xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-hppa.c (revision bdc22b2e01993381dcefeff2bc9b56ca75a4235c)
1 /* Support for HPPA 64-bit ELF
2    Copyright (C) 1999-2017 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or modify
7    it under the terms of the GNU General Public License as published by
8    the Free Software Foundation; either version 3 of the License, or
9    (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful,
12    but WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14    GNU General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19    MA 02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "alloca-conf.h"
23 #include "bfd.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf/hppa.h"
27 #include "libhppa.h"
28 #include "elf64-hppa.h"
29 #include "libiberty.h"
30 
31 #define ARCH_SIZE	       64
32 
33 #define PLT_ENTRY_SIZE 0x10
34 #define DLT_ENTRY_SIZE 0x8
35 #define OPD_ENTRY_SIZE 0x20
36 
37 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
38 
39 /* The stub is supposed to load the target address and target's DP
40    value out of the PLT, then do an external branch to the target
41    address.
42 
43    LDD PLTOFF(%r27),%r1
44    BVE (%r1)
45    LDD PLTOFF+8(%r27),%r27
46 
47    Note that we must use the LDD with a 14 bit displacement, not the one
48    with a 5 bit displacement.  */
49 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
50 			  0x53, 0x7b, 0x00, 0x00 };
51 
52 struct elf64_hppa_link_hash_entry
53 {
54   struct elf_link_hash_entry eh;
55 
56   /* Offsets for this symbol in various linker sections.  */
57   bfd_vma dlt_offset;
58   bfd_vma plt_offset;
59   bfd_vma opd_offset;
60   bfd_vma stub_offset;
61 
62   /* The index of the (possibly local) symbol in the input bfd and its
63      associated BFD.  Needed so that we can have relocs against local
64      symbols in shared libraries.  */
65   long sym_indx;
66   bfd *owner;
67 
68   /* Dynamic symbols may need to have two different values.  One for
69      the dynamic symbol table, one for the normal symbol table.
70 
71      In such cases we store the symbol's real value and section
72      index here so we can restore the real value before we write
73      the normal symbol table.  */
74   bfd_vma st_value;
75   int st_shndx;
76 
77   /* Used to count non-got, non-plt relocations for delayed sizing
78      of relocation sections.  */
79   struct elf64_hppa_dyn_reloc_entry
80   {
81     /* Next relocation in the chain.  */
82     struct elf64_hppa_dyn_reloc_entry *next;
83 
84     /* The type of the relocation.  */
85     int type;
86 
87     /* The input section of the relocation.  */
88     asection *sec;
89 
90     /* Number of relocs copied in this section.  */
91     bfd_size_type count;
92 
93     /* The index of the section symbol for the input section of
94        the relocation.  Only needed when building shared libraries.  */
95     int sec_symndx;
96 
97     /* The offset within the input section of the relocation.  */
98     bfd_vma offset;
99 
100     /* The addend for the relocation.  */
101     bfd_vma addend;
102 
103   } *reloc_entries;
104 
105   /* Nonzero if this symbol needs an entry in one of the linker
106      sections.  */
107   unsigned want_dlt;
108   unsigned want_plt;
109   unsigned want_opd;
110   unsigned want_stub;
111 };
112 
113 struct elf64_hppa_link_hash_table
114 {
115   struct elf_link_hash_table root;
116 
117   /* Shortcuts to get to the various linker defined sections.  */
118   asection *dlt_sec;
119   asection *dlt_rel_sec;
120   asection *plt_sec;
121   asection *plt_rel_sec;
122   asection *opd_sec;
123   asection *opd_rel_sec;
124   asection *other_rel_sec;
125 
126   /* Offset of __gp within .plt section.  When the PLT gets large we want
127      to slide __gp into the PLT section so that we can continue to use
128      single DP relative instructions to load values out of the PLT.  */
129   bfd_vma gp_offset;
130 
131   /* Note this is not strictly correct.  We should create a stub section for
132      each input section with calls.  The stub section should be placed before
133      the section with the call.  */
134   asection *stub_sec;
135 
136   bfd_vma text_segment_base;
137   bfd_vma data_segment_base;
138 
139   /* We build tables to map from an input section back to its
140      symbol index.  This is the BFD for which we currently have
141      a map.  */
142   bfd *section_syms_bfd;
143 
144   /* Array of symbol numbers for each input section attached to the
145      current BFD.  */
146   int *section_syms;
147 };
148 
149 #define hppa_link_hash_table(p) \
150   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
151   == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
152 
153 #define hppa_elf_hash_entry(ent) \
154   ((struct elf64_hppa_link_hash_entry *)(ent))
155 
156 #define eh_name(eh) \
157   (eh ? eh->root.root.string : "<undef>")
158 
159 typedef struct bfd_hash_entry *(*new_hash_entry_func)
160   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
161 
162 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
163   (bfd *abfd);
164 
165 /* This must follow the definitions of the various derived linker
166    hash tables and shared functions.  */
167 #include "elf-hppa.h"
168 
169 static bfd_boolean elf64_hppa_object_p
170   (bfd *);
171 
172 static void elf64_hppa_post_process_headers
173   (bfd *, struct bfd_link_info *);
174 
175 static bfd_boolean elf64_hppa_create_dynamic_sections
176   (bfd *, struct bfd_link_info *);
177 
178 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
179   (struct bfd_link_info *, struct elf_link_hash_entry *);
180 
181 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
182   (struct elf_link_hash_entry *, void *);
183 
184 static bfd_boolean elf64_hppa_size_dynamic_sections
185   (bfd *, struct bfd_link_info *);
186 
187 static int elf64_hppa_link_output_symbol_hook
188   (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
189    asection *, struct elf_link_hash_entry *);
190 
191 static bfd_boolean elf64_hppa_finish_dynamic_symbol
192   (bfd *, struct bfd_link_info *,
193    struct elf_link_hash_entry *, Elf_Internal_Sym *);
194 
195 static bfd_boolean elf64_hppa_finish_dynamic_sections
196   (bfd *, struct bfd_link_info *);
197 
198 static bfd_boolean elf64_hppa_check_relocs
199   (bfd *, struct bfd_link_info *,
200    asection *, const Elf_Internal_Rela *);
201 
202 static bfd_boolean elf64_hppa_dynamic_symbol_p
203   (struct elf_link_hash_entry *, struct bfd_link_info *);
204 
205 static bfd_boolean elf64_hppa_mark_exported_functions
206   (struct elf_link_hash_entry *, void *);
207 
208 static bfd_boolean elf64_hppa_finalize_opd
209   (struct elf_link_hash_entry *, void *);
210 
211 static bfd_boolean elf64_hppa_finalize_dlt
212   (struct elf_link_hash_entry *, void *);
213 
214 static bfd_boolean allocate_global_data_dlt
215   (struct elf_link_hash_entry *, void *);
216 
217 static bfd_boolean allocate_global_data_plt
218   (struct elf_link_hash_entry *, void *);
219 
220 static bfd_boolean allocate_global_data_stub
221   (struct elf_link_hash_entry *, void *);
222 
223 static bfd_boolean allocate_global_data_opd
224   (struct elf_link_hash_entry *, void *);
225 
226 static bfd_boolean get_reloc_section
227   (bfd *, struct elf64_hppa_link_hash_table *, asection *);
228 
229 static bfd_boolean count_dyn_reloc
230   (bfd *, struct elf64_hppa_link_hash_entry *,
231    int, asection *, int, bfd_vma, bfd_vma);
232 
233 static bfd_boolean allocate_dynrel_entries
234   (struct elf_link_hash_entry *, void *);
235 
236 static bfd_boolean elf64_hppa_finalize_dynreloc
237   (struct elf_link_hash_entry *, void *);
238 
239 static bfd_boolean get_opd
240   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
241 
242 static bfd_boolean get_plt
243   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
244 
245 static bfd_boolean get_dlt
246   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
247 
248 static bfd_boolean get_stub
249   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
250 
251 static int elf64_hppa_elf_get_symbol_type
252   (Elf_Internal_Sym *, int);
253 
254 /* Initialize an entry in the link hash table.  */
255 
256 static struct bfd_hash_entry *
257 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
258 			  struct bfd_hash_table *table,
259 			  const char *string)
260 {
261   /* Allocate the structure if it has not already been allocated by a
262      subclass.  */
263   if (entry == NULL)
264     {
265       entry = bfd_hash_allocate (table,
266 				 sizeof (struct elf64_hppa_link_hash_entry));
267       if (entry == NULL)
268         return entry;
269     }
270 
271   /* Call the allocation method of the superclass.  */
272   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
273   if (entry != NULL)
274     {
275       struct elf64_hppa_link_hash_entry *hh;
276 
277       /* Initialize our local data.  All zeros.  */
278       hh = hppa_elf_hash_entry (entry);
279       memset (&hh->dlt_offset, 0,
280 	      (sizeof (struct elf64_hppa_link_hash_entry)
281 	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
282     }
283 
284   return entry;
285 }
286 
287 /* Create the derived linker hash table.  The PA64 ELF port uses this
288    derived hash table to keep information specific to the PA ElF
289    linker (without using static variables).  */
290 
291 static struct bfd_link_hash_table*
292 elf64_hppa_hash_table_create (bfd *abfd)
293 {
294   struct elf64_hppa_link_hash_table *htab;
295   bfd_size_type amt = sizeof (*htab);
296 
297   htab = bfd_zmalloc (amt);
298   if (htab == NULL)
299     return NULL;
300 
301   if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
302 				      hppa64_link_hash_newfunc,
303 				      sizeof (struct elf64_hppa_link_hash_entry),
304 				      HPPA64_ELF_DATA))
305     {
306       free (htab);
307       return NULL;
308     }
309 
310   htab->text_segment_base = (bfd_vma) -1;
311   htab->data_segment_base = (bfd_vma) -1;
312 
313   return &htab->root.root;
314 }
315 
316 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
317 
318    Additionally we set the default architecture and machine.  */
319 static bfd_boolean
320 elf64_hppa_object_p (bfd *abfd)
321 {
322   Elf_Internal_Ehdr * i_ehdrp;
323   unsigned int flags;
324 
325   i_ehdrp = elf_elfheader (abfd);
326   if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
327     {
328       /* GCC on hppa-linux produces binaries with OSABI=GNU,
329 	 but the kernel produces corefiles with OSABI=SysV.  */
330       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
331 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
332 	return FALSE;
333     }
334   else
335     {
336       /* HPUX produces binaries with OSABI=HPUX,
337 	 but the kernel produces corefiles with OSABI=SysV.  */
338       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
339 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
340 	return FALSE;
341     }
342 
343   flags = i_ehdrp->e_flags;
344   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
345     {
346     case EFA_PARISC_1_0:
347       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
348     case EFA_PARISC_1_1:
349       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
350     case EFA_PARISC_2_0:
351       if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
352         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
353       else
354         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
355     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
356       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
357     }
358   /* Don't be fussy.  */
359   return TRUE;
360 }
361 
362 /* Given section type (hdr->sh_type), return a boolean indicating
363    whether or not the section is an elf64-hppa specific section.  */
364 static bfd_boolean
365 elf64_hppa_section_from_shdr (bfd *abfd,
366 			      Elf_Internal_Shdr *hdr,
367 			      const char *name,
368 			      int shindex)
369 {
370   switch (hdr->sh_type)
371     {
372     case SHT_PARISC_EXT:
373       if (strcmp (name, ".PARISC.archext") != 0)
374 	return FALSE;
375       break;
376     case SHT_PARISC_UNWIND:
377       if (strcmp (name, ".PARISC.unwind") != 0)
378 	return FALSE;
379       break;
380     case SHT_PARISC_DOC:
381     case SHT_PARISC_ANNOT:
382     default:
383       return FALSE;
384     }
385 
386   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
387     return FALSE;
388 
389   return TRUE;
390 }
391 
392 /* SEC is a section containing relocs for an input BFD when linking; return
393    a suitable section for holding relocs in the output BFD for a link.  */
394 
395 static bfd_boolean
396 get_reloc_section (bfd *abfd,
397 		   struct elf64_hppa_link_hash_table *hppa_info,
398 		   asection *sec)
399 {
400   const char *srel_name;
401   asection *srel;
402   bfd *dynobj;
403 
404   srel_name = (bfd_elf_string_from_elf_section
405 	       (abfd, elf_elfheader(abfd)->e_shstrndx,
406 		_bfd_elf_single_rel_hdr(sec)->sh_name));
407   if (srel_name == NULL)
408     return FALSE;
409 
410   dynobj = hppa_info->root.dynobj;
411   if (!dynobj)
412     hppa_info->root.dynobj = dynobj = abfd;
413 
414   srel = bfd_get_linker_section (dynobj, srel_name);
415   if (srel == NULL)
416     {
417       srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
418 						 (SEC_ALLOC
419 						  | SEC_LOAD
420 						  | SEC_HAS_CONTENTS
421 						  | SEC_IN_MEMORY
422 						  | SEC_LINKER_CREATED
423 						  | SEC_READONLY));
424       if (srel == NULL
425 	  || !bfd_set_section_alignment (dynobj, srel, 3))
426 	return FALSE;
427     }
428 
429   hppa_info->other_rel_sec = srel;
430   return TRUE;
431 }
432 
433 /* Add a new entry to the list of dynamic relocations against DYN_H.
434 
435    We use this to keep a record of all the FPTR relocations against a
436    particular symbol so that we can create FPTR relocations in the
437    output file.  */
438 
439 static bfd_boolean
440 count_dyn_reloc (bfd *abfd,
441 		 struct elf64_hppa_link_hash_entry *hh,
442 		 int type,
443 		 asection *sec,
444 	         int sec_symndx,
445 	         bfd_vma offset,
446 		 bfd_vma addend)
447 {
448   struct elf64_hppa_dyn_reloc_entry *rent;
449 
450   rent = (struct elf64_hppa_dyn_reloc_entry *)
451   bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
452   if (!rent)
453     return FALSE;
454 
455   rent->next = hh->reloc_entries;
456   rent->type = type;
457   rent->sec = sec;
458   rent->sec_symndx = sec_symndx;
459   rent->offset = offset;
460   rent->addend = addend;
461   hh->reloc_entries = rent;
462 
463   return TRUE;
464 }
465 
466 /* Return a pointer to the local DLT, PLT and OPD reference counts
467    for ABFD.  Returns NULL if the storage allocation fails.  */
468 
469 static bfd_signed_vma *
470 hppa64_elf_local_refcounts (bfd *abfd)
471 {
472   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
473   bfd_signed_vma *local_refcounts;
474 
475   local_refcounts = elf_local_got_refcounts (abfd);
476   if (local_refcounts == NULL)
477     {
478       bfd_size_type size;
479 
480       /* Allocate space for local DLT, PLT and OPD reference
481 	 counts.  Done this way to save polluting elf_obj_tdata
482 	 with another target specific pointer.  */
483       size = symtab_hdr->sh_info;
484       size *= 3 * sizeof (bfd_signed_vma);
485       local_refcounts = bfd_zalloc (abfd, size);
486       elf_local_got_refcounts (abfd) = local_refcounts;
487     }
488   return local_refcounts;
489 }
490 
491 /* Scan the RELOCS and record the type of dynamic entries that each
492    referenced symbol needs.  */
493 
494 static bfd_boolean
495 elf64_hppa_check_relocs (bfd *abfd,
496 			 struct bfd_link_info *info,
497 			 asection *sec,
498 			 const Elf_Internal_Rela *relocs)
499 {
500   struct elf64_hppa_link_hash_table *hppa_info;
501   const Elf_Internal_Rela *relend;
502   Elf_Internal_Shdr *symtab_hdr;
503   const Elf_Internal_Rela *rel;
504   unsigned int sec_symndx;
505 
506   if (bfd_link_relocatable (info))
507     return TRUE;
508 
509   /* If this is the first dynamic object found in the link, create
510      the special sections required for dynamic linking.  */
511   if (! elf_hash_table (info)->dynamic_sections_created)
512     {
513       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
514 	return FALSE;
515     }
516 
517   hppa_info = hppa_link_hash_table (info);
518   if (hppa_info == NULL)
519     return FALSE;
520   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
521 
522   /* If necessary, build a new table holding section symbols indices
523      for this BFD.  */
524 
525   if (bfd_link_pic (info) && hppa_info->section_syms_bfd != abfd)
526     {
527       unsigned long i;
528       unsigned int highest_shndx;
529       Elf_Internal_Sym *local_syms = NULL;
530       Elf_Internal_Sym *isym, *isymend;
531       bfd_size_type amt;
532 
533       /* We're done with the old cache of section index to section symbol
534 	 index information.  Free it.
