1 /* MMIX-specific support for 64-bit ELF. 2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2009, 2010, 2011, 3 2012 4 Free Software Foundation, Inc. 5 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 6 7 This file is part of BFD, the Binary File Descriptor library. 8 9 This program is free software; you can redistribute it and/or modify 10 it under the terms of the GNU General Public License as published by 11 the Free Software Foundation; either version 3 of the License, or 12 (at your option) any later version. 13 14 This program is distributed in the hope that it will be useful, 15 but WITHOUT ANY WARRANTY; without even the implied warranty of 16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 GNU General Public License for more details. 18 19 You should have received a copy of the GNU General Public License 20 along with this program; if not, write to the Free Software 21 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 22 MA 02110-1301, USA. */ 23 24 25 /* No specific ABI or "processor-specific supplement" defined. */ 26 27 /* TODO: 28 - "Traditional" linker relaxation (shrinking whole sections). 29 - Merge reloc stubs jumping to same location. 30 - GETA stub relaxation (call a stub for out of range new 31 R_MMIX_GETA_STUBBABLE). */ 32 33 #include "sysdep.h" 34 #include "bfd.h" 35 #include "libbfd.h" 36 #include "elf-bfd.h" 37 #include "elf/mmix.h" 38 #include "opcode/mmix.h" 39 40 #define MINUS_ONE (((bfd_vma) 0) - 1) 41 42 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 43 44 /* Put these everywhere in new code. */ 45 #define FATAL_DEBUG \ 46 _bfd_abort (__FILE__, __LINE__, \ 47 "Internal: Non-debugged code (test-case missing)") 48 49 #define BAD_CASE(x) \ 50 _bfd_abort (__FILE__, __LINE__, \ 51 "bad case for " #x) 52 53 struct _mmix_elf_section_data 54 { 55 struct bfd_elf_section_data elf; 56 union 57 { 58 struct bpo_reloc_section_info *reloc; 59 struct bpo_greg_section_info *greg; 60 } bpo; 61 62 struct pushj_stub_info 63 { 64 /* Maximum number of stubs needed for this section. */ 65 bfd_size_type n_pushj_relocs; 66 67 /* Size of stubs after a mmix_elf_relax_section round. */ 68 bfd_size_type stubs_size_sum; 69 70 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 71 of these. Allocated in mmix_elf_check_common_relocs. */ 72 bfd_size_type *stub_size; 73 74 /* Offset of next stub during relocation. Somewhat redundant with the 75 above: error coverage is easier and we don't have to reset the 76 stubs_size_sum for relocation. */ 77 bfd_size_type stub_offset; 78 } pjs; 79 80 /* Whether there has been a warning that this section could not be 81 linked due to a specific cause. FIXME: a way to access the 82 linker info or output section, then stuff the limiter guard 83 there. */ 84 bfd_boolean has_warned_bpo; 85 bfd_boolean has_warned_pushj; 86 }; 87 88 #define mmix_elf_section_data(sec) \ 89 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 90 91 /* For each section containing a base-plus-offset (BPO) reloc, we attach 92 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 93 NULL. */ 94 struct bpo_reloc_section_info 95 { 96 /* The base is 1; this is the first number in this section. */ 97 size_t first_base_plus_offset_reloc; 98 99 /* Number of BPO-relocs in this section. */ 100 size_t n_bpo_relocs_this_section; 101 102 /* Running index, used at relocation time. */ 103 size_t bpo_index; 104 105 /* We don't have access to the bfd_link_info struct in 106 mmix_final_link_relocate. What we really want to get at is the 107 global single struct greg_relocation, so we stash it here. */ 108 asection *bpo_greg_section; 109 }; 110 111 /* Helper struct (in global context) for the one below. 112 There's one of these created for every BPO reloc. */ 113 struct bpo_reloc_request 114 { 115 bfd_vma value; 116 117 /* Valid after relaxation. The base is 0; the first register number 118 must be added. The offset is in range 0..255. */ 119 size_t regindex; 120 size_t offset; 121 122 /* The order number for this BPO reloc, corresponding to the order in 123 which BPO relocs were found. Used to create an index after reloc 124 requests are sorted. */ 125 size_t bpo_reloc_no; 126 127 /* Set when the value is computed. Better than coding "guard values" 128 into the other members. Is FALSE only for BPO relocs in a GC:ed 129 section. */ 130 bfd_boolean valid; 131 }; 132 133 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 134 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 135 which is linked into the register contents section 136 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 137 linker; using the same hook as for usual with BPO relocs does not 138 collide. */ 139 struct bpo_greg_section_info 140 { 141 /* After GC, this reflects the number of remaining, non-excluded 142 BPO-relocs. */ 143 size_t n_bpo_relocs; 144 145 /* This is the number of allocated bpo_reloc_requests; the size of 146 sorted_indexes. Valid after the check.*relocs functions are called 147 for all incoming sections. It includes the number of BPO relocs in 148 sections that were GC:ed. */ 149 size_t n_max_bpo_relocs; 150 151 /* A counter used to find out when to fold the BPO gregs, since we 152 don't have a single "after-relaxation" hook. */ 153 size_t n_remaining_bpo_relocs_this_relaxation_round; 154 155 /* The number of linker-allocated GREGs resulting from BPO relocs. 156 This is an approximation after _bfd_mmix_before_linker_allocation 157 and supposedly accurate after mmix_elf_relax_section is called for 158 all incoming non-collected sections. */ 159 size_t n_allocated_bpo_gregs; 160 161 /* Index into reloc_request[], sorted on increasing "value", secondary 162 by increasing index for strict sorting order. */ 163 size_t *bpo_reloc_indexes; 164 165 /* An array of all relocations, with the "value" member filled in by 166 the relaxation function. */ 167 struct bpo_reloc_request *reloc_request; 168 }; 169 170 171 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *); 172 173 extern void mmix_elf_symbol_processing (bfd *, asymbol *); 174 175 /* Only intended to be called from a debugger. */ 176 extern void mmix_dump_bpo_gregs 177 (struct bfd_link_info *, bfd_error_handler_type); 178 179 static void 180 mmix_set_relaxable_size (bfd *, asection *, void *); 181 static bfd_reloc_status_type 182 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, 183 asection *, bfd *, char **); 184 static bfd_reloc_status_type 185 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, 186 bfd_signed_vma, bfd_vma, const char *, asection *, 187 char **); 188 189 190 /* Watch out: this currently needs to have elements with the same index as 191 their R_MMIX_ number. */ 192 static reloc_howto_type elf_mmix_howto_table[] = 193 { 194 /* This reloc does nothing. */ 195 HOWTO (R_MMIX_NONE, /* type */ 196 0, /* rightshift */ 197 2, /* size (0 = byte, 1 = short, 2 = long) */ 198 32, /* bitsize */ 199 FALSE, /* pc_relative */ 200 0, /* bitpos */ 201 complain_overflow_bitfield, /* complain_on_overflow */ 202 bfd_elf_generic_reloc, /* special_function */ 203 "R_MMIX_NONE", /* name */ 204 FALSE, /* partial_inplace */ 205 0, /* src_mask */ 206 0, /* dst_mask */ 207 FALSE), /* pcrel_offset */ 208 209 /* An 8 bit absolute relocation. */ 210 HOWTO (R_MMIX_8, /* type */ 211 0, /* rightshift */ 212 0, /* size (0 = byte, 1 = short, 2 = long) */ 213 8, /* bitsize */ 214 FALSE, /* pc_relative */ 215 0, /* bitpos */ 216 complain_overflow_bitfield, /* complain_on_overflow */ 217 bfd_elf_generic_reloc, /* special_function */ 218 "R_MMIX_8", /* name */ 219 FALSE, /* partial_inplace */ 220 0, /* src_mask */ 221 0xff, /* dst_mask */ 222 FALSE), /* pcrel_offset */ 223 224 /* An 16 bit absolute relocation. */ 225 HOWTO (R_MMIX_16, /* type */ 226 0, /* rightshift */ 227 1, /* size (0 = byte, 1 = short, 2 = long) */ 228 16, /* bitsize */ 229 FALSE, /* pc_relative */ 230 0, /* bitpos */ 231 complain_overflow_bitfield, /* complain_on_overflow */ 232 bfd_elf_generic_reloc, /* special_function */ 233 "R_MMIX_16", /* name */ 234 FALSE, /* partial_inplace */ 235 0, /* src_mask */ 236 0xffff, /* dst_mask */ 237 FALSE), /* pcrel_offset */ 238 239 /* An 24 bit absolute relocation. */ 240 HOWTO (R_MMIX_24, /* type */ 241 0, /* rightshift */ 242 2, /* size (0 = byte, 1 = short, 2 = long) */ 243 24, /* bitsize */ 244 FALSE, /* pc_relative */ 245 0, /* bitpos */ 246 complain_overflow_bitfield, /* complain_on_overflow */ 247 bfd_elf_generic_reloc, /* special_function */ 248 "R_MMIX_24", /* name */ 249 FALSE, /* partial_inplace */ 250 ~0xffffff, /* src_mask */ 251 0xffffff, /* dst_mask */ 252 FALSE), /* pcrel_offset */ 253 254 /* A 32 bit absolute relocation. */ 255 HOWTO (R_MMIX_32, /* type */ 256 0, /* rightshift */ 257 2, /* size (0 = byte, 1 = short, 2 = long) */ 258 32, /* bitsize */ 259 FALSE, /* pc_relative */ 260 0, /* bitpos */ 261 complain_overflow_bitfield, /* complain_on_overflow */ 262 bfd_elf_generic_reloc, /* special_function */ 263 "R_MMIX_32", /* name */ 264 FALSE, /* partial_inplace */ 265 0, /* src_mask */ 266 0xffffffff, /* dst_mask */ 267 FALSE), /* pcrel_offset */ 268 269 /* 64 bit relocation. */ 270 HOWTO (R_MMIX_64, /* type */ 271 0, /* rightshift */ 272 4, /* size (0 = byte, 1 = short, 2 = long) */ 273 64, /* bitsize */ 274 FALSE, /* pc_relative */ 275 0, /* bitpos */ 276 complain_overflow_bitfield, /* complain_on_overflow */ 277 bfd_elf_generic_reloc, /* special_function */ 278 "R_MMIX_64", /* name */ 279 FALSE, /* partial_inplace */ 280 0, /* src_mask */ 281 MINUS_ONE, /* dst_mask */ 282 FALSE), /* pcrel_offset */ 283 284 /* An 8 bit PC-relative relocation. */ 285 HOWTO (R_MMIX_PC_8, /* type */ 286 0, /* rightshift */ 287 0, /* size (0 = byte, 1 = short, 2 = long) */ 288 8, /* bitsize */ 289 TRUE, /* pc_relative */ 290 0, /* bitpos */ 291 complain_overflow_bitfield, /* complain_on_overflow */ 292 bfd_elf_generic_reloc, /* special_function */ 293 "R_MMIX_PC_8", /* name */ 294 FALSE, /* partial_inplace */ 295 0, /* src_mask */ 296 0xff, /* dst_mask */ 297 TRUE), /* pcrel_offset */ 298 299 /* An 16 bit PC-relative relocation. */ 300 HOWTO (R_MMIX_PC_16, /* type */ 301 0, /* rightshift */ 302 1, /* size (0 = byte, 1 = short, 2 = long) */ 303 16, /* bitsize */ 304 TRUE, /* pc_relative */ 305 0, /* bitpos */ 306 complain_overflow_bitfield, /* complain_on_overflow */ 307 bfd_elf_generic_reloc, /* special_function */ 308 "R_MMIX_PC_16", /* name */ 309 FALSE, /* partial_inplace */ 310 0, /* src_mask */ 311 0xffff, /* dst_mask */ 312 TRUE), /* pcrel_offset */ 313 314 /* An 24 bit PC-relative relocation. */ 315 HOWTO (R_MMIX_PC_24, /* type */ 316 0, /* rightshift */ 317 2, /* size (0 = byte, 1 = short, 2 = long) */ 318 24, /* bitsize */ 319 TRUE, /* pc_relative */ 320 0, /* bitpos */ 321 complain_overflow_bitfield, /* complain_on_overflow */ 322 bfd_elf_generic_reloc, /* special_function */ 323 "R_MMIX_PC_24", /* name */ 324 FALSE, /* partial_inplace */ 325 ~0xffffff, /* src_mask */ 326 0xffffff, /* dst_mask */ 327 TRUE), /* pcrel_offset */ 328 329 /* A 32 bit absolute PC-relative relocation. */ 330 HOWTO (R_MMIX_PC_32, /* type */ 331 0, /* rightshift */ 332 2, /* size (0 = byte, 1 = short, 2 = long) */ 333 32, /* bitsize */ 334 TRUE, /* pc_relative */ 335 0, /* bitpos */ 336 complain_overflow_bitfield, /* complain_on_overflow */ 337 bfd_elf_generic_reloc, /* special_function */ 338 "R_MMIX_PC_32", /* name */ 339 FALSE, /* partial_inplace */ 340 0, /* src_mask */ 341 0xffffffff, /* dst_mask */ 342 TRUE), /* pcrel_offset */ 343 344 /* 64 bit PC-relative relocation. */ 345 HOWTO (R_MMIX_PC_64, /* type */ 346 0, /* rightshift */ 347 4, /* size (0 = byte, 1 = short, 2 = long) */ 348 64, /* bitsize */ 349 TRUE, /* pc_relative */ 350 0, /* bitpos */ 351 complain_overflow_bitfield, /* complain_on_overflow */ 352 bfd_elf_generic_reloc, /* special_function */ 353 "R_MMIX_PC_64", /* name */ 354 FALSE, /* partial_inplace */ 355 0, /* src_mask */ 356 MINUS_ONE, /* dst_mask */ 357 TRUE), /* pcrel_offset */ 358 