1 /* MMIX-specific support for 64-bit ELF. 2 Copyright (C) 2001-2015 Free Software Foundation, Inc. 3 Contributed by Hans-Peter Nilsson <hp@bitrange.com> 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 23 /* No specific ABI or "processor-specific supplement" defined. */ 24 25 /* TODO: 26 - "Traditional" linker relaxation (shrinking whole sections). 27 - Merge reloc stubs jumping to same location. 28 - GETA stub relaxation (call a stub for out of range new 29 R_MMIX_GETA_STUBBABLE). */ 30 31 #include "sysdep.h" 32 #include "bfd.h" 33 #include "libbfd.h" 34 #include "elf-bfd.h" 35 #include "elf/mmix.h" 36 #include "opcode/mmix.h" 37 38 #define MINUS_ONE (((bfd_vma) 0) - 1) 39 40 #define MAX_PUSHJ_STUB_SIZE (5 * 4) 41 42 /* Put these everywhere in new code. */ 43 #define FATAL_DEBUG \ 44 _bfd_abort (__FILE__, __LINE__, \ 45 "Internal: Non-debugged code (test-case missing)") 46 47 #define BAD_CASE(x) \ 48 _bfd_abort (__FILE__, __LINE__, \ 49 "bad case for " #x) 50 51 struct _mmix_elf_section_data 52 { 53 struct bfd_elf_section_data elf; 54 union 55 { 56 struct bpo_reloc_section_info *reloc; 57 struct bpo_greg_section_info *greg; 58 } bpo; 59 60 struct pushj_stub_info 61 { 62 /* Maximum number of stubs needed for this section. */ 63 bfd_size_type n_pushj_relocs; 64 65 /* Size of stubs after a mmix_elf_relax_section round. */ 66 bfd_size_type stubs_size_sum; 67 68 /* Per-reloc stubs_size_sum information. The stubs_size_sum member is the sum 69 of these. Allocated in mmix_elf_check_common_relocs. */ 70 bfd_size_type *stub_size; 71 72 /* Offset of next stub during relocation. Somewhat redundant with the 73 above: error coverage is easier and we don't have to reset the 74 stubs_size_sum for relocation. */ 75 bfd_size_type stub_offset; 76 } pjs; 77 78 /* Whether there has been a warning that this section could not be 79 linked due to a specific cause. FIXME: a way to access the 80 linker info or output section, then stuff the limiter guard 81 there. */ 82 bfd_boolean has_warned_bpo; 83 bfd_boolean has_warned_pushj; 84 }; 85 86 #define mmix_elf_section_data(sec) \ 87 ((struct _mmix_elf_section_data *) elf_section_data (sec)) 88 89 /* For each section containing a base-plus-offset (BPO) reloc, we attach 90 this struct as mmix_elf_section_data (section)->bpo, which is otherwise 91 NULL. */ 92 struct bpo_reloc_section_info 93 { 94 /* The base is 1; this is the first number in this section. */ 95 size_t first_base_plus_offset_reloc; 96 97 /* Number of BPO-relocs in this section. */ 98 size_t n_bpo_relocs_this_section; 99 100 /* Running index, used at relocation time. */ 101 size_t bpo_index; 102 103 /* We don't have access to the bfd_link_info struct in 104 mmix_final_link_relocate. What we really want to get at is the 105 global single struct greg_relocation, so we stash it here. */ 106 asection *bpo_greg_section; 107 }; 108 109 /* Helper struct (in global context) for the one below. 110 There's one of these created for every BPO reloc. */ 111 struct bpo_reloc_request 112 { 113 bfd_vma value; 114 115 /* Valid after relaxation. The base is 0; the first register number 116 must be added. The offset is in range 0..255. */ 117 size_t regindex; 118 size_t offset; 119 120 /* The order number for this BPO reloc, corresponding to the order in 121 which BPO relocs were found. Used to create an index after reloc 122 requests are sorted. */ 123 size_t bpo_reloc_no; 124 125 /* Set when the value is computed. Better than coding "guard values" 126 into the other members. Is FALSE only for BPO relocs in a GC:ed 127 section. */ 128 bfd_boolean valid; 129 }; 130 131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated 132 greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME), 133 which is linked into the register contents section 134 (MMIX_REG_CONTENTS_SECTION_NAME). This section is created by the 135 linker; using the same hook as for usual with BPO relocs does not 136 collide. */ 137 struct bpo_greg_section_info 138 { 139 /* After GC, this reflects the number of remaining, non-excluded 140 BPO-relocs. */ 141 size_t n_bpo_relocs; 142 143 /* This is the number of allocated bpo_reloc_requests; the size of 144 sorted_indexes. Valid after the check.*relocs functions are called 145 for all incoming sections. It includes the number of BPO relocs in 146 sections that were GC:ed. */ 147 size_t n_max_bpo_relocs; 148 149 /* A counter used to find out when to fold the BPO gregs, since we 150 don't have a single "after-relaxation" hook. */ 151 size_t n_remaining_bpo_relocs_this_relaxation_round; 152 153 /* The number of linker-allocated GREGs resulting from BPO relocs. 154 This is an approximation after _bfd_mmix_before_linker_allocation 155 and supposedly accurate after mmix_elf_relax_section is called for 156 all incoming non-collected sections. */ 157 size_t n_allocated_bpo_gregs; 158 159 /* Index into reloc_request[], sorted on increasing "value", secondary 160 by increasing index for strict sorting order. */ 161 size_t *bpo_reloc_indexes; 162 163 /* An array of all relocations, with the "value" member filled in by 164 the relaxation function. */ 165 struct bpo_reloc_request *reloc_request; 166 }; 167 168 169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *); 170 171 extern void mmix_elf_symbol_processing (bfd *, asymbol *); 172 173 /* Only intended to be called from a debugger. */ 174 extern void mmix_dump_bpo_gregs 175 (struct bfd_link_info *, bfd_error_handler_type); 176 177 static void 178 mmix_set_relaxable_size (bfd *, asection *, void *); 179 static bfd_reloc_status_type 180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *, 181 asection *, bfd *, char **); 182 static bfd_reloc_status_type 183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma, 184 bfd_signed_vma, bfd_vma, const char *, asection *, 185 char **); 186 187 188 /* Watch out: this currently needs to have elements with the same index as 189 their R_MMIX_ number. */ 190 static reloc_howto_type elf_mmix_howto_table[] = 191 { 192 /* This reloc does nothing. */ 193 HOWTO (R_MMIX_NONE, /* type */ 194 0, /* rightshift */ 195 2, /* size (0 = byte, 1 = short, 2 = long) */ 196 32, /* bitsize */ 197 FALSE, /* pc_relative */ 198 0, /* bitpos */ 199 complain_overflow_bitfield, /* complain_on_overflow */ 200 bfd_elf_generic_reloc, /* special_function */ 201 "R_MMIX_NONE", /* name */ 202 FALSE, /* partial_inplace */ 203 0, /* src_mask */ 204 0, /* dst_mask */ 205 FALSE), /* pcrel_offset */ 206 207 /* An 8 bit absolute relocation. */ 208 HOWTO (R_MMIX_8, /* type */ 209 0, /* rightshift */ 210 0, /* size (0 = byte, 1 = short, 2 = long) */ 211 8, /* bitsize */ 212 FALSE, /* pc_relative */ 213 0, /* bitpos */ 214 complain_overflow_bitfield, /* complain_on_overflow */ 215 bfd_elf_generic_reloc, /* special_function */ 216 "R_MMIX_8", /* name */ 217 FALSE, /* partial_inplace */ 218 0, /* src_mask */ 219 0xff, /* dst_mask */ 220 FALSE), /* pcrel_offset */ 221 222 /* An 16 bit absolute relocation. */ 223 HOWTO (R_MMIX_16, /* type */ 224 0, /* rightshift */ 225 1, /* size (0 = byte, 1 = short, 2 = long) */ 226 16, /* bitsize */ 227 FALSE, /* pc_relative */ 228 0, /* bitpos */ 229 complain_overflow_bitfield, /* complain_on_overflow */ 230 bfd_elf_generic_reloc, /* special_function */ 231 "R_MMIX_16", /* name */ 232 FALSE, /* partial_inplace */ 233 0, /* src_mask */ 234 0xffff, /* dst_mask */ 235 FALSE), /* pcrel_offset */ 236 237 /* An 24 bit absolute relocation. */ 238 HOWTO (R_MMIX_24, /* type */ 239 0, /* rightshift */ 240 2, /* size (0 = byte, 1 = short, 2 = long) */ 241 24, /* bitsize */ 242 FALSE, /* pc_relative */ 243 0, /* bitpos */ 244 complain_overflow_bitfield, /* complain_on_overflow */ 245 bfd_elf_generic_reloc, /* special_function */ 246 "R_MMIX_24", /* name */ 247 FALSE, /* partial_inplace */ 248 ~0xffffff, /* src_mask */ 249 0xffffff, /* dst_mask */ 250 FALSE), /* pcrel_offset */ 251 252 /* A 32 bit absolute relocation. */ 253 HOWTO (R_MMIX_32, /* type */ 254 0, /* rightshift */ 255 2, /* size (0 = byte, 1 = short, 2 = long) */ 256 32, /* bitsize */ 257 FALSE, /* pc_relative */ 258 0, /* bitpos */ 259 complain_overflow_bitfield, /* complain_on_overflow */ 260 bfd_elf_generic_reloc, /* special_function */ 261 "R_MMIX_32", /* name */ 262 FALSE, /* partial_inplace */ 263 0, /* src_mask */ 264 0xffffffff, /* dst_mask */ 265 FALSE), /* pcrel_offset */ 266 267 /* 64 bit relocation. */ 268 HOWTO (R_MMIX_64, /* type */ 269 0, /* rightshift */ 270 4, /* size (0 = byte, 1 = short, 2 = long) */ 271 64, /* bitsize */ 272 FALSE, /* pc_relative */ 273 0, /* bitpos */ 274 complain_overflow_bitfield, /* complain_on_overflow */ 275 bfd_elf_generic_reloc, /* special_function */ 276 "R_MMIX_64", /* name */ 277 FALSE, /* partial_inplace */ 278 0, /* src_mask */ 279 MINUS_ONE, /* dst_mask */ 280 FALSE), /* pcrel_offset */ 281 282 /* An 8 bit PC-relative relocation. */ 283 HOWTO (R_MMIX_PC_8, /* type */ 284 0, /* rightshift */ 285 0, /* size (0 = byte, 1 = short, 2 = long) */ 286 8, /* bitsize */ 287 TRUE, /* pc_relative */ 288 0, /* bitpos */ 289 complain_overflow_bitfield, /* complain_on_overflow */ 290 bfd_elf_generic_reloc, /* special_function */ 291 "R_MMIX_PC_8", /* name */ 292 FALSE, /* partial_inplace */ 293 0, /* src_mask */ 294 0xff, /* dst_mask */ 295 TRUE), /* pcrel_offset */ 296 297 /* An 16 bit PC-relative relocation. */ 298 HOWTO (R_MMIX_PC_16, /* type */ 299 0, /* rightshift */ 300 1, /* size (0 = byte, 1 = short, 2 = long) */ 301 16, /* bitsize */ 302 TRUE, /* pc_relative */ 303 0, /* bitpos */ 304 complain_overflow_bitfield, /* complain_on_overflow */ 305 bfd_elf_generic_reloc, /* special_function */ 306 "R_MMIX_PC_16", /* name */ 307 FALSE, /* partial_inplace */ 308 0, /* src_mask */ 309 0xffff, /* dst_mask */ 310 TRUE), /* pcrel_offset */ 311 312 /* An 24 bit PC-relative relocation. */ 313 HOWTO (R_MMIX_PC_24, /* type */ 314 0, /* rightshift */ 315 2, /* size (0 = byte, 1 = short, 2 = long) */ 316 24, /* bitsize */ 317 TRUE, /* pc_relative */ 318 0, /* bitpos */ 319 complain_overflow_bitfield, /* complain_on_overflow */ 320 bfd_elf_generic_reloc, /* special_function */ 321 "R_MMIX_PC_24", /* name */ 322 FALSE, /* partial_inplace */ 323 ~0xffffff, /* src_mask */ 324 0xffffff, /* dst_mask */ 325 TRUE), /* pcrel_offset */ 326 327 /* A 32 bit absolute PC-relative relocation. */ 328 HOWTO (R_MMIX_PC_32, /* type */ 329 0, /* rightshift */ 330 2, /* size (0 = byte, 1 = short, 2 = long) */ 331 32, /* bitsize */ 332 TRUE, /* pc_relative */ 333 0, /* bitpos */ 334 complain_overflow_bitfield, /* complain_on_overflow */ 335 bfd_elf_generic_reloc, /* special_function */ 336 "R_MMIX_PC_32", /* name */ 337 FALSE, /* partial_inplace */ 338 0, /* src_mask */ 339 0xffffffff, /* dst_mask */ 340 TRUE), /* pcrel_offset */ 341 342 /* 64 bit PC-relative relocation. */ 343 HOWTO (R_MMIX_PC_64, /* type */ 344 0, /* rightshift */ 345 4, /* size (0 = byte, 1 = short, 2 = long) */ 346 64, /* bitsize */ 347 TRUE, /* pc_relative */ 348 0, /* bitpos */ 349 complain_overflow_bitfield, /* complain_on_overflow */ 350 bfd_elf_generic_reloc, /* special_function */ 351 "R_MMIX_PC_64", /* name */ 352 FALSE, /* partial_inplace */ 353 0, /* src_mask */ 354 MINUS_ONE, /* dst_mask */ 355 TRUE), /* pcrel_offset */ 356 357 /* GNU extension to record C++ vtable hierarchy. */ 358 HOWTO (R_MMIX_GNU_VTINHERIT, /* type */ 359 0, /* rightshift */ 360 0, /* size (0 = byte, 1 = short, 2 = long) */ 361 0, /* bitsize */ 362 FALSE, /* pc_relative */ 363 0, /* bitpos */ 364 complain_overflow_dont, /* complain_on_overflow */ 365 NULL, /* special_function */ 366 "R_MMIX_GNU_VTINHERIT", /* name */ 367 FALSE, /* partial_inplace */ 368 0, /* src_mask */ 369 0, /* dst_mask */ 370 TRUE), /* pcrel_offset */ 371 372 /* GNU extension to record C++ vtable member usage. */ 373 HOWTO (R_MMIX_GNU_VTENTRY, /* type */ 374 0, /* rightshift */ 375 0, /* size (0 = byte, 1 = short, 2 = long) */ 376 0, /* bitsize */ 377 FALSE, /* pc_relative */ 378 0, /* bitpos */ 379 complain_overflow_dont, /* complain_on_overflow */ 380 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 381 "R_MMIX_GNU_VTENTRY", /* name */ 382 FALSE, /* partial_inplace */ 383 0, /* src_mask */ 384 0, /* dst_mask */ 385 FALSE), /* pcrel_offset */ 386 387 /* The GETA relocation is supposed to get any address that could 388 possibly be reached by the GETA instruction. It can silently expand 389 to get a 64-bit operand, but will complain if any of the two least 390 significant bits are set. The howto members reflect a simple GETA. */ 391 HOWTO (R_MMIX_GETA, /* type */ 392 2, /* rightshift */ 393 2, /* size (0 = byte, 1 = short, 2 = long) */ 394 19, /* bitsize */ 395 TRUE, /* pc_relative */ 396 0, /* bitpos */ 397 complain_overflow_signed, /* complain_on_overflow */ 398 mmix_elf_reloc, /* special_function */ 399 "R_MMIX_GETA", /* name */ 400 FALSE, /* partial_inplace */ 401 ~0x0100ffff, /* src_mask */ 402 0x0100ffff, /* dst_mask */ 403 TRUE), /* pcrel_offset */ 404 405 HOWTO (R_MMIX_GETA_1, /* type */ 406 2, /* rightshift */ 407 2, /* size (0 = byte, 1 = short, 2 = long) */ 408 19, /* bitsize */ 409 TRUE, /* pc_relative */ 410 0, /* bitpos */ 411 complain_overflow_signed, /* complain_on_overflow */ 412 mmix_elf_reloc, /* special_function */ 413 "R_MMIX_GETA_1", /* name */ 414 FALSE, /* partial_inplace */ 415 ~0x0100ffff, /* src_mask */ 416 0x0100ffff, /* dst_mask */ 417 TRUE), /* pcrel_offset */ 418 419 HOWTO (R_MMIX_GETA_2, /* type */ 420 2, /* rightshift */ 421 2, /* size (0 = byte, 1 = short, 2 = long) */ 422 19, /* bitsize */ 423 TRUE, /* pc_relative */ 424 0, /* bitpos */ 425 complain_overflow_signed, /* complain_on_overflow */ 426 mmix_elf_reloc, /* special_function */ 427 "R_MMIX_GETA_2", /* name */ 428 FALSE, /* partial_inplace */ 429 ~0x0100ffff, /* src_mask */ 430 0x0100ffff, /* dst_mask */ 431 TRUE), /* pcrel_offset */ 432 433 HOWTO (R_MMIX_GETA_3, /* type */ 434 2, /* rightshift */ 435 2, /* size (0 = byte, 1 = short, 2 = long) */ 436 19, /* bitsize */ 437 TRUE, /* pc_relative */ 438 0, /* bitpos */ 439 complain_overflow_signed, /* complain_on_overflow */ 440 mmix_elf_reloc, /* special_function */ 441 "R_MMIX_GETA_3", /* name */ 442 FALSE, /* partial_inplace */ 443 ~0x0100ffff, /* src_mask */ 444 0x0100ffff, /* dst_mask */ 445 TRUE), /* pcrel_offset */ 446 447 /* The conditional branches are supposed to reach any (code) address. 448 It can silently expand to a 64-bit operand, but will emit an error if 449 any of the two least significant bits are set. The howto members 450 reflect a simple branch. */ 451 HOWTO (R_MMIX_CBRANCH, /* type */ 452 2, /* rightshift */ 453 2, /* size (0 = byte, 1 = short, 2 = long) */ 454 19, /* bitsize */ 455 TRUE, /* pc_relative */ 456 0, /* bitpos */ 457 complain_overflow_signed, /* complain_on_overflow */ 458 mmix_elf_reloc, /* special_function */ 459 "R_MMIX_CBRANCH", /* name */ 460 FALSE, /* partial_inplace */ 461 ~0x0100ffff, /* src_mask */ 462 0x0100ffff, /* dst_mask */ 463 TRUE), /* pcrel_offset */ 464 465 HOWTO (R_MMIX_CBRANCH_J, /* type */ 466 2, /* rightshift */ 467 2, /* size (0 = byte, 1 = short, 2 = long) */ 468 19, /* bitsize */ 469 TRUE, /* pc_relative */ 470 0, /* bitpos */ 471 complain_overflow_signed, /* complain_on_overflow */ 472 mmix_elf_reloc, /* special_function */ 473 "R_MMIX_CBRANCH_J", /* name */ 474 FALSE, /* partial_inplace */ 475 ~0x0100ffff, /* src_mask */ 476 0x0100ffff, /* dst_mask */ 477 TRUE), /* pcrel_offset */ 478 479 HOWTO (R_MMIX_CBRANCH_1, /* type */ 480 2, /* rightshift */ 481 2, /* size (0 = byte, 1 = short, 2 = long) */ 482 19, /* bitsize */ 483 TRUE, /* pc_relative */ 484 0, /* bitpos */ 485 complain_overflow_signed, /* complain_on_overflow */ 486 mmix_elf_reloc, /* special_function */ 487 "R_MMIX_CBRANCH_1", /* name */ 488 FALSE, /* partial_inplace */ 489 ~0x0100ffff, /* src_mask */ 490 0x0100ffff, /* dst_mask */ 491 TRUE), /* pcrel_offset */ 492 493 HOWTO (R_MMIX_CBRANCH_2, /* type */ 494 2, /* rightshift */ 495 2, /* size (0 = byte, 1 = short, 2 = long) */ 496 19, /* bitsize */ 497 TRUE, /* pc_relative */ 498 0, /* bitpos */ 499 complain_overflow_signed, /* complain_on_overflow */ 500 mmix_elf_reloc, /* special_function */ 501 "R_MMIX_CBRANCH_2", /* name */ 502 FALSE, /* partial_inplace */ 503 ~0x0100ffff, /* src_mask */ 504 0x0100ffff, /* dst_mask */ 505 TRUE), /* pcrel_offset */ 506 507 HOWTO (R_MMIX_CBRANCH_3, /* type */ 508 2, /* rightshift */ 509 2, /* size (0 = byte, 1 = short, 2 = long) */ 510 19, /* bitsize */ 511 TRUE, /* pc_relative */ 512 0, /* bitpos */ 513 complain_overflow_signed, /* complain_on_overflow */ 514 mmix_elf_reloc, /* special_function */ 515 "R_MMIX_CBRANCH_3", /* name */ 516 FALSE, /* partial_inplace */ 517 ~0x0100ffff, /* src_mask */ 518 0x0100ffff, /* dst_mask */ 519 TRUE), /* pcrel_offset */ 520 521 /* The PUSHJ instruction can reach any (code) address, as long as it's 522 the beginning of a function (no usable restriction). It can silently 523 expand to a 64-bit operand, but will emit an error if any of the two 524 least significant bits are set. It can also expand into a call to a 525 stub; see R_MMIX_PUSHJ_STUBBABLE. The howto members reflect a simple 526 PUSHJ. */ 527 HOWTO (R_MMIX_PUSHJ, /* type */ 528 2, /* rightshift */ 529 2, /* size (0 = byte, 1 = short, 2 = long) */ 530 19, /* bitsize */ 531 TRUE, /* pc_relative */ 532 0, /* bitpos */ 533 complain_overflow_signed, /* complain_on_overflow */ 534 mmix_elf_reloc, /* special_function */ 535 "R_MMIX_PUSHJ", /* name */ 536 FALSE, /* partial_inplace */ 537 ~0x0100ffff, /* src_mask */ 538 0x0100ffff, /* dst_mask */ 539 TRUE), /* pcrel_offset */ 540 541 HOWTO (R_MMIX_PUSHJ_1, /* type */ 542 2, /* rightshift */ 543 2, /* size (0 = byte, 1 = short, 2 = long) */ 544 19, /* bitsize */ 545 TRUE, /* pc_relative */ 546 0, /* bitpos */ 547 complain_overflow_signed, /* complain_on_overflow */ 548 mmix_elf_reloc, /* special_function */ 549 "R_MMIX_PUSHJ_1", /* name */ 550 FALSE, /* partial_inplace */ 551 ~0x0100ffff, /* src_mask */ 552 0x0100ffff, /* dst_mask */ 553 TRUE), /* pcrel_offset */ 554 555 HOWTO (R_MMIX_PUSHJ_2, /* type */ 556 2, /* rightshift */ 557 2, /* size (0 = byte, 1 = short, 2 = long) */ 558 19, /* bitsize */ 559 TRUE, /* pc_relative */ 560 0, /* bitpos */ 561 complain_overflow_signed, /* complain_on_overflow */ 562 mmix_elf_reloc, /* special_function */ 563 "R_MMIX_PUSHJ_2", /* name */ 564 FALSE, /* partial_inplace */ 565 ~0x0100ffff, /* src_mask */ 566 0x0100ffff, /* dst_mask */ 567 TRUE), /* pcrel_offset */ 568 569 HOWTO (R_MMIX_PUSHJ_3, /* type */ 570 2, /* rightshift */ 571 2, /* size (0 = byte, 1 = short, 2 = long) */ 572 19, /* bitsize */ 573 TRUE, /* pc_relative */ 574 0, /* bitpos */ 575 complain_overflow_signed, /* complain_on_overflow */ 576 mmix_elf_reloc, /* special_function */ 577 "R_MMIX_PUSHJ_3", /* name */ 578 FALSE, /* partial_inplace */ 579 ~0x0100ffff, /* src_mask */ 580 0x0100ffff, /* dst_mask */ 581 TRUE), /* pcrel_offset */ 582 583 /* A JMP is supposed to reach any (code) address. By itself, it can 584 reach +-64M; the expansion can reach all 64 bits. Note that the 64M 585 limit is soon reached if you link the program in wildly different 586 memory segments. The howto members reflect a trivial JMP. */ 587 HOWTO (R_MMIX_JMP, /* type */ 588 2, /* rightshift */ 589 2, /* size (0 = byte, 1 = short, 2 = long) */ 590 27, /* bitsize */ 591 TRUE, /* pc_relative */ 592 0, /* bitpos */ 593 complain_overflow_signed, /* complain_on_overflow */ 594 mmix_elf_reloc, /* special_function */ 595 "R_MMIX_JMP", /* name */ 596 FALSE, /* partial_inplace */ 597 ~0x1ffffff, /* src_mask */ 598 0x1ffffff, /* dst_mask */ 599 TRUE), /* pcrel_offset */ 600 601 HOWTO (R_MMIX_JMP_1, /* type */ 602 2, /* rightshift */ 603 2, /* size (0 = byte, 1 = short, 2 = long) */ 604 27, /* bitsize */ 605 TRUE, /* pc_relative */ 606 0, /* bitpos */ 607 complain_overflow_signed, /* complain_on_overflow */ 608 mmix_elf_reloc, /* special_function */ 609 "R_MMIX_JMP_1", /* name */ 610 FALSE, /* partial_inplace */ 611 ~0x1ffffff, /* src_mask */ 612 0x1ffffff, /* dst_mask */ 613 TRUE), /* pcrel_offset */ 614 615 HOWTO (R_MMIX_JMP_2, /* type */ 616 2, /* rightshift */ 617 2, /* size (0 = byte, 1 = short, 2 = long) */ 618 27, /* bitsize */ 619 TRUE, /* pc_relative */ 620 0, /* bitpos */ 621 complain_overflow_signed, /* complain_on_overflow */ 622 mmix_elf_reloc, /* special_function */ 623 "R_MMIX_JMP_2", /* name */ 624 FALSE, /* partial_inplace */ 625 ~0x1ffffff, /* src_mask */ 626 0x1ffffff, /* dst_mask */ 627 TRUE), /* pcrel_offset */ 628 629 HOWTO (R_MMIX_JMP_3, /* type */ 630 2, /* rightshift */ 631 2, /* size (0 = byte, 1 = short, 2 = long) */ 632 27, /* bitsize */ 633 TRUE, /* pc_relative */ 634 0, /* bitpos */ 635 complain_overflow_signed, /* complain_on_overflow */ 636 mmix_elf_reloc, /* special_function */ 637 "R_MMIX_JMP_3", /* name */ 638 FALSE, /* partial_inplace */ 639 ~0x1ffffff, /* src_mask */ 640 0x1ffffff, /* dst_mask */ 641 TRUE), /* pcrel_offset */ 642 643 /* When we don't emit link-time-relaxable code from the assembler, or 644 when relaxation has done all it can do, these relocs are used. For 645 GETA/PUSHJ/branches. */ 646 HOWTO (R_MMIX_ADDR19, /* type */ 647 2, /* rightshift */ 648 2, /* size (0 = byte, 1 = short, 2 = long) */ 649 19, /* bitsize */ 650 TRUE, /* pc_relative */ 651 0, /* bitpos */ 652 complain_overflow_signed, /* complain_on_overflow */ 653 mmix_elf_reloc, /* special_function */ 654 "R_MMIX_ADDR19", /* name */ 655 FALSE, /* partial_inplace */ 656 ~0x0100ffff, /* src_mask */ 657 0x0100ffff, /* dst_mask */ 658 TRUE), /* pcrel_offset */ 659 660 /* For JMP. */ 661 HOWTO (R_MMIX_ADDR27, /* type */ 662 2, /* rightshift */ 663 2, /* size (0 = byte, 1 = short, 2 = long) */ 664 27, /* bitsize */ 665 TRUE, /* pc_relative */ 666 0, /* bitpos */ 667 complain_overflow_signed, /* complain_on_overflow */ 668 mmix_elf_reloc, /* special_function */ 669 "R_MMIX_ADDR27", /* name */ 670 FALSE, /* partial_inplace */ 671 ~0x1ffffff, /* src_mask */ 672 0x1ffffff, /* dst_mask */ 673 TRUE), /* pcrel_offset */ 674 675 /* A general register or the value 0..255. If a value, then the 676 instruction (offset -3) needs adjusting. */ 677 HOWTO (R_MMIX_REG_OR_BYTE, /* type */ 678 0, /* rightshift */ 679 1, /* size (0 = byte, 1 = short, 2 = long) */ 680 8, /* bitsize */ 681 FALSE, /* pc_relative */ 682 0, /* bitpos */ 683 complain_overflow_bitfield, /* complain_on_overflow */ 684 mmix_elf_reloc, /* special_function */ 685 "R_MMIX_REG_OR_BYTE", /* name */ 686 FALSE, /* partial_inplace */ 687 0, /* src_mask */ 688 0xff, /* dst_mask */ 689 FALSE), /* pcrel_offset */ 690 691 /* A general register. */ 692 HOWTO (R_MMIX_REG, /* type */ 693 0, /* rightshift */ 694 1, /* size (0 = byte, 1 = short, 2 = long) */ 695 8, /* bitsize */ 696 FALSE, /* pc_relative */ 697 0, /* bitpos */ 698 complain_overflow_bitfield, /* complain_on_overflow */ 699 mmix_elf_reloc, /* special_function */ 700 "R_MMIX_REG", /* name */ 701 FALSE, /* partial_inplace */ 702 0, /* src_mask */ 703 0xff, /* dst_mask */ 704 FALSE), /* pcrel_offset */ 705 706 /* A register plus an index, corresponding to the relocation expression. 