xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elflink.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* ELF linking support for BFD.
2    Copyright 1995-2013 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "bfdlink.h"
24 #include "libbfd.h"
25 #define ARCH_SIZE 0
26 #include "elf-bfd.h"
27 #include "safe-ctype.h"
28 #include "libiberty.h"
29 #include "objalloc.h"
30 
31 /* This struct is used to pass information to routines called via
32    elf_link_hash_traverse which must return failure.  */
33 
34 struct elf_info_failed
35 {
36   struct bfd_link_info *info;
37   bfd_boolean failed;
38 };
39 
40 /* This structure is used to pass information to
41    _bfd_elf_link_find_version_dependencies.  */
42 
43 struct elf_find_verdep_info
44 {
45   /* General link information.  */
46   struct bfd_link_info *info;
47   /* The number of dependencies.  */
48   unsigned int vers;
49   /* Whether we had a failure.  */
50   bfd_boolean failed;
51 };
52 
53 static bfd_boolean _bfd_elf_fix_symbol_flags
54   (struct elf_link_hash_entry *, struct elf_info_failed *);
55 
56 /* Define a symbol in a dynamic linkage section.  */
57 
58 struct elf_link_hash_entry *
59 _bfd_elf_define_linkage_sym (bfd *abfd,
60 			     struct bfd_link_info *info,
61 			     asection *sec,
62 			     const char *name)
63 {
64   struct elf_link_hash_entry *h;
65   struct bfd_link_hash_entry *bh;
66   const struct elf_backend_data *bed;
67 
68   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, FALSE);
69   if (h != NULL)
70     {
71       /* Zap symbol defined in an as-needed lib that wasn't linked.
72 	 This is a symptom of a larger problem:  Absolute symbols
73 	 defined in shared libraries can't be overridden, because we
74 	 lose the link to the bfd which is via the symbol section.  */
75       h->root.type = bfd_link_hash_new;
76     }
77 
78   bh = &h->root;
79   if (!_bfd_generic_link_add_one_symbol (info, abfd, name, BSF_GLOBAL,
80 					 sec, 0, NULL, FALSE,
81 					 get_elf_backend_data (abfd)->collect,
82 					 &bh))
83     return NULL;
84   h = (struct elf_link_hash_entry *) bh;
85   h->def_regular = 1;
86   h->non_elf = 0;
87   h->type = STT_OBJECT;
88   if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
89     h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
90 
91   bed = get_elf_backend_data (abfd);
92   (*bed->elf_backend_hide_symbol) (info, h, TRUE);
93   return h;
94 }
95 
96 bfd_boolean
97 _bfd_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
98 {
99   flagword flags;
100   asection *s;
101   struct elf_link_hash_entry *h;
102   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
103   struct elf_link_hash_table *htab = elf_hash_table (info);
104 
105   /* This function may be called more than once.  */
106   s = bfd_get_linker_section (abfd, ".got");
107   if (s != NULL)
108     return TRUE;
109 
110   flags = bed->dynamic_sec_flags;
111 
112   s = bfd_make_section_anyway_with_flags (abfd,
113 					  (bed->rela_plts_and_copies_p
114 					   ? ".rela.got" : ".rel.got"),
115 					  (bed->dynamic_sec_flags
116 					   | SEC_READONLY));
117   if (s == NULL
118       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
119     return FALSE;
120   htab->srelgot = s;
121 
122   s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
123   if (s == NULL
124       || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
125     return FALSE;
126   htab->sgot = s;
127 
128   if (bed->want_got_plt)
129     {
130       s = bfd_make_section_anyway_with_flags (abfd, ".got.plt", flags);
131       if (s == NULL
132 	  || !bfd_set_section_alignment (abfd, s,
133 					 bed->s->log_file_align))
134 	return FALSE;
135       htab->sgotplt = s;
136     }
137 
138   /* The first bit of the global offset table is the header.  */
139   s->size += bed->got_header_size;
140 
141   if (bed->want_got_sym)
142     {
143       /* Define the symbol _GLOBAL_OFFSET_TABLE_ at the start of the .got
144 	 (or .got.plt) section.  We don't do this in the linker script
145 	 because we don't want to define the symbol if we are not creating
146 	 a global offset table.  */
147       h = _bfd_elf_define_linkage_sym (abfd, info, s,
148 				       "_GLOBAL_OFFSET_TABLE_");
149       elf_hash_table (info)->hgot = h;
150       if (h == NULL)
151 	return FALSE;
152     }
153 
154   return TRUE;
155 }
156 
157 /* Create a strtab to hold the dynamic symbol names.  */
158 static bfd_boolean
159 _bfd_elf_link_create_dynstrtab (bfd *abfd, struct bfd_link_info *info)
160 {
161   struct elf_link_hash_table *hash_table;
162 
163   hash_table = elf_hash_table (info);
164   if (hash_table->dynobj == NULL)
165     hash_table->dynobj = abfd;
166 
167   if (hash_table->dynstr == NULL)
168     {
169       hash_table->dynstr = _bfd_elf_strtab_init ();
170       if (hash_table->dynstr == NULL)
171 	return FALSE;
172     }
173   return TRUE;
174 }
175 
176 /* Create some sections which will be filled in with dynamic linking
177    information.  ABFD is an input file which requires dynamic sections
178    to be created.  The dynamic sections take up virtual memory space
179    when the final executable is run, so we need to create them before
180    addresses are assigned to the output sections.  We work out the
181    actual contents and size of these sections later.  */
182 
183 bfd_boolean
184 _bfd_elf_link_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
185 {
186   flagword flags;
187   asection *s;
188   const struct elf_backend_data *bed;
189   struct elf_link_hash_entry *h;
190 
191   if (! is_elf_hash_table (info->hash))
192     return FALSE;
193 
194   if (elf_hash_table (info)->dynamic_sections_created)
195     return TRUE;
196 
197   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
198     return FALSE;
199 
200   abfd = elf_hash_table (info)->dynobj;
201   bed = get_elf_backend_data (abfd);
202 
203   flags = bed->dynamic_sec_flags;
204 
205   /* A dynamically linked executable has a .interp section, but a
206      shared library does not.  */
207   if (info->executable)
208     {
209       s = bfd_make_section_anyway_with_flags (abfd, ".interp",
210 					      flags | SEC_READONLY);
211       if (s == NULL)
212 	return FALSE;
213     }
214 
215   /* Create sections to hold version informations.  These are removed
216      if they are not needed.  */
217   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_d",
218 					  flags | SEC_READONLY);
219   if (s == NULL
220       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
221     return FALSE;
222 
223   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version",
224 					  flags | SEC_READONLY);
225   if (s == NULL
226       || ! bfd_set_section_alignment (abfd, s, 1))
227     return FALSE;
228 
229   s = bfd_make_section_anyway_with_flags (abfd, ".gnu.version_r",
230 					  flags | SEC_READONLY);
231   if (s == NULL
232       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
233     return FALSE;
234 
235   s = bfd_make_section_anyway_with_flags (abfd, ".dynsym",
236 					  flags | SEC_READONLY);
237   if (s == NULL
238       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
239     return FALSE;
240 
241   s = bfd_make_section_anyway_with_flags (abfd, ".dynstr",
242 					  flags | SEC_READONLY);
243   if (s == NULL)
244     return FALSE;
245 
246   s = bfd_make_section_anyway_with_flags (abfd, ".dynamic", flags);
247   if (s == NULL
248       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
249     return FALSE;
250 
251   /* The special symbol _DYNAMIC is always set to the start of the
252      .dynamic section.  We could set _DYNAMIC in a linker script, but we
253      only want to define it if we are, in fact, creating a .dynamic
254      section.  We don't want to define it if there is no .dynamic
255      section, since on some ELF platforms the start up code examines it
256      to decide how to initialize the process.  */
257   h = _bfd_elf_define_linkage_sym (abfd, info, s, "_DYNAMIC");
258   elf_hash_table (info)->hdynamic = h;
259   if (h == NULL)
260     return FALSE;
261 
262   if (info->emit_hash)
263     {
264       s = bfd_make_section_anyway_with_flags (abfd, ".hash",
265 					      flags | SEC_READONLY);
266       if (s == NULL
267 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
268 	return FALSE;
269       elf_section_data (s)->this_hdr.sh_entsize = bed->s->sizeof_hash_entry;
270     }
271 
272   if (info->emit_gnu_hash)
273     {
274       s = bfd_make_section_anyway_with_flags (abfd, ".gnu.hash",
275 					      flags | SEC_READONLY);
276       if (s == NULL
277 	  || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
278 	return FALSE;
279       /* For 64-bit ELF, .gnu.hash is a non-uniform entity size section:
280 	 4 32-bit words followed by variable count of 64-bit words, then
281 	 variable count of 32-bit words.  */
282       if (bed->s->arch_size == 64)
283 	elf_section_data (s)->this_hdr.sh_entsize = 0;
284       else
285 	elf_section_data (s)->this_hdr.sh_entsize = 4;
286     }
287 
288   /* Let the backend create the rest of the sections.  This lets the
289      backend set the right flags.  The backend will normally create
290      the .got and .plt sections.  */
291   if (bed->elf_backend_create_dynamic_sections == NULL
292       || ! (*bed->elf_backend_create_dynamic_sections) (abfd, info))
293     return FALSE;
294 
295   elf_hash_table (info)->dynamic_sections_created = TRUE;
296 
297   return TRUE;
298 }
299 
300 /* Create dynamic sections when linking against a dynamic object.  */
301 
302 bfd_boolean
303 _bfd_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
304 {
305   flagword flags, pltflags;
306   struct elf_link_hash_entry *h;
307   asection *s;
308   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
309   struct elf_link_hash_table *htab = elf_hash_table (info);
310 
311   /* We need to create .plt, .rel[a].plt, .got, .got.plt, .dynbss, and
312      .rel[a].bss sections.  */
313   flags = bed->dynamic_sec_flags;
314 
315   pltflags = flags;
316   if (bed->plt_not_loaded)
317     /* We do not clear SEC_ALLOC here because we still want the OS to
318        allocate space for the section; it's just that there's nothing
319        to read in from the object file.  */
320     pltflags &= ~ (SEC_CODE | SEC_LOAD | SEC_HAS_CONTENTS);
321   else
322     pltflags |= SEC_ALLOC | SEC_CODE | SEC_LOAD;
323   if (bed->plt_readonly)
324     pltflags |= SEC_READONLY;
325 
326   s = bfd_make_section_anyway_with_flags (abfd, ".plt", pltflags);
327   if (s == NULL
328       || ! bfd_set_section_alignment (abfd, s, bed->plt_alignment))
329     return FALSE;
330   htab->splt = s;
331 
332   /* Define the symbol _PROCEDURE_LINKAGE_TABLE_ at the start of the
333      .plt section.  */
334   if (bed->want_plt_sym)
335     {
336       h = _bfd_elf_define_linkage_sym (abfd, info, s,
337 				       "_PROCEDURE_LINKAGE_TABLE_");
338       elf_hash_table (info)->hplt = h;
339       if (h == NULL)
340 	return FALSE;
341     }
342 
343   s = bfd_make_section_anyway_with_flags (abfd,
344 					  (bed->rela_plts_and_copies_p
345 					   ? ".rela.plt" : ".rel.plt"),
346 					  flags | SEC_READONLY);
347   if (s == NULL
348       || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
349     return FALSE;
350   htab->srelplt = s;
351 
352   if (! _bfd_elf_create_got_section (abfd, info))
353     return FALSE;
354 
355   if (bed->want_dynbss)
356     {
357       /* The .dynbss section is a place to put symbols which are defined
358 	 by dynamic objects, are referenced by regular objects, and are
359 	 not functions.  We must allocate space for them in the process
360 	 image and use a R_*_COPY reloc to tell the dynamic linker to
361 	 initialize them at run time.  The linker script puts the .dynbss
362 	 section into the .bss section of the final image.  */
363       s = bfd_make_section_anyway_with_flags (abfd, ".dynbss",
364 					      (SEC_ALLOC | SEC_LINKER_CREATED));
365       if (s == NULL)
366 	return FALSE;
367 
368       /* The .rel[a].bss section holds copy relocs.  This section is not
369 	 normally needed.  We need to create it here, though, so that the
370 	 linker will map it to an output section.  We can't just create it
371 	 only if we need it, because we will not know whether we need it
372 	 until we have seen all the input files, and the first time the
373 	 main linker code calls BFD after examining all the input files
374 	 (size_dynamic_sections) the input sections have already been
375 	 mapped to the output sections.  If the section turns out not to
376 	 be needed, we can discard it later.  We will never need this
377 	 section when generating a shared object, since they do not use
378 	 copy relocs.  */
379       if (! info->shared)
380 	{
381 	  s = bfd_make_section_anyway_with_flags (abfd,
382 						  (bed->rela_plts_and_copies_p
383 						   ? ".rela.bss" : ".rel.bss"),
384 						  flags | SEC_READONLY);
385 	  if (s == NULL
386 	      || ! bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
387 	    return FALSE;
388 	}
389     }
390 
391   return TRUE;
392 }
393 
394 /* Record a new dynamic symbol.  We record the dynamic symbols as we
395    read the input files, since we need to have a list of all of them
396    before we can determine the final sizes of the output sections.
397    Note that we may actually call this function even though we are not
398    going to output any dynamic symbols; in some cases we know that a
399    symbol should be in the dynamic symbol table, but only if there is
400    one.  */
401 
402 bfd_boolean
403 bfd_elf_link_record_dynamic_symbol (struct bfd_link_info *info,
404 				    struct elf_link_hash_entry *h)
405 {
406   if (h->dynindx == -1)
407     {
408       struct elf_strtab_hash *dynstr;
409       char *p;
410       const char *name;
411       bfd_size_type indx;
412 
413       /* XXX: The ABI draft says the linker must turn hidden and
414 	 internal symbols into STB_LOCAL symbols when producing the
415 	 DSO. However, if ld.so honors st_other in the dynamic table,
416 	 this would not be necessary.  */
417       switch (ELF_ST_VISIBILITY (h->other))
418 	{
419 	case STV_INTERNAL:
420 	case STV_HIDDEN:
421 	  if (h->root.type != bfd_link_hash_undefined
422 	      && h->root.type != bfd_link_hash_undefweak)
423 	    {
424 	      h->forced_local = 1;
425 	      if (!elf_hash_table (info)->is_relocatable_executable)
426 		return TRUE;
427 	    }
428 
429 	default:
430 	  break;
431 	}
432 
433       h->dynindx = elf_hash_table (info)->dynsymcount;
434       ++elf_hash_table (info)->dynsymcount;
435 
436       dynstr = elf_hash_table (info)->dynstr;
437       if (dynstr == NULL)
438 	{
439 	  /* Create a strtab to hold the dynamic symbol names.  */
440 	  elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
441 	  if (dynstr == NULL)
442 	    return FALSE;
443 	}
444 
445       /* We don't put any version information in the dynamic string
446 	 table.  */
447       name = h->root.root.string;
448       p = strchr (name, ELF_VER_CHR);
449       if (p != NULL)
450 	/* We know that the p points into writable memory.  In fact,
451 	   there are only a few symbols that have read-only names, being
452 	   those like _GLOBAL_OFFSET_TABLE_ that are created specially
453 	   by the backends.  Most symbols will have names pointing into
454 	   an ELF string table read from a file, or to objalloc memory.  */
455 	*p = 0;
456 
457       indx = _bfd_elf_strtab_add (dynstr, name, p != NULL);
458 
459       if (p != NULL)
460 	*p = ELF_VER_CHR;
461 
462       if (indx == (bfd_size_type) -1)
463 	return FALSE;
464       h->dynstr_index = indx;
465     }
466 
467   return TRUE;
468 }
469 
470 /* Mark a symbol dynamic.  */
471 
472 static void
473 bfd_elf_link_mark_dynamic_symbol (struct bfd_link_info *info,
474 				  struct elf_link_hash_entry *h,
475 				  Elf_Internal_Sym *sym)
476 {
477   struct bfd_elf_dynamic_list *d = info->dynamic_list;
478 
479   /* It may be called more than once on the same H.  */
480   if(h->dynamic || info->relocatable)
481     return;
482 
483   if ((info->dynamic_data
484        && (h->type == STT_OBJECT
485 	   || (sym != NULL
486 	       && ELF_ST_TYPE (sym->st_info) == STT_OBJECT)))
487       || (d != NULL
488 	  && h->root.type == bfd_link_hash_new
489 	  && (*d->match) (&d->head, NULL, h->root.root.string)))
490     h->dynamic = 1;
491 }
492 
493 /* Record an assignment to a symbol made by a linker script.  We need
494    this in case some dynamic object refers to this symbol.  */
495 
496 bfd_boolean
497 bfd_elf_record_link_assignment (bfd *output_bfd,
498 				struct bfd_link_info *info,
499 				const char *name,
500 				bfd_boolean provide,
501 				bfd_boolean hidden)
502 {
503   struct elf_link_hash_entry *h, *hv;
504   struct elf_link_hash_table *htab;
505   const struct elf_backend_data *bed;
506 
507   if (!is_elf_hash_table (info->hash))
508     return TRUE;
509 
510   htab = elf_hash_table (info);
511   h = elf_link_hash_lookup (htab, name, !provide, TRUE, FALSE);
512   if (h == NULL)
513     return provide;
514 
515   switch (h->root.type)
516     {
517     case bfd_link_hash_defined:
518     case bfd_link_hash_defweak:
519     case bfd_link_hash_common:
520       break;
521     case bfd_link_hash_undefweak:
522     case bfd_link_hash_undefined:
523       /* Since we're defining the symbol, don't let it seem to have not
524 	 been defined.  record_dynamic_symbol and size_dynamic_sections
525 	 may depend on this.  */
526       h->root.type = bfd_link_hash_new;
527       if (h->root.u.undef.next != NULL || htab->root.undefs_tail == &h->root)
528 	bfd_link_repair_undef_list (&htab->root);
529       break;
530     case bfd_link_hash_new:
531       bfd_elf_link_mark_dynamic_symbol (info, h, NULL);
532       h->non_elf = 0;
533       break;
534     case bfd_link_hash_indirect:
535       /* We had a versioned symbol in a dynamic library.  We make the
536 	 the versioned symbol point to this one.  */
537       bed = get_elf_backend_data (output_bfd);
538       hv = h;
539       while (hv->root.type == bfd_link_hash_indirect
540 	     || hv->root.type == bfd_link_hash_warning)
541 	hv = (struct elf_link_hash_entry *) hv->root.u.i.link;
542       /* We don't need to update h->root.u since linker will set them
543 	 later.  */
544       h->root.type = bfd_link_hash_undefined;
545       hv->root.type = bfd_link_hash_indirect;
546       hv->root.u.i.link = (struct bfd_link_hash_entry *) h;
547       (*bed->elf_backend_copy_indirect_symbol) (info, h, hv);
548       break;
549     case bfd_link_hash_warning:
550       abort ();
551       break;
552     }
553 
554   /* If this symbol is being provided by the linker script, and it is
555      currently defined by a dynamic object, but not by a regular
556      object, then mark it as undefined so that the generic linker will
557      force the correct value.  */
558   if (provide
559       && h->def_dynamic
560       && !h->def_regular)
561     h->root.type = bfd_link_hash_undefined;
562 
563   /* If this symbol is not being provided by the linker script, and it is
564      currently defined by a dynamic object, but not by a regular object,
565      then clear out any version information because the symbol will not be
566      associated with the dynamic object any more.  */
567   if (!provide
568       && h->def_dynamic
569       && !h->def_regular)
570     h->verinfo.verdef = NULL;
571 
572   h->def_regular = 1;
573 
574   if (hidden)
575     {
576       bed = get_elf_backend_data (output_bfd);
577       if (ELF_ST_VISIBILITY (h->other) != STV_INTERNAL)
578 	h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
579       (*bed->elf_backend_hide_symbol) (info, h, TRUE);
580     }
581 
582   /* STV_HIDDEN and STV_INTERNAL symbols must be STB_LOCAL in shared objects
583      and executables.  */
584   if (!info->relocatable
585       && h->dynindx != -1
586       && (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
587 	  || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL))
588     h->forced_local = 1;
589 
590   if ((h->def_dynamic
591        || h->ref_dynamic
592        || info->shared
593        || (info->executable && elf_hash_table (info)->is_relocatable_executable))
594       && h->dynindx == -1)
595     {
596       if (! bfd_elf_link_record_dynamic_symbol (info, h))
597 	return FALSE;
598 
599       /* If this is a weak defined symbol, and we know a corresponding
600 	 real symbol from the same dynamic object, make sure the real
601 	 symbol is also made into a dynamic symbol.  */
602       if (h->u.weakdef != NULL
603 	  && h->u.weakdef->dynindx == -1)
604 	{
605 	  if (! bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
606 	    return FALSE;
607 	}
608     }
609 
610   return TRUE;
611 }
612 
613 /* Record a new local dynamic symbol.  Returns 0 on failure, 1 on
614    success, and 2 on a failure caused by attempting to record a symbol
615    in a discarded section, eg. a discarded link-once section symbol.  */
616 
617 int
618 bfd_elf_link_record_local_dynamic_symbol (struct bfd_link_info *info,
619 					  bfd *input_bfd,
620 					  long input_indx)
621 {
622   bfd_size_type amt;
623   struct elf_link_local_dynamic_entry *entry;
624   struct elf_link_hash_table *eht;
625   struct elf_strtab_hash *dynstr;
626   unsigned long dynstr_index;
627   char *name;
628   Elf_External_Sym_Shndx eshndx;
629   char esym[sizeof (Elf64_External_Sym)];
630 
631   if (! is_elf_hash_table (info->hash))
632     return 0;
633 
634   /* See if the entry exists already.  */
635   for (entry = elf_hash_table (info)->dynlocal; entry ; entry = entry->next)
636     if (entry->input_bfd == input_bfd && entry->input_indx == input_indx)
637       return 1;
638 
639   amt = sizeof (*entry);
640   entry = (struct elf_link_local_dynamic_entry *) bfd_alloc (input_bfd, amt);
641   if (entry == NULL)
642     return 0;
643 
644   /* Go find the symbol, so that we can find it's name.  */
645   if (!bfd_elf_get_elf_syms (input_bfd, &elf_tdata (input_bfd)->symtab_hdr,
646 			     1, input_indx, &entry->isym, esym, &eshndx))
647     {
648       bfd_release (input_bfd, entry);
649       return 0;
650     }
651 
652   if (entry->isym.st_shndx != SHN_UNDEF
653       && entry->isym.st_shndx < SHN_LORESERVE)
654     {
655       asection *s;
656 
657       s = bfd_section_from_elf_index (input_bfd, entry->isym.st_shndx);
658       if (s == NULL || bfd_is_abs_section (s->output_section))
659 	{
660 	  /* We can still bfd_release here as nothing has done another
661 	     bfd_alloc.  We can't do this later in this function.  */
662 	  bfd_release (input_bfd, entry);
663 	  return 2;
664 	}
665     }
666 
667   name = (bfd_elf_string_from_elf_section
668 	  (input_bfd, elf_tdata (input_bfd)->symtab_hdr.sh_link,
669 	   entry->isym.st_name));
670 
671   dynstr = elf_hash_table (info)->dynstr;
672   if (dynstr == NULL)
673     {
674       /* Create a strtab to hold the dynamic symbol names.  */
675       elf_hash_table (info)->dynstr = dynstr = _bfd_elf_strtab_init ();
676       if (dynstr == NULL)
677 	return 0;
678     }
679 
680   dynstr_index = _bfd_elf_strtab_add (dynstr, name, FALSE);
681   if (dynstr_index == (unsigned long) -1)
682     return 0;
683   entry->isym.st_name = dynstr_index;
684 
685   eht = elf_hash_table (info);
686 
687   entry->next = eht->dynlocal;
688   eht->dynlocal = entry;
689   entry->input_bfd = input_bfd;
690   entry->input_indx = input_indx;
691   eht->dynsymcount++;
692 
693   /* Whatever binding the symbol had before, it's now local.  */
694   entry->isym.st_info
695     = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (entry->isym.st_info));
696 
697   /* The dynindx will be set at the end of size_dynamic_sections.  */
698 
699   return 1;
700 }
701 
702 /* Return the dynindex of a local dynamic symbol.  */
703 
704 long
705 _bfd_elf_link_lookup_local_dynindx (struct bfd_link_info *info,
706 				    bfd *input_bfd,
707 				    long input_indx)
708 {
709   struct elf_link_local_dynamic_entry *e;
710 
711   for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
712     if (e->input_bfd == input_bfd && e->input_indx == input_indx)
713       return e->dynindx;
714   return -1;
715 }
716 
717 /* This function is used to renumber the dynamic symbols, if some of
718    them are removed because they are marked as local.  This is called
719    via elf_link_hash_traverse.  */
720 
721 static bfd_boolean
722 elf_link_renumber_hash_table_dynsyms (struct elf_link_hash_entry *h,
723 				      void *data)
724 {
725   size_t *count = (size_t *) data;
726 
727   if (h->forced_local)
728     return TRUE;
729 
730   if (h->dynindx != -1)
731     h->dynindx = ++(*count);
732 
733   return TRUE;
734 }
735 
736 
737 /* Like elf_link_renumber_hash_table_dynsyms, but just number symbols with
738    STB_LOCAL binding.  */
739 
740 static bfd_boolean
741 elf_link_renumber_local_hash_table_dynsyms (struct elf_link_hash_entry *h,
742 					    void *data)
743 {
744   size_t *count = (size_t *) data;
745 
746   if (!h->forced_local)
747     return TRUE;
748 
749   if (h->dynindx != -1)
750     h->dynindx = ++(*count);
751 
752   return TRUE;
753 }
754 
755 /* Return true if the dynamic symbol for a given section should be
756    omitted when creating a shared library.  */
757 bfd_boolean
758 _bfd_elf_link_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
759 				   struct bfd_link_info *info,
760 				   asection *p)
761 {
762   struct elf_link_hash_table *htab;
763 
764   switch (elf_section_data (p)->this_hdr.sh_type)
765     {
766     case SHT_PROGBITS:
767     case SHT_NOBITS:
768       /* If sh_type is yet undecided, assume it could be
769 	 SHT_PROGBITS/SHT_NOBITS.  */
770     case SHT_NULL:
771       htab = elf_hash_table (info);
772       if (p == htab->tls_sec)
773 	return FALSE;
774 
775       if (htab->text_index_section != NULL)
776 	return p != htab->text_index_section && p != htab->data_index_section;
777 
778       if (strcmp (p->name, ".got") == 0
779 	  || strcmp (p->name, ".got.plt") == 0
780 	  || strcmp (p->name, ".plt") == 0)
781 	{
782 	  asection *ip;
783 
784 	  if (htab->dynobj != NULL
785 	      && (ip = bfd_get_linker_section (htab->dynobj, p->name)) != NULL
786 	      && ip->output_section == p)
787 	    return TRUE;
788 	}
789       return FALSE;
790 
791       /* There shouldn't be section relative relocations
792 	 against any other section.  */
793     default:
794       return TRUE;
795     }
796 }
797 
798 /* Assign dynsym indices.  In a shared library we generate a section
799    symbol for each output section, which come first.  Next come symbols
800    which have been forced to local binding.  Then all of the back-end
801    allocated local dynamic syms, followed by the rest of the global
802    symbols.  */
803 
804 static unsigned long
805 _bfd_elf_link_renumber_dynsyms (bfd *output_bfd,
806 				struct bfd_link_info *info,
807 				unsigned long *section_sym_count)
808 {
809   unsigned long dynsymcount = 0;
810 
811   if (info->shared || elf_hash_table (info)->is_relocatable_executable)
812     {
813       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
814       asection *p;
815       for (p = output_bfd->sections; p ; p = p->next)
816 	if ((p->flags & SEC_EXCLUDE) == 0
817 	    && (p->flags & SEC_ALLOC) != 0
818 	    && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
819 	  elf_section_data (p)->dynindx = ++dynsymcount;
820 	else
821 	  elf_section_data (p)->dynindx = 0;
822     }
823   *section_sym_count = dynsymcount;
824 
825   elf_link_hash_traverse (elf_hash_table (info),
826 			  elf_link_renumber_local_hash_table_dynsyms,
827 			  &dynsymcount);
828 
829   if (elf_hash_table (info)->dynlocal)
830     {
831       struct elf_link_local_dynamic_entry *p;
832       for (p = elf_hash_table (info)->dynlocal; p ; p = p->next)
833 	p->dynindx = ++dynsymcount;
834     }
835 
836   elf_link_hash_traverse (elf_hash_table (info),
837 			  elf_link_renumber_hash_table_dynsyms,
838 			  &dynsymcount);
839 
840   /* There is an unused NULL entry at the head of the table which
841      we must account for in our count.  Unless there weren't any
842      symbols, which means we'll have no table at all.  */
843   if (dynsymcount != 0)
844     ++dynsymcount;
845 
846   elf_hash_table (info)->dynsymcount = dynsymcount;
847   return dynsymcount;
848 }
849 
850 /* Merge st_other field.  */
851 
852 static void
853 elf_merge_st_other (bfd *abfd, struct elf_link_hash_entry *h,
854 		    Elf_Internal_Sym *isym, bfd_boolean definition,
855 		    bfd_boolean dynamic)
856 {
857   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
858 
859   /* If st_other has a processor-specific meaning, specific
860      code might be needed here. We never merge the visibility
861      attribute with the one from a dynamic object.  */
862   if (bed->elf_backend_merge_symbol_attribute)
863     (*bed->elf_backend_merge_symbol_attribute) (h, isym, definition,
864 						dynamic);
865 
866   /* If this symbol has default visibility and the user has requested
867      we not re-export it, then mark it as hidden.  */
868   if (definition
869       && !dynamic
870       && (abfd->no_export
871 	  || (abfd->my_archive && abfd->my_archive->no_export))
872       && ELF_ST_VISIBILITY (isym->st_other) != STV_INTERNAL)
873     isym->st_other = (STV_HIDDEN
874 		      | (isym->st_other & ~ELF_ST_VISIBILITY (-1)));
875 
876   if (!dynamic && ELF_ST_VISIBILITY (isym->st_other) != 0)
877     {
878       unsigned char hvis, symvis, other, nvis;
879 
880       /* Only merge the visibility. Leave the remainder of the
881 	 st_other field to elf_backend_merge_symbol_attribute.  */
882       other = h->other & ~ELF_ST_VISIBILITY (-1);
883 
884       /* Combine visibilities, using the most constraining one.  */
885       hvis = ELF_ST_VISIBILITY (h->other);
886       symvis = ELF_ST_VISIBILITY (isym->st_other);
887       if (! hvis)
888 	nvis = symvis;
889       else if (! symvis)
890 	nvis = hvis;
891       else
892 	nvis = hvis < symvis ? hvis : symvis;
893 
894       h->other = other | nvis;
895     }
896 }
897 
898 /* This function is called when we want to merge a new symbol with an
899    existing symbol.  It handles the various cases which arise when we
900    find a definition in a dynamic object, or when there is already a
901    definition in a dynamic object.  The new symbol is described by
902    NAME, SYM, PSEC, and PVALUE.  We set SYM_HASH to the hash table
903    entry.  We set POLDBFD to the old symbol's BFD.  We set POLD_WEAK
904    if the old symbol was weak.  We set POLD_ALIGNMENT to the alignment
905    of an old common symbol.  We set OVERRIDE if the old symbol is
906    overriding a new definition.  We set TYPE_CHANGE_OK if it is OK for
907    the type to change.  We set SIZE_CHANGE_OK if it is OK for the size
908    to change.  By OK to change, we mean that we shouldn't warn if the
909    type or size does change.  */
910 
911 static bfd_boolean
912 _bfd_elf_merge_symbol (bfd *abfd,
913 		       struct bfd_link_info *info,
914 		       const char *name,
915 		       Elf_Internal_Sym *sym,
916 		       asection **psec,
917 		       bfd_vma *pvalue,
918 		       struct elf_link_hash_entry **sym_hash,
919 		       bfd **poldbfd,
920 		       bfd_boolean *pold_weak,
921 		       unsigned int *pold_alignment,
922 		       bfd_boolean *skip,
923 		       bfd_boolean *override,
924 		       bfd_boolean *type_change_ok,
925 		       bfd_boolean *size_change_ok)
926 {
927   asection *sec, *oldsec;
928   struct elf_link_hash_entry *h;
929   struct elf_link_hash_entry *hi;
930   struct elf_link_hash_entry *flip;
931   int bind;
932   bfd *oldbfd;
933   bfd_boolean newdyn, olddyn, olddef, newdef, newdyncommon, olddyncommon;
934   bfd_boolean newweak, oldweak, newfunc, oldfunc;
935   const struct elf_backend_data *bed;
936 
937   *skip = FALSE;
938   *override = FALSE;
939 
940   sec = *psec;
941   bind = ELF_ST_BIND (sym->st_info);
942 
943   if (! bfd_is_und_section (sec))
944     h = elf_link_hash_lookup (elf_hash_table (info), name, TRUE, FALSE, FALSE);
945   else
946     h = ((struct elf_link_hash_entry *)
947 	 bfd_wrapped_link_hash_lookup (abfd, info, name, TRUE, FALSE, FALSE));
948   if (h == NULL)
949     return FALSE;
950   *sym_hash = h;
951 
952   bed = get_elf_backend_data (abfd);
953 
954   /* For merging, we only care about real symbols.  But we need to make
955      sure that indirect symbol dynamic flags are updated.  */
956   hi = h;
957   while (h->root.type == bfd_link_hash_indirect
958 	 || h->root.type == bfd_link_hash_warning)
959     h = (struct elf_link_hash_entry *) h->root.u.i.link;
960 
961   /* OLDBFD and OLDSEC are a BFD and an ASECTION associated with the
962      existing symbol.  */
963 
964   oldbfd = NULL;
965   oldsec = NULL;
966   switch (h->root.type)
967     {
968     default:
969       break;
970 
971     case bfd_link_hash_undefined:
972     case bfd_link_hash_undefweak:
973       oldbfd = h->root.u.undef.abfd;
974       break;
975 
976     case bfd_link_hash_defined:
977     case bfd_link_hash_defweak:
978       oldbfd = h->root.u.def.section->owner;
979       oldsec = h->root.u.def.section;
980       break;
981 
982     case bfd_link_hash_common:
983       oldbfd = h->root.u.c.p->section->owner;
984       oldsec = h->root.u.c.p->section;
985       if (pold_alignment)
986 	*pold_alignment = h->root.u.c.p->alignment_power;
987       break;
988     }
989   if (poldbfd && *poldbfd == NULL)
990     *poldbfd = oldbfd;
991 
992   /* Differentiate strong and weak symbols.  */
993   newweak = bind == STB_WEAK;
994   oldweak = (h->root.type == bfd_link_hash_defweak
995 	     || h->root.type == bfd_link_hash_undefweak);
996   if (pold_weak)
997     *pold_weak = oldweak;
998 
999   /* This code is for coping with dynamic objects, and is only useful
1000      if we are doing an ELF link.  */
1001   if (!(*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
1002     return TRUE;
1003 
1004   /* We have to check it for every instance since the first few may be
1005      references and not all compilers emit symbol type for undefined
1006      symbols.  */
1007   bfd_elf_link_mark_dynamic_symbol (info, h, sym);
1008 
1009   /* NEWDYN and OLDDYN indicate whether the new or old symbol,
1010      respectively, is from a dynamic object.  */
1011 
1012   newdyn = (abfd->flags & DYNAMIC) != 0;
1013 
1014   /* ref_dynamic_nonweak and dynamic_def flags track actual undefined
1015      syms and defined syms in dynamic libraries respectively.
1016      ref_dynamic on the other hand can be set for a symbol defined in
1017      a dynamic library, and def_dynamic may not be set;  When the
1018      definition in a dynamic lib is overridden by a definition in the
1019      executable use of the symbol in the dynamic lib becomes a
1020      reference to the executable symbol.  */
1021   if (newdyn)
1022     {
1023       if (bfd_is_und_section (sec))
1024 	{
1025 	  if (bind != STB_WEAK)
1026 	    {
1027 	      h->ref_dynamic_nonweak = 1;
1028 	      hi->ref_dynamic_nonweak = 1;
1029 	    }
1030 	}
1031       else
1032 	{
1033 	  h->dynamic_def = 1;
1034 	  hi->dynamic_def = 1;
1035 	}
1036     }
1037 
1038   /* If we just created the symbol, mark it as being an ELF symbol.
1039      Other than that, there is nothing to do--there is no merge issue
1040      with a newly defined symbol--so we just return.  */
1041 
1042   if (h->root.type == bfd_link_hash_new)
1043     {
1044       h->non_elf = 0;
1045       return TRUE;
1046     }
1047 
1048   /* In cases involving weak versioned symbols, we may wind up trying
1049      to merge a symbol with itself.  Catch that here, to avoid the
1050      confusion that results if we try to override a symbol with
1051      itself.  The additional tests catch cases like
1052      _GLOBAL_OFFSET_TABLE_, which are regular symbols defined in a
1053      dynamic object, which we do want to handle here.  */
1054   if (abfd == oldbfd
1055       && (newweak || oldweak)
1056       && ((abfd->flags & DYNAMIC) == 0
1057 	  || !h->def_regular))
1058     return TRUE;
1059 
1060   olddyn = FALSE;
1061   if (oldbfd != NULL)
1062     olddyn = (oldbfd->flags & DYNAMIC) != 0;
1063   else if (oldsec != NULL)
1064     {
1065       /* This handles the special SHN_MIPS_{TEXT,DATA} section
1066 	 indices used by MIPS ELF.  */
1067       olddyn = (oldsec->symbol->flags & BSF_DYNAMIC) != 0;
1068     }
1069 
1070   /* NEWDEF and OLDDEF indicate whether the new or old symbol,
1071      respectively, appear to be a definition rather than reference.  */
1072 
1073   newdef = !bfd_is_und_section (sec) && !bfd_is_com_section (sec);
1074 
1075   olddef = (h->root.type != bfd_link_hash_undefined
1076 	    && h->root.type != bfd_link_hash_undefweak
1077 	    && h->root.type != bfd_link_hash_common);
1078 
1079   /* NEWFUNC and OLDFUNC indicate whether the new or old symbol,
1080      respectively, appear to be a function.  */
1081 
1082   newfunc = (ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1083 	     && bed->is_function_type (ELF_ST_TYPE (sym->st_info)));
1084 
1085   oldfunc = (h->type != STT_NOTYPE
1086 	     && bed->is_function_type (h->type));
1087 
1088   /* When we try to create a default indirect symbol from the dynamic
1089      definition with the default version, we skip it if its type and
1090      the type of existing regular definition mismatch.  We only do it
1091      if the existing regular definition won't be dynamic.  */
1092   if (pold_alignment == NULL
1093       && !info->shared
1094       && !info->export_dynamic
1095       && !h->ref_dynamic
1096       && newdyn
1097       && newdef
1098       && !olddyn
1099       && (olddef || h->root.type == bfd_link_hash_common)
1100       && ELF_ST_TYPE (sym->st_info) != h->type
1101       && ELF_ST_TYPE (sym->st_info) != STT_NOTYPE
1102       && h->type != STT_NOTYPE
1103       && !(newfunc && oldfunc))
1104     {
1105       *skip = TRUE;
1106       return TRUE;
1107     }
1108 
1109   /* Plugin symbol type isn't currently set.  Stop bogus errors.  */
1110   if (oldbfd != NULL && (oldbfd->flags & BFD_PLUGIN) != 0)
1111     *type_change_ok = TRUE;
1112 
1113   /* Check TLS symbol.  We don't check undefined symbol introduced by
1114      "ld -u".  */
1115   else if (oldbfd != NULL
1116 	   && ELF_ST_TYPE (sym->st_info) != h->type
1117 	   && (ELF_ST_TYPE (sym->st_info) == STT_TLS || h->type == STT_TLS))
1118     {
1119       bfd *ntbfd, *tbfd;
1120       bfd_boolean ntdef, tdef;
1121       asection *ntsec, *tsec;
1122 
1123       if (h->type == STT_TLS)
1124 	{
1125 	  ntbfd = abfd;
1126 	  ntsec = sec;
1127 	  ntdef = newdef;
1128 	  tbfd = oldbfd;
1129 	  tsec = oldsec;
1130 	  tdef = olddef;
1131 	}
1132       else
1133 	{
1134 	  ntbfd = oldbfd;
1135 	  ntsec = oldsec;
1136 	  ntdef = olddef;
1137 	  tbfd = abfd;
1138 	  tsec = sec;
1139 	  tdef = newdef;
1140 	}
1141 
1142       if (tdef && ntdef)
1143 	(*_bfd_error_handler)
1144 	  (_("%s: TLS definition in %B section %A "
1145 	     "mismatches non-TLS definition in %B section %A"),
1146 	   tbfd, tsec, ntbfd, ntsec, h->root.root.string);
1147       else if (!tdef && !ntdef)
1148 	(*_bfd_error_handler)
1149 	  (_("%s: TLS reference in %B "
1150 	     "mismatches non-TLS reference in %B"),
1151 	   tbfd, ntbfd, h->root.root.string);
1152       else if (tdef)
1153 	(*_bfd_error_handler)
1154 	  (_("%s: TLS definition in %B section %A "
1155 	     "mismatches non-TLS reference in %B"),
1156 	   tbfd, tsec, ntbfd, h->root.root.string);
1157       else
1158 	(*_bfd_error_handler)
1159 	  (_("%s: TLS reference in %B "
1160 	     "mismatches non-TLS definition in %B section %A"),
1161 	   tbfd, ntbfd, ntsec, h->root.root.string);
1162 
1163       bfd_set_error (bfd_error_bad_value);
1164       return FALSE;
1165     }
1166 
1167   /* If the old symbol has non-default visibility, we ignore the new
1168      definition from a dynamic object.  */
1169   if (newdyn
1170       && ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
1171       && !bfd_is_und_section (sec))
1172     {
1173       *skip = TRUE;
1174       /* Make sure this symbol is dynamic.  */
1175       h->ref_dynamic = 1;
1176       hi->ref_dynamic = 1;
1177       /* A protected symbol has external availability. Make sure it is
1178 	 recorded as dynamic.
1179 
1180 	 FIXME: Should we check type and size for protected symbol?  */
1181       if (ELF_ST_VISIBILITY (h->other) == STV_PROTECTED)
1182 	return bfd_elf_link_record_dynamic_symbol (info, h);
1183       else
1184 	return TRUE;
1185     }
1186   else if (!newdyn
1187 	   && ELF_ST_VISIBILITY (sym->st_other) != STV_DEFAULT
1188 	   && h->def_dynamic)
1189     {
1190       /* If the new symbol with non-default visibility comes from a
1191 	 relocatable file and the old definition comes from a dynamic
1192 	 object, we remove the old definition.  */
1193       if (hi->root.type == bfd_link_hash_indirect)
1194 	{
1195 	  /* Handle the case where the old dynamic definition is
1196 	     default versioned.  We need to copy the symbol info from
1197 	     the symbol with default version to the normal one if it
1198 	     was referenced before.  */
1199 	  if (h->ref_regular)
1200 	    {
1201 	      hi->root.type = h->root.type;
1202 	      h->root.type = bfd_link_hash_indirect;
1203 	      (*bed->elf_backend_copy_indirect_symbol) (info, hi, h);
1204 
1205 	      h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1206 	      if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1207 		{
1208 		  /* If the new symbol is hidden or internal, completely undo
1209 		     any dynamic link state.  */
1210 		  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1211 		  h->forced_local = 0;
1212 		  h->ref_dynamic = 0;
1213 		}
1214 	      else
1215 		h->ref_dynamic = 1;
1216 
1217 	      h->def_dynamic = 0;
1218 	      /* FIXME: Should we check type and size for protected symbol?  */
1219 	      h->size = 0;
1220 	      h->type = 0;
1221 
1222 	      h = hi;
1223 	    }
1224 	  else
1225 	    h = hi;
1226 	}
1227 
1228       /* If the old symbol was undefined before, then it will still be
1229 	 on the undefs list.  If the new symbol is undefined or
1230 	 common, we can't make it bfd_link_hash_new here, because new
1231 	 undefined or common symbols will be added to the undefs list
1232 	 by _bfd_generic_link_add_one_symbol.  Symbols may not be
1233 	 added twice to the undefs list.  Also, if the new symbol is
1234 	 undefweak then we don't want to lose the strong undef.  */
1235       if (h->root.u.undef.next || info->hash->undefs_tail == &h->root)
1236 	{
1237 	  h->root.type = bfd_link_hash_undefined;
1238 	  h->root.u.undef.abfd = abfd;
1239 	}
1240       else
1241 	{
1242 	  h->root.type = bfd_link_hash_new;
1243 	  h->root.u.undef.abfd = NULL;
1244 	}
1245 
1246       if (ELF_ST_VISIBILITY (sym->st_other) != STV_PROTECTED)
1247 	{
1248 	  /* If the new symbol is hidden or internal, completely undo
1249 	     any dynamic link state.  */
1250 	  (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1251 	  h->forced_local = 0;
1252 	  h->ref_dynamic = 0;
1253 	}
1254       else
1255 	h->ref_dynamic = 1;
1256       h->def_dynamic = 0;
1257       /* FIXME: Should we check type and size for protected symbol?  */
1258       h->size = 0;
1259       h->type = 0;
1260       return TRUE;
1261     }
1262 
1263   /* If a new weak symbol definition comes from a regular file and the
1264      old symbol comes from a dynamic library, we treat the new one as
1265      strong.  Similarly, an old weak symbol definition from a regular
1266      file is treated as strong when the new symbol comes from a dynamic
1267      library.  Further, an old weak symbol from a dynamic library is
1268      treated as strong if the new symbol is from a dynamic library.
1269      This reflects the way glibc's ld.so works.
1270 
1271      Do this before setting *type_change_ok or *size_change_ok so that
1272      we warn properly when dynamic library symbols are overridden.  */
1273 
1274   if (newdef && !newdyn && olddyn)
1275     newweak = FALSE;
1276   if (olddef && newdyn)
1277     oldweak = FALSE;
1278 
1279   /* Allow changes between different types of function symbol.  */
1280   if (newfunc && oldfunc)
1281     *type_change_ok = TRUE;
1282 
1283   /* It's OK to change the type if either the existing symbol or the
1284      new symbol is weak.  A type change is also OK if the old symbol
1285      is undefined and the new symbol is defined.  */
1286 
1287   if (oldweak
1288       || newweak
1289       || (newdef
1290 	  && h->root.type == bfd_link_hash_undefined))
1291     *type_change_ok = TRUE;
1292 
1293   /* It's OK to change the size if either the existing symbol or the
1294      new symbol is weak, or if the old symbol is undefined.  */
1295 
1296   if (*type_change_ok
1297       || h->root.type == bfd_link_hash_undefined)
1298     *size_change_ok = TRUE;
1299 
1300   /* NEWDYNCOMMON and OLDDYNCOMMON indicate whether the new or old
1301      symbol, respectively, appears to be a common symbol in a dynamic
1302      object.  If a symbol appears in an uninitialized section, and is
1303      not weak, and is not a function, then it may be a common symbol
1304      which was resolved when the dynamic object was created.  We want
1305      to treat such symbols specially, because they raise special
1306      considerations when setting the symbol size: if the symbol
1307      appears as a common symbol in a regular object, and the size in
1308      the regular object is larger, we must make sure that we use the
1309      larger size.  This problematic case can always be avoided in C,
1310      but it must be handled correctly when using Fortran shared
1311      libraries.
1312 
1313      Note that if NEWDYNCOMMON is set, NEWDEF will be set, and
1314      likewise for OLDDYNCOMMON and OLDDEF.
1315 
1316      Note that this test is just a heuristic, and that it is quite
1317      possible to have an uninitialized symbol in a shared object which
1318      is really a definition, rather than a common symbol.  This could
1319      lead to some minor confusion when the symbol really is a common
1320      symbol in some regular object.  However, I think it will be
1321      harmless.  */
1322 
1323   if (newdyn
1324       && newdef
1325       && !newweak
1326       && (sec->flags & SEC_ALLOC) != 0
1327       && (sec->flags & SEC_LOAD) == 0
1328       && sym->st_size > 0
1329       && !newfunc)
1330     newdyncommon = TRUE;
1331   else
1332     newdyncommon = FALSE;
1333 
1334   if (olddyn
1335       && olddef
1336       && h->root.type == bfd_link_hash_defined
1337       && h->def_dynamic
1338       && (h->root.u.def.section->flags & SEC_ALLOC) != 0
1339       && (h->root.u.def.section->flags & SEC_LOAD) == 0
1340       && h->size > 0
1341       && !oldfunc)
1342     olddyncommon = TRUE;
1343   else
1344     olddyncommon = FALSE;
1345 
1346   /* We now know everything about the old and new symbols.  We ask the
1347      backend to check if we can merge them.  */
1348   if (bed->merge_symbol != NULL)
1349     {
1350       if (!bed->merge_symbol (h, sym, psec, newdef, olddef, oldbfd, oldsec))
1351 	return FALSE;
1352       sec = *psec;
1353     }
1354 
1355   /* If both the old and the new symbols look like common symbols in a
1356      dynamic object, set the size of the symbol to the larger of the
1357      two.  */
1358 
1359   if (olddyncommon
1360       && newdyncommon
1361       && sym->st_size != h->size)
1362     {
1363       /* Since we think we have two common symbols, issue a multiple
1364 	 common warning if desired.  Note that we only warn if the
1365 	 size is different.  If the size is the same, we simply let
1366 	 the old symbol override the new one as normally happens with
1367 	 symbols defined in dynamic objects.  */
1368 
1369       if (! ((*info->callbacks->multiple_common)
1370 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1371 	return FALSE;
1372 
1373       if (sym->st_size > h->size)
1374 	h->size = sym->st_size;
1375 
1376       *size_change_ok = TRUE;
1377     }
1378 
1379   /* If we are looking at a dynamic object, and we have found a
1380      definition, we need to see if the symbol was already defined by
1381      some other object.  If so, we want to use the existing
1382      definition, and we do not want to report a multiple symbol
1383      definition error; we do this by clobbering *PSEC to be
1384      bfd_und_section_ptr.
1385 
1386      We treat a common symbol as a definition if the symbol in the
1387      shared library is a function, since common symbols always
1388      represent variables; this can cause confusion in principle, but
1389      any such confusion would seem to indicate an erroneous program or
1390      shared library.  We also permit a common symbol in a regular
1391      object to override a weak symbol in a shared object.  */
1392 
1393   if (newdyn
1394       && newdef
1395       && (olddef
1396 	  || (h->root.type == bfd_link_hash_common
1397 	      && (newweak || newfunc))))
1398     {
1399       *override = TRUE;
1400       newdef = FALSE;
1401       newdyncommon = FALSE;
1402 
1403       *psec = sec = bfd_und_section_ptr;
1404       *size_change_ok = TRUE;
1405 
1406       /* If we get here when the old symbol is a common symbol, then
1407 	 we are explicitly letting it override a weak symbol or
1408 	 function in a dynamic object, and we don't want to warn about
1409 	 a type change.  If the old symbol is a defined symbol, a type
1410 	 change warning may still be appropriate.  */
1411 
1412       if (h->root.type == bfd_link_hash_common)
1413 	*type_change_ok = TRUE;
1414     }
1415 
1416   /* Handle the special case of an old common symbol merging with a
1417      new symbol which looks like a common symbol in a shared object.
1418      We change *PSEC and *PVALUE to make the new symbol look like a
1419      common symbol, and let _bfd_generic_link_add_one_symbol do the
1420      right thing.  */
1421 
1422   if (newdyncommon
1423       && h->root.type == bfd_link_hash_common)
1424     {
1425       *override = TRUE;
1426       newdef = FALSE;
1427       newdyncommon = FALSE;
1428       *pvalue = sym->st_size;
1429       *psec = sec = bed->common_section (oldsec);
1430       *size_change_ok = TRUE;
1431     }
1432 
1433   /* Skip weak definitions of symbols that are already defined.  */
1434   if (newdef && olddef && newweak)
1435     {
1436       /* Don't skip new non-IR weak syms.  */
1437       if (!(oldbfd != NULL
1438 	    && (oldbfd->flags & BFD_PLUGIN) != 0
1439 	    && (abfd->flags & BFD_PLUGIN) == 0))
1440 	{
1441 	  newdef = FALSE;
1442 	  *skip = TRUE;
1443 	}
1444 
1445       /* Merge st_other.  If the symbol already has a dynamic index,
1446 	 but visibility says it should not be visible, turn it into a
1447 	 local symbol.  */
1448       elf_merge_st_other (abfd, h, sym, newdef, newdyn);
1449       if (h->dynindx != -1)
1450 	switch (ELF_ST_VISIBILITY (h->other))
1451 	  {
1452 	  case STV_INTERNAL:
1453 	  case STV_HIDDEN:
1454 	    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
1455 	    break;
1456 	  }
1457     }
1458 
1459   /* If the old symbol is from a dynamic object, and the new symbol is
1460      a definition which is not from a dynamic object, then the new
1461      symbol overrides the old symbol.  Symbols from regular files
1462      always take precedence over symbols from dynamic objects, even if
1463      they are defined after the dynamic object in the link.
1464 
1465      As above, we again permit a common symbol in a regular object to
1466      override a definition in a shared object if the shared object
1467      symbol is a function or is weak.  */
1468 
1469   flip = NULL;
1470   if (!newdyn
1471       && (newdef
1472 	  || (bfd_is_com_section (sec)
1473 	      && (oldweak || oldfunc)))
1474       && olddyn
1475       && olddef
1476       && h->def_dynamic)
1477     {
1478       /* Change the hash table entry to undefined, and let
1479 	 _bfd_generic_link_add_one_symbol do the right thing with the
1480 	 new definition.  */
1481 
1482       h->root.type = bfd_link_hash_undefined;
1483       h->root.u.undef.abfd = h->root.u.def.section->owner;
1484       *size_change_ok = TRUE;
1485 
1486       olddef = FALSE;
1487       olddyncommon = FALSE;
1488 
1489       /* We again permit a type change when a common symbol may be
1490 	 overriding a function.  */
1491 
1492       if (bfd_is_com_section (sec))
1493 	{
1494 	  if (oldfunc)
1495 	    {
1496 	      /* If a common symbol overrides a function, make sure
1497 		 that it isn't defined dynamically nor has type
1498 		 function.  */
1499 	      h->def_dynamic = 0;
1500 	      h->type = STT_NOTYPE;
1501 	    }
1502 	  *type_change_ok = TRUE;
1503 	}
1504 
1505       if (hi->root.type == bfd_link_hash_indirect)
1506 	flip = hi;
1507       else
1508 	/* This union may have been set to be non-NULL when this symbol
1509 	   was seen in a dynamic object.  We must force the union to be
1510 	   NULL, so that it is correct for a regular symbol.  */
1511 	h->verinfo.vertree = NULL;
1512     }
1513 
1514   /* Handle the special case of a new common symbol merging with an
1515      old symbol that looks like it might be a common symbol defined in
1516      a shared object.  Note that we have already handled the case in
1517      which a new common symbol should simply override the definition
1518      in the shared library.  */
1519 
1520   if (! newdyn
1521       && bfd_is_com_section (sec)
1522       && olddyncommon)
1523     {
1524       /* It would be best if we could set the hash table entry to a
1525 	 common symbol, but we don't know what to use for the section
1526 	 or the alignment.  */
1527       if (! ((*info->callbacks->multiple_common)
1528 	     (info, &h->root, abfd, bfd_link_hash_common, sym->st_size)))
1529 	return FALSE;
1530 
1531       /* If the presumed common symbol in the dynamic object is
1532 	 larger, pretend that the new symbol has its size.  */
1533 
1534       if (h->size > *pvalue)
1535 	*pvalue = h->size;
1536 
1537       /* We need to remember the alignment required by the symbol
1538 	 in the dynamic object.  */
1539       BFD_ASSERT (pold_alignment);
1540       *pold_alignment = h->root.u.def.section->alignment_power;
1541 
1542       olddef = FALSE;
1543       olddyncommon = FALSE;
1544 
1545       h->root.type = bfd_link_hash_undefined;
1546       h->root.u.undef.abfd = h->root.u.def.section->owner;
1547 
1548       *size_change_ok = TRUE;
1549       *type_change_ok = TRUE;
1550 
1551       if (hi->root.type == bfd_link_hash_indirect)
1552 	flip = hi;
1553       else
1554 	h->verinfo.vertree = NULL;
1555     }
1556 
1557   if (flip != NULL)
1558     {
1559       /* Handle the case where we had a versioned symbol in a dynamic
1560 	 library and now find a definition in a normal object.  In this
1561 	 case, we make the versioned symbol point to the normal one.  */
1562       flip->root.type = h->root.type;
1563       flip->root.u.undef.abfd = h->root.u.undef.abfd;
1564       h->root.type = bfd_link_hash_indirect;
1565       h->root.u.i.link = (struct bfd_link_hash_entry *) flip;
1566       (*bed->elf_backend_copy_indirect_symbol) (info, flip, h);
1567       if (h->def_dynamic)
1568 	{
1569 	  h->def_dynamic = 0;
1570 	  flip->ref_dynamic = 1;
1571 	}
1572     }
1573 
1574   return TRUE;
1575 }
1576 
1577 /* This function is called to create an indirect symbol from the
1578    default for the symbol with the default version if needed. The
1579    symbol is described by H, NAME, SYM, SEC, and VALUE.  We
1580    set DYNSYM if the new indirect symbol is dynamic.  */
1581 
1582 static bfd_boolean
1583 _bfd_elf_add_default_symbol (bfd *abfd,
1584 			     struct bfd_link_info *info,
1585 			     struct elf_link_hash_entry *h,
1586 			     const char *name,
1587 			     Elf_Internal_Sym *sym,
1588 			     asection *sec,
1589 			     bfd_vma value,
1590 			     bfd **poldbfd,
1591 			     bfd_boolean *dynsym)
1592 {
1593   bfd_boolean type_change_ok;
1594   bfd_boolean size_change_ok;
1595   bfd_boolean skip;
1596   char *shortname;
1597   struct elf_link_hash_entry *hi;
1598   struct bfd_link_hash_entry *bh;
1599   const struct elf_backend_data *bed;
1600   bfd_boolean collect;
1601   bfd_boolean dynamic;
1602   bfd_boolean override;
1603   char *p;
1604   size_t len, shortlen;
1605   asection *tmp_sec;
1606 
1607   /* If this symbol has a version, and it is the default version, we
1608      create an indirect symbol from the default name to the fully
1609      decorated name.  This will cause external references which do not
1610      specify a version to be bound to this version of the symbol.  */
1611   p = strchr (name, ELF_VER_CHR);
1612   if (p == NULL || p[1] != ELF_VER_CHR)
1613     return TRUE;
1614 
1615   bed = get_elf_backend_data (abfd);
1616   collect = bed->collect;
1617   dynamic = (abfd->flags & DYNAMIC) != 0;
1618 
1619   shortlen = p - name;
1620   shortname = (char *) bfd_hash_allocate (&info->hash->table, shortlen + 1);
1621   if (shortname == NULL)
1622     return FALSE;
1623   memcpy (shortname, name, shortlen);
1624   shortname[shortlen] = '\0';
1625 
1626   /* We are going to create a new symbol.  Merge it with any existing
1627      symbol with this name.  For the purposes of the merge, act as
1628      though we were defining the symbol we just defined, although we
1629      actually going to define an indirect symbol.  */
1630   type_change_ok = FALSE;
1631   size_change_ok = FALSE;
1632   tmp_sec = sec;
1633   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1634 			      &hi, poldbfd, NULL, NULL, &skip, &override,
1635 			      &type_change_ok, &size_change_ok))
1636     return FALSE;
1637 
1638   if (skip)
1639     goto nondefault;
1640 
1641   if (! override)
1642     {
1643       bh = &hi->root;
1644       if (! (_bfd_generic_link_add_one_symbol
1645 	     (info, abfd, shortname, BSF_INDIRECT, bfd_ind_section_ptr,
1646 	      0, name, FALSE, collect, &bh)))
1647 	return FALSE;
1648       hi = (struct elf_link_hash_entry *) bh;
1649     }
1650   else
1651     {
1652       /* In this case the symbol named SHORTNAME is overriding the
1653 	 indirect symbol we want to add.  We were planning on making
1654 	 SHORTNAME an indirect symbol referring to NAME.  SHORTNAME
1655 	 is the name without a version.  NAME is the fully versioned
1656 	 name, and it is the default version.
1657 
1658 	 Overriding means that we already saw a definition for the
1659 	 symbol SHORTNAME in a regular object, and it is overriding
1660 	 the symbol defined in the dynamic object.
