xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-sparc.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* SPARC-specific support for 64-bit ELF
2    Copyright (C) 1993-2017 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libbfd.h"
24 #include "elf-bfd.h"
25 #include "elf/sparc.h"
26 #include "opcode/sparc.h"
27 #include "elfxx-sparc.h"
28 
29 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
30 #define MINUS_ONE (~ (bfd_vma) 0)
31 
32 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
33    section can represent up to two relocs, we must tell the user to allocate
34    more space.  */
35 
36 static long
37 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
38 {
39   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
40 }
41 
42 static long
43 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
44 {
45   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
46 }
47 
48 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
49    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
50    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
51    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
52 
53 static bfd_boolean
54 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
55 				   Elf_Internal_Shdr *rel_hdr,
56 				   asymbol **symbols, bfd_boolean dynamic)
57 {
58   void * allocated = NULL;
59   bfd_byte *native_relocs;
60   arelent *relent;
61   unsigned int i;
62   int entsize;
63   bfd_size_type count;
64   arelent *relents;
65 
66   allocated = bfd_malloc (rel_hdr->sh_size);
67   if (allocated == NULL)
68     goto error_return;
69 
70   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
71       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
72     goto error_return;
73 
74   native_relocs = (bfd_byte *) allocated;
75 
76   relents = asect->relocation + canon_reloc_count (asect);
77 
78   entsize = rel_hdr->sh_entsize;
79   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
80 
81   count = rel_hdr->sh_size / entsize;
82 
83   for (i = 0, relent = relents; i < count;
84        i++, relent++, native_relocs += entsize)
85     {
86       Elf_Internal_Rela rela;
87       unsigned int r_type;
88 
89       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
90 
91       /* The address of an ELF reloc is section relative for an object
92 	 file, and absolute for an executable file or shared library.
93 	 The address of a normal BFD reloc is always section relative,
94 	 and the address of a dynamic reloc is absolute..  */
95       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
96 	relent->address = rela.r_offset;
97       else
98 	relent->address = rela.r_offset - asect->vma;
99 
100       if (ELF64_R_SYM (rela.r_info) == STN_UNDEF
101 	  /* PR 17512: file: 996185f8.  */
102 	  || (!dynamic && ELF64_R_SYM(rela.r_info) > bfd_get_symcount(abfd))
103           || (dynamic
104               && ELF64_R_SYM(rela.r_info) > bfd_get_dynamic_symcount(abfd)))
105 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
106       else
107 	{
108 	  asymbol **ps, *s;
109 
110 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
111 	  s = *ps;
112 
113 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
114 	  if ((s->flags & BSF_SECTION_SYM) == 0)
115 	    relent->sym_ptr_ptr = ps;
116 	  else
117 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
118 	}
119 
120       relent->addend = rela.r_addend;
121 
122       r_type = ELF64_R_TYPE_ID (rela.r_info);
123       if (r_type == R_SPARC_OLO10)
124 	{
125 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
126 	  relent[1].address = relent->address;
127 	  relent++;
128 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
129 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
130 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
131 	}
132       else
133 	relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
134     }
135 
136   canon_reloc_count (asect) += relent - relents;
137 
138   if (allocated != NULL)
139     free (allocated);
140 
141   return TRUE;
142 
143  error_return:
144   if (allocated != NULL)
145     free (allocated);
146   return FALSE;
147 }
148 
149 /* Read in and swap the external relocs.  */
150 
151 static bfd_boolean
152 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
153 			       asymbol **symbols, bfd_boolean dynamic)
154 {
155   struct bfd_elf_section_data * const d = elf_section_data (asect);
156   Elf_Internal_Shdr *rel_hdr;
157   Elf_Internal_Shdr *rel_hdr2;
158   bfd_size_type amt;
159 
160   if (asect->relocation != NULL)
161     return TRUE;
162 
163   if (! dynamic)
164     {
165       if ((asect->flags & SEC_RELOC) == 0
166 	  || asect->reloc_count == 0)
167 	return TRUE;
168 
169       rel_hdr = d->rel.hdr;
170       rel_hdr2 = d->rela.hdr;
171 
172       BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
173 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
174     }
175   else
176     {
177       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
178 	 case because relocations against this section may use the
