xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-xtensa.c (revision 796c32c94f6e154afc9de0f63da35c91bb739b45)
1 /* Xtensa-specific support for 32-bit ELF.
2    Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 
4    This file is part of BFD, the Binary File Descriptor library.
5 
6    This program is free software; you can redistribute it and/or
7    modify it under the terms of the GNU General Public License as
8    published by the Free Software Foundation; either version 3 of the
9    License, or (at your option) any later version.
10 
11    This program is distributed in the hope that it will be useful, but
12    WITHOUT ANY WARRANTY; without even the implied warranty of
13    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14    General Public License for more details.
15 
16    You should have received a copy of the GNU General Public License
17    along with this program; if not, write to the Free Software
18    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA
19    02110-1301, USA.  */
20 
21 #include "sysdep.h"
22 #include "bfd.h"
23 
24 #include <stdarg.h>
25 #include <strings.h>
26 
27 #include "bfdlink.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf/xtensa.h"
31 #include "splay-tree.h"
32 #include "xtensa-isa.h"
33 #include "xtensa-config.h"
34 
35 #define XTENSA_NO_NOP_REMOVAL 0
36 
37 /* Local helper functions.  */
38 
39 static bfd_boolean add_extra_plt_sections (struct bfd_link_info *, int);
40 static char *vsprint_msg (const char *, const char *, int, ...) ATTRIBUTE_PRINTF(2,4);
41 static bfd_reloc_status_type bfd_elf_xtensa_reloc
42   (bfd *, arelent *, asymbol *, void *, asection *, bfd *, char **);
43 static bfd_boolean do_fix_for_relocatable_link
44   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *);
45 static void do_fix_for_final_link
46   (Elf_Internal_Rela *, bfd *, asection *, bfd_byte *, bfd_vma *);
47 
48 /* Local functions to handle Xtensa configurability.  */
49 
50 static bfd_boolean is_indirect_call_opcode (xtensa_opcode);
51 static bfd_boolean is_direct_call_opcode (xtensa_opcode);
52 static bfd_boolean is_windowed_call_opcode (xtensa_opcode);
53 static xtensa_opcode get_const16_opcode (void);
54 static xtensa_opcode get_l32r_opcode (void);
55 static bfd_vma l32r_offset (bfd_vma, bfd_vma);
56 static int get_relocation_opnd (xtensa_opcode, int);
57 static int get_relocation_slot (int);
58 static xtensa_opcode get_relocation_opcode
59   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
60 static bfd_boolean is_l32r_relocation
61   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *);
62 static bfd_boolean is_alt_relocation (int);
63 static bfd_boolean is_operand_relocation (int);
64 static bfd_size_type insn_decode_len
65   (bfd_byte *, bfd_size_type, bfd_size_type);
66 static xtensa_opcode insn_decode_opcode
67   (bfd_byte *, bfd_size_type, bfd_size_type, int);
68 static bfd_boolean check_branch_target_aligned
69   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
70 static bfd_boolean check_loop_aligned
71   (bfd_byte *, bfd_size_type, bfd_vma, bfd_vma);
72 static bfd_boolean check_branch_target_aligned_address (bfd_vma, int);
73 static bfd_size_type get_asm_simplify_size
74   (bfd_byte *, bfd_size_type, bfd_size_type);
75 
76 /* Functions for link-time code simplifications.  */
77 
78 static bfd_reloc_status_type elf_xtensa_do_asm_simplify
79   (bfd_byte *, bfd_vma, bfd_vma, char **);
80 static bfd_reloc_status_type contract_asm_expansion
81   (bfd_byte *, bfd_vma, Elf_Internal_Rela *, char **);
82 static xtensa_opcode swap_callx_for_call_opcode (xtensa_opcode);
83 static xtensa_opcode get_expanded_call_opcode (bfd_byte *, int, bfd_boolean *);
84 
85 /* Access to internal relocations, section contents and symbols.  */
86 
87 static Elf_Internal_Rela *retrieve_internal_relocs
88   (bfd *, asection *, bfd_boolean);
89 static void pin_internal_relocs (asection *, Elf_Internal_Rela *);
90 static void release_internal_relocs (asection *, Elf_Internal_Rela *);
91 static bfd_byte *retrieve_contents (bfd *, asection *, bfd_boolean);
92 static void pin_contents (asection *, bfd_byte *);
93 static void release_contents (asection *, bfd_byte *);
94 static Elf_Internal_Sym *retrieve_local_syms (bfd *);
95 
96 /* Miscellaneous utility functions.  */
97 
98 static asection *elf_xtensa_get_plt_section (struct bfd_link_info *, int);
99 static asection *elf_xtensa_get_gotplt_section (struct bfd_link_info *, int);
100 static asection *get_elf_r_symndx_section (bfd *, unsigned long);
101 static struct elf_link_hash_entry *get_elf_r_symndx_hash_entry
102   (bfd *, unsigned long);
103 static bfd_vma get_elf_r_symndx_offset (bfd *, unsigned long);
104 static bfd_boolean is_reloc_sym_weak (bfd *, Elf_Internal_Rela *);
105 static bfd_boolean pcrel_reloc_fits (xtensa_opcode, int, bfd_vma, bfd_vma);
106 static bfd_boolean xtensa_is_property_section (asection *);
107 static bfd_boolean xtensa_is_insntable_section (asection *);
108 static bfd_boolean xtensa_is_littable_section (asection *);
109 static bfd_boolean xtensa_is_proptable_section (asection *);
110 static int internal_reloc_compare (const void *, const void *);
111 static int internal_reloc_matches (const void *, const void *);
112 static asection *xtensa_get_property_section (asection *, const char *);
113 static flagword xtensa_get_property_predef_flags (asection *);
114 
115 /* Other functions called directly by the linker.  */
116 
117 typedef void (*deps_callback_t)
118   (asection *, bfd_vma, asection *, bfd_vma, void *);
119 extern bfd_boolean xtensa_callback_required_dependence
120   (bfd *, asection *, struct bfd_link_info *, deps_callback_t, void *);
121 
122 
123 /* Globally visible flag for choosing size optimization of NOP removal
124    instead of branch-target-aware minimization for NOP removal.
125    When nonzero, narrow all instructions and remove all NOPs possible
126    around longcall expansions.  */
127 
128 int elf32xtensa_size_opt;
129 
130 
131 /* The "new_section_hook" is used to set up a per-section
132    "xtensa_relax_info" data structure with additional information used
133    during relaxation.  */
134 
135 typedef struct xtensa_relax_info_struct xtensa_relax_info;
136 
137 
138 /* The GNU tools do not easily allow extending interfaces to pass around
139    the pointer to the Xtensa ISA information, so instead we add a global
140    variable here (in BFD) that can be used by any of the tools that need
141    this information. */
142 
143 xtensa_isa xtensa_default_isa;
144 
145 
146 /* When this is true, relocations may have been modified to refer to
147    symbols from other input files.  The per-section list of "fix"
148    records needs to be checked when resolving relocations.  */
149 
150 static bfd_boolean relaxing_section = FALSE;
151 
152 /* When this is true, during final links, literals that cannot be
153    coalesced and their relocations may be moved to other sections.  */
154 
155 int elf32xtensa_no_literal_movement = 1;
156 
157 /* Rename one of the generic section flags to better document how it
158    is used here.  */
159 /* Whether relocations have been processed.  */
160 #define reloc_done sec_flg0
161 
162 static reloc_howto_type elf_howto_table[] =
163 {
164   HOWTO (R_XTENSA_NONE, 0, 3, 0, FALSE, 0, complain_overflow_dont,
165 	 bfd_elf_xtensa_reloc, "R_XTENSA_NONE",
166 	 FALSE, 0, 0, FALSE),
167   HOWTO (R_XTENSA_32, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
168 	 bfd_elf_xtensa_reloc, "R_XTENSA_32",
169 	 TRUE, 0xffffffff, 0xffffffff, FALSE),
170 
171   /* Replace a 32-bit value with a value from the runtime linker (only
172      used by linker-generated stub functions).  The r_addend value is
173      special: 1 means to substitute a pointer to the runtime linker's
174      dynamic resolver function; 2 means to substitute the link map for
175      the shared object.  */
176   HOWTO (R_XTENSA_RTLD, 0, 2, 32, FALSE, 0, complain_overflow_dont,
177 	 NULL, "R_XTENSA_RTLD", FALSE, 0, 0, FALSE),
178 
179   HOWTO (R_XTENSA_GLOB_DAT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
180 	 bfd_elf_generic_reloc, "R_XTENSA_GLOB_DAT",
181 	 FALSE, 0, 0xffffffff, FALSE),
182   HOWTO (R_XTENSA_JMP_SLOT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
183 	 bfd_elf_generic_reloc, "R_XTENSA_JMP_SLOT",
184 	 FALSE, 0, 0xffffffff, FALSE),
185   HOWTO (R_XTENSA_RELATIVE, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
186 	 bfd_elf_generic_reloc, "R_XTENSA_RELATIVE",
187 	 FALSE, 0, 0xffffffff, FALSE),
188   HOWTO (R_XTENSA_PLT, 0, 2, 32, FALSE, 0, complain_overflow_bitfield,
189 	 bfd_elf_xtensa_reloc, "R_XTENSA_PLT",
190 	 FALSE, 0, 0xffffffff, FALSE),
191 
192   EMPTY_HOWTO (7),
193 
194   /* Old relocations for backward compatibility.  */
195   HOWTO (R_XTENSA_OP0, 0, 0, 0, TRUE, 0, complain_overflow_dont,
196 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP0", FALSE, 0, 0, TRUE),
197   HOWTO (R_XTENSA_OP1, 0, 0, 0, TRUE, 0, complain_overflow_dont,
198 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP1", FALSE, 0, 0, TRUE),
199   HOWTO (R_XTENSA_OP2, 0, 0, 0, TRUE, 0, complain_overflow_dont,
200 	 bfd_elf_xtensa_reloc, "R_XTENSA_OP2", FALSE, 0, 0, TRUE),
201 
202   /* Assembly auto-expansion.  */
203   HOWTO (R_XTENSA_ASM_EXPAND, 0, 0, 0, TRUE, 0, complain_overflow_dont,
204 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_EXPAND", FALSE, 0, 0, TRUE),
205   /* Relax assembly auto-expansion.  */
206   HOWTO (R_XTENSA_ASM_SIMPLIFY, 0, 0, 0, TRUE, 0, complain_overflow_dont,
207 	 bfd_elf_xtensa_reloc, "R_XTENSA_ASM_SIMPLIFY", FALSE, 0, 0, TRUE),
208 
209   EMPTY_HOWTO (13),
210 
211   HOWTO (R_XTENSA_32_PCREL, 0, 2, 32, TRUE, 0, complain_overflow_bitfield,
212 	 bfd_elf_xtensa_reloc, "R_XTENSA_32_PCREL",
213 	 FALSE, 0, 0xffffffff, TRUE),
214 
215   /* GNU extension to record C++ vtable hierarchy.  */
216   HOWTO (R_XTENSA_GNU_VTINHERIT, 0, 2, 0, FALSE, 0, complain_overflow_dont,
217          NULL, "R_XTENSA_GNU_VTINHERIT",
218 	 FALSE, 0, 0, FALSE),
219   /* GNU extension to record C++ vtable member usage.  */
220   HOWTO (R_XTENSA_GNU_VTENTRY, 0, 2, 0, FALSE, 0, complain_overflow_dont,
221          _bfd_elf_rel_vtable_reloc_fn, "R_XTENSA_GNU_VTENTRY",
222 	 FALSE, 0, 0, FALSE),
223 
224   /* Relocations for supporting difference of symbols.  */
225   HOWTO (R_XTENSA_DIFF8, 0, 0, 8, FALSE, 0, complain_overflow_signed,
226 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF8", FALSE, 0, 0xff, FALSE),
227   HOWTO (R_XTENSA_DIFF16, 0, 1, 16, FALSE, 0, complain_overflow_signed,
228 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF16", FALSE, 0, 0xffff, FALSE),
229   HOWTO (R_XTENSA_DIFF32, 0, 2, 32, FALSE, 0, complain_overflow_signed,
230 	 bfd_elf_xtensa_reloc, "R_XTENSA_DIFF32", FALSE, 0, 0xffffffff, FALSE),
231 
232   /* General immediate operand relocations.  */
233   HOWTO (R_XTENSA_SLOT0_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
234 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_OP", FALSE, 0, 0, TRUE),
235   HOWTO (R_XTENSA_SLOT1_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
236 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_OP", FALSE, 0, 0, TRUE),
237   HOWTO (R_XTENSA_SLOT2_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
238 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_OP", FALSE, 0, 0, TRUE),
239   HOWTO (R_XTENSA_SLOT3_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
240 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_OP", FALSE, 0, 0, TRUE),
241   HOWTO (R_XTENSA_SLOT4_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
242 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_OP", FALSE, 0, 0, TRUE),
243   HOWTO (R_XTENSA_SLOT5_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
244 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_OP", FALSE, 0, 0, TRUE),
245   HOWTO (R_XTENSA_SLOT6_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
246 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_OP", FALSE, 0, 0, TRUE),
247   HOWTO (R_XTENSA_SLOT7_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
248 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_OP", FALSE, 0, 0, TRUE),
249   HOWTO (R_XTENSA_SLOT8_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
250 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_OP", FALSE, 0, 0, TRUE),
251   HOWTO (R_XTENSA_SLOT9_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
252 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_OP", FALSE, 0, 0, TRUE),
253   HOWTO (R_XTENSA_SLOT10_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
254 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_OP", FALSE, 0, 0, TRUE),
255   HOWTO (R_XTENSA_SLOT11_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
256 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_OP", FALSE, 0, 0, TRUE),
257   HOWTO (R_XTENSA_SLOT12_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
258 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_OP", FALSE, 0, 0, TRUE),
259   HOWTO (R_XTENSA_SLOT13_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
260 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_OP", FALSE, 0, 0, TRUE),
261   HOWTO (R_XTENSA_SLOT14_OP, 0, 0, 0, TRUE, 0, complain_overflow_dont,
262 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_OP", FALSE, 0, 0, TRUE),
263 
264   /* "Alternate" relocations.  The meaning of these is opcode-specific.  */
265   HOWTO (R_XTENSA_SLOT0_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
266 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT0_ALT", FALSE, 0, 0, TRUE),
267   HOWTO (R_XTENSA_SLOT1_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
268 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT1_ALT", FALSE, 0, 0, TRUE),
269   HOWTO (R_XTENSA_SLOT2_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
270 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT2_ALT", FALSE, 0, 0, TRUE),
271   HOWTO (R_XTENSA_SLOT3_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
272 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT3_ALT", FALSE, 0, 0, TRUE),
273   HOWTO (R_XTENSA_SLOT4_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
274 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT4_ALT", FALSE, 0, 0, TRUE),
275   HOWTO (R_XTENSA_SLOT5_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
276 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT5_ALT", FALSE, 0, 0, TRUE),
277   HOWTO (R_XTENSA_SLOT6_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
278 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT6_ALT", FALSE, 0, 0, TRUE),
279   HOWTO (R_XTENSA_SLOT7_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
280 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT7_ALT", FALSE, 0, 0, TRUE),
281   HOWTO (R_XTENSA_SLOT8_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
282 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT8_ALT", FALSE, 0, 0, TRUE),
283   HOWTO (R_XTENSA_SLOT9_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
284 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT9_ALT", FALSE, 0, 0, TRUE),
285   HOWTO (R_XTENSA_SLOT10_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
286 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT10_ALT", FALSE, 0, 0, TRUE),
287   HOWTO (R_XTENSA_SLOT11_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
288 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT11_ALT", FALSE, 0, 0, TRUE),
289   HOWTO (R_XTENSA_SLOT12_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
290 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT12_ALT", FALSE, 0, 0, TRUE),
291   HOWTO (R_XTENSA_SLOT13_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
292 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT13_ALT", FALSE, 0, 0, TRUE),
293   HOWTO (R_XTENSA_SLOT14_ALT, 0, 0, 0, TRUE, 0, complain_overflow_dont,
294 	 bfd_elf_xtensa_reloc, "R_XTENSA_SLOT14_ALT", FALSE, 0, 0, TRUE),
295 
296   /* TLS relocations.  */
297   HOWTO (R_XTENSA_TLSDESC_FN, 0, 2, 32, FALSE, 0, complain_overflow_dont,
298 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_FN",
299 	 FALSE, 0, 0xffffffff, FALSE),
300   HOWTO (R_XTENSA_TLSDESC_ARG, 0, 2, 32, FALSE, 0, complain_overflow_dont,
301 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLSDESC_ARG",
302 	 FALSE, 0, 0xffffffff, FALSE),
303   HOWTO (R_XTENSA_TLS_DTPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
304 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_DTPOFF",
305 	 FALSE, 0, 0xffffffff, FALSE),
306   HOWTO (R_XTENSA_TLS_TPOFF, 0, 2, 32, FALSE, 0, complain_overflow_dont,
307 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_TPOFF",
308 	 FALSE, 0, 0xffffffff, FALSE),
309   HOWTO (R_XTENSA_TLS_FUNC, 0, 0, 0, FALSE, 0, complain_overflow_dont,
310 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_FUNC",
311 	 FALSE, 0, 0, FALSE),
312   HOWTO (R_XTENSA_TLS_ARG, 0, 0, 0, FALSE, 0, complain_overflow_dont,
313 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_ARG",
314 	 FALSE, 0, 0, FALSE),
315   HOWTO (R_XTENSA_TLS_CALL, 0, 0, 0, FALSE, 0, complain_overflow_dont,
316 	 bfd_elf_xtensa_reloc, "R_XTENSA_TLS_CALL",
317 	 FALSE, 0, 0, FALSE),
318 };
319 
320 #if DEBUG_GEN_RELOC
321 #define TRACE(str) \
322   fprintf (stderr, "Xtensa bfd reloc lookup %d (%s)\n", code, str)
323 #else
324 #define TRACE(str)
325 #endif
326 
327 static reloc_howto_type *
328 elf_xtensa_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
329 			      bfd_reloc_code_real_type code)
330 {
331   switch (code)
332     {
333     case BFD_RELOC_NONE:
334       TRACE ("BFD_RELOC_NONE");
335       return &elf_howto_table[(unsigned) R_XTENSA_NONE ];
336 
337     case BFD_RELOC_32:
338       TRACE ("BFD_RELOC_32");
339       return &elf_howto_table[(unsigned) R_XTENSA_32 ];
340 
341     case BFD_RELOC_32_PCREL:
342       TRACE ("BFD_RELOC_32_PCREL");
343       return &elf_howto_table[(unsigned) R_XTENSA_32_PCREL ];
344 
345     case BFD_RELOC_XTENSA_DIFF8:
346       TRACE ("BFD_RELOC_XTENSA_DIFF8");
347       return &elf_howto_table[(unsigned) R_XTENSA_DIFF8 ];
348 
349     case BFD_RELOC_XTENSA_DIFF16:
350       TRACE ("BFD_RELOC_XTENSA_DIFF16");
351       return &elf_howto_table[(unsigned) R_XTENSA_DIFF16 ];
352 
353     case BFD_RELOC_XTENSA_DIFF32:
354       TRACE ("BFD_RELOC_XTENSA_DIFF32");
355       return &elf_howto_table[(unsigned) R_XTENSA_DIFF32 ];
356 
357     case BFD_RELOC_XTENSA_RTLD:
358       TRACE ("BFD_RELOC_XTENSA_RTLD");
359       return &elf_howto_table[(unsigned) R_XTENSA_RTLD ];
360 
361     case BFD_RELOC_XTENSA_GLOB_DAT:
362       TRACE ("BFD_RELOC_XTENSA_GLOB_DAT");
363       return &elf_howto_table[(unsigned) R_XTENSA_GLOB_DAT ];
364 
365     case BFD_RELOC_XTENSA_JMP_SLOT:
366       TRACE ("BFD_RELOC_XTENSA_JMP_SLOT");
367       return &elf_howto_table[(unsigned) R_XTENSA_JMP_SLOT ];
368 
369     case BFD_RELOC_XTENSA_RELATIVE:
370       TRACE ("BFD_RELOC_XTENSA_RELATIVE");
371       return &elf_howto_table[(unsigned) R_XTENSA_RELATIVE ];
372 
373     case BFD_RELOC_XTENSA_PLT:
374       TRACE ("BFD_RELOC_XTENSA_PLT");
375       return &elf_howto_table[(unsigned) R_XTENSA_PLT ];
376 
377     case BFD_RELOC_XTENSA_OP0:
378       TRACE ("BFD_RELOC_XTENSA_OP0");
379       return &elf_howto_table[(unsigned) R_XTENSA_OP0 ];
380 
381     case BFD_RELOC_XTENSA_OP1:
382       TRACE ("BFD_RELOC_XTENSA_OP1");
383       return &elf_howto_table[(unsigned) R_XTENSA_OP1 ];
384 
385     case BFD_RELOC_XTENSA_OP2:
386       TRACE ("BFD_RELOC_XTENSA_OP2");
387       return &elf_howto_table[(unsigned) R_XTENSA_OP2 ];
388 
389     case BFD_RELOC_XTENSA_ASM_EXPAND:
390       TRACE ("BFD_RELOC_XTENSA_ASM_EXPAND");
391       return &elf_howto_table[(unsigned) R_XTENSA_ASM_EXPAND ];
392 
393     case BFD_RELOC_XTENSA_ASM_SIMPLIFY:
394       TRACE ("BFD_RELOC_XTENSA_ASM_SIMPLIFY");
395       return &elf_howto_table[(unsigned) R_XTENSA_ASM_SIMPLIFY ];
396 
397     case BFD_RELOC_VTABLE_INHERIT:
398       TRACE ("BFD_RELOC_VTABLE_INHERIT");
399       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTINHERIT ];
400 
401     case BFD_RELOC_VTABLE_ENTRY:
402       TRACE ("BFD_RELOC_VTABLE_ENTRY");
403       return &elf_howto_table[(unsigned) R_XTENSA_GNU_VTENTRY ];
404 
405     case BFD_RELOC_XTENSA_TLSDESC_FN:
406       TRACE ("BFD_RELOC_XTENSA_TLSDESC_FN");
407       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_FN ];
408 
409     case BFD_RELOC_XTENSA_TLSDESC_ARG:
410       TRACE ("BFD_RELOC_XTENSA_TLSDESC_ARG");
411       return &elf_howto_table[(unsigned) R_XTENSA_TLSDESC_ARG ];
412 
413     case BFD_RELOC_XTENSA_TLS_DTPOFF:
414       TRACE ("BFD_RELOC_XTENSA_TLS_DTPOFF");
415       return &elf_howto_table[(unsigned) R_XTENSA_TLS_DTPOFF ];
416 
417     case BFD_RELOC_XTENSA_TLS_TPOFF:
418       TRACE ("BFD_RELOC_XTENSA_TLS_TPOFF");
419       return &elf_howto_table[(unsigned) R_XTENSA_TLS_TPOFF ];
420 
421     case BFD_RELOC_XTENSA_TLS_FUNC:
422       TRACE ("BFD_RELOC_XTENSA_TLS_FUNC");
423       return &elf_howto_table[(unsigned) R_XTENSA_TLS_FUNC ];
424 
425     case BFD_RELOC_XTENSA_TLS_ARG:
426       TRACE ("BFD_RELOC_XTENSA_TLS_ARG");
427       return &elf_howto_table[(unsigned) R_XTENSA_TLS_ARG ];
428 
429     case BFD_RELOC_XTENSA_TLS_CALL:
430       TRACE ("BFD_RELOC_XTENSA_TLS_CALL");
431       return &elf_howto_table[(unsigned) R_XTENSA_TLS_CALL ];
432 
433     default:
434       if (code >= BFD_RELOC_XTENSA_SLOT0_OP
435 	  && code <= BFD_RELOC_XTENSA_SLOT14_OP)
436 	{
437 	  unsigned n = (R_XTENSA_SLOT0_OP +
438 			(code - BFD_RELOC_XTENSA_SLOT0_OP));
439 	  return &elf_howto_table[n];
440 	}
441 
442       if (code >= BFD_RELOC_XTENSA_SLOT0_ALT
443 	  && code <= BFD_RELOC_XTENSA_SLOT14_ALT)
444 	{
445 	  unsigned n = (R_XTENSA_SLOT0_ALT +
446 			(code - BFD_RELOC_XTENSA_SLOT0_ALT));
447 	  return &elf_howto_table[n];
448 	}
449 
450       break;
451     }
452 
453   TRACE ("Unknown");
454   return NULL;
455 }
456 
457 static reloc_howto_type *
458 elf_xtensa_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
459 			      const char *r_name)
460 {
461   unsigned int i;
462 
463   for (i = 0; i < sizeof (elf_howto_table) / sizeof (elf_howto_table[0]); i++)
464     if (elf_howto_table[i].name != NULL
465 	&& strcasecmp (elf_howto_table[i].name, r_name) == 0)
466       return &elf_howto_table[i];
467 
468   return NULL;
469 }
470 
471 
472 /* Given an ELF "rela" relocation, find the corresponding howto and record
473    it in the BFD internal arelent representation of the relocation.  */
474 
475 static void
476 elf_xtensa_info_to_howto_rela (bfd *abfd ATTRIBUTE_UNUSED,
477 			       arelent *cache_ptr,
478 			       Elf_Internal_Rela *dst)
479 {
480   unsigned int r_type = ELF32_R_TYPE (dst->r_info);
481 
482   if (r_type >= (unsigned int) R_XTENSA_max)
483     {
484       /* xgettext:c-format */
485       _bfd_error_handler (_("%B: invalid XTENSA reloc number: %d"), abfd, r_type);
486       r_type = 0;
487     }
488   cache_ptr->howto = &elf_howto_table[r_type];
489 }
490 
491 
492 /* Functions for the Xtensa ELF linker.  */
493 
494 /* The name of the dynamic interpreter.  This is put in the .interp
495    section.  */
496 
497 #define ELF_DYNAMIC_INTERPRETER "/lib/ld.so"
498 
499 /* The size in bytes of an entry in the procedure linkage table.
500    (This does _not_ include the space for the literals associated with
501    the PLT entry.) */
502 
503 #define PLT_ENTRY_SIZE 16
504 
505 /* For _really_ large PLTs, we may need to alternate between literals
506    and code to keep the literals within the 256K range of the L32R
507    instructions in the code.  It's unlikely that anyone would ever need
508    such a big PLT, but an arbitrary limit on the PLT size would be bad.
509    Thus, we split the PLT into chunks.  Since there's very little
510    overhead (2 extra literals) for each chunk, the chunk size is kept
511    small so that the code for handling multiple chunks get used and
512    tested regularly.  With 254 entries, there are 1K of literals for
513    each chunk, and that seems like a nice round number.  */
514 
515 #define PLT_ENTRIES_PER_CHUNK 254
516 
517 /* PLT entries are actually used as stub functions for lazy symbol
518    resolution.  Once the symbol is resolved, the stub function is never
519    invoked.  Note: the 32-byte frame size used here cannot be changed
520    without a corresponding change in the runtime linker.  */
521 
522 static const bfd_byte elf_xtensa_be_plt_entry[PLT_ENTRY_SIZE] =
523 {
524 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
525   0x6c, 0x10, 0x04,	/* entry sp, 32 */
526 #endif
527   0x18, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
528   0x1a, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
529   0x1b, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
530   0x0a, 0x80, 0x00,	/* jx    a8 */
531   0			/* unused */
532 };
533 
534 static const bfd_byte elf_xtensa_le_plt_entry[PLT_ENTRY_SIZE] =
535 {
536 #if XSHAL_ABI == XTHAL_ABI_WINDOWED
537   0x36, 0x41, 0x00,	/* entry sp, 32 */
538 #endif
539   0x81, 0x00, 0x00,	/* l32r  a8, [got entry for rtld's resolver] */
540   0xa1, 0x00, 0x00,	/* l32r  a10, [got entry for rtld's link map] */
541   0xb1, 0x00, 0x00,	/* l32r  a11, [literal for reloc index] */
542   0xa0, 0x08, 0x00,	/* jx    a8 */
543   0			/* unused */
544 };
545 
546 /* The size of the thread control block.  */
547 #define TCB_SIZE	8
548 
549 struct elf_xtensa_link_hash_entry
550 {
551   struct elf_link_hash_entry elf;
552 
553   bfd_signed_vma tlsfunc_refcount;
554 
555 #define GOT_UNKNOWN	0
556 #define GOT_NORMAL	1
557 #define GOT_TLS_GD	2	/* global or local dynamic */
558 #define GOT_TLS_IE	4	/* initial or local exec */
559 #define GOT_TLS_ANY	(GOT_TLS_GD | GOT_TLS_IE)
560   unsigned char tls_type;
561 };
562 
563 #define elf_xtensa_hash_entry(ent) ((struct elf_xtensa_link_hash_entry *)(ent))
564 
565 struct elf_xtensa_obj_tdata
566 {
567   struct elf_obj_tdata root;
568 
569   /* tls_type for each local got entry.  */
570   char *local_got_tls_type;
571 
572   bfd_signed_vma *local_tlsfunc_refcounts;
573 };
574 
575 #define elf_xtensa_tdata(abfd) \
576   ((struct elf_xtensa_obj_tdata *) (abfd)->tdata.any)
577 
578 #define elf_xtensa_local_got_tls_type(abfd) \
579   (elf_xtensa_tdata (abfd)->local_got_tls_type)
580 
581 #define elf_xtensa_local_tlsfunc_refcounts(abfd) \
582   (elf_xtensa_tdata (abfd)->local_tlsfunc_refcounts)
583 
584 #define is_xtensa_elf(bfd) \
585   (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
586    && elf_tdata (bfd) != NULL \
587    && elf_object_id (bfd) == XTENSA_ELF_DATA)
588 
589 static bfd_boolean
590 elf_xtensa_mkobject (bfd *abfd)
591 {
592   return bfd_elf_allocate_object (abfd, sizeof (struct elf_xtensa_obj_tdata),
593 				  XTENSA_ELF_DATA);
594 }
595 
596 /* Xtensa ELF linker hash table.  */
597 
598 struct elf_xtensa_link_hash_table
599 {
600   struct elf_link_hash_table elf;
601 
602   /* Short-cuts to get to dynamic linker sections.  */
603   asection *sgotloc;
604   asection *spltlittbl;
605 
606   /* Total count of PLT relocations seen during check_relocs.
607      The actual PLT code must be split into multiple sections and all
608      the sections have to be created before size_dynamic_sections,
609      where we figure out the exact number of PLT entries that will be
610      needed.  It is OK if this count is an overestimate, e.g., some
611      relocations may be removed by GC.  */
612   int plt_reloc_count;
613 
614   struct elf_xtensa_link_hash_entry *tlsbase;
615 };
616 
617 /* Get the Xtensa ELF linker hash table from a link_info structure.  */
618 
619 #define elf_xtensa_hash_table(p) \
620   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
621   == XTENSA_ELF_DATA ? ((struct elf_xtensa_link_hash_table *) ((p)->hash)) : NULL)
622 
623 /* Create an entry in an Xtensa ELF linker hash table.  */
624 
625 static struct bfd_hash_entry *
626 elf_xtensa_link_hash_newfunc (struct bfd_hash_entry *entry,
627 			      struct bfd_hash_table *table,
628 			      const char *string)
629 {
630   /* Allocate the structure if it has not already been allocated by a
631      subclass.  */
632   if (entry == NULL)
633     {
634       entry = bfd_hash_allocate (table,
635 				 sizeof (struct elf_xtensa_link_hash_entry));
636       if (entry == NULL)
637 	return entry;
638     }
639 
640   /* Call the allocation method of the superclass.  */
641   entry = _bfd_elf_link_hash_newfunc (entry, table, string);
642   if (entry != NULL)
643     {
644       struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (entry);
645       eh->tlsfunc_refcount = 0;
646       eh->tls_type = GOT_UNKNOWN;
647     }
648 
649   return entry;
650 }
651 
652 /* Create an Xtensa ELF linker hash table.  */
653 
654 static struct bfd_link_hash_table *
655 elf_xtensa_link_hash_table_create (bfd *abfd)
656 {
657   struct elf_link_hash_entry *tlsbase;
658   struct elf_xtensa_link_hash_table *ret;
659   bfd_size_type amt = sizeof (struct elf_xtensa_link_hash_table);
660 
661   ret = bfd_zmalloc (amt);
662   if (ret == NULL)
663     return NULL;
664 
665   if (!_bfd_elf_link_hash_table_init (&ret->elf, abfd,
666 				      elf_xtensa_link_hash_newfunc,
667 				      sizeof (struct elf_xtensa_link_hash_entry),
668 				      XTENSA_ELF_DATA))
669     {
670       free (ret);
671       return NULL;
672     }
673 
674   /* Create a hash entry for "_TLS_MODULE_BASE_" to speed up checking
675      for it later.  */
676   tlsbase = elf_link_hash_lookup (&ret->elf, "_TLS_MODULE_BASE_",
677 				  TRUE, FALSE, FALSE);
678   tlsbase->root.type = bfd_link_hash_new;
679   tlsbase->root.u.undef.abfd = NULL;
680   tlsbase->non_elf = 0;
681   ret->tlsbase = elf_xtensa_hash_entry (tlsbase);
682   ret->tlsbase->tls_type = GOT_UNKNOWN;
683 
684   return &ret->elf.root;
685 }
686 
687 /* Copy the extra info we tack onto an elf_link_hash_entry.  */
688 
689 static void
690 elf_xtensa_copy_indirect_symbol (struct bfd_link_info *info,
691 				 struct elf_link_hash_entry *dir,
692 				 struct elf_link_hash_entry *ind)
693 {
694   struct elf_xtensa_link_hash_entry *edir, *eind;
695 
696   edir = elf_xtensa_hash_entry (dir);
697   eind = elf_xtensa_hash_entry (ind);
698 
699   if (ind->root.type == bfd_link_hash_indirect)
700     {
701       edir->tlsfunc_refcount += eind->tlsfunc_refcount;
702       eind->tlsfunc_refcount = 0;
703 
704       if (dir->got.refcount <= 0)
705 	{
706 	  edir->tls_type = eind->tls_type;
707 	  eind->tls_type = GOT_UNKNOWN;
708 	}
709     }
710 
711   _bfd_elf_link_hash_copy_indirect (info, dir, ind);
712 }
713 
714 static inline bfd_boolean
715 elf_xtensa_dynamic_symbol_p (struct elf_link_hash_entry *h,
716 			     struct bfd_link_info *info)
717 {
718   /* Check if we should do dynamic things to this symbol.  The
719      "ignore_protected" argument need not be set, because Xtensa code
720      does not require special handling of STV_PROTECTED to make function
721      pointer comparisons work properly.  The PLT addresses are never
722      used for function pointers.  */
723 
724   return _bfd_elf_dynamic_symbol_p (h, info, 0);
725 }
726 
727 
728 static int
729 property_table_compare (const void *ap, const void *bp)
730 {
731   const property_table_entry *a = (const property_table_entry *) ap;
732   const property_table_entry *b = (const property_table_entry *) bp;
733 
734   if (a->address == b->address)
735     {
736       if (a->size != b->size)
737 	return (a->size - b->size);
738 
739       if ((a->flags & XTENSA_PROP_ALIGN) != (b->flags & XTENSA_PROP_ALIGN))
740 	return ((b->flags & XTENSA_PROP_ALIGN)
741 		- (a->flags & XTENSA_PROP_ALIGN));
742 
743       if ((a->flags & XTENSA_PROP_ALIGN)
744 	  && (GET_XTENSA_PROP_ALIGNMENT (a->flags)
745 	      != GET_XTENSA_PROP_ALIGNMENT (b->flags)))
746 	return (GET_XTENSA_PROP_ALIGNMENT (a->flags)
747 		- GET_XTENSA_PROP_ALIGNMENT (b->flags));
748 
749       if ((a->flags & XTENSA_PROP_UNREACHABLE)
750 	  != (b->flags & XTENSA_PROP_UNREACHABLE))
751 	return ((b->flags & XTENSA_PROP_UNREACHABLE)
752 		- (a->flags & XTENSA_PROP_UNREACHABLE));
753 
754       return (a->flags - b->flags);
755     }
756 
757   return (a->address - b->address);
758 }
759 
760 
761 static int
762 property_table_matches (const void *ap, const void *bp)
763 {
764   const property_table_entry *a = (const property_table_entry *) ap;
765   const property_table_entry *b = (const property_table_entry *) bp;
766 
767   /* Check if one entry overlaps with the other.  */
768   if ((b->address >= a->address && b->address < (a->address + a->size))
769       || (a->address >= b->address && a->address < (b->address + b->size)))
770     return 0;
771 
772   return (a->address - b->address);
773 }
774 
775 
776 /* Get the literal table or property table entries for the given
777    section.  Sets TABLE_P and returns the number of entries.  On
778    error, returns a negative value.  */
779 
780 static int
781 xtensa_read_table_entries (bfd *abfd,
782 			   asection *section,
783 			   property_table_entry **table_p,
784 			   const char *sec_name,
785 			   bfd_boolean output_addr)
786 {
787   asection *table_section;
788   bfd_size_type table_size = 0;
789   bfd_byte *table_data;
790   property_table_entry *blocks;
791   int blk, block_count;
792   bfd_size_type num_records;
793   Elf_Internal_Rela *internal_relocs, *irel, *rel_end;
794   bfd_vma section_addr, off;
795   flagword predef_flags;
796   bfd_size_type table_entry_size, section_limit;
797 
798   if (!section
799       || !(section->flags & SEC_ALLOC)
800       || (section->flags & SEC_DEBUGGING))
801     {
802       *table_p = NULL;
803       return 0;
804     }
805 
806   table_section = xtensa_get_property_section (section, sec_name);
807   if (table_section)
808     table_size = table_section->size;
809 
810   if (table_size == 0)
811     {
812       *table_p = NULL;
813       return 0;
814     }
815 
816   predef_flags = xtensa_get_property_predef_flags (table_section);
817   table_entry_size = 12;
818   if (predef_flags)
819     table_entry_size -= 4;
820 
821   num_records = table_size / table_entry_size;
822   table_data = retrieve_contents (abfd, table_section, TRUE);
823   blocks = (property_table_entry *)
824     bfd_malloc (num_records * sizeof (property_table_entry));
825   block_count = 0;
826 
827   if (output_addr)
828     section_addr = section->output_section->vma + section->output_offset;
829   else
830     section_addr = section->vma;
831 
832   internal_relocs = retrieve_internal_relocs (abfd, table_section, TRUE);
833   if (internal_relocs && !table_section->reloc_done)
834     {
835       qsort (internal_relocs, table_section->reloc_count,
836 	     sizeof (Elf_Internal_Rela), internal_reloc_compare);
837       irel = internal_relocs;
838     }
839   else
840     irel = NULL;
841 
842   section_limit = bfd_get_section_limit (abfd, section);
843   rel_end = internal_relocs + table_section->reloc_count;
844 
845   for (off = 0; off < table_size; off += table_entry_size)
846     {
847       bfd_vma address = bfd_get_32 (abfd, table_data + off);
848 
849       /* Skip any relocations before the current offset.  This should help
850 	 avoid confusion caused by unexpected relocations for the preceding
851 	 table entry.  */
852       while (irel &&
853 	     (irel->r_offset < off
854 	      || (irel->r_offset == off
855 		  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_NONE)))
856 	{
857 	  irel += 1;
858 	  if (irel >= rel_end)
859 	    irel = 0;
860 	}
861 
862       if (irel && irel->r_offset == off)
863 	{
864 	  bfd_vma sym_off;
865 	  unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
866 	  BFD_ASSERT (ELF32_R_TYPE (irel->r_info) == R_XTENSA_32);
867 
868 	  if (get_elf_r_symndx_section (abfd, r_symndx) != section)
869 	    continue;
870 
871 	  sym_off = get_elf_r_symndx_offset (abfd, r_symndx);
872 	  BFD_ASSERT (sym_off == 0);
873 	  address += (section_addr + sym_off + irel->r_addend);
874 	}
875       else
876 	{
877 	  if (address < section_addr
878 	      || address >= section_addr + section_limit)
879 	    continue;
880 	}
881 
882       blocks[block_count].address = address;
883       blocks[block_count].size = bfd_get_32 (abfd, table_data + off + 4);
884       if (predef_flags)
885 	blocks[block_count].flags = predef_flags;
886       else
887 	blocks[block_count].flags = bfd_get_32 (abfd, table_data + off + 8);
888       block_count++;
889     }
890 
891   release_contents (table_section, table_data);
892   release_internal_relocs (table_section, internal_relocs);
893 
894   if (block_count > 0)
895     {
896       /* Now sort them into address order for easy reference.  */
897       qsort (blocks, block_count, sizeof (property_table_entry),
898 	     property_table_compare);
899 
900       /* Check that the table contents are valid.  Problems may occur,
901          for example, if an unrelocated object file is stripped.  */
902       for (blk = 1; blk < block_count; blk++)
903 	{
904 	  /* The only circumstance where two entries may legitimately
905 	     have the same address is when one of them is a zero-size
906 	     placeholder to mark a place where fill can be inserted.
907 	     The zero-size entry should come first.  */
908 	  if (blocks[blk - 1].address == blocks[blk].address &&
909 	      blocks[blk - 1].size != 0)
910 	    {
911 	      /* xgettext:c-format */
912 	      _bfd_error_handler (_("%B(%A): invalid property table"),
913 				  abfd, section);
914 	      bfd_set_error (bfd_error_bad_value);
915 	      free (blocks);
916 	      return -1;
917 	    }
918 	}
919     }
920 
921   *table_p = blocks;
922   return block_count;
923 }
924 
925 
926 static property_table_entry *
927 elf_xtensa_find_property_entry (property_table_entry *property_table,
928 				int property_table_size,
929 				bfd_vma addr)
930 {
931   property_table_entry entry;
932   property_table_entry *rv;
933 
934   if (property_table_size == 0)
935     return NULL;
936 
937   entry.address = addr;
938   entry.size = 1;
939   entry.flags = 0;
940 
941   rv = bsearch (&entry, property_table, property_table_size,
942 		sizeof (property_table_entry), property_table_matches);
943   return rv;
944 }
945 
946 
947 static bfd_boolean
948 elf_xtensa_in_literal_pool (property_table_entry *lit_table,
949 			    int lit_table_size,
950 			    bfd_vma addr)
951 {
952   if (elf_xtensa_find_property_entry (lit_table, lit_table_size, addr))
953     return TRUE;
954 
955   return FALSE;
956 }
957 
958 
959 /* Look through the relocs for a section during the first phase, and
960    calculate needed space in the dynamic reloc sections.  */
961 
962 static bfd_boolean
963 elf_xtensa_check_relocs (bfd *abfd,
964 			 struct bfd_link_info *info,
965 			 asection *sec,
966 			 const Elf_Internal_Rela *relocs)
967 {
968   struct elf_xtensa_link_hash_table *htab;
969   Elf_Internal_Shdr *symtab_hdr;
970   struct elf_link_hash_entry **sym_hashes;
971   const Elf_Internal_Rela *rel;
972   const Elf_Internal_Rela *rel_end;
973 
974   if (bfd_link_relocatable (info) || (sec->flags & SEC_ALLOC) == 0)
975     return TRUE;
976 
977   BFD_ASSERT (is_xtensa_elf (abfd));
978 
979   htab = elf_xtensa_hash_table (info);
980   if (htab == NULL)
981     return FALSE;
982 
983   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
984   sym_hashes = elf_sym_hashes (abfd);
985 
986   rel_end = relocs + sec->reloc_count;
987   for (rel = relocs; rel < rel_end; rel++)
988     {
989       unsigned int r_type;
990       unsigned long r_symndx;
991       struct elf_link_hash_entry *h = NULL;
992       struct elf_xtensa_link_hash_entry *eh;
993       int tls_type, old_tls_type;
994       bfd_boolean is_got = FALSE;
995       bfd_boolean is_plt = FALSE;
996       bfd_boolean is_tlsfunc = FALSE;
997 
998       r_symndx = ELF32_R_SYM (rel->r_info);
999       r_type = ELF32_R_TYPE (rel->r_info);
1000 
1001       if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
1002 	{
1003 	  /* xgettext:c-format */
1004 	  _bfd_error_handler (_("%B: bad symbol index: %d"),
1005 			      abfd, r_symndx);
1006 	  return FALSE;
1007 	}
1008 
1009       if (r_symndx >= symtab_hdr->sh_info)
1010 	{
1011 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1012 	  while (h->root.type == bfd_link_hash_indirect
1013 		 || h->root.type == bfd_link_hash_warning)
1014 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1015 
1016 	  /* PR15323, ref flags aren't set for references in the same
1017 	     object.  */
1018 	  h->root.non_ir_ref = 1;
1019 	}
1020       eh = elf_xtensa_hash_entry (h);
1021 
1022       switch (r_type)
1023 	{
1024 	case R_XTENSA_TLSDESC_FN:
1025 	  if (bfd_link_pic (info))
1026 	    {
1027 	      tls_type = GOT_TLS_GD;
1028 	      is_got = TRUE;
1029 	      is_tlsfunc = TRUE;
1030 	    }
1031 	  else
1032 	    tls_type = GOT_TLS_IE;
1033 	  break;
1034 
1035 	case R_XTENSA_TLSDESC_ARG:
1036 	  if (bfd_link_pic (info))
1037 	    {
1038 	      tls_type = GOT_TLS_GD;
1039 	      is_got = TRUE;
1040 	    }
1041 	  else
1042 	    {
1043 	      tls_type = GOT_TLS_IE;
1044 	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1045 		is_got = TRUE;
1046 	    }
1047 	  break;
1048 
1049 	case R_XTENSA_TLS_DTPOFF:
1050 	  if (bfd_link_pic (info))
1051 	    tls_type = GOT_TLS_GD;
1052 	  else
1053 	    tls_type = GOT_TLS_IE;
1054 	  break;
1055 
1056 	case R_XTENSA_TLS_TPOFF:
1057 	  tls_type = GOT_TLS_IE;
1058 	  if (bfd_link_pic (info))
1059 	    info->flags |= DF_STATIC_TLS;
1060 	  if (bfd_link_pic (info) || h)
1061 	    is_got = TRUE;
1062 	  break;
1063 
1064 	case R_XTENSA_32:
1065 	  tls_type = GOT_NORMAL;
1066 	  is_got = TRUE;
1067 	  break;
1068 
1069 	case R_XTENSA_PLT:
1070 	  tls_type = GOT_NORMAL;
1071 	  is_plt = TRUE;
1072 	  break;
1073 
1074 	case R_XTENSA_GNU_VTINHERIT:
1075 	  /* This relocation describes the C++ object vtable hierarchy.
