1 /* Renesas RX specific support for 32-bit ELF. 2 Copyright (C) 2008-2024 Free Software Foundation, Inc. 3 4 This file is part of BFD, the Binary File Descriptor library. 5 6 This program is free software; you can redistribute it and/or modify 7 it under the terms of the GNU General Public License as published by 8 the Free Software Foundation; either version 3 of the License, or 9 (at your option) any later version. 10 11 This program is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 GNU General Public License for more details. 15 16 You should have received a copy of the GNU General Public License 17 along with this program; if not, write to the Free Software 18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 19 MA 02110-1301, USA. */ 20 21 #include "sysdep.h" 22 #include "bfd.h" 23 #include "libbfd.h" 24 #include "elf-bfd.h" 25 #include "elf/rx.h" 26 #include "libiberty.h" 27 #include "elf32-rx.h" 28 29 #define RX_OPCODE_BIG_ENDIAN 0 30 31 /* This is a meta-target that's used only with objcopy, to avoid the 32 endian-swap we would otherwise get. We check for this in 33 rx_elf_object_p(). */ 34 const bfd_target rx_elf32_be_ns_vec; 35 const bfd_target rx_elf32_be_vec; 36 37 #ifdef DEBUG 38 char * rx_get_reloc (long); 39 void rx_dump_symtab (bfd *, void *, void *); 40 #endif 41 42 #define RXREL(n,sz,bit,shift,complain,pcrel) \ 43 HOWTO (R_RX_##n, shift, sz, bit, pcrel, 0, complain_overflow_ ## complain, \ 44 bfd_elf_generic_reloc, "R_RX_" #n, false, 0, ~0, false) 45 46 /* Note that the relocations around 0x7f are internal to this file; 47 feel free to move them as needed to avoid conflicts with published 48 relocation numbers. */ 49 50 static reloc_howto_type rx_elf_howto_table [] = 51 { 52 RXREL (NONE, 0, 0, 0, dont, false), 53 RXREL (DIR32, 4, 32, 0, signed, false), 54 RXREL (DIR24S, 4, 24, 0, signed, false), 55 RXREL (DIR16, 2, 16, 0, dont, false), 56 RXREL (DIR16U, 2, 16, 0, unsigned, false), 57 RXREL (DIR16S, 2, 16, 0, signed, false), 58 RXREL (DIR8, 1, 8, 0, dont, false), 59 RXREL (DIR8U, 1, 8, 0, unsigned, false), 60 RXREL (DIR8S, 1, 8, 0, signed, false), 61 RXREL (DIR24S_PCREL, 4, 24, 0, signed, true), 62 RXREL (DIR16S_PCREL, 2, 16, 0, signed, true), 63 RXREL (DIR8S_PCREL, 1, 8, 0, signed, true), 64 RXREL (DIR16UL, 2, 16, 2, unsigned, false), 65 RXREL (DIR16UW, 2, 16, 1, unsigned, false), 66 RXREL (DIR8UL, 1, 8, 2, unsigned, false), 67 RXREL (DIR8UW, 1, 8, 1, unsigned, false), 68 RXREL (DIR32_REV, 2, 16, 0, dont, false), 69 RXREL (DIR16_REV, 2, 16, 0, dont, false), 70 RXREL (DIR3U_PCREL, 1, 3, 0, dont, true), 71 72 EMPTY_HOWTO (0x13), 73 EMPTY_HOWTO (0x14), 74 EMPTY_HOWTO (0x15), 75 EMPTY_HOWTO (0x16), 76 EMPTY_HOWTO (0x17), 77 EMPTY_HOWTO (0x18), 78 EMPTY_HOWTO (0x19), 79 EMPTY_HOWTO (0x1a), 80 EMPTY_HOWTO (0x1b), 81 EMPTY_HOWTO (0x1c), 82 EMPTY_HOWTO (0x1d), 83 EMPTY_HOWTO (0x1e), 84 EMPTY_HOWTO (0x1f), 85 86 RXREL (RH_3_PCREL, 1, 3, 0, signed, true), 87 RXREL (RH_16_OP, 2, 16, 0, signed, false), 88 RXREL (RH_24_OP, 4, 24, 0, signed, false), 89 RXREL (RH_32_OP, 4, 32, 0, signed, false), 90 RXREL (RH_24_UNS, 4, 24, 0, unsigned, false), 91 RXREL (RH_8_NEG, 1, 8, 0, signed, false), 92 RXREL (RH_16_NEG, 2, 16, 0, signed, false), 93 RXREL (RH_24_NEG, 4, 24, 0, signed, false), 94 RXREL (RH_32_NEG, 4, 32, 0, signed, false), 95 RXREL (RH_DIFF, 4, 32, 0, signed, false), 96 RXREL (RH_GPRELB, 2, 16, 0, unsigned, false), 97 RXREL (RH_GPRELW, 2, 16, 0, unsigned, false), 98 RXREL (RH_GPRELL, 2, 16, 0, unsigned, false), 99 RXREL (RH_RELAX, 0, 0, 0, dont, false), 100 101 EMPTY_HOWTO (0x2e), 102 EMPTY_HOWTO (0x2f), 103 EMPTY_HOWTO (0x30), 104 EMPTY_HOWTO (0x31), 105 EMPTY_HOWTO (0x32), 106 EMPTY_HOWTO (0x33), 107 EMPTY_HOWTO (0x34), 108 EMPTY_HOWTO (0x35), 109 EMPTY_HOWTO (0x36), 110 EMPTY_HOWTO (0x37), 111 EMPTY_HOWTO (0x38), 112 EMPTY_HOWTO (0x39), 113 EMPTY_HOWTO (0x3a), 114 EMPTY_HOWTO (0x3b), 115 EMPTY_HOWTO (0x3c), 116 EMPTY_HOWTO (0x3d), 117 EMPTY_HOWTO (0x3e), 118 EMPTY_HOWTO (0x3f), 119 EMPTY_HOWTO (0x40), 120 121 RXREL (ABS32, 4, 32, 0, dont, false), 122 RXREL (ABS24S, 4, 24, 0, signed, false), 123 RXREL (ABS16, 2, 16, 0, dont, false), 124 RXREL (ABS16U, 2, 16, 0, unsigned, false), 125 RXREL (ABS16S, 2, 16, 0, signed, false), 126 RXREL (ABS8, 1, 8, 0, dont, false), 127 RXREL (ABS8U, 1, 8, 0, unsigned, false), 128 RXREL (ABS8S, 1, 8, 0, signed, false), 129 RXREL (ABS24S_PCREL, 4, 24, 0, signed, true), 130 RXREL (ABS16S_PCREL, 2, 16, 0, signed, true), 131 RXREL (ABS8S_PCREL, 1, 8, 0, signed, true), 132 RXREL (ABS16UL, 2, 16, 0, unsigned, false), 133 RXREL (ABS16UW, 2, 16, 0, unsigned, false), 134 RXREL (ABS8UL, 1, 8, 0, unsigned, false), 135 RXREL (ABS8UW, 1, 8, 0, unsigned, false), 136 RXREL (ABS32_REV, 4, 32, 0, dont, false), 137 RXREL (ABS16_REV, 2, 16, 0, dont, false), 138 139 #define STACK_REL_P(x) ((x) <= R_RX_ABS16_REV && (x) >= R_RX_ABS32) 140 141 EMPTY_HOWTO (0x52), 142 EMPTY_HOWTO (0x53), 143 EMPTY_HOWTO (0x54), 144 EMPTY_HOWTO (0x55), 145 EMPTY_HOWTO (0x56), 146 EMPTY_HOWTO (0x57), 147 EMPTY_HOWTO (0x58), 148 EMPTY_HOWTO (0x59), 149 EMPTY_HOWTO (0x5a), 150 EMPTY_HOWTO (0x5b), 151 EMPTY_HOWTO (0x5c), 152 EMPTY_HOWTO (0x5d), 153 EMPTY_HOWTO (0x5e), 154 EMPTY_HOWTO (0x5f), 155 EMPTY_HOWTO (0x60), 156 EMPTY_HOWTO (0x61), 157 EMPTY_HOWTO (0x62), 158 EMPTY_HOWTO (0x63), 159 EMPTY_HOWTO (0x64), 160 EMPTY_HOWTO (0x65), 161 EMPTY_HOWTO (0x66), 162 EMPTY_HOWTO (0x67), 163 EMPTY_HOWTO (0x68), 164 EMPTY_HOWTO (0x69), 165 EMPTY_HOWTO (0x6a), 166 EMPTY_HOWTO (0x6b), 167 EMPTY_HOWTO (0x6c), 168 EMPTY_HOWTO (0x6d), 169 EMPTY_HOWTO (0x6e), 170 EMPTY_HOWTO (0x6f), 171 EMPTY_HOWTO (0x70), 172 EMPTY_HOWTO (0x71), 173 EMPTY_HOWTO (0x72), 174 EMPTY_HOWTO (0x73), 175 EMPTY_HOWTO (0x74), 176 EMPTY_HOWTO (0x75), 177 EMPTY_HOWTO (0x76), 178 EMPTY_HOWTO (0x77), 179 180 /* These are internal. */ 181 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 8/12. */ 182 /* ---- ---- 4--- 3210. */ 183 #define R_RX_RH_ABS5p8B 0x78 184 RXREL (RH_ABS5p8B, 0, 0, 0, dont, false), 185 #define R_RX_RH_ABS5p8W 0x79 186 RXREL (RH_ABS5p8W, 0, 0, 0, dont, false), 187 #define R_RX_RH_ABS5p8L 0x7a 188 RXREL (RH_ABS5p8L, 0, 0, 0, dont, false), 189 /* A 5-bit unsigned displacement to a B/W/L address, at bit position 5/12. */ 190 /* ---- -432 1--- 0---. */ 191 #define R_RX_RH_ABS5p5B 0x7b 192 RXREL (RH_ABS5p5B, 0, 0, 0, dont, false), 193 #define R_RX_RH_ABS5p5W 0x7c 194 RXREL (RH_ABS5p5W, 0, 0, 0, dont, false), 195 #define R_RX_RH_ABS5p5L 0x7d 196 RXREL (RH_ABS5p5L, 0, 0, 0, dont, false), 197 /* A 4-bit unsigned immediate at bit position 8. */ 198 #define R_RX_RH_UIMM4p8 0x7e 199 RXREL (RH_UIMM4p8, 0, 0, 0, dont, false), 200 /* A 4-bit negative unsigned immediate at bit position 8. */ 201 #define R_RX_RH_UNEG4p8 0x7f 202 RXREL (RH_UNEG4p8, 0, 0, 0, dont, false), 203 /* End of internal relocs. */ 204 205 RXREL (SYM, 4, 32, 0, dont, false), 206 RXREL (OPneg, 4, 32, 0, dont, false), 207 RXREL (OPadd, 4, 32, 0, dont, false), 208 RXREL (OPsub, 4, 32, 0, dont, false), 209 RXREL (OPmul, 4, 32, 0, dont, false), 210 RXREL (OPdiv, 4, 32, 0, dont, false), 211 RXREL (OPshla, 4, 32, 0, dont, false), 212 RXREL (OPshra, 4, 32, 0, dont, false), 213 RXREL (OPsctsize, 4, 32, 0, dont, false), 214 215 EMPTY_HOWTO (0x89), 216 EMPTY_HOWTO (0x8a), 217 EMPTY_HOWTO (0x8b), 218 EMPTY_HOWTO (0x8c), 219 220 RXREL (OPscttop, 4, 32, 0, dont, false), 221 222 EMPTY_HOWTO (0x8e), 223 EMPTY_HOWTO (0x8f), 224 225 RXREL (OPand, 4, 32, 0, dont, false), 226 RXREL (OPor, 4, 32, 0, dont, false), 227 RXREL (OPxor, 4, 32, 0, dont, false), 228 RXREL (OPnot, 4, 32, 0, dont, false), 229 RXREL (OPmod, 4, 32, 0, dont, false), 230 RXREL (OPromtop, 4, 32, 0, dont, false), 231 RXREL (OPramtop, 4, 32, 0, dont, false) 232 }; 233 234 /* Map BFD reloc types to RX ELF reloc types. */ 235 236 struct rx_reloc_map 237 { 238 bfd_reloc_code_real_type bfd_reloc_val; 239 unsigned int rx_reloc_val; 240 }; 241 242 static const struct rx_reloc_map rx_reloc_map [] = 243 { 244 { BFD_RELOC_NONE, R_RX_NONE }, 245 { BFD_RELOC_8, R_RX_DIR8S }, 246 { BFD_RELOC_16, R_RX_DIR16S }, 247 { BFD_RELOC_24, R_RX_DIR24S }, 248 { BFD_RELOC_32, R_RX_DIR32 }, 249 { BFD_RELOC_RX_16_OP, R_RX_DIR16 }, 250 { BFD_RELOC_RX_DIR3U_PCREL, R_RX_DIR3U_PCREL }, 251 { BFD_RELOC_8_PCREL, R_RX_DIR8S_PCREL }, 252 { BFD_RELOC_16_PCREL, R_RX_DIR16S_PCREL }, 253 { BFD_RELOC_24_PCREL, R_RX_DIR24S_PCREL }, 254 { BFD_RELOC_RX_8U, R_RX_DIR8U }, 255 { BFD_RELOC_RX_16U, R_RX_DIR16U }, 256 { BFD_RELOC_RX_24U, R_RX_RH_24_UNS }, 257 { BFD_RELOC_RX_NEG8, R_RX_RH_8_NEG }, 258 { BFD_RELOC_RX_NEG16, R_RX_RH_16_NEG }, 259 { BFD_RELOC_RX_NEG24, R_RX_RH_24_NEG }, 260 { BFD_RELOC_RX_NEG32, R_RX_RH_32_NEG }, 261 { BFD_RELOC_RX_DIFF, R_RX_RH_DIFF }, 262 { BFD_RELOC_RX_GPRELB, R_RX_RH_GPRELB }, 263 { BFD_RELOC_RX_GPRELW, R_RX_RH_GPRELW }, 264 { BFD_RELOC_RX_GPRELL, R_RX_RH_GPRELL }, 265 { BFD_RELOC_RX_RELAX, R_RX_RH_RELAX }, 266 { BFD_RELOC_RX_SYM, R_RX_SYM }, 267 { BFD_RELOC_RX_OP_SUBTRACT, R_RX_OPsub }, 268 { BFD_RELOC_RX_OP_NEG, R_RX_OPneg }, 269 { BFD_RELOC_RX_ABS8, R_RX_ABS8 }, 270 { BFD_RELOC_RX_ABS16, R_RX_ABS16 }, 271 { BFD_RELOC_RX_ABS16_REV, R_RX_ABS16_REV }, 272 { BFD_RELOC_RX_ABS32, R_RX_ABS32 }, 273 { BFD_RELOC_RX_ABS32_REV, R_RX_ABS32_REV }, 274 { BFD_RELOC_RX_ABS16UL, R_RX_ABS16UL }, 275 { BFD_RELOC_RX_ABS16UW, R_RX_ABS16UW }, 276 { BFD_RELOC_RX_ABS16U, R_RX_ABS16U } 277 }; 278 279 #define BIGE(abfd) ((abfd)->xvec->byteorder == BFD_ENDIAN_BIG) 280 281 static reloc_howto_type * 282 rx_reloc_type_lookup (bfd * abfd ATTRIBUTE_UNUSED, 283 bfd_reloc_code_real_type code) 284 { 285 unsigned int i; 286 287 if (code == BFD_RELOC_RX_32_OP) 288 return rx_elf_howto_table + R_RX_DIR32; 289 290 for (i = ARRAY_SIZE (rx_reloc_map); i--;) 291 if (rx_reloc_map [i].bfd_reloc_val == code) 292 return rx_elf_howto_table + rx_reloc_map[i].rx_reloc_val; 293 294 return NULL; 295 } 296 297 static reloc_howto_type * 298 rx_reloc_name_lookup (bfd * abfd ATTRIBUTE_UNUSED, const char * r_name) 299 { 300 unsigned int i; 301 302 for (i = 0; i < ARRAY_SIZE (rx_elf_howto_table); i++) 303 if (rx_elf_howto_table[i].name != NULL 304 && strcasecmp (rx_elf_howto_table[i].name, r_name) == 0) 305 return rx_elf_howto_table + i; 306 307 return NULL; 308 } 309 310 /* Set the howto pointer for an RX ELF reloc. */ 311 312 static bool 313 rx_info_to_howto_rela (bfd * abfd, 314 arelent * cache_ptr, 315 Elf_Internal_Rela * dst) 316 { 317 unsigned int r_type; 318 319 r_type = ELF32_R_TYPE (dst->r_info); 320 BFD_ASSERT (R_RX_max == ARRAY_SIZE (rx_elf_howto_table)); 321 if (r_type >= ARRAY_SIZE (rx_elf_howto_table)) 322 { 323 /* xgettext:c-format */ 324 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 325 abfd, r_type); 326 bfd_set_error (bfd_error_bad_value); 327 return false; 328 } 329 cache_ptr->howto = rx_elf_howto_table + r_type; 330 if (cache_ptr->howto->name == NULL) 331 { 332 /* xgettext:c-format */ 333 _bfd_error_handler (_("%pB: unsupported relocation type %#x"), 334 abfd, r_type); 335 bfd_set_error (bfd_error_bad_value); 336 return false; 337 } 338 return true; 339 } 340 341 static bfd_vma 342 get_symbol_value (const char * name, 343 struct bfd_link_info * info, 344 bfd * input_bfd, 345 asection * input_section, 346 int offset) 347 { 348 bfd_vma value = 0; 349 struct bfd_link_hash_entry * h; 350 351 h = bfd_link_hash_lookup (info->hash, name, false, false, true); 352 353 if (h == NULL 354 || (h->type != bfd_link_hash_defined 355 && h->type != bfd_link_hash_defweak)) 356 (*info->callbacks->undefined_symbol) 357 (info, name, input_bfd, input_section, offset, true); 358 else 359 value = (h->u.def.value 360 + h->u.def.section->output_section->vma 361 + h->u.def.section->output_offset); 362 363 return value; 364 } 365 366 static bfd_vma 367 get_symbol_value_maybe (const char * name, 368 struct bfd_link_info * info) 369 { 370 bfd_vma value = 0; 371 struct bfd_link_hash_entry * h; 372 373 h = bfd_link_hash_lookup (info->hash, name, false, false, true); 374 375 if (h == NULL 376 || (h->type != bfd_link_hash_defined 377 && h->type != bfd_link_hash_defweak)) 378 return 0; 379 else 380 value = (h->u.def.value 381 + h->u.def.section->output_section->vma 382 + h->u.def.section->output_offset); 383 384 return value; 385 } 386 387 static bfd_vma 388 get_gp (struct bfd_link_info * info, 389 bfd * abfd, 390 asection * sec, 391 int offset) 392 { 393 static bool cached = false; 394 static bfd_vma cached_value = 0; 395 396 if (!cached) 397 { 398 cached_value = get_symbol_value ("__gp", info, abfd, sec, offset); 399 cached = true; 400 } 401 return cached_value; 402 } 403 404 static bfd_vma 405 get_romstart (struct bfd_link_info * info, 406 bfd * abfd, 407 asection * sec, 408 int offset) 409 { 410 static bool cached = false; 411 static bfd_vma cached_value = 0; 412 413 if (!cached) 414 { 415 cached_value = get_symbol_value ("_start", info, abfd, sec, offset); 416 cached = true; 417 } 418 return cached_value; 419 } 420 421 static bfd_vma 422 get_ramstart (struct bfd_link_info * info, 423 bfd * abfd, 424 asection * sec, 425 int offset) 426 { 427 static bool cached = false; 428 static bfd_vma cached_value = 0; 429 430 if (!cached) 431 { 432 cached_value = get_symbol_value ("__datastart", info, abfd, sec, offset); 433 cached = true; 434 } 435 return cached_value; 436 } 437 438 #define NUM_STACK_ENTRIES 16 439 static int32_t rx_stack [ NUM_STACK_ENTRIES ]; 440 static unsigned int rx_stack_top; 441 442 #define RX_STACK_PUSH(val) \ 443 do \ 444 { \ 445 if (rx_stack_top < NUM_STACK_ENTRIES) \ 446 rx_stack [rx_stack_top ++] = (val); \ 447 else \ 448 r = bfd_reloc_dangerous; \ 449 } \ 450 while (0) 451 452 #define RX_STACK_POP(dest) \ 453 do \ 454 { \ 455 if (rx_stack_top > 0) \ 456 (dest) = rx_stack [-- rx_stack_top]; \ 457 else \ 458 (dest) = 0, r = bfd_reloc_dangerous; \ 459 } \ 460 while (0) 461 462 /* Relocate an RX ELF section. 463 There is some attempt to make this function usable for many architectures, 464 both USE_REL and USE_RELA ['twould be nice if such a critter existed], 465 if only to serve as a learning tool. 466 467 The RELOCATE_SECTION function is called by the new ELF backend linker 468 to handle the relocations for a section. 