead for now assume that the definition is not global, 3159 Even if this is wrong, at least the linker will behave 3160 in the same way that it used to do. */ 3161 return FALSE; 3162 3163 return TRUE; 3164 } 3165 3166 /* Search the symbol table of the archive element of the archive ABFD 3167 whose archive map contains a mention of SYMDEF, and determine if 3168 the symbol is defined in this element. */ 3169 static bfd_boolean 3170 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef) 3171 { 3172 Elf_Internal_Shdr * hdr; 3173 size_t symcount; 3174 size_t extsymcount; 3175 size_t extsymoff; 3176 Elf_Internal_Sym *isymbuf; 3177 Elf_Internal_Sym *isym; 3178 Elf_Internal_Sym *isymend; 3179 bfd_boolean result; 3180 3181 abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 3182 if (abfd == NULL) 3183 return FALSE; 3184 3185 if (! bfd_check_format (abfd, bfd_object)) 3186 return FALSE; 3187 3188 /* Select the appropriate symbol table. If we don't know if the 3189 object file is an IR object, give linker LTO plugin a chance to 3190 get the correct symbol table. */ 3191 if (abfd->plugin_format == bfd_plugin_yes 3192 #if BFD_SUPPORTS_PLUGINS 3193 || (abfd->plugin_format == bfd_plugin_unknown 3194 && bfd_link_plugin_object_p (abfd)) 3195 #endif 3196 ) 3197 { 3198 /* Use the IR symbol table if the object has been claimed by 3199 plugin. */ 3200 abfd = abfd->plugin_dummy_bfd; 3201 hdr = &elf_tdata (abfd)->symtab_hdr; 3202 } 3203 else if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0) 3204 hdr = &elf_tdata (abfd)->symtab_hdr; 3205 else 3206 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 3207 3208 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 3209 3210 /* The sh_info field of the symtab header tells us where the 3211 external symbols start. We don't care about the local symbols. */ 3212 if (elf_bad_symtab (abfd)) 3213 { 3214 extsymcount = symcount; 3215 extsymoff = 0; 3216 } 3217 else 3218 { 3219 extsymcount = symcount - hdr->sh_info; 3220 extsymoff = hdr->sh_info; 3221 } 3222 3223 if (extsymcount == 0) 3224 return FALSE; 3225 3226 /* Read in the symbol table. */ 3227 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 3228 NULL, NULL, NULL); 3229 if (isymbuf == NULL) 3230 return FALSE; 3231 3232 /* Scan the symbol table looking for SYMDEF. */ 3233 result = FALSE; 3234 for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++) 3235 { 3236 const char *name; 3237 3238 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 3239 isym->st_name); 3240 if (name == NULL) 3241 break; 3242 3243 if (strcmp (name, symdef->name) == 0) 3244 { 3245 result = is_global_data_symbol_definition (abfd, isym); 3246 break; 3247 } 3248 } 3249 3250 free (isymbuf); 3251 3252 return result; 3253 } 3254 3255 /* Add an entry to the .dynamic table. */ 3256 3257 bfd_boolean 3258 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info, 3259 bfd_vma tag, 3260 bfd_vma val) 3261 { 3262 struct elf_link_hash_table *hash_table; 3263 const struct elf_backend_data *bed; 3264 asection *s; 3265 bfd_size_type newsize; 3266 bfd_byte *newcontents; 3267 Elf_Internal_Dyn dyn; 3268 3269 hash_table = elf_hash_table (info); 3270 if (! is_elf_hash_table (hash_table)) 3271 return FALSE; 3272 3273 bed = get_elf_backend_data (hash_table->dynobj); 3274 s = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3275 BFD_ASSERT (s != NULL); 3276 3277 newsize = s->size + bed->s->sizeof_dyn; 3278 newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize); 3279 if (newcontents == NULL) 3280 return FALSE; 3281 3282 dyn.d_tag = tag; 3283 dyn.d_un.d_val = val; 3284 bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size); 3285 3286 s->size = newsize; 3287 s->contents = newcontents; 3288 3289 return TRUE; 3290 } 3291 3292 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true, 3293 otherwise just check whether one already exists. Returns -1 on error, 3294 1 if a DT_NEEDED tag already exists, and 0 on success. */ 3295 3296 static int 3297 elf_add_dt_needed_tag (bfd *abfd, 3298 struct bfd_link_info *info, 3299 const char *soname, 3300 bfd_boolean do_it) 3301 { 3302 struct elf_link_hash_table *hash_table; 3303 size_t strindex; 3304 3305 if (!_bfd_elf_link_create_dynstrtab (abfd, info)) 3306 return -1; 3307 3308 hash_table = elf_hash_table (info); 3309 strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE); 3310 if (strindex == (size_t) -1) 3311 return -1; 3312 3313 if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1) 3314 { 3315 asection *sdyn; 3316 const struct elf_backend_data *bed; 3317 bfd_byte *extdyn; 3318 3319 bed = get_elf_backend_data (hash_table->dynobj); 3320 sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic"); 3321 if (sdyn != NULL) 3322 for (extdyn = sdyn->contents; 3323 extdyn < sdyn->contents + sdyn->size; 3324 extdyn += bed->s->sizeof_dyn) 3325 { 3326 Elf_Internal_Dyn dyn; 3327 3328 bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn); 3329 if (dyn.d_tag == DT_NEEDED 3330 && dyn.d_un.d_val == strindex) 3331 { 3332 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3333 return 1; 3334 } 3335 } 3336 } 3337 3338 if (do_it) 3339 { 3340 if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info)) 3341 return -1; 3342 3343 if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex)) 3344 return -1; 3345 } 3346 else 3347 /* We were just checking for existence of the tag. */ 3348 _bfd_elf_strtab_delref (hash_table->dynstr, strindex); 3349 3350 return 0; 3351 } 3352 3353 /* Return true if SONAME is on the needed list between NEEDED and STOP 3354 (or the end of list if STOP is NULL), and needed by a library that 3355 will be loaded. */ 3356 3357 static bfd_boolean 3358 on_needed_list (const char *soname, 3359 struct bfd_link_needed_list *needed, 3360 struct bfd_link_needed_list *stop) 3361 { 3362 struct bfd_link_needed_list *look; 3363 for (look = needed; look != stop; look = look->next) 3364 if (strcmp (soname, look->name) == 0 3365 && ((elf_dyn_lib_class (look->by) & DYN_AS_NEEDED) == 0 3366 /* If needed by a library that itself is not directly 3367 needed, recursively check whether that library is 3368 indirectly needed. Since we add DT_NEEDED entries to 3369 the end of the list, library dependencies appear after 3370 the library. Therefore search prior to the current 3371 LOOK, preventing possible infinite recursion. */ 3372 || on_needed_list (elf_dt_name (look->by), needed, look))) 3373 return TRUE; 3374 3375 return FALSE; 3376 } 3377 3378 /* Sort symbol by value, section, and size. */ 3379 static int 3380 elf_sort_symbol (const void *arg1, const void *arg2) 3381 { 3382 const struct elf_link_hash_entry *h1; 3383 const struct elf_link_hash_entry *h2; 3384 bfd_signed_vma vdiff; 3385 3386 h1 = *(const struct elf_link_hash_entry **) arg1; 3387 h2 = *(const struct elf_link_hash_entry **) arg2; 3388 vdiff = h1->root.u.def.value - h2->root.u.def.value; 3389 if (vdiff != 0) 3390 return vdiff > 0 ? 1 : -1; 3391 else 3392 { 3393 int sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id; 3394 if (sdiff != 0) 3395 return sdiff > 0 ? 1 : -1; 3396 } 3397 vdiff = h1->size - h2->size; 3398 return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1; 3399 } 3400 3401 /* This function is used to adjust offsets into .dynstr for 3402 dynamic symbols. This is called via elf_link_hash_traverse. */ 3403 3404 static bfd_boolean 3405 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data) 3406 { 3407 struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data; 3408 3409 if (h->dynindx != -1) 3410 h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index); 3411 return TRUE; 3412 } 3413 3414 /* Assign string offsets in .dynstr, update all structures referencing 3415 them. */ 3416 3417 static bfd_boolean 3418 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info) 3419 { 3420 struct elf_link_hash_table *hash_table = elf_hash_table (info); 3421 struct elf_link_local_dynamic_entry *entry; 3422 struct elf_strtab_hash *dynstr = hash_table->dynstr; 3423 bfd *dynobj = hash_table->dynobj; 3424 asection *sdyn; 3425 bfd_size_type size; 3426 const struct elf_backend_data *bed; 3427 bfd_byte *extdyn; 3428 3429 _bfd_elf_strtab_finalize (dynstr); 3430 size = _bfd_elf_strtab_size (dynstr); 3431 3432 bed = get_elf_backend_data (dynobj); 3433 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 3434 BFD_ASSERT (sdyn != NULL); 3435 3436 /* Update all .dynamic entries referencing .dynstr strings. */ 3437 for (extdyn = sdyn->contents; 3438 extdyn < sdyn->contents + sdyn->size; 3439 extdyn += bed->s->sizeof_dyn) 3440 { 3441 Elf_Internal_Dyn dyn; 3442 3443 bed->s->swap_dyn_in (dynobj, extdyn, &dyn); 3444 switch (dyn.d_tag) 3445 { 3446 case DT_STRSZ: 3447 dyn.d_un.d_val = size; 3448 break; 3449 case DT_NEEDED: 3450 case DT_SONAME: 3451 case DT_RPATH: 3452 case DT_RUNPATH: 3453 case DT_FILTER: 3454 case DT_AUXILIARY: 3455 case DT_AUDIT: 3456 case DT_DEPAUDIT: 3457 dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val); 3458 break; 3459 default: 3460 continue; 3461 } 3462 bed->s->swap_dyn_out (dynobj, &dyn, extdyn); 3463 } 3464 3465 /* Now update local dynamic symbols. */ 3466 for (entry = hash_table->dynlocal; entry ; entry = entry->next) 3467 entry->isym.st_name = _bfd_elf_strtab_offset (dynstr, 3468 entry->isym.st_name); 3469 3470 /* And the rest of dynamic symbols. */ 3471 elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr); 3472 3473 /* Adjust version definitions. */ 3474 if (elf_tdata (output_bfd)->cverdefs) 3475 { 3476 asection *s; 3477 bfd_byte *p; 3478 size_t i; 3479 Elf_Internal_Verdef def; 3480 Elf_Internal_Verdaux defaux; 3481 3482 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 3483 p = s->contents; 3484 do 3485 { 3486 _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p, 3487 &def); 3488 p += sizeof (Elf_External_Verdef); 3489 if (def.vd_aux != sizeof (Elf_External_Verdef)) 3490 continue; 3491 for (i = 0; i < def.vd_cnt; ++i) 3492 { 3493 _bfd_elf_swap_verdaux_in (output_bfd, 3494 (Elf_External_Verdaux *) p, &defaux); 3495 defaux.vda_name = _bfd_elf_strtab_offset (dynstr, 3496 defaux.vda_name); 3497 _bfd_elf_swap_verdaux_out (output_bfd, 3498 &defaux, (Elf_External_Verdaux *) p); 3499 p += sizeof (Elf_External_Verdaux); 3500 } 3501 } 3502 while (def.vd_next); 3503 } 3504 3505 /* Adjust version references. */ 3506 if (elf_tdata (output_bfd)->verref) 3507 { 3508 asection *s; 3509 bfd_byte *p; 3510 size_t i; 3511 Elf_Internal_Verneed need; 3512 Elf_Internal_Vernaux needaux; 3513 3514 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 3515 p = s->contents; 3516 do 3517 { 3518 _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p, 3519 &need); 3520 need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file); 3521 _bfd_elf_swap_verneed_out (output_bfd, &need, 3522 (Elf_External_Verneed *) p); 3523 p += sizeof (Elf_External_Verneed); 3524 for (i = 0; i < need.vn_cnt; ++i) 3525 { 3526 _bfd_elf_swap_vernaux_in (output_bfd, 3527 (Elf_External_Vernaux *) p, &needaux); 3528 needaux.vna_name = _bfd_elf_strtab_offset (dynstr, 3529 needaux.vna_name); 3530 _bfd_elf_swap_vernaux_out (output_bfd, 3531 &needaux, 3532 (Elf_External_Vernaux *) p); 3533 p += sizeof (Elf_External_Vernaux); 3534 } 3535 } 3536 while (need.vn_next); 3537 } 3538 3539 return TRUE; 3540 } 3541 3542 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3543 The default is to only match when the INPUT and OUTPUT are exactly 3544 the same target. */ 3545 3546 bfd_boolean 3547 _bfd_elf_default_relocs_compatible (const bfd_target *input, 3548 const bfd_target *output) 3549 { 3550 return input == output; 3551 } 3552 3553 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT. 3554 This version is used when different targets for the same architecture 3555 are virtually identical. */ 3556 3557 bfd_boolean 3558 _bfd_elf_relocs_compatible (const bfd_target *input, 3559 const bfd_target *output) 3560 { 3561 const struct elf_backend_data *obed, *ibed; 3562 3563 if (input == output) 3564 return TRUE; 3565 3566 ibed = xvec_get_elf_backend_data (input); 3567 obed = xvec_get_elf_backend_data (output); 3568 3569 if (ibed->arch != obed->arch) 3570 return FALSE; 3571 3572 /* If both backends are using this function, deem them compatible. */ 3573 return ibed->relocs_compatible == obed->relocs_compatible; 3574 } 3575 3576 /* Make a special call to the linker "notice" function to tell it that 3577 we are about to handle an as-needed lib, or have finished 3578 processing the lib. */ 3579 3580 bfd_boolean 3581 _bfd_elf_notice_as_needed (bfd *ibfd, 3582 struct bfd_link_info *info, 3583 enum notice_asneeded_action act) 3584 { 3585 return (*info->callbacks->notice) (info, NULL, NULL, ibfd, NULL, act, 0); 3586 } 3587 3588 /* Check relocations an ELF object file. */ 3589 3590 bfd_boolean 3591 _bfd_elf_link_check_relocs (bfd *abfd, struct bfd_link_info *info) 3592 { 3593 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 3594 struct elf_link_hash_table *htab = elf_hash_table (info); 3595 3596 /* If this object is the same format as the output object, and it is 3597 not a shared library, then let the backend look through the 3598 relocs. 3599 3600 This is required to build global offset table entries and to 3601 arrange for dynamic relocs. It is not required for the 3602 particular common case of linking non PIC code, even when linking 3603 against shared libraries, but unfortunately there is no way of 3604 knowing whether an object file has been compiled PIC or not. 3605 Looking through the relocs is not particularly time consuming. 3606 The problem is that we must either (1) keep the relocs in memory, 3607 which causes the linker to require additional runtime memory or 3608 (2) read the relocs twice from the input file, which wastes time. 3609 This would be a good case for using mmap. 3610 3611 I have no idea how to handle linking PIC code into a file of a 3612 different format. It probably can't be done. */ 3613 if ((abfd->flags & DYNAMIC) == 0 3614 && is_elf_hash_table (htab) 3615 && bed->check_relocs != NULL 3616 && elf_object_id (abfd) == elf_hash_table_id (htab) 3617 && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec)) 3618 { 3619 asection *o; 3620 3621 for (o = abfd->sections; o != NULL; o = o->next) 3622 { 3623 Elf_Internal_Rela *internal_relocs; 3624 bfd_boolean ok; 3625 3626 /* Don't check relocations in excluded sections. */ 3627 if ((o->flags & SEC_RELOC) == 0 3628 || (o->flags & SEC_EXCLUDE) != 0 3629 || o->reloc_count == 0 3630 || ((info->strip == strip_all || info->strip == strip_debugger) 3631 && (o->flags & SEC_DEBUGGING) != 0) 3632 || bfd_is_abs_section (o->output_section)) 3633 continue; 3634 3635 internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL, 3636 info->keep_memory); 3637 if (internal_relocs == NULL) 3638 return FALSE; 3639 3640 ok = (*bed->check_relocs) (abfd, info, o, internal_relocs); 3641 3642 if (elf_section_data (o)->relocs != internal_relocs) 3643 free (internal_relocs); 3644 3645 if (! ok) 3646 return FALSE; 3647 } 3648 } 3649 3650 return TRUE; 3651 } 3652 3653 /* Add symbols from an ELF object file to the linker hash table. */ 3654 3655 static bfd_boolean 3656 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info) 3657 { 3658 Elf_Internal_Ehdr *ehdr; 3659 Elf_Internal_Shdr *hdr; 3660 size_t symcount; 3661 size_t extsymcount; 3662 size_t extsymoff; 3663 struct elf_link_hash_entry **sym_hash; 3664 bfd_boolean dynamic; 3665 Elf_External_Versym *extversym = NULL; 3666 Elf_External_Versym *ever; 3667 struct elf_link_hash_entry *weaks; 3668 struct elf_link_hash_entry **nondeflt_vers = NULL; 3669 size_t nondeflt_vers_cnt = 0; 3670 Elf_Internal_Sym *isymbuf = NULL; 3671 Elf_Internal_Sym *isym; 3672 Elf_Internal_Sym *isymend; 3673 const struct elf_backend_data *bed; 3674 bfd_boolean add_needed; 3675 struct elf_link_hash_table *htab; 3676 bfd_size_type amt; 3677 void *alloc_mark = NULL; 3678 struct bfd_hash_entry **old_table = NULL; 3679 unsigned int old_size = 0; 3680 unsigned int old_count = 0; 3681 void *old_tab = NULL; 3682 void *old_ent; 3683 struct bfd_link_hash_entry *old_undefs = NULL; 3684 struct bfd_link_hash_entry *old_undefs_tail = NULL; 3685 void *old_strtab = NULL; 3686 size_t tabsize = 0; 3687 asection *s; 3688 bfd_boolean just_syms; 3689 3690 htab = elf_hash_table (info); 3691 bed = get_elf_backend_data (abfd); 3692 3693 if ((abfd->flags & DYNAMIC) == 0) 3694 dynamic = FALSE; 3695 else 3696 { 3697 dynamic = TRUE; 3698 3699 /* You can't use -r against a dynamic object. Also, there's no 3700 hope of using a dynamic object which does not exactly match 3701 the format of the output file. */ 3702 if (bfd_link_relocatable (info) 3703 || !is_elf_hash_table (htab) 3704 || info->output_bfd->xvec != abfd->xvec) 3705 { 3706 if (bfd_link_relocatable (info)) 3707 bfd_set_error (bfd_error_invalid_operation); 3708 else 3709 bfd_set_error (bfd_error_wrong_format); 3710 goto error_return; 3711 } 3712 } 3713 3714 ehdr = elf_elfheader (abfd); 3715 if (info->warn_alternate_em 3716 && bed->elf_machine_code != ehdr->e_machine 3717 && ((bed->elf_machine_alt1 != 0 3718 && ehdr->e_machine == bed->elf_machine_alt1) 3719 || (bed->elf_machine_alt2 != 0 3720 && ehdr->e_machine == bed->elf_machine_alt2))) 3721 info->callbacks->einfo 3722 /* xgettext:c-format */ 3723 (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"), 3724 ehdr->e_machine, abfd, bed->elf_machine_code); 3725 3726 /* As a GNU extension, any input sections which are named 3727 .gnu.warning.SYMBOL are treated as warning symbols for the given 3728 symbol. This differs from .gnu.warning sections, which generate 3729 warnings when they are included in an output file. */ 3730 /* PR 12761: Also generate this warning when building shared libraries. */ 3731 for (s = abfd->sections; s != NULL; s = s->next) 3732 { 3733 const char *name; 3734 3735 name = bfd_get_section_name (abfd, s); 3736 if (CONST_STRNEQ (name, ".gnu.warning.")) 3737 { 3738 char *msg; 3739 bfd_size_type sz; 3740 3741 name += sizeof ".gnu.warning." - 1; 3742 3743 /* If this is a shared object, then look up the symbol 3744 in the hash table. If it is there, and it is already 3745 been defined, then we will not be using the entry 3746 from this shared object, so we don't need to warn. 3747 FIXME: If we see the definition in a regular object 3748 later on, we will warn, but we shouldn't. The only 3749 fix is to keep track of what warnings we are supposed 3750 to emit, and then handle them all at the end of the 3751 link. */ 3752 if (dynamic) 3753 { 3754 struct elf_link_hash_entry *h; 3755 3756 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 3757 3758 /* FIXME: What about bfd_link_hash_common? */ 3759 if (h != NULL 3760 && (h->root.type == bfd_link_hash_defined 3761 || h->root.type == bfd_link_hash_defweak)) 3762 continue; 3763 } 3764 3765 sz = s->size; 3766 msg = (char *) bfd_alloc (abfd, sz + 1); 3767 if (msg == NULL) 3768 goto error_return; 3769 3770 if (! bfd_get_section_contents (abfd, s, msg, 0, sz)) 3771 goto error_return; 3772 3773 msg[sz] = '\0'; 3774 3775 if (! (_bfd_generic_link_add_one_symbol 3776 (info, abfd, name, BSF_WARNING, s, 0, msg, 3777 FALSE, bed->collect, NULL))) 3778 goto error_return; 3779 3780 if (bfd_link_executable (info)) 3781 { 3782 /* Clobber the section size so that the warning does 3783 not get copied into the output file. */ 3784 s->size = 0; 3785 3786 /* Also set SEC_EXCLUDE, so that symbols defined in 3787 the warning section don't get copied to the output. */ 3788 s->flags |= SEC_EXCLUDE; 3789 } 3790 } 3791 } 3792 3793 just_syms = ((s = abfd->sections) != NULL 3794 && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS); 3795 3796 add_needed = TRUE; 3797 if (! dynamic) 3798 { 3799 /* If we are creating a shared library, create all the dynamic 3800 sections immediately. We need to attach them to something, 3801 so we attach them to this BFD, provided it is the right 3802 format and is not from ld --just-symbols. Always create the 3803 dynamic sections for -E/--dynamic-list. FIXME: If there 3804 are no input BFD's of the same format as the output, we can't 3805 make a shared library. */ 3806 if (!just_syms 3807 && (bfd_link_pic (info) 3808 || (!bfd_link_relocatable (info) 3809 && (info->export_dynamic || info->dynamic))) 3810 && is_elf_hash_table (htab) 3811 && info->output_bfd->xvec == abfd->xvec 3812 && !htab->dynamic_sections_created) 3813 { 3814 if (! _bfd_elf_link_create_dynamic_sections (abfd, info)) 3815 goto error_return; 3816 } 3817 } 3818 else if (!is_elf_hash_table (htab)) 3819 goto error_return; 3820 else 3821 { 3822 const char *soname = NULL; 3823 char *audit = NULL; 3824 struct bfd_link_needed_list *rpath = NULL, *runpath = NULL; 3825 const Elf_Internal_Phdr *phdr; 3826 int ret; 3827 3828 /* ld --just-symbols and dynamic objects don't mix very well. 3829 ld shouldn't allow it. */ 3830 if (just_syms) 3831 abort (); 3832 3833 /* If this dynamic lib was specified on the command line with 3834 --as-needed in effect, then we don't want to add a DT_NEEDED 3835 tag unless the lib is actually used. Similary for libs brought 3836 in by another lib's DT_NEEDED. When --no-add-needed is used 3837 on a dynamic lib, we don't want to add a DT_NEEDED entry for 3838 any dynamic library in DT_NEEDED tags in the dynamic lib at 3839 all. */ 3840 add_needed = (elf_dyn_lib_class (abfd) 3841 & (DYN_AS_NEEDED | DYN_DT_NEEDED 3842 | DYN_NO_NEEDED)) == 0; 3843 3844 s = bfd_get_section_by_name (abfd, ".dynamic"); 3845 if (s != NULL) 3846 { 3847 bfd_byte *dynbuf; 3848 bfd_byte *extdyn; 3849 unsigned int elfsec; 3850 unsigned long shlink; 3851 3852 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 3853 { 3854 error_free_dyn: 3855 free (dynbuf); 3856 goto error_return; 3857 } 3858 3859 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 3860 if (elfsec == SHN_BAD) 3861 goto error_free_dyn; 3862 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 3863 3864 for (extdyn = dynbuf; 3865 extdyn < dynbuf + s->size; 3866 extdyn += bed->s->sizeof_dyn) 3867 { 3868 Elf_Internal_Dyn dyn; 3869 3870 bed->s->swap_dyn_in (abfd, extdyn, &dyn); 3871 if (dyn.d_tag == DT_SONAME) 3872 { 3873 unsigned int tagv = dyn.d_un.d_val; 3874 soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3875 if (soname == NULL) 3876 goto error_free_dyn; 3877 } 3878 if (dyn.d_tag == DT_NEEDED) 3879 { 3880 struct bfd_link_needed_list *n, **pn; 3881 char *fnm, *anm; 3882 unsigned int tagv = dyn.d_un.d_val; 3883 3884 amt = sizeof (struct bfd_link_needed_list); 3885 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 3886 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3887 if (n == NULL || fnm == NULL) 3888 goto error_free_dyn; 3889 amt = strlen (fnm) + 1; 3890 anm = (char *) bfd_alloc (abfd, amt); 3891 if (anm == NULL) 3892 goto error_free_dyn; 3893 memcpy (anm, fnm, amt); 3894 n->name = anm; 3895 n->by = abfd; 3896 n->next = NULL; 3897 for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next) 3898 ; 3899 *pn = n; 3900 } 3901 if (dyn.d_tag == DT_RUNPATH) 3902 { 3903 struct bfd_link_needed_list *n, **pn; 3904 char *fnm, *anm; 3905 unsigned int tagv = dyn.d_un.d_val; 3906 3907 amt = sizeof (struct bfd_link_needed_list); 3908 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 3909 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3910 if (n == NULL || fnm == NULL) 3911 goto error_free_dyn; 3912 amt = strlen (fnm) + 1; 3913 anm = (char *) bfd_alloc (abfd, amt); 3914 if (anm == NULL) 3915 goto error_free_dyn; 3916 memcpy (anm, fnm, amt); 3917 n->name = anm; 3918 n->by = abfd; 3919 n->next = NULL; 3920 for (pn = & runpath; 3921 *pn != NULL; 3922 pn = &(*pn)->next) 3923 ; 3924 *pn = n; 3925 } 3926 /* Ignore DT_RPATH if we have seen DT_RUNPATH. */ 3927 if (!runpath && dyn.d_tag == DT_RPATH) 3928 { 3929 struct bfd_link_needed_list *n, **pn; 3930 char *fnm, *anm; 3931 unsigned int tagv = dyn.d_un.d_val; 3932 3933 amt = sizeof (struct bfd_link_needed_list); 3934 n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 3935 fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3936 if (n == NULL || fnm == NULL) 3937 goto error_free_dyn; 3938 amt = strlen (fnm) + 1; 3939 anm = (char *) bfd_alloc (abfd, amt); 3940 if (anm == NULL) 3941 goto error_free_dyn; 3942 memcpy (anm, fnm, amt); 3943 n->name = anm; 3944 n->by = abfd; 3945 n->next = NULL; 3946 for (pn = & rpath; 3947 *pn != NULL; 3948 pn = &(*pn)->next) 3949 ; 3950 *pn = n; 3951 } 3952 if (dyn.d_tag == DT_AUDIT) 3953 { 3954 unsigned int tagv = dyn.d_un.d_val; 3955 audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 3956 } 3957 } 3958 3959 free (dynbuf); 3960 } 3961 3962 /* DT_RUNPATH overrides DT_RPATH. Do _NOT_ bfd_release, as that 3963 frees all more recently bfd_alloc'd blocks as well. */ 3964 if (runpath) 3965 rpath = runpath; 3966 3967 if (rpath) 3968 { 3969 struct bfd_link_needed_list **pn; 3970 for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next) 3971 ; 3972 *pn = rpath; 3973 } 3974 3975 /* If we have a PT_GNU_RELRO program header, mark as read-only 3976 all sections contained fully therein. This makes relro 3977 shared library sections appear as they will at run-time. */ 3978 phdr = elf_tdata (abfd)->phdr + elf_elfheader (abfd)->e_phnum; 3979 while (--phdr >= elf_tdata (abfd)->phdr) 3980 if (phdr->p_type == PT_GNU_RELRO) 3981 { 3982 for (s = abfd->sections; s != NULL; s = s->next) 3983 if ((s->flags & SEC_ALLOC) != 0 3984 && s->vma >= phdr->p_vaddr 3985 && s->vma + s->size <= phdr->p_vaddr + phdr->p_memsz) 3986 s->flags |= SEC_READONLY; 3987 break; 3988 } 3989 3990 /* We do not want to include any of the sections in a dynamic 3991 object in the output file. We hack by simply clobbering the 3992 list of sections in the BFD. This could be handled more 3993 cleanly by, say, a new section flag; the existing 3994 SEC_NEVER_LOAD flag is not the one we want, because that one 3995 still implies that the section takes up space in the output 3996 file. */ 3997 bfd_section_list_clear (abfd); 3998 3999 /* Find the name to use in a DT_NEEDED entry that refers to this 4000 object. If the object has a DT_SONAME entry, we use it. 4001 Otherwise, if the generic linker stuck something in 4002 elf_dt_name, we use that. Otherwise, we just use the file 4003 name. */ 4004 if (soname == NULL || *soname == '\0') 4005 { 4006 soname = elf_dt_name (abfd); 4007 if (soname == NULL || *soname == '\0') 4008 soname = bfd_get_filename (abfd); 4009 } 4010 4011 /* Save the SONAME because sometimes the linker emulation code 4012 will need to know it. */ 4013 elf_dt_name (abfd) = soname; 4014 4015 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 4016 if (ret < 0) 4017 goto error_return; 4018 4019 /* If we have already included this dynamic object in the 4020 link, just ignore it. There is no reason to include a 4021 particular dynamic object more than once. */ 4022 if (ret > 0) 4023 return TRUE; 4024 4025 /* Save the DT_AUDIT entry for the linker emulation code. */ 4026 elf_dt_audit (abfd) = audit; 4027 } 4028 4029 /* If this is a dynamic object, we always link against the .dynsym 4030 symbol table, not the .symtab symbol table. The dynamic linker 4031 will only see the .dynsym symbol table, so there is no reason to 4032 look at .symtab for a dynamic object. */ 4033 4034 if (! dynamic || elf_dynsymtab (abfd) == 0) 4035 hdr = &elf_tdata (abfd)->symtab_hdr; 4036 else 4037 hdr = &elf_tdata (abfd)->dynsymtab_hdr; 4038 4039 symcount = hdr->sh_size / bed->s->sizeof_sym; 4040 4041 /* The sh_info field of the symtab header tells us where the 4042 external symbols start. We don't care about the local symbols at 4043 this point. */ 4044 if (elf_bad_symtab (abfd)) 4045 { 4046 extsymcount = symcount; 4047 extsymoff = 0; 4048 } 4049 else 4050 { 4051 extsymcount = symcount - hdr->sh_info; 4052 extsymoff = hdr->sh_info; 4053 } 4054 4055 sym_hash = elf_sym_hashes (abfd); 4056 if (extsymcount != 0) 4057 { 4058 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff, 4059 NULL, NULL, NULL); 4060 if (isymbuf == NULL) 4061 goto error_return; 4062 4063 if (sym_hash == NULL) 4064 { 4065 /* We store a pointer to the hash table entry for each 4066 external symbol. */ 4067 amt = extsymcount; 4068 amt *= sizeof (struct elf_link_hash_entry *); 4069 sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt); 4070 if (sym_hash == NULL) 4071 goto error_free_sym; 4072 elf_sym_hashes (abfd) = sym_hash; 4073 } 4074 } 4075 4076 if (dynamic) 4077 { 4078 /* Read in any version definitions. */ 4079 if (!_bfd_elf_slurp_version_tables (abfd, 4080 info->default_imported_symver)) 4081 goto error_free_sym; 4082 4083 /* Read in the symbol versions, but don't bother to convert them 4084 to internal format. */ 4085 if (elf_dynversym (abfd) != 0) 4086 { 4087 Elf_Internal_Shdr *versymhdr; 4088 4089 versymhdr = &elf_tdata (abfd)->dynversym_hdr; 4090 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); 4091 if (extversym == NULL) 4092 goto error_free_sym; 4093 amt = versymhdr->sh_size; 4094 if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0 4095 || bfd_bread (extversym, amt, abfd) != amt) 4096 goto error_free_vers; 4097 } 4098 } 4099 4100 /* If we are loading an as-needed shared lib, save the symbol table 4101 state before we start adding symbols. If the lib turns out 4102 to be unneeded, restore the state. */ 4103 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 4104 { 4105 unsigned int i; 4106 size_t entsize; 4107 4108 for (entsize = 0, i = 0; i < htab->root.table.size; i++) 4109 { 4110 struct bfd_hash_entry *p; 4111 struct elf_link_hash_entry *h; 4112 4113 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4114 { 4115 h = (struct elf_link_hash_entry *) p; 4116 entsize += htab->root.table.entsize; 4117 if (h->root.type == bfd_link_hash_warning) 4118 entsize += htab->root.table.entsize; 4119 } 4120 } 4121 4122 tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *); 4123 old_tab = bfd_malloc (tabsize + entsize); 4124 if (old_tab == NULL) 4125 goto error_free_vers; 4126 4127 /* Remember the current objalloc pointer, so that all mem for 4128 symbols added can later be reclaimed. */ 4129 alloc_mark = bfd_hash_allocate (&htab->root.table, 1); 4130 if (alloc_mark == NULL) 4131 goto error_free_vers; 4132 4133 /* Make a special call to the linker "notice" function to 4134 tell it that we are about to handle an as-needed lib. */ 4135 if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed)) 4136 goto error_free_vers; 4137 4138 /* Clone the symbol table. Remember some pointers into the 4139 symbol table, and dynamic symbol count. */ 4140 old_ent = (char *) old_tab + tabsize; 4141 memcpy (old_tab, htab->root.table.table, tabsize); 4142 old_undefs = htab->root.undefs; 4143 old_undefs_tail = htab->root.undefs_tail; 4144 old_table = htab->root.table.table; 4145 old_size = htab->root.table.size; 4146 old_count = htab->root.table.count; 4147 old_strtab = _bfd_elf_strtab_save (htab->dynstr); 4148 if (old_strtab == NULL) 4149 goto error_free_vers; 4150 4151 for (i = 0; i < htab->root.table.size; i++) 4152 { 4153 struct bfd_hash_entry *p; 4154 struct elf_link_hash_entry *h; 4155 4156 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4157 { 4158 memcpy (old_ent, p, htab->root.table.entsize); 4159 old_ent = (char *) old_ent + htab->root.table.entsize; 4160 h = (struct elf_link_hash_entry *) p; 4161 if (h->root.type == bfd_link_hash_warning) 4162 { 4163 memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize); 4164 old_ent = (char *) old_ent + htab->root.table.entsize; 4165 } 4166 } 4167 } 4168 } 4169 4170 weaks = NULL; 4171 ever = extversym != NULL ? extversym + extsymoff : NULL; 4172 for (isym = isymbuf, isymend = isymbuf + extsymcount; 4173 isym < isymend; 4174 isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL)) 4175 { 4176 int bind; 4177 bfd_vma value; 4178 asection *sec, *new_sec; 4179 flagword flags; 4180 const char *name; 4181 struct elf_link_hash_entry *h; 4182 struct elf_link_hash_entry *hi; 4183 bfd_boolean definition; 4184 bfd_boolean size_change_ok; 4185 bfd_boolean type_change_ok; 4186 bfd_boolean new_weakdef; 4187 bfd_boolean new_weak; 4188 bfd_boolean old_weak; 4189 bfd_boolean override; 4190 bfd_boolean common; 4191 bfd_boolean discarded; 4192 unsigned int old_alignment; 4193 bfd *old_bfd; 4194 bfd_boolean matched; 4195 4196 override = FALSE; 4197 4198 flags = BSF_NO_FLAGS; 4199 sec = NULL; 4200 value = isym->st_value; 4201 common = bed->common_definition (isym); 4202 discarded = FALSE; 4203 4204 bind = ELF_ST_BIND (isym->st_info); 4205 switch (bind) 4206 { 4207 case STB_LOCAL: 4208 /* This should be impossible, since ELF requires that all 4209 global symbols follow all local symbols, and that sh_info 4210 point to the first global symbol. Unfortunately, Irix 5 4211 screws this up. */ 4212 continue; 4213 4214 case STB_GLOBAL: 4215 if (isym->st_shndx != SHN_UNDEF && !common) 4216 flags = BSF_GLOBAL; 4217 break; 4218 4219 case STB_WEAK: 4220 flags = BSF_WEAK; 4221 break; 4222 4223 case STB_GNU_UNIQUE: 4224 flags = BSF_GNU_UNIQUE; 4225 break; 4226 4227 default: 4228 /* Leave it up to the processor backend. */ 4229 break; 4230 } 4231 4232 if (isym->st_shndx == SHN_UNDEF) 4233 sec = bfd_und_section_ptr; 4234 else if (isym->st_shndx == SHN_ABS) 4235 sec = bfd_abs_section_ptr; 4236 else if (isym->st_shndx == SHN_COMMON) 4237 { 4238 sec = bfd_com_section_ptr; 4239 /* What ELF calls the size we call the value. What ELF 4240 calls the value we call the alignment. */ 4241 value = isym->st_size; 4242 } 4243 else 4244 { 4245 sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4246 if (sec == NULL) 4247 sec = bfd_abs_section_ptr; 4248 else if (discarded_section (sec)) 4249 { 4250 /* Symbols from discarded section are undefined. We keep 4251 its visibility. */ 4252 sec = bfd_und_section_ptr; 4253 discarded = TRUE; 4254 isym->st_shndx = SHN_UNDEF; 4255 } 4256 else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 4257 value -= sec->vma; 4258 } 4259 4260 name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link, 4261 isym->st_name); 4262 if (name == NULL) 4263 goto error_free_vers; 4264 4265 if (isym->st_shndx == SHN_COMMON 4266 && (abfd->flags & BFD_PLUGIN) != 0) 4267 { 4268 asection *xc = bfd_get_section_by_name (abfd, "COMMON"); 4269 4270 if (xc == NULL) 4271 { 4272 flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP 4273 | SEC_EXCLUDE); 4274 xc = bfd_make_section_with_flags (abfd, "COMMON", sflags); 4275 if (xc == NULL) 4276 goto error_free_vers; 4277 } 4278 sec = xc; 4279 } 4280 else if (isym->st_shndx == SHN_COMMON 4281 && ELF_ST_TYPE (isym->st_info) == STT_TLS 4282 && !bfd_link_relocatable (info)) 4283 { 4284 asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon"); 4285 4286 if (tcomm == NULL) 4287 { 4288 flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON 4289 | SEC_LINKER_CREATED); 4290 tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags); 4291 if (tcomm == NULL) 4292 goto error_free_vers; 4293 } 4294 sec = tcomm; 4295 } 4296 else if (bed->elf_add_symbol_hook) 4297 { 4298 if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags, 4299 &sec, &value)) 4300 goto error_free_vers; 4301 4302 /* The hook function sets the name to NULL if this symbol 4303 should be skipped for some reason. */ 4304 if (name == NULL) 4305 continue; 4306 } 4307 4308 /* Sanity check that all possibilities were handled. */ 4309 if (sec == NULL) 4310 { 4311 bfd_set_error (bfd_error_bad_value); 4312 goto error_free_vers; 4313 } 4314 4315 /* Silently discard TLS symbols from --just-syms. There's 4316 no way to combine a static TLS block with a new TLS block 4317 for this executable. */ 4318 if (ELF_ST_TYPE (isym->st_info) == STT_TLS 4319 && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS) 4320 continue; 4321 4322 if (bfd_is_und_section (sec) 4323 || bfd_is_com_section (sec)) 4324 definition = FALSE; 4325 else 4326 definition = TRUE; 4327 4328 size_change_ok = FALSE; 4329 type_change_ok = bed->type_change_ok; 4330 old_weak = FALSE; 4331 matched = FALSE; 4332 old_alignment = 0; 4333 old_bfd = NULL; 4334 new_sec = sec; 4335 4336 if (is_elf_hash_table (htab)) 4337 { 4338 Elf_Internal_Versym iver; 4339 unsigned int vernum = 0; 4340 bfd_boolean skip; 4341 4342 if (ever == NULL) 4343 { 4344 if (info->default_imported_symver) 4345 /* Use the default symbol version created earlier. */ 4346 iver.vs_vers = elf_tdata (abfd)->cverdefs; 4347 else 4348 iver.vs_vers = 0; 4349 } 4350 else 4351 _bfd_elf_swap_versym_in (abfd, ever, &iver); 4352 4353 vernum = iver.vs_vers & VERSYM_VERSION; 4354 4355 /* If this is a hidden symbol, or if it is not version 4356 1, we append the version name to the symbol name. 4357 However, we do not modify a non-hidden absolute symbol 4358 if it is not a function, because it might be the version 4359 symbol itself. FIXME: What if it isn't? */ 4360 if ((iver.vs_vers & VERSYM_HIDDEN) != 0 4361 || (vernum > 1 4362 && (!bfd_is_abs_section (sec) 4363 || bed->is_function_type (ELF_ST_TYPE (isym->st_info))))) 4364 { 4365 const char *verstr; 4366 size_t namelen, verlen, newlen; 4367 char *newname, *p; 4368 4369 if (isym->st_shndx != SHN_UNDEF) 4370 { 4371 if (vernum > elf_tdata (abfd)->cverdefs) 4372 verstr = NULL; 4373 else if (vernum > 1) 4374 verstr = 4375 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename; 4376 else 4377 verstr = ""; 4378 4379 if (verstr == NULL) 4380 { 4381 _bfd_error_handler 4382 /* xgettext:c-format */ 4383 (_("%B: %s: invalid version %u (max %d)"), 4384 abfd, name, vernum, 4385 elf_tdata (abfd)->cverdefs); 4386 bfd_set_error (bfd_error_bad_value); 4387 goto error_free_vers; 4388 } 4389 } 4390 else 4391 { 4392 /* We cannot simply test for the number of 4393 entries in the VERNEED section since the 4394 numbers for the needed versions do not start 4395 at 0. */ 4396 Elf_Internal_Verneed *t; 4397 4398 verstr = NULL; 4399 for (t = elf_tdata (abfd)->verref; 4400 t != NULL; 4401 t = t->vn_nextref) 4402 { 4403 Elf_Internal_Vernaux *a; 4404 4405 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr) 4406 { 4407 if (a->vna_other == vernum) 4408 { 4409 verstr = a->vna_nodename; 4410 break; 4411 } 4412 } 4413 if (a != NULL) 4414 break; 4415 } 4416 if (verstr == NULL) 4417 { 4418 _bfd_error_handler 4419 /* xgettext:c-format */ 4420 (_("%B: %s: invalid needed version %d"), 4421 abfd, name, vernum); 4422 bfd_set_error (bfd_error_bad_value); 4423 goto error_free_vers; 4424 } 4425 } 4426 4427 namelen = strlen (name); 4428 verlen = strlen (verstr); 4429 newlen = namelen + verlen + 2; 4430 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4431 && isym->st_shndx != SHN_UNDEF) 4432 ++newlen; 4433 4434 newname = (char *) bfd_hash_allocate (&htab->root.table, newlen); 4435 if (newname == NULL) 4436 goto error_free_vers; 4437 memcpy (newname, name, namelen); 4438 p = newname + namelen; 4439 *p++ = ELF_VER_CHR; 4440 /* If this is a defined non-hidden version symbol, 4441 we add another @ to the name. This indicates the 4442 default version of the symbol. */ 4443 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 4444 && isym->st_shndx != SHN_UNDEF) 4445 *p++ = ELF_VER_CHR; 4446 memcpy (p, verstr, verlen + 1); 4447 4448 name = newname; 4449 } 4450 4451 /* If this symbol has default visibility and the user has 4452 requested we not re-export it, then mark it as hidden. */ 4453 if (!bfd_is_und_section (sec) 4454 && !dynamic 4455 && abfd->no_export 4456 && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL) 4457 isym->st_other = (STV_HIDDEN 4458 | (isym->st_other & ~ELF_ST_VISIBILITY (-1))); 4459 4460 if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value, 4461 sym_hash, &old_bfd, &old_weak, 4462 &old_alignment, &skip, &override, 4463 &type_change_ok, &size_change_ok, 4464 &matched)) 4465 goto error_free_vers; 4466 4467 if (skip) 4468 continue; 4469 4470 /* Override a definition only if the new symbol matches the 4471 existing one. */ 4472 if (override && matched) 4473 definition = FALSE; 4474 4475 h = *sym_hash; 4476 while (h->root.type == bfd_link_hash_indirect 4477 || h->root.type == bfd_link_hash_warning) 4478 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4479 4480 if (elf_tdata (abfd)->verdef != NULL 4481 && vernum > 1 4482 && definition) 4483 h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1]; 4484 } 4485 4486 if (! (_bfd_generic_link_add_one_symbol 4487 (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect, 4488 (struct bfd_link_hash_entry **) sym_hash))) 4489 goto error_free_vers; 4490 4491 if ((flags & BSF_GNU_UNIQUE) 4492 && (abfd->flags & DYNAMIC) == 0 4493 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour) 4494 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_unique; 4495 4496 h = *sym_hash; 4497 /* We need to make sure that indirect symbol dynamic flags are 4498 updated. */ 4499 hi = h; 4500 while (h->root.type == bfd_link_hash_indirect 4501 || h->root.type == bfd_link_hash_warning) 4502 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4503 4504 /* Setting the index to -3 tells elf_link_output_extsym that 4505 this symbol is defined in a discarded section. */ 4506 if (discarded) 4507 h->indx = -3; 4508 4509 *sym_hash = h; 4510 4511 new_weak = (flags & BSF_WEAK) != 0; 4512 new_weakdef = FALSE; 4513 if (dynamic 4514 && definition 4515 && new_weak 4516 && !bed->is_function_type (ELF_ST_TYPE (isym->st_info)) 4517 && is_elf_hash_table (htab) 4518 && h->u.weakdef == NULL) 4519 { 4520 /* Keep a list of all weak defined non function symbols from 4521 a dynamic object, using the weakdef field. Later in this 4522 function we will set the weakdef field to the correct 4523 value. We only put non-function symbols from dynamic 4524 objects on this list, because that happens to be the only 4525 time we need to know the normal symbol corresponding to a 4526 weak symbol, and the information is time consuming to 4527 figure out. If the weakdef field is not already NULL, 4528 then this symbol was already defined by some previous 4529 dynamic object, and we will be using that previous 4530 definition anyhow. */ 4531 4532 h->u.weakdef = weaks; 4533 weaks = h; 4534 new_weakdef = TRUE; 4535 } 4536 4537 /* Set the alignment of a common symbol. */ 4538 if ((common || bfd_is_com_section (sec)) 4539 && h->root.type == bfd_link_hash_common) 4540 { 4541 unsigned int align; 4542 4543 if (common) 4544 align = bfd_log2 (isym->st_value); 4545 else 4546 { 4547 /* The new symbol is a common symbol in a shared object. 