535 
536 	 ?!? Note we leak the last section_syms array.  Presumably we
537 	 could free it in one of the later routines in this file.  */
538       if (hppa_info->section_syms)
539 	free (hppa_info->section_syms);
540 
541       /* Read this BFD's local symbols.  */
542       if (symtab_hdr->sh_info != 0)
543 	{
544 	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
545 	  if (local_syms == NULL)
546 	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
547 					       symtab_hdr->sh_info, 0,
548 					       NULL, NULL, NULL);
549 	  if (local_syms == NULL)
550 	    return FALSE;
551 	}
552 
553       /* Record the highest section index referenced by the local symbols.  */
554       highest_shndx = 0;
555       isymend = local_syms + symtab_hdr->sh_info;
556       for (isym = local_syms; isym < isymend; isym++)
557 	{
558 	  if (isym->st_shndx > highest_shndx
559 	      && isym->st_shndx < SHN_LORESERVE)
560 	    highest_shndx = isym->st_shndx;
561 	}
562 
563       /* Allocate an array to hold the section index to section symbol index
564 	 mapping.  Bump by one since we start counting at zero.  */
565       highest_shndx++;
566       amt = highest_shndx;
567       amt *= sizeof (int);
568       hppa_info->section_syms = (int *) bfd_malloc (amt);
569 
570       /* Now walk the local symbols again.  If we find a section symbol,
571 	 record the index of the symbol into the section_syms array.  */
572       for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
573 	{
574 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
575 	    hppa_info->section_syms[isym->st_shndx] = i;
576 	}
577 
578       /* We are finished with the local symbols.  */
579       if (local_syms != NULL
580 	  && symtab_hdr->contents != (unsigned char *) local_syms)
581 	{
582 	  if (! info->keep_memory)
583 	    free (local_syms);
584 	  else
585 	    {
586 	      /* Cache the symbols for elf_link_input_bfd.  */
587 	      symtab_hdr->contents = (unsigned char *) local_syms;
588 	    }
589 	}
590 
591       /* Record which BFD we built the section_syms mapping for.  */
592       hppa_info->section_syms_bfd = abfd;
593     }
594 
595   /* Record the symbol index for this input section.  We may need it for
596      relocations when building shared libraries.  When not building shared
597      libraries this value is never really used, but assign it to zero to
598      prevent out of bounds memory accesses in other routines.  */
599   if (bfd_link_pic (info))
600     {
601       sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
602 
603       /* If we did not find a section symbol for this section, then
604 	 something went terribly wrong above.  */
605       if (sec_symndx == SHN_BAD)
606 	return FALSE;
607 
608       if (sec_symndx < SHN_LORESERVE)
609 	sec_symndx = hppa_info->section_syms[sec_symndx];
610       else
611 	sec_symndx = 0;
612     }
613   else
614     sec_symndx = 0;
615 
616   relend = relocs + sec->reloc_count;
617   for (rel = relocs; rel < relend; ++rel)
618     {
619       enum
620 	{
621 	  NEED_DLT = 1,
622 	  NEED_PLT = 2,
623 	  NEED_STUB = 4,
624 	  NEED_OPD = 8,
625 	  NEED_DYNREL = 16,
626 	};
627 
628       unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
629       struct elf64_hppa_link_hash_entry *hh;
630       int need_entry;
631       bfd_boolean maybe_dynamic;
632       int dynrel_type = R_PARISC_NONE;
633       static reloc_howto_type *howto;
634 
635       if (r_symndx >= symtab_hdr->sh_info)
636 	{
637 	  /* We're dealing with a global symbol -- find its hash entry
638 	     and mark it as being referenced.  */
639 	  long indx = r_symndx - symtab_hdr->sh_info;
640 	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
641 	  while (hh->eh.root.type == bfd_link_hash_indirect
642 		 || hh->eh.root.type == bfd_link_hash_warning)
643 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
644 
645 	  /* PR15323, ref flags aren't set for references in the same
646 	     object.  */
647 	  hh->eh.root.non_ir_ref = 1;
648 	  hh->eh.ref_regular = 1;
649 	}
650       else
651 	hh = NULL;
652 
653       /* We can only get preliminary data on whether a symbol is
654 	 locally or externally defined, as not all of the input files
655 	 have yet been processed.  Do something with what we know, as
656 	 this may help reduce memory usage and processing time later.  */
657       maybe_dynamic = FALSE;
658       if (hh && ((bfd_link_pic (info)
659 		 && (!info->symbolic
660 		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
661 		|| !hh->eh.def_regular
662 		|| hh->eh.root.type == bfd_link_hash_defweak))
663 	maybe_dynamic = TRUE;
664 
665       howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
666       need_entry = 0;
667       switch (howto->type)
668 	{
669 	/* These are simple indirect references to symbols through the
670 	   DLT.  We need to create a DLT entry for any symbols which
671 	   appears in a DLTIND relocation.  */
672 	case R_PARISC_DLTIND21L:
673 	case R_PARISC_DLTIND14R:
674 	case R_PARISC_DLTIND14F:
675 	case R_PARISC_DLTIND14WR:
676 	case R_PARISC_DLTIND14DR:
677 	  need_entry = NEED_DLT;
678 	  break;
679 
680 	/* ?!?  These need a DLT entry.  But I have no idea what to do with
681 	   the "link time TP value.  */
682 	case R_PARISC_LTOFF_TP21L:
683 	case R_PARISC_LTOFF_TP14R:
684 	case R_PARISC_LTOFF_TP14F:
685 	case R_PARISC_LTOFF_TP64:
686 	case R_PARISC_LTOFF_TP14WR:
687 	case R_PARISC_LTOFF_TP14DR:
688 	case R_PARISC_LTOFF_TP16F:
689 	case R_PARISC_LTOFF_TP16WF:
690 	case R_PARISC_LTOFF_TP16DF:
691 	  need_entry = NEED_DLT;
692 	  break;
693 
694 	/* These are function calls.  Depending on their precise target we
695 	   may need to make a stub for them.  The stub uses the PLT, so we
696 	   need to create PLT entries for these symbols too.  */
697 	case R_PARISC_PCREL12F:
698 	case R_PARISC_PCREL17F:
699 	case R_PARISC_PCREL22F:
700 	case R_PARISC_PCREL32:
701 	case R_PARISC_PCREL64:
702 	case R_PARISC_PCREL21L:
703 	case R_PARISC_PCREL17R:
704 	case R_PARISC_PCREL17C:
705 	case R_PARISC_PCREL14R:
706 	case R_PARISC_PCREL14F:
707 	case R_PARISC_PCREL22C:
708 	case R_PARISC_PCREL14WR:
709 	case R_PARISC_PCREL14DR:
710 	case R_PARISC_PCREL16F:
711 	case R_PARISC_PCREL16WF:
712 	case R_PARISC_PCREL16DF:
713 	  /* Function calls might need to go through the .plt, and
714 	     might need a long branch stub.  */
715 	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
716 	    need_entry = (NEED_PLT | NEED_STUB);
717 	  else
718 	    need_entry = 0;
719 	  break;
720 
721 	case R_PARISC_PLTOFF21L:
722 	case R_PARISC_PLTOFF14R:
723 	case R_PARISC_PLTOFF14F:
724 	case R_PARISC_PLTOFF14WR:
725 	case R_PARISC_PLTOFF14DR:
726 	case R_PARISC_PLTOFF16F:
727 	case R_PARISC_PLTOFF16WF:
728 	case R_PARISC_PLTOFF16DF:
729 	  need_entry = (NEED_PLT);
730 	  break;
731 
732 	case R_PARISC_DIR64:
733 	  if (bfd_link_pic (info) || maybe_dynamic)
734 	    need_entry = (NEED_DYNREL);
735 	  dynrel_type = R_PARISC_DIR64;
736 	  break;
737 
738 	/* This is an indirect reference through the DLT to get the address
739 	   of a OPD descriptor.  Thus we need to make a DLT entry that points
740 	   to an OPD entry.  */
741 	case R_PARISC_LTOFF_FPTR21L:
742 	case R_PARISC_LTOFF_FPTR14R:
743 	case R_PARISC_LTOFF_FPTR14WR:
744 	case R_PARISC_LTOFF_FPTR14DR:
745 	case R_PARISC_LTOFF_FPTR32:
746 	case R_PARISC_LTOFF_FPTR64:
747 	case R_PARISC_LTOFF_FPTR16F:
748 	case R_PARISC_LTOFF_FPTR16WF:
749 	case R_PARISC_LTOFF_FPTR16DF:
750 	  if (bfd_link_pic (info) || maybe_dynamic)
751 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
752 	  else
753 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 	  dynrel_type = R_PARISC_FPTR64;
755 	  break;
756 
757 	/* This is a simple OPD entry.  */
758 	case R_PARISC_FPTR64:
759 	  if (bfd_link_pic (info) || maybe_dynamic)
760 	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
761 	  else
762 	    need_entry = (NEED_OPD | NEED_PLT);
763 	  dynrel_type = R_PARISC_FPTR64;
764 	  break;
765 
766 	/* Add more cases as needed.  */
767 	}
768 
769       if (!need_entry)
770 	continue;
771 
772       if (hh)
773 	{
774 	  /* Stash away enough information to be able to find this symbol
775 	     regardless of whether or not it is local or global.  */
776 	  hh->owner = abfd;
777 	  hh->sym_indx = r_symndx;
778 	}
779 
780       /* Create what's needed.  */
781       if (need_entry & NEED_DLT)
782 	{
783 	  /* Allocate space for a DLT entry, as well as a dynamic
784 	     relocation for this entry.  */
785 	  if (! hppa_info->dlt_sec
786 	      && ! get_dlt (abfd, info, hppa_info))
787 	    goto err_out;
788 
789 	  if (hh != NULL)
790 	    {
791 	      hh->want_dlt = 1;
792 	      hh->eh.got.refcount += 1;
793 	    }
794 	  else
795 	    {
796 	      bfd_signed_vma *local_dlt_refcounts;
797 
798 	      /* This is a DLT entry for a local symbol.  */
799 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
800 	      if (local_dlt_refcounts == NULL)
801 		return FALSE;
802 	      local_dlt_refcounts[r_symndx] += 1;
803 	    }
804 	}
805 
806       if (need_entry & NEED_PLT)
807 	{
808 	  if (! hppa_info->plt_sec
809 	      && ! get_plt (abfd, info, hppa_info))
810 	    goto err_out;
811 
812 	  if (hh != NULL)
813 	    {
814 	      hh->want_plt = 1;
815 	      hh->eh.needs_plt = 1;
816 	      hh->eh.plt.refcount += 1;
817 	    }
818 	  else
819 	    {
820 	      bfd_signed_vma *local_dlt_refcounts;
821 	      bfd_signed_vma *local_plt_refcounts;
822 
823 	      /* This is a PLT entry for a local symbol.  */
824 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
825 	      if (local_dlt_refcounts == NULL)
826 		return FALSE;
827 	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
828 	      local_plt_refcounts[r_symndx] += 1;
829 	    }
830 	}
831 
832       if (need_entry & NEED_STUB)
833 	{
834 	  if (! hppa_info->stub_sec
835 	      && ! get_stub (abfd, info, hppa_info))
836 	    goto err_out;
837 	  if (hh)
838 	    hh->want_stub = 1;
839 	}
840 
841       if (need_entry & NEED_OPD)
842 	{
843 	  if (! hppa_info->opd_sec
844 	      && ! get_opd (abfd, info, hppa_info))
845 	    goto err_out;
846 
847 	  /* FPTRs are not allocated by the dynamic linker for PA64,
848 	     though it is possible that will change in the future.  */
849 
850 	  if (hh != NULL)
851 	    hh->want_opd = 1;
852 	  else
853 	    {
854 	      bfd_signed_vma *local_dlt_refcounts;
855 	      bfd_signed_vma *local_opd_refcounts;
856 
857 	      /* This is a OPD for a local symbol.  */
858 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
859 	      if (local_dlt_refcounts == NULL)
860 		return FALSE;
861 	      local_opd_refcounts = (local_dlt_refcounts
862 				     + 2 * symtab_hdr->sh_info);
863 	      local_opd_refcounts[r_symndx] += 1;
864 	    }
865 	}
866 
867       /* Add a new dynamic relocation to the chain of dynamic
868 	 relocations for this symbol.  */
869       if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
870 	{
871 	  if (! hppa_info->other_rel_sec
872 	      && ! get_reloc_section (abfd, hppa_info, sec))
873 	    goto err_out;
874 
875 	  /* Count dynamic relocations against global symbols.  */
876 	  if (hh != NULL
877 	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
878 				   sec_symndx, rel->r_offset, rel->r_addend))
879 	    goto err_out;
880 
881 	  /* If we are building a shared library and we just recorded
882 	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
883 	     section symbol for this section ends up in the dynamic
884 	     symbol table.  */
885 	  if (bfd_link_pic (info) && dynrel_type == R_PARISC_FPTR64
886 	      && ! (bfd_elf_link_record_local_dynamic_symbol
887 		    (info, abfd, sec_symndx)))
888 	    return FALSE;
889 	}
890     }
891 
892   return TRUE;
893 
894  err_out:
895   return FALSE;
896 }
897 
898 struct elf64_hppa_allocate_data
899 {
900   struct bfd_link_info *info;
901   bfd_size_type ofs;
902 };
903 
904 /* Should we do dynamic things to this symbol?  */
905 
906 static bfd_boolean
907 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
908 			     struct bfd_link_info *info)
909 {
910   /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
911      and relocations that retrieve a function descriptor?  Assume the
912      worst for now.  */
913   if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
914     {
915       /* ??? Why is this here and not elsewhere is_local_label_name.  */
916       if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
917 	return FALSE;
918 
919       return TRUE;
920     }
921   else
922     return FALSE;
923 }
924 
925 /* Mark all functions exported by this file so that we can later allocate
926    entries in .opd for them.  */
927 
928 static bfd_boolean
929 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
930 {
931   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
932   struct bfd_link_info *info = (struct bfd_link_info *)data;
933   struct elf64_hppa_link_hash_table *hppa_info;
934 
935   hppa_info = hppa_link_hash_table (info);
936   if (hppa_info == NULL)
937     return FALSE;
938 
939   if (eh
940       && (eh->root.type == bfd_link_hash_defined
941 	  || eh->root.type == bfd_link_hash_defweak)
942       && eh->root.u.def.section->output_section != NULL
943       && eh->type == STT_FUNC)
944     {
945       if (! hppa_info->opd_sec
946 	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
947 	return FALSE;
948 
949       hh->want_opd = 1;
950 
951       /* Put a flag here for output_symbol_hook.  */
952       hh->st_shndx = -1;
953       eh->needs_plt = 1;
954     }
955 
956   return TRUE;
957 }
958 
959 /* Allocate space for a DLT entry.  */
960 
961 static bfd_boolean
962 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
963 {
964   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
965   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
966 
967   if (hh->want_dlt)
968     {
969       if (bfd_link_pic (x->info))
970 	{
971 	  /* Possibly add the symbol to the local dynamic symbol
972 	     table since we might need to create a dynamic relocation
973 	     against it.  */
974 	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
975 	    {
976 	      bfd *owner = eh->root.u.def.section->owner;
977 
978 	      if (! (bfd_elf_link_record_local_dynamic_symbol
979 		     (x->info, owner, hh->sym_indx)))
980 		return FALSE;
981 	    }
982 	}
983 
984       hh->dlt_offset = x->ofs;
985       x->ofs += DLT_ENTRY_SIZE;
986     }
987   return TRUE;
988 }
989 
990 /* Allocate space for a DLT.PLT entry.  */
991 
992 static bfd_boolean
993 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
994 {
995   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
996   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
997 
998   if (hh->want_plt
999       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1000       && !((eh->root.type == bfd_link_hash_defined
1001 	    || eh->root.type == bfd_link_hash_defweak)
1002 	   && eh->root.u.def.section->output_section != NULL))
1003     {
1004       hh->plt_offset = x->ofs;
1005       x->ofs += PLT_ENTRY_SIZE;
1006       if (hh->plt_offset < 0x2000)
1007 	{
1008 	  struct elf64_hppa_link_hash_table *hppa_info;
1009 
1010 	  hppa_info = hppa_link_hash_table (x->info);
1011 	  if (hppa_info == NULL)
1012 	    return FALSE;
1013 
1014 	  hppa_info->gp_offset = hh->plt_offset;
1015 	}
1016     }
1017   else
1018     hh->want_plt = 0;
1019 
1020   return TRUE;
1021 }
1022 
1023 /* Allocate space for a STUB entry.  */
1024 
1025 static bfd_boolean
1026 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1027 {
1028   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1029   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1030 
1031   if (hh->want_stub
1032       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1033       && !((eh->root.type == bfd_link_hash_defined
1034 	    || eh->root.type == bfd_link_hash_defweak)
1035 	   && eh->root.u.def.section->output_section != NULL))
1036     {
1037       hh->stub_offset = x->ofs;
1038       x->ofs += sizeof (plt_stub);
1039     }
1040   else
1041     hh->want_stub = 0;
1042   return TRUE;
1043 }
1044 
1045 /* Allocate space for a FPTR entry.  */
1046 
1047 static bfd_boolean
1048 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1049 {
1050   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1051   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1052 
1053   if (hh && hh->want_opd)
1054     {
1055       /* We never need an opd entry for a symbol which is not
1056 	 defined by this output file.  */
1057       if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1058 		 || hh->eh.root.type == bfd_link_hash_undefweak