1661 
1662 	 When this happens, we actually want to change NAME, the
1663 	 symbol we just added, to refer to SHORTNAME.  This will cause
1664 	 references to NAME in the shared object to become references
1665 	 to SHORTNAME in the regular object.  This is what we expect
1666 	 when we override a function in a shared object: that the
1667 	 references in the shared object will be mapped to the
1668 	 definition in the regular object.  */
1669 
1670       while (hi->root.type == bfd_link_hash_indirect
1671 	     || hi->root.type == bfd_link_hash_warning)
1672 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1673 
1674       h->root.type = bfd_link_hash_indirect;
1675       h->root.u.i.link = (struct bfd_link_hash_entry *) hi;
1676       if (h->def_dynamic)
1677 	{
1678 	  h->def_dynamic = 0;
1679 	  hi->ref_dynamic = 1;
1680 	  if (hi->ref_regular
1681 	      || hi->def_regular)
1682 	    {
1683 	      if (! bfd_elf_link_record_dynamic_symbol (info, hi))
1684 		return FALSE;
1685 	    }
1686 	}
1687 
1688       /* Now set HI to H, so that the following code will set the
1689 	 other fields correctly.  */
1690       hi = h;
1691     }
1692 
1693   /* Check if HI is a warning symbol.  */
1694   if (hi->root.type == bfd_link_hash_warning)
1695     hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
1696 
1697   /* If there is a duplicate definition somewhere, then HI may not
1698      point to an indirect symbol.  We will have reported an error to
1699      the user in that case.  */
1700 
1701   if (hi->root.type == bfd_link_hash_indirect)
1702     {
1703       struct elf_link_hash_entry *ht;
1704 
1705       ht = (struct elf_link_hash_entry *) hi->root.u.i.link;
1706       (*bed->elf_backend_copy_indirect_symbol) (info, ht, hi);
1707 
1708       /* A reference to the SHORTNAME symbol from a dynamic library
1709 	 will be satisfied by the versioned symbol at runtime.  In
1710 	 effect, we have a reference to the versioned symbol.  */
1711       ht->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1712       hi->dynamic_def |= ht->dynamic_def;
1713 
1714       /* See if the new flags lead us to realize that the symbol must
1715 	 be dynamic.  */
1716       if (! *dynsym)
1717 	{
1718 	  if (! dynamic)
1719 	    {
1720 	      if (! info->executable
1721 		  || hi->def_dynamic
1722 		  || hi->ref_dynamic)
1723 		*dynsym = TRUE;
1724 	    }
1725 	  else
1726 	    {
1727 	      if (hi->ref_regular)
1728 		*dynsym = TRUE;
1729 	    }
1730 	}
1731     }
1732 
1733   /* We also need to define an indirection from the nondefault version
1734      of the symbol.  */
1735 
1736 nondefault:
1737   len = strlen (name);
1738   shortname = (char *) bfd_hash_allocate (&info->hash->table, len);
1739   if (shortname == NULL)
1740     return FALSE;
1741   memcpy (shortname, name, shortlen);
1742   memcpy (shortname + shortlen, p + 1, len - shortlen);
1743 
1744   /* Once again, merge with any existing symbol.  */
1745   type_change_ok = FALSE;
1746   size_change_ok = FALSE;
1747   tmp_sec = sec;
1748   if (!_bfd_elf_merge_symbol (abfd, info, shortname, sym, &tmp_sec, &value,
1749 			      &hi, NULL, NULL, NULL, &skip, &override,
1750 			      &type_change_ok, &size_change_ok))
1751     return FALSE;
1752 
1753   if (skip)
1754     return TRUE;
1755 
1756   if (override)
1757     {
1758       /* Here SHORTNAME is a versioned name, so we don't expect to see
1759 	 the type of override we do in the case above unless it is
1760 	 overridden by a versioned definition.  */
1761       if (hi->root.type != bfd_link_hash_defined
1762 	  && hi->root.type != bfd_link_hash_defweak)
1763 	(*_bfd_error_handler)
1764 	  (_("%B: unexpected redefinition of indirect versioned symbol `%s'"),
1765 	   abfd, shortname);
1766     }
1767   else
1768     {
1769       bh = &hi->root;
1770       if (! (_bfd_generic_link_add_one_symbol
1771 	     (info, abfd, shortname, BSF_INDIRECT,
1772 	      bfd_ind_section_ptr, 0, name, FALSE, collect, &bh)))
1773 	return FALSE;
1774       hi = (struct elf_link_hash_entry *) bh;
1775 
1776       /* If there is a duplicate definition somewhere, then HI may not
1777 	 point to an indirect symbol.  We will have reported an error
1778 	 to the user in that case.  */
1779 
1780       if (hi->root.type == bfd_link_hash_indirect)
1781 	{
1782 	  (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
1783 	  h->ref_dynamic_nonweak |= hi->ref_dynamic_nonweak;
1784 	  hi->dynamic_def |= h->dynamic_def;
1785 
1786 	  /* See if the new flags lead us to realize that the symbol
1787 	     must be dynamic.  */
1788 	  if (! *dynsym)
1789 	    {
1790 	      if (! dynamic)
1791 		{
1792 		  if (! info->executable
1793 		      || hi->ref_dynamic)
1794 		    *dynsym = TRUE;
1795 		}
1796 	      else
1797 		{
1798 		  if (hi->ref_regular)
1799 		    *dynsym = TRUE;
1800 		}
1801 	    }
1802 	}
1803     }
1804 
1805   return TRUE;
1806 }
1807 
1808 /* This routine is used to export all defined symbols into the dynamic
1809    symbol table.  It is called via elf_link_hash_traverse.  */
1810 
1811 static bfd_boolean
1812 _bfd_elf_export_symbol (struct elf_link_hash_entry *h, void *data)
1813 {
1814   struct elf_info_failed *eif = (struct elf_info_failed *) data;
1815 
1816   /* Ignore indirect symbols.  These are added by the versioning code.  */
1817   if (h->root.type == bfd_link_hash_indirect)
1818     return TRUE;
1819 
1820   /* Ignore this if we won't export it.  */
1821   if (!eif->info->export_dynamic && !h->dynamic)
1822     return TRUE;
1823 
1824   if (h->dynindx == -1
1825       && (h->def_regular || h->ref_regular)
1826       && ! bfd_hide_sym_by_version (eif->info->version_info,
1827 				    h->root.root.string))
1828     {
1829       if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
1830 	{
1831 	  eif->failed = TRUE;
1832 	  return FALSE;
1833 	}
1834     }
1835 
1836   return TRUE;
1837 }
1838 
1839 /* Look through the symbols which are defined in other shared
1840    libraries and referenced here.  Update the list of version
1841    dependencies.  This will be put into the .gnu.version_r section.
1842    This function is called via elf_link_hash_traverse.  */
1843 
1844 static bfd_boolean
1845 _bfd_elf_link_find_version_dependencies (struct elf_link_hash_entry *h,
1846 					 void *data)
1847 {
1848   struct elf_find_verdep_info *rinfo = (struct elf_find_verdep_info *) data;
1849   Elf_Internal_Verneed *t;
1850   Elf_Internal_Vernaux *a;
1851   bfd_size_type amt;
1852 
1853   /* We only care about symbols defined in shared objects with version
1854      information.  */
1855   if (!h->def_dynamic
1856       || h->def_regular
1857       || h->dynindx == -1
1858       || h->verinfo.verdef == NULL)
1859     return TRUE;
1860 
1861   /* See if we already know about this version.  */
1862   for (t = elf_tdata (rinfo->info->output_bfd)->verref;
1863        t != NULL;
1864        t = t->vn_nextref)
1865     {
1866       if (t->vn_bfd != h->verinfo.verdef->vd_bfd)
1867 	continue;
1868 
1869       for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1870 	if (a->vna_nodename == h->verinfo.verdef->vd_nodename)
1871 	  return TRUE;
1872 
1873       break;
1874     }
1875 
1876   /* This is a new version.  Add it to tree we are building.  */
1877 
1878   if (t == NULL)
1879     {
1880       amt = sizeof *t;
1881       t = (Elf_Internal_Verneed *) bfd_zalloc (rinfo->info->output_bfd, amt);
1882       if (t == NULL)
1883 	{
1884 	  rinfo->failed = TRUE;
1885 	  return FALSE;
1886 	}
1887 
1888       t->vn_bfd = h->verinfo.verdef->vd_bfd;
1889       t->vn_nextref = elf_tdata (rinfo->info->output_bfd)->verref;
1890       elf_tdata (rinfo->info->output_bfd)->verref = t;
1891     }
1892 
1893   amt = sizeof *a;
1894   a = (Elf_Internal_Vernaux *) bfd_zalloc (rinfo->info->output_bfd, amt);
1895   if (a == NULL)
1896     {
1897       rinfo->failed = TRUE;
1898       return FALSE;
1899     }
1900 
1901   /* Note that we are copying a string pointer here, and testing it
1902      above.  If bfd_elf_string_from_elf_section is ever changed to
1903      discard the string data when low in memory, this will have to be
1904      fixed.  */
1905   a->vna_nodename = h->verinfo.verdef->vd_nodename;
1906 
1907   a->vna_flags = h->verinfo.verdef->vd_flags;
1908   a->vna_nextptr = t->vn_auxptr;
1909 
1910   h->verinfo.verdef->vd_exp_refno = rinfo->vers;
1911   ++rinfo->vers;
1912 
1913   a->vna_other = h->verinfo.verdef->vd_exp_refno + 1;
1914 
1915   t->vn_auxptr = a;
1916 
1917   return TRUE;
1918 }
1919 
1920 /* Figure out appropriate versions for all the symbols.  We may not
1921    have the version number script until we have read all of the input
1922    files, so until that point we don't know which symbols should be
1923    local.  This function is called via elf_link_hash_traverse.  */
1924 
1925 static bfd_boolean
1926 _bfd_elf_link_assign_sym_version (struct elf_link_hash_entry *h, void *data)
1927 {
1928   struct elf_info_failed *sinfo;
1929   struct bfd_link_info *info;
1930   const struct elf_backend_data *bed;
1931   struct elf_info_failed eif;
1932   char *p;
1933   bfd_size_type amt;
1934 
1935   sinfo = (struct elf_info_failed *) data;
1936   info = sinfo->info;
1937 
1938   /* Fix the symbol flags.  */
1939   eif.failed = FALSE;
1940   eif.info = info;
1941   if (! _bfd_elf_fix_symbol_flags (h, &eif))
1942     {
1943       if (eif.failed)
1944 	sinfo->failed = TRUE;
1945       return FALSE;
1946     }
1947 
1948   /* We only need version numbers for symbols defined in regular
1949      objects.  */
1950   if (!h->def_regular)
1951     return TRUE;
1952 
1953   bed = get_elf_backend_data (info->output_bfd);
1954   p = strchr (h->root.root.string, ELF_VER_CHR);
1955   if (p != NULL && h->verinfo.vertree == NULL)
1956     {
1957       struct bfd_elf_version_tree *t;
1958       bfd_boolean hidden;
1959 
1960       hidden = TRUE;
1961 
1962       /* There are two consecutive ELF_VER_CHR characters if this is
1963 	 not a hidden symbol.  */
1964       ++p;
1965       if (*p == ELF_VER_CHR)
1966 	{
1967 	  hidden = FALSE;
1968 	  ++p;
1969 	}
1970 
1971       /* If there is no version string, we can just return out.  */
1972       if (*p == '\0')
1973 	{
1974 	  if (hidden)
1975 	    h->hidden = 1;
1976 	  return TRUE;
1977 	}
1978 
1979       /* Look for the version.  If we find it, it is no longer weak.  */
1980       for (t = sinfo->info->version_info; t != NULL; t = t->next)
1981 	{
1982 	  if (strcmp (t->name, p) == 0)
1983 	    {
1984 	      size_t len;
1985 	      char *alc;
1986 	      struct bfd_elf_version_expr *d;
1987 
1988 	      len = p - h->root.root.string;
1989 	      alc = (char *) bfd_malloc (len);
1990 	      if (alc == NULL)
1991 		{
1992 		  sinfo->failed = TRUE;
1993 		  return FALSE;
1994 		}
1995 	      memcpy (alc, h->root.root.string, len - 1);
1996 	      alc[len - 1] = '\0';
1997 	      if (alc[len - 2] == ELF_VER_CHR)
1998 		alc[len - 2] = '\0';
1999 
2000 	      h->verinfo.vertree = t;
2001 	      t->used = TRUE;
2002 	      d = NULL;
2003 
2004 	      if (t->globals.list != NULL)
2005 		d = (*t->match) (&t->globals, NULL, alc);
2006 
2007 	      /* See if there is anything to force this symbol to
2008 		 local scope.  */
2009 	      if (d == NULL && t->locals.list != NULL)
2010 		{
2011 		  d = (*t->match) (&t->locals, NULL, alc);
2012 		  if (d != NULL
2013 		      && h->dynindx != -1
2014 		      && ! info->export_dynamic)
2015 		    (*bed->elf_backend_hide_symbol) (info, h, TRUE);
2016 		}
2017 
2018 	      free (alc);
2019 	      break;
2020 	    }
2021 	}
2022 
2023       /* If we are building an application, we need to create a
2024 	 version node for this version.  */
2025       if (t == NULL && info->executable)
2026 	{
2027 	  struct bfd_elf_version_tree **pp;
2028 	  int version_index;
2029 
2030 	  /* If we aren't going to export this symbol, we don't need
2031 	     to worry about it.  */
2032 	  if (h->dynindx == -1)
2033 	    return TRUE;
2034 
2035 	  amt = sizeof *t;
2036 	  t = (struct bfd_elf_version_tree *) bfd_zalloc (info->output_bfd, amt);
2037 	  if (t == NULL)
2038 	    {
2039 	      sinfo->failed = TRUE;
2040 	      return FALSE;
2041 	    }
2042 
2043 	  t->name = p;
2044 	  t->name_indx = (unsigned int) -1;
2045 	  t->used = TRUE;
2046 
2047 	  version_index = 1;
2048 	  /* Don't count anonymous version tag.  */
2049 	  if (sinfo->info->version_info != NULL
2050 	      && sinfo->info->version_info->vernum == 0)
2051 	    version_index = 0;
2052 	  for (pp = &sinfo->info->version_info;
2053 	       *pp != NULL;
2054 	       pp = &(*pp)->next)
2055 	    ++version_index;
2056 	  t->vernum = version_index;
2057 
2058 	  *pp = t;
2059 
2060 	  h->verinfo.vertree = t;
2061 	}
2062       else if (t == NULL)
2063 	{
2064 	  /* We could not find the version for a symbol when
2065 	     generating a shared archive.  Return an error.  */
2066 	  (*_bfd_error_handler)
2067 	    (_("%B: version node not found for symbol %s"),
2068 	     info->output_bfd, h->root.root.string);
2069 	  bfd_set_error (bfd_error_bad_value);
2070 	  sinfo->failed = TRUE;
2071 	  return FALSE;
2072 	}
2073 
2074       if (hidden)
2075 	h->hidden = 1;
2076     }
2077 
2078   /* If we don't have a version for this symbol, see if we can find
2079      something.  */
2080   if (h->verinfo.vertree == NULL && sinfo->info->version_info != NULL)
2081     {
2082       bfd_boolean hide;
2083 
2084       h->verinfo.vertree
2085 	= bfd_find_version_for_sym (sinfo->info->version_info,
2086 				    h->root.root.string, &hide);
2087       if (h->verinfo.vertree != NULL && hide)
2088 	(*bed->elf_backend_hide_symbol) (info, h, TRUE);
2089     }
2090 
2091   return TRUE;
2092 }
2093 
2094 /* Read and swap the relocs from the section indicated by SHDR.  This
2095    may be either a REL or a RELA section.  The relocations are
2096    translated into RELA relocations and stored in INTERNAL_RELOCS,
2097    which should have already been allocated to contain enough space.
2098    The EXTERNAL_RELOCS are a buffer where the external form of the
2099    relocations should be stored.
2100 
2101    Returns FALSE if something goes wrong.  */
2102 
2103 static bfd_boolean
2104 elf_link_read_relocs_from_section (bfd *abfd,
2105 				   asection *sec,
2106 				   Elf_Internal_Shdr *shdr,
2107 				   void *external_relocs,
2108 				   Elf_Internal_Rela *internal_relocs)
2109 {
2110   const struct elf_backend_data *bed;
2111   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
2112   const bfd_byte *erela;
2113   const bfd_byte *erelaend;
2114   Elf_Internal_Rela *irela;
2115   Elf_Internal_Shdr *symtab_hdr;
2116   size_t nsyms;
2117 
2118   /* Position ourselves at the start of the section.  */
2119   if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0)
2120     return FALSE;
2121 
2122   /* Read the relocations.  */
2123   if (bfd_bread (external_relocs, shdr->sh_size, abfd) != shdr->sh_size)
2124     return FALSE;
2125 
2126   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2127   nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
2128 
2129   bed = get_elf_backend_data (abfd);
2130 
2131   /* Convert the external relocations to the internal format.  */
2132   if (shdr->sh_entsize == bed->s->sizeof_rel)
2133     swap_in = bed->s->swap_reloc_in;
2134   else if (shdr->sh_entsize == bed->s->sizeof_rela)
2135     swap_in = bed->s->swap_reloca_in;
2136   else
2137     {
2138       bfd_set_error (bfd_error_wrong_format);
2139       return FALSE;
2140     }
2141 
2142   erela = (const bfd_byte *) external_relocs;
2143   erelaend = erela + shdr->sh_size;
2144   irela = internal_relocs;
2145   while (erela < erelaend)
2146     {
2147       bfd_vma r_symndx;
2148 
2149       (*swap_in) (abfd, erela, irela);
2150       r_symndx = ELF32_R_SYM (irela->r_info);
2151       if (bed->s->arch_size == 64)
2152 	r_symndx >>= 24;
2153       if (nsyms > 0)
2154 	{
2155 	  if ((size_t) r_symndx >= nsyms)
2156 	    {
2157 	      (*_bfd_error_handler)
2158 		(_("%B: bad reloc symbol index (0x%lx >= 0x%lx)"
2159 		   " for offset 0x%lx in section `%A'"),
2160 		 abfd, sec,
2161 		 (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2162 	      bfd_set_error (bfd_error_bad_value);
2163 	      return FALSE;
2164 	    }
2165 	}
2166       else if (r_symndx != STN_UNDEF)
2167 	{
2168 	  (*_bfd_error_handler)
2169 	    (_("%B: non-zero symbol index (0x%lx) for offset 0x%lx in section `%A'"
2170 	       " when the object file has no symbol table"),
2171 	     abfd, sec,
2172 	     (unsigned long) r_symndx, (unsigned long) nsyms, irela->r_offset);
2173 	  bfd_set_error (bfd_error_bad_value);
2174 	  return FALSE;
2175 	}
2176       irela += bed->s->int_rels_per_ext_rel;
2177       erela += shdr->sh_entsize;
2178     }
2179 
2180   return TRUE;
2181 }
2182 
2183 /* Read and swap the relocs for a section O.  They may have been
2184    cached.  If the EXTERNAL_RELOCS and INTERNAL_RELOCS arguments are
2185    not NULL, they are used as buffers to read into.  They are known to
2186    be large enough.  If the INTERNAL_RELOCS relocs argument is NULL,
2187    the return value is allocated using either malloc or bfd_alloc,
2188    according to the KEEP_MEMORY argument.  If O has two relocation
2189    sections (both REL and RELA relocations), then the REL_HDR
2190    relocations will appear first in INTERNAL_RELOCS, followed by the
2191    RELA_HDR relocations.  */
2192 
2193 Elf_Internal_Rela *
2194 _bfd_elf_link_read_relocs (bfd *abfd,
2195 			   asection *o,
2196 			   void *external_relocs,
2197 			   Elf_Internal_Rela *internal_relocs,
2198 			   bfd_boolean keep_memory)
2199 {
2200   void *alloc1 = NULL;
2201   Elf_Internal_Rela *alloc2 = NULL;
2202   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2203   struct bfd_elf_section_data *esdo = elf_section_data (o);
2204   Elf_Internal_Rela *internal_rela_relocs;
2205 
2206   if (esdo->relocs != NULL)
2207     return esdo->relocs;
2208 
2209   if (o->reloc_count == 0)
2210     return NULL;
2211 
2212   if (internal_relocs == NULL)
2213     {
2214       bfd_size_type size;
2215 
2216       size = o->reloc_count;
2217       size *= bed->s->int_rels_per_ext_rel * sizeof (Elf_Internal_Rela);
2218       if (keep_memory)
2219 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_alloc (abfd, size);
2220       else
2221 	internal_relocs = alloc2 = (Elf_Internal_Rela *) bfd_malloc (size);
2222       if (internal_relocs == NULL)
2223 	goto error_return;
2224     }
2225 
2226   if (external_relocs == NULL)
2227     {
2228       bfd_size_type size = 0;
2229 
2230       if (esdo->rel.hdr)
2231 	size += esdo->rel.hdr->sh_size;
2232       if (esdo->rela.hdr)
2233 	size += esdo->rela.hdr->sh_size;
2234 
2235       alloc1 = bfd_malloc (size);
2236       if (alloc1 == NULL)
2237 	goto error_return;
2238       external_relocs = alloc1;
2239     }
2240 
2241   internal_rela_relocs = internal_relocs;
2242   if (esdo->rel.hdr)
2243     {
2244       if (!elf_link_read_relocs_from_section (abfd, o, esdo->rel.hdr,
2245 					      external_relocs,
2246 					      internal_relocs))
2247 	goto error_return;
2248       external_relocs = (((bfd_byte *) external_relocs)
2249 			 + esdo->rel.hdr->sh_size);
2250       internal_rela_relocs += (NUM_SHDR_ENTRIES (esdo->rel.hdr)
2251 			       * bed->s->int_rels_per_ext_rel);
2252     }
2253 
2254   if (esdo->rela.hdr
2255       && (!elf_link_read_relocs_from_section (abfd, o, esdo->rela.hdr,
2256 					      external_relocs,
2257 					      internal_rela_relocs)))
2258     goto error_return;
2259 
2260   /* Cache the results for next time, if we can.  */
2261   if (keep_memory)
2262     esdo->relocs = internal_relocs;
2263 
2264   if (alloc1 != NULL)
2265     free (alloc1);
2266 
2267   /* Don't free alloc2, since if it was allocated we are passing it
2268      back (under the name of internal_relocs).  */
2269 
2270   return internal_relocs;
2271 
2272  error_return:
2273   if (alloc1 != NULL)
2274     free (alloc1);
2275   if (alloc2 != NULL)
2276     {
2277       if (keep_memory)
2278 	bfd_release (abfd, alloc2);
2279       else
2280 	free (alloc2);
2281     }
2282   return NULL;
2283 }
2284 
2285 /* Compute the size of, and allocate space for, REL_HDR which is the
2286    section header for a section containing relocations for O.  */
2287 
2288 static bfd_boolean
2289 _bfd_elf_link_size_reloc_section (bfd *abfd,
2290 				  struct bfd_elf_section_reloc_data *reldata)
2291 {
2292   Elf_Internal_Shdr *rel_hdr = reldata->hdr;
2293 
2294   /* That allows us to calculate the size of the section.  */
2295   rel_hdr->sh_size = rel_hdr->sh_entsize * reldata->count;
2296 
2297   /* The contents field must last into write_object_contents, so we
2298      allocate it with bfd_alloc rather than malloc.  Also since we
2299      cannot be sure that the contents will actually be filled in,
2300      we zero the allocated space.  */
2301   rel_hdr->contents = (unsigned char *) bfd_zalloc (abfd, rel_hdr->sh_size);
2302   if (rel_hdr->contents == NULL && rel_hdr->sh_size != 0)
2303     return FALSE;
2304 
2305   if (reldata->hashes == NULL && reldata->count)
2306     {
2307       struct elf_link_hash_entry **p;
2308 
2309       p = (struct elf_link_hash_entry **)
2310           bfd_zmalloc (reldata->count * sizeof (struct elf_link_hash_entry *));
2311       if (p == NULL)
2312 	return FALSE;
2313 
2314       reldata->hashes = p;
2315     }
2316 
2317   return TRUE;
2318 }
2319 
2320 /* Copy the relocations indicated by the INTERNAL_RELOCS (which
2321    originated from the section given by INPUT_REL_HDR) to the
2322    OUTPUT_BFD.  */
2323 
2324 bfd_boolean
2325 _bfd_elf_link_output_relocs (bfd *output_bfd,
2326 			     asection *input_section,
2327 			     Elf_Internal_Shdr *input_rel_hdr,
2328 			     Elf_Internal_Rela *internal_relocs,
2329 			     struct elf_link_hash_entry **rel_hash
2330 			       ATTRIBUTE_UNUSED)
2331 {
2332   Elf_Internal_Rela *irela;
2333   Elf_Internal_Rela *irelaend;
2334   bfd_byte *erel;
2335   struct bfd_elf_section_reloc_data *output_reldata;
2336   asection *output_section;
2337   const struct elf_backend_data *bed;
2338   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
2339   struct bfd_elf_section_data *esdo;
2340 
2341   output_section = input_section->output_section;
2342 
2343   bed = get_elf_backend_data (output_bfd);
2344   esdo = elf_section_data (output_section);
2345   if (esdo->rel.hdr && esdo->rel.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2346     {
2347       output_reldata = &esdo->rel;
2348       swap_out = bed->s->swap_reloc_out;
2349     }
2350   else if (esdo->rela.hdr
2351 	   && esdo->rela.hdr->sh_entsize == input_rel_hdr->sh_entsize)
2352     {
2353       output_reldata = &esdo->rela;
2354       swap_out = bed->s->swap_reloca_out;
2355     }
2356   else
2357     {
2358       (*_bfd_error_handler)
2359 	(_("%B: relocation size mismatch in %B section %A"),
2360 	 output_bfd, input_section->owner, input_section);
2361       bfd_set_error (bfd_error_wrong_format);
2362       return FALSE;
2363     }
2364 
2365   erel = output_reldata->hdr->contents;
2366   erel += output_reldata->count * input_rel_hdr->sh_entsize;
2367   irela = internal_relocs;
2368   irelaend = irela + (NUM_SHDR_ENTRIES (input_rel_hdr)
2369 		      * bed->s->int_rels_per_ext_rel);
2370   while (irela < irelaend)
2371     {
2372       (*swap_out) (output_bfd, irela, erel);
2373       irela += bed->s->int_rels_per_ext_rel;
2374       erel += input_rel_hdr->sh_entsize;
2375     }
2376 
2377   /* Bump the counter, so that we know where to add the next set of
2378      relocations.  */
2379   output_reldata->count += NUM_SHDR_ENTRIES (input_rel_hdr);
2380 
2381   return TRUE;
2382 }
2383 
2384 /* Make weak undefined symbols in PIE dynamic.  */
2385 
2386 bfd_boolean
2387 _bfd_elf_link_hash_fixup_symbol (struct bfd_link_info *info,
2388 				 struct elf_link_hash_entry *h)
2389 {
2390   if (info->pie
2391       && h->dynindx == -1
2392       && h->root.type == bfd_link_hash_undefweak)
2393     return bfd_elf_link_record_dynamic_symbol (info, h);
2394 
2395   return TRUE;
2396 }
2397 
2398 /* Fix up the flags for a symbol.  This handles various cases which
2399    can only be fixed after all the input files are seen.  This is
2400    currently called by both adjust_dynamic_symbol and
2401    assign_sym_version, which is unnecessary but perhaps more robust in
2402    the face of future changes.  */
2403 
2404 static bfd_boolean
2405 _bfd_elf_fix_symbol_flags (struct elf_link_hash_entry *h,
2406 			   struct elf_info_failed *eif)
2407 {
2408   const struct elf_backend_data *bed;
2409 
2410   /* If this symbol was mentioned in a non-ELF file, try to set
2411      DEF_REGULAR and REF_REGULAR correctly.  This is the only way to
2412      permit a non-ELF file to correctly refer to a symbol defined in
2413      an ELF dynamic object.  */
2414   if (h->non_elf)
2415     {
2416       while (h->root.type == bfd_link_hash_indirect)
2417 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
2418 
2419       if (h->root.type != bfd_link_hash_defined
2420 	  && h->root.type != bfd_link_hash_defweak)
2421 	{
2422 	  h->ref_regular = 1;
2423 	  h->ref_regular_nonweak = 1;
2424 	}
2425       else
2426 	{
2427 	  if (h->root.u.def.section->owner != NULL
2428 	      && (bfd_get_flavour (h->root.u.def.section->owner)
2429 		  == bfd_target_elf_flavour))
2430 	    {
2431 	      h->ref_regular = 1;
2432 	      h->ref_regular_nonweak = 1;
2433 	    }
2434 	  else
2435 	    h->def_regular = 1;
2436 	}
2437 
2438       if (h->dynindx == -1
2439 	  && (h->def_dynamic
2440 	      || h->ref_dynamic))
2441 	{
2442 	  if (! bfd_elf_link_record_dynamic_symbol (eif->info, h))
2443 	    {
2444 	      eif->failed = TRUE;
2445 	      return FALSE;
2446 	    }
2447 	}
2448     }
2449   else
2450     {
2451       /* Unfortunately, NON_ELF is only correct if the symbol
2452 	 was first seen in a non-ELF file.  Fortunately, if the symbol
2453 	 was first seen in an ELF file, we're probably OK unless the
2454 	 symbol was defined in a non-ELF file.  Catch that case here.
2455 	 FIXME: We're still in trouble if the symbol was first seen in
2456 	 a dynamic object, and then later in a non-ELF regular object.  */
2457       if ((h->root.type == bfd_link_hash_defined
2458 	   || h->root.type == bfd_link_hash_defweak)
2459 	  && !h->def_regular
2460 	  && (h->root.u.def.section->owner != NULL
2461 	      ? (bfd_get_flavour (h->root.u.def.section->owner)
2462 		 != bfd_target_elf_flavour)
2463 	      : (bfd_is_abs_section (h->root.u.def.section)
2464 		 && !h->def_dynamic)))
2465 	h->def_regular = 1;
2466     }
2467 
2468   /* Backend specific symbol fixup.  */
2469   bed = get_elf_backend_data (elf_hash_table (eif->info)->dynobj);
2470   if (bed->elf_backend_fixup_symbol
2471       && !(*bed->elf_backend_fixup_symbol) (eif->info, h))
2472     return FALSE;
2473 
2474   /* If this is a final link, and the symbol was defined as a common
2475      symbol in a regular object file, and there was no definition in
2476      any dynamic object, then the linker will have allocated space for
2477      the symbol in a common section but the DEF_REGULAR
2478      flag will not have been set.  */
2479   if (h->root.type == bfd_link_hash_defined
2480       && !h->def_regular
2481       && h->ref_regular
2482       && !h->def_dynamic
2483       && (h->root.u.def.section->owner->flags & (DYNAMIC | BFD_PLUGIN)) == 0)
2484     h->def_regular = 1;
2485 
2486   /* If -Bsymbolic was used (which means to bind references to global
2487      symbols to the definition within the shared object), and this
2488      symbol was defined in a regular object, then it actually doesn't
2489      need a PLT entry.  Likewise, if the symbol has non-default
2490      visibility.  If the symbol has hidden or internal visibility, we
2491      will force it local.  */
2492   if (h->needs_plt
2493       && eif->info->shared
2494       && is_elf_hash_table (eif->info->hash)
2495       && (SYMBOLIC_BIND (eif->info, h)
2496 	  || ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
2497       && h->def_regular)
2498     {
2499       bfd_boolean force_local;
2500 
2501       force_local = (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL
2502 		     || ELF_ST_VISIBILITY (h->other) == STV_HIDDEN);
2503       (*bed->elf_backend_hide_symbol) (eif->info, h, force_local);
2504     }
2505 
2506   /* If a weak undefined symbol has non-default visibility, we also
2507      hide it from the dynamic linker.  */
2508   if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
2509       && h->root.type == bfd_link_hash_undefweak)
2510     (*bed->elf_backend_hide_symbol) (eif->info, h, TRUE);
2511 
2512   /* If this is a weak defined symbol in a dynamic object, and we know
2513      the real definition in the dynamic object, copy interesting flags
2514      over to the real definition.  */
2515   if (h->u.weakdef != NULL)
2516     {
2517       /* If the real definition is defined by a regular object file,
2518 	 don't do anything special.  See the longer description in
2519 	 _bfd_elf_adjust_dynamic_symbol, below.  */
2520       if (h->u.weakdef->def_regular)
2521 	h->u.weakdef = NULL;
2522       else
2523 	{
2524 	  struct elf_link_hash_entry *weakdef = h->u.weakdef;
2525 
2526 	  while (h->root.type == bfd_link_hash_indirect)
2527 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2528 
2529 	  BFD_ASSERT (h->root.type == bfd_link_hash_defined
2530 		      || h->root.type == bfd_link_hash_defweak);
2531 	  BFD_ASSERT (weakdef->def_dynamic);
2532 	  BFD_ASSERT (weakdef->root.type == bfd_link_hash_defined
2533 		      || weakdef->root.type == bfd_link_hash_defweak);
2534 	  (*bed->elf_backend_copy_indirect_symbol) (eif->info, weakdef, h);
2535 	}
2536     }
2537 
2538   return TRUE;
2539 }
2540 
2541 /* Make the backend pick a good value for a dynamic symbol.  This is
2542    called via elf_link_hash_traverse, and also calls itself
2543    recursively.  */
2544 
2545 static bfd_boolean
2546 _bfd_elf_adjust_dynamic_symbol (struct elf_link_hash_entry *h, void *data)
2547 {
2548   struct elf_info_failed *eif = (struct elf_info_failed *) data;
2549   bfd *dynobj;
2550   const struct elf_backend_data *bed;
2551 
2552   if (! is_elf_hash_table (eif->info->hash))
2553     return FALSE;
2554 
2555   /* Ignore indirect symbols.  These are added by the versioning code.  */
2556   if (h->root.type == bfd_link_hash_indirect)
2557     return TRUE;
2558 
2559   /* Fix the symbol flags.  */
2560   if (! _bfd_elf_fix_symbol_flags (h, eif))
2561     return FALSE;
2562 
2563   /* If this symbol does not require a PLT entry, and it is not
2564      defined by a dynamic object, or is not referenced by a regular
2565      object, ignore it.  We do have to handle a weak defined symbol,
2566      even if no regular object refers to it, if we decided to add it
2567      to the dynamic symbol table.  FIXME: Do we normally need to worry
2568      about symbols which are defined by one dynamic object and
2569      referenced by another one?  */
2570   if (!h->needs_plt
2571       && h->type != STT_GNU_IFUNC
2572       && (h->def_regular
2573 	  || !h->def_dynamic
2574 	  || (!h->ref_regular
2575 	      && (h->u.weakdef == NULL || h->u.weakdef->dynindx == -1))))
2576     {
2577       h->plt = elf_hash_table (eif->info)->init_plt_offset;
2578       return TRUE;
2579     }
2580 
2581   /* If we've already adjusted this symbol, don't do it again.  This
2582      can happen via a recursive call.  */
2583   if (h->dynamic_adjusted)
2584     return TRUE;
2585 
2586   /* Don't look at this symbol again.  Note that we must set this
2587      after checking the above conditions, because we may look at a
2588      symbol once, decide not to do anything, and then get called
2589      recursively later after REF_REGULAR is set below.  */
2590   h->dynamic_adjusted = 1;
2591 
2592   /* If this is a weak definition, and we know a real definition, and
2593      the real symbol is not itself defined by a regular object file,
2594      then get a good value for the real definition.  We handle the
2595      real symbol first, for the convenience of the backend routine.
2596 
2597      Note that there is a confusing case here.  If the real definition
2598      is defined by a regular object file, we don't get the real symbol
2599      from the dynamic object, but we do get the weak symbol.  If the
2600      processor backend uses a COPY reloc, then if some routine in the
2601      dynamic object changes the real symbol, we will not see that
2602      change in the corresponding weak symbol.  This is the way other
2603      ELF linkers work as well, and seems to be a result of the shared
2604      library model.
2605 
2606      I will clarify this issue.  Most SVR4 shared libraries define the
2607      variable _timezone and define timezone as a weak synonym.  The
2608      tzset call changes _timezone.  If you write
2609        extern int timezone;
2610        int _timezone = 5;
2611        int main () { tzset (); printf ("%d %d\n", timezone, _timezone); }
2612      you might expect that, since timezone is a synonym for _timezone,
2613      the same number will print both times.  However, if the processor
2614      backend uses a COPY reloc, then actually timezone will be copied
2615      into your process image, and, since you define _timezone
2616      yourself, _timezone will not.  Thus timezone and _timezone will
2617      wind up at different memory locations.  The tzset call will set
2618      _timezone, leaving timezone unchanged.  */
2619 
2620   if (h->u.weakdef != NULL)
2621     {
2622       /* If we get to this point, there is an implicit reference to
2623 	 H->U.WEAKDEF by a regular object file via the weak symbol H.  */
2624       h->u.weakdef->ref_regular = 1;
2625 
2626       /* Ensure that the backend adjust_dynamic_symbol function sees
2627 	 H->U.WEAKDEF before H by recursively calling ourselves.  */
2628       if (! _bfd_elf_adjust_dynamic_symbol (h->u.weakdef, eif))
2629 	return FALSE;
2630     }
2631 
2632   /* If a symbol has no type and no size and does not require a PLT
2633      entry, then we are probably about to do the wrong thing here: we
2634      are probably going to create a COPY reloc for an empty object.
2635      This case can arise when a shared object is built with assembly
2636      code, and the assembly code fails to set the symbol type.  */
2637   if (h->size == 0
2638       && h->type == STT_NOTYPE
2639       && !h->needs_plt)
2640     (*_bfd_error_handler)
2641       (_("warning: type and size of dynamic symbol `%s' are not defined"),
2642        h->root.root.string);
2643 
2644   dynobj = elf_hash_table (eif->info)->dynobj;
2645   bed = get_elf_backend_data (dynobj);
2646 
2647   if (! (*bed->elf_backend_adjust_dynamic_symbol) (eif->info, h))
2648     {
2649       eif->failed = TRUE;
2650       return FALSE;
2651     }
2652 
2653   return TRUE;
2654 }
2655 
2656 /* Adjust the dynamic symbol, H, for copy in the dynamic bss section,
2657    DYNBSS.  */
2658 
2659 bfd_boolean
2660 _bfd_elf_adjust_dynamic_copy (struct elf_link_hash_entry *h,
2661 			      asection *dynbss)
2662 {
2663   unsigned int power_of_two;
2664   bfd_vma mask;
2665   asection *sec = h->root.u.def.section;
2666 
2667   /* The section aligment of definition is the maximum alignment
2668      requirement of symbols defined in the section.  Since we don't
2669      know the symbol alignment requirement, we start with the
2670      maximum alignment and check low bits of the symbol address
2671      for the minimum alignment.  */
2672   power_of_two = bfd_get_section_alignment (sec->owner, sec);
2673   mask = ((bfd_vma) 1 << power_of_two) - 1;
2674   while ((h->root.u.def.value & mask) != 0)
2675     {
2676        mask >>= 1;
2677        --power_of_two;
2678     }
2679 
2680   if (power_of_two > bfd_get_section_alignment (dynbss->owner,
2681 						dynbss))
2682     {
2683       /* Adjust the section alignment if needed.  */
2684       if (! bfd_set_section_alignment (dynbss->owner, dynbss,
2685 				       power_of_two))
2686 	return FALSE;
2687     }
2688 
2689   /* We make sure that the symbol will be aligned properly.  */
2690   dynbss->size = BFD_ALIGN (dynbss->size, mask + 1);
2691 
2692   /* Define the symbol as being at this point in DYNBSS.  */
2693   h->root.u.def.section = dynbss;
2694   h->root.u.def.value = dynbss->size;
2695 
2696   /* Increment the size of DYNBSS to make room for the symbol.  */
2697   dynbss->size += h->size;
2698 
2699   return TRUE;
2700 }
2701 
2702 /* Adjust all external symbols pointing into SEC_MERGE sections
2703    to reflect the object merging within the sections.  */
2704 
2705 static bfd_boolean
2706 _bfd_elf_link_sec_merge_syms (struct elf_link_hash_entry *h, void *data)
2707 {
2708   asection *sec;
2709 
2710   if ((h->root.type == bfd_link_hash_defined
2711        || h->root.type == bfd_link_hash_defweak)
2712       && ((sec = h->root.u.def.section)->flags & SEC_MERGE)
2713       && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
2714     {
2715       bfd *output_bfd = (bfd *) data;
2716 
2717       h->root.u.def.value =
2718 	_bfd_merged_section_offset (output_bfd,
2719 				    &h->root.u.def.section,
2720 				    elf_section_data (sec)->sec_info,
2721 				    h->root.u.def.value);
2722     }
2723 
2724   return TRUE;
2725 }
2726 
2727 /* Returns false if the symbol referred to by H should be considered
2728    to resolve local to the current module, and true if it should be
2729    considered to bind dynamically.  */
2730 
2731 bfd_boolean
2732 _bfd_elf_dynamic_symbol_p (struct elf_link_hash_entry *h,
2733 			   struct bfd_link_info *info,
2734 			   bfd_boolean not_local_protected)
2735 {
2736   bfd_boolean binding_stays_local_p;
2737   const struct elf_backend_data *bed;
2738   struct elf_link_hash_table *hash_table;
2739 
2740   if (h == NULL)
2741     return FALSE;
2742 
2743   while (h->root.type == bfd_link_hash_indirect
2744 	 || h->root.type == bfd_link_hash_warning)
2745     h = (struct elf_link_hash_entry *) h->root.u.i.link;
2746 
2747   /* If it was forced local, then clearly it's not dynamic.  */
2748   if (h->dynindx == -1)
2749     return FALSE;
2750   if (h->forced_local)
2751     return FALSE;
2752 
2753   /* Identify the cases where name binding rules say that a
2754      visible symbol resolves locally.  */
2755   binding_stays_local_p = info->executable || SYMBOLIC_BIND (info, h);
2756 
2757   switch (ELF_ST_VISIBILITY (h->other))
2758     {
2759     case STV_INTERNAL:
2760     case STV_HIDDEN:
2761       return FALSE;
2762 
2763     case STV_PROTECTED:
2764       hash_table = elf_hash_table (info);
2765       if (!is_elf_hash_table (hash_table))
2766 	return FALSE;
2767 
2768       bed = get_elf_backend_data (hash_table->dynobj);
2769 
2770       /* Proper resolution for function pointer equality may require
2771 	 that these symbols perhaps be resolved dynamically, even though
2772 	 we should be resolving them to the current module.  */
2773       if (!not_local_protected || !bed->is_function_type (h->type))
2774 	binding_stays_local_p = TRUE;
2775       break;
2776 
2777     default:
2778       break;
2779     }
2780 
2781   /* If it isn't defined locally, then clearly it's dynamic.  */
2782   if (!h->def_regular && !ELF_COMMON_DEF_P (h))
2783     return TRUE;
2784 
2785   /* Otherwise, the symbol is dynamic if binding rules don't tell
2786      us that it remains local.  */
2787   return !binding_stays_local_p;
2788 }
2789 
2790 /* Return true if the symbol referred to by H should be considered
2791    to resolve local to the current module, and false otherwise.  Differs
2792    from (the inverse of) _bfd_elf_dynamic_symbol_p in the treatment of
2793    undefined symbols.  The two functions are virtually identical except
2794    for the place where forced_local and dynindx == -1 are tested.  If
2795    either of those tests are true, _bfd_elf_dynamic_symbol_p will say
2796    the symbol is local, while _bfd_elf_symbol_refs_local_p will say
2797    the symbol is local only for defined symbols.
2798    It might seem that _bfd_elf_dynamic_symbol_p could be rewritten as
2799    !_bfd_elf_symbol_refs_local_p, except that targets differ in their
2800    treatment of undefined weak symbols.  For those that do not make
2801    undefined weak symbols dynamic, both functions may return false.  */
2802 
2803 bfd_boolean
2804 _bfd_elf_symbol_refs_local_p (struct elf_link_hash_entry *h,
2805 			      struct bfd_link_info *info,
2806 			      bfd_boolean local_protected)
2807 {
2808   const struct elf_backend_data *bed;
2809   struct elf_link_hash_table *hash_table;
2810 
2811   /* If it's a local sym, of course we resolve locally.  */
2812   if (h == NULL)
2813     return TRUE;
2814 
2815   /* STV_HIDDEN or STV_INTERNAL ones must be local.  */
2816   if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN
2817       || ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
2818     return TRUE;
2819 
2820   /* Common symbols that become definitions don't get the DEF_REGULAR
2821      flag set, so test it first, and don't bail out.  */
2822   if (ELF_COMMON_DEF_P (h))
2823     /* Do nothing.  */;
2824   /* If we don't have a definition in a regular file, then we can't
2825      resolve locally.  The sym is either undefined or dynamic.  */
2826   else if (!h->def_regular)
2827     return FALSE;
2828 
2829   /* Forced local symbols resolve locally.  */
2830   if (h->forced_local)
2831     return TRUE;
2832 
2833   /* As do non-dynamic symbols.  */
2834   if (h->dynindx == -1)
2835     return TRUE;
2836 
2837   /* At this point, we know the symbol is defined and dynamic.  In an
2838      executable it must resolve locally, likewise when building symbolic
2839      shared libraries.  */
2840   if (info->executable || SYMBOLIC_BIND (info, h))
2841     return TRUE;
2842 
2843   /* Now deal with defined dynamic symbols in shared libraries.  Ones
2844      with default visibility might not resolve locally.  */
2845   if (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
2846     return FALSE;
2847 
2848   hash_table = elf_hash_table (info);
2849   if (!is_elf_hash_table (hash_table))
2850     return TRUE;
2851 
2852   bed = get_elf_backend_data (hash_table->dynobj);
2853 
2854   /* STV_PROTECTED non-function symbols are local.  */
2855   if (!bed->is_function_type (h->type))
2856     return TRUE;
2857 
2858   /* Function pointer equality tests may require that STV_PROTECTED
2859      symbols be treated as dynamic symbols.  If the address of a
2860      function not defined in an executable is set to that function's
2861      plt entry in the executable, then the address of the function in
2862      a shared library must also be the plt entry in the executable.  */
2863   return local_protected;
2864 }
2865 
2866 /* Caches some TLS segment info, and ensures that the TLS segment vma is
2867    aligned.  Returns the first TLS output section.  */
2868 
2869 struct bfd_section *
2870 _bfd_elf_tls_setup (bfd *obfd, struct bfd_link_info *info)
2871 {
2872   struct bfd_section *sec, *tls;
2873   unsigned int align = 0;
2874 
2875   for (sec = obfd->sections; sec != NULL; sec = sec->next)
2876     if ((sec->flags & SEC_THREAD_LOCAL) != 0)
2877       break;
2878   tls = sec;
2879 
2880   for (; sec != NULL && (sec->flags & SEC_THREAD_LOCAL) != 0; sec = sec->next)
2881     if (sec->alignment_power > align)
2882       align = sec->alignment_power;
2883 
2884   elf_hash_table (info)->tls_sec = tls;
2885 
2886   /* Ensure the alignment of the first section is the largest alignment,
2887      so that the tls segment starts aligned.  */
2888   if (tls != NULL)
2889     tls->alignment_power = align;
2890 
2891   return tls;
2892 }
2893 
2894 /* Return TRUE iff this is a non-common, definition of a non-function symbol.  */
2895 static bfd_boolean
2896 is_global_data_symbol_definition (bfd *abfd ATTRIBUTE_UNUSED,
2897 				  Elf_Internal_Sym *sym)
2898 {
2899   const struct elf_backend_data *bed;
2900 
2901   /* Local symbols do not count, but target specific ones might.  */
2902   if (ELF_ST_BIND (sym->st_info) != STB_GLOBAL
2903       && ELF_ST_BIND (sym->st_info) < STB_LOOS)
2904     return FALSE;
2905 
2906   bed = get_elf_backend_data (abfd);
2907   /* Function symbols do not count.  */
2908   if (bed->is_function_type (ELF_ST_TYPE (sym->st_info)))
2909     return FALSE;
2910 
2911   /* If the section is undefined, then so is the symbol.  */
2912   if (sym->st_shndx == SHN_UNDEF)
2913     return FALSE;
2914 
2915   /* If the symbol is defined in the common section, then
2916      it is a common definition and so does not count.  */
2917   if (bed->common_definition (sym))
2918     return FALSE;
2919 
2920   /* If the symbol is in a target specific section then we
2921      must rely upon the backend to tell us what it is.  */
2922   if (sym->st_shndx >= SHN_LORESERVE && sym->st_shndx < SHN_ABS)
2923     /* FIXME - this function is not coded yet:
2924 
2925        return _bfd_is_global_symbol_definition (abfd, sym);
2926 
2927        Instead for now assume that the definition is not global,
2928        Even if this is wrong, at least the linker will behave
2929        in the same way that it used to do.  */
2930     return FALSE;
2931 
2932   return TRUE;
2933 }
2934 
2935 /* Search the symbol table of the archive element of the archive ABFD
2936    whose archive map contains a mention of SYMDEF, and determine if
2937    the symbol is defined in this element.  */
2938 static bfd_boolean
2939 elf_link_is_defined_archive_symbol (bfd * abfd, carsym * symdef)
2940 {
2941   Elf_Internal_Shdr * hdr;
2942   bfd_size_type symcount;
2943   bfd_size_type extsymcount;
2944   bfd_size_type extsymoff;
2945   Elf_Internal_Sym *isymbuf;
2946   Elf_Internal_Sym *isym;
2947   Elf_Internal_Sym *isymend;
2948   bfd_boolean result;
2949 
2950   abfd = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
2951   if (abfd == NULL)
2952     return FALSE;
2953 
2954   if (! bfd_check_format (abfd, bfd_object))
2955     return FALSE;
2956 
2957   /* If we have already included the element containing this symbol in the
2958      link then we do not need to include it again.  Just claim that any symbol
2959      it contains is not a definition, so that our caller will not decide to
2960      (re)include this element.  */
2961   if (abfd->archive_pass)
2962     return FALSE;
2963 
2964   /* Select the appropriate symbol table.  */
2965   if ((abfd->flags & DYNAMIC) == 0 || elf_dynsymtab (abfd) == 0)
2966     hdr = &elf_tdata (abfd)->symtab_hdr;
2967   else
2968     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2969 
2970   symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
2971 
2972   /* The sh_info field of the symtab header tells us where the
2973      external symbols start.  We don't care about the local symbols.  */
2974   if (elf_bad_symtab (abfd))
2975     {
2976       extsymcount = symcount;
2977       extsymoff = 0;
2978     }
2979   else
2980     {
2981       extsymcount = symcount - hdr->sh_info;
2982       extsymoff = hdr->sh_info;
2983     }
2984 
2985   if (extsymcount == 0)
2986     return FALSE;
2987 
2988   /* Read in the symbol table.  */
2989   isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
2990 				  NULL, NULL, NULL);
2991   if (isymbuf == NULL)
2992     return FALSE;
2993 
2994   /* Scan the symbol table looking for SYMDEF.  */
2995   result = FALSE;
2996   for (isym = isymbuf, isymend = isymbuf + extsymcount; isym < isymend; isym++)
2997     {
2998       const char *name;
2999 
3000       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3001 					      isym->st_name);
3002       if (name == NULL)
3003 	break;
3004 
3005       if (strcmp (name, symdef->name) == 0)
3006 	{
3007 	  result = is_global_data_symbol_definition (abfd, isym);
3008 	  break;
3009 	}
3010     }
3011 
3012   free (isymbuf);
3013 
3014   return result;
3015 }
3016 
3017 /* Add an entry to the .dynamic table.  */
3018 
3019 bfd_boolean
3020 _bfd_elf_add_dynamic_entry (struct bfd_link_info *info,
3021 			    bfd_vma tag,
3022 			    bfd_vma val)
3023 {
3024   struct elf_link_hash_table *hash_table;
3025   const struct elf_backend_data *bed;
3026   asection *s;
3027   bfd_size_type newsize;
3028   bfd_byte *newcontents;
3029   Elf_Internal_Dyn dyn;
3030 
3031   hash_table = elf_hash_table (info);
3032   if (! is_elf_hash_table (hash_table))
3033     return FALSE;
3034 
3035   bed = get_elf_backend_data (hash_table->dynobj);
3036   s = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3037   BFD_ASSERT (s != NULL);
3038 
3039   newsize = s->size + bed->s->sizeof_dyn;
3040   newcontents = (bfd_byte *) bfd_realloc (s->contents, newsize);
3041   if (newcontents == NULL)
3042     return FALSE;
3043 
3044   dyn.d_tag = tag;
3045   dyn.d_un.d_val = val;
3046   bed->s->swap_dyn_out (hash_table->dynobj, &dyn, newcontents + s->size);
3047 
3048   s->size = newsize;
3049   s->contents = newcontents;
3050 
3051   return TRUE;
3052 }
3053 
3054 /* Add a DT_NEEDED entry for this dynamic object if DO_IT is true,
3055    otherwise just check whether one already exists.  Returns -1 on error,
3056    1 if a DT_NEEDED tag already exists, and 0 on success.  */
3057 
3058 static int
3059 elf_add_dt_needed_tag (bfd *abfd,
3060 		       struct bfd_link_info *info,
3061 		       const char *soname,
3062 		       bfd_boolean do_it)
3063 {
3064   struct elf_link_hash_table *hash_table;
3065   bfd_size_type strindex;
3066 
3067   if (!_bfd_elf_link_create_dynstrtab (abfd, info))
3068     return -1;
3069 
3070   hash_table = elf_hash_table (info);
3071   strindex = _bfd_elf_strtab_add (hash_table->dynstr, soname, FALSE);
3072   if (strindex == (bfd_size_type) -1)
3073     return -1;
3074 
3075   if (_bfd_elf_strtab_refcount (hash_table->dynstr, strindex) != 1)
3076     {
3077       asection *sdyn;
3078       const struct elf_backend_data *bed;
3079       bfd_byte *extdyn;
3080 
3081       bed = get_elf_backend_data (hash_table->dynobj);
3082       sdyn = bfd_get_linker_section (hash_table->dynobj, ".dynamic");
3083       if (sdyn != NULL)
3084 	for (extdyn = sdyn->contents;
3085 	     extdyn < sdyn->contents + sdyn->size;
3086 	     extdyn += bed->s->sizeof_dyn)
3087 	  {
3088 	    Elf_Internal_Dyn dyn;
3089 
3090 	    bed->s->swap_dyn_in (hash_table->dynobj, extdyn, &dyn);
3091 	    if (dyn.d_tag == DT_NEEDED
3092 		&& dyn.d_un.d_val == strindex)
3093 	      {
3094 		_bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3095 		return 1;
3096 	      }
3097 	  }
3098     }
3099 
3100   if (do_it)
3101     {
3102       if (!_bfd_elf_link_create_dynamic_sections (hash_table->dynobj, info))
3103 	return -1;
3104 
3105       if (!_bfd_elf_add_dynamic_entry (info, DT_NEEDED, strindex))
3106 	return -1;
3107     }
3108   else
3109     /* We were just checking for existence of the tag.  */
3110     _bfd_elf_strtab_delref (hash_table->dynstr, strindex);
3111 
3112   return 0;
3113 }
3114 
3115 static bfd_boolean
3116 on_needed_list (const char *soname, struct bfd_link_needed_list *needed)
3117 {
3118   for (; needed != NULL; needed = needed->next)
3119     if (strcmp (soname, needed->name) == 0)
3120       return TRUE;
3121 
3122   return FALSE;
3123 }
3124 
3125 /* Sort symbol by value, section, and size.  */
3126 static int
3127 elf_sort_symbol (const void *arg1, const void *arg2)
3128 {
3129   const struct elf_link_hash_entry *h1;
3130   const struct elf_link_hash_entry *h2;
3131   bfd_signed_vma vdiff;
3132 
3133   h1 = *(const struct elf_link_hash_entry **) arg1;
3134   h2 = *(const struct elf_link_hash_entry **) arg2;
3135   vdiff = h1->root.u.def.value - h2->root.u.def.value;
3136   if (vdiff != 0)
3137     return vdiff > 0 ? 1 : -1;
3138   else
3139     {
3140       long sdiff = h1->root.u.def.section->id - h2->root.u.def.section->id;
3141       if (sdiff != 0)
3142 	return sdiff > 0 ? 1 : -1;
3143     }
3144   vdiff = h1->size - h2->size;
3145   return vdiff == 0 ? 0 : vdiff > 0 ? 1 : -1;
3146 }
3147 
3148 /* This function is used to adjust offsets into .dynstr for
3149    dynamic symbols.  This is called via elf_link_hash_traverse.  */
3150 
3151 static bfd_boolean
3152 elf_adjust_dynstr_offsets (struct elf_link_hash_entry *h, void *data)
3153 {
3154   struct elf_strtab_hash *dynstr = (struct elf_strtab_hash *) data;
3155 
3156   if (h->dynindx != -1)
3157     h->dynstr_index = _bfd_elf_strtab_offset (dynstr, h->dynstr_index);
3158   return TRUE;
3159 }
3160 
3161 /* Assign string offsets in .dynstr, update all structures referencing
3162    them.  */
3163 
3164 static bfd_boolean
3165 elf_finalize_dynstr (bfd *output_bfd, struct bfd_link_info *info)
3166 {
3167   struct elf_link_hash_table *hash_table = elf_hash_table (info);
3168   struct elf_link_local_dynamic_entry *entry;
3169   struct elf_strtab_hash *dynstr = hash_table->dynstr;
3170   bfd *dynobj = hash_table->dynobj;
3171   asection *sdyn;
3172   bfd_size_type size;
3173   const struct elf_backend_data *bed;
3174   bfd_byte *extdyn;
3175 
3176   _bfd_elf_strtab_finalize (dynstr);
3177   size = _bfd_elf_strtab_size (dynstr);
3178 
3179   bed = get_elf_backend_data (dynobj);
3180   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3181   BFD_ASSERT (sdyn != NULL);
3182 
3183   /* Update all .dynamic entries referencing .dynstr strings.  */
3184   for (extdyn = sdyn->contents;
3185        extdyn < sdyn->contents + sdyn->size;
3186        extdyn += bed->s->sizeof_dyn)
3187     {
3188       Elf_Internal_Dyn dyn;
3189 
3190       bed->s->swap_dyn_in (dynobj, extdyn, &dyn);
3191       switch (dyn.d_tag)
3192 	{
3193 	case DT_STRSZ:
3194 	  dyn.d_un.d_val = size;
3195 	  break;
3196 	case DT_NEEDED:
3197 	case DT_SONAME:
3198 	case DT_RPATH:
3199 	case DT_RUNPATH:
3200 	case DT_FILTER:
3201 	case DT_AUXILIARY:
3202 	case DT_AUDIT:
3203 	case DT_DEPAUDIT:
3204 	  dyn.d_un.d_val = _bfd_elf_strtab_offset (dynstr, dyn.d_un.d_val);
3205 	  break;
3206 	default:
3207 	  continue;
3208 	}
3209       bed->s->swap_dyn_out (dynobj, &dyn, extdyn);
3210     }
3211 
3212   /* Now update local dynamic symbols.  */
3213   for (entry = hash_table->dynlocal; entry ; entry = entry->next)
3214     entry->isym.st_name = _bfd_elf_strtab_offset (dynstr,
3215 						  entry->isym.st_name);
3216 
3217   /* And the rest of dynamic symbols.  */
3218   elf_link_hash_traverse (hash_table, elf_adjust_dynstr_offsets, dynstr);
3219 
3220   /* Adjust version definitions.  */
3221   if (elf_tdata (output_bfd)->cverdefs)
3222     {
3223       asection *s;
3224       bfd_byte *p;
3225       bfd_size_type i;
3226       Elf_Internal_Verdef def;
3227       Elf_Internal_Verdaux defaux;
3228 
3229       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
3230       p = s->contents;
3231       do
3232 	{
3233 	  _bfd_elf_swap_verdef_in (output_bfd, (Elf_External_Verdef *) p,
3234 				   &def);
3235 	  p += sizeof (Elf_External_Verdef);
3236 	  if (def.vd_aux != sizeof (Elf_External_Verdef))
3237 	    continue;
3238 	  for (i = 0; i < def.vd_cnt; ++i)
3239 	    {
3240 	      _bfd_elf_swap_verdaux_in (output_bfd,
3241 					(Elf_External_Verdaux *) p, &defaux);
3242 	      defaux.vda_name = _bfd_elf_strtab_offset (dynstr,
3243 							defaux.vda_name);
3244 	      _bfd_elf_swap_verdaux_out (output_bfd,
3245 					 &defaux, (Elf_External_Verdaux *) p);
3246 	      p += sizeof (Elf_External_Verdaux);
3247 	    }
3248 	}
3249       while (def.vd_next);
3250     }
3251 
3252   /* Adjust version references.  */
3253   if (elf_tdata (output_bfd)->verref)
3254     {
3255       asection *s;
3256       bfd_byte *p;
3257       bfd_size_type i;
3258       Elf_Internal_Verneed need;
3259       Elf_Internal_Vernaux needaux;
3260 
3261       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
3262       p = s->contents;
3263       do
3264 	{
3265 	  _bfd_elf_swap_verneed_in (output_bfd, (Elf_External_Verneed *) p,
3266 				    &need);
3267 	  need.vn_file = _bfd_elf_strtab_offset (dynstr, need.vn_file);
3268 	  _bfd_elf_swap_verneed_out (output_bfd, &need,
3269 				     (Elf_External_Verneed *) p);
3270 	  p += sizeof (Elf_External_Verneed);
3271 	  for (i = 0; i < need.vn_cnt; ++i)
3272 	    {
3273 	      _bfd_elf_swap_vernaux_in (output_bfd,
3274 					(Elf_External_Vernaux *) p, &needaux);
3275 	      needaux.vna_name = _bfd_elf_strtab_offset (dynstr,
3276 							 needaux.vna_name);
3277 	      _bfd_elf_swap_vernaux_out (output_bfd,
3278 					 &needaux,
3279 					 (Elf_External_Vernaux *) p);
3280 	      p += sizeof (Elf_External_Vernaux);
3281 	    }
3282 	}
3283       while (need.vn_next);
3284     }
3285 
3286   return TRUE;
3287 }
3288 
3289 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3290    The default is to only match when the INPUT and OUTPUT are exactly
3291    the same target.  */
3292 
3293 bfd_boolean
3294 _bfd_elf_default_relocs_compatible (const bfd_target *input,
3295 				    const bfd_target *output)
3296 {
3297   return input == output;
3298 }
3299 
3300 /* Return TRUE iff relocations for INPUT are compatible with OUTPUT.