707 The sizes must correspond to the valid range of the expression, while 708 the bitmasks correspond to what we store in the image. */ 709 HOWTO (R_MMIX_BASE_PLUS_OFFSET, /* type */ 710 0, /* rightshift */ 711 4, /* size (0 = byte, 1 = short, 2 = long) */ 712 64, /* bitsize */ 713 FALSE, /* pc_relative */ 714 0, /* bitpos */ 715 complain_overflow_bitfield, /* complain_on_overflow */ 716 mmix_elf_reloc, /* special_function */ 717 "R_MMIX_BASE_PLUS_OFFSET", /* name */ 718 FALSE, /* partial_inplace */ 719 0, /* src_mask */ 720 0xffff, /* dst_mask */ 721 FALSE), /* pcrel_offset */ 722 723 /* A "magic" relocation for a LOCAL expression, asserting that the 724 expression is less than the number of global registers. No actual 725 modification of the contents is done. Implementing this as a 726 relocation was less intrusive than e.g. putting such expressions in a 727 section to discard *after* relocation. */ 728 HOWTO (R_MMIX_LOCAL, /* type */ 729 0, /* rightshift */ 730 0, /* size (0 = byte, 1 = short, 2 = long) */ 731 0, /* bitsize */ 732 FALSE, /* pc_relative */ 733 0, /* bitpos */ 734 complain_overflow_dont, /* complain_on_overflow */ 735 mmix_elf_reloc, /* special_function */ 736 "R_MMIX_LOCAL", /* name */ 737 FALSE, /* partial_inplace */ 738 0, /* src_mask */ 739 0, /* dst_mask */ 740 FALSE), /* pcrel_offset */ 741 742 HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */ 743 2, /* rightshift */ 744 2, /* size (0 = byte, 1 = short, 2 = long) */ 745 19, /* bitsize */ 746 TRUE, /* pc_relative */ 747 0, /* bitpos */ 748 complain_overflow_signed, /* complain_on_overflow */ 749 mmix_elf_reloc, /* special_function */ 750 "R_MMIX_PUSHJ_STUBBABLE", /* name */ 751 FALSE, /* partial_inplace */ 752 ~0x0100ffff, /* src_mask */ 753 0x0100ffff, /* dst_mask */ 754 TRUE) /* pcrel_offset */ 755 }; 756 757 758 /* Map BFD reloc types to MMIX ELF reloc types. */ 759 760 struct mmix_reloc_map 761 { 762 bfd_reloc_code_real_type bfd_reloc_val; 763 enum elf_mmix_reloc_type elf_reloc_val; 764 }; 765 766 767 static const struct mmix_reloc_map mmix_reloc_map[] = 768 { 769 {BFD_RELOC_NONE, R_MMIX_NONE}, 770 {BFD_RELOC_8, R_MMIX_8}, 771 {BFD_RELOC_16, R_MMIX_16}, 772 {BFD_RELOC_24, R_MMIX_24}, 773 {BFD_RELOC_32, R_MMIX_32}, 774 {BFD_RELOC_64, R_MMIX_64}, 775 {BFD_RELOC_8_PCREL, R_MMIX_PC_8}, 776 {BFD_RELOC_16_PCREL, R_MMIX_PC_16}, 777 {BFD_RELOC_24_PCREL, R_MMIX_PC_24}, 778 {BFD_RELOC_32_PCREL, R_MMIX_PC_32}, 779 {BFD_RELOC_64_PCREL, R_MMIX_PC_64}, 780 {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT}, 781 {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY}, 782 {BFD_RELOC_MMIX_GETA, R_MMIX_GETA}, 783 {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH}, 784 {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ}, 785 {BFD_RELOC_MMIX_JMP, R_MMIX_JMP}, 786 {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19}, 787 {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27}, 788 {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE}, 789 {BFD_RELOC_MMIX_REG, R_MMIX_REG}, 790 {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET}, 791 {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL}, 792 {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE} 793 }; 794 795 static reloc_howto_type * 796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 797 bfd_reloc_code_real_type code) 798 { 799 unsigned int i; 800 801 for (i = 0; 802 i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]); 803 i++) 804 { 805 if (mmix_reloc_map[i].bfd_reloc_val == code) 806 return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val]; 807 } 808 809 return NULL; 810 } 811 812 static reloc_howto_type * 813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, 814 const char *r_name) 815 { 816 unsigned int i; 817 818 for (i = 0; 819 i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]); 820 i++) 821 if (elf_mmix_howto_table[i].name != NULL 822 && strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0) 823 return &elf_mmix_howto_table[i]; 824 825 return NULL; 826 } 827 828 static bfd_boolean 829 mmix_elf_new_section_hook (bfd *abfd, asection *sec) 830 { 831 if (!sec->used_by_bfd) 832 { 833 struct _mmix_elf_section_data *sdata; 834 bfd_size_type amt = sizeof (*sdata); 835 836 sdata = bfd_zalloc (abfd, amt); 837 if (sdata == NULL) 838 return FALSE; 839 sec->used_by_bfd = sdata; 840 } 841 842 return _bfd_elf_new_section_hook (abfd, sec); 843 } 844 845 846 /* This function performs the actual bitfiddling and sanity check for a 847 final relocation. Each relocation gets its *worst*-case expansion 848 in size when it arrives here; any reduction in size should have been 849 caught in linker relaxation earlier. When we get here, the relocation 850 looks like the smallest instruction with SWYM:s (nop:s) appended to the 851 max size. We fill in those nop:s. 852 853 R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra) 854 GETA $N,foo 855 -> 856 SETL $N,foo & 0xffff 857 INCML $N,(foo >> 16) & 0xffff 858 INCMH $N,(foo >> 32) & 0xffff 859 INCH $N,(foo >> 48) & 0xffff 860 861 R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but 862 condbranches needing relaxation might be rare enough to not be 863 worthwhile.) 864 [P]Bcc $N,foo 865 -> 866 [~P]B~cc $N,.+20 867 SETL $255,foo & ... 868 INCML ... 869 INCMH ... 870 INCH ... 871 GO $255,$255,0 872 873 R_MMIX_PUSHJ: (FIXME: Relaxation...) 874 PUSHJ $N,foo 875 -> 876 SETL $255,foo & ... 877 INCML ... 878 INCMH ... 879 INCH ... 880 PUSHGO $N,$255,0 881 882 R_MMIX_JMP: (FIXME: Relaxation...) 883 JMP foo 884 -> 885 SETL $255,foo & ... 886 INCML ... 887 INCMH ... 888 INCH ... 889 GO $255,$255,0 890 891 R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in. */ 892 893 static bfd_reloc_status_type 894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto, 895 void *datap, bfd_vma addr, bfd_vma value, 896 char **error_message) 897 { 898 bfd *abfd = isec->owner; 899 bfd_reloc_status_type flag = bfd_reloc_ok; 900 bfd_reloc_status_type r; 901 int offs = 0; 902 int reg = 255; 903 904 /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences. 905 We handle the differences here and the common sequence later. */ 906 switch (howto->type) 907 { 908 case R_MMIX_GETA: 909 offs = 0; 910 reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 911 912 /* We change to an absolute value. */ 913 value += addr; 914 break; 915 916 case R_MMIX_CBRANCH: 917 { 918 int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16; 919 920 /* Invert the condition and prediction bit, and set the offset 921 to five instructions ahead. 922 923 We *can* do better if we want to. If the branch is found to be 924 within limits, we could leave the branch as is; there'll just 925 be a bunch of NOP:s after it. But we shouldn't see this 926 sequence often enough that it's worth doing it. */ 927 928 bfd_put_32 (abfd, 929 (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff) 930 | (24/4)), 931 (bfd_byte *) datap); 932 933 /* Put a "GO $255,$255,0" after the common sequence. */ 934 bfd_put_32 (abfd, 935 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00, 936 (bfd_byte *) datap + 20); 937 938 /* Common sequence starts at offset 4. */ 939 offs = 4; 940 941 /* We change to an absolute value. */ 942 value += addr; 943 } 944 break; 945 946 case R_MMIX_PUSHJ_STUBBABLE: 947 /* If the address fits, we're fine. */ 948 if ((value & 3) == 0 949 /* Note rightshift 0; see R_MMIX_JMP case below. */ 950 && (r = bfd_check_overflow (complain_overflow_signed, 951 howto->bitsize, 952 0, 953 bfd_arch_bits_per_address (abfd), 954 value)) == bfd_reloc_ok) 955 goto pcrel_mmix_reloc_fits; 956 else 957 { 958 bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size; 959 960 /* We have the bytes at the PUSHJ insn and need to get the 961 position for the stub. There's supposed to be room allocated 962 for the stub. */ 963 bfd_byte *stubcontents 964 = ((bfd_byte *) datap 965 - (addr - (isec->output_section->vma + isec->output_offset)) 966 + size 967 + mmix_elf_section_data (isec)->pjs.stub_offset); 968 bfd_vma stubaddr; 969 970 if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0) 971 { 972 /* This shouldn't happen when linking to ELF or mmo, so 973 this is an attempt to link to "binary", right? We 974 can't access the output bfd, so we can't verify that 975 assumption. We only know that the critical 976 mmix_elf_check_common_relocs has not been called, 977 which happens when the output format is different 978 from the input format (and is not mmo). */ 979 if (! mmix_elf_section_data (isec)->has_warned_pushj) 980 { 981 /* For the first such error per input section, produce 982 a verbose message. */ 983 *error_message 984 = _("invalid input relocation when producing" 985 " non-ELF, non-mmo format output." 986 "\n Please use the objcopy program to convert from" 987 " ELF or mmo," 988 "\n or assemble using" 989 " \"-no-expand\" (for gcc, \"-Wa,-no-expand\""); 990 mmix_elf_section_data (isec)->has_warned_pushj = TRUE; 991 return bfd_reloc_dangerous; 992 } 993 994 /* For subsequent errors, return this one, which is 995 rate-limited but looks a little bit different, 996 hopefully without affecting user-friendliness. */ 997 return bfd_reloc_overflow; 998 } 999 1000 /* The address doesn't fit, so redirect the PUSHJ to the 1001 location of the stub. */ 1002 r = mmix_elf_perform_relocation (isec, 1003 &elf_mmix_howto_table 1004 [R_MMIX_ADDR19], 1005 datap, 1006 addr, 1007 isec->output_section->vma 1008 + isec->output_offset 1009 + size 1010 + (mmix_elf_section_data (isec) 1011 ->pjs.stub_offset) 1012 - addr, 1013 error_message); 1014 if (r != bfd_reloc_ok) 1015 return r; 1016 1017 stubaddr 1018 = (isec->output_section->vma 1019 + isec->output_offset 1020 + size 1021 + mmix_elf_section_data (isec)->pjs.stub_offset); 1022 1023 /* We generate a simple JMP if that suffices, else the whole 5 1024 insn stub. */ 1025 if (bfd_check_overflow (complain_overflow_signed, 1026 elf_mmix_howto_table[R_MMIX_ADDR27].bitsize, 1027 0, 1028 bfd_arch_bits_per_address (abfd), 1029 addr + value - stubaddr) == bfd_reloc_ok) 1030 { 1031 bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents); 1032 r = mmix_elf_perform_relocation (isec, 1033 &elf_mmix_howto_table 1034 [R_MMIX_ADDR27], 1035 stubcontents, 1036 stubaddr, 1037 value + addr - stubaddr, 1038 error_message); 1039 mmix_elf_section_data (isec)->pjs.stub_offset += 4; 1040 1041 if (size + mmix_elf_section_data (isec)->pjs.stub_offset 1042 > isec->size) 1043 abort (); 1044 1045 return r; 1046 } 1047 else 1048 { 1049 /* Put a "GO $255,0" after the common sequence. */ 1050 bfd_put_32 (abfd, 1051 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1052 | 0xff00, (bfd_byte *) stubcontents + 16); 1053 1054 /* Prepare for the general code to set the first part of the 1055 linker stub, and */ 1056 value += addr; 1057 datap = stubcontents; 1058 mmix_elf_section_data (isec)->pjs.stub_offset 1059 += MAX_PUSHJ_STUB_SIZE; 1060 } 1061 } 1062 break; 1063 1064 case R_MMIX_PUSHJ: 1065 { 1066 int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1); 1067 1068 /* Put a "PUSHGO $N,$255,0" after the common sequence. */ 1069 bfd_put_32 (abfd, 1070 ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1071 | (inreg << 16) 1072 | 0xff00, 1073 (bfd_byte *) datap + 16); 1074 1075 /* We change to an absolute value. */ 1076 value += addr; 1077 } 1078 break; 1079 1080 case R_MMIX_JMP: 1081 /* This one is a little special. If we get here on a non-relaxing 1082 link, and the destination is actually in range, we don't need to 1083 execute the nops. 1084 If so, we fall through to the bit-fiddling relocs. 1085 1086 FIXME: bfd_check_overflow seems broken; the relocation is 1087 rightshifted before testing, so supply a zero rightshift. */ 1088 1089 if (! ((value & 3) == 0 1090 && (r = bfd_check_overflow (complain_overflow_signed, 1091 howto->bitsize, 1092 0, 1093 bfd_arch_bits_per_address (abfd), 1094 value)) == bfd_reloc_ok)) 1095 { 1096 /* If the relocation doesn't fit in a JMP, we let the NOP:s be 1097 modified below, and put a "GO $255,$255,0" after the 1098 address-loading sequence. */ 1099 bfd_put_32 (abfd, 1100 ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) 1101 | 0xffff00, 1102 (bfd_byte *) datap + 16); 1103 1104 /* We change to an absolute value. */ 1105 value += addr; 1106 break; 1107 } 1108 /* FALLTHROUGH. */ 1109 case R_MMIX_ADDR19: 1110 case R_MMIX_ADDR27: 1111 pcrel_mmix_reloc_fits: 1112 /* These must be in range, or else we emit an error. */ 1113 if ((value & 3) == 0 1114 /* Note rightshift 0; see above. */ 1115 && (r = bfd_check_overflow (complain_overflow_signed, 1116 howto->bitsize, 1117 0, 1118 bfd_arch_bits_per_address (abfd), 1119 value)) == bfd_reloc_ok) 1120 { 1121 bfd_vma in1 1122 = bfd_get_32 (abfd, (bfd_byte *) datap); 1123 bfd_vma highbit; 1124 1125 if ((bfd_signed_vma) value < 0) 1126 { 1127 highbit = 1 << 24; 1128 value += (1 << (howto->bitsize - 1)); 1129 } 1130 else 1131 highbit = 0; 1132 1133 value >>= 2; 1134 1135 bfd_put_32 (abfd, 1136 (in1 & howto->src_mask) 1137 | highbit 1138 | (value & howto->dst_mask), 1139 (bfd_byte *) datap); 1140 1141 return bfd_reloc_ok; 1142 } 1143 else 1144 return bfd_reloc_overflow; 1145 1146 case R_MMIX_BASE_PLUS_OFFSET: 1147 { 1148 struct bpo_reloc_section_info *bpodata 1149 = mmix_elf_section_data (isec)->bpo.reloc; 1150 asection *bpo_greg_section; 1151 struct bpo_greg_section_info *gregdata; 1152 size_t bpo_index; 1153 1154 if (bpodata == NULL) 1155 { 1156 /* This shouldn't happen when linking to ELF or mmo, so 1157 this is an attempt to link to "binary", right? We 1158 can't access the output bfd, so we can't verify that 1159 assumption. We only know that the critical 1160 mmix_elf_check_common_relocs has not been called, which 1161 happens when the output format is different from the 1162 input format (and is not mmo). */ 1163 if (! mmix_elf_section_data (isec)->has_warned_bpo) 1164 { 1165 /* For the first such error per input section, produce 1166 a verbose message. */ 1167 *error_message 1168 = _("invalid input relocation when producing" 1169 " non-ELF, non-mmo format output." 