xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf64-hppa.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /* Support for HPPA 64-bit ELF
2    Copyright 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
3    2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "alloca-conf.h"
25 #include "bfd.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf/hppa.h"
29 #include "libhppa.h"
30 #include "elf64-hppa.h"
31 
32 
33 #define ARCH_SIZE	       64
34 
35 #define PLT_ENTRY_SIZE 0x10
36 #define DLT_ENTRY_SIZE 0x8
37 #define OPD_ENTRY_SIZE 0x20
38 
39 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/pa20_64/dld.sl"
40 
41 /* The stub is supposed to load the target address and target's DP
42    value out of the PLT, then do an external branch to the target
43    address.
44 
45    LDD PLTOFF(%r27),%r1
46    BVE (%r1)
47    LDD PLTOFF+8(%r27),%r27
48 
49    Note that we must use the LDD with a 14 bit displacement, not the one
50    with a 5 bit displacement.  */
51 static char plt_stub[] = {0x53, 0x61, 0x00, 0x00, 0xe8, 0x20, 0xd0, 0x00,
52 			  0x53, 0x7b, 0x00, 0x00 };
53 
54 struct elf64_hppa_link_hash_entry
55 {
56   struct elf_link_hash_entry eh;
57 
58   /* Offsets for this symbol in various linker sections.  */
59   bfd_vma dlt_offset;
60   bfd_vma plt_offset;
61   bfd_vma opd_offset;
62   bfd_vma stub_offset;
63 
64   /* The index of the (possibly local) symbol in the input bfd and its
65      associated BFD.  Needed so that we can have relocs against local
66      symbols in shared libraries.  */
67   long sym_indx;
68   bfd *owner;
69 
70   /* Dynamic symbols may need to have two different values.  One for
71      the dynamic symbol table, one for the normal symbol table.
72 
73      In such cases we store the symbol's real value and section
74      index here so we can restore the real value before we write
75      the normal symbol table.  */
76   bfd_vma st_value;
77   int st_shndx;
78 
79   /* Used to count non-got, non-plt relocations for delayed sizing
80      of relocation sections.  */
81   struct elf64_hppa_dyn_reloc_entry
82   {
83     /* Next relocation in the chain.  */
84     struct elf64_hppa_dyn_reloc_entry *next;
85 
86     /* The type of the relocation.  */
87     int type;
88 
89     /* The input section of the relocation.  */
90     asection *sec;
91 
92     /* Number of relocs copied in this section.  */
93     bfd_size_type count;
94 
95     /* The index of the section symbol for the input section of
96        the relocation.  Only needed when building shared libraries.  */
97     int sec_symndx;
98 
99     /* The offset within the input section of the relocation.  */
100     bfd_vma offset;
101 
102     /* The addend for the relocation.  */
103     bfd_vma addend;
104 
105   } *reloc_entries;
106 
107   /* Nonzero if this symbol needs an entry in one of the linker
108      sections.  */
109   unsigned want_dlt;
110   unsigned want_plt;
111   unsigned want_opd;
112   unsigned want_stub;
113 };
114 
115 struct elf64_hppa_link_hash_table
116 {
117   struct elf_link_hash_table root;
118 
119   /* Shortcuts to get to the various linker defined sections.  */
120   asection *dlt_sec;
121   asection *dlt_rel_sec;
122   asection *plt_sec;
123   asection *plt_rel_sec;
124   asection *opd_sec;
125   asection *opd_rel_sec;
126   asection *other_rel_sec;
127 
128   /* Offset of __gp within .plt section.  When the PLT gets large we want
129      to slide __gp into the PLT section so that we can continue to use
130      single DP relative instructions to load values out of the PLT.  */
131   bfd_vma gp_offset;
132 
133   /* Note this is not strictly correct.  We should create a stub section for
134      each input section with calls.  The stub section should be placed before
135      the section with the call.  */
136   asection *stub_sec;
137 
138   bfd_vma text_segment_base;
139   bfd_vma data_segment_base;
140 
141   /* We build tables to map from an input section back to its
142      symbol index.  This is the BFD for which we currently have
143      a map.  */
144   bfd *section_syms_bfd;
145 
146   /* Array of symbol numbers for each input section attached to the
147      current BFD.  */
148   int *section_syms;
149 };
150 
151 #define hppa_link_hash_table(p) \
152   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
153   == HPPA64_ELF_DATA ? ((struct elf64_hppa_link_hash_table *) ((p)->hash)) : NULL)
154 
155 #define hppa_elf_hash_entry(ent) \
156   ((struct elf64_hppa_link_hash_entry *)(ent))
157 
158 #define eh_name(eh) \
159   (eh ? eh->root.root.string : "<undef>")
160 
161 typedef struct bfd_hash_entry *(*new_hash_entry_func)
162   (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
163 
164 static struct bfd_link_hash_table *elf64_hppa_hash_table_create
165   (bfd *abfd);
166 
167 /* This must follow the definitions of the various derived linker
168    hash tables and shared functions.  */
169 #include "elf-hppa.h"
170 
171 static bfd_boolean elf64_hppa_object_p
172   (bfd *);
173 
174 static void elf64_hppa_post_process_headers
175   (bfd *, struct bfd_link_info *);
176 
177 static bfd_boolean elf64_hppa_create_dynamic_sections
178   (bfd *, struct bfd_link_info *);
179 
180 static bfd_boolean elf64_hppa_adjust_dynamic_symbol
181   (struct bfd_link_info *, struct elf_link_hash_entry *);
182 
183 static bfd_boolean elf64_hppa_mark_milli_and_exported_functions
184   (struct elf_link_hash_entry *, void *);
185 
186 static bfd_boolean elf64_hppa_size_dynamic_sections
187   (bfd *, struct bfd_link_info *);
188 
189 static int elf64_hppa_link_output_symbol_hook
190   (struct bfd_link_info *, const char *, Elf_Internal_Sym *,
191    asection *, struct elf_link_hash_entry *);
192 
193 static bfd_boolean elf64_hppa_finish_dynamic_symbol
194   (bfd *, struct bfd_link_info *,
195    struct elf_link_hash_entry *, Elf_Internal_Sym *);
196 
197 static enum elf_reloc_type_class elf64_hppa_reloc_type_class
198   (const Elf_Internal_Rela *);
199 
200 static bfd_boolean elf64_hppa_finish_dynamic_sections
201   (bfd *, struct bfd_link_info *);
202 
203 static bfd_boolean elf64_hppa_check_relocs
204   (bfd *, struct bfd_link_info *,
205    asection *, const Elf_Internal_Rela *);
206 
207 static bfd_boolean elf64_hppa_dynamic_symbol_p
208   (struct elf_link_hash_entry *, struct bfd_link_info *);
209 
210 static bfd_boolean elf64_hppa_mark_exported_functions
211   (struct elf_link_hash_entry *, void *);
212 
213 static bfd_boolean elf64_hppa_finalize_opd
214   (struct elf_link_hash_entry *, void *);
215 
216 static bfd_boolean elf64_hppa_finalize_dlt
217   (struct elf_link_hash_entry *, void *);
218 
219 static bfd_boolean allocate_global_data_dlt
220   (struct elf_link_hash_entry *, void *);
221 
222 static bfd_boolean allocate_global_data_plt
223   (struct elf_link_hash_entry *, void *);
224 
225 static bfd_boolean allocate_global_data_stub
226   (struct elf_link_hash_entry *, void *);
227 
228 static bfd_boolean allocate_global_data_opd
229   (struct elf_link_hash_entry *, void *);
230 
231 static bfd_boolean get_reloc_section
232   (bfd *, struct elf64_hppa_link_hash_table *, asection *);
233 
234 static bfd_boolean count_dyn_reloc
235   (bfd *, struct elf64_hppa_link_hash_entry *,
236    int, asection *, int, bfd_vma, bfd_vma);
237 
238 static bfd_boolean allocate_dynrel_entries
239   (struct elf_link_hash_entry *, void *);
240 
241 static bfd_boolean elf64_hppa_finalize_dynreloc
242   (struct elf_link_hash_entry *, void *);
243 
244 static bfd_boolean get_opd
245   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
246 
247 static bfd_boolean get_plt
248   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
249 
250 static bfd_boolean get_dlt
251   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
252 
253 static bfd_boolean get_stub
254   (bfd *, struct bfd_link_info *, struct elf64_hppa_link_hash_table *);
255 
256 static int elf64_hppa_elf_get_symbol_type
257   (Elf_Internal_Sym *, int);
258 
259 /* Initialize an entry in the link hash table.  */
260 
261 static struct bfd_hash_entry *
262 hppa64_link_hash_newfunc (struct bfd_hash_entry *entry,
263 			  struct bfd_hash_table *table,
264 			  const char *string)
265 {
266   /* Allocate the structure if it has not already been allocated by a
267      subclass.  */
268   if (entry == NULL)
269     {
270       entry = bfd_hash_allocate (table,
271 				 sizeof (struct elf64_hppa_link_hash_entry));
272       if (entry == NULL)
273         return entry;
274     }
275 
276   /* Call the allocation method of the superclass.  */
277   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
278   if (entry != NULL)
279     {
280       struct elf64_hppa_link_hash_entry *hh;
281 
282       /* Initialize our local data.  All zeros.  */
283       hh = hppa_elf_hash_entry (entry);
284       memset (&hh->dlt_offset, 0,
285 	      (sizeof (struct elf64_hppa_link_hash_entry)
286 	       - offsetof (struct elf64_hppa_link_hash_entry, dlt_offset)));
287     }
288 
289   return entry;
290 }
291 
292 /* Create the derived linker hash table.  The PA64 ELF port uses this
293    derived hash table to keep information specific to the PA ElF
294    linker (without using static variables).  */
295 
296 static struct bfd_link_hash_table*
297 elf64_hppa_hash_table_create (bfd *abfd)
298 {
299   struct elf64_hppa_link_hash_table *htab;
300   bfd_size_type amt = sizeof (*htab);
301 
302   htab = bfd_zmalloc (amt);
303   if (htab == NULL)
304     return NULL;
305 
306   if (!_bfd_elf_link_hash_table_init (&htab->root, abfd,
307 				      hppa64_link_hash_newfunc,
308 				      sizeof (struct elf64_hppa_link_hash_entry),
309 				      HPPA64_ELF_DATA))
310     {
311       free (htab);
312       return NULL;
313     }
314 
315   htab->text_segment_base = (bfd_vma) -1;
316   htab->data_segment_base = (bfd_vma) -1;
317 
318   return &htab->root.root;
319 }
320 
321 /* Return nonzero if ABFD represents a PA2.0 ELF64 file.
322 
323    Additionally we set the default architecture and machine.  */
324 static bfd_boolean
325 elf64_hppa_object_p (bfd *abfd)
326 {
327   Elf_Internal_Ehdr * i_ehdrp;
328   unsigned int flags;
329 
330   i_ehdrp = elf_elfheader (abfd);
331   if (strcmp (bfd_get_target (abfd), "elf64-hppa-linux") == 0)
332     {
333       /* GCC on hppa-linux produces binaries with OSABI=GNU,
334 	 but the kernel produces corefiles with OSABI=SysV.  */
335       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
336 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
337 	return FALSE;
338     }
339   else
340     {
341       /* HPUX produces binaries with OSABI=HPUX,
342 	 but the kernel produces corefiles with OSABI=SysV.  */
343       if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_HPUX
344 	  && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_NONE) /* aka SYSV */
345 	return FALSE;
346     }
347 
348   flags = i_ehdrp->e_flags;
349   switch (flags & (EF_PARISC_ARCH | EF_PARISC_WIDE))
350     {
351     case EFA_PARISC_1_0:
352       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 10);
353     case EFA_PARISC_1_1:
354       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 11);
355     case EFA_PARISC_2_0:
356       if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
357         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
358       else
359         return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 20);
360     case EFA_PARISC_2_0 | EF_PARISC_WIDE:
361       return bfd_default_set_arch_mach (abfd, bfd_arch_hppa, 25);
362     }
363   /* Don't be fussy.  */
364   return TRUE;
365 }
366 
367 /* Given section type (hdr->sh_type), return a boolean indicating
368    whether or not the section is an elf64-hppa specific section.  */
369 static bfd_boolean
370 elf64_hppa_section_from_shdr (bfd *abfd,
371 			      Elf_Internal_Shdr *hdr,
372 			      const char *name,
373 			      int shindex)
374 {
375   switch (hdr->sh_type)
376     {
377     case SHT_PARISC_EXT:
378       if (strcmp (name, ".PARISC.archext") != 0)
379 	return FALSE;
380       break;
381     case SHT_PARISC_UNWIND:
382       if (strcmp (name, ".PARISC.unwind") != 0)
383 	return FALSE;
384       break;
385     case SHT_PARISC_DOC:
386     case SHT_PARISC_ANNOT:
387     default:
388       return FALSE;
389     }
390 
391   if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
392     return FALSE;
393 
394   return TRUE;
395 }
396 
397 /* SEC is a section containing relocs for an input BFD when linking; return
398    a suitable section for holding relocs in the output BFD for a link.  */
399 
400 static bfd_boolean
401 get_reloc_section (bfd *abfd,
402 		   struct elf64_hppa_link_hash_table *hppa_info,
403 		   asection *sec)
404 {
405   const char *srel_name;
406   asection *srel;
407   bfd *dynobj;
408 
409   srel_name = (bfd_elf_string_from_elf_section
410 	       (abfd, elf_elfheader(abfd)->e_shstrndx,
411 		_bfd_elf_single_rel_hdr(sec)->sh_name));
412   if (srel_name == NULL)
413     return FALSE;
414 
415   dynobj = hppa_info->root.dynobj;
416   if (!dynobj)
417     hppa_info->root.dynobj = dynobj = abfd;
418 
419   srel = bfd_get_linker_section (dynobj, srel_name);
420   if (srel == NULL)
421     {
422       srel = bfd_make_section_anyway_with_flags (dynobj, srel_name,
423 						 (SEC_ALLOC
424 						  | SEC_LOAD
425 						  | SEC_HAS_CONTENTS
426 						  | SEC_IN_MEMORY
427 						  | SEC_LINKER_CREATED
428 						  | SEC_READONLY));
429       if (srel == NULL
430 	  || !bfd_set_section_alignment (dynobj, srel, 3))
431 	return FALSE;
432     }
433 
434   hppa_info->other_rel_sec = srel;
435   return TRUE;
436 }
437 
438 /* Add a new entry to the list of dynamic relocations against DYN_H.
439 
440    We use this to keep a record of all the FPTR relocations against a
441    particular symbol so that we can create FPTR relocations in the
442    output file.  */
443 
444 static bfd_boolean
445 count_dyn_reloc (bfd *abfd,
446 		 struct elf64_hppa_link_hash_entry *hh,
447 		 int type,
448 		 asection *sec,
449 	         int sec_symndx,
450 	         bfd_vma offset,
451 		 bfd_vma addend)
452 {
453   struct elf64_hppa_dyn_reloc_entry *rent;
454 
455   rent = (struct elf64_hppa_dyn_reloc_entry *)
456   bfd_alloc (abfd, (bfd_size_type) sizeof (*rent));
457   if (!rent)
458     return FALSE;
459 
460   rent->next = hh->reloc_entries;
461   rent->type = type;
462   rent->sec = sec;
463   rent->sec_symndx = sec_symndx;
464   rent->offset = offset;
465   rent->addend = addend;
466   hh->reloc_entries = rent;
467 
468   return TRUE;
469 }
470 
471 /* Return a pointer to the local DLT, PLT and OPD reference counts
472    for ABFD.  Returns NULL if the storage allocation fails.  */
473 
474 static bfd_signed_vma *
475 hppa64_elf_local_refcounts (bfd *abfd)
476 {
477   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
478   bfd_signed_vma *local_refcounts;
479 
480   local_refcounts = elf_local_got_refcounts (abfd);
481   if (local_refcounts == NULL)
482     {
483       bfd_size_type size;
484 
485       /* Allocate space for local DLT, PLT and OPD reference
486 	 counts.  Done this way to save polluting elf_obj_tdata
487 	 with another target specific pointer.  */
488       size = symtab_hdr->sh_info;
489       size *= 3 * sizeof (bfd_signed_vma);
490       local_refcounts = bfd_zalloc (abfd, size);
491       elf_local_got_refcounts (abfd) = local_refcounts;
492     }
493   return local_refcounts;
494 }
495 
496 /* Scan the RELOCS and record the type of dynamic entries that each
497    referenced symbol needs.  */
498 
499 static bfd_boolean
500 elf64_hppa_check_relocs (bfd *abfd,
501 			 struct bfd_link_info *info,
502 			 asection *sec,
503 			 const Elf_Internal_Rela *relocs)
504 {
505   struct elf64_hppa_link_hash_table *hppa_info;
506   const Elf_Internal_Rela *relend;
507   Elf_Internal_Shdr *symtab_hdr;
508   const Elf_Internal_Rela *rel;
509   unsigned int sec_symndx;
510 
511   if (info->relocatable)
512     return TRUE;
513 
514   /* If this is the first dynamic object found in the link, create
515      the special sections required for dynamic linking.  */
516   if (! elf_hash_table (info)->dynamic_sections_created)
517     {
518       if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
519 	return FALSE;
520     }
521 
522   hppa_info = hppa_link_hash_table (info);
523   if (hppa_info == NULL)
524     return FALSE;
525   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
526 
527   /* If necessary, build a new table holding section symbols indices
528      for this BFD.  */
529 
530   if (info->shared && hppa_info->section_syms_bfd != abfd)
531     {
532       unsigned long i;
533       unsigned int highest_shndx;
534       Elf_Internal_Sym *local_syms = NULL;
535       Elf_Internal_Sym *isym, *isymend;
536       bfd_size_type amt;
537 
538       /* We're done with the old cache of section index to section symbol
539 	 index information.  Free it.
