xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-sparc.c (revision a5847cc334d9a7029f6352b847e9e8d71a0f9e0c)
1 /* SPARC-specific support for 64-bit ELF
2    Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3    2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/sparc.h"
27 #include "opcode/sparc.h"
28 #include "elfxx-sparc.h"
29 
30 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value.  */
31 #define MINUS_ONE (~ (bfd_vma) 0)
32 
33 /* Due to the way how we handle R_SPARC_OLO10, each entry in a SHT_RELA
34    section can represent up to two relocs, we must tell the user to allocate
35    more space.  */
36 
37 static long
38 elf64_sparc_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED, asection *sec)
39 {
40   return (sec->reloc_count * 2 + 1) * sizeof (arelent *);
41 }
42 
43 static long
44 elf64_sparc_get_dynamic_reloc_upper_bound (bfd *abfd)
45 {
46   return _bfd_elf_get_dynamic_reloc_upper_bound (abfd) * 2;
47 }
48 
49 /* Read  relocations for ASECT from REL_HDR.  There are RELOC_COUNT of
50    them.  We cannot use generic elf routines for this,  because R_SPARC_OLO10
51    has secondary addend in ELF64_R_TYPE_DATA.  We handle it as two relocations
52    for the same location,  R_SPARC_LO10 and R_SPARC_13.  */
53 
54 static bfd_boolean
55 elf64_sparc_slurp_one_reloc_table (bfd *abfd, asection *asect,
56 				   Elf_Internal_Shdr *rel_hdr,
57 				   asymbol **symbols, bfd_boolean dynamic)
58 {
59   PTR allocated = NULL;
60   bfd_byte *native_relocs;
61   arelent *relent;
62   unsigned int i;
63   int entsize;
64   bfd_size_type count;
65   arelent *relents;
66 
67   allocated = (PTR) bfd_malloc (rel_hdr->sh_size);
68   if (allocated == NULL)
69     goto error_return;
70 
71   if (bfd_seek (abfd, rel_hdr->sh_offset, SEEK_SET) != 0
72       || bfd_bread (allocated, rel_hdr->sh_size, abfd) != rel_hdr->sh_size)
73     goto error_return;
74 
75   native_relocs = (bfd_byte *) allocated;
76 
77   relents = asect->relocation + canon_reloc_count (asect);
78 
79   entsize = rel_hdr->sh_entsize;
80   BFD_ASSERT (entsize == sizeof (Elf64_External_Rela));
81 
82   count = rel_hdr->sh_size / entsize;
83 
84   for (i = 0, relent = relents; i < count;
85        i++, relent++, native_relocs += entsize)
86     {
87       Elf_Internal_Rela rela;
88       unsigned int r_type;
89 
90       bfd_elf64_swap_reloca_in (abfd, native_relocs, &rela);
91 
92       /* The address of an ELF reloc is section relative for an object
93 	 file, and absolute for an executable file or shared library.
94 	 The address of a normal BFD reloc is always section relative,
95 	 and the address of a dynamic reloc is absolute..  */
96       if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0 || dynamic)
97 	relent->address = rela.r_offset;
98       else
99 	relent->address = rela.r_offset - asect->vma;
100 
101       if (ELF64_R_SYM (rela.r_info) == STN_UNDEF)
102 	relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
103       else
104 	{
105 	  asymbol **ps, *s;
106 
107 	  ps = symbols + ELF64_R_SYM (rela.r_info) - 1;
108 	  s = *ps;
109 
110 	  /* Canonicalize ELF section symbols.  FIXME: Why?  */
111 	  if ((s->flags & BSF_SECTION_SYM) == 0)
112 	    relent->sym_ptr_ptr = ps;
113 	  else
114 	    relent->sym_ptr_ptr = s->section->symbol_ptr_ptr;
115 	}
116 
117       relent->addend = rela.r_addend;
118 
119       r_type = ELF64_R_TYPE_ID (rela.r_info);
120       if (r_type == R_SPARC_OLO10)
121 	{
122 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_LO10);
123 	  relent[1].address = relent->address;
124 	  relent++;
125 	  relent->sym_ptr_ptr = bfd_abs_section_ptr->symbol_ptr_ptr;
126 	  relent->addend = ELF64_R_TYPE_DATA (rela.r_info);