4548 We need to get the alignment from the section. */ 4549 align = new_sec->alignment_power; 4550 } 4551 if (align > old_alignment) 4552 h->root.u.c.p->alignment_power = align; 4553 else 4554 h->root.u.c.p->alignment_power = old_alignment; 4555 } 4556 4557 if (is_elf_hash_table (htab)) 4558 { 4559 /* Set a flag in the hash table entry indicating the type of 4560 reference or definition we just found. A dynamic symbol 4561 is one which is referenced or defined by both a regular 4562 object and a shared object. */ 4563 bfd_boolean dynsym = FALSE; 4564 4565 /* Plugin symbols aren't normal. Don't set def_regular or 4566 ref_regular for them, or make them dynamic. */ 4567 if ((abfd->flags & BFD_PLUGIN) != 0) 4568 ; 4569 else if (! dynamic) 4570 { 4571 if (! definition) 4572 { 4573 h->ref_regular = 1; 4574 if (bind != STB_WEAK) 4575 h->ref_regular_nonweak = 1; 4576 } 4577 else 4578 { 4579 h->def_regular = 1; 4580 if (h->def_dynamic) 4581 { 4582 h->def_dynamic = 0; 4583 h->ref_dynamic = 1; 4584 } 4585 } 4586 4587 /* If the indirect symbol has been forced local, don't 4588 make the real symbol dynamic. */ 4589 if ((h == hi || !hi->forced_local) 4590 && (bfd_link_dll (info) 4591 || h->def_dynamic 4592 || h->ref_dynamic)) 4593 dynsym = TRUE; 4594 } 4595 else 4596 { 4597 if (! definition) 4598 { 4599 h->ref_dynamic = 1; 4600 hi->ref_dynamic = 1; 4601 } 4602 else 4603 { 4604 h->def_dynamic = 1; 4605 hi->def_dynamic = 1; 4606 } 4607 4608 /* If the indirect symbol has been forced local, don't 4609 make the real symbol dynamic. */ 4610 if ((h == hi || !hi->forced_local) 4611 && (h->def_regular 4612 || h->ref_regular 4613 || (h->u.weakdef != NULL 4614 && ! new_weakdef 4615 && h->u.weakdef->dynindx != -1))) 4616 dynsym = TRUE; 4617 } 4618 4619 /* Check to see if we need to add an indirect symbol for 4620 the default name. */ 4621 if (definition 4622 || (!override && h->root.type == bfd_link_hash_common)) 4623 if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym, 4624 sec, value, &old_bfd, &dynsym)) 4625 goto error_free_vers; 4626 4627 /* Check the alignment when a common symbol is involved. This 4628 can change when a common symbol is overridden by a normal 4629 definition or a common symbol is ignored due to the old 4630 normal definition. We need to make sure the maximum 4631 alignment is maintained. */ 4632 if ((old_alignment || common) 4633 && h->root.type != bfd_link_hash_common) 4634 { 4635 unsigned int common_align; 4636 unsigned int normal_align; 4637 unsigned int symbol_align; 4638 bfd *normal_bfd; 4639 bfd *common_bfd; 4640 4641 BFD_ASSERT (h->root.type == bfd_link_hash_defined 4642 || h->root.type == bfd_link_hash_defweak); 4643 4644 symbol_align = ffs (h->root.u.def.value) - 1; 4645 if (h->root.u.def.section->owner != NULL 4646 && (h->root.u.def.section->owner->flags 4647 & (DYNAMIC | BFD_PLUGIN)) == 0) 4648 { 4649 normal_align = h->root.u.def.section->alignment_power; 4650 if (normal_align > symbol_align) 4651 normal_align = symbol_align; 4652 } 4653 else 4654 normal_align = symbol_align; 4655 4656 if (old_alignment) 4657 { 4658 common_align = old_alignment; 4659 common_bfd = old_bfd; 4660 normal_bfd = abfd; 4661 } 4662 else 4663 { 4664 common_align = bfd_log2 (isym->st_value); 4665 common_bfd = abfd; 4666 normal_bfd = old_bfd; 4667 } 4668 4669 if (normal_align < common_align) 4670 { 4671 /* PR binutils/2735 */ 4672 if (normal_bfd == NULL) 4673 _bfd_error_handler 4674 /* xgettext:c-format */ 4675 (_("Warning: alignment %u of common symbol `%s' in %B is" 4676 " greater than the alignment (%u) of its section %A"), 4677 1 << common_align, name, common_bfd, 4678 1 << normal_align, h->root.u.def.section); 4679 else 4680 _bfd_error_handler 4681 /* xgettext:c-format */ 4682 (_("Warning: alignment %u of symbol `%s' in %B" 4683 " is smaller than %u in %B"), 4684 1 << normal_align, name, normal_bfd, 4685 1 << common_align, common_bfd); 4686 } 4687 } 4688 4689 /* Remember the symbol size if it isn't undefined. */ 4690 if (isym->st_size != 0 4691 && isym->st_shndx != SHN_UNDEF 4692 && (definition || h->size == 0)) 4693 { 4694 if (h->size != 0 4695 && h->size != isym->st_size 4696 && ! size_change_ok) 4697 _bfd_error_handler 4698 /* xgettext:c-format */ 4699 (_("Warning: size of symbol `%s' changed" 4700 " from %lu in %B to %lu in %B"), 4701 name, (unsigned long) h->size, old_bfd, 4702 (unsigned long) isym->st_size, abfd); 4703 4704 h->size = isym->st_size; 4705 } 4706 4707 /* If this is a common symbol, then we always want H->SIZE 4708 to be the size of the common symbol. The code just above 4709 won't fix the size if a common symbol becomes larger. We 4710 don't warn about a size change here, because that is 4711 covered by --warn-common. Allow changes between different 4712 function types. */ 4713 if (h->root.type == bfd_link_hash_common) 4714 h->size = h->root.u.c.size; 4715 4716 if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE 4717 && ((definition && !new_weak) 4718 || (old_weak && h->root.type == bfd_link_hash_common) 4719 || h->type == STT_NOTYPE)) 4720 { 4721 unsigned int type = ELF_ST_TYPE (isym->st_info); 4722 4723 /* Turn an IFUNC symbol from a DSO into a normal FUNC 4724 symbol. */ 4725 if (type == STT_GNU_IFUNC 4726 && (abfd->flags & DYNAMIC) != 0) 4727 type = STT_FUNC; 4728 4729 if (h->type != type) 4730 { 4731 if (h->type != STT_NOTYPE && ! type_change_ok) 4732 /* xgettext:c-format */ 4733 _bfd_error_handler 4734 (_("Warning: type of symbol `%s' changed" 4735 " from %d to %d in %B"), 4736 name, h->type, type, abfd); 4737 4738 h->type = type; 4739 } 4740 } 4741 4742 /* Merge st_other field. */ 4743 elf_merge_st_other (abfd, h, isym, sec, definition, dynamic); 4744 4745 /* We don't want to make debug symbol dynamic. */ 4746 if (definition 4747 && (sec->flags & SEC_DEBUGGING) 4748 && !bfd_link_relocatable (info)) 4749 dynsym = FALSE; 4750 4751 /* Nor should we make plugin symbols dynamic. */ 4752 if ((abfd->flags & BFD_PLUGIN) != 0) 4753 dynsym = FALSE; 4754 4755 if (definition) 4756 { 4757 h->target_internal = isym->st_target_internal; 4758 h->unique_global = (flags & BSF_GNU_UNIQUE) != 0; 4759 } 4760 4761 if (definition && !dynamic) 4762 { 4763 char *p = strchr (name, ELF_VER_CHR); 4764 if (p != NULL && p[1] != ELF_VER_CHR) 4765 { 4766 /* Queue non-default versions so that .symver x, x@FOO 4767 aliases can be checked. */ 4768 if (!nondeflt_vers) 4769 { 4770 amt = ((isymend - isym + 1) 4771 * sizeof (struct elf_link_hash_entry *)); 4772 nondeflt_vers 4773 = (struct elf_link_hash_entry **) bfd_malloc (amt); 4774 if (!nondeflt_vers) 4775 goto error_free_vers; 4776 } 4777 nondeflt_vers[nondeflt_vers_cnt++] = h; 4778 } 4779 } 4780 4781 if (dynsym && h->dynindx == -1) 4782 { 4783 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 4784 goto error_free_vers; 4785 if (h->u.weakdef != NULL 4786 && ! new_weakdef 4787 && h->u.weakdef->dynindx == -1) 4788 { 4789 if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef)) 4790 goto error_free_vers; 4791 } 4792 } 4793 else if (h->dynindx != -1) 4794 /* If the symbol already has a dynamic index, but 4795 visibility says it should not be visible, turn it into 4796 a local symbol. */ 4797 switch (ELF_ST_VISIBILITY (h->other)) 4798 { 4799 case STV_INTERNAL: 4800 case STV_HIDDEN: 4801 (*bed->elf_backend_hide_symbol) (info, h, TRUE); 4802 dynsym = FALSE; 4803 break; 4804 } 4805 4806 /* Don't add DT_NEEDED for references from the dummy bfd nor 4807 for unmatched symbol. */ 4808 if (!add_needed 4809 && matched 4810 && definition 4811 && ((dynsym 4812 && h->ref_regular_nonweak 4813 && (old_bfd == NULL 4814 || (old_bfd->flags & BFD_PLUGIN) == 0)) 4815 || (h->ref_dynamic_nonweak 4816 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0 4817 && !on_needed_list (elf_dt_name (abfd), 4818 htab->needed, NULL)))) 4819 { 4820 int ret; 4821 const char *soname = elf_dt_name (abfd); 4822 4823 info->callbacks->minfo ("%!", soname, old_bfd, 4824 h->root.root.string); 4825 4826 /* A symbol from a library loaded via DT_NEEDED of some 4827 other library is referenced by a regular object. 4828 Add a DT_NEEDED entry for it. Issue an error if 4829 --no-add-needed is used and the reference was not 4830 a weak one. */ 4831 if (old_bfd != NULL 4832 && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0) 4833 { 4834 _bfd_error_handler 4835 /* xgettext:c-format */ 4836 (_("%B: undefined reference to symbol '%s'"), 4837 old_bfd, name); 4838 bfd_set_error (bfd_error_missing_dso); 4839 goto error_free_vers; 4840 } 4841 4842 elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class) 4843 (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED); 4844 4845 add_needed = TRUE; 4846 ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed); 4847 if (ret < 0) 4848 goto error_free_vers; 4849 4850 BFD_ASSERT (ret == 0); 4851 } 4852 } 4853 } 4854 4855 if (extversym != NULL) 4856 { 4857 free (extversym); 4858 extversym = NULL; 4859 } 4860 4861 if (isymbuf != NULL) 4862 { 4863 free (isymbuf); 4864 isymbuf = NULL; 4865 } 4866 4867 if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0) 4868 { 4869 unsigned int i; 4870 4871 /* Restore the symbol table. */ 4872 old_ent = (char *) old_tab + tabsize; 4873 memset (elf_sym_hashes (abfd), 0, 4874 extsymcount * sizeof (struct elf_link_hash_entry *)); 4875 htab->root.table.table = old_table; 4876 htab->root.table.size = old_size; 4877 htab->root.table.count = old_count; 4878 memcpy (htab->root.table.table, old_tab, tabsize); 4879 htab->root.undefs = old_undefs; 4880 htab->root.undefs_tail = old_undefs_tail; 4881 _bfd_elf_strtab_restore (htab->dynstr, old_strtab); 4882 free (old_strtab); 4883 old_strtab = NULL; 4884 for (i = 0; i < htab->root.table.size; i++) 4885 { 4886 struct bfd_hash_entry *p; 4887 struct elf_link_hash_entry *h; 4888 bfd_size_type size; 4889 unsigned int alignment_power; 4890 4891 for (p = htab->root.table.table[i]; p != NULL; p = p->next) 4892 { 4893 h = (struct elf_link_hash_entry *) p; 4894 if (h->root.type == bfd_link_hash_warning) 4895 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4896 4897 /* Preserve the maximum alignment and size for common 4898 symbols even if this dynamic lib isn't on DT_NEEDED 4899 since it can still be loaded at run time by another 4900 dynamic lib. */ 4901 if (h->root.type == bfd_link_hash_common) 4902 { 4903 size = h->root.u.c.size; 4904 alignment_power = h->root.u.c.p->alignment_power; 4905 } 4906 else 4907 { 4908 size = 0; 4909 alignment_power = 0; 4910 } 4911 memcpy (p, old_ent, htab->root.table.entsize); 4912 old_ent = (char *) old_ent + htab->root.table.entsize; 4913 h = (struct elf_link_hash_entry *) p; 4914 if (h->root.type == bfd_link_hash_warning) 4915 { 4916 memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize); 4917 old_ent = (char *) old_ent + htab->root.table.entsize; 4918 h = (struct elf_link_hash_entry *) h->root.u.i.link; 4919 } 4920 if (h->root.type == bfd_link_hash_common) 4921 { 4922 if (size > h->root.u.c.size) 4923 h->root.u.c.size = size; 4924 if (alignment_power > h->root.u.c.p->alignment_power) 4925 h->root.u.c.p->alignment_power = alignment_power; 4926 } 4927 } 4928 } 4929 4930 /* Make a special call to the linker "notice" function to 4931 tell it that symbols added for crefs may need to be removed. */ 4932 if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed)) 4933 goto error_free_vers; 4934 4935 free (old_tab); 4936 objalloc_free_block ((struct objalloc *) htab->root.table.memory, 4937 alloc_mark); 4938 if (nondeflt_vers != NULL) 4939 free (nondeflt_vers); 4940 return TRUE; 4941 } 4942 4943 if (old_tab != NULL) 4944 { 4945 if (!(*bed->notice_as_needed) (abfd, info, notice_needed)) 4946 goto error_free_vers; 4947 free (old_tab); 4948 old_tab = NULL; 4949 } 4950 4951 /* Now that all the symbols from this input file are created, if 4952 not performing a relocatable link, handle .symver foo, foo@BAR 4953 such that any relocs against foo become foo@BAR. */ 4954 if (!bfd_link_relocatable (info) && nondeflt_vers != NULL) 4955 { 4956 size_t cnt, symidx; 4957 4958 for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt) 4959 { 4960 struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi; 4961 char *shortname, *p; 4962 4963 p = strchr (h->root.root.string, ELF_VER_CHR); 4964 if (p == NULL 4965 || (h->root.type != bfd_link_hash_defined 4966 && h->root.type != bfd_link_hash_defweak)) 4967 continue; 4968 4969 amt = p - h->root.root.string; 4970 shortname = (char *) bfd_malloc (amt + 1); 4971 if (!shortname) 4972 goto error_free_vers; 4973 memcpy (shortname, h->root.root.string, amt); 4974 shortname[amt] = '\0'; 4975 4976 hi = (struct elf_link_hash_entry *) 4977 bfd_link_hash_lookup (&htab->root, shortname, 4978 FALSE, FALSE, FALSE); 4979 if (hi != NULL 4980 && hi->root.type == h->root.type 4981 && hi->root.u.def.value == h->root.u.def.value 4982 && hi->root.u.def.section == h->root.u.def.section) 4983 { 4984 (*bed->elf_backend_hide_symbol) (info, hi, TRUE); 4985 hi->root.type = bfd_link_hash_indirect; 4986 hi->root.u.i.link = (struct bfd_link_hash_entry *) h; 4987 (*bed->elf_backend_copy_indirect_symbol) (info, h, hi); 4988 sym_hash = elf_sym_hashes (abfd); 4989 if (sym_hash) 4990 for (symidx = 0; symidx < extsymcount; ++symidx) 4991 if (sym_hash[symidx] == hi) 4992 { 4993 sym_hash[symidx] = h; 4994 break; 4995 } 4996 } 4997 free (shortname); 4998 } 4999 free (nondeflt_vers); 5000 nondeflt_vers = NULL; 5001 } 5002 5003 /* Now set the weakdefs field correctly for all the weak defined 5004 symbols we found. The only way to do this is to search all the 5005 symbols. Since we only need the information for non functions in 5006 dynamic objects, that's the only time we actually put anything on 5007 the list WEAKS. We need this information so that if a regular 5008 object refers to a symbol defined weakly in a dynamic object, the 5009 real symbol in the dynamic object is also put in the dynamic 5010 symbols; we also must arrange for both symbols to point to the 5011 same memory location. We could handle the general case of symbol 5012 aliasing, but a general symbol alias can only be generated in 5013 assembler code, handling it correctly would be very time 5014 consuming, and other ELF linkers don't handle general aliasing 5015 either. */ 5016 if (weaks != NULL) 5017 { 5018 struct elf_link_hash_entry **hpp; 5019 struct elf_link_hash_entry **hppend; 5020 struct elf_link_hash_entry **sorted_sym_hash; 5021 struct elf_link_hash_entry *h; 5022 size_t sym_count; 5023 5024 /* Since we have to search the whole symbol list for each weak 5025 defined symbol, search time for N weak defined symbols will be 5026 O(N^2). Binary search will cut it down to O(NlogN). */ 5027 amt = extsymcount; 5028 amt *= sizeof (struct elf_link_hash_entry *); 5029 sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt); 5030 if (sorted_sym_hash == NULL) 5031 goto error_return; 5032 sym_hash = sorted_sym_hash; 5033 hpp = elf_sym_hashes (abfd); 5034 hppend = hpp + extsymcount; 5035 sym_count = 0; 5036 for (; hpp < hppend; hpp++) 5037 { 5038 h = *hpp; 5039 if (h != NULL 5040 && h->root.type == bfd_link_hash_defined 5041 && !bed->is_function_type (h->type)) 5042 { 5043 *sym_hash = h; 5044 sym_hash++; 5045 sym_count++; 5046 } 5047 } 5048 5049 qsort (sorted_sym_hash, sym_count, 5050 sizeof (struct elf_link_hash_entry *), 5051 elf_sort_symbol); 5052 5053 while (weaks != NULL) 5054 { 5055 struct elf_link_hash_entry *hlook; 5056 asection *slook; 5057 bfd_vma vlook; 5058 size_t i, j, idx = 0; 5059 5060 hlook = weaks; 5061 weaks = hlook->u.weakdef; 5062 hlook->u.weakdef = NULL; 5063 5064 BFD_ASSERT (hlook->root.type == bfd_link_hash_defined 5065 || hlook->root.type == bfd_link_hash_defweak 5066 || hlook->root.type == bfd_link_hash_common 5067 || hlook->root.type == bfd_link_hash_indirect); 5068 slook = hlook->root.u.def.section; 5069 vlook = hlook->root.u.def.value; 5070 5071 i = 0; 5072 j = sym_count; 5073 while (i != j) 5074 { 5075 bfd_signed_vma vdiff; 5076 idx = (i + j) / 2; 5077 h = sorted_sym_hash[idx]; 5078 vdiff = vlook - h->root.u.def.value; 5079 if (vdiff < 0) 5080 j = idx; 5081 else if (vdiff > 0) 5082 i = idx + 1; 5083 else 5084 { 5085 int sdiff = slook->id - h->root.u.def.section->id; 5086 if (sdiff < 0) 5087 j = idx; 5088 else if (sdiff > 0) 5089 i = idx + 1; 5090 else 5091 break; 5092 } 5093 } 5094 5095 /* We didn't find a value/section match. */ 5096 if (i == j) 5097 continue; 5098 5099 /* With multiple aliases, or when the weak symbol is already 5100 strongly defined, we have multiple matching symbols and 5101 the binary search above may land on any of them. Step 5102 one past the matching symbol(s). */ 5103 while (++idx != j) 5104 { 5105 h = sorted_sym_hash[idx]; 5106 if (h->root.u.def.section != slook 5107 || h->root.u.def.value != vlook) 5108 break; 5109 } 5110 5111 /* Now look back over the aliases. Since we sorted by size 5112 as well as value and section, we'll choose the one with 5113 the largest size. */ 5114 while (idx-- != i) 5115 { 5116 h = sorted_sym_hash[idx]; 5117 5118 /* Stop if value or section doesn't match. */ 5119 if (h->root.u.def.section != slook 5120 || h->root.u.def.value != vlook) 5121 break; 5122 else if (h != hlook) 5123 { 5124 hlook->u.weakdef = h; 5125 5126 /* If the weak definition is in the list of dynamic 5127 symbols, make sure the real definition is put 5128 there as well. */ 5129 if (hlook->dynindx != -1 && h->dynindx == -1) 5130 { 5131 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 5132 { 5133 err_free_sym_hash: 5134 free (sorted_sym_hash); 5135 goto error_return; 5136 } 5137 } 5138 5139 /* If the real definition is in the list of dynamic 5140 symbols, make sure the weak definition is put 5141 there as well. If we don't do this, then the 5142 dynamic loader might not merge the entries for the 5143 real definition and the weak definition. */ 5144 if (h->dynindx != -1 && hlook->dynindx == -1) 5145 { 5146 if (! bfd_elf_link_record_dynamic_symbol (info, hlook)) 5147 goto err_free_sym_hash; 5148 } 5149 break; 5150 } 5151 } 5152 } 5153 5154 free (sorted_sym_hash); 5155 } 5156 5157 if (bed->check_directives 5158 && !(*bed->check_directives) (abfd, info)) 5159 return FALSE; 5160 5161 if (!info->check_relocs_after_open_input 5162 && !_bfd_elf_link_check_relocs (abfd, info)) 5163 return FALSE; 5164 5165 /* If this is a non-traditional link, try to optimize the handling 5166 of the .stab/.stabstr sections. */ 5167 if (! dynamic 5168 && ! info->traditional_format 5169 && is_elf_hash_table (htab) 5170 && (info->strip != strip_all && info->strip != strip_debugger)) 5171 { 5172 asection *stabstr; 5173 5174 stabstr = bfd_get_section_by_name (abfd, ".stabstr"); 5175 if (stabstr != NULL) 5176 { 5177 bfd_size_type string_offset = 0; 5178 asection *stab; 5179 5180 for (stab = abfd->sections; stab; stab = stab->next) 5181 if (CONST_STRNEQ (stab->name, ".stab") 5182 && (!stab->name[5] || 5183 (stab->name[5] == '.' && ISDIGIT (stab->name[6]))) 5184 && (stab->flags & SEC_MERGE) == 0 5185 && !bfd_is_abs_section (stab->output_section)) 5186 { 5187 struct bfd_elf_section_data *secdata; 5188 5189 secdata = elf_section_data (stab); 5190 if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab, 5191 stabstr, &secdata->sec_info, 5192 &string_offset)) 5193 goto error_return; 5194 if (secdata->sec_info) 5195 stab->sec_info_type = SEC_INFO_TYPE_STABS; 5196 } 5197 } 5198 } 5199 5200 if (is_elf_hash_table (htab) && add_needed) 5201 { 5202 /* Add this bfd to the loaded list. */ 5203 struct elf_link_loaded_list *n; 5204 5205 n = (struct elf_link_loaded_list *) bfd_alloc (abfd, sizeof (*n)); 5206 if (n == NULL) 5207 goto error_return; 5208 n->abfd = abfd; 5209 n->next = htab->loaded; 5210 htab->loaded = n; 5211 } 5212 5213 return TRUE; 5214 5215 error_free_vers: 5216 if (old_tab != NULL) 5217 free (old_tab); 5218 if (old_strtab != NULL) 5219 free (old_strtab); 5220 if (nondeflt_vers != NULL) 5221 free (nondeflt_vers); 5222 if (extversym != NULL) 5223 free (extversym); 5224 error_free_sym: 5225 if (isymbuf != NULL) 5226 free (isymbuf); 5227 error_return: 5228 return FALSE; 5229 } 5230 5231 /* Return the linker hash table entry of a symbol that might be 5232 satisfied by an archive symbol. Return -1 on error. */ 5233 5234 struct elf_link_hash_entry * 5235 _bfd_elf_archive_symbol_lookup (bfd *abfd, 5236 struct bfd_link_info *info, 5237 const char *name) 5238 { 5239 struct elf_link_hash_entry *h; 5240 char *p, *copy; 5241 size_t len, first; 5242 5243 h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE); 5244 if (h != NULL) 5245 return h; 5246 5247 /* If this is a default version (the name contains @@), look up the 5248 symbol again with only one `@' as well as without the version. 5249 The effect is that references to the symbol with and without the 5250 version will be matched by the default symbol in the archive. */ 5251 5252 p = strchr (name, ELF_VER_CHR); 5253 if (p == NULL || p[1] != ELF_VER_CHR) 5254 return h; 5255 5256 /* First check with only one `@'. */ 5257 len = strlen (name); 5258 copy = (char *) bfd_alloc (abfd, len); 5259 if (copy == NULL) 5260 return (struct elf_link_hash_entry *) 0 - 1; 5261 5262 first = p - name + 1; 5263 memcpy (copy, name, first); 5264 memcpy (copy + first, name + first + 1, len - first); 5265 5266 h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE); 5267 if (h == NULL) 5268 { 5269 /* We also need to check references to the symbol without the 5270 version. */ 5271 copy[first - 1] = '\0'; 5272 h = elf_link_hash_lookup (elf_hash_table (info), copy, 5273 FALSE, FALSE, TRUE); 5274 } 5275 5276 bfd_release (abfd, copy); 5277 return h; 5278 } 5279 5280 /* Add symbols from an ELF archive file to the linker hash table. We 5281 don't use _bfd_generic_link_add_archive_symbols because we need to 5282 handle versioned symbols. 5283 5284 Fortunately, ELF archive handling is simpler than that done by 5285 _bfd_generic_link_add_archive_symbols, which has to allow for a.out 5286 oddities. In ELF, if we find a symbol in the archive map, and the 5287 symbol is currently undefined, we know that we must pull in that 5288 object file. 5289 5290 Unfortunately, we do have to make multiple passes over the symbol 5291 table until nothing further is resolved. */ 5292 5293 static bfd_boolean 5294 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info) 5295 { 5296 symindex c; 5297 unsigned char *included = NULL; 5298 carsym *symdefs; 5299 bfd_boolean loop; 5300 bfd_size_type amt; 5301 const struct elf_backend_data *bed; 5302 struct elf_link_hash_entry * (*archive_symbol_lookup) 5303 (bfd *, struct bfd_link_info *, const char *); 5304 5305 if (! bfd_has_map (abfd)) 5306 { 5307 /* An empty archive is a special case. */ 5308 if (bfd_openr_next_archived_file (abfd, NULL) == NULL) 5309 return TRUE; 5310 bfd_set_error (bfd_error_no_armap); 5311 return FALSE; 5312 } 5313 5314 /* Keep track of all symbols we know to be already defined, and all 5315 files we know to be already included. This is to speed up the 5316 second and subsequent passes. */ 5317 c = bfd_ardata (abfd)->symdef_count; 5318 if (c == 0) 5319 return TRUE; 5320 amt = c; 5321 amt *= sizeof (*included); 5322 included = (unsigned char *) bfd_zmalloc (amt); 5323 if (included == NULL) 5324 return FALSE; 5325 5326 symdefs = bfd_ardata (abfd)->symdefs; 5327 bed = get_elf_backend_data (abfd); 5328 archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup; 5329 5330 do 5331 { 5332 file_ptr last; 5333 symindex i; 5334 carsym *symdef; 5335 carsym *symdefend; 5336 5337 loop = FALSE; 5338 last = -1; 5339 5340 symdef = symdefs; 5341 symdefend = symdef + c; 5342 for (i = 0; symdef < symdefend; symdef++, i++) 5343 { 5344 struct elf_link_hash_entry *h; 5345 bfd *element; 5346 struct bfd_link_hash_entry *undefs_tail; 5347 symindex mark; 5348 5349 if (included[i]) 5350 continue; 5351 if (symdef->file_offset == last) 5352 { 5353 included[i] = TRUE; 5354 continue; 5355 } 5356 5357 h = archive_symbol_lookup (abfd, info, symdef->name); 5358 if (h == (struct elf_link_hash_entry *) 0 - 1) 5359 goto error_return; 5360 5361 if (h == NULL) 5362 continue; 5363 5364 if (h->root.type == bfd_link_hash_common) 5365 { 5366 /* We currently have a common symbol. The archive map contains 5367 a reference to this symbol, so we may want to include it. We 5368 only want to include it however, if this archive element 5369 contains a definition of the symbol, not just another common 5370 declaration of it. 5371 5372 Unfortunately some archivers (including GNU ar) will put 5373 declarations of common symbols into their archive maps, as 5374 well as real definitions, so we cannot just go by the archive 5375 map alone. Instead we must read in the element's symbol 5376 table and check that to see what kind of symbol definition 5377 this is. */ 5378 if (! elf_link_is_defined_archive_symbol (abfd, symdef)) 5379 continue; 5380 } 5381 else if (h->root.type != bfd_link_hash_undefined) 5382 { 5383 if (h->root.type != bfd_link_hash_undefweak) 5384 /* Symbol must be defined. Don't check it again. */ 5385 included[i] = TRUE; 5386 continue; 5387 } 5388 5389 /* We need to include this archive member. */ 5390 element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset); 5391 if (element == NULL) 5392 goto error_return; 5393 5394 if (! bfd_check_format (element, bfd_object)) 5395 goto error_return; 5396 5397 undefs_tail = info->hash->undefs_tail; 5398 5399 if (!(*info->callbacks 5400 ->add_archive_element) (info, element, symdef->name, &element)) 5401 continue; 5402 if (!bfd_link_add_symbols (element, info)) 5403 goto error_return; 5404 5405 /* If there are any new undefined symbols, we need to make 5406 another pass through the archive in order to see whether 5407 they can be defined. FIXME: This isn't perfect, because 5408 common symbols wind up on undefs_tail and because an 5409 undefined symbol which is defined later on in this pass 5410 does not require another pass. This isn't a bug, but it 5411 does make the code less efficient than it could be. */ 5412 if (undefs_tail != info->hash->undefs_tail) 5413 loop = TRUE; 5414 5415 /* Look backward to mark all symbols from this object file 5416 which we have already seen in this pass. */ 5417 mark = i; 5418 do 5419 { 5420 included[mark] = TRUE; 5421 if (mark == 0) 5422 break; 5423 --mark; 5424 } 5425 while (symdefs[mark].file_offset == symdef->file_offset); 5426 5427 /* We mark subsequent symbols from this object file as we go 5428 on through the loop. */ 5429 last = symdef->file_offset; 5430 } 5431 } 5432 while (loop); 5433 5434 free (included); 5435 5436 return TRUE; 5437 5438 error_return: 5439 if (included != NULL) 5440 free (included); 5441 return FALSE; 5442 } 5443 5444 /* Given an ELF BFD, add symbols to the global hash table as 5445 appropriate. */ 5446 5447 bfd_boolean 5448 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info) 5449 { 5450 switch (bfd_get_format (abfd)) 5451 { 5452 case bfd_object: 5453 return elf_link_add_object_symbols (abfd, info); 5454 case bfd_archive: 5455 return elf_link_add_archive_symbols (abfd, info); 5456 default: 5457 bfd_set_error (bfd_error_wrong_format); 5458 return FALSE; 5459 } 5460 } 5461 5462 struct hash_codes_info 5463 { 5464 unsigned long *hashcodes; 5465 bfd_boolean error; 5466 }; 5467 5468 /* This function will be called though elf_link_hash_traverse to store 5469 all hash value of the exported symbols in an array. */ 5470 5471 static bfd_boolean 5472 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data) 5473 { 5474 struct hash_codes_info *inf = (struct hash_codes_info *) data; 5475 const char *name; 5476 unsigned long ha; 5477 char *alc = NULL; 5478 5479 /* Ignore indirect symbols. These are added by the versioning code. */ 5480 if (h->dynindx == -1) 5481 return TRUE; 5482 5483 name = h->root.root.string; 5484 if (h->versioned >= versioned) 5485 { 5486 char *p = strchr (name, ELF_VER_CHR); 5487 if (p != NULL) 5488 { 5489 alc = (char *) bfd_malloc (p - name + 1); 5490 if (alc == NULL) 5491 { 5492 inf->error = TRUE; 5493 return FALSE; 5494 } 5495 memcpy (alc, name, p - name); 5496 alc[p - name] = '\0'; 5497 name = alc; 5498 } 5499 } 5500 5501 /* Compute the hash value. */ 5502 ha = bfd_elf_hash (name); 5503 5504 /* Store the found hash value in the array given as the argument. */ 5505 *(inf->hashcodes)++ = ha; 5506 5507 /* And store it in the struct so that we can put it in the hash table 5508 later. */ 5509 h->u.elf_hash_value = ha; 5510 5511 if (alc != NULL) 5512 free (alc); 5513 5514 return TRUE; 5515 } 5516 5517 struct collect_gnu_hash_codes 5518 { 5519 bfd *output_bfd; 5520 const struct elf_backend_data *bed; 5521 unsigned long int nsyms; 5522 unsigned long int maskbits; 5523 unsigned long int *hashcodes; 5524 unsigned long int *hashval; 5525 unsigned long int *indx; 5526 unsigned long int *counts; 5527 bfd_vma *bitmask; 5528 bfd_byte *contents; 5529 long int min_dynindx; 5530 unsigned long int bucketcount; 5531 unsigned long int symindx; 5532 long int local_indx; 5533 long int shift1, shift2; 5534 unsigned long int mask; 5535 bfd_boolean error; 5536 }; 5537 5538 /* This function will be called though elf_link_hash_traverse to store 5539 all hash value of the exported symbols in an array. */ 5540 5541 static bfd_boolean 5542 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data) 5543 { 5544 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5545 const char *name; 5546 unsigned long ha; 5547 char *alc = NULL; 5548 5549 /* Ignore indirect symbols. These are added by the versioning code. */ 5550 if (h->dynindx == -1) 5551 return TRUE; 5552 5553 /* Ignore also local symbols and undefined symbols. */ 5554 if (! (*s->bed->elf_hash_symbol) (h)) 5555 return TRUE; 5556 5557 name = h->root.root.string; 5558 if (h->versioned >= versioned) 5559 { 5560 char *p = strchr (name, ELF_VER_CHR); 5561 if (p != NULL) 5562 { 5563 alc = (char *) bfd_malloc (p - name + 1); 5564 if (alc == NULL) 5565 { 5566 s->error = TRUE; 5567 return FALSE; 5568 } 5569 memcpy (alc, name, p - name); 5570 alc[p - name] = '\0'; 5571 name = alc; 5572 } 5573 } 5574 5575 /* Compute the hash value. */ 5576 ha = bfd_elf_gnu_hash (name); 5577 5578 /* Store the found hash value in the array for compute_bucket_count, 5579 and also for .dynsym reordering purposes. */ 5580 s->hashcodes[s->nsyms] = ha; 5581 s->hashval[h->dynindx] = ha; 5582 ++s->nsyms; 5583 if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx) 5584 s->min_dynindx = h->dynindx; 5585 5586 if (alc != NULL) 5587 free (alc); 5588 5589 return TRUE; 5590 } 5591 5592 /* This function will be called though elf_link_hash_traverse to do 5593 final dynaminc symbol renumbering. */ 5594 5595 static bfd_boolean 5596 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data) 5597 { 5598 struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data; 5599 unsigned long int bucket; 5600 unsigned long int val; 5601 5602 /* Ignore indirect symbols. */ 5603 if (h->dynindx == -1) 5604 return TRUE; 5605 5606 /* Ignore also local symbols and undefined symbols. */ 5607 if (! (*s->bed->elf_hash_symbol) (h)) 5608 { 5609 if (h->dynindx >= s->min_dynindx) 5610 h->dynindx = s->local_indx++; 5611 return TRUE; 5612 } 5613 5614 bucket = s->hashval[h->dynindx] % s->bucketcount; 5615 val = (s->hashval[h->dynindx] >> s->shift1) 5616 & ((s->maskbits >> s->shift1) - 1); 5617 s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask); 5618 s->bitmask[val] 5619 |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask); 5620 val = s->hashval[h->dynindx] & ~(unsigned long int) 1; 5621 if (s->counts[bucket] == 1) 5622 /* Last element terminates the chain. */ 5623 val |= 1; 5624 bfd_put_32 (s->output_bfd, val, 5625 s->contents + (s->indx[bucket] - s->symindx) * 4); 5626 --s->counts[bucket]; 5627 h->dynindx = s->indx[bucket]++; 5628 return TRUE; 5629 } 5630 5631 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section. */ 5632 5633 bfd_boolean 5634 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h) 5635 { 5636 return !(h->forced_local 5637 || h->root.type == bfd_link_hash_undefined 5638 || h->root.type == bfd_link_hash_undefweak 5639 || ((h->root.type == bfd_link_hash_defined 5640 || h->root.type == bfd_link_hash_defweak) 5641 && h->root.u.def.section->output_section == NULL)); 5642 } 5643 5644 /* Array used to determine the number of hash table buckets to use 5645 based on the number of symbols there are. If there are fewer than 5646 3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets, 5647 fewer than 37 we use 17 buckets, and so forth. We never use more 5648 than 32771 buckets. */ 5649 5650 static const size_t elf_buckets[] = 5651 { 5652 1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209, 5653 16411, 32771, 0 5654 }; 5655 5656 /* Compute bucket count for hashing table. We do not use a static set 5657 of possible tables sizes anymore. Instead we determine for all 5658 possible reasonable sizes of the table the outcome (i.e., the 5659 number of collisions etc) and choose the best solution. The 5660 weighting functions are not too simple to allow the table to grow 5661 without bounds. Instead one of the weighting factors is the size. 5662 Therefore the result is always a good payoff between few collisions 5663 (= short chain lengths) and table size. */ 5664 static size_t 5665 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED, 5666 unsigned long int *hashcodes ATTRIBUTE_UNUSED, 5667 unsigned long int nsyms, 5668 int gnu_hash) 5669 { 5670 size_t best_size = 0; 5671 unsigned long int i; 5672 5673 /* We have a problem here. The following code to optimize the table 5674 size requires an integer type with more the 32 bits. If 5675 BFD_HOST_U_64_BIT is set we know about such a type. */ 5676 #ifdef BFD_HOST_U_64_BIT 5677 if (info->optimize) 5678 { 5679 size_t minsize; 5680 size_t maxsize; 5681 BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0); 5682 bfd *dynobj = elf_hash_table (info)->dynobj; 5683 size_t dynsymcount = elf_hash_table (info)->dynsymcount; 5684 const struct elf_backend_data *bed = get_elf_backend_data (dynobj); 5685 unsigned long int *counts; 5686 bfd_size_type amt; 5687 unsigned int no_improvement_count = 0; 5688 5689 /* Possible optimization parameters: if we have NSYMS symbols we say 5690 that the hashing table must at least have NSYMS/4 and at most 5691 2*NSYMS buckets. */ 5692 minsize = nsyms / 4; 5693 if (minsize == 0) 5694 minsize = 1; 5695 best_size = maxsize = nsyms * 2; 5696 if (gnu_hash) 5697 { 5698 if (minsize < 2) 5699 minsize = 2; 5700 if ((best_size & 31) == 0) 5701 ++best_size; 5702 } 5703 5704 /* Create array where we count the collisions in. We must use bfd_malloc 5705 since the size could be large. */ 5706 amt = maxsize; 5707 amt *= sizeof (unsigned long int); 5708 counts = (unsigned long int *) bfd_malloc (amt); 5709 if (counts == NULL) 5710 return 0; 5711 5712 /* Compute the "optimal" size for the hash table. The criteria is a 5713 minimal chain length. The minor criteria is (of course) the size 5714 of the table. */ 5715 for (i = minsize; i < maxsize; ++i) 5716 { 5717 /* Walk through the array of hashcodes and count the collisions. */ 5718 BFD_HOST_U_64_BIT max; 5719 unsigned long int j; 5720 unsigned long int fact; 5721 5722 if (gnu_hash && (i & 31) == 0) 5723 continue; 5724 5725 memset (counts, '\0', i * sizeof (unsigned long int)); 5726 5727 /* Determine how often each hash bucket is used. */ 5728 for (j = 0; j < nsyms; ++j) 5729 ++counts[hashcodes[j] % i]; 5730 5731 /* For the weight function we need some information about the 5732 pagesize on the target. This is information need not be 100% 5733 accurate. Since this information is not available (so far) we 5734 define it here to a reasonable default value. If it is crucial 5735 to have a better value some day simply define this value. */ 5736 # ifndef BFD_TARGET_PAGESIZE 5737 # define BFD_TARGET_PAGESIZE (4096) 5738 # endif 5739 5740 /* We in any case need 2 + DYNSYMCOUNT entries for the size values 5741 and the chains. */ 5742 max = (2 + dynsymcount) * bed->s->sizeof_hash_entry; 5743 5744 # if 1 5745 /* Variant 1: optimize for short chains. We add the squares 5746 of all the chain lengths (which favors many small chain 5747 over a few long chains). */ 5748 for (j = 0; j < i; ++j) 5749 max += counts[j] * counts[j]; 5750 5751 /* This adds penalties for the overall size of the table. */ 5752 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 5753 max *= fact * fact; 5754 # else 5755 /* Variant 2: Optimize a lot more for small table. Here we 5756 also add squares of the size but we also add penalties for 5757 empty slots (the +1 term). */ 5758 for (j = 0; j < i; ++j) 5759 max += (1 + counts[j]) * (1 + counts[j]); 5760 5761 /* The overall size of the table is considered, but not as 5762 strong as in variant 1, where it is squared. */ 5763 fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1; 5764 max *= fact; 5765 # endif 5766 5767 /* Compare with current best results. */ 5768 if (max < best_chlen) 5769 { 5770 best_chlen = max; 5771 best_size = i; 5772 no_improvement_count = 0; 5773 } 5774 /* PR 11843: Avoid futile long searches for the best bucket size 5775 when there are a large number of symbols. */ 5776 else if (++no_improvement_count == 100) 5777 break; 5778 } 5779 5780 free (counts); 5781 } 5782 else 5783 #endif /* defined (BFD_HOST_U_64_BIT) */ 5784 { 5785 /* This is the fallback solution if no 64bit type is available or if we 5786 are not supposed to spend much time on optimizations. We select the 5787 bucket count using a fixed set of numbers. */ 5788 for (i = 0; elf_buckets[i] != 0; i++) 5789 { 5790 best_size = elf_buckets[i]; 5791 if (nsyms < elf_buckets[i + 1]) 5792 break; 5793 } 5794 if (gnu_hash && best_size < 2) 5795 best_size = 2; 5796 } 5797 5798 return best_size; 5799 } 5800 5801 /* Size any SHT_GROUP section for ld -r. */ 5802 5803 bfd_boolean 5804 _bfd_elf_size_group_sections (struct bfd_link_info *info) 5805 { 5806 bfd *ibfd; 5807 5808 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 5809 if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour 5810 && !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr)) 5811 return FALSE; 5812 return TRUE; 5813 } 5814 5815 /* Set a default stack segment size. The value in INFO wins. If it 5816 is unset, LEGACY_SYMBOL's value is used, and if that symbol is 5817 undefined it is initialized. */ 5818 5819 bfd_boolean 5820 bfd_elf_stack_segment_size (bfd *output_bfd, 5821 struct bfd_link_info *info, 5822 const char *legacy_symbol, 5823 bfd_vma default_size) 5824 { 5825 struct elf_link_hash_entry *h = NULL; 5826 5827 /* Look for legacy symbol. */ 5828 if (legacy_symbol) 5829 h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol, 5830 FALSE, FALSE, FALSE); 5831 if (h && (h->root.type == bfd_link_hash_defined 5832 || h->root.type == bfd_link_hash_defweak) 5833 && h->def_regular 5834 && (h->type == STT_NOTYPE || h->type == STT_OBJECT)) 5835 { 5836 /* The symbol has no type if specified on the command line. */ 5837 h->type = STT_OBJECT; 5838 if (info->stacksize) 5839 /* xgettext:c-format */ 5840 _bfd_error_handler (_("%B: stack size specified and %s set"), 5841 output_bfd, legacy_symbol); 5842 else if (h->root.u.def.section != bfd_abs_section_ptr) 5843 /* xgettext:c-format */ 5844 _bfd_error_handler (_("%B: %s not absolute"), 5845 output_bfd, legacy_symbol); 5846 else 5847 info->stacksize = h->root.u.def.value; 5848 } 5849 5850 if (!info->stacksize) 5851 /* If the user didn't set a size, or explicitly inhibit the 5852 size, set it now. */ 5853 info->stacksize = default_size; 5854 5855 /* Provide the legacy symbol, if it is referenced. */ 5856 if (h && (h->root.type == bfd_link_hash_undefined 5857 || h->root.type == bfd_link_hash_undefweak)) 5858 { 5859 struct bfd_link_hash_entry *bh = NULL; 5860 5861 if (!(_bfd_generic_link_add_one_symbol 5862 (info, output_bfd, legacy_symbol, 5863 BSF_GLOBAL, bfd_abs_section_ptr, 5864 info->stacksize >= 0 ? info->stacksize : 0, 5865 NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh))) 5866 return FALSE; 5867 5868 h = (struct elf_link_hash_entry *) bh; 5869 h->def_regular = 1; 5870 h->type = STT_OBJECT; 5871 } 5872 5873 return TRUE; 5874 } 5875 5876 /* Sweep symbols in swept sections. Called via elf_link_hash_traverse. */ 5877 5878 struct elf_gc_sweep_symbol_info 5879 { 5880 struct bfd_link_info *info; 5881 void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *, 5882 bfd_boolean); 5883 }; 5884 5885 static bfd_boolean 5886 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data) 5887 { 5888 if (!h->mark 5889 && (((h->root.type == bfd_link_hash_defined 5890 || h->root.type == bfd_link_hash_defweak) 5891 && !