1 /* Motorola 68k series support for 32-bit ELF 2 Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 3 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013 4 Free Software Foundation, Inc. 5 6 This file is part of BFD, the Binary File Descriptor library. 7 8 This program is free software; you can redistribute it and/or modify 9 it under the terms of the GNU General Public License as published by 10 the Free Software Foundation; either version 3 of the License, or 11 (at your option) any later version. 12 13 This program is distributed in the hope that it will be useful, 14 but WITHOUT ANY WARRANTY; without even the implied warranty of 15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 GNU General Public License for more details. 17 18 You should have received a copy of the GNU General Public License 19 along with this program; if not, write to the Free Software 20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 21 MA 02110-1301, USA. */ 22 23 #include "sysdep.h" 24 #include "bfd.h" 25 #include "bfdlink.h" 26 #include "libbfd.h" 27 #include "elf-bfd.h" 28 #include "elf/m68k.h" 29 #include "opcode/m68k.h" 30 31 static bfd_boolean 32 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *); 33 34 static reloc_howto_type howto_table[] = 35 { 36 HOWTO(R_68K_NONE, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_NONE", FALSE, 0, 0x00000000,FALSE), 37 HOWTO(R_68K_32, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32", FALSE, 0, 0xffffffff,FALSE), 38 HOWTO(R_68K_16, 0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16", FALSE, 0, 0x0000ffff,FALSE), 39 HOWTO(R_68K_8, 0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8", FALSE, 0, 0x000000ff,FALSE), 40 HOWTO(R_68K_PC32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32", FALSE, 0, 0xffffffff,TRUE), 41 HOWTO(R_68K_PC16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC16", FALSE, 0, 0x0000ffff,TRUE), 42 HOWTO(R_68K_PC8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PC8", FALSE, 0, 0x000000ff,TRUE), 43 HOWTO(R_68K_GOT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32", FALSE, 0, 0xffffffff,TRUE), 44 HOWTO(R_68K_GOT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16", FALSE, 0, 0x0000ffff,TRUE), 45 HOWTO(R_68K_GOT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8", FALSE, 0, 0x000000ff,TRUE), 46 HOWTO(R_68K_GOT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O", FALSE, 0, 0xffffffff,FALSE), 47 HOWTO(R_68K_GOT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT16O", FALSE, 0, 0x0000ffff,FALSE), 48 HOWTO(R_68K_GOT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_GOT8O", FALSE, 0, 0x000000ff,FALSE), 49 HOWTO(R_68K_PLT32, 0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32", FALSE, 0, 0xffffffff,TRUE), 50 HOWTO(R_68K_PLT16, 0, 1,16, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16", FALSE, 0, 0x0000ffff,TRUE), 51 HOWTO(R_68K_PLT8, 0, 0, 8, TRUE, 0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8", FALSE, 0, 0x000000ff,TRUE), 52 HOWTO(R_68K_PLT32O, 0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O", FALSE, 0, 0xffffffff,FALSE), 53 HOWTO(R_68K_PLT16O, 0, 1,16, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT16O", FALSE, 0, 0x0000ffff,FALSE), 54 HOWTO(R_68K_PLT8O, 0, 0, 8, FALSE,0, complain_overflow_signed, bfd_elf_generic_reloc, "R_68K_PLT8O", FALSE, 0, 0x000000ff,FALSE), 55 HOWTO(R_68K_COPY, 0, 0, 0, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_COPY", FALSE, 0, 0xffffffff,FALSE), 56 HOWTO(R_68K_GLOB_DAT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_GLOB_DAT", FALSE, 0, 0xffffffff,FALSE), 57 HOWTO(R_68K_JMP_SLOT, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_JMP_SLOT", FALSE, 0, 0xffffffff,FALSE), 58 HOWTO(R_68K_RELATIVE, 0, 2,32, FALSE,0, complain_overflow_dont, bfd_elf_generic_reloc, "R_68K_RELATIVE", FALSE, 0, 0xffffffff,FALSE), 59 /* GNU extension to record C++ vtable hierarchy. */ 60 HOWTO (R_68K_GNU_VTINHERIT, /* type */ 61 0, /* rightshift */ 62 2, /* size (0 = byte, 1 = short, 2 = long) */ 63 0, /* bitsize */ 64 FALSE, /* pc_relative */ 65 0, /* bitpos */ 66 complain_overflow_dont, /* complain_on_overflow */ 67 NULL, /* special_function */ 68 "R_68K_GNU_VTINHERIT", /* name */ 69 FALSE, /* partial_inplace */ 70 0, /* src_mask */ 71 0, /* dst_mask */ 72 FALSE), 73 /* GNU extension to record C++ vtable member usage. */ 74 HOWTO (R_68K_GNU_VTENTRY, /* type */ 75 0, /* rightshift */ 76 2, /* size (0 = byte, 1 = short, 2 = long) */ 77 0, /* bitsize */ 78 FALSE, /* pc_relative */ 79 0, /* bitpos */ 80 complain_overflow_dont, /* complain_on_overflow */ 81 _bfd_elf_rel_vtable_reloc_fn, /* special_function */ 82 "R_68K_GNU_VTENTRY", /* name */ 83 FALSE, /* partial_inplace */ 84 0, /* src_mask */ 85 0, /* dst_mask */ 86 FALSE), 87 88 /* TLS general dynamic variable reference. */ 89 HOWTO (R_68K_TLS_GD32, /* type */ 90 0, /* rightshift */ 91 2, /* size (0 = byte, 1 = short, 2 = long) */ 92 32, /* bitsize */ 93 FALSE, /* pc_relative */ 94 0, /* bitpos */ 95 complain_overflow_bitfield, /* complain_on_overflow */ 96 bfd_elf_generic_reloc, /* special_function */ 97 "R_68K_TLS_GD32", /* name */ 98 FALSE, /* partial_inplace */ 99 0, /* src_mask */ 100 0xffffffff, /* dst_mask */ 101 FALSE), /* pcrel_offset */ 102 103 HOWTO (R_68K_TLS_GD16, /* type */ 104 0, /* rightshift */ 105 1, /* size (0 = byte, 1 = short, 2 = long) */ 106 16, /* bitsize */ 107 FALSE, /* pc_relative */ 108 0, /* bitpos */ 109 complain_overflow_signed, /* complain_on_overflow */ 110 bfd_elf_generic_reloc, /* special_function */ 111 "R_68K_TLS_GD16", /* name */ 112 FALSE, /* partial_inplace */ 113 0, /* src_mask */ 114 0x0000ffff, /* dst_mask */ 115 FALSE), /* pcrel_offset */ 116 117 HOWTO (R_68K_TLS_GD8, /* type */ 118 0, /* rightshift */ 119 0, /* size (0 = byte, 1 = short, 2 = long) */ 120 8, /* bitsize */ 121 FALSE, /* pc_relative */ 122 0, /* bitpos */ 123 complain_overflow_signed, /* complain_on_overflow */ 124 bfd_elf_generic_reloc, /* special_function */ 125 "R_68K_TLS_GD8", /* name */ 126 FALSE, /* partial_inplace */ 127 0, /* src_mask */ 128 0x000000ff, /* dst_mask */ 129 FALSE), /* pcrel_offset */ 130 131 /* TLS local dynamic variable reference. */ 132 HOWTO (R_68K_TLS_LDM32, /* type */ 133 0, /* rightshift */ 134 2, /* size (0 = byte, 1 = short, 2 = long) */ 135 32, /* bitsize */ 136 FALSE, /* pc_relative */ 137 0, /* bitpos */ 138 complain_overflow_bitfield, /* complain_on_overflow */ 139 bfd_elf_generic_reloc, /* special_function */ 140 "R_68K_TLS_LDM32", /* name */ 141 FALSE, /* partial_inplace */ 142 0, /* src_mask */ 143 0xffffffff, /* dst_mask */ 144 FALSE), /* pcrel_offset */ 145 146 HOWTO (R_68K_TLS_LDM16, /* type */ 147 0, /* rightshift */ 148 1, /* size (0 = byte, 1 = short, 2 = long) */ 149 16, /* bitsize */ 150 FALSE, /* pc_relative */ 151 0, /* bitpos */ 152 complain_overflow_signed, /* complain_on_overflow */ 153 bfd_elf_generic_reloc, /* special_function */ 154 "R_68K_TLS_LDM16", /* name */ 155 FALSE, /* partial_inplace */ 156 0, /* src_mask */ 157 0x0000ffff, /* dst_mask */ 158 FALSE), /* pcrel_offset */ 159 160 HOWTO (R_68K_TLS_LDM8, /* type */ 161 0, /* rightshift */ 162 0, /* size (0 = byte, 1 = short, 2 = long) */ 163 8, /* bitsize */ 164 FALSE, /* pc_relative */ 165 0, /* bitpos */ 166 complain_overflow_signed, /* complain_on_overflow */ 167 bfd_elf_generic_reloc, /* special_function */ 168 "R_68K_TLS_LDM8", /* name */ 169 FALSE, /* partial_inplace */ 170 0, /* src_mask */ 171 0x000000ff, /* dst_mask */ 172 FALSE), /* pcrel_offset */ 173 174 HOWTO (R_68K_TLS_LDO32, /* type */ 175 0, /* rightshift */ 176 2, /* size (0 = byte, 1 = short, 2 = long) */ 177 32, /* bitsize */ 178 FALSE, /* pc_relative */ 179 0, /* bitpos */ 180 complain_overflow_bitfield, /* complain_on_overflow */ 181 bfd_elf_generic_reloc, /* special_function */ 182 "R_68K_TLS_LDO32", /* name */ 183 FALSE, /* partial_inplace */ 184 0, /* src_mask */ 185 0xffffffff, /* dst_mask */ 186 FALSE), /* pcrel_offset */ 187 188 HOWTO (R_68K_TLS_LDO16, /* type */ 189 0, /* rightshift */ 190 1, /* size (0 = byte, 1 = short, 2 = long) */ 191 16, /* bitsize */ 192 FALSE, /* pc_relative */ 193 0, /* bitpos */ 194 complain_overflow_signed, /* complain_on_overflow */ 195 bfd_elf_generic_reloc, /* special_function */ 196 "R_68K_TLS_LDO16", /* name */ 197 FALSE, /* partial_inplace */ 198 0, /* src_mask */ 199 0x0000ffff, /* dst_mask */ 200 FALSE), /* pcrel_offset */ 201 202 HOWTO (R_68K_TLS_LDO8, /* type */ 203 0, /* rightshift */ 204 0, /* size (0 = byte, 1 = short, 2 = long) */ 205 8, /* bitsize */ 206 FALSE, /* pc_relative */ 207 0, /* bitpos */ 208 complain_overflow_signed, /* complain_on_overflow */ 209 bfd_elf_generic_reloc, /* special_function */ 210 "R_68K_TLS_LDO8", /* name */ 211 FALSE, /* partial_inplace */ 212 0, /* src_mask */ 213 0x000000ff, /* dst_mask */ 214 FALSE), /* pcrel_offset */ 215 216 /* TLS initial execution variable reference. */ 217 HOWTO (R_68K_TLS_IE32, /* type */ 218 0, /* rightshift */ 219 2, /* size (0 = byte, 1 = short, 2 = long) */ 220 32, /* bitsize */ 221 FALSE, /* pc_relative */ 222 0, /* bitpos */ 223 complain_overflow_bitfield, /* complain_on_overflow */ 224 bfd_elf_generic_reloc, /* special_function */ 225 "R_68K_TLS_IE32", /* name */ 226 FALSE, /* partial_inplace */ 227 0, /* src_mask */ 228 0xffffffff, /* dst_mask */ 229 FALSE), /* pcrel_offset */ 230 231 HOWTO (R_68K_TLS_IE16, /* type */ 232 0, /* rightshift */ 233 1, /* size (0 = byte, 1 = short, 2 = long) */ 234 16, /* bitsize */ 235 FALSE, /* pc_relative */ 236 0, /* bitpos */ 237 complain_overflow_signed, /* complain_on_overflow */ 238 bfd_elf_generic_reloc, /* special_function */ 239 "R_68K_TLS_IE16", /* name */ 240 FALSE, /* partial_inplace */ 241 0, /* src_mask */ 242 0x0000ffff, /* dst_mask */ 243 FALSE), /* pcrel_offset */ 244 245 HOWTO (R_68K_TLS_IE8, /* type */ 246 0, /* rightshift */ 247 0, /* size (0 = byte, 1 = short, 2 = long) */ 248 8, /* bitsize */ 249 FALSE, /* pc_relative */ 250 0, /* bitpos */ 251 complain_overflow_signed, /* complain_on_overflow */ 252 bfd_elf_generic_reloc, /* special_function */ 253 "R_68K_TLS_IE8", /* name */ 254 FALSE, /* partial_inplace */ 255 0, /* src_mask */ 256 0x000000ff, /* dst_mask */ 257 FALSE), /* pcrel_offset */ 258 259 /* TLS local execution variable reference. */ 260 HOWTO (R_68K_TLS_LE32, /* type */ 261 0, /* rightshift */ 262 2, /* size (0 = byte, 1 = short, 2 = long) */ 263 32, /* bitsize */ 264 FALSE, /* pc_relative */ 265 0, /* bitpos */ 266 complain_overflow_bitfield, /* complain_on_overflow */ 267 bfd_elf_generic_reloc, /* special_function */ 268 "R_68K_TLS_LE32", /* name */ 269 FALSE, /* partial_inplace */ 270 0, /* src_mask */ 271 0xffffffff, /* dst_mask */ 272 FALSE), /* pcrel_offset */ 273 274 HOWTO (R_68K_TLS_LE16, /* type */ 275 0, /* rightshift */ 276 1, /* size (0 = byte, 1 = short, 2 = long) */ 277 16, /* bitsize */ 278 FALSE, /* pc_relative */ 279 0, /* bitpos */ 280 complain_overflow_signed, /* complain_on_overflow */ 281 bfd_elf_generic_reloc, /* special_function */ 282 "R_68K_TLS_LE16", /* name */ 283 FALSE, /* partial_inplace */ 284 0, /* src_mask */ 285 0x0000ffff, /* dst_mask */ 286 FALSE), /* pcrel_offset */ 287 288 HOWTO (R_68K_TLS_LE8, /* type */ 289 0, /* rightshift */ 290 0, /* size (0 = byte, 1 = short, 2 = long) */ 291 8, /* bitsize */ 292 FALSE, /* pc_relative */ 293 0, /* bitpos */ 294 complain_overflow_signed, /* complain_on_overflow */ 295 bfd_elf_generic_reloc, /* special_function */ 296 "R_68K_TLS_LE8", /* name */ 297 FALSE, /* partial_inplace */ 298 0, /* src_mask */ 299 0x000000ff, /* dst_mask */ 300 FALSE), /* pcrel_offset */ 301 302 /* TLS GD/LD dynamic relocations. */ 303 HOWTO (R_68K_TLS_DTPMOD32, /* type */ 304 0, /* rightshift */ 305 2, /* size (0 = byte, 1 = short, 2 = long) */ 306 32, /* bitsize */ 307 FALSE, /* pc_relative */ 308 0, /* bitpos */ 309 complain_overflow_dont, /* complain_on_overflow */ 310 bfd_elf_generic_reloc, /* special_function */ 311 "R_68K_TLS_DTPMOD32", /* name */ 312 FALSE, /* partial_inplace */ 313 0, /* src_mask */ 314 0xffffffff, /* dst_mask */ 315 FALSE), /* pcrel_offset */ 316 317 HOWTO (R_68K_TLS_DTPREL32, /* type */ 318 0, /* rightshift */ 319 2, /* size (0 = byte, 1 = short, 2 = long) */ 320 32, /* bitsize */ 321 FALSE, /* pc_relative */ 322 0, /* bitpos */ 323 complain_overflow_dont, /* complain_on_overflow */ 324 bfd_elf_generic_reloc, /* special_function */ 325 "R_68K_TLS_DTPREL32", /* name */ 326 FALSE, /* partial_inplace */ 327 0, /* src_mask */ 328 0xffffffff, /* dst_mask */ 329 FALSE), /* pcrel_offset */ 330 331 HOWTO (R_68K_TLS_TPREL32, /* type */ 332 0, /* rightshift */ 333 2, /* size (0 = byte, 1 = short, 2 = long) */ 334 32, /* bitsize */ 335 FALSE, /* pc_relative */ 336 0, /* bitpos */ 337 complain_overflow_dont, /* complain_on_overflow */ 338 bfd_elf_generic_reloc, /* special_function */ 339 "R_68K_TLS_TPREL32", /* name */ 340 FALSE, /* partial_inplace */ 341 0, /* src_mask */ 342 0xffffffff, /* dst_mask */ 343 FALSE), /* pcrel_offset */ 344 }; 345 346 static void 347 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst) 348 { 349 unsigned int indx = ELF32_R_TYPE (dst->r_info); 350 351 if (indx >= (unsigned int) R_68K_max) 352 { 353 (*_bfd_error_handler) (_("%B: invalid relocation type %d"), 354 abfd, (int) indx); 355 indx = R_68K_NONE; 356 } 357 cache_ptr->howto = &howto_table[indx]; 358 } 359 360 #define elf_info_to_howto rtype_to_howto 361 362 static const struct 363 { 364 bfd_reloc_code_real_type bfd_val; 365 int elf_val; 366 } 367 reloc_map[] = 368 { 369 { BFD_RELOC_NONE, R_68K_NONE }, 370 { BFD_RELOC_32, R_68K_32 }, 371 { BFD_RELOC_16, R_68K_16 }, 372 { BFD_RELOC_8, R_68K_8 }, 373 { BFD_RELOC_32_PCREL, R_68K_PC32 }, 374 { BFD_RELOC_16_PCREL, R_68K_PC16 }, 375 { BFD_RELOC_8_PCREL, R_68K_PC8 }, 376 { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 }, 377 { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 }, 378 { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 }, 379 { BFD_RELOC_32_GOTOFF, R_68K_GOT32O }, 380 { BFD_RELOC_16_GOTOFF, R_68K_GOT16O }, 381 { BFD_RELOC_8_GOTOFF, R_68K_GOT8O }, 382 { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 }, 383 { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 }, 384 { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 }, 385 { BFD_RELOC_32_PLTOFF, R_68K_PLT32O }, 386 { BFD_RELOC_16_PLTOFF, R_68K_PLT16O }, 387 { BFD_RELOC_8_PLTOFF, R_68K_PLT8O }, 388 { BFD_RELOC_NONE, R_68K_COPY }, 389 { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT }, 390 { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT }, 391 { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE }, 392 { BFD_RELOC_CTOR, R_68K_32 }, 393 { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT }, 394 { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY }, 395 { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 }, 396 { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 }, 397 { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 }, 398 { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 }, 399 { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 }, 400 { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 }, 401 { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 }, 402 { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 }, 403 { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 }, 404 { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 }, 405 { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 }, 406 { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 }, 407 { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 }, 408 { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 }, 409 { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 }, 410 }; 411 412 static reloc_howto_type * 413 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED, 414 bfd_reloc_code_real_type code) 415 { 416 unsigned int i; 417 for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++) 418 { 419 if (reloc_map[i].bfd_val == code) 420 return &howto_table[reloc_map[i].elf_val]; 421 } 422 return 0; 423 } 424 425 static reloc_howto_type * 426 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name) 427 { 428 unsigned int i; 429 430 for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++) 431 if (howto_table[i].name != NULL 432 && strcasecmp (howto_table[i].name, r_name) == 0) 433 return &howto_table[i]; 434 435 return NULL; 436 } 437 438 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup 439 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup 440 #define ELF_ARCH bfd_arch_m68k 441 #define ELF_TARGET_ID M68K_ELF_DATA 442 443 /* Functions for the m68k ELF linker. */ 444 445 /* The name of the dynamic interpreter. This is put in the .interp 446 section. */ 447 448 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1" 449 450 /* Describes one of the various PLT styles. */ 451 452 struct elf_m68k_plt_info 453 { 454 /* The size of each PLT entry. */ 455 bfd_vma size; 456 457 /* The template for the first PLT entry. */ 458 const bfd_byte *plt0_entry; 459 460 /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations. 461 The comments by each member indicate the value that the relocation 462 is against. */ 463 struct { 464 unsigned int got4; /* .got + 4 */ 465 unsigned int got8; /* .got + 8 */ 466 } plt0_relocs; 467 468 /* The template for a symbol's PLT entry. */ 469 const bfd_byte *symbol_entry; 470 471 /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations. 472 The comments by each member indicate the value that the relocation 473 is against. */ 474 struct { 475 unsigned int got; /* the symbol's .got.plt entry */ 476 unsigned int plt; /* .plt */ 477 } symbol_relocs; 478 479 /* The offset of the resolver stub from the start of SYMBOL_ENTRY. 