540 
541 	 ?!? Note we leak the last section_syms array.  Presumably we
542 	 could free it in one of the later routines in this file.  */
543       if (hppa_info->section_syms)
544 	free (hppa_info->section_syms);
545 
546       /* Read this BFD's local symbols.  */
547       if (symtab_hdr->sh_info != 0)
548 	{
549 	  local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
550 	  if (local_syms == NULL)
551 	    local_syms = bfd_elf_get_elf_syms (abfd, symtab_hdr,
552 					       symtab_hdr->sh_info, 0,
553 					       NULL, NULL, NULL);
554 	  if (local_syms == NULL)
555 	    return FALSE;
556 	}
557 
558       /* Record the highest section index referenced by the local symbols.  */
559       highest_shndx = 0;
560       isymend = local_syms + symtab_hdr->sh_info;
561       for (isym = local_syms; isym < isymend; isym++)
562 	{
563 	  if (isym->st_shndx > highest_shndx
564 	      && isym->st_shndx < SHN_LORESERVE)
565 	    highest_shndx = isym->st_shndx;
566 	}
567 
568       /* Allocate an array to hold the section index to section symbol index
569 	 mapping.  Bump by one since we start counting at zero.  */
570       highest_shndx++;
571       amt = highest_shndx;
572       amt *= sizeof (int);
573       hppa_info->section_syms = (int *) bfd_malloc (amt);
574 
575       /* Now walk the local symbols again.  If we find a section symbol,
576 	 record the index of the symbol into the section_syms array.  */
577       for (i = 0, isym = local_syms; isym < isymend; i++, isym++)
578 	{
579 	  if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
580 	    hppa_info->section_syms[isym->st_shndx] = i;
581 	}
582 
583       /* We are finished with the local symbols.  */
584       if (local_syms != NULL
585 	  && symtab_hdr->contents != (unsigned char *) local_syms)
586 	{
587 	  if (! info->keep_memory)
588 	    free (local_syms);
589 	  else
590 	    {
591 	      /* Cache the symbols for elf_link_input_bfd.  */
592 	      symtab_hdr->contents = (unsigned char *) local_syms;
593 	    }
594 	}
595 
596       /* Record which BFD we built the section_syms mapping for.  */
597       hppa_info->section_syms_bfd = abfd;
598     }
599 
600   /* Record the symbol index for this input section.  We may need it for
601      relocations when building shared libraries.  When not building shared
602      libraries this value is never really used, but assign it to zero to
603      prevent out of bounds memory accesses in other routines.  */
604   if (info->shared)
605     {
606       sec_symndx = _bfd_elf_section_from_bfd_section (abfd, sec);
607 
608       /* If we did not find a section symbol for this section, then
609 	 something went terribly wrong above.  */
610       if (sec_symndx == SHN_BAD)
611 	return FALSE;
612 
613       if (sec_symndx < SHN_LORESERVE)
614 	sec_symndx = hppa_info->section_syms[sec_symndx];
615       else
616 	sec_symndx = 0;
617     }
618   else
619     sec_symndx = 0;
620 
621   relend = relocs + sec->reloc_count;
622   for (rel = relocs; rel < relend; ++rel)
623     {
624       enum
625 	{
626 	  NEED_DLT = 1,
627 	  NEED_PLT = 2,
628 	  NEED_STUB = 4,
629 	  NEED_OPD = 8,
630 	  NEED_DYNREL = 16,
631 	};
632 
633       unsigned long r_symndx = ELF64_R_SYM (rel->r_info);
634       struct elf64_hppa_link_hash_entry *hh;
635       int need_entry;
636       bfd_boolean maybe_dynamic;
637       int dynrel_type = R_PARISC_NONE;
638       static reloc_howto_type *howto;
639 
640       if (r_symndx >= symtab_hdr->sh_info)
641 	{
642 	  /* We're dealing with a global symbol -- find its hash entry
643 	     and mark it as being referenced.  */
644 	  long indx = r_symndx - symtab_hdr->sh_info;
645 	  hh = hppa_elf_hash_entry (elf_sym_hashes (abfd)[indx]);
646 	  while (hh->eh.root.type == bfd_link_hash_indirect
647 		 || hh->eh.root.type == bfd_link_hash_warning)
648 	    hh = hppa_elf_hash_entry (hh->eh.root.u.i.link);
649 
650 	  hh->eh.ref_regular = 1;
651 	}
652       else
653 	hh = NULL;
654 
655       /* We can only get preliminary data on whether a symbol is
656 	 locally or externally defined, as not all of the input files
657 	 have yet been processed.  Do something with what we know, as
658 	 this may help reduce memory usage and processing time later.  */
659       maybe_dynamic = FALSE;
660       if (hh && ((info->shared
661 		 && (!info->symbolic
662 		     || info->unresolved_syms_in_shared_libs == RM_IGNORE))
663 		|| !hh->eh.def_regular
664 		|| hh->eh.root.type == bfd_link_hash_defweak))
665 	maybe_dynamic = TRUE;
666 
667       howto = elf_hppa_howto_table + ELF64_R_TYPE (rel->r_info);
668       need_entry = 0;
669       switch (howto->type)
670 	{
671 	/* These are simple indirect references to symbols through the
672 	   DLT.  We need to create a DLT entry for any symbols which
673 	   appears in a DLTIND relocation.  */
674 	case R_PARISC_DLTIND21L:
675 	case R_PARISC_DLTIND14R:
676 	case R_PARISC_DLTIND14F:
677 	case R_PARISC_DLTIND14WR:
678 	case R_PARISC_DLTIND14DR:
679 	  need_entry = NEED_DLT;
680 	  break;
681 
682 	/* ?!?  These need a DLT entry.  But I have no idea what to do with
683 	   the "link time TP value.  */
684 	case R_PARISC_LTOFF_TP21L:
685 	case R_PARISC_LTOFF_TP14R:
686 	case R_PARISC_LTOFF_TP14F:
687 	case R_PARISC_LTOFF_TP64:
688 	case R_PARISC_LTOFF_TP14WR:
689 	case R_PARISC_LTOFF_TP14DR:
690 	case R_PARISC_LTOFF_TP16F:
691 	case R_PARISC_LTOFF_TP16WF:
692 	case R_PARISC_LTOFF_TP16DF:
693 	  need_entry = NEED_DLT;
694 	  break;
695 
696 	/* These are function calls.  Depending on their precise target we
697 	   may need to make a stub for them.  The stub uses the PLT, so we
698 	   need to create PLT entries for these symbols too.  */
699 	case R_PARISC_PCREL12F:
700 	case R_PARISC_PCREL17F:
701 	case R_PARISC_PCREL22F:
702 	case R_PARISC_PCREL32:
703 	case R_PARISC_PCREL64:
704 	case R_PARISC_PCREL21L:
705 	case R_PARISC_PCREL17R:
706 	case R_PARISC_PCREL17C:
707 	case R_PARISC_PCREL14R:
708 	case R_PARISC_PCREL14F:
709 	case R_PARISC_PCREL22C:
710 	case R_PARISC_PCREL14WR:
711 	case R_PARISC_PCREL14DR:
712 	case R_PARISC_PCREL16F:
713 	case R_PARISC_PCREL16WF:
714 	case R_PARISC_PCREL16DF:
715 	  /* Function calls might need to go through the .plt, and
716 	     might need a long branch stub.  */
717 	  if (hh != NULL && hh->eh.type != STT_PARISC_MILLI)
718 	    need_entry = (NEED_PLT | NEED_STUB);
719 	  else
720 	    need_entry = 0;
721 	  break;
722 
723 	case R_PARISC_PLTOFF21L:
724 	case R_PARISC_PLTOFF14R:
725 	case R_PARISC_PLTOFF14F:
726 	case R_PARISC_PLTOFF14WR:
727 	case R_PARISC_PLTOFF14DR:
728 	case R_PARISC_PLTOFF16F:
729 	case R_PARISC_PLTOFF16WF:
730 	case R_PARISC_PLTOFF16DF:
731 	  need_entry = (NEED_PLT);
732 	  break;
733 
734 	case R_PARISC_DIR64:
735 	  if (info->shared || maybe_dynamic)
736 	    need_entry = (NEED_DYNREL);
737 	  dynrel_type = R_PARISC_DIR64;
738 	  break;
739 
740 	/* This is an indirect reference through the DLT to get the address
741 	   of a OPD descriptor.  Thus we need to make a DLT entry that points
742 	   to an OPD entry.  */
743 	case R_PARISC_LTOFF_FPTR21L:
744 	case R_PARISC_LTOFF_FPTR14R:
745 	case R_PARISC_LTOFF_FPTR14WR:
746 	case R_PARISC_LTOFF_FPTR14DR:
747 	case R_PARISC_LTOFF_FPTR32:
748 	case R_PARISC_LTOFF_FPTR64:
749 	case R_PARISC_LTOFF_FPTR16F:
750 	case R_PARISC_LTOFF_FPTR16WF:
751 	case R_PARISC_LTOFF_FPTR16DF:
752 	  if (info->shared || maybe_dynamic)
753 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
754 	  else
755 	    need_entry = (NEED_DLT | NEED_OPD | NEED_PLT);
756 	  dynrel_type = R_PARISC_FPTR64;
757 	  break;
758 
759 	/* This is a simple OPD entry.  */
760 	case R_PARISC_FPTR64:
761 	  if (info->shared || maybe_dynamic)
762 	    need_entry = (NEED_OPD | NEED_PLT | NEED_DYNREL);
763 	  else
764 	    need_entry = (NEED_OPD | NEED_PLT);
765 	  dynrel_type = R_PARISC_FPTR64;
766 	  break;
767 
768 	/* Add more cases as needed.  */
769 	}
770 
771       if (!need_entry)
772 	continue;
773 
774       if (hh)
775 	{
776 	  /* Stash away enough information to be able to find this symbol
777 	     regardless of whether or not it is local or global.  */
778 	  hh->owner = abfd;
779 	  hh->sym_indx = r_symndx;
780 	}
781 
782       /* Create what's needed.  */
783       if (need_entry & NEED_DLT)
784 	{
785 	  /* Allocate space for a DLT entry, as well as a dynamic
786 	     relocation for this entry.  */
787 	  if (! hppa_info->dlt_sec
788 	      && ! get_dlt (abfd, info, hppa_info))
789 	    goto err_out;
790 
791 	  if (hh != NULL)
792 	    {
793 	      hh->want_dlt = 1;
794 	      hh->eh.got.refcount += 1;
795 	    }
796 	  else
797 	    {
798 	      bfd_signed_vma *local_dlt_refcounts;
799 
800 	      /* This is a DLT entry for a local symbol.  */
801 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
802 	      if (local_dlt_refcounts == NULL)
803 		return FALSE;
804 	      local_dlt_refcounts[r_symndx] += 1;
805 	    }
806 	}
807 
808       if (need_entry & NEED_PLT)
809 	{
810 	  if (! hppa_info->plt_sec
811 	      && ! get_plt (abfd, info, hppa_info))
812 	    goto err_out;
813 
814 	  if (hh != NULL)
815 	    {
816 	      hh->want_plt = 1;
817 	      hh->eh.needs_plt = 1;
818 	      hh->eh.plt.refcount += 1;
819 	    }
820 	  else
821 	    {
822 	      bfd_signed_vma *local_dlt_refcounts;
823 	      bfd_signed_vma *local_plt_refcounts;
824 
825 	      /* This is a PLT entry for a local symbol.  */
826 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
827 	      if (local_dlt_refcounts == NULL)
828 		return FALSE;
829 	      local_plt_refcounts = local_dlt_refcounts + symtab_hdr->sh_info;
830 	      local_plt_refcounts[r_symndx] += 1;
831 	    }
832 	}
833 
834       if (need_entry & NEED_STUB)
835 	{
836 	  if (! hppa_info->stub_sec
837 	      && ! get_stub (abfd, info, hppa_info))
838 	    goto err_out;
839 	  if (hh)
840 	    hh->want_stub = 1;
841 	}
842 
843       if (need_entry & NEED_OPD)
844 	{
845 	  if (! hppa_info->opd_sec
846 	      && ! get_opd (abfd, info, hppa_info))
847 	    goto err_out;
848 
849 	  /* FPTRs are not allocated by the dynamic linker for PA64,
850 	     though it is possible that will change in the future.  */
851 
852 	  if (hh != NULL)
853 	    hh->want_opd = 1;
854 	  else
855 	    {
856 	      bfd_signed_vma *local_dlt_refcounts;
857 	      bfd_signed_vma *local_opd_refcounts;
858 
859 	      /* This is a OPD for a local symbol.  */
860 	      local_dlt_refcounts = hppa64_elf_local_refcounts (abfd);
861 	      if (local_dlt_refcounts == NULL)
862 		return FALSE;
863 	      local_opd_refcounts = (local_dlt_refcounts
864 				     + 2 * symtab_hdr->sh_info);
865 	      local_opd_refcounts[r_symndx] += 1;
866 	    }
867 	}
868 
869       /* Add a new dynamic relocation to the chain of dynamic
870 	 relocations for this symbol.  */
871       if ((need_entry & NEED_DYNREL) && (sec->flags & SEC_ALLOC))
872 	{
873 	  if (! hppa_info->other_rel_sec
874 	      && ! get_reloc_section (abfd, hppa_info, sec))
875 	    goto err_out;
876 
877 	  /* Count dynamic relocations against global symbols.  */
878 	  if (hh != NULL
879 	      && !count_dyn_reloc (abfd, hh, dynrel_type, sec,
880 				   sec_symndx, rel->r_offset, rel->r_addend))
881 	    goto err_out;
882 
883 	  /* If we are building a shared library and we just recorded
884 	     a dynamic R_PARISC_FPTR64 relocation, then make sure the
885 	     section symbol for this section ends up in the dynamic
886 	     symbol table.  */
887 	  if (info->shared && dynrel_type == R_PARISC_FPTR64
888 	      && ! (bfd_elf_link_record_local_dynamic_symbol
889 		    (info, abfd, sec_symndx)))
890 	    return FALSE;
891 	}
892     }
893 
894   return TRUE;
895 
896  err_out:
897   return FALSE;
898 }
899 
900 struct elf64_hppa_allocate_data
901 {
902   struct bfd_link_info *info;
903   bfd_size_type ofs;
904 };
905 
906 /* Should we do dynamic things to this symbol?  */
907 
908 static bfd_boolean
909 elf64_hppa_dynamic_symbol_p (struct elf_link_hash_entry *eh,
910 			     struct bfd_link_info *info)
911 {
912   /* ??? What, if anything, needs to happen wrt STV_PROTECTED symbols
913      and relocations that retrieve a function descriptor?  Assume the
914      worst for now.  */
915   if (_bfd_elf_dynamic_symbol_p (eh, info, 1))
916     {
917       /* ??? Why is this here and not elsewhere is_local_label_name.  */
918       if (eh->root.root.string[0] == '$' && eh->root.root.string[1] == '$')
919 	return FALSE;
920 
921       return TRUE;
922     }
923   else
924     return FALSE;
925 }
926 
927 /* Mark all functions exported by this file so that we can later allocate
928    entries in .opd for them.  */
929 
930 static bfd_boolean
931 elf64_hppa_mark_exported_functions (struct elf_link_hash_entry *eh, void *data)
932 {
933   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
934   struct bfd_link_info *info = (struct bfd_link_info *)data;
935   struct elf64_hppa_link_hash_table *hppa_info;
936 
937   hppa_info = hppa_link_hash_table (info);
938   if (hppa_info == NULL)
939     return FALSE;
940 
941   if (eh
942       && (eh->root.type == bfd_link_hash_defined
943 	  || eh->root.type == bfd_link_hash_defweak)
944       && eh->root.u.def.section->output_section != NULL
945       && eh->type == STT_FUNC)
946     {
947       if (! hppa_info->opd_sec
948 	  && ! get_opd (hppa_info->root.dynobj, info, hppa_info))
949 	return FALSE;
950 
951       hh->want_opd = 1;
952 
953       /* Put a flag here for output_symbol_hook.  */
954       hh->st_shndx = -1;
955       eh->needs_plt = 1;
956     }
957 
958   return TRUE;
959 }
960 
961 /* Allocate space for a DLT entry.  */
962 
963 static bfd_boolean
964 allocate_global_data_dlt (struct elf_link_hash_entry *eh, void *data)
965 {
966   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
967   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
968 
969   if (hh->want_dlt)
970     {
971       if (x->info->shared)
972 	{
973 	  /* Possibly add the symbol to the local dynamic symbol
974 	     table since we might need to create a dynamic relocation
975 	     against it.  */
976 	  if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
977 	    {
978 	      bfd *owner = eh->root.u.def.section->owner;
979 
980 	      if (! (bfd_elf_link_record_local_dynamic_symbol
981 		     (x->info, owner, hh->sym_indx)))
982 		return FALSE;
983 	    }
984 	}
985 
986       hh->dlt_offset = x->ofs;
987       x->ofs += DLT_ENTRY_SIZE;
988     }
989   return TRUE;
990 }
991 
992 /* Allocate space for a DLT.PLT entry.  */
993 
994 static bfd_boolean
995 allocate_global_data_plt (struct elf_link_hash_entry *eh, void *data)
996 {
997   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
998   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *) data;
999 
1000   if (hh->want_plt
1001       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1002       && !((eh->root.type == bfd_link_hash_defined
1003 	    || eh->root.type == bfd_link_hash_defweak)
1004 	   && eh->root.u.def.section->output_section != NULL))
1005     {
1006       hh->plt_offset = x->ofs;
1007       x->ofs += PLT_ENTRY_SIZE;
1008       if (hh->plt_offset < 0x2000)
1009 	{
1010 	  struct elf64_hppa_link_hash_table *hppa_info;
1011 
1012 	  hppa_info = hppa_link_hash_table (x->info);
1013 	  if (hppa_info == NULL)
1014 	    return FALSE;
1015 
1016 	  hppa_info->gp_offset = hh->plt_offset;
1017 	}
1018     }
1019   else
1020     hh->want_plt = 0;
1021 
1022   return TRUE;
1023 }
1024 
1025 /* Allocate space for a STUB entry.  */
1026 
1027 static bfd_boolean
1028 allocate_global_data_stub (struct elf_link_hash_entry *eh, void *data)
1029 {
1030   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1031   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1032 
1033   if (hh->want_stub
1034       && elf64_hppa_dynamic_symbol_p (eh, x->info)
1035       && !((eh->root.type == bfd_link_hash_defined
1036 	    || eh->root.type == bfd_link_hash_defweak)
1037 	   && eh->root.u.def.section->output_section != NULL))
1038     {
1039       hh->stub_offset = x->ofs;
1040       x->ofs += sizeof (plt_stub);
1041     }
1042   else
1043     hh->want_stub = 0;
1044   return TRUE;
1045 }
1046 
1047 /* Allocate space for a FPTR entry.  */
1048 
1049 static bfd_boolean
1050 allocate_global_data_opd (struct elf_link_hash_entry *eh, void *data)
1051 {
1052   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1053   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1054 
1055   if (hh && hh->want_opd)
1056     {
1057       /* We never need an opd entry for a symbol which is not
1058 	 defined by this output file.  */
1059       if (hh && (hh->eh.root.type == bfd_link_hash_undefined
1060 		 || hh->eh.root.type == bfd_link_hash_undefweak
1061 		 || hh->eh.root.u.def.section->output_section == NULL))
1062 	hh->want_opd = 0;
1063 
1064       /* If we are creating a shared library, took the address of a local
1065 	 function or might export this function from this object file, then
1066 	 we have to create an opd descriptor.  */
1067       else if (x->info->shared
1068 	       || hh == NULL
1069 	       || (hh->eh.dynindx == -1 && hh->eh.type != STT_PARISC_MILLI)
1070 	       || (hh->eh.root.type == bfd_link_hash_defined
1071 		   || hh->eh.root.type == bfd_link_hash_defweak))
1072 	{
1073 	  /* If we are creating a shared library, then we will have to
1074 	     create a runtime relocation for the symbol to properly
1075 	     initialize the .opd entry.  Make sure the symbol gets
1076 	     added to the dynamic symbol table.  */
1077 	  if (x->info->shared
1078 	      && (hh == NULL || (hh->eh.dynindx == -1)))
1079 	    {
1080 	      bfd *owner;
1081 	      /* PR 6511: Default to using the dynamic symbol table.  */
1082 	      owner = (hh->owner ? hh->owner: eh->root.u.def.section->owner);
1083 
1084 	      if (!bfd_elf_link_record_local_dynamic_symbol
1085 		    (x->info, owner, hh->sym_indx))
1086 		return FALSE;
1087 	    }
1088 
1089 	  /* This may not be necessary or desirable anymore now that
1090 	     we have some support for dealing with section symbols
1091 	     in dynamic relocs.  But name munging does make the result
1092 	     much easier to debug.  ie, the EPLT reloc will reference
1093 	     a symbol like .foobar, instead of .text + offset.  */
1094 	  if (x->info->shared && eh)
1095 	    {
1096 	      char *new_name;
1097 	      struct elf_link_hash_entry *nh;
1098 
1099 	      new_name = alloca (strlen (eh->root.root.string) + 2);
1100 	      new_name[0] = '.';
1101 	      strcpy (new_name + 1, eh->root.root.string);
1102 
1103 	      nh = elf_link_hash_lookup (elf_hash_table (x->info),
1104 					 new_name, TRUE, TRUE, TRUE);
1105 
1106 	      nh->root.type = eh->root.type;
1107 	      nh->root.u.def.value = eh->root.u.def.value;
1108 	      nh->root.u.def.section = eh->root.u.def.section;
1109 
1110 	      if (! bfd_elf_link_record_dynamic_symbol (x->info, nh))
1111 		return FALSE;
1112 
1113 	     }
1114 	  hh->opd_offset = x->ofs;
1115 	  x->ofs += OPD_ENTRY_SIZE;
1116 	}
1117 
1118       /* Otherwise we do not need an opd entry.  */
1119       else
1120 	hh->want_opd = 0;
1121     }
1122   return TRUE;
1123 }
1124 
1125 /* HP requires the EI_OSABI field to be filled in.  The assignment to
1126    EI_ABIVERSION may not be strictly necessary.  */
1127 
1128 static void
1129 elf64_hppa_post_process_headers (bfd *abfd,
1130 			 struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
1131 {
1132   Elf_Internal_Ehdr * i_ehdrp;
1133 
1134   i_ehdrp = elf_elfheader (abfd);
1135 
1136   i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
1137   i_ehdrp->e_ident[EI_ABIVERSION] = 1;
1138 }
1139 
1140 /* Create function descriptor section (.opd).  This section is called .opd
1141    because it contains "official procedure descriptors".  The "official"
1142    refers to the fact that these descriptors are used when taking the address
1143    of a procedure, thus ensuring a unique address for each procedure.  */
1144 
1145 static bfd_boolean
1146 get_opd (bfd *abfd,
1147 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1148 	 struct elf64_hppa_link_hash_table *hppa_info)
1149 {
1150   asection *opd;
1151   bfd *dynobj;
1152 
1153   opd = hppa_info->opd_sec;
1154   if (!opd)
1155     {
1156       dynobj = hppa_info->root.dynobj;
1157       if (!dynobj)
1158 	hppa_info->root.dynobj = dynobj = abfd;
1159 
1160       opd = bfd_make_section_anyway_with_flags (dynobj, ".opd",
1161 						(SEC_ALLOC
1162 						 | SEC_LOAD
1163 						 | SEC_HAS_CONTENTS
1164 						 | SEC_IN_MEMORY
1165 						 | SEC_LINKER_CREATED));
1166       if (!opd
1167 	  || !bfd_set_section_alignment (abfd, opd, 3))
1168 	{
1169 	  BFD_ASSERT (0);
1170 	  return FALSE;
1171 	}
1172 
1173       hppa_info->opd_sec = opd;
1174     }
1175 
1176   return TRUE;
1177 }
1178 
1179 /* Create the PLT section.  */
1180 
1181 static bfd_boolean
1182 get_plt (bfd *abfd,
1183 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1184 	 struct elf64_hppa_link_hash_table *hppa_info)
1185 {
1186   asection *plt;
1187   bfd *dynobj;
1188 
1189   plt = hppa_info->plt_sec;
1190   if (!plt)
1191     {
1192       dynobj = hppa_info->root.dynobj;
1193       if (!dynobj)
1194 	hppa_info->root.dynobj = dynobj = abfd;
1195 
1196       plt = bfd_make_section_anyway_with_flags (dynobj, ".plt",
1197 						(SEC_ALLOC
1198 						 | SEC_LOAD
1199 						 | SEC_HAS_CONTENTS
1200 						 | SEC_IN_MEMORY
1201 						 | SEC_LINKER_CREATED));
1202       if (!plt
1203 	  || !bfd_set_section_alignment (abfd, plt, 3))
1204 	{
1205 	  BFD_ASSERT (0);
1206 	  return FALSE;
1207 	}
1208 
1209       hppa_info->plt_sec = plt;
1210     }
1211 
1212   return TRUE;
1213 }
1214 
1215 /* Create the DLT section.  */
1216 
1217 static bfd_boolean
1218 get_dlt (bfd *abfd,
1219 	 struct bfd_link_info *info ATTRIBUTE_UNUSED,
1220 	 struct elf64_hppa_link_hash_table *hppa_info)
1221 {
1222   asection *dlt;
1223   bfd *dynobj;
1224 
1225   dlt = hppa_info->dlt_sec;
1226   if (!dlt)
1227     {
1228       dynobj = hppa_info->root.dynobj;
1229       if (!dynobj)
1230 	hppa_info->root.dynobj = dynobj = abfd;
1231 
1232       dlt = bfd_make_section_anyway_with_flags (dynobj, ".dlt",
1233 						(SEC_ALLOC
1234 						 | SEC_LOAD
1235 						 | SEC_HAS_CONTENTS
1236 						 | SEC_IN_MEMORY
1237 						 | SEC_LINKER_CREATED));
1238       if (!dlt
1239 	  || !bfd_set_section_alignment (abfd, dlt, 3))
1240 	{
1241 	  BFD_ASSERT (0);
1242 	  return FALSE;
1243 	}
1244 
1245       hppa_info->dlt_sec = dlt;
1246     }
1247 
1248   return TRUE;
1249 }
1250 
1251 /* Create the stubs section.  */
1252 
1253 static bfd_boolean
1254 get_stub (bfd *abfd,
1255 	  struct bfd_link_info *info ATTRIBUTE_UNUSED,
1256 	  struct elf64_hppa_link_hash_table *hppa_info)
1257 {
1258   asection *stub;
1259   bfd *dynobj;
1260 
1261   stub = hppa_info->stub_sec;
1262   if (!stub)
1263     {
1264       dynobj = hppa_info->root.dynobj;
1265       if (!dynobj)
1266 	hppa_info->root.dynobj = dynobj = abfd;
1267 
1268       stub = bfd_make_section_anyway_with_flags (dynobj, ".stub",
1269 						 (SEC_ALLOC | SEC_LOAD
1270 						  | SEC_HAS_CONTENTS
1271 						  | SEC_IN_MEMORY
1272 						  | SEC_READONLY
1273 						  | SEC_LINKER_CREATED));
1274       if (!stub
1275 	  || !bfd_set_section_alignment (abfd, stub, 3))
1276 	{
1277 	  BFD_ASSERT (0);
1278 	  return FALSE;
1279 	}
1280 
1281       hppa_info->stub_sec = stub;
1282     }
1283 
1284   return TRUE;
1285 }
1286 
1287 /* Create sections necessary for dynamic linking.  This is only a rough
1288    cut and will likely change as we learn more about the somewhat
1289    unusual dynamic linking scheme HP uses.