469 470 The relocs are always passed as Rela structures; if the section 471 actually uses Rel structures, the r_addend field will always be 472 zero. 473 474 This function is responsible for adjusting the section contents as 475 necessary, and (if using Rela relocs and generating a relocatable 476 output file) adjusting the reloc addend as necessary. 477 478 This function does not have to worry about setting the reloc 479 address or the reloc symbol index. 480 481 LOCAL_SYMS is a pointer to the swapped in local symbols. 482 483 LOCAL_SECTIONS is an array giving the section in the input file 484 corresponding to the st_shndx field of each local symbol. 485 486 The global hash table entry for the global symbols can be found 487 via elf_sym_hashes (input_bfd). 488 489 When generating relocatable output, this function must handle 490 STB_LOCAL/STT_SECTION symbols specially. The output symbol is 491 going to be the section symbol corresponding to the output 492 section, which means that the addend must be adjusted 493 accordingly. */ 494 495 static int 496 rx_elf_relocate_section 497 (bfd * output_bfd, 498 struct bfd_link_info * info, 499 bfd * input_bfd, 500 asection * input_section, 501 bfd_byte * contents, 502 Elf_Internal_Rela * relocs, 503 Elf_Internal_Sym * local_syms, 504 asection ** local_sections) 505 { 506 Elf_Internal_Shdr *symtab_hdr; 507 struct elf_link_hash_entry **sym_hashes; 508 Elf_Internal_Rela *rel; 509 Elf_Internal_Rela *relend; 510 bool pid_mode; 511 bool saw_subtract = false; 512 const char *table_default_cache = NULL; 513 bfd_vma table_start_cache = 0; 514 bfd_vma table_end_cache = 0; 515 516 if (elf_elfheader (output_bfd)->e_flags & E_FLAG_RX_PID) 517 pid_mode = true; 518 else 519 pid_mode = false; 520 521 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr; 522 sym_hashes = elf_sym_hashes (input_bfd); 523 relend = relocs + input_section->reloc_count; 524 for (rel = relocs; rel < relend; rel ++) 525 { 526 reloc_howto_type *howto; 527 unsigned long r_symndx; 528 Elf_Internal_Sym *sym; 529 asection *sec; 530 struct elf_link_hash_entry *h; 531 bfd_vma relocation; 532 bfd_reloc_status_type r; 533 const char * name = NULL; 534 bool unresolved_reloc = true; 535 int r_type; 536 537 r_type = ELF32_R_TYPE (rel->r_info); 538 r_symndx = ELF32_R_SYM (rel->r_info); 539 540 howto = rx_elf_howto_table + ELF32_R_TYPE (rel->r_info); 541 h = NULL; 542 sym = NULL; 543 sec = NULL; 544 relocation = 0; 545 546 if (rx_stack_top == 0) 547 saw_subtract = false; 548 549 if (r_symndx < symtab_hdr->sh_info) 550 { 551 sym = local_syms + r_symndx; 552 sec = local_sections [r_symndx]; 553 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, & sec, rel); 554 555 name = bfd_elf_string_from_elf_section 556 (input_bfd, symtab_hdr->sh_link, sym->st_name); 557 name = sym->st_name == 0 ? bfd_section_name (sec) : name; 558 } 559 else 560 { 561 bool warned, ignored; 562 563 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 564 r_symndx, symtab_hdr, sym_hashes, h, 565 sec, relocation, unresolved_reloc, 566 warned, ignored); 567 568 name = h->root.root.string; 569 } 570 571 if (startswith (name, "$tableentry$default$")) 572 { 573 bfd_vma entry_vma; 574 int idx; 575 char *buf; 576 577 if (table_default_cache != name) 578 { 579 580 /* All relocs for a given table should be to the same 581 (weak) default symbol) so we can use it to detect a 582 cache miss. We use the offset into the table to find 583 the "real" symbol. Calculate and store the table's 584 offset here. */ 585 586 table_default_cache = name; 587 588 /* We have already done error checking in rx_table_find(). */ 589 590 buf = (char *) bfd_malloc (13 + strlen (name + 20)); 591 if (buf == NULL) 592 return false; 593 594 sprintf (buf, "$tablestart$%s", name + 20); 595 table_start_cache = get_symbol_value (buf, 596 info, 597 input_bfd, 598 input_section, 599 rel->r_offset); 600 601 sprintf (buf, "$tableend$%s", name + 20); 602 table_end_cache = get_symbol_value (buf, 603 info, 604 input_bfd, 605 input_section, 606 rel->r_offset); 607 608 free (buf); 609 } 610 611 entry_vma = (input_section->output_section->vma 612 + input_section->output_offset 613 + rel->r_offset); 614 615 if (table_end_cache <= entry_vma || entry_vma < table_start_cache) 616 { 617 /* xgettext:c-format */ 618 _bfd_error_handler (_("%pB:%pA: table entry %s outside table"), 619 input_bfd, input_section, 620 name); 621 } 622 else if ((int) (entry_vma - table_start_cache) % 4) 623 { 624 /* xgettext:c-format */ 625 _bfd_error_handler (_("%pB:%pA: table entry %s not word-aligned within table"), 626 input_bfd, input_section, 627 name); 628 } 629 else 630 { 631 idx = (int) (entry_vma - table_start_cache) / 4; 632 633 /* This will look like $tableentry$<N>$<name> */ 634 buf = (char *) bfd_malloc (12 + 20 + strlen (name + 20)); 635 if (buf == NULL) 636 return false; 637 638 sprintf (buf, "$tableentry$%d$%s", idx, name + 20); 639 640 h = (struct elf_link_hash_entry *) bfd_link_hash_lookup (info->hash, buf, false, false, true); 641 642 if (h) 643 { 644 relocation = (h->root.u.def.value 645 + h->root.u.def.section->output_section->vma 646 + h->root.u.def.section->output_offset);; 647 } 648 649 free (buf); 650 } 651 } 652 653 if (sec != NULL && discarded_section (sec)) 654 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 655 rel, 1, relend, howto, 0, contents); 656 657 if (bfd_link_relocatable (info)) 658 { 659 /* This is a relocatable link. We don't have to change 660 anything, unless the reloc is against a section symbol, 661 in which case we have to adjust according to where the 662 section symbol winds up in the output section. */ 663 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 664 rel->r_addend += sec->output_offset; 665 continue; 666 } 667 668 if (h != NULL && h->root.type == bfd_link_hash_undefweak) 669 /* If the symbol is undefined and weak 670 then the relocation resolves to zero. */ 671 relocation = 0; 672 else 673 { 674 if (howto->pc_relative) 675 { 676 relocation -= (input_section->output_section->vma 677 + input_section->output_offset 678 + rel->r_offset); 679 if (r_type != R_RX_RH_3_PCREL 680 && r_type != R_RX_DIR3U_PCREL) 681 relocation ++; 682 } 683 684 relocation += rel->r_addend; 685 } 686 687 r = bfd_reloc_ok; 688 689 #define RANGE(a,b) \ 690 if (a > (long) relocation || (long) relocation > b) \ 691 r = bfd_reloc_overflow 692 #define ALIGN(m) \ 693 if (relocation & m) \ 694 r = bfd_reloc_other 695 #define OP(i) \ 696 (contents[rel->r_offset + (i)]) 697 #define WARN_REDHAT(type) \ 698 /* xgettext:c-format */ \ 699 _bfd_error_handler \ 700 (_("%pB:%pA: warning: deprecated Red Hat reloc " \ 701 "%s detected against: %s"), \ 702 input_bfd, input_section, #type, name) 703 704 /* Check for unsafe relocs in PID mode. These are any relocs where 705 an absolute address is being computed. There are special cases 706 for relocs against symbols that are known to be referenced in 707 crt0.o before the PID base address register has been initialised. */ 708 #define UNSAFE_FOR_PID \ 709 do \ 710 { \ 711 if (pid_mode \ 712 && sec != NULL \ 713 && sec->flags & SEC_READONLY \ 714 && !(input_section->flags & SEC_DEBUGGING) \ 715 && strcmp (name, "__pid_base") != 0 \ 716 && strcmp (name, "__gp") != 0 \ 717 && strcmp (name, "__romdatastart") != 0 \ 718 && !saw_subtract) \ 719 /* xgettext:c-format */ \ 720 _bfd_error_handler (_("%pB(%pA): unsafe PID relocation %s " \ 721 "at %#" PRIx64 " (against %s in %s)"), \ 722 input_bfd, input_section, howto->name, \ 723 (uint64_t) (input_section->output_section->vma \ 724 + input_section->output_offset \ 725 + rel->r_offset), \ 726 name, sec->name); \ 727 } \ 728 while (0) 729 730 /* Opcode relocs are always big endian. Data relocs are bi-endian. */ 731 switch (r_type) 732 { 733 case R_RX_NONE: 734 break; 735 736 case R_RX_RH_RELAX: 737 break; 738 739 case R_RX_RH_3_PCREL: 740 WARN_REDHAT ("RX_RH_3_PCREL"); 741 RANGE (3, 10); 742 OP (0) &= 0xf8; 743 OP (0) |= relocation & 0x07; 744 break; 745 746 case R_RX_RH_8_NEG: 747 WARN_REDHAT ("RX_RH_8_NEG"); 748 relocation = - relocation; 749 /* Fall through. */ 750 case R_RX_DIR8S_PCREL: 751 UNSAFE_FOR_PID; 752 RANGE (-128, 127); 753 OP (0) = relocation; 754 break; 755 756 case R_RX_DIR8S: 757 UNSAFE_FOR_PID; 758 RANGE (-128, 255); 759 OP (0) = relocation; 760 break; 761 762 case R_RX_DIR8U: 763 UNSAFE_FOR_PID; 764 RANGE (0, 255); 765 OP (0) = relocation; 766 break; 767 768 case R_RX_RH_16_NEG: 769 WARN_REDHAT ("RX_RH_16_NEG"); 770 relocation = - relocation; 771 /* Fall through. */ 772 case R_RX_DIR16S_PCREL: 773 UNSAFE_FOR_PID; 774 RANGE (-32768, 32767); 775 #if RX_OPCODE_BIG_ENDIAN 776 #else 777 OP (0) = relocation; 778 OP (1) = relocation >> 8; 779 #endif 780 break; 781 782 case R_RX_RH_16_OP: 783 WARN_REDHAT ("RX_RH_16_OP"); 784 UNSAFE_FOR_PID; 785 RANGE (-32768, 32767); 786 #if RX_OPCODE_BIG_ENDIAN 787 OP (1) = relocation; 788 OP (0) = relocation >> 8; 789 #else 790 OP (0) = relocation; 791 OP (1) = relocation >> 8; 792 #endif 793 break; 794 795 case R_RX_DIR16S: 796 UNSAFE_FOR_PID; 797 RANGE (-32768, 65535); 798 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) 799 { 800 OP (1) = relocation; 801 OP (0) = relocation >> 8; 802 } 803 else 804 { 805 OP (0) = relocation; 806 OP (1) = relocation >> 8; 807 } 808 break; 809 810 case R_RX_DIR16U: 811 UNSAFE_FOR_PID; 812 RANGE (0, 65536); 813 #if RX_OPCODE_BIG_ENDIAN 814 OP (1) = relocation; 815 OP (0) = relocation >> 8; 816 #else 817 OP (0) = relocation; 818 OP (1) = relocation >> 8; 819 #endif 820 break; 821 822 case R_RX_DIR16: 823 UNSAFE_FOR_PID; 824 RANGE (-32768, 65536); 825 #if RX_OPCODE_BIG_ENDIAN 826 OP (1) = relocation; 827 OP (0) = relocation >> 8; 828 #else 829 OP (0) = relocation; 830 OP (1) = relocation >> 8; 831 #endif 832 break; 833 834 case R_RX_DIR16_REV: 835 UNSAFE_FOR_PID; 836 RANGE (-32768, 65536); 837 #if RX_OPCODE_BIG_ENDIAN 838 OP (0) = relocation; 839 OP (1) = relocation >> 8; 840 #else 841 OP (1) = relocation; 842 OP (0) = relocation >> 8; 843 #endif 844 break; 845 846 case R_RX_DIR3U_PCREL: 847 RANGE (3, 10); 848 OP (0) &= 0xf8; 849 OP (0) |= relocation & 0x07; 850 break; 851 852 case R_RX_RH_24_NEG: 853 UNSAFE_FOR_PID; 854 WARN_REDHAT ("RX_RH_24_NEG"); 855 relocation = - relocation; 856 /* Fall through. */ 857 case R_RX_DIR24S_PCREL: 858 RANGE (-0x800000, 0x7fffff); 859 #if RX_OPCODE_BIG_ENDIAN 860 OP (2) = relocation; 861 OP (1) = relocation >> 8; 862 OP (0) = relocation >> 16; 863 #else 864 OP (0) = relocation; 865 OP (1) = relocation >> 8; 866 OP (2) = relocation >> 16; 867 #endif 868 break; 869 870 case R_RX_RH_24_OP: 871 UNSAFE_FOR_PID; 872 WARN_REDHAT ("RX_RH_24_OP"); 873 RANGE (-0x800000, 0x7fffff); 874 #if RX_OPCODE_BIG_ENDIAN 875 OP (2) = relocation; 876 OP (1) = relocation >> 8; 877 OP (0) = relocation >> 16; 878 #else 879 OP (0) = relocation; 880 OP (1) = relocation >> 8; 881 OP (2) = relocation >> 16; 882 #endif 883 break; 884 885 case R_RX_DIR24S: 886 UNSAFE_FOR_PID; 887 RANGE (-0x800000, 0x7fffff); 888 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) 889 { 890 OP (2) = relocation; 891 OP (1) = relocation >> 8; 892 OP (0) = relocation >> 16; 893 } 894 else 895 { 896 OP (0) = relocation; 897 OP (1) = relocation >> 8; 898 OP (2) = relocation >> 16; 899 } 900 break; 901 902 case R_RX_RH_24_UNS: 903 UNSAFE_FOR_PID; 904 WARN_REDHAT ("RX_RH_24_UNS"); 905 RANGE (0, 0xffffff); 906 #if RX_OPCODE_BIG_ENDIAN 907 OP (2) = relocation; 908 OP (1) = relocation >> 8; 909 OP (0) = relocation >> 16; 910 #else 911 OP (0) = relocation; 912 OP (1) = relocation >> 8; 913 OP (2) = relocation >> 16; 914 #endif 915 break; 916 917 case R_RX_RH_32_NEG: 918 UNSAFE_FOR_PID; 919 WARN_REDHAT ("RX_RH_32_NEG"); 920 relocation = - relocation; 921 #if RX_OPCODE_BIG_ENDIAN 922 OP (3) = relocation; 923 OP (2) = relocation >> 8; 924 OP (1) = relocation >> 16; 925 OP (0) = relocation >> 24; 926 #else 927 OP (0) = relocation; 928 OP (1) = relocation >> 8; 929 OP (2) = relocation >> 16; 930 OP (3) = relocation >> 24; 931 #endif 932 break; 933 934 case R_RX_RH_32_OP: 935 UNSAFE_FOR_PID; 936 WARN_REDHAT ("RX_RH_32_OP"); 937 #if RX_OPCODE_BIG_ENDIAN 938 OP (3) = relocation; 939 OP (2) = relocation >> 8; 940 OP (1) = relocation >> 16; 941 OP (0) = relocation >> 24; 942 #else 943 OP (0) = relocation; 944 OP (1) = relocation >> 8; 945 OP (2) = relocation >> 16; 946 OP (3) = relocation >> 24; 947 #endif 948 break; 949 950 case R_RX_DIR32: 951 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) 952 { 953 OP (3) = relocation; 954 OP (2) = relocation >> 8; 955 OP (1) = relocation >> 16; 956 OP (0) = relocation >> 24; 957 } 958 else 959 { 960 OP (0) = relocation; 961 OP (1) = relocation >> 8; 962 OP (2) = relocation >> 16; 963 OP (3) = relocation >> 24; 964 } 965 break; 966 967 case R_RX_DIR32_REV: 968 if (BIGE (output_bfd)) 969 { 970 OP (0) = relocation; 971 OP (1) = relocation >> 8; 972 OP (2) = relocation >> 16; 973 OP (3) = relocation >> 24; 974 } 975 else 976 { 977 OP (3) = relocation; 978 OP (2) = relocation >> 8; 979 OP (1) = relocation >> 16; 980 OP (0) = relocation >> 24; 981 } 982 break; 983 984 case R_RX_RH_DIFF: 985 { 986 bfd_vma val; 987 WARN_REDHAT ("RX_RH_DIFF"); 988 val = bfd_get_32 (output_bfd, & OP (0)); 989 val -= relocation; 990 bfd_put_32 (output_bfd, val, & OP (0)); 991 } 992 break; 993 994 case R_RX_RH_GPRELB: 995 WARN_REDHAT ("RX_RH_GPRELB"); 996 relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); 997 RANGE (0, 65535); 998 #if RX_OPCODE_BIG_ENDIAN 999 OP (1) = relocation; 1000 OP (0) = relocation >> 8; 1001 #else 1002 OP (0) = relocation; 1003 OP (1) = relocation >> 8; 1004 #endif 1005 break; 1006 1007 case R_RX_RH_GPRELW: 1008 WARN_REDHAT ("RX_RH_GPRELW"); 1009 relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); 1010 ALIGN (1); 1011 relocation >>= 1; 1012 RANGE (0, 65535); 1013 #if RX_OPCODE_BIG_ENDIAN 1014 OP (1) = relocation; 1015 OP (0) = relocation >> 8; 1016 #else 1017 OP (0) = relocation; 1018 OP (1) = relocation >> 8; 1019 #endif 1020 break; 1021 1022 case R_RX_RH_GPRELL: 1023 WARN_REDHAT ("RX_RH_GPRELL"); 1024 relocation -= get_gp (info, input_bfd, input_section, rel->r_offset); 1025 ALIGN (3); 1026 relocation >>= 2; 1027 RANGE (0, 65535); 1028 #if RX_OPCODE_BIG_ENDIAN 1029 OP (1) = relocation; 1030 OP (0) = relocation >> 8; 1031 #else 1032 OP (0) = relocation; 1033 OP (1) = relocation >> 8; 1034 #endif 1035 break; 1036 1037 /* Internal relocations just for relaxation: */ 1038 case R_RX_RH_ABS5p5B: 1039 RX_STACK_POP (relocation); 1040 RANGE (0, 31); 1041 OP (0) &= 0xf8; 1042 OP (0) |= relocation >> 2; 1043 OP (1) &= 0x77; 1044 OP (1) |= (relocation << 6) & 0x80; 1045 OP (1) |= (relocation << 3) & 0x08; 1046 break; 1047 1048 case R_RX_RH_ABS5p5W: 1049 RX_STACK_POP (relocation); 1050 RANGE (0, 62); 1051 ALIGN (1); 1052 relocation >>= 1; 1053 OP (0) &= 0xf8; 1054 OP (0) |= relocation >> 2; 1055 OP (1) &= 0x77; 1056 OP (1) |= (relocation << 6) & 0x80; 1057 OP (1) |= (relocation << 3) & 0x08; 1058 break; 1059 1060 case R_RX_RH_ABS5p5L: 1061 RX_STACK_POP (relocation); 1062 RANGE (0, 124); 1063 ALIGN (3); 1064 relocation >>= 2; 1065 OP (0) &= 0xf8; 1066 OP (0) |= relocation >> 2; 1067 OP (1) &= 0x77; 1068 OP (1) |= (relocation << 6) & 0x80; 1069 OP (1) |= (relocation << 3) & 0x08; 1070 break; 1071 1072 case R_RX_RH_ABS5p8B: 1073 RX_STACK_POP (relocation); 1074 RANGE (0, 31); 1075 OP (0) &= 0x70; 1076 OP (0) |= (relocation << 3) & 0x80; 1077 OP (0) |= relocation & 0x0f; 1078 break; 1079 1080 case R_RX_RH_ABS5p8W: 1081 RX_STACK_POP (relocation); 1082 RANGE (0, 62); 1083 ALIGN (1); 1084 relocation >>= 1; 1085 OP (0) &= 0x70; 1086 OP (0) |= (relocation << 3) & 0x80; 1087 OP (0) |= relocation & 0x0f; 1088 break; 1089 1090 case R_RX_RH_ABS5p8L: 1091 RX_STACK_POP (relocation); 1092 RANGE (0, 124); 1093 ALIGN (3); 1094 relocation >>= 2; 1095 OP (0) &= 0x70; 1096 OP (0) |= (relocation << 3) & 0x80; 1097 OP (0) |= relocation & 0x0f; 1098 break; 1099 1100 case R_RX_RH_UIMM4p8: 1101 RANGE (0, 15); 1102 OP (0) &= 0x0f; 1103 OP (0) |= relocation << 4; 1104 break; 1105 1106 case R_RX_RH_UNEG4p8: 1107 RANGE (-15, 0); 1108 OP (0) &= 0x0f; 1109 OP (0) |= (-relocation) << 4; 1110 break; 1111 1112 /* Complex reloc handling: */ 1113 1114 case R_RX_ABS32: 1115 UNSAFE_FOR_PID; 1116 RX_STACK_POP (relocation); 1117 #if RX_OPCODE_BIG_ENDIAN 1118 OP (3) = relocation; 1119 OP (2) = relocation >> 8; 1120 OP (1) = relocation >> 16; 1121 OP (0) = relocation >> 24; 1122 #else 1123 OP (0) = relocation; 1124 OP (1) = relocation >> 8; 1125 OP (2) = relocation >> 16; 1126 OP (3) = relocation >> 24; 1127 #endif 1128 break; 1129 1130 case R_RX_ABS32_REV: 1131 UNSAFE_FOR_PID; 1132 RX_STACK_POP (relocation); 1133 #if RX_OPCODE_BIG_ENDIAN 1134 OP (0) = relocation; 1135 OP (1) = relocation >> 8; 1136 OP (2) = relocation >> 16; 1137 OP (3) = relocation >> 24; 1138 #else 1139 OP (3) = relocation; 1140 OP (2) = relocation >> 8; 1141 OP (1) = relocation >> 16; 1142 OP (0) = relocation >> 24; 1143 #endif 1144 break; 1145 1146 case R_RX_ABS24S_PCREL: 1147 case R_RX_ABS24S: 1148 UNSAFE_FOR_PID; 1149 RX_STACK_POP (relocation); 1150 RANGE (-0x800000, 0x7fffff); 1151 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) 1152 { 1153 OP (2) = relocation; 1154 OP (1) = relocation >> 8; 1155 OP (0) = relocation >> 16; 1156 } 1157 else 1158 { 1159 OP (0) = relocation; 1160 OP (1) = relocation >> 8; 1161 OP (2) = relocation >> 16; 1162 } 1163 break; 1164 1165 case R_RX_ABS16: 1166 UNSAFE_FOR_PID; 1167 RX_STACK_POP (relocation); 1168 RANGE (-32768, 65535); 1169 #if RX_OPCODE_BIG_ENDIAN 1170 OP (1) = relocation; 1171 OP (0) = relocation >> 8; 1172 #else 1173 OP (0) = relocation; 1174 OP (1) = relocation >> 8; 1175 #endif 1176 break; 1177 1178 case R_RX_ABS16_REV: 1179 UNSAFE_FOR_PID; 1180 RX_STACK_POP (relocation); 1181 RANGE (-32768, 65535); 1182 #if RX_OPCODE_BIG_ENDIAN 1183 OP (0) = relocation; 1184 OP (1) = relocation >> 8; 1185 #else 1186 OP (1) = relocation; 1187 OP (0) = relocation >> 8; 1188 #endif 1189 break; 1190 1191 case R_RX_ABS16S_PCREL: 1192 case R_RX_ABS16S: 1193 RX_STACK_POP (relocation); 1194 RANGE (-32768, 32767); 1195 if (BIGE (output_bfd) && !(input_section->flags & SEC_CODE)) 1196 { 1197 OP (1) = relocation; 1198 OP (0) = relocation >> 8; 1199 } 1200 else 1201 { 1202 OP (0) = relocation; 1203 OP (1) = relocation >> 8; 1204 } 1205 break; 1206 1207 case R_RX_ABS16U: 1208 UNSAFE_FOR_PID; 1209 RX_STACK_POP (relocation); 1210 RANGE (0, 65536); 1211 #if RX_OPCODE_BIG_ENDIAN 1212 OP (1) = relocation; 1213 OP (0) = relocation >> 8; 1214 #else 1215 OP (0) = relocation; 1216 OP (1) = relocation >> 8; 1217 #endif 1218 break; 1219 1220 case R_RX_ABS16UL: 1221 UNSAFE_FOR_PID; 1222 RX_STACK_POP (relocation); 1223 relocation >>= 2; 1224 RANGE (0, 65536); 1225 #if RX_OPCODE_BIG_ENDIAN 1226 OP (1) = relocation; 1227 OP (0) = relocation >> 8; 1228 #else 1229 OP (0) = relocation; 1230 OP (1) = relocation >> 8; 1231 #endif 1232 break; 1233 1234 case R_RX_ABS16UW: 1235 UNSAFE_FOR_PID; 1236 RX_STACK_POP (relocation); 1237 relocation >>= 1; 1238 RANGE (0, 65536); 1239 #if RX_OPCODE_BIG_ENDIAN 1240 OP (1) = relocation; 1241 OP (0) = relocation >> 8; 1242 #else 1243 OP (0) = relocation; 1244 OP (1) = relocation >> 8; 1245 #endif 1246 break; 1247 1248 case R_RX_ABS8: 1249 UNSAFE_FOR_PID; 1250 RX_STACK_POP (relocation); 1251 RANGE (-128, 255); 1252 OP (0) = relocation; 1253 break; 1254 1255 case R_RX_ABS8U: 1256 UNSAFE_FOR_PID; 1257 RX_STACK_POP (relocation); 1258 RANGE (0, 255); 1259 OP (0) = relocation; 1260 break; 1261 1262 case R_RX_ABS8UL: 1263 UNSAFE_FOR_PID; 1264 RX_STACK_POP (relocation); 1265 relocation >>= 2; 1266 RANGE (0, 255); 1267 OP (0) = relocation; 1268 break; 1269 1270 case R_RX_ABS8UW: 1271 UNSAFE_FOR_PID; 1272 RX_STACK_POP (relocation); 1273 relocation >>= 1; 1274 RANGE (0, 255); 1275 OP (0) = relocation; 1276 break; 1277 1278 case R_RX_ABS8S: 1279 UNSAFE_FOR_PID; 1280 /* Fall through. */ 1281 case R_RX_ABS8S_PCREL: 1282 RX_STACK_POP (relocation); 1283 RANGE (-128, 127); 1284 OP (0) = relocation; 1285 break; 1286 1287 case R_RX_SYM: 1288 if (r_symndx < symtab_hdr->sh_info) 1289 RX_STACK_PUSH (sec->output_section->vma 1290 + sec->output_offset 1291 + sym->st_value 1292 + rel->r_addend); 1293 else 1294 { 1295 if (h != NULL 1296 && (h->root.type == bfd_link_hash_defined 1297 || h->root.type == bfd_link_hash_defweak)) 1298 RX_STACK_PUSH (h->root.u.def.value 1299 + sec->output_section->vma 1300 + sec->output_offset 1301 + rel->r_addend); 1302 else 1303 _bfd_error_handler 1304 (_("warning: RX_SYM reloc with an unknown symbol")); 1305 } 1306 break; 1307 1308 case R_RX_OPneg: 1309 { 1310 int32_t tmp; 1311 1312 saw_subtract = true; 1313 RX_STACK_POP (tmp); 1314 tmp = - tmp; 1315 RX_STACK_PUSH (tmp); 1316 } 1317 break; 1318 1319 case R_RX_OPadd: 1320 { 1321 int32_t tmp1, tmp2; 1322 1323 RX_STACK_POP (tmp1); 1324 RX_STACK_POP (tmp2); 1325 tmp1 += tmp2; 1326 RX_STACK_PUSH (tmp1); 1327 } 1328 break; 1329 1330 case R_RX_OPsub: 1331 { 1332 int32_t tmp1, tmp2; 1333 1334 saw_subtract = true; 1335 RX_STACK_POP (tmp1); 1336 RX_STACK_POP (tmp2); 1337 tmp2 -= tmp1; 1338 RX_STACK_PUSH (tmp2); 1339 } 1340 break; 1341 1342 case R_RX_OPmul: 1343 { 1344 int32_t tmp1, tmp2; 1345 1346 RX_STACK_POP (tmp1); 1347 RX_STACK_POP (tmp2); 1348 tmp1 *= tmp2; 1349 RX_STACK_PUSH (tmp1); 1350 } 1351 break; 1352 1353 case R_RX_OPdiv: 1354 { 1355 int32_t tmp1, tmp2; 1356 1357 RX_STACK_POP (tmp1); 1358 RX_STACK_POP (tmp2); 1359 tmp1 /= tmp2; 1360 RX_STACK_PUSH (tmp1); 1361 } 1362 break; 1363 1364 case R_RX_OPshla: 1365 { 1366 int32_t tmp1, tmp2; 1367 1368 RX_STACK_POP (tmp1); 1369 RX_STACK_POP (tmp2); 1370 tmp1 <<= tmp2; 1371 RX_STACK_PUSH (tmp1); 1372 } 1373 break; 1374 1375 case R_RX_OPshra: 1376 { 1377 int32_t tmp1, tmp2; 1378 1379 RX_STACK_POP (tmp1); 1380 RX_STACK_POP (tmp2); 1381 tmp1 >>= tmp2; 1382 RX_STACK_PUSH (tmp1); 1383 } 1384 break; 1385 1386 case R_RX_OPsctsize: 1387 RX_STACK_PUSH (input_section->size); 1388 break; 1389 1390 case R_RX_OPscttop: 1391 RX_STACK_PUSH (input_section->output_section->vma); 1392 break; 1393 1394 case R_RX_OPand: 1395 { 1396 int32_t tmp1, tmp2; 1397 1398 RX_STACK_POP (tmp1); 1399 RX_STACK_POP (tmp2); 1400 tmp1 &= tmp2; 1401 RX_STACK_PUSH (tmp1); 1402 } 1403 break; 1404 1405 case R_RX_OPor: 1406 { 1407 int32_t tmp1, tmp2; 1408 1409 RX_STACK_POP (tmp1); 1410 RX_STACK_POP (tmp2); 1411 tmp1 |= tmp2; 1412 RX_STACK_PUSH (tmp1); 1413 } 1414 break; 1415 1416 case R_RX_OPxor: 1417 { 1418 int32_t tmp1, tmp2; 1419 1420 RX_STACK_POP (tmp1); 1421 RX_STACK_POP (tmp2); 1422 tmp1 ^= tmp2; 1423 RX_STACK_PUSH (tmp1); 1424 } 1425 break; 1426 1427 case R_RX_OPnot: 1428 { 1429 int32_t tmp; 1430 1431 RX_STACK_POP (tmp); 1432 tmp = ~ tmp; 1433 RX_STACK_PUSH (tmp); 1434 } 1435 break; 1436 1437 case R_RX_OPmod: 1438 { 1439 int32_t tmp1, tmp2; 1440 1441 RX_STACK_POP (tmp1); 1442 RX_STACK_POP (tmp2); 1443 tmp1 %= tmp2; 1444 RX_STACK_PUSH (tmp1); 1445 } 1446 break; 1447 1448 case R_RX_OPromtop: 1449 RX_STACK_PUSH (get_romstart (info, input_bfd, input_section, rel->r_offset)); 1450 break; 1451 1452 case R_RX_OPramtop: 1453 RX_STACK_PUSH (get_ramstart (info, input_bfd, input_section, rel->r_offset)); 1454 break; 1455 1456 default: 1457 r = bfd_reloc_notsupported; 1458 break; 1459 } 1460 1461 if (r != bfd_reloc_ok) 1462 { 1463 const char * msg = NULL; 1464 1465 switch (r) 1466 { 1467 case bfd_reloc_overflow: 1468 /* Catch the case of a missing function declaration 1469 and emit a more helpful error message. */ 1470 if (r_type == R_RX_DIR24S_PCREL) 1471 /* xgettext:c-format */ 1472 msg = _("%pB(%pA): error: call to undefined function '%s'"); 1473 else 1474 (*info->callbacks->reloc_overflow) 1475 (info, (h ? &h->root : NULL), name, howto->name, (bfd_vma) 0, 1476 input_bfd, input_section, rel->r_offset); 1477 break; 1478 1479 case bfd_reloc_undefined: 1480 (*info->callbacks->undefined_symbol) 1481 (info, name, input_bfd, input_section, rel->r_offset, true); 1482 break; 1483 1484 case bfd_reloc_other: 1485 /* xgettext:c-format */ 1486 msg = _("%pB(%pA): warning: unaligned access to symbol '%s' in the small data area"); 1487 break; 1488 1489 case bfd_reloc_outofrange: 1490 /* xgettext:c-format */ 1491 msg = _("%pB(%pA): internal error: out of range error"); 1492 break; 1493 1494 case bfd_reloc_notsupported: 1495 /* xgettext:c-format */ 1496 msg = _("%pB(%pA): internal error: unsupported relocation error"); 1497 break; 1498 1499 case bfd_reloc_dangerous: 1500 /* xgettext:c-format */ 1501 msg = _("%pB(%pA): internal error: dangerous relocation"); 1502 break; 1503 1504 default: 1505 /* xgettext:c-format */ 1506 msg = _("%pB(%pA): internal error: unknown error"); 1507 break; 1508 } 1509 1510 if (msg) 1511 _bfd_error_handler (msg, input_bfd, input_section, name); 1512 } 1513 } 1514 1515 return true; 1516 } 1517 1518 /* Relaxation Support. */ 1519 1520 /* Progression of relocations from largest operand size to smallest 1521 operand size. */ 1522 1523 static int 1524 next_smaller_reloc (int r) 1525 { 1526 switch (r) 1527 { 1528 case R_RX_DIR32: return R_RX_DIR24S; 1529 case R_RX_DIR24S: return R_RX_DIR16S; 1530 case R_RX_DIR16S: return R_RX_DIR8S; 1531 case R_RX_DIR8S: return R_RX_NONE; 1532 1533 case R_RX_DIR16: return R_RX_DIR8; 1534 case R_RX_DIR8: return R_RX_NONE; 1535 1536 case R_RX_DIR16U: return R_RX_DIR8U; 1537 case R_RX_DIR8U: return R_RX_NONE; 1538 1539 case R_RX_DIR24S_PCREL: return R_RX_DIR16S_PCREL; 1540 case R_RX_DIR16S_PCREL: return R_RX_DIR8S_PCREL; 1541 case R_RX_DIR8S_PCREL: return R_RX_DIR3U_PCREL; 1542 1543 case R_RX_DIR16UL: return R_RX_DIR8UL; 1544 case R_RX_DIR8UL: return R_RX_NONE; 1545 case R_RX_DIR16UW: return R_RX_DIR8UW; 1546 case R_RX_DIR8UW: return R_RX_NONE; 1547 1548 case R_RX_RH_32_OP: return R_RX_RH_24_OP; 1549 case R_RX_RH_24_OP: return R_RX_RH_16_OP; 1550 case R_RX_RH_16_OP: return R_RX_DIR8; 1551 1552 case R_RX_ABS32: return R_RX_ABS24S; 1553 case R_RX_ABS24S: return R_RX_ABS16S; 1554 case R_RX_ABS16: return R_RX_ABS8; 1555 case R_RX_ABS16U: return R_RX_ABS8U; 1556 case R_RX_ABS16S: return R_RX_ABS8S; 1557 case R_RX_ABS8: return R_RX_NONE; 1558 case R_RX_ABS8U: return R_RX_NONE; 1559 case R_RX_ABS8S: return R_RX_NONE; 1560 case R_RX_ABS24S_PCREL: return R_RX_ABS16S_PCREL; 1561 case R_RX_ABS16S_PCREL: return R_RX_ABS8S_PCREL; 1562 case R_RX_ABS8S_PCREL: return R_RX_NONE; 1563 case R_RX_ABS16UL: return R_RX_ABS8UL; 1564 case R_RX_ABS16UW: return R_RX_ABS8UW; 1565 case R_RX_ABS8UL: return R_RX_NONE; 1566 case R_RX_ABS8UW: return R_RX_NONE; 1567 } 1568 return r; 1569 }; 1570 1571 /* Delete some bytes from a section while relaxing. */ 1572 1573 static bool 1574 elf32_rx_relax_delete_bytes (bfd *abfd, asection *sec, bfd_vma addr, int count, 1575 Elf_Internal_Rela *alignment_rel, int force_snip, 1576 Elf_Internal_Rela *irelstart) 1577 { 1578 Elf_Internal_Shdr * symtab_hdr; 1579 unsigned int sec_shndx; 1580 bfd_byte * contents; 1581 Elf_Internal_Rela * irel; 1582 Elf_Internal_Rela * irelend; 1583 Elf_Internal_Sym * isym; 1584 Elf_Internal_Sym * isymend; 1585 bfd_vma toaddr; 1586 unsigned int symcount; 1587 struct elf_link_hash_entry ** sym_hashes; 1588 struct elf_link_hash_entry ** end_hashes; 1589 1590 if (!alignment_rel) 1591 force_snip = 1; 1592 1593 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec); 1594 1595 contents = elf_section_data (sec)->this_hdr.contents; 1596 1597 /* The deletion must stop at the next alignment boundary, if 1598 ALIGNMENT_REL is non-NULL. */ 1599 toaddr = sec->size; 1600 if (alignment_rel) 1601 toaddr = alignment_rel->r_offset; 1602 1603 BFD_ASSERT (toaddr > addr); 1604 1605 /* Actually delete the bytes. */ 1606 memmove (contents + addr, contents + addr + count, 1607 (size_t) (toaddr - addr - count)); 1608 1609 /* If we don't have an alignment marker to worry about, we can just 1610 shrink the section. Otherwise, we have to fill in the newly 1611 created gap with NOP insns (0x03). */ 1612 if (force_snip) 1613 sec->size -= count; 1614 else 1615 memset (contents + toaddr - count, 0x03, count); 1616 1617 irel = irelstart; 1618 BFD_ASSERT (irel != NULL || sec->reloc_count == 0); 1619 irelend = irel + sec->reloc_count; 1620 1621 /* Adjust all the relocs. */ 1622 for (; irel < irelend; irel++) 1623 { 1624 /* Get the new reloc address. */ 1625 if (irel->r_offset > addr 1626 && (irel->r_offset < toaddr 1627 || (force_snip && irel->r_offset == toaddr))) 1628 irel->r_offset -= count; 1629 1630 /* If we see an ALIGN marker at the end of the gap, we move it 1631 to the beginning of the gap, since marking these gaps is what 1632 they're for. */ 1633 if (irel->r_offset == toaddr 1634 && ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX 1635 && irel->r_addend & RX_RELAXA_ALIGN) 1636 irel->r_offset -= count; 1637 } 1638 1639 /* Adjust the local symbols defined in this section. */ 1640 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 1641 isym = (Elf_Internal_Sym *) symtab_hdr->contents; 1642 isymend = isym + symtab_hdr->sh_info; 1643 1644 for (; isym < isymend; isym++) 1645 { 1646 /* If the symbol is in the range of memory we just moved, we 1647 have to adjust its value. */ 1648 if (isym->st_shndx == sec_shndx 1649 && isym->st_value > addr 1650 && isym->st_value < toaddr) 1651 isym->st_value -= count; 1652 1653 /* If the symbol *spans* the bytes we just deleted (i.e. it's 1654 *end* is in the moved bytes but it's *start* isn't), then we 1655 must adjust its size. */ 1656 if (isym->st_shndx == sec_shndx 1657 && isym->st_value < addr 1658 && isym->st_value + isym->st_size > addr 1659 && isym->st_value + isym->st_size < toaddr) 1660 isym->st_size -= count; 1661 } 1662 1663 /* Now adjust the global symbols defined in this section. */ 1664 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym) 1665 - symtab_hdr->sh_info); 1666 sym_hashes = elf_sym_hashes (abfd); 1667 end_hashes = sym_hashes + symcount; 1668 1669 for (; sym_hashes < end_hashes; sym_hashes++) 1670 { 1671 struct elf_link_hash_entry *sym_hash = *sym_hashes; 1672 1673 if ((sym_hash->root.type == bfd_link_hash_defined 1674 || sym_hash->root.type == bfd_link_hash_defweak) 1675 && sym_hash->root.u.def.section == sec) 1676 { 1677 /* As above, adjust the value if needed. */ 1678 if (sym_hash->root.u.def.value > addr 1679 && sym_hash->root.u.def.value < toaddr) 1680 sym_hash->root.u.def.value -= count; 1681 1682 /* As above, adjust the size if needed. */ 1683 if (sym_hash->root.u.def.value < addr 1684 && sym_hash->root.u.def.value + sym_hash->size > addr 1685 && sym_hash->root.u.def.value + sym_hash->size < toaddr) 1686 sym_hash->size -= count; 1687 } 1688 } 1689 1690 return true; 1691 } 1692 1693 /* Used to sort relocs by address. If relocs have the same address, 1694 we maintain their relative order, except that R_RX_RH_RELAX 1695 alignment relocs must be the first reloc for any given address. */ 1696 1697 static void 1698 reloc_bubblesort (Elf_Internal_Rela * r, int count) 1699 { 1700 int i; 1701 bool again; 1702 bool swappit; 1703 1704 /* This is almost a classic bubblesort. It's the slowest sort, but 1705 we're taking advantage of the fact that the relocations are 1706 mostly in order already (the assembler emits them that way) and 1707 we need relocs with the same address to remain in the same 1708 relative order. */ 1709 again = true; 1710 while (again) 1711 { 1712 again = false; 1713 for (i = 0; i < count - 1; i ++) 1714 { 1715 if (r[i].r_offset > r[i + 1].r_offset) 1716 swappit = true; 1717 else if (r[i].r_offset < r[i + 1].r_offset) 1718 swappit = false; 1719 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX 1720 && (r[i + 1].r_addend & RX_RELAXA_ALIGN)) 1721 swappit = true; 1722 else if (ELF32_R_TYPE (r[i + 1].r_info) == R_RX_RH_RELAX 1723 && (r[i + 1].r_addend & RX_RELAXA_ELIGN) 1724 && !(ELF32_R_TYPE (r[i].r_info) == R_RX_RH_RELAX 1725 && (r[i].r_addend & RX_RELAXA_ALIGN))) 1726 swappit = true; 1727 else 1728 swappit = false; 1729 1730 if (swappit) 1731 { 1732 Elf_Internal_Rela tmp; 1733 1734 tmp = r[i]; 1735 r[i] = r[i + 1]; 1736 r[i + 1] = tmp; 1737 /* If we do move a reloc back, re-scan to see if it 1738 needs to be moved even further back. This avoids 1739 most of the O(n^2) behavior for our cases. */ 1740 if (i > 0) 1741 i -= 2; 1742 again = true; 1743 } 1744 } 1745 } 1746 } 1747 1748 1749 #define OFFSET_FOR_RELOC(rel, lrel, scale) \ 1750 rx_offset_for_reloc (abfd, rel + 1, symtab_hdr, shndx_buf, intsyms, \ 1751 lrel, abfd, sec, link_info, scale) 1752 1753 static bfd_vma 1754 rx_offset_for_reloc (bfd * abfd, 1755 Elf_Internal_Rela * rel, 1756 Elf_Internal_Shdr * symtab_hdr, 1757 bfd_byte * shndx_buf ATTRIBUTE_UNUSED, 1758 Elf_Internal_Sym * intsyms, 1759 Elf_Internal_Rela ** lrel, 1760 bfd * input_bfd, 1761 asection * input_section, 1762 struct bfd_link_info * info, 1763 int * scale) 1764 { 1765 bfd_vma symval; 1766 bfd_reloc_status_type r; 1767 1768 *scale = 1; 1769 1770 /* REL is the first of 1..N relocations. We compute the symbol 1771 value for each relocation, then combine them if needed. LREL 1772 gets a pointer to the last relocation used. */ 1773 while (1) 1774 { 1775 int32_t tmp1, tmp2; 1776 1777 /* Get the value of the symbol referred to by the reloc. */ 1778 if (ELF32_R_SYM (rel->r_info) < symtab_hdr->sh_info) 1779 { 1780 /* A local symbol. */ 1781 Elf_Internal_Sym *isym; 1782 asection *ssec; 1783 1784 isym = intsyms + ELF32_R_SYM (rel->r_info); 1785 1786 if (isym->st_shndx == SHN_UNDEF) 1787 ssec = bfd_und_section_ptr; 1788 else if (isym->st_shndx == SHN_ABS) 1789 ssec = bfd_abs_section_ptr; 1790 else if (isym->st_shndx == SHN_COMMON) 1791 ssec = bfd_com_section_ptr; 1792 else 1793 ssec = bfd_section_from_elf_index (abfd, 1794 isym->st_shndx); 1795 1796 /* Initial symbol value. */ 1797 symval = isym->st_value; 1798 1799 /* GAS may have made this symbol relative to a section, in 1800 which case, we have to add the addend to find the 1801 symbol. */ 1802 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION) 1803 symval += rel->r_addend; 1804 1805 if (ssec) 1806 { 1807 if ((ssec->flags & SEC_MERGE) 1808 && ssec->sec_info_type == SEC_INFO_TYPE_MERGE) 1809 symval = _bfd_merged_section_offset (abfd, & ssec, 1810 elf_section_data (ssec)->sec_info, 1811 symval); 1812 } 1813 1814 /* Now make the offset relative to where the linker is putting it. */ 1815 if (ssec) 1816 symval += 1817 ssec->output_section->vma + ssec->output_offset; 1818 1819 symval += rel->r_addend; 1820 } 1821 else 1822 { 1823 unsigned long indx; 1824 struct elf_link_hash_entry * h; 1825 1826 /* An external symbol. */ 1827 indx = ELF32_R_SYM (rel->r_info) - symtab_hdr->sh_info; 1828 h = elf_sym_hashes (abfd)[indx]; 1829 BFD_ASSERT (h != NULL); 1830 1831 if (h->root.type != bfd_link_hash_defined 1832 && h->root.type != bfd_link_hash_defweak) 1833 { 1834 /* This appears to be a reference to an undefined 1835 symbol. Just ignore it--it will be caught by the 1836 regular reloc processing. */ 1837 if (lrel) 1838 *lrel = rel; 1839 return 0; 1840 } 1841 1842 symval = (h->root.u.def.value 1843 + h->root.u.def.section->output_section->vma 1844 + h->root.u.def.section->output_offset); 1845 1846 symval += rel->r_addend; 1847 } 1848 1849 switch (ELF32_R_TYPE (rel->r_info)) 1850 { 1851 case R_RX_SYM: 1852 RX_STACK_PUSH (symval); 1853 break; 1854 1855 case R_RX_OPneg: 1856 RX_STACK_POP (tmp1); 1857 tmp1 = - tmp1; 1858 RX_STACK_PUSH (tmp1); 1859 break; 1860 1861 case R_RX_OPadd: 1862 RX_STACK_POP (tmp1); 1863 RX_STACK_POP (tmp2); 1864 tmp1 += tmp2; 1865 RX_STACK_PUSH (tmp1); 1866 break; 1867 1868 case R_RX_OPsub: 1869 RX_STACK_POP (tmp1); 1870 RX_STACK_POP (tmp2); 1871 tmp2 -= tmp1; 1872 RX_STACK_PUSH (tmp2); 1873 break; 1874 1875 case R_RX_OPmul: 1876 RX_STACK_POP (tmp1); 1877 RX_STACK_POP (tmp2); 1878 tmp1 *= tmp2; 1879 RX_STACK_PUSH (tmp1); 1880 break; 1881 1882 case R_RX_OPdiv: 1883 RX_STACK_POP (tmp1); 1884 RX_STACK_POP (tmp2); 1885 tmp1 /= tmp2; 1886 RX_STACK_PUSH (tmp1); 1887 break; 1888 1889 case R_RX_OPshla: 1890 RX_STACK_POP (tmp1); 1891 RX_STACK_POP (tmp2); 1892 tmp1 <<= tmp2; 1893 RX_STACK_PUSH (tmp1); 1894 break; 1895 1896 case R_RX_OPshra: 1897 RX_STACK_POP (tmp1); 1898 RX_STACK_POP (tmp2); 1899 tmp1 >>= tmp2; 1900 RX_STACK_PUSH (tmp1); 1901 break; 1902 1903 case R_RX_OPsctsize: 1904 RX_STACK_PUSH (input_section->size); 1905 break; 1906 1907 case R_RX_OPscttop: 1908 RX_STACK_PUSH (input_section->output_section->vma); 1909 break; 1910 1911 case R_RX_OPand: 1912 RX_STACK_POP (tmp1); 1913 RX_STACK_POP (tmp2); 1914 tmp1 &= tmp2; 1915 RX_STACK_PUSH (tmp1); 1916 break; 1917 1918 case R_RX_OPor: 1919 RX_STACK_POP (tmp1); 1920 RX_STACK_POP (tmp2); 1921 tmp1 |= tmp2; 1922 RX_STACK_PUSH (tmp1); 1923 break; 1924 1925 case R_RX_OPxor: 1926 RX_STACK_POP (tmp1); 1927 RX_STACK_POP (tmp2); 1928 tmp1 ^= tmp2; 1929 RX_STACK_PUSH (tmp1); 1930 break; 1931 1932 case R_RX_OPnot: 1933 RX_STACK_POP (tmp1); 1934 tmp1 = ~ tmp1; 1935 RX_STACK_PUSH (tmp1); 1936 break; 1937 1938 case R_RX_OPmod: 1939 RX_STACK_POP (tmp1); 1940 RX_STACK_POP (tmp2); 1941 tmp1 %= tmp2; 1942 RX_STACK_PUSH (tmp1); 1943 break; 1944 1945 case R_RX_OPromtop: 1946 RX_STACK_PUSH (get_romstart (info, input_bfd, input_section, rel->r_offset)); 1947 break; 1948 1949 case R_RX_OPramtop: 1950 RX_STACK_PUSH (get_ramstart (info, input_bfd, input_section, rel->r_offset)); 1951 break; 1952 1953 case R_RX_DIR16UL: 1954 case R_RX_DIR8UL: 1955 case R_RX_ABS16UL: 1956 case R_RX_ABS8UL: 1957 if (rx_stack_top) 1958 RX_STACK_POP (symval); 1959 if (lrel) 1960 *lrel = rel; 1961 *scale = 4; 1962 return symval; 1963 1964 case R_RX_DIR16UW: 1965 case R_RX_DIR8UW: 1966 case R_RX_ABS16UW: 1967 case R_RX_ABS8UW: 1968 if (rx_stack_top) 1969 RX_STACK_POP (symval); 1970 if (lrel) 1971 *lrel = rel; 1972 *scale = 2; 1973 return symval; 1974 1975 default: 1976 if (rx_stack_top) 1977 RX_STACK_POP (symval); 1978 if (lrel) 1979 *lrel = rel; 1980 return symval; 1981 } 1982 1983 rel ++; 1984 } 1985 /* FIXME. */ 1986 (void) r; 1987 } 1988 1989 static void 1990 move_reloc (Elf_Internal_Rela * irel, Elf_Internal_Rela * srel, int delta) 1991 { 1992 bfd_vma old_offset = srel->r_offset; 1993 1994 irel ++; 1995 while (irel <= srel) 1996 { 1997 if (irel->r_offset == old_offset) 1998 irel->r_offset += delta; 1999 irel ++; 2000 } 2001 } 2002 2003 /* Relax one section. */ 2004 2005 static bool 2006 elf32_rx_relax_section (bfd *abfd, 2007 asection *sec, 2008 struct bfd_link_info *link_info, 2009 bool *again, 2010 bool allow_pcrel3) 2011 { 2012 Elf_Internal_Shdr *symtab_hdr; 2013 Elf_Internal_Shdr *shndx_hdr; 2014 Elf_Internal_Rela *internal_relocs; 2015 Elf_Internal_Rela *irel; 2016 Elf_Internal_Rela *srel; 2017 Elf_Internal_Rela *irelend; 2018 Elf_Internal_Rela *next_alignment; 2019 Elf_Internal_Rela *prev_alignment; 2020 bfd_byte *contents = NULL; 2021 bfd_byte *free_contents = NULL; 2022 Elf_Internal_Sym *intsyms = NULL; 2023 Elf_Internal_Sym *free_intsyms = NULL; 2024 bfd_byte *shndx_buf = NULL; 2025 bfd_vma pc; 2026 bfd_vma sec_start; 2027 bfd_vma symval = 0; 2028 int pcrel = 0; 2029 int code = 0; 2030 int section_alignment_glue; 2031 /* how much to scale the relocation by - 1, 2, or 4. */ 2032 int scale; 2033 2034 /* Assume nothing changes. */ 2035 *again = false; 2036 2037 /* We don't have to do anything for a relocatable link, if 2038 this section does not have relocs, or if this is not a 2039 code section. */ 2040 if (bfd_link_relocatable (link_info) 2041 || sec->reloc_count == 0 2042 || (sec->flags & SEC_RELOC) == 0 2043 || (sec->flags & SEC_HAS_CONTENTS) == 0 2044 || (sec->flags & SEC_CODE) == 0) 2045 return true; 2046 2047 symtab_hdr = & elf_symtab_hdr (abfd); 2048 if (elf_symtab_shndx_list (abfd)) 2049 shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr; 2050 else 2051 shndx_hdr = NULL; 2052 2053 sec_start = sec->output_section->vma + sec->output_offset; 2054 2055 /* Get the section contents. */ 2056 if (elf_section_data (sec)->this_hdr.contents != NULL) 2057 contents = elf_section_data (sec)->this_hdr.contents; 2058 /* Go get them off disk. */ 2059 else 2060 { 2061 if (! bfd_malloc_and_get_section (abfd, sec, &contents)) 2062 goto error_return; 2063 elf_section_data (sec)->this_hdr.contents = contents; 2064 } 2065 2066 /* Read this BFD's symbols. */ 2067 /* Get cached copy if it exists. */ 2068 if (symtab_hdr->contents != NULL) 2069 intsyms = (Elf_Internal_Sym *) symtab_hdr->contents; 2070 else 2071 { 2072 intsyms = bfd_elf_get_elf_syms (abfd, symtab_hdr, symtab_hdr->sh_info, 0, NULL, NULL, NULL); 2073 symtab_hdr->contents = (bfd_byte *) intsyms; 2074 } 2075 2076 if (shndx_hdr && shndx_hdr->sh_size != 0) 2077 { 2078 size_t amt; 2079 2080 if (_bfd_mul_overflow (symtab_hdr->sh_info, 2081 sizeof (Elf_External_Sym_Shndx), &amt)) 2082 { 2083 bfd_set_error (bfd_error_file_too_big); 2084 goto error_return; 2085 } 2086 if (bfd_seek (abfd, shndx_hdr->sh_offset, SEEK_SET) != 0) 2087 goto error_return; 2088 shndx_buf = _bfd_malloc_and_read (abfd, amt, amt); 2089 if (shndx_buf == NULL) 2090 goto error_return; 2091 shndx_hdr->contents = shndx_buf; 2092 } 2093 2094 /* Get a copy of the native relocations. */ 2095 /* Note - we ignore the setting of link_info->keep_memory when reading 2096 in these relocs. We have to maintain a permanent copy of the relocs 2097 because we are going to walk over them multiple times, adjusting them 2098 as bytes are deleted from the section, and with this relaxation 2099 function itself being called multiple times on the same section... */ 2100 internal_relocs = _bfd_elf_link_read_relocs 2101 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL, true); 2102 if (internal_relocs == NULL) 2103 goto error_return; 2104 2105 /* The RL_ relocs must be just before the operand relocs they go 2106 with, so we must sort them to guarantee this. We use bubblesort 2107 instead of qsort so we can guarantee that relocs with the same 2108 address remain in the same relative order. */ 2109 reloc_bubblesort (internal_relocs, sec->reloc_count); 2110 2111 /* Walk through them looking for relaxing opportunities. */ 2112 irelend = internal_relocs + sec->reloc_count; 2113 2114 /* This will either be NULL or a pointer to the next alignment 2115 relocation. */ 2116 next_alignment = internal_relocs; 2117 /* This will be the previous alignment, although at first it points 2118 to the first real relocation. */ 2119 prev_alignment = internal_relocs; 2120 2121 /* We calculate worst case shrinkage caused by alignment directives. 