179 	 dynamic symbol table, and in that case bfd_section_from_shdr
180 	 in elf.c does not update the RELOC_COUNT.  */
181       if (asect->size == 0)
182 	return TRUE;
183 
184       rel_hdr = &d->this_hdr;
185       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
186       rel_hdr2 = NULL;
187     }
188 
189   amt = asect->reloc_count;
190   amt *= 2 * sizeof (arelent);
191   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
192   if (asect->relocation == NULL)
193     return FALSE;
194 
195   /* The elf64_sparc_slurp_one_reloc_table routine increments
196      canon_reloc_count.  */
197   canon_reloc_count (asect) = 0;
198 
199   if (rel_hdr
200       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
201 					     dynamic))
202     return FALSE;
203 
204   if (rel_hdr2
205       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
206 					     dynamic))
207     return FALSE;
208 
209   return TRUE;
210 }
211 
212 /* Canonicalize the relocs.  */
213 
214 static long
215 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
216 				arelent **relptr, asymbol **symbols)
217 {
218   arelent *tblptr;
219   unsigned int i;
220   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
221 
222   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
223     return -1;
224 
225   tblptr = section->relocation;
226   for (i = 0; i < canon_reloc_count (section); i++)
227     *relptr++ = tblptr++;
228 
229   *relptr = NULL;
230 
231   return canon_reloc_count (section);
232 }
233 
234 
235 /* Canonicalize the dynamic relocation entries.  Note that we return
236    the dynamic relocations as a single block, although they are
237    actually associated with particular sections; the interface, which
238    was designed for SunOS style shared libraries, expects that there
239    is only one set of dynamic relocs.  Any section that was actually
240    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
241    the dynamic symbol table, is considered to be a dynamic reloc
242    section.  */
243 
244 static long
245 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
246 					asymbol **syms)
247 {
248   asection *s;
249   long ret;
250 
251   if (elf_dynsymtab (abfd) == 0)
252     {
253       bfd_set_error (bfd_error_invalid_operation);
254       return -1;
255     }
256 
257   ret = 0;
258   for (s = abfd->sections; s != NULL; s = s->next)
259     {
260       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
261 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
262 	{
263 	  arelent *p;
264 	  long count, i;
265 
266 	  if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
267 	    return -1;
268 	  count = canon_reloc_count (s);
269 	  p = s->relocation;
270 	  for (i = 0; i < count; i++)
271 	    *storage++ = p++;
272 	  ret += count;
273 	}
274     }
275 
276   *storage = NULL;
277 
278   return ret;
279 }
280 
281 /* Write out the relocs.  */
282 
283 static void
284 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data)
285 {
286   bfd_boolean *failedp = (bfd_boolean *) data;
287   Elf_Internal_Shdr *rela_hdr;
288   bfd_vma addr_offset;
289   Elf64_External_Rela *outbound_relocas, *src_rela;
290   unsigned int idx, count;
291   asymbol *last_sym = 0;
292   int last_sym_idx = 0;
293 
294   /* If we have already failed, don't do anything.  */
295   if (*failedp)
296     return;
297 
298   if ((sec->flags & SEC_RELOC) == 0)
299     return;
300 
301   /* The linker backend writes the relocs out itself, and sets the
302      reloc_count field to zero to inhibit writing them here.  Also,
303      sometimes the SEC_RELOC flag gets set even when there aren't any
304      relocs.  */
305   if (sec->reloc_count == 0)
306     return;
307 
308   /* We can combine two relocs that refer to the same address
309      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
310      latter is R_SPARC_13 with no associated symbol.  */
311   count = 0;
312   for (idx = 0; idx < sec->reloc_count; idx++)
313     {
314       bfd_vma addr;
315 
316       ++count;
317 
318       addr = sec->orelocation[idx]->address;
319       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
320 	  && idx < sec->reloc_count - 1)
321 	{
322 	  arelent *r = sec->orelocation[idx + 1];
323 
324 	  if (r->howto->type == R_SPARC_13
325 	      && r->address == addr
326 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
327 	      && (*r->sym_ptr_ptr)->value == 0)
328 	    ++idx;
329 	}
330     }
331 
332   rela_hdr = elf_section_data (sec)->rela.hdr;
333 
334   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
335   rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size);
336   if (rela_hdr->contents == NULL)
337     {
338       *failedp = TRUE;
339       return;
340     }
341 
342   /* Figure out whether the relocations are RELA or REL relocations.  */
343   if (rela_hdr->sh_type != SHT_RELA)
344     abort ();
345 
346   /* The address of an ELF reloc is section relative for an object
347      file, and absolute for an executable file or shared library.