1290 
1291    .stub:
1292 	Contains code to implement cross-space calls.  The first time one
1293 	of the stubs is used it will call into the dynamic linker, later
1294 	calls will go straight to the target.
1295 
1296 	The only stub we support right now looks like
1297 
1298 	ldd OFFSET(%dp),%r1
1299 	bve %r0(%r1)
1300 	ldd OFFSET+8(%dp),%dp
1301 
1302 	Other stubs may be needed in the future.  We may want the remove
1303 	the break/nop instruction.  It is only used right now to keep the
1304 	offset of a .plt entry and a .stub entry in sync.
1305 
1306    .dlt:
1307 	This is what most people call the .got.  HP used a different name.
1308 	Losers.
1309 
1310    .rela.dlt:
1311 	Relocations for the DLT.
1312 
1313    .plt:
1314 	Function pointers as address,gp pairs.
1315 
1316    .rela.plt:
1317 	Should contain dynamic IPLT (and EPLT?) relocations.
1318 
1319    .opd:
1320 	FPTRS
1321 
1322    .rela.opd:
1323 	EPLT relocations for symbols exported from shared libraries.  */
1324 
1325 static bfd_boolean
1326 elf64_hppa_create_dynamic_sections (bfd *abfd,
1327 				    struct bfd_link_info *info)
1328 {
1329   asection *s;
1330   struct elf64_hppa_link_hash_table *hppa_info;
1331 
1332   hppa_info = hppa_link_hash_table (info);
1333   if (hppa_info == NULL)
1334     return FALSE;
1335 
1336   if (! get_stub (abfd, info, hppa_info))
1337     return FALSE;
1338 
1339   if (! get_dlt (abfd, info, hppa_info))
1340     return FALSE;
1341 
1342   if (! get_plt (abfd, info, hppa_info))
1343     return FALSE;
1344 
1345   if (! get_opd (abfd, info, hppa_info))
1346     return FALSE;
1347 
1348   s = bfd_make_section_anyway_with_flags (abfd, ".rela.dlt",
1349 					  (SEC_ALLOC | SEC_LOAD
1350 					   | SEC_HAS_CONTENTS
1351 					   | SEC_IN_MEMORY
1352 					   | SEC_READONLY
1353 					   | SEC_LINKER_CREATED));
1354   if (s == NULL
1355       || !bfd_set_section_alignment (abfd, s, 3))
1356     return FALSE;
1357   hppa_info->dlt_rel_sec = s;
1358 
1359   s = bfd_make_section_anyway_with_flags (abfd, ".rela.plt",
1360 					  (SEC_ALLOC | SEC_LOAD
1361 					   | SEC_HAS_CONTENTS
1362 					   | SEC_IN_MEMORY
1363 					   | SEC_READONLY
1364 					   | SEC_LINKER_CREATED));
1365   if (s == NULL
1366       || !bfd_set_section_alignment (abfd, s, 3))
1367     return FALSE;
1368   hppa_info->plt_rel_sec = s;
1369 
1370   s = bfd_make_section_anyway_with_flags (abfd, ".rela.data",
1371 					  (SEC_ALLOC | SEC_LOAD
1372 					   | SEC_HAS_CONTENTS
1373 					   | SEC_IN_MEMORY
1374 					   | SEC_READONLY
1375 					   | SEC_LINKER_CREATED));
1376   if (s == NULL
1377       || !bfd_set_section_alignment (abfd, s, 3))
1378     return FALSE;
1379   hppa_info->other_rel_sec = s;
1380 
1381   s = bfd_make_section_anyway_with_flags (abfd, ".rela.opd",
1382 					  (SEC_ALLOC | SEC_LOAD
1383 					   | SEC_HAS_CONTENTS
1384 					   | SEC_IN_MEMORY
1385 					   | SEC_READONLY
1386 					   | SEC_LINKER_CREATED));
1387   if (s == NULL
1388       || !bfd_set_section_alignment (abfd, s, 3))
1389     return FALSE;
1390   hppa_info->opd_rel_sec = s;
1391 
1392   return TRUE;
1393 }
1394 
1395 /* Allocate dynamic relocations for those symbols that turned out
1396    to be dynamic.  */
1397 
1398 static bfd_boolean
1399 allocate_dynrel_entries (struct elf_link_hash_entry *eh, void *data)
1400 {
1401   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1402   struct elf64_hppa_allocate_data *x = (struct elf64_hppa_allocate_data *)data;
1403   struct elf64_hppa_link_hash_table *hppa_info;
1404   struct elf64_hppa_dyn_reloc_entry *rent;
1405   bfd_boolean dynamic_symbol, shared;
1406 
1407   hppa_info = hppa_link_hash_table (x->info);
1408   if (hppa_info == NULL)
1409     return FALSE;
1410 
1411   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, x->info);
1412   shared = x->info->shared;
1413 
1414   /* We may need to allocate relocations for a non-dynamic symbol
1415      when creating a shared library.  */
1416   if (!dynamic_symbol && !shared)
1417     return TRUE;
1418 
1419   /* Take care of the normal data relocations.  */
1420 
1421   for (rent = hh->reloc_entries; rent; rent = rent->next)
1422     {
1423       /* Allocate one iff we are building a shared library, the relocation
1424 	 isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
1425       if (!shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
1426 	continue;
1427 
1428       hppa_info->other_rel_sec->size += sizeof (Elf64_External_Rela);
1429 
1430       /* Make sure this symbol gets into the dynamic symbol table if it is
1431 	 not already recorded.  ?!? This should not be in the loop since
1432 	 the symbol need only be added once.  */
1433       if (eh->dynindx == -1 && eh->type != STT_PARISC_MILLI)
1434 	if (!bfd_elf_link_record_local_dynamic_symbol
1435 	    (x->info, rent->sec->owner, hh->sym_indx))
1436 	  return FALSE;
1437     }
1438 
1439   /* Take care of the GOT and PLT relocations.  */
1440 
1441   if ((dynamic_symbol || shared) && hh->want_dlt)
1442     hppa_info->dlt_rel_sec->size += sizeof (Elf64_External_Rela);
1443 
1444   /* If we are building a shared library, then every symbol that has an
1445      opd entry will need an EPLT relocation to relocate the symbol's address
1446      and __gp value based on the runtime load address.  */
1447   if (shared && hh->want_opd)
1448     hppa_info->opd_rel_sec->size += sizeof (Elf64_External_Rela);
1449 
1450   if (hh->want_plt && dynamic_symbol)
1451     {
1452       bfd_size_type t = 0;
1453 
1454       /* Dynamic symbols get one IPLT relocation.  Local symbols in
1455 	 shared libraries get two REL relocations.  Local symbols in
1456 	 main applications get nothing.  */
1457       if (dynamic_symbol)
1458 	t = sizeof (Elf64_External_Rela);
1459       else if (shared)
1460 	t = 2 * sizeof (Elf64_External_Rela);
1461 
1462       hppa_info->plt_rel_sec->size += t;
1463     }
1464 
1465   return TRUE;
1466 }
1467 
1468 /* Adjust a symbol defined by a dynamic object and referenced by a
1469    regular object.  */
1470 
1471 static bfd_boolean
1472 elf64_hppa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1473 				  struct elf_link_hash_entry *eh)
1474 {
1475   /* ??? Undefined symbols with PLT entries should be re-defined
1476      to be the PLT entry.  */
1477 
1478   /* If this is a weak symbol, and there is a real definition, the
1479      processor independent code will have arranged for us to see the
1480      real definition first, and we can just use the same value.  */
1481   if (eh->u.weakdef != NULL)
1482     {
1483       BFD_ASSERT (eh->u.weakdef->root.type == bfd_link_hash_defined
1484 		  || eh->u.weakdef->root.type == bfd_link_hash_defweak);
1485       eh->root.u.def.section = eh->u.weakdef->root.u.def.section;
1486       eh->root.u.def.value = eh->u.weakdef->root.u.def.value;
1487       return TRUE;
1488     }
1489 
1490   /* If this is a reference to a symbol defined by a dynamic object which
1491      is not a function, we might allocate the symbol in our .dynbss section
1492      and allocate a COPY dynamic relocation.
1493 
1494      But PA64 code is canonically PIC, so as a rule we can avoid this sort
1495      of hackery.  */
1496 
1497   return TRUE;
1498 }
1499 
1500 /* This function is called via elf_link_hash_traverse to mark millicode
1501    symbols with a dynindx of -1 and to remove the string table reference
1502    from the dynamic symbol table.  If the symbol is not a millicode symbol,
1503    elf64_hppa_mark_exported_functions is called.  */
1504 
1505 static bfd_boolean
1506 elf64_hppa_mark_milli_and_exported_functions (struct elf_link_hash_entry *eh,
1507 					      void *data)
1508 {
1509   struct bfd_link_info *info = (struct bfd_link_info *) data;
1510 
1511   if (eh->type == STT_PARISC_MILLI)
1512     {
1513       if (eh->dynindx != -1)
1514 	{
1515 	  eh->dynindx = -1;
1516 	  _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1517 				  eh->dynstr_index);
1518 	}
1519       return TRUE;
1520     }
1521 
1522   return elf64_hppa_mark_exported_functions (eh, data);
1523 }
1524 
1525 /* Set the final sizes of the dynamic sections and allocate memory for
1526    the contents of our special sections.  */
1527 
1528 static bfd_boolean
1529 elf64_hppa_size_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
1530 {
1531   struct elf64_hppa_link_hash_table *hppa_info;
1532   struct elf64_hppa_allocate_data data;
1533   bfd *dynobj;
1534   bfd *ibfd;
1535   asection *sec;
1536   bfd_boolean plt;
1537   bfd_boolean relocs;
1538   bfd_boolean reltext;
1539 
1540   hppa_info = hppa_link_hash_table (info);
1541   if (hppa_info == NULL)
1542     return FALSE;
1543 
1544   dynobj = elf_hash_table (info)->dynobj;
1545   BFD_ASSERT (dynobj != NULL);
1546 
1547   /* Mark each function this program exports so that we will allocate
1548      space in the .opd section for each function's FPTR.  If we are
1549      creating dynamic sections, change the dynamic index of millicode
1550      symbols to -1 and remove them from the string table for .dynstr.
1551 
1552      We have to traverse the main linker hash table since we have to
1553      find functions which may not have been mentioned in any relocs.  */
1554   elf_link_hash_traverse (elf_hash_table (info),
1555 			  (elf_hash_table (info)->dynamic_sections_created
1556 			   ? elf64_hppa_mark_milli_and_exported_functions
1557 			   : elf64_hppa_mark_exported_functions),
1558 			  info);
1559 
1560   if (elf_hash_table (info)->dynamic_sections_created)
1561     {
1562       /* Set the contents of the .interp section to the interpreter.  */
1563       if (info->executable)
1564 	{
1565 	  sec = bfd_get_linker_section (dynobj, ".interp");
1566 	  BFD_ASSERT (sec != NULL);
1567 	  sec->size = sizeof ELF_DYNAMIC_INTERPRETER;
1568 	  sec->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1569 	}
1570     }
1571   else
1572     {
1573       /* We may have created entries in the .rela.got section.