1170 "\n Please use the objcopy program to convert from" 1171 " ELF or mmo," 1172 "\n or compile using the gcc-option" 1173 " \"-mno-base-addresses\"."); 1174 mmix_elf_section_data (isec)->has_warned_bpo = TRUE; 1175 return bfd_reloc_dangerous; 1176 } 1177 1178 /* For subsequent errors, return this one, which is 1179 rate-limited but looks a little bit different, 1180 hopefully without affecting user-friendliness. */ 1181 return bfd_reloc_overflow; 1182 } 1183 1184 bpo_greg_section = bpodata->bpo_greg_section; 1185 gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg; 1186 bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++]; 1187 1188 /* A consistency check: The value we now have in "relocation" must 1189 be the same as the value we stored for that relocation. It 1190 doesn't cost much, so can be left in at all times. */ 1191 if (value != gregdata->reloc_request[bpo_index].value) 1192 { 1193 (*_bfd_error_handler) 1194 (_("%s: Internal inconsistency error for value for\n\ 1195 linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"), 1196 bfd_get_filename (isec->owner), 1197 (unsigned long) (value >> 32), (unsigned long) value, 1198 (unsigned long) (gregdata->reloc_request[bpo_index].value 1199 >> 32), 1200 (unsigned long) gregdata->reloc_request[bpo_index].value); 1201 bfd_set_error (bfd_error_bad_value); 1202 return bfd_reloc_overflow; 1203 } 1204 1205 /* Then store the register number and offset for that register 1206 into datap and datap + 1 respectively. */ 1207 bfd_put_8 (abfd, 1208 gregdata->reloc_request[bpo_index].regindex 1209 + bpo_greg_section->output_section->vma / 8, 1210 datap); 1211 bfd_put_8 (abfd, 1212 gregdata->reloc_request[bpo_index].offset, 1213 ((unsigned char *) datap) + 1); 1214 return bfd_reloc_ok; 1215 } 1216 1217 case R_MMIX_REG_OR_BYTE: 1218 case R_MMIX_REG: 1219 if (value > 255) 1220 return bfd_reloc_overflow; 1221 bfd_put_8 (abfd, value, datap); 1222 return bfd_reloc_ok; 1223 1224 default: 1225 BAD_CASE (howto->type); 1226 } 1227 1228 /* This code adds the common SETL/INCML/INCMH/INCH worst-case 1229 sequence. */ 1230 1231 /* Lowest two bits must be 0. We return bfd_reloc_overflow for 1232 everything that looks strange. */ 1233 if (value & 3) 1234 flag = bfd_reloc_overflow; 1235 1236 bfd_put_32 (abfd, 1237 (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16), 1238 (bfd_byte *) datap + offs); 1239 bfd_put_32 (abfd, 1240 (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16), 1241 (bfd_byte *) datap + offs + 4); 1242 bfd_put_32 (abfd, 1243 (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16), 1244 (bfd_byte *) datap + offs + 8); 1245 bfd_put_32 (abfd, 1246 (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16), 1247 (bfd_byte *) datap + offs + 12); 1248 1249 return flag; 1250 } 1251 1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA). */ 1253 1254 static void 1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED, 1256 arelent *cache_ptr, 1257 Elf_Internal_Rela *dst) 1258 { 1259 unsigned int r_type; 1260 1261 r_type = ELF64_R_TYPE (dst->r_info); 1262 if (r_type >= (unsigned int) R_MMIX_max) 1263 { 1264 _bfd_error_handler (_("%A: invalid MMIX reloc number: %d"), abfd, r_type); 1265 r_type = 0; 1266 } 1267 cache_ptr->howto = &elf_mmix_howto_table[r_type]; 1268 } 1269 1270 /* Any MMIX-specific relocation gets here at assembly time or when linking 1271 to other formats (such as mmo); this is the relocation function from 1272 the reloc_table. We don't get here for final pure ELF linking. */ 1273 1274 static bfd_reloc_status_type 1275 mmix_elf_reloc (bfd *abfd, 1276 arelent *reloc_entry, 1277 asymbol *symbol, 1278 void * data, 1279 asection *input_section, 1280 bfd *output_bfd, 1281 char **error_message) 1282 { 1283 bfd_vma relocation; 1284 bfd_reloc_status_type r; 1285 asection *reloc_target_output_section; 1286 bfd_reloc_status_type flag = bfd_reloc_ok; 1287 bfd_vma output_base = 0; 1288 1289 r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data, 1290 input_section, output_bfd, error_message); 1291 1292 /* If that was all that was needed (i.e. this isn't a final link, only 1293 some segment adjustments), we're done. */ 1294 if (r != bfd_reloc_continue) 1295 return r; 1296 1297 if (bfd_is_und_section (symbol->section) 1298 && (symbol->flags & BSF_WEAK) == 0 1299 && output_bfd == (bfd *) NULL) 1300 return bfd_reloc_undefined; 1301 1302 /* Is the address of the relocation really within the section? */ 1303 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 1304 return bfd_reloc_outofrange; 1305 1306 /* Work out which section the relocation is targeted at and the 1307 initial relocation command value. */ 1308 1309 /* Get symbol value. (Common symbols are special.) */ 1310 if (bfd_is_com_section (symbol->section)) 1311 relocation = 0; 1312 else 1313 relocation = symbol->value; 1314 1315 reloc_target_output_section = bfd_get_output_section (symbol); 1316 1317 /* Here the variable relocation holds the final address of the symbol we 1318 are relocating against, plus any addend. */ 1319 if (output_bfd) 1320 output_base = 0; 1321 else 1322 output_base = reloc_target_output_section->vma; 1323 1324 relocation += output_base + symbol->section->output_offset; 1325 1326 if (output_bfd != (bfd *) NULL) 1327 { 1328 /* Add in supplied addend. */ 1329 relocation += reloc_entry->addend; 1330 1331 /* This is a partial relocation, and we want to apply the 1332 relocation to the reloc entry rather than the raw data. 1333 Modify the reloc inplace to reflect what we now know. */ 1334 reloc_entry->addend = relocation; 1335 reloc_entry->address += input_section->output_offset; 1336 return flag; 1337 } 1338 1339 return mmix_final_link_relocate (reloc_entry->howto, input_section, 1340 data, reloc_entry->address, 1341 reloc_entry->addend, relocation, 1342 bfd_asymbol_name (symbol), 1343 reloc_target_output_section, 1344 error_message); 1345 } 1346 1347 /* Relocate an MMIX ELF section. Modified from elf32-fr30.c; look to it 1348 for guidance if you're thinking of copying this. */ 1349 1350 static bfd_boolean 1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 1352 struct bfd_link_info *info, 1353 bfd *input_bfd, 1354 asection *input_section, 1355 bfd_byte *contents, 1356 Elf_Internal_Rela *relocs, 1357 Elf_Internal_Sym *local_syms, 1358 asection **local_sections) 1359 { 1360 Elf_Internal_Shdr *symtab_hdr; 1361 struct elf_link_hash_entry **sym_hashes; 1362 Elf_Internal_Rela *rel; 1363 Elf_Internal_Rela *relend; 1364 bfd_size_type size; 1365 size_t pjsno = 0; 1366 1367 size = input_section->rawsize ? input_section->rawsize : input_section->size; 1368 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 1369 sym_hashes = elf_sym_hashes (input_bfd); 1370 relend = relocs + input_section->reloc_count; 1371 1372 /* Zero the stub area before we start. */ 1373 if (input_section->rawsize != 0 1374 && input_section->size > input_section->rawsize) 1375 memset (contents + input_section->rawsize, 0, 1376 input_section->size - input_section->rawsize); 1377 1378 for (rel = relocs; rel < relend; rel ++) 1379 { 1380 reloc_howto_type *howto; 1381 unsigned long r_symndx; 1382 Elf_Internal_Sym *sym; 1383 asection *sec; 1384 struct elf_link_hash_entry *h; 1385 bfd_vma relocation; 1386 bfd_reloc_status_type r; 1387 const char *name = NULL; 1388 int r_type; 1389 bfd_boolean undefined_signalled = FALSE; 1390 1391 r_type = ELF64_R_TYPE (rel->r_info); 1392 1393 if (r_type == R_MMIX_GNU_VTINHERIT 1394 || r_type == R_MMIX_GNU_VTENTRY) 1395 continue; 1396 1397 r_symndx = ELF64_R_SYM (rel->r_info); 1398 1399 howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info); 1400 h = NULL; 1401 sym = NULL; 1402 sec = NULL; 1403 1404 if (r_symndx < symtab_hdr->sh_info) 1405 { 1406 sym = local_syms + r_symndx; 1407 sec = local_sections [r_symndx]; 1408 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 1409 1410 name = bfd_elf_string_from_elf_section (input_bfd, 1411 symtab_hdr->sh_link, 1412 sym->st_name); 1413 if (name == NULL) 1414 name = bfd_section_name (input_bfd, sec); 1415 } 1416 else 1417 { 1418 bfd_boolean unresolved_reloc, ignored; 1419 1420 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 1421 r_symndx, symtab_hdr, sym_hashes, 1422 h, sec, relocation, 1423 unresolved_reloc, undefined_signalled, 1424 ignored); 1425 name = h->root.root.string; 1426 } 1427 1428 if (sec != NULL && discarded_section (sec)) 1429 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 1430 rel, 1, relend, howto, 0, contents); 1431 1432 if (info->relocatable) 1433 { 1434 /* This is a relocatable link. For most relocs we don't have to 1435 change anything, unless the reloc is against a section 1436 symbol, in which case we have to adjust according to where 1437 the section symbol winds up in the output section. */ 1438 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1439 rel->r_addend += sec->output_offset; 1440 1441 /* For PUSHJ stub relocs however, we may need to change the 1442 reloc and the section contents, if the reloc doesn't reach 1443 beyond the end of the output section and previous stubs. 