((h->def_regular || ELF_COMMON_DEF_P (h)) 5892 && h->root.u.def.section->gc_mark)) 5893 || h->root.type == bfd_link_hash_undefined 5894 || h->root.type == bfd_link_hash_undefweak)) 5895 { 5896 struct elf_gc_sweep_symbol_info *inf; 5897 5898 inf = (struct elf_gc_sweep_symbol_info *) data; 5899 (*inf->hide_symbol) (inf->info, h, TRUE); 5900 h->def_regular = 0; 5901 h->ref_regular = 0; 5902 h->ref_regular_nonweak = 0; 5903 } 5904 5905 return TRUE; 5906 } 5907 5908 /* Set up the sizes and contents of the ELF dynamic sections. This is 5909 called by the ELF linker emulation before_allocation routine. We 5910 must set the sizes of the sections before the linker sets the 5911 addresses of the various sections. */ 5912 5913 bfd_boolean 5914 bfd_elf_size_dynamic_sections (bfd *output_bfd, 5915 const char *soname, 5916 const char *rpath, 5917 const char *filter_shlib, 5918 const char *audit, 5919 const char *depaudit, 5920 const char * const *auxiliary_filters, 5921 struct bfd_link_info *info, 5922 asection **sinterpptr) 5923 { 5924 size_t soname_indx; 5925 bfd *dynobj; 5926 const struct elf_backend_data *bed; 5927 5928 *sinterpptr = NULL; 5929 5930 soname_indx = (size_t) -1; 5931 5932 if (!is_elf_hash_table (info->hash)) 5933 return TRUE; 5934 5935 dynobj = elf_hash_table (info)->dynobj; 5936 5937 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 5938 { 5939 struct bfd_elf_version_tree *verdefs; 5940 struct elf_info_failed asvinfo; 5941 struct bfd_elf_version_tree *t; 5942 struct bfd_elf_version_expr *d; 5943 struct elf_info_failed eif; 5944 bfd_boolean all_defined; 5945 asection *s; 5946 5947 eif.info = info; 5948 eif.failed = FALSE; 5949 5950 /* If we are supposed to export all symbols into the dynamic symbol 5951 table (this is not the normal case), then do so. */ 5952 if (info->export_dynamic 5953 || (bfd_link_executable (info) && info->dynamic)) 5954 { 5955 elf_link_hash_traverse (elf_hash_table (info), 5956 _bfd_elf_export_symbol, 5957 &eif); 5958 if (eif.failed) 5959 return FALSE; 5960 } 5961 5962 /* Make all global versions with definition. */ 5963 for (t = info->version_info; t != NULL; t = t->next) 5964 for (d = t->globals.list; d != NULL; d = d->next) 5965 if (!d->symver && d->literal) 5966 { 5967 const char *verstr, *name; 5968 size_t namelen, verlen, newlen; 5969 char *newname, *p, leading_char; 5970 struct elf_link_hash_entry *newh; 5971 5972 leading_char = bfd_get_symbol_leading_char (output_bfd); 5973 name = d->pattern; 5974 namelen = strlen (name) + (leading_char != '\0'); 5975 verstr = t->name; 5976 verlen = strlen (verstr); 5977 newlen = namelen + verlen + 3; 5978 5979 newname = (char *) bfd_malloc (newlen); 5980 if (newname == NULL) 5981 return FALSE; 5982 newname[0] = leading_char; 5983 memcpy (newname + (leading_char != '\0'), name, namelen); 5984 5985 /* Check the hidden versioned definition. */ 5986 p = newname + namelen; 5987 *p++ = ELF_VER_CHR; 5988 memcpy (p, verstr, verlen + 1); 5989 newh = elf_link_hash_lookup (elf_hash_table (info), 5990 newname, FALSE, FALSE, 5991 FALSE); 5992 if (newh == NULL 5993 || (newh->root.type != bfd_link_hash_defined 5994 && newh->root.type != bfd_link_hash_defweak)) 5995 { 5996 /* Check the default versioned definition. */ 5997 *p++ = ELF_VER_CHR; 5998 memcpy (p, verstr, verlen + 1); 5999 newh = elf_link_hash_lookup (elf_hash_table (info), 6000 newname, FALSE, FALSE, 6001 FALSE); 6002 } 6003 free (newname); 6004 6005 /* Mark this version if there is a definition and it is 6006 not defined in a shared object. */ 6007 if (newh != NULL 6008 && !newh->def_dynamic 6009 && (newh->root.type == bfd_link_hash_defined 6010 || newh->root.type == bfd_link_hash_defweak)) 6011 d->symver = 1; 6012 } 6013 6014 /* Attach all the symbols to their version information. */ 6015 asvinfo.info = info; 6016 asvinfo.failed = FALSE; 6017 6018 elf_link_hash_traverse (elf_hash_table (info), 6019 _bfd_elf_link_assign_sym_version, 6020 &asvinfo); 6021 if (asvinfo.failed) 6022 return FALSE; 6023 6024 if (!info->allow_undefined_version) 6025 { 6026 /* Check if all global versions have a definition. */ 6027 all_defined = TRUE; 6028 for (t = info->version_info; t != NULL; t = t->next) 6029 for (d = t->globals.list; d != NULL; d = d->next) 6030 if (d->literal && !d->symver && !d->script) 6031 { 6032 _bfd_error_handler 6033 (_("%s: undefined version: %s"), 6034 d->pattern, t->name); 6035 all_defined = FALSE; 6036 } 6037 6038 if (!all_defined) 6039 { 6040 bfd_set_error (bfd_error_bad_value); 6041 return FALSE; 6042 } 6043 } 6044 6045 /* Set up the version definition section. */ 6046 s = bfd_get_linker_section (dynobj, ".gnu.version_d"); 6047 BFD_ASSERT (s != NULL); 6048 6049 /* We may have created additional version definitions if we are 6050 just linking a regular application. */ 6051 verdefs = info->version_info; 6052 6053 /* Skip anonymous version tag. */ 6054 if (verdefs != NULL && verdefs->vernum == 0) 6055 verdefs = verdefs->next; 6056 6057 if (verdefs == NULL && !info->create_default_symver) 6058 s->flags |= SEC_EXCLUDE; 6059 else 6060 { 6061 unsigned int cdefs; 6062 bfd_size_type size; 6063 bfd_byte *p; 6064 Elf_Internal_Verdef def; 6065 Elf_Internal_Verdaux defaux; 6066 struct bfd_link_hash_entry *bh; 6067 struct elf_link_hash_entry *h; 6068 const char *name; 6069 6070 cdefs = 0; 6071 size = 0; 6072 6073 /* Make space for the base version. */ 6074 size += sizeof (Elf_External_Verdef); 6075 size += sizeof (Elf_External_Verdaux); 6076 ++cdefs; 6077 6078 /* Make space for the default version. */ 6079 if (info->create_default_symver) 6080 { 6081 size += sizeof (Elf_External_Verdef); 6082 ++cdefs; 6083 } 6084 6085 for (t = verdefs; t != NULL; t = t->next) 6086 { 6087 struct bfd_elf_version_deps *n; 6088 6089 /* Don't emit base version twice. */ 6090 if (t->vernum == 0) 6091 continue; 6092 6093 size += sizeof (Elf_External_Verdef); 6094 size += sizeof (Elf_External_Verdaux); 6095 ++cdefs; 6096 6097 for (n = t->deps; n != NULL; n = n->next) 6098 size += sizeof (Elf_External_Verdaux); 6099 } 6100 6101 s->size = size; 6102 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6103 if (s->contents == NULL && s->size != 0) 6104 return FALSE; 6105 6106 /* Fill in the version definition section. */ 6107 6108 p = s->contents; 6109 6110 def.vd_version = VER_DEF_CURRENT; 6111 def.vd_flags = VER_FLG_BASE; 6112 def.vd_ndx = 1; 6113 def.vd_cnt = 1; 6114 if (info->create_default_symver) 6115 { 6116 def.vd_aux = 2 * sizeof (Elf_External_Verdef); 6117 def.vd_next = sizeof (Elf_External_Verdef); 6118 } 6119 else 6120 { 6121 def.vd_aux = sizeof (Elf_External_Verdef); 6122 def.vd_next = (sizeof (Elf_External_Verdef) 6123 + sizeof (Elf_External_Verdaux)); 6124 } 6125 6126 if (soname_indx != (size_t) -1) 6127 { 6128 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6129 soname_indx); 6130 def.vd_hash = bfd_elf_hash (soname); 6131 defaux.vda_name = soname_indx; 6132 name = soname; 6133 } 6134 else 6135 { 6136 size_t indx; 6137 6138 name = lbasename (output_bfd->filename); 6139 def.vd_hash = bfd_elf_hash (name); 6140 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6141 name, FALSE); 6142 if (indx == (size_t) -1) 6143 return FALSE; 6144 defaux.vda_name = indx; 6145 } 6146 defaux.vda_next = 0; 6147 6148 _bfd_elf_swap_verdef_out (output_bfd, &def, 6149 (Elf_External_Verdef *) p); 6150 p += sizeof (Elf_External_Verdef); 6151 if (info->create_default_symver) 6152 { 6153 /* Add a symbol representing this version. */ 6154 bh = NULL; 6155 if (! (_bfd_generic_link_add_one_symbol 6156 (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr, 6157 0, NULL, FALSE, 6158 get_elf_backend_data (dynobj)->collect, &bh))) 6159 return FALSE; 6160 h = (struct elf_link_hash_entry *) bh; 6161 h->non_elf = 0; 6162 h->def_regular = 1; 6163 h->type = STT_OBJECT; 6164 h->verinfo.vertree = NULL; 6165 6166 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6167 return FALSE; 6168 6169 /* Create a duplicate of the base version with the same 6170 aux block, but different flags. */ 6171 def.vd_flags = 0; 6172 def.vd_ndx = 2; 6173 def.vd_aux = sizeof (Elf_External_Verdef); 6174 if (verdefs) 6175 def.vd_next = (sizeof (Elf_External_Verdef) 6176 + sizeof (Elf_External_Verdaux)); 6177 else 6178 def.vd_next = 0; 6179 _bfd_elf_swap_verdef_out (output_bfd, &def, 6180 (Elf_External_Verdef *) p); 6181 p += sizeof (Elf_External_Verdef); 6182 } 6183 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6184 (Elf_External_Verdaux *) p); 6185 p += sizeof (Elf_External_Verdaux); 6186 6187 for (t = verdefs; t != NULL; t = t->next) 6188 { 6189 unsigned int cdeps; 6190 struct bfd_elf_version_deps *n; 6191 6192 /* Don't emit the base version twice. */ 6193 if (t->vernum == 0) 6194 continue; 6195 6196 cdeps = 0; 6197 for (n = t->deps; n != NULL; n = n->next) 6198 ++cdeps; 6199 6200 /* Add a symbol representing this version. */ 6201 bh = NULL; 6202 if (! (_bfd_generic_link_add_one_symbol 6203 (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr, 6204 0, NULL, FALSE, 6205 get_elf_backend_data (dynobj)->collect, &bh))) 6206 return FALSE; 6207 h = (struct elf_link_hash_entry *) bh; 6208 h->non_elf = 0; 6209 h->def_regular = 1; 6210 h->type = STT_OBJECT; 6211 h->verinfo.vertree = t; 6212 6213 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 6214 return FALSE; 6215 6216 def.vd_version = VER_DEF_CURRENT; 6217 def.vd_flags = 0; 6218 if (t->globals.list == NULL 6219 && t->locals.list == NULL 6220 && ! t->used) 6221 def.vd_flags |= VER_FLG_WEAK; 6222 def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1); 6223 def.vd_cnt = cdeps + 1; 6224 def.vd_hash = bfd_elf_hash (t->name); 6225 def.vd_aux = sizeof (Elf_External_Verdef); 6226 def.vd_next = 0; 6227 6228 /* If a basever node is next, it *must* be the last node in 6229 the chain, otherwise Verdef construction breaks. */ 6230 if (t->next != NULL && t->next->vernum == 0) 6231 BFD_ASSERT (t->next->next == NULL); 6232 6233 if (t->next != NULL && t->next->vernum != 0) 6234 def.vd_next = (sizeof (Elf_External_Verdef) 6235 + (cdeps + 1) * sizeof (Elf_External_Verdaux)); 6236 6237 _bfd_elf_swap_verdef_out (output_bfd, &def, 6238 (Elf_External_Verdef *) p); 6239 p += sizeof (Elf_External_Verdef); 6240 6241 defaux.vda_name = h->dynstr_index; 6242 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6243 h->dynstr_index); 6244 defaux.vda_next = 0; 6245 if (t->deps != NULL) 6246 defaux.vda_next = sizeof (Elf_External_Verdaux); 6247 t->name_indx = defaux.vda_name; 6248 6249 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6250 (Elf_External_Verdaux *) p); 6251 p += sizeof (Elf_External_Verdaux); 6252 6253 for (n = t->deps; n != NULL; n = n->next) 6254 { 6255 if (n->version_needed == NULL) 6256 { 6257 /* This can happen if there was an error in the 6258 version script. */ 6259 defaux.vda_name = 0; 6260 } 6261 else 6262 { 6263 defaux.vda_name = n->version_needed->name_indx; 6264 _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr, 6265 defaux.vda_name); 6266 } 6267 if (n->next == NULL) 6268 defaux.vda_next = 0; 6269 else 6270 defaux.vda_next = sizeof (Elf_External_Verdaux); 6271 6272 _bfd_elf_swap_verdaux_out (output_bfd, &defaux, 6273 (Elf_External_Verdaux *) p); 6274 p += sizeof (Elf_External_Verdaux); 6275 } 6276 } 6277 6278 elf_tdata (output_bfd)->cverdefs = cdefs; 6279 } 6280 6281 /* Work out the size of the version reference section. */ 6282 6283 s = bfd_get_linker_section (dynobj, ".gnu.version_r"); 6284 BFD_ASSERT (s != NULL); 6285 { 6286 struct elf_find_verdep_info sinfo; 6287 6288 sinfo.info = info; 6289 sinfo.vers = elf_tdata (output_bfd)->cverdefs; 6290 if (sinfo.vers == 0) 6291 sinfo.vers = 1; 6292 sinfo.failed = FALSE; 6293 6294 elf_link_hash_traverse (elf_hash_table (info), 6295 _bfd_elf_link_find_version_dependencies, 6296 &sinfo); 6297 if (sinfo.failed) 6298 return FALSE; 6299 6300 if (elf_tdata (output_bfd)->verref == NULL) 6301 s->flags |= SEC_EXCLUDE; 6302 else 6303 { 6304 Elf_Internal_Verneed *vn; 6305 unsigned int size; 6306 unsigned int crefs; 6307 bfd_byte *p; 6308 6309 /* Build the version dependency section. */ 6310 size = 0; 6311 crefs = 0; 6312 for (vn = elf_tdata (output_bfd)->verref; 6313 vn != NULL; 6314 vn = vn->vn_nextref) 6315 { 6316 Elf_Internal_Vernaux *a; 6317 6318 size += sizeof (Elf_External_Verneed); 6319 ++crefs; 6320 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6321 size += sizeof (Elf_External_Vernaux); 6322 } 6323 6324 s->size = size; 6325 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6326 if (s->contents == NULL) 6327 return FALSE; 6328 6329 p = s->contents; 6330 for (vn = elf_tdata (output_bfd)->verref; 6331 vn != NULL; 6332 vn = vn->vn_nextref) 6333 { 6334 unsigned int caux; 6335 Elf_Internal_Vernaux *a; 6336 size_t indx; 6337 6338 caux = 0; 6339 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6340 ++caux; 6341 6342 vn->vn_version = VER_NEED_CURRENT; 6343 vn->vn_cnt = caux; 6344 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6345 elf_dt_name (vn->vn_bfd) != NULL 6346 ? elf_dt_name (vn->vn_bfd) 6347 : lbasename (vn->vn_bfd->filename), 6348 FALSE); 6349 if (indx == (size_t) -1) 6350 return FALSE; 6351 vn->vn_file = indx; 6352 vn->vn_aux = sizeof (Elf_External_Verneed); 6353 if (vn->vn_nextref == NULL) 6354 vn->vn_next = 0; 6355 else 6356 vn->vn_next = (sizeof (Elf_External_Verneed) 6357 + caux * sizeof (Elf_External_Vernaux)); 6358 6359 _bfd_elf_swap_verneed_out (output_bfd, vn, 6360 (Elf_External_Verneed *) p); 6361 p += sizeof (Elf_External_Verneed); 6362 6363 for (a = vn->vn_auxptr; a != NULL; a = a->vna_nextptr) 6364 { 6365 a->vna_hash = bfd_elf_hash (a->vna_nodename); 6366 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6367 a->vna_nodename, FALSE); 6368 if (indx == (size_t) -1) 6369 return FALSE; 6370 a->vna_name = indx; 6371 if (a->vna_nextptr == NULL) 6372 a->vna_next = 0; 6373 else 6374 a->vna_next = sizeof (Elf_External_Vernaux); 6375 6376 _bfd_elf_swap_vernaux_out (output_bfd, a, 6377 (Elf_External_Vernaux *) p); 6378 p += sizeof (Elf_External_Vernaux); 6379 } 6380 } 6381 6382 elf_tdata (output_bfd)->cverrefs = crefs; 6383 } 6384 } 6385 } 6386 6387 bed = get_elf_backend_data (output_bfd); 6388 6389 if (info->gc_sections && bed->can_gc_sections) 6390 { 6391 struct elf_gc_sweep_symbol_info sweep_info; 6392 unsigned long section_sym_count; 6393 6394 /* Remove the symbols that were in the swept sections from the 6395 dynamic symbol table. GCFIXME: Anyone know how to get them 6396 out of the static symbol table as well? */ 6397 sweep_info.info = info; 6398 sweep_info.hide_symbol = bed->elf_backend_hide_symbol; 6399 elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol, 6400 &sweep_info); 6401 6402 _bfd_elf_link_renumber_dynsyms (output_bfd, info, §ion_sym_count); 6403 } 6404 6405 /* Any syms created from now on start with -1 in 6406 got.refcount/offset and plt.refcount/offset. */ 6407 elf_hash_table (info)->init_got_refcount 6408 = elf_hash_table (info)->init_got_offset; 6409 elf_hash_table (info)->init_plt_refcount 6410 = elf_hash_table (info)->init_plt_offset; 6411 6412 if (bfd_link_relocatable (info) 6413 && !_bfd_elf_size_group_sections (info)) 6414 return FALSE; 6415 6416 /* The backend may have to create some sections regardless of whether 6417 we're dynamic or not. */ 6418 if (bed->elf_backend_always_size_sections 6419 && ! (*bed->elf_backend_always_size_sections) (output_bfd, info)) 6420 return FALSE; 6421 6422 /* Determine any GNU_STACK segment requirements, after the backend 6423 has had a chance to set a default segment size. */ 6424 if (info->execstack) 6425 elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X; 6426 else if (info->noexecstack) 6427 elf_stack_flags (output_bfd) = PF_R | PF_W; 6428 else 6429 { 6430 bfd *inputobj; 6431 asection *notesec = NULL; 6432 int exec = 0; 6433 6434 for (inputobj = info->input_bfds; 6435 inputobj; 6436 inputobj = inputobj->link.next) 6437 { 6438 asection *s; 6439 6440 if (inputobj->flags 6441 & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED)) 6442 continue; 6443 s = bfd_get_section_by_name (inputobj, ".note.GNU-stack"); 6444 if (s) 6445 { 6446 if (s->flags & SEC_CODE) 6447 exec = PF_X; 6448 notesec = s; 6449 } 6450 else if (bed->default_execstack) 6451 exec = PF_X; 6452 } 6453 if (notesec || info->stacksize > 0) 6454 elf_stack_flags (output_bfd) = PF_R | PF_W | exec; 6455 if (notesec && exec && bfd_link_relocatable (info) 6456 && notesec->output_section != bfd_abs_section_ptr) 6457 notesec->output_section->flags |= SEC_CODE; 6458 } 6459 6460 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6461 { 6462 struct elf_info_failed eif; 6463 struct elf_link_hash_entry *h; 6464 asection *dynstr; 6465 asection *s; 6466 6467 *sinterpptr = bfd_get_linker_section (dynobj, ".interp"); 6468 BFD_ASSERT (*sinterpptr != NULL || !bfd_link_executable (info) || info->nointerp); 6469 6470 if (soname != NULL) 6471 { 6472 soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6473 soname, TRUE); 6474 if (soname_indx == (size_t) -1 6475 || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx)) 6476 return FALSE; 6477 } 6478 6479 if (info->symbolic) 6480 { 6481 if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0)) 6482 return FALSE; 6483 info->flags |= DF_SYMBOLIC; 6484 } 6485 6486 if (rpath != NULL) 6487 { 6488 size_t indx; 6489 bfd_vma tag; 6490 6491 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath, 6492 TRUE); 6493 if (indx == (size_t) -1) 6494 return FALSE; 6495 6496 tag = info->new_dtags ? DT_RUNPATH : DT_RPATH; 6497 if (!_bfd_elf_add_dynamic_entry (info, tag, indx)) 6498 return FALSE; 6499 } 6500 6501 if (filter_shlib != NULL) 6502 { 6503 size_t indx; 6504 6505 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6506 filter_shlib, TRUE); 6507 if (indx == (size_t) -1 6508 || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx)) 6509 return FALSE; 6510 } 6511 6512 if (auxiliary_filters != NULL) 6513 { 6514 const char * const *p; 6515 6516 for (p = auxiliary_filters; *p != NULL; p++) 6517 { 6518 size_t indx; 6519 6520 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, 6521 *p, TRUE); 6522 if (indx == (size_t) -1 6523 || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx)) 6524 return FALSE; 6525 } 6526 } 6527 6528 if (audit != NULL) 6529 { 6530 size_t indx; 6531 6532 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit, 6533 TRUE); 6534 if (indx == (size_t) -1 6535 || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx)) 6536 return FALSE; 6537 } 6538 6539 if (depaudit != NULL) 6540 { 6541 size_t indx; 6542 6543 indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit, 6544 TRUE); 6545 if (indx == (size_t) -1 6546 || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx)) 6547 return FALSE; 6548 } 6549 6550 eif.info = info; 6551 eif.failed = FALSE; 6552 6553 /* Find all symbols which were defined in a dynamic object and make 6554 the backend pick a reasonable value for them. */ 6555 elf_link_hash_traverse (elf_hash_table (info), 6556 _bfd_elf_adjust_dynamic_symbol, 6557 &eif); 6558 if (eif.failed) 6559 return FALSE; 6560 6561 /* Add some entries to the .dynamic section. We fill in some of the 6562 values later, in bfd_elf_final_link, but we must add the entries 6563 now so that we know the final size of the .dynamic section. */ 6564 6565 /* If there are initialization and/or finalization functions to 6566 call then add the corresponding DT_INIT/DT_FINI entries. */ 6567 h = (info->init_function 6568 ? elf_link_hash_lookup (elf_hash_table (info), 6569 info->init_function, FALSE, 6570 FALSE, FALSE) 6571 : NULL); 6572 if (h != NULL 6573 && (h->ref_regular 6574 || h->def_regular)) 6575 { 6576 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0)) 6577 return FALSE; 6578 } 6579 h = (info->fini_function 6580 ? elf_link_hash_lookup (elf_hash_table (info), 6581 info->fini_function, FALSE, 6582 FALSE, FALSE) 6583 : NULL); 6584 if (h != NULL 6585 && (h->ref_regular 6586 || h->def_regular)) 6587 { 6588 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0)) 6589 return FALSE; 6590 } 6591 6592 s = bfd_get_section_by_name (output_bfd, ".preinit_array"); 6593 if (s != NULL && s->linker_has_input) 6594 { 6595 /* DT_PREINIT_ARRAY is not allowed in shared library. */ 6596 if (! bfd_link_executable (info)) 6597 { 6598 bfd *sub; 6599 asection *o; 6600 6601 for (sub = info->input_bfds; sub != NULL; 6602 sub = sub->link.next) 6603 if (bfd_get_flavour (sub) == bfd_target_elf_flavour) 6604 for (o = sub->sections; o != NULL; o = o->next) 6605 if (elf_section_data (o)->this_hdr.sh_type 6606 == SHT_PREINIT_ARRAY) 6607 { 6608 _bfd_error_handler 6609 (_("%B: .preinit_array section is not allowed in DSO"), 6610 sub); 6611 break; 6612 } 6613 6614 bfd_set_error (bfd_error_nonrepresentable_section); 6615 return FALSE; 6616 } 6617 6618 if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0) 6619 || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0)) 6620 return FALSE; 6621 } 6622 s = bfd_get_section_by_name (output_bfd, ".init_array"); 6623 if (s != NULL && s->linker_has_input) 6624 { 6625 if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0) 6626 || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0)) 6627 return FALSE; 6628 } 6629 s = bfd_get_section_by_name (output_bfd, ".fini_array"); 6630 if (s != NULL && s->linker_has_input) 6631 { 6632 if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0) 6633 || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0)) 6634 return FALSE; 6635 } 6636 6637 dynstr = bfd_get_linker_section (dynobj, ".dynstr"); 6638 /* If .dynstr is excluded from the link, we don't want any of 6639 these tags. Strictly, we should be checking each section 6640 individually; This quick check covers for the case where 6641 someone does a /DISCARD/ : { *(*) }. */ 6642 if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr) 6643 { 6644 bfd_size_type strsize; 6645 6646 strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 6647 if ((info->emit_hash 6648 && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0)) 6649 || (info->emit_gnu_hash 6650 && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0)) 6651 || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0) 6652 || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0) 6653 || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize) 6654 || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT, 6655 bed->s->sizeof_sym)) 6656 return FALSE; 6657 } 6658 } 6659 6660 if (! _bfd_elf_maybe_strip_eh_frame_hdr (info)) 6661 return FALSE; 6662 6663 /* The backend must work out the sizes of all the other dynamic 6664 sections. */ 6665 if (dynobj != NULL 6666 && bed->elf_backend_size_dynamic_sections != NULL 6667 && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info)) 6668 return FALSE; 6669 6670 if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created) 6671 { 6672 unsigned long section_sym_count; 6673 6674 if (elf_tdata (output_bfd)->cverdefs) 6675 { 6676 unsigned int crefs = elf_tdata (output_bfd)->cverdefs; 6677 6678 if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0) 6679 || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, crefs)) 6680 return FALSE; 6681 } 6682 6683 if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS)) 6684 { 6685 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags)) 6686 return FALSE; 6687 } 6688 else if (info->flags & DF_BIND_NOW) 6689 { 6690 if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0)) 6691 return FALSE; 6692 } 6693 6694 if (info->flags_1) 6695 { 6696 if (bfd_link_executable (info)) 6697 info->flags_1 &= ~ (DF_1_INITFIRST 6698 | DF_1_NODELETE 6699 | DF_1_NOOPEN); 6700 if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1)) 6701 return FALSE; 6702 } 6703 6704 if (elf_tdata (output_bfd)->cverrefs) 6705 { 6706 unsigned int crefs = elf_tdata (output_bfd)->cverrefs; 6707 6708 if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0) 6709 || !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs)) 6710 return FALSE; 6711 } 6712 6713 if ((elf_tdata (output_bfd)->cverrefs == 0 6714 && elf_tdata (output_bfd)->cverdefs == 0) 6715 || _bfd_elf_link_renumber_dynsyms (output_bfd, info, 6716 §ion_sym_count) == 0) 6717 { 6718 asection *s; 6719 6720 s = bfd_get_linker_section (dynobj, ".gnu.version"); 6721 s->flags |= SEC_EXCLUDE; 6722 } 6723 } 6724 return TRUE; 6725 } 6726 6727 /* Find the first non-excluded output section. We'll use its 6728 section symbol for some emitted relocs. */ 6729 void 6730 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info) 6731 { 6732 asection *s; 6733 6734 for (s = output_bfd->sections; s != NULL; s = s->next) 6735 if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC 6736 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) 6737 { 6738 elf_hash_table (info)->text_index_section = s; 6739 break; 6740 } 6741 } 6742 6743 /* Find two non-excluded output sections, one for code, one for data. 6744 We'll use their section symbols for some emitted relocs. */ 6745 void 6746 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info) 6747 { 6748 asection *s; 6749 6750 /* Data first, since setting text_index_section changes 6751 _bfd_elf_link_omit_section_dynsym. */ 6752 for (s = output_bfd->sections; s != NULL; s = s->next) 6753 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC) 6754 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) 6755 { 6756 elf_hash_table (info)->data_index_section = s; 6757 break; 6758 } 6759 6760 for (s = output_bfd->sections; s != NULL; s = s->next) 6761 if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) 6762 == (SEC_ALLOC | SEC_READONLY)) 6763 && !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s)) 6764 { 6765 elf_hash_table (info)->text_index_section = s; 6766 break; 6767 } 6768 6769 if (elf_hash_table (info)->text_index_section == NULL) 6770 elf_hash_table (info)->text_index_section 6771 = elf_hash_table (info)->data_index_section; 6772 } 6773 6774 bfd_boolean 6775 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info) 6776 { 6777 const struct elf_backend_data *bed; 6778 6779 if (!is_elf_hash_table (info->hash)) 6780 return TRUE; 6781 6782 bed = get_elf_backend_data (output_bfd); 6783 (*bed->elf_backend_init_index_section) (output_bfd, info); 6784 6785 if (elf_hash_table (info)->dynamic_sections_created) 6786 { 6787 bfd *dynobj; 6788 asection *s; 6789 bfd_size_type dynsymcount; 6790 unsigned long section_sym_count; 6791 unsigned int dtagcount; 6792 6793 dynobj = elf_hash_table (info)->dynobj; 6794 6795 /* Assign dynsym indicies. In a shared library we generate a 6796 section symbol for each output section, which come first. 6797 Next come all of the back-end allocated local dynamic syms, 6798 followed by the rest of the global symbols. */ 6799 6800 dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info, 6801 §ion_sym_count); 6802 6803 /* Work out the size of the symbol version section. */ 6804 s = bfd_get_linker_section (dynobj, ".gnu.version"); 6805 BFD_ASSERT (s != NULL); 6806 if ((s->flags & SEC_EXCLUDE) == 0) 6807 { 6808 s->size = dynsymcount * sizeof (Elf_External_Versym); 6809 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 6810 if (s->contents == NULL) 6811 return FALSE; 6812 6813 if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0)) 6814 return FALSE; 6815 } 6816 6817 /* Set the size of the .dynsym and .hash sections. We counted 6818 the number of dynamic symbols in elf_link_add_object_symbols. 6819 We will build the contents of .dynsym and .hash when we build 6820 the final symbol table, because until then we do not know the 6821 correct value to give the symbols. We built the .dynstr 6822 section as we went along in elf_link_add_object_symbols. */ 6823 s = elf_hash_table (info)->dynsym; 6824 BFD_ASSERT (s != NULL); 6825 s->size = dynsymcount * bed->s->sizeof_sym; 6826 6827 s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size); 6828 if (s->contents == NULL) 6829 return FALSE; 6830 6831 /* The first entry in .dynsym is a dummy symbol. Clear all the 6832 section syms, in case we don't output them all. */ 6833 ++section_sym_count; 6834 memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym); 6835 6836 elf_hash_table (info)->bucketcount = 0; 6837 6838 /* Compute the size of the hashing table. As a side effect this 6839 computes the hash values for all the names we export. */ 6840 if (info->emit_hash) 6841 { 6842 unsigned long int *hashcodes; 6843 struct hash_codes_info hashinf; 6844 bfd_size_type amt; 6845 unsigned long int nsyms; 6846 size_t bucketcount; 6847 size_t hash_entry_size; 6848 6849 /* Compute the hash values for all exported symbols. At the same 6850 time store the values in an array so that we could use them for 6851 optimizations. */ 6852 amt = dynsymcount * sizeof (unsigned long int); 6853 hashcodes = (unsigned long int *) bfd_malloc (amt); 6854 if (hashcodes == NULL) 6855 return FALSE; 6856 hashinf.hashcodes = hashcodes; 6857 hashinf.error = FALSE; 6858 6859 /* Put all hash values in HASHCODES. */ 6860 elf_link_hash_traverse (elf_hash_table (info), 6861 elf_collect_hash_codes, &hashinf); 6862 if (hashinf.error) 6863 { 6864 free (hashcodes); 6865 return FALSE; 6866 } 6867 6868 nsyms = hashinf.hashcodes - hashcodes; 6869 bucketcount 6870 = compute_bucket_count (info, hashcodes, nsyms, 0); 6871 free (hashcodes); 6872 6873 if (bucketcount == 0) 6874 return FALSE; 6875 6876 elf_hash_table (info)->bucketcount = bucketcount; 6877 6878 s = bfd_get_linker_section (dynobj, ".hash"); 6879 BFD_ASSERT (s != NULL); 6880 hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize; 6881 s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size); 6882 s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 6883 if (s->contents == NULL) 6884 return FALSE; 6885 6886 bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents); 6887 bfd_put (8 * hash_entry_size, output_bfd, dynsymcount, 6888 s->contents + hash_entry_size); 6889 } 6890 6891 if (info->emit_gnu_hash) 6892 { 6893 size_t i, cnt; 6894 unsigned char *contents; 6895 struct collect_gnu_hash_codes cinfo; 6896 bfd_size_type amt; 6897 size_t bucketcount; 6898 6899 memset (&cinfo, 0, sizeof (cinfo)); 6900 6901 /* Compute the hash values for all exported symbols. At the same 6902 time store the values in an array so that we could use them for 6903 optimizations. */ 6904 amt = dynsymcount * 2 * sizeof (unsigned long int); 6905 cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt); 6906 if (cinfo.hashcodes == NULL) 6907 return FALSE; 6908 6909 cinfo.hashval = cinfo.hashcodes + dynsymcount; 6910 cinfo.min_dynindx = -1; 6911 cinfo.output_bfd = output_bfd; 6912 cinfo.bed = bed; 6913 6914 /* Put all hash values in HASHCODES. */ 6915 elf_link_hash_traverse (elf_hash_table (info), 6916 elf_collect_gnu_hash_codes, &cinfo); 6917 if (cinfo.error) 6918 { 6919 free (cinfo.hashcodes); 6920 return FALSE; 6921 } 6922 6923 bucketcount 6924 = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1); 6925 6926 if (bucketcount == 0) 6927 { 6928 free (cinfo.hashcodes); 6929 return FALSE; 6930 } 6931 6932 s = bfd_get_linker_section (dynobj, ".gnu.hash"); 6933 BFD_ASSERT (s != NULL); 6934 6935 if (cinfo.nsyms == 0) 6936 { 6937 /* Empty .gnu.hash section is special. */ 6938 BFD_ASSERT (cinfo.min_dynindx == -1); 6939 free (cinfo.hashcodes); 6940 s->size = 5 * 4 + bed->s->arch_size / 8; 6941 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 6942 if (contents == NULL) 6943 return FALSE; 6944 s->contents = contents; 6945 /* 1 empty bucket. */ 6946 bfd_put_32 (output_bfd, 1, contents); 6947 /* SYMIDX above the special symbol 0. */ 6948 bfd_put_32 (output_bfd, 1, contents + 4); 6949 /* Just one word for bitmask. */ 6950 bfd_put_32 (output_bfd, 1, contents + 8); 6951 /* Only hash fn bloom filter. */ 6952 bfd_put_32 (output_bfd, 0, contents + 12); 6953 /* No hashes are valid - empty bitmask. */ 6954 bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16); 6955 /* No hashes in the only bucket. */ 6956 bfd_put_32 (output_bfd, 0, 6957 contents + 16 + bed->s->arch_size / 8); 6958 } 6959 else 6960 { 6961 unsigned long int maskwords, maskbitslog2, x; 6962 BFD_ASSERT (cinfo.min_dynindx != -1); 6963 6964 x = cinfo.nsyms; 6965 maskbitslog2 = 1; 6966 while ((x >>= 1) != 0) 6967 ++maskbitslog2; 6968 if (maskbitslog2 < 3) 6969 maskbitslog2 = 5; 6970 else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms) 6971 maskbitslog2 = maskbitslog2 + 3; 6972 else 6973 maskbitslog2 = maskbitslog2 + 2; 6974 if (bed->s->arch_size == 64) 6975 { 6976 if (maskbitslog2 == 5) 6977 maskbitslog2 = 6; 6978 cinfo.shift1 = 6; 6979 } 6980 else 6981 cinfo.shift1 = 5; 6982 cinfo.mask = (1 << cinfo.shift1) - 1; 6983 cinfo.shift2 = maskbitslog2; 6984 cinfo.maskbits = 1 << maskbitslog2; 6985 maskwords = 1 << (maskbitslog2 - cinfo.shift1); 6986 amt = bucketcount * sizeof (unsigned long int) * 2; 6987 amt += maskwords * sizeof (bfd_vma); 6988 cinfo.bitmask = (bfd_vma *) bfd_malloc (amt); 6989 if (cinfo.bitmask == NULL) 6990 { 6991 free (cinfo.hashcodes); 6992 return FALSE; 6993 } 6994 6995 cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords); 6996 cinfo.indx = cinfo.counts + bucketcount; 6997 cinfo.symindx = dynsymcount - cinfo.nsyms; 6998 memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma)); 6999 7000 /* Determine how often each hash bucket is used. */ 7001 memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0])); 7002 for (i = 0; i < cinfo.nsyms; ++i) 7003 ++cinfo.counts[cinfo.hashcodes[i] % bucketcount]; 7004 7005 for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i) 7006 if (cinfo.counts[i] != 0) 7007 { 7008 cinfo.indx[i] = cnt; 7009 cnt += cinfo.counts[i]; 7010 } 7011 BFD_ASSERT (cnt == dynsymcount); 7012 cinfo.bucketcount = bucketcount; 7013 cinfo.local_indx = cinfo.min_dynindx; 7014 7015 s->size = (4 + bucketcount + cinfo.nsyms) * 4; 7016 s->size += cinfo.maskbits / 8; 7017 contents = (unsigned char *) bfd_zalloc (output_bfd, s->size); 7018 if (contents == NULL) 7019 { 7020 free (cinfo.bitmask); 7021 free (cinfo.hashcodes); 7022 return FALSE; 7023 } 7024 7025 s->contents = contents; 7026 bfd_put_32 (output_bfd, bucketcount, contents); 7027 bfd_put_32 (output_bfd, cinfo.symindx, contents + 4); 7028 bfd_put_32 (output_bfd, maskwords, contents + 8); 7029 bfd_put_32 (output_bfd, cinfo.shift2, contents + 12); 7030 contents += 16 + cinfo.maskbits / 8; 7031 7032 for (i = 0; i < bucketcount; ++i) 7033 { 7034 if (cinfo.counts[i] == 0) 7035 bfd_put_32 (output_bfd, 0, contents); 7036 else 7037 bfd_put_32 (output_bfd, cinfo.indx[i], contents); 7038 contents += 4; 7039 } 7040 7041 cinfo.contents = contents; 7042 7043 /* Renumber dynamic symbols, populate .gnu.hash section. */ 7044 elf_link_hash_traverse (elf_hash_table (info), 7045 elf_renumber_gnu_hash_syms, &cinfo); 7046 7047 contents = s->contents + 16; 7048 for (i = 0; i < maskwords; ++i) 7049 { 7050 bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i], 7051 contents); 7052 contents += bed->s->arch_size / 8; 7053 } 7054 7055 free (cinfo.bitmask); 7056 free (cinfo.hashcodes); 7057 } 7058 } 7059 7060 s = bfd_get_linker_section (dynobj, ".dynstr"); 7061 BFD_ASSERT (s != NULL); 7062 7063 elf_finalize_dynstr (output_bfd, info); 7064 7065 s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr); 7066 7067 for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount) 7068 if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0)) 7069 return FALSE; 7070 } 7071 7072 return TRUE; 7073 } 7074 7075 /* Make sure sec_info_type is cleared if sec_info is cleared too. */ 7076 7077 static void 7078 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED, 7079 asection *sec) 7080 { 7081 BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE); 7082 sec->sec_info_type = SEC_INFO_TYPE_NONE; 7083 } 7084 7085 /* Finish SHF_MERGE section merging. */ 7086 7087 bfd_boolean 7088 _bfd_elf_merge_sections (bfd *obfd, struct bfd_link_info *info) 7089 { 7090 bfd *ibfd; 7091 asection *sec; 7092 7093 if (!is_elf_hash_table (info->hash)) 7094 return FALSE; 7095 7096 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 7097 if ((ibfd->flags & DYNAMIC) == 0 7098 && bfd_get_flavour (ibfd) == bfd_target_elf_flavour 7099 && (elf_elfheader (ibfd)->e_ident[EI_CLASS] 7100 == get_elf_backend_data (obfd)->s->elfclass)) 7101 for (sec = ibfd->sections; sec != NULL; sec = sec->next) 7102 if ((sec->flags & SEC_MERGE) != 0 7103 && !bfd_is_abs_section (sec->output_section)) 7104 { 7105 struct bfd_elf_section_data *secdata; 7106 7107 secdata = elf_section_data (sec); 7108 if (! _bfd_add_merge_section (obfd, 7109 &elf_hash_table (info)->merge_info, 7110 sec, &secdata->sec_info)) 7111 return FALSE; 7112 else if (secdata->sec_info) 7113 sec->sec_info_type = SEC_INFO_TYPE_MERGE; 7114 } 7115 7116 if (elf_hash_table (info)->merge_info != NULL) 7117 _bfd_merge_sections (obfd, info, elf_hash_table (info)->merge_info, 7118 merge_sections_remove_hook); 7119 return TRUE; 7120 } 7121 7122 /* Create an entry in an ELF linker hash table. */ 7123 7124 struct bfd_hash_entry * 7125 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry, 7126 struct bfd_hash_table *table, 7127 const char *string) 7128 { 7129 /* Allocate the structure if it has not already been allocated by a 7130 subclass. */ 7131 if (entry == NULL) 7132 { 7133 entry = (struct bfd_hash_entry *) 7134 bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry)); 7135 if (entry == NULL) 7136 return entry; 7137 } 7138 7139 /* Call the allocation method of the superclass. */ 7140 entry = _bfd_link_hash_newfunc (entry, table, string); 7141 if (entry != NULL) 7142 { 7143 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry; 7144 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table; 7145 7146 /* Set local fields. */ 7147 ret->indx = -1; 7148 ret->dynindx = -1; 7149 ret->got = htab->init_got_refcount; 7150 ret->plt = htab->init_plt_refcount; 7151 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry) 7152 - offsetof (struct elf_link_hash_entry, size))); 7153 /* Assume that we have been called by a non-ELF symbol reader. 7154 This flag is then reset by the code which reads an ELF input 7155 file. This ensures that a symbol created by a non-ELF symbol 7156 reader will have the flag set correctly. */ 7157 ret->non_elf = 1; 7158 } 7159 7160 return entry; 7161 } 7162 7163 /* Copy data from an indirect symbol to its direct symbol, hiding the 7164 old indirect symbol. Also used for copying flags to a weakdef. */ 7165 7166 void 7167 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info, 7168 struct elf_link_hash_entry *dir, 7169 struct elf_link_hash_entry *ind) 7170 { 7171 struct elf_link_hash_table *htab; 7172 7173 /* Copy down any references that we may have already seen to the 7174 symbol which just became indirect. */ 7175 7176 if (dir->versioned != versioned_hidden) 7177 dir->ref_dynamic |= ind->ref_dynamic; 7178 dir->ref_regular |= ind->ref_regular; 7179 dir->ref_regular_nonweak |= ind->ref_regular_nonweak; 7180 dir->non_got_ref |= ind->non_got_ref; 7181 dir->needs_plt |= ind->needs_plt; 7182 dir->pointer_equality_needed |= ind->pointer_equality_needed; 7183 7184 if (ind->root.type != bfd_link_hash_indirect) 7185 return; 7186 7187 /* Copy over the global and procedure linkage table refcount entries. 