127 	  relent->howto = _bfd_sparc_elf_info_to_howto_ptr (R_SPARC_13);
128 	}
129       else
130 	relent->howto = _bfd_sparc_elf_info_to_howto_ptr (r_type);
131     }
132 
133   canon_reloc_count (asect) += relent - relents;
134 
135   if (allocated != NULL)
136     free (allocated);
137 
138   return TRUE;
139 
140  error_return:
141   if (allocated != NULL)
142     free (allocated);
143   return FALSE;
144 }
145 
146 /* Read in and swap the external relocs.  */
147 
148 static bfd_boolean
149 elf64_sparc_slurp_reloc_table (bfd *abfd, asection *asect,
150 			       asymbol **symbols, bfd_boolean dynamic)
151 {
152   struct bfd_elf_section_data * const d = elf_section_data (asect);
153   Elf_Internal_Shdr *rel_hdr;
154   Elf_Internal_Shdr *rel_hdr2;
155   bfd_size_type amt;
156 
157   if (asect->relocation != NULL)
158     return TRUE;
159 
160   if (! dynamic)
161     {
162       if ((asect->flags & SEC_RELOC) == 0
163 	  || asect->reloc_count == 0)
164 	return TRUE;
165 
166       rel_hdr = d->rel.hdr;
167       rel_hdr2 = d->rela.hdr;
168 
169       BFD_ASSERT ((rel_hdr && asect->rel_filepos == rel_hdr->sh_offset)
170 		  || (rel_hdr2 && asect->rel_filepos == rel_hdr2->sh_offset));
171     }
172   else
173     {
174       /* Note that ASECT->RELOC_COUNT tends not to be accurate in this
175 	 case because relocations against this section may use the
176 	 dynamic symbol table, and in that case bfd_section_from_shdr
177 	 in elf.c does not update the RELOC_COUNT.  */
178       if (asect->size == 0)
179 	return TRUE;
180 
181       rel_hdr = &d->this_hdr;
182       asect->reloc_count = NUM_SHDR_ENTRIES (rel_hdr);
183       rel_hdr2 = NULL;
184     }
185 
186   amt = asect->reloc_count;
187   amt *= 2 * sizeof (arelent);
188   asect->relocation = (arelent *) bfd_alloc (abfd, amt);
189   if (asect->relocation == NULL)
190     return FALSE;
191 
192   /* The elf64_sparc_slurp_one_reloc_table routine increments
193      canon_reloc_count.  */
194   canon_reloc_count (asect) = 0;
195 
196   if (rel_hdr
197       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr, symbols,
198 					     dynamic))
199     return FALSE;
200 
201   if (rel_hdr2
202       && !elf64_sparc_slurp_one_reloc_table (abfd, asect, rel_hdr2, symbols,
203 					     dynamic))
204     return FALSE;
205 
206   return TRUE;
207 }
208 
209 /* Canonicalize the relocs.  */
210 
211 static long
212 elf64_sparc_canonicalize_reloc (bfd *abfd, sec_ptr section,
213 				arelent **relptr, asymbol **symbols)
214 {
215   arelent *tblptr;
216   unsigned int i;
217   const struct elf_backend_data *bed = get_elf_backend_data (abfd);
218 
219   if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
220     return -1;
221 
222   tblptr = section->relocation;
223   for (i = 0; i < canon_reloc_count (section); i++)
224     *relptr++ = tblptr++;
225 
226   *relptr = NULL;
227 
228   return canon_reloc_count (section);
229 }
230 
231 
232 /* Canonicalize the dynamic relocation entries.  Note that we return
233    the dynamic relocations as a single block, although they are
234    actually associated with particular sections; the interface, which
235    was designed for SunOS style shared libraries, expects that there
236    is only one set of dynamic relocs.  Any section that was actually
237    installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
238    the dynamic symbol table, is considered to be a dynamic reloc
239    section.  */
240 
241 static long
242 elf64_sparc_canonicalize_dynamic_reloc (bfd *abfd, arelent **storage,
243 					asymbol **syms)
244 {
245   asection *s;
246   long ret;
247 
248   if (elf_dynsymtab (abfd) == 0)
249     {
250       bfd_set_error (bfd_error_invalid_operation);
251       return -1;
252     }
253 
254   ret = 0;
