xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-mmix.c (revision 75f6d617e282811cb173c2ccfbf5df0dd71f7045)
1 /* MMIX-specific support for 64-bit ELF.
2    Copyright (C) 2001-2015 Free Software Foundation, Inc.
3    Contributed by Hans-Peter Nilsson <hp@bitrange.com>
4 
5    This file is part of BFD, the Binary File Descriptor library.
6 
7    This program is free software; you can redistribute it and/or modify
8    it under the terms of the GNU General Public License as published by
9    the Free Software Foundation; either version 3 of the License, or
10    (at your option) any later version.
11 
12    This program is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15    GNU General Public License for more details.
16 
17    You should have received a copy of the GNU General Public License
18    along with this program; if not, write to the Free Software
19    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20    MA 02110-1301, USA.  */
21 
22 
23 /* No specific ABI or "processor-specific supplement" defined.  */
24 
25 /* TODO:
26    - "Traditional" linker relaxation (shrinking whole sections).
27    - Merge reloc stubs jumping to same location.
28    - GETA stub relaxation (call a stub for out of range new
29      R_MMIX_GETA_STUBBABLE).  */
30 
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "elf-bfd.h"
35 #include "elf/mmix.h"
36 #include "opcode/mmix.h"
37 
38 #define MINUS_ONE	(((bfd_vma) 0) - 1)
39 
40 #define MAX_PUSHJ_STUB_SIZE (5 * 4)
41 
42 /* Put these everywhere in new code.  */
43 #define FATAL_DEBUG						\
44  _bfd_abort (__FILE__, __LINE__,				\
45 	     "Internal: Non-debugged code (test-case missing)")
46 
47 #define BAD_CASE(x)				\
48  _bfd_abort (__FILE__, __LINE__,		\
49 	     "bad case for " #x)
50 
51 struct _mmix_elf_section_data
52 {
53   struct bfd_elf_section_data elf;
54   union
55   {
56     struct bpo_reloc_section_info *reloc;
57     struct bpo_greg_section_info *greg;
58   } bpo;
59 
60   struct pushj_stub_info
61   {
62     /* Maximum number of stubs needed for this section.  */
63     bfd_size_type n_pushj_relocs;
64 
65     /* Size of stubs after a mmix_elf_relax_section round.  */
66     bfd_size_type stubs_size_sum;
67 
68     /* Per-reloc stubs_size_sum information.  The stubs_size_sum member is the sum
69        of these.  Allocated in mmix_elf_check_common_relocs.  */
70     bfd_size_type *stub_size;
71 
72     /* Offset of next stub during relocation.  Somewhat redundant with the
73        above: error coverage is easier and we don't have to reset the
74        stubs_size_sum for relocation.  */
75     bfd_size_type stub_offset;
76   } pjs;
77 
78   /* Whether there has been a warning that this section could not be
79      linked due to a specific cause.  FIXME: a way to access the
80      linker info or output section, then stuff the limiter guard
81      there. */
82   bfd_boolean has_warned_bpo;
83   bfd_boolean has_warned_pushj;
84 };
85 
86 #define mmix_elf_section_data(sec) \
87   ((struct _mmix_elf_section_data *) elf_section_data (sec))
88 
89 /* For each section containing a base-plus-offset (BPO) reloc, we attach
90    this struct as mmix_elf_section_data (section)->bpo, which is otherwise
91    NULL.  */
92 struct bpo_reloc_section_info
93   {
94     /* The base is 1; this is the first number in this section.  */
95     size_t first_base_plus_offset_reloc;
96 
97     /* Number of BPO-relocs in this section.  */
98     size_t n_bpo_relocs_this_section;
99 
100     /* Running index, used at relocation time.  */
101     size_t bpo_index;
102 
103     /* We don't have access to the bfd_link_info struct in
104        mmix_final_link_relocate.  What we really want to get at is the
105        global single struct greg_relocation, so we stash it here.  */
106     asection *bpo_greg_section;
107   };
108 
109 /* Helper struct (in global context) for the one below.
110    There's one of these created for every BPO reloc.  */
111 struct bpo_reloc_request
112   {
113     bfd_vma value;
114 
115     /* Valid after relaxation.  The base is 0; the first register number
116        must be added.  The offset is in range 0..255.  */
117     size_t regindex;
118     size_t offset;
119 
120     /* The order number for this BPO reloc, corresponding to the order in
121        which BPO relocs were found.  Used to create an index after reloc
122        requests are sorted.  */
123     size_t bpo_reloc_no;
124 
125     /* Set when the value is computed.  Better than coding "guard values"
126        into the other members.  Is FALSE only for BPO relocs in a GC:ed
127        section.  */
128     bfd_boolean valid;
129   };
130 
131 /* We attach this as mmix_elf_section_data (sec)->bpo in the linker-allocated
132    greg contents section (MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME),
133    which is linked into the register contents section
134    (MMIX_REG_CONTENTS_SECTION_NAME).  This section is created by the
135    linker; using the same hook as for usual with BPO relocs does not
136    collide.  */
137 struct bpo_greg_section_info
138   {
139     /* After GC, this reflects the number of remaining, non-excluded
140        BPO-relocs.  */
141     size_t n_bpo_relocs;
142 
143     /* This is the number of allocated bpo_reloc_requests; the size of
144        sorted_indexes.  Valid after the check.*relocs functions are called
145        for all incoming sections.  It includes the number of BPO relocs in
146        sections that were GC:ed.  */
147     size_t n_max_bpo_relocs;
148 
149     /* A counter used to find out when to fold the BPO gregs, since we
150        don't have a single "after-relaxation" hook.  */
151     size_t n_remaining_bpo_relocs_this_relaxation_round;
152 
153     /* The number of linker-allocated GREGs resulting from BPO relocs.
154        This is an approximation after _bfd_mmix_before_linker_allocation
155        and supposedly accurate after mmix_elf_relax_section is called for
156        all incoming non-collected sections.  */
157     size_t n_allocated_bpo_gregs;
158 
159     /* Index into reloc_request[], sorted on increasing "value", secondary
160        by increasing index for strict sorting order.  */
161     size_t *bpo_reloc_indexes;
162 
163     /* An array of all relocations, with the "value" member filled in by
164        the relaxation function.  */
165     struct bpo_reloc_request *reloc_request;
166   };
167 
168 
169 extern bfd_boolean mmix_elf_final_link (bfd *, struct bfd_link_info *);
170 
171 extern void mmix_elf_symbol_processing (bfd *, asymbol *);
172 
173 /* Only intended to be called from a debugger.  */
174 extern void mmix_dump_bpo_gregs
175   (struct bfd_link_info *, bfd_error_handler_type);
176 
177 static void
178 mmix_set_relaxable_size (bfd *, asection *, void *);
179 static bfd_reloc_status_type
180 mmix_elf_reloc (bfd *, arelent *, asymbol *, void *,
181 		asection *, bfd *, char **);
182 static bfd_reloc_status_type
183 mmix_final_link_relocate (reloc_howto_type *, asection *, bfd_byte *, bfd_vma,
184 			  bfd_signed_vma, bfd_vma, const char *, asection *,
185 			  char **);
186 
187 
188 /* Watch out: this currently needs to have elements with the same index as
189    their R_MMIX_ number.  */
190 static reloc_howto_type elf_mmix_howto_table[] =
191  {
192   /* This reloc does nothing.  */
193   HOWTO (R_MMIX_NONE,		/* type */
194 	 0,			/* rightshift */
195 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
196 	 32,			/* bitsize */
197 	 FALSE,			/* pc_relative */
198 	 0,			/* bitpos */
199 	 complain_overflow_bitfield, /* complain_on_overflow */
200 	 bfd_elf_generic_reloc,	/* special_function */
201 	 "R_MMIX_NONE",		/* name */
202 	 FALSE,			/* partial_inplace */
203 	 0,			/* src_mask */
204 	 0,			/* dst_mask */
205 	 FALSE),		/* pcrel_offset */
206 
207   /* An 8 bit absolute relocation.  */
208   HOWTO (R_MMIX_8,		/* type */
209 	 0,			/* rightshift */
210 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
211 	 8,			/* bitsize */
212 	 FALSE,			/* pc_relative */
213 	 0,			/* bitpos */
214 	 complain_overflow_bitfield, /* complain_on_overflow */
215 	 bfd_elf_generic_reloc,	/* special_function */
216 	 "R_MMIX_8",		/* name */
217 	 FALSE,			/* partial_inplace */
218 	 0,			/* src_mask */
219 	 0xff,			/* dst_mask */
220 	 FALSE),		/* pcrel_offset */
221 
222   /* An 16 bit absolute relocation.  */
223   HOWTO (R_MMIX_16,		/* type */
224 	 0,			/* rightshift */
225 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
226 	 16,			/* bitsize */
227 	 FALSE,			/* pc_relative */
228 	 0,			/* bitpos */
229 	 complain_overflow_bitfield, /* complain_on_overflow */
230 	 bfd_elf_generic_reloc,	/* special_function */
231 	 "R_MMIX_16",		/* name */
232 	 FALSE,			/* partial_inplace */
233 	 0,			/* src_mask */
234 	 0xffff,		/* dst_mask */
235 	 FALSE),		/* pcrel_offset */
236 
237   /* An 24 bit absolute relocation.  */
238   HOWTO (R_MMIX_24,		/* type */
239 	 0,			/* rightshift */
240 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
241 	 24,			/* bitsize */
242 	 FALSE,			/* pc_relative */
243 	 0,			/* bitpos */
244 	 complain_overflow_bitfield, /* complain_on_overflow */
245 	 bfd_elf_generic_reloc,	/* special_function */
246 	 "R_MMIX_24",		/* name */
247 	 FALSE,			/* partial_inplace */
248 	 ~0xffffff,		/* src_mask */
249 	 0xffffff,		/* dst_mask */
250 	 FALSE),		/* pcrel_offset */
251 
252   /* A 32 bit absolute relocation.  */
253   HOWTO (R_MMIX_32,		/* type */
254 	 0,			/* rightshift */
255 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
256 	 32,			/* bitsize */
257 	 FALSE,			/* pc_relative */
258 	 0,			/* bitpos */
259 	 complain_overflow_bitfield, /* complain_on_overflow */
260 	 bfd_elf_generic_reloc,	/* special_function */
261 	 "R_MMIX_32",		/* name */
262 	 FALSE,			/* partial_inplace */
263 	 0,			/* src_mask */
264 	 0xffffffff,		/* dst_mask */
265 	 FALSE),		/* pcrel_offset */
266 
267   /* 64 bit relocation.  */
268   HOWTO (R_MMIX_64,		/* type */
269 	 0,			/* rightshift */
270 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
271 	 64,			/* bitsize */
272 	 FALSE,			/* pc_relative */
273 	 0,			/* bitpos */
274 	 complain_overflow_bitfield, /* complain_on_overflow */
275 	 bfd_elf_generic_reloc,	/* special_function */
276 	 "R_MMIX_64",		/* name */
277 	 FALSE,			/* partial_inplace */
278 	 0,			/* src_mask */
279 	 MINUS_ONE,		/* dst_mask */
280 	 FALSE),		/* pcrel_offset */
281 
282   /* An 8 bit PC-relative relocation.  */
283   HOWTO (R_MMIX_PC_8,		/* type */
284 	 0,			/* rightshift */
285 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
286 	 8,			/* bitsize */
287 	 TRUE,			/* pc_relative */
288 	 0,			/* bitpos */
289 	 complain_overflow_bitfield, /* complain_on_overflow */
290 	 bfd_elf_generic_reloc,	/* special_function */
291 	 "R_MMIX_PC_8",		/* name */
292 	 FALSE,			/* partial_inplace */
293 	 0,			/* src_mask */
294 	 0xff,			/* dst_mask */
295 	 TRUE),			/* pcrel_offset */
296 
297   /* An 16 bit PC-relative relocation.  */
298   HOWTO (R_MMIX_PC_16,		/* type */
299 	 0,			/* rightshift */
300 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
301 	 16,			/* bitsize */
302 	 TRUE,			/* pc_relative */
303 	 0,			/* bitpos */
304 	 complain_overflow_bitfield, /* complain_on_overflow */
305 	 bfd_elf_generic_reloc,	/* special_function */
306 	 "R_MMIX_PC_16",	/* name */
307 	 FALSE,			/* partial_inplace */
308 	 0,			/* src_mask */
309 	 0xffff,		/* dst_mask */
310 	 TRUE),			/* pcrel_offset */
311 
312   /* An 24 bit PC-relative relocation.  */
313   HOWTO (R_MMIX_PC_24,		/* type */
314 	 0,			/* rightshift */
315 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
316 	 24,			/* bitsize */
317 	 TRUE,			/* pc_relative */
318 	 0,			/* bitpos */
319 	 complain_overflow_bitfield, /* complain_on_overflow */
320 	 bfd_elf_generic_reloc,	/* special_function */
321 	 "R_MMIX_PC_24",	/* name */
322 	 FALSE,			/* partial_inplace */
323 	 ~0xffffff,		/* src_mask */
324 	 0xffffff,		/* dst_mask */
325 	 TRUE),			/* pcrel_offset */
326 
327   /* A 32 bit absolute PC-relative relocation.  */
328   HOWTO (R_MMIX_PC_32,		/* type */
329 	 0,			/* rightshift */
330 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
331 	 32,			/* bitsize */
332 	 TRUE,			/* pc_relative */
333 	 0,			/* bitpos */
334 	 complain_overflow_bitfield, /* complain_on_overflow */
335 	 bfd_elf_generic_reloc,	/* special_function */
336 	 "R_MMIX_PC_32",	/* name */
337 	 FALSE,			/* partial_inplace */
338 	 0,			/* src_mask */
339 	 0xffffffff,		/* dst_mask */
340 	 TRUE),			/* pcrel_offset */
341 
342   /* 64 bit PC-relative relocation.  */
343   HOWTO (R_MMIX_PC_64,		/* type */
344 	 0,			/* rightshift */
345 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
346 	 64,			/* bitsize */
347 	 TRUE,			/* pc_relative */
348 	 0,			/* bitpos */
349 	 complain_overflow_bitfield, /* complain_on_overflow */
350 	 bfd_elf_generic_reloc,	/* special_function */
351 	 "R_MMIX_PC_64",	/* name */
352 	 FALSE,			/* partial_inplace */
353 	 0,			/* src_mask */
354 	 MINUS_ONE,		/* dst_mask */
355 	 TRUE),			/* pcrel_offset */
356 
357   /* GNU extension to record C++ vtable hierarchy.  */
358   HOWTO (R_MMIX_GNU_VTINHERIT, /* type */
359 	 0,			/* rightshift */
360 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
361 	 0,			/* bitsize */
362 	 FALSE,			/* pc_relative */
363 	 0,			/* bitpos */
364 	 complain_overflow_dont, /* complain_on_overflow */
365 	 NULL,			/* special_function */
366 	 "R_MMIX_GNU_VTINHERIT", /* name */
367 	 FALSE,			/* partial_inplace */
368 	 0,			/* src_mask */
369 	 0,			/* dst_mask */
370 	 TRUE),			/* pcrel_offset */
371 
372   /* GNU extension to record C++ vtable member usage.  */
373   HOWTO (R_MMIX_GNU_VTENTRY,	/* type */
374 	 0,			/* rightshift */
375 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
376 	 0,			/* bitsize */
377 	 FALSE,			/* pc_relative */
378 	 0,			/* bitpos */
379 	 complain_overflow_dont, /* complain_on_overflow */
380 	 _bfd_elf_rel_vtable_reloc_fn,	/* special_function */
381 	 "R_MMIX_GNU_VTENTRY", /* name */
382 	 FALSE,			/* partial_inplace */
383 	 0,			/* src_mask */
384 	 0,			/* dst_mask */
385 	 FALSE),		/* pcrel_offset */
386 
387   /* The GETA relocation is supposed to get any address that could
388      possibly be reached by the GETA instruction.  It can silently expand
389      to get a 64-bit operand, but will complain if any of the two least
390      significant bits are set.  The howto members reflect a simple GETA.  */
391   HOWTO (R_MMIX_GETA,		/* type */
392 	 2,			/* rightshift */
393 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
394 	 19,			/* bitsize */
395 	 TRUE,			/* pc_relative */
396 	 0,			/* bitpos */
397 	 complain_overflow_signed, /* complain_on_overflow */
398 	 mmix_elf_reloc,	/* special_function */
399 	 "R_MMIX_GETA",		/* name */
400 	 FALSE,			/* partial_inplace */
401 	 ~0x0100ffff,		/* src_mask */
402 	 0x0100ffff,		/* dst_mask */
403 	 TRUE),			/* pcrel_offset */
404 
405   HOWTO (R_MMIX_GETA_1,		/* type */
406 	 2,			/* rightshift */
407 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
408 	 19,			/* bitsize */
409 	 TRUE,			/* pc_relative */
410 	 0,			/* bitpos */
411 	 complain_overflow_signed, /* complain_on_overflow */
412 	 mmix_elf_reloc,	/* special_function */
413 	 "R_MMIX_GETA_1",		/* name */
414 	 FALSE,			/* partial_inplace */
415 	 ~0x0100ffff,		/* src_mask */
416 	 0x0100ffff,		/* dst_mask */
417 	 TRUE),			/* pcrel_offset */
418 
419   HOWTO (R_MMIX_GETA_2,		/* type */
420 	 2,			/* rightshift */
421 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
422 	 19,			/* bitsize */
423 	 TRUE,			/* pc_relative */
424 	 0,			/* bitpos */
425 	 complain_overflow_signed, /* complain_on_overflow */
426 	 mmix_elf_reloc,	/* special_function */
427 	 "R_MMIX_GETA_2",		/* name */
428 	 FALSE,			/* partial_inplace */
429 	 ~0x0100ffff,		/* src_mask */
430 	 0x0100ffff,		/* dst_mask */
431 	 TRUE),			/* pcrel_offset */
432 
433   HOWTO (R_MMIX_GETA_3,		/* type */
434 	 2,			/* rightshift */
435 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
436 	 19,			/* bitsize */
437 	 TRUE,			/* pc_relative */
438 	 0,			/* bitpos */
439 	 complain_overflow_signed, /* complain_on_overflow */
440 	 mmix_elf_reloc,	/* special_function */
441 	 "R_MMIX_GETA_3",		/* name */
442 	 FALSE,			/* partial_inplace */
443 	 ~0x0100ffff,		/* src_mask */
444 	 0x0100ffff,		/* dst_mask */
445 	 TRUE),			/* pcrel_offset */
446 
447   /* The conditional branches are supposed to reach any (code) address.