359 /* GNU extension to record C++ vtable hierarchy. */ 360 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 361 0, /* rightshift */ 362 0, /* size (0 = byte, 1 = short, 2 = long) */ 363 0, /* bitsize */ 364 FALSE, /* pc_relative */ 365 0, /* bitpos */ 366 complain_overflow_dont, /* complain_on_overflow */ 367 NULL, /* special_function */ 368 "R_MMIX_GNU_VTINHERIT", /* name */ 369 FALSE, /* partial_inplace */ 370 0, /* src_mask */ 371 0, /* dst_mask */ 372 TRUE), /* pcrel_offset */ 373 374 /* GNU extension to record C++ vtable member usage. */ 375 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 376 0, /* rightshift */ 377 0, /* size (0 = byte, 1 = short, 2 = long) */ 378 0, /* bitsize */ 379 FALSE, /* pc_relative */ 380 0, /* bitpos */ 381 complain_overflow_dont, /* complain_on_overflow */ 382 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 383 "R_MMIX_GNU_VTENTRY", /* name */ 384 FALSE, /* partial_inplace */ 385 0, /* src_mask */ 386 0, /* dst_mask */ 387 FALSE), /* pcrel_offset */ 388 389 /* The GETA relocation is supposed to get any address that could 390 possibly be reached by the GETA instruction. It can silently expand 391 to get a 64-bit operand, but will complain if any of the two least 392 significant bits are set. The howto members reflect a simple GETA. */ 393 HOWTO (R_MMIX_GETA, /* type */ 394 2, /* rightshift */ 395 2, /* size (0 = byte, 1 = short, 2 = long) */ 396 19, /* bitsize */ 397 TRUE, /* pc_relative */ 398 0, /* bitpos */ 399 complain_overflow_signed, /* complain_on_overflow */ 400 mmix_elf_reloc, /* special_function */ 401 "R_MMIX_GETA", /* name */ 402 FALSE, /* partial_inplace */ 403 ~0x0100ffff, /* src_mask */ 404 0x0100ffff, /* dst_mask */ 405 TRUE), /* pcrel_offset */ 406 407 HOWTO (R_MMIX_GETA_1, /* type */ 408 2, /* rightshift */ 409 2, /* size (0 = byte, 1 = short, 2 = long) */ 410 19, /* bitsize */ 411 TRUE, /* pc_relative */ 412 0, /* bitpos */ 413 complain_overflow_signed, /* complain_on_overflow */ 414 mmix_elf_reloc, /* special_function */ 415 "R_MMIX_GETA_1", /* name */ 416 FALSE, /* partial_inplace */ 417 ~0x0100ffff, /* src_mask */ 418 0x0100ffff, /* dst_mask */ 419 TRUE), /* pcrel_offset */ 420 421 HOWTO (R_MMIX_GETA_2, /* type */ 422 2, /* rightshift */ 423 2, /* size (0 = byte, 1 = short, 2 = long) */ 424 19, /* bitsize */ 425 TRUE, /* pc_relative */ 426 0, /* bitpos */ 427 complain_overflow_signed, /* complain_on_overflow */ 428 mmix_elf_reloc, /* special_function */ 429 "R_MMIX_GETA_2", /* name */ 430 FALSE, /* partial_inplace */ 431 ~0x0100ffff, /* src_mask */ 432 0x0100ffff, /* dst_mask */ 433 TRUE), /* pcrel_offset */ 434 435 HOWTO (R_MMIX_GETA_3, /* type */ 436 2, /* rightshift */ 437 2, /* size (0 = byte, 1 = short, 2 = long) */ 438 19, /* bitsize */ 439 TRUE, /* pc_relative */ 440 0, /* bitpos */ 441 complain_overflow_signed, /* complain_on_overflow */ 442 mmix_elf_reloc, /* special_function */ 443 "R_MMIX_GETA_3", /* name */ 444 FALSE, /* partial_inplace */ 445 ~0x0100ffff, /* src_mask */ 446 0x0100ffff, /* dst_mask */ 447 TRUE), /* pcrel_offset */ 448 449 /* The conditional branches are supposed to reach any (code) address. 450 It can silently expand to a 64-bit operand, but will emit an error if 451 any of the two least significant bits are set. The howto members 452 reflect a simple branch. */ 453 HOWTO (R_MMIX_CBRANCH, /* type */ 454 2, /* rightshift */ 455 2, /* size (0 = byte, 1 = short, 2 = long) */ 456 19, /* bitsize */ 457 TRUE, /* pc_relative */ 458 0, /* bitpos */ 459 complain_overflow_signed, /* complain_on_overflow */ 460 mmix_elf_reloc, /* special_function */ 461 "R_MMIX_CBRANCH", /* name */ 462 FALSE, /* partial_inplace */ 463 ~0x0100ffff, /* src_mask */ 464 0x0100ffff, /* dst_mask */ 465 TRUE), /* pcrel_offset */ 466 467 HOWTO (R_MMIX_CBRANCH_J, /* type */ 468 2, /* rightshift */ 469 2, /* size (0 = byte, 1 = short, 2 = long) */ 470 19, /* bitsize */ 471 TRUE, /* pc_relative */ 472 0, /* bitpos */ 473 complain_overflow_signed, /* complain_on_overflow */ 474 mmix_elf_reloc, /* special_function */ 475 "R_MMIX_CBRANCH_J", /* name */ 476 FALSE, /* partial_inplace */ 477 ~0x0100ffff, /* src_mask */ 478 0x0100ffff, /* dst_mask */ 479 TRUE), /* pcrel_offset */ 480 481 HOWTO (R_MMIX_CBRANCH_1, /* type */ 482 2, /* rightshift */ 483 2, /* size (0 = byte, 1 = short, 2 = long) */ 484 19, /* bitsize */ 485 TRUE, /* pc_relative */ 486 0, /* bitpos */ 487 complain_overflow_signed, /* complain_on_overflow */ 488 mmix_elf_reloc, /* special_function */ 489 "R_MMIX_CBRANCH_1", /* name */ 490 FALSE, /* partial_inplace */ 491 ~0x0100ffff, /* src_mask */ 492 0x0100ffff, /* dst_mask */ 493 TRUE), /* pcrel_offset */ 494 495 HOWTO (R_MMIX_CBRANCH_2, /* type */ 496 2, /* rightshift */ 497 2, /* size (0 = byte, 1 = short, 2 = long) */ 498 19, /* bitsize */ 499 TRUE, /* pc_relative */ 500 0, /* bitpos */ 501 complain_overflow_signed, /* complain_on_overflow */ 502 mmix_elf_reloc, /* special_function */ 503 "R_MMIX_CBRANCH_2", /* name */ 504 FALSE, /* partial_inplace */ 505 ~0x0100ffff, /* src_mask */ 506 0x0100ffff, /* dst_mask */ 507 TRUE), /* pcrel_offset */ 508 509 HOWTO (R_MMIX_CBRANCH_3, /* type */ 510 2, /* rightshift */ 511 2, /* size (0 = byte, 1 = short, 2 = long) */ 512 19, /* bitsize */ 513 TRUE, /* pc_relative */ 514 0, /* bitpos */ 515 complain_overflow_signed, /* complain_on_overflow */ 516 mmix_elf_reloc, /* special_function */ 517 "R_MMIX_CBRANCH_3", /* name */ 518 FALSE, /* partial_inplace */ 519 ~0x0100ffff, /* src_mask */ 520 0x0100ffff, /* dst_mask */ 521 TRUE), /* pcrel_offset */ 522 523 /* The PUSHJ instruction can reach any (code) address, as long as it's 524 the beginning of a function (no usable restriction). It can silently 525 expand to a 64-bit operand, but will emit an error if any of the two 526 least significant bits are set. It can also expand into a call to a 527 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 528 PUSHJ. */ 529 HOWTO (R_MMIX_PUSHJ, /* type */ 530 2, /* rightshift */ 531 2, /* size (0 = byte, 1 = short, 2 = long) */ 532 19, /* bitsize */ 533 TRUE, /* pc_relative */ 534 0, /* bitpos */ 535 complain_overflow_signed, /* complain_on_overflow */ 536 mmix_elf_reloc, /* special_function */ 537 "R_MMIX_PUSHJ", /* name */ 538 FALSE, /* partial_inplace */ 539 ~0x0100ffff, /* src_mask */ 540 0x0100ffff, /* dst_mask */ 541 TRUE), /* pcrel_offset */ 542 543 HOWTO (R_MMIX_PUSHJ_1, /* type */ 544 2, /* rightshift */ 545 2, /* size (0 = byte, 1 = short, 2 = long) */ 546 19, /* bitsize */ 547 TRUE, /* pc_relative */ 548 0, /* bitpos */ 549 complain_overflow_signed, /* complain_on_overflow */ 550 mmix_elf_reloc, /* special_function */ 551 "R_MMIX_PUSHJ_1", /* name */ 552 FALSE, /* partial_inplace */ 553 ~0x0100ffff, /* src_mask */ 554 0x0100ffff, /* dst_mask */ 555 TRUE), /* pcrel_offset */ 556 557 HOWTO (R_MMIX_PUSHJ_2, /* type */ 558 2, /* rightshift */ 559 2, /* size (0 = byte, 1 = short, 2 = long) */ 560 19, /* bitsize */ 561 TRUE, /* pc_relative */ 562 0, /* bitpos */ 563 complain_overflow_signed, /* complain_on_overflow */ 564 mmix_elf_reloc, /* special_function */ 565 "R_MMIX_PUSHJ_2", /* name */ 566 FALSE, /* partial_inplace */ 567 ~0x0100ffff, /* src_mask */ 568 0x0100ffff, /* dst_mask */ 569 TRUE), /* pcrel_offset */ 570 571 HOWTO (R_MMIX_PUSHJ_3, /* type */ 572 2, /* rightshift */ 573 2, /* size (0 = byte, 1 = short, 2 = long) */ 574 19, /* bitsize */ 575 TRUE, /* pc_relative */ 576 0, /* bitpos */ 577 complain_overflow_signed, /* complain_on_overflow */ 578 mmix_elf_reloc, /* special_function */ 579 "R_MMIX_PUSHJ_3", /* name */ 580 FALSE, /* partial_inplace */ 581 ~0x0100ffff, /* src_mask */ 582 0x0100ffff, /* dst_mask */ 583 TRUE), /* pcrel_offset */ 584 585 /* A JMP is supposed to reach any (code) address. By itself, it can 586 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 587 limit is soon reached if you link the program in wildly different 588 memory segments. The howto members reflect a trivial JMP. */ 589 HOWTO (R_MMIX_JMP, /* type */ 590 2, /* rightshift */ 591 2, /* size (0 = byte, 1 = short, 2 = long) */ 592 27, /* bitsize */ 593 TRUE, /* pc_relative */ 594 0, /* bitpos */ 595 complain_overflow_signed, /* complain_on_overflow */ 596 mmix_elf_reloc, /* special_function */ 597 "R_MMIX_JMP", /* name */ 598 FALSE, /* partial_inplace */ 599 ~0x1ffffff, /* src_mask */ 600 0x1ffffff, /* dst_mask */ 601 TRUE), /* pcrel_offset */ 602 603 HOWTO (R_MMIX_JMP_1, /* type */ 604 2, /* rightshift */ 605 2, /* size (0 = byte, 1 = short, 2 = long) */ 606 27, /* bitsize */ 607 TRUE, /* pc_relative */ 608 0, /* bitpos */ 609 complain_overflow_signed, /* complain_on_overflow */ 610 mmix_elf_reloc, /* special_function */ 611 "R_MMIX_JMP_1", /* name */ 612 FALSE, /* partial_inplace */ 613 ~0x1ffffff, /* src_mask */ 614 0x1ffffff, /* dst_mask */ 615 TRUE), /* pcrel_offset */ 616 617 HOWTO (R_MMIX_JMP_2, /* type */ 618 2, /* rightshift */ 619 2, /* size (0 = byte, 1 = short, 2 = long) */ 620 27, /* bitsize */ 621 TRUE, /* pc_relative */ 622 0, /* bitpos */ 623 complain_overflow_signed, /* complain_on_overflow */ 624 mmix_elf_reloc, /* special_function */ 625 "R_MMIX_JMP_2", /* name */ 626 FALSE, /* partial_inplace */ 627 ~0x1ffffff, /* src_mask */ 628 0x1ffffff, /* dst_mask */ 629 TRUE), /* pcrel_offset */ 630 631 HOWTO (R_MMIX_JMP_3, /* type */ 632 2, /* rightshift */ 633 2, /* size (0 = byte, 1 = short, 2 = long) */ 634 27, /* bitsize */ 635 TRUE, /* pc_relative */ 636 0, /* bitpos */ 637 complain_overflow_signed, /* complain_on_overflow */ 638 mmix_elf_reloc, /* special_function */ 639 "R_MMIX_JMP_3", /* name */ 640 FALSE, /* partial_inplace */ 641 ~0x1ffffff, /* src_mask */ 642 0x1ffffff, /* dst_mask */ 643 TRUE), /* pcrel_offset */ 644 645 /* When we don't emit link-time-relaxable code from the assembler, or 646 when relaxation has done all it can do, these relocs are used. For 647 GETA/PUSHJ/branches. */ 648 HOWTO (R_MMIX_ADDR19, /* type */ 649 2, /* rightshift */ 650 2, /* size (0 = byte, 1 = short, 2 = long) */ 651 19, /* bitsize */ 652 TRUE, /* pc_relative */ 653 0, /* bitpos */ 654 complain_overflow_signed, /* complain_on_overflow */ 655 mmix_elf_reloc, /* special_function */ 656 "R_MMIX_ADDR19", /* name */ 657 FALSE, /* partial_inplace */ 658 ~0x0100ffff, /* src_mask */ 659 0x0100ffff, /* dst_mask */ 660 TRUE), /* pcrel_offset */ 661 662 /* For JMP. */ 663 HOWTO (R_MMIX_ADDR27, /* type */ 664 2, /* rightshift */ 665 2, /* size (0 = byte, 1 = short, 2 = long) */ 666 27, /* bitsize */ 667 TRUE, /* pc_relative */ 668 0, /* bitpos */ 669 complain_overflow_signed, /* complain_on_overflow */ 670 mmix_elf_reloc, /* special_function */ 671 "R_MMIX_ADDR27", /* name */ 672 FALSE, /* partial_inplace */ 673 ~0x1ffffff, /* src_mask */ 674 0x1ffffff, /* dst_mask */ 675 TRUE), /* pcrel_offset */ 676 677 /* A general register or the value 0..255. If a value, then the 678 instruction (offset -3) needs adjusting. */ 679 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 680 0, /* rightshift */ 681 1, /* size (0 = byte, 1 = short, 2 = long) */ 682 8, /* bitsize */ 683 FALSE, /* pc_relative */ 684 0, /* bitpos */ 685 complain_overflow_bitfield, /* complain_on_overflow */ 686 mmix_elf_reloc, /* special_function */ 687 "R_MMIX_REG_OR_BYTE", /* name */ 688 FALSE, /* partial_inplace */ 689 0, /* src_mask */ 690 0xff, /* dst_mask */ 691 FALSE), /* pcrel_offset */ 692 693 /* A general register. */ 694 HOWTO (R_MMIX_REG, /* type */ 695 0, /* rightshift */ 696 1, /* size (0 = byte, 1 = short, 2 = long) */ 697 8, /* bitsize */ 698 FALSE, /* pc_relative */ 699 0, /* bitpos */ 700 complain_overflow_bitfield, /* complain_on_overflow */ 701 mmix_elf_reloc, /* special_function */ 702 "R_MMIX_REG", /* name */ 703 FALSE, /* partial_inplace */ 704 0, /* src_mask */ 705 0xff, /* dst_mask */ 706 FALSE), /* pcrel_offset */ 707 708 /* A register plus an index, corresponding to the relocation expression. 