1 /* SPARC-specific support for 64-bit ELF 2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 3 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 4 Free Software Foundation, Inc. 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "libbfd.h" 26 #include "elf-bfd.h" 27 #include "elf/sparc.h" 28 #include "opcode/sparc.h" 29 #include "elfxx-sparc.h" 30 31 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value. */ 32 #define MINUS_ONE (~ (bfd_vma) 0) 33 34 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA 35 section can represent up to two relocs, we must tell the user to allocate 36 more space. */ 37 38 static long 39 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec) 40 { 41 return (sec->reloc_count * 2 + 1) * sizeof (arelent *); 42 } 43 44 static long 45 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd) 46 { 47 return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2; 48 } 49 50 /* Read relocations for ASECT from REL_HDR. There are RELOC_COUNT of 51 them. We cannot use generic elf routines for this, because R_SPARC_OLO10 52 has secondary addend in ELF64_R_TYPE_DATA. We handle it as two relocations 53 for the same location, R_SPARC_LO10 and R_SPARC_13. */ 54 55 static bfd_boolean 56 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect, 57 Elf_Internal_Shdr *rel_hdr, 58 asymbol **symbols, bfd_boolean dynamic) 59 { 60 void * allocated = NULL; 61 bfd_byte *native_relocs; 62 arelent *relent; 63 unsigned int i; 64 int entsize; 65 bfd_size_type count; 66 arelent *relents; 67 68 allocated = bfd_malloc (rel_hdr->sh_size); 69 if (allocated == NULL) 70 goto error_return; 71 72 if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0 73 || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size) 74 goto error_return; 75 76 native_relocs = (bfd_byte *) allocated; 77 78 relents = asect->relocation + canon_reloc_count (asect); 79 80 entsize = rel_hdr->sh_entsize; 81 BFD_ASSERT (entsize == sizeof (Elf64_External_Rela)); 82 83 count = rel_hdr->sh_size / entsize; 84 85 for (i = 0, relent = relents; i < count; 86 i++, relent++, native_relocs += entsize) 87 { 88 Elf_Internal_Rela rela; 89 unsigned int r_type; 90 91 bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela); 92 93 /* The address of an ELF reloc is section relative for an object 94 file, and absolute for an executable file or shared library. 95 The address of a normal BFD reloc is always section relative, 96 and the address of a dynamic reloc is absolute.. */ 97 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic) 98 relent->address = rela.r_offset; 99 else 100 relent->address = rela.r_offset - asect->vma; 101 102 if (ELF64_R_SYM (rela.r_info) == STN_UNDEF) 103 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 104 else 105 { 106 asymbol **ps, *s; 107 108 ps = symbols + ELF64_R_SYM (rela.r_info) - 1; 109 s = *ps; 110 111 /* Canonicalize ELF section symbols. FIXME: Why? */ 112 if ((s->flags & BSF_SECTION_SYM) == 0) 113 relent->sym_ptr_ptr = ps; 114 else 115 relent->sym_ptr_ptr = s->section->symbol_ptr_ptr; 116 } 117 118 relent->addend = rela.r_addend; 119 120 r_type = ELF64_R_TYPE_ID (rela.r_info); 121 if (r_type == R_SPARC_OLO10) 122 { 123 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10); 124 relent[1].address = relent->address; 125 relent++; 126 relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr; 127 relent->addend = ELF64_R_TYPE_DATA (rela.r_info); 128 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13); 129 } 130 else 131 relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type); 132 } 133 134 canon_reloc_count (asect) += relent - relents; 135 136 if (allocated != NULL) 137 free (allocated); 138 139 return TRUE; 140 141 error_return: 142 if (allocated != NULL) 143 free (allocated); 144 return FALSE; 145 } 146 147 /* Read in and swap the external relocs. */ 148 149 static bfd_boolean 150 