448      It can silently expand to a 64-bit operand, but will emit an error if
449      any of the two least significant bits are set.  The howto members
450      reflect a simple branch.  */
451   HOWTO (R_MMIX_CBRANCH,	/* type */
452 	 2,			/* rightshift */
453 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
454 	 19,			/* bitsize */
455 	 TRUE,			/* pc_relative */
456 	 0,			/* bitpos */
457 	 complain_overflow_signed, /* complain_on_overflow */
458 	 mmix_elf_reloc,	/* special_function */
459 	 "R_MMIX_CBRANCH",	/* name */
460 	 FALSE,			/* partial_inplace */
461 	 ~0x0100ffff,		/* src_mask */
462 	 0x0100ffff,		/* dst_mask */
463 	 TRUE),		       	/* pcrel_offset */
464 
465   HOWTO (R_MMIX_CBRANCH_J,	/* type */
466 	 2,			/* rightshift */
467 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
468 	 19,			/* bitsize */
469 	 TRUE,			/* pc_relative */
470 	 0,			/* bitpos */
471 	 complain_overflow_signed, /* complain_on_overflow */
472 	 mmix_elf_reloc,	/* special_function */
473 	 "R_MMIX_CBRANCH_J",	/* name */
474 	 FALSE,			/* partial_inplace */
475 	 ~0x0100ffff,		/* src_mask */
476 	 0x0100ffff,		/* dst_mask */
477 	 TRUE),			/* pcrel_offset */
478 
479   HOWTO (R_MMIX_CBRANCH_1,	/* type */
480 	 2,			/* rightshift */
481 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
482 	 19,			/* bitsize */
483 	 TRUE,			/* pc_relative */
484 	 0,			/* bitpos */
485 	 complain_overflow_signed, /* complain_on_overflow */
486 	 mmix_elf_reloc,	/* special_function */
487 	 "R_MMIX_CBRANCH_1",	/* name */
488 	 FALSE,			/* partial_inplace */
489 	 ~0x0100ffff,		/* src_mask */
490 	 0x0100ffff,		/* dst_mask */
491 	 TRUE),			/* pcrel_offset */
492 
493   HOWTO (R_MMIX_CBRANCH_2,	/* type */
494 	 2,			/* rightshift */
495 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
496 	 19,			/* bitsize */
497 	 TRUE,			/* pc_relative */
498 	 0,			/* bitpos */
499 	 complain_overflow_signed, /* complain_on_overflow */
500 	 mmix_elf_reloc,	/* special_function */
501 	 "R_MMIX_CBRANCH_2",	/* name */
502 	 FALSE,			/* partial_inplace */
503 	 ~0x0100ffff,		/* src_mask */
504 	 0x0100ffff,		/* dst_mask */
505 	 TRUE),			/* pcrel_offset */
506 
507   HOWTO (R_MMIX_CBRANCH_3,	/* type */
508 	 2,			/* rightshift */
509 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
510 	 19,			/* bitsize */
511 	 TRUE,			/* pc_relative */
512 	 0,			/* bitpos */
513 	 complain_overflow_signed, /* complain_on_overflow */
514 	 mmix_elf_reloc,	/* special_function */
515 	 "R_MMIX_CBRANCH_3",	/* name */
516 	 FALSE,			/* partial_inplace */
517 	 ~0x0100ffff,		/* src_mask */
518 	 0x0100ffff,		/* dst_mask */
519 	 TRUE),			/* pcrel_offset */
520 
521   /* The PUSHJ instruction can reach any (code) address, as long as it's
522      the beginning of a function (no usable restriction).  It can silently
523      expand to a 64-bit operand, but will emit an error if any of the two
524      least significant bits are set.  It can also expand into a call to a
525      stub; see R_MMIX_PUSHJ_STUBBABLE.  The howto members reflect a simple
526      PUSHJ.  */
527   HOWTO (R_MMIX_PUSHJ,		/* type */
528 	 2,			/* rightshift */
529 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
530 	 19,			/* bitsize */
531 	 TRUE,			/* pc_relative */
532 	 0,			/* bitpos */
533 	 complain_overflow_signed, /* complain_on_overflow */
534 	 mmix_elf_reloc,	/* special_function */
535 	 "R_MMIX_PUSHJ",	/* name */
536 	 FALSE,			/* partial_inplace */
537 	 ~0x0100ffff,		/* src_mask */
538 	 0x0100ffff,		/* dst_mask */
539 	 TRUE),			/* pcrel_offset */
540 
541   HOWTO (R_MMIX_PUSHJ_1,	/* type */
542 	 2,			/* rightshift */
543 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
544 	 19,			/* bitsize */
545 	 TRUE,			/* pc_relative */
546 	 0,			/* bitpos */
547 	 complain_overflow_signed, /* complain_on_overflow */
548 	 mmix_elf_reloc,	/* special_function */
549 	 "R_MMIX_PUSHJ_1",	/* name */
550 	 FALSE,			/* partial_inplace */
551 	 ~0x0100ffff,		/* src_mask */
552 	 0x0100ffff,		/* dst_mask */
553 	 TRUE),			/* pcrel_offset */
554 
555   HOWTO (R_MMIX_PUSHJ_2,	/* type */
556 	 2,			/* rightshift */
557 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
558 	 19,			/* bitsize */
559 	 TRUE,			/* pc_relative */
560 	 0,			/* bitpos */
561 	 complain_overflow_signed, /* complain_on_overflow */
562 	 mmix_elf_reloc,	/* special_function */
563 	 "R_MMIX_PUSHJ_2",	/* name */
564 	 FALSE,			/* partial_inplace */
565 	 ~0x0100ffff,		/* src_mask */
566 	 0x0100ffff,		/* dst_mask */
567 	 TRUE),			/* pcrel_offset */
568 
569   HOWTO (R_MMIX_PUSHJ_3,	/* type */
570 	 2,			/* rightshift */
571 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
572 	 19,			/* bitsize */
573 	 TRUE,			/* pc_relative */
574 	 0,			/* bitpos */
575 	 complain_overflow_signed, /* complain_on_overflow */
576 	 mmix_elf_reloc,	/* special_function */
577 	 "R_MMIX_PUSHJ_3",	/* name */
578 	 FALSE,			/* partial_inplace */
579 	 ~0x0100ffff,		/* src_mask */
580 	 0x0100ffff,		/* dst_mask */
581 	 TRUE),			/* pcrel_offset */
582 
583   /* A JMP is supposed to reach any (code) address.  By itself, it can
584      reach +-64M; the expansion can reach all 64 bits.  Note that the 64M
585      limit is soon reached if you link the program in wildly different
586      memory segments.  The howto members reflect a trivial JMP.  */
587   HOWTO (R_MMIX_JMP,		/* type */
588 	 2,			/* rightshift */
589 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
590 	 27,			/* bitsize */
591 	 TRUE,			/* pc_relative */
592 	 0,			/* bitpos */
593 	 complain_overflow_signed, /* complain_on_overflow */
594 	 mmix_elf_reloc,	/* special_function */
595 	 "R_MMIX_JMP",		/* name */
596 	 FALSE,			/* partial_inplace */
597 	 ~0x1ffffff,		/* src_mask */
598 	 0x1ffffff,		/* dst_mask */
599 	 TRUE),			/* pcrel_offset */
600 
601   HOWTO (R_MMIX_JMP_1,		/* type */
602 	 2,			/* rightshift */
603 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
604 	 27,			/* bitsize */
605 	 TRUE,			/* pc_relative */
606 	 0,			/* bitpos */
607 	 complain_overflow_signed, /* complain_on_overflow */
608 	 mmix_elf_reloc,	/* special_function */
609 	 "R_MMIX_JMP_1",	/* name */
610 	 FALSE,			/* partial_inplace */
611 	 ~0x1ffffff,		/* src_mask */
612 	 0x1ffffff,		/* dst_mask */
613 	 TRUE),			/* pcrel_offset */
614 
615   HOWTO (R_MMIX_JMP_2,		/* type */
616 	 2,			/* rightshift */
617 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
618 	 27,			/* bitsize */
619 	 TRUE,			/* pc_relative */
620 	 0,			/* bitpos */
621 	 complain_overflow_signed, /* complain_on_overflow */
622 	 mmix_elf_reloc,	/* special_function */
623 	 "R_MMIX_JMP_2",	/* name */
624 	 FALSE,			/* partial_inplace */
625 	 ~0x1ffffff,		/* src_mask */
626 	 0x1ffffff,		/* dst_mask */
627 	 TRUE),			/* pcrel_offset */
628 
629   HOWTO (R_MMIX_JMP_3,		/* type */
630 	 2,			/* rightshift */
631 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
632 	 27,			/* bitsize */
633 	 TRUE,			/* pc_relative */
634 	 0,			/* bitpos */
635 	 complain_overflow_signed, /* complain_on_overflow */
636 	 mmix_elf_reloc,	/* special_function */
637 	 "R_MMIX_JMP_3",	/* name */
638 	 FALSE,			/* partial_inplace */
639 	 ~0x1ffffff,		/* src_mask */
640 	 0x1ffffff,		/* dst_mask */
641 	 TRUE),			/* pcrel_offset */
642 
643   /* When we don't emit link-time-relaxable code from the assembler, or
644      when relaxation has done all it can do, these relocs are used.  For
645      GETA/PUSHJ/branches.  */
646   HOWTO (R_MMIX_ADDR19,		/* type */
647 	 2,			/* rightshift */
648 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
649 	 19,			/* bitsize */
650 	 TRUE,			/* pc_relative */
651 	 0,			/* bitpos */
652 	 complain_overflow_signed, /* complain_on_overflow */
653 	 mmix_elf_reloc,	/* special_function */
654 	 "R_MMIX_ADDR19",	/* name */
655 	 FALSE,			/* partial_inplace */
656 	 ~0x0100ffff,		/* src_mask */
657 	 0x0100ffff,		/* dst_mask */
658 	 TRUE),			/* pcrel_offset */
659 
660   /* For JMP.  */
661   HOWTO (R_MMIX_ADDR27,		/* type */
662 	 2,			/* rightshift */
663 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
664 	 27,			/* bitsize */
665 	 TRUE,			/* pc_relative */
666 	 0,			/* bitpos */
667 	 complain_overflow_signed, /* complain_on_overflow */
668 	 mmix_elf_reloc,	/* special_function */
669 	 "R_MMIX_ADDR27",	/* name */
670 	 FALSE,			/* partial_inplace */
671 	 ~0x1ffffff,		/* src_mask */
672 	 0x1ffffff,		/* dst_mask */
673 	 TRUE),			/* pcrel_offset */
674 
675   /* A general register or the value 0..255.  If a value, then the
676      instruction (offset -3) needs adjusting.  */
677   HOWTO (R_MMIX_REG_OR_BYTE,	/* type */
678 	 0,			/* rightshift */
679 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
680 	 8,			/* bitsize */
681 	 FALSE,			/* pc_relative */
682 	 0,			/* bitpos */
683 	 complain_overflow_bitfield, /* complain_on_overflow */
684 	 mmix_elf_reloc,	/* special_function */
685 	 "R_MMIX_REG_OR_BYTE",	/* name */
686 	 FALSE,			/* partial_inplace */
687 	 0,			/* src_mask */
688 	 0xff,			/* dst_mask */
689 	 FALSE),		/* pcrel_offset */
690 
691   /* A general register.  */
692   HOWTO (R_MMIX_REG,		/* type */
693 	 0,			/* rightshift */
694 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
695 	 8,			/* bitsize */
696 	 FALSE,			/* pc_relative */
697 	 0,			/* bitpos */
698 	 complain_overflow_bitfield, /* complain_on_overflow */
699 	 mmix_elf_reloc,	/* special_function */
700 	 "R_MMIX_REG",		/* name */
701 	 FALSE,			/* partial_inplace */
702 	 0,			/* src_mask */
703 	 0xff,			/* dst_mask */
704 	 FALSE),		/* pcrel_offset */
705 
706   /* A register plus an index, corresponding to the relocation expression.