1444 Then we change the section contents to be a PUSHJ to the end 1445 of the input section plus stubs (we can do that without using 1446 a reloc), and then we change the reloc to be a R_MMIX_PUSHJ 1447 at the stub location. */ 1448 if (r_type == R_MMIX_PUSHJ_STUBBABLE) 1449 { 1450 /* We've already checked whether we need a stub; use that 1451 knowledge. */ 1452 if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno] 1453 != 0) 1454 { 1455 Elf_Internal_Rela relcpy; 1456 1457 if (mmix_elf_section_data (input_section) 1458 ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE) 1459 abort (); 1460 1461 /* There's already a PUSHJ insn there, so just fill in 1462 the offset bits to the stub. */ 1463 if (mmix_final_link_relocate (elf_mmix_howto_table 1464 + R_MMIX_ADDR19, 1465 input_section, 1466 contents, 1467 rel->r_offset, 1468 0, 1469 input_section 1470 ->output_section->vma 1471 + input_section->output_offset 1472 + size 1473 + mmix_elf_section_data (input_section) 1474 ->pjs.stub_offset, 1475 NULL, NULL, NULL) != bfd_reloc_ok) 1476 return FALSE; 1477 1478 /* Put a JMP insn at the stub; it goes with the 1479 R_MMIX_JMP reloc. */ 1480 bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24, 1481 contents 1482 + size 1483 + mmix_elf_section_data (input_section) 1484 ->pjs.stub_offset); 1485 1486 /* Change the reloc to be at the stub, and to a full 1487 R_MMIX_JMP reloc. */ 1488 rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP); 1489 rel->r_offset 1490 = (size 1491 + mmix_elf_section_data (input_section) 1492 ->pjs.stub_offset); 1493 1494 mmix_elf_section_data (input_section)->pjs.stub_offset 1495 += MAX_PUSHJ_STUB_SIZE; 1496 1497 /* Shift this reloc to the end of the relocs to maintain 1498 the r_offset sorted reloc order. */ 1499 relcpy = *rel; 1500 memmove (rel, rel + 1, (char *) relend - (char *) rel); 1501 relend[-1] = relcpy; 1502 1503 /* Back up one reloc, or else we'd skip the next reloc 1504 in turn. */ 1505 rel--; 1506 } 1507 1508 pjsno++; 1509 } 1510 continue; 1511 } 1512 1513 r = mmix_final_link_relocate (howto, input_section, 1514 contents, rel->r_offset, 1515 rel->r_addend, relocation, name, sec, NULL); 1516 1517 if (r != bfd_reloc_ok) 1518 { 1519 bfd_boolean check_ok = TRUE; 1520 const char * msg = (const char *) NULL; 1521 1522 switch (r) 1523 { 1524 case bfd_reloc_overflow: 1525 check_ok = info->callbacks->reloc_overflow 1526 (info, (h ? &h->root : NULL), name, howto->name, 1527 (bfd_vma) 0, input_bfd, input_section, rel->r_offset); 1528 break; 1529 1530 case bfd_reloc_undefined: 1531 /* We may have sent this message above. */ 1532 if (! undefined_signalled) 1533 check_ok = info->callbacks->undefined_symbol 1534 (info, name, input_bfd, input_section, rel->r_offset, 1535 TRUE); 1536 undefined_signalled = TRUE; 1537 break; 1538 1539 case bfd_reloc_outofrange: 1540 msg = _("internal error: out of range error"); 1541 break; 1542 1543 case bfd_reloc_notsupported: 1544 msg = _("internal error: unsupported relocation error"); 1545 break; 1546 1547 case bfd_reloc_dangerous: 1548 msg = _("internal error: dangerous relocation"); 1549 break; 1550 1551 default: 1552 msg = _("internal error: unknown error"); 1553 break; 1554 } 1555 1556 if (msg) 1557 check_ok = info->callbacks->warning 1558 (info, msg, name, input_bfd, input_section, rel->r_offset); 1559 1560 if (! check_ok) 1561 return FALSE; 1562 } 1563 } 1564 1565 return TRUE; 1566 } 1567 1568 /* Perform a single relocation. By default we use the standard BFD 1569 routines. A few relocs we have to do ourselves. */ 1570 1571 static bfd_reloc_status_type 1572 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section, 1573 bfd_byte *contents, bfd_vma r_offset, 1574 bfd_signed_vma r_addend, bfd_vma relocation, 1575 const char *symname, asection *symsec, 1576 char **error_message) 1577 { 1578 bfd_reloc_status_type r = bfd_reloc_ok; 1579 bfd_vma addr 1580 = (input_section->output_section->vma 1581 + input_section->output_offset 1582 + r_offset); 1583 bfd_signed_vma srel 1584 = (bfd_signed_vma) relocation + r_addend; 1585 1586 switch (howto->type) 1587 { 1588 /* All these are PC-relative. */ 1589 case R_MMIX_PUSHJ_STUBBABLE: 1590 case R_MMIX_PUSHJ: 1591 case R_MMIX_CBRANCH: 1592 case R_MMIX_ADDR19: 1593 case R_MMIX_GETA: 1594 case R_MMIX_ADDR27: 1595 case R_MMIX_JMP: 1596 contents += r_offset; 1597 1598 srel -= (input_section->output_section->vma 1599 + input_section->output_offset 1600 + r_offset); 1601 1602 r = mmix_elf_perform_relocation (input_section, howto, contents, 1603 addr, srel, error_message); 1604 break; 1605 1606 case R_MMIX_BASE_PLUS_OFFSET: 1607 if (symsec == NULL) 1608 return bfd_reloc_undefined; 1609 1610 /* Check that we're not relocating against a register symbol. */ 1611 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1612 MMIX_REG_CONTENTS_SECTION_NAME) == 0 1613 || strcmp (bfd_get_section_name (symsec->owner, symsec), 1614 MMIX_REG_SECTION_NAME) == 0) 1615 { 1616 /* Note: This is separated out into two messages in order 1617 to ease the translation into other languages. */ 1618 if (symname == NULL || *symname == 0) 1619 (*_bfd_error_handler) 1620 (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"), 1621 bfd_get_filename (input_section->owner), 1622 bfd_get_section_name (symsec->owner, symsec)); 1623 else 1624 (*_bfd_error_handler) 1625 (_("%s: base-plus-offset relocation against register symbol: %s in %s"), 1626 bfd_get_filename (input_section->owner), symname, 1627 bfd_get_section_name (symsec->owner, symsec)); 1628 return bfd_reloc_overflow; 1629 } 1630 goto do_mmix_reloc; 1631 1632 case R_MMIX_REG_OR_BYTE: 1633 case R_MMIX_REG: 1634 /* For now, we handle these alike. They must refer to an register 1635 symbol, which is either relative to the register section and in 1636 the range 0..255, or is in the register contents section with vma 1637 regno * 8. */ 1638 1639 /* FIXME: A better way to check for reg contents section? 1640 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */ 1641 if (symsec == NULL) 1642 return bfd_reloc_undefined; 1643 1644 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1645 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1646 { 1647 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1648 { 1649 /* The bfd_reloc_outofrange return value, though intuitively 1650 a better value, will not get us an error. */ 1651 return bfd_reloc_overflow; 1652 } 1653 srel /= 8; 1654 } 1655 else if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1656 MMIX_REG_SECTION_NAME) == 0) 1657 { 1658 if (srel < 0 || srel > 255) 1659 /* The bfd_reloc_outofrange return value, though intuitively a 1660 better value, will not get us an error. */ 1661 return bfd_reloc_overflow; 1662 } 1663 else 1664 { 1665 /* Note: This is separated out into two messages in order 1666 to ease the translation into other languages. */ 1667 if (symname == NULL || *symname == 0) 1668 (*_bfd_error_handler) 1669 (_("%s: register relocation against non-register symbol: (unknown) in %s"), 1670 bfd_get_filename (input_section->owner), 1671 bfd_get_section_name (symsec->owner, symsec)); 1672 else 1673 (*_bfd_error_handler) 1674 (_("%s: register relocation against non-register symbol: %s in %s"), 1675 bfd_get_filename (input_section->owner), symname, 1676 bfd_get_section_name (symsec->owner, symsec)); 1677 1678 /* The bfd_reloc_outofrange return value, though intuitively a 1679 better value, will not get us an error. */ 1680 return bfd_reloc_overflow; 1681 } 1682 do_mmix_reloc: 1683 contents += r_offset; 1684 r = mmix_elf_perform_relocation (input_section, howto, contents, 1685 addr, srel, error_message); 1686 break; 1687 1688 case R_MMIX_LOCAL: 1689 /* This isn't a real relocation, it's just an assertion that the 1690 final relocation value corresponds to a local register. We 1691 ignore the actual relocation; nothing is changed. */ 1692 { 1693 asection *regsec 1694 = bfd_get_section_by_name (input_section->output_section->owner, 1695 MMIX_REG_CONTENTS_SECTION_NAME); 1696 bfd_vma first_global; 1697 1698 /* Check that this is an absolute value, or a reference to the 1699 register contents section or the register (symbol) section. 1700 Absolute numbers can get here as undefined section. Undefined 1701 symbols are signalled elsewhere, so there's no conflict in us 1702 accidentally handling it. */ 1703 if (!bfd_is_abs_section (symsec) 1704 && !bfd_is_und_section (symsec) 1705 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1706 MMIX_REG_CONTENTS_SECTION_NAME) != 0 1707 && strcmp (bfd_get_section_name (symsec->owner, symsec), 1708 MMIX_REG_SECTION_NAME) != 0) 1709 { 1710 (*_bfd_error_handler) 1711 (_("%s: directive LOCAL valid only with a register or absolute value"), 1712 bfd_get_filename (input_section->owner)); 1713 1714 return bfd_reloc_overflow; 1715 } 1716 1717 /* If we don't have a register contents section, then $255 is the 1718 first global register. */ 1719 if (regsec == NULL) 1720 first_global = 255; 1721 else 1722 { 1723 first_global 1724 = bfd_get_section_vma (input_section->output_section->owner, 1725 regsec) / 8; 1726 if (strcmp (bfd_get_section_name (symsec->owner, symsec), 1727 MMIX_REG_CONTENTS_SECTION_NAME) == 0) 1728 { 1729 if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8) 1730 /* The bfd_reloc_outofrange return value, though 1731 intuitively a better value, will not get us an error. */ 1732 return bfd_reloc_overflow; 1733 srel /= 8; 1734 } 1735 } 1736 1737 if ((bfd_vma) srel >= first_global) 1738 { 1739 /* FIXME: Better error message. */ 1740 (*_bfd_error_handler) 1741 (_("%s: LOCAL directive: Register $%ld is not a local register. First global register is $%ld."), 1742 bfd_get_filename (input_section->owner), (long) srel, (long) first_global); 1743 1744 return bfd_reloc_overflow; 1745 } 1746 } 1747 r = bfd_reloc_ok; 1748 break; 1749 1750 default: 1751 r = _bfd_final_link_relocate (howto, input_section->owner, input_section, 1752 contents, r_offset, 1753 relocation, r_addend); 1754 } 1755 1756 return r; 1757 } 1758 1759 /* Return the section that should be marked against GC for a given 1760 relocation. */ 1761 1762 static asection * 1763 mmix_elf_gc_mark_hook (asection *sec, 1764 struct bfd_link_info *info, 1765 Elf_Internal_Rela *rel, 1766 struct elf_link_hash_entry *h, 1767 Elf_Internal_Sym *sym) 1768 { 1769 if (h != NULL) 1770 switch (ELF64_R_TYPE (rel->r_info)) 1771 { 1772 case R_MMIX_GNU_VTINHERIT: 1773 case R_MMIX_GNU_VTENTRY: 1774 return NULL; 1775 } 1776 1777 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 1778 } 1779 1780 /* Update relocation info for a GC-excluded section. We could supposedly 1781 perform the allocation after GC, but there's no suitable hook between 1782 GC (or section merge) and the point when all input sections must be 1783 present. Better to waste some memory and (perhaps) a little time. */ 1784 1785 static bfd_boolean 1786 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED, 1787 struct bfd_link_info *info ATTRIBUTE_UNUSED, 1788 asection *sec, 1789 const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED) 1790 { 1791 struct bpo_reloc_section_info *bpodata 1792 = mmix_elf_section_data (sec)->bpo.reloc; 1793 asection *allocated_gregs_section; 1794 1795 /* If no bpodata here, we have nothing to do. */ 1796 if (bpodata == NULL) 1797 return TRUE; 1798 1799 allocated_gregs_section = bpodata->bpo_greg_section; 1800 1801 mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs 1802 -= bpodata->n_bpo_relocs_this_section; 1803 1804 return TRUE; 1805 } 1806 1807 /* Sort register relocs to come before expanding relocs. */ 1808 1809 static int 1810 mmix_elf_sort_relocs (const void * p1, const void * p2) 1811 { 1812 const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1; 1813 const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2; 1814 int r1_is_reg, r2_is_reg; 1815 1816 /* Sort primarily on r_offset & ~3, so relocs are done to consecutive 1817 insns. */ 1818 if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3)) 1819 return 1; 1820 else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3)) 1821 return -1; 1822 1823 r1_is_reg 1824 = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE 1825 || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG); 1826 r2_is_reg 1827 = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE 1828 || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG); 1829 if (r1_is_reg != r2_is_reg) 1830 return r2_is_reg - r1_is_reg; 1831 1832 /* Neither or both are register relocs. Then sort on full offset. */ 1833 if (r1->r_offset > r2->r_offset) 1834 return 1; 1835 else if (r1->r_offset < r2->r_offset) 1836 return -1; 1837 return 0; 1838 } 1839 1840 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking. */ 1841 1842 static bfd_boolean 1843 mmix_elf_check_common_relocs (bfd *abfd, 1844 struct bfd_link_info *info, 1845 asection *sec, 1846 const Elf_Internal_Rela *relocs) 1847 { 1848 bfd *bpo_greg_owner = NULL; 1849 asection *allocated_gregs_section = NULL; 1850 struct bpo_greg_section_info *gregdata = NULL; 1851 struct bpo_reloc_section_info *bpodata = NULL; 1852 const Elf_Internal_Rela *rel; 1853 const Elf_Internal_Rela *rel_end; 1854 1855 /* We currently have to abuse this COFF-specific member, since there's 1856 no target-machine-dedicated member. There's no alternative outside 1857 the bfd_link_info struct; we can't specialize a hash-table since 1858 they're different between ELF and mmo. */ 1859 bpo_greg_owner = (bfd *) info->base_file; 1860 1861 rel_end = relocs + sec->reloc_count; 1862 for (rel = relocs; rel < rel_end; rel++) 1863 { 1864 switch (ELF64_R_TYPE (rel->r_info)) 1865 { 1866 /* This relocation causes a GREG allocation. We need to count 1867 them, and we need to create a section for them, so we need an 1868 object to fake as the