348      The address of a BFD reloc is always section relative.  */
349   addr_offset = 0;
350   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
351     addr_offset = sec->vma;
352 
353   /* orelocation has the data, reloc_count has the count...  */
354   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
355   src_rela = outbound_relocas;
356 
357   for (idx = 0; idx < sec->reloc_count; idx++)
358     {
359       Elf_Internal_Rela dst_rela;
360       arelent *ptr;
361       asymbol *sym;
362       int n;
363 
364       ptr = sec->orelocation[idx];
365       sym = *ptr->sym_ptr_ptr;
366       if (sym == last_sym)
367 	n = last_sym_idx;
368       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
369 	n = STN_UNDEF;
370       else
371 	{
372 	  last_sym = sym;
373 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
374 	  if (n < 0)
375 	    {
376 	      *failedp = TRUE;
377 	      return;
378 	    }
379 	  last_sym_idx = n;
380 	}
381 
382       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
383 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
384 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
385 	{
386 	  *failedp = TRUE;
387 	  return;
388 	}
389 
390       if (ptr->howto->type == R_SPARC_LO10
391 	  && idx < sec->reloc_count - 1)
392 	{
393 	  arelent *r = sec->orelocation[idx + 1];
394 
395 	  if (r->howto->type == R_SPARC_13
396 	      && r->address == ptr->address
397 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
398 	      && (*r->sym_ptr_ptr)->value == 0)
399 	    {
400 	      idx++;
401 	      dst_rela.r_info
402 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
403 						      R_SPARC_OLO10));
404 	    }
405 	  else
406 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
407 	}
408       else
409 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
410 
411       dst_rela.r_offset = ptr->address + addr_offset;
412       dst_rela.r_addend = ptr->addend;
413 
414       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
415       ++src_rela;
416     }
417 }
418 
419 /* Hook called by the linker routine which adds symbols from an object
420    file.  We use it for STT_REGISTER symbols.  */
421 
422 static bfd_boolean
423 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
424 			     Elf_Internal_Sym *sym, const char **namep,
425 			     flagword *flagsp ATTRIBUTE_UNUSED,
426 			     asection **secp ATTRIBUTE_UNUSED,
427 			     bfd_vma *valp ATTRIBUTE_UNUSED)
428 {
429   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
430 
431   if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
432       && (abfd->flags & DYNAMIC) == 0
433       && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
434     elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
435 
436   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
437     {
438       int reg;
439       struct _bfd_sparc_elf_app_reg *p;
440 
441       reg = (int)sym->st_value;
442       switch (reg & ~1)
443 	{
444 	case 2: reg -= 2; break;
445 	case 6: reg -= 4; break;
446 	default:
447 	  _bfd_error_handler
448             (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
449              abfd);
450 	  return FALSE;
451 	}
452 
453       if (info->output_bfd->xvec != abfd->xvec
454 	  || (abfd->flags & DYNAMIC) != 0)
455         {
456 	  /* STT_REGISTER only works when linking an elf64_sparc object.
