xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-hppa.c (revision b7b7574d3bf8eeb51a1fa3977b59142ec6434a55)
1 /* Support for HPPA 64-bit ELF
2    Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3    2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "alloca-conf.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf/hppa.h"
29 #include "libhppa.h"
30 #include "elf64-hppa.h"
31 
32 
33 #define ARCH_SIZE	       64
34 
35 #define PLT_ENTRY_SIZE 0x10
36 #define DLT_ENTRY_SIZE 0x8
37 #define OPD_ENTRY_SIZE 0x20
38 
39 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
40 
41 /* The stub is supposed to load the target address and target's DP
42    value out of the PLT, then do an external branch to the target
43    address.
44 
45    LDD PLTOFF(%r27),%r1
46    BVE (%r1)
47    LDD PLTOFF+8(%r27),%r27
48 
49    Note that we must use the LDD with a 14 bit displacement, not the one
50    with a 5 bit displacement.  */
51 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
52 			  0x53, 0x7b, 0x00, 0x00 };
53 
54 struct elf64_hppa_link_hash_entry
55 {
56   struct elf_link_hash_entry eh;
57 
58   /* Offsets for this symbol in various linker sections.  */
59   bfd_vma dlt_offset;
60   bfd_vma plt_offset;
61   bfd_vma opd_offset;
62   bfd_vma stub_offset;
63 
64   /* The index of the (possibly local) symbol in the input bfd and its
65      associated BFD.  Needed so that we can have relocs against local
66      symbols in shared libraries.  */
67   long sym_indx;
68   bfd *owner;
69 
70   /* Dynamic symbols may need to have two different values.  One for
71      the dynamic symbol table, one for the normal symbol table.
72 
73      In such cases we store the symbol's real value and section
74      index here so we can restore the real value before we write
75      the normal symbol table.  */
76   bfd_vma st_value;
77   int st_shndx;
78 
79   /* Used to count non-got, non-plt relocations for delayed sizing
80      of relocation sections.  */
81   struct elf64_hppa_dyn_reloc_entry
82   {
83     /* Next relocation in the chain.  */
84     struct elf64_hppa_dyn_reloc_entry *next;
85 
86     /* The type of the relocation.  */
87     int type;
88 
89     /* The input section of the relocation.  */
90     asection *sec;
91 
92     /* Number of relocs copied in this section.  */
93     bfd_size_type count;
94 
95     /* The index of the section symbol for the input section of
96        the relocation.  Only needed when building shared libraries.  */
97     int sec_symndx;
98 
99     /* The offset within the input section of the relocation.  */
100     bfd_vma offset;
101 
102     /* The addend for the relocation.  */
103     bfd_vma addend;
104 
105   } *reloc_entries;
106 
107   /* Nonzero if this symbol needs an entry in one of the linker
108      sections.  */
109   unsigned want_dlt;
110   unsigned want_plt;
111   unsigned want_opd;
112   unsigned want_stub;
113 };
114 
115 struct elf64_hppa_link_hash_table
116 {
117   struct elf_link_hash_table root;
118 
119   /* Shortcuts to get to the various linker defined sections.  */
120   asection *dlt_sec;
121   asection *dlt_rel_sec;
122   asection *plt_sec;
123   asection *plt_rel_sec;
124   asection *opd_sec;
125   asection *opd_rel_sec;
126   asection *other_rel_sec;
127 
128   /* Offset of __gp within .plt section.  When the PLT gets large we want
129      to slide __gp into the PLT section so that we can continue to use
130      single DP relative instructions to load values out of the PLT.  */
131   bfd_vma gp_offset;
132 
133   /* Note this is not strictly correct.  We should create a stub section for
134      each input section with calls.  The stub section should be placed before
135      the section with the call.  */
136   asection *stub_sec;
137 
138   bfd_vma text_segment_base;
139   bfd_vma data_segment_base;
140 
141   /* We build tables to map from an input section back to its
142      symbol index.  This is the BFD for which we currently have
143      a map.  */
144   bfd *section_syms_bfd;
145 
146   /* Array of symbol numbers for each input section attached to the
147      current BFD.  */
148   int *section_syms;
149 };
150 
151 #define hppa_link_hash_table(p) \
152   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
153   == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
154 
155 #define hppa_elf_hash_entry(ent) \
156   ((struct elf64_hppa_link_hash_entry *)(ent))
157 
158 #define eh_name(eh) \
159   (eh ? eh->root.root.string : "<undef>")
160 
161 typedef struct bfd_hash_entry *(*new_hash_entry_func)
162   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
163 
164 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165   (bfd *abfd);
166 
167 /* This must follow the definitions of the various derived linker
168    hash tables and shared functions.  */
169 #include "elf-hppa.h"
170 
171 static bfd_boolean elf64_hppa_object_p
172   (bfd *);
173 
174 static void elf64_hppa_post_process_headers
175   (bfd *, struct bfd_link_info *);
176 
177 static bfd_boolean elf64_hppa_create_dynamic_sections
178   (bfd *, struct bfd_link_info *);
179 
180 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
181   (struct bfd_link_info *, struct elf_link_hash_entry *);
182 
183 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
184   (struct elf_link_hash_entry *, void *);
185 
186 static bfd_boolean elf64_hppa_size_dynamic_sections
187   (bfd *, struct bfd_link_info *);
188 
189 static int elf64_hppa_link_output_symbol_hook
190   (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
191    asection *, struct elf_link_hash_entry *);
192 
193 static bfd_boolean elf64_hppa_finish_dynamic_symbol
194   (bfd *, struct bfd_link_info *,
195    struct elf_link_hash_entry *, Elf_Internal_Sym *);
196 
197 static bfd_boolean elf64_hppa_finish_dynamic_sections
198   (bfd *, struct bfd_link_info *);
199 
200 static bfd_boolean elf64_hppa_check_relocs
201   (bfd *, struct bfd_link_info *,
202    asection *, const Elf_Internal_Rela *);
203 
204 static bfd_boolean elf64_hppa_dynamic_symbol_p
205   (struct elf_link_hash_entry *, struct bfd_link_info *);
206 
207 static bfd_boolean elf64_hppa_mark_exported_functions
208   (struct elf_link_hash_entry *, void *);
209 
210 static bfd_boolean elf64_hppa_finalize_opd
211   (struct elf_link_hash_entry *, void *);
212 
213 static bfd_boolean elf64_hppa_finalize_dlt
214   (struct elf_link_hash_entry *, void *);
215 
216 static bfd_boolean allocate_global_data_dlt
217   (struct elf_link_hash_entry *, void *);
218 
219 static bfd_boolean allocate_global_data_plt
220   (struct elf_link_hash_entry *, void *);
221 
222 static bfd_boolean allocate_global_data_stub
223   (struct elf_link_hash_entry *, void *);
224 
225 static bfd_boolean allocate_global_data_opd
226   (struct elf_link_hash_entry *, void *);
227 
228 static bfd_boolean get_reloc_section
229   (bfd *, struct elf64_hppa_link_hash_table *, asection *);
230 
231 static bfd_boolean count_dyn_reloc
232   (bfd *, struct elf64_hppa_link_hash_entry *,
233    int, asection *, int, bfd_vma, bfd_vma);
234 
235 static bfd_boolean allocate_dynrel_entries
236   (struct elf_link_hash_entry *, void *);
237 
238 static bfd_boolean elf64_hppa_finalize_dynreloc
239   (struct elf_link_hash_entry *, void *);
240 
241 static bfd_boolean get_opd
242   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
243 
244 static bfd_boolean get_plt
245   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
246 
247 static bfd_boolean get_dlt
248   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
249 
250 static bfd_boolean get_stub
251   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
252 
253 static int elf64_hppa_elf_get_symbol_type
254   (Elf_Internal_Sym *, int);
255 
256 /* Initialize an entry in the link hash table.  */
257 
258 static struct bfd_hash_entry *
259 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
260 			  struct bfd_hash_table *table,
261 			  const char *string)
262 {
263   /* Allocate the structure if it has not already been allocated by a
264      subclass.  */
265   if (entry == NULL)
266     {
267       entry = bfd_hash_allocate (table,
268 				 sizeof (struct elf64_hppa_link_hash_entry));
269       if (entry == NULL)
270         return entry;
271     }
272 
273   /* Call the allocation method of the superclass.  */
274   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
275   if (entry != NULL)
276     {
277       struct elf64_hppa_link_hash_entry *hh;
278 
279       /* Initialize our local data.  All zeros.  */
280       hh = hppa_elf_hash_entry (entry);
281       memset (&hh->dlt_offset, 0,
282 	      (sizeof (struct elf64_hppa_link_hash_entry)
283 	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
284     }
285 
286   return entry;
287 }
288 
289 /* Create the derived linker hash table.  The PA64 ELF port uses this
290    derived hash table to keep information specific to the PA ElF
291    linker (without using static variables).  */
292 
293 static struct bfd_link_hash_table*
294 elf64_hppa_hash_table_create (bfd *abfd)
295 {
296   struct elf64_hppa_link_hash_table *htab;
297   bfd_size_type amt = sizeof (*htab);
298 
299   htab = bfd_zmalloc (amt);
300   if (htab == NULL)
301     return NULL;
302 
303   if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
304 				      hppa64_link_hash_newfunc,
305 				      sizeof (struct elf64_hppa_link_hash_entry),
306 				      HPPA64_ELF_DATA))
307     {
308       free (htab);
309       return NULL;
310     }
311 
312   htab->text_segment_base = (bfd_vma) -1;
313   htab->data_segment_base = (bfd_vma) -1;
314 
315   return &htab->root.root;
316 }
317 
318 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
319 
320    Additionally we set the default architecture and machine.  */
321 static bfd_boolean
322 elf64_hppa_object_p (bfd *abfd)
323 {
324   Elf_Internal_Ehdr * i_ehdrp;
325   unsigned int flags;
326 
327   i_ehdrp = elf_elfheader (abfd);
328   if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
329     {
330       /* GCC on hppa-linux produces binaries with OSABI=GNU,
331 	 but the kernel produces corefiles with OSABI=SysV.  */
332       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
333 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
334 	return FALSE;
335     }
336   else
337     {
338       /* HPUX produces binaries with OSABI=HPUX,
339 	 but the kernel produces corefiles with OSABI=SysV.  */
340       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
341 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
342 	return FALSE;
343     }
344 
345   flags = i_ehdrp->e_flags;
346   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
347     {
348     case EFA_PARISC_1_0:
349       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
350     case EFA_PARISC_1_1:
351       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
352     case EFA_PARISC_2_0:
353       if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
354         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
355       else
356         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
357     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
358       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
359     }
360   /* Don't be fussy.  */
361   return TRUE;
362 }
363 
364 /* Given section type (hdr->sh_type), return a boolean indicating
365    whether or not the section is an elf64-hppa specific section.  */
366 static bfd_boolean
367 elf64_hppa_section_from_shdr (bfd *abfd,
368 			      Elf_Internal_Shdr *hdr,
369 			      const char *name,
370 			      int shindex)
371 {
372   switch (hdr->sh_type)
373     {
374     case SHT_PARISC_EXT:
375       if (strcmp (name, ".PARISC.archext") != 0)
376 	return FALSE;
377       break;
378     case SHT_PARISC_UNWIND:
379       if (strcmp (name, ".PARISC.unwind") != 0)
380 	return FALSE;
381       break;
382     case SHT_PARISC_DOC:
383     case SHT_PARISC_ANNOT:
384     default:
385       return FALSE;
386     }
387 
388   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
389     return FALSE;
390 
391   return TRUE;
392 }
393 
394 /* SEC is a section containing relocs for an input BFD when linking; return
395    a suitable section for holding relocs in the output BFD for a link.  */
396 
397 static bfd_boolean
398 get_reloc_section (bfd *abfd,
399 		   struct elf64_hppa_link_hash_table *hppa_info,
400 		   asection *sec)
401 {
402   const char *srel_name;
403   asection *srel;
404   bfd *dynobj;
405 
406   srel_name = (bfd_elf_string_from_elf_section
407 	       (abfd, elf_elfheader(abfd)->e_shstrndx,
408 		_bfd_elf_single_rel_hdr(sec)->sh_name));
409   if (srel_name == NULL)
410     return FALSE;
411 
412   dynobj = hppa_info->root.dynobj;
413   if (!dynobj)
414     hppa_info->root.dynobj = dynobj = abfd;
415 
416   srel = bfd_get_linker_section (dynobj, srel_name);
417   if (srel == NULL)
418     {
419       srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
420 						 (SEC_ALLOC
421 						  | SEC_LOAD
422 						  | SEC_HAS_CONTENTS
423 						  | SEC_IN_MEMORY
424 						  | SEC_LINKER_CREATED
425 						  | SEC_READONLY));
426       if (srel == NULL
427 	  || !bfd_set_section_alignment (dynobj, srel, 3))
428 	return FALSE;
429     }
430 
431   hppa_info->other_rel_sec = srel;
432   return TRUE;
433 }
434 
435 /* Add a new entry to the list of dynamic relocations against DYN_H.
436 
437    We use this to keep a record of all the FPTR relocations against a
438    particular symbol so that we can create FPTR relocations in the
439    output file.  */
440 
441 static bfd_boolean
442 count_dyn_reloc (bfd *abfd,
443 		 struct elf64_hppa_link_hash_entry *hh,
444 		 int type,
445 		 asection *sec,
446 	         int sec_symndx,
447 	         bfd_vma offset,
448 		 bfd_vma addend)
449 {
450   struct elf64_hppa_dyn_reloc_entry *rent;
451 
452   rent = (struct elf64_hppa_dyn_reloc_entry *)
453   bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
454   if (!rent)
455     return FALSE;
456 
457   rent->next = hh->reloc_entries;
458   rent->type = type;
459   rent->sec = sec;
460   rent->sec_symndx = sec_symndx;
461   rent->offset = offset;
462   rent->addend = addend;
463   hh->reloc_entries = rent;
464 
465   return TRUE;
466 }
467 
468 /* Return a pointer to the local DLT, PLT and OPD reference counts
469    for ABFD.  Returns NULL if the storage allocation fails.  */
470 
471 static bfd_signed_vma *
472 hppa64_elf_local_refcounts (bfd *abfd)
473 {
474   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
475   bfd_signed_vma *local_refcounts;
476 
477   local_refcounts = elf_local_got_refcounts (abfd);
478   if (local_refcounts == NULL)
479     {
480       bfd_size_type size;
481 
482       /* Allocate space for local DLT, PLT and OPD reference
483 	 counts.  Done this way to save polluting elf_obj_tdata
484 	 with another target specific pointer.  */
485       size = symtab_hdr->sh_info;
486       size *= 3 * sizeof (bfd_signed_vma);
487       local_refcounts = bfd_zalloc (abfd, size);
488       elf_local_got_refcounts (abfd) = local_refcounts;
489     }
490   return local_refcounts;
491 }
492 
493 /* Scan the RELOCS and record the type of dynamic entries that each
494    referenced symbol needs.  */
495 
496 static bfd_boolean
497 elf64_hppa_check_relocs (bfd *abfd,
498 			 struct bfd_link_info *info,
499 			 asection *sec,
500 			 const Elf_Internal_Rela *relocs)
501 {
502   struct elf64_hppa_link_hash_table *hppa_info;
503   const Elf_Internal_Rela *relend;
504   Elf_Internal_Shdr *symtab_hdr;
505   const Elf_Internal_Rela *rel;
506   unsigned int sec_symndx;
507 
508   if (info->relocatable)
509     return TRUE;
510 
511   /* If this is the first dynamic object found in the link, create
512      the special sections required for dynamic linking.  */
513   if (! elf_hash_table (info)->dynamic_sections_created)
514     {
515       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
516 	return FALSE;
517     }
518 
519   hppa_info = hppa_link_hash_table (info);
520   if (hppa_info == NULL)
521     return FALSE;
522   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
523 
524   /* If necessary, build a new table holding section symbols indices
525      for this BFD.  */
526 
527   if (info->shared && hppa_info->section_syms_bfd != abfd)
528     {
529       unsigned long i;
530       unsigned int highest_shndx;
531       Elf_Internal_Sym *local_syms = NULL;
532       Elf_Internal_Sym *isym, *isymend;
533       bfd_size_type amt;
534 
535       /* We're done with the old cache of section index to section symbol
536 	 index information.  Free it.