1574 	 However, if we are not creating the dynamic sections, we will
1575 	 not actually use these entries.  Reset the size of .rela.dlt,
1576 	 which will cause it to get stripped from the output file
1577 	 below.  */
1578       sec = bfd_get_linker_section (dynobj, ".rela.dlt");
1579       if (sec != NULL)
1580 	sec->size = 0;
1581     }
1582 
1583   /* Set up DLT, PLT and OPD offsets for local syms, and space for local
1584      dynamic relocs.  */
1585   for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
1586     {
1587       bfd_signed_vma *local_dlt;
1588       bfd_signed_vma *end_local_dlt;
1589       bfd_signed_vma *local_plt;
1590       bfd_signed_vma *end_local_plt;
1591       bfd_signed_vma *local_opd;
1592       bfd_signed_vma *end_local_opd;
1593       bfd_size_type locsymcount;
1594       Elf_Internal_Shdr *symtab_hdr;
1595       asection *srel;
1596 
1597       if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
1598 	continue;
1599 
1600       for (sec = ibfd->sections; sec != NULL; sec = sec->next)
1601 	{
1602 	  struct elf64_hppa_dyn_reloc_entry *hdh_p;
1603 
1604 	  for (hdh_p = ((struct elf64_hppa_dyn_reloc_entry *)
1605 		    elf_section_data (sec)->local_dynrel);
1606 	       hdh_p != NULL;
1607 	       hdh_p = hdh_p->next)
1608 	    {
1609 	      if (!bfd_is_abs_section (hdh_p->sec)
1610 		  && bfd_is_abs_section (hdh_p->sec->output_section))
1611 		{
1612 		  /* Input section has been discarded, either because
1613 		     it is a copy of a linkonce section or due to
1614 		     linker script /DISCARD/, so we'll be discarding
1615 		     the relocs too.  */
1616 		}
1617 	      else if (hdh_p->count != 0)
1618 		{
1619 		  srel = elf_section_data (hdh_p->sec)->sreloc;
1620 		  srel->size += hdh_p->count * sizeof (Elf64_External_Rela);
1621 		  if ((hdh_p->sec->output_section->flags & SEC_READONLY) != 0)
1622 		    info->flags |= DF_TEXTREL;
1623 		}
1624 	    }
1625 	}
1626 
1627       local_dlt = elf_local_got_refcounts (ibfd);
1628       if (!local_dlt)
1629 	continue;
1630 
1631       symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
1632       locsymcount = symtab_hdr->sh_info;
1633       end_local_dlt = local_dlt + locsymcount;
1634       sec = hppa_info->dlt_sec;
1635       srel = hppa_info->dlt_rel_sec;
1636       for (; local_dlt < end_local_dlt; ++local_dlt)
1637 	{
1638 	  if (*local_dlt > 0)
1639 	    {
1640 	      *local_dlt = sec->size;
1641 	      sec->size += DLT_ENTRY_SIZE;
1642 	      if (info->shared)
1643 	        {
1644 		  srel->size += sizeof (Elf64_External_Rela);
1645 	        }
1646 	    }
1647 	  else
1648 	    *local_dlt = (bfd_vma) -1;
1649 	}
1650 
1651       local_plt = end_local_dlt;
1652       end_local_plt = local_plt + locsymcount;
1653       if (! hppa_info->root.dynamic_sections_created)
1654 	{
1655 	  /* Won't be used, but be safe.  */
1656 	  for (; local_plt < end_local_plt; ++local_plt)
1657 	    *local_plt = (bfd_vma) -1;
1658 	}
1659       else
1660 	{
1661 	  sec = hppa_info->plt_sec;
1662 	  srel = hppa_info->plt_rel_sec;
1663 	  for (; local_plt < end_local_plt; ++local_plt)
1664 	    {
1665 	      if (*local_plt > 0)
1666 		{
1667 		  *local_plt = sec->size;
1668 		  sec->size += PLT_ENTRY_SIZE;
1669 		  if (info->shared)
1670 		    srel->size += sizeof (Elf64_External_Rela);
1671 		}
1672 	      else
1673 		*local_plt = (bfd_vma) -1;
1674 	    }
1675 	}
1676 
1677       local_opd = end_local_plt;
1678       end_local_opd = local_opd + locsymcount;
1679       if (! hppa_info->root.dynamic_sections_created)
1680 	{
1681 	  /* Won't be used, but be safe.  */
1682 	  for (; local_opd < end_local_opd; ++local_opd)
1683 	    *local_opd = (bfd_vma) -1;
1684 	}
1685       else
1686 	{
1687 	  sec = hppa_info->opd_sec;
1688 	  srel = hppa_info->opd_rel_sec;
1689 	  for (; local_opd < end_local_opd; ++local_opd)
1690 	    {
1691 	      if (*local_opd > 0)
1692 		{
1693 		  *local_opd = sec->size;
1694 		  sec->size += OPD_ENTRY_SIZE;
1695 		  if (info->shared)
1696 		    srel->size += sizeof (Elf64_External_Rela);
1697 		}
1698 	      else
1699 		*local_opd = (bfd_vma) -1;
1700 	    }
1701 	}
1702     }
1703 
1704   /* Allocate the GOT entries.  */
1705 
1706   data.info = info;
1707   if (hppa_info->dlt_sec)
1708     {
1709       data.ofs = hppa_info->dlt_sec->size;
1710       elf_link_hash_traverse (elf_hash_table (info),
1711 			      allocate_global_data_dlt, &data);
1712       hppa_info->dlt_sec->size = data.ofs;
1713     }
1714 
1715   if (hppa_info->plt_sec)
1716     {
1717       data.ofs = hppa_info->plt_sec->size;
1718       elf_link_hash_traverse (elf_hash_table (info),
1719 		              allocate_global_data_plt, &data);
1720       hppa_info->plt_sec->size = data.ofs;
1721     }
1722 
1723   if (hppa_info->stub_sec)
1724     {
1725       data.ofs = 0x0;
1726       elf_link_hash_traverse (elf_hash_table (info),
1727 			      allocate_global_data_stub, &data);
1728       hppa_info->stub_sec->size = data.ofs;
1729     }
1730 
1731   /* Allocate space for entries in the .opd section.  */
1732   if (hppa_info->opd_sec)
1733     {
1734       data.ofs = hppa_info->opd_sec->size;
1735       elf_link_hash_traverse (elf_hash_table (info),
1736 			      allocate_global_data_opd, &data);
1737       hppa_info->opd_sec->size = data.ofs;
1738     }
1739 
1740   /* Now allocate space for dynamic relocations, if necessary.  */
1741   if (hppa_info->root.dynamic_sections_created)
1742     elf_link_hash_traverse (elf_hash_table (info),
1743 			    allocate_dynrel_entries, &data);
1744 
1745   /* The sizes of all the sections are set.  Allocate memory for them.  */
1746   plt = FALSE;
1747   relocs = FALSE;
1748   reltext = FALSE;
1749   for (sec = dynobj->sections; sec != NULL; sec = sec->next)
1750     {
1751       const char *name;
1752 
1753       if ((sec->flags & SEC_LINKER_CREATED) == 0)
1754 	continue;
1755 
1756       /* It's OK to base decisions on the section name, because none
1757 	 of the dynobj section names depend upon the input files.  */
1758       name = bfd_get_section_name (dynobj, sec);
1759 
1760       if (strcmp (name, ".plt") == 0)
1761 	{
1762 	  /* Remember whether there is a PLT.  */
1763 	  plt = sec->size != 0;
1764 	}
1765       else if (strcmp (name, ".opd") == 0
1766 	       || CONST_STRNEQ (name, ".dlt")
1767 	       || strcmp (name, ".stub") == 0
1768 	       || strcmp (name, ".got") == 0)
1769 	{
1770 	  /* Strip this section if we don't need it; see the comment below.  */
1771 	}
1772       else if (CONST_STRNEQ (name, ".rela"))
1773 	{
1774 	  if (sec->size != 0)
1775 	    {
1776 	      asection *target;
1777 
1778 	      /* Remember whether there are any reloc sections other
1779 		 than .rela.plt.  */
1780 	      if (strcmp (name, ".rela.plt") != 0)
1781 		{
1782 		  const char *outname;
1783 
1784 		  relocs = TRUE;
1785 
1786 		  /* If this relocation section applies to a read only
1787 		     section, then we probably need a DT_TEXTREL
1788 		     entry.  The entries in the .rela.plt section
1789 		     really apply to the .got section, which we
1790 		     created ourselves and so know is not readonly.  */
1791 		  outname = bfd_get_section_name (output_bfd,
1792 						  sec->output_section);
1793 		  target = bfd_get_section_by_name (output_bfd, outname + 4);
1794 		  if (target != NULL
1795 		      && (target->flags & SEC_READONLY) != 0
1796 		      && (target->flags & SEC_ALLOC) != 0)
1797 		    reltext = TRUE;
1798 		}
1799 
1800 	      /* We use the reloc_count field as a counter if we need
1801 		 to copy relocs into the output file.  */
1802 	      sec->reloc_count = 0;
1803 	    }
1804 	}
1805       else
1806 	{
1807 	  /* It's not one of our sections, so don't allocate space.  */
1808 	  continue;
1809 	}
1810 
1811       if (sec->size == 0)
1812 	{
1813 	  /* If we don't need this section, strip it from the
1814 	     output file.  This is mostly to handle .rela.bss and
1815 	     .rela.plt.  We must create both sections in
1816 	     create_dynamic_sections, because they must be created
1817 	     before the linker maps input sections to output
1818 	     sections.  The linker does that before
1819 	     adjust_dynamic_symbol is called, and it is that
1820 	     function which decides whether anything needs to go
1821 	     into these sections.  */
1822 	  sec->flags |= SEC_EXCLUDE;
1823 	  continue;
1824 	}
1825 
1826       if ((sec->flags & SEC_HAS_CONTENTS) == 0)
1827 	continue;
1828 
1829       /* Allocate memory for the section contents if it has not
1830 	 been allocated already.  We use bfd_zalloc here in case
1831 	 unused entries are not reclaimed before the section's
1832 	 contents are written out.  This should not happen, but this
1833 	 way if it does, we get a R_PARISC_NONE reloc instead of
1834 	 garbage.  */
1835       if (sec->contents == NULL)
1836 	{
1837 	  sec->contents = (bfd_byte *) bfd_zalloc (dynobj, sec->size);
1838 	  if (sec->contents == NULL)
1839 	    return FALSE;
1840 	}
1841     }
1842 
1843   if (elf_hash_table (info)->dynamic_sections_created)
1844     {
1845       /* Always create a DT_PLTGOT.  It actually has nothing to do with
1846 	 the PLT, it is how we communicate the __gp value of a load
1847 	 module to the dynamic linker.  */
1848 #define add_dynamic_entry(TAG, VAL) \
1849   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1850 
1851       if (!add_dynamic_entry (DT_HP_DLD_FLAGS, 0)
1852 	  || !add_dynamic_entry (DT_PLTGOT, 0))
1853 	return FALSE;
1854 
1855       /* Add some entries to the .dynamic section.  We fill in the
1856 	 values later, in elf64_hppa_finish_dynamic_sections, but we
1857 	 must add the entries now so that we get the correct size for
1858 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1859 	 dynamic linker and used by the debugger.  */
1860       if (! info->shared)
1861 	{
1862 	  if (!add_dynamic_entry (DT_DEBUG, 0)
1863 	      || !add_dynamic_entry (DT_HP_DLD_HOOK, 0)
1864 	      || !add_dynamic_entry (DT_HP_LOAD_MAP, 0))
1865 	    return FALSE;
1866 	}
1867 
1868       /* Force DT_FLAGS to always be set.
1869 	 Required by HPUX 11.00 patch PHSS_26559.  */
1870       if (!add_dynamic_entry (DT_FLAGS, (info)->flags))
1871 	return FALSE;
1872 
1873       if (plt)
1874 	{
1875 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1876 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1877 	      || !add_dynamic_entry (DT_JMPREL, 0))
1878 	    return FALSE;
1879 	}
1880 
1881       if (relocs)
1882 	{
1883 	  if (!add_dynamic_entry (DT_RELA, 0)
1884 	      || !add_dynamic_entry (DT_RELASZ, 0)
1885 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf64_External_Rela)))
1886 	    return FALSE;
1887 	}
1888 
1889       if (reltext)
1890 	{
1891 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
1892 	    return FALSE;
1893 	  info->flags |= DF_TEXTREL;
1894 	}
1895     }
1896 #undef add_dynamic_entry
1897 
1898   return TRUE;
1899 }
1900 
1901 /* Called after we have output the symbol into the dynamic symbol
1902    table, but before we output the symbol into the normal symbol
1903    table.
1904 
1905    For some symbols we had to change their address when outputting
1906    the dynamic symbol table.  We undo that change here so that
1907    the symbols have their expected value in the normal symbol
1908    table.  Ick.  */
1909 
1910 static int
1911 elf64_hppa_link_output_symbol_hook (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1912 				    const char *name,
1913 				    Elf_Internal_Sym *sym,
1914 				    asection *input_sec ATTRIBUTE_UNUSED,
1915 				    struct elf_link_hash_entry *eh)
1916 {
1917   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1918 
1919   /* We may be called with the file symbol or section symbols.
1920      They never need munging, so it is safe to ignore them.  */
1921   if (!name || !eh)
1922     return 1;
1923 
1924   /* Function symbols for which we created .opd entries *may* have been
1925      munged by finish_dynamic_symbol and have to be un-munged here.
1926 
1927      Note that finish_dynamic_symbol sometimes turns dynamic symbols
1928      into non-dynamic ones, so we initialize st_shndx to -1 in
1929      mark_exported_functions and check to see if it was overwritten
1930      here instead of just checking eh->dynindx.  */
1931   if (hh->want_opd && hh->st_shndx != -1)
1932     {
1933       /* Restore the saved value and section index.  */
1934       sym->st_value = hh->st_value;
1935       sym->st_shndx = hh->st_shndx;
1936     }
1937 
1938   return 1;
1939 }
1940 
1941 /* Finish up dynamic symbol handling.  We set the contents of various
1942    dynamic sections here.  */
1943 
1944 static bfd_boolean
1945 elf64_hppa_finish_dynamic_symbol (bfd *output_bfd,
1946 				  struct bfd_link_info *info,
1947 				  struct elf_link_hash_entry *eh,
1948 				  Elf_Internal_Sym *sym)
1949 {
1950   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
1951   asection *stub, *splt, *sopd, *spltrel;
1952   struct elf64_hppa_link_hash_table *hppa_info;
1953 
1954   hppa_info = hppa_link_hash_table (info);
1955   if (hppa_info == NULL)
1956     return FALSE;
1957 
1958   stub = hppa_info->stub_sec;
1959   splt = hppa_info->plt_sec;
1960   sopd = hppa_info->opd_sec;
1961   spltrel = hppa_info->plt_rel_sec;
1962 
1963   /* Incredible.  It is actually necessary to NOT use the symbol's real
1964      value when building the dynamic symbol table for a shared library.
1965      At least for symbols that refer to functions.
1966 
1967      We will store a new value and section index into the symbol long
1968      enough to output it into the dynamic symbol table, then we restore
1969      the original values (in elf64_hppa_link_output_symbol_hook).  */
1970   if (hh->want_opd)
1971     {
1972       BFD_ASSERT (sopd != NULL);
1973 
1974       /* Save away the original value and section index so that we
1975 	 can restore them later.  */
1976       hh->st_value = sym->st_value;
1977       hh->st_shndx = sym->st_shndx;
1978 
1979       /* For the dynamic symbol table entry, we want the value to be
1980 	 address of this symbol's entry within the .opd section.  */
1981       sym->st_value = (hh->opd_offset
1982 		       + sopd->output_offset
1983 		       + sopd->output_section->vma);
1984       sym->st_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
1985 							 sopd->output_section);
1986     }
1987 
1988   /* Initialize a .plt entry if requested.  */
1989   if (hh->want_plt
1990       && elf64_hppa_dynamic_symbol_p (eh, info))
1991     {
1992       bfd_vma value;
1993       Elf_Internal_Rela rel;
1994       bfd_byte *loc;
1995 
1996       BFD_ASSERT (splt != NULL && spltrel != NULL);
1997 
1998       /* We do not actually care about the value in the PLT entry
1999 	 if we are creating a shared library and the symbol is
2000 	 still undefined, we create a dynamic relocation to fill
2001 	 in the correct value.  */
2002       if (info->shared && eh->root.type == bfd_link_hash_undefined)
2003 	value = 0;
2004       else
2005 	value = (eh->root.u.def.value + eh->root.u.def.section->vma);
2006 
2007       /* Fill in the entry in the procedure linkage table.
2008 
2009 	 The format of a plt entry is
2010 	 <funcaddr> <__gp>.
2011 
2012 	 plt_offset is the offset within the PLT section at which to
2013 	 install the PLT entry.
2014 
2015 	 We are modifying the in-memory PLT contents here, so we do not add
2016 	 in the output_offset of the PLT section.  */
2017 
2018       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset);
2019       value = _bfd_get_gp_value (splt->output_section->owner);
2020       bfd_put_64 (splt->owner, value, splt->contents + hh->plt_offset + 0x8);
2021 
2022       /* Create a dynamic IPLT relocation for this entry.
2023 
2024 	 We are creating a relocation in the output file's PLT section,
2025 	 which is included within the DLT secton.  So we do need to include
2026 	 the PLT's output_offset in the computation of the relocation's
2027 	 address.  */
2028       rel.r_offset = (hh->plt_offset + splt->output_offset
2029 		      + splt->output_section->vma);
2030       rel.r_info = ELF64_R_INFO (hh->eh.dynindx, R_PARISC_IPLT);
2031       rel.r_addend = 0;
2032 
2033       loc = spltrel->contents;
2034       loc += spltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2035       bfd_elf64_swap_reloca_out (splt->output_section->owner, &rel, loc);
2036     }
2037 
2038   /* Initialize an external call stub entry if requested.  */
2039   if (hh->want_stub
2040       && elf64_hppa_dynamic_symbol_p (eh, info))
2041     {
2042       bfd_vma value;
2043       int insn;
2044       unsigned int max_offset;
2045 
2046       BFD_ASSERT (stub != NULL);
2047 
2048       /* Install the generic stub template.
2049 
2050 	 We are modifying the contents of the stub section, so we do not
2051 	 need to include the stub section's output_offset here.  */
2052       memcpy (stub->contents + hh->stub_offset, plt_stub, sizeof (plt_stub));
2053 
2054       /* Fix up the first ldd instruction.
2055 
2056 	 We are modifying the contents of the STUB section in memory,
2057 	 so we do not need to include its output offset in this computation.
2058 
2059 	 Note the plt_offset value is the value of the PLT entry relative to
2060 	 the start of the PLT section.  These instructions will reference
2061 	 data relative to the value of __gp, which may not necessarily have
2062 	 the same address as the start of the PLT section.
2063 
2064 	 gp_offset contains the offset of __gp within the PLT section.  */
2065       value = hh->plt_offset - hppa_info->gp_offset;
2066 
2067       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset);
2068       if (output_bfd->arch_info->mach >= 25)
2069 	{
2070 	  /* Wide mode allows 16 bit offsets.  */
2071 	  max_offset = 32768;
2072 	  insn &= ~ 0xfff1;
2073 	  insn |= re_assemble_16 ((int) value);
2074 	}
2075       else
2076 	{
2077 	  max_offset = 8192;
2078 	  insn &= ~ 0x3ff1;
2079 	  insn |= re_assemble_14 ((int) value);
2080 	}
2081 
2082       if ((value & 7) || value + max_offset >= 2*max_offset - 8)
2083 	{
2084 	  (*_bfd_error_handler) (_("stub entry for %s cannot load .plt, dp offset = %ld"),
2085 				 hh->eh.root.root.string,
2086 				 (long) value);
2087 	  return FALSE;
2088 	}
2089 
2090       bfd_put_32 (stub->owner, (bfd_vma) insn,
2091 		  stub->contents + hh->stub_offset);
2092 
2093       /* Fix up the second ldd instruction.  */
2094       value += 8;
2095       insn = bfd_get_32 (stub->owner, stub->contents + hh->stub_offset + 8);
2096       if (output_bfd->arch_info->mach >= 25)
2097 	{
2098 	  insn &= ~ 0xfff1;
2099 	  insn |= re_assemble_16 ((int) value);
2100 	}
2101       else
2102 	{
2103 	  insn &= ~ 0x3ff1;
2104 	  insn |= re_assemble_14 ((int) value);
2105 	}
2106       bfd_put_32 (stub->owner, (bfd_vma) insn,
2107 		  stub->contents + hh->stub_offset + 8);
2108     }
2109 
2110   return TRUE;
2111 }
2112 
2113 /* The .opd section contains FPTRs for each function this file
2114    exports.  Initialize the FPTR entries.  */
2115 
2116 static bfd_boolean
2117 elf64_hppa_finalize_opd (struct elf_link_hash_entry *eh, void *data)
2118 {
2119   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2120   struct bfd_link_info *info = (struct bfd_link_info *)data;
2121   struct elf64_hppa_link_hash_table *hppa_info;
2122   asection *sopd;
2123   asection *sopdrel;
2124 
2125   hppa_info = hppa_link_hash_table (info);
2126   if (hppa_info == NULL)
2127     return FALSE;
2128 
2129   sopd = hppa_info->opd_sec;
2130   sopdrel = hppa_info->opd_rel_sec;
2131 
2132   if (hh->want_opd)
2133     {
2134       bfd_vma value;
2135 
2136       /* The first two words of an .opd entry are zero.
2137 
2138 	 We are modifying the contents of the OPD section in memory, so we
2139 	 do not need to include its output offset in this computation.  */
2140       memset (sopd->contents + hh->opd_offset, 0, 16);
2141 
2142       value = (eh->root.u.def.value
2143 	       + eh->root.u.def.section->output_section->vma
2144 	       + eh->root.u.def.section->output_offset);
2145 
2146       /* The next word is the address of the function.  */
2147       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 16);
2148 
2149       /* The last word is our local __gp value.  */
2150       value = _bfd_get_gp_value (sopd->output_section->owner);
2151       bfd_put_64 (sopd->owner, value, sopd->contents + hh->opd_offset + 24);
2152     }
2153 
2154   /* If we are generating a shared library, we must generate EPLT relocations
2155      for each entry in the .opd, even for static functions (they may have
2156      had their address taken).  */
2157   if (info->shared && hh->want_opd)
2158     {
2159       Elf_Internal_Rela rel;
2160       bfd_byte *loc;
2161       int dynindx;
2162 
2163       /* We may need to do a relocation against a local symbol, in
2164 	 which case we have to look up it's dynamic symbol index off
2165 	 the local symbol hash table.  */
2166       if (eh->dynindx != -1)
2167 	dynindx = eh->dynindx;
2168       else
2169 	dynindx
2170 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2171 						hh->sym_indx);
2172 
2173       /* The offset of this relocation is the absolute address of the
2174 	 .opd entry for this symbol.  */
2175       rel.r_offset = (hh->opd_offset + sopd->output_offset
2176 		      + sopd->output_section->vma);
2177 
2178       /* If H is non-null, then we have an external symbol.