457 	     If STT_REGISTER comes from a dynamic object, don't put it into
458 	     the output bfd.  The dynamic linker will recheck it.  */
459 	  *namep = NULL;
460 	  return TRUE;
461         }
462 
463       p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
464 
465       if (p->name != NULL && strcmp (p->name, *namep))
466 	{
467 	  _bfd_error_handler
468 	    /* xgettext:c-format */
469 	    (_("Register %%g%d used incompatibly: %s in %B,"
470 	       " previously %s in %B"),
471 	     (int) sym->st_value, **namep ? *namep : "#scratch", abfd,
472 	     *p->name ? p->name : "#scratch", p->abfd);
473 	  return FALSE;
474 	}
475 
476       if (p->name == NULL)
477 	{
478 	  if (**namep)
479 	    {
480 	      struct elf_link_hash_entry *h;
481 
482 	      h = (struct elf_link_hash_entry *)
483 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
484 
485 	      if (h != NULL)
486 		{
487 		  unsigned char type = h->type;
488 
489 		  if (type > STT_FUNC)
490 		    type = 0;
491 		  _bfd_error_handler
492 		    /* xgettext:c-format */
493 		    (_("Symbol `%s' has differing types: REGISTER in %B,"
494 		       " previously %s in %B"),
495 		     *namep, abfd, stt_types[type], p->abfd);
496 		  return FALSE;
497 		}
498 
499 	      p->name = bfd_hash_allocate (&info->hash->table,
500 					   strlen (*namep) + 1);
501 	      if (!p->name)
502 		return FALSE;
503 
504 	      strcpy (p->name, *namep);
505 	    }
506 	  else
507 	    p->name = "";
508 	  p->bind = ELF_ST_BIND (sym->st_info);
509 	  p->abfd = abfd;
510 	  p->shndx = sym->st_shndx;
511 	}
512       else
513 	{
514 	  if (p->bind == STB_WEAK
515 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
516 	    {
517 	      p->bind = STB_GLOBAL;
518 	      p->abfd = abfd;
519 	    }
520 	}
521       *namep = NULL;
522       return TRUE;
523     }
524   else if (*namep && **namep
525 	   && info->output_bfd->xvec == abfd->xvec)
526     {
527       int i;
528       struct _bfd_sparc_elf_app_reg *p;
529 
530       p = _bfd_sparc_elf_hash_table(info)->app_regs;
531       for (i = 0; i < 4; i++, p++)
532 	if (p->name != NULL && ! strcmp (p->name, *namep))
533 	  {
534 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
535 
536 	    if (type > STT_FUNC)
537 	      type = 0;
538 	    _bfd_error_handler
539 	      /* xgettext:c-format */
540 	      (_("Symbol `%s' has differing types: %s in %B,"
541 		 " previously REGISTER in %B"),
542 	       *namep, stt_types[type], abfd, p->abfd);
543 	    return FALSE;
544 	  }
545     }
546   return TRUE;
547 }
548 
549 /* This function takes care of emitting STT_REGISTER symbols
550    which we cannot easily keep in the symbol hash table.  */
551 
552 static bfd_boolean
553 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
554 			      struct bfd_link_info *info,
555 			      void * flaginfo,
556 			      int (*func) (void *, const char *,
557 					   Elf_Internal_Sym *,
558 					   asection *,
559 					   struct elf_link_hash_entry *))
560 {
561   int reg;
562   struct _bfd_sparc_elf_app_reg *app_regs =
563     _bfd_sparc_elf_hash_table(info)->app_regs;
564   Elf_Internal_Sym sym;
565 
566   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
567      at the end of the dynlocal list, so they came at the end of the local
568      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
569      to back up symtab->sh_info.  */
570   if (elf_hash_table (info)->dynlocal)
571     {
572       bfd * dynobj = elf_hash_table (info)->dynobj;
573       asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym");
574       struct elf_link_local_dynamic_entry *e;
575 
576       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
577 	if (e->input_indx == -1)
578 	  break;
579       if (e)
580 	{
581 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
582 	    = e->dynindx;
583 	}
584     }
585 
586   if (info->strip == strip_all)
587     return TRUE;
588 
589   for (reg = 0; reg < 4; reg++)
590     if (app_regs [reg].name != NULL)
591       {
592 	if (info->strip == strip_some
593 	    && bfd_hash_lookup (info->keep_hash,