255   for (s = abfd->sections; s != NULL; s = s->next)
256     {
257       if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
258 	  && (elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
259 	{
260 	  arelent *p;
261 	  long count, i;
262 
263 	  if (! elf64_sparc_slurp_reloc_table (abfd, s, syms, TRUE))
264 	    return -1;
265 	  count = canon_reloc_count (s);
266 	  p = s->relocation;
267 	  for (i = 0; i < count; i++)
268 	    *storage++ = p++;
269 	  ret += count;
270 	}
271     }
272 
273   *storage = NULL;
274 
275   return ret;
276 }
277 
278 /* Write out the relocs.  */
279 
280 static void
281 elf64_sparc_write_relocs (bfd *abfd, asection *sec, PTR data)
282 {
283   bfd_boolean *failedp = (bfd_boolean *) data;
284   Elf_Internal_Shdr *rela_hdr;
285   bfd_vma addr_offset;
286   Elf64_External_Rela *outbound_relocas, *src_rela;
287   unsigned int idx, count;
288   asymbol *last_sym = 0;
289   int last_sym_idx = 0;
290 
291   /* If we have already failed, don't do anything.  */
292   if (*failedp)
293     return;
294 
295   if ((sec->flags & SEC_RELOC) == 0)
296     return;
297 
298   /* The linker backend writes the relocs out itself, and sets the
299      reloc_count field to zero to inhibit writing them here.  Also,
300      sometimes the SEC_RELOC flag gets set even when there aren't any
301      relocs.  */
302   if (sec->reloc_count == 0)
303     return;
304 
305   /* We can combine two relocs that refer to the same address
306      into R_SPARC_OLO10 if first one is R_SPARC_LO10 and the
307      latter is R_SPARC_13 with no associated symbol.  */
308   count = 0;
309   for (idx = 0; idx < sec->reloc_count; idx++)
310     {
311       bfd_vma addr;
312 
313       ++count;
314 
315       addr = sec->orelocation[idx]->address;
316       if (sec->orelocation[idx]->howto->type == R_SPARC_LO10
317 	  && idx < sec->reloc_count - 1)
318 	{
319 	  arelent *r = sec->orelocation[idx + 1];
320 
321 	  if (r->howto->type == R_SPARC_13
322 	      && r->address == addr
323 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
324 	      && (*r->sym_ptr_ptr)->value == 0)
325 	    ++idx;
326 	}
327     }
328 
329   rela_hdr = elf_section_data (sec)->rela.hdr;
330 
331   rela_hdr->sh_size = rela_hdr->sh_entsize * count;
332   rela_hdr->contents = (PTR) bfd_alloc (abfd, rela_hdr->sh_size);
333   if (rela_hdr->contents == NULL)
334     {
335       *failedp = TRUE;
336       return;
337     }
338 
339   /* Figure out whether the relocations are RELA or REL relocations.  */
340   if (rela_hdr->sh_type != SHT_RELA)
341     abort ();
342 
343   /* The address of an ELF reloc is section relative for an object
344      file, and absolute for an executable file or shared library.
345      The address of a BFD reloc is always section relative.  */
346   addr_offset = 0;
347   if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
348     addr_offset = sec->vma;
349 
350   /* orelocation has the data, reloc_count has the count...  */
351   outbound_relocas = (Elf64_External_Rela *) rela_hdr->contents;
352   src_rela = outbound_relocas;
353 
354   for (idx = 0; idx < sec->reloc_count; idx++)
355     {
356       Elf_Internal_Rela dst_rela;
357       arelent *ptr;
358       asymbol *sym;
359       int n;
360 
361       ptr = sec->orelocation[idx];
362       sym = *ptr->sym_ptr_ptr;
363       if (sym == last_sym)
364 	n = last_sym_idx;
365       else if (bfd_is_abs_section (sym->section) && sym->value == 0)
366 	n = STN_UNDEF;
367       else
368 	{
369 	  last_sym = sym;
370 	  n = _bfd_elf_symbol_from_bfd_symbol (abfd, &sym);
371 	  if (n < 0)
372 	    {
373 	      *failedp = TRUE;
374 	      return;
375 	    }
376 	  last_sym_idx = n;
377 	}
378 
379       if ((*ptr->sym_ptr_ptr)->the_bfd != NULL