480 The stub starts with "move.l #relocoffset,%d0". */ 481 bfd_vma symbol_resolve_entry; 482 }; 483 484 /* The size in bytes of an entry in the procedure linkage table. */ 485 486 #define PLT_ENTRY_SIZE 20 487 488 /* The first entry in a procedure linkage table looks like this. See 489 the SVR4 ABI m68k supplement to see how this works. */ 490 491 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] = 492 { 493 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 494 0, 0, 0, 2, /* + (.got + 4) - . */ 495 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */ 496 0, 0, 0, 2, /* + (.got + 8) - . */ 497 0, 0, 0, 0 /* pad out to 20 bytes. */ 498 }; 499 500 /* Subsequent entries in a procedure linkage table look like this. */ 501 502 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] = 503 { 504 0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */ 505 0, 0, 0, 2, /* + (.got.plt entry) - . */ 506 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 507 0, 0, 0, 0, /* + reloc index */ 508 0x60, 0xff, /* bra.l .plt */ 509 0, 0, 0, 0 /* + .plt - . */ 510 }; 511 512 static const struct elf_m68k_plt_info elf_m68k_plt_info = { 513 PLT_ENTRY_SIZE, 514 elf_m68k_plt0_entry, { 4, 12 }, 515 elf_m68k_plt_entry, { 4, 16 }, 8 516 }; 517 518 #define ISAB_PLT_ENTRY_SIZE 24 519 520 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] = 521 { 522 0x20, 0x3c, /* move.l #offset,%d0 */ 523 0, 0, 0, 0, /* + (.got + 4) - . */ 524 0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */ 525 0x20, 0x3c, /* move.l #offset,%d0 */ 526 0, 0, 0, 0, /* + (.got + 8) - . */ 527 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 528 0x4e, 0xd0, /* jmp (%a0) */ 529 0x4e, 0x71 /* nop */ 530 }; 531 532 /* Subsequent entries in a procedure linkage table look like this. */ 533 534 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] = 535 { 536 0x20, 0x3c, /* move.l #offset,%d0 */ 537 0, 0, 0, 0, /* + (.got.plt entry) - . */ 538 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 539 0x4e, 0xd0, /* jmp (%a0) */ 540 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 541 0, 0, 0, 0, /* + reloc index */ 542 0x60, 0xff, /* bra.l .plt */ 543 0, 0, 0, 0 /* + .plt - . */ 544 }; 545 546 static const struct elf_m68k_plt_info elf_isab_plt_info = { 547 ISAB_PLT_ENTRY_SIZE, 548 elf_isab_plt0_entry, { 2, 12 }, 549 elf_isab_plt_entry, { 2, 20 }, 12 550 }; 551 552 #define ISAC_PLT_ENTRY_SIZE 24 553 554 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] = 555 { 556 0x20, 0x3c, /* move.l #offset,%d0 */ 557 0, 0, 0, 0, /* replaced with .got + 4 - . */ 558 0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */ 559 0x20, 0x3c, /* move.l #offset,%d0 */ 560 0, 0, 0, 0, /* replaced with .got + 8 - . */ 561 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 562 0x4e, 0xd0, /* jmp (%a0) */ 563 0x4e, 0x71 /* nop */ 564 }; 565 566 /* Subsequent entries in a procedure linkage table look like this. */ 567 568 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] = 569 { 570 0x20, 0x3c, /* move.l #offset,%d0 */ 571 0, 0, 0, 0, /* replaced with (.got entry) - . */ 572 0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */ 573 0x4e, 0xd0, /* jmp (%a0) */ 574 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 575 0, 0, 0, 0, /* replaced with offset into relocation table */ 576 0x61, 0xff, /* bsr.l .plt */ 577 0, 0, 0, 0 /* replaced with .plt - . */ 578 }; 579 580 static const struct elf_m68k_plt_info elf_isac_plt_info = { 581 ISAC_PLT_ENTRY_SIZE, 582 elf_isac_plt0_entry, { 2, 12}, 583 elf_isac_plt_entry, { 2, 20 }, 12 584 }; 585 586 #define CPU32_PLT_ENTRY_SIZE 24 587 /* Procedure linkage table entries for the cpu32 */ 588 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] = 589 { 590 0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */ 591 0, 0, 0, 2, /* + (.got + 4) - . */ 592 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 593 0, 0, 0, 2, /* + (.got + 8) - . */ 594 0x4e, 0xd1, /* jmp %a1@ */ 595 0, 0, 0, 0, /* pad out to 24 bytes. */ 596 0, 0 597 }; 598 599 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] = 600 { 601 0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */ 602 0, 0, 0, 2, /* + (.got.plt entry) - . */ 603 0x4e, 0xd1, /* jmp %a1@ */ 604 0x2f, 0x3c, /* move.l #offset,-(%sp) */ 605 0, 0, 0, 0, /* + reloc index */ 606 0x60, 0xff, /* bra.l .plt */ 607 0, 0, 0, 0, /* + .plt - . */ 608 0, 0 609 }; 610 611 static const struct elf_m68k_plt_info elf_cpu32_plt_info = { 612 CPU32_PLT_ENTRY_SIZE, 613 elf_cpu32_plt0_entry, { 4, 12 }, 614 elf_cpu32_plt_entry, { 4, 18 }, 10 615 }; 616 617 /* The m68k linker needs to keep track of the number of relocs that it 618 decides to copy in check_relocs for each symbol. This is so that it 619 can discard PC relative relocs if it doesn't need them when linking 620 with -Bsymbolic. We store the information in a field extending the 621 regular ELF linker hash table. */ 622 623 /* This structure keeps track of the number of PC relative relocs we have 624 copied for a given symbol. */ 625 626 struct elf_m68k_pcrel_relocs_copied 627 { 628 /* Next section. */ 629 struct elf_m68k_pcrel_relocs_copied *next; 630 /* A section in dynobj. */ 631 asection *section; 632 /* Number of relocs copied in this section. */ 633 bfd_size_type count; 634 }; 635 636 /* Forward declaration. */ 637 struct elf_m68k_got_entry; 638 639 /* m68k ELF linker hash entry. */ 640 641 struct elf_m68k_link_hash_entry 642 { 643 struct elf_link_hash_entry root; 644 645 /* Number of PC relative relocs copied for this symbol. */ 646 struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied; 647 648 /* Key to got_entries. */ 649 unsigned long got_entry_key; 650 651 /* List of GOT entries for this symbol. This list is build during 652 offset finalization and is used within elf_m68k_finish_dynamic_symbol 653 to traverse all GOT entries for a particular symbol. 654 655 ??? We could've used root.got.glist field instead, but having 656 a separate field is cleaner. */ 657 struct elf_m68k_got_entry *glist; 658 }; 659 660 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent)) 661 662 /* Key part of GOT entry in hashtable. */ 663 struct elf_m68k_got_entry_key 664 { 665 /* BFD in which this symbol was defined. NULL for global symbols. */ 666 const bfd *bfd; 667 668 /* Symbol index. Either local symbol index or h->got_entry_key. */ 669 unsigned long symndx; 670 671 /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32}, 672 R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}. 673 674 From perspective of hashtable key, only elf_m68k_got_reloc_type (type) 675 matters. That is, we distinguish between, say, R_68K_GOT16O 676 and R_68K_GOT32O when allocating offsets, but they are considered to be 677 the same when searching got->entries. */ 678 enum elf_m68k_reloc_type type; 679 }; 680 681 /* Size of the GOT offset suitable for relocation. */ 682 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST }; 683 684 /* Entry of the GOT. */ 685 struct elf_m68k_got_entry 686 { 687 /* GOT entries are put into a got->entries hashtable. This is the key. */ 688 struct elf_m68k_got_entry_key key_; 689 690 /* GOT entry data. We need s1 before offset finalization and s2 after. */ 691 union 692 { 693 struct 694 { 695 /* Number of times this entry is referenced. It is used to 696 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook. */ 697 bfd_vma refcount; 698 } s1; 699 700 struct 701 { 702 /* Offset from the start of .got section. To calculate offset relative 703 to GOT pointer one should substract got->offset from this value. */ 704 bfd_vma offset; 705 706 /* Pointer to the next GOT entry for this global symbol. 707 Symbols have at most one entry in one GOT, but might 708 have entries in more than one GOT. 709 Root of this list is h->glist. 710 NULL for local symbols. */ 711 struct elf_m68k_got_entry *next; 712 } s2; 713 } u; 714 }; 715 716 /* Return representative type for relocation R_TYPE. 717 This is used to avoid enumerating many relocations in comparisons, 718 switches etc. */ 719 720 static enum elf_m68k_reloc_type 721 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type) 722 { 723 switch (r_type) 724 { 725 /* In most cases R_68K_GOTx relocations require the very same 726 handling as R_68K_GOT32O relocation. In cases when we need 727 to distinguish between the two, we use explicitly compare against 728 r_type. */ 729 case R_68K_GOT32: 730 case R_68K_GOT16: 731 case R_68K_GOT8: 732 case R_68K_GOT32O: 733 case R_68K_GOT16O: 734 case R_68K_GOT8O: 735 return R_68K_GOT32O; 736 737 case R_68K_TLS_GD32: 738 case R_68K_TLS_GD16: 739 case R_68K_TLS_GD8: 740 return R_68K_TLS_GD32; 741 742 case R_68K_TLS_LDM32: 743 case R_68K_TLS_LDM16: 744 case R_68K_TLS_LDM8: 745 return R_68K_TLS_LDM32; 746 747 case R_68K_TLS_IE32: 748 case R_68K_TLS_IE16: 749 case R_68K_TLS_IE8: 750 return R_68K_TLS_IE32; 751 752 default: 753 BFD_ASSERT (FALSE); 754 return 0; 755 } 756 } 757 758 /* Return size of the GOT entry offset for relocation R_TYPE. */ 759 760 static enum elf_m68k_got_offset_size 761 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type) 762 { 763 switch (r_type) 764 { 765 case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8: 766 case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32: 767 case R_68K_TLS_IE32: 768 return R_32; 769 770 case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16: 771 case R_68K_TLS_IE16: 772 return R_16; 773 774 case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8: 775 case R_68K_TLS_IE8: 776 return R_8; 777 778 default: 779 BFD_ASSERT (FALSE); 780 return 0; 781 } 782 } 783 784 /* Return number of GOT entries we need to allocate in GOT for 785 relocation R_TYPE. */ 786 787 static bfd_vma 788 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type) 789 { 790 switch (elf_m68k_reloc_got_type (r_type)) 791 { 792 case R_68K_GOT32O: 793 case R_68K_TLS_IE32: 794 return 1; 795 796 case R_68K_TLS_GD32: 797 case R_68K_TLS_LDM32: 798 return 2; 799 800 default: 801 BFD_ASSERT (FALSE); 802 return 0; 803 } 804 } 805 806 /* Return TRUE if relocation R_TYPE is a TLS one. */ 807 808 static bfd_boolean 809 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type) 810 { 811 switch (r_type) 812 { 813 case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8: 814 case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8: 815 case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8: 816 case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8: 817 case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8: 818 case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32: 819 return TRUE; 820 821 default: 822 return FALSE; 823 } 824 } 825 826 /* Data structure representing a single GOT. */ 827 struct elf_m68k_got 828 { 829 /* Hashtable of 'struct elf_m68k_got_entry's. 830 Starting size of this table is the maximum number of 831 R_68K_GOT8O entries. */ 832 htab_t entries; 833 834 /* Number of R_x slots in this GOT. Some (e.g., TLS) entries require 835 several GOT slots. 836 837 n_slots[R_8] is the count of R_8 slots in this GOT. 838 n_slots[R_16] is the cumulative count of R_8 and R_16 slots 839 in this GOT. 840 n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots 841 in this GOT. This is the total number of slots. */ 842 bfd_vma n_slots[R_LAST]; 843 844 /* Number of local (entry->key_.h == NULL) slots in this GOT. 845 This is only used to properly calculate size of .rela.got section; 846 see elf_m68k_partition_multi_got. */ 847 bfd_vma local_n_slots; 848 849 /* Offset of this GOT relative to beginning of .got section. */ 850 bfd_vma offset; 851 }; 852 853 /* BFD and its GOT. This is an entry in multi_got->bfd2got hashtable. */ 854 struct elf_m68k_bfd2got_entry 855 { 856 /* BFD. */ 857 const bfd *bfd; 858 859 /* Assigned GOT. Before partitioning multi-GOT each BFD has its own 860 GOT structure. After partitioning several BFD's might [and often do] 861 share a single GOT. */ 862 struct elf_m68k_got *got; 863 }; 864 865 /* The main data structure holding all the pieces. */ 866 struct elf_m68k_multi_got 867 { 868 /* Hashtable mapping each BFD to its GOT. If a BFD doesn't have an entry 869 here, then it doesn't need a GOT (this includes the case of a BFD 870 having an empty GOT). 871 872 ??? This hashtable can be replaced by an array indexed by bfd->id. */ 873 htab_t bfd2got; 874 875 /* Next symndx to assign a global symbol. 876 h->got_entry_key is initialized from this counter. */ 877 unsigned long global_symndx; 878 }; 879 880 /* m68k ELF linker hash table. */ 881 882 struct elf_m68k_link_hash_table 883 { 884 struct elf_link_hash_table root; 885 886 /* Small local sym cache. */ 887 struct sym_cache sym_cache; 888 889 /* The PLT format used by this link, or NULL if the format has not 890 yet been chosen. */ 891 const struct elf_m68k_plt_info *plt_info; 892 893 /* True, if GP is loaded within each function which uses it. 894 Set to TRUE when GOT negative offsets or multi-GOT is enabled. */ 895 bfd_boolean local_gp_p; 896 897 /* Switch controlling use of negative offsets to double the size of GOTs. */ 898 bfd_boolean use_neg_got_offsets_p; 899 900 /* Switch controlling generation of multiple GOTs. */ 901 bfd_boolean allow_multigot_p; 902 903 /* Multi-GOT data structure. */ 904 struct elf_m68k_multi_got multi_got_; 905 }; 906 907 /* Get the m68k ELF linker hash table from a link_info structure. */ 908 909 #define elf_m68k_hash_table(p) \ 910 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \ 911 == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL) 912 913 /* Shortcut to multi-GOT data. */ 914 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_) 915 916 /* Create an entry in an m68k ELF linker hash table. */ 917 918 static struct bfd_hash_entry * 919 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry, 920 struct bfd_hash_table *table, 921 const char *string) 922 { 923 struct bfd_hash_entry *ret = entry; 924 925 /* Allocate the structure if it has not already been allocated by a 926 subclass. */ 927 if (ret == NULL) 928 ret = bfd_hash_allocate (table, 929 sizeof (struct elf_m68k_link_hash_entry)); 930 if (ret == NULL) 931 return ret; 932 933 /* Call the allocation method of the superclass. */ 934 ret = _bfd_elf_link_hash_newfunc (ret, table, string); 935 if (ret != NULL) 936 { 937 elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL; 938 elf_m68k_hash_entry (ret)->got_entry_key = 0; 939 elf_m68k_hash_entry (ret)->glist = NULL; 940 } 941 942 return ret; 943 } 944 945 /* Create an m68k ELF linker hash table. */ 946 947 static struct bfd_link_hash_table * 948 elf_m68k_link_hash_table_create (bfd *abfd) 949 { 950 struct elf_m68k_link_hash_table *ret; 951 bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table); 952 953 ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt); 954 if (ret == (struct elf_m68k_link_hash_table *) NULL) 955 return NULL; 956 957 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 958 elf_m68k_link_hash_newfunc, 959 sizeof (struct elf_m68k_link_hash_entry), 960 M68K_ELF_DATA)) 961 { 962 free (ret); 963 return NULL; 964 } 965 966 ret->multi_got_.global_symndx = 1; 967 968 return &ret->root.root; 969 } 970 971 /* Destruct local data. */ 972 973 static void 974 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab) 975 { 976 struct elf_m68k_link_hash_table *htab; 977 978 htab = (struct elf_m68k_link_hash_table *) _htab; 979 980 if (htab->multi_got_.bfd2got != NULL) 981 { 982 htab_delete (htab->multi_got_.bfd2got); 983 htab->multi_got_.bfd2got = NULL; 984 } 985 _bfd_elf_link_hash_table_free (_htab); 986 } 987 988 /* Set the right machine number. */ 989 990 static bfd_boolean 991 elf32_m68k_object_p (bfd *abfd) 992 { 993 unsigned int mach = 0; 994 unsigned features = 0; 995 flagword eflags = elf_elfheader (abfd)->e_flags; 996 997 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 998 features |= m68000; 999 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1000 features |= cpu32; 1001 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1002 features |= fido_a; 1003 else 1004 { 1005 switch (eflags & EF_M68K_CF_ISA_MASK) 1006 { 1007 case EF_M68K_CF_ISA_A_NODIV: 1008 features |= mcfisa_a; 1009 break; 1010 case EF_M68K_CF_ISA_A: 1011 features |= mcfisa_a|mcfhwdiv; 1012 break; 1013 case EF_M68K_CF_ISA_A_PLUS: 1014 features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp; 1015 break; 1016 case EF_M68K_CF_ISA_B_NOUSP: 1017 features |= mcfisa_a|mcfisa_b|mcfhwdiv; 1018 break; 1019 case EF_M68K_CF_ISA_B: 1020 features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp; 1021 break; 1022 case EF_M68K_CF_ISA_C: 1023 features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp; 1024 break; 1025 case EF_M68K_CF_ISA_C_NODIV: 1026 features |= mcfisa_a|mcfisa_c|mcfusp; 1027 break; 1028 } 1029 switch (eflags & EF_M68K_CF_MAC_MASK) 1030 { 1031 case EF_M68K_CF_MAC: 1032 features |= mcfmac; 1033 break; 1034 case EF_M68K_CF_EMAC: 1035 features |= mcfemac; 1036 break; 1037 } 1038 if (eflags & EF_M68K_CF_FLOAT) 1039 features |= cfloat; 1040 } 1041 1042 mach = bfd_m68k_features_to_mach (features); 1043 bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach); 1044 1045 return TRUE; 1046 } 1047 1048 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag 1049 field based on the machine number. */ 1050 1051 static void 1052 elf_m68k_final_write_processing (bfd *abfd, 1053 bfd_boolean linker ATTRIBUTE_UNUSED) 1054 { 1055 int mach = bfd_get_mach (abfd); 1056 unsigned long e_flags = elf_elfheader (abfd)->e_flags; 1057 1058 if (!e_flags) 1059 { 1060 unsigned int arch_mask; 1061 1062 arch_mask = bfd_m68k_mach_to_features (mach); 1063 1064 if (arch_mask & m68000) 1065 e_flags = EF_M68K_M68000; 1066 else if (arch_mask & cpu32) 1067 e_flags = EF_M68K_CPU32; 1068 else if (arch_mask & fido_a) 1069 e_flags = EF_M68K_FIDO; 1070 else 1071 { 1072 switch (arch_mask 1073 & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp)) 1074 { 1075 case mcfisa_a: 1076 e_flags |= EF_M68K_CF_ISA_A_NODIV; 1077 break; 1078 case mcfisa_a | mcfhwdiv: 1079 e_flags |= EF_M68K_CF_ISA_A; 1080 break; 1081 case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp: 1082 e_flags |= EF_M68K_CF_ISA_A_PLUS; 1083 break; 1084 case mcfisa_a | mcfisa_b | mcfhwdiv: 1085 e_flags |= EF_M68K_CF_ISA_B_NOUSP; 1086 break; 1087 case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp: 1088 e_flags |= EF_M68K_CF_ISA_B; 1089 break; 1090 case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp: 1091 e_flags |= EF_M68K_CF_ISA_C; 1092 break; 1093 case mcfisa_a | mcfisa_c | mcfusp: 1094 e_flags |= EF_M68K_CF_ISA_C_NODIV; 1095 break; 1096 } 1097 if (arch_mask & mcfmac) 1098 e_flags |= EF_M68K_CF_MAC; 1099 else if (arch_mask & mcfemac) 1100 e_flags |= EF_M68K_CF_EMAC; 1101 if (arch_mask & cfloat) 1102 e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E; 1103 } 1104 elf_elfheader (abfd)->e_flags = e_flags; 1105 } 1106 } 1107 1108 /* Keep m68k-specific flags in the ELF header. */ 1109 1110 static bfd_boolean 1111 elf32_m68k_set_private_flags (bfd *abfd, flagword flags) 1112 { 1113 elf_elfheader (abfd)->e_flags = flags; 1114 elf_flags_init (abfd) = TRUE; 1115 return TRUE; 1116 } 1117 1118 /* Merge backend specific data from an object file to the output 1119 object file when linking. */ 1120 static bfd_boolean 1121 elf32_m68k_merge_private_bfd_data (bfd *ibfd, bfd *obfd) 1122 { 1123 flagword