3301    This version is used when different targets for the same architecture
3302    are virtually identical.  */
3303 
3304 bfd_boolean
3305 _bfd_elf_relocs_compatible (const bfd_target *input,
3306 			    const bfd_target *output)
3307 {
3308   const struct elf_backend_data *obed, *ibed;
3309 
3310   if (input == output)
3311     return TRUE;
3312 
3313   ibed = xvec_get_elf_backend_data (input);
3314   obed = xvec_get_elf_backend_data (output);
3315 
3316   if (ibed->arch != obed->arch)
3317     return FALSE;
3318 
3319   /* If both backends are using this function, deem them compatible.  */
3320   return ibed->relocs_compatible == obed->relocs_compatible;
3321 }
3322 
3323 /* Make a special call to the linker "notice" function to tell it that
3324    we are about to handle an as-needed lib, or have finished
3325    processing the lib.  */
3326 
3327 bfd_boolean
3328 _bfd_elf_notice_as_needed (bfd *ibfd,
3329 			   struct bfd_link_info *info,
3330 			   enum notice_asneeded_action act)
3331 {
3332   return (*info->callbacks->notice) (info, NULL, ibfd, NULL, act, 0, NULL);
3333 }
3334 
3335 /* Add symbols from an ELF object file to the linker hash table.  */
3336 
3337 static bfd_boolean
3338 elf_link_add_object_symbols (bfd *abfd, struct bfd_link_info *info)
3339 {
3340   Elf_Internal_Ehdr *ehdr;
3341   Elf_Internal_Shdr *hdr;
3342   bfd_size_type symcount;
3343   bfd_size_type extsymcount;
3344   bfd_size_type extsymoff;
3345   struct elf_link_hash_entry **sym_hash;
3346   bfd_boolean dynamic;
3347   Elf_External_Versym *extversym = NULL;
3348   Elf_External_Versym *ever;
3349   struct elf_link_hash_entry *weaks;
3350   struct elf_link_hash_entry **nondeflt_vers = NULL;
3351   bfd_size_type nondeflt_vers_cnt = 0;
3352   Elf_Internal_Sym *isymbuf = NULL;
3353   Elf_Internal_Sym *isym;
3354   Elf_Internal_Sym *isymend;
3355   const struct elf_backend_data *bed;
3356   bfd_boolean add_needed;
3357   struct elf_link_hash_table *htab;
3358   bfd_size_type amt;
3359   void *alloc_mark = NULL;
3360   struct bfd_hash_entry **old_table = NULL;
3361   unsigned int old_size = 0;
3362   unsigned int old_count = 0;
3363   void *old_tab = NULL;
3364   void *old_ent;
3365   struct bfd_link_hash_entry *old_undefs = NULL;
3366   struct bfd_link_hash_entry *old_undefs_tail = NULL;
3367   long old_dynsymcount = 0;
3368   bfd_size_type old_dynstr_size = 0;
3369   size_t tabsize = 0;
3370   asection *s;
3371 
3372   htab = elf_hash_table (info);
3373   bed = get_elf_backend_data (abfd);
3374 
3375   if ((abfd->flags & DYNAMIC) == 0)
3376     dynamic = FALSE;
3377   else
3378     {
3379       dynamic = TRUE;
3380 
3381       /* You can't use -r against a dynamic object.  Also, there's no
3382 	 hope of using a dynamic object which does not exactly match
3383 	 the format of the output file.  */
3384       if (info->relocatable
3385 	  || !is_elf_hash_table (htab)
3386 	  || info->output_bfd->xvec != abfd->xvec)
3387 	{
3388 	  if (info->relocatable)
3389 	    bfd_set_error (bfd_error_invalid_operation);
3390 	  else
3391 	    bfd_set_error (bfd_error_wrong_format);
3392 	  goto error_return;
3393 	}
3394     }
3395 
3396   ehdr = elf_elfheader (abfd);
3397   if (info->warn_alternate_em
3398       && bed->elf_machine_code != ehdr->e_machine
3399       && ((bed->elf_machine_alt1 != 0
3400 	   && ehdr->e_machine == bed->elf_machine_alt1)
3401 	  || (bed->elf_machine_alt2 != 0
3402 	      && ehdr->e_machine == bed->elf_machine_alt2)))
3403     info->callbacks->einfo
3404       (_("%P: alternate ELF machine code found (%d) in %B, expecting %d\n"),
3405        ehdr->e_machine, abfd, bed->elf_machine_code);
3406 
3407   /* As a GNU extension, any input sections which are named
3408      .gnu.warning.SYMBOL are treated as warning symbols for the given
3409      symbol.  This differs from .gnu.warning sections, which generate
3410      warnings when they are included in an output file.  */
3411   /* PR 12761: Also generate this warning when building shared libraries.  */
3412   for (s = abfd->sections; s != NULL; s = s->next)
3413     {
3414       const char *name;
3415 
3416       name = bfd_get_section_name (abfd, s);
3417       if (CONST_STRNEQ (name, ".gnu.warning."))
3418 	{
3419 	  char *msg;
3420 	  bfd_size_type sz;
3421 
3422 	  name += sizeof ".gnu.warning." - 1;
3423 
3424 	  /* If this is a shared object, then look up the symbol
3425 	     in the hash table.  If it is there, and it is already
3426 	     been defined, then we will not be using the entry
3427 	     from this shared object, so we don't need to warn.
3428 	     FIXME: If we see the definition in a regular object
3429 	     later on, we will warn, but we shouldn't.  The only
3430 	     fix is to keep track of what warnings we are supposed
3431 	     to emit, and then handle them all at the end of the
3432 	     link.  */
3433 	  if (dynamic)
3434 	    {
3435 	      struct elf_link_hash_entry *h;
3436 
3437 	      h = elf_link_hash_lookup (htab, name, FALSE, FALSE, TRUE);
3438 
3439 	      /* FIXME: What about bfd_link_hash_common?  */
3440 	      if (h != NULL
3441 		  && (h->root.type == bfd_link_hash_defined
3442 		      || h->root.type == bfd_link_hash_defweak))
3443 		continue;
3444 	    }
3445 
3446 	  sz = s->size;
3447 	  msg = (char *) bfd_alloc (abfd, sz + 1);
3448 	  if (msg == NULL)
3449 	    goto error_return;
3450 
3451 	  if (! bfd_get_section_contents (abfd, s, msg, 0, sz))
3452 	    goto error_return;
3453 
3454 	  msg[sz] = '\0';
3455 
3456 	  if (! (_bfd_generic_link_add_one_symbol
3457 		 (info, abfd, name, BSF_WARNING, s, 0, msg,
3458 		  FALSE, bed->collect, NULL)))
3459 	    goto error_return;
3460 
3461 	  if (!info->relocatable && info->executable)
3462 	    {
3463 	      /* Clobber the section size so that the warning does
3464 		 not get copied into the output file.  */
3465 	      s->size = 0;
3466 
3467 	      /* Also set SEC_EXCLUDE, so that symbols defined in
3468 		 the warning section don't get copied to the output.  */
3469 	      s->flags |= SEC_EXCLUDE;
3470 	    }
3471 	}
3472     }
3473 
3474   add_needed = TRUE;
3475   if (! dynamic)
3476     {
3477       /* If we are creating a shared library, create all the dynamic
3478 	 sections immediately.  We need to attach them to something,
3479 	 so we attach them to this BFD, provided it is the right
3480 	 format.  FIXME: If there are no input BFD's of the same
3481 	 format as the output, we can't make a shared library.  */
3482       if (info->shared
3483 	  && is_elf_hash_table (htab)
3484 	  && info->output_bfd->xvec == abfd->xvec
3485 	  && !htab->dynamic_sections_created)
3486 	{
3487 	  if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
3488 	    goto error_return;
3489 	}
3490     }
3491   else if (!is_elf_hash_table (htab))
3492     goto error_return;
3493   else
3494     {
3495       const char *soname = NULL;
3496       char *audit = NULL;
3497       struct bfd_link_needed_list *rpath = NULL, *runpath = NULL;
3498       int ret;
3499 
3500       /* ld --just-symbols and dynamic objects don't mix very well.
3501 	 ld shouldn't allow it.  */
3502       if ((s = abfd->sections) != NULL
3503 	  && s->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3504 	abort ();
3505 
3506       /* If this dynamic lib was specified on the command line with
3507 	 --as-needed in effect, then we don't want to add a DT_NEEDED
3508 	 tag unless the lib is actually used.  Similary for libs brought
3509 	 in by another lib's DT_NEEDED.  When --no-add-needed is used
3510 	 on a dynamic lib, we don't want to add a DT_NEEDED entry for
3511 	 any dynamic library in DT_NEEDED tags in the dynamic lib at
3512 	 all.  */
3513       add_needed = (elf_dyn_lib_class (abfd)
3514 		    & (DYN_AS_NEEDED | DYN_DT_NEEDED
3515 		       | DYN_NO_NEEDED)) == 0;
3516 
3517       s = bfd_get_section_by_name (abfd, ".dynamic");
3518       if (s != NULL)
3519 	{
3520 	  bfd_byte *dynbuf;
3521 	  bfd_byte *extdyn;
3522 	  unsigned int elfsec;
3523 	  unsigned long shlink;
3524 
3525 	  if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
3526 	    {
3527 error_free_dyn:
3528 	      free (dynbuf);
3529 	      goto error_return;
3530 	    }
3531 
3532 	  elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
3533 	  if (elfsec == SHN_BAD)
3534 	    goto error_free_dyn;
3535 	  shlink = elf_elfsections (abfd)[elfsec]->sh_link;
3536 
3537 	  for (extdyn = dynbuf;
3538 	       extdyn < dynbuf + s->size;
3539 	       extdyn += bed->s->sizeof_dyn)
3540 	    {
3541 	      Elf_Internal_Dyn dyn;
3542 
3543 	      bed->s->swap_dyn_in (abfd, extdyn, &dyn);
3544 	      if (dyn.d_tag == DT_SONAME)
3545 		{
3546 		  unsigned int tagv = dyn.d_un.d_val;
3547 		  soname = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3548 		  if (soname == NULL)
3549 		    goto error_free_dyn;
3550 		}
3551 	      if (dyn.d_tag == DT_NEEDED)
3552 		{
3553 		  struct bfd_link_needed_list *n, **pn;
3554 		  char *fnm, *anm;
3555 		  unsigned int tagv = dyn.d_un.d_val;
3556 
3557 		  amt = sizeof (struct bfd_link_needed_list);
3558 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3559 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3560 		  if (n == NULL || fnm == NULL)
3561 		    goto error_free_dyn;
3562 		  amt = strlen (fnm) + 1;
3563 		  anm = (char *) bfd_alloc (abfd, amt);
3564 		  if (anm == NULL)
3565 		    goto error_free_dyn;
3566 		  memcpy (anm, fnm, amt);
3567 		  n->name = anm;
3568 		  n->by = abfd;
3569 		  n->next = NULL;
3570 		  for (pn = &htab->needed; *pn != NULL; pn = &(*pn)->next)
3571 		    ;
3572 		  *pn = n;
3573 		}
3574 	      if (dyn.d_tag == DT_RUNPATH)
3575 		{
3576 		  struct bfd_link_needed_list *n, **pn;
3577 		  char *fnm, *anm;
3578 		  unsigned int tagv = dyn.d_un.d_val;
3579 
3580 		  amt = sizeof (struct bfd_link_needed_list);
3581 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3582 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3583 		  if (n == NULL || fnm == NULL)
3584 		    goto error_free_dyn;
3585 		  amt = strlen (fnm) + 1;
3586 		  anm = (char *) bfd_alloc (abfd, amt);
3587 		  if (anm == NULL)
3588 		    goto error_free_dyn;
3589 		  memcpy (anm, fnm, amt);
3590 		  n->name = anm;
3591 		  n->by = abfd;
3592 		  n->next = NULL;
3593 		  for (pn = & runpath;
3594 		       *pn != NULL;
3595 		       pn = &(*pn)->next)
3596 		    ;
3597 		  *pn = n;
3598 		}
3599 	      /* Ignore DT_RPATH if we have seen DT_RUNPATH.  */
3600 	      if (!runpath && dyn.d_tag == DT_RPATH)
3601 		{
3602 		  struct bfd_link_needed_list *n, **pn;
3603 		  char *fnm, *anm;
3604 		  unsigned int tagv = dyn.d_un.d_val;
3605 
3606 		  amt = sizeof (struct bfd_link_needed_list);
3607 		  n = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
3608 		  fnm = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3609 		  if (n == NULL || fnm == NULL)
3610 		    goto error_free_dyn;
3611 		  amt = strlen (fnm) + 1;
3612 		  anm = (char *) bfd_alloc (abfd, amt);
3613 		  if (anm == NULL)
3614 		    goto error_free_dyn;
3615 		  memcpy (anm, fnm, amt);
3616 		  n->name = anm;
3617 		  n->by = abfd;
3618 		  n->next = NULL;
3619 		  for (pn = & rpath;
3620 		       *pn != NULL;
3621 		       pn = &(*pn)->next)
3622 		    ;
3623 		  *pn = n;
3624 		}
3625 	      if (dyn.d_tag == DT_AUDIT)
3626 		{
3627 		  unsigned int tagv = dyn.d_un.d_val;
3628 		  audit = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
3629 		}
3630 	    }
3631 
3632 	  free (dynbuf);
3633 	}
3634 
3635       /* DT_RUNPATH overrides DT_RPATH.  Do _NOT_ bfd_release, as that
3636 	 frees all more recently bfd_alloc'd blocks as well.  */
3637       if (runpath)
3638 	rpath = runpath;
3639 
3640       if (rpath)
3641 	{
3642 	  struct bfd_link_needed_list **pn;
3643 	  for (pn = &htab->runpath; *pn != NULL; pn = &(*pn)->next)
3644 	    ;
3645 	  *pn = rpath;
3646 	}
3647 
3648       /* We do not want to include any of the sections in a dynamic
3649 	 object in the output file.  We hack by simply clobbering the
3650 	 list of sections in the BFD.  This could be handled more
3651 	 cleanly by, say, a new section flag; the existing
3652 	 SEC_NEVER_LOAD flag is not the one we want, because that one
3653 	 still implies that the section takes up space in the output
3654 	 file.  */
3655       bfd_section_list_clear (abfd);
3656 
3657       /* Find the name to use in a DT_NEEDED entry that refers to this
3658 	 object.  If the object has a DT_SONAME entry, we use it.
3659 	 Otherwise, if the generic linker stuck something in
3660 	 elf_dt_name, we use that.  Otherwise, we just use the file
3661 	 name.  */
3662       if (soname == NULL || *soname == '\0')
3663 	{
3664 	  soname = elf_dt_name (abfd);
3665 	  if (soname == NULL || *soname == '\0')
3666 	    soname = bfd_get_filename (abfd);
3667 	}
3668 
3669       /* Save the SONAME because sometimes the linker emulation code
3670 	 will need to know it.  */
3671       elf_dt_name (abfd) = soname;
3672 
3673       ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
3674       if (ret < 0)
3675 	goto error_return;
3676 
3677       /* If we have already included this dynamic object in the
3678 	 link, just ignore it.  There is no reason to include a
3679 	 particular dynamic object more than once.  */
3680       if (ret > 0)
3681 	return TRUE;
3682 
3683       /* Save the DT_AUDIT entry for the linker emulation code. */
3684       elf_dt_audit (abfd) = audit;
3685     }
3686 
3687   /* If this is a dynamic object, we always link against the .dynsym
3688      symbol table, not the .symtab symbol table.  The dynamic linker
3689      will only see the .dynsym symbol table, so there is no reason to
3690      look at .symtab for a dynamic object.  */
3691 
3692   if (! dynamic || elf_dynsymtab (abfd) == 0)
3693     hdr = &elf_tdata (abfd)->symtab_hdr;
3694   else
3695     hdr = &elf_tdata (abfd)->dynsymtab_hdr;
3696 
3697   symcount = hdr->sh_size / bed->s->sizeof_sym;
3698 
3699   /* The sh_info field of the symtab header tells us where the
3700      external symbols start.  We don't care about the local symbols at
3701      this point.  */
3702   if (elf_bad_symtab (abfd))
3703     {
3704       extsymcount = symcount;
3705       extsymoff = 0;
3706     }
3707   else
3708     {
3709       extsymcount = symcount - hdr->sh_info;
3710       extsymoff = hdr->sh_info;
3711     }
3712 
3713   sym_hash = elf_sym_hashes (abfd);
3714   if (extsymcount != 0)
3715     {
3716       isymbuf = bfd_elf_get_elf_syms (abfd, hdr, extsymcount, extsymoff,
3717 				      NULL, NULL, NULL);
3718       if (isymbuf == NULL)
3719 	goto error_return;
3720 
3721       if (sym_hash == NULL)
3722 	{
3723 	  /* We store a pointer to the hash table entry for each
3724 	     external symbol.  */
3725 	  amt = extsymcount * sizeof (struct elf_link_hash_entry *);
3726 	  sym_hash = (struct elf_link_hash_entry **) bfd_zalloc (abfd, amt);
3727 	  if (sym_hash == NULL)
3728 	    goto error_free_sym;
3729 	  elf_sym_hashes (abfd) = sym_hash;
3730 	}
3731     }
3732 
3733   if (dynamic)
3734     {
3735       /* Read in any version definitions.  */
3736       if (!_bfd_elf_slurp_version_tables (abfd,
3737 					  info->default_imported_symver))
3738 	goto error_free_sym;
3739 
3740       /* Read in the symbol versions, but don't bother to convert them
3741 	 to internal format.  */
3742       if (elf_dynversym (abfd) != 0)
3743 	{
3744 	  Elf_Internal_Shdr *versymhdr;
3745 
3746 	  versymhdr = &elf_tdata (abfd)->dynversym_hdr;
3747 	  extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
3748 	  if (extversym == NULL)
3749 	    goto error_free_sym;
3750 	  amt = versymhdr->sh_size;
3751 	  if (bfd_seek (abfd, versymhdr->sh_offset, SEEK_SET) != 0
3752 	      || bfd_bread (extversym, amt, abfd) != amt)
3753 	    goto error_free_vers;
3754 	}
3755     }
3756 
3757   /* If we are loading an as-needed shared lib, save the symbol table
3758      state before we start adding symbols.  If the lib turns out
3759      to be unneeded, restore the state.  */
3760   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
3761     {
3762       unsigned int i;
3763       size_t entsize;
3764 
3765       for (entsize = 0, i = 0; i < htab->root.table.size; i++)
3766 	{
3767 	  struct bfd_hash_entry *p;
3768 	  struct elf_link_hash_entry *h;
3769 
3770 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3771 	    {
3772 	      h = (struct elf_link_hash_entry *) p;
3773 	      entsize += htab->root.table.entsize;
3774 	      if (h->root.type == bfd_link_hash_warning)
3775 		entsize += htab->root.table.entsize;
3776 	    }
3777 	}
3778 
3779       tabsize = htab->root.table.size * sizeof (struct bfd_hash_entry *);
3780       old_tab = bfd_malloc (tabsize + entsize);
3781       if (old_tab == NULL)
3782 	goto error_free_vers;
3783 
3784       /* Remember the current objalloc pointer, so that all mem for
3785 	 symbols added can later be reclaimed.  */
3786       alloc_mark = bfd_hash_allocate (&htab->root.table, 1);
3787       if (alloc_mark == NULL)
3788 	goto error_free_vers;
3789 
3790       /* Make a special call to the linker "notice" function to
3791 	 tell it that we are about to handle an as-needed lib.  */
3792       if (!(*bed->notice_as_needed) (abfd, info, notice_as_needed))
3793 	goto error_free_vers;
3794 
3795       /* Clone the symbol table.  Remember some pointers into the
3796 	 symbol table, and dynamic symbol count.  */
3797       old_ent = (char *) old_tab + tabsize;
3798       memcpy (old_tab, htab->root.table.table, tabsize);
3799       old_undefs = htab->root.undefs;
3800       old_undefs_tail = htab->root.undefs_tail;
3801       old_table = htab->root.table.table;
3802       old_size = htab->root.table.size;
3803       old_count = htab->root.table.count;
3804       old_dynsymcount = htab->dynsymcount;
3805       old_dynstr_size = _bfd_elf_strtab_size (htab->dynstr);
3806 
3807       for (i = 0; i < htab->root.table.size; i++)
3808 	{
3809 	  struct bfd_hash_entry *p;
3810 	  struct elf_link_hash_entry *h;
3811 
3812 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
3813 	    {
3814 	      memcpy (old_ent, p, htab->root.table.entsize);
3815 	      old_ent = (char *) old_ent + htab->root.table.entsize;
3816 	      h = (struct elf_link_hash_entry *) p;
3817 	      if (h->root.type == bfd_link_hash_warning)
3818 		{
3819 		  memcpy (old_ent, h->root.u.i.link, htab->root.table.entsize);
3820 		  old_ent = (char *) old_ent + htab->root.table.entsize;
3821 		}
3822 	    }
3823 	}
3824     }
3825 
3826   weaks = NULL;
3827   ever = extversym != NULL ? extversym + extsymoff : NULL;
3828   for (isym = isymbuf, isymend = isymbuf + extsymcount;
3829        isym < isymend;
3830        isym++, sym_hash++, ever = (ever != NULL ? ever + 1 : NULL))
3831     {
3832       int bind;
3833       bfd_vma value;
3834       asection *sec, *new_sec;
3835       flagword flags;
3836       const char *name;
3837       struct elf_link_hash_entry *h;
3838       struct elf_link_hash_entry *hi;
3839       bfd_boolean definition;
3840       bfd_boolean size_change_ok;
3841       bfd_boolean type_change_ok;
3842       bfd_boolean new_weakdef;
3843       bfd_boolean new_weak;
3844       bfd_boolean old_weak;
3845       bfd_boolean override;
3846       bfd_boolean common;
3847       unsigned int old_alignment;
3848       bfd *old_bfd;
3849 
3850       override = FALSE;
3851 
3852       flags = BSF_NO_FLAGS;
3853       sec = NULL;
3854       value = isym->st_value;
3855       common = bed->common_definition (isym);
3856 
3857       bind = ELF_ST_BIND (isym->st_info);
3858       switch (bind)
3859 	{
3860 	case STB_LOCAL:
3861 	  /* This should be impossible, since ELF requires that all
3862 	     global symbols follow all local symbols, and that sh_info
3863 	     point to the first global symbol.  Unfortunately, Irix 5
3864 	     screws this up.  */
3865 	  continue;
3866 
3867 	case STB_GLOBAL:
3868 	  if (isym->st_shndx != SHN_UNDEF && !common)
3869 	    flags = BSF_GLOBAL;
3870 	  break;
3871 
3872 	case STB_WEAK:
3873 	  flags = BSF_WEAK;
3874 	  break;
3875 
3876 	case STB_GNU_UNIQUE:
3877 	  flags = BSF_GNU_UNIQUE;
3878 	  break;
3879 
3880 	default:
3881 	  /* Leave it up to the processor backend.  */
3882 	  break;
3883 	}
3884 
3885       if (isym->st_shndx == SHN_UNDEF)
3886 	sec = bfd_und_section_ptr;
3887       else if (isym->st_shndx == SHN_ABS)
3888 	sec = bfd_abs_section_ptr;
3889       else if (isym->st_shndx == SHN_COMMON)
3890 	{
3891 	  sec = bfd_com_section_ptr;
3892 	  /* What ELF calls the size we call the value.  What ELF
3893 	     calls the value we call the alignment.  */
3894 	  value = isym->st_size;
3895 	}
3896       else
3897 	{
3898 	  sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3899 	  if (sec == NULL)
3900 	    sec = bfd_abs_section_ptr;
3901 	  else if (discarded_section (sec))
3902 	    {
3903 	      /* Symbols from discarded section are undefined.  We keep
3904 		 its visibility.  */
3905 	      sec = bfd_und_section_ptr;
3906 	      isym->st_shndx = SHN_UNDEF;
3907 	    }
3908 	  else if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
3909 	    value -= sec->vma;
3910 	}
3911 
3912       name = bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
3913 					      isym->st_name);
3914       if (name == NULL)
3915 	goto error_free_vers;
3916 
3917       if (isym->st_shndx == SHN_COMMON
3918 	  && (abfd->flags & BFD_PLUGIN) != 0)
3919 	{
3920 	  asection *xc = bfd_get_section_by_name (abfd, "COMMON");
3921 
3922 	  if (xc == NULL)
3923 	    {
3924 	      flagword sflags = (SEC_ALLOC | SEC_IS_COMMON | SEC_KEEP
3925 				 | SEC_EXCLUDE);
3926 	      xc = bfd_make_section_with_flags (abfd, "COMMON", sflags);
3927 	      if (xc == NULL)
3928 		goto error_free_vers;
3929 	    }
3930 	  sec = xc;
3931 	}
3932       else if (isym->st_shndx == SHN_COMMON
3933 	       && ELF_ST_TYPE (isym->st_info) == STT_TLS
3934 	       && !info->relocatable)
3935 	{
3936 	  asection *tcomm = bfd_get_section_by_name (abfd, ".tcommon");
3937 
3938 	  if (tcomm == NULL)
3939 	    {
3940 	      flagword sflags = (SEC_ALLOC | SEC_THREAD_LOCAL | SEC_IS_COMMON
3941 				 | SEC_LINKER_CREATED);
3942 	      tcomm = bfd_make_section_with_flags (abfd, ".tcommon", sflags);
3943 	      if (tcomm == NULL)
3944 		goto error_free_vers;
3945 	    }
3946 	  sec = tcomm;
3947 	}
3948       else if (bed->elf_add_symbol_hook)
3949 	{
3950 	  if (! (*bed->elf_add_symbol_hook) (abfd, info, isym, &name, &flags,
3951 					     &sec, &value))
3952 	    goto error_free_vers;
3953 
3954 	  /* The hook function sets the name to NULL if this symbol
3955 	     should be skipped for some reason.  */
3956 	  if (name == NULL)
3957 	    continue;
3958 	}
3959 
3960       /* Sanity check that all possibilities were handled.  */
3961       if (sec == NULL)
3962 	{
3963 	  bfd_set_error (bfd_error_bad_value);
3964 	  goto error_free_vers;
3965 	}
3966 
3967       /* Silently discard TLS symbols from --just-syms.  There's
3968 	 no way to combine a static TLS block with a new TLS block
3969 	 for this executable.  */
3970       if (ELF_ST_TYPE (isym->st_info) == STT_TLS
3971 	  && sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
3972 	continue;
3973 
3974       if (bfd_is_und_section (sec)
3975 	  || bfd_is_com_section (sec))
3976 	definition = FALSE;
3977       else
3978 	definition = TRUE;
3979 
3980       size_change_ok = FALSE;
3981       type_change_ok = bed->type_change_ok;
3982       old_weak = FALSE;
3983       old_alignment = 0;
3984       old_bfd = NULL;
3985       new_sec = sec;
3986 
3987       if (is_elf_hash_table (htab))
3988 	{
3989 	  Elf_Internal_Versym iver;
3990 	  unsigned int vernum = 0;
3991 	  bfd_boolean skip;
3992 
3993 	  if (ever == NULL)
3994 	    {
3995 	      if (info->default_imported_symver)
3996 		/* Use the default symbol version created earlier.  */
3997 		iver.vs_vers = elf_tdata (abfd)->cverdefs;
3998 	      else
3999 		iver.vs_vers = 0;
4000 	    }
4001 	  else
4002 	    _bfd_elf_swap_versym_in (abfd, ever, &iver);
4003 
4004 	  vernum = iver.vs_vers & VERSYM_VERSION;
4005 
4006 	  /* If this is a hidden symbol, or if it is not version
4007 	     1, we append the version name to the symbol name.
4008 	     However, we do not modify a non-hidden absolute symbol
4009 	     if it is not a function, because it might be the version
4010 	     symbol itself.  FIXME: What if it isn't?  */
4011 	  if ((iver.vs_vers & VERSYM_HIDDEN) != 0
4012 	      || (vernum > 1
4013 		  && (!bfd_is_abs_section (sec)
4014 		      || bed->is_function_type (ELF_ST_TYPE (isym->st_info)))))
4015 	    {
4016 	      const char *verstr;
4017 	      size_t namelen, verlen, newlen;
4018 	      char *newname, *p;
4019 
4020 	      if (isym->st_shndx != SHN_UNDEF)
4021 		{
4022 		  if (vernum > elf_tdata (abfd)->cverdefs)
4023 		    verstr = NULL;
4024 		  else if (vernum > 1)
4025 		    verstr =
4026 		      elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
4027 		  else
4028 		    verstr = "";
4029 
4030 		  if (verstr == NULL)
4031 		    {
4032 		      (*_bfd_error_handler)
4033 			(_("%B: %s: invalid version %u (max %d)"),
4034 			 abfd, name, vernum,
4035 			 elf_tdata (abfd)->cverdefs);
4036 		      bfd_set_error (bfd_error_bad_value);
4037 		      goto error_free_vers;
4038 		    }
4039 		}
4040 	      else
4041 		{
4042 		  /* We cannot simply test for the number of
4043 		     entries in the VERNEED section since the
4044 		     numbers for the needed versions do not start
4045 		     at 0.  */
4046 		  Elf_Internal_Verneed *t;
4047 
4048 		  verstr = NULL;
4049 		  for (t = elf_tdata (abfd)->verref;
4050 		       t != NULL;
4051 		       t = t->vn_nextref)
4052 		    {
4053 		      Elf_Internal_Vernaux *a;
4054 
4055 		      for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
4056 			{
4057 			  if (a->vna_other == vernum)
4058 			    {
4059 			      verstr = a->vna_nodename;
4060 			      break;
4061 			    }
4062 			}
4063 		      if (a != NULL)
4064 			break;
4065 		    }
4066 		  if (verstr == NULL)
4067 		    {
4068 		      (*_bfd_error_handler)
4069 			(_("%B: %s: invalid needed version %d"),
4070 			 abfd, name, vernum);
4071 		      bfd_set_error (bfd_error_bad_value);
4072 		      goto error_free_vers;
4073 		    }
4074 		}
4075 
4076 	      namelen = strlen (name);
4077 	      verlen = strlen (verstr);
4078 	      newlen = namelen + verlen + 2;
4079 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4080 		  && isym->st_shndx != SHN_UNDEF)
4081 		++newlen;
4082 
4083 	      newname = (char *) bfd_hash_allocate (&htab->root.table, newlen);
4084 	      if (newname == NULL)
4085 		goto error_free_vers;
4086 	      memcpy (newname, name, namelen);
4087 	      p = newname + namelen;
4088 	      *p++ = ELF_VER_CHR;
4089 	      /* If this is a defined non-hidden version symbol,
4090 		 we add another @ to the name.  This indicates the
4091 		 default version of the symbol.  */
4092 	      if ((iver.vs_vers & VERSYM_HIDDEN) == 0
4093 		  && isym->st_shndx != SHN_UNDEF)
4094 		*p++ = ELF_VER_CHR;
4095 	      memcpy (p, verstr, verlen + 1);
4096 
4097 	      name = newname;
4098 	    }
4099 
4100 	  if (!_bfd_elf_merge_symbol (abfd, info, name, isym, &sec, &value,
4101 				      sym_hash, &old_bfd, &old_weak,
4102 				      &old_alignment, &skip, &override,
4103 				      &type_change_ok, &size_change_ok))
4104 	    goto error_free_vers;
4105 
4106 	  if (skip)
4107 	    continue;
4108 
4109 	  if (override)
4110 	    definition = FALSE;
4111 
4112 	  h = *sym_hash;
4113 	  while (h->root.type == bfd_link_hash_indirect
4114 		 || h->root.type == bfd_link_hash_warning)
4115 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
4116 
4117 	  if (elf_tdata (abfd)->verdef != NULL
4118 	      && vernum > 1
4119 	      && definition)
4120 	    h->verinfo.verdef = &elf_tdata (abfd)->verdef[vernum - 1];
4121 	}
4122 
4123       if (! (_bfd_generic_link_add_one_symbol
4124 	     (info, abfd, name, flags, sec, value, NULL, FALSE, bed->collect,
4125 	      (struct bfd_link_hash_entry **) sym_hash)))
4126 	goto error_free_vers;
4127 
4128       h = *sym_hash;
4129       /* We need to make sure that indirect symbol dynamic flags are
4130 	 updated.  */
4131       hi = h;
4132       while (h->root.type == bfd_link_hash_indirect
4133 	     || h->root.type == bfd_link_hash_warning)
4134 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
4135 
4136       *sym_hash = h;
4137 
4138       new_weak = (flags & BSF_WEAK) != 0;
4139       new_weakdef = FALSE;
4140       if (dynamic
4141 	  && definition
4142 	  && new_weak
4143 	  && !bed->is_function_type (ELF_ST_TYPE (isym->st_info))
4144 	  && is_elf_hash_table (htab)
4145 	  && h->u.weakdef == NULL)
4146 	{
4147 	  /* Keep a list of all weak defined non function symbols from
4148 	     a dynamic object, using the weakdef field.  Later in this
4149 	     function we will set the weakdef field to the correct
4150 	     value.  We only put non-function symbols from dynamic
4151 	     objects on this list, because that happens to be the only
4152 	     time we need to know the normal symbol corresponding to a
4153 	     weak symbol, and the information is time consuming to
4154 	     figure out.  If the weakdef field is not already NULL,
4155 	     then this symbol was already defined by some previous
4156 	     dynamic object, and we will be using that previous
4157 	     definition anyhow.  */
4158 
4159 	  h->u.weakdef = weaks;
4160 	  weaks = h;
4161 	  new_weakdef = TRUE;
4162 	}
4163 
4164       /* Set the alignment of a common symbol.  */
4165       if ((common || bfd_is_com_section (sec))
4166 	  && h->root.type == bfd_link_hash_common)
4167 	{
4168 	  unsigned int align;
4169 
4170 	  if (common)
4171 	    align = bfd_log2 (isym->st_value);
4172 	  else
4173 	    {
4174 	      /* The new symbol is a common symbol in a shared object.
4175 		 We need to get the alignment from the section.  */
4176 	      align = new_sec->alignment_power;
4177 	    }
4178 	  if (align > old_alignment)
4179 	    h->root.u.c.p->alignment_power = align;
4180 	  else
4181 	    h->root.u.c.p->alignment_power = old_alignment;
4182 	}
4183 
4184       if (is_elf_hash_table (htab))
4185 	{
4186 	  /* Set a flag in the hash table entry indicating the type of
4187 	     reference or definition we just found.  A dynamic symbol
4188 	     is one which is referenced or defined by both a regular
4189 	     object and a shared object.  */
4190 	  bfd_boolean dynsym = FALSE;
4191 
4192 	  /* Plugin symbols aren't normal.  Don't set def_regular or
4193 	     ref_regular for them, or make them dynamic.  */
4194 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4195 	    ;
4196 	  else if (! dynamic)
4197 	    {
4198 	      if (! definition)
4199 		{
4200 		  h->ref_regular = 1;
4201 		  if (bind != STB_WEAK)
4202 		    h->ref_regular_nonweak = 1;
4203 		}
4204 	      else
4205 		{
4206 		  h->def_regular = 1;
4207 		  if (h->def_dynamic)
4208 		    {
4209 		      h->def_dynamic = 0;
4210 		      h->ref_dynamic = 1;
4211 		    }
4212 		}
4213 
4214 	      /* If the indirect symbol has been forced local, don't
4215 		 make the real symbol dynamic.  */
4216 	      if ((h == hi || !hi->forced_local)
4217 		  && (! info->executable
4218 		      || h->def_dynamic
4219 		      || h->ref_dynamic))
4220 		dynsym = TRUE;
4221 	    }
4222 	  else
4223 	    {
4224 	      if (! definition)
4225 		{
4226 		  h->ref_dynamic = 1;
4227 		  hi->ref_dynamic = 1;
4228 		}
4229 	      else
4230 		{
4231 		  h->def_dynamic = 1;
4232 		  hi->def_dynamic = 1;
4233 		}
4234 
4235 	      /* If the indirect symbol has been forced local, don't
4236 		 make the real symbol dynamic.  */
4237 	      if ((h == hi || !hi->forced_local)
4238 		  && (h->def_regular
4239 		      || h->ref_regular
4240 		      || (h->u.weakdef != NULL
4241 			  && ! new_weakdef
4242 			  && h->u.weakdef->dynindx != -1)))
4243 		dynsym = TRUE;
4244 	    }
4245 
4246 	  /* Check to see if we need to add an indirect symbol for
4247 	     the default name.  */
4248 	  if (definition
4249 	      || (!override && h->root.type == bfd_link_hash_common))
4250 	    if (!_bfd_elf_add_default_symbol (abfd, info, h, name, isym,
4251 					      sec, value, &old_bfd, &dynsym))
4252 	      goto error_free_vers;
4253 
4254 	  /* Check the alignment when a common symbol is involved. This
4255 	     can change when a common symbol is overridden by a normal
4256 	     definition or a common symbol is ignored due to the old
4257 	     normal definition. We need to make sure the maximum
4258 	     alignment is maintained.  */
4259 	  if ((old_alignment || common)
4260 	      && h->root.type != bfd_link_hash_common)
4261 	    {
4262 	      unsigned int common_align;
4263 	      unsigned int normal_align;
4264 	      unsigned int symbol_align;
4265 	      bfd *normal_bfd;
4266 	      bfd *common_bfd;
4267 
4268 	      BFD_ASSERT (h->root.type == bfd_link_hash_defined
4269 			  || h->root.type == bfd_link_hash_defweak);
4270 
4271 	      symbol_align = ffs (h->root.u.def.value) - 1;
4272 	      if (h->root.u.def.section->owner != NULL
4273 		  && (h->root.u.def.section->owner->flags & DYNAMIC) == 0)
4274 		{
4275 		  normal_align = h->root.u.def.section->alignment_power;
4276 		  if (normal_align > symbol_align)
4277 		    normal_align = symbol_align;
4278 		}
4279 	      else
4280 		normal_align = symbol_align;
4281 
4282 	      if (old_alignment)
4283 		{
4284 		  common_align = old_alignment;
4285 		  common_bfd = old_bfd;
4286 		  normal_bfd = abfd;
4287 		}
4288 	      else
4289 		{
4290 		  common_align = bfd_log2 (isym->st_value);
4291 		  common_bfd = abfd;
4292 		  normal_bfd = old_bfd;
4293 		}
4294 
4295 	      if (normal_align < common_align)
4296 		{
4297 		  /* PR binutils/2735 */
4298 		  if (normal_bfd == NULL)
4299 		    (*_bfd_error_handler)
4300 		      (_("Warning: alignment %u of common symbol `%s' in %B is"
4301 			 " greater than the alignment (%u) of its section %A"),
4302 		       common_bfd, h->root.u.def.section,
4303 		       1 << common_align, name, 1 << normal_align);
4304 		  else
4305 		    (*_bfd_error_handler)
4306 		      (_("Warning: alignment %u of symbol `%s' in %B"
4307 			 " is smaller than %u in %B"),
4308 		       normal_bfd, common_bfd,
4309 		       1 << normal_align, name, 1 << common_align);
4310 		}
4311 	    }
4312 
4313 	  /* Remember the symbol size if it isn't undefined.  */
4314 	  if (isym->st_size != 0
4315 	      && isym->st_shndx != SHN_UNDEF
4316 	      && (definition || h->size == 0))
4317 	    {
4318 	      if (h->size != 0
4319 		  && h->size != isym->st_size
4320 		  && ! size_change_ok)
4321 		(*_bfd_error_handler)
4322 		  (_("Warning: size of symbol `%s' changed"
4323 		     " from %lu in %B to %lu in %B"),
4324 		   old_bfd, abfd,
4325 		   name, (unsigned long) h->size,
4326 		   (unsigned long) isym->st_size);
4327 
4328 	      h->size = isym->st_size;
4329 	    }
4330 
4331 	  /* If this is a common symbol, then we always want H->SIZE
4332 	     to be the size of the common symbol.  The code just above
4333 	     won't fix the size if a common symbol becomes larger.  We
4334 	     don't warn about a size change here, because that is
4335 	     covered by --warn-common.  Allow changes between different
4336 	     function types.  */
4337 	  if (h->root.type == bfd_link_hash_common)
4338 	    h->size = h->root.u.c.size;
4339 
4340 	  if (ELF_ST_TYPE (isym->st_info) != STT_NOTYPE
4341 	      && ((definition && !new_weak)
4342 		  || (old_weak && h->root.type == bfd_link_hash_common)
4343 		  || h->type == STT_NOTYPE))
4344 	    {
4345 	      unsigned int type = ELF_ST_TYPE (isym->st_info);
4346 
4347 	      /* Turn an IFUNC symbol from a DSO into a normal FUNC
4348 		 symbol.  */
4349 	      if (type == STT_GNU_IFUNC
4350 		  && (abfd->flags & DYNAMIC) != 0)
4351 		type = STT_FUNC;
4352 
4353 	      if (h->type != type)
4354 		{
4355 		  if (h->type != STT_NOTYPE && ! type_change_ok)
4356 		    (*_bfd_error_handler)
4357 		      (_("Warning: type of symbol `%s' changed"
4358 			 " from %d to %d in %B"),
4359 		       abfd, name, h->type, type);
4360 
4361 		  h->type = type;
4362 		}
4363 	    }
4364 
4365 	  /* Merge st_other field.  */
4366 	  elf_merge_st_other (abfd, h, isym, definition, dynamic);
4367 
4368 	  /* We don't want to make debug symbol dynamic.  */
4369 	  if (definition && (sec->flags & SEC_DEBUGGING) && !info->relocatable)
4370 	    dynsym = FALSE;
4371 
4372 	  /* Nor should we make plugin symbols dynamic.  */
4373 	  if ((abfd->flags & BFD_PLUGIN) != 0)
4374 	    dynsym = FALSE;
4375 
4376 	  if (definition)
4377 	    {
4378 	      h->target_internal = isym->st_target_internal;
4379 	      h->unique_global = (flags & BSF_GNU_UNIQUE) != 0;
4380 	    }
4381 
4382 	  if (definition && !dynamic)
4383 	    {
4384 	      char *p = strchr (name, ELF_VER_CHR);
4385 	      if (p != NULL && p[1] != ELF_VER_CHR)
4386 		{
4387 		  /* Queue non-default versions so that .symver x, x@FOO
4388 		     aliases can be checked.  */
4389 		  if (!nondeflt_vers)
4390 		    {
4391 		      amt = ((isymend - isym + 1)
4392 			     * sizeof (struct elf_link_hash_entry *));
4393 		      nondeflt_vers =
4394                           (struct elf_link_hash_entry **) bfd_malloc (amt);
4395 		      if (!nondeflt_vers)
4396 			goto error_free_vers;
4397 		    }
4398 		  nondeflt_vers[nondeflt_vers_cnt++] = h;
4399 		}
4400 	    }
4401 
4402 	  if (dynsym && h->dynindx == -1)
4403 	    {
4404 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4405 		goto error_free_vers;
4406 	      if (h->u.weakdef != NULL
4407 		  && ! new_weakdef
4408 		  && h->u.weakdef->dynindx == -1)
4409 		{
4410 		  if (!bfd_elf_link_record_dynamic_symbol (info, h->u.weakdef))
4411 		    goto error_free_vers;
4412 		}
4413 	    }
4414 	  else if (dynsym && h->dynindx != -1)
4415 	    /* If the symbol already has a dynamic index, but
4416 	       visibility says it should not be visible, turn it into
4417 	       a local symbol.  */
4418 	    switch (ELF_ST_VISIBILITY (h->other))
4419 	      {
4420 	      case STV_INTERNAL:
4421 	      case STV_HIDDEN:
4422 		(*bed->elf_backend_hide_symbol) (info, h, TRUE);
4423 		dynsym = FALSE;
4424 		break;
4425 	      }
4426 
4427 	  /* Don't add DT_NEEDED for references from the dummy bfd.  */
4428 	  if (!add_needed
4429 	      && definition
4430 	      && ((dynsym
4431 		   && h->ref_regular_nonweak
4432 		   && (old_bfd == NULL
4433 		       || (old_bfd->flags & BFD_PLUGIN) == 0))
4434 		  || (h->ref_dynamic_nonweak
4435 		      && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0
4436 		      && !on_needed_list (elf_dt_name (abfd), htab->needed))))
4437 	    {
4438 	      int ret;
4439 	      const char *soname = elf_dt_name (abfd);
4440 
4441 	      /* A symbol from a library loaded via DT_NEEDED of some
4442 		 other library is referenced by a regular object.
4443 		 Add a DT_NEEDED entry for it.  Issue an error if
4444 		 --no-add-needed is used and the reference was not
4445 		 a weak one.  */
4446 	      if (old_bfd != NULL
4447 		  && (elf_dyn_lib_class (abfd) & DYN_NO_NEEDED) != 0)
4448 		{
4449 		  (*_bfd_error_handler)
4450 		    (_("%B: undefined reference to symbol '%s'"),
4451 		     old_bfd, name);
4452 		  bfd_set_error (bfd_error_missing_dso);
4453 		  goto error_free_vers;
4454 		}
4455 
4456 	      elf_dyn_lib_class (abfd) = (enum dynamic_lib_link_class)
4457                   (elf_dyn_lib_class (abfd) & ~DYN_AS_NEEDED);
4458 
4459 	      add_needed = TRUE;
4460 	      ret = elf_add_dt_needed_tag (abfd, info, soname, add_needed);
4461 	      if (ret < 0)
4462 		goto error_free_vers;
4463 
4464 	      BFD_ASSERT (ret == 0);
4465 	    }
4466 	}
4467     }
4468 
4469   if (extversym != NULL)
4470     {
4471       free (extversym);
4472       extversym = NULL;
4473     }
4474 
4475   if (isymbuf != NULL)
4476     {
4477       free (isymbuf);
4478       isymbuf = NULL;
4479     }
4480 
4481   if ((elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)
4482     {
4483       unsigned int i;
4484 
4485       /* Restore the symbol table.  */
4486       old_ent = (char *) old_tab + tabsize;
4487       memset (elf_sym_hashes (abfd), 0,
4488 	      extsymcount * sizeof (struct elf_link_hash_entry *));
4489       htab->root.table.table = old_table;
4490       htab->root.table.size = old_size;
4491       htab->root.table.count = old_count;
4492       memcpy (htab->root.table.table, old_tab, tabsize);
4493       htab->root.undefs = old_undefs;
4494       htab->root.undefs_tail = old_undefs_tail;
4495       _bfd_elf_strtab_restore_size (htab->dynstr, old_dynstr_size);
4496       for (i = 0; i < htab->root.table.size; i++)
4497 	{
4498 	  struct bfd_hash_entry *p;
4499 	  struct elf_link_hash_entry *h;
4500 	  bfd_size_type size;
4501 	  unsigned int alignment_power;
4502 
4503 	  for (p = htab->root.table.table[i]; p != NULL; p = p->next)
4504 	    {
4505 	      h = (struct elf_link_hash_entry *) p;
4506 	      if (h->root.type == bfd_link_hash_warning)
4507 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
4508 	      if (h->dynindx >= old_dynsymcount
4509 		  && h->dynstr_index < old_dynstr_size)
4510 		_bfd_elf_strtab_delref (htab->dynstr, h->dynstr_index);
4511 
4512 	      /* Preserve the maximum alignment and size for common
4513 		 symbols even if this dynamic lib isn't on DT_NEEDED
4514 		 since it can still be loaded at run time by another
4515 		 dynamic lib.  */
4516 	      if (h->root.type == bfd_link_hash_common)
4517 		{
4518 		  size = h->root.u.c.size;
4519 		  alignment_power = h->root.u.c.p->alignment_power;
4520 		}
4521 	      else
4522 		{
4523 		  size = 0;
4524 		  alignment_power = 0;
4525 		}
4526 	      memcpy (p, old_ent, htab->root.table.entsize);
4527 	      old_ent = (char *) old_ent + htab->root.table.entsize;
4528 	      h = (struct elf_link_hash_entry *) p;
4529 	      if (h->root.type == bfd_link_hash_warning)
4530 		{
4531 		  memcpy (h->root.u.i.link, old_ent, htab->root.table.entsize);
4532 		  old_ent = (char *) old_ent + htab->root.table.entsize;
4533 		  h = (struct elf_link_hash_entry *) h->root.u.i.link;
4534 		}
4535 	      if (h->root.type == bfd_link_hash_common)
4536 		{
4537 		  if (size > h->root.u.c.size)
4538 		    h->root.u.c.size = size;
4539 		  if (alignment_power > h->root.u.c.p->alignment_power)
4540 		    h->root.u.c.p->alignment_power = alignment_power;
4541 		}
4542 	    }
4543 	}
4544 
4545       /* Make a special call to the linker "notice" function to
4546 	 tell it that symbols added for crefs may need to be removed.  */
4547       if (!(*bed->notice_as_needed) (abfd, info, notice_not_needed))
4548 	goto error_free_vers;
4549 
4550       free (old_tab);
4551       objalloc_free_block ((struct objalloc *) htab->root.table.memory,
4552 			   alloc_mark);
4553       if (nondeflt_vers != NULL)
4554 	free (nondeflt_vers);
4555       return TRUE;
4556     }
4557 
4558   if (old_tab != NULL)
4559     {
4560       if (!(*bed->notice_as_needed) (abfd, info, notice_needed))
4561 	goto error_free_vers;
4562       free (old_tab);
4563       old_tab = NULL;
4564     }
4565 
4566   /* Now that all the symbols from this input file are created, handle
4567      .symver foo, foo@BAR such that any relocs against foo become foo@BAR.  */
4568   if (nondeflt_vers != NULL)
4569     {
4570       bfd_size_type cnt, symidx;
4571 
4572       for (cnt = 0; cnt < nondeflt_vers_cnt; ++cnt)
4573 	{
4574 	  struct elf_link_hash_entry *h = nondeflt_vers[cnt], *hi;
4575 	  char *shortname, *p;
4576 
4577 	  p = strchr (h->root.root.string, ELF_VER_CHR);
4578 	  if (p == NULL
4579 	      || (h->root.type != bfd_link_hash_defined
4580 		  && h->root.type != bfd_link_hash_defweak))
4581 	    continue;
4582 
4583 	  amt = p - h->root.root.string;
4584 	  shortname = (char *) bfd_malloc (amt + 1);
4585 	  if (!shortname)
4586 	    goto error_free_vers;
4587 	  memcpy (shortname, h->root.root.string, amt);
4588 	  shortname[amt] = '\0';
4589 
4590 	  hi = (struct elf_link_hash_entry *)
4591 	       bfd_link_hash_lookup (&htab->root, shortname,
4592 				     FALSE, FALSE, FALSE);
4593 	  if (hi != NULL
4594 	      && hi->root.type == h->root.type
4595 	      && hi->root.u.def.value == h->root.u.def.value
4596 	      && hi->root.u.def.section == h->root.u.def.section)
4597 	    {
4598 	      (*bed->elf_backend_hide_symbol) (info, hi, TRUE);
4599 	      hi->root.type = bfd_link_hash_indirect;
4600 	      hi->root.u.i.link = (struct bfd_link_hash_entry *) h;
4601 	      (*bed->elf_backend_copy_indirect_symbol) (info, h, hi);
4602 	      sym_hash = elf_sym_hashes (abfd);
4603 	      if (sym_hash)
4604 		for (symidx = 0; symidx < extsymcount; ++symidx)
4605 		  if (sym_hash[symidx] == hi)
4606 		    {
4607 		      sym_hash[symidx] = h;
4608 		      break;
4609 		    }
4610 	    }
4611 	  free (shortname);
4612 	}
4613       free (nondeflt_vers);
4614       nondeflt_vers = NULL;
4615     }
4616 
4617   /* Now set the weakdefs field correctly for all the weak defined
4618      symbols we found.  The only way to do this is to search all the
4619      symbols.  Since we only need the information for non functions in
4620      dynamic objects, that's the only time we actually put anything on
4621      the list WEAKS.  We need this information so that if a regular
4622      object refers to a symbol defined weakly in a dynamic object, the
4623      real symbol in the dynamic object is also put in the dynamic
4624      symbols; we also must arrange for both symbols to point to the
4625      same memory location.  We could handle the general case of symbol
4626      aliasing, but a general symbol alias can only be generated in
4627      assembler code, handling it correctly would be very time
4628      consuming, and other ELF linkers don't handle general aliasing
4629      either.  */
4630   if (weaks != NULL)
4631     {
4632       struct elf_link_hash_entry **hpp;
4633       struct elf_link_hash_entry **hppend;
4634       struct elf_link_hash_entry **sorted_sym_hash;
4635       struct elf_link_hash_entry *h;
4636       size_t sym_count;
4637 
4638       /* Since we have to search the whole symbol list for each weak
4639 	 defined symbol, search time for N weak defined symbols will be
4640 	 O(N^2). Binary search will cut it down to O(NlogN).  */
4641       amt = extsymcount * sizeof (struct elf_link_hash_entry *);
4642       sorted_sym_hash = (struct elf_link_hash_entry **) bfd_malloc (amt);
4643       if (sorted_sym_hash == NULL)
4644 	goto error_return;
4645       sym_hash = sorted_sym_hash;
4646       hpp = elf_sym_hashes (abfd);
4647       hppend = hpp + extsymcount;
4648       sym_count = 0;
4649       for (; hpp < hppend; hpp++)
4650 	{
4651 	  h = *hpp;
4652 	  if (h != NULL
4653 	      && h->root.type == bfd_link_hash_defined
4654 	      && !bed->is_function_type (h->type))
4655 	    {
4656 	      *sym_hash = h;
4657 	      sym_hash++;
4658 	      sym_count++;
4659 	    }
4660 	}
4661 
4662       qsort (sorted_sym_hash, sym_count,
4663 	     sizeof (struct elf_link_hash_entry *),
4664 	     elf_sort_symbol);
4665 
4666       while (weaks != NULL)
4667 	{
4668 	  struct elf_link_hash_entry *hlook;
4669 	  asection *slook;
4670 	  bfd_vma vlook;
4671 	  size_t i, j, idx = 0;
4672 
4673 	  hlook = weaks;
4674 	  weaks = hlook->u.weakdef;
4675 	  hlook->u.weakdef = NULL;
4676 
4677 	  BFD_ASSERT (hlook->root.type == bfd_link_hash_defined
4678 		      || hlook->root.type == bfd_link_hash_defweak
4679 		      || hlook->root.type == bfd_link_hash_common
4680 		      || hlook->root.type == bfd_link_hash_indirect);
4681 	  slook = hlook->root.u.def.section;
4682 	  vlook = hlook->root.u.def.value;
4683 
4684 	  i = 0;
4685 	  j = sym_count;
4686 	  while (i != j)
4687 	    {
4688 	      bfd_signed_vma vdiff;
4689 	      idx = (i + j) / 2;
4690 	      h = sorted_sym_hash[idx];
4691 	      vdiff = vlook - h->root.u.def.value;
4692 	      if (vdiff < 0)
4693 		j = idx;
4694 	      else if (vdiff > 0)
4695 		i = idx + 1;
4696 	      else
4697 		{
4698 		  long sdiff = slook->id - h->root.u.def.section->id;
4699 		  if (sdiff < 0)
4700 		    j = idx;
4701 		  else if (sdiff > 0)
4702 		    i = idx + 1;
4703 		  else
4704 		    break;
4705 		}
4706 	    }
4707 
4708 	  /* We didn't find a value/section match.  */
4709 	  if (i == j)
4710 	    continue;
4711 
4712 	  /* With multiple aliases, or when the weak symbol is already
4713 	     strongly defined, we have multiple matching symbols and
4714 	     the binary search above may land on any of them.  Step
4715 	     one past the matching symbol(s).  */
4716 	  while (++idx != j)
4717 	    {
4718 	      h = sorted_sym_hash[idx];
4719 	      if (h->root.u.def.section != slook
4720 		  || h->root.u.def.value != vlook)
4721 		break;
4722 	    }
4723 
4724 	  /* Now look back over the aliases.  Since we sorted by size
4725 	     as well as value and section, we'll choose the one with
4726 	     the largest size.  */
4727 	  while (idx-- != i)
4728 	    {
4729 	      h = sorted_sym_hash[idx];
4730 
4731 	      /* Stop if value or section doesn't match.  */
4732 	      if (h->root.u.def.section != slook
4733 		  || h->root.u.def.value != vlook)
4734 		break;
4735 	      else if (h != hlook)
4736 		{
4737 		  hlook->u.weakdef = h;
4738 
4739 		  /* If the weak definition is in the list of dynamic
4740 		     symbols, make sure the real definition is put
4741 		     there as well.  */
4742 		  if (hlook->dynindx != -1 && h->dynindx == -1)
4743 		    {
4744 		      if (! bfd_elf_link_record_dynamic_symbol (info, h))
4745 			{
4746 			err_free_sym_hash:
4747 			  free (sorted_sym_hash);
4748 			  goto error_return;
4749 			}
4750 		    }
4751 
4752 		  /* If the real definition is in the list of dynamic
4753 		     symbols, make sure the weak definition is put
4754 		     there as well.  If we don't do this, then the
4755 		     dynamic loader might not merge the entries for the
4756 		     real definition and the weak definition.  */
4757 		  if (h->dynindx != -1 && hlook->dynindx == -1)
4758 		    {
4759 		      if (! bfd_elf_link_record_dynamic_symbol (info, hlook))
4760 			goto err_free_sym_hash;
4761 		    }
4762 		  break;
4763 		}
4764 	    }
4765 	}
4766 
4767       free (sorted_sym_hash);
4768     }
4769 
4770   if (bed->check_directives
4771       && !(*bed->check_directives) (abfd, info))
4772     return FALSE;
4773 
4774   /* If this object is the same format as the output object, and it is
4775      not a shared library, then let the backend look through the
4776      relocs.
4777 
4778      This is required to build global offset table entries and to
4779      arrange for dynamic relocs.  It is not required for the
4780      particular common case of linking non PIC code, even when linking
4781      against shared libraries, but unfortunately there is no way of
4782      knowing whether an object file has been compiled PIC or not.
4783      Looking through the relocs is not particularly time consuming.
4784      The problem is that we must either (1) keep the relocs in memory,
4785      which causes the linker to require additional runtime memory or
4786      (2) read the relocs twice from the input file, which wastes time.
4787      This would be a good case for using mmap.
4788 
4789      I have no idea how to handle linking PIC code into a file of a
4790      different format.  It probably can't be done.  */
4791   if (! dynamic
4792       && is_elf_hash_table (htab)
4793       && bed->check_relocs != NULL
4794       && elf_object_id (abfd) == elf_hash_table_id (htab)
4795       && (*bed->relocs_compatible) (abfd->xvec, info->output_bfd->xvec))
4796     {
4797       asection *o;
4798 
4799       for (o = abfd->sections; o != NULL; o = o->next)
4800 	{
4801 	  Elf_Internal_Rela *internal_relocs;
4802 	  bfd_boolean ok;
4803 
4804 	  if ((o->flags & SEC_RELOC) == 0
4805 	      || o->reloc_count == 0
4806 	      || ((info->strip == strip_all || info->strip == strip_debugger)
4807 		  && (o->flags & SEC_DEBUGGING) != 0)
4808 	      || bfd_is_abs_section (o->output_section))
4809 	    continue;
4810 
4811 	  internal_relocs = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
4812 						       info->keep_memory);
4813 	  if (internal_relocs == NULL)
4814 	    goto error_return;
4815 
4816 	  ok = (*bed->check_relocs) (abfd, info, o, internal_relocs);
4817 
4818 	  if (elf_section_data (o)->relocs != internal_relocs)
4819 	    free (internal_relocs);
4820 
4821 	  if (! ok)
4822 	    goto error_return;
4823 	}
4824     }
4825 
4826   /* If this is a non-traditional link, try to optimize the handling
4827      of the .stab/.stabstr sections.  */
4828   if (! dynamic
4829       && ! info->traditional_format
4830       && is_elf_hash_table (htab)
4831       && (info->strip != strip_all && info->strip != strip_debugger))
4832     {
4833       asection *stabstr;
4834 
4835       stabstr = bfd_get_section_by_name (abfd, ".stabstr");
4836       if (stabstr != NULL)
4837 	{
4838 	  bfd_size_type string_offset = 0;
4839 	  asection *stab;
4840 
4841 	  for (stab = abfd->sections; stab; stab = stab->next)
4842 	    if (CONST_STRNEQ (stab->name, ".stab")
4843 		&& (!stab->name[5] ||
4844 		    (stab->name[5] == '.' && ISDIGIT (stab->name[6])))
4845 		&& (stab->flags & SEC_MERGE) == 0
4846 		&& !bfd_is_abs_section (stab->output_section))
4847 	      {
4848 		struct bfd_elf_section_data *secdata;
4849 
4850 		secdata = elf_section_data (stab);
4851 		if (! _bfd_link_section_stabs (abfd, &htab->stab_info, stab,
4852 					       stabstr, &secdata->sec_info,
4853 					       &string_offset))
4854 		  goto error_return;
4855 		if (secdata->sec_info)
4856 		  stab->sec_info_type = SEC_INFO_TYPE_STABS;
4857 	    }
4858 	}
4859     }
4860 
4861   if (is_elf_hash_table (htab) && add_needed)
4862     {
4863       /* Add this bfd to the loaded list.  */
4864       struct elf_link_loaded_list *n;
4865 
4866       n = (struct elf_link_loaded_list *)
4867           bfd_alloc (abfd, sizeof (struct elf_link_loaded_list));
4868       if (n == NULL)
4869 	goto error_return;
4870       n->abfd = abfd;
4871       n->next = htab->loaded;
4872       htab->loaded = n;
4873     }
4874 
4875   return TRUE;
4876 
4877  error_free_vers:
4878   if (old_tab != NULL)
4879     free (old_tab);
4880   if (nondeflt_vers != NULL)
4881     free (nondeflt_vers);
4882   if (extversym != NULL)
4883     free (extversym);
4884  error_free_sym:
4885   if (isymbuf != NULL)
4886     free (isymbuf);
4887  error_return:
4888   return FALSE;
4889 }
4890 
4891 /* Return the linker hash table entry of a symbol that might be
4892    satisfied by an archive symbol.  Return -1 on error.  */
4893 
4894 struct elf_link_hash_entry *
4895 _bfd_elf_archive_symbol_lookup (bfd *abfd,
4896 				struct bfd_link_info *info,
4897 				const char *name)
4898 {
4899   struct elf_link_hash_entry *h;
4900   char *p, *copy;
4901   size_t len, first;
4902 
4903   h = elf_link_hash_lookup (elf_hash_table (info), name, FALSE, FALSE, TRUE);
4904   if (h != NULL)
4905     return h;
4906 
4907   /* If this is a default version (the name contains @@), look up the
4908      symbol again with only one `@' as well as without the version.
4909      The effect is that references to the symbol with and without the
4910      version will be matched by the default symbol in the archive.  */
4911 
4912   p = strchr (name, ELF_VER_CHR);
4913   if (p == NULL || p[1] != ELF_VER_CHR)
4914     return h;
4915 
4916   /* First check with only one `@'.  */
4917   len = strlen (name);
4918   copy = (char *) bfd_alloc (abfd, len);
4919   if (copy == NULL)
4920     return (struct elf_link_hash_entry *) 0 - 1;
4921 
4922   first = p - name + 1;
4923   memcpy (copy, name, first);
4924   memcpy (copy + first, name + first + 1, len - first);
4925 
4926   h = elf_link_hash_lookup (elf_hash_table (info), copy, FALSE, FALSE, TRUE);
4927   if (h == NULL)
4928     {
4929       /* We also need to check references to the symbol without the
4930 	 version.  */
4931       copy[first - 1] = '\0';
4932       h = elf_link_hash_lookup (elf_hash_table (info), copy,
4933 				FALSE, FALSE, TRUE);
4934     }
4935 
4936   bfd_release (abfd, copy);
4937   return h;
4938 }
4939 
4940 /* Add symbols from an ELF archive file to the linker hash table.  We
4941    don't use _bfd_generic_link_add_archive_symbols because of a
4942    problem which arises on UnixWare.  The UnixWare libc.so is an
4943    archive which includes an entry libc.so.1 which defines a bunch of
4944    symbols.  The libc.so archive also includes a number of other
4945    object files, which also define symbols, some of which are the same
4946    as those defined in libc.so.1.  Correct linking requires that we
4947    consider each object file in turn, and include it if it defines any
4948    symbols we need.  _bfd_generic_link_add_archive_symbols does not do
4949    this; it looks through the list of undefined symbols, and includes
4950    any object file which defines them.  When this algorithm is used on
4951    UnixWare, it winds up pulling in libc.so.1 early and defining a
4952    bunch of symbols.  This means that some of the other objects in the
4953    archive are not included in the link, which is incorrect since they
4954    precede libc.so.1 in the archive.