owner of that section. We can't use 1869 the ELF dynobj for this, since the ELF bits assume lots of 1870 DSO-related stuff if that member is non-NULL. */ 1871 case R_MMIX_BASE_PLUS_OFFSET: 1872 /* We don't do anything with this reloc for a relocatable link. */ 1873 if (info->relocatable) 1874 break; 1875 1876 if (bpo_greg_owner == NULL) 1877 { 1878 bpo_greg_owner = abfd; 1879 info->base_file = bpo_greg_owner; 1880 } 1881 1882 if (allocated_gregs_section == NULL) 1883 allocated_gregs_section 1884 = bfd_get_section_by_name (bpo_greg_owner, 1885 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 1886 1887 if (allocated_gregs_section == NULL) 1888 { 1889 allocated_gregs_section 1890 = bfd_make_section_with_flags (bpo_greg_owner, 1891 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME, 1892 (SEC_HAS_CONTENTS 1893 | SEC_IN_MEMORY 1894 | SEC_LINKER_CREATED)); 1895 /* Setting both SEC_ALLOC and SEC_LOAD means the section is 1896 treated like any other section, and we'd get errors for 1897 address overlap with the text section. Let's set none of 1898 those flags, as that is what currently happens for usual 1899 GREG allocations, and that works. */ 1900 if (allocated_gregs_section == NULL 1901 || !bfd_set_section_alignment (bpo_greg_owner, 1902 allocated_gregs_section, 1903 3)) 1904 return FALSE; 1905 1906 gregdata = (struct bpo_greg_section_info *) 1907 bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info)); 1908 if (gregdata == NULL) 1909 return FALSE; 1910 mmix_elf_section_data (allocated_gregs_section)->bpo.greg 1911 = gregdata; 1912 } 1913 else if (gregdata == NULL) 1914 gregdata 1915 = mmix_elf_section_data (allocated_gregs_section)->bpo.greg; 1916 1917 /* Get ourselves some auxiliary info for the BPO-relocs. */ 1918 if (bpodata == NULL) 1919 { 1920 /* No use doing a separate iteration pass to find the upper 1921 limit - just use the number of relocs. */ 1922 bpodata = (struct bpo_reloc_section_info *) 1923 bfd_alloc (bpo_greg_owner, 1924 sizeof (struct bpo_reloc_section_info) 1925 * (sec->reloc_count + 1)); 1926 if (bpodata == NULL) 1927 return FALSE; 1928 mmix_elf_section_data (sec)->bpo.reloc = bpodata; 1929 bpodata->first_base_plus_offset_reloc 1930 = bpodata->bpo_index 1931 = gregdata->n_max_bpo_relocs; 1932 bpodata->bpo_greg_section 1933 = allocated_gregs_section; 1934 bpodata->n_bpo_relocs_this_section = 0; 1935 } 1936 1937 bpodata->n_bpo_relocs_this_section++; 1938 gregdata->n_max_bpo_relocs++; 1939 1940 /* We don't get another chance to set this before GC; we've not 1941 set up any hook that runs before GC. */ 1942 gregdata->n_bpo_relocs 1943 = gregdata->n_max_bpo_relocs; 1944 break; 1945 1946 case R_MMIX_PUSHJ_STUBBABLE: 1947 mmix_elf_section_data (sec)->pjs.n_pushj_relocs++; 1948 break; 1949 } 1950 } 1951 1952 /* Allocate per-reloc stub storage and initialize it to the max stub 1953 size. */ 1954 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0) 1955 { 1956 size_t i; 1957 1958 mmix_elf_section_data (sec)->pjs.stub_size 1959 = bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs 1960 * sizeof (mmix_elf_section_data (sec) 1961 ->pjs.stub_size[0])); 1962 if (mmix_elf_section_data (sec)->pjs.stub_size == NULL) 1963 return FALSE; 1964 1965 for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++) 1966 mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE; 1967 } 1968 1969 return TRUE; 1970 } 1971 1972 /* Look through the relocs for a section during the first phase. */ 1973 1974 static bfd_boolean 1975 mmix_elf_check_relocs (bfd *abfd, 1976 struct bfd_link_info *info, 1977 asection *sec, 1978 const Elf_Internal_Rela *relocs) 1979 { 1980 Elf_Internal_Shdr *symtab_hdr; 1981 struct elf_link_hash_entry **sym_hashes; 1982 const Elf_Internal_Rela *rel; 1983 const Elf_Internal_Rela *rel_end; 1984 1985 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1986 sym_hashes = elf_sym_hashes (abfd); 1987 1988 /* First we sort the relocs so that any register relocs come before 1989 expansion-relocs to the same insn. FIXME: Not done for mmo. */ 1990 qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela), 1991 mmix_elf_sort_relocs); 1992 1993 /* Do the common part. */ 1994 if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs)) 1995 return FALSE; 1996 1997 if (info->relocatable) 1998 return TRUE; 1999 2000 rel_end = relocs + sec->reloc_count; 2001 for (rel = relocs; rel < rel_end; rel++) 2002 { 2003 struct elf_link_hash_entry *h; 2004 unsigned long r_symndx; 2005 2006 r_symndx = ELF64_R_SYM (rel->r_info); 2007 if (r_symndx < symtab_hdr->sh_info) 2008 h = NULL; 2009 else 2010 { 2011 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2012 while (h->root.type == bfd_link_hash_indirect 2013 || h->root.type == bfd_link_hash_warning) 2014 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2015 2016 /* PR15323, ref flags aren't set for references in the same 2017 object. */ 2018 h->root.non_ir_ref = 1; 2019 } 2020 2021 switch (ELF64_R_TYPE (rel->r_info)) 2022 { 2023 /* This relocation describes the C++ object vtable hierarchy. 2024 Reconstruct it for later use during GC. */ 2025 case R_MMIX_GNU_VTINHERIT: 2026 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2027 return FALSE; 2028 break; 2029 2030 /* This relocation describes which C++ vtable entries are actually 2031 used. Record for later use during GC. */ 2032 case R_MMIX_GNU_VTENTRY: 2033 BFD_ASSERT (h != NULL); 2034 if (h != NULL 2035 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2036 return FALSE; 2037 break; 2038 } 2039 } 2040 2041 return TRUE; 2042 } 2043 2044 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo. 2045 Copied from elf_link_add_object_symbols. */ 2046 2047 bfd_boolean 2048 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info) 2049 { 2050 asection *o; 2051 2052 for (o = abfd->sections; o != NULL; o = o->next) 2053 { 2054 Elf_Internal_Rela *internal_relocs; 2055 bfd_boolean ok; 2056 2057 if ((o->flags & SEC_RELOC) == 0 2058 || o->reloc_count == 0 2059 || ((info->strip == strip_all || info->strip == strip_debugger) 2060 && (o->flags & SEC_DEBUGGING) != 0) 2061 || bfd_is_abs_section (o->output_section)) 2062 continue; 2063 2064 internal_relocs 2065 = _bfd_elf_link_read_relocs (abfd, o, NULL, 2066 (Elf_Internal_Rela *) NULL, 2067 info->keep_memory); 2068 if (internal_relocs == NULL) 2069 return FALSE; 2070 2071 ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs); 2072 2073 if (! info->keep_memory) 2074 free (internal_relocs); 2075 2076 if (! ok) 2077 return FALSE; 2078 } 2079 2080 return TRUE; 2081 } 2082 2083 /* Change symbols relative to the reg contents section to instead be to 2084 the register section, and scale them down to correspond to the register 2085 number. */ 2086 2087 static int 2088 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED, 2089 const char *name ATTRIBUTE_UNUSED, 2090 Elf_Internal_Sym *sym, 2091 asection *input_sec, 2092 struct elf_link_hash_entry *h ATTRIBUTE_UNUSED) 2093 { 2094 if (input_sec != NULL 2095 && input_sec->name != NULL 2096 && ELF_ST_TYPE (sym->st_info) != STT_SECTION 2097 && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0) 2098 { 2099 sym->st_value /= 8; 2100 sym->st_shndx = SHN_REGISTER; 2101 } 2102 2103 return 1; 2104 } 2105 2106 /* We fake a register section that holds values that are register numbers. 2107 Having a SHN_REGISTER and register section translates better to other 2108 formats (e.g. mmo) than for example a STT_REGISTER attribute. 2109 This section faking is based on a construct in elf32-mips.c. */ 2110 static asection mmix_elf_reg_section; 2111 static asymbol mmix_elf_reg_section_symbol; 2112 static asymbol *mmix_elf_reg_section_symbol_ptr; 2113 2114 /* Handle the special section numbers that a symbol may use. */ 2115 2116 void 2117 mmix_elf_symbol_processing (abfd, asym) 2118 bfd *abfd ATTRIBUTE_UNUSED; 2119 asymbol *asym; 2120 { 2121 elf_symbol_type *elfsym; 2122 2123 elfsym = (elf_symbol_type *) asym; 2124 switch (elfsym->internal_elf_sym.st_shndx) 2125 { 2126 case SHN_REGISTER: 2127 if (mmix_elf_reg_section.name == NULL) 2128 { 2129 /* Initialize the register section. */ 2130 mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME; 2131 mmix_elf_reg_section.flags = SEC_NO_FLAGS; 2132 mmix_elf_reg_section.output_section = &mmix_elf_reg_section; 2133 mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol; 2134 mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr; 2135 mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME; 2136 mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM; 2137 mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section; 2138 mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol; 2139 } 2140 asym->section = &mmix_elf_reg_section; 2141 break; 2142 2143 default: 2144 break; 2145 } 2146 } 2147 2148 /* Given a BFD section, try to locate the corresponding ELF section 2149 index. */ 2150 2151 static bfd_boolean 2152 mmix_elf_section_from_bfd_section (bfd * abfd ATTRIBUTE_UNUSED, 2153 asection * sec, 2154 int * retval) 2155 { 2156 if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0) 2157 *retval = SHN_REGISTER; 2158 else 2159 return FALSE; 2160 2161 return TRUE; 2162 } 2163 2164 /* Hook called by the linker routine which adds symbols from an object 2165 file. We must handle the special SHN_REGISTER section number here. 2166 2167 We also check that we only have *one* each of the section-start 2168 symbols, since otherwise having two with the same value would cause 2169 them to be "merged", but with the contents serialized. */ 2170 2171 static bfd_boolean 2172 mmix_elf_add_symbol_hook (bfd *abfd, 2173 struct bfd_link_info *info ATTRIBUTE_UNUSED, 2174 Elf_Internal_Sym *sym, 2175 const char **namep ATTRIBUTE_UNUSED, 2176 flagword *flagsp ATTRIBUTE_UNUSED, 2177 asection **secp, 2178 bfd_vma *valp ATTRIBUTE_UNUSED) 2179 { 2180 if (sym->st_shndx == SHN_REGISTER) 2181 { 2182 *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME); 2183 (*secp)->flags |= SEC_LINKER_CREATED; 2184 } 2185 else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.' 2186 && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX)) 2187 { 2188 /* See if we have another one. */ 2189 struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash, 2190 *namep, 2191 FALSE, 2192 FALSE, 2193 FALSE); 2194 2195 if (h != NULL && h->type != bfd_link_hash_undefined) 2196 { 2197 /* How do we get the asymbol (or really: the filename) from h? 2198 h->u.def.section->owner is NULL. */ 2199 ((*_bfd_error_handler) 2200 (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"), 2201 bfd_get_filename (abfd), *namep, 2202 *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX))); 2203 bfd_set_error (bfd_error_bad_value); 2204 return FALSE; 2205 } 2206 } 2207 2208 return TRUE; 2209 } 2210 2211 /* We consider symbols matching "L.