xref: /netbsd-src/external/gpl3/gdb/dist/bfd/elf32-m68k.c (revision 413d532bcc3f62d122e56d92e13ac64825a40baf)
1 /* Motorola 68k series support for 32-bit ELF
2    Copyright 1993, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003,
3    2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
4    Free Software Foundation, Inc.
5 
6    This file is part of BFD, the Binary File Descriptor library.
7 
8    This program is free software; you can redistribute it and/or modify
9    it under the terms of the GNU General Public License as published by
10    the Free Software Foundation; either version 3 of the License, or
11    (at your option) any later version.
12 
13    This program is distributed in the hope that it will be useful,
14    but WITHOUT ANY WARRANTY; without even the implied warranty of
15    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16    GNU General Public License for more details.
17 
18    You should have received a copy of the GNU General Public License
19    along with this program; if not, write to the Free Software
20    Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21    MA 02110-1301, USA.  */
22 
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "bfdlink.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf/m68k.h"
29 #include "opcode/m68k.h"
30 
31 static bfd_boolean
32 elf_m68k_discard_copies (struct elf_link_hash_entry *, void *);
33 
34 static reloc_howto_type howto_table[] =
35 {
36   HOWTO(R_68K_NONE,       0, 0, 0, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_NONE",      FALSE, 0, 0x00000000,FALSE),
37   HOWTO(R_68K_32,         0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_32",        FALSE, 0, 0xffffffff,FALSE),
38   HOWTO(R_68K_16,         0, 1,16, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_16",        FALSE, 0, 0x0000ffff,FALSE),
39   HOWTO(R_68K_8,          0, 0, 8, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_8",         FALSE, 0, 0x000000ff,FALSE),
40   HOWTO(R_68K_PC32,       0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PC32",      FALSE, 0, 0xffffffff,TRUE),
41   HOWTO(R_68K_PC16,       0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PC16",      FALSE, 0, 0x0000ffff,TRUE),
42   HOWTO(R_68K_PC8,        0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PC8",       FALSE, 0, 0x000000ff,TRUE),
43   HOWTO(R_68K_GOT32,      0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32",     FALSE, 0, 0xffffffff,TRUE),
44   HOWTO(R_68K_GOT16,      0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT16",     FALSE, 0, 0x0000ffff,TRUE),
45   HOWTO(R_68K_GOT8,       0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT8",      FALSE, 0, 0x000000ff,TRUE),
46   HOWTO(R_68K_GOT32O,     0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_GOT32O",    FALSE, 0, 0xffffffff,FALSE),
47   HOWTO(R_68K_GOT16O,     0, 1,16, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT16O",    FALSE, 0, 0x0000ffff,FALSE),
48   HOWTO(R_68K_GOT8O,      0, 0, 8, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_GOT8O",     FALSE, 0, 0x000000ff,FALSE),
49   HOWTO(R_68K_PLT32,      0, 2,32, TRUE, 0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32",     FALSE, 0, 0xffffffff,TRUE),
50   HOWTO(R_68K_PLT16,      0, 1,16, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT16",     FALSE, 0, 0x0000ffff,TRUE),
51   HOWTO(R_68K_PLT8,       0, 0, 8, TRUE, 0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT8",      FALSE, 0, 0x000000ff,TRUE),
52   HOWTO(R_68K_PLT32O,     0, 2,32, FALSE,0, complain_overflow_bitfield, bfd_elf_generic_reloc, "R_68K_PLT32O",    FALSE, 0, 0xffffffff,FALSE),
53   HOWTO(R_68K_PLT16O,     0, 1,16, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT16O",    FALSE, 0, 0x0000ffff,FALSE),
54   HOWTO(R_68K_PLT8O,      0, 0, 8, FALSE,0, complain_overflow_signed,   bfd_elf_generic_reloc, "R_68K_PLT8O",     FALSE, 0, 0x000000ff,FALSE),
55   HOWTO(R_68K_COPY,       0, 0, 0, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_COPY",      FALSE, 0, 0xffffffff,FALSE),
56   HOWTO(R_68K_GLOB_DAT,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_GLOB_DAT",  FALSE, 0, 0xffffffff,FALSE),
57   HOWTO(R_68K_JMP_SLOT,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_JMP_SLOT",  FALSE, 0, 0xffffffff,FALSE),
58   HOWTO(R_68K_RELATIVE,   0, 2,32, FALSE,0, complain_overflow_dont,     bfd_elf_generic_reloc, "R_68K_RELATIVE",  FALSE, 0, 0xffffffff,FALSE),
59   /* GNU extension to record C++ vtable hierarchy.  */
60   HOWTO (R_68K_GNU_VTINHERIT,	/* type */
61 	 0,			/* rightshift */
62 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
63 	 0,			/* bitsize */
64 	 FALSE,			/* pc_relative */
65 	 0,			/* bitpos */
66 	 complain_overflow_dont, /* complain_on_overflow */
67 	 NULL,			/* special_function */
68 	 "R_68K_GNU_VTINHERIT",	/* name */
69 	 FALSE,			/* partial_inplace */
70 	 0,			/* src_mask */
71 	 0,			/* dst_mask */
72 	 FALSE),
73   /* GNU extension to record C++ vtable member usage.  */
74   HOWTO (R_68K_GNU_VTENTRY,	/* type */
75 	 0,			/* rightshift */
76 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
77 	 0,			/* bitsize */
78 	 FALSE,			/* pc_relative */
79 	 0,			/* bitpos */
80 	 complain_overflow_dont, /* complain_on_overflow */
81 	 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
82 	 "R_68K_GNU_VTENTRY",	/* name */
83 	 FALSE,			/* partial_inplace */
84 	 0,			/* src_mask */
85 	 0,			/* dst_mask */
86 	 FALSE),
87 
88   /* TLS general dynamic variable reference.  */
89   HOWTO (R_68K_TLS_GD32,	/* type */
90 	 0,			/* rightshift */
91 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
92 	 32,			/* bitsize */
93 	 FALSE,			/* pc_relative */
94 	 0,			/* bitpos */
95 	 complain_overflow_bitfield, /* complain_on_overflow */
96 	 bfd_elf_generic_reloc, /* special_function */
97 	 "R_68K_TLS_GD32",	/* name */
98 	 FALSE,			/* partial_inplace */
99 	 0,			/* src_mask */
100 	 0xffffffff,		/* dst_mask */
101 	 FALSE),		/* pcrel_offset */
102 
103   HOWTO (R_68K_TLS_GD16,	/* type */
104 	 0,			/* rightshift */
105 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
106 	 16,			/* bitsize */
107 	 FALSE,			/* pc_relative */
108 	 0,			/* bitpos */
109 	 complain_overflow_signed, /* complain_on_overflow */
110 	 bfd_elf_generic_reloc, /* special_function */
111 	 "R_68K_TLS_GD16",	/* name */
112 	 FALSE,			/* partial_inplace */
113 	 0,			/* src_mask */
114 	 0x0000ffff,		/* dst_mask */