4955 
4956    Fortunately, ELF archive handling is simpler than that done by
4957    _bfd_generic_link_add_archive_symbols, which has to allow for a.out
4958    oddities.  In ELF, if we find a symbol in the archive map, and the
4959    symbol is currently undefined, we know that we must pull in that
4960    object file.
4961 
4962    Unfortunately, we do have to make multiple passes over the symbol
4963    table until nothing further is resolved.  */
4964 
4965 static bfd_boolean
4966 elf_link_add_archive_symbols (bfd *abfd, struct bfd_link_info *info)
4967 {
4968   symindex c;
4969   bfd_boolean *defined = NULL;
4970   bfd_boolean *included = NULL;
4971   carsym *symdefs;
4972   bfd_boolean loop;
4973   bfd_size_type amt;
4974   const struct elf_backend_data *bed;
4975   struct elf_link_hash_entry * (*archive_symbol_lookup)
4976     (bfd *, struct bfd_link_info *, const char *);
4977 
4978   if (! bfd_has_map (abfd))
4979     {
4980       /* An empty archive is a special case.  */
4981       if (bfd_openr_next_archived_file (abfd, NULL) == NULL)
4982 	return TRUE;
4983       bfd_set_error (bfd_error_no_armap);
4984       return FALSE;
4985     }
4986 
4987   /* Keep track of all symbols we know to be already defined, and all
4988      files we know to be already included.  This is to speed up the
4989      second and subsequent passes.  */
4990   c = bfd_ardata (abfd)->symdef_count;
4991   if (c == 0)
4992     return TRUE;
4993   amt = c;
4994   amt *= sizeof (bfd_boolean);
4995   defined = (bfd_boolean *) bfd_zmalloc (amt);
4996   included = (bfd_boolean *) bfd_zmalloc (amt);
4997   if (defined == NULL || included == NULL)
4998     goto error_return;
4999 
5000   symdefs = bfd_ardata (abfd)->symdefs;
5001   bed = get_elf_backend_data (abfd);
5002   archive_symbol_lookup = bed->elf_backend_archive_symbol_lookup;
5003 
5004   do
5005     {
5006       file_ptr last;
5007       symindex i;
5008       carsym *symdef;
5009       carsym *symdefend;
5010 
5011       loop = FALSE;
5012       last = -1;
5013 
5014       symdef = symdefs;
5015       symdefend = symdef + c;
5016       for (i = 0; symdef < symdefend; symdef++, i++)
5017 	{
5018 	  struct elf_link_hash_entry *h;
5019 	  bfd *element;
5020 	  struct bfd_link_hash_entry *undefs_tail;
5021 	  symindex mark;
5022 
5023 	  if (defined[i] || included[i])
5024 	    continue;
5025 	  if (symdef->file_offset == last)
5026 	    {
5027 	      included[i] = TRUE;
5028 	      continue;
5029 	    }
5030 
5031 	  h = archive_symbol_lookup (abfd, info, symdef->name);
5032 	  if (h == (struct elf_link_hash_entry *) 0 - 1)
5033 	    goto error_return;
5034 
5035 	  if (h == NULL)
5036 	    continue;
5037 
5038 	  if (h->root.type == bfd_link_hash_common)
5039 	    {
5040 	      /* We currently have a common symbol.  The archive map contains
5041 		 a reference to this symbol, so we may want to include it.  We
5042 		 only want to include it however, if this archive element
5043 		 contains a definition of the symbol, not just another common
5044 		 declaration of it.
5045 
5046 		 Unfortunately some archivers (including GNU ar) will put
5047 		 declarations of common symbols into their archive maps, as
5048 		 well as real definitions, so we cannot just go by the archive
5049 		 map alone.  Instead we must read in the element's symbol
5050 		 table and check that to see what kind of symbol definition
5051 		 this is.  */
5052 	      if (! elf_link_is_defined_archive_symbol (abfd, symdef))
5053 		continue;
5054 	    }
5055 	  else if (h->root.type != bfd_link_hash_undefined)
5056 	    {
5057 	      if (h->root.type != bfd_link_hash_undefweak)
5058 		defined[i] = TRUE;
5059 	      continue;
5060 	    }
5061 
5062 	  /* We need to include this archive member.  */
5063 	  element = _bfd_get_elt_at_filepos (abfd, symdef->file_offset);
5064 	  if (element == NULL)
5065 	    goto error_return;
5066 
5067 	  if (! bfd_check_format (element, bfd_object))
5068 	    goto error_return;
5069 
5070 	  /* Doublecheck that we have not included this object
5071 	     already--it should be impossible, but there may be
5072 	     something wrong with the archive.  */
5073 	  if (element->archive_pass != 0)
5074 	    {
5075 	      bfd_set_error (bfd_error_bad_value);
5076 	      goto error_return;
5077 	    }
5078 	  element->archive_pass = 1;
5079 
5080 	  undefs_tail = info->hash->undefs_tail;
5081 
5082 	  if (!(*info->callbacks
5083 		->add_archive_element) (info, element, symdef->name, &element))
5084 	    goto error_return;
5085 	  if (!bfd_link_add_symbols (element, info))
5086 	    goto error_return;
5087 
5088 	  /* If there are any new undefined symbols, we need to make
5089 	     another pass through the archive in order to see whether
5090 	     they can be defined.  FIXME: This isn't perfect, because
5091 	     common symbols wind up on undefs_tail and because an
5092 	     undefined symbol which is defined later on in this pass
5093 	     does not require another pass.  This isn't a bug, but it
5094 	     does make the code less efficient than it could be.  */
5095 	  if (undefs_tail != info->hash->undefs_tail)
5096 	    loop = TRUE;
5097 
5098 	  /* Look backward to mark all symbols from this object file
5099 	     which we have already seen in this pass.  */
5100 	  mark = i;
5101 	  do
5102 	    {
5103 	      included[mark] = TRUE;
5104 	      if (mark == 0)
5105 		break;
5106 	      --mark;
5107 	    }
5108 	  while (symdefs[mark].file_offset == symdef->file_offset);
5109 
5110 	  /* We mark subsequent symbols from this object file as we go
5111 	     on through the loop.  */
5112 	  last = symdef->file_offset;
5113 	}
5114     }
5115   while (loop);
5116 
5117   free (defined);
5118   free (included);
5119 
5120   return TRUE;
5121 
5122  error_return:
5123   if (defined != NULL)
5124     free (defined);
5125   if (included != NULL)
5126     free (included);
5127   return FALSE;
5128 }
5129 
5130 /* Given an ELF BFD, add symbols to the global hash table as
5131    appropriate.  */
5132 
5133 bfd_boolean
5134 bfd_elf_link_add_symbols (bfd *abfd, struct bfd_link_info *info)
5135 {
5136   switch (bfd_get_format (abfd))
5137     {
5138     case bfd_object:
5139       return elf_link_add_object_symbols (abfd, info);
5140     case bfd_archive:
5141       return elf_link_add_archive_symbols (abfd, info);
5142     default:
5143       bfd_set_error (bfd_error_wrong_format);
5144       return FALSE;
5145     }
5146 }
5147 
5148 struct hash_codes_info
5149 {
5150   unsigned long *hashcodes;
5151   bfd_boolean error;
5152 };
5153 
5154 /* This function will be called though elf_link_hash_traverse to store
5155    all hash value of the exported symbols in an array.  */
5156 
5157 static bfd_boolean
5158 elf_collect_hash_codes (struct elf_link_hash_entry *h, void *data)
5159 {
5160   struct hash_codes_info *inf = (struct hash_codes_info *) data;
5161   const char *name;
5162   char *p;
5163   unsigned long ha;
5164   char *alc = NULL;
5165 
5166   /* Ignore indirect symbols.  These are added by the versioning code.  */
5167   if (h->dynindx == -1)
5168     return TRUE;
5169 
5170   name = h->root.root.string;
5171   p = strchr (name, ELF_VER_CHR);
5172   if (p != NULL)
5173     {
5174       alc = (char *) bfd_malloc (p - name + 1);
5175       if (alc == NULL)
5176 	{
5177 	  inf->error = TRUE;
5178 	  return FALSE;
5179 	}
5180       memcpy (alc, name, p - name);
5181       alc[p - name] = '\0';
5182       name = alc;
5183     }
5184 
5185   /* Compute the hash value.  */
5186   ha = bfd_elf_hash (name);
5187 
5188   /* Store the found hash value in the array given as the argument.  */
5189   *(inf->hashcodes)++ = ha;
5190 
5191   /* And store it in the struct so that we can put it in the hash table
5192      later.  */
5193   h->u.elf_hash_value = ha;
5194 
5195   if (alc != NULL)
5196     free (alc);
5197 
5198   return TRUE;
5199 }
5200 
5201 struct collect_gnu_hash_codes
5202 {
5203   bfd *output_bfd;
5204   const struct elf_backend_data *bed;
5205   unsigned long int nsyms;
5206   unsigned long int maskbits;
5207   unsigned long int *hashcodes;
5208   unsigned long int *hashval;
5209   unsigned long int *indx;
5210   unsigned long int *counts;
5211   bfd_vma *bitmask;
5212   bfd_byte *contents;
5213   long int min_dynindx;
5214   unsigned long int bucketcount;
5215   unsigned long int symindx;
5216   long int local_indx;
5217   long int shift1, shift2;
5218   unsigned long int mask;
5219   bfd_boolean error;
5220 };
5221 
5222 /* This function will be called though elf_link_hash_traverse to store
5223    all hash value of the exported symbols in an array.  */
5224 
5225 static bfd_boolean
5226 elf_collect_gnu_hash_codes (struct elf_link_hash_entry *h, void *data)
5227 {
5228   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5229   const char *name;
5230   char *p;
5231   unsigned long ha;
5232   char *alc = NULL;
5233 
5234   /* Ignore indirect symbols.  These are added by the versioning code.  */
5235   if (h->dynindx == -1)
5236     return TRUE;
5237 
5238   /* Ignore also local symbols and undefined symbols.  */
5239   if (! (*s->bed->elf_hash_symbol) (h))
5240     return TRUE;
5241 
5242   name = h->root.root.string;
5243   p = strchr (name, ELF_VER_CHR);
5244   if (p != NULL)
5245     {
5246       alc = (char *) bfd_malloc (p - name + 1);
5247       if (alc == NULL)
5248 	{
5249 	  s->error = TRUE;
5250 	  return FALSE;
5251 	}
5252       memcpy (alc, name, p - name);
5253       alc[p - name] = '\0';
5254       name = alc;
5255     }
5256 
5257   /* Compute the hash value.  */
5258   ha = bfd_elf_gnu_hash (name);
5259 
5260   /* Store the found hash value in the array for compute_bucket_count,
5261      and also for .dynsym reordering purposes.  */
5262   s->hashcodes[s->nsyms] = ha;
5263   s->hashval[h->dynindx] = ha;
5264   ++s->nsyms;
5265   if (s->min_dynindx < 0 || s->min_dynindx > h->dynindx)
5266     s->min_dynindx = h->dynindx;
5267 
5268   if (alc != NULL)
5269     free (alc);
5270 
5271   return TRUE;
5272 }
5273 
5274 /* This function will be called though elf_link_hash_traverse to do
5275    final dynaminc symbol renumbering.  */
5276 
5277 static bfd_boolean
5278 elf_renumber_gnu_hash_syms (struct elf_link_hash_entry *h, void *data)
5279 {
5280   struct collect_gnu_hash_codes *s = (struct collect_gnu_hash_codes *) data;
5281   unsigned long int bucket;
5282   unsigned long int val;
5283 
5284   /* Ignore indirect symbols.  */
5285   if (h->dynindx == -1)
5286     return TRUE;
5287 
5288   /* Ignore also local symbols and undefined symbols.  */
5289   if (! (*s->bed->elf_hash_symbol) (h))
5290     {
5291       if (h->dynindx >= s->min_dynindx)
5292 	h->dynindx = s->local_indx++;
5293       return TRUE;
5294     }
5295 
5296   bucket = s->hashval[h->dynindx] % s->bucketcount;
5297   val = (s->hashval[h->dynindx] >> s->shift1)
5298 	& ((s->maskbits >> s->shift1) - 1);
5299   s->bitmask[val] |= ((bfd_vma) 1) << (s->hashval[h->dynindx] & s->mask);
5300   s->bitmask[val]
5301     |= ((bfd_vma) 1) << ((s->hashval[h->dynindx] >> s->shift2) & s->mask);
5302   val = s->hashval[h->dynindx] & ~(unsigned long int) 1;
5303   if (s->counts[bucket] == 1)
5304     /* Last element terminates the chain.  */
5305     val |= 1;
5306   bfd_put_32 (s->output_bfd, val,
5307 	      s->contents + (s->indx[bucket] - s->symindx) * 4);
5308   --s->counts[bucket];
5309   h->dynindx = s->indx[bucket]++;
5310   return TRUE;
5311 }
5312 
5313 /* Return TRUE if symbol should be hashed in the `.gnu.hash' section.  */
5314 
5315 bfd_boolean
5316 _bfd_elf_hash_symbol (struct elf_link_hash_entry *h)
5317 {
5318   return !(h->forced_local
5319 	   || h->root.type == bfd_link_hash_undefined
5320 	   || h->root.type == bfd_link_hash_undefweak
5321 	   || ((h->root.type == bfd_link_hash_defined
5322 		|| h->root.type == bfd_link_hash_defweak)
5323 	       && h->root.u.def.section->output_section == NULL));
5324 }
5325 
5326 /* Array used to determine the number of hash table buckets to use
5327    based on the number of symbols there are.  If there are fewer than
5328    3 symbols we use 1 bucket, fewer than 17 symbols we use 3 buckets,
5329    fewer than 37 we use 17 buckets, and so forth.  We never use more
5330    than 32771 buckets.  */
5331 
5332 static const size_t elf_buckets[] =
5333 {
5334   1, 3, 17, 37, 67, 97, 131, 197, 263, 521, 1031, 2053, 4099, 8209,
5335   16411, 32771, 0
5336 };
5337 
5338 /* Compute bucket count for hashing table.  We do not use a static set
5339    of possible tables sizes anymore.  Instead we determine for all
5340    possible reasonable sizes of the table the outcome (i.e., the
5341    number of collisions etc) and choose the best solution.  The
5342    weighting functions are not too simple to allow the table to grow
5343    without bounds.  Instead one of the weighting factors is the size.
5344    Therefore the result is always a good payoff between few collisions
5345    (= short chain lengths) and table size.  */
5346 static size_t
5347 compute_bucket_count (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5348 		      unsigned long int *hashcodes ATTRIBUTE_UNUSED,
5349 		      unsigned long int nsyms,
5350 		      int gnu_hash)
5351 {
5352   size_t best_size = 0;
5353   unsigned long int i;
5354 
5355   /* We have a problem here.  The following code to optimize the table
5356      size requires an integer type with more the 32 bits.  If
5357      BFD_HOST_U_64_BIT is set we know about such a type.  */
5358 #ifdef BFD_HOST_U_64_BIT
5359   if (info->optimize)
5360     {
5361       size_t minsize;
5362       size_t maxsize;
5363       BFD_HOST_U_64_BIT best_chlen = ~((BFD_HOST_U_64_BIT) 0);
5364       bfd *dynobj = elf_hash_table (info)->dynobj;
5365       size_t dynsymcount = elf_hash_table (info)->dynsymcount;
5366       const struct elf_backend_data *bed = get_elf_backend_data (dynobj);
5367       unsigned long int *counts;
5368       bfd_size_type amt;
5369       unsigned int no_improvement_count = 0;
5370 
5371       /* Possible optimization parameters: if we have NSYMS symbols we say
5372 	 that the hashing table must at least have NSYMS/4 and at most
5373 	 2*NSYMS buckets.  */
5374       minsize = nsyms / 4;
5375       if (minsize == 0)
5376 	minsize = 1;
5377       best_size = maxsize = nsyms * 2;
5378       if (gnu_hash)
5379 	{
5380 	  if (minsize < 2)
5381 	    minsize = 2;
5382 	  if ((best_size & 31) == 0)
5383 	    ++best_size;
5384 	}
5385 
5386       /* Create array where we count the collisions in.  We must use bfd_malloc
5387 	 since the size could be large.  */
5388       amt = maxsize;
5389       amt *= sizeof (unsigned long int);
5390       counts = (unsigned long int *) bfd_malloc (amt);
5391       if (counts == NULL)
5392 	return 0;
5393 
5394       /* Compute the "optimal" size for the hash table.  The criteria is a
5395 	 minimal chain length.  The minor criteria is (of course) the size
5396 	 of the table.  */
5397       for (i = minsize; i < maxsize; ++i)
5398 	{
5399 	  /* Walk through the array of hashcodes and count the collisions.  */
5400 	  BFD_HOST_U_64_BIT max;
5401 	  unsigned long int j;
5402 	  unsigned long int fact;
5403 
5404 	  if (gnu_hash && (i & 31) == 0)
5405 	    continue;
5406 
5407 	  memset (counts, '\0', i * sizeof (unsigned long int));
5408 
5409 	  /* Determine how often each hash bucket is used.  */
5410 	  for (j = 0; j < nsyms; ++j)
5411 	    ++counts[hashcodes[j] % i];
5412 
5413 	  /* For the weight function we need some information about the
5414 	     pagesize on the target.  This is information need not be 100%
5415 	     accurate.  Since this information is not available (so far) we
5416 	     define it here to a reasonable default value.  If it is crucial
5417 	     to have a better value some day simply define this value.  */
5418 # ifndef BFD_TARGET_PAGESIZE
5419 #  define BFD_TARGET_PAGESIZE	(4096)
5420 # endif
5421 
5422 	  /* We in any case need 2 + DYNSYMCOUNT entries for the size values
5423 	     and the chains.  */
5424 	  max = (2 + dynsymcount) * bed->s->sizeof_hash_entry;
5425 
5426 # if 1
5427 	  /* Variant 1: optimize for short chains.  We add the squares
5428 	     of all the chain lengths (which favors many small chain
5429 	     over a few long chains).  */
5430 	  for (j = 0; j < i; ++j)
5431 	    max += counts[j] * counts[j];
5432 
5433 	  /* This adds penalties for the overall size of the table.  */
5434 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5435 	  max *= fact * fact;
5436 # else
5437 	  /* Variant 2: Optimize a lot more for small table.  Here we
5438 	     also add squares of the size but we also add penalties for
5439 	     empty slots (the +1 term).  */
5440 	  for (j = 0; j < i; ++j)
5441 	    max += (1 + counts[j]) * (1 + counts[j]);
5442 
5443 	  /* The overall size of the table is considered, but not as
5444 	     strong as in variant 1, where it is squared.  */
5445 	  fact = i / (BFD_TARGET_PAGESIZE / bed->s->sizeof_hash_entry) + 1;
5446 	  max *= fact;
5447 # endif
5448 
5449 	  /* Compare with current best results.  */
5450 	  if (max < best_chlen)
5451 	    {
5452 	      best_chlen = max;
5453 	      best_size = i;
5454               no_improvement_count = 0;
5455 	    }
5456 	  /* PR 11843: Avoid futile long searches for the best bucket size
5457 	     when there are a large number of symbols.  */
5458 	  else if (++no_improvement_count == 100)
5459 	    break;
5460 	}
5461 
5462       free (counts);
5463     }
5464   else
5465 #endif /* defined (BFD_HOST_U_64_BIT) */
5466     {
5467       /* This is the fallback solution if no 64bit type is available or if we
5468 	 are not supposed to spend much time on optimizations.  We select the
5469 	 bucket count using a fixed set of numbers.  */
5470       for (i = 0; elf_buckets[i] != 0; i++)
5471 	{
5472 	  best_size = elf_buckets[i];
5473 	  if (nsyms < elf_buckets[i + 1])
5474 	    break;
5475 	}
5476       if (gnu_hash && best_size < 2)
5477 	best_size = 2;
5478     }
5479 
5480   return best_size;
5481 }
5482 
5483 /* Size any SHT_GROUP section for ld -r.  */
5484 
5485 bfd_boolean
5486 _bfd_elf_size_group_sections (struct bfd_link_info *info)
5487 {
5488   bfd *ibfd;
5489 
5490   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
5491     if (bfd_get_flavour (ibfd) == bfd_target_elf_flavour
5492 	&& !_bfd_elf_fixup_group_sections (ibfd, bfd_abs_section_ptr))
5493       return FALSE;
5494   return TRUE;
5495 }
5496 
5497 /* Set a default stack segment size.  The value in INFO wins.  If it
5498    is unset, LEGACY_SYMBOL's value is used, and if that symbol is
5499    undefined it is initialized.  */
5500 
5501 bfd_boolean
5502 bfd_elf_stack_segment_size (bfd *output_bfd,
5503 			    struct bfd_link_info *info,
5504 			    const char *legacy_symbol,
5505 			    bfd_vma default_size)
5506 {
5507   struct elf_link_hash_entry *h = NULL;
5508 
5509   /* Look for legacy symbol.  */
5510   if (legacy_symbol)
5511     h = elf_link_hash_lookup (elf_hash_table (info), legacy_symbol,
5512 			      FALSE, FALSE, FALSE);
5513   if (h && (h->root.type == bfd_link_hash_defined
5514 	    || h->root.type == bfd_link_hash_defweak)
5515       && h->def_regular
5516       && (h->type == STT_NOTYPE || h->type == STT_OBJECT))
5517     {
5518       /* The symbol has no type if specified on the command line.  */
5519       h->type = STT_OBJECT;
5520       if (info->stacksize)
5521 	(*_bfd_error_handler) (_("%B: stack size specified and %s set"),
5522 			       output_bfd, legacy_symbol);
5523       else if (h->root.u.def.section != bfd_abs_section_ptr)
5524 	(*_bfd_error_handler) (_("%B: %s not absolute"),
5525 			       output_bfd, legacy_symbol);
5526       else
5527 	info->stacksize = h->root.u.def.value;
5528     }
5529 
5530   if (!info->stacksize)
5531     /* If the user didn't set a size, or explicitly inhibit the
5532        size, set it now.  */
5533     info->stacksize = default_size;
5534 
5535   /* Provide the legacy symbol, if it is referenced.  */
5536   if (h && (h->root.type == bfd_link_hash_undefined
5537 	    || h->root.type == bfd_link_hash_undefweak))
5538     {
5539       struct bfd_link_hash_entry *bh = NULL;
5540 
5541       if (!(_bfd_generic_link_add_one_symbol
5542 	    (info, output_bfd, legacy_symbol,
5543 	     BSF_GLOBAL, bfd_abs_section_ptr,
5544 	     info->stacksize >= 0 ? info->stacksize : 0,
5545 	     NULL, FALSE, get_elf_backend_data (output_bfd)->collect, &bh)))
5546 	return FALSE;
5547 
5548       h = (struct elf_link_hash_entry *) bh;
5549       h->def_regular = 1;
5550       h->type = STT_OBJECT;
5551     }
5552 
5553   return TRUE;
5554 }
5555 
5556 /* Set up the sizes and contents of the ELF dynamic sections.  This is
5557    called by the ELF linker emulation before_allocation routine.  We
5558    must set the sizes of the sections before the linker sets the
5559    addresses of the various sections.  */
5560 
5561 bfd_boolean
5562 bfd_elf_size_dynamic_sections (bfd *output_bfd,
5563 			       const char *soname,
5564 			       const char *rpath,
5565 			       const char *filter_shlib,
5566 			       const char *audit,
5567 			       const char *depaudit,
5568 			       const char * const *auxiliary_filters,
5569 			       struct bfd_link_info *info,
5570 			       asection **sinterpptr)
5571 {
5572   bfd_size_type soname_indx;
5573   bfd *dynobj;
5574   const struct elf_backend_data *bed;
5575   struct elf_info_failed asvinfo;
5576 
5577   *sinterpptr = NULL;
5578 
5579   soname_indx = (bfd_size_type) -1;
5580 
5581   if (!is_elf_hash_table (info->hash))
5582     return TRUE;
5583 
5584   bed = get_elf_backend_data (output_bfd);
5585 
5586   /* Any syms created from now on start with -1 in
5587      got.refcount/offset and plt.refcount/offset.  */
5588   elf_hash_table (info)->init_got_refcount
5589     = elf_hash_table (info)->init_got_offset;
5590   elf_hash_table (info)->init_plt_refcount
5591     = elf_hash_table (info)->init_plt_offset;
5592 
5593   if (info->relocatable
5594       && !_bfd_elf_size_group_sections (info))
5595     return FALSE;
5596 
5597   /* The backend may have to create some sections regardless of whether
5598      we're dynamic or not.  */
5599   if (bed->elf_backend_always_size_sections
5600       && ! (*bed->elf_backend_always_size_sections) (output_bfd, info))
5601     return FALSE;
5602 
5603   /* Determine any GNU_STACK segment requirements, after the backend
5604      has had a chance to set a default segment size.  */
5605   if (info->execstack)
5606     elf_stack_flags (output_bfd) = PF_R | PF_W | PF_X;
5607   else if (info->noexecstack)
5608     elf_stack_flags (output_bfd) = PF_R | PF_W;
5609   else
5610     {
5611       bfd *inputobj;
5612       asection *notesec = NULL;
5613       int exec = 0;
5614 
5615       for (inputobj = info->input_bfds;
5616 	   inputobj;
5617 	   inputobj = inputobj->link_next)
5618 	{
5619 	  asection *s;
5620 
5621 	  if (inputobj->flags
5622 	      & (DYNAMIC | EXEC_P | BFD_PLUGIN | BFD_LINKER_CREATED))
5623 	    continue;
5624 	  s = bfd_get_section_by_name (inputobj, ".note.GNU-stack");
5625 	  if (s)
5626 	    {
5627 	      if (s->flags & SEC_CODE)
5628 		exec = PF_X;
5629 	      notesec = s;
5630 	    }
5631 	  else if (bed->default_execstack)
5632 	    exec = PF_X;
5633 	}
5634       if (notesec || info->stacksize > 0)
5635 	elf_stack_flags (output_bfd) = PF_R | PF_W | exec;
5636       if (notesec && exec && info->relocatable
5637 	  && notesec->output_section != bfd_abs_section_ptr)
5638 	notesec->output_section->flags |= SEC_CODE;
5639     }
5640 
5641   dynobj = elf_hash_table (info)->dynobj;
5642 
5643   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5644     {
5645       struct elf_info_failed eif;
5646       struct elf_link_hash_entry *h;
5647       asection *dynstr;
5648       struct bfd_elf_version_tree *t;
5649       struct bfd_elf_version_expr *d;
5650       asection *s;
5651       bfd_boolean all_defined;
5652 
5653       *sinterpptr = bfd_get_linker_section (dynobj, ".interp");
5654       BFD_ASSERT (*sinterpptr != NULL || !info->executable);
5655 
5656       if (soname != NULL)
5657 	{
5658 	  soname_indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5659 					     soname, TRUE);
5660 	  if (soname_indx == (bfd_size_type) -1
5661 	      || !_bfd_elf_add_dynamic_entry (info, DT_SONAME, soname_indx))
5662 	    return FALSE;
5663 	}
5664 
5665       if (info->symbolic)
5666 	{
5667 	  if (!_bfd_elf_add_dynamic_entry (info, DT_SYMBOLIC, 0))
5668 	    return FALSE;
5669 	  info->flags |= DF_SYMBOLIC;
5670 	}
5671 
5672       if (rpath != NULL)
5673 	{
5674 	  bfd_size_type indx;
5675 	  bfd_vma tag;
5676 
5677 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, rpath,
5678 				      TRUE);
5679 	  if (indx == (bfd_size_type) -1)
5680 	    return FALSE;
5681 
5682 	  tag = info->new_dtags ? DT_RUNPATH : DT_RPATH;
5683 	  if (!_bfd_elf_add_dynamic_entry (info, tag, indx))
5684 	    return FALSE;
5685 	}
5686 
5687       if (filter_shlib != NULL)
5688 	{
5689 	  bfd_size_type indx;
5690 
5691 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5692 				      filter_shlib, TRUE);
5693 	  if (indx == (bfd_size_type) -1
5694 	      || !_bfd_elf_add_dynamic_entry (info, DT_FILTER, indx))
5695 	    return FALSE;
5696 	}
5697 
5698       if (auxiliary_filters != NULL)
5699 	{
5700 	  const char * const *p;
5701 
5702 	  for (p = auxiliary_filters; *p != NULL; p++)
5703 	    {
5704 	      bfd_size_type indx;
5705 
5706 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
5707 					  *p, TRUE);
5708 	      if (indx == (bfd_size_type) -1
5709 		  || !_bfd_elf_add_dynamic_entry (info, DT_AUXILIARY, indx))
5710 		return FALSE;
5711 	    }
5712 	}
5713 
5714       if (audit != NULL)
5715 	{
5716 	  bfd_size_type indx;
5717 
5718 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, audit,
5719 				      TRUE);
5720 	  if (indx == (bfd_size_type) -1
5721 	      || !_bfd_elf_add_dynamic_entry (info, DT_AUDIT, indx))
5722 	    return FALSE;
5723 	}
5724 
5725       if (depaudit != NULL)
5726 	{
5727 	  bfd_size_type indx;
5728 
5729 	  indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr, depaudit,
5730 				      TRUE);
5731 	  if (indx == (bfd_size_type) -1
5732 	      || !_bfd_elf_add_dynamic_entry (info, DT_DEPAUDIT, indx))
5733 	    return FALSE;
5734 	}
5735 
5736       eif.info = info;
5737       eif.failed = FALSE;
5738 
5739       /* If we are supposed to export all symbols into the dynamic symbol
5740 	 table (this is not the normal case), then do so.  */
5741       if (info->export_dynamic
5742 	  || (info->executable && info->dynamic))
5743 	{
5744 	  elf_link_hash_traverse (elf_hash_table (info),
5745 				  _bfd_elf_export_symbol,
5746 				  &eif);
5747 	  if (eif.failed)
5748 	    return FALSE;
5749 	}
5750 
5751       /* Make all global versions with definition.  */
5752       for (t = info->version_info; t != NULL; t = t->next)
5753 	for (d = t->globals.list; d != NULL; d = d->next)
5754 	  if (!d->symver && d->literal)
5755 	    {
5756 	      const char *verstr, *name;
5757 	      size_t namelen, verlen, newlen;
5758 	      char *newname, *p, leading_char;
5759 	      struct elf_link_hash_entry *newh;
5760 
5761 	      leading_char = bfd_get_symbol_leading_char (output_bfd);
5762 	      name = d->pattern;
5763 	      namelen = strlen (name) + (leading_char != '\0');
5764 	      verstr = t->name;
5765 	      verlen = strlen (verstr);
5766 	      newlen = namelen + verlen + 3;
5767 
5768 	      newname = (char *) bfd_malloc (newlen);
5769 	      if (newname == NULL)
5770 		return FALSE;
5771 	      newname[0] = leading_char;
5772 	      memcpy (newname + (leading_char != '\0'), name, namelen);
5773 
5774 	      /* Check the hidden versioned definition.  */
5775 	      p = newname + namelen;
5776 	      *p++ = ELF_VER_CHR;
5777 	      memcpy (p, verstr, verlen + 1);
5778 	      newh = elf_link_hash_lookup (elf_hash_table (info),
5779 					   newname, FALSE, FALSE,
5780 					   FALSE);
5781 	      if (newh == NULL
5782 		  || (newh->root.type != bfd_link_hash_defined
5783 		      && newh->root.type != bfd_link_hash_defweak))
5784 		{
5785 		  /* Check the default versioned definition.  */
5786 		  *p++ = ELF_VER_CHR;
5787 		  memcpy (p, verstr, verlen + 1);
5788 		  newh = elf_link_hash_lookup (elf_hash_table (info),
5789 					       newname, FALSE, FALSE,
5790 					       FALSE);
5791 		}
5792 	      free (newname);
5793 
5794 	      /* Mark this version if there is a definition and it is
5795 		 not defined in a shared object.  */
5796 	      if (newh != NULL
5797 		  && !newh->def_dynamic
5798 		  && (newh->root.type == bfd_link_hash_defined
5799 		      || newh->root.type == bfd_link_hash_defweak))
5800 		d->symver = 1;
5801 	    }
5802 
5803       /* Attach all the symbols to their version information.  */
5804       asvinfo.info = info;
5805       asvinfo.failed = FALSE;
5806 
5807       elf_link_hash_traverse (elf_hash_table (info),
5808 			      _bfd_elf_link_assign_sym_version,
5809 			      &asvinfo);
5810       if (asvinfo.failed)
5811 	return FALSE;
5812 
5813       if (!info->allow_undefined_version)
5814 	{
5815 	  /* Check if all global versions have a definition.  */
5816 	  all_defined = TRUE;
5817 	  for (t = info->version_info; t != NULL; t = t->next)
5818 	    for (d = t->globals.list; d != NULL; d = d->next)
5819 	      if (d->literal && !d->symver && !d->script)
5820 		{
5821 		  (*_bfd_error_handler)
5822 		    (_("%s: undefined version: %s"),
5823 		     d->pattern, t->name);
5824 		  all_defined = FALSE;
5825 		}
5826 
5827 	  if (!all_defined)
5828 	    {
5829 	      bfd_set_error (bfd_error_bad_value);
5830 	      return FALSE;
5831 	    }
5832 	}
5833 
5834       /* Find all symbols which were defined in a dynamic object and make
5835 	 the backend pick a reasonable value for them.  */
5836       elf_link_hash_traverse (elf_hash_table (info),
5837 			      _bfd_elf_adjust_dynamic_symbol,
5838 			      &eif);
5839       if (eif.failed)
5840 	return FALSE;
5841 
5842       /* Add some entries to the .dynamic section.  We fill in some of the
5843 	 values later, in bfd_elf_final_link, but we must add the entries
5844 	 now so that we know the final size of the .dynamic section.  */
5845 
5846       /* If there are initialization and/or finalization functions to
5847 	 call then add the corresponding DT_INIT/DT_FINI entries.  */
5848       h = (info->init_function
5849 	   ? elf_link_hash_lookup (elf_hash_table (info),
5850 				   info->init_function, FALSE,
5851 				   FALSE, FALSE)
5852 	   : NULL);
5853       if (h != NULL
5854 	  && (h->ref_regular
5855 	      || h->def_regular))
5856 	{
5857 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT, 0))
5858 	    return FALSE;
5859 	}
5860       h = (info->fini_function
5861 	   ? elf_link_hash_lookup (elf_hash_table (info),
5862 				   info->fini_function, FALSE,
5863 				   FALSE, FALSE)
5864 	   : NULL);
5865       if (h != NULL
5866 	  && (h->ref_regular
5867 	      || h->def_regular))
5868 	{
5869 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI, 0))
5870 	    return FALSE;
5871 	}
5872 
5873       s = bfd_get_section_by_name (output_bfd, ".preinit_array");
5874       if (s != NULL && s->linker_has_input)
5875 	{
5876 	  /* DT_PREINIT_ARRAY is not allowed in shared library.  */
5877 	  if (! info->executable)
5878 	    {
5879 	      bfd *sub;
5880 	      asection *o;
5881 
5882 	      for (sub = info->input_bfds; sub != NULL;
5883 		   sub = sub->link_next)
5884 		if (bfd_get_flavour (sub) == bfd_target_elf_flavour)
5885 		  for (o = sub->sections; o != NULL; o = o->next)
5886 		    if (elf_section_data (o)->this_hdr.sh_type
5887 			== SHT_PREINIT_ARRAY)
5888 		      {
5889 			(*_bfd_error_handler)
5890 			  (_("%B: .preinit_array section is not allowed in DSO"),
5891 			   sub);
5892 			break;
5893 		      }
5894 
5895 	      bfd_set_error (bfd_error_nonrepresentable_section);
5896 	      return FALSE;
5897 	    }
5898 
5899 	  if (!_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAY, 0)
5900 	      || !_bfd_elf_add_dynamic_entry (info, DT_PREINIT_ARRAYSZ, 0))
5901 	    return FALSE;
5902 	}
5903       s = bfd_get_section_by_name (output_bfd, ".init_array");
5904       if (s != NULL && s->linker_has_input)
5905 	{
5906 	  if (!_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAY, 0)
5907 	      || !_bfd_elf_add_dynamic_entry (info, DT_INIT_ARRAYSZ, 0))
5908 	    return FALSE;
5909 	}
5910       s = bfd_get_section_by_name (output_bfd, ".fini_array");
5911       if (s != NULL && s->linker_has_input)
5912 	{
5913 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAY, 0)
5914 	      || !_bfd_elf_add_dynamic_entry (info, DT_FINI_ARRAYSZ, 0))
5915 	    return FALSE;
5916 	}
5917 
5918       dynstr = bfd_get_linker_section (dynobj, ".dynstr");
5919       /* If .dynstr is excluded from the link, we don't want any of
5920 	 these tags.  Strictly, we should be checking each section
5921 	 individually;  This quick check covers for the case where
5922 	 someone does a /DISCARD/ : { *(*) }.  */
5923       if (dynstr != NULL && dynstr->output_section != bfd_abs_section_ptr)
5924 	{
5925 	  bfd_size_type strsize;
5926 
5927 	  strsize = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
5928 	  if ((info->emit_hash
5929 	       && !_bfd_elf_add_dynamic_entry (info, DT_HASH, 0))
5930 	      || (info->emit_gnu_hash
5931 		  && !_bfd_elf_add_dynamic_entry (info, DT_GNU_HASH, 0))
5932 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRTAB, 0)
5933 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMTAB, 0)
5934 	      || !_bfd_elf_add_dynamic_entry (info, DT_STRSZ, strsize)
5935 	      || !_bfd_elf_add_dynamic_entry (info, DT_SYMENT,
5936 					      bed->s->sizeof_sym))
5937 	    return FALSE;
5938 	}
5939     }
5940 
5941   /* The backend must work out the sizes of all the other dynamic
5942      sections.  */
5943   if (dynobj != NULL
5944       && bed->elf_backend_size_dynamic_sections != NULL
5945       && ! (*bed->elf_backend_size_dynamic_sections) (output_bfd, info))
5946     return FALSE;
5947 
5948   if (! _bfd_elf_maybe_strip_eh_frame_hdr (info))
5949     return FALSE;
5950 
5951   if (dynobj != NULL && elf_hash_table (info)->dynamic_sections_created)
5952     {
5953       unsigned long section_sym_count;
5954       struct bfd_elf_version_tree *verdefs;
5955       asection *s;
5956 
5957       /* Set up the version definition section.  */
5958       s = bfd_get_linker_section (dynobj, ".gnu.version_d");
5959       BFD_ASSERT (s != NULL);
5960 
5961       /* We may have created additional version definitions if we are
5962 	 just linking a regular application.  */
5963       verdefs = info->version_info;
5964 
5965       /* Skip anonymous version tag.  */
5966       if (verdefs != NULL && verdefs->vernum == 0)
5967 	verdefs = verdefs->next;
5968 
5969       if (verdefs == NULL && !info->create_default_symver)
5970 	s->flags |= SEC_EXCLUDE;
5971       else
5972 	{
5973 	  unsigned int cdefs;
5974 	  bfd_size_type size;
5975 	  struct bfd_elf_version_tree *t;
5976 	  bfd_byte *p;
5977 	  Elf_Internal_Verdef def;
5978 	  Elf_Internal_Verdaux defaux;
5979 	  struct bfd_link_hash_entry *bh;
5980 	  struct elf_link_hash_entry *h;
5981 	  const char *name;
5982 
5983 	  cdefs = 0;
5984 	  size = 0;
5985 
5986 	  /* Make space for the base version.  */
5987 	  size += sizeof (Elf_External_Verdef);
5988 	  size += sizeof (Elf_External_Verdaux);
5989 	  ++cdefs;
5990 
5991 	  /* Make space for the default version.  */
5992 	  if (info->create_default_symver)
5993 	    {
5994 	      size += sizeof (Elf_External_Verdef);
5995 	      ++cdefs;
5996 	    }
5997 
5998 	  for (t = verdefs; t != NULL; t = t->next)
5999 	    {
6000 	      struct bfd_elf_version_deps *n;
6001 
6002 	      /* Don't emit base version twice.  */
6003 	      if (t->vernum == 0)
6004 		continue;
6005 
6006 	      size += sizeof (Elf_External_Verdef);
6007 	      size += sizeof (Elf_External_Verdaux);
6008 	      ++cdefs;
6009 
6010 	      for (n = t->deps; n != NULL; n = n->next)
6011 		size += sizeof (Elf_External_Verdaux);
6012 	    }
6013 
6014 	  s->size = size;
6015 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6016 	  if (s->contents == NULL && s->size != 0)
6017 	    return FALSE;
6018 
6019 	  /* Fill in the version definition section.  */
6020 
6021 	  p = s->contents;
6022 
6023 	  def.vd_version = VER_DEF_CURRENT;
6024 	  def.vd_flags = VER_FLG_BASE;
6025 	  def.vd_ndx = 1;
6026 	  def.vd_cnt = 1;
6027 	  if (info->create_default_symver)
6028 	    {
6029 	      def.vd_aux = 2 * sizeof (Elf_External_Verdef);
6030 	      def.vd_next = sizeof (Elf_External_Verdef);
6031 	    }
6032 	  else
6033 	    {
6034 	      def.vd_aux = sizeof (Elf_External_Verdef);
6035 	      def.vd_next = (sizeof (Elf_External_Verdef)
6036 			     + sizeof (Elf_External_Verdaux));
6037 	    }
6038 
6039 	  if (soname_indx != (bfd_size_type) -1)
6040 	    {
6041 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6042 				      soname_indx);
6043 	      def.vd_hash = bfd_elf_hash (soname);
6044 	      defaux.vda_name = soname_indx;
6045 	      name = soname;
6046 	    }
6047 	  else
6048 	    {
6049 	      bfd_size_type indx;
6050 
6051 	      name = lbasename (output_bfd->filename);
6052 	      def.vd_hash = bfd_elf_hash (name);
6053 	      indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6054 					  name, FALSE);
6055 	      if (indx == (bfd_size_type) -1)
6056 		return FALSE;
6057 	      defaux.vda_name = indx;
6058 	    }
6059 	  defaux.vda_next = 0;
6060 
6061 	  _bfd_elf_swap_verdef_out (output_bfd, &def,
6062 				    (Elf_External_Verdef *) p);
6063 	  p += sizeof (Elf_External_Verdef);
6064 	  if (info->create_default_symver)
6065 	    {
6066 	      /* Add a symbol representing this version.  */
6067 	      bh = NULL;
6068 	      if (! (_bfd_generic_link_add_one_symbol
6069 		     (info, dynobj, name, BSF_GLOBAL, bfd_abs_section_ptr,
6070 		      0, NULL, FALSE,
6071 		      get_elf_backend_data (dynobj)->collect, &bh)))
6072 		return FALSE;
6073 	      h = (struct elf_link_hash_entry *) bh;
6074 	      h->non_elf = 0;
6075 	      h->def_regular = 1;
6076 	      h->type = STT_OBJECT;
6077 	      h->verinfo.vertree = NULL;
6078 
6079 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6080 		return FALSE;
6081 
6082 	      /* Create a duplicate of the base version with the same
6083 		 aux block, but different flags.  */
6084 	      def.vd_flags = 0;
6085 	      def.vd_ndx = 2;
6086 	      def.vd_aux = sizeof (Elf_External_Verdef);
6087 	      if (verdefs)
6088 		def.vd_next = (sizeof (Elf_External_Verdef)
6089 			       + sizeof (Elf_External_Verdaux));
6090 	      else
6091 		def.vd_next = 0;
6092 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6093 					(Elf_External_Verdef *) p);
6094 	      p += sizeof (Elf_External_Verdef);
6095 	    }
6096 	  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6097 				     (Elf_External_Verdaux *) p);
6098 	  p += sizeof (Elf_External_Verdaux);
6099 
6100 	  for (t = verdefs; t != NULL; t = t->next)
6101 	    {
6102 	      unsigned int cdeps;
6103 	      struct bfd_elf_version_deps *n;
6104 
6105 	      /* Don't emit the base version twice.  */
6106 	      if (t->vernum == 0)
6107 		continue;
6108 
6109 	      cdeps = 0;
6110 	      for (n = t->deps; n != NULL; n = n->next)
6111 		++cdeps;
6112 
6113 	      /* Add a symbol representing this version.  */
6114 	      bh = NULL;
6115 	      if (! (_bfd_generic_link_add_one_symbol
6116 		     (info, dynobj, t->name, BSF_GLOBAL, bfd_abs_section_ptr,
6117 		      0, NULL, FALSE,
6118 		      get_elf_backend_data (dynobj)->collect, &bh)))
6119 		return FALSE;
6120 	      h = (struct elf_link_hash_entry *) bh;
6121 	      h->non_elf = 0;
6122 	      h->def_regular = 1;
6123 	      h->type = STT_OBJECT;
6124 	      h->verinfo.vertree = t;
6125 
6126 	      if (! bfd_elf_link_record_dynamic_symbol (info, h))
6127 		return FALSE;
6128 
6129 	      def.vd_version = VER_DEF_CURRENT;
6130 	      def.vd_flags = 0;
6131 	      if (t->globals.list == NULL
6132 		  && t->locals.list == NULL
6133 		  && ! t->used)
6134 		def.vd_flags |= VER_FLG_WEAK;
6135 	      def.vd_ndx = t->vernum + (info->create_default_symver ? 2 : 1);
6136 	      def.vd_cnt = cdeps + 1;
6137 	      def.vd_hash = bfd_elf_hash (t->name);
6138 	      def.vd_aux = sizeof (Elf_External_Verdef);
6139 	      def.vd_next = 0;
6140 
6141 	      /* If a basever node is next, it *must* be the last node in
6142 		 the chain, otherwise Verdef construction breaks.  */
6143 	      if (t->next != NULL && t->next->vernum == 0)
6144 		BFD_ASSERT (t->next->next == NULL);
6145 
6146 	      if (t->next != NULL && t->next->vernum != 0)
6147 		def.vd_next = (sizeof (Elf_External_Verdef)
6148 			       + (cdeps + 1) * sizeof (Elf_External_Verdaux));
6149 
6150 	      _bfd_elf_swap_verdef_out (output_bfd, &def,
6151 					(Elf_External_Verdef *) p);
6152 	      p += sizeof (Elf_External_Verdef);
6153 
6154 	      defaux.vda_name = h->dynstr_index;
6155 	      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6156 				      h->dynstr_index);
6157 	      defaux.vda_next = 0;
6158 	      if (t->deps != NULL)
6159 		defaux.vda_next = sizeof (Elf_External_Verdaux);
6160 	      t->name_indx = defaux.vda_name;
6161 
6162 	      _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6163 					 (Elf_External_Verdaux *) p);
6164 	      p += sizeof (Elf_External_Verdaux);
6165 
6166 	      for (n = t->deps; n != NULL; n = n->next)
6167 		{
6168 		  if (n->version_needed == NULL)
6169 		    {
6170 		      /* This can happen if there was an error in the
6171 			 version script.  */
6172 		      defaux.vda_name = 0;
6173 		    }
6174 		  else
6175 		    {
6176 		      defaux.vda_name = n->version_needed->name_indx;
6177 		      _bfd_elf_strtab_addref (elf_hash_table (info)->dynstr,
6178 					      defaux.vda_name);
6179 		    }
6180 		  if (n->next == NULL)
6181 		    defaux.vda_next = 0;
6182 		  else
6183 		    defaux.vda_next = sizeof (Elf_External_Verdaux);
6184 
6185 		  _bfd_elf_swap_verdaux_out (output_bfd, &defaux,
6186 					     (Elf_External_Verdaux *) p);
6187 		  p += sizeof (Elf_External_Verdaux);
6188 		}
6189 	    }
6190 
6191 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERDEF, 0)
6192 	      || !_bfd_elf_add_dynamic_entry (info, DT_VERDEFNUM, cdefs))
6193 	    return FALSE;
6194 
6195 	  elf_tdata (output_bfd)->cverdefs = cdefs;
6196 	}
6197 
6198       if ((info->new_dtags && info->flags) || (info->flags & DF_STATIC_TLS))
6199 	{
6200 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS, info->flags))
6201 	    return FALSE;
6202 	}
6203       else if (info->flags & DF_BIND_NOW)
6204 	{
6205 	  if (!_bfd_elf_add_dynamic_entry (info, DT_BIND_NOW, 0))
6206 	    return FALSE;
6207 	}
6208 
6209       if (info->flags_1)
6210 	{
6211 	  if (info->executable)
6212 	    info->flags_1 &= ~ (DF_1_INITFIRST
6213 				| DF_1_NODELETE
6214 				| DF_1_NOOPEN);
6215 	  if (!_bfd_elf_add_dynamic_entry (info, DT_FLAGS_1, info->flags_1))
6216 	    return FALSE;
6217 	}
6218 
6219       /* Work out the size of the version reference section.  */
6220 
6221       s = bfd_get_linker_section (dynobj, ".gnu.version_r");
6222       BFD_ASSERT (s != NULL);
6223       {
6224 	struct elf_find_verdep_info sinfo;
6225 
6226 	sinfo.info = info;
6227 	sinfo.vers = elf_tdata (output_bfd)->cverdefs;
6228 	if (sinfo.vers == 0)
6229 	  sinfo.vers = 1;
6230 	sinfo.failed = FALSE;
6231 
6232 	elf_link_hash_traverse (elf_hash_table (info),
6233 				_bfd_elf_link_find_version_dependencies,
6234 				&sinfo);
6235 	if (sinfo.failed)
6236 	  return FALSE;
6237 
6238 	if (elf_tdata (output_bfd)->verref == NULL)
6239 	  s->flags |= SEC_EXCLUDE;
6240 	else
6241 	  {
6242 	    Elf_Internal_Verneed *t;
6243 	    unsigned int size;
6244 	    unsigned int crefs;
6245 	    bfd_byte *p;
6246 
6247 	    /* Build the version dependency section.  */
6248 	    size = 0;
6249 	    crefs = 0;
6250 	    for (t = elf_tdata (output_bfd)->verref;
6251 		 t != NULL;
6252 		 t = t->vn_nextref)
6253 	      {
6254 		Elf_Internal_Vernaux *a;
6255 
6256 		size += sizeof (Elf_External_Verneed);
6257 		++crefs;
6258 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6259 		  size += sizeof (Elf_External_Vernaux);
6260 	      }
6261 
6262 	    s->size = size;
6263 	    s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6264 	    if (s->contents == NULL)
6265 	      return FALSE;
6266 
6267 	    p = s->contents;
6268 	    for (t = elf_tdata (output_bfd)->verref;
6269 		 t != NULL;
6270 		 t = t->vn_nextref)
6271 	      {
6272 		unsigned int caux;
6273 		Elf_Internal_Vernaux *a;
6274 		bfd_size_type indx;
6275 
6276 		caux = 0;
6277 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6278 		  ++caux;
6279 
6280 		t->vn_version = VER_NEED_CURRENT;
6281 		t->vn_cnt = caux;
6282 		indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6283 					    elf_dt_name (t->vn_bfd) != NULL
6284 					    ? elf_dt_name (t->vn_bfd)
6285 					    : lbasename (t->vn_bfd->filename),
6286 					    FALSE);
6287 		if (indx == (bfd_size_type) -1)
6288 		  return FALSE;
6289 		t->vn_file = indx;
6290 		t->vn_aux = sizeof (Elf_External_Verneed);
6291 		if (t->vn_nextref == NULL)
6292 		  t->vn_next = 0;
6293 		else
6294 		  t->vn_next = (sizeof (Elf_External_Verneed)
6295 				+ caux * sizeof (Elf_External_Vernaux));
6296 
6297 		_bfd_elf_swap_verneed_out (output_bfd, t,
6298 					   (Elf_External_Verneed *) p);
6299 		p += sizeof (Elf_External_Verneed);
6300 
6301 		for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
6302 		  {
6303 		    a->vna_hash = bfd_elf_hash (a->vna_nodename);
6304 		    indx = _bfd_elf_strtab_add (elf_hash_table (info)->dynstr,
6305 						a->vna_nodename, FALSE);
6306 		    if (indx == (bfd_size_type) -1)
6307 		      return FALSE;
6308 		    a->vna_name = indx;
6309 		    if (a->vna_nextptr == NULL)
6310 		      a->vna_next = 0;
6311 		    else
6312 		      a->vna_next = sizeof (Elf_External_Vernaux);
6313 
6314 		    _bfd_elf_swap_vernaux_out (output_bfd, a,
6315 					       (Elf_External_Vernaux *) p);
6316 		    p += sizeof (Elf_External_Vernaux);
6317 		  }
6318 	      }
6319 
6320 	    if (!_bfd_elf_add_dynamic_entry (info, DT_VERNEED, 0)
6321 		|| !_bfd_elf_add_dynamic_entry (info, DT_VERNEEDNUM, crefs))
6322 	      return FALSE;
6323 
6324 	    elf_tdata (output_bfd)->cverrefs = crefs;
6325 	  }
6326       }
6327 
6328       if ((elf_tdata (output_bfd)->cverrefs == 0
6329 	   && elf_tdata (output_bfd)->cverdefs == 0)
6330 	  || _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6331 					     &section_sym_count) == 0)
6332 	{
6333 	  s = bfd_get_linker_section (dynobj, ".gnu.version");
6334 	  s->flags |= SEC_EXCLUDE;
6335 	}
6336     }
6337   return TRUE;
6338 }
6339 
6340 /* Find the first non-excluded output section.  We'll use its
6341    section symbol for some emitted relocs.  */
6342 void
6343 _bfd_elf_init_1_index_section (bfd *output_bfd, struct bfd_link_info *info)
6344 {
6345   asection *s;
6346 
6347   for (s = output_bfd->sections; s != NULL; s = s->next)
6348     if ((s->flags & (SEC_EXCLUDE | SEC_ALLOC)) == SEC_ALLOC
6349 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6350       {
6351 	elf_hash_table (info)->text_index_section = s;
6352 	break;
6353       }
6354 }
6355 
6356 /* Find two non-excluded output sections, one for code, one for data.
6357    We'll use their section symbols for some emitted relocs.  */
6358 void
6359 _bfd_elf_init_2_index_sections (bfd *output_bfd, struct bfd_link_info *info)
6360 {
6361   asection *s;
6362 
6363   /* Data first, since setting text_index_section changes
6364      _bfd_elf_link_omit_section_dynsym.  */
6365   for (s = output_bfd->sections; s != NULL; s = s->next)
6366     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY)) == SEC_ALLOC)
6367 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6368       {
6369 	elf_hash_table (info)->data_index_section = s;
6370 	break;
6371       }
6372 
6373   for (s = output_bfd->sections; s != NULL; s = s->next)
6374     if (((s->flags & (SEC_EXCLUDE | SEC_ALLOC | SEC_READONLY))
6375 	 == (SEC_ALLOC | SEC_READONLY))
6376 	&& !_bfd_elf_link_omit_section_dynsym (output_bfd, info, s))
6377       {
6378 	elf_hash_table (info)->text_index_section = s;
6379 	break;
6380       }
6381 
6382   if (elf_hash_table (info)->text_index_section == NULL)
6383     elf_hash_table (info)->text_index_section
6384       = elf_hash_table (info)->data_index_section;
6385 }
6386 
6387 bfd_boolean
6388 bfd_elf_size_dynsym_hash_dynstr (bfd *output_bfd, struct bfd_link_info *info)
6389 {
6390   const struct elf_backend_data *bed;
6391 
6392   if (!is_elf_hash_table (info->hash))
6393     return TRUE;
6394 
6395   bed = get_elf_backend_data (output_bfd);
6396   (*bed->elf_backend_init_index_section) (output_bfd, info);
6397 
6398   if (elf_hash_table (info)->dynamic_sections_created)
6399     {
6400       bfd *dynobj;
6401       asection *s;
6402       bfd_size_type dynsymcount;
6403       unsigned long section_sym_count;
6404       unsigned int dtagcount;
6405 
6406       dynobj = elf_hash_table (info)->dynobj;
6407 
6408       /* Assign dynsym indicies.  In a shared library we generate a
6409 	 section symbol for each output section, which come first.
6410 	 Next come all of the back-end allocated local dynamic syms,
6411 	 followed by the rest of the global symbols.  */
6412 
6413       dynsymcount = _bfd_elf_link_renumber_dynsyms (output_bfd, info,
6414 						    &section_sym_count);
6415 
6416       /* Work out the size of the symbol version section.  */
6417       s = bfd_get_linker_section (dynobj, ".gnu.version");
6418       BFD_ASSERT (s != NULL);
6419       if (dynsymcount != 0
6420 	  && (s->flags & SEC_EXCLUDE) == 0)
6421 	{
6422 	  s->size = dynsymcount * sizeof (Elf_External_Versym);
6423 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6424 	  if (s->contents == NULL)
6425 	    return FALSE;
6426 
6427 	  if (!_bfd_elf_add_dynamic_entry (info, DT_VERSYM, 0))
6428 	    return FALSE;
6429 	}
6430 
6431       /* Set the size of the .dynsym and .hash sections.  We counted
6432 	 the number of dynamic symbols in elf_link_add_object_symbols.
6433 	 We will build the contents of .dynsym and .hash when we build
6434 	 the final symbol table, because until then we do not know the
6435 	 correct value to give the symbols.  We built the .dynstr
6436 	 section as we went along in elf_link_add_object_symbols.  */
6437       s = bfd_get_linker_section (dynobj, ".dynsym");
6438       BFD_ASSERT (s != NULL);
6439       s->size = dynsymcount * bed->s->sizeof_sym;
6440 
6441       if (dynsymcount != 0)
6442 	{
6443 	  s->contents = (unsigned char *) bfd_alloc (output_bfd, s->size);
6444 	  if (s->contents == NULL)
6445 	    return FALSE;
6446 
6447 	  /* The first entry in .dynsym is a dummy symbol.