2179 
2180 	 It is imperative that we use a different dynamic symbol for the
2181 	 EPLT relocation if the symbol has global scope.
2182 
2183 	 In the dynamic symbol table, the function symbol will have a value
2184 	 which is address of the function's .opd entry.
2185 
2186 	 Thus, we can not use that dynamic symbol for the EPLT relocation
2187 	 (if we did, the data in the .opd would reference itself rather
2188 	 than the actual address of the function).  Instead we have to use
2189 	 a new dynamic symbol which has the same value as the original global
2190 	 function symbol.
2191 
2192 	 We prefix the original symbol with a "." and use the new symbol in
2193 	 the EPLT relocation.  This new symbol has already been recorded in
2194 	 the symbol table, we just have to look it up and use it.
2195 
2196 	 We do not have such problems with static functions because we do
2197 	 not make their addresses in the dynamic symbol table point to
2198 	 the .opd entry.  Ultimately this should be safe since a static
2199 	 function can not be directly referenced outside of its shared
2200 	 library.
2201 
2202 	 We do have to play similar games for FPTR relocations in shared
2203 	 libraries, including those for static symbols.  See the FPTR
2204 	 handling in elf64_hppa_finalize_dynreloc.  */
2205       if (eh)
2206 	{
2207 	  char *new_name;
2208 	  struct elf_link_hash_entry *nh;
2209 
2210 	  new_name = alloca (strlen (eh->root.root.string) + 2);
2211 	  new_name[0] = '.';
2212 	  strcpy (new_name + 1, eh->root.root.string);
2213 
2214 	  nh = elf_link_hash_lookup (elf_hash_table (info),
2215 				     new_name, TRUE, TRUE, FALSE);
2216 
2217 	  /* All we really want from the new symbol is its dynamic
2218 	     symbol index.  */
2219 	  if (nh)
2220 	    dynindx = nh->dynindx;
2221 	}
2222 
2223       rel.r_addend = 0;
2224       rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_EPLT);
2225 
2226       loc = sopdrel->contents;
2227       loc += sopdrel->reloc_count++ * sizeof (Elf64_External_Rela);
2228       bfd_elf64_swap_reloca_out (sopd->output_section->owner, &rel, loc);
2229     }
2230   return TRUE;
2231 }
2232 
2233 /* The .dlt section contains addresses for items referenced through the
2234    dlt.  Note that we can have a DLTIND relocation for a local symbol, thus
2235    we can not depend on finish_dynamic_symbol to initialize the .dlt.  */
2236 
2237 static bfd_boolean
2238 elf64_hppa_finalize_dlt (struct elf_link_hash_entry *eh, void *data)
2239 {
2240   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2241   struct bfd_link_info *info = (struct bfd_link_info *)data;
2242   struct elf64_hppa_link_hash_table *hppa_info;
2243   asection *sdlt, *sdltrel;
2244 
2245   hppa_info = hppa_link_hash_table (info);
2246   if (hppa_info == NULL)
2247     return FALSE;
2248 
2249   sdlt = hppa_info->dlt_sec;
2250   sdltrel = hppa_info->dlt_rel_sec;
2251 
2252   /* H/DYN_H may refer to a local variable and we know it's
2253      address, so there is no need to create a relocation.  Just install
2254      the proper value into the DLT, note this shortcut can not be
2255      skipped when building a shared library.  */
2256   if (! info->shared && hh && hh->want_dlt)
2257     {
2258       bfd_vma value;
2259 
2260       /* If we had an LTOFF_FPTR style relocation we want the DLT entry
2261 	 to point to the FPTR entry in the .opd section.
2262 
2263 	 We include the OPD's output offset in this computation as
2264 	 we are referring to an absolute address in the resulting
2265 	 object file.  */
2266       if (hh->want_opd)
2267 	{
2268 	  value = (hh->opd_offset
2269 		   + hppa_info->opd_sec->output_offset
2270 		   + hppa_info->opd_sec->output_section->vma);
2271 	}
2272       else if ((eh->root.type == bfd_link_hash_defined
2273 		|| eh->root.type == bfd_link_hash_defweak)
2274 	       && eh->root.u.def.section)
2275 	{
2276 	  value = eh->root.u.def.value + eh->root.u.def.section->output_offset;
2277 	  if (eh->root.u.def.section->output_section)
2278 	    value += eh->root.u.def.section->output_section->vma;
2279 	  else
2280 	    value += eh->root.u.def.section->vma;
2281 	}
2282       else
2283 	/* We have an undefined function reference.  */
2284 	value = 0;
2285 
2286       /* We do not need to include the output offset of the DLT section
2287 	 here because we are modifying the in-memory contents.  */
2288       bfd_put_64 (sdlt->owner, value, sdlt->contents + hh->dlt_offset);
2289     }
2290 
2291   /* Create a relocation for the DLT entry associated with this symbol.
2292      When building a shared library the symbol does not have to be dynamic.  */
2293   if (hh->want_dlt
2294       && (elf64_hppa_dynamic_symbol_p (eh, info) || info->shared))
2295     {
2296       Elf_Internal_Rela rel;
2297       bfd_byte *loc;
2298       int dynindx;
2299 
2300       /* We may need to do a relocation against a local symbol, in
2301 	 which case we have to look up it's dynamic symbol index off
2302 	 the local symbol hash table.  */
2303       if (eh && eh->dynindx != -1)
2304 	dynindx = eh->dynindx;
2305       else
2306 	dynindx
2307 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2308 						hh->sym_indx);
2309 
2310       /* Create a dynamic relocation for this entry.  Do include the output
2311 	 offset of the DLT entry since we need an absolute address in the
2312 	 resulting object file.  */
2313       rel.r_offset = (hh->dlt_offset + sdlt->output_offset
2314 		      + sdlt->output_section->vma);
2315       if (eh && eh->type == STT_FUNC)
2316 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_FPTR64);
2317       else
2318 	  rel.r_info = ELF64_R_INFO (dynindx, R_PARISC_DIR64);
2319       rel.r_addend = 0;
2320 
2321       loc = sdltrel->contents;
2322       loc += sdltrel->reloc_count++ * sizeof (Elf64_External_Rela);
2323       bfd_elf64_swap_reloca_out (sdlt->output_section->owner, &rel, loc);
2324     }
2325   return TRUE;
2326 }
2327 
2328 /* Finalize the dynamic relocations.  Specifically the FPTR relocations
2329    for dynamic functions used to initialize static data.  */
2330 
2331 static bfd_boolean
2332 elf64_hppa_finalize_dynreloc (struct elf_link_hash_entry *eh,
2333 			      void *data)
2334 {
2335   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
2336   struct bfd_link_info *info = (struct bfd_link_info *)data;
2337   struct elf64_hppa_link_hash_table *hppa_info;
2338   int dynamic_symbol;
2339 
2340   dynamic_symbol = elf64_hppa_dynamic_symbol_p (eh, info);
2341 
2342   if (!dynamic_symbol && !info->shared)
2343     return TRUE;
2344 
2345   if (hh->reloc_entries)
2346     {
2347       struct elf64_hppa_dyn_reloc_entry *rent;
2348       int dynindx;
2349 
2350       hppa_info = hppa_link_hash_table (info);
2351       if (hppa_info == NULL)
2352 	return FALSE;
2353 
2354       /* We may need to do a relocation against a local symbol, in
2355 	 which case we have to look up it's dynamic symbol index off
2356 	 the local symbol hash table.  */
2357       if (eh->dynindx != -1)
2358 	dynindx = eh->dynindx;
2359       else
2360 	dynindx
2361 	  = _bfd_elf_link_lookup_local_dynindx (info, hh->owner,
2362 						hh->sym_indx);
2363 
2364       for (rent = hh->reloc_entries; rent; rent = rent->next)
2365 	{
2366 	  Elf_Internal_Rela rel;
2367 	  bfd_byte *loc;
2368 
2369 	  /* Allocate one iff we are building a shared library, the relocation
2370 	     isn't a R_PARISC_FPTR64, or we don't want an opd entry.  */
2371 	  if (!info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2372 	    continue;
2373 
2374 	  /* Create a dynamic relocation for this entry.
2375 
2376 	     We need the output offset for the reloc's section because
2377 	     we are creating an absolute address in the resulting object
2378 	     file.  */
2379 	  rel.r_offset = (rent->offset + rent->sec->output_offset
2380 			  + rent->sec->output_section->vma);
2381 
2382 	  /* An FPTR64 relocation implies that we took the address of
2383 	     a function and that the function has an entry in the .opd
2384 	     section.  We want the FPTR64 relocation to reference the
2385 	     entry in .opd.
2386 
2387 	     We could munge the symbol value in the dynamic symbol table
2388 	     (in fact we already do for functions with global scope) to point
2389 	     to the .opd entry.  Then we could use that dynamic symbol in
2390 	     this relocation.
2391 
2392 	     Or we could do something sensible, not munge the symbol's
2393 	     address and instead just use a different symbol to reference
2394 	     the .opd entry.  At least that seems sensible until you
2395 	     realize there's no local dynamic symbols we can use for that
2396 	     purpose.  Thus the hair in the check_relocs routine.
2397 
2398 	     We use a section symbol recorded by check_relocs as the
2399 	     base symbol for the relocation.  The addend is the difference
2400 	     between the section symbol and the address of the .opd entry.  */
2401 	  if (info->shared && rent->type == R_PARISC_FPTR64 && hh->want_opd)
2402 	    {
2403 	      bfd_vma value, value2;
2404 
2405 	      /* First compute the address of the opd entry for this symbol.  */
2406 	      value = (hh->opd_offset
2407 		       + hppa_info->opd_sec->output_section->vma
2408 		       + hppa_info->opd_sec->output_offset);
2409 
2410 	      /* Compute the value of the start of the section with
2411 		 the relocation.  */
2412 	      value2 = (rent->sec->output_section->vma
2413 			+ rent->sec->output_offset);
2414 
2415 	      /* Compute the difference between the start of the section
2416 		 with the relocation and the opd entry.  */
2417 	      value -= value2;
2418 
2419 	      /* The result becomes the addend of the relocation.  */
2420 	      rel.r_addend = value;
2421 
2422 	      /* The section symbol becomes the symbol for the dynamic
2423 		 relocation.  */
2424 	      dynindx
2425 		= _bfd_elf_link_lookup_local_dynindx (info,
2426 						      rent->sec->owner,
2427 						      rent->sec_symndx);
2428 	    }
2429 	  else
2430 	    rel.r_addend = rent->addend;
2431 
2432 	  rel.r_info = ELF64_R_INFO (dynindx, rent->type);
2433 
2434 	  loc = hppa_info->other_rel_sec->contents;
2435 	  loc += (hppa_info->other_rel_sec->reloc_count++
2436 		  * sizeof (Elf64_External_Rela));
2437 	  bfd_elf64_swap_reloca_out (hppa_info->other_rel_sec->output_section->owner,
2438 				     &rel, loc);
2439 	}
2440     }
2441 
2442   return TRUE;
2443 }
2444 
2445 /* Used to decide how to sort relocs in an optimal manner for the
2446    dynamic linker, before writing them out.  */
2447 
2448 static enum elf_reloc_type_class
2449 elf64_hppa_reloc_type_class (const Elf_Internal_Rela *rela)
2450 {
2451   if (ELF64_R_SYM (rela->r_info) == STN_UNDEF)
2452     return reloc_class_relative;
2453 
2454   switch ((int) ELF64_R_TYPE (rela->r_info))
2455     {
2456     case R_PARISC_IPLT:
2457       return reloc_class_plt;
2458     case R_PARISC_COPY:
2459       return reloc_class_copy;
2460     default:
2461       return reloc_class_normal;
2462     }
2463 }
2464 
2465 /* Finish up the dynamic sections.  */
2466 
2467 static bfd_boolean
2468 elf64_hppa_finish_dynamic_sections (bfd *output_bfd,
2469 				    struct bfd_link_info *info)
2470 {
2471   bfd *dynobj;
2472   asection *sdyn;
2473   struct elf64_hppa_link_hash_table *hppa_info;
2474 
2475   hppa_info = hppa_link_hash_table (info);
2476   if (hppa_info == NULL)
2477     return FALSE;
2478 
2479   /* Finalize the contents of the .opd section.  */
2480   elf_link_hash_traverse (elf_hash_table (info),
2481 			  elf64_hppa_finalize_opd,
2482 			  info);
2483 
2484   elf_link_hash_traverse (elf_hash_table (info),
2485 			  elf64_hppa_finalize_dynreloc,
2486 			  info);
2487 
2488   /* Finalize the contents of the .dlt section.  */
2489   dynobj = elf_hash_table (info)->dynobj;
2490   /* Finalize the contents of the .dlt section.  */
2491   elf_link_hash_traverse (elf_hash_table (info),
2492 			  elf64_hppa_finalize_dlt,
2493 			  info);
2494 
2495   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
2496 
2497   if (elf_hash_table (info)->dynamic_sections_created)
2498     {
2499       Elf64_External_Dyn *dyncon, *dynconend;
2500 
2501       BFD_ASSERT (sdyn != NULL);
2502 
2503       dyncon = (Elf64_External_Dyn *) sdyn->contents;
2504       dynconend = (Elf64_External_Dyn *) (sdyn->contents + sdyn->size);
2505       for (; dyncon < dynconend; dyncon++)
2506 	{
2507 	  Elf_Internal_Dyn dyn;
2508 	  asection *s;
2509 
2510 	  bfd_elf64_swap_dyn_in (dynobj, dyncon, &dyn);
2511 
2512 	  switch (dyn.d_tag)
2513 	    {
2514 	    default:
2515 	      break;
2516 
2517 	    case DT_HP_LOAD_MAP:
2518 	      /* Compute the absolute address of 16byte scratchpad area
2519 		 for the dynamic linker.
2520 
2521 		 By convention the linker script will allocate the scratchpad
2522 		 area at the start of the .data section.  So all we have to
2523 		 to is find the start of the .data section.  */
2524 	      s = bfd_get_section_by_name (output_bfd, ".data");
2525 	      dyn.d_un.d_ptr = s->vma;
2526 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2527 	      break;
2528 
2529 	    case DT_PLTGOT:
2530 	      /* HP's use PLTGOT to set the GOT register.  */
2531 	      dyn.d_un.d_ptr = _bfd_get_gp_value (output_bfd);
2532 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2533 	      break;
2534 
2535 	    case DT_JMPREL:
2536 	      s = hppa_info->plt_rel_sec;
2537 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2538 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2539 	      break;
2540 
2541 	    case DT_PLTRELSZ:
2542 	      s = hppa_info->plt_rel_sec;
2543 	      dyn.d_un.d_val = s->size;
2544 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2545 	      break;
2546 
2547 	    case DT_RELA:
2548 	      s = hppa_info->other_rel_sec;
2549 	      if (! s || ! s->size)
2550 		s = hppa_info->dlt_rel_sec;
2551 	      if (! s || ! s->size)
2552 		s = hppa_info->opd_rel_sec;
2553 	      dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
2554 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2555 	      break;
2556 
2557 	    case DT_RELASZ:
2558 	      s = hppa_info->other_rel_sec;
2559 	      dyn.d_un.d_val = s->size;
2560 	      s = hppa_info->dlt_rel_sec;
2561 	      dyn.d_un.d_val += s->size;
2562 	      s = hppa_info->opd_rel_sec;
2563 	      dyn.d_un.d_val += s->size;
2564 	      /* There is some question about whether or not the size of
2565 		 the PLT relocs should be included here.  HP's tools do
2566 		 it, so we'll emulate them.  */
2567 	      s = hppa_info->plt_rel_sec;
2568 	      dyn.d_un.d_val += s->size;
2569 	      bfd_elf64_swap_dyn_out (output_bfd, &dyn, dyncon);
2570 	      break;
2571 
2572 	    }
2573 	}
2574     }
2575 
2576   return TRUE;
2577 }
2578 
2579 /* Support for core dump NOTE sections.  */
2580 
2581 static bfd_boolean
2582 elf64_hppa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2583 {
2584   int offset;
2585   size_t size;
2586 
2587   switch (note->descsz)
2588     {
2589       default:
2590 	return FALSE;
2591 
2592       case 760:		/* Linux/hppa */
2593 	/* pr_cursig */
2594 	elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2595 
2596 	/* pr_pid */
2597 	elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 32);
2598 
2599 	/* pr_reg */
2600 	offset = 112;
2601 	size = 640;
2602 
2603 	break;
2604     }
2605 
2606   /* Make a ".reg/999" section.  */
2607   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2608 					  size, note->descpos + offset);
2609 }
2610 
2611 static bfd_boolean
2612 elf64_hppa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2613 {
2614   char * command;
2615   int n;
2616 
2617   switch (note->descsz)
2618     {
2619     default:
2620       return FALSE;
2621 
2622     case 136:		/* Linux/hppa elf_prpsinfo.  */
2623       elf_tdata (abfd)->core->program
2624 	= _bfd_elfcore_strndup (abfd, note->descdata + 40, 16);
2625       elf_tdata (abfd)->core->command
2626 	= _bfd_elfcore_strndup (abfd, note->descdata + 56, 80);
2627     }
2628 
2629   /* Note that for some reason, a spurious space is tacked
2630      onto the end of the args in some (at least one anyway)
2631      implementations, so strip it off if it exists.  */
2632   command = elf_tdata (abfd)->core->command;
2633   n = strlen (command);
2634 
2635   if (0 < n && command[n - 1] == ' ')
2636     command[n - 1] = '\0';
2637 
2638   return TRUE;
2639 }
2640 
2641 /* Return the number of additional phdrs we will need.
2642 
2643    The generic ELF code only creates PT_PHDRs for executables.  The HP
2644    dynamic linker requires PT_PHDRs for dynamic libraries too.
2645 
2646    This routine indicates that the backend needs one additional program
2647    header for that case.
2648 
2649    Note we do not have access to the link info structure here, so we have
2650    to guess whether or not we are building a shared library based on the
2651    existence of a .interp section.  */
2652 
2653 static int
2654 elf64_hppa_additional_program_headers (bfd *abfd,
2655 				struct bfd_link_info *info ATTRIBUTE_UNUSED)
2656 {
2657   asection *s;
2658 
2659   /* If we are creating a shared library, then we have to create a
2660      PT_PHDR segment.  HP's dynamic linker chokes without it.  */
2661   s = bfd_get_section_by_name (abfd, ".interp");
2662   if (! s)
2663     return 1;
2664   return 0;
2665 }
2666 
2667 /* Allocate and initialize any program headers required by this
2668    specific backend.
2669 
2670    The generic ELF code only creates PT_PHDRs for executables.  The HP
2671    dynamic linker requires PT_PHDRs for dynamic libraries too.
2672 
2673    This allocates the PT_PHDR and initializes it in a manner suitable
2674    for the HP linker.