out_flags; 1124 flagword in_flags; 1125 flagword out_isa; 1126 flagword in_isa; 1127 const bfd_arch_info_type *arch_info; 1128 1129 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1130 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1131 return FALSE; 1132 1133 /* Get the merged machine. This checks for incompatibility between 1134 Coldfire & non-Coldfire flags, incompability between different 1135 Coldfire ISAs, and incompability between different MAC types. */ 1136 arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE); 1137 if (!arch_info) 1138 return FALSE; 1139 1140 bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach); 1141 1142 in_flags = elf_elfheader (ibfd)->e_flags; 1143 if (!elf_flags_init (obfd)) 1144 { 1145 elf_flags_init (obfd) = TRUE; 1146 out_flags = in_flags; 1147 } 1148 else 1149 { 1150 out_flags = elf_elfheader (obfd)->e_flags; 1151 unsigned int variant_mask; 1152 1153 if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1154 variant_mask = 0; 1155 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1156 variant_mask = 0; 1157 else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1158 variant_mask = 0; 1159 else 1160 variant_mask = EF_M68K_CF_ISA_MASK; 1161 1162 in_isa = (in_flags & variant_mask); 1163 out_isa = (out_flags & variant_mask); 1164 if (in_isa > out_isa) 1165 out_flags ^= in_isa ^ out_isa; 1166 if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32 1167 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1168 || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO 1169 && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)) 1170 out_flags = EF_M68K_FIDO; 1171 else 1172 out_flags |= in_flags ^ in_isa; 1173 } 1174 elf_elfheader (obfd)->e_flags = out_flags; 1175 1176 return TRUE; 1177 } 1178 1179 /* Display the flags field. */ 1180 1181 static bfd_boolean 1182 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr) 1183 { 1184 FILE *file = (FILE *) ptr; 1185 flagword eflags = elf_elfheader (abfd)->e_flags; 1186 1187 BFD_ASSERT (abfd != NULL && ptr != NULL); 1188 1189 /* Print normal ELF private data. */ 1190 _bfd_elf_print_private_bfd_data (abfd, ptr); 1191 1192 /* Ignore init flag - it may not be set, despite the flags field containing valid data. */ 1193 1194 /* xgettext:c-format */ 1195 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 1196 1197 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000) 1198 fprintf (file, " [m68000]"); 1199 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32) 1200 fprintf (file, " [cpu32]"); 1201 else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO) 1202 fprintf (file, " [fido]"); 1203 else 1204 { 1205 if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E) 1206 fprintf (file, " [cfv4e]"); 1207 1208 if (eflags & EF_M68K_CF_ISA_MASK) 1209 { 1210 char const *isa = _("unknown"); 1211 char const *mac = _("unknown"); 1212 char const *additional = ""; 1213 1214 switch (eflags & EF_M68K_CF_ISA_MASK) 1215 { 1216 case EF_M68K_CF_ISA_A_NODIV: 1217 isa = "A"; 1218 additional = " [nodiv]"; 1219 break; 1220 case EF_M68K_CF_ISA_A: 1221 isa = "A"; 1222 break; 1223 case EF_M68K_CF_ISA_A_PLUS: 1224 isa = "A+"; 1225 break; 1226 case EF_M68K_CF_ISA_B_NOUSP: 1227 isa = "B"; 1228 additional = " [nousp]"; 1229 break; 1230 case EF_M68K_CF_ISA_B: 1231 isa = "B"; 1232 break; 1233 case EF_M68K_CF_ISA_C: 1234 isa = "C"; 1235 break; 1236 case EF_M68K_CF_ISA_C_NODIV: 1237 isa = "C"; 1238 additional = " [nodiv]"; 1239 break; 1240 } 1241 fprintf (file, " [isa %s]%s", isa, additional); 1242 1243 if (eflags & EF_M68K_CF_FLOAT) 1244 fprintf (file, " [float]"); 1245 1246 switch (eflags & EF_M68K_CF_MAC_MASK) 1247 { 1248 case 0: 1249 mac = NULL; 1250 break; 1251 case EF_M68K_CF_MAC: 1252 mac = "mac"; 1253 break; 1254 case EF_M68K_CF_EMAC: 1255 mac = "emac"; 1256 break; 1257 case EF_M68K_CF_EMAC_B: 1258 mac = "emac_b"; 1259 break; 1260 } 1261 if (mac) 1262 fprintf (file, " [%s]", mac); 1263 } 1264 } 1265 1266 fputc ('\n', file); 1267 1268 return TRUE; 1269 } 1270 1271 /* Multi-GOT support implementation design: 1272 1273 Multi-GOT starts in check_relocs hook. There we scan all 1274 relocations of a BFD and build a local GOT (struct elf_m68k_got) 1275 for it. If a single BFD appears to require too many GOT slots with 1276 R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification 1277 to user. 1278 After check_relocs has been invoked for each input BFD, we have 1279 constructed a GOT for each input BFD. 1280 1281 To minimize total number of GOTs required for a particular output BFD 1282 (as some environments support only 1 GOT per output object) we try 1283 to merge some of the GOTs to share an offset space. Ideally [and in most 1284 cases] we end up with a single GOT. In cases when there are too many 1285 restricted relocations (e.g., R_68K_GOT16O relocations) we end up with 1286 several GOTs, assuming the environment can handle them. 1287 1288 Partitioning is done in elf_m68k_partition_multi_got. We start with 1289 an empty GOT and traverse bfd2got hashtable putting got_entries from 1290 local GOTs to the new 'big' one. We do that by constructing an 1291 intermediate GOT holding all the entries the local GOT has and the big 1292 GOT lacks. Then we check if there is room in the big GOT to accomodate 1293 all the entries from diff. On success we add those entries to the big 1294 GOT; on failure we start the new 'big' GOT and retry the adding of 1295 entries from the local GOT. Note that this retry will always succeed as 1296 each local GOT doesn't overflow the limits. After partitioning we 1297 end up with each bfd assigned one of the big GOTs. GOT entries in the 1298 big GOTs are initialized with GOT offsets. Note that big GOTs are 1299 positioned consequently in program space and represent a single huge GOT 1300 to the outside world. 1301 1302 After that we get to elf_m68k_relocate_section. There we 1303 adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol 1304 relocations to refer to appropriate [assigned to current input_bfd] 1305 big GOT. 1306 1307 Notes: 1308 1309 GOT entry type: We have several types of GOT entries. 1310 * R_8 type is used in entries for symbols that have at least one 1311 R_68K_GOT8O or R_68K_TLS_*8 relocation. We can have at most 0x40 1312 such entries in one GOT. 1313 * R_16 type is used in entries for symbols that have at least one 1314 R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations. 1315 We can have at most 0x4000 such entries in one GOT. 1316 * R_32 type is used in all other cases. We can have as many 1317 such entries in one GOT as we'd like. 1318 When counting relocations we have to include the count of the smaller 1319 ranged relocations in the counts of the larger ranged ones in order 1320 to correctly detect overflow. 1321 1322 Sorting the GOT: In each GOT starting offsets are assigned to 1323 R_8 entries, which are followed by R_16 entries, and 1324 R_32 entries go at the end. See finalize_got_offsets for details. 1325 1326 Negative GOT offsets: To double usable offset range of GOTs we use 1327 negative offsets. As we assign entries with GOT offsets relative to 1328 start of .got section, the offset values are positive. They become 1329 negative only in relocate_section where got->offset value is 1330 subtracted from them. 1331 1332 3 special GOT entries: There are 3 special GOT entries used internally 1333 by loader. These entries happen to be placed to .got.plt section, 1334 so we don't do anything about them in multi-GOT support. 1335 1336 Memory management: All data except for hashtables 1337 multi_got->bfd2got and got->entries are allocated on 1338 elf_hash_table (info)->dynobj bfd (for this reason we pass 'info' 1339 to most functions), so we don't need to care to free them. At the 1340 moment of allocation hashtables are being linked into main data 1341 structure (multi_got), all pieces of which are reachable from 1342 elf_m68k_multi_got (info). We deallocate them in 1343 elf_m68k_link_hash_table_free. */ 1344 1345 /* Initialize GOT. */ 1346 1347 static void 1348 elf_m68k_init_got (struct elf_m68k_got *got) 1349 { 1350 got->entries = NULL; 1351 got->n_slots[R_8] = 0; 1352 got->n_slots[R_16] = 0; 1353 got->n_slots[R_32] = 0; 1354 got->local_n_slots = 0; 1355 got->offset = (bfd_vma) -1; 1356 } 1357 1358 /* Destruct GOT. */ 1359 1360 static void 1361 elf_m68k_clear_got (struct elf_m68k_got *got) 1362 { 1363 if (got->entries != NULL) 1364 { 1365 htab_delete (got->entries); 1366 got->entries = NULL; 1367 } 1368 } 1369 1370 /* Create and empty GOT structure. INFO is the context where memory 1371 should be allocated. */ 1372 1373 static struct elf_m68k_got * 1374 elf_m68k_create_empty_got (struct bfd_link_info *info) 1375 { 1376 struct elf_m68k_got *got; 1377 1378 got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got)); 1379 if (got == NULL) 1380 return NULL; 1381 1382 elf_m68k_init_got (got); 1383 1384 return got; 1385 } 1386 1387 /* Initialize KEY. */ 1388 1389 static void 1390 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key, 1391 struct elf_link_hash_entry *h, 1392 const bfd *abfd, unsigned long symndx, 1393 enum elf_m68k_reloc_type reloc_type) 1394 { 1395 if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32) 1396 /* All TLS_LDM relocations share a single GOT entry. */ 1397 { 1398 key->bfd = NULL; 1399 key->symndx = 0; 1400 } 1401 else if (h != NULL) 1402 /* Global symbols are identified with their got_entry_key. */ 1403 { 1404 key->bfd = NULL; 1405 key->symndx = elf_m68k_hash_entry (h)->got_entry_key; 1406 BFD_ASSERT (key->symndx != 0); 1407 } 1408 else 1409 /* Local symbols are identified by BFD they appear in and symndx. */ 1410 { 1411 key->bfd = abfd; 1412 key->symndx = symndx; 1413 } 1414 1415 key->type = reloc_type; 1416 } 1417 1418 /* Calculate hash of got_entry. 1419 ??? Is it good? */ 1420 1421 static hashval_t 1422 elf_m68k_got_entry_hash (const void *_entry) 1423 { 1424 const struct elf_m68k_got_entry_key *key; 1425 1426 key = &((const struct elf_m68k_got_entry *) _entry)->key_; 1427 1428 return (key->symndx 1429 + (key->bfd != NULL ? (int) key->bfd->id : -1) 1430 + elf_m68k_reloc_got_type (key->type)); 1431 } 1432 1433 /* Check if two got entries are equal. */ 1434 1435 static int 1436 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2) 1437 { 1438 const struct elf_m68k_got_entry_key *key1; 1439 const struct elf_m68k_got_entry_key *key2; 1440 1441 key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_; 1442 key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_; 1443 1444 return (key1->bfd == key2->bfd 1445 && key1->symndx == key2->symndx 1446 && (elf_m68k_reloc_got_type (key1->type) 1447 == elf_m68k_reloc_got_type (key2->type))); 1448 } 1449 1450 /* When using negative offsets, we allocate one extra R_8, one extra R_16 1451 and one extra R_32 slots to simplify handling of 2-slot entries during 1452 offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots. */ 1453 1454 /* Maximal number of R_8 slots in a single GOT. */ 1455 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO) \ 1456 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1457 ? (0x40 - 1) \ 1458 : 0x20) 1459 1460 /* Maximal number of R_8 and R_16 slots in a single GOT. */ 1461 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO) \ 1462 (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p \ 1463 ? (0x4000 - 2) \ 1464 : 0x2000) 1465 1466 /* SEARCH - simply search the hashtable, don't insert new entries or fail when 1467 the entry cannot be found. 1468 FIND_OR_CREATE - search for an existing entry, but create new if there's 1469 no such. 1470 MUST_FIND - search for an existing entry and assert that it exist. 1471 MUST_CREATE - assert that there's no such entry and create new one. */ 1472 enum elf_m68k_get_entry_howto 1473 { 1474 SEARCH, 1475 FIND_OR_CREATE, 1476 MUST_FIND, 1477 MUST_CREATE 1478 }; 1479 1480 /* Get or create (depending on HOWTO) entry with KEY in GOT. 1481 INFO is context in which memory should be allocated (can be NULL if 1482 HOWTO is SEARCH or MUST_FIND). */ 1483 1484 static struct elf_m68k_got_entry * 1485 elf_m68k_get_got_entry (struct elf_m68k_got *got, 1486 const struct elf_m68k_got_entry_key *key, 1487 enum elf_m68k_get_entry_howto howto, 1488 struct bfd_link_info *info) 1489 { 1490 struct elf_m68k_got_entry entry_; 1491 struct elf_m68k_got_entry *entry; 1492 void **ptr; 1493 1494 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1495 1496 if (got->entries == NULL) 1497 /* This is the first entry in ABFD. Initialize hashtable. */ 1498 { 1499 if (howto == SEARCH) 1500 return NULL; 1501 1502 got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT 1503 (info), 1504 elf_m68k_got_entry_hash, 1505 elf_m68k_got_entry_eq, NULL); 1506 if (got->entries == NULL) 1507 { 1508 bfd_set_error (bfd_error_no_memory); 1509 return NULL; 1510 } 1511 } 1512 1513 entry_.key_ = *key; 1514 ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH 1515 ? INSERT : NO_INSERT)); 1516 if (ptr == NULL) 1517 { 1518 if (howto == SEARCH) 1519 /* Entry not found. */ 1520 return NULL; 1521 1522 /* We're out of memory. */ 1523 bfd_set_error (bfd_error_no_memory); 1524 return NULL; 1525 } 1526 1527 if (*ptr == NULL) 1528 /* We didn't find the entry and we're asked to create a new one. */ 1529 { 1530 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1531 1532 entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)); 1533 if (entry == NULL) 1534 return NULL; 1535 1536 /* Initialize new entry. */ 1537 entry->key_ = *key; 1538 1539 entry->u.s1.refcount = 0; 1540 1541 /* Mark the entry as not initialized. */ 1542 entry->key_.type = R_68K_max; 1543 1544 *ptr = entry; 1545 } 1546 else 1547 /* We found the entry. */ 1548 { 1549 BFD_ASSERT (howto != MUST_CREATE); 1550 1551 entry = *ptr; 1552 } 1553 1554 return entry; 1555 } 1556 1557 /* Update GOT counters when merging entry of WAS type with entry of NEW type. 1558 Return the value to which ENTRY's type should be set. */ 1559 1560 static enum elf_m68k_reloc_type 1561 elf_m68k_update_got_entry_type (struct elf_m68k_got *got, 1562 enum elf_m68k_reloc_type was, 1563 enum elf_m68k_reloc_type new_reloc) 1564 { 1565 enum elf_m68k_got_offset_size was_size; 1566 enum elf_m68k_got_offset_size new_size; 1567 bfd_vma n_slots; 1568 1569 if (was == R_68K_max) 1570 /* The type of the entry is not initialized yet. */ 1571 { 1572 /* Update all got->n_slots counters, including n_slots[R_32]. */ 1573 was_size = R_LAST; 1574 1575 was = new_reloc; 1576 } 1577 else 1578 { 1579 /* !!! We, probably, should emit an error rather then fail on assert 1580 in such a case. */ 1581 BFD_ASSERT (elf_m68k_reloc_got_type (was) 1582 == elf_m68k_reloc_got_type (new_reloc)); 1583 1584 was_size = elf_m68k_reloc_got_offset_size (was); 1585 } 1586 1587 new_size = elf_m68k_reloc_got_offset_size (new_reloc); 1588 n_slots = elf_m68k_reloc_got_n_slots (new_reloc); 1589 1590 while (was_size > new_size) 1591 { 1592 --was_size; 1593 got->n_slots[was_size] += n_slots; 1594 } 1595 1596 if (new_reloc > was) 1597 /* Relocations are ordered from bigger got offset size to lesser, 1598 so choose the relocation type with lesser offset size. */ 1599 was = new_reloc; 1600 1601 return was; 1602 } 1603 1604 /* Update GOT counters when removing an entry of type TYPE. */ 1605 1606 static void 1607 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got, 1608 enum elf_m68k_reloc_type type) 1609 { 1610 enum elf_m68k_got_offset_size os; 1611 bfd_vma n_slots; 1612 1613 n_slots = elf_m68k_reloc_got_n_slots (type); 1614 1615 /* Decrese counter of slots with offset size corresponding to TYPE 1616 and all greater offset sizes. */ 1617 for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os) 1618 { 1619 BFD_ASSERT (got->n_slots[os] >= n_slots); 1620 1621 got->n_slots[os] -= n_slots; 1622 } 1623 } 1624 1625 /* Add new or update existing entry to GOT. 1626 H, ABFD, TYPE and SYMNDX is data for the entry. 