6448 	     Clear all the section syms, in case we don't output them all.  */
6449 	  ++section_sym_count;
6450 	  memset (s->contents, 0, section_sym_count * bed->s->sizeof_sym);
6451 	}
6452 
6453       elf_hash_table (info)->bucketcount = 0;
6454 
6455       /* Compute the size of the hashing table.  As a side effect this
6456 	 computes the hash values for all the names we export.  */
6457       if (info->emit_hash)
6458 	{
6459 	  unsigned long int *hashcodes;
6460 	  struct hash_codes_info hashinf;
6461 	  bfd_size_type amt;
6462 	  unsigned long int nsyms;
6463 	  size_t bucketcount;
6464 	  size_t hash_entry_size;
6465 
6466 	  /* Compute the hash values for all exported symbols.  At the same
6467 	     time store the values in an array so that we could use them for
6468 	     optimizations.  */
6469 	  amt = dynsymcount * sizeof (unsigned long int);
6470 	  hashcodes = (unsigned long int *) bfd_malloc (amt);
6471 	  if (hashcodes == NULL)
6472 	    return FALSE;
6473 	  hashinf.hashcodes = hashcodes;
6474 	  hashinf.error = FALSE;
6475 
6476 	  /* Put all hash values in HASHCODES.  */
6477 	  elf_link_hash_traverse (elf_hash_table (info),
6478 				  elf_collect_hash_codes, &hashinf);
6479 	  if (hashinf.error)
6480 	    {
6481 	      free (hashcodes);
6482 	      return FALSE;
6483 	    }
6484 
6485 	  nsyms = hashinf.hashcodes - hashcodes;
6486 	  bucketcount
6487 	    = compute_bucket_count (info, hashcodes, nsyms, 0);
6488 	  free (hashcodes);
6489 
6490 	  if (bucketcount == 0)
6491 	    return FALSE;
6492 
6493 	  elf_hash_table (info)->bucketcount = bucketcount;
6494 
6495 	  s = bfd_get_linker_section (dynobj, ".hash");
6496 	  BFD_ASSERT (s != NULL);
6497 	  hash_entry_size = elf_section_data (s)->this_hdr.sh_entsize;
6498 	  s->size = ((2 + bucketcount + dynsymcount) * hash_entry_size);
6499 	  s->contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6500 	  if (s->contents == NULL)
6501 	    return FALSE;
6502 
6503 	  bfd_put (8 * hash_entry_size, output_bfd, bucketcount, s->contents);
6504 	  bfd_put (8 * hash_entry_size, output_bfd, dynsymcount,
6505 		   s->contents + hash_entry_size);
6506 	}
6507 
6508       if (info->emit_gnu_hash)
6509 	{
6510 	  size_t i, cnt;
6511 	  unsigned char *contents;
6512 	  struct collect_gnu_hash_codes cinfo;
6513 	  bfd_size_type amt;
6514 	  size_t bucketcount;
6515 
6516 	  memset (&cinfo, 0, sizeof (cinfo));
6517 
6518 	  /* Compute the hash values for all exported symbols.  At the same
6519 	     time store the values in an array so that we could use them for
6520 	     optimizations.  */
6521 	  amt = dynsymcount * 2 * sizeof (unsigned long int);
6522 	  cinfo.hashcodes = (long unsigned int *) bfd_malloc (amt);
6523 	  if (cinfo.hashcodes == NULL)
6524 	    return FALSE;
6525 
6526 	  cinfo.hashval = cinfo.hashcodes + dynsymcount;
6527 	  cinfo.min_dynindx = -1;
6528 	  cinfo.output_bfd = output_bfd;
6529 	  cinfo.bed = bed;
6530 
6531 	  /* Put all hash values in HASHCODES.  */
6532 	  elf_link_hash_traverse (elf_hash_table (info),
6533 				  elf_collect_gnu_hash_codes, &cinfo);
6534 	  if (cinfo.error)
6535 	    {
6536 	      free (cinfo.hashcodes);
6537 	      return FALSE;
6538 	    }
6539 
6540 	  bucketcount
6541 	    = compute_bucket_count (info, cinfo.hashcodes, cinfo.nsyms, 1);
6542 
6543 	  if (bucketcount == 0)
6544 	    {
6545 	      free (cinfo.hashcodes);
6546 	      return FALSE;
6547 	    }
6548 
6549 	  s = bfd_get_linker_section (dynobj, ".gnu.hash");
6550 	  BFD_ASSERT (s != NULL);
6551 
6552 	  if (cinfo.nsyms == 0)
6553 	    {
6554 	      /* Empty .gnu.hash section is special.  */
6555 	      BFD_ASSERT (cinfo.min_dynindx == -1);
6556 	      free (cinfo.hashcodes);
6557 	      s->size = 5 * 4 + bed->s->arch_size / 8;
6558 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6559 	      if (contents == NULL)
6560 		return FALSE;
6561 	      s->contents = contents;
6562 	      /* 1 empty bucket.  */
6563 	      bfd_put_32 (output_bfd, 1, contents);
6564 	      /* SYMIDX above the special symbol 0.  */
6565 	      bfd_put_32 (output_bfd, 1, contents + 4);
6566 	      /* Just one word for bitmask.  */
6567 	      bfd_put_32 (output_bfd, 1, contents + 8);
6568 	      /* Only hash fn bloom filter.  */
6569 	      bfd_put_32 (output_bfd, 0, contents + 12);
6570 	      /* No hashes are valid - empty bitmask.  */
6571 	      bfd_put (bed->s->arch_size, output_bfd, 0, contents + 16);
6572 	      /* No hashes in the only bucket.  */
6573 	      bfd_put_32 (output_bfd, 0,
6574 			  contents + 16 + bed->s->arch_size / 8);
6575 	    }
6576 	  else
6577 	    {
6578 	      unsigned long int maskwords, maskbitslog2, x;
6579 	      BFD_ASSERT (cinfo.min_dynindx != -1);
6580 
6581 	      x = cinfo.nsyms;
6582 	      maskbitslog2 = 1;
6583 	      while ((x >>= 1) != 0)
6584 		++maskbitslog2;
6585 	      if (maskbitslog2 < 3)
6586 		maskbitslog2 = 5;
6587 	      else if ((1 << (maskbitslog2 - 2)) & cinfo.nsyms)
6588 		maskbitslog2 = maskbitslog2 + 3;
6589 	      else
6590 		maskbitslog2 = maskbitslog2 + 2;
6591 	      if (bed->s->arch_size == 64)
6592 		{
6593 		  if (maskbitslog2 == 5)
6594 		    maskbitslog2 = 6;
6595 		  cinfo.shift1 = 6;
6596 		}
6597 	      else
6598 		cinfo.shift1 = 5;
6599 	      cinfo.mask = (1 << cinfo.shift1) - 1;
6600 	      cinfo.shift2 = maskbitslog2;
6601 	      cinfo.maskbits = 1 << maskbitslog2;
6602 	      maskwords = 1 << (maskbitslog2 - cinfo.shift1);
6603 	      amt = bucketcount * sizeof (unsigned long int) * 2;
6604 	      amt += maskwords * sizeof (bfd_vma);
6605 	      cinfo.bitmask = (bfd_vma *) bfd_malloc (amt);
6606 	      if (cinfo.bitmask == NULL)
6607 		{
6608 		  free (cinfo.hashcodes);
6609 		  return FALSE;
6610 		}
6611 
6612 	      cinfo.counts = (long unsigned int *) (cinfo.bitmask + maskwords);
6613 	      cinfo.indx = cinfo.counts + bucketcount;
6614 	      cinfo.symindx = dynsymcount - cinfo.nsyms;
6615 	      memset (cinfo.bitmask, 0, maskwords * sizeof (bfd_vma));
6616 
6617 	      /* Determine how often each hash bucket is used.  */
6618 	      memset (cinfo.counts, 0, bucketcount * sizeof (cinfo.counts[0]));
6619 	      for (i = 0; i < cinfo.nsyms; ++i)
6620 		++cinfo.counts[cinfo.hashcodes[i] % bucketcount];
6621 
6622 	      for (i = 0, cnt = cinfo.symindx; i < bucketcount; ++i)
6623 		if (cinfo.counts[i] != 0)
6624 		  {
6625 		    cinfo.indx[i] = cnt;
6626 		    cnt += cinfo.counts[i];
6627 		  }
6628 	      BFD_ASSERT (cnt == dynsymcount);
6629 	      cinfo.bucketcount = bucketcount;
6630 	      cinfo.local_indx = cinfo.min_dynindx;
6631 
6632 	      s->size = (4 + bucketcount + cinfo.nsyms) * 4;
6633 	      s->size += cinfo.maskbits / 8;
6634 	      contents = (unsigned char *) bfd_zalloc (output_bfd, s->size);
6635 	      if (contents == NULL)
6636 		{
6637 		  free (cinfo.bitmask);
6638 		  free (cinfo.hashcodes);
6639 		  return FALSE;
6640 		}
6641 
6642 	      s->contents = contents;
6643 	      bfd_put_32 (output_bfd, bucketcount, contents);
6644 	      bfd_put_32 (output_bfd, cinfo.symindx, contents + 4);
6645 	      bfd_put_32 (output_bfd, maskwords, contents + 8);
6646 	      bfd_put_32 (output_bfd, cinfo.shift2, contents + 12);
6647 	      contents += 16 + cinfo.maskbits / 8;
6648 
6649 	      for (i = 0; i < bucketcount; ++i)
6650 		{
6651 		  if (cinfo.counts[i] == 0)
6652 		    bfd_put_32 (output_bfd, 0, contents);
6653 		  else
6654 		    bfd_put_32 (output_bfd, cinfo.indx[i], contents);
6655 		  contents += 4;
6656 		}
6657 
6658 	      cinfo.contents = contents;
6659 
6660 	      /* Renumber dynamic symbols, populate .gnu.hash section.  */
6661 	      elf_link_hash_traverse (elf_hash_table (info),
6662 				      elf_renumber_gnu_hash_syms, &cinfo);
6663 
6664 	      contents = s->contents + 16;
6665 	      for (i = 0; i < maskwords; ++i)
6666 		{
6667 		  bfd_put (bed->s->arch_size, output_bfd, cinfo.bitmask[i],
6668 			   contents);
6669 		  contents += bed->s->arch_size / 8;
6670 		}
6671 
6672 	      free (cinfo.bitmask);
6673 	      free (cinfo.hashcodes);
6674 	    }
6675 	}
6676 
6677       s = bfd_get_linker_section (dynobj, ".dynstr");
6678       BFD_ASSERT (s != NULL);
6679 
6680       elf_finalize_dynstr (output_bfd, info);
6681 
6682       s->size = _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
6683 
6684       for (dtagcount = 0; dtagcount <= info->spare_dynamic_tags; ++dtagcount)
6685 	if (!_bfd_elf_add_dynamic_entry (info, DT_NULL, 0))
6686 	  return FALSE;
6687     }
6688 
6689   return TRUE;
6690 }
6691 
6692 /* Make sure sec_info_type is cleared if sec_info is cleared too.  */
6693 
6694 static void
6695 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
6696 			    asection *sec)
6697 {
6698   BFD_ASSERT (sec->sec_info_type == SEC_INFO_TYPE_MERGE);
6699   sec->sec_info_type = SEC_INFO_TYPE_NONE;
6700 }
6701 
6702 /* Finish SHF_MERGE section merging.  */
6703 
6704 bfd_boolean
6705 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
6706 {
6707   bfd *ibfd;
6708   asection *sec;
6709 
6710   if (!is_elf_hash_table (info->hash))
6711     return FALSE;
6712 
6713   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
6714     if ((ibfd->flags & DYNAMIC) == 0)
6715       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
6716 	if ((sec->flags & SEC_MERGE) != 0
6717 	    && !bfd_is_abs_section (sec->output_section))
6718 	  {
6719 	    struct bfd_elf_section_data *secdata;
6720 
6721 	    secdata = elf_section_data (sec);
6722 	    if (! _bfd_add_merge_section (abfd,
6723 					  &elf_hash_table (info)->merge_info,
6724 					  sec, &secdata->sec_info))
6725 	      return FALSE;
6726 	    else if (secdata->sec_info)
6727 	      sec->sec_info_type = SEC_INFO_TYPE_MERGE;
6728 	  }
6729 
6730   if (elf_hash_table (info)->merge_info != NULL)
6731     _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
6732 			 merge_sections_remove_hook);
6733   return TRUE;
6734 }
6735 
6736 /* Create an entry in an ELF linker hash table.  */
6737 
6738 struct bfd_hash_entry *
6739 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
6740 			    struct bfd_hash_table *table,
6741 			    const char *string)
6742 {
6743   /* Allocate the structure if it has not already been allocated by a
6744      subclass.  */
6745   if (entry == NULL)
6746     {
6747       entry = (struct bfd_hash_entry *)
6748           bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
6749       if (entry == NULL)
6750 	return entry;
6751     }
6752 
6753   /* Call the allocation method of the superclass.  */
6754   entry = _bfd_link_hash_newfunc (entry, table, string);
6755   if (entry != NULL)
6756     {
6757       struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
6758       struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
6759 
6760       /* Set local fields.  */
6761       ret->indx = -1;
6762       ret->dynindx = -1;
6763       ret->got = htab->init_got_refcount;
6764       ret->plt = htab->init_plt_refcount;
6765       memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
6766 			      - offsetof (struct elf_link_hash_entry, size)));
6767       /* Assume that we have been called by a non-ELF symbol reader.
6768 	 This flag is then reset by the code which reads an ELF input
6769 	 file.  This ensures that a symbol created by a non-ELF symbol
6770 	 reader will have the flag set correctly.  */
6771       ret->non_elf = 1;
6772     }
6773 
6774   return entry;
6775 }
6776 
6777 /* Copy data from an indirect symbol to its direct symbol, hiding the
6778    old indirect symbol.  Also used for copying flags to a weakdef.  */
6779 
6780 void
6781 _bfd_elf_link_hash_copy_indirect (struct bfd_link_info *info,
6782 				  struct elf_link_hash_entry *dir,
6783 				  struct elf_link_hash_entry *ind)
6784 {
6785   struct elf_link_hash_table *htab;
6786 
6787   /* Copy down any references that we may have already seen to the
6788      symbol which just became indirect.  */
6789 
6790   dir->ref_dynamic |= ind->ref_dynamic;
6791   dir->ref_regular |= ind->ref_regular;
6792   dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
6793   dir->non_got_ref |= ind->non_got_ref;
6794   dir->needs_plt |= ind->needs_plt;
6795   dir->pointer_equality_needed |= ind->pointer_equality_needed;
6796 
6797   if (ind->root.type != bfd_link_hash_indirect)
6798     return;
6799 
6800   /* Copy over the global and procedure linkage table refcount entries.
6801      These may have been already set up by a check_relocs routine.  */
6802   htab = elf_hash_table (info);
6803   if (ind->got.refcount > htab->init_got_refcount.refcount)
6804     {
6805       if (dir->got.refcount < 0)
6806 	dir->got.refcount = 0;
6807       dir->got.refcount += ind->got.refcount;
6808       ind->got.refcount = htab->init_got_refcount.refcount;
6809     }
6810 
6811   if (ind->plt.refcount > htab->init_plt_refcount.refcount)
6812     {
6813       if (dir->plt.refcount < 0)
6814 	dir->plt.refcount = 0;
6815       dir->plt.refcount += ind->plt.refcount;
6816       ind->plt.refcount = htab->init_plt_refcount.refcount;
6817     }
6818 
6819   if (ind->dynindx != -1)
6820     {
6821       if (dir->dynindx != -1)
6822 	_bfd_elf_strtab_delref (htab->dynstr, dir->dynstr_index);
6823       dir->dynindx = ind->dynindx;
6824       dir->dynstr_index = ind->dynstr_index;
6825       ind->dynindx = -1;
6826       ind->dynstr_index = 0;
6827     }
6828 }
6829 
6830 void
6831 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
6832 				struct elf_link_hash_entry *h,
6833 				bfd_boolean force_local)
6834 {
6835   /* STT_GNU_IFUNC symbol must go through PLT.  */
6836   if (h->type != STT_GNU_IFUNC)
6837     {
6838       h->plt = elf_hash_table (info)->init_plt_offset;
6839       h->needs_plt = 0;
6840     }
6841   if (force_local)
6842     {
6843       h->forced_local = 1;
6844       if (h->dynindx != -1)
6845 	{
6846 	  h->dynindx = -1;
6847 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
6848 				  h->dynstr_index);
6849 	}
6850     }
6851 }
6852 
6853 /* Initialize an ELF linker hash table.  *TABLE has been zeroed by our
6854    caller.  */
6855 
6856 bfd_boolean
6857 _bfd_elf_link_hash_table_init
6858   (struct elf_link_hash_table *table,
6859    bfd *abfd,
6860    struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
6861 				      struct bfd_hash_table *,
6862 				      const char *),
6863    unsigned int entsize,
6864    enum elf_target_id target_id)
6865 {
6866   bfd_boolean ret;
6867   int can_refcount = get_elf_backend_data (abfd)->can_refcount;
6868 
6869   table->init_got_refcount.refcount = can_refcount - 1;
6870   table->init_plt_refcount.refcount = can_refcount - 1;
6871   table->init_got_offset.offset = -(bfd_vma) 1;
6872   table->init_plt_offset.offset = -(bfd_vma) 1;
6873   /* The first dynamic symbol is a dummy.  */
6874   table->dynsymcount = 1;
6875 
6876   ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc, entsize);
6877 
6878   table->root.type = bfd_link_elf_hash_table;
6879   table->hash_table_id = target_id;
6880 
6881   return ret;
6882 }
6883 
6884 /* Create an ELF linker hash table.  */
6885 
6886 struct bfd_link_hash_table *
6887 _bfd_elf_link_hash_table_create (bfd *abfd)
6888 {
6889   struct elf_link_hash_table *ret;
6890   bfd_size_type amt = sizeof (struct elf_link_hash_table);
6891 
6892   ret = (struct elf_link_hash_table *) bfd_zmalloc (amt);
6893   if (ret == NULL)
6894     return NULL;
6895 
6896   if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc,
6897 				       sizeof (struct elf_link_hash_entry),
6898 				       GENERIC_ELF_DATA))
6899     {
6900       free (ret);
6901       return NULL;
6902     }
6903 
6904   return &ret->root;
6905 }
6906 
6907 /* Destroy an ELF linker hash table.  */
6908 
6909 void
6910 _bfd_elf_link_hash_table_free (struct bfd_link_hash_table *hash)
6911 {
6912   struct elf_link_hash_table *htab = (struct elf_link_hash_table *) hash;
6913   if (htab->dynstr != NULL)
6914     _bfd_elf_strtab_free (htab->dynstr);
6915   _bfd_merge_sections_free (htab->merge_info);
6916   _bfd_generic_link_hash_table_free (hash);
6917 }
6918 
6919 /* This is a hook for the ELF emulation code in the generic linker to
6920    tell the backend linker what file name to use for the DT_NEEDED
6921    entry for a dynamic object.  */
6922 
6923 void
6924 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
6925 {
6926   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6927       && bfd_get_format (abfd) == bfd_object)
6928     elf_dt_name (abfd) = name;
6929 }
6930 
6931 int
6932 bfd_elf_get_dyn_lib_class (bfd *abfd)
6933 {
6934   int lib_class;
6935   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6936       && bfd_get_format (abfd) == bfd_object)
6937     lib_class = elf_dyn_lib_class (abfd);
6938   else
6939     lib_class = 0;
6940   return lib_class;
6941 }
6942 
6943 void
6944 bfd_elf_set_dyn_lib_class (bfd *abfd, enum dynamic_lib_link_class lib_class)
6945 {
6946   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6947       && bfd_get_format (abfd) == bfd_object)
6948     elf_dyn_lib_class (abfd) = lib_class;
6949 }
6950 
6951 /* Get the list of DT_NEEDED entries for a link.  This is a hook for
6952    the linker ELF emulation code.  */
6953 
6954 struct bfd_link_needed_list *
6955 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
6956 			 struct bfd_link_info *info)
6957 {
6958   if (! is_elf_hash_table (info->hash))
6959     return NULL;
6960   return elf_hash_table (info)->needed;
6961 }
6962 
6963 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link.  This is a
6964    hook for the linker ELF emulation code.  */
6965 
6966 struct bfd_link_needed_list *
6967 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
6968 			  struct bfd_link_info *info)
6969 {
6970   if (! is_elf_hash_table (info->hash))
6971     return NULL;
6972   return elf_hash_table (info)->runpath;
6973 }
6974 
6975 /* Get the name actually used for a dynamic object for a link.  This
6976    is the SONAME entry if there is one.  Otherwise, it is the string
6977    passed to bfd_elf_set_dt_needed_name, or it is the filename.  */
6978 
6979 const char *
6980 bfd_elf_get_dt_soname (bfd *abfd)
6981 {
6982   if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
6983       && bfd_get_format (abfd) == bfd_object)
6984     return elf_dt_name (abfd);
6985   return NULL;
6986 }
6987 
6988 /* Get the list of DT_NEEDED entries from a BFD.  This is a hook for
6989    the ELF linker emulation code.  */
6990 
6991 bfd_boolean
6992 bfd_elf_get_bfd_needed_list (bfd *abfd,
6993 			     struct bfd_link_needed_list **pneeded)
6994 {
6995   asection *s;
6996   bfd_byte *dynbuf = NULL;
6997   unsigned int elfsec;
6998   unsigned long shlink;
6999   bfd_byte *extdyn, *extdynend;
7000   size_t extdynsize;
7001   void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
7002 
7003   *pneeded = NULL;
7004 
7005   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
7006       || bfd_get_format (abfd) != bfd_object)
7007     return TRUE;
7008 
7009   s = bfd_get_section_by_name (abfd, ".dynamic");
7010   if (s == NULL || s->size == 0)
7011     return TRUE;
7012 
7013   if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
7014     goto error_return;
7015 
7016   elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
7017   if (elfsec == SHN_BAD)
7018     goto error_return;
7019 
7020   shlink = elf_elfsections (abfd)[elfsec]->sh_link;
7021 
7022   extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
7023   swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
7024 
7025   extdyn = dynbuf;
7026   extdynend = extdyn + s->size;
7027   for (; extdyn < extdynend; extdyn += extdynsize)
7028     {
7029       Elf_Internal_Dyn dyn;
7030 
7031       (*swap_dyn_in) (abfd, extdyn, &dyn);
7032 
7033       if (dyn.d_tag == DT_NULL)
7034 	break;
7035 
7036       if (dyn.d_tag == DT_NEEDED)
7037 	{
7038 	  const char *string;
7039 	  struct bfd_link_needed_list *l;
7040 	  unsigned int tagv = dyn.d_un.d_val;
7041 	  bfd_size_type amt;
7042 
7043 	  string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
7044 	  if (string == NULL)
7045 	    goto error_return;
7046 
7047 	  amt = sizeof *l;
7048 	  l = (struct bfd_link_needed_list *) bfd_alloc (abfd, amt);
7049 	  if (l == NULL)
7050 	    goto error_return;
7051 
7052 	  l->by = abfd;
7053 	  l->name = string;
7054 	  l->next = *pneeded;
7055 	  *pneeded = l;
7056 	}
7057     }
7058 
7059   free (dynbuf);
7060 
7061   return TRUE;
7062 
7063  error_return:
7064   if (dynbuf != NULL)
7065     free (dynbuf);
7066   return FALSE;
7067 }
7068 
7069 struct elf_symbuf_symbol
7070 {
7071   unsigned long st_name;	/* Symbol name, index in string tbl */
7072   unsigned char st_info;	/* Type and binding attributes */
7073   unsigned char st_other;	/* Visibilty, and target specific */
7074 };
7075 
7076 struct elf_symbuf_head
7077 {
7078   struct elf_symbuf_symbol *ssym;
7079   bfd_size_type count;
7080   unsigned int st_shndx;
7081 };
7082 
7083 struct elf_symbol
7084 {
7085   union
7086     {
7087       Elf_Internal_Sym *isym;
7088       struct elf_symbuf_symbol *ssym;
7089     } u;
7090   const char *name;
7091 };
7092 
7093 /* Sort references to symbols by ascending section number.  */
7094 
7095 static int
7096 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7097 {
7098   const Elf_Internal_Sym *s1 = *(const Elf_Internal_Sym **) arg1;
7099   const Elf_Internal_Sym *s2 = *(const Elf_Internal_Sym **) arg2;
7100 
7101   return s1->st_shndx - s2->st_shndx;
7102 }
7103 
7104 static int
7105 elf_sym_name_compare (const void *arg1, const void *arg2)
7106 {
7107   const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7108   const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7109   return strcmp (s1->name, s2->name);
7110 }
7111 
7112 static struct elf_symbuf_head *
7113 elf_create_symbuf (bfd_size_type symcount, Elf_Internal_Sym *isymbuf)
7114 {
7115   Elf_Internal_Sym **ind, **indbufend, **indbuf;
7116   struct elf_symbuf_symbol *ssym;
7117   struct elf_symbuf_head *ssymbuf, *ssymhead;
7118   bfd_size_type i, shndx_count, total_size;
7119 
7120   indbuf = (Elf_Internal_Sym **) bfd_malloc2 (symcount, sizeof (*indbuf));
7121   if (indbuf == NULL)
7122     return NULL;
7123 
7124   for (ind = indbuf, i = 0; i < symcount; i++)
7125     if (isymbuf[i].st_shndx != SHN_UNDEF)
7126       *ind++ = &isymbuf[i];
7127   indbufend = ind;
7128 
7129   qsort (indbuf, indbufend - indbuf, sizeof (Elf_Internal_Sym *),
7130 	 elf_sort_elf_symbol);
7131 
7132   shndx_count = 0;
7133   if (indbufend > indbuf)
7134     for (ind = indbuf, shndx_count++; ind < indbufend - 1; ind++)
7135       if (ind[0]->st_shndx != ind[1]->st_shndx)
7136 	shndx_count++;
7137 
7138   total_size = ((shndx_count + 1) * sizeof (*ssymbuf)
7139 		+ (indbufend - indbuf) * sizeof (*ssym));
7140   ssymbuf = (struct elf_symbuf_head *) bfd_malloc (total_size);
7141   if (ssymbuf == NULL)
7142     {
7143       free (indbuf);
7144       return NULL;
7145     }
7146 
7147   ssym = (struct elf_symbuf_symbol *) (ssymbuf + shndx_count + 1);
7148   ssymbuf->ssym = NULL;
7149   ssymbuf->count = shndx_count;
7150   ssymbuf->st_shndx = 0;
7151   for (ssymhead = ssymbuf, ind = indbuf; ind < indbufend; ssym++, ind++)
7152     {
7153       if (ind == indbuf || ssymhead->st_shndx != (*ind)->st_shndx)
7154 	{
7155 	  ssymhead++;
7156 	  ssymhead->ssym = ssym;
7157 	  ssymhead->count = 0;
7158 	  ssymhead->st_shndx = (*ind)->st_shndx;
7159 	}
7160       ssym->st_name = (*ind)->st_name;
7161       ssym->st_info = (*ind)->st_info;
7162       ssym->st_other = (*ind)->st_other;
7163       ssymhead->count++;
7164     }
7165   BFD_ASSERT ((bfd_size_type) (ssymhead - ssymbuf) == shndx_count
7166 	      && (((bfd_hostptr_t) ssym - (bfd_hostptr_t) ssymbuf)
7167 		  == total_size));
7168 
7169   free (indbuf);
7170   return ssymbuf;
7171 }
7172 
7173 /* Check if 2 sections define the same set of local and global
7174    symbols.  */
7175 
7176 static bfd_boolean
7177 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2,
7178 				   struct bfd_link_info *info)
7179 {
7180   bfd *bfd1, *bfd2;
7181   const struct elf_backend_data *bed1, *bed2;
7182   Elf_Internal_Shdr *hdr1, *hdr2;
7183   bfd_size_type symcount1, symcount2;
7184   Elf_Internal_Sym *isymbuf1, *isymbuf2;
7185   struct elf_symbuf_head *ssymbuf1, *ssymbuf2;
7186   Elf_Internal_Sym *isym, *isymend;
7187   struct elf_symbol *symtable1 = NULL, *symtable2 = NULL;
7188   bfd_size_type count1, count2, i;
7189   unsigned int shndx1, shndx2;
7190   bfd_boolean result;
7191 
7192   bfd1 = sec1->owner;
7193   bfd2 = sec2->owner;
7194 
7195   /* Both sections have to be in ELF.  */
7196   if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7197       || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7198     return FALSE;
7199 
7200   if (elf_section_type (sec1) != elf_section_type (sec2))
7201     return FALSE;
7202 
7203   shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7204   shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7205   if (shndx1 == SHN_BAD || shndx2 == SHN_BAD)
7206     return FALSE;
7207 
7208   bed1 = get_elf_backend_data (bfd1);
7209   bed2 = get_elf_backend_data (bfd2);
7210   hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7211   symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7212   hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7213   symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7214 
7215   if (symcount1 == 0 || symcount2 == 0)
7216     return FALSE;
7217 
7218   result = FALSE;
7219   isymbuf1 = NULL;
7220   isymbuf2 = NULL;
7221   ssymbuf1 = (struct elf_symbuf_head *) elf_tdata (bfd1)->symbuf;
7222   ssymbuf2 = (struct elf_symbuf_head *) elf_tdata (bfd2)->symbuf;
7223 
7224   if (ssymbuf1 == NULL)
7225     {
7226       isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7227 				       NULL, NULL, NULL);
7228       if (isymbuf1 == NULL)
7229 	goto done;
7230 
7231       if (!info->reduce_memory_overheads)
7232 	elf_tdata (bfd1)->symbuf = ssymbuf1
7233 	  = elf_create_symbuf (symcount1, isymbuf1);
7234     }
7235 
7236   if (ssymbuf1 == NULL || ssymbuf2 == NULL)
7237     {
7238       isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7239 				       NULL, NULL, NULL);
7240       if (isymbuf2 == NULL)
7241 	goto done;
7242 
7243       if (ssymbuf1 != NULL && !info->reduce_memory_overheads)
7244 	elf_tdata (bfd2)->symbuf = ssymbuf2
7245 	  = elf_create_symbuf (symcount2, isymbuf2);
7246     }
7247 
7248   if (ssymbuf1 != NULL && ssymbuf2 != NULL)
7249     {
7250       /* Optimized faster version.  */
7251       bfd_size_type lo, hi, mid;
7252       struct elf_symbol *symp;
7253       struct elf_symbuf_symbol *ssym, *ssymend;
7254 
7255       lo = 0;
7256       hi = ssymbuf1->count;
7257       ssymbuf1++;
7258       count1 = 0;
7259       while (lo < hi)
7260 	{
7261 	  mid = (lo + hi) / 2;
7262 	  if (shndx1 < ssymbuf1[mid].st_shndx)
7263 	    hi = mid;
7264 	  else if (shndx1 > ssymbuf1[mid].st_shndx)
7265 	    lo = mid + 1;
7266 	  else
7267 	    {
7268 	      count1 = ssymbuf1[mid].count;
7269 	      ssymbuf1 += mid;
7270 	      break;
7271 	    }
7272 	}
7273 
7274       lo = 0;
7275       hi = ssymbuf2->count;
7276       ssymbuf2++;
7277       count2 = 0;
7278       while (lo < hi)
7279 	{
7280 	  mid = (lo + hi) / 2;
7281 	  if (shndx2 < ssymbuf2[mid].st_shndx)
7282 	    hi = mid;
7283 	  else if (shndx2 > ssymbuf2[mid].st_shndx)
7284 	    lo = mid + 1;
7285 	  else
7286 	    {
7287 	      count2 = ssymbuf2[mid].count;
7288 	      ssymbuf2 += mid;
7289 	      break;
7290 	    }
7291 	}
7292 
7293       if (count1 == 0 || count2 == 0 || count1 != count2)
7294 	goto done;
7295 
7296       symtable1 = (struct elf_symbol *)
7297           bfd_malloc (count1 * sizeof (struct elf_symbol));
7298       symtable2 = (struct elf_symbol *)
7299           bfd_malloc (count2 * sizeof (struct elf_symbol));
7300       if (symtable1 == NULL || symtable2 == NULL)
7301 	goto done;
7302 
7303       symp = symtable1;
7304       for (ssym = ssymbuf1->ssym, ssymend = ssym + count1;
7305 	   ssym < ssymend; ssym++, symp++)
7306 	{
7307 	  symp->u.ssym = ssym;
7308 	  symp->name = bfd_elf_string_from_elf_section (bfd1,
7309 							hdr1->sh_link,
7310 							ssym->st_name);
7311 	}
7312 
7313       symp = symtable2;
7314       for (ssym = ssymbuf2->ssym, ssymend = ssym + count2;
7315 	   ssym < ssymend; ssym++, symp++)
7316 	{
7317 	  symp->u.ssym = ssym;
7318 	  symp->name = bfd_elf_string_from_elf_section (bfd2,
7319 							hdr2->sh_link,
7320 							ssym->st_name);
7321 	}
7322 
7323       /* Sort symbol by name.  */
7324       qsort (symtable1, count1, sizeof (struct elf_symbol),
7325 	     elf_sym_name_compare);
7326       qsort (symtable2, count1, sizeof (struct elf_symbol),
7327 	     elf_sym_name_compare);
7328 
7329       for (i = 0; i < count1; i++)
7330 	/* Two symbols must have the same binding, type and name.  */
7331 	if (symtable1 [i].u.ssym->st_info != symtable2 [i].u.ssym->st_info
7332 	    || symtable1 [i].u.ssym->st_other != symtable2 [i].u.ssym->st_other
7333 	    || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7334 	  goto done;
7335 
7336       result = TRUE;
7337       goto done;
7338     }
7339 
7340   symtable1 = (struct elf_symbol *)
7341       bfd_malloc (symcount1 * sizeof (struct elf_symbol));
7342   symtable2 = (struct elf_symbol *)
7343       bfd_malloc (symcount2 * sizeof (struct elf_symbol));
7344   if (symtable1 == NULL || symtable2 == NULL)
7345     goto done;
7346 
7347   /* Count definitions in the section.  */
7348   count1 = 0;
7349   for (isym = isymbuf1, isymend = isym + symcount1; isym < isymend; isym++)
7350     if (isym->st_shndx == shndx1)
7351       symtable1[count1++].u.isym = isym;
7352 
7353   count2 = 0;
7354   for (isym = isymbuf2, isymend = isym + symcount2; isym < isymend; isym++)
7355     if (isym->st_shndx == shndx2)
7356       symtable2[count2++].u.isym = isym;
7357 
7358   if (count1 == 0 || count2 == 0 || count1 != count2)
7359     goto done;
7360 
7361   for (i = 0; i < count1; i++)
7362     symtable1[i].name
7363       = bfd_elf_string_from_elf_section (bfd1, hdr1->sh_link,
7364 					 symtable1[i].u.isym->st_name);
7365 
7366   for (i = 0; i < count2; i++)
7367     symtable2[i].name
7368       = bfd_elf_string_from_elf_section (bfd2, hdr2->sh_link,
7369 					 symtable2[i].u.isym->st_name);
7370 
7371   /* Sort symbol by name.  */
7372   qsort (symtable1, count1, sizeof (struct elf_symbol),
7373 	 elf_sym_name_compare);
7374   qsort (symtable2, count1, sizeof (struct elf_symbol),
7375 	 elf_sym_name_compare);
7376 
7377   for (i = 0; i < count1; i++)
7378     /* Two symbols must have the same binding, type and name.  */
7379     if (symtable1 [i].u.isym->st_info != symtable2 [i].u.isym->st_info
7380 	|| symtable1 [i].u.isym->st_other != symtable2 [i].u.isym->st_other
7381 	|| strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
7382       goto done;
7383 
7384   result = TRUE;
7385 
7386 done:
7387   if (symtable1)
7388     free (symtable1);
7389   if (symtable2)
7390     free (symtable2);
7391   if (isymbuf1)
7392     free (isymbuf1);
7393   if (isymbuf2)
7394     free (isymbuf2);
7395 
7396   return result;
7397 }
7398 
7399 /* Return TRUE if 2 section types are compatible.  */
7400 
7401 bfd_boolean
7402 _bfd_elf_match_sections_by_type (bfd *abfd, const asection *asec,
7403 				 bfd *bbfd, const asection *bsec)
7404 {
7405   if (asec == NULL
7406       || bsec == NULL
7407       || abfd->xvec->flavour != bfd_target_elf_flavour
7408       || bbfd->xvec->flavour != bfd_target_elf_flavour)
7409     return TRUE;
7410 
7411   return elf_section_type (asec) == elf_section_type (bsec);
7412 }
7413 
7414 /* Final phase of ELF linker.  */
7415 
7416 /* A structure we use to avoid passing large numbers of arguments.  */
7417 
7418 struct elf_final_link_info
7419 {
7420   /* General link information.  */
7421   struct bfd_link_info *info;
7422   /* Output BFD.  */
7423   bfd *output_bfd;
7424   /* Symbol string table.  */
7425   struct bfd_strtab_hash *symstrtab;
7426   /* .dynsym section.  */
7427   asection *dynsym_sec;
7428   /* .hash section.  */
7429   asection *hash_sec;
7430   /* symbol version section (.gnu.version).  */
7431   asection *symver_sec;
7432   /* Buffer large enough to hold contents of any section.  */
7433   bfd_byte *contents;
7434   /* Buffer large enough to hold external relocs of any section.  */
7435   void *external_relocs;
7436   /* Buffer large enough to hold internal relocs of any section.  */
7437   Elf_Internal_Rela *internal_relocs;
7438   /* Buffer large enough to hold external local symbols of any input
7439      BFD.  */
7440   bfd_byte *external_syms;
7441   /* And a buffer for symbol section indices.  */
7442   Elf_External_Sym_Shndx *locsym_shndx;
7443   /* Buffer large enough to hold internal local symbols of any input
7444      BFD.  */
7445   Elf_Internal_Sym *internal_syms;
7446   /* Array large enough to hold a symbol index for each local symbol
7447      of any input BFD.  */
7448   long *indices;
7449   /* Array large enough to hold a section pointer for each local
7450      symbol of any input BFD.  */
7451   asection **sections;
7452   /* Buffer to hold swapped out symbols.  */
7453   bfd_byte *symbuf;
7454   /* And one for symbol section indices.  */
7455   Elf_External_Sym_Shndx *symshndxbuf;
7456   /* Number of swapped out symbols in buffer.  */
7457   size_t symbuf_count;
7458   /* Number of symbols which fit in symbuf.  */
7459   size_t symbuf_size;
7460   /* And same for symshndxbuf.  */
7461   size_t shndxbuf_size;
7462   /* Number of STT_FILE syms seen.  */
7463   size_t filesym_count;
7464 };
7465 
7466 /* This struct is used to pass information to elf_link_output_extsym.  */
7467 
7468 struct elf_outext_info
7469 {
7470   bfd_boolean failed;
7471   bfd_boolean localsyms;
7472   bfd_boolean need_second_pass;
7473   bfd_boolean second_pass;
7474   bfd_boolean file_sym_done;
7475   struct elf_final_link_info *flinfo;
7476 };
7477 
7478 
7479 /* Support for evaluating a complex relocation.
7480 
7481    Complex relocations are generalized, self-describing relocations.  The
7482    implementation of them consists of two parts: complex symbols, and the
7483    relocations themselves.
7484 
7485    The relocations are use a reserved elf-wide relocation type code (R_RELC
7486    external / BFD_RELOC_RELC internal) and an encoding of relocation field
7487    information (start bit, end bit, word width, etc) into the addend.  This
7488    information is extracted from CGEN-generated operand tables within gas.
7489 
7490    Complex symbols are mangled symbols (BSF_RELC external / STT_RELC
7491    internal) representing prefix-notation expressions, including but not
7492    limited to those sorts of expressions normally encoded as addends in the
7493    addend field.  The symbol mangling format is:
7494 
7495    <node> := <literal>
7496           |  <unary-operator> ':' <node>
7497           |  <binary-operator> ':' <node> ':' <node>
7498 	  ;
7499 
7500    <literal> := 's' <digits=N> ':' <N character symbol name>
7501              |  'S' <digits=N> ':' <N character section name>
7502 	     |  '#' <hexdigits>
7503 	     ;
7504 
7505    <binary-operator> := as in C
7506    <unary-operator> := as in C, plus "0-" for unambiguous negation.  */
7507 
7508 static void
7509 set_symbol_value (bfd *bfd_with_globals,
7510 		  Elf_Internal_Sym *isymbuf,
7511 		  size_t locsymcount,
7512 		  size_t symidx,
7513 		  bfd_vma val)
7514 {
7515   struct elf_link_hash_entry **sym_hashes;
7516   struct elf_link_hash_entry *h;
7517   size_t extsymoff = locsymcount;
7518 
7519   if (symidx < locsymcount)
7520     {
7521       Elf_Internal_Sym *sym;
7522 
7523       sym = isymbuf + symidx;
7524       if (ELF_ST_BIND (sym->st_info) == STB_LOCAL)
7525 	{
7526 	  /* It is a local symbol: move it to the
7527 	     "absolute" section and give it a value.  */
7528 	  sym->st_shndx = SHN_ABS;
7529 	  sym->st_value = val;
7530 	  return;
7531 	}
7532       BFD_ASSERT (elf_bad_symtab (bfd_with_globals));
7533       extsymoff = 0;
7534     }
7535 
7536   /* It is a global symbol: set its link type
7537      to "defined" and give it a value.  */
7538 
7539   sym_hashes = elf_sym_hashes (bfd_with_globals);
7540   h = sym_hashes [symidx - extsymoff];
7541   while (h->root.type == bfd_link_hash_indirect
7542 	 || h->root.type == bfd_link_hash_warning)
7543     h = (struct elf_link_hash_entry *) h->root.u.i.link;
7544   h->root.type = bfd_link_hash_defined;
7545   h->root.u.def.value = val;
7546   h->root.u.def.section = bfd_abs_section_ptr;
7547 }
7548 
7549 static bfd_boolean
7550 resolve_symbol (const char *name,
7551 		bfd *input_bfd,
7552 		struct elf_final_link_info *flinfo,
7553 		bfd_vma *result,
7554 		Elf_Internal_Sym *isymbuf,
7555 		size_t locsymcount)
7556 {
7557   Elf_Internal_Sym *sym;
7558   struct bfd_link_hash_entry *global_entry;
7559   const char *candidate = NULL;
7560   Elf_Internal_Shdr *symtab_hdr;
7561   size_t i;
7562 
7563   symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
7564 
7565   for (i = 0; i < locsymcount; ++ i)
7566     {
7567       sym = isymbuf + i;
7568 
7569       if (ELF_ST_BIND (sym->st_info) != STB_LOCAL)
7570 	continue;
7571 
7572       candidate = bfd_elf_string_from_elf_section (input_bfd,
7573 						   symtab_hdr->sh_link,
7574 						   sym->st_name);
7575 #ifdef DEBUG
7576       printf ("Comparing string: '%s' vs. '%s' = 0x%lx\n",
7577 	      name, candidate, (unsigned long) sym->st_value);
7578 #endif
7579       if (candidate && strcmp (candidate, name) == 0)
7580 	{
7581 	  asection *sec = flinfo->sections [i];
7582 
7583 	  *result = _bfd_elf_rel_local_sym (input_bfd, sym, &sec, 0);
7584 	  *result += sec->output_offset + sec->output_section->vma;
7585 #ifdef DEBUG
7586 	  printf ("Found symbol with value %8.8lx\n",
7587 		  (unsigned long) *result);
7588 #endif
7589 	  return TRUE;
7590 	}
7591     }
7592 
7593   /* Hmm, haven't found it yet. perhaps it is a global.  */
7594   global_entry = bfd_link_hash_lookup (flinfo->info->hash, name,
7595 				       FALSE, FALSE, TRUE);
7596   if (!global_entry)
7597     return FALSE;
7598 
7599   if (global_entry->type == bfd_link_hash_defined
7600       || global_entry->type == bfd_link_hash_defweak)
7601     {
7602       *result = (global_entry->u.def.value
7603 		 + global_entry->u.def.section->output_section->vma
7604 		 + global_entry->u.def.section->output_offset);
7605 #ifdef DEBUG
7606       printf ("Found GLOBAL symbol '%s' with value %8.8lx\n",
7607 	      global_entry->root.string, (unsigned long) *result);
7608 #endif
7609       return TRUE;
7610     }
7611 
7612   return FALSE;
7613 }
7614 
7615 static bfd_boolean
7616 resolve_section (const char *name,
7617 		 asection *sections,
7618 		 bfd_vma *result)
7619 {
7620   asection *curr;
7621   unsigned int len;
7622 
7623   for (curr = sections; curr; curr = curr->next)
7624     if (strcmp (curr->name, name) == 0)
7625       {
7626 	*result = curr->vma;
7627 	return TRUE;
7628       }
7629 
7630   /* Hmm. still haven't found it. try pseudo-section names.  */
7631   for (curr = sections; curr; curr = curr->next)
7632     {
7633       len = strlen (curr->name);
7634       if (len > strlen (name))
7635 	continue;
7636 
7637       if (strncmp (curr->name, name, len) == 0)
7638 	{
7639 	  if (strncmp (".end", name + len, 4) == 0)
7640 	    {
7641 	      *result = curr->vma + curr->size;
7642 	      return TRUE;
7643 	    }
7644 
7645 	  /* Insert more pseudo-section names here, if you like.  */
7646 	}
7647     }
7648 
7649   return FALSE;
7650 }
7651 
7652 static void
7653 undefined_reference (const char *reftype, const char *name)
7654 {
7655   _bfd_error_handler (_("undefined %s reference in complex symbol: %s"),
7656 		      reftype, name);
7657 }
7658 
7659 static bfd_boolean
7660 eval_symbol (bfd_vma *result,
7661 	     const char **symp,
7662 	     bfd *input_bfd,
7663 	     struct elf_final_link_info *flinfo,
7664 	     bfd_vma dot,
7665 	     Elf_Internal_Sym *isymbuf,
7666 	     size_t locsymcount,
7667 	     int signed_p)
7668 {
7669   size_t len;
7670   size_t symlen;
7671   bfd_vma a;
7672   bfd_vma b;
7673   char symbuf[4096];
7674   const char *sym = *symp;
7675   const char *symend;
7676   bfd_boolean symbol_is_section = FALSE;
7677 
7678   len = strlen (sym);
7679   symend = sym + len;
7680 
7681   if (len < 1 || len > sizeof (symbuf))
7682     {
7683       bfd_set_error (bfd_error_invalid_operation);
7684       return FALSE;
7685     }
7686 
7687   switch (* sym)
7688     {
7689     case '.':
7690       *result = dot;
7691       *symp = sym + 1;
7692       return TRUE;
7693 
7694     case '#':
7695       ++sym;
7696       *result = strtoul (sym, (char **) symp, 16);
7697       return TRUE;
7698 
7699     case 'S':
7700       symbol_is_section = TRUE;
7701     case 's':
7702       ++sym;
7703       symlen = strtol (sym, (char **) symp, 10);
7704       sym = *symp + 1; /* Skip the trailing ':'.  */
7705 
7706       if (symend < sym || symlen + 1 > sizeof (symbuf))
7707 	{
7708 	  bfd_set_error (bfd_error_invalid_operation);
7709 	  return FALSE;
7710 	}
7711 
7712       memcpy (symbuf, sym, symlen);
7713       symbuf[symlen] = '\0';
7714       *symp = sym + symlen;
7715 
7716       /* Is it always possible, with complex symbols, that gas "mis-guessed"
7717 	 the symbol as a section, or vice-versa. so we're pretty liberal in our
7718 	 interpretation here; section means "try section first", not "must be a
7719 	 section", and likewise with symbol.  */
7720 
7721       if (symbol_is_section)
7722 	{
7723 	  if (!resolve_section (symbuf, flinfo->output_bfd->sections, result)
7724 	      && !resolve_symbol (symbuf, input_bfd, flinfo, result,
7725 				  isymbuf, locsymcount))
7726 	    {
7727 	      undefined_reference ("section", symbuf);
7728 	      return FALSE;
7729 	    }
7730 	}
7731       else
7732 	{
7733 	  if (!resolve_symbol (symbuf, input_bfd, flinfo, result,
7734 			       isymbuf, locsymcount)
7735 	      && !resolve_section (symbuf, flinfo->output_bfd->sections,
7736 				   result))
7737 	    {
7738 	      undefined_reference ("symbol", symbuf);
7739 	      return FALSE;
7740 	    }
7741 	}
7742 
7743       return TRUE;
7744 
7745       /* All that remains are operators.  */
7746 
7747 #define UNARY_OP(op)						\
7748   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7749     {								\
7750       sym += strlen (#op);					\
7751       if (*sym == ':')						\
7752 	++sym;							\
7753       *symp = sym;						\
7754       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7755 			isymbuf, locsymcount, signed_p))	\
7756 	return FALSE;						\
7757       if (signed_p)						\
7758 	*result = op ((bfd_signed_vma) a);			\
7759       else							\
7760 	*result = op a;						\
7761       return TRUE;						\
7762     }
7763 
7764 #define BINARY_OP(op)						\
7765   if (strncmp (sym, #op, strlen (#op)) == 0)			\
7766     {								\
7767       sym += strlen (#op);					\
7768       if (*sym == ':')						\
7769 	++sym;							\
7770       *symp = sym;						\
7771       if (!eval_symbol (&a, symp, input_bfd, flinfo, dot,	\
7772 			isymbuf, locsymcount, signed_p))	\
7773 	return FALSE;						\
7774       ++*symp;							\
7775       if (!eval_symbol (&b, symp, input_bfd, flinfo, dot,	\
7776 			isymbuf, locsymcount, signed_p))	\
7777 	return FALSE;						\
7778       if (signed_p)						\
7779 	*result = ((bfd_signed_vma) a) op ((bfd_signed_vma) b);	\
7780       else							\
7781 	*result = a op b;					\
7782       return TRUE;						\
7783     }
7784 
7785     default:
7786       UNARY_OP  (0-);
7787       BINARY_OP (<<);
7788       BINARY_OP (>>);
7789       BINARY_OP (==);
7790       BINARY_OP (!=);
7791       BINARY_OP (<=);
7792       BINARY_OP (>=);
7793       BINARY_OP (&&);
7794       BINARY_OP (||);
7795       UNARY_OP  (~);
7796       UNARY_OP  (!);
7797       BINARY_OP (*);
7798       BINARY_OP (/);
7799       BINARY_OP (%);
7800       BINARY_OP (^);
7801       BINARY_OP (|);
7802       BINARY_OP (&);
7803       BINARY_OP (+);
7804       BINARY_OP (-);
7805       BINARY_OP (<);
7806       BINARY_OP (>);
7807 #undef UNARY_OP
7808 #undef BINARY_OP
7809       _bfd_error_handler (_("unknown operator '%c' in complex symbol"), * sym);
7810       bfd_set_error (bfd_error_invalid_operation);
7811       return FALSE;
7812     }
7813 }
7814 
7815 static void
7816 put_value (bfd_vma size,
7817 	   unsigned long chunksz,
7818 	   bfd *input_bfd,
7819 	   bfd_vma x,
7820 	   bfd_byte *location)
7821 {
7822   location += (size - chunksz);
7823 
7824   for (; size; size -= chunksz, location -= chunksz, x >>= (chunksz * 8))
7825     {
7826       switch (chunksz)
7827 	{
7828 	default:
7829 	case 0:
7830 	  abort ();
7831 	case 1:
7832 	  bfd_put_8 (input_bfd, x, location);
7833 	  break;
7834 	case 2:
7835 	  bfd_put_16 (input_bfd, x, location);
7836 	  break;
7837 	case 4:
7838 	  bfd_put_32 (input_bfd, x, location);
7839 	  break;
7840 	case 8:
7841 #ifdef BFD64
7842 	  bfd_put_64 (input_bfd, x, location);
7843 #else
7844 	  abort ();
7845 #endif
7846 	  break;
7847 	}
7848     }
7849 }
7850 
7851 static bfd_vma
7852 get_value (bfd_vma size,
7853 	   unsigned long chunksz,
7854 	   bfd *input_bfd,
7855 	   bfd_byte *location)
7856 {
7857   int shift;
7858   bfd_vma x = 0;
7859 
7860   /* Sanity checks.  */
7861   BFD_ASSERT (chunksz <= sizeof (x)
7862 	      && size >= chunksz
7863 	      && chunksz != 0
7864 	      && (size % chunksz) == 0
7865 	      && input_bfd != NULL
7866 	      && location != NULL);
7867 
7868   if (chunksz == sizeof (x))
7869     {
7870       BFD_ASSERT (size == chunksz);
7871 
7872       /* Make sure that we do not perform an undefined shift operation.
7873 	 We know that size == chunksz so there will only be one iteration
7874 	 of the loop below.  */
7875       shift = 0;
7876     }
7877   else
7878     shift = 8 * chunksz;
7879 
7880   for (; size; size -= chunksz, location += chunksz)
7881     {
7882       switch (chunksz)
7883 	{
7884 	case 1:
7885 	  x = (x << shift) | bfd_get_8 (input_bfd, location);
7886 	  break;
7887 	case 2:
7888 	  x = (x << shift) | bfd_get_16 (input_bfd, location);
7889 	  break;
7890 	case 4:
7891 	  x = (x << shift) | bfd_get_32 (input_bfd, location);
7892 	  break;
7893 #ifdef BFD64
7894 	case 8:
7895 	  x = (x << shift) | bfd_get_64 (input_bfd, location);
7896 	  break;
7897 #endif
7898 	default:
7899 	  abort ();
7900 	}
7901     }
7902   return x;
7903 }
7904 
7905 static void
7906 decode_complex_addend (unsigned long *start,   /* in bits */
7907 		       unsigned long *oplen,   /* in bits */
7908 		       unsigned long *len,     /* in bits */
7909 		       unsigned long *wordsz,  /* in bytes */
7910 		       unsigned long *chunksz, /* in bytes */
7911 		       unsigned long *lsb0_p,
7912 		       unsigned long *signed_p,
7913 		       unsigned long *trunc_p,
7914 		       unsigned long encoded)
7915 {
7916   * start     =  encoded        & 0x3F;
7917   * len       = (encoded >>  6) & 0x3F;
7918   * oplen     = (encoded >> 12) & 0x3F;
7919   * wordsz    = (encoded >> 18) & 0xF;
7920   * chunksz   = (encoded >> 22) & 0xF;
7921   * lsb0_p    = (encoded >> 27) & 1;
7922   * signed_p  = (encoded >> 28) & 1;
7923   * trunc_p   = (encoded >> 29) & 1;
7924 }
7925 
7926 bfd_reloc_status_type
7927 bfd_elf_perform_complex_relocation (bfd *input_bfd,
7928 				    asection *input_section ATTRIBUTE_UNUSED,
7929 				    bfd_byte *contents,
7930 				    Elf_Internal_Rela *rel,
7931 				    bfd_vma relocation)
7932 {
7933   bfd_vma shift, x, mask;
7934   unsigned long start, oplen, len, wordsz, chunksz, lsb0_p, signed_p, trunc_p;
7935   bfd_reloc_status_type r;
7936 
7937   /*  Perform this reloc, since it is complex.
7938       (this is not to say that it necessarily refers to a complex
7939       symbol; merely that it is a self-describing CGEN based reloc.
7940       i.e. the addend has the complete reloc information (bit start, end,
7941       word size, etc) encoded within it.).  */
7942 
7943   decode_complex_addend (&start, &oplen, &len, &wordsz,
7944 			 &chunksz, &lsb0_p, &signed_p,
7945 			 &trunc_p, rel->r_addend);
7946 
7947   mask = (((1L << (len - 1)) - 1) << 1) | 1;
7948 
7949   if (lsb0_p)
7950     shift = (start + 1) - len;
7951   else
7952     shift = (8 * wordsz) - (start + len);
7953 
7954   /* FIXME: octets_per_byte.  */
7955   x = get_value (wordsz, chunksz, input_bfd, contents + rel->r_offset);
7956 
7957 #ifdef DEBUG
7958   printf ("Doing complex reloc: "
7959 	  "lsb0? %ld, signed? %ld, trunc? %ld, wordsz %ld, "
7960 	  "chunksz %ld, start %ld, len %ld, oplen %ld\n"
7961 	  "    dest: %8.8lx, mask: %8.8lx, reloc: %8.8lx\n",
7962 	  lsb0_p, signed_p, trunc_p, wordsz, chunksz, start, len,
7963 	  oplen, (unsigned long) x, (unsigned long) mask,
7964 	  (unsigned long) relocation);
7965 #endif
7966 
7967   r = bfd_reloc_ok;
7968   if (! trunc_p)
7969     /* Now do an overflow check.  */
7970     r = bfd_check_overflow ((signed_p
7971 			     ? complain_overflow_signed
7972 			     : complain_overflow_unsigned),
7973 			    len, 0, (8 * wordsz),
7974 			    relocation);
7975 
7976   /* Do the deed.  */
7977   x = (x & ~(mask << shift)) | ((relocation & mask) << shift);
7978 
7979 #ifdef DEBUG
7980   printf ("           relocation: %8.8lx\n"
7981 	  "         shifted mask: %8.8lx\n"
7982 	  " shifted/masked reloc: %8.8lx\n"
7983 	  "               result: %8.8lx\n",
7984 	  (unsigned long) relocation, (unsigned long) (mask << shift),
7985 	  (unsigned long) ((relocation & mask) << shift), (unsigned long) x);
7986 #endif
7987   /* FIXME: octets_per_byte.  */
7988   put_value (wordsz, chunksz, input_bfd, x, contents + rel->r_offset);
7989   return r;
7990 }
7991 
7992 /* When performing a relocatable link, the input relocations are
7993    preserved.  But, if they reference global symbols, the indices
7994    referenced must be updated.  Update all the relocations found in
7995    RELDATA.  */
7996 
7997 static void
7998 elf_link_adjust_relocs (bfd *abfd,
7999 			struct bfd_elf_section_reloc_data *reldata)
8000 {
8001   unsigned int i;
8002   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8003   bfd_byte *erela;
8004   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8005   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8006   bfd_vma r_type_mask;
8007   int r_sym_shift;
8008   unsigned int count = reldata->count;
8009   struct elf_link_hash_entry **rel_hash = reldata->hashes;
8010 
8011   if (reldata->hdr->sh_entsize == bed->s->sizeof_rel)
8012     {
8013       swap_in = bed->s->swap_reloc_in;
8014       swap_out = bed->s->swap_reloc_out;
8015     }
8016   else if (reldata->hdr->sh_entsize == bed->s->sizeof_rela)
8017     {
8018       swap_in = bed->s->swap_reloca_in;
8019       swap_out = bed->s->swap_reloca_out;
8020     }
8021   else
8022     abort ();
8023 
8024   if (bed->s->int_rels_per_ext_rel > MAX_INT_RELS_PER_EXT_REL)
8025     abort ();
8026 
8027   if (bed->s->arch_size == 32)
8028     {
8029       r_type_mask = 0xff;
8030       r_sym_shift = 8;
8031     }
8032   else
8033     {
8034       r_type_mask = 0xffffffff;
8035       r_sym_shift = 32;
8036     }
8037 
8038   erela = reldata->hdr->contents;
8039   for (i = 0; i < count; i++, rel_hash++, erela += reldata->hdr->sh_entsize)
8040     {
8041       Elf_Internal_Rela irela[MAX_INT_RELS_PER_EXT_REL];
8042       unsigned int j;
8043 
8044       if (*rel_hash == NULL)
8045 	continue;
8046 
8047       BFD_ASSERT ((*rel_hash)->indx >= 0);
8048 
8049       (*swap_in) (abfd, erela, irela);
8050       for (j = 0; j < bed->s->int_rels_per_ext_rel; j++)
8051 	irela[j].r_info = ((bfd_vma) (*rel_hash)->indx << r_sym_shift
8052 			   | (irela[j].r_info & r_type_mask));
8053       (*swap_out) (abfd, irela, erela);
8054     }
8055 }
8056 
8057 struct elf_link_sort_rela
8058 {
8059   union {
8060     bfd_vma offset;
8061     bfd_vma sym_mask;
8062   } u;
8063   enum elf_reloc_type_class type;
8064   /* We use this as an array of size int_rels_per_ext_rel.  */
8065   Elf_Internal_Rela rela[1];
8066 };
8067 
8068 static int
8069 elf_link_sort_cmp1 (const void *A, const void *B)
8070 {
8071   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8072   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8073   int relativea, relativeb;
8074 
8075   relativea = a->type == reloc_class_relative;
8076   relativeb = b->type == reloc_class_relative;
8077 
8078   if (relativea < relativeb)
8079     return 1;
8080   if (relativea > relativeb)
8081     return -1;
8082   if ((a->rela->r_info & a->u.sym_mask) < (b->rela->r_info & b->u.sym_mask))
8083     return -1;
8084   if ((a->rela->r_info & a->u.sym_mask) > (b->rela->r_info & b->u.sym_mask))
8085     return 1;
8086   if (a->rela->r_offset < b->rela->r_offset)
8087     return -1;
8088   if (a->rela->r_offset > b->rela->r_offset)
8089     return 1;
8090   return 0;
8091 }
8092 
8093 static int
8094 elf_link_sort_cmp2 (const void *A, const void *B)
8095 {
8096   const struct elf_link_sort_rela *a = (const struct elf_link_sort_rela *) A;
8097   const struct elf_link_sort_rela *b = (const struct elf_link_sort_rela *) B;
8098 
8099   if (a->type < b->type)
8100     return -1;
8101   if (a->type > b->type)
8102     return 1;
8103   if (a->u.offset < b->u.offset)
8104     return -1;
8105   if (a->u.offset > b->u.offset)
8106     return 1;
8107   if (a->rela->r_offset < b->rela->r_offset)
8108     return -1;
8109   if (a->rela->r_offset > b->rela->r_offset)
8110     return 1;
8111   return 0;
8112 }
8113 
8114 static size_t
8115 elf_link_sort_relocs (bfd *abfd, struct bfd_link_info *info, asection **psec)
8116 {
8117   asection *dynamic_relocs;
8118   asection *rela_dyn;
8119   asection *rel_dyn;
8120   bfd_size_type count, size;
8121   size_t i, ret, sort_elt, ext_size;
8122   bfd_byte *sort, *s_non_relative, *p;
8123   struct elf_link_sort_rela *sq;
8124   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8125   int i2e = bed->s->int_rels_per_ext_rel;
8126   void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
8127   void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
8128   struct bfd_link_order *lo;
8129   bfd_vma r_sym_mask;
8130   bfd_boolean use_rela;
8131 
8132   /* Find a dynamic reloc section.  */
8133   rela_dyn = bfd_get_section_by_name (abfd, ".rela.dyn");
8134   rel_dyn  = bfd_get_section_by_name (abfd, ".rel.dyn");
8135   if (rela_dyn != NULL && rela_dyn->size > 0
8136       && rel_dyn != NULL && rel_dyn->size > 0)
8137     {
8138       bfd_boolean use_rela_initialised = FALSE;
8139 
8140       /* This is just here to stop gcc from complaining.
8141 	 It's initialization checking code is not perfect.  */
8142       use_rela = TRUE;
8143 
8144       /* Both sections are present.  Examine the sizes
8145 	 of the indirect sections to help us choose.  */
8146       for (lo = rela_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8147 	if (lo->type == bfd_indirect_link_order)
8148 	  {
8149 	    asection *o = lo->u.indirect.section;
8150 
8151 	    if ((o->size % bed->s->sizeof_rela) == 0)
8152 	      {
8153 		if ((o->size % bed->s->sizeof_rel) == 0)
8154 		  /* Section size is divisible by both rel and rela sizes.
8155 		     It is of no help to us.  */
8156 		  ;
8157 		else
8158 		  {
8159 		    /* Section size is only divisible by rela.  */
8160 		    if (use_rela_initialised && (use_rela == FALSE))
8161 		      {
8162 			_bfd_error_handler
8163 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8164 			bfd_set_error (bfd_error_invalid_operation);
8165 			return 0;
8166 		      }
8167 		    else
8168 		      {
8169 			use_rela = TRUE;
8170 			use_rela_initialised = TRUE;
8171 		      }
8172 		  }
8173 	      }
8174 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8175 	      {
8176 		/* Section size is only divisible by rel.  */
8177 		if (use_rela_initialised && (use_rela == TRUE))
8178 		  {
8179 		    _bfd_error_handler
8180 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8181 		    bfd_set_error (bfd_error_invalid_operation);
8182 		    return 0;
8183 		  }
8184 		else
8185 		  {
8186 		    use_rela = FALSE;
8187 		    use_rela_initialised = TRUE;
8188 		  }
8189 	      }
8190 	    else
8191 	      {
8192 		/* The section size is not divisible by either - something is wrong.  */
8193 		_bfd_error_handler
8194 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8195 		bfd_set_error (bfd_error_invalid_operation);
8196 		return 0;
8197 	      }
8198 	  }
8199 
8200       for (lo = rel_dyn->map_head.link_order; lo != NULL; lo = lo->next)
8201 	if (lo->type == bfd_indirect_link_order)
8202 	  {
8203 	    asection *o = lo->u.indirect.section;
8204 
8205 	    if ((o->size % bed->s->sizeof_rela) == 0)
8206 	      {
8207 		if ((o->size % bed->s->sizeof_rel) == 0)
8208 		  /* Section size is divisible by both rel and rela sizes.