707      The sizes must correspond to the valid range of the expression, while
708      the bitmasks correspond to what we store in the image.  */
709   HOWTO (R_MMIX_BASE_PLUS_OFFSET,	/* type */
710 	 0,			/* rightshift */
711 	 4,			/* size (0 = byte, 1 = short, 2 = long) */
712 	 64,			/* bitsize */
713 	 FALSE,			/* pc_relative */
714 	 0,			/* bitpos */
715 	 complain_overflow_bitfield, /* complain_on_overflow */
716 	 mmix_elf_reloc,	/* special_function */
717 	 "R_MMIX_BASE_PLUS_OFFSET", /* name */
718 	 FALSE,			/* partial_inplace */
719 	 0,			/* src_mask */
720 	 0xffff,		/* dst_mask */
721 	 FALSE),		/* pcrel_offset */
722 
723   /* A "magic" relocation for a LOCAL expression, asserting that the
724      expression is less than the number of global registers.  No actual
725      modification of the contents is done.  Implementing this as a
726      relocation was less intrusive than e.g. putting such expressions in a
727      section to discard *after* relocation.  */
728   HOWTO (R_MMIX_LOCAL,		/* type */
729 	 0,			/* rightshift */
730 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
731 	 0,			/* bitsize */
732 	 FALSE,			/* pc_relative */
733 	 0,			/* bitpos */
734 	 complain_overflow_dont, /* complain_on_overflow */
735 	 mmix_elf_reloc,	/* special_function */
736 	 "R_MMIX_LOCAL",	/* name */
737 	 FALSE,			/* partial_inplace */
738 	 0,			/* src_mask */
739 	 0,			/* dst_mask */
740 	 FALSE),		/* pcrel_offset */
741 
742   HOWTO (R_MMIX_PUSHJ_STUBBABLE, /* type */
743 	 2,			/* rightshift */
744 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
745 	 19,			/* bitsize */
746 	 TRUE,			/* pc_relative */
747 	 0,			/* bitpos */
748 	 complain_overflow_signed, /* complain_on_overflow */
749 	 mmix_elf_reloc,	/* special_function */
750 	 "R_MMIX_PUSHJ_STUBBABLE", /* name */
751 	 FALSE,			/* partial_inplace */
752 	 ~0x0100ffff,		/* src_mask */
753 	 0x0100ffff,		/* dst_mask */
754 	 TRUE)			/* pcrel_offset */
755  };
756 
757 
758 /* Map BFD reloc types to MMIX ELF reloc types.  */
759 
760 struct mmix_reloc_map
761   {
762     bfd_reloc_code_real_type bfd_reloc_val;
763     enum elf_mmix_reloc_type elf_reloc_val;
764   };
765 
766 
767 static const struct mmix_reloc_map mmix_reloc_map[] =
768   {
769     {BFD_RELOC_NONE, R_MMIX_NONE},
770     {BFD_RELOC_8, R_MMIX_8},
771     {BFD_RELOC_16, R_MMIX_16},
772     {BFD_RELOC_24, R_MMIX_24},
773     {BFD_RELOC_32, R_MMIX_32},
774     {BFD_RELOC_64, R_MMIX_64},
775     {BFD_RELOC_8_PCREL, R_MMIX_PC_8},
776     {BFD_RELOC_16_PCREL, R_MMIX_PC_16},
777     {BFD_RELOC_24_PCREL, R_MMIX_PC_24},
778     {BFD_RELOC_32_PCREL, R_MMIX_PC_32},
779     {BFD_RELOC_64_PCREL, R_MMIX_PC_64},
780     {BFD_RELOC_VTABLE_INHERIT, R_MMIX_GNU_VTINHERIT},
781     {BFD_RELOC_VTABLE_ENTRY, R_MMIX_GNU_VTENTRY},
782     {BFD_RELOC_MMIX_GETA, R_MMIX_GETA},
783     {BFD_RELOC_MMIX_CBRANCH, R_MMIX_CBRANCH},
784     {BFD_RELOC_MMIX_PUSHJ, R_MMIX_PUSHJ},
785     {BFD_RELOC_MMIX_JMP, R_MMIX_JMP},
786     {BFD_RELOC_MMIX_ADDR19, R_MMIX_ADDR19},
787     {BFD_RELOC_MMIX_ADDR27, R_MMIX_ADDR27},
788     {BFD_RELOC_MMIX_REG_OR_BYTE, R_MMIX_REG_OR_BYTE},
789     {BFD_RELOC_MMIX_REG, R_MMIX_REG},
790     {BFD_RELOC_MMIX_BASE_PLUS_OFFSET, R_MMIX_BASE_PLUS_OFFSET},
791     {BFD_RELOC_MMIX_LOCAL, R_MMIX_LOCAL},
792     {BFD_RELOC_MMIX_PUSHJ_STUBBABLE, R_MMIX_PUSHJ_STUBBABLE}
793   };
794 
795 static reloc_howto_type *
796 bfd_elf64_bfd_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
797 				 bfd_reloc_code_real_type code)
798 {
799   unsigned int i;
800 
801   for (i = 0;
802        i < sizeof (mmix_reloc_map) / sizeof (mmix_reloc_map[0]);
803        i++)
804     {
805       if (mmix_reloc_map[i].bfd_reloc_val == code)
806 	return &elf_mmix_howto_table[mmix_reloc_map[i].elf_reloc_val];
807     }
808 
809   return NULL;
810 }
811 
812 static reloc_howto_type *
813 bfd_elf64_bfd_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
814 				 const char *r_name)
815 {
816   unsigned int i;
817 
818   for (i = 0;
819        i < sizeof (elf_mmix_howto_table) / sizeof (elf_mmix_howto_table[0]);
820        i++)
821     if (elf_mmix_howto_table[i].name != NULL
822 	&& strcasecmp (elf_mmix_howto_table[i].name, r_name) == 0)
823       return &elf_mmix_howto_table[i];
824 
825   return NULL;
826 }
827 
828 static bfd_boolean
829 mmix_elf_new_section_hook (bfd *abfd, asection *sec)
830 {
831   if (!sec->used_by_bfd)
832     {
833       struct _mmix_elf_section_data *sdata;
834       bfd_size_type amt = sizeof (*sdata);
835 
836       sdata = bfd_zalloc (abfd, amt);
837       if (sdata == NULL)
838 	return FALSE;
839       sec->used_by_bfd = sdata;
840     }
841 
842   return _bfd_elf_new_section_hook (abfd, sec);
843 }
844 
845 
846 /* This function performs the actual bitfiddling and sanity check for a
847    final relocation.  Each relocation gets its *worst*-case expansion
848    in size when it arrives here; any reduction in size should have been
849    caught in linker relaxation earlier.  When we get here, the relocation
850    looks like the smallest instruction with SWYM:s (nop:s) appended to the
851    max size.  We fill in those nop:s.
852 
853    R_MMIX_GETA: (FIXME: Relaxation should break this up in 1, 2, 3 tetra)
854     GETA $N,foo
855    ->
856     SETL $N,foo & 0xffff
857     INCML $N,(foo >> 16) & 0xffff
858     INCMH $N,(foo >> 32) & 0xffff
859     INCH $N,(foo >> 48) & 0xffff
860 
861    R_MMIX_CBRANCH: (FIXME: Relaxation should break this up, but
862    condbranches needing relaxation might be rare enough to not be
863    worthwhile.)
864     [P]Bcc $N,foo
865    ->
866     [~P]B~cc $N,.+20
867     SETL $255,foo & ...
868     INCML ...
869     INCMH ...
870     INCH ...
871     GO $255,$255,0
872 
873    R_MMIX_PUSHJ: (FIXME: Relaxation...)
874     PUSHJ $N,foo
875    ->
876     SETL $255,foo & ...
877     INCML ...
878     INCMH ...
879     INCH ...
880     PUSHGO $N,$255,0
881 
882    R_MMIX_JMP: (FIXME: Relaxation...)
883     JMP foo
884    ->
885     SETL $255,foo & ...
886     INCML ...
887     INCMH ...
888     INCH ...
889     GO $255,$255,0
890 
891    R_MMIX_ADDR19 and R_MMIX_ADDR27 are just filled in.  */
892 
893 static bfd_reloc_status_type
894 mmix_elf_perform_relocation (asection *isec, reloc_howto_type *howto,
895 			     void *datap, bfd_vma addr, bfd_vma value,
896 			     char **error_message)
897 {
898   bfd *abfd = isec->owner;
899   bfd_reloc_status_type flag = bfd_reloc_ok;
900   bfd_reloc_status_type r;
901   int offs = 0;
902   int reg = 255;
903 
904   /* The worst case bits are all similar SETL/INCML/INCMH/INCH sequences.
905      We handle the differences here and the common sequence later.  */
906   switch (howto->type)
907     {
908     case R_MMIX_GETA:
909       offs = 0;
910       reg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
911 
912       /* We change to an absolute value.  */
913       value += addr;
914       break;
915 
916     case R_MMIX_CBRANCH:
917       {
918 	int in1 = bfd_get_16 (abfd, (bfd_byte *) datap) << 16;
919 
920 	/* Invert the condition and prediction bit, and set the offset
921 	   to five instructions ahead.
922 
923 	   We *can* do better if we want to.  If the branch is found to be
924 	   within limits, we could leave the branch as is; there'll just
925 	   be a bunch of NOP:s after it.  But we shouldn't see this
926 	   sequence often enough that it's worth doing it.  */
927 
928 	bfd_put_32 (abfd,
929 		    (((in1 ^ ((PRED_INV_BIT | COND_INV_BIT) << 24)) & ~0xffff)
930 		     | (24/4)),
931 		    (bfd_byte *) datap);
932 
933 	/* Put a "GO $255,$255,0" after the common sequence.  */
934 	bfd_put_32 (abfd,
935 		    ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24) | 0xffff00,
936 		    (bfd_byte *) datap + 20);
937 
938 	/* Common sequence starts at offset 4.  */
939 	offs = 4;
940 
941 	/* We change to an absolute value.  */
942 	value += addr;
943       }
944       break;
945 
946     case R_MMIX_PUSHJ_STUBBABLE:
947       /* If the address fits, we're fine.  */
948       if ((value & 3) == 0
949 	  /* Note rightshift 0; see R_MMIX_JMP case below.  */
950 	  && (r = bfd_check_overflow (complain_overflow_signed,
951 				      howto->bitsize,
952 				      0,
953 				      bfd_arch_bits_per_address (abfd),
954 				      value)) == bfd_reloc_ok)
955 	goto pcrel_mmix_reloc_fits;
956       else
957 	{
958 	  bfd_size_type size = isec->rawsize ? isec->rawsize : isec->size;
959 
960 	  /* We have the bytes at the PUSHJ insn and need to get the
961 	     position for the stub.  There's supposed to be room allocated
962 	     for the stub.  */
963 	  bfd_byte *stubcontents
964 	    = ((bfd_byte *) datap
965 	       - (addr - (isec->output_section->vma + isec->output_offset))
966 	       + size
967 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
968 	  bfd_vma stubaddr;
969 
970 	  if (mmix_elf_section_data (isec)->pjs.n_pushj_relocs == 0)
971 	    {
972 	      /* This shouldn't happen when linking to ELF or mmo, so
973 		 this is an attempt to link to "binary", right?  We
974 		 can't access the output bfd, so we can't verify that
975 		 assumption.  We only know that the critical
976 		 mmix_elf_check_common_relocs has not been called,
977 		 which happens when the output format is different
978 		 from the input format (and is not mmo).  */
979 	      if (! mmix_elf_section_data (isec)->has_warned_pushj)
980 		{
981 		  /* For the first such error per input section, produce
982 		     a verbose message.  */
983 		  *error_message
984 		    = _("invalid input relocation when producing"
985 			" non-ELF, non-mmo format output."
986 			"\n Please use the objcopy program to convert from"
987 			" ELF or mmo,"
988 			"\n or assemble using"
989 			" \"-no-expand\" (for gcc, \"-Wa,-no-expand\"");
990 		  mmix_elf_section_data (isec)->has_warned_pushj = TRUE;
991 		  return bfd_reloc_dangerous;
992 		}
993 
994 	      /* For subsequent errors, return this one, which is
995 		 rate-limited but looks a little bit different,
996 		 hopefully without affecting user-friendliness.  */
997 	      return bfd_reloc_overflow;
998 	    }
999 
1000 	  /* The address doesn't fit, so redirect the PUSHJ to the
1001 	     location of the stub.  */
1002 	  r = mmix_elf_perform_relocation (isec,
1003 					   &elf_mmix_howto_table
1004 					   [R_MMIX_ADDR19],
1005 					   datap,
1006 					   addr,
1007 					   isec->output_section->vma
1008 					   + isec->output_offset
1009 					   + size
1010 					   + (mmix_elf_section_data (isec)
1011 					      ->pjs.stub_offset)
1012 					   - addr,
1013 					   error_message);
1014 	  if (r != bfd_reloc_ok)
1015 	    return r;
1016 
1017 	  stubaddr
1018 	    = (isec->output_section->vma
1019 	       + isec->output_offset
1020 	       + size
1021 	       + mmix_elf_section_data (isec)->pjs.stub_offset);
1022 
1023 	  /* We generate a simple JMP if that suffices, else the whole 5
1024 	     insn stub.  */
1025 	  if (bfd_check_overflow (complain_overflow_signed,
1026 				  elf_mmix_howto_table[R_MMIX_ADDR27].bitsize,
1027 				  0,
1028 				  bfd_arch_bits_per_address (abfd),
1029 				  addr + value - stubaddr) == bfd_reloc_ok)
1030 	    {
1031 	      bfd_put_32 (abfd, JMP_INSN_BYTE << 24, stubcontents);
1032 	      r = mmix_elf_perform_relocation (isec,
1033 					       &elf_mmix_howto_table
1034 					       [R_MMIX_ADDR27],
1035 					       stubcontents,
1036 					       stubaddr,
1037 					       value + addr - stubaddr,
1038 					       error_message);
1039 	      mmix_elf_section_data (isec)->pjs.stub_offset += 4;
1040 
1041 	      if (size + mmix_elf_section_data (isec)->pjs.stub_offset
1042 		  > isec->size)
1043 		abort ();
1044 
1045 	      return r;
1046 	    }
1047 	  else
1048 	    {
1049 	      /* Put a "GO $255,0" after the common sequence.  */
1050 	      bfd_put_32 (abfd,
1051 			  ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1052 			  | 0xff00, (bfd_byte *) stubcontents + 16);
1053 
1054 	      /* Prepare for the general code to set the first part of the
1055 		 linker stub, and */
1056 	      value += addr;
1057 	      datap = stubcontents;
1058 	      mmix_elf_section_data (isec)->pjs.stub_offset
1059 		+= MAX_PUSHJ_STUB_SIZE;
1060 	    }
1061 	}
1062       break;
1063 
1064     case R_MMIX_PUSHJ:
1065       {
1066 	int inreg = bfd_get_8 (abfd, (bfd_byte *) datap + 1);
1067 
1068 	/* Put a "PUSHGO $N,$255,0" after the common sequence.  */
1069 	bfd_put_32 (abfd,
1070 		    ((PUSHGO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1071 		    | (inreg << 16)
1072 		    | 0xff00,
1073 		    (bfd_byte *) datap + 16);
1074 
1075 	/* We change to an absolute value.  */
1076 	value += addr;
1077       }
1078       break;
1079 
1080     case R_MMIX_JMP:
1081       /* This one is a little special.  If we get here on a non-relaxing
1082 	 link, and the destination is actually in range, we don't need to
1083 	 execute the nops.