594 				app_regs [reg].name,
595 				FALSE, FALSE) == NULL)
596 	  continue;
597 
598 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
599 	sym.st_size = 0;
600 	sym.st_other = 0;
601 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
602 	sym.st_shndx = app_regs [reg].shndx;
603 	sym.st_target_internal = 0;
604 	if ((*func) (flaginfo, app_regs [reg].name, &sym,
605 		     sym.st_shndx == SHN_ABS
606 		     ? bfd_abs_section_ptr : bfd_und_section_ptr,
607 		     NULL) != 1)
608 	  return FALSE;
609       }
610 
611   return TRUE;
612 }
613 
614 static int
615 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
616 {
617   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
618     return STT_REGISTER;
619   else
620     return type;
621 }
622 
623 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
624    even in SHN_UNDEF section.  */
625 
626 static void
627 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
628 {
629   elf_symbol_type *elfsym;
630 
631   elfsym = (elf_symbol_type *) asym;
632   if (elfsym->internal_elf_sym.st_info
633       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
634     {
635       asym->flags |= BSF_GLOBAL;
636     }
637 }
638 
639 
640 /* Functions for dealing with the e_flags field.  */
641 
642 /* Merge backend specific data from an object file to the output
643    object file when linking.  */
644 
645 static bfd_boolean
646 elf64_sparc_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
647 {
648   bfd *obfd = info->output_bfd;
649   bfd_boolean error;
650   flagword new_flags, old_flags;
651   int new_mm, old_mm;
652 
653   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
654       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
655     return TRUE;
656 
657   new_flags = elf_elfheader (ibfd)->e_flags;
658   old_flags = elf_elfheader (obfd)->e_flags;
659 
660   if (!elf_flags_init (obfd))   /* First call, no flags set */
661     {
662       elf_flags_init (obfd) = TRUE;
663       elf_elfheader (obfd)->e_flags = new_flags;
664     }
665 
666   else if (new_flags == old_flags)      /* Compatible flags are ok */
667     ;
668 
669   else                                  /* Incompatible flags */
670     {
671       error = FALSE;
672 
673 #define EF_SPARC_ISA_EXTENSIONS \
674   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
675 
676       if ((ibfd->flags & DYNAMIC) != 0)
677 	{
678 	  /* We don't want dynamic objects memory ordering and
679 	     architecture to have any role. That's what dynamic linker
680 	     should do.  */
681 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
682 	  new_flags |= (old_flags
683 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
684 	}
685       else
686 	{
687 	  /* Choose the highest architecture requirements.  */
688 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
689 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
690 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
691 	      && (old_flags & EF_SPARC_HAL_R1))
692 	    {
693 	      error = TRUE;
694 	      _bfd_error_handler
695 		(_("%B: linking UltraSPARC specific with HAL specific code"),
696 		 ibfd);
697 	    }
698 	  /* Choose the most restrictive memory ordering.  */
699 	  old_mm = (old_flags & EF_SPARCV9_MM);
700 	  new_mm = (new_flags & EF_SPARCV9_MM);
701 	  old_flags &= ~EF_SPARCV9_MM;
702 	  new_flags &= ~EF_SPARCV9_MM;
703 	  if (new_mm < old_mm)
704 	    old_mm = new_mm;
705 	  old_flags |= old_mm;
706 	  new_flags |= old_mm;
707 	}
708 
709       /* Warn about any other mismatches */
710       if (new_flags != old_flags)
711         {
712           error = TRUE;
713 	  _bfd_error_handler
714 	    /* xgettext:c-format */
715             (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
716              ibfd, (long) new_flags, (long) old_flags);
717         }
718 
719       elf_elfheader (obfd)->e_flags = old_flags;
720 
721       if (error)
722         {
723           bfd_set_error (bfd_error_bad_value);
724           return FALSE;
725         }
726     }