537 
538 	 ?!? Note we leak the last section_syms array.  Presumably we
539 	 could free it in one of the later routines in this file.  */
540       if (hppa_info->section_syms)
541 	free (hppa_info->section_syms);
542 
543       /* Read this BFD's local symbols.  */
544       if (symtab_hdr->sh_info != 0)
545 	{
546 	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
547 	  if (local_syms == NULL)
548 	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
549 					       symtab_hdr->sh_info, 0,
550 					       NULL, NULL, NULL);
551 	  if (local_syms == NULL)
552 	    return FALSE;
553 	}
554 
555       /* Record the highest section index referenced by the local symbols.  */
556       highest_shndx = 0;
557       isymend = local_syms + symtab_hdr->sh_info;
558       for (isym = local_syms; isym < isymend; isym++)
559 	{
560 	  if (isym->st_shndx > highest_shndx
561 	      && isym->st_shndx < SHN_LORESERVE)
562 	    highest_shndx = isym->st_shndx;
563 	}
564 
565       /* Allocate an array to hold the section index to section symbol index
566 	 mapping.  Bump by one since we start counting at zero.  */
567       highest_shndx++;
568       amt = highest_shndx;
569       amt *= sizeof (int);
570       hppa_info->section_syms = (int *) bfd_malloc (amt);
571 
572       /* Now walk the local symbols again.  If we find a section symbol,
573 	 record the index of the symbol into the section_syms array.  */
574       for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
575 	{
576 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
577 	    hppa_info->section_syms[isym->st_shndx] = i;
578 	}
579 
580       /* We are finished with the local symbols.  */
581       if (local_syms != NULL
582 	  && symtab_hdr->contents != (unsigned char *) local_syms)
583 	{
584 	  if (! info->keep_memory)
585 	    free (local_syms);
586 	  else
587 	    {
588 	      /* Cache the symbols for elf_link_input_bfd.  */
589 	      symtab_hdr->contents = (unsigned char *) local_syms;
590 	    }
591 	}
592 
593       /* Record which BFD we built the section_syms mapping for.  */
594       hppa_info->section_syms_bfd = abfd;
595     }
596 
597   /* Record the symbol index for this input section.  We may need it for
598      relocations when building shared libraries.  When not building shared
599      libraries this value is never really used, but assign it to zero to
600      prevent out of bounds memory accesses in other routines.  */
601   if (info->shared)
602     {
603       sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
604 
605       /* If we did not find a section symbol for this section, then
606 	 something went terribly wrong above.  */
607       if (sec_symndx == SHN_BAD)
608 	return FALSE;
609 
610       if (sec_symndx < SHN_LORESERVE)
611 	sec_symndx = hppa_info->section_syms[sec_symndx];
612       else
613 	sec_symndx = 0;
614     }
615   else
616     sec_symndx = 0;
617 
618   relend = relocs + sec->reloc_count;
619   for (rel = relocs; rel < relend; ++rel)
620     {
621       enum
622 	{
623 	  NEED_DLT = 1,
624 	  NEED_PLT = 2,
625 	  NEED_STUB = 4,
626 	  NEED_OPD = 8,
627 	  NEED_DYNREL = 16,
628 	};
629 
630       unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
631       struct elf64_hppa_link_hash_entry *hh;
632       int need_entry;
633       bfd_boolean maybe_dynamic;
634       int dynrel_type = R_PARISC_NONE;
635       static reloc_howto_type *howto;
636 
637       if (r_symndx >= symtab_hdr->sh_info)
638 	{
639 	  /* We're dealing with a global symbol -- find its hash entry
640 	     and mark it as being referenced.  */
641 	  long indx = r_symndx - symtab_hdr->sh_info;
642 	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
643 	  while (hh->eh.root.type == bfd_link_hash_indirect
644 		 || hh->eh.root.type == bfd_link_hash_warning)
645 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
646 
647 	  /* PR15323, ref flags aren't set for references in the same
648 	     object.  */
649 	  hh->eh.root.non_ir_ref = 1;
650 	  hh->eh.ref_regular = 1;
651 	}
652       else
653 	hh = NULL;
654 
655       /* We can only get preliminary data on whether a symbol is
656 	 locally or externally defined, as not all of the input files
657 	 have yet been processed.  Do something with what we know, as
658 	 this may help reduce memory usage and processing time later.  */
659       maybe_dynamic = FALSE;
660       if (hh && ((info->shared
661 		 && (!info->symbolic
662 		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
663 		|| !hh->eh.def_regular
664 		|| hh->eh.root.type == bfd_link_hash_defweak))
665 	maybe_dynamic = TRUE;
666 
667       howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
668       need_entry = 0;
669       switch (howto->type)
670 	{
671 	/* These are simple indirect references to symbols through the
672 	   DLT.  We need to create a DLT entry for any symbols which
673 	   appears in a DLTIND relocation.  */
674 	case R_PARISC_DLTIND21L:
675 	case R_PARISC_DLTIND14R:
676 	case R_PARISC_DLTIND14F:
677 	case R_PARISC_DLTIND14WR:
678 	case R_PARISC_DLTIND14DR:
679 	  need_entry = NEED_DLT;
680 	  break;
681 
682 	/* ?!?  These need a DLT entry.  But I have no idea what to do with
683 	   the "link time TP value.  */
684 	case R_PARISC_LTOFF_TP21L:
685 	case R_PARISC_LTOFF_TP14R:
686 	case R_PARISC_LTOFF_TP14F:
687 	case R_PARISC_LTOFF_TP64:
688 	case R_PARISC_LTOFF_TP14WR:
689 	case R_PARISC_LTOFF_TP14DR:
690 	case R_PARISC_LTOFF_TP16F:
691 	case R_PARISC_LTOFF_TP16WF:
692 	case R_PARISC_LTOFF_TP16DF:
693 	  need_entry = NEED_DLT;
694 	  break;
695 
696 	/* These are function calls.  Depending on their precise target we
697 	   may need to make a stub for them.  The stub uses the PLT, so we
698 	   need to create PLT entries for these symbols too.  */
699 	case R_PARISC_PCREL12F:
700 	case R_PARISC_PCREL17F:
701 	case R_PARISC_PCREL22F:
702 	case R_PARISC_PCREL32:
703 	case R_PARISC_PCREL64:
704 	case R_PARISC_PCREL21L:
705 	case R_PARISC_PCREL17R:
706 	case R_PARISC_PCREL17C:
707 	case R_PARISC_PCREL14R:
708 	case R_PARISC_PCREL14F:
709 	case R_PARISC_PCREL22C:
710 	case R_PARISC_PCREL14WR:
711 	case R_PARISC_PCREL14DR:
712 	case R_PARISC_PCREL16F:
713 	case R_PARISC_PCREL16WF:
714 	case R_PARISC_PCREL16DF:
715 	  /* Function calls might need to go through the .plt, and
716 	     might need a long branch stub.  */
717 	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
718 	    need_entry = (NEED_PLT | NEED_STUB);
719 	  else
720 	    need_entry = 0;
721 	  break;
722 
723 	case R_PARISC_PLTOFF21L:
724 	case R_PARISC_PLTOFF14R:
725 	case R_PARISC_PLTOFF14F:
726 	case R_PARISC_PLTOFF14WR:
727 	case R_PARISC_PLTOFF14DR:
728 	case R_PARISC_PLTOFF16F:
729 	case R_PARISC_PLTOFF16WF:
730 	case R_PARISC_PLTOFF16DF:
731 	  need_entry = (NEED_PLT);
732 	  break;
733 
734 	case R_PARISC_DIR64:
735 	  if (info->shared || maybe_dynamic)
736 	    need_entry = (NEED_DYNREL);
737 	  dynrel_type = R_PARISC_DIR64;
738 	  break;
739 
740 	/* This is an indirect reference through the DLT to get the address
741 	   of a OPD descriptor.  Thus we need to make a DLT entry that points
742 	   to an OPD entry.  */
743 	case R_PARISC_LTOFF_FPTR21L:
744 	case R_PARISC_LTOFF_FPTR14R:
745 	case R_PARISC_LTOFF_FPTR14WR:
746 	case R_PARISC_LTOFF_FPTR14DR:
747 	case R_PARISC_LTOFF_FPTR32:
748 	case R_PARISC_LTOFF_FPTR64:
749 	case R_PARISC_LTOFF_FPTR16F:
750 	case R_PARISC_LTOFF_FPTR16WF:
751 	case R_PARISC_LTOFF_FPTR16DF:
752 	  if (info->shared || maybe_dynamic)
753 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 	  else
755 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
756 	  dynrel_type = R_PARISC_FPTR64;
757 	  break;
758 
759 	/* This is a simple OPD entry.  */
760 	case R_PARISC_FPTR64:
761 	  if (info->shared || maybe_dynamic)
762 	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
763 	  else
764 	    need_entry = (NEED_OPD | NEED_PLT);
765 	  dynrel_type = R_PARISC_FPTR64;
766 	  break;
767 
768 	/* Add more cases as needed.  */
769 	}
770 
771       if (!need_entry)
772 	continue;
773 
774       if (hh)
775 	{
776 	  /* Stash away enough information to be able to find this symbol
777 	     regardless of whether or not it is local or global.  */
778 	  hh->owner = abfd;
779 	  hh->sym_indx = r_symndx;
780 	}
781 
782       /* Create what's needed.  */
783       if (need_entry & NEED_DLT)
784 	{
785 	  /* Allocate space for a DLT entry, as well as a dynamic
786 	     relocation for this entry.  */
787 	  if (! hppa_info->dlt_sec
788 	      && ! get_dlt (abfd, info, hppa_info))
789 	    goto err_out;
790 
791 	  if (hh != NULL)
792 	    {
793 	      hh->want_dlt = 1;
794 	      hh->eh.got.refcount += 1;
795 	    }
796 	  else
797 	    {
798 	      bfd_signed_vma *local_dlt_refcounts;
799 
800 	      /* This is a DLT entry for a local symbol.  */
801 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
802 	      if (local_dlt_refcounts == NULL)
803 		return FALSE;
804 	      local_dlt_refcounts[r_symndx] += 1;
805 	    }
806 	}
807 
808       if (need_entry & NEED_PLT)
809 	{
810 	  if (! hppa_info->plt_sec
811 	      && ! get_plt (abfd, info, hppa_info))
812 	    goto err_out;
813 
814 	  if (hh != NULL)
815 	    {
816 	      hh->want_plt = 1;
817 	      hh->eh.needs_plt = 1;
818 	      hh->eh.plt.refcount += 1;
819 	    }
820 	  else
821 	    {
822 	      bfd_signed_vma *local_dlt_refcounts;
823 	      bfd_signed_vma *local_plt_refcounts;
824 
825 	      /* This is a PLT entry for a local symbol.  */
826 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
827 	      if (local_dlt_refcounts == NULL)
828 		return FALSE;
829 	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
830 	      local_plt_refcounts[r_symndx] += 1;
831 	    }
832 	}
833 
834       if (need_entry & NEED_STUB)
835 	{
836 	  if (! hppa_info->stub_sec
837 	      && ! get_stub (abfd, info, hppa_info))
838 	    goto err_out;
839 	  if (hh)
840 	    hh->want_stub = 1;
841 	}
842 
843       if (need_entry & NEED_OPD)
844 	{
845 	  if (! hppa_info->opd_sec
846 	      && ! get_opd (abfd, info, hppa_info))
847 	    goto err_out;
848 
849 	  /* FPTRs are not allocated by the dynamic linker for PA64,
850 	     though it is possible that will change in the future.  */
851 
852 	  if (hh != NULL)
853 	    hh->want_opd = 1;
854 	  else
855 	    {
856 	      bfd_signed_vma *local_dlt_refcounts;
857 	      bfd_signed_vma *local_opd_refcounts;
858 
859 	      /* This is a OPD for a local symbol.  */
860 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
861 	      if (local_dlt_refcounts == NULL)
862 		return FALSE;
863 	      local_opd_refcounts = (local_dlt_refcounts
864 				     + 2 * symtab_hdr->sh_info);
865 	      local_opd_refcounts[r_symndx] += 1;
866 	    }
867 	}
868 
869       /* Add a new dynamic relocation to the chain of dynamic
870 	 relocations for this symbol.  */
871       if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
872 	{
873 	  if (! hppa_info->other_rel_sec
874 	      && ! get_reloc_section (abfd, hppa_info, sec))
875 	    goto err_out;
876 
877 	  /* Count dynamic relocations against global symbols.  */
878 	  if (hh != NULL
879 	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
880 				   sec_symndx, rel->r_offset, rel->r_addend))
881 	    goto err_out;
882 
883 	  /* If we are building a shared library and we just recorded
884 	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
885 	     section symbol for this section ends up in the dynamic
886 	     symbol table.  */
887 	  if (info->shared && dynrel_type == R_PARISC_FPTR64
888 	      && ! (bfd_elf_link_record_local_dynamic_symbol
889 		    (info, abfd, sec_symndx)))
890 	    return FALSE;
891 	}
892     }
893 
894   return TRUE;
895 
896  err_out:
897   return FALSE;
898 }
899 
900 struct elf64_hppa_allocate_data
901 {
902   struct bfd_link_info *info;
903   bfd_size_type ofs;
904 };
905 
906 /* Should we do dynamic things to this symbol?  */
907 
908 static bfd_boolean
909 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
910 			     struct bfd_link_info *info)
911 {
912   /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
913      and relocations that retrieve a function descriptor?  Assume the
914      worst for now.  */
915   if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
916     {
917       /* ??? Why is this here and not elsewhere is_local_label_name.  */
918       if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
919 	return FALSE;
920 
921       return TRUE;
922     }
923   else
924     return FALSE;
925 }
926 
927 /* Mark all functions exported by this file so that we can later allocate
928    entries in .opd for them.  */
929 
930 static bfd_boolean
931 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
932 {
933   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
934   struct bfd_link_info *info = (struct bfd_link_info *)data;
935   struct elf64_hppa_link_hash_table *hppa_info;
936 
937   hppa_info = hppa_link_hash_table (info);
938   if (hppa_info == NULL)
939     return FALSE;
940 
941   if (eh
942       && (eh->root.type == bfd_link_hash_defined
943 	  || eh->root.type == bfd_link_hash_defweak)
944       && eh->root.u.def.section->output_section != NULL
945       && eh->type == STT_FUNC)
946     {
947       if (! hppa_info->opd_sec
948 	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
949 	return FALSE;
950 
951       hh->want_opd = 1;
952 
953       /* Put a flag here for output_symbol_hook.  */
954       hh->st_shndx = -1;
955       eh->needs_plt = 1;
956     }
957 
958   return TRUE;
959 }
960 
961 /* Allocate space for a DLT entry.  */
962 
963 static bfd_boolean
964 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
965 {
966   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
967   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
968 
969   if (hh->want_dlt)
970     {
971       if (x->info->shared)
972 	{
973 	  /* Possibly add the symbol to the local dynamic symbol
974 	     table since we might need to create a dynamic relocation
975 	     against it.  */
976 	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
977 	    {
978 	      bfd *owner = eh->root.u.def.section->owner;
979 
980 	      if (! (bfd_elf_link_record_local_dynamic_symbol
981 		     (x->info, owner, hh->sym_indx)))
982 		return FALSE;
983 	    }
984 	}
985 
986       hh->dlt_offset = x->ofs;
987       x->ofs += DLT_ENTRY_SIZE;
988     }
989   return TRUE;
990 }
991 
992 /* Allocate space for a DLT.PLT entry.  */
993 
994 static bfd_boolean
995 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
996 {
997   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
998   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
999 
1000   if (hh->want_plt
1001       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1002       && !((eh->root.type == bfd_link_hash_defined
1003 	    || eh->root.type == bfd_link_hash_defweak)
1004 	   && eh->root.u.def.section->output_section != NULL))
1005     {
1006       hh->plt_offset = x->ofs;
1007       x->ofs += PLT_ENTRY_SIZE;
1008       if (hh->plt_offset < 0x2000)
1009 	{
1010 	  struct elf64_hppa_link_hash_table *hppa_info;
1011 
1012 	  hppa_info = hppa_link_hash_table (x->info);
1013 	  if (hppa_info == NULL)
1014 	    return FALSE;
1015 
1016 	  hppa_info->gp_offset = hh->plt_offset;
1017 	}
1018     }
1019   else
1020     hh->want_plt = 0;
1021 
1022   return TRUE;
1023 }
1024 
1025 /* Allocate space for a STUB entry.  */
1026 
1027 static bfd_boolean
1028 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1029 {
1030   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1031   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032 
1033   if (hh->want_stub
1034       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1035       && !((eh->root.type == bfd_link_hash_defined
1036 	    || eh->root.type == bfd_link_hash_defweak)
1037 	   && eh->root.u.def.section->output_section != NULL))
1038     {
1039       hh->stub_offset = x->ofs;
1040       x->ofs += sizeof (plt_stub);
1041     }
1042   else
1043     hh->want_stub = 0;
1044   return TRUE;
1045 }
1046 
1047 /* Allocate space for a FPTR entry.  */
1048 
1049 static bfd_boolean
1050 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1051 {
1052   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1053   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1054 
1055   if (hh && hh->want_opd)
1056     {
1057       /* We never need an opd entry for a symbol which is not
1058 	 defined by this output file.  */
1059       if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1060 		 || hh->eh.root.type == bfd_link_hash_undefweak