1627 INFO is a context where memory should be allocated. */ 1628 1629 static struct elf_m68k_got_entry * 1630 elf_m68k_add_entry_to_got (struct elf_m68k_got *got, 1631 struct elf_link_hash_entry *h, 1632 const bfd *abfd, 1633 enum elf_m68k_reloc_type reloc_type, 1634 unsigned long symndx, 1635 struct bfd_link_info *info) 1636 { 1637 struct elf_m68k_got_entry_key key_; 1638 struct elf_m68k_got_entry *entry; 1639 1640 if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0) 1641 elf_m68k_hash_entry (h)->got_entry_key 1642 = elf_m68k_multi_got (info)->global_symndx++; 1643 1644 elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type); 1645 1646 entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info); 1647 if (entry == NULL) 1648 return NULL; 1649 1650 /* Determine entry's type and update got->n_slots counters. */ 1651 entry->key_.type = elf_m68k_update_got_entry_type (got, 1652 entry->key_.type, 1653 reloc_type); 1654 1655 /* Update refcount. */ 1656 ++entry->u.s1.refcount; 1657 1658 if (entry->u.s1.refcount == 1) 1659 /* We see this entry for the first time. */ 1660 { 1661 if (entry->key_.bfd != NULL) 1662 got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type); 1663 } 1664 1665 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); 1666 1667 if ((got->n_slots[R_8] 1668 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1669 || (got->n_slots[R_16] 1670 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1671 /* This BFD has too many relocation. */ 1672 { 1673 if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1674 (*_bfd_error_handler) (_("%B: GOT overflow: " 1675 "Number of relocations with 8-bit " 1676 "offset > %d"), 1677 abfd, 1678 ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)); 1679 else 1680 (*_bfd_error_handler) (_("%B: GOT overflow: " 1681 "Number of relocations with 8- or 16-bit " 1682 "offset > %d"), 1683 abfd, 1684 ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)); 1685 1686 return NULL; 1687 } 1688 1689 return entry; 1690 } 1691 1692 /* Compute the hash value of the bfd in a bfd2got hash entry. */ 1693 1694 static hashval_t 1695 elf_m68k_bfd2got_entry_hash (const void *entry) 1696 { 1697 const struct elf_m68k_bfd2got_entry *e; 1698 1699 e = (const struct elf_m68k_bfd2got_entry *) entry; 1700 1701 return e->bfd->id; 1702 } 1703 1704 /* Check whether two hash entries have the same bfd. */ 1705 1706 static int 1707 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2) 1708 { 1709 const struct elf_m68k_bfd2got_entry *e1; 1710 const struct elf_m68k_bfd2got_entry *e2; 1711 1712 e1 = (const struct elf_m68k_bfd2got_entry *) entry1; 1713 e2 = (const struct elf_m68k_bfd2got_entry *) entry2; 1714 1715 return e1->bfd == e2->bfd; 1716 } 1717 1718 /* Destruct a bfd2got entry. */ 1719 1720 static void 1721 elf_m68k_bfd2got_entry_del (void *_entry) 1722 { 1723 struct elf_m68k_bfd2got_entry *entry; 1724 1725 entry = (struct elf_m68k_bfd2got_entry *) _entry; 1726 1727 BFD_ASSERT (entry->got != NULL); 1728 elf_m68k_clear_got (entry->got); 1729 } 1730 1731 /* Find existing or create new (depending on HOWTO) bfd2got entry in 1732 MULTI_GOT. ABFD is the bfd we need a GOT for. INFO is a context where 1733 memory should be allocated. */ 1734 1735 static struct elf_m68k_bfd2got_entry * 1736 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got, 1737 const bfd *abfd, 1738 enum elf_m68k_get_entry_howto howto, 1739 struct bfd_link_info *info) 1740 { 1741 struct elf_m68k_bfd2got_entry entry_; 1742 void **ptr; 1743 struct elf_m68k_bfd2got_entry *entry; 1744 1745 BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND)); 1746 1747 if (multi_got->bfd2got == NULL) 1748 /* This is the first GOT. Initialize bfd2got. */ 1749 { 1750 if (howto == SEARCH) 1751 return NULL; 1752 1753 multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash, 1754 elf_m68k_bfd2got_entry_eq, 1755 elf_m68k_bfd2got_entry_del); 1756 if (multi_got->bfd2got == NULL) 1757 { 1758 bfd_set_error (bfd_error_no_memory); 1759 return NULL; 1760 } 1761 } 1762 1763 entry_.bfd = abfd; 1764 ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH 1765 ? INSERT : NO_INSERT)); 1766 if (ptr == NULL) 1767 { 1768 if (howto == SEARCH) 1769 /* Entry not found. */ 1770 return NULL; 1771 1772 /* We're out of memory. */ 1773 bfd_set_error (bfd_error_no_memory); 1774 return NULL; 1775 } 1776 1777 if (*ptr == NULL) 1778 /* Entry was not found. Create new one. */ 1779 { 1780 BFD_ASSERT (howto != MUST_FIND && howto != SEARCH); 1781 1782 entry = ((struct elf_m68k_bfd2got_entry *) 1783 bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry))); 1784 if (entry == NULL) 1785 return NULL; 1786 1787 entry->bfd = abfd; 1788 1789 entry->got = elf_m68k_create_empty_got (info); 1790 if (entry->got == NULL) 1791 return NULL; 1792 1793 *ptr = entry; 1794 } 1795 else 1796 { 1797 BFD_ASSERT (howto != MUST_CREATE); 1798 1799 /* Return existing entry. */ 1800 entry = *ptr; 1801 } 1802 1803 return entry; 1804 } 1805 1806 struct elf_m68k_can_merge_gots_arg 1807 { 1808 /* A current_got that we constructing a DIFF against. */ 1809 struct elf_m68k_got *big; 1810 1811 /* GOT holding entries not present or that should be changed in 1812 BIG. */ 1813 struct elf_m68k_got *diff; 1814 1815 /* Context where to allocate memory. */ 1816 struct bfd_link_info *info; 1817 1818 /* Error flag. */ 1819 bfd_boolean error_p; 1820 }; 1821 1822 /* Process a single entry from the small GOT to see if it should be added 1823 or updated in the big GOT. */ 1824 1825 static int 1826 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg) 1827 { 1828 const struct elf_m68k_got_entry *entry1; 1829 struct elf_m68k_can_merge_gots_arg *arg; 1830 const struct elf_m68k_got_entry *entry2; 1831 enum elf_m68k_reloc_type type; 1832 1833 entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr; 1834 arg = (struct elf_m68k_can_merge_gots_arg *) _arg; 1835 1836 entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL); 1837 1838 if (entry2 != NULL) 1839 /* We found an existing entry. Check if we should update it. */ 1840 { 1841 type = elf_m68k_update_got_entry_type (arg->diff, 1842 entry2->key_.type, 1843 entry1->key_.type); 1844 1845 if (type == entry2->key_.type) 1846 /* ENTRY1 doesn't update data in ENTRY2. Skip it. 1847 To skip creation of difference entry we use the type, 1848 which we won't see in GOT entries for sure. */ 1849 type = R_68K_max; 1850 } 1851 else 1852 /* We didn't find the entry. Add entry1 to DIFF. */ 1853 { 1854 BFD_ASSERT (entry1->key_.type != R_68K_max); 1855 1856 type = elf_m68k_update_got_entry_type (arg->diff, 1857 R_68K_max, entry1->key_.type); 1858 1859 if (entry1->key_.bfd != NULL) 1860 arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type); 1861 } 1862 1863 if (type != R_68K_max) 1864 /* Create an entry in DIFF. */ 1865 { 1866 struct elf_m68k_got_entry *entry; 1867 1868 entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE, 1869 arg->info); 1870 if (entry == NULL) 1871 { 1872 arg->error_p = TRUE; 1873 return 0; 1874 } 1875 1876 entry->key_.type = type; 1877 } 1878 1879 return 1; 1880 } 1881 1882 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it. 1883 Construct DIFF GOT holding the entries which should be added or updated 1884 in BIG GOT to accumulate information from SMALL. 1885 INFO is the context where memory should be allocated. */ 1886 1887 static bfd_boolean 1888 elf_m68k_can_merge_gots (struct elf_m68k_got *big, 1889 const struct elf_m68k_got *small, 1890 struct bfd_link_info *info, 1891 struct elf_m68k_got *diff) 1892 { 1893 struct elf_m68k_can_merge_gots_arg arg_; 1894 1895 BFD_ASSERT (small->offset == (bfd_vma) -1); 1896 1897 arg_.big = big; 1898 arg_.diff = diff; 1899 arg_.info = info; 1900 arg_.error_p = FALSE; 1901 htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_); 1902 if (arg_.error_p) 1903 { 1904 diff->offset = 0; 1905 return FALSE; 1906 } 1907 1908 /* Check for overflow. */ 1909 if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8] 1910 > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1911 || (big->n_slots[R_16] + arg_.diff->n_slots[R_16] 1912 > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))) 1913 return FALSE; 1914 1915 return TRUE; 1916 } 1917 1918 struct elf_m68k_merge_gots_arg 1919 { 1920 /* The BIG got. */ 1921 struct elf_m68k_got *big; 1922 1923 /* Context where memory should be allocated. */ 1924 struct bfd_link_info *info; 1925 1926 /* Error flag. */ 1927 bfd_boolean error_p; 1928 }; 1929 1930 /* Process a single entry from DIFF got. Add or update corresponding 1931 entry in the BIG got. */ 1932 1933 static int 1934 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg) 1935 { 1936 const struct elf_m68k_got_entry *from; 1937 struct elf_m68k_merge_gots_arg *arg; 1938 struct elf_m68k_got_entry *to; 1939 1940 from = (const struct elf_m68k_got_entry *) *entry_ptr; 1941 arg = (struct elf_m68k_merge_gots_arg *) _arg; 1942 1943 to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE, 1944 arg->info); 1945 if (to == NULL) 1946 { 1947 arg->error_p = TRUE; 1948 return 0; 1949 } 1950 1951 BFD_ASSERT (to->u.s1.refcount == 0); 1952 /* All we need to merge is TYPE. */ 1953 to->key_.type = from->key_.type; 1954 1955 return 1; 1956 } 1957 1958 /* Merge data from DIFF to BIG. INFO is context where memory should be 1959 allocated. */ 1960 1961 static bfd_boolean 1962 elf_m68k_merge_gots (struct elf_m68k_got *big, 1963 struct elf_m68k_got *diff, 1964 struct bfd_link_info *info) 1965 { 1966 if (diff->entries != NULL) 1967 /* DIFF is not empty. Merge it into BIG GOT. */ 1968 { 1969 struct elf_m68k_merge_gots_arg arg_; 1970 1971 /* Merge entries. */ 1972 arg_.big = big; 1973 arg_.info = info; 1974 arg_.error_p = FALSE; 1975 htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_); 1976 if (arg_.error_p) 1977 return FALSE; 1978 1979 /* Merge counters. */ 1980 big->n_slots[R_8] += diff->n_slots[R_8]; 1981 big->n_slots[R_16] += diff->n_slots[R_16]; 1982 big->n_slots[R_32] += diff->n_slots[R_32]; 1983 big->local_n_slots += diff->local_n_slots; 1984 } 1985 else 1986 /* DIFF is empty. */ 1987 { 1988 BFD_ASSERT (diff->n_slots[R_8] == 0); 1989 BFD_ASSERT (diff->n_slots[R_16] == 0); 1990 BFD_ASSERT (diff->n_slots[R_32] == 0); 1991 BFD_ASSERT (diff->local_n_slots == 0); 1992 } 1993 1994 BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p 1995 || ((big->n_slots[R_8] 1996 <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info)) 1997 && (big->n_slots[R_16] 1998 <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))); 1999 2000 return TRUE; 2001 } 2002 2003 struct elf_m68k_finalize_got_offsets_arg 2004 { 2005 /* Ranges of the offsets for GOT entries. 2006 R_x entries receive offsets between offset1[R_x] and offset2[R_x]. 2007 R_x is R_8, R_16 and R_32. */ 2008 bfd_vma *offset1; 2009 bfd_vma *offset2; 2010 2011 /* Mapping from global symndx to global symbols. 2012 This is used to build lists of got entries for global symbols. */ 2013 struct elf_m68k_link_hash_entry **symndx2h; 2014 2015 bfd_vma n_ldm_entries; 2016 }; 2017 2018 /* Assign ENTRY an offset. Build list of GOT entries for global symbols 2019 along the way. */ 2020 2021 static int 2022 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg) 2023 { 2024 struct elf_m68k_got_entry *entry; 2025 struct elf_m68k_finalize_got_offsets_arg *arg; 2026 2027 enum elf_m68k_got_offset_size got_offset_size; 2028 bfd_vma entry_size; 2029 2030 entry = (struct elf_m68k_got_entry *) *entry_ptr; 2031 arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg; 2032 2033 /* This should be a fresh entry created in elf_m68k_can_merge_gots. */ 2034 BFD_ASSERT (entry->u.s1.refcount == 0); 2035 2036 /* Get GOT offset size for the entry . */ 2037 got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type); 2038 2039 /* Calculate entry size in bytes. */ 2040 entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type); 2041 2042 /* Check if we should switch to negative range of the offsets. */ 2043 if (arg->offset1[got_offset_size] + entry_size 2044 > arg->offset2[got_offset_size]) 2045 { 2046 /* Verify that this is the only switch to negative range for 2047 got_offset_size. If this assertion fails, then we've miscalculated 2048 range for got_offset_size entries in 2049 elf_m68k_finalize_got_offsets. */ 2050 BFD_ASSERT (arg->offset2[got_offset_size] 2051 != arg->offset2[-(int) got_offset_size - 1]); 2052 2053 /* Switch. */ 2054 arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1]; 2055 arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1]; 2056 2057 /* Verify that now we have enough room for the entry. */ 2058 BFD_ASSERT (arg->offset1[got_offset_size] + entry_size 2059 <= arg->offset2[got_offset_size]); 2060 } 2061 2062 /* Assign offset to entry. */ 2063 entry->u.s2.offset = arg->offset1[got_offset_size]; 2064 arg->offset1[got_offset_size] += entry_size; 2065 2066 if (entry->key_.bfd == NULL) 2067 /* Hook up this entry into the list of got_entries of H. */ 2068 { 2069 struct elf_m68k_link_hash_entry *h; 2070 2071 h = arg->symndx2h[entry->key_.symndx]; 2072 if (h != NULL) 2073 { 2074 entry->u.s2.next = h->glist; 2075 h->glist = entry; 2076 } 2077 else 2078 /* This should be the entry for TLS_LDM relocation then. */ 2079 { 2080 BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type) 2081 == R_68K_TLS_LDM32) 2082 && entry->key_.symndx == 0); 2083 2084 ++arg->n_ldm_entries; 2085 } 2086 } 2087 else 2088 /* This entry is for local symbol. */ 2089 entry->u.s2.next = NULL; 2090 2091 return 1; 2092 } 2093 2094 /* Assign offsets within GOT. USE_NEG_GOT_OFFSETS_P indicates if we 2095 should use negative offsets. 2096 Build list of GOT entries for global symbols along the way. 2097 SYMNDX2H is mapping from global symbol indices to actual 2098 global symbols. 2099 Return offset at which next GOT should start. */ 2100 2101 static void 2102 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got, 2103 bfd_boolean use_neg_got_offsets_p, 2104 struct elf_m68k_link_hash_entry **symndx2h, 2105 bfd_vma *final_offset, bfd_vma *n_ldm_entries) 2106 { 2107 struct elf_m68k_finalize_got_offsets_arg arg_; 2108 bfd_vma offset1_[2 * R_LAST]; 2109 bfd_vma offset2_[2 * R_LAST]; 2110 int i; 2111 bfd_vma start_offset; 2112 2113 BFD_ASSERT (got->offset != (bfd_vma) -1); 2114 2115 /* We set entry offsets relative to the .got section (and not the 2116 start of a particular GOT), so that we can use them in 2117 finish_dynamic_symbol without needing to know the GOT which they come 2118 from. */ 2119 2120 /* Put offset1 in the middle of offset1_, same for offset2. */ 2121 arg_.offset1 = offset1_ + R_LAST; 2122 arg_.offset2 = offset2_ + R_LAST; 2123 2124 start_offset = got->offset; 2125 2126 if (use_neg_got_offsets_p) 2127 /* Setup both negative and positive ranges for R_8, R_16 and R_32. */ 2128 i = -(int) R_32 - 1; 2129 else 2130 /* Setup positives ranges for R_8, R_16 and R_32. */ 2131 i = (int) R_8; 2132 2133 for (; i <= (int) R_32; ++i) 2134 { 2135 int j; 2136 size_t n; 2137 2138 /* Set beginning of the range of offsets I. */ 2139 arg_.offset1[i] = start_offset; 2140 2141 /* Calculate number of slots that require I offsets. */ 2142 j = (i >= 0) ? i : -i - 1; 2143 n = (j >= 1) ? got->n_slots[j - 1] : 0; 2144 n = got->n_slots[j] - n; 2145 2146 if (use_neg_got_offsets_p && n != 0) 2147 { 2148 if (i < 0) 2149 /* We first fill the positive side of the range, so we might 2150 end up with one empty slot at that side when we can't fit 2151 whole 2-slot entry. Account for that at negative side of 2152 the interval with one additional entry. */ 2153 n = n / 2 + 1; 2154 else 2155 /* When the number of slots is odd, make positive side of the 2156 range one entry bigger. */ 2157 n = (n + 1) / 2; 2158 } 2159 2160 /* N is the number of slots that require I offsets. 2161 Calculate length of the range for I offsets. */ 2162 n = 4 * n; 2163 2164 /* Set end of the range. */ 2165 arg_.offset2[i] = start_offset + n; 2166 2167 start_offset = arg_.offset2[i]; 2168 } 2169 2170 if (!use_neg_got_offsets_p) 2171 /* Make sure that if we try to switch to negative offsets in 2172 elf_m68k_finalize_got_offsets_1, the assert therein will catch 2173 the bug. */ 2174 for (i = R_8; i <= R_32; ++i) 2175 arg_.offset2[-i - 1] = arg_.offset2[i]; 2176 2177 /* Setup got->offset. offset1[R_8] is either in the middle or at the 2178 beginning of GOT depending on use_neg_got_offsets_p. */ 2179 got->offset = arg_.offset1[R_8]; 2180 2181 arg_.symndx2h = symndx2h; 2182 arg_.n_ldm_entries = 0; 2183 2184 /* Assign offsets. */ 2185 htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_); 2186 2187 /* Check offset ranges we have actually assigned. */ 2188 for (i = (int) R_8; i <= (int) R_32; ++i) 2189 BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4); 2190 2191 *final_offset = start_offset; 2192 *n_ldm_entries = arg_.n_ldm_entries; 2193 } 2194 2195 struct elf_m68k_partition_multi_got_arg 2196 { 2197 /* The GOT we are adding entries to. Aka big got. */ 2198 struct elf_m68k_got *current_got; 2199 2200 /* Offset to assign the next CURRENT_GOT. */ 2201 bfd_vma offset; 2202 2203 /* Context where memory should be allocated. */ 2204 struct bfd_link_info *info; 2205 2206 /* Total number of slots in the .got section. 2207 This is used to calculate size of the .got and .rela.got sections. */ 2208 bfd_vma n_slots; 2209 2210 /* Difference in numbers of allocated slots in the .got section 2211 and necessary relocations in the .rela.got section. 2212 This is used to calculate size of the .rela.got section. */ 2213 bfd_vma slots_relas_diff; 2214 2215 /* Error flag. */ 2216 bfd_boolean error_p; 2217 2218 /* Mapping from global symndx to global symbols. 2219 This is used to build lists of got entries for global symbols. */ 2220 struct elf_m68k_link_hash_entry **symndx2h; 2221 }; 2222 2223 static void 2224 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg) 2225 { 2226 bfd_vma n_ldm_entries; 2227 2228 elf_m68k_finalize_got_offsets (arg->current_got, 2229 (elf_m68k_hash_table (arg->info) 2230 ->use_neg_got_offsets_p), 2231 arg->symndx2h, 2232 &arg->offset, &n_ldm_entries); 2233 2234 arg->n_slots += arg->current_got->n_slots[R_32]; 2235 2236 if (!arg->info->shared) 2237 /* If we are generating a shared object, we need to 2238 output a R_68K_RELATIVE reloc so that the dynamic 2239 linker can adjust this GOT entry. Overwise we 2240 don't need space in .rela.got for local symbols. */ 2241 arg->slots_relas_diff += arg->current_got->local_n_slots; 2242 2243 /* @LDM relocations require a 2-slot GOT entry, but only 2244 one relocation. Account for that. */ 2245 arg->slots_relas_diff += n_ldm_entries; 2246 2247 BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots); 2248 } 2249 2250 2251 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT 2252 or start a new CURRENT_GOT. */ 2253 2254 static int 2255 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg) 2256 { 2257 struct elf_m68k_bfd2got_entry *entry; 2258 struct elf_m68k_partition_multi_got_arg *arg; 2259 struct elf_m68k_got *got; 2260 struct elf_m68k_got diff_; 2261 struct elf_m68k_got *diff; 2262 2263 entry = (struct elf_m68k_bfd2got_entry *) *_entry; 2264 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2265 2266 got = entry->got; 2267 BFD_ASSERT (got != NULL); 2268 BFD_ASSERT (got->offset == (bfd_vma) -1); 2269 2270 diff = NULL; 2271 2272 if (arg->current_got != NULL) 2273 /* Construct diff. */ 2274 { 2275 diff = &diff_; 2276 elf_m68k_init_got (diff); 2277 2278 if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff)) 2279 { 2280 if (diff->offset == 0) 2281 /* Offset set to 0 in the diff_ indicates an error. */ 2282 { 2283 arg->error_p = TRUE; 2284 goto final_return; 2285 } 2286 2287 if (elf_m68k_hash_table (arg->info)->allow_multigot_p) 2288 { 2289 elf_m68k_clear_got (diff); 2290 /* Schedule to finish up current_got and start new one. */ 2291 diff = NULL; 2292 } 2293 /* else 2294 Merge GOTs no matter what. If big GOT overflows, 2295 we'll fail in relocate_section due to truncated relocations. 2296 2297 ??? May be fail earlier? E.g., in can_merge_gots. */ 2298 } 2299 } 2300 else 2301 /* Diff of got against empty current_got is got itself. */ 2302 { 2303 /* Create empty current_got to put subsequent GOTs to. */ 2304 arg->current_got = elf_m68k_create_empty_got (arg->info); 2305 if (arg->current_got == NULL) 2306 { 2307 arg->error_p = TRUE; 2308 goto final_return; 2309 } 2310 2311 arg->current_got->offset = arg->offset; 2312 2313 diff = got; 2314 } 2315 2316 if (diff != NULL) 2317 { 2318 if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info)) 2319 { 2320 arg->error_p = TRUE; 2321 goto final_return; 2322 } 2323 2324 /* Now we can free GOT. */ 2325 elf_m68k_clear_got (got); 2326 2327 entry->got = arg->current_got; 2328 } 2329 else 2330 { 2331 /* Finish up current_got. */ 2332 elf_m68k_partition_multi_got_2 (arg); 2333 2334 /* Schedule to start a new current_got. */ 2335 arg->current_got = NULL; 2336 2337 /* Retry. */ 2338 if (!elf_m68k_partition_multi_got_1 (_entry, _arg)) 2339 { 2340 BFD_ASSERT (arg->error_p); 2341 goto final_return; 2342 } 2343 } 2344 2345 final_return: 2346 if (diff != NULL) 2347 elf_m68k_clear_got (diff); 2348 2349 return arg->error_p == FALSE ? 