709 The sizes must correspond to the valid range of the expression, while 710 the bitmasks correspond to what we store in the image. */ 711 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 712 0, /* rightshift */ 713 4, /* size (0 = byte, 1 = short, 2 = long) */ 714 64, /* bitsize */ 715 FALSE, /* pc_relative */ 716 0, /* bitpos */ 717 complain_overflow_bitfield, /* complain_on_overflow */ 718 mmix_elf_reloc, /* special_function */ 719 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 720 FALSE, /* partial_inplace */ 721 0, /* src_mask */ 722 0xffff, /* dst_mask */ 723 FALSE), /* pcrel_offset */ 724 725 /* A "magic" relocation for a LOCAL expression, asserting that the 726 expression is less than the number of global registers. No actual 727 modification of the contents is done. Implementing this as a 728 relocation was less intrusive than e.g. putting such expressions in a 729 section to discard *after* relocation. */ 730 HOWTO (R_MMIX_LOCAL, /* type */ 731 0, /* rightshift */ 732 0, /* size (0 = byte, 1 = short, 2 = long) */ 733 0, /* bitsize */ 734 FALSE, /* pc_relative */ 735 0, /* bitpos */ 736 complain_overflow_dont, /* complain_on_overflow */ 737 mmix_elf_reloc, /* special_function */ 738 "R_MMIX_LOCAL", /* name */ 739 FALSE, /* partial_inplace */ 740 0, /* src_mask */ 741 0, /* dst_mask */ 742 FALSE), /* pcrel_offset */ 743 744 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 745 2, /* rightshift */ 746 2, /* size (0 = byte, 1 = short, 2 = long) */ 747 19, /* bitsize */ 748 TRUE, /* pc_relative */ 749 0, /* bitpos */ 750 complain_overflow_signed, /* complain_on_overflow */ 751 mmix_elf_reloc, /* special_function */ 752 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 753 FALSE, /* partial_inplace */ 754 ~0x0100ffff, /* src_mask */ 755 0x0100ffff, /* dst_mask */ 756 TRUE) /* pcrel_offset */ 757 }; 758 759 760 /* Map BFD reloc types to MMIX ELF reloc types. */ 761 762 struct mmix_reloc_map 763 { 764 bfd_reloc_code_real_type bfd_reloc_val; 765 enum elf_mmix_reloc_type elf_reloc_val; 766 }; 767 768 769 static const struct mmix_reloc_map mmix_reloc_map[] = 770 { 771 {BFD_RELOC_NONE, R_MMIX_NONE}, 772 {BFD_RELOC_8, R_MMIX_8}, 773 {BFD_RELOC_16, R_MMIX_16}, 774 {BFD_RELOC_24, R_MMIX_24}, 775 {BFD_RELOC_32, R_MMIX_32}, 776 {BFD_RELOC_64, R_MMIX_64}, 777 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 778 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 779 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 780 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 781 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 782 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 783 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 784 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 785 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 786 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 787 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 788 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 789 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 790 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 791 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 792 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 793 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 794 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 795 }; 796 797 static reloc_howto_type * 798 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 799 bfd_reloc_code_real_type code) 800 { 801 unsigned int i; 802 803 for (i = 0; 804 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 805 i++) 806 { 807 if (mmix_reloc_map[i].bfd_reloc_val == code) 808 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 809 } 810 811 return NULL; 812 } 813 814 static reloc_howto_type * 815 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 816 const char *r_name) 817 { 818 unsigned int i; 819 820 for (i = 0; 821 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); 822 i++) 823 if (elf_mmix_howto_table[i].name != NULL 824 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) 825 return &elf_mmix_howto_table[i]; 826 827 return NULL; 828 } 829 830 static bfd_boolean 831 mmix_elf_new_section_hook (bfd *abfd, asection *sec) 832 { 833 if (!sec->used_by_bfd) 834 { 835 struct _mmix_elf_section_data *sdata; 836 bfd_size_type amt = sizeof (*sdata); 837 838 sdata = bfd_zalloc (abfd, amt); 839 if (sdata == NULL) 840 return FALSE; 841 sec->used_by_bfd = sdata; 842 } 843 844 return _bfd_elf_new_section_hook (abfd, sec); 845 } 846 847 848 /* This function performs the actual bitfiddling and sanity check for a 849 final relocation. Each relocation gets its *worst*-case expansion 850 in size when it arrives here; any reduction in size should have been 851 caught in linker relaxation earlier. When we get here, the relocation 852 looks like the smallest instruction with SWYM:s (nop:s) appended to the 853 max size. We fill in those nop:s. 854 855 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 856 GETA $N,foo 857 -> 858 SETL $N,foo & 0xffff 859 INCML $N,(foo >> 16) & 0xffff 860 INCMH $N,(foo >> 32) & 0xffff 861 INCH $N,(foo >> 48) & 0xffff 862 863 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 864 condbranches needing relaxation might be rare enough to not be 865 worthwhile.) 866 [P]Bcc $N,foo 867 -> 868 [~P]B~cc $N,.+20 869 SETL $255,foo & ... 870 INCML ... 871 INCMH ... 872 INCH ... 873 GO $255,$255,0 874 875 R_MMIX_PUSHJ: (FIXME: Relaxation...) 876 PUSHJ $N,foo 877 -> 878 SETL $255,foo & ... 879 INCML ... 880 INCMH ... 881 INCH ... 882 PUSHGO $N,$255,0 883 884 R_MMIX_JMP: (FIXME: Relaxation...) 885 JMP foo 886 -> 887 SETL $255,foo & ... 888 INCML ... 889 INCMH ... 890 INCH ... 891 GO $255,$255,0 892 893 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 894 895 static bfd_reloc_status_type 896 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, 897 void *datap, bfd_vma addr, bfd_vma value, 898 char **error_message) 899 { 900 bfd *abfd = isec->owner; 901 bfd_reloc_status_type flag = bfd_reloc_ok; 902 bfd_reloc_status_type r; 903 int offs = 0; 904 int reg = 255; 905 906 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 907 We handle the differences here and the common sequence later. */ 908 switch (howto->type) 909 { 910 case R_MMIX_GETA: 911 offs = 0; 912 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 913 914 /* We change to an absolute value. */ 915 value += addr; 916 break; 917 918 case R_MMIX_CBRANCH: 919 { 920 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 921 922 /* Invert the condition and prediction bit, and set the offset 923 to five instructions ahead. 924 925 We *can* do better if we want to. If the branch is found to be 926 within limits, we could leave the branch as is; there'll just 927 be a bunch of NOP:s after it. But we shouldn't see this 928 sequence often enough that it's worth doing it. */ 929 930 bfd_put_32 (abfd, 931 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 932 | (24/4)), 933 (bfd_byte *) datap); 934 935 /* Put a "GO $255,$255,0" after the common sequence. */ 936 bfd_put_32 (abfd, 937 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 938 (bfd_byte *) datap + 20); 939 940 /* Common sequence starts at offset 4. */ 941 offs = 4; 942 943 /* We change to an absolute value. */ 944 value += addr; 945 } 946 break; 947 948 case R_MMIX_PUSHJ_STUBBABLE: 949 /* If the address fits, we're fine. */ 950 if ((value & 3) == 0 951 /* Note rightshift 0; see R_MMIX_JMP case below. */ 952 && (r = bfd_check_overflow (complain_overflow_signed, 953 howto->bitsize, 954 0, 955 bfd_arch_bits_per_address (abfd), 956 value)) == bfd_reloc_ok) 957 goto pcrel_mmix_reloc_fits; 958 else 959 { 960 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 961 962 /* We have the bytes at the PUSHJ insn and need to get the 963 position for the stub. There's supposed to be room allocated 964 for the stub. */ 965 bfd_byte *stubcontents 966 = ((bfd_byte *) datap 967 - (addr - (isec->output_section->vma + isec->output_offset)) 968 + size 969 + mmix_elf_section_data (isec)->pjs.stub_offset); 970 bfd_vma stubaddr; 971 972 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) 973 { 974 /* This shouldn't happen when linking to ELF or mmo, so 975 this is an attempt to link to "binary", right? We 976 can't access the output bfd, so we can't verify that 977 assumption. We only know that the critical 978 mmix_elf_check_common_relocs has not been called, 979 which happens when the output format is different 980 from the input format (and is not mmo). */ 981 if (! mmix_elf_section_data (isec)->has_warned_pushj) 982 { 983 /* For the first such error per input section, produce 984 a verbose message. */ 985 *error_message 986 = _("invalid input relocation when producing" 987 " non-ELF, non-mmo format output." 988 "\n Please use the objcopy program to convert from" 989 " ELF or mmo," 990 "\n or assemble using" 991 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); 992 mmix_elf_section_data (isec)->has_warned_pushj = TRUE; 993 return bfd_reloc_dangerous; 994 } 995 996 /* For subsequent errors, return this one, which is 997 rate-limited but looks a little bit different, 998 hopefully without affecting user-friendliness. */ 999 return bfd_reloc_overflow; 1000 } 1001 1002 /* The address doesn't fit, so redirect the PUSHJ to the 1003 location of the stub. */ 1004 r = mmix_elf_perform_relocation (isec, 1005 &elf_mmix_howto_table 1006 [R_MMIX_ADDR19], 1007 datap, 1008 addr, 1009 isec->output_section->vma 1010 + isec->output_offset 1011 + size 1012 + (mmix_elf_section_data (isec) 1013 ->pjs.stub_offset) 1014 - addr, 1015 error_message); 1016 if (r != bfd_reloc_ok) 1017 return r; 1018 1019 stubaddr 1020 = (isec->output_section->vma 1021 + isec->output_offset 1022 + size 1023 + mmix_elf_section_data (isec)->pjs.stub_offset); 1024 1025 /* We generate a simple JMP if that suffices, else the whole 5 1026 insn stub. */ 1027 if (bfd_check_overflow (complain_overflow_signed, 1028 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1029 0, 1030 bfd_arch_bits_per_address (abfd), 1031 addr + value - stubaddr) == bfd_reloc_ok) 1032 { 1033 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1034 r = mmix_elf_perform_relocation (isec, 1035 &elf_mmix_howto_table 1036 [R_MMIX_ADDR27], 1037 stubcontents, 1038 stubaddr, 1039 value + addr - stubaddr, 1040 error_message); 1041 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1042 1043 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1044 > isec->size) 1045 abort (); 1046 1047 return r; 1048 } 1049 else 1050 { 1051 /* Put a "GO $255,0" after the common sequence. */ 1052 bfd_put_32 (abfd, 1053 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1054 | 0xff00, (bfd_byte *) stubcontents + 16); 1055 1056 /* Prepare for the general code to set the first part of the 1057 linker stub, and */ 1058 value += addr; 1059 datap = stubcontents; 1060 mmix_elf_section_data (isec)->pjs.stub_offset 1061 += MAX_PUSHJ_STUB_SIZE; 1062 } 1063 } 1064 break; 1065 1066 case R_MMIX_PUSHJ: 1067 { 1068 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1069 1070 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1071 bfd_put_32 (abfd, 1072 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1073 | (inreg << 16) 1074 | 0xff00, 1075 (bfd_byte *) datap + 16); 1076 1077 /* We change to an absolute value. */ 1078 value += addr; 1079 } 1080 break; 1081 1082 case R_MMIX_JMP: 1083 /* This one is a little special. If we get here on a non-relaxing 1084 link, and the destination is actually in range, we don't need to 1085 execute the nops. 1086 If so, we fall through to the bit-fiddling relocs. 