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect, 151 asymbol **symbols, bfd_boolean dynamic) 152 { 153 struct bfd_elf_section_data * const d = elf_section_data (asect); 154 Elf_Internal_Shdr *rel_hdr; 155 Elf_Internal_Shdr *rel_hdr2; 156 bfd_size_type amt; 157 158 if (asect->relocation != NULL) 159 return TRUE; 160 161 if (! dynamic) 162 { 163 if ((asect->flags & SEC_RELOC) == 0 164 || asect->reloc_count == 0) 165 return TRUE; 166 167 rel_hdr = d->rel.hdr; 168 rel_hdr2 = d->rela.hdr; 169 170 BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset) 171 || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset)); 172 } 173 else 174 { 175 /* Note that ASECT->RELOC_COUNT tends not to be accurate in this 176 case because relocations against this section may use the 177 dynamic symbol table, and in that case bfd_section_from_shdr 178 in elf.c does not update the RELOC_COUNT. */ 179 if (asect->size == 0) 180 return TRUE; 181 182 rel_hdr = &d->this_hdr; 183 asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr); 184 rel_hdr2 = NULL; 185 } 186 187 amt = asect->reloc_count; 188 amt *= 2 * sizeof (arelent); 189 asect->relocation = (arelent *) bfd_alloc (abfd, amt); 190 if (asect->relocation == NULL) 191 return FALSE; 192 193 /* The elf64_sparc_slurp_one_reloc_table routine increments 194 canon_reloc_count. */ 195 canon_reloc_count (asect) = 0; 196 197 if (rel_hdr 198 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols, 199 dynamic)) 200 return FALSE; 201 202 if (rel_hdr2 203 && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols, 204 dynamic)) 205 return FALSE; 206 207 return TRUE; 208 } 209 210 /* Canonicalize the relocs. */ 211 212 static long 213 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section, 214 arelent **relptr, asymbol **symbols) 215 { 216 arelent *tblptr; 217 unsigned int i; 218 const struct elf_backend_data *bed = get_elf_backend_data (abfd); 219 220 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE)) 221 return -1; 222 223 tblptr = section->relocation; 224 for (i = 0; i < canon_reloc_count (section); i++) 225 *relptr++ = tblptr++; 226 227 *relptr = NULL; 228 229 return canon_reloc_count (section); 230 } 231 232 233 /* Canonicalize the dynamic relocation entries. Note that we return 234 the dynamic relocations as a single block, although they are 235 actually associated with particular sections; the interface, which 236 was designed for SunOS style shared libraries, expects that there 237 is only one set of dynamic relocs. Any section that was actually 238 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses 239 the dynamic symbol table, is considered to be a dynamic reloc 240 section. */ 241 242 static long 243 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage, 244 asymbol **syms) 245 { 246 asection *s; 247 long ret; 248 249 if (elf_dynsymtab (abfd) == 0) 250 { 251 bfd_set_error (bfd_error_invalid_operation); 252 return -1; 253 } 254 255 ret = 0; 256 for (s = abfd->sections; s != NULL; s = s->next) 257 { 258 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd) 259 && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA)) 260 { 261 arelent *p; 262 long count, i; 263 264 if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE)) 265 return -1; 266 count = canon_reloc_count (s); 267 p = s->relocation; 268 for (i = 0; i < count; i++) 269 *storage++ = p++; 270 ret += count; 271 } 272 } 273 274 *storage = NULL; 275 276 return ret; 277 } 278 279 /* Write out the relocs. */ 280 281 static void 282 elf64_sparc_write_relocs (bfd *abfd, asection *sec, void * data) 283 { 284 bfd_boolean *failedp = (bfd_boolean *) data; 285 Elf_Internal_Shdr *rela_hdr; 286 bfd_vma addr_offset; 287 Elf64_External_Rela *outbound_relocas, *src_rela; 288 unsigned int idx, count; 289 asymbol *last_sym = 0; 290 int last_sym_idx = 0; 291 292 /* If we have already failed, don't do anything. */ 293 if (*failedp) 294 return; 295 296 if ((sec->flags & SEC_RELOC) == 0) 297 return; 298 299 /* The linker backend writes the relocs out itself, and sets the 300 reloc_count field to zero to inhibit writing them here. Also, 301 sometimes the SEC_RELOC flag gets set even when there aren't any 302 relocs. */ 303 if (sec->reloc_count == 0) 304 return; 305 306 /* We can combine two relocs that refer to the same address 307 into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the 308 latter is R_SPARC_13 with no associated symbol. */ 309 count = 0; 310 for (idx = 0; idx < sec->reloc_count; idx++) 311 { 312 bfd_vma addr; 313 314 ++count; 315 316 addr = sec->orelocation[idx]->address; 317 if (sec->orelocation[idx]->howto->type == R_SPARC_LO10 318 && idx < sec->reloc_count - 1) 319 { 320 arelent *r = sec->orelocation[idx + 1]; 321 322 if (r->howto->type == R_SPARC_13 323 && r->address == addr 324 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 325 && (*r->sym_ptr_ptr)->value == 0) 326 ++idx; 327 } 328 } 329 330 rela_hdr = elf_section_data (sec)->rela.hdr; 331 332 rela_hdr->sh_size = rela_hdr->sh_entsize * count; 333 rela_hdr->contents = bfd_alloc (abfd, rela_hdr->sh_size); 334 if (rela_hdr->contents == NULL) 335 { 336 *failedp = TRUE; 337 return; 338 } 339 340 /* Figure out whether the relocations are RELA or REL relocations. */ 341 if (rela_hdr->sh_type != SHT_RELA) 342 abort (); 343 344 /* The address of an ELF reloc is section relative for an object 345 file, and absolute for an executable file or shared library. 346 The address of a BFD reloc is always section relative. */ 347 addr_offset = 0; 348 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0) 349 addr_offset = sec->vma; 350 351 /* orelocation has the data, reloc_count has the count... */ 352 outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents; 353 src_rela = outbound_relocas; 354 355 for (idx = 0; idx < sec->reloc_count; idx++) 356 { 357 Elf_Internal_Rela dst_rela; 358 arelent *ptr; 359 asymbol *sym; 360 int n; 361 362 ptr = sec->orelocation[idx]; 363 sym = *ptr->sym_ptr_ptr; 364 if (sym == last_sym) 365 n = last_sym_idx; 366 else if (bfd_is_abs_section (sym->section) && sym->value == 0) 367 n = STN_UNDEF; 368 else 369 { 370 last_sym = sym; 371 n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym); 372 if (n < 0) 373 { 374 *failedp = TRUE; 375 return; 376 } 377 last_sym_idx = n; 378 } 379 380 if ((*ptr->sym_ptr_ptr)->the_bfd != NULL 381 && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec 382 && ! _bfd_elf_validate_reloc (abfd, ptr)) 383 { 384 *failedp = TRUE; 385 return; 386 } 387 388 if (ptr->howto->type == R_SPARC_LO10 389 && idx < sec->reloc_count - 1) 390 { 391 arelent *r = sec->orelocation[idx + 1]; 392 393 if (r->howto->type == R_SPARC_13 394 && r->address == ptr->address 395 && bfd_is_abs_section ((*r->sym_ptr_ptr)->section) 396 && (*r->sym_ptr_ptr)->value == 0) 397 { 398 idx++; 399 dst_rela.r_info 400 = ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend, 401 R_SPARC_OLO10)); 402 } 403 else 404 dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10); 405 } 406 else 407 dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type); 408 409 dst_rela.r_offset = ptr->address + addr_offset; 410 dst_rela.r_addend = ptr->addend; 411 412 bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela); 413 ++src_rela; 414 } 415 } 416 417 /* Hook called by the linker routine which adds symbols from an object 418 file. We use it for STT_REGISTER symbols. */ 419 420 static bfd_boolean 421 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 422 Elf_Internal_Sym *sym, const char **namep, 423 flagword *flagsp ATTRIBUTE_UNUSED, 424 asection **secp ATTRIBUTE_UNUSED, 425 bfd_vma *valp ATTRIBUTE_UNUSED) 426 { 427 static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" }; 428 429 if ((abfd->flags & DYNAMIC) == 0 430 