2675 
2676    Note we do not have access to the link info structure here, so we have
2677    to guess whether or not we are building a shared library based on the
2678    existence of a .interp section.  */
2679 
2680 static bfd_boolean
2681 elf64_hppa_modify_segment_map (bfd *abfd,
2682 			       struct bfd_link_info *info ATTRIBUTE_UNUSED)
2683 {
2684   struct elf_segment_map *m;
2685   asection *s;
2686 
2687   s = bfd_get_section_by_name (abfd, ".interp");
2688   if (! s)
2689     {
2690       for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2691 	if (m->p_type == PT_PHDR)
2692 	  break;
2693       if (m == NULL)
2694 	{
2695 	  m = ((struct elf_segment_map *)
2696 	       bfd_zalloc (abfd, (bfd_size_type) sizeof *m));
2697 	  if (m == NULL)
2698 	    return FALSE;
2699 
2700 	  m->p_type = PT_PHDR;
2701 	  m->p_flags = PF_R | PF_X;
2702 	  m->p_flags_valid = 1;
2703 	  m->p_paddr_valid = 1;
2704 	  m->includes_phdrs = 1;
2705 
2706 	  m->next = elf_seg_map (abfd);
2707 	  elf_seg_map (abfd) = m;
2708 	}
2709     }
2710 
2711   for (m = elf_seg_map (abfd); m != NULL; m = m->next)
2712     if (m->p_type == PT_LOAD)
2713       {
2714 	unsigned int i;
2715 
2716 	for (i = 0; i < m->count; i++)
2717 	  {
2718 	    /* The code "hint" is not really a hint.  It is a requirement
2719 	       for certain versions of the HP dynamic linker.  Worse yet,
2720 	       it must be set even if the shared library does not have
2721 	       any code in its "text" segment (thus the check for .hash
2722 	       to catch this situation).  */
2723 	    if (m->sections[i]->flags & SEC_CODE
2724 		|| (strcmp (m->sections[i]->name, ".hash") == 0))
2725 	      m->p_flags |= (PF_X | PF_HP_CODE);
2726 	  }
2727       }
2728 
2729   return TRUE;
2730 }
2731 
2732 /* Called when writing out an object file to decide the type of a
2733    symbol.  */
2734 static int
2735 elf64_hppa_elf_get_symbol_type (Elf_Internal_Sym *elf_sym,
2736 				int type)
2737 {
2738   if (ELF_ST_TYPE (elf_sym->st_info) == STT_PARISC_MILLI)
2739     return STT_PARISC_MILLI;
2740   else
2741     return type;
2742 }
2743 
2744 /* Support HP specific sections for core files.  */
2745 
2746 static bfd_boolean
2747 elf64_hppa_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int sec_index,
2748 			      const char *typename)
2749 {
2750   if (hdr->p_type == PT_HP_CORE_KERNEL)
2751     {
2752       asection *sect;
2753 
2754       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2755 	return FALSE;
2756 
2757       sect = bfd_make_section_anyway (abfd, ".kernel");
2758       if (sect == NULL)
2759 	return FALSE;
2760       sect->size = hdr->p_filesz;
2761       sect->filepos = hdr->p_offset;
2762       sect->flags = SEC_HAS_CONTENTS | SEC_READONLY;
2763       return TRUE;
2764     }
2765 
2766   if (hdr->p_type == PT_HP_CORE_PROC)
2767     {
2768       int sig;
2769 
2770       if (bfd_seek (abfd, hdr->p_offset, SEEK_SET) != 0)
2771 	return FALSE;
2772       if (bfd_bread (&sig, 4, abfd) != 4)
2773 	return FALSE;
2774 
2775       elf_tdata (abfd)->core->signal = sig;
2776 
2777       if (!_bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename))
2778 	return FALSE;
2779 
2780       /* GDB uses the ".reg" section to read register contents.  */
2781       return _bfd_elfcore_make_pseudosection (abfd, ".reg", hdr->p_filesz,
2782 					      hdr->p_offset);
2783     }
2784 
2785   if (hdr->p_type == PT_HP_CORE_LOADABLE
2786       || hdr->p_type == PT_HP_CORE_STACK
2787       || hdr->p_type == PT_HP_CORE_MMF)
2788     hdr->p_type = PT_LOAD;
2789 
2790   return _bfd_elf_make_section_from_phdr (abfd, hdr, sec_index, typename);
2791 }
2792 
2793 /* Hook called by the linker routine which adds symbols from an object
2794    file.  HP's libraries define symbols with HP specific section
2795    indices, which we have to handle.  */
2796 
2797 static bfd_boolean
2798 elf_hppa_add_symbol_hook (bfd *abfd,
2799 			  struct bfd_link_info *info ATTRIBUTE_UNUSED,
2800 			  Elf_Internal_Sym *sym,
2801 			  const char **namep ATTRIBUTE_UNUSED,
2802 			  flagword *flagsp ATTRIBUTE_UNUSED,
2803 			  asection **secp,
2804 			  bfd_vma *valp)
2805 {
2806   unsigned int sec_index = sym->st_shndx;
2807 
2808   switch (sec_index)
2809     {
2810     case SHN_PARISC_ANSI_COMMON:
2811       *secp = bfd_make_section_old_way (abfd, ".PARISC.ansi.common");
2812       (*secp)->flags |= SEC_IS_COMMON;
2813       *valp = sym->st_size;
2814       break;
2815 
2816     case SHN_PARISC_HUGE_COMMON:
2817       *secp = bfd_make_section_old_way (abfd, ".PARISC.huge.common");
2818       (*secp)->flags |= SEC_IS_COMMON;
2819       *valp = sym->st_size;
2820       break;
2821     }
2822 
2823   return TRUE;
2824 }
2825 
2826 static bfd_boolean
2827 elf_hppa_unmark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2828 					 void *data)
2829 {
2830   struct bfd_link_info *info = data;
2831 
2832   /* If we are not creating a shared library, and this symbol is
2833      referenced by a shared library but is not defined anywhere, then
2834      the generic code will warn that it is undefined.
2835 
2836      This behavior is undesirable on HPs since the standard shared
2837      libraries contain references to undefined symbols.
2838 
2839      So we twiddle the flags associated with such symbols so that they
2840      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2841 
2842      Ultimately we should have better controls over the generic ELF BFD
2843      linker code.  */
2844   if (! info->relocatable
2845       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2846       && h->root.type == bfd_link_hash_undefined
2847       && h->ref_dynamic
2848       && !h->ref_regular)
2849     {
2850       h->ref_dynamic = 0;
2851       h->pointer_equality_needed = 1;
2852     }
2853 
2854   return TRUE;
2855 }
2856 
2857 static bfd_boolean
2858 elf_hppa_remark_useless_dynamic_symbols (struct elf_link_hash_entry *h,
2859 					 void *data)
2860 {
2861   struct bfd_link_info *info = data;
2862 
2863   /* If we are not creating a shared library, and this symbol is
2864      referenced by a shared library but is not defined anywhere, then
2865      the generic code will warn that it is undefined.
2866 
2867      This behavior is undesirable on HPs since the standard shared
2868      libraries contain references to undefined symbols.
2869 
2870      So we twiddle the flags associated with such symbols so that they
2871      will not trigger the warning.  ?!? FIXME.  This is horribly fragile.
2872 
2873      Ultimately we should have better controls over the generic ELF BFD
2874      linker code.  */
2875   if (! info->relocatable
2876       && info->unresolved_syms_in_shared_libs != RM_IGNORE
2877       && h->root.type == bfd_link_hash_undefined
2878       && !h->ref_dynamic
2879       && !h->ref_regular
2880       && h->pointer_equality_needed)
2881     {
2882       h->ref_dynamic = 1;
2883       h->pointer_equality_needed = 0;
2884     }
2885 
2886   return TRUE;
2887 }
2888 
2889 static bfd_boolean
2890 elf_hppa_is_dynamic_loader_symbol (const char *name)
2891 {
2892   return (! strcmp (name, "__CPU_REVISION")
2893 	  || ! strcmp (name, "__CPU_KEYBITS_1")
2894 	  || ! strcmp (name, "__SYSTEM_ID_D")
2895 	  || ! strcmp (name, "__FPU_MODEL")
2896 	  || ! strcmp (name, "__FPU_REVISION")
2897 	  || ! strcmp (name, "__ARGC")
2898 	  || ! strcmp (name, "__ARGV")
2899 	  || ! strcmp (name, "__ENVP")
2900 	  || ! strcmp (name, "__TLS_SIZE_D")
2901 	  || ! strcmp (name, "__LOAD_INFO")
2902 	  || ! strcmp (name, "__systab"));
2903 }
2904 
2905 /* Record the lowest address for the data and text segments.  */
2906 static void
2907 elf_hppa_record_segment_addrs (bfd *abfd,
2908 			       asection *section,
2909 			       void *data)
2910 {
2911   struct elf64_hppa_link_hash_table *hppa_info = data;
2912 
2913   if ((section->flags & (SEC_ALLOC | SEC_LOAD)) == (SEC_ALLOC | SEC_LOAD))
2914     {
2915       bfd_vma value;
2916       Elf_Internal_Phdr *p;
2917 
2918       p = _bfd_elf_find_segment_containing_section (abfd, section->output_section);
2919       BFD_ASSERT (p != NULL);
2920       value = p->p_vaddr;
2921 
2922       if (section->flags & SEC_READONLY)
2923 	{
2924 	  if (value < hppa_info->text_segment_base)
2925 	    hppa_info->text_segment_base = value;
2926 	}
2927       else
2928 	{
2929 	  if (value < hppa_info->data_segment_base)
2930 	    hppa_info->data_segment_base = value;
2931 	}
2932     }
2933 }
2934 
2935 /* Called after we have seen all the input files/sections, but before
2936    final symbol resolution and section placement has been determined.
2937 
2938    We use this hook to (possibly) provide a value for __gp, then we
2939    fall back to the generic ELF final link routine.  */
2940 
2941 static bfd_boolean
2942 elf_hppa_final_link (bfd *abfd, struct bfd_link_info *info)
2943 {
2944   bfd_boolean retval;
2945   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
2946 
2947   if (hppa_info == NULL)
2948     return FALSE;
2949 
2950   if (! info->relocatable)
2951     {
2952       struct elf_link_hash_entry *gp;
2953       bfd_vma gp_val;
2954 
2955       /* The linker script defines a value for __gp iff it was referenced
2956 	 by one of the objects being linked.  First try to find the symbol
2957 	 in the hash table.  If that fails, just compute the value __gp
2958 	 should have had.  */
2959       gp = elf_link_hash_lookup (elf_hash_table (info), "__gp", FALSE,
2960 				 FALSE, FALSE);
2961 
2962       if (gp)
2963 	{
2964 
2965 	  /* Adjust the value of __gp as we may want to slide it into the
2966 	     .plt section so that the stubs can access PLT entries without
2967 	     using an addil sequence.  */
2968 	  gp->root.u.def.value += hppa_info->gp_offset;
2969 
2970 	  gp_val = (gp->root.u.def.section->output_section->vma
2971 		    + gp->root.u.def.section->output_offset
2972 		    + gp->root.u.def.value);
2973 	}
2974       else
2975 	{
2976 	  asection *sec;
2977 
2978 	  /* First look for a .plt section.  If found, then __gp is the
2979 	     address of the .plt + gp_offset.
2980 
2981 	     If no .plt is found, then look for .dlt, .opd and .data (in
2982 	     that order) and set __gp to the base address of whichever
2983 	     section is found first.  */
2984 
2985 	  sec = hppa_info->plt_sec;
2986 	  if (sec && ! (sec->flags & SEC_EXCLUDE))
2987 	    gp_val = (sec->output_offset
2988 		      + sec->output_section->vma
2989 		      + hppa_info->gp_offset);
2990 	  else
2991 	    {
2992 	      sec = hppa_info->dlt_sec;
2993 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2994 		sec = hppa_info->opd_sec;
2995 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2996 		sec = bfd_get_section_by_name (abfd, ".data");
2997 	      if (!sec || (sec->flags & SEC_EXCLUDE))
2998 		gp_val = 0;
2999 	      else
3000 		gp_val = sec->output_offset + sec->output_section->vma;
3001 	    }
3002 	}
3003 
3004       /* Install whatever value we found/computed for __gp.  */
3005       _bfd_set_gp_value (abfd, gp_val);
3006     }
3007 
3008   /* We need to know the base of the text and data segments so that we
3009      can perform SEGREL relocations.  We will record the base addresses
3010      when we encounter the first SEGREL relocation.  */
3011   hppa_info->text_segment_base = (bfd_vma)-1;
3012   hppa_info->data_segment_base = (bfd_vma)-1;
3013 
3014   /* HP's shared libraries have references to symbols that are not
3015      defined anywhere.  The generic ELF BFD linker code will complain
3016      about such symbols.
3017 
3018      So we detect the losing case and arrange for the flags on the symbol
3019      to indicate that it was never referenced.  This keeps the generic
3020      ELF BFD link code happy and appears to not create any secondary
3021      problems.  Ultimately we need a way to control the behavior of the
3022      generic ELF BFD link code better.  */
3023   elf_link_hash_traverse (elf_hash_table (info),
3024 			  elf_hppa_unmark_useless_dynamic_symbols,
3025 			  info);
3026 
3027   /* Invoke the regular ELF backend linker to do all the work.  */
3028   retval = bfd_elf_final_link (abfd, info);
3029 
3030   elf_link_hash_traverse (elf_hash_table (info),
3031 			  elf_hppa_remark_useless_dynamic_symbols,
3032 			  info);
3033 
3034   /* If we're producing a final executable, sort the contents of the
3035      unwind section. */
3036   if (retval && !info->relocatable)
3037     retval = elf_hppa_sort_unwind (abfd);
3038 
3039   return retval;
3040 }
3041 
3042 /* Relocate the given INSN.  VALUE should be the actual value we want
3043    to insert into the instruction, ie by this point we should not be
3044    concerned with computing an offset relative to the DLT, PC, etc.
3045    Instead this routine is meant to handle the bit manipulations needed
3046    to insert the relocation into the given instruction.  */
3047 
3048 static int
3049 elf_hppa_relocate_insn (int insn, int sym_value, unsigned int r_type)
3050 {
3051   switch (r_type)
3052     {
3053     /* This is any 22 bit branch.  In PA2.0 syntax it corresponds to
3054        the "B" instruction.  */
3055     case R_PARISC_PCREL22F:
3056     case R_PARISC_PCREL22C:
3057       return (insn & ~0x3ff1ffd) | re_assemble_22 (sym_value);
3058 
3059       /* This is any 12 bit branch.  */
3060     case R_PARISC_PCREL12F:
3061       return (insn & ~0x1ffd) | re_assemble_12 (sym_value);
3062 
3063     /* This is any 17 bit branch.  In PA2.0 syntax it also corresponds
3064        to the "B" instruction as well as BE.  */
3065     case R_PARISC_PCREL17F:
3066     case R_PARISC_DIR17F:
3067     case R_PARISC_DIR17R:
3068     case R_PARISC_PCREL17C:
3069     case R_PARISC_PCREL17R:
3070       return (insn & ~0x1f1ffd) | re_assemble_17 (sym_value);
3071 
3072     /* ADDIL or LDIL instructions.  */
3073     case R_PARISC_DLTREL21L:
3074     case R_PARISC_DLTIND21L:
3075     case R_PARISC_LTOFF_FPTR21L:
3076     case R_PARISC_PCREL21L:
3077     case R_PARISC_LTOFF_TP21L:
3078     case R_PARISC_DPREL21L:
3079     case R_PARISC_PLTOFF21L:
3080     case R_PARISC_DIR21L:
3081       return (insn & ~0x1fffff) | re_assemble_21 (sym_value);
3082 
3083     /* LDO and integer loads/stores with 14 bit displacements.  */
3084     case R_PARISC_DLTREL14R:
3085     case R_PARISC_DLTREL14F:
3086     case R_PARISC_DLTIND14R:
3087     case R_PARISC_DLTIND14F:
3088     case R_PARISC_LTOFF_FPTR14R:
3089     case R_PARISC_PCREL14R:
3090     case R_PARISC_PCREL14F:
3091     case R_PARISC_LTOFF_TP14R:
3092     case R_PARISC_LTOFF_TP14F:
3093     case R_PARISC_DPREL14R:
3094     case R_PARISC_DPREL14F:
3095     case R_PARISC_PLTOFF14R:
3096     case R_PARISC_PLTOFF14F:
3097     case R_PARISC_DIR14R:
3098     case R_PARISC_DIR14F:
3099       return (insn & ~0x3fff) | low_sign_unext (sym_value, 14);
3100 
3101     /* PA2.0W LDO and integer loads/stores with 16 bit displacements.  */
3102     case R_PARISC_LTOFF_FPTR16F:
3103     case R_PARISC_PCREL16F:
3104     case R_PARISC_LTOFF_TP16F:
3105     case R_PARISC_GPREL16F:
3106     case R_PARISC_PLTOFF16F:
3107     case R_PARISC_DIR16F:
3108     case R_PARISC_LTOFF16F:
3109       return (insn & ~0xffff) | re_assemble_16 (sym_value);
3110 
3111     /* Doubleword loads and stores with a 14 bit displacement.  */
3112     case R_PARISC_DLTREL14DR:
3113     case R_PARISC_DLTIND14DR:
3114     case R_PARISC_LTOFF_FPTR14DR:
3115     case R_PARISC_LTOFF_FPTR16DF:
3116     case R_PARISC_PCREL14DR:
3117     case R_PARISC_PCREL16DF:
3118     case R_PARISC_LTOFF_TP14DR:
3119     case R_PARISC_LTOFF_TP16DF:
3120     case R_PARISC_DPREL14DR:
3121     case R_PARISC_GPREL16DF:
3122     case R_PARISC_PLTOFF14DR:
3123     case R_PARISC_PLTOFF16DF:
3124     case R_PARISC_DIR14DR:
3125     case R_PARISC_DIR16DF:
3126     case R_PARISC_LTOFF16DF:
3127       return (insn & ~0x3ff1) | (((sym_value & 0x2000) >> 13)
3128 				 | ((sym_value & 0x1ff8) << 1));
3129 
3130     /* Floating point single word load/store instructions.  */
3131     case R_PARISC_DLTREL14WR:
3132     case R_PARISC_DLTIND14WR:
3133     case R_PARISC_LTOFF_FPTR14WR:
3134     case R_PARISC_LTOFF_FPTR16WF:
3135     case R_PARISC_PCREL14WR:
3136     case R_PARISC_PCREL16WF:
3137     case R_PARISC_LTOFF_TP14WR:
3138     case R_PARISC_LTOFF_TP16WF:
3139     case R_PARISC_DPREL14WR:
3140     case R_PARISC_GPREL16WF:
3141     case R_PARISC_PLTOFF14WR:
3142     case R_PARISC_PLTOFF16WF:
3143     case R_PARISC_DIR16WF:
3144     case R_PARISC_DIR14WR:
3145     case R_PARISC_LTOFF16WF:
3146       return (insn & ~0x3ff9) | (((sym_value & 0x2000) >> 13)
3147 				 | ((sym_value & 0x1ffc) << 1));
3148 
3149     default:
3150       return insn;
3151     }
3152 }
3153 
3154 /* Compute the value for a relocation (REL) during a final link stage,
3155    then insert the value into the proper location in CONTENTS.
3156 
3157    VALUE is a tentative value for the relocation and may be overridden
3158    and modified here based on the specific relocation to be performed.
3159 
3160    For example we do conversions for PC-relative branches in this routine
3161    or redirection of calls to external routines to stubs.