727   return _bfd_sparc_elf_merge_private_bfd_data (ibfd, info);
728 }
729 
730 /* MARCO: Set the correct entry size for the .stab section.  */
731 
732 static bfd_boolean
733 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
734 			   Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
735 			   asection *sec)
736 {
737   const char *name;
738 
739   name = bfd_get_section_name (abfd, sec);
740 
741   if (strcmp (name, ".stab") == 0)
742     {
743       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
744       elf_section_data (sec)->this_hdr.sh_entsize = 12;
745     }
746 
747   return TRUE;
748 }
749 
750 /* Print a STT_REGISTER symbol to file FILE.  */
751 
752 static const char *
753 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep,
754 			      asymbol *symbol)
755 {
756   FILE *file = (FILE *) filep;
757   int reg, type;
758 
759   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
760       != STT_REGISTER)
761     return NULL;
762 
763   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
764   type = symbol->flags;
765   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
766 		 ((type & BSF_LOCAL)
767 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
768 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
769 	         (type & BSF_WEAK) ? 'w' : ' ');
770   if (symbol->name == NULL || symbol->name [0] == '\0')
771     return "#scratch";
772   else
773     return symbol->name;
774 }
775 
776 static enum elf_reloc_type_class
777 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
778 			      const asection *rel_sec ATTRIBUTE_UNUSED,
779 			      const Elf_Internal_Rela *rela)
780 {
781   switch ((int) ELF64_R_TYPE (rela->r_info))
782     {
783     case R_SPARC_RELATIVE:
784       return reloc_class_relative;
785     case R_SPARC_JMP_SLOT:
786       return reloc_class_plt;
787     case R_SPARC_COPY:
788       return reloc_class_copy;
789     default:
790       return reloc_class_normal;
791     }
792 }
793 
794 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
795    standard ELF, because R_SPARC_OLO10 has secondary addend in
796    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
797    relocation handling routines.  */
798 
799 const struct elf_size_info elf64_sparc_size_info =
800 {
801   sizeof (Elf64_External_Ehdr),
802   sizeof (Elf64_External_Phdr),
803   sizeof (Elf64_External_Shdr),
804   sizeof (Elf64_External_Rel),
805   sizeof (Elf64_External_Rela),
806   sizeof (Elf64_External_Sym),
807   sizeof (Elf64_External_Dyn),
808   sizeof (Elf_External_Note),
809   4,		/* hash-table entry size.  */
810   /* Internal relocations per external relocations.
811      For link purposes we use just 1 internal per
812      1 external, for assembly and slurp symbol table
813      we use 2.  */
814   1,
815   64,		/* arch_size.  */
816   3,		/* log_file_align.  */
817   ELFCLASS64,
818   EV_CURRENT,
819   bfd_elf64_write_out_phdrs,
820   bfd_elf64_write_shdrs_and_ehdr,
821   bfd_elf64_checksum_contents,
822   elf64_sparc_write_relocs,
823   bfd_elf64_swap_symbol_in,
824   bfd_elf64_swap_symbol_out,
825   elf64_sparc_slurp_reloc_table,
826   bfd_elf64_slurp_symbol_table,
827   bfd_elf64_swap_dyn_in,
828   bfd_elf64_swap_dyn_out,
829   bfd_elf64_swap_reloc_in,
830   bfd_elf64_swap_reloc_out,
831   bfd_elf64_swap_reloca_in,
832   bfd_elf64_swap_reloca_out
833 };
834 
835 #define TARGET_BIG_SYM	sparc_elf64_vec
836 #define TARGET_BIG_NAME	"elf64-sparc"
837 #define ELF_ARCH	bfd_arch_sparc
838 #define ELF_MAXPAGESIZE 0x100000
839 #define ELF_COMMONPAGESIZE 0x2000
840 
841 /* This is the official ABI value.  */
842 #define ELF_MACHINE_CODE EM_SPARCV9
843 
844 /* This is the value that we used before the ABI was released.  */
845 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
846 
847 #define elf_backend_reloc_type_class \
848   elf64_sparc_reloc_type_class
849 #define bfd_elf64_get_reloc_upper_bound \
850   elf64_sparc_get_reloc_upper_bound
851 #define bfd_elf64_get_dynamic_reloc_upper_bound \
852   elf64_sparc_get_dynamic_reloc_upper_bound