380 	  && (*ptr->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec
381 	  && ! _bfd_elf_validate_reloc (abfd, ptr))
382 	{
383 	  *failedp = TRUE;
384 	  return;
385 	}
386 
387       if (ptr->howto->type == R_SPARC_LO10
388 	  && idx < sec->reloc_count - 1)
389 	{
390 	  arelent *r = sec->orelocation[idx + 1];
391 
392 	  if (r->howto->type == R_SPARC_13
393 	      && r->address == ptr->address
394 	      && bfd_is_abs_section ((*r->sym_ptr_ptr)->section)
395 	      && (*r->sym_ptr_ptr)->value == 0)
396 	    {
397 	      idx++;
398 	      dst_rela.r_info
399 		= ELF64_R_INFO (n, ELF64_R_TYPE_INFO (r->addend,
400 						      R_SPARC_OLO10));
401 	    }
402 	  else
403 	    dst_rela.r_info = ELF64_R_INFO (n, R_SPARC_LO10);
404 	}
405       else
406 	dst_rela.r_info = ELF64_R_INFO (n, ptr->howto->type);
407 
408       dst_rela.r_offset = ptr->address + addr_offset;
409       dst_rela.r_addend = ptr->addend;
410 
411       bfd_elf64_swap_reloca_out (abfd, &dst_rela, (bfd_byte *) src_rela);
412       ++src_rela;
413     }
414 }
415 
416 /* Hook called by the linker routine which adds symbols from an object
417    file.  We use it for STT_REGISTER symbols.  */
418 
419 static bfd_boolean
420 elf64_sparc_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
421 			     Elf_Internal_Sym *sym, const char **namep,
422 			     flagword *flagsp ATTRIBUTE_UNUSED,
423 			     asection **secp ATTRIBUTE_UNUSED,
424 			     bfd_vma *valp ATTRIBUTE_UNUSED)
425 {
426   static const char *const stt_types[] = { "NOTYPE", "OBJECT", "FUNCTION" };
427 
428   if ((abfd->flags & DYNAMIC) == 0
429       && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
430     elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
431 
432   if (ELF_ST_TYPE (sym->st_info) == STT_REGISTER)
433     {
434       int reg;
435       struct _bfd_sparc_elf_app_reg *p;
436 
437       reg = (int)sym->st_value;
438       switch (reg & ~1)
439 	{
440 	case 2: reg -= 2; break;
441 	case 6: reg -= 4; break;
442 	default:
443           (*_bfd_error_handler)
444             (_("%B: Only registers %%g[2367] can be declared using STT_REGISTER"),
445              abfd);
446 	  return FALSE;
447 	}
448 
449       if (info->output_bfd->xvec != abfd->xvec
450 	  || (abfd->flags & DYNAMIC) != 0)
451         {
452 	  /* STT_REGISTER only works when linking an elf64_sparc object.
453 	     If STT_REGISTER comes from a dynamic object, don't put it into
454 	     the output bfd.  The dynamic linker will recheck it.  */
455 	  *namep = NULL;
456 	  return TRUE;
457         }
458 
459       p = _bfd_sparc_elf_hash_table(info)->app_regs + reg;
460 
461       if (p->name != NULL && strcmp (p->name, *namep))
462 	{
463           (*_bfd_error_handler)
464             (_("Register %%g%d used incompatibly: %s in %B, previously %s in %B"),
465              abfd, p->abfd, (int) sym->st_value,
466              **namep ? *namep : "#scratch",
467              *p->name ? p->name : "#scratch");
468 	  return FALSE;
469 	}
470 
471       if (p->name == NULL)
472 	{
473 	  if (**namep)
474 	    {
475 	      struct elf_link_hash_entry *h;
476 
477 	      h = (struct elf_link_hash_entry *)
478 		bfd_link_hash_lookup (info->hash, *namep, FALSE, FALSE, FALSE);
479 
480 	      if (h != NULL)
481 		{
482 		  unsigned char type = h->type;
483 
484 		  if (type > STT_FUNC)
485 		    type = 0;
486 		  (*_bfd_error_handler)
487 		    (_("Symbol `%s' has differing types: REGISTER in %B, previously %s in %B"),
488 		     abfd, p->abfd, *namep, stt_types[type]);
489 		  return FALSE;
490 		}
491 
492 	      p->name = bfd_hash_allocate (&info->hash->table,
493 					   strlen (*namep) + 1);
494 	      if (!p->name)
495 		return FALSE;
496 