7188 These may have been already set up by a check_relocs routine. */ 7189 htab = elf_hash_table (info); 7190 if (ind->got.refcount > htab->init_got_refcount.refcount) 7191 { 7192 if (dir->got.refcount < 0) 7193 dir->got.refcount = 0; 7194 dir->got.refcount += ind->got.refcount; 7195 ind->got.refcount = htab->init_got_refcount.refcount; 7196 } 7197 7198 if (ind->plt.refcount > htab->init_plt_refcount.refcount) 7199 { 7200 if (dir->plt.refcount < 0) 7201 dir->plt.refcount = 0; 7202 dir->plt.refcount += ind->plt.refcount; 7203 ind->plt.refcount = htab->init_plt_refcount.refcount; 7204 } 7205 7206 if (ind->dynindx != -1) 7207 { 7208 if (dir->dynindx != -1) 7209 _bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index); 7210 dir->dynindx = ind->dynindx; 7211 dir->dynstr_index = ind->dynstr_index; 7212 ind->dynindx = -1; 7213 ind->dynstr_index = 0; 7214 } 7215 } 7216 7217 void 7218 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info, 7219 struct elf_link_hash_entry *h, 7220 bfd_boolean force_local) 7221 { 7222 /* STT_GNU_IFUNC symbol must go through PLT. */ 7223 if (h->type != STT_GNU_IFUNC) 7224 { 7225 h->plt = elf_hash_table (info)->init_plt_offset; 7226 h->needs_plt = 0; 7227 } 7228 if (force_local) 7229 { 7230 h->forced_local = 1; 7231 if (h->dynindx != -1) 7232 { 7233 h->dynindx = -1; 7234 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr, 7235 h->dynstr_index); 7236 } 7237 } 7238 } 7239 7240 /* Initialize an ELF linker hash table. *TABLE has been zeroed by our 7241 caller. */ 7242 7243 bfd_boolean 7244 _bfd_elf_link_hash_table_init 7245 (struct elf_link_hash_table *table, 7246 bfd *abfd, 7247 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *, 7248 struct bfd_hash_table *, 7249 const char *), 7250 unsigned int entsize, 7251 enum elf_target_id target_id) 7252 { 7253 bfd_boolean ret; 7254 int can_refcount = get_elf_backend_data (abfd)->can_refcount; 7255 7256 table->init_got_refcount.refcount = can_refcount - 1; 7257 table->init_plt_refcount.refcount = can_refcount - 1; 7258 table->init_got_offset.offset = -(bfd_vma) 1; 7259 table->init_plt_offset.offset = -(bfd_vma) 1; 7260 /* The first dynamic symbol is a dummy. */ 7261 table->dynsymcount = 1; 7262 7263 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize); 7264 7265 table->root.type = bfd_link_elf_hash_table; 7266 table->hash_table_id = target_id; 7267 7268 return ret; 7269 } 7270 7271 /* Create an ELF linker hash table. */ 7272 7273 struct bfd_link_hash_table * 7274 _bfd_elf_link_hash_table_create (bfd *abfd) 7275 { 7276 struct elf_link_hash_table *ret; 7277 bfd_size_type amt = sizeof (struct elf_link_hash_table); 7278 7279 ret = (struct elf_link_hash_table *) bfd_zmalloc (amt); 7280 if (ret == NULL) 7281 return NULL; 7282 7283 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc, 7284 sizeof (struct elf_link_hash_entry), 7285 GENERIC_ELF_DATA)) 7286 { 7287 free (ret); 7288 return NULL; 7289 } 7290 ret->root.hash_table_free = _bfd_elf_link_hash_table_free; 7291 7292 return &ret->root; 7293 } 7294 7295 /* Destroy an ELF linker hash table. */ 7296 7297 void 7298 _bfd_elf_link_hash_table_free (bfd *obfd) 7299 { 7300 struct elf_link_hash_table *htab; 7301 7302 htab = (struct elf_link_hash_table *) obfd->link.hash; 7303 if (htab->dynstr != NULL) 7304 _bfd_elf_strtab_free (htab->dynstr); 7305 _bfd_merge_sections_free (htab->merge_info); 7306 _bfd_generic_link_hash_table_free (obfd); 7307 } 7308 7309 /* This is a hook for the ELF emulation code in the generic linker to 7310 tell the backend linker what file name to use for the DT_NEEDED 7311 entry for a dynamic object. */ 7312 7313 void 7314 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name) 7315 { 7316 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7317 && bfd_get_format (abfd) == bfd_object) 7318 elf_dt_name (abfd) = name; 7319 } 7320 7321 int 7322 bfd_elf_get_dyn_lib_class (bfd *abfd) 7323 { 7324 int lib_class; 7325 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7326 && bfd_get_format (abfd) == bfd_object) 7327 lib_class = elf_dyn_lib_class (abfd); 7328 else 7329 lib_class = 0; 7330 return lib_class; 7331 } 7332 7333 void 7334 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class) 7335 { 7336 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7337 && bfd_get_format (abfd) == bfd_object) 7338 elf_dyn_lib_class (abfd) = lib_class; 7339 } 7340 7341 /* Get the list of DT_NEEDED entries for a link. This is a hook for 7342 the linker ELF emulation code. */ 7343 7344 struct bfd_link_needed_list * 7345 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED, 7346 struct bfd_link_info *info) 7347 { 7348 if (! is_elf_hash_table (info->hash)) 7349 return NULL; 7350 return elf_hash_table (info)->needed; 7351 } 7352 7353 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a 7354 hook for the linker ELF emulation code. */ 7355 7356 struct bfd_link_needed_list * 7357 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED, 7358 struct bfd_link_info *info) 7359 { 7360 if (! is_elf_hash_table (info->hash)) 7361 return NULL; 7362 return elf_hash_table (info)->runpath; 7363 } 7364 7365 /* Get the name actually used for a dynamic object for a link. This 7366 is the SONAME entry if there is one. Otherwise, it is the string 7367 passed to bfd_elf_set_dt_needed_name, or it is the filename. */ 7368 7369 const char * 7370 bfd_elf_get_dt_soname (bfd *abfd) 7371 { 7372 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour 7373 && bfd_get_format (abfd) == bfd_object) 7374 return elf_dt_name (abfd); 7375 return NULL; 7376 } 7377 7378 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for 7379 the ELF linker emulation code. */ 7380 7381 bfd_boolean 7382 bfd_elf_get_bfd_needed_list (bfd *abfd, 7383 struct bfd_link_needed_list **pneeded) 7384 { 7385 asection *s; 7386 bfd_byte *dynbuf = NULL; 7387 unsigned int elfsec; 7388 unsigned long shlink; 7389 bfd_byte *extdyn, *extdynend; 7390 size_t extdynsize; 7391 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *); 7392 7393 *pneeded = NULL; 7394 7395 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour 7396 || bfd_get_format (abfd) != bfd_object) 7397 return TRUE; 7398 7399 s = bfd_get_section_by_name (abfd, ".dynamic"); 7400 if (s == NULL || s->size == 0) 7401 return TRUE; 7402 7403 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf)) 7404 goto error_return; 7405 7406 elfsec = _bfd_elf_section_from_bfd_section (abfd, s); 7407 if (elfsec == SHN_BAD) 7408 goto error_return; 7409 7410 shlink = elf_elfsections (abfd)[elfsec]->sh_link; 7411 7412 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn; 7413 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in; 7414 7415 extdyn = dynbuf; 7416 extdynend = extdyn + s->size; 7417 for (; extdyn < extdynend; extdyn += extdynsize) 7418 { 7419 Elf_Internal_Dyn dyn; 7420 7421 (*swap_dyn_in) (abfd, extdyn, &dyn); 7422 7423 if (dyn.d_tag == DT_NULL) 7424 break; 7425 7426 if (dyn.d_tag == DT_NEEDED) 7427 { 7428 const char *string; 7429 struct bfd_link_needed_list *l; 7430 unsigned int tagv = dyn.d_un.d_val; 7431 bfd_size_type amt; 7432 7433 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv); 7434 if (string == NULL) 7435 goto error_return; 7436 7437 amt = sizeof *l; 7438 l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt); 7439 if (l == NULL) 7440 goto error_return; 7441 7442 l->by = abfd; 7443 l->name = string; 7444 l->next = *pneeded; 7445 *pneeded = l; 7446 } 7447 } 7448 7449 free (dynbuf); 7450 7451 return TRUE; 7452 7453 error_return: 7454 if (dynbuf != NULL) 7455 free (dynbuf); 7456 return FALSE; 7457 } 7458 7459 struct elf_symbuf_symbol 7460 { 7461 unsigned long st_name; /* Symbol name, index in string tbl */ 7462 unsigned char st_info; /* Type and binding attributes */ 7463 unsigned char st_other; /* Visibilty, and target specific */ 7464 }; 7465 7466 struct elf_symbuf_head 7467 { 7468 struct elf_symbuf_symbol *ssym; 7469 size_t count; 7470 unsigned int st_shndx; 7471 }; 7472 7473 struct elf_symbol 7474 { 7475 union 7476 { 7477 Elf_Internal_Sym *isym; 7478 struct elf_symbuf_symbol *ssym; 7479 } u; 7480 const char *name; 7481 }; 7482 7483 /* Sort references to symbols by ascending section number. */ 7484 7485 static int 7486 elf_sort_elf_symbol (const void *arg1, const void *arg2) 7487 { 7488 const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1; 7489 const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2; 7490 7491 return s1->st_shndx - s2->st_shndx; 7492 } 7493 7494 static int 7495 elf_sym_name_compare (const void *arg1, const void *arg2) 7496 { 7497 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1; 7498 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2; 7499 return strcmp (s1->name, s2->name); 7500 } 7501 7502 static struct elf_symbuf_head * 7503 elf_create_symbuf (size_t symcount, Elf_Internal_Sym *isymbuf) 7504 { 7505 Elf_Internal_Sym **ind, **indbufend, **indbuf; 7506 struct elf_symbuf_symbol *ssym; 7507 struct elf_symbuf_head *ssymbuf, *ssymhead; 7508 size_t i, shndx_count, total_size; 7509 7510 indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf)); 7511 if (indbuf == NULL) 7512 return NULL; 7513 7514 for (ind = indbuf, i = 0; i < symcount; i++) 7515 if (isymbuf[i].st_shndx != SHN_UNDEF) 7516 *ind++ = &isymbuf[i]; 7517 indbufend = ind; 7518 7519 qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *), 7520 elf_sort_elf_symbol); 7521 7522 shndx_count = 0; 7523 if (indbufend > indbuf) 7524 for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++) 7525 if (ind[0]->st_shndx != ind[1]->st_shndx) 7526 shndx_count++; 7527 7528 total_size = ((shndx_count + 1) * sizeof (*ssymbuf) 7529 + (indbufend - indbuf) * sizeof (*ssym)); 7530 ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size); 7531 if (ssymbuf == NULL) 7532 { 7533 free (indbuf); 7534 return NULL; 7535 } 7536 7537 ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1); 7538 ssymbuf->ssym = NULL; 7539 ssymbuf->count = shndx_count; 7540 ssymbuf->st_shndx = 0; 7541 for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++) 7542 { 7543 if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx) 7544 { 7545 ssymhead++; 7546 ssymhead->ssym = ssym; 7547 ssymhead->count = 0; 7548 ssymhead->st_shndx = (*ind)->st_shndx; 7549 } 7550 ssym->st_name = (*ind)->st_name; 7551 ssym->st_info = (*ind)->st_info; 7552 ssym->st_other = (*ind)->st_other; 7553 ssymhead->count++; 7554 } 7555 BFD_ASSERT ((size_t) (ssymhead - ssymbuf) == shndx_count 7556 && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf) 7557 == total_size)); 7558 7559 free (indbuf); 7560 return ssymbuf; 7561 } 7562 7563 /* Check if 2 sections define the same set of local and global 7564 symbols. */ 7565 7566 static bfd_boolean 7567 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2, 7568 struct bfd_link_info *info) 7569 { 7570 bfd *bfd1, *bfd2; 7571 const struct elf_backend_data *bed1, *bed2; 7572 Elf_Internal_Shdr *hdr1, *hdr2; 7573 size_t symcount1, symcount2; 7574 Elf_Internal_Sym *isymbuf1, *isymbuf2; 7575 struct elf_symbuf_head *ssymbuf1, *ssymbuf2; 7576 Elf_Internal_Sym *isym, *isymend; 7577 struct elf_symbol *symtable1 = NULL, *symtable2 = NULL; 7578 size_t count1, count2, i; 7579 unsigned int shndx1, shndx2; 7580 bfd_boolean result; 7581 7582 bfd1 = sec1->owner; 7583 bfd2 = sec2->owner; 7584 7585 /* Both sections have to be in ELF. */ 7586 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour 7587 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour) 7588 return FALSE; 7589 7590 if (elf_section_type (sec1) != elf_section_type (sec2)) 7591 return FALSE; 7592 7593 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1); 7594 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2); 7595 if (shndx1 == SHN_BAD || shndx2 == SHN_BAD) 7596 return FALSE; 7597 7598 bed1 = get_elf_backend_data (bfd1); 7599 bed2 = get_elf_backend_data (bfd2); 7600 hdr1 = &elf_tdata (bfd1)->symtab_hdr; 7601 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym; 7602 hdr2 = &elf_tdata (bfd2)->symtab_hdr; 7603 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym; 7604 7605 if (symcount1 == 0 || symcount2 == 0) 7606 return FALSE; 7607 7608 result = FALSE; 7609 isymbuf1 = NULL; 7610 isymbuf2 = NULL; 7611 ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf; 7612 ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf; 7613 7614 if (ssymbuf1 == NULL) 7615 { 7616 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0, 7617 NULL, NULL, NULL); 7618 if (isymbuf1 == NULL) 7619 goto done; 7620 7621 if (!info->reduce_memory_overheads) 7622 elf_tdata (bfd1)->symbuf = ssymbuf1 7623 = elf_create_symbuf (symcount1, isymbuf1); 7624 } 7625 7626 if (ssymbuf1 == NULL || ssymbuf2 == NULL) 7627 { 7628 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0, 7629 NULL, NULL, NULL); 7630 if (isymbuf2 == NULL) 7631 goto done; 7632 7633 if (ssymbuf1 != NULL && !info->reduce_memory_overheads) 7634 elf_tdata (bfd2)->symbuf = ssymbuf2 7635 = elf_create_symbuf (symcount2, isymbuf2); 7636 } 7637 7638 if (ssymbuf1 != NULL && ssymbuf2 != NULL) 7639 { 7640 /* Optimized faster version. */ 7641 size_t lo, hi, mid; 7642 struct elf_symbol *symp; 7643 struct elf_symbuf_symbol *ssym, *ssymend; 7644 7645 lo = 0; 7646 hi = ssymbuf1->count; 7647 ssymbuf1++; 7648 count1 = 0; 7649 while (lo < hi) 7650 { 7651 mid = (lo + hi) / 2; 7652 if (shndx1 < ssymbuf1[mid].st_shndx) 7653 hi = mid; 7654 else if (shndx1 > ssymbuf1[mid].st_shndx) 7655 lo = mid + 1; 7656 else 7657 { 7658 count1 = ssymbuf1[mid].count; 7659 ssymbuf1 += mid; 7660 break; 7661 } 7662 } 7663 7664 lo = 0; 7665 hi = ssymbuf2->count; 7666 ssymbuf2++; 7667 count2 = 0; 7668 while (lo < hi) 7669 { 7670 mid = (lo + hi) / 2; 7671 if (shndx2 < ssymbuf2[mid].st_shndx) 7672 hi = mid; 7673 else if (shndx2 > ssymbuf2[mid].st_shndx) 7674 lo = mid + 1; 7675 else 7676 { 7677 count2 = ssymbuf2[mid].count; 7678 ssymbuf2 += mid; 7679 break; 7680 } 7681 } 7682 7683 if (count1 == 0 || count2 == 0 || count1 != count2) 7684 goto done; 7685 7686 symtable1 7687 = (struct elf_symbol *) bfd_malloc (count1 * sizeof (*symtable1)); 7688 symtable2 7689 = (struct elf_symbol *) bfd_malloc (count2 * sizeof (*symtable2)); 7690 if (symtable1 == NULL || symtable2 == NULL) 7691 goto done; 7692 7693 symp = symtable1; 7694 for (ssym = ssymbuf1->ssym, ssymend = ssym + count1; 7695 ssym < ssymend; ssym++, symp++) 7696 { 7697 symp->u.ssym = ssym; 7698 symp->name = bfd_elf_string_from_elf_section (bfd1, 7699 hdr1->sh_link, 7700 ssym->st_name); 7701 } 7702 7703 symp = symtable2; 7704 for (ssym = ssymbuf2->ssym, ssymend = ssym + count2; 7705 ssym < ssymend; ssym++, symp++) 7706 { 7707 symp->u.ssym = ssym; 7708 symp->name = bfd_elf_string_from_elf_section (bfd2, 7709 hdr2->sh_link, 7710 ssym->st_name); 7711 } 7712 7713 /* Sort symbol by name. */ 7714 qsort (symtable1, count1, sizeof (struct elf_symbol), 7715 elf_sym_name_compare); 7716 qsort (symtable2, count1, sizeof (struct elf_symbol), 7717 elf_sym_name_compare); 7718 7719 for (i = 0; i < count1; i++) 7720 /* Two symbols must have the same binding, type and name. */ 7721 if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info 7722 || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other 7723 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 7724 goto done; 7725 7726 result = TRUE; 7727 goto done; 7728 } 7729 7730 symtable1 = (struct elf_symbol *) 7731 bfd_malloc (symcount1 * sizeof (struct elf_symbol)); 7732 symtable2 = (struct elf_symbol *) 7733 bfd_malloc (symcount2 * sizeof (struct elf_symbol)); 7734 if (symtable1 == NULL || symtable2 == NULL) 7735 goto done; 7736 7737 /* Count definitions in the section. */ 7738 count1 = 0; 7739 for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++) 7740 if (isym->st_shndx == shndx1) 7741 symtable1[count1++].u.isym = isym; 7742 7743 count2 = 0; 7744 for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++) 7745 if (isym->st_shndx == shndx2) 7746 symtable2[count2++].u.isym = isym; 7747 7748 if (count1 == 0 || count2 == 0 || count1 != count2) 7749 goto done; 7750 7751 for (i = 0; i < count1; i++) 7752 symtable1[i].name 7753 = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link, 7754 symtable1[i].u.isym->st_name); 7755 7756 for (i = 0; i < count2; i++) 7757 symtable2[i].name 7758 = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link, 7759 symtable2[i].u.isym->st_name); 7760 7761 /* Sort symbol by name. */ 7762 qsort (symtable1, count1, sizeof (struct elf_symbol), 7763 elf_sym_name_compare); 7764 qsort (symtable2, count1, sizeof (struct elf_symbol), 7765 elf_sym_name_compare); 7766 7767 for (i = 0; i < count1; i++) 7768 /* Two symbols must have the same binding, type and name. */ 7769 if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info 7770 || symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other 7771 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0) 7772 goto done; 7773 7774 result = TRUE; 7775 7776 done: 7777 if (symtable1) 7778 free (symtable1); 7779 if (symtable2) 7780 free (symtable2); 7781 if (isymbuf1) 7782 free (isymbuf1); 7783 if (isymbuf2) 7784 free (isymbuf2); 7785 7786 return result; 7787 } 7788 7789 /* Return TRUE if 2 section types are compatible. */ 7790 7791 bfd_boolean 7792 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec, 7793 bfd *bbfd, const asection *bsec) 7794 { 7795 if (asec == NULL 7796 || bsec == NULL 7797 || abfd->xvec->flavour != bfd_target_elf_flavour 7798 || bbfd->xvec->flavour != bfd_target_elf_flavour) 7799 return TRUE; 7800 7801 return elf_section_type (asec) == elf_section_type (bsec); 7802 } 7803 7804 /* Final phase of ELF linker. */ 7805 7806 /* A structure we use to avoid passing large numbers of arguments. */ 7807 7808 struct elf_final_link_info 7809 { 7810 /* General link information. */ 7811 struct bfd_link_info *info; 7812 /* Output BFD. */ 7813 bfd *output_bfd; 7814 /* Symbol string table. */ 7815 struct elf_strtab_hash *symstrtab; 7816 /* .hash section. */ 7817 asection *hash_sec; 7818 /* symbol version section (.gnu.version). */ 7819 asection *symver_sec; 7820 /* Buffer large enough to hold contents of any section. */ 7821 bfd_byte *contents; 7822 /* Buffer large enough to hold external relocs of any section. */ 7823 void *external_relocs; 7824 /* Buffer large enough to hold internal relocs of any section. */ 7825 Elf_Internal_Rela *internal_relocs; 7826 /* Buffer large enough to hold external local symbols of any input 7827 BFD. */ 7828 bfd_byte *external_syms; 7829 /* And a buffer for symbol section indices. */ 7830 Elf_External_Sym_Shndx *locsym_shndx; 7831 /* Buffer large enough to hold internal local symbols of any input 7832 BFD. */ 7833 Elf_Internal_Sym *internal_syms; 7834 /* Array large enough to hold a symbol index for each local symbol 7835 of any input BFD. */ 7836 long *indices; 7837 /* Array large enough to hold a section pointer for each local 7838 symbol of any input BFD. */ 7839 asection **sections; 7840 /* Buffer for SHT_SYMTAB_SHNDX section. */ 7841 Elf_External_Sym_Shndx *symshndxbuf; 7842 /* Number of STT_FILE syms seen. */ 7843 size_t filesym_count; 7844 }; 7845 7846 /* This struct is used to pass information to elf_link_output_extsym. */ 7847 7848 struct elf_outext_info 7849 { 7850 bfd_boolean failed; 7851 bfd_boolean localsyms; 7852 bfd_boolean file_sym_done; 7853 struct elf_final_link_info *flinfo; 7854 }; 7855 7856 7857 /* Support for evaluating a complex relocation. 7858 7859 Complex relocations are generalized, self-describing relocations. The 7860 implementation of them consists of two parts: complex symbols, and the 7861 relocations themselves. 7862 7863 The relocations are use a reserved elf-wide relocation type code (R_RELC 7864 external / BFD_RELOC_RELC internal) and an encoding of relocation field 7865 information (start bit, end bit, word width, etc) into the addend. This 7866 information is extracted from CGEN-generated operand tables within gas. 7867 7868 Complex symbols are mangled symbols (BSF_RELC external / STT_RELC 7869 internal) representing prefix-notation expressions, including but not 7870 limited to those sorts of expressions normally encoded as addends in the 7871 addend field. The symbol mangling format is: 7872 7873 <node> := <literal> 7874 | <unary-operator> ':' <node> 7875 | <binary-operator> ':' <node> ':' <node> 7876 ; 7877 7878 <literal> := 's' <digits=N> ':' <N character symbol name> 7879 | 'S' <digits=N> ':' <N character section name> 7880 | '#' <hexdigits> 7881 ; 7882 7883 <binary-operator> := as in C 7884 <unary-operator> := as in C, plus "0-" for unambiguous negation. */ 7885 7886 static void 7887 set_symbol_value (bfd *bfd_with_globals, 7888 Elf_Internal_Sym *isymbuf, 7889 size_t locsymcount, 7890 size_t symidx, 7891 bfd_vma val) 7892 { 7893 struct elf_link_hash_entry **sym_hashes; 7894 struct elf_link_hash_entry *h; 7895 size_t extsymoff = locsymcount; 7896 7897 if (symidx < locsymcount) 7898 { 7899 Elf_Internal_Sym *sym; 7900 7901 sym = isymbuf + symidx; 7902 if (ELF_ST_BIND (sym->st_info) == STB_LOCAL) 7903 { 7904 /* It is a local symbol: move it to the 7905 "absolute" section and give it a value. */ 7906 sym->st_shndx = SHN_ABS; 7907 sym->st_value = val; 7908 return; 7909 } 7910 BFD_ASSERT (elf_bad_symtab (bfd_with_globals)); 7911 extsymoff = 0; 7912 } 7913 7914 /* It is a global symbol: set its link type 7915 to "defined" and give it a value. */ 7916 7917 sym_hashes = elf_sym_hashes (bfd_with_globals); 7918 h = sym_hashes [symidx - extsymoff]; 7919 while (h->root.type == bfd_link_hash_indirect 7920 || h->root.type == bfd_link_hash_warning) 7921 h = (struct elf_link_hash_entry *) h->root.u.i.link; 7922 h->root.type = bfd_link_hash_defined; 7923 h->root.u.def.value = val; 7924 h->root.u.def.section = bfd_abs_section_ptr; 7925 } 7926 7927 static bfd_boolean 7928 resolve_symbol (const char *name, 7929 bfd *input_bfd, 7930 struct elf_final_link_info *flinfo, 7931 bfd_vma *result, 7932 Elf_Internal_Sym *isymbuf, 7933 size_t locsymcount) 7934 { 7935 Elf_Internal_Sym *sym; 7936 struct bfd_link_hash_entry *global_entry; 7937 const char *candidate = NULL; 7938 Elf_Internal_Shdr *symtab_hdr; 7939 size_t i; 7940 7941 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 7942 7943 for (i = 0; i < locsymcount; ++ i) 7944 { 7945 sym = isymbuf + i; 7946 7947 if (ELF_ST_BIND (sym->st_info) != STB_LOCAL) 7948 continue; 7949 7950 candidate = bfd_elf_string_from_elf_section (input_bfd, 7951 symtab_hdr->sh_link, 7952 sym->st_name); 7953 #ifdef DEBUG 7954 printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n", 7955 name, candidate, (unsigned long) sym->st_value); 7956 #endif 7957 if (candidate && strcmp (candidate, name) == 0) 7958 { 7959 asection *sec = flinfo->sections [i]; 7960 7961 *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0); 7962 *result += sec->output_offset + sec->output_section->vma; 7963 #ifdef DEBUG 7964 printf ("Found symbol with value %8.8lx\n", 7965 (unsigned long) *result); 7966 #endif 7967 return TRUE; 7968 } 7969 } 7970 7971 /* Hmm, haven't found it yet. perhaps it is a global. */ 7972 global_entry = bfd_link_hash_lookup (flinfo->info->hash, name, 7973 FALSE, FALSE, TRUE); 7974 if (!global_entry) 7975 return FALSE; 7976 7977 if (global_entry->type == bfd_link_hash_defined 7978 || global_entry->type == bfd_link_hash_defweak) 7979 { 7980 *result = (global_entry->u.def.value 7981 + global_entry->u.def.section->output_section->vma 7982 + global_entry->u.def.section->output_offset); 7983 #ifdef DEBUG 7984 printf ("Found GLOBAL symbol '%s' with value %8.8lx\n", 7985 global_entry->root.string, (unsigned long) *result); 7986 #endif 7987 return TRUE; 7988 } 7989 7990 return FALSE; 7991 } 7992 7993 /* Looks up NAME in SECTIONS. If found sets RESULT to NAME's address (in 7994 bytes) and returns TRUE, otherwise returns FALSE. Accepts pseudo-section 7995 names like "foo.end" which is the end address of section "foo". */ 7996 7997 static bfd_boolean 7998 resolve_section (const char *name, 7999 asection *sections, 8000 bfd_vma *result, 8001 bfd * abfd) 8002 { 8003 asection *curr; 8004 unsigned int len; 8005 8006 for (curr = sections; curr; curr = curr->next) 8007 if (strcmp (curr->name, name) == 0) 8008 { 8009 *result = curr->vma; 8010 return TRUE; 8011 } 8012 8013 /* Hmm. still haven't found it. try pseudo-section names. */ 8014 /* FIXME: This could be coded more efficiently... */ 8015 for (curr = sections; curr; curr = curr->next) 8016 { 8017 len = strlen (curr->name); 8018 if (len > strlen (name)) 8019 continue; 8020 8021 if (strncmp (curr->name, name, len) == 0) 8022 { 8023 if (strncmp (".end", name + len, 4) == 0) 8024 { 8025 *result = curr->vma + curr->size / bfd_octets_per_byte (abfd); 8026 return TRUE; 8027 } 8028 8029 /* Insert more pseudo-section names here, if you like. */ 8030 } 8031 } 8032 8033 return FALSE; 8034 } 8035 8036 static void 8037 undefined_reference (const char *reftype, const char *name) 8038 { 8039 /* xgettext:c-format */ 8040 _bfd_error_handler (_("undefined %s reference in complex symbol: %s"), 8041 reftype, name); 8042 } 8043 8044 static bfd_boolean 8045 eval_symbol (bfd_vma *result, 8046 const char **symp, 8047 bfd *input_bfd, 8048 struct elf_final_link_info *flinfo, 8049 bfd_vma dot, 8050 Elf_Internal_Sym *isymbuf, 8051 size_t locsymcount, 8052 int signed_p) 8053 { 8054 size_t len; 8055 size_t symlen; 8056 bfd_vma a; 8057 bfd_vma b; 8058 char symbuf[4096]; 8059 const char *sym = *symp; 8060 const char *symend; 8061 bfd_boolean symbol_is_section = FALSE; 8062 8063 len = strlen (sym); 8064 symend = sym + len; 8065 8066 if (len < 1 || len > sizeof (symbuf)) 8067 { 8068 bfd_set_error (bfd_error_invalid_operation); 8069 return FALSE; 8070 } 8071 8072 switch (* sym) 8073 { 8074 case '.': 8075 *result = dot; 8076 *symp = sym + 1; 8077 return TRUE; 8078 8079 case '#': 8080 ++sym; 8081 *result = strtoul (sym, (char **) symp, 16); 8082 return TRUE; 8083 8084 case 'S': 8085 symbol_is_section = TRUE; 8086 /* Fall through. */ 8087 case 's': 8088 ++sym; 8089 symlen = strtol (sym, (char **) symp, 10); 8090 sym = *symp + 1; /* Skip the trailing ':'. */ 8091 8092 if (symend < sym || symlen + 1 > sizeof (symbuf)) 8093 { 8094 bfd_set_error (bfd_error_invalid_operation); 8095 return FALSE; 8096 } 8097 8098 memcpy (symbuf, sym, symlen); 8099 symbuf[symlen] = '\0'; 8100 *symp = sym + symlen; 8101 8102 /* Is it always possible, with complex symbols, that gas "mis-guessed" 8103 the symbol as a section, or vice-versa. so we're pretty liberal in our 8104 interpretation here; section means "try section first", not "must be a 8105 section", and likewise with symbol. */ 8106 8107 if (symbol_is_section) 8108 { 8109 if (!resolve_section (symbuf, flinfo->output_bfd->sections, result, input_bfd) 8110 && !resolve_symbol (symbuf, input_bfd, flinfo, result, 8111 isymbuf, locsymcount)) 8112 { 8113 undefined_reference ("section", symbuf); 8114 return FALSE; 8115 } 8116 } 8117 else 8118 { 8119 if (!resolve_symbol (symbuf, input_bfd, flinfo, result, 8120 isymbuf, locsymcount) 8121 && !resolve_section (symbuf, flinfo->output_bfd->sections, 8122 result, input_bfd)) 8123 { 8124 undefined_reference ("symbol", symbuf); 8125 return FALSE; 8126 } 8127 } 8128 8129 return TRUE; 8130 8131 /* All that remains are operators. */ 8132 8133 #define UNARY_OP(op) \ 8134 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8135 { \ 8136 sym += strlen (#op); \ 8137 if (*sym == ':') \ 8138 ++sym; \ 8139 *symp = sym; \ 8140 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8141 isymbuf, locsymcount, signed_p)) \ 8142 return FALSE; \ 8143 if (signed_p) \ 8144 *result = op ((bfd_signed_vma) a); \ 8145 else \ 8146 *result = op a; \ 8147 return TRUE; \ 8148 } 8149 8150 #define BINARY_OP(op) \ 8151 if (strncmp (sym, #op, strlen (#op)) == 0) \ 8152 { \ 8153 sym += strlen (#op); \ 8154 if (*sym == ':') \ 8155 ++sym; \ 8156 *symp = sym; \ 8157 if (!eval_symbol (&a, symp, input_bfd, flinfo, dot, \ 8158 isymbuf, locsymcount, signed_p)) \ 8159 return FALSE; \ 8160 ++*symp; \ 8161 if (!eval_symbol (&b, symp, input_bfd, flinfo, dot, \ 8162 isymbuf, locsymcount, signed_p)) \ 8163 return FALSE; \ 8164 if (signed_p) \ 8165 *result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b); \ 8166 else \ 8167 *result = a op b; \ 8168 return TRUE; \ 8169 } 8170 8171 default: 8172 UNARY_OP (0-); 8173 BINARY_OP (<<); 8174 BINARY_OP (>>); 8175 BINARY_OP (==); 8176 BINARY_OP (!=); 8177 BINARY_OP (<=); 8178 BINARY_OP (>=); 8179 BINARY_OP (&&); 8180 BINARY_OP (||); 8181 UNARY_OP (~); 8182 UNARY_OP (!); 8183 BINARY_OP (*); 8184 BINARY_OP (/); 8185 BINARY_OP (%); 8186 BINARY_OP (^); 8187 BINARY_OP (|); 8188 BINARY_OP (&); 8189 BINARY_OP (+); 8190 BINARY_OP (-); 8191 BINARY_OP (<); 8192 BINARY_OP (>); 8193 #undef UNARY_OP 8194 #undef BINARY_OP 8195 _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym); 8196 bfd_set_error (bfd_error_invalid_operation); 8197 return FALSE; 8198 } 8199 } 8200 8201 static void 8202 put_value (bfd_vma size, 8203 unsigned long chunksz, 8204 bfd *input_bfd, 8205 bfd_vma x, 8206 bfd_byte *location) 8207 { 8208 location += (size - chunksz); 8209 8210 for (; size; size -= chunksz, location -= chunksz) 8211 { 8212 switch (chunksz) 8213 { 8214 case 1: 8215 bfd_put_8 (input_bfd, x, location); 8216 x >>= 8; 8217 break; 8218 case 2: 8219 bfd_put_16 (input_bfd, x, location); 8220 x >>= 16; 8221 break; 8222 case 4: 8223 bfd_put_32 (input_bfd, x, location); 8224 /* Computed this way because x >>= 32 is undefined if x is a 32-bit value. */ 8225 x >>= 16; 8226 x >>= 16; 8227 break; 8228 #ifdef BFD64 8229 case 8: 8230 bfd_put_64 (input_bfd, x, location); 8231 /* Computed this way because x >>= 64 is undefined if x is a 64-bit value. */ 8232 x >>= 32; 8233 x >>= 32; 8234 break; 8235 #endif 8236 default: 8237 abort (); 8238 break; 8239 } 8240 } 8241 } 8242 8243 static bfd_vma 8244 get_value (bfd_vma size, 8245 unsigned long chunksz, 8246 bfd *input_bfd, 8247 bfd_byte *location) 8248 { 8249 int shift; 8250 bfd_vma x = 0; 8251 8252 /* Sanity checks. */ 8253 BFD_ASSERT (chunksz <= sizeof (x) 8254 && size >= chunksz 8255 && chunksz != 0 8256 && (size % chunksz) == 0 8257 && input_bfd != NULL 8258 && location != NULL); 8259 8260 if (chunksz == sizeof (x)) 8261 { 8262 BFD_ASSERT (size == chunksz); 8263 8264 /* Make sure that we do not perform an undefined shift operation. 8265 We know that size == chunksz so there will only be one iteration 8266 of the loop below. */ 8267 shift = 0; 8268 } 8269 else 8270 shift = 8 * chunksz; 8271 8272 for (; size; size -= chunksz, location += chunksz) 8273 { 8274 switch (chunksz) 8275 { 8276 case 1: 8277 x = (x << shift) | bfd_get_8 (input_bfd, location); 8278 break; 8279 case 2: 8280 x = (x << shift) | bfd_get_16 (input_bfd, location); 8281 break; 8282 case 4: 8283 x = (x << shift) | bfd_get_32 (input_bfd, location); 8284 break; 8285 #ifdef BFD64 8286 case 8: 8287 x = (x << shift) | bfd_get_64 (input_bfd, location); 8288 break; 8289 #endif 8290 default: 8291 abort (); 8292 } 8293 } 8294 return x; 8295 } 8296 8297 static void 8298 decode_complex_addend (unsigned long *start, /* in bits */ 8299 unsigned long *oplen, /* in bits */ 8300 unsigned long *len, /* in bits */ 8301 unsigned long *wordsz, /* in bytes */ 8302 unsigned long *chunksz, /* in bytes */ 8303 unsigned long *lsb0_p, 8304 unsigned long *signed_p, 8305 unsigned long *trunc_p, 8306 unsigned long encoded) 8307 { 8308 * start = encoded & 0x3F; 8309 * len = (encoded >> 6) & 0x3F; 8310 * oplen = (encoded >> 12) & 0x3F; 8311 * wordsz = (encoded >> 18) & 0xF; 8312 * chunksz = (encoded >> 22) & 0xF; 8313 * lsb0_p = (encoded >> 27) & 1; 8314 * signed_p = (encoded >> 28) & 1; 8315 * trunc_p = (encoded >> 29) & 1; 8316 } 8317 8318 bfd_reloc_status_type 8319 bfd_elf_perform_complex_relocation (bfd *input_bfd, 8320 asection *input_section ATTRIBUTE_UNUSED, 8321 bfd_byte *contents, 8322 Elf_Internal_Rela *rel, 8323 bfd_vma relocation) 8324 { 8325 bfd_vma shift, x, mask; 8326 unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p; 8327 bfd_reloc_status_type r; 8328 8329 /* Perform this reloc, since it is complex. 8330 (this is not to say that it necessarily refers to a complex 8331 symbol; merely that it is a self-describing CGEN based reloc. 8332 i.e. the addend has the complete reloc information (bit start, end, 8333 word size, etc) encoded within it.). */ 8334 8335 decode_complex_addend (&start, &oplen, &len, &wordsz, 8336 &chunksz, &lsb0_p, &signed_p, 8337 &trunc_p, rel->r_addend); 8338 8339 mask = (((1L << (len - 1)) - 1) << 1) | 1; 8340 8341 if (lsb0_p) 8342 shift = (start + 1) - len; 8343 else 8344 shift = (8 * wordsz) - (start + len); 8345 8346 x = get_value (wordsz, chunksz, input_bfd, 8347 contents + rel->r_offset * bfd_octets_per_byte (input_bfd)); 8348 8349 #ifdef DEBUG 8350 printf ("Doing complex reloc: " 8351 "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, " 8352 "chunksz %ld, start %ld, len %ld, oplen %ld\n" 8353 " dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n", 8354 lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len, 8355 oplen, (unsigned long) x, (unsigned long) mask, 8356 (unsigned long) relocation); 8357 #endif 8358 8359 r = bfd_reloc_ok; 8360 if (! trunc_p) 8361 /* Now do an overflow check. */ 8362 r = bfd_check_overflow ((signed_p 8363 ? complain_overflow_signed 8364 : complain_overflow_unsigned), 8365 len, 0, (8 * wordsz), 8366 relocation); 8367 8368 /* Do the deed. */ 8369 x = (x & ~(mask << shift)) | ((relocation & mask) << shift); 8370 8371 #ifdef DEBUG 8372 printf (" relocation: %8.8lx\n" 8373 " shifted mask: %8.8lx\n" 8374 " shifted/masked reloc: %8.8lx\n" 8375 " result: %8.8lx\n", 8376 (unsigned long) relocation, (unsigned long) (mask << shift), 8377 (unsigned long) ((relocation & mask) << shift), (unsigned long) x); 8378 #endif 8379 put_value (wordsz, chunksz, input_bfd, x, 8380 contents + rel->r_offset * bfd_octets_per_byte (input_bfd)); 8381 return r; 8382 } 8383 8384 /* Functions to read r_offset from external (target order) reloc 8385 entry. Faster than bfd_getl32 et al, because we let the compiler 8386 know the value is aligned. */ 8387 8388 static bfd_vma 8389 ext32l_r_offset (const void *p) 8390 { 8391 union aligned32 8392 { 8393 uint32_t v; 8394 unsigned char c[4]; 8395 }; 8396 const union aligned32 *a 8397 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8398 8399 uint32_t aval = ( (uint32_t) a->c[0] 8400 | (uint32_t) a->c[1] << 8 8401 | (uint32_t) a->c[2] << 16 8402 | (uint32_t) a->c[3] << 24); 8403 return aval; 8404 } 8405 8406 static bfd_vma 8407 ext32b_r_offset (const void *p) 8408 { 8409 union aligned32 8410 { 8411 uint32_t v; 8412 unsigned char c[4]; 8413 }; 8414 const union aligned32 *a 8415 = (const union aligned32 *) &((const Elf32_External_Rel *) p)->r_offset; 8416 8417 uint32_t aval = ( (uint32_t) a->c[0] << 24 8418 | (uint32_t) a->c[1] << 16 8419 | (uint32_t) a->c[2] << 8 8420 | (uint32_t) a->c[3]); 8421 return aval; 8422 } 8423 8424 #ifdef BFD_HOST_64_BIT 8425 static bfd_vma 8426 ext64l_r_offset (const void *p) 8427 { 8428 union aligned64 8429 { 8430 uint64_t v; 8431 unsigned char c[8]; 8432 }; 8433 const union aligned64 *a 8434 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8435 8436 uint64_t aval = ( (uint64_t) a->c[0] 8437 | (uint64_t) a->c[1] << 8 8438 | (uint64_t) a->c[2] << 16 8439 | (uint64_t) a->c[3] << 24 8440 | (uint64_t) a->c[4] << 32 8441 | (uint64_t) a->c[5] << 40 8442 | (uint64_t) a->c[6] << 48 8443 | (uint64_t) a->c[7] << 56); 8444 return aval; 8445 } 8446 8447 static bfd_vma 8448 ext64b_r_offset (const void *p) 8449 { 8450 union aligned64 8451 { 8452 uint64_t v; 8453 unsigned char c[8]; 8454 }; 8455 const union aligned64 *a 8456 = (const union aligned64 *) &((const Elf64_External_Rel *) p)->r_offset; 8457 8458 uint64_t aval = ( (uint64_t) a->c[0] << 56 8459 | (uint64_t) a->c[1] << 48 8460 | (uint64_t) a->c[2] << 40 8461 | (uint64_t) a->c[3] << 32 8462 | (uint64_t) a->c[4] << 24 8463 | (uint64_t) a->c[5] << 16 8464 | (uint64_t) a->c[6] << 8 8465 | (uint64_t) a->c[7]); 8466 return aval; 8467 } 8468 #endif 8469 8470 /* When performing a relocatable link, the input relocations are 8471 preserved. But, if they reference global symbols, the indices 8472 referenced must be updated. Update all the relocations found in 8473 RELDATA. */ 8474 8475 static bfd_boolean 8476 elf_link_adjust_relocs (bfd *abfd, 8477 asection *sec, 8478 struct bfd_elf_section_reloc_data *reldata, 8479 bfd_boolean sort) 8480 { 8481 unsigned int i; 8482 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8483 bfd_byte *erela; 8484 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 8485 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 8486 bfd_vma r_type_mask; 8487 int r_sym_shift; 8488 unsigned int count = reldata->count; 8489 struct elf_link_hash_entry **rel_hash = reldata->hashes; 8490 8491 if (reldata->hdr->sh_entsize == bed->s->sizeof_rel) 8492 { 8493 swap_in = bed->s->swap_reloc_in; 8494 swap_out = bed->s->swap_reloc_out; 8495 } 8496 else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela) 8497 { 8498 swap_in = bed->s->swap_reloca_in; 8499 swap_out = bed->s->swap_reloca_out; 8500 } 8501 else 8502 abort (); 8503 8504 if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL) 8505 abort (); 8506 8507 if (bed->s->arch_size == 32) 8508 { 8509 r_type_mask = 0xff; 8510 r_sym_shift = 8; 8511 } 8512 else 8513 { 8514 r_type_mask = 0xffffffff; 8515 r_sym_shift = 32; 8516 } 8517 8518 erela = reldata->hdr->contents; 8519 for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize) 8520 { 8521 Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL]; 8522 unsigned int j; 8523 8524 if (*rel_hash == NULL) 8525 continue; 8526 8527 BFD_ASSERT ((*rel_hash)->indx >= 0); 8528 8529 (*swap_in) (abfd, erela, irela); 8530 for (j = 0; j < bed->s->int_rels_per_ext_rel; j++) 8531 irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift 8532 | (irela[j].r_info & r_type_mask)); 8533 (*swap_out) (abfd, irela, erela); 8534 } 8535 8536 if (bed->elf_backend_update_relocs) 8537 (*bed->elf_backend_update_relocs) (sec, reldata); 8538 8539 if (sort && count != 0) 8540 { 8541 bfd_vma (*ext_r_off) (const void *); 8542 bfd_vma r_off; 8543 size_t elt_size; 8544 bfd_byte *base, *end, *p, *loc; 8545 bfd_byte *buf = NULL; 8546 8547 if (bed->s->arch_size == 32) 8548 { 8549 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 8550 ext_r_off = ext32l_r_offset; 8551 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 8552 ext_r_off = ext32b_r_offset; 8553 else 8554 abort (); 8555 } 8556 else 8557 { 8558 #ifdef BFD_HOST_64_BIT 8559 if (abfd->xvec->header_byteorder == BFD_ENDIAN_LITTLE) 8560 ext_r_off = ext64l_r_offset; 8561 else if (abfd->xvec->header_byteorder == BFD_ENDIAN_BIG) 8562 ext_r_off = ext64b_r_offset; 8563 else 8564 #endif 8565 abort (); 8566 } 8567 8568 /* Must use a stable sort here. A modified insertion sort, 8569 since the relocs are mostly sorted already. */ 8570 elt_size = reldata->hdr->sh_entsize; 8571 base = reldata->hdr->contents; 8572 end = base + count * elt_size; 8573 if (elt_size > sizeof (Elf64_External_Rela)) 8574 abort (); 8575 8576 /* Ensure the first element is lowest. This acts as a sentinel, 8577 speeding the main loop below. */ 8578 r_off = (*ext_r_off) (base); 8579 for (p = loc = base; (p += elt_size) < end; ) 8580 { 8581 bfd_vma r_off2 = (*ext_r_off) (p); 8582 if (r_off > r_off2) 8583 { 8584 r_off = r_off2; 8585 loc = p; 8586 } 8587 } 8588 if (loc != base) 8589 { 8590 /* Don't just swap *base and *loc as that changes the order 8591 of the original base[0] and base[1] if they happen to 8592 have the same r_offset. */ 8593 bfd_byte onebuf[sizeof (Elf64_External_Rela)]; 8594 memcpy (onebuf, loc, elt_size); 8595 memmove (base + elt_size, base, loc - base); 8596 memcpy (base, onebuf, elt_size); 8597 } 8598 8599 for (p = base + elt_size; (p += elt_size) < end; ) 8600 { 8601 /* base to p is sorted, *p is next to insert. */ 8602 r_off = (*ext_r_off) (p); 8603 /* Search the sorted region for location to insert. */ 8604 loc = p - elt_size; 8605 while (r_off < (*ext_r_off) (loc)) 8606 loc -= elt_size; 8607 loc += elt_size; 8608 if (loc != p) 8609 { 8610 /* Chances are there is a run of relocs to insert here, 8611 from one of more input files. Files are not always 8612 linked in order due to the way elf_link_input_bfd is 8613 called. See pr17666. */ 8614 size_t sortlen = p - loc; 8615 bfd_vma r_off2 = (*ext_r_off) (loc); 8616 size_t runlen = elt_size; 8617 size_t buf_size = 96 * 1024; 8618 while (p + runlen < end 8619 && (sortlen <= buf_size 8620 || runlen + elt_size <= buf_size) 8621 && r_off2 > (*ext_r_off) (p + runlen)) 8622 runlen += elt_size; 8623 if (buf == NULL) 8624 { 8625 buf = bfd_malloc (buf_size); 8626 if (buf == NULL) 8627 return FALSE; 8628 } 8629 if (runlen < sortlen) 8630 { 8631 memcpy (buf, p, runlen); 8632 memmove (loc + runlen, loc, sortlen); 8633 memcpy (loc, buf, runlen); 8634 } 8635 else 8636 { 8637 memcpy (buf, loc, sortlen); 8638 memmove (loc, p, runlen); 8639 memcpy (loc + runlen, buf, sortlen); 8640 } 8641 p += runlen - elt_size; 8642 } 8643 } 8644 /* Hashes are no longer valid. */ 8645 free (reldata->hashes); 8646 reldata->hashes = NULL; 8647 free (buf); 8648 } 8649 return TRUE; 8650 } 8651 8652 struct elf_link_sort_rela 8653 { 8654 union { 8655 bfd_vma offset; 8656 bfd_vma sym_mask; 8657 } u; 8658 enum elf_reloc_type_class type; 8659 /* We use this as an array of size int_rels_per_ext_rel. */ 8660 Elf_Internal_Rela rela[1]; 8661 }; 8662 8663 static int 8664 elf_link_sort_cmp1 (const void *A, const void *B) 8665 { 8666 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 8667 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 8668 int relativea, relativeb; 8669 8670 relativea = a->type == reloc_class_relative; 8671 relativeb = b->type == reloc_class_relative; 8672 8673 if (relativea < relativeb) 8674 return 1; 8675 if (relativea > relativeb) 8676 return -1; 8677 if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask)) 8678 return -1; 8679 if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask)) 8680 return 1; 8681 if (a->rela->r_offset < b->rela->r_offset) 8682 return -1; 8683 if (a->rela->r_offset > b->rela->r_offset) 8684 return 1; 8685 return 0; 8686 } 8687 8688 static int 8689 elf_link_sort_cmp2 (const void *A, const void *B) 8690 { 8691 const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A; 8692 const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B; 8693 8694 if (a->type < b->type) 8695 return -1; 8696 if (a->type > b->type) 8697 return 1; 8698 if (a->u.offset < b->u.offset) 8699 return -1; 8700 if (a->u.offset > b->u.offset) 8701 return 1; 8702 if (a->rela->r_offset < b->rela->r_offset) 8703 return -1; 8704 if (a->rela->r_offset > b->rela->r_offset) 8705 return 1; 8706 return 0; 8707 } 8708 8709 static size_t 8710 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec) 8711 { 8712 asection *dynamic_relocs; 8713 asection *rela_dyn; 8714 asection *rel_dyn; 8715 bfd_size_type count, size; 8716 size_t i, ret, sort_elt, ext_size; 8717 bfd_byte *sort, *s_non_relative, *p; 8718 struct elf_link_sort_rela *sq; 8719 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 8720 int i2e = bed->s->int_rels_per_ext_rel; 8721 unsigned int opb = bfd_octets_per_byte (abfd); 8722 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *); 8723 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *); 8724 struct bfd_link_order *lo; 8725 bfd_vma r_sym_mask; 8726 bfd_boolean use_rela; 8727 8728 /* Find a dynamic reloc section. */ 8729 rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn"); 8730 rel_dyn = bfd_get_section_by_name (abfd, ".rel.dyn"); 8731 if (rela_dyn != NULL && rela_dyn->size > 0 8732 && rel_dyn != NULL && rel_dyn->size > 0) 8733 { 8734 bfd_boolean use_rela_initialised = FALSE; 8735 8736 /* This is just here to stop gcc from complaining. 8737 Its initialization checking code is not perfect. */ 8738 use_rela = TRUE; 8739 8740 /* Both sections are present. Examine the sizes 8741 of the indirect sections to help us choose. */ 8742 for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next) 8743 if (lo->type == bfd_indirect_link_order) 8744 { 8745 asection *o = lo->u.indirect.section; 8746 8747 if ((o->size % bed->s->sizeof_rela) == 0) 8748 { 8749 if ((o->size % bed->s->sizeof_rel) == 0) 8750 /* Section size is divisible by both rel and rela sizes. 