1076 	     Reconstruct it for later use during GC.  */
1077 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
1078 	    return FALSE;
1079 	  continue;
1080 
1081 	case R_XTENSA_GNU_VTENTRY:
1082 	  /* This relocation describes which C++ vtable entries are actually
1083 	     used.  Record for later use during GC.  */
1084 	  BFD_ASSERT (h != NULL);
1085 	  if (h != NULL
1086 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
1087 	    return FALSE;
1088 	  continue;
1089 
1090 	default:
1091 	  /* Nothing to do for any other relocations.  */
1092 	  continue;
1093 	}
1094 
1095       if (h)
1096 	{
1097 	  if (is_plt)
1098 	    {
1099 	      if (h->plt.refcount <= 0)
1100 		{
1101 		  h->needs_plt = 1;
1102 		  h->plt.refcount = 1;
1103 		}
1104 	      else
1105 		h->plt.refcount += 1;
1106 
1107 	      /* Keep track of the total PLT relocation count even if we
1108 		 don't yet know whether the dynamic sections will be
1109 		 created.  */
1110 	      htab->plt_reloc_count += 1;
1111 
1112 	      if (elf_hash_table (info)->dynamic_sections_created)
1113 		{
1114 		  if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1115 		    return FALSE;
1116 		}
1117 	    }
1118 	  else if (is_got)
1119 	    {
1120 	      if (h->got.refcount <= 0)
1121 		h->got.refcount = 1;
1122 	      else
1123 		h->got.refcount += 1;
1124 	    }
1125 
1126 	  if (is_tlsfunc)
1127 	    eh->tlsfunc_refcount += 1;
1128 
1129 	  old_tls_type = eh->tls_type;
1130 	}
1131       else
1132 	{
1133 	  /* Allocate storage the first time.  */
1134 	  if (elf_local_got_refcounts (abfd) == NULL)
1135 	    {
1136 	      bfd_size_type size = symtab_hdr->sh_info;
1137 	      void *mem;
1138 
1139 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1140 	      if (mem == NULL)
1141 		return FALSE;
1142 	      elf_local_got_refcounts (abfd) = (bfd_signed_vma *) mem;
1143 
1144 	      mem = bfd_zalloc (abfd, size);
1145 	      if (mem == NULL)
1146 		return FALSE;
1147 	      elf_xtensa_local_got_tls_type (abfd) = (char *) mem;
1148 
1149 	      mem = bfd_zalloc (abfd, size * sizeof (bfd_signed_vma));
1150 	      if (mem == NULL)
1151 		return FALSE;
1152 	      elf_xtensa_local_tlsfunc_refcounts (abfd)
1153 		= (bfd_signed_vma *) mem;
1154 	    }
1155 
1156 	  /* This is a global offset table entry for a local symbol.  */
1157 	  if (is_got || is_plt)
1158 	    elf_local_got_refcounts (abfd) [r_symndx] += 1;
1159 
1160 	  if (is_tlsfunc)
1161 	    elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx] += 1;
1162 
1163 	  old_tls_type = elf_xtensa_local_got_tls_type (abfd) [r_symndx];
1164 	}
1165 
1166       if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_IE))
1167 	tls_type |= old_tls_type;
1168       /* If a TLS symbol is accessed using IE at least once,
1169 	 there is no point to use a dynamic model for it.  */
1170       else if (old_tls_type != tls_type && old_tls_type != GOT_UNKNOWN
1171 	       && ((old_tls_type & GOT_TLS_GD) == 0
1172 		   || (tls_type & GOT_TLS_IE) == 0))
1173 	{
1174 	  if ((old_tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GD))
1175 	    tls_type = old_tls_type;
1176 	  else if ((old_tls_type & GOT_TLS_GD) && (tls_type & GOT_TLS_GD))
1177 	    tls_type |= old_tls_type;
1178 	  else
1179 	    {
1180 	      _bfd_error_handler
1181 		/* xgettext:c-format */
1182 		(_("%B: `%s' accessed both as normal and thread local symbol"),
1183 		 abfd,
1184 		 h ? h->root.root.string : "<local>");
1185 	      return FALSE;
1186 	    }
1187 	}
1188 
1189       if (old_tls_type != tls_type)
1190 	{
1191 	  if (eh)
1192 	    eh->tls_type = tls_type;
1193 	  else
1194 	    elf_xtensa_local_got_tls_type (abfd) [r_symndx] = tls_type;
1195 	}
1196     }
1197 
1198   return TRUE;
1199 }
1200 
1201 
1202 static void
1203 elf_xtensa_make_sym_local (struct bfd_link_info *info,
1204                            struct elf_link_hash_entry *h)
1205 {
1206   if (bfd_link_pic (info))
1207     {
1208       if (h->plt.refcount > 0)
1209         {
1210 	  /* For shared objects, there's no need for PLT entries for local
1211 	     symbols (use RELATIVE relocs instead of JMP_SLOT relocs).  */
1212           if (h->got.refcount < 0)
1213             h->got.refcount = 0;
1214           h->got.refcount += h->plt.refcount;
1215           h->plt.refcount = 0;
1216         }
1217     }
1218   else
1219     {
1220       /* Don't need any dynamic relocations at all.  */
1221       h->plt.refcount = 0;
1222       h->got.refcount = 0;
1223     }
1224 }
1225 
1226 
1227 static void
1228 elf_xtensa_hide_symbol (struct bfd_link_info *info,
1229                         struct elf_link_hash_entry *h,
1230                         bfd_boolean force_local)
1231 {
1232   /* For a shared link, move the plt refcount to the got refcount to leave
1233      space for RELATIVE relocs.  */
1234   elf_xtensa_make_sym_local (info, h);
1235 
1236   _bfd_elf_link_hash_hide_symbol (info, h, force_local);
1237 }
1238 
1239 
1240 /* Return the section that should be marked against GC for a given
1241    relocation.  */
1242 
1243 static asection *
1244 elf_xtensa_gc_mark_hook (asection *sec,
1245 			 struct bfd_link_info *info,
1246 			 Elf_Internal_Rela *rel,
1247 			 struct elf_link_hash_entry *h,
1248 			 Elf_Internal_Sym *sym)
1249 {
1250   /* Property sections are marked "KEEP" in the linker scripts, but they
1251      should not cause other sections to be marked.  (This approach relies
1252      on elf_xtensa_discard_info to remove property table entries that
1253      describe discarded sections.  Alternatively, it might be more
1254      efficient to avoid using "KEEP" in the linker scripts and instead use
1255      the gc_mark_extra_sections hook to mark only the property sections
1256      that describe marked sections.  That alternative does not work well
1257      with the current property table sections, which do not correspond
1258      one-to-one with the sections they describe, but that should be fixed
1259      someday.) */
1260   if (xtensa_is_property_section (sec))
1261     return NULL;
1262 
1263   if (h != NULL)
1264     switch (ELF32_R_TYPE (rel->r_info))
1265       {
1266       case R_XTENSA_GNU_VTINHERIT:
1267       case R_XTENSA_GNU_VTENTRY:
1268 	return NULL;
1269       }
1270 
1271   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
1272 }
1273 
1274 
1275 /* Update the GOT & PLT entry reference counts
1276    for the section being removed.  */
1277 
1278 static bfd_boolean
1279 elf_xtensa_gc_sweep_hook (bfd *abfd,
1280 			  struct bfd_link_info *info,
1281 			  asection *sec,
1282 			  const Elf_Internal_Rela *relocs)
1283 {
1284   Elf_Internal_Shdr *symtab_hdr;
1285   struct elf_link_hash_entry **sym_hashes;
1286   const Elf_Internal_Rela *rel, *relend;
1287   struct elf_xtensa_link_hash_table *htab;
1288 
1289   htab = elf_xtensa_hash_table (info);
1290   if (htab == NULL)
1291     return FALSE;
1292 
1293   if (bfd_link_relocatable (info))
1294     return TRUE;
1295 
1296   if ((sec->flags & SEC_ALLOC) == 0)
1297     return TRUE;
1298 
1299   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
1300   sym_hashes = elf_sym_hashes (abfd);
1301 
1302   relend = relocs + sec->reloc_count;
1303   for (rel = relocs; rel < relend; rel++)
1304     {
1305       unsigned long r_symndx;
1306       unsigned int r_type;
1307       struct elf_link_hash_entry *h = NULL;
1308       struct elf_xtensa_link_hash_entry *eh;
1309       bfd_boolean is_got = FALSE;
1310       bfd_boolean is_plt = FALSE;
1311       bfd_boolean is_tlsfunc = FALSE;
1312 
1313       r_symndx = ELF32_R_SYM (rel->r_info);
1314       if (r_symndx >= symtab_hdr->sh_info)
1315 	{
1316 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
1317 	  while (h->root.type == bfd_link_hash_indirect
1318 		 || h->root.type == bfd_link_hash_warning)
1319 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
1320 	}
1321       eh = elf_xtensa_hash_entry (h);
1322 
1323       r_type = ELF32_R_TYPE (rel->r_info);
1324       switch (r_type)
1325 	{
1326 	case R_XTENSA_TLSDESC_FN:
1327 	  if (bfd_link_pic (info))
1328 	    {
1329 	      is_got = TRUE;
1330 	      is_tlsfunc = TRUE;
1331 	    }
1332 	  break;
1333 
1334 	case R_XTENSA_TLSDESC_ARG:
1335 	  if (bfd_link_pic (info))
1336 	    is_got = TRUE;
1337 	  else
1338 	    {
1339 	      if (h && elf_xtensa_hash_entry (h) != htab->tlsbase)
1340 		is_got = TRUE;
1341 	    }
1342 	  break;
1343 
1344 	case R_XTENSA_TLS_TPOFF:
1345 	  if (bfd_link_pic (info) || h)
1346 	    is_got = TRUE;
1347 	  break;
1348 
1349 	case R_XTENSA_32:
1350 	  is_got = TRUE;
1351 	  break;
1352 
1353 	case R_XTENSA_PLT:
1354 	  is_plt = TRUE;
1355 	  break;
1356 
1357 	default:
1358 	  continue;
1359 	}
1360 
1361       if (h)
1362 	{
1363 	  if (is_plt)
1364 	    {
1365 	      /* If the symbol has been localized its plt.refcount got moved
1366 	         to got.refcount.  Handle it as GOT.  */
1367 	      if (h->plt.refcount > 0)
1368 		h->plt.refcount--;
1369 	      else
1370 		is_got = TRUE;
1371 	    }
1372 	  if (is_got)
1373 	    {
1374 	      if (h->got.refcount > 0)
1375 		h->got.refcount--;
1376 	    }
1377 	  if (is_tlsfunc)
1378 	    {
1379 	      if (eh->tlsfunc_refcount > 0)
1380 		eh->tlsfunc_refcount--;
1381 	    }
1382 	}
1383       else
1384 	{
1385 	  if (is_got || is_plt)
1386 	    {
1387 	      bfd_signed_vma *got_refcount
1388 		= &elf_local_got_refcounts (abfd) [r_symndx];
1389 	      if (*got_refcount > 0)
1390 		*got_refcount -= 1;
1391 	    }
1392 	  if (is_tlsfunc)
1393 	    {
1394 	      bfd_signed_vma *tlsfunc_refcount
1395 		= &elf_xtensa_local_tlsfunc_refcounts (abfd) [r_symndx];
1396 	      if (*tlsfunc_refcount > 0)
1397 		*tlsfunc_refcount -= 1;
1398 	    }
1399 	}
1400     }
1401 
1402   return TRUE;
1403 }
1404 
1405 
1406 /* Create all the dynamic sections.  */
1407 
1408 static bfd_boolean
1409 elf_xtensa_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
1410 {
1411   struct elf_xtensa_link_hash_table *htab;
1412   flagword flags, noalloc_flags;
1413 
1414   htab = elf_xtensa_hash_table (info);
1415   if (htab == NULL)
1416     return FALSE;
1417 
1418   /* First do all the standard stuff.  */
1419   if (! _bfd_elf_create_dynamic_sections (dynobj, info))
1420     return FALSE;
1421 
1422   /* Create any extra PLT sections in case check_relocs has already
1423      been called on all the non-dynamic input files.  */
1424   if (! add_extra_plt_sections (info, htab->plt_reloc_count))
1425     return FALSE;
1426 
1427   noalloc_flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
1428 		   | SEC_LINKER_CREATED | SEC_READONLY);
1429   flags = noalloc_flags | SEC_ALLOC | SEC_LOAD;
1430 
1431   /* Mark the ".got.plt" section READONLY.  */
1432   if (htab->elf.sgotplt == NULL
1433       || ! bfd_set_section_flags (dynobj, htab->elf.sgotplt, flags))
1434     return FALSE;
1435 
1436   /* Create ".got.loc" (literal tables for use by dynamic linker).  */
1437   htab->sgotloc = bfd_make_section_anyway_with_flags (dynobj, ".got.loc",
1438 						      flags);
1439   if (htab->sgotloc == NULL
1440       || ! bfd_set_section_alignment (dynobj, htab->sgotloc, 2))
1441     return FALSE;
1442 
1443   /* Create ".xt.lit.plt" (literal table for ".got.plt*").  */
1444   htab->spltlittbl = bfd_make_section_anyway_with_flags (dynobj, ".xt.lit.plt",
1445 							 noalloc_flags);
1446   if (htab->spltlittbl == NULL
1447       || ! bfd_set_section_alignment (dynobj, htab->spltlittbl, 2))
1448     return FALSE;
1449 
1450   return TRUE;
1451 }
1452 
1453 
1454 static bfd_boolean
1455 add_extra_plt_sections (struct bfd_link_info *info, int count)
1456 {
1457   bfd *dynobj = elf_hash_table (info)->dynobj;
1458   int chunk;
1459 
1460   /* Iterate over all chunks except 0 which uses the standard ".plt" and
1461      ".got.plt" sections.  */
1462   for (chunk = count / PLT_ENTRIES_PER_CHUNK; chunk > 0; chunk--)
1463     {
1464       char *sname;
1465       flagword flags;
1466       asection *s;
1467 
1468       /* Stop when we find a section has already been created.  */
1469       if (elf_xtensa_get_plt_section (info, chunk))
1470 	break;
1471 
1472       flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
1473 	       | SEC_LINKER_CREATED | SEC_READONLY);
1474 
1475       sname = (char *) bfd_malloc (10);
1476       sprintf (sname, ".plt.%u", chunk);
1477       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags | SEC_CODE);
1478       if (s == NULL
1479 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1480 	return FALSE;
1481 
1482       sname = (char *) bfd_malloc (14);
1483       sprintf (sname, ".got.plt.%u", chunk);
1484       s = bfd_make_section_anyway_with_flags (dynobj, sname, flags);
1485       if (s == NULL
1486 	  || ! bfd_set_section_alignment (dynobj, s, 2))
1487 	return FALSE;
1488     }
1489 
1490   return TRUE;
1491 }
1492 
1493 
1494 /* Adjust a symbol defined by a dynamic object and referenced by a
1495    regular object.  The current definition is in some section of the
1496    dynamic object, but we're not including those sections.  We have to
1497    change the definition to something the rest of the link can
1498    understand.  */
1499 
1500 static bfd_boolean
1501 elf_xtensa_adjust_dynamic_symbol (struct bfd_link_info *info ATTRIBUTE_UNUSED,
1502 				  struct elf_link_hash_entry *h)
1503 {
1504   /* If this is a weak symbol, and there is a real definition, the
1505      processor independent code will have arranged for us to see the
1506      real definition first, and we can just use the same value.  */
1507   if (h->u.weakdef)
1508     {
1509       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
1510 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
1511       h->root.u.def.section = h->u.weakdef->root.u.def.section;
1512       h->root.u.def.value = h->u.weakdef->root.u.def.value;
1513       return TRUE;
1514     }
1515 
1516   /* This is a reference to a symbol defined by a dynamic object.  The
1517      reference must go through the GOT, so there's no need for COPY relocs,
1518      .dynbss, etc.  */
1519 
1520   return TRUE;
1521 }
1522 
1523 
1524 static bfd_boolean
1525 elf_xtensa_allocate_dynrelocs (struct elf_link_hash_entry *h, void *arg)
1526 {
1527   struct bfd_link_info *info;
1528   struct elf_xtensa_link_hash_table *htab;
1529   struct elf_xtensa_link_hash_entry *eh = elf_xtensa_hash_entry (h);
1530 
1531   if (h->root.type == bfd_link_hash_indirect)
1532     return TRUE;
1533 
1534   info = (struct bfd_link_info *) arg;
1535   htab = elf_xtensa_hash_table (info);
1536   if (htab == NULL)
1537     return FALSE;
1538 
1539   /* If we saw any use of an IE model for this symbol, we can then optimize
1540      away GOT entries for any TLSDESC_FN relocs.  */
1541   if ((eh->tls_type & GOT_TLS_IE) != 0)
1542     {
1543       BFD_ASSERT (h->got.refcount >= eh->tlsfunc_refcount);
1544       h->got.refcount -= eh->tlsfunc_refcount;
1545     }
1546 
1547   if (! elf_xtensa_dynamic_symbol_p (h, info))
1548     elf_xtensa_make_sym_local (info, h);
1549 
1550   if (h->plt.refcount > 0)
1551     htab->elf.srelplt->size += (h->plt.refcount * sizeof (Elf32_External_Rela));
1552 
1553   if (h->got.refcount > 0)
1554     htab->elf.srelgot->size += (h->got.refcount * sizeof (Elf32_External_Rela));
1555 
1556   return TRUE;
1557 }
1558 
1559 
1560 static void
1561 elf_xtensa_allocate_local_got_size (struct bfd_link_info *info)
1562 {
1563   struct elf_xtensa_link_hash_table *htab;
1564   bfd *i;
1565 
1566   htab = elf_xtensa_hash_table (info);
1567   if (htab == NULL)
1568     return;
1569 
1570   for (i = info->input_bfds; i; i = i->link.next)
1571     {
1572       bfd_signed_vma *local_got_refcounts;
1573       bfd_size_type j, cnt;
1574       Elf_Internal_Shdr *symtab_hdr;
1575 
1576       local_got_refcounts = elf_local_got_refcounts (i);
1577       if (!local_got_refcounts)
1578 	continue;
1579 
1580       symtab_hdr = &elf_tdata (i)->symtab_hdr;
1581       cnt = symtab_hdr->sh_info;
1582 
1583       for (j = 0; j < cnt; ++j)
1584 	{
1585 	  /* If we saw any use of an IE model for this symbol, we can
1586 	     then optimize away GOT entries for any TLSDESC_FN relocs.  */
1587 	  if ((elf_xtensa_local_got_tls_type (i) [j] & GOT_TLS_IE) != 0)
1588 	    {
1589 	      bfd_signed_vma *tlsfunc_refcount
1590 		= &elf_xtensa_local_tlsfunc_refcounts (i) [j];
1591 	      BFD_ASSERT (local_got_refcounts[j] >= *tlsfunc_refcount);
1592 	      local_got_refcounts[j] -= *tlsfunc_refcount;
1593 	    }
1594 
1595 	  if (local_got_refcounts[j] > 0)
1596 	    htab->elf.srelgot->size += (local_got_refcounts[j]
1597 					* sizeof (Elf32_External_Rela));
1598 	}
1599     }
1600 }
1601 
1602 
1603 /* Set the sizes of the dynamic sections.  */
1604 
1605 static bfd_boolean
1606 elf_xtensa_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
1607 				  struct bfd_link_info *info)
1608 {
1609   struct elf_xtensa_link_hash_table *htab;
1610   bfd *dynobj, *abfd;
1611   asection *s, *srelplt, *splt, *sgotplt, *srelgot, *spltlittbl, *sgotloc;
1612   bfd_boolean relplt, relgot;
1613   int plt_entries, plt_chunks, chunk;
1614 
1615   plt_entries = 0;
1616   plt_chunks = 0;
1617 
1618   htab = elf_xtensa_hash_table (info);
1619   if (htab == NULL)
1620     return FALSE;
1621 
1622   dynobj = elf_hash_table (info)->dynobj;
1623   if (dynobj == NULL)
1624     abort ();
1625   srelgot = htab->elf.srelgot;
1626   srelplt = htab->elf.srelplt;
1627 
1628   if (elf_hash_table (info)->dynamic_sections_created)
1629     {
1630       BFD_ASSERT (htab->elf.srelgot != NULL
1631 		  && htab->elf.srelplt != NULL
1632 		  && htab->elf.sgot != NULL
1633 		  && htab->spltlittbl != NULL
1634 		  && htab->sgotloc != NULL);
1635 
1636       /* Set the contents of the .interp section to the interpreter.  */
1637       if (bfd_link_executable (info) && !info->nointerp)
1638 	{
1639 	  s = bfd_get_linker_section (dynobj, ".interp");
1640 	  if (s == NULL)
1641 	    abort ();
1642 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
1643 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
1644 	}
1645 
1646       /* Allocate room for one word in ".got".  */
1647       htab->elf.sgot->size = 4;
1648 
1649       /* Allocate space in ".rela.got" for literals that reference global
1650 	 symbols and space in ".rela.plt" for literals that have PLT
1651 	 entries.  */
1652       elf_link_hash_traverse (elf_hash_table (info),
1653 			      elf_xtensa_allocate_dynrelocs,
1654 			      (void *) info);
1655 
1656       /* If we are generating a shared object, we also need space in
1657 	 ".rela.got" for R_XTENSA_RELATIVE relocs for literals that
1658 	 reference local symbols.  */
1659       if (bfd_link_pic (info))
1660 	elf_xtensa_allocate_local_got_size (info);
1661 
1662       /* Allocate space in ".plt" to match the size of ".rela.plt".  For
1663 	 each PLT entry, we need the PLT code plus a 4-byte literal.
1664 	 For each chunk of ".plt", we also need two more 4-byte
1665 	 literals, two corresponding entries in ".rela.got", and an
1666 	 8-byte entry in ".xt.lit.plt".  */
1667       spltlittbl = htab->spltlittbl;
1668       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
1669       plt_chunks =
1670 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
1671 
1672       /* Iterate over all the PLT chunks, including any extra sections
1673 	 created earlier because the initial count of PLT relocations
1674 	 was an overestimate.  */
1675       for (chunk = 0;
1676 	   (splt = elf_xtensa_get_plt_section (info, chunk)) != NULL;
1677 	   chunk++)
1678 	{
1679 	  int chunk_entries;
1680 
1681 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
1682 	  BFD_ASSERT (sgotplt != NULL);
1683 
1684 	  if (chunk < plt_chunks - 1)
1685 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
1686 	  else if (chunk == plt_chunks - 1)
1687 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
1688 	  else
1689 	    chunk_entries = 0;
1690 
1691 	  if (chunk_entries != 0)
1692 	    {
1693 	      sgotplt->size = 4 * (chunk_entries + 2);
1694 	      splt->size = PLT_ENTRY_SIZE * chunk_entries;
1695 	      srelgot->size += 2 * sizeof (Elf32_External_Rela);
1696 	      spltlittbl->size += 8;
1697 	    }
1698 	  else
1699 	    {
1700 	      sgotplt->size = 0;
1701 	      splt->size = 0;
1702 	    }
1703 	}
1704 
1705       /* Allocate space in ".got.loc" to match the total size of all the
1706 	 literal tables.  */
1707       sgotloc = htab->sgotloc;
1708       sgotloc->size = spltlittbl->size;
1709       for (abfd = info->input_bfds; abfd != NULL; abfd = abfd->link.next)
1710 	{
1711 	  if (abfd->flags & DYNAMIC)
1712 	    continue;
1713 	  for (s = abfd->sections; s != NULL; s = s->next)
1714 	    {
1715 	      if (! discarded_section (s)
1716 		  && xtensa_is_littable_section (s)
1717 		  && s != spltlittbl)
1718 		sgotloc->size += s->size;
1719 	    }
1720 	}
1721     }
1722 
1723   /* Allocate memory for dynamic sections.  */
1724   relplt = FALSE;
1725   relgot = FALSE;
1726   for (s = dynobj->sections; s != NULL; s = s->next)
1727     {
1728       const char *name;
1729 
1730       if ((s->flags & SEC_LINKER_CREATED) == 0)
1731 	continue;
1732 
1733       /* It's OK to base decisions on the section name, because none
1734 	 of the dynobj section names depend upon the input files.  */
1735       name = bfd_get_section_name (dynobj, s);
1736 
1737       if (CONST_STRNEQ (name, ".rela"))
1738 	{
1739 	  if (s->size != 0)
1740 	    {
1741 	      if (strcmp (name, ".rela.plt") == 0)
1742 		relplt = TRUE;
1743 	      else if (strcmp (name, ".rela.got") == 0)
1744 		relgot = TRUE;
1745 
1746 	      /* We use the reloc_count field as a counter if we need
1747 		 to copy relocs into the output file.  */
1748 	      s->reloc_count = 0;
1749 	    }
1750 	}
1751       else if (! CONST_STRNEQ (name, ".plt.")
1752 	       && ! CONST_STRNEQ (name, ".got.plt.")
1753 	       && strcmp (name, ".got") != 0
1754 	       && strcmp (name, ".plt") != 0
1755 	       && strcmp (name, ".got.plt") != 0
1756 	       && strcmp (name, ".xt.lit.plt") != 0
1757 	       && strcmp (name, ".got.loc") != 0)
1758 	{
1759 	  /* It's not one of our sections, so don't allocate space.  */
1760 	  continue;
1761 	}
1762 
1763       if (s->size == 0)
1764 	{
1765 	  /* If we don't need this section, strip it from the output
1766 	     file.  We must create the ".plt*" and ".got.plt*"
1767 	     sections in create_dynamic_sections and/or check_relocs
1768 	     based on a conservative estimate of the PLT relocation
1769 	     count, because the sections must be created before the
1770 	     linker maps input sections to output sections.  The
1771 	     linker does that before size_dynamic_sections, where we
1772 	     compute the exact size of the PLT, so there may be more
1773 	     of these sections than are actually needed.  */
1774 	  s->flags |= SEC_EXCLUDE;
1775 	}
1776       else if ((s->flags & SEC_HAS_CONTENTS) != 0)
1777 	{
1778 	  /* Allocate memory for the section contents.  */
1779 	  s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
1780 	  if (s->contents == NULL)
1781 	    return FALSE;
1782 	}
1783     }
1784 
1785   if (elf_hash_table (info)->dynamic_sections_created)
1786     {
1787       /* Add the special XTENSA_RTLD relocations now.  The offsets won't be
1788 	 known until finish_dynamic_sections, but we need to get the relocs
1789 	 in place before they are sorted.  */
1790       for (chunk = 0; chunk < plt_chunks; chunk++)
1791 	{
1792 	  Elf_Internal_Rela irela;
1793 	  bfd_byte *loc;
1794 
1795 	  irela.r_offset = 0;
1796 	  irela.r_info = ELF32_R_INFO (0, R_XTENSA_RTLD);
1797 	  irela.r_addend = 0;
1798 
1799 	  loc = (srelgot->contents
1800 		 + srelgot->reloc_count * sizeof (Elf32_External_Rela));
1801 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
1802 	  bfd_elf32_swap_reloca_out (output_bfd, &irela,
1803 				     loc + sizeof (Elf32_External_Rela));
1804 	  srelgot->reloc_count += 2;
1805 	}
1806 
1807       /* Add some entries to the .dynamic section.  We fill in the
1808 	 values later, in elf_xtensa_finish_dynamic_sections, but we
1809 	 must add the entries now so that we get the correct size for
1810 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
1811 	 dynamic linker and used by the debugger.  */
1812 #define add_dynamic_entry(TAG, VAL) \
1813   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
1814 
1815       if (bfd_link_executable (info))
1816 	{
1817 	  if (!add_dynamic_entry (DT_DEBUG, 0))
1818 	    return FALSE;
1819 	}
1820 
1821       if (relplt)
1822 	{
1823 	  if (!add_dynamic_entry (DT_PLTRELSZ, 0)
1824 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
1825 	      || !add_dynamic_entry (DT_JMPREL, 0))
1826 	    return FALSE;
1827 	}
1828 
1829       if (relgot)
1830 	{
1831 	  if (!add_dynamic_entry (DT_RELA, 0)
1832 	      || !add_dynamic_entry (DT_RELASZ, 0)
1833 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
1834 	    return FALSE;
1835 	}
1836 
1837       if (!add_dynamic_entry (DT_PLTGOT, 0)
1838 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_OFF, 0)
1839 	  || !add_dynamic_entry (DT_XTENSA_GOT_LOC_SZ, 0))
1840 	return FALSE;
1841     }
1842 #undef add_dynamic_entry
1843 
1844   return TRUE;
1845 }
1846 
1847 static bfd_boolean
1848 elf_xtensa_always_size_sections (bfd *output_bfd,
1849 				 struct bfd_link_info *info)
1850 {
1851   struct elf_xtensa_link_hash_table *htab;
1852   asection *tls_sec;
1853 
1854   htab = elf_xtensa_hash_table (info);
1855   if (htab == NULL)
1856     return FALSE;
1857 
1858   tls_sec = htab->elf.tls_sec;
1859 
1860   if (tls_sec && (htab->tlsbase->tls_type & GOT_TLS_ANY) != 0)
1861     {
1862       struct elf_link_hash_entry *tlsbase = &htab->tlsbase->elf;
1863       struct bfd_link_hash_entry *bh = &tlsbase->root;
1864       const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
1865 
1866       tlsbase->type = STT_TLS;
1867       if (!(_bfd_generic_link_add_one_symbol
1868 	    (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
1869 	     tls_sec, 0, NULL, FALSE,
1870 	     bed->collect, &bh)))
1871 	return FALSE;
1872       tlsbase->def_regular = 1;
1873       tlsbase->other = STV_HIDDEN;
1874       (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
1875     }
1876 
1877   return TRUE;
1878 }
1879 
1880 
1881 /* Return the base VMA address which should be subtracted from real addresses
1882    when resolving @dtpoff relocation.
1883    This is PT_TLS segment p_vaddr.  */
1884 
1885 static bfd_vma
1886 dtpoff_base (struct bfd_link_info *info)
1887 {
1888   /* If tls_sec is NULL, we should have signalled an error already.  */
1889   if (elf_hash_table (info)->tls_sec == NULL)
1890     return 0;
1891   return elf_hash_table (info)->tls_sec->vma;
1892 }
1893 
1894 /* Return the relocation value for @tpoff relocation
1895    if STT_TLS virtual address is ADDRESS.  */
1896 
1897 static bfd_vma
1898 tpoff (struct bfd_link_info *info, bfd_vma address)
1899 {
1900   struct elf_link_hash_table *htab = elf_hash_table (info);
1901   bfd_vma base;
1902 
1903   /* If tls_sec is NULL, we should have signalled an error already.  */
1904   if (htab->tls_sec == NULL)
1905     return 0;
1906   base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
1907   return address - htab->tls_sec->vma + base;
1908 }
1909 
1910 /* Perform the specified relocation.  The instruction at (contents + address)
1911    is modified to set one operand to represent the value in "relocation".  The
1912    operand position is determined by the relocation type recorded in the
1913    howto.  */
1914 
1915 #define CALL_SEGMENT_BITS (30)
1916 #define CALL_SEGMENT_SIZE (1 << CALL_SEGMENT_BITS)
1917 
1918 static bfd_reloc_status_type
1919 elf_xtensa_do_reloc (reloc_howto_type *howto,
1920 		     bfd *abfd,
1921 		     asection *input_section,
1922 		     bfd_vma relocation,
1923 		     bfd_byte *contents,
1924 		     bfd_vma address,
1925 		     bfd_boolean is_weak_undef,
1926 		     char **error_message)
1927 {
1928   xtensa_format fmt;
1929   xtensa_opcode opcode;
1930   xtensa_isa isa = xtensa_default_isa;
1931   static xtensa_insnbuf ibuff = NULL;
1932   static xtensa_insnbuf sbuff = NULL;
1933   bfd_vma self_address;
1934   bfd_size_type input_size;
1935   int opnd, slot;
1936   uint32 newval;
1937 
1938   if (!ibuff)
1939     {
1940       ibuff = xtensa_insnbuf_alloc (isa);
1941       sbuff = xtensa_insnbuf_alloc (isa);
1942     }
1943 
1944   input_size = bfd_get_section_limit (abfd, input_section);
1945 
1946   /* Calculate the PC address for this instruction.  */
1947   self_address = (input_section->output_section->vma
1948 		  + input_section->output_offset
1949 		  + address);
1950 
1951   switch (howto->type)
1952     {
1953     case R_XTENSA_NONE:
1954     case R_XTENSA_DIFF8:
1955     case R_XTENSA_DIFF16:
1956     case R_XTENSA_DIFF32:
1957     case R_XTENSA_TLS_FUNC:
1958     case R_XTENSA_TLS_ARG:
1959     case R_XTENSA_TLS_CALL:
1960       return bfd_reloc_ok;
1961 
1962     case R_XTENSA_ASM_EXPAND:
1963       if (!is_weak_undef)
1964 	{
1965 	  /* Check for windowed CALL across a 1GB boundary.  */
1966 	  opcode = get_expanded_call_opcode (contents + address,
1967 					     input_size - address, 0);
1968 	  if (is_windowed_call_opcode (opcode))
1969 	    {
1970 	      if ((self_address >> CALL_SEGMENT_BITS)
1971 		  != (relocation >> CALL_SEGMENT_BITS))
1972 		{
1973 		  *error_message = "windowed longcall crosses 1GB boundary; "
1974 		    "return may fail";
1975 		  return bfd_reloc_dangerous;
1976 		}
1977 	    }
1978 	}
1979       return bfd_reloc_ok;
1980 
1981     case R_XTENSA_ASM_SIMPLIFY:
1982       {
1983         /* Convert the L32R/CALLX to CALL.  */
1984 	bfd_reloc_status_type retval =
1985 	  elf_xtensa_do_asm_simplify (contents, address, input_size,
1986 				      error_message);
1987 	if (retval != bfd_reloc_ok)
1988 	  return bfd_reloc_dangerous;
1989 
1990 	/* The CALL needs to be relocated.  Continue below for that part.  */
1991 	address += 3;
1992 	self_address += 3;
1993 	howto = &elf_howto_table[(unsigned) R_XTENSA_SLOT0_OP ];
1994       }
1995       break;
1996 
1997     case R_XTENSA_32:
1998       {
1999 	bfd_vma x;
2000 	x = bfd_get_32 (abfd, contents + address);
2001 	x = x + relocation;
2002 	bfd_put_32 (abfd, x, contents + address);
2003       }
2004       return bfd_reloc_ok;
2005 
2006     case R_XTENSA_32_PCREL:
2007       bfd_put_32 (abfd, relocation - self_address, contents + address);
2008       return bfd_reloc_ok;
2009 
2010     case R_XTENSA_PLT:
2011     case R_XTENSA_TLSDESC_FN:
2012     case R_XTENSA_TLSDESC_ARG:
2013     case R_XTENSA_TLS_DTPOFF:
2014     case R_XTENSA_TLS_TPOFF:
2015       bfd_put_32 (abfd, relocation, contents + address);
2016       return bfd_reloc_ok;
2017     }
2018 
2019   /* Only instruction slot-specific relocations handled below.... */
2020   slot = get_relocation_slot (howto->type);
2021   if (slot == XTENSA_UNDEFINED)
2022     {
2023       *error_message = "unexpected relocation";
2024       return bfd_reloc_dangerous;
2025     }
2026 
2027   /* Read the instruction into a buffer and decode the opcode.  */
2028   xtensa_insnbuf_from_chars (isa, ibuff, contents + address,
2029 			     input_size - address);
2030   fmt = xtensa_format_decode (isa, ibuff);
2031   if (fmt == XTENSA_UNDEFINED)
2032     {
2033       *error_message = "cannot decode instruction format";
2034       return bfd_reloc_dangerous;
2035     }
2036 
2037   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
2038 
2039   opcode = xtensa_opcode_decode (isa, fmt, slot, sbuff);
2040   if (opcode == XTENSA_UNDEFINED)
2041     {
2042       *error_message = "cannot decode instruction opcode";
2043       return bfd_reloc_dangerous;
2044     }
2045 
2046   /* Check for opcode-specific "alternate" relocations.  */
2047   if (is_alt_relocation (howto->type))
2048     {
2049       if (opcode == get_l32r_opcode ())
2050 	{
2051 	  /* Handle the special-case of non-PC-relative L32R instructions.  */
2052 	  bfd *output_bfd = input_section->output_section->owner;
2053 	  asection *lit4_sec = bfd_get_section_by_name (output_bfd, ".lit4");
2054 	  if (!lit4_sec)
2055 	    {
2056 	      *error_message = "relocation references missing .lit4 section";
2057 	      return bfd_reloc_dangerous;
2058 	    }
2059 	  self_address = ((lit4_sec->vma & ~0xfff)
2060 			  + 0x40000 - 3); /* -3 to compensate for do_reloc */
2061 	  newval = relocation;
2062 	  opnd = 1;
2063 	}
2064       else if (opcode == get_const16_opcode ())
2065 	{
2066 	  /* ALT used for high 16 bits.  */
2067 	  newval = relocation >> 16;
2068 	  opnd = 1;
2069 	}
2070       else
2071 	{
2072 	  /* No other "alternate" relocations currently defined.  */
2073 	  *error_message = "unexpected relocation";
2074 	  return bfd_reloc_dangerous;
2075 	}
2076     }
2077   else /* Not an "alternate" relocation.... */
2078     {
2079       if (opcode == get_const16_opcode ())
2080 	{
2081 	  newval = relocation & 0xffff;
2082 	  opnd = 1;
2083 	}
2084       else
2085 	{
2086 	  /* ...normal PC-relative relocation.... */
2087 
2088 	  /* Determine which operand is being relocated.  */
2089 	  opnd = get_relocation_opnd (opcode, howto->type);
2090 	  if (opnd == XTENSA_UNDEFINED)
2091 	    {
2092 	      *error_message = "unexpected relocation";
2093 	      return bfd_reloc_dangerous;
2094 	    }
2095 
2096 	  if (!howto->pc_relative)
2097 	    {
2098 	      *error_message = "expected PC-relative relocation";
2099 	      return bfd_reloc_dangerous;
2100 	    }
2101 
2102 	  newval = relocation;
2103 	}
2104     }
2105 
2106   /* Apply the relocation.  */
2107   if (xtensa_operand_do_reloc (isa, opcode, opnd, &newval, self_address)
2108       || xtensa_operand_encode (isa, opcode, opnd, &newval)
2109       || xtensa_operand_set_field (isa, opcode, opnd, fmt, slot,
2110 				   sbuff, newval))
2111     {
2112       const char *opname = xtensa_opcode_name (isa, opcode);
2113       const char *msg;
2114 
2115       msg = "cannot encode";
2116       if (is_direct_call_opcode (opcode))
2117 	{
2118 	  if ((relocation & 0x3) != 0)
2119 	    msg = "misaligned call target";
2120 	  else
2121 	    msg = "call target out of range";
2122 	}
2123       else if (opcode == get_l32r_opcode ())
2124 	{
2125 	  if ((relocation & 0x3) != 0)
2126 	    msg = "misaligned literal target";
2127 	  else if (is_alt_relocation (howto->type))
2128 	    msg = "literal target out of range (too many literals)";
2129 	  else if (self_address > relocation)
2130 	    msg = "literal target out of range (try using text-section-literals)";
2131 	  else
2132 	    msg = "literal placed after use";
2133 	}
2134 
2135       *error_message = vsprint_msg (opname, ": %s", strlen (msg) + 2, msg);
2136       return bfd_reloc_dangerous;
2137     }
2138 
2139   /* Check for calls across 1GB boundaries.  */
2140   if (is_direct_call_opcode (opcode)
2141       && is_windowed_call_opcode (opcode))
2142     {
2143       if ((self_address >> CALL_SEGMENT_BITS)
2144 	  != (relocation >> CALL_SEGMENT_BITS))
2145 	{
2146 	  *error_message =
2147 	    "windowed call crosses 1GB boundary; return may fail";
2148 	  return bfd_reloc_dangerous;
2149 	}
2150     }
2151 
2152   /* Write the modified instruction back out of the buffer.  */
2153   xtensa_format_set_slot (isa, fmt, slot, ibuff, sbuff);
2154   xtensa_insnbuf_to_chars (isa, ibuff, contents + address,
2155 			   input_size - address);
2156   return bfd_reloc_ok;
2157 }
2158 
2159 
2160 static char *
2161 vsprint_msg (const char *origmsg, const char *fmt, int arglen, ...)
2162 {
2163   /* To reduce the size of the memory leak,
2164      we only use a single message buffer.  */
2165   static bfd_size_type alloc_size = 0;
2166   static char *message = NULL;
2167   bfd_size_type orig_len, len = 0;
2168   bfd_boolean is_append;
2169   va_list ap;
2170 
2171   va_start (ap, arglen);
2172 
2173   is_append = (origmsg == message);
2174 
2175   orig_len = strlen (origmsg);
2176   len = orig_len + strlen (fmt) + arglen + 20;
2177   if (len > alloc_size)
2178     {
2179       message = (char *) bfd_realloc_or_free (message, len);
2180       alloc_size = len;
2181     }
2182   if (message != NULL)
2183     {
2184       if (!is_append)
2185 	memcpy (message, origmsg, orig_len);
2186       vsprintf (message + orig_len, fmt, ap);
2187     }
2188   va_end (ap);
2189   return message;
2190 }
2191 
2192 
2193 /* This function is registered as the "special_function" in the
2194    Xtensa howto for handling simplify operations.
2195    bfd_perform_relocation / bfd_install_relocation use it to
2196    perform (install) the specified relocation.  Since this replaces the code
2197    in bfd_perform_relocation, it is basically an Xtensa-specific,
2198    stripped-down version of bfd_perform_relocation.  */
2199 
2200 static bfd_reloc_status_type
2201 bfd_elf_xtensa_reloc (bfd *abfd,
2202 		      arelent *reloc_entry,
2203 		      asymbol *symbol,
2204 		      void *data,
2205 		      asection *input_section,
2206 		      bfd *output_bfd,
2207 		      char **error_message)
2208 {
2209   bfd_vma relocation;
2210   bfd_reloc_status_type flag;
2211   bfd_size_type octets = reloc_entry->address * bfd_octets_per_byte (abfd);
2212   bfd_vma output_base = 0;
2213   reloc_howto_type *howto = reloc_entry->howto;
2214   asection *reloc_target_output_section;
2215   bfd_boolean is_weak_undef;
2216 
2217   if (!xtensa_default_isa)
2218     xtensa_default_isa = xtensa_isa_init (0, 0);
2219 
2220   /* ELF relocs are against symbols.  If we are producing relocatable
2221      output, and the reloc is against an external symbol, the resulting
2222      reloc will also be against the same symbol.  In such a case, we
2223      don't want to change anything about the way the reloc is handled,
2224      since it will all be done at final link time.  This test is similar
2225      to what bfd_elf_generic_reloc does except that it lets relocs with
2226      howto->partial_inplace go through even if the addend is non-zero.
2227      (The real problem is that partial_inplace is set for XTENSA_32
2228      relocs to begin with, but that's a long story and there's little we
2229      can do about it now....)  */
2230 
2231   if (output_bfd && (symbol->flags & BSF_SECTION_SYM) == 0)
2232     {
2233       reloc_entry->address += input_section->output_offset;
2234       return bfd_reloc_ok;
2235     }
2236 
2237   /* Is the address of the relocation really within the section?  */
2238   if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2239     return bfd_reloc_outofrange;
2240 
2241   /* Work out which section the relocation is targeted at and the
2242      initial relocation command value.  */
2243 
2244   /* Get symbol value.  (Common symbols are special.)  */
2245   if (bfd_is_com_section (symbol->section))
2246     relocation = 0;
2247   else
2248     relocation = symbol->value;
2249 
2250   reloc_target_output_section = symbol->section->output_section;
2251 
2252   /* Convert input-section-relative symbol value to absolute.  */
2253   if ((output_bfd && !howto->partial_inplace)
2254       || reloc_target_output_section == NULL)
2255     output_base = 0;
2256   else
2257     output_base = reloc_target_output_section->vma;
2258 
2259   relocation += output_base + symbol->section->output_offset;
2260 
2261   /* Add in supplied addend.  */
2262   relocation += reloc_entry->addend;
2263 
2264   /* Here the variable relocation holds the final address of the
2265      symbol we are relocating against, plus any addend.  */
2266   if (output_bfd)
2267     {
2268       if (!howto->partial_inplace)
2269 	{
2270 	  /* This is a partial relocation, and we want to apply the relocation
2271 	     to the reloc entry rather than the raw data.  Everything except
2272 	     relocations against section symbols has already been handled
2273 	     above.  */
2274 
2275 	  BFD_ASSERT (symbol->flags & BSF_SECTION_SYM);
2276 	  reloc_entry->addend = relocation;
2277 	  reloc_entry->address += input_section->output_offset;
2278 	  return bfd_reloc_ok;
2279 	}
2280       else
2281 	{
2282 	  reloc_entry->address += input_section->output_offset;
2283 	  reloc_entry->addend = 0;
2284 	}
2285     }
2286 
2287   is_weak_undef = (bfd_is_und_section (symbol->section)
2288 		   && (symbol->flags & BSF_WEAK) != 0);
2289   flag = elf_xtensa_do_reloc (howto, abfd, input_section, relocation,
2290 			      (bfd_byte *) data, (bfd_vma) octets,
2291 			      is_weak_undef, error_message);
2292 
2293   if (flag == bfd_reloc_dangerous)
2294     {
2295       /* Add the symbol name to the error message.  */
2296       if (! *error_message)
2297 	*error_message = "";
2298       *error_message = vsprint_msg (*error_message, ": (%s + 0x%lx)",
2299 				    strlen (symbol->name) + 17,
2300 				    symbol->name,
2301 				    (unsigned long) reloc_entry->addend);
2302     }
2303 
2304   return flag;
2305 }
2306 
2307 
2308 /* Set up an entry in the procedure linkage table.  */
2309 
2310 static bfd_vma
2311 elf_xtensa_create_plt_entry (struct bfd_link_info *info,
2312 			     bfd *output_bfd,
2313 			     unsigned reloc_index)
2314 {
2315   asection *splt, *sgotplt;
2316   bfd_vma plt_base, got_base;
2317   bfd_vma code_offset, lit_offset, abi_offset;
2318   int chunk;
2319 
2320   chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
2321   splt = elf_xtensa_get_plt_section (info, chunk);
2322   sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
2323   BFD_ASSERT (splt != NULL && sgotplt != NULL);
2324 
2325   plt_base = splt->output_section->vma + splt->output_offset;
2326   got_base = sgotplt->output_section->vma + sgotplt->output_offset;
2327 
2328   lit_offset = 8 + (reloc_index % PLT_ENTRIES_PER_CHUNK) * 4;
2329   code_offset = (reloc_index % PLT_ENTRIES_PER_CHUNK) * PLT_ENTRY_SIZE;
2330 
2331   /* Fill in the literal entry.  This is the offset of the dynamic
2332      relocation entry.  */
2333   bfd_put_32 (output_bfd, reloc_index * sizeof (Elf32_External_Rela),
2334 	      sgotplt->contents + lit_offset);
2335 
2336   /* Fill in the entry in the procedure linkage table.  */
2337   memcpy (splt->contents + code_offset,
2338 	  (bfd_big_endian (output_bfd)
2339 	   ? elf_xtensa_be_plt_entry
2340 	   : elf_xtensa_le_plt_entry),
2341 	  PLT_ENTRY_SIZE);
2342   abi_offset = XSHAL_ABI == XTHAL_ABI_WINDOWED ? 3 : 0;
2343   bfd_put_16 (output_bfd, l32r_offset (got_base + 0,
2344 				       plt_base + code_offset + abi_offset),
2345 	      splt->contents + code_offset + abi_offset + 1);
2346   bfd_put_16 (output_bfd, l32r_offset (got_base + 4,
2347 				       plt_base + code_offset + abi_offset + 3),
2348 	      splt->contents + code_offset + abi_offset + 4);
2349   bfd_put_16 (output_bfd, l32r_offset (got_base + lit_offset,
2350 				       plt_base + code_offset + abi_offset + 6),
2351 	      splt->contents + code_offset + abi_offset + 7);
2352 
2353   return plt_base + code_offset;
2354 }
2355 
2356 
2357 static bfd_boolean get_indirect_call_dest_reg (xtensa_opcode, unsigned *);
2358 
2359 static bfd_boolean
2360 replace_tls_insn (Elf_Internal_Rela *rel,
2361 		  bfd *abfd,
2362 		  asection *input_section,
2363 		  bfd_byte *contents,
2364 		  bfd_boolean is_ld_model,
2365 		  char **error_message)
2366 {
2367   static xtensa_insnbuf ibuff = NULL;
2368   static xtensa_insnbuf sbuff = NULL;
2369   xtensa_isa isa = xtensa_default_isa;
2370   xtensa_format fmt;
2371   xtensa_opcode old_op, new_op;
2372   bfd_size_type input_size;
2373   int r_type;
2374   unsigned dest_reg, src_reg;
2375 
2376   if (ibuff == NULL)
2377     {
2378       ibuff = xtensa_insnbuf_alloc (isa);
2379       sbuff = xtensa_insnbuf_alloc (isa);
2380     }
2381 
2382   input_size = bfd_get_section_limit (abfd, input_section);
2383 
2384   /* Read the instruction into a buffer and decode the opcode.  */
2385   xtensa_insnbuf_from_chars (isa, ibuff, contents + rel->r_offset,
2386 			     input_size - rel->r_offset);
2387   fmt = xtensa_format_decode (isa, ibuff);
2388   if (fmt == XTENSA_UNDEFINED)
2389     {
2390       *error_message = "cannot decode instruction format";
2391       return FALSE;
2392     }
2393 
2394   BFD_ASSERT (xtensa_format_num_slots (isa, fmt) == 1);
2395   xtensa_format_get_slot (isa, fmt, 0, ibuff, sbuff);
2396 
2397   old_op = xtensa_opcode_decode (isa, fmt, 0, sbuff);
2398   if (old_op == XTENSA_UNDEFINED)
2399     {
2400       *error_message = "cannot decode instruction opcode";
2401       return FALSE;
2402     }
2403 
2404   r_type = ELF32_R_TYPE (rel->r_info);
2405   switch (r_type)
2406     {
2407     case R_XTENSA_TLS_FUNC:
2408     case R_XTENSA_TLS_ARG:
2409       if (old_op != get_l32r_opcode ()
2410 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2411 				       sbuff, &dest_reg) != 0)
2412 	{
2413 	  *error_message = "cannot extract L32R destination for TLS access";
2414 	  return FALSE;
2415 	}
2416       break;
2417 
2418     case R_XTENSA_TLS_CALL:
2419       if (! get_indirect_call_dest_reg (old_op, &dest_reg)
2420 	  || xtensa_operand_get_field (isa, old_op, 0, fmt, 0,
2421 				       sbuff, &src_reg) != 0)
2422 	{
2423 	  *error_message = "cannot extract CALLXn operands for TLS access";
2424 	  return FALSE;
2425 	}
2426       break;
2427 
2428     default:
2429       abort ();
2430     }
2431 
2432   if (is_ld_model)
2433     {
2434       switch (r_type)
2435 	{
2436 	case R_XTENSA_TLS_FUNC:
2437 	case R_XTENSA_TLS_ARG:
2438 	  /* Change the instruction to a NOP (or "OR a1, a1, a1" for older
2439 	     versions of Xtensa).  */
2440 	  new_op = xtensa_opcode_lookup (isa, "nop");
2441 	  if (new_op == XTENSA_UNDEFINED)
2442 	    {
2443 	      new_op = xtensa_opcode_lookup (isa, "or");
2444 	      if (new_op == XTENSA_UNDEFINED
2445 		  || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2446 		  || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2447 					       sbuff, 1) != 0
2448 		  || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2449 					       sbuff, 1) != 0
2450 		  || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2451 					       sbuff, 1) != 0)
2452 		{
2453 		  *error_message = "cannot encode OR for TLS access";
2454 		  return FALSE;
2455 		}
2456 	    }
2457 	  else
2458 	    {
2459 	      if (xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0)
2460 		{
2461 		  *error_message = "cannot encode NOP for TLS access";
2462 		  return FALSE;
2463 		}
2464 	    }
2465 	  break;
2466 
2467 	case R_XTENSA_TLS_CALL:
2468 	  /* Read THREADPTR into the CALLX's return value register.  */
2469 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2470 	  if (new_op == XTENSA_UNDEFINED
2471 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2472 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2473 					   sbuff, dest_reg + 2) != 0)
2474 	    {
2475 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2476 	      return FALSE;
2477 	    }
2478 	  break;
2479 	}
2480     }
2481   else
2482     {
2483       switch (r_type)
2484 	{
2485 	case R_XTENSA_TLS_FUNC:
2486 	  new_op = xtensa_opcode_lookup (isa, "rur.threadptr");
2487 	  if (new_op == XTENSA_UNDEFINED
2488 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2489 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2490 					   sbuff, dest_reg) != 0)
2491 	    {
2492 	      *error_message = "cannot encode RUR.THREADPTR for TLS access";
2493 	      return FALSE;
2494 	    }
2495 	  break;
2496 
2497 	case R_XTENSA_TLS_ARG:
2498 	  /* Nothing to do.  Keep the original L32R instruction.  */
2499 	  return TRUE;
2500 
2501 	case R_XTENSA_TLS_CALL:
2502 	  /* Add the CALLX's src register (holding the THREADPTR value)
2503 	     to the first argument register (holding the offset) and put
2504 	     the result in the CALLX's return value register.  */
2505 	  new_op = xtensa_opcode_lookup (isa, "add");
2506 	  if (new_op == XTENSA_UNDEFINED
2507 	      || xtensa_opcode_encode (isa, fmt, 0, sbuff, new_op) != 0
2508 	      || xtensa_operand_set_field (isa, new_op, 0, fmt, 0,
2509 					   sbuff, dest_reg + 2) != 0
2510 	      || xtensa_operand_set_field (isa, new_op, 1, fmt, 0,
2511 					   sbuff, dest_reg + 2) != 0
2512 	      || xtensa_operand_set_field (isa, new_op, 2, fmt, 0,
2513 					   sbuff, src_reg) != 0)
2514 	    {
2515 	      *error_message = "cannot encode ADD for TLS access";
2516 	      return FALSE;
2517 	    }
2518 	  break;
2519 	}
2520     }
2521 
2522   xtensa_format_set_slot (isa, fmt, 0, ibuff, sbuff);
2523   xtensa_insnbuf_to_chars (isa, ibuff, contents + rel->r_offset,
2524                            input_size - rel->r_offset);
2525 
2526   return TRUE;
2527 }
2528 
2529 
2530 #define IS_XTENSA_TLS_RELOC(R_TYPE) \
2531   ((R_TYPE) == R_XTENSA_TLSDESC_FN \
2532    || (R_TYPE) == R_XTENSA_TLSDESC_ARG \
2533    || (R_TYPE) == R_XTENSA_TLS_DTPOFF \
2534    || (R_TYPE) == R_XTENSA_TLS_TPOFF \
2535    || (R_TYPE) == R_XTENSA_TLS_FUNC \
2536    || (R_TYPE) == R_XTENSA_TLS_ARG \
2537    || (R_TYPE) == R_XTENSA_TLS_CALL)
2538 
2539 /* Relocate an Xtensa ELF section.  This is invoked by the linker for
2540    both relocatable and final links.  */
2541 
2542 static bfd_boolean
2543 elf_xtensa_relocate_section (bfd *output_bfd,
2544 			     struct bfd_link_info *info,
2545 			     bfd *input_bfd,
2546 			     asection *input_section,
2547 			     bfd_byte *contents,
2548 			     Elf_Internal_Rela *relocs,
2549 			     Elf_Internal_Sym *local_syms,
2550 			     asection **local_sections)
2551 {
2552   struct elf_xtensa_link_hash_table *htab;
2553   Elf_Internal_Shdr *symtab_hdr;
2554   Elf_Internal_Rela *rel;
2555   Elf_Internal_Rela *relend;
2556   struct elf_link_hash_entry **sym_hashes;
2557   property_table_entry *lit_table = 0;
2558   int ltblsize = 0;
2559   char *local_got_tls_types;
2560   char *error_message = NULL;
2561   bfd_size_type input_size;
2562   int tls_type;
2563 
2564   if (!xtensa_default_isa)
2565     xtensa_default_isa = xtensa_isa_init (0, 0);
2566 
2567   BFD_ASSERT (is_xtensa_elf (input_bfd));
2568 
2569   htab = elf_xtensa_hash_table (info);
2570   if (htab == NULL)
2571     return FALSE;
2572 
2573   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
2574   sym_hashes = elf_sym_hashes (input_bfd);
2575   local_got_tls_types = elf_xtensa_local_got_tls_type (input_bfd);
2576 
2577   if (elf_hash_table (info)->dynamic_sections_created)
2578     {
2579       ltblsize = xtensa_read_table_entries (input_bfd, input_section,
2580 					    &lit_table, XTENSA_LIT_SEC_NAME,
2581 					    TRUE);
2582       if (ltblsize < 0)
2583 	return FALSE;
2584     }
2585 
2586   input_size = bfd_get_section_limit (input_bfd, input_section);
2587 
2588   rel = relocs;
2589   relend = relocs + input_section->reloc_count;
2590   for (; rel < relend; rel++)
2591     {
2592       int r_type;
2593       reloc_howto_type *howto;
2594       unsigned long r_symndx;
2595       struct elf_link_hash_entry *h;
2596       Elf_Internal_Sym *sym;
2597       char sym_type;
2598       const char *name;
2599       asection *sec;
2600       bfd_vma relocation;
2601       bfd_reloc_status_type r;
2602       bfd_boolean is_weak_undef;
2603       bfd_boolean unresolved_reloc;
2604       bfd_boolean warned;
2605       bfd_boolean dynamic_symbol;
2606 
2607       r_type = ELF32_R_TYPE (rel->r_info);
2608       if (r_type == (int) R_XTENSA_GNU_VTINHERIT
2609 	  || r_type == (int) R_XTENSA_GNU_VTENTRY)
2610 	continue;
2611 
2612       if (r_type < 0 || r_type >= (int) R_XTENSA_max)
2613 	{
2614 	  bfd_set_error (bfd_error_bad_value);
2615 	  return FALSE;
2616 	}
2617       howto = &elf_howto_table[r_type];
2618 
2619       r_symndx = ELF32_R_SYM (rel->r_info);
2620 
2621       h = NULL;
2622       sym = NULL;
2623       sec = NULL;
2624       is_weak_undef = FALSE;
2625       unresolved_reloc = FALSE;
2626       warned = FALSE;
2627 
2628       if (howto->partial_inplace && !bfd_link_relocatable (info))
2629 	{
2630 	  /* Because R_XTENSA_32 was made partial_inplace to fix some
2631 	     problems with DWARF info in partial links, there may be
2632 	     an addend stored in the contents.  Take it out of there
2633 	     and move it back into the addend field of the reloc.  */
2634 	  rel->r_addend += bfd_get_32 (input_bfd, contents + rel->r_offset);
2635 	  bfd_put_32 (input_bfd, 0, contents + rel->r_offset);
2636 	}
2637 
2638       if (r_symndx < symtab_hdr->sh_info)
2639 	{
2640 	  sym = local_syms + r_symndx;
2641 	  sym_type = ELF32_ST_TYPE (sym->st_info);
2642 	  sec = local_sections[r_symndx];
2643 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
2644 	}
2645       else
2646 	{
2647 	  bfd_boolean ignored;
2648 
2649 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
2650 				   r_symndx, symtab_hdr, sym_hashes,
2651 				   h, sec, relocation,
2652 				   unresolved_reloc, warned, ignored);
2653 
2654 	  if (relocation == 0
2655 	      && !unresolved_reloc
2656 	      && h->root.type == bfd_link_hash_undefweak)
2657 	    is_weak_undef = TRUE;
2658 
2659 	  sym_type = h->type;
2660 	}
2661 
2662       if (sec != NULL && discarded_section (sec))
2663 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
2664 					 rel, 1, relend, howto, 0, contents);
2665 
2666       if (bfd_link_relocatable (info))
2667 	{
2668 	  bfd_vma dest_addr;
2669 	  asection * sym_sec = get_elf_r_symndx_section (input_bfd, r_symndx);
2670 
2671 	  /* This is a relocatable link.