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC 431 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)) 432 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 433 434 if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER) 435 { 436 int reg; 437 struct _bfd_sparc_elf_app_reg *p; 438 439 reg = (int)sym->st_value; 440 switch (reg & ~1) 441 { 442 case 2: reg -= 2; break; 443 case 6: reg -= 4; break; 444 default: 445 (*_bfd_error_handler) 446 (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"), 447 abfd); 448 return FALSE; 449 } 450 451 if (info->output_bfd->xvec != abfd->xvec 452 || (abfd->flags & DYNAMIC) != 0) 453 { 454 /* STT_REGISTER only works when linking an elf64_sparc object. 455 If STT_REGISTER comes from a dynamic object, don't put it into 456 the output bfd. The dynamic linker will recheck it. */ 457 *namep = NULL; 458 return TRUE; 459 } 460 461 p = _bfd_sparc_elf_hash_table(info)->app_regs + reg; 462 463 if (p->name != NULL && strcmp (p->name, *namep)) 464 { 465 (*_bfd_error_handler) 466 (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"), 467 abfd, p->abfd, (int) sym->st_value, 468 **namep ? *namep : "#scratch", 469 *p->name ? p->name : "#scratch"); 470 return FALSE; 471 } 472 473 if (p->name == NULL) 474 { 475 if (**namep) 476 { 477 struct elf_link_hash_entry *h; 478 479 h = (struct elf_link_hash_entry *) 480 bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE); 481 482 if (h != NULL) 483 { 484 unsigned char type = h->type; 485 486 if (type > STT_FUNC) 487 type = 0; 488 (*_bfd_error_handler) 489 (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"), 490 abfd, p->abfd, *namep, stt_types[type]); 491 return FALSE; 492 } 493 494 p->name = bfd_hash_allocate (&info->hash->table, 495 strlen (*namep) + 1); 496 if (!p->name) 497 return FALSE; 498 499 strcpy (p->name, *namep); 500 } 501 else 502 p->name = ""; 503 p->bind = ELF_ST_BIND (sym->st_info); 504 p->abfd = abfd; 505 p->shndx = sym->st_shndx; 506 } 507 else 508 { 509 if (p->bind == STB_WEAK 510 && ELF_ST_BIND (sym->st_info) == STB_GLOBAL) 511 { 512 p->bind = STB_GLOBAL; 513 p->abfd = abfd; 514 } 515 } 516 *namep = NULL; 517 return TRUE; 518 } 519 else if (*namep && **namep 520 && info->output_bfd->xvec == abfd->xvec) 521 { 522 int i; 523 struct _bfd_sparc_elf_app_reg *p; 524 525 p = _bfd_sparc_elf_hash_table(info)->app_regs; 526 for (i = 0; i < 4; i++, p++) 527 if (p->name != NULL && ! strcmp (p->name, *namep)) 528 { 529 unsigned char type = ELF_ST_TYPE (sym->st_info); 530 531 if (type > STT_FUNC) 532 type = 0; 533 (*_bfd_error_handler) 534 (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"), 535 abfd, p->abfd, *namep, stt_types[type]); 536 return FALSE; 537 } 538 } 539 return TRUE; 540 } 541 542 /* This function takes care of emitting STT_REGISTER symbols 543 which we cannot easily keep in the symbol hash table. */ 544 545 static bfd_boolean 546 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED, 547 struct bfd_link_info *info, 548 void * flaginfo, 549 int (*func) (void *, const char *, 550 Elf_Internal_Sym *, 551 asection *, 552 struct elf_link_hash_entry *)) 553 { 554 int reg; 555 struct _bfd_sparc_elf_app_reg *app_regs = 556 _bfd_sparc_elf_hash_table(info)->app_regs; 557 Elf_Internal_Sym sym; 558 559 /* We arranged in size_dynamic_sections to put the STT_REGISTER entries 560 at the end of the dynlocal list, so they came at the end of the local 561 symbols in the symtab. Except that they aren't STB_LOCAL, so we need 562 to back up symtab->sh_info. */ 563 if (elf_hash_table (info)->dynlocal) 564 { 565 bfd * dynobj = elf_hash_table (info)->dynobj; 566 asection *dynsymsec = bfd_get_linker_section (dynobj, ".dynsym"); 567 struct elf_link_local_dynamic_entry *e; 568 569 for (e = elf_hash_table (info)->dynlocal; e ; e = e->next) 570 if (e->input_indx == -1) 571 break; 572 if (e) 573 { 574 elf_section_data (dynsymsec->output_section)->this_hdr.sh_info 