3162 
3163    The work of actually applying the relocation is left to a helper
3164    routine in an attempt to reduce the complexity and size of this
3165    function.  */
3166 
3167 static bfd_reloc_status_type
3168 elf_hppa_final_link_relocate (Elf_Internal_Rela *rel,
3169 			      bfd *input_bfd,
3170 			      bfd *output_bfd,
3171 			      asection *input_section,
3172 			      bfd_byte *contents,
3173 			      bfd_vma value,
3174 			      struct bfd_link_info *info,
3175 			      asection *sym_sec,
3176 			      struct elf_link_hash_entry *eh)
3177 {
3178   struct elf64_hppa_link_hash_table *hppa_info = hppa_link_hash_table (info);
3179   struct elf64_hppa_link_hash_entry *hh = hppa_elf_hash_entry (eh);
3180   bfd_vma *local_offsets;
3181   Elf_Internal_Shdr *symtab_hdr;
3182   int insn;
3183   bfd_vma max_branch_offset = 0;
3184   bfd_vma offset = rel->r_offset;
3185   bfd_signed_vma addend = rel->r_addend;
3186   reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3187   unsigned int r_symndx = ELF_R_SYM (rel->r_info);
3188   unsigned int r_type = howto->type;
3189   bfd_byte *hit_data = contents + offset;
3190 
3191   if (hppa_info == NULL)
3192     return bfd_reloc_notsupported;
3193 
3194   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3195   local_offsets = elf_local_got_offsets (input_bfd);
3196   insn = bfd_get_32 (input_bfd, hit_data);
3197 
3198   switch (r_type)
3199     {
3200     case R_PARISC_NONE:
3201       break;
3202 
3203     /* Basic function call support.
3204 
3205        Note for a call to a function defined in another dynamic library
3206        we want to redirect the call to a stub.  */
3207 
3208     /* PC relative relocs without an implicit offset.  */
3209     case R_PARISC_PCREL21L:
3210     case R_PARISC_PCREL14R:
3211     case R_PARISC_PCREL14F:
3212     case R_PARISC_PCREL14WR:
3213     case R_PARISC_PCREL14DR:
3214     case R_PARISC_PCREL16F:
3215     case R_PARISC_PCREL16WF:
3216     case R_PARISC_PCREL16DF:
3217       {
3218 	/* If this is a call to a function defined in another dynamic
3219 	   library, then redirect the call to the local stub for this
3220 	   function.  */
3221 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3222 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3223 		   + hppa_info->stub_sec->output_section->vma);
3224 
3225 	/* Turn VALUE into a proper PC relative address.  */
3226 	value -= (offset + input_section->output_offset
3227 		  + input_section->output_section->vma);
3228 
3229 	/* Adjust for any field selectors.  */
3230 	if (r_type == R_PARISC_PCREL21L)
3231 	  value = hppa_field_adjust (value, -8 + addend, e_lsel);
3232 	else if (r_type == R_PARISC_PCREL14F
3233 		 || r_type == R_PARISC_PCREL16F
3234 		 || r_type == R_PARISC_PCREL16WF
3235 		 || r_type == R_PARISC_PCREL16DF)
3236 	  value = hppa_field_adjust (value, -8 + addend, e_fsel);
3237 	else
3238 	  value = hppa_field_adjust (value, -8 + addend, e_rsel);
3239 
3240 	/* Apply the relocation to the given instruction.  */
3241 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3242 	break;
3243       }
3244 
3245     case R_PARISC_PCREL12F:
3246     case R_PARISC_PCREL22F:
3247     case R_PARISC_PCREL17F:
3248     case R_PARISC_PCREL22C:
3249     case R_PARISC_PCREL17C:
3250     case R_PARISC_PCREL17R:
3251       {
3252 	/* If this is a call to a function defined in another dynamic
3253 	   library, then redirect the call to the local stub for this
3254 	   function.  */
3255 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3256 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3257 		   + hppa_info->stub_sec->output_section->vma);
3258 
3259 	/* Turn VALUE into a proper PC relative address.  */
3260 	value -= (offset + input_section->output_offset
3261 		  + input_section->output_section->vma);
3262 	addend -= 8;
3263 
3264 	if (r_type == (unsigned int) R_PARISC_PCREL22F)
3265 	  max_branch_offset = (1 << (22-1)) << 2;
3266 	else if (r_type == (unsigned int) R_PARISC_PCREL17F)
3267 	  max_branch_offset = (1 << (17-1)) << 2;
3268 	else if (r_type == (unsigned int) R_PARISC_PCREL12F)
3269 	  max_branch_offset = (1 << (12-1)) << 2;
3270 
3271 	/* Make sure we can reach the branch target.  */
3272 	if (max_branch_offset != 0
3273 	    && value + addend + max_branch_offset >= 2*max_branch_offset)
3274 	  {
3275 	    (*_bfd_error_handler)
3276 	      (_("%B(%A+0x" BFD_VMA_FMT "x): cannot reach %s"),
3277 	      input_bfd,
3278 	      input_section,
3279 	      offset,
3280 	      eh ? eh->root.root.string : "unknown");
3281 	    bfd_set_error (bfd_error_bad_value);
3282 	    return bfd_reloc_overflow;
3283 	  }
3284 
3285 	/* Adjust for any field selectors.  */
3286 	if (r_type == R_PARISC_PCREL17R)
3287 	  value = hppa_field_adjust (value, addend, e_rsel);
3288 	else
3289 	  value = hppa_field_adjust (value, addend, e_fsel);
3290 
3291 	/* All branches are implicitly shifted by 2 places.  */
3292 	value >>= 2;
3293 
3294 	/* Apply the relocation to the given instruction.  */
3295 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3296 	break;
3297       }
3298 
3299     /* Indirect references to data through the DLT.  */
3300     case R_PARISC_DLTIND14R:
3301     case R_PARISC_DLTIND14F:
3302     case R_PARISC_DLTIND14DR:
3303     case R_PARISC_DLTIND14WR:
3304     case R_PARISC_DLTIND21L:
3305     case R_PARISC_LTOFF_FPTR14R:
3306     case R_PARISC_LTOFF_FPTR14DR:
3307     case R_PARISC_LTOFF_FPTR14WR:
3308     case R_PARISC_LTOFF_FPTR21L:
3309     case R_PARISC_LTOFF_FPTR16F:
3310     case R_PARISC_LTOFF_FPTR16WF:
3311     case R_PARISC_LTOFF_FPTR16DF:
3312     case R_PARISC_LTOFF_TP21L:
3313     case R_PARISC_LTOFF_TP14R:
3314     case R_PARISC_LTOFF_TP14F:
3315     case R_PARISC_LTOFF_TP14WR:
3316     case R_PARISC_LTOFF_TP14DR:
3317     case R_PARISC_LTOFF_TP16F:
3318     case R_PARISC_LTOFF_TP16WF:
3319     case R_PARISC_LTOFF_TP16DF:
3320     case R_PARISC_LTOFF16F:
3321     case R_PARISC_LTOFF16WF:
3322     case R_PARISC_LTOFF16DF:
3323       {
3324 	bfd_vma off;
3325 
3326 	/* If this relocation was against a local symbol, then we still
3327 	   have not set up the DLT entry (it's not convenient to do so
3328 	   in the "finalize_dlt" routine because it is difficult to get
3329 	   to the local symbol's value).
3330 
3331 	   So, if this is a local symbol (h == NULL), then we need to
3332 	   fill in its DLT entry.
3333 
3334 	   Similarly we may still need to set up an entry in .opd for
3335 	   a local function which had its address taken.  */
3336 	if (hh == NULL)
3337 	  {
3338 	    bfd_vma *local_opd_offsets, *local_dlt_offsets;
3339 
3340             if (local_offsets == NULL)
3341               abort ();
3342 
3343 	    /* Now do .opd creation if needed.  */
3344 	    if (r_type == R_PARISC_LTOFF_FPTR14R
3345 		|| r_type == R_PARISC_LTOFF_FPTR14DR
3346 		|| r_type == R_PARISC_LTOFF_FPTR14WR
3347 		|| r_type == R_PARISC_LTOFF_FPTR21L
3348 		|| r_type == R_PARISC_LTOFF_FPTR16F
3349 		|| r_type == R_PARISC_LTOFF_FPTR16WF
3350 		|| r_type == R_PARISC_LTOFF_FPTR16DF)
3351 	      {
3352 		local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3353 		off = local_opd_offsets[r_symndx];
3354 
3355 		/* The last bit records whether we've already initialised
3356 		   this local .opd entry.  */
3357 		if ((off & 1) != 0)
3358 		  {
3359 		    BFD_ASSERT (off != (bfd_vma) -1);
3360 		    off &= ~1;
3361 		  }
3362 		else
3363 		  {
3364 		    local_opd_offsets[r_symndx] |= 1;
3365 
3366 		    /* The first two words of an .opd entry are zero.  */
3367 		    memset (hppa_info->opd_sec->contents + off, 0, 16);
3368 
3369 		    /* The next word is the address of the function.  */
3370 		    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3371 				(hppa_info->opd_sec->contents + off + 16));
3372 
3373 		    /* The last word is our local __gp value.  */
3374 		    value = _bfd_get_gp_value
3375 			      (hppa_info->opd_sec->output_section->owner);
3376 		    bfd_put_64 (hppa_info->opd_sec->owner, value,
3377 				(hppa_info->opd_sec->contents + off + 24));
3378 		  }
3379 
3380 		/* The DLT value is the address of the .opd entry.  */
3381 		value = (off
3382 			 + hppa_info->opd_sec->output_offset
3383 			 + hppa_info->opd_sec->output_section->vma);
3384 		addend = 0;
3385 	      }
3386 
3387 	    local_dlt_offsets = local_offsets;
3388 	    off = local_dlt_offsets[r_symndx];
3389 
3390 	    if ((off & 1) != 0)
3391 	      {
3392 		BFD_ASSERT (off != (bfd_vma) -1);
3393 		off &= ~1;
3394 	      }
3395 	    else
3396 	      {
3397 		local_dlt_offsets[r_symndx] |= 1;
3398 		bfd_put_64 (hppa_info->dlt_sec->owner,
3399 			    value + addend,
3400 			    hppa_info->dlt_sec->contents + off);
3401 	      }
3402 	  }
3403 	else
3404 	  off = hh->dlt_offset;
3405 
3406 	/* We want the value of the DLT offset for this symbol, not
3407 	   the symbol's actual address.  Note that __gp may not point
3408 	   to the start of the DLT, so we have to compute the absolute
3409 	   address, then subtract out the value of __gp.  */
3410 	value = (off
3411 		 + hppa_info->dlt_sec->output_offset
3412 		 + hppa_info->dlt_sec->output_section->vma);
3413 	value -= _bfd_get_gp_value (output_bfd);
3414 
3415 	/* All DLTIND relocations are basically the same at this point,
3416 	   except that we need different field selectors for the 21bit
3417 	   version vs the 14bit versions.  */
3418 	if (r_type == R_PARISC_DLTIND21L
3419 	    || r_type == R_PARISC_LTOFF_FPTR21L
3420 	    || r_type == R_PARISC_LTOFF_TP21L)
3421 	  value = hppa_field_adjust (value, 0, e_lsel);
3422 	else if (r_type == R_PARISC_DLTIND14F
3423 		 || r_type == R_PARISC_LTOFF_FPTR16F
3424 		 || r_type == R_PARISC_LTOFF_FPTR16WF
3425 		 || r_type == R_PARISC_LTOFF_FPTR16DF
3426 		 || r_type == R_PARISC_LTOFF16F
3427 		 || r_type == R_PARISC_LTOFF16DF
3428 		 || r_type == R_PARISC_LTOFF16WF
3429 		 || r_type == R_PARISC_LTOFF_TP16F
3430 		 || r_type == R_PARISC_LTOFF_TP16WF
3431 		 || r_type == R_PARISC_LTOFF_TP16DF)
3432 	  value = hppa_field_adjust (value, 0, e_fsel);
3433 	else
3434 	  value = hppa_field_adjust (value, 0, e_rsel);
3435 
3436 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3437 	break;
3438       }
3439 
3440     case R_PARISC_DLTREL14R:
3441     case R_PARISC_DLTREL14F:
3442     case R_PARISC_DLTREL14DR:
3443     case R_PARISC_DLTREL14WR:
3444     case R_PARISC_DLTREL21L:
3445     case R_PARISC_DPREL21L:
3446     case R_PARISC_DPREL14WR:
3447     case R_PARISC_DPREL14DR:
3448     case R_PARISC_DPREL14R:
3449     case R_PARISC_DPREL14F:
3450     case R_PARISC_GPREL16F:
3451     case R_PARISC_GPREL16WF:
3452     case R_PARISC_GPREL16DF:
3453       {
3454 	/* Subtract out the global pointer value to make value a DLT
3455 	   relative address.  */
3456 	value -= _bfd_get_gp_value (output_bfd);
3457 
3458 	/* All DLTREL relocations are basically the same at this point,
3459 	   except that we need different field selectors for the 21bit
3460 	   version vs the 14bit versions.  */
3461 	if (r_type == R_PARISC_DLTREL21L
3462 	    || r_type == R_PARISC_DPREL21L)
3463 	  value = hppa_field_adjust (value, addend, e_lrsel);
3464 	else if (r_type == R_PARISC_DLTREL14F
3465 		 || r_type == R_PARISC_DPREL14F
3466 		 || r_type == R_PARISC_GPREL16F
3467 		 || r_type == R_PARISC_GPREL16WF
3468 		 || r_type == R_PARISC_GPREL16DF)
3469 	  value = hppa_field_adjust (value, addend, e_fsel);
3470 	else
3471 	  value = hppa_field_adjust (value, addend, e_rrsel);
3472 
3473 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3474 	break;
3475       }
3476 
3477     case R_PARISC_DIR21L:
3478     case R_PARISC_DIR17R:
3479     case R_PARISC_DIR17F:
3480     case R_PARISC_DIR14R:
3481     case R_PARISC_DIR14F:
3482     case R_PARISC_DIR14WR:
3483     case R_PARISC_DIR14DR:
3484     case R_PARISC_DIR16F:
3485     case R_PARISC_DIR16WF:
3486     case R_PARISC_DIR16DF:
3487       {
3488 	/* All DIR relocations are basically the same at this point,
3489 	   except that branch offsets need to be divided by four, and
3490 	   we need different field selectors.  Note that we don't
3491 	   redirect absolute calls to local stubs.  */
3492 
3493 	if (r_type == R_PARISC_DIR21L)
3494 	  value = hppa_field_adjust (value, addend, e_lrsel);
3495 	else if (r_type == R_PARISC_DIR17F
3496 		 || r_type == R_PARISC_DIR16F
3497 		 || r_type == R_PARISC_DIR16WF
3498 		 || r_type == R_PARISC_DIR16DF
3499 		 || r_type == R_PARISC_DIR14F)
3500 	  value = hppa_field_adjust (value, addend, e_fsel);
3501 	else
3502 	  value = hppa_field_adjust (value, addend, e_rrsel);
3503 
3504 	if (r_type == R_PARISC_DIR17R || r_type == R_PARISC_DIR17F)
3505 	  /* All branches are implicitly shifted by 2 places.  */
3506 	  value >>= 2;
3507 
3508 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3509 	break;
3510       }
3511 
3512     case R_PARISC_PLTOFF21L:
3513     case R_PARISC_PLTOFF14R:
3514     case R_PARISC_PLTOFF14F:
3515     case R_PARISC_PLTOFF14WR:
3516     case R_PARISC_PLTOFF14DR:
3517     case R_PARISC_PLTOFF16F:
3518     case R_PARISC_PLTOFF16WF:
3519     case R_PARISC_PLTOFF16DF:
3520       {
3521 	/* We want the value of the PLT offset for this symbol, not
3522 	   the symbol's actual address.  Note that __gp may not point
3523 	   to the start of the DLT, so we have to compute the absolute
3524 	   address, then subtract out the value of __gp.  */
3525 	value = (hh->plt_offset
3526 		 + hppa_info->plt_sec->output_offset
3527 		 + hppa_info->plt_sec->output_section->vma);
3528 	value -= _bfd_get_gp_value (output_bfd);
3529 
3530 	/* All PLTOFF relocations are basically the same at this point,
3531 	   except that we need different field selectors for the 21bit
3532 	   version vs the 14bit versions.  */
3533 	if (r_type == R_PARISC_PLTOFF21L)
3534 	  value = hppa_field_adjust (value, addend, e_lrsel);
3535 	else if (r_type == R_PARISC_PLTOFF14F
3536 		 || r_type == R_PARISC_PLTOFF16F
3537 		 || r_type == R_PARISC_PLTOFF16WF
3538 		 || r_type == R_PARISC_PLTOFF16DF)
3539 	  value = hppa_field_adjust (value, addend, e_fsel);
3540 	else
3541 	  value = hppa_field_adjust (value, addend, e_rrsel);
3542 
3543 	insn = elf_hppa_relocate_insn (insn, (int) value, r_type);
3544 	break;
3545       }
3546 
3547     case R_PARISC_LTOFF_FPTR32:
3548       {
3549 	/* We may still need to create the FPTR itself if it was for
3550 	   a local symbol.  */
3551 	if (hh == NULL)
3552 	  {
3553 	    /* The first two words of an .opd entry are zero.  */
3554 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3555 
3556 	    /* The next word is the address of the function.  */
3557 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3558 			(hppa_info->opd_sec->contents
3559 			 + hh->opd_offset + 16));
3560 
3561 	    /* The last word is our local __gp value.  */
3562 	    value = _bfd_get_gp_value
3563 		      (hppa_info->opd_sec->output_section->owner);
3564 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3565 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3566 
3567 	    /* The DLT value is the address of the .opd entry.  */
3568 	    value = (hh->opd_offset
3569 		     + hppa_info->opd_sec->output_offset
3570 		     + hppa_info->opd_sec->output_section->vma);
3571 
3572 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3573 			value,
3574 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3575 	  }
3576 
3577 	/* We want the value of the DLT offset for this symbol, not
3578 	   the symbol's actual address.  Note that __gp may not point
3579 	   to the start of the DLT, so we have to compute the absolute
3580 	   address, then subtract out the value of __gp.  */
3581 	value = (hh->dlt_offset
3582 		 + hppa_info->dlt_sec->output_offset
3583 		 + hppa_info->dlt_sec->output_section->vma);
3584 	value -= _bfd_get_gp_value (output_bfd);
3585 	bfd_put_32 (input_bfd, value, hit_data);
3586 	return bfd_reloc_ok;
3587       }
3588 
3589     case R_PARISC_LTOFF_FPTR64:
3590     case R_PARISC_LTOFF_TP64:
3591       {
3592 	/* We may still need to create the FPTR itself if it was for
3593 	   a local symbol.  */
3594 	if (eh == NULL && r_type == R_PARISC_LTOFF_FPTR64)
3595 	  {
3596 	    /* The first two words of an .opd entry are zero.  */
3597 	    memset (hppa_info->opd_sec->contents + hh->opd_offset, 0, 16);
3598 
3599 	    /* The next word is the address of the function.  */
3600 	    bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3601 			(hppa_info->opd_sec->contents
3602 			 + hh->opd_offset + 16));
3603 
3604 	    /* The last word is our local __gp value.  */
3605 	    value = _bfd_get_gp_value
3606 		      (hppa_info->opd_sec->output_section->owner);
3607 	    bfd_put_64 (hppa_info->opd_sec->owner, value,
3608 			hppa_info->opd_sec->contents + hh->opd_offset + 24);
3609 
3610 	    /* The DLT value is the address of the .opd entry.  */
3611 	    value = (hh->opd_offset
3612 		     + hppa_info->opd_sec->output_offset
3613 		     + hppa_info->opd_sec->output_section->vma);
3614 
3615 	    bfd_put_64 (hppa_info->dlt_sec->owner,
3616 			value,
3617 			hppa_info->dlt_sec->contents + hh->dlt_offset);
3618 	  }
3619 
3620 	/* We want the value of the DLT offset for this symbol, not
3621 	   the symbol's actual address.  Note that __gp may not point
3622 	   to the start of the DLT, so we have to compute the absolute
3623 	   address, then subtract out the value of __gp.  */
3624 	value = (hh->dlt_offset
3625 		 + hppa_info->dlt_sec->output_offset
3626 		 + hppa_info->dlt_sec->output_section->vma);
3627 	value -= _bfd_get_gp_value (output_bfd);
3628 	bfd_put_64 (input_bfd, value, hit_data);
3629 	return bfd_reloc_ok;
3630       }
3631 
3632     case R_PARISC_DIR32:
3633       bfd_put_32 (input_bfd, value + addend, hit_data);
3634       return bfd_reloc_ok;
3635 
3636     case R_PARISC_DIR64:
3637       bfd_put_64 (input_bfd, value + addend, hit_data);
3638       return bfd_reloc_ok;
3639 
3640     case R_PARISC_GPREL64:
3641       /* Subtract out the global pointer value to make value a DLT
3642 	 relative address.  */
3643       value -= _bfd_get_gp_value (output_bfd);
3644 
3645       bfd_put_64 (input_bfd, value + addend, hit_data);
3646       return bfd_reloc_ok;
3647 
3648     case R_PARISC_LTOFF64:
3649 	/* We want the value of the DLT offset for this symbol, not
3650 	   the symbol's actual address.  Note that __gp may not point
3651 	   to the start of the DLT, so we have to compute the absolute
3652 	   address, then subtract out the value of __gp.  */
3653       value = (hh->dlt_offset
3654 	       + hppa_info->dlt_sec->output_offset
3655 	       + hppa_info->dlt_sec->output_section->vma);
3656       value -= _bfd_get_gp_value (output_bfd);
3657 
3658       bfd_put_64 (input_bfd, value + addend, hit_data);
3659       return bfd_reloc_ok;
3660 
3661     case R_PARISC_PCREL32:
3662       {
3663 	/* If this is a call to a function defined in another dynamic
3664 	   library, then redirect the call to the local stub for this
3665 	   function.  */
3666 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3667 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3668 		   + hppa_info->stub_sec->output_section->vma);
3669 
3670 	/* Turn VALUE into a proper PC relative address.  */
3671 	value -= (offset + input_section->output_offset
3672 		  + input_section->output_section->vma);
3673 
3674 	value += addend;
3675 	value -= 8;
3676 	bfd_put_32 (input_bfd, value, hit_data);
3677 	return bfd_reloc_ok;
3678       }
3679 
3680     case R_PARISC_PCREL64:
3681       {
3682 	/* If this is a call to a function defined in another dynamic
3683 	   library, then redirect the call to the local stub for this
3684 	   function.  */
3685 	if (sym_sec == NULL || sym_sec->output_section == NULL)
3686 	  value = (hh->stub_offset + hppa_info->stub_sec->output_offset
3687 		   + hppa_info->stub_sec->output_section->vma);
3688 
3689 	/* Turn VALUE into a proper PC relative address.  */
3690 	value -= (offset + input_section->output_offset
3691 		  + input_section->output_section->vma);
3692 
3693 	value += addend;
3694 	value -= 8;
3695 	bfd_put_64 (input_bfd, value, hit_data);
3696 	return bfd_reloc_ok;
3697       }
3698 
3699     case R_PARISC_FPTR64:
3700       {
3701 	bfd_vma off;
3702 
3703 	/* We may still need to create the FPTR itself if it was for
3704 	   a local symbol.  */
3705 	if (hh == NULL)
3706 	  {
3707 	    bfd_vma *local_opd_offsets;
3708 
3709             if (local_offsets == NULL)
3710               abort ();
3711 
3712 	    local_opd_offsets = local_offsets + 2 * symtab_hdr->sh_info;
3713 	    off = local_opd_offsets[r_symndx];
3714 
3715 	    /* The last bit records whether we've already initialised
3716 	       this local .opd entry.  */
3717 	    if ((off & 1) != 0)
3718 	      {
3719 		BFD_ASSERT (off != (bfd_vma) -1);
3720 	        off &= ~1;
3721 	      }
3722 	    else
3723 	      {
3724 		/* The first two words of an .opd entry are zero.  */
3725 		memset (hppa_info->opd_sec->contents + off, 0, 16);
3726 
3727 		/* The next word is the address of the function.  */
3728 		bfd_put_64 (hppa_info->opd_sec->owner, value + addend,
3729 			    (hppa_info->opd_sec->contents + off + 16));
3730 
3731 		/* The last word is our local __gp value.  */
3732 		value = _bfd_get_gp_value
3733 			  (hppa_info->opd_sec->output_section->owner);
3734 		bfd_put_64 (hppa_info->opd_sec->owner, value,
3735 			    hppa_info->opd_sec->contents + off + 24);
3736 	      }
3737 	  }
3738 	else
3739 	  off = hh->opd_offset;
3740 
3741 	if (hh == NULL || hh->want_opd)
3742 	  /* We want the value of the OPD offset for this symbol.  */
3743 	  value = (off
3744 		   + hppa_info->opd_sec->output_offset
3745 		   + hppa_info->opd_sec->output_section->vma);
3746 	else
3747 	  /* We want the address of the symbol.  */
3748 	  value += addend;
3749 
3750 	bfd_put_64 (input_bfd, value, hit_data);
3751 	return bfd_reloc_ok;
3752       }
3753 
3754     case R_PARISC_SECREL32:
3755       if (sym_sec)
3756 	value -= sym_sec->output_section->vma;
3757       bfd_put_32 (input_bfd, value + addend, hit_data);
3758       return bfd_reloc_ok;
3759 
3760     case R_PARISC_SEGREL32:
3761     case R_PARISC_SEGREL64:
3762       {
3763 	/* If this is the first SEGREL relocation, then initialize
3764 	   the segment base values.  */
3765 	if (hppa_info->text_segment_base == (bfd_vma) -1)
3766 	  bfd_map_over_sections (output_bfd, elf_hppa_record_segment_addrs,
3767 				 hppa_info);
3768 
3769 	/* VALUE holds the absolute address.  We want to include the
3770 	   addend, then turn it into a segment relative address.