2672 	     1) If the reloc is against a section symbol, adjust
2673 	     according to the output section.
2674 	     2) If there is a new target for this relocation,
2675 	     the new target will be in the same output section.
2676 	     We adjust the relocation by the output section
2677 	     difference.  */
2678 
2679 	  if (relaxing_section)
2680 	    {
2681 	      /* Check if this references a section in another input file.  */
2682 	      if (!do_fix_for_relocatable_link (rel, input_bfd, input_section,
2683 						contents))
2684 		return FALSE;
2685 	    }
2686 
2687 	  dest_addr = sym_sec->output_section->vma + sym_sec->output_offset
2688 	    + get_elf_r_symndx_offset (input_bfd, r_symndx) + rel->r_addend;
2689 
2690 	  if (r_type == R_XTENSA_ASM_SIMPLIFY)
2691 	    {
2692 	      error_message = NULL;
2693 	      /* Convert ASM_SIMPLIFY into the simpler relocation
2694 		 so that they never escape a relaxing link.  */
2695 	      r = contract_asm_expansion (contents, input_size, rel,
2696 					  &error_message);
2697 	      if (r != bfd_reloc_ok)
2698 		(*info->callbacks->reloc_dangerous)
2699 		  (info, error_message,
2700 		   input_bfd, input_section, rel->r_offset);
2701 
2702 	      r_type = ELF32_R_TYPE (rel->r_info);
2703 	    }
2704 
2705 	  /* This is a relocatable link, so we don't have to change
2706 	     anything unless the reloc is against a section symbol,
2707 	     in which case we have to adjust according to where the
2708 	     section symbol winds up in the output section.  */
2709 	  if (r_symndx < symtab_hdr->sh_info)
2710 	    {
2711 	      sym = local_syms + r_symndx;
2712 	      if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
2713 		{
2714 		  sec = local_sections[r_symndx];
2715 		  rel->r_addend += sec->output_offset + sym->st_value;
2716 		}
2717 	    }
2718 
2719 	  /* If there is an addend with a partial_inplace howto,
2720 	     then move the addend to the contents.  This is a hack
2721 	     to work around problems with DWARF in relocatable links
2722 	     with some previous version of BFD.  Now we can't easily get
2723 	     rid of the hack without breaking backward compatibility.... */
2724 	  r = bfd_reloc_ok;
2725 	  howto = &elf_howto_table[r_type];
2726 	  if (howto->partial_inplace && rel->r_addend)
2727 	    {
2728 	      r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2729 				       rel->r_addend, contents,
2730 				       rel->r_offset, FALSE,
2731 				       &error_message);
2732 	      rel->r_addend = 0;
2733 	    }
2734 	  else
2735 	    {
2736 	      /* Put the correct bits in the target instruction, even
2737 		 though the relocation will still be present in the output
2738 		 file.  This makes disassembly clearer, as well as
2739 		 allowing loadable kernel modules to work without needing
2740 		 relocations on anything other than calls and l32r's.  */
2741 
2742 	      /* If it is not in the same section, there is nothing we can do.  */
2743 	      if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP &&
2744 		  sym_sec->output_section == input_section->output_section)
2745 		{
2746 		  r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
2747 					   dest_addr, contents,
2748 					   rel->r_offset, FALSE,
2749 					   &error_message);
2750 		}
2751 	    }
2752 	  if (r != bfd_reloc_ok)
2753 	    (*info->callbacks->reloc_dangerous)
2754 	      (info, error_message,
2755 	       input_bfd, input_section, rel->r_offset);
2756 
2757 	  /* Done with work for relocatable link; continue with next reloc.  */
2758 	  continue;
2759 	}
2760 
2761       /* This is a final link.  */
2762 
2763       if (relaxing_section)
2764 	{
2765 	  /* Check if this references a section in another input file.  */
2766 	  do_fix_for_final_link (rel, input_bfd, input_section, contents,
2767 				 &relocation);
2768 	}
2769 
2770       /* Sanity check the address.  */
2771       if (rel->r_offset >= input_size
2772 	  && ELF32_R_TYPE (rel->r_info) != R_XTENSA_NONE)
2773 	{
2774 	  _bfd_error_handler
2775 	    /* xgettext:c-format */
2776 	    (_("%B(%A+0x%lx): relocation offset out of range (size=0x%x)"),
2777 	     input_bfd, input_section, rel->r_offset, input_size);
2778 	  bfd_set_error (bfd_error_bad_value);
2779 	  return FALSE;
2780 	}
2781 
2782       if (h != NULL)
2783 	name = h->root.root.string;
2784       else
2785 	{
2786 	  name = (bfd_elf_string_from_elf_section
2787 		  (input_bfd, symtab_hdr->sh_link, sym->st_name));
2788 	  if (name == NULL || *name == '\0')
2789 	    name = bfd_section_name (input_bfd, sec);
2790 	}
2791 
2792       if (r_symndx != STN_UNDEF
2793 	  && r_type != R_XTENSA_NONE
2794 	  && (h == NULL
2795 	      || h->root.type == bfd_link_hash_defined
2796 	      || h->root.type == bfd_link_hash_defweak)
2797 	  && IS_XTENSA_TLS_RELOC (r_type) != (sym_type == STT_TLS))
2798 	{
2799 	  _bfd_error_handler
2800 	    ((sym_type == STT_TLS
2801 	      /* xgettext:c-format */
2802 	      ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
2803 	      /* xgettext:c-format */
2804 	      : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
2805 	     input_bfd,
2806 	     input_section,
2807 	     (long) rel->r_offset,
2808 	     howto->name,
2809 	     name);
2810 	}
2811 
2812       dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
2813 
2814       tls_type = GOT_UNKNOWN;
2815       if (h)
2816 	tls_type = elf_xtensa_hash_entry (h)->tls_type;
2817       else if (local_got_tls_types)
2818 	tls_type = local_got_tls_types [r_symndx];
2819 
2820       switch (r_type)
2821 	{
2822 	case R_XTENSA_32:
2823 	case R_XTENSA_PLT:
2824 	  if (elf_hash_table (info)->dynamic_sections_created
2825 	      && (input_section->flags & SEC_ALLOC) != 0
2826 	      && (dynamic_symbol || bfd_link_pic (info)))
2827 	    {
2828 	      Elf_Internal_Rela outrel;
2829 	      bfd_byte *loc;
2830 	      asection *srel;
2831 
2832 	      if (dynamic_symbol && r_type == R_XTENSA_PLT)
2833 		srel = htab->elf.srelplt;
2834 	      else
2835 		srel = htab->elf.srelgot;
2836 
2837 	      BFD_ASSERT (srel != NULL);
2838 
2839 	      outrel.r_offset =
2840 		_bfd_elf_section_offset (output_bfd, info,
2841 					 input_section, rel->r_offset);
2842 
2843 	      if ((outrel.r_offset | 1) == (bfd_vma) -1)
2844 		memset (&outrel, 0, sizeof outrel);
2845 	      else
2846 		{
2847 		  outrel.r_offset += (input_section->output_section->vma
2848 				      + input_section->output_offset);
2849 
2850 		  /* Complain if the relocation is in a read-only section
2851 		     and not in a literal pool.  */
2852 		  if ((input_section->flags & SEC_READONLY) != 0
2853 		      && !elf_xtensa_in_literal_pool (lit_table, ltblsize,
2854 						      outrel.r_offset))
2855 		    {
2856 		      error_message =
2857 			_("dynamic relocation in read-only section");
2858 		      (*info->callbacks->reloc_dangerous)
2859 			(info, error_message,
2860 			 input_bfd, input_section, rel->r_offset);
2861 		    }
2862 
2863 		  if (dynamic_symbol)
2864 		    {
2865 		      outrel.r_addend = rel->r_addend;
2866 		      rel->r_addend = 0;
2867 
2868 		      if (r_type == R_XTENSA_32)
2869 			{
2870 			  outrel.r_info =
2871 			    ELF32_R_INFO (h->dynindx, R_XTENSA_GLOB_DAT);
2872 			  relocation = 0;
2873 			}
2874 		      else /* r_type == R_XTENSA_PLT */
2875 			{
2876 			  outrel.r_info =
2877 			    ELF32_R_INFO (h->dynindx, R_XTENSA_JMP_SLOT);
2878 
2879 			  /* Create the PLT entry and set the initial
2880 			     contents of the literal entry to the address of
2881 			     the PLT entry.  */
2882 			  relocation =
2883 			    elf_xtensa_create_plt_entry (info, output_bfd,
2884 							 srel->reloc_count);
2885 			}
2886 		      unresolved_reloc = FALSE;
2887 		    }
2888 		  else
2889 		    {
2890 		      /* Generate a RELATIVE relocation.  */
2891 		      outrel.r_info = ELF32_R_INFO (0, R_XTENSA_RELATIVE);
2892 		      outrel.r_addend = 0;
2893 		    }
2894 		}
2895 
2896 	      loc = (srel->contents
2897 		     + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2898 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2899 	      BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2900 			  <= srel->size);
2901 	    }
2902 	  else if (r_type == R_XTENSA_ASM_EXPAND && dynamic_symbol)
2903 	    {
2904 	      /* This should only happen for non-PIC code, which is not
2905 		 supposed to be used on systems with dynamic linking.
2906 		 Just ignore these relocations.  */
2907 	      continue;
2908 	    }
2909 	  break;
2910 
2911 	case R_XTENSA_TLS_TPOFF:
2912 	  /* Switch to LE model for local symbols in an executable.  */
2913 	  if (! bfd_link_pic (info) && ! dynamic_symbol)
2914 	    {
2915 	      relocation = tpoff (info, relocation);
2916 	      break;
2917 	    }
2918 	  /* fall through */
2919 
2920 	case R_XTENSA_TLSDESC_FN:
2921 	case R_XTENSA_TLSDESC_ARG:
2922 	  {
2923 	    if (r_type == R_XTENSA_TLSDESC_FN)
2924 	      {
2925 		if (! bfd_link_pic (info) || (tls_type & GOT_TLS_IE) != 0)
2926 		  r_type = R_XTENSA_NONE;
2927 	      }
2928 	    else if (r_type == R_XTENSA_TLSDESC_ARG)
2929 	      {
2930 		if (bfd_link_pic (info))
2931 		  {
2932 		    if ((tls_type & GOT_TLS_IE) != 0)
2933 		      r_type = R_XTENSA_TLS_TPOFF;
2934 		  }
2935 		else
2936 		  {
2937 		    r_type = R_XTENSA_TLS_TPOFF;
2938 		    if (! dynamic_symbol)
2939 		      {
2940 			relocation = tpoff (info, relocation);
2941 			break;
2942 		      }
2943 		  }
2944 	      }
2945 
2946 	    if (r_type == R_XTENSA_NONE)
2947 	      /* Nothing to do here; skip to the next reloc.  */
2948 	      continue;
2949 
2950 	    if (! elf_hash_table (info)->dynamic_sections_created)
2951 	      {
2952 		error_message =
2953 		  _("TLS relocation invalid without dynamic sections");
2954 		(*info->callbacks->reloc_dangerous)
2955 		  (info, error_message,
2956 		   input_bfd, input_section, rel->r_offset);
2957 	      }
2958 	    else
2959 	      {
2960 		Elf_Internal_Rela outrel;
2961 		bfd_byte *loc;
2962 		asection *srel = htab->elf.srelgot;
2963 		int indx;
2964 
2965 		outrel.r_offset = (input_section->output_section->vma
2966 				   + input_section->output_offset
2967 				   + rel->r_offset);
2968 
2969 		/* Complain if the relocation is in a read-only section
2970 		   and not in a literal pool.  */
2971 		if ((input_section->flags & SEC_READONLY) != 0
2972 		    && ! elf_xtensa_in_literal_pool (lit_table, ltblsize,
2973 						     outrel.r_offset))
2974 		  {
2975 		    error_message =
2976 		      _("dynamic relocation in read-only section");
2977 		    (*info->callbacks->reloc_dangerous)
2978 		      (info, error_message,
2979 		       input_bfd, input_section, rel->r_offset);
2980 		  }
2981 
2982 		indx = h && h->dynindx != -1 ? h->dynindx : 0;
2983 		if (indx == 0)
2984 		  outrel.r_addend = relocation - dtpoff_base (info);
2985 		else
2986 		  outrel.r_addend = 0;
2987 		rel->r_addend = 0;
2988 
2989 		outrel.r_info = ELF32_R_INFO (indx, r_type);
2990 		relocation = 0;
2991 		unresolved_reloc = FALSE;
2992 
2993 		BFD_ASSERT (srel);
2994 		loc = (srel->contents
2995 		       + srel->reloc_count++ * sizeof (Elf32_External_Rela));
2996 		bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
2997 		BFD_ASSERT (sizeof (Elf32_External_Rela) * srel->reloc_count
2998 			    <= srel->size);
2999 	      }
3000 	  }
3001 	  break;
3002 
3003 	case R_XTENSA_TLS_DTPOFF:
3004 	  if (! bfd_link_pic (info))
3005 	    /* Switch from LD model to LE model.  */
3006 	    relocation = tpoff (info, relocation);
3007 	  else
3008 	    relocation -= dtpoff_base (info);
3009 	  break;
3010 
3011 	case R_XTENSA_TLS_FUNC:
3012 	case R_XTENSA_TLS_ARG:
3013 	case R_XTENSA_TLS_CALL:
3014 	  /* Check if optimizing to IE or LE model.  */
3015 	  if ((tls_type & GOT_TLS_IE) != 0)
3016 	    {
3017 	      bfd_boolean is_ld_model =
3018 		(h && elf_xtensa_hash_entry (h) == htab->tlsbase);
3019 	      if (! replace_tls_insn (rel, input_bfd, input_section, contents,
3020 				      is_ld_model, &error_message))
3021 		(*info->callbacks->reloc_dangerous)
3022 		  (info, error_message,
3023 		   input_bfd, input_section, rel->r_offset);
3024 
3025 	      if (r_type != R_XTENSA_TLS_ARG || is_ld_model)
3026 		{
3027 		  /* Skip subsequent relocations on the same instruction.  */
3028 		  while (rel + 1 < relend && rel[1].r_offset == rel->r_offset)
3029 		    rel++;
3030 		}
3031 	    }
3032 	  continue;
3033 
3034 	default:
3035 	  if (elf_hash_table (info)->dynamic_sections_created
3036 	      && dynamic_symbol && (is_operand_relocation (r_type)
3037 				    || r_type == R_XTENSA_32_PCREL))
3038 	    {
3039 	      error_message =
3040 		vsprint_msg ("invalid relocation for dynamic symbol", ": %s",
3041 			     strlen (name) + 2, name);
3042 	      (*info->callbacks->reloc_dangerous)
3043 		(info, error_message, input_bfd, input_section, rel->r_offset);
3044 	      continue;
3045 	    }
3046 	  break;
3047 	}
3048 
3049       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
3050 	 because such sections are not SEC_ALLOC and thus ld.so will
3051 	 not process them.  */
3052       if (unresolved_reloc
3053 	  && !((input_section->flags & SEC_DEBUGGING) != 0
3054 	       && h->def_dynamic)
3055 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
3056 				      rel->r_offset) != (bfd_vma) -1)
3057 	{
3058 	  _bfd_error_handler
3059 	    /* xgettext:c-format */
3060 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
3061 	     input_bfd,
3062 	     input_section,
3063 	     (long) rel->r_offset,
3064 	     howto->name,
3065 	     name);
3066 	  return FALSE;
3067 	}
3068 
3069       /* TLS optimizations may have changed r_type; update "howto".  */
3070       howto = &elf_howto_table[r_type];
3071 
3072       /* There's no point in calling bfd_perform_relocation here.
3073 	 Just go directly to our "special function".  */
3074       r = elf_xtensa_do_reloc (howto, input_bfd, input_section,
3075 			       relocation + rel->r_addend,
3076 			       contents, rel->r_offset, is_weak_undef,
3077 			       &error_message);
3078 
3079       if (r != bfd_reloc_ok && !warned)
3080 	{
3081 	  BFD_ASSERT (r == bfd_reloc_dangerous || r == bfd_reloc_other);
3082 	  BFD_ASSERT (error_message != NULL);
3083 
3084 	  if (rel->r_addend == 0)
3085 	    error_message = vsprint_msg (error_message, ": %s",
3086 					 strlen (name) + 2, name);
3087 	  else
3088 	    error_message = vsprint_msg (error_message, ": (%s+0x%x)",
3089 					 strlen (name) + 22,
3090 					 name, (int) rel->r_addend);
3091 
3092 	  (*info->callbacks->reloc_dangerous)
3093 	    (info, error_message, input_bfd, input_section, rel->r_offset);
3094 	}
3095     }
3096 
3097   if (lit_table)
3098     free (lit_table);
3099 
3100   input_section->reloc_done = TRUE;
3101 
3102   return TRUE;
3103 }
3104 
3105 
3106 /* Finish up dynamic symbol handling.  There's not much to do here since
3107    the PLT and GOT entries are all set up by relocate_section.  */
3108 
3109 static bfd_boolean
3110 elf_xtensa_finish_dynamic_symbol (bfd *output_bfd ATTRIBUTE_UNUSED,
3111 				  struct bfd_link_info *info ATTRIBUTE_UNUSED,
3112 				  struct elf_link_hash_entry *h,
3113 				  Elf_Internal_Sym *sym)
3114 {
3115   if (h->needs_plt && !h->def_regular)
3116     {
3117       /* Mark the symbol as undefined, rather than as defined in
3118 	 the .plt section.  Leave the value alone.  */
3119       sym->st_shndx = SHN_UNDEF;
3120       /* If the symbol is weak, we do need to clear the value.
3121 	 Otherwise, the PLT entry would provide a definition for
3122 	 the symbol even if the symbol wasn't defined anywhere,
3123 	 and so the symbol would never be NULL.  */
3124       if (!h->ref_regular_nonweak)
3125 	sym->st_value = 0;
3126     }
3127 
3128   /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute.  */
3129   if (h == elf_hash_table (info)->hdynamic
3130       || h == elf_hash_table (info)->hgot)
3131     sym->st_shndx = SHN_ABS;
3132 
3133   return TRUE;
3134 }
3135 
3136 
3137 /* Combine adjacent literal table entries in the output.  Adjacent
3138    entries within each input section may have been removed during
3139    relaxation, but we repeat the process here, even though it's too late
3140    to shrink the output section, because it's important to minimize the
3141    number of literal table entries to reduce the start-up work for the
3142    runtime linker.  Returns the number of remaining table entries or -1
3143    on error.  */
3144 
3145 static int
3146 elf_xtensa_combine_prop_entries (bfd *output_bfd,
3147 				 asection *sxtlit,
3148 				 asection *sgotloc)
3149 {
3150   bfd_byte *contents;
3151   property_table_entry *table;
3152   bfd_size_type section_size, sgotloc_size;
3153   bfd_vma offset;
3154   int n, m, num;
3155 
3156   section_size = sxtlit->size;
3157   BFD_ASSERT (section_size % 8 == 0);
3158   num = section_size / 8;
3159 
3160   sgotloc_size = sgotloc->size;
3161   if (sgotloc_size != section_size)
3162     {
3163       _bfd_error_handler
3164 	(_("internal inconsistency in size of .got.loc section"));
3165       return -1;
3166     }
3167 
3168   table = bfd_malloc (num * sizeof (property_table_entry));
3169   if (table == 0)
3170     return -1;
3171 
3172   /* The ".xt.lit.plt" section has the SEC_IN_MEMORY flag set and this
3173      propagates to the output section, where it doesn't really apply and
3174      where it breaks the following call to bfd_malloc_and_get_section.  */
3175   sxtlit->flags &= ~SEC_IN_MEMORY;
3176 
3177   if (!bfd_malloc_and_get_section (output_bfd, sxtlit, &contents))
3178     {
3179       if (contents != 0)
3180 	free (contents);
3181       free (table);
3182       return -1;
3183     }
3184 
3185   /* There should never be any relocations left at this point, so this
3186      is quite a bit easier than what is done during relaxation.  */
3187 
3188   /* Copy the raw contents into a property table array and sort it.  */
3189   offset = 0;
3190   for (n = 0; n < num; n++)
3191     {
3192       table[n].address = bfd_get_32 (output_bfd, &contents[offset]);
3193       table[n].size = bfd_get_32 (output_bfd, &contents[offset + 4]);
3194       offset += 8;
3195     }
3196   qsort (table, num, sizeof (property_table_entry), property_table_compare);
3197 
3198   for (n = 0; n < num; n++)
3199     {
3200       bfd_boolean remove_entry = FALSE;
3201 
3202       if (table[n].size == 0)
3203 	remove_entry = TRUE;
3204       else if (n > 0
3205 	       && (table[n-1].address + table[n-1].size == table[n].address))
3206 	{
3207 	  table[n-1].size += table[n].size;
3208 	  remove_entry = TRUE;
3209 	}
3210 
3211       if (remove_entry)
3212 	{
3213 	  for (m = n; m < num - 1; m++)
3214 	    {
3215 	      table[m].address = table[m+1].address;
3216 	      table[m].size = table[m+1].size;
3217 	    }
3218 
3219 	  n--;
3220 	  num--;
3221 	}
3222     }
3223 
3224   /* Copy the data back to the raw contents.  */
3225   offset = 0;
3226   for (n = 0; n < num; n++)
3227     {
3228       bfd_put_32 (output_bfd, table[n].address, &contents[offset]);
3229       bfd_put_32 (output_bfd, table[n].size, &contents[offset + 4]);
3230       offset += 8;
3231     }
3232 
3233   /* Clear the removed bytes.  */
3234   if ((bfd_size_type) (num * 8) < section_size)
3235     memset (&contents[num * 8], 0, section_size - num * 8);
3236 
3237   if (! bfd_set_section_contents (output_bfd, sxtlit, contents, 0,
3238 				  section_size))
3239     return -1;
3240 
3241   /* Copy the contents to ".got.loc".  */
3242   memcpy (sgotloc->contents, contents, section_size);
3243 
3244   free (contents);
3245   free (table);
3246   return num;
3247 }
3248 
3249 
3250 /* Finish up the dynamic sections.  */
3251 
3252 static bfd_boolean
3253 elf_xtensa_finish_dynamic_sections (bfd *output_bfd,
3254 				    struct bfd_link_info *info)
3255 {
3256   struct elf_xtensa_link_hash_table *htab;
3257   bfd *dynobj;
3258   asection *sdyn, *srelplt, *sgot, *sxtlit, *sgotloc;
3259   Elf32_External_Dyn *dyncon, *dynconend;
3260   int num_xtlit_entries = 0;
3261 
3262   if (! elf_hash_table (info)->dynamic_sections_created)
3263     return TRUE;
3264 
3265   htab = elf_xtensa_hash_table (info);
3266   if (htab == NULL)
3267     return FALSE;
3268 
3269   dynobj = elf_hash_table (info)->dynobj;
3270   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
3271   BFD_ASSERT (sdyn != NULL);
3272 
3273   /* Set the first entry in the global offset table to the address of
3274      the dynamic section.  */
3275   sgot = htab->elf.sgot;
3276   if (sgot)
3277     {
3278       BFD_ASSERT (sgot->size == 4);
3279       if (sdyn == NULL)
3280 	bfd_put_32 (output_bfd, 0, sgot->contents);
3281       else
3282 	bfd_put_32 (output_bfd,
3283 		    sdyn->output_section->vma + sdyn->output_offset,
3284 		    sgot->contents);
3285     }
3286 
3287   srelplt = htab->elf.srelplt;
3288   if (srelplt && srelplt->size != 0)
3289     {
3290       asection *sgotplt, *srelgot, *spltlittbl;
3291       int chunk, plt_chunks, plt_entries;
3292       Elf_Internal_Rela irela;
3293       bfd_byte *loc;
3294       unsigned rtld_reloc;
3295 
3296       srelgot = htab->elf.srelgot;
3297       spltlittbl = htab->spltlittbl;
3298       BFD_ASSERT (srelgot != NULL && spltlittbl != NULL);
3299 
3300       /* Find the first XTENSA_RTLD relocation.  Presumably the rest
3301 	 of them follow immediately after....  */
3302       for (rtld_reloc = 0; rtld_reloc < srelgot->reloc_count; rtld_reloc++)
3303 	{
3304 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3305 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3306 	  if (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD)
3307 	    break;
3308 	}
3309       BFD_ASSERT (rtld_reloc < srelgot->reloc_count);
3310 
3311       plt_entries = srelplt->size / sizeof (Elf32_External_Rela);
3312       plt_chunks =
3313 	(plt_entries + PLT_ENTRIES_PER_CHUNK - 1) / PLT_ENTRIES_PER_CHUNK;
3314 
3315       for (chunk = 0; chunk < plt_chunks; chunk++)
3316 	{
3317 	  int chunk_entries = 0;
3318 
3319 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
3320 	  BFD_ASSERT (sgotplt != NULL);
3321 
3322 	  /* Emit special RTLD relocations for the first two entries in
3323 	     each chunk of the .got.plt section.  */
3324 
3325 	  loc = srelgot->contents + rtld_reloc * sizeof (Elf32_External_Rela);
3326 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3327 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3328 	  irela.r_offset = (sgotplt->output_section->vma
3329 			    + sgotplt->output_offset);
3330 	  irela.r_addend = 1; /* tell rtld to set value to resolver function */
3331 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3332 	  rtld_reloc += 1;
3333 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3334 
3335 	  /* Next literal immediately follows the first.  */
3336 	  loc += sizeof (Elf32_External_Rela);
3337 	  bfd_elf32_swap_reloca_in (output_bfd, loc, &irela);
3338 	  BFD_ASSERT (ELF32_R_TYPE (irela.r_info) == R_XTENSA_RTLD);
3339 	  irela.r_offset = (sgotplt->output_section->vma
3340 			    + sgotplt->output_offset + 4);
3341 	  /* Tell rtld to set value to object's link map.  */
3342 	  irela.r_addend = 2;
3343 	  bfd_elf32_swap_reloca_out (output_bfd, &irela, loc);
3344 	  rtld_reloc += 1;
3345 	  BFD_ASSERT (rtld_reloc <= srelgot->reloc_count);
3346 
3347 	  /* Fill in the literal table.  */
3348 	  if (chunk < plt_chunks - 1)
3349 	    chunk_entries = PLT_ENTRIES_PER_CHUNK;
3350 	  else
3351 	    chunk_entries = plt_entries - (chunk * PLT_ENTRIES_PER_CHUNK);
3352 
3353 	  BFD_ASSERT ((unsigned) (chunk + 1) * 8 <= spltlittbl->size);
3354 	  bfd_put_32 (output_bfd,
3355 		      sgotplt->output_section->vma + sgotplt->output_offset,
3356 		      spltlittbl->contents + (chunk * 8) + 0);
3357 	  bfd_put_32 (output_bfd,
3358 		      8 + (chunk_entries * 4),
3359 		      spltlittbl->contents + (chunk * 8) + 4);
3360 	}
3361 
3362       /* All the dynamic relocations have been emitted at this point.
3363 	 Make sure the relocation sections are the correct size.  */
3364       if (srelgot->size != (sizeof (Elf32_External_Rela)
3365 			    * srelgot->reloc_count)
3366 	  || srelplt->size != (sizeof (Elf32_External_Rela)
3367 			       * srelplt->reloc_count))
3368 	abort ();
3369 
3370      /* The .xt.lit.plt section has just been modified.  This must
3371 	happen before the code below which combines adjacent literal
3372 	table entries, and the .xt.lit.plt contents have to be forced to
3373 	the output here.  */
3374       if (! bfd_set_section_contents (output_bfd,
3375 				      spltlittbl->output_section,
3376 				      spltlittbl->contents,
3377 				      spltlittbl->output_offset,
3378 				      spltlittbl->size))
3379 	return FALSE;
3380       /* Clear SEC_HAS_CONTENTS so the contents won't be output again.  */
3381       spltlittbl->flags &= ~SEC_HAS_CONTENTS;
3382     }
3383 
3384   /* Combine adjacent literal table entries.  */
3385   BFD_ASSERT (! bfd_link_relocatable (info));
3386   sxtlit = bfd_get_section_by_name (output_bfd, ".xt.lit");
3387   sgotloc = htab->sgotloc;
3388   BFD_ASSERT (sgotloc);
3389   if (sxtlit)
3390     {
3391       num_xtlit_entries =
3392 	elf_xtensa_combine_prop_entries (output_bfd, sxtlit, sgotloc);
3393       if (num_xtlit_entries < 0)
3394 	return FALSE;
3395     }
3396 
3397   dyncon = (Elf32_External_Dyn *) sdyn->contents;
3398   dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
3399   for (; dyncon < dynconend; dyncon++)
3400     {
3401       Elf_Internal_Dyn dyn;
3402 
3403       bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
3404 
3405       switch (dyn.d_tag)
3406 	{
3407 	default:
3408 	  break;
3409 
3410 	case DT_XTENSA_GOT_LOC_SZ:
3411 	  dyn.d_un.d_val = num_xtlit_entries;
3412 	  break;
3413 
3414 	case DT_XTENSA_GOT_LOC_OFF:
3415 	  dyn.d_un.d_ptr = (htab->sgotloc->output_section->vma
3416 			    + htab->sgotloc->output_offset);
3417 	  break;
3418 
3419 	case DT_PLTGOT:
3420 	  dyn.d_un.d_ptr = (htab->elf.sgot->output_section->vma
3421 			    + htab->elf.sgot->output_offset);
3422 	  break;
3423 
3424 	case DT_JMPREL:
3425 	  dyn.d_un.d_ptr = (htab->elf.srelplt->output_section->vma
3426 			    + htab->elf.srelplt->output_offset);
3427 	  break;
3428 
3429 	case DT_PLTRELSZ:
3430 	  dyn.d_un.d_val = htab->elf.srelplt->size;
3431 	  break;
3432 	}
3433 
3434       bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
3435     }
3436 
3437   return TRUE;
3438 }
3439 
3440 
3441 /* Functions for dealing with the e_flags field.  */
3442 
3443 /* Merge backend specific data from an object file to the output
3444    object file when linking.  */
3445 
3446 static bfd_boolean
3447 elf_xtensa_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
3448 {
3449   bfd *obfd = info->output_bfd;
3450   unsigned out_mach, in_mach;
3451   flagword out_flag, in_flag;
3452 
3453   /* Check if we have the same endianness.  */
3454   if (!_bfd_generic_verify_endian_match (ibfd, info))
3455     return FALSE;
3456 
3457   /* Don't even pretend to support mixed-format linking.  */
3458   if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
3459       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
3460     return FALSE;
3461 
3462   out_flag = elf_elfheader (obfd)->e_flags;
3463   in_flag = elf_elfheader (ibfd)->e_flags;
3464 
3465   out_mach = out_flag & EF_XTENSA_MACH;
3466   in_mach = in_flag & EF_XTENSA_MACH;
3467   if (out_mach != in_mach)
3468     {
3469       _bfd_error_handler
3470 	/* xgettext:c-format */
3471 	(_("%B: incompatible machine type. Output is 0x%x. Input is 0x%x"),
3472 	 ibfd, out_mach, in_mach);
3473       bfd_set_error (bfd_error_wrong_format);
3474       return FALSE;
3475     }
3476 
3477   if (! elf_flags_init (obfd))
3478     {
3479       elf_flags_init (obfd) = TRUE;
3480       elf_elfheader (obfd)->e_flags = in_flag;
3481 
3482       if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
3483 	  && bfd_get_arch_info (obfd)->the_default)
3484 	return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
3485 				  bfd_get_mach (ibfd));
3486 
3487       return TRUE;
3488     }
3489 
3490   if ((out_flag & EF_XTENSA_XT_INSN) != (in_flag & EF_XTENSA_XT_INSN))
3491     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_INSN);
3492 
3493   if ((out_flag & EF_XTENSA_XT_LIT) != (in_flag & EF_XTENSA_XT_LIT))
3494     elf_elfheader (obfd)->e_flags &= (~ EF_XTENSA_XT_LIT);
3495 
3496   return TRUE;
3497 }
3498 
3499 
3500 static bfd_boolean
3501 elf_xtensa_set_private_flags (bfd *abfd, flagword flags)
3502 {
3503   BFD_ASSERT (!elf_flags_init (abfd)
3504 	      || elf_elfheader (abfd)->e_flags == flags);
3505 
3506   elf_elfheader (abfd)->e_flags |= flags;
3507   elf_flags_init (abfd) = TRUE;
3508 
3509   return TRUE;
3510 }
3511 
3512 
3513 static bfd_boolean
3514 elf_xtensa_print_private_bfd_data (bfd *abfd, void *farg)
3515 {
3516   FILE *f = (FILE *) farg;
3517   flagword e_flags = elf_elfheader (abfd)->e_flags;
3518 
3519   fprintf (f, "\nXtensa header:\n");
3520   if ((e_flags & EF_XTENSA_MACH) == E_XTENSA_MACH)
3521     fprintf (f, "\nMachine     = Base\n");
3522   else
3523     fprintf (f, "\nMachine Id  = 0x%x\n", e_flags & EF_XTENSA_MACH);
3524 
3525   fprintf (f, "Insn tables = %s\n",
3526 	   (e_flags & EF_XTENSA_XT_INSN) ? "true" : "false");
3527 
3528   fprintf (f, "Literal tables = %s\n",
3529 	   (e_flags & EF_XTENSA_XT_LIT) ? "true" : "false");
3530 
3531   return _bfd_elf_print_private_bfd_data (abfd, farg);
3532 }
3533 
3534 
3535 /* Set the right machine number for an Xtensa ELF file.  */
3536 
3537 static bfd_boolean
3538 elf_xtensa_object_p (bfd *abfd)
3539 {
3540   int mach;
3541   unsigned long arch = elf_elfheader (abfd)->e_flags & EF_XTENSA_MACH;
3542 
3543   switch (arch)
3544     {
3545     case E_XTENSA_MACH:
3546       mach = bfd_mach_xtensa;
3547       break;
3548     default:
3549       return FALSE;
3550     }
3551 
3552   (void) bfd_default_set_arch_mach (abfd, bfd_arch_xtensa, mach);
3553   return TRUE;
3554 }
3555 
3556 
3557 /* The final processing done just before writing out an Xtensa ELF object
3558    file.  This gets the Xtensa architecture right based on the machine
3559    number.  */
3560 
3561 static void
3562 elf_xtensa_final_write_processing (bfd *abfd,
3563 				   bfd_boolean linker ATTRIBUTE_UNUSED)
3564 {
3565   int mach;
3566   unsigned long val;
3567 
3568   switch (mach = bfd_get_mach (abfd))
3569     {
3570     case bfd_mach_xtensa:
3571       val = E_XTENSA_MACH;
3572       break;
3573     default:
3574       return;
3575     }
3576 
3577   elf_elfheader (abfd)->e_flags &=  (~ EF_XTENSA_MACH);
3578   elf_elfheader (abfd)->e_flags |= val;
3579 }
3580 
3581 
3582 static enum elf_reloc_type_class
3583 elf_xtensa_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
3584 			     const asection *rel_sec ATTRIBUTE_UNUSED,
3585 			     const Elf_Internal_Rela *rela)
3586 {
3587   switch ((int) ELF32_R_TYPE (rela->r_info))
3588     {
3589     case R_XTENSA_RELATIVE:
3590       return reloc_class_relative;
3591     case R_XTENSA_JMP_SLOT:
3592       return reloc_class_plt;
3593     default:
3594       return reloc_class_normal;
3595     }
3596 }
3597 
3598 
3599 static bfd_boolean
3600 elf_xtensa_discard_info_for_section (bfd *abfd,
3601 				     struct elf_reloc_cookie *cookie,
3602 				     struct bfd_link_info *info,
3603 				     asection *sec)
3604 {
3605   bfd_byte *contents;
3606   bfd_vma offset, actual_offset;
3607   bfd_size_type removed_bytes = 0;
3608   bfd_size_type entry_size;
3609 
3610   if (sec->output_section
3611       && bfd_is_abs_section (sec->output_section))
3612     return FALSE;
3613 
3614   if (xtensa_is_proptable_section (sec))
3615     entry_size = 12;
3616   else
3617     entry_size = 8;
3618 
3619   if (sec->size == 0 || sec->size % entry_size != 0)
3620     return FALSE;
3621 
3622   contents = retrieve_contents (abfd, sec, info->keep_memory);
3623   if (!contents)
3624     return FALSE;
3625 
3626   cookie->rels = retrieve_internal_relocs (abfd, sec, info->keep_memory);
3627   if (!cookie->rels)
3628     {
3629       release_contents (sec, contents);
3630       return FALSE;
3631     }
3632 
3633   /* Sort the relocations.  They should already be in order when
3634      relaxation is enabled, but it might not be.  */
3635   qsort (cookie->rels, sec->reloc_count, sizeof (Elf_Internal_Rela),
3636 	 internal_reloc_compare);
3637 
3638   cookie->rel = cookie->rels;
3639   cookie->relend = cookie->rels + sec->reloc_count;
3640 
3641   for (offset = 0; offset < sec->size; offset += entry_size)
3642     {
3643       actual_offset = offset - removed_bytes;
3644 
3645       /* The ...symbol_deleted_p function will skip over relocs but it
3646 	 won't adjust their offsets, so do that here.  */
3647       while (cookie->rel < cookie->relend
3648 	     && cookie->rel->r_offset < offset)
3649 	{
3650 	  cookie->rel->r_offset -= removed_bytes;
3651 	  cookie->rel++;
3652 	}
3653 
3654       while (cookie->rel < cookie->relend
3655 	     && cookie->rel->r_offset == offset)
3656 	{
3657 	  if (bfd_elf_reloc_symbol_deleted_p (offset, cookie))
3658 	    {
3659 	      /* Remove the table entry.  (If the reloc type is NONE, then
3660 		 the entry has already been merged with another and deleted
3661 		 during relaxation.)  */
3662 	      if (ELF32_R_TYPE (cookie->rel->r_info) != R_XTENSA_NONE)
3663 		{
3664 		  /* Shift the contents up.  */
3665 		  if (offset + entry_size < sec->size)
3666 		    memmove (&contents[actual_offset],
3667 			     &contents[actual_offset + entry_size],
3668 			     sec->size - offset - entry_size);
3669 		  removed_bytes += entry_size;
3670 		}
3671 
3672 	      /* Remove this relocation.  */
3673 	      cookie->rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
3674 	    }
3675 
3676 	  /* Adjust the relocation offset for previous removals.  This
3677 	     should not be done before calling ...symbol_deleted_p
3678 	     because it might mess up the offset comparisons there.
3679 	     Make sure the offset doesn't underflow in the case where
3680 	     the first entry is removed.  */
3681 	  if (cookie->rel->r_offset >= removed_bytes)
3682 	    cookie->rel->r_offset -= removed_bytes;
3683 	  else
3684 	    cookie->rel->r_offset = 0;
3685 
3686 	  cookie->rel++;
3687 	}
3688     }
3689 
3690   if (removed_bytes != 0)
3691     {
3692       /* Adjust any remaining relocs (shouldn't be any).  */
3693       for (; cookie->rel < cookie->relend; cookie->rel++)
3694 	{
3695 	  if (cookie->rel->r_offset >= removed_bytes)
3696 	    cookie->rel->r_offset -= removed_bytes;
3697 	  else
3698 	    cookie->rel->r_offset = 0;
3699 	}
3700 
3701       /* Clear the removed bytes.  */
3702       memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
3703 
3704       pin_contents (sec, contents);
3705       pin_internal_relocs (sec, cookie->rels);
3706 
3707       /* Shrink size.  */
3708       if (sec->rawsize == 0)
3709 	sec->rawsize = sec->size;
3710       sec->size -= removed_bytes;
3711 
3712       if (xtensa_is_littable_section (sec))
3713 	{
3714 	  asection *sgotloc = elf_xtensa_hash_table (info)->sgotloc;
3715 	  if (sgotloc)
3716 	    sgotloc->size -= removed_bytes;
3717 	}
3718     }
3719   else
3720     {
3721       release_contents (sec, contents);
3722       release_internal_relocs (sec, cookie->rels);
3723     }
3724 
3725   return (removed_bytes != 0);
3726 }
3727 
3728 
3729 static bfd_boolean
3730 elf_xtensa_discard_info (bfd *abfd,
3731 			 struct elf_reloc_cookie *cookie,
3732 			 struct bfd_link_info *info)
3733 {
3734   asection *sec;
3735   bfd_boolean changed = FALSE;
3736 
3737   for (sec = abfd->sections; sec != NULL; sec = sec->next)
3738     {
3739       if (xtensa_is_property_section (sec))
3740 	{
3741 	  if (elf_xtensa_discard_info_for_section (abfd, cookie, info, sec))
3742 	    changed = TRUE;
3743 	}
3744     }
3745 
3746   return changed;
3747 }
3748 
3749 
3750 static bfd_boolean
3751 elf_xtensa_ignore_discarded_relocs (asection *sec)
3752 {
3753   return xtensa_is_property_section (sec);
3754 }
3755 
3756 
3757 static unsigned int
3758 elf_xtensa_action_discarded (asection *sec)
3759 {
3760   if (strcmp (".xt_except_table", sec->name) == 0)
3761     return 0;
3762 
3763   if (strcmp (".xt_except_desc", sec->name) == 0)
3764     return 0;
3765 
3766   return _bfd_elf_default_action_discarded (sec);
3767 }
3768 
3769 
3770 /* Support for core dump NOTE sections.  */
3771 
3772 static bfd_boolean
3773 elf_xtensa_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
3774 {
3775   int offset;
3776   unsigned int size;
3777 
3778   /* The size for Xtensa is variable, so don't try to recognize the format
3779      based on the size.  Just assume this is GNU/Linux.  */
3780 
3781   /* pr_cursig */
3782   elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
3783 
3784   /* pr_pid */
3785   elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
3786 
3787   /* pr_reg */
3788   offset = 72;
3789   size = note->descsz - offset - 4;
3790 
3791   /* Make a ".reg/999" section.  */
3792   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
3793 					  size, note->descpos + offset);
3794 }
3795 
3796 
3797 static bfd_boolean
3798 elf_xtensa_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
3799 {
3800   switch (note->descsz)
3801     {
3802       default:
3803 	return FALSE;
3804 
3805       case 128:		/* GNU/Linux elf_prpsinfo */
3806 	elf_tdata (abfd)->core->program
3807 	 = _bfd_elfcore_strndup (abfd, note->descdata + 32, 16);
3808 	elf_tdata (abfd)->core->command
3809 	 = _bfd_elfcore_strndup (abfd, note->descdata + 48, 80);
3810     }
3811 
3812   /* Note that for some reason, a spurious space is tacked
3813      onto the end of the args in some (at least one anyway)
3814      implementations, so strip it off if it exists.  */
3815 
3816   {
3817     char *command = elf_tdata (abfd)->core->command;
3818     int n = strlen (command);
3819 
3820     if (0 < n && command[n - 1] == ' ')
3821       command[n - 1] = '\0';
3822   }
3823 
3824   return TRUE;
3825 }
3826 
3827 
3828 /* Generic Xtensa configurability stuff.  */
3829 
3830 static xtensa_opcode callx0_op = XTENSA_UNDEFINED;
3831 static xtensa_opcode callx4_op = XTENSA_UNDEFINED;
3832 static xtensa_opcode callx8_op = XTENSA_UNDEFINED;
3833 static xtensa_opcode callx12_op = XTENSA_UNDEFINED;
3834 static xtensa_opcode call0_op = XTENSA_UNDEFINED;
3835 static xtensa_opcode call4_op = XTENSA_UNDEFINED;
3836 static xtensa_opcode call8_op = XTENSA_UNDEFINED;
3837 static xtensa_opcode call12_op = XTENSA_UNDEFINED;
3838 
3839 static void
3840 init_call_opcodes (void)
3841 {
3842   if (callx0_op == XTENSA_UNDEFINED)
3843     {
3844       callx0_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx0");
3845       callx4_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx4");
3846       callx8_op  = xtensa_opcode_lookup (xtensa_default_isa, "callx8");
3847       callx12_op = xtensa_opcode_lookup (xtensa_default_isa, "callx12");
3848       call0_op   = xtensa_opcode_lookup (xtensa_default_isa, "call0");
3849       call4_op   = xtensa_opcode_lookup (xtensa_default_isa, "call4");
3850       call8_op   = xtensa_opcode_lookup (xtensa_default_isa, "call8");
3851       call12_op  = xtensa_opcode_lookup (xtensa_default_isa, "call12");
3852     }
3853 }
3854 
3855 
3856 static bfd_boolean
3857 is_indirect_call_opcode (xtensa_opcode opcode)
3858 {
3859   init_call_opcodes ();
3860   return (opcode == callx0_op
3861 	  || opcode == callx4_op
3862 	  || opcode == callx8_op
3863 	  || opcode == callx12_op);
3864 }
3865 
3866 
3867 static bfd_boolean
3868 is_direct_call_opcode (xtensa_opcode opcode)
3869 {
3870   init_call_opcodes ();
3871   return (opcode == call0_op
3872 	  || opcode == call4_op
3873 	  || opcode == call8_op
3874 	  || opcode == call12_op);
3875 }
3876 
3877 
3878 static bfd_boolean
3879 is_windowed_call_opcode (xtensa_opcode opcode)
3880 {
3881   init_call_opcodes ();
3882   return (opcode == call4_op
3883 	  || opcode == call8_op
3884 	  || opcode == call12_op
3885 	  || opcode == callx4_op
3886 	  || opcode == callx8_op
3887 	  || opcode == callx12_op);
3888 }
3889 
3890 
3891 static bfd_boolean
3892 get_indirect_call_dest_reg (xtensa_opcode opcode, unsigned *pdst)
3893 {
3894   unsigned dst = (unsigned) -1;
3895 
3896   init_call_opcodes ();
3897   if (opcode == callx0_op)
3898     dst = 0;
3899   else if (opcode == callx4_op)
3900     dst = 4;
3901   else if (opcode == callx8_op)
3902     dst = 8;
3903   else if (opcode == callx12_op)
3904     dst = 12;
3905 
3906   if (dst == (unsigned) -1)
3907     return FALSE;
3908 
3909   *pdst = dst;
3910   return TRUE;
3911 }
3912 
3913 
3914 static xtensa_opcode
3915 get_const16_opcode (void)
3916 {
3917   static bfd_boolean done_lookup = FALSE;
3918   static xtensa_opcode const16_opcode = XTENSA_UNDEFINED;
3919   if (!done_lookup)
3920     {
3921       const16_opcode = xtensa_opcode_lookup (xtensa_default_isa, "const16");
3922       done_lookup = TRUE;
3923     }
3924   return const16_opcode;
3925 }
3926 
3927 
3928 static xtensa_opcode
3929 get_l32r_opcode (void)
3930 {
3931   static xtensa_opcode l32r_opcode = XTENSA_UNDEFINED;
3932   static bfd_boolean done_lookup = FALSE;
3933 
3934   if (!done_lookup)
3935     {
3936       l32r_opcode = xtensa_opcode_lookup (xtensa_default_isa, "l32r");
3937       done_lookup = TRUE;
3938     }
3939   return l32r_opcode;
3940 }
3941 
3942 
3943 static bfd_vma
3944 l32r_offset (bfd_vma addr, bfd_vma pc)
3945 {
3946   bfd_vma offset;
3947 
3948   offset = addr - ((pc+3) & -4);
3949   BFD_ASSERT ((offset & ((1 << 2) - 1)) == 0);
3950   offset = (signed int) offset >> 2;
3951   BFD_ASSERT ((signed int) offset >> 16 == -1);
3952   return offset;
3953 }
3954 
3955 
3956 static int
3957 get_relocation_opnd (xtensa_opcode opcode, int r_type)
3958 {
3959   xtensa_isa isa = xtensa_default_isa;
3960   int last_immed, last_opnd, opi;
3961 
3962   if (opcode == XTENSA_UNDEFINED)
3963     return XTENSA_UNDEFINED;
3964 
3965   /* Find the last visible PC-relative immediate operand for the opcode.
3966      If there are no PC-relative immediates, then choose the last visible
3967      immediate; otherwise, fail and return XTENSA_UNDEFINED.  */
3968   last_immed = XTENSA_UNDEFINED;
3969   last_opnd = xtensa_opcode_num_operands (isa, opcode);
3970   for (opi = last_opnd - 1; opi >= 0; opi--)
3971     {
3972       if (xtensa_operand_is_visible (isa, opcode, opi) == 0)
3973 	continue;
3974       if (xtensa_operand_is_PCrelative (isa, opcode, opi) == 1)
3975 	{
3976 	  last_immed = opi;
3977 	  break;
3978 	}
3979       if (last_immed == XTENSA_UNDEFINED
3980 	  && xtensa_operand_is_register (isa, opcode, opi) == 0)
3981 	last_immed = opi;
3982     }
3983   if (last_immed < 0)
3984     return XTENSA_UNDEFINED;
3985 
3986   /* If the operand number was specified in an old-style relocation,
3987      check for consistency with the operand computed above.  */
3988   if (r_type >= R_XTENSA_OP0 && r_type <= R_XTENSA_OP2)
3989     {
3990       int reloc_opnd = r_type - R_XTENSA_OP0;
3991       if (reloc_opnd != last_immed)
3992 	return XTENSA_UNDEFINED;
3993     }
3994 
3995   return last_immed;
3996 }
3997 
3998 
3999 int
4000 get_relocation_slot (int r_type)
4001 {
4002   switch (r_type)
4003     {
4004     case R_XTENSA_OP0:
4005     case R_XTENSA_OP1:
4006     case R_XTENSA_OP2:
4007       return 0;
4008 
4009     default:
4010       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4011 	return r_type - R_XTENSA_SLOT0_OP;
4012       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4013 	return r_type - R_XTENSA_SLOT0_ALT;
4014       break;
4015     }
4016 
4017   return XTENSA_UNDEFINED;
4018 }
4019 
4020 
4021 /* Get the opcode for a relocation.  */
4022 
4023 static xtensa_opcode
4024 get_relocation_opcode (bfd *abfd,
4025 		       asection *sec,
4026 		       bfd_byte *contents,
4027 		       Elf_Internal_Rela *irel)
4028 {
4029   static xtensa_insnbuf ibuff = NULL;
4030   static xtensa_insnbuf sbuff = NULL;
4031   xtensa_isa isa = xtensa_default_isa;
4032   xtensa_format fmt;
4033   int slot;
4034 
4035   if (contents == NULL)
4036     return XTENSA_UNDEFINED;
4037 
4038   if (bfd_get_section_limit (abfd, sec) <= irel->r_offset)
4039     return XTENSA_UNDEFINED;
4040 
4041   if (ibuff == NULL)
4042     {
4043       ibuff = xtensa_insnbuf_alloc (isa);
4044       sbuff = xtensa_insnbuf_alloc (isa);
4045     }
4046 
4047   /* Decode the instruction.  */
4048   xtensa_insnbuf_from_chars (isa, ibuff, &contents[irel->r_offset],
4049 			     sec->size - irel->r_offset);
4050   fmt = xtensa_format_decode (isa, ibuff);
4051   slot = get_relocation_slot (ELF32_R_TYPE (irel->r_info));
4052   if (slot == XTENSA_UNDEFINED)
4053     return XTENSA_UNDEFINED;
4054   xtensa_format_get_slot (isa, fmt, slot, ibuff, sbuff);
4055   return xtensa_opcode_decode (isa, fmt, slot, sbuff);
4056 }
4057 
4058 
4059 bfd_boolean
4060 is_l32r_relocation (bfd *abfd,
4061 		    asection *sec,
4062 		    bfd_byte *contents,
4063 		    Elf_Internal_Rela *irel)
4064 {
4065   xtensa_opcode opcode;
4066   if (!is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
4067     return FALSE;
4068   opcode = get_relocation_opcode (abfd, sec, contents, irel);
4069   return (opcode == get_l32r_opcode ());
4070 }
4071 
4072 
4073 static bfd_size_type
4074 get_asm_simplify_size (bfd_byte *contents,
4075 		       bfd_size_type content_len,
4076 		       bfd_size_type offset)
4077 {
4078   bfd_size_type insnlen, size = 0;
4079 
4080   /* Decode the size of the next two instructions.  */
4081   insnlen = insn_decode_len (contents, content_len, offset);
4082   if (insnlen == 0)
4083     return 0;
4084 
4085   size += insnlen;
4086 
4087   insnlen = insn_decode_len (contents, content_len, offset + size);
4088   if (insnlen == 0)
4089     return 0;
4090 
4091   size += insnlen;
4092   return size;
4093 }
4094 
4095 
4096 bfd_boolean
4097 is_alt_relocation (int r_type)
4098 {
4099   return (r_type >= R_XTENSA_SLOT0_ALT
4100 	  && r_type <= R_XTENSA_SLOT14_ALT);
4101 }
4102 
4103 
4104 bfd_boolean
4105 is_operand_relocation (int r_type)
4106 {
4107   switch (r_type)
4108     {
4109     case R_XTENSA_OP0:
4110     case R_XTENSA_OP1:
4111     case R_XTENSA_OP2:
4112       return TRUE;
4113 
4114     default:
4115       if (r_type >= R_XTENSA_SLOT0_OP && r_type <= R_XTENSA_SLOT14_OP)
4116 	return TRUE;
4117       if (r_type >= R_XTENSA_SLOT0_ALT && r_type <= R_XTENSA_SLOT14_ALT)
4118 	return TRUE;
4119       break;
4120     }
4121 
4122   return FALSE;
4123 }
4124 
4125 
4126 #define MIN_INSN_LENGTH 2
4127 
4128 /* Return 0 if it fails to decode.  */
4129 
4130 bfd_size_type
4131 insn_decode_len (bfd_byte *contents,
4132 		 bfd_size_type content_len,
4133 		 bfd_size_type offset)
4134 {
4135   int insn_len;
4136   xtensa_isa isa = xtensa_default_isa;
4137   xtensa_format fmt;
4138   static xtensa_insnbuf ibuff = NULL;
4139 
4140   if (offset + MIN_INSN_LENGTH > content_len)
4141     return 0;
4142 
4143   if (ibuff == NULL)
4144     ibuff = xtensa_insnbuf_alloc (isa);
4145   xtensa_insnbuf_from_chars (isa, ibuff, &contents[offset],
4146 			     content_len - offset);
4147   fmt = xtensa_format_decode (isa, ibuff);
4148   if (fmt == XTENSA_UNDEFINED)
4149     return 0;
4150   insn_len = xtensa_format_length (isa, fmt);
4151   if (insn_len ==  XTENSA_UNDEFINED)
4152     return 0;
4153   return insn_len;
4154 }
4155 
4156 
4157 /* Decode the opcode for a single slot instruction.