575 = e->dynindx; 576 } 577 } 578 579 if (info->strip == strip_all) 580 return TRUE; 581 582 for (reg = 0; reg < 4; reg++) 583 if (app_regs [reg].name != NULL) 584 { 585 if (info->strip == strip_some 586 && bfd_hash_lookup (info->keep_hash, 587 app_regs [reg].name, 588 FALSE, FALSE) == NULL) 589 continue; 590 591 sym.st_value = reg < 2 ? reg + 2 : reg + 4; 592 sym.st_size = 0; 593 sym.st_other = 0; 594 sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER); 595 sym.st_shndx = app_regs [reg].shndx; 596 sym.st_target_internal = 0; 597 if ((*func) (flaginfo, app_regs [reg].name, &sym, 598 sym.st_shndx == SHN_ABS 599 ? bfd_abs_section_ptr : bfd_und_section_ptr, 600 NULL) != 1) 601 return FALSE; 602 } 603 604 return TRUE; 605 } 606 607 static int 608 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type) 609 { 610 if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER) 611 return STT_REGISTER; 612 else 613 return type; 614 } 615 616 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL 617 even in SHN_UNDEF section. */ 618 619 static void 620 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym) 621 { 622 elf_symbol_type *elfsym; 623 624 elfsym = (elf_symbol_type *) asym; 625 if (elfsym->internal_elf_sym.st_info 626 == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER)) 627 { 628 asym->flags |= BSF_GLOBAL; 629 } 630 } 631 632 633 /* Functions for dealing with the e_flags field. */ 634 635 /* Merge backend specific data from an object file to the output 636 object file when linking. */ 637 638 static bfd_boolean 639 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 640 { 641 bfd_boolean error; 642 flagword new_flags, old_flags; 643 int new_mm, old_mm; 644 645 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 646 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 647 return TRUE; 648 649 new_flags = elf_elfheader (ibfd)->e_flags; 650 old_flags = elf_elfheader (obfd)->e_flags; 651 652 if (!elf_flags_init (obfd)) /* First call, no flags set */ 653 { 654 elf_flags_init (obfd) = TRUE; 655 elf_elfheader (obfd)->e_flags = new_flags; 656 } 657 658 else if (new_flags == old_flags) /* Compatible flags are ok */ 659 ; 660 661 else /* Incompatible flags */ 662 { 663 error = FALSE; 664 665 #define EF_SPARC_ISA_EXTENSIONS \ 666 (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1) 667 668 if ((ibfd->flags & DYNAMIC) != 0) 669 { 670 /* We don't want dynamic objects memory ordering and 671 architecture to have any role. That's what dynamic linker 672 should do. */ 673 new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS); 674 new_flags |= (old_flags 675 & (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS)); 676 } 677 else 678 { 679 /* Choose the highest architecture requirements. */ 680 old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS); 681 new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS); 682 if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3)) 683 && (old_flags & EF_SPARC_HAL_R1)) 684 { 685 error = TRUE; 686 (*_bfd_error_handler) 687 (_("%B: linking UltraSPARC specific with HAL specific code"), 688 ibfd); 689 } 690 /* Choose the most restrictive memory ordering. */ 691 old_mm = (old_flags & EF_SPARCV9_MM); 692 new_mm = (new_flags & EF_SPARCV9_MM); 693 old_flags &= ~EF_SPARCV9_MM; 694 new_flags &= ~EF_SPARCV9_MM; 695 if (new_mm < old_mm) 696 old_mm = new_mm; 697 old_flags |= old_mm; 698 new_flags |= old_mm; 699 } 700 701 /* Warn about any other mismatches */ 702 if (new_flags != old_flags) 703 { 704 error = TRUE; 705 (*_bfd_error_handler) 706 (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"), 707 ibfd, (long) new_flags, (long) old_flags); 708 } 709 710 elf_elfheader (obfd)->e_flags = old_flags; 711 712 if (error) 713 { 714 bfd_set_error (bfd_error_bad_value); 715 return FALSE; 716 } 717 } 718 return _bfd_sparc_elf_merge_private_bfd_data (ibfd, obfd); 719 } 720 721 /* MARCO: Set the correct entry size for the .stab section. */ 722 723 static bfd_boolean 724 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED, 725 Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED, 726 asection *sec) 727 { 728 const char *name; 729 730 name = bfd_get_section_name (abfd, sec); 731 732 if (strcmp (name, ".stab") == 0) 733 { 734 /* Even in the 64bit case the stab entries are only 12 bytes long. */ 735 elf_section_data (sec)->this_hdr.sh_entsize = 12; 736 } 737 738 return TRUE; 739 } 740 741 /* Print a STT_REGISTER symbol to file FILE. */ 742 743 static const char * 744 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, void * filep, 745 asymbol *symbol) 746 { 747 FILE *file = (FILE *) filep; 748 int reg, type; 749 750 if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info) 751 != STT_REGISTER) 752 return NULL; 753 754 reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value; 755 type = symbol->flags; 756 fprintf (file, "REG_%c%c%11s%c%c R", "GOLI" [reg / 8], '0' + (reg & 7), "", 757 ((type & BSF_LOCAL) 758 ? (type & BSF_GLOBAL) ? '!' : 'l' 759 : (type & BSF_GLOBAL) ? 'g' : ' '), 760 (type & BSF_WEAK) ? 'w' : ' '); 761 if (symbol->name == NULL || symbol->name [0] == '\0') 762 return "#scratch"; 763 else 764 return symbol->name; 765 } 766 767 static enum elf_reloc_type_class 768 elf64_sparc_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 769 const asection *rel_sec ATTRIBUTE_UNUSED, 770 const Elf_Internal_Rela *rela) 771 { 772 switch ((int) ELF64_R_TYPE (rela->r_info)) 773 { 774 case R_SPARC_RELATIVE: 775 return reloc_class_relative; 776 case R_SPARC_JMP_SLOT: 777 return reloc_class_plt; 778 case R_SPARC_COPY: 779 return reloc_class_copy; 780 default: 781 return reloc_class_normal; 782 } 783 } 784 785 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in 786 standard ELF, because R_SPARC_OLO10 has secondary addend in 787 ELF64_R_TYPE_DATA field. This structure is used to redirect the 788 relocation handling routines. */ 789 790 const struct elf_size_info elf64_sparc_size_info = 791 { 792 sizeof (Elf64_External_Ehdr), 793 sizeof (Elf64_External_Phdr), 794 sizeof (Elf64_External_Shdr), 795 sizeof (Elf64_External_Rel), 796 sizeof (Elf64_External_Rela), 797 sizeof (Elf64_External_Sym), 798 sizeof (Elf64_External_Dyn), 799 sizeof (Elf_External_Note), 800 4, /* hash-table entry size. */ 801 /* Internal relocations per external relocations. 802 For link purposes we use just 1 internal per 803 1 external, for assembly and slurp symbol table 804 we use 2. */ 805 1, 806 64, /* arch_size. */ 807 3, /* log_file_align. */ 808 ELFCLASS64, 809 EV_CURRENT, 810 bfd_elf64_write_out_phdrs, 811 bfd_elf64_write_shdrs_and_ehdr, 812 bfd_elf64_checksum_contents, 813 elf64_sparc_write_relocs, 814 bfd_elf64_swap_symbol_in, 815 bfd_elf64_swap_symbol_out, 816 elf64_sparc_slurp_reloc_table, 817 bfd_elf64_slurp_symbol_table, 818 bfd_elf64_swap_dyn_in, 819 bfd_elf64_swap_dyn_out, 820 bfd_elf64_swap_reloc_in, 821 bfd_elf64_swap_reloc_out, 822 bfd_elf64_swap_reloca_in, 823 bfd_elf64_swap_reloca_out 824 }; 825 826 #define TARGET_BIG_SYM bfd_elf64_sparc_vec 827 #define TARGET_BIG_NAME "elf64-sparc" 828 #define ELF_ARCH bfd_arch_sparc 829 #define ELF_MAXPAGESIZE 0x100000 830 #define ELF_COMMONPAGESIZE 0x2000 831 832 /* This is the official ABI value. */ 833 #define ELF_MACHINE_CODE EM_SPARCV9 834 835 /* This is the value that we used before the ABI was released. */ 836 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9 837 838 #define elf_backend_reloc_type_class \ 839 elf64_sparc_reloc_type_class 840 #define bfd_elf64_get_reloc_upper_bound \ 841 elf64_sparc_get_reloc_upper_bound 842 #define bfd_elf64_get_dynamic_reloc_upper_bound \ 843 elf64_sparc_get_dynamic_reloc_upper_bound 844 #define bfd_elf64_canonicalize_reloc \ 845 elf64_sparc_canonicalize_reloc 846 #define