8751 It is of no help to us. */ 8752 ; 8753 else 8754 { 8755 /* Section size is only divisible by rela. */ 8756 if (use_rela_initialised && (use_rela == FALSE)) 8757 { 8758 _bfd_error_handler (_("%B: Unable to sort relocs - " 8759 "they are in more than one size"), 8760 abfd); 8761 bfd_set_error (bfd_error_invalid_operation); 8762 return 0; 8763 } 8764 else 8765 { 8766 use_rela = TRUE; 8767 use_rela_initialised = TRUE; 8768 } 8769 } 8770 } 8771 else if ((o->size % bed->s->sizeof_rel) == 0) 8772 { 8773 /* Section size is only divisible by rel. */ 8774 if (use_rela_initialised && (use_rela == TRUE)) 8775 { 8776 _bfd_error_handler (_("%B: Unable to sort relocs - " 8777 "they are in more than one size"), 8778 abfd); 8779 bfd_set_error (bfd_error_invalid_operation); 8780 return 0; 8781 } 8782 else 8783 { 8784 use_rela = FALSE; 8785 use_rela_initialised = TRUE; 8786 } 8787 } 8788 else 8789 { 8790 /* The section size is not divisible by either - 8791 something is wrong. */ 8792 _bfd_error_handler (_("%B: Unable to sort relocs - " 8793 "they are of an unknown size"), abfd); 8794 bfd_set_error (bfd_error_invalid_operation); 8795 return 0; 8796 } 8797 } 8798 8799 for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next) 8800 if (lo->type == bfd_indirect_link_order) 8801 { 8802 asection *o = lo->u.indirect.section; 8803 8804 if ((o->size % bed->s->sizeof_rela) == 0) 8805 { 8806 if ((o->size % bed->s->sizeof_rel) == 0) 8807 /* Section size is divisible by both rel and rela sizes. 8808 It is of no help to us. */ 8809 ; 8810 else 8811 { 8812 /* Section size is only divisible by rela. */ 8813 if (use_rela_initialised && (use_rela == FALSE)) 8814 { 8815 _bfd_error_handler (_("%B: Unable to sort relocs - " 8816 "they are in more than one size"), 8817 abfd); 8818 bfd_set_error (bfd_error_invalid_operation); 8819 return 0; 8820 } 8821 else 8822 { 8823 use_rela = TRUE; 8824 use_rela_initialised = TRUE; 8825 } 8826 } 8827 } 8828 else if ((o->size % bed->s->sizeof_rel) == 0) 8829 { 8830 /* Section size is only divisible by rel. */ 8831 if (use_rela_initialised && (use_rela == TRUE)) 8832 { 8833 _bfd_error_handler (_("%B: Unable to sort relocs - " 8834 "they are in more than one size"), 8835 abfd); 8836 bfd_set_error (bfd_error_invalid_operation); 8837 return 0; 8838 } 8839 else 8840 { 8841 use_rela = FALSE; 8842 use_rela_initialised = TRUE; 8843 } 8844 } 8845 else 8846 { 8847 /* The section size is not divisible by either - 8848 something is wrong. */ 8849 _bfd_error_handler (_("%B: Unable to sort relocs - " 8850 "they are of an unknown size"), abfd); 8851 bfd_set_error (bfd_error_invalid_operation); 8852 return 0; 8853 } 8854 } 8855 8856 if (! use_rela_initialised) 8857 /* Make a guess. */ 8858 use_rela = TRUE; 8859 } 8860 else if (rela_dyn != NULL && rela_dyn->size > 0) 8861 use_rela = TRUE; 8862 else if (rel_dyn != NULL && rel_dyn->size > 0) 8863 use_rela = FALSE; 8864 else 8865 return 0; 8866 8867 if (use_rela) 8868 { 8869 dynamic_relocs = rela_dyn; 8870 ext_size = bed->s->sizeof_rela; 8871 swap_in = bed->s->swap_reloca_in; 8872 swap_out = bed->s->swap_reloca_out; 8873 } 8874 else 8875 { 8876 dynamic_relocs = rel_dyn; 8877 ext_size = bed->s->sizeof_rel; 8878 swap_in = bed->s->swap_reloc_in; 8879 swap_out = bed->s->swap_reloc_out; 8880 } 8881 8882 size = 0; 8883 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 8884 if (lo->type == bfd_indirect_link_order) 8885 size += lo->u.indirect.section->size; 8886 8887 if (size != dynamic_relocs->size) 8888 return 0; 8889 8890 sort_elt = (sizeof (struct elf_link_sort_rela) 8891 + (i2e - 1) * sizeof (Elf_Internal_Rela)); 8892 8893 count = dynamic_relocs->size / ext_size; 8894 if (count == 0) 8895 return 0; 8896 sort = (bfd_byte *) bfd_zmalloc (sort_elt * count); 8897 8898 if (sort == NULL) 8899 { 8900 (*info->callbacks->warning) 8901 (info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0); 8902 return 0; 8903 } 8904 8905 if (bed->s->arch_size == 32) 8906 r_sym_mask = ~(bfd_vma) 0xff; 8907 else 8908 r_sym_mask = ~(bfd_vma) 0xffffffff; 8909 8910 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 8911 if (lo->type == bfd_indirect_link_order) 8912 { 8913 bfd_byte *erel, *erelend; 8914 asection *o = lo->u.indirect.section; 8915 8916 if (o->contents == NULL && o->size != 0) 8917 { 8918 /* This is a reloc section that is being handled as a normal 8919 section. See bfd_section_from_shdr. We can't combine 8920 relocs in this case. */ 8921 free (sort); 8922 return 0; 8923 } 8924 erel = o->contents; 8925 erelend = o->contents + o->size; 8926 p = sort + o->output_offset * opb / ext_size * sort_elt; 8927 8928 while (erel < erelend) 8929 { 8930 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 8931 8932 (*swap_in) (abfd, erel, s->rela); 8933 s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela); 8934 s->u.sym_mask = r_sym_mask; 8935 p += sort_elt; 8936 erel += ext_size; 8937 } 8938 } 8939 8940 qsort (sort, count, sort_elt, elf_link_sort_cmp1); 8941 8942 for (i = 0, p = sort; i < count; i++, p += sort_elt) 8943 { 8944 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 8945 if (s->type != reloc_class_relative) 8946 break; 8947 } 8948 ret = i; 8949 s_non_relative = p; 8950 8951 sq = (struct elf_link_sort_rela *) s_non_relative; 8952 for (; i < count; i++, p += sort_elt) 8953 { 8954 struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p; 8955 if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0) 8956 sq = sp; 8957 sp->u.offset = sq->rela->r_offset; 8958 } 8959 8960 qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2); 8961 8962 struct elf_link_hash_table *htab = elf_hash_table (info); 8963 if (htab->srelplt && htab->srelplt->output_section == dynamic_relocs) 8964 { 8965 /* We have plt relocs in .rela.dyn. */ 8966 sq = (struct elf_link_sort_rela *) sort; 8967 for (i = 0; i < count; i++) 8968 if (sq[count - i - 1].type != reloc_class_plt) 8969 break; 8970 if (i != 0 && htab->srelplt->size == i * ext_size) 8971 { 8972 struct bfd_link_order **plo; 8973 /* Put srelplt link_order last. This is so the output_offset 8974 set in the next loop is correct for DT_JMPREL. */ 8975 for (plo = &dynamic_relocs->map_head.link_order; *plo != NULL; ) 8976 if ((*plo)->type == bfd_indirect_link_order 8977 && (*plo)->u.indirect.section == htab->srelplt) 8978 { 8979 lo = *plo; 8980 *plo = lo->next; 8981 } 8982 else 8983 plo = &(*plo)->next; 8984 *plo = lo; 8985 lo->next = NULL; 8986 dynamic_relocs->map_tail.link_order = lo; 8987 } 8988 } 8989 8990 p = sort; 8991 for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next) 8992 if (lo->type == bfd_indirect_link_order) 8993 { 8994 bfd_byte *erel, *erelend; 8995 asection *o = lo->u.indirect.section; 8996 8997 erel = o->contents; 8998 erelend = o->contents + o->size; 8999 o->output_offset = (p - sort) / sort_elt * ext_size / opb; 9000 while (erel < erelend) 9001 { 9002 struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p; 9003 (*swap_out) (abfd, s->rela, erel); 9004 p += sort_elt; 9005 erel += ext_size; 9006 } 9007 } 9008 9009 free (sort); 9010 *psec = dynamic_relocs; 9011 return ret; 9012 } 9013 9014 /* Add a symbol to the output symbol string table. */ 9015 9016 static int 9017 elf_link_output_symstrtab (struct elf_final_link_info *flinfo, 9018 const char *name, 9019 Elf_Internal_Sym *elfsym, 9020 asection *input_sec, 9021 struct elf_link_hash_entry *h) 9022 { 9023 int (*output_symbol_hook) 9024 (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *, 9025 struct elf_link_hash_entry *); 9026 struct elf_link_hash_table *hash_table; 9027 const struct elf_backend_data *bed; 9028 bfd_size_type strtabsize; 9029 9030 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9031 9032 bed = get_elf_backend_data (flinfo->output_bfd); 9033 output_symbol_hook = bed->elf_backend_link_output_symbol_hook; 9034 if (output_symbol_hook != NULL) 9035 { 9036 int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h); 9037 if (ret != 1) 9038 return ret; 9039 } 9040 9041 if (name == NULL 9042 || *name == '\0' 9043 || (input_sec->flags & SEC_EXCLUDE)) 9044 elfsym->st_name = (unsigned long) -1; 9045 else 9046 { 9047 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize 9048 to get the final offset for st_name. */ 9049 elfsym->st_name 9050 = (unsigned long) _bfd_elf_strtab_add (flinfo->symstrtab, 9051 name, FALSE); 9052 if (elfsym->st_name == (unsigned long) -1) 9053 return 0; 9054 } 9055 9056 hash_table = elf_hash_table (flinfo->info); 9057 strtabsize = hash_table->strtabsize; 9058 if (strtabsize <= hash_table->strtabcount) 9059 { 9060 strtabsize += strtabsize; 9061 hash_table->strtabsize = strtabsize; 9062 strtabsize *= sizeof (*hash_table->strtab); 9063 hash_table->strtab 9064 = (struct elf_sym_strtab *) bfd_realloc (hash_table->strtab, 9065 strtabsize); 9066 if (hash_table->strtab == NULL) 9067 return 0; 9068 } 9069 hash_table->strtab[hash_table->strtabcount].sym = *elfsym; 9070 hash_table->strtab[hash_table->strtabcount].dest_index 9071 = hash_table->strtabcount; 9072 hash_table->strtab[hash_table->strtabcount].destshndx_index 9073 = flinfo->symshndxbuf ? bfd_get_symcount (flinfo->output_bfd) : 0; 9074 9075 bfd_get_symcount (flinfo->output_bfd) += 1; 9076 hash_table->strtabcount += 1; 9077 9078 return 1; 9079 } 9080 9081 /* Swap symbols out to the symbol table and flush the output symbols to 9082 the file. */ 9083 9084 static bfd_boolean 9085 elf_link_swap_symbols_out (struct elf_final_link_info *flinfo) 9086 { 9087 struct elf_link_hash_table *hash_table = elf_hash_table (flinfo->info); 9088 bfd_size_type amt; 9089 size_t i; 9090 const struct elf_backend_data *bed; 9091 bfd_byte *symbuf; 9092 Elf_Internal_Shdr *hdr; 9093 file_ptr pos; 9094 bfd_boolean ret; 9095 9096 if (!hash_table->strtabcount) 9097 return TRUE; 9098 9099 BFD_ASSERT (elf_onesymtab (flinfo->output_bfd)); 9100 9101 bed = get_elf_backend_data (flinfo->output_bfd); 9102 9103 amt = bed->s->sizeof_sym * hash_table->strtabcount; 9104 symbuf = (bfd_byte *) bfd_malloc (amt); 9105 if (symbuf == NULL) 9106 return FALSE; 9107 9108 if (flinfo->symshndxbuf) 9109 { 9110 amt = sizeof (Elf_External_Sym_Shndx); 9111 amt *= bfd_get_symcount (flinfo->output_bfd); 9112 flinfo->symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt); 9113 if (flinfo->symshndxbuf == NULL) 9114 { 9115 free (symbuf); 9116 return FALSE; 9117 } 9118 } 9119 9120 for (i = 0; i < hash_table->strtabcount; i++) 9121 { 9122 struct elf_sym_strtab *elfsym = &hash_table->strtab[i]; 9123 if (elfsym->sym.st_name == (unsigned long) -1) 9124 elfsym->sym.st_name = 0; 9125 else 9126 elfsym->sym.st_name 9127 = (unsigned long) _bfd_elf_strtab_offset (flinfo->symstrtab, 9128 elfsym->sym.st_name); 9129 bed->s->swap_symbol_out (flinfo->output_bfd, &elfsym->sym, 9130 ((bfd_byte *) symbuf 9131 + (elfsym->dest_index 9132 * bed->s->sizeof_sym)), 9133 (flinfo->symshndxbuf 9134 + elfsym->destshndx_index)); 9135 } 9136 9137 hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr; 9138 pos = hdr->sh_offset + hdr->sh_size; 9139 amt = hash_table->strtabcount * bed->s->sizeof_sym; 9140 if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) == 0 9141 && bfd_bwrite (symbuf, amt, flinfo->output_bfd) == amt) 9142 { 9143 hdr->sh_size += amt; 9144 ret = TRUE; 9145 } 9146 else 9147 ret = FALSE; 9148 9149 free (symbuf); 9150 9151 free (hash_table->strtab); 9152 hash_table->strtab = NULL; 9153 9154 return ret; 9155 } 9156 9157 /* Return TRUE if the dynamic symbol SYM in ABFD is supported. */ 9158 9159 static bfd_boolean 9160 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym) 9161 { 9162 if (sym->st_shndx >= (SHN_LORESERVE & 0xffff) 9163 && sym->st_shndx < SHN_LORESERVE) 9164 { 9165 /* The gABI doesn't support dynamic symbols in output sections 9166 beyond 64k. */ 9167 _bfd_error_handler 9168 /* xgettext:c-format */ 9169 (_("%B: Too many sections: %d (>= %d)"), 9170 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff); 9171 bfd_set_error (bfd_error_nonrepresentable_section); 9172 return FALSE; 9173 } 9174 return TRUE; 9175 } 9176 9177 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in 9178 allowing an unsatisfied unversioned symbol in the DSO to match a 9179 versioned symbol that would normally require an explicit version. 9180 We also handle the case that a DSO references a hidden symbol 9181 which may be satisfied by a versioned symbol in another DSO. */ 9182 9183 static bfd_boolean 9184 elf_link_check_versioned_symbol (struct bfd_link_info *info, 9185 const struct elf_backend_data *bed, 9186 struct elf_link_hash_entry *h) 9187 { 9188 bfd *abfd; 9189 struct elf_link_loaded_list *loaded; 9190 9191 if (!is_elf_hash_table (info->hash)) 9192 return FALSE; 9193 9194 /* Check indirect symbol. */ 9195 while (h->root.type == bfd_link_hash_indirect) 9196 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9197 9198 switch (h->root.type) 9199 { 9200 default: 9201 abfd = NULL; 9202 break; 9203 9204 case bfd_link_hash_undefined: 9205 case bfd_link_hash_undefweak: 9206 abfd = h->root.u.undef.abfd; 9207 if (abfd == NULL 9208 || (abfd->flags & DYNAMIC) == 0 9209 || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0) 9210 return FALSE; 9211 break; 9212 9213 case bfd_link_hash_defined: 9214 case bfd_link_hash_defweak: 9215 abfd = h->root.u.def.section->owner; 9216 break; 9217 9218 case bfd_link_hash_common: 9219 abfd = h->root.u.c.p->section->owner; 9220 break; 9221 } 9222 BFD_ASSERT (abfd != NULL); 9223 9224 for (loaded = elf_hash_table (info)->loaded; 9225 loaded != NULL; 9226 loaded = loaded->next) 9227 { 9228 bfd *input; 9229 Elf_Internal_Shdr *hdr; 9230 size_t symcount; 9231 size_t extsymcount; 9232 size_t extsymoff; 9233 Elf_Internal_Shdr *versymhdr; 9234 Elf_Internal_Sym *isym; 9235 Elf_Internal_Sym *isymend; 9236 Elf_Internal_Sym *isymbuf; 9237 Elf_External_Versym *ever; 9238 Elf_External_Versym *extversym; 9239 9240 input = loaded->abfd; 9241 9242 /* We check each DSO for a possible hidden versioned definition. */ 9243 if (input == abfd 9244 || (input->flags & DYNAMIC) == 0 9245 || elf_dynversym (input) == 0) 9246 continue; 9247 9248 hdr = &elf_tdata (input)->dynsymtab_hdr; 9249 9250 symcount = hdr->sh_size / bed->s->sizeof_sym; 9251 if (elf_bad_symtab (input)) 9252 { 9253 extsymcount = symcount; 9254 extsymoff = 0; 9255 } 9256 else 9257 { 9258 extsymcount = symcount - hdr->sh_info; 9259 extsymoff = hdr->sh_info; 9260 } 9261 9262 if (extsymcount == 0) 9263 continue; 9264 9265 isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff, 9266 NULL, NULL, NULL); 9267 if (isymbuf == NULL) 9268 return FALSE; 9269 9270 /* Read in any version definitions. */ 9271 versymhdr = &elf_tdata (input)->dynversym_hdr; 9272 extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size); 9273 if (extversym == NULL) 9274 goto error_ret; 9275 9276 if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0 9277 || (bfd_bread (extversym, versymhdr->sh_size, input) 9278 != versymhdr->sh_size)) 9279 { 9280 free (extversym); 9281 error_ret: 9282 free (isymbuf); 9283 return FALSE; 9284 } 9285 9286 ever = extversym + extsymoff; 9287 isymend = isymbuf + extsymcount; 9288 for (isym = isymbuf; isym < isymend; isym++, ever++) 9289 { 9290 const char *name; 9291 Elf_Internal_Versym iver; 9292 unsigned short version_index; 9293 9294 if (ELF_ST_BIND (isym->st_info) == STB_LOCAL 9295 || isym->st_shndx == SHN_UNDEF) 9296 continue; 9297 9298 name = bfd_elf_string_from_elf_section (input, 9299 hdr->sh_link, 9300 isym->st_name); 9301 if (strcmp (name, h->root.root.string) != 0) 9302 continue; 9303 9304 _bfd_elf_swap_versym_in (input, ever, &iver); 9305 9306 if ((iver.vs_vers & VERSYM_HIDDEN) == 0 9307 && !(h->def_regular 9308 && h->forced_local)) 9309 { 9310 /* If we have a non-hidden versioned sym, then it should 9311 have provided a definition for the undefined sym unless 9312 it is defined in a non-shared object and forced local. 9313 */ 9314 abort (); 9315 } 9316 9317 version_index = iver.vs_vers & VERSYM_VERSION; 9318 if (version_index == 1 || version_index == 2) 9319 { 9320 /* This is the base or first version. We can use it. */ 9321 free (extversym); 9322 free (isymbuf); 9323 return TRUE; 9324 } 9325 } 9326 9327 free (extversym); 9328 free (isymbuf); 9329 } 9330 9331 return FALSE; 9332 } 9333 9334 /* Convert ELF common symbol TYPE. */ 9335 9336 static int 9337 elf_link_convert_common_type (struct bfd_link_info *info, int type) 9338 { 9339 /* Commom symbol can only appear in relocatable link. */ 9340 if (!bfd_link_relocatable (info)) 9341 abort (); 9342 switch (info->elf_stt_common) 9343 { 9344 case unchanged: 9345 break; 9346 case elf_stt_common: 9347 type = STT_COMMON; 9348 break; 9349 case no_elf_stt_common: 9350 type = STT_OBJECT; 9351 break; 9352 } 9353 return type; 9354 } 9355 9356 /* Add an external symbol to the symbol table. This is called from 9357 the hash table traversal routine. When generating a shared object, 9358 we go through the symbol table twice. The first time we output 9359 anything that might have been forced to local scope in a version 9360 script. The second time we output the symbols that are still 9361 global symbols. */ 9362 9363 static bfd_boolean 9364 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data) 9365 { 9366 struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh; 9367 struct elf_outext_info *eoinfo = (struct elf_outext_info *) data; 9368 struct elf_final_link_info *flinfo = eoinfo->flinfo; 9369 bfd_boolean strip; 9370 Elf_Internal_Sym sym; 9371 asection *input_sec; 9372 const struct elf_backend_data *bed; 9373 long indx; 9374 int ret; 9375 unsigned int type; 9376 9377 if (h->root.type == bfd_link_hash_warning) 9378 { 9379 h = (struct elf_link_hash_entry *) h->root.u.i.link; 9380 if (h->root.type == bfd_link_hash_new) 9381 return TRUE; 9382 } 9383 9384 /* Decide whether to output this symbol in this pass. */ 9385 if (eoinfo->localsyms) 9386 { 9387 if (!h->forced_local) 9388 return TRUE; 9389 } 9390 else 9391 { 9392 if (h->forced_local) 9393 return TRUE; 9394 } 9395 9396 bed = get_elf_backend_data (flinfo->output_bfd); 9397 9398 if (h->root.type == bfd_link_hash_undefined) 9399 { 9400 /* If we have an undefined symbol reference here then it must have 9401 come from a shared library that is being linked in. (Undefined 9402 references in regular files have already been handled unless 9403 they are in unreferenced sections which are removed by garbage 9404 collection). */ 9405 bfd_boolean ignore_undef = FALSE; 9406 9407 /* Some symbols may be special in that the fact that they're 9408 undefined can be safely ignored - let backend determine that. */ 9409 if (bed->elf_backend_ignore_undef_symbol) 9410 ignore_undef = bed->elf_backend_ignore_undef_symbol (h); 9411 9412 /* If we are reporting errors for this situation then do so now. */ 9413 if (!ignore_undef 9414 && h->ref_dynamic 9415 && (!h->ref_regular || flinfo->info->gc_sections) 9416 && !elf_link_check_versioned_symbol (flinfo->info, bed, h) 9417 && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE) 9418 (*flinfo->info->callbacks->undefined_symbol) 9419 (flinfo->info, h->root.root.string, 9420 h->ref_regular ? NULL : h->root.u.undef.abfd, 9421 NULL, 0, 9422 flinfo->info->unresolved_syms_in_shared_libs == RM_GENERATE_ERROR); 9423 9424 /* Strip a global symbol defined in a discarded section. */ 9425 if (h->indx == -3) 9426 return TRUE; 9427 } 9428 9429 /* We should also warn if a forced local symbol is referenced from 9430 shared libraries. */ 9431 if (bfd_link_executable (flinfo->info) 9432 && h->forced_local 9433 && h->ref_dynamic 9434 && h->def_regular 9435 && !h->dynamic_def 9436 && h->ref_dynamic_nonweak 9437 && !elf_link_check_versioned_symbol (flinfo->info, bed, h)) 9438 { 9439 bfd *def_bfd; 9440 const char *msg; 9441 struct elf_link_hash_entry *hi = h; 9442 9443 /* Check indirect symbol. */ 9444 while (hi->root.type == bfd_link_hash_indirect) 9445 hi = (struct elf_link_hash_entry *) hi->root.u.i.link; 9446 9447 if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL) 9448 /* xgettext:c-format */ 9449 msg = _("%B: internal symbol `%s' in %B is referenced by DSO"); 9450 else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN) 9451 /* xgettext:c-format */ 9452 msg = _("%B: hidden symbol `%s' in %B is referenced by DSO"); 9453 else 9454 /* xgettext:c-format */ 9455 msg = _("%B: local symbol `%s' in %B is referenced by DSO"); 9456 def_bfd = flinfo->output_bfd; 9457 if (hi->root.u.def.section != bfd_abs_section_ptr) 9458 def_bfd = hi->root.u.def.section->owner; 9459 _bfd_error_handler (msg, flinfo->output_bfd, 9460 h->root.root.string, def_bfd); 9461 bfd_set_error (bfd_error_bad_value); 9462 eoinfo->failed = TRUE; 9463 return FALSE; 9464 } 9465 9466 /* We don't want to output symbols that have never been mentioned by 9467 a regular file, or that we have been told to strip. However, if 9468 h->indx is set to -2, the symbol is used by a reloc and we must 9469 output it. */ 9470 strip = FALSE; 9471 if (h->indx == -2) 9472 ; 9473 else if ((h->def_dynamic 9474 || h->ref_dynamic 9475 || h->root.type == bfd_link_hash_new) 9476 && !h->def_regular 9477 && !h->ref_regular) 9478 strip = TRUE; 9479 else if (flinfo->info->strip == strip_all) 9480 strip = TRUE; 9481 else if (flinfo->info->strip == strip_some 9482 && bfd_hash_lookup (flinfo->info->keep_hash, 9483 h->root.root.string, FALSE, FALSE) == NULL) 9484 strip = TRUE; 9485 else if ((h->root.type == bfd_link_hash_defined 9486 || h->root.type == bfd_link_hash_defweak) 9487 && ((flinfo->info->strip_discarded 9488 && discarded_section (h->root.u.def.section)) 9489 || ((h->root.u.def.section->flags & SEC_LINKER_CREATED) == 0 9490 && h->root.u.def.section->owner != NULL 9491 && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0))) 9492 strip = TRUE; 9493 else if ((h->root.type == bfd_link_hash_undefined 9494 || h->root.type == bfd_link_hash_undefweak) 9495 && h->root.u.undef.abfd != NULL 9496 && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0) 9497 strip = TRUE; 9498 9499 type = h->type; 9500 9501 /* If we're stripping it, and it's not a dynamic symbol, there's 9502 nothing else to do. However, if it is a forced local symbol or 9503 an ifunc symbol we need to give the backend finish_dynamic_symbol 9504 function a chance to make it dynamic. */ 9505 if (strip 9506 && h->dynindx == -1 9507 && type != STT_GNU_IFUNC 9508 && !h->forced_local) 9509 return TRUE; 9510 9511 sym.st_value = 0; 9512 sym.st_size = h->size; 9513 sym.st_other = h->other; 9514 switch (h->root.type) 9515 { 9516 default: 9517 case bfd_link_hash_new: 9518 case bfd_link_hash_warning: 9519 abort (); 9520 return FALSE; 9521 9522 case bfd_link_hash_undefined: 9523 case bfd_link_hash_undefweak: 9524 input_sec = bfd_und_section_ptr; 9525 sym.st_shndx = SHN_UNDEF; 9526 break; 9527 9528 case bfd_link_hash_defined: 9529 case bfd_link_hash_defweak: 9530 { 9531 input_sec = h->root.u.def.section; 9532 if (input_sec->output_section != NULL) 9533 { 9534 sym.st_shndx = 9535 _bfd_elf_section_from_bfd_section (flinfo->output_bfd, 9536 input_sec->output_section); 9537 if (sym.st_shndx == SHN_BAD) 9538 { 9539 _bfd_error_handler 9540 /* xgettext:c-format */ 9541 (_("%B: could not find output section %A for input section %A"), 9542 flinfo->output_bfd, input_sec->output_section, input_sec); 9543 bfd_set_error (bfd_error_nonrepresentable_section); 9544 eoinfo->failed = TRUE; 9545 return FALSE; 9546 } 9547 9548 /* ELF symbols in relocatable files are section relative, 9549 but in nonrelocatable files they are virtual 9550 addresses. */ 9551 sym.st_value = h->root.u.def.value + input_sec->output_offset; 9552 if (!bfd_link_relocatable (flinfo->info)) 9553 { 9554 sym.st_value += input_sec->output_section->vma; 9555 if (h->type == STT_TLS) 9556 { 9557 asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec; 9558 if (tls_sec != NULL) 9559 sym.st_value -= tls_sec->vma; 9560 } 9561 } 9562 } 9563 else 9564 { 9565 BFD_ASSERT (input_sec->owner == NULL 9566 || (input_sec->owner->flags & DYNAMIC) != 0); 9567 sym.st_shndx = SHN_UNDEF; 9568 input_sec = bfd_und_section_ptr; 9569 } 9570 } 9571 break; 9572 9573 case bfd_link_hash_common: 9574 input_sec = h->root.u.c.p->section; 9575 sym.st_shndx = bed->common_section_index (input_sec); 9576 sym.st_value = 1 << h->root.u.c.p->alignment_power; 9577 break; 9578 9579 case bfd_link_hash_indirect: 9580 /* These symbols are created by symbol versioning. They point 9581 to the decorated version of the name. For example, if the 9582 symbol foo@@GNU_1.2 is the default, which should be used when 9583 foo is used with no version, then we add an indirect symbol 9584 foo which points to foo@@GNU_1.2. We ignore these symbols, 9585 since the indirected symbol is already in the hash table. */ 9586 return TRUE; 9587 } 9588 9589 if (type == STT_COMMON || type == STT_OBJECT) 9590 switch (h->root.type) 9591 { 9592 case bfd_link_hash_common: 9593 type = elf_link_convert_common_type (flinfo->info, type); 9594 break; 9595 case bfd_link_hash_defined: 9596 case bfd_link_hash_defweak: 9597 if (bed->common_definition (&sym)) 9598 type = elf_link_convert_common_type (flinfo->info, type); 9599 else 9600 type = STT_OBJECT; 9601 break; 9602 case bfd_link_hash_undefined: 9603 case bfd_link_hash_undefweak: 9604 break; 9605 default: 9606 abort (); 9607 } 9608 9609 if (h->forced_local) 9610 { 9611 sym.st_info = ELF_ST_INFO (STB_LOCAL, type); 9612 /* Turn off visibility on local symbol. */ 9613 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 9614 } 9615 /* Set STB_GNU_UNIQUE only if symbol is defined in regular object. */ 9616 else if (h->unique_global && h->def_regular) 9617 sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, type); 9618 else if (h->root.type == bfd_link_hash_undefweak 9619 || h->root.type == bfd_link_hash_defweak) 9620 sym.st_info = ELF_ST_INFO (STB_WEAK, type); 9621 else 9622 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type); 9623 sym.st_target_internal = h->target_internal; 9624 9625 /* Give the processor backend a chance to tweak the symbol value, 9626 and also to finish up anything that needs to be done for this 9627 symbol. FIXME: Not calling elf_backend_finish_dynamic_symbol for 9628 forced local syms when non-shared is due to a historical quirk. 9629 STT_GNU_IFUNC symbol must go through PLT. */ 9630 if ((h->type == STT_GNU_IFUNC 9631 && h->def_regular 9632 && !bfd_link_relocatable (flinfo->info)) 9633 || ((h->dynindx != -1 9634 || h->forced_local) 9635 && ((bfd_link_pic (flinfo->info) 9636 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 9637 || h->root.type != bfd_link_hash_undefweak)) 9638 || !h->forced_local) 9639 && elf_hash_table (flinfo->info)->dynamic_sections_created)) 9640 { 9641 if (! ((*bed->elf_backend_finish_dynamic_symbol) 9642 (flinfo->output_bfd, flinfo->info, h, &sym))) 9643 { 9644 eoinfo->failed = TRUE; 9645 return FALSE; 9646 } 9647 } 9648 9649 /* If we are marking the symbol as undefined, and there are no 9650 non-weak references to this symbol from a regular object, then 9651 mark the symbol as weak undefined; if there are non-weak 9652 references, mark the symbol as strong. We can't do this earlier, 9653 because it might not be marked as undefined until the 9654 finish_dynamic_symbol routine gets through with it. */ 9655 if (sym.st_shndx == SHN_UNDEF 9656 && h->ref_regular 9657 && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL 9658 || ELF_ST_BIND (sym.st_info) == STB_WEAK)) 9659 { 9660 int bindtype; 9661 type = ELF_ST_TYPE (sym.st_info); 9662 9663 /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */ 9664 if (type == STT_GNU_IFUNC) 9665 type = STT_FUNC; 9666 9667 if (h->ref_regular_nonweak) 9668 bindtype = STB_GLOBAL; 9669 else 9670 bindtype = STB_WEAK; 9671 sym.st_info = ELF_ST_INFO (bindtype, type); 9672 } 9673 9674 /* If this is a symbol defined in a dynamic library, don't use the 9675 symbol size from the dynamic library. Relinking an executable 9676 against a new library may introduce gratuitous changes in the 9677 executable's symbols if we keep the size. */ 9678 if (sym.st_shndx == SHN_UNDEF 9679 && !h->def_regular 9680 && h->def_dynamic) 9681 sym.st_size = 0; 9682 9683 /* If a non-weak symbol with non-default visibility is not defined 9684 locally, it is a fatal error. */ 9685 if (!bfd_link_relocatable (flinfo->info) 9686 && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT 9687 && ELF_ST_BIND (sym.st_info) != STB_WEAK 9688 && h->root.type == bfd_link_hash_undefined 9689 && !h->def_regular) 9690 { 9691 const char *msg; 9692 9693 if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED) 9694 /* xgettext:c-format */ 9695 msg = _("%B: protected symbol `%s' isn't defined"); 9696 else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL) 9697 /* xgettext:c-format */ 9698 msg = _("%B: internal symbol `%s' isn't defined"); 9699 else 9700 /* xgettext:c-format */ 9701 msg = _("%B: hidden symbol `%s' isn't defined"); 9702 _bfd_error_handler (msg, flinfo->output_bfd, h->root.root.string); 9703 bfd_set_error (bfd_error_bad_value); 9704 eoinfo->failed = TRUE; 9705 return FALSE; 9706 } 9707 9708 /* If this symbol should be put in the .dynsym section, then put it 9709 there now. We already know the symbol index. We also fill in 9710 the entry in the .hash section. */ 9711 if (elf_hash_table (flinfo->info)->dynsym != NULL 9712 && h->dynindx != -1 9713 && elf_hash_table (flinfo->info)->dynamic_sections_created) 9714 { 9715 bfd_byte *esym; 9716 9717 /* Since there is no version information in the dynamic string, 9718 if there is no version info in symbol version section, we will 9719 have a run-time problem if not linking executable, referenced 9720 by shared library, or not bound locally. */ 9721 if (h->verinfo.verdef == NULL 9722 && (!bfd_link_executable (flinfo->info) 9723 || h->ref_dynamic 9724 || !h->def_regular)) 9725 { 9726 char *p = strrchr (h->root.root.string, ELF_VER_CHR); 9727 9728 if (p && p [1] != '\0') 9729 { 9730 _bfd_error_handler 9731 /* xgettext:c-format */ 9732 (_("%B: No symbol version section for versioned symbol `%s'"), 9733 flinfo->output_bfd, h->root.root.string); 9734 eoinfo->failed = TRUE; 9735 return FALSE; 9736 } 9737 } 9738 9739 sym.st_name = h->dynstr_index; 9740 esym = (elf_hash_table (flinfo->info)->dynsym->contents 9741 + h->dynindx * bed->s->sizeof_sym); 9742 if (!check_dynsym (flinfo->output_bfd, &sym)) 9743 { 9744 eoinfo->failed = TRUE; 9745 return FALSE; 9746 } 9747 bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0); 9748 9749 if (flinfo->hash_sec != NULL) 9750 { 9751 size_t hash_entry_size; 9752 bfd_byte *bucketpos; 9753 bfd_vma chain; 9754 size_t bucketcount; 9755 size_t bucket; 9756 9757 bucketcount = elf_hash_table (flinfo->info)->bucketcount; 9758 bucket = h->u.elf_hash_value % bucketcount; 9759 9760 hash_entry_size 9761 = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize; 9762 bucketpos = ((bfd_byte *) flinfo->hash_sec->contents 9763 + (bucket + 2) * hash_entry_size); 9764 chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos); 9765 bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx, 9766 bucketpos); 9767 bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain, 9768 ((bfd_byte *) flinfo->hash_sec->contents 9769 + (bucketcount + 2 + h->dynindx) * hash_entry_size)); 9770 } 9771 9772 if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL) 9773 { 9774 Elf_Internal_Versym iversym; 9775 Elf_External_Versym *eversym; 9776 9777 if (!h->def_regular) 9778 { 9779 if (h->verinfo.verdef == NULL 9780 || (elf_dyn_lib_class (h->verinfo.verdef->vd_bfd) 9781 & (DYN_AS_NEEDED | DYN_DT_NEEDED | DYN_NO_NEEDED))) 9782 iversym.vs_vers = 0; 9783 else 9784 iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1; 9785 } 9786 else 9787 { 9788 if (h->verinfo.vertree == NULL) 9789 iversym.vs_vers = 1; 9790 else 9791 iversym.vs_vers = h->verinfo.vertree->vernum + 1; 9792 if (flinfo->info->create_default_symver) 9793 iversym.vs_vers++; 9794 } 9795 9796 /* Turn on VERSYM_HIDDEN only if the hidden versioned symbol is 9797 defined locally. */ 9798 if (h->versioned == versioned_hidden && h->def_regular) 9799 iversym.vs_vers |= VERSYM_HIDDEN; 9800 9801 eversym = (Elf_External_Versym *) flinfo->symver_sec->contents; 9802 eversym += h->dynindx; 9803 _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym); 9804 } 9805 } 9806 9807 /* If the symbol is undefined, and we didn't output it to .dynsym, 9808 strip it from .symtab too. Obviously we can't do this for 9809 relocatable output or when needed for --emit-relocs. */ 9810 else if (input_sec == bfd_und_section_ptr 9811 && h->indx != -2 9812 && !bfd_link_relocatable (flinfo->info)) 9813 return TRUE; 9814 /* Also strip others that we couldn't earlier due to dynamic symbol 9815 processing. */ 9816 if (strip) 9817 return TRUE; 9818 if ((input_sec->flags & SEC_EXCLUDE) != 0) 9819 return TRUE; 9820 9821 /* Output a FILE symbol so that following locals are not associated 9822 with the wrong input file. We need one for forced local symbols 9823 if we've seen more than one FILE symbol or when we have exactly 9824 one FILE symbol but global symbols are present in a file other 9825 than the one with the FILE symbol. We also need one if linker 9826 defined symbols are present. In practice these conditions are 9827 always met, so just emit the FILE symbol unconditionally. */ 9828 if (eoinfo->localsyms 9829 && !eoinfo->file_sym_done 9830 && eoinfo->flinfo->filesym_count != 0) 9831 { 9832 Elf_Internal_Sym fsym; 9833 9834 memset (&fsym, 0, sizeof (fsym)); 9835 fsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 9836 fsym.st_shndx = SHN_ABS; 9837 if (!elf_link_output_symstrtab (eoinfo->flinfo, NULL, &fsym, 9838 bfd_und_section_ptr, NULL)) 9839 return FALSE; 9840 9841 eoinfo->file_sym_done = TRUE; 9842 } 9843 9844 indx = bfd_get_symcount (flinfo->output_bfd); 9845 ret = elf_link_output_symstrtab (flinfo, h->root.root.string, &sym, 9846 input_sec, h); 9847 if (ret == 0) 9848 { 9849 eoinfo->failed = TRUE; 9850 return FALSE; 9851 } 9852 else if (ret == 1) 9853 h->indx = indx; 9854 else if (h->indx == -2) 9855 abort(); 9856 9857 return TRUE; 9858 } 9859 9860 /* Return TRUE if special handling is done for relocs in SEC against 9861 symbols defined in discarded sections. */ 9862 9863 static bfd_boolean 9864 elf_section_ignore_discarded_relocs (asection *sec) 9865 { 9866 const struct elf_backend_data *bed; 9867 9868 switch (sec->sec_info_type) 9869 { 9870 case SEC_INFO_TYPE_STABS: 9871 case SEC_INFO_TYPE_EH_FRAME: 9872 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 9873 return TRUE; 9874 default: 9875 break; 9876 } 9877 9878 bed = get_elf_backend_data (sec->owner); 9879 if (bed->elf_backend_ignore_discarded_relocs != NULL 9880 && (*bed->elf_backend_ignore_discarded_relocs) (sec)) 9881 return TRUE; 9882 9883 return FALSE; 9884 } 9885 9886 /* Return a mask saying how ld should treat relocations in SEC against 9887 symbols defined in discarded sections. If this function returns 9888 COMPLAIN set, ld will issue a warning message. If this function 9889 returns PRETEND set, and the discarded section was link-once and the 9890 same size as the kept link-once section, ld will pretend that the 9891 symbol was actually defined in the kept section. Otherwise ld will 9892 zero the reloc (at least that is the intent, but some cooperation by 9893 the target dependent code is needed, particularly for REL targets). */ 9894 9895 unsigned int 9896 _bfd_elf_default_action_discarded (asection *sec) 9897 { 9898 if (sec->flags & SEC_DEBUGGING) 9899 return PRETEND; 9900 9901 if (strcmp (".eh_frame", sec->name) == 0) 9902 return 0; 9903 9904 if (strcmp (".gcc_except_table", sec->name) == 0) 9905 return 0; 9906 9907 return COMPLAIN | PRETEND; 9908 } 9909 9910 /* Find a match between a section and a member of a section group. */ 9911 9912 static asection * 9913 match_group_member (asection *sec, asection *group, 9914 struct bfd_link_info *info) 9915 { 9916 asection *first = elf_next_in_group (group); 9917 asection *s = first; 9918 9919 while (s != NULL) 9920 { 9921 if (bfd_elf_match_symbols_in_sections (s, sec, info)) 9922 return s; 9923 9924 s = elf_next_in_group (s); 9925 if (s == first) 9926 break; 9927 } 9928 9929 return NULL; 9930 } 9931 9932 /* Check if the kept section of a discarded section SEC can be used 9933 to replace it. Return the replacement if it is OK. Otherwise return 9934 NULL. */ 9935 9936 asection * 9937 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info) 9938 { 9939 asection *kept; 9940 9941 kept = sec->kept_section; 9942 if (kept != NULL) 9943 { 9944 if ((kept->flags & SEC_GROUP) != 0) 9945 kept = match_group_member (sec, kept, info); 9946 if (kept != NULL 9947 && ((sec->rawsize != 0 ? sec->rawsize : sec->size) 9948 != (kept->rawsize != 0 ? kept->rawsize : kept->size))) 9949 kept = NULL; 9950 sec->kept_section = kept; 9951 } 9952 return kept; 9953 } 9954 9955 /* Link an input file into the linker output file. This function 9956 handles all the sections and relocations of the input file at once. 9957 This is so that we only have to read the local symbols once, and 9958 don't have to keep them in memory. */ 9959 9960 static bfd_boolean 9961 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd) 9962 { 9963 int (*relocate_section) 9964 (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, 9965 Elf_Internal_Rela *, Elf_Internal_Sym *, asection **); 9966 bfd *output_bfd; 9967 Elf_Internal_Shdr *symtab_hdr; 9968 size_t locsymcount; 9969 size_t extsymoff; 9970 Elf_Internal_Sym *isymbuf; 9971 Elf_Internal_Sym *isym; 9972 Elf_Internal_Sym *isymend; 9973 long *pindex; 9974 asection **ppsection; 9975 asection *o; 9976 const struct elf_backend_data *bed; 9977 struct elf_link_hash_entry **sym_hashes; 9978 bfd_size_type address_size; 9979 bfd_vma r_type_mask; 9980 int r_sym_shift; 9981 bfd_boolean have_file_sym = FALSE; 9982 9983 output_bfd = flinfo->output_bfd; 9984 bed = get_elf_backend_data (output_bfd); 9985 relocate_section = bed->elf_backend_relocate_section; 9986 9987 /* If this is a dynamic object, we don't want to do anything here: 9988 we don't want the local symbols, and we don't want the section 9989 contents. */ 9990 if ((input_bfd->flags & DYNAMIC) != 0) 9991 return TRUE; 9992 9993 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 9994 if (elf_bad_symtab (input_bfd)) 9995 { 9996 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 9997 extsymoff = 0; 9998 } 9999 else 10000 { 10001 locsymcount = symtab_hdr->sh_info; 10002 extsymoff = symtab_hdr->sh_info; 10003 } 10004 10005 /* Read the local symbols. */ 10006 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 10007 if (isymbuf == NULL && locsymcount != 0) 10008 { 10009 isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0, 10010 flinfo->internal_syms, 10011 flinfo->external_syms, 10012 flinfo->locsym_shndx); 10013 if (isymbuf == NULL) 10014 return FALSE; 10015 } 10016 10017 /* Find local symbol sections and adjust values of symbols in 10018 SEC_MERGE sections. Write out those local symbols we know are 10019 going into the output file. */ 10020 isymend = isymbuf + locsymcount; 10021 for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections; 10022 isym < isymend; 10023 isym++, pindex++, ppsection++) 10024 { 10025 asection *isec; 10026 const char *name; 10027 Elf_Internal_Sym osym; 10028 long indx; 10029 int ret; 10030 10031 *pindex = -1; 10032 10033 if (elf_bad_symtab (input_bfd)) 10034 { 10035 if (ELF_ST_BIND (isym->st_info) != STB_LOCAL) 10036 { 10037 *ppsection = NULL; 10038 continue; 10039 } 10040 } 10041 10042 if (isym->st_shndx == SHN_UNDEF) 10043 isec = bfd_und_section_ptr; 10044 else if (isym->st_shndx == SHN_ABS) 10045 isec = bfd_abs_section_ptr; 10046 else if (isym->st_shndx == SHN_COMMON) 10047 isec = bfd_com_section_ptr; 10048 else 10049 { 10050 isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx); 10051 if (isec == NULL) 10052 { 10053 /* Don't attempt to output symbols with st_shnx in the 10054 reserved range other than SHN_ABS and SHN_COMMON. */ 10055 *ppsection = NULL; 10056 continue; 10057 } 10058 else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE 10059 && ELF_ST_TYPE (isym->st_info) != STT_SECTION) 10060 isym->st_value = 10061 _bfd_merged_section_offset (output_bfd, &isec, 10062 elf_section_data (isec)->sec_info, 10063 isym->st_value); 10064 } 10065 10066 *ppsection = isec; 10067 10068 /* Don't output the first, undefined, symbol. In fact, don't 10069 output any undefined local symbol. */ 10070 if (isec == bfd_und_section_ptr) 10071 continue; 10072 10073 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 10074 { 10075 /* We never output section symbols. Instead, we use the 10076 section symbol of the corresponding section in the output 10077 file. */ 10078 continue; 10079 } 10080 10081 /* If we are stripping all symbols, we don't want to output this 10082 one. */ 10083 if (flinfo->info->strip == strip_all) 10084 continue; 10085 10086 /* If we are discarding all local symbols, we don't want to 10087 output this one. If we are generating a relocatable output 10088 file, then some of the local symbols may be required by 10089 relocs; we output them below as we discover that they are 10090 needed. */ 10091 if (flinfo->info->discard == discard_all) 10092 continue; 10093 10094 /* If this symbol is defined in a section which we are 10095 discarding, we don't need to keep it. */ 10096 if (isym->st_shndx != SHN_UNDEF 10097 && isym->st_shndx < SHN_LORESERVE 10098 && bfd_section_removed_from_list (output_bfd, 10099 isec->output_section)) 10100 continue; 10101 10102 /* Get the name of the symbol. */ 10103 name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link, 10104 isym->st_name); 10105 if (name == NULL) 10106 return FALSE; 10107 10108 /* See if we are discarding symbols with this