4158    Return 0 if it fails to decode or the instruction is multi-slot.  */
4159 
4160 xtensa_opcode
4161 insn_decode_opcode (bfd_byte *contents,
4162 		    bfd_size_type content_len,
4163 		    bfd_size_type offset,
4164 		    int slot)
4165 {
4166   xtensa_isa isa = xtensa_default_isa;
4167   xtensa_format fmt;
4168   static xtensa_insnbuf insnbuf = NULL;
4169   static xtensa_insnbuf slotbuf = NULL;
4170 
4171   if (offset + MIN_INSN_LENGTH > content_len)
4172     return XTENSA_UNDEFINED;
4173 
4174   if (insnbuf == NULL)
4175     {
4176       insnbuf = xtensa_insnbuf_alloc (isa);
4177       slotbuf = xtensa_insnbuf_alloc (isa);
4178     }
4179 
4180   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4181 			     content_len - offset);
4182   fmt = xtensa_format_decode (isa, insnbuf);
4183   if (fmt == XTENSA_UNDEFINED)
4184     return XTENSA_UNDEFINED;
4185 
4186   if (slot >= xtensa_format_num_slots (isa, fmt))
4187     return XTENSA_UNDEFINED;
4188 
4189   xtensa_format_get_slot (isa, fmt, slot, insnbuf, slotbuf);
4190   return xtensa_opcode_decode (isa, fmt, slot, slotbuf);
4191 }
4192 
4193 
4194 /* The offset is the offset in the contents.
4195    The address is the address of that offset.  */
4196 
4197 static bfd_boolean
4198 check_branch_target_aligned (bfd_byte *contents,
4199 			     bfd_size_type content_length,
4200 			     bfd_vma offset,
4201 			     bfd_vma address)
4202 {
4203   bfd_size_type insn_len = insn_decode_len (contents, content_length, offset);
4204   if (insn_len == 0)
4205     return FALSE;
4206   return check_branch_target_aligned_address (address, insn_len);
4207 }
4208 
4209 
4210 static bfd_boolean
4211 check_loop_aligned (bfd_byte *contents,
4212 		    bfd_size_type content_length,
4213 		    bfd_vma offset,
4214 		    bfd_vma address)
4215 {
4216   bfd_size_type loop_len, insn_len;
4217   xtensa_opcode opcode;
4218 
4219   opcode = insn_decode_opcode (contents, content_length, offset, 0);
4220   if (opcode == XTENSA_UNDEFINED
4221       || xtensa_opcode_is_loop (xtensa_default_isa, opcode) != 1)
4222     {
4223       BFD_ASSERT (FALSE);
4224       return FALSE;
4225     }
4226 
4227   loop_len = insn_decode_len (contents, content_length, offset);
4228   insn_len = insn_decode_len (contents, content_length, offset + loop_len);
4229   if (loop_len == 0 || insn_len == 0)
4230     {
4231       BFD_ASSERT (FALSE);
4232       return FALSE;
4233     }
4234 
4235   return check_branch_target_aligned_address (address + loop_len, insn_len);
4236 }
4237 
4238 
4239 static bfd_boolean
4240 check_branch_target_aligned_address (bfd_vma addr, int len)
4241 {
4242   if (len == 8)
4243     return (addr % 8 == 0);
4244   return ((addr >> 2) == ((addr + len - 1) >> 2));
4245 }
4246 
4247 
4248 /* Instruction widening and narrowing.  */
4249 
4250 /* When FLIX is available we need to access certain instructions only
4251    when they are 16-bit or 24-bit instructions.  This table caches
4252    information about such instructions by walking through all the
4253    opcodes and finding the smallest single-slot format into which each
4254    can be encoded.  */
4255 
4256 static xtensa_format *op_single_fmt_table = NULL;
4257 
4258 
4259 static void
4260 init_op_single_format_table (void)
4261 {
4262   xtensa_isa isa = xtensa_default_isa;
4263   xtensa_insnbuf ibuf;
4264   xtensa_opcode opcode;
4265   xtensa_format fmt;
4266   int num_opcodes;
4267 
4268   if (op_single_fmt_table)
4269     return;
4270 
4271   ibuf = xtensa_insnbuf_alloc (isa);
4272   num_opcodes = xtensa_isa_num_opcodes (isa);
4273 
4274   op_single_fmt_table = (xtensa_format *)
4275     bfd_malloc (sizeof (xtensa_format) * num_opcodes);
4276   for (opcode = 0; opcode < num_opcodes; opcode++)
4277     {
4278       op_single_fmt_table[opcode] = XTENSA_UNDEFINED;
4279       for (fmt = 0; fmt < xtensa_isa_num_formats (isa); fmt++)
4280 	{
4281 	  if (xtensa_format_num_slots (isa, fmt) == 1
4282 	      && xtensa_opcode_encode (isa, fmt, 0, ibuf, opcode) == 0)
4283 	    {
4284 	      xtensa_opcode old_fmt = op_single_fmt_table[opcode];
4285 	      int fmt_length = xtensa_format_length (isa, fmt);
4286 	      if (old_fmt == XTENSA_UNDEFINED
4287 		  || fmt_length < xtensa_format_length (isa, old_fmt))
4288 		op_single_fmt_table[opcode] = fmt;
4289 	    }
4290 	}
4291     }
4292   xtensa_insnbuf_free (isa, ibuf);
4293 }
4294 
4295 
4296 static xtensa_format
4297 get_single_format (xtensa_opcode opcode)
4298 {
4299   init_op_single_format_table ();
4300   return op_single_fmt_table[opcode];
4301 }
4302 
4303 
4304 /* For the set of narrowable instructions we do NOT include the
4305    narrowings beqz -> beqz.n or bnez -> bnez.n because of complexities
4306    involved during linker relaxation that may require these to
4307    re-expand in some conditions.  Also, the narrowing "or" -> mov.n
4308    requires special case code to ensure it only works when op1 == op2.  */
4309 
4310 struct string_pair
4311 {
4312   const char *wide;
4313   const char *narrow;
4314 };
4315 
4316 struct string_pair narrowable[] =
4317 {
4318   { "add", "add.n" },
4319   { "addi", "addi.n" },
4320   { "addmi", "addi.n" },
4321   { "l32i", "l32i.n" },
4322   { "movi", "movi.n" },
4323   { "ret", "ret.n" },
4324   { "retw", "retw.n" },
4325   { "s32i", "s32i.n" },
4326   { "or", "mov.n" } /* special case only when op1 == op2 */
4327 };
4328 
4329 struct string_pair widenable[] =
4330 {
4331   { "add", "add.n" },
4332   { "addi", "addi.n" },
4333   { "addmi", "addi.n" },
4334   { "beqz", "beqz.n" },
4335   { "bnez", "bnez.n" },
4336   { "l32i", "l32i.n" },
4337   { "movi", "movi.n" },
4338   { "ret", "ret.n" },
4339   { "retw", "retw.n" },
4340   { "s32i", "s32i.n" },
4341   { "or", "mov.n" } /* special case only when op1 == op2 */
4342 };
4343 
4344 
4345 /* Check if an instruction can be "narrowed", i.e., changed from a standard
4346    3-byte instruction to a 2-byte "density" instruction.  If it is valid,
4347    return the instruction buffer holding the narrow instruction.  Otherwise,
4348    return 0.  The set of valid narrowing are specified by a string table
4349    but require some special case operand checks in some cases.  */
4350 
4351 static xtensa_insnbuf
4352 can_narrow_instruction (xtensa_insnbuf slotbuf,
4353 			xtensa_format fmt,
4354 			xtensa_opcode opcode)
4355 {
4356   xtensa_isa isa = xtensa_default_isa;
4357   xtensa_format o_fmt;
4358   unsigned opi;
4359 
4360   static xtensa_insnbuf o_insnbuf = NULL;
4361   static xtensa_insnbuf o_slotbuf = NULL;
4362 
4363   if (o_insnbuf == NULL)
4364     {
4365       o_insnbuf = xtensa_insnbuf_alloc (isa);
4366       o_slotbuf = xtensa_insnbuf_alloc (isa);
4367     }
4368 
4369   for (opi = 0; opi < (sizeof (narrowable)/sizeof (struct string_pair)); opi++)
4370     {
4371       bfd_boolean is_or = (strcmp ("or", narrowable[opi].wide) == 0);
4372 
4373       if (opcode == xtensa_opcode_lookup (isa, narrowable[opi].wide))
4374 	{
4375 	  uint32 value, newval;
4376 	  int i, operand_count, o_operand_count;
4377 	  xtensa_opcode o_opcode;
4378 
4379 	  /* Address does not matter in this case.  We might need to
4380 	     fix it to handle branches/jumps.  */
4381 	  bfd_vma self_address = 0;
4382 
4383 	  o_opcode = xtensa_opcode_lookup (isa, narrowable[opi].narrow);
4384 	  if (o_opcode == XTENSA_UNDEFINED)
4385 	    return 0;
4386 	  o_fmt = get_single_format (o_opcode);
4387 	  if (o_fmt == XTENSA_UNDEFINED)
4388 	    return 0;
4389 
4390 	  if (xtensa_format_length (isa, fmt) != 3
4391 	      || xtensa_format_length (isa, o_fmt) != 2)
4392 	    return 0;
4393 
4394 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4395 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4396 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4397 
4398 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4399 	    return 0;
4400 
4401 	  if (!is_or)
4402 	    {
4403 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4404 		return 0;
4405 	    }
4406 	  else
4407 	    {
4408 	      uint32 rawval0, rawval1, rawval2;
4409 
4410 	      if (o_operand_count + 1 != operand_count
4411 		  || xtensa_operand_get_field (isa, opcode, 0,
4412 					       fmt, 0, slotbuf, &rawval0) != 0
4413 		  || xtensa_operand_get_field (isa, opcode, 1,
4414 					       fmt, 0, slotbuf, &rawval1) != 0
4415 		  || xtensa_operand_get_field (isa, opcode, 2,
4416 					       fmt, 0, slotbuf, &rawval2) != 0
4417 		  || rawval1 != rawval2
4418 		  || rawval0 == rawval1 /* it is a nop */)
4419 		return 0;
4420 	    }
4421 
4422 	  for (i = 0; i < o_operand_count; ++i)
4423 	    {
4424 	      if (xtensa_operand_get_field (isa, opcode, i, fmt, 0,
4425 					    slotbuf, &value)
4426 		  || xtensa_operand_decode (isa, opcode, i, &value))
4427 		return 0;
4428 
4429 	      /* PC-relative branches need adjustment, but
4430 		 the PC-rel operand will always have a relocation.  */
4431 	      newval = value;
4432 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4433 					   self_address)
4434 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4435 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4436 					       o_slotbuf, newval))
4437 		return 0;
4438 	    }
4439 
4440 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4441 	    return 0;
4442 
4443 	  return o_insnbuf;
4444 	}
4445     }
4446   return 0;
4447 }
4448 
4449 
4450 /* Attempt to narrow an instruction.  If the narrowing is valid, perform
4451    the action in-place directly into the contents and return TRUE.  Otherwise,
4452    the return value is FALSE and the contents are not modified.  */
4453 
4454 static bfd_boolean
4455 narrow_instruction (bfd_byte *contents,
4456 		    bfd_size_type content_length,
4457 		    bfd_size_type offset)
4458 {
4459   xtensa_opcode opcode;
4460   bfd_size_type insn_len;
4461   xtensa_isa isa = xtensa_default_isa;
4462   xtensa_format fmt;
4463   xtensa_insnbuf o_insnbuf;
4464 
4465   static xtensa_insnbuf insnbuf = NULL;
4466   static xtensa_insnbuf slotbuf = NULL;
4467 
4468   if (insnbuf == NULL)
4469     {
4470       insnbuf = xtensa_insnbuf_alloc (isa);
4471       slotbuf = xtensa_insnbuf_alloc (isa);
4472     }
4473 
4474   BFD_ASSERT (offset < content_length);
4475 
4476   if (content_length < 2)
4477     return FALSE;
4478 
4479   /* We will hand-code a few of these for a little while.
4480      These have all been specified in the assembler aleady.  */
4481   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4482 			     content_length - offset);
4483   fmt = xtensa_format_decode (isa, insnbuf);
4484   if (xtensa_format_num_slots (isa, fmt) != 1)
4485     return FALSE;
4486 
4487   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4488     return FALSE;
4489 
4490   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4491   if (opcode == XTENSA_UNDEFINED)
4492     return FALSE;
4493   insn_len = xtensa_format_length (isa, fmt);
4494   if (insn_len > content_length)
4495     return FALSE;
4496 
4497   o_insnbuf = can_narrow_instruction (slotbuf, fmt, opcode);
4498   if (o_insnbuf)
4499     {
4500       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4501 			       content_length - offset);
4502       return TRUE;
4503     }
4504 
4505   return FALSE;
4506 }
4507 
4508 
4509 /* Check if an instruction can be "widened", i.e., changed from a 2-byte
4510    "density" instruction to a standard 3-byte instruction.  If it is valid,
4511    return the instruction buffer holding the wide instruction.  Otherwise,
4512    return 0.  The set of valid widenings are specified by a string table
4513    but require some special case operand checks in some cases.  */
4514 
4515 static xtensa_insnbuf
4516 can_widen_instruction (xtensa_insnbuf slotbuf,
4517 		       xtensa_format fmt,
4518 		       xtensa_opcode opcode)
4519 {
4520   xtensa_isa isa = xtensa_default_isa;
4521   xtensa_format o_fmt;
4522   unsigned opi;
4523 
4524   static xtensa_insnbuf o_insnbuf = NULL;
4525   static xtensa_insnbuf o_slotbuf = NULL;
4526 
4527   if (o_insnbuf == NULL)
4528     {
4529       o_insnbuf = xtensa_insnbuf_alloc (isa);
4530       o_slotbuf = xtensa_insnbuf_alloc (isa);
4531     }
4532 
4533   for (opi = 0; opi < (sizeof (widenable)/sizeof (struct string_pair)); opi++)
4534     {
4535       bfd_boolean is_or = (strcmp ("or", widenable[opi].wide) == 0);
4536       bfd_boolean is_branch = (strcmp ("beqz", widenable[opi].wide) == 0
4537 			       || strcmp ("bnez", widenable[opi].wide) == 0);
4538 
4539       if (opcode == xtensa_opcode_lookup (isa, widenable[opi].narrow))
4540 	{
4541 	  uint32 value, newval;
4542 	  int i, operand_count, o_operand_count, check_operand_count;
4543 	  xtensa_opcode o_opcode;
4544 
4545 	  /* Address does not matter in this case.  We might need to fix it
4546 	     to handle branches/jumps.  */
4547 	  bfd_vma self_address = 0;
4548 
4549 	  o_opcode = xtensa_opcode_lookup (isa, widenable[opi].wide);
4550 	  if (o_opcode == XTENSA_UNDEFINED)
4551 	    return 0;
4552 	  o_fmt = get_single_format (o_opcode);
4553 	  if (o_fmt == XTENSA_UNDEFINED)
4554 	    return 0;
4555 
4556 	  if (xtensa_format_length (isa, fmt) != 2
4557 	      || xtensa_format_length (isa, o_fmt) != 3)
4558 	    return 0;
4559 
4560 	  xtensa_format_encode (isa, o_fmt, o_insnbuf);
4561 	  operand_count = xtensa_opcode_num_operands (isa, opcode);
4562 	  o_operand_count = xtensa_opcode_num_operands (isa, o_opcode);
4563 	  check_operand_count = o_operand_count;
4564 
4565 	  if (xtensa_opcode_encode (isa, o_fmt, 0, o_slotbuf, o_opcode) != 0)
4566 	    return 0;
4567 
4568 	  if (!is_or)
4569 	    {
4570 	      if (xtensa_opcode_num_operands (isa, o_opcode) != operand_count)
4571 		return 0;
4572 	    }
4573 	  else
4574 	    {
4575 	      uint32 rawval0, rawval1;
4576 
4577 	      if (o_operand_count != operand_count + 1
4578 		  || xtensa_operand_get_field (isa, opcode, 0,
4579 					       fmt, 0, slotbuf, &rawval0) != 0
4580 		  || xtensa_operand_get_field (isa, opcode, 1,
4581 					       fmt, 0, slotbuf, &rawval1) != 0
4582 		  || rawval0 == rawval1 /* it is a nop */)
4583 		return 0;
4584 	    }
4585 	  if (is_branch)
4586 	    check_operand_count--;
4587 
4588 	  for (i = 0; i < check_operand_count; i++)
4589 	    {
4590 	      int new_i = i;
4591 	      if (is_or && i == o_operand_count - 1)
4592 		new_i = i - 1;
4593 	      if (xtensa_operand_get_field (isa, opcode, new_i, fmt, 0,
4594 					    slotbuf, &value)
4595 		  || xtensa_operand_decode (isa, opcode, new_i, &value))
4596 		return 0;
4597 
4598 	      /* PC-relative branches need adjustment, but
4599 		 the PC-rel operand will always have a relocation.  */
4600 	      newval = value;
4601 	      if (xtensa_operand_do_reloc (isa, o_opcode, i, &newval,
4602 					   self_address)
4603 		  || xtensa_operand_encode (isa, o_opcode, i, &newval)
4604 		  || xtensa_operand_set_field (isa, o_opcode, i, o_fmt, 0,
4605 					       o_slotbuf, newval))
4606 		return 0;
4607 	    }
4608 
4609 	  if (xtensa_format_set_slot (isa, o_fmt, 0, o_insnbuf, o_slotbuf))
4610 	    return 0;
4611 
4612 	  return o_insnbuf;
4613 	}
4614     }
4615   return 0;
4616 }
4617 
4618 
4619 /* Attempt to widen an instruction.  If the widening is valid, perform
4620    the action in-place directly into the contents and return TRUE.  Otherwise,
4621    the return value is FALSE and the contents are not modified.  */
4622 
4623 static bfd_boolean
4624 widen_instruction (bfd_byte *contents,
4625 		   bfd_size_type content_length,
4626 		   bfd_size_type offset)
4627 {
4628   xtensa_opcode opcode;
4629   bfd_size_type insn_len;
4630   xtensa_isa isa = xtensa_default_isa;
4631   xtensa_format fmt;
4632   xtensa_insnbuf o_insnbuf;
4633 
4634   static xtensa_insnbuf insnbuf = NULL;
4635   static xtensa_insnbuf slotbuf = NULL;
4636 
4637   if (insnbuf == NULL)
4638     {
4639       insnbuf = xtensa_insnbuf_alloc (isa);
4640       slotbuf = xtensa_insnbuf_alloc (isa);
4641     }
4642 
4643   BFD_ASSERT (offset < content_length);
4644 
4645   if (content_length < 2)
4646     return FALSE;
4647 
4648   /* We will hand-code a few of these for a little while.
4649      These have all been specified in the assembler aleady.  */
4650   xtensa_insnbuf_from_chars (isa, insnbuf, &contents[offset],
4651 			     content_length - offset);
4652   fmt = xtensa_format_decode (isa, insnbuf);
4653   if (xtensa_format_num_slots (isa, fmt) != 1)
4654     return FALSE;
4655 
4656   if (xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf) != 0)
4657     return FALSE;
4658 
4659   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4660   if (opcode == XTENSA_UNDEFINED)
4661     return FALSE;
4662   insn_len = xtensa_format_length (isa, fmt);
4663   if (insn_len > content_length)
4664     return FALSE;
4665 
4666   o_insnbuf = can_widen_instruction (slotbuf, fmt, opcode);
4667   if (o_insnbuf)
4668     {
4669       xtensa_insnbuf_to_chars (isa, o_insnbuf, contents + offset,
4670 			       content_length - offset);
4671       return TRUE;
4672     }
4673   return FALSE;
4674 }
4675 
4676 
4677 /* Code for transforming CALLs at link-time.  */
4678 
4679 static bfd_reloc_status_type
4680 elf_xtensa_do_asm_simplify (bfd_byte *contents,
4681 			    bfd_vma address,
4682 			    bfd_vma content_length,
4683 			    char **error_message)
4684 {
4685   static xtensa_insnbuf insnbuf = NULL;
4686   static xtensa_insnbuf slotbuf = NULL;
4687   xtensa_format core_format = XTENSA_UNDEFINED;
4688   xtensa_opcode opcode;
4689   xtensa_opcode direct_call_opcode;
4690   xtensa_isa isa = xtensa_default_isa;
4691   bfd_byte *chbuf = contents + address;
4692   int opn;
4693 
4694   if (insnbuf == NULL)
4695     {
4696       insnbuf = xtensa_insnbuf_alloc (isa);
4697       slotbuf = xtensa_insnbuf_alloc (isa);
4698     }
4699 
4700   if (content_length < address)
4701     {
4702       *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4703       return bfd_reloc_other;
4704     }
4705 
4706   opcode = get_expanded_call_opcode (chbuf, content_length - address, 0);
4707   direct_call_opcode = swap_callx_for_call_opcode (opcode);
4708   if (direct_call_opcode == XTENSA_UNDEFINED)
4709     {
4710       *error_message = _("Attempt to convert L32R/CALLX to CALL failed");
4711       return bfd_reloc_other;
4712     }
4713 
4714   /* Assemble a NOP ("or a1, a1, a1") into the 0 byte offset.  */
4715   core_format = xtensa_format_lookup (isa, "x24");
4716   opcode = xtensa_opcode_lookup (isa, "or");
4717   xtensa_opcode_encode (isa, core_format, 0, slotbuf, opcode);
4718   for (opn = 0; opn < 3; opn++)
4719     {
4720       uint32 regno = 1;
4721       xtensa_operand_encode (isa, opcode, opn, &regno);
4722       xtensa_operand_set_field (isa, opcode, opn, core_format, 0,
4723 				slotbuf, regno);
4724     }
4725   xtensa_format_encode (isa, core_format, insnbuf);
4726   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4727   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf, content_length - address);
4728 
4729   /* Assemble a CALL ("callN 0") into the 3 byte offset.  */
4730   xtensa_opcode_encode (isa, core_format, 0, slotbuf, direct_call_opcode);
4731   xtensa_operand_set_field (isa, opcode, 0, core_format, 0, slotbuf, 0);
4732 
4733   xtensa_format_encode (isa, core_format, insnbuf);
4734   xtensa_format_set_slot (isa, core_format, 0, insnbuf, slotbuf);
4735   xtensa_insnbuf_to_chars (isa, insnbuf, chbuf + 3,
4736 			   content_length - address - 3);
4737 
4738   return bfd_reloc_ok;
4739 }
4740 
4741 
4742 static bfd_reloc_status_type
4743 contract_asm_expansion (bfd_byte *contents,
4744 			bfd_vma content_length,
4745 			Elf_Internal_Rela *irel,
4746 			char **error_message)
4747 {
4748   bfd_reloc_status_type retval =
4749     elf_xtensa_do_asm_simplify (contents, irel->r_offset, content_length,
4750 				error_message);
4751 
4752   if (retval != bfd_reloc_ok)
4753     return bfd_reloc_dangerous;
4754 
4755   /* Update the irel->r_offset field so that the right immediate and
4756      the right instruction are modified during the relocation.  */
4757   irel->r_offset += 3;
4758   irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info), R_XTENSA_SLOT0_OP);
4759   return bfd_reloc_ok;
4760 }
4761 
4762 
4763 static xtensa_opcode
4764 swap_callx_for_call_opcode (xtensa_opcode opcode)
4765 {
4766   init_call_opcodes ();
4767 
4768   if (opcode == callx0_op) return call0_op;
4769   if (opcode == callx4_op) return call4_op;
4770   if (opcode == callx8_op) return call8_op;
4771   if (opcode == callx12_op) return call12_op;
4772 
4773   /* Return XTENSA_UNDEFINED if the opcode is not an indirect call.  */
4774   return XTENSA_UNDEFINED;
4775 }
4776 
4777 
4778 /* Check if "buf" is pointing to a "L32R aN; CALLX aN" or "CONST16 aN;
4779    CONST16 aN; CALLX aN" sequence, and if so, return the CALLX opcode.
4780    If not, return XTENSA_UNDEFINED.  */
4781 
4782 #define L32R_TARGET_REG_OPERAND 0
4783 #define CONST16_TARGET_REG_OPERAND 0
4784 #define CALLN_SOURCE_OPERAND 0
4785 
4786 static xtensa_opcode
4787 get_expanded_call_opcode (bfd_byte *buf, int bufsize, bfd_boolean *p_uses_l32r)
4788 {
4789   static xtensa_insnbuf insnbuf = NULL;
4790   static xtensa_insnbuf slotbuf = NULL;
4791   xtensa_format fmt;
4792   xtensa_opcode opcode;
4793   xtensa_isa isa = xtensa_default_isa;
4794   uint32 regno, const16_regno, call_regno;
4795   int offset = 0;
4796 
4797   if (insnbuf == NULL)
4798     {
4799       insnbuf = xtensa_insnbuf_alloc (isa);
4800       slotbuf = xtensa_insnbuf_alloc (isa);
4801     }
4802 
4803   xtensa_insnbuf_from_chars (isa, insnbuf, buf, bufsize);
4804   fmt = xtensa_format_decode (isa, insnbuf);
4805   if (fmt == XTENSA_UNDEFINED
4806       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4807     return XTENSA_UNDEFINED;
4808 
4809   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4810   if (opcode == XTENSA_UNDEFINED)
4811     return XTENSA_UNDEFINED;
4812 
4813   if (opcode == get_l32r_opcode ())
4814     {
4815       if (p_uses_l32r)
4816 	*p_uses_l32r = TRUE;
4817       if (xtensa_operand_get_field (isa, opcode, L32R_TARGET_REG_OPERAND,
4818 				    fmt, 0, slotbuf, &regno)
4819 	  || xtensa_operand_decode (isa, opcode, L32R_TARGET_REG_OPERAND,
4820 				    &regno))
4821 	return XTENSA_UNDEFINED;
4822     }
4823   else if (opcode == get_const16_opcode ())
4824     {
4825       if (p_uses_l32r)
4826 	*p_uses_l32r = FALSE;
4827       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4828 				    fmt, 0, slotbuf, &regno)
4829 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4830 				    &regno))
4831 	return XTENSA_UNDEFINED;
4832 
4833       /* Check that the next instruction is also CONST16.  */
4834       offset += xtensa_format_length (isa, fmt);
4835       xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4836       fmt = xtensa_format_decode (isa, insnbuf);
4837       if (fmt == XTENSA_UNDEFINED
4838 	  || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4839 	return XTENSA_UNDEFINED;
4840       opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4841       if (opcode != get_const16_opcode ())
4842 	return XTENSA_UNDEFINED;
4843 
4844       if (xtensa_operand_get_field (isa, opcode, CONST16_TARGET_REG_OPERAND,
4845 				    fmt, 0, slotbuf, &const16_regno)
4846 	  || xtensa_operand_decode (isa, opcode, CONST16_TARGET_REG_OPERAND,
4847 				    &const16_regno)
4848 	  || const16_regno != regno)
4849 	return XTENSA_UNDEFINED;
4850     }
4851   else
4852     return XTENSA_UNDEFINED;
4853 
4854   /* Next instruction should be an CALLXn with operand 0 == regno.  */
4855   offset += xtensa_format_length (isa, fmt);
4856   xtensa_insnbuf_from_chars (isa, insnbuf, buf + offset, bufsize - offset);
4857   fmt = xtensa_format_decode (isa, insnbuf);
4858   if (fmt == XTENSA_UNDEFINED
4859       || xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf))
4860     return XTENSA_UNDEFINED;
4861   opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
4862   if (opcode == XTENSA_UNDEFINED
4863       || !is_indirect_call_opcode (opcode))
4864     return XTENSA_UNDEFINED;
4865 
4866   if (xtensa_operand_get_field (isa, opcode, CALLN_SOURCE_OPERAND,
4867 				fmt, 0, slotbuf, &call_regno)
4868       || xtensa_operand_decode (isa, opcode, CALLN_SOURCE_OPERAND,
4869 				&call_regno))
4870     return XTENSA_UNDEFINED;
4871 
4872   if (call_regno != regno)
4873     return XTENSA_UNDEFINED;
4874 
4875   return opcode;
4876 }
4877 
4878 
4879 /* Data structures used during relaxation.  */
4880 
4881 /* r_reloc: relocation values.  */
4882 
4883 /* Through the relaxation process, we need to keep track of the values
4884    that will result from evaluating relocations.  The standard ELF
4885    relocation structure is not sufficient for this purpose because we're
4886    operating on multiple input files at once, so we need to know which
4887    input file a relocation refers to.  The r_reloc structure thus
4888    records both the input file (bfd) and ELF relocation.
4889 
4890    For efficiency, an r_reloc also contains a "target_offset" field to
4891    cache the target-section-relative offset value that is represented by
4892    the relocation.
4893 
4894    The r_reloc also contains a virtual offset that allows multiple
4895    inserted literals to be placed at the same "address" with
4896    different offsets.  */
4897 
4898 typedef struct r_reloc_struct r_reloc;
4899 
4900 struct r_reloc_struct
4901 {
4902   bfd *abfd;
4903   Elf_Internal_Rela rela;
4904   bfd_vma target_offset;
4905   bfd_vma virtual_offset;
4906 };
4907 
4908 
4909 /* The r_reloc structure is included by value in literal_value, but not
4910    every literal_value has an associated relocation -- some are simple
4911    constants.  In such cases, we set all the fields in the r_reloc
4912    struct to zero.  The r_reloc_is_const function should be used to
4913    detect this case.  */
4914 
4915 static bfd_boolean
4916 r_reloc_is_const (const r_reloc *r_rel)
4917 {
4918   return (r_rel->abfd == NULL);
4919 }
4920 
4921 
4922 static bfd_vma
4923 r_reloc_get_target_offset (const r_reloc *r_rel)
4924 {
4925   bfd_vma target_offset;
4926   unsigned long r_symndx;
4927 
4928   BFD_ASSERT (!r_reloc_is_const (r_rel));
4929   r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4930   target_offset = get_elf_r_symndx_offset (r_rel->abfd, r_symndx);
4931   return (target_offset + r_rel->rela.r_addend);
4932 }
4933 
4934 
4935 static struct elf_link_hash_entry *
4936 r_reloc_get_hash_entry (const r_reloc *r_rel)
4937 {
4938   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4939   return get_elf_r_symndx_hash_entry (r_rel->abfd, r_symndx);
4940 }
4941 
4942 
4943 static asection *
4944 r_reloc_get_section (const r_reloc *r_rel)
4945 {
4946   unsigned long r_symndx = ELF32_R_SYM (r_rel->rela.r_info);
4947   return get_elf_r_symndx_section (r_rel->abfd, r_symndx);
4948 }
4949 
4950 
4951 static bfd_boolean
4952 r_reloc_is_defined (const r_reloc *r_rel)
4953 {
4954   asection *sec;
4955   if (r_rel == NULL)
4956     return FALSE;
4957 
4958   sec = r_reloc_get_section (r_rel);
4959   if (sec == bfd_abs_section_ptr
4960       || sec == bfd_com_section_ptr
4961       || sec == bfd_und_section_ptr)
4962     return FALSE;
4963   return TRUE;
4964 }
4965 
4966 
4967 static void
4968 r_reloc_init (r_reloc *r_rel,
4969 	      bfd *abfd,
4970 	      Elf_Internal_Rela *irel,
4971 	      bfd_byte *contents,
4972 	      bfd_size_type content_length)
4973 {
4974   int r_type;
4975   reloc_howto_type *howto;
4976 
4977   if (irel)
4978     {
4979       r_rel->rela = *irel;
4980       r_rel->abfd = abfd;
4981       r_rel->target_offset = r_reloc_get_target_offset (r_rel);
4982       r_rel->virtual_offset = 0;
4983       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
4984       howto = &elf_howto_table[r_type];
4985       if (howto->partial_inplace)
4986 	{
4987 	  bfd_vma inplace_val;
4988 	  BFD_ASSERT (r_rel->rela.r_offset < content_length);
4989 
4990 	  inplace_val = bfd_get_32 (abfd, &contents[r_rel->rela.r_offset]);
4991 	  r_rel->target_offset += inplace_val;
4992 	}
4993     }
4994   else
4995     memset (r_rel, 0, sizeof (r_reloc));
4996 }
4997 
4998 
4999 #if DEBUG
5000 
5001 static void
5002 print_r_reloc (FILE *fp, const r_reloc *r_rel)
5003 {
5004   if (r_reloc_is_defined (r_rel))
5005     {
5006       asection *sec = r_reloc_get_section (r_rel);
5007       fprintf (fp, " %s(%s + ", sec->owner->filename, sec->name);
5008     }
5009   else if (r_reloc_get_hash_entry (r_rel))
5010     fprintf (fp, " %s + ", r_reloc_get_hash_entry (r_rel)->root.root.string);
5011   else
5012     fprintf (fp, " ?? + ");
5013 
5014   fprintf_vma (fp, r_rel->target_offset);
5015   if (r_rel->virtual_offset)
5016     {
5017       fprintf (fp, " + ");
5018       fprintf_vma (fp, r_rel->virtual_offset);
5019     }
5020 
5021   fprintf (fp, ")");
5022 }
5023 
5024 #endif /* DEBUG */
5025 
5026 
5027 /* source_reloc: relocations that reference literals.  */
5028 
5029 /* To determine whether literals can be coalesced, we need to first
5030    record all the relocations that reference the literals.  The
5031    source_reloc structure below is used for this purpose.  The
5032    source_reloc entries are kept in a per-literal-section array, sorted
5033    by offset within the literal section (i.e., target offset).
5034 
5035    The source_sec and r_rel.rela.r_offset fields identify the source of
5036    the relocation.  The r_rel field records the relocation value, i.e.,
5037    the offset of the literal being referenced.  The opnd field is needed
5038    to determine the range of the immediate field to which the relocation
5039    applies, so we can determine whether another literal with the same
5040    value is within range.  The is_null field is true when the relocation
5041    is being removed (e.g., when an L32R is being removed due to a CALLX
5042    that is converted to a direct CALL).  */
5043 
5044 typedef struct source_reloc_struct source_reloc;
5045 
5046 struct source_reloc_struct
5047 {
5048   asection *source_sec;
5049   r_reloc r_rel;
5050   xtensa_opcode opcode;
5051   int opnd;
5052   bfd_boolean is_null;
5053   bfd_boolean is_abs_literal;
5054 };
5055 
5056 
5057 static void
5058 init_source_reloc (source_reloc *reloc,
5059 		   asection *source_sec,
5060 		   const r_reloc *r_rel,
5061 		   xtensa_opcode opcode,
5062 		   int opnd,
5063 		   bfd_boolean is_abs_literal)
5064 {
5065   reloc->source_sec = source_sec;
5066   reloc->r_rel = *r_rel;
5067   reloc->opcode = opcode;
5068   reloc->opnd = opnd;
5069   reloc->is_null = FALSE;
5070   reloc->is_abs_literal = is_abs_literal;
5071 }
5072 
5073 
5074 /* Find the source_reloc for a particular source offset and relocation
5075    type.  Note that the array is sorted by _target_ offset, so this is
5076    just a linear search.  */
5077 
5078 static source_reloc *
5079 find_source_reloc (source_reloc *src_relocs,
5080 		   int src_count,
5081 		   asection *sec,
5082 		   Elf_Internal_Rela *irel)
5083 {
5084   int i;
5085 
5086   for (i = 0; i < src_count; i++)
5087     {
5088       if (src_relocs[i].source_sec == sec
5089 	  && src_relocs[i].r_rel.rela.r_offset == irel->r_offset
5090 	  && (ELF32_R_TYPE (src_relocs[i].r_rel.rela.r_info)
5091 	      == ELF32_R_TYPE (irel->r_info)))
5092 	return &src_relocs[i];
5093     }
5094 
5095   return NULL;
5096 }
5097 
5098 
5099 static int
5100 source_reloc_compare (const void *ap, const void *bp)
5101 {
5102   const source_reloc *a = (const source_reloc *) ap;
5103   const source_reloc *b = (const source_reloc *) bp;
5104 
5105   if (a->r_rel.target_offset != b->r_rel.target_offset)
5106     return (a->r_rel.target_offset - b->r_rel.target_offset);
5107 
5108   /* We don't need to sort on these criteria for correctness,
5109      but enforcing a more strict ordering prevents unstable qsort
5110      from behaving differently with different implementations.
5111      Without the code below we get correct but different results
5112      on Solaris 2.7 and 2.8.  We would like to always produce the
5113      same results no matter the host. */
5114 
5115   if ((!a->is_null) - (!b->is_null))
5116     return ((!a->is_null) - (!b->is_null));
5117   return internal_reloc_compare (&a->r_rel.rela, &b->r_rel.rela);
5118 }
5119 
5120 
5121 /* Literal values and value hash tables.  */
5122 
5123 /* Literals with the same value can be coalesced.  The literal_value
5124    structure records the value of a literal: the "r_rel" field holds the
5125    information from the relocation on the literal (if there is one) and
5126    the "value" field holds the contents of the literal word itself.
5127 
5128    The value_map structure records a literal value along with the
5129    location of a literal holding that value.  The value_map hash table
5130    is indexed by the literal value, so that we can quickly check if a
5131    particular literal value has been seen before and is thus a candidate
5132    for coalescing.  */
5133 
5134 typedef struct literal_value_struct literal_value;
5135 typedef struct value_map_struct value_map;
5136 typedef struct value_map_hash_table_struct value_map_hash_table;
5137 
5138 struct literal_value_struct
5139 {
5140   r_reloc r_rel;
5141   unsigned long value;
5142   bfd_boolean is_abs_literal;
5143 };
5144 
5145 struct value_map_struct
5146 {
5147   literal_value val;			/* The literal value.  */
5148   r_reloc loc;				/* Location of the literal.  */
5149   value_map *next;
5150 };
5151 
5152 struct value_map_hash_table_struct
5153 {
5154   unsigned bucket_count;
5155   value_map **buckets;
5156   unsigned count;
5157   bfd_boolean has_last_loc;
5158   r_reloc last_loc;
5159 };
5160 
5161 
5162 static void
5163 init_literal_value (literal_value *lit,
5164 		    const r_reloc *r_rel,
5165 		    unsigned long value,
5166 		    bfd_boolean is_abs_literal)
5167 {
5168   lit->r_rel = *r_rel;
5169   lit->value = value;
5170   lit->is_abs_literal = is_abs_literal;
5171 }
5172 
5173 
5174 static bfd_boolean
5175 literal_value_equal (const literal_value *src1,
5176 		     const literal_value *src2,
5177 		     bfd_boolean final_static_link)
5178 {
5179   struct elf_link_hash_entry *h1, *h2;
5180 
5181   if (r_reloc_is_const (&src1->r_rel) != r_reloc_is_const (&src2->r_rel))
5182     return FALSE;
5183 
5184   if (r_reloc_is_const (&src1->r_rel))
5185     return (src1->value == src2->value);
5186 
5187   if (ELF32_R_TYPE (src1->r_rel.rela.r_info)
5188       != ELF32_R_TYPE (src2->r_rel.rela.r_info))
5189     return FALSE;
5190 
5191   if (src1->r_rel.target_offset != src2->r_rel.target_offset)
5192     return FALSE;
5193 
5194   if (src1->r_rel.virtual_offset != src2->r_rel.virtual_offset)
5195     return FALSE;
5196 
5197   if (src1->value != src2->value)
5198     return FALSE;
5199 
5200   /* Now check for the same section (if defined) or the same elf_hash
5201      (if undefined or weak).  */
5202   h1 = r_reloc_get_hash_entry (&src1->r_rel);
5203   h2 = r_reloc_get_hash_entry (&src2->r_rel);
5204   if (r_reloc_is_defined (&src1->r_rel)
5205       && (final_static_link
5206 	  || ((!h1 || h1->root.type != bfd_link_hash_defweak)
5207 	      && (!h2 || h2->root.type != bfd_link_hash_defweak))))
5208     {
5209       if (r_reloc_get_section (&src1->r_rel)
5210 	  != r_reloc_get_section (&src2->r_rel))
5211 	return FALSE;
5212     }
5213   else
5214     {
5215       /* Require that the hash entries (i.e., symbols) be identical.  */
5216       if (h1 != h2 || h1 == 0)
5217 	return FALSE;
5218     }
5219 
5220   if (src1->is_abs_literal != src2->is_abs_literal)
5221     return FALSE;
5222 
5223   return TRUE;
5224 }
5225 
5226 
5227 /* Must be power of 2.  */
5228 #define INITIAL_HASH_RELOC_BUCKET_COUNT 1024
5229 
5230 static value_map_hash_table *
5231 value_map_hash_table_init (void)
5232 {
5233   value_map_hash_table *values;
5234 
5235   values = (value_map_hash_table *)
5236     bfd_zmalloc (sizeof (value_map_hash_table));
5237   values->bucket_count = INITIAL_HASH_RELOC_BUCKET_COUNT;
5238   values->count = 0;
5239   values->buckets = (value_map **)
5240     bfd_zmalloc (sizeof (value_map *) * values->bucket_count);
5241   if (values->buckets == NULL)
5242     {
5243       free (values);
5244       return NULL;
5245     }
5246   values->has_last_loc = FALSE;
5247 
5248   return values;
5249 }
5250 
5251 
5252 static void
5253 value_map_hash_table_delete (value_map_hash_table *table)
5254 {
5255   free (table->buckets);
5256   free (table);
5257 }
5258 
5259 
5260 static unsigned
5261 hash_bfd_vma (bfd_vma val)
5262 {
5263   return (val >> 2) + (val >> 10);
5264 }
5265 
5266 
5267 static unsigned
5268 literal_value_hash (const literal_value *src)
5269 {
5270   unsigned hash_val;
5271 
5272   hash_val = hash_bfd_vma (src->value);
5273   if (!r_reloc_is_const (&src->r_rel))
5274     {
5275       void *sec_or_hash;
5276 
5277       hash_val += hash_bfd_vma (src->is_abs_literal * 1000);
5278       hash_val += hash_bfd_vma (src->r_rel.target_offset);
5279       hash_val += hash_bfd_vma (src->r_rel.virtual_offset);
5280 
5281       /* Now check for the same section and the same elf_hash.  */
5282       if (r_reloc_is_defined (&src->r_rel))
5283 	sec_or_hash = r_reloc_get_section (&src->r_rel);
5284       else
5285 	sec_or_hash = r_reloc_get_hash_entry (&src->r_rel);
5286       hash_val += hash_bfd_vma ((bfd_vma) (size_t) sec_or_hash);
5287     }
5288   return hash_val;
5289 }
5290 
5291 
5292 /* Check if the specified literal_value has been seen before.  */
5293 
5294 static value_map *
5295 value_map_get_cached_value (value_map_hash_table *map,
5296 			    const literal_value *val,
5297 			    bfd_boolean final_static_link)
5298 {
5299   value_map *map_e;
5300   value_map *bucket;
5301   unsigned idx;
5302 
5303   idx = literal_value_hash (val);
5304   idx = idx & (map->bucket_count - 1);
5305   bucket = map->buckets[idx];
5306   for (map_e = bucket; map_e; map_e = map_e->next)
5307     {
5308       if (literal_value_equal (&map_e->val, val, final_static_link))
5309 	return map_e;
5310     }
5311   return NULL;
5312 }
5313 
5314 
5315 /* Record a new literal value.  It is illegal to call this if VALUE
5316    already has an entry here.  */
5317 
5318 static value_map *
5319 add_value_map (value_map_hash_table *map,
5320 	       const literal_value *val,
5321 	       const r_reloc *loc,
5322 	       bfd_boolean final_static_link)
5323 {
5324   value_map **bucket_p;
5325   unsigned idx;
5326 
5327   value_map *val_e = (value_map *) bfd_zmalloc (sizeof (value_map));
5328   if (val_e == NULL)
5329     {
5330       bfd_set_error (bfd_error_no_memory);
5331       return NULL;
5332     }
5333 
5334   BFD_ASSERT (!value_map_get_cached_value (map, val, final_static_link));
5335   val_e->val = *val;
5336   val_e->loc = *loc;
5337 
5338   idx = literal_value_hash (val);
5339   idx = idx & (map->bucket_count - 1);
5340   bucket_p = &map->buckets[idx];
5341 
5342   val_e->next = *bucket_p;
5343   *bucket_p = val_e;
5344   map->count++;
5345   /* FIXME: Consider resizing the hash table if we get too many entries.  */
5346 
5347   return val_e;
5348 }
5349 
5350 
5351 /* Lists of text actions (ta_) for narrowing, widening, longcall
5352    conversion, space fill, code & literal removal, etc.  */
5353 
5354 /* The following text actions are generated:
5355 
5356    "ta_remove_insn"         remove an instruction or instructions
5357    "ta_remove_longcall"     convert longcall to call
5358    "ta_convert_longcall"    convert longcall to nop/call
5359    "ta_narrow_insn"         narrow a wide instruction
5360    "ta_widen"               widen a narrow instruction
5361    "ta_fill"                add fill or remove fill
5362       removed < 0 is a fill; branches to the fill address will be
5363 	changed to address + fill size (e.g., address - removed)
5364       removed >= 0 branches to the fill address will stay unchanged
5365    "ta_remove_literal"      remove a literal; this action is
5366 			    indicated when a literal is removed
5367                             or replaced.
5368    "ta_add_literal"         insert a new literal; this action is
5369                             indicated when a literal has been moved.
5370                             It may use a virtual_offset because
5371 			    multiple literals can be placed at the
5372                             same location.
5373 
5374    For each of these text actions, we also record the number of bytes
5375    removed by performing the text action.  In the case of a "ta_widen"
5376    or a "ta_fill" that adds space, the removed_bytes will be negative.  */
5377 
5378 typedef struct text_action_struct text_action;
5379 typedef struct text_action_list_struct text_action_list;
5380 typedef enum text_action_enum_t text_action_t;
5381 
5382 enum text_action_enum_t
5383 {
5384   ta_none,
5385   ta_remove_insn,        /* removed = -size */
5386   ta_remove_longcall,    /* removed = -size */
5387   ta_convert_longcall,   /* removed = 0 */
5388   ta_narrow_insn,        /* removed = -1 */
5389   ta_widen_insn,         /* removed = +1 */
5390   ta_fill,               /* removed = +size */
5391   ta_remove_literal,
5392   ta_add_literal
5393 };
5394 
5395 
5396 /* Structure for a text action record.  */
5397 struct text_action_struct
5398 {
5399   text_action_t action;
5400   asection *sec;	/* Optional */
5401   bfd_vma offset;
5402   bfd_vma virtual_offset;  /* Zero except for adding literals.  */
5403   int removed_bytes;
5404   literal_value value;	/* Only valid when adding literals.  */
5405 };
5406 
5407 struct removal_by_action_entry_struct
5408 {
5409   bfd_vma offset;
5410   int removed;
5411   int eq_removed;
5412   int eq_removed_before_fill;
5413 };
5414 typedef struct removal_by_action_entry_struct removal_by_action_entry;
5415 
5416 struct removal_by_action_map_struct
5417 {
5418   unsigned n_entries;
5419   removal_by_action_entry *entry;
5420 };
5421 typedef struct removal_by_action_map_struct removal_by_action_map;
5422 
5423 
5424 /* List of all of the actions taken on a text section.  */
5425 struct text_action_list_struct
5426 {
5427   unsigned count;
5428   splay_tree tree;
5429   removal_by_action_map map;
5430 };
5431 
5432 
5433 static text_action *
5434 find_fill_action (text_action_list *l, asection *sec, bfd_vma offset)
5435 {
5436   text_action a;
5437 
5438   /* It is not necessary to fill at the end of a section.  */
5439   if (sec->size == offset)
5440     return NULL;
5441 
5442   a.offset = offset;
5443   a.action = ta_fill;
5444 
5445   splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5446   if (node)
5447     return (text_action *)node->value;
5448   return NULL;
5449 }
5450 
5451 
5452 static int
5453 compute_removed_action_diff (const text_action *ta,
5454 			     asection *sec,
5455 			     bfd_vma offset,
5456 			     int removed,
5457 			     int removable_space)
5458 {
5459   int new_removed;
5460   int current_removed = 0;
5461 
5462   if (ta)
5463     current_removed = ta->removed_bytes;
5464 
5465   BFD_ASSERT (ta == NULL || ta->offset == offset);
5466   BFD_ASSERT (ta == NULL || ta->action == ta_fill);
5467 
5468   /* It is not necessary to fill at the end of a section.  Clean this up.  */
5469   if (sec->size == offset)
5470     new_removed = removable_space - 0;
5471   else
5472     {
5473       int space;
5474       int added = -removed - current_removed;
5475       /* Ignore multiples of the section alignment.  */
5476       added = ((1 << sec->alignment_power) - 1) & added;
5477       new_removed = (-added);
5478 
5479       /* Modify for removable.  */
5480       space = removable_space - new_removed;
5481       new_removed = (removable_space
5482 		     - (((1 << sec->alignment_power) - 1) & space));
5483     }
5484   return (new_removed - current_removed);
5485 }
5486 
5487 
5488 static void
5489 adjust_fill_action (text_action *ta, int fill_diff)
5490 {
5491   ta->removed_bytes += fill_diff;
5492 }
5493 
5494 
5495 static int
5496 text_action_compare (splay_tree_key a, splay_tree_key b)
5497 {
5498   text_action *pa = (text_action *)a;
5499   text_action *pb = (text_action *)b;
5500   static const int action_priority[] =
5501     {
5502       [ta_fill] = 0,
5503       [ta_none] = 1,
5504       [ta_convert_longcall] = 2,
5505       [ta_narrow_insn] = 3,
5506       [ta_remove_insn] = 4,
5507       [ta_remove_longcall] = 5,
5508       [ta_remove_literal] = 6,
5509       [ta_widen_insn] = 7,
5510       [ta_add_literal] = 8,
5511     };
5512 
5513   if (pa->offset == pb->offset)
5514     {
5515       if (pa->action == pb->action)
5516 	  return 0;
5517       return action_priority[pa->action] - action_priority[pb->action];
5518     }
5519   else
5520     return pa->offset < pb->offset ? -1 : 1;
5521 }
5522 
5523 static text_action *
5524 action_first (text_action_list *action_list)
5525 {
5526   splay_tree_node node = splay_tree_min (action_list->tree);
5527   return node ? (text_action *)node->value : NULL;
5528 }
5529 
5530 static text_action *
5531 action_next (text_action_list *action_list, text_action *action)
5532 {
5533   splay_tree_node node = splay_tree_successor (action_list->tree,
5534 					       (splay_tree_key)action);
5535   return node ? (text_action *)node->value : NULL;
5536 }
5537 
5538 /* Add a modification action to the text.  For the case of adding or
5539    removing space, modify any current fill and assume that
5540    "unreachable_space" bytes can be freely contracted.  Note that a
5541    negative removed value is a fill.  */
5542 
5543 static void
5544 text_action_add (text_action_list *l,
5545 		 text_action_t action,
5546 		 asection *sec,
5547 		 bfd_vma offset,
5548 		 int removed)
5549 {
5550   text_action *ta;
5551   text_action a;
5552 
5553   /* It is not necessary to fill at the end of a section.  */
5554   if (action == ta_fill && sec->size == offset)
5555     return;
5556 
5557   /* It is not necessary to fill 0 bytes.  */
5558   if (action == ta_fill && removed == 0)
5559     return;
5560 
5561   a.action = action;
5562   a.offset = offset;
5563 
5564   if (action == ta_fill)
5565     {
5566       splay_tree_node node = splay_tree_lookup (l->tree, (splay_tree_key)&a);
5567 
5568       if (node)
5569 	{
5570 	  ta = (text_action *)node->value;
5571 	  ta->removed_bytes += removed;
5572 	  return;
5573 	}
5574     }
5575   else
5576     BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)&a) == NULL);
5577 
5578   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5579   ta->action = action;
5580   ta->sec = sec;
5581   ta->offset = offset;
5582   ta->removed_bytes = removed;
5583   splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5584   ++l->count;
5585 }
5586 
5587 
5588 static void
5589 text_action_add_literal (text_action_list *l,
5590 			 text_action_t action,
5591 			 const r_reloc *loc,
5592 			 const literal_value *value,
5593 			 int removed)
5594 {
5595   text_action *ta;
5596   asection *sec = r_reloc_get_section (loc);
5597   bfd_vma offset = loc->target_offset;
5598   bfd_vma virtual_offset = loc->virtual_offset;
5599 
5600   BFD_ASSERT (action == ta_add_literal);
5601 
5602   /* Create a new record and fill it up.  */
5603   ta = (text_action *) bfd_zmalloc (sizeof (text_action));
5604   ta->action = action;
5605   ta->sec = sec;
5606   ta->offset = offset;
5607   ta->virtual_offset = virtual_offset;
5608   ta->value = *value;
5609   ta->removed_bytes = removed;
5610 
5611   BFD_ASSERT (splay_tree_lookup (l->tree, (splay_tree_key)ta) == NULL);
5612   splay_tree_insert (l->tree, (splay_tree_key)ta, (splay_tree_value)ta);
5613   ++l->count;
5614 }
5615 
5616 
5617 /* Find the total offset adjustment for the relaxations specified by
5618    text_actions, beginning from a particular starting action.  This is
5619    typically used from offset_with_removed_text to search an entire list of
5620    actions, but it may also be called directly when adjusting adjacent offsets
5621    so that each search may begin where the previous one left off.  */
5622 
5623 static int
5624 removed_by_actions (text_action_list *action_list,
5625 		    text_action **p_start_action,
5626 		    bfd_vma offset,
5627 		    bfd_boolean before_fill)
5628 {
5629   text_action *r;
5630   int removed = 0;
5631 
5632   r = *p_start_action;
5633   if (r)
5634     {
5635       splay_tree_node node = splay_tree_lookup (action_list->tree,
5636 						(splay_tree_key)r);
5637       BFD_ASSERT (node != NULL && r == (text_action *)node->value);
5638     }
5639 
5640   while (r)
5641     {
5642       if (r->offset > offset)
5643 	break;
5644 
5645       if (r->offset == offset
5646 	  && (before_fill || r->action != ta_fill || r->removed_bytes >= 0))
5647 	break;
5648 
5649       removed += r->removed_bytes;
5650 
5651       r = action_next (action_list, r);
5652     }
5653 
5654   *p_start_action = r;
5655   return removed;
5656 }
5657 
5658 
5659 static bfd_vma
5660 offset_with_removed_text (text_action_list *action_list, bfd_vma offset)
5661 {
5662   text_action *r = action_first (action_list);
5663 
5664   return offset - removed_by_actions (action_list, &r, offset, FALSE);
5665 }
5666 
5667 
5668 static unsigned
5669 action_list_count (text_action_list *action_list)
5670 {
5671   return action_list->count;
5672 }
5673 
5674 typedef struct map_action_fn_context_struct map_action_fn_context;
5675 struct map_action_fn_context_struct
5676 {
5677   int removed;
5678   removal_by_action_map map;
5679   bfd_boolean eq_complete;
5680 };
5681 
5682 static int
5683 map_action_fn (splay_tree_node node, void *p)
5684 {
5685   map_action_fn_context *ctx = p;
5686   text_action *r = (text_action *)node->value;
5687   removal_by_action_entry *ientry = ctx->map.entry + ctx->map.n_entries;
5688 
5689   if (ctx->map.n_entries && (ientry - 1)->offset == r->offset)
5690     {
5691       --ientry;
5692     }
5693   else
5694     {
5695       ++ctx->map.n_entries;
5696       ctx->eq_complete = FALSE;
5697       ientry->offset = r->offset;
5698       ientry->eq_removed_before_fill = ctx->removed;
5699     }
5700 
5701   if (!ctx->eq_complete)
5702     {
5703       if (r->action != ta_fill || r->removed_bytes >= 0)
5704 	{
5705 	  ientry->eq_removed = ctx->removed;
5706 	  ctx->eq_complete = TRUE;
5707 	}
5708       else
5709 	ientry->eq_removed = ctx->removed + r->removed_bytes;
5710     }
5711 
5712   ctx->removed += r->removed_bytes;
5713   ientry->removed = ctx->removed;
5714   return 0;
5715 }
5716 
5717 static void
5718 map_removal_by_action (text_action_list *action_list)
5719 {
5720   map_action_fn_context ctx;
5721 
5722   ctx.removed = 0;
5723   ctx.map.n_entries = 0;
5724   ctx.map.entry = bfd_malloc (action_list_count (action_list) *
5725 			      sizeof (removal_by_action_entry));
5726   ctx.eq_complete = FALSE;
5727 
5728   splay_tree_foreach (action_list->tree, map_action_fn, &ctx);
5729   action_list->map = ctx.map;
5730 }
5731 
5732 static int
5733 removed_by_actions_map (text_action_list *action_list, bfd_vma offset,
5734 			bfd_boolean before_fill)
5735 {
5736   unsigned a, b;
5737 
5738   if (!action_list->map.entry)
5739     map_removal_by_action (action_list);
5740 
5741   if (!action_list->map.n_entries)
5742     return 0;
5743 
5744   a = 0;
5745   b = action_list->map.n_entries;
5746 
5747   while (b - a > 1)
5748     {
5749       unsigned c = (a + b) / 2;
5750 
5751       if (action_list->map.entry[c].offset <= offset)
5752 	a = c;
5753       else
5754 	b = c;
5755     }
5756 
5757   if (action_list->map.entry[a].offset < offset)
5758     {
5759       return action_list->map.entry[a].removed;
5760     }
5761   else if (action_list->map.entry[a].offset == offset)
5762     {
5763       return before_fill ?