497 	      strcpy (p->name, *namep);
498 	    }
499 	  else
500 	    p->name = "";
501 	  p->bind = ELF_ST_BIND (sym->st_info);
502 	  p->abfd = abfd;
503 	  p->shndx = sym->st_shndx;
504 	}
505       else
506 	{
507 	  if (p->bind == STB_WEAK
508 	      && ELF_ST_BIND (sym->st_info) == STB_GLOBAL)
509 	    {
510 	      p->bind = STB_GLOBAL;
511 	      p->abfd = abfd;
512 	    }
513 	}
514       *namep = NULL;
515       return TRUE;
516     }
517   else if (*namep && **namep
518 	   && info->output_bfd->xvec == abfd->xvec)
519     {
520       int i;
521       struct _bfd_sparc_elf_app_reg *p;
522 
523       p = _bfd_sparc_elf_hash_table(info)->app_regs;
524       for (i = 0; i < 4; i++, p++)
525 	if (p->name != NULL && ! strcmp (p->name, *namep))
526 	  {
527 	    unsigned char type = ELF_ST_TYPE (sym->st_info);
528 
529 	    if (type > STT_FUNC)
530 	      type = 0;
531 	    (*_bfd_error_handler)
532 	      (_("Symbol `%s' has differing types: %s in %B, previously REGISTER in %B"),
533 	       abfd, p->abfd, *namep, stt_types[type]);
534 	    return FALSE;
535 	  }
536     }
537   return TRUE;
538 }
539 
540 /* This function takes care of emitting STT_REGISTER symbols
541    which we cannot easily keep in the symbol hash table.  */
542 
543 static bfd_boolean
544 elf64_sparc_output_arch_syms (bfd *output_bfd ATTRIBUTE_UNUSED,
545 			      struct bfd_link_info *info,
546 			      PTR finfo,
547 			      int (*func) (PTR, const char *,
548 					   Elf_Internal_Sym *,
549 					   asection *,
550 					   struct elf_link_hash_entry *))
551 {
552   int reg;
553   struct _bfd_sparc_elf_app_reg *app_regs =
554     _bfd_sparc_elf_hash_table(info)->app_regs;
555   Elf_Internal_Sym sym;
556 
557   /* We arranged in size_dynamic_sections to put the STT_REGISTER entries
558      at the end of the dynlocal list, so they came at the end of the local
559      symbols in the symtab.  Except that they aren't STB_LOCAL, so we need
560      to back up symtab->sh_info.  */
561   if (elf_hash_table (info)->dynlocal)
562     {
563       bfd * dynobj = elf_hash_table (info)->dynobj;
564       asection *dynsymsec = bfd_get_section_by_name (dynobj, ".dynsym");
565       struct elf_link_local_dynamic_entry *e;
566 
567       for (e = elf_hash_table (info)->dynlocal; e ; e = e->next)
568 	if (e->input_indx == -1)
569 	  break;
570       if (e)
571 	{
572 	  elf_section_data (dynsymsec->output_section)->this_hdr.sh_info
573 	    = e->dynindx;
574 	}
575     }
576 
577   if (info->strip == strip_all)
578     return TRUE;
579 
580   for (reg = 0; reg < 4; reg++)
581     if (app_regs [reg].name != NULL)
582       {
583 	if (info->strip == strip_some
584 	    && bfd_hash_lookup (info->keep_hash,
585 				app_regs [reg].name,
586 				FALSE, FALSE) == NULL)
587 	  continue;
588 
589 	sym.st_value = reg < 2 ? reg + 2 : reg + 4;
590 	sym.st_size = 0;
591 	sym.st_other = 0;
592 	sym.st_info = ELF_ST_INFO (app_regs [reg].bind, STT_REGISTER);
593 	sym.st_shndx = app_regs [reg].shndx;
594 	sym.st_target_internal = 0;
595 	if ((*func) (finfo, app_regs [reg].name, &sym,
596 		     sym.st_shndx == SHN_ABS
597 		     ? bfd_abs_section_ptr : bfd_und_section_ptr,
598 		     NULL) != 1)
599 	  return FALSE;
600       }
601 
602   return TRUE;
603 }
604 
605 static int
606 elf64_sparc_get_symbol_type (Elf_Internal_Sym *elf_sym, int type)
607 {
608   if (ELF_ST_TYPE (elf_sym->st_info) == STT_REGISTER)
609     return STT_REGISTER;
610   else
611     return type;
612 }
613 
614 /* A STB_GLOBAL,STT_REGISTER symbol should be BSF_GLOBAL
615    even in SHN_UNDEF section.  */
616 
617 static void
618 elf64_sparc_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED, asymbol *asym)
619 {
620   elf_symbol_type *elfsym;
621 