1061 		 || hh->eh.root.u.def.section->output_section == NULL))
1062 	hh->want_opd = 0;
1063 
1064       /* If we are creating a shared library, took the address of a local
1065 	 function or might export this function from this object file, then
1066 	 we have to create an opd descriptor.  */
1067       else if (x->info->shared
1068 	       || hh == NULL
1069 	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1070 	       || (hh->eh.root.type == bfd_link_hash_defined
1071 		   || hh->eh.root.type == bfd_link_hash_defweak))
1072 	{
1073 	  /* If we are creating a shared library, then we will have to
1074 	     create a runtime relocation for the symbol to properly
1075 	     initialize the .opd entry.  Make sure the symbol gets
1076 	     added to the dynamic symbol table.  */
1077 	  if (x->info->shared
1078 	      && (hh == NULL || (hh->eh.dynindx == -1)))
1079 	    {
1080 	      bfd *owner;
1081 	      /* PR 6511: Default to using the dynamic symbol table.  */
1082 	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1083 
1084 	      if (!bfd_elf_link_record_local_dynamic_symbol
1085 		    (x->info, owner, hh->sym_indx))
1086 		return FALSE;
1087 	    }
1088 
1089 	  /* This may not be necessary or desirable anymore now that
1090 	     we have some support for dealing with section symbols
1091 	     in dynamic relocs.  But name munging does make the result
1092 	     much easier to debug.  ie, the EPLT reloc will reference
1093 	     a symbol like .foobar, instead of .text + offset.  */
1094 	  if (x->info->shared && eh)
1095 	    {
1096 	      char *new_name;
1097 	      struct elf_link_hash_entry *nh;
1098 
1099 	      new_name = alloca (strlen (eh->root.root.string) + 2);
1100 	      new_name[0] = '.';
1101 	      strcpy (new_name + 1, eh->root.root.string);
1102 
1103 	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1104 					 new_name, TRUE, TRUE, TRUE);
1105 
1106 	      nh->root.type = eh->root.type;
1107 	      nh->root.u.def.value = eh->root.u.def.value;
1108 	      nh->root.u.def.section = eh->root.u.def.section;
1109 
1110 	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1111 		return FALSE;
1112 
1113 	     }
1114 	  hh->opd_offset = x->ofs;
1115 	  x->ofs += OPD_ENTRY_SIZE;
1116 	}
1117 
1118       /* Otherwise we do not need an opd entry.  */
1119       else
1120 	hh->want_opd = 0;
1121     }
1122   return TRUE;
1123 }
1124 
1125 /* HP requires the EI_OSABI field to be filled in.  The assignment to
1126    EI_ABIVERSION may not be strictly necessary.  */
1127 
1128 static void
1129 elf64_hppa_post_process_headers (bfd *abfd,
1130 			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1131 {
1132   Elf_Internal_Ehdr * i_ehdrp;
1133 
1134   i_ehdrp = elf_elfheader (abfd);
1135 
1136   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1137   i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1138 }
1139 
1140 /* Create function descriptor section (.opd).  This section is called .opd
1141    because it contains "official procedure descriptors".  The "official"
1142    refers to the fact that these descriptors are used when taking the address
1143    of a procedure, thus ensuring a unique address for each procedure.  */
1144 
1145 static bfd_boolean
1146 get_opd (bfd *abfd,
1147 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1148 	 struct elf64_hppa_link_hash_table *hppa_info)
1149 {
1150   asection *opd;
1151   bfd *dynobj;
1152 
1153   opd = hppa_info->opd_sec;
1154   if (!opd)
1155     {
1156       dynobj = hppa_info->root.dynobj;
1157       if (!dynobj)
1158 	hppa_info->root.dynobj = dynobj = abfd;
1159 
1160       opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1161 						(SEC_ALLOC
1162 						 | SEC_LOAD
1163 						 | SEC_HAS_CONTENTS
1164 						 | SEC_IN_MEMORY
1165 						 | SEC_LINKER_CREATED));
1166       if (!opd
1167 	  || !bfd_set_section_alignment (abfd, opd, 3))
1168 	{
1169 	  BFD_ASSERT (0);
1170 	  return FALSE;
1171 	}
1172 
1173       hppa_info->opd_sec = opd;
1174     }
1175 
1176   return TRUE;
1177 }
1178 
1179 /* Create the PLT section.  */
1180 
1181 static bfd_boolean
1182 get_plt (bfd *abfd,
1183 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1184 	 struct elf64_hppa_link_hash_table *hppa_info)
1185 {
1186   asection *plt;
1187   bfd *dynobj;
1188 
1189   plt = hppa_info->plt_sec;
1190   if (!plt)
1191     {
1192       dynobj = hppa_info->root.dynobj;
1193       if (!dynobj)
1194 	hppa_info->root.dynobj = dynobj = abfd;
1195 
1196       plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1197 						(SEC_ALLOC
1198 						 | SEC_LOAD
1199 						 | SEC_HAS_CONTENTS
1200 						 | SEC_IN_MEMORY
1201 						 | SEC_LINKER_CREATED));
1202       if (!plt
1203 	  || !bfd_set_section_alignment (abfd, plt, 3))
1204 	{
1205 	  BFD_ASSERT (0);
1206 	  return FALSE;
1207 	}
1208 
1209       hppa_info->plt_sec = plt;
1210     }
1211 
1212   return TRUE;
1213 }
1214 
1215 /* Create the DLT section.  */
1216 
1217 static bfd_boolean
1218 get_dlt (bfd *abfd,
1219 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1220 	 struct elf64_hppa_link_hash_table *hppa_info)
1221 {
1222   asection *dlt;
1223   bfd *dynobj;
1224 
1225   dlt = hppa_info->dlt_sec;
1226   if (!dlt)
1227     {
1228       dynobj = hppa_info->root.dynobj;
1229       if (!dynobj)
1230 	hppa_info->root.dynobj = dynobj = abfd;
1231 
1232       dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1233 						(SEC_ALLOC
1234 						 | SEC_LOAD
1235 						 | SEC_HAS_CONTENTS
1236 						 | SEC_IN_MEMORY
1237 						 | SEC_LINKER_CREATED));
1238       if (!dlt
1239 	  || !bfd_set_section_alignment (abfd, dlt, 3))
1240 	{
1241 	  BFD_ASSERT (0);
1242 	  return FALSE;
1243 	}
1244 
1245       hppa_info->dlt_sec = dlt;
1246     }
1247 
1248   return TRUE;
1249 }
1250 
1251 /* Create the stubs section.  */
1252 
1253 static bfd_boolean
1254 get_stub (bfd *abfd,
1255 	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1256 	  struct elf64_hppa_link_hash_table *hppa_info)
1257 {
1258   asection *stub;
1259   bfd *dynobj;
1260 
1261   stub = hppa_info->stub_sec;
1262   if (!stub)
1263     {
1264       dynobj = hppa_info->root.dynobj;
1265       if (!dynobj)
1266 	hppa_info->root.dynobj = dynobj = abfd;
1267 
1268       stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1269 						 (SEC_ALLOC | SEC_LOAD
1270 						  | SEC_HAS_CONTENTS
1271 						  | SEC_IN_MEMORY
1272 						  | SEC_READONLY
1273 						  | SEC_LINKER_CREATED));
1274       if (!stub
1275 	  || !bfd_set_section_alignment (abfd, stub, 3))
1276 	{
1277 	  BFD_ASSERT (0);
1278 	  return FALSE;
1279 	}
1280 
1281       hppa_info->stub_sec = stub;
1282     }
1283 
1284   return TRUE;
1285 }
1286 
1287 /* Create sections necessary for dynamic linking.  This is only a rough
1288    cut and will likely change as we learn more about the somewhat
1289    unusual dynamic linking scheme HP uses.
1290 
1291    .stub:
1292 	Contains code to implement cross-space calls.  The first time one
1293 	of the stubs is used it will call into the dynamic linker, later
1294 	calls will go straight to the target.
1295 
1296 	The only stub we support right now looks like
1297 
1298 	ldd OFFSET(%dp),%r1
1299 	bve %r0(%r1)
1300 	ldd OFFSET+8(%dp),%dp
1301 
1302 	Other stubs may be needed in the future.  We may want the remove
1303 	the break/nop instruction.  It is only used right now to keep the
1304 	offset of a .plt entry and a .stub entry in sync.
1305 
1306    .dlt:
1307 	This is what most people call the .got.  HP used a different name.
1308 	Losers.
1309 
1310    .rela.dlt:
1311 	Relocations for the DLT.
1312 
1313    .plt:
1314 	Function pointers as address,gp pairs.
1315 
1316    .rela.plt:
1317 	Should contain dynamic IPLT (and EPLT?) relocations.
1318 
1319    .opd:
1320 	FPTRS
1321 
1322    .rela.opd:
1323 	EPLT relocations for symbols exported from shared libraries.  */
1324 
1325 static bfd_boolean
1326 elf64_hppa_create_dynamic_sections (bfd *abfd,
1327 				    struct bfd_link_info *info)
1328 {
1329   asection *s;
1330   struct elf64_hppa_link_hash_table *hppa_info;
1331 
1332   hppa_info = hppa_link_hash_table (info);
1333   if (hppa_info == NULL)
1334     return FALSE;
1335 
1336   if (! get_stub (abfd, info, hppa_info))
1337     return FALSE;
1338 
1339   if (! get_dlt (abfd, info, hppa_info))
1340     return FALSE;
1341 
1342   if (! get_plt (abfd, info, hppa_info))
1343     return FALSE;
1344 
1345   if (! get_opd (abfd, info, hppa_info))
1346     return FALSE;
1347 
1348   s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1349 					  (SEC_ALLOC | SEC_LOAD
1350 					   | SEC_HAS_CONTENTS
1351 					   | SEC_IN_MEMORY
1352 					   | SEC_READONLY
1353 					   | SEC_LINKER_CREATED));
1354   if (s == NULL
1355       || !bfd_set_section_alignment (abfd, s, 3))
1356     return FALSE;
1357   hppa_info->dlt_rel_sec = s;
1358 
1359   s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1360 					  (SEC_ALLOC | SEC_LOAD
1361 					   | SEC_HAS_CONTENTS
1362 					   | SEC_IN_MEMORY
1363 					   | SEC_READONLY
1364 					   | SEC_LINKER_CREATED));
1365   if (s == NULL
1366       || !bfd_set_section_alignment (abfd, s, 3))
1367     return FALSE;
1368   hppa_info->plt_rel_sec = s;
1369 
1370   s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1371 					  (SEC_ALLOC | SEC_LOAD
1372 					   | SEC_HAS_CONTENTS
1373 					   | SEC_IN_MEMORY
1374 					   | SEC_READONLY
1375 					   | SEC_LINKER_CREATED));
1376   if (s == NULL
1377       || !bfd_set_section_alignment (abfd, s, 3))
1378     return FALSE;
1379   hppa_info->other_rel_sec = s;
1380 
1381   s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1382 					  (SEC_ALLOC | SEC_LOAD
1383 					   | SEC_HAS_CONTENTS
1384 					   | SEC_IN_MEMORY
1385 					   | SEC_READONLY
1386 					   | SEC_LINKER_CREATED));
1387   if (s == NULL
1388       || !bfd_set_section_alignment (abfd, s, 3))
1389     return FALSE;
1390   hppa_info->opd_rel_sec = s;
1391 
1392   return TRUE;
1393 }
1394 
1395 /* Allocate dynamic relocations for those symbols that turned out
1396    to be dynamic.  */
1397 
1398 static bfd_boolean
1399 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1400 {
1401   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1402   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1403   struct elf64_hppa_link_hash_table *hppa_info;
1404   struct elf64_hppa_dyn_reloc_entry *rent;
1405   bfd_boolean dynamic_symbol, shared;
1406 
1407   hppa_info = hppa_link_hash_table (x->info);
1408   if (hppa_info == NULL)
1409     return FALSE;
1410 
1411   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1412   shared = x->info->shared;
1413 
1414   /* We may need to allocate relocations for a non-dynamic symbol
1415      when creating a shared library.  */
1416   if (!dynamic_symbol && !shared)
1417     return TRUE;
1418 
1419   /* Take care of the normal data relocations.  */
1420 
1421   for (rent = hh->reloc_entries; rent; rent = rent->next)
1422     {
1423       /* Allocate one iff we are building a shared library, the relocation
1424 	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1425       if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1426 	continue;
1427 
1428       hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1429 
1430       /* Make sure this symbol gets into the dynamic symbol table if it is
1431 	 not already recorded.  ?!? This should not be in the loop since
1432 	 the symbol need only be added once.  */
1433       if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1434 	if (!bfd_elf_link_record_local_dynamic_symbol
1435 	    (x->info, rent->sec->owner, hh->sym_indx))
1436 	  return FALSE;
1437     }
1438 
1439   /* Take care of the GOT and PLT relocations.  */
1440 
1441   if ((dynamic_symbol || shared) && hh->want_dlt)
1442     hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1443 
1444   /* If we are building a shared library, then every symbol that has an
1445      opd entry will need an EPLT relocation to relocate the symbol's address
1446      and __gp value based on the runtime load address.  */
1447   if (shared && hh->want_opd)
1448     hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1449 
1450   if (hh->want_plt && dynamic_symbol)
1451     {
1452       bfd_size_type t = 0;
1453 
1454       /* Dynamic symbols get one IPLT relocation.  Local symbols in
1455 	 shared libraries get two REL relocations.  Local symbols in
1456 	 main applications get nothing.  */
1457       if (dynamic_symbol)
1458 	t = sizeof (Elf64_External_Rela);
1459       else if (shared)
1460 	t = 2 * sizeof (Elf64_External_Rela);
1461 
1462       hppa_info->plt_rel_sec->size += t;
1463     }
1464 
1465   return TRUE;
1466 }
1467 
1468 /* Adjust a symbol defined by a dynamic object and referenced by a
1469    regular object.  */
1470 
1471 static bfd_boolean
1472 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1473 				  struct elf_link_hash_entry *eh)
1474 {
1475   /* ??? Undefined symbols with PLT entries should be re-defined
1476      to be the PLT entry.  */
1477 
1478   /* If this is a weak symbol, and there is a real definition, the
1479      processor independent code will have arranged for us to see the
1480      real definition first, and we can just use the same value.  */
1481   if (eh->u.weakdef != NULL)
1482     {
1483       BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1484 		  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1485       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1486       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1487       return TRUE;
1488     }
1489 
1490   /* If this is a reference to a symbol defined by a dynamic object which
1491      is not a function, we might allocate the symbol in our .dynbss section
1492      and allocate a COPY dynamic relocation.
1493 
1494      But PA64 code is canonically PIC, so as a rule we can avoid this sort
1495      of hackery.  */
1496 
1497   return TRUE;
1498 }
1499 
1500 /* This function is called via elf_link_hash_traverse to mark millicode
1501    symbols with a dynindx of -1 and to remove the string table reference
1502    from the dynamic symbol table.  If the symbol is not a millicode symbol,
1503    elf64_hppa_mark_exported_functions is called.  */
1504 
1505 static bfd_boolean
1506 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1507 					      void *data)
1508 {
1509   struct bfd_link_info *info = (struct bfd_link_info *) data;
1510 
1511   if (eh->type == STT_PARISC_MILLI)
1512     {
1513       if (eh->dynindx != -1)
1514 	{
1515 	  eh->dynindx = -1;
1516 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1517 				  eh->dynstr_index);
1518 	}
1519       return TRUE;
1520     }
1521 
1522   return elf64_hppa_mark_exported_functions (eh, data);
1523 }
1524 
1525 /* Set the final sizes of the dynamic sections and allocate memory for
1526    the contents of our special sections.  */
1527 
1528 static bfd_boolean
1529 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1530 {
1531   struct elf64_hppa_link_hash_table *hppa_info;
1532   struct elf64_hppa_allocate_data data;
1533   bfd *dynobj;
1534   bfd *ibfd;
1535   asection *sec;
1536   bfd_boolean plt;
1537   bfd_boolean relocs;
1538   bfd_boolean reltext;
1539 
1540   hppa_info = hppa_link_hash_table (info);
1541   if (hppa_info == NULL)
1542     return FALSE;
1543 
1544   dynobj = elf_hash_table (info)->dynobj;
1545   BFD_ASSERT (dynobj != NULL);
1546 
1547   /* Mark each function this program exports so that we will allocate
1548      space in the .opd section for each function's FPTR.  If we are
1549      creating dynamic sections, change the dynamic index of millicode
1550      symbols to -1 and remove them from the string table for .dynstr.
1551 
1552      We have to traverse the main linker hash table since we have to
1553      find functions which may not have been mentioned in any relocs.  */
1554   elf_link_hash_traverse (elf_hash_table (info),
1555 			  (elf_hash_table (info)->dynamic_sections_created
1556 			   ? elf64_hppa_mark_milli_and_exported_functions
1557 			   : elf64_hppa_mark_exported_functions),
1558 			  info);
1559 
1560   if (elf_hash_table (info)->dynamic_sections_created)
1561     {
1562       /* Set the contents of the .interp section to the interpreter.  */
1563       if (info->executable)
1564 	{
1565 	  sec = bfd_get_linker_section (dynobj, ".interp");
1566 	  BFD_ASSERT (sec != NULL);
1567 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1568 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1569 	}
1570     }
1571   else
1572     {
1573       /* We may have created entries in the .rela.got section.