1 : 0; 2350 } 2351 2352 /* Helper function to build symndx2h mapping. */ 2353 2354 static bfd_boolean 2355 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h, 2356 void *_arg) 2357 { 2358 struct elf_m68k_link_hash_entry *h; 2359 2360 h = elf_m68k_hash_entry (_h); 2361 2362 if (h->got_entry_key != 0) 2363 /* H has at least one entry in the GOT. */ 2364 { 2365 struct elf_m68k_partition_multi_got_arg *arg; 2366 2367 arg = (struct elf_m68k_partition_multi_got_arg *) _arg; 2368 2369 BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL); 2370 arg->symndx2h[h->got_entry_key] = h; 2371 } 2372 2373 return TRUE; 2374 } 2375 2376 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build 2377 lists of GOT entries for global symbols. 2378 Calculate sizes of .got and .rela.got sections. */ 2379 2380 static bfd_boolean 2381 elf_m68k_partition_multi_got (struct bfd_link_info *info) 2382 { 2383 struct elf_m68k_multi_got *multi_got; 2384 struct elf_m68k_partition_multi_got_arg arg_; 2385 2386 multi_got = elf_m68k_multi_got (info); 2387 2388 arg_.current_got = NULL; 2389 arg_.offset = 0; 2390 arg_.info = info; 2391 arg_.n_slots = 0; 2392 arg_.slots_relas_diff = 0; 2393 arg_.error_p = FALSE; 2394 2395 if (multi_got->bfd2got != NULL) 2396 { 2397 /* Initialize symndx2h mapping. */ 2398 { 2399 arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx 2400 * sizeof (*arg_.symndx2h)); 2401 if (arg_.symndx2h == NULL) 2402 return FALSE; 2403 2404 elf_link_hash_traverse (elf_hash_table (info), 2405 elf_m68k_init_symndx2h_1, &arg_); 2406 } 2407 2408 /* Partition. */ 2409 htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1, 2410 &arg_); 2411 if (arg_.error_p) 2412 { 2413 free (arg_.symndx2h); 2414 arg_.symndx2h = NULL; 2415 2416 return FALSE; 2417 } 2418 2419 /* Finish up last current_got. */ 2420 elf_m68k_partition_multi_got_2 (&arg_); 2421 2422 free (arg_.symndx2h); 2423 } 2424 2425 if (elf_hash_table (info)->dynobj != NULL) 2426 /* Set sizes of .got and .rela.got sections. */ 2427 { 2428 asection *s; 2429 2430 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".got"); 2431 if (s != NULL) 2432 s->size = arg_.offset; 2433 else 2434 BFD_ASSERT (arg_.offset == 0); 2435 2436 BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots); 2437 arg_.n_slots -= arg_.slots_relas_diff; 2438 2439 s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".rela.got"); 2440 if (s != NULL) 2441 s->size = arg_.n_slots * sizeof (Elf32_External_Rela); 2442 else 2443 BFD_ASSERT (arg_.n_slots == 0); 2444 } 2445 else 2446 BFD_ASSERT (multi_got->bfd2got == NULL); 2447 2448 return TRUE; 2449 } 2450 2451 /* Specialized version of elf_m68k_get_got_entry that returns pointer 2452 to hashtable slot, thus allowing removal of entry via 2453 elf_m68k_remove_got_entry. */ 2454 2455 static struct elf_m68k_got_entry ** 2456 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got, 2457 struct elf_m68k_got_entry_key *key) 2458 { 2459 void **ptr; 2460 struct elf_m68k_got_entry entry_; 2461 struct elf_m68k_got_entry **entry_ptr; 2462 2463 entry_.key_ = *key; 2464 ptr = htab_find_slot (got->entries, &entry_, NO_INSERT); 2465 BFD_ASSERT (ptr != NULL); 2466 2467 entry_ptr = (struct elf_m68k_got_entry **) ptr; 2468 2469 return entry_ptr; 2470 } 2471 2472 /* Remove entry pointed to by ENTRY_PTR from GOT. */ 2473 2474 static void 2475 elf_m68k_remove_got_entry (struct elf_m68k_got *got, 2476 struct elf_m68k_got_entry **entry_ptr) 2477 { 2478 struct elf_m68k_got_entry *entry; 2479 2480 entry = *entry_ptr; 2481 2482 /* Check that offsets have not been finalized yet. */ 2483 BFD_ASSERT (got->offset == (bfd_vma) -1); 2484 /* Check that this entry is indeed unused. */ 2485 BFD_ASSERT (entry->u.s1.refcount == 0); 2486 2487 elf_m68k_remove_got_entry_type (got, entry->key_.type); 2488 2489 if (entry->key_.bfd != NULL) 2490 got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type); 2491 2492 BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots); 2493 2494 htab_clear_slot (got->entries, (void **) entry_ptr); 2495 } 2496 2497 /* Copy any information related to dynamic linking from a pre-existing 2498 symbol to a newly created symbol. Also called to copy flags and 2499 other back-end info to a weakdef, in which case the symbol is not 2500 newly created and plt/got refcounts and dynamic indices should not 2501 be copied. */ 2502 2503 static void 2504 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info, 2505 struct elf_link_hash_entry *_dir, 2506 struct elf_link_hash_entry *_ind) 2507 { 2508 struct elf_m68k_link_hash_entry *dir; 2509 struct elf_m68k_link_hash_entry *ind; 2510 2511 _bfd_elf_link_hash_copy_indirect (info, _dir, _ind); 2512 2513 if (_ind->root.type != bfd_link_hash_indirect) 2514 return; 2515 2516 dir = elf_m68k_hash_entry (_dir); 2517 ind = elf_m68k_hash_entry (_ind); 2518 2519 /* Any absolute non-dynamic relocations against an indirect or weak 2520 definition will be against the target symbol. */ 2521 _dir->non_got_ref |= _ind->non_got_ref; 2522 2523 /* We might have a direct symbol already having entries in the GOTs. 2524 Update its key only in case indirect symbol has GOT entries and 2525 assert that both indirect and direct symbols don't have GOT entries 2526 at the same time. */ 2527 if (ind->got_entry_key != 0) 2528 { 2529 BFD_ASSERT (dir->got_entry_key == 0); 2530 /* Assert that GOTs aren't partioned yet. */ 2531 BFD_ASSERT (ind->glist == NULL); 2532 2533 dir->got_entry_key = ind->got_entry_key; 2534 ind->got_entry_key = 0; 2535 } 2536 } 2537 2538 /* Look through the relocs for a section during the first phase, and 2539 allocate space in the global offset table or procedure linkage 2540 table. */ 2541 2542 static bfd_boolean 2543 elf_m68k_check_relocs (bfd *abfd, 2544 struct bfd_link_info *info, 2545 asection *sec, 2546 const Elf_Internal_Rela *relocs) 2547 { 2548 bfd *dynobj; 2549 Elf_Internal_Shdr *symtab_hdr; 2550 struct elf_link_hash_entry **sym_hashes; 2551 const Elf_Internal_Rela *rel; 2552 const Elf_Internal_Rela *rel_end; 2553 asection *sgot; 2554 asection *srelgot; 2555 asection *sreloc; 2556 struct elf_m68k_got *got; 2557 2558 if (info->relocatable) 2559 return TRUE; 2560 2561 dynobj = elf_hash_table (info)->dynobj; 2562 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2563 sym_hashes = elf_sym_hashes (abfd); 2564 2565 sgot = NULL; 2566 srelgot = NULL; 2567 sreloc = NULL; 2568 2569 got = NULL; 2570 2571 rel_end = relocs + sec->reloc_count; 2572 for (rel = relocs; rel < rel_end; rel++) 2573 { 2574 unsigned long r_symndx; 2575 struct elf_link_hash_entry *h; 2576 2577 r_symndx = ELF32_R_SYM (rel->r_info); 2578 2579 if (r_symndx < symtab_hdr->sh_info) 2580 h = NULL; 2581 else 2582 { 2583 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2584 while (h->root.type == bfd_link_hash_indirect 2585 || h->root.type == bfd_link_hash_warning) 2586 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2587 2588 /* PR15323, ref flags aren't set for references in the same 2589 object. */ 2590 h->root.non_ir_ref = 1; 2591 } 2592 2593 switch (ELF32_R_TYPE (rel->r_info)) 2594 { 2595 case R_68K_GOT8: 2596 case R_68K_GOT16: 2597 case R_68K_GOT32: 2598 if (h != NULL 2599 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 2600 break; 2601 /* Fall through. */ 2602 2603 /* Relative GOT relocations. */ 2604 case R_68K_GOT8O: 2605 case R_68K_GOT16O: 2606 case R_68K_GOT32O: 2607 /* Fall through. */ 2608 2609 /* TLS relocations. */ 2610 case R_68K_TLS_GD8: 2611 case R_68K_TLS_GD16: 2612 case R_68K_TLS_GD32: 2613 case R_68K_TLS_LDM8: 2614 case R_68K_TLS_LDM16: 2615 case R_68K_TLS_LDM32: 2616 case R_68K_TLS_IE8: 2617 case R_68K_TLS_IE16: 2618 case R_68K_TLS_IE32: 2619 2620 case R_68K_TLS_TPREL32: 2621 case R_68K_TLS_DTPREL32: 2622 2623 if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32 2624 && info->shared) 2625 /* Do the special chorus for libraries with static TLS. */ 2626 info->flags |= DF_STATIC_TLS; 2627 2628 /* This symbol requires a global offset table entry. */ 2629 2630 if (dynobj == NULL) 2631 { 2632 /* Create the .got section. */ 2633 elf_hash_table (info)->dynobj = dynobj = abfd; 2634 if (!_bfd_elf_create_got_section (dynobj, info)) 2635 return FALSE; 2636 } 2637 2638 if (sgot == NULL) 2639 { 2640 sgot = bfd_get_linker_section (dynobj, ".got"); 2641 BFD_ASSERT (sgot != NULL); 2642 } 2643 2644 if (srelgot == NULL 2645 && (h != NULL || info->shared)) 2646 { 2647 srelgot = bfd_get_linker_section (dynobj, ".rela.got"); 2648 if (srelgot == NULL) 2649 { 2650 flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS 2651 | SEC_IN_MEMORY | SEC_LINKER_CREATED 2652 | SEC_READONLY); 2653 srelgot = bfd_make_section_anyway_with_flags (dynobj, 2654 ".rela.got", 2655 flags); 2656 if (srelgot == NULL 2657 || !bfd_set_section_alignment (dynobj, srelgot, 2)) 2658 return FALSE; 2659 } 2660 } 2661 2662 if (got == NULL) 2663 { 2664 struct elf_m68k_bfd2got_entry *bfd2got_entry; 2665 2666 bfd2got_entry 2667 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 2668 abfd, FIND_OR_CREATE, info); 2669 if (bfd2got_entry == NULL) 2670 return FALSE; 2671 2672 got = bfd2got_entry->got; 2673 BFD_ASSERT (got != NULL); 2674 } 2675 2676 { 2677 struct elf_m68k_got_entry *got_entry; 2678 2679 /* Add entry to got. */ 2680 got_entry = elf_m68k_add_entry_to_got (got, h, abfd, 2681 ELF32_R_TYPE (rel->r_info), 2682 r_symndx, info); 2683 if (got_entry == NULL) 2684 return FALSE; 2685 2686 if (got_entry->u.s1.refcount == 1) 2687 { 2688 /* Make sure this symbol is output as a dynamic symbol. */ 2689 if (h != NULL 2690 && h->dynindx == -1 2691 && !h->forced_local) 2692 { 2693 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2694 return FALSE; 2695 } 2696 } 2697 } 2698 2699 break; 2700 2701 case R_68K_PLT8: 2702 case R_68K_PLT16: 2703 case R_68K_PLT32: 2704 /* This symbol requires a procedure linkage table entry. We 2705 actually build the entry in adjust_dynamic_symbol, 2706 because this might be a case of linking PIC code which is 2707 never referenced by a dynamic object, in which case we 2708 don't need to generate a procedure linkage table entry 2709 after all. */ 2710 2711 /* If this is a local symbol, we resolve it directly without 2712 creating a procedure linkage table entry. */ 2713 if (h == NULL) 2714 continue; 2715 2716 h->needs_plt = 1; 2717 h->plt.refcount++; 2718 break; 2719 2720 case R_68K_PLT8O: 2721 case R_68K_PLT16O: 2722 case R_68K_PLT32O: 2723 /* This symbol requires a procedure linkage table entry. */ 2724 2725 if (h == NULL) 2726 { 2727 /* It does not make sense to have this relocation for a 2728 local symbol. FIXME: does it? How to handle it if 2729 it does make sense? */ 2730 bfd_set_error (bfd_error_bad_value); 2731 return FALSE; 2732 } 2733 2734 /* Make sure this symbol is output as a dynamic symbol. */ 2735 if (h->dynindx == -1 2736 && !h->forced_local) 2737 { 2738 if (!bfd_elf_link_record_dynamic_symbol (info, h)) 2739 return FALSE; 2740 } 2741 2742 h->needs_plt = 1; 2743 h->plt.refcount++; 2744 break; 2745 2746 case R_68K_PC8: 2747 case R_68K_PC16: 2748 case R_68K_PC32: 2749 /* If we are creating a shared library and this is not a local 2750 symbol, we need to copy the reloc into the shared library. 2751 However when linking with -Bsymbolic and this is a global 2752 symbol which is defined in an object we are including in the 2753 link (i.e., DEF_REGULAR is set), then we can resolve the 2754 reloc directly. At this point we have not seen all the input 2755 files, so it is possible that DEF_REGULAR is not set now but 2756 will be set later (it is never cleared). We account for that 2757 possibility below by storing information in the 2758 pcrel_relocs_copied field of the hash table entry. */ 2759 if (!(info->shared 2760 && (sec->flags & SEC_ALLOC) != 0 2761 && h != NULL 2762 && (!info->symbolic 2763 || h->root.type == bfd_link_hash_defweak 2764 || !h->def_regular))) 2765 { 2766 if (h != NULL) 2767 { 2768 /* Make sure a plt entry is created for this symbol if 2769 it turns out to be a function defined by a dynamic 2770 object. */ 2771 h->plt.refcount++; 2772 } 2773 break; 2774 } 2775 /* Fall through. */ 2776 case R_68K_8: 2777 case R_68K_16: 2778 case R_68K_32: 2779 /* We don't need to handle relocs into sections not going into 2780 the "real" output. */ 2781 if ((sec->flags & SEC_ALLOC) == 0) 2782 break; 2783 2784 if (h != NULL) 2785 { 2786 /* Make sure a plt entry is created for this symbol if it 2787 turns out to be a function defined by a dynamic object. */ 2788 h->plt.refcount++; 2789 2790 if (info->executable) 2791 /* This symbol needs a non-GOT reference. */ 2792 h->non_got_ref = 1; 2793 } 2794 2795 /* If we are creating a shared library, we need to copy the 2796 reloc into the shared library. */ 2797 if (info->shared) 2798 { 2799 /* When creating a shared object, we must copy these 2800 reloc types into the output file. We create a reloc 2801 section in dynobj and make room for this reloc. */ 2802 if (sreloc == NULL) 2803 { 2804 sreloc = _bfd_elf_make_dynamic_reloc_section 2805 (sec, dynobj, 2, abfd, /*rela?*/ TRUE); 2806 2807 if (sreloc == NULL) 2808 return FALSE; 2809 } 2810 2811 if (sec->flags & SEC_READONLY 2812 /* Don't set DF_TEXTREL yet for PC relative 2813 relocations, they might be discarded later. */ 2814 && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2815 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2816 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)) 2817 info->flags |= DF_TEXTREL; 2818 2819 sreloc->size += sizeof (Elf32_External_Rela); 2820 2821 /* We count the number of PC relative relocations we have 2822 entered for this symbol, so that we can discard them 2823 again if, in the -Bsymbolic case, the symbol is later 2824 defined by a regular object, or, in the normal shared 2825 case, the symbol is forced to be local. Note that this 2826 function is only called if we are using an m68kelf linker 2827 hash table, which means that h is really a pointer to an 2828 elf_m68k_link_hash_entry. */ 2829 if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8 2830 || ELF32_R_TYPE (rel->r_info) == R_68K_PC16 2831 || ELF32_R_TYPE (rel->r_info) == R_68K_PC32) 2832 { 2833 struct elf_m68k_pcrel_relocs_copied *p; 2834 struct elf_m68k_pcrel_relocs_copied **head; 2835 2836 if (h != NULL) 2837 { 2838 struct elf_m68k_link_hash_entry *eh 2839 = elf_m68k_hash_entry (h); 2840 head = &eh->pcrel_relocs_copied; 2841 } 2842 else 2843 { 2844 asection *s; 2845 void *vpp; 2846 Elf_Internal_Sym *isym; 2847 2848 isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache, 2849 abfd, r_symndx); 2850 if (isym == NULL) 2851 return FALSE; 2852 2853 s = bfd_section_from_elf_index (abfd, isym->st_shndx); 2854 if (s == NULL) 2855 s = sec; 2856 2857 vpp = &elf_section_data (s)->local_dynrel; 2858 head = (struct elf_m68k_pcrel_relocs_copied **) vpp; 2859 } 2860 2861 for (p = *head; p != NULL; p = p->next) 2862 if (p->section == sreloc) 2863 break; 2864 2865 if (p == NULL) 2866 { 2867 p = ((struct elf_m68k_pcrel_relocs_copied *) 2868 bfd_alloc (dynobj, (bfd_size_type) sizeof *p)); 2869 if (p == NULL) 2870 return FALSE; 2871 p->next = *head; 2872 *head = p; 2873 p->section = sreloc; 2874 p->count = 0; 2875 } 2876 2877 ++p->count; 2878 } 2879 } 2880 2881 break; 2882 2883 /* This relocation describes the C++ object vtable hierarchy. 2884 Reconstruct it for later use during GC. */ 2885 case R_68K_GNU_VTINHERIT: 2886 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 2887 return FALSE; 2888 break; 2889 2890 /* This relocation describes which C++ vtable entries are actually 2891 used. Record for later use during GC. */ 2892 case R_68K_GNU_VTENTRY: 2893 BFD_ASSERT (h != NULL); 2894 if (h != NULL 2895 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 2896 return FALSE; 2897 break; 2898 2899 default: 2900 break; 2901 } 2902 } 2903 2904 return TRUE; 2905 } 2906 2907 /* Return the section that should be marked against GC for a given 2908 relocation. */ 2909 2910 static asection * 2911 elf_m68k_gc_mark_hook (asection *sec, 2912 struct bfd_link_info *info, 2913 Elf_Internal_Rela *rel, 2914 struct elf_link_hash_entry *h, 2915 Elf_Internal_Sym *sym) 2916 { 2917 if (h != NULL) 2918 switch (ELF32_R_TYPE (rel->r_info)) 2919 { 2920 case R_68K_GNU_VTINHERIT: 2921 case R_68K_GNU_VTENTRY: 2922 return NULL; 2923 } 2924 2925 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym); 2926 } 2927 2928 /* Update the got entry reference counts for the section being removed. */ 2929 2930 static bfd_boolean 2931 elf_m68k_gc_sweep_hook (bfd *abfd, 2932 struct bfd_link_info *info, 2933 asection *sec, 2934 const Elf_Internal_Rela *relocs) 2935 { 2936 Elf_Internal_Shdr *symtab_hdr; 2937 struct elf_link_hash_entry **sym_hashes; 2938 const Elf_Internal_Rela *rel, *relend; 2939 bfd *dynobj; 2940 struct elf_m68k_got *got; 2941 2942 if (info->relocatable) 2943 return TRUE; 2944 2945 dynobj = elf_hash_table (info)->dynobj; 2946 if (dynobj == NULL) 2947 return TRUE; 2948 2949 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 2950 sym_hashes = elf_sym_hashes (abfd); 2951 got = NULL; 2952 2953 relend = relocs + sec->reloc_count; 2954 for (rel = relocs; rel < relend; rel++) 2955 { 2956 unsigned long r_symndx; 2957 struct elf_link_hash_entry *h = NULL; 2958 2959 r_symndx = ELF32_R_SYM (rel->r_info); 2960 if (r_symndx >= symtab_hdr->sh_info) 2961 { 2962 h = sym_hashes[r_symndx - symtab_hdr->sh_info]; 2963 while (h->root.type == bfd_link_hash_indirect 2964 || h->root.type == bfd_link_hash_warning) 2965 h = (struct elf_link_hash_entry *) h->root.u.i.link; 2966 } 2967 2968 switch (ELF32_R_TYPE (rel->r_info)) 2969 { 2970 case R_68K_GOT8: 2971 case R_68K_GOT16: 2972 case R_68K_GOT32: 2973 if (h != NULL 2974 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 2975 break; 2976 2977 /* FALLTHRU */ 2978 case R_68K_GOT8O: 2979 case R_68K_GOT16O: 2980 case R_68K_GOT32O: 2981 /* Fall through. */ 2982 2983 /* TLS relocations. */ 2984 case R_68K_TLS_GD8: 2985 case R_68K_TLS_GD16: 2986 case R_68K_TLS_GD32: 2987 case R_68K_TLS_LDM8: 2988 case R_68K_TLS_LDM16: 2989 case R_68K_TLS_LDM32: 2990 case R_68K_TLS_IE8: 2991 case R_68K_TLS_IE16: 2992 case R_68K_TLS_IE32: 2993 2994 case R_68K_TLS_TPREL32: 2995 case R_68K_TLS_DTPREL32: 2996 2997 if (got == NULL) 2998 { 2999 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3000 abfd, MUST_FIND, NULL)->got; 3001 BFD_ASSERT (got != NULL); 3002 } 3003 3004 { 3005 struct elf_m68k_got_entry_key key_; 3006 struct elf_m68k_got_entry **got_entry_ptr; 3007 struct elf_m68k_got_entry *got_entry; 3008 3009 elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx, 3010 ELF32_R_TYPE (rel->r_info)); 3011 got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_); 3012 3013 got_entry = *got_entry_ptr; 3014 3015 if (got_entry->u.s1.refcount > 0) 3016 { 3017 --got_entry->u.s1.refcount; 3018 3019 if (got_entry->u.s1.refcount == 0) 3020 /* We don't need the .got entry any more. */ 3021 elf_m68k_remove_got_entry (got, got_entry_ptr); 3022 } 3023 } 3024 break; 3025 3026 case R_68K_PLT8: 3027 case R_68K_PLT16: 3028 case R_68K_PLT32: 3029 case R_68K_PLT8O: 3030 case R_68K_PLT16O: 3031 case R_68K_PLT32O: 3032 case R_68K_PC8: 3033 case R_68K_PC16: 3034 case R_68K_PC32: 3035 case R_68K_8: 3036 case R_68K_16: 3037 case R_68K_32: 3038 if (h != NULL) 3039 { 3040 if (h->plt.refcount > 0) 3041 --h->plt.refcount; 3042 } 3043 break; 3044 3045 default: 3046 break; 3047 } 3048 } 3049 3050 return TRUE; 3051 } 3052 3053 /* Return the type of PLT associated with OUTPUT_BFD. */ 3054 3055 static const struct elf_m68k_plt_info * 3056 elf_m68k_get_plt_info (bfd *output_bfd) 3057 { 3058 unsigned int features; 3059 3060 features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd)); 3061 if (features & cpu32) 3062 return &elf_cpu32_plt_info; 3063 if (features & mcfisa_b) 3064 return &elf_isab_plt_info; 3065 if (features & mcfisa_c) 3066 return &elf_isac_plt_info; 3067 return &elf_m68k_plt_info; 3068 } 3069 3070 /* This function is called after all the input files have been read, 3071 and the input sections have been assigned to output sections. 