8209 		     It is of no help to us.  */
8210 		  ;
8211 		else
8212 		  {
8213 		    /* Section size is only divisible by rela.  */
8214 		    if (use_rela_initialised && (use_rela == FALSE))
8215 		      {
8216 			_bfd_error_handler
8217 			  (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8218 			bfd_set_error (bfd_error_invalid_operation);
8219 			return 0;
8220 		      }
8221 		    else
8222 		      {
8223 			use_rela = TRUE;
8224 			use_rela_initialised = TRUE;
8225 		      }
8226 		  }
8227 	      }
8228 	    else if ((o->size % bed->s->sizeof_rel) == 0)
8229 	      {
8230 		/* Section size is only divisible by rel.  */
8231 		if (use_rela_initialised && (use_rela == TRUE))
8232 		  {
8233 		    _bfd_error_handler
8234 		      (_("%B: Unable to sort relocs - they are in more than one size"), abfd);
8235 		    bfd_set_error (bfd_error_invalid_operation);
8236 		    return 0;
8237 		  }
8238 		else
8239 		  {
8240 		    use_rela = FALSE;
8241 		    use_rela_initialised = TRUE;
8242 		  }
8243 	      }
8244 	    else
8245 	      {
8246 		/* The section size is not divisible by either - something is wrong.  */
8247 		_bfd_error_handler
8248 		  (_("%B: Unable to sort relocs - they are of an unknown size"), abfd);
8249 		bfd_set_error (bfd_error_invalid_operation);
8250 		return 0;
8251 	      }
8252 	  }
8253 
8254       if (! use_rela_initialised)
8255 	/* Make a guess.  */
8256 	use_rela = TRUE;
8257     }
8258   else if (rela_dyn != NULL && rela_dyn->size > 0)
8259     use_rela = TRUE;
8260   else if (rel_dyn != NULL && rel_dyn->size > 0)
8261     use_rela = FALSE;
8262   else
8263     return 0;
8264 
8265   if (use_rela)
8266     {
8267       dynamic_relocs = rela_dyn;
8268       ext_size = bed->s->sizeof_rela;
8269       swap_in = bed->s->swap_reloca_in;
8270       swap_out = bed->s->swap_reloca_out;
8271     }
8272   else
8273     {
8274       dynamic_relocs = rel_dyn;
8275       ext_size = bed->s->sizeof_rel;
8276       swap_in = bed->s->swap_reloc_in;
8277       swap_out = bed->s->swap_reloc_out;
8278     }
8279 
8280   size = 0;
8281   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8282     if (lo->type == bfd_indirect_link_order)
8283       size += lo->u.indirect.section->size;
8284 
8285   if (size != dynamic_relocs->size)
8286     return 0;
8287 
8288   sort_elt = (sizeof (struct elf_link_sort_rela)
8289 	      + (i2e - 1) * sizeof (Elf_Internal_Rela));
8290 
8291   count = dynamic_relocs->size / ext_size;
8292   if (count == 0)
8293     return 0;
8294   sort = (bfd_byte *) bfd_zmalloc (sort_elt * count);
8295 
8296   if (sort == NULL)
8297     {
8298       (*info->callbacks->warning)
8299 	(info, _("Not enough memory to sort relocations"), 0, abfd, 0, 0);
8300       return 0;
8301     }
8302 
8303   if (bed->s->arch_size == 32)
8304     r_sym_mask = ~(bfd_vma) 0xff;
8305   else
8306     r_sym_mask = ~(bfd_vma) 0xffffffff;
8307 
8308   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8309     if (lo->type == bfd_indirect_link_order)
8310       {
8311 	bfd_byte *erel, *erelend;
8312 	asection *o = lo->u.indirect.section;
8313 
8314 	if (o->contents == NULL && o->size != 0)
8315 	  {
8316 	    /* This is a reloc section that is being handled as a normal
8317 	       section.  See bfd_section_from_shdr.  We can't combine
8318 	       relocs in this case.  */
8319 	    free (sort);
8320 	    return 0;
8321 	  }
8322 	erel = o->contents;
8323 	erelend = o->contents + o->size;
8324 	/* FIXME: octets_per_byte.  */
8325 	p = sort + o->output_offset / ext_size * sort_elt;
8326 
8327 	while (erel < erelend)
8328 	  {
8329 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8330 
8331 	    (*swap_in) (abfd, erel, s->rela);
8332 	    s->type = (*bed->elf_backend_reloc_type_class) (info, o, s->rela);
8333 	    s->u.sym_mask = r_sym_mask;
8334 	    p += sort_elt;
8335 	    erel += ext_size;
8336 	  }
8337       }
8338 
8339   qsort (sort, count, sort_elt, elf_link_sort_cmp1);
8340 
8341   for (i = 0, p = sort; i < count; i++, p += sort_elt)
8342     {
8343       struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8344       if (s->type != reloc_class_relative)
8345 	break;
8346     }
8347   ret = i;
8348   s_non_relative = p;
8349 
8350   sq = (struct elf_link_sort_rela *) s_non_relative;
8351   for (; i < count; i++, p += sort_elt)
8352     {
8353       struct elf_link_sort_rela *sp = (struct elf_link_sort_rela *) p;
8354       if (((sp->rela->r_info ^ sq->rela->r_info) & r_sym_mask) != 0)
8355 	sq = sp;
8356       sp->u.offset = sq->rela->r_offset;
8357     }
8358 
8359   qsort (s_non_relative, count - ret, sort_elt, elf_link_sort_cmp2);
8360 
8361   for (lo = dynamic_relocs->map_head.link_order; lo != NULL; lo = lo->next)
8362     if (lo->type == bfd_indirect_link_order)
8363       {
8364 	bfd_byte *erel, *erelend;
8365 	asection *o = lo->u.indirect.section;
8366 
8367 	erel = o->contents;
8368 	erelend = o->contents + o->size;
8369 	/* FIXME: octets_per_byte.  */
8370 	p = sort + o->output_offset / ext_size * sort_elt;
8371 	while (erel < erelend)
8372 	  {
8373 	    struct elf_link_sort_rela *s = (struct elf_link_sort_rela *) p;
8374 	    (*swap_out) (abfd, s->rela, erel);
8375 	    p += sort_elt;
8376 	    erel += ext_size;
8377 	  }
8378       }
8379 
8380   free (sort);
8381   *psec = dynamic_relocs;
8382   return ret;
8383 }
8384 
8385 /* Flush the output symbols to the file.  */
8386 
8387 static bfd_boolean
8388 elf_link_flush_output_syms (struct elf_final_link_info *flinfo,
8389 			    const struct elf_backend_data *bed)
8390 {
8391   if (flinfo->symbuf_count > 0)
8392     {
8393       Elf_Internal_Shdr *hdr;
8394       file_ptr pos;
8395       bfd_size_type amt;
8396 
8397       hdr = &elf_tdata (flinfo->output_bfd)->symtab_hdr;
8398       pos = hdr->sh_offset + hdr->sh_size;
8399       amt = flinfo->symbuf_count * bed->s->sizeof_sym;
8400       if (bfd_seek (flinfo->output_bfd, pos, SEEK_SET) != 0
8401 	  || bfd_bwrite (flinfo->symbuf, amt, flinfo->output_bfd) != amt)
8402 	return FALSE;
8403 
8404       hdr->sh_size += amt;
8405       flinfo->symbuf_count = 0;
8406     }
8407 
8408   return TRUE;
8409 }
8410 
8411 /* Add a symbol to the output symbol table.  */
8412 
8413 static int
8414 elf_link_output_sym (struct elf_final_link_info *flinfo,
8415 		     const char *name,
8416 		     Elf_Internal_Sym *elfsym,
8417 		     asection *input_sec,
8418 		     struct elf_link_hash_entry *h)
8419 {
8420   bfd_byte *dest;
8421   Elf_External_Sym_Shndx *destshndx;
8422   int (*output_symbol_hook)
8423     (struct bfd_link_info *, const char *, Elf_Internal_Sym *, asection *,
8424      struct elf_link_hash_entry *);
8425   const struct elf_backend_data *bed;
8426 
8427   bed = get_elf_backend_data (flinfo->output_bfd);
8428   output_symbol_hook = bed->elf_backend_link_output_symbol_hook;
8429   if (output_symbol_hook != NULL)
8430     {
8431       int ret = (*output_symbol_hook) (flinfo->info, name, elfsym, input_sec, h);
8432       if (ret != 1)
8433 	return ret;
8434     }
8435 
8436   if (name == NULL || *name == '\0')
8437     elfsym->st_name = 0;
8438   else if (input_sec->flags & SEC_EXCLUDE)
8439     elfsym->st_name = 0;
8440   else
8441     {
8442       elfsym->st_name = (unsigned long) _bfd_stringtab_add (flinfo->symstrtab,
8443 							    name, TRUE, FALSE);
8444       if (elfsym->st_name == (unsigned long) -1)
8445 	return 0;
8446     }
8447 
8448   if (flinfo->symbuf_count >= flinfo->symbuf_size)
8449     {
8450       if (! elf_link_flush_output_syms (flinfo, bed))
8451 	return 0;
8452     }
8453 
8454   dest = flinfo->symbuf + flinfo->symbuf_count * bed->s->sizeof_sym;
8455   destshndx = flinfo->symshndxbuf;
8456   if (destshndx != NULL)
8457     {
8458       if (bfd_get_symcount (flinfo->output_bfd) >= flinfo->shndxbuf_size)
8459 	{
8460 	  bfd_size_type amt;
8461 
8462 	  amt = flinfo->shndxbuf_size * sizeof (Elf_External_Sym_Shndx);
8463 	  destshndx = (Elf_External_Sym_Shndx *) bfd_realloc (destshndx,
8464                                                               amt * 2);
8465 	  if (destshndx == NULL)
8466 	    return 0;
8467 	  flinfo->symshndxbuf = destshndx;
8468 	  memset ((char *) destshndx + amt, 0, amt);
8469 	  flinfo->shndxbuf_size *= 2;
8470 	}
8471       destshndx += bfd_get_symcount (flinfo->output_bfd);
8472     }
8473 
8474   bed->s->swap_symbol_out (flinfo->output_bfd, elfsym, dest, destshndx);
8475   flinfo->symbuf_count += 1;
8476   bfd_get_symcount (flinfo->output_bfd) += 1;
8477 
8478   return 1;
8479 }
8480 
8481 /* Return TRUE if the dynamic symbol SYM in ABFD is supported.  */
8482 
8483 static bfd_boolean
8484 check_dynsym (bfd *abfd, Elf_Internal_Sym *sym)
8485 {
8486   if (sym->st_shndx >= (SHN_LORESERVE & 0xffff)
8487       && sym->st_shndx < SHN_LORESERVE)
8488     {
8489       /* The gABI doesn't support dynamic symbols in output sections
8490 	 beyond 64k.  */
8491       (*_bfd_error_handler)
8492 	(_("%B: Too many sections: %d (>= %d)"),
8493 	 abfd, bfd_count_sections (abfd), SHN_LORESERVE & 0xffff);
8494       bfd_set_error (bfd_error_nonrepresentable_section);
8495       return FALSE;
8496     }
8497   return TRUE;
8498 }
8499 
8500 /* For DSOs loaded in via a DT_NEEDED entry, emulate ld.so in
8501    allowing an unsatisfied unversioned symbol in the DSO to match a
8502    versioned symbol that would normally require an explicit version.
8503    We also handle the case that a DSO references a hidden symbol
8504    which may be satisfied by a versioned symbol in another DSO.  */
8505 
8506 static bfd_boolean
8507 elf_link_check_versioned_symbol (struct bfd_link_info *info,
8508 				 const struct elf_backend_data *bed,
8509 				 struct elf_link_hash_entry *h)
8510 {
8511   bfd *abfd;
8512   struct elf_link_loaded_list *loaded;
8513 
8514   if (!is_elf_hash_table (info->hash))
8515     return FALSE;
8516 
8517   /* Check indirect symbol.  */
8518   while (h->root.type == bfd_link_hash_indirect)
8519     h = (struct elf_link_hash_entry *) h->root.u.i.link;
8520 
8521   switch (h->root.type)
8522     {
8523     default:
8524       abfd = NULL;
8525       break;
8526 
8527     case bfd_link_hash_undefined:
8528     case bfd_link_hash_undefweak:
8529       abfd = h->root.u.undef.abfd;
8530       if ((abfd->flags & DYNAMIC) == 0
8531 	  || (elf_dyn_lib_class (abfd) & DYN_DT_NEEDED) == 0)
8532 	return FALSE;
8533       break;
8534 
8535     case bfd_link_hash_defined:
8536     case bfd_link_hash_defweak:
8537       abfd = h->root.u.def.section->owner;
8538       break;
8539 
8540     case bfd_link_hash_common:
8541       abfd = h->root.u.c.p->section->owner;
8542       break;
8543     }
8544   BFD_ASSERT (abfd != NULL);
8545 
8546   for (loaded = elf_hash_table (info)->loaded;
8547        loaded != NULL;
8548        loaded = loaded->next)
8549     {
8550       bfd *input;
8551       Elf_Internal_Shdr *hdr;
8552       bfd_size_type symcount;
8553       bfd_size_type extsymcount;
8554       bfd_size_type extsymoff;
8555       Elf_Internal_Shdr *versymhdr;
8556       Elf_Internal_Sym *isym;
8557       Elf_Internal_Sym *isymend;
8558       Elf_Internal_Sym *isymbuf;
8559       Elf_External_Versym *ever;
8560       Elf_External_Versym *extversym;
8561 
8562       input = loaded->abfd;
8563 
8564       /* We check each DSO for a possible hidden versioned definition.  */
8565       if (input == abfd
8566 	  || (input->flags & DYNAMIC) == 0
8567 	  || elf_dynversym (input) == 0)
8568 	continue;
8569 
8570       hdr = &elf_tdata (input)->dynsymtab_hdr;
8571 
8572       symcount = hdr->sh_size / bed->s->sizeof_sym;
8573       if (elf_bad_symtab (input))
8574 	{
8575 	  extsymcount = symcount;
8576 	  extsymoff = 0;
8577 	}
8578       else
8579 	{
8580 	  extsymcount = symcount - hdr->sh_info;
8581 	  extsymoff = hdr->sh_info;
8582 	}
8583 
8584       if (extsymcount == 0)
8585 	continue;
8586 
8587       isymbuf = bfd_elf_get_elf_syms (input, hdr, extsymcount, extsymoff,
8588 				      NULL, NULL, NULL);
8589       if (isymbuf == NULL)
8590 	return FALSE;
8591 
8592       /* Read in any version definitions.  */
8593       versymhdr = &elf_tdata (input)->dynversym_hdr;
8594       extversym = (Elf_External_Versym *) bfd_malloc (versymhdr->sh_size);
8595       if (extversym == NULL)
8596 	goto error_ret;
8597 
8598       if (bfd_seek (input, versymhdr->sh_offset, SEEK_SET) != 0
8599 	  || (bfd_bread (extversym, versymhdr->sh_size, input)
8600 	      != versymhdr->sh_size))
8601 	{
8602 	  free (extversym);
8603 	error_ret:
8604 	  free (isymbuf);
8605 	  return FALSE;
8606 	}
8607 
8608       ever = extversym + extsymoff;
8609       isymend = isymbuf + extsymcount;
8610       for (isym = isymbuf; isym < isymend; isym++, ever++)
8611 	{
8612 	  const char *name;
8613 	  Elf_Internal_Versym iver;
8614 	  unsigned short version_index;
8615 
8616 	  if (ELF_ST_BIND (isym->st_info) == STB_LOCAL
8617 	      || isym->st_shndx == SHN_UNDEF)
8618 	    continue;
8619 
8620 	  name = bfd_elf_string_from_elf_section (input,
8621 						  hdr->sh_link,
8622 						  isym->st_name);
8623 	  if (strcmp (name, h->root.root.string) != 0)
8624 	    continue;
8625 
8626 	  _bfd_elf_swap_versym_in (input, ever, &iver);
8627 
8628 	  if ((iver.vs_vers & VERSYM_HIDDEN) == 0
8629 	      && !(h->def_regular
8630 		   && h->forced_local))
8631 	    {
8632 	      /* If we have a non-hidden versioned sym, then it should
8633 		 have provided a definition for the undefined sym unless
8634 		 it is defined in a non-shared object and forced local.
8635 	       */
8636 	      abort ();
8637 	    }
8638 
8639 	  version_index = iver.vs_vers & VERSYM_VERSION;
8640 	  if (version_index == 1 || version_index == 2)
8641 	    {
8642 	      /* This is the base or first version.  We can use it.  */
8643 	      free (extversym);
8644 	      free (isymbuf);
8645 	      return TRUE;
8646 	    }
8647 	}
8648 
8649       free (extversym);
8650       free (isymbuf);
8651     }
8652 
8653   return FALSE;
8654 }
8655 
8656 /* Add an external symbol to the symbol table.  This is called from
8657    the hash table traversal routine.  When generating a shared object,
8658    we go through the symbol table twice.  The first time we output
8659    anything that might have been forced to local scope in a version
8660    script.  The second time we output the symbols that are still
8661    global symbols.  */
8662 
8663 static bfd_boolean
8664 elf_link_output_extsym (struct bfd_hash_entry *bh, void *data)
8665 {
8666   struct elf_link_hash_entry *h = (struct elf_link_hash_entry *) bh;
8667   struct elf_outext_info *eoinfo = (struct elf_outext_info *) data;
8668   struct elf_final_link_info *flinfo = eoinfo->flinfo;
8669   bfd_boolean strip;
8670   Elf_Internal_Sym sym;
8671   asection *input_sec;
8672   const struct elf_backend_data *bed;
8673   long indx;
8674   int ret;
8675 
8676   if (h->root.type == bfd_link_hash_warning)
8677     {
8678       h = (struct elf_link_hash_entry *) h->root.u.i.link;
8679       if (h->root.type == bfd_link_hash_new)
8680 	return TRUE;
8681     }
8682 
8683   /* Decide whether to output this symbol in this pass.  */
8684   if (eoinfo->localsyms)
8685     {
8686       if (!h->forced_local)
8687 	return TRUE;
8688       if (eoinfo->second_pass
8689 	  && !((h->root.type == bfd_link_hash_defined
8690 		|| h->root.type == bfd_link_hash_defweak)
8691 	       && h->root.u.def.section->output_section != NULL))
8692 	return TRUE;
8693 
8694       if (!eoinfo->file_sym_done
8695 	  && (eoinfo->second_pass ? eoinfo->flinfo->filesym_count == 1
8696 				  : eoinfo->flinfo->filesym_count > 1))
8697 	{
8698 	  /* Output a FILE symbol so that following locals are not associated
8699 	     with the wrong input file.  */
8700 	  memset (&sym, 0, sizeof (sym));
8701 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8702 	  sym.st_shndx = SHN_ABS;
8703 	  if (!elf_link_output_sym (eoinfo->flinfo, NULL, &sym,
8704 				    bfd_und_section_ptr, NULL))
8705 	    return FALSE;
8706 
8707 	  eoinfo->file_sym_done = TRUE;
8708 	}
8709     }
8710   else
8711     {
8712       if (h->forced_local)
8713 	return TRUE;
8714     }
8715 
8716   bed = get_elf_backend_data (flinfo->output_bfd);
8717 
8718   if (h->root.type == bfd_link_hash_undefined)
8719     {
8720       /* If we have an undefined symbol reference here then it must have
8721 	 come from a shared library that is being linked in.  (Undefined
8722 	 references in regular files have already been handled unless
8723 	 they are in unreferenced sections which are removed by garbage
8724 	 collection).  */
8725       bfd_boolean ignore_undef = FALSE;
8726 
8727       /* Some symbols may be special in that the fact that they're
8728 	 undefined can be safely ignored - let backend determine that.  */
8729       if (bed->elf_backend_ignore_undef_symbol)
8730 	ignore_undef = bed->elf_backend_ignore_undef_symbol (h);
8731 
8732       /* If we are reporting errors for this situation then do so now.  */
8733       if (!ignore_undef
8734 	  && h->ref_dynamic
8735 	  && (!h->ref_regular || flinfo->info->gc_sections)
8736 	  && !elf_link_check_versioned_symbol (flinfo->info, bed, h)
8737 	  && flinfo->info->unresolved_syms_in_shared_libs != RM_IGNORE)
8738 	{
8739 	  if (!(flinfo->info->callbacks->undefined_symbol
8740 		(flinfo->info, h->root.root.string,
8741 		 h->ref_regular ? NULL : h->root.u.undef.abfd,
8742 		 NULL, 0,
8743 		 (flinfo->info->unresolved_syms_in_shared_libs
8744 		  == RM_GENERATE_ERROR))))
8745 	    {
8746 	      bfd_set_error (bfd_error_bad_value);
8747 	      eoinfo->failed = TRUE;
8748 	      return FALSE;
8749 	    }
8750 	}
8751     }
8752 
8753   /* We should also warn if a forced local symbol is referenced from
8754      shared libraries.  */
8755   if (!flinfo->info->relocatable
8756       && flinfo->info->executable
8757       && h->forced_local
8758       && h->ref_dynamic
8759       && h->def_regular
8760       && !h->dynamic_def
8761       && h->ref_dynamic_nonweak
8762       && !elf_link_check_versioned_symbol (flinfo->info, bed, h))
8763     {
8764       bfd *def_bfd;
8765       const char *msg;
8766       struct elf_link_hash_entry *hi = h;
8767 
8768       /* Check indirect symbol.  */
8769       while (hi->root.type == bfd_link_hash_indirect)
8770 	hi = (struct elf_link_hash_entry *) hi->root.u.i.link;
8771 
8772       if (ELF_ST_VISIBILITY (h->other) == STV_INTERNAL)
8773 	msg = _("%B: internal symbol `%s' in %B is referenced by DSO");
8774       else if (ELF_ST_VISIBILITY (h->other) == STV_HIDDEN)
8775 	msg = _("%B: hidden symbol `%s' in %B is referenced by DSO");
8776       else
8777 	msg = _("%B: local symbol `%s' in %B is referenced by DSO");
8778       def_bfd = flinfo->output_bfd;
8779       if (hi->root.u.def.section != bfd_abs_section_ptr)
8780 	def_bfd = hi->root.u.def.section->owner;
8781       (*_bfd_error_handler) (msg, flinfo->output_bfd, def_bfd,
8782 			     h->root.root.string);
8783       bfd_set_error (bfd_error_bad_value);
8784       eoinfo->failed = TRUE;
8785       return FALSE;
8786     }
8787 
8788   /* We don't want to output symbols that have never been mentioned by
8789      a regular file, or that we have been told to strip.  However, if
8790      h->indx is set to -2, the symbol is used by a reloc and we must
8791      output it.  */
8792   if (h->indx == -2)
8793     strip = FALSE;
8794   else if ((h->def_dynamic
8795 	    || h->ref_dynamic
8796 	    || h->root.type == bfd_link_hash_new)
8797 	   && !h->def_regular
8798 	   && !h->ref_regular)
8799     strip = TRUE;
8800   else if (flinfo->info->strip == strip_all)
8801     strip = TRUE;
8802   else if (flinfo->info->strip == strip_some
8803 	   && bfd_hash_lookup (flinfo->info->keep_hash,
8804 			       h->root.root.string, FALSE, FALSE) == NULL)
8805     strip = TRUE;
8806   else if ((h->root.type == bfd_link_hash_defined
8807 	    || h->root.type == bfd_link_hash_defweak)
8808 	   && ((flinfo->info->strip_discarded
8809 		&& discarded_section (h->root.u.def.section))
8810 	       || (h->root.u.def.section->owner != NULL
8811 		   && (h->root.u.def.section->owner->flags & BFD_PLUGIN) != 0)))
8812     strip = TRUE;
8813   else if ((h->root.type == bfd_link_hash_undefined
8814 	    || h->root.type == bfd_link_hash_undefweak)
8815 	   && h->root.u.undef.abfd != NULL
8816 	   && (h->root.u.undef.abfd->flags & BFD_PLUGIN) != 0)
8817     strip = TRUE;
8818   else
8819     strip = FALSE;
8820 
8821   /* If we're stripping it, and it's not a dynamic symbol, there's
8822      nothing else to do unless it is a forced local symbol or a
8823      STT_GNU_IFUNC symbol.  */
8824   if (strip
8825       && h->dynindx == -1
8826       && h->type != STT_GNU_IFUNC
8827       && !h->forced_local)
8828     return TRUE;
8829 
8830   sym.st_value = 0;
8831   sym.st_size = h->size;
8832   sym.st_other = h->other;
8833   if (h->forced_local)
8834     {
8835       sym.st_info = ELF_ST_INFO (STB_LOCAL, h->type);
8836       /* Turn off visibility on local symbol.  */
8837       sym.st_other &= ~ELF_ST_VISIBILITY (-1);
8838     }
8839   /* Set STB_GNU_UNIQUE only if symbol is defined in regular object.  */
8840   else if (h->unique_global && h->def_regular)
8841     sym.st_info = ELF_ST_INFO (STB_GNU_UNIQUE, h->type);
8842   else if (h->root.type == bfd_link_hash_undefweak
8843 	   || h->root.type == bfd_link_hash_defweak)
8844     sym.st_info = ELF_ST_INFO (STB_WEAK, h->type);
8845   else
8846     sym.st_info = ELF_ST_INFO (STB_GLOBAL, h->type);
8847   sym.st_target_internal = h->target_internal;
8848 
8849   switch (h->root.type)
8850     {
8851     default:
8852     case bfd_link_hash_new:
8853     case bfd_link_hash_warning:
8854       abort ();
8855       return FALSE;
8856 
8857     case bfd_link_hash_undefined:
8858     case bfd_link_hash_undefweak:
8859       input_sec = bfd_und_section_ptr;
8860       sym.st_shndx = SHN_UNDEF;
8861       break;
8862 
8863     case bfd_link_hash_defined:
8864     case bfd_link_hash_defweak:
8865       {
8866 	input_sec = h->root.u.def.section;
8867 	if (input_sec->output_section != NULL)
8868 	  {
8869 	    if (eoinfo->localsyms && flinfo->filesym_count == 1)
8870 	      {
8871 		bfd_boolean second_pass_sym
8872 		  = (input_sec->owner == flinfo->output_bfd
8873 		     || input_sec->owner == NULL
8874 		     || (input_sec->flags & SEC_LINKER_CREATED) != 0
8875 		     || (input_sec->owner->flags & BFD_LINKER_CREATED) != 0);
8876 
8877 		eoinfo->need_second_pass |= second_pass_sym;
8878 		if (eoinfo->second_pass != second_pass_sym)
8879 		  return TRUE;
8880 	      }
8881 
8882 	    sym.st_shndx =
8883 	      _bfd_elf_section_from_bfd_section (flinfo->output_bfd,
8884 						 input_sec->output_section);
8885 	    if (sym.st_shndx == SHN_BAD)
8886 	      {
8887 		(*_bfd_error_handler)
8888 		  (_("%B: could not find output section %A for input section %A"),
8889 		   flinfo->output_bfd, input_sec->output_section, input_sec);
8890 		bfd_set_error (bfd_error_nonrepresentable_section);
8891 		eoinfo->failed = TRUE;
8892 		return FALSE;
8893 	      }
8894 
8895 	    /* ELF symbols in relocatable files are section relative,
8896 	       but in nonrelocatable files they are virtual
8897 	       addresses.  */
8898 	    sym.st_value = h->root.u.def.value + input_sec->output_offset;
8899 	    if (!flinfo->info->relocatable)
8900 	      {
8901 		sym.st_value += input_sec->output_section->vma;
8902 		if (h->type == STT_TLS)
8903 		  {
8904 		    asection *tls_sec = elf_hash_table (flinfo->info)->tls_sec;
8905 		    if (tls_sec != NULL)
8906 		      sym.st_value -= tls_sec->vma;
8907 		    else
8908 		      {
8909 			/* The TLS section may have been garbage collected.  */
8910 			BFD_ASSERT (flinfo->info->gc_sections
8911 				    && !input_sec->gc_mark);
8912 		      }
8913 		  }
8914 	      }
8915 	  }
8916 	else
8917 	  {
8918 	    BFD_ASSERT (input_sec->owner == NULL
8919 			|| (input_sec->owner->flags & DYNAMIC) != 0);
8920 	    sym.st_shndx = SHN_UNDEF;
8921 	    input_sec = bfd_und_section_ptr;
8922 	  }
8923       }
8924       break;
8925 
8926     case bfd_link_hash_common:
8927       input_sec = h->root.u.c.p->section;
8928       sym.st_shndx = bed->common_section_index (input_sec);
8929       sym.st_value = 1 << h->root.u.c.p->alignment_power;
8930       break;
8931 
8932     case bfd_link_hash_indirect:
8933       /* These symbols are created by symbol versioning.  They point
8934 	 to the decorated version of the name.  For example, if the
8935 	 symbol foo@@GNU_1.2 is the default, which should be used when
8936 	 foo is used with no version, then we add an indirect symbol
8937 	 foo which points to foo@@GNU_1.2.  We ignore these symbols,
8938 	 since the indirected symbol is already in the hash table.  */
8939       return TRUE;
8940     }
8941 
8942   /* Give the processor backend a chance to tweak the symbol value,
8943      and also to finish up anything that needs to be done for this
8944      symbol.  FIXME: Not calling elf_backend_finish_dynamic_symbol for
8945      forced local syms when non-shared is due to a historical quirk.
8946      STT_GNU_IFUNC symbol must go through PLT.  */
8947   if ((h->type == STT_GNU_IFUNC
8948        && h->def_regular
8949        && !flinfo->info->relocatable)
8950       || ((h->dynindx != -1
8951 	   || h->forced_local)
8952 	  && ((flinfo->info->shared
8953 	       && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8954 		   || h->root.type != bfd_link_hash_undefweak))
8955 	      || !h->forced_local)
8956 	  && elf_hash_table (flinfo->info)->dynamic_sections_created))
8957     {
8958       if (! ((*bed->elf_backend_finish_dynamic_symbol)
8959 	     (flinfo->output_bfd, flinfo->info, h, &sym)))
8960 	{
8961 	  eoinfo->failed = TRUE;
8962 	  return FALSE;
8963 	}
8964     }
8965 
8966   /* If we are marking the symbol as undefined, and there are no
8967      non-weak references to this symbol from a regular object, then
8968      mark the symbol as weak undefined; if there are non-weak
8969      references, mark the symbol as strong.  We can't do this earlier,
8970      because it might not be marked as undefined until the
8971      finish_dynamic_symbol routine gets through with it.  */
8972   if (sym.st_shndx == SHN_UNDEF
8973       && h->ref_regular
8974       && (ELF_ST_BIND (sym.st_info) == STB_GLOBAL
8975 	  || ELF_ST_BIND (sym.st_info) == STB_WEAK))
8976     {
8977       int bindtype;
8978       unsigned int type = ELF_ST_TYPE (sym.st_info);
8979 
8980       /* Turn an undefined IFUNC symbol into a normal FUNC symbol. */
8981       if (type == STT_GNU_IFUNC)
8982 	type = STT_FUNC;
8983 
8984       if (h->ref_regular_nonweak)
8985 	bindtype = STB_GLOBAL;
8986       else
8987 	bindtype = STB_WEAK;
8988       sym.st_info = ELF_ST_INFO (bindtype, type);
8989     }
8990 
8991   /* If this is a symbol defined in a dynamic library, don't use the
8992      symbol size from the dynamic library.  Relinking an executable
8993      against a new library may introduce gratuitous changes in the
8994      executable's symbols if we keep the size.  */
8995   if (sym.st_shndx == SHN_UNDEF
8996       && !h->def_regular
8997       && h->def_dynamic)
8998     sym.st_size = 0;
8999 
9000   /* If a non-weak symbol with non-default visibility is not defined
9001      locally, it is a fatal error.  */
9002   if (!flinfo->info->relocatable
9003       && ELF_ST_VISIBILITY (sym.st_other) != STV_DEFAULT
9004       && ELF_ST_BIND (sym.st_info) != STB_WEAK
9005       && h->root.type == bfd_link_hash_undefined
9006       && !h->def_regular)
9007     {
9008       const char *msg;
9009 
9010       if (ELF_ST_VISIBILITY (sym.st_other) == STV_PROTECTED)
9011 	msg = _("%B: protected symbol `%s' isn't defined");
9012       else if (ELF_ST_VISIBILITY (sym.st_other) == STV_INTERNAL)
9013 	msg = _("%B: internal symbol `%s' isn't defined");
9014       else
9015 	msg = _("%B: hidden symbol `%s' isn't defined");
9016       (*_bfd_error_handler) (msg, flinfo->output_bfd, h->root.root.string);
9017       bfd_set_error (bfd_error_bad_value);
9018       eoinfo->failed = TRUE;
9019       return FALSE;
9020     }
9021 
9022   /* If this symbol should be put in the .dynsym section, then put it
9023      there now.  We already know the symbol index.  We also fill in
9024      the entry in the .hash section.  */
9025   if (flinfo->dynsym_sec != NULL
9026       && h->dynindx != -1
9027       && elf_hash_table (flinfo->info)->dynamic_sections_created)
9028     {
9029       bfd_byte *esym;
9030 
9031       /* Since there is no version information in the dynamic string,
9032 	 if there is no version info in symbol version section, we will
9033 	 have a run-time problem.  */
9034       if (h->verinfo.verdef == NULL)
9035 	{
9036 	  char *p = strrchr (h->root.root.string, ELF_VER_CHR);
9037 
9038 	  if (p && p [1] != '\0')
9039 	    {
9040 	      (*_bfd_error_handler)
9041 		(_("%B: No symbol version section for versioned symbol `%s'"),
9042 		 flinfo->output_bfd, h->root.root.string);
9043 	      eoinfo->failed = TRUE;
9044 	      return FALSE;
9045 	    }
9046 	}
9047 
9048       sym.st_name = h->dynstr_index;
9049       esym = flinfo->dynsym_sec->contents + h->dynindx * bed->s->sizeof_sym;
9050       if (!check_dynsym (flinfo->output_bfd, &sym))
9051 	{
9052 	  eoinfo->failed = TRUE;
9053 	  return FALSE;
9054 	}
9055       bed->s->swap_symbol_out (flinfo->output_bfd, &sym, esym, 0);
9056 
9057       if (flinfo->hash_sec != NULL)
9058 	{
9059 	  size_t hash_entry_size;
9060 	  bfd_byte *bucketpos;
9061 	  bfd_vma chain;
9062 	  size_t bucketcount;
9063 	  size_t bucket;
9064 
9065 	  bucketcount = elf_hash_table (flinfo->info)->bucketcount;
9066 	  bucket = h->u.elf_hash_value % bucketcount;
9067 
9068 	  hash_entry_size
9069 	    = elf_section_data (flinfo->hash_sec)->this_hdr.sh_entsize;
9070 	  bucketpos = ((bfd_byte *) flinfo->hash_sec->contents
9071 		       + (bucket + 2) * hash_entry_size);
9072 	  chain = bfd_get (8 * hash_entry_size, flinfo->output_bfd, bucketpos);
9073 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, h->dynindx,
9074 		   bucketpos);
9075 	  bfd_put (8 * hash_entry_size, flinfo->output_bfd, chain,
9076 		   ((bfd_byte *) flinfo->hash_sec->contents
9077 		    + (bucketcount + 2 + h->dynindx) * hash_entry_size));
9078 	}
9079 
9080       if (flinfo->symver_sec != NULL && flinfo->symver_sec->contents != NULL)
9081 	{
9082 	  Elf_Internal_Versym iversym;
9083 	  Elf_External_Versym *eversym;
9084 
9085 	  if (!h->def_regular)
9086 	    {
9087 	      if (h->verinfo.verdef == NULL)
9088 		iversym.vs_vers = 0;
9089 	      else
9090 		iversym.vs_vers = h->verinfo.verdef->vd_exp_refno + 1;
9091 	    }
9092 	  else
9093 	    {
9094 	      if (h->verinfo.vertree == NULL)
9095 		iversym.vs_vers = 1;
9096 	      else
9097 		iversym.vs_vers = h->verinfo.vertree->vernum + 1;
9098 	      if (flinfo->info->create_default_symver)
9099 		iversym.vs_vers++;
9100 	    }
9101 
9102 	  if (h->hidden)
9103 	    iversym.vs_vers |= VERSYM_HIDDEN;
9104 
9105 	  eversym = (Elf_External_Versym *) flinfo->symver_sec->contents;
9106 	  eversym += h->dynindx;
9107 	  _bfd_elf_swap_versym_out (flinfo->output_bfd, &iversym, eversym);
9108 	}
9109     }
9110 
9111   /* If we're stripping it, then it was just a dynamic symbol, and
9112      there's nothing else to do.  */
9113   if (strip || (input_sec->flags & SEC_EXCLUDE) != 0)
9114     return TRUE;
9115 
9116   indx = bfd_get_symcount (flinfo->output_bfd);
9117   ret = elf_link_output_sym (flinfo, h->root.root.string, &sym, input_sec, h);
9118   if (ret == 0)
9119     {
9120       eoinfo->failed = TRUE;
9121       return FALSE;
9122     }
9123   else if (ret == 1)
9124     h->indx = indx;
9125   else if (h->indx == -2)
9126     abort();
9127 
9128   return TRUE;
9129 }
9130 
9131 /* Return TRUE if special handling is done for relocs in SEC against
9132    symbols defined in discarded sections.  */
9133 
9134 static bfd_boolean
9135 elf_section_ignore_discarded_relocs (asection *sec)
9136 {
9137   const struct elf_backend_data *bed;
9138 
9139   switch (sec->sec_info_type)
9140     {
9141     case SEC_INFO_TYPE_STABS:
9142     case SEC_INFO_TYPE_EH_FRAME:
9143       return TRUE;
9144     default:
9145       break;
9146     }
9147 
9148   bed = get_elf_backend_data (sec->owner);
9149   if (bed->elf_backend_ignore_discarded_relocs != NULL
9150       && (*bed->elf_backend_ignore_discarded_relocs) (sec))
9151     return TRUE;
9152 
9153   return FALSE;
9154 }
9155 
9156 /* Return a mask saying how ld should treat relocations in SEC against
9157    symbols defined in discarded sections.  If this function returns
9158    COMPLAIN set, ld will issue a warning message.  If this function
9159    returns PRETEND set, and the discarded section was link-once and the
9160    same size as the kept link-once section, ld will pretend that the
9161    symbol was actually defined in the kept section.  Otherwise ld will
9162    zero the reloc (at least that is the intent, but some cooperation by
9163    the target dependent code is needed, particularly for REL targets).  */
9164 
9165 unsigned int
9166 _bfd_elf_default_action_discarded (asection *sec)
9167 {
9168   if (sec->flags & SEC_DEBUGGING)
9169     return PRETEND;
9170 
9171   if (strcmp (".eh_frame", sec->name) == 0)
9172     return 0;
9173 
9174   if (strcmp (".gcc_except_table", sec->name) == 0)
9175     return 0;
9176 
9177   return COMPLAIN | PRETEND;
9178 }
9179 
9180 /* Find a match between a section and a member of a section group.  */
9181 
9182 static asection *
9183 match_group_member (asection *sec, asection *group,
9184 		    struct bfd_link_info *info)
9185 {
9186   asection *first = elf_next_in_group (group);
9187   asection *s = first;
9188 
9189   while (s != NULL)
9190     {
9191       if (bfd_elf_match_symbols_in_sections (s, sec, info))
9192 	return s;
9193 
9194       s = elf_next_in_group (s);
9195       if (s == first)
9196 	break;
9197     }
9198 
9199   return NULL;
9200 }
9201 
9202 /* Check if the kept section of a discarded section SEC can be used
9203    to replace it.  Return the replacement if it is OK.  Otherwise return
9204    NULL.  */
9205 
9206 asection *
9207 _bfd_elf_check_kept_section (asection *sec, struct bfd_link_info *info)
9208 {
9209   asection *kept;
9210 
9211   kept = sec->kept_section;
9212   if (kept != NULL)
9213     {
9214       if ((kept->flags & SEC_GROUP) != 0)
9215 	kept = match_group_member (sec, kept, info);
9216       if (kept != NULL
9217 	  && ((sec->rawsize != 0 ? sec->rawsize : sec->size)
9218 	      != (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9219 	kept = NULL;
9220       sec->kept_section = kept;
9221     }
9222   return kept;
9223 }
9224 
9225 /* Link an input file into the linker output file.  This function
9226    handles all the sections and relocations of the input file at once.
9227    This is so that we only have to read the local symbols once, and
9228    don't have to keep them in memory.  */
9229 
9230 static bfd_boolean
9231 elf_link_input_bfd (struct elf_final_link_info *flinfo, bfd *input_bfd)
9232 {
9233   int (*relocate_section)
9234     (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *,
9235      Elf_Internal_Rela *, Elf_Internal_Sym *, asection **);
9236   bfd *output_bfd;
9237   Elf_Internal_Shdr *symtab_hdr;
9238   size_t locsymcount;
9239   size_t extsymoff;
9240   Elf_Internal_Sym *isymbuf;
9241   Elf_Internal_Sym *isym;
9242   Elf_Internal_Sym *isymend;
9243   long *pindex;
9244   asection **ppsection;
9245   asection *o;
9246   const struct elf_backend_data *bed;
9247   struct elf_link_hash_entry **sym_hashes;
9248   bfd_size_type address_size;
9249   bfd_vma r_type_mask;
9250   int r_sym_shift;
9251   bfd_boolean have_file_sym = FALSE;
9252 
9253   output_bfd = flinfo->output_bfd;
9254   bed = get_elf_backend_data (output_bfd);
9255   relocate_section = bed->elf_backend_relocate_section;
9256 
9257   /* If this is a dynamic object, we don't want to do anything here:
9258      we don't want the local symbols, and we don't want the section
9259      contents.  */
9260   if ((input_bfd->flags & DYNAMIC) != 0)
9261     return TRUE;
9262 
9263   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
9264   if (elf_bad_symtab (input_bfd))
9265     {
9266       locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
9267       extsymoff = 0;
9268     }
9269   else
9270     {
9271       locsymcount = symtab_hdr->sh_info;
9272       extsymoff = symtab_hdr->sh_info;
9273     }
9274 
9275   /* Read the local symbols.  */
9276   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
9277   if (isymbuf == NULL && locsymcount != 0)
9278     {
9279       isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
9280 				      flinfo->internal_syms,
9281 				      flinfo->external_syms,
9282 				      flinfo->locsym_shndx);
9283       if (isymbuf == NULL)
9284 	return FALSE;
9285     }
9286 
9287   /* Find local symbol sections and adjust values of symbols in
9288      SEC_MERGE sections.  Write out those local symbols we know are
9289      going into the output file.  */
9290   isymend = isymbuf + locsymcount;
9291   for (isym = isymbuf, pindex = flinfo->indices, ppsection = flinfo->sections;
9292        isym < isymend;
9293        isym++, pindex++, ppsection++)
9294     {
9295       asection *isec;
9296       const char *name;
9297       Elf_Internal_Sym osym;
9298       long indx;
9299       int ret;
9300 
9301       *pindex = -1;
9302 
9303       if (elf_bad_symtab (input_bfd))
9304 	{
9305 	  if (ELF_ST_BIND (isym->st_info) != STB_LOCAL)
9306 	    {
9307 	      *ppsection = NULL;
9308 	      continue;
9309 	    }
9310 	}
9311 
9312       if (isym->st_shndx == SHN_UNDEF)
9313 	isec = bfd_und_section_ptr;
9314       else if (isym->st_shndx == SHN_ABS)
9315 	isec = bfd_abs_section_ptr;
9316       else if (isym->st_shndx == SHN_COMMON)
9317 	isec = bfd_com_section_ptr;
9318       else
9319 	{
9320 	  isec = bfd_section_from_elf_index (input_bfd, isym->st_shndx);
9321 	  if (isec == NULL)
9322 	    {
9323 	      /* Don't attempt to output symbols with st_shnx in the
9324 		 reserved range other than SHN_ABS and SHN_COMMON.  */
9325 	      *ppsection = NULL;
9326 	      continue;
9327 	    }
9328 	  else if (isec->sec_info_type == SEC_INFO_TYPE_MERGE
9329 		   && ELF_ST_TYPE (isym->st_info) != STT_SECTION)
9330 	    isym->st_value =
9331 	      _bfd_merged_section_offset (output_bfd, &isec,
9332 					  elf_section_data (isec)->sec_info,
9333 					  isym->st_value);
9334 	}
9335 
9336       *ppsection = isec;
9337 
9338       /* Don't output the first, undefined, symbol.  */
9339       if (ppsection == flinfo->sections)
9340 	continue;
9341 
9342       if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
9343 	{
9344 	  /* We never output section symbols.  Instead, we use the
9345 	     section symbol of the corresponding section in the output
9346 	     file.  */
9347 	  continue;
9348 	}
9349 
9350       /* If we are stripping all symbols, we don't want to output this
9351 	 one.  */
9352       if (flinfo->info->strip == strip_all)
9353 	continue;
9354 
9355       /* If we are discarding all local symbols, we don't want to
9356 	 output this one.  If we are generating a relocatable output
9357 	 file, then some of the local symbols may be required by
9358 	 relocs; we output them below as we discover that they are
9359 	 needed.  */
9360       if (flinfo->info->discard == discard_all)
9361 	continue;
9362 
9363       /* If this symbol is defined in a section which we are
9364 	 discarding, we don't need to keep it.  */
9365       if (isym->st_shndx != SHN_UNDEF
9366 	  && isym->st_shndx < SHN_LORESERVE
9367 	  && bfd_section_removed_from_list (output_bfd,
9368 					    isec->output_section))
9369 	continue;
9370 
9371       /* Get the name of the symbol.  */
9372       name = bfd_elf_string_from_elf_section (input_bfd, symtab_hdr->sh_link,
9373 					      isym->st_name);
9374       if (name == NULL)
9375 	return FALSE;
9376 
9377       /* See if we are discarding symbols with this name.  */
9378       if ((flinfo->info->strip == strip_some
9379 	   && (bfd_hash_lookup (flinfo->info->keep_hash, name, FALSE, FALSE)
9380 	       == NULL))
9381 	  || (((flinfo->info->discard == discard_sec_merge
9382 		&& (isec->flags & SEC_MERGE) && !flinfo->info->relocatable)
9383 	       || flinfo->info->discard == discard_l)
9384 	      && bfd_is_local_label_name (input_bfd, name)))
9385 	continue;
9386 
9387       if (ELF_ST_TYPE (isym->st_info) == STT_FILE)
9388 	{
9389 	  have_file_sym = TRUE;
9390 	  flinfo->filesym_count += 1;
9391 	}
9392       if (!have_file_sym)
9393 	{
9394 	  /* In the absence of debug info, bfd_find_nearest_line uses
9395 	     FILE symbols to determine the source file for local
9396 	     function symbols.  Provide a FILE symbol here if input
9397 	     files lack such, so that their symbols won't be
9398 	     associated with a previous input file.  It's not the
9399 	     source file, but the best we can do.  */
9400 	  have_file_sym = TRUE;
9401 	  flinfo->filesym_count += 1;
9402 	  memset (&osym, 0, sizeof (osym));
9403 	  osym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
9404 	  osym.st_shndx = SHN_ABS;
9405 	  if (!elf_link_output_sym (flinfo, input_bfd->filename, &osym,
9406 				    bfd_abs_section_ptr, NULL))
9407 	    return FALSE;
9408 	}
9409 
9410       osym = *isym;
9411 
9412       /* Adjust the section index for the output file.  */
9413       osym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9414 							 isec->output_section);
9415       if (osym.st_shndx == SHN_BAD)
9416 	return FALSE;
9417 
9418       /* ELF symbols in relocatable files are section relative, but
9419 	 in executable files they are virtual addresses.  Note that
9420 	 this code assumes that all ELF sections have an associated
9421 	 BFD section with a reasonable value for output_offset; below
9422 	 we assume that they also have a reasonable value for
9423 	 output_section.  Any special sections must be set up to meet
9424 	 these requirements.  */
9425       osym.st_value += isec->output_offset;
9426       if (!flinfo->info->relocatable)
9427 	{
9428 	  osym.st_value += isec->output_section->vma;
9429 	  if (ELF_ST_TYPE (osym.st_info) == STT_TLS)
9430 	    {
9431 	      /* STT_TLS symbols are relative to PT_TLS segment base.  */
9432 	      BFD_ASSERT (elf_hash_table (flinfo->info)->tls_sec != NULL);
9433 	      osym.st_value -= elf_hash_table (flinfo->info)->tls_sec->vma;
9434 	    }
9435 	}
9436 
9437       indx = bfd_get_symcount (output_bfd);
9438       ret = elf_link_output_sym (flinfo, name, &osym, isec, NULL);
9439       if (ret == 0)
9440 	return FALSE;
9441       else if (ret == 1)
9442 	*pindex = indx;
9443     }
9444 
9445   if (bed->s->arch_size == 32)
9446     {
9447       r_type_mask = 0xff;
9448       r_sym_shift = 8;
9449       address_size = 4;
9450     }
9451   else
9452     {
9453       r_type_mask = 0xffffffff;
9454       r_sym_shift = 32;
9455       address_size = 8;
9456     }
9457 
9458   /* Relocate the contents of each section.  */
9459   sym_hashes = elf_sym_hashes (input_bfd);
9460   for (o = input_bfd->sections; o != NULL; o = o->next)
9461     {
9462       bfd_byte *contents;
9463 
9464       if (! o->linker_mark)
9465 	{
9466 	  /* This section was omitted from the link.  */
9467 	  continue;
9468 	}
9469 
9470       if (flinfo->info->relocatable
9471 	  && (o->flags & (SEC_LINKER_CREATED | SEC_GROUP)) == SEC_GROUP)
9472 	{
9473 	  /* Deal with the group signature symbol.  */
9474 	  struct bfd_elf_section_data *sec_data = elf_section_data (o);
9475 	  unsigned long symndx = sec_data->this_hdr.sh_info;
9476 	  asection *osec = o->output_section;
9477 
9478 	  if (symndx >= locsymcount
9479 	      || (elf_bad_symtab (input_bfd)
9480 		  && flinfo->sections[symndx] == NULL))
9481 	    {
9482 	      struct elf_link_hash_entry *h = sym_hashes[symndx - extsymoff];
9483 	      while (h->root.type == bfd_link_hash_indirect
9484 		     || h->root.type == bfd_link_hash_warning)
9485 		h = (struct elf_link_hash_entry *) h->root.u.i.link;
9486 	      /* Arrange for symbol to be output.  */
9487 	      h->indx = -2;
9488 	      elf_section_data (osec)->this_hdr.sh_info = -2;
9489 	    }
9490 	  else if (ELF_ST_TYPE (isymbuf[symndx].st_info) == STT_SECTION)
9491 	    {
9492 	      /* We'll use the output section target_index.  */
9493 	      asection *sec = flinfo->sections[symndx]->output_section;
9494 	      elf_section_data (osec)->this_hdr.sh_info = sec->target_index;
9495 	    }
9496 	  else
9497 	    {
9498 	      if (flinfo->indices[symndx] == -1)
9499 		{
9500 		  /* Otherwise output the local symbol now.  */
9501 		  Elf_Internal_Sym sym = isymbuf[symndx];
9502 		  asection *sec = flinfo->sections[symndx]->output_section;
9503 		  const char *name;
9504 		  long indx;
9505 		  int ret;
9506 
9507 		  name = bfd_elf_string_from_elf_section (input_bfd,
9508 							  symtab_hdr->sh_link,
9509 							  sym.st_name);
9510 		  if (name == NULL)
9511 		    return FALSE;
9512 
9513 		  sym.st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9514 								    sec);
9515 		  if (sym.st_shndx == SHN_BAD)
9516 		    return FALSE;
9517 
9518 		  sym.st_value += o->output_offset;
9519 
9520 		  indx = bfd_get_symcount (output_bfd);
9521 		  ret = elf_link_output_sym (flinfo, name, &sym, o, NULL);
9522 		  if (ret == 0)
9523 		    return FALSE;
9524 		  else if (ret == 1)
9525 		    flinfo->indices[symndx] = indx;
9526 		  else
9527 		    abort ();
9528 		}
9529 	      elf_section_data (osec)->this_hdr.sh_info
9530 		= flinfo->indices[symndx];
9531 	    }
9532 	}
9533 
9534       if ((o->flags & SEC_HAS_CONTENTS) == 0
9535 	  || (o->size == 0 && (o->flags & SEC_RELOC) == 0))
9536 	continue;
9537 
9538       if ((o->flags & SEC_LINKER_CREATED) != 0)
9539 	{
9540 	  /* Section was created by _bfd_elf_link_create_dynamic_sections
9541 	     or somesuch.  */
9542 	  continue;
9543 	}
9544 
9545       /* Get the contents of the section.  They have been cached by a
9546 	 relaxation routine.  Note that o is a section in an input
9547 	 file, so the contents field will not have been set by any of
9548 	 the routines which work on output files.  */
9549       if (elf_section_data (o)->this_hdr.contents != NULL)
9550 	contents = elf_section_data (o)->this_hdr.contents;
9551       else
9552 	{
9553 	  contents = flinfo->contents;
9554 	  if (! bfd_get_full_section_contents (input_bfd, o, &contents))
9555 	    return FALSE;
9556 	}
9557 
9558       if ((o->flags & SEC_RELOC) != 0)
9559 	{
9560 	  Elf_Internal_Rela *internal_relocs;
9561 	  Elf_Internal_Rela *rel, *relend;
9562 	  int action_discarded;
9563 	  int ret;
9564 
9565 	  /* Get the swapped relocs.  */
9566 	  internal_relocs
9567 	    = _bfd_elf_link_read_relocs (input_bfd, o, flinfo->external_relocs,
9568 					 flinfo->internal_relocs, FALSE);
9569 	  if (internal_relocs == NULL
9570 	      && o->reloc_count > 0)
9571 	    return FALSE;
9572 
9573 	  /* We need to reverse-copy input .ctors/.dtors sections if
9574 	     they are placed in .init_array/.finit_array for output.  */
9575 	  if (o->size > address_size
9576 	      && ((strncmp (o->name, ".ctors", 6) == 0
9577 		   && strcmp (o->output_section->name,
9578 			      ".init_array") == 0)
9579 		  || (strncmp (o->name, ".dtors", 6) == 0
9580 		      && strcmp (o->output_section->name,
9581 				 ".fini_array") == 0))
9582 	      && (o->name[6] == 0 || o->name[6] == '.'))
9583 	    {
9584 	      if (o->size != o->reloc_count * address_size)
9585 		{
9586 		  (*_bfd_error_handler)
9587 		    (_("error: %B: size of section %A is not "
9588 		       "multiple of address size"),
9589 		     input_bfd, o);
9590 		  bfd_set_error (bfd_error_on_input);
9591 		  return FALSE;
9592 		}
9593 	      o->flags |= SEC_ELF_REVERSE_COPY;
9594 	    }
9595 
9596 	  action_discarded = -1;
9597 	  if (!elf_section_ignore_discarded_relocs (o))
9598 	    action_discarded = (*bed->action_discarded) (o);
9599 
9600 	  /* Run through the relocs evaluating complex reloc symbols and
9601 	     looking for relocs against symbols from discarded sections
9602 	     or section symbols from removed link-once sections.
9603 	     Complain about relocs against discarded sections.  Zero
9604 	     relocs against removed link-once sections.  */
9605 
9606 	  rel = internal_relocs;
9607 	  relend = rel + o->reloc_count * bed->s->int_rels_per_ext_rel;
9608 	  for ( ; rel < relend; rel++)
9609 	    {
9610 	      unsigned long r_symndx = rel->r_info >> r_sym_shift;
9611 	      unsigned int s_type;
9612 	      asection **ps, *sec;
9613 	      struct elf_link_hash_entry *h = NULL;
9614 	      const char *sym_name;
9615 
9616 	      if (r_symndx == STN_UNDEF)
9617 		continue;
9618 
9619 	      if (r_symndx >= locsymcount
9620 		  || (elf_bad_symtab (input_bfd)
9621 		      && flinfo->sections[r_symndx] == NULL))
9622 		{
9623 		  h = sym_hashes[r_symndx - extsymoff];
9624 
9625 		  /* Badly formatted input files can contain relocs that
9626 		     reference non-existant symbols.  Check here so that
9627 		     we do not seg fault.  */
9628 		  if (h == NULL)
9629 		    {
9630 		      char buffer [32];
9631 
9632 		      sprintf_vma (buffer, rel->r_info);
9633 		      (*_bfd_error_handler)
9634 			(_("error: %B contains a reloc (0x%s) for section %A "
9635 			   "that references a non-existent global symbol"),
9636 			 input_bfd, o, buffer);
9637 		      bfd_set_error (bfd_error_bad_value);
9638 		      return FALSE;
9639 		    }
9640 
9641 		  while (h->root.type == bfd_link_hash_indirect
9642 			 || h->root.type == bfd_link_hash_warning)
9643 		    h = (struct elf_link_hash_entry *) h->root.u.i.link;
9644 
9645 		  s_type = h->type;
9646 
9647 		  ps = NULL;
9648 		  if (h->root.type == bfd_link_hash_defined
9649 		      || h->root.type == bfd_link_hash_defweak)
9650 		    ps = &h->root.u.def.section;
9651 
9652 		  sym_name = h->root.root.string;
9653 		}
9654 	      else
9655 		{
9656 		  Elf_Internal_Sym *sym = isymbuf + r_symndx;
9657 
9658 		  s_type = ELF_ST_TYPE (sym->st_info);
9659 		  ps = &flinfo->sections[r_symndx];
9660 		  sym_name = bfd_elf_sym_name (input_bfd, symtab_hdr,
9661 					       sym, *ps);
9662 		}
9663 
9664 	      if ((s_type == STT_RELC || s_type == STT_SRELC)
9665 		  && !flinfo->info->relocatable)
9666 		{
9667 		  bfd_vma val;
9668 		  bfd_vma dot = (rel->r_offset
9669 				 + o->output_offset + o->output_section->vma);
9670 #ifdef DEBUG
9671 		  printf ("Encountered a complex symbol!");
9672 		  printf (" (input_bfd %s, section %s, reloc %ld\n",
9673 			  input_bfd->filename, o->name,
9674 			  (long) (rel - internal_relocs));
9675 		  printf (" symbol: idx  %8.8lx, name %s\n",
9676 			  r_symndx, sym_name);
9677 		  printf (" reloc : info %8.8lx, addr %8.8lx\n",
9678 			  (unsigned long) rel->r_info,
9679 			  (unsigned long) rel->r_offset);
9680 #endif
9681 		  if (!eval_symbol (&val, &sym_name, input_bfd, flinfo, dot,
9682 				    isymbuf, locsymcount, s_type == STT_SRELC))
9683 		    return FALSE;
9684 
9685 		  /* Symbol evaluated OK.  Update to absolute value.  */
9686 		  set_symbol_value (input_bfd, isymbuf, locsymcount,
9687 				    r_symndx, val);
9688 		  continue;
9689 		}
9690 
9691 	      if (action_discarded != -1 && ps != NULL)
9692 		{
9693 		  /* Complain if the definition comes from a
9694 		     discarded section.  */
9695 		  if ((sec = *ps) != NULL && discarded_section (sec))
9696 		    {
9697 		      BFD_ASSERT (r_symndx != STN_UNDEF);
9698 		      if (action_discarded & COMPLAIN)
9699 			(*flinfo->info->callbacks->einfo)
9700 			  (_("%X`%s' referenced in section `%A' of %B: "
9701 			     "defined in discarded section `%A' of %B\n"),
9702 			   sym_name, o, input_bfd, sec, sec->owner);
9703 
9704 		      /* Try to do the best we can to support buggy old
9705 			 versions of gcc.  Pretend that the symbol is
9706 			 really defined in the kept linkonce section.
9707 			 FIXME: This is quite broken.  Modifying the
9708 			 symbol here means we will be changing all later
9709 			 uses of the symbol, not just in this section.  */
9710 		      if (action_discarded & PRETEND)
9711 			{
9712 			  asection *kept;
9713 
9714 			  kept = _bfd_elf_check_kept_section (sec,
9715 							      flinfo->info);
9716 			  if (kept != NULL)
9717 			    {
9718 			      *ps = kept;
9719 			      continue;
9720 			    }
9721 			}
9722 		    }
9723 		}
9724 	    }
9725 
9726 	  /* Relocate the section by invoking a back end routine.
9727 
9728 	     The back end routine is responsible for adjusting the
9729 	     section contents as necessary, and (if using Rela relocs
9730 	     and generating a relocatable output file) adjusting the
9731 	     reloc addend as necessary.
9732 
9733 	     The back end routine does not have to worry about setting
9734 	     the reloc address or the reloc symbol index.
9735 
9736 	     The back end routine is given a pointer to the swapped in
9737 	     internal symbols, and can access the hash table entries
9738 	     for the external symbols via elf_sym_hashes (input_bfd).
9739 
9740 	     When generating relocatable output, the back end routine
9741 	     must handle STB_LOCAL/STT_SECTION symbols specially.  The
9742 	     output symbol is going to be a section symbol
9743 	     corresponding to the output section, which will require
9744 	     the addend to be adjusted.  */
9745 
9746 	  ret = (*relocate_section) (output_bfd, flinfo->info,
9747 				     input_bfd, o, contents,
9748 				     internal_relocs,
9749 				     isymbuf,
9750 				     flinfo->sections);
9751 	  if (!ret)
9752 	    return FALSE;
9753 
9754 	  if (ret == 2
9755 	      || flinfo->info->relocatable
9756 	      || flinfo->info->emitrelocations)
9757 	    {
9758 	      Elf_Internal_Rela *irela;
9759 	      Elf_Internal_Rela *irelaend, *irelamid;
9760 	      bfd_vma last_offset;
9761 	      struct elf_link_hash_entry **rel_hash;
9762 	      struct elf_link_hash_entry **rel_hash_list, **rela_hash_list;
9763 	      Elf_Internal_Shdr *input_rel_hdr, *input_rela_hdr;
9764 	      unsigned int next_erel;
9765 	      bfd_boolean rela_normal;
9766 	      struct bfd_elf_section_data *esdi, *esdo;
9767 
9768 	      esdi = elf_section_data (o);
9769 	      esdo = elf_section_data (o->output_section);
9770 	      rela_normal = FALSE;
9771 
9772 	      /* Adjust the reloc addresses and symbol indices.  */
9773 
9774 	      irela = internal_relocs;
9775 	      irelaend = irela + o->reloc_count * bed->s->int_rels_per_ext_rel;
9776 	      rel_hash = esdo->rel.hashes + esdo->rel.count;
9777 	      /* We start processing the REL relocs, if any.  When we reach
9778 		 IRELAMID in the loop, we switch to the RELA relocs.  */
9779 	      irelamid = irela;
9780 	      if (esdi->rel.hdr != NULL)
9781 		irelamid += (NUM_SHDR_ENTRIES (esdi->rel.hdr)
9782 			     * bed->s->int_rels_per_ext_rel);
9783 	      rel_hash_list = rel_hash;
9784 	      rela_hash_list = NULL;
9785 	      last_offset = o->output_offset;
9786 	      if (!flinfo->info->relocatable)
9787 		last_offset += o->output_section->vma;
9788 	      for (next_erel = 0; irela < irelaend; irela++, next_erel++)
9789 		{
9790 		  unsigned long r_symndx;
9791 		  asection *sec;
9792 		  Elf_Internal_Sym sym;
9793 
9794 		  if (next_erel == bed->s->int_rels_per_ext_rel)
9795 		    {
9796 		      rel_hash++;
9797 		      next_erel = 0;
9798 		    }
9799 
9800 		  if (irela == irelamid)
9801 		    {
9802 		      rel_hash = esdo->rela.hashes + esdo->rela.count;
9803 		      rela_hash_list = rel_hash;
9804 		      rela_normal = bed->rela_normal;
9805 		    }
9806 
9807 		  irela->r_offset = _bfd_elf_section_offset (output_bfd,
9808 							     flinfo->info, o,
9809 							     irela->r_offset);
9810 		  if (irela->r_offset >= (bfd_vma) -2)
9811 		    {
9812 		      /* This is a reloc for a deleted entry or somesuch.