1059 		 || hh->eh.root.u.def.section->output_section == NULL))
1060 	hh->want_opd = 0;
1061 
1062       /* If we are creating a shared library, took the address of a local
1063 	 function or might export this function from this object file, then
1064 	 we have to create an opd descriptor.  */
1065       else if (bfd_link_pic (x->info)
1066 	       || hh == NULL
1067 	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1068 	       || (hh->eh.root.type == bfd_link_hash_defined
1069 		   || hh->eh.root.type == bfd_link_hash_defweak))
1070 	{
1071 	  /* If we are creating a shared library, then we will have to
1072 	     create a runtime relocation for the symbol to properly
1073 	     initialize the .opd entry.  Make sure the symbol gets
1074 	     added to the dynamic symbol table.  */
1075 	  if (bfd_link_pic (x->info)
1076 	      && (hh == NULL || (hh->eh.dynindx == -1)))
1077 	    {
1078 	      bfd *owner;
1079 	      /* PR 6511: Default to using the dynamic symbol table.  */
1080 	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1081 
1082 	      if (!bfd_elf_link_record_local_dynamic_symbol
1083 		    (x->info, owner, hh->sym_indx))
1084 		return FALSE;
1085 	    }
1086 
1087 	  /* This may not be necessary or desirable anymore now that
1088 	     we have some support for dealing with section symbols
1089 	     in dynamic relocs.  But name munging does make the result
1090 	     much easier to debug.  ie, the EPLT reloc will reference
1091 	     a symbol like .foobar, instead of .text + offset.  */
1092 	  if (bfd_link_pic (x->info) && eh)
1093 	    {
1094 	      char *new_name;
1095 	      struct elf_link_hash_entry *nh;
1096 
1097 	      new_name = concat (".", eh->root.root.string, NULL);
1098 
1099 	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1100 					 new_name, TRUE, TRUE, TRUE);
1101 
1102 	      free (new_name);
1103 	      nh->root.type = eh->root.type;
1104 	      nh->root.u.def.value = eh->root.u.def.value;
1105 	      nh->root.u.def.section = eh->root.u.def.section;
1106 
1107 	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1108 		return FALSE;
1109 	     }
1110 	  hh->opd_offset = x->ofs;
1111 	  x->ofs += OPD_ENTRY_SIZE;
1112 	}
1113 
1114       /* Otherwise we do not need an opd entry.  */
1115       else
1116 	hh->want_opd = 0;
1117     }
1118   return TRUE;
1119 }
1120 
1121 /* HP requires the EI_OSABI field to be filled in.  The assignment to
1122    EI_ABIVERSION may not be strictly necessary.  */
1123 
1124 static void
1125 elf64_hppa_post_process_headers (bfd *abfd,
1126 			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1127 {
1128   Elf_Internal_Ehdr * i_ehdrp;
1129 
1130   i_ehdrp = elf_elfheader (abfd);
1131 
1132   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1133   i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1134 }
1135 
1136 /* Create function descriptor section (.opd).  This section is called .opd
1137    because it contains "official procedure descriptors".  The "official"
1138    refers to the fact that these descriptors are used when taking the address
1139    of a procedure, thus ensuring a unique address for each procedure.  */
1140 
1141 static bfd_boolean
1142 get_opd (bfd *abfd,
1143 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1144 	 struct elf64_hppa_link_hash_table *hppa_info)
1145 {
1146   asection *opd;
1147   bfd *dynobj;
1148 
1149   opd = hppa_info->opd_sec;
1150   if (!opd)
1151     {
1152       dynobj = hppa_info->root.dynobj;
1153       if (!dynobj)
1154 	hppa_info->root.dynobj = dynobj = abfd;
1155 
1156       opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1157 						(SEC_ALLOC
1158 						 | SEC_LOAD
1159 						 | SEC_HAS_CONTENTS
1160 						 | SEC_IN_MEMORY
1161 						 | SEC_LINKER_CREATED));
1162       if (!opd
1163 	  || !bfd_set_section_alignment (abfd, opd, 3))
1164 	{
1165 	  BFD_ASSERT (0);
1166 	  return FALSE;
1167 	}
1168 
1169       hppa_info->opd_sec = opd;
1170     }
1171 
1172   return TRUE;
1173 }
1174 
1175 /* Create the PLT section.  */
1176 
1177 static bfd_boolean
1178 get_plt (bfd *abfd,
1179 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1180 	 struct elf64_hppa_link_hash_table *hppa_info)
1181 {
1182   asection *plt;
1183   bfd *dynobj;
1184 
1185   plt = hppa_info->plt_sec;
1186   if (!plt)
1187     {
1188       dynobj = hppa_info->root.dynobj;
1189       if (!dynobj)
1190 	hppa_info->root.dynobj = dynobj = abfd;
1191 
1192       plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1193 						(SEC_ALLOC
1194 						 | SEC_LOAD
1195 						 | SEC_HAS_CONTENTS
1196 						 | SEC_IN_MEMORY
1197 						 | SEC_LINKER_CREATED));
1198       if (!plt
1199 	  || !bfd_set_section_alignment (abfd, plt, 3))
1200 	{
1201 	  BFD_ASSERT (0);
1202 	  return FALSE;
1203 	}
1204 
1205       hppa_info->plt_sec = plt;
1206     }
1207 
1208   return TRUE;
1209 }
1210 
1211 /* Create the DLT section.  */
1212 
1213 static bfd_boolean
1214 get_dlt (bfd *abfd,
1215 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1216 	 struct elf64_hppa_link_hash_table *hppa_info)
1217 {
1218   asection *dlt;
1219   bfd *dynobj;
1220 
1221   dlt = hppa_info->dlt_sec;
1222   if (!dlt)
1223     {
1224       dynobj = hppa_info->root.dynobj;
1225       if (!dynobj)
1226 	hppa_info->root.dynobj = dynobj = abfd;
1227 
1228       dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1229 						(SEC_ALLOC
1230 						 | SEC_LOAD
1231 						 | SEC_HAS_CONTENTS
1232 						 | SEC_IN_MEMORY
1233 						 | SEC_LINKER_CREATED));
1234       if (!dlt
1235 	  || !bfd_set_section_alignment (abfd, dlt, 3))
1236 	{
1237 	  BFD_ASSERT (0);
1238 	  return FALSE;
1239 	}
1240 
1241       hppa_info->dlt_sec = dlt;
1242     }
1243 
1244   return TRUE;
1245 }
1246 
1247 /* Create the stubs section.  */
1248 
1249 static bfd_boolean
1250 get_stub (bfd *abfd,
1251 	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1252 	  struct elf64_hppa_link_hash_table *hppa_info)
1253 {
1254   asection *stub;
1255   bfd *dynobj;
1256 
1257   stub = hppa_info->stub_sec;
1258   if (!stub)
1259     {
1260       dynobj = hppa_info->root.dynobj;
1261       if (!dynobj)
1262 	hppa_info->root.dynobj = dynobj = abfd;
1263 
1264       stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1265 						 (SEC_ALLOC | SEC_LOAD
1266 						  | SEC_HAS_CONTENTS
1267 						  | SEC_IN_MEMORY
1268 						  | SEC_READONLY
1269 						  | SEC_LINKER_CREATED));
1270       if (!stub
1271 	  || !bfd_set_section_alignment (abfd, stub, 3))
1272 	{
1273 	  BFD_ASSERT (0);
1274 	  return FALSE;
1275 	}
1276 
1277       hppa_info->stub_sec = stub;
1278     }
1279 
1280   return TRUE;
1281 }
1282 
1283 /* Create sections necessary for dynamic linking.  This is only a rough
1284    cut and will likely change as we learn more about the somewhat
1285    unusual dynamic linking scheme HP uses.
1286 
1287    .stub:
1288 	Contains code to implement cross-space calls.  The first time one
1289 	of the stubs is used it will call into the dynamic linker, later
1290 	calls will go straight to the target.
1291 
1292 	The only stub we support right now looks like
1293 
1294 	ldd OFFSET(%dp),%r1
1295 	bve %r0(%r1)
1296 	ldd OFFSET+8(%dp),%dp
1297 
1298 	Other stubs may be needed in the future.  We may want the remove
1299 	the break/nop instruction.  It is only used right now to keep the
1300 	offset of a .plt entry and a .stub entry in sync.
1301 
1302    .dlt:
1303 	This is what most people call the .got.  HP used a different name.
1304 	Losers.
1305 
1306    .rela.dlt:
1307 	Relocations for the DLT.
1308 
1309    .plt:
1310 	Function pointers as address,gp pairs.
1311 
1312    .rela.plt:
1313 	Should contain dynamic IPLT (and EPLT?) relocations.
1314 
1315    .opd:
1316 	FPTRS
1317 
1318    .rela.opd:
1319 	EPLT relocations for symbols exported from shared libraries.  */
1320 
1321 static bfd_boolean
1322 elf64_hppa_create_dynamic_sections (bfd *abfd,
1323 				    struct bfd_link_info *info)
1324 {
1325   asection *s;
1326   struct elf64_hppa_link_hash_table *hppa_info;
1327 
1328   hppa_info = hppa_link_hash_table (info);
1329   if (hppa_info == NULL)
1330     return FALSE;
1331 
1332   if (! get_stub (abfd, info, hppa_info))
1333     return FALSE;
1334 
1335   if (! get_dlt (abfd, info, hppa_info))
1336     return FALSE;
1337 
1338   if (! get_plt (abfd, info, hppa_info))
1339     return FALSE;
1340 
1341   if (! get_opd (abfd, info, hppa_info))
1342     return FALSE;
1343 
1344   s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1345 					  (SEC_ALLOC | SEC_LOAD
1346 					   | SEC_HAS_CONTENTS
1347 					   | SEC_IN_MEMORY
1348 					   | SEC_READONLY
1349 					   | SEC_LINKER_CREATED));
1350   if (s == NULL
1351       || !bfd_set_section_alignment (abfd, s, 3))
1352     return FALSE;
1353   hppa_info->dlt_rel_sec = s;
1354 
1355   s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1356 					  (SEC_ALLOC | SEC_LOAD
1357 					   | SEC_HAS_CONTENTS
1358 					   | SEC_IN_MEMORY
1359 					   | SEC_READONLY
1360 					   | SEC_LINKER_CREATED));
1361   if (s == NULL
1362       || !bfd_set_section_alignment (abfd, s, 3))
1363     return FALSE;
1364   hppa_info->plt_rel_sec = s;
1365 
1366   s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1367 					  (SEC_ALLOC | SEC_LOAD
1368 					   | SEC_HAS_CONTENTS
1369 					   | SEC_IN_MEMORY
1370 					   | SEC_READONLY
1371 					   | SEC_LINKER_CREATED));
1372   if (s == NULL
1373       || !bfd_set_section_alignment (abfd, s, 3))
1374     return FALSE;
1375   hppa_info->other_rel_sec = s;
1376 
1377   s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1378 					  (SEC_ALLOC | SEC_LOAD
1379 					   | SEC_HAS_CONTENTS
1380 					   | SEC_IN_MEMORY
1381 					   | SEC_READONLY
1382 					   | SEC_LINKER_CREATED));
1383   if (s == NULL
1384       || !bfd_set_section_alignment (abfd, s, 3))
1385     return FALSE;
1386   hppa_info->opd_rel_sec = s;
1387 
1388   return TRUE;
1389 }
1390 
1391 /* Allocate dynamic relocations for those symbols that turned out
1392    to be dynamic.  */
1393 
1394 static bfd_boolean
1395 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1396 {
1397   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1398   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1399   struct elf64_hppa_link_hash_table *hppa_info;
1400   struct elf64_hppa_dyn_reloc_entry *rent;
1401   bfd_boolean dynamic_symbol, shared;
1402 
1403   hppa_info = hppa_link_hash_table (x->info);
1404   if (hppa_info == NULL)
1405     return FALSE;
1406 
1407   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1408   shared = bfd_link_pic (x->info);
1409 
1410   /* We may need to allocate relocations for a non-dynamic symbol
1411      when creating a shared library.  */
1412   if (!dynamic_symbol && !shared)
1413     return TRUE;
1414 
1415   /* Take care of the normal data relocations.  */
1416 
1417   for (rent = hh->reloc_entries; rent; rent = rent->next)
1418     {
1419       /* Allocate one iff we are building a shared library, the relocation
1420 	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1421       if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1422 	continue;
1423 
1424       hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1425 
1426       /* Make sure this symbol gets into the dynamic symbol table if it is
1427 	 not already recorded.  ?!? This should not be in the loop since
1428 	 the symbol need only be added once.  */
1429       if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1430 	if (!bfd_elf_link_record_local_dynamic_symbol
1431 	    (x->info, rent->sec->owner, hh->sym_indx))
1432 	  return FALSE;
1433     }
1434 
1435   /* Take care of the GOT and PLT relocations.  */
1436 
1437   if ((dynamic_symbol || shared) && hh->want_dlt)
1438     hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1439 
1440   /* If we are building a shared library, then every symbol that has an
1441      opd entry will need an EPLT relocation to relocate the symbol's address
1442      and __gp value based on the runtime load address.  */
1443   if (shared && hh->want_opd)
1444     hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1445 
1446   if (hh->want_plt && dynamic_symbol)
1447     {
1448       bfd_size_type t = 0;
1449 
1450       /* Dynamic symbols get one IPLT relocation.  Local symbols in
1451 	 shared libraries get two REL relocations.  Local symbols in
1452 	 main applications get nothing.  */
1453       if (dynamic_symbol)
1454 	t = sizeof (Elf64_External_Rela);
1455       else if (shared)
1456 	t = 2 * sizeof (Elf64_External_Rela);
1457 
1458       hppa_info->plt_rel_sec->size += t;
1459     }
1460 
1461   return TRUE;
1462 }
1463 
1464 /* Adjust a symbol defined by a dynamic object and referenced by a
1465    regular object.  */
1466 
1467 static bfd_boolean
1468 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1469 				  struct elf_link_hash_entry *eh)
1470 {
1471   /* ??? Undefined symbols with PLT entries should be re-defined
1472      to be the PLT entry.  */
1473 
1474   /* If this is a weak symbol, and there is a real definition, the
1475      processor independent code will have arranged for us to see the
1476      real definition first, and we can just use the same value.  */
1477   if (eh->u.weakdef != NULL)
1478     {
1479       BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1480 		  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1481       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1482       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1483       return TRUE;
1484     }
1485 
1486   /* If this is a reference to a symbol defined by a dynamic object which
1487      is not a function, we might allocate the symbol in our .dynbss section
1488      and allocate a COPY dynamic relocation.
1489 
1490      But PA64 code is canonically PIC, so as a rule we can avoid this sort
1491      of hackery.  */
1492 
1493   return TRUE;
1494 }
1495 
1496 /* This function is called via elf_link_hash_traverse to mark millicode
1497    symbols with a dynindx of -1 and to remove the string table reference
1498    from the dynamic symbol table.  If the symbol is not a millicode symbol,
1499    elf64_hppa_mark_exported_functions is called.  */
1500 
1501 static bfd_boolean
1502 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1503 					      void *data)
1504 {
1505   struct bfd_link_info *info = (struct bfd_link_info *) data;
1506 
1507   if (eh->type == STT_PARISC_MILLI)
1508     {
1509       if (eh->dynindx != -1)
1510 	{
1511 	  eh->dynindx = -1;
1512 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1513 				  eh->dynstr_index);
1514 	}
1515       return TRUE;
1516     }
1517 
1518   return elf64_hppa_mark_exported_functions (eh, data);
1519 }
1520 
1521 /* Set the final sizes of the dynamic sections and allocate memory for
1522    the contents of our special sections.  */
1523 
1524 static bfd_boolean
1525 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1526 {
1527   struct elf64_hppa_link_hash_table *hppa_info;
1528   struct elf64_hppa_allocate_data data;
1529   bfd *dynobj;
1530   bfd *ibfd;
1531   asection *sec;
1532   bfd_boolean plt;
1533   bfd_boolean relocs;
1534   bfd_boolean reltext;
1535 
1536   hppa_info = hppa_link_hash_table (info);
1537   if (hppa_info == NULL)
1538     return FALSE;
1539 
1540   dynobj = hppa_info->root.dynobj;
1541   BFD_ASSERT (dynobj != NULL);
1542 
1543   /* Mark each function this program exports so that we will allocate
1544      space in the .opd section for each function's FPTR.  If we are
1545      creating dynamic sections, change the dynamic index of millicode
1546      symbols to -1 and remove them from the string table for .dynstr.
1547 
1548      We have to traverse the main linker hash table since we have to
1549      find functions which may not have been mentioned in any relocs.  */
1550   elf_link_hash_traverse (&hppa_info->root,
1551 			  (hppa_info->root.dynamic_sections_created
1552 			   ? elf64_hppa_mark_milli_and_exported_functions
1553 			   : elf64_hppa_mark_exported_functions),
1554 			  info);
1555 
1556   if (hppa_info->root.dynamic_sections_created)
1557     {
1558       /* Set the contents of the .interp section to the interpreter.  */
1559       if (bfd_link_executable (info) && !info->nointerp)
1560 	{
1561 	  sec = bfd_get_linker_section (dynobj, ".interp");
1562 	  BFD_ASSERT (sec != NULL);
1563 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1564 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1565 	}
1566     }
1567   else
1568     {
1569       /* We may have created entries in the .rela.got section.