853 #define bfd_elf64_canonicalize_reloc \
854   elf64_sparc_canonicalize_reloc
855 #define bfd_elf64_canonicalize_dynamic_reloc \
856   elf64_sparc_canonicalize_dynamic_reloc
857 #define elf_backend_add_symbol_hook \
858   elf64_sparc_add_symbol_hook
859 #define elf_backend_get_symbol_type \
860   elf64_sparc_get_symbol_type
861 #define elf_backend_symbol_processing \
862   elf64_sparc_symbol_processing
863 #define elf_backend_print_symbol_all \
864   elf64_sparc_print_symbol_all
865 #define elf_backend_output_arch_syms \
866   elf64_sparc_output_arch_syms
867 #define bfd_elf64_bfd_merge_private_bfd_data \
868   elf64_sparc_merge_private_bfd_data
869 #define elf_backend_fake_sections \
870   elf64_sparc_fake_sections
871 #define elf_backend_size_info \
872   elf64_sparc_size_info
873 
874 #define elf_backend_plt_sym_val	\
875   _bfd_sparc_elf_plt_sym_val
876 #define bfd_elf64_bfd_link_hash_table_create \
877   _bfd_sparc_elf_link_hash_table_create
878 #define elf_info_to_howto \
879   _bfd_sparc_elf_info_to_howto
880 #define elf_backend_copy_indirect_symbol \
881   _bfd_sparc_elf_copy_indirect_symbol
882 #define bfd_elf64_bfd_reloc_type_lookup \
883   _bfd_sparc_elf_reloc_type_lookup
884 #define bfd_elf64_bfd_reloc_name_lookup \
885   _bfd_sparc_elf_reloc_name_lookup
886 #define bfd_elf64_bfd_relax_section \
887   _bfd_sparc_elf_relax_section
888 #define bfd_elf64_new_section_hook \
889   _bfd_sparc_elf_new_section_hook
890 
891 #define elf_backend_create_dynamic_sections \
892   _bfd_sparc_elf_create_dynamic_sections
893 #define elf_backend_relocs_compatible \
894   _bfd_elf_relocs_compatible
895 #define elf_backend_check_relocs \
896   _bfd_sparc_elf_check_relocs
897 #define elf_backend_adjust_dynamic_symbol \
898   _bfd_sparc_elf_adjust_dynamic_symbol
899 #define elf_backend_omit_section_dynsym \
900   _bfd_sparc_elf_omit_section_dynsym
901 #define elf_backend_size_dynamic_sections \
902   _bfd_sparc_elf_size_dynamic_sections
903 #define elf_backend_relocate_section \
904   _bfd_sparc_elf_relocate_section
905 #define elf_backend_finish_dynamic_symbol \
906   _bfd_sparc_elf_finish_dynamic_symbol
907 #define elf_backend_finish_dynamic_sections \
908   _bfd_sparc_elf_finish_dynamic_sections
909 #define elf_backend_fixup_symbol \
910   _bfd_sparc_elf_fixup_symbol
911 
912 #define bfd_elf64_mkobject \
913   _bfd_sparc_elf_mkobject
914 #define elf_backend_object_p \
915   _bfd_sparc_elf_object_p
916 #define elf_backend_gc_mark_hook \
917   _bfd_sparc_elf_gc_mark_hook
918 #define elf_backend_gc_sweep_hook \
919   _bfd_sparc_elf_gc_sweep_hook
920 #define elf_backend_init_index_section \
921   _bfd_elf_init_1_index_section
922 
923 #define elf_backend_can_gc_sections 1
924 #define elf_backend_can_refcount 1
925 #define elf_backend_want_got_plt 0
926 #define elf_backend_plt_readonly 0
927 #define elf_backend_want_plt_sym 1
928 #define elf_backend_got_header_size 8
929 #define elf_backend_want_dynrelro 1
930 #define elf_backend_rela_normal 1
931 
932 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
933 #define elf_backend_plt_alignment 8
934 
935 #include "elf64-target.h"
936 
937 /* FreeBSD support */
938 #undef  TARGET_BIG_SYM
939 #define TARGET_BIG_SYM sparc_elf64_fbsd_vec
940 #undef  TARGET_BIG_NAME
941 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
942 #undef	ELF_OSABI
943 #define	ELF_OSABI ELFOSABI_FREEBSD
944 
945 #undef  elf64_bed
946 #define elf64_bed				elf64_sparc_fbsd_bed
947 
948 #include "elf64-target.h"
949 
950 /* Solaris 2.  */
951 
952 #undef	TARGET_BIG_SYM
953 #define	TARGET_BIG_SYM				sparc_elf64_sol2_vec
954 #undef	TARGET_BIG_NAME
955 #define	TARGET_BIG_NAME				"elf64-sparc-sol2"
956 
957 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
958    objects won't be recognized.  */
959 #undef	ELF_OSABI
960 
961 #undef elf64_bed
962 #define elf64_bed				elf64_sparc_sol2_bed
963 
964 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
965    boundary.  */
966 #undef elf_backend_static_tls_alignment
967 #define elf_backend_static_tls_alignment	16
968 
969 #include "elf64-target.h"
970