bfd_elf64_canonicalize_dynamic_reloc \ 847 elf64_sparc_canonicalize_dynamic_reloc 848 #define elf_backend_add_symbol_hook \ 849 elf64_sparc_add_symbol_hook 850 #define elf_backend_get_symbol_type \ 851 elf64_sparc_get_symbol_type 852 #define elf_backend_symbol_processing \ 853 elf64_sparc_symbol_processing 854 #define elf_backend_print_symbol_all \ 855 elf64_sparc_print_symbol_all 856 #define elf_backend_output_arch_syms \ 857 elf64_sparc_output_arch_syms 858 #define bfd_elf64_bfd_merge_private_bfd_data \ 859 elf64_sparc_merge_private_bfd_data 860 #define elf_backend_fake_sections \ 861 elf64_sparc_fake_sections 862 #define elf_backend_size_info \ 863 elf64_sparc_size_info 864 865 #define elf_backend_plt_sym_val \ 866 _bfd_sparc_elf_plt_sym_val 867 #define bfd_elf64_bfd_link_hash_table_create \ 868 _bfd_sparc_elf_link_hash_table_create 869 #define bfd_elf64_bfd_link_hash_table_free \ 870 _bfd_sparc_elf_link_hash_table_free 871 #define elf_info_to_howto \ 872 _bfd_sparc_elf_info_to_howto 873 #define elf_backend_copy_indirect_symbol \ 874 _bfd_sparc_elf_copy_indirect_symbol 875 #define bfd_elf64_bfd_reloc_type_lookup \ 876 _bfd_sparc_elf_reloc_type_lookup 877 #define bfd_elf64_bfd_reloc_name_lookup \ 878 _bfd_sparc_elf_reloc_name_lookup 879 #define bfd_elf64_bfd_relax_section \ 880 _bfd_sparc_elf_relax_section 881 #define bfd_elf64_new_section_hook \ 882 _bfd_sparc_elf_new_section_hook 883 884 #define elf_backend_create_dynamic_sections \ 885 _bfd_sparc_elf_create_dynamic_sections 886 #define elf_backend_relocs_compatible \ 887 _bfd_elf_relocs_compatible 888 #define elf_backend_check_relocs \ 889 _bfd_sparc_elf_check_relocs 890 #define elf_backend_adjust_dynamic_symbol \ 891 _bfd_sparc_elf_adjust_dynamic_symbol 892 #define elf_backend_omit_section_dynsym \ 893 _bfd_sparc_elf_omit_section_dynsym 894 #define elf_backend_size_dynamic_sections \ 895 _bfd_sparc_elf_size_dynamic_sections 896 #define elf_backend_relocate_section \ 897 _bfd_sparc_elf_relocate_section 898 #define elf_backend_finish_dynamic_symbol \ 899 _bfd_sparc_elf_finish_dynamic_symbol 900 #define elf_backend_finish_dynamic_sections \ 901 _bfd_sparc_elf_finish_dynamic_sections 902 903 #define bfd_elf64_mkobject \ 904 _bfd_sparc_elf_mkobject 905 #define elf_backend_object_p \ 906 _bfd_sparc_elf_object_p 907 #define elf_backend_gc_mark_hook \ 908 _bfd_sparc_elf_gc_mark_hook 909 #define elf_backend_gc_sweep_hook \ 910 _bfd_sparc_elf_gc_sweep_hook 911 #define elf_backend_init_index_section \ 912 _bfd_elf_init_1_index_section 913 914 #define elf_backend_can_gc_sections 1 915 #define elf_backend_can_refcount 1 916 #define elf_backend_want_got_plt 0 917 #define elf_backend_plt_readonly 0 918 #define elf_backend_want_plt_sym 1 919 #define elf_backend_got_header_size 8 920 #define elf_backend_rela_normal 1 921 922 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table. */ 923 #define elf_backend_plt_alignment 8 924 925 #include "elf64-target.h" 926 927 /* FreeBSD support */ 928 #undef TARGET_BIG_SYM 929 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec 930 #undef TARGET_BIG_NAME 931 #define TARGET_BIG_NAME "elf64-sparc-freebsd" 932 #undef ELF_OSABI 933 #define ELF_OSABI ELFOSABI_FREEBSD 934 935 #undef elf64_bed 936 #define elf64_bed elf64_sparc_fbsd_bed 937 938 #include "elf64-target.h" 939 940 /* Solaris 2. */ 941 942 #undef TARGET_BIG_SYM 943 #define TARGET_BIG_SYM bfd_elf64_sparc_sol2_vec 944 #undef TARGET_BIG_NAME 945 #define TARGET_BIG_NAME "elf64-sparc-sol2" 946 947 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE 948 objects won't be recognized. */ 949 #undef ELF_OSABI 950 951 #undef elf64_bed 952 #define elf64_bed elf64_sparc_sol2_bed 953 954 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte 955 boundary. */ 956 #undef elf_backend_static_tls_alignment 957 #define elf_backend_static_tls_alignment 16 958 959 #include "elf64-target.h" 960