1570 	 However, if we are not creating the dynamic sections, we will
1571 	 not actually use these entries.  Reset the size of .rela.dlt,
1572 	 which will cause it to get stripped from the output file
1573 	 below.  */
1574       sec = hppa_info->dlt_rel_sec;
1575       if (sec != NULL)
1576 	sec->size = 0;
1577     }
1578 
1579   /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1580      dynamic relocs.  */
1581   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
1582     {
1583       bfd_signed_vma *local_dlt;
1584       bfd_signed_vma *end_local_dlt;
1585       bfd_signed_vma *local_plt;
1586       bfd_signed_vma *end_local_plt;
1587       bfd_signed_vma *local_opd;
1588       bfd_signed_vma *end_local_opd;
1589       bfd_size_type locsymcount;
1590       Elf_Internal_Shdr *symtab_hdr;
1591       asection *srel;
1592 
1593       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1594 	continue;
1595 
1596       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1597 	{
1598 	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1599 
1600 	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1601 		    elf_section_data (sec)->local_dynrel);
1602 	       hdh_p != NULL;
1603 	       hdh_p = hdh_p->next)
1604 	    {
1605 	      if (!bfd_is_abs_section (hdh_p->sec)
1606 		  && bfd_is_abs_section (hdh_p->sec->output_section))
1607 		{
1608 		  /* Input section has been discarded, either because
1609 		     it is a copy of a linkonce section or due to
1610 		     linker script /DISCARD/, so we'll be discarding
1611 		     the relocs too.  */
1612 		}
1613 	      else if (hdh_p->count != 0)
1614 		{
1615 		  srel = elf_section_data (hdh_p->sec)->sreloc;
1616 		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1617 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1618 		    info->flags |= DF_TEXTREL;
1619 		}
1620 	    }
1621 	}
1622 
1623       local_dlt = elf_local_got_refcounts (ibfd);
1624       if (!local_dlt)
1625 	continue;
1626 
1627       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1628       locsymcount = symtab_hdr->sh_info;
1629       end_local_dlt = local_dlt + locsymcount;
1630       sec = hppa_info->dlt_sec;
1631       srel = hppa_info->dlt_rel_sec;
1632       for (; local_dlt < end_local_dlt; ++local_dlt)
1633 	{
1634 	  if (*local_dlt > 0)
1635 	    {
1636 	      *local_dlt = sec->size;
1637 	      sec->size += DLT_ENTRY_SIZE;
1638 	      if (bfd_link_pic (info))
1639 	        {
1640 		  srel->size += sizeof (Elf64_External_Rela);
1641 	        }
1642 	    }
1643 	  else
1644 	    *local_dlt = (bfd_vma) -1;
1645 	}
1646 
1647       local_plt = end_local_dlt;
1648       end_local_plt = local_plt + locsymcount;
1649       if (! hppa_info->root.dynamic_sections_created)
1650 	{
1651 	  /* Won't be used, but be safe.  */
1652 	  for (; local_plt < end_local_plt; ++local_plt)
1653 	    *local_plt = (bfd_vma) -1;
1654 	}
1655       else
1656 	{
1657 	  sec = hppa_info->plt_sec;
1658 	  srel = hppa_info->plt_rel_sec;
1659 	  for (; local_plt < end_local_plt; ++local_plt)
1660 	    {
1661 	      if (*local_plt > 0)
1662 		{
1663 		  *local_plt = sec->size;
1664 		  sec->size += PLT_ENTRY_SIZE;
1665 		  if (bfd_link_pic (info))
1666 		    srel->size += sizeof (Elf64_External_Rela);
1667 		}
1668 	      else
1669 		*local_plt = (bfd_vma) -1;
1670 	    }
1671 	}
1672 
1673       local_opd = end_local_plt;
1674       end_local_opd = local_opd + locsymcount;
1675       if (! hppa_info->root.dynamic_sections_created)
1676 	{
1677 	  /* Won't be used, but be safe.  */
1678 	  for (; local_opd < end_local_opd; ++local_opd)
1679 	    *local_opd = (bfd_vma) -1;
1680 	}
1681       else
1682 	{
1683 	  sec = hppa_info->opd_sec;
1684 	  srel = hppa_info->opd_rel_sec;
1685 	  for (; local_opd < end_local_opd; ++local_opd)
1686 	    {
1687 	      if (*local_opd > 0)
1688 		{
1689 		  *local_opd = sec->size;
1690 		  sec->size += OPD_ENTRY_SIZE;
1691 		  if (bfd_link_pic (info))
1692 		    srel->size += sizeof (Elf64_External_Rela);
1693 		}
1694 	      else
1695 		*local_opd = (bfd_vma) -1;
1696 	    }
1697 	}
1698     }
1699 
1700   /* Allocate the GOT entries.  */
1701 
1702   data.info = info;
1703   if (hppa_info->dlt_sec)
1704     {
1705       data.ofs = hppa_info->dlt_sec->size;
1706       elf_link_hash_traverse (&hppa_info->root,
1707 			      allocate_global_data_dlt, &data);
1708       hppa_info->dlt_sec->size = data.ofs;
1709     }
1710 
1711   if (hppa_info->plt_sec)
1712     {
1713       data.ofs = hppa_info->plt_sec->size;
1714       elf_link_hash_traverse (&hppa_info->root,
1715 		              allocate_global_data_plt, &data);
1716       hppa_info->plt_sec->size = data.ofs;
1717     }
1718 
1719   if (hppa_info->stub_sec)
1720     {
1721       data.ofs = 0x0;
1722       elf_link_hash_traverse (&hppa_info->root,
1723 			      allocate_global_data_stub, &data);
1724       hppa_info->stub_sec->size = data.ofs;
1725     }
1726 
1727   /* Allocate space for entries in the .opd section.  */
1728   if (hppa_info->opd_sec)
1729     {
1730       data.ofs = hppa_info->opd_sec->size;
1731       elf_link_hash_traverse (&hppa_info->root,
1732 			      allocate_global_data_opd, &data);
1733       hppa_info->opd_sec->size = data.ofs;
1734     }
1735 
1736   /* Now allocate space for dynamic relocations, if necessary.  */
1737   if (hppa_info->root.dynamic_sections_created)
1738     elf_link_hash_traverse (&hppa_info->root,
1739 			    allocate_dynrel_entries, &data);
1740 
1741   /* The sizes of all the sections are set.  Allocate memory for them.  */
1742   plt = FALSE;
1743   relocs = FALSE;
1744   reltext = FALSE;
1745   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1746     {
1747       const char *name;
1748 
1749       if ((sec->flags & SEC_LINKER_CREATED) == 0)
1750 	continue;
1751 
1752       /* It's OK to base decisions on the section name, because none
1753 	 of the dynobj section names depend upon the input files.  */
1754       name = bfd_get_section_name (dynobj, sec);
1755 
1756       if (strcmp (name, ".plt") == 0)
1757 	{
1758 	  /* Remember whether there is a PLT.  */
1759 	  plt = sec->size != 0;
1760 	}
1761       else if (strcmp (name, ".opd") == 0
1762 	       || CONST_STRNEQ (name, ".dlt")
1763 	       || strcmp (name, ".stub") == 0
1764 	       || strcmp (name, ".got") == 0)
1765 	{
1766 	  /* Strip this section if we don't need it; see the comment below.  */
1767 	}
1768       else if (CONST_STRNEQ (name, ".rela"))
1769 	{
1770 	  if (sec->size != 0)
1771 	    {
1772 	      asection *target;
1773 
1774 	      /* Remember whether there are any reloc sections other
1775 		 than .rela.plt.  */
1776 	      if (strcmp (name, ".rela.plt") != 0)
1777 		{
1778 		  const char *outname;
1779 
1780 		  relocs = TRUE;
1781 
1782 		  /* If this relocation section applies to a read only
1783 		     section, then we probably need a DT_TEXTREL
1784 		     entry.  The entries in the .rela.plt section
1785 		     really apply to the .got section, which we
1786 		     created ourselves and so know is not readonly.  */
1787 		  outname = bfd_get_section_name (output_bfd,
1788 						  sec->output_section);
1789 		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1790 		  if (target != NULL
1791 		      && (target->flags & SEC_READONLY) != 0
1792 		      && (target->flags & SEC_ALLOC) != 0)
1793 		    reltext = TRUE;
1794 		}
1795 
1796 	      /* We use the reloc_count field as a counter if we need
1797 		 to copy relocs into the output file.  */
1798 	      sec->reloc_count = 0;
1799 	    }
1800 	}
1801       else
1802 	{
1803 	  /* It's not one of our sections, so don't allocate space.  */
1804 	  continue;
1805 	}
1806 
1807       if (sec->size == 0)
1808 	{
1809 	  /* If we don't need this section, strip it from the
1810 	     output file.  This is mostly to handle .rela.bss and
1811 	     .rela.plt.  We must create both sections in
1812 	     create_dynamic_sections, because they must be created
1813 	     before the linker maps input sections to output
1814 	     sections.  The linker does that before
1815 	     adjust_dynamic_symbol is called, and it is that
1816 	     function which decides whether anything needs to go
1817 	     into these sections.  */
1818 	  sec->flags |= SEC_EXCLUDE;
1819 	  continue;
1820 	}
1821 
1822       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1823 	continue;
1824 
1825       /* Allocate memory for the section contents if it has not
1826 	 been allocated already.  We use bfd_zalloc here in case
1827 	 unused entries are not reclaimed before the section's
1828 	 contents are written out.  This should not happen, but this
1829 	 way if it does, we get a R_PARISC_NONE reloc instead of
1830 	 garbage.  */
1831       if (sec->contents == NULL)
1832 	{
1833 	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1834 	  if (sec->contents == NULL)
1835 	    return FALSE;
1836 	}
1837     }
1838 
1839   if (hppa_info->root.dynamic_sections_created)
1840     {
1841       /* Always create a DT_PLTGOT.  It actually has nothing to do with
1842 	 the PLT, it is how we communicate the __gp value of a load
1843 	 module to the dynamic linker.  */
1844 #define add_dynamic_entry(TAG, VAL) \
1845   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1846 
1847       if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1848 	  || !add_dynamic_entry (DT_PLTGOT, 0))
1849 	return FALSE;
1850 
1851       /* Add some entries to the .dynamic section.  We fill in the
1852 	 values later, in elf64_hppa_finish_dynamic_sections, but we
1853 	 must add the entries now so that we get the correct size for
1854 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1855 	 dynamic linker and used by the debugger.  */
1856       if (! bfd_link_pic (info))
1857 	{
1858 	  if (!add_dynamic_entry (DT_DEBUG, 0)
1859 	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1860 	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1861 	    return FALSE;
1862 	}
1863 
1864       /* Force DT_FLAGS to always be set.
1865 	 Required by HPUX 11.00 patch PHSS_26559.  */
1866       if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1867 	return FALSE;
1868 
1869       if (plt)
1870 	{
1871 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1872 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1873 	      || !add_dynamic_entry (DT_JMPREL, 0))
1874 	    return FALSE;
1875 	}
1876 
1877       if (relocs)
1878 	{
1879 	  if (!add_dynamic_entry (DT_RELA, 0)
1880 	      || !add_dynamic_entry (DT_RELASZ, 0)
1881 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1882 	    return FALSE;
1883 	}
1884 
1885       if (reltext)
1886 	{
1887 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1888 	    return FALSE;
1889 	  info->flags |= DF_TEXTREL;
1890 	}
1891     }
1892 #undef add_dynamic_entry
1893 
1894   return TRUE;
1895 }
1896 
1897 /* Called after we have output the symbol into the dynamic symbol
1898    table, but before we output the symbol into the normal symbol
1899    table.
1900 
1901    For some symbols we had to change their address when outputting
1902    the dynamic symbol table.  We undo that change here so that
1903    the symbols have their expected value in the normal symbol
1904    table.  Ick.  */
1905 
1906 static int
1907 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1908 				    const char *name,
1909 				    Elf_Internal_Sym *sym,
1910 				    asection *input_sec ATTRIBUTE_UNUSED,
1911 				    struct elf_link_hash_entry *eh)
1912 {
1913   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1914 
1915   /* We may be called with the file symbol or section symbols.
1916      They never need munging, so it is safe to ignore them.  */
1917   if (!name || !eh)
1918     return 1;
1919 
1920   /* Function symbols for which we created .opd entries *may* have been
1921      munged by finish_dynamic_symbol and have to be un-munged here.
1922 
1923      Note that finish_dynamic_symbol sometimes turns dynamic symbols
1924      into non-dynamic ones, so we initialize st_shndx to -1 in
1925      mark_exported_functions and check to see if it was overwritten
1926      here instead of just checking eh->dynindx.  */
1927   if (hh->want_opd && hh->st_shndx != -1)
1928     {
1929       /* Restore the saved value and section index.  */
1930       sym->st_value = hh->st_value;
1931       sym->st_shndx = hh->st_shndx;
1932     }
1933 
1934   return 1;
1935 }
1936 
1937 /* Finish up dynamic symbol handling.  We set the contents of various
1938    dynamic sections here.  */
1939 
1940 static bfd_boolean
1941 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1942 				  struct bfd_link_info *info,
1943 				  struct elf_link_hash_entry *eh,
1944 				  Elf_Internal_Sym *sym)
1945 {
1946   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1947   asection *stub, *splt, *sopd, *spltrel;
1948   struct elf64_hppa_link_hash_table *hppa_info;
1949 
1950   hppa_info = hppa_link_hash_table (info);
1951   if (hppa_info == NULL)
1952     return FALSE;
1953 
1954   stub = hppa_info->stub_sec;
1955   splt = hppa_info->plt_sec;
1956   sopd = hppa_info->opd_sec;
1957   spltrel = hppa_info->plt_rel_sec;
1958 
1959   /* Incredible.  It is actually necessary to NOT use the symbol's real
1960      value when building the dynamic symbol table for a shared library.
1961      At least for symbols that refer to functions.
1962 
1963      We will store a new value and section index into the symbol long
1964      enough to output it into the dynamic symbol table, then we restore
1965      the original values (in elf64_hppa_link_output_symbol_hook).  */
1966   if (hh->want_opd)
1967     {
1968       BFD_ASSERT (sopd != NULL);
1969 
1970       /* Save away the original value and section index so that we
1971 	 can restore them later.  */
1972       hh->st_value = sym->st_value;
1973       hh->st_shndx = sym->st_shndx;
1974 
1975       /* For the dynamic symbol table entry, we want the value to be
1976 	 address of this symbol's entry within the .opd section.  */
1977       sym->st_value = (hh->opd_offset
1978 		       + sopd->output_offset
1979 		       + sopd->output_section->vma);
1980       sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1981 							 sopd->output_section);
1982     }
1983 
1984   /* Initialize a .plt entry if requested.  */
1985   if (hh->want_plt
1986       && elf64_hppa_dynamic_symbol_p (eh, info))
1987     {
1988       bfd_vma value;
1989       Elf_Internal_Rela rel;
1990       bfd_byte *loc;
1991 
1992       BFD_ASSERT (splt != NULL && spltrel != NULL);
1993 
1994       /* We do not actually care about the value in the PLT entry
1995 	 if we are creating a shared library and the symbol is
1996 	 still undefined, we create a dynamic relocation to fill
1997 	 in the correct value.  */
1998       if (bfd_link_pic (info) && eh->root.type == bfd_link_hash_undefined)
1999 	value = 0;
2000       else
2001 	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2002 
2003       /* Fill in the entry in the procedure linkage table.
2004 
2005 	 The format of a plt entry is
2006 	 <funcaddr> <__gp>.
2007 
2008 	 plt_offset is the offset within the PLT section at which to
2009 	 install the PLT entry.
2010 
2011 	 We are modifying the in-memory PLT contents here, so we do not add
2012 	 in the output_offset of the PLT section.  */
2013 
2014       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2015       value = _bfd_get_gp_value (splt->output_section->owner);
2016       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2017 
2018       /* Create a dynamic IPLT relocation for this entry.
2019 
2020 	 We are creating a relocation in the output file's PLT section,
2021 	 which is included within the DLT secton.  So we do need to include
2022 	 the PLT's output_offset in the computation of the relocation's
2023 	 address.  */
2024       rel.r_offset = (hh->plt_offset + splt->output_offset
2025 		      + splt->output_section->vma);
2026       rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2027       rel.r_addend = 0;
2028 
2029       loc = spltrel->contents;
2030       loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2031       bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2032     }
2033 
2034   /* Initialize an external call stub entry if requested.  */
2035   if (hh->want_stub
2036       && elf64_hppa_dynamic_symbol_p (eh, info))
2037     {
2038       bfd_vma value;
2039       int insn;
2040       unsigned int max_offset;
2041 
2042       BFD_ASSERT (stub != NULL);
2043 
2044       /* Install the generic stub template.
2045 
2046 	 We are modifying the contents of the stub section, so we do not
2047 	 need to include the stub section's output_offset here.  */
2048       memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2049 
2050       /* Fix up the first ldd instruction.
2051 
2052 	 We are modifying the contents of the STUB section in memory,
2053 	 so we do not need to include its output offset in this computation.
2054 
2055 	 Note the plt_offset value is the value of the PLT entry relative to
2056 	 the start of the PLT section.  These instructions will reference
2057 	 data relative to the value of __gp, which may not necessarily have
2058 	 the same address as the start of the PLT section.
2059 
2060 	 gp_offset contains the offset of __gp within the PLT section.  */
2061       value = hh->plt_offset - hppa_info->gp_offset;
2062 
2063       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2064       if (output_bfd->arch_info->mach >= 25)
2065 	{
2066 	  /* Wide mode allows 16 bit offsets.  */
2067 	  max_offset = 32768;
2068 	  insn &= ~ 0xfff1;
2069 	  insn |= re_assemble_16 ((int) value);
2070 	}
2071       else
2072 	{
2073 	  max_offset = 8192;
2074 	  insn &= ~ 0x3ff1;
2075 	  insn |= re_assemble_14 ((int) value);
2076 	}
2077 
2078       if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2079 	{
2080 	  _bfd_error_handler
2081 	    /* xgettext:c-format */
2082 	    (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2083 	     hh->eh.root.root.string, (long) value);
2084 	  return FALSE;
2085 	}
2086 
2087       bfd_put_32 (stub->owner, (bfd_vma) insn,
2088 		  stub->contents + hh->stub_offset);
2089 
2090       /* Fix up the second ldd instruction.  */
2091       value += 8;
2092       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2093       if (output_bfd->arch_info->mach >= 25)
2094 	{
2095 	  insn &= ~ 0xfff1;
2096 	  insn |= re_assemble_16 ((int) value);
2097 	}
2098       else
2099 	{
2100 	  insn &= ~ 0x3ff1;
2101 	  insn |= re_assemble_14 ((int) value);
2102 	}
2103       bfd_put_32 (stub->owner, (bfd_vma) insn,
2104 		  stub->contents + hh->stub_offset + 8);
2105     }
2106 
2107   return TRUE;
2108 }
2109 
2110 /* The .opd section contains FPTRs for each function this file
2111    exports.  Initialize the FPTR entries.  */
2112 
2113 static bfd_boolean
2114 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2115 {
2116   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2117   struct bfd_link_info *info = (struct bfd_link_info *)data;
2118   struct elf64_hppa_link_hash_table *hppa_info;
2119   asection *sopd;
2120   asection *sopdrel;
2121 
2122   hppa_info = hppa_link_hash_table (info);
2123   if (hppa_info == NULL)
2124     return FALSE;
2125 
2126   sopd = hppa_info->opd_sec;
2127   sopdrel = hppa_info->opd_rel_sec;
2128 
2129   if (hh->want_opd)
2130     {
2131       bfd_vma value;
2132 
2133       /* The first two words of an .opd entry are zero.