1084 	 If so, we fall through to the bit-fiddling relocs.
1085 
1086 	 FIXME: bfd_check_overflow seems broken; the relocation is
1087 	 rightshifted before testing, so supply a zero rightshift.  */
1088 
1089       if (! ((value & 3) == 0
1090 	     && (r = bfd_check_overflow (complain_overflow_signed,
1091 					 howto->bitsize,
1092 					 0,
1093 					 bfd_arch_bits_per_address (abfd),
1094 					 value)) == bfd_reloc_ok))
1095 	{
1096 	  /* If the relocation doesn't fit in a JMP, we let the NOP:s be
1097 	     modified below, and put a "GO $255,$255,0" after the
1098 	     address-loading sequence.  */
1099 	  bfd_put_32 (abfd,
1100 		      ((GO_INSN_BYTE | IMM_OFFSET_BIT) << 24)
1101 		      | 0xffff00,
1102 		      (bfd_byte *) datap + 16);
1103 
1104 	  /* We change to an absolute value.  */
1105 	  value += addr;
1106 	  break;
1107 	}
1108       /* FALLTHROUGH.  */
1109     case R_MMIX_ADDR19:
1110     case R_MMIX_ADDR27:
1111     pcrel_mmix_reloc_fits:
1112       /* These must be in range, or else we emit an error.  */
1113       if ((value & 3) == 0
1114 	  /* Note rightshift 0; see above.  */
1115 	  && (r = bfd_check_overflow (complain_overflow_signed,
1116 				      howto->bitsize,
1117 				      0,
1118 				      bfd_arch_bits_per_address (abfd),
1119 				      value)) == bfd_reloc_ok)
1120 	{
1121 	  bfd_vma in1
1122 	    = bfd_get_32 (abfd, (bfd_byte *) datap);
1123 	  bfd_vma highbit;
1124 
1125 	  if ((bfd_signed_vma) value < 0)
1126 	    {
1127 	      highbit = 1 << 24;
1128 	      value += (1 << (howto->bitsize - 1));
1129 	    }
1130 	  else
1131 	    highbit = 0;
1132 
1133 	  value >>= 2;
1134 
1135 	  bfd_put_32 (abfd,
1136 		      (in1 & howto->src_mask)
1137 		      | highbit
1138 		      | (value & howto->dst_mask),
1139 		      (bfd_byte *) datap);
1140 
1141 	  return bfd_reloc_ok;
1142 	}
1143       else
1144 	return bfd_reloc_overflow;
1145 
1146     case R_MMIX_BASE_PLUS_OFFSET:
1147       {
1148 	struct bpo_reloc_section_info *bpodata
1149 	  = mmix_elf_section_data (isec)->bpo.reloc;
1150 	asection *bpo_greg_section;
1151 	struct bpo_greg_section_info *gregdata;
1152 	size_t bpo_index;
1153 
1154 	if (bpodata == NULL)
1155 	  {
1156 	    /* This shouldn't happen when linking to ELF or mmo, so
1157 	       this is an attempt to link to "binary", right?  We
1158 	       can't access the output bfd, so we can't verify that
1159 	       assumption.  We only know that the critical
1160 	       mmix_elf_check_common_relocs has not been called, which
1161 	       happens when the output format is different from the
1162 	       input format (and is not mmo).  */
1163 	    if (! mmix_elf_section_data (isec)->has_warned_bpo)
1164 	      {
1165 		/* For the first such error per input section, produce
1166 		   a verbose message.  */
1167 		*error_message
1168 		  = _("invalid input relocation when producing"
1169 		      " non-ELF, non-mmo format output."
1170 		      "\n Please use the objcopy program to convert from"
1171 		      " ELF or mmo,"
1172 		      "\n or compile using the gcc-option"
1173 		      " \"-mno-base-addresses\".");
1174 		mmix_elf_section_data (isec)->has_warned_bpo = TRUE;
1175 		return bfd_reloc_dangerous;
1176 	      }
1177 
1178 	    /* For subsequent errors, return this one, which is
1179 	       rate-limited but looks a little bit different,
1180 	       hopefully without affecting user-friendliness.  */
1181 	    return bfd_reloc_overflow;
1182 	  }
1183 
1184 	bpo_greg_section = bpodata->bpo_greg_section;
1185 	gregdata = mmix_elf_section_data (bpo_greg_section)->bpo.greg;
1186 	bpo_index = gregdata->bpo_reloc_indexes[bpodata->bpo_index++];
1187 
1188 	/* A consistency check: The value we now have in "relocation" must
1189 	   be the same as the value we stored for that relocation.  It
1190 	   doesn't cost much, so can be left in at all times.  */
1191 	if (value != gregdata->reloc_request[bpo_index].value)
1192 	  {
1193 	    (*_bfd_error_handler)
1194 	      (_("%s: Internal inconsistency error for value for\n\
1195  linker-allocated global register: linked: 0x%lx%08lx != relaxed: 0x%lx%08lx\n"),
1196 	       bfd_get_filename (isec->owner),
1197 	       (unsigned long) (value >> 32), (unsigned long) value,
1198 	       (unsigned long) (gregdata->reloc_request[bpo_index].value
1199 				>> 32),
1200 	       (unsigned long) gregdata->reloc_request[bpo_index].value);
1201 	    bfd_set_error (bfd_error_bad_value);
1202 	    return bfd_reloc_overflow;
1203 	  }
1204 
1205 	/* Then store the register number and offset for that register
1206 	   into datap and datap + 1 respectively.  */
1207 	bfd_put_8 (abfd,
1208 		   gregdata->reloc_request[bpo_index].regindex
1209 		   + bpo_greg_section->output_section->vma / 8,
1210 		   datap);
1211 	bfd_put_8 (abfd,
1212 		   gregdata->reloc_request[bpo_index].offset,
1213 		   ((unsigned char *) datap) + 1);
1214 	return bfd_reloc_ok;
1215       }
1216 
1217     case R_MMIX_REG_OR_BYTE:
1218     case R_MMIX_REG:
1219       if (value > 255)
1220 	return bfd_reloc_overflow;
1221       bfd_put_8 (abfd, value, datap);
1222       return bfd_reloc_ok;
1223 
1224     default:
1225       BAD_CASE (howto->type);
1226     }
1227 
1228   /* This code adds the common SETL/INCML/INCMH/INCH worst-case
1229      sequence.  */
1230 
1231   /* Lowest two bits must be 0.  We return bfd_reloc_overflow for
1232      everything that looks strange.  */
1233   if (value & 3)
1234     flag = bfd_reloc_overflow;
1235 
1236   bfd_put_32 (abfd,
1237 	      (SETL_INSN_BYTE << 24) | (value & 0xffff) | (reg << 16),
1238 	      (bfd_byte *) datap + offs);
1239   bfd_put_32 (abfd,
1240 	      (INCML_INSN_BYTE << 24) | ((value >> 16) & 0xffff) | (reg << 16),
1241 	      (bfd_byte *) datap + offs + 4);
1242   bfd_put_32 (abfd,
1243 	      (INCMH_INSN_BYTE << 24) | ((value >> 32) & 0xffff) | (reg << 16),
1244 	      (bfd_byte *) datap + offs + 8);
1245   bfd_put_32 (abfd,
1246 	      (INCH_INSN_BYTE << 24) | ((value >> 48) & 0xffff) | (reg << 16),
1247 	      (bfd_byte *) datap + offs + 12);
1248 
1249   return flag;
1250 }
1251 
1252 /* Set the howto pointer for an MMIX ELF reloc (type RELA).  */
1253 
1254 static void
1255 mmix_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
1256 			 arelent *cache_ptr,
1257 			 Elf_Internal_Rela *dst)
1258 {
1259   unsigned int r_type;
1260 
1261   r_type = ELF64_R_TYPE (dst->r_info);
1262   if (r_type >= (unsigned int) R_MMIX_max)
1263     {
1264       _bfd_error_handler (_("%A: invalid MMIX reloc number: %d"), abfd, r_type);
1265       r_type = 0;
1266     }
1267   cache_ptr->howto = &elf_mmix_howto_table[r_type];
1268 }
1269 
1270 /* Any MMIX-specific relocation gets here at assembly time or when linking
1271    to other formats (such as mmo); this is the relocation function from
1272    the reloc_table.  We don't get here for final pure ELF linking.  */
1273 
1274 static bfd_reloc_status_type
1275 mmix_elf_reloc (bfd *abfd,
1276 		arelent *reloc_entry,
1277 		asymbol *symbol,
1278 		void * data,
1279 		asection *input_section,
1280 		bfd *output_bfd,
1281 		char **error_message)
1282 {
1283   bfd_vma relocation;
1284   bfd_reloc_status_type r;
1285   asection *reloc_target_output_section;
1286   bfd_reloc_status_type flag = bfd_reloc_ok;
1287   bfd_vma output_base = 0;
1288 
1289   r = bfd_elf_generic_reloc (abfd, reloc_entry, symbol, data,
1290 			     input_section, output_bfd, error_message);
1291 
1292   /* If that was all that was needed (i.e. this isn't a final link, only
1293      some segment adjustments), we're done.  */
1294   if (r != bfd_reloc_continue)
1295     return r;
1296 
1297   if (bfd_is_und_section (symbol->section)
1298       && (symbol->flags & BSF_WEAK) == 0
1299       && output_bfd == (bfd *) NULL)
1300     return bfd_reloc_undefined;
1301 
1302   /* Is the address of the relocation really within the section?  */
1303   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
1304     return bfd_reloc_outofrange;
1305 
1306   /* Work out which section the relocation is targeted at and the
1307      initial relocation command value.  */
1308 
1309   /* Get symbol value.  (Common symbols are special.)  */
1310   if (bfd_is_com_section (symbol->section))
1311     relocation = 0;
1312   else
1313     relocation = symbol->value;
1314 
1315   reloc_target_output_section = bfd_get_output_section (symbol);
1316 
1317   /* Here the variable relocation holds the final address of the symbol we
1318      are relocating against, plus any addend.  */
1319   if (output_bfd)
1320     output_base = 0;
1321   else
1322     output_base = reloc_target_output_section->vma;
1323 
1324   relocation += output_base + symbol->section->output_offset;
1325 
1326   if (output_bfd != (bfd *) NULL)
1327     {
1328       /* Add in supplied addend.  */
1329       relocation += reloc_entry->addend;
1330 
1331       /* This is a partial relocation, and we want to apply the
1332 	 relocation to the reloc entry rather than the raw data.
1333 	 Modify the reloc inplace to reflect what we now know.  */
1334       reloc_entry->addend = relocation;
1335       reloc_entry->address += input_section->output_offset;
1336       return flag;
1337     }
1338 
1339   return mmix_final_link_relocate (reloc_entry->howto, input_section,
1340 				   data, reloc_entry->address,
1341 				   reloc_entry->addend, relocation,
1342 				   bfd_asymbol_name (symbol),
1343 				   reloc_target_output_section,
1344 				   error_message);
1345 }
1346 
1347 /* Relocate an MMIX ELF section.  Modified from elf32-fr30.c; look to it
1348    for guidance if you're thinking of copying this.  */
1349 
1350 static bfd_boolean
1351 mmix_elf_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED,
1352 			   struct bfd_link_info *info,
1353 			   bfd *input_bfd,
1354 			   asection *input_section,
1355 			   bfd_byte *contents,
1356 			   Elf_Internal_Rela *relocs,
1357 			   Elf_Internal_Sym *local_syms,
1358 			   asection **local_sections)
1359 {
1360   Elf_Internal_Shdr *symtab_hdr;
1361   struct elf_link_hash_entry **sym_hashes;
1362   Elf_Internal_Rela *rel;
1363   Elf_Internal_Rela *relend;
1364   bfd_size_type size;
1365   size_t pjsno = 0;
1366 
1367   size = input_section->rawsize ? input_section->rawsize : input_section->size;
1368   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
1369   sym_hashes = elf_sym_hashes (input_bfd);
1370   relend = relocs + input_section->reloc_count;
1371 
1372   /* Zero the stub area before we start.  */
1373   if (input_section->rawsize != 0
1374       && input_section->size > input_section->rawsize)
1375     memset (contents + input_section->rawsize, 0,
1376 	    input_section->size - input_section->rawsize);
1377 
1378   for (rel = relocs; rel < relend; rel ++)
1379     {
1380       reloc_howto_type *howto;
1381       unsigned long r_symndx;
1382       Elf_Internal_Sym *sym;
1383       asection *sec;
1384       struct elf_link_hash_entry *h;
1385       bfd_vma relocation;
1386       bfd_reloc_status_type r;
1387       const char *name = NULL;
1388       int r_type;
1389       bfd_boolean undefined_signalled = FALSE;
1390 
1391       r_type = ELF64_R_TYPE (rel->r_info);
1392 
1393       if (r_type == R_MMIX_GNU_VTINHERIT
1394 	  || r_type == R_MMIX_GNU_VTENTRY)
1395 	continue;
1396 
1397       r_symndx = ELF64_R_SYM (rel->r_info);
1398 
1399       howto = elf_mmix_howto_table + ELF64_R_TYPE (rel->r_info);
1400       h = NULL;
1401       sym = NULL;
1402       sec = NULL;
1403 
1404       if (r_symndx < symtab_hdr->sh_info)
1405 	{
1406 	  sym = local_syms + r_symndx;
1407 	  sec = local_sections [r_symndx];
1408 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
1409 
1410 	  name = bfd_elf_string_from_elf_section (input_bfd,
1411 						  symtab_hdr->sh_link,
1412 						  sym->st_name);
1413 	  if (name == NULL)
1414 	    name = bfd_section_name (input_bfd, sec);
1415 	}
1416       else
1417 	{
1418 	  bfd_boolean unresolved_reloc, ignored;
1419 
1420 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
1421 				   r_symndx, symtab_hdr, sym_hashes,
1422 				   h, sec, relocation,
1423 				   unresolved_reloc, undefined_signalled,
1424 				   ignored);
1425 	  name = h->root.root.string;
1426 	}
1427 
1428       if (sec != NULL && discarded_section (sec))
1429 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
1430 					 rel, 1, relend, howto, 0, contents);
1431 
1432       if (info->relocatable)
1433 	{
1434 	  /* This is a relocatable link.  For most relocs we don't have to
1435 	     change anything, unless the reloc is against a section
1436 	     symbol, in which case we have to adjust according to where
1437 	     the section symbol winds up in the output section.  */
1438 	  if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
1439 	    rel->r_addend += sec->output_offset;
1440 
1441 	  /* For PUSHJ stub relocs however, we may need to change the
1442 	     reloc and the section contents, if the reloc doesn't reach
1443 	     beyond the end of the output section and previous stubs.