115 	 FALSE),		/* pcrel_offset */
116 
117   HOWTO (R_68K_TLS_GD8,		/* type */
118 	 0,			/* rightshift */
119 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
120 	 8,			/* bitsize */
121 	 FALSE,			/* pc_relative */
122 	 0,			/* bitpos */
123 	 complain_overflow_signed, /* complain_on_overflow */
124 	 bfd_elf_generic_reloc, /* special_function */
125 	 "R_68K_TLS_GD8",	/* name */
126 	 FALSE,			/* partial_inplace */
127 	 0,			/* src_mask */
128 	 0x000000ff,		/* dst_mask */
129 	 FALSE),		/* pcrel_offset */
130 
131   /* TLS local dynamic variable reference.  */
132   HOWTO (R_68K_TLS_LDM32,	/* type */
133 	 0,			/* rightshift */
134 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
135 	 32,			/* bitsize */
136 	 FALSE,			/* pc_relative */
137 	 0,			/* bitpos */
138 	 complain_overflow_bitfield, /* complain_on_overflow */
139 	 bfd_elf_generic_reloc, /* special_function */
140 	 "R_68K_TLS_LDM32",	/* name */
141 	 FALSE,			/* partial_inplace */
142 	 0,			/* src_mask */
143 	 0xffffffff,		/* dst_mask */
144 	 FALSE),		/* pcrel_offset */
145 
146   HOWTO (R_68K_TLS_LDM16,	/* type */
147 	 0,			/* rightshift */
148 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
149 	 16,			/* bitsize */
150 	 FALSE,			/* pc_relative */
151 	 0,			/* bitpos */
152 	 complain_overflow_signed, /* complain_on_overflow */
153 	 bfd_elf_generic_reloc, /* special_function */
154 	 "R_68K_TLS_LDM16",	/* name */
155 	 FALSE,			/* partial_inplace */
156 	 0,			/* src_mask */
157 	 0x0000ffff,		/* dst_mask */
158 	 FALSE),		/* pcrel_offset */
159 
160   HOWTO (R_68K_TLS_LDM8,		/* type */
161 	 0,			/* rightshift */
162 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
163 	 8,			/* bitsize */
164 	 FALSE,			/* pc_relative */
165 	 0,			/* bitpos */
166 	 complain_overflow_signed, /* complain_on_overflow */
167 	 bfd_elf_generic_reloc, /* special_function */
168 	 "R_68K_TLS_LDM8",	/* name */
169 	 FALSE,			/* partial_inplace */
170 	 0,			/* src_mask */
171 	 0x000000ff,		/* dst_mask */
172 	 FALSE),		/* pcrel_offset */
173 
174   HOWTO (R_68K_TLS_LDO32,	/* type */
175 	 0,			/* rightshift */
176 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
177 	 32,			/* bitsize */
178 	 FALSE,			/* pc_relative */
179 	 0,			/* bitpos */
180 	 complain_overflow_bitfield, /* complain_on_overflow */
181 	 bfd_elf_generic_reloc, /* special_function */
182 	 "R_68K_TLS_LDO32",	/* name */
183 	 FALSE,			/* partial_inplace */
184 	 0,			/* src_mask */
185 	 0xffffffff,		/* dst_mask */
186 	 FALSE),		/* pcrel_offset */
187 
188   HOWTO (R_68K_TLS_LDO16,	/* type */
189 	 0,			/* rightshift */
190 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
191 	 16,			/* bitsize */
192 	 FALSE,			/* pc_relative */
193 	 0,			/* bitpos */
194 	 complain_overflow_signed, /* complain_on_overflow */
195 	 bfd_elf_generic_reloc, /* special_function */
196 	 "R_68K_TLS_LDO16",	/* name */
197 	 FALSE,			/* partial_inplace */
198 	 0,			/* src_mask */
199 	 0x0000ffff,		/* dst_mask */
200 	 FALSE),		/* pcrel_offset */
201 
202   HOWTO (R_68K_TLS_LDO8,		/* type */
203 	 0,			/* rightshift */
204 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
205 	 8,			/* bitsize */
206 	 FALSE,			/* pc_relative */
207 	 0,			/* bitpos */
208 	 complain_overflow_signed, /* complain_on_overflow */
209 	 bfd_elf_generic_reloc, /* special_function */
210 	 "R_68K_TLS_LDO8",	/* name */
211 	 FALSE,			/* partial_inplace */
212 	 0,			/* src_mask */
213 	 0x000000ff,		/* dst_mask */
214 	 FALSE),		/* pcrel_offset */
215 
216   /* TLS initial execution variable reference.  */
217   HOWTO (R_68K_TLS_IE32,	/* type */
218 	 0,			/* rightshift */
219 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
220 	 32,			/* bitsize */
221 	 FALSE,			/* pc_relative */
222 	 0,			/* bitpos */
223 	 complain_overflow_bitfield, /* complain_on_overflow */
224 	 bfd_elf_generic_reloc, /* special_function */
225 	 "R_68K_TLS_IE32",	/* name */
226 	 FALSE,			/* partial_inplace */
227 	 0,			/* src_mask */
228 	 0xffffffff,		/* dst_mask */
229 	 FALSE),		/* pcrel_offset */
230 
231   HOWTO (R_68K_TLS_IE16,	/* type */
232 	 0,			/* rightshift */
233 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
234 	 16,			/* bitsize */
235 	 FALSE,			/* pc_relative */
236 	 0,			/* bitpos */
237 	 complain_overflow_signed, /* complain_on_overflow */
238 	 bfd_elf_generic_reloc, /* special_function */
239 	 "R_68K_TLS_IE16",	/* name */
240 	 FALSE,			/* partial_inplace */
241 	 0,			/* src_mask */
242 	 0x0000ffff,		/* dst_mask */
243 	 FALSE),		/* pcrel_offset */
244 
245   HOWTO (R_68K_TLS_IE8,		/* type */
246 	 0,			/* rightshift */
247 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
248 	 8,			/* bitsize */
249 	 FALSE,			/* pc_relative */
250 	 0,			/* bitpos */
251 	 complain_overflow_signed, /* complain_on_overflow */
252 	 bfd_elf_generic_reloc, /* special_function */
253 	 "R_68K_TLS_IE8",	/* name */
254 	 FALSE,			/* partial_inplace */
255 	 0,			/* src_mask */
256 	 0x000000ff,		/* dst_mask */
257 	 FALSE),		/* pcrel_offset */
258 
259   /* TLS local execution variable reference.  */
260   HOWTO (R_68K_TLS_LE32,	/* type */
261 	 0,			/* rightshift */
262 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
263 	 32,			/* bitsize */
264 	 FALSE,			/* pc_relative */
265 	 0,			/* bitpos */
266 	 complain_overflow_bitfield, /* complain_on_overflow */
267 	 bfd_elf_generic_reloc, /* special_function */
268 	 "R_68K_TLS_LE32",	/* name */
269 	 FALSE,			/* partial_inplace */
270 	 0,			/* src_mask */
271 	 0xffffffff,		/* dst_mask */
272 	 FALSE),		/* pcrel_offset */
273 
274   HOWTO (R_68K_TLS_LE16,	/* type */
275 	 0,			/* rightshift */
276 	 1,			/* size (0 = byte, 1 = short, 2 = long) */
277 	 16,			/* bitsize */
278 	 FALSE,			/* pc_relative */
279 	 0,			/* bitpos */
280 	 complain_overflow_signed, /* complain_on_overflow */
281 	 bfd_elf_generic_reloc, /* special_function */
282 	 "R_68K_TLS_LE16",	/* name */
283 	 FALSE,			/* partial_inplace */
284 	 0,			/* src_mask */
285 	 0x0000ffff,		/* dst_mask */
286 	 FALSE),		/* pcrel_offset */
287 
288   HOWTO (R_68K_TLS_LE8,		/* type */
289 	 0,			/* rightshift */
290 	 0,			/* size (0 = byte, 1 = short, 2 = long) */
291 	 8,			/* bitsize */
292 	 FALSE,			/* pc_relative */
293 	 0,			/* bitpos */
294 	 complain_overflow_signed, /* complain_on_overflow */
295 	 bfd_elf_generic_reloc, /* special_function */