622   elfsym = (elf_symbol_type *) asym;
623   if (elfsym->internal_elf_sym.st_info
624       == ELF_ST_INFO (STB_GLOBAL, STT_REGISTER))
625     {
626       asym->flags |= BSF_GLOBAL;
627     }
628 }
629 
630 
631 /* Functions for dealing with the e_flags field.  */
632 
633 /* Merge backend specific data from an object file to the output
634    object file when linking.  */
635 
636 static bfd_boolean
637 elf64_sparc_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
638 {
639   bfd_boolean error;
640   flagword new_flags, old_flags;
641   int new_mm, old_mm;
642 
643   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
644       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
645     return TRUE;
646 
647   new_flags = elf_elfheader (ibfd)->e_flags;
648   old_flags = elf_elfheader (obfd)->e_flags;
649 
650   if (!elf_flags_init (obfd))   /* First call, no flags set */
651     {
652       elf_flags_init (obfd) = TRUE;
653       elf_elfheader (obfd)->e_flags = new_flags;
654     }
655 
656   else if (new_flags == old_flags)      /* Compatible flags are ok */
657     ;
658 
659   else                                  /* Incompatible flags */
660     {
661       error = FALSE;
662 
663 #define EF_SPARC_ISA_EXTENSIONS \
664   (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3 | EF_SPARC_HAL_R1)
665 
666       if ((ibfd->flags & DYNAMIC) != 0)
667 	{
668 	  /* We don't want dynamic objects memory ordering and
669 	     architecture to have any role. That's what dynamic linker
670 	     should do.  */
671 	  new_flags &= ~(EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS);
672 	  new_flags |= (old_flags
673 			& (EF_SPARCV9_MM | EF_SPARC_ISA_EXTENSIONS));
674 	}
675       else
676 	{
677 	  /* Choose the highest architecture requirements.  */
678 	  old_flags |= (new_flags & EF_SPARC_ISA_EXTENSIONS);
679 	  new_flags |= (old_flags & EF_SPARC_ISA_EXTENSIONS);
680 	  if ((old_flags & (EF_SPARC_SUN_US1 | EF_SPARC_SUN_US3))
681 	      && (old_flags & EF_SPARC_HAL_R1))
682 	    {
683 	      error = TRUE;
684 	      (*_bfd_error_handler)
685 		(_("%B: linking UltraSPARC specific with HAL specific code"),
686 		 ibfd);
687 	    }
688 	  /* Choose the most restrictive memory ordering.  */
689 	  old_mm = (old_flags & EF_SPARCV9_MM);
690 	  new_mm = (new_flags & EF_SPARCV9_MM);
691 	  old_flags &= ~EF_SPARCV9_MM;
692 	  new_flags &= ~EF_SPARCV9_MM;
693 	  if (new_mm < old_mm)
694 	    old_mm = new_mm;
695 	  old_flags |= old_mm;
696 	  new_flags |= old_mm;
697 	}
698 
699       /* Warn about any other mismatches */
700       if (new_flags != old_flags)
701         {
702           error = TRUE;
703           (*_bfd_error_handler)
704             (_("%B: uses different e_flags (0x%lx) fields than previous modules (0x%lx)"),
705              ibfd, (long) new_flags, (long) old_flags);
706         }
707 
708       elf_elfheader (obfd)->e_flags = old_flags;
709 
710       if (error)
711         {
712           bfd_set_error (bfd_error_bad_value);
713           return FALSE;
714         }
715     }
716   return TRUE;
717 }
718 
719 /* MARCO: Set the correct entry size for the .stab section.  */
720 
721 static bfd_boolean
722 elf64_sparc_fake_sections (bfd *abfd ATTRIBUTE_UNUSED,
723 			   Elf_Internal_Shdr *hdr ATTRIBUTE_UNUSED,
724 			   asection *sec)
725 {
726   const char *name;
727 
728   name = bfd_get_section_name (abfd, sec);
729 
730   if (strcmp (name, ".stab") == 0)
731     {
732       /* Even in the 64bit case the stab entries are only 12 bytes long.  */
733       elf_section_data (sec)->this_hdr.sh_entsize = 12;
734     }
735 
736   return TRUE;
737 }
738 
739 /* Print a STT_REGISTER symbol to file FILE.  */
740 
741 static const char *