1444 	     Then we change the section contents to be a PUSHJ to the end
1445 	     of the input section plus stubs (we can do that without using
1446 	     a reloc), and then we change the reloc to be a R_MMIX_PUSHJ
1447 	     at the stub location.  */
1448 	  if (r_type == R_MMIX_PUSHJ_STUBBABLE)
1449 	    {
1450 	      /* We've already checked whether we need a stub; use that
1451 		 knowledge.  */
1452 	      if (mmix_elf_section_data (input_section)->pjs.stub_size[pjsno]
1453 		  != 0)
1454 		{
1455 		  Elf_Internal_Rela relcpy;
1456 
1457 		  if (mmix_elf_section_data (input_section)
1458 		      ->pjs.stub_size[pjsno] != MAX_PUSHJ_STUB_SIZE)
1459 		    abort ();
1460 
1461 		  /* There's already a PUSHJ insn there, so just fill in
1462 		     the offset bits to the stub.  */
1463 		  if (mmix_final_link_relocate (elf_mmix_howto_table
1464 						+ R_MMIX_ADDR19,
1465 						input_section,
1466 						contents,
1467 						rel->r_offset,
1468 						0,
1469 						input_section
1470 						->output_section->vma
1471 						+ input_section->output_offset
1472 						+ size
1473 						+ mmix_elf_section_data (input_section)
1474 						->pjs.stub_offset,
1475 						NULL, NULL, NULL) != bfd_reloc_ok)
1476 		    return FALSE;
1477 
1478 		  /* Put a JMP insn at the stub; it goes with the
1479 		     R_MMIX_JMP reloc.  */
1480 		  bfd_put_32 (output_bfd, JMP_INSN_BYTE << 24,
1481 			      contents
1482 			      + size
1483 			      + mmix_elf_section_data (input_section)
1484 			      ->pjs.stub_offset);
1485 
1486 		  /* Change the reloc to be at the stub, and to a full
1487 		     R_MMIX_JMP reloc.  */
1488 		  rel->r_info = ELF64_R_INFO (r_symndx, R_MMIX_JMP);
1489 		  rel->r_offset
1490 		    = (size
1491 		       + mmix_elf_section_data (input_section)
1492 		       ->pjs.stub_offset);
1493 
1494 		  mmix_elf_section_data (input_section)->pjs.stub_offset
1495 		    += MAX_PUSHJ_STUB_SIZE;
1496 
1497 		  /* Shift this reloc to the end of the relocs to maintain
1498 		     the r_offset sorted reloc order.  */
1499 		  relcpy = *rel;
1500 		  memmove (rel, rel + 1, (char *) relend - (char *) rel);
1501 		  relend[-1] = relcpy;
1502 
1503 		  /* Back up one reloc, or else we'd skip the next reloc
1504 		   in turn.  */
1505 		  rel--;
1506 		}
1507 
1508 	      pjsno++;
1509 	    }
1510 	  continue;
1511 	}
1512 
1513       r = mmix_final_link_relocate (howto, input_section,
1514 				    contents, rel->r_offset,
1515 				    rel->r_addend, relocation, name, sec, NULL);
1516 
1517       if (r != bfd_reloc_ok)
1518 	{
1519 	  bfd_boolean check_ok = TRUE;
1520 	  const char * msg = (const char *) NULL;
1521 
1522 	  switch (r)
1523 	    {
1524 	    case bfd_reloc_overflow:
1525 	      check_ok = info->callbacks->reloc_overflow
1526 		(info, (h ? &h->root : NULL), name, howto->name,
1527 		 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
1528 	      break;
1529 
1530 	    case bfd_reloc_undefined:
1531 	      /* We may have sent this message above.  */
1532 	      if (! undefined_signalled)
1533 		check_ok = info->callbacks->undefined_symbol
1534 		  (info, name, input_bfd, input_section, rel->r_offset,
1535 		   TRUE);
1536 	      undefined_signalled = TRUE;
1537 	      break;
1538 
1539 	    case bfd_reloc_outofrange:
1540 	      msg = _("internal error: out of range error");
1541 	      break;
1542 
1543 	    case bfd_reloc_notsupported:
1544 	      msg = _("internal error: unsupported relocation error");
1545 	      break;
1546 
1547 	    case bfd_reloc_dangerous:
1548 	      msg = _("internal error: dangerous relocation");
1549 	      break;
1550 
1551 	    default:
1552 	      msg = _("internal error: unknown error");
1553 	      break;
1554 	    }
1555 
1556 	  if (msg)
1557 	    check_ok = info->callbacks->warning
1558 	      (info, msg, name, input_bfd, input_section, rel->r_offset);
1559 
1560 	  if (! check_ok)
1561 	    return FALSE;
1562 	}
1563     }
1564 
1565   return TRUE;
1566 }
1567 
1568 /* Perform a single relocation.  By default we use the standard BFD
1569    routines.  A few relocs we have to do ourselves.  */
1570 
1571 static bfd_reloc_status_type
1572 mmix_final_link_relocate (reloc_howto_type *howto, asection *input_section,
1573 			  bfd_byte *contents, bfd_vma r_offset,
1574 			  bfd_signed_vma r_addend, bfd_vma relocation,
1575 			  const char *symname, asection *symsec,
1576 			  char **error_message)
1577 {
1578   bfd_reloc_status_type r = bfd_reloc_ok;
1579   bfd_vma addr
1580     = (input_section->output_section->vma
1581        + input_section->output_offset
1582        + r_offset);
1583   bfd_signed_vma srel
1584     = (bfd_signed_vma) relocation + r_addend;
1585 
1586   switch (howto->type)
1587     {
1588       /* All these are PC-relative.  */
1589     case R_MMIX_PUSHJ_STUBBABLE:
1590     case R_MMIX_PUSHJ:
1591     case R_MMIX_CBRANCH:
1592     case R_MMIX_ADDR19:
1593     case R_MMIX_GETA:
1594     case R_MMIX_ADDR27:
1595     case R_MMIX_JMP:
1596       contents += r_offset;
1597 
1598       srel -= (input_section->output_section->vma
1599 	       + input_section->output_offset
1600 	       + r_offset);
1601 
1602       r = mmix_elf_perform_relocation (input_section, howto, contents,
1603 				       addr, srel, error_message);
1604       break;
1605 
1606     case R_MMIX_BASE_PLUS_OFFSET:
1607       if (symsec == NULL)
1608 	return bfd_reloc_undefined;
1609 
1610       /* Check that we're not relocating against a register symbol.  */
1611       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1612 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0
1613 	  || strcmp (bfd_get_section_name (symsec->owner, symsec),
1614 		     MMIX_REG_SECTION_NAME) == 0)
1615 	{
1616 	  /* Note: This is separated out into two messages in order
1617 	     to ease the translation into other languages.  */
1618 	  if (symname == NULL || *symname == 0)
1619 	    (*_bfd_error_handler)
1620 	      (_("%s: base-plus-offset relocation against register symbol: (unknown) in %s"),
1621 	       bfd_get_filename (input_section->owner),
1622 	       bfd_get_section_name (symsec->owner, symsec));
1623 	  else
1624 	    (*_bfd_error_handler)
1625 	      (_("%s: base-plus-offset relocation against register symbol: %s in %s"),
1626 	       bfd_get_filename (input_section->owner), symname,
1627 	       bfd_get_section_name (symsec->owner, symsec));
1628 	  return bfd_reloc_overflow;
1629 	}
1630       goto do_mmix_reloc;
1631 
1632     case R_MMIX_REG_OR_BYTE:
1633     case R_MMIX_REG:
1634       /* For now, we handle these alike.  They must refer to an register
1635 	 symbol, which is either relative to the register section and in
1636 	 the range 0..255, or is in the register contents section with vma
1637 	 regno * 8.  */
1638 
1639       /* FIXME: A better way to check for reg contents section?
1640 	 FIXME: Postpone section->scaling to mmix_elf_perform_relocation? */
1641       if (symsec == NULL)
1642 	return bfd_reloc_undefined;
1643 
1644       if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1645 		  MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1646 	{
1647 	  if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1648 	    {
1649 	      /* The bfd_reloc_outofrange return value, though intuitively
1650 		 a better value, will not get us an error.  */
1651 	      return bfd_reloc_overflow;
1652 	    }
1653 	  srel /= 8;
1654 	}
1655       else if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1656 		       MMIX_REG_SECTION_NAME) == 0)
1657 	{
1658 	  if (srel < 0 || srel > 255)
1659 	    /* The bfd_reloc_outofrange return value, though intuitively a
1660 	       better value, will not get us an error.  */
1661 	    return bfd_reloc_overflow;
1662 	}
1663       else
1664 	{
1665 	  /* Note: This is separated out into two messages in order
1666 	     to ease the translation into other languages.  */
1667 	  if (symname == NULL || *symname == 0)
1668 	    (*_bfd_error_handler)
1669 	      (_("%s: register relocation against non-register symbol: (unknown) in %s"),
1670 	       bfd_get_filename (input_section->owner),
1671 	       bfd_get_section_name (symsec->owner, symsec));
1672 	  else
1673 	    (*_bfd_error_handler)
1674 	      (_("%s: register relocation against non-register symbol: %s in %s"),
1675 	       bfd_get_filename (input_section->owner), symname,
1676 	       bfd_get_section_name (symsec->owner, symsec));
1677 
1678 	  /* The bfd_reloc_outofrange return value, though intuitively a
1679 	     better value, will not get us an error.  */
1680 	  return bfd_reloc_overflow;
1681 	}
1682     do_mmix_reloc:
1683       contents += r_offset;
1684       r = mmix_elf_perform_relocation (input_section, howto, contents,
1685 				       addr, srel, error_message);
1686       break;
1687 
1688     case R_MMIX_LOCAL:
1689       /* This isn't a real relocation, it's just an assertion that the
1690 	 final relocation value corresponds to a local register.  We
1691 	 ignore the actual relocation; nothing is changed.  */
1692       {
1693 	asection *regsec
1694 	  = bfd_get_section_by_name (input_section->output_section->owner,
1695 				     MMIX_REG_CONTENTS_SECTION_NAME);
1696 	bfd_vma first_global;
1697 
1698 	/* Check that this is an absolute value, or a reference to the
1699 	   register contents section or the register (symbol) section.
1700 	   Absolute numbers can get here as undefined section.  Undefined
1701 	   symbols are signalled elsewhere, so there's no conflict in us
1702 	   accidentally handling it.  */
1703 	if (!bfd_is_abs_section (symsec)
1704 	    && !bfd_is_und_section (symsec)
1705 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1706 		       MMIX_REG_CONTENTS_SECTION_NAME) != 0
1707 	    && strcmp (bfd_get_section_name (symsec->owner, symsec),
1708 		       MMIX_REG_SECTION_NAME) != 0)
1709 	{
1710 	  (*_bfd_error_handler)
1711 	    (_("%s: directive LOCAL valid only with a register or absolute value"),
1712 	     bfd_get_filename (input_section->owner));
1713 
1714 	  return bfd_reloc_overflow;
1715 	}
1716 
1717       /* If we don't have a register contents section, then $255 is the
1718 	 first global register.  */
1719       if (regsec == NULL)
1720 	first_global = 255;
1721       else
1722 	{
1723 	  first_global
1724 	    = bfd_get_section_vma (input_section->output_section->owner,
1725 				   regsec) / 8;
1726 	  if (strcmp (bfd_get_section_name (symsec->owner, symsec),
1727 		      MMIX_REG_CONTENTS_SECTION_NAME) == 0)
1728 	    {
1729 	      if ((srel & 7) != 0 || srel < 32*8 || srel > 255*8)
1730 		/* The bfd_reloc_outofrange return value, though
1731 		   intuitively a better value, will not get us an error.  */
1732 		return bfd_reloc_overflow;
1733 	      srel /= 8;
1734 	    }
1735 	}
1736 
1737 	if ((bfd_vma) srel >= first_global)
1738 	  {
1739 	    /* FIXME: Better error message.  */
1740 	    (*_bfd_error_handler)
1741 	      (_("%s: LOCAL directive: Register $%ld is not a local register.  First global register is $%ld."),
1742 	       bfd_get_filename (input_section->owner), (long) srel, (long) first_global);
1743 
1744 	    return bfd_reloc_overflow;
1745 	  }
1746       }
1747       r = bfd_reloc_ok;
1748       break;
1749 
1750     default:
1751       r = _bfd_final_link_relocate (howto, input_section->owner, input_section,
1752 				    contents, r_offset,
1753 				    relocation, r_addend);
1754     }
1755 
1756   return r;
1757 }
1758 
1759 /* Return the section that should be marked against GC for a given
1760    relocation.  */
1761 
1762 static asection *
1763 mmix_elf_gc_mark_hook (asection *sec,
1764 		       struct bfd_link_info *info,
1765 		       Elf_Internal_Rela *rel,
1766 		       struct elf_link_hash_entry *h,
1767 		       Elf_Internal_Sym *sym)
1768 {
1769   if (h != NULL)
1770     switch (ELF64_R_TYPE (rel->r_info))
1771       {
1772       case R_MMIX_GNU_VTINHERIT:
1773       case R_MMIX_GNU_VTENTRY:
1774 	return NULL;
1775       }
1776 
1777   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1778 }
1779 
1780 /* Update relocation info for a GC-excluded section.  We could supposedly
1781    perform the allocation after GC, but there's no suitable hook between
1782    GC (or section merge) and the point when all input sections must be
1783    present.  Better to waste some memory and (perhaps) a little time.  */
1784 
1785 static bfd_boolean
1786 mmix_elf_gc_sweep_hook (bfd *abfd ATTRIBUTE_UNUSED,
1787 			struct bfd_link_info *info ATTRIBUTE_UNUSED,
1788 			asection *sec,
1789 			const Elf_Internal_Rela *relocs ATTRIBUTE_UNUSED)
1790 {
1791   struct bpo_reloc_section_info *bpodata
1792     = mmix_elf_section_data (sec)->bpo.reloc;
1793   asection *allocated_gregs_section;
1794 
1795   /* If no bpodata here, we have nothing to do.  */
1796   if (bpodata == NULL)
1797     return TRUE;
1798 
1799   allocated_gregs_section = bpodata->bpo_greg_section;
1800 
1801   mmix_elf_section_data (allocated_gregs_section)->bpo.greg->n_bpo_relocs
1802     -= bpodata->n_bpo_relocs_this_section;
1803 
1804   return TRUE;
1805 }
1806 
1807 /* Sort register relocs to come before expanding relocs.  */
1808 
1809 static int
1810 mmix_elf_sort_relocs (const void * p1, const void * p2)
1811 {
1812   const Elf_Internal_Rela *r1 = (const Elf_Internal_Rela *) p1;
1813   const Elf_Internal_Rela *r2 = (const Elf_Internal_Rela *) p2;
1814   int r1_is_reg, r2_is_reg;
1815 
1816   /* Sort primarily on r_offset & ~3, so relocs are done to consecutive
1817      insns.  */
1818   if ((r1->r_offset & ~(bfd_vma) 3) > (r2->r_offset & ~(bfd_vma) 3))
1819     return 1;
1820   else if ((r1->r_offset & ~(bfd_vma) 3) < (r2->r_offset & ~(bfd_vma) 3))