296 	 "R_68K_TLS_LE8",	/* name */
297 	 FALSE,			/* partial_inplace */
298 	 0,			/* src_mask */
299 	 0x000000ff,		/* dst_mask */
300 	 FALSE),		/* pcrel_offset */
301 
302   /* TLS GD/LD dynamic relocations.  */
303   HOWTO (R_68K_TLS_DTPMOD32,	/* type */
304 	 0,			/* rightshift */
305 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
306 	 32,			/* bitsize */
307 	 FALSE,			/* pc_relative */
308 	 0,			/* bitpos */
309 	 complain_overflow_dont, /* complain_on_overflow */
310 	 bfd_elf_generic_reloc, /* special_function */
311 	 "R_68K_TLS_DTPMOD32",	/* name */
312 	 FALSE,			/* partial_inplace */
313 	 0,			/* src_mask */
314 	 0xffffffff,		/* dst_mask */
315 	 FALSE),		/* pcrel_offset */
316 
317   HOWTO (R_68K_TLS_DTPREL32,	/* type */
318 	 0,			/* rightshift */
319 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
320 	 32,			/* bitsize */
321 	 FALSE,			/* pc_relative */
322 	 0,			/* bitpos */
323 	 complain_overflow_dont, /* complain_on_overflow */
324 	 bfd_elf_generic_reloc, /* special_function */
325 	 "R_68K_TLS_DTPREL32",	/* name */
326 	 FALSE,			/* partial_inplace */
327 	 0,			/* src_mask */
328 	 0xffffffff,		/* dst_mask */
329 	 FALSE),		/* pcrel_offset */
330 
331   HOWTO (R_68K_TLS_TPREL32,	/* type */
332 	 0,			/* rightshift */
333 	 2,			/* size (0 = byte, 1 = short, 2 = long) */
334 	 32,			/* bitsize */
335 	 FALSE,			/* pc_relative */
336 	 0,			/* bitpos */
337 	 complain_overflow_dont, /* complain_on_overflow */
338 	 bfd_elf_generic_reloc, /* special_function */
339 	 "R_68K_TLS_TPREL32",	/* name */
340 	 FALSE,			/* partial_inplace */
341 	 0,			/* src_mask */
342 	 0xffffffff,		/* dst_mask */
343 	 FALSE),		/* pcrel_offset */
344 };
345 
346 static void
347 rtype_to_howto (bfd *abfd, arelent *cache_ptr, Elf_Internal_Rela *dst)
348 {
349   unsigned int indx = ELF32_R_TYPE (dst->r_info);
350 
351   if (indx >= (unsigned int) R_68K_max)
352     {
353       (*_bfd_error_handler) (_("%B: invalid relocation type %d"),
354 			     abfd, (int) indx);
355       indx = R_68K_NONE;
356     }
357   cache_ptr->howto = &howto_table[indx];
358 }
359 
360 #define elf_info_to_howto rtype_to_howto
361 
362 static const struct
363 {
364   bfd_reloc_code_real_type bfd_val;
365   int elf_val;
366 }
367   reloc_map[] =
368 {
369   { BFD_RELOC_NONE, R_68K_NONE },
370   { BFD_RELOC_32, R_68K_32 },
371   { BFD_RELOC_16, R_68K_16 },
372   { BFD_RELOC_8, R_68K_8 },
373   { BFD_RELOC_32_PCREL, R_68K_PC32 },
374   { BFD_RELOC_16_PCREL, R_68K_PC16 },
375   { BFD_RELOC_8_PCREL, R_68K_PC8 },
376   { BFD_RELOC_32_GOT_PCREL, R_68K_GOT32 },
377   { BFD_RELOC_16_GOT_PCREL, R_68K_GOT16 },
378   { BFD_RELOC_8_GOT_PCREL, R_68K_GOT8 },
379   { BFD_RELOC_32_GOTOFF, R_68K_GOT32O },
380   { BFD_RELOC_16_GOTOFF, R_68K_GOT16O },
381   { BFD_RELOC_8_GOTOFF, R_68K_GOT8O },
382   { BFD_RELOC_32_PLT_PCREL, R_68K_PLT32 },
383   { BFD_RELOC_16_PLT_PCREL, R_68K_PLT16 },
384   { BFD_RELOC_8_PLT_PCREL, R_68K_PLT8 },
385   { BFD_RELOC_32_PLTOFF, R_68K_PLT32O },
386   { BFD_RELOC_16_PLTOFF, R_68K_PLT16O },
387   { BFD_RELOC_8_PLTOFF, R_68K_PLT8O },
388   { BFD_RELOC_NONE, R_68K_COPY },
389   { BFD_RELOC_68K_GLOB_DAT, R_68K_GLOB_DAT },
390   { BFD_RELOC_68K_JMP_SLOT, R_68K_JMP_SLOT },
391   { BFD_RELOC_68K_RELATIVE, R_68K_RELATIVE },
392   { BFD_RELOC_CTOR, R_68K_32 },
393   { BFD_RELOC_VTABLE_INHERIT, R_68K_GNU_VTINHERIT },
394   { BFD_RELOC_VTABLE_ENTRY, R_68K_GNU_VTENTRY },
395   { BFD_RELOC_68K_TLS_GD32, R_68K_TLS_GD32 },
396   { BFD_RELOC_68K_TLS_GD16, R_68K_TLS_GD16 },
397   { BFD_RELOC_68K_TLS_GD8, R_68K_TLS_GD8 },
398   { BFD_RELOC_68K_TLS_LDM32, R_68K_TLS_LDM32 },
399   { BFD_RELOC_68K_TLS_LDM16, R_68K_TLS_LDM16 },
400   { BFD_RELOC_68K_TLS_LDM8, R_68K_TLS_LDM8 },
401   { BFD_RELOC_68K_TLS_LDO32, R_68K_TLS_LDO32 },
402   { BFD_RELOC_68K_TLS_LDO16, R_68K_TLS_LDO16 },
403   { BFD_RELOC_68K_TLS_LDO8, R_68K_TLS_LDO8 },
404   { BFD_RELOC_68K_TLS_IE32, R_68K_TLS_IE32 },
405   { BFD_RELOC_68K_TLS_IE16, R_68K_TLS_IE16 },
406   { BFD_RELOC_68K_TLS_IE8, R_68K_TLS_IE8 },
407   { BFD_RELOC_68K_TLS_LE32, R_68K_TLS_LE32 },
408   { BFD_RELOC_68K_TLS_LE16, R_68K_TLS_LE16 },
409   { BFD_RELOC_68K_TLS_LE8, R_68K_TLS_LE8 },
410 };
411 
412 static reloc_howto_type *
413 reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
414 		   bfd_reloc_code_real_type code)
415 {
416   unsigned int i;
417   for (i = 0; i < sizeof (reloc_map) / sizeof (reloc_map[0]); i++)
418     {
419       if (reloc_map[i].bfd_val == code)
420 	return &howto_table[reloc_map[i].elf_val];
421     }
422   return 0;
423 }
424 
425 static reloc_howto_type *
426 reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED, const char *r_name)
427 {
428   unsigned int i;
429 
430   for (i = 0; i < sizeof (howto_table) / sizeof (howto_table[0]); i++)
431     if (howto_table[i].name != NULL
432 	&& strcasecmp (howto_table[i].name, r_name) == 0)
433       return &howto_table[i];
434 
435   return NULL;
436 }
437 
438 #define bfd_elf32_bfd_reloc_type_lookup reloc_type_lookup
439 #define bfd_elf32_bfd_reloc_name_lookup reloc_name_lookup
440 #define ELF_ARCH bfd_arch_m68k
441 #define ELF_TARGET_ID M68K_ELF_DATA
442 
443 /* Functions for the m68k ELF linker.  */
444 
445 /* The name of the dynamic interpreter.  This is put in the .interp
446    section.  */
447 
448 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/libc.so.1"
449 
450 /* Describes one of the various PLT styles.  */
451 
452 struct elf_m68k_plt_info
453 {
454   /* The size of each PLT entry.  */
455   bfd_vma size;
456 
457   /* The template for the first PLT entry.  */
458   const bfd_byte *plt0_entry;
459 
460   /* Offsets of fields in PLT0_ENTRY that require R_68K_PC32 relocations.
461      The comments by each member indicate the value that the relocation
462      is against.  */
463   struct {
464     unsigned int got4; /* .got + 4 */
465     unsigned int got8; /* .got + 8 */
466   } plt0_relocs;
467 
468   /* The template for a symbol's PLT entry.  */
469   const bfd_byte *symbol_entry;
470 
471   /* Offsets of fields in SYMBOL_ENTRY that require R_68K_PC32 relocations.
472      The comments by each member indicate the value that the relocation
473      is against.  */
474   struct {
475     unsigned int got; /* the symbol's .got.plt entry */
476     unsigned int plt; /* .plt */
477   } symbol_relocs;
478 
479   /* The offset of the resolver stub from the start of SYMBOL_ENTRY.