742 elf64_sparc_print_symbol_all (bfd *abfd ATTRIBUTE_UNUSED, PTR filep,
743 			      asymbol *symbol)
744 {
745   FILE *file = (FILE *) filep;
746   int reg, type;
747 
748   if (ELF_ST_TYPE (((elf_symbol_type *) symbol)->internal_elf_sym.st_info)
749       != STT_REGISTER)
750     return NULL;
751 
752   reg = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
753   type = symbol->flags;
754   fprintf (file, "REG_%c%c%11s%c%c    R", "GOLI" [reg / 8], '0' + (reg & 7), "",
755 		 ((type & BSF_LOCAL)
756 		  ? (type & BSF_GLOBAL) ? '!' : 'l'
757 	          : (type & BSF_GLOBAL) ? 'g' : ' '),
758 	         (type & BSF_WEAK) ? 'w' : ' ');
759   if (symbol->name == NULL || symbol->name [0] == '\0')
760     return "#scratch";
761   else
762     return symbol->name;
763 }
764 
765 static enum elf_reloc_type_class
766 elf64_sparc_reloc_type_class (const Elf_Internal_Rela *rela)
767 {
768   switch ((int) ELF64_R_TYPE (rela->r_info))
769     {
770     case R_SPARC_RELATIVE:
771       return reloc_class_relative;
772     case R_SPARC_JMP_SLOT:
773       return reloc_class_plt;
774     case R_SPARC_COPY:
775       return reloc_class_copy;
776     default:
777       return reloc_class_normal;
778     }
779 }
780 
781 /* Relocations in the 64 bit SPARC ELF ABI are more complex than in
782    standard ELF, because R_SPARC_OLO10 has secondary addend in
783    ELF64_R_TYPE_DATA field.  This structure is used to redirect the
784    relocation handling routines.  */
785 
786 const struct elf_size_info elf64_sparc_size_info =
787 {
788   sizeof (Elf64_External_Ehdr),
789   sizeof (Elf64_External_Phdr),
790   sizeof (Elf64_External_Shdr),
791   sizeof (Elf64_External_Rel),
792   sizeof (Elf64_External_Rela),
793   sizeof (Elf64_External_Sym),
794   sizeof (Elf64_External_Dyn),
795   sizeof (Elf_External_Note),
796   4,		/* hash-table entry size.  */
797   /* Internal relocations per external relocations.
798      For link purposes we use just 1 internal per
799      1 external, for assembly and slurp symbol table
800      we use 2.  */
801   1,
802   64,		/* arch_size.  */
803   3,		/* log_file_align.  */
804   ELFCLASS64,
805   EV_CURRENT,
806   bfd_elf64_write_out_phdrs,
807   bfd_elf64_write_shdrs_and_ehdr,
808   bfd_elf64_checksum_contents,
809   elf64_sparc_write_relocs,
810   bfd_elf64_swap_symbol_in,
811   bfd_elf64_swap_symbol_out,
812   elf64_sparc_slurp_reloc_table,
813   bfd_elf64_slurp_symbol_table,
814   bfd_elf64_swap_dyn_in,
815   bfd_elf64_swap_dyn_out,
816   bfd_elf64_swap_reloc_in,
817   bfd_elf64_swap_reloc_out,
818   bfd_elf64_swap_reloca_in,
819   bfd_elf64_swap_reloca_out
820 };
821 
822 #define TARGET_BIG_SYM	bfd_elf64_sparc_vec
823 #define TARGET_BIG_NAME	"elf64-sparc"
824 #define ELF_ARCH	bfd_arch_sparc
825 #define ELF_MAXPAGESIZE 0x100000
826 #define ELF_COMMONPAGESIZE 0x2000
827 
828 /* This is the official ABI value.  */
829 #define ELF_MACHINE_CODE EM_SPARCV9
830 
831 /* This is the value that we used before the ABI was released.  */
832 #define ELF_MACHINE_ALT1 EM_OLD_SPARCV9
833 
834 #define elf_backend_reloc_type_class \
835   elf64_sparc_reloc_type_class
836 #define bfd_elf64_get_reloc_upper_bound \
837   elf64_sparc_get_reloc_upper_bound
838 #define bfd_elf64_get_dynamic_reloc_upper_bound \
839   elf64_sparc_get_dynamic_reloc_upper_bound
840 #define bfd_elf64_canonicalize_reloc \
841   elf64_sparc_canonicalize_reloc
842 #define bfd_elf64_canonicalize_dynamic_reloc \
843   elf64_sparc_canonicalize_dynamic_reloc
844 #define elf_backend_add_symbol_hook \
845   elf64_sparc_add_symbol_hook
846 #define elf_backend_get_symbol_type \
847   elf64_sparc_get_symbol_type
848 #define elf_backend_symbol_processing \
849   elf64_sparc_symbol_processing
850 #define elf_backend_print_symbol_all \