9813 			 Turn it into an R_*_NONE reloc, at the same
9814 			 offset as the last reloc.  elf_eh_frame.c and
9815 			 bfd_elf_discard_info rely on reloc offsets
9816 			 being ordered.  */
9817 		      irela->r_offset = last_offset;
9818 		      irela->r_info = 0;
9819 		      irela->r_addend = 0;
9820 		      continue;
9821 		    }
9822 
9823 		  irela->r_offset += o->output_offset;
9824 
9825 		  /* Relocs in an executable have to be virtual addresses.  */
9826 		  if (!flinfo->info->relocatable)
9827 		    irela->r_offset += o->output_section->vma;
9828 
9829 		  last_offset = irela->r_offset;
9830 
9831 		  r_symndx = irela->r_info >> r_sym_shift;
9832 		  if (r_symndx == STN_UNDEF)
9833 		    continue;
9834 
9835 		  if (r_symndx >= locsymcount
9836 		      || (elf_bad_symtab (input_bfd)
9837 			  && flinfo->sections[r_symndx] == NULL))
9838 		    {
9839 		      struct elf_link_hash_entry *rh;
9840 		      unsigned long indx;
9841 
9842 		      /* This is a reloc against a global symbol.  We
9843 			 have not yet output all the local symbols, so
9844 			 we do not know the symbol index of any global
9845 			 symbol.  We set the rel_hash entry for this
9846 			 reloc to point to the global hash table entry
9847 			 for this symbol.  The symbol index is then
9848 			 set at the end of bfd_elf_final_link.  */
9849 		      indx = r_symndx - extsymoff;
9850 		      rh = elf_sym_hashes (input_bfd)[indx];
9851 		      while (rh->root.type == bfd_link_hash_indirect
9852 			     || rh->root.type == bfd_link_hash_warning)
9853 			rh = (struct elf_link_hash_entry *) rh->root.u.i.link;
9854 
9855 		      /* Setting the index to -2 tells
9856 			 elf_link_output_extsym that this symbol is
9857 			 used by a reloc.  */
9858 		      BFD_ASSERT (rh->indx < 0);
9859 		      rh->indx = -2;
9860 
9861 		      *rel_hash = rh;
9862 
9863 		      continue;
9864 		    }
9865 
9866 		  /* This is a reloc against a local symbol.  */
9867 
9868 		  *rel_hash = NULL;
9869 		  sym = isymbuf[r_symndx];
9870 		  sec = flinfo->sections[r_symndx];
9871 		  if (ELF_ST_TYPE (sym.st_info) == STT_SECTION)
9872 		    {
9873 		      /* I suppose the backend ought to fill in the
9874 			 section of any STT_SECTION symbol against a
9875 			 processor specific section.  */
9876 		      r_symndx = STN_UNDEF;
9877 		      if (bfd_is_abs_section (sec))
9878 			;
9879 		      else if (sec == NULL || sec->owner == NULL)
9880 			{
9881 			  bfd_set_error (bfd_error_bad_value);
9882 			  return FALSE;
9883 			}
9884 		      else
9885 			{
9886 			  asection *osec = sec->output_section;
9887 
9888 			  /* If we have discarded a section, the output
9889 			     section will be the absolute section.  In
9890 			     case of discarded SEC_MERGE sections, use
9891 			     the kept section.  relocate_section should
9892 			     have already handled discarded linkonce
9893 			     sections.  */
9894 			  if (bfd_is_abs_section (osec)
9895 			      && sec->kept_section != NULL
9896 			      && sec->kept_section->output_section != NULL)
9897 			    {
9898 			      osec = sec->kept_section->output_section;
9899 			      irela->r_addend -= osec->vma;
9900 			    }
9901 
9902 			  if (!bfd_is_abs_section (osec))
9903 			    {
9904 			      r_symndx = osec->target_index;
9905 			      if (r_symndx == STN_UNDEF)
9906 				{
9907 				  irela->r_addend += osec->vma;
9908 				  osec = _bfd_nearby_section (output_bfd, osec,
9909 							      osec->vma);
9910 				  irela->r_addend -= osec->vma;
9911 				  r_symndx = osec->target_index;
9912 				}
9913 			    }
9914 			}
9915 
9916 		      /* Adjust the addend according to where the
9917 			 section winds up in the output section.  */
9918 		      if (rela_normal)
9919 			irela->r_addend += sec->output_offset;
9920 		    }
9921 		  else
9922 		    {
9923 		      if (flinfo->indices[r_symndx] == -1)
9924 			{
9925 			  unsigned long shlink;
9926 			  const char *name;
9927 			  asection *osec;
9928 			  long indx;
9929 
9930 			  if (flinfo->info->strip == strip_all)
9931 			    {
9932 			      /* You can't do ld -r -s.  */
9933 			      bfd_set_error (bfd_error_invalid_operation);
9934 			      return FALSE;
9935 			    }
9936 
9937 			  /* This symbol was skipped earlier, but
9938 			     since it is needed by a reloc, we
9939 			     must output it now.  */
9940 			  shlink = symtab_hdr->sh_link;
9941 			  name = (bfd_elf_string_from_elf_section
9942 				  (input_bfd, shlink, sym.st_name));
9943 			  if (name == NULL)
9944 			    return FALSE;
9945 
9946 			  osec = sec->output_section;
9947 			  sym.st_shndx =
9948 			    _bfd_elf_section_from_bfd_section (output_bfd,
9949 							       osec);
9950 			  if (sym.st_shndx == SHN_BAD)
9951 			    return FALSE;
9952 
9953 			  sym.st_value += sec->output_offset;
9954 			  if (!flinfo->info->relocatable)
9955 			    {
9956 			      sym.st_value += osec->vma;
9957 			      if (ELF_ST_TYPE (sym.st_info) == STT_TLS)
9958 				{
9959 				  /* STT_TLS symbols are relative to PT_TLS
9960 				     segment base.  */
9961 				  BFD_ASSERT (elf_hash_table (flinfo->info)
9962 					      ->tls_sec != NULL);
9963 				  sym.st_value -= (elf_hash_table (flinfo->info)
9964 						   ->tls_sec->vma);
9965 				}
9966 			    }
9967 
9968 			  indx = bfd_get_symcount (output_bfd);
9969 			  ret = elf_link_output_sym (flinfo, name, &sym, sec,
9970 						     NULL);
9971 			  if (ret == 0)
9972 			    return FALSE;
9973 			  else if (ret == 1)
9974 			    flinfo->indices[r_symndx] = indx;
9975 			  else
9976 			    abort ();
9977 			}
9978 
9979 		      r_symndx = flinfo->indices[r_symndx];
9980 		    }
9981 
9982 		  irela->r_info = ((bfd_vma) r_symndx << r_sym_shift
9983 				   | (irela->r_info & r_type_mask));
9984 		}
9985 
9986 	      /* Swap out the relocs.  */
9987 	      input_rel_hdr = esdi->rel.hdr;
9988 	      if (input_rel_hdr && input_rel_hdr->sh_size != 0)
9989 		{
9990 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
9991 						     input_rel_hdr,
9992 						     internal_relocs,
9993 						     rel_hash_list))
9994 		    return FALSE;
9995 		  internal_relocs += (NUM_SHDR_ENTRIES (input_rel_hdr)
9996 				      * bed->s->int_rels_per_ext_rel);
9997 		  rel_hash_list += NUM_SHDR_ENTRIES (input_rel_hdr);
9998 		}
9999 
10000 	      input_rela_hdr = esdi->rela.hdr;
10001 	      if (input_rela_hdr && input_rela_hdr->sh_size != 0)
10002 		{
10003 		  if (!bed->elf_backend_emit_relocs (output_bfd, o,
10004 						     input_rela_hdr,
10005 						     internal_relocs,
10006 						     rela_hash_list))
10007 		    return FALSE;
10008 		}
10009 	    }
10010 	}
10011 
10012       /* Write out the modified section contents.  */
10013       if (bed->elf_backend_write_section
10014 	  && (*bed->elf_backend_write_section) (output_bfd, flinfo->info, o,
10015 						contents))
10016 	{
10017 	  /* Section written out.  */
10018 	}
10019       else switch (o->sec_info_type)
10020 	{
10021 	case SEC_INFO_TYPE_STABS:
10022 	  if (! (_bfd_write_section_stabs
10023 		 (output_bfd,
10024 		  &elf_hash_table (flinfo->info)->stab_info,
10025 		  o, &elf_section_data (o)->sec_info, contents)))
10026 	    return FALSE;
10027 	  break;
10028 	case SEC_INFO_TYPE_MERGE:
10029 	  if (! _bfd_write_merged_section (output_bfd, o,
10030 					   elf_section_data (o)->sec_info))
10031 	    return FALSE;
10032 	  break;
10033 	case SEC_INFO_TYPE_EH_FRAME:
10034 	  {
10035 	    if (! _bfd_elf_write_section_eh_frame (output_bfd, flinfo->info,
10036 						   o, contents))
10037 	      return FALSE;
10038 	  }
10039 	  break;
10040 	default:
10041 	  {
10042 	    /* FIXME: octets_per_byte.  */
10043 	    if (! (o->flags & SEC_EXCLUDE))
10044 	      {
10045 		file_ptr offset = (file_ptr) o->output_offset;
10046 		bfd_size_type todo = o->size;
10047 		if ((o->flags & SEC_ELF_REVERSE_COPY))
10048 		  {
10049 		    /* Reverse-copy input section to output.  */
10050 		    do
10051 		      {
10052 			todo -= address_size;
10053 			if (! bfd_set_section_contents (output_bfd,
10054 							o->output_section,
10055 							contents + todo,
10056 							offset,
10057 							address_size))
10058 			  return FALSE;
10059 			if (todo == 0)
10060 			  break;
10061 			offset += address_size;
10062 		      }
10063 		    while (1);
10064 		  }
10065 		else if (! bfd_set_section_contents (output_bfd,
10066 						     o->output_section,
10067 						     contents,
10068 						     offset, todo))
10069 		  return FALSE;
10070 	      }
10071 	  }
10072 	  break;
10073 	}
10074     }
10075 
10076   return TRUE;
10077 }
10078 
10079 /* Generate a reloc when linking an ELF file.  This is a reloc
10080    requested by the linker, and does not come from any input file.  This
10081    is used to build constructor and destructor tables when linking
10082    with -Ur.  */
10083 
10084 static bfd_boolean
10085 elf_reloc_link_order (bfd *output_bfd,
10086 		      struct bfd_link_info *info,
10087 		      asection *output_section,
10088 		      struct bfd_link_order *link_order)
10089 {
10090   reloc_howto_type *howto;
10091   long indx;
10092   bfd_vma offset;
10093   bfd_vma addend;
10094   struct bfd_elf_section_reloc_data *reldata;
10095   struct elf_link_hash_entry **rel_hash_ptr;
10096   Elf_Internal_Shdr *rel_hdr;
10097   const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10098   Elf_Internal_Rela irel[MAX_INT_RELS_PER_EXT_REL];
10099   bfd_byte *erel;
10100   unsigned int i;
10101   struct bfd_elf_section_data *esdo = elf_section_data (output_section);
10102 
10103   howto = bfd_reloc_type_lookup (output_bfd, link_order->u.reloc.p->reloc);
10104   if (howto == NULL)
10105     {
10106       bfd_set_error (bfd_error_bad_value);
10107       return FALSE;
10108     }
10109 
10110   addend = link_order->u.reloc.p->addend;
10111 
10112   if (esdo->rel.hdr)
10113     reldata = &esdo->rel;
10114   else if (esdo->rela.hdr)
10115     reldata = &esdo->rela;
10116   else
10117     {
10118       reldata = NULL;
10119       BFD_ASSERT (0);
10120     }
10121 
10122   /* Figure out the symbol index.  */
10123   rel_hash_ptr = reldata->hashes + reldata->count;
10124   if (link_order->type == bfd_section_reloc_link_order)
10125     {
10126       indx = link_order->u.reloc.p->u.section->target_index;
10127       BFD_ASSERT (indx != 0);
10128       *rel_hash_ptr = NULL;
10129     }
10130   else
10131     {
10132       struct elf_link_hash_entry *h;
10133 
10134       /* Treat a reloc against a defined symbol as though it were
10135 	 actually against the section.  */
10136       h = ((struct elf_link_hash_entry *)
10137 	   bfd_wrapped_link_hash_lookup (output_bfd, info,
10138 					 link_order->u.reloc.p->u.name,
10139 					 FALSE, FALSE, TRUE));
10140       if (h != NULL
10141 	  && (h->root.type == bfd_link_hash_defined
10142 	      || h->root.type == bfd_link_hash_defweak))
10143 	{
10144 	  asection *section;
10145 
10146 	  section = h->root.u.def.section;
10147 	  indx = section->output_section->target_index;
10148 	  *rel_hash_ptr = NULL;
10149 	  /* It seems that we ought to add the symbol value to the
10150 	     addend here, but in practice it has already been added
10151 	     because it was passed to constructor_callback.  */
10152 	  addend += section->output_section->vma + section->output_offset;
10153 	}
10154       else if (h != NULL)
10155 	{
10156 	  /* Setting the index to -2 tells elf_link_output_extsym that
10157 	     this symbol is used by a reloc.  */
10158 	  h->indx = -2;
10159 	  *rel_hash_ptr = h;
10160 	  indx = 0;
10161 	}
10162       else
10163 	{
10164 	  if (! ((*info->callbacks->unattached_reloc)
10165 		 (info, link_order->u.reloc.p->u.name, NULL, NULL, 0)))
10166 	    return FALSE;
10167 	  indx = 0;
10168 	}
10169     }
10170 
10171   /* If this is an inplace reloc, we must write the addend into the
10172      object file.  */
10173   if (howto->partial_inplace && addend != 0)
10174     {
10175       bfd_size_type size;
10176       bfd_reloc_status_type rstat;
10177       bfd_byte *buf;
10178       bfd_boolean ok;
10179       const char *sym_name;
10180 
10181       size = (bfd_size_type) bfd_get_reloc_size (howto);
10182       buf = (bfd_byte *) bfd_zmalloc (size);
10183       if (buf == NULL)
10184 	return FALSE;
10185       rstat = _bfd_relocate_contents (howto, output_bfd, addend, buf);
10186       switch (rstat)
10187 	{
10188 	case bfd_reloc_ok:
10189 	  break;
10190 
10191 	default:
10192 	case bfd_reloc_outofrange:
10193 	  abort ();
10194 
10195 	case bfd_reloc_overflow:
10196 	  if (link_order->type == bfd_section_reloc_link_order)
10197 	    sym_name = bfd_section_name (output_bfd,
10198 					 link_order->u.reloc.p->u.section);
10199 	  else
10200 	    sym_name = link_order->u.reloc.p->u.name;
10201 	  if (! ((*info->callbacks->reloc_overflow)
10202 		 (info, NULL, sym_name, howto->name, addend, NULL,
10203 		  NULL, (bfd_vma) 0)))
10204 	    {
10205 	      free (buf);
10206 	      return FALSE;
10207 	    }
10208 	  break;
10209 	}
10210       ok = bfd_set_section_contents (output_bfd, output_section, buf,
10211 				     link_order->offset, size);
10212       free (buf);
10213       if (! ok)
10214 	return FALSE;
10215     }
10216 
10217   /* The address of a reloc is relative to the section in a
10218      relocatable file, and is a virtual address in an executable
10219      file.  */
10220   offset = link_order->offset;
10221   if (! info->relocatable)
10222     offset += output_section->vma;
10223 
10224   for (i = 0; i < bed->s->int_rels_per_ext_rel; i++)
10225     {
10226       irel[i].r_offset = offset;
10227       irel[i].r_info = 0;
10228       irel[i].r_addend = 0;
10229     }
10230   if (bed->s->arch_size == 32)
10231     irel[0].r_info = ELF32_R_INFO (indx, howto->type);
10232   else
10233     irel[0].r_info = ELF64_R_INFO (indx, howto->type);
10234 
10235   rel_hdr = reldata->hdr;
10236   erel = rel_hdr->contents;
10237   if (rel_hdr->sh_type == SHT_REL)
10238     {
10239       erel += reldata->count * bed->s->sizeof_rel;
10240       (*bed->s->swap_reloc_out) (output_bfd, irel, erel);
10241     }
10242   else
10243     {
10244       irel[0].r_addend = addend;
10245       erel += reldata->count * bed->s->sizeof_rela;
10246       (*bed->s->swap_reloca_out) (output_bfd, irel, erel);
10247     }
10248 
10249   ++reldata->count;
10250 
10251   return TRUE;
10252 }
10253 
10254 
10255 /* Get the output vma of the section pointed to by the sh_link field.  */
10256 
10257 static bfd_vma
10258 elf_get_linked_section_vma (struct bfd_link_order *p)
10259 {
10260   Elf_Internal_Shdr **elf_shdrp;
10261   asection *s;
10262   int elfsec;
10263 
10264   s = p->u.indirect.section;
10265   elf_shdrp = elf_elfsections (s->owner);
10266   elfsec = _bfd_elf_section_from_bfd_section (s->owner, s);
10267   elfsec = elf_shdrp[elfsec]->sh_link;
10268   /* PR 290:
10269      The Intel C compiler generates SHT_IA_64_UNWIND with
10270      SHF_LINK_ORDER.  But it doesn't set the sh_link or
10271      sh_info fields.  Hence we could get the situation
10272      where elfsec is 0.  */
10273   if (elfsec == 0)
10274     {
10275       const struct elf_backend_data *bed
10276 	= get_elf_backend_data (s->owner);
10277       if (bed->link_order_error_handler)
10278 	bed->link_order_error_handler
10279 	  (_("%B: warning: sh_link not set for section `%A'"), s->owner, s);
10280       return 0;
10281     }
10282   else
10283     {
10284       s = elf_shdrp[elfsec]->bfd_section;
10285       return s->output_section->vma + s->output_offset;
10286     }
10287 }
10288 
10289 
10290 /* Compare two sections based on the locations of the sections they are
10291    linked to.  Used by elf_fixup_link_order.  */
10292 
10293 static int
10294 compare_link_order (const void * a, const void * b)
10295 {
10296   bfd_vma apos;
10297   bfd_vma bpos;
10298 
10299   apos = elf_get_linked_section_vma (*(struct bfd_link_order **)a);
10300   bpos = elf_get_linked_section_vma (*(struct bfd_link_order **)b);
10301   if (apos < bpos)
10302     return -1;
10303   return apos > bpos;
10304 }
10305 
10306 
10307 /* Looks for sections with SHF_LINK_ORDER set.  Rearranges them into the same
10308    order as their linked sections.  Returns false if this could not be done
10309    because an output section includes both ordered and unordered
10310    sections.  Ideally we'd do this in the linker proper.  */
10311 
10312 static bfd_boolean
10313 elf_fixup_link_order (bfd *abfd, asection *o)
10314 {
10315   int seen_linkorder;
10316   int seen_other;
10317   int n;
10318   struct bfd_link_order *p;
10319   bfd *sub;
10320   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10321   unsigned elfsec;
10322   struct bfd_link_order **sections;
10323   asection *s, *other_sec, *linkorder_sec;
10324   bfd_vma offset;
10325 
10326   other_sec = NULL;
10327   linkorder_sec = NULL;
10328   seen_other = 0;
10329   seen_linkorder = 0;
10330   for (p = o->map_head.link_order; p != NULL; p = p->next)
10331     {
10332       if (p->type == bfd_indirect_link_order)
10333 	{
10334 	  s = p->u.indirect.section;
10335 	  sub = s->owner;
10336 	  if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10337 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass
10338 	      && (elfsec = _bfd_elf_section_from_bfd_section (sub, s))
10339 	      && elfsec < elf_numsections (sub)
10340 	      && elf_elfsections (sub)[elfsec]->sh_flags & SHF_LINK_ORDER
10341 	      && elf_elfsections (sub)[elfsec]->sh_link < elf_numsections (sub))
10342 	    {
10343 	      seen_linkorder++;
10344 	      linkorder_sec = s;
10345 	    }
10346 	  else
10347 	    {
10348 	      seen_other++;
10349 	      other_sec = s;
10350 	    }
10351 	}
10352       else
10353 	seen_other++;
10354 
10355       if (seen_other && seen_linkorder)
10356 	{
10357 	  if (other_sec && linkorder_sec)
10358 	    (*_bfd_error_handler) (_("%A has both ordered [`%A' in %B] and unordered [`%A' in %B] sections"),
10359 				   o, linkorder_sec,
10360 				   linkorder_sec->owner, other_sec,
10361 				   other_sec->owner);
10362 	  else
10363 	    (*_bfd_error_handler) (_("%A has both ordered and unordered sections"),
10364 				   o);
10365 	  bfd_set_error (bfd_error_bad_value);
10366 	  return FALSE;
10367 	}
10368     }
10369 
10370   if (!seen_linkorder)
10371     return TRUE;
10372 
10373   sections = (struct bfd_link_order **)
10374     bfd_malloc (seen_linkorder * sizeof (struct bfd_link_order *));
10375   if (sections == NULL)
10376     return FALSE;
10377   seen_linkorder = 0;
10378 
10379   for (p = o->map_head.link_order; p != NULL; p = p->next)
10380     {
10381       sections[seen_linkorder++] = p;
10382     }
10383   /* Sort the input sections in the order of their linked section.  */
10384   qsort (sections, seen_linkorder, sizeof (struct bfd_link_order *),
10385 	 compare_link_order);
10386 
10387   /* Change the offsets of the sections.  */
10388   offset = 0;
10389   for (n = 0; n < seen_linkorder; n++)
10390     {
10391       s = sections[n]->u.indirect.section;
10392       offset &= ~(bfd_vma) 0 << s->alignment_power;
10393       s->output_offset = offset;
10394       sections[n]->offset = offset;
10395       /* FIXME: octets_per_byte.  */
10396       offset += sections[n]->size;
10397     }
10398 
10399   free (sections);
10400   return TRUE;
10401 }
10402 
10403 static void
10404 elf_final_link_free (bfd *obfd, struct elf_final_link_info *flinfo)
10405 {
10406   asection *o;
10407 
10408   if (flinfo->symstrtab != NULL)
10409     _bfd_stringtab_free (flinfo->symstrtab);
10410   if (flinfo->contents != NULL)
10411     free (flinfo->contents);
10412   if (flinfo->external_relocs != NULL)
10413     free (flinfo->external_relocs);
10414   if (flinfo->internal_relocs != NULL)
10415     free (flinfo->internal_relocs);
10416   if (flinfo->external_syms != NULL)
10417     free (flinfo->external_syms);
10418   if (flinfo->locsym_shndx != NULL)
10419     free (flinfo->locsym_shndx);
10420   if (flinfo->internal_syms != NULL)
10421     free (flinfo->internal_syms);
10422   if (flinfo->indices != NULL)
10423     free (flinfo->indices);
10424   if (flinfo->sections != NULL)
10425     free (flinfo->sections);
10426   if (flinfo->symbuf != NULL)
10427     free (flinfo->symbuf);
10428   if (flinfo->symshndxbuf != NULL)
10429     free (flinfo->symshndxbuf);
10430   for (o = obfd->sections; o != NULL; o = o->next)
10431     {
10432       struct bfd_elf_section_data *esdo = elf_section_data (o);
10433       if ((o->flags & SEC_RELOC) != 0 && esdo->rel.hashes != NULL)
10434 	free (esdo->rel.hashes);
10435       if ((o->flags & SEC_RELOC) != 0 && esdo->rela.hashes != NULL)
10436 	free (esdo->rela.hashes);
10437     }
10438 }
10439 
10440 /* Do the final step of an ELF link.  */
10441 
10442 bfd_boolean
10443 bfd_elf_final_link (bfd *abfd, struct bfd_link_info *info)
10444 {
10445   bfd_boolean dynamic;
10446   bfd_boolean emit_relocs;
10447   bfd *dynobj;
10448   struct elf_final_link_info flinfo;
10449   asection *o;
10450   struct bfd_link_order *p;
10451   bfd *sub;
10452   bfd_size_type max_contents_size;
10453   bfd_size_type max_external_reloc_size;
10454   bfd_size_type max_internal_reloc_count;
10455   bfd_size_type max_sym_count;
10456   bfd_size_type max_sym_shndx_count;
10457   file_ptr off;
10458   Elf_Internal_Sym elfsym;
10459   unsigned int i;
10460   Elf_Internal_Shdr *symtab_hdr;
10461   Elf_Internal_Shdr *symtab_shndx_hdr;
10462   Elf_Internal_Shdr *symstrtab_hdr;
10463   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10464   struct elf_outext_info eoinfo;
10465   bfd_boolean merged;
10466   size_t relativecount = 0;
10467   asection *reldyn = 0;
10468   bfd_size_type amt;
10469   asection *attr_section = NULL;
10470   bfd_vma attr_size = 0;
10471   const char *std_attrs_section;
10472 
10473   if (! is_elf_hash_table (info->hash))
10474     return FALSE;
10475 
10476   if (info->shared)
10477     abfd->flags |= DYNAMIC;
10478 
10479   dynamic = elf_hash_table (info)->dynamic_sections_created;
10480   dynobj = elf_hash_table (info)->dynobj;
10481 
10482   emit_relocs = (info->relocatable
10483 		 || info->emitrelocations);
10484 
10485   flinfo.info = info;
10486   flinfo.output_bfd = abfd;
10487   flinfo.symstrtab = _bfd_elf_stringtab_init ();
10488   if (flinfo.symstrtab == NULL)
10489     return FALSE;
10490 
10491   if (! dynamic)
10492     {
10493       flinfo.dynsym_sec = NULL;
10494       flinfo.hash_sec = NULL;
10495       flinfo.symver_sec = NULL;
10496     }
10497   else
10498     {
10499       flinfo.dynsym_sec = bfd_get_linker_section (dynobj, ".dynsym");
10500       flinfo.hash_sec = bfd_get_linker_section (dynobj, ".hash");
10501       /* Note that dynsym_sec can be NULL (on VMS).  */
10502       flinfo.symver_sec = bfd_get_linker_section (dynobj, ".gnu.version");
10503       /* Note that it is OK if symver_sec is NULL.  */
10504     }
10505 
10506   flinfo.contents = NULL;
10507   flinfo.external_relocs = NULL;
10508   flinfo.internal_relocs = NULL;
10509   flinfo.external_syms = NULL;
10510   flinfo.locsym_shndx = NULL;
10511   flinfo.internal_syms = NULL;
10512   flinfo.indices = NULL;
10513   flinfo.sections = NULL;
10514   flinfo.symbuf = NULL;
10515   flinfo.symshndxbuf = NULL;
10516   flinfo.symbuf_count = 0;
10517   flinfo.shndxbuf_size = 0;
10518   flinfo.filesym_count = 0;
10519 
10520   /* The object attributes have been merged.  Remove the input
10521      sections from the link, and set the contents of the output
10522      secton.  */
10523   std_attrs_section = get_elf_backend_data (abfd)->obj_attrs_section;
10524   for (o = abfd->sections; o != NULL; o = o->next)
10525     {
10526       if ((std_attrs_section && strcmp (o->name, std_attrs_section) == 0)
10527 	  || strcmp (o->name, ".gnu.attributes") == 0)
10528 	{
10529 	  for (p = o->map_head.link_order; p != NULL; p = p->next)
10530 	    {
10531 	      asection *input_section;
10532 
10533 	      if (p->type != bfd_indirect_link_order)
10534 		continue;
10535 	      input_section = p->u.indirect.section;
10536 	      /* Hack: reset the SEC_HAS_CONTENTS flag so that
10537 		 elf_link_input_bfd ignores this section.  */
10538 	      input_section->flags &= ~SEC_HAS_CONTENTS;
10539 	    }
10540 
10541 	  attr_size = bfd_elf_obj_attr_size (abfd);
10542 	  if (attr_size)
10543 	    {
10544 	      bfd_set_section_size (abfd, o, attr_size);
10545 	      attr_section = o;
10546 	      /* Skip this section later on.  */
10547 	      o->map_head.link_order = NULL;
10548 	    }
10549 	  else
10550 	    o->flags |= SEC_EXCLUDE;
10551 	}
10552     }
10553 
10554   /* Count up the number of relocations we will output for each output
10555      section, so that we know the sizes of the reloc sections.  We
10556      also figure out some maximum sizes.  */
10557   max_contents_size = 0;
10558   max_external_reloc_size = 0;
10559   max_internal_reloc_count = 0;
10560   max_sym_count = 0;
10561   max_sym_shndx_count = 0;
10562   merged = FALSE;
10563   for (o = abfd->sections; o != NULL; o = o->next)
10564     {
10565       struct bfd_elf_section_data *esdo = elf_section_data (o);
10566       o->reloc_count = 0;
10567 
10568       for (p = o->map_head.link_order; p != NULL; p = p->next)
10569 	{
10570 	  unsigned int reloc_count = 0;
10571 	  struct bfd_elf_section_data *esdi = NULL;
10572 
10573 	  if (p->type == bfd_section_reloc_link_order
10574 	      || p->type == bfd_symbol_reloc_link_order)
10575 	    reloc_count = 1;
10576 	  else if (p->type == bfd_indirect_link_order)
10577 	    {
10578 	      asection *sec;
10579 
10580 	      sec = p->u.indirect.section;
10581 	      esdi = elf_section_data (sec);
10582 
10583 	      /* Mark all sections which are to be included in the
10584 		 link.  This will normally be every section.  We need
10585 		 to do this so that we can identify any sections which
10586 		 the linker has decided to not include.  */
10587 	      sec->linker_mark = TRUE;
10588 
10589 	      if (sec->flags & SEC_MERGE)
10590 		merged = TRUE;
10591 
10592 	      if (esdo->this_hdr.sh_type == SHT_REL
10593 		  || esdo->this_hdr.sh_type == SHT_RELA)
10594 		/* Some backends use reloc_count in relocation sections
10595 		   to count particular types of relocs.  Of course,
10596 		   reloc sections themselves can't have relocations.  */
10597 		reloc_count = 0;
10598 	      else if (info->relocatable || info->emitrelocations)
10599 		reloc_count = sec->reloc_count;
10600 	      else if (bed->elf_backend_count_relocs)
10601 		reloc_count = (*bed->elf_backend_count_relocs) (info, sec);
10602 
10603 	      if (sec->rawsize > max_contents_size)
10604 		max_contents_size = sec->rawsize;
10605 	      if (sec->size > max_contents_size)
10606 		max_contents_size = sec->size;
10607 
10608 	      /* We are interested in just local symbols, not all
10609 		 symbols.  */
10610 	      if (bfd_get_flavour (sec->owner) == bfd_target_elf_flavour
10611 		  && (sec->owner->flags & DYNAMIC) == 0)
10612 		{
10613 		  size_t sym_count;
10614 
10615 		  if (elf_bad_symtab (sec->owner))
10616 		    sym_count = (elf_tdata (sec->owner)->symtab_hdr.sh_size
10617 				 / bed->s->sizeof_sym);
10618 		  else
10619 		    sym_count = elf_tdata (sec->owner)->symtab_hdr.sh_info;
10620 
10621 		  if (sym_count > max_sym_count)
10622 		    max_sym_count = sym_count;
10623 
10624 		  if (sym_count > max_sym_shndx_count
10625 		      && elf_symtab_shndx (sec->owner) != 0)
10626 		    max_sym_shndx_count = sym_count;
10627 
10628 		  if ((sec->flags & SEC_RELOC) != 0)
10629 		    {
10630 		      size_t ext_size = 0;
10631 
10632 		      if (esdi->rel.hdr != NULL)
10633 			ext_size = esdi->rel.hdr->sh_size;
10634 		      if (esdi->rela.hdr != NULL)
10635 			ext_size += esdi->rela.hdr->sh_size;
10636 
10637 		      if (ext_size > max_external_reloc_size)
10638 			max_external_reloc_size = ext_size;
10639 		      if (sec->reloc_count > max_internal_reloc_count)
10640 			max_internal_reloc_count = sec->reloc_count;
10641 		    }
10642 		}
10643 	    }
10644 
10645 	  if (reloc_count == 0)
10646 	    continue;
10647 
10648 	  o->reloc_count += reloc_count;
10649 
10650 	  if (p->type == bfd_indirect_link_order
10651 	      && (info->relocatable || info->emitrelocations))
10652 	    {
10653 	      if (esdi->rel.hdr)
10654 		esdo->rel.count += NUM_SHDR_ENTRIES (esdi->rel.hdr);
10655 	      if (esdi->rela.hdr)
10656 		esdo->rela.count += NUM_SHDR_ENTRIES (esdi->rela.hdr);
10657 	    }
10658 	  else
10659 	    {
10660 	      if (o->use_rela_p)
10661 		esdo->rela.count += reloc_count;
10662 	      else
10663 		esdo->rel.count += reloc_count;
10664 	    }
10665 	}
10666 
10667       if (o->reloc_count > 0)
10668 	o->flags |= SEC_RELOC;
10669       else
10670 	{
10671 	  /* Explicitly clear the SEC_RELOC flag.  The linker tends to
10672 	     set it (this is probably a bug) and if it is set
10673 	     assign_section_numbers will create a reloc section.  */
10674 	  o->flags &=~ SEC_RELOC;
10675 	}
10676 
10677       /* If the SEC_ALLOC flag is not set, force the section VMA to
10678 	 zero.  This is done in elf_fake_sections as well, but forcing
10679 	 the VMA to 0 here will ensure that relocs against these
10680 	 sections are handled correctly.  */
10681       if ((o->flags & SEC_ALLOC) == 0
10682 	  && ! o->user_set_vma)
10683 	o->vma = 0;
10684     }
10685 
10686   if (! info->relocatable && merged)
10687     elf_link_hash_traverse (elf_hash_table (info),
10688 			    _bfd_elf_link_sec_merge_syms, abfd);
10689 
10690   /* Figure out the file positions for everything but the symbol table
10691      and the relocs.  We set symcount to force assign_section_numbers
10692      to create a symbol table.  */
10693   bfd_get_symcount (abfd) = info->strip == strip_all ? 0 : 1;
10694   BFD_ASSERT (! abfd->output_has_begun);
10695   if (! _bfd_elf_compute_section_file_positions (abfd, info))
10696     goto error_return;
10697 
10698   /* Set sizes, and assign file positions for reloc sections.  */
10699   for (o = abfd->sections; o != NULL; o = o->next)
10700     {
10701       struct bfd_elf_section_data *esdo = elf_section_data (o);
10702       if ((o->flags & SEC_RELOC) != 0)
10703 	{
10704 	  if (esdo->rel.hdr
10705 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rel)))
10706 	    goto error_return;
10707 
10708 	  if (esdo->rela.hdr
10709 	      && !(_bfd_elf_link_size_reloc_section (abfd, &esdo->rela)))
10710 	    goto error_return;
10711 	}
10712 
10713       /* Now, reset REL_COUNT and REL_COUNT2 so that we can use them
10714 	 to count upwards while actually outputting the relocations.  */
10715       esdo->rel.count = 0;
10716       esdo->rela.count = 0;
10717     }
10718 
10719   _bfd_elf_assign_file_positions_for_relocs (abfd);
10720 
10721   /* We have now assigned file positions for all the sections except
10722      .symtab and .strtab.  We start the .symtab section at the current
10723      file position, and write directly to it.  We build the .strtab
10724      section in memory.  */
10725   bfd_get_symcount (abfd) = 0;
10726   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10727   /* sh_name is set in prep_headers.  */
10728   symtab_hdr->sh_type = SHT_SYMTAB;
10729   /* sh_flags, sh_addr and sh_size all start off zero.  */
10730   symtab_hdr->sh_entsize = bed->s->sizeof_sym;
10731   /* sh_link is set in assign_section_numbers.  */
10732   /* sh_info is set below.  */
10733   /* sh_offset is set just below.  */
10734   symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
10735 
10736   off = elf_next_file_pos (abfd);
10737   off = _bfd_elf_assign_file_position_for_section (symtab_hdr, off, TRUE);
10738 
10739   /* Note that at this point elf_next_file_pos (abfd) is
10740      incorrect.  We do not yet know the size of the .symtab section.
10741      We correct next_file_pos below, after we do know the size.  */
10742 
10743   /* Allocate a buffer to hold swapped out symbols.  This is to avoid
10744      continuously seeking to the right position in the file.  */
10745   if (! info->keep_memory || max_sym_count < 20)
10746     flinfo.symbuf_size = 20;
10747   else
10748     flinfo.symbuf_size = max_sym_count;
10749   amt = flinfo.symbuf_size;
10750   amt *= bed->s->sizeof_sym;
10751   flinfo.symbuf = (bfd_byte *) bfd_malloc (amt);
10752   if (flinfo.symbuf == NULL)
10753     goto error_return;
10754   if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
10755     {
10756       /* Wild guess at number of output symbols.  realloc'd as needed.  */
10757       amt = 2 * max_sym_count + elf_numsections (abfd) + 1000;
10758       flinfo.shndxbuf_size = amt;
10759       amt *= sizeof (Elf_External_Sym_Shndx);
10760       flinfo.symshndxbuf = (Elf_External_Sym_Shndx *) bfd_zmalloc (amt);
10761       if (flinfo.symshndxbuf == NULL)
10762 	goto error_return;
10763     }
10764 
10765   /* Start writing out the symbol table.  The first symbol is always a
10766      dummy symbol.  */
10767   if (info->strip != strip_all
10768       || emit_relocs)
10769     {
10770       elfsym.st_value = 0;
10771       elfsym.st_size = 0;
10772       elfsym.st_info = 0;
10773       elfsym.st_other = 0;
10774       elfsym.st_shndx = SHN_UNDEF;
10775       elfsym.st_target_internal = 0;
10776       if (elf_link_output_sym (&flinfo, NULL, &elfsym, bfd_und_section_ptr,
10777 			       NULL) != 1)
10778 	goto error_return;
10779     }
10780 
10781   /* Output a symbol for each section.  We output these even if we are
10782      discarding local symbols, since they are used for relocs.  These
10783      symbols have no names.  We store the index of each one in the
10784      index field of the section, so that we can find it again when
10785      outputting relocs.  */
10786   if (info->strip != strip_all
10787       || emit_relocs)
10788     {
10789       elfsym.st_size = 0;
10790       elfsym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
10791       elfsym.st_other = 0;
10792       elfsym.st_value = 0;
10793       elfsym.st_target_internal = 0;
10794       for (i = 1; i < elf_numsections (abfd); i++)
10795 	{
10796 	  o = bfd_section_from_elf_index (abfd, i);
10797 	  if (o != NULL)
10798 	    {
10799 	      o->target_index = bfd_get_symcount (abfd);
10800 	      elfsym.st_shndx = i;
10801 	      if (!info->relocatable)
10802 		elfsym.st_value = o->vma;
10803 	      if (elf_link_output_sym (&flinfo, NULL, &elfsym, o, NULL) != 1)
10804 		goto error_return;
10805 	    }
10806 	}
10807     }
10808 
10809   /* Allocate some memory to hold information read in from the input
10810      files.  */
10811   if (max_contents_size != 0)
10812     {
10813       flinfo.contents = (bfd_byte *) bfd_malloc (max_contents_size);
10814       if (flinfo.contents == NULL)
10815 	goto error_return;
10816     }
10817 
10818   if (max_external_reloc_size != 0)
10819     {
10820       flinfo.external_relocs = bfd_malloc (max_external_reloc_size);
10821       if (flinfo.external_relocs == NULL)
10822 	goto error_return;
10823     }
10824 
10825   if (max_internal_reloc_count != 0)
10826     {
10827       amt = max_internal_reloc_count * bed->s->int_rels_per_ext_rel;
10828       amt *= sizeof (Elf_Internal_Rela);
10829       flinfo.internal_relocs = (Elf_Internal_Rela *) bfd_malloc (amt);
10830       if (flinfo.internal_relocs == NULL)
10831 	goto error_return;
10832     }
10833 
10834   if (max_sym_count != 0)
10835     {
10836       amt = max_sym_count * bed->s->sizeof_sym;
10837       flinfo.external_syms = (bfd_byte *) bfd_malloc (amt);
10838       if (flinfo.external_syms == NULL)
10839 	goto error_return;
10840 
10841       amt = max_sym_count * sizeof (Elf_Internal_Sym);
10842       flinfo.internal_syms = (Elf_Internal_Sym *) bfd_malloc (amt);
10843       if (flinfo.internal_syms == NULL)
10844 	goto error_return;
10845 
10846       amt = max_sym_count * sizeof (long);
10847       flinfo.indices = (long int *) bfd_malloc (amt);
10848       if (flinfo.indices == NULL)
10849 	goto error_return;
10850 
10851       amt = max_sym_count * sizeof (asection *);
10852       flinfo.sections = (asection **) bfd_malloc (amt);
10853       if (flinfo.sections == NULL)
10854 	goto error_return;
10855     }
10856 
10857   if (max_sym_shndx_count != 0)
10858     {
10859       amt = max_sym_shndx_count * sizeof (Elf_External_Sym_Shndx);
10860       flinfo.locsym_shndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
10861       if (flinfo.locsym_shndx == NULL)
10862 	goto error_return;
10863     }
10864 
10865   if (elf_hash_table (info)->tls_sec)
10866     {
10867       bfd_vma base, end = 0;
10868       asection *sec;
10869 
10870       for (sec = elf_hash_table (info)->tls_sec;
10871 	   sec && (sec->flags & SEC_THREAD_LOCAL);
10872 	   sec = sec->next)
10873 	{
10874 	  bfd_size_type size = sec->size;
10875 
10876 	  if (size == 0
10877 	      && (sec->flags & SEC_HAS_CONTENTS) == 0)
10878 	    {
10879 	      struct bfd_link_order *ord = sec->map_tail.link_order;
10880 
10881 	      if (ord != NULL)
10882 		size = ord->offset + ord->size;
10883 	    }
10884 	  end = sec->vma + size;
10885 	}
10886       base = elf_hash_table (info)->tls_sec->vma;
10887       /* Only align end of TLS section if static TLS doesn't have special
10888 	 alignment requirements.  */
10889       if (bed->static_tls_alignment == 1)
10890 	end = align_power (end,
10891 			   elf_hash_table (info)->tls_sec->alignment_power);
10892       elf_hash_table (info)->tls_size = end - base;
10893     }
10894 
10895   /* Reorder SHF_LINK_ORDER sections.  */
10896   for (o = abfd->sections; o != NULL; o = o->next)
10897     {
10898       if (!elf_fixup_link_order (abfd, o))
10899 	return FALSE;
10900     }
10901 
10902   /* Since ELF permits relocations to be against local symbols, we
10903      must have the local symbols available when we do the relocations.
10904      Since we would rather only read the local symbols once, and we
10905      would rather not keep them in memory, we handle all the
10906      relocations for a single input file at the same time.
10907 
10908      Unfortunately, there is no way to know the total number of local
10909      symbols until we have seen all of them, and the local symbol
10910      indices precede the global symbol indices.  This means that when
10911      we are generating relocatable output, and we see a reloc against
10912      a global symbol, we can not know the symbol index until we have
10913      finished examining all the local symbols to see which ones we are
10914      going to output.  To deal with this, we keep the relocations in
10915      memory, and don't output them until the end of the link.  This is
10916      an unfortunate waste of memory, but I don't see a good way around
10917      it.  Fortunately, it only happens when performing a relocatable
10918      link, which is not the common case.  FIXME: If keep_memory is set
10919      we could write the relocs out and then read them again; I don't
10920      know how bad the memory loss will be.  */
10921 
10922   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10923     sub->output_has_begun = FALSE;
10924   for (o = abfd->sections; o != NULL; o = o->next)
10925     {
10926       for (p = o->map_head.link_order; p != NULL; p = p->next)
10927 	{
10928 	  if (p->type == bfd_indirect_link_order
10929 	      && (bfd_get_flavour ((sub = p->u.indirect.section->owner))
10930 		  == bfd_target_elf_flavour)
10931 	      && elf_elfheader (sub)->e_ident[EI_CLASS] == bed->s->elfclass)
10932 	    {
10933 	      if (! sub->output_has_begun)
10934 		{
10935 		  if (! elf_link_input_bfd (&flinfo, sub))
10936 		    goto error_return;
10937 		  sub->output_has_begun = TRUE;
10938 		}
10939 	    }
10940 	  else if (p->type == bfd_section_reloc_link_order
10941 		   || p->type == bfd_symbol_reloc_link_order)
10942 	    {
10943 	      if (! elf_reloc_link_order (abfd, info, o, p))
10944 		goto error_return;
10945 	    }
10946 	  else
10947 	    {
10948 	      if (! _bfd_default_link_order (abfd, info, o, p))
10949 		{
10950 		  if (p->type == bfd_indirect_link_order
10951 		      && (bfd_get_flavour (sub)
10952 			  == bfd_target_elf_flavour)
10953 		      && (elf_elfheader (sub)->e_ident[EI_CLASS]
10954 			  != bed->s->elfclass))
10955 		    {
10956 		      const char *iclass, *oclass;
10957 
10958 		      if (bed->s->elfclass == ELFCLASS64)
10959 			{
10960 			  iclass = "ELFCLASS32";
10961 			  oclass = "ELFCLASS64";
10962 			}
10963 		      else
10964 			{
10965 			  iclass = "ELFCLASS64";
10966 			  oclass = "ELFCLASS32";
10967 			}
10968 
10969 		      bfd_set_error (bfd_error_wrong_format);
10970 		      (*_bfd_error_handler)
10971 			(_("%B: file class %s incompatible with %s"),
10972 			 sub, iclass, oclass);
10973 		    }
10974 
10975 		  goto error_return;
10976 		}
10977 	    }
10978 	}
10979     }
10980 
10981   /* Free symbol buffer if needed.  */
10982   if (!info->reduce_memory_overheads)
10983     {
10984       for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10985 	if (bfd_get_flavour (sub) == bfd_target_elf_flavour
10986 	    && elf_tdata (sub)->symbuf)
10987 	  {
10988 	    free (elf_tdata (sub)->symbuf);
10989 	    elf_tdata (sub)->symbuf = NULL;
10990 	  }
10991     }
10992 
10993   /* Output any global symbols that got converted to local in a
10994      version script or due to symbol visibility.  We do this in a
10995      separate step since ELF requires all local symbols to appear
10996      prior to any global symbols.  FIXME: We should only do this if
10997      some global symbols were, in fact, converted to become local.
10998      FIXME: Will this work correctly with the Irix 5 linker?  */
10999   eoinfo.failed = FALSE;
11000   eoinfo.flinfo = &flinfo;
11001   eoinfo.localsyms = TRUE;
11002   eoinfo.need_second_pass = FALSE;
11003   eoinfo.second_pass = FALSE;
11004   eoinfo.file_sym_done = FALSE;
11005   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11006   if (eoinfo.failed)
11007     return FALSE;
11008 
11009   if (eoinfo.need_second_pass)
11010     {
11011       eoinfo.second_pass = TRUE;
11012       bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11013       if (eoinfo.failed)
11014 	return FALSE;
11015     }
11016 
11017   /* If backend needs to output some local symbols not present in the hash
11018      table, do it now.  */
11019   if (bed->elf_backend_output_arch_local_syms)
11020     {
11021       typedef int (*out_sym_func)
11022 	(void *, const char *, Elf_Internal_Sym *, asection *,
11023 	 struct elf_link_hash_entry *);
11024 
11025       if (! ((*bed->elf_backend_output_arch_local_syms)
11026 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11027 	return FALSE;
11028     }
11029 
11030   /* That wrote out all the local symbols.  Finish up the symbol table
11031      with the global symbols. Even if we want to strip everything we
11032      can, we still need to deal with those global symbols that got
11033      converted to local in a version script.  */
11034 
11035   /* The sh_info field records the index of the first non local symbol.  */
11036   symtab_hdr->sh_info = bfd_get_symcount (abfd);
11037 
11038   if (dynamic
11039       && flinfo.dynsym_sec != NULL
11040       && flinfo.dynsym_sec->output_section != bfd_abs_section_ptr)
11041     {
11042       Elf_Internal_Sym sym;
11043       bfd_byte *dynsym = flinfo.dynsym_sec->contents;
11044       long last_local = 0;
11045 
11046       /* Write out the section symbols for the output sections.  */
11047       if (info->shared || elf_hash_table (info)->is_relocatable_executable)
11048 	{
11049 	  asection *s;
11050 
11051 	  sym.st_size = 0;
11052 	  sym.st_name = 0;
11053 	  sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
11054 	  sym.st_other = 0;
11055 	  sym.st_target_internal = 0;
11056 
11057 	  for (s = abfd->sections; s != NULL; s = s->next)
11058 	    {
11059 	      int indx;
11060 	      bfd_byte *dest;
11061 	      long dynindx;
11062 
11063 	      dynindx = elf_section_data (s)->dynindx;
11064 	      if (dynindx <= 0)
11065 		continue;
11066 	      indx = elf_section_data (s)->this_idx;
11067 	      BFD_ASSERT (indx > 0);
11068 	      sym.st_shndx = indx;
11069 	      if (! check_dynsym (abfd, &sym))
11070 		return FALSE;
11071 	      sym.st_value = s->vma;
11072 	      dest = dynsym + dynindx * bed->s->sizeof_sym;
11073 	      if (last_local < dynindx)
11074 		last_local = dynindx;
11075 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11076 	    }
11077 	}
11078 
11079       /* Write out the local dynsyms.  */
11080       if (elf_hash_table (info)->dynlocal)
11081 	{
11082 	  struct elf_link_local_dynamic_entry *e;
11083 	  for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
11084 	    {
11085 	      asection *s;
11086 	      bfd_byte *dest;
11087 
11088 	      /* Copy the internal symbol and turn off visibility.