480      The stub starts with "move.l #relocoffset,%d0".  */
481   bfd_vma symbol_resolve_entry;
482 };
483 
484 /* The size in bytes of an entry in the procedure linkage table.  */
485 
486 #define PLT_ENTRY_SIZE 20
487 
488 /* The first entry in a procedure linkage table looks like this.  See
489    the SVR4 ABI m68k supplement to see how this works.  */
490 
491 static const bfd_byte elf_m68k_plt0_entry[PLT_ENTRY_SIZE] =
492 {
493   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
494   0, 0, 0, 2,		  /* + (.got + 4) - . */
495   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,addr]) */
496   0, 0, 0, 2,		  /* + (.got + 8) - . */
497   0, 0, 0, 0		  /* pad out to 20 bytes.  */
498 };
499 
500 /* Subsequent entries in a procedure linkage table look like this.  */
501 
502 static const bfd_byte elf_m68k_plt_entry[PLT_ENTRY_SIZE] =
503 {
504   0x4e, 0xfb, 0x01, 0x71, /* jmp ([%pc,symbol@GOTPC]) */
505   0, 0, 0, 2,		  /* + (.got.plt entry) - . */
506   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
507   0, 0, 0, 0,		  /* + reloc index */
508   0x60, 0xff,		  /* bra.l .plt */
509   0, 0, 0, 0		  /* + .plt - . */
510 };
511 
512 static const struct elf_m68k_plt_info elf_m68k_plt_info = {
513   PLT_ENTRY_SIZE,
514   elf_m68k_plt0_entry, { 4, 12 },
515   elf_m68k_plt_entry, { 4, 16 }, 8
516 };
517 
518 #define ISAB_PLT_ENTRY_SIZE 24
519 
520 static const bfd_byte elf_isab_plt0_entry[ISAB_PLT_ENTRY_SIZE] =
521 {
522   0x20, 0x3c,             /* move.l #offset,%d0 */
523   0, 0, 0, 0,             /* + (.got + 4) - . */
524   0x2f, 0x3b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),-(%sp) */
525   0x20, 0x3c,             /* move.l #offset,%d0 */
526   0, 0, 0, 0,             /* + (.got + 8) - . */
527   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
528   0x4e, 0xd0,             /* jmp (%a0) */
529   0x4e, 0x71		  /* nop */
530 };
531 
532 /* Subsequent entries in a procedure linkage table look like this.  */
533 
534 static const bfd_byte elf_isab_plt_entry[ISAB_PLT_ENTRY_SIZE] =
535 {
536   0x20, 0x3c,             /* move.l #offset,%d0 */
537   0, 0, 0, 0,             /* + (.got.plt entry) - . */
538   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
539   0x4e, 0xd0,             /* jmp (%a0) */
540   0x2f, 0x3c,             /* move.l #offset,-(%sp) */
541   0, 0, 0, 0,             /* + reloc index */
542   0x60, 0xff,             /* bra.l .plt */
543   0, 0, 0, 0              /* + .plt - . */
544 };
545 
546 static const struct elf_m68k_plt_info elf_isab_plt_info = {
547   ISAB_PLT_ENTRY_SIZE,
548   elf_isab_plt0_entry, { 2, 12 },
549   elf_isab_plt_entry, { 2, 20 }, 12
550 };
551 
552 #define ISAC_PLT_ENTRY_SIZE 24
553 
554 static const bfd_byte elf_isac_plt0_entry[ISAC_PLT_ENTRY_SIZE] =
555 {
556   0x20, 0x3c,		  /* move.l #offset,%d0 */
557   0, 0, 0, 0,		  /* replaced with .got + 4 - . */
558   0x2e, 0xbb, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l),(%sp) */
559   0x20, 0x3c,		  /* move.l #offset,%d0 */
560   0, 0, 0, 0,		  /* replaced with .got + 8 - . */
561   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
562   0x4e, 0xd0,		  /* jmp (%a0) */
563   0x4e, 0x71		  /* nop */
564 };
565 
566 /* Subsequent entries in a procedure linkage table look like this.  */
567 
568 static const bfd_byte elf_isac_plt_entry[ISAC_PLT_ENTRY_SIZE] =
569 {
570   0x20, 0x3c,		  /* move.l #offset,%d0 */
571   0, 0, 0, 0,		  /* replaced with (.got entry) - . */
572   0x20, 0x7b, 0x08, 0xfa, /* move.l (-6,%pc,%d0:l), %a0 */
573   0x4e, 0xd0,		  /* jmp (%a0) */
574   0x2f, 0x3c,		  /* move.l #offset,-(%sp) */
575   0, 0, 0, 0,		  /* replaced with offset into relocation table */
576   0x61, 0xff,		  /* bsr.l .plt */
577   0, 0, 0, 0 		  /* replaced with .plt - . */
578 };
579 
580 static const struct elf_m68k_plt_info elf_isac_plt_info = {
581   ISAC_PLT_ENTRY_SIZE,
582   elf_isac_plt0_entry, { 2, 12},
583   elf_isac_plt_entry, { 2, 20 }, 12
584 };
585 
586 #define CPU32_PLT_ENTRY_SIZE 24
587 /* Procedure linkage table entries for the cpu32 */
588 static const bfd_byte elf_cpu32_plt0_entry[CPU32_PLT_ENTRY_SIZE] =
589 {
590   0x2f, 0x3b, 0x01, 0x70, /* move.l (%pc,addr),-(%sp) */
591   0, 0, 0, 2,             /* + (.got + 4) - . */
592   0x22, 0x7b, 0x01, 0x70, /* moveal %pc@(0xc), %a1 */
593   0, 0, 0, 2,             /* + (.got + 8) - . */
594   0x4e, 0xd1,             /* jmp %a1@ */
595   0, 0, 0, 0,             /* pad out to 24 bytes.  */
596   0, 0
597 };
598 
599 static const bfd_byte elf_cpu32_plt_entry[CPU32_PLT_ENTRY_SIZE] =
600 {
601   0x22, 0x7b, 0x01, 0x70,  /* moveal %pc@(0xc), %a1 */
602   0, 0, 0, 2,              /* + (.got.plt entry) - . */
603   0x4e, 0xd1,              /* jmp %a1@ */
604   0x2f, 0x3c,              /* move.l #offset,-(%sp) */
605   0, 0, 0, 0,              /* + reloc index */
606   0x60, 0xff,              /* bra.l .plt */
607   0, 0, 0, 0,              /* + .plt - . */
608   0, 0
609 };
610 
611 static const struct elf_m68k_plt_info elf_cpu32_plt_info = {
612   CPU32_PLT_ENTRY_SIZE,
613   elf_cpu32_plt0_entry, { 4, 12 },
614   elf_cpu32_plt_entry, { 4, 18 }, 10
615 };
616 
617 /* The m68k linker needs to keep track of the number of relocs that it
618    decides to copy in check_relocs for each symbol.  This is so that it
619    can discard PC relative relocs if it doesn't need them when linking
620    with -Bsymbolic.  We store the information in a field extending the
621    regular ELF linker hash table.  */
622 
623 /* This structure keeps track of the number of PC relative relocs we have
624    copied for a given symbol.  */
625 
626 struct elf_m68k_pcrel_relocs_copied
627 {
628   /* Next section.  */
629   struct elf_m68k_pcrel_relocs_copied *next;
630   /* A section in dynobj.  */
631   asection *section;
632   /* Number of relocs copied in this section.  */
633   bfd_size_type count;
634 };
635 
636 /* Forward declaration.  */
637 struct elf_m68k_got_entry;
638 
639 /* m68k ELF linker hash entry.  */
640 
641 struct elf_m68k_link_hash_entry
642 {
643   struct elf_link_hash_entry root;
644 
645   /* Number of PC relative relocs copied for this symbol.  */
646   struct elf_m68k_pcrel_relocs_copied *pcrel_relocs_copied;
647 
648   /* Key to got_entries.  */
649   unsigned long got_entry_key;
650 
651   /* List of GOT entries for this symbol.  This list is build during
652      offset finalization and is used within elf_m68k_finish_dynamic_symbol
653      to traverse all GOT entries for a particular symbol.
654 
655      ??? We could've used root.got.glist field instead, but having
656      a separate field is cleaner.  */
657   struct elf_m68k_got_entry *glist;
658 };
659 
660 #define elf_m68k_hash_entry(ent) ((struct elf_m68k_link_hash_entry *) (ent))
661 
662 /* Key part of GOT entry in hashtable.  */
663 struct elf_m68k_got_entry_key
664 {
665   /* BFD in which this symbol was defined.  NULL for global symbols.  */
666   const bfd *bfd;
667 
668   /* Symbol index.  Either local symbol index or h->got_entry_key.  */
669   unsigned long symndx;
670 
671   /* Type is one of R_68K_GOT{8, 16, 32}O, R_68K_TLS_GD{8, 16, 32},
672      R_68K_TLS_LDM{8, 16, 32} or R_68K_TLS_IE{8, 16, 32}.
673 
674      From perspective of hashtable key, only elf_m68k_got_reloc_type (type)
675      matters.  That is, we distinguish between, say, R_68K_GOT16O
676      and R_68K_GOT32O when allocating offsets, but they are considered to be
677      the same when searching got->entries.  */
678   enum elf_m68k_reloc_type type;
679 };
680 
681 /* Size of the GOT offset suitable for relocation.  */
682 enum elf_m68k_got_offset_size { R_8, R_16, R_32, R_LAST };
683 
684 /* Entry of the GOT.  */
685 struct elf_m68k_got_entry
686 {
687   /* GOT entries are put into a got->entries hashtable.  This is the key.  */
688   struct elf_m68k_got_entry_key key_;
689 
690   /* GOT entry data.  We need s1 before offset finalization and s2 after.  */
691   union
692   {
693     struct
694     {
695       /* Number of times this entry is referenced.  It is used to
696 	 filter out unnecessary GOT slots in elf_m68k_gc_sweep_hook.  */
697       bfd_vma refcount;
698     } s1;
699 
700     struct
701     {
702       /* Offset from the start of .got section.  To calculate offset relative
703 	 to GOT pointer one should substract got->offset from this value.  */
704       bfd_vma offset;
705 
706       /* Pointer to the next GOT entry for this global symbol.