3771 
3772 	   The segment is derived from SYM_SEC.  We assume that there are
3773 	   only two segments of note in the resulting executable/shlib.
3774 	   A readonly segment (.text) and a readwrite segment (.data).  */
3775 	value += addend;
3776 
3777 	if (sym_sec->flags & SEC_CODE)
3778 	  value -= hppa_info->text_segment_base;
3779 	else
3780 	  value -= hppa_info->data_segment_base;
3781 
3782 	if (r_type == R_PARISC_SEGREL32)
3783 	  bfd_put_32 (input_bfd, value, hit_data);
3784 	else
3785 	  bfd_put_64 (input_bfd, value, hit_data);
3786 	return bfd_reloc_ok;
3787       }
3788 
3789     /* Something we don't know how to handle.  */
3790     default:
3791       return bfd_reloc_notsupported;
3792     }
3793 
3794   /* Update the instruction word.  */
3795   bfd_put_32 (input_bfd, (bfd_vma) insn, hit_data);
3796   return bfd_reloc_ok;
3797 }
3798 
3799 /* Relocate an HPPA ELF section.  */
3800 
3801 static bfd_boolean
3802 elf64_hppa_relocate_section (bfd *output_bfd,
3803 			   struct bfd_link_info *info,
3804 			   bfd *input_bfd,
3805 			   asection *input_section,
3806 			   bfd_byte *contents,
3807 			   Elf_Internal_Rela *relocs,
3808 			   Elf_Internal_Sym *local_syms,
3809 			   asection **local_sections)
3810 {
3811   Elf_Internal_Shdr *symtab_hdr;
3812   Elf_Internal_Rela *rel;
3813   Elf_Internal_Rela *relend;
3814   struct elf64_hppa_link_hash_table *hppa_info;
3815 
3816   hppa_info = hppa_link_hash_table (info);
3817   if (hppa_info == NULL)
3818     return FALSE;
3819 
3820   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3821 
3822   rel = relocs;
3823   relend = relocs + input_section->reloc_count;
3824   for (; rel < relend; rel++)
3825     {
3826       int r_type;
3827       reloc_howto_type *howto = elf_hppa_howto_table + ELF_R_TYPE (rel->r_info);
3828       unsigned long r_symndx;
3829       struct elf_link_hash_entry *eh;
3830       Elf_Internal_Sym *sym;
3831       asection *sym_sec;
3832       bfd_vma relocation;
3833       bfd_reloc_status_type r;
3834 
3835       r_type = ELF_R_TYPE (rel->r_info);
3836       if (r_type < 0 || r_type >= (int) R_PARISC_UNIMPLEMENTED)
3837 	{
3838 	  bfd_set_error (bfd_error_bad_value);
3839 	  return FALSE;
3840 	}
3841       if (r_type == (unsigned int) R_PARISC_GNU_VTENTRY
3842 	  || r_type == (unsigned int) R_PARISC_GNU_VTINHERIT)
3843 	continue;
3844 
3845       /* This is a final link.  */
3846       r_symndx = ELF_R_SYM (rel->r_info);
3847       eh = NULL;
3848       sym = NULL;
3849       sym_sec = NULL;
3850       if (r_symndx < symtab_hdr->sh_info)
3851 	{
3852 	  /* This is a local symbol, hh defaults to NULL.  */
3853 	  sym = local_syms + r_symndx;
3854 	  sym_sec = local_sections[r_symndx];
3855 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sym_sec, rel);
3856 	}
3857       else
3858 	{
3859 	  /* This is not a local symbol.  */
3860 	  struct elf_link_hash_entry **sym_hashes = elf_sym_hashes (input_bfd);
3861 
3862 	  /* It seems this can happen with erroneous or unsupported
3863 	     input (mixing a.out and elf in an archive, for example.)  */
3864 	  if (sym_hashes == NULL)
3865 	    return FALSE;
3866 
3867 	  eh = sym_hashes[r_symndx - symtab_hdr->sh_info];
3868 
3869 	  while (eh->root.type == bfd_link_hash_indirect
3870 		 || eh->root.type == bfd_link_hash_warning)
3871 	    eh = (struct elf_link_hash_entry *) eh->root.u.i.link;
3872 
3873 	  relocation = 0;
3874 	  if (eh->root.type == bfd_link_hash_defined
3875 	      || eh->root.type == bfd_link_hash_defweak)
3876 	    {
3877 	      sym_sec = eh->root.u.def.section;
3878 	      if (sym_sec != NULL
3879 		  && sym_sec->output_section != NULL)
3880 		relocation = (eh->root.u.def.value
3881 			      + sym_sec->output_section->vma
3882 			      + sym_sec->output_offset);
3883 	    }
3884 	  else if (eh->root.type == bfd_link_hash_undefweak)
3885 	    ;
3886 	  else if (info->unresolved_syms_in_objects == RM_IGNORE
3887 		   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT)
3888 	    ;
3889 	  else if (!info->relocatable
3890 		   && elf_hppa_is_dynamic_loader_symbol (eh->root.root.string))
3891 	    continue;
3892 	  else if (!info->relocatable)
3893 	    {
3894 	      bfd_boolean err;
3895 	      err = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
3896 		     || ELF_ST_VISIBILITY (eh->other) != STV_DEFAULT);
3897 	      if (!info->callbacks->undefined_symbol (info,
3898 						      eh->root.root.string,
3899 						      input_bfd,
3900 						      input_section,
3901 						      rel->r_offset, err))
3902 		return FALSE;
3903 	    }
3904 
3905           if (!info->relocatable
3906               && relocation == 0
3907               && eh->root.type != bfd_link_hash_defined
3908               && eh->root.type != bfd_link_hash_defweak
3909               && eh->root.type != bfd_link_hash_undefweak)
3910             {
3911               if (info->unresolved_syms_in_objects == RM_IGNORE
3912                   && ELF_ST_VISIBILITY (eh->other) == STV_DEFAULT
3913                   && eh->type == STT_PARISC_MILLI)
3914                 {
3915                   if (! info->callbacks->undefined_symbol
3916                       (info, eh_name (eh), input_bfd,
3917                        input_section, rel->r_offset, FALSE))
3918                     return FALSE;
3919                 }
3920             }
3921 	}
3922 
3923       if (sym_sec != NULL && discarded_section (sym_sec))
3924 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3925 					 rel, 1, relend, howto, 0, contents);
3926 
3927       if (info->relocatable)
3928 	continue;
3929 
3930       r = elf_hppa_final_link_relocate (rel, input_bfd, output_bfd,
3931 					input_section, contents,
3932 					relocation, info, sym_sec,
3933 					eh);
3934 
3935       if (r != bfd_reloc_ok)
3936 	{
3937 	  switch (r)
3938 	    {
3939 	    default:
3940 	      abort ();
3941 	    case bfd_reloc_overflow:
3942 	      {
3943 		const char *sym_name;
3944 
3945 		if (eh != NULL)
3946 		  sym_name = NULL;
3947 		else
3948 		  {
3949 		    sym_name = bfd_elf_string_from_elf_section (input_bfd,
3950 								symtab_hdr->sh_link,
3951 								sym->st_name);
3952 		    if (sym_name == NULL)
3953 		      return FALSE;
3954 		    if (*sym_name == '\0')
3955 		      sym_name = bfd_section_name (input_bfd, sym_sec);
3956 		  }
3957 
3958 		if (!((*info->callbacks->reloc_overflow)
3959 		      (info, (eh ? &eh->root : NULL), sym_name,
3960 		       howto->name, (bfd_vma) 0, input_bfd,
3961 		       input_section, rel->r_offset)))
3962 		  return FALSE;
3963 	      }
3964 	      break;
3965 	    }
3966 	}
3967     }
3968   return TRUE;
3969 }
3970 
3971 static const struct bfd_elf_special_section elf64_hppa_special_sections[] =
3972 {
3973   { STRING_COMMA_LEN (".fini"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3974   { STRING_COMMA_LEN (".init"),  0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
3975   { STRING_COMMA_LEN (".plt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3976   { STRING_COMMA_LEN (".dlt"),   0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3977   { STRING_COMMA_LEN (".sdata"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3978   { STRING_COMMA_LEN (".sbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_PARISC_SHORT },
3979   { STRING_COMMA_LEN (".tbss"),  0, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_HP_TLS },
3980   { NULL,                    0,  0, 0,            0 }
3981 };
3982 
3983 /* The hash bucket size is the standard one, namely 4.  */
3984 
3985 const struct elf_size_info hppa64_elf_size_info =
3986 {
3987   sizeof (Elf64_External_Ehdr),
3988   sizeof (Elf64_External_Phdr),
3989   sizeof (Elf64_External_Shdr),
3990   sizeof (Elf64_External_Rel),
3991   sizeof (Elf64_External_Rela),
3992   sizeof (Elf64_External_Sym),
3993   sizeof (Elf64_External_Dyn),
3994   sizeof (Elf_External_Note),
3995   4,
3996   1,
3997   64, 3,
3998   ELFCLASS64, EV_CURRENT,
3999   bfd_elf64_write_out_phdrs,
4000   bfd_elf64_write_shdrs_and_ehdr,
4001   bfd_elf64_checksum_contents,
4002   bfd_elf64_write_relocs,
4003   bfd_elf64_swap_symbol_in,
4004   bfd_elf64_swap_symbol_out,
4005   bfd_elf64_slurp_reloc_table,
4006   bfd_elf64_slurp_symbol_table,
4007   bfd_elf64_swap_dyn_in,
4008   bfd_elf64_swap_dyn_out,
4009   bfd_elf64_swap_reloc_in,
4010   bfd_elf64_swap_reloc_out,
4011   bfd_elf64_swap_reloca_in,
4012   bfd_elf64_swap_reloca_out
4013 };
4014 
4015 #define TARGET_BIG_SYM			bfd_elf64_hppa_vec
4016 #define TARGET_BIG_NAME			"elf64-hppa"
4017 #define ELF_ARCH			bfd_arch_hppa
4018 #define ELF_TARGET_ID			HPPA64_ELF_DATA
4019 #define ELF_MACHINE_CODE		EM_PARISC
4020 /* This is not strictly correct.  The maximum page size for PA2.0 is
4021    64M.  But everything still uses 4k.  */
4022 #define ELF_MAXPAGESIZE			0x1000
4023 #define ELF_OSABI			ELFOSABI_HPUX
4024 
4025 #define bfd_elf64_bfd_reloc_type_lookup elf_hppa_reloc_type_lookup
4026 #define bfd_elf64_bfd_reloc_name_lookup elf_hppa_reloc_name_lookup
4027 #define bfd_elf64_bfd_is_local_label_name       elf_hppa_is_local_label_name
4028 #define elf_info_to_howto		elf_hppa_info_to_howto
4029 #define elf_info_to_howto_rel		elf_hppa_info_to_howto_rel
4030 
4031 #define elf_backend_section_from_shdr	elf64_hppa_section_from_shdr
4032 #define elf_backend_object_p		elf64_hppa_object_p
4033 #define elf_backend_final_write_processing \
4034 					elf_hppa_final_write_processing
4035 #define elf_backend_fake_sections	elf_hppa_fake_sections
4036 #define elf_backend_add_symbol_hook	elf_hppa_add_symbol_hook
4037 
4038 #define elf_backend_relocate_section	elf_hppa_relocate_section
4039 
4040 #define bfd_elf64_bfd_final_link	elf_hppa_final_link
4041 
4042 #define elf_backend_create_dynamic_sections \
4043 					elf64_hppa_create_dynamic_sections
4044 #define elf_backend_post_process_headers	elf64_hppa_post_process_headers
4045 
4046 #define elf_backend_omit_section_dynsym \
4047   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
4048 #define elf_backend_adjust_dynamic_symbol \
4049 					elf64_hppa_adjust_dynamic_symbol
4050 
4051 #define elf_backend_size_dynamic_sections \
4052 					elf64_hppa_size_dynamic_sections
4053 
4054 #define elf_backend_finish_dynamic_symbol \
4055 					elf64_hppa_finish_dynamic_symbol
4056 #define elf_backend_finish_dynamic_sections \
4057 					elf64_hppa_finish_dynamic_sections
4058 #define elf_backend_grok_prstatus	elf64_hppa_grok_prstatus
4059 #define elf_backend_grok_psinfo		elf64_hppa_grok_psinfo
4060 
4061 /* Stuff for the BFD linker: */
4062 #define bfd_elf64_bfd_link_hash_table_create \
4063 	elf64_hppa_hash_table_create
4064 
4065 #define elf_backend_check_relocs \
4066 	elf64_hppa_check_relocs
4067 
4068 #define elf_backend_size_info \
4069   hppa64_elf_size_info
4070 
4071 #define elf_backend_additional_program_headers \
4072 	elf64_hppa_additional_program_headers
4073 
4074 #define elf_backend_modify_segment_map \
4075 	elf64_hppa_modify_segment_map
4076 
4077 #define elf_backend_link_output_symbol_hook \
4078 	elf64_hppa_link_output_symbol_hook
4079 
4080 #define elf_backend_want_got_plt	0
4081 #define elf_backend_plt_readonly	0
4082 #define elf_backend_want_plt_sym	0
4083 #define elf_backend_got_header_size     0
4084 #define elf_backend_type_change_ok	TRUE
4085 #define elf_backend_get_symbol_type	elf64_hppa_elf_get_symbol_type
4086 #define elf_backend_reloc_type_class	elf64_hppa_reloc_type_class
4087 #define elf_backend_rela_normal		1
4088 #define elf_backend_special_sections	elf64_hppa_special_sections
4089 #define elf_backend_action_discarded	elf_hppa_action_discarded
4090 #define elf_backend_section_from_phdr   elf64_hppa_section_from_phdr
4091 
4092 #define elf64_bed			elf64_hppa_hpux_bed
4093 
4094 #include "elf64-target.h"
4095 
4096 #undef TARGET_BIG_SYM
4097 #define TARGET_BIG_SYM			bfd_elf64_hppa_linux_vec
4098 #undef TARGET_BIG_NAME
4099 #define TARGET_BIG_NAME			"elf64-hppa-linux"
4100 #undef ELF_OSABI
4101 #define ELF_OSABI			ELFOSABI_GNU
4102 #undef elf_backend_post_process_headers
4103 #define elf_backend_post_process_headers _bfd_elf_set_osabi
4104 #undef elf64_bed
4105 #define elf64_bed			elf64_hppa_linux_bed
4106 
4107 #include "elf64-target.h"
4108