5764 	action_list->map.entry[a].eq_removed_before_fill :
5765 	action_list->map.entry[a].eq_removed;
5766     }
5767   else
5768     {
5769       return 0;
5770     }
5771 }
5772 
5773 static bfd_vma
5774 offset_with_removed_text_map (text_action_list *action_list, bfd_vma offset)
5775 {
5776   int removed = removed_by_actions_map (action_list, offset, FALSE);
5777   return offset - removed;
5778 }
5779 
5780 
5781 /* The find_insn_action routine will only find non-fill actions.  */
5782 
5783 static text_action *
5784 find_insn_action (text_action_list *action_list, bfd_vma offset)
5785 {
5786   static const text_action_t action[] =
5787     {
5788       ta_convert_longcall,
5789       ta_remove_longcall,
5790       ta_widen_insn,
5791       ta_narrow_insn,
5792       ta_remove_insn,
5793     };
5794   text_action a;
5795   unsigned i;
5796 
5797   a.offset = offset;
5798   for (i = 0; i < sizeof (action) / sizeof (*action); ++i)
5799     {
5800       splay_tree_node node;
5801 
5802       a.action = action[i];
5803       node = splay_tree_lookup (action_list->tree, (splay_tree_key)&a);
5804       if (node)
5805 	return (text_action *)node->value;
5806     }
5807   return NULL;
5808 }
5809 
5810 
5811 #if DEBUG
5812 
5813 static void
5814 print_action (FILE *fp, text_action *r)
5815 {
5816   const char *t = "unknown";
5817   switch (r->action)
5818     {
5819     case ta_remove_insn:
5820       t = "remove_insn"; break;
5821     case ta_remove_longcall:
5822       t = "remove_longcall"; break;
5823     case ta_convert_longcall:
5824       t = "convert_longcall"; break;
5825     case ta_narrow_insn:
5826       t = "narrow_insn"; break;
5827     case ta_widen_insn:
5828       t = "widen_insn"; break;
5829     case ta_fill:
5830       t = "fill"; break;
5831     case ta_none:
5832       t = "none"; break;
5833     case ta_remove_literal:
5834       t = "remove_literal"; break;
5835     case ta_add_literal:
5836       t = "add_literal"; break;
5837     }
5838 
5839   fprintf (fp, "%s: %s[0x%lx] \"%s\" %d\n",
5840 	   r->sec->owner->filename,
5841 	   r->sec->name, (unsigned long) r->offset, t, r->removed_bytes);
5842 }
5843 
5844 static int
5845 print_action_list_fn (splay_tree_node node, void *p)
5846 {
5847   text_action *r = (text_action *)node->value;
5848 
5849   print_action (p, r);
5850   return 0;
5851 }
5852 
5853 static void
5854 print_action_list (FILE *fp, text_action_list *action_list)
5855 {
5856   fprintf (fp, "Text Action\n");
5857   splay_tree_foreach (action_list->tree, print_action_list_fn, fp);
5858 }
5859 
5860 #endif /* DEBUG */
5861 
5862 
5863 /* Lists of literals being coalesced or removed.  */
5864 
5865 /* In the usual case, the literal identified by "from" is being
5866    coalesced with another literal identified by "to".  If the literal is
5867    unused and is being removed altogether, "to.abfd" will be NULL.
5868    The removed_literal entries are kept on a per-section list, sorted
5869    by the "from" offset field.  */
5870 
5871 typedef struct removed_literal_struct removed_literal;
5872 typedef struct removed_literal_map_entry_struct removed_literal_map_entry;
5873 typedef struct removed_literal_list_struct removed_literal_list;
5874 
5875 struct removed_literal_struct
5876 {
5877   r_reloc from;
5878   r_reloc to;
5879   removed_literal *next;
5880 };
5881 
5882 struct removed_literal_map_entry_struct
5883 {
5884   bfd_vma addr;
5885   removed_literal *literal;
5886 };
5887 
5888 struct removed_literal_list_struct
5889 {
5890   removed_literal *head;
5891   removed_literal *tail;
5892 
5893   unsigned n_map;
5894   removed_literal_map_entry *map;
5895 };
5896 
5897 
5898 /* Record that the literal at "from" is being removed.  If "to" is not
5899    NULL, the "from" literal is being coalesced with the "to" literal.  */
5900 
5901 static void
5902 add_removed_literal (removed_literal_list *removed_list,
5903 		     const r_reloc *from,
5904 		     const r_reloc *to)
5905 {
5906   removed_literal *r, *new_r, *next_r;
5907 
5908   new_r = (removed_literal *) bfd_zmalloc (sizeof (removed_literal));
5909 
5910   new_r->from = *from;
5911   if (to)
5912     new_r->to = *to;
5913   else
5914     new_r->to.abfd = NULL;
5915   new_r->next = NULL;
5916 
5917   r = removed_list->head;
5918   if (r == NULL)
5919     {
5920       removed_list->head = new_r;
5921       removed_list->tail = new_r;
5922     }
5923   /* Special check for common case of append.  */
5924   else if (removed_list->tail->from.target_offset < from->target_offset)
5925     {
5926       removed_list->tail->next = new_r;
5927       removed_list->tail = new_r;
5928     }
5929   else
5930     {
5931       while (r->from.target_offset < from->target_offset && r->next)
5932 	{
5933 	  r = r->next;
5934 	}
5935       next_r = r->next;
5936       r->next = new_r;
5937       new_r->next = next_r;
5938       if (next_r == NULL)
5939 	removed_list->tail = new_r;
5940     }
5941 }
5942 
5943 static void
5944 map_removed_literal (removed_literal_list *removed_list)
5945 {
5946   unsigned n_map = 0;
5947   unsigned i;
5948   removed_literal_map_entry *map = NULL;
5949   removed_literal *r = removed_list->head;
5950 
5951   for (i = 0; r; ++i, r = r->next)
5952     {
5953       if (i == n_map)
5954 	{
5955 	  n_map = (n_map * 2) + 2;
5956 	  map = bfd_realloc (map, n_map * sizeof (*map));
5957 	}
5958       map[i].addr = r->from.target_offset;
5959       map[i].literal = r;
5960     }
5961   removed_list->map = map;
5962   removed_list->n_map = i;
5963 }
5964 
5965 static int
5966 removed_literal_compare (const void *a, const void *b)
5967 {
5968   const removed_literal_map_entry *pa = a;
5969   const removed_literal_map_entry *pb = b;
5970 
5971   if (pa->addr == pb->addr)
5972     return 0;
5973   else
5974     return pa->addr < pb->addr ? -1 : 1;
5975 }
5976 
5977 /* Check if the list of removed literals contains an entry for the
5978    given address.  Return the entry if found.  */
5979 
5980 static removed_literal *
5981 find_removed_literal (removed_literal_list *removed_list, bfd_vma addr)
5982 {
5983   removed_literal_map_entry *p;
5984   removed_literal *r = NULL;
5985 
5986   if (removed_list->map == NULL)
5987     map_removed_literal (removed_list);
5988 
5989   p = bsearch (&addr, removed_list->map, removed_list->n_map,
5990 	       sizeof (*removed_list->map), removed_literal_compare);
5991   if (p)
5992     {
5993       while (p != removed_list->map && (p - 1)->addr == addr)
5994 	--p;
5995       r = p->literal;
5996     }
5997   return r;
5998 }
5999 
6000 
6001 #if DEBUG
6002 
6003 static void
6004 print_removed_literals (FILE *fp, removed_literal_list *removed_list)
6005 {
6006   removed_literal *r;
6007   r = removed_list->head;
6008   if (r)
6009     fprintf (fp, "Removed Literals\n");
6010   for (; r != NULL; r = r->next)
6011     {
6012       print_r_reloc (fp, &r->from);
6013       fprintf (fp, " => ");
6014       if (r->to.abfd == NULL)
6015 	fprintf (fp, "REMOVED");
6016       else
6017 	print_r_reloc (fp, &r->to);
6018       fprintf (fp, "\n");
6019     }
6020 }
6021 
6022 #endif /* DEBUG */
6023 
6024 
6025 /* Per-section data for relaxation.  */
6026 
6027 typedef struct reloc_bfd_fix_struct reloc_bfd_fix;
6028 
6029 struct xtensa_relax_info_struct
6030 {
6031   bfd_boolean is_relaxable_literal_section;
6032   bfd_boolean is_relaxable_asm_section;
6033   int visited;				/* Number of times visited.  */
6034 
6035   source_reloc *src_relocs;		/* Array[src_count].  */
6036   int src_count;
6037   int src_next;				/* Next src_relocs entry to assign.  */
6038 
6039   removed_literal_list removed_list;
6040   text_action_list action_list;
6041 
6042   reloc_bfd_fix *fix_list;
6043   reloc_bfd_fix *fix_array;
6044   unsigned fix_array_count;
6045 
6046   /* Support for expanding the reloc array that is stored
6047      in the section structure.  If the relocations have been
6048      reallocated, the newly allocated relocations will be referenced
6049      here along with the actual size allocated.  The relocation
6050      count will always be found in the section structure.  */
6051   Elf_Internal_Rela *allocated_relocs;
6052   unsigned relocs_count;
6053   unsigned allocated_relocs_count;
6054 };
6055 
6056 struct elf_xtensa_section_data
6057 {
6058   struct bfd_elf_section_data elf;
6059   xtensa_relax_info relax_info;
6060 };
6061 
6062 
6063 static bfd_boolean
6064 elf_xtensa_new_section_hook (bfd *abfd, asection *sec)
6065 {
6066   if (!sec->used_by_bfd)
6067     {
6068       struct elf_xtensa_section_data *sdata;
6069       bfd_size_type amt = sizeof (*sdata);
6070 
6071       sdata = bfd_zalloc (abfd, amt);
6072       if (sdata == NULL)
6073 	return FALSE;
6074       sec->used_by_bfd = sdata;
6075     }
6076 
6077   return _bfd_elf_new_section_hook (abfd, sec);
6078 }
6079 
6080 
6081 static xtensa_relax_info *
6082 get_xtensa_relax_info (asection *sec)
6083 {
6084   struct elf_xtensa_section_data *section_data;
6085 
6086   /* No info available if no section or if it is an output section.  */
6087   if (!sec || sec == sec->output_section)
6088     return NULL;
6089 
6090   section_data = (struct elf_xtensa_section_data *) elf_section_data (sec);
6091   return &section_data->relax_info;
6092 }
6093 
6094 
6095 static void
6096 init_xtensa_relax_info (asection *sec)
6097 {
6098   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6099 
6100   relax_info->is_relaxable_literal_section = FALSE;
6101   relax_info->is_relaxable_asm_section = FALSE;
6102   relax_info->visited = 0;
6103 
6104   relax_info->src_relocs = NULL;
6105   relax_info->src_count = 0;
6106   relax_info->src_next = 0;
6107 
6108   relax_info->removed_list.head = NULL;
6109   relax_info->removed_list.tail = NULL;
6110 
6111   relax_info->action_list.tree = splay_tree_new (text_action_compare,
6112 						 NULL, NULL);
6113   relax_info->action_list.map.n_entries = 0;
6114   relax_info->action_list.map.entry = NULL;
6115 
6116   relax_info->fix_list = NULL;
6117   relax_info->fix_array = NULL;
6118   relax_info->fix_array_count = 0;
6119 
6120   relax_info->allocated_relocs = NULL;
6121   relax_info->relocs_count = 0;
6122   relax_info->allocated_relocs_count = 0;
6123 }
6124 
6125 
6126 /* Coalescing literals may require a relocation to refer to a section in
6127    a different input file, but the standard relocation information
6128    cannot express that.  Instead, the reloc_bfd_fix structures are used
6129    to "fix" the relocations that refer to sections in other input files.
6130    These structures are kept on per-section lists.  The "src_type" field
6131    records the relocation type in case there are multiple relocations on
6132    the same location.  FIXME: This is ugly; an alternative might be to
6133    add new symbols with the "owner" field to some other input file.  */
6134 
6135 struct reloc_bfd_fix_struct
6136 {
6137   asection *src_sec;
6138   bfd_vma src_offset;
6139   unsigned src_type;			/* Relocation type.  */
6140 
6141   asection *target_sec;
6142   bfd_vma target_offset;
6143   bfd_boolean translated;
6144 
6145   reloc_bfd_fix *next;
6146 };
6147 
6148 
6149 static reloc_bfd_fix *
6150 reloc_bfd_fix_init (asection *src_sec,
6151 		    bfd_vma src_offset,
6152 		    unsigned src_type,
6153 		    asection *target_sec,
6154 		    bfd_vma target_offset,
6155 		    bfd_boolean translated)
6156 {
6157   reloc_bfd_fix *fix;
6158 
6159   fix = (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix));
6160   fix->src_sec = src_sec;
6161   fix->src_offset = src_offset;
6162   fix->src_type = src_type;
6163   fix->target_sec = target_sec;
6164   fix->target_offset = target_offset;
6165   fix->translated = translated;
6166 
6167   return fix;
6168 }
6169 
6170 
6171 static void
6172 add_fix (asection *src_sec, reloc_bfd_fix *fix)
6173 {
6174   xtensa_relax_info *relax_info;
6175 
6176   relax_info = get_xtensa_relax_info (src_sec);
6177   fix->next = relax_info->fix_list;
6178   relax_info->fix_list = fix;
6179 }
6180 
6181 
6182 static int
6183 fix_compare (const void *ap, const void *bp)
6184 {
6185   const reloc_bfd_fix *a = (const reloc_bfd_fix *) ap;
6186   const reloc_bfd_fix *b = (const reloc_bfd_fix *) bp;
6187 
6188   if (a->src_offset != b->src_offset)
6189     return (a->src_offset - b->src_offset);
6190   return (a->src_type - b->src_type);
6191 }
6192 
6193 
6194 static void
6195 cache_fix_array (asection *sec)
6196 {
6197   unsigned i, count = 0;
6198   reloc_bfd_fix *r;
6199   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6200 
6201   if (relax_info == NULL)
6202     return;
6203   if (relax_info->fix_list == NULL)
6204     return;
6205 
6206   for (r = relax_info->fix_list; r != NULL; r = r->next)
6207     count++;
6208 
6209   relax_info->fix_array =
6210     (reloc_bfd_fix *) bfd_malloc (sizeof (reloc_bfd_fix) * count);
6211   relax_info->fix_array_count = count;
6212 
6213   r = relax_info->fix_list;
6214   for (i = 0; i < count; i++, r = r->next)
6215     {
6216       relax_info->fix_array[count - 1 - i] = *r;
6217       relax_info->fix_array[count - 1 - i].next = NULL;
6218     }
6219 
6220   qsort (relax_info->fix_array, relax_info->fix_array_count,
6221 	 sizeof (reloc_bfd_fix), fix_compare);
6222 }
6223 
6224 
6225 static reloc_bfd_fix *
6226 get_bfd_fix (asection *sec, bfd_vma offset, unsigned type)
6227 {
6228   xtensa_relax_info *relax_info = get_xtensa_relax_info (sec);
6229   reloc_bfd_fix *rv;
6230   reloc_bfd_fix key;
6231 
6232   if (relax_info == NULL)
6233     return NULL;
6234   if (relax_info->fix_list == NULL)
6235     return NULL;
6236 
6237   if (relax_info->fix_array == NULL)
6238     cache_fix_array (sec);
6239 
6240   key.src_offset = offset;
6241   key.src_type = type;
6242   rv = bsearch (&key, relax_info->fix_array,  relax_info->fix_array_count,
6243 		sizeof (reloc_bfd_fix), fix_compare);
6244   return rv;
6245 }
6246 
6247 
6248 /* Section caching.  */
6249 
6250 typedef struct section_cache_struct section_cache_t;
6251 
6252 struct section_cache_struct
6253 {
6254   asection *sec;
6255 
6256   bfd_byte *contents;		/* Cache of the section contents.  */
6257   bfd_size_type content_length;
6258 
6259   property_table_entry *ptbl;	/* Cache of the section property table.  */
6260   unsigned pte_count;
6261 
6262   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6263   unsigned reloc_count;
6264 };
6265 
6266 
6267 static void
6268 init_section_cache (section_cache_t *sec_cache)
6269 {
6270   memset (sec_cache, 0, sizeof (*sec_cache));
6271 }
6272 
6273 
6274 static void
6275 free_section_cache (section_cache_t *sec_cache)
6276 {
6277   if (sec_cache->sec)
6278     {
6279       release_contents (sec_cache->sec, sec_cache->contents);
6280       release_internal_relocs (sec_cache->sec, sec_cache->relocs);
6281       if (sec_cache->ptbl)
6282 	free (sec_cache->ptbl);
6283     }
6284 }
6285 
6286 
6287 static bfd_boolean
6288 section_cache_section (section_cache_t *sec_cache,
6289 		       asection *sec,
6290 		       struct bfd_link_info *link_info)
6291 {
6292   bfd *abfd;
6293   property_table_entry *prop_table = NULL;
6294   int ptblsize = 0;
6295   bfd_byte *contents = NULL;
6296   Elf_Internal_Rela *internal_relocs = NULL;
6297   bfd_size_type sec_size;
6298 
6299   if (sec == NULL)
6300     return FALSE;
6301   if (sec == sec_cache->sec)
6302     return TRUE;
6303 
6304   abfd = sec->owner;
6305   sec_size = bfd_get_section_limit (abfd, sec);
6306 
6307   /* Get the contents.  */
6308   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
6309   if (contents == NULL && sec_size != 0)
6310     goto err;
6311 
6312   /* Get the relocations.  */
6313   internal_relocs = retrieve_internal_relocs (abfd, sec,
6314 					      link_info->keep_memory);
6315 
6316   /* Get the entry table.  */
6317   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
6318 					XTENSA_PROP_SEC_NAME, FALSE);
6319   if (ptblsize < 0)
6320     goto err;
6321 
6322   /* Fill in the new section cache.  */
6323   free_section_cache (sec_cache);
6324   init_section_cache (sec_cache);
6325 
6326   sec_cache->sec = sec;
6327   sec_cache->contents = contents;
6328   sec_cache->content_length = sec_size;
6329   sec_cache->relocs = internal_relocs;
6330   sec_cache->reloc_count = sec->reloc_count;
6331   sec_cache->pte_count = ptblsize;
6332   sec_cache->ptbl = prop_table;
6333 
6334   return TRUE;
6335 
6336  err:
6337   release_contents (sec, contents);
6338   release_internal_relocs (sec, internal_relocs);
6339   if (prop_table)
6340     free (prop_table);
6341   return FALSE;
6342 }
6343 
6344 
6345 /* Extended basic blocks.  */
6346 
6347 /* An ebb_struct represents an Extended Basic Block.  Within this
6348    range, we guarantee that all instructions are decodable, the
6349    property table entries are contiguous, and no property table
6350    specifies a segment that cannot have instructions moved.  This
6351    structure contains caches of the contents, property table and
6352    relocations for the specified section for easy use.  The range is
6353    specified by ranges of indices for the byte offset, property table
6354    offsets and relocation offsets.  These must be consistent.  */
6355 
6356 typedef struct ebb_struct ebb_t;
6357 
6358 struct ebb_struct
6359 {
6360   asection *sec;
6361 
6362   bfd_byte *contents;		/* Cache of the section contents.  */
6363   bfd_size_type content_length;
6364 
6365   property_table_entry *ptbl;	/* Cache of the section property table.  */
6366   unsigned pte_count;
6367 
6368   Elf_Internal_Rela *relocs;	/* Cache of the section relocations.  */
6369   unsigned reloc_count;
6370 
6371   bfd_vma start_offset;		/* Offset in section.  */
6372   unsigned start_ptbl_idx;	/* Offset in the property table.  */
6373   unsigned start_reloc_idx;	/* Offset in the relocations.  */
6374 
6375   bfd_vma end_offset;
6376   unsigned end_ptbl_idx;
6377   unsigned end_reloc_idx;
6378 
6379   bfd_boolean ends_section;	/* Is this the last ebb in a section?  */
6380 
6381   /* The unreachable property table at the end of this set of blocks;
6382      NULL if the end is not an unreachable block.  */
6383   property_table_entry *ends_unreachable;
6384 };
6385 
6386 
6387 enum ebb_target_enum
6388 {
6389   EBB_NO_ALIGN = 0,
6390   EBB_DESIRE_TGT_ALIGN,
6391   EBB_REQUIRE_TGT_ALIGN,
6392   EBB_REQUIRE_LOOP_ALIGN,
6393   EBB_REQUIRE_ALIGN
6394 };
6395 
6396 
6397 /* proposed_action_struct is similar to the text_action_struct except
6398    that is represents a potential transformation, not one that will
6399    occur.  We build a list of these for an extended basic block
6400    and use them to compute the actual actions desired.  We must be
6401    careful that the entire set of actual actions we perform do not
6402    break any relocations that would fit if the actions were not
6403    performed.  */
6404 
6405 typedef struct proposed_action_struct proposed_action;
6406 
6407 struct proposed_action_struct
6408 {
6409   enum ebb_target_enum align_type; /* for the target alignment */
6410   bfd_vma alignment_pow;
6411   text_action_t action;
6412   bfd_vma offset;
6413   int removed_bytes;
6414   bfd_boolean do_action; /* If false, then we will not perform the action.  */
6415 };
6416 
6417 
6418 /* The ebb_constraint_struct keeps a set of proposed actions for an
6419    extended basic block.   */
6420 
6421 typedef struct ebb_constraint_struct ebb_constraint;
6422 
6423 struct ebb_constraint_struct
6424 {
6425   ebb_t ebb;
6426   bfd_boolean start_movable;
6427 
6428   /* Bytes of extra space at the beginning if movable.  */
6429   int start_extra_space;
6430 
6431   enum ebb_target_enum start_align;
6432 
6433   bfd_boolean end_movable;
6434 
6435   /* Bytes of extra space at the end if movable.  */
6436   int end_extra_space;
6437 
6438   unsigned action_count;
6439   unsigned action_allocated;
6440 
6441   /* Array of proposed actions.  */
6442   proposed_action *actions;
6443 
6444   /* Action alignments -- one for each proposed action.  */
6445   enum ebb_target_enum *action_aligns;
6446 };
6447 
6448 
6449 static void
6450 init_ebb_constraint (ebb_constraint *c)
6451 {
6452   memset (c, 0, sizeof (ebb_constraint));
6453 }
6454 
6455 
6456 static void
6457 free_ebb_constraint (ebb_constraint *c)
6458 {
6459   if (c->actions)
6460     free (c->actions);
6461 }
6462 
6463 
6464 static void
6465 init_ebb (ebb_t *ebb,
6466 	  asection *sec,
6467 	  bfd_byte *contents,
6468 	  bfd_size_type content_length,
6469 	  property_table_entry *prop_table,
6470 	  unsigned ptblsize,
6471 	  Elf_Internal_Rela *internal_relocs,
6472 	  unsigned reloc_count)
6473 {
6474   memset (ebb, 0, sizeof (ebb_t));
6475   ebb->sec = sec;
6476   ebb->contents = contents;
6477   ebb->content_length = content_length;
6478   ebb->ptbl = prop_table;
6479   ebb->pte_count = ptblsize;
6480   ebb->relocs = internal_relocs;
6481   ebb->reloc_count = reloc_count;
6482   ebb->start_offset = 0;
6483   ebb->end_offset = ebb->content_length - 1;
6484   ebb->start_ptbl_idx = 0;
6485   ebb->end_ptbl_idx = ptblsize;
6486   ebb->start_reloc_idx = 0;
6487   ebb->end_reloc_idx = reloc_count;
6488 }
6489 
6490 
6491 /* Extend the ebb to all decodable contiguous sections.  The algorithm
6492    for building a basic block around an instruction is to push it
6493    forward until we hit the end of a section, an unreachable block or
6494    a block that cannot be transformed.  Then we push it backwards
6495    searching for similar conditions.  */
6496 
6497 static bfd_boolean extend_ebb_bounds_forward (ebb_t *);
6498 static bfd_boolean extend_ebb_bounds_backward (ebb_t *);
6499 static bfd_size_type insn_block_decodable_len
6500   (bfd_byte *, bfd_size_type, bfd_vma, bfd_size_type);
6501 
6502 static bfd_boolean
6503 extend_ebb_bounds (ebb_t *ebb)
6504 {
6505   if (!extend_ebb_bounds_forward (ebb))
6506     return FALSE;
6507   if (!extend_ebb_bounds_backward (ebb))
6508     return FALSE;
6509   return TRUE;
6510 }
6511 
6512 
6513 static bfd_boolean
6514 extend_ebb_bounds_forward (ebb_t *ebb)
6515 {
6516   property_table_entry *the_entry, *new_entry;
6517 
6518   the_entry = &ebb->ptbl[ebb->end_ptbl_idx];
6519 
6520   /* Stop when (1) we cannot decode an instruction, (2) we are at
6521      the end of the property tables, (3) we hit a non-contiguous property
6522      table entry, (4) we hit a NO_TRANSFORM region.  */
6523 
6524   while (1)
6525     {
6526       bfd_vma entry_end;
6527       bfd_size_type insn_block_len;
6528 
6529       entry_end = the_entry->address - ebb->sec->vma + the_entry->size;
6530       insn_block_len =
6531 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6532 				  ebb->end_offset,
6533 				  entry_end - ebb->end_offset);
6534       if (insn_block_len != (entry_end - ebb->end_offset))
6535 	{
6536 	  _bfd_error_handler
6537 	    /* xgettext:c-format */
6538 	    (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6539 	     ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6540 	  return FALSE;
6541 	}
6542       ebb->end_offset += insn_block_len;
6543 
6544       if (ebb->end_offset == ebb->sec->size)
6545 	ebb->ends_section = TRUE;
6546 
6547       /* Update the reloc counter.  */
6548       while (ebb->end_reloc_idx + 1 < ebb->reloc_count
6549 	     && (ebb->relocs[ebb->end_reloc_idx + 1].r_offset
6550 		 < ebb->end_offset))
6551 	{
6552 	  ebb->end_reloc_idx++;
6553 	}
6554 
6555       if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6556 	return TRUE;
6557 
6558       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6559       if (((new_entry->flags & XTENSA_PROP_INSN) == 0)
6560 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6561 	  || ((the_entry->flags & XTENSA_PROP_ALIGN) != 0))
6562 	break;
6563 
6564       if (the_entry->address + the_entry->size != new_entry->address)
6565 	break;
6566 
6567       the_entry = new_entry;
6568       ebb->end_ptbl_idx++;
6569     }
6570 
6571   /* Quick check for an unreachable or end of file just at the end.  */
6572   if (ebb->end_ptbl_idx + 1 == ebb->pte_count)
6573     {
6574       if (ebb->end_offset == ebb->content_length)
6575 	ebb->ends_section = TRUE;
6576     }
6577   else
6578     {
6579       new_entry = &ebb->ptbl[ebb->end_ptbl_idx + 1];
6580       if ((new_entry->flags & XTENSA_PROP_UNREACHABLE) != 0
6581 	  && the_entry->address + the_entry->size == new_entry->address)
6582 	ebb->ends_unreachable = new_entry;
6583     }
6584 
6585   /* Any other ending requires exact alignment.  */
6586   return TRUE;
6587 }
6588 
6589 
6590 static bfd_boolean
6591 extend_ebb_bounds_backward (ebb_t *ebb)
6592 {
6593   property_table_entry *the_entry, *new_entry;
6594 
6595   the_entry = &ebb->ptbl[ebb->start_ptbl_idx];
6596 
6597   /* Stop when (1) we cannot decode the instructions in the current entry.
6598      (2) we are at the beginning of the property tables, (3) we hit a
6599      non-contiguous property table entry, (4) we hit a NO_TRANSFORM region.  */
6600 
6601   while (1)
6602     {
6603       bfd_vma block_begin;
6604       bfd_size_type insn_block_len;
6605 
6606       block_begin = the_entry->address - ebb->sec->vma;
6607       insn_block_len =
6608 	insn_block_decodable_len (ebb->contents, ebb->content_length,
6609 				  block_begin,
6610 				  ebb->start_offset - block_begin);
6611       if (insn_block_len != ebb->start_offset - block_begin)
6612 	{
6613 	  _bfd_error_handler
6614 	    /* xgettext:c-format */
6615 	    (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
6616 	     ebb->sec->owner, ebb->sec, ebb->end_offset + insn_block_len);
6617 	  return FALSE;
6618 	}
6619       ebb->start_offset -= insn_block_len;
6620 
6621       /* Update the reloc counter.  */
6622       while (ebb->start_reloc_idx > 0
6623 	     && (ebb->relocs[ebb->start_reloc_idx - 1].r_offset
6624 		 >= ebb->start_offset))
6625 	{
6626 	  ebb->start_reloc_idx--;
6627 	}
6628 
6629       if (ebb->start_ptbl_idx == 0)
6630 	return TRUE;
6631 
6632       new_entry = &ebb->ptbl[ebb->start_ptbl_idx - 1];
6633       if ((new_entry->flags & XTENSA_PROP_INSN) == 0
6634 	  || ((new_entry->flags & XTENSA_PROP_NO_TRANSFORM) != 0)
6635 	  || ((new_entry->flags & XTENSA_PROP_ALIGN) != 0))
6636 	return TRUE;
6637       if (new_entry->address + new_entry->size != the_entry->address)
6638 	return TRUE;
6639 
6640       the_entry = new_entry;
6641       ebb->start_ptbl_idx--;
6642     }
6643   return TRUE;
6644 }
6645 
6646 
6647 static bfd_size_type
6648 insn_block_decodable_len (bfd_byte *contents,
6649 			  bfd_size_type content_len,
6650 			  bfd_vma block_offset,
6651 			  bfd_size_type block_len)
6652 {
6653   bfd_vma offset = block_offset;
6654 
6655   while (offset < block_offset + block_len)
6656     {
6657       bfd_size_type insn_len = 0;
6658 
6659       insn_len = insn_decode_len (contents, content_len, offset);
6660       if (insn_len == 0)
6661 	return (offset - block_offset);
6662       offset += insn_len;
6663     }
6664   return (offset - block_offset);
6665 }
6666 
6667 
6668 static void
6669 ebb_propose_action (ebb_constraint *c,
6670 		    enum ebb_target_enum align_type,
6671 		    bfd_vma alignment_pow,
6672 		    text_action_t action,
6673 		    bfd_vma offset,
6674 		    int removed_bytes,
6675 		    bfd_boolean do_action)
6676 {
6677   proposed_action *act;
6678 
6679   if (c->action_allocated <= c->action_count)
6680     {
6681       unsigned new_allocated, i;
6682       proposed_action *new_actions;
6683 
6684       new_allocated = (c->action_count + 2) * 2;
6685       new_actions = (proposed_action *)
6686 	bfd_zmalloc (sizeof (proposed_action) * new_allocated);
6687 
6688       for (i = 0; i < c->action_count; i++)
6689 	new_actions[i] = c->actions[i];
6690       if (c->actions)
6691 	free (c->actions);
6692       c->actions = new_actions;
6693       c->action_allocated = new_allocated;
6694     }
6695 
6696   act = &c->actions[c->action_count];
6697   act->align_type = align_type;
6698   act->alignment_pow = alignment_pow;
6699   act->action = action;
6700   act->offset = offset;
6701   act->removed_bytes = removed_bytes;
6702   act->do_action = do_action;
6703 
6704   c->action_count++;
6705 }
6706 
6707 
6708 /* Access to internal relocations, section contents and symbols.  */
6709 
6710 /* During relaxation, we need to modify relocations, section contents,
6711    and symbol definitions, and we need to keep the original values from
6712    being reloaded from the input files, i.e., we need to "pin" the
6713    modified values in memory.  We also want to continue to observe the
6714    setting of the "keep-memory" flag.  The following functions wrap the
6715    standard BFD functions to take care of this for us.  */
6716 
6717 static Elf_Internal_Rela *
6718 retrieve_internal_relocs (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6719 {
6720   Elf_Internal_Rela *internal_relocs;
6721 
6722   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6723     return NULL;
6724 
6725   internal_relocs = elf_section_data (sec)->relocs;
6726   if (internal_relocs == NULL)
6727     internal_relocs = (_bfd_elf_link_read_relocs
6728 		       (abfd, sec, NULL, NULL, keep_memory));
6729   return internal_relocs;
6730 }
6731 
6732 
6733 static void
6734 pin_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6735 {
6736   elf_section_data (sec)->relocs = internal_relocs;
6737 }
6738 
6739 
6740 static void
6741 release_internal_relocs (asection *sec, Elf_Internal_Rela *internal_relocs)
6742 {
6743   if (internal_relocs
6744       && elf_section_data (sec)->relocs != internal_relocs)
6745     free (internal_relocs);
6746 }
6747 
6748 
6749 static bfd_byte *
6750 retrieve_contents (bfd *abfd, asection *sec, bfd_boolean keep_memory)
6751 {
6752   bfd_byte *contents;
6753   bfd_size_type sec_size;
6754 
6755   sec_size = bfd_get_section_limit (abfd, sec);
6756   contents = elf_section_data (sec)->this_hdr.contents;
6757 
6758   if (contents == NULL && sec_size != 0)
6759     {
6760       if (!bfd_malloc_and_get_section (abfd, sec, &contents))
6761 	{
6762 	  if (contents)
6763 	    free (contents);
6764 	  return NULL;
6765 	}
6766       if (keep_memory)
6767 	elf_section_data (sec)->this_hdr.contents = contents;
6768     }
6769   return contents;
6770 }
6771 
6772 
6773 static void
6774 pin_contents (asection *sec, bfd_byte *contents)
6775 {
6776   elf_section_data (sec)->this_hdr.contents = contents;
6777 }
6778 
6779 
6780 static void
6781 release_contents (asection *sec, bfd_byte *contents)
6782 {
6783   if (contents && elf_section_data (sec)->this_hdr.contents != contents)
6784     free (contents);
6785 }
6786 
6787 
6788 static Elf_Internal_Sym *
6789 retrieve_local_syms (bfd *input_bfd)
6790 {
6791   Elf_Internal_Shdr *symtab_hdr;
6792   Elf_Internal_Sym *isymbuf;
6793   size_t locsymcount;
6794 
6795   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6796   locsymcount = symtab_hdr->sh_info;
6797 
6798   isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
6799   if (isymbuf == NULL && locsymcount != 0)
6800     isymbuf = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, locsymcount, 0,
6801 				    NULL, NULL, NULL);
6802 
6803   /* Save the symbols for this input file so they won't be read again.  */
6804   if (isymbuf && isymbuf != (Elf_Internal_Sym *) symtab_hdr->contents)
6805     symtab_hdr->contents = (unsigned char *) isymbuf;
6806 
6807   return isymbuf;
6808 }
6809 
6810 
6811 /* Code for link-time relaxation.  */
6812 
6813 /* Initialization for relaxation: */
6814 static bfd_boolean analyze_relocations (struct bfd_link_info *);
6815 static bfd_boolean find_relaxable_sections
6816   (bfd *, asection *, struct bfd_link_info *, bfd_boolean *);
6817 static bfd_boolean collect_source_relocs
6818   (bfd *, asection *, struct bfd_link_info *);
6819 static bfd_boolean is_resolvable_asm_expansion
6820   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, struct bfd_link_info *,
6821    bfd_boolean *);
6822 static Elf_Internal_Rela *find_associated_l32r_irel
6823   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *, Elf_Internal_Rela *);
6824 static bfd_boolean compute_text_actions
6825   (bfd *, asection *, struct bfd_link_info *);
6826 static bfd_boolean compute_ebb_proposed_actions (ebb_constraint *);
6827 static bfd_boolean compute_ebb_actions (ebb_constraint *);
6828 typedef struct reloc_range_list_struct reloc_range_list;
6829 static bfd_boolean check_section_ebb_pcrels_fit
6830   (bfd *, asection *, bfd_byte *, Elf_Internal_Rela *,
6831    reloc_range_list *, const ebb_constraint *,
6832    const xtensa_opcode *);
6833 static bfd_boolean check_section_ebb_reduces (const ebb_constraint *);
6834 static void text_action_add_proposed
6835   (text_action_list *, const ebb_constraint *, asection *);
6836 static int compute_fill_extra_space (property_table_entry *);
6837 
6838 /* First pass: */
6839 static bfd_boolean compute_removed_literals
6840   (bfd *, asection *, struct bfd_link_info *, value_map_hash_table *);
6841 static Elf_Internal_Rela *get_irel_at_offset
6842   (asection *, Elf_Internal_Rela *, bfd_vma);
6843 static bfd_boolean is_removable_literal
6844   (const source_reloc *, int, const source_reloc *, int, asection *,
6845    property_table_entry *, int);
6846 static bfd_boolean remove_dead_literal
6847   (bfd *, asection *, struct bfd_link_info *, Elf_Internal_Rela *,
6848    Elf_Internal_Rela *, source_reloc *, property_table_entry *, int);
6849 static bfd_boolean identify_literal_placement
6850   (bfd *, asection *, bfd_byte *, struct bfd_link_info *,
6851    value_map_hash_table *, bfd_boolean *, Elf_Internal_Rela *, int,
6852    source_reloc *, property_table_entry *, int, section_cache_t *,
6853    bfd_boolean);
6854 static bfd_boolean relocations_reach (source_reloc *, int, const r_reloc *);
6855 static bfd_boolean coalesce_shared_literal
6856   (asection *, source_reloc *, property_table_entry *, int, value_map *);
6857 static bfd_boolean move_shared_literal
6858   (asection *, struct bfd_link_info *, source_reloc *, property_table_entry *,
6859    int, const r_reloc *, const literal_value *, section_cache_t *);
6860 
6861 /* Second pass: */
6862 static bfd_boolean relax_section (bfd *, asection *, struct bfd_link_info *);
6863 static bfd_boolean translate_section_fixes (asection *);
6864 static bfd_boolean translate_reloc_bfd_fix (reloc_bfd_fix *);
6865 static asection *translate_reloc (const r_reloc *, r_reloc *, asection *);
6866 static void shrink_dynamic_reloc_sections
6867   (struct bfd_link_info *, bfd *, asection *, Elf_Internal_Rela *);
6868 static bfd_boolean move_literal
6869   (bfd *, struct bfd_link_info *, asection *, bfd_vma, bfd_byte *,
6870    xtensa_relax_info *, Elf_Internal_Rela **, const literal_value *);
6871 static bfd_boolean relax_property_section
6872   (bfd *, asection *, struct bfd_link_info *);
6873 
6874 /* Third pass: */
6875 static bfd_boolean relax_section_symbols (bfd *, asection *);
6876 
6877 
6878 static bfd_boolean
6879 elf_xtensa_relax_section (bfd *abfd,
6880 			  asection *sec,
6881 			  struct bfd_link_info *link_info,
6882 			  bfd_boolean *again)
6883 {
6884   static value_map_hash_table *values = NULL;
6885   static bfd_boolean relocations_analyzed = FALSE;
6886   xtensa_relax_info *relax_info;
6887 
6888   if (!relocations_analyzed)
6889     {
6890       /* Do some overall initialization for relaxation.  */
6891       values = value_map_hash_table_init ();
6892       if (values == NULL)
6893 	return FALSE;
6894       relaxing_section = TRUE;
6895       if (!analyze_relocations (link_info))
6896 	return FALSE;
6897       relocations_analyzed = TRUE;
6898     }
6899   *again = FALSE;
6900 
6901   /* Don't mess with linker-created sections.  */
6902   if ((sec->flags & SEC_LINKER_CREATED) != 0)
6903     return TRUE;
6904 
6905   relax_info = get_xtensa_relax_info (sec);
6906   BFD_ASSERT (relax_info != NULL);
6907 
6908   switch (relax_info->visited)
6909     {
6910     case 0:
6911       /* Note: It would be nice to fold this pass into
6912 	 analyze_relocations, but it is important for this step that the
6913 	 sections be examined in link order.  */
6914       if (!compute_removed_literals (abfd, sec, link_info, values))
6915 	return FALSE;
6916       *again = TRUE;
6917       break;
6918 
6919     case 1:
6920       if (values)
6921 	value_map_hash_table_delete (values);
6922       values = NULL;
6923       if (!relax_section (abfd, sec, link_info))
6924 	return FALSE;
6925       *again = TRUE;
6926       break;
6927 
6928     case 2:
6929       if (!relax_section_symbols (abfd, sec))
6930 	return FALSE;
6931       break;
6932     }
6933 
6934   relax_info->visited++;
6935   return TRUE;
6936 }
6937 
6938 
6939 /* Initialization for relaxation.  */
6940 
6941 /* This function is called once at the start of relaxation.  It scans
6942    all the input sections and marks the ones that are relaxable (i.e.,
6943    literal sections with L32R relocations against them), and then
6944    collects source_reloc information for all the relocations against
6945    those relaxable sections.  During this process, it also detects
6946    longcalls, i.e., calls relaxed by the assembler into indirect
6947    calls, that can be optimized back into direct calls.  Within each
6948    extended basic block (ebb) containing an optimized longcall, it
6949    computes a set of "text actions" that can be performed to remove
6950    the L32R associated with the longcall while optionally preserving
6951    branch target alignments.  */
6952 
6953 static bfd_boolean
6954 analyze_relocations (struct bfd_link_info *link_info)
6955 {
6956   bfd *abfd;
6957   asection *sec;
6958   bfd_boolean is_relaxable = FALSE;
6959 
6960   /* Initialize the per-section relaxation info.  */
6961   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6962     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6963       {
6964 	init_xtensa_relax_info (sec);
6965       }
6966 
6967   /* Mark relaxable sections (and count relocations against each one).  */
6968   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6969     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6970       {
6971 	if (!find_relaxable_sections (abfd, sec, link_info, &is_relaxable))
6972 	  return FALSE;
6973       }
6974 
6975   /* Bail out if there are no relaxable sections.  */
6976   if (!is_relaxable)
6977     return TRUE;
6978 
6979   /* Allocate space for source_relocs.  */
6980   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6981     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6982       {
6983 	xtensa_relax_info *relax_info;
6984 
6985 	relax_info = get_xtensa_relax_info (sec);
6986 	if (relax_info->is_relaxable_literal_section
6987 	    || relax_info->is_relaxable_asm_section)
6988 	  {
6989 	    relax_info->src_relocs = (source_reloc *)
6990 	      bfd_malloc (relax_info->src_count * sizeof (source_reloc));
6991 	  }
6992 	else
6993 	  relax_info->src_count = 0;
6994       }
6995 
6996   /* Collect info on relocations against each relaxable section.  */
6997   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
6998     for (sec = abfd->sections; sec != NULL; sec = sec->next)
6999       {
7000 	if (!collect_source_relocs (abfd, sec, link_info))
7001 	  return FALSE;
7002       }
7003 
7004   /* Compute the text actions.  */
7005   for (abfd = link_info->input_bfds; abfd != NULL; abfd = abfd->link.next)
7006     for (sec = abfd->sections; sec != NULL; sec = sec->next)
7007       {
7008 	if (!compute_text_actions (abfd, sec, link_info))
7009 	  return FALSE;
7010       }
7011 
7012   return TRUE;
7013 }
7014 
7015 
7016 /* Find all the sections that might be relaxed.  The motivation for
7017    this pass is that collect_source_relocs() needs to record _all_ the
7018    relocations that target each relaxable section.  That is expensive
7019    and unnecessary unless the target section is actually going to be
7020    relaxed.  This pass identifies all such sections by checking if
7021    they have L32Rs pointing to them.  In the process, the total number
7022    of relocations targeting each section is also counted so that we
7023    know how much space to allocate for source_relocs against each
7024    relaxable literal section.  */
7025 
7026 static bfd_boolean
7027 find_relaxable_sections (bfd *abfd,
7028 			 asection *sec,
7029 			 struct bfd_link_info *link_info,
7030 			 bfd_boolean *is_relaxable_p)
7031 {
7032   Elf_Internal_Rela *internal_relocs;
7033   bfd_byte *contents;
7034   bfd_boolean ok = TRUE;
7035   unsigned i;
7036   xtensa_relax_info *source_relax_info;
7037   bfd_boolean is_l32r_reloc;
7038 
7039   internal_relocs = retrieve_internal_relocs (abfd, sec,
7040 					      link_info->keep_memory);
7041   if (internal_relocs == NULL)
7042     return ok;
7043 
7044   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7045   if (contents == NULL && sec->size != 0)
7046     {
7047       ok = FALSE;
7048       goto error_return;
7049     }
7050 
7051   source_relax_info = get_xtensa_relax_info (sec);
7052   for (i = 0; i < sec->reloc_count; i++)
7053     {
7054       Elf_Internal_Rela *irel = &internal_relocs[i];
7055       r_reloc r_rel;
7056       asection *target_sec;
7057       xtensa_relax_info *target_relax_info;
7058 
7059       /* If this section has not already been marked as "relaxable", and
7060 	 if it contains any ASM_EXPAND relocations (marking expanded
7061 	 longcalls) that can be optimized into direct calls, then mark
7062 	 the section as "relaxable".  */
7063       if (source_relax_info
7064 	  && !source_relax_info->is_relaxable_asm_section
7065 	  && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_EXPAND)
7066 	{
7067 	  bfd_boolean is_reachable = FALSE;
7068 	  if (is_resolvable_asm_expansion (abfd, sec, contents, irel,
7069 					   link_info, &is_reachable)
7070 	      && is_reachable)
7071 	    {
7072 	      source_relax_info->is_relaxable_asm_section = TRUE;
7073 	      *is_relaxable_p = TRUE;
7074 	    }
7075 	}
7076 
7077       r_reloc_init (&r_rel, abfd, irel, contents,
7078 		    bfd_get_section_limit (abfd, sec));
7079 
7080       target_sec = r_reloc_get_section (&r_rel);
7081       target_relax_info = get_xtensa_relax_info (target_sec);
7082       if (!target_relax_info)
7083 	continue;
7084 
7085       /* Count PC-relative operand relocations against the target section.