1821     return -1;
1822 
1823   r1_is_reg
1824     = (ELF64_R_TYPE (r1->r_info) == R_MMIX_REG_OR_BYTE
1825        || ELF64_R_TYPE (r1->r_info) == R_MMIX_REG);
1826   r2_is_reg
1827     = (ELF64_R_TYPE (r2->r_info) == R_MMIX_REG_OR_BYTE
1828        || ELF64_R_TYPE (r2->r_info) == R_MMIX_REG);
1829   if (r1_is_reg != r2_is_reg)
1830     return r2_is_reg - r1_is_reg;
1831 
1832   /* Neither or both are register relocs.  Then sort on full offset.  */
1833   if (r1->r_offset > r2->r_offset)
1834     return 1;
1835   else if (r1->r_offset < r2->r_offset)
1836     return -1;
1837   return 0;
1838 }
1839 
1840 /* Subset of mmix_elf_check_relocs, common to ELF and mmo linking.  */
1841 
1842 static bfd_boolean
1843 mmix_elf_check_common_relocs  (bfd *abfd,
1844 			       struct bfd_link_info *info,
1845 			       asection *sec,
1846 			       const Elf_Internal_Rela *relocs)
1847 {
1848   bfd *bpo_greg_owner = NULL;
1849   asection *allocated_gregs_section = NULL;
1850   struct bpo_greg_section_info *gregdata = NULL;
1851   struct bpo_reloc_section_info *bpodata = NULL;
1852   const Elf_Internal_Rela *rel;
1853   const Elf_Internal_Rela *rel_end;
1854 
1855   /* We currently have to abuse this COFF-specific member, since there's
1856      no target-machine-dedicated member.  There's no alternative outside
1857      the bfd_link_info struct; we can't specialize a hash-table since
1858      they're different between ELF and mmo.  */
1859   bpo_greg_owner = (bfd *) info->base_file;
1860 
1861   rel_end = relocs + sec->reloc_count;
1862   for (rel = relocs; rel < rel_end; rel++)
1863     {
1864       switch (ELF64_R_TYPE (rel->r_info))
1865         {
1866 	  /* This relocation causes a GREG allocation.  We need to count
1867 	     them, and we need to create a section for them, so we need an
1868 	     object to fake as the owner of that section.  We can't use
1869 	     the ELF dynobj for this, since the ELF bits assume lots of
1870 	     DSO-related stuff if that member is non-NULL.  */
1871 	case R_MMIX_BASE_PLUS_OFFSET:
1872 	  /* We don't do anything with this reloc for a relocatable link.  */
1873 	  if (info->relocatable)
1874 	    break;
1875 
1876 	  if (bpo_greg_owner == NULL)
1877 	    {
1878 	      bpo_greg_owner = abfd;
1879 	      info->base_file = bpo_greg_owner;
1880 	    }
1881 
1882 	  if (allocated_gregs_section == NULL)
1883 	    allocated_gregs_section
1884 	      = bfd_get_section_by_name (bpo_greg_owner,
1885 					 MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
1886 
1887 	  if (allocated_gregs_section == NULL)
1888 	    {
1889 	      allocated_gregs_section
1890 		= bfd_make_section_with_flags (bpo_greg_owner,
1891 					       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME,
1892 					       (SEC_HAS_CONTENTS
1893 						| SEC_IN_MEMORY
1894 						| SEC_LINKER_CREATED));
1895 	      /* Setting both SEC_ALLOC and SEC_LOAD means the section is
1896 		 treated like any other section, and we'd get errors for
1897 		 address overlap with the text section.  Let's set none of
1898 		 those flags, as that is what currently happens for usual
1899 		 GREG allocations, and that works.  */
1900 	      if (allocated_gregs_section == NULL
1901 		  || !bfd_set_section_alignment (bpo_greg_owner,
1902 						 allocated_gregs_section,
1903 						 3))
1904 		return FALSE;
1905 
1906 	      gregdata = (struct bpo_greg_section_info *)
1907 		bfd_zalloc (bpo_greg_owner, sizeof (struct bpo_greg_section_info));
1908 	      if (gregdata == NULL)
1909 		return FALSE;
1910 	      mmix_elf_section_data (allocated_gregs_section)->bpo.greg
1911 		= gregdata;
1912 	    }
1913 	  else if (gregdata == NULL)
1914 	    gregdata
1915 	      = mmix_elf_section_data (allocated_gregs_section)->bpo.greg;
1916 
1917 	  /* Get ourselves some auxiliary info for the BPO-relocs.  */
1918 	  if (bpodata == NULL)
1919 	    {
1920 	      /* No use doing a separate iteration pass to find the upper
1921 		 limit - just use the number of relocs.  */
1922 	      bpodata = (struct bpo_reloc_section_info *)
1923 		bfd_alloc (bpo_greg_owner,
1924 			   sizeof (struct bpo_reloc_section_info)
1925 			   * (sec->reloc_count + 1));
1926 	      if (bpodata == NULL)
1927 		return FALSE;
1928 	      mmix_elf_section_data (sec)->bpo.reloc = bpodata;
1929 	      bpodata->first_base_plus_offset_reloc
1930 		= bpodata->bpo_index
1931 		= gregdata->n_max_bpo_relocs;
1932 	      bpodata->bpo_greg_section
1933 		= allocated_gregs_section;
1934 	      bpodata->n_bpo_relocs_this_section = 0;
1935 	    }
1936 
1937 	  bpodata->n_bpo_relocs_this_section++;
1938 	  gregdata->n_max_bpo_relocs++;
1939 
1940 	  /* We don't get another chance to set this before GC; we've not
1941 	     set up any hook that runs before GC.  */
1942 	  gregdata->n_bpo_relocs
1943 	    = gregdata->n_max_bpo_relocs;
1944 	  break;
1945 
1946 	case R_MMIX_PUSHJ_STUBBABLE:
1947 	  mmix_elf_section_data (sec)->pjs.n_pushj_relocs++;
1948 	  break;
1949 	}
1950     }
1951 
1952   /* Allocate per-reloc stub storage and initialize it to the max stub
1953      size.  */
1954   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs != 0)
1955     {
1956       size_t i;
1957 
1958       mmix_elf_section_data (sec)->pjs.stub_size
1959 	= bfd_alloc (abfd, mmix_elf_section_data (sec)->pjs.n_pushj_relocs
1960 		     * sizeof (mmix_elf_section_data (sec)
1961 			       ->pjs.stub_size[0]));
1962       if (mmix_elf_section_data (sec)->pjs.stub_size == NULL)
1963 	return FALSE;
1964 
1965       for (i = 0; i < mmix_elf_section_data (sec)->pjs.n_pushj_relocs; i++)
1966 	mmix_elf_section_data (sec)->pjs.stub_size[i] = MAX_PUSHJ_STUB_SIZE;
1967     }
1968 
1969   return TRUE;
1970 }
1971 
1972 /* Look through the relocs for a section during the first phase.  */
1973 
1974 static bfd_boolean
1975 mmix_elf_check_relocs (bfd *abfd,
1976 		       struct bfd_link_info *info,
1977 		       asection *sec,
1978 		       const Elf_Internal_Rela *relocs)
1979 {
1980   Elf_Internal_Shdr *symtab_hdr;
1981   struct elf_link_hash_entry **sym_hashes;
1982   const Elf_Internal_Rela *rel;
1983   const Elf_Internal_Rela *rel_end;
1984 
1985   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1986   sym_hashes = elf_sym_hashes (abfd);
1987 
1988   /* First we sort the relocs so that any register relocs come before
1989      expansion-relocs to the same insn.  FIXME: Not done for mmo.  */
1990   qsort ((void *) relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
1991 	 mmix_elf_sort_relocs);
1992 
1993   /* Do the common part.  */
1994   if (!mmix_elf_check_common_relocs (abfd, info, sec, relocs))
1995     return FALSE;
1996 
1997   if (info->relocatable)
1998     return TRUE;
1999 
2000   rel_end = relocs + sec->reloc_count;
2001   for (rel = relocs; rel < rel_end; rel++)
2002     {
2003       struct elf_link_hash_entry *h;
2004       unsigned long r_symndx;
2005 
2006       r_symndx = ELF64_R_SYM (rel->r_info);
2007       if (r_symndx < symtab_hdr->sh_info)
2008         h = NULL;
2009       else
2010 	{
2011 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2012 	  while (h->root.type == bfd_link_hash_indirect
2013 		 || h->root.type == bfd_link_hash_warning)
2014 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2015 
2016 	  /* PR15323, ref flags aren't set for references in the same
2017 	     object.  */
2018 	  h->root.non_ir_ref = 1;
2019 	}
2020 
2021       switch (ELF64_R_TYPE (rel->r_info))
2022 	{
2023         /* This relocation describes the C++ object vtable hierarchy.
2024            Reconstruct it for later use during GC.  */
2025         case R_MMIX_GNU_VTINHERIT:
2026           if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2027             return FALSE;
2028           break;
2029 
2030         /* This relocation describes which C++ vtable entries are actually
2031            used.  Record for later use during GC.  */
2032         case R_MMIX_GNU_VTENTRY:
2033           BFD_ASSERT (h != NULL);
2034           if (h != NULL
2035               && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2036             return FALSE;
2037           break;
2038 	}
2039     }
2040 
2041   return TRUE;
2042 }
2043 
2044 /* Wrapper for mmix_elf_check_common_relocs, called when linking to mmo.
2045    Copied from elf_link_add_object_symbols.  */
2046 
2047 bfd_boolean
2048 _bfd_mmix_check_all_relocs (bfd *abfd, struct bfd_link_info *info)
2049 {
2050   asection *o;
2051 
2052   for (o = abfd->sections; o != NULL; o = o->next)
2053     {
2054       Elf_Internal_Rela *internal_relocs;
2055       bfd_boolean ok;
2056 
2057       if ((o->flags & SEC_RELOC) == 0
2058 	  || o->reloc_count == 0
2059 	  || ((info->strip == strip_all || info->strip == strip_debugger)
2060 	      && (o->flags & SEC_DEBUGGING) != 0)
2061 	  || bfd_is_abs_section (o->output_section))
2062 	continue;
2063 
2064       internal_relocs
2065 	= _bfd_elf_link_read_relocs (abfd, o, NULL,
2066 				     (Elf_Internal_Rela *) NULL,
2067 				     info->keep_memory);
2068       if (internal_relocs == NULL)
2069 	return FALSE;
2070 
2071       ok = mmix_elf_check_common_relocs (abfd, info, o, internal_relocs);
2072 
2073       if (! info->keep_memory)
2074 	free (internal_relocs);
2075 
2076       if (! ok)
2077 	return FALSE;
2078     }
2079 
2080   return TRUE;
2081 }
2082 
2083 /* Change symbols relative to the reg contents section to instead be to
2084    the register section, and scale them down to correspond to the register
2085    number.  */
2086 
2087 static int
2088 mmix_elf_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
2089 				  const char *name ATTRIBUTE_UNUSED,
2090 				  Elf_Internal_Sym *sym,
2091 				  asection *input_sec,
2092 				  struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
2093 {
2094   if (input_sec != NULL
2095       && input_sec->name != NULL
2096       && ELF_ST_TYPE (sym->st_info) != STT_SECTION
2097       && strcmp (input_sec->name, MMIX_REG_CONTENTS_SECTION_NAME) == 0)
2098     {
2099       sym->st_value /= 8;
2100       sym->st_shndx = SHN_REGISTER;
2101     }
2102 
2103   return 1;
2104 }
2105 
2106 /* We fake a register section that holds values that are register numbers.
2107    Having a SHN_REGISTER and register section translates better to other
2108    formats (e.g. mmo) than for example a STT_REGISTER attribute.
2109    This section faking is based on a construct in elf32-mips.c.  */
2110 static asection mmix_elf_reg_section;
2111 static asymbol mmix_elf_reg_section_symbol;
2112 static asymbol *mmix_elf_reg_section_symbol_ptr;
2113 
2114 /* Handle the special section numbers that a symbol may use.  */
2115 
2116 void
2117 mmix_elf_symbol_processing (abfd, asym)
2118      bfd *abfd ATTRIBUTE_UNUSED;
2119      asymbol *asym;
2120 {
2121   elf_symbol_type *elfsym;
2122 
2123   elfsym = (elf_symbol_type *) asym;
2124   switch (elfsym->internal_elf_sym.st_shndx)
2125     {
2126     case SHN_REGISTER:
2127       if (mmix_elf_reg_section.name == NULL)
2128 	{
2129 	  /* Initialize the register section.  */
2130 	  mmix_elf_reg_section.name = MMIX_REG_SECTION_NAME;
2131 	  mmix_elf_reg_section.flags = SEC_NO_FLAGS;
2132 	  mmix_elf_reg_section.output_section = &mmix_elf_reg_section;
2133 	  mmix_elf_reg_section.symbol = &mmix_elf_reg_section_symbol;
2134 	  mmix_elf_reg_section.symbol_ptr_ptr = &mmix_elf_reg_section_symbol_ptr;
2135 	  mmix_elf_reg_section_symbol.name = MMIX_REG_SECTION_NAME;
2136 	  mmix_elf_reg_section_symbol.flags = BSF_SECTION_SYM;
2137 	  mmix_elf_reg_section_symbol.section = &mmix_elf_reg_section;
2138 	  mmix_elf_reg_section_symbol_ptr = &mmix_elf_reg_section_symbol;
2139 	}
2140       asym->section = &mmix_elf_reg_section;
2141       break;
2142 
2143     default:
2144       break;
2145     }
2146 }
2147 
2148 /* Given a BFD section, try to locate the corresponding ELF section
2149    index.  */
2150 
2151 static bfd_boolean
2152 mmix_elf_section_from_bfd_section (bfd *       abfd ATTRIBUTE_UNUSED,
2153 				   asection *  sec,
2154 				   int *       retval)
2155 {
2156   if (strcmp (bfd_get_section_name (abfd, sec), MMIX_REG_SECTION_NAME) == 0)
2157     *retval = SHN_REGISTER;
2158   else
2159     return FALSE;
2160 
2161   return TRUE;
2162 }
2163 
2164 /* Hook called by the linker routine which adds symbols from an object
2165    file.  We must handle the special SHN_REGISTER section number here.
2166 
2167    We also check that we only have *one* each of the section-start
2168    symbols, since otherwise having two with the same value would cause
2169    them to be "merged", but with the contents serialized.  */
2170 
2171 static bfd_boolean
2172 mmix_elf_add_symbol_hook (bfd *abfd,
2173 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2174 			  Elf_Internal_Sym *sym,
2175 			  const char **namep ATTRIBUTE_UNUSED,
2176 			  flagword *flagsp ATTRIBUTE_UNUSED,
2177 			  asection **secp,
2178 			  bfd_vma *valp ATTRIBUTE_UNUSED)
2179 {
2180   if (sym->st_shndx == SHN_REGISTER)
2181     {
2182       *secp = bfd_make_section_old_way (abfd, MMIX_REG_SECTION_NAME);
2183       (*secp)->flags |= SEC_LINKER_CREATED;
2184     }
2185   else if ((*namep)[0] == '_' && (*namep)[1] == '_' && (*namep)[2] == '.'
2186 	   && CONST_STRNEQ (*namep, MMIX_LOC_SECTION_START_SYMBOL_PREFIX))
2187     {
2188       /* See if we have another one.  */
2189       struct bfd_link_hash_entry *h = bfd_link_hash_lookup (info->hash,
2190 							    *namep,
2191 							    FALSE,
2192 							    FALSE,
2193 							    FALSE);
2194 
2195       if (h != NULL && h->type != bfd_link_hash_undefined)
2196 	{
2197 	  /* How do we get the asymbol (or really: the filename) from h?