707 	 Symbols have at most one entry in one GOT, but might
708 	 have entries in more than one GOT.
709 	 Root of this list is h->glist.
710 	 NULL for local symbols.  */
711       struct elf_m68k_got_entry *next;
712     } s2;
713   } u;
714 };
715 
716 /* Return representative type for relocation R_TYPE.
717    This is used to avoid enumerating many relocations in comparisons,
718    switches etc.  */
719 
720 static enum elf_m68k_reloc_type
721 elf_m68k_reloc_got_type (enum elf_m68k_reloc_type r_type)
722 {
723   switch (r_type)
724     {
725       /* In most cases R_68K_GOTx relocations require the very same
726 	 handling as R_68K_GOT32O relocation.  In cases when we need
727 	 to distinguish between the two, we use explicitly compare against
728 	 r_type.  */
729     case R_68K_GOT32:
730     case R_68K_GOT16:
731     case R_68K_GOT8:
732     case R_68K_GOT32O:
733     case R_68K_GOT16O:
734     case R_68K_GOT8O:
735       return R_68K_GOT32O;
736 
737     case R_68K_TLS_GD32:
738     case R_68K_TLS_GD16:
739     case R_68K_TLS_GD8:
740       return R_68K_TLS_GD32;
741 
742     case R_68K_TLS_LDM32:
743     case R_68K_TLS_LDM16:
744     case R_68K_TLS_LDM8:
745       return R_68K_TLS_LDM32;
746 
747     case R_68K_TLS_IE32:
748     case R_68K_TLS_IE16:
749     case R_68K_TLS_IE8:
750       return R_68K_TLS_IE32;
751 
752     default:
753       BFD_ASSERT (FALSE);
754       return 0;
755     }
756 }
757 
758 /* Return size of the GOT entry offset for relocation R_TYPE.  */
759 
760 static enum elf_m68k_got_offset_size
761 elf_m68k_reloc_got_offset_size (enum elf_m68k_reloc_type r_type)
762 {
763   switch (r_type)
764     {
765     case R_68K_GOT32: case R_68K_GOT16: case R_68K_GOT8:
766     case R_68K_GOT32O: case R_68K_TLS_GD32: case R_68K_TLS_LDM32:
767     case R_68K_TLS_IE32:
768       return R_32;
769 
770     case R_68K_GOT16O: case R_68K_TLS_GD16: case R_68K_TLS_LDM16:
771     case R_68K_TLS_IE16:
772       return R_16;
773 
774     case R_68K_GOT8O: case R_68K_TLS_GD8: case R_68K_TLS_LDM8:
775     case R_68K_TLS_IE8:
776       return R_8;
777 
778     default:
779       BFD_ASSERT (FALSE);
780       return 0;
781     }
782 }
783 
784 /* Return number of GOT entries we need to allocate in GOT for
785    relocation R_TYPE.  */
786 
787 static bfd_vma
788 elf_m68k_reloc_got_n_slots (enum elf_m68k_reloc_type r_type)
789 {
790   switch (elf_m68k_reloc_got_type (r_type))
791     {
792     case R_68K_GOT32O:
793     case R_68K_TLS_IE32:
794       return 1;
795 
796     case R_68K_TLS_GD32:
797     case R_68K_TLS_LDM32:
798       return 2;
799 
800     default:
801       BFD_ASSERT (FALSE);
802       return 0;
803     }
804 }
805 
806 /* Return TRUE if relocation R_TYPE is a TLS one.  */
807 
808 static bfd_boolean
809 elf_m68k_reloc_tls_p (enum elf_m68k_reloc_type r_type)
810 {
811   switch (r_type)
812     {
813     case R_68K_TLS_GD32: case R_68K_TLS_GD16: case R_68K_TLS_GD8:
814     case R_68K_TLS_LDM32: case R_68K_TLS_LDM16: case R_68K_TLS_LDM8:
815     case R_68K_TLS_LDO32: case R_68K_TLS_LDO16: case R_68K_TLS_LDO8:
816     case R_68K_TLS_IE32: case R_68K_TLS_IE16: case R_68K_TLS_IE8:
817     case R_68K_TLS_LE32: case R_68K_TLS_LE16: case R_68K_TLS_LE8:
818     case R_68K_TLS_DTPMOD32: case R_68K_TLS_DTPREL32: case R_68K_TLS_TPREL32:
819       return TRUE;
820 
821     default:
822       return FALSE;
823     }
824 }
825 
826 /* Data structure representing a single GOT.  */
827 struct elf_m68k_got
828 {
829   /* Hashtable of 'struct elf_m68k_got_entry's.
830      Starting size of this table is the maximum number of
831      R_68K_GOT8O entries.  */
832   htab_t entries;
833 
834   /* Number of R_x slots in this GOT.  Some (e.g., TLS) entries require
835      several GOT slots.
836 
837      n_slots[R_8] is the count of R_8 slots in this GOT.
838      n_slots[R_16] is the cumulative count of R_8 and R_16 slots
839      in this GOT.
840      n_slots[R_32] is the cumulative count of R_8, R_16 and R_32 slots
841      in this GOT.  This is the total number of slots.  */
842   bfd_vma n_slots[R_LAST];
843 
844   /* Number of local (entry->key_.h == NULL) slots in this GOT.
845      This is only used to properly calculate size of .rela.got section;
846      see elf_m68k_partition_multi_got.  */
847   bfd_vma local_n_slots;
848 
849   /* Offset of this GOT relative to beginning of .got section.  */
850   bfd_vma offset;
851 };
852 
853 /* BFD and its GOT.  This is an entry in multi_got->bfd2got hashtable.  */
854 struct elf_m68k_bfd2got_entry
855 {
856   /* BFD.  */
857   const bfd *bfd;
858 
859   /* Assigned GOT.  Before partitioning multi-GOT each BFD has its own
860      GOT structure.  After partitioning several BFD's might [and often do]
861      share a single GOT.  */
862   struct elf_m68k_got *got;
863 };
864 
865 /* The main data structure holding all the pieces.  */
866 struct elf_m68k_multi_got
867 {
868   /* Hashtable mapping each BFD to its GOT.  If a BFD doesn't have an entry
869      here, then it doesn't need a GOT (this includes the case of a BFD
870      having an empty GOT).
871 
872      ??? This hashtable can be replaced by an array indexed by bfd->id.  */
873   htab_t bfd2got;
874 
875   /* Next symndx to assign a global symbol.
876      h->got_entry_key is initialized from this counter.  */
877   unsigned long global_symndx;
878 };
879 
880 /* m68k ELF linker hash table.  */
881 
882 struct elf_m68k_link_hash_table
883 {
884   struct elf_link_hash_table root;
885 
886   /* Small local sym cache.  */
887   struct sym_cache sym_cache;
888 
889   /* The PLT format used by this link, or NULL if the format has not
890      yet been chosen.  */
891   const struct elf_m68k_plt_info *plt_info;
892 
893   /* True, if GP is loaded within each function which uses it.