1574 	 However, if we are not creating the dynamic sections, we will
1575 	 not actually use these entries.  Reset the size of .rela.dlt,
1576 	 which will cause it to get stripped from the output file
1577 	 below.  */
1578       sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1579       if (sec != NULL)
1580 	sec->size = 0;
1581     }
1582 
1583   /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1584      dynamic relocs.  */
1585   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1586     {
1587       bfd_signed_vma *local_dlt;
1588       bfd_signed_vma *end_local_dlt;
1589       bfd_signed_vma *local_plt;
1590       bfd_signed_vma *end_local_plt;
1591       bfd_signed_vma *local_opd;
1592       bfd_signed_vma *end_local_opd;
1593       bfd_size_type locsymcount;
1594       Elf_Internal_Shdr *symtab_hdr;
1595       asection *srel;
1596 
1597       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1598 	continue;
1599 
1600       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1601 	{
1602 	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1603 
1604 	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1605 		    elf_section_data (sec)->local_dynrel);
1606 	       hdh_p != NULL;
1607 	       hdh_p = hdh_p->next)
1608 	    {
1609 	      if (!bfd_is_abs_section (hdh_p->sec)
1610 		  && bfd_is_abs_section (hdh_p->sec->output_section))
1611 		{
1612 		  /* Input section has been discarded, either because
1613 		     it is a copy of a linkonce section or due to
1614 		     linker script /DISCARD/, so we'll be discarding
1615 		     the relocs too.  */
1616 		}
1617 	      else if (hdh_p->count != 0)
1618 		{
1619 		  srel = elf_section_data (hdh_p->sec)->sreloc;
1620 		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1621 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1622 		    info->flags |= DF_TEXTREL;
1623 		}
1624 	    }
1625 	}
1626 
1627       local_dlt = elf_local_got_refcounts (ibfd);
1628       if (!local_dlt)
1629 	continue;
1630 
1631       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1632       locsymcount = symtab_hdr->sh_info;
1633       end_local_dlt = local_dlt + locsymcount;
1634       sec = hppa_info->dlt_sec;
1635       srel = hppa_info->dlt_rel_sec;
1636       for (; local_dlt < end_local_dlt; ++local_dlt)
1637 	{
1638 	  if (*local_dlt > 0)
1639 	    {
1640 	      *local_dlt = sec->size;
1641 	      sec->size += DLT_ENTRY_SIZE;
1642 	      if (info->shared)
1643 	        {
1644 		  srel->size += sizeof (Elf64_External_Rela);
1645 	        }
1646 	    }
1647 	  else
1648 	    *local_dlt = (bfd_vma) -1;
1649 	}
1650 
1651       local_plt = end_local_dlt;
1652       end_local_plt = local_plt + locsymcount;
1653       if (! hppa_info->root.dynamic_sections_created)
1654 	{
1655 	  /* Won't be used, but be safe.  */
1656 	  for (; local_plt < end_local_plt; ++local_plt)
1657 	    *local_plt = (bfd_vma) -1;
1658 	}
1659       else
1660 	{
1661 	  sec = hppa_info->plt_sec;
1662 	  srel = hppa_info->plt_rel_sec;
1663 	  for (; local_plt < end_local_plt; ++local_plt)
1664 	    {
1665 	      if (*local_plt > 0)
1666 		{
1667 		  *local_plt = sec->size;
1668 		  sec->size += PLT_ENTRY_SIZE;
1669 		  if (info->shared)
1670 		    srel->size += sizeof (Elf64_External_Rela);
1671 		}
1672 	      else
1673 		*local_plt = (bfd_vma) -1;
1674 	    }
1675 	}
1676 
1677       local_opd = end_local_plt;
1678       end_local_opd = local_opd + locsymcount;
1679       if (! hppa_info->root.dynamic_sections_created)
1680 	{
1681 	  /* Won't be used, but be safe.  */
1682 	  for (; local_opd < end_local_opd; ++local_opd)
1683 	    *local_opd = (bfd_vma) -1;
1684 	}
1685       else
1686 	{
1687 	  sec = hppa_info->opd_sec;
1688 	  srel = hppa_info->opd_rel_sec;
1689 	  for (; local_opd < end_local_opd; ++local_opd)
1690 	    {
1691 	      if (*local_opd > 0)
1692 		{
1693 		  *local_opd = sec->size;
1694 		  sec->size += OPD_ENTRY_SIZE;
1695 		  if (info->shared)
1696 		    srel->size += sizeof (Elf64_External_Rela);
1697 		}
1698 	      else
1699 		*local_opd = (bfd_vma) -1;
1700 	    }
1701 	}
1702     }
1703 
1704   /* Allocate the GOT entries.  */
1705 
1706   data.info = info;
1707   if (hppa_info->dlt_sec)
1708     {
1709       data.ofs = hppa_info->dlt_sec->size;
1710       elf_link_hash_traverse (elf_hash_table (info),
1711 			      allocate_global_data_dlt, &data);
1712       hppa_info->dlt_sec->size = data.ofs;
1713     }
1714 
1715   if (hppa_info->plt_sec)
1716     {
1717       data.ofs = hppa_info->plt_sec->size;
1718       elf_link_hash_traverse (elf_hash_table (info),
1719 		              allocate_global_data_plt, &data);
1720       hppa_info->plt_sec->size = data.ofs;
1721     }
1722 
1723   if (hppa_info->stub_sec)
1724     {
1725       data.ofs = 0x0;
1726       elf_link_hash_traverse (elf_hash_table (info),
1727 			      allocate_global_data_stub, &data);
1728       hppa_info->stub_sec->size = data.ofs;
1729     }
1730 
1731   /* Allocate space for entries in the .opd section.  */
1732   if (hppa_info->opd_sec)
1733     {
1734       data.ofs = hppa_info->opd_sec->size;
1735       elf_link_hash_traverse (elf_hash_table (info),
1736 			      allocate_global_data_opd, &data);
1737       hppa_info->opd_sec->size = data.ofs;
1738     }
1739 
1740   /* Now allocate space for dynamic relocations, if necessary.  */
1741   if (hppa_info->root.dynamic_sections_created)
1742     elf_link_hash_traverse (elf_hash_table (info),
1743 			    allocate_dynrel_entries, &data);
1744 
1745   /* The sizes of all the sections are set.  Allocate memory for them.  */
1746   plt = FALSE;
1747   relocs = FALSE;
1748   reltext = FALSE;
1749   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1750     {
1751       const char *name;
1752 
1753       if ((sec->flags & SEC_LINKER_CREATED) == 0)
1754 	continue;
1755 
1756       /* It's OK to base decisions on the section name, because none
1757 	 of the dynobj section names depend upon the input files.  */
1758       name = bfd_get_section_name (dynobj, sec);
1759 
1760       if (strcmp (name, ".plt") == 0)
1761 	{
1762 	  /* Remember whether there is a PLT.  */
1763 	  plt = sec->size != 0;
1764 	}
1765       else if (strcmp (name, ".opd") == 0
1766 	       || CONST_STRNEQ (name, ".dlt")
1767 	       || strcmp (name, ".stub") == 0
1768 	       || strcmp (name, ".got") == 0)
1769 	{
1770 	  /* Strip this section if we don't need it; see the comment below.  */
1771 	}
1772       else if (CONST_STRNEQ (name, ".rela"))
1773 	{
1774 	  if (sec->size != 0)
1775 	    {
1776 	      asection *target;
1777 
1778 	      /* Remember whether there are any reloc sections other
1779 		 than .rela.plt.  */
1780 	      if (strcmp (name, ".rela.plt") != 0)
1781 		{
1782 		  const char *outname;
1783 
1784 		  relocs = TRUE;
1785 
1786 		  /* If this relocation section applies to a read only
1787 		     section, then we probably need a DT_TEXTREL
1788 		     entry.  The entries in the .rela.plt section
1789 		     really apply to the .got section, which we
1790 		     created ourselves and so know is not readonly.  */
1791 		  outname = bfd_get_section_name (output_bfd,
1792 						  sec->output_section);
1793 		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 		  if (target != NULL
1795 		      && (target->flags & SEC_READONLY) != 0
1796 		      && (target->flags & SEC_ALLOC) != 0)
1797 		    reltext = TRUE;
1798 		}
1799 
1800 	      /* We use the reloc_count field as a counter if we need
1801 		 to copy relocs into the output file.  */
1802 	      sec->reloc_count = 0;
1803 	    }
1804 	}
1805       else
1806 	{
1807 	  /* It's not one of our sections, so don't allocate space.  */
1808 	  continue;
1809 	}
1810 
1811       if (sec->size == 0)
1812 	{
1813 	  /* If we don't need this section, strip it from the
1814 	     output file.  This is mostly to handle .rela.bss and
1815 	     .rela.plt.  We must create both sections in
1816 	     create_dynamic_sections, because they must be created
1817 	     before the linker maps input sections to output
1818 	     sections.  The linker does that before
1819 	     adjust_dynamic_symbol is called, and it is that
1820 	     function which decides whether anything needs to go
1821 	     into these sections.  */
1822 	  sec->flags |= SEC_EXCLUDE;
1823 	  continue;
1824 	}
1825 
1826       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1827 	continue;
1828 
1829       /* Allocate memory for the section contents if it has not
1830 	 been allocated already.  We use bfd_zalloc here in case
1831 	 unused entries are not reclaimed before the section's
1832 	 contents are written out.  This should not happen, but this
1833 	 way if it does, we get a R_PARISC_NONE reloc instead of
1834 	 garbage.  */
1835       if (sec->contents == NULL)
1836 	{
1837 	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1838 	  if (sec->contents == NULL)
1839 	    return FALSE;
1840 	}
1841     }
1842 
1843   if (elf_hash_table (info)->dynamic_sections_created)
1844     {
1845       /* Always create a DT_PLTGOT.  It actually has nothing to do with
1846 	 the PLT, it is how we communicate the __gp value of a load
1847 	 module to the dynamic linker.  */
1848 #define add_dynamic_entry(TAG, VAL) \
1849   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1850 
1851       if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1852 	  || !add_dynamic_entry (DT_PLTGOT, 0))
1853 	return FALSE;
1854 
1855       /* Add some entries to the .dynamic section.  We fill in the
1856 	 values later, in elf64_hppa_finish_dynamic_sections, but we
1857 	 must add the entries now so that we get the correct size for
1858 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1859 	 dynamic linker and used by the debugger.  */
1860       if (! info->shared)
1861 	{
1862 	  if (!add_dynamic_entry (DT_DEBUG, 0)
1863 	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1864 	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1865 	    return FALSE;
1866 	}
1867 
1868       /* Force DT_FLAGS to always be set.
1869 	 Required by HPUX 11.00 patch PHSS_26559.  */
1870       if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1871 	return FALSE;
1872 
1873       if (plt)
1874 	{
1875 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1876 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1877 	      || !add_dynamic_entry (DT_JMPREL, 0))
1878 	    return FALSE;
1879 	}
1880 
1881       if (relocs)
1882 	{
1883 	  if (!add_dynamic_entry (DT_RELA, 0)
1884 	      || !add_dynamic_entry (DT_RELASZ, 0)
1885 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1886 	    return FALSE;
1887 	}
1888 
1889       if (reltext)
1890 	{
1891 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1892 	    return FALSE;
1893 	  info->flags |= DF_TEXTREL;
1894 	}
1895     }
1896 #undef add_dynamic_entry
1897 
1898   return TRUE;
1899 }
1900 
1901 /* Called after we have output the symbol into the dynamic symbol
1902    table, but before we output the symbol into the normal symbol
1903    table.
1904 
1905    For some symbols we had to change their address when outputting
1906    the dynamic symbol table.  We undo that change here so that
1907    the symbols have their expected value in the normal symbol
1908    table.  Ick.  */
1909 
1910 static int
1911 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1912 				    const char *name,
1913 				    Elf_Internal_Sym *sym,
1914 				    asection *input_sec ATTRIBUTE_UNUSED,
1915 				    struct elf_link_hash_entry *eh)
1916 {
1917   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1918 
1919   /* We may be called with the file symbol or section symbols.
1920      They never need munging, so it is safe to ignore them.  */
1921   if (!name || !eh)
1922     return 1;
1923 
1924   /* Function symbols for which we created .opd entries *may* have been
1925      munged by finish_dynamic_symbol and have to be un-munged here.
1926 
1927      Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928      into non-dynamic ones, so we initialize st_shndx to -1 in
1929      mark_exported_functions and check to see if it was overwritten
1930      here instead of just checking eh->dynindx.  */
1931   if (hh->want_opd && hh->st_shndx != -1)
1932     {
1933       /* Restore the saved value and section index.  */
1934       sym->st_value = hh->st_value;
1935       sym->st_shndx = hh->st_shndx;
1936     }
1937 
1938   return 1;
1939 }
1940 
1941 /* Finish up dynamic symbol handling.  We set the contents of various
1942    dynamic sections here.  */
1943 
1944 static bfd_boolean
1945 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1946 				  struct bfd_link_info *info,
1947 				  struct elf_link_hash_entry *eh,
1948 				  Elf_Internal_Sym *sym)
1949 {
1950   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1951   asection *stub, *splt, *sopd, *spltrel;
1952   struct elf64_hppa_link_hash_table *hppa_info;
1953 
1954   hppa_info = hppa_link_hash_table (info);
1955   if (hppa_info == NULL)
1956     return FALSE;
1957 
1958   stub = hppa_info->stub_sec;
1959   splt = hppa_info->plt_sec;
1960   sopd = hppa_info->opd_sec;
1961   spltrel = hppa_info->plt_rel_sec;
1962 
1963   /* Incredible.  It is actually necessary to NOT use the symbol's real
1964      value when building the dynamic symbol table for a shared library.
1965      At least for symbols that refer to functions.
1966 
1967      We will store a new value and section index into the symbol long
1968      enough to output it into the dynamic symbol table, then we restore
1969      the original values (in elf64_hppa_link_output_symbol_hook).  */
1970   if (hh->want_opd)
1971     {
1972       BFD_ASSERT (sopd != NULL);
1973 
1974       /* Save away the original value and section index so that we
1975 	 can restore them later.  */
1976       hh->st_value = sym->st_value;
1977       hh->st_shndx = sym->st_shndx;
1978 
1979       /* For the dynamic symbol table entry, we want the value to be
1980 	 address of this symbol's entry within the .opd section.  */
1981       sym->st_value = (hh->opd_offset
1982 		       + sopd->output_offset
1983 		       + sopd->output_section->vma);
1984       sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1985 							 sopd->output_section);
1986     }
1987 
1988   /* Initialize a .plt entry if requested.  */
1989   if (hh->want_plt
1990       && elf64_hppa_dynamic_symbol_p (eh, info))
1991     {
1992       bfd_vma value;
1993       Elf_Internal_Rela rel;
1994       bfd_byte *loc;
1995 
1996       BFD_ASSERT (splt != NULL && spltrel != NULL);
1997 
1998       /* We do not actually care about the value in the PLT entry
1999 	 if we are creating a shared library and the symbol is
2000 	 still undefined, we create a dynamic relocation to fill
2001 	 in the correct value.  */
2002       if (info->shared && eh->root.type == bfd_link_hash_undefined)
2003 	value = 0;
2004       else
2005 	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2006 
2007       /* Fill in the entry in the procedure linkage table.
2008 
2009 	 The format of a plt entry is
2010 	 <funcaddr> <__gp>.
2011 
2012 	 plt_offset is the offset within the PLT section at which to
2013 	 install the PLT entry.
2014 
2015 	 We are modifying the in-memory PLT contents here, so we do not add
2016 	 in the output_offset of the PLT section.  */
2017 
2018       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2019       value = _bfd_get_gp_value (splt->output_section->owner);
2020       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2021 
2022       /* Create a dynamic IPLT relocation for this entry.
2023 
2024 	 We are creating a relocation in the output file's PLT section,
2025 	 which is included within the DLT secton.  So we do need to include
2026 	 the PLT's output_offset in the computation of the relocation's
2027 	 address.  */
2028       rel.r_offset = (hh->plt_offset + splt->output_offset
2029 		      + splt->output_section->vma);
2030       rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2031       rel.r_addend = 0;
2032 
2033       loc = spltrel->contents;
2034       loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2035       bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2036     }
2037 
2038   /* Initialize an external call stub entry if requested.  */
2039   if (hh->want_stub
2040       && elf64_hppa_dynamic_symbol_p (eh, info))
2041     {
2042       bfd_vma value;
2043       int insn;
2044       unsigned int max_offset;
2045 
2046       BFD_ASSERT (stub != NULL);
2047 
2048       /* Install the generic stub template.
2049 
2050 	 We are modifying the contents of the stub section, so we do not
2051 	 need to include the stub section's output_offset here.  */
2052       memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2053 
2054       /* Fix up the first ldd instruction.
2055 
2056 	 We are modifying the contents of the STUB section in memory,
2057 	 so we do not need to include its output offset in this computation.
2058 
2059 	 Note the plt_offset value is the value of the PLT entry relative to
2060 	 the start of the PLT section.  These instructions will reference
2061 	 data relative to the value of __gp, which may not necessarily have
2062 	 the same address as the start of the PLT section.
2063 
2064 	 gp_offset contains the offset of __gp within the PLT section.  */
2065       value = hh->plt_offset - hppa_info->gp_offset;
2066 
2067       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2068       if (output_bfd->arch_info->mach >= 25)
2069 	{
2070 	  /* Wide mode allows 16 bit offsets.  */
2071 	  max_offset = 32768;
2072 	  insn &= ~ 0xfff1;
2073 	  insn |= re_assemble_16 ((int) value);
2074 	}
2075       else
2076 	{
2077 	  max_offset = 8192;
2078 	  insn &= ~ 0x3ff1;
2079 	  insn |= re_assemble_14 ((int) value);
2080 	}
2081 
2082       if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2083 	{
2084 	  (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 				 hh->eh.root.root.string,
2086 				 (long) value);
2087 	  return FALSE;
2088 	}
2089 
2090       bfd_put_32 (stub->owner, (bfd_vma) insn,
2091 		  stub->contents + hh->stub_offset);
2092 
2093       /* Fix up the second ldd instruction.  */
2094       value += 8;
2095       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2096       if (output_bfd->arch_info->mach >= 25)
2097 	{
2098 	  insn &= ~ 0xfff1;
2099 	  insn |= re_assemble_16 ((int) value);
2100 	}
2101       else
2102 	{
2103 	  insn &= ~ 0x3ff1;
2104 	  insn |= re_assemble_14 ((int) value);
2105 	}
2106       bfd_put_32 (stub->owner, (bfd_vma) insn,
2107 		  stub->contents + hh->stub_offset + 8);
2108     }
2109 
2110   return TRUE;
2111 }
2112 
2113 /* The .opd section contains FPTRs for each function this file
2114    exports.  Initialize the FPTR entries.  */
2115 
2116 static bfd_boolean
2117 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2118 {
2119   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2120   struct bfd_link_info *info = (struct bfd_link_info *)data;
2121   struct elf64_hppa_link_hash_table *hppa_info;
2122   asection *sopd;
2123   asection *sopdrel;
2124 
2125   hppa_info = hppa_link_hash_table (info);
2126   if (hppa_info == NULL)
2127     return FALSE;
2128 
2129   sopd = hppa_info->opd_sec;
2130   sopdrel = hppa_info->opd_rel_sec;
2131 
2132   if (hh->want_opd)
2133     {
2134       bfd_vma value;
2135 
2136       /* The first two words of an .opd entry are zero.