name. */ 10109 if ((flinfo->info->strip == strip_some 10110 && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE) 10111 == NULL)) 10112 || (((flinfo->info->discard == discard_sec_merge 10113 && (isec->flags & SEC_MERGE) 10114 && !bfd_link_relocatable (flinfo->info)) 10115 || flinfo->info->discard == discard_l) 10116 && bfd_is_local_label_name (input_bfd, name))) 10117 continue; 10118 10119 if (ELF_ST_TYPE (isym->st_info) == STT_FILE) 10120 { 10121 if (input_bfd->lto_output) 10122 /* -flto puts a temp file name here. This means builds 10123 are not reproducible. Discard the symbol. */ 10124 continue; 10125 have_file_sym = TRUE; 10126 flinfo->filesym_count += 1; 10127 } 10128 if (!have_file_sym) 10129 { 10130 /* In the absence of debug info, bfd_find_nearest_line uses 10131 FILE symbols to determine the source file for local 10132 function symbols. Provide a FILE symbol here if input 10133 files lack such, so that their symbols won't be 10134 associated with a previous input file. It's not the 10135 source file, but the best we can do. */ 10136 have_file_sym = TRUE; 10137 flinfo->filesym_count += 1; 10138 memset (&osym, 0, sizeof (osym)); 10139 osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE); 10140 osym.st_shndx = SHN_ABS; 10141 if (!elf_link_output_symstrtab (flinfo, 10142 (input_bfd->lto_output ? NULL 10143 : input_bfd->filename), 10144 &osym, bfd_abs_section_ptr, 10145 NULL)) 10146 return FALSE; 10147 } 10148 10149 osym = *isym; 10150 10151 /* Adjust the section index for the output file. */ 10152 osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10153 isec->output_section); 10154 if (osym.st_shndx == SHN_BAD) 10155 return FALSE; 10156 10157 /* ELF symbols in relocatable files are section relative, but 10158 in executable files they are virtual addresses. Note that 10159 this code assumes that all ELF sections have an associated 10160 BFD section with a reasonable value for output_offset; below 10161 we assume that they also have a reasonable value for 10162 output_section. Any special sections must be set up to meet 10163 these requirements. */ 10164 osym.st_value += isec->output_offset; 10165 if (!bfd_link_relocatable (flinfo->info)) 10166 { 10167 osym.st_value += isec->output_section->vma; 10168 if (ELF_ST_TYPE (osym.st_info) == STT_TLS) 10169 { 10170 /* STT_TLS symbols are relative to PT_TLS segment base. */ 10171 BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL); 10172 osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma; 10173 } 10174 } 10175 10176 indx = bfd_get_symcount (output_bfd); 10177 ret = elf_link_output_symstrtab (flinfo, name, &osym, isec, NULL); 10178 if (ret == 0) 10179 return FALSE; 10180 else if (ret == 1) 10181 *pindex = indx; 10182 } 10183 10184 if (bed->s->arch_size == 32) 10185 { 10186 r_type_mask = 0xff; 10187 r_sym_shift = 8; 10188 address_size = 4; 10189 } 10190 else 10191 { 10192 r_type_mask = 0xffffffff; 10193 r_sym_shift = 32; 10194 address_size = 8; 10195 } 10196 10197 /* Relocate the contents of each section. */ 10198 sym_hashes = elf_sym_hashes (input_bfd); 10199 for (o = input_bfd->sections; o != NULL; o = o->next) 10200 { 10201 bfd_byte *contents; 10202 10203 if (! o->linker_mark) 10204 { 10205 /* This section was omitted from the link. */ 10206 continue; 10207 } 10208 10209 if (bfd_link_relocatable (flinfo->info) 10210 && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP) 10211 { 10212 /* Deal with the group signature symbol. */ 10213 struct bfd_elf_section_data *sec_data = elf_section_data (o); 10214 unsigned long symndx = sec_data->this_hdr.sh_info; 10215 asection *osec = o->output_section; 10216 10217 if (symndx >= locsymcount 10218 || (elf_bad_symtab (input_bfd) 10219 && flinfo->sections[symndx] == NULL)) 10220 { 10221 struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff]; 10222 while (h->root.type == bfd_link_hash_indirect 10223 || h->root.type == bfd_link_hash_warning) 10224 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10225 /* Arrange for symbol to be output. */ 10226 h->indx = -2; 10227 elf_section_data (osec)->this_hdr.sh_info = -2; 10228 } 10229 else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION) 10230 { 10231 /* We'll use the output section target_index. */ 10232 asection *sec = flinfo->sections[symndx]->output_section; 10233 elf_section_data (osec)->this_hdr.sh_info = sec->target_index; 10234 } 10235 else 10236 { 10237 if (flinfo->indices[symndx] == -1) 10238 { 10239 /* Otherwise output the local symbol now. */ 10240 Elf_Internal_Sym sym = isymbuf[symndx]; 10241 asection *sec = flinfo->sections[symndx]->output_section; 10242 const char *name; 10243 long indx; 10244 int ret; 10245 10246 name = bfd_elf_string_from_elf_section (input_bfd, 10247 symtab_hdr->sh_link, 10248 sym.st_name); 10249 if (name == NULL) 10250 return FALSE; 10251 10252 sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd, 10253 sec); 10254 if (sym.st_shndx == SHN_BAD) 10255 return FALSE; 10256 10257 sym.st_value += o->output_offset; 10258 10259 indx = bfd_get_symcount (output_bfd); 10260 ret = elf_link_output_symstrtab (flinfo, name, &sym, o, 10261 NULL); 10262 if (ret == 0) 10263 return FALSE; 10264 else if (ret == 1) 10265 flinfo->indices[symndx] = indx; 10266 else 10267 abort (); 10268 } 10269 elf_section_data (osec)->this_hdr.sh_info 10270 = flinfo->indices[symndx]; 10271 } 10272 } 10273 10274 if ((o->flags & SEC_HAS_CONTENTS) == 0 10275 || (o->size == 0 && (o->flags & SEC_RELOC) == 0)) 10276 continue; 10277 10278 if ((o->flags & SEC_LINKER_CREATED) != 0) 10279 { 10280 /* Section was created by _bfd_elf_link_create_dynamic_sections 10281 or somesuch. */ 10282 continue; 10283 } 10284 10285 /* Get the contents of the section. They have been cached by a 10286 relaxation routine. Note that o is a section in an input 10287 file, so the contents field will not have been set by any of 10288 the routines which work on output files. */ 10289 if (elf_section_data (o)->this_hdr.contents != NULL) 10290 { 10291 contents = elf_section_data (o)->this_hdr.contents; 10292 if (bed->caches_rawsize 10293 && o->rawsize != 0 10294 && o->rawsize < o->size) 10295 { 10296 memcpy (flinfo->contents, contents, o->rawsize); 10297 contents = flinfo->contents; 10298 } 10299 } 10300 else 10301 { 10302 contents = flinfo->contents; 10303 if (! bfd_get_full_section_contents (input_bfd, o, &contents)) 10304 return FALSE; 10305 } 10306 10307 if ((o->flags & SEC_RELOC) != 0) 10308 { 10309 Elf_Internal_Rela *internal_relocs; 10310 Elf_Internal_Rela *rel, *relend; 10311 int action_discarded; 10312 int ret; 10313 10314 /* Get the swapped relocs. */ 10315 internal_relocs 10316 = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs, 10317 flinfo->internal_relocs, FALSE); 10318 if (internal_relocs == NULL 10319 && o->reloc_count > 0) 10320 return FALSE; 10321 10322 /* We need to reverse-copy input .ctors/.dtors sections if 10323 they are placed in .init_array/.finit_array for output. */ 10324 if (o->size > address_size 10325 && ((strncmp (o->name, ".ctors", 6) == 0 10326 && strcmp (o->output_section->name, 10327 ".init_array") == 0) 10328 || (strncmp (o->name, ".dtors", 6) == 0 10329 && strcmp (o->output_section->name, 10330 ".fini_array") == 0)) 10331 && (o->name[6] == 0 || o->name[6] == '.')) 10332 { 10333 if (o->size != o->reloc_count * address_size) 10334 { 10335 _bfd_error_handler 10336 /* xgettext:c-format */ 10337 (_("error: %B: size of section %A is not " 10338 "multiple of address size"), 10339 input_bfd, o); 10340 bfd_set_error (bfd_error_on_input); 10341 return FALSE; 10342 } 10343 o->flags |= SEC_ELF_REVERSE_COPY; 10344 } 10345 10346 action_discarded = -1; 10347 if (!elf_section_ignore_discarded_relocs (o)) 10348 action_discarded = (*bed->action_discarded) (o); 10349 10350 /* Run through the relocs evaluating complex reloc symbols and 10351 looking for relocs against symbols from discarded sections 10352 or section symbols from removed link-once sections. 10353 Complain about relocs against discarded sections. Zero 10354 relocs against removed link-once sections. */ 10355 10356 rel = internal_relocs; 10357 relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel; 10358 for ( ; rel < relend; rel++) 10359 { 10360 unsigned long r_symndx = rel->r_info >> r_sym_shift; 10361 unsigned int s_type; 10362 asection **ps, *sec; 10363 struct elf_link_hash_entry *h = NULL; 10364 const char *sym_name; 10365 10366 if (r_symndx == STN_UNDEF) 10367 continue; 10368 10369 if (r_symndx >= locsymcount 10370 || (elf_bad_symtab (input_bfd) 10371 && flinfo->sections[r_symndx] == NULL)) 10372 { 10373 h = sym_hashes[r_symndx - extsymoff]; 10374 10375 /* Badly formatted input files can contain relocs that 10376 reference non-existant symbols. Check here so that 10377 we do not seg fault. */ 10378 if (h == NULL) 10379 { 10380 char buffer [32]; 10381 10382 sprintf_vma (buffer, rel->r_info); 10383 _bfd_error_handler 10384 /* xgettext:c-format */ 10385 (_("error: %B contains a reloc (0x%s) for section %A " 10386 "that references a non-existent global symbol"), 10387 input_bfd, buffer, o); 10388 bfd_set_error (bfd_error_bad_value); 10389 return FALSE; 10390 } 10391 10392 while (h->root.type == bfd_link_hash_indirect 10393 || h->root.type == bfd_link_hash_warning) 10394 h = (struct elf_link_hash_entry *) h->root.u.i.link; 10395 10396 s_type = h->type; 10397 10398 /* If a plugin symbol is referenced from a non-IR file, 10399 mark the symbol as undefined. Note that the 10400 linker may attach linker created dynamic sections 10401 to the plugin bfd. Symbols defined in linker 10402 created sections are not plugin symbols. */ 10403 if (h->root.non_ir_ref 10404 && (h->root.type == bfd_link_hash_defined 10405 || h->root.type == bfd_link_hash_defweak) 10406 && (h->root.u.def.section->flags 10407 & SEC_LINKER_CREATED) == 0 10408 && h->root.u.def.section->owner != NULL 10409 && (h->root.u.def.section->owner->flags 10410 & BFD_PLUGIN) != 0) 10411 { 10412 h->root.type = bfd_link_hash_undefined; 10413 h->root.u.undef.abfd = h->root.u.def.section->owner; 10414 } 10415 10416 ps = NULL; 10417 if (h->root.type == bfd_link_hash_defined 10418 || h->root.type == bfd_link_hash_defweak) 10419 ps = &h->root.u.def.section; 10420 10421 sym_name = h->root.root.string; 10422 } 10423 else 10424 { 10425 Elf_Internal_Sym *sym = isymbuf + r_symndx; 10426 10427 s_type = ELF_ST_TYPE (sym->st_info); 10428 ps = &flinfo->sections[r_symndx]; 10429 sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr, 10430 sym, *ps); 10431 } 10432 10433 if ((s_type == STT_RELC || s_type == STT_SRELC) 10434 && !bfd_link_relocatable (flinfo->info)) 10435 { 10436 bfd_vma val; 10437 bfd_vma dot = (rel->r_offset 10438 + o->output_offset + o->output_section->vma); 10439 #ifdef DEBUG 10440 printf ("Encountered a complex symbol!"); 10441 printf (" (input_bfd %s, section %s, reloc %ld\n", 10442 input_bfd->filename, o->name, 10443 (long) (rel - internal_relocs)); 10444 printf (" symbol: idx %8.8lx, name %s\n", 10445 r_symndx, sym_name); 10446 printf (" reloc : info %8.8lx, addr %8.8lx\n", 10447 (unsigned long) rel->r_info, 10448 (unsigned long) rel->r_offset); 10449 #endif 10450 if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot, 10451 isymbuf, locsymcount, s_type == STT_SRELC)) 10452 return FALSE; 10453 10454 /* Symbol evaluated OK. Update to absolute value. */ 10455 set_symbol_value (input_bfd, isymbuf, locsymcount, 10456 r_symndx, val); 10457 continue; 10458 } 10459 10460 if (action_discarded != -1 && ps != NULL) 10461 { 10462 /* Complain if the definition comes from a 10463 discarded section. */ 10464 if ((sec = *ps) != NULL && discarded_section (sec)) 10465 { 10466 BFD_ASSERT (r_symndx != STN_UNDEF); 10467 if (action_discarded & COMPLAIN) 10468 (*flinfo->info->callbacks->einfo) 10469 /* xgettext:c-format */ 10470 (_("%X`%s' referenced in section `%A' of %B: " 10471 "defined in discarded section `%A' of %B\n"), 10472 sym_name, o, input_bfd, sec, sec->owner); 10473 10474 /* Try to do the best we can to support buggy old 10475 versions of gcc. Pretend that the symbol is 10476 really defined in the kept linkonce section. 10477 FIXME: This is quite broken. Modifying the 10478 symbol here means we will be changing all later 10479 uses of the symbol, not just in this section. */ 10480 if (action_discarded & PRETEND) 10481 { 10482 asection *kept; 10483 10484 kept = _bfd_elf_check_kept_section (sec, 10485 flinfo->info); 10486 if (kept != NULL) 10487 { 10488 *ps = kept; 10489 continue; 10490 } 10491 } 10492 } 10493 } 10494 } 10495 10496 /* Relocate the section by invoking a back end routine. 10497 10498 The back end routine is responsible for adjusting the 10499 section contents as necessary, and (if using Rela relocs 10500 and generating a relocatable output file) adjusting the 10501 reloc addend as necessary. 10502 10503 The back end routine does not have to worry about setting 10504 the reloc address or the reloc symbol index. 10505 10506 The back end routine is given a pointer to the swapped in 10507 internal symbols, and can access the hash table entries 10508 for the external symbols via elf_sym_hashes (input_bfd). 10509 10510 When generating relocatable output, the back end routine 10511 must handle STB_LOCAL/STT_SECTION symbols specially. The 10512 output symbol is going to be a section symbol 10513 corresponding to the output section, which will require 10514 the addend to be adjusted. */ 10515 10516 ret = (*relocate_section) (output_bfd, flinfo->info, 10517 input_bfd, o, contents, 10518 internal_relocs, 10519 isymbuf, 10520 flinfo->sections); 10521 if (!ret) 10522 return FALSE; 10523 10524 if (ret == 2 10525 || bfd_link_relocatable (flinfo->info) 10526 || flinfo->info->emitrelocations) 10527 { 10528 Elf_Internal_Rela *irela; 10529 Elf_Internal_Rela *irelaend, *irelamid; 10530 bfd_vma last_offset; 10531 struct elf_link_hash_entry **rel_hash; 10532 struct elf_link_hash_entry **rel_hash_list, **rela_hash_list; 10533 Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr; 10534 unsigned int next_erel; 10535 bfd_boolean rela_normal; 10536 struct bfd_elf_section_data *esdi, *esdo; 10537 10538 esdi = elf_section_data (o); 10539 esdo = elf_section_data (o->output_section); 10540 rela_normal = FALSE; 10541 10542 /* Adjust the reloc addresses and symbol indices. */ 10543 10544 irela = internal_relocs; 10545 irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel; 10546 rel_hash = esdo->rel.hashes + esdo->rel.count; 10547 /* We start processing the REL relocs, if any. When we reach 10548 IRELAMID in the loop, we switch to the RELA relocs. */ 10549 irelamid = irela; 10550 if (esdi->rel.hdr != NULL) 10551 irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr) 10552 * bed->s->int_rels_per_ext_rel); 10553 rel_hash_list = rel_hash; 10554 rela_hash_list = NULL; 10555 last_offset = o->output_offset; 10556 if (!bfd_link_relocatable (flinfo->info)) 10557 last_offset += o->output_section->vma; 10558 for (next_erel = 0; irela < irelaend; irela++, next_erel++) 10559 { 10560 unsigned long r_symndx; 10561 asection *sec; 10562 Elf_Internal_Sym sym; 10563 10564 if (next_erel == bed->s->int_rels_per_ext_rel) 10565 { 10566 rel_hash++; 10567 next_erel = 0; 10568 } 10569 10570 if (irela == irelamid) 10571 { 10572 rel_hash = esdo->rela.hashes + esdo->rela.count; 10573 rela_hash_list = rel_hash; 10574 rela_normal = bed->rela_normal; 10575 } 10576 10577 irela->r_offset = _bfd_elf_section_offset (output_bfd, 10578 flinfo->info, o, 10579 irela->r_offset); 10580 if (irela->r_offset >= (bfd_vma) -2) 10581 { 10582 /* This is a reloc for a deleted entry or somesuch. 10583 Turn it into an R_*_NONE reloc, at the same 10584 offset as the last reloc. elf_eh_frame.c and 10585 bfd_elf_discard_info rely on reloc offsets 10586 being ordered. */ 10587 irela->r_offset = last_offset; 10588 irela->r_info = 0; 10589 irela->r_addend = 0; 10590 continue; 10591 } 10592 10593 irela->r_offset += o->output_offset; 10594 10595 /* Relocs in an executable have to be virtual addresses. */ 10596 if (!bfd_link_relocatable (flinfo->info)) 10597 irela->r_offset += o->output_section->vma; 10598 10599 last_offset = irela->r_offset; 10600 10601 r_symndx = irela->r_info >> r_sym_shift; 10602 if (r_symndx == STN_UNDEF) 10603 continue; 10604 10605 if (r_symndx >= locsymcount 10606 || (elf_bad_symtab (input_bfd) 10607 && flinfo->sections[r_symndx] == NULL)) 10608 { 10609 struct elf_link_hash_entry *rh; 10610 unsigned long indx; 10611 10612 /* This is a reloc against a global symbol. We 10613 have not yet output all the local symbols, so 10614 we do not know the symbol index of any global 10615 symbol. We set the rel_hash entry for this 10616 reloc to point to the global hash table entry 10617 for this symbol. The symbol index is then 10618 set at the end of bfd_elf_final_link. */ 10619 indx = r_symndx - extsymoff; 10620 rh = elf_sym_hashes (input_bfd)[indx]; 10621 while (rh->root.type == bfd_link_hash_indirect 10622 || rh->root.type == bfd_link_hash_warning) 10623 rh = (struct elf_link_hash_entry *) rh->root.u.i.link; 10624 10625 /* Setting the index to -2 tells 10626 elf_link_output_extsym that this symbol is 10627 used by a reloc. */ 10628 BFD_ASSERT (rh->indx < 0); 10629 rh->indx = -2; 10630 10631 *rel_hash = rh; 10632 10633 continue; 10634 } 10635 10636 /* This is a reloc against a local symbol. */ 10637 10638 *rel_hash = NULL; 10639 sym = isymbuf[r_symndx]; 10640 sec = flinfo->sections[r_symndx]; 10641 if (ELF_ST_TYPE (sym.st_info) == STT_SECTION) 10642 { 10643 /* I suppose the backend ought to fill in the 10644 section of any STT_SECTION symbol against a 10645 processor specific section. */ 10646 r_symndx = STN_UNDEF; 10647 if (bfd_is_abs_section (sec)) 10648 ; 10649 else if (sec == NULL || sec->owner == NULL) 10650 { 10651 bfd_set_error (bfd_error_bad_value); 10652 return FALSE; 10653 } 10654 else 10655 { 10656 asection *osec = sec->output_section; 10657 10658 /* If we have discarded a section, the output 10659 section will be the absolute section. In 10660 case of discarded SEC_MERGE sections, use 10661 the kept section. relocate_section should 10662 have already handled discarded linkonce 10663 sections. */ 10664 if (bfd_is_abs_section (osec) 10665 && sec->kept_section != NULL 10666 && sec->kept_section->output_section != NULL) 10667 { 10668 osec = sec->kept_section->output_section; 10669 irela->r_addend -= osec->vma; 10670 } 10671 10672 if (!bfd_is_abs_section (osec)) 10673 { 10674 r_symndx = osec->target_index; 10675 if (r_symndx == STN_UNDEF) 10676 { 10677 irela->r_addend += osec->vma; 10678 osec = _bfd_nearby_section (output_bfd, osec, 10679 osec->vma); 10680 irela->r_addend -= osec->vma; 10681 r_symndx = osec->target_index; 10682 } 10683 } 10684 } 10685 10686 /* Adjust the addend according to where the 10687 section winds up in the output section. */ 10688 if (rela_normal) 10689 irela->r_addend += sec->output_offset; 10690 } 10691 else 10692 { 10693 if (flinfo->indices[r_symndx] == -1) 10694 { 10695 unsigned long shlink; 10696 const char *name; 10697 asection *osec; 10698 long indx; 10699 10700 if (flinfo->info->strip == strip_all) 10701 { 10702 /* You can't do ld -r -s. */ 10703 bfd_set_error (bfd_error_invalid_operation); 10704 return FALSE; 10705 } 10706 10707 /* This symbol was skipped earlier, but 10708 since it is needed by a reloc, we 10709 must output it now. */ 10710 shlink = symtab_hdr->sh_link; 10711 name = (bfd_elf_string_from_elf_section 10712 (input_bfd, shlink, sym.st_name)); 10713 if (name == NULL) 10714 return FALSE; 10715 10716 osec = sec->output_section; 10717 sym.st_shndx = 10718 _bfd_elf_section_from_bfd_section (output_bfd, 10719 osec); 10720 if (sym.st_shndx == SHN_BAD) 10721 return FALSE; 10722 10723 sym.st_value += sec->output_offset; 10724 if (!bfd_link_relocatable (flinfo->info)) 10725 { 10726 sym.st_value += osec->vma; 10727 if (ELF_ST_TYPE (sym.st_info) == STT_TLS) 10728 { 10729 /* STT_TLS symbols are relative to PT_TLS 10730 segment base. */ 10731 BFD_ASSERT (elf_hash_table (flinfo->info) 10732 ->tls_sec != NULL); 10733 sym.st_value -= (elf_hash_table (flinfo->info) 10734 ->tls_sec->vma); 10735 } 10736 } 10737 10738 indx = bfd_get_symcount (output_bfd); 10739 ret = elf_link_output_symstrtab (flinfo, name, 10740 &sym, sec, 10741 NULL); 10742 if (ret == 0) 10743 return FALSE; 10744 else if (ret == 1) 10745 flinfo->indices[r_symndx] = indx; 10746 else 10747 abort (); 10748 } 10749 10750 r_symndx = flinfo->indices[r_symndx]; 10751 } 10752 10753 irela->r_info = ((bfd_vma) r_symndx << r_sym_shift 10754 | (irela->r_info & r_type_mask)); 10755 } 10756 10757 /* Swap out the relocs. */ 10758 input_rel_hdr = esdi->rel.hdr; 10759 if (input_rel_hdr && input_rel_hdr->sh_size != 0) 10760 { 10761 if (!bed->elf_backend_emit_relocs (output_bfd, o, 10762 input_rel_hdr, 10763 internal_relocs, 10764 rel_hash_list)) 10765 return FALSE; 10766 internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr) 10767 * bed->s->int_rels_per_ext_rel); 10768 rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr); 10769 } 10770 10771 input_rela_hdr = esdi->rela.hdr; 10772 if (input_rela_hdr && input_rela_hdr->sh_size != 0) 10773 { 10774 if (!bed->elf_backend_emit_relocs (output_bfd, o, 10775 input_rela_hdr, 10776 internal_relocs, 10777 rela_hash_list)) 10778 return FALSE; 10779 } 10780 } 10781 } 10782 10783 /* Write out the modified section contents. */ 10784 if (bed->elf_backend_write_section 10785 && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o, 10786 contents)) 10787 { 10788 /* Section written out. */ 10789 } 10790 else switch (o->sec_info_type) 10791 { 10792 case SEC_INFO_TYPE_STABS: 10793 if (! (_bfd_write_section_stabs 10794 (output_bfd, 10795 &elf_hash_table (flinfo->info)->stab_info, 10796 o, &elf_section_data (o)->sec_info, contents))) 10797 return FALSE; 10798 break; 10799 case SEC_INFO_TYPE_MERGE: 10800 if (! _bfd_write_merged_section (output_bfd, o, 10801 elf_section_data (o)->sec_info)) 10802 return FALSE; 10803 break; 10804 case SEC_INFO_TYPE_EH_FRAME: 10805 { 10806 if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info, 10807 o, contents)) 10808 return FALSE; 10809 } 10810 break; 10811 case SEC_INFO_TYPE_EH_FRAME_ENTRY: 10812 { 10813 if (! _bfd_elf_write_section_eh_frame_entry (output_bfd, 10814 flinfo->info, 10815 o, contents)) 10816 return FALSE; 10817 } 10818 break; 10819 default: 10820 { 10821 if (! (o->flags & SEC_EXCLUDE)) 10822 { 10823 file_ptr offset = (file_ptr) o->output_offset; 10824 bfd_size_type todo = o->size; 10825 10826 offset *= bfd_octets_per_byte (output_bfd); 10827 10828 if ((o->flags & SEC_ELF_REVERSE_COPY)) 10829 { 10830 /* Reverse-copy input section to output. */ 10831 do 10832 { 10833 todo -= address_size; 10834 if (! bfd_set_section_contents (output_bfd, 10835 o->output_section, 10836 contents + todo, 10837 offset, 10838 address_size)) 10839 return FALSE; 10840 if (todo == 0) 10841 break; 10842 offset += address_size; 10843 } 10844 while (1); 10845 } 10846 else if (! bfd_set_section_contents (output_bfd, 10847 o->output_section, 10848 contents, 10849 offset, todo)) 10850 return FALSE; 10851 } 10852 } 10853 break; 10854 } 10855 } 10856 10857 return TRUE; 10858 } 10859 10860 /* Generate a reloc when linking an ELF file. This is a reloc 10861 requested by the linker, and does not come from any input file. This 10862 is used to build constructor and destructor tables when linking 10863 with -Ur. */ 10864 10865 static bfd_boolean 10866 elf_reloc_link_order (bfd *output_bfd, 10867 struct bfd_link_info *info, 10868 asection *output_section, 10869 struct bfd_link_order *link_order) 10870 { 10871 reloc_howto_type *howto; 10872 long indx; 10873 bfd_vma offset; 10874 bfd_vma addend; 10875 struct bfd_elf_section_reloc_data *reldata; 10876 struct elf_link_hash_entry **rel_hash_ptr; 10877 Elf_Internal_Shdr *rel_hdr; 10878 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd); 10879 Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL]; 10880 bfd_byte *erel; 10881 unsigned int i; 10882 struct bfd_elf_section_data *esdo = elf_section_data (output_section); 10883 10884 howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc); 10885 if (howto == NULL) 10886 { 10887 bfd_set_error (bfd_error_bad_value); 10888 return FALSE; 10889 } 10890 10891 addend = link_order->u.reloc.p->addend; 10892 10893 if (esdo->rel.hdr) 10894 reldata = &esdo->rel; 10895 else if (esdo->rela.hdr) 10896 reldata = &esdo->rela; 10897 else 10898 { 10899 reldata = NULL; 10900 BFD_ASSERT (0); 10901 } 10902 10903 /* Figure out the symbol index. */ 10904 rel_hash_ptr = reldata->hashes + reldata->count; 10905 if (link_order->type == bfd_section_reloc_link_order) 10906 { 10907 indx = link_order->u.reloc.p->u.section->target_index; 10908 BFD_ASSERT (indx != 0); 10909 *rel_hash_ptr = NULL; 10910 } 10911 else 10912 { 10913 struct elf_link_hash_entry *h; 10914 10915 /* Treat a reloc against a defined symbol as though it were 10916 actually against the section. */ 10917 h = ((struct elf_link_hash_entry *) 10918 bfd_wrapped_link_hash_lookup (output_bfd, info, 10919 link_order->u.reloc.p->u.name, 10920 FALSE, FALSE, TRUE)); 10921 if (h != NULL 10922 && (h->root.type == bfd_link_hash_defined 10923 || h->root.type == bfd_link_hash_defweak)) 10924 { 10925 asection *section; 10926 10927 section = h->root.u.def.section; 10928 indx = section->output_section->target_index; 10929 *rel_hash_ptr = NULL; 10930 /* It seems that we ought to add the symbol value to the 10931 addend here, but in practice it has already been added 10932 because it was passed to constructor_callback. */ 10933 addend += section->output_section->vma + section->output_offset; 10934 } 10935 else if (h != NULL) 10936 { 10937 /* Setting the index to -2 tells elf_link_output_extsym that 10938 this symbol is used by a reloc. */ 10939 h->indx = -2; 10940 *rel_hash_ptr = h; 10941 indx = 0; 10942 } 10943 else 10944 { 10945 (*info->callbacks->unattached_reloc) 10946 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0); 10947 indx = 0; 10948 } 10949 } 10950 10951 /* If this is an inplace reloc, we must write the addend into the 10952 object file. */ 10953 if (howto->partial_inplace && addend != 0) 10954 { 10955 bfd_size_type size; 10956 bfd_reloc_status_type rstat; 10957 bfd_byte *buf; 10958 bfd_boolean ok; 10959 const char *sym_name; 10960 10961 size = (bfd_size_type) bfd_get_reloc_size (howto); 10962 buf = (bfd_byte *) bfd_zmalloc (size); 10963 if (buf == NULL && size != 0) 10964 return FALSE; 10965 rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf); 10966 switch (rstat) 10967 { 10968 case bfd_reloc_ok: 10969 break; 10970 10971 default: 10972 case bfd_reloc_outofrange: 10973 abort (); 10974 10975 case bfd_reloc_overflow: 10976 if (link_order->type == bfd_section_reloc_link_order) 10977 sym_name = bfd_section_name (output_bfd, 10978 link_order->u.reloc.p->u.section); 10979 else 10980 sym_name = link_order->u.reloc.p->u.name; 10981 (*info->callbacks->reloc_overflow) (info, NULL, sym_name, 10982 howto->name, addend, NULL, NULL, 10983 (bfd_vma) 0); 10984 break; 10985 } 10986 10987 ok = bfd_set_section_contents (output_bfd, output_section, buf, 10988 link_order->offset 10989 * bfd_octets_per_byte (output_bfd), 10990 size); 10991 free (buf); 10992 if (! ok) 10993 return FALSE; 10994 } 10995 10996 /* The address of a reloc is relative to the section in a 10997 relocatable file, and is a virtual address in an executable 10998 file. */ 10999 offset = link_order->offset; 11000 if (! bfd_link_relocatable (info)) 11001 offset += output_section->vma; 11002 11003 for (i = 0; i < bed->s->int_rels_per_ext_rel; i++) 11004 { 11005 irel[i].r_offset = offset; 11006 irel[i].r_info = 0; 11007 irel[i].r_addend = 0; 11008 } 11009 if (bed->s->arch_size == 32) 11010 irel[0].r_info = ELF32_R_INFO (indx, howto->type); 11011 else 11012 irel[0].r_info = ELF64_R_INFO (indx, howto->type); 11013 11014 rel_hdr = reldata->hdr; 11015 erel = rel_hdr->contents; 11016 if (rel_hdr->sh_type == SHT_REL) 11017 { 11018 erel += reldata->count * bed->s->sizeof_rel; 11019 (*bed->s->swap_reloc_out) (output_bfd, irel, erel); 11020 } 11021 else 11022 { 11023 irel[0].r_addend = addend; 11024 erel += reldata->count * bed->s->sizeof_rela; 11025 (*bed->s->swap_reloca_out) (output_bfd, irel, erel); 11026 } 11027 11028 ++reldata->count; 11029 11030 return TRUE; 11031 } 11032 11033 11034 /* Get the output vma of the section pointed to by the sh_link field. */ 11035 11036 static bfd_vma 11037 elf_get_linked_section_vma (struct bfd_link_order *p) 11038 { 11039 Elf_Internal_Shdr **elf_shdrp; 11040 asection *s; 11041 int elfsec; 11042 11043 s = p->u.indirect.section; 11044 elf_shdrp = elf_elfsections (s->owner); 11045 elfsec = _bfd_elf_section_from_bfd_section (s->owner, s); 11046 elfsec = elf_shdrp[elfsec]->sh_link; 11047 /* PR 290: 11048 The Intel C compiler generates SHT_IA_64_UNWIND with 11049 SHF_LINK_ORDER. But it doesn't set the sh_link or 11050 sh_info fields. Hence we could get the situation 11051 where elfsec is 0. */ 11052 if (elfsec == 0) 11053 { 11054 const struct elf_backend_data *bed 11055 = get_elf_backend_data (s->owner); 11056 if (bed->link_order_error_handler) 11057 bed->link_order_error_handler 11058 /* xgettext:c-format */ 11059 (_("%B: warning: sh_link not set for section `%A'"), s->owner, s); 11060 return 0; 11061 } 11062 else 11063 { 11064 s = elf_shdrp[elfsec]->bfd_section; 11065 return s->output_section->vma + s->output_offset; 11066 } 11067 } 11068 11069 11070 /* Compare two sections based on the locations of the sections they are 11071 linked to. Used by elf_fixup_link_order. */ 11072 11073 static int 11074 compare_link_order (const void * a, const void * b) 11075 { 11076 bfd_vma apos; 11077 bfd_vma bpos; 11078 11079 apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a); 11080 bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b); 11081 if (apos < bpos) 11082 return -1; 11083 return apos > bpos; 11084 } 11085 11086 11087 /* Looks for sections with SHF_LINK_ORDER set. Rearranges them into the same 11088 order as their linked sections. Returns false if this could not be done 11089 because an output section includes both ordered and unordered 11090 sections. Ideally we'd do this in the linker proper. */ 11091 11092 static bfd_boolean 11093 elf_fixup_link_order (bfd *abfd, asection *o) 11094 { 11095 int seen_linkorder; 11096 int seen_other; 11097 int n; 11098 struct bfd_link_order *p; 11099 bfd *sub; 11100 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 11101 unsigned elfsec; 11102 struct bfd_link_order **sections; 11103 asection *s, *other_sec, *linkorder_sec; 11104 bfd_vma offset; 11105 11106 other_sec = NULL; 11107 linkorder_sec = NULL; 11108 seen_other = 0; 11109 seen_linkorder = 0; 11110 for (p = o->map_head.link_order; p != NULL; p = p->next) 11111 { 11112 if (p->type == bfd_indirect_link_order) 11113 { 11114 s = p->u.indirect.section; 11115 sub = s->owner; 11116 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 11117 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass 11118 && (elfsec = _bfd_elf_section_from_bfd_section (sub, s)) 11119 && elfsec < elf_numsections (sub) 11120 && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER 11121 && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub)) 11122 { 11123 seen_linkorder++; 11124 linkorder_sec = s; 11125 } 11126 else 11127 { 11128 seen_other++; 11129 other_sec = s; 11130 } 11131 } 11132 else 11133 seen_other++; 11134 11135 if (seen_other && seen_linkorder) 11136 { 11137 if (other_sec && linkorder_sec) 11138 _bfd_error_handler 11139 /* xgettext:c-format */ 11140 (_("%A has both ordered [`%A' in %B] " 11141 "and unordered [`%A' in %B] sections"), 11142 o, linkorder_sec, linkorder_sec->owner, 11143 other_sec, other_sec->owner); 11144 else 11145 _bfd_error_handler 11146 (_("%A has both ordered and unordered sections"), o); 11147 bfd_set_error (bfd_error_bad_value); 11148 return FALSE; 11149 } 11150 } 11151 11152 if (!seen_linkorder) 11153 return TRUE; 11154 11155 sections = (struct bfd_link_order **) 11156 bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *)); 11157 if (sections == NULL) 11158 return FALSE; 11159 seen_linkorder = 0; 11160 11161 for (p = o->map_head.link_order; p != NULL; p = p->next) 11162 { 11163 sections[seen_linkorder++] = p; 11164 } 11165 /* Sort the input sections in the order of their linked section. */ 11166 qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *), 11167 compare_link_order); 11168 11169 /* Change the offsets of the sections. */ 11170 offset = 0; 11171 for (n = 0; n < seen_linkorder; n++) 11172 { 11173 s = sections[n]->u.indirect.section; 11174 offset &= ~(bfd_vma) 0 << s->alignment_power; 11175 s->output_offset = offset / bfd_octets_per_byte (abfd); 11176 sections[n]->offset = offset; 11177 offset += sections[n]->size; 11178 } 11179 11180 free (sections); 11181 return TRUE; 11182 } 11183 11184 /* Generate an import library in INFO->implib_bfd from symbols in ABFD. 11185 Returns TRUE upon success, FALSE otherwise. */ 11186 11187 static bfd_boolean 11188 elf_output_implib (bfd *abfd, struct bfd_link_info *info) 11189 { 11190 bfd_boolean ret = FALSE; 11191 bfd *implib_bfd; 11192 const struct elf_backend_data *bed; 11193 flagword flags; 11194 enum bfd_architecture arch; 11195 unsigned int mach; 11196 asymbol **sympp = NULL; 11197 long symsize; 11198 long symcount; 11199 long src_count; 11200 elf_symbol_type *osymbuf; 11201 11202 implib_bfd = info->out_implib_bfd; 11203 bed = get_elf_backend_data (abfd); 11204 11205 if (!bfd_set_format (implib_bfd, bfd_object)) 11206 return FALSE; 11207 11208 flags = bfd_get_file_flags (abfd); 11209 flags &= ~HAS_RELOC; 11210 if (!bfd_set_start_address (implib_bfd, 0) 11211 || !bfd_set_file_flags (implib_bfd, flags)) 11212 return FALSE; 11213 11214 /* Copy architecture of output file to import library file. */ 11215 arch = bfd_get_arch (abfd); 11216 mach = bfd_get_mach (abfd); 11217 if (!bfd_set_arch_mach (implib_bfd, arch, mach) 11218 && (abfd->target_defaulted 11219 || bfd_get_arch (abfd) != bfd_get_arch (implib_bfd))) 11220 return FALSE; 11221 11222 /* Get symbol table size. */ 11223 symsize = bfd_get_symtab_upper_bound (abfd); 11224 if (symsize < 0) 11225 return FALSE; 11226 11227 /* Read in the symbol table. */ 11228 sympp = (asymbol **) xmalloc (symsize); 11229 symcount = bfd_canonicalize_symtab (abfd, sympp); 11230 if (symcount < 0) 11231 goto free_sym_buf; 11232 11233 /* Allow the BFD backend to copy any private header data it 11234 understands from the output BFD to the import library BFD. */ 11235 if (! bfd_copy_private_header_data (abfd, implib_bfd)) 11236 goto free_sym_buf; 11237 11238 /* Filter symbols to appear in the import library. */ 11239 if (bed->elf_backend_filter_implib_symbols) 11240 symcount = bed->elf_backend_filter_implib_symbols (abfd, info, sympp, 11241 symcount); 11242 else 11243 symcount = _bfd_elf_filter_global_symbols (abfd, info, sympp, symcount); 11244 if (symcount == 0) 11245 { 11246 bfd_set_error (bfd_error_no_symbols); 11247 _bfd_error_handler (_("%B: no symbol found for import library"), 11248 implib_bfd); 11249 goto free_sym_buf; 11250 } 11251 11252 11253 /* Make symbols absolute. */ 11254 osymbuf = (elf_symbol_type *) bfd_alloc2 (implib_bfd, symcount, 11255 sizeof (*osymbuf)); 11256 for (src_count = 0; src_count < symcount; src_count++) 11257 { 11258 memcpy (&osymbuf[src_count], (elf_symbol_type *) sympp[src_count], 11259 sizeof (*osymbuf)); 11260 osymbuf[src_count].symbol.section = bfd_abs_section_ptr; 11261 osymbuf[src_count].internal_elf_sym.st_shndx = SHN_ABS; 11262 osymbuf[src_count].symbol.value += sympp[src_count]->section->vma; 11263 osymbuf[src_count].internal_elf_sym.st_value = 11264 osymbuf[src_count].symbol.value; 11265 sympp[src_count] = &osymbuf[src_count].symbol; 11266 } 11267 11268 bfd_set_symtab (implib_bfd, sympp, symcount); 11269 11270 /* Allow the BFD backend to copy any private data it understands 11271 from the output BFD to the import library BFD. This is done last 11272 to permit the routine to look at the filtered symbol table. */ 11273 if (! bfd_copy_private_bfd_data (abfd, implib_bfd)) 11274 goto free_sym_buf; 11275 11276 if (!bfd_close (implib_bfd)) 11277 goto free_sym_buf; 11278 11279 ret = TRUE; 11280 11281 free_sym_buf: 11282 free (sympp); 11283 return ret; 11284 } 11285 11286 static void 11287 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo) 11288 { 11289 asection *o; 11290 11291 if (flinfo->symstrtab != NULL) 11292 _bfd_elf_strtab_free (flinfo->symstrtab); 11293 if (flinfo->contents != NULL) 11294 free (flinfo->contents); 11295 if (flinfo->external_relocs != NULL) 11296 free (flinfo->external_relocs); 11297 if (flinfo->internal_relocs != NULL) 11298 free (flinfo->internal_relocs); 11299 if (flinfo->external_syms != NULL) 11300 free (flinfo->external_syms); 11301 if (flinfo->locsym_shndx != NULL) 11302 free (flinfo->locsym_shndx); 11303 if (flinfo->internal_syms != NULL) 11304 free (flinfo->internal_syms); 11305 if (flinfo->indices != NULL) 11306 free (flinfo->indices); 11307 if (flinfo->sections != NULL) 11308 free (flinfo->sections); 11309 if (flinfo->symshndxbuf != NULL) 11310 free (flinfo->symshndxbuf); 11311 for (o = obfd->sections; o != NULL; o = o->next) 11312 { 11313 struct bfd_elf_section_data *esdo = elf_section_data (o); 11314 if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL) 11315 free (esdo->rel.hashes); 11316 if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL) 11317 free (esdo->rela.hashes); 11318 } 11319 } 11320 11321 /* Do the final step of an ELF link. */ 11322 11323 bfd_boolean 11324 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info) 11325 { 11326 bfd_boolean dynamic; 11327 bfd_boolean emit_relocs; 11328 bfd *dynobj; 11329 struct elf_final_link_info flinfo; 11330 asection *o; 11331 struct bfd_link_order *p; 11332 bfd *sub; 11333 bfd_size_type max_contents_size; 11334 bfd_size_type max_external_reloc_size; 11335 bfd_size_type max_internal_reloc_count; 11336 bfd_size_type max_sym_count; 11337 bfd_size_type max_sym_shndx_count; 11338 Elf_Internal_Sym elfsym; 11339 unsigned int i; 11340 Elf_Internal_Shdr *symtab_hdr; 11341 Elf_Internal_Shdr *symtab_shndx_hdr; 11342 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 11343 struct elf_outext_info eoinfo; 11344 bfd_boolean merged; 11345 size_t relativecount = 0; 11346 asection *reldyn = 0; 11347 bfd_size_type amt; 11348 asection *attr_section = NULL; 11349 bfd_vma attr_size = 0; 11350 const char *std_attrs_section; 11351 struct elf_link_hash_table *htab = elf_hash_table (info); 11352 11353 if (!is_elf_hash_table (htab)) 11354 return FALSE; 11355 11356 if (bfd_link_pic (info)) 11357 abfd->flags |= DYNAMIC; 11358 11359 dynamic = htab->dynamic_sections_created; 11360 dynobj = htab->dynobj; 11361 11362 emit_relocs = (bfd_link_relocatable (info) 11363 || info->emitrelocations); 11364 11365 flinfo.info = info; 11366 flinfo.output_bfd = abfd; 11367 flinfo.symstrtab = _bfd_elf_strtab_init (); 11368 if (flinfo.symstrtab == NULL) 11369 return FALSE; 11370 11371 if (! dynamic) 11372 { 11373 flinfo.hash_sec = NULL; 11374 flinfo.symver_sec = NULL; 11375 } 11376 else 11377 { 11378 flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash"); 11379 /* Note that dynsym_sec can be NULL (on VMS). */ 11380 flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version"); 11381 /* Note that it is OK if symver_sec is NULL. */ 11382 } 11383 11384 flinfo.contents = NULL; 11385 flinfo.external_relocs = NULL; 11386 flinfo.internal_relocs = NULL; 11387 flinfo.external_syms = NULL; 11388 flinfo.locsym_shndx = NULL; 11389 flinfo.internal_syms = NULL; 11390 flinfo.indices = NULL; 11391 flinfo.sections = NULL; 11392 flinfo.symshndxbuf = NULL; 11393 flinfo.filesym_count = 0; 11394 11395 /* The object attributes have been merged. Remove the input 11396 sections from the link, and set the contents of the output 11397 secton. */ 11398 std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section; 11399 for (o = abfd->sections; o != NULL; o = o->next) 11400 { 11401 if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0) 11402 || strcmp (o->name, ".gnu.attributes") == 0) 11403 { 11404 for (p = o->map_head.link_order; p != NULL; p = p->next) 11405 { 11406 asection *input_section; 11407 11408 if (p->type != bfd_indirect_link_order) 11409 continue; 11410 input_section = p->u.indirect.section; 11411 /* Hack: reset the SEC_HAS_CONTENTS flag so that 11412 elf_link_input_bfd ignores this section. */ 11413 input_section->flags &= ~SEC_HAS_CONTENTS; 11414 } 11415 11416 attr_size = bfd_elf_obj_attr_size (abfd); 11417 if (attr_size) 11418 { 11419 bfd_set_section_size (abfd, o, attr_size); 11420 attr_section = o; 11421 /* Skip this section later on. */ 11422 o->map_head.link_order = NULL; 11423 } 11424 else 11425 o->flags |= SEC_EXCLUDE; 11426 } 11427 } 11428 11429 /* Count up the number of relocations we will output for each output 11430 section, so that we know the sizes of the reloc sections. We 11431 also figure out some maximum sizes. */ 11432 max_contents_size = 0; 11433 max_external_reloc_size = 0; 11434 max_internal_reloc_count = 0; 11435 max_sym_count = 0; 11436 max_sym_shndx_count = 0; 11437 merged = FALSE; 11438 for (o = abfd->sections; o != NULL; o = o->next) 11439 { 11440 struct bfd_elf_section_data *esdo = elf_section_data (o); 11441 o->reloc_count = 0; 11442 11443 for (p = o->map_head.link_order; p != NULL; p = p->next) 11444 { 11445 unsigned int reloc_count = 0; 11446 unsigned int additional_reloc_count = 0; 11447 struct bfd_elf_section_data *esdi = NULL; 11448 11449 if (p->type == bfd_section_reloc_link_order 11450 || p->type == bfd_symbol_reloc_link_order) 11451 reloc_count = 1; 11452 else if (p->type == bfd_indirect_link_order) 11453 { 11454 asection *sec; 11455 11456 sec = p->u.indirect.section; 11457 11458 /* Mark all sections which are to be included in the 11459 link. This will normally be every section. We need 11460 to do this so that we can identify any sections which 11461 the linker has decided to not include. */ 11462 sec->linker_mark = TRUE; 11463 11464 if (sec->flags & SEC_MERGE) 11465 merged = TRUE; 11466 11467 if (sec->rawsize > max_contents_size) 11468 max_contents_size = sec->rawsize; 11469 if (sec->size > max_contents_size) 11470 max_contents_size = sec->size; 11471 11472 if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour 11473 && (sec->owner->flags & DYNAMIC) == 0) 11474 { 11475 size_t sym_count; 11476 11477 /* We are interested in just local symbols, not all 11478 symbols. */ 11479 if (elf_bad_symtab (sec->owner)) 11480 sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size 11481 / bed->s->sizeof_sym); 11482 else 11483 sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info; 11484 11485 if (sym_count > max_sym_count) 11486 max_sym_count = sym_count; 11487 11488 if (sym_count > max_sym_shndx_count 11489 && elf_symtab_shndx_list (sec->owner) != NULL) 11490 max_sym_shndx_count = sym_count; 11491 11492 if (esdo->this_hdr.sh_type == SHT_REL 11493 || esdo->this_hdr.sh_type == SHT_RELA) 11494 /* Some backends use reloc_count in relocation sections 11495 to count particular types of relocs. Of course, 11496 reloc sections themselves can't have relocations. */ 11497 ; 11498 else if (emit_relocs) 11499 { 11500 reloc_count = sec->reloc_count; 11501 if (bed->elf_backend_count_additional_relocs) 11502 { 11503 int c; 11504 c = (*bed->elf_backend_count_additional_relocs) (sec); 11505 additional_reloc_count += c; 11506 } 11507 } 11508 else if (bed->elf_backend_count_relocs) 11509 reloc_count = (*bed->elf_backend_count_relocs) (info, sec); 11510 11511 esdi = elf_section_data (sec); 11512 11513 if ((sec->flags & SEC_RELOC) != 0) 11514 { 11515 size_t ext_size = 0; 11516 11517 if (esdi->rel.hdr != NULL) 11518 ext_size = esdi->rel.hdr->sh_size; 11519 if (esdi->rela.hdr != NULL) 11520 ext_size += esdi->rela.hdr->sh_size; 11521 11522 if (ext_size > max_external_reloc_size) 11523 max_external_reloc_size = ext_size; 11524 if (sec->reloc_count > max_internal_reloc_count) 11525 max_internal_reloc_count = sec->reloc_count; 11526 } 11527 } 11528 } 11529 11530 if (reloc_count == 0) 11531 continue; 11532 11533 reloc_count += additional_reloc_count; 11534 o->reloc_count += reloc_count; 11535 11536 if (p->type == bfd_indirect_link_order && emit_relocs) 11537 { 11538 if (esdi->rel.hdr) 11539 { 11540 esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr); 11541 esdo->rel.count += additional_reloc_count; 11542 } 11543 if (esdi->rela.hdr) 11544 { 11545 esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr); 11546 esdo->rela.count += additional_reloc_count; 11547 } 11548 } 11549 else 11550 { 11551 if (o->use_rela_p) 11552 esdo->rela.count += reloc_count; 11553 else 11554 esdo->rel.count += reloc_count; 11555 } 11556 } 11557 11558 if (o->reloc_count > 0) 11559 o->flags |= SEC_RELOC; 11560 else 11561 { 11562 /* Explicitly clear the SEC_RELOC flag. The linker tends to 11563 set it (this is probably a bug) and if it is set 11564 assign_section_numbers will create a reloc section. */ 11565 o->flags &=~ SEC_RELOC; 11566 } 11567 11568 /* If the SEC_ALLOC flag is not set, force the section VMA to 11569 zero. This is done in elf_fake_sections as well, but forcing 11570 the VMA to 0 here will ensure that relocs against these 11571 sections are handled correctly. */ 11572 if ((o->flags & SEC_ALLOC) == 0 11573 && ! o->user_set_vma) 11574 o->vma = 0; 11575 } 11576 11577 if (! bfd_link_relocatable (info) && merged) 11578 elf_link_hash_traverse (htab, _bfd_elf_link_sec_merge_syms, abfd); 11579 11580 /* Figure out the file positions for everything but the symbol table 11581 and the relocs. We set symcount to force assign_section_numbers 11582 to create a symbol table. */ 11583 bfd_get_symcount (abfd) = info->strip != strip_all || emit_relocs; 11584 BFD_ASSERT (! abfd->output_has_begun); 11585 if (! _bfd_elf_compute_section_file_positions (abfd, info)) 11586 goto error_return; 11587 11588 /* Set sizes, and assign file positions for reloc sections. */ 11589 for (o = abfd->sections; o != NULL; o = o->next) 11590 { 11591 struct bfd_elf_section_data *esdo = elf_section_data (o); 11592 if ((o->flags & SEC_RELOC) != 0) 11593 { 11594 if (esdo->rel.hdr 11595 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel))) 11596 goto error_return; 11597 11598 if (esdo->rela.hdr 11599 && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela))) 11600 goto error_return; 11601 } 11602 11603 /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them 11604 to count upwards while actually outputting the relocations. */ 11605 esdo->rel.count = 0; 11606 esdo->rela.count = 0; 11607 11608 if (esdo->this_hdr.sh_offset == (file_ptr) -1) 11609 { 11610 /* Cache the section contents so that they can be compressed 11611 later. Use bfd_malloc since it will be freed by 11612 bfd_compress_section_contents. */ 11613 unsigned char *contents = esdo->this_hdr.contents; 11614 if ((o->flags & SEC_ELF_COMPRESS) == 0 || contents != NULL) 11615 abort (); 11616 contents 11617 = (unsigned char *) bfd_malloc (esdo->this_hdr.sh_size); 11618 if (contents == NULL) 11619 goto error_return; 11620 esdo->this_hdr.contents = contents; 11621 } 11622 } 11623 11624 /* We have now assigned file positions for all the sections except 11625 .symtab, .strtab, and non-loaded reloc sections. We start the 11626 .symtab section at the current file position, and write directly 11627 to it. We build the .strtab section in memory. */ 11628 bfd_get_symcount (abfd) = 0; 11629 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 11630 /* sh_name is set in prep_headers. */ 11631 symtab_hdr->sh_type = SHT_SYMTAB; 11632 /* sh_flags, sh_addr and sh_size all start off zero. */ 11633 symtab_hdr->sh_entsize = bed->s->sizeof_sym; 11634 /* sh_link is set in assign_section_numbers. */ 11635 /* sh_info is set below. */ 11636 /* sh_offset is set just below. */ 11637 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align; 11638 11639 if (max_sym_count < 20) 11640 max_sym_count = 20; 11641 htab->strtabsize = max_sym_count; 11642 amt = max_sym_count * sizeof (struct elf_sym_strtab); 11643 htab->strtab = (struct elf_sym_strtab *) bfd_malloc (amt); 11644 if (htab->strtab == NULL) 11645 goto error_return; 11646 /* The real buffer will be allocated in elf_link_swap_symbols_out. */ 11647 flinfo.symshndxbuf 11648 = (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF) 11649 ? (Elf_External_Sym_Shndx *) -1 : NULL); 11650 11651 if (info->strip != strip_all || emit_relocs) 11652 { 11653 file_ptr off = elf_next_file_pos (abfd); 11654 11655 _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE); 11656 11657 /* Note that at this point elf_next_file_pos (abfd) is 11658 incorrect. We do not yet know the size of the .symtab section. 11659 We correct next_file_pos below, after we do know the size. */ 11660 11661 /* Start writing out the symbol table. The first symbol is always a 11662 dummy symbol. */ 11663 elfsym.st_value = 0; 11664 elfsym.st_size = 0; 11665 elfsym.st_info = 0; 11666 elfsym.st_other = 0; 11667 elfsym.st_shndx = SHN_UNDEF; 11668 elfsym.st_target_internal = 0; 11669 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, 11670 bfd_und_section_ptr, NULL) != 1) 11671 goto error_return; 11672 11673 /* Output a symbol for each section. We output these even if we are 11674 discarding local symbols, since they are used for relocs. These 11675 symbols have no names. We store the index of each one in the 11676 index field of the section, so that we can find it again when 11677 outputting relocs. */ 11678 11679 elfsym.st_size = 0; 11680 elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 11681 elfsym.st_other = 0; 11682 elfsym.st_value = 0; 11683 elfsym.st_target_internal = 0; 11684 for (i = 1; i < elf_numsections (abfd); i++) 11685 { 11686 o = bfd_section_from_elf_index (abfd, i); 11687 if (o != NULL) 11688 { 11689 o->target_index = bfd_get_symcount (abfd); 11690 elfsym.st_shndx = i; 11691 if (!bfd_link_relocatable (info)) 11692 elfsym.st_value = o->vma; 11693 if (elf_link_output_symstrtab (&flinfo, NULL, &elfsym, o, 11694 NULL) != 1) 11695 goto error_return; 11696 } 11697 } 11698 } 11699 11700 /* Allocate some memory to hold information read in from the input 11701 files. */ 11702 if (max_contents_size != 0) 11703 { 11704 flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size); 11705 if (flinfo.contents == NULL) 11706 goto error_return; 11707 } 11708 11709 if (max_external_reloc_size != 0) 11710 { 11711 flinfo.external_relocs = bfd_malloc (max_external_reloc_size); 11712 if (flinfo.external_relocs == NULL) 11713 goto error_return; 11714 } 11715 11716 if (max_internal_reloc_count != 0) 11717 { 11718 amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel; 11719 amt *= sizeof (Elf_Internal_Rela); 11720 flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt); 11721 if (flinfo.internal_relocs == NULL) 11722 goto error_return; 11723 } 11724 11725 if (max_sym_count != 0) 11726 { 11727 amt = max_sym_count * bed->s->sizeof_sym; 11728 flinfo.external_syms = (bfd_byte *) bfd_malloc (amt); 11729 if (flinfo.external_syms == NULL) 11730 goto error_return; 11731 11732 amt = max_sym_count * sizeof (Elf_Internal_Sym); 11733 flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt); 11734 if (flinfo.internal_syms == NULL) 11735 goto error_return; 11736 11737 amt = max_sym_count * sizeof (long); 11738 flinfo.indices = (long int *) bfd_malloc (amt); 11739 if (flinfo.indices == NULL) 11740 goto error_return; 11741 11742 amt = max_sym_count * sizeof (asection *); 11743 flinfo.sections = (asection **) bfd_malloc (amt); 11744 if (flinfo.sections == NULL) 11745 goto error_return; 11746 } 11747 11748 if (max_sym_shndx_count != 0) 11749 { 11750 amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx); 11751 flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt); 11752 if (flinfo.locsym_shndx == NULL) 11753 goto error_return; 11754 } 11755 11756 if (htab->tls_sec) 11757 { 11758 bfd_vma base, end = 0; 11759 asection *sec; 11760 11761 for (sec = htab->tls_sec; 11762 sec && (sec->flags & SEC_THREAD_LOCAL); 11763 sec = sec->next) 11764 { 11765 bfd_size_type size = sec->size; 11766 11767 if (size == 0 11768 && (sec->flags & SEC_HAS_CONTENTS) == 0) 11769 { 11770 struct bfd_link_order *ord = sec->map_tail.link_order; 11771 11772 if (ord != NULL) 11773 size = ord->offset + ord->size; 11774 } 11775 end = sec->vma + size; 11776 } 11777 base = htab->tls_sec->vma; 11778 /* Only align end of TLS section if static TLS doesn't have special 11779 alignment requirements. */ 11780 if (bed->static_tls_alignment == 1) 11781 end = align_power (end, htab->tls_sec->alignment_power); 11782 htab->tls_size = end - base; 11783 } 11784 11785 /* Reorder SHF_LINK_ORDER sections. */ 11786 for (o = abfd->sections; o != NULL; o = o->next) 11787 { 11788 if (!elf_fixup_link_order (abfd, o)) 11789 return FALSE; 11790 } 11791 11792 if (!_bfd_elf_fixup_eh_frame_hdr (info)) 11793 return FALSE; 11794 11795 /* Since ELF permits relocations to be against local symbols, we 11796 must have the local symbols available when we do the relocations. 11797 Since we would rather only read the local symbols once, and we 11798 would rather not keep them in memory, we handle all the 11799 relocations for a single input file at the same time. 11800 11801 Unfortunately, there is no way to know the total number of local 11802 symbols until we have seen all of them, and the local symbol 11803 indices precede the global symbol indices. This means that when 11804 we are generating relocatable output, and we see a reloc against 11805 a global symbol, we can not know the symbol index until we have 11806 finished examining all the local symbols to see which ones we are 11807 going to output. To deal with this, we keep the relocations in 11808 memory, and don't output them until the end of the link. This is 11809 an unfortunate waste of memory, but I don't see a good way around 11810 it. Fortunately, it only happens when performing a relocatable 11811 link, which is not the common case. FIXME: If keep_memory is set 11812 we could write the relocs out and then read them again; I don't 11813 know how bad the memory loss will be. */ 11814 11815 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 11816 sub->output_has_begun = FALSE; 11817 for (o = abfd->sections; o != NULL; o = o->next) 11818 { 11819 for (p = o->map_head.link_order; p != NULL; p = p->next) 11820 { 11821 if (p->type == bfd_indirect_link_order 11822 && (bfd_get_flavour ((sub = p->u.indirect.section->owner)) 11823 == bfd_target_elf_flavour) 11824 && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass) 11825 { 11826 if (! sub->output_has_begun) 11827 { 11828 if (! elf_link_input_bfd (&flinfo, sub)) 11829 goto error_return; 11830 sub->output_has_begun = TRUE; 11831 } 11832 } 11833 else if (p->type == bfd_section_reloc_link_order 11834 || p->type == bfd_symbol_reloc_link_order) 11835 { 11836 if (! elf_reloc_link_order (abfd, info, o, p)) 11837 goto error_return; 11838 } 11839 else 11840 { 11841 if (! _bfd_default_link_order (abfd, info, o, p)) 11842 { 11843 if (p->type == bfd_indirect_link_order 11844 && (bfd_get_flavour (sub) 11845 == bfd_target_elf_flavour) 11846 && (elf_elfheader (sub)->e_ident[EI_CLASS] 11847 != bed->s->elfclass)) 11848 { 11849 const char *iclass, *oclass; 11850 11851 switch (bed->s->elfclass) 11852 { 11853 case ELFCLASS64: oclass = "ELFCLASS64"; break; 11854 case ELFCLASS32: oclass = "ELFCLASS32"; break; 11855 case ELFCLASSNONE: oclass = "ELFCLASSNONE"; break; 11856 default: abort (); 11857 } 11858 11859 switch (elf_elfheader (sub)->e_ident[EI_CLASS]) 11860 { 11861 case ELFCLASS64: iclass = "ELFCLASS64"; break; 11862 case ELFCLASS32: iclass = "ELFCLASS32"; break; 11863 case ELFCLASSNONE: iclass = "ELFCLASSNONE"; break; 11864 default: abort (); 11865 } 11866 11867 bfd_set_error (bfd_error_wrong_format); 11868 _bfd_error_handler 11869 /* xgettext:c-format */ 11870 (_("%B: file class %s incompatible with %s"), 11871 sub, iclass, oclass); 11872 } 11873 11874 goto error_return; 11875 } 11876 } 11877 } 11878 } 11879 11880 /* Free symbol buffer if needed. */ 11881 if (!info->reduce_memory_overheads) 11882 { 11883 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 11884 if (bfd_get_flavour (sub) == bfd_target_elf_flavour 11885 && elf_tdata (sub)->symbuf) 11886 { 11887 free (elf_tdata (sub)->symbuf); 11888 elf_tdata (sub)->symbuf = NULL; 11889 } 11890 } 11891 11892 /* Output any global symbols that got converted to local in a 11893 version script or due to symbol visibility. We do this in a 11894 separate step since ELF requires all local symbols to appear 11895 prior to any global symbols. FIXME: We should only do this if 11896 some global symbols were, in fact, converted to become local. 11897 FIXME: Will this work correctly with the Irix 5 linker? */ 11898 eoinfo.failed = FALSE; 11899 eoinfo.flinfo = &flinfo; 11900 eoinfo.localsyms = TRUE; 11901 eoinfo.file_sym_done = FALSE; 11902 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 11903 if (eoinfo.failed) 11904 return FALSE; 11905 11906 /* If backend needs to output some local symbols not present in the hash 11907 table, do it now. */ 11908 if (bed->elf_backend_output_arch_local_syms 11909 && (info->strip != strip_all || emit_relocs)) 11910 { 11911 typedef int (*out_sym_func) 11912 (void *, const char *, Elf_Internal_Sym *, asection *, 11913 struct elf_link_hash_entry *); 11914 11915 if (! ((*bed->elf_backend_output_arch_local_syms) 11916 (abfd, info, &flinfo, 11917 (out_sym_func) elf_link_output_symstrtab))) 11918 return FALSE; 11919 } 11920 11921 /* That wrote out all the local symbols. Finish up the symbol table 11922 with the global symbols. Even if we want to strip everything we 11923 can, we still need to deal with those global symbols that got 11924 converted to local in a version script. */ 11925 11926 /* The sh_info field records the index of the first non local symbol. */ 11927 symtab_hdr->sh_info = bfd_get_symcount (abfd); 11928 11929 if (dynamic 11930 && htab->dynsym != NULL 11931 && htab->dynsym->output_section != bfd_abs_section_ptr) 11932 { 11933 Elf_Internal_Sym sym; 11934 bfd_byte *dynsym = htab->dynsym->contents; 11935 11936 o = htab->dynsym->output_section; 11937 elf_section_data (o)->this_hdr.sh_info = htab->local_dynsymcount + 1; 11938 11939 /* Write out the section symbols for the output sections. */ 11940 if (bfd_link_pic (info) 11941 || htab->is_relocatable_executable) 11942 { 11943 asection *s; 11944 11945 sym.st_size = 0; 11946 sym.st_name = 0; 11947 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION); 11948 sym.st_other = 0; 11949 sym.st_target_internal = 0; 11950 11951 for (s = abfd->sections; s != NULL; s = s->next) 11952 { 11953 int indx; 11954 bfd_byte *dest; 11955 long dynindx; 11956 11957 dynindx = elf_section_data (s)->dynindx; 11958 if (dynindx <= 0) 11959 continue; 11960 indx = elf_section_data (s)->this_idx; 11961 BFD_ASSERT (indx > 0); 11962 sym.st_shndx = indx; 11963 if (! check_dynsym (abfd, &sym)) 11964 return FALSE; 11965 sym.st_value = s->vma; 11966 dest = dynsym + dynindx * bed->s->sizeof_sym; 11967 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 11968 } 11969 } 11970 11971 /* Write out the local dynsyms. */ 11972 if (htab->dynlocal) 11973 { 11974 struct elf_link_local_dynamic_entry *e; 11975 for (e = htab->dynlocal; e ; e = e->next) 11976 { 11977 asection *s; 11978 bfd_byte *dest; 11979 11980 /* Copy the internal symbol and turn off visibility. 11981 Note that we saved a word of storage and overwrote 11982 the original st_name with the dynstr_index. */ 11983 sym = e->isym; 11984 sym.st_other &= ~ELF_ST_VISIBILITY (-1); 11985 11986 s = bfd_section_from_elf_index (e->input_bfd, 11987 e->isym.st_shndx); 11988 if (s != NULL) 11989 { 11990 sym.st_shndx = 11991 elf_section_data (s->output_section)->this_idx; 11992 if (! check_dynsym (abfd, &sym)) 11993 return FALSE; 11994 sym.st_value = (s->output_section->vma 11995 + s->output_offset 11996 + e->isym.st_value); 11997 } 11998 11999 dest = dynsym + e->dynindx * bed->s->sizeof_sym; 12000 bed->s->swap_symbol_out (abfd, &sym, dest, 0); 12001 } 12002 } 12003 } 12004 12005 /* We get the global symbols from the hash table. */ 12006 eoinfo.failed = FALSE; 12007 eoinfo.localsyms = FALSE; 12008 eoinfo.flinfo = &flinfo; 12009 bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo); 12010 if (eoinfo.failed) 12011 return FALSE; 12012 12013 /* If backend needs to output some symbols not present in the hash 12014 table, do it now. */ 12015 if (bed->elf_backend_output_arch_syms 12016 && (info->strip != strip_all || emit_relocs)) 12017 { 12018 typedef int (*out_sym_func) 12019 (void *, const char *, Elf_Internal_Sym *, asection *, 12020 struct elf_link_hash_entry *); 12021 12022 if (! ((*bed->elf_backend_output_arch_syms) 12023 (abfd, info, &flinfo, 12024 (out_sym_func) elf_link_output_symstrtab))) 12025 return FALSE; 12026 } 12027 12028 /* Finalize the .strtab section. */ 12029 _bfd_elf_strtab_finalize (flinfo.symstrtab); 12030 12031 /* Swap out the .strtab section. */ 12032 if (!elf_link_swap_symbols_out (&flinfo)) 12033 return FALSE; 12034 12035 /* Now we know the size of the symtab section. */ 12036 if (bfd_get_symcount (abfd) > 0) 12037 { 12038 /* Finish up and write out the symbol string table (.strtab) 12039 section. */ 12040 Elf_Internal_Shdr *symstrtab_hdr = NULL; 12041 file_ptr off = symtab_hdr->sh_offset + symtab_hdr->sh_size; 12042 12043 if (elf_symtab_shndx_list (abfd)) 12044 { 12045 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 12046 12047 if (symtab_shndx_hdr != NULL && symtab_shndx_hdr->sh_name != 0) 12048 { 12049 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX; 12050 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx); 12051 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx); 12052 amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx); 12053 symtab_shndx_hdr->sh_size = amt; 12054 12055 off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr, 12056 off, TRUE); 12057 12058 if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0 12059 || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt)) 12060 return FALSE; 12061 } 12062 } 12063 12064 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr; 12065 /* sh_name was set in prep_headers. */ 12066 symstrtab_hdr->sh_type = SHT_STRTAB; 12067 symstrtab_hdr->sh_flags = bed->elf_strtab_flags; 12068 symstrtab_hdr->sh_addr = 0; 12069 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (flinfo.symstrtab); 12070 symstrtab_hdr->sh_entsize = 0; 12071 symstrtab_hdr->sh_link = 0; 12072 symstrtab_hdr->sh_info = 0; 12073 /* sh_offset is set just below. */ 12074 symstrtab_hdr->sh_addralign = 1; 12075 12076 off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, 12077 off, TRUE); 12078 elf_next_file_pos (abfd) = off; 12079 12080 if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0 12081 || ! _bfd_elf_strtab_emit (abfd, flinfo.symstrtab)) 12082 return FALSE; 12083 } 12084 12085 if (info->out_implib_bfd && !elf_output_implib (abfd, info)) 12086 { 12087 _bfd_error_handler (_("%B: failed to generate import library"), 12088 info->out_implib_bfd); 12089 return FALSE; 12090 } 12091 12092 /* Adjust the relocs to have the correct symbol indices. */ 12093 for (o = abfd->sections; o != NULL; o = o->next) 12094 { 12095 struct bfd_elf_section_data *esdo = elf_section_data (o); 12096 bfd_boolean sort; 12097 if ((o->flags & SEC_RELOC) == 0) 12098 continue; 12099 12100 sort = bed->sort_relocs_p == NULL || (*bed->sort_relocs_p) (o); 12101 if (esdo->rel.hdr != NULL 12102 && !elf_link_adjust_relocs (abfd, o, &esdo->rel, sort)) 12103 return FALSE; 12104 if (esdo->rela.hdr != NULL 12105 && !elf_link_adjust_relocs (abfd, o, &esdo->rela, sort)) 12106 return FALSE; 12107 12108 /* Set the reloc_count field to 0 to prevent write_relocs from 12109 trying to swap the relocs out itself. */ 12110 o->reloc_count = 0; 12111 } 12112 12113 if (dynamic && info->combreloc && dynobj != NULL) 12114 relativecount = elf_link_sort_relocs (abfd, info, &reldyn); 12115 12116 /* If we are linking against a dynamic object, or generating a 12117 shared library, finish up the dynamic linking information. */ 12118 if (dynamic) 12119 { 12120 bfd_byte *dyncon, *dynconend; 12121 12122 /* Fix up .dynamic entries. */ 12123 o = bfd_get_linker_section (dynobj, ".dynamic"); 12124 BFD_ASSERT (o != NULL); 12125 12126 dyncon = o->contents; 12127 dynconend = o->contents + o->size; 12128 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12129 { 12130 Elf_Internal_Dyn dyn; 12131 const char *name; 12132 unsigned int type; 12133 bfd_size_type sh_size; 12134 bfd_vma sh_addr; 12135 12136 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12137 12138 switch (dyn.d_tag) 12139 { 12140 default: 12141 continue; 12142 case DT_NULL: 12143 if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend) 12144 { 12145 switch (elf_section_data (reldyn)->this_hdr.sh_type) 12146 { 12147 case SHT_REL: dyn.d_tag = DT_RELCOUNT; break; 12148 case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break; 12149 default: continue; 12150 } 12151 dyn.d_un.d_val = relativecount; 12152 relativecount = 0; 12153 break; 12154 } 12155 continue; 12156 12157 case DT_INIT: 12158 name = info->init_function; 12159 goto get_sym; 12160 case DT_FINI: 12161 name = info->fini_function; 12162 get_sym: 12163 { 12164 struct elf_link_hash_entry *h; 12165 12166 h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE); 12167 if (h != NULL 12168 && (h->root.type == bfd_link_hash_defined 12169 || h->root.type == bfd_link_hash_defweak)) 12170 { 12171 dyn.d_un.d_ptr = h->root.u.def.value; 12172 o = h->root.u.def.section; 12173 if (o->output_section != NULL) 12174 dyn.d_un.d_ptr += (o->output_section->vma 12175 + o->output_offset); 12176 else 12177 { 12178 /* The symbol is imported from another shared 12179 library and does not apply to this one. */ 12180 dyn.d_un.d_ptr = 0; 12181 } 12182 break; 12183 } 12184 } 12185 continue; 12186 12187 case DT_PREINIT_ARRAYSZ: 12188 name = ".preinit_array"; 12189 goto get_out_size; 12190 case DT_INIT_ARRAYSZ: 12191 name = ".init_array"; 12192 goto get_out_size; 12193 case DT_FINI_ARRAYSZ: 12194 name = ".fini_array"; 12195 get_out_size: 12196 o = bfd_get_section_by_name (abfd, name); 12197 if (o == NULL) 12198 { 12199 _bfd_error_handler 12200 (_("could not find section %s"), name); 12201 goto error_return; 12202 } 12203 if (o->size == 0) 12204 _bfd_error_handler 12205 (_("warning: %s section has zero size"), name); 12206 dyn.d_un.d_val = o->size; 12207 break; 12208 12209 case DT_PREINIT_ARRAY: 12210 name = ".preinit_array"; 12211 goto get_out_vma; 12212 case DT_INIT_ARRAY: 12213 name = ".init_array"; 12214 goto get_out_vma; 12215 case DT_FINI_ARRAY: 12216 name = ".fini_array"; 12217 get_out_vma: 12218 o = bfd_get_section_by_name (abfd, name); 12219 goto do_vma; 12220 12221 case DT_HASH: 12222 name = ".hash"; 12223 goto get_vma; 12224 case DT_GNU_HASH: 12225 name = ".gnu.hash"; 12226 goto get_vma; 12227 case DT_STRTAB: 12228 name = ".dynstr"; 12229 goto get_vma; 12230 case DT_SYMTAB: 12231 name = ".dynsym"; 12232 goto get_vma; 12233 case DT_VERDEF: 12234 name = ".gnu.version_d"; 12235 goto get_vma; 12236 case DT_VERNEED: 12237 name = ".gnu.version_r"; 12238 goto get_vma; 12239 case DT_VERSYM: 12240 name = ".gnu.version"; 12241 get_vma: 12242 o = bfd_get_linker_section (dynobj, name); 12243 do_vma: 12244 if (o == NULL) 12245 { 12246 _bfd_error_handler 12247 (_("could not find section %s"), name); 12248 goto error_return; 12249 } 12250 if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE) 12251 { 12252 _bfd_error_handler 12253 (_("warning: section '%s' is being made into a note"), name); 12254 bfd_set_error (bfd_error_nonrepresentable_section); 12255 goto error_return; 12256 } 12257 dyn.d_un.d_ptr = o->output_section->vma + o->output_offset; 12258 break; 12259 12260 case DT_REL: 12261 case DT_RELA: 12262 case DT_RELSZ: 12263 case DT_RELASZ: 12264 if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ) 12265 type = SHT_REL; 12266 else 12267 type = SHT_RELA; 12268 sh_size = 0; 12269 sh_addr = 0; 12270 for (i = 1; i < elf_numsections (abfd); i++) 12271 { 12272 Elf_Internal_Shdr *hdr; 12273 12274 hdr = elf_elfsections (abfd)[i]; 12275 if (hdr->sh_type == type 12276 && (hdr->sh_flags & SHF_ALLOC) != 0) 12277 { 12278 sh_size += hdr->sh_size; 12279 if (sh_addr == 0 12280 || sh_addr > hdr->sh_addr) 12281 sh_addr = hdr->sh_addr; 12282 } 12283 } 12284 12285 if (bed->dtrel_excludes_plt && htab->srelplt != NULL) 12286 { 12287 /* Don't count procedure linkage table relocs in the 12288 overall reloc count. */ 12289 sh_size -= htab->srelplt->size; 12290 if (sh_size == 0) 12291 /* If the size is zero, make the address zero too. 12292 This is to avoid a glibc bug. If the backend 12293 emits DT_RELA/DT_RELASZ even when DT_RELASZ is 12294 zero, then we'll put DT_RELA at the end of 12295 DT_JMPREL. glibc will interpret the end of 12296 DT_RELA matching the end of DT_JMPREL as the 12297 case where DT_RELA includes DT_JMPREL, and for 12298 LD_BIND_NOW will decide that processing DT_RELA 12299 will process the PLT relocs too. Net result: 12300 No PLT relocs applied. */ 12301 sh_addr = 0; 12302 12303 /* If .rela.plt is the first .rela section, exclude 12304 it from DT_RELA. */ 12305 else if (sh_addr == (htab->srelplt->output_section->vma 12306 + htab->srelplt->output_offset)) 12307 sh_addr += htab->srelplt->size; 12308 } 12309 12310 if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ) 12311 dyn.d_un.d_val = sh_size; 12312 else 12313 dyn.d_un.d_ptr = sh_addr; 12314 break; 12315 } 12316 bed->s->swap_dyn_out (dynobj, &dyn, dyncon); 12317 } 12318 } 12319 12320 /* If we have created any dynamic sections, then output them. */ 12321 if (dynobj != NULL) 12322 { 12323 if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info)) 12324 goto error_return; 12325 12326 /* Check for DT_TEXTREL (late, in case the backend removes it). */ 12327 if (((info->warn_shared_textrel && bfd_link_pic (info)) 12328 || info->error_textrel) 12329 && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL) 12330 { 12331 bfd_byte *dyncon, *dynconend; 12332 12333 dyncon = o->contents; 12334 dynconend = o->contents + o->size; 12335 for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn) 12336 { 12337 Elf_Internal_Dyn dyn; 12338 12339 bed->s->swap_dyn_in (dynobj, dyncon, &dyn); 12340 12341 if (dyn.d_tag == DT_TEXTREL) 12342 { 12343 if (info->error_textrel) 12344 info->callbacks->einfo 12345 (_("%P%X: read-only segment has dynamic relocations.\n")); 12346 else 12347 info->callbacks->einfo 12348 (_("%P: warning: creating a DT_TEXTREL in a shared object.\n")); 12349 break; 12350 } 12351 } 12352 } 12353 12354 for (o = dynobj->sections; o != NULL; o = o->next) 12355 { 12356 if ((o->flags & SEC_HAS_CONTENTS) == 0 12357 || o->size == 0 12358 || o->output_section == bfd_abs_section_ptr) 12359 continue; 12360 if ((o->flags & SEC_LINKER_CREATED) == 0) 12361 { 12362 /* At this point, we are only interested in sections 12363 created by _bfd_elf_link_create_dynamic_sections. */ 12364 continue; 12365 } 12366 if (htab->stab_info.stabstr == o) 12367 continue; 12368 if (htab->eh_info.hdr_sec == o) 12369 continue; 12370 if (strcmp (o->name, ".dynstr") != 0) 12371 { 12372 if (! bfd_set_section_contents (abfd, o->output_section, 12373 o->contents, 12374 (file_ptr) o->output_offset 12375 * bfd_octets_per_byte (abfd), 12376 o->size)) 12377 goto error_return; 12378 } 12379 else 12380 { 12381 /* The contents of the .dynstr section are actually in a 12382 stringtab. */ 12383 file_ptr off; 12384 12385 off = elf_section_data (o->output_section)->this_hdr.sh_offset; 12386 if (bfd_seek (abfd, off, SEEK_SET) != 0 12387 || !_bfd_elf_strtab_emit (abfd, htab->dynstr)) 12388 goto error_return; 12389 } 12390 } 12391 } 12392 12393 if (bfd_link_relocatable (info)) 12394 { 12395 bfd_boolean failed = FALSE; 12396 12397 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed); 12398 if (failed) 12399 goto error_return; 12400 } 12401 12402 /* If we have optimized stabs strings, output them. */ 12403 if (htab->stab_info.stabstr != NULL) 12404 { 12405 if (!_bfd_write_stab_strings (abfd, &htab->stab_info)) 12406 goto error_return; 12407 } 12408 12409 if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info)) 12410 goto error_return; 12411 12412 elf_final_link_free (abfd, &flinfo); 12413 12414 elf_linker (abfd) = TRUE; 12415 12416 if (attr_section) 12417 { 12418 bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size); 12419 if (contents == NULL) 12420 return FALSE; /* Bail out and fail. */ 12421 bfd_elf_set_obj_attr_contents (abfd, contents, attr_size); 12422 bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size); 12423 free (contents); 12424 } 12425 12426 return TRUE; 12427 12428 error_return: 12429 elf_final_link_free (abfd, &flinfo); 12430 return FALSE; 12431 } 12432 12433 /* Initialize COOKIE for input bfd ABFD. */ 12434 12435 static bfd_boolean 12436 init_reloc_cookie (struct elf_reloc_cookie *cookie, 12437 struct bfd_link_info *info, bfd *abfd) 12438 { 12439 Elf_Internal_Shdr *symtab_hdr; 12440 const struct elf_backend_data *bed; 12441 12442 bed = get_elf_backend_data (abfd); 12443 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12444 12445 cookie->abfd = abfd; 12446 cookie->sym_hashes = elf_sym_hashes (abfd); 12447 cookie->bad_symtab = elf_bad_symtab (abfd); 12448 if (cookie->bad_symtab) 12449 { 12450 cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 12451 cookie->extsymoff = 0; 12452 } 12453 else 12454 { 12455 cookie->locsymcount = symtab_hdr->sh_info; 12456 cookie->extsymoff = symtab_hdr->sh_info; 12457 } 12458 12459 if (bed->s->arch_size == 32) 12460 cookie->r_sym_shift = 8; 12461 else 12462 cookie->r_sym_shift = 32; 12463 12464 cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 12465 if (cookie->locsyms == NULL && cookie->locsymcount != 0) 12466 { 12467 cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, 12468 cookie->locsymcount, 0, 12469 NULL, NULL, NULL); 12470 if (cookie->locsyms == NULL) 12471 { 12472 info->callbacks->einfo (_("%P%X: can not read symbols: %E\n")); 12473 return FALSE; 12474 } 12475 if (info->keep_memory) 12476 symtab_hdr->contents = (bfd_byte *) cookie->locsyms; 12477 } 12478 return TRUE; 12479 } 12480 12481 /* Free the memory allocated by init_reloc_cookie, if appropriate. */ 12482 12483 static void 12484 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd) 12485 { 12486 Elf_Internal_Shdr *symtab_hdr; 12487 12488 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 12489 if (cookie->locsyms != NULL 12490 && symtab_hdr->contents != (unsigned char *) cookie->locsyms) 12491 free (cookie->locsyms); 12492 } 12493 12494 /* Initialize the relocation information in COOKIE for input section SEC 12495 of input bfd ABFD. */ 12496 12497 static bfd_boolean 12498 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 12499 struct bfd_link_info *info, bfd *abfd, 12500 asection *sec) 12501 { 12502 const struct elf_backend_data *bed; 12503 12504 if (sec->reloc_count == 0) 12505 { 12506 cookie->rels = NULL; 12507 cookie->relend = NULL; 12508 } 12509 else 12510 { 12511 bed = get_elf_backend_data (abfd); 12512 12513 cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, 12514 info->keep_memory); 12515 if (cookie->rels == NULL) 12516 return FALSE; 12517 cookie->rel = cookie->rels; 12518 cookie->relend = (cookie->rels 12519 + sec->reloc_count * bed->s->int_rels_per_ext_rel); 12520 } 12521 cookie->rel = cookie->rels; 12522 return TRUE; 12523 } 12524 12525 /* Free the memory allocated by init_reloc_cookie_rels, 12526 if appropriate. */ 12527 12528 static void 12529 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie, 12530 asection *sec) 12531 { 12532 if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels) 12533 free (cookie->rels); 12534 } 12535 12536 /* Initialize the whole of COOKIE for input section SEC. */ 12537 12538 static bfd_boolean 12539 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 12540 struct bfd_link_info *info, 12541 asection *sec) 12542 { 12543 if (!init_reloc_cookie (cookie, info, sec->owner)) 12544 goto error1; 12545 if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec)) 12546 goto error2; 12547 return TRUE; 12548 12549 error2: 12550 fini_reloc_cookie (cookie, sec->owner); 12551 error1: 12552 return FALSE; 12553 } 12554 12555 /* Free the memory allocated by init_reloc_cookie_for_section, 12556 if appropriate. */ 12557 12558 static void 12559 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie, 12560 asection *sec) 12561 { 12562 fini_reloc_cookie_rels (cookie, sec); 12563 fini_reloc_cookie (cookie, sec->owner); 12564 } 12565 12566 /* Garbage collect unused sections. */ 12567 12568 /* Default gc_mark_hook. */ 12569 12570 asection * 12571 _bfd_elf_gc_mark_hook (asection *sec, 12572 struct bfd_link_info *info ATTRIBUTE_UNUSED, 12573 Elf_Internal_Rela *rel ATTRIBUTE_UNUSED, 12574 struct elf_link_hash_entry *h, 12575 Elf_Internal_Sym *sym) 12576 { 12577 if (h != NULL) 12578 { 12579 switch (h->root.type) 12580 { 12581 case bfd_link_hash_defined: 12582 case bfd_link_hash_defweak: 12583 return h->root.u.def.section; 12584 12585 case bfd_link_hash_common: 12586 return h->root.u.c.p->section; 12587 12588 default: 12589 break; 12590 } 12591 } 12592 else 12593 return bfd_section_from_elf_index (sec->owner, sym->st_shndx); 12594 12595 return NULL; 12596 } 12597 12598 /* For undefined __start_<name> and __stop_<name> symbols, return the 12599 first input section matching <name>. Return NULL otherwise. */ 12600 12601 asection * 12602 _bfd_elf_is_start_stop (const struct bfd_link_info *info, 12603 struct elf_link_hash_entry *h) 12604 { 12605 asection *s; 12606 const char *sec_name; 12607 12608 if (h->root.type != bfd_link_hash_undefined 12609 && h->root.type != bfd_link_hash_undefweak) 12610 return NULL; 12611 12612 s = h->root.u.undef.section; 12613 if (s != NULL) 12614 { 12615 if (s == (asection *) 0 - 1) 12616 return NULL; 12617 return s; 12618 } 12619 12620 sec_name = NULL; 12621 if (strncmp (h->root.root.string, "__start_", 8) == 0) 12622 sec_name = h->root.root.string + 8; 12623 else if (strncmp (h->root.root.string, "__stop_", 7) == 0) 12624 sec_name = h->root.root.string + 7; 12625 12626 if (sec_name != NULL && *sec_name != '\0') 12627 { 12628 bfd *i; 12629 12630 for (i = info->input_bfds; i != NULL; i = i->link.next) 12631 { 12632 s = bfd_get_section_by_name (i, sec_name); 12633 if (s != NULL) 12634 { 12635 h->root.u.undef.section = s; 12636 break; 12637 } 12638 } 12639 } 12640 12641 if (s == NULL) 12642 h->root.u.undef.section = (asection *) 0 - 1; 12643 12644 return s; 12645 } 12646 12647 /* COOKIE->rel describes a relocation against section SEC, which is 12648 a section we've decided to keep. Return the section that contains 12649 the relocation symbol, or NULL if no section contains it. */ 12650 12651 asection * 12652 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec, 12653 elf_gc_mark_hook_fn gc_mark_hook, 12654 struct elf_reloc_cookie *cookie, 12655 bfd_boolean *start_stop) 12656 { 12657 unsigned long r_symndx; 12658 struct elf_link_hash_entry *h; 12659 12660 r_symndx = cookie->rel->r_info >> cookie->r_sym_shift; 12661 if (r_symndx == STN_UNDEF) 12662 return NULL; 12663 12664 if (r_symndx >= cookie->locsymcount 12665 || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL) 12666 { 12667 h = cookie->sym_hashes[r_symndx - cookie->extsymoff]; 12668 if (h == NULL) 12669 { 12670 info->callbacks->einfo (_("%F%P: corrupt input: %B\n"), 12671 sec->owner); 12672 return NULL; 12673 } 12674 while (h->root.type == bfd_link_hash_indirect 12675 || h->root.type == bfd_link_hash_warning) 12676 h = (struct elf_link_hash_entry *) h->root.u.i.link; 12677 h->mark = 1; 12678 /* If this symbol is weak and there is a non-weak definition, we 12679 keep the non-weak definition because many backends put 12680 dynamic reloc info on the non-weak definition for code 12681 handling copy relocs. */ 12682 if (h->u.weakdef != NULL) 12683 h->u.weakdef->mark = 1; 12684 12685 if (start_stop != NULL) 12686 { 12687 /* To work around a glibc bug, mark all XXX input sections 12688 when there is an as yet undefined reference to __start_XXX 12689 or __stop_XXX symbols. The linker will later define such 12690 symbols for orphan input sections that have a name 12691 representable as a C identifier. */ 12692 asection *s = _bfd_elf_is_start_stop (info, h); 12693 12694 if (s != NULL) 12695 { 12696 *start_stop = !s->gc_mark; 12697 return s; 12698 } 12699 } 12700 12701 return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL); 12702 } 12703 12704 return (*gc_mark_hook) (sec, info, cookie->rel, NULL, 12705 &cookie->locsyms[r_symndx]); 12706 } 12707 12708 /* COOKIE->rel describes a relocation against section SEC, which is 12709 a section we've decided to keep. Mark the section that contains 12710 the relocation symbol. */ 12711 12712 bfd_boolean 12713 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info, 12714 asection *sec, 12715 elf_gc_mark_hook_fn gc_mark_hook, 12716 struct elf_reloc_cookie *cookie) 12717 { 12718 asection *rsec; 12719 bfd_boolean start_stop = FALSE; 12720 12721 rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie, &start_stop); 12722 while (rsec != NULL) 12723 { 12724 if (!rsec->gc_mark) 12725 { 12726 if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour 12727 || (rsec->owner->flags & DYNAMIC) != 0) 12728 rsec->gc_mark = 1; 12729 else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook)) 12730 return FALSE; 12731 } 12732 if (!start_stop) 12733 break; 12734 rsec = bfd_get_next_section_by_name (rsec->owner, rsec); 12735 } 12736 return TRUE; 12737 } 12738 12739 /* The mark phase of garbage collection. For a given section, mark 12740 it and any sections in this section's group, and all the sections 12741 which define symbols to which it refers. */ 12742 12743 bfd_boolean 12744 _bfd_elf_gc_mark (struct bfd_link_info *info, 12745 asection *sec, 12746 elf_gc_mark_hook_fn gc_mark_hook) 12747 { 12748 bfd_boolean ret; 12749 asection *group_sec, *eh_frame; 12750 12751 sec->gc_mark = 1; 12752 12753 /* Mark all the sections in the group. */ 12754 group_sec = elf_section_data (sec)->next_in_group; 12755 if (group_sec && !group_sec->gc_mark) 12756 if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook)) 12757 return FALSE; 12758 12759 /* Look through the section relocs. */ 12760 ret = TRUE; 12761 eh_frame = elf_eh_frame_section (sec->owner); 12762 if ((sec->flags & SEC_RELOC) != 0 12763 && sec->reloc_count > 0 12764 && sec != eh_frame) 12765 { 12766 struct elf_reloc_cookie cookie; 12767 12768 if (!init_reloc_cookie_for_section (&cookie, info, sec)) 12769 ret = FALSE; 12770 else 12771 { 12772 for (; cookie.rel < cookie.relend; cookie.rel++) 12773 if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie)) 12774 { 12775 ret = FALSE; 12776 break; 12777 } 12778 fini_reloc_cookie_for_section (&cookie, sec); 12779 } 12780 } 12781 12782 if (ret && eh_frame && elf_fde_list (sec)) 12783 { 12784 struct elf_reloc_cookie cookie; 12785 12786 if (!init_reloc_cookie_for_section (&cookie, info, eh_frame)) 12787 ret = FALSE; 12788 else 12789 { 12790 if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame, 12791 gc_mark_hook, &cookie)) 12792 ret = FALSE; 12793 fini_reloc_cookie_for_section (&cookie, eh_frame); 12794 } 12795 } 12796 12797 eh_frame = elf_section_eh_frame_entry (sec); 12798 if (ret && eh_frame && !eh_frame->gc_mark) 12799 if (!