*:[0-9]+" to be local symbols. */ 2212 2213 static bfd_boolean 2214 mmix_elf_is_local_label_name (bfd *abfd, const char *name) 2215 { 2216 const char *colpos; 2217 int digits; 2218 2219 /* Also include the default local-label definition. */ 2220 if (_bfd_elf_is_local_label_name (abfd, name)) 2221 return TRUE; 2222 2223 if (*name != 'L') 2224 return FALSE; 2225 2226 /* If there's no ":", or more than one, it's not a local symbol. */ 2227 colpos = strchr (name, ':'); 2228 if (colpos == NULL || strchr (colpos + 1, ':') != NULL) 2229 return FALSE; 2230 2231 /* Check that there are remaining characters and that they are digits. */ 2232 if (colpos[1] == 0) 2233 return FALSE; 2234 2235 digits = strspn (colpos + 1, "0123456789"); 2236 return digits != 0 && colpos[1 + digits] == 0; 2237 } 2238 2239 /* We get rid of the register section here. */ 2240 2241 bfd_boolean 2242 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info) 2243 { 2244 /* We never output a register section, though we create one for 2245 temporary measures. Check that nobody entered contents into it. */ 2246 asection *reg_section; 2247 2248 reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME); 2249 2250 if (reg_section != NULL) 2251 { 2252 /* FIXME: Pass error state gracefully. */ 2253 if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS) 2254 _bfd_abort (__FILE__, __LINE__, _("Register section has contents\n")); 2255 2256 /* Really remove the section, if it hasn't already been done. */ 2257 if (!bfd_section_removed_from_list (abfd, reg_section)) 2258 { 2259 bfd_section_list_remove (abfd, reg_section); 2260 --abfd->section_count; 2261 } 2262 } 2263 2264 if (! bfd_elf_final_link (abfd, info)) 2265 return FALSE; 2266 2267 /* Since this section is marked SEC_LINKER_CREATED, it isn't output by 2268 the regular linker machinery. We do it here, like other targets with 2269 special sections. */ 2270 if (info->base_file != NULL) 2271 { 2272 asection *greg_section 2273 = bfd_get_section_by_name ((bfd *) info->base_file, 2274 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2275 if (!bfd_set_section_contents (abfd, 2276 greg_section->output_section, 2277 greg_section->contents, 2278 (file_ptr) greg_section->output_offset, 2279 greg_section->size)) 2280 return FALSE; 2281 } 2282 return TRUE; 2283 } 2284 2285 /* We need to include the maximum size of PUSHJ-stubs in the initial 2286 section size. This is expected to shrink during linker relaxation. */ 2287 2288 static void 2289 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED, 2290 asection *sec, 2291 void *ptr) 2292 { 2293 struct bfd_link_info *info = ptr; 2294 2295 /* Make sure we only do this for section where we know we want this, 2296 otherwise we might end up resetting the size of COMMONs. */ 2297 if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0) 2298 return; 2299 2300 sec->rawsize = sec->size; 2301 sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2302 * MAX_PUSHJ_STUB_SIZE); 2303 2304 /* For use in relocatable link, we start with a max stubs size. See 2305 mmix_elf_relax_section. */ 2306 if (info->relocatable && sec->output_section) 2307 mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum 2308 += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs 2309 * MAX_PUSHJ_STUB_SIZE); 2310 } 2311 2312 /* Initialize stuff for the linker-generated GREGs to match 2313 R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker. */ 2314 2315 bfd_boolean 2316 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2317 struct bfd_link_info *info) 2318 { 2319 asection *bpo_gregs_section; 2320 bfd *bpo_greg_owner; 2321 struct bpo_greg_section_info *gregdata; 2322 size_t n_gregs; 2323 bfd_vma gregs_size; 2324 size_t i; 2325 size_t *bpo_reloc_indexes; 2326 bfd *ibfd; 2327 2328 /* Set the initial size of sections. */ 2329 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next) 2330 bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info); 2331 2332 /* The bpo_greg_owner bfd is supposed to have been set by 2333 mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen. 2334 If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2335 bpo_greg_owner = (bfd *) info->base_file; 2336 if (bpo_greg_owner == NULL) 2337 return TRUE; 2338 2339 bpo_gregs_section 2340 = bfd_get_section_by_name (bpo_greg_owner, 2341 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2342 2343 if (bpo_gregs_section == NULL) 2344 return TRUE; 2345 2346 /* We use the target-data handle in the ELF section data. */ 2347 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2348 if (gregdata == NULL) 2349 return FALSE; 2350 2351 n_gregs = gregdata->n_bpo_relocs; 2352 gregdata->n_allocated_bpo_gregs = n_gregs; 2353 2354 /* When this reaches zero during relaxation, all entries have been 2355 filled in and the size of the linker gregs can be calculated. */ 2356 gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs; 2357 2358 /* Set the zeroth-order estimate for the GREGs size. */ 2359 gregs_size = n_gregs * 8; 2360 2361 if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size)) 2362 return FALSE; 2363 2364 /* Allocate and set up the GREG arrays. They're filled in at relaxation 2365 time. Note that we must use the max number ever noted for the array, 2366 since the index numbers were created before GC. */ 2367 gregdata->reloc_request 2368 = bfd_zalloc (bpo_greg_owner, 2369 sizeof (struct bpo_reloc_request) 2370 * gregdata->n_max_bpo_relocs); 2371 2372 gregdata->bpo_reloc_indexes 2373 = bpo_reloc_indexes 2374 = bfd_alloc (bpo_greg_owner, 2375 gregdata->n_max_bpo_relocs 2376 * sizeof (size_t)); 2377 if (bpo_reloc_indexes == NULL) 2378 return FALSE; 2379 2380 /* The default order is an identity mapping. */ 2381 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2382 { 2383 bpo_reloc_indexes[i] = i; 2384 gregdata->reloc_request[i].bpo_reloc_no = i; 2385 } 2386 2387 return TRUE; 2388 } 2389 2390 /* Fill in contents in the linker allocated gregs. Everything is 2391 calculated at this point; we just move the contents into place here. */ 2392 2393 bfd_boolean 2394 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED, 2395 struct bfd_link_info *link_info) 2396 { 2397 asection *bpo_gregs_section; 2398 bfd *bpo_greg_owner; 2399 struct bpo_greg_section_info *gregdata; 2400 size_t n_gregs; 2401 size_t i, j; 2402 size_t lastreg; 2403 bfd_byte *contents; 2404 2405 /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs 2406 when the first R_MMIX_BASE_PLUS_OFFSET is seen. If there is no such 2407 object, there was no R_MMIX_BASE_PLUS_OFFSET. */ 2408 bpo_greg_owner = (bfd *) link_info->base_file; 2409 if (bpo_greg_owner == NULL) 2410 return TRUE; 2411 2412 bpo_gregs_section 2413 = bfd_get_section_by_name (bpo_greg_owner, 2414 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2415 2416 /* This can't happen without DSO handling. When DSOs are handled 2417 without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such 2418 section. */ 2419 if (bpo_gregs_section == NULL) 2420 return TRUE; 2421 2422 /* We use the target-data handle in the ELF section data. */ 2423 2424 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2425 if (gregdata == NULL) 2426 return FALSE; 2427 2428 n_gregs = gregdata->n_allocated_bpo_gregs; 2429 2430 bpo_gregs_section->contents 2431 = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size); 2432 if (contents == NULL) 2433 return FALSE; 2434 2435 /* Sanity check: If these numbers mismatch, some relocation has not been 2436 accounted for and the rest of gregdata is probably inconsistent. 2437 It's a bug, but it's more helpful to identify it than segfaulting 2438 below. */ 2439 if (gregdata->n_remaining_bpo_relocs_this_relaxation_round 2440 != gregdata->n_bpo_relocs) 2441 { 2442 (*_bfd_error_handler) 2443 (_("Internal inconsistency: remaining %u != max %u.\n\ 2444 Please report this bug."), 2445 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2446 gregdata->n_bpo_relocs); 2447 return FALSE; 2448 } 2449 2450 for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++) 2451 if (gregdata->reloc_request[i].regindex != lastreg) 2452 { 2453 bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value, 2454 contents + j * 8); 2455 lastreg = gregdata->reloc_request[i].regindex; 2456 j++; 2457 } 2458 2459 return TRUE; 2460 } 2461 2462 /* Sort valid relocs to come before non-valid relocs, then on increasing 2463 value. */ 2464 2465 static int 2466 bpo_reloc_request_sort_fn (const void * p1, const void * p2) 2467 { 2468 const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1; 2469 const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2; 2470 2471 /* Primary function is validity; non-valid relocs sorted after valid 2472 ones. */ 2473 if (r1->valid != r2->valid) 2474 return r2->valid - r1->valid; 2475 2476 /* Then sort on value. Don't simplify and return just the difference of 2477 the values: the upper bits of the 64-bit value would be truncated on 2478 a host with 32-bit ints. */ 2479 if (r1->value != r2->value) 2480 return r1->value > r2->value ? 1 : -1; 2481 2482 /* As a last re-sort, use the relocation number, so we get a stable 2483 sort. The *addresses* aren't stable since items are swapped during 2484 sorting. It depends on the qsort implementation if this actually 2485 happens. */ 2486 return r1->bpo_reloc_no > r2->bpo_reloc_no 2487 ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0); 2488 } 2489 2490 /* For debug use only. Dumps the global register allocations resulting 2491 from base-plus-offset relocs. */ 2492 2493 void 2494 mmix_dump_bpo_gregs (link_info, pf) 2495 struct bfd_link_info *link_info; 2496 bfd_error_handler_type pf; 2497 { 2498 bfd *bpo_greg_owner; 2499 asection *bpo_gregs_section; 2500 struct bpo_greg_section_info *gregdata; 2501 unsigned int i; 2502 2503 if (link_info == NULL || link_info->base_file == NULL) 2504 return; 2505 2506 bpo_greg_owner = (bfd *) link_info->base_file; 2507 2508 bpo_gregs_section 2509 = bfd_get_section_by_name (bpo_greg_owner, 2510 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME); 2511 2512 if (bpo_gregs_section == NULL) 2513 return; 2514 2515 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2516 if (gregdata == NULL) 2517 return; 2518 2519 if (pf == NULL) 2520 pf = _bfd_error_handler; 2521 2522 /* These format strings are not translated. They are for debug purposes 2523 only and never displayed to an end user. Should they escape, we 2524 surely want them in original. */ 2525 (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\ 2526 n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs, 2527 gregdata->n_max_bpo_relocs, 2528 gregdata->n_remaining_bpo_relocs_this_relaxation_round, 2529 gregdata->n_allocated_bpo_gregs); 2530 2531 if (gregdata->reloc_request) 2532 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2533 (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx r: %3u o: %3u\n", 2534 i, 2535 (gregdata->bpo_reloc_indexes != NULL 2536 ? gregdata->bpo_reloc_indexes[i] : (size_t) -1), 2537 gregdata->reloc_request[i].bpo_reloc_no, 2538 gregdata->reloc_request[i].valid, 2539 2540 (unsigned long) (gregdata->reloc_request[i].value >> 32), 2541 (unsigned long) gregdata->reloc_request[i].value, 2542 gregdata->reloc_request[i].regindex, 2543 gregdata->reloc_request[i].offset); 2544 } 2545 2546 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and 2547 when the last such reloc is done, an index-array is sorted according to 2548 the values and iterated over to produce register numbers (indexed by 0 2549 from the first allocated register number) and offsets for use in real 2550 relocation. (N.B.: Relocatable runs are handled, not just punted.) 