2137 
2138 	 We are modifying the contents of the OPD section in memory, so we
2139 	 do not need to include its output offset in this computation.  */
2140       memset (sopd->contents + hh->opd_offset, 0, 16);
2141 
2142       value = (eh->root.u.def.value
2143 	       + eh->root.u.def.section->output_section->vma
2144 	       + eh->root.u.def.section->output_offset);
2145 
2146       /* The next word is the address of the function.  */
2147       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2148 
2149       /* The last word is our local __gp value.  */
2150       value = _bfd_get_gp_value (sopd->output_section->owner);
2151       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2152     }
2153 
2154   /* If we are generating a shared library, we must generate EPLT relocations
2155      for each entry in the .opd, even for static functions (they may have
2156      had their address taken).  */
2157   if (info->shared && hh->want_opd)
2158     {
2159       Elf_Internal_Rela rel;
2160       bfd_byte *loc;
2161       int dynindx;
2162 
2163       /* We may need to do a relocation against a local symbol, in
2164 	 which case we have to look up it's dynamic symbol index off
2165 	 the local symbol hash table.  */
2166       if (eh->dynindx != -1)
2167 	dynindx = eh->dynindx;
2168       else
2169 	dynindx
2170 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2171 						hh->sym_indx);
2172 
2173       /* The offset of this relocation is the absolute address of the
2174 	 .opd entry for this symbol.  */
2175       rel.r_offset = (hh->opd_offset + sopd->output_offset
2176 		      + sopd->output_section->vma);
2177 
2178       /* If H is non-null, then we have an external symbol.
2179 
2180 	 It is imperative that we use a different dynamic symbol for the
2181 	 EPLT relocation if the symbol has global scope.
2182 
2183 	 In the dynamic symbol table, the function symbol will have a value
2184 	 which is address of the function's .opd entry.
2185 
2186 	 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 	 (if we did, the data in the .opd would reference itself rather
2188 	 than the actual address of the function).  Instead we have to use
2189 	 a new dynamic symbol which has the same value as the original global
2190 	 function symbol.
2191 
2192 	 We prefix the original symbol with a "." and use the new symbol in
2193 	 the EPLT relocation.  This new symbol has already been recorded in
2194 	 the symbol table, we just have to look it up and use it.
2195 
2196 	 We do not have such problems with static functions because we do
2197 	 not make their addresses in the dynamic symbol table point to
2198 	 the .opd entry.  Ultimately this should be safe since a static
2199 	 function can not be directly referenced outside of its shared
2200 	 library.
2201 
2202 	 We do have to play similar games for FPTR relocations in shared
2203 	 libraries, including those for static symbols.  See the FPTR
2204 	 handling in elf64_hppa_finalize_dynreloc.  */
2205       if (eh)
2206 	{
2207 	  char *new_name;
2208 	  struct elf_link_hash_entry *nh;
2209 
2210 	  new_name = alloca (strlen (eh->root.root.string) + 2);
2211 	  new_name[0] = '.';
2212 	  strcpy (new_name + 1, eh->root.root.string);
2213 
2214 	  nh = elf_link_hash_lookup (elf_hash_table (info),
2215 				     new_name, TRUE, TRUE, FALSE);
2216 
2217 	  /* All we really want from the new symbol is its dynamic
2218 	     symbol index.  */
2219 	  if (nh)
2220 	    dynindx = nh->dynindx;
2221 	}
2222 
2223       rel.r_addend = 0;
2224       rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2225 
2226       loc = sopdrel->contents;
2227       loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2228       bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2229     }
2230   return TRUE;
2231 }
2232 
2233 /* The .dlt section contains addresses for items referenced through the
2234    dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2235    we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2236 
2237 static bfd_boolean
2238 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2239 {
2240   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2241   struct bfd_link_info *info = (struct bfd_link_info *)data;
2242   struct elf64_hppa_link_hash_table *hppa_info;
2243   asection *sdlt, *sdltrel;
2244 
2245   hppa_info = hppa_link_hash_table (info);
2246   if (hppa_info == NULL)
2247     return FALSE;
2248 
2249   sdlt = hppa_info->dlt_sec;
2250   sdltrel = hppa_info->dlt_rel_sec;
2251 
2252   /* H/DYN_H may refer to a local variable and we know it's
2253      address, so there is no need to create a relocation.  Just install
2254      the proper value into the DLT, note this shortcut can not be
2255      skipped when building a shared library.  */
2256   if (! info->shared && hh && hh->want_dlt)
2257     {
2258       bfd_vma value;
2259 
2260       /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 	 to point to the FPTR entry in the .opd section.
2262 
2263 	 We include the OPD's output offset in this computation as
2264 	 we are referring to an absolute address in the resulting
2265 	 object file.  */
2266       if (hh->want_opd)
2267 	{
2268 	  value = (hh->opd_offset
2269 		   + hppa_info->opd_sec->output_offset
2270 		   + hppa_info->opd_sec->output_section->vma);
2271 	}
2272       else if ((eh->root.type == bfd_link_hash_defined
2273 		|| eh->root.type == bfd_link_hash_defweak)
2274 	       && eh->root.u.def.section)
2275 	{
2276 	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2277 	  if (eh->root.u.def.section->output_section)
2278 	    value += eh->root.u.def.section->output_section->vma;
2279 	  else
2280 	    value += eh->root.u.def.section->vma;
2281 	}
2282       else
2283 	/* We have an undefined function reference.  */
2284 	value = 0;
2285 
2286       /* We do not need to include the output offset of the DLT section
2287 	 here because we are modifying the in-memory contents.  */
2288       bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2289     }
2290 
2291   /* Create a relocation for the DLT entry associated with this symbol.
2292      When building a shared library the symbol does not have to be dynamic.  */
2293   if (hh->want_dlt
2294       && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2295     {
2296       Elf_Internal_Rela rel;
2297       bfd_byte *loc;
2298       int dynindx;
2299 
2300       /* We may need to do a relocation against a local symbol, in
2301 	 which case we have to look up it's dynamic symbol index off
2302 	 the local symbol hash table.  */
2303       if (eh && eh->dynindx != -1)
2304 	dynindx = eh->dynindx;
2305       else
2306 	dynindx
2307 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2308 						hh->sym_indx);
2309 
2310       /* Create a dynamic relocation for this entry.  Do include the output
2311 	 offset of the DLT entry since we need an absolute address in the
2312 	 resulting object file.  */
2313       rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2314 		      + sdlt->output_section->vma);
2315       if (eh && eh->type == STT_FUNC)
2316 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2317       else
2318 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2319       rel.r_addend = 0;
2320 
2321       loc = sdltrel->contents;
2322       loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2323       bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2324     }
2325   return TRUE;
2326 }
2327 
2328 /* Finalize the dynamic relocations.  Specifically the FPTR relocations
2329    for dynamic functions used to initialize static data.  */
2330 
2331 static bfd_boolean
2332 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2333 			      void *data)
2334 {
2335   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2336   struct bfd_link_info *info = (struct bfd_link_info *)data;
2337   struct elf64_hppa_link_hash_table *hppa_info;
2338   int dynamic_symbol;
2339 
2340   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2341 
2342   if (!dynamic_symbol && !info->shared)
2343     return TRUE;
2344 
2345   if (hh->reloc_entries)
2346     {
2347       struct elf64_hppa_dyn_reloc_entry *rent;
2348       int dynindx;
2349 
2350       hppa_info = hppa_link_hash_table (info);
2351       if (hppa_info == NULL)
2352 	return FALSE;
2353 
2354       /* We may need to do a relocation against a local symbol, in
2355 	 which case we have to look up it's dynamic symbol index off
2356 	 the local symbol hash table.  */
2357       if (eh->dynindx != -1)
2358 	dynindx = eh->dynindx;
2359       else
2360 	dynindx
2361 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2362 						hh->sym_indx);
2363 
2364       for (rent = hh->reloc_entries; rent; rent = rent->next)
2365 	{
2366 	  Elf_Internal_Rela rel;
2367 	  bfd_byte *loc;
2368 
2369 	  /* Allocate one iff we are building a shared library, the relocation
2370 	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2371 	  if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2372 	    continue;
2373 
2374 	  /* Create a dynamic relocation for this entry.
2375 
2376 	     We need the output offset for the reloc's section because
2377 	     we are creating an absolute address in the resulting object
2378 	     file.  */
2379 	  rel.r_offset = (rent->offset + rent->sec->output_offset
2380 			  + rent->sec->output_section->vma);
2381 
2382 	  /* An FPTR64 relocation implies that we took the address of
2383 	     a function and that the function has an entry in the .opd
2384 	     section.  We want the FPTR64 relocation to reference the
2385 	     entry in .opd.
2386 
2387 	     We could munge the symbol value in the dynamic symbol table
2388 	     (in fact we already do for functions with global scope) to point
2389 	     to the .opd entry.  Then we could use that dynamic symbol in
2390 	     this relocation.
2391 
2392 	     Or we could do something sensible, not munge the symbol's
2393 	     address and instead just use a different symbol to reference
2394 	     the .opd entry.  At least that seems sensible until you
2395 	     realize there's no local dynamic symbols we can use for that
2396 	     purpose.  Thus the hair in the check_relocs routine.
2397 
2398 	     We use a section symbol recorded by check_relocs as the
2399 	     base symbol for the relocation.  The addend is the difference
2400 	     between the section symbol and the address of the .opd entry.  */
2401 	  if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2402 	    {
2403 	      bfd_vma value, value2;
2404 
2405 	      /* First compute the address of the opd entry for this symbol.  */
2406 	      value = (hh->opd_offset
2407 		       + hppa_info->opd_sec->output_section->vma
2408 		       + hppa_info->opd_sec->output_offset);
2409 
2410 	      /* Compute the value of the start of the section with
2411 		 the relocation.  */
2412 	      value2 = (rent->sec->output_section->vma
2413 			+ rent->sec->output_offset);
2414 
2415 	      /* Compute the difference between the start of the section
2416 		 with the relocation and the opd entry.  */
2417 	      value -= value2;
2418 
2419 	      /* The result becomes the addend of the relocation.  */
2420 	      rel.r_addend = value;
2421 
2422 	      /* The section symbol becomes the symbol for the dynamic
2423 		 relocation.  */
2424 	      dynindx
2425 		= _bfd_elf_link_lookup_local_dynindx (info,
2426 						      rent->sec->owner,
2427 						      rent->sec_symndx);
2428 	    }
2429 	  else
2430 	    rel.r_addend = rent->addend;
2431 
2432 	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2433 
2434 	  loc = hppa_info->other_rel_sec->contents;
2435 	  loc += (hppa_info->other_rel_sec->reloc_count++
2436 		  * sizeof (Elf64_External_Rela));
2437 	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2438 				     &rel, loc);
2439 	}
2440     }
2441 
2442   return TRUE;
2443 }
2444 
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446    dynamic linker, before writing them out.  */
2447 
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
2450 			     const asection *rel_sec ATTRIBUTE_UNUSED,
2451 			     const Elf_Internal_Rela *rela)
2452 {
2453   if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2454     return reloc_class_relative;
2455 
2456   switch ((int) ELF64_R_TYPE (rela->r_info))
2457     {
2458     case R_PARISC_IPLT:
2459       return reloc_class_plt;
2460     case R_PARISC_COPY:
2461       return reloc_class_copy;
2462     default:
2463       return reloc_class_normal;
2464     }
2465 }
2466 
2467 /* Finish up the dynamic sections.  */
2468 
2469 static bfd_boolean
2470 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2471 				    struct bfd_link_info *info)
2472 {
2473   bfd *dynobj;
2474   asection *sdyn;
2475   struct elf64_hppa_link_hash_table *hppa_info;
2476 
2477   hppa_info = hppa_link_hash_table (info);
2478   if (hppa_info == NULL)
2479     return FALSE;
2480 
2481   /* Finalize the contents of the .opd section.  */
2482   elf_link_hash_traverse (elf_hash_table (info),
2483 			  elf64_hppa_finalize_opd,
2484 			  info);
2485 
2486   elf_link_hash_traverse (elf_hash_table (info),
2487 			  elf64_hppa_finalize_dynreloc,
2488 			  info);
2489 
2490   /* Finalize the contents of the .dlt section.  */
2491   dynobj = elf_hash_table (info)->dynobj;
2492   /* Finalize the contents of the .dlt section.  */
2493   elf_link_hash_traverse (elf_hash_table (info),
2494 			  elf64_hppa_finalize_dlt,
2495 			  info);
2496 
2497   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2498 
2499   if (elf_hash_table (info)->dynamic_sections_created)
2500     {
2501       Elf64_External_Dyn *dyncon, *dynconend;
2502 
2503       BFD_ASSERT (sdyn != NULL);
2504 
2505       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2506       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2507       for (; dyncon < dynconend; dyncon++)
2508 	{
2509 	  Elf_Internal_Dyn dyn;
2510 	  asection *s;
2511 
2512 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2513 
2514 	  switch (dyn.d_tag)
2515 	    {
2516 	    default:
2517 	      break;
2518 
2519 	    case DT_HP_LOAD_MAP:
2520 	      /* Compute the absolute address of 16byte scratchpad area
2521 		 for the dynamic linker.
2522 
2523 		 By convention the linker script will allocate the scratchpad
2524 		 area at the start of the .data section.  So all we have to
2525 		 to is find the start of the .data section.  */
2526 	      s = bfd_get_section_by_name (output_bfd, ".data");
2527 	      if (!s)
2528 		return FALSE;
2529 	      dyn.d_un.d_ptr = s->vma;
2530 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2531 	      break;
2532 
2533 	    case DT_PLTGOT:
2534 	      /* HP's use PLTGOT to set the GOT register.  */
2535 	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2536 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2537 	      break;
2538 
2539 	    case DT_JMPREL:
2540 	      s = hppa_info->plt_rel_sec;
2541 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2542 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2543 	      break;
2544 
2545 	    case DT_PLTRELSZ:
2546 	      s = hppa_info->plt_rel_sec;
2547 	      dyn.d_un.d_val = s->size;
2548 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2549 	      break;
2550 
2551 	    case DT_RELA:
2552 	      s = hppa_info->other_rel_sec;
2553 	      if (! s || ! s->size)
2554 		s = hppa_info->dlt_rel_sec;
2555 	      if (! s || ! s->size)
2556 		s = hppa_info->opd_rel_sec;
2557 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2558 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2559 	      break;
2560 
2561 	    case DT_RELASZ:
2562 	      s = hppa_info->other_rel_sec;
2563 	      dyn.d_un.d_val = s->size;
2564 	      s = hppa_info->dlt_rel_sec;
2565 	      dyn.d_un.d_val += s->size;
2566 	      s = hppa_info->opd_rel_sec;
2567 	      dyn.d_un.d_val += s->size;
2568 	      /* There is some question about whether or not the size of
2569 		 the PLT relocs should be included here.  HP's tools do
2570 		 it, so we'll emulate them.  */
2571 	      s = hppa_info->plt_rel_sec;
2572 	      dyn.d_un.d_val += s->size;
2573 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2574 	      break;
2575 
2576 	    }
2577 	}
2578     }
2579 
2580   return TRUE;
2581 }
2582 
2583 /* Support for core dump NOTE sections.  */
2584 
2585 static bfd_boolean
2586 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2587 {
2588   int offset;
2589   size_t size;
2590 
2591   switch (note->descsz)
2592     {
2593       default:
2594 	return FALSE;
2595 
2596       case 760:		/* Linux/hppa */
2597 	/* pr_cursig */
2598 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2599 
2600 	/* pr_pid */
2601 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2602 
2603 	/* pr_reg */
2604 	offset = 112;
2605 	size = 640;
2606 
2607 	break;
2608     }
2609 
2610   /* Make a ".reg/999" section.  */
2611   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2612 					  size, note->descpos + offset);
2613 }
2614 
2615 static bfd_boolean
2616 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2617 {
2618   char * command;
2619   int n;
2620 
2621   switch (note->descsz)
2622     {
2623     default:
2624       return FALSE;
2625 
2626     case 136:		/* Linux/hppa elf_prpsinfo.  */
2627       elf_tdata (abfd)->core->program
2628 	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2629       elf_tdata (abfd)->core->command
2630 	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2631     }
2632 
2633   /* Note that for some reason, a spurious space is tacked
2634      onto the end of the args in some (at least one anyway)
2635      implementations, so strip it off if it exists.  */
2636   command = elf_tdata (abfd)->core->command;
2637   n = strlen (command);
2638 
2639   if (0 < n && command[n - 1] == ' ')
2640     command[n - 1] = '\0';
2641 
2642   return TRUE;
2643 }
2644 
2645 /* Return the number of additional phdrs we will need.
2646 
2647    The generic ELF code only creates PT_PHDRs for executables.  The HP
2648    dynamic linker requires PT_PHDRs for dynamic libraries too.
2649 
2650    This routine indicates that the backend needs one additional program
2651    header for that case.
2652 
2653    Note we do not have access to the link info structure here, so we have
2654    to guess whether or not we are building a shared library based on the
2655    existence of a .interp section.  */
2656 
2657 static int
2658 elf64_hppa_additional_program_headers (bfd *abfd,
2659 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2660 {
2661   asection *s;
2662 
2663   /* If we are creating a shared library, then we have to create a
2664      PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2665   s = bfd_get_section_by_name (abfd, ".interp");
2666   if (! s)
2667     return 1;
2668   return 0;
2669 }
2670 
2671 /* Allocate and initialize any program headers required by this
2672    specific backend.
2673 
2674    The generic ELF code only creates PT_PHDRs for executables.  The HP
2675    dynamic linker requires PT_PHDRs for dynamic libraries too.
2676 
2677    This allocates the PT_PHDR and initializes it in a manner suitable
2678    for the HP linker.