2198 	     h->u.def.section->owner is NULL.  */
2199 	  ((*_bfd_error_handler)
2200 	   (_("%s: Error: multiple definition of `%s'; start of %s is set in a earlier linked file\n"),
2201 	    bfd_get_filename (abfd), *namep,
2202 	    *namep + strlen (MMIX_LOC_SECTION_START_SYMBOL_PREFIX)));
2203 	   bfd_set_error (bfd_error_bad_value);
2204 	   return FALSE;
2205 	}
2206     }
2207 
2208   return TRUE;
2209 }
2210 
2211 /* We consider symbols matching "L.*:[0-9]+" to be local symbols.  */
2212 
2213 static bfd_boolean
2214 mmix_elf_is_local_label_name (bfd *abfd, const char *name)
2215 {
2216   const char *colpos;
2217   int digits;
2218 
2219   /* Also include the default local-label definition.  */
2220   if (_bfd_elf_is_local_label_name (abfd, name))
2221     return TRUE;
2222 
2223   if (*name != 'L')
2224     return FALSE;
2225 
2226   /* If there's no ":", or more than one, it's not a local symbol.  */
2227   colpos = strchr (name, ':');
2228   if (colpos == NULL || strchr (colpos + 1, ':') != NULL)
2229     return FALSE;
2230 
2231   /* Check that there are remaining characters and that they are digits.  */
2232   if (colpos[1] == 0)
2233     return FALSE;
2234 
2235   digits = strspn (colpos + 1, "0123456789");
2236   return digits != 0 && colpos[1 + digits] == 0;
2237 }
2238 
2239 /* We get rid of the register section here.  */
2240 
2241 bfd_boolean
2242 mmix_elf_final_link (bfd *abfd, struct bfd_link_info *info)
2243 {
2244   /* We never output a register section, though we create one for
2245      temporary measures.  Check that nobody entered contents into it.  */
2246   asection *reg_section;
2247 
2248   reg_section = bfd_get_section_by_name (abfd, MMIX_REG_SECTION_NAME);
2249 
2250   if (reg_section != NULL)
2251     {
2252       /* FIXME: Pass error state gracefully.  */
2253       if (bfd_get_section_flags (abfd, reg_section) & SEC_HAS_CONTENTS)
2254 	_bfd_abort (__FILE__, __LINE__, _("Register section has contents\n"));
2255 
2256       /* Really remove the section, if it hasn't already been done.  */
2257       if (!bfd_section_removed_from_list (abfd, reg_section))
2258 	{
2259 	  bfd_section_list_remove (abfd, reg_section);
2260 	  --abfd->section_count;
2261 	}
2262     }
2263 
2264   if (! bfd_elf_final_link (abfd, info))
2265     return FALSE;
2266 
2267   /* Since this section is marked SEC_LINKER_CREATED, it isn't output by
2268      the regular linker machinery.  We do it here, like other targets with
2269      special sections.  */
2270   if (info->base_file != NULL)
2271     {
2272       asection *greg_section
2273 	= bfd_get_section_by_name ((bfd *) info->base_file,
2274 				   MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2275       if (!bfd_set_section_contents (abfd,
2276 				     greg_section->output_section,
2277 				     greg_section->contents,
2278 				     (file_ptr) greg_section->output_offset,
2279 				     greg_section->size))
2280 	return FALSE;
2281     }
2282   return TRUE;
2283 }
2284 
2285 /* We need to include the maximum size of PUSHJ-stubs in the initial
2286    section size.  This is expected to shrink during linker relaxation.  */
2287 
2288 static void
2289 mmix_set_relaxable_size (bfd *abfd ATTRIBUTE_UNUSED,
2290 			 asection *sec,
2291 			 void *ptr)
2292 {
2293   struct bfd_link_info *info = ptr;
2294 
2295   /* Make sure we only do this for section where we know we want this,
2296      otherwise we might end up resetting the size of COMMONs.  */
2297   if (mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0)
2298     return;
2299 
2300   sec->rawsize = sec->size;
2301   sec->size += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2302 		* MAX_PUSHJ_STUB_SIZE);
2303 
2304   /* For use in relocatable link, we start with a max stubs size.  See
2305      mmix_elf_relax_section.  */
2306   if (info->relocatable && sec->output_section)
2307     mmix_elf_section_data (sec->output_section)->pjs.stubs_size_sum
2308       += (mmix_elf_section_data (sec)->pjs.n_pushj_relocs
2309 	  * MAX_PUSHJ_STUB_SIZE);
2310 }
2311 
2312 /* Initialize stuff for the linker-generated GREGs to match
2313    R_MMIX_BASE_PLUS_OFFSET relocs seen by the linker.  */
2314 
2315 bfd_boolean
2316 _bfd_mmix_before_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2317 				    struct bfd_link_info *info)
2318 {
2319   asection *bpo_gregs_section;
2320   bfd *bpo_greg_owner;
2321   struct bpo_greg_section_info *gregdata;
2322   size_t n_gregs;
2323   bfd_vma gregs_size;
2324   size_t i;
2325   size_t *bpo_reloc_indexes;
2326   bfd *ibfd;
2327 
2328   /* Set the initial size of sections.  */
2329   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
2330     bfd_map_over_sections (ibfd, mmix_set_relaxable_size, info);
2331 
2332   /* The bpo_greg_owner bfd is supposed to have been set by
2333      mmix_elf_check_relocs when the first R_MMIX_BASE_PLUS_OFFSET is seen.
2334      If there is no such object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2335   bpo_greg_owner = (bfd *) info->base_file;
2336   if (bpo_greg_owner == NULL)
2337     return TRUE;
2338 
2339   bpo_gregs_section
2340     = bfd_get_section_by_name (bpo_greg_owner,
2341 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2342 
2343   if (bpo_gregs_section == NULL)
2344     return TRUE;
2345 
2346   /* We use the target-data handle in the ELF section data.  */
2347   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2348   if (gregdata == NULL)
2349     return FALSE;
2350 
2351   n_gregs = gregdata->n_bpo_relocs;
2352   gregdata->n_allocated_bpo_gregs = n_gregs;
2353 
2354   /* When this reaches zero during relaxation, all entries have been
2355      filled in and the size of the linker gregs can be calculated.  */
2356   gregdata->n_remaining_bpo_relocs_this_relaxation_round = n_gregs;
2357 
2358   /* Set the zeroth-order estimate for the GREGs size.  */
2359   gregs_size = n_gregs * 8;
2360 
2361   if (!bfd_set_section_size (bpo_greg_owner, bpo_gregs_section, gregs_size))
2362     return FALSE;
2363 
2364   /* Allocate and set up the GREG arrays.  They're filled in at relaxation
2365      time.  Note that we must use the max number ever noted for the array,
2366      since the index numbers were created before GC.  */
2367   gregdata->reloc_request
2368     = bfd_zalloc (bpo_greg_owner,
2369 		  sizeof (struct bpo_reloc_request)
2370 		  * gregdata->n_max_bpo_relocs);
2371 
2372   gregdata->bpo_reloc_indexes
2373     = bpo_reloc_indexes
2374     = bfd_alloc (bpo_greg_owner,
2375 		 gregdata->n_max_bpo_relocs
2376 		 * sizeof (size_t));
2377   if (bpo_reloc_indexes == NULL)
2378     return FALSE;
2379 
2380   /* The default order is an identity mapping.  */
2381   for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2382     {
2383       bpo_reloc_indexes[i] = i;
2384       gregdata->reloc_request[i].bpo_reloc_no = i;
2385     }
2386 
2387   return TRUE;
2388 }
2389 
2390 /* Fill in contents in the linker allocated gregs.  Everything is
2391    calculated at this point; we just move the contents into place here.  */
2392 
2393 bfd_boolean
2394 _bfd_mmix_after_linker_allocation (bfd *abfd ATTRIBUTE_UNUSED,
2395 				   struct bfd_link_info *link_info)
2396 {
2397   asection *bpo_gregs_section;
2398   bfd *bpo_greg_owner;
2399   struct bpo_greg_section_info *gregdata;
2400   size_t n_gregs;
2401   size_t i, j;
2402   size_t lastreg;
2403   bfd_byte *contents;
2404 
2405   /* The bpo_greg_owner bfd is supposed to have been set by mmix_elf_check_relocs
2406      when the first R_MMIX_BASE_PLUS_OFFSET is seen.  If there is no such
2407      object, there was no R_MMIX_BASE_PLUS_OFFSET.  */
2408   bpo_greg_owner = (bfd *) link_info->base_file;
2409   if (bpo_greg_owner == NULL)
2410     return TRUE;
2411 
2412   bpo_gregs_section
2413     = bfd_get_section_by_name (bpo_greg_owner,
2414 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2415 
2416   /* This can't happen without DSO handling.  When DSOs are handled
2417      without any R_MMIX_BASE_PLUS_OFFSET seen, there will be no such
2418      section.  */
2419   if (bpo_gregs_section == NULL)
2420     return TRUE;
2421 
2422   /* We use the target-data handle in the ELF section data.  */
2423 
2424   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2425   if (gregdata == NULL)
2426     return FALSE;
2427 
2428   n_gregs = gregdata->n_allocated_bpo_gregs;
2429 
2430   bpo_gregs_section->contents
2431     = contents = bfd_alloc (bpo_greg_owner, bpo_gregs_section->size);
2432   if (contents == NULL)
2433     return FALSE;
2434 
2435   /* Sanity check: If these numbers mismatch, some relocation has not been
2436      accounted for and the rest of gregdata is probably inconsistent.
2437      It's a bug, but it's more helpful to identify it than segfaulting
2438      below.  */
2439   if (gregdata->n_remaining_bpo_relocs_this_relaxation_round
2440       != gregdata->n_bpo_relocs)
2441     {
2442       (*_bfd_error_handler)
2443 	(_("Internal inconsistency: remaining %u != max %u.\n\
2444   Please report this bug."),
2445 	 gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2446 	 gregdata->n_bpo_relocs);
2447       return FALSE;
2448     }
2449 
2450   for (lastreg = 255, i = 0, j = 0; j < n_gregs; i++)
2451     if (gregdata->reloc_request[i].regindex != lastreg)
2452       {
2453 	bfd_put_64 (bpo_greg_owner, gregdata->reloc_request[i].value,
2454 		    contents + j * 8);
2455 	lastreg = gregdata->reloc_request[i].regindex;
2456 	j++;
2457       }
2458 
2459   return TRUE;
2460 }
2461 
2462 /* Sort valid relocs to come before non-valid relocs, then on increasing
2463    value.  */
2464 
2465 static int
2466 bpo_reloc_request_sort_fn (const void * p1, const void * p2)
2467 {
2468   const struct bpo_reloc_request *r1 = (const struct bpo_reloc_request *) p1;
2469   const struct bpo_reloc_request *r2 = (const struct bpo_reloc_request *) p2;
2470 
2471   /* Primary function is validity; non-valid relocs sorted after valid
2472      ones.  */
2473   if (r1->valid != r2->valid)
2474     return r2->valid - r1->valid;
2475 
2476   /* Then sort on value.  Don't simplify and return just the difference of
2477      the values: the upper bits of the 64-bit value would be truncated on
2478      a host with 32-bit ints.  */
2479   if (r1->value != r2->value)
2480     return r1->value > r2->value ? 1 : -1;
2481 
2482   /* As a last re-sort, use the relocation number, so we get a stable
2483      sort.  The *addresses* aren't stable since items are swapped during
2484      sorting.  It depends on the qsort implementation if this actually
2485      happens.  */
2486   return r1->bpo_reloc_no > r2->bpo_reloc_no
2487     ? 1 : (r1->bpo_reloc_no < r2->bpo_reloc_no ? -1 : 0);
2488 }
2489 
2490 /* For debug use only.  Dumps the global register allocations resulting
2491    from base-plus-offset relocs.  */
2492 
2493 void
2494 mmix_dump_bpo_gregs (link_info, pf)
2495      struct bfd_link_info *link_info;
2496      bfd_error_handler_type pf;
2497 {
2498   bfd *bpo_greg_owner;
2499   asection *bpo_gregs_section;
2500   struct bpo_greg_section_info *gregdata;
2501   unsigned int i;
2502 
2503   if (link_info == NULL || link_info->base_file == NULL)
2504     return;
2505 
2506   bpo_greg_owner = (bfd *) link_info->base_file;
2507 
2508   bpo_gregs_section
2509     = bfd_get_section_by_name (bpo_greg_owner,
2510 			       MMIX_LD_ALLOCATED_REG_CONTENTS_SECTION_NAME);
2511 
2512   if (bpo_gregs_section == NULL)
2513     return;
2514 
2515   gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2516   if (gregdata == NULL)
2517     return;
2518 
2519   if (pf == NULL)
2520     pf = _bfd_error_handler;
2521 
2522   /* These format strings are not translated.  They are for debug purposes
2523      only and never displayed to an end user.  Should they escape, we
2524      surely want them in original.  */
2525   (*pf) (" n_bpo_relocs: %u\n n_max_bpo_relocs: %u\n n_remain...round: %u\n\
2526  n_allocated_bpo_gregs: %u\n", gregdata->n_bpo_relocs,
2527      gregdata->n_max_bpo_relocs,
2528      gregdata->n_remaining_bpo_relocs_this_relaxation_round,
2529      gregdata->n_allocated_bpo_gregs);
2530 
2531   if (gregdata->reloc_request)
2532     for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2533       (*pf) ("%4u (%4u)/%4u#%u: 0x%08lx%08lx  r: %3u o: %3u\n",
2534 	     i,
2535 	     (gregdata->bpo_reloc_indexes != NULL
2536 	      ? gregdata->bpo_reloc_indexes[i] : (size_t) -1),
2537 	     gregdata->reloc_request[i].bpo_reloc_no,
2538 	     gregdata->reloc_request[i].valid,
2539 
2540 	     (unsigned long) (gregdata->reloc_request[i].value >> 32),
2541 	     (unsigned long) gregdata->reloc_request[i].value,
2542 	     gregdata->reloc_request[i].regindex,
2543 	     gregdata->reloc_request[i].offset);
2544 }
2545 
2546 /* This links all R_MMIX_BASE_PLUS_OFFSET relocs into a special array, and
2547    when the last such reloc is done, an index-array is sorted according to
2548    the values and iterated over to produce register numbers (indexed by 0
2549    from the first allocated register number) and offsets for use in real
2550    relocation.  (N.B.: Relocatable runs are handled, not just punted.)