_bfd_elf_gc_mark (info, eh_frame, gc_mark_hook)) 12800 ret = FALSE; 12801 12802 return ret; 12803 } 12804 12805 /* Scan and mark sections in a special or debug section group. */ 12806 12807 static void 12808 _bfd_elf_gc_mark_debug_special_section_group (asection *grp) 12809 { 12810 /* Point to first section of section group. */ 12811 asection *ssec; 12812 /* Used to iterate the section group. */ 12813 asection *msec; 12814 12815 bfd_boolean is_special_grp = TRUE; 12816 bfd_boolean is_debug_grp = TRUE; 12817 12818 /* First scan to see if group contains any section other than debug 12819 and special section. */ 12820 ssec = msec = elf_next_in_group (grp); 12821 do 12822 { 12823 if ((msec->flags & SEC_DEBUGGING) == 0) 12824 is_debug_grp = FALSE; 12825 12826 if ((msec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) != 0) 12827 is_special_grp = FALSE; 12828 12829 msec = elf_next_in_group (msec); 12830 } 12831 while (msec != ssec); 12832 12833 /* If this is a pure debug section group or pure special section group, 12834 keep all sections in this group. */ 12835 if (is_debug_grp || is_special_grp) 12836 { 12837 do 12838 { 12839 msec->gc_mark = 1; 12840 msec = elf_next_in_group (msec); 12841 } 12842 while (msec != ssec); 12843 } 12844 } 12845 12846 /* Keep debug and special sections. */ 12847 12848 bfd_boolean 12849 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info, 12850 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED) 12851 { 12852 bfd *ibfd; 12853 12854 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 12855 { 12856 asection *isec; 12857 bfd_boolean some_kept; 12858 bfd_boolean debug_frag_seen; 12859 12860 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 12861 continue; 12862 12863 /* Ensure all linker created sections are kept, 12864 see if any other section is already marked, 12865 and note if we have any fragmented debug sections. */ 12866 debug_frag_seen = some_kept = FALSE; 12867 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 12868 { 12869 if ((isec->flags & SEC_LINKER_CREATED) != 0) 12870 isec->gc_mark = 1; 12871 else if (isec->gc_mark) 12872 some_kept = TRUE; 12873 12874 if (debug_frag_seen == FALSE 12875 && (isec->flags & SEC_DEBUGGING) 12876 && CONST_STRNEQ (isec->name, ".debug_line.")) 12877 debug_frag_seen = TRUE; 12878 } 12879 12880 /* If no section in this file will be kept, then we can 12881 toss out the debug and special sections. */ 12882 if (!some_kept) 12883 continue; 12884 12885 /* Keep debug and special sections like .comment when they are 12886 not part of a group. Also keep section groups that contain 12887 just debug sections or special sections. */ 12888 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 12889 { 12890 if ((isec->flags & SEC_GROUP) != 0) 12891 _bfd_elf_gc_mark_debug_special_section_group (isec); 12892 else if (((isec->flags & SEC_DEBUGGING) != 0 12893 || (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0) 12894 && elf_next_in_group (isec) == NULL) 12895 isec->gc_mark = 1; 12896 } 12897 12898 if (! debug_frag_seen) 12899 continue; 12900 12901 /* Look for CODE sections which are going to be discarded, 12902 and find and discard any fragmented debug sections which 12903 are associated with that code section. */ 12904 for (isec = ibfd->sections; isec != NULL; isec = isec->next) 12905 if ((isec->flags & SEC_CODE) != 0 12906 && isec->gc_mark == 0) 12907 { 12908 unsigned int ilen; 12909 asection *dsec; 12910 12911 ilen = strlen (isec->name); 12912 12913 /* Association is determined by the name of the debug section 12914 containing the name of the code section as a suffix. For 12915 example .debug_line.text.foo is a debug section associated 12916 with .text.foo. */ 12917 for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next) 12918 { 12919 unsigned int dlen; 12920 12921 if (dsec->gc_mark == 0 12922 || (dsec->flags & SEC_DEBUGGING) == 0) 12923 continue; 12924 12925 dlen = strlen (dsec->name); 12926 12927 if (dlen > ilen 12928 && strncmp (dsec->name + (dlen - ilen), 12929 isec->name, ilen) == 0) 12930 { 12931 dsec->gc_mark = 0; 12932 } 12933 } 12934 } 12935 } 12936 return TRUE; 12937 } 12938 12939 /* The sweep phase of garbage collection. Remove all garbage sections. */ 12940 12941 typedef bfd_boolean (*gc_sweep_hook_fn) 12942 (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *); 12943 12944 static bfd_boolean 12945 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info) 12946 { 12947 bfd *sub; 12948 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 12949 gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook; 12950 12951 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 12952 { 12953 asection *o; 12954 12955 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 12956 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 12957 continue; 12958 12959 for (o = sub->sections; o != NULL; o = o->next) 12960 { 12961 /* When any section in a section group is kept, we keep all 12962 sections in the section group. If the first member of 12963 the section group is excluded, we will also exclude the 12964 group section. */ 12965 if (o->flags & SEC_GROUP) 12966 { 12967 asection *first = elf_next_in_group (o); 12968 o->gc_mark = first->gc_mark; 12969 } 12970 12971 if (o->gc_mark) 12972 continue; 12973 12974 /* Skip sweeping sections already excluded. */ 12975 if (o->flags & SEC_EXCLUDE) 12976 continue; 12977 12978 /* Since this is early in the link process, it is simple 12979 to remove a section from the output. */ 12980 o->flags |= SEC_EXCLUDE; 12981 12982 if (info->print_gc_sections && o->size != 0) 12983 /* xgettext:c-format */ 12984 _bfd_error_handler (_("Removing unused section '%A' in file '%B'"), 12985 o, sub); 12986 12987 /* But we also have to update some of the relocation 12988 info we collected before. */ 12989 if (gc_sweep_hook 12990 && (o->flags & SEC_RELOC) != 0 12991 && o->reloc_count != 0 12992 && !((info->strip == strip_all || info->strip == strip_debugger) 12993 && (o->flags & SEC_DEBUGGING) != 0) 12994 && !bfd_is_abs_section (o->output_section)) 12995 { 12996 Elf_Internal_Rela *internal_relocs; 12997 bfd_boolean r; 12998 12999 internal_relocs 13000 = _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL, 13001 info->keep_memory); 13002 if (internal_relocs == NULL) 13003 return FALSE; 13004 13005 r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs); 13006 13007 if (elf_section_data (o)->relocs != internal_relocs) 13008 free (internal_relocs); 13009 13010 if (!r) 13011 return FALSE; 13012 } 13013 } 13014 } 13015 13016 return TRUE; 13017 } 13018 13019 /* Propagate collected vtable information. This is called through 13020 elf_link_hash_traverse. */ 13021 13022 static bfd_boolean 13023 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp) 13024 { 13025 /* Those that are not vtables. */ 13026 if (h->vtable == NULL || h->vtable->parent == NULL) 13027 return TRUE; 13028 13029 /* Those vtables that do not have parents, we cannot merge. */ 13030 if (h->vtable->parent == (struct elf_link_hash_entry *) -1) 13031 return TRUE; 13032 13033 /* If we've already been done, exit. */ 13034 if (h->vtable->used && h->vtable->used[-1]) 13035 return TRUE; 13036 13037 /* Make sure the parent's table is up to date. */ 13038 elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp); 13039 13040 if (h->vtable->used == NULL) 13041 { 13042 /* None of this table's entries were referenced. Re-use the 13043 parent's table. */ 13044 h->vtable->used = h->vtable->parent->vtable->used; 13045 h->vtable->size = h->vtable->parent->vtable->size; 13046 } 13047 else 13048 { 13049 size_t n; 13050 bfd_boolean *cu, *pu; 13051 13052 /* Or the parent's entries into ours. */ 13053 cu = h->vtable->used; 13054 cu[-1] = TRUE; 13055 pu = h->vtable->parent->vtable->used; 13056 if (pu != NULL) 13057 { 13058 const struct elf_backend_data *bed; 13059 unsigned int log_file_align; 13060 13061 bed = get_elf_backend_data (h->root.u.def.section->owner); 13062 log_file_align = bed->s->log_file_align; 13063 n = h->vtable->parent->vtable->size >> log_file_align; 13064 while (n--) 13065 { 13066 if (*pu) 13067 *cu = TRUE; 13068 pu++; 13069 cu++; 13070 } 13071 } 13072 } 13073 13074 return TRUE; 13075 } 13076 13077 static bfd_boolean 13078 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp) 13079 { 13080 asection *sec; 13081 bfd_vma hstart, hend; 13082 Elf_Internal_Rela *relstart, *relend, *rel; 13083 const struct elf_backend_data *bed; 13084 unsigned int log_file_align; 13085 13086 /* Take care of both those symbols that do not describe vtables as 13087 well as those that are not loaded. */ 13088 if (h->vtable == NULL || h->vtable->parent == NULL) 13089 return TRUE; 13090 13091 BFD_ASSERT (h->root.type == bfd_link_hash_defined 13092 || h->root.type == bfd_link_hash_defweak); 13093 13094 sec = h->root.u.def.section; 13095 hstart = h->root.u.def.value; 13096 hend = hstart + h->size; 13097 13098 relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE); 13099 if (!relstart) 13100 return *(bfd_boolean *) okp = FALSE; 13101 bed = get_elf_backend_data (sec->owner); 13102 log_file_align = bed->s->log_file_align; 13103 13104 relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel; 13105 13106 for (rel = relstart; rel < relend; ++rel) 13107 if (rel->r_offset >= hstart && rel->r_offset < hend) 13108 { 13109 /* If the entry is in use, do nothing. */ 13110 if (h->vtable->used 13111 && (rel->r_offset - hstart) < h->vtable->size) 13112 { 13113 bfd_vma entry = (rel->r_offset - hstart) >> log_file_align; 13114 if (h->vtable->used[entry]) 13115 continue; 13116 } 13117 /* Otherwise, kill it. */ 13118 rel->r_offset = rel->r_info = rel->r_addend = 0; 13119 } 13120 13121 return TRUE; 13122 } 13123 13124 /* Mark sections containing dynamically referenced symbols. When 13125 building shared libraries, we must assume that any visible symbol is 13126 referenced. */ 13127 13128 bfd_boolean 13129 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf) 13130 { 13131 struct bfd_link_info *info = (struct bfd_link_info *) inf; 13132 struct bfd_elf_dynamic_list *d = info->dynamic_list; 13133 13134 if ((h->root.type == bfd_link_hash_defined 13135 || h->root.type == bfd_link_hash_defweak) 13136 && (h->ref_dynamic 13137 || ((h->def_regular || ELF_COMMON_DEF_P (h)) 13138 && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL 13139 && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN 13140 && (!bfd_link_executable (info) 13141 || info->gc_keep_exported 13142 || info->export_dynamic 13143 || (h->dynamic 13144 && d != NULL 13145 && (*d->match) (&d->head, NULL, h->root.root.string))) 13146 && (h->versioned >= versioned 13147 || !bfd_hide_sym_by_version (info->version_info, 13148 h->root.root.string))))) 13149 h->root.u.def.section->flags |= SEC_KEEP; 13150 13151 return TRUE; 13152 } 13153 13154 /* Keep all sections containing symbols undefined on the command-line, 13155 and the section containing the entry symbol. */ 13156 13157 void 13158 _bfd_elf_gc_keep (struct bfd_link_info *info) 13159 { 13160 struct bfd_sym_chain *sym; 13161 13162 for (sym = info->gc_sym_list; sym != NULL; sym = sym->next) 13163 { 13164 struct elf_link_hash_entry *h; 13165 13166 h = elf_link_hash_lookup (elf_hash_table (info), sym->name, 13167 FALSE, FALSE, FALSE); 13168 13169 if (h != NULL 13170 && (h->root.type == bfd_link_hash_defined 13171 || h->root.type == bfd_link_hash_defweak) 13172 && !bfd_is_abs_section (h->root.u.def.section) 13173 && !bfd_is_und_section (h->root.u.def.section)) 13174 h->root.u.def.section->flags |= SEC_KEEP; 13175 } 13176 } 13177 13178 bfd_boolean 13179 bfd_elf_parse_eh_frame_entries (bfd *abfd ATTRIBUTE_UNUSED, 13180 struct bfd_link_info *info) 13181 { 13182 bfd *ibfd = info->input_bfds; 13183 13184 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 13185 { 13186 asection *sec; 13187 struct elf_reloc_cookie cookie; 13188 13189 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour) 13190 continue; 13191 13192 if (!init_reloc_cookie (&cookie, info, ibfd)) 13193 return FALSE; 13194 13195 for (sec = ibfd->sections; sec; sec = sec->next) 13196 { 13197 if (CONST_STRNEQ (bfd_section_name (ibfd, sec), ".eh_frame_entry") 13198 && init_reloc_cookie_rels (&cookie, info, ibfd, sec)) 13199 { 13200 _bfd_elf_parse_eh_frame_entry (info, sec, &cookie); 13201 fini_reloc_cookie_rels (&cookie, sec); 13202 } 13203 } 13204 } 13205 return TRUE; 13206 } 13207 13208 /* Do mark and sweep of unused sections. */ 13209 13210 bfd_boolean 13211 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info) 13212 { 13213 bfd_boolean ok = TRUE; 13214 bfd *sub; 13215 elf_gc_mark_hook_fn gc_mark_hook; 13216 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13217 struct elf_link_hash_table *htab; 13218 13219 if (!bed->can_gc_sections 13220 || !is_elf_hash_table (info->hash)) 13221 { 13222 _bfd_error_handler(_("Warning: gc-sections option ignored")); 13223 return TRUE; 13224 } 13225 13226 bed->gc_keep (info); 13227 htab = elf_hash_table (info); 13228 13229 /* Try to parse each bfd's .eh_frame section. Point elf_eh_frame_section 13230 at the .eh_frame section if we can mark the FDEs individually. */ 13231 for (sub = info->input_bfds; 13232 info->eh_frame_hdr_type != COMPACT_EH_HDR && sub != NULL; 13233 sub = sub->link.next) 13234 { 13235 asection *sec; 13236 struct elf_reloc_cookie cookie; 13237 13238 sec = bfd_get_section_by_name (sub, ".eh_frame"); 13239 while (sec && init_reloc_cookie_for_section (&cookie, info, sec)) 13240 { 13241 _bfd_elf_parse_eh_frame (sub, info, sec, &cookie); 13242 if (elf_section_data (sec)->sec_info 13243 && (sec->flags & SEC_LINKER_CREATED) == 0) 13244 elf_eh_frame_section (sub) = sec; 13245 fini_reloc_cookie_for_section (&cookie, sec); 13246 sec = bfd_get_next_section_by_name (NULL, sec); 13247 } 13248 } 13249 13250 /* Apply transitive closure to the vtable entry usage info. */ 13251 elf_link_hash_traverse (htab, elf_gc_propagate_vtable_entries_used, &ok); 13252 if (!ok) 13253 return FALSE; 13254 13255 /* Kill the vtable relocations that were not used. */ 13256 elf_link_hash_traverse (htab, elf_gc_smash_unused_vtentry_relocs, &ok); 13257 if (!ok) 13258 return FALSE; 13259 13260 /* Mark dynamically referenced symbols. */ 13261 if (htab->dynamic_sections_created || info->gc_keep_exported) 13262 elf_link_hash_traverse (htab, bed->gc_mark_dynamic_ref, info); 13263 13264 /* Grovel through relocs to find out who stays ... */ 13265 gc_mark_hook = bed->gc_mark_hook; 13266 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next) 13267 { 13268 asection *o; 13269 13270 if (bfd_get_flavour (sub) != bfd_target_elf_flavour 13271 || !(*bed->relocs_compatible) (sub->xvec, abfd->xvec)) 13272 continue; 13273 13274 /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep). 13275 Also treat note sections as a root, if the section is not part 13276 of a group. */ 13277 for (o = sub->sections; o != NULL; o = o->next) 13278 if (!o->gc_mark 13279 && (o->flags & SEC_EXCLUDE) == 0 13280 && ((o->flags & SEC_KEEP) != 0 13281 || (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE 13282 && elf_next_in_group (o) == NULL ))) 13283 { 13284 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook)) 13285 return FALSE; 13286 } 13287 } 13288 13289 /* Allow the backend to mark additional target specific sections. */ 13290 bed->gc_mark_extra_sections (info, gc_mark_hook); 13291 13292 /* ... and mark SEC_EXCLUDE for those that go. */ 13293 return elf_gc_sweep (abfd, info); 13294 } 13295 13296 /* Called from check_relocs to record the existence of a VTINHERIT reloc. */ 13297 13298 bfd_boolean 13299 bfd_elf_gc_record_vtinherit (bfd *abfd, 13300 asection *sec, 13301 struct elf_link_hash_entry *h, 13302 bfd_vma offset) 13303 { 13304 struct elf_link_hash_entry **sym_hashes, **sym_hashes_end; 13305 struct elf_link_hash_entry **search, *child; 13306 size_t extsymcount; 13307 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13308 13309 /* The sh_info field of the symtab header tells us where the 13310 external symbols start. We don't care about the local symbols at 13311 this point. */ 13312 extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym; 13313 if (!elf_bad_symtab (abfd)) 13314 extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info; 13315 13316 sym_hashes = elf_sym_hashes (abfd); 13317 sym_hashes_end = sym_hashes + extsymcount; 13318 13319 /* Hunt down the child symbol, which is in this section at the same 13320 offset as the relocation. */ 13321 for (search = sym_hashes; search != sym_hashes_end; ++search) 13322 { 13323 if ((child = *search) != NULL 13324 && (child->root.type == bfd_link_hash_defined 13325 || child->root.type == bfd_link_hash_defweak) 13326 && child->root.u.def.section == sec 13327 && child->root.u.def.value == offset) 13328 goto win; 13329 } 13330 13331 /* xgettext:c-format */ 13332 _bfd_error_handler (_("%B: %A+%lu: No symbol found for INHERIT"), 13333 abfd, sec, (unsigned long) offset); 13334 bfd_set_error (bfd_error_invalid_operation); 13335 return FALSE; 13336 13337 win: 13338 if (!child->vtable) 13339 { 13340 child->vtable = ((struct elf_link_virtual_table_entry *) 13341 bfd_zalloc (abfd, sizeof (*child->vtable))); 13342 if (!child->vtable) 13343 return FALSE; 13344 } 13345 if (!h) 13346 { 13347 /* This *should* only be the absolute section. It could potentially 13348 be that someone has defined a non-global vtable though, which 13349 would be bad. It isn't worth paging in the local symbols to be 13350 sure though; that case should simply be handled by the assembler. */ 13351 13352 child->vtable->parent = (struct elf_link_hash_entry *) -1; 13353 } 13354 else 13355 child->vtable->parent = h; 13356 13357 return TRUE; 13358 } 13359 13360 /* Called from check_relocs to record the existence of a VTENTRY reloc. */ 13361 13362 bfd_boolean 13363 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED, 13364 asection *sec ATTRIBUTE_UNUSED, 13365 struct elf_link_hash_entry *h, 13366 bfd_vma addend) 13367 { 13368 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13369 unsigned int log_file_align = bed->s->log_file_align; 13370 13371 if (!h->vtable) 13372 { 13373 h->vtable = ((struct elf_link_virtual_table_entry *) 13374 bfd_zalloc (abfd, sizeof (*h->vtable))); 13375 if (!h->vtable) 13376 return FALSE; 13377 } 13378 13379 if (addend >= h->vtable->size) 13380 { 13381 size_t size, bytes, file_align; 13382 bfd_boolean *ptr = h->vtable->used; 13383 13384 /* While the symbol is undefined, we have to be prepared to handle 13385 a zero size. */ 13386 file_align = 1 << log_file_align; 13387 if (h->root.type == bfd_link_hash_undefined) 13388 size = addend + file_align; 13389 else 13390 { 13391 size = h->size; 13392 if (addend >= size) 13393 { 13394 /* Oops! We've got a reference past the defined end of 13395 the table. This is probably a bug -- shall we warn? */ 13396 size = addend + file_align; 13397 } 13398 } 13399 size = (size + file_align - 1) & -file_align; 13400 13401 /* Allocate one extra entry for use as a "done" flag for the 13402 consolidation pass. */ 13403 bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean); 13404 13405 if (ptr) 13406 { 13407 ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes); 13408 13409 if (ptr != NULL) 13410 { 13411 size_t oldbytes; 13412 13413 oldbytes = (((h->vtable->size >> log_file_align) + 1) 13414 * sizeof (bfd_boolean)); 13415 memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes); 13416 } 13417 } 13418 else 13419 ptr = (bfd_boolean *) bfd_zmalloc (bytes); 13420 13421 if (ptr == NULL) 13422 return FALSE; 13423 13424 /* And arrange for that done flag to be at index -1. */ 13425 h->vtable->used = ptr + 1; 13426 h->vtable->size = size; 13427 } 13428 13429 h->vtable->used[addend >> log_file_align] = TRUE; 13430 13431 return TRUE; 13432 } 13433 13434 /* Map an ELF section header flag to its corresponding string. */ 13435 typedef struct 13436 { 13437 char *flag_name; 13438 flagword flag_value; 13439 } elf_flags_to_name_table; 13440 13441 static elf_flags_to_name_table elf_flags_to_names [] = 13442 { 13443 { "SHF_WRITE", SHF_WRITE }, 13444 { "SHF_ALLOC", SHF_ALLOC }, 13445 { "SHF_EXECINSTR", SHF_EXECINSTR }, 13446 { "SHF_MERGE", SHF_MERGE }, 13447 { "SHF_STRINGS", SHF_STRINGS }, 13448 { "SHF_INFO_LINK", SHF_INFO_LINK}, 13449 { "SHF_LINK_ORDER", SHF_LINK_ORDER}, 13450 { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING}, 13451 { "SHF_GROUP", SHF_GROUP }, 13452 { "SHF_TLS", SHF_TLS }, 13453 { "SHF_MASKOS", SHF_MASKOS }, 13454 { "SHF_EXCLUDE", SHF_EXCLUDE }, 13455 }; 13456 13457 /* Returns TRUE if the section is to be included, otherwise FALSE. */ 13458 bfd_boolean 13459 bfd_elf_lookup_section_flags (struct bfd_link_info *info, 13460 struct flag_info *flaginfo, 13461 asection *section) 13462 { 13463 const bfd_vma sh_flags = elf_section_flags (section); 13464 13465 if (!flaginfo->flags_initialized) 13466 { 13467 bfd *obfd = info->output_bfd; 13468 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 13469 struct flag_info_list *tf = flaginfo->flag_list; 13470 int with_hex = 0; 13471 int without_hex = 0; 13472 13473 for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next) 13474 { 13475 unsigned i; 13476 flagword (*lookup) (char *); 13477 13478 lookup = bed->elf_backend_lookup_section_flags_hook; 13479 if (lookup != NULL) 13480 { 13481 flagword hexval = (*lookup) ((char *) tf->name); 13482 13483 if (hexval != 0) 13484 { 13485 if (tf->with == with_flags) 13486 with_hex |= hexval; 13487 else if (tf->with == without_flags) 13488 without_hex |= hexval; 13489 tf->valid = TRUE; 13490 continue; 13491 } 13492 } 13493 for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i) 13494 { 13495 if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0) 13496 { 13497 if (tf->with == with_flags) 13498 with_hex |= elf_flags_to_names[i].flag_value; 13499 else if (tf->with == without_flags) 13500 without_hex |= elf_flags_to_names[i].flag_value; 13501 tf->valid = TRUE; 13502 break; 13503 } 13504 } 13505 if (!tf->valid) 13506 { 13507 info->callbacks->einfo 13508 (_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name); 13509 return FALSE; 13510 } 13511 } 13512 flaginfo->flags_initialized = TRUE; 13513 flaginfo->only_with_flags |= with_hex; 13514 flaginfo->not_with_flags |= without_hex; 13515 } 13516 13517 if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags) 13518 return FALSE; 13519 13520 if ((flaginfo->not_with_flags & sh_flags) != 0) 13521 return FALSE; 13522 13523 return TRUE; 13524 } 13525 13526 struct alloc_got_off_arg { 13527 bfd_vma gotoff; 13528 struct bfd_link_info *info; 13529 }; 13530 13531 /* We need a special top-level link routine to convert got reference counts 13532 to real got offsets. */ 13533 13534 static bfd_boolean 13535 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg) 13536 { 13537 struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg; 13538 bfd *obfd = gofarg->info->output_bfd; 13539 const struct elf_backend_data *bed = get_elf_backend_data (obfd); 13540 13541 if (h->got.refcount > 0) 13542 { 13543 h->got.offset = gofarg->gotoff; 13544 gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0); 13545 } 13546 else 13547 h->got.offset = (bfd_vma) -1; 13548 13549 return TRUE; 13550 } 13551 13552 /* And an accompanying bit to work out final got entry offsets once 13553 we're done. Should be called from final_link. */ 13554 13555 bfd_boolean 13556 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd, 13557 struct bfd_link_info *info) 13558 { 13559 bfd *i; 13560 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13561 bfd_vma gotoff; 13562 struct alloc_got_off_arg gofarg; 13563 13564 BFD_ASSERT (abfd == info->output_bfd); 13565 13566 if (! is_elf_hash_table (info->hash)) 13567 return FALSE; 13568 13569 /* The GOT offset is relative to the .got section, but the GOT header is 13570 put into the .got.plt section, if the backend uses it. */ 13571 if (bed->want_got_plt) 13572 gotoff = 0; 13573 else 13574 gotoff = bed->got_header_size; 13575 13576 /* Do the local .got entries first. */ 13577 for (i = info->input_bfds; i; i = i->link.next) 13578 { 13579 bfd_signed_vma *local_got; 13580 size_t j, locsymcount; 13581 Elf_Internal_Shdr *symtab_hdr; 13582 13583 if (bfd_get_flavour (i) != bfd_target_elf_flavour) 13584 continue; 13585 13586 local_got = elf_local_got_refcounts (i); 13587 if (!local_got) 13588 continue; 13589 13590 symtab_hdr = &elf_tdata (i)->symtab_hdr; 13591 if (elf_bad_symtab (i)) 13592 locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym; 13593 else 13594 locsymcount = symtab_hdr->sh_info; 13595 13596 for (j = 0; j < locsymcount; ++j) 13597 { 13598 if (local_got[j] > 0) 13599 { 13600 local_got[j] = gotoff; 13601 gotoff += bed->got_elt_size (abfd, info, NULL, i, j); 13602 } 13603 else 13604 local_got[j] = (bfd_vma) -1; 13605 } 13606 } 13607 13608 /* Then the global .got entries. .plt refcounts are handled by 13609 adjust_dynamic_symbol */ 13610 gofarg.gotoff = gotoff; 13611 gofarg.info = info; 13612 elf_link_hash_traverse (elf_hash_table (info), 13613 elf_gc_allocate_got_offsets, 13614 &gofarg); 13615 return TRUE; 13616 } 13617 13618 /* Many folk need no more in the way of final link than this, once 13619 got entry reference counting is enabled. */ 13620 13621 bfd_boolean 13622 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info) 13623 { 13624 if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info)) 13625 return FALSE; 13626 13627 /* Invoke the regular ELF backend linker to do all the work. */ 13628 return bfd_elf_final_link (abfd, info); 13629 } 13630 13631 bfd_boolean 13632 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie) 13633 { 13634 struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie; 13635 13636 if (rcookie->bad_symtab) 13637 rcookie->rel = rcookie->rels; 13638 13639 for (; rcookie->rel < rcookie->relend; rcookie->rel++) 13640 { 13641 unsigned long r_symndx; 13642 13643 if (! rcookie->bad_symtab) 13644 if (rcookie->rel->r_offset > offset) 13645 return FALSE; 13646 if (rcookie->rel->r_offset != offset) 13647 continue; 13648 13649 r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift; 13650 if (r_symndx == STN_UNDEF) 13651 return TRUE; 13652 13653 if (r_symndx >= rcookie->locsymcount 13654 || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL) 13655 { 13656 struct elf_link_hash_entry *h; 13657 13658 h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff]; 13659 13660 while (h->root.type == bfd_link_hash_indirect 13661 || h->root.type == bfd_link_hash_warning) 13662 h = (struct elf_link_hash_entry *) h->root.u.i.link; 13663 13664 if ((h->root.type == bfd_link_hash_defined 13665 || h->root.type == bfd_link_hash_defweak) 13666 && (h->root.u.def.section->owner != rcookie->abfd 13667 || h->root.u.def.section->kept_section != NULL 13668 || discarded_section (h->root.u.def.section))) 13669 return TRUE; 13670 } 13671 else 13672 { 13673 /* It's not a relocation against a global symbol, 13674 but it could be a relocation against a local 13675 symbol for a discarded section. */ 13676 asection *isec; 13677 Elf_Internal_Sym *isym; 13678 13679 /* Need to: get the symbol; get the section. */ 13680 isym = &rcookie->locsyms[r_symndx]; 13681 isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx); 13682 if (isec != NULL 13683 && (isec->kept_section != NULL 13684 || discarded_section (isec))) 13685 return TRUE; 13686 } 13687 return FALSE; 13688 } 13689 return FALSE; 13690 } 13691 13692 /* Discard unneeded references to discarded sections. 13693 Returns -1 on error, 1 if any section's size was changed, 0 if 13694 nothing changed. This function assumes that the relocations are in 13695 sorted order, which is true for all known assemblers. */ 13696 13697 int 13698 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info) 13699 { 13700 struct elf_reloc_cookie cookie; 13701 asection *o; 13702 bfd *abfd; 13703 int changed = 0; 13704 13705 if (info->traditional_format 13706 || !is_elf_hash_table (info->hash)) 13707 return 0; 13708 13709 o = bfd_get_section_by_name (output_bfd, ".stab"); 13710 if (o != NULL) 13711 { 13712 asection *i; 13713 13714 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 13715 { 13716 if (i->size == 0 13717 || i->reloc_count == 0 13718 || i->sec_info_type != SEC_INFO_TYPE_STABS) 13719 continue; 13720 13721 abfd = i->owner; 13722 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 13723 continue; 13724 13725 if (!init_reloc_cookie_for_section (&cookie, info, i)) 13726 return -1; 13727 13728 if (_bfd_discard_section_stabs (abfd, i, 13729 elf_section_data (i)->sec_info, 13730 bfd_elf_reloc_symbol_deleted_p, 13731 &cookie)) 13732 changed = 1; 13733 13734 fini_reloc_cookie_for_section (&cookie, i); 13735 } 13736 } 13737 13738 o = NULL; 13739 if (info->eh_frame_hdr_type != COMPACT_EH_HDR) 13740 o = bfd_get_section_by_name (output_bfd, ".eh_frame"); 13741 if (o != NULL) 13742 { 13743 asection *i; 13744 13745 for (i = o->map_head.s; i != NULL; i = i->map_head.s) 13746 { 13747 if (i->size == 0) 13748 continue; 13749 13750 abfd = i->owner; 13751 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 13752 continue; 13753 13754 if (!init_reloc_cookie_for_section (&cookie, info, i)) 13755 return -1; 13756 13757 _bfd_elf_parse_eh_frame (abfd, info, i, &cookie); 13758 if (_bfd_elf_discard_section_eh_frame (abfd, info, i, 13759 bfd_elf_reloc_symbol_deleted_p, 13760 &cookie)) 13761 changed = 1; 13762 13763 fini_reloc_cookie_for_section (&cookie, i); 13764 } 13765 } 13766 13767 for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next) 13768 { 13769 const struct elf_backend_data *bed; 13770 13771 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour) 13772 continue; 13773 13774 bed = get_elf_backend_data (abfd); 13775 13776 if (bed->elf_backend_discard_info != NULL) 13777 { 13778 if (!init_reloc_cookie (&cookie, info, abfd)) 13779 return -1; 13780 13781 if ((*bed->elf_backend_discard_info) (abfd, &cookie, info)) 13782 changed = 1; 13783 13784 fini_reloc_cookie (&cookie, abfd); 13785 } 13786 } 13787 13788 if (info->eh_frame_hdr_type == COMPACT_EH_HDR) 13789 _bfd_elf_end_eh_frame_parsing (info); 13790 13791 if (info->eh_frame_hdr_type 13792 && !bfd_link_relocatable (info) 13793 && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info)) 13794 changed = 1; 13795 13796 return changed; 13797 } 13798 13799 bfd_boolean 13800 _bfd_elf_section_already_linked (bfd *abfd, 13801 asection *sec, 13802 struct bfd_link_info *info) 13803 { 13804 flagword flags; 13805 const char *name, *key; 13806 struct bfd_section_already_linked *l; 13807 struct bfd_section_already_linked_hash_entry *already_linked_list; 13808 13809 if (sec->output_section == bfd_abs_section_ptr) 13810 return FALSE; 13811 13812 flags = sec->flags; 13813 13814 /* Return if it isn't a linkonce section. A comdat group section 13815 also has SEC_LINK_ONCE set. */ 13816 if ((flags & SEC_LINK_ONCE) == 0) 13817 return FALSE; 13818 13819 /* Don't put group member sections on our list of already linked 13820 sections. They are handled as a group via their group section. */ 13821 if (elf_sec_group (sec) != NULL) 13822 return FALSE; 13823 13824 /* For a SHT_GROUP section, use the group signature as the key. */ 13825 name = sec->name; 13826 if ((flags & SEC_GROUP) != 0 13827 && elf_next_in_group (sec) != NULL 13828 && elf_group_name (elf_next_in_group (sec)) != NULL) 13829 key = elf_group_name (elf_next_in_group (sec)); 13830 else 13831 { 13832 /* Otherwise we should have a .gnu.linkonce.<type>.<key> section. */ 13833 if (CONST_STRNEQ (name, ".gnu.linkonce.") 13834 && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL) 13835 key++; 13836 else 13837 /* Must be a user linkonce section that doesn't follow gcc's 13838 naming convention. In this case we won't be matching 13839 single member groups. */ 13840 key = name; 13841 } 13842 13843 already_linked_list = bfd_section_already_linked_table_lookup (key); 13844 13845 for (l = already_linked_list->entry; l != NULL; l = l->next) 13846 { 13847 /* We may have 2 different types of sections on the list: group 13848 sections with a signature of <key> (<key> is some string), 13849 and linkonce sections named .gnu.linkonce.<type>.<key>. 13850 Match like sections. LTO plugin sections are an exception. 13851 They are always named .gnu.linkonce.t.<key> and match either 13852 type of section. */ 13853 if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP) 13854 && ((flags & SEC_GROUP) != 0 13855 || strcmp (name, l->sec->name) == 0)) 13856 || (l->sec->owner->flags & BFD_PLUGIN) != 0) 13857 { 13858 /* The section has already been linked. See if we should 13859 issue a warning. */ 13860 if (!_bfd_handle_already_linked (sec, l, info)) 13861 return FALSE; 13862 13863 if (flags & SEC_GROUP) 13864 { 13865 asection *first = elf_next_in_group (sec); 13866 asection *s = first; 13867 13868 while (s != NULL) 13869 { 13870 s->output_section = bfd_abs_section_ptr; 13871 /* Record which group discards it. */ 13872 s->kept_section = l->sec; 13873 s = elf_next_in_group (s); 13874 /* These lists are circular. */ 13875 if (s == first) 13876 break; 13877 } 13878 } 13879 13880 return TRUE; 13881 } 13882 } 13883 13884 /* A single member comdat group section may be discarded by a 13885 linkonce section and vice versa. */ 13886 if ((flags & SEC_GROUP) != 0) 13887 { 13888 asection *first = elf_next_in_group (sec); 13889 13890 if (first != NULL && elf_next_in_group (first) == first) 13891 /* Check this single member group against linkonce sections. */ 13892 for (l = already_linked_list->entry; l != NULL; l = l->next) 13893 if ((l->sec->flags & SEC_GROUP) == 0 13894 && bfd_elf_match_symbols_in_sections (l->sec, first, info)) 13895 { 13896 first->output_section = bfd_abs_section_ptr; 13897 first->kept_section = l->sec; 13898 sec->output_section = bfd_abs_section_ptr; 13899 break; 13900 } 13901 } 13902 else 13903 /* Check this linkonce section against single member groups. */ 13904 for (l = already_linked_list->entry; l != NULL; l = l->next) 13905 if (l->sec->flags & SEC_GROUP) 13906 { 13907 asection *first = elf_next_in_group (l->sec); 13908 13909 if (first != NULL 13910 && elf_next_in_group (first) == first 13911 && bfd_elf_match_symbols_in_sections (first, sec, info)) 13912 { 13913 sec->output_section = bfd_abs_section_ptr; 13914 sec->kept_section = first; 13915 break; 13916 } 13917 } 13918 13919 /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F' 13920 referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4 13921 specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce' 13922 prefix) instead. `.gnu.linkonce.r.*' were the `.rodata' part of its 13923 matching `.gnu.linkonce.t.*'. If `.gnu.linkonce.r.F' is not discarded 13924 but its `.gnu.linkonce.t.F' is discarded means we chose one-only 13925 `.gnu.linkonce.t.F' section from a different bfd not requiring any 13926 `.gnu.linkonce.r.F'. Thus `.gnu.linkonce.r.F' should be discarded. 13927 The reverse order cannot happen as there is never a bfd with only the 13928 `.gnu.linkonce.r.F' section. The order of sections in a bfd does not 13929 matter as here were are looking only for cross-bfd sections. */ 13930 13931 if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r.")) 13932 for (l = already_linked_list->entry; l != NULL; l = l->next) 13933 if ((l->sec->flags & SEC_GROUP) == 0 13934 && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t.")) 13935 { 13936 if (abfd != l->sec->owner) 13937 sec->output_section = bfd_abs_section_ptr; 13938 break; 13939 } 13940 13941 /* This is the first section with this name. Record it. */ 13942 if (!bfd_section_already_linked_table_insert (already_linked_list, sec)) 13943 info->callbacks->einfo (_("%F%P: already_linked_table: %E\n")); 13944 return sec->output_section == bfd_abs_section_ptr; 13945 } 13946 13947 bfd_boolean 13948 _bfd_elf_common_definition (Elf_Internal_Sym *sym) 13949 { 13950 return sym->st_shndx == SHN_COMMON; 13951 } 13952 13953 unsigned int 13954 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED) 13955 { 13956 return SHN_COMMON; 13957 } 13958 13959 asection * 13960 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED) 13961 { 13962 return bfd_com_section_ptr; 13963 } 13964 13965 bfd_vma 13966 _bfd_elf_default_got_elt_size (bfd *abfd, 13967 struct bfd_link_info *info ATTRIBUTE_UNUSED, 13968 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED, 13969 bfd *ibfd ATTRIBUTE_UNUSED, 13970 unsigned long symndx ATTRIBUTE_UNUSED) 13971 { 13972 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 13973 return bed->s->arch_size / 8; 13974 } 13975 13976 /* Routines to support the creation of dynamic relocs. */ 13977 13978 /* Returns the name of the dynamic reloc section associated with SEC. */ 13979 13980 static const char * 13981 get_dynamic_reloc_section_name (bfd * abfd, 13982 asection * sec, 13983 bfd_boolean is_rela) 13984 { 13985 char *name; 13986 const char *old_name = bfd_get_section_name (NULL, sec); 13987 const char *prefix = is_rela ? ".rela" : ".rel"; 13988 13989 if (old_name == NULL) 13990 return NULL; 13991 13992 name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1); 13993 sprintf (name, "%s%s", prefix, old_name); 13994 13995 return name; 13996 } 13997 13998 /* Returns the dynamic reloc section associated with SEC. 13999 If necessary compute the name of the dynamic reloc section based 14000 on SEC's name (looked up in ABFD's string table) and the setting 14001 of IS_RELA. */ 14002 14003 asection * 14004 _bfd_elf_get_dynamic_reloc_section (bfd * abfd, 14005 asection * sec, 14006 bfd_boolean is_rela) 14007 { 14008 asection * reloc_sec = elf_section_data (sec)->sreloc; 14009 14010 if (reloc_sec == NULL) 14011 { 14012 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14013 14014 if (name != NULL) 14015 { 14016 reloc_sec = bfd_get_linker_section (abfd, name); 14017 14018 if (reloc_sec != NULL) 14019 elf_section_data (sec)->sreloc = reloc_sec; 14020 } 14021 } 14022 14023 return reloc_sec; 14024 } 14025 14026 /* Returns the dynamic reloc section associated with SEC. If the 14027 section does not exist it is created and attached to the DYNOBJ 14028 bfd and stored in the SRELOC field of SEC's elf_section_data 14029 structure. 14030 14031 ALIGNMENT is the alignment for the newly created section and 14032 IS_RELA defines whether the name should be .rela.<SEC's name> 14033 or .rel.<SEC's name>. The section name is looked up in the 14034 string table associated with ABFD. */ 14035 14036 asection * 14037 _bfd_elf_make_dynamic_reloc_section (asection *sec, 14038 bfd *dynobj, 14039 unsigned int alignment, 14040 bfd *abfd, 14041 bfd_boolean is_rela) 14042 { 14043 asection * reloc_sec = elf_section_data (sec)->sreloc; 14044 14045 if (reloc_sec == NULL) 14046 { 14047 const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela); 14048 14049 if (name == NULL) 14050 return NULL; 14051 14052 reloc_sec = bfd_get_linker_section (dynobj, name); 14053 14054 if (reloc_sec == NULL) 14055 { 14056 flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY 14057 | SEC_IN_MEMORY | SEC_LINKER_CREATED); 14058 if ((sec->flags & SEC_ALLOC) != 0) 14059 flags |= SEC_ALLOC | SEC_LOAD; 14060 14061 reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags); 14062 if (reloc_sec != NULL) 14063 { 14064 /* _bfd_elf_get_sec_type_attr chooses a section type by 14065 name. Override as it may be wrong, eg. for a user 14066 section named "auto" we'll get ".relauto" which is 14067 seen to be a .rela section. */ 14068 elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL; 14069 if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment)) 14070 reloc_sec = NULL; 14071 } 14072 } 14073 14074 elf_section_data (sec)->sreloc = reloc_sec; 14075 } 14076 14077 return reloc_sec; 14078 } 14079 14080 /* Copy the ELF symbol type and other attributes for a linker script 14081 assignment from HSRC to HDEST. Generally this should be treated as 14082 if we found a strong non-dynamic definition for HDEST (except that 14083 ld ignores multiple definition errors). */ 14084 void 14085 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd, 14086 struct bfd_link_hash_entry *hdest, 14087 struct bfd_link_hash_entry *hsrc) 14088 { 14089 struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *) hdest; 14090 struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *) hsrc; 14091 Elf_Internal_Sym isym; 14092 14093 ehdest->type = ehsrc->type; 14094 ehdest->target_internal = ehsrc->target_internal; 14095 14096 isym.st_other = ehsrc->other; 14097 elf_merge_st_other (abfd, ehdest, &isym, NULL, TRUE, FALSE); 14098 } 14099 14100 /* Append a RELA relocation REL to section S in BFD. */ 14101 14102 void 14103 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14104 { 14105 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14106 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela); 14107 BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size); 14108 bed->s->swap_reloca_out (abfd, rel, loc); 14109 } 14110 14111 /* Append a REL relocation REL to section S in BFD. */ 14112 14113 void 14114 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel) 14115 { 14116 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 14117 bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel); 14118 BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size); 14119 bed->s->swap_reloc_out (abfd, rel, loc); 14120 } 14121