2134 
2135 	 We are modifying the contents of the OPD section in memory, so we
2136 	 do not need to include its output offset in this computation.  */
2137       memset (sopd->contents + hh->opd_offset, 0, 16);
2138 
2139       value = (eh->root.u.def.value
2140 	       + eh->root.u.def.section->output_section->vma
2141 	       + eh->root.u.def.section->output_offset);
2142 
2143       /* The next word is the address of the function.  */
2144       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2145 
2146       /* The last word is our local __gp value.  */
2147       value = _bfd_get_gp_value (sopd->output_section->owner);
2148       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2149     }
2150 
2151   /* If we are generating a shared library, we must generate EPLT relocations
2152      for each entry in the .opd, even for static functions (they may have
2153      had their address taken).  */
2154   if (bfd_link_pic (info) && hh->want_opd)
2155     {
2156       Elf_Internal_Rela rel;
2157       bfd_byte *loc;
2158       int dynindx;
2159 
2160       /* We may need to do a relocation against a local symbol, in
2161 	 which case we have to look up it's dynamic symbol index off
2162 	 the local symbol hash table.  */
2163       if (eh->dynindx != -1)
2164 	dynindx = eh->dynindx;
2165       else
2166 	dynindx
2167 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2168 						hh->sym_indx);
2169 
2170       /* The offset of this relocation is the absolute address of the
2171 	 .opd entry for this symbol.  */
2172       rel.r_offset = (hh->opd_offset + sopd->output_offset
2173 		      + sopd->output_section->vma);
2174 
2175       /* If H is non-null, then we have an external symbol.
2176 
2177 	 It is imperative that we use a different dynamic symbol for the
2178 	 EPLT relocation if the symbol has global scope.
2179 
2180 	 In the dynamic symbol table, the function symbol will have a value
2181 	 which is address of the function's .opd entry.
2182 
2183 	 Thus, we can not use that dynamic symbol for the EPLT relocation
2184 	 (if we did, the data in the .opd would reference itself rather
2185 	 than the actual address of the function).  Instead we have to use
2186 	 a new dynamic symbol which has the same value as the original global
2187 	 function symbol.
2188 
2189 	 We prefix the original symbol with a "." and use the new symbol in
2190 	 the EPLT relocation.  This new symbol has already been recorded in
2191 	 the symbol table, we just have to look it up and use it.
2192 
2193 	 We do not have such problems with static functions because we do
2194 	 not make their addresses in the dynamic symbol table point to
2195 	 the .opd entry.  Ultimately this should be safe since a static
2196 	 function can not be directly referenced outside of its shared
2197 	 library.
2198 
2199 	 We do have to play similar games for FPTR relocations in shared
2200 	 libraries, including those for static symbols.  See the FPTR
2201 	 handling in elf64_hppa_finalize_dynreloc.  */
2202       if (eh)
2203 	{
2204 	  char *new_name;
2205 	  struct elf_link_hash_entry *nh;
2206 
2207 	  new_name = concat (".", eh->root.root.string, NULL);
2208 
2209 	  nh = elf_link_hash_lookup (elf_hash_table (info),
2210 				     new_name, TRUE, TRUE, FALSE);
2211 
2212 	  /* All we really want from the new symbol is its dynamic
2213 	     symbol index.  */
2214 	  if (nh)
2215 	    dynindx = nh->dynindx;
2216 	  free (new_name);
2217 	}
2218 
2219       rel.r_addend = 0;
2220       rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2221 
2222       loc = sopdrel->contents;
2223       loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2224       bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2225     }
2226   return TRUE;
2227 }
2228 
2229 /* The .dlt section contains addresses for items referenced through the
2230    dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2231    we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2232 
2233 static bfd_boolean
2234 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2235 {
2236   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2237   struct bfd_link_info *info = (struct bfd_link_info *)data;
2238   struct elf64_hppa_link_hash_table *hppa_info;
2239   asection *sdlt, *sdltrel;
2240 
2241   hppa_info = hppa_link_hash_table (info);
2242   if (hppa_info == NULL)
2243     return FALSE;
2244 
2245   sdlt = hppa_info->dlt_sec;
2246   sdltrel = hppa_info->dlt_rel_sec;
2247 
2248   /* H/DYN_H may refer to a local variable and we know it's
2249      address, so there is no need to create a relocation.  Just install
2250      the proper value into the DLT, note this shortcut can not be
2251      skipped when building a shared library.  */
2252   if (! bfd_link_pic (info) && hh && hh->want_dlt)
2253     {
2254       bfd_vma value;
2255 
2256       /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2257 	 to point to the FPTR entry in the .opd section.
2258 
2259 	 We include the OPD's output offset in this computation as
2260 	 we are referring to an absolute address in the resulting
2261 	 object file.  */
2262       if (hh->want_opd)
2263 	{
2264 	  value = (hh->opd_offset
2265 		   + hppa_info->opd_sec->output_offset
2266 		   + hppa_info->opd_sec->output_section->vma);
2267 	}
2268       else if ((eh->root.type == bfd_link_hash_defined
2269 		|| eh->root.type == bfd_link_hash_defweak)
2270 	       && eh->root.u.def.section)
2271 	{
2272 	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2273 	  if (eh->root.u.def.section->output_section)
2274 	    value += eh->root.u.def.section->output_section->vma;
2275 	  else
2276 	    value += eh->root.u.def.section->vma;
2277 	}
2278       else
2279 	/* We have an undefined function reference.  */
2280 	value = 0;
2281 
2282       /* We do not need to include the output offset of the DLT section
2283 	 here because we are modifying the in-memory contents.  */
2284       bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2285     }
2286 
2287   /* Create a relocation for the DLT entry associated with this symbol.
2288      When building a shared library the symbol does not have to be dynamic.  */
2289   if (hh->want_dlt
2290       && (elf64_hppa_dynamic_symbol_p (eh, info) || bfd_link_pic (info)))
2291     {
2292       Elf_Internal_Rela rel;
2293       bfd_byte *loc;
2294       int dynindx;
2295 
2296       /* We may need to do a relocation against a local symbol, in
2297 	 which case we have to look up it's dynamic symbol index off
2298 	 the local symbol hash table.  */
2299       if (eh && eh->dynindx != -1)
2300 	dynindx = eh->dynindx;
2301       else
2302 	dynindx
2303 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2304 						hh->sym_indx);
2305 
2306       /* Create a dynamic relocation for this entry.  Do include the output
2307 	 offset of the DLT entry since we need an absolute address in the
2308 	 resulting object file.  */
2309       rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2310 		      + sdlt->output_section->vma);
2311       if (eh && eh->type == STT_FUNC)
2312 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2313       else
2314 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2315       rel.r_addend = 0;
2316 
2317       loc = sdltrel->contents;
2318       loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2319       bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2320     }
2321   return TRUE;
2322 }
2323 
2324 /* Finalize the dynamic relocations.  Specifically the FPTR relocations
2325    for dynamic functions used to initialize static data.  */
2326 
2327 static bfd_boolean
2328 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2329 			      void *data)
2330 {
2331   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2332   struct bfd_link_info *info = (struct bfd_link_info *)data;
2333   struct elf64_hppa_link_hash_table *hppa_info;
2334   int dynamic_symbol;
2335 
2336   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2337 
2338   if (!dynamic_symbol && !bfd_link_pic (info))
2339     return TRUE;
2340 
2341   if (hh->reloc_entries)
2342     {
2343       struct elf64_hppa_dyn_reloc_entry *rent;
2344       int dynindx;
2345 
2346       hppa_info = hppa_link_hash_table (info);
2347       if (hppa_info == NULL)
2348 	return FALSE;
2349 
2350       /* We may need to do a relocation against a local symbol, in
2351 	 which case we have to look up it's dynamic symbol index off
2352 	 the local symbol hash table.  */
2353       if (eh->dynindx != -1)
2354 	dynindx = eh->dynindx;
2355       else
2356 	dynindx
2357 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2358 						hh->sym_indx);
2359 
2360       for (rent = hh->reloc_entries; rent; rent = rent->next)
2361 	{
2362 	  Elf_Internal_Rela rel;
2363 	  bfd_byte *loc;
2364 
2365 	  /* Allocate one iff we are building a shared library, the relocation
2366 	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2367 	  if (!bfd_link_pic (info)
2368 	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2369 	    continue;
2370 
2371 	  /* Create a dynamic relocation for this entry.
2372 
2373 	     We need the output offset for the reloc's section because
2374 	     we are creating an absolute address in the resulting object
2375 	     file.  */
2376 	  rel.r_offset = (rent->offset + rent->sec->output_offset
2377 			  + rent->sec->output_section->vma);
2378 
2379 	  /* An FPTR64 relocation implies that we took the address of
2380 	     a function and that the function has an entry in the .opd
2381 	     section.  We want the FPTR64 relocation to reference the
2382 	     entry in .opd.
2383 
2384 	     We could munge the symbol value in the dynamic symbol table
2385 	     (in fact we already do for functions with global scope) to point
2386 	     to the .opd entry.  Then we could use that dynamic symbol in
2387 	     this relocation.
2388 
2389 	     Or we could do something sensible, not munge the symbol's
2390 	     address and instead just use a different symbol to reference
2391 	     the .opd entry.  At least that seems sensible until you
2392 	     realize there's no local dynamic symbols we can use for that
2393 	     purpose.  Thus the hair in the check_relocs routine.
2394 
2395 	     We use a section symbol recorded by check_relocs as the
2396 	     base symbol for the relocation.  The addend is the difference
2397 	     between the section symbol and the address of the .opd entry.  */
2398 	  if (bfd_link_pic (info)
2399 	      && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2400 	    {
2401 	      bfd_vma value, value2;
2402 
2403 	      /* First compute the address of the opd entry for this symbol.  */
2404 	      value = (hh->opd_offset
2405 		       + hppa_info->opd_sec->output_section->vma
2406 		       + hppa_info->opd_sec->output_offset);
2407 
2408 	      /* Compute the value of the start of the section with
2409 		 the relocation.  */
2410 	      value2 = (rent->sec->output_section->vma
2411 			+ rent->sec->output_offset);
2412 
2413 	      /* Compute the difference between the start of the section
2414 		 with the relocation and the opd entry.  */
2415 	      value -= value2;
2416 
2417 	      /* The result becomes the addend of the relocation.  */
2418 	      rel.r_addend = value;
2419 
2420 	      /* The section symbol becomes the symbol for the dynamic
2421 		 relocation.  */
2422 	      dynindx
2423 		= _bfd_elf_link_lookup_local_dynindx (info,
2424 						      rent->sec->owner,
2425 						      rent->sec_symndx);
2426 	    }
2427 	  else
2428 	    rel.r_addend = rent->addend;
2429 
2430 	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2431 
2432 	  loc = hppa_info->other_rel_sec->contents;
2433 	  loc += (hppa_info->other_rel_sec->reloc_count++
2434 		  * sizeof (Elf64_External_Rela));
2435 	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2436 				     &rel, loc);
2437 	}
2438     }
2439 
2440   return TRUE;
2441 }
2442 
2443 /* Used to decide how to sort relocs in an optimal manner for the
2444    dynamic linker, before writing them out.  */
2445 
2446 static enum elf_reloc_type_class
2447 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2448 			     const asection *rel_sec ATTRIBUTE_UNUSED,
2449 			     const Elf_Internal_Rela *rela)
2450 {
2451   if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452     return reloc_class_relative;
2453 
2454   switch ((int) ELF64_R_TYPE (rela->r_info))
2455     {
2456     case R_PARISC_IPLT:
2457       return reloc_class_plt;
2458     case R_PARISC_COPY:
2459       return reloc_class_copy;
2460     default:
2461       return reloc_class_normal;
2462     }
2463 }
2464 
2465 /* Finish up the dynamic sections.  */
2466 
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 				    struct bfd_link_info *info)
2470 {
2471   bfd *dynobj;
2472   asection *sdyn;
2473   struct elf64_hppa_link_hash_table *hppa_info;
2474 
2475   hppa_info = hppa_link_hash_table (info);
2476   if (hppa_info == NULL)
2477     return FALSE;
2478 
2479   /* Finalize the contents of the .opd section.  */
2480   elf_link_hash_traverse (elf_hash_table (info),
2481 			  elf64_hppa_finalize_opd,
2482 			  info);
2483 
2484   elf_link_hash_traverse (elf_hash_table (info),
2485 			  elf64_hppa_finalize_dynreloc,
2486 			  info);
2487 
2488   /* Finalize the contents of the .dlt section.  */
2489   dynobj = elf_hash_table (info)->dynobj;
2490   /* Finalize the contents of the .dlt section.  */
2491   elf_link_hash_traverse (elf_hash_table (info),
2492 			  elf64_hppa_finalize_dlt,
2493 			  info);
2494 
2495   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496 
2497   if (elf_hash_table (info)->dynamic_sections_created)
2498     {
2499       Elf64_External_Dyn *dyncon, *dynconend;
2500 
2501       BFD_ASSERT (sdyn != NULL);
2502 
2503       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505       for (; dyncon < dynconend; dyncon++)
2506 	{
2507 	  Elf_Internal_Dyn dyn;
2508 	  asection *s;
2509 
2510 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511 
2512 	  switch (dyn.d_tag)
2513 	    {
2514 	    default:
2515 	      break;
2516 
2517 	    case DT_HP_LOAD_MAP:
2518 	      /* Compute the absolute address of 16byte scratchpad area
2519 		 for the dynamic linker.
2520 
2521 		 By convention the linker script will allocate the scratchpad
2522 		 area at the start of the .data section.  So all we have to
2523 		 to is find the start of the .data section.  */
2524 	      s = bfd_get_section_by_name (output_bfd, ".data");
2525 	      if (!s)
2526 		return FALSE;
2527 	      dyn.d_un.d_ptr = s->vma;
2528 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2529 	      break;
2530 
2531 	    case DT_PLTGOT:
2532 	      /* HP's use PLTGOT to set the GOT register.  */
2533 	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2534 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2535 	      break;
2536 
2537 	    case DT_JMPREL:
2538 	      s = hppa_info->plt_rel_sec;
2539 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2540 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2541 	      break;
2542 
2543 	    case DT_PLTRELSZ:
2544 	      s = hppa_info->plt_rel_sec;
2545 	      dyn.d_un.d_val = s->size;
2546 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2547 	      break;
2548 
2549 	    case DT_RELA:
2550 	      s = hppa_info->other_rel_sec;
2551 	      if (! s || ! s->size)
2552 		s = hppa_info->dlt_rel_sec;
2553 	      if (! s || ! s->size)
2554 		s = hppa_info->opd_rel_sec;
2555 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2556 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2557 	      break;
2558 
2559 	    case DT_RELASZ:
2560 	      s = hppa_info->other_rel_sec;
2561 	      dyn.d_un.d_val = s->size;
2562 	      s = hppa_info->dlt_rel_sec;
2563 	      dyn.d_un.d_val += s->size;
2564 	      s = hppa_info->opd_rel_sec;
2565 	      dyn.d_un.d_val += s->size;
2566 	      /* There is some question about whether or not the size of
2567 		 the PLT relocs should be included here.  HP's tools do
2568 		 it, so we'll emulate them.  */
2569 	      s = hppa_info->plt_rel_sec;
2570 	      dyn.d_un.d_val += s->size;
2571 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2572 	      break;
2573 
2574 	    }
2575 	}
2576     }
2577 
2578   return TRUE;
2579 }
2580 
2581 /* Support for core dump NOTE sections.  */
2582 
2583 static bfd_boolean
2584 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2585 {
2586   int offset;
2587   size_t size;
2588 
2589   switch (note->descsz)
2590     {
2591       default:
2592 	return FALSE;
2593 
2594       case 760:		/* Linux/hppa */
2595 	/* pr_cursig */
2596 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2597 
2598 	/* pr_pid */
2599 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2600 
2601 	/* pr_reg */
2602 	offset = 112;
2603 	size = 640;
2604 
2605 	break;
2606     }
2607 
2608   /* Make a ".reg/999" section.  */
2609   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2610 					  size, note->descpos + offset);
2611 }
2612 
2613 static bfd_boolean
2614 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2615 {
2616   char * command;
2617   int n;
2618 
2619   switch (note->descsz)
2620     {
2621     default:
2622       return FALSE;
2623 
2624     case 136:		/* Linux/hppa elf_prpsinfo.  */
2625       elf_tdata (abfd)->core->program
2626 	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2627       elf_tdata (abfd)->core->command
2628 	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2629     }
2630 
2631   /* Note that for some reason, a spurious space is tacked
2632      onto the end of the args in some (at least one anyway)
2633      implementations, so strip it off if it exists.  */
2634   command = elf_tdata (abfd)->core->command;
2635   n = strlen (command);
2636 
2637   if (0 < n && command[n - 1] == ' ')
2638     command[n - 1] = '\0';
2639 
2640   return TRUE;
2641 }
2642 
2643 /* Return the number of additional phdrs we will need.
2644 
2645    The generic ELF code only creates PT_PHDRs for executables.  The HP
2646    dynamic linker requires PT_PHDRs for dynamic libraries too.
2647 
2648    This routine indicates that the backend needs one additional program
2649    header for that case.
2650 
2651    Note we do not have access to the link info structure here, so we have
2652    to guess whether or not we are building a shared library based on the
2653    existence of a .interp section.  */
2654 
2655 static int
2656 elf64_hppa_additional_program_headers (bfd *abfd,
2657 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2658 {
2659   asection *s;
2660 
2661   /* If we are creating a shared library, then we have to create a
2662      PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2663   s = bfd_get_section_by_name (abfd, ".interp");
2664   if (! s)
2665     return 1;
2666   return 0;
2667 }
2668 
2669 static bfd_boolean
2670 elf64_hppa_allow_non_load_phdr (bfd *abfd ATTRIBUTE_UNUSED,
2671 				const Elf_Internal_Phdr *phdr ATTRIBUTE_UNUSED,
2672 				unsigned int count ATTRIBUTE_UNUSED)
2673 {
2674   return TRUE;
2675 }
2676 
2677 /* Allocate and initialize any program headers required by this
2678    specific backend.