7086          Note: The conditions tested here must match the conditions under
7087 	 which init_source_reloc is called in collect_source_relocs().  */
7088       is_l32r_reloc = FALSE;
7089       if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7090 	{
7091 	  xtensa_opcode opcode =
7092 	    get_relocation_opcode (abfd, sec, contents, irel);
7093 	  if (opcode != XTENSA_UNDEFINED)
7094 	    {
7095 	      is_l32r_reloc = (opcode == get_l32r_opcode ());
7096 	      if (!is_alt_relocation (ELF32_R_TYPE (irel->r_info))
7097 		  || is_l32r_reloc)
7098 		target_relax_info->src_count++;
7099 	    }
7100 	}
7101 
7102       if (is_l32r_reloc && r_reloc_is_defined (&r_rel))
7103 	{
7104 	  /* Mark the target section as relaxable.  */
7105 	  target_relax_info->is_relaxable_literal_section = TRUE;
7106 	  *is_relaxable_p = TRUE;
7107 	}
7108     }
7109 
7110  error_return:
7111   release_contents (sec, contents);
7112   release_internal_relocs (sec, internal_relocs);
7113   return ok;
7114 }
7115 
7116 
7117 /* Record _all_ the relocations that point to relaxable sections, and
7118    get rid of ASM_EXPAND relocs by either converting them to
7119    ASM_SIMPLIFY or by removing them.  */
7120 
7121 static bfd_boolean
7122 collect_source_relocs (bfd *abfd,
7123 		       asection *sec,
7124 		       struct bfd_link_info *link_info)
7125 {
7126   Elf_Internal_Rela *internal_relocs;
7127   bfd_byte *contents;
7128   bfd_boolean ok = TRUE;
7129   unsigned i;
7130   bfd_size_type sec_size;
7131 
7132   internal_relocs = retrieve_internal_relocs (abfd, sec,
7133 					      link_info->keep_memory);
7134   if (internal_relocs == NULL)
7135     return ok;
7136 
7137   sec_size = bfd_get_section_limit (abfd, sec);
7138   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7139   if (contents == NULL && sec_size != 0)
7140     {
7141       ok = FALSE;
7142       goto error_return;
7143     }
7144 
7145   /* Record relocations against relaxable literal sections.  */
7146   for (i = 0; i < sec->reloc_count; i++)
7147     {
7148       Elf_Internal_Rela *irel = &internal_relocs[i];
7149       r_reloc r_rel;
7150       asection *target_sec;
7151       xtensa_relax_info *target_relax_info;
7152 
7153       r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7154 
7155       target_sec = r_reloc_get_section (&r_rel);
7156       target_relax_info = get_xtensa_relax_info (target_sec);
7157 
7158       if (target_relax_info
7159 	  && (target_relax_info->is_relaxable_literal_section
7160 	      || target_relax_info->is_relaxable_asm_section))
7161 	{
7162 	  xtensa_opcode opcode = XTENSA_UNDEFINED;
7163 	  int opnd = -1;
7164 	  bfd_boolean is_abs_literal = FALSE;
7165 
7166 	  if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7167 	    {
7168 	      /* None of the current alternate relocs are PC-relative,
7169 		 and only PC-relative relocs matter here.  However, we
7170 		 still need to record the opcode for literal
7171 		 coalescing.  */
7172 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
7173 	      if (opcode == get_l32r_opcode ())
7174 		{
7175 		  is_abs_literal = TRUE;
7176 		  opnd = 1;
7177 		}
7178 	      else
7179 		opcode = XTENSA_UNDEFINED;
7180 	    }
7181 	  else if (is_operand_relocation (ELF32_R_TYPE (irel->r_info)))
7182 	    {
7183 	      opcode = get_relocation_opcode (abfd, sec, contents, irel);
7184 	      opnd = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7185 	    }
7186 
7187 	  if (opcode != XTENSA_UNDEFINED)
7188 	    {
7189 	      int src_next = target_relax_info->src_next++;
7190 	      source_reloc *s_reloc = &target_relax_info->src_relocs[src_next];
7191 
7192 	      init_source_reloc (s_reloc, sec, &r_rel, opcode, opnd,
7193 				 is_abs_literal);
7194 	    }
7195 	}
7196     }
7197 
7198   /* Now get rid of ASM_EXPAND relocations.  At this point, the
7199      src_relocs array for the target literal section may still be
7200      incomplete, but it must at least contain the entries for the L32R
7201      relocations associated with ASM_EXPANDs because they were just
7202      added in the preceding loop over the relocations.  */
7203 
7204   for (i = 0; i < sec->reloc_count; i++)
7205     {
7206       Elf_Internal_Rela *irel = &internal_relocs[i];
7207       bfd_boolean is_reachable;
7208 
7209       if (!is_resolvable_asm_expansion (abfd, sec, contents, irel, link_info,
7210 					&is_reachable))
7211 	continue;
7212 
7213       if (is_reachable)
7214 	{
7215 	  Elf_Internal_Rela *l32r_irel;
7216 	  r_reloc r_rel;
7217 	  asection *target_sec;
7218 	  xtensa_relax_info *target_relax_info;
7219 
7220 	  /* Mark the source_reloc for the L32R so that it will be
7221 	     removed in compute_removed_literals(), along with the
7222 	     associated literal.  */
7223 	  l32r_irel = find_associated_l32r_irel (abfd, sec, contents,
7224 						 irel, internal_relocs);
7225 	  if (l32r_irel == NULL)
7226 	    continue;
7227 
7228 	  r_reloc_init (&r_rel, abfd, l32r_irel, contents, sec_size);
7229 
7230 	  target_sec = r_reloc_get_section (&r_rel);
7231 	  target_relax_info = get_xtensa_relax_info (target_sec);
7232 
7233 	  if (target_relax_info
7234 	      && (target_relax_info->is_relaxable_literal_section
7235 		  || target_relax_info->is_relaxable_asm_section))
7236 	    {
7237 	      source_reloc *s_reloc;
7238 
7239 	      /* Search the source_relocs for the entry corresponding to
7240 		 the l32r_irel.  Note: The src_relocs array is not yet
7241 		 sorted, but it wouldn't matter anyway because we're
7242 		 searching by source offset instead of target offset.  */
7243 	      s_reloc = find_source_reloc (target_relax_info->src_relocs,
7244 					   target_relax_info->src_next,
7245 					   sec, l32r_irel);
7246 	      BFD_ASSERT (s_reloc);
7247 	      s_reloc->is_null = TRUE;
7248 	    }
7249 
7250 	  /* Convert this reloc to ASM_SIMPLIFY.  */
7251 	  irel->r_info = ELF32_R_INFO (ELF32_R_SYM (irel->r_info),
7252 				       R_XTENSA_ASM_SIMPLIFY);
7253 	  l32r_irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7254 
7255 	  pin_internal_relocs (sec, internal_relocs);
7256 	}
7257       else
7258 	{
7259 	  /* It is resolvable but doesn't reach.  We resolve now
7260 	     by eliminating the relocation -- the call will remain
7261 	     expanded into L32R/CALLX.  */
7262 	  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
7263 	  pin_internal_relocs (sec, internal_relocs);
7264 	}
7265     }
7266 
7267  error_return:
7268   release_contents (sec, contents);
7269   release_internal_relocs (sec, internal_relocs);
7270   return ok;
7271 }
7272 
7273 
7274 /* Return TRUE if the asm expansion can be resolved.  Generally it can
7275    be resolved on a final link or when a partial link locates it in the
7276    same section as the target.  Set "is_reachable" flag if the target of
7277    the call is within the range of a direct call, given the current VMA
7278    for this section and the target section.  */
7279 
7280 bfd_boolean
7281 is_resolvable_asm_expansion (bfd *abfd,
7282 			     asection *sec,
7283 			     bfd_byte *contents,
7284 			     Elf_Internal_Rela *irel,
7285 			     struct bfd_link_info *link_info,
7286 			     bfd_boolean *is_reachable_p)
7287 {
7288   asection *target_sec;
7289   bfd_vma target_offset;
7290   r_reloc r_rel;
7291   xtensa_opcode opcode, direct_call_opcode;
7292   bfd_vma self_address;
7293   bfd_vma dest_address;
7294   bfd_boolean uses_l32r;
7295   bfd_size_type sec_size;
7296 
7297   *is_reachable_p = FALSE;
7298 
7299   if (contents == NULL)
7300     return FALSE;
7301 
7302   if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_EXPAND)
7303     return FALSE;
7304 
7305   sec_size = bfd_get_section_limit (abfd, sec);
7306   opcode = get_expanded_call_opcode (contents + irel->r_offset,
7307 				     sec_size - irel->r_offset, &uses_l32r);
7308   /* Optimization of longcalls that use CONST16 is not yet implemented.  */
7309   if (!uses_l32r)
7310     return FALSE;
7311 
7312   direct_call_opcode = swap_callx_for_call_opcode (opcode);
7313   if (direct_call_opcode == XTENSA_UNDEFINED)
7314     return FALSE;
7315 
7316   /* Check and see that the target resolves.  */
7317   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
7318   if (!r_reloc_is_defined (&r_rel))
7319     return FALSE;
7320 
7321   target_sec = r_reloc_get_section (&r_rel);
7322   target_offset = r_rel.target_offset;
7323 
7324   /* If the target is in a shared library, then it doesn't reach.  This
7325      isn't supposed to come up because the compiler should never generate
7326      non-PIC calls on systems that use shared libraries, but the linker
7327      shouldn't crash regardless.  */
7328   if (!target_sec->output_section)
7329     return FALSE;
7330 
7331   /* For relocatable sections, we can only simplify when the output
7332      section of the target is the same as the output section of the
7333      source.  */
7334   if (bfd_link_relocatable (link_info)
7335       && (target_sec->output_section != sec->output_section
7336 	  || is_reloc_sym_weak (abfd, irel)))
7337     return FALSE;
7338 
7339   if (target_sec->output_section != sec->output_section)
7340     {
7341       /* If the two sections are sufficiently far away that relaxation
7342 	 might take the call out of range, we can't simplify.  For
7343 	 example, a positive displacement call into another memory
7344 	 could get moved to a lower address due to literal removal,
7345 	 but the destination won't move, and so the displacment might
7346 	 get larger.
7347 
7348 	 If the displacement is negative, assume the destination could
7349 	 move as far back as the start of the output section.  The
7350 	 self_address will be at least as far into the output section
7351 	 as it is prior to relaxation.
7352 
7353 	 If the displacement is postive, assume the destination will be in
7354 	 it's pre-relaxed location (because relaxation only makes sections
7355 	 smaller).  The self_address could go all the way to the beginning
7356 	 of the output section.  */
7357 
7358       dest_address = target_sec->output_section->vma;
7359       self_address = sec->output_section->vma;
7360 
7361       if (sec->output_section->vma > target_sec->output_section->vma)
7362 	self_address += sec->output_offset + irel->r_offset + 3;
7363       else
7364 	dest_address += bfd_get_section_limit (abfd, target_sec->output_section);
7365       /* Call targets should be four-byte aligned.  */
7366       dest_address = (dest_address + 3) & ~3;
7367     }
7368   else
7369     {
7370 
7371       self_address = (sec->output_section->vma
7372 		      + sec->output_offset + irel->r_offset + 3);
7373       dest_address = (target_sec->output_section->vma
7374 		      + target_sec->output_offset + target_offset);
7375     }
7376 
7377   *is_reachable_p = pcrel_reloc_fits (direct_call_opcode, 0,
7378 				      self_address, dest_address);
7379 
7380   if ((self_address >> CALL_SEGMENT_BITS) !=
7381       (dest_address >> CALL_SEGMENT_BITS))
7382     return FALSE;
7383 
7384   return TRUE;
7385 }
7386 
7387 
7388 static Elf_Internal_Rela *
7389 find_associated_l32r_irel (bfd *abfd,
7390 			   asection *sec,
7391 			   bfd_byte *contents,
7392 			   Elf_Internal_Rela *other_irel,
7393 			   Elf_Internal_Rela *internal_relocs)
7394 {
7395   unsigned i;
7396 
7397   for (i = 0; i < sec->reloc_count; i++)
7398     {
7399       Elf_Internal_Rela *irel = &internal_relocs[i];
7400 
7401       if (irel == other_irel)
7402 	continue;
7403       if (irel->r_offset != other_irel->r_offset)
7404 	continue;
7405       if (is_l32r_relocation (abfd, sec, contents, irel))
7406 	return irel;
7407     }
7408 
7409   return NULL;
7410 }
7411 
7412 
7413 static xtensa_opcode *
7414 build_reloc_opcodes (bfd *abfd,
7415 		     asection *sec,
7416 		     bfd_byte *contents,
7417 		     Elf_Internal_Rela *internal_relocs)
7418 {
7419   unsigned i;
7420   xtensa_opcode *reloc_opcodes =
7421     (xtensa_opcode *) bfd_malloc (sizeof (xtensa_opcode) * sec->reloc_count);
7422   for (i = 0; i < sec->reloc_count; i++)
7423     {
7424       Elf_Internal_Rela *irel = &internal_relocs[i];
7425       reloc_opcodes[i] = get_relocation_opcode (abfd, sec, contents, irel);
7426     }
7427   return reloc_opcodes;
7428 }
7429 
7430 struct reloc_range_struct
7431 {
7432   bfd_vma addr;
7433   bfd_boolean add; /* TRUE if start of a range, FALSE otherwise.  */
7434   /* Original irel index in the array of relocations for a section.  */
7435   unsigned irel_index;
7436 };
7437 typedef struct reloc_range_struct reloc_range;
7438 
7439 typedef struct reloc_range_list_entry_struct reloc_range_list_entry;
7440 struct reloc_range_list_entry_struct
7441 {
7442   reloc_range_list_entry *next;
7443   reloc_range_list_entry *prev;
7444   Elf_Internal_Rela *irel;
7445   xtensa_opcode opcode;
7446   int opnum;
7447 };
7448 
7449 struct reloc_range_list_struct
7450 {
7451   /* The rest of the structure is only meaningful when ok is TRUE.  */
7452   bfd_boolean ok;
7453 
7454   unsigned n_range; /* Number of range markers.  */
7455   reloc_range *range; /* Sorted range markers.  */
7456 
7457   unsigned first; /* Index of a first range element in the list.  */
7458   unsigned last; /* One past index of a last range element in the list.  */
7459 
7460   unsigned n_list; /* Number of list elements.  */
7461   reloc_range_list_entry *reloc; /*  */
7462   reloc_range_list_entry list_root;
7463 };
7464 
7465 static int
7466 reloc_range_compare (const void *a, const void *b)
7467 {
7468   const reloc_range *ra = a;
7469   const reloc_range *rb = b;
7470 
7471   if (ra->addr != rb->addr)
7472     return ra->addr < rb->addr ? -1 : 1;
7473   if (ra->add != rb->add)
7474     return ra->add ? -1 : 1;
7475   return 0;
7476 }
7477 
7478 static void
7479 build_reloc_ranges (bfd *abfd, asection *sec,
7480 		    bfd_byte *contents,
7481 		    Elf_Internal_Rela *internal_relocs,
7482 		    xtensa_opcode *reloc_opcodes,
7483 		    reloc_range_list *list)
7484 {
7485   unsigned i;
7486   size_t n = 0;
7487   size_t max_n = 0;
7488   reloc_range *ranges = NULL;
7489   reloc_range_list_entry *reloc =
7490     bfd_malloc (sec->reloc_count * sizeof (*reloc));
7491 
7492   memset (list, 0, sizeof (*list));
7493   list->ok = TRUE;
7494 
7495   for (i = 0; i < sec->reloc_count; i++)
7496     {
7497       Elf_Internal_Rela *irel = &internal_relocs[i];
7498       int r_type = ELF32_R_TYPE (irel->r_info);
7499       reloc_howto_type *howto = &elf_howto_table[r_type];
7500       r_reloc r_rel;
7501 
7502       if (r_type == R_XTENSA_ASM_SIMPLIFY
7503 	  || r_type == R_XTENSA_32_PCREL
7504 	  || !howto->pc_relative)
7505 	continue;
7506 
7507       r_reloc_init (&r_rel, abfd, irel, contents,
7508 		    bfd_get_section_limit (abfd, sec));
7509 
7510       if (r_reloc_get_section (&r_rel) != sec)
7511 	continue;
7512 
7513       if (n + 2 > max_n)
7514 	{
7515 	  max_n = (max_n + 2) * 2;
7516 	  ranges = bfd_realloc (ranges, max_n * sizeof (*ranges));
7517 	}
7518 
7519       ranges[n].addr = irel->r_offset;
7520       ranges[n + 1].addr = r_rel.target_offset;
7521 
7522       ranges[n].add = ranges[n].addr < ranges[n + 1].addr;
7523       ranges[n + 1].add = !ranges[n].add;
7524 
7525       ranges[n].irel_index = i;
7526       ranges[n + 1].irel_index = i;
7527 
7528       n += 2;
7529 
7530       reloc[i].irel = irel;
7531 
7532       /* Every relocation won't possibly be checked in the optimized version of
7533          check_section_ebb_pcrels_fit, so this needs to be done here.  */
7534       if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
7535 	{
7536 	  /* None of the current alternate relocs are PC-relative,
7537 	     and only PC-relative relocs matter here.  */
7538 	}
7539       else
7540 	{
7541 	  xtensa_opcode opcode;
7542 	  int opnum;
7543 
7544 	  if (reloc_opcodes)
7545 	    opcode = reloc_opcodes[i];
7546 	  else
7547 	    opcode = get_relocation_opcode (abfd, sec, contents, irel);
7548 
7549 	  if (opcode == XTENSA_UNDEFINED)
7550 	    {
7551 	      list->ok = FALSE;
7552 	      break;
7553 	    }
7554 
7555 	  opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
7556 	  if (opnum == XTENSA_UNDEFINED)
7557 	    {
7558 	      list->ok = FALSE;
7559 	      break;
7560 	    }
7561 
7562 	  /* Record relocation opcode and opnum as we've calculated them
7563 	     anyway and they won't change.  */
7564 	  reloc[i].opcode = opcode;
7565 	  reloc[i].opnum = opnum;
7566 	}
7567     }
7568 
7569   if (list->ok)
7570     {
7571       ranges = bfd_realloc (ranges, n * sizeof (*ranges));
7572       qsort (ranges, n, sizeof (*ranges), reloc_range_compare);
7573 
7574       list->n_range = n;
7575       list->range = ranges;
7576       list->reloc = reloc;
7577       list->list_root.prev = &list->list_root;
7578       list->list_root.next = &list->list_root;
7579     }
7580   else
7581     {
7582       free (ranges);
7583       free (reloc);
7584     }
7585 }
7586 
7587 static void reloc_range_list_append (reloc_range_list *list,
7588 				     unsigned irel_index)
7589 {
7590   reloc_range_list_entry *entry = list->reloc + irel_index;
7591 
7592   entry->prev = list->list_root.prev;
7593   entry->next = &list->list_root;
7594   entry->prev->next = entry;
7595   entry->next->prev = entry;
7596   ++list->n_list;
7597 }
7598 
7599 static void reloc_range_list_remove (reloc_range_list *list,
7600 				     unsigned irel_index)
7601 {
7602   reloc_range_list_entry *entry = list->reloc + irel_index;
7603 
7604   entry->next->prev = entry->prev;
7605   entry->prev->next = entry->next;
7606   --list->n_list;
7607 }
7608 
7609 /* Update relocation list object so that it lists all relocations that cross
7610    [first; last] range.  Range bounds should not decrease with successive
7611    invocations.  */
7612 static void reloc_range_list_update_range (reloc_range_list *list,
7613 					   bfd_vma first, bfd_vma last)
7614 {
7615   /* This should not happen: EBBs are iterated from lower addresses to higher.
7616      But even if that happens there's no need to break: just flush current list
7617      and start from scratch.  */
7618   if ((list->last > 0 && list->range[list->last - 1].addr > last) ||
7619       (list->first > 0 && list->range[list->first - 1].addr >= first))
7620     {
7621       list->first = 0;
7622       list->last = 0;
7623       list->n_list = 0;
7624       list->list_root.next = &list->list_root;
7625       list->list_root.prev = &list->list_root;
7626       fprintf (stderr, "%s: move backwards requested\n", __func__);
7627     }
7628 
7629   for (; list->last < list->n_range &&
7630        list->range[list->last].addr <= last; ++list->last)
7631     if (list->range[list->last].add)
7632       reloc_range_list_append (list, list->range[list->last].irel_index);
7633 
7634   for (; list->first < list->n_range &&
7635        list->range[list->first].addr < first; ++list->first)
7636     if (!list->range[list->first].add)
7637       reloc_range_list_remove (list, list->range[list->first].irel_index);
7638 }
7639 
7640 static void free_reloc_range_list (reloc_range_list *list)
7641 {
7642   free (list->range);
7643   free (list->reloc);
7644 }
7645 
7646 /* The compute_text_actions function will build a list of potential
7647    transformation actions for code in the extended basic block of each
7648    longcall that is optimized to a direct call.  From this list we
7649    generate a set of actions to actually perform that optimizes for
7650    space and, if not using size_opt, maintains branch target
7651    alignments.
7652 
7653    These actions to be performed are placed on a per-section list.
7654    The actual changes are performed by relax_section() in the second
7655    pass.  */
7656 
7657 bfd_boolean
7658 compute_text_actions (bfd *abfd,
7659 		      asection *sec,
7660 		      struct bfd_link_info *link_info)
7661 {
7662   xtensa_opcode *reloc_opcodes = NULL;
7663   xtensa_relax_info *relax_info;
7664   bfd_byte *contents;
7665   Elf_Internal_Rela *internal_relocs;
7666   bfd_boolean ok = TRUE;
7667   unsigned i;
7668   property_table_entry *prop_table = 0;
7669   int ptblsize = 0;
7670   bfd_size_type sec_size;
7671   reloc_range_list relevant_relocs;
7672 
7673   relax_info = get_xtensa_relax_info (sec);
7674   BFD_ASSERT (relax_info);
7675   BFD_ASSERT (relax_info->src_next == relax_info->src_count);
7676 
7677   /* Do nothing if the section contains no optimized longcalls.  */
7678   if (!relax_info->is_relaxable_asm_section)
7679     return ok;
7680 
7681   internal_relocs = retrieve_internal_relocs (abfd, sec,
7682 					      link_info->keep_memory);
7683 
7684   if (internal_relocs)
7685     qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
7686 	   internal_reloc_compare);
7687 
7688   sec_size = bfd_get_section_limit (abfd, sec);
7689   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
7690   if (contents == NULL && sec_size != 0)
7691     {
7692       ok = FALSE;
7693       goto error_return;
7694     }
7695 
7696   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
7697 					XTENSA_PROP_SEC_NAME, FALSE);
7698   if (ptblsize < 0)
7699     {
7700       ok = FALSE;
7701       goto error_return;
7702     }
7703 
7704   /* Precompute the opcode for each relocation.  */
7705   reloc_opcodes = build_reloc_opcodes (abfd, sec, contents, internal_relocs);
7706 
7707   build_reloc_ranges (abfd, sec, contents, internal_relocs, reloc_opcodes,
7708 		      &relevant_relocs);
7709 
7710   for (i = 0; i < sec->reloc_count; i++)
7711     {
7712       Elf_Internal_Rela *irel = &internal_relocs[i];
7713       bfd_vma r_offset;
7714       property_table_entry *the_entry;
7715       int ptbl_idx;
7716       ebb_t *ebb;
7717       ebb_constraint ebb_table;
7718       bfd_size_type simplify_size;
7719 
7720       if (irel && ELF32_R_TYPE (irel->r_info) != R_XTENSA_ASM_SIMPLIFY)
7721 	continue;
7722       r_offset = irel->r_offset;
7723 
7724       simplify_size = get_asm_simplify_size (contents, sec_size, r_offset);
7725       if (simplify_size == 0)
7726 	{
7727 	  _bfd_error_handler
7728 	    /* xgettext:c-format */
7729 	    (_("%B(%A+0x%lx): could not decode instruction for XTENSA_ASM_SIMPLIFY relocation; possible configuration mismatch"),
7730 	     sec->owner, sec, r_offset);
7731 	  continue;
7732 	}
7733 
7734       /* If the instruction table is not around, then don't do this
7735 	 relaxation.  */
7736       the_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
7737 						  sec->vma + irel->r_offset);
7738       if (the_entry == NULL || XTENSA_NO_NOP_REMOVAL)
7739 	{
7740 	  text_action_add (&relax_info->action_list,
7741 			   ta_convert_longcall, sec, r_offset,
7742 			   0);
7743 	  continue;
7744 	}
7745 
7746       /* If the next longcall happens to be at the same address as an
7747 	 unreachable section of size 0, then skip forward.  */
7748       ptbl_idx = the_entry - prop_table;
7749       while ((the_entry->flags & XTENSA_PROP_UNREACHABLE)
7750 	     && the_entry->size == 0
7751 	     && ptbl_idx + 1 < ptblsize
7752 	     && (prop_table[ptbl_idx + 1].address
7753 		 == prop_table[ptbl_idx].address))
7754 	{
7755 	  ptbl_idx++;
7756 	  the_entry++;
7757 	}
7758 
7759       if (the_entry->flags & XTENSA_PROP_NO_TRANSFORM)
7760 	  /* NO_REORDER is OK */
7761 	continue;
7762 
7763       init_ebb_constraint (&ebb_table);
7764       ebb = &ebb_table.ebb;
7765       init_ebb (ebb, sec, contents, sec_size, prop_table, ptblsize,
7766 		internal_relocs, sec->reloc_count);
7767       ebb->start_offset = r_offset + simplify_size;
7768       ebb->end_offset = r_offset + simplify_size;
7769       ebb->start_ptbl_idx = ptbl_idx;
7770       ebb->end_ptbl_idx = ptbl_idx;
7771       ebb->start_reloc_idx = i;
7772       ebb->end_reloc_idx = i;
7773 
7774       if (!extend_ebb_bounds (ebb)
7775 	  || !compute_ebb_proposed_actions (&ebb_table)
7776 	  || !compute_ebb_actions (&ebb_table)
7777 	  || !check_section_ebb_pcrels_fit (abfd, sec, contents,
7778 					    internal_relocs,
7779 					    &relevant_relocs,
7780 					    &ebb_table, reloc_opcodes)
7781 	  || !check_section_ebb_reduces (&ebb_table))
7782 	{
7783 	  /* If anything goes wrong or we get unlucky and something does
7784 	     not fit, with our plan because of expansion between
7785 	     critical branches, just convert to a NOP.  */
7786 
7787 	  text_action_add (&relax_info->action_list,
7788 			   ta_convert_longcall, sec, r_offset, 0);
7789 	  i = ebb_table.ebb.end_reloc_idx;
7790 	  free_ebb_constraint (&ebb_table);
7791 	  continue;
7792 	}
7793 
7794       text_action_add_proposed (&relax_info->action_list, &ebb_table, sec);
7795 
7796       /* Update the index so we do not go looking at the relocations
7797 	 we have already processed.  */
7798       i = ebb_table.ebb.end_reloc_idx;
7799       free_ebb_constraint (&ebb_table);
7800     }
7801 
7802   free_reloc_range_list (&relevant_relocs);
7803 
7804 #if DEBUG
7805   if (action_list_count (&relax_info->action_list))
7806     print_action_list (stderr, &relax_info->action_list);
7807 #endif
7808 
7809 error_return:
7810   release_contents (sec, contents);
7811   release_internal_relocs (sec, internal_relocs);
7812   if (prop_table)
7813     free (prop_table);
7814   if (reloc_opcodes)
7815     free (reloc_opcodes);
7816 
7817   return ok;
7818 }
7819 
7820 
7821 /* Do not widen an instruction if it is preceeded by a
7822    loop opcode.  It might cause misalignment.  */
7823 
7824 static bfd_boolean
7825 prev_instr_is_a_loop (bfd_byte *contents,
7826 		      bfd_size_type content_length,
7827 		      bfd_size_type offset)
7828 {
7829   xtensa_opcode prev_opcode;
7830 
7831   if (offset < 3)
7832     return FALSE;
7833   prev_opcode = insn_decode_opcode (contents, content_length, offset-3, 0);
7834   return (xtensa_opcode_is_loop (xtensa_default_isa, prev_opcode) == 1);
7835 }
7836 
7837 
7838 /* Find all of the possible actions for an extended basic block.  */
7839 
7840 bfd_boolean
7841 compute_ebb_proposed_actions (ebb_constraint *ebb_table)
7842 {
7843   const ebb_t *ebb = &ebb_table->ebb;
7844   unsigned rel_idx = ebb->start_reloc_idx;
7845   property_table_entry *entry, *start_entry, *end_entry;
7846   bfd_vma offset = 0;
7847   xtensa_isa isa = xtensa_default_isa;
7848   xtensa_format fmt;
7849   static xtensa_insnbuf insnbuf = NULL;
7850   static xtensa_insnbuf slotbuf = NULL;
7851 
7852   if (insnbuf == NULL)
7853     {
7854       insnbuf = xtensa_insnbuf_alloc (isa);
7855       slotbuf = xtensa_insnbuf_alloc (isa);
7856     }
7857 
7858   start_entry = &ebb->ptbl[ebb->start_ptbl_idx];
7859   end_entry = &ebb->ptbl[ebb->end_ptbl_idx];
7860 
7861   for (entry = start_entry; entry <= end_entry; entry++)
7862     {
7863       bfd_vma start_offset, end_offset;
7864       bfd_size_type insn_len;
7865 
7866       start_offset = entry->address - ebb->sec->vma;
7867       end_offset = entry->address + entry->size - ebb->sec->vma;
7868 
7869       if (entry == start_entry)
7870 	start_offset = ebb->start_offset;
7871       if (entry == end_entry)
7872 	end_offset = ebb->end_offset;
7873       offset = start_offset;
7874 
7875       if (offset == entry->address - ebb->sec->vma
7876 	  && (entry->flags & XTENSA_PROP_INSN_BRANCH_TARGET) != 0)
7877 	{
7878 	  enum ebb_target_enum align_type = EBB_DESIRE_TGT_ALIGN;
7879 	  BFD_ASSERT (offset != end_offset);
7880 	  if (offset == end_offset)
7881 	    return FALSE;
7882 
7883 	  insn_len = insn_decode_len (ebb->contents, ebb->content_length,
7884 				      offset);
7885 	  if (insn_len == 0)
7886 	    goto decode_error;
7887 
7888 	  if (check_branch_target_aligned_address (offset, insn_len))
7889 	    align_type = EBB_REQUIRE_TGT_ALIGN;
7890 
7891 	  ebb_propose_action (ebb_table, align_type, 0,
7892 			      ta_none, offset, 0, TRUE);
7893 	}
7894 
7895       while (offset != end_offset)
7896 	{
7897 	  Elf_Internal_Rela *irel;
7898 	  xtensa_opcode opcode;
7899 
7900 	  while (rel_idx < ebb->end_reloc_idx
7901 		 && (ebb->relocs[rel_idx].r_offset < offset
7902 		     || (ebb->relocs[rel_idx].r_offset == offset
7903 			 && (ELF32_R_TYPE (ebb->relocs[rel_idx].r_info)
7904 			     != R_XTENSA_ASM_SIMPLIFY))))
7905 	    rel_idx++;
7906 
7907 	  /* Check for longcall.  */
7908 	  irel = &ebb->relocs[rel_idx];
7909 	  if (irel->r_offset == offset
7910 	      && ELF32_R_TYPE (irel->r_info) == R_XTENSA_ASM_SIMPLIFY)
7911 	    {
7912 	      bfd_size_type simplify_size;
7913 
7914 	      simplify_size = get_asm_simplify_size (ebb->contents,
7915 						     ebb->content_length,
7916 						     irel->r_offset);
7917 	      if (simplify_size == 0)
7918 		goto decode_error;
7919 
7920 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7921 				  ta_convert_longcall, offset, 0, TRUE);
7922 
7923 	      offset += simplify_size;
7924 	      continue;
7925 	    }
7926 
7927 	  if (offset + MIN_INSN_LENGTH > ebb->content_length)
7928 	    goto decode_error;
7929 	  xtensa_insnbuf_from_chars (isa, insnbuf, &ebb->contents[offset],
7930 				     ebb->content_length - offset);
7931 	  fmt = xtensa_format_decode (isa, insnbuf);
7932 	  if (fmt == XTENSA_UNDEFINED)
7933 	    goto decode_error;
7934 	  insn_len = xtensa_format_length (isa, fmt);
7935 	  if (insn_len == (bfd_size_type) XTENSA_UNDEFINED)
7936 	    goto decode_error;
7937 
7938 	  if (xtensa_format_num_slots (isa, fmt) != 1)
7939 	    {
7940 	      offset += insn_len;
7941 	      continue;
7942 	    }
7943 
7944 	  xtensa_format_get_slot (isa, fmt, 0, insnbuf, slotbuf);
7945 	  opcode = xtensa_opcode_decode (isa, fmt, 0, slotbuf);
7946 	  if (opcode == XTENSA_UNDEFINED)
7947 	    goto decode_error;
7948 
7949 	  if ((entry->flags & XTENSA_PROP_INSN_NO_DENSITY) == 0
7950 	      && (entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7951 	      && can_narrow_instruction (slotbuf, fmt, opcode) != 0)
7952 	    {
7953 	      /* Add an instruction narrow action.  */
7954 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7955 				  ta_narrow_insn, offset, 0, FALSE);
7956 	    }
7957 	  else if ((entry->flags & XTENSA_PROP_NO_TRANSFORM) == 0
7958 		   && can_widen_instruction (slotbuf, fmt, opcode) != 0
7959 		   && ! prev_instr_is_a_loop (ebb->contents,
7960 					      ebb->content_length, offset))
7961 	    {
7962 	      /* Add an instruction widen action.  */
7963 	      ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7964 				  ta_widen_insn, offset, 0, FALSE);
7965 	    }
7966 	  else if (xtensa_opcode_is_loop (xtensa_default_isa, opcode) == 1)
7967 	    {
7968 	      /* Check for branch targets.  */
7969 	      ebb_propose_action (ebb_table, EBB_REQUIRE_LOOP_ALIGN, 0,
7970 				  ta_none, offset, 0, TRUE);
7971 	    }
7972 
7973 	  offset += insn_len;
7974 	}
7975     }
7976 
7977   if (ebb->ends_unreachable)
7978     {
7979       ebb_propose_action (ebb_table, EBB_NO_ALIGN, 0,
7980 			  ta_fill, ebb->end_offset, 0, TRUE);
7981     }
7982 
7983   return TRUE;
7984 
7985  decode_error:
7986   _bfd_error_handler
7987     /* xgettext:c-format */
7988     (_("%B(%A+0x%lx): could not decode instruction; possible configuration mismatch"),
7989      ebb->sec->owner, ebb->sec, offset);
7990   return FALSE;
7991 }
7992 
7993 
7994 /* After all of the information has collected about the
7995    transformations possible in an EBB, compute the appropriate actions
7996    here in compute_ebb_actions.  We still must check later to make
7997    sure that the actions do not break any relocations.  The algorithm
7998    used here is pretty greedy.  Basically, it removes as many no-ops
7999    as possible so that the end of the EBB has the same alignment
8000    characteristics as the original.  First, it uses narrowing, then
8001    fill space at the end of the EBB, and finally widenings.  If that
8002    does not work, it tries again with one fewer no-op removed.  The
8003    optimization will only be performed if all of the branch targets
8004    that were aligned before transformation are also aligned after the
8005    transformation.
8006 
8007    When the size_opt flag is set, ignore the branch target alignments,
8008    narrow all wide instructions, and remove all no-ops unless the end
8009    of the EBB prevents it.  */
8010 
8011 bfd_boolean
8012 compute_ebb_actions (ebb_constraint *ebb_table)
8013 {
8014   unsigned i = 0;
8015   unsigned j;
8016   int removed_bytes = 0;
8017   ebb_t *ebb = &ebb_table->ebb;
8018   unsigned seg_idx_start = 0;
8019   unsigned seg_idx_end = 0;
8020 
8021   /* We perform this like the assembler relaxation algorithm: Start by
8022      assuming all instructions are narrow and all no-ops removed; then
8023      walk through....  */
8024 
8025   /* For each segment of this that has a solid constraint, check to
8026      see if there are any combinations that will keep the constraint.
8027      If so, use it.  */
8028   for (seg_idx_end = 0; seg_idx_end < ebb_table->action_count; seg_idx_end++)
8029     {
8030       bfd_boolean requires_text_end_align = FALSE;
8031       unsigned longcall_count = 0;
8032       unsigned longcall_convert_count = 0;
8033       unsigned narrowable_count = 0;
8034       unsigned narrowable_convert_count = 0;
8035       unsigned widenable_count = 0;
8036       unsigned widenable_convert_count = 0;
8037 
8038       proposed_action *action = NULL;
8039       int align = (1 << ebb_table->ebb.sec->alignment_power);
8040 
8041       seg_idx_start = seg_idx_end;
8042 
8043       for (i = seg_idx_start; i < ebb_table->action_count; i++)
8044 	{
8045 	  action = &ebb_table->actions[i];
8046 	  if (action->action == ta_convert_longcall)
8047 	    longcall_count++;
8048 	  if (action->action == ta_narrow_insn)
8049 	    narrowable_count++;
8050 	  if (action->action == ta_widen_insn)
8051 	    widenable_count++;
8052 	  if (action->action == ta_fill)
8053 	    break;
8054 	  if (action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8055 	    break;
8056 	  if (action->align_type == EBB_REQUIRE_TGT_ALIGN
8057 	      && !elf32xtensa_size_opt)
8058 	    break;
8059 	}
8060       seg_idx_end = i;
8061 
8062       if (seg_idx_end == ebb_table->action_count && !ebb->ends_unreachable)
8063 	requires_text_end_align = TRUE;
8064 
8065       if (elf32xtensa_size_opt && !requires_text_end_align
8066 	  && action->align_type != EBB_REQUIRE_LOOP_ALIGN
8067 	  && action->align_type != EBB_REQUIRE_TGT_ALIGN)
8068 	{
8069 	  longcall_convert_count = longcall_count;
8070 	  narrowable_convert_count = narrowable_count;
8071 	  widenable_convert_count = 0;
8072 	}
8073       else
8074 	{
8075 	  /* There is a constraint.  Convert the max number of longcalls.  */
8076 	  narrowable_convert_count = 0;
8077 	  longcall_convert_count = 0;
8078 	  widenable_convert_count = 0;
8079 
8080 	  for (j = 0; j < longcall_count; j++)
8081 	    {
8082 	      int removed = (longcall_count - j) * 3 & (align - 1);
8083 	      unsigned desire_narrow = (align - removed) & (align - 1);
8084 	      unsigned desire_widen = removed;
8085 	      if (desire_narrow <= narrowable_count)
8086 		{
8087 		  narrowable_convert_count = desire_narrow;
8088 		  narrowable_convert_count +=
8089 		    (align * ((narrowable_count - narrowable_convert_count)
8090 			      / align));
8091 		  longcall_convert_count = (longcall_count - j);
8092 		  widenable_convert_count = 0;
8093 		  break;
8094 		}
8095 	      if (desire_widen <= widenable_count && !elf32xtensa_size_opt)
8096 		{
8097 		  narrowable_convert_count = 0;
8098 		  longcall_convert_count = longcall_count - j;
8099 		  widenable_convert_count = desire_widen;
8100 		  break;
8101 		}
8102 	    }
8103 	}
8104 
8105       /* Now the number of conversions are saved.  Do them.  */
8106       for (i = seg_idx_start; i < seg_idx_end; i++)
8107 	{
8108 	  action = &ebb_table->actions[i];
8109 	  switch (action->action)
8110 	    {
8111 	    case ta_convert_longcall:
8112 	      if (longcall_convert_count != 0)
8113 		{
8114 		  action->action = ta_remove_longcall;
8115 		  action->do_action = TRUE;
8116 		  action->removed_bytes += 3;
8117 		  longcall_convert_count--;
8118 		}
8119 	      break;
8120 	    case ta_narrow_insn:
8121 	      if (narrowable_convert_count != 0)
8122 		{
8123 		  action->do_action = TRUE;
8124 		  action->removed_bytes += 1;
8125 		  narrowable_convert_count--;
8126 		}
8127 	      break;
8128 	    case ta_widen_insn:
8129 	      if (widenable_convert_count != 0)
8130 		{
8131 		  action->do_action = TRUE;
8132 		  action->removed_bytes -= 1;
8133 		  widenable_convert_count--;
8134 		}
8135 	      break;
8136 	    default:
8137 	      break;
8138 	    }
8139 	}
8140     }
8141 
8142   /* Now we move on to some local opts.  Try to remove each of the
8143      remaining longcalls.  */
8144 
8145   if (ebb_table->ebb.ends_section || ebb_table->ebb.ends_unreachable)
8146     {
8147       removed_bytes = 0;
8148       for (i = 0; i < ebb_table->action_count; i++)
8149 	{
8150 	  int old_removed_bytes = removed_bytes;
8151 	  proposed_action *action = &ebb_table->actions[i];
8152 
8153 	  if (action->do_action && action->action == ta_convert_longcall)
8154 	    {
8155 	      bfd_boolean bad_alignment = FALSE;
8156 	      removed_bytes += 3;
8157 	      for (j = i + 1; j < ebb_table->action_count; j++)
8158 		{
8159 		  proposed_action *new_action = &ebb_table->actions[j];
8160 		  bfd_vma offset = new_action->offset;
8161 		  if (new_action->align_type == EBB_REQUIRE_TGT_ALIGN)
8162 		    {
8163 		      if (!check_branch_target_aligned
8164 			  (ebb_table->ebb.contents,
8165 			   ebb_table->ebb.content_length,
8166 			   offset, offset - removed_bytes))
8167 			{
8168 			  bad_alignment = TRUE;
8169 			  break;
8170 			}
8171 		    }
8172 		  if (new_action->align_type == EBB_REQUIRE_LOOP_ALIGN)
8173 		    {
8174 		      if (!check_loop_aligned (ebb_table->ebb.contents,
8175 					       ebb_table->ebb.content_length,
8176 					       offset,
8177 					       offset - removed_bytes))
8178 			{
8179 			  bad_alignment = TRUE;
8180 			  break;
8181 			}
8182 		    }
8183 		  if (new_action->action == ta_narrow_insn
8184 		      && !new_action->do_action
8185 		      && ebb_table->ebb.sec->alignment_power == 2)
8186 		    {
8187 		      /* Narrow an instruction and we are done.  */
8188 		      new_action->do_action = TRUE;
8189 		      new_action->removed_bytes += 1;
8190 		      bad_alignment = FALSE;
8191 		      break;
8192 		    }
8193 		  if (new_action->action == ta_widen_insn
8194 		      && new_action->do_action
8195 		      && ebb_table->ebb.sec->alignment_power == 2)
8196 		    {
8197 		      /* Narrow an instruction and we are done.  */
8198 		      new_action->do_action = FALSE;
8199 		      new_action->removed_bytes += 1;
8200 		      bad_alignment = FALSE;
8201 		      break;
8202 		    }
8203 		  if (new_action->do_action)
8204 		    removed_bytes += new_action->removed_bytes;
8205 		}
8206 	      if (!bad_alignment)
8207 		{
8208 		  action->removed_bytes += 3;
8209 		  action->action = ta_remove_longcall;
8210 		  action->do_action = TRUE;
8211 		}
8212 	    }
8213 	  removed_bytes = old_removed_bytes;
8214 	  if (action->do_action)
8215 	    removed_bytes += action->removed_bytes;
8216 	}
8217     }
8218 
8219   removed_bytes = 0;
8220   for (i = 0; i < ebb_table->action_count; ++i)
8221     {
8222       proposed_action *action = &ebb_table->actions[i];
8223       if (action->do_action)
8224 	removed_bytes += action->removed_bytes;
8225     }
8226 
8227   if ((removed_bytes % (1 << ebb_table->ebb.sec->alignment_power)) != 0
8228       && ebb->ends_unreachable)
8229     {
8230       proposed_action *action;
8231       int br;
8232       int extra_space;
8233 
8234       BFD_ASSERT (ebb_table->action_count != 0);
8235       action = &ebb_table->actions[ebb_table->action_count - 1];
8236       BFD_ASSERT (action->action == ta_fill);
8237       BFD_ASSERT (ebb->ends_unreachable->flags & XTENSA_PROP_UNREACHABLE);
8238 
8239       extra_space = compute_fill_extra_space (ebb->ends_unreachable);
8240       br = action->removed_bytes + removed_bytes + extra_space;
8241       br = br & ((1 << ebb->sec->alignment_power ) - 1);
8242 
8243       action->removed_bytes = extra_space - br;
8244     }
8245   return TRUE;
8246 }
8247 
8248 
8249 /* The xlate_map is a sorted array of address mappings designed to
8250    answer the offset_with_removed_text() query with a binary search instead
8251    of a linear search through the section's action_list.  */
8252 
8253 typedef struct xlate_map_entry xlate_map_entry_t;
8254 typedef struct xlate_map xlate_map_t;
8255 
8256 struct xlate_map_entry
8257 {
8258   unsigned orig_address;
8259   unsigned new_address;
8260   unsigned size;
8261 };
8262 
8263 struct xlate_map
8264 {
8265   unsigned entry_count;
8266   xlate_map_entry_t *entry;
8267 };
8268 
8269 
8270 static int
8271 xlate_compare (const void *a_v, const void *b_v)
8272 {
8273   const xlate_map_entry_t *a = (const xlate_map_entry_t *) a_v;
8274   const xlate_map_entry_t *b = (const xlate_map_entry_t *) b_v;
8275   if (a->orig_address < b->orig_address)
8276     return -1;
8277   if (a->orig_address > (b->orig_address + b->size - 1))
8278     return 1;
8279   return 0;
8280 }
8281 
8282 
8283 static bfd_vma
8284 xlate_offset_with_removed_text (const xlate_map_t *map,
8285 				text_action_list *action_list,
8286 				bfd_vma offset)
8287 {
8288   void *r;
8289   xlate_map_entry_t *e;
8290 
8291   if (map == NULL)
8292     return offset_with_removed_text (action_list, offset);
8293 
8294   if (map->entry_count == 0)
8295     return offset;
8296 
8297   r = bsearch (&offset, map->entry, map->entry_count,
8298 	       sizeof (xlate_map_entry_t), &xlate_compare);
8299   e = (xlate_map_entry_t *) r;
8300 
8301   BFD_ASSERT (e != NULL);
8302   if (e == NULL)
8303     return offset;
8304   return e->new_address - e->orig_address + offset;
8305 }
8306 
8307 typedef struct xlate_map_context_struct xlate_map_context;
8308 struct xlate_map_context_struct
8309 {
8310   xlate_map_t *map;
8311   xlate_map_entry_t *current_entry;
8312   int removed;
8313 };
8314 
8315 static int
8316 xlate_map_fn (splay_tree_node node, void *p)
8317 {
8318   text_action *r = (text_action *)node->value;
8319   xlate_map_context *ctx = p;
8320   unsigned orig_size = 0;
8321 
8322   switch (r->action)
8323     {
8324     case ta_none:
8325     case ta_remove_insn:
8326     case ta_convert_longcall:
8327     case ta_remove_literal:
8328     case ta_add_literal:
8329       break;
8330     case ta_remove_longcall:
8331       orig_size = 6;
8332       break;
8333     case ta_narrow_insn:
8334       orig_size = 3;
8335       break;
8336     case ta_widen_insn:
8337       orig_size = 2;
8338       break;
8339     case ta_fill:
8340       break;
8341     }
8342   ctx->current_entry->size =
8343     r->offset + orig_size - ctx->current_entry->orig_address;
8344   if (ctx->current_entry->size != 0)
8345     {
8346       ctx->current_entry++;
8347       ctx->map->entry_count++;
8348     }
8349   ctx->current_entry->orig_address = r->offset + orig_size;
8350   ctx->removed += r->removed_bytes;
8351   ctx->current_entry->new_address = r->offset + orig_size - ctx->removed;
8352   ctx->current_entry->size = 0;
8353   return 0;
8354 }
8355 
8356 /* Build a binary searchable offset translation map from a section's
8357    action list.  */
8358 
8359 static xlate_map_t *
8360 build_xlate_map (asection *sec, xtensa_relax_info *relax_info)
8361 {
8362   text_action_list *action_list = &relax_info->action_list;
8363   unsigned num_actions = 0;
8364   xlate_map_context ctx;
8365 
8366   ctx.map = (xlate_map_t *) bfd_malloc (sizeof (xlate_map_t));
8367 
8368   if (ctx.map == NULL)
8369     return NULL;
8370 
8371   num_actions = action_list_count (action_list);
8372   ctx.map->entry = (xlate_map_entry_t *)
8373     bfd_malloc (sizeof (xlate_map_entry_t) * (num_actions + 1));
8374   if (ctx.map->entry == NULL)
8375     {
8376       free (ctx.map);
8377       return NULL;
8378     }
8379   ctx.map->entry_count = 0;
8380 
8381   ctx.removed = 0;
8382   ctx.current_entry = &ctx.map->entry[0];
8383 
8384   ctx.current_entry->orig_address = 0;
8385   ctx.current_entry->new_address = 0;
8386   ctx.current_entry->size = 0;
8387 
8388   splay_tree_foreach (action_list->tree, xlate_map_fn, &ctx);
8389 
8390   ctx.current_entry->size = (bfd_get_section_limit (sec->owner, sec)
8391 			     - ctx.current_entry->orig_address);
8392   if (ctx.current_entry->size != 0)
8393     ctx.map->entry_count++;
8394 
8395   return ctx.map;
8396 }
8397 
8398 
8399 /* Free an offset translation map.  */
8400 
8401 static void
8402 free_xlate_map (xlate_map_t *map)
8403 {
8404   if (map && map->entry)
8405     free (map->entry);
8406   if (map)
8407     free (map);
8408 }
8409 
8410 
8411 /* Use check_section_ebb_pcrels_fit to make sure that all of the
8412    relocations in a section will fit if a proposed set of actions
8413    are performed.  */
8414 
8415 static bfd_boolean
8416 check_section_ebb_pcrels_fit (bfd *abfd,
8417 			      asection *sec,
8418 			      bfd_byte *contents,
8419 			      Elf_Internal_Rela *internal_relocs,
8420 			      reloc_range_list *relevant_relocs,
8421 			      const ebb_constraint *constraint,
8422 			      const xtensa_opcode *reloc_opcodes)
8423 {
8424   unsigned i, j;
8425   unsigned n = sec->reloc_count;
8426   Elf_Internal_Rela *irel;
8427   xlate_map_t *xmap = NULL;
8428   bfd_boolean ok = TRUE;
8429   xtensa_relax_info *relax_info;
8430   reloc_range_list_entry *entry = NULL;
8431 
8432   relax_info = get_xtensa_relax_info (sec);
8433 
8434   if (relax_info && sec->reloc_count > 100)
8435     {
8436       xmap = build_xlate_map (sec, relax_info);
8437       /* NULL indicates out of memory, but the slow version
8438 	 can still be used.  */
8439     }
8440 
8441   if (relevant_relocs && constraint->action_count)
8442     {
8443       if (!relevant_relocs->ok)
8444 	{
8445 	  ok = FALSE;
8446 	  n = 0;
8447 	}
8448       else
8449 	{
8450 	  bfd_vma min_offset, max_offset;
8451 	  min_offset = max_offset = constraint->actions[0].offset;
8452 
8453 	  for (i = 1; i < constraint->action_count; ++i)
8454 	    {
8455 	      proposed_action *action = &constraint->actions[i];
8456 	      bfd_vma offset = action->offset;
8457 
8458 	      if (offset < min_offset)
8459 		min_offset = offset;
8460 	      if (offset > max_offset)
8461 		max_offset = offset;
8462 	    }
8463 	  reloc_range_list_update_range (relevant_relocs, min_offset,
8464 					 max_offset);
8465 	  n = relevant_relocs->n_list;
8466 	  entry = &relevant_relocs->list_root;
8467 	}
8468     }
8469   else
8470     {
8471       relevant_relocs = NULL;
8472     }
8473 
8474   for (i = 0; i < n; i++)
8475     {
8476       r_reloc r_rel;
8477       bfd_vma orig_self_offset, orig_target_offset;
8478       bfd_vma self_offset, target_offset;
8479       int r_type;
8480       reloc_howto_type *howto;
8481       int self_removed_bytes, target_removed_bytes;
8482 
8483       if (relevant_relocs)
8484 	{
8485 	  entry = entry->next;
8486 	  irel = entry->irel;
8487 	}
8488       else
8489 	{
8490 	  irel = internal_relocs + i;
8491 	}
8492       r_type = ELF32_R_TYPE (irel->r_info);
8493 
8494       howto = &elf_howto_table[r_type];
8495       /* We maintain the required invariant: PC-relative relocations
8496 	 that fit before linking must fit after linking.  Thus we only
8497 	 need to deal with relocations to the same section that are
8498 	 PC-relative.  */
8499       if (r_type == R_XTENSA_ASM_SIMPLIFY
8500 	  || r_type == R_XTENSA_32_PCREL
8501 	  || !howto->pc_relative)
8502 	continue;
8503 
8504       r_reloc_init (&r_rel, abfd, irel, contents,
8505 		    bfd_get_section_limit (abfd, sec));
8506 
8507       if (r_reloc_get_section (&r_rel) != sec)
8508 	continue;
8509 
8510       orig_self_offset = irel->r_offset;
8511       orig_target_offset = r_rel.target_offset;
8512 
8513       self_offset = orig_self_offset;
8514       target_offset = orig_target_offset;
8515 
8516       if (relax_info)
8517 	{
8518 	  self_offset =
8519 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8520 					    orig_self_offset);
8521 	  target_offset =
8522 	    xlate_offset_with_removed_text (xmap, &relax_info->action_list,
8523 					    orig_target_offset);
8524 	}
8525 
8526       self_removed_bytes = 0;
8527       target_removed_bytes = 0;
8528 
8529       for (j = 0; j < constraint->action_count; ++j)
8530 	{
8531 	  proposed_action *action = &constraint->actions[j];
8532 	  bfd_vma offset = action->offset;
8533 	  int removed_bytes = action->removed_bytes;
8534 	  if (offset < orig_self_offset
8535 	      || (offset == orig_self_offset && action->action == ta_fill
8536 		  && action->removed_bytes < 0))
8537 	    self_removed_bytes += removed_bytes;
8538 	  if (offset < orig_target_offset
8539 	      || (offset == orig_target_offset && action->action == ta_fill
8540 		  && action->removed_bytes < 0))
8541 	    target_removed_bytes += removed_bytes;
8542 	}
8543       self_offset -= self_removed_bytes;
8544       target_offset -= target_removed_bytes;
8545 
8546       /* Try to encode it.  Get the operand and check.  */
8547       if (is_alt_relocation (ELF32_R_TYPE (irel->r_info)))
8548 	{
8549 	  /* None of the current alternate relocs are PC-relative,
8550 	     and only PC-relative relocs matter here.  */
8551 	}
8552       else
8553 	{
8554 	  xtensa_opcode opcode;
8555 	  int opnum;
8556 
8557 	  if (relevant_relocs)
8558 	    {
8559 	      opcode = entry->opcode;
8560 	      opnum = entry->opnum;
8561 	    }
8562 	  else
8563 	    {
8564 	      if (reloc_opcodes)
8565 		opcode = reloc_opcodes[relevant_relocs ?