1087 1088 FIXME: bfd_check_overflow seems broken; the relocation is 1089 rightshifted before testing, so supply a zero rightshift. */ 1090 1091 if (! ((value & 3) == 0 1092 && (r = bfd_check_overflow (complain_overflow_signed, 1093 howto->bitsize, 1094 0, 1095 bfd_arch_bits_per_address (abfd), 1096 value)) == bfd_reloc_ok)) 1097 { 1098 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1099 modified below, and put a "GO $255,$255,0" after the 1100 address-loading sequence. */ 1101 bfd_put_32 (abfd, 1102 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1103 | 0xffff00, 1104 (bfd_byte *) datap + 16); 1105 1106 /* We change to an absolute value. */ 1107 value += addr; 1108 break; 1109 } 1110 /* FALLTHROUGH. */ 1111 case R_MMIX_ADDR19: 1112 case R_MMIX_ADDR27: 1113 pcrel_mmix_reloc_fits: 1114 /* These must be in range, or else we emit an error. */ 1115 if ((value & 3) == 0 1116 /* Note rightshift 0; see above. */ 1117 && (r = bfd_check_overflow (complain_overflow_signed, 1118 howto->bitsize, 1119 0, 1120 bfd_arch_bits_per_address (abfd), 1121 value)) == bfd_reloc_ok) 1122 { 1123 bfd_vma in1 1124 = bfd_get_32 (abfd, (bfd_byte *) datap); 1125 bfd_vma highbit; 1126 1127 if ((bfd_signed_vma) value < 0) 1128 { 1129 highbit = 1 << 24; 1130 value += (1 << (howto->bitsize - 1)); 1131 } 1132 else 1133 highbit = 0; 1134 1135 value >>= 2; 1136 1137 bfd_put_32 (abfd, 1138 (in1 & howto->src_mask) 1139 | highbit 1140 | (value & howto->dst_mask), 1141 (bfd_byte *) datap); 1142 1143 return bfd_reloc_ok; 1144 } 1145 else 1146 return bfd_reloc_overflow; 1147 1148 case R_MMIX_BASE_PLUS_OFFSET: 1149 { 1150 struct bpo_reloc_section_info *bpodata 1151 = mmix_elf_section_data (isec)->bpo.reloc; 1152 asection *bpo_greg_section; 1153 struct bpo_greg_section_info *gregdata; 1154 size_t bpo_index; 1155 1156 if (bpodata == NULL) 1157 { 1158 /* This shouldn't happen when linking to ELF or mmo, so 1159 this is an attempt to link to "binary", right? We 1160 can't access the output bfd, so we can't verify that 1161 assumption. We only know that the critical 1162 mmix_elf_check_common_relocs has not been called, which 1163 happens when the output format is different from the 1164 input format (and is not mmo). */ 1165 if (! mmix_elf_section_data (isec)->has_warned_bpo) 1166 { 1167 /* For the first such error per input section, produce 1168 a verbose message. */ 1169 *error_message 1170 = _("invalid input relocation when producing" 1171 " non-ELF, non-mmo format output." 1172 "\n Please use the objcopy program to convert from" 1173 " ELF or mmo," 1174 "\n or compile using the gcc-option" 1175 " \"-mno-base-addresses\"."); 1176 mmix_elf_section_data (isec)->has_warned_bpo = TRUE; 1177 return bfd_reloc_dangerous; 1178 } 1179 1180 /* For subsequent errors, return this one, which is 1181 rate-limited but looks a little bit different, 1182 hopefully without affecting user-friendliness. */ 1183 return bfd_reloc_overflow; 1184 } 1185 1186 bpo_greg_section = bpodata->bpo_greg_section; 1187 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1188 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1189 1190 /* A consistency check: The value we now have in "relocation" must 1191 be the same as the value we stored for that relocation. It 1192 doesn't cost much, so can be left in at all times. */ 1193 if (value != gregdata->reloc_request[bpo_index].value) 1194 { 1195 (*_bfd_error_handler) 1196 (_("%s: Internal inconsistency error for value for\n\ 1197 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1198 bfd_get_filename (isec->owner), 1199 (unsigned long) (value >> 32), (unsigned long) value, 1200 (unsigned long) (gregdata->reloc_request[bpo_index].value 1201 >> 32), 1202 (unsigned long) gregdata->reloc_request[bpo_index].value); 1203 bfd_set_error (bfd_error_bad_value); 1204 return bfd_reloc_overflow; 1205 } 1206 1207 /* Then store the register number and offset for that register 1208 into datap and datap + 1 respectively. */ 1209 bfd_put_8 (abfd, 1210 gregdata->reloc_request[bpo_index].regindex 1211 + bpo_greg_section->output_section->vma / 8, 1212 datap); 1213 bfd_put_8 (abfd, 1214 gregdata->reloc_request[bpo_index].offset, 1215 ((unsigned char *) datap) + 1); 1216 return bfd_reloc_ok; 1217 } 1218 1219 case R_MMIX_REG_OR_BYTE: 1220 case R_MMIX_REG: 1221 if (value > 255) 1222 return bfd_reloc_overflow; 1223 bfd_put_8 (abfd, value, datap); 1224 return bfd_reloc_ok; 1225 1226 default: 1227 BAD_CASE (howto->type); 1228 } 1229 1230 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1231 sequence. */ 1232 1233 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1234 everything that looks strange. */ 1235 if (value & 3) 1236 flag = bfd_reloc_overflow; 1237 1238 bfd_put_32 (abfd, 1239 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1240 (bfd_byte *) datap + offs); 1241 bfd_put_32 (abfd, 1242 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1243 (bfd_byte *) datap + offs + 4); 1244 bfd_put_32 (abfd, 1245 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1246 (bfd_byte *) datap + offs + 8); 1247 bfd_put_32 (abfd, 1248 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1249 (bfd_byte *) datap + offs + 12); 1250 1251 return flag; 1252 } 1253 1254 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1255 1256 static void 1257 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, 1258 arelent *cache_ptr, 1259 Elf_Internal_Rela *dst) 1260 { 1261 unsigned int r_type; 1262 1263 r_type = ELF64_R_TYPE (dst->r_info); 1264 BFD_ASSERT (r_type < (unsigned int) R_MMIX_max); 1265 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1266 } 1267 1268 /* Any MMIX-specific relocation gets here at assembly time or when linking 1269 to other formats (such as mmo); this is the relocation function from 1270 the reloc_table. We don't get here for final pure ELF linking. */ 1271 1272 static bfd_reloc_status_type 1273 mmix_elf_reloc (bfd *abfd, 1274 arelent *reloc_entry, 1275 asymbol *symbol, 1276 void * data, 1277 asection *input_section, 1278 bfd *output_bfd, 1279 char **error_message) 1280 { 1281 bfd_vma relocation; 1282 bfd_reloc_status_type r; 1283 asection *reloc_target_output_section; 1284 bfd_reloc_status_type flag = bfd_reloc_ok; 1285 bfd_vma output_base = 0; 1286 1287 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1288 input_section, output_bfd, error_message); 1289 1290 /* If that was all that was needed (i.e. this isn't a final link, only 1291 some segment adjustments), we're done. */ 1292 if (r != bfd_reloc_continue) 1293 return r; 1294 1295 if (bfd_is_und_section (symbol->section) 1296 && (symbol->flags & BSF_WEAK) == 0 1297 && output_bfd == (bfd *) NULL) 1298 return bfd_reloc_undefined; 1299 1300 /* Is the address of the relocation really within the section? */ 1301 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1302 return bfd_reloc_outofrange; 1303 1304 /* Work out which section the relocation is targeted at and the 1305 initial relocation command value. */ 1306 1307 /* Get symbol value. (Common symbols are special.) */ 1308 if (bfd_is_com_section (symbol->section)) 1309 relocation = 0; 1310 else 1311 relocation = symbol->value; 1312 1313 reloc_target_output_section = bfd_get_output_section (symbol); 1314 1315 /* Here the variable relocation holds the final address of the symbol we 1316 are relocating against, plus any addend. */ 1317 if (output_bfd) 1318 output_base = 0; 1319 else 1320 output_base = reloc_target_output_section->vma; 1321 1322 relocation += output_base + symbol->section->output_offset; 1323 1324 if (output_bfd != (bfd *) NULL) 1325 { 1326 /* Add in supplied addend. */ 1327 relocation += reloc_entry->addend; 1328 1329 /* This is a partial relocation, and we want to apply the 1330 relocation to the reloc entry rather than the raw data. 1331 Modify the reloc inplace to reflect what we now know. */ 1332 reloc_entry->addend = relocation; 1333 reloc_entry->address += input_section->output_offset; 1334 return flag; 1335 } 1336 1337 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1338 data, reloc_entry->address, 1339 reloc_entry->addend, relocation, 1340 bfd_asymbol_name (symbol), 1341 reloc_target_output_section, 1342 error_message); 1343 } 1344 1345 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1346 for guidance if you're thinking of copying this. */ 1347 1348 static bfd_boolean 1349 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 1350 struct bfd_link_info *info, 1351 bfd *input_bfd, 1352 asection *input_section, 1353 bfd_byte *contents, 1354 Elf_Internal_Rela *relocs, 1355 Elf_Internal_Sym *local_syms, 1356 asection **local_sections) 1357 { 1358 Elf_Internal_Shdr *symtab_hdr; 1359 struct elf_link_hash_entry **sym_hashes; 1360 Elf_Internal_Rela *rel; 1361 Elf_Internal_Rela *relend; 1362 bfd_size_type size; 1363 size_t pjsno = 0; 1364 1365 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1366 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1367 sym_hashes = elf_sym_hashes (input_bfd); 1368 relend = relocs + input_section->reloc_count; 1369 1370 /* Zero the stub area before we start. */ 1371 if (input_section->rawsize != 0 1372 && input_section->size > input_section->rawsize) 1373 memset (contents + input_section->rawsize, 0, 1374 input_section->size - input_section->rawsize); 1375 1376 for (rel = relocs; rel < relend; rel ++) 1377 { 1378 reloc_howto_type *howto; 1379 unsigned long r_symndx; 1380 Elf_Internal_Sym *sym; 1381 asection *sec; 1382 struct elf_link_hash_entry *h; 1383 bfd_vma relocation; 1384 bfd_reloc_status_type r; 1385 const char *name = NULL; 1386 int r_type; 1387 bfd_boolean undefined_signalled = FALSE; 1388 1389 r_type = ELF64_R_TYPE (rel->r_info); 1390 1391 if (r_type == R_MMIX_GNU_VTINHERIT 1392 || r_type == R_MMIX_GNU_VTENTRY) 1393 continue; 1394 1395 r_symndx = ELF64_R_SYM (rel->r_info); 1396 1397 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1398 h = NULL; 1399 sym = NULL; 1400 sec = NULL; 1401 1402 if (r_symndx < symtab_hdr->sh_info) 1403 { 1404 sym = local_syms + r_symndx; 1405 sec = local_sections [r_symndx]; 1406 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1407 1408 name = bfd_elf_string_from_elf_section (input_bfd, 1409 symtab_hdr->sh_link, 1410 sym->st_name); 1411 if (name == NULL) 1412 name = bfd_section_name (input_bfd, sec); 1413 } 1414 else 1415 { 1416 bfd_boolean unresolved_reloc, ignored; 1417 1418 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1419 r_symndx, symtab_hdr, sym_hashes, 1420 h, sec, relocation, 1421 unresolved_reloc, undefined_signalled, 1422 ignored); 1423 name = h->root.root.string; 1424 } 1425 1426 if (sec != NULL && discarded_section (sec)) 1427 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1428 rel, 1, relend, howto, 0, contents); 1429 1430 if (info->relocatable) 1431 { 1432 /* This is a relocatable link. For most relocs we don't have to 1433 change anything, unless the reloc is against a section 1434 symbol, in which case we have to adjust according to where 1435 the section symbol winds up in the output section. */ 1436 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1437 rel->r_addend += sec->output_offset; 1438 1439 /* For PUSHJ stub relocs however, we may need to change the 1440 reloc and the section contents, if the reloc doesn't reach 1441 beyond the end of the output section and previous stubs. 