2679 
2680    The generic ELF code only creates PT_PHDRs for executables.  The HP
2681    dynamic linker requires PT_PHDRs for dynamic libraries too.
2682 
2683    This allocates the PT_PHDR and initializes it in a manner suitable
2684    for the HP linker.
2685 
2686    Note we do not have access to the link info structure here, so we have
2687    to guess whether or not we are building a shared library based on the
2688    existence of a .interp section.  */
2689 
2690 static bfd_boolean
2691 elf64_hppa_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
2692 {
2693   struct elf_segment_map *m;
2694 
2695   m = elf_seg_map (abfd);
2696   if (info != NULL && !info->user_phdrs && m != NULL && m->p_type != PT_PHDR)
2697     {
2698       m = ((struct elf_segment_map *)
2699 	   bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2700       if (m == NULL)
2701 	return FALSE;
2702 
2703       m->p_type = PT_PHDR;
2704       m->p_flags = PF_R | PF_X;
2705       m->p_flags_valid = 1;
2706       m->p_paddr_valid = 1;
2707       m->includes_phdrs = 1;
2708 
2709       m->next = elf_seg_map (abfd);
2710       elf_seg_map (abfd) = m;
2711     }
2712 
2713   for (m = elf_seg_map (abfd) ; m != NULL; m = m->next)
2714     if (m->p_type == PT_LOAD)
2715       {
2716 	unsigned int i;
2717 
2718 	for (i = 0; i < m->count; i++)
2719 	  {
2720 	    /* The code "hint" is not really a hint.  It is a requirement
2721 	       for certain versions of the HP dynamic linker.  Worse yet,
2722 	       it must be set even if the shared library does not have
2723 	       any code in its "text" segment (thus the check for .hash
2724 	       to catch this situation).  */
2725 	    if (m->sections[i]->flags & SEC_CODE
2726 		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2727 	      m->p_flags |= (PF_X | PF_HP_CODE);
2728 	  }
2729       }
2730 
2731   return TRUE;
2732 }
2733 
2734 /* Called when writing out an object file to decide the type of a
2735    symbol.  */
2736 static int
2737 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2738 				int type)
2739 {
2740   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2741     return STT_PARISC_MILLI;
2742   else
2743     return type;
2744 }
2745 
2746 /* Support HP specific sections for core files.  */
2747 
2748 static bfd_boolean
2749 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2750 			      const char *typename)
2751 {
2752   if (hdr->p_type == PT_HP_CORE_KERNEL)
2753     {
2754       asection *sect;
2755 
2756       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2757 	return FALSE;
2758 
2759       sect = bfd_make_section_anyway (abfd, ".kernel");
2760       if (sect == NULL)
2761 	return FALSE;
2762       sect->size = hdr->p_filesz;
2763       sect->filepos = hdr->p_offset;
2764       sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2765       return TRUE;
2766     }
2767 
2768   if (hdr->p_type == PT_HP_CORE_PROC)
2769     {
2770       int sig;
2771 
2772       if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2773 	return FALSE;
2774       if (bfd_bread (&sig, 4, abfd) != 4)
2775 	return FALSE;
2776 
2777       elf_tdata (abfd)->core->signal = sig;
2778 
2779       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2780 	return FALSE;
2781 
2782       /* GDB uses the ".reg" section to read register contents.  */
2783       return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2784 					      hdr->p_offset);
2785     }
2786 
2787   if (hdr->p_type == PT_HP_CORE_LOADABLE
2788       || hdr->p_type == PT_HP_CORE_STACK
2789       || hdr->p_type == PT_HP_CORE_MMF)
2790     hdr->p_type = PT_LOAD;
2791 
2792   return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2793 }
2794 
2795 /* Hook called by the linker routine which adds symbols from an object
2796    file.  HP's libraries define symbols with HP specific section
2797    indices, which we have to handle.  */
2798 
2799 static bfd_boolean
2800 elf_hppa_add_symbol_hook (bfd *abfd,
2801 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2802 			  Elf_Internal_Sym *sym,
2803 			  const char **namep ATTRIBUTE_UNUSED,
2804 			  flagword *flagsp ATTRIBUTE_UNUSED,
2805 			  asection **secp,
2806 			  bfd_vma *valp)
2807 {
2808   unsigned int sec_index = sym->st_shndx;
2809 
2810   switch (sec_index)
2811     {
2812     case SHN_PARISC_ANSI_COMMON:
2813       *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2814       (*secp)->flags |= SEC_IS_COMMON;
2815       *valp = sym->st_size;
2816       break;
2817 
2818     case SHN_PARISC_HUGE_COMMON:
2819       *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2820       (*secp)->flags |= SEC_IS_COMMON;
2821       *valp = sym->st_size;
2822       break;
2823     }
2824 
2825   return TRUE;
2826 }
2827 
2828 static bfd_boolean
2829 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2830 					 void *data)
2831 {
2832   struct bfd_link_info *info = data;
2833 
2834   /* If we are not creating a shared library, and this symbol is
2835      referenced by a shared library but is not defined anywhere, then
2836      the generic code will warn that it is undefined.
2837 
2838      This behavior is undesirable on HPs since the standard shared
2839      libraries contain references to undefined symbols.
2840 
2841      So we twiddle the flags associated with such symbols so that they
2842      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2843 
2844      Ultimately we should have better controls over the generic ELF BFD
2845      linker code.  */
2846   if (! bfd_link_relocatable (info)
2847       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2848       && h->root.type == bfd_link_hash_undefined
2849       && h->ref_dynamic
2850       && !h->ref_regular)
2851     {
2852       h->ref_dynamic = 0;
2853       h->pointer_equality_needed = 1;
2854     }
2855 
2856   return TRUE;
2857 }
2858 
2859 static bfd_boolean
2860 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2861 					 void *data)
2862 {
2863   struct bfd_link_info *info = data;
2864 
2865   /* If we are not creating a shared library, and this symbol is
2866      referenced by a shared library but is not defined anywhere, then
2867      the generic code will warn that it is undefined.
2868 
2869      This behavior is undesirable on HPs since the standard shared
2870      libraries contain references to undefined symbols.
2871 
2872      So we twiddle the flags associated with such symbols so that they
2873      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2874 
2875      Ultimately we should have better controls over the generic ELF BFD
2876      linker code.  */
2877   if (! bfd_link_relocatable (info)
2878       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2879       && h->root.type == bfd_link_hash_undefined
2880       && !h->ref_dynamic
2881       && !h->ref_regular
2882       && h->pointer_equality_needed)
2883     {
2884       h->ref_dynamic = 1;
2885       h->pointer_equality_needed = 0;
2886     }
2887 
2888   return TRUE;
2889 }
2890 
2891 static bfd_boolean
2892 elf_hppa_is_dynamic_loader_symbol (const char *name)
2893 {
2894   return (! strcmp (name, "__CPU_REVISION")
2895 	  || ! strcmp (name, "__CPU_KEYBITS_1")
2896 	  || ! strcmp (name, "__SYSTEM_ID_D")
2897 	  || ! strcmp (name, "__FPU_MODEL")
2898 	  || ! strcmp (name, "__FPU_REVISION")
2899 	  || ! strcmp (name, "__ARGC")
2900 	  || ! strcmp (name, "__ARGV")
2901 	  || ! strcmp (name, "__ENVP")
2902 	  || ! strcmp (name, "__TLS_SIZE_D")
2903 	  || ! strcmp (name, "__LOAD_INFO")
2904 	  || ! strcmp (name, "__systab"));
2905 }
2906 
2907 /* Record the lowest address for the data and text segments.  */
2908 static void
2909 elf_hppa_record_segment_addrs (bfd *abfd,
2910 			       asection *section,
2911 			       void *data)
2912 {
2913   struct elf64_hppa_link_hash_table *hppa_info = data;
2914 
2915   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2916     {
2917       bfd_vma value;
2918       Elf_Internal_Phdr *p;
2919 
2920       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2921       BFD_ASSERT (p != NULL);
2922       value = p->p_vaddr;
2923 
2924       if (section->flags & SEC_READONLY)
2925 	{
2926 	  if (value < hppa_info->text_segment_base)
2927 	    hppa_info->text_segment_base = value;
2928 	}
2929       else
2930 	{
2931 	  if (value < hppa_info->data_segment_base)
2932 	    hppa_info->data_segment_base = value;
2933 	}
2934     }
2935 }
2936 
2937 /* Called after we have seen all the input files/sections, but before
2938    final symbol resolution and section placement has been determined.
2939 
2940    We use this hook to (possibly) provide a value for __gp, then we
2941    fall back to the generic ELF final link routine.  */
2942 
2943 static bfd_boolean
2944 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2945 {
2946   struct stat buf;
2947   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2948 
2949   if (hppa_info == NULL)
2950     return FALSE;
2951 
2952   if (! bfd_link_relocatable (info))
2953     {
2954       struct elf_link_hash_entry *gp;
2955       bfd_vma gp_val;
2956 
2957       /* The linker script defines a value for __gp iff it was referenced
2958 	 by one of the objects being linked.  First try to find the symbol
2959 	 in the hash table.  If that fails, just compute the value __gp
2960 	 should have had.  */
2961       gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2962 				 FALSE, FALSE);
2963 
2964       if (gp)
2965 	{
2966 
2967 	  /* Adjust the value of __gp as we may want to slide it into the
2968 	     .plt section so that the stubs can access PLT entries without
2969 	     using an addil sequence.  */
2970 	  gp->root.u.def.value += hppa_info->gp_offset;
2971 
2972 	  gp_val = (gp->root.u.def.section->output_section->vma
2973 		    + gp->root.u.def.section->output_offset
2974 		    + gp->root.u.def.value);
2975 	}
2976       else
2977 	{
2978 	  asection *sec;
2979 
2980 	  /* First look for a .plt section.  If found, then __gp is the
2981 	     address of the .plt + gp_offset.
2982 
2983 	     If no .plt is found, then look for .dlt, .opd and .data (in
2984 	     that order) and set __gp to the base address of whichever
2985 	     section is found first.  */
2986 
2987 	  sec = hppa_info->plt_sec;
2988 	  if (sec && ! (sec->flags & SEC_EXCLUDE))
2989 	    gp_val = (sec->output_offset
2990 		      + sec->output_section->vma
2991 		      + hppa_info->gp_offset);
2992 	  else
2993 	    {
2994 	      sec = hppa_info->dlt_sec;
2995 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2996 		sec = hppa_info->opd_sec;
2997 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2998 		sec = bfd_get_section_by_name (abfd, ".data");
2999 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3000 		gp_val = 0;
3001 	      else
3002 		gp_val = sec->output_offset + sec->output_section->vma;
3003 	    }
3004 	}
3005 
3006       /* Install whatever value we found/computed for __gp.  */
3007       _bfd_set_gp_value (abfd, gp_val);
3008     }
3009 
3010   /* We need to know the base of the text and data segments so that we
3011      can perform SEGREL relocations.  We will record the base addresses
3012      when we encounter the first SEGREL relocation.  */
3013   hppa_info->text_segment_base = (bfd_vma)-1;
3014   hppa_info->data_segment_base = (bfd_vma)-1;
3015 
3016   /* HP's shared libraries have references to symbols that are not
3017      defined anywhere.  The generic ELF BFD linker code will complain
3018      about such symbols.
3019 
3020      So we detect the losing case and arrange for the flags on the symbol
3021      to indicate that it was never referenced.  This keeps the generic
3022      ELF BFD link code happy and appears to not create any secondary
3023      problems.  Ultimately we need a way to control the behavior of the
3024      generic ELF BFD link code better.  */
3025   elf_link_hash_traverse (elf_hash_table (info),
3026 			  elf_hppa_unmark_useless_dynamic_symbols,
3027 			  info);
3028 
3029   /* Invoke the regular ELF backend linker to do all the work.  */
3030   if (!bfd_elf_final_link (abfd, info))
3031     return FALSE;
3032 
3033   elf_link_hash_traverse (elf_hash_table (info),
3034 			  elf_hppa_remark_useless_dynamic_symbols,
3035 			  info);
3036 
3037   /* If we're producing a final executable, sort the contents of the
3038      unwind section. */
3039   if (bfd_link_relocatable (info))
3040     return TRUE;
3041 
3042   /* Do not attempt to sort non-regular files.  This is here
3043      especially for configure scripts and kernel builds which run
3044      tests with "ld [...] -o /dev/null".  */
3045   if (stat (abfd->filename, &buf) != 0
3046       || !S_ISREG(buf.st_mode))
3047     return TRUE;
3048 
3049   return elf_hppa_sort_unwind (abfd);
3050 }
3051 
3052 /* Relocate the given INSN.  VALUE should be the actual value we want
3053    to insert into the instruction, ie by this point we should not be
3054    concerned with computing an offset relative to the DLT, PC, etc.
3055    Instead this routine is meant to handle the bit manipulations needed
3056    to insert the relocation into the given instruction.  */
3057 
3058 static int
3059 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3060 {
3061   switch (r_type)
3062     {
3063     /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3064        the "B" instruction.  */
3065     case R_PARISC_PCREL22F:
3066     case R_PARISC_PCREL22C:
3067       return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3068 
3069       /* This is any 12 bit branch.  */
3070     case R_PARISC_PCREL12F:
3071       return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3072 
3073     /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3074        to the "B" instruction as well as BE.  */
3075     case R_PARISC_PCREL17F:
3076     case R_PARISC_DIR17F:
3077     case R_PARISC_DIR17R:
3078     case R_PARISC_PCREL17C:
3079     case R_PARISC_PCREL17R:
3080       return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3081 
3082     /* ADDIL or LDIL instructions.  */
3083     case R_PARISC_DLTREL21L:
3084     case R_PARISC_DLTIND21L:
3085     case R_PARISC_LTOFF_FPTR21L:
3086     case R_PARISC_PCREL21L:
3087     case R_PARISC_LTOFF_TP21L:
3088     case R_PARISC_DPREL21L:
3089     case R_PARISC_PLTOFF21L:
3090     case R_PARISC_DIR21L:
3091       return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3092 
3093     /* LDO and integer loads/stores with 14 bit displacements.  */
3094     case R_PARISC_DLTREL14R:
3095     case R_PARISC_DLTREL14F:
3096     case R_PARISC_DLTIND14R:
3097     case R_PARISC_DLTIND14F:
3098     case R_PARISC_LTOFF_FPTR14R:
3099     case R_PARISC_PCREL14R:
3100     case R_PARISC_PCREL14F:
3101     case R_PARISC_LTOFF_TP14R:
3102     case R_PARISC_LTOFF_TP14F:
3103     case R_PARISC_DPREL14R:
3104     case R_PARISC_DPREL14F:
3105     case R_PARISC_PLTOFF14R:
3106     case R_PARISC_PLTOFF14F:
3107     case R_PARISC_DIR14R:
3108     case R_PARISC_DIR14F:
3109       return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3110 
3111     /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3112     case R_PARISC_LTOFF_FPTR16F:
3113     case R_PARISC_PCREL16F:
3114     case R_PARISC_LTOFF_TP16F:
3115     case R_PARISC_GPREL16F:
3116     case R_PARISC_PLTOFF16F:
3117     case R_PARISC_DIR16F:
3118     case R_PARISC_LTOFF16F:
3119       return (insn & ~0xffff) | re_assemble_16 (sym_value);
3120 
3121     /* Doubleword loads and stores with a 14 bit displacement.  */
3122     case R_PARISC_DLTREL14DR:
3123     case R_PARISC_DLTIND14DR:
3124     case R_PARISC_LTOFF_FPTR14DR:
3125     case R_PARISC_LTOFF_FPTR16DF:
3126     case R_PARISC_PCREL14DR:
3127     case R_PARISC_PCREL16DF:
3128     case R_PARISC_LTOFF_TP14DR:
3129     case R_PARISC_LTOFF_TP16DF:
3130     case R_PARISC_DPREL14DR:
3131     case R_PARISC_GPREL16DF:
3132     case R_PARISC_PLTOFF14DR:
3133     case R_PARISC_PLTOFF16DF:
3134     case R_PARISC_DIR14DR:
3135     case R_PARISC_DIR16DF:
3136     case R_PARISC_LTOFF16DF:
3137       return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3138 				 | ((sym_value & 0x1ff8) << 1));
3139 
3140     /* Floating point single word load/store instructions.  */
3141     case R_PARISC_DLTREL14WR:
3142     case R_PARISC_DLTIND14WR:
3143     case R_PARISC_LTOFF_FPTR14WR:
3144     case R_PARISC_LTOFF_FPTR16WF:
3145     case R_PARISC_PCREL14WR:
3146     case R_PARISC_PCREL16WF:
3147     case R_PARISC_LTOFF_TP14WR:
3148     case R_PARISC_LTOFF_TP16WF:
3149     case R_PARISC_DPREL14WR:
3150     case R_PARISC_GPREL16WF:
3151     case R_PARISC_PLTOFF14WR:
3152     case R_PARISC_PLTOFF16WF:
3153     case R_PARISC_DIR16WF:
3154     case R_PARISC_DIR14WR:
3155     case R_PARISC_LTOFF16WF:
3156       return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3157 				 | ((sym_value & 0x1ffc) << 1));
3158 
3159     default:
3160       return insn;
3161     }
3162 }
3163 
3164 /* Compute the value for a relocation (REL) during a final link stage,
3165    then insert the value into the proper location in CONTENTS.
3166 
3167    VALUE is a tentative value for the relocation and may be overridden
3168    and modified here based on the specific relocation to be performed.
3169 
3170    For example we do conversions for PC-relative branches in this routine
3171    or redirection of calls to external routines to stubs.