2679 
2680    Note we do not have access to the link info structure here, so we have
2681    to guess whether or not we are building a shared library based on the
2682    existence of a .interp section.  */
2683 
2684 static bfd_boolean
2685 elf64_hppa_modify_segment_map (bfd *abfd,
2686 			       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2687 {
2688   struct elf_segment_map *m;
2689   asection *s;
2690 
2691   s = bfd_get_section_by_name (abfd, ".interp");
2692   if (! s)
2693     {
2694       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2695 	if (m->p_type == PT_PHDR)
2696 	  break;
2697       if (m == NULL)
2698 	{
2699 	  m = ((struct elf_segment_map *)
2700 	       bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2701 	  if (m == NULL)
2702 	    return FALSE;
2703 
2704 	  m->p_type = PT_PHDR;
2705 	  m->p_flags = PF_R | PF_X;
2706 	  m->p_flags_valid = 1;
2707 	  m->p_paddr_valid = 1;
2708 	  m->includes_phdrs = 1;
2709 
2710 	  m->next = elf_seg_map (abfd);
2711 	  elf_seg_map (abfd) = m;
2712 	}
2713     }
2714 
2715   for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2716     if (m->p_type == PT_LOAD)
2717       {
2718 	unsigned int i;
2719 
2720 	for (i = 0; i < m->count; i++)
2721 	  {
2722 	    /* The code "hint" is not really a hint.  It is a requirement
2723 	       for certain versions of the HP dynamic linker.  Worse yet,
2724 	       it must be set even if the shared library does not have
2725 	       any code in its "text" segment (thus the check for .hash
2726 	       to catch this situation).  */
2727 	    if (m->sections[i]->flags & SEC_CODE
2728 		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2729 	      m->p_flags |= (PF_X | PF_HP_CODE);
2730 	  }
2731       }
2732 
2733   return TRUE;
2734 }
2735 
2736 /* Called when writing out an object file to decide the type of a
2737    symbol.  */
2738 static int
2739 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2740 				int type)
2741 {
2742   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2743     return STT_PARISC_MILLI;
2744   else
2745     return type;
2746 }
2747 
2748 /* Support HP specific sections for core files.  */
2749 
2750 static bfd_boolean
2751 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2752 			      const char *typename)
2753 {
2754   if (hdr->p_type == PT_HP_CORE_KERNEL)
2755     {
2756       asection *sect;
2757 
2758       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2759 	return FALSE;
2760 
2761       sect = bfd_make_section_anyway (abfd, ".kernel");
2762       if (sect == NULL)
2763 	return FALSE;
2764       sect->size = hdr->p_filesz;
2765       sect->filepos = hdr->p_offset;
2766       sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2767       return TRUE;
2768     }
2769 
2770   if (hdr->p_type == PT_HP_CORE_PROC)
2771     {
2772       int sig;
2773 
2774       if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2775 	return FALSE;
2776       if (bfd_bread (&sig, 4, abfd) != 4)
2777 	return FALSE;
2778 
2779       elf_tdata (abfd)->core->signal = sig;
2780 
2781       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2782 	return FALSE;
2783 
2784       /* GDB uses the ".reg" section to read register contents.  */
2785       return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2786 					      hdr->p_offset);
2787     }
2788 
2789   if (hdr->p_type == PT_HP_CORE_LOADABLE
2790       || hdr->p_type == PT_HP_CORE_STACK
2791       || hdr->p_type == PT_HP_CORE_MMF)
2792     hdr->p_type = PT_LOAD;
2793 
2794   return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2795 }
2796 
2797 /* Hook called by the linker routine which adds symbols from an object
2798    file.  HP's libraries define symbols with HP specific section
2799    indices, which we have to handle.  */
2800 
2801 static bfd_boolean
2802 elf_hppa_add_symbol_hook (bfd *abfd,
2803 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2804 			  Elf_Internal_Sym *sym,
2805 			  const char **namep ATTRIBUTE_UNUSED,
2806 			  flagword *flagsp ATTRIBUTE_UNUSED,
2807 			  asection **secp,
2808 			  bfd_vma *valp)
2809 {
2810   unsigned int sec_index = sym->st_shndx;
2811 
2812   switch (sec_index)
2813     {
2814     case SHN_PARISC_ANSI_COMMON:
2815       *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2816       (*secp)->flags |= SEC_IS_COMMON;
2817       *valp = sym->st_size;
2818       break;
2819 
2820     case SHN_PARISC_HUGE_COMMON:
2821       *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2822       (*secp)->flags |= SEC_IS_COMMON;
2823       *valp = sym->st_size;
2824       break;
2825     }
2826 
2827   return TRUE;
2828 }
2829 
2830 static bfd_boolean
2831 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2832 					 void *data)
2833 {
2834   struct bfd_link_info *info = data;
2835 
2836   /* If we are not creating a shared library, and this symbol is
2837      referenced by a shared library but is not defined anywhere, then
2838      the generic code will warn that it is undefined.
2839 
2840      This behavior is undesirable on HPs since the standard shared
2841      libraries contain references to undefined symbols.
2842 
2843      So we twiddle the flags associated with such symbols so that they
2844      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2845 
2846      Ultimately we should have better controls over the generic ELF BFD
2847      linker code.  */
2848   if (! info->relocatable
2849       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2850       && h->root.type == bfd_link_hash_undefined
2851       && h->ref_dynamic
2852       && !h->ref_regular)
2853     {
2854       h->ref_dynamic = 0;
2855       h->pointer_equality_needed = 1;
2856     }
2857 
2858   return TRUE;
2859 }
2860 
2861 static bfd_boolean
2862 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2863 					 void *data)
2864 {
2865   struct bfd_link_info *info = data;
2866 
2867   /* If we are not creating a shared library, and this symbol is
2868      referenced by a shared library but is not defined anywhere, then
2869      the generic code will warn that it is undefined.
2870 
2871      This behavior is undesirable on HPs since the standard shared
2872      libraries contain references to undefined symbols.
2873 
2874      So we twiddle the flags associated with such symbols so that they
2875      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2876 
2877      Ultimately we should have better controls over the generic ELF BFD
2878      linker code.  */
2879   if (! info->relocatable
2880       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2881       && h->root.type == bfd_link_hash_undefined
2882       && !h->ref_dynamic
2883       && !h->ref_regular
2884       && h->pointer_equality_needed)
2885     {
2886       h->ref_dynamic = 1;
2887       h->pointer_equality_needed = 0;
2888     }
2889 
2890   return TRUE;
2891 }
2892 
2893 static bfd_boolean
2894 elf_hppa_is_dynamic_loader_symbol (const char *name)
2895 {
2896   return (! strcmp (name, "__CPU_REVISION")
2897 	  || ! strcmp (name, "__CPU_KEYBITS_1")
2898 	  || ! strcmp (name, "__SYSTEM_ID_D")
2899 	  || ! strcmp (name, "__FPU_MODEL")
2900 	  || ! strcmp (name, "__FPU_REVISION")
2901 	  || ! strcmp (name, "__ARGC")
2902 	  || ! strcmp (name, "__ARGV")
2903 	  || ! strcmp (name, "__ENVP")
2904 	  || ! strcmp (name, "__TLS_SIZE_D")
2905 	  || ! strcmp (name, "__LOAD_INFO")
2906 	  || ! strcmp (name, "__systab"));
2907 }
2908 
2909 /* Record the lowest address for the data and text segments.  */
2910 static void
2911 elf_hppa_record_segment_addrs (bfd *abfd,
2912 			       asection *section,
2913 			       void *data)
2914 {
2915   struct elf64_hppa_link_hash_table *hppa_info = data;
2916 
2917   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2918     {
2919       bfd_vma value;
2920       Elf_Internal_Phdr *p;
2921 
2922       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2923       BFD_ASSERT (p != NULL);
2924       value = p->p_vaddr;
2925 
2926       if (section->flags & SEC_READONLY)
2927 	{
2928 	  if (value < hppa_info->text_segment_base)
2929 	    hppa_info->text_segment_base = value;
2930 	}
2931       else
2932 	{
2933 	  if (value < hppa_info->data_segment_base)
2934 	    hppa_info->data_segment_base = value;
2935 	}
2936     }
2937 }
2938 
2939 /* Called after we have seen all the input files/sections, but before
2940    final symbol resolution and section placement has been determined.
2941 
2942    We use this hook to (possibly) provide a value for __gp, then we
2943    fall back to the generic ELF final link routine.  */
2944 
2945 static bfd_boolean
2946 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2947 {
2948   bfd_boolean retval;
2949   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2950 
2951   if (hppa_info == NULL)
2952     return FALSE;
2953 
2954   if (! info->relocatable)
2955     {
2956       struct elf_link_hash_entry *gp;
2957       bfd_vma gp_val;
2958 
2959       /* The linker script defines a value for __gp iff it was referenced
2960 	 by one of the objects being linked.  First try to find the symbol
2961 	 in the hash table.  If that fails, just compute the value __gp
2962 	 should have had.  */
2963       gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2964 				 FALSE, FALSE);
2965 
2966       if (gp)
2967 	{
2968 
2969 	  /* Adjust the value of __gp as we may want to slide it into the
2970 	     .plt section so that the stubs can access PLT entries without
2971 	     using an addil sequence.  */
2972 	  gp->root.u.def.value += hppa_info->gp_offset;
2973 
2974 	  gp_val = (gp->root.u.def.section->output_section->vma
2975 		    + gp->root.u.def.section->output_offset
2976 		    + gp->root.u.def.value);
2977 	}
2978       else
2979 	{
2980 	  asection *sec;
2981 
2982 	  /* First look for a .plt section.  If found, then __gp is the
2983 	     address of the .plt + gp_offset.
2984 
2985 	     If no .plt is found, then look for .dlt, .opd and .data (in
2986 	     that order) and set __gp to the base address of whichever
2987 	     section is found first.  */
2988 
2989 	  sec = hppa_info->plt_sec;
2990 	  if (sec && ! (sec->flags & SEC_EXCLUDE))
2991 	    gp_val = (sec->output_offset
2992 		      + sec->output_section->vma
2993 		      + hppa_info->gp_offset);
2994 	  else
2995 	    {
2996 	      sec = hppa_info->dlt_sec;
2997 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2998 		sec = hppa_info->opd_sec;
2999 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3000 		sec = bfd_get_section_by_name (abfd, ".data");
3001 	      if (!sec || (sec->flags & SEC_EXCLUDE))
3002 		gp_val = 0;
3003 	      else
3004 		gp_val = sec->output_offset + sec->output_section->vma;
3005 	    }
3006 	}
3007 
3008       /* Install whatever value we found/computed for __gp.  */
3009       _bfd_set_gp_value (abfd, gp_val);
3010     }
3011 
3012   /* We need to know the base of the text and data segments so that we
3013      can perform SEGREL relocations.  We will record the base addresses
3014      when we encounter the first SEGREL relocation.  */
3015   hppa_info->text_segment_base = (bfd_vma)-1;
3016   hppa_info->data_segment_base = (bfd_vma)-1;
3017 
3018   /* HP's shared libraries have references to symbols that are not
3019      defined anywhere.  The generic ELF BFD linker code will complain
3020      about such symbols.
3021 
3022      So we detect the losing case and arrange for the flags on the symbol
3023      to indicate that it was never referenced.  This keeps the generic
3024      ELF BFD link code happy and appears to not create any secondary
3025      problems.  Ultimately we need a way to control the behavior of the
3026      generic ELF BFD link code better.  */
3027   elf_link_hash_traverse (elf_hash_table (info),
3028 			  elf_hppa_unmark_useless_dynamic_symbols,
3029 			  info);
3030 
3031   /* Invoke the regular ELF backend linker to do all the work.  */
3032   retval = bfd_elf_final_link (abfd, info);
3033 
3034   elf_link_hash_traverse (elf_hash_table (info),
3035 			  elf_hppa_remark_useless_dynamic_symbols,
3036 			  info);
3037 
3038   /* If we're producing a final executable, sort the contents of the
3039      unwind section. */
3040   if (retval && !info->relocatable)
3041     retval = elf_hppa_sort_unwind (abfd);
3042 
3043   return retval;
3044 }
3045 
3046 /* Relocate the given INSN.  VALUE should be the actual value we want
3047    to insert into the instruction, ie by this point we should not be
3048    concerned with computing an offset relative to the DLT, PC, etc.
3049    Instead this routine is meant to handle the bit manipulations needed
3050    to insert the relocation into the given instruction.  */
3051 
3052 static int
3053 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3054 {
3055   switch (r_type)
3056     {
3057     /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3058        the "B" instruction.  */
3059     case R_PARISC_PCREL22F:
3060     case R_PARISC_PCREL22C:
3061       return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3062 
3063       /* This is any 12 bit branch.  */
3064     case R_PARISC_PCREL12F:
3065       return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3066 
3067     /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3068        to the "B" instruction as well as BE.  */
3069     case R_PARISC_PCREL17F:
3070     case R_PARISC_DIR17F:
3071     case R_PARISC_DIR17R:
3072     case R_PARISC_PCREL17C:
3073     case R_PARISC_PCREL17R:
3074       return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3075 
3076     /* ADDIL or LDIL instructions.  */
3077     case R_PARISC_DLTREL21L:
3078     case R_PARISC_DLTIND21L:
3079     case R_PARISC_LTOFF_FPTR21L:
3080     case R_PARISC_PCREL21L:
3081     case R_PARISC_LTOFF_TP21L:
3082     case R_PARISC_DPREL21L:
3083     case R_PARISC_PLTOFF21L:
3084     case R_PARISC_DIR21L:
3085       return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3086 
3087     /* LDO and integer loads/stores with 14 bit displacements.  */
3088     case R_PARISC_DLTREL14R:
3089     case R_PARISC_DLTREL14F:
3090     case R_PARISC_DLTIND14R:
3091     case R_PARISC_DLTIND14F:
3092     case R_PARISC_LTOFF_FPTR14R:
3093     case R_PARISC_PCREL14R:
3094     case R_PARISC_PCREL14F:
3095     case R_PARISC_LTOFF_TP14R:
3096     case R_PARISC_LTOFF_TP14F:
3097     case R_PARISC_DPREL14R:
3098     case R_PARISC_DPREL14F:
3099     case R_PARISC_PLTOFF14R:
3100     case R_PARISC_PLTOFF14F:
3101     case R_PARISC_DIR14R:
3102     case R_PARISC_DIR14F:
3103       return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3104 
3105     /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3106     case R_PARISC_LTOFF_FPTR16F:
3107     case R_PARISC_PCREL16F:
3108     case R_PARISC_LTOFF_TP16F:
3109     case R_PARISC_GPREL16F:
3110     case R_PARISC_PLTOFF16F:
3111     case R_PARISC_DIR16F:
3112     case R_PARISC_LTOFF16F:
3113       return (insn & ~0xffff) | re_assemble_16 (sym_value);
3114 
3115     /* Doubleword loads and stores with a 14 bit displacement.  */
3116     case R_PARISC_DLTREL14DR:
3117     case R_PARISC_DLTIND14DR:
3118     case R_PARISC_LTOFF_FPTR14DR:
3119     case R_PARISC_LTOFF_FPTR16DF:
3120     case R_PARISC_PCREL14DR:
3121     case R_PARISC_PCREL16DF:
3122     case R_PARISC_LTOFF_TP14DR:
3123     case R_PARISC_LTOFF_TP16DF:
3124     case R_PARISC_DPREL14DR:
3125     case R_PARISC_GPREL16DF:
3126     case R_PARISC_PLTOFF14DR:
3127     case R_PARISC_PLTOFF16DF:
3128     case R_PARISC_DIR14DR:
3129     case R_PARISC_DIR16DF:
3130     case R_PARISC_LTOFF16DF:
3131       return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3132 				 | ((sym_value & 0x1ff8) << 1));
3133 
3134     /* Floating point single word load/store instructions.  */
3135     case R_PARISC_DLTREL14WR:
3136     case R_PARISC_DLTIND14WR:
3137     case R_PARISC_LTOFF_FPTR14WR:
3138     case R_PARISC_LTOFF_FPTR16WF:
3139     case R_PARISC_PCREL14WR:
3140     case R_PARISC_PCREL16WF:
3141     case R_PARISC_LTOFF_TP14WR:
3142     case R_PARISC_LTOFF_TP16WF:
3143     case R_PARISC_DPREL14WR:
3144     case R_PARISC_GPREL16WF:
3145     case R_PARISC_PLTOFF14WR:
3146     case R_PARISC_PLTOFF16WF:
3147     case R_PARISC_DIR16WF:
3148     case R_PARISC_DIR14WR:
3149     case R_PARISC_LTOFF16WF:
3150       return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3151 				 | ((sym_value & 0x1ffc) << 1));
3152 
3153     default:
3154       return insn;
3155     }
3156 }
3157 
3158 /* Compute the value for a relocation (REL) during a final link stage,
3159    then insert the value into the proper location in CONTENTS.
3160 
3161    VALUE is a tentative value for the relocation and may be overridden
3162    and modified here based on the specific relocation to be performed.
3163 
3164    For example we do conversions for PC-relative branches in this routine
3165    or redirection of calls to external routines to stubs.