3072 It's a convenient place to determine the PLT style. */ 3073 3074 static bfd_boolean 3075 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info) 3076 { 3077 /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got 3078 sections. */ 3079 if (!elf_m68k_partition_multi_got (info)) 3080 return FALSE; 3081 3082 elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd); 3083 return TRUE; 3084 } 3085 3086 /* Adjust a symbol defined by a dynamic object and referenced by a 3087 regular object. The current definition is in some section of the 3088 dynamic object, but we're not including those sections. We have to 3089 change the definition to something the rest of the link can 3090 understand. */ 3091 3092 static bfd_boolean 3093 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info, 3094 struct elf_link_hash_entry *h) 3095 { 3096 struct elf_m68k_link_hash_table *htab; 3097 bfd *dynobj; 3098 asection *s; 3099 3100 htab = elf_m68k_hash_table (info); 3101 dynobj = elf_hash_table (info)->dynobj; 3102 3103 /* Make sure we know what is going on here. */ 3104 BFD_ASSERT (dynobj != NULL 3105 && (h->needs_plt 3106 || h->u.weakdef != NULL 3107 || (h->def_dynamic 3108 && h->ref_regular 3109 && !h->def_regular))); 3110 3111 /* If this is a function, put it in the procedure linkage table. We 3112 will fill in the contents of the procedure linkage table later, 3113 when we know the address of the .got section. */ 3114 if (h->type == STT_FUNC 3115 || h->needs_plt) 3116 { 3117 if ((h->plt.refcount <= 0 3118 || SYMBOL_CALLS_LOCAL (info, h) 3119 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT 3120 && h->root.type == bfd_link_hash_undefweak)) 3121 /* We must always create the plt entry if it was referenced 3122 by a PLTxxO relocation. In this case we already recorded 3123 it as a dynamic symbol. */ 3124 && h->dynindx == -1) 3125 { 3126 /* This case can occur if we saw a PLTxx reloc in an input 3127 file, but the symbol was never referred to by a dynamic 3128 object, or if all references were garbage collected. In 3129 such a case, we don't actually need to build a procedure 3130 linkage table, and we can just do a PCxx reloc instead. */ 3131 h->plt.offset = (bfd_vma) -1; 3132 h->needs_plt = 0; 3133 return TRUE; 3134 } 3135 3136 /* Make sure this symbol is output as a dynamic symbol. */ 3137 if (h->dynindx == -1 3138 && !h->forced_local) 3139 { 3140 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3141 return FALSE; 3142 } 3143 3144 s = bfd_get_linker_section (dynobj, ".plt"); 3145 BFD_ASSERT (s != NULL); 3146 3147 /* If this is the first .plt entry, make room for the special 3148 first entry. */ 3149 if (s->size == 0) 3150 s->size = htab->plt_info->size; 3151 3152 /* If this symbol is not defined in a regular file, and we are 3153 not generating a shared library, then set the symbol to this 3154 location in the .plt. This is required to make function 3155 pointers compare as equal between the normal executable and 3156 the shared library. */ 3157 if (!info->shared 3158 && !h->def_regular) 3159 { 3160 h->root.u.def.section = s; 3161 h->root.u.def.value = s->size; 3162 } 3163 3164 h->plt.offset = s->size; 3165 3166 /* Make room for this entry. */ 3167 s->size += htab->plt_info->size; 3168 3169 /* We also need to make an entry in the .got.plt section, which 3170 will be placed in the .got section by the linker script. */ 3171 s = bfd_get_linker_section (dynobj, ".got.plt"); 3172 BFD_ASSERT (s != NULL); 3173 s->size += 4; 3174 3175 /* We also need to make an entry in the .rela.plt section. */ 3176 s = bfd_get_linker_section (dynobj, ".rela.plt"); 3177 BFD_ASSERT (s != NULL); 3178 s->size += sizeof (Elf32_External_Rela); 3179 3180 return TRUE; 3181 } 3182 3183 /* Reinitialize the plt offset now that it is not used as a reference 3184 count any more. */ 3185 h->plt.offset = (bfd_vma) -1; 3186 3187 /* If this is a weak symbol, and there is a real definition, the 3188 processor independent code will have arranged for us to see the 3189 real definition first, and we can just use the same value. */ 3190 if (h->u.weakdef != NULL) 3191 { 3192 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined 3193 || h->u.weakdef->root.type == bfd_link_hash_defweak); 3194 h->root.u.def.section = h->u.weakdef->root.u.def.section; 3195 h->root.u.def.value = h->u.weakdef->root.u.def.value; 3196 return TRUE; 3197 } 3198 3199 /* This is a reference to a symbol defined by a dynamic object which 3200 is not a function. */ 3201 3202 /* If we are creating a shared library, we must presume that the 3203 only references to the symbol are via the global offset table. 3204 For such cases we need not do anything here; the relocations will 3205 be handled correctly by relocate_section. */ 3206 if (info->shared) 3207 return TRUE; 3208 3209 /* If there are no references to this symbol that do not use the 3210 GOT, we don't need to generate a copy reloc. */ 3211 if (!h->non_got_ref) 3212 return TRUE; 3213 3214 /* We must allocate the symbol in our .dynbss section, which will 3215 become part of the .bss section of the executable. There will be 3216 an entry for this symbol in the .dynsym section. The dynamic 3217 object will contain position independent code, so all references 3218 from the dynamic object to this symbol will go through the global 3219 offset table. The dynamic linker will use the .dynsym entry to 3220 determine the address it must put in the global offset table, so 3221 both the dynamic object and the regular object will refer to the 3222 same memory location for the variable. */ 3223 3224 s = bfd_get_linker_section (dynobj, ".dynbss"); 3225 BFD_ASSERT (s != NULL); 3226 3227 /* We must generate a R_68K_COPY reloc to tell the dynamic linker to 3228 copy the initial value out of the dynamic object and into the 3229 runtime process image. We need to remember the offset into the 3230 .rela.bss section we are going to use. */ 3231 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0) 3232 { 3233 asection *srel; 3234 3235 srel = bfd_get_linker_section (dynobj, ".rela.bss"); 3236 BFD_ASSERT (srel != NULL); 3237 srel->size += sizeof (Elf32_External_Rela); 3238 h->needs_copy = 1; 3239 } 3240 3241 return _bfd_elf_adjust_dynamic_copy (h, s); 3242 } 3243 3244 /* Set the sizes of the dynamic sections. */ 3245 3246 static bfd_boolean 3247 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED, 3248 struct bfd_link_info *info) 3249 { 3250 bfd *dynobj; 3251 asection *s; 3252 bfd_boolean plt; 3253 bfd_boolean relocs; 3254 3255 dynobj = elf_hash_table (info)->dynobj; 3256 BFD_ASSERT (dynobj != NULL); 3257 3258 if (elf_hash_table (info)->dynamic_sections_created) 3259 { 3260 /* Set the contents of the .interp section to the interpreter. */ 3261 if (info->executable) 3262 { 3263 s = bfd_get_linker_section (dynobj, ".interp"); 3264 BFD_ASSERT (s != NULL); 3265 s->size = sizeof ELF_DYNAMIC_INTERPRETER; 3266 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER; 3267 } 3268 } 3269 else 3270 { 3271 /* We may have created entries in the .rela.got section. 3272 However, if we are not creating the dynamic sections, we will 3273 not actually use these entries. Reset the size of .rela.got, 3274 which will cause it to get stripped from the output file 3275 below. */ 3276 s = bfd_get_linker_section (dynobj, ".rela.got"); 3277 if (s != NULL) 3278 s->size = 0; 3279 } 3280 3281 /* If this is a -Bsymbolic shared link, then we need to discard all 3282 PC relative relocs against symbols defined in a regular object. 3283 For the normal shared case we discard the PC relative relocs 3284 against symbols that have become local due to visibility changes. 3285 We allocated space for them in the check_relocs routine, but we 3286 will not fill them in in the relocate_section routine. */ 3287 if (info->shared) 3288 elf_link_hash_traverse (elf_hash_table (info), 3289 elf_m68k_discard_copies, 3290 info); 3291 3292 /* The check_relocs and adjust_dynamic_symbol entry points have 3293 determined the sizes of the various dynamic sections. Allocate 3294 memory for them. */ 3295 plt = FALSE; 3296 relocs = FALSE; 3297 for (s = dynobj->sections; s != NULL; s = s->next) 3298 { 3299 const char *name; 3300 3301 if ((s->flags & SEC_LINKER_CREATED) == 0) 3302 continue; 3303 3304 /* It's OK to base decisions on the section name, because none 3305 of the dynobj section names depend upon the input files. */ 3306 name = bfd_get_section_name (dynobj, s); 3307 3308 if (strcmp (name, ".plt") == 0) 3309 { 3310 /* Remember whether there is a PLT. */ 3311 plt = s->size != 0; 3312 } 3313 else if (CONST_STRNEQ (name, ".rela")) 3314 { 3315 if (s->size != 0) 3316 { 3317 relocs = TRUE; 3318 3319 /* We use the reloc_count field as a counter if we need 3320 to copy relocs into the output file. */ 3321 s->reloc_count = 0; 3322 } 3323 } 3324 else if (! CONST_STRNEQ (name, ".got") 3325 && strcmp (name, ".dynbss") != 0) 3326 { 3327 /* It's not one of our sections, so don't allocate space. */ 3328 continue; 3329 } 3330 3331 if (s->size == 0) 3332 { 3333 /* If we don't need this section, strip it from the 3334 output file. This is mostly to handle .rela.bss and 3335 .rela.plt. We must create both sections in 3336 create_dynamic_sections, because they must be created 3337 before the linker maps input sections to output 3338 sections. The linker does that before 3339 adjust_dynamic_symbol is called, and it is that 3340 function which decides whether anything needs to go 3341 into these sections. */ 3342 s->flags |= SEC_EXCLUDE; 3343 continue; 3344 } 3345 3346 if ((s->flags & SEC_HAS_CONTENTS) == 0) 3347 continue; 3348 3349 /* Allocate memory for the section contents. */ 3350 /* FIXME: This should be a call to bfd_alloc not bfd_zalloc. 3351 Unused entries should be reclaimed before the section's contents 3352 are written out, but at the moment this does not happen. Thus in 3353 order to prevent writing out garbage, we initialise the section's 3354 contents to zero. */ 3355 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size); 3356 if (s->contents == NULL) 3357 return FALSE; 3358 } 3359 3360 if (elf_hash_table (info)->dynamic_sections_created) 3361 { 3362 /* Add some entries to the .dynamic section. We fill in the 3363 values later, in elf_m68k_finish_dynamic_sections, but we 3364 must add the entries now so that we get the correct size for 3365 the .dynamic section. The DT_DEBUG entry is filled in by the 3366 dynamic linker and used by the debugger. */ 3367 #define add_dynamic_entry(TAG, VAL) \ 3368 _bfd_elf_add_dynamic_entry (info, TAG, VAL) 3369 3370 if (info->executable) 3371 { 3372 if (!add_dynamic_entry (DT_DEBUG, 0)) 3373 return FALSE; 3374 } 3375 3376 if (plt) 3377 { 3378 if (!add_dynamic_entry (DT_PLTGOT, 0) 3379 || !add_dynamic_entry (DT_PLTRELSZ, 0) 3380 || !add_dynamic_entry (DT_PLTREL, DT_RELA) 3381 || !add_dynamic_entry (DT_JMPREL, 0)) 3382 return FALSE; 3383 } 3384 3385 if (relocs) 3386 { 3387 if (!add_dynamic_entry (DT_RELA, 0) 3388 || !add_dynamic_entry (DT_RELASZ, 0) 3389 || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela))) 3390 return FALSE; 3391 } 3392 3393 if ((info->flags & DF_TEXTREL) != 0) 3394 { 3395 if (!add_dynamic_entry (DT_TEXTREL, 0)) 3396 return FALSE; 3397 } 3398 } 3399 #undef add_dynamic_entry 3400 3401 return TRUE; 3402 } 3403 3404 /* This function is called via elf_link_hash_traverse if we are 3405 creating a shared object. In the -Bsymbolic case it discards the 3406 space allocated to copy PC relative relocs against symbols which 3407 are defined in regular objects. For the normal shared case, it 3408 discards space for pc-relative relocs that have become local due to 3409 symbol visibility changes. We allocated space for them in the 3410 check_relocs routine, but we won't fill them in in the 3411 relocate_section routine. 3412 3413 We also check whether any of the remaining relocations apply 3414 against a readonly section, and set the DF_TEXTREL flag in this 3415 case. */ 3416 3417 static bfd_boolean 3418 elf_m68k_discard_copies (struct elf_link_hash_entry *h, 3419 void * inf) 3420 { 3421 struct bfd_link_info *info = (struct bfd_link_info *) inf; 3422 struct elf_m68k_pcrel_relocs_copied *s; 3423 3424 if (!SYMBOL_CALLS_LOCAL (info, h)) 3425 { 3426 if ((info->flags & DF_TEXTREL) == 0) 3427 { 3428 /* Look for relocations against read-only sections. */ 3429 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3430 s != NULL; 3431 s = s->next) 3432 if ((s->section->flags & SEC_READONLY) != 0) 3433 { 3434 info->flags |= DF_TEXTREL; 3435 break; 3436 } 3437 } 3438 3439 /* Make sure undefined weak symbols are output as a dynamic symbol 3440 in PIEs. */ 3441 if (h->non_got_ref 3442 && h->root.type == bfd_link_hash_undefweak 3443 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3444 && h->dynindx == -1 3445 && !h->forced_local) 3446 { 3447 if (! bfd_elf_link_record_dynamic_symbol (info, h)) 3448 return FALSE; 3449 } 3450 3451 return TRUE; 3452 } 3453 3454 for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied; 3455 s != NULL; 3456 s = s->next) 3457 s->section->size -= s->count * sizeof (Elf32_External_Rela); 3458 3459 return TRUE; 3460 } 3461 3462 3463 /* Install relocation RELA. */ 3464 3465 static void 3466 elf_m68k_install_rela (bfd *output_bfd, 3467 asection *srela, 3468 Elf_Internal_Rela *rela) 3469 { 3470 bfd_byte *loc; 3471 3472 loc = srela->contents; 3473 loc += srela->reloc_count++ * sizeof (Elf32_External_Rela); 3474 bfd_elf32_swap_reloca_out (output_bfd, rela, loc); 3475 } 3476 3477 /* Find the base offsets for thread-local storage in this object, 3478 for GD/LD and IE/LE respectively. */ 3479 3480 #define DTP_OFFSET 0x8000 3481 #define TP_OFFSET 0x7000 3482 3483 static bfd_vma 3484 dtpoff_base (struct bfd_link_info *info) 3485 { 3486 /* If tls_sec is NULL, we should have signalled an error already. */ 3487 if (elf_hash_table (info)->tls_sec == NULL) 3488 return 0; 3489 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET; 3490 } 3491 3492 static bfd_vma 3493 tpoff_base (struct bfd_link_info *info) 3494 { 3495 /* If tls_sec is NULL, we should have signalled an error already. */ 3496 if (elf_hash_table (info)->tls_sec == NULL) 3497 return 0; 3498 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET; 3499 } 3500 3501 /* Output necessary relocation to handle a symbol during static link. 3502 This function is called from elf_m68k_relocate_section. */ 3503 3504 static void 3505 elf_m68k_init_got_entry_static (struct bfd_link_info *info, 3506 bfd *output_bfd, 3507 enum elf_m68k_reloc_type r_type, 3508 asection *sgot, 3509 bfd_vma got_entry_offset, 3510 bfd_vma relocation) 3511 { 3512 switch (elf_m68k_reloc_got_type (r_type)) 3513 { 3514 case R_68K_GOT32O: 3515 bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset); 3516 break; 3517 3518 case R_68K_TLS_GD32: 3519 /* We know the offset within the module, 3520 put it into the second GOT slot. */ 3521 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3522 sgot->contents + got_entry_offset + 4); 3523 /* FALLTHRU */ 3524 3525 case R_68K_TLS_LDM32: 3526 /* Mark it as belonging to module 1, the executable. */ 3527 bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset); 3528 break; 3529 3530 case R_68K_TLS_IE32: 3531 bfd_put_32 (output_bfd, relocation - tpoff_base (info), 3532 sgot->contents + got_entry_offset); 3533 break; 3534 3535 default: 3536 BFD_ASSERT (FALSE); 3537 } 3538 } 3539 3540 /* Output necessary relocation to handle a local symbol 3541 during dynamic link. 3542 This function is called either from elf_m68k_relocate_section 3543 or from elf_m68k_finish_dynamic_symbol. */ 3544 3545 static void 3546 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info, 3547 bfd *output_bfd, 3548 enum elf_m68k_reloc_type r_type, 3549 asection *sgot, 3550 bfd_vma got_entry_offset, 3551 bfd_vma relocation, 3552 asection *srela) 3553 { 3554 Elf_Internal_Rela outrel; 3555 3556 switch (elf_m68k_reloc_got_type (r_type)) 3557 { 3558 case R_68K_GOT32O: 3559 /* Emit RELATIVE relocation to initialize GOT slot 3560 at run-time. */ 3561 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 3562 outrel.r_addend = relocation; 3563 break; 3564 3565 case R_68K_TLS_GD32: 3566 /* We know the offset within the module, 3567 put it into the second GOT slot. */ 3568 bfd_put_32 (output_bfd, relocation - dtpoff_base (info), 3569 sgot->contents + got_entry_offset + 4); 3570 /* FALLTHRU */ 3571 3572 case R_68K_TLS_LDM32: 3573 /* We don't know the module number, 3574 create a relocation for it. */ 3575 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32); 3576 outrel.r_addend = 0; 3577 break; 3578 3579 case R_68K_TLS_IE32: 3580 /* Emit TPREL relocation to initialize GOT slot 3581 at run-time. */ 3582 outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32); 3583 outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma; 3584 break; 3585 3586 default: 3587 BFD_ASSERT (FALSE); 3588 } 3589 3590 /* Offset of the GOT entry. */ 3591 outrel.r_offset = (sgot->output_section->vma 3592 + sgot->output_offset 3593 + got_entry_offset); 3594 3595 /* Install one of