3172 
3173    The work of actually applying the relocation is left to a helper
3174    routine in an attempt to reduce the complexity and size of this
3175    function.  */
3176 
3177 static bfd_reloc_status_type
3178 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3179 			      bfd *input_bfd,
3180 			      bfd *output_bfd,
3181 			      asection *input_section,
3182 			      bfd_byte *contents,
3183 			      bfd_vma value,
3184 			      struct bfd_link_info *info,
3185 			      asection *sym_sec,
3186 			      struct elf_link_hash_entry *eh)
3187 {
3188   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3189   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3190   bfd_vma *local_offsets;
3191   Elf_Internal_Shdr *symtab_hdr;
3192   int insn;
3193   bfd_vma max_branch_offset = 0;
3194   bfd_vma offset = rel->r_offset;
3195   bfd_signed_vma addend = rel->r_addend;
3196   reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3197   unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3198   unsigned int r_type = howto->type;
3199   bfd_byte *hit_data = contents + offset;
3200 
3201   if (hppa_info == NULL)
3202     return bfd_reloc_notsupported;
3203 
3204   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3205   local_offsets = elf_local_got_offsets (input_bfd);
3206   insn = bfd_get_32 (input_bfd, hit_data);
3207 
3208   switch (r_type)
3209     {
3210     case R_PARISC_NONE:
3211       break;
3212 
3213     /* Basic function call support.
3214 
3215        Note for a call to a function defined in another dynamic library
3216        we want to redirect the call to a stub.  */
3217 
3218     /* PC relative relocs without an implicit offset.  */
3219     case R_PARISC_PCREL21L:
3220     case R_PARISC_PCREL14R:
3221     case R_PARISC_PCREL14F:
3222     case R_PARISC_PCREL14WR:
3223     case R_PARISC_PCREL14DR:
3224     case R_PARISC_PCREL16F:
3225     case R_PARISC_PCREL16WF:
3226     case R_PARISC_PCREL16DF:
3227       {
3228 	/* If this is a call to a function defined in another dynamic
3229 	   library, then redirect the call to the local stub for this
3230 	   function.  */
3231 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3232 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3233 		   + hppa_info->stub_sec->output_section->vma);
3234 
3235 	/* Turn VALUE into a proper PC relative address.  */
3236 	value -= (offset + input_section->output_offset
3237 		  + input_section->output_section->vma);
3238 
3239 	/* Adjust for any field selectors.  */
3240 	if (r_type == R_PARISC_PCREL21L)
3241 	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3242 	else if (r_type == R_PARISC_PCREL14F
3243 		 || r_type == R_PARISC_PCREL16F
3244 		 || r_type == R_PARISC_PCREL16WF
3245 		 || r_type == R_PARISC_PCREL16DF)
3246 	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3247 	else
3248 	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3249 
3250 	/* Apply the relocation to the given instruction.  */
3251 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3252 	break;
3253       }
3254 
3255     case R_PARISC_PCREL12F:
3256     case R_PARISC_PCREL22F:
3257     case R_PARISC_PCREL17F:
3258     case R_PARISC_PCREL22C:
3259     case R_PARISC_PCREL17C:
3260     case R_PARISC_PCREL17R:
3261       {
3262 	/* If this is a call to a function defined in another dynamic
3263 	   library, then redirect the call to the local stub for this
3264 	   function.  */
3265 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3266 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3267 		   + hppa_info->stub_sec->output_section->vma);
3268 
3269 	/* Turn VALUE into a proper PC relative address.  */
3270 	value -= (offset + input_section->output_offset
3271 		  + input_section->output_section->vma);
3272 	addend -= 8;
3273 
3274 	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3275 	  max_branch_offset = (1 << (22-1)) << 2;
3276 	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3277 	  max_branch_offset = (1 << (17-1)) << 2;
3278 	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3279 	  max_branch_offset = (1 << (12-1)) << 2;
3280 
3281 	/* Make sure we can reach the branch target.  */
3282 	if (max_branch_offset != 0
3283 	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3284 	  {
3285 	    _bfd_error_handler
3286 	      /* xgettext:c-format */
3287 	      (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3288 	      input_bfd,
3289 	      input_section,
3290 	      offset,
3291 	      eh ? eh->root.root.string : "unknown");
3292 	    bfd_set_error (bfd_error_bad_value);
3293 	    return bfd_reloc_overflow;
3294 	  }
3295 
3296 	/* Adjust for any field selectors.  */
3297 	if (r_type == R_PARISC_PCREL17R)
3298 	  value = hppa_field_adjust (value, addend, e_rsel);
3299 	else
3300 	  value = hppa_field_adjust (value, addend, e_fsel);
3301 
3302 	/* All branches are implicitly shifted by 2 places.  */
3303 	value >>= 2;
3304 
3305 	/* Apply the relocation to the given instruction.  */
3306 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3307 	break;
3308       }
3309 
3310     /* Indirect references to data through the DLT.  */
3311     case R_PARISC_DLTIND14R:
3312     case R_PARISC_DLTIND14F:
3313     case R_PARISC_DLTIND14DR:
3314     case R_PARISC_DLTIND14WR:
3315     case R_PARISC_DLTIND21L:
3316     case R_PARISC_LTOFF_FPTR14R:
3317     case R_PARISC_LTOFF_FPTR14DR:
3318     case R_PARISC_LTOFF_FPTR14WR:
3319     case R_PARISC_LTOFF_FPTR21L:
3320     case R_PARISC_LTOFF_FPTR16F:
3321     case R_PARISC_LTOFF_FPTR16WF:
3322     case R_PARISC_LTOFF_FPTR16DF:
3323     case R_PARISC_LTOFF_TP21L:
3324     case R_PARISC_LTOFF_TP14R:
3325     case R_PARISC_LTOFF_TP14F:
3326     case R_PARISC_LTOFF_TP14WR:
3327     case R_PARISC_LTOFF_TP14DR:
3328     case R_PARISC_LTOFF_TP16F:
3329     case R_PARISC_LTOFF_TP16WF:
3330     case R_PARISC_LTOFF_TP16DF:
3331     case R_PARISC_LTOFF16F:
3332     case R_PARISC_LTOFF16WF:
3333     case R_PARISC_LTOFF16DF:
3334       {
3335 	bfd_vma off;
3336 
3337 	/* If this relocation was against a local symbol, then we still
3338 	   have not set up the DLT entry (it's not convenient to do so
3339 	   in the "finalize_dlt" routine because it is difficult to get
3340 	   to the local symbol's value).
3341 
3342 	   So, if this is a local symbol (h == NULL), then we need to
3343 	   fill in its DLT entry.
3344 
3345 	   Similarly we may still need to set up an entry in .opd for
3346 	   a local function which had its address taken.  */
3347 	if (hh == NULL)
3348 	  {
3349 	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3350 
3351             if (local_offsets == NULL)
3352               abort ();
3353 
3354 	    /* Now do .opd creation if needed.  */
3355 	    if (r_type == R_PARISC_LTOFF_FPTR14R
3356 		|| r_type == R_PARISC_LTOFF_FPTR14DR
3357 		|| r_type == R_PARISC_LTOFF_FPTR14WR
3358 		|| r_type == R_PARISC_LTOFF_FPTR21L
3359 		|| r_type == R_PARISC_LTOFF_FPTR16F
3360 		|| r_type == R_PARISC_LTOFF_FPTR16WF
3361 		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3362 	      {
3363 		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3364 		off = local_opd_offsets[r_symndx];
3365 
3366 		/* The last bit records whether we've already initialised
3367 		   this local .opd entry.  */
3368 		if ((off & 1) != 0)
3369 		  {
3370 		    BFD_ASSERT (off != (bfd_vma) -1);
3371 		    off &= ~1;
3372 		  }
3373 		else
3374 		  {
3375 		    local_opd_offsets[r_symndx] |= 1;
3376 
3377 		    /* The first two words of an .opd entry are zero.  */
3378 		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3379 
3380 		    /* The next word is the address of the function.  */
3381 		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3382 				(hppa_info->opd_sec->contents + off + 16));
3383 
3384 		    /* The last word is our local __gp value.  */
3385 		    value = _bfd_get_gp_value
3386 			      (hppa_info->opd_sec->output_section->owner);
3387 		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3388 				(hppa_info->opd_sec->contents + off + 24));
3389 		  }
3390 
3391 		/* The DLT value is the address of the .opd entry.  */
3392 		value = (off
3393 			 + hppa_info->opd_sec->output_offset
3394 			 + hppa_info->opd_sec->output_section->vma);
3395 		addend = 0;
3396 	      }
3397 
3398 	    local_dlt_offsets = local_offsets;
3399 	    off = local_dlt_offsets[r_symndx];
3400 
3401 	    if ((off & 1) != 0)
3402 	      {
3403 		BFD_ASSERT (off != (bfd_vma) -1);
3404 		off &= ~1;
3405 	      }
3406 	    else
3407 	      {
3408 		local_dlt_offsets[r_symndx] |= 1;
3409 		bfd_put_64 (hppa_info->dlt_sec->owner,
3410 			    value + addend,
3411 			    hppa_info->dlt_sec->contents + off);
3412 	      }
3413 	  }
3414 	else
3415 	  off = hh->dlt_offset;
3416 
3417 	/* We want the value of the DLT offset for this symbol, not
3418 	   the symbol's actual address.  Note that __gp may not point
3419 	   to the start of the DLT, so we have to compute the absolute
3420 	   address, then subtract out the value of __gp.  */
3421 	value = (off
3422 		 + hppa_info->dlt_sec->output_offset
3423 		 + hppa_info->dlt_sec->output_section->vma);
3424 	value -= _bfd_get_gp_value (output_bfd);
3425 
3426 	/* All DLTIND relocations are basically the same at this point,
3427 	   except that we need different field selectors for the 21bit
3428 	   version vs the 14bit versions.  */
3429 	if (r_type == R_PARISC_DLTIND21L
3430 	    || r_type == R_PARISC_LTOFF_FPTR21L
3431 	    || r_type == R_PARISC_LTOFF_TP21L)
3432 	  value = hppa_field_adjust (value, 0, e_lsel);
3433 	else if (r_type == R_PARISC_DLTIND14F
3434 		 || r_type == R_PARISC_LTOFF_FPTR16F
3435 		 || r_type == R_PARISC_LTOFF_FPTR16WF
3436 		 || r_type == R_PARISC_LTOFF_FPTR16DF
3437 		 || r_type == R_PARISC_LTOFF16F
3438 		 || r_type == R_PARISC_LTOFF16DF
3439 		 || r_type == R_PARISC_LTOFF16WF
3440 		 || r_type == R_PARISC_LTOFF_TP16F
3441 		 || r_type == R_PARISC_LTOFF_TP16WF
3442 		 || r_type == R_PARISC_LTOFF_TP16DF)
3443 	  value = hppa_field_adjust (value, 0, e_fsel);
3444 	else
3445 	  value = hppa_field_adjust (value, 0, e_rsel);
3446 
3447 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3448 	break;
3449       }
3450 
3451     case R_PARISC_DLTREL14R:
3452     case R_PARISC_DLTREL14F:
3453     case R_PARISC_DLTREL14DR:
3454     case R_PARISC_DLTREL14WR:
3455     case R_PARISC_DLTREL21L:
3456     case R_PARISC_DPREL21L:
3457     case R_PARISC_DPREL14WR:
3458     case R_PARISC_DPREL14DR:
3459     case R_PARISC_DPREL14R:
3460     case R_PARISC_DPREL14F:
3461     case R_PARISC_GPREL16F:
3462     case R_PARISC_GPREL16WF:
3463     case R_PARISC_GPREL16DF:
3464       {
3465 	/* Subtract out the global pointer value to make value a DLT
3466 	   relative address.  */
3467 	value -= _bfd_get_gp_value (output_bfd);
3468 
3469 	/* All DLTREL relocations are basically the same at this point,
3470 	   except that we need different field selectors for the 21bit
3471 	   version vs the 14bit versions.  */
3472 	if (r_type == R_PARISC_DLTREL21L
3473 	    || r_type == R_PARISC_DPREL21L)
3474 	  value = hppa_field_adjust (value, addend, e_lrsel);
3475 	else if (r_type == R_PARISC_DLTREL14F
3476 		 || r_type == R_PARISC_DPREL14F
3477 		 || r_type == R_PARISC_GPREL16F
3478 		 || r_type == R_PARISC_GPREL16WF
3479 		 || r_type == R_PARISC_GPREL16DF)
3480 	  value = hppa_field_adjust (value, addend, e_fsel);
3481 	else
3482 	  value = hppa_field_adjust (value, addend, e_rrsel);
3483 
3484 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3485 	break;
3486       }
3487 
3488     case R_PARISC_DIR21L:
3489     case R_PARISC_DIR17R:
3490     case R_PARISC_DIR17F:
3491     case R_PARISC_DIR14R:
3492     case R_PARISC_DIR14F:
3493     case R_PARISC_DIR14WR:
3494     case R_PARISC_DIR14DR:
3495     case R_PARISC_DIR16F:
3496     case R_PARISC_DIR16WF:
3497     case R_PARISC_DIR16DF:
3498       {
3499 	/* All DIR relocations are basically the same at this point,
3500 	   except that branch offsets need to be divided by four, and
3501 	   we need different field selectors.  Note that we don't
3502 	   redirect absolute calls to local stubs.  */
3503 
3504 	if (r_type == R_PARISC_DIR21L)
3505 	  value = hppa_field_adjust (value, addend, e_lrsel);
3506 	else if (r_type == R_PARISC_DIR17F
3507 		 || r_type == R_PARISC_DIR16F
3508 		 || r_type == R_PARISC_DIR16WF
3509 		 || r_type == R_PARISC_DIR16DF
3510 		 || r_type == R_PARISC_DIR14F)
3511 	  value = hppa_field_adjust (value, addend, e_fsel);
3512 	else
3513 	  value = hppa_field_adjust (value, addend, e_rrsel);
3514 
3515 	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3516 	  /* All branches are implicitly shifted by 2 places.  */
3517 	  value >>= 2;
3518 
3519 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3520 	break;
3521       }
3522 
3523     case R_PARISC_PLTOFF21L:
3524     case R_PARISC_PLTOFF14R:
3525     case R_PARISC_PLTOFF14F:
3526     case R_PARISC_PLTOFF14WR:
3527     case R_PARISC_PLTOFF14DR:
3528     case R_PARISC_PLTOFF16F:
3529     case R_PARISC_PLTOFF16WF:
3530     case R_PARISC_PLTOFF16DF:
3531       {
3532 	/* We want the value of the PLT offset for this symbol, not
3533 	   the symbol's actual address.  Note that __gp may not point
3534 	   to the start of the DLT, so we have to compute the absolute
3535 	   address, then subtract out the value of __gp.  */
3536 	value = (hh->plt_offset
3537 		 + hppa_info->plt_sec->output_offset
3538 		 + hppa_info->plt_sec->output_section->vma);
3539 	value -= _bfd_get_gp_value (output_bfd);
3540 
3541 	/* All PLTOFF relocations are basically the same at this point,
3542 	   except that we need different field selectors for the 21bit
3543 	   version vs the 14bit versions.  */
3544 	if (r_type == R_PARISC_PLTOFF21L)
3545 	  value = hppa_field_adjust (value, addend, e_lrsel);
3546 	else if (r_type == R_PARISC_PLTOFF14F
3547 		 || r_type == R_PARISC_PLTOFF16F
3548 		 || r_type == R_PARISC_PLTOFF16WF
3549 		 || r_type == R_PARISC_PLTOFF16DF)
3550 	  value = hppa_field_adjust (value, addend, e_fsel);
3551 	else
3552 	  value = hppa_field_adjust (value, addend, e_rrsel);
3553 
3554 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3555 	break;
3556       }
3557 
3558     case R_PARISC_LTOFF_FPTR32:
3559       {
3560 	/* We may still need to create the FPTR itself if it was for
3561 	   a local symbol.  */
3562 	if (hh == NULL)
3563 	  {
3564 	    /* The first two words of an .opd entry are zero.  */
3565 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3566 
3567 	    /* The next word is the address of the function.  */
3568 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3569 			(hppa_info->opd_sec->contents
3570 			 + hh->opd_offset + 16));
3571 
3572 	    /* The last word is our local __gp value.  */
3573 	    value = _bfd_get_gp_value
3574 		      (hppa_info->opd_sec->output_section->owner);
3575 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3576 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3577 
3578 	    /* The DLT value is the address of the .opd entry.  */
3579 	    value = (hh->opd_offset
3580 		     + hppa_info->opd_sec->output_offset
3581 		     + hppa_info->opd_sec->output_section->vma);
3582 
3583 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3584 			value,
3585 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3586 	  }
3587 
3588 	/* We want the value of the DLT offset for this symbol, not
3589 	   the symbol's actual address.  Note that __gp may not point
3590 	   to the start of the DLT, so we have to compute the absolute
3591 	   address, then subtract out the value of __gp.  */
3592 	value = (hh->dlt_offset
3593 		 + hppa_info->dlt_sec->output_offset
3594 		 + hppa_info->dlt_sec->output_section->vma);
3595 	value -= _bfd_get_gp_value (output_bfd);
3596 	bfd_put_32 (input_bfd, value, hit_data);
3597 	return bfd_reloc_ok;
3598       }
3599 
3600     case R_PARISC_LTOFF_FPTR64:
3601     case R_PARISC_LTOFF_TP64:
3602       {
3603 	/* We may still need to create the FPTR itself if it was for
3604 	   a local symbol.  */
3605 	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3606 	  {
3607 	    /* The first two words of an .opd entry are zero.  */
3608 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3609 
3610 	    /* The next word is the address of the function.  */
3611 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3612 			(hppa_info->opd_sec->contents
3613 			 + hh->opd_offset + 16));
3614 
3615 	    /* The last word is our local __gp value.  */
3616 	    value = _bfd_get_gp_value
3617 		      (hppa_info->opd_sec->output_section->owner);
3618 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3619 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3620 
3621 	    /* The DLT value is the address of the .opd entry.  */
3622 	    value = (hh->opd_offset
3623 		     + hppa_info->opd_sec->output_offset
3624 		     + hppa_info->opd_sec->output_section->vma);
3625 
3626 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3627 			value,
3628 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3629 	  }
3630 