3166 
3167    The work of actually applying the relocation is left to a helper
3168    routine in an attempt to reduce the complexity and size of this
3169    function.  */
3170 
3171 static bfd_reloc_status_type
3172 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3173 			      bfd *input_bfd,
3174 			      bfd *output_bfd,
3175 			      asection *input_section,
3176 			      bfd_byte *contents,
3177 			      bfd_vma value,
3178 			      struct bfd_link_info *info,
3179 			      asection *sym_sec,
3180 			      struct elf_link_hash_entry *eh)
3181 {
3182   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3183   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3184   bfd_vma *local_offsets;
3185   Elf_Internal_Shdr *symtab_hdr;
3186   int insn;
3187   bfd_vma max_branch_offset = 0;
3188   bfd_vma offset = rel->r_offset;
3189   bfd_signed_vma addend = rel->r_addend;
3190   reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3191   unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3192   unsigned int r_type = howto->type;
3193   bfd_byte *hit_data = contents + offset;
3194 
3195   if (hppa_info == NULL)
3196     return bfd_reloc_notsupported;
3197 
3198   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3199   local_offsets = elf_local_got_offsets (input_bfd);
3200   insn = bfd_get_32 (input_bfd, hit_data);
3201 
3202   switch (r_type)
3203     {
3204     case R_PARISC_NONE:
3205       break;
3206 
3207     /* Basic function call support.
3208 
3209        Note for a call to a function defined in another dynamic library
3210        we want to redirect the call to a stub.  */
3211 
3212     /* PC relative relocs without an implicit offset.  */
3213     case R_PARISC_PCREL21L:
3214     case R_PARISC_PCREL14R:
3215     case R_PARISC_PCREL14F:
3216     case R_PARISC_PCREL14WR:
3217     case R_PARISC_PCREL14DR:
3218     case R_PARISC_PCREL16F:
3219     case R_PARISC_PCREL16WF:
3220     case R_PARISC_PCREL16DF:
3221       {
3222 	/* If this is a call to a function defined in another dynamic
3223 	   library, then redirect the call to the local stub for this
3224 	   function.  */
3225 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3226 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3227 		   + hppa_info->stub_sec->output_section->vma);
3228 
3229 	/* Turn VALUE into a proper PC relative address.  */
3230 	value -= (offset + input_section->output_offset
3231 		  + input_section->output_section->vma);
3232 
3233 	/* Adjust for any field selectors.  */
3234 	if (r_type == R_PARISC_PCREL21L)
3235 	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3236 	else if (r_type == R_PARISC_PCREL14F
3237 		 || r_type == R_PARISC_PCREL16F
3238 		 || r_type == R_PARISC_PCREL16WF
3239 		 || r_type == R_PARISC_PCREL16DF)
3240 	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3241 	else
3242 	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3243 
3244 	/* Apply the relocation to the given instruction.  */
3245 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3246 	break;
3247       }
3248 
3249     case R_PARISC_PCREL12F:
3250     case R_PARISC_PCREL22F:
3251     case R_PARISC_PCREL17F:
3252     case R_PARISC_PCREL22C:
3253     case R_PARISC_PCREL17C:
3254     case R_PARISC_PCREL17R:
3255       {
3256 	/* If this is a call to a function defined in another dynamic
3257 	   library, then redirect the call to the local stub for this
3258 	   function.  */
3259 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3260 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3261 		   + hppa_info->stub_sec->output_section->vma);
3262 
3263 	/* Turn VALUE into a proper PC relative address.  */
3264 	value -= (offset + input_section->output_offset
3265 		  + input_section->output_section->vma);
3266 	addend -= 8;
3267 
3268 	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3269 	  max_branch_offset = (1 << (22-1)) << 2;
3270 	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3271 	  max_branch_offset = (1 << (17-1)) << 2;
3272 	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3273 	  max_branch_offset = (1 << (12-1)) << 2;
3274 
3275 	/* Make sure we can reach the branch target.  */
3276 	if (max_branch_offset != 0
3277 	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3278 	  {
3279 	    (*_bfd_error_handler)
3280 	      (_("%B(%A+0x%" BFD_VMA_FMT "x): cannot reach %s"),
3281 	      input_bfd,
3282 	      input_section,
3283 	      offset,
3284 	      eh ? eh->root.root.string : "unknown");
3285 	    bfd_set_error (bfd_error_bad_value);
3286 	    return bfd_reloc_overflow;
3287 	  }
3288 
3289 	/* Adjust for any field selectors.  */
3290 	if (r_type == R_PARISC_PCREL17R)
3291 	  value = hppa_field_adjust (value, addend, e_rsel);
3292 	else
3293 	  value = hppa_field_adjust (value, addend, e_fsel);
3294 
3295 	/* All branches are implicitly shifted by 2 places.  */
3296 	value >>= 2;
3297 
3298 	/* Apply the relocation to the given instruction.  */
3299 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3300 	break;
3301       }
3302 
3303     /* Indirect references to data through the DLT.  */
3304     case R_PARISC_DLTIND14R:
3305     case R_PARISC_DLTIND14F:
3306     case R_PARISC_DLTIND14DR:
3307     case R_PARISC_DLTIND14WR:
3308     case R_PARISC_DLTIND21L:
3309     case R_PARISC_LTOFF_FPTR14R:
3310     case R_PARISC_LTOFF_FPTR14DR:
3311     case R_PARISC_LTOFF_FPTR14WR:
3312     case R_PARISC_LTOFF_FPTR21L:
3313     case R_PARISC_LTOFF_FPTR16F:
3314     case R_PARISC_LTOFF_FPTR16WF:
3315     case R_PARISC_LTOFF_FPTR16DF:
3316     case R_PARISC_LTOFF_TP21L:
3317     case R_PARISC_LTOFF_TP14R:
3318     case R_PARISC_LTOFF_TP14F:
3319     case R_PARISC_LTOFF_TP14WR:
3320     case R_PARISC_LTOFF_TP14DR:
3321     case R_PARISC_LTOFF_TP16F:
3322     case R_PARISC_LTOFF_TP16WF:
3323     case R_PARISC_LTOFF_TP16DF:
3324     case R_PARISC_LTOFF16F:
3325     case R_PARISC_LTOFF16WF:
3326     case R_PARISC_LTOFF16DF:
3327       {
3328 	bfd_vma off;
3329 
3330 	/* If this relocation was against a local symbol, then we still
3331 	   have not set up the DLT entry (it's not convenient to do so
3332 	   in the "finalize_dlt" routine because it is difficult to get
3333 	   to the local symbol's value).
3334 
3335 	   So, if this is a local symbol (h == NULL), then we need to
3336 	   fill in its DLT entry.
3337 
3338 	   Similarly we may still need to set up an entry in .opd for
3339 	   a local function which had its address taken.  */
3340 	if (hh == NULL)
3341 	  {
3342 	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3343 
3344             if (local_offsets == NULL)
3345               abort ();
3346 
3347 	    /* Now do .opd creation if needed.  */
3348 	    if (r_type == R_PARISC_LTOFF_FPTR14R
3349 		|| r_type == R_PARISC_LTOFF_FPTR14DR
3350 		|| r_type == R_PARISC_LTOFF_FPTR14WR
3351 		|| r_type == R_PARISC_LTOFF_FPTR21L
3352 		|| r_type == R_PARISC_LTOFF_FPTR16F
3353 		|| r_type == R_PARISC_LTOFF_FPTR16WF
3354 		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3355 	      {
3356 		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3357 		off = local_opd_offsets[r_symndx];
3358 
3359 		/* The last bit records whether we've already initialised
3360 		   this local .opd entry.  */
3361 		if ((off & 1) != 0)
3362 		  {
3363 		    BFD_ASSERT (off != (bfd_vma) -1);
3364 		    off &= ~1;
3365 		  }
3366 		else
3367 		  {
3368 		    local_opd_offsets[r_symndx] |= 1;
3369 
3370 		    /* The first two words of an .opd entry are zero.  */
3371 		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3372 
3373 		    /* The next word is the address of the function.  */
3374 		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3375 				(hppa_info->opd_sec->contents + off + 16));
3376 
3377 		    /* The last word is our local __gp value.  */
3378 		    value = _bfd_get_gp_value
3379 			      (hppa_info->opd_sec->output_section->owner);
3380 		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3381 				(hppa_info->opd_sec->contents + off + 24));
3382 		  }
3383 
3384 		/* The DLT value is the address of the .opd entry.  */
3385 		value = (off
3386 			 + hppa_info->opd_sec->output_offset
3387 			 + hppa_info->opd_sec->output_section->vma);
3388 		addend = 0;
3389 	      }
3390 
3391 	    local_dlt_offsets = local_offsets;
3392 	    off = local_dlt_offsets[r_symndx];
3393 
3394 	    if ((off & 1) != 0)
3395 	      {
3396 		BFD_ASSERT (off != (bfd_vma) -1);
3397 		off &= ~1;
3398 	      }
3399 	    else
3400 	      {
3401 		local_dlt_offsets[r_symndx] |= 1;
3402 		bfd_put_64 (hppa_info->dlt_sec->owner,
3403 			    value + addend,
3404 			    hppa_info->dlt_sec->contents + off);
3405 	      }
3406 	  }
3407 	else
3408 	  off = hh->dlt_offset;
3409 
3410 	/* We want the value of the DLT offset for this symbol, not
3411 	   the symbol's actual address.  Note that __gp may not point
3412 	   to the start of the DLT, so we have to compute the absolute
3413 	   address, then subtract out the value of __gp.  */
3414 	value = (off
3415 		 + hppa_info->dlt_sec->output_offset
3416 		 + hppa_info->dlt_sec->output_section->vma);
3417 	value -= _bfd_get_gp_value (output_bfd);
3418 
3419 	/* All DLTIND relocations are basically the same at this point,
3420 	   except that we need different field selectors for the 21bit
3421 	   version vs the 14bit versions.  */
3422 	if (r_type == R_PARISC_DLTIND21L
3423 	    || r_type == R_PARISC_LTOFF_FPTR21L
3424 	    || r_type == R_PARISC_LTOFF_TP21L)
3425 	  value = hppa_field_adjust (value, 0, e_lsel);
3426 	else if (r_type == R_PARISC_DLTIND14F
3427 		 || r_type == R_PARISC_LTOFF_FPTR16F
3428 		 || r_type == R_PARISC_LTOFF_FPTR16WF
3429 		 || r_type == R_PARISC_LTOFF_FPTR16DF
3430 		 || r_type == R_PARISC_LTOFF16F
3431 		 || r_type == R_PARISC_LTOFF16DF
3432 		 || r_type == R_PARISC_LTOFF16WF
3433 		 || r_type == R_PARISC_LTOFF_TP16F
3434 		 || r_type == R_PARISC_LTOFF_TP16WF
3435 		 || r_type == R_PARISC_LTOFF_TP16DF)
3436 	  value = hppa_field_adjust (value, 0, e_fsel);
3437 	else
3438 	  value = hppa_field_adjust (value, 0, e_rsel);
3439 
3440 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3441 	break;
3442       }
3443 
3444     case R_PARISC_DLTREL14R:
3445     case R_PARISC_DLTREL14F:
3446     case R_PARISC_DLTREL14DR:
3447     case R_PARISC_DLTREL14WR:
3448     case R_PARISC_DLTREL21L:
3449     case R_PARISC_DPREL21L:
3450     case R_PARISC_DPREL14WR:
3451     case R_PARISC_DPREL14DR:
3452     case R_PARISC_DPREL14R:
3453     case R_PARISC_DPREL14F:
3454     case R_PARISC_GPREL16F:
3455     case R_PARISC_GPREL16WF:
3456     case R_PARISC_GPREL16DF:
3457       {
3458 	/* Subtract out the global pointer value to make value a DLT
3459 	   relative address.  */
3460 	value -= _bfd_get_gp_value (output_bfd);
3461 
3462 	/* All DLTREL relocations are basically the same at this point,
3463 	   except that we need different field selectors for the 21bit
3464 	   version vs the 14bit versions.  */
3465 	if (r_type == R_PARISC_DLTREL21L
3466 	    || r_type == R_PARISC_DPREL21L)
3467 	  value = hppa_field_adjust (value, addend, e_lrsel);
3468 	else if (r_type == R_PARISC_DLTREL14F
3469 		 || r_type == R_PARISC_DPREL14F
3470 		 || r_type == R_PARISC_GPREL16F
3471 		 || r_type == R_PARISC_GPREL16WF
3472 		 || r_type == R_PARISC_GPREL16DF)
3473 	  value = hppa_field_adjust (value, addend, e_fsel);
3474 	else
3475 	  value = hppa_field_adjust (value, addend, e_rrsel);
3476 
3477 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3478 	break;
3479       }
3480 
3481     case R_PARISC_DIR21L:
3482     case R_PARISC_DIR17R:
3483     case R_PARISC_DIR17F:
3484     case R_PARISC_DIR14R:
3485     case R_PARISC_DIR14F:
3486     case R_PARISC_DIR14WR:
3487     case R_PARISC_DIR14DR:
3488     case R_PARISC_DIR16F:
3489     case R_PARISC_DIR16WF:
3490     case R_PARISC_DIR16DF:
3491       {
3492 	/* All DIR relocations are basically the same at this point,
3493 	   except that branch offsets need to be divided by four, and
3494 	   we need different field selectors.  Note that we don't
3495 	   redirect absolute calls to local stubs.  */
3496 
3497 	if (r_type == R_PARISC_DIR21L)
3498 	  value = hppa_field_adjust (value, addend, e_lrsel);
3499 	else if (r_type == R_PARISC_DIR17F
3500 		 || r_type == R_PARISC_DIR16F
3501 		 || r_type == R_PARISC_DIR16WF
3502 		 || r_type == R_PARISC_DIR16DF
3503 		 || r_type == R_PARISC_DIR14F)
3504 	  value = hppa_field_adjust (value, addend, e_fsel);
3505 	else
3506 	  value = hppa_field_adjust (value, addend, e_rrsel);
3507 
3508 	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3509 	  /* All branches are implicitly shifted by 2 places.  */
3510 	  value >>= 2;
3511 
3512 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3513 	break;
3514       }
3515 
3516     case R_PARISC_PLTOFF21L:
3517     case R_PARISC_PLTOFF14R:
3518     case R_PARISC_PLTOFF14F:
3519     case R_PARISC_PLTOFF14WR:
3520     case R_PARISC_PLTOFF14DR:
3521     case R_PARISC_PLTOFF16F:
3522     case R_PARISC_PLTOFF16WF:
3523     case R_PARISC_PLTOFF16DF:
3524       {
3525 	/* We want the value of the PLT offset for this symbol, not
3526 	   the symbol's actual address.  Note that __gp may not point
3527 	   to the start of the DLT, so we have to compute the absolute
3528 	   address, then subtract out the value of __gp.  */
3529 	value = (hh->plt_offset
3530 		 + hppa_info->plt_sec->output_offset
3531 		 + hppa_info->plt_sec->output_section->vma);
3532 	value -= _bfd_get_gp_value (output_bfd);
3533 
3534 	/* All PLTOFF relocations are basically the same at this point,
3535 	   except that we need different field selectors for the 21bit
3536 	   version vs the 14bit versions.  */
3537 	if (r_type == R_PARISC_PLTOFF21L)
3538 	  value = hppa_field_adjust (value, addend, e_lrsel);
3539 	else if (r_type == R_PARISC_PLTOFF14F
3540 		 || r_type == R_PARISC_PLTOFF16F
3541 		 || r_type == R_PARISC_PLTOFF16WF
3542 		 || r_type == R_PARISC_PLTOFF16DF)
3543 	  value = hppa_field_adjust (value, addend, e_fsel);
3544 	else
3545 	  value = hppa_field_adjust (value, addend, e_rrsel);
3546 
3547 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3548 	break;
3549       }
3550 
3551     case R_PARISC_LTOFF_FPTR32:
3552       {
3553 	/* We may still need to create the FPTR itself if it was for
3554 	   a local symbol.  */
3555 	if (hh == NULL)
3556 	  {
3557 	    /* The first two words of an .opd entry are zero.  */
3558 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3559 
3560 	    /* The next word is the address of the function.  */
3561 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3562 			(hppa_info->opd_sec->contents
3563 			 + hh->opd_offset + 16));
3564 
3565 	    /* The last word is our local __gp value.  */
3566 	    value = _bfd_get_gp_value
3567 		      (hppa_info->opd_sec->output_section->owner);
3568 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3569 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3570 
3571 	    /* The DLT value is the address of the .opd entry.  */
3572 	    value = (hh->opd_offset
3573 		     + hppa_info->opd_sec->output_offset
3574 		     + hppa_info->opd_sec->output_section->vma);
3575 
3576 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3577 			value,
3578 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3579 	  }
3580 
3581 	/* We want the value of the DLT offset for this symbol, not
3582 	   the symbol's actual address.  Note that __gp may not point
3583 	   to the start of the DLT, so we have to compute the absolute
3584 	   address, then subtract out the value of __gp.  */
3585 	value = (hh->dlt_offset
3586 		 + hppa_info->dlt_sec->output_offset
3587 		 + hppa_info->dlt_sec->output_section->vma);
3588 	value -= _bfd_get_gp_value (output_bfd);
3589 	bfd_put_32 (input_bfd, value, hit_data);
3590 	return bfd_reloc_ok;
3591       }
3592 
3593     case R_PARISC_LTOFF_FPTR64:
3594     case R_PARISC_LTOFF_TP64:
3595       {
3596 	/* We may still need to create the FPTR itself if it was for
3597 	   a local symbol.  */
3598 	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3599 	  {
3600 	    /* The first two words of an .opd entry are zero.  */
3601 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3602 
3603 	    /* The next word is the address of the function.  */
3604 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3605 			(hppa_info->opd_sec->contents
3606 			 + hh->opd_offset + 16));
3607 
3608 	    /* The last word is our local __gp value.  */
3609 	    value = _bfd_get_gp_value
3610 		      (hppa_info->opd_sec->output_section->owner);
3611 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3612 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3613 
3614 	    /* The DLT value is the address of the .opd entry.  */
3615 	    value = (hh->opd_offset
3616 		     + hppa_info->opd_sec->output_offset
3617 		     + hppa_info->opd_sec->output_section->vma);
3618 
3619 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3620 			value,
3621 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3622 	  }