the above relocations. */ 3596 elf_m68k_install_rela (output_bfd, srela, &outrel); 3597 3598 bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset); 3599 } 3600 3601 /* Relocate an M68K ELF section. */ 3602 3603 static bfd_boolean 3604 elf_m68k_relocate_section (bfd *output_bfd, 3605 struct bfd_link_info *info, 3606 bfd *input_bfd, 3607 asection *input_section, 3608 bfd_byte *contents, 3609 Elf_Internal_Rela *relocs, 3610 Elf_Internal_Sym *local_syms, 3611 asection **local_sections) 3612 { 3613 bfd *dynobj; 3614 Elf_Internal_Shdr *symtab_hdr; 3615 struct elf_link_hash_entry **sym_hashes; 3616 asection *sgot; 3617 asection *splt; 3618 asection *sreloc; 3619 asection *srela; 3620 struct elf_m68k_got *got; 3621 Elf_Internal_Rela *rel; 3622 Elf_Internal_Rela *relend; 3623 3624 dynobj = elf_hash_table (info)->dynobj; 3625 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 3626 sym_hashes = elf_sym_hashes (input_bfd); 3627 3628 sgot = NULL; 3629 splt = NULL; 3630 sreloc = NULL; 3631 srela = NULL; 3632 3633 got = NULL; 3634 3635 rel = relocs; 3636 relend = relocs + input_section->reloc_count; 3637 for (; rel < relend; rel++) 3638 { 3639 int r_type; 3640 reloc_howto_type *howto; 3641 unsigned long r_symndx; 3642 struct elf_link_hash_entry *h; 3643 Elf_Internal_Sym *sym; 3644 asection *sec; 3645 bfd_vma relocation; 3646 bfd_boolean unresolved_reloc; 3647 bfd_reloc_status_type r; 3648 3649 r_type = ELF32_R_TYPE (rel->r_info); 3650 if (r_type < 0 || r_type >= (int) R_68K_max) 3651 { 3652 bfd_set_error (bfd_error_bad_value); 3653 return FALSE; 3654 } 3655 howto = howto_table + r_type; 3656 3657 r_symndx = ELF32_R_SYM (rel->r_info); 3658 3659 h = NULL; 3660 sym = NULL; 3661 sec = NULL; 3662 unresolved_reloc = FALSE; 3663 3664 if (r_symndx < symtab_hdr->sh_info) 3665 { 3666 sym = local_syms + r_symndx; 3667 sec = local_sections[r_symndx]; 3668 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel); 3669 } 3670 else 3671 { 3672 bfd_boolean warned, ignored; 3673 3674 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 3675 r_symndx, symtab_hdr, sym_hashes, 3676 h, sec, relocation, 3677 unresolved_reloc, warned, ignored); 3678 } 3679 3680 if (sec != NULL && discarded_section (sec)) 3681 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 3682 rel, 1, relend, howto, 0, contents); 3683 3684 if (info->relocatable) 3685 continue; 3686 3687 switch (r_type) 3688 { 3689 case R_68K_GOT8: 3690 case R_68K_GOT16: 3691 case R_68K_GOT32: 3692 /* Relocation is to the address of the entry for this symbol 3693 in the global offset table. */ 3694 if (h != NULL 3695 && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0) 3696 { 3697 if (elf_m68k_hash_table (info)->local_gp_p) 3698 { 3699 bfd_vma sgot_output_offset; 3700 bfd_vma got_offset; 3701 3702 if (sgot == NULL) 3703 { 3704 sgot = bfd_get_linker_section (dynobj, ".got"); 3705 3706 if (sgot != NULL) 3707 sgot_output_offset = sgot->output_offset; 3708 else 3709 /* In this case we have a reference to 3710 _GLOBAL_OFFSET_TABLE_, but the GOT itself is 3711 empty. 3712 ??? Issue a warning? */ 3713 sgot_output_offset = 0; 3714 } 3715 else 3716 sgot_output_offset = sgot->output_offset; 3717 3718 if (got == NULL) 3719 { 3720 struct elf_m68k_bfd2got_entry *bfd2got_entry; 3721 3722 bfd2got_entry 3723 = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3724 input_bfd, SEARCH, NULL); 3725 3726 if (bfd2got_entry != NULL) 3727 { 3728 got = bfd2got_entry->got; 3729 BFD_ASSERT (got != NULL); 3730 3731 got_offset = got->offset; 3732 } 3733 else 3734 /* In this case we have a reference to 3735 _GLOBAL_OFFSET_TABLE_, but no other references 3736 accessing any GOT entries. 3737 ??? Issue a warning? */ 3738 got_offset = 0; 3739 } 3740 else 3741 got_offset = got->offset; 3742 3743 /* Adjust GOT pointer to point to the GOT 3744 assigned to input_bfd. */ 3745 rel->r_addend += sgot_output_offset + got_offset; 3746 } 3747 else 3748 BFD_ASSERT (got == NULL || got->offset == 0); 3749 3750 break; 3751 } 3752 /* Fall through. */ 3753 case R_68K_GOT8O: 3754 case R_68K_GOT16O: 3755 case R_68K_GOT32O: 3756 3757 case R_68K_TLS_LDM32: 3758 case R_68K_TLS_LDM16: 3759 case R_68K_TLS_LDM8: 3760 3761 case R_68K_TLS_GD8: 3762 case R_68K_TLS_GD16: 3763 case R_68K_TLS_GD32: 3764 3765 case R_68K_TLS_IE8: 3766 case R_68K_TLS_IE16: 3767 case R_68K_TLS_IE32: 3768 3769 /* Relocation is the offset of the entry for this symbol in 3770 the global offset table. */ 3771 3772 { 3773 struct elf_m68k_got_entry_key key_; 3774 bfd_vma *off_ptr; 3775 bfd_vma off; 3776 3777 if (sgot == NULL) 3778 { 3779 sgot = bfd_get_linker_section (dynobj, ".got"); 3780 BFD_ASSERT (sgot != NULL); 3781 } 3782 3783 if (got == NULL) 3784 { 3785 got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info), 3786 input_bfd, MUST_FIND, 3787 NULL)->got; 3788 BFD_ASSERT (got != NULL); 3789 } 3790 3791 /* Get GOT offset for this symbol. */ 3792 elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx, 3793 r_type); 3794 off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND, 3795 NULL)->u.s2.offset; 3796 off = *off_ptr; 3797 3798 /* The offset must always be a multiple of 4. We use 3799 the least significant bit to record whether we have 3800 already generated the necessary reloc. */ 3801 if ((off & 1) != 0) 3802 off &= ~1; 3803 else 3804 { 3805 if (h != NULL 3806 /* @TLSLDM relocations are bounded to the module, in 3807 which the symbol is defined -- not to the symbol 3808 itself. */ 3809 && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32) 3810 { 3811 bfd_boolean dyn; 3812 3813 dyn = elf_hash_table (info)->dynamic_sections_created; 3814 if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h) 3815 || (info->shared 3816 && SYMBOL_REFERENCES_LOCAL (info, h)) 3817 || (ELF_ST_VISIBILITY (h->other) 3818 && h->root.type == bfd_link_hash_undefweak)) 3819 { 3820 /* This is actually a static link, or it is a 3821 -Bsymbolic link and the symbol is defined 3822 locally, or the symbol was forced to be local 3823 because of a version file. We must initialize 3824 this entry in the global offset table. Since 3825 the offset must always be a multiple of 4, we 3826 use the least significant bit to record whether 3827 we have initialized it already. 3828 3829 When doing a dynamic link, we create a .rela.got 3830 relocation entry to initialize the value. This 3831 is done in the finish_dynamic_symbol routine. */ 3832 3833 elf_m68k_init_got_entry_static (info, 3834 output_bfd, 3835 r_type, 3836 sgot, 3837 off, 3838 relocation); 3839 3840 *off_ptr |= 1; 3841 } 3842 else 3843 unresolved_reloc = FALSE; 3844 } 3845 else if (info->shared) /* && h == NULL */ 3846 /* Process local symbol during dynamic link. */ 3847 { 3848 if (srela == NULL) 3849 { 3850 srela = bfd_get_linker_section (dynobj, ".rela.got"); 3851 BFD_ASSERT (srela != NULL); 3852 } 3853 3854 elf_m68k_init_got_entry_local_shared (info, 3855 output_bfd, 3856 r_type, 3857 sgot, 3858 off, 3859 relocation, 3860 srela); 3861 3862 *off_ptr |= 1; 3863 } 3864 else /* h == NULL && !info->shared */ 3865 { 3866 elf_m68k_init_got_entry_static (info, 3867 output_bfd, 3868 r_type, 3869 sgot, 3870 off, 3871 relocation); 3872 3873 *off_ptr |= 1; 3874 } 3875 } 3876 3877 /* We don't use elf_m68k_reloc_got_type in the condition below 3878 because this is the only place where difference between 3879 R_68K_GOTx and R_68K_GOTxO relocations matters. */ 3880 if (r_type == R_68K_GOT32O 3881 || r_type == R_68K_GOT16O 3882 || r_type == R_68K_GOT8O 3883 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32 3884 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32 3885 || elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32) 3886 { 3887 /* GOT pointer is adjusted to point to the start/middle 3888 of local GOT. Adjust the offset accordingly. */ 3889 BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p 3890 || off >= got->offset); 3891 3892 if (elf_m68k_hash_table (info)->local_gp_p) 3893 relocation = off - got->offset; 3894 else 3895 { 3896 BFD_ASSERT (got->offset == 0); 3897 relocation = sgot->output_offset + off; 3898 } 3899 3900 /* This relocation does not use the addend. */ 3901 rel->r_addend = 0; 3902 } 3903 else 3904 relocation = (sgot->output_section->vma + sgot->output_offset 3905 + off); 3906 } 3907 break; 3908 3909 case R_68K_TLS_LDO32: 3910 case R_68K_TLS_LDO16: 3911 case R_68K_TLS_LDO8: 3912 relocation -= dtpoff_base (info); 3913 break; 3914 3915 case R_68K_TLS_LE32: 3916 case R_68K_TLS_LE16: 3917 case R_68K_TLS_LE8: 3918 if (info->shared && !info->pie) 3919 { 3920 (*_bfd_error_handler) 3921 (_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted " 3922 "in shared object"), 3923 input_bfd, input_section, (long) rel->r_offset, howto->name); 3924 3925 return FALSE; 3926 } 3927 else 3928 relocation -= tpoff_base (info); 3929 3930 break; 3931 3932 case R_68K_PLT8: 3933 case R_68K_PLT16: 3934 case R_68K_PLT32: 3935 /* Relocation is to the entry for this symbol in the 3936 procedure linkage table. */ 3937 3938 /* Resolve a PLTxx reloc against a local symbol directly, 3939 without using the procedure linkage table. */ 3940 if (h == NULL) 3941 break; 3942 3943 if (h->plt.offset == (bfd_vma) -1 3944 || !elf_hash_table (info)->dynamic_sections_created) 3945 { 3946 /* We didn't make a PLT entry for this symbol. This 3947 happens when statically linking PIC code, or when 3948 using -Bsymbolic. */ 3949 break; 3950 } 3951 3952 if (splt == NULL) 3953 { 3954 splt = bfd_get_linker_section (dynobj, ".plt"); 3955 BFD_ASSERT (splt != NULL); 3956 } 3957 3958 relocation = (splt->output_section->vma 3959 + splt->output_offset 3960 + h->plt.offset); 3961 unresolved_reloc = FALSE; 3962 break; 3963 3964 case R_68K_PLT8O: 3965 case R_68K_PLT16O: 3966 case R_68K_PLT32O: 3967 /* Relocation is the offset of the entry for this symbol in 3968 the procedure linkage table. */ 3969 BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1); 3970 3971 if (splt == NULL) 3972 { 3973 splt = bfd_get_linker_section (dynobj, ".plt"); 3974 BFD_ASSERT (splt != NULL); 3975 } 3976 3977 relocation = h->plt.offset; 3978 unresolved_reloc = FALSE; 3979 3980 /* This relocation does not use the addend. */ 3981 rel->r_addend = 0; 3982 3983 break; 3984 3985 case R_68K_8: 3986 case R_68K_16: 3987 case R_68K_32: 3988 case R_68K_PC8: 3989 case R_68K_PC16: 3990 case R_68K_PC32: 3991 if (info->shared 3992 && r_symndx != STN_UNDEF 3993 && (input_section->flags & SEC_ALLOC) != 0 3994 && (h == NULL 3995 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT 3996 || h->root.type != bfd_link_hash_undefweak) 3997 && ((r_type != R_68K_PC8 3998 && r_type != R_68K_PC16 3999 && r_type != R_68K_PC32) 4000 || !SYMBOL_CALLS_LOCAL (info, h))) 4001 { 4002 Elf_Internal_Rela outrel; 4003 bfd_byte *loc; 4004 bfd_boolean skip, relocate; 4005 4006 /* When generating a shared object, these relocations 4007 are copied into the output file to be resolved at run 4008 time. */ 4009 4010 skip = FALSE; 4011 relocate = FALSE; 4012 4013 outrel.r_offset = 4014 _bfd_elf_section_offset (output_bfd, info, input_section, 4015 rel->r_offset); 4016 if (outrel.r_offset == (bfd_vma) -1) 4017 skip = TRUE; 4018 else if (outrel.r_offset == (bfd_vma) -2) 4019 skip = TRUE, relocate = TRUE; 4020 outrel.r_offset += (input_section->output_section->vma 4021 + input_section->output_offset); 4022 4023 if (skip) 4024 memset (&outrel, 0, sizeof outrel); 4025 else if (h != NULL 4026 && h->dynindx != -1 4027 && (r_type == R_68K_PC8 4028 || r_type == R_68K_PC16 4029 || r_type == R_68K_PC32 4030 || !info->shared 4031 || !info->symbolic 4032 || !h->def_regular)) 4033 { 4034 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type); 4035 outrel.r_addend = rel->r_addend; 4036 } 4037 else 4038 { 4039 /* This symbol is local, or marked to become local. */ 4040 outrel.r_addend = relocation + rel->r_addend; 4041 4042 if (r_type == R_68K_32) 4043 { 4044 relocate = TRUE; 4045 outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE); 4046 } 4047 else 4048 { 4049 long indx; 4050 4051 if (bfd_is_abs_section (sec)) 4052 indx = 0; 4053 else if (sec == NULL || sec->owner == NULL) 4054 { 4055 bfd_set_error (bfd_error_bad_value); 4056 return FALSE; 4057 } 4058 else 4059 { 4060 asection *osec; 4061 4062 /* We are turning this relocation into one 4063 against a section symbol. It would be 4064 proper to subtract the symbol's value, 4065 osec->vma, from the emitted reloc addend, 4066 but ld.so expects buggy relocs. */ 4067 osec = sec->output_section; 4068 indx = elf_section_data (osec)->dynindx; 4069 if (indx == 0) 4070 { 4071 struct elf_link_hash_table *htab; 4072 htab = elf_hash_table (info); 4073 osec = htab->text_index_section; 4074 indx = elf_section_data (osec)->dynindx; 4075 } 4076 BFD_ASSERT (indx != 0); 4077 } 4078 4079 outrel.r_info = ELF32_R_INFO (indx, r_type); 4080 } 4081 } 4082 4083 sreloc = elf_section_data (input_section)->sreloc; 4084 if (sreloc == NULL) 4085 abort (); 4086 4087 loc = sreloc->contents; 4088 loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela); 4089 bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc); 4090 4091 /* This reloc will be computed at runtime, so there's no 4092 need to do anything now, except for R_68K_32 4093 relocations that have been turned into 4094 R_68K_RELATIVE. */ 4095 if (!relocate) 4096 continue; 4097 } 4098 4099 break; 4100 4101 case R_68K_GNU_VTINHERIT: 4102 case R_68K_GNU_VTENTRY: 4103 /* These are no-ops in the end. */ 4104 continue; 4105 4106 default: 4107 break; 4108 } 4109 4110 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections 4111 because such sections are not SEC_ALLOC and thus ld.so will 4112 not process them. */ 4113 if (unresolved_reloc 4114 && !((input_section->flags & SEC_DEBUGGING) != 0 4115 && h->def_dynamic) 4116 && _bfd_elf_section_offset (output_bfd, info, input_section, 4117 rel->r_offset) != (bfd_vma) -1) 4118 { 4119 (*_bfd_error_handler) 4120 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"), 4121 input_bfd, 4122 input_section, 4123 (long) rel->r_offset, 4124 howto->name, 4125 h->root.root.string); 4126 return FALSE; 4127 } 4128 4129 if (r_symndx != STN_UNDEF 4130 && r_type != R_68K_NONE 4131 && (h == NULL 4132 || h->root.type == bfd_link_hash_defined 4133 || h->root.type == bfd_link_hash_defweak)) 4134 { 4135 char sym_type; 4136 4137 sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type; 4138 4139 if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS)) 4140 { 4141 const char *name; 4142 4143 if (h != NULL) 4144 name = h->root.root.string; 4145 else 4146 { 4147 name = (bfd_elf_string_from_elf_section 4148 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 4149 if (name == NULL || *name == '\0') 4150 name = bfd_section_name (input_bfd, sec); 4151 } 4152 4153 (*_bfd_error_handler) 4154 ((sym_type == STT_TLS 4155 ? _("%B(%A+0x%lx): %s used with TLS symbol %s") 4156 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")), 4157 input_bfd, 4158 input_section, 4159 (long) rel->r_offset, 4160 howto->name, 4161 name); 4162 } 4163 } 4164 4165 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 4166 contents, rel->r_offset, 4167 relocation, rel->r_addend); 4168 4169 if (r != bfd_reloc_ok) 4170 { 4171 const char *name; 4172 4173 if (h != NULL) 4174 name = h->root.root.string; 4175 else 4176 { 4177 name = bfd_elf_string_from_elf_section (input_bfd, 4178 symtab_hdr->sh_link, 4179 sym->st_name); 4180 if (name == NULL) 4181 return FALSE; 4182 if (*name == '\0') 4183 name = bfd_section_name (input_bfd, sec); 4184 } 4185 4186 if (r == bfd_reloc_overflow) 4187 { 4188 if (!(info->callbacks->reloc_overflow 4189 (info, (h ? &h->root : NULL), name, howto->name, 4190 (bfd_vma) 0, input_bfd, input_section, 4191 rel->r_offset))) 4192 return FALSE; 4193 } 4194 else 4195 { 4196 (*_bfd_error_handler) 4197 (_("%B(%A+0x%lx): reloc against `%s': error %d"), 4198 input_bfd, input_section, 4199 (long) rel->r_offset, name, (int) r); 4200 return FALSE; 4201 } 4202 } 4203 } 4204 4205 return TRUE; 4206 } 4207 4208 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET 4209 into section SEC. */ 4210 4211 static void 4212 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value) 4213 { 4214 /* Make VALUE PC-relative. */ 4215 value -= sec->output_section->vma + offset; 4216 4217 /* Apply any in-place addend. */ 4218 value += bfd_get_32 (sec->owner, sec->contents + offset); 4219 4220 bfd_put_32 (sec->owner, value, sec->contents + offset); 4221 } 4222 4223 /* Finish up dynamic symbol handling. We set the contents of various 4224 dynamic sections here. */ 4225 4226 static bfd_boolean 4227 elf_m68k_finish_dynamic_symbol (bfd *output_bfd, 4228 struct bfd_link_info *info, 4229 struct elf_link_hash_entry *h, 4230 Elf_Internal_Sym *sym) 4231 { 4232 bfd *dynobj; 4233 4234 dynobj = elf_hash_table (info)->dynobj; 4235 4236 if (h->plt.offset != (bfd_vma) -1) 4237 { 4238 const struct elf_m68k_plt_info *plt_info; 4239 asection *splt; 4240 asection *sgot; 4241 asection *srela; 4242 bfd_vma plt_index; 4243 bfd_vma got_offset; 4244 Elf_Internal_Rela rela; 4245 bfd_byte *loc; 4246 4247 /* This symbol has an entry in the procedure linkage table. Set 4248 it up. */ 4249 4250 BFD_ASSERT (h->dynindx != -1); 4251 4252 plt_info = elf_m68k_hash_table (info)->plt_info; 4253 splt = bfd_get_linker_section (dynobj, ".plt"); 4254 sgot = bfd_get_linker_section (dynobj, ".got.plt"); 4255 srela = bfd_get_linker_section (dynobj, ".rela.plt"); 4256 BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL); 4257 4258 /* Get the index in the procedure linkage table which 4259 corresponds to this symbol. This is the index of this symbol 4260 in all the symbols for which we are making plt entries. The 4261 first entry in the procedure linkage table is reserved. */ 4262 plt_index = (h->plt.offset / plt_info->size) - 1; 4263 4264 /* Get the offset into the .got table of the entry that 4265 corresponds to this function. Each .got entry is 4 bytes. 