1442 Then we change the section contents to be a PUSHJ to the end 1443 of the input section plus stubs (we can do that without using 1444 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1445 at the stub location. */ 1446 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1447 { 1448 /* We've already checked whether we need a stub; use that 1449 knowledge. */ 1450 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1451 != 0) 1452 { 1453 Elf_Internal_Rela relcpy; 1454 1455 if (mmix_elf_section_data (input_section) 1456 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1457 abort (); 1458 1459 /* There's already a PUSHJ insn there, so just fill in 1460 the offset bits to the stub. */ 1461 if (mmix_final_link_relocate (elf_mmix_howto_table 1462 + R_MMIX_ADDR19, 1463 input_section, 1464 contents, 1465 rel->r_offset, 1466 0, 1467 input_section 1468 ->output_section->vma 1469 + input_section->output_offset 1470 + size 1471 + mmix_elf_section_data (input_section) 1472 ->pjs.stub_offset, 1473 NULL, NULL, NULL) != bfd_reloc_ok) 1474 return FALSE; 1475 1476 /* Put a JMP insn at the stub; it goes with the 1477 R_MMIX_JMP reloc. */ 1478 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1479 contents 1480 + size 1481 + mmix_elf_section_data (input_section) 1482 ->pjs.stub_offset); 1483 1484 /* Change the reloc to be at the stub, and to a full 1485 R_MMIX_JMP reloc. */ 1486 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1487 rel->r_offset 1488 = (size 1489 + mmix_elf_section_data (input_section) 1490 ->pjs.stub_offset); 1491 1492 mmix_elf_section_data (input_section)->pjs.stub_offset 1493 += MAX_PUSHJ_STUB_SIZE; 1494 1495 /* Shift this reloc to the end of the relocs to maintain 1496 the r_offset sorted reloc order. */ 1497 relcpy = *rel; 1498 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1499 relend[-1] = relcpy; 1500 1501 /* Back up one reloc, or else we'd skip the next reloc 1502 in turn. */ 1503 rel--; 1504 } 1505 1506 pjsno++; 1507 } 1508 continue; 1509 } 1510 1511 r = mmix_final_link_relocate (howto, input_section, 1512 contents, rel->r_offset, 1513 rel->r_addend, relocation, name, sec, NULL); 1514 1515 if (r != bfd_reloc_ok) 1516 { 1517 bfd_boolean check_ok = TRUE; 1518 const char * msg = (const char *) NULL; 1519 1520 switch (r) 1521 { 1522 case bfd_reloc_overflow: 1523 check_ok = info->callbacks->reloc_overflow 1524 (info, (h ? &h->root : NULL), name, howto->name, 1525 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1526 break; 1527 1528 case bfd_reloc_undefined: 1529 /* We may have sent this message above. */ 1530 if (! undefined_signalled) 1531 check_ok = info->callbacks->undefined_symbol 1532 (info, name, input_bfd, input_section, rel->r_offset, 1533 TRUE); 1534 undefined_signalled = TRUE; 1535 break; 1536 1537 case bfd_reloc_outofrange: 1538 msg = _("internal error: out of range error"); 1539 break; 1540 1541 case bfd_reloc_notsupported: 1542 msg = _("internal error: unsupported relocation error"); 1543 break; 1544 1545 case bfd_reloc_dangerous: 1546 msg = _("internal error: dangerous relocation"); 1547 break; 1548 1549 default: 1550 msg = _("internal error: unknown error"); 1551 break; 1552 } 1553 1554 if (msg) 1555 check_ok = info->callbacks->warning 1556 (info, msg, name, input_bfd, input_section, rel->r_offset); 1557 1558 if (! check_ok) 1559 return FALSE; 1560 } 1561 } 1562 1563 return TRUE; 1564 } 1565 1566 /* Perform a single relocation. By default we use the standard BFD 1567 routines. A few relocs we have to do ourselves. */ 1568 1569 static bfd_reloc_status_type 1570 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, 1571 bfd_byte *contents, bfd_vma r_offset, 1572 bfd_signed_vma r_addend, bfd_vma relocation, 1573 const char *symname, asection *symsec, 1574 char **error_message) 1575 { 1576 bfd_reloc_status_type r = bfd_reloc_ok; 1577 bfd_vma addr 1578 = (input_section->output_section->vma 1579 + input_section->output_offset 1580 + r_offset); 1581 bfd_signed_vma srel 1582 = (bfd_signed_vma) relocation + r_addend; 1583 1584 switch (howto->type) 1585 { 1586 /* All these are PC-relative. */ 1587 case R_MMIX_PUSHJ_STUBBABLE: 1588 case R_MMIX_PUSHJ: 1589 case R_MMIX_CBRANCH: 1590 case R_MMIX_ADDR19: 1591 case R_MMIX_GETA: 1592 case R_MMIX_ADDR27: 1593 case R_MMIX_JMP: 1594 contents += r_offset; 1595 1596 srel -= (input_section->output_section->vma 1597 + input_section->output_offset 1598 + r_offset); 1599 1600 r = mmix_elf_perform_relocation (input_section, howto, contents, 1601 addr, srel, error_message); 1602 break; 1603 1604 case R_MMIX_BASE_PLUS_OFFSET: 1605 if (symsec == NULL) 1606 return bfd_reloc_undefined; 1607 1608 /* Check that we're not relocating against a register symbol. */ 1609 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1610 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1611 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1612 MMIX_REG_SECTION_NAME) == 0) 1613 { 1614 /* Note: This is separated out into two messages in order 1615 to ease the translation into other languages. */ 1616 if (symname == NULL || *symname == 0) 1617 (*_bfd_error_handler) 1618 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1619 bfd_get_filename (input_section->owner), 1620 bfd_get_section_name (symsec->owner, symsec)); 1621 else 1622 (*_bfd_error_handler) 1623 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1624 bfd_get_filename (input_section->owner), symname, 1625 bfd_get_section_name (symsec->owner, symsec)); 1626 return bfd_reloc_overflow; 1627 } 1628 goto do_mmix_reloc; 1629 1630 case R_MMIX_REG_OR_BYTE: 1631 case R_MMIX_REG: 1632 /* For now, we handle these alike. They must refer to an register 1633 symbol, which is either relative to the register section and in 1634 the range 0..255, or is in the register contents section with vma 1635 regno * 8. */ 1636 1637 /* FIXME: A better way to check for reg contents section? 1638 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1639 if (symsec == NULL) 1640 return bfd_reloc_undefined; 1641 1642 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1643 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1644 { 1645 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1646 { 1647 /* The bfd_reloc_outofrange return value, though intuitively 1648 a better value, will not get us an error. */ 1649 return bfd_reloc_overflow; 1650 } 1651 srel /= 8; 1652 } 1653 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1654 MMIX_REG_SECTION_NAME) == 0) 1655 { 1656 if (srel < 0 || srel > 255) 1657 /* The bfd_reloc_outofrange return value, though intuitively a 1658 better value, will not get us an error. */ 1659 return bfd_reloc_overflow; 1660 } 1661 else 1662 { 1663 /* Note: This is separated out into two messages in order 1664 to ease the translation into other languages. */ 1665 if (symname == NULL || *symname == 0) 1666 (*_bfd_error_handler) 1667 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1668 bfd_get_filename (input_section->owner), 1669 bfd_get_section_name (symsec->owner, symsec)); 1670 else 1671 (*_bfd_error_handler) 1672 (_("%s: register relocation against non-register symbol: %s in %s"), 1673 bfd_get_filename (input_section->owner), symname, 1674 bfd_get_section_name (symsec->owner, symsec)); 1675 1676 /* The bfd_reloc_outofrange return value, though intuitively a 1677 better value, will not get us an error. */ 1678 return bfd_reloc_overflow; 1679 } 1680 do_mmix_reloc: 1681 contents += r_offset; 1682 r = mmix_elf_perform_relocation (input_section, howto, contents, 1683 addr, srel, error_message); 1684 break; 1685 1686 case R_MMIX_LOCAL: 1687 /* This isn't a real relocation, it's just an assertion that the 1688 final relocation value corresponds to a local register. We 1689 ignore the actual relocation; nothing is changed. */ 1690 { 1691 asection *regsec 1692 = bfd_get_section_by_name (input_section->output_section->owner, 1693 MMIX_REG_CONTENTS_SECTION_NAME); 1694 bfd_vma first_global; 1695 1696 /* Check that this is an absolute value, or a reference to the 1697 register contents section or the register (symbol) section. 1698 Absolute numbers can get here as undefined section. Undefined 1699 symbols are signalled elsewhere, so there's no conflict in us 1700 accidentally handling it. */ 1701 if (!bfd_is_abs_section (symsec) 1702 && !bfd_is_und_section (symsec) 1703 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1704 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1705 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1706 MMIX_REG_SECTION_NAME) != 0) 1707 { 1708 (*_bfd_error_handler) 1709 (_("%s: directive LOCAL valid only with a register or absolute value"), 1710 bfd_get_filename (input_section->owner)); 1711 1712 return bfd_reloc_overflow; 1713 } 1714 1715 /* If we don't have a register contents section, then $255 is the 1716 first global register. */ 1717 if (regsec == NULL) 1718 first_global = 255; 1719 else 1720 { 1721 first_global 1722 = bfd_get_section_vma (input_section->output_section->owner, 1723 regsec) / 8; 1724 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1725 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1726 { 1727 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1728 /* The bfd_reloc_outofrange return value, though 1729 intuitively a better value, will not get us an error. */ 1730 return bfd_reloc_overflow; 1731 srel /= 8; 1732 } 1733 } 1734 1735 if ((bfd_vma) srel >= first_global) 1736 { 1737 /* FIXME: Better error message. */ 1738 (*_bfd_error_handler) 1739 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1740 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1741 1742 return bfd_reloc_overflow; 1743 } 1744 } 1745 r = bfd_reloc_ok; 1746 break; 1747 1748 default: 1749 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1750 contents, r_offset, 1751 relocation, r_addend); 1752 } 1753 1754 return r; 1755 } 1756 1757 /* Return the section that should be marked against GC for a given 1758 relocation. */ 1759 1760 static asection * 1761 mmix_elf_gc_mark_hook (asection *sec, 1762 struct bfd_link_info *info, 1763 Elf_Internal_Rela *rel, 1764 struct elf_link_hash_entry *h, 1765 Elf_Internal_Sym *sym) 1766 { 1767 if (h != NULL) 1768 switch (ELF64_R_TYPE (rel->r_info)) 1769 { 1770 case R_MMIX_GNU_VTINHERIT: 1771 case R_MMIX_GNU_VTENTRY: 1772 return NULL; 1773 } 1774 1775 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1776 } 1777 1778 /* Update relocation info for a GC-excluded section. We could supposedly 1779 perform the allocation after GC, but there's no suitable hook between 1780 GC (or section merge) and the point when all input sections must be 1781 present. Better to waste some memory and (perhaps) a little time. */ 1782 1783 static bfd_boolean 1784 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 1785 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1786 asection *sec, 1787 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 1788 { 1789 struct bpo_reloc_section_info *bpodata 1790 = mmix_elf_section_data (sec)->bpo.reloc; 1791 asection *allocated_gregs_section; 1792 1793 /* If no bpodata here, we have nothing to do. */ 1794 if (bpodata == NULL) 1795 return TRUE; 1796 1797 allocated_gregs_section = bpodata->bpo_greg_section; 1798 1799 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1800 -= bpodata->n_bpo_relocs_this_section; 1801 1802 return TRUE; 1803 } 1804 1805 /* Sort register relocs to come before expanding relocs. */ 1806 1807 static int 1808 mmix_elf_sort_relocs (const void * p1, const void * p2) 1809 { 1810 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1811 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1812 int r1_is_reg, r2_is_reg; 1813 1814 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1815 insns. */ 1816 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1817 return 1; 1818 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1819 return -1; 1820 1821 r1_is_reg 1822 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1823 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1824 r2_is_reg 1825 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1826 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1827 if (r1_is_reg != r2_is_reg) 1828 return r2_is_reg - r1_is_reg; 1829 1830 /* Neither or both are register relocs. Then sort on full offset. */ 1831 if (r1->r_offset > r2->r_offset) 1832 return 1; 1833 else if (r1->r_offset < r2->r_offset) 1834 return -1; 1835 return 0; 1836 } 1837 1838 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1839 1840 static bfd_boolean 1841 mmix_elf_check_common_relocs (bfd *abfd, 1842 struct bfd_link_info *info, 1843 asection *sec, 1844 const Elf_Internal_Rela *relocs) 1845 { 1846 bfd *bpo_greg_owner = NULL; 1847 asection *allocated_gregs_section = NULL; 1848 struct bpo_greg_section_info *gregdata = NULL; 1849 struct bpo_reloc_section_info *bpodata = NULL; 1850 const Elf_Internal_Rela *rel; 1851 const Elf_Internal_Rela *rel_end; 1852 1853 /* We currently have to abuse this COFF-specific member, since there's 1854 no target-machine-dedicated