2122 No fool-proof, but better than either ignoring the problem or 2123 doing heavy duty analysis of all the alignment markers in all 2124 input sections. */ 2125 section_alignment_glue = 0; 2126 for (irel = internal_relocs; irel < irelend; irel++) 2127 if (ELF32_R_TYPE (irel->r_info) == R_RX_RH_RELAX 2128 && irel->r_addend & RX_RELAXA_ALIGN) 2129 { 2130 int this_glue = 1 << (irel->r_addend & RX_RELAXA_ANUM); 2131 2132 if (section_alignment_glue < this_glue) 2133 section_alignment_glue = this_glue; 2134 } 2135 /* Worst case is all 0..N alignments, in order, causing 2*N-1 byte 2136 shrinkage. */ 2137 section_alignment_glue *= 2; 2138 2139 for (irel = internal_relocs; irel < irelend; irel++) 2140 { 2141 unsigned char *insn; 2142 int nrelocs; 2143 2144 /* The insns we care about are all marked with one of these. */ 2145 if (ELF32_R_TYPE (irel->r_info) != R_RX_RH_RELAX) 2146 continue; 2147 2148 if (irel->r_addend & RX_RELAXA_ALIGN 2149 || next_alignment == internal_relocs) 2150 { 2151 /* When we delete bytes, we need to maintain all the alignments 2152 indicated. In addition, we need to be careful about relaxing 2153 jumps across alignment boundaries - these displacements 2154 *grow* when we delete bytes. For now, don't shrink 2155 displacements across an alignment boundary, just in case. 2156 Note that this only affects relocations to the same 2157 section. */ 2158 prev_alignment = next_alignment; 2159 next_alignment += 2; 2160 while (next_alignment < irelend 2161 && (ELF32_R_TYPE (next_alignment->r_info) != R_RX_RH_RELAX 2162 || !(next_alignment->r_addend & RX_RELAXA_ELIGN))) 2163 next_alignment ++; 2164 if (next_alignment >= irelend || next_alignment->r_offset == 0) 2165 next_alignment = NULL; 2166 } 2167 2168 /* When we hit alignment markers, see if we've shrunk enough 2169 before them to reduce the gap without violating the alignment 2170 requirements. */ 2171 if (irel->r_addend & RX_RELAXA_ALIGN) 2172 { 2173 /* At this point, the next relocation *should* be the ELIGN 2174 end marker. */ 2175 Elf_Internal_Rela *erel = irel + 1; 2176 unsigned int alignment, nbytes; 2177 2178 if (ELF32_R_TYPE (erel->r_info) != R_RX_RH_RELAX) 2179 continue; 2180 if (!(erel->r_addend & RX_RELAXA_ELIGN)) 2181 continue; 2182 2183 alignment = 1 << (irel->r_addend & RX_RELAXA_ANUM); 2184 2185 if (erel->r_offset - irel->r_offset < alignment) 2186 continue; 2187 2188 nbytes = erel->r_offset - irel->r_offset; 2189 nbytes /= alignment; 2190 nbytes *= alignment; 2191 2192 elf32_rx_relax_delete_bytes (abfd, sec, erel->r_offset-nbytes, nbytes, next_alignment, 2193 erel->r_offset == sec->size, internal_relocs); 2194 *again = true; 2195 2196 continue; 2197 } 2198 2199 if (irel->r_addend & RX_RELAXA_ELIGN) 2200 continue; 2201 2202 insn = contents + irel->r_offset; 2203 2204 nrelocs = irel->r_addend & RX_RELAXA_RNUM; 2205 2206 /* At this point, we have an insn that is a candidate for linker 2207 relaxation. There are NRELOCS relocs following that may be 2208 relaxed, although each reloc may be made of more than one 2209 reloc entry (such as gp-rel symbols). */ 2210 2211 /* Get the value of the symbol referred to by the reloc. Just 2212 in case this is the last reloc in the list, use the RL's 2213 addend to choose between this reloc (no addend) or the next 2214 (yes addend, which means at least one following reloc). */ 2215 2216 /* srel points to the "current" reloction for this insn - 2217 actually the last reloc for a given operand, which is the one 2218 we need to update. We check the relaxations in the same 2219 order that the relocations happen, so we'll just push it 2220 along as we go. */ 2221 srel = irel; 2222 2223 pc = sec->output_section->vma + sec->output_offset 2224 + srel->r_offset; 2225 2226 #define GET_RELOC \ 2227 symval = OFFSET_FOR_RELOC (srel, &srel, &scale); \ 2228 pcrel = symval - pc + srel->r_addend; \ 2229 nrelocs --; 2230 2231 #define SNIPNR(offset, nbytes) \ 2232 elf32_rx_relax_delete_bytes (abfd, sec, (insn - contents) + offset, nbytes, next_alignment, 0, internal_relocs); 2233 #define SNIP(offset, nbytes, newtype) \ 2234 SNIPNR (offset, nbytes); \ 2235 srel->r_info = ELF32_R_INFO (ELF32_R_SYM (srel->r_info), newtype) 2236 2237 /* The order of these bit tests must match the order that the 2238 relocs appear in. Since we sorted those by offset, we can 2239 predict them. */ 2240 2241 /* Note that the numbers in, say, DSP6 are the bit offsets of 2242 the code fields that describe the operand. Bits number 0 for 2243 the MSB of insn[0]. */ 2244 2245 /* DSP* codes: 2246 0 00 [reg] 2247 1 01 dsp:8[reg] 2248 2 10 dsp:16[reg] 2249 3 11 reg */ 2250 if (irel->r_addend & RX_RELAXA_DSP6) 2251 { 2252 GET_RELOC; 2253 2254 code = insn[0] & 3; 2255 if (code == 2 && symval/scale <= 255) 2256 { 2257 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2258 insn[0] &= 0xfc; 2259 insn[0] |= 0x01; 2260 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2261 if (newrel != ELF32_R_TYPE (srel->r_info)) 2262 { 2263 SNIP (3, 1, newrel); 2264 *again = true; 2265 } 2266 } 2267 2268 else if (code == 1 && symval == 0) 2269 { 2270 insn[0] &= 0xfc; 2271 SNIP (2, 1, R_RX_NONE); 2272 *again = true; 2273 } 2274 2275 /* Special case DSP:5 format: MOV.bwl dsp:5[Rsrc],Rdst. */ 2276 else if (code == 1 && symval/scale <= 31 2277 /* Decodable bits. */ 2278 && (insn[0] & 0xcc) == 0xcc 2279 /* Width. */ 2280 && (insn[0] & 0x30) != 0x30 2281 /* Register MSBs. */ 2282 && (insn[1] & 0x88) == 0x00) 2283 { 2284 int newrel = 0; 2285 2286 insn[0] = 0x88 | (insn[0] & 0x30); 2287 /* The register fields are in the right place already. */ 2288 2289 /* We can't relax this new opcode. */ 2290 irel->r_addend = 0; 2291 2292 switch ((insn[0] & 0x30) >> 4) 2293 { 2294 case 0: 2295 newrel = R_RX_RH_ABS5p5B; 2296 break; 2297 case 1: 2298 newrel = R_RX_RH_ABS5p5W; 2299 break; 2300 case 2: 2301 newrel = R_RX_RH_ABS5p5L; 2302 break; 2303 } 2304 2305 move_reloc (irel, srel, -2); 2306 SNIP (2, 1, newrel); 2307 } 2308 2309 /* Special case DSP:5 format: MOVU.bw dsp:5[Rsrc],Rdst. */ 2310 else if (code == 1 && symval/scale <= 31 2311 /* Decodable bits. */ 2312 && (insn[0] & 0xf8) == 0x58 2313 /* Register MSBs. */ 2314 && (insn[1] & 0x88) == 0x00) 2315 { 2316 int newrel = 0; 2317 2318 insn[0] = 0xb0 | ((insn[0] & 0x04) << 1); 2319 /* The register fields are in the right place already. */ 2320 2321 /* We can't relax this new opcode. */ 2322 irel->r_addend = 0; 2323 2324 switch ((insn[0] & 0x08) >> 3) 2325 { 2326 case 0: 2327 newrel = R_RX_RH_ABS5p5B; 2328 break; 2329 case 1: 2330 newrel = R_RX_RH_ABS5p5W; 2331 break; 2332 } 2333 2334 move_reloc (irel, srel, -2); 2335 SNIP (2, 1, newrel); 2336 } 2337 } 2338 2339 /* A DSP4 operand always follows a DSP6 operand, even if there's 2340 no relocation for it. We have to read the code out of the 2341 opcode to calculate the offset of the operand. */ 2342 if (irel->r_addend & RX_RELAXA_DSP4) 2343 { 2344 int code6, offset = 0; 2345 2346 GET_RELOC; 2347 2348 code6 = insn[0] & 0x03; 2349 switch (code6) 2350 { 2351 case 0: offset = 2; break; 2352 case 1: offset = 3; break; 2353 case 2: offset = 4; break; 2354 case 3: offset = 2; break; 2355 } 2356 2357 code = (insn[0] & 0x0c) >> 2; 2358 2359 if (code == 2 && symval / scale <= 255) 2360 { 2361 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2362 2363 insn[0] &= 0xf3; 2364 insn[0] |= 0x04; 2365 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2366 if (newrel != ELF32_R_TYPE (srel->r_info)) 2367 { 2368 SNIP (offset+1, 1, newrel); 2369 *again = true; 2370 } 2371 } 2372 2373 else if (code == 1 && symval == 0) 2374 { 2375 insn[0] &= 0xf3; 2376 SNIP (offset, 1, R_RX_NONE); 2377 *again = true; 2378 } 2379 /* Special case DSP:5 format: MOV.bwl Rsrc,dsp:5[Rdst] */ 2380 else if (code == 1 && symval/scale <= 31 2381 /* Decodable bits. */ 2382 && (insn[0] & 0xc3) == 0xc3 2383 /* Width. */ 2384 && (insn[0] & 0x30) != 0x30 2385 /* Register MSBs. */ 2386 && (insn[1] & 0x88) == 0x00) 2387 { 2388 int newrel = 0; 2389 2390 insn[0] = 0x80 | (insn[0] & 0x30); 2391 /* The register fields are in the right place already. */ 2392 2393 /* We can't relax this new opcode. */ 2394 irel->r_addend = 0; 2395 2396 switch ((insn[0] & 0x30) >> 4) 2397 { 2398 case 0: 2399 newrel = R_RX_RH_ABS5p5B; 2400 break; 2401 case 1: 2402 newrel = R_RX_RH_ABS5p5W; 2403 break; 2404 case 2: 2405 newrel = R_RX_RH_ABS5p5L; 2406 break; 2407 } 2408 2409 move_reloc (irel, srel, -2); 2410 SNIP (2, 1, newrel); 2411 } 2412 } 2413 2414 /* These always occur alone, but the offset depends on whether 2415 it's a MEMEX opcode (0x06) or not. */ 2416 if (irel->r_addend & RX_RELAXA_DSP14) 2417 { 2418 int offset; 2419 GET_RELOC; 2420 2421 if (insn[0] == 0x06) 2422 offset = 3; 2423 else 2424 offset = 4; 2425 2426 code = insn[1] & 3; 2427 2428 if (code == 2 && symval / scale <= 255) 2429 { 2430 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2431 2432 insn[1] &= 0xfc; 2433 insn[1] |= 0x01; 2434 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2435 if (newrel != ELF32_R_TYPE (srel->r_info)) 2436 { 2437 SNIP (offset, 1, newrel); 2438 *again = true; 2439 } 2440 } 2441 else if (code == 1 && symval == 0) 2442 { 2443 insn[1] &= 0xfc; 2444 SNIP (offset, 1, R_RX_NONE); 2445 *again = true; 2446 } 2447 } 2448 2449 /* IMM* codes: 2450 0 00 imm:32 2451 1 01 simm:8 2452 2 10 simm:16 2453 3 11 simm:24. */ 2454 2455 /* These always occur alone. */ 2456 if (irel->r_addend & RX_RELAXA_IMM6) 2457 { 2458 long ssymval; 2459 2460 GET_RELOC; 2461 2462 /* These relocations sign-extend, so we must do signed compares. */ 2463 ssymval = (long) symval; 2464 2465 code = insn[0] & 0x03; 2466 2467 if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608) 2468 { 2469 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2470 2471 insn[0] &= 0xfc; 2472 insn[0] |= 0x03; 2473 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2474 if (newrel != ELF32_R_TYPE (srel->r_info)) 2475 { 2476 SNIP (2, 1, newrel); 2477 *again = true; 2478 } 2479 } 2480 2481 else if (code == 3 && ssymval <= 32767 && ssymval >= -32768) 2482 { 2483 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2484 2485 insn[0] &= 0xfc; 2486 insn[0] |= 0x02; 2487 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2488 if (newrel != ELF32_R_TYPE (srel->r_info)) 2489 { 2490 SNIP (2, 1, newrel); 2491 *again = true; 2492 } 2493 } 2494 2495 /* Special case UIMM8 format: CMP #uimm8,Rdst. */ 2496 else if (code == 2 && ssymval <= 255 && ssymval >= 16 2497 /* Decodable bits. */ 2498 && (insn[0] & 0xfc) == 0x74 2499 /* Decodable bits. */ 2500 && ((insn[1] & 0xf0) == 0x00)) 2501 { 2502 int newrel; 2503 2504 insn[0] = 0x75; 2505 insn[1] = 0x50 | (insn[1] & 0x0f); 2506 2507 /* We can't relax this new opcode. */ 2508 irel->r_addend = 0; 2509 2510 if (STACK_REL_P (ELF32_R_TYPE (srel->r_info))) 2511 newrel = R_RX_ABS8U; 2512 else 2513 newrel = R_RX_DIR8U; 2514 2515 SNIP (2, 1, newrel); 2516 *again = true; 2517 } 2518 2519 else if (code == 2 && ssymval <= 127 && ssymval >= -128) 2520 { 2521 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2522 2523 insn[0] &= 0xfc; 2524 insn[0] |= 0x01; 2525 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2526 if (newrel != ELF32_R_TYPE (srel->r_info)) 2527 { 2528 SNIP (2, 1, newrel); 2529 *again = true; 2530 } 2531 } 2532 2533 /* Special case UIMM4 format: CMP, MUL, AND, OR. */ 2534 else if (code == 1 && ssymval <= 15 && ssymval >= 0 2535 /* Decodable bits and immediate type. */ 2536 && insn[0] == 0x75 2537 /* Decodable bits. */ 2538 && (insn[1] & 0xc0) == 0x00) 2539 { 2540 static const int newop[4] = { 1, 3, 4, 5 }; 2541 2542 insn[0] = 0x60 | newop[insn[1] >> 4]; 2543 /* The register number doesn't move. */ 2544 2545 /* We can't relax this new opcode. */ 2546 irel->r_addend = 0; 2547 2548 move_reloc (irel, srel, -1); 2549 2550 SNIP (2, 1, R_RX_RH_UIMM4p8); 2551 *again = true; 2552 } 2553 2554 /* Special case UIMM4 format: ADD -> ADD/SUB. */ 2555 else if (code == 1 && ssymval <= 15 && ssymval >= -15 2556 /* Decodable bits and immediate type. */ 2557 && insn[0] == 0x71 2558 /* Same register for source and destination. */ 2559 && ((insn[1] >> 4) == (insn[1] & 0x0f))) 2560 { 2561 int newrel; 2562 2563 /* Note that we can't turn "add $0,Rs" into a NOP 2564 because the flags need to be set right. */ 2565 2566 if (ssymval < 0) 2567 { 2568 insn[0] = 0x60; /* Subtract. */ 2569 newrel = R_RX_RH_UNEG4p8; 2570 } 2571 else 2572 { 2573 insn[0] = 0x62; /* Add. */ 2574 newrel = R_RX_RH_UIMM4p8; 2575 } 2576 2577 /* The register number is in the right place. */ 2578 2579 /* We can't relax this new opcode. */ 2580 irel->r_addend = 0; 2581 2582 move_reloc (irel, srel, -1); 2583 2584 SNIP (2, 1, newrel); 2585 *again = true; 2586 } 2587 } 2588 2589 /* These are either matched with a DSP6 (2-byte base) or an id24 2590 (3-byte base). */ 2591 if (irel->r_addend & RX_RELAXA_IMM12) 2592 { 2593 int dspcode, offset = 0; 2594 long ssymval; 2595 2596 GET_RELOC; 2597 2598 if ((insn[0] & 0xfc) == 0xfc) 2599 dspcode = 1; /* Just something with one byte operand. */ 2600 else 2601 dspcode = insn[0] & 3; 2602 switch (dspcode) 2603 { 2604 case 0: offset = 2; break; 2605 case 1: offset = 3; break; 2606 case 2: offset = 4; break; 2607 case 3: offset = 2; break; 2608 } 2609 2610 /* These relocations sign-extend, so we must do signed compares. */ 2611 ssymval = (long) symval; 2612 2613 code = (insn[1] >> 2) & 3; 2614 if (code == 0 && ssymval <= 8388607 && ssymval >= -8388608) 2615 { 2616 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2617 2618 insn[1] &= 0xf3; 2619 insn[1] |= 0x0c; 2620 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2621 if (newrel != ELF32_R_TYPE (srel->r_info)) 2622 { 2623 SNIP (offset, 1, newrel); 2624 *again = true; 2625 } 2626 } 2627 2628 else if (code == 3 && ssymval <= 32767 && ssymval >= -32768) 2629 { 2630 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2631 2632 insn[1] &= 0xf3; 2633 insn[1] |= 0x08; 2634 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2635 if (newrel != ELF32_R_TYPE (srel->r_info)) 2636 { 2637 SNIP (offset, 1, newrel); 2638 *again = true; 2639 } 2640 } 2641 2642 /* Special case UIMM8 format: MOV #uimm8,Rdst. */ 2643 else if (code == 2 && ssymval <= 255 && ssymval >= 16 2644 /* Decodable bits. */ 2645 && insn[0] == 0xfb 2646 /* Decodable bits. */ 2647 && ((insn[1] & 0x03) == 0x02)) 2648 { 2649 int newrel; 2650 2651 insn[0] = 0x75; 2652 insn[1] = 0x40 | (insn[1] >> 4); 2653 2654 /* We can't relax this new opcode. */ 2655 irel->r_addend = 0; 2656 2657 if (STACK_REL_P (ELF32_R_TYPE (srel->r_info))) 2658 newrel = R_RX_ABS8U; 2659 else 2660 newrel = R_RX_DIR8U; 2661 2662 SNIP (2, 1, newrel); 2663 *again = true; 2664 } 2665 2666 else if (code == 2 && ssymval <= 127 && ssymval >= -128) 2667 { 2668 unsigned int newrel = ELF32_R_TYPE(srel->r_info); 2669 2670 insn[1] &= 0xf3; 2671 insn[1] |= 0x04; 2672 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2673 if (newrel != ELF32_R_TYPE(srel->r_info)) 2674 { 2675 SNIP (offset, 1, newrel); 2676 *again = true; 2677 } 2678 } 2679 2680 /* Special case UIMM4 format: MOV #uimm4,Rdst. */ 2681 else if (code == 1 && ssymval <= 15 && ssymval >= 0 2682 /* Decodable bits. */ 2683 && insn[0] == 0xfb 2684 /* Decodable bits. */ 2685 && ((insn[1] & 0x03) == 0x02)) 2686 { 2687 insn[0] = 0x66; 2688 insn[1] = insn[1] >> 4; 2689 2690 /* We can't relax this new opcode. */ 2691 irel->r_addend = 0; 2692 2693 move_reloc (irel, srel, -1); 2694 2695 SNIP (2, 1, R_RX_RH_UIMM4p8); 2696 *again = true; 2697 } 2698 } 2699 2700 if (irel->r_addend & RX_RELAXA_BRA) 2701 { 2702 unsigned int newrel = ELF32_R_TYPE (srel->r_info); 2703 int max_pcrel3 = 4; 2704 int alignment_glue = 0; 2705 2706 GET_RELOC; 2707 2708 /* Branches over alignment chunks are problematic, as 2709 deleting bytes here makes the branch *further* away. We 2710 can be agressive with branches within this alignment 2711 block, but not branches outside it. */ 2712 if ((prev_alignment == NULL 2713 || symval < (bfd_vma)(sec_start + prev_alignment->r_offset)) 2714 && (next_alignment == NULL 2715 || symval > (bfd_vma)(sec_start + next_alignment->r_offset))) 2716 alignment_glue = section_alignment_glue; 2717 2718 if (ELF32_R_TYPE(srel[1].r_info) == R_RX_RH_RELAX 2719 && srel[1].r_addend & RX_RELAXA_BRA 2720 && srel[1].r_offset < irel->r_offset + pcrel) 2721 max_pcrel3 ++; 2722 2723 newrel = next_smaller_reloc (ELF32_R_TYPE (srel->r_info)); 2724 2725 /* The values we compare PCREL with are not what you'd 2726 expect; they're off by a little to compensate for (1) 2727 where the reloc is relative to the insn, and (2) how much 2728 the insn is going to change when we relax it. */ 2729 2730 /* These we have to decode. */ 2731 switch (insn[0]) 2732 { 2733 case 0x04: /* BRA pcdsp:24 */ 2734 if (-32768 + alignment_glue <= pcrel 2735 && pcrel <= 32765 - alignment_glue) 2736 { 2737 insn[0] = 0x38; 2738 SNIP (3, 1, newrel); 2739 *again = true; 2740 } 2741 break; 2742 2743 case 0x38: /* BRA pcdsp:16 */ 2744 if (-128 + alignment_glue <= pcrel 2745 && pcrel <= 127 - alignment_glue) 2746 { 2747 insn[0] = 0x2e; 2748 SNIP (2, 1, newrel); 2749 *again = true; 2750 } 2751 break; 2752 2753 case 0x2e: /* BRA pcdsp:8 */ 2754 /* Note that there's a risk here of shortening things so 2755 much that we no longer fit this reloc; it *should* 2756 only happen when you branch across a branch, and that 2757 branch also devolves into BRA.S. "Real" code should 2758 be OK. */ 2759 if (max_pcrel3 + alignment_glue <= pcrel 2760 && pcrel <= 10 - alignment_glue 2761 && allow_pcrel3) 2762 { 2763 insn[0] = 0x08; 2764 SNIP (1, 1, newrel); 2765 move_reloc (irel, srel, -1); 2766 *again = true; 2767 } 2768 break; 2769 2770 case 0x05: /* BSR pcdsp:24 */ 2771 if (-32768 + alignment_glue <= pcrel 2772 && pcrel <= 32765 - alignment_glue) 2773 { 2774 insn[0] = 0x39; 2775 SNIP (1, 1, newrel); 2776 *again = true; 2777 } 2778 break; 2779 2780 case 0x3a: /* BEQ.W pcdsp:16 */ 2781 case 0x3b: /* BNE.W pcdsp:16 */ 2782 if (-128 + alignment_glue <= pcrel 2783 && pcrel <= 127 - alignment_glue) 2784 { 2785 insn[0] = 0x20 | (insn[0] & 1); 2786 SNIP (1, 1, newrel); 2787 *again = true; 2788 } 2789 break; 2790 2791 case 0x20: /* BEQ.B pcdsp:8 */ 2792 case 0x21: /* BNE.B pcdsp:8 */ 2793 if (max_pcrel3 + alignment_glue <= pcrel 2794 && pcrel - alignment_glue <= 10 2795 && allow_pcrel3) 2796 { 2797 insn[0] = 0x10 | ((insn[0] & 1) << 3); 2798 SNIP (1, 1, newrel); 2799 move_reloc (irel, srel, -1); 2800 *again = true; 2801 } 2802 break; 2803 2804 case 0x16: /* synthetic BNE dsp24 */ 2805 case 0x1e: /* synthetic BEQ dsp24 */ 2806 if (-32767 + alignment_glue <= pcrel 2807 && pcrel <= 32766 - alignment_glue 2808 && insn[1] == 0x04) 2809 { 2810 if (insn[0] == 0x16) 2811 insn[0] = 0x3b; 2812 else 2813 insn[0] = 0x3a; 2814 /* We snip out the bytes at the end else the reloc 2815 will get moved too, and too much. */ 2816 SNIP (3, 2, newrel); 2817 move_reloc (irel, srel, -1); 2818 *again = true; 2819 } 2820 break; 2821 } 2822 2823 /* Special case - synthetic conditional branches, pcrel24. 2824 Note that EQ and NE have been handled above. */ 2825 if ((insn[0] & 0xf0) == 0x20 2826 && insn[1] == 0x06 2827 && insn[2] == 0x04 2828 && srel->r_offset != irel->r_offset + 1 2829 && -32767 + alignment_glue <= pcrel 2830 && pcrel <= 32766 - alignment_glue) 2831 { 2832 insn[1] = 0x05; 2833 insn[2] = 0x38; 2834 SNIP (5, 1, newrel); 2835 *again = true; 2836 } 2837 2838 /* Special case - synthetic conditional branches, pcrel16 */ 2839 if ((insn[0] & 0xf0) == 0x20 2840 && insn[1] == 0x05 2841 && insn[2] == 0x38 2842 && srel->r_offset != irel->r_offset + 1 2843 && -127 + alignment_glue <= pcrel 2844 && pcrel <= 126 - alignment_glue) 2845 { 2846 int cond = (insn[0] & 0x0f) ^ 0x01; 2847 2848 insn[0] = 0x20 | cond; 2849 /* By moving the reloc first, we avoid having 2850 delete_bytes move it also. */ 2851 move_reloc (irel, srel, -2); 2852 SNIP (2, 3, newrel); 2853 *again = true; 2854 } 2855 } 2856 2857 BFD_ASSERT (nrelocs == 0); 2858 2859 /* Special case - check MOV.bwl #IMM, dsp[reg] and see if we can 2860 use MOV.bwl #uimm:8, dsp:5[r7] format. This is tricky 2861 because it may have one or two relocations. */ 2862 if ((insn[0] & 0xfc) == 0xf8 2863 && (insn[1] & 0x80) == 0x00 2864 && (insn[0] & 0x03) != 0x03) 2865 { 2866 int dcode, icode, reg, ioff, dscale, ilen; 2867 bfd_vma disp_val = 0; 2868 long imm_val = 0; 2869 Elf_Internal_Rela * disp_rel = 0; 2870 Elf_Internal_Rela * imm_rel = 0; 2871 2872 /* Reset this. */ 2873 srel = irel; 2874 2875 dcode = insn[0] & 0x03; 2876 icode = (insn[1] >> 2) & 0x03; 2877 reg = (insn[1] >> 4) & 0x0f; 2878 2879 ioff = dcode == 1 ? 3 : dcode == 2 ? 4 : 2; 2880 2881 /* Figure out what the dispacement is. */ 2882 if (dcode == 1 || dcode == 2) 2883 { 2884 /* There's a displacement. See if there's a reloc for it. */ 2885 if (srel[1].r_offset == irel->r_offset + 2) 2886 { 2887 GET_RELOC; 2888 disp_val = symval; 2889 disp_rel = srel; 2890 } 2891 else 2892 { 2893 if (dcode == 1) 2894 disp_val = insn[2]; 2895 else 2896 { 2897 #if RX_OPCODE_BIG_ENDIAN 2898 disp_val = insn[2] * 256 + insn[3]; 2899 #else 2900 disp_val = insn[2] + insn[3] * 256; 2901 #endif 2902 } 2903 switch (insn[1] & 3) 2904 { 2905 case 1: 2906 disp_val *= 2; 2907 scale = 2; 2908 break; 2909 case 2: 2910 disp_val *= 4; 2911 scale = 4; 2912 break; 2913 } 2914 } 2915 } 2916 2917 dscale = scale; 2918 2919 /* Figure out what the immediate is. */ 2920 if (srel[1].r_offset == irel->r_offset + ioff) 2921 { 2922 GET_RELOC; 2923 imm_val = (long) symval; 2924 imm_rel = srel; 2925 } 2926 else 2927 { 2928 unsigned char * ip = insn + ioff; 2929 2930 switch (icode) 2931 { 2932 case 1: 2933 /* For byte writes, we don't sign extend. Makes the math easier later. */ 2934 if (scale == 1) 2935 imm_val = ip[0]; 2936 else 2937 imm_val = (char) ip[0]; 2938 break; 2939 case 2: 2940 #if RX_OPCODE_BIG_ENDIAN 2941 imm_val = ((char) ip[0] << 8) | ip[1]; 2942 #else 2943 imm_val = ((char) ip[1] << 8) | ip[0]; 2944 #endif 2945 break; 2946 case 3: 2947 #if RX_OPCODE_BIG_ENDIAN 2948 imm_val = ((char) ip[0] << 16) | (ip[1] << 8) | ip[2]; 2949 #else 2950 imm_val = ((char) ip[2] << 16) | (ip[1] << 8) | ip[0]; 2951 #endif 2952 break; 2953 case 0: 2954 #if RX_OPCODE_BIG_ENDIAN 2955 imm_val = ((unsigned) ip[0] << 24) | (ip[1] << 16) | (ip[2] << 8) | ip[3]; 2956 #else 2957 imm_val = ((unsigned) ip[3] << 24) | (ip[2] << 16) | (ip[1] << 8) | ip[0]; 2958 #endif 2959 break; 2960 } 2961 } 2962 2963 ilen = 2; 2964 2965 switch (dcode) 2966 { 2967 case 1: 2968 ilen += 1; 2969 break; 2970 case 2: 2971 ilen += 2; 2972 break; 2973 } 2974 2975 switch (icode) 2976 { 2977 case 1: 2978 ilen += 1; 2979 break; 2980 case 2: 2981 ilen += 2; 2982 break; 2983 case 3: 2984 ilen += 3; 2985 break; 2986 case 4: 2987 ilen += 4; 2988 break; 2989 } 2990 2991 /* The shortcut happens when the immediate is 0..255, 2992 register r0 to r7, and displacement (scaled) 0..31. */ 2993 2994 if (0 <= imm_val && imm_val <= 255 2995 && 0 <= reg && reg <= 7 2996 && disp_val / dscale <= 31) 2997 { 2998 insn[0] = 0x3c | (insn[1] & 0x03); 2999 insn[1] = (((disp_val / dscale) << 3) & 0x80) | (reg << 4) | ((disp_val/dscale) & 0x0f); 3000 insn[2] = imm_val; 3001 3002 if (disp_rel) 3003 { 3004 int newrel = R_RX_NONE; 3005 3006 switch (dscale) 3007 { 3008 case 1: 3009 newrel = R_RX_RH_ABS5p8B; 3010 break; 3011 case 2: 3012 newrel = R_RX_RH_ABS5p8W; 3013 break; 3014 case 4: 3015 newrel = R_RX_RH_ABS5p8L; 3016 break; 3017 } 3018 disp_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (disp_rel->r_info), newrel); 3019 move_reloc (irel, disp_rel, -1); 3020 } 3021 if (imm_rel) 3022 { 3023 imm_rel->r_info = ELF32_R_INFO (ELF32_R_SYM (imm_rel->r_info), R_RX_DIR8U); 3024 move_reloc (disp_rel ? disp_rel : irel, 3025 imm_rel, 3026 irel->r_offset - imm_rel->r_offset + 2); 3027 } 3028 3029 SNIPNR (3, ilen - 3); 3030 *again = true; 3031 3032 /* We can't relax this new opcode. */ 3033 irel->r_addend = 0; 3034 } 3035 } 3036 } 3037 3038 /* We can't reliably relax branches to DIR3U_PCREL unless we know 3039 whatever they're branching over won't shrink any more. If we're 3040 basically done here, do one more pass just for branches - but 3041 don't request a pass after that one! */ 3042 if (!*again && !allow_pcrel3) 3043 { 3044 bool ignored; 3045 3046 elf32_rx_relax_section (abfd, sec, link_info, &ignored, true); 3047 } 3048 3049 return true; 3050 3051 error_return: 3052 free (free_contents); 3053 3054 if (shndx_buf != NULL) 3055 { 3056 shndx_hdr->contents = NULL; 3057 free (shndx_buf); 3058 } 3059 3060 free (free_intsyms); 3061 3062 return false; 3063 } 3064 3065 static bool 3066 elf32_rx_relax_section_wrapper (bfd *abfd, 3067 asection *sec, 3068 struct bfd_link_info *link_info, 3069 bool *again) 3070 { 3071 return elf32_rx_relax_section (abfd, sec, link_info, again, false); 3072 } 3073 3074 /* Function to set the ELF flag bits. */ 3075 3076 static bool 3077 rx_elf_set_private_flags (bfd * abfd, flagword flags) 3078 { 3079 elf_elfheader (abfd)->e_flags = flags; 3080 elf_flags_init (abfd) = true; 3081 return true; 3082 } 3083 3084 static bool no_warn_mismatch = false; 3085 static bool ignore_lma = true; 3086 3087 void bfd_elf32_rx_set_target_flags (bool, bool); 3088 3089 void 3090 bfd_elf32_rx_set_target_flags (bool user_no_warn_mismatch, 3091 bool user_ignore_lma) 3092 { 3093 no_warn_mismatch = user_no_warn_mismatch; 3094 ignore_lma = user_ignore_lma; 3095 } 3096 3097 /* Converts FLAGS into a descriptive string. 3098 Returns a static pointer. */ 3099 3100 static const char * 3101 describe_flags (flagword flags, char *buf) 3102 { 3103 buf[0] = 0; 3104 3105 if (flags & E_FLAG_RX_64BIT_DOUBLES) 3106 strcat (buf, "64-bit doubles"); 3107 else 3108 strcat (buf, "32-bit doubles"); 3109 3110 if (flags & E_FLAG_RX_DSP) 3111 strcat (buf, ", dsp"); 3112 else 3113 strcat (buf, ", no dsp"); 3114 3115 if (flags & E_FLAG_RX_PID) 3116 strcat (buf, ", pid"); 3117 else 3118 strcat (buf, ", no pid"); 3119 3120 if (flags & E_FLAG_RX_ABI) 3121 strcat (buf, ", RX ABI"); 3122 else 3123 strcat (buf, ", GCC ABI"); 3124 3125 if (flags & E_FLAG_RX_SINSNS_SET) 3126 strcat (buf, flags & E_FLAG_RX_SINSNS_YES ? ", uses String instructions" : ", bans String instructions"); 3127 3128 return buf; 3129 } 3130 3131 /* Merge backend specific data from an object file to the output 3132 object file when linking. */ 3133 3134 static bool 3135 rx_elf_merge_private_bfd_data (bfd * ibfd, struct bfd_link_info *info) 3136 { 3137 bfd *obfd = info->output_bfd; 3138 flagword old_flags; 3139 flagword new_flags; 3140 bool error = false; 3141 3142 new_flags = elf_elfheader (ibfd)->e_flags; 3143 old_flags = elf_elfheader (obfd)->e_flags; 3144 3145 if (!elf_flags_init (obfd)) 3146 { 3147 /* First call, no flags set. */ 3148 elf_flags_init (obfd) = true; 3149 elf_elfheader (obfd)->e_flags = new_flags; 3150 } 3151 else if (old_flags != new_flags) 3152 { 3153 flagword known_flags; 3154 3155 if (old_flags & E_FLAG_RX_SINSNS_SET) 3156 { 3157 if ((new_flags & E_FLAG_RX_SINSNS_SET) == 0) 3158 { 3159 new_flags &= ~ E_FLAG_RX_SINSNS_MASK; 3160 new_flags |= (old_flags & E_FLAG_RX_SINSNS_MASK); 3161 } 3162 } 3163 else if (new_flags & E_FLAG_RX_SINSNS_SET) 3164 { 3165 old_flags &= ~ E_FLAG_RX_SINSNS_MASK; 3166 old_flags |= (new_flags & E_FLAG_RX_SINSNS_MASK); 3167 } 3168 3169 known_flags = E_FLAG_RX_ABI | E_FLAG_RX_64BIT_DOUBLES 3170 | E_FLAG_RX_DSP | E_FLAG_RX_PID | E_FLAG_RX_SINSNS_MASK; 3171 3172 if ((old_flags ^ new_flags) & known_flags) 3173 { 3174 /* Only complain if flag bits we care about do not match. 