4266 The first three are reserved. */ 4267 got_offset = (plt_index + 3) * 4; 4268 4269 memcpy (splt->contents + h->plt.offset, 4270 plt_info->symbol_entry, 4271 plt_info->size); 4272 4273 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got, 4274 (sgot->output_section->vma 4275 + sgot->output_offset 4276 + got_offset)); 4277 4278 bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela), 4279 splt->contents 4280 + h->plt.offset 4281 + plt_info->symbol_resolve_entry + 2); 4282 4283 elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt, 4284 splt->output_section->vma); 4285 4286 /* Fill in the entry in the global offset table. */ 4287 bfd_put_32 (output_bfd, 4288 (splt->output_section->vma 4289 + splt->output_offset 4290 + h->plt.offset 4291 + plt_info->symbol_resolve_entry), 4292 sgot->contents + got_offset); 4293 4294 /* Fill in the entry in the .rela.plt section. */ 4295 rela.r_offset = (sgot->output_section->vma 4296 + sgot->output_offset 4297 + got_offset); 4298 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT); 4299 rela.r_addend = 0; 4300 loc = srela->contents + plt_index * sizeof (Elf32_External_Rela); 4301 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4302 4303 if (!h->def_regular) 4304 { 4305 /* Mark the symbol as undefined, rather than as defined in 4306 the .plt section. Leave the value alone. */ 4307 sym->st_shndx = SHN_UNDEF; 4308 } 4309 } 4310 4311 if (elf_m68k_hash_entry (h)->glist != NULL) 4312 { 4313 asection *sgot; 4314 asection *srela; 4315 struct elf_m68k_got_entry *got_entry; 4316 4317 /* This symbol has an entry in the global offset table. Set it 4318 up. */ 4319 4320 sgot = bfd_get_linker_section (dynobj, ".got"); 4321 srela = bfd_get_linker_section (dynobj, ".rela.got"); 4322 BFD_ASSERT (sgot != NULL && srela != NULL); 4323 4324 got_entry = elf_m68k_hash_entry (h)->glist; 4325 4326 while (got_entry != NULL) 4327 { 4328 enum elf_m68k_reloc_type r_type; 4329 bfd_vma got_entry_offset; 4330 4331 r_type = got_entry->key_.type; 4332 got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1; 4333 4334 /* If this is a -Bsymbolic link, and the symbol is defined 4335 locally, we just want to emit a RELATIVE reloc. Likewise if 4336 the symbol was forced to be local because of a version file. 4337 The entry in the global offset table already have been 4338 initialized in the relocate_section function. */ 4339 if (info->shared 4340 && SYMBOL_REFERENCES_LOCAL (info, h)) 4341 { 4342 bfd_vma relocation; 4343 4344 relocation = bfd_get_signed_32 (output_bfd, 4345 (sgot->contents 4346 + got_entry_offset)); 4347 4348 /* Undo TP bias. */ 4349 switch (elf_m68k_reloc_got_type (r_type)) 4350 { 4351 case R_68K_GOT32O: 4352 case R_68K_TLS_LDM32: 4353 break; 4354 4355 case R_68K_TLS_GD32: 4356 /* The value for this relocation is actually put in 4357 the second GOT slot. */ 4358 relocation = bfd_get_signed_32 (output_bfd, 4359 (sgot->contents 4360 + got_entry_offset + 4)); 4361 relocation += dtpoff_base (info); 4362 break; 4363 4364 case R_68K_TLS_IE32: 4365 relocation += tpoff_base (info); 4366 break; 4367 4368 default: 4369 BFD_ASSERT (FALSE); 4370 } 4371 4372 elf_m68k_init_got_entry_local_shared (info, 4373 output_bfd, 4374 r_type, 4375 sgot, 4376 got_entry_offset, 4377 relocation, 4378 srela); 4379 } 4380 else 4381 { 4382 Elf_Internal_Rela rela; 4383 4384 /* Put zeros to GOT slots that will be initialized 4385 at run-time. */ 4386 { 4387 bfd_vma n_slots; 4388 4389 n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type); 4390 while (n_slots--) 4391 bfd_put_32 (output_bfd, (bfd_vma) 0, 4392 (sgot->contents + got_entry_offset 4393 + 4 * n_slots)); 4394 } 4395 4396 rela.r_addend = 0; 4397 rela.r_offset = (sgot->output_section->vma 4398 + sgot->output_offset 4399 + got_entry_offset); 4400 4401 switch (elf_m68k_reloc_got_type (r_type)) 4402 { 4403 case R_68K_GOT32O: 4404 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT); 4405 elf_m68k_install_rela (output_bfd, srela, &rela); 4406 break; 4407 4408 case R_68K_TLS_GD32: 4409 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32); 4410 elf_m68k_install_rela (output_bfd, srela, &rela); 4411 4412 rela.r_offset += 4; 4413 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32); 4414 elf_m68k_install_rela (output_bfd, srela, &rela); 4415 break; 4416 4417 case R_68K_TLS_IE32: 4418 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32); 4419 elf_m68k_install_rela (output_bfd, srela, &rela); 4420 break; 4421 4422 default: 4423 BFD_ASSERT (FALSE); 4424 break; 4425 } 4426 } 4427 4428 got_entry = got_entry->u.s2.next; 4429 } 4430 } 4431 4432 if (h->needs_copy) 4433 { 4434 asection *s; 4435 Elf_Internal_Rela rela; 4436 bfd_byte *loc; 4437 4438 /* This symbol needs a copy reloc. Set it up. */ 4439 4440 BFD_ASSERT (h->dynindx != -1 4441 && (h->root.type == bfd_link_hash_defined 4442 || h->root.type == bfd_link_hash_defweak)); 4443 4444 s = bfd_get_linker_section (dynobj, ".rela.bss"); 4445 BFD_ASSERT (s != NULL); 4446 4447 rela.r_offset = (h->root.u.def.value 4448 + h->root.u.def.section->output_section->vma 4449 + h->root.u.def.section->output_offset); 4450 rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY); 4451 rela.r_addend = 0; 4452 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela); 4453 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc); 4454 } 4455 4456 return TRUE; 4457 } 4458 4459 /* Finish up the dynamic sections. */ 4460 4461 static bfd_boolean 4462 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info) 4463 { 4464 bfd *dynobj; 4465 asection *sgot; 4466 asection *sdyn; 4467 4468 dynobj = elf_hash_table (info)->dynobj; 4469 4470 sgot = bfd_get_linker_section (dynobj, ".got.plt"); 4471 BFD_ASSERT (sgot != NULL); 4472 sdyn = bfd_get_linker_section (dynobj, ".dynamic"); 4473 4474 if (elf_hash_table (info)->dynamic_sections_created) 4475 { 4476 asection *splt; 4477 Elf32_External_Dyn *dyncon, *dynconend; 4478 4479 splt = bfd_get_linker_section (dynobj, ".plt"); 4480 BFD_ASSERT (splt != NULL && sdyn != NULL); 4481 4482 dyncon = (Elf32_External_Dyn *) sdyn->contents; 4483 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size); 4484 for (; dyncon < dynconend; dyncon++) 4485 { 4486 Elf_Internal_Dyn dyn; 4487 const char *name; 4488 asection *s; 4489 4490 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn); 4491 4492 switch (dyn.d_tag) 4493 { 4494 default: 4495 break; 4496 4497 case DT_PLTGOT: 4498 name = ".got"; 4499 goto get_vma; 4500 case DT_JMPREL: 4501 name = ".rela.plt"; 4502 get_vma: 4503 s = bfd_get_section_by_name (output_bfd, name); 4504 BFD_ASSERT (s != NULL); 4505 dyn.d_un.d_ptr = s->vma; 4506 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4507 break; 4508 4509 case DT_PLTRELSZ: 4510 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 4511 BFD_ASSERT (s != NULL); 4512 dyn.d_un.d_val = s->size; 4513 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4514 break; 4515 4516 case DT_RELASZ: 4517 /* The procedure linkage table relocs (DT_JMPREL) should 4518 not be included in the overall relocs (DT_RELA). 4519 Therefore, we override the DT_RELASZ entry here to 4520 make it not include the JMPREL relocs. Since the 4521 linker script arranges for .rela.plt to follow all 4522 other relocation sections, we don't have to worry 4523 about changing the DT_RELA entry. */ 4524 s = bfd_get_section_by_name (output_bfd, ".rela.plt"); 4525 if (s != NULL) 4526 dyn.d_un.d_val -= s->size; 4527 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon); 4528 break; 4529 } 4530 } 4531 4532 /* Fill in the first entry in the procedure linkage table. */ 4533 if (splt->size > 0) 4534 { 4535 const struct elf_m68k_plt_info *plt_info; 4536 4537 plt_info = elf_m68k_hash_table (info)->plt_info; 4538 memcpy (splt->contents, plt_info->plt0_entry, plt_info->size); 4539 4540 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4, 4541 (sgot->output_section->vma 4542 + sgot->output_offset 4543 + 4)); 4544 4545 elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8, 4546 (sgot->output_section->vma 4547 + sgot->output_offset 4548 + 8)); 4549 4550 elf_section_data (splt->output_section)->this_hdr.sh_entsize 4551 = plt_info->size; 4552 } 4553 } 4554 4555 /* Fill in the first three entries in the global offset table. */ 4556 if (sgot->size > 0) 4557 { 4558 if (sdyn == NULL) 4559 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents); 4560 else 4561 bfd_put_32 (output_bfd, 4562 sdyn->output_section->vma + sdyn->output_offset, 4563 sgot->contents); 4564 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4); 4565 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8); 4566 } 4567 4568 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4; 4569 4570 return TRUE; 4571 } 4572 4573 /* Given a .data section and a .emreloc in-memory section, store 4574 relocation information into the .emreloc section which can be 4575 used at runtime to relocate the section. This is called by the 4576 linker when the --embedded-relocs switch is used. This is called 4577 after the add_symbols entry point has been called for all the 4578 objects, and before the final_link entry point is called. */ 4579 4580 bfd_boolean 4581 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg) 4582 bfd *abfd; 4583 struct bfd_link_info *info; 4584 asection *datasec; 4585 asection *relsec; 4586 char **errmsg; 4587 { 4588 Elf_Internal_Shdr *symtab_hdr; 4589 Elf_Internal_Sym *isymbuf = NULL; 4590 Elf_Internal_Rela *internal_relocs = NULL; 4591 Elf_Internal_Rela *irel, *irelend; 4592 bfd_byte *p; 4593 bfd_size_type amt; 4594 4595 BFD_ASSERT (! info->relocatable); 4596 4597 *errmsg = NULL; 4598 4599 if (datasec->reloc_count == 0) 4600 return TRUE; 4601 4602 symtab_hdr = &elf_tdata (abfd)->symtab_hdr; 4603 4604 /* Get a copy of the native relocations. */ 4605 internal_relocs = (_bfd_elf_link_read_relocs 4606 (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL, 4607 info->keep_memory)); 4608 if (internal_relocs == NULL) 4609 goto error_return; 4610 4611 amt = (bfd_size_type) datasec->reloc_count * 12; 4612 relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt); 4613 if (relsec->contents == NULL) 4614 goto error_return; 4615 4616 p = relsec->contents; 4617 4618 irelend = internal_relocs + datasec->reloc_count; 4619 for (irel = internal_relocs; irel < irelend; irel++, p += 12) 4620 { 4621 asection *targetsec; 4622 4623 /* We are going to write a four byte longword into the runtime 4624 reloc section. The longword will be the address in the data 4625 section which must be relocated. It is followed by the name 4626 of the target section NUL-padded or truncated to 8 4627 characters. */ 4628 4629 /* We can only relocate absolute longword relocs at run time. */ 4630 if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32) 4631 { 4632 *errmsg = _("unsupported reloc type"); 4633 bfd_set_error (bfd_error_bad_value); 4634 goto error_return; 4635 } 4636 4637 /* Get the target section referred to by the reloc. */ 4638 if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info) 4639 { 4640 /* A local symbol. */ 4641 Elf_Internal_Sym *isym; 4642 4643 /* Read this BFD's local symbols if we haven't done so already. */ 4644 if (isymbuf == NULL) 4645 { 4646 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents; 4647 if (isymbuf == NULL) 4648 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr, 4649 symtab_hdr->sh_info, 0, 4650 NULL, NULL, NULL); 4651 if (isymbuf == NULL) 4652 goto error_return; 4653 } 4654 4655 isym = isymbuf + ELF32_R_SYM (irel->r_info); 4656 targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx); 4657 } 4658 else 4659 { 4660 unsigned long indx; 4661 struct elf_link_hash_entry *h; 4662 4663 /* An external symbol. */ 4664 indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info; 4665 h = elf_sym_hashes (abfd)[indx]; 4666 BFD_ASSERT (h != NULL); 4667 if (h->root.type == bfd_link_hash_defined 4668 || h->root.type == bfd_link_hash_defweak) 4669 targetsec = h->root.u.def.section; 4670 else 4671 targetsec = NULL; 4672 } 4673 4674 bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p); 4675 memset (p + 4, 0, 8); 4676 if (targetsec != NULL) 4677 strncpy ((char *) p + 4, targetsec->output_section->name, 8); 4678 } 4679 4680 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4681 free (isymbuf); 4682 if (internal_relocs != NULL 4683 && elf_section_data (datasec)->relocs != internal_relocs) 4684 free (internal_relocs); 4685 return TRUE; 4686 4687 error_return: 4688 if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf) 4689 free (isymbuf); 4690 if (internal_relocs != NULL 4691 && elf_section_data (datasec)->relocs != internal_relocs) 4692 free (internal_relocs); 4693 return FALSE; 4694 } 4695 4696 /* Set target options. */ 4697 4698 void 4699 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling) 4700 { 4701 struct elf_m68k_link_hash_table *htab; 4702 bfd_boolean use_neg_got_offsets_p; 4703 bfd_boolean allow_multigot_p; 4704 bfd_boolean local_gp_p; 4705 4706 switch (got_handling) 4707 { 4708 case 0: 4709 /* --got=single. */ 4710 local_gp_p = FALSE; 4711 use_neg_got_offsets_p = FALSE; 4712 allow_multigot_p = FALSE; 4713 break; 4714 4715 case 1: 4716 /* --got=negative. */ 4717 local_gp_p = TRUE; 4718 use_neg_got_offsets_p = TRUE; 4719 allow_multigot_p = FALSE; 4720 break; 4721 4722 case 2: 4723 /* --got=multigot. */ 4724 local_gp_p = TRUE; 4725 use_neg_got_offsets_p = TRUE; 4726 allow_multigot_p = TRUE; 4727 break; 4728 4729 default: 4730 BFD_ASSERT (FALSE); 4731 return; 4732 } 4733 4734 htab = elf_m68k_hash_table (info); 4735 if (htab != NULL) 4736 { 4737 htab->local_gp_p = local_gp_p; 4738 htab->use_neg_got_offsets_p = use_neg_got_offsets_p; 4739 htab->allow_multigot_p = allow_multigot_p; 4740 } 4741 } 4742 4743 static enum elf_reloc_type_class 4744 elf32_m68k_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED, 4745 const asection *rel_sec ATTRIBUTE_UNUSED, 4746 const Elf_Internal_Rela *rela) 4747 { 4748 switch ((int) ELF32_R_TYPE (rela->r_info)) 4749 { 4750 case R_68K_RELATIVE: 4751 return reloc_class_relative; 4752 case R_68K_JMP_SLOT: 4753 return reloc_class_plt; 4754 case R_68K_COPY: 4755 return reloc_class_copy; 4756 default: 4757 return reloc_class_normal; 4758 } 4759 } 4760 4761 /* Return address for Ith PLT stub in section PLT, for relocation REL 4762 or (bfd_vma) -1 if it should not be included. */ 4763 4764 static bfd_vma 4765 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt, 4766 const arelent *rel ATTRIBUTE_UNUSED) 4767 { 4768 return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size; 4769 } 4770 4771 /* Support for core dump NOTE sections. */ 4772 4773 static bfd_boolean 4774 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note) 4775 { 4776 int offset; 4777 size_t size; 4778 4779 switch (note->descsz) 4780 { 4781 default: 4782 return FALSE; 4783 4784 case 154: /* Linux/m68k */ 4785 /* pr_cursig */ 4786 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12); 4787 4788 /* pr_pid */ 4789 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22); 4790 4791 /* pr_reg */ 4792 offset = 70; 4793 size = 80; 4794 4795 break; 4796 } 4797 4798 /* Make a ".reg/999" section. */ 4799 return _bfd_elfcore_make_pseudosection (abfd, ".reg", 4800 size, note->descpos + offset); 4801 } 4802 4803 static bfd_boolean 4804 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note) 4805 { 4806 switch (note->descsz) 4807 { 4808 default: 4809 return FALSE; 4810 4811 case 124: /* Linux/m68k elf_prpsinfo. */ 4812 elf_tdata (abfd)->core->pid 4813 = bfd_get_32 (abfd, note->descdata + 12); 4814 elf_tdata (abfd)->core->program 4815 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16); 4816 elf_tdata (abfd)->core->command 4817 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80); 4818 } 4819 4820 /* Note that for some reason, a spurious space is tacked 4821 onto the end of the args in some (at least one anyway) 4822 implementations, so strip it off if it exists. */ 4823 { 4824 char *command = elf_tdata (abfd)->core->command; 4825 int n = strlen (command); 4826 4827 if (n > 0 && command[n - 1] == ' ') 4828 command[n - 1] = '\0'; 4829 } 4830 4831 return TRUE; 4832 } 4833 4834 /* Hook called by the linker routine which adds symbols from an object 4835 file. */ 4836 4837 static bfd_boolean 4838 elf_m68k_add_symbol_hook (bfd *abfd, 4839 struct bfd_link_info *info, 4840 Elf_Internal_Sym *sym, 4841 const char **namep ATTRIBUTE_UNUSED, 4842 flagword *flagsp ATTRIBUTE_UNUSED, 4843 asection **secp ATTRIBUTE_UNUSED, 4844 bfd_vma *valp ATTRIBUTE_UNUSED) 4845 { 4846 if ((abfd->flags & DYNAMIC) == 0 4847 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC 4848 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE)) 4849 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE; 4850 4851 return TRUE; 4852 } 4853 4854 #define TARGET_BIG_SYM bfd_elf32_m68k_vec 4855 #define TARGET_BIG_NAME "elf32-m68k" 4856 #define ELF_MACHINE_CODE EM_68K 4857 #define ELF_MAXPAGESIZE 0x2000 4858 #define elf_backend_create_dynamic_sections \ 4859 _bfd_elf_create_dynamic_sections 4860 #define bfd_elf32_bfd_link_hash_table_create \ 4861 elf_m68k_link_hash_table_create 4862 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create? */ 4863 #define bfd_elf32_bfd_link_hash_table_free \ 4864 elf_m68k_link_hash_table_free 4865 #define bfd_elf32_bfd_final_link bfd_elf_final_link 4866 4867 #define elf_backend_check_relocs elf_m68k_check_relocs 4868 #define elf_backend_always_size_sections \ 4869 elf_m68k_always_size_sections 4870 #define elf_backend_adjust_dynamic_symbol \ 4871 elf_m68k_adjust_dynamic_symbol 4872 #define elf_backend_size_dynamic_sections \ 4873 elf_m68k_size_dynamic_sections 4874 #define elf_backend_final_write_processing elf_m68k_final_write_processing 4875 #define elf_backend_init_index_section _bfd_elf_init_1_index_section 4876 #define elf_backend_relocate_section elf_m68k_relocate_section 4877 #define elf_backend_finish_dynamic_symbol \ 4878 elf_m68k_finish_dynamic_symbol 4879 #define elf_backend_finish_dynamic_sections \ 4880 elf_m68k_finish_dynamic_sections 4881 #define elf_backend_gc_mark_hook elf_m68k_gc_mark_hook 4882 #define elf_backend_gc_sweep_hook elf_m68k_gc_sweep_hook 4883 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol 4884 #define bfd_elf32_bfd_merge_private_bfd_data \ 4885 elf32_m68k_merge_private_bfd_data 4886 #define bfd_elf32_bfd_set_private_flags \ 4887 elf32_m68k_set_private_flags 4888 #define bfd_elf32_bfd_print_private_bfd_data \ 4889 elf32_m68k_print_private_bfd_data 4890 #define elf_backend_reloc_type_class elf32_m68k_reloc_type_class 4891 #define elf_backend_plt_sym_val elf_m68k_plt_sym_val 4892 #define elf_backend_object_p elf32_m68k_object_p 4893 #define elf_backend_grok_prstatus elf_m68k_grok_prstatus 4894 #define elf_backend_grok_psinfo elf_m68k_grok_psinfo 4895 #define elf_backend_add_symbol_hook elf_m68k_add_symbol_hook 4896 4897 #define elf_backend_can_gc_sections 1 4898 #define elf_backend_can_refcount 1 4899 #define elf_backend_want_got_plt 1 4900 #define elf_backend_plt_readonly 1 4901 #define elf_backend_want_plt_sym 0 4902 #define elf_backend_got_header_size 12 4903 #define elf_backend_rela_normal 1 4904 4905 #include "elf32-target.h" 4906