member. There's no alternative outside 1855 the bfd_link_info struct; we can't specialize a hash-table since 1856 they're different between ELF and mmo. */ 1857 bpo_greg_owner = (bfd *) info->base_file; 1858 1859 rel_end = relocs + sec->reloc_count; 1860 for (rel = relocs; rel < rel_end; rel++) 1861 { 1862 switch (ELF64_R_TYPE (rel->r_info)) 1863 { 1864 /* This relocation causes a GREG allocation. We need to count 1865 them, and we need to create a section for them, so we need an 1866 object to fake as the owner of that section. We can't use 1867 the ELF dynobj for this, since the ELF bits assume lots of 1868 DSO-related stuff if that member is non-NULL. */ 1869 case R_MMIX_BASE_PLUS_OFFSET: 1870 /* We don't do anything with this reloc for a relocatable link. */ 1871 if (info->relocatable) 1872 break; 1873 1874 if (bpo_greg_owner == NULL) 1875 { 1876 bpo_greg_owner = abfd; 1877 info->base_file = bpo_greg_owner; 1878 } 1879 1880 if (allocated_gregs_section == NULL) 1881 allocated_gregs_section 1882 = bfd_get_section_by_name (bpo_greg_owner, 1883 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1884 1885 if (allocated_gregs_section == NULL) 1886 { 1887 allocated_gregs_section 1888 = bfd_make_section_with_flags (bpo_greg_owner, 1889 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1890 (SEC_HAS_CONTENTS 1891 | SEC_IN_MEMORY 1892 | SEC_LINKER_CREATED)); 1893 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1894 treated like any other section, and we'd get errors for 1895 address overlap with the text section. Let's set none of 1896 those flags, as that is what currently happens for usual 1897 GREG allocations, and that works. */ 1898 if (allocated_gregs_section == NULL 1899 || !bfd_set_section_alignment (bpo_greg_owner, 1900 allocated_gregs_section, 1901 3)) 1902 return FALSE; 1903 1904 gregdata = (struct bpo_greg_section_info *) 1905 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1906 if (gregdata == NULL) 1907 return FALSE; 1908 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1909 = gregdata; 1910 } 1911 else if (gregdata == NULL) 1912 gregdata 1913 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1914 1915 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1916 if (bpodata == NULL) 1917 { 1918 /* No use doing a separate iteration pass to find the upper 1919 limit - just use the number of relocs. */ 1920 bpodata = (struct bpo_reloc_section_info *) 1921 bfd_alloc (bpo_greg_owner, 1922 sizeof (struct bpo_reloc_section_info) 1923 * (sec->reloc_count + 1)); 1924 if (bpodata == NULL) 1925 return FALSE; 1926 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1927 bpodata->first_base_plus_offset_reloc 1928 = bpodata->bpo_index 1929 = gregdata->n_max_bpo_relocs; 1930 bpodata->bpo_greg_section 1931 = allocated_gregs_section; 1932 bpodata->n_bpo_relocs_this_section = 0; 1933 } 1934 1935 bpodata->n_bpo_relocs_this_section++; 1936 gregdata->n_max_bpo_relocs++; 1937 1938 /* We don't get another chance to set this before GC; we've not 1939 set up any hook that runs before GC. */ 1940 gregdata->n_bpo_relocs 1941 = gregdata->n_max_bpo_relocs; 1942 break; 1943 1944 case R_MMIX_PUSHJ_STUBBABLE: 1945 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1946 break; 1947 } 1948 } 1949 1950 /* Allocate per-reloc stub storage and initialize it to the max stub 1951 size. */ 1952 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1953 { 1954 size_t i; 1955 1956 mmix_elf_section_data (sec)->pjs.stub_size 1957 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1958 * sizeof (mmix_elf_section_data (sec) 1959 ->pjs.stub_size[0])); 1960 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1961 return FALSE; 1962 1963 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1964 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1965 } 1966 1967 return TRUE; 1968 } 1969 1970 /* Look through the relocs for a section during the first phase. */ 1971 1972 static bfd_boolean 1973 mmix_elf_check_relocs (bfd *abfd, 1974 struct bfd_link_info *info, 1975 asection *sec, 1976 const Elf_Internal_Rela *relocs) 1977 { 1978 Elf_Internal_Shdr *symtab_hdr; 1979 struct elf_link_hash_entry **sym_hashes; 1980 const Elf_Internal_Rela *rel; 1981 const Elf_Internal_Rela *rel_end; 1982 1983 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1984 sym_hashes = elf_sym_hashes (abfd); 1985 1986 /* First we sort the relocs so that any register relocs come before 1987 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1988 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1989 mmix_elf_sort_relocs); 1990 1991 /* Do the common part. */ 1992 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 1993 return FALSE; 1994 1995 if (info->relocatable) 1996 return TRUE; 1997 1998 rel_end = relocs + sec->reloc_count; 1999 for (rel = relocs; rel < rel_end; rel++) 2000 { 2001 struct elf_link_hash_entry *h; 2002 unsigned long r_symndx; 2003 2004 r_symndx = ELF64_R_SYM (rel->r_info); 2005 if (r_symndx < symtab_hdr->sh_info) 2006 h = NULL; 2007 else 2008 { 2009 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2010 while (h->root.type == bfd_link_hash_indirect 2011 || h->root.type == bfd_link_hash_warning) 2012 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2013 2014 /* PR15323, ref flags aren't set for references in the same 2015 object. */ 2016 h->root.non_ir_ref = 1; 2017 } 2018 2019 switch (ELF64_R_TYPE (rel->r_info)) 2020 { 2021 /* This relocation describes the C++ object vtable hierarchy. 2022 Reconstruct it for later use during GC. */ 2023 case R_MMIX_GNU_VTINHERIT: 2024 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2025 return FALSE; 2026 break; 2027 2028 /* This relocation describes which C++ vtable entries are actually 2029 used. Record for later use during GC. */ 2030 case R_MMIX_GNU_VTENTRY: 2031 BFD_ASSERT (h != NULL); 2032 if (h != NULL 2033 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2034 return FALSE; 2035 break; 2036 } 2037 } 2038 2039 return TRUE; 2040 } 2041 2042 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2043 Copied from elf_link_add_object_symbols. */ 2044 2045 bfd_boolean 2046 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) 2047 { 2048 asection *o; 2049 2050 for (o = abfd->sections; o != NULL; o = o->next) 2051 { 2052 Elf_Internal_Rela *internal_relocs; 2053 bfd_boolean ok; 2054 2055 if ((o->flags & SEC_RELOC) == 0 2056 || o->reloc_count == 0 2057 || ((info->strip == strip_all || info->strip == strip_debugger) 2058 && (o->flags & SEC_DEBUGGING) != 0) 2059 || bfd_is_abs_section (o->output_section)) 2060 continue; 2061 2062 internal_relocs 2063 = _bfd_elf_link_read_relocs (abfd, o, NULL, 2064 (Elf_Internal_Rela *) NULL, 2065 info->keep_memory); 2066 if (internal_relocs == NULL) 2067 return FALSE; 2068 2069 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2070 2071 if (! info->keep_memory) 2072 free (internal_relocs); 2073 2074 if (! ok) 2075 return FALSE; 2076 } 2077 2078 return TRUE; 2079 } 2080 2081 /* Change symbols relative to the reg contents section to instead be to 2082 the register section, and scale them down to correspond to the register 2083 number. */ 2084 2085 static int 2086 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, 2087 const char *name ATTRIBUTE_UNUSED, 2088 Elf_Internal_Sym *sym, 2089 asection *input_sec, 2090 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 2091 { 2092 if (input_sec != NULL 2093 && input_sec->name != NULL 2094 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2095 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2096 { 2097 sym->st_value /= 8; 2098 sym->st_shndx = SHN_REGISTER; 2099 } 2100 2101 return 1; 2102 } 2103 2104 /* We fake a register section that holds values that are register numbers. 2105 Having a SHN_REGISTER and register section translates better to other 2106 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2107 This section faking is based on a construct in elf32-mips.c. */ 2108 static asection mmix_elf_reg_section; 2109 static asymbol mmix_elf_reg_section_symbol; 2110 static asymbol *mmix_elf_reg_section_symbol_ptr; 2111 2112 /* Handle the special section numbers that a symbol may use. */ 2113 2114 void 2115 mmix_elf_symbol_processing (abfd, asym) 2116 bfd *abfd ATTRIBUTE_UNUSED; 2117 asymbol *asym; 2118 { 2119 elf_symbol_type *elfsym; 2120 2121 elfsym = (elf_symbol_type *) asym; 2122 switch (elfsym->internal_elf_sym.st_shndx) 2123 { 2124 case SHN_REGISTER: 2125 if (mmix_elf_reg_section.name == NULL) 2126 { 2127 /* Initialize the register section. */ 2128 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2129 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2130 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2131 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2132 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2133 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2134 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2135 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2136 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2137 } 2138 asym->section = &mmix_elf_reg_section; 2139 break; 2140 2141 default: 2142 break; 2143 } 2144 } 2145 2146 /* Given a BFD section, try to locate the corresponding ELF section 2147 index. */ 2148 2149 static bfd_boolean 2150 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, 2151 asection * sec, 2152 int * retval) 2153 { 2154 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2155 *retval = SHN_REGISTER; 2156 else 2157 return FALSE; 2158 2159 return TRUE; 2160 } 2161 2162 /* Hook called by the linker routine which adds symbols from an object 2163 file. We must handle the special SHN_REGISTER section number here. 2164 2165 We also check that we only have *one* each of the section-start 2166 symbols, since otherwise having two with the same value would cause 2167 them to be "merged", but with the contents serialized. */ 2168 2169 static bfd_boolean 2170 mmix_elf_add_symbol_hook (bfd *abfd, 2171 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2172 Elf_Internal_Sym *sym, 2173 const char **namep ATTRIBUTE_UNUSED, 2174 flagword *flagsp ATTRIBUTE_UNUSED, 2175 asection **secp, 2176 bfd_vma *valp ATTRIBUTE_UNUSED) 2177 { 2178 if (sym->st_shndx == SHN_REGISTER) 2179 { 2180 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2181 (*secp)->flags |= SEC_LINKER_CREATED; 2182 } 2183 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2184 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) 2185 { 2186 /* See if we have another one. */ 2187 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2188 *namep, 2189 FALSE, 2190 FALSE, 2191 FALSE); 2192 2193 if (h != NULL && h->type != bfd_link_hash_undefined) 2194 { 2195 /* How do we get the asymbol (or really: the filename) from h? 2196 h->u.def.section->owner is NULL. */ 2197 ((*_bfd_error_handler) 2198 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2199 bfd_get_filename (abfd), *namep, 2200 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2201 bfd_set_error (bfd_error_bad_value); 2202 return FALSE; 2203 } 2204 } 2205 2206 return TRUE; 2207 } 2208 2209 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2210 2211 static bfd_boolean 2212 mmix_elf_is_local_label_name (bfd *abfd, const char *name) 2213 { 2214 const char *colpos; 2215 int digits; 2216 2217 /* Also include the default local-label definition. */ 2218 if (_bfd_elf_is_local_label_name (abfd, name)) 2219 return TRUE; 2220 2221 if (*name != 'L') 2222 return FALSE; 2223 2224 /* If there's no ":", or more than one, it's not a local symbol. */ 2225 colpos = strchr (name, ':'); 2226 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2227 return FALSE; 2228 2229 /* Check that there are remaining characters and that they are digits. */ 2230 if (colpos[1] == 0) 2231 return FALSE; 2232 2233 digits = strspn (colpos + 1, "0123456789"); 2234 return digits != 0 && colpos[1 + digits] == 0; 2235 } 2236 2237 /* We get rid of the register section here. */ 2238 2239 