3175 Other bits may be set, since older binaries did use some 3176 deprecated flags. */ 3177 if (no_warn_mismatch) 3178 { 3179 elf_elfheader (obfd)->e_flags = (new_flags | old_flags) & known_flags; 3180 } 3181 else 3182 { 3183 char buf[128]; 3184 3185 _bfd_error_handler (_("there is a conflict merging the" 3186 " ELF header flags from %pB"), 3187 ibfd); 3188 _bfd_error_handler (_(" the input file's flags: %s"), 3189 describe_flags (new_flags, buf)); 3190 _bfd_error_handler (_(" the output file's flags: %s"), 3191 describe_flags (old_flags, buf)); 3192 error = true; 3193 } 3194 } 3195 else 3196 elf_elfheader (obfd)->e_flags = new_flags & known_flags; 3197 } 3198 3199 if (error) 3200 bfd_set_error (bfd_error_bad_value); 3201 3202 return !error; 3203 } 3204 3205 static bool 3206 rx_elf_print_private_bfd_data (bfd * abfd, void * ptr) 3207 { 3208 FILE * file = (FILE *) ptr; 3209 flagword flags; 3210 char buf[128]; 3211 3212 BFD_ASSERT (abfd != NULL && ptr != NULL); 3213 3214 /* Print normal ELF private data. */ 3215 _bfd_elf_print_private_bfd_data (abfd, ptr); 3216 3217 flags = elf_elfheader (abfd)->e_flags; 3218 fprintf (file, _("private flags = 0x%lx:"), (long) flags); 3219 3220 fprintf (file, "%s", describe_flags (flags, buf)); 3221 return true; 3222 } 3223 3224 /* Return the MACH for an e_flags value. */ 3225 3226 static int 3227 elf32_rx_machine (bfd * abfd ATTRIBUTE_UNUSED) 3228 { 3229 #if 0 /* FIXME: EF_RX_CPU_MASK collides with E_FLAG_RX_... 3230 Need to sort out how these flag bits are used. 3231 For now we assume that the flags are OK. */ 3232 if ((elf_elfheader (abfd)->e_flags & EF_RX_CPU_MASK) == EF_RX_CPU_RX) 3233 #endif 3234 if ((elf_elfheader (abfd)->e_flags & E_FLAG_RX_V2)) 3235 return bfd_mach_rx_v2; 3236 else if ((elf_elfheader (abfd)->e_flags & E_FLAG_RX_V3)) 3237 return bfd_mach_rx_v3; 3238 else 3239 return bfd_mach_rx; 3240 3241 return 0; 3242 } 3243 3244 static bool 3245 rx_elf_object_p (bfd * abfd) 3246 { 3247 int i; 3248 unsigned int u; 3249 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr; 3250 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd); 3251 int nphdrs = ehdr->e_phnum; 3252 sec_ptr bsec; 3253 static int saw_be = false; 3254 bfd_vma end_phdroff; 3255 3256 /* We never want to automatically choose the non-swapping big-endian 3257 target. The user can only get that explicitly, such as with -I 3258 and objcopy. */ 3259 if (abfd->xvec == &rx_elf32_be_ns_vec 3260 && abfd->target_defaulted) 3261 return false; 3262 3263 /* BFD->target_defaulted is not set to TRUE when a target is chosen 3264 as a fallback, so we check for "scanning" to know when to stop 3265 using the non-swapping target. */ 3266 if (abfd->xvec == &rx_elf32_be_ns_vec 3267 && saw_be) 3268 return false; 3269 if (abfd->xvec == &rx_elf32_be_vec) 3270 saw_be = true; 3271 3272 bfd_default_set_arch_mach (abfd, bfd_arch_rx, 3273 elf32_rx_machine (abfd)); 3274 3275 /* For each PHDR in the object, we must find some section that 3276 corresponds (based on matching file offsets) and use its VMA 3277 information to reconstruct the p_vaddr field we clobbered when we 3278 wrote it out. */ 3279 /* If PT_LOAD headers include the ELF file header or program headers 3280 then the PT_LOAD header does not start with some section contents. 3281 Making adjustments based on the difference between sh_offset and 3282 p_offset is nonsense in such cases. Exclude them. Note that 3283 since standard linker scripts for RX do not use SIZEOF_HEADERS, 3284 the linker won't normally create PT_LOAD segments covering the 3285 headers so this is mainly for passing the ld testsuite. 3286 FIXME. Why are we looking at non-PT_LOAD headers here? */ 3287 end_phdroff = ehdr->e_ehsize; 3288 if (ehdr->e_phoff != 0) 3289 end_phdroff = ehdr->e_phoff + nphdrs * ehdr->e_phentsize; 3290 for (i=0; i<nphdrs; i++) 3291 { 3292 for (u=0; u<elf_tdata(abfd)->num_elf_sections; u++) 3293 { 3294 Elf_Internal_Shdr *sec = elf_tdata(abfd)->elf_sect_ptr[u]; 3295 3296 if (phdr[i].p_filesz 3297 && phdr[i].p_offset >= end_phdroff 3298 && phdr[i].p_offset <= (bfd_vma) sec->sh_offset 3299 && sec->sh_size > 0 3300 && sec->sh_type != SHT_NOBITS 3301 && (bfd_vma)sec->sh_offset <= phdr[i].p_offset + (phdr[i].p_filesz - 1)) 3302 { 3303 /* Found one! The difference between the two addresses, 3304 plus the difference between the two file offsets, is 3305 enough information to reconstruct the lma. */ 3306 3307 /* Example where they aren't: 3308 PHDR[1] = lma fffc0100 offset 00002010 size 00000100 3309 SEC[6] = vma 00000050 offset 00002050 size 00000040 3310 3311 The correct LMA for the section is fffc0140 + (2050-2010). 3312 */ 3313 3314 phdr[i].p_vaddr = sec->sh_addr + (sec->sh_offset - phdr[i].p_offset); 3315 break; 3316 } 3317 } 3318 3319 /* We must update the bfd sections as well, so we don't stop 3320 with one match. */ 3321 bsec = abfd->sections; 3322 while (bsec) 3323 { 3324 if (phdr[i].p_filesz 3325 && phdr[i].p_vaddr <= bsec->vma 3326 && bsec->vma <= phdr[i].p_vaddr + (phdr[i].p_filesz - 1)) 3327 { 3328 bsec->lma = phdr[i].p_paddr + (bsec->vma - phdr[i].p_vaddr); 3329 } 3330 bsec = bsec->next; 3331 } 3332 } 3333 3334 return true; 3335 } 3336 3337 static bool 3338 rx_linux_object_p (bfd * abfd) 3339 { 3340 bfd_default_set_arch_mach (abfd, bfd_arch_rx, elf32_rx_machine (abfd)); 3341 return true; 3342 } 3343 3344 3345 #ifdef DEBUG 3346 void 3347 rx_dump_symtab (bfd * abfd, void * internal_syms, void * external_syms) 3348 { 3349 size_t locsymcount; 3350 Elf_Internal_Sym * isymbuf; 3351 Elf_Internal_Sym * isymend; 3352 Elf_Internal_Sym * isym; 3353 Elf_Internal_Shdr * symtab_hdr; 3354 char * st_info_str; 3355 char * st_info_stb_str; 3356 char * st_other_str; 3357 char * st_shndx_str; 3358 3359 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 3360 locsymcount = symtab_hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym; 3361 if (!internal_syms) 3362 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 3363 symtab_hdr->sh_info, 0, 3364 internal_syms, external_syms, NULL); 3365 else 3366 isymbuf = internal_syms; 3367 isymend = isymbuf + locsymcount; 3368 3369 for (isym = isymbuf ; isym < isymend ; isym++) 3370 { 3371 switch (ELF_ST_TYPE (isym->st_info)) 3372 { 3373 case STT_FUNC: st_info_str = "STT_FUNC"; break; 3374 case STT_SECTION: st_info_str = "STT_SECTION"; break; 3375 case STT_FILE: st_info_str = "STT_FILE"; break; 3376 case STT_OBJECT: st_info_str = "STT_OBJECT"; break; 3377 case STT_TLS: st_info_str = "STT_TLS"; break; 3378 default: st_info_str = ""; 3379 } 3380 switch (ELF_ST_BIND (isym->st_info)) 3381 { 3382 case STB_LOCAL: st_info_stb_str = "STB_LOCAL"; break; 3383 case STB_GLOBAL: st_info_stb_str = "STB_GLOBAL"; break; 3384 default: st_info_stb_str = ""; 3385 } 3386 switch (ELF_ST_VISIBILITY (isym->st_other)) 3387 { 3388 case STV_DEFAULT: st_other_str = "STV_DEFAULT"; break; 3389 case STV_INTERNAL: st_other_str = "STV_INTERNAL"; break; 3390 case STV_PROTECTED: st_other_str = "STV_PROTECTED"; break; 3391 default: st_other_str = ""; 3392 } 3393 switch (isym->st_shndx) 3394 { 3395 case SHN_ABS: st_shndx_str = "SHN_ABS"; break; 3396 case SHN_COMMON: st_shndx_str = "SHN_COMMON"; break; 3397 case SHN_UNDEF: st_shndx_str = "SHN_UNDEF"; break; 3398 default: st_shndx_str = ""; 3399 } 3400 3401 printf ("isym = %p st_value = %lx st_size = %lx st_name = (%lu) %s " 3402 "st_info = (%d) %s %s st_other = (%d) %s st_shndx = (%d) %s\n", 3403 isym, 3404 (unsigned long) isym->st_value, 3405 (unsigned long) isym->st_size, 3406 isym->st_name, 3407 bfd_elf_string_from_elf_section (abfd, symtab_hdr->sh_link, 3408 isym->st_name), 3409 isym->st_info, st_info_str, st_info_stb_str, 3410 isym->st_other, st_other_str, 3411 isym->st_shndx, st_shndx_str); 3412 } 3413 } 3414 3415 char * 3416 rx_get_reloc (long reloc) 3417 { 3418 if (0 <= reloc && reloc < R_RX_max) 3419 return rx_elf_howto_table[reloc].name; 3420 return ""; 3421 } 3422 #endif /* DEBUG */ 3423 3424 3425 /* We must take care to keep the on-disk copy of any code sections 3426 that are fully linked swapped if the target is big endian, to match 3427 the Renesas tools. */ 3428 3429 /* The rule is: big endian object that are final-link executables, 3430 have code sections stored with 32-bit words swapped relative to 3431 what you'd get by default. */ 3432 3433 static bool 3434 rx_get_section_contents (bfd * abfd, 3435 sec_ptr section, 3436 void * location, 3437 file_ptr offset, 3438 bfd_size_type count) 3439 { 3440 int exec = (abfd->flags & EXEC_P) ? 1 : 0; 3441 int s_code = (section->flags & SEC_CODE) ? 1 : 0; 3442 bool rv; 3443 3444 #ifdef DJDEBUG 3445 fprintf (stderr, "dj: get %ld %ld from %s %s e%d sc%d %08lx:%08lx\n", 3446 (long) offset, (long) count, section->name, 3447 bfd_big_endian(abfd) ? "be" : "le", 3448 exec, s_code, (long unsigned) section->filepos, 3449 (long unsigned) offset); 3450 #endif 3451 3452 if (exec && s_code && bfd_big_endian (abfd)) 3453 { 3454 char * cloc = (char *) location; 3455 bfd_size_type cnt, end_cnt; 3456 3457 rv = true; 3458 3459 /* Fetch and swap unaligned bytes at the beginning. */ 3460 if (offset % 4) 3461 { 3462 char buf[4]; 3463 3464 rv = _bfd_generic_get_section_contents (abfd, section, buf, 3465 (offset & -4), 4); 3466 if (!rv) 3467 return false; 3468 3469 bfd_putb32 (bfd_getl32 (buf), buf); 3470 3471 cnt = 4 - (offset % 4); 3472 if (cnt > count) 3473 cnt = count; 3474 3475 memcpy (location, buf + (offset % 4), cnt); 3476 3477 count -= cnt; 3478 offset += cnt; 3479 cloc += count; 3480 } 3481 3482 end_cnt = count % 4; 3483 3484 /* Fetch and swap the middle bytes. */ 3485 if (count >= 4) 3486 { 3487 rv = _bfd_generic_get_section_contents (abfd, section, cloc, offset, 3488 count - end_cnt); 3489 if (!rv) 3490 return false; 3491 3492 for (cnt = count; cnt >= 4; cnt -= 4, cloc += 4) 3493 bfd_putb32 (bfd_getl32 (cloc), cloc); 3494 } 3495 3496 /* Fetch and swap the end bytes. */ 3497 if (end_cnt > 0) 3498 { 3499 char buf[4]; 3500 3501 /* Fetch the end bytes. */ 3502 rv = _bfd_generic_get_section_contents (abfd, section, buf, 3503 offset + count - end_cnt, 4); 3504 if (!rv) 3505 return false; 3506 3507 bfd_putb32 (bfd_getl32 (buf), buf); 3508 memcpy (cloc, buf, end_cnt); 3509 } 3510 } 3511 else 3512 rv = _bfd_generic_get_section_contents (abfd, section, location, offset, count); 3513 3514 return rv; 3515 } 3516 3517 #ifdef DJDEBUG 3518 static bool 3519 rx2_set_section_contents (bfd * abfd, 3520 sec_ptr section, 3521 const void * location, 3522 file_ptr offset, 3523 bfd_size_type count) 3524 { 3525 bfd_size_type i; 3526 3527 fprintf (stderr, " set sec %s %08x loc %p offset %#x count %#x\n", 3528 section->name, (unsigned) section->vma, location, (int) offset, (int) count); 3529 for (i = 0; i < count; i++) 3530 { 3531 if (i % 16 == 0 && i > 0) 3532 fprintf (stderr, "\n"); 3533 3534 if (i % 16 && i % 4 == 0) 3535 fprintf (stderr, " "); 3536 3537 if (i % 16 == 0) 3538 fprintf (stderr, " %08x:", (int) (section->vma + offset + i)); 3539 3540 fprintf (stderr, " %02x", ((unsigned char *) location)[i]); 3541 } 3542 fprintf (stderr, "\n"); 3543 3544 return _bfd_elf_set_section_contents (abfd, section, location, offset, count); 3545 } 3546 #define _bfd_elf_set_section_contents rx2_set_section_contents 3547 #endif 3548 3549 static bool 3550 rx_set_section_contents (bfd * abfd, 3551 sec_ptr section, 3552 const void * location, 3553 file_ptr offset, 3554 bfd_size_type count) 3555 { 3556 bool exec = (abfd->flags & EXEC_P) != 0; 3557 bool s_code = (section->flags & SEC_CODE) != 0; 3558 bool rv; 3559 char * swapped_data = NULL; 3560 bfd_size_type i; 3561 bfd_vma caddr = section->vma + offset; 3562 file_ptr faddr = 0; 3563 bfd_size_type scount; 3564 3565 #ifdef DJDEBUG 3566 bfd_size_type i; 3567 3568 fprintf (stderr, "\ndj: set %ld %ld to %s %s e%d sc%d\n", 3569 (long) offset, (long) count, section->name, 3570 bfd_big_endian (abfd) ? "be" : "le", 3571 exec, s_code); 3572 3573 for (i = 0; i < count; i++) 3574 { 3575 int a = section->vma + offset + i; 3576 3577 if (a % 16 == 0 && a > 0) 3578 fprintf (stderr, "\n"); 3579 3580 if (a % 16 && a % 4 == 0) 3581 fprintf (stderr, " "); 3582 3583 if (a % 16 == 0 || i == 0) 3584 fprintf (stderr, " %08x:", (int) (section->vma + offset + i)); 3585 3586 fprintf (stderr, " %02x", ((unsigned char *) location)[i]); 3587 } 3588 3589 fprintf (stderr, "\n"); 3590 #endif 3591 3592 if (! exec || ! s_code || ! bfd_big_endian (abfd)) 3593 return _bfd_elf_set_section_contents (abfd, section, location, offset, count); 3594 3595 while (count > 0 && caddr > 0 && caddr % 4) 3596 { 3597 switch (caddr % 4) 3598 { 3599 case 0: faddr = offset + 3; break; 3600 case 1: faddr = offset + 1; break; 3601 case 2: faddr = offset - 1; break; 3602 case 3: faddr = offset - 3; break; 3603 } 3604 3605 rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1); 3606 if (! rv) 3607 return rv; 3608 3609 location = (bfd_byte *) location + 1; 3610 offset ++; 3611 count --; 3612 caddr ++; 3613 } 3614 3615 scount = (int)(count / 4) * 4; 3616 if (scount > 0) 3617 { 3618 char * cloc = (char *) location; 3619 3620 swapped_data = (char *) bfd_alloc (abfd, count); 3621 if (swapped_data == NULL) 3622 return false; 3623 3624 for (i = 0; i < count; i += 4) 3625 { 3626 bfd_vma v = bfd_getl32 (cloc + i); 3627 bfd_putb32 (v, swapped_data + i); 3628 } 3629 3630 rv = _bfd_elf_set_section_contents (abfd, section, swapped_data, offset, scount); 3631 3632 if (!rv) 3633 return rv; 3634 } 3635 3636 count -= scount; 3637 location = (bfd_byte *) location + scount; 3638 offset += scount; 3639 3640 if (count > 0) 3641 { 3642 caddr = section->vma + offset; 3643 while (count > 0) 3644 { 3645 switch (caddr % 4) 3646 { 3647 case 0: faddr = offset + 3; break; 3648 case 1: faddr = offset + 1; break; 3649 case 2: faddr = offset - 1; break; 3650 case 3: faddr = offset - 3; break; 3651 } 3652 rv = _bfd_elf_set_section_contents (abfd, section, location, faddr, 1); 3653 if (! rv) 3654 return rv; 3655 3656 location = (bfd_byte *) location + 1; 3657 offset ++; 3658 count --; 3659 caddr ++; 3660 } 3661 } 3662 3663 return true; 3664 } 3665 3666 static bool 3667 rx_final_link (bfd * abfd, struct bfd_link_info * info) 3668 { 3669 asection * o; 3670 3671 for (o = abfd->sections; o != NULL; o = o->next) 3672 { 3673 #ifdef DJDEBUG 3674 fprintf (stderr, "sec %s fl %x vma %lx lma %lx size %lx raw %lx\n", 3675 o->name, o->flags, o->vma, o->lma, o->size, o->rawsize); 3676 #endif 3677 if (o->flags & SEC_CODE 3678 && bfd_big_endian (abfd) 3679 && o->size % 4) 3680 { 3681 #ifdef DJDEBUG 3682 fprintf (stderr, "adjusting...