851   elf64_sparc_print_symbol_all
852 #define elf_backend_output_arch_syms \
853   elf64_sparc_output_arch_syms
854 #define bfd_elf64_bfd_merge_private_bfd_data \
855   elf64_sparc_merge_private_bfd_data
856 #define elf_backend_fake_sections \
857   elf64_sparc_fake_sections
858 #define elf_backend_size_info \
859   elf64_sparc_size_info
860 
861 #define elf_backend_plt_sym_val	\
862   _bfd_sparc_elf_plt_sym_val
863 #define bfd_elf64_bfd_link_hash_table_create \
864   _bfd_sparc_elf_link_hash_table_create
865 #define bfd_elf64_bfd_link_hash_table_free \
866   _bfd_sparc_elf_link_hash_table_free
867 #define elf_info_to_howto \
868   _bfd_sparc_elf_info_to_howto
869 #define elf_backend_copy_indirect_symbol \
870   _bfd_sparc_elf_copy_indirect_symbol
871 #define bfd_elf64_bfd_reloc_type_lookup \
872   _bfd_sparc_elf_reloc_type_lookup
873 #define bfd_elf64_bfd_reloc_name_lookup \
874   _bfd_sparc_elf_reloc_name_lookup
875 #define bfd_elf64_bfd_relax_section \
876   _bfd_sparc_elf_relax_section
877 #define bfd_elf64_new_section_hook \
878   _bfd_sparc_elf_new_section_hook
879 
880 #define elf_backend_create_dynamic_sections \
881   _bfd_sparc_elf_create_dynamic_sections
882 #define elf_backend_relocs_compatible \
883   _bfd_elf_relocs_compatible
884 #define elf_backend_check_relocs \
885   _bfd_sparc_elf_check_relocs
886 #define elf_backend_adjust_dynamic_symbol \
887   _bfd_sparc_elf_adjust_dynamic_symbol
888 #define elf_backend_omit_section_dynsym \
889   _bfd_sparc_elf_omit_section_dynsym
890 #define elf_backend_size_dynamic_sections \
891   _bfd_sparc_elf_size_dynamic_sections
892 #define elf_backend_relocate_section \
893   _bfd_sparc_elf_relocate_section
894 #define elf_backend_finish_dynamic_symbol \
895   _bfd_sparc_elf_finish_dynamic_symbol
896 #define elf_backend_finish_dynamic_sections \
897   _bfd_sparc_elf_finish_dynamic_sections
898 
899 #define bfd_elf64_mkobject \
900   _bfd_sparc_elf_mkobject
901 #define elf_backend_object_p \
902   _bfd_sparc_elf_object_p
903 #define elf_backend_gc_mark_hook \
904   _bfd_sparc_elf_gc_mark_hook
905 #define elf_backend_gc_sweep_hook \
906   _bfd_sparc_elf_gc_sweep_hook
907 #define elf_backend_init_index_section \
908   _bfd_elf_init_1_index_section
909 
910 #define elf_backend_can_gc_sections 1
911 #define elf_backend_can_refcount 1
912 #define elf_backend_want_got_plt 0
913 #define elf_backend_plt_readonly 0
914 #define elf_backend_want_plt_sym 1
915 #define elf_backend_got_header_size 8
916 #define elf_backend_rela_normal 1
917 
918 /* Section 5.2.4 of the ABI specifies a 256-byte boundary for the table.  */
919 #define elf_backend_plt_alignment 8
920 
921 #define elf_backend_post_process_headers	_bfd_elf_set_osabi
922 
923 #include "elf64-target.h"
924 
925 /* FreeBSD support */
926 #undef  TARGET_BIG_SYM
927 #define TARGET_BIG_SYM bfd_elf64_sparc_freebsd_vec
928 #undef  TARGET_BIG_NAME
929 #define TARGET_BIG_NAME "elf64-sparc-freebsd"
930 #undef	ELF_OSABI
931 #define	ELF_OSABI ELFOSABI_FREEBSD
932 
933 #undef  elf64_bed
934 #define elf64_bed				elf64_sparc_fbsd_bed
935 
936 #include "elf64-target.h"
937 
938 /* Solaris 2.  */
939 
940 #undef	TARGET_BIG_SYM
941 #define	TARGET_BIG_SYM				bfd_elf64_sparc_sol2_vec
942 #undef	TARGET_BIG_NAME
943 #define	TARGET_BIG_NAME				"elf64-sparc-sol2"
944 
945 /* Restore default: we cannot use ELFOSABI_SOLARIS, otherwise ELFOSABI_NONE
946    objects won't be recognized.  */
947 #undef	ELF_OSABI
948 
949 #undef elf64_bed
950 #define elf64_bed				elf64_sparc_sol2_bed
951 
952 /* The 64-bit static TLS arena size is rounded to the nearest 16-byte
953    boundary.  */
954 #undef elf_backend_static_tls_alignment
955 #define elf_backend_static_tls_alignment	16
956 
957 #include "elf64-target.h"
958