bfd_boolean 2240 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) 2241 { 2242 /* We never output a register section, though we create one for 2243 temporary measures. Check that nobody entered contents into it. */ 2244 asection *reg_section; 2245 2246 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2247 2248 if (reg_section != NULL) 2249 { 2250 /* FIXME: Pass error state gracefully. */ 2251 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2252 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2253 2254 /* Really remove the section, if it hasn't already been done. */ 2255 if (!bfd_section_removed_from_list (abfd, reg_section)) 2256 { 2257 bfd_section_list_remove (abfd, reg_section); 2258 --abfd->section_count; 2259 } 2260 } 2261 2262 if (! bfd_elf_final_link (abfd, info)) 2263 return FALSE; 2264 2265 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2266 the regular linker machinery. We do it here, like other targets with 2267 special sections. */ 2268 if (info->base_file != NULL) 2269 { 2270 asection *greg_section 2271 = bfd_get_section_by_name ((bfd *) info->base_file, 2272 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2273 if (!bfd_set_section_contents (abfd, 2274 greg_section->output_section, 2275 greg_section->contents, 2276 (file_ptr) greg_section->output_offset, 2277 greg_section->size)) 2278 return FALSE; 2279 } 2280 return TRUE; 2281 } 2282 2283 /* We need to include the maximum size of PUSHJ-stubs in the initial 2284 section size. This is expected to shrink during linker relaxation. */ 2285 2286 static void 2287 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, 2288 asection *sec, 2289 void *ptr) 2290 { 2291 struct bfd_link_info *info = ptr; 2292 2293 /* Make sure we only do this for section where we know we want this, 2294 otherwise we might end up resetting the size of COMMONs. */ 2295 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2296 return; 2297 2298 sec->rawsize = sec->size; 2299 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2300 * MAX_PUSHJ_STUB_SIZE); 2301 2302 /* For use in relocatable link, we start with a max stubs size. See 2303 mmix_elf_relax_section. */ 2304 if (info->relocatable && sec->output_section) 2305 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2306 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2307 * MAX_PUSHJ_STUB_SIZE); 2308 } 2309 2310 /* Initialize stuff for the linker-generated GREGs to match 2311 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2312 2313 bfd_boolean 2314 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2315 struct bfd_link_info *info) 2316 { 2317 asection *bpo_gregs_section; 2318 bfd *bpo_greg_owner; 2319 struct bpo_greg_section_info *gregdata; 2320 size_t n_gregs; 2321 bfd_vma gregs_size; 2322 size_t i; 2323 size_t *bpo_reloc_indexes; 2324 bfd *ibfd; 2325 2326 /* Set the initial size of sections. */ 2327 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next) 2328 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2329 2330 /* The bpo_greg_owner bfd is supposed to have been set by 2331 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2332 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2333 bpo_greg_owner = (bfd *) info->base_file; 2334 if (bpo_greg_owner == NULL) 2335 return TRUE; 2336 2337 bpo_gregs_section 2338 = bfd_get_section_by_name (bpo_greg_owner, 2339 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2340 2341 if (bpo_gregs_section == NULL) 2342 return TRUE; 2343 2344 /* We use the target-data handle in the ELF section data. */ 2345 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2346 if (gregdata == NULL) 2347 return FALSE; 2348 2349 n_gregs = gregdata->n_bpo_relocs; 2350 gregdata->n_allocated_bpo_gregs = n_gregs; 2351 2352 /* When this reaches zero during relaxation, all entries have been 2353 filled in and the size of the linker gregs can be calculated. */ 2354 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2355 2356 /* Set the zeroth-order estimate for the GREGs size. */ 2357 gregs_size = n_gregs * 8; 2358 2359 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2360 return FALSE; 2361 2362 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2363 time. Note that we must use the max number ever noted for the array, 2364 since the index numbers were created before GC. */ 2365 gregdata->reloc_request 2366 = bfd_zalloc (bpo_greg_owner, 2367 sizeof (struct bpo_reloc_request) 2368 * gregdata->n_max_bpo_relocs); 2369 2370 gregdata->bpo_reloc_indexes 2371 = bpo_reloc_indexes 2372 = bfd_alloc (bpo_greg_owner, 2373 gregdata->n_max_bpo_relocs 2374 * sizeof (size_t)); 2375 if (bpo_reloc_indexes == NULL) 2376 return FALSE; 2377 2378 /* The default order is an identity mapping. */ 2379 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2380 { 2381 bpo_reloc_indexes[i] = i; 2382 gregdata->reloc_request[i].bpo_reloc_no = i; 2383 } 2384 2385 return TRUE; 2386 } 2387 2388 /* Fill in contents in the linker allocated gregs. Everything is 2389 calculated at this point; we just move the contents into place here. */ 2390 2391 bfd_boolean 2392 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2393 struct bfd_link_info *link_info) 2394 { 2395 asection *bpo_gregs_section; 2396 bfd *bpo_greg_owner; 2397 struct bpo_greg_section_info *gregdata; 2398 size_t n_gregs; 2399 size_t i, j; 2400 size_t lastreg; 2401 bfd_byte *contents; 2402 2403 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2404 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2405 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2406 bpo_greg_owner = (bfd *) link_info->base_file; 2407 if (bpo_greg_owner == NULL) 2408 return TRUE; 2409 2410 bpo_gregs_section 2411 = bfd_get_section_by_name (bpo_greg_owner, 2412 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2413 2414 /* This can't happen without DSO handling. When DSOs are handled 2415 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2416 section. */ 2417 if (bpo_gregs_section == NULL) 2418 return TRUE; 2419 2420 /* We use the target-data handle in the ELF section data. */ 2421 2422 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2423 if (gregdata == NULL) 2424 return FALSE; 2425 2426 n_gregs = gregdata->n_allocated_bpo_gregs; 2427 2428 bpo_gregs_section->contents 2429 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2430 if (contents == NULL) 2431 return FALSE; 2432 2433 /* Sanity check: If these numbers mismatch, some relocation has not been 2434 accounted for and the rest of gregdata is probably inconsistent. 2435 It's a bug, but it's more helpful to identify it than segfaulting 2436 below. */ 2437 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2438 != gregdata->n_bpo_relocs) 2439 { 2440 (*_bfd_error_handler) 2441 (_("Internal inconsistency: remaining %u != max %u.\n\ 2442 Please report this bug."), 2443 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2444 gregdata->n_bpo_relocs); 2445 return FALSE; 2446 } 2447 2448 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2449 if (gregdata->reloc_request[i].regindex != lastreg) 2450 { 2451 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2452 contents + j * 8); 2453 lastreg = gregdata->reloc_request[i].regindex; 2454 j++; 2455 } 2456 2457 return TRUE; 2458 } 2459 2460 /* Sort valid relocs to come before non-valid relocs, then on increasing 2461 value. */ 2462 2463 static int 2464 bpo_reloc_request_sort_fn (const void * p1, const void * p2) 2465 { 2466 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2467 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2468 2469 /* Primary function is validity; non-valid relocs sorted after valid 2470 ones. */ 2471 if (r1->valid != r2->valid) 2472 return r2->valid - r1->valid; 2473 2474 /* Then sort on value. Don't simplify and return just the difference of 2475 the values: the upper bits of the 64-bit value would be truncated on 2476 a host with 32-bit ints. */ 2477 if (r1->value != r2->value) 2478 return r1->value > r2->value ? 1 : -1; 2479 2480 /* As a last re-sort, use the relocation number, so we get a stable 2481 sort. The *addresses* aren't stable since items are swapped during 2482 sorting. It depends on the qsort implementation if this actually 2483 happens. */ 2484 return r1->bpo_reloc_no > r2->bpo_reloc_no 2485 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2486 } 2487 2488 /* For debug use only. Dumps the global register allocations resulting 2489 from base-plus-offset relocs. */ 2490 2491 void 2492 mmix_dump_bpo_gregs (link_info, pf) 2493 struct bfd_link_info *link_info; 2494 bfd_error_handler_type pf; 2495 { 2496 bfd *bpo_greg_owner; 2497 asection *bpo_gregs_section; 2498 struct bpo_greg_section_info *gregdata; 2499 unsigned int i; 2500 2501 if (link_info == NULL || link_info->base_file == NULL) 2502 return; 2503 2504 bpo_greg_owner = (bfd *) link_info->base_file; 2505 2506 bpo_gregs_section 2507 = bfd_get_section_by_name (bpo_greg_owner, 2508 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2509 2510 if (bpo_gregs_section == NULL) 2511 return; 2512 2513 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2514 if (gregdata == NULL) 2515 return; 2516 2517 if (pf == NULL) 2518 pf = _bfd_error_handler; 2519 2520 /* These format strings are not translated. They are for debug purposes 2521 only and never displayed to an end user. Should they escape, we 2522 surely want them in original. */ 2523 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2524 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2525 gregdata->n_max_bpo_relocs, 2526 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2527 gregdata->n_allocated_bpo_gregs); 2528 2529 if (gregdata->reloc_request) 2530 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2531 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2532 i, 2533 (gregdata->bpo_reloc_indexes != NULL 2534 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2535 gregdata->reloc_request[i].bpo_reloc_no, 2536 gregdata->reloc_request[i].valid, 2537 2538 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2539 (unsigned long) gregdata->reloc_request[i].value, 2540 gregdata->reloc_request[i].regindex, 2541 gregdata->reloc_request[i].offset); 2542 } 2543 2544 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2545 when the last such reloc is done, an index-array is sorted according to 2546 the values and iterated over to produce register numbers (indexed by 0 2547 from the first allocated register number) and offsets for use in real 2548 relocation. (N.B.: Relocatable runs are handled, not just punted.) 