\n"); 3683 #endif 3684 o->size += 4 - (o->size % 4); 3685 } 3686 } 3687 3688 return bfd_elf_final_link (abfd, info); 3689 } 3690 3691 static bool 3692 elf32_rx_modify_headers (bfd *abfd, struct bfd_link_info *info) 3693 { 3694 const struct elf_backend_data * bed; 3695 struct elf_obj_tdata * tdata; 3696 Elf_Internal_Phdr * phdr; 3697 unsigned int count; 3698 unsigned int i; 3699 3700 bed = get_elf_backend_data (abfd); 3701 tdata = elf_tdata (abfd); 3702 phdr = tdata->phdr; 3703 count = elf_program_header_size (abfd) / bed->s->sizeof_phdr; 3704 3705 if (ignore_lma) 3706 for (i = count; i-- != 0;) 3707 if (phdr[i].p_type == PT_LOAD) 3708 { 3709 /* The Renesas tools expect p_paddr to be zero. However, 3710 there is no other way to store the writable data in ROM for 3711 startup initialization. So, we let the linker *think* 3712 we're using paddr and vaddr the "usual" way, but at the 3713 last minute we move the paddr into the vaddr (which is what 3714 the simulator uses) and zero out paddr. Note that this 3715 does not affect the section headers, just the program 3716 headers. We hope. */ 3717 phdr[i].p_vaddr = phdr[i].p_paddr; 3718 #if 0 /* If we zero out p_paddr, then the LMA in the section table 3719 becomes wrong. */ 3720 phdr[i].p_paddr = 0; 3721 #endif 3722 } 3723 3724 return _bfd_elf_modify_headers (abfd, info); 3725 } 3726 3727 /* The default literal sections should always be marked as "code" (i.e., 3728 SHF_EXECINSTR). This is particularly important for big-endian mode 3729 when we do not want their contents byte reversed. */ 3730 static const struct bfd_elf_special_section elf32_rx_special_sections[] = 3731 { 3732 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR }, 3733 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_EXECINSTR }, 3734 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_EXECINSTR }, 3735 { NULL, 0, 0, 0, 0 } 3736 }; 3737 3738 typedef struct { 3739 bfd *abfd; 3740 struct bfd_link_info *info; 3741 bfd_vma table_start; 3742 int table_size; 3743 bfd_vma *table_handlers; 3744 bfd_vma table_default_handler; 3745 struct bfd_link_hash_entry **table_entries; 3746 struct bfd_link_hash_entry *table_default_entry; 3747 FILE *mapfile; 3748 } RX_Table_Info; 3749 3750 static bool 3751 rx_table_find (struct bfd_hash_entry *vent, void *vinfo) 3752 { 3753 RX_Table_Info *info = (RX_Table_Info *)vinfo; 3754 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent; 3755 const char *name; /* of the symbol we've found */ 3756 asection *sec; 3757 struct bfd *abfd; 3758 int idx; 3759 const char *tname; /* name of the table */ 3760 bfd_vma start_addr, end_addr; 3761 char *buf; 3762 struct bfd_link_hash_entry * h; 3763 3764 /* We're looking for globally defined symbols of the form 3765 $tablestart$<NAME>. */ 3766 if (ent->type != bfd_link_hash_defined 3767 && ent->type != bfd_link_hash_defweak) 3768 return true; 3769 3770 name = ent->root.string; 3771 sec = ent->u.def.section; 3772 abfd = sec->owner; 3773 3774 if (!startswith (name, "$tablestart$")) 3775 return true; 3776 3777 sec->flags |= SEC_KEEP; 3778 3779 tname = name + 12; 3780 3781 start_addr = ent->u.def.value; 3782 3783 /* At this point, we can't build the table but we can (and must) 3784 find all the related symbols and mark their sections as SEC_KEEP 3785 so we don't garbage collect them. */ 3786 3787 buf = (char *) bfd_malloc (12 + 10 + strlen (tname)); 3788 if (buf == NULL) 3789 return false; 3790 3791 sprintf (buf, "$tableend$%s", tname); 3792 h = bfd_link_hash_lookup (info->info->hash, buf, false, false, true); 3793 if (!h || (h->type != bfd_link_hash_defined 3794 && h->type != bfd_link_hash_defweak)) 3795 { 3796 /* xgettext:c-format */ 3797 _bfd_error_handler (_("%pB:%pA: table %s missing corresponding %s"), 3798 abfd, sec, name, buf); 3799 return true; 3800 } 3801 3802 if (h->u.def.section != ent->u.def.section) 3803 { 3804 /* xgettext:c-format */ 3805 _bfd_error_handler (_("%pB:%pA: %s and %s must be in the same input section"), 3806 h->u.def.section->owner, h->u.def.section, 3807 name, buf); 3808 return true; 3809 } 3810 3811 end_addr = h->u.def.value; 3812 3813 sprintf (buf, "$tableentry$default$%s", tname); 3814 h = bfd_link_hash_lookup (info->info->hash, buf, false, false, true); 3815 if (h && (h->type == bfd_link_hash_defined 3816 || h->type == bfd_link_hash_defweak)) 3817 { 3818 h->u.def.section->flags |= SEC_KEEP; 3819 } 3820 3821 for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++) 3822 { 3823 sprintf (buf, "$tableentry$%d$%s", idx, tname); 3824 h = bfd_link_hash_lookup (info->info->hash, buf, false, false, true); 3825 if (h && (h->type == bfd_link_hash_defined 3826 || h->type == bfd_link_hash_defweak)) 3827 { 3828 h->u.def.section->flags |= SEC_KEEP; 3829 } 3830 } 3831 3832 /* Return TRUE to keep scanning, FALSE to end the traversal. */ 3833 return true; 3834 } 3835 3836 /* We need to check for table entry symbols and build the tables, and 3837 we need to do it before the linker does garbage collection. This function is 3838 called once per input object file. */ 3839 static bool 3840 rx_check_directives 3841 (bfd * abfd ATTRIBUTE_UNUSED, 3842 struct bfd_link_info * info ATTRIBUTE_UNUSED) 3843 { 3844 RX_Table_Info stuff; 3845 3846 stuff.abfd = abfd; 3847 stuff.info = info; 3848 bfd_hash_traverse (&(info->hash->table), rx_table_find, &stuff); 3849 3850 return true; 3851 } 3852 3853 3854 static bool 3855 rx_table_map_2 (struct bfd_hash_entry *vent, void *vinfo) 3856 { 3857 RX_Table_Info *info = (RX_Table_Info *)vinfo; 3858 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent; 3859 int idx; 3860 const char *name; 3861 bfd_vma addr; 3862 3863 /* See if the symbol ENT has an address listed in the table, and 3864 isn't a debug/special symbol. If so, put it in the table. */ 3865 3866 if (ent->type != bfd_link_hash_defined 3867 && ent->type != bfd_link_hash_defweak) 3868 return true; 3869 3870 name = ent->root.string; 3871 3872 if (name[0] == '$' || name[0] == '.' || name[0] < ' ') 3873 return true; 3874 3875 addr = (ent->u.def.value 3876 + ent->u.def.section->output_section->vma 3877 + ent->u.def.section->output_offset); 3878 3879 for (idx = 0; idx < info->table_size; idx ++) 3880 if (addr == info->table_handlers[idx]) 3881 info->table_entries[idx] = ent; 3882 3883 if (addr == info->table_default_handler) 3884 info->table_default_entry = ent; 3885 3886 return true; 3887 } 3888 3889 static bool 3890 rx_table_map (struct bfd_hash_entry *vent, void *vinfo) 3891 { 3892 RX_Table_Info *info = (RX_Table_Info *)vinfo; 3893 struct bfd_link_hash_entry *ent = (struct bfd_link_hash_entry *)vent; 3894 const char *name; /* of the symbol we've found */ 3895 int idx; 3896 const char *tname; /* name of the table */ 3897 bfd_vma start_addr, end_addr; 3898 char *buf; 3899 struct bfd_link_hash_entry * h; 3900 int need_elipses; 3901 3902 /* We're looking for globally defined symbols of the form 3903 $tablestart$<NAME>. */ 3904 if (ent->type != bfd_link_hash_defined 3905 && ent->type != bfd_link_hash_defweak) 3906 return true; 3907 3908 name = ent->root.string; 3909 3910 if (!startswith (name, "$tablestart$")) 3911 return true; 3912 3913 tname = name + 12; 3914 start_addr = (ent->u.def.value 3915 + ent->u.def.section->output_section->vma 3916 + ent->u.def.section->output_offset); 3917 3918 buf = (char *) bfd_malloc (12 + 10 + strlen (tname)); 3919 if (buf == NULL) 3920 return false; 3921 3922 sprintf (buf, "$tableend$%s", tname); 3923 end_addr = get_symbol_value_maybe (buf, info->info); 3924 3925 sprintf (buf, "$tableentry$default$%s", tname); 3926 h = bfd_link_hash_lookup (info->info->hash, buf, false, false, true); 3927 if (h) 3928 { 3929 info->table_default_handler = (h->u.def.value 3930 + h->u.def.section->output_section->vma 3931 + h->u.def.section->output_offset); 3932 } 3933 else 3934 /* Zero is a valid handler address! */ 3935 info->table_default_handler = (bfd_vma) (-1); 3936 info->table_default_entry = NULL; 3937 3938 info->table_start = start_addr; 3939 info->table_size = (int) (end_addr - start_addr) / 4; 3940 info->table_handlers = (bfd_vma *) 3941 bfd_malloc (info->table_size * sizeof (bfd_vma)); 3942 if (info->table_handlers == NULL) 3943 { 3944 free (buf); 3945 return false; 3946 } 3947 info->table_entries = (struct bfd_link_hash_entry **) 3948 bfd_malloc (info->table_size * sizeof (struct bfd_link_hash_entry)); 3949 if (info->table_entries == NULL) 3950 { 3951 free (info->table_handlers); 3952 free (buf); 3953 return false; 3954 } 3955 3956 for (idx = 0; idx < (int) (end_addr - start_addr) / 4; idx ++) 3957 { 3958 sprintf (buf, "$tableentry$%d$%s", idx, tname); 3959 h = bfd_link_hash_lookup (info->info->hash, buf, false, false, true); 3960 if (h && (h->type == bfd_link_hash_defined 3961 || h->type == bfd_link_hash_defweak)) 3962 { 3963 info->table_handlers[idx] = (h->u.def.value 3964 + h->u.def.section->output_section->vma 3965 + h->u.def.section->output_offset); 3966 } 3967 else 3968 info->table_handlers[idx] = info->table_default_handler; 3969 info->table_entries[idx] = NULL; 3970 } 3971 3972 free (buf); 3973 3974 bfd_hash_traverse (&(info->info->hash->table), rx_table_map_2, info); 3975 3976 fprintf (info->mapfile, 3977 "\nRX Vector Table: %s has %d entries at 0x%08" PRIx64 "\n\n", 3978 tname, info->table_size, (uint64_t) start_addr); 3979 3980 if (info->table_default_entry) 3981 fprintf (info->mapfile, " default handler is: %s at 0x%08" PRIx64 "\n", 3982 info->table_default_entry->root.string, 3983 (uint64_t) info->table_default_handler); 3984 else if (info->table_default_handler != (bfd_vma)(-1)) 3985 fprintf (info->mapfile, " default handler is at 0x%08" PRIx64 "\n", 3986 (uint64_t) info->table_default_handler); 3987 else 3988 fprintf (info->mapfile, " no default handler\n"); 3989 3990 need_elipses = 1; 3991 for (idx = 0; idx < info->table_size; idx ++) 3992 { 3993 if (info->table_handlers[idx] == info->table_default_handler) 3994 { 3995 if (need_elipses) 3996 fprintf (info->mapfile, " . . .\n"); 3997 need_elipses = 0; 3998 continue; 3999 } 4000 need_elipses = 1; 4001 4002 fprintf (info->mapfile, 4003 " 0x%08" PRIx64 " [%3d] ", (uint64_t) start_addr + 4 * idx, idx); 4004 4005 if (info->table_handlers[idx] == (bfd_vma) (-1)) 4006 fprintf (info->mapfile, "(no handler found)\n"); 4007 4008 else if (info->table_handlers[idx] == info->table_default_handler) 4009 { 4010 if (info->table_default_entry) 4011 fprintf (info->mapfile, "(default)\n"); 4012 else 4013 fprintf (info->mapfile, "(default)\n"); 4014 } 4015 4016 else if (info->table_entries[idx]) 4017 { 4018 fprintf (info->mapfile, "0x%08" PRIx64 " %s\n", 4019 (uint64_t) info->table_handlers[idx], 4020 info->table_entries[idx]->root.string); 4021 } 4022 4023 else 4024 { 4025 fprintf (info->mapfile, "0x%08" PRIx64 " ???\n", 4026 (uint64_t) info->table_handlers[idx]); 4027 } 4028 } 4029 if (need_elipses) 4030 fprintf (info->mapfile, " . . .\n"); 4031 4032 return true; 4033 } 4034 4035 void 4036 rx_additional_link_map_text (bfd *obfd, struct bfd_link_info *info, FILE *mapfile) 4037 { 4038 /* We scan the symbol table looking for $tableentry$'s, and for 4039 each, try to deduce which handlers go with which entries. */ 4040 4041 RX_Table_Info stuff; 4042 4043 stuff.abfd = obfd; 4044 stuff.info = info; 4045 stuff.mapfile = mapfile; 4046 bfd_hash_traverse (&(info->hash->table), rx_table_map, &stuff); 4047 } 4048 4049 4050 #define ELF_ARCH bfd_arch_rx 4051 #define ELF_MACHINE_CODE EM_RX 4052 #define ELF_MAXPAGESIZE 0x1000 4053 4054 #define TARGET_BIG_SYM rx_elf32_be_vec 4055 #define TARGET_BIG_NAME "elf32-rx-be" 4056 4057 #define TARGET_LITTLE_SYM rx_elf32_le_vec 4058 #define TARGET_LITTLE_NAME "elf32-rx-le" 4059 4060 #define elf_info_to_howto_rel NULL 4061 #define elf_info_to_howto rx_info_to_howto_rela 4062 #define elf_backend_object_p rx_elf_object_p 4063 #define elf_backend_relocate_section rx_elf_relocate_section 4064 #define elf_symbol_leading_char ('_') 4065 #define elf_backend_can_gc_sections 1 4066 #define elf_backend_modify_headers elf32_rx_modify_headers 4067 4068 #define bfd_elf32_bfd_reloc_type_lookup rx_reloc_type_lookup 4069 #define bfd_elf32_bfd_reloc_name_lookup rx_reloc_name_lookup 4070 #define bfd_elf32_bfd_set_private_flags rx_elf_set_private_flags 4071 #define bfd_elf32_bfd_merge_private_bfd_data rx_elf_merge_private_bfd_data 4072 #define bfd_elf32_bfd_print_private_bfd_data rx_elf_print_private_bfd_data 4073 #define bfd_elf32_get_section_contents rx_get_section_contents 4074 #define bfd_elf32_set_section_contents rx_set_section_contents 4075 #define bfd_elf32_bfd_final_link rx_final_link 4076 #define bfd_elf32_bfd_relax_section elf32_rx_relax_section_wrapper 4077 #define elf_backend_special_sections elf32_rx_special_sections 4078 #define elf_backend_check_directives rx_check_directives 4079 4080 #include "elf32-target.h" 4081 4082 /* We define a second big-endian target that doesn't have the custom 4083 section get/set hooks, for times when we want to preserve the 4084 pre-swapped .text sections (like objcopy). */ 4085 4086 #undef TARGET_BIG_SYM 4087 #define TARGET_BIG_SYM rx_elf32_be_ns_vec 4088 #undef TARGET_BIG_NAME 4089 #define TARGET_BIG_NAME "elf32-rx-be-ns" 4090 #undef TARGET_LITTLE_SYM 4091 4092 #undef bfd_elf32_get_section_contents 4093 #undef bfd_elf32_set_section_contents 4094 4095 #undef elf32_bed 4096 #define elf32_bed elf32_rx_be_ns_bed 4097 4098 #include "elf32-target.h" 4099 4100 #undef TARGET_LITTLE_SYM 4101 #define TARGET_LITTLE_SYM rx_elf32_linux_le_vec 4102 #undef TARGET_LITTLE_NAME 4103 #define TARGET_LITTLE_NAME "elf32-rx-linux" 4104 #undef TARGET_BIG_SYM 4105 #undef TARGET_BIG_NAME 4106 4107 #undef elf_backend_object_p 4108 #define elf_backend_object_p rx_linux_object_p 4109 #undef elf_symbol_leading_char 4110 #undef elf32_bed 4111 #define elf32_bed elf32_rx_le_linux_bed 4112 4113 #include "elf32-target.h" 4114