2551 2552 PUSHJ stub accounting is also done here. 2553 2554 Symbol- and reloc-reading infrastructure copied from elf-m10200.c. */ 2555 2556 static bfd_boolean 2557 mmix_elf_relax_section (bfd *abfd, 2558 asection *sec, 2559 struct bfd_link_info *link_info, 2560 bfd_boolean *again) 2561 { 2562 Elf_Internal_Shdr *symtab_hdr; 2563 Elf_Internal_Rela *internal_relocs; 2564 Elf_Internal_Rela *irel, *irelend; 2565 asection *bpo_gregs_section = NULL; 2566 struct bpo_greg_section_info *gregdata; 2567 struct bpo_reloc_section_info *bpodata 2568 = mmix_elf_section_data (sec)->bpo.reloc; 2569 /* The initialization is to quiet compiler warnings. The value is to 2570 spot a missing actual initialization. */ 2571 size_t bpono = (size_t) -1; 2572 size_t pjsno = 0; 2573 Elf_Internal_Sym *isymbuf = NULL; 2574 bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size; 2575 2576 mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0; 2577 2578 /* Assume nothing changes. */ 2579 *again = FALSE; 2580 2581 /* We don't have to do anything if this section does not have relocs, or 2582 if this is not a code section. */ 2583 if ((sec->flags & SEC_RELOC) == 0 2584 || sec->reloc_count == 0 2585 || (sec->flags & SEC_CODE) == 0 2586 || (sec->flags & SEC_LINKER_CREATED) != 0 2587 /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs, 2588 then nothing to do. */ 2589 || (bpodata == NULL 2590 && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)) 2591 return TRUE; 2592 2593 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2594 2595 if (bpodata != NULL) 2596 { 2597 bpo_gregs_section = bpodata->bpo_greg_section; 2598 gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg; 2599 bpono = bpodata->first_base_plus_offset_reloc; 2600 } 2601 else 2602 gregdata = NULL; 2603 2604 /* Get a copy of the native relocations. */ 2605 internal_relocs 2606 = _bfd_elf_link_read_relocs (abfd, sec, NULL, 2607 (Elf_Internal_Rela *) NULL, 2608 link_info->keep_memory); 2609 if (internal_relocs == NULL) 2610 goto error_return; 2611 2612 /* Walk through them looking for relaxing opportunities. */ 2613 irelend = internal_relocs + sec->reloc_count; 2614 for (irel = internal_relocs; irel < irelend; irel++) 2615 { 2616 bfd_vma symval; 2617 struct elf_link_hash_entry *h = NULL; 2618 2619 /* We only process two relocs. */ 2620 if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET 2621 && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE) 2622 continue; 2623 2624 /* We process relocs in a distinctly different way when this is a 2625 relocatable link (for one, we don't look at symbols), so we avoid 2626 mixing its code with that for the "normal" relaxation. */ 2627 if (link_info->relocatable) 2628 { 2629 /* The only transformation in a relocatable link is to generate 2630 a full stub at the location of the stub calculated for the 2631 input section, if the relocated stub location, the end of the 2632 output section plus earlier stubs, cannot be reached. Thus 2633 relocatable linking can only lead to worse code, but it still 2634 works. */ 2635 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE) 2636 { 2637 /* If we can reach the end of the output-section and beyond 2638 any current stubs, then we don't need a stub for this 2639 reloc. The relaxed order of output stub allocation may 2640 not exactly match the straightforward order, so we always 2641 assume presence of output stubs, which will allow 2642 relaxation only on relocations indifferent to the 2643 presence of output stub allocations for other relocations 2644 and thus the order of output stub allocation. */ 2645 if (bfd_check_overflow (complain_overflow_signed, 2646 19, 2647 0, 2648 bfd_arch_bits_per_address (abfd), 2649 /* Output-stub location. */ 2650 sec->output_section->rawsize 2651 + (mmix_elf_section_data (sec 2652 ->output_section) 2653 ->pjs.stubs_size_sum) 2654 /* Location of this PUSHJ reloc. */ 2655 - (sec->output_offset + irel->r_offset) 2656 /* Don't count *this* stub twice. */ 2657 - (mmix_elf_section_data (sec) 2658 ->pjs.stub_size[pjsno] 2659 + MAX_PUSHJ_STUB_SIZE)) 2660 == bfd_reloc_ok) 2661 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2662 2663 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2664 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2665 2666 pjsno++; 2667 } 2668 2669 continue; 2670 } 2671 2672 /* Get the value of the symbol referred to by the reloc. */ 2673 if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info) 2674 { 2675 /* A local symbol. */ 2676 Elf_Internal_Sym *isym; 2677 asection *sym_sec; 2678 2679 /* Read this BFD's local symbols if we haven't already. */ 2680 if (isymbuf == NULL) 2681 { 2682 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 2683 if (isymbuf == NULL) 2684 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 2685 symtab_hdr->sh_info, 0, 2686 NULL, NULL, NULL); 2687 if (isymbuf == 0) 2688 goto error_return; 2689 } 2690 2691 isym = isymbuf + ELF64_R_SYM (irel->r_info); 2692 if (isym->st_shndx == SHN_UNDEF) 2693 sym_sec = bfd_und_section_ptr; 2694 else if (isym->st_shndx == SHN_ABS) 2695 sym_sec = bfd_abs_section_ptr; 2696 else if (isym->st_shndx == SHN_COMMON) 2697 sym_sec = bfd_com_section_ptr; 2698 else 2699 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx); 2700 symval = (isym->st_value 2701 + sym_sec->output_section->vma 2702 + sym_sec->output_offset); 2703 } 2704 else 2705 { 2706 unsigned long indx; 2707 2708 /* An external symbol. */ 2709 indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info; 2710 h = elf_sym_hashes (abfd)[indx]; 2711 BFD_ASSERT (h != NULL); 2712 if (h->root.type != bfd_link_hash_defined 2713 && h->root.type != bfd_link_hash_defweak) 2714 { 2715 /* This appears to be a reference to an undefined symbol. Just 2716 ignore it--it will be caught by the regular reloc processing. 2717 We need to keep BPO reloc accounting consistent, though 2718 else we'll abort instead of emitting an error message. */ 2719 if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET 2720 && gregdata != NULL) 2721 { 2722 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2723 bpono++; 2724 } 2725 continue; 2726 } 2727 2728 symval = (h->root.u.def.value 2729 + h->root.u.def.section->output_section->vma 2730 + h->root.u.def.section->output_offset); 2731 } 2732 2733 if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE) 2734 { 2735 bfd_vma value = symval + irel->r_addend; 2736 bfd_vma dot 2737 = (sec->output_section->vma 2738 + sec->output_offset 2739 + irel->r_offset); 2740 bfd_vma stubaddr 2741 = (sec->output_section->vma 2742 + sec->output_offset 2743 + size 2744 + mmix_elf_section_data (sec)->pjs.stubs_size_sum); 2745 2746 if ((value & 3) == 0 2747 && bfd_check_overflow (complain_overflow_signed, 2748 19, 2749 0, 2750 bfd_arch_bits_per_address (abfd), 2751 value - dot 2752 - (value > dot 2753 ? mmix_elf_section_data (sec) 2754 ->pjs.stub_size[pjsno] 2755 : 0)) 2756 == bfd_reloc_ok) 2757 /* If the reloc fits, no stub is needed. */ 2758 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0; 2759 else 2760 /* Maybe we can get away with just a JMP insn? */ 2761 if ((value & 3) == 0 2762 && bfd_check_overflow (complain_overflow_signed, 2763 27, 2764 0, 2765 bfd_arch_bits_per_address (abfd), 2766 value - stubaddr 2767 - (value > dot 2768 ? mmix_elf_section_data (sec) 2769 ->pjs.stub_size[pjsno] - 4 2770 : 0)) 2771 == bfd_reloc_ok) 2772 /* Yep, account for a stub consisting of a single JMP insn. */ 2773 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4; 2774 else 2775 /* Nope, go for the full insn stub. It doesn't seem useful to 2776 emit the intermediate sizes; those will only be useful for 2777 a >64M program assuming contiguous code. */ 2778 mmix_elf_section_data (sec)->pjs.stub_size[pjsno] 2779 = MAX_PUSHJ_STUB_SIZE; 2780 2781 mmix_elf_section_data (sec)->pjs.stubs_size_sum 2782 += mmix_elf_section_data (sec)->pjs.stub_size[pjsno]; 2783 pjsno++; 2784 continue; 2785 } 2786 2787 /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc. */ 2788 2789 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value 2790 = symval + irel->r_addend; 2791 gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE; 2792 gregdata->n_remaining_bpo_relocs_this_relaxation_round--; 2793 } 2794 2795 /* Check if that was the last BPO-reloc. If so, sort the values and 2796 calculate how many registers we need to cover them. Set the size of 2797 the linker gregs, and if the number of registers changed, indicate 2798 that we need to relax some more because we have more work to do. */ 2799 if (gregdata != NULL 2800 && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0) 2801 { 2802 size_t i; 2803 bfd_vma prev_base; 2804 size_t regindex; 2805 2806 /* First, reset the remaining relocs for the next round. */ 2807 gregdata->n_remaining_bpo_relocs_this_relaxation_round 2808 = gregdata->n_bpo_relocs; 2809 2810 qsort (gregdata->reloc_request, 2811 gregdata->n_max_bpo_relocs, 2812 sizeof (struct bpo_reloc_request), 2813 bpo_reloc_request_sort_fn); 2814 2815 /* Recalculate indexes. When we find a change (however unlikely 2816 after the initial iteration), we know we need to relax again, 2817 since items in the GREG-array are sorted by increasing value and 2818 stored in the relaxation phase. */ 2819 for (i = 0; i < gregdata->n_max_bpo_relocs; i++) 2820 if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2821 != i) 2822 { 2823 gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no] 2824 = i; 2825 *again = TRUE; 2826 } 2827 2828 /* Allocate register numbers (indexing from 0). Stop at the first 2829 non-valid reloc. */ 2830 for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value; 2831 i < gregdata->n_bpo_relocs; 2832 i++) 2833 { 2834 if (gregdata->reloc_request[i].value > prev_base + 255) 2835 { 2836 regindex++; 2837 prev_base = gregdata->reloc_request[i].value; 2838 } 2839 gregdata->reloc_request[i].regindex = regindex; 2840 gregdata->reloc_request[i].offset 2841 = gregdata->reloc_request[i].value - prev_base; 2842 } 2843 2844 /* If it's not the same as the last time, we need to relax again, 2845 because the size of the section has changed. I'm not sure we 2846 actually need to do any adjustments since the shrinking happens 2847 at the start of this section, but better safe than sorry. */ 2848 if (gregdata->n_allocated_bpo_gregs != regindex + 1) 2849 { 2850 gregdata->n_allocated_bpo_gregs = regindex + 1; 2851 *again = TRUE; 2852 } 2853 2854 bpo_gregs_section->size = (regindex + 1) * 8; 2855 } 2856 2857 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2858 { 2859 if (! link_info->keep_memory) 2860 free (isymbuf); 2861 else 2862 { 2863 /* Cache the symbols for elf_link_input_bfd. */ 2864 symtab_hdr->contents = (unsigned char *) isymbuf; 2865 } 2866 } 2867 2868 if (internal_relocs != NULL 2869 && elf_section_data (sec)->relocs != internal_relocs) 2870 free (internal_relocs); 2871 2872 if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2873 abort (); 2874 2875 if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum) 2876 { 2877 sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum; 2878 *again = TRUE; 2879 } 2880 2881 return TRUE; 2882 2883 error_return: 2884 if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents) 2885 free (isymbuf); 2886 if (internal_relocs != NULL 2887 && elf_section_data (sec)->relocs != internal_relocs) 2888 free (internal_relocs); 2889 return FALSE; 2890 } 2891 2892 #define ELF_ARCH bfd_arch_mmix 2893 #define ELF_MACHINE_CODE EM_MMIX 2894 2895 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL). 2896 However, that's too much for something somewhere in the linker part of 2897 BFD; perhaps the start-address has to be a non-zero multiple of this 2898 number, or larger than this number. The symptom is that the linker 2899 complains: "warning: allocated section `.text' not in segment". We 2900 settle for 64k; the page-size used in examples is 8k. 2901 #define ELF_MAXPAGESIZE 0x10000 2902 2903 Unfortunately, this causes excessive padding in the supposedly small 2904 for-education programs that are the expected usage (where people would 2905 inspect output). We stick to 256 bytes just to have *some* default 2906 alignment. */ 2907 #define ELF_MAXPAGESIZE 0x100 2908 2909 #define TARGET_BIG_SYM mmix_elf64_vec 2910 #define TARGET_BIG_NAME "elf64-mmix" 2911 2912 #define elf_info_to_howto_rel NULL 2913 #define elf_info_to_howto mmix_info_to_howto_rela 2914 #define elf_backend_relocate_section mmix_elf_relocate_section 2915 #define elf_backend_gc_mark_hook mmix_elf_gc_mark_hook 2916 #define elf_backend_gc_sweep_hook mmix_elf_gc_sweep_hook 2917 2918 #define elf_backend_link_output_symbol_hook \ 2919 mmix_elf_link_output_symbol_hook 2920 #define elf_backend_add_symbol_hook mmix_elf_add_symbol_hook 2921 2922 #define elf_backend_check_relocs mmix_elf_check_relocs 2923 #define elf_backend_symbol_processing mmix_elf_symbol_processing 2924 #define elf_backend_omit_section_dynsym \ 2925 ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true) 2926 2927 #define bfd_elf64_bfd_is_local_label_name \ 2928 mmix_elf_is_local_label_name 2929 2930 #define elf_backend_may_use_rel_p 0 2931 #define elf_backend_may_use_rela_p 1 2932 #define elf_backend_default_use_rela_p 1 2933 2934 #define elf_backend_can_gc_sections 1 2935 #define elf_backend_section_from_bfd_section \ 2936 mmix_elf_section_from_bfd_section 2937 2938 #define bfd_elf64_new_section_hook mmix_elf_new_section_hook 2939 #define bfd_elf64_bfd_final_link mmix_elf_final_link 2940 #define bfd_elf64_bfd_relax_section mmix_elf_relax_section 2941 2942 #include "elf64-target.h" 2943