11089 		 Note that we saved a word of storage and overwrote
11090 		 the original st_name with the dynstr_index.  */
11091 	      sym = e->isym;
11092 	      sym.st_other &= ~ELF_ST_VISIBILITY (-1);
11093 
11094 	      s = bfd_section_from_elf_index (e->input_bfd,
11095 					      e->isym.st_shndx);
11096 	      if (s != NULL)
11097 		{
11098 		  sym.st_shndx =
11099 		    elf_section_data (s->output_section)->this_idx;
11100 		  if (! check_dynsym (abfd, &sym))
11101 		    return FALSE;
11102 		  sym.st_value = (s->output_section->vma
11103 				  + s->output_offset
11104 				  + e->isym.st_value);
11105 		}
11106 
11107 	      if (last_local < e->dynindx)
11108 		last_local = e->dynindx;
11109 
11110 	      dest = dynsym + e->dynindx * bed->s->sizeof_sym;
11111 	      bed->s->swap_symbol_out (abfd, &sym, dest, 0);
11112 	    }
11113 	}
11114 
11115       elf_section_data (flinfo.dynsym_sec->output_section)->this_hdr.sh_info =
11116 	last_local + 1;
11117     }
11118 
11119   /* We get the global symbols from the hash table.  */
11120   eoinfo.failed = FALSE;
11121   eoinfo.localsyms = FALSE;
11122   eoinfo.flinfo = &flinfo;
11123   bfd_hash_traverse (&info->hash->table, elf_link_output_extsym, &eoinfo);
11124   if (eoinfo.failed)
11125     return FALSE;
11126 
11127   /* If backend needs to output some symbols not present in the hash
11128      table, do it now.  */
11129   if (bed->elf_backend_output_arch_syms)
11130     {
11131       typedef int (*out_sym_func)
11132 	(void *, const char *, Elf_Internal_Sym *, asection *,
11133 	 struct elf_link_hash_entry *);
11134 
11135       if (! ((*bed->elf_backend_output_arch_syms)
11136 	     (abfd, info, &flinfo, (out_sym_func) elf_link_output_sym)))
11137 	return FALSE;
11138     }
11139 
11140   /* Flush all symbols to the file.  */
11141   if (! elf_link_flush_output_syms (&flinfo, bed))
11142     return FALSE;
11143 
11144   /* Now we know the size of the symtab section.  */
11145   off += symtab_hdr->sh_size;
11146 
11147   symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
11148   if (symtab_shndx_hdr->sh_name != 0)
11149     {
11150       symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
11151       symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
11152       symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
11153       amt = bfd_get_symcount (abfd) * sizeof (Elf_External_Sym_Shndx);
11154       symtab_shndx_hdr->sh_size = amt;
11155 
11156       off = _bfd_elf_assign_file_position_for_section (symtab_shndx_hdr,
11157 						       off, TRUE);
11158 
11159       if (bfd_seek (abfd, symtab_shndx_hdr->sh_offset, SEEK_SET) != 0
11160 	  || (bfd_bwrite (flinfo.symshndxbuf, amt, abfd) != amt))
11161 	return FALSE;
11162     }
11163 
11164 
11165   /* Finish up and write out the symbol string table (.strtab)
11166      section.  */
11167   symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
11168   /* sh_name was set in prep_headers.  */
11169   symstrtab_hdr->sh_type = SHT_STRTAB;
11170   symstrtab_hdr->sh_flags = 0;
11171   symstrtab_hdr->sh_addr = 0;
11172   symstrtab_hdr->sh_size = _bfd_stringtab_size (flinfo.symstrtab);
11173   symstrtab_hdr->sh_entsize = 0;
11174   symstrtab_hdr->sh_link = 0;
11175   symstrtab_hdr->sh_info = 0;
11176   /* sh_offset is set just below.  */
11177   symstrtab_hdr->sh_addralign = 1;
11178 
11179   off = _bfd_elf_assign_file_position_for_section (symstrtab_hdr, off, TRUE);
11180   elf_next_file_pos (abfd) = off;
11181 
11182   if (bfd_get_symcount (abfd) > 0)
11183     {
11184       if (bfd_seek (abfd, symstrtab_hdr->sh_offset, SEEK_SET) != 0
11185 	  || ! _bfd_stringtab_emit (abfd, flinfo.symstrtab))
11186 	return FALSE;
11187     }
11188 
11189   /* Adjust the relocs to have the correct symbol indices.  */
11190   for (o = abfd->sections; o != NULL; o = o->next)
11191     {
11192       struct bfd_elf_section_data *esdo = elf_section_data (o);
11193       if ((o->flags & SEC_RELOC) == 0)
11194 	continue;
11195 
11196       if (esdo->rel.hdr != NULL)
11197 	elf_link_adjust_relocs (abfd, &esdo->rel);
11198       if (esdo->rela.hdr != NULL)
11199 	elf_link_adjust_relocs (abfd, &esdo->rela);
11200 
11201       /* Set the reloc_count field to 0 to prevent write_relocs from
11202 	 trying to swap the relocs out itself.  */
11203       o->reloc_count = 0;
11204     }
11205 
11206   if (dynamic && info->combreloc && dynobj != NULL)
11207     relativecount = elf_link_sort_relocs (abfd, info, &reldyn);
11208 
11209   /* If we are linking against a dynamic object, or generating a
11210      shared library, finish up the dynamic linking information.  */
11211   if (dynamic)
11212     {
11213       bfd_byte *dyncon, *dynconend;
11214 
11215       /* Fix up .dynamic entries.  */
11216       o = bfd_get_linker_section (dynobj, ".dynamic");
11217       BFD_ASSERT (o != NULL);
11218 
11219       dyncon = o->contents;
11220       dynconend = o->contents + o->size;
11221       for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11222 	{
11223 	  Elf_Internal_Dyn dyn;
11224 	  const char *name;
11225 	  unsigned int type;
11226 
11227 	  bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11228 
11229 	  switch (dyn.d_tag)
11230 	    {
11231 	    default:
11232 	      continue;
11233 	    case DT_NULL:
11234 	      if (relativecount > 0 && dyncon + bed->s->sizeof_dyn < dynconend)
11235 		{
11236 		  switch (elf_section_data (reldyn)->this_hdr.sh_type)
11237 		    {
11238 		    case SHT_REL: dyn.d_tag = DT_RELCOUNT; break;
11239 		    case SHT_RELA: dyn.d_tag = DT_RELACOUNT; break;
11240 		    default: continue;
11241 		    }
11242 		  dyn.d_un.d_val = relativecount;
11243 		  relativecount = 0;
11244 		  break;
11245 		}
11246 	      continue;
11247 
11248 	    case DT_INIT:
11249 	      name = info->init_function;
11250 	      goto get_sym;
11251 	    case DT_FINI:
11252 	      name = info->fini_function;
11253 	    get_sym:
11254 	      {
11255 		struct elf_link_hash_entry *h;
11256 
11257 		h = elf_link_hash_lookup (elf_hash_table (info), name,
11258 					  FALSE, FALSE, TRUE);
11259 		if (h != NULL
11260 		    && (h->root.type == bfd_link_hash_defined
11261 			|| h->root.type == bfd_link_hash_defweak))
11262 		  {
11263 		    dyn.d_un.d_ptr = h->root.u.def.value;
11264 		    o = h->root.u.def.section;
11265 		    if (o->output_section != NULL)
11266 		      dyn.d_un.d_ptr += (o->output_section->vma
11267 					 + o->output_offset);
11268 		    else
11269 		      {
11270 			/* The symbol is imported from another shared
11271 			   library and does not apply to this one.  */
11272 			dyn.d_un.d_ptr = 0;
11273 		      }
11274 		    break;
11275 		  }
11276 	      }
11277 	      continue;
11278 
11279 	    case DT_PREINIT_ARRAYSZ:
11280 	      name = ".preinit_array";
11281 	      goto get_size;
11282 	    case DT_INIT_ARRAYSZ:
11283 	      name = ".init_array";
11284 	      goto get_size;
11285 	    case DT_FINI_ARRAYSZ:
11286 	      name = ".fini_array";
11287 	    get_size:
11288 	      o = bfd_get_section_by_name (abfd, name);
11289 	      if (o == NULL)
11290 		{
11291 		  (*_bfd_error_handler)
11292 		    (_("%B: could not find output section %s"), abfd, name);
11293 		  goto error_return;
11294 		}
11295 	      if (o->size == 0)
11296 		(*_bfd_error_handler)
11297 		  (_("warning: %s section has zero size"), name);
11298 	      dyn.d_un.d_val = o->size;
11299 	      break;
11300 
11301 	    case DT_PREINIT_ARRAY:
11302 	      name = ".preinit_array";
11303 	      goto get_vma;
11304 	    case DT_INIT_ARRAY:
11305 	      name = ".init_array";
11306 	      goto get_vma;
11307 	    case DT_FINI_ARRAY:
11308 	      name = ".fini_array";
11309 	      goto get_vma;
11310 
11311 	    case DT_HASH:
11312 	      name = ".hash";
11313 	      goto get_vma;
11314 	    case DT_GNU_HASH:
11315 	      name = ".gnu.hash";
11316 	      goto get_vma;
11317 	    case DT_STRTAB:
11318 	      name = ".dynstr";
11319 	      goto get_vma;
11320 	    case DT_SYMTAB:
11321 	      name = ".dynsym";
11322 	      goto get_vma;
11323 	    case DT_VERDEF:
11324 	      name = ".gnu.version_d";
11325 	      goto get_vma;
11326 	    case DT_VERNEED:
11327 	      name = ".gnu.version_r";
11328 	      goto get_vma;
11329 	    case DT_VERSYM:
11330 	      name = ".gnu.version";
11331 	    get_vma:
11332 	      o = bfd_get_section_by_name (abfd, name);
11333 	      if (o == NULL)
11334 		{
11335 		  (*_bfd_error_handler)
11336 		    (_("%B: could not find output section %s"), abfd, name);
11337 		  goto error_return;
11338 		}
11339 	      if (elf_section_data (o->output_section)->this_hdr.sh_type == SHT_NOTE)
11340 		{
11341 		  (*_bfd_error_handler)
11342 		    (_("warning: section '%s' is being made into a note"), name);
11343 		  bfd_set_error (bfd_error_nonrepresentable_section);
11344 		  goto error_return;
11345 		}
11346 	      dyn.d_un.d_ptr = o->vma;
11347 	      break;
11348 
11349 	    case DT_REL:
11350 	    case DT_RELA:
11351 	    case DT_RELSZ:
11352 	    case DT_RELASZ:
11353 	      if (dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11354 		type = SHT_REL;
11355 	      else
11356 		type = SHT_RELA;
11357 	      dyn.d_un.d_val = 0;
11358 	      dyn.d_un.d_ptr = 0;
11359 	      for (i = 1; i < elf_numsections (abfd); i++)
11360 		{
11361 		  Elf_Internal_Shdr *hdr;
11362 
11363 		  hdr = elf_elfsections (abfd)[i];
11364 		  if (hdr->sh_type == type
11365 		      && (hdr->sh_flags & SHF_ALLOC) != 0)
11366 		    {
11367 		      if (dyn.d_tag == DT_RELSZ || dyn.d_tag == DT_RELASZ)
11368 			dyn.d_un.d_val += hdr->sh_size;
11369 		      else
11370 			{
11371 			  if (dyn.d_un.d_ptr == 0
11372 			      || hdr->sh_addr < dyn.d_un.d_ptr)
11373 			    dyn.d_un.d_ptr = hdr->sh_addr;
11374 			}
11375 		    }
11376 		}
11377 	      break;
11378 	    }
11379 	  bed->s->swap_dyn_out (dynobj, &dyn, dyncon);
11380 	}
11381     }
11382 
11383   /* If we have created any dynamic sections, then output them.  */
11384   if (dynobj != NULL)
11385     {
11386       if (! (*bed->elf_backend_finish_dynamic_sections) (abfd, info))
11387 	goto error_return;
11388 
11389       /* Check for DT_TEXTREL (late, in case the backend removes it).  */
11390       if (((info->warn_shared_textrel && info->shared)
11391 	   || info->error_textrel)
11392 	  && (o = bfd_get_linker_section (dynobj, ".dynamic")) != NULL)
11393 	{
11394 	  bfd_byte *dyncon, *dynconend;
11395 
11396 	  dyncon = o->contents;
11397 	  dynconend = o->contents + o->size;
11398 	  for (; dyncon < dynconend; dyncon += bed->s->sizeof_dyn)
11399 	    {
11400 	      Elf_Internal_Dyn dyn;
11401 
11402 	      bed->s->swap_dyn_in (dynobj, dyncon, &dyn);
11403 
11404 	      if (dyn.d_tag == DT_TEXTREL)
11405 		{
11406 		  if (info->error_textrel)
11407 		    info->callbacks->einfo
11408 		      (_("%P%X: read-only segment has dynamic relocations.\n"));
11409 		  else
11410 		    info->callbacks->einfo
11411 		      (_("%P: warning: creating a DT_TEXTREL in a shared object.\n"));
11412 		  break;
11413 		}
11414 	    }
11415 	}
11416 
11417       for (o = dynobj->sections; o != NULL; o = o->next)
11418 	{
11419 	  if ((o->flags & SEC_HAS_CONTENTS) == 0
11420 	      || o->size == 0
11421 	      || o->output_section == bfd_abs_section_ptr)
11422 	    continue;
11423 	  if ((o->flags & SEC_LINKER_CREATED) == 0)
11424 	    {
11425 	      /* At this point, we are only interested in sections
11426 		 created by _bfd_elf_link_create_dynamic_sections.  */
11427 	      continue;
11428 	    }
11429 	  if (elf_hash_table (info)->stab_info.stabstr == o)
11430 	    continue;
11431 	  if (elf_hash_table (info)->eh_info.hdr_sec == o)
11432 	    continue;
11433 	  if (strcmp (o->name, ".dynstr") != 0)
11434 	    {
11435 	      /* FIXME: octets_per_byte.  */
11436 	      if (! bfd_set_section_contents (abfd, o->output_section,
11437 					      o->contents,
11438 					      (file_ptr) o->output_offset,
11439 					      o->size))
11440 		goto error_return;
11441 	    }
11442 	  else
11443 	    {
11444 	      /* The contents of the .dynstr section are actually in a
11445 		 stringtab.  */
11446 	      off = elf_section_data (o->output_section)->this_hdr.sh_offset;
11447 	      if (bfd_seek (abfd, off, SEEK_SET) != 0
11448 		  || ! _bfd_elf_strtab_emit (abfd,
11449 					     elf_hash_table (info)->dynstr))
11450 		goto error_return;
11451 	    }
11452 	}
11453     }
11454 
11455   if (info->relocatable)
11456     {
11457       bfd_boolean failed = FALSE;
11458 
11459       bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
11460       if (failed)
11461 	goto error_return;
11462     }
11463 
11464   /* If we have optimized stabs strings, output them.  */
11465   if (elf_hash_table (info)->stab_info.stabstr != NULL)
11466     {
11467       if (! _bfd_write_stab_strings (abfd, &elf_hash_table (info)->stab_info))
11468 	goto error_return;
11469     }
11470 
11471   if (! _bfd_elf_write_section_eh_frame_hdr (abfd, info))
11472     goto error_return;
11473 
11474   elf_final_link_free (abfd, &flinfo);
11475 
11476   elf_linker (abfd) = TRUE;
11477 
11478   if (attr_section)
11479     {
11480       bfd_byte *contents = (bfd_byte *) bfd_malloc (attr_size);
11481       if (contents == NULL)
11482 	return FALSE;	/* Bail out and fail.  */
11483       bfd_elf_set_obj_attr_contents (abfd, contents, attr_size);
11484       bfd_set_section_contents (abfd, attr_section, contents, 0, attr_size);
11485       free (contents);
11486     }
11487 
11488   return TRUE;
11489 
11490  error_return:
11491   elf_final_link_free (abfd, &flinfo);
11492   return FALSE;
11493 }
11494 
11495 /* Initialize COOKIE for input bfd ABFD.  */
11496 
11497 static bfd_boolean
11498 init_reloc_cookie (struct elf_reloc_cookie *cookie,
11499 		   struct bfd_link_info *info, bfd *abfd)
11500 {
11501   Elf_Internal_Shdr *symtab_hdr;
11502   const struct elf_backend_data *bed;
11503 
11504   bed = get_elf_backend_data (abfd);
11505   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11506 
11507   cookie->abfd = abfd;
11508   cookie->sym_hashes = elf_sym_hashes (abfd);
11509   cookie->bad_symtab = elf_bad_symtab (abfd);
11510   if (cookie->bad_symtab)
11511     {
11512       cookie->locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
11513       cookie->extsymoff = 0;
11514     }
11515   else
11516     {
11517       cookie->locsymcount = symtab_hdr->sh_info;
11518       cookie->extsymoff = symtab_hdr->sh_info;
11519     }
11520 
11521   if (bed->s->arch_size == 32)
11522     cookie->r_sym_shift = 8;
11523   else
11524     cookie->r_sym_shift = 32;
11525 
11526   cookie->locsyms = (Elf_Internal_Sym *) symtab_hdr->contents;
11527   if (cookie->locsyms == NULL && cookie->locsymcount != 0)
11528     {
11529       cookie->locsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
11530 					      cookie->locsymcount, 0,
11531 					      NULL, NULL, NULL);
11532       if (cookie->locsyms == NULL)
11533 	{
11534 	  info->callbacks->einfo (_("%P%X: can not read symbols: %E\n"));
11535 	  return FALSE;
11536 	}
11537       if (info->keep_memory)
11538 	symtab_hdr->contents = (bfd_byte *) cookie->locsyms;
11539     }
11540   return TRUE;
11541 }
11542 
11543 /* Free the memory allocated by init_reloc_cookie, if appropriate.  */
11544 
11545 static void
11546 fini_reloc_cookie (struct elf_reloc_cookie *cookie, bfd *abfd)
11547 {
11548   Elf_Internal_Shdr *symtab_hdr;
11549 
11550   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
11551   if (cookie->locsyms != NULL
11552       && symtab_hdr->contents != (unsigned char *) cookie->locsyms)
11553     free (cookie->locsyms);
11554 }
11555 
11556 /* Initialize the relocation information in COOKIE for input section SEC
11557    of input bfd ABFD.  */
11558 
11559 static bfd_boolean
11560 init_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11561 			struct bfd_link_info *info, bfd *abfd,
11562 			asection *sec)
11563 {
11564   const struct elf_backend_data *bed;
11565 
11566   if (sec->reloc_count == 0)
11567     {
11568       cookie->rels = NULL;
11569       cookie->relend = NULL;
11570     }
11571   else
11572     {
11573       bed = get_elf_backend_data (abfd);
11574 
11575       cookie->rels = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL,
11576 						info->keep_memory);
11577       if (cookie->rels == NULL)
11578 	return FALSE;
11579       cookie->rel = cookie->rels;
11580       cookie->relend = (cookie->rels
11581 			+ sec->reloc_count * bed->s->int_rels_per_ext_rel);
11582     }
11583   cookie->rel = cookie->rels;
11584   return TRUE;
11585 }
11586 
11587 /* Free the memory allocated by init_reloc_cookie_rels,
11588    if appropriate.  */
11589 
11590 static void
11591 fini_reloc_cookie_rels (struct elf_reloc_cookie *cookie,
11592 			asection *sec)
11593 {
11594   if (cookie->rels && elf_section_data (sec)->relocs != cookie->rels)
11595     free (cookie->rels);
11596 }
11597 
11598 /* Initialize the whole of COOKIE for input section SEC.  */
11599 
11600 static bfd_boolean
11601 init_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11602 			       struct bfd_link_info *info,
11603 			       asection *sec)
11604 {
11605   if (!init_reloc_cookie (cookie, info, sec->owner))
11606     goto error1;
11607   if (!init_reloc_cookie_rels (cookie, info, sec->owner, sec))
11608     goto error2;
11609   return TRUE;
11610 
11611  error2:
11612   fini_reloc_cookie (cookie, sec->owner);
11613  error1:
11614   return FALSE;
11615 }
11616 
11617 /* Free the memory allocated by init_reloc_cookie_for_section,
11618    if appropriate.  */
11619 
11620 static void
11621 fini_reloc_cookie_for_section (struct elf_reloc_cookie *cookie,
11622 			       asection *sec)
11623 {
11624   fini_reloc_cookie_rels (cookie, sec);
11625   fini_reloc_cookie (cookie, sec->owner);
11626 }
11627 
11628 /* Garbage collect unused sections.  */
11629 
11630 /* Default gc_mark_hook.  */
11631 
11632 asection *
11633 _bfd_elf_gc_mark_hook (asection *sec,
11634 		       struct bfd_link_info *info ATTRIBUTE_UNUSED,
11635 		       Elf_Internal_Rela *rel ATTRIBUTE_UNUSED,
11636 		       struct elf_link_hash_entry *h,
11637 		       Elf_Internal_Sym *sym)
11638 {
11639   const char *sec_name;
11640 
11641   if (h != NULL)
11642     {
11643       switch (h->root.type)
11644 	{
11645 	case bfd_link_hash_defined:
11646 	case bfd_link_hash_defweak:
11647 	  return h->root.u.def.section;
11648 
11649 	case bfd_link_hash_common:
11650 	  return h->root.u.c.p->section;
11651 
11652 	case bfd_link_hash_undefined:
11653 	case bfd_link_hash_undefweak:
11654 	  /* To work around a glibc bug, keep all XXX input sections
11655 	     when there is an as yet undefined reference to __start_XXX
11656 	     or __stop_XXX symbols.  The linker will later define such
11657 	     symbols for orphan input sections that have a name
11658 	     representable as a C identifier.  */
11659 	  if (strncmp (h->root.root.string, "__start_", 8) == 0)
11660 	    sec_name = h->root.root.string + 8;
11661 	  else if (strncmp (h->root.root.string, "__stop_", 7) == 0)
11662 	    sec_name = h->root.root.string + 7;
11663 	  else
11664 	    sec_name = NULL;
11665 
11666 	  if (sec_name && *sec_name != '\0')
11667 	    {
11668 	      bfd *i;
11669 
11670 	      for (i = info->input_bfds; i; i = i->link_next)
11671 		{
11672 		  sec = bfd_get_section_by_name (i, sec_name);
11673 		  if (sec)
11674 		    sec->flags |= SEC_KEEP;
11675 		}
11676 	    }
11677 	  break;
11678 
11679 	default:
11680 	  break;
11681 	}
11682     }
11683   else
11684     return bfd_section_from_elf_index (sec->owner, sym->st_shndx);
11685 
11686   return NULL;
11687 }
11688 
11689 /* COOKIE->rel describes a relocation against section SEC, which is
11690    a section we've decided to keep.  Return the section that contains
11691    the relocation symbol, or NULL if no section contains it.  */
11692 
11693 asection *
11694 _bfd_elf_gc_mark_rsec (struct bfd_link_info *info, asection *sec,
11695 		       elf_gc_mark_hook_fn gc_mark_hook,
11696 		       struct elf_reloc_cookie *cookie)
11697 {
11698   unsigned long r_symndx;
11699   struct elf_link_hash_entry *h;
11700 
11701   r_symndx = cookie->rel->r_info >> cookie->r_sym_shift;
11702   if (r_symndx == STN_UNDEF)
11703     return NULL;
11704 
11705   if (r_symndx >= cookie->locsymcount
11706       || ELF_ST_BIND (cookie->locsyms[r_symndx].st_info) != STB_LOCAL)
11707     {
11708       h = cookie->sym_hashes[r_symndx - cookie->extsymoff];
11709       while (h->root.type == bfd_link_hash_indirect
11710 	     || h->root.type == bfd_link_hash_warning)
11711 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
11712       h->mark = 1;
11713       /* If this symbol is weak and there is a non-weak definition, we
11714 	 keep the non-weak definition because many backends put
11715 	 dynamic reloc info on the non-weak definition for code
11716 	 handling copy relocs.  */
11717       if (h->u.weakdef != NULL)
11718 	h->u.weakdef->mark = 1;
11719       return (*gc_mark_hook) (sec, info, cookie->rel, h, NULL);
11720     }
11721 
11722   return (*gc_mark_hook) (sec, info, cookie->rel, NULL,
11723 			  &cookie->locsyms[r_symndx]);
11724 }
11725 
11726 /* COOKIE->rel describes a relocation against section SEC, which is
11727    a section we've decided to keep.  Mark the section that contains
11728    the relocation symbol.  */
11729 
11730 bfd_boolean
11731 _bfd_elf_gc_mark_reloc (struct bfd_link_info *info,
11732 			asection *sec,
11733 			elf_gc_mark_hook_fn gc_mark_hook,
11734 			struct elf_reloc_cookie *cookie)
11735 {
11736   asection *rsec;
11737 
11738   rsec = _bfd_elf_gc_mark_rsec (info, sec, gc_mark_hook, cookie);
11739   if (rsec && !rsec->gc_mark)
11740     {
11741       if (bfd_get_flavour (rsec->owner) != bfd_target_elf_flavour
11742 	  || (rsec->owner->flags & DYNAMIC) != 0)
11743 	rsec->gc_mark = 1;
11744       else if (!_bfd_elf_gc_mark (info, rsec, gc_mark_hook))
11745 	return FALSE;
11746     }
11747   return TRUE;
11748 }
11749 
11750 /* The mark phase of garbage collection.  For a given section, mark
11751    it and any sections in this section's group, and all the sections
11752    which define symbols to which it refers.  */
11753 
11754 bfd_boolean
11755 _bfd_elf_gc_mark (struct bfd_link_info *info,
11756 		  asection *sec,
11757 		  elf_gc_mark_hook_fn gc_mark_hook)
11758 {
11759   bfd_boolean ret;
11760   asection *group_sec, *eh_frame;
11761 
11762   sec->gc_mark = 1;
11763 
11764   /* Mark all the sections in the group.  */
11765   group_sec = elf_section_data (sec)->next_in_group;
11766   if (group_sec && !group_sec->gc_mark)
11767     if (!_bfd_elf_gc_mark (info, group_sec, gc_mark_hook))
11768       return FALSE;
11769 
11770   /* Look through the section relocs.  */
11771   ret = TRUE;
11772   eh_frame = elf_eh_frame_section (sec->owner);
11773   if ((sec->flags & SEC_RELOC) != 0
11774       && sec->reloc_count > 0
11775       && sec != eh_frame)
11776     {
11777       struct elf_reloc_cookie cookie;
11778 
11779       if (!init_reloc_cookie_for_section (&cookie, info, sec))
11780 	ret = FALSE;
11781       else
11782 	{
11783 	  for (; cookie.rel < cookie.relend; cookie.rel++)
11784 	    if (!_bfd_elf_gc_mark_reloc (info, sec, gc_mark_hook, &cookie))
11785 	      {
11786 		ret = FALSE;
11787 		break;
11788 	      }
11789 	  fini_reloc_cookie_for_section (&cookie, sec);
11790 	}
11791     }
11792 
11793   if (ret && eh_frame && elf_fde_list (sec))
11794     {
11795       struct elf_reloc_cookie cookie;
11796 
11797       if (!init_reloc_cookie_for_section (&cookie, info, eh_frame))
11798 	ret = FALSE;
11799       else
11800 	{
11801 	  if (!_bfd_elf_gc_mark_fdes (info, sec, eh_frame,
11802 				      gc_mark_hook, &cookie))
11803 	    ret = FALSE;
11804 	  fini_reloc_cookie_for_section (&cookie, eh_frame);
11805 	}
11806     }
11807 
11808   return ret;
11809 }
11810 
11811 /* Keep debug and special sections.  */
11812 
11813 bfd_boolean
11814 _bfd_elf_gc_mark_extra_sections (struct bfd_link_info *info,
11815 				 elf_gc_mark_hook_fn mark_hook ATTRIBUTE_UNUSED)
11816 {
11817   bfd *ibfd;
11818 
11819   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11820     {
11821       asection *isec;
11822       bfd_boolean some_kept;
11823       bfd_boolean debug_frag_seen;
11824 
11825       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
11826 	continue;
11827 
11828       /* Ensure all linker created sections are kept,
11829 	 see if any other section is already marked,
11830 	 and note if we have any fragmented debug sections.  */
11831       debug_frag_seen = some_kept = FALSE;
11832       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11833 	{
11834 	  if ((isec->flags & SEC_LINKER_CREATED) != 0)
11835 	    isec->gc_mark = 1;
11836 	  else if (isec->gc_mark)
11837 	    some_kept = TRUE;
11838 
11839 	  if (debug_frag_seen == FALSE
11840 	      && (isec->flags & SEC_DEBUGGING)
11841 	      && CONST_STRNEQ (isec->name, ".debug_line."))
11842 	    debug_frag_seen = TRUE;
11843 	}
11844 
11845       /* If no section in this file will be kept, then we can
11846 	 toss out the debug and special sections.  */
11847       if (!some_kept)
11848 	continue;
11849 
11850       /* Keep debug and special sections like .comment when they are
11851 	 not part of a group, or when we have single-member groups.  */
11852       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11853 	if ((elf_next_in_group (isec) == NULL
11854 	     || elf_next_in_group (isec) == isec)
11855 	    && ((isec->flags & SEC_DEBUGGING) != 0
11856 		|| (isec->flags & (SEC_ALLOC | SEC_LOAD | SEC_RELOC)) == 0))
11857 	  isec->gc_mark = 1;
11858 
11859       if (! debug_frag_seen)
11860 	continue;
11861 
11862       /* Look for CODE sections which are going to be discarded,
11863 	 and find and discard any fragmented debug sections which
11864 	 are associated with that code section.  */
11865       for (isec = ibfd->sections; isec != NULL; isec = isec->next)
11866 	if ((isec->flags & SEC_CODE) != 0
11867 	    && isec->gc_mark == 0)
11868 	  {
11869 	    unsigned int ilen;
11870 	    asection *dsec;
11871 
11872 	    ilen = strlen (isec->name);
11873 
11874 	    /* Association is determined by the name of the debug section
11875 	       containing the name of the code section as a suffix.  For
11876 	       example .debug_line.text.foo is a debug section associated
11877 	       with .text.foo.  */
11878 	    for (dsec = ibfd->sections; dsec != NULL; dsec = dsec->next)
11879 	      {
11880 		unsigned int dlen;
11881 
11882 		if (dsec->gc_mark == 0
11883 		    || (dsec->flags & SEC_DEBUGGING) == 0)
11884 		  continue;
11885 
11886 		dlen = strlen (dsec->name);
11887 
11888 		if (dlen > ilen
11889 		    && strncmp (dsec->name + (dlen - ilen),
11890 				isec->name, ilen) == 0)
11891 		  {
11892 		    dsec->gc_mark = 0;
11893 		    break;
11894 		  }
11895 	      }
11896 	  }
11897     }
11898   return TRUE;
11899 }
11900 
11901 /* Sweep symbols in swept sections.  Called via elf_link_hash_traverse.  */
11902 
11903 struct elf_gc_sweep_symbol_info
11904 {
11905   struct bfd_link_info *info;
11906   void (*hide_symbol) (struct bfd_link_info *, struct elf_link_hash_entry *,
11907 		       bfd_boolean);
11908 };
11909 
11910 static bfd_boolean
11911 elf_gc_sweep_symbol (struct elf_link_hash_entry *h, void *data)
11912 {
11913   if (!h->mark
11914       && (((h->root.type == bfd_link_hash_defined
11915 	    || h->root.type == bfd_link_hash_defweak)
11916 	   && !(h->def_regular
11917 		&& h->root.u.def.section->gc_mark))
11918 	  || h->root.type == bfd_link_hash_undefined
11919 	  || h->root.type == bfd_link_hash_undefweak))
11920     {
11921       struct elf_gc_sweep_symbol_info *inf;
11922 
11923       inf = (struct elf_gc_sweep_symbol_info *) data;
11924       (*inf->hide_symbol) (inf->info, h, TRUE);
11925       h->def_regular = 0;
11926       h->ref_regular = 0;
11927       h->ref_regular_nonweak = 0;
11928     }
11929 
11930   return TRUE;
11931 }
11932 
11933 /* The sweep phase of garbage collection.  Remove all garbage sections.  */
11934 
11935 typedef bfd_boolean (*gc_sweep_hook_fn)
11936   (bfd *, struct bfd_link_info *, asection *, const Elf_Internal_Rela *);
11937 
11938 static bfd_boolean
11939 elf_gc_sweep (bfd *abfd, struct bfd_link_info *info)
11940 {
11941   bfd *sub;
11942   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11943   gc_sweep_hook_fn gc_sweep_hook = bed->gc_sweep_hook;
11944   unsigned long section_sym_count;
11945   struct elf_gc_sweep_symbol_info sweep_info;
11946 
11947   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
11948     {
11949       asection *o;
11950 
11951       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
11952 	continue;
11953 
11954       for (o = sub->sections; o != NULL; o = o->next)
11955 	{
11956 	  /* When any section in a section group is kept, we keep all
11957 	     sections in the section group.  If the first member of
11958 	     the section group is excluded, we will also exclude the
11959 	     group section.  */
11960 	  if (o->flags & SEC_GROUP)
11961 	    {
11962 	      asection *first = elf_next_in_group (o);
11963 	      o->gc_mark = first->gc_mark;
11964 	    }
11965 
11966 	  if (o->gc_mark)
11967 	    continue;
11968 
11969 	  /* Skip sweeping sections already excluded.  */
11970 	  if (o->flags & SEC_EXCLUDE)
11971 	    continue;
11972 
11973 	  /* Since this is early in the link process, it is simple
11974 	     to remove a section from the output.  */
11975 	  o->flags |= SEC_EXCLUDE;
11976 
11977 	  if (info->print_gc_sections && o->size != 0)
11978 	    _bfd_error_handler (_("Removing unused section '%s' in file '%B'"), sub, o->name);
11979 
11980 	  /* But we also have to update some of the relocation
11981 	     info we collected before.  */
11982 	  if (gc_sweep_hook
11983 	      && (o->flags & SEC_RELOC) != 0
11984 	      && o->reloc_count > 0
11985 	      && !bfd_is_abs_section (o->output_section))
11986 	    {
11987 	      Elf_Internal_Rela *internal_relocs;
11988 	      bfd_boolean r;
11989 
11990 	      internal_relocs
11991 		= _bfd_elf_link_read_relocs (o->owner, o, NULL, NULL,
11992 					     info->keep_memory);
11993 	      if (internal_relocs == NULL)
11994 		return FALSE;
11995 
11996 	      r = (*gc_sweep_hook) (o->owner, info, o, internal_relocs);
11997 
11998 	      if (elf_section_data (o)->relocs != internal_relocs)
11999 		free (internal_relocs);
12000 
12001 	      if (!r)
12002 		return FALSE;
12003 	    }
12004 	}
12005     }
12006 
12007   /* Remove the symbols that were in the swept sections from the dynamic
12008      symbol table.  GCFIXME: Anyone know how to get them out of the
12009      static symbol table as well?  */
12010   sweep_info.info = info;
12011   sweep_info.hide_symbol = bed->elf_backend_hide_symbol;
12012   elf_link_hash_traverse (elf_hash_table (info), elf_gc_sweep_symbol,
12013 			  &sweep_info);
12014 
12015   _bfd_elf_link_renumber_dynsyms (abfd, info, &section_sym_count);
12016   return TRUE;
12017 }
12018 
12019 /* Propagate collected vtable information.  This is called through
12020    elf_link_hash_traverse.  */
12021 
12022 static bfd_boolean
12023 elf_gc_propagate_vtable_entries_used (struct elf_link_hash_entry *h, void *okp)
12024 {
12025   /* Those that are not vtables.  */
12026   if (h->vtable == NULL || h->vtable->parent == NULL)
12027     return TRUE;
12028 
12029   /* Those vtables that do not have parents, we cannot merge.  */
12030   if (h->vtable->parent == (struct elf_link_hash_entry *) -1)
12031     return TRUE;
12032 
12033   /* If we've already been done, exit.  */
12034   if (h->vtable->used && h->vtable->used[-1])
12035     return TRUE;
12036 
12037   /* Make sure the parent's table is up to date.  */
12038   elf_gc_propagate_vtable_entries_used (h->vtable->parent, okp);
12039 
12040   if (h->vtable->used == NULL)
12041     {
12042       /* None of this table's entries were referenced.  Re-use the
12043 	 parent's table.  */
12044       h->vtable->used = h->vtable->parent->vtable->used;
12045       h->vtable->size = h->vtable->parent->vtable->size;
12046     }
12047   else
12048     {
12049       size_t n;
12050       bfd_boolean *cu, *pu;
12051 
12052       /* Or the parent's entries into ours.  */
12053       cu = h->vtable->used;
12054       cu[-1] = TRUE;
12055       pu = h->vtable->parent->vtable->used;
12056       if (pu != NULL)
12057 	{
12058 	  const struct elf_backend_data *bed;
12059 	  unsigned int log_file_align;
12060 
12061 	  bed = get_elf_backend_data (h->root.u.def.section->owner);
12062 	  log_file_align = bed->s->log_file_align;
12063 	  n = h->vtable->parent->vtable->size >> log_file_align;
12064 	  while (n--)
12065 	    {
12066 	      if (*pu)
12067 		*cu = TRUE;
12068 	      pu++;
12069 	      cu++;
12070 	    }
12071 	}
12072     }
12073 
12074   return TRUE;
12075 }
12076 
12077 static bfd_boolean
12078 elf_gc_smash_unused_vtentry_relocs (struct elf_link_hash_entry *h, void *okp)
12079 {
12080   asection *sec;
12081   bfd_vma hstart, hend;
12082   Elf_Internal_Rela *relstart, *relend, *rel;
12083   const struct elf_backend_data *bed;
12084   unsigned int log_file_align;
12085 
12086   /* Take care of both those symbols that do not describe vtables as
12087      well as those that are not loaded.  */
12088   if (h->vtable == NULL || h->vtable->parent == NULL)
12089     return TRUE;
12090 
12091   BFD_ASSERT (h->root.type == bfd_link_hash_defined
12092 	      || h->root.type == bfd_link_hash_defweak);
12093 
12094   sec = h->root.u.def.section;
12095   hstart = h->root.u.def.value;
12096   hend = hstart + h->size;
12097 
12098   relstart = _bfd_elf_link_read_relocs (sec->owner, sec, NULL, NULL, TRUE);
12099   if (!relstart)
12100     return *(bfd_boolean *) okp = FALSE;
12101   bed = get_elf_backend_data (sec->owner);
12102   log_file_align = bed->s->log_file_align;
12103 
12104   relend = relstart + sec->reloc_count * bed->s->int_rels_per_ext_rel;
12105 
12106   for (rel = relstart; rel < relend; ++rel)
12107     if (rel->r_offset >= hstart && rel->r_offset < hend)
12108       {
12109 	/* If the entry is in use, do nothing.  */
12110 	if (h->vtable->used
12111 	    && (rel->r_offset - hstart) < h->vtable->size)
12112 	  {
12113 	    bfd_vma entry = (rel->r_offset - hstart) >> log_file_align;
12114 	    if (h->vtable->used[entry])
12115 	      continue;
12116 	  }
12117 	/* Otherwise, kill it.  */
12118 	rel->r_offset = rel->r_info = rel->r_addend = 0;
12119       }
12120 
12121   return TRUE;
12122 }
12123 
12124 /* Mark sections containing dynamically referenced symbols.  When
12125    building shared libraries, we must assume that any visible symbol is
12126    referenced.  */
12127 
12128 bfd_boolean
12129 bfd_elf_gc_mark_dynamic_ref_symbol (struct elf_link_hash_entry *h, void *inf)
12130 {
12131   struct bfd_link_info *info = (struct bfd_link_info *) inf;
12132 
12133   if ((h->root.type == bfd_link_hash_defined
12134        || h->root.type == bfd_link_hash_defweak)
12135       && (h->ref_dynamic
12136 	  || ((!info->executable || info->export_dynamic)
12137 	      && h->def_regular
12138 	      && ELF_ST_VISIBILITY (h->other) != STV_INTERNAL
12139 	      && ELF_ST_VISIBILITY (h->other) != STV_HIDDEN
12140 	      && (strchr (h->root.root.string, ELF_VER_CHR) != NULL
12141 		  || !bfd_hide_sym_by_version (info->version_info,
12142 					       h->root.root.string)))))
12143     h->root.u.def.section->flags |= SEC_KEEP;
12144 
12145   return TRUE;
12146 }
12147 
12148 /* Keep all sections containing symbols undefined on the command-line,
12149    and the section containing the entry symbol.  */
12150 
12151 void
12152 _bfd_elf_gc_keep (struct bfd_link_info *info)
12153 {
12154   struct bfd_sym_chain *sym;
12155 
12156   for (sym = info->gc_sym_list; sym != NULL; sym = sym->next)
12157     {
12158       struct elf_link_hash_entry *h;
12159 
12160       h = elf_link_hash_lookup (elf_hash_table (info), sym->name,
12161 				FALSE, FALSE, FALSE);
12162 
12163       if (h != NULL
12164 	  && (h->root.type == bfd_link_hash_defined
12165 	      || h->root.type == bfd_link_hash_defweak)
12166 	  && !bfd_is_abs_section (h->root.u.def.section))
12167 	h->root.u.def.section->flags |= SEC_KEEP;
12168     }
12169 }
12170 
12171 /* Do mark and sweep of unused sections.  */
12172 
12173 bfd_boolean
12174 bfd_elf_gc_sections (bfd *abfd, struct bfd_link_info *info)
12175 {
12176   bfd_boolean ok = TRUE;
12177   bfd *sub;
12178   elf_gc_mark_hook_fn gc_mark_hook;
12179   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12180 
12181   if (!bed->can_gc_sections
12182       || !is_elf_hash_table (info->hash))
12183     {
12184       (*_bfd_error_handler)(_("Warning: gc-sections option ignored"));
12185       return TRUE;
12186     }
12187 
12188   bed->gc_keep (info);
12189 
12190   /* Try to parse each bfd's .eh_frame section.  Point elf_eh_frame_section
12191      at the .eh_frame section if we can mark the FDEs individually.  */
12192   _bfd_elf_begin_eh_frame_parsing (info);
12193   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12194     {
12195       asection *sec;
12196       struct elf_reloc_cookie cookie;
12197 
12198       sec = bfd_get_section_by_name (sub, ".eh_frame");
12199       while (sec && init_reloc_cookie_for_section (&cookie, info, sec))
12200 	{
12201 	  _bfd_elf_parse_eh_frame (sub, info, sec, &cookie);
12202 	  if (elf_section_data (sec)->sec_info
12203 	      && (sec->flags & SEC_LINKER_CREATED) == 0)
12204 	    elf_eh_frame_section (sub) = sec;
12205 	  fini_reloc_cookie_for_section (&cookie, sec);
12206 	  sec = bfd_get_next_section_by_name (sec);
12207 	}
12208     }
12209   _bfd_elf_end_eh_frame_parsing (info);
12210 
12211   /* Apply transitive closure to the vtable entry usage info.  */
12212   elf_link_hash_traverse (elf_hash_table (info),
12213 			  elf_gc_propagate_vtable_entries_used,
12214 			  &ok);
12215   if (!ok)
12216     return FALSE;
12217 
12218   /* Kill the vtable relocations that were not used.  */
12219   elf_link_hash_traverse (elf_hash_table (info),
12220 			  elf_gc_smash_unused_vtentry_relocs,
12221 			  &ok);
12222   if (!ok)
12223     return FALSE;
12224 
12225   /* Mark dynamically referenced symbols.  */
12226   if (elf_hash_table (info)->dynamic_sections_created)
12227     elf_link_hash_traverse (elf_hash_table (info),
12228 			    bed->gc_mark_dynamic_ref,
12229 			    info);
12230 
12231   /* Grovel through relocs to find out who stays ...  */
12232   gc_mark_hook = bed->gc_mark_hook;
12233   for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12234     {
12235       asection *o;
12236 
12237       if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
12238 	continue;
12239 
12240       /* Start at sections marked with SEC_KEEP (ref _bfd_elf_gc_keep).
12241 	 Also treat note sections as a root, if the section is not part
12242 	 of a group.  */
12243       for (o = sub->sections; o != NULL; o = o->next)
12244 	if (!o->gc_mark
12245 	    && (o->flags & SEC_EXCLUDE) == 0
12246 	    && ((o->flags & SEC_KEEP) != 0
12247 		|| (elf_section_data (o)->this_hdr.sh_type == SHT_NOTE
12248 		    && elf_next_in_group (o) == NULL )))
12249 	  {
12250 	    if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12251 	      return FALSE;
12252 	  }
12253     }
12254 
12255   /* Allow the backend to mark additional target specific sections.  */
12256   bed->gc_mark_extra_sections (info, gc_mark_hook);
12257 
12258   /* ... and mark SEC_EXCLUDE for those that go.  */
12259   return elf_gc_sweep (abfd, info);
12260 }
12261 
12262 /* Called from check_relocs to record the existence of a VTINHERIT reloc.  */
12263 
12264 bfd_boolean
12265 bfd_elf_gc_record_vtinherit (bfd *abfd,
12266 			     asection *sec,
12267 			     struct elf_link_hash_entry *h,
12268 			     bfd_vma offset)
12269 {
12270   struct elf_link_hash_entry **sym_hashes, **sym_hashes_end;
12271   struct elf_link_hash_entry **search, *child;
12272   bfd_size_type extsymcount;
12273   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12274 
12275   /* The sh_info field of the symtab header tells us where the
12276      external symbols start.  We don't care about the local symbols at
12277      this point.  */
12278   extsymcount = elf_tdata (abfd)->symtab_hdr.sh_size / bed->s->sizeof_sym;
12279   if (!elf_bad_symtab (abfd))
12280     extsymcount -= elf_tdata (abfd)->symtab_hdr.sh_info;
12281 
12282   sym_hashes = elf_sym_hashes (abfd);
12283   sym_hashes_end = sym_hashes + extsymcount;
12284 
12285   /* Hunt down the child symbol, which is in this section at the same
12286      offset as the relocation.  */
12287   for (search = sym_hashes; search != sym_hashes_end; ++search)
12288     {
12289       if ((child = *search) != NULL
12290 	  && (child->root.type == bfd_link_hash_defined
12291 	      || child->root.type == bfd_link_hash_defweak)
12292 	  && child->root.u.def.section == sec
12293 	  && child->root.u.def.value == offset)
12294 	goto win;
12295     }
12296 
12297   (*_bfd_error_handler) ("%B: %A+%lu: No symbol found for INHERIT",
12298 			 abfd, sec, (unsigned long) offset);
12299   bfd_set_error (bfd_error_invalid_operation);
12300   return FALSE;
12301 
12302  win:
12303   if (!child->vtable)
12304     {
12305       child->vtable = (struct elf_link_virtual_table_entry *)
12306           bfd_zalloc (abfd, sizeof (*child->vtable));
12307       if (!child->vtable)
12308 	return FALSE;
12309     }
12310   if (!h)
12311     {
12312       /* This *should* only be the absolute section.  It could potentially
12313 	 be that someone has defined a non-global vtable though, which
12314 	 would be bad.  It isn't worth paging in the local symbols to be
12315 	 sure though; that case should simply be handled by the assembler.  */
12316 
12317       child->vtable->parent = (struct elf_link_hash_entry *) -1;
12318     }
12319   else
12320     child->vtable->parent = h;
12321 
12322   return TRUE;
12323 }
12324 
12325 /* Called from check_relocs to record the existence of a VTENTRY reloc.  */
12326 
12327 bfd_boolean
12328 bfd_elf_gc_record_vtentry (bfd *abfd ATTRIBUTE_UNUSED,
12329 			   asection *sec ATTRIBUTE_UNUSED,
12330 			   struct elf_link_hash_entry *h,
12331 			   bfd_vma addend)
12332 {
12333   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12334   unsigned int log_file_align = bed->s->log_file_align;
12335 
12336   if (!h->vtable)
12337     {
12338       h->vtable = (struct elf_link_virtual_table_entry *)
12339           bfd_zalloc (abfd, sizeof (*h->vtable));
12340       if (!h->vtable)
12341 	return FALSE;
12342     }
12343 
12344   if (addend >= h->vtable->size)
12345     {
12346       size_t size, bytes, file_align;
12347       bfd_boolean *ptr = h->vtable->used;
12348 
12349       /* While the symbol is undefined, we have to be prepared to handle
12350 	 a zero size.  */
12351       file_align = 1 << log_file_align;
12352       if (h->root.type == bfd_link_hash_undefined)
12353 	size = addend + file_align;
12354       else
12355 	{
12356 	  size = h->size;
12357 	  if (addend >= size)
12358 	    {
12359 	      /* Oops!  We've got a reference past the defined end of
12360 		 the table.  This is probably a bug -- shall we warn?  */
12361 	      size = addend + file_align;
12362 	    }
12363 	}
12364       size = (size + file_align - 1) & -file_align;
12365 
12366       /* Allocate one extra entry for use as a "done" flag for the
12367 	 consolidation pass.  */
12368       bytes = ((size >> log_file_align) + 1) * sizeof (bfd_boolean);
12369 
12370       if (ptr)
12371 	{
12372 	  ptr = (bfd_boolean *) bfd_realloc (ptr - 1, bytes);
12373 
12374 	  if (ptr != NULL)
12375 	    {
12376 	      size_t oldbytes;
12377 
12378 	      oldbytes = (((h->vtable->size >> log_file_align) + 1)
12379 			  * sizeof (bfd_boolean));
12380 	      memset (((char *) ptr) + oldbytes, 0, bytes - oldbytes);
12381 	    }
12382 	}
12383       else
12384 	ptr = (bfd_boolean *) bfd_zmalloc (bytes);
12385 
12386       if (ptr == NULL)
12387 	return FALSE;
12388 
12389       /* And arrange for that done flag to be at index -1.  */
12390       h->vtable->used = ptr + 1;
12391       h->vtable->size = size;
12392     }
12393 
12394   h->vtable->used[addend >> log_file_align] = TRUE;
12395 
12396   return TRUE;
12397 }
12398 
12399 /* Map an ELF section header flag to its corresponding string.  */
12400 typedef struct
12401 {
12402   char *flag_name;
12403   flagword flag_value;
12404 } elf_flags_to_name_table;
12405 
12406 static elf_flags_to_name_table elf_flags_to_names [] =
12407 {
12408   { "SHF_WRITE", SHF_WRITE },
12409   { "SHF_ALLOC", SHF_ALLOC },
12410   { "SHF_EXECINSTR", SHF_EXECINSTR },
12411   { "SHF_MERGE", SHF_MERGE },
12412   { "SHF_STRINGS", SHF_STRINGS },
12413   { "SHF_INFO_LINK", SHF_INFO_LINK},
12414   { "SHF_LINK_ORDER", SHF_LINK_ORDER},
12415   { "SHF_OS_NONCONFORMING", SHF_OS_NONCONFORMING},
12416   { "SHF_GROUP", SHF_GROUP },
12417   { "SHF_TLS", SHF_TLS },
12418   { "SHF_MASKOS", SHF_MASKOS },
12419   { "SHF_EXCLUDE", SHF_EXCLUDE },
12420 };
12421 
12422 /* Returns TRUE if the section is to be included, otherwise FALSE.  */
12423 bfd_boolean
12424 bfd_elf_lookup_section_flags (struct bfd_link_info *info,
12425 			      struct flag_info *flaginfo,
12426 			      asection *section)
12427 {
12428   const bfd_vma sh_flags = elf_section_flags (section);
12429 
12430   if (!flaginfo->flags_initialized)
12431     {
12432       bfd *obfd = info->output_bfd;
12433       const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12434       struct flag_info_list *tf = flaginfo->flag_list;
12435       int with_hex = 0;
12436       int without_hex = 0;
12437 
12438       for (tf = flaginfo->flag_list; tf != NULL; tf = tf->next)
12439 	{
12440 	  unsigned i;
12441 	  flagword (*lookup) (char *);
12442 
12443 	  lookup = bed->elf_backend_lookup_section_flags_hook;
12444 	  if (lookup != NULL)
12445 	    {
12446 	      flagword hexval = (*lookup) ((char *) tf->name);
12447 
12448 	      if (hexval != 0)
12449 		{
12450 		  if (tf->with == with_flags)
12451 		    with_hex |= hexval;
12452 		  else if (tf->with == without_flags)
12453 		    without_hex |= hexval;
12454 		  tf->valid = TRUE;
12455 		  continue;
12456 		}
12457 	    }
12458 	  for (i = 0; i < ARRAY_SIZE (elf_flags_to_names); ++i)
12459 	    {
12460 	      if (strcmp (tf->name, elf_flags_to_names[i].flag_name) == 0)
12461 		{
12462 		  if (tf->with == with_flags)
12463 		    with_hex |= elf_flags_to_names[i].flag_value;
12464 		  else if (tf->with == without_flags)
12465 		    without_hex |= elf_flags_to_names[i].flag_value;
12466 		  tf->valid = TRUE;
12467 		  break;
12468 		}
12469 	    }
12470 	  if (!tf->valid)
12471 	    {
12472 	      info->callbacks->einfo
12473 		(_("Unrecognized INPUT_SECTION_FLAG %s\n"), tf->name);
12474 	      return FALSE;
12475 	    }
12476 	}
12477       flaginfo->flags_initialized = TRUE;
12478       flaginfo->only_with_flags |= with_hex;
12479       flaginfo->not_with_flags |= without_hex;
12480     }
12481 
12482   if ((flaginfo->only_with_flags & sh_flags) != flaginfo->only_with_flags)
12483     return FALSE;
12484 
12485   if ((flaginfo->not_with_flags & sh_flags) != 0)
12486     return FALSE;
12487 
12488   return TRUE;
12489 }
12490 
12491 struct alloc_got_off_arg {
12492   bfd_vma gotoff;
12493   struct bfd_link_info *info;
12494 };
12495 
12496 /* We need a special top-level link routine to convert got reference counts
12497    to real got offsets.  */
12498 
12499 static bfd_boolean
12500 elf_gc_allocate_got_offsets (struct elf_link_hash_entry *h, void *arg)
12501 {
12502   struct alloc_got_off_arg *gofarg = (struct alloc_got_off_arg *) arg;
12503   bfd *obfd = gofarg->info->output_bfd;
12504   const struct elf_backend_data *bed = get_elf_backend_data (obfd);
12505 
12506   if (h->got.refcount > 0)
12507     {
12508       h->got.offset = gofarg->gotoff;
12509       gofarg->gotoff += bed->got_elt_size (obfd, gofarg->info, h, NULL, 0);
12510     }
12511   else
12512     h->got.offset = (bfd_vma) -1;
12513 
12514   return TRUE;
12515 }
12516 
12517 /* And an accompanying bit to work out final got entry offsets once
12518    we're done.  Should be called from final_link.  */
12519 
12520 bfd_boolean
12521 bfd_elf_gc_common_finalize_got_offsets (bfd *abfd,
12522 					struct bfd_link_info *info)
12523 {
12524   bfd *i;
12525   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12526   bfd_vma gotoff;
12527   struct alloc_got_off_arg gofarg;
12528 
12529   BFD_ASSERT (abfd == info->output_bfd);
12530 
12531   if (! is_elf_hash_table (info->hash))
12532     return FALSE;
12533 
12534   /* The GOT offset is relative to the .got section, but the GOT header is
12535      put into the .got.plt section, if the backend uses it.  */
12536   if (bed->want_got_plt)
12537     gotoff = 0;
12538   else
12539     gotoff = bed->got_header_size;
12540 
12541   /* Do the local .got entries first.  */
12542   for (i = info->input_bfds; i; i = i->link_next)
12543     {
12544       bfd_signed_vma *local_got;
12545       bfd_size_type j, locsymcount;
12546       Elf_Internal_Shdr *symtab_hdr;
12547 
12548       if (bfd_get_flavour (i) != bfd_target_elf_flavour)
12549 	continue;
12550 
12551       local_got = elf_local_got_refcounts (i);
12552       if (!local_got)
12553 	continue;
12554 
12555       symtab_hdr = &elf_tdata (i)->symtab_hdr;
12556       if (elf_bad_symtab (i))
12557 	locsymcount = symtab_hdr->sh_size / bed->s->sizeof_sym;
12558       else
12559 	locsymcount = symtab_hdr->sh_info;
12560 
12561       for (j = 0; j < locsymcount; ++j)
12562 	{
12563 	  if (local_got[j] > 0)
12564 	    {
12565 	      local_got[j] = gotoff;
12566 	      gotoff += bed->got_elt_size (abfd, info, NULL, i, j);
12567 	    }
12568 	  else
12569 	    local_got[j] = (bfd_vma) -1;
12570 	}
12571     }
12572 
12573   /* Then the global .got entries.  .plt refcounts are handled by
12574      adjust_dynamic_symbol  */
12575   gofarg.gotoff = gotoff;
12576   gofarg.info = info;
12577   elf_link_hash_traverse (elf_hash_table (info),
12578 			  elf_gc_allocate_got_offsets,
12579 			  &gofarg);
12580   return TRUE;
12581 }
12582 
12583 /* Many folk need no more in the way of final link than this, once
12584    got entry reference counting is enabled.  */
12585 
12586 bfd_boolean
12587 bfd_elf_gc_common_final_link (bfd *abfd, struct bfd_link_info *info)
12588 {
12589   if (!bfd_elf_gc_common_finalize_got_offsets (abfd, info))
12590     return FALSE;
12591 
12592   /* Invoke the regular ELF backend linker to do all the work.  */
12593   return bfd_elf_final_link (abfd, info);
12594 }
12595 
12596 bfd_boolean
12597 bfd_elf_reloc_symbol_deleted_p (bfd_vma offset, void *cookie)
12598 {
12599   struct elf_reloc_cookie *rcookie = (struct elf_reloc_cookie *) cookie;
12600 
12601   if (rcookie->bad_symtab)
12602     rcookie->rel = rcookie->rels;
12603 
12604   for (; rcookie->rel < rcookie->relend; rcookie->rel++)
12605     {
12606       unsigned long r_symndx;
12607 
12608       if (! rcookie->bad_symtab)
12609 	if (rcookie->rel->r_offset > offset)
12610 	  return FALSE;
12611       if (rcookie->rel->r_offset != offset)
12612 	continue;
12613 
12614       r_symndx = rcookie->rel->r_info >> rcookie->r_sym_shift;
12615       if (r_symndx == STN_UNDEF)
12616 	return TRUE;
12617 
12618       if (r_symndx >= rcookie->locsymcount
12619 	  || ELF_ST_BIND (rcookie->locsyms[r_symndx].st_info) != STB_LOCAL)
12620 	{
12621 	  struct elf_link_hash_entry *h;
12622 
12623 	  h = rcookie->sym_hashes[r_symndx - rcookie->extsymoff];
12624 
12625 	  while (h->root.type == bfd_link_hash_indirect
12626 		 || h->root.type == bfd_link_hash_warning)
12627 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
12628 
12629 	  if ((h->root.type == bfd_link_hash_defined
12630 	       || h->root.type == bfd_link_hash_defweak)
12631 	      && discarded_section (h->root.u.def.section))
12632 	    return TRUE;
12633 	  else
12634 	    return FALSE;
12635 	}
12636       else
12637 	{
12638 	  /* It's not a relocation against a global symbol,
12639 	     but it could be a relocation against a local
12640 	     symbol for a discarded section.  */
12641 	  asection *isec;
12642 	  Elf_Internal_Sym *isym;
12643 
12644 	  /* Need to: get the symbol; get the section.  */
12645 	  isym = &rcookie->locsyms[r_symndx];
12646 	  isec = bfd_section_from_elf_index (rcookie->abfd, isym->st_shndx);
12647 	  if (isec != NULL && discarded_section (isec))
12648 	    return TRUE;
12649 	}
12650       return FALSE;
12651     }
12652   return FALSE;
12653 }
12654 
12655 /* Discard unneeded references to discarded sections.
12656    Returns TRUE if any section's size was changed.  */
12657 /* This function assumes that the relocations are in sorted order,
12658    which is true for all known assemblers.  */
12659 
12660 bfd_boolean
12661 bfd_elf_discard_info (bfd *output_bfd, struct bfd_link_info *info)
12662 {
12663   struct elf_reloc_cookie cookie;
12664   asection *stab, *eh;
12665   const struct elf_backend_data *bed;
12666   bfd *abfd;
12667   bfd_boolean ret = FALSE;
12668 
12669   if (info->traditional_format
12670       || !is_elf_hash_table (info->hash))
12671     return FALSE;
12672 
12673   _bfd_elf_begin_eh_frame_parsing (info);
12674   for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link_next)
12675     {
12676       if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
12677 	continue;
12678 
12679       bed = get_elf_backend_data (abfd);
12680 
12681       eh = NULL;
12682       if (!info->relocatable)
12683 	{
12684 	  eh = bfd_get_section_by_name (abfd, ".eh_frame");
12685 	  while (eh != NULL
12686 		 && (eh->size == 0
12687 		     || bfd_is_abs_section (eh->output_section)))
12688 	    eh = bfd_get_next_section_by_name (eh);
12689 	}
12690 
12691       stab = bfd_get_section_by_name (abfd, ".stab");
12692       if (stab != NULL
12693 	  && (stab->size == 0
12694 	      || bfd_is_abs_section (stab->output_section)
12695 	      || stab->sec_info_type != SEC_INFO_TYPE_STABS))
12696 	stab = NULL;
12697 
12698       if (stab == NULL
12699 	  && eh == NULL
12700 	  && bed->elf_backend_discard_info == NULL)
12701 	continue;
12702 
12703       if (!init_reloc_cookie (&cookie, info, abfd))
12704 	return FALSE;
12705 
12706       if (stab != NULL
12707 	  && stab->reloc_count > 0
12708 	  && init_reloc_cookie_rels (&cookie, info, abfd, stab))
12709 	{
12710 	  if (_bfd_discard_section_stabs (abfd, stab,
12711 					  elf_section_data (stab)->sec_info,
12712 					  bfd_elf_reloc_symbol_deleted_p,
12713 					  &cookie))
12714 	    ret = TRUE;
12715 	  fini_reloc_cookie_rels (&cookie, stab);
12716 	}
12717 
12718       while (eh != NULL
12719 	     && init_reloc_cookie_rels (&cookie, info, abfd, eh))
12720 	{
12721 	  _bfd_elf_parse_eh_frame (abfd, info, eh, &cookie);
12722 	  if (_bfd_elf_discard_section_eh_frame (abfd, info, eh,
12723 						 bfd_elf_reloc_symbol_deleted_p,
12724 						 &cookie))
12725 	    ret = TRUE;
12726 	  fini_reloc_cookie_rels (&cookie, eh);
12727 	  eh = bfd_get_next_section_by_name (eh);
12728 	}
12729 
12730       if (bed->elf_backend_discard_info != NULL
12731 	  && (*bed->elf_backend_discard_info) (abfd, &cookie, info))
12732 	ret = TRUE;
12733 
12734       fini_reloc_cookie (&cookie, abfd);
12735     }
12736   _bfd_elf_end_eh_frame_parsing (info);
12737 
12738   if (info->eh_frame_hdr
12739       && !info->relocatable
12740       && _bfd_elf_discard_section_eh_frame_hdr (output_bfd, info))
12741     ret = TRUE;
12742 
12743   return ret;
12744 }
12745 
12746 bfd_boolean
12747 _bfd_elf_section_already_linked (bfd *abfd,
12748 				 asection *sec,
12749 				 struct bfd_link_info *info)
12750 {
12751   flagword flags;
12752   const char *name, *key;
12753   struct bfd_section_already_linked *l;
12754   struct bfd_section_already_linked_hash_entry *already_linked_list;
12755 
12756   if (sec->output_section == bfd_abs_section_ptr)
12757     return FALSE;
12758 
12759   flags = sec->flags;
12760 
12761   /* Return if it isn't a linkonce section.  A comdat group section
12762      also has SEC_LINK_ONCE set.  */
12763   if ((flags & SEC_LINK_ONCE) == 0)
12764     return FALSE;
12765 
12766   /* Don't put group member sections on our list of already linked
12767      sections.  They are handled as a group via their group section.  */
12768   if (elf_sec_group (sec) != NULL)
12769     return FALSE;
12770 
12771   /* For a SHT_GROUP section, use the group signature as the key.  */
12772   name = sec->name;
12773   if ((flags & SEC_GROUP) != 0
12774       && elf_next_in_group (sec) != NULL
12775       && elf_group_name (elf_next_in_group (sec)) != NULL)
12776     key = elf_group_name (elf_next_in_group (sec));
12777   else
12778     {
12779       /* Otherwise we should have a .gnu.linkonce.<type>.<key> section.  */
12780       if (CONST_STRNEQ (name, ".gnu.linkonce.")
12781 	  && (key = strchr (name + sizeof (".gnu.linkonce.") - 1, '.')) != NULL)
12782 	key++;
12783       else
12784 	/* Must be a user linkonce section that doesn't follow gcc's
12785 	   naming convention.  In this case we won't be matching
12786 	   single member groups.  */
12787 	key = name;
12788     }
12789 
12790   already_linked_list = bfd_section_already_linked_table_lookup (key);
12791 
12792   for (l = already_linked_list->entry; l != NULL; l = l->next)
12793     {
12794       /* We may have 2 different types of sections on the list: group
12795 	 sections with a signature of <key> (<key> is some string),
12796 	 and linkonce sections named .gnu.linkonce.<type>.<key>.
12797 	 Match like sections.  LTO plugin sections are an exception.
12798 	 They are always named .gnu.linkonce.t.<key> and match either
12799 	 type of section.  */
12800       if (((flags & SEC_GROUP) == (l->sec->flags & SEC_GROUP)
12801 	   && ((flags & SEC_GROUP) != 0
12802 	       || strcmp (name, l->sec->name) == 0))
12803 	  || (l->sec->owner->flags & BFD_PLUGIN) != 0)
12804 	{
12805 	  /* The section has already been linked.  See if we should
12806 	     issue a warning.  */
12807 	  if (!_bfd_handle_already_linked (sec, l, info))
12808 	    return FALSE;
12809 
12810 	  if (flags & SEC_GROUP)
12811 	    {
12812 	      asection *first = elf_next_in_group (sec);
12813 	      asection *s = first;
12814 
12815 	      while (s != NULL)
12816 		{
12817 		  s->output_section = bfd_abs_section_ptr;
12818 		  /* Record which group discards it.  */
12819 		  s->kept_section = l->sec;
12820 		  s = elf_next_in_group (s);
12821 		  /* These lists are circular.  */
12822 		  if (s == first)
12823 		    break;
12824 		}
12825 	    }
12826 
12827 	  return TRUE;
12828 	}
12829     }
12830 
12831   /* A single member comdat group section may be discarded by a
12832      linkonce section and vice versa.  */
12833   if ((flags & SEC_GROUP) != 0)
12834     {
12835       asection *first = elf_next_in_group (sec);
12836 
12837       if (first != NULL && elf_next_in_group (first) == first)
12838 	/* Check this single member group against linkonce sections.  */
12839 	for (l = already_linked_list->entry; l != NULL; l = l->next)
12840 	  if ((l->sec->flags & SEC_GROUP) == 0
12841 	      && bfd_elf_match_symbols_in_sections (l->sec, first, info))
12842 	    {
12843 	      first->output_section = bfd_abs_section_ptr;
12844 	      first->kept_section = l->sec;
12845 	      sec->output_section = bfd_abs_section_ptr;
12846 	      break;
12847 	    }
12848     }
12849   else
12850     /* Check this linkonce section against single member groups.  */
12851     for (l = already_linked_list->entry; l != NULL; l = l->next)
12852       if (l->sec->flags & SEC_GROUP)
12853 	{
12854 	  asection *first = elf_next_in_group (l->sec);
12855 
12856 	  if (first != NULL
12857 	      && elf_next_in_group (first) == first
12858 	      && bfd_elf_match_symbols_in_sections (first, sec, info))
12859 	    {
12860 	      sec->output_section = bfd_abs_section_ptr;
12861 	      sec->kept_section = first;
12862 	      break;
12863 	    }
12864 	}
12865 
12866   /* Do not complain on unresolved relocations in `.gnu.linkonce.r.F'
12867      referencing its discarded `.gnu.linkonce.t.F' counterpart - g++-3.4
12868      specific as g++-4.x is using COMDAT groups (without the `.gnu.linkonce'
12869      prefix) instead.  `.gnu.linkonce.r.*' were the `.rodata' part of its
12870      matching `.gnu.linkonce.t.*'.  If `.gnu.linkonce.r.F' is not discarded
12871      but its `.gnu.linkonce.t.F' is discarded means we chose one-only
12872      `.gnu.linkonce.t.F' section from a different bfd not requiring any
12873      `.gnu.linkonce.r.F'.  Thus `.gnu.linkonce.r.F' should be discarded.
12874      The reverse order cannot happen as there is never a bfd with only the
12875      `.gnu.linkonce.r.F' section.  The order of sections in a bfd does not
12876      matter as here were are looking only for cross-bfd sections.  */
12877 
12878   if ((flags & SEC_GROUP) == 0 && CONST_STRNEQ (name, ".gnu.linkonce.r."))
12879     for (l = already_linked_list->entry; l != NULL; l = l->next)
12880       if ((l->sec->flags & SEC_GROUP) == 0
12881 	  && CONST_STRNEQ (l->sec->name, ".gnu.linkonce.t."))
12882 	{
12883 	  if (abfd != l->sec->owner)
12884 	    sec->output_section = bfd_abs_section_ptr;
12885 	  break;
12886 	}
12887 
12888   /* This is the first section with this name.  Record it.  */
12889   if (!bfd_section_already_linked_table_insert (already_linked_list, sec))
12890     info->callbacks->einfo (_("%F%P: already_linked_table: %E\n"));
12891   return sec->output_section == bfd_abs_section_ptr;
12892 }
12893 
12894 bfd_boolean
12895 _bfd_elf_common_definition (Elf_Internal_Sym *sym)
12896 {
12897   return sym->st_shndx == SHN_COMMON;
12898 }
12899 
12900 unsigned int
12901 _bfd_elf_common_section_index (asection *sec ATTRIBUTE_UNUSED)
12902 {
12903   return SHN_COMMON;
12904 }
12905 
12906 asection *
12907 _bfd_elf_common_section (asection *sec ATTRIBUTE_UNUSED)
12908 {
12909   return bfd_com_section_ptr;
12910 }
12911 
12912 bfd_vma
12913 _bfd_elf_default_got_elt_size (bfd *abfd,
12914 			       struct bfd_link_info *info ATTRIBUTE_UNUSED,
12915 			       struct elf_link_hash_entry *h ATTRIBUTE_UNUSED,
12916 			       bfd *ibfd ATTRIBUTE_UNUSED,
12917 			       unsigned long symndx ATTRIBUTE_UNUSED)
12918 {
12919   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12920   return bed->s->arch_size / 8;
12921 }
12922 
12923 /* Routines to support the creation of dynamic relocs.  */
12924 
12925 /* Returns the name of the dynamic reloc section associated with SEC.  */
12926 
12927 static const char *
12928 get_dynamic_reloc_section_name (bfd *       abfd,
12929 				asection *  sec,
12930 				bfd_boolean is_rela)
12931 {
12932   char *name;
12933   const char *old_name = bfd_get_section_name (NULL, sec);
12934   const char *prefix = is_rela ? ".rela" : ".rel";
12935 
12936   if (old_name == NULL)
12937     return NULL;
12938 
12939   name = bfd_alloc (abfd, strlen (prefix) + strlen (old_name) + 1);
12940   sprintf (name, "%s%s", prefix, old_name);
12941 
12942   return name;
12943 }
12944 
12945 /* Returns the dynamic reloc section associated with SEC.
12946    If necessary compute the name of the dynamic reloc section based
12947    on SEC's name (looked up in ABFD's string table) and the setting
12948    of IS_RELA.  */
12949 
12950 asection *
12951 _bfd_elf_get_dynamic_reloc_section (bfd *       abfd,
12952 				    asection *  sec,
12953 				    bfd_boolean is_rela)
12954 {
12955   asection * reloc_sec = elf_section_data (sec)->sreloc;
12956 
12957   if (reloc_sec == NULL)
12958     {
12959       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12960 
12961       if (name != NULL)
12962 	{
12963 	  reloc_sec = bfd_get_linker_section (abfd, name);
12964 
12965 	  if (reloc_sec != NULL)
12966 	    elf_section_data (sec)->sreloc = reloc_sec;
12967 	}
12968     }
12969 
12970   return reloc_sec;
12971 }
12972 
12973 /* Returns the dynamic reloc section associated with SEC.  If the
12974    section does not exist it is created and attached to the DYNOBJ
12975    bfd and stored in the SRELOC field of SEC's elf_section_data
12976    structure.
12977 
12978    ALIGNMENT is the alignment for the newly created section and
12979    IS_RELA defines whether the name should be .rela.<SEC's name>
12980    or .rel.<SEC's name>.  The section name is looked up in the
12981    string table associated with ABFD.  */
12982 
12983 asection *
12984 _bfd_elf_make_dynamic_reloc_section (asection *         sec,
12985 				     bfd *		dynobj,
12986 				     unsigned int	alignment,
12987 				     bfd *              abfd,
12988 				     bfd_boolean        is_rela)
12989 {
12990   asection * reloc_sec = elf_section_data (sec)->sreloc;
12991 
12992   if (reloc_sec == NULL)
12993     {
12994       const char * name = get_dynamic_reloc_section_name (abfd, sec, is_rela);
12995 
12996       if (name == NULL)
12997 	return NULL;
12998 
12999       reloc_sec = bfd_get_linker_section (dynobj, name);
13000 
13001       if (reloc_sec == NULL)
13002 	{
13003 	  flagword flags = (SEC_HAS_CONTENTS | SEC_READONLY
13004 			    | SEC_IN_MEMORY | SEC_LINKER_CREATED);
13005 	  if ((sec->flags & SEC_ALLOC) != 0)
13006 	    flags |= SEC_ALLOC | SEC_LOAD;
13007 
13008 	  reloc_sec = bfd_make_section_anyway_with_flags (dynobj, name, flags);
13009 	  if (reloc_sec != NULL)
13010 	    {
13011 	      /* _bfd_elf_get_sec_type_attr chooses a section type by
13012 		 name.  Override as it may be wrong, eg. for a user
13013 		 section named "auto" we'll get ".relauto" which is
13014 		 seen to be a .rela section.  */
13015 	      elf_section_type (reloc_sec) = is_rela ? SHT_RELA : SHT_REL;
13016 	      if (! bfd_set_section_alignment (dynobj, reloc_sec, alignment))
13017 		reloc_sec = NULL;
13018 	    }
13019 	}
13020 
13021       elf_section_data (sec)->sreloc = reloc_sec;
13022     }
13023 
13024   return reloc_sec;
13025 }
13026 
13027 /* Copy the ELF symbol type associated with a linker hash entry.  */
13028 void
13029 _bfd_elf_copy_link_hash_symbol_type (bfd *abfd ATTRIBUTE_UNUSED,
13030     struct bfd_link_hash_entry * hdest,
13031     struct bfd_link_hash_entry * hsrc)
13032 {
13033   struct elf_link_hash_entry *ehdest = (struct elf_link_hash_entry *)hdest;
13034   struct elf_link_hash_entry *ehsrc = (struct elf_link_hash_entry *)hsrc;
13035 
13036   ehdest->type = ehsrc->type;
13037   ehdest->target_internal = ehsrc->target_internal;
13038 }
13039 
13040 /* Append a RELA relocation REL to section S in BFD.  */
13041 
13042 void
13043 elf_append_rela (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13044 {
13045   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13046   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rela);
13047   BFD_ASSERT (loc + bed->s->sizeof_rela <= s->contents + s->size);
13048   bed->s->swap_reloca_out (abfd, rel, loc);
13049 }
13050 
13051 /* Append a REL relocation REL to section S in BFD.  */
13052 
13053 void
13054 elf_append_rel (bfd *abfd, asection *s, Elf_Internal_Rela *rel)
13055 {
13056   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
13057   bfd_byte *loc = s->contents + (s->reloc_count++ * bed->s->sizeof_rel);
13058   BFD_ASSERT (loc + bed->s->sizeof_rel <= s->contents + s->size);
13059   bed->s->swap_reloc_out (abfd, rel, loc);
13060 }
13061