894      Set to TRUE when GOT negative offsets or multi-GOT is enabled.  */
895   bfd_boolean local_gp_p;
896 
897   /* Switch controlling use of negative offsets to double the size of GOTs.  */
898   bfd_boolean use_neg_got_offsets_p;
899 
900   /* Switch controlling generation of multiple GOTs.  */
901   bfd_boolean allow_multigot_p;
902 
903   /* Multi-GOT data structure.  */
904   struct elf_m68k_multi_got multi_got_;
905 };
906 
907 /* Get the m68k ELF linker hash table from a link_info structure.  */
908 
909 #define elf_m68k_hash_table(p) \
910   (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
911   == M68K_ELF_DATA ? ((struct elf_m68k_link_hash_table *) ((p)->hash)) : NULL)
912 
913 /* Shortcut to multi-GOT data.  */
914 #define elf_m68k_multi_got(INFO) (&elf_m68k_hash_table (INFO)->multi_got_)
915 
916 /* Create an entry in an m68k ELF linker hash table.  */
917 
918 static struct bfd_hash_entry *
919 elf_m68k_link_hash_newfunc (struct bfd_hash_entry *entry,
920 			    struct bfd_hash_table *table,
921 			    const char *string)
922 {
923   struct bfd_hash_entry *ret = entry;
924 
925   /* Allocate the structure if it has not already been allocated by a
926      subclass.  */
927   if (ret == NULL)
928     ret = bfd_hash_allocate (table,
929 			     sizeof (struct elf_m68k_link_hash_entry));
930   if (ret == NULL)
931     return ret;
932 
933   /* Call the allocation method of the superclass.  */
934   ret = _bfd_elf_link_hash_newfunc (ret, table, string);
935   if (ret != NULL)
936     {
937       elf_m68k_hash_entry (ret)->pcrel_relocs_copied = NULL;
938       elf_m68k_hash_entry (ret)->got_entry_key = 0;
939       elf_m68k_hash_entry (ret)->glist = NULL;
940     }
941 
942   return ret;
943 }
944 
945 /* Create an m68k ELF linker hash table.  */
946 
947 static struct bfd_link_hash_table *
948 elf_m68k_link_hash_table_create (bfd *abfd)
949 {
950   struct elf_m68k_link_hash_table *ret;
951   bfd_size_type amt = sizeof (struct elf_m68k_link_hash_table);
952 
953   ret = (struct elf_m68k_link_hash_table *) bfd_zmalloc (amt);
954   if (ret == (struct elf_m68k_link_hash_table *) NULL)
955     return NULL;
956 
957   if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
958 				      elf_m68k_link_hash_newfunc,
959 				      sizeof (struct elf_m68k_link_hash_entry),
960 				      M68K_ELF_DATA))
961     {
962       free (ret);
963       return NULL;
964     }
965 
966   ret->multi_got_.global_symndx = 1;
967 
968   return &ret->root.root;
969 }
970 
971 /* Destruct local data.  */
972 
973 static void
974 elf_m68k_link_hash_table_free (struct bfd_link_hash_table *_htab)
975 {
976   struct elf_m68k_link_hash_table *htab;
977 
978   htab = (struct elf_m68k_link_hash_table *) _htab;
979 
980   if (htab->multi_got_.bfd2got != NULL)
981     {
982       htab_delete (htab->multi_got_.bfd2got);
983       htab->multi_got_.bfd2got = NULL;
984     }
985   _bfd_elf_link_hash_table_free (_htab);
986 }
987 
988 /* Set the right machine number.  */
989 
990 static bfd_boolean
991 elf32_m68k_object_p (bfd *abfd)
992 {
993   unsigned int mach = 0;
994   unsigned features = 0;
995   flagword eflags = elf_elfheader (abfd)->e_flags;
996 
997   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
998     features |= m68000;
999   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1000     features |= cpu32;
1001   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1002     features |= fido_a;
1003   else
1004     {
1005       switch (eflags & EF_M68K_CF_ISA_MASK)
1006 	{
1007 	case EF_M68K_CF_ISA_A_NODIV:
1008 	  features |= mcfisa_a;
1009 	  break;
1010 	case EF_M68K_CF_ISA_A:
1011 	  features |= mcfisa_a|mcfhwdiv;
1012 	  break;
1013 	case EF_M68K_CF_ISA_A_PLUS:
1014 	  features |= mcfisa_a|mcfisa_aa|mcfhwdiv|mcfusp;
1015 	  break;
1016 	case EF_M68K_CF_ISA_B_NOUSP:
1017 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv;
1018 	  break;
1019 	case EF_M68K_CF_ISA_B:
1020 	  features |= mcfisa_a|mcfisa_b|mcfhwdiv|mcfusp;
1021 	  break;
1022 	case EF_M68K_CF_ISA_C:
1023 	  features |= mcfisa_a|mcfisa_c|mcfhwdiv|mcfusp;
1024 	  break;
1025 	case EF_M68K_CF_ISA_C_NODIV:
1026 	  features |= mcfisa_a|mcfisa_c|mcfusp;
1027 	  break;
1028 	}
1029       switch (eflags & EF_M68K_CF_MAC_MASK)
1030 	{
1031 	case EF_M68K_CF_MAC:
1032 	  features |= mcfmac;
1033 	  break;
1034 	case EF_M68K_CF_EMAC:
1035 	  features |= mcfemac;
1036 	  break;
1037 	}
1038       if (eflags & EF_M68K_CF_FLOAT)
1039 	features |= cfloat;
1040     }
1041 
1042   mach = bfd_m68k_features_to_mach (features);
1043   bfd_default_set_arch_mach (abfd, bfd_arch_m68k, mach);
1044 
1045   return TRUE;
1046 }
1047 
1048 /* Somewhat reverse of elf32_m68k_object_p, this sets the e_flag
1049    field based on the machine number.  */
1050 
1051 static void
1052 elf_m68k_final_write_processing (bfd *abfd,
1053 				 bfd_boolean linker ATTRIBUTE_UNUSED)
1054 {
1055   int mach = bfd_get_mach (abfd);
1056   unsigned long e_flags = elf_elfheader (abfd)->e_flags;
1057 
1058   if (!e_flags)
1059     {
1060       unsigned int arch_mask;
1061 
1062       arch_mask = bfd_m68k_mach_to_features (mach);
1063 
1064       if (arch_mask & m68000)
1065 	e_flags = EF_M68K_M68000;
1066       else if (arch_mask & cpu32)
1067 	e_flags = EF_M68K_CPU32;
1068       else if (arch_mask & fido_a)
1069 	e_flags = EF_M68K_FIDO;
1070       else
1071 	{
1072 	  switch (arch_mask
1073 		  & (mcfisa_a | mcfisa_aa | mcfisa_b | mcfisa_c | mcfhwdiv | mcfusp))
1074 	    {
1075 	    case mcfisa_a:
1076 	      e_flags |= EF_M68K_CF_ISA_A_NODIV;
1077 	      break;
1078 	    case mcfisa_a | mcfhwdiv:
1079 	      e_flags |= EF_M68K_CF_ISA_A;
1080 	      break;
1081 	    case mcfisa_a | mcfisa_aa | mcfhwdiv | mcfusp:
1082 	      e_flags |= EF_M68K_CF_ISA_A_PLUS;
1083 	      break;
1084 	    case mcfisa_a | mcfisa_b | mcfhwdiv:
1085 	      e_flags |= EF_M68K_CF_ISA_B_NOUSP;
1086 	      break;
1087 	    case mcfisa_a | mcfisa_b | mcfhwdiv | mcfusp:
1088 	      e_flags |= EF_M68K_CF_ISA_B;
1089 	      break;
1090 	    case mcfisa_a | mcfisa_c | mcfhwdiv | mcfusp:
1091 	      e_flags |= EF_M68K_CF_ISA_C;
1092 	      break;
1093 	    case mcfisa_a | mcfisa_c | mcfusp:
1094 	      e_flags |= EF_M68K_CF_ISA_C_NODIV;
1095 	      break;
1096 	    }
1097 	  if (arch_mask & mcfmac)
1098 	    e_flags |= EF_M68K_CF_MAC;
1099 	  else if (arch_mask & mcfemac)
1100 	    e_flags |= EF_M68K_CF_EMAC;
1101 	  if (arch_mask & cfloat)
1102 	    e_flags |= EF_M68K_CF_FLOAT | EF_M68K_CFV4E;
1103 	}
1104       elf_elfheader (abfd)->e_flags = e_flags;
1105     }
1106 }
1107 
1108 /* Keep m68k-specific flags in the ELF header.  */
1109 
1110 static bfd_boolean
1111 elf32_m68k_set_private_flags (bfd *abfd, flagword flags)
1112 {
1113   elf_elfheader (abfd)->e_flags = flags;
1114   elf_flags_init (abfd) = TRUE;
1115   return TRUE;
1116 }
1117 
1118 /* Merge backend specific data from an object file to the output
1119    object file when linking.  */
1120 static bfd_boolean
1121 elf32_m68k_merge_private_bfd_data (bfd *ibfd, bfd *obfd)
1122 {
1123   flagword out_flags;
1124   flagword in_flags;
1125   flagword out_isa;
1126   flagword in_isa;
1127   const bfd_arch_info_type *arch_info;
1128 
1129   if (   bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1130       || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1131     return FALSE;
1132 
1133   /* Get the merged machine.  This checks for incompatibility between
1134      Coldfire & non-Coldfire flags, incompability between different
1135      Coldfire ISAs, and incompability between different MAC types.  */
1136   arch_info = bfd_arch_get_compatible (ibfd, obfd, FALSE);
1137   if (!arch_info)