2551 
2552    PUSHJ stub accounting is also done here.
2553 
2554    Symbol- and reloc-reading infrastructure copied from elf-m10200.c.  */
2555 
2556 static bfd_boolean
2557 mmix_elf_relax_section (bfd *abfd,
2558 			asection *sec,
2559 			struct bfd_link_info *link_info,
2560 			bfd_boolean *again)
2561 {
2562   Elf_Internal_Shdr *symtab_hdr;
2563   Elf_Internal_Rela *internal_relocs;
2564   Elf_Internal_Rela *irel, *irelend;
2565   asection *bpo_gregs_section = NULL;
2566   struct bpo_greg_section_info *gregdata;
2567   struct bpo_reloc_section_info *bpodata
2568     = mmix_elf_section_data (sec)->bpo.reloc;
2569   /* The initialization is to quiet compiler warnings.  The value is to
2570      spot a missing actual initialization.  */
2571   size_t bpono = (size_t) -1;
2572   size_t pjsno = 0;
2573   Elf_Internal_Sym *isymbuf = NULL;
2574   bfd_size_type size = sec->rawsize ? sec->rawsize : sec->size;
2575 
2576   mmix_elf_section_data (sec)->pjs.stubs_size_sum = 0;
2577 
2578   /* Assume nothing changes.  */
2579   *again = FALSE;
2580 
2581   /* We don't have to do anything if this section does not have relocs, or
2582      if this is not a code section.  */
2583   if ((sec->flags & SEC_RELOC) == 0
2584       || sec->reloc_count == 0
2585       || (sec->flags & SEC_CODE) == 0
2586       || (sec->flags & SEC_LINKER_CREATED) != 0
2587       /* If no R_MMIX_BASE_PLUS_OFFSET relocs and no PUSHJ-stub relocs,
2588          then nothing to do.  */
2589       || (bpodata == NULL
2590 	  && mmix_elf_section_data (sec)->pjs.n_pushj_relocs == 0))
2591     return TRUE;
2592 
2593   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2594 
2595   if (bpodata != NULL)
2596     {
2597       bpo_gregs_section = bpodata->bpo_greg_section;
2598       gregdata = mmix_elf_section_data (bpo_gregs_section)->bpo.greg;
2599       bpono = bpodata->first_base_plus_offset_reloc;
2600     }
2601   else
2602     gregdata = NULL;
2603 
2604   /* Get a copy of the native relocations.  */
2605   internal_relocs
2606     = _bfd_elf_link_read_relocs (abfd, sec, NULL,
2607 				 (Elf_Internal_Rela *) NULL,
2608 				 link_info->keep_memory);
2609   if (internal_relocs == NULL)
2610     goto error_return;
2611 
2612   /* Walk through them looking for relaxing opportunities.  */
2613   irelend = internal_relocs + sec->reloc_count;
2614   for (irel = internal_relocs; irel < irelend; irel++)
2615     {
2616       bfd_vma symval;
2617       struct elf_link_hash_entry *h = NULL;
2618 
2619       /* We only process two relocs.  */
2620       if (ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_BASE_PLUS_OFFSET
2621 	  && ELF64_R_TYPE (irel->r_info) != (int) R_MMIX_PUSHJ_STUBBABLE)
2622 	continue;
2623 
2624       /* We process relocs in a distinctly different way when this is a
2625 	 relocatable link (for one, we don't look at symbols), so we avoid
2626 	 mixing its code with that for the "normal" relaxation.  */
2627       if (link_info->relocatable)
2628 	{
2629 	  /* The only transformation in a relocatable link is to generate
2630 	     a full stub at the location of the stub calculated for the
2631 	     input section, if the relocated stub location, the end of the
2632 	     output section plus earlier stubs, cannot be reached.  Thus
2633 	     relocatable linking can only lead to worse code, but it still
2634 	     works.  */
2635 	  if (ELF64_R_TYPE (irel->r_info) == R_MMIX_PUSHJ_STUBBABLE)
2636 	    {
2637 	      /* If we can reach the end of the output-section and beyond
2638 		 any current stubs, then we don't need a stub for this
2639 		 reloc.  The relaxed order of output stub allocation may
2640 		 not exactly match the straightforward order, so we always
2641 		 assume presence of output stubs, which will allow
2642 		 relaxation only on relocations indifferent to the
2643 		 presence of output stub allocations for other relocations
2644 		 and thus the order of output stub allocation.  */
2645 	      if (bfd_check_overflow (complain_overflow_signed,
2646 				      19,
2647 				      0,
2648 				      bfd_arch_bits_per_address (abfd),
2649 				      /* Output-stub location.  */
2650 				      sec->output_section->rawsize
2651 				      + (mmix_elf_section_data (sec
2652 							       ->output_section)
2653 					 ->pjs.stubs_size_sum)
2654 				      /* Location of this PUSHJ reloc.  */
2655 				      - (sec->output_offset + irel->r_offset)
2656 				      /* Don't count *this* stub twice.  */
2657 				      - (mmix_elf_section_data (sec)
2658 					 ->pjs.stub_size[pjsno]
2659 					 + MAX_PUSHJ_STUB_SIZE))
2660 		  == bfd_reloc_ok)
2661 		mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2662 
2663 	      mmix_elf_section_data (sec)->pjs.stubs_size_sum
2664 		+= mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2665 
2666 	      pjsno++;
2667 	    }
2668 
2669 	  continue;
2670 	}
2671 
2672       /* Get the value of the symbol referred to by the reloc.  */
2673       if (ELF64_R_SYM (irel->r_info) < symtab_hdr->sh_info)
2674 	{
2675 	  /* A local symbol.  */
2676 	  Elf_Internal_Sym *isym;
2677 	  asection *sym_sec;
2678 
2679 	  /* Read this BFD's local symbols if we haven't already.  */
2680 	  if (isymbuf == NULL)
2681 	    {
2682 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
2683 	      if (isymbuf == NULL)
2684 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
2685 						symtab_hdr->sh_info, 0,
2686 						NULL, NULL, NULL);
2687 	      if (isymbuf == 0)
2688 		goto error_return;
2689 	    }
2690 
2691 	  isym = isymbuf + ELF64_R_SYM (irel->r_info);
2692 	  if (isym->st_shndx == SHN_UNDEF)
2693 	    sym_sec = bfd_und_section_ptr;
2694 	  else if (isym->st_shndx == SHN_ABS)
2695 	    sym_sec = bfd_abs_section_ptr;
2696 	  else if (isym->st_shndx == SHN_COMMON)
2697 	    sym_sec = bfd_com_section_ptr;
2698 	  else
2699 	    sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
2700 	  symval = (isym->st_value
2701 		    + sym_sec->output_section->vma
2702 		    + sym_sec->output_offset);
2703 	}
2704       else
2705 	{
2706 	  unsigned long indx;
2707 
2708 	  /* An external symbol.  */
2709 	  indx = ELF64_R_SYM (irel->r_info) - symtab_hdr->sh_info;
2710 	  h = elf_sym_hashes (abfd)[indx];
2711 	  BFD_ASSERT (h != NULL);
2712 	  if (h->root.type != bfd_link_hash_defined
2713 	      && h->root.type != bfd_link_hash_defweak)
2714 	    {
2715 	      /* This appears to be a reference to an undefined symbol.  Just
2716 		 ignore it--it will be caught by the regular reloc processing.
2717 		 We need to keep BPO reloc accounting consistent, though
2718 		 else we'll abort instead of emitting an error message.  */
2719 	      if (ELF64_R_TYPE (irel->r_info) == R_MMIX_BASE_PLUS_OFFSET
2720 		  && gregdata != NULL)
2721 		{
2722 		  gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2723 		  bpono++;
2724 		}
2725 	      continue;
2726 	    }
2727 
2728 	  symval = (h->root.u.def.value
2729 		    + h->root.u.def.section->output_section->vma
2730 		    + h->root.u.def.section->output_offset);
2731 	}
2732 
2733       if (ELF64_R_TYPE (irel->r_info) == (int) R_MMIX_PUSHJ_STUBBABLE)
2734 	{
2735 	  bfd_vma value = symval + irel->r_addend;
2736 	  bfd_vma dot
2737 	    = (sec->output_section->vma
2738 	       + sec->output_offset
2739 	       + irel->r_offset);
2740 	  bfd_vma stubaddr
2741 	    = (sec->output_section->vma
2742 	       + sec->output_offset
2743 	       + size
2744 	       + mmix_elf_section_data (sec)->pjs.stubs_size_sum);
2745 
2746 	  if ((value & 3) == 0
2747 	      && bfd_check_overflow (complain_overflow_signed,
2748 				     19,
2749 				     0,
2750 				     bfd_arch_bits_per_address (abfd),
2751 				     value - dot
2752 				     - (value > dot
2753 					? mmix_elf_section_data (sec)
2754 					->pjs.stub_size[pjsno]
2755 					: 0))
2756 	      == bfd_reloc_ok)
2757 	    /* If the reloc fits, no stub is needed.  */
2758 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 0;
2759 	  else
2760 	    /* Maybe we can get away with just a JMP insn?  */
2761 	    if ((value & 3) == 0
2762 		&& bfd_check_overflow (complain_overflow_signed,
2763 				       27,
2764 				       0,
2765 				       bfd_arch_bits_per_address (abfd),
2766 				       value - stubaddr
2767 				       - (value > dot
2768 					  ? mmix_elf_section_data (sec)
2769 					  ->pjs.stub_size[pjsno] - 4
2770 					  : 0))
2771 		== bfd_reloc_ok)
2772 	      /* Yep, account for a stub consisting of a single JMP insn.  */
2773 	      mmix_elf_section_data (sec)->pjs.stub_size[pjsno] = 4;
2774 	  else
2775 	    /* Nope, go for the full insn stub.  It doesn't seem useful to
2776 	       emit the intermediate sizes; those will only be useful for
2777 	       a >64M program assuming contiguous code.  */
2778 	    mmix_elf_section_data (sec)->pjs.stub_size[pjsno]
2779 	      = MAX_PUSHJ_STUB_SIZE;
2780 
2781 	  mmix_elf_section_data (sec)->pjs.stubs_size_sum
2782 	    += mmix_elf_section_data (sec)->pjs.stub_size[pjsno];
2783 	  pjsno++;
2784 	  continue;
2785 	}
2786 
2787       /* We're looking at a R_MMIX_BASE_PLUS_OFFSET reloc.  */
2788 
2789       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono]].value
2790 	= symval + irel->r_addend;
2791       gregdata->reloc_request[gregdata->bpo_reloc_indexes[bpono++]].valid = TRUE;
2792       gregdata->n_remaining_bpo_relocs_this_relaxation_round--;
2793     }
2794 
2795   /* Check if that was the last BPO-reloc.  If so, sort the values and
2796      calculate how many registers we need to cover them.  Set the size of
2797      the linker gregs, and if the number of registers changed, indicate
2798      that we need to relax some more because we have more work to do.  */
2799   if (gregdata != NULL
2800       && gregdata->n_remaining_bpo_relocs_this_relaxation_round == 0)
2801     {
2802       size_t i;
2803       bfd_vma prev_base;
2804       size_t regindex;
2805 
2806       /* First, reset the remaining relocs for the next round.  */
2807       gregdata->n_remaining_bpo_relocs_this_relaxation_round
2808 	= gregdata->n_bpo_relocs;
2809 
2810       qsort (gregdata->reloc_request,
2811 	     gregdata->n_max_bpo_relocs,
2812 	     sizeof (struct bpo_reloc_request),
2813 	     bpo_reloc_request_sort_fn);
2814 
2815       /* Recalculate indexes.  When we find a change (however unlikely
2816 	 after the initial iteration), we know we need to relax again,
2817 	 since items in the GREG-array are sorted by increasing value and
2818 	 stored in the relaxation phase.  */
2819       for (i = 0; i < gregdata->n_max_bpo_relocs; i++)
2820 	if (gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2821 	    != i)
2822 	  {
2823 	    gregdata->bpo_reloc_indexes[gregdata->reloc_request[i].bpo_reloc_no]
2824 	      = i;
2825 	    *again = TRUE;
2826 	  }
2827 
2828       /* Allocate register numbers (indexing from 0).  Stop at the first
2829 	 non-valid reloc.  */
2830       for (i = 0, regindex = 0, prev_base = gregdata->reloc_request[0].value;
2831 	   i < gregdata->n_bpo_relocs;
2832 	   i++)
2833 	{
2834 	  if (gregdata->reloc_request[i].value > prev_base + 255)
2835 	    {
2836 	      regindex++;
2837 	      prev_base = gregdata->reloc_request[i].value;
2838 	    }
2839 	  gregdata->reloc_request[i].regindex = regindex;
2840 	  gregdata->reloc_request[i].offset
2841 	    = gregdata->reloc_request[i].value - prev_base;
2842 	}
2843 
2844       /* If it's not the same as the last time, we need to relax again,
2845 	 because the size of the section has changed.  I'm not sure we
2846 	 actually need to do any adjustments since the shrinking happens
2847 	 at the start of this section, but better safe than sorry.  */
2848       if (gregdata->n_allocated_bpo_gregs != regindex + 1)
2849 	{
2850 	  gregdata->n_allocated_bpo_gregs = regindex + 1;
2851 	  *again = TRUE;
2852 	}
2853 
2854       bpo_gregs_section->size = (regindex + 1) * 8;
2855     }
2856 
2857   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2858     {
2859       if (! link_info->keep_memory)
2860 	free (isymbuf);
2861       else
2862 	{
2863 	  /* Cache the symbols for elf_link_input_bfd.  */
2864 	  symtab_hdr->contents = (unsigned char *) isymbuf;
2865 	}
2866     }
2867 
2868   if (internal_relocs != NULL
2869       && elf_section_data (sec)->relocs != internal_relocs)
2870     free (internal_relocs);
2871 
2872   if (sec->size < size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2873     abort ();
2874 
2875   if (sec->size > size + mmix_elf_section_data (sec)->pjs.stubs_size_sum)
2876     {
2877       sec->size = size + mmix_elf_section_data (sec)->pjs.stubs_size_sum;
2878       *again = TRUE;
2879     }
2880 
2881   return TRUE;
2882 
2883  error_return:
2884   if (isymbuf != NULL && (unsigned char *) isymbuf != symtab_hdr->contents)
2885     free (isymbuf);
2886   if (internal_relocs != NULL
2887       && elf_section_data (sec)->relocs != internal_relocs)
2888     free (internal_relocs);
2889   return FALSE;
2890 }
2891 
2892 #define ELF_ARCH		bfd_arch_mmix
2893 #define ELF_MACHINE_CODE 	EM_MMIX
2894 
2895 /* According to mmix-doc page 36 (paragraph 45), this should be (1LL << 48LL).
2896    However, that's too much for something somewhere in the linker part of
2897    BFD; perhaps the start-address has to be a non-zero multiple of this
2898    number, or larger than this number.  The symptom is that the linker
2899    complains: "warning: allocated section `.text' not in segment".  We
2900    settle for 64k; the page-size used in examples is 8k.
2901    #define ELF_MAXPAGESIZE 0x10000
2902 
2903    Unfortunately, this causes excessive padding in the supposedly small
2904    for-education programs that are the expected usage (where people would
2905    inspect output).  We stick to 256 bytes just to have *some* default
2906    alignment.  */
2907 #define ELF_MAXPAGESIZE 0x100
2908 
2909 #define TARGET_BIG_SYM		mmix_elf64_vec
2910 #define TARGET_BIG_NAME		"elf64-mmix"
2911 
2912 #define elf_info_to_howto_rel		NULL
2913 #define elf_info_to_howto		mmix_info_to_howto_rela
2914 #define elf_backend_relocate_section	mmix_elf_relocate_section
2915 #define elf_backend_gc_mark_hook	mmix_elf_gc_mark_hook
2916 #define elf_backend_gc_sweep_hook	mmix_elf_gc_sweep_hook
2917 
2918 #define elf_backend_link_output_symbol_hook \
2919 	mmix_elf_link_output_symbol_hook
2920 #define elf_backend_add_symbol_hook	mmix_elf_add_symbol_hook
2921 
2922 #define elf_backend_check_relocs	mmix_elf_check_relocs
2923 #define elf_backend_symbol_processing	mmix_elf_symbol_processing
2924 #define elf_backend_omit_section_dynsym \
2925   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
2926 
2927 #define bfd_elf64_bfd_is_local_label_name \
2928 	mmix_elf_is_local_label_name
2929 
2930 #define elf_backend_may_use_rel_p	0
2931 #define elf_backend_may_use_rela_p	1
2932 #define elf_backend_default_use_rela_p	1
2933 
2934 #define elf_backend_can_gc_sections	1
2935 #define elf_backend_section_from_bfd_section \
2936 	mmix_elf_section_from_bfd_section
2937 
2938 #define bfd_elf64_new_section_hook	mmix_elf_new_section_hook
2939 #define bfd_elf64_bfd_final_link	mmix_elf_final_link
2940 #define bfd_elf64_bfd_relax_section	mmix_elf_relax_section
2941 
2942 #include "elf64-target.h"
2943