3623 
3624 	/* We want the value of the DLT offset for this symbol, not
3625 	   the symbol's actual address.  Note that __gp may not point
3626 	   to the start of the DLT, so we have to compute the absolute
3627 	   address, then subtract out the value of __gp.  */
3628 	value = (hh->dlt_offset
3629 		 + hppa_info->dlt_sec->output_offset
3630 		 + hppa_info->dlt_sec->output_section->vma);
3631 	value -= _bfd_get_gp_value (output_bfd);
3632 	bfd_put_64 (input_bfd, value, hit_data);
3633 	return bfd_reloc_ok;
3634       }
3635 
3636     case R_PARISC_DIR32:
3637       bfd_put_32 (input_bfd, value + addend, hit_data);
3638       return bfd_reloc_ok;
3639 
3640     case R_PARISC_DIR64:
3641       bfd_put_64 (input_bfd, value + addend, hit_data);
3642       return bfd_reloc_ok;
3643 
3644     case R_PARISC_GPREL64:
3645       /* Subtract out the global pointer value to make value a DLT
3646 	 relative address.  */
3647       value -= _bfd_get_gp_value (output_bfd);
3648 
3649       bfd_put_64 (input_bfd, value + addend, hit_data);
3650       return bfd_reloc_ok;
3651 
3652     case R_PARISC_LTOFF64:
3653 	/* We want the value of the DLT offset for this symbol, not
3654 	   the symbol's actual address.  Note that __gp may not point
3655 	   to the start of the DLT, so we have to compute the absolute
3656 	   address, then subtract out the value of __gp.  */
3657       value = (hh->dlt_offset
3658 	       + hppa_info->dlt_sec->output_offset
3659 	       + hppa_info->dlt_sec->output_section->vma);
3660       value -= _bfd_get_gp_value (output_bfd);
3661 
3662       bfd_put_64 (input_bfd, value + addend, hit_data);
3663       return bfd_reloc_ok;
3664 
3665     case R_PARISC_PCREL32:
3666       {
3667 	/* If this is a call to a function defined in another dynamic
3668 	   library, then redirect the call to the local stub for this
3669 	   function.  */
3670 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3671 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3672 		   + hppa_info->stub_sec->output_section->vma);
3673 
3674 	/* Turn VALUE into a proper PC relative address.  */
3675 	value -= (offset + input_section->output_offset
3676 		  + input_section->output_section->vma);
3677 
3678 	value += addend;
3679 	value -= 8;
3680 	bfd_put_32 (input_bfd, value, hit_data);
3681 	return bfd_reloc_ok;
3682       }
3683 
3684     case R_PARISC_PCREL64:
3685       {
3686 	/* If this is a call to a function defined in another dynamic
3687 	   library, then redirect the call to the local stub for this
3688 	   function.  */
3689 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3690 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3691 		   + hppa_info->stub_sec->output_section->vma);
3692 
3693 	/* Turn VALUE into a proper PC relative address.  */
3694 	value -= (offset + input_section->output_offset
3695 		  + input_section->output_section->vma);
3696 
3697 	value += addend;
3698 	value -= 8;
3699 	bfd_put_64 (input_bfd, value, hit_data);
3700 	return bfd_reloc_ok;
3701       }
3702 
3703     case R_PARISC_FPTR64:
3704       {
3705 	bfd_vma off;
3706 
3707 	/* We may still need to create the FPTR itself if it was for
3708 	   a local symbol.  */
3709 	if (hh == NULL)
3710 	  {
3711 	    bfd_vma *local_opd_offsets;
3712 
3713             if (local_offsets == NULL)
3714               abort ();
3715 
3716 	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3717 	    off = local_opd_offsets[r_symndx];
3718 
3719 	    /* The last bit records whether we've already initialised
3720 	       this local .opd entry.  */
3721 	    if ((off & 1) != 0)
3722 	      {
3723 		BFD_ASSERT (off != (bfd_vma) -1);
3724 	        off &= ~1;
3725 	      }
3726 	    else
3727 	      {
3728 		/* The first two words of an .opd entry are zero.  */
3729 		memset (hppa_info->opd_sec->contents + off, 0, 16);
3730 
3731 		/* The next word is the address of the function.  */
3732 		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3733 			    (hppa_info->opd_sec->contents + off + 16));
3734 
3735 		/* The last word is our local __gp value.  */
3736 		value = _bfd_get_gp_value
3737 			  (hppa_info->opd_sec->output_section->owner);
3738 		bfd_put_64 (hppa_info->opd_sec->owner, value,
3739 			    hppa_info->opd_sec->contents + off + 24);
3740 	      }
3741 	  }
3742 	else
3743 	  off = hh->opd_offset;
3744 
3745 	if (hh == NULL || hh->want_opd)
3746 	  /* We want the value of the OPD offset for this symbol.  */
3747 	  value = (off
3748 		   + hppa_info->opd_sec->output_offset
3749 		   + hppa_info->opd_sec->output_section->vma);
3750 	else
3751 	  /* We want the address of the symbol.  */
3752 	  value += addend;
3753 
3754 	bfd_put_64 (input_bfd, value, hit_data);
3755 	return bfd_reloc_ok;
3756       }
3757 
3758     case R_PARISC_SECREL32:
3759       if (sym_sec)
3760 	value -= sym_sec->output_section->vma;
3761       bfd_put_32 (input_bfd, value + addend, hit_data);
3762       return bfd_reloc_ok;
3763 
3764     case R_PARISC_SEGREL32:
3765     case R_PARISC_SEGREL64:
3766       {
3767 	/* If this is the first SEGREL relocation, then initialize
3768 	   the segment base values.  */
3769 	if (hppa_info->text_segment_base == (bfd_vma) -1)
3770 	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3771 				 hppa_info);
3772 
3773 	/* VALUE holds the absolute address.  We want to include the
3774 	   addend, then turn it into a segment relative address.
3775 
3776 	   The segment is derived from SYM_SEC.  We assume that there are
3777 	   only two segments of note in the resulting executable/shlib.
3778 	   A readonly segment (.text) and a readwrite segment (.data).  */
3779 	value += addend;
3780 
3781 	if (sym_sec->flags & SEC_CODE)
3782 	  value -= hppa_info->text_segment_base;
3783 	else
3784 	  value -= hppa_info->data_segment_base;
3785 
3786 	if (r_type == R_PARISC_SEGREL32)
3787 	  bfd_put_32 (input_bfd, value, hit_data);
3788 	else
3789 	  bfd_put_64 (input_bfd, value, hit_data);
3790 	return bfd_reloc_ok;
3791       }
3792 
3793     /* Something we don't know how to handle.  */
3794     default:
3795       return bfd_reloc_notsupported;
3796     }
3797 
3798   /* Update the instruction word.  */
3799   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3800   return bfd_reloc_ok;
3801 }
3802 
3803 /* Relocate an HPPA ELF section.  */
3804 
3805 static bfd_boolean
3806 elf64_hppa_relocate_section (bfd *output_bfd,
3807 			   struct bfd_link_info *info,
3808 			   bfd *input_bfd,
3809 			   asection *input_section,
3810 			   bfd_byte *contents,
3811 			   Elf_Internal_Rela *relocs,
3812 			   Elf_Internal_Sym *local_syms,
3813 			   asection **local_sections)
3814 {
3815   Elf_Internal_Shdr *symtab_hdr;
3816   Elf_Internal_Rela *rel;
3817   Elf_Internal_Rela *relend;
3818   struct elf64_hppa_link_hash_table *hppa_info;
3819 
3820   hppa_info = hppa_link_hash_table (info);
3821   if (hppa_info == NULL)
3822     return FALSE;
3823 
3824   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3825 
3826   rel = relocs;
3827   relend = relocs + input_section->reloc_count;
3828   for (; rel < relend; rel++)
3829     {
3830       int r_type;
3831       reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3832       unsigned long r_symndx;
3833       struct elf_link_hash_entry *eh;
3834       Elf_Internal_Sym *sym;
3835       asection *sym_sec;
3836       bfd_vma relocation;
3837       bfd_reloc_status_type r;
3838 
3839       r_type = ELF_R_TYPE (rel->r_info);
3840       if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3841 	{
3842 	  bfd_set_error (bfd_error_bad_value);
3843 	  return FALSE;
3844 	}
3845       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3846 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3847 	continue;
3848 
3849       /* This is a final link.  */
3850       r_symndx = ELF_R_SYM (rel->r_info);
3851       eh = NULL;
3852       sym = NULL;
3853       sym_sec = NULL;
3854       if (r_symndx < symtab_hdr->sh_info)
3855 	{
3856 	  /* This is a local symbol, hh defaults to NULL.  */
3857 	  sym = local_syms + r_symndx;
3858 	  sym_sec = local_sections[r_symndx];
3859 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3860 	}
3861       else
3862 	{
3863 	  /* This is not a local symbol.  */
3864 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3865 
3866 	  /* It seems this can happen with erroneous or unsupported
3867 	     input (mixing a.out and elf in an archive, for example.)  */
3868 	  if (sym_hashes == NULL)
3869 	    return FALSE;
3870 
3871 	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3872 
3873 	  while (eh->root.type == bfd_link_hash_indirect
3874 		 || eh->root.type == bfd_link_hash_warning)
3875 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3876 
3877 	  relocation = 0;
3878 	  if (eh->root.type == bfd_link_hash_defined
3879 	      || eh->root.type == bfd_link_hash_defweak)
3880 	    {
3881 	      sym_sec = eh->root.u.def.section;
3882 	      if (sym_sec != NULL
3883 		  && sym_sec->output_section != NULL)
3884 		relocation = (eh->root.u.def.value
3885 			      + sym_sec->output_section->vma
3886 			      + sym_sec->output_offset);
3887 	    }
3888 	  else if (eh->root.type == bfd_link_hash_undefweak)
3889 	    ;
3890 	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3891 		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3892 	    ;
3893 	  else if (!info->relocatable
3894 		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3895 	    continue;
3896 	  else if (!info->relocatable)
3897 	    {
3898 	      bfd_boolean err;
3899 	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3900 		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3901 	      if (!info->callbacks->undefined_symbol (info,
3902 						      eh->root.root.string,
3903 						      input_bfd,
3904 						      input_section,
3905 						      rel->r_offset, err))
3906 		return FALSE;
3907 	    }
3908 
3909           if (!info->relocatable
3910               && relocation == 0
3911               && eh->root.type != bfd_link_hash_defined
3912               && eh->root.type != bfd_link_hash_defweak
3913               && eh->root.type != bfd_link_hash_undefweak)
3914             {
3915               if (info->unresolved_syms_in_objects == RM_IGNORE
3916                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3917                   && eh->type == STT_PARISC_MILLI)
3918                 {
3919                   if (! info->callbacks->undefined_symbol
3920                       (info, eh_name (eh), input_bfd,
3921                        input_section, rel->r_offset, FALSE))
3922                     return FALSE;
3923                 }
3924             }
3925 	}
3926 
3927       if (sym_sec != NULL && discarded_section (sym_sec))
3928 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3929 					 rel, 1, relend, howto, 0, contents);
3930 
3931       if (info->relocatable)
3932 	continue;
3933 
3934       r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3935 					input_section, contents,
3936 					relocation, info, sym_sec,
3937 					eh);
3938 
3939       if (r != bfd_reloc_ok)
3940 	{
3941 	  switch (r)
3942 	    {
3943 	    default:
3944 	      abort ();
3945 	    case bfd_reloc_overflow:
3946 	      {
3947 		const char *sym_name;
3948 
3949 		if (eh != NULL)
3950 		  sym_name = NULL;
3951 		else
3952 		  {
3953 		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3954 								symtab_hdr->sh_link,
3955 								sym->st_name);
3956 		    if (sym_name == NULL)
3957 		      return FALSE;
3958 		    if (*sym_name == '\0')
3959 		      sym_name = bfd_section_name (input_bfd, sym_sec);
3960 		  }
3961 
3962 		if (!((*info->callbacks->reloc_overflow)
3963 		      (info, (eh ? &eh->root : NULL), sym_name,
3964 		       howto->name, (bfd_vma) 0, input_bfd,
3965 		       input_section, rel->r_offset)))
3966 		  return FALSE;
3967 	      }
3968 	      break;
3969 	    }
3970 	}
3971     }
3972   return TRUE;
3973 }
3974 
3975 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3976 {
3977   { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3978   { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3979   { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3980   { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3981   { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3982   { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3983   { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3984   { NULL,                    0,  0, 0,            0 }
3985 };
3986 
3987 /* The hash bucket size is the standard one, namely 4.  */
3988 
3989 const struct elf_size_info hppa64_elf_size_info =
3990 {
3991   sizeof (Elf64_External_Ehdr),
3992   sizeof (Elf64_External_Phdr),
3993   sizeof (Elf64_External_Shdr),
3994   sizeof (Elf64_External_Rel),
3995   sizeof (Elf64_External_Rela),
3996   sizeof (Elf64_External_Sym),
3997   sizeof (Elf64_External_Dyn),
3998   sizeof (Elf_External_Note),
3999   4,
4000   1,
4001   64, 3,
4002   ELFCLASS64, EV_CURRENT,
4003   bfd_elf64_write_out_phdrs,
4004   bfd_elf64_write_shdrs_and_ehdr,
4005   bfd_elf64_checksum_contents,
4006   bfd_elf64_write_relocs,
4007   bfd_elf64_swap_symbol_in,
4008   bfd_elf64_swap_symbol_out,
4009   bfd_elf64_slurp_reloc_table,
4010   bfd_elf64_slurp_symbol_table,
4011   bfd_elf64_swap_dyn_in,
4012   bfd_elf64_swap_dyn_out,
4013   bfd_elf64_swap_reloc_in,
4014   bfd_elf64_swap_reloc_out,
4015   bfd_elf64_swap_reloca_in,
4016   bfd_elf64_swap_reloca_out
4017 };
4018 
4019 #define TARGET_BIG_SYM			bfd_elf64_hppa_vec
4020 #define TARGET_BIG_NAME			"elf64-hppa"
4021 #define ELF_ARCH			bfd_arch_hppa
4022 #define ELF_TARGET_ID			HPPA64_ELF_DATA
4023 #define ELF_MACHINE_CODE		EM_PARISC
4024 /* This is not strictly correct.  The maximum page size for PA2.0 is
4025    64M.  But everything still uses 4k.  */
4026 #define ELF_MAXPAGESIZE			0x1000
4027 #define ELF_OSABI			ELFOSABI_HPUX
4028 
4029 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4030 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4031 #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4032 #define elf_info_to_howto		elf_hppa_info_to_howto
4033 #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4034 
4035 #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4036 #define elf_backend_object_p		elf64_hppa_object_p
4037 #define elf_backend_final_write_processing \
4038 					elf_hppa_final_write_processing
4039 #define elf_backend_fake_sections	elf_hppa_fake_sections
4040 #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4041 
4042 #define elf_backend_relocate_section	elf_hppa_relocate_section
4043 
4044 #define bfd_elf64_bfd_final_link	elf_hppa_final_link
4045 
4046 #define elf_backend_create_dynamic_sections \
4047 					elf64_hppa_create_dynamic_sections
4048 #define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4049 
4050 #define elf_backend_omit_section_dynsym \
4051   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4052 #define elf_backend_adjust_dynamic_symbol \
4053 					elf64_hppa_adjust_dynamic_symbol
4054 
4055 #define elf_backend_size_dynamic_sections \
4056 					elf64_hppa_size_dynamic_sections
4057 
4058 #define elf_backend_finish_dynamic_symbol \
4059 					elf64_hppa_finish_dynamic_symbol
4060 #define elf_backend_finish_dynamic_sections \
4061 					elf64_hppa_finish_dynamic_sections
4062 #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4063 #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4064 
4065 /* Stuff for the BFD linker: */
4066 #define bfd_elf64_bfd_link_hash_table_create \
4067 	elf64_hppa_hash_table_create
4068 
4069 #define elf_backend_check_relocs \
4070 	elf64_hppa_check_relocs
4071 
4072 #define elf_backend_size_info \
4073   hppa64_elf_size_info
4074 
4075 #define elf_backend_additional_program_headers \
4076 	elf64_hppa_additional_program_headers
4077 
4078 #define elf_backend_modify_segment_map \
4079 	elf64_hppa_modify_segment_map
4080 
4081 #define elf_backend_link_output_symbol_hook \
4082 	elf64_hppa_link_output_symbol_hook
4083 
4084 #define elf_backend_want_got_plt	0
4085 #define elf_backend_plt_readonly	0
4086 #define elf_backend_want_plt_sym	0
4087 #define elf_backend_got_header_size     0
4088 #define elf_backend_type_change_ok	TRUE
4089 #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4090 #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4091 #define elf_backend_rela_normal		1
4092 #define elf_backend_special_sections	elf64_hppa_special_sections
4093 #define elf_backend_action_discarded	elf_hppa_action_discarded
4094 #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4095 
4096 #define elf64_bed			elf64_hppa_hpux_bed
4097 
4098 #include "elf64-target.h"
4099 
4100 #undef TARGET_BIG_SYM
4101 #define TARGET_BIG_SYM			bfd_elf64_hppa_linux_vec
4102 #undef TARGET_BIG_NAME
4103 #define TARGET_BIG_NAME			"elf64-hppa-linux"
4104 #undef ELF_OSABI
4105 #define ELF_OSABI			ELFOSABI_GNU
4106 #undef elf64_bed
4107 #define elf64_bed			elf64_hppa_linux_bed
4108 
4109 #include "elf64-target.h"
4110