1138     return FALSE;
1139 
1140   bfd_set_arch_mach (obfd, bfd_arch_m68k, arch_info->mach);
1141 
1142   in_flags = elf_elfheader (ibfd)->e_flags;
1143   if (!elf_flags_init (obfd))
1144     {
1145       elf_flags_init (obfd) = TRUE;
1146       out_flags = in_flags;
1147     }
1148   else
1149     {
1150       out_flags = elf_elfheader (obfd)->e_flags;
1151       unsigned int variant_mask;
1152 
1153       if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1154 	variant_mask = 0;
1155       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1156 	variant_mask = 0;
1157       else if ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1158 	variant_mask = 0;
1159       else
1160 	variant_mask = EF_M68K_CF_ISA_MASK;
1161 
1162       in_isa = (in_flags & variant_mask);
1163       out_isa = (out_flags & variant_mask);
1164       if (in_isa > out_isa)
1165 	out_flags ^= in_isa ^ out_isa;
1166       if (((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32
1167 	   && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1168 	  || ((in_flags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO
1169 	      && (out_flags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32))
1170 	out_flags = EF_M68K_FIDO;
1171       else
1172       out_flags |= in_flags ^ in_isa;
1173     }
1174   elf_elfheader (obfd)->e_flags = out_flags;
1175 
1176   return TRUE;
1177 }
1178 
1179 /* Display the flags field.  */
1180 
1181 static bfd_boolean
1182 elf32_m68k_print_private_bfd_data (bfd *abfd, void * ptr)
1183 {
1184   FILE *file = (FILE *) ptr;
1185   flagword eflags = elf_elfheader (abfd)->e_flags;
1186 
1187   BFD_ASSERT (abfd != NULL && ptr != NULL);
1188 
1189   /* Print normal ELF private data.  */
1190   _bfd_elf_print_private_bfd_data (abfd, ptr);
1191 
1192   /* Ignore init flag - it may not be set, despite the flags field containing valid data.  */
1193 
1194   /* xgettext:c-format */
1195   fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
1196 
1197   if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_M68000)
1198     fprintf (file, " [m68000]");
1199   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CPU32)
1200     fprintf (file, " [cpu32]");
1201   else if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_FIDO)
1202     fprintf (file, " [fido]");
1203   else
1204     {
1205       if ((eflags & EF_M68K_ARCH_MASK) == EF_M68K_CFV4E)
1206 	fprintf (file, " [cfv4e]");
1207 
1208       if (eflags & EF_M68K_CF_ISA_MASK)
1209 	{
1210 	  char const *isa = _("unknown");
1211 	  char const *mac = _("unknown");
1212 	  char const *additional = "";
1213 
1214 	  switch (eflags & EF_M68K_CF_ISA_MASK)
1215 	    {
1216 	    case EF_M68K_CF_ISA_A_NODIV:
1217 	      isa = "A";
1218 	      additional = " [nodiv]";
1219 	      break;
1220 	    case EF_M68K_CF_ISA_A:
1221 	      isa = "A";
1222 	      break;
1223 	    case EF_M68K_CF_ISA_A_PLUS:
1224 	      isa = "A+";
1225 	      break;
1226 	    case EF_M68K_CF_ISA_B_NOUSP:
1227 	      isa = "B";
1228 	      additional = " [nousp]";
1229 	      break;
1230 	    case EF_M68K_CF_ISA_B:
1231 	      isa = "B";
1232 	      break;
1233 	    case EF_M68K_CF_ISA_C:
1234 	      isa = "C";
1235 	      break;
1236 	    case EF_M68K_CF_ISA_C_NODIV:
1237 	      isa = "C";
1238 	      additional = " [nodiv]";
1239 	      break;
1240 	    }
1241 	  fprintf (file, " [isa %s]%s", isa, additional);
1242 
1243 	  if (eflags & EF_M68K_CF_FLOAT)
1244 	    fprintf (file, " [float]");
1245 
1246 	  switch (eflags & EF_M68K_CF_MAC_MASK)
1247 	    {
1248 	    case 0:
1249 	      mac = NULL;
1250 	      break;
1251 	    case EF_M68K_CF_MAC:
1252 	      mac = "mac";
1253 	      break;
1254 	    case EF_M68K_CF_EMAC:
1255 	      mac = "emac";
1256 	      break;
1257 	    case EF_M68K_CF_EMAC_B:
1258 	      mac = "emac_b";
1259 	      break;
1260 	    }
1261 	  if (mac)
1262 	    fprintf (file, " [%s]", mac);
1263 	}
1264     }
1265 
1266   fputc ('\n', file);
1267 
1268   return TRUE;
1269 }
1270 
1271 /* Multi-GOT support implementation design:
1272 
1273    Multi-GOT starts in check_relocs hook.  There we scan all
1274    relocations of a BFD and build a local GOT (struct elf_m68k_got)
1275    for it.  If a single BFD appears to require too many GOT slots with
1276    R_68K_GOT8O or R_68K_GOT16O relocations, we fail with notification
1277    to user.
1278    After check_relocs has been invoked for each input BFD, we have
1279    constructed a GOT for each input BFD.
1280 
1281    To minimize total number of GOTs required for a particular output BFD
1282    (as some environments support only 1 GOT per output object) we try
1283    to merge some of the GOTs to share an offset space.  Ideally [and in most
1284    cases] we end up with a single GOT.  In cases when there are too many
1285    restricted relocations (e.g., R_68K_GOT16O relocations) we end up with
1286    several GOTs, assuming the environment can handle them.
1287 
1288    Partitioning is done in elf_m68k_partition_multi_got.  We start with
1289    an empty GOT and traverse bfd2got hashtable putting got_entries from
1290    local GOTs to the new 'big' one.  We do that by constructing an
1291    intermediate GOT holding all the entries the local GOT has and the big
1292    GOT lacks.  Then we check if there is room in the big GOT to accomodate
1293    all the entries from diff.  On success we add those entries to the big
1294    GOT; on failure we start the new 'big' GOT and retry the adding of
1295    entries from the local GOT.  Note that this retry will always succeed as
1296    each local GOT doesn't overflow the limits.  After partitioning we
1297    end up with each bfd assigned one of the big GOTs.  GOT entries in the
1298    big GOTs are initialized with GOT offsets.  Note that big GOTs are
1299    positioned consequently in program space and represent a single huge GOT
1300    to the outside world.
1301 
1302    After that we get to elf_m68k_relocate_section.  There we
1303    adjust relocations of GOT pointer (_GLOBAL_OFFSET_TABLE_) and symbol
1304    relocations to refer to appropriate [assigned to current input_bfd]
1305    big GOT.
1306 
1307    Notes:
1308 
1309    GOT entry type: We have several types of GOT entries.
1310    * R_8 type is used in entries for symbols that have at least one
1311    R_68K_GOT8O or R_68K_TLS_*8 relocation.  We can have at most 0x40
1312    such entries in one GOT.
1313    * R_16 type is used in entries for symbols that have at least one
1314    R_68K_GOT16O or R_68K_TLS_*16 relocation and no R_8 relocations.
1315    We can have at most 0x4000 such entries in one GOT.
1316    * R_32 type is used in all other cases.  We can have as many
1317    such entries in one GOT as we'd like.
1318    When counting relocations we have to include the count of the smaller
1319    ranged relocations in the counts of the larger ranged ones in order
1320    to correctly detect overflow.
1321 
1322    Sorting the GOT: In each GOT starting offsets are assigned to
1323    R_8 entries, which are followed by R_16 entries, and
1324    R_32 entries go at the end.  See finalize_got_offsets for details.
1325 
1326    Negative GOT offsets: To double usable offset range of GOTs we use
1327    negative offsets.  As we assign entries with GOT offsets relative to
1328    start of .got section, the offset values are positive.  They become
1329    negative only in relocate_section where got->offset value is
1330    subtracted from them.
1331 
1332    3 special GOT entries: There are 3 special GOT entries used internally
1333    by loader.  These entries happen to be placed to .got.plt section,
1334    so we don't do anything about them in multi-GOT support.