2549 2550 PUSHJ stub accounting is also done here. 2551 2552 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2553 2554 static bfd_boolean 2555 mmix_elf_relax_section (bfd *abfd, 2556 asection *sec, 2557 struct bfd_link_info *link_info, 2558 bfd_boolean *again) 2559 { 2560 Elf_Internal_Shdr *symtab_hdr; 2561 Elf_Internal_Rela *internal_relocs; 2562 Elf_Internal_Rela *irel, *irelend; 2563 asection *bpo_gregs_section = NULL; 2564 struct bpo_greg_section_info *gregdata; 2565 struct bpo_reloc_section_info *bpodata 2566 = mmix_elf_section_data (sec)->bpo.reloc; 2567 /* The initialization is to quiet compiler warnings. The value is to 2568 spot a missing actual initialization. */ 2569 size_t bpono = (size_t) -1; 2570 size_t pjsno = 0; 2571 Elf_Internal_Sym *isymbuf = NULL; 2572 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2573 2574 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2575 2576 /* Assume nothing changes. */ 2577 *again = FALSE; 2578 2579 /* We don't have to do anything if this section does not have relocs, or 2580 if this is not a code section. */ 2581 if ((sec->flags & SEC_RELOC) == 0 2582 || sec->reloc_count == 0 2583 || (sec->flags & SEC_CODE) == 0 2584 || (sec->flags & SEC_LINKER_CREATED) != 0 2585 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2586 then nothing to do. */ 2587 || (bpodata == NULL 2588 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2589 return TRUE; 2590 2591 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2592 2593 if (bpodata != NULL) 2594 { 2595 bpo_gregs_section = bpodata->bpo_greg_section; 2596 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2597 bpono = bpodata->first_base_plus_offset_reloc; 2598 } 2599 else 2600 gregdata = NULL; 2601 2602 /* Get a copy of the native relocations. */ 2603 internal_relocs 2604 = _bfd_elf_link_read_relocs (abfd, sec, NULL, 2605 (Elf_Internal_Rela *) NULL, 2606 link_info->keep_memory); 2607 if (internal_relocs == NULL) 2608 goto error_return; 2609 2610 /* Walk through them looking for relaxing opportunities. */ 2611 irelend = internal_relocs + sec->reloc_count; 2612 for (irel = internal_relocs; irel < irelend; irel++) 2613 { 2614 bfd_vma symval; 2615 struct elf_link_hash_entry *h = NULL; 2616 2617 /* We only process two relocs. */ 2618 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2619 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2620 continue; 2621 2622 /* We process relocs in a distinctly different way when this is a 2623 relocatable link (for one, we don't look at symbols), so we avoid 2624 mixing its code with that for the "normal" relaxation. */ 2625 if (link_info->relocatable) 2626 { 2627 /* The only transformation in a relocatable link is to generate 2628 a full stub at the location of the stub calculated for the 2629 input section, if the relocated stub location, the end of the 2630 output section plus earlier stubs, cannot be reached. Thus 2631 relocatable linking can only lead to worse code, but it still 2632 works. */ 2633 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2634 { 2635 /* If we can reach the end of the output-section and beyond 2636 any current stubs, then we don't need a stub for this 2637 reloc. The relaxed order of output stub allocation may 2638 not exactly match the straightforward order, so we always 2639 assume presence of output stubs, which will allow 2640 relaxation only on relocations indifferent to the 2641 presence of output stub allocations for other relocations 2642 and thus the order of output stub allocation. */ 2643 if (bfd_check_overflow (complain_overflow_signed, 2644 19, 2645 0, 2646 bfd_arch_bits_per_address (abfd), 2647 /* Output-stub location. */ 2648 sec->output_section->rawsize 2649 + (mmix_elf_section_data (sec 2650 ->output_section) 2651 ->pjs.stubs_size_sum) 2652 /* Location of this PUSHJ reloc. */ 2653 - (sec->output_offset + irel->r_offset) 2654 /* Don't count *this* stub twice. */ 2655 - (mmix_elf_section_data (sec) 2656 ->pjs.stub_size[pjsno] 2657 + MAX_PUSHJ_STUB_SIZE)) 2658 == bfd_reloc_ok) 2659 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2660 2661 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2662 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2663 2664 pjsno++; 2665 } 2666 2667 continue; 2668 } 2669 2670 /* Get the value of the symbol referred to by the reloc. */ 2671 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2672 { 2673 /* A local symbol. */ 2674 Elf_Internal_Sym *isym; 2675 asection *sym_sec; 2676 2677 /* Read this BFD's local symbols if we haven't already. */ 2678 if (isymbuf == NULL) 2679 { 2680 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2681 if (isymbuf == NULL) 2682 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2683 symtab_hdr->sh_info, 0, 2684 NULL, NULL, NULL); 2685 if (isymbuf == 0) 2686 goto error_return; 2687 } 2688 2689 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2690 if (isym->st_shndx == SHN_UNDEF) 2691 sym_sec = bfd_und_section_ptr; 2692 else if (isym->st_shndx == SHN_ABS) 2693 sym_sec = bfd_abs_section_ptr; 2694 else if (isym->st_shndx == SHN_COMMON) 2695 sym_sec = bfd_com_section_ptr; 2696 else 2697 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2698 symval = (isym->st_value 2699 + sym_sec->output_section->vma 2700 + sym_sec->output_offset); 2701 } 2702 else 2703 { 2704 unsigned long indx; 2705 2706 /* An external symbol. */ 2707 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2708 h = elf_sym_hashes (abfd)[indx]; 2709 BFD_ASSERT (h != NULL); 2710 if (h->root.type != bfd_link_hash_defined 2711 && h->root.type != bfd_link_hash_defweak) 2712 { 2713 /* This appears to be a reference to an undefined symbol. Just 2714 ignore it--it will be caught by the regular reloc processing. 2715 We need to keep BPO reloc accounting consistent, though 2716 else we'll abort instead of emitting an error message. */ 2717 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2718 && gregdata != NULL) 2719 { 2720 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2721 bpono++; 2722 } 2723 continue; 2724 } 2725 2726 symval = (h->root.u.def.value 2727 + h->root.u.def.section->output_section->vma 2728 + h->root.u.def.section->output_offset); 2729 } 2730 2731 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2732 { 2733 bfd_vma value = symval + irel->r_addend; 2734 bfd_vma dot 2735 = (sec->output_section->vma 2736 + sec->output_offset 2737 + irel->r_offset); 2738 bfd_vma stubaddr 2739 = (sec->output_section->vma 2740 + sec->output_offset 2741 + size 2742 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2743 2744 if ((value & 3) == 0 2745 && bfd_check_overflow (complain_overflow_signed, 2746 19, 2747 0, 2748 bfd_arch_bits_per_address (abfd), 2749 value - dot 2750 - (value > dot 2751 ? mmix_elf_section_data (sec) 2752 ->pjs.stub_size[pjsno] 2753 : 0)) 2754 == bfd_reloc_ok) 2755 /* If the reloc fits, no stub is needed. */ 2756 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2757 else 2758 /* Maybe we can get away with just a JMP insn? */ 2759 if ((value & 3) == 0 2760 && bfd_check_overflow (complain_overflow_signed, 2761 27, 2762 0, 2763 bfd_arch_bits_per_address (abfd), 2764 value - stubaddr 2765 - (value > dot 2766 ? mmix_elf_section_data (sec) 2767 ->pjs.stub_size[pjsno] - 4 2768 : 0)) 2769 == bfd_reloc_ok) 2770 /* Yep, account for a stub consisting of a single JMP insn. */ 2771 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2772 else 2773 /* Nope, go for the full insn stub. It doesn't seem useful to 2774 emit the intermediate sizes; those will only be useful for 2775 a >64M program assuming contiguous code. */ 2776 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2777 = MAX_PUSHJ_STUB_SIZE; 2778 2779 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2780 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2781 pjsno++; 2782 continue; 2783 } 2784 2785 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2786 2787 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2788 = symval + irel->r_addend; 2789 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2790 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2791 } 2792 2793 /* Check if that was the last BPO-reloc. If so, sort the values and 2794 calculate how many registers we need to cover them. Set the size of 2795 the linker gregs, and if the number of registers changed, indicate 2796 that we need to relax some more because we have more work to do. */ 2797 if (gregdata != NULL 2798 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2799 { 2800 size_t i; 2801 bfd_vma prev_base; 2802 size_t regindex; 2803 2804 /* First, reset the remaining relocs for the next round. */ 2805 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2806 = gregdata->n_bpo_relocs; 2807 2808 qsort (gregdata->reloc_request, 2809 gregdata->n_max_bpo_relocs, 2810 sizeof (struct bpo_reloc_request), 2811 bpo_reloc_request_sort_fn); 2812 2813 /* Recalculate indexes. When we find a change (however unlikely 2814 after the initial iteration), we know we need to relax again, 2815 since items in the GREG-array are sorted by increasing value and 2816 stored in the relaxation phase. */ 2817 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2818 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2819 != i) 2820 { 2821 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2822 = i; 2823 *again = TRUE; 2824 } 2825 2826 /* Allocate register numbers (indexing from 0). Stop at the first 2827 non-valid reloc. */ 2828 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2829 i < gregdata->n_bpo_relocs; 2830 i++) 2831 { 2832 if (gregdata->reloc_request[i].value > prev_base + 255) 2833 { 2834 regindex++; 2835 prev_base = gregdata->reloc_request[i].value; 2836 } 2837 gregdata->reloc_request[i].regindex = regindex; 2838 gregdata->reloc_request[i].offset 2839 = gregdata->reloc_request[i].value - prev_base; 2840 } 2841 2842 /* If it's not the same as the last time, we need to relax again, 2843 because the size of the section has changed. I'm not sure we 2844 actually need to do any adjustments since the shrinking happens 2845 at the start of this section, but better safe than sorry. */ 2846 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2847 { 2848 gregdata->n_allocated_bpo_gregs = regindex + 1; 2849 *again = TRUE; 2850 } 2851 2852 bpo_gregs_section->size = (regindex + 1) * 8; 2853 } 2854 2855 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2856 { 2857 if (! link_info->keep_memory) 2858 free (isymbuf); 2859 else 2860 { 2861 /* Cache the symbols for elf_link_input_bfd. */ 2862 symtab_hdr->contents = (unsigned char *) isymbuf; 2863 } 2864 } 2865 2866 if (internal_relocs != NULL 2867 && elf_section_data (sec)->relocs != internal_relocs) 2868 free (internal_relocs); 2869 2870 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2871 abort (); 2872 2873 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2874 { 2875 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2876 *again = TRUE; 2877 } 2878 2879 return TRUE; 2880 2881 error_return: 2882 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2883 free (isymbuf); 2884 if (internal_relocs != NULL 2885 && elf_section_data (sec)->relocs != internal_relocs) 2886 free (internal_relocs); 2887 return FALSE; 2888 } 2889 2890 #define ELF_ARCH bfd_arch_mmix 2891 #define ELF_MACHINE_CODE EM_MMIX 2892 2893 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2894 However, that's too much for something somewhere in the linker part of 2895 BFD; perhaps the start-address has to be a non-zero multiple of this 2896 number, or larger than this number. The symptom is that the linker 2897 complains: "warning: allocated section `.text' not in segment". We 2898 settle for 64k; the page-size used in examples is 8k. 2899 #define ELF_MAXPAGESIZE 0x10000 2900 2901 Unfortunately, this causes excessive padding in the supposedly small 2902 for-education programs that are the expected usage (where people would 2903 inspect output). We stick to 256 bytes just to have *some* default 2904 alignment. */ 2905 #define ELF_MAXPAGESIZE 0x100 2906 2907 #define TARGET_BIG_SYM bfd_elf64_mmix_vec 2908 #define TARGET_BIG_NAME "elf64-mmix" 2909 2910 #define elf_info_to_howto_rel NULL 2911 #define elf_info_to_howto mmix_info_to_howto_rela 2912 #define elf_backend_relocate_section mmix_elf_relocate_section 2913 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2914 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2915 2916 #define elf_backend_link_output_symbol_hook \ 2917 mmix_elf_link_output_symbol_hook 2918 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2919 2920 #define elf_backend_check_relocs mmix_elf_check_relocs 2921 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2922 #define elf_backend_omit_section_dynsym \ 2923 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 2924 2925 #define bfd_elf64_bfd_is_local_label_name \ 2926 mmix_elf_is_local_label_name 2927 2928 #define elf_backend_may_use_rel_p 0 2929 #define elf_backend_may_use_rela_p 1 2930 #define elf_backend_default_use_rela_p 1 2931 2932 #define elf_backend_can_gc_sections 1 2933 #define elf_backend_section_from_bfd_section \ 2934 mmix_elf_section_from_bfd_section 2935 2936 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2937 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2938 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2939 2940 #include "elf64-target.h" 2941