8566 		  (unsigned)(entry - relevant_relocs->reloc) : i];
8567 	      else
8568 		opcode = get_relocation_opcode (abfd, sec, contents, irel);
8569 	      if (opcode == XTENSA_UNDEFINED)
8570 		{
8571 		  ok = FALSE;
8572 		  break;
8573 		}
8574 
8575 	      opnum = get_relocation_opnd (opcode, ELF32_R_TYPE (irel->r_info));
8576 	      if (opnum == XTENSA_UNDEFINED)
8577 		{
8578 		  ok = FALSE;
8579 		  break;
8580 		}
8581 	    }
8582 
8583 	  if (!pcrel_reloc_fits (opcode, opnum, self_offset, target_offset))
8584 	    {
8585 	      ok = FALSE;
8586 	      break;
8587 	    }
8588 	}
8589     }
8590 
8591   if (xmap)
8592     free_xlate_map (xmap);
8593 
8594   return ok;
8595 }
8596 
8597 
8598 static bfd_boolean
8599 check_section_ebb_reduces (const ebb_constraint *constraint)
8600 {
8601   int removed = 0;
8602   unsigned i;
8603 
8604   for (i = 0; i < constraint->action_count; i++)
8605     {
8606       const proposed_action *action = &constraint->actions[i];
8607       if (action->do_action)
8608 	removed += action->removed_bytes;
8609     }
8610   if (removed < 0)
8611     return FALSE;
8612 
8613   return TRUE;
8614 }
8615 
8616 
8617 void
8618 text_action_add_proposed (text_action_list *l,
8619 			  const ebb_constraint *ebb_table,
8620 			  asection *sec)
8621 {
8622   unsigned i;
8623 
8624   for (i = 0; i < ebb_table->action_count; i++)
8625     {
8626       proposed_action *action = &ebb_table->actions[i];
8627 
8628       if (!action->do_action)
8629 	continue;
8630       switch (action->action)
8631 	{
8632 	case ta_remove_insn:
8633 	case ta_remove_longcall:
8634 	case ta_convert_longcall:
8635 	case ta_narrow_insn:
8636 	case ta_widen_insn:
8637 	case ta_fill:
8638 	case ta_remove_literal:
8639 	  text_action_add (l, action->action, sec, action->offset,
8640 			   action->removed_bytes);
8641 	  break;
8642 	case ta_none:
8643 	  break;
8644 	default:
8645 	  BFD_ASSERT (0);
8646 	  break;
8647 	}
8648     }
8649 }
8650 
8651 
8652 int
8653 compute_fill_extra_space (property_table_entry *entry)
8654 {
8655   int fill_extra_space;
8656 
8657   if (!entry)
8658     return 0;
8659 
8660   if ((entry->flags & XTENSA_PROP_UNREACHABLE) == 0)
8661     return 0;
8662 
8663   fill_extra_space = entry->size;
8664   if ((entry->flags & XTENSA_PROP_ALIGN) != 0)
8665     {
8666       /* Fill bytes for alignment:
8667 	 (2**n)-1 - (addr + (2**n)-1) & (2**n -1) */
8668       int pow = GET_XTENSA_PROP_ALIGNMENT (entry->flags);
8669       int nsm = (1 << pow) - 1;
8670       bfd_vma addr = entry->address + entry->size;
8671       bfd_vma align_fill = nsm - ((addr + nsm) & nsm);
8672       fill_extra_space += align_fill;
8673     }
8674   return fill_extra_space;
8675 }
8676 
8677 
8678 /* First relaxation pass.  */
8679 
8680 /* If the section contains relaxable literals, check each literal to
8681    see if it has the same value as another literal that has already
8682    been seen, either in the current section or a previous one.  If so,
8683    add an entry to the per-section list of removed literals.  The
8684    actual changes are deferred until the next pass.  */
8685 
8686 static bfd_boolean
8687 compute_removed_literals (bfd *abfd,
8688 			  asection *sec,
8689 			  struct bfd_link_info *link_info,
8690 			  value_map_hash_table *values)
8691 {
8692   xtensa_relax_info *relax_info;
8693   bfd_byte *contents;
8694   Elf_Internal_Rela *internal_relocs;
8695   source_reloc *src_relocs, *rel;
8696   bfd_boolean ok = TRUE;
8697   property_table_entry *prop_table = NULL;
8698   int ptblsize;
8699   int i, prev_i;
8700   bfd_boolean last_loc_is_prev = FALSE;
8701   bfd_vma last_target_offset = 0;
8702   section_cache_t target_sec_cache;
8703   bfd_size_type sec_size;
8704 
8705   init_section_cache (&target_sec_cache);
8706 
8707   /* Do nothing if it is not a relaxable literal section.  */
8708   relax_info = get_xtensa_relax_info (sec);
8709   BFD_ASSERT (relax_info);
8710   if (!relax_info->is_relaxable_literal_section)
8711     return ok;
8712 
8713   internal_relocs = retrieve_internal_relocs (abfd, sec,
8714 					      link_info->keep_memory);
8715 
8716   sec_size = bfd_get_section_limit (abfd, sec);
8717   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
8718   if (contents == NULL && sec_size != 0)
8719     {
8720       ok = FALSE;
8721       goto error_return;
8722     }
8723 
8724   /* Sort the source_relocs by target offset.  */
8725   src_relocs = relax_info->src_relocs;
8726   qsort (src_relocs, relax_info->src_count,
8727 	 sizeof (source_reloc), source_reloc_compare);
8728   qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
8729 	 internal_reloc_compare);
8730 
8731   ptblsize = xtensa_read_table_entries (abfd, sec, &prop_table,
8732 					XTENSA_PROP_SEC_NAME, FALSE);
8733   if (ptblsize < 0)
8734     {
8735       ok = FALSE;
8736       goto error_return;
8737     }
8738 
8739   prev_i = -1;
8740   for (i = 0; i < relax_info->src_count; i++)
8741     {
8742       Elf_Internal_Rela *irel = NULL;
8743 
8744       rel = &src_relocs[i];
8745       if (get_l32r_opcode () != rel->opcode)
8746 	continue;
8747       irel = get_irel_at_offset (sec, internal_relocs,
8748 				 rel->r_rel.target_offset);
8749 
8750       /* If the relocation on this is not a simple R_XTENSA_32 or
8751 	 R_XTENSA_PLT then do not consider it.  This may happen when
8752 	 the difference of two symbols is used in a literal.  */
8753       if (irel && (ELF32_R_TYPE (irel->r_info) != R_XTENSA_32
8754 		   && ELF32_R_TYPE (irel->r_info) != R_XTENSA_PLT))
8755 	continue;
8756 
8757       /* If the target_offset for this relocation is the same as the
8758 	 previous relocation, then we've already considered whether the
8759 	 literal can be coalesced.  Skip to the next one....  */
8760       if (i != 0 && prev_i != -1
8761 	  && src_relocs[i-1].r_rel.target_offset == rel->r_rel.target_offset)
8762 	continue;
8763       prev_i = i;
8764 
8765       if (last_loc_is_prev &&
8766 	  last_target_offset + 4 != rel->r_rel.target_offset)
8767 	last_loc_is_prev = FALSE;
8768 
8769       /* Check if the relocation was from an L32R that is being removed
8770 	 because a CALLX was converted to a direct CALL, and check if
8771 	 there are no other relocations to the literal.  */
8772       if (is_removable_literal (rel, i, src_relocs, relax_info->src_count,
8773 				sec, prop_table, ptblsize))
8774 	{
8775 	  if (!remove_dead_literal (abfd, sec, link_info, internal_relocs,
8776 				    irel, rel, prop_table, ptblsize))
8777 	    {
8778 	      ok = FALSE;
8779 	      goto error_return;
8780 	    }
8781 	  last_target_offset = rel->r_rel.target_offset;
8782 	  continue;
8783 	}
8784 
8785       if (!identify_literal_placement (abfd, sec, contents, link_info,
8786 				       values,
8787 				       &last_loc_is_prev, irel,
8788 				       relax_info->src_count - i, rel,
8789 				       prop_table, ptblsize,
8790 				       &target_sec_cache, rel->is_abs_literal))
8791 	{
8792 	  ok = FALSE;
8793 	  goto error_return;
8794 	}
8795       last_target_offset = rel->r_rel.target_offset;
8796     }
8797 
8798 #if DEBUG
8799   print_removed_literals (stderr, &relax_info->removed_list);
8800   print_action_list (stderr, &relax_info->action_list);
8801 #endif /* DEBUG */
8802 
8803 error_return:
8804   if (prop_table)
8805     free (prop_table);
8806   free_section_cache (&target_sec_cache);
8807 
8808   release_contents (sec, contents);
8809   release_internal_relocs (sec, internal_relocs);
8810   return ok;
8811 }
8812 
8813 
8814 static Elf_Internal_Rela *
8815 get_irel_at_offset (asection *sec,
8816 		    Elf_Internal_Rela *internal_relocs,
8817 		    bfd_vma offset)
8818 {
8819   unsigned i;
8820   Elf_Internal_Rela *irel;
8821   unsigned r_type;
8822   Elf_Internal_Rela key;
8823 
8824   if (!internal_relocs)
8825     return NULL;
8826 
8827   key.r_offset = offset;
8828   irel = bsearch (&key, internal_relocs, sec->reloc_count,
8829 		  sizeof (Elf_Internal_Rela), internal_reloc_matches);
8830   if (!irel)
8831     return NULL;
8832 
8833   /* bsearch does not guarantee which will be returned if there are
8834      multiple matches.  We need the first that is not an alignment.  */
8835   i = irel - internal_relocs;
8836   while (i > 0)
8837     {
8838       if (internal_relocs[i-1].r_offset != offset)
8839 	break;
8840       i--;
8841     }
8842   for ( ; i < sec->reloc_count; i++)
8843     {
8844       irel = &internal_relocs[i];
8845       r_type = ELF32_R_TYPE (irel->r_info);
8846       if (irel->r_offset == offset && r_type != R_XTENSA_NONE)
8847 	return irel;
8848     }
8849 
8850   return NULL;
8851 }
8852 
8853 
8854 bfd_boolean
8855 is_removable_literal (const source_reloc *rel,
8856 		      int i,
8857 		      const source_reloc *src_relocs,
8858 		      int src_count,
8859 		      asection *sec,
8860 		      property_table_entry *prop_table,
8861 		      int ptblsize)
8862 {
8863   const source_reloc *curr_rel;
8864   property_table_entry *entry;
8865 
8866   if (!rel->is_null)
8867     return FALSE;
8868 
8869   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8870 					  sec->vma + rel->r_rel.target_offset);
8871   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
8872     return FALSE;
8873 
8874   for (++i; i < src_count; ++i)
8875     {
8876       curr_rel = &src_relocs[i];
8877       /* If all others have the same target offset....  */
8878       if (curr_rel->r_rel.target_offset != rel->r_rel.target_offset)
8879 	return TRUE;
8880 
8881       if (!curr_rel->is_null
8882 	  && !xtensa_is_property_section (curr_rel->source_sec)
8883 	  && !(curr_rel->source_sec->flags & SEC_DEBUGGING))
8884 	return FALSE;
8885     }
8886   return TRUE;
8887 }
8888 
8889 
8890 bfd_boolean
8891 remove_dead_literal (bfd *abfd,
8892 		     asection *sec,
8893 		     struct bfd_link_info *link_info,
8894 		     Elf_Internal_Rela *internal_relocs,
8895 		     Elf_Internal_Rela *irel,
8896 		     source_reloc *rel,
8897 		     property_table_entry *prop_table,
8898 		     int ptblsize)
8899 {
8900   property_table_entry *entry;
8901   xtensa_relax_info *relax_info;
8902 
8903   relax_info = get_xtensa_relax_info (sec);
8904   if (!relax_info)
8905     return FALSE;
8906 
8907   entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8908 					  sec->vma + rel->r_rel.target_offset);
8909 
8910   /* Mark the unused literal so that it will be removed.  */
8911   add_removed_literal (&relax_info->removed_list, &rel->r_rel, NULL);
8912 
8913   text_action_add (&relax_info->action_list,
8914 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
8915 
8916   /* If the section is 4-byte aligned, do not add fill.  */
8917   if (sec->alignment_power > 2)
8918     {
8919       int fill_extra_space;
8920       bfd_vma entry_sec_offset;
8921       text_action *fa;
8922       property_table_entry *the_add_entry;
8923       int removed_diff;
8924 
8925       if (entry)
8926 	entry_sec_offset = entry->address - sec->vma + entry->size;
8927       else
8928 	entry_sec_offset = rel->r_rel.target_offset + 4;
8929 
8930       /* If the literal range is at the end of the section,
8931 	 do not add fill.  */
8932       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
8933 						      entry_sec_offset);
8934       fill_extra_space = compute_fill_extra_space (the_add_entry);
8935 
8936       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
8937       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
8938 						  -4, fill_extra_space);
8939       if (fa)
8940 	adjust_fill_action (fa, removed_diff);
8941       else
8942 	text_action_add (&relax_info->action_list,
8943 			 ta_fill, sec, entry_sec_offset, removed_diff);
8944     }
8945 
8946   /* Zero out the relocation on this literal location.  */
8947   if (irel)
8948     {
8949       if (elf_hash_table (link_info)->dynamic_sections_created)
8950 	shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
8951 
8952       irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
8953       pin_internal_relocs (sec, internal_relocs);
8954     }
8955 
8956   /* Do not modify "last_loc_is_prev".  */
8957   return TRUE;
8958 }
8959 
8960 
8961 bfd_boolean
8962 identify_literal_placement (bfd *abfd,
8963 			    asection *sec,
8964 			    bfd_byte *contents,
8965 			    struct bfd_link_info *link_info,
8966 			    value_map_hash_table *values,
8967 			    bfd_boolean *last_loc_is_prev_p,
8968 			    Elf_Internal_Rela *irel,
8969 			    int remaining_src_rels,
8970 			    source_reloc *rel,
8971 			    property_table_entry *prop_table,
8972 			    int ptblsize,
8973 			    section_cache_t *target_sec_cache,
8974 			    bfd_boolean is_abs_literal)
8975 {
8976   literal_value val;
8977   value_map *val_map;
8978   xtensa_relax_info *relax_info;
8979   bfd_boolean literal_placed = FALSE;
8980   r_reloc r_rel;
8981   unsigned long value;
8982   bfd_boolean final_static_link;
8983   bfd_size_type sec_size;
8984 
8985   relax_info = get_xtensa_relax_info (sec);
8986   if (!relax_info)
8987     return FALSE;
8988 
8989   sec_size = bfd_get_section_limit (abfd, sec);
8990 
8991   final_static_link =
8992     (!bfd_link_relocatable (link_info)
8993      && !elf_hash_table (link_info)->dynamic_sections_created);
8994 
8995   /* The placement algorithm first checks to see if the literal is
8996      already in the value map.  If so and the value map is reachable
8997      from all uses, then the literal is moved to that location.  If
8998      not, then we identify the last location where a fresh literal was
8999      placed.  If the literal can be safely moved there, then we do so.
9000      If not, then we assume that the literal is not to move and leave
9001      the literal where it is, marking it as the last literal
9002      location.  */
9003 
9004   /* Find the literal value.  */
9005   value = 0;
9006   r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9007   if (!irel)
9008     {
9009       BFD_ASSERT (rel->r_rel.target_offset < sec_size);
9010       value = bfd_get_32 (abfd, contents + rel->r_rel.target_offset);
9011     }
9012   init_literal_value (&val, &r_rel, value, is_abs_literal);
9013 
9014   /* Check if we've seen another literal with the same value that
9015      is in the same output section.  */
9016   val_map = value_map_get_cached_value (values, &val, final_static_link);
9017 
9018   if (val_map
9019       && (r_reloc_get_section (&val_map->loc)->output_section
9020 	  == sec->output_section)
9021       && relocations_reach (rel, remaining_src_rels, &val_map->loc)
9022       && coalesce_shared_literal (sec, rel, prop_table, ptblsize, val_map))
9023     {
9024       /* No change to last_loc_is_prev.  */
9025       literal_placed = TRUE;
9026     }
9027 
9028   /* For relocatable links, do not try to move literals.  To do it
9029      correctly might increase the number of relocations in an input
9030      section making the default relocatable linking fail.  */
9031   if (!bfd_link_relocatable (link_info) && !literal_placed
9032       && values->has_last_loc && !(*last_loc_is_prev_p))
9033     {
9034       asection *target_sec = r_reloc_get_section (&values->last_loc);
9035       if (target_sec && target_sec->output_section == sec->output_section)
9036 	{
9037 	  /* Increment the virtual offset.  */
9038 	  r_reloc try_loc = values->last_loc;
9039 	  try_loc.virtual_offset += 4;
9040 
9041 	  /* There is a last loc that was in the same output section.  */
9042 	  if (relocations_reach (rel, remaining_src_rels, &try_loc)
9043 	      && move_shared_literal (sec, link_info, rel,
9044 				      prop_table, ptblsize,
9045 				      &try_loc, &val, target_sec_cache))
9046 	    {
9047 	      values->last_loc.virtual_offset += 4;
9048 	      literal_placed = TRUE;
9049 	      if (!val_map)
9050 		val_map = add_value_map (values, &val, &try_loc,
9051 					 final_static_link);
9052 	      else
9053 		val_map->loc = try_loc;
9054 	    }
9055 	}
9056     }
9057 
9058   if (!literal_placed)
9059     {
9060       /* Nothing worked, leave the literal alone but update the last loc.  */
9061       values->has_last_loc = TRUE;
9062       values->last_loc = rel->r_rel;
9063       if (!val_map)
9064 	val_map = add_value_map (values, &val, &rel->r_rel, final_static_link);
9065       else
9066 	val_map->loc = rel->r_rel;
9067       *last_loc_is_prev_p = TRUE;
9068     }
9069 
9070   return TRUE;
9071 }
9072 
9073 
9074 /* Check if the original relocations (presumably on L32R instructions)
9075    identified by reloc[0..N] can be changed to reference the literal
9076    identified by r_rel.  If r_rel is out of range for any of the
9077    original relocations, then we don't want to coalesce the original
9078    literal with the one at r_rel.  We only check reloc[0..N], where the
9079    offsets are all the same as for reloc[0] (i.e., they're all
9080    referencing the same literal) and where N is also bounded by the
9081    number of remaining entries in the "reloc" array.  The "reloc" array
9082    is sorted by target offset so we know all the entries for the same
9083    literal will be contiguous.  */
9084 
9085 static bfd_boolean
9086 relocations_reach (source_reloc *reloc,
9087 		   int remaining_relocs,
9088 		   const r_reloc *r_rel)
9089 {
9090   bfd_vma from_offset, source_address, dest_address;
9091   asection *sec;
9092   int i;
9093 
9094   if (!r_reloc_is_defined (r_rel))
9095     return FALSE;
9096 
9097   sec = r_reloc_get_section (r_rel);
9098   from_offset = reloc[0].r_rel.target_offset;
9099 
9100   for (i = 0; i < remaining_relocs; i++)
9101     {
9102       if (reloc[i].r_rel.target_offset != from_offset)
9103 	break;
9104 
9105       /* Ignore relocations that have been removed.  */
9106       if (reloc[i].is_null)
9107 	continue;
9108 
9109       /* The original and new output section for these must be the same
9110          in order to coalesce.  */
9111       if (r_reloc_get_section (&reloc[i].r_rel)->output_section
9112 	  != sec->output_section)
9113 	return FALSE;
9114 
9115       /* Absolute literals in the same output section can always be
9116 	 combined.  */
9117       if (reloc[i].is_abs_literal)
9118 	continue;
9119 
9120       /* A literal with no PC-relative relocations can be moved anywhere.  */
9121       if (reloc[i].opnd != -1)
9122 	{
9123 	  /* Otherwise, check to see that it fits.  */
9124 	  source_address = (reloc[i].source_sec->output_section->vma
9125 			    + reloc[i].source_sec->output_offset
9126 			    + reloc[i].r_rel.rela.r_offset);
9127 	  dest_address = (sec->output_section->vma
9128 			  + sec->output_offset
9129 			  + r_rel->target_offset);
9130 
9131 	  if (!pcrel_reloc_fits (reloc[i].opcode, reloc[i].opnd,
9132 				 source_address, dest_address))
9133 	    return FALSE;
9134 	}
9135     }
9136 
9137   return TRUE;
9138 }
9139 
9140 
9141 /* Move a literal to another literal location because it is
9142    the same as the other literal value.  */
9143 
9144 static bfd_boolean
9145 coalesce_shared_literal (asection *sec,
9146 			 source_reloc *rel,
9147 			 property_table_entry *prop_table,
9148 			 int ptblsize,
9149 			 value_map *val_map)
9150 {
9151   property_table_entry *entry;
9152   text_action *fa;
9153   property_table_entry *the_add_entry;
9154   int removed_diff;
9155   xtensa_relax_info *relax_info;
9156 
9157   relax_info = get_xtensa_relax_info (sec);
9158   if (!relax_info)
9159     return FALSE;
9160 
9161   entry = elf_xtensa_find_property_entry
9162     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9163   if (entry && (entry->flags & XTENSA_PROP_NO_TRANSFORM))
9164     return TRUE;
9165 
9166   /* Mark that the literal will be coalesced.  */
9167   add_removed_literal (&relax_info->removed_list, &rel->r_rel, &val_map->loc);
9168 
9169   text_action_add (&relax_info->action_list,
9170 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9171 
9172   /* If the section is 4-byte aligned, do not add fill.  */
9173   if (sec->alignment_power > 2)
9174     {
9175       int fill_extra_space;
9176       bfd_vma entry_sec_offset;
9177 
9178       if (entry)
9179 	entry_sec_offset = entry->address - sec->vma + entry->size;
9180       else
9181 	entry_sec_offset = rel->r_rel.target_offset + 4;
9182 
9183       /* If the literal range is at the end of the section,
9184 	 do not add fill.  */
9185       fill_extra_space = 0;
9186       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9187 						      entry_sec_offset);
9188       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9189 	fill_extra_space = the_add_entry->size;
9190 
9191       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9192       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9193 						  -4, fill_extra_space);
9194       if (fa)
9195 	adjust_fill_action (fa, removed_diff);
9196       else
9197 	text_action_add (&relax_info->action_list,
9198 			 ta_fill, sec, entry_sec_offset, removed_diff);
9199     }
9200 
9201   return TRUE;
9202 }
9203 
9204 
9205 /* Move a literal to another location.  This may actually increase the
9206    total amount of space used because of alignments so we need to do
9207    this carefully.  Also, it may make a branch go out of range.  */
9208 
9209 static bfd_boolean
9210 move_shared_literal (asection *sec,
9211 		     struct bfd_link_info *link_info,
9212 		     source_reloc *rel,
9213 		     property_table_entry *prop_table,
9214 		     int ptblsize,
9215 		     const r_reloc *target_loc,
9216 		     const literal_value *lit_value,
9217 		     section_cache_t *target_sec_cache)
9218 {
9219   property_table_entry *the_add_entry, *src_entry, *target_entry = NULL;
9220   text_action *fa, *target_fa;
9221   int removed_diff;
9222   xtensa_relax_info *relax_info, *target_relax_info;
9223   asection *target_sec;
9224   ebb_t *ebb;
9225   ebb_constraint ebb_table;
9226   bfd_boolean relocs_fit;
9227 
9228   /* If this routine always returns FALSE, the literals that cannot be
9229      coalesced will not be moved.  */
9230   if (elf32xtensa_no_literal_movement)
9231     return FALSE;
9232 
9233   relax_info = get_xtensa_relax_info (sec);
9234   if (!relax_info)
9235     return FALSE;
9236 
9237   target_sec = r_reloc_get_section (target_loc);
9238   target_relax_info = get_xtensa_relax_info (target_sec);
9239 
9240   /* Literals to undefined sections may not be moved because they
9241      must report an error.  */
9242   if (bfd_is_und_section (target_sec))
9243     return FALSE;
9244 
9245   src_entry = elf_xtensa_find_property_entry
9246     (prop_table, ptblsize, sec->vma + rel->r_rel.target_offset);
9247 
9248   if (!section_cache_section (target_sec_cache, target_sec, link_info))
9249     return FALSE;
9250 
9251   target_entry = elf_xtensa_find_property_entry
9252     (target_sec_cache->ptbl, target_sec_cache->pte_count,
9253      target_sec->vma + target_loc->target_offset);
9254 
9255   if (!target_entry)
9256     return FALSE;
9257 
9258   /* Make sure that we have not broken any branches.  */
9259   relocs_fit = FALSE;
9260 
9261   init_ebb_constraint (&ebb_table);
9262   ebb = &ebb_table.ebb;
9263   init_ebb (ebb, target_sec_cache->sec, target_sec_cache->contents,
9264 	    target_sec_cache->content_length,
9265 	    target_sec_cache->ptbl, target_sec_cache->pte_count,
9266 	    target_sec_cache->relocs, target_sec_cache->reloc_count);
9267 
9268   /* Propose to add 4 bytes + worst-case alignment size increase to
9269      destination.  */
9270   ebb_propose_action (&ebb_table, EBB_NO_ALIGN, 0,
9271 		      ta_fill, target_loc->target_offset,
9272 		      -4 - (1 << target_sec->alignment_power), TRUE);
9273 
9274   /* Check all of the PC-relative relocations to make sure they still fit.  */
9275   relocs_fit = check_section_ebb_pcrels_fit (target_sec->owner, target_sec,
9276 					     target_sec_cache->contents,
9277 					     target_sec_cache->relocs, NULL,
9278 					     &ebb_table, NULL);
9279 
9280   if (!relocs_fit)
9281     return FALSE;
9282 
9283   text_action_add_literal (&target_relax_info->action_list,
9284 			   ta_add_literal, target_loc, lit_value, -4);
9285 
9286   if (target_sec->alignment_power > 2 && target_entry != src_entry)
9287     {
9288       /* May need to add or remove some fill to maintain alignment.  */
9289       int fill_extra_space;
9290       bfd_vma entry_sec_offset;
9291 
9292       entry_sec_offset =
9293 	target_entry->address - target_sec->vma + target_entry->size;
9294 
9295       /* If the literal range is at the end of the section,
9296 	 do not add fill.  */
9297       fill_extra_space = 0;
9298       the_add_entry =
9299 	elf_xtensa_find_property_entry (target_sec_cache->ptbl,
9300 					target_sec_cache->pte_count,
9301 					entry_sec_offset);
9302       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9303 	fill_extra_space = the_add_entry->size;
9304 
9305       target_fa = find_fill_action (&target_relax_info->action_list,
9306 				    target_sec, entry_sec_offset);
9307       removed_diff = compute_removed_action_diff (target_fa, target_sec,
9308 						  entry_sec_offset, 4,
9309 						  fill_extra_space);
9310       if (target_fa)
9311 	adjust_fill_action (target_fa, removed_diff);
9312       else
9313 	text_action_add (&target_relax_info->action_list,
9314 			 ta_fill, target_sec, entry_sec_offset, removed_diff);
9315     }
9316 
9317   /* Mark that the literal will be moved to the new location.  */
9318   add_removed_literal (&relax_info->removed_list, &rel->r_rel, target_loc);
9319 
9320   /* Remove the literal.  */
9321   text_action_add (&relax_info->action_list,
9322 		   ta_remove_literal, sec, rel->r_rel.target_offset, 4);
9323 
9324   /* If the section is 4-byte aligned, do not add fill.  */
9325   if (sec->alignment_power > 2 && target_entry != src_entry)
9326     {
9327       int fill_extra_space;
9328       bfd_vma entry_sec_offset;
9329 
9330       if (src_entry)
9331 	entry_sec_offset = src_entry->address - sec->vma + src_entry->size;
9332       else
9333 	entry_sec_offset = rel->r_rel.target_offset+4;
9334 
9335       /* If the literal range is at the end of the section,
9336 	 do not add fill.  */
9337       fill_extra_space = 0;
9338       the_add_entry = elf_xtensa_find_property_entry (prop_table, ptblsize,
9339 						      entry_sec_offset);
9340       if (the_add_entry && (the_add_entry->flags & XTENSA_PROP_UNREACHABLE))
9341 	fill_extra_space = the_add_entry->size;
9342 
9343       fa = find_fill_action (&relax_info->action_list, sec, entry_sec_offset);
9344       removed_diff = compute_removed_action_diff (fa, sec, entry_sec_offset,
9345 						  -4, fill_extra_space);
9346       if (fa)
9347 	adjust_fill_action (fa, removed_diff);
9348       else
9349 	text_action_add (&relax_info->action_list,
9350 			 ta_fill, sec, entry_sec_offset, removed_diff);
9351     }
9352 
9353   return TRUE;
9354 }
9355 
9356 
9357 /* Second relaxation pass.  */
9358 
9359 static int
9360 action_remove_bytes_fn (splay_tree_node node, void *p)
9361 {
9362   bfd_size_type *final_size = p;
9363   text_action *action = (text_action *)node->value;
9364 
9365   *final_size -= action->removed_bytes;
9366   return 0;
9367 }
9368 
9369 /* Modify all of the relocations to point to the right spot, and if this
9370    is a relaxable section, delete the unwanted literals and fix the
9371    section size.  */
9372 
9373 bfd_boolean
9374 relax_section (bfd *abfd, asection *sec, struct bfd_link_info *link_info)
9375 {
9376   Elf_Internal_Rela *internal_relocs;
9377   xtensa_relax_info *relax_info;
9378   bfd_byte *contents;
9379   bfd_boolean ok = TRUE;
9380   unsigned i;
9381   bfd_boolean rv = FALSE;
9382   bfd_boolean virtual_action;
9383   bfd_size_type sec_size;
9384 
9385   sec_size = bfd_get_section_limit (abfd, sec);
9386   relax_info = get_xtensa_relax_info (sec);
9387   BFD_ASSERT (relax_info);
9388 
9389   /* First translate any of the fixes that have been added already.  */
9390   translate_section_fixes (sec);
9391 
9392   /* Handle property sections (e.g., literal tables) specially.  */
9393   if (xtensa_is_property_section (sec))
9394     {
9395       BFD_ASSERT (!relax_info->is_relaxable_literal_section);
9396       return relax_property_section (abfd, sec, link_info);
9397     }
9398 
9399   internal_relocs = retrieve_internal_relocs (abfd, sec,
9400 					      link_info->keep_memory);
9401   if (!internal_relocs && !action_list_count (&relax_info->action_list))
9402     return TRUE;
9403 
9404   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
9405   if (contents == NULL && sec_size != 0)
9406     {
9407       ok = FALSE;
9408       goto error_return;
9409     }
9410 
9411   if (internal_relocs)
9412     {
9413       for (i = 0; i < sec->reloc_count; i++)
9414 	{
9415 	  Elf_Internal_Rela *irel;
9416 	  xtensa_relax_info *target_relax_info;
9417 	  bfd_vma source_offset, old_source_offset;
9418 	  r_reloc r_rel;
9419 	  unsigned r_type;
9420 	  asection *target_sec;
9421 
9422 	  /* Locally change the source address.
9423 	     Translate the target to the new target address.
9424 	     If it points to this section and has been removed,
9425 	     NULLify it.
9426 	     Write it back.  */
9427 
9428 	  irel = &internal_relocs[i];
9429 	  source_offset = irel->r_offset;
9430 	  old_source_offset = source_offset;
9431 
9432 	  r_type = ELF32_R_TYPE (irel->r_info);
9433 	  r_reloc_init (&r_rel, abfd, irel, contents,
9434 			bfd_get_section_limit (abfd, sec));
9435 
9436 	  /* If this section could have changed then we may need to
9437 	     change the relocation's offset.  */
9438 
9439 	  if (relax_info->is_relaxable_literal_section
9440 	      || relax_info->is_relaxable_asm_section)
9441 	    {
9442 	      pin_internal_relocs (sec, internal_relocs);
9443 
9444 	      if (r_type != R_XTENSA_NONE
9445 		  && find_removed_literal (&relax_info->removed_list,
9446 					   irel->r_offset))
9447 		{
9448 		  /* Remove this relocation.  */
9449 		  if (elf_hash_table (link_info)->dynamic_sections_created)
9450 		    shrink_dynamic_reloc_sections (link_info, abfd, sec, irel);
9451 		  irel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
9452 		  irel->r_offset = offset_with_removed_text_map
9453 		    (&relax_info->action_list, irel->r_offset);
9454 		  continue;
9455 		}
9456 
9457 	      if (r_type == R_XTENSA_ASM_SIMPLIFY)
9458 		{
9459 		  text_action *action =
9460 		    find_insn_action (&relax_info->action_list,
9461 				      irel->r_offset);
9462 		  if (action && (action->action == ta_convert_longcall
9463 				 || action->action == ta_remove_longcall))
9464 		    {
9465 		      bfd_reloc_status_type retval;
9466 		      char *error_message = NULL;
9467 
9468 		      retval = contract_asm_expansion (contents, sec_size,
9469 						       irel, &error_message);
9470 		      if (retval != bfd_reloc_ok)
9471 			{
9472 			  (*link_info->callbacks->reloc_dangerous)
9473 			    (link_info, error_message, abfd, sec,
9474 			     irel->r_offset);
9475 			  goto error_return;
9476 			}
9477 		      /* Update the action so that the code that moves
9478 			 the contents will do the right thing.  */
9479 		      /* ta_remove_longcall and ta_remove_insn actions are
9480 		         grouped together in the tree as well as
9481 			 ta_convert_longcall and ta_none, so that changes below
9482 			 can be done w/o removing and reinserting action into
9483 			 the tree.  */
9484 
9485 		      if (action->action == ta_remove_longcall)
9486 			action->action = ta_remove_insn;
9487 		      else
9488 			action->action = ta_none;
9489 		      /* Refresh the info in the r_rel.  */
9490 		      r_reloc_init (&r_rel, abfd, irel, contents, sec_size);
9491 		      r_type = ELF32_R_TYPE (irel->r_info);
9492 		    }
9493 		}
9494 
9495 	      source_offset = offset_with_removed_text_map
9496 		(&relax_info->action_list, irel->r_offset);
9497 	      irel->r_offset = source_offset;
9498 	    }
9499 
9500 	  /* If the target section could have changed then
9501 	     we may need to change the relocation's target offset.  */
9502 
9503 	  target_sec = r_reloc_get_section (&r_rel);
9504 
9505 	  /* For a reference to a discarded section from a DWARF section,
9506 	     i.e., where action_discarded is PRETEND, the symbol will
9507 	     eventually be modified to refer to the kept section (at least if
9508 	     the kept and discarded sections are the same size).  Anticipate
9509 	     that here and adjust things accordingly.  */
9510 	  if (! elf_xtensa_ignore_discarded_relocs (sec)
9511 	      && elf_xtensa_action_discarded (sec) == PRETEND
9512 	      && sec->sec_info_type != SEC_INFO_TYPE_STABS
9513 	      && target_sec != NULL
9514 	      && discarded_section (target_sec))
9515 	    {
9516 	      /* It would be natural to call _bfd_elf_check_kept_section
9517 		 here, but it's not exported from elflink.c.  It's also a
9518 		 fairly expensive check.  Adjusting the relocations to the
9519 		 discarded section is fairly harmless; it will only adjust
9520 		 some addends and difference values.  If it turns out that
9521 		 _bfd_elf_check_kept_section fails later, it won't matter,
9522 		 so just compare the section names to find the right group
9523 		 member.  */
9524 	      asection *kept = target_sec->kept_section;
9525 	      if (kept != NULL)
9526 		{
9527 		  if ((kept->flags & SEC_GROUP) != 0)
9528 		    {
9529 		      asection *first = elf_next_in_group (kept);
9530 		      asection *s = first;
9531 
9532 		      kept = NULL;
9533 		      while (s != NULL)
9534 			{
9535 			  if (strcmp (s->name, target_sec->name) == 0)
9536 			    {
9537 			      kept = s;
9538 			      break;
9539 			    }
9540 			  s = elf_next_in_group (s);
9541 			  if (s == first)
9542 			    break;
9543 			}
9544 		    }
9545 		}
9546 	      if (kept != NULL
9547 		  && ((target_sec->rawsize != 0
9548 		       ? target_sec->rawsize : target_sec->size)
9549 		      == (kept->rawsize != 0 ? kept->rawsize : kept->size)))
9550 		target_sec = kept;
9551 	    }
9552 
9553 	  target_relax_info = get_xtensa_relax_info (target_sec);
9554 	  if (target_relax_info
9555 	      && (target_relax_info->is_relaxable_literal_section
9556 		  || target_relax_info->is_relaxable_asm_section))
9557 	    {
9558 	      r_reloc new_reloc;
9559 	      target_sec = translate_reloc (&r_rel, &new_reloc, target_sec);
9560 
9561 	      if (r_type == R_XTENSA_DIFF8
9562 		  || r_type == R_XTENSA_DIFF16
9563 		  || r_type == R_XTENSA_DIFF32)
9564 		{
9565 		  bfd_signed_vma diff_value = 0;
9566 		  bfd_vma new_end_offset, diff_mask = 0;
9567 
9568 		  if (bfd_get_section_limit (abfd, sec) < old_source_offset)
9569 		    {
9570 		      (*link_info->callbacks->reloc_dangerous)
9571 			(link_info, _("invalid relocation address"),
9572 			 abfd, sec, old_source_offset);
9573 		      goto error_return;
9574 		    }
9575 
9576 		  switch (r_type)
9577 		    {
9578 		    case R_XTENSA_DIFF8:
9579 		      diff_value =
9580 			bfd_get_signed_8 (abfd, &contents[old_source_offset]);
9581 		      break;
9582 		    case R_XTENSA_DIFF16:
9583 		      diff_value =
9584 			bfd_get_signed_16 (abfd, &contents[old_source_offset]);
9585 		      break;
9586 		    case R_XTENSA_DIFF32:
9587 		      diff_value =
9588 			bfd_get_signed_32 (abfd, &contents[old_source_offset]);
9589 		      break;
9590 		    }
9591 
9592 		  new_end_offset = offset_with_removed_text_map
9593 		    (&target_relax_info->action_list,
9594 		     r_rel.target_offset + diff_value);
9595 		  diff_value = new_end_offset - new_reloc.target_offset;
9596 
9597 		  switch (r_type)
9598 		    {
9599 		    case R_XTENSA_DIFF8:
9600 		      diff_mask = 0x7f;
9601 		      bfd_put_signed_8 (abfd, diff_value,
9602 				 &contents[old_source_offset]);
9603 		      break;
9604 		    case R_XTENSA_DIFF16:
9605 		      diff_mask = 0x7fff;
9606 		      bfd_put_signed_16 (abfd, diff_value,
9607 				  &contents[old_source_offset]);
9608 		      break;
9609 		    case R_XTENSA_DIFF32:
9610 		      diff_mask = 0x7fffffff;
9611 		      bfd_put_signed_32 (abfd, diff_value,
9612 				  &contents[old_source_offset]);
9613 		      break;
9614 		    }
9615 
9616 		  /* Check for overflow. Sign bits must be all zeroes or all ones */
9617 		  if ((diff_value & ~diff_mask) != 0 &&
9618 		      (diff_value & ~diff_mask) != (-1 & ~diff_mask))
9619 		    {
9620 		      (*link_info->callbacks->reloc_dangerous)
9621 			(link_info, _("overflow after relaxation"),
9622 			 abfd, sec, old_source_offset);
9623 		      goto error_return;
9624 		    }
9625 
9626 		  pin_contents (sec, contents);
9627 		}
9628 
9629 	      /* If the relocation still references a section in the same
9630 		 input file, modify the relocation directly instead of
9631 		 adding a "fix" record.  */
9632 	      if (target_sec->owner == abfd)
9633 		{
9634 		  unsigned r_symndx = ELF32_R_SYM (new_reloc.rela.r_info);
9635 		  irel->r_info = ELF32_R_INFO (r_symndx, r_type);
9636 		  irel->r_addend = new_reloc.rela.r_addend;
9637 		  pin_internal_relocs (sec, internal_relocs);
9638 		}
9639 	      else
9640 		{
9641 		  bfd_vma addend_displacement;
9642 		  reloc_bfd_fix *fix;
9643 
9644 		  addend_displacement =
9645 		    new_reloc.target_offset + new_reloc.virtual_offset;
9646 		  fix = reloc_bfd_fix_init (sec, source_offset, r_type,
9647 					    target_sec,
9648 					    addend_displacement, TRUE);
9649 		  add_fix (sec, fix);
9650 		}
9651 	    }
9652 	}
9653     }
9654 
9655   if ((relax_info->is_relaxable_literal_section
9656        || relax_info->is_relaxable_asm_section)
9657       && action_list_count (&relax_info->action_list))
9658     {
9659       /* Walk through the planned actions and build up a table
9660 	 of move, copy and fill records.  Use the move, copy and
9661 	 fill records to perform the actions once.  */
9662 
9663       bfd_size_type final_size, copy_size, orig_insn_size;
9664       bfd_byte *scratch = NULL;
9665       bfd_byte *dup_contents = NULL;
9666       bfd_size_type orig_size = sec->size;
9667       bfd_vma orig_dot = 0;
9668       bfd_vma orig_dot_copied = 0; /* Byte copied already from
9669 					    orig dot in physical memory.  */
9670       bfd_vma orig_dot_vo = 0; /* Virtual offset from orig_dot.  */
9671       bfd_vma dup_dot = 0;
9672 
9673       text_action *action;
9674 
9675       final_size = sec->size;
9676 
9677       splay_tree_foreach (relax_info->action_list.tree,
9678 			  action_remove_bytes_fn, &final_size);
9679       scratch = (bfd_byte *) bfd_zmalloc (final_size);
9680       dup_contents = (bfd_byte *) bfd_zmalloc (final_size);
9681 
9682       /* The dot is the current fill location.  */
9683 #if DEBUG
9684       print_action_list (stderr, &relax_info->action_list);
9685 #endif
9686 
9687       for (action = action_first (&relax_info->action_list); action;
9688 	   action = action_next (&relax_info->action_list, action))
9689 	{
9690 	  virtual_action = FALSE;
9691 	  if (action->offset > orig_dot)
9692 	    {
9693 	      orig_dot += orig_dot_copied;
9694 	      orig_dot_copied = 0;
9695 	      orig_dot_vo = 0;
9696 	      /* Out of the virtual world.  */
9697 	    }
9698 
9699 	  if (action->offset > orig_dot)
9700 	    {
9701 	      copy_size = action->offset - orig_dot;
9702 	      memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9703 	      orig_dot += copy_size;
9704 	      dup_dot += copy_size;
9705 	      BFD_ASSERT (action->offset == orig_dot);
9706 	    }
9707 	  else if (action->offset < orig_dot)
9708 	    {
9709 	      if (action->action == ta_fill
9710 		  && action->offset - action->removed_bytes == orig_dot)
9711 		{
9712 		  /* This is OK because the fill only effects the dup_dot.  */
9713 		}
9714 	      else if (action->action == ta_add_literal)
9715 		{
9716 		  /* TBD.  Might need to handle this.  */
9717 		}
9718 	    }
9719 	  if (action->offset == orig_dot)
9720 	    {
9721 	      if (action->virtual_offset > orig_dot_vo)
9722 		{
9723 		  if (orig_dot_vo == 0)
9724 		    {
9725 		      /* Need to copy virtual_offset bytes.  Probably four.  */
9726 		      copy_size = action->virtual_offset - orig_dot_vo;
9727 		      memmove (&dup_contents[dup_dot],
9728 			       &contents[orig_dot], copy_size);
9729 		      orig_dot_copied = copy_size;
9730 		      dup_dot += copy_size;
9731 		    }
9732 		  virtual_action = TRUE;
9733 		}
9734 	      else
9735 		BFD_ASSERT (action->virtual_offset <= orig_dot_vo);
9736 	    }
9737 	  switch (action->action)
9738 	    {
9739 	    case ta_remove_literal:
9740 	    case ta_remove_insn:
9741 	      BFD_ASSERT (action->removed_bytes >= 0);
9742 	      orig_dot += action->removed_bytes;
9743 	      break;
9744 
9745 	    case ta_narrow_insn:
9746 	      orig_insn_size = 3;
9747 	      copy_size = 2;
9748 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9749 	      BFD_ASSERT (action->removed_bytes == 1);
9750 	      rv = narrow_instruction (scratch, final_size, 0);
9751 	      BFD_ASSERT (rv);
9752 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9753 	      orig_dot += orig_insn_size;
9754 	      dup_dot += copy_size;
9755 	      break;
9756 
9757 	    case ta_fill:
9758 	      if (action->removed_bytes >= 0)
9759 		orig_dot += action->removed_bytes;
9760 	      else
9761 		{
9762 		  /* Already zeroed in dup_contents.  Just bump the
9763 		     counters.  */
9764 		  dup_dot += (-action->removed_bytes);
9765 		}
9766 	      break;
9767 
9768 	    case ta_none:
9769 	      BFD_ASSERT (action->removed_bytes == 0);
9770 	      break;
9771 
9772 	    case ta_convert_longcall:
9773 	    case ta_remove_longcall:
9774 	      /* These will be removed or converted before we get here.  */
9775 	      BFD_ASSERT (0);
9776 	      break;
9777 
9778 	    case ta_widen_insn:
9779 	      orig_insn_size = 2;
9780 	      copy_size = 3;
9781 	      memmove (scratch, &contents[orig_dot], orig_insn_size);
9782 	      BFD_ASSERT (action->removed_bytes == -1);
9783 	      rv = widen_instruction (scratch, final_size, 0);
9784 	      BFD_ASSERT (rv);
9785 	      memmove (&dup_contents[dup_dot], scratch, copy_size);
9786 	      orig_dot += orig_insn_size;
9787 	      dup_dot += copy_size;
9788 	      break;
9789 
9790 	    case ta_add_literal:
9791 	      orig_insn_size = 0;
9792 	      copy_size = 4;
9793 	      BFD_ASSERT (action->removed_bytes == -4);
9794 	      /* TBD -- place the literal value here and insert
9795 		 into the table.  */
9796 	      memset (&dup_contents[dup_dot], 0, 4);
9797 	      pin_internal_relocs (sec, internal_relocs);
9798 	      pin_contents (sec, contents);
9799 
9800 	      if (!move_literal (abfd, link_info, sec, dup_dot, dup_contents,
9801 				 relax_info, &internal_relocs, &action->value))
9802 		goto error_return;
9803 
9804 	      if (virtual_action)
9805 		orig_dot_vo += copy_size;
9806 
9807 	      orig_dot += orig_insn_size;
9808 	      dup_dot += copy_size;
9809 	      break;
9810 
9811 	    default:
9812 	      /* Not implemented yet.  */
9813 	      BFD_ASSERT (0);
9814 	      break;
9815 	    }
9816 
9817 	  BFD_ASSERT (dup_dot <= final_size);
9818 	  BFD_ASSERT (orig_dot <= orig_size);
9819 	}
9820 
9821       orig_dot += orig_dot_copied;
9822       orig_dot_copied = 0;
9823 
9824       if (orig_dot != orig_size)
9825 	{
9826 	  copy_size = orig_size - orig_dot;
9827 	  BFD_ASSERT (orig_size > orig_dot);
9828 	  BFD_ASSERT (dup_dot + copy_size == final_size);
9829 	  memmove (&dup_contents[dup_dot], &contents[orig_dot], copy_size);
9830 	  orig_dot += copy_size;
9831 	  dup_dot += copy_size;
9832 	}
9833       BFD_ASSERT (orig_size == orig_dot);
9834       BFD_ASSERT (final_size == dup_dot);
9835 
9836       /* Move the dup_contents back.  */
9837       if (final_size > orig_size)
9838 	{
9839 	  /* Contents need to be reallocated.  Swap the dup_contents into
9840 	     contents.  */
9841 	  sec->contents = dup_contents;
9842 	  free (contents);
9843 	  contents = dup_contents;
9844 	  pin_contents (sec, contents);
9845 	}
9846       else
9847 	{
9848 	  BFD_ASSERT (final_size <= orig_size);
9849 	  memset (contents, 0, orig_size);
9850 	  memcpy (contents, dup_contents, final_size);
9851 	  free (dup_contents);
9852 	}
9853       free (scratch);
9854       pin_contents (sec, contents);
9855 
9856       if (sec->rawsize == 0)
9857 	sec->rawsize = sec->size;
9858       sec->size = final_size;
9859     }
9860 
9861  error_return:
9862   release_internal_relocs (sec, internal_relocs);
9863   release_contents (sec, contents);
9864   return ok;
9865 }
9866 
9867 
9868 static bfd_boolean
9869 translate_section_fixes (asection *sec)
9870 {
9871   xtensa_relax_info *relax_info;
9872   reloc_bfd_fix *r;
9873 
9874   relax_info = get_xtensa_relax_info (sec);
9875   if (!relax_info)
9876     return TRUE;
9877 
9878   for (r = relax_info->fix_list; r != NULL; r = r->next)
9879     if (!translate_reloc_bfd_fix (r))
9880       return FALSE;
9881 
9882   return TRUE;
9883 }
9884 
9885 
9886 /* Translate a fix given the mapping in the relax info for the target
9887    section.  If it has already been translated, no work is required.  */
9888 
9889 static bfd_boolean
9890 translate_reloc_bfd_fix (reloc_bfd_fix *fix)
9891 {
9892   reloc_bfd_fix new_fix;
9893   asection *sec;
9894   xtensa_relax_info *relax_info;
9895   removed_literal *removed;
9896   bfd_vma new_offset, target_offset;
9897 
9898   if (fix->translated)
9899     return TRUE;
9900 
9901   sec = fix->target_sec;
9902   target_offset = fix->target_offset;
9903 
9904   relax_info = get_xtensa_relax_info (sec);
9905   if (!relax_info)
9906     {
9907       fix->translated = TRUE;
9908       return TRUE;
9909     }
9910 
9911   new_fix = *fix;
9912 
9913   /* The fix does not need to be translated if the section cannot change.  */
9914   if (!relax_info->is_relaxable_literal_section
9915       && !relax_info->is_relaxable_asm_section)
9916     {
9917       fix->translated = TRUE;
9918       return TRUE;
9919     }
9920 
9921   /* If the literal has been moved and this relocation was on an
9922      opcode, then the relocation should move to the new literal
9923      location.  Otherwise, the relocation should move within the
9924      section.  */
9925 
9926   removed = FALSE;
9927   if (is_operand_relocation (fix->src_type))
9928     {
9929       /* Check if the original relocation is against a literal being
9930 	 removed.  */
9931       removed = find_removed_literal (&relax_info->removed_list,
9932 				      target_offset);
9933     }
9934 
9935   if (removed)
9936     {
9937       asection *new_sec;
9938 
9939       /* The fact that there is still a relocation to this literal indicates
9940 	 that the literal is being coalesced, not simply removed.  */
9941       BFD_ASSERT (removed->to.abfd != NULL);
9942 
9943       /* This was moved to some other address (possibly another section).  */
9944       new_sec = r_reloc_get_section (&removed->to);
9945       if (new_sec != sec)
9946 	{
9947 	  sec = new_sec;
9948 	  relax_info = get_xtensa_relax_info (sec);
9949 	  if (!relax_info ||
9950 	      (!relax_info->is_relaxable_literal_section
9951 	       && !relax_info->is_relaxable_asm_section))
9952 	    {
9953 	      target_offset = removed->to.target_offset;
9954 	      new_fix.target_sec = new_sec;
9955 	      new_fix.target_offset = target_offset;
9956 	      new_fix.translated = TRUE;
9957 	      *fix = new_fix;
9958 	      return TRUE;
9959 	    }
9960 	}
9961       target_offset = removed->to.target_offset;
9962       new_fix.target_sec = new_sec;
9963     }
9964 
9965   /* The target address may have been moved within its section.  */
9966   new_offset = offset_with_removed_text (&relax_info->action_list,
9967 					 target_offset);
9968 
9969   new_fix.target_offset = new_offset;
9970   new_fix.target_offset = new_offset;
9971   new_fix.translated = TRUE;
9972   *fix = new_fix;
9973   return TRUE;
9974 }
9975 
9976 
9977 /* Fix up a relocation to take account of removed literals.  */
9978 
9979 static asection *
9980 translate_reloc (const r_reloc *orig_rel, r_reloc *new_rel, asection *sec)
9981 {
9982   xtensa_relax_info *relax_info;
9983   removed_literal *removed;
9984   bfd_vma target_offset, base_offset;
9985 
9986   *new_rel = *orig_rel;
9987 
9988   if (!r_reloc_is_defined (orig_rel))
9989     return sec ;
9990 
9991   relax_info = get_xtensa_relax_info (sec);
9992   BFD_ASSERT (relax_info && (relax_info->is_relaxable_literal_section
9993 			     || relax_info->is_relaxable_asm_section));
9994 
9995   target_offset = orig_rel->target_offset;
9996 
9997   removed = FALSE;
9998   if (is_operand_relocation (ELF32_R_TYPE (orig_rel->rela.r_info)))
9999     {
10000       /* Check if the original relocation is against a literal being
10001 	 removed.  */
10002       removed = find_removed_literal (&relax_info->removed_list,
10003 				      target_offset);
10004     }
10005   if (removed && removed->to.abfd)
10006     {
10007       asection *new_sec;
10008 
10009       /* The fact that there is still a relocation to this literal indicates
10010 	 that the literal is being coalesced, not simply removed.  */
10011       BFD_ASSERT (removed->to.abfd != NULL);
10012 
10013       /* This was moved to some other address
10014 	 (possibly in another section).  */
10015       *new_rel = removed->to;
10016       new_sec = r_reloc_get_section (new_rel);
10017       if (new_sec != sec)
10018 	{
10019 	  sec = new_sec;
10020 	  relax_info = get_xtensa_relax_info (sec);
10021 	  if (!relax_info
10022 	      || (!relax_info->is_relaxable_literal_section
10023 		  && !relax_info->is_relaxable_asm_section))
10024 	    return sec;
10025 	}
10026       target_offset = new_rel->target_offset;
10027     }
10028 
10029   /* Find the base offset of the reloc symbol, excluding any addend from the
10030      reloc or from the section contents (for a partial_inplace reloc).  Then
10031      find the adjusted values of the offsets due to relaxation.  The base
10032      offset is needed to determine the change to the reloc's addend; the reloc
10033      addend should not be adjusted due to relaxations located before the base
10034      offset.  */
10035 
10036   base_offset = r_reloc_get_target_offset (new_rel) - new_rel->rela.r_addend;
10037   if (base_offset <= target_offset)
10038     {
10039       int base_removed = removed_by_actions_map (&relax_info->action_list,
10040 						 base_offset, FALSE);
10041       int addend_removed = removed_by_actions_map (&relax_info->action_list,
10042 						   target_offset, FALSE) -
10043 	base_removed;
10044 
10045       new_rel->target_offset = target_offset - base_removed - addend_removed;
10046       new_rel->rela.r_addend -= addend_removed;
10047     }
10048   else
10049     {
10050       /* Handle a negative addend.  The base offset comes first.  */
10051       int tgt_removed = removed_by_actions_map (&relax_info->action_list,
10052 						target_offset, FALSE);
10053       int addend_removed = removed_by_actions_map (&relax_info->action_list,
10054 						   base_offset, FALSE) -
10055 	tgt_removed;
10056 
10057       new_rel->target_offset = target_offset - tgt_removed;
10058       new_rel->rela.r_addend += addend_removed;
10059     }
10060 
10061   return sec;
10062 }
10063 
10064 
10065 /* For dynamic links, there may be a dynamic relocation for each
10066    literal.  The number of dynamic relocations must be computed in
10067    size_dynamic_sections, which occurs before relaxation.  When a
10068    literal is removed, this function checks if there is a corresponding
10069    dynamic relocation and shrinks the size of the appropriate dynamic
10070    relocation section accordingly.  At this point, the contents of the
10071    dynamic relocation sections have not yet been filled in, so there's
10072    nothing else that needs to be done.  */
10073 
10074 static void
10075 shrink_dynamic_reloc_sections (struct bfd_link_info *info,
10076 			       bfd *abfd,
10077 			       asection *input_section,
10078 			       Elf_Internal_Rela *rel)
10079 {
10080   struct elf_xtensa_link_hash_table *htab;
10081   Elf_Internal_Shdr *symtab_hdr;
10082   struct elf_link_hash_entry **sym_hashes;
10083   unsigned long r_symndx;
10084   int r_type;
10085   struct elf_link_hash_entry *h;
10086   bfd_boolean dynamic_symbol;
10087 
10088   htab = elf_xtensa_hash_table (info);
10089   if (htab == NULL)
10090     return;
10091 
10092   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10093   sym_hashes = elf_sym_hashes (abfd);
10094 
10095   r_type = ELF32_R_TYPE (rel->r_info);
10096   r_symndx = ELF32_R_SYM (rel->r_info);
10097 
10098   if (r_symndx < symtab_hdr->sh_info)
10099     h = NULL;
10100   else
10101     h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10102 
10103   dynamic_symbol = elf_xtensa_dynamic_symbol_p (h, info);
10104 
10105   if ((r_type == R_XTENSA_32 || r_type == R_XTENSA_PLT)
10106       && (input_section->flags & SEC_ALLOC) != 0
10107       && (dynamic_symbol || bfd_link_pic (info)))
10108     {
10109       asection *srel;
10110       bfd_boolean is_plt = FALSE;
10111 
10112       if (dynamic_symbol && r_type == R_XTENSA_PLT)
10113 	{
10114 	  srel = htab->elf.srelplt;
10115 	  is_plt = TRUE;
10116 	}
10117       else
10118 	srel = htab->elf.srelgot;
10119 
10120       /* Reduce size of the .rela.* section by one reloc.  */
10121       BFD_ASSERT (srel != NULL);
10122       BFD_ASSERT (srel->size >= sizeof (Elf32_External_Rela));
10123       srel->size -= sizeof (Elf32_External_Rela);
10124 
10125       if (is_plt)
10126 	{
10127 	  asection *splt, *sgotplt, *srelgot;
10128 	  int reloc_index, chunk;
10129 
10130 	  /* Find the PLT reloc index of the entry being removed.  This
10131 	     is computed from the size of ".rela.plt".  It is needed to
10132 	     figure out which PLT chunk to resize.  Usually "last index
10133 	     = size - 1" since the index starts at zero, but in this
10134 	     context, the size has just been decremented so there's no
10135 	     need to subtract one.  */
10136 	  reloc_index = srel->size / sizeof (Elf32_External_Rela);
10137 
10138 	  chunk = reloc_index / PLT_ENTRIES_PER_CHUNK;
10139 	  splt = elf_xtensa_get_plt_section (info, chunk);
10140 	  sgotplt = elf_xtensa_get_gotplt_section (info, chunk);
10141 	  BFD_ASSERT (splt != NULL && sgotplt != NULL);
10142 
10143 	  /* Check if an entire PLT chunk has just been eliminated.  */
10144 	  if (reloc_index % PLT_ENTRIES_PER_CHUNK == 0)
10145 	    {
10146 	      /* The two magic GOT entries for that chunk can go away.  */
10147 	      srelgot = htab->elf.srelgot;
10148 	      BFD_ASSERT (srelgot != NULL);
10149 	      srelgot->reloc_count -= 2;
10150 	      srelgot->size -= 2 * sizeof (Elf32_External_Rela);
10151 	      sgotplt->size -= 8;
10152 
10153 	      /* There should be only one entry left (and it will be
10154 		 removed below).  */
10155 	      BFD_ASSERT (sgotplt->size == 4);
10156 	      BFD_ASSERT (splt->size == PLT_ENTRY_SIZE);
10157 	    }
10158 
10159 	  BFD_ASSERT (sgotplt->size >= 4);
10160 	  BFD_ASSERT (splt->size >= PLT_ENTRY_SIZE);
10161 
10162 	  sgotplt->size -= 4;
10163 	  splt->size -= PLT_ENTRY_SIZE;
10164 	}
10165     }
10166 }
10167 
10168 
10169 /* Take an r_rel and move it to another section.  This usually
10170    requires extending the interal_relocation array and pinning it.  If
10171    the original r_rel is from the same BFD, we can complete this here.