3631 	/* We want the value of the DLT offset for this symbol, not
3632 	   the symbol's actual address.  Note that __gp may not point
3633 	   to the start of the DLT, so we have to compute the absolute
3634 	   address, then subtract out the value of __gp.  */
3635 	value = (hh->dlt_offset
3636 		 + hppa_info->dlt_sec->output_offset
3637 		 + hppa_info->dlt_sec->output_section->vma);
3638 	value -= _bfd_get_gp_value (output_bfd);
3639 	bfd_put_64 (input_bfd, value, hit_data);
3640 	return bfd_reloc_ok;
3641       }
3642 
3643     case R_PARISC_DIR32:
3644       bfd_put_32 (input_bfd, value + addend, hit_data);
3645       return bfd_reloc_ok;
3646 
3647     case R_PARISC_DIR64:
3648       bfd_put_64 (input_bfd, value + addend, hit_data);
3649       return bfd_reloc_ok;
3650 
3651     case R_PARISC_GPREL64:
3652       /* Subtract out the global pointer value to make value a DLT
3653 	 relative address.  */
3654       value -= _bfd_get_gp_value (output_bfd);
3655 
3656       bfd_put_64 (input_bfd, value + addend, hit_data);
3657       return bfd_reloc_ok;
3658 
3659     case R_PARISC_LTOFF64:
3660 	/* We want the value of the DLT offset for this symbol, not
3661 	   the symbol's actual address.  Note that __gp may not point
3662 	   to the start of the DLT, so we have to compute the absolute
3663 	   address, then subtract out the value of __gp.  */
3664       value = (hh->dlt_offset
3665 	       + hppa_info->dlt_sec->output_offset
3666 	       + hppa_info->dlt_sec->output_section->vma);
3667       value -= _bfd_get_gp_value (output_bfd);
3668 
3669       bfd_put_64 (input_bfd, value + addend, hit_data);
3670       return bfd_reloc_ok;
3671 
3672     case R_PARISC_PCREL32:
3673       {
3674 	/* If this is a call to a function defined in another dynamic
3675 	   library, then redirect the call to the local stub for this
3676 	   function.  */
3677 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3678 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3679 		   + hppa_info->stub_sec->output_section->vma);
3680 
3681 	/* Turn VALUE into a proper PC relative address.  */
3682 	value -= (offset + input_section->output_offset
3683 		  + input_section->output_section->vma);
3684 
3685 	value += addend;
3686 	value -= 8;
3687 	bfd_put_32 (input_bfd, value, hit_data);
3688 	return bfd_reloc_ok;
3689       }
3690 
3691     case R_PARISC_PCREL64:
3692       {
3693 	/* If this is a call to a function defined in another dynamic
3694 	   library, then redirect the call to the local stub for this
3695 	   function.  */
3696 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3697 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3698 		   + hppa_info->stub_sec->output_section->vma);
3699 
3700 	/* Turn VALUE into a proper PC relative address.  */
3701 	value -= (offset + input_section->output_offset
3702 		  + input_section->output_section->vma);
3703 
3704 	value += addend;
3705 	value -= 8;
3706 	bfd_put_64 (input_bfd, value, hit_data);
3707 	return bfd_reloc_ok;
3708       }
3709 
3710     case R_PARISC_FPTR64:
3711       {
3712 	bfd_vma off;
3713 
3714 	/* We may still need to create the FPTR itself if it was for
3715 	   a local symbol.  */
3716 	if (hh == NULL)
3717 	  {
3718 	    bfd_vma *local_opd_offsets;
3719 
3720             if (local_offsets == NULL)
3721               abort ();
3722 
3723 	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3724 	    off = local_opd_offsets[r_symndx];
3725 
3726 	    /* The last bit records whether we've already initialised
3727 	       this local .opd entry.  */
3728 	    if ((off & 1) != 0)
3729 	      {
3730 		BFD_ASSERT (off != (bfd_vma) -1);
3731 	        off &= ~1;
3732 	      }
3733 	    else
3734 	      {
3735 		/* The first two words of an .opd entry are zero.  */
3736 		memset (hppa_info->opd_sec->contents + off, 0, 16);
3737 
3738 		/* The next word is the address of the function.  */
3739 		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3740 			    (hppa_info->opd_sec->contents + off + 16));
3741 
3742 		/* The last word is our local __gp value.  */
3743 		value = _bfd_get_gp_value
3744 			  (hppa_info->opd_sec->output_section->owner);
3745 		bfd_put_64 (hppa_info->opd_sec->owner, value,
3746 			    hppa_info->opd_sec->contents + off + 24);
3747 	      }
3748 	  }
3749 	else
3750 	  off = hh->opd_offset;
3751 
3752 	if (hh == NULL || hh->want_opd)
3753 	  /* We want the value of the OPD offset for this symbol.  */
3754 	  value = (off
3755 		   + hppa_info->opd_sec->output_offset
3756 		   + hppa_info->opd_sec->output_section->vma);
3757 	else
3758 	  /* We want the address of the symbol.  */
3759 	  value += addend;
3760 
3761 	bfd_put_64 (input_bfd, value, hit_data);
3762 	return bfd_reloc_ok;
3763       }
3764 
3765     case R_PARISC_SECREL32:
3766       if (sym_sec)
3767 	value -= sym_sec->output_section->vma;
3768       bfd_put_32 (input_bfd, value + addend, hit_data);
3769       return bfd_reloc_ok;
3770 
3771     case R_PARISC_SEGREL32:
3772     case R_PARISC_SEGREL64:
3773       {
3774 	/* If this is the first SEGREL relocation, then initialize
3775 	   the segment base values.  */
3776 	if (hppa_info->text_segment_base == (bfd_vma) -1)
3777 	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3778 				 hppa_info);
3779 
3780 	/* VALUE holds the absolute address.  We want to include the
3781 	   addend, then turn it into a segment relative address.
3782 
3783 	   The segment is derived from SYM_SEC.  We assume that there are
3784 	   only two segments of note in the resulting executable/shlib.
3785 	   A readonly segment (.text) and a readwrite segment (.data).  */
3786 	value += addend;
3787 
3788 	if (sym_sec->flags & SEC_CODE)
3789 	  value -= hppa_info->text_segment_base;
3790 	else
3791 	  value -= hppa_info->data_segment_base;
3792 
3793 	if (r_type == R_PARISC_SEGREL32)
3794 	  bfd_put_32 (input_bfd, value, hit_data);
3795 	else
3796 	  bfd_put_64 (input_bfd, value, hit_data);
3797 	return bfd_reloc_ok;
3798       }
3799 
3800     /* Something we don't know how to handle.  */
3801     default:
3802       return bfd_reloc_notsupported;
3803     }
3804 
3805   /* Update the instruction word.  */
3806   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3807   return bfd_reloc_ok;
3808 }
3809 
3810 /* Relocate an HPPA ELF section.  */
3811 
3812 static bfd_boolean
3813 elf64_hppa_relocate_section (bfd *output_bfd,
3814 			   struct bfd_link_info *info,
3815 			   bfd *input_bfd,
3816 			   asection *input_section,
3817 			   bfd_byte *contents,
3818 			   Elf_Internal_Rela *relocs,
3819 			   Elf_Internal_Sym *local_syms,
3820 			   asection **local_sections)
3821 {
3822   Elf_Internal_Shdr *symtab_hdr;
3823   Elf_Internal_Rela *rel;
3824   Elf_Internal_Rela *relend;
3825   struct elf64_hppa_link_hash_table *hppa_info;
3826 
3827   hppa_info = hppa_link_hash_table (info);
3828   if (hppa_info == NULL)
3829     return FALSE;
3830 
3831   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3832 
3833   rel = relocs;
3834   relend = relocs + input_section->reloc_count;
3835   for (; rel < relend; rel++)
3836     {
3837       int r_type;
3838       reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3839       unsigned long r_symndx;
3840       struct elf_link_hash_entry *eh;
3841       Elf_Internal_Sym *sym;
3842       asection *sym_sec;
3843       bfd_vma relocation;
3844       bfd_reloc_status_type r;
3845 
3846       r_type = ELF_R_TYPE (rel->r_info);
3847       if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3848 	{
3849 	  bfd_set_error (bfd_error_bad_value);
3850 	  return FALSE;
3851 	}
3852       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3853 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3854 	continue;
3855 
3856       /* This is a final link.  */
3857       r_symndx = ELF_R_SYM (rel->r_info);
3858       eh = NULL;
3859       sym = NULL;
3860       sym_sec = NULL;
3861       if (r_symndx < symtab_hdr->sh_info)
3862 	{
3863 	  /* This is a local symbol, hh defaults to NULL.  */
3864 	  sym = local_syms + r_symndx;
3865 	  sym_sec = local_sections[r_symndx];
3866 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3867 	}
3868       else
3869 	{
3870 	  /* This is not a local symbol.  */
3871 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3872 
3873 	  /* It seems this can happen with erroneous or unsupported
3874 	     input (mixing a.out and elf in an archive, for example.)  */
3875 	  if (sym_hashes == NULL)
3876 	    return FALSE;
3877 
3878 	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3879 
3880 	  if (info->wrap_hash != NULL
3881 	      && (input_section->flags & SEC_DEBUGGING) != 0)
3882 	    eh = ((struct elf_link_hash_entry *)
3883 		  unwrap_hash_lookup (info, input_bfd, &eh->root));
3884 
3885 	  while (eh->root.type == bfd_link_hash_indirect
3886 		 || eh->root.type == bfd_link_hash_warning)
3887 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3888 
3889 	  relocation = 0;
3890 	  if (eh->root.type == bfd_link_hash_defined
3891 	      || eh->root.type == bfd_link_hash_defweak)
3892 	    {
3893 	      sym_sec = eh->root.u.def.section;
3894 	      if (sym_sec != NULL
3895 		  && sym_sec->output_section != NULL)
3896 		relocation = (eh->root.u.def.value
3897 			      + sym_sec->output_section->vma
3898 			      + sym_sec->output_offset);
3899 	    }
3900 	  else if (eh->root.type == bfd_link_hash_undefweak)
3901 	    ;
3902 	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3903 		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3904 	    ;
3905 	  else if (!bfd_link_relocatable (info)
3906 		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3907 	    continue;
3908 	  else if (!bfd_link_relocatable (info))
3909 	    {
3910 	      bfd_boolean err;
3911 	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3912 		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3913 	      (*info->callbacks->undefined_symbol) (info,
3914 						    eh->root.root.string,
3915 						    input_bfd,
3916 						    input_section,
3917 						    rel->r_offset, err);
3918 	    }
3919 
3920           if (!bfd_link_relocatable (info)
3921               && relocation == 0
3922               && eh->root.type != bfd_link_hash_defined
3923               && eh->root.type != bfd_link_hash_defweak
3924               && eh->root.type != bfd_link_hash_undefweak)
3925             {
3926               if (info->unresolved_syms_in_objects == RM_IGNORE
3927                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3928                   && eh->type == STT_PARISC_MILLI)
3929 		(*info->callbacks->undefined_symbol)
3930 		  (info, eh_name (eh), input_bfd,
3931 		   input_section, rel->r_offset, FALSE);
3932             }
3933 	}
3934 
3935       if (sym_sec != NULL && discarded_section (sym_sec))
3936 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3937 					 rel, 1, relend, howto, 0, contents);
3938 
3939       if (bfd_link_relocatable (info))
3940 	continue;
3941 
3942       r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3943 					input_section, contents,
3944 					relocation, info, sym_sec,
3945 					eh);
3946 
3947       if (r != bfd_reloc_ok)
3948 	{
3949 	  switch (r)
3950 	    {
3951 	    default:
3952 	      abort ();
3953 	    case bfd_reloc_overflow:
3954 	      {
3955 		const char *sym_name;
3956 
3957 		if (eh != NULL)
3958 		  sym_name = NULL;
3959 		else
3960 		  {
3961 		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3962 								symtab_hdr->sh_link,
3963 								sym->st_name);
3964 		    if (sym_name == NULL)
3965 		      return FALSE;
3966 		    if (*sym_name == '\0')
3967 		      sym_name = bfd_section_name (input_bfd, sym_sec);
3968 		  }
3969 
3970 		(*info->callbacks->reloc_overflow)
3971 		  (info, (eh ? &eh->root : NULL), sym_name, howto->name,
3972 		   (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
3973 	      }
3974 	      break;
3975 	    }
3976 	}
3977     }
3978   return TRUE;
3979 }
3980 
3981 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3982 {
3983   { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3984   { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3985   { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3986   { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3987   { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3988   { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3989   { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3990   { NULL,                    0,  0, 0,            0 }
3991 };
3992 
3993 /* The hash bucket size is the standard one, namely 4.  */
3994 
3995 const struct elf_size_info hppa64_elf_size_info =
3996 {
3997   sizeof (Elf64_External_Ehdr),
3998   sizeof (Elf64_External_Phdr),
3999   sizeof (Elf64_External_Shdr),
4000   sizeof (Elf64_External_Rel),
4001   sizeof (Elf64_External_Rela),
4002   sizeof (Elf64_External_Sym),
4003   sizeof (Elf64_External_Dyn),
4004   sizeof (Elf_External_Note),
4005   4,
4006   1,
4007   64, 3,
4008   ELFCLASS64, EV_CURRENT,
4009   bfd_elf64_write_out_phdrs,
4010   bfd_elf64_write_shdrs_and_ehdr,
4011   bfd_elf64_checksum_contents,
4012   bfd_elf64_write_relocs,
4013   bfd_elf64_swap_symbol_in,
4014   bfd_elf64_swap_symbol_out,
4015   bfd_elf64_slurp_reloc_table,
4016   bfd_elf64_slurp_symbol_table,
4017   bfd_elf64_swap_dyn_in,
4018   bfd_elf64_swap_dyn_out,
4019   bfd_elf64_swap_reloc_in,
4020   bfd_elf64_swap_reloc_out,
4021   bfd_elf64_swap_reloca_in,
4022   bfd_elf64_swap_reloca_out
4023 };
4024 
4025 #define TARGET_BIG_SYM			hppa_elf64_vec
4026 #define TARGET_BIG_NAME			"elf64-hppa"
4027 #define ELF_ARCH			bfd_arch_hppa
4028 #define ELF_TARGET_ID			HPPA64_ELF_DATA
4029 #define ELF_MACHINE_CODE		EM_PARISC
4030 /* This is not strictly correct.  The maximum page size for PA2.0 is
4031    64M.  But everything still uses 4k.  */
4032 #define ELF_MAXPAGESIZE			0x1000
4033 #define ELF_OSABI			ELFOSABI_HPUX
4034 
4035 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4036 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4037 #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4038 #define elf_info_to_howto		elf_hppa_info_to_howto
4039 #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4040 
4041 #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4042 #define elf_backend_object_p		elf64_hppa_object_p
4043 #define elf_backend_final_write_processing \
4044 					elf_hppa_final_write_processing
4045 #define elf_backend_fake_sections	elf_hppa_fake_sections
4046 #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4047 
4048 #define elf_backend_relocate_section	elf_hppa_relocate_section
4049 
4050 #define bfd_elf64_bfd_final_link	elf_hppa_final_link
4051 
4052 #define elf_backend_create_dynamic_sections \
4053 					elf64_hppa_create_dynamic_sections
4054 #define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4055 
4056 #define elf_backend_omit_section_dynsym \
4057   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4058 #define elf_backend_adjust_dynamic_symbol \
4059 					elf64_hppa_adjust_dynamic_symbol
4060 
4061 #define elf_backend_size_dynamic_sections \
4062 					elf64_hppa_size_dynamic_sections
4063 
4064 #define elf_backend_finish_dynamic_symbol \
4065 					elf64_hppa_finish_dynamic_symbol
4066 #define elf_backend_finish_dynamic_sections \
4067 					elf64_hppa_finish_dynamic_sections
4068 #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4069 #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4070 
4071 /* Stuff for the BFD linker: */
4072 #define bfd_elf64_bfd_link_hash_table_create \
4073 	elf64_hppa_hash_table_create
4074 
4075 #define elf_backend_check_relocs \
4076 	elf64_hppa_check_relocs
4077 
4078 #define elf_backend_size_info \
4079   hppa64_elf_size_info
4080 
4081 #define elf_backend_additional_program_headers \
4082 	elf64_hppa_additional_program_headers
4083 
4084 #define elf_backend_modify_segment_map \
4085 	elf64_hppa_modify_segment_map
4086 
4087 #define elf_backend_allow_non_load_phdr \
4088 	elf64_hppa_allow_non_load_phdr
4089 
4090 #define elf_backend_link_output_symbol_hook \
4091 	elf64_hppa_link_output_symbol_hook
4092 
4093 #define elf_backend_want_got_plt	0
4094 #define elf_backend_plt_readonly	0
4095 #define elf_backend_want_plt_sym	0
4096 #define elf_backend_got_header_size     0
4097 #define elf_backend_type_change_ok	TRUE
4098 #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4099 #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4100 #define elf_backend_rela_normal		1
4101 #define elf_backend_special_sections	elf64_hppa_special_sections
4102 #define elf_backend_action_discarded	elf_hppa_action_discarded
4103 #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4104 
4105 #define elf64_bed			elf64_hppa_hpux_bed
4106 
4107 #include "elf64-target.h"
4108 
4109 #undef TARGET_BIG_SYM
4110 #define TARGET_BIG_SYM			hppa_elf64_linux_vec
4111 #undef TARGET_BIG_NAME
4112 #define TARGET_BIG_NAME			"elf64-hppa-linux"
4113 #undef ELF_OSABI
4114 #define ELF_OSABI			ELFOSABI_GNU
4115 #undef elf64_bed
4116 #define elf64_bed			elf64_hppa_linux_bed
4117 
4118 #include "elf64-target.h"
4119