10172    Otherwise, we add a fix record to let the final link fix the
10173    appropriate address.  Contents and internal relocations for the
10174    section must be pinned after calling this routine.  */
10175 
10176 static bfd_boolean
10177 move_literal (bfd *abfd,
10178 	      struct bfd_link_info *link_info,
10179 	      asection *sec,
10180 	      bfd_vma offset,
10181 	      bfd_byte *contents,
10182 	      xtensa_relax_info *relax_info,
10183 	      Elf_Internal_Rela **internal_relocs_p,
10184 	      const literal_value *lit)
10185 {
10186   Elf_Internal_Rela *new_relocs = NULL;
10187   size_t new_relocs_count = 0;
10188   Elf_Internal_Rela this_rela;
10189   const r_reloc *r_rel;
10190 
10191   r_rel = &lit->r_rel;
10192   BFD_ASSERT (elf_section_data (sec)->relocs == *internal_relocs_p);
10193 
10194   if (r_reloc_is_const (r_rel))
10195     bfd_put_32 (abfd, lit->value, contents + offset);
10196   else
10197     {
10198       int r_type;
10199       unsigned i;
10200       reloc_bfd_fix *fix;
10201       unsigned insert_at;
10202 
10203       r_type = ELF32_R_TYPE (r_rel->rela.r_info);
10204 
10205       /* This is the difficult case.  We have to create a fix up.  */
10206       this_rela.r_offset = offset;
10207       this_rela.r_info = ELF32_R_INFO (0, r_type);
10208       this_rela.r_addend =
10209 	r_rel->target_offset - r_reloc_get_target_offset (r_rel);
10210       bfd_put_32 (abfd, lit->value, contents + offset);
10211 
10212       /* Currently, we cannot move relocations during a relocatable link.  */
10213       BFD_ASSERT (!bfd_link_relocatable (link_info));
10214       fix = reloc_bfd_fix_init (sec, offset, r_type,
10215 				r_reloc_get_section (r_rel),
10216 				r_rel->target_offset + r_rel->virtual_offset,
10217 				FALSE);
10218       /* We also need to mark that relocations are needed here.  */
10219       sec->flags |= SEC_RELOC;
10220 
10221       translate_reloc_bfd_fix (fix);
10222       /* This fix has not yet been translated.  */
10223       add_fix (sec, fix);
10224 
10225       /* Add the relocation.  If we have already allocated our own
10226 	 space for the relocations and we have room for more, then use
10227 	 it.  Otherwise, allocate new space and move the literals.  */
10228       insert_at = sec->reloc_count;
10229       for (i = 0; i < sec->reloc_count; ++i)
10230 	{
10231 	  if (this_rela.r_offset < (*internal_relocs_p)[i].r_offset)
10232 	    {
10233 	      insert_at = i;
10234 	      break;
10235 	    }
10236 	}
10237 
10238       if (*internal_relocs_p != relax_info->allocated_relocs
10239 	  || sec->reloc_count + 1 > relax_info->allocated_relocs_count)
10240 	{
10241 	  BFD_ASSERT (relax_info->allocated_relocs == NULL
10242 		      || sec->reloc_count == relax_info->relocs_count);
10243 
10244 	  if (relax_info->allocated_relocs_count == 0)
10245 	    new_relocs_count = (sec->reloc_count + 2) * 2;
10246 	  else
10247 	    new_relocs_count = (relax_info->allocated_relocs_count + 2) * 2;
10248 
10249 	  new_relocs = (Elf_Internal_Rela *)
10250 	    bfd_zmalloc (sizeof (Elf_Internal_Rela) * (new_relocs_count));
10251 	  if (!new_relocs)
10252 	    return FALSE;
10253 
10254 	  /* We could handle this more quickly by finding the split point.  */
10255 	  if (insert_at != 0)
10256 	    memcpy (new_relocs, *internal_relocs_p,
10257 		    insert_at * sizeof (Elf_Internal_Rela));
10258 
10259 	  new_relocs[insert_at] = this_rela;
10260 
10261 	  if (insert_at != sec->reloc_count)
10262 	    memcpy (new_relocs + insert_at + 1,
10263 		    (*internal_relocs_p) + insert_at,
10264 		    (sec->reloc_count - insert_at)
10265 		    * sizeof (Elf_Internal_Rela));
10266 
10267 	  if (*internal_relocs_p != relax_info->allocated_relocs)
10268 	    {
10269 	      /* The first time we re-allocate, we can only free the
10270 		 old relocs if they were allocated with bfd_malloc.
10271 		 This is not true when keep_memory is in effect.  */
10272 	      if (!link_info->keep_memory)
10273 		free (*internal_relocs_p);
10274 	    }
10275 	  else
10276 	    free (*internal_relocs_p);
10277 	  relax_info->allocated_relocs = new_relocs;
10278 	  relax_info->allocated_relocs_count = new_relocs_count;
10279 	  elf_section_data (sec)->relocs = new_relocs;
10280 	  sec->reloc_count++;
10281 	  relax_info->relocs_count = sec->reloc_count;
10282 	  *internal_relocs_p = new_relocs;
10283 	}
10284       else
10285 	{
10286 	  if (insert_at != sec->reloc_count)
10287 	    {
10288 	      unsigned idx;
10289 	      for (idx = sec->reloc_count; idx > insert_at; idx--)
10290 		(*internal_relocs_p)[idx] = (*internal_relocs_p)[idx-1];
10291 	    }
10292 	  (*internal_relocs_p)[insert_at] = this_rela;
10293 	  sec->reloc_count++;
10294 	  if (relax_info->allocated_relocs)
10295 	    relax_info->relocs_count = sec->reloc_count;
10296 	}
10297     }
10298   return TRUE;
10299 }
10300 
10301 
10302 /* This is similar to relax_section except that when a target is moved,
10303    we shift addresses up.  We also need to modify the size.  This
10304    algorithm does NOT allow for relocations into the middle of the
10305    property sections.  */
10306 
10307 static bfd_boolean
10308 relax_property_section (bfd *abfd,
10309 			asection *sec,
10310 			struct bfd_link_info *link_info)
10311 {
10312   Elf_Internal_Rela *internal_relocs;
10313   bfd_byte *contents;
10314   unsigned i;
10315   bfd_boolean ok = TRUE;
10316   bfd_boolean is_full_prop_section;
10317   size_t last_zfill_target_offset = 0;
10318   asection *last_zfill_target_sec = NULL;
10319   bfd_size_type sec_size;
10320   bfd_size_type entry_size;
10321 
10322   sec_size = bfd_get_section_limit (abfd, sec);
10323   internal_relocs = retrieve_internal_relocs (abfd, sec,
10324 					      link_info->keep_memory);
10325   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
10326   if (contents == NULL && sec_size != 0)
10327     {
10328       ok = FALSE;
10329       goto error_return;
10330     }
10331 
10332   is_full_prop_section = xtensa_is_proptable_section (sec);
10333   if (is_full_prop_section)
10334     entry_size = 12;
10335   else
10336     entry_size = 8;
10337 
10338   if (internal_relocs)
10339     {
10340       for (i = 0; i < sec->reloc_count; i++)
10341 	{
10342 	  Elf_Internal_Rela *irel;
10343 	  xtensa_relax_info *target_relax_info;
10344 	  unsigned r_type;
10345 	  asection *target_sec;
10346 	  literal_value val;
10347 	  bfd_byte *size_p, *flags_p;
10348 
10349 	  /* Locally change the source address.
10350 	     Translate the target to the new target address.
10351 	     If it points to this section and has been removed, MOVE IT.
10352 	     Also, don't forget to modify the associated SIZE at
10353 	     (offset + 4).  */
10354 
10355 	  irel = &internal_relocs[i];
10356 	  r_type = ELF32_R_TYPE (irel->r_info);
10357 	  if (r_type == R_XTENSA_NONE)
10358 	    continue;
10359 
10360 	  /* Find the literal value.  */
10361 	  r_reloc_init (&val.r_rel, abfd, irel, contents, sec_size);
10362 	  size_p = &contents[irel->r_offset + 4];
10363 	  flags_p = NULL;
10364 	  if (is_full_prop_section)
10365 	    flags_p = &contents[irel->r_offset + 8];
10366 	  BFD_ASSERT (irel->r_offset + entry_size <= sec_size);
10367 
10368 	  target_sec = r_reloc_get_section (&val.r_rel);
10369 	  target_relax_info = get_xtensa_relax_info (target_sec);
10370 
10371 	  if (target_relax_info
10372 	      && (target_relax_info->is_relaxable_literal_section
10373 		  || target_relax_info->is_relaxable_asm_section ))
10374 	    {
10375 	      /* Translate the relocation's destination.  */
10376 	      bfd_vma old_offset = val.r_rel.target_offset;
10377 	      bfd_vma new_offset;
10378 	      long old_size, new_size;
10379 	      int removed_by_old_offset =
10380 		removed_by_actions_map (&target_relax_info->action_list,
10381 					old_offset, FALSE);
10382 	      new_offset = old_offset - removed_by_old_offset;
10383 
10384 	      /* Assert that we are not out of bounds.  */
10385 	      old_size = bfd_get_32 (abfd, size_p);
10386 	      new_size = old_size;
10387 
10388 	      if (old_size == 0)
10389 		{
10390 		  /* Only the first zero-sized unreachable entry is
10391 		     allowed to expand.  In this case the new offset
10392 		     should be the offset before the fill and the new
10393 		     size is the expansion size.  For other zero-sized
10394 		     entries the resulting size should be zero with an
10395 		     offset before or after the fill address depending
10396 		     on whether the expanding unreachable entry
10397 		     preceeds it.  */
10398 		  if (last_zfill_target_sec == 0
10399 		      || last_zfill_target_sec != target_sec
10400 		      || last_zfill_target_offset != old_offset)
10401 		    {
10402 		      bfd_vma new_end_offset = new_offset;
10403 
10404 		      /* Recompute the new_offset, but this time don't
10405 			 include any fill inserted by relaxation.  */
10406 		      removed_by_old_offset =
10407 			removed_by_actions_map (&target_relax_info->action_list,
10408 						old_offset, TRUE);
10409 		      new_offset = old_offset - removed_by_old_offset;
10410 
10411 		      /* If it is not unreachable and we have not yet
10412 			 seen an unreachable at this address, place it
10413 			 before the fill address.  */
10414 		      if (flags_p && (bfd_get_32 (abfd, flags_p)
10415 				      & XTENSA_PROP_UNREACHABLE) != 0)
10416 			{
10417 			  new_size = new_end_offset - new_offset;
10418 
10419 			  last_zfill_target_sec = target_sec;
10420 			  last_zfill_target_offset = old_offset;
10421 			}
10422 		    }
10423 		}
10424 	      else
10425 		{
10426 		  int removed_by_old_offset_size =
10427 		    removed_by_actions_map (&target_relax_info->action_list,
10428 					    old_offset + old_size, TRUE);
10429 		  new_size -= removed_by_old_offset_size - removed_by_old_offset;
10430 		}
10431 
10432 	      if (new_size != old_size)
10433 		{
10434 		  bfd_put_32 (abfd, new_size, size_p);
10435 		  pin_contents (sec, contents);
10436 		}
10437 
10438 	      if (new_offset != old_offset)
10439 		{
10440 		  bfd_vma diff = new_offset - old_offset;
10441 		  irel->r_addend += diff;
10442 		  pin_internal_relocs (sec, internal_relocs);
10443 		}
10444 	    }
10445 	}
10446     }
10447 
10448   /* Combine adjacent property table entries.  This is also done in
10449      finish_dynamic_sections() but at that point it's too late to
10450      reclaim the space in the output section, so we do this twice.  */
10451 
10452   if (internal_relocs && (!bfd_link_relocatable (link_info)
10453 			  || xtensa_is_littable_section (sec)))
10454     {
10455       Elf_Internal_Rela *last_irel = NULL;
10456       Elf_Internal_Rela *irel, *next_rel, *rel_end;
10457       int removed_bytes = 0;
10458       bfd_vma offset;
10459       flagword predef_flags;
10460 
10461       predef_flags = xtensa_get_property_predef_flags (sec);
10462 
10463       /* Walk over memory and relocations at the same time.
10464          This REQUIRES that the internal_relocs be sorted by offset.  */
10465       qsort (internal_relocs, sec->reloc_count, sizeof (Elf_Internal_Rela),
10466 	     internal_reloc_compare);
10467 
10468       pin_internal_relocs (sec, internal_relocs);
10469       pin_contents (sec, contents);
10470 
10471       next_rel = internal_relocs;
10472       rel_end = internal_relocs + sec->reloc_count;
10473 
10474       BFD_ASSERT (sec->size % entry_size == 0);
10475 
10476       for (offset = 0; offset < sec->size; offset += entry_size)
10477 	{
10478 	  Elf_Internal_Rela *offset_rel, *extra_rel;
10479 	  bfd_vma bytes_to_remove, size, actual_offset;
10480 	  bfd_boolean remove_this_rel;
10481 	  flagword flags;
10482 
10483 	  /* Find the first relocation for the entry at the current offset.
10484 	     Adjust the offsets of any extra relocations for the previous
10485 	     entry.  */
10486 	  offset_rel = NULL;
10487 	  if (next_rel)
10488 	    {
10489 	      for (irel = next_rel; irel < rel_end; irel++)
10490 		{
10491 		  if ((irel->r_offset == offset
10492 		       && ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10493 		      || irel->r_offset > offset)
10494 		    {
10495 		      offset_rel = irel;
10496 		      break;
10497 		    }
10498 		  irel->r_offset -= removed_bytes;
10499 		}
10500 	    }
10501 
10502 	  /* Find the next relocation (if there are any left).  */
10503 	  extra_rel = NULL;
10504 	  if (offset_rel)
10505 	    {
10506 	      for (irel = offset_rel + 1; irel < rel_end; irel++)
10507 		{
10508 		  if (ELF32_R_TYPE (irel->r_info) != R_XTENSA_NONE)
10509 		    {
10510 		      extra_rel = irel;
10511 		      break;
10512 		    }
10513 		}
10514 	    }
10515 
10516 	  /* Check if there are relocations on the current entry.  There
10517 	     should usually be a relocation on the offset field.  If there
10518 	     are relocations on the size or flags, then we can't optimize
10519 	     this entry.  Also, find the next relocation to examine on the
10520 	     next iteration.  */
10521 	  if (offset_rel)
10522 	    {
10523 	      if (offset_rel->r_offset >= offset + entry_size)
10524 		{
10525 		  next_rel = offset_rel;
10526 		  /* There are no relocations on the current entry, but we
10527 		     might still be able to remove it if the size is zero.  */
10528 		  offset_rel = NULL;
10529 		}
10530 	      else if (offset_rel->r_offset > offset
10531 		       || (extra_rel
10532 			   && extra_rel->r_offset < offset + entry_size))
10533 		{
10534 		  /* There is a relocation on the size or flags, so we can't
10535 		     do anything with this entry.  Continue with the next.  */
10536 		  next_rel = offset_rel;
10537 		  continue;
10538 		}
10539 	      else
10540 		{
10541 		  BFD_ASSERT (offset_rel->r_offset == offset);
10542 		  offset_rel->r_offset -= removed_bytes;
10543 		  next_rel = offset_rel + 1;
10544 		}
10545 	    }
10546 	  else
10547 	    next_rel = NULL;
10548 
10549 	  remove_this_rel = FALSE;
10550 	  bytes_to_remove = 0;
10551 	  actual_offset = offset - removed_bytes;
10552 	  size = bfd_get_32 (abfd, &contents[actual_offset + 4]);
10553 
10554 	  if (is_full_prop_section)
10555 	    flags = bfd_get_32 (abfd, &contents[actual_offset + 8]);
10556 	  else
10557 	    flags = predef_flags;
10558 
10559 	  if (size == 0
10560 	      && (flags & XTENSA_PROP_ALIGN) == 0
10561 	      && (flags & XTENSA_PROP_UNREACHABLE) == 0)
10562 	    {
10563 	      /* Always remove entries with zero size and no alignment.  */
10564 	      bytes_to_remove = entry_size;
10565 	      if (offset_rel)
10566 		remove_this_rel = TRUE;
10567 	    }
10568 	  else if (offset_rel
10569 		   && ELF32_R_TYPE (offset_rel->r_info) == R_XTENSA_32)
10570 	    {
10571 	      if (last_irel)
10572 		{
10573 		  flagword old_flags;
10574 		  bfd_vma old_size =
10575 		    bfd_get_32 (abfd, &contents[last_irel->r_offset + 4]);
10576 		  bfd_vma old_address =
10577 		    (last_irel->r_addend
10578 		     + bfd_get_32 (abfd, &contents[last_irel->r_offset]));
10579 		  bfd_vma new_address =
10580 		    (offset_rel->r_addend
10581 		     + bfd_get_32 (abfd, &contents[actual_offset]));
10582 		  if (is_full_prop_section)
10583 		    old_flags = bfd_get_32
10584 		      (abfd, &contents[last_irel->r_offset + 8]);
10585 		  else
10586 		    old_flags = predef_flags;
10587 
10588 		  if ((ELF32_R_SYM (offset_rel->r_info)
10589 		       == ELF32_R_SYM (last_irel->r_info))
10590 		      && old_address + old_size == new_address
10591 		      && old_flags == flags
10592 		      && (old_flags & XTENSA_PROP_INSN_BRANCH_TARGET) == 0
10593 		      && (old_flags & XTENSA_PROP_INSN_LOOP_TARGET) == 0)
10594 		    {
10595 		      /* Fix the old size.  */
10596 		      bfd_put_32 (abfd, old_size + size,
10597 				  &contents[last_irel->r_offset + 4]);
10598 		      bytes_to_remove = entry_size;
10599 		      remove_this_rel = TRUE;
10600 		    }
10601 		  else
10602 		    last_irel = offset_rel;
10603 		}
10604 	      else
10605 		last_irel = offset_rel;
10606 	    }
10607 
10608 	  if (remove_this_rel)
10609 	    {
10610 	      offset_rel->r_info = ELF32_R_INFO (0, R_XTENSA_NONE);
10611 	      offset_rel->r_offset = 0;
10612 	    }
10613 
10614 	  if (bytes_to_remove != 0)
10615 	    {
10616 	      removed_bytes += bytes_to_remove;
10617 	      if (offset + bytes_to_remove < sec->size)
10618 		memmove (&contents[actual_offset],
10619 			 &contents[actual_offset + bytes_to_remove],
10620 			 sec->size - offset - bytes_to_remove);
10621 	    }
10622 	}
10623 
10624       if (removed_bytes)
10625 	{
10626 	  /* Fix up any extra relocations on the last entry.  */
10627 	  for (irel = next_rel; irel < rel_end; irel++)
10628 	    irel->r_offset -= removed_bytes;
10629 
10630 	  /* Clear the removed bytes.  */
10631 	  memset (&contents[sec->size - removed_bytes], 0, removed_bytes);
10632 
10633 	  if (sec->rawsize == 0)
10634 	    sec->rawsize = sec->size;
10635 	  sec->size -= removed_bytes;
10636 
10637 	  if (xtensa_is_littable_section (sec))
10638 	    {
10639 	      asection *sgotloc = elf_xtensa_hash_table (link_info)->sgotloc;
10640 	      if (sgotloc)
10641 		sgotloc->size -= removed_bytes;
10642 	    }
10643 	}
10644     }
10645 
10646  error_return:
10647   release_internal_relocs (sec, internal_relocs);
10648   release_contents (sec, contents);
10649   return ok;
10650 }
10651 
10652 
10653 /* Third relaxation pass.  */
10654 
10655 /* Change symbol values to account for removed literals.  */
10656 
10657 bfd_boolean
10658 relax_section_symbols (bfd *abfd, asection *sec)
10659 {
10660   xtensa_relax_info *relax_info;
10661   unsigned int sec_shndx;
10662   Elf_Internal_Shdr *symtab_hdr;
10663   Elf_Internal_Sym *isymbuf;
10664   unsigned i, num_syms, num_locals;
10665 
10666   relax_info = get_xtensa_relax_info (sec);
10667   BFD_ASSERT (relax_info);
10668 
10669   if (!relax_info->is_relaxable_literal_section
10670       && !relax_info->is_relaxable_asm_section)
10671     return TRUE;
10672 
10673   sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
10674 
10675   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10676   isymbuf = retrieve_local_syms (abfd);
10677 
10678   num_syms = symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
10679   num_locals = symtab_hdr->sh_info;
10680 
10681   /* Adjust the local symbols defined in this section.  */
10682   for (i = 0; i < num_locals; i++)
10683     {
10684       Elf_Internal_Sym *isym = &isymbuf[i];
10685 
10686       if (isym->st_shndx == sec_shndx)
10687 	{
10688 	  bfd_vma orig_addr = isym->st_value;
10689 	  int removed = removed_by_actions_map (&relax_info->action_list,
10690 						orig_addr, FALSE);
10691 
10692 	  isym->st_value -= removed;
10693 	  if (ELF32_ST_TYPE (isym->st_info) == STT_FUNC)
10694 	    isym->st_size -=
10695 	      removed_by_actions_map (&relax_info->action_list,
10696 				      orig_addr + isym->st_size, FALSE) -
10697 	      removed;
10698 	}
10699     }
10700 
10701   /* Now adjust the global symbols defined in this section.  */
10702   for (i = 0; i < (num_syms - num_locals); i++)
10703     {
10704       struct elf_link_hash_entry *sym_hash;
10705 
10706       sym_hash = elf_sym_hashes (abfd)[i];
10707 
10708       if (sym_hash->root.type == bfd_link_hash_warning)
10709 	sym_hash = (struct elf_link_hash_entry *) sym_hash->root.u.i.link;
10710 
10711       if ((sym_hash->root.type == bfd_link_hash_defined
10712 	   || sym_hash->root.type == bfd_link_hash_defweak)
10713 	  && sym_hash->root.u.def.section == sec)
10714 	{
10715 	  bfd_vma orig_addr = sym_hash->root.u.def.value;
10716 	  int removed = removed_by_actions_map (&relax_info->action_list,
10717 						orig_addr, FALSE);
10718 
10719 	  sym_hash->root.u.def.value -= removed;
10720 
10721 	  if (sym_hash->type == STT_FUNC)
10722 	    sym_hash->size -=
10723 	      removed_by_actions_map (&relax_info->action_list,
10724 				      orig_addr + sym_hash->size, FALSE) -
10725 	      removed;
10726 	}
10727     }
10728 
10729   return TRUE;
10730 }
10731 
10732 
10733 /* "Fix" handling functions, called while performing relocations.  */
10734 
10735 static bfd_boolean
10736 do_fix_for_relocatable_link (Elf_Internal_Rela *rel,
10737 			     bfd *input_bfd,
10738 			     asection *input_section,
10739 			     bfd_byte *contents)
10740 {
10741   r_reloc r_rel;
10742   asection *sec, *old_sec;
10743   bfd_vma old_offset;
10744   int r_type = ELF32_R_TYPE (rel->r_info);
10745   reloc_bfd_fix *fix;
10746 
10747   if (r_type == R_XTENSA_NONE)
10748     return TRUE;
10749 
10750   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10751   if (!fix)
10752     return TRUE;
10753 
10754   r_reloc_init (&r_rel, input_bfd, rel, contents,
10755 		bfd_get_section_limit (input_bfd, input_section));
10756   old_sec = r_reloc_get_section (&r_rel);
10757   old_offset = r_rel.target_offset;
10758 
10759   if (!old_sec || !r_reloc_is_defined (&r_rel))
10760     {
10761       if (r_type != R_XTENSA_ASM_EXPAND)
10762 	{
10763 	  _bfd_error_handler
10764 	    /* xgettext:c-format */
10765 	    (_("%B(%A+0x%lx): unexpected fix for %s relocation"),
10766 	     input_bfd, input_section, rel->r_offset,
10767 	     elf_howto_table[r_type].name);
10768 	  return FALSE;
10769 	}
10770       /* Leave it be.  Resolution will happen in a later stage.  */
10771     }
10772   else
10773     {
10774       sec = fix->target_sec;
10775       rel->r_addend += ((sec->output_offset + fix->target_offset)
10776 			- (old_sec->output_offset + old_offset));
10777     }
10778   return TRUE;
10779 }
10780 
10781 
10782 static void
10783 do_fix_for_final_link (Elf_Internal_Rela *rel,
10784 		       bfd *input_bfd,
10785 		       asection *input_section,
10786 		       bfd_byte *contents,
10787 		       bfd_vma *relocationp)
10788 {
10789   asection *sec;
10790   int r_type = ELF32_R_TYPE (rel->r_info);
10791   reloc_bfd_fix *fix;
10792   bfd_vma fixup_diff;
10793 
10794   if (r_type == R_XTENSA_NONE)
10795     return;
10796 
10797   fix = get_bfd_fix (input_section, rel->r_offset, r_type);
10798   if (!fix)
10799     return;
10800 
10801   sec = fix->target_sec;
10802 
10803   fixup_diff = rel->r_addend;
10804   if (elf_howto_table[fix->src_type].partial_inplace)
10805     {
10806       bfd_vma inplace_val;
10807       BFD_ASSERT (fix->src_offset
10808 		  < bfd_get_section_limit (input_bfd, input_section));
10809       inplace_val = bfd_get_32 (input_bfd, &contents[fix->src_offset]);
10810       fixup_diff += inplace_val;
10811     }
10812 
10813   *relocationp = (sec->output_section->vma
10814 		  + sec->output_offset
10815 		  + fix->target_offset - fixup_diff);
10816 }
10817 
10818 
10819 /* Miscellaneous utility functions....  */
10820 
10821 static asection *
10822 elf_xtensa_get_plt_section (struct bfd_link_info *info, int chunk)
10823 {
10824   bfd *dynobj;
10825   char plt_name[10];
10826 
10827   if (chunk == 0)
10828     return elf_hash_table (info)->splt;
10829 
10830   dynobj = elf_hash_table (info)->dynobj;
10831   sprintf (plt_name, ".plt.%u", chunk);
10832   return bfd_get_linker_section (dynobj, plt_name);
10833 }
10834 
10835 
10836 static asection *
10837 elf_xtensa_get_gotplt_section (struct bfd_link_info *info, int chunk)
10838 {
10839   bfd *dynobj;
10840   char got_name[14];
10841 
10842   if (chunk == 0)
10843     return elf_hash_table (info)->sgotplt;
10844 
10845   dynobj = elf_hash_table (info)->dynobj;
10846   sprintf (got_name, ".got.plt.%u", chunk);
10847   return bfd_get_linker_section (dynobj, got_name);
10848 }
10849 
10850 
10851 /* Get the input section for a given symbol index.
10852    If the symbol is:
10853    . a section symbol, return the section;
10854    . a common symbol, return the common section;
10855    . an undefined symbol, return the undefined section;
10856    . an indirect symbol, follow the links;
10857    . an absolute value, return the absolute section.  */
10858 
10859 static asection *
10860 get_elf_r_symndx_section (bfd *abfd, unsigned long r_symndx)
10861 {
10862   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10863   asection *target_sec = NULL;
10864   if (r_symndx < symtab_hdr->sh_info)
10865     {
10866       Elf_Internal_Sym *isymbuf;
10867       unsigned int section_index;
10868 
10869       isymbuf = retrieve_local_syms (abfd);
10870       section_index = isymbuf[r_symndx].st_shndx;
10871 
10872       if (section_index == SHN_UNDEF)
10873 	target_sec = bfd_und_section_ptr;
10874       else if (section_index == SHN_ABS)
10875 	target_sec = bfd_abs_section_ptr;
10876       else if (section_index == SHN_COMMON)
10877 	target_sec = bfd_com_section_ptr;
10878       else
10879 	target_sec = bfd_section_from_elf_index (abfd, section_index);
10880     }
10881   else
10882     {
10883       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10884       struct elf_link_hash_entry *h = elf_sym_hashes (abfd)[indx];
10885 
10886       while (h->root.type == bfd_link_hash_indirect
10887              || h->root.type == bfd_link_hash_warning)
10888         h = (struct elf_link_hash_entry *) h->root.u.i.link;
10889 
10890       switch (h->root.type)
10891 	{
10892 	case bfd_link_hash_defined:
10893 	case  bfd_link_hash_defweak:
10894 	  target_sec = h->root.u.def.section;
10895 	  break;
10896 	case bfd_link_hash_common:
10897 	  target_sec = bfd_com_section_ptr;
10898 	  break;
10899 	case bfd_link_hash_undefined:
10900 	case bfd_link_hash_undefweak:
10901 	  target_sec = bfd_und_section_ptr;
10902 	  break;
10903 	default: /* New indirect warning.  */
10904 	  target_sec = bfd_und_section_ptr;
10905 	  break;
10906 	}
10907     }
10908   return target_sec;
10909 }
10910 
10911 
10912 static struct elf_link_hash_entry *
10913 get_elf_r_symndx_hash_entry (bfd *abfd, unsigned long r_symndx)
10914 {
10915   unsigned long indx;
10916   struct elf_link_hash_entry *h;
10917   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10918 
10919   if (r_symndx < symtab_hdr->sh_info)
10920     return NULL;
10921 
10922   indx = r_symndx - symtab_hdr->sh_info;
10923   h = elf_sym_hashes (abfd)[indx];
10924   while (h->root.type == bfd_link_hash_indirect
10925 	 || h->root.type == bfd_link_hash_warning)
10926     h = (struct elf_link_hash_entry *) h->root.u.i.link;
10927   return h;
10928 }
10929 
10930 
10931 /* Get the section-relative offset for a symbol number.  */
10932 
10933 static bfd_vma
10934 get_elf_r_symndx_offset (bfd *abfd, unsigned long r_symndx)
10935 {
10936   Elf_Internal_Shdr *symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
10937   bfd_vma offset = 0;
10938 
10939   if (r_symndx < symtab_hdr->sh_info)
10940     {
10941       Elf_Internal_Sym *isymbuf;
10942       isymbuf = retrieve_local_syms (abfd);
10943       offset = isymbuf[r_symndx].st_value;
10944     }
10945   else
10946     {
10947       unsigned long indx = r_symndx - symtab_hdr->sh_info;
10948       struct elf_link_hash_entry *h =
10949 	elf_sym_hashes (abfd)[indx];
10950 
10951       while (h->root.type == bfd_link_hash_indirect
10952              || h->root.type == bfd_link_hash_warning)
10953 	h = (struct elf_link_hash_entry *) h->root.u.i.link;
10954       if (h->root.type == bfd_link_hash_defined
10955           || h->root.type == bfd_link_hash_defweak)
10956 	offset = h->root.u.def.value;
10957     }
10958   return offset;
10959 }
10960 
10961 
10962 static bfd_boolean
10963 is_reloc_sym_weak (bfd *abfd, Elf_Internal_Rela *rel)
10964 {
10965   unsigned long r_symndx = ELF32_R_SYM (rel->r_info);
10966   struct elf_link_hash_entry *h;
10967 
10968   h = get_elf_r_symndx_hash_entry (abfd, r_symndx);
10969   if (h && h->root.type == bfd_link_hash_defweak)
10970     return TRUE;
10971   return FALSE;
10972 }
10973 
10974 
10975 static bfd_boolean
10976 pcrel_reloc_fits (xtensa_opcode opc,
10977 		  int opnd,
10978 		  bfd_vma self_address,
10979 		  bfd_vma dest_address)
10980 {
10981   xtensa_isa isa = xtensa_default_isa;
10982   uint32 valp = dest_address;
10983   if (xtensa_operand_do_reloc (isa, opc, opnd, &valp, self_address)
10984       || xtensa_operand_encode (isa, opc, opnd, &valp))
10985     return FALSE;
10986   return TRUE;
10987 }
10988 
10989 
10990 static bfd_boolean
10991 xtensa_is_property_section (asection *sec)
10992 {
10993   if (xtensa_is_insntable_section (sec)
10994       || xtensa_is_littable_section (sec)
10995       || xtensa_is_proptable_section (sec))
10996     return TRUE;
10997 
10998   return FALSE;
10999 }
11000 
11001 
11002 static bfd_boolean
11003 xtensa_is_insntable_section (asection *sec)
11004 {
11005   if (CONST_STRNEQ (sec->name, XTENSA_INSN_SEC_NAME)
11006       || CONST_STRNEQ (sec->name, ".gnu.linkonce.x."))
11007     return TRUE;
11008 
11009   return FALSE;
11010 }
11011 
11012 
11013 static bfd_boolean
11014 xtensa_is_littable_section (asection *sec)
11015 {
11016   if (CONST_STRNEQ (sec->name, XTENSA_LIT_SEC_NAME)
11017       || CONST_STRNEQ (sec->name, ".gnu.linkonce.p."))
11018     return TRUE;
11019 
11020   return FALSE;
11021 }
11022 
11023 
11024 static bfd_boolean
11025 xtensa_is_proptable_section (asection *sec)
11026 {
11027   if (CONST_STRNEQ (sec->name, XTENSA_PROP_SEC_NAME)
11028       || CONST_STRNEQ (sec->name, ".gnu.linkonce.prop."))
11029     return TRUE;
11030 
11031   return FALSE;
11032 }
11033 
11034 
11035 static int
11036 internal_reloc_compare (const void *ap, const void *bp)
11037 {
11038   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11039   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11040 
11041   if (a->r_offset != b->r_offset)
11042     return (a->r_offset - b->r_offset);
11043 
11044   /* We don't need to sort on these criteria for correctness,
11045      but enforcing a more strict ordering prevents unstable qsort
11046      from behaving differently with different implementations.
11047      Without the code below we get correct but different results
11048      on Solaris 2.7 and 2.8.  We would like to always produce the
11049      same results no matter the host.  */
11050 
11051   if (a->r_info != b->r_info)
11052     return (a->r_info - b->r_info);
11053 
11054   return (a->r_addend - b->r_addend);
11055 }
11056 
11057 
11058 static int
11059 internal_reloc_matches (const void *ap, const void *bp)
11060 {
11061   const Elf_Internal_Rela *a = (const Elf_Internal_Rela *) ap;
11062   const Elf_Internal_Rela *b = (const Elf_Internal_Rela *) bp;
11063 
11064   /* Check if one entry overlaps with the other; this shouldn't happen
11065      except when searching for a match.  */
11066   return (a->r_offset - b->r_offset);
11067 }
11068 
11069 
11070 /* Predicate function used to look up a section in a particular group.  */
11071 
11072 static bfd_boolean
11073 match_section_group (bfd *abfd ATTRIBUTE_UNUSED, asection *sec, void *inf)
11074 {
11075   const char *gname = inf;
11076   const char *group_name = elf_group_name (sec);
11077 
11078   return (group_name == gname
11079 	  || (group_name != NULL
11080 	      && gname != NULL
11081 	      && strcmp (group_name, gname) == 0));
11082 }
11083 
11084 
11085 static int linkonce_len = sizeof (".gnu.linkonce.") - 1;
11086 
11087 static char *
11088 xtensa_property_section_name (asection *sec, const char *base_name)
11089 {
11090   const char *suffix, *group_name;
11091   char *prop_sec_name;
11092 
11093   group_name = elf_group_name (sec);
11094   if (group_name)
11095     {
11096       suffix = strrchr (sec->name, '.');
11097       if (suffix == sec->name)
11098 	suffix = 0;
11099       prop_sec_name = (char *) bfd_malloc (strlen (base_name) + 1
11100 					   + (suffix ? strlen (suffix) : 0));
11101       strcpy (prop_sec_name, base_name);
11102       if (suffix)
11103 	strcat (prop_sec_name, suffix);
11104     }
11105   else if (strncmp (sec->name, ".gnu.linkonce.", linkonce_len) == 0)
11106     {
11107       char *linkonce_kind = 0;
11108 
11109       if (strcmp (base_name, XTENSA_INSN_SEC_NAME) == 0)
11110 	linkonce_kind = "x.";
11111       else if (strcmp (base_name, XTENSA_LIT_SEC_NAME) == 0)
11112 	linkonce_kind = "p.";
11113       else if (strcmp (base_name, XTENSA_PROP_SEC_NAME) == 0)
11114 	linkonce_kind = "prop.";
11115       else
11116 	abort ();
11117 
11118       prop_sec_name = (char *) bfd_malloc (strlen (sec->name)
11119 					   + strlen (linkonce_kind) + 1);
11120       memcpy (prop_sec_name, ".gnu.linkonce.", linkonce_len);
11121       strcpy (prop_sec_name + linkonce_len, linkonce_kind);
11122 
11123       suffix = sec->name + linkonce_len;
11124       /* For backward compatibility, replace "t." instead of inserting
11125          the new linkonce_kind (but not for "prop" sections).  */
11126       if (CONST_STRNEQ (suffix, "t.") && linkonce_kind[1] == '.')
11127         suffix += 2;
11128       strcat (prop_sec_name + linkonce_len, suffix);
11129     }
11130   else
11131     prop_sec_name = strdup (base_name);
11132 
11133   return prop_sec_name;
11134 }
11135 
11136 
11137 static asection *
11138 xtensa_get_property_section (asection *sec, const char *base_name)
11139 {
11140   char *prop_sec_name;
11141   asection *prop_sec;
11142 
11143   prop_sec_name = xtensa_property_section_name (sec, base_name);
11144   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11145 					 match_section_group,
11146 					 (void *) elf_group_name (sec));
11147   free (prop_sec_name);
11148   return prop_sec;
11149 }
11150 
11151 
11152 asection *
11153 xtensa_make_property_section (asection *sec, const char *base_name)
11154 {
11155   char *prop_sec_name;
11156   asection *prop_sec;
11157 
11158   /* Check if the section already exists.  */
11159   prop_sec_name = xtensa_property_section_name (sec, base_name);
11160   prop_sec = bfd_get_section_by_name_if (sec->owner, prop_sec_name,
11161 					 match_section_group,
11162 					 (void *) elf_group_name (sec));
11163   /* If not, create it.  */
11164   if (! prop_sec)
11165     {
11166       flagword flags = (SEC_RELOC | SEC_HAS_CONTENTS | SEC_READONLY);
11167       flags |= (bfd_get_section_flags (sec->owner, sec)
11168 		& (SEC_LINK_ONCE | SEC_LINK_DUPLICATES));
11169 
11170       prop_sec = bfd_make_section_anyway_with_flags
11171 	(sec->owner, strdup (prop_sec_name), flags);
11172       if (! prop_sec)
11173 	return 0;
11174 
11175       elf_group_name (prop_sec) = elf_group_name (sec);
11176     }
11177 
11178   free (prop_sec_name);
11179   return prop_sec;
11180 }
11181 
11182 
11183 flagword
11184 xtensa_get_property_predef_flags (asection *sec)
11185 {
11186   if (xtensa_is_insntable_section (sec))
11187     return (XTENSA_PROP_INSN
11188 	    | XTENSA_PROP_NO_TRANSFORM
11189 	    | XTENSA_PROP_INSN_NO_REORDER);
11190 
11191   if (xtensa_is_littable_section (sec))
11192     return (XTENSA_PROP_LITERAL
11193 	    | XTENSA_PROP_NO_TRANSFORM
11194 	    | XTENSA_PROP_INSN_NO_REORDER);
11195 
11196   return 0;
11197 }
11198 
11199 
11200 /* Other functions called directly by the linker.  */
11201 
11202 bfd_boolean
11203 xtensa_callback_required_dependence (bfd *abfd,
11204 				     asection *sec,
11205 				     struct bfd_link_info *link_info,
11206 				     deps_callback_t callback,
11207 				     void *closure)
11208 {
11209   Elf_Internal_Rela *internal_relocs;
11210   bfd_byte *contents;
11211   unsigned i;
11212   bfd_boolean ok = TRUE;
11213   bfd_size_type sec_size;
11214 
11215   sec_size = bfd_get_section_limit (abfd, sec);
11216 
11217   /* ".plt*" sections have no explicit relocations but they contain L32R
11218      instructions that reference the corresponding ".got.plt*" sections.  */
11219   if ((sec->flags & SEC_LINKER_CREATED) != 0
11220       && CONST_STRNEQ (sec->name, ".plt"))
11221     {
11222       asection *sgotplt;
11223 
11224       /* Find the corresponding ".got.plt*" section.  */
11225       if (sec->name[4] == '\0')
11226 	sgotplt = elf_hash_table (link_info)->sgotplt;
11227       else
11228 	{
11229 	  char got_name[14];
11230 	  int chunk = 0;
11231 
11232 	  BFD_ASSERT (sec->name[4] == '.');
11233 	  chunk = strtol (&sec->name[5], NULL, 10);
11234 
11235 	  sprintf (got_name, ".got.plt.%u", chunk);
11236 	  sgotplt = bfd_get_linker_section (sec->owner, got_name);
11237 	}
11238       BFD_ASSERT (sgotplt);
11239 
11240       /* Assume worst-case offsets: L32R at the very end of the ".plt"
11241 	 section referencing a literal at the very beginning of
11242 	 ".got.plt".  This is very close to the real dependence, anyway.  */
11243       (*callback) (sec, sec_size, sgotplt, 0, closure);
11244     }
11245 
11246   /* Only ELF files are supported for Xtensa.  Check here to avoid a segfault
11247      when building uclibc, which runs "ld -b binary /dev/null".  */
11248   if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
11249     return ok;
11250 
11251   internal_relocs = retrieve_internal_relocs (abfd, sec,
11252 					      link_info->keep_memory);
11253   if (internal_relocs == NULL
11254       || sec->reloc_count == 0)
11255     return ok;
11256 
11257   /* Cache the contents for the duration of this scan.  */
11258   contents = retrieve_contents (abfd, sec, link_info->keep_memory);
11259   if (contents == NULL && sec_size != 0)
11260     {
11261       ok = FALSE;
11262       goto error_return;
11263     }
11264 
11265   if (!xtensa_default_isa)
11266     xtensa_default_isa = xtensa_isa_init (0, 0);
11267 
11268   for (i = 0; i < sec->reloc_count; i++)
11269     {
11270       Elf_Internal_Rela *irel = &internal_relocs[i];
11271       if (is_l32r_relocation (abfd, sec, contents, irel))
11272 	{
11273 	  r_reloc l32r_rel;
11274 	  asection *target_sec;
11275 	  bfd_vma target_offset;
11276 
11277 	  r_reloc_init (&l32r_rel, abfd, irel, contents, sec_size);
11278 	  target_sec = NULL;
11279 	  target_offset = 0;
11280 	  /* L32Rs must be local to the input file.  */
11281 	  if (r_reloc_is_defined (&l32r_rel))
11282 	    {
11283 	      target_sec = r_reloc_get_section (&l32r_rel);
11284 	      target_offset = l32r_rel.target_offset;
11285 	    }
11286 	  (*callback) (sec, irel->r_offset, target_sec, target_offset,
11287 		       closure);
11288 	}
11289     }
11290 
11291  error_return:
11292   release_internal_relocs (sec, internal_relocs);
11293   release_contents (sec, contents);
11294   return ok;
11295 }
11296 
11297 /* The default literal sections should always be marked as "code" (i.e.,
11298    SHF_EXECINSTR).  This is particularly important for the Linux kernel
11299    module loader so that the literals are not placed after the text.  */
11300 static const struct bfd_elf_special_section elf_xtensa_special_sections[] =
11301 {
11302   { STRING_COMMA_LEN (".fini.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11303   { STRING_COMMA_LEN (".init.literal"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11304   { STRING_COMMA_LEN (".literal"),      0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
11305   { STRING_COMMA_LEN (".xtensa.info"),  0, SHT_NOTE,     0 },
11306   { NULL,                       0,      0, 0,            0 }
11307 };
11308 
11309 #define ELF_TARGET_ID			XTENSA_ELF_DATA
11310 #ifndef ELF_ARCH
11311 #define TARGET_LITTLE_SYM		xtensa_elf32_le_vec
11312 #define TARGET_LITTLE_NAME		"elf32-xtensa-le"
11313 #define TARGET_BIG_SYM			xtensa_elf32_be_vec
11314 #define TARGET_BIG_NAME			"elf32-xtensa-be"
11315 #define ELF_ARCH			bfd_arch_xtensa
11316 
11317 #define ELF_MACHINE_CODE		EM_XTENSA
11318 #define ELF_MACHINE_ALT1		EM_XTENSA_OLD
11319 
11320 #if XCHAL_HAVE_MMU
11321 #define ELF_MAXPAGESIZE			(1 << XCHAL_MMU_MIN_PTE_PAGE_SIZE)
11322 #else /* !XCHAL_HAVE_MMU */
11323 #define ELF_MAXPAGESIZE			1
11324 #endif /* !XCHAL_HAVE_MMU */
11325 #endif /* ELF_ARCH */
11326 
11327 #define elf_backend_can_gc_sections	1
11328 #define elf_backend_can_refcount	1
11329 #define elf_backend_plt_readonly	1
11330 #define elf_backend_got_header_size	4
11331 #define elf_backend_want_dynbss		0
11332 #define elf_backend_want_got_plt	1
11333 #define elf_backend_dtrel_excludes_plt	1
11334 
11335 #define elf_info_to_howto		     elf_xtensa_info_to_howto_rela
11336 
11337 #define bfd_elf32_mkobject		     elf_xtensa_mkobject
11338 
11339 #define bfd_elf32_bfd_merge_private_bfd_data elf_xtensa_merge_private_bfd_data
11340 #define bfd_elf32_new_section_hook	     elf_xtensa_new_section_hook
11341 #define bfd_elf32_bfd_print_private_bfd_data elf_xtensa_print_private_bfd_data
11342 #define bfd_elf32_bfd_relax_section	     elf_xtensa_relax_section
11343 #define bfd_elf32_bfd_reloc_type_lookup	     elf_xtensa_reloc_type_lookup
11344 #define bfd_elf32_bfd_reloc_name_lookup \
11345   elf_xtensa_reloc_name_lookup
11346 #define bfd_elf32_bfd_set_private_flags	     elf_xtensa_set_private_flags
11347 #define bfd_elf32_bfd_link_hash_table_create elf_xtensa_link_hash_table_create
11348 
11349 #define elf_backend_adjust_dynamic_symbol    elf_xtensa_adjust_dynamic_symbol
11350 #define elf_backend_check_relocs	     elf_xtensa_check_relocs
11351 #define elf_backend_create_dynamic_sections  elf_xtensa_create_dynamic_sections
11352 #define elf_backend_discard_info	     elf_xtensa_discard_info
11353 #define elf_backend_ignore_discarded_relocs  elf_xtensa_ignore_discarded_relocs
11354 #define elf_backend_final_write_processing   elf_xtensa_final_write_processing
11355 #define elf_backend_finish_dynamic_sections  elf_xtensa_finish_dynamic_sections
11356 #define elf_backend_finish_dynamic_symbol    elf_xtensa_finish_dynamic_symbol
11357 #define elf_backend_gc_mark_hook	     elf_xtensa_gc_mark_hook
11358 #define elf_backend_gc_sweep_hook	     elf_xtensa_gc_sweep_hook
11359 #define elf_backend_grok_prstatus	     elf_xtensa_grok_prstatus
11360 #define elf_backend_grok_psinfo		     elf_xtensa_grok_psinfo
11361 #define elf_backend_hide_symbol		     elf_xtensa_hide_symbol
11362 #define elf_backend_object_p		     elf_xtensa_object_p
11363 #define elf_backend_reloc_type_class	     elf_xtensa_reloc_type_class
11364 #define elf_backend_relocate_section	     elf_xtensa_relocate_section
11365 #define elf_backend_size_dynamic_sections    elf_xtensa_size_dynamic_sections
11366 #define elf_backend_always_size_sections     elf_xtensa_always_size_sections
11367 #define elf_backend_omit_section_dynsym \
11368   ((bfd_boolean (*) (bfd *, struct bfd_link_info *, asection *)) bfd_true)
11369 #define elf_backend_special_sections	     elf_xtensa_special_sections
11370 #define elf_backend_action_discarded	     elf_xtensa_action_discarded
11371 #define elf_backend_copy_indirect_symbol     elf_xtensa_copy_indirect_symbol
11372 
11373 #include "elf32-target.h"
11374