1335 
1336    Memory management: All data except for hashtables
1337    multi_got->bfd2got and got->entries are allocated on
1338    elf_hash_table (info)->dynobj bfd (for this reason we pass 'info'
1339    to most functions), so we don't need to care to free them.  At the
1340    moment of allocation hashtables are being linked into main data
1341    structure (multi_got), all pieces of which are reachable from
1342    elf_m68k_multi_got (info).  We deallocate them in
1343    elf_m68k_link_hash_table_free.  */
1344 
1345 /* Initialize GOT.  */
1346 
1347 static void
1348 elf_m68k_init_got (struct elf_m68k_got *got)
1349 {
1350   got->entries = NULL;
1351   got->n_slots[R_8] = 0;
1352   got->n_slots[R_16] = 0;
1353   got->n_slots[R_32] = 0;
1354   got->local_n_slots = 0;
1355   got->offset = (bfd_vma) -1;
1356 }
1357 
1358 /* Destruct GOT.  */
1359 
1360 static void
1361 elf_m68k_clear_got (struct elf_m68k_got *got)
1362 {
1363   if (got->entries != NULL)
1364     {
1365       htab_delete (got->entries);
1366       got->entries = NULL;
1367     }
1368 }
1369 
1370 /* Create and empty GOT structure.  INFO is the context where memory
1371    should be allocated.  */
1372 
1373 static struct elf_m68k_got *
1374 elf_m68k_create_empty_got (struct bfd_link_info *info)
1375 {
1376   struct elf_m68k_got *got;
1377 
1378   got = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*got));
1379   if (got == NULL)
1380     return NULL;
1381 
1382   elf_m68k_init_got (got);
1383 
1384   return got;
1385 }
1386 
1387 /* Initialize KEY.  */
1388 
1389 static void
1390 elf_m68k_init_got_entry_key (struct elf_m68k_got_entry_key *key,
1391 			     struct elf_link_hash_entry *h,
1392 			     const bfd *abfd, unsigned long symndx,
1393 			     enum elf_m68k_reloc_type reloc_type)
1394 {
1395   if (elf_m68k_reloc_got_type (reloc_type) == R_68K_TLS_LDM32)
1396     /* All TLS_LDM relocations share a single GOT entry.  */
1397     {
1398       key->bfd = NULL;
1399       key->symndx = 0;
1400     }
1401   else if (h != NULL)
1402     /* Global symbols are identified with their got_entry_key.  */
1403     {
1404       key->bfd = NULL;
1405       key->symndx = elf_m68k_hash_entry (h)->got_entry_key;
1406       BFD_ASSERT (key->symndx != 0);
1407     }
1408   else
1409     /* Local symbols are identified by BFD they appear in and symndx.  */
1410     {
1411       key->bfd = abfd;
1412       key->symndx = symndx;
1413     }
1414 
1415   key->type = reloc_type;
1416 }
1417 
1418 /* Calculate hash of got_entry.
1419    ??? Is it good?  */
1420 
1421 static hashval_t
1422 elf_m68k_got_entry_hash (const void *_entry)
1423 {
1424   const struct elf_m68k_got_entry_key *key;
1425 
1426   key = &((const struct elf_m68k_got_entry *) _entry)->key_;
1427 
1428   return (key->symndx
1429 	  + (key->bfd != NULL ? (int) key->bfd->id : -1)
1430 	  + elf_m68k_reloc_got_type (key->type));
1431 }
1432 
1433 /* Check if two got entries are equal.  */
1434 
1435 static int
1436 elf_m68k_got_entry_eq (const void *_entry1, const void *_entry2)
1437 {
1438   const struct elf_m68k_got_entry_key *key1;
1439   const struct elf_m68k_got_entry_key *key2;
1440 
1441   key1 = &((const struct elf_m68k_got_entry *) _entry1)->key_;
1442   key2 = &((const struct elf_m68k_got_entry *) _entry2)->key_;
1443 
1444   return (key1->bfd == key2->bfd
1445 	  && key1->symndx == key2->symndx
1446 	  && (elf_m68k_reloc_got_type (key1->type)
1447 	      == elf_m68k_reloc_got_type (key2->type)));
1448 }
1449 
1450 /* When using negative offsets, we allocate one extra R_8, one extra R_16
1451    and one extra R_32 slots to simplify handling of 2-slot entries during
1452    offset allocation -- hence -1 for R_8 slots and -2 for R_16 slots.  */
1453 
1454 /* Maximal number of R_8 slots in a single GOT.  */
1455 #define ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT(INFO)		\
1456   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1457    ? (0x40 - 1)							\
1458    : 0x20)
1459 
1460 /* Maximal number of R_8 and R_16 slots in a single GOT.  */
1461 #define ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT(INFO)		\
1462   (elf_m68k_hash_table (INFO)->use_neg_got_offsets_p		\
1463    ? (0x4000 - 2)						\
1464    : 0x2000)
1465 
1466 /* SEARCH - simply search the hashtable, don't insert new entries or fail when
1467    the entry cannot be found.
1468    FIND_OR_CREATE - search for an existing entry, but create new if there's
1469    no such.
1470    MUST_FIND - search for an existing entry and assert that it exist.
1471    MUST_CREATE - assert that there's no such entry and create new one.  */
1472 enum elf_m68k_get_entry_howto
1473   {
1474     SEARCH,
1475     FIND_OR_CREATE,
1476     MUST_FIND,
1477     MUST_CREATE
1478   };
1479 
1480 /* Get or create (depending on HOWTO) entry with KEY in GOT.
1481    INFO is context in which memory should be allocated (can be NULL if
1482    HOWTO is SEARCH or MUST_FIND).  */
1483 
1484 static struct elf_m68k_got_entry *
1485 elf_m68k_get_got_entry (struct elf_m68k_got *got,
1486 			const struct elf_m68k_got_entry_key *key,
1487 			enum elf_m68k_get_entry_howto howto,
1488 			struct bfd_link_info *info)
1489 {
1490   struct elf_m68k_got_entry entry_;
1491   struct elf_m68k_got_entry *entry;
1492   void **ptr;
1493 
1494   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1495 
1496   if (got->entries == NULL)
1497     /* This is the first entry in ABFD.  Initialize hashtable.  */
1498     {
1499       if (howto == SEARCH)
1500 	return NULL;
1501 
1502       got->entries = htab_try_create (ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT
1503 				      (info),
1504 				      elf_m68k_got_entry_hash,
1505 				      elf_m68k_got_entry_eq, NULL);
1506       if (got->entries == NULL)
1507 	{
1508 	  bfd_set_error (bfd_error_no_memory);
1509 	  return NULL;
1510 	}
1511     }
1512 
1513   entry_.key_ = *key;
1514   ptr = htab_find_slot (got->entries, &entry_, (howto != SEARCH
1515 						? INSERT : NO_INSERT));
1516   if (ptr == NULL)
1517     {
1518       if (howto == SEARCH)
1519 	/* Entry not found.  */
1520 	return NULL;
1521 
1522       /* We're out of memory.  */
1523       bfd_set_error (bfd_error_no_memory);
1524       return NULL;
1525     }
1526 
1527   if (*ptr == NULL)
1528     /* We didn't find the entry and we're asked to create a new one.  */
1529     {
1530       BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1531 
1532       entry = bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry));
1533       if (entry == NULL)
1534 	return NULL;
1535 
1536       /* Initialize new entry.  */
1537       entry->key_ = *key;
1538 
1539       entry->u.s1.refcount = 0;
1540 
1541       /* Mark the entry as not initialized.  */
1542       entry->key_.type = R_68K_max;
1543 
1544       *ptr = entry;
1545     }
1546   else
1547     /* We found the entry.  */
1548     {
1549       BFD_ASSERT (howto != MUST_CREATE);
1550 
1551       entry = *ptr;
1552     }
1553 
1554   return entry;
1555 }
1556 
1557 /* Update GOT counters when merging entry of WAS type with entry of NEW type.
1558    Return the value to which ENTRY's type should be set.  */
1559 
1560 static enum elf_m68k_reloc_type
1561 elf_m68k_update_got_entry_type (struct elf_m68k_got *got,
1562 				enum elf_m68k_reloc_type was,
1563 				enum elf_m68k_reloc_type new_reloc)
1564 {
1565   enum elf_m68k_got_offset_size was_size;
1566   enum elf_m68k_got_offset_size new_size;
1567   bfd_vma n_slots;
1568 
1569   if (was == R_68K_max)
1570     /* The type of the entry is not initialized yet.  */
1571     {
1572       /* Update all got->n_slots counters, including n_slots[R_32].  */
1573       was_size = R_LAST;
1574 
1575       was = new_reloc;
1576     }
1577   else
1578     {
1579       /* !!! We, probably, should emit an error rather then fail on assert
1580 	 in such a case.  */
1581       BFD_ASSERT (elf_m68k_reloc_got_type (was)
1582 		  == elf_m68k_reloc_got_type (new_reloc));
1583 
1584       was_size = elf_m68k_reloc_got_offset_size (was);
1585     }
1586 
1587   new_size = elf_m68k_reloc_got_offset_size (new_reloc);
1588   n_slots = elf_m68k_reloc_got_n_slots (new_reloc);
1589 
1590   while (was_size > new_size)
1591     {
1592       --was_size;
1593       got->n_slots[was_size] += n_slots;
1594     }
1595 
1596   if (new_reloc > was)
1597     /* Relocations are ordered from bigger got offset size to lesser,
1598        so choose the relocation type with lesser offset size.  */
1599     was = new_reloc;
1600 
1601   return was;
1602 }
1603 
1604 /* Update GOT counters when removing an entry of type TYPE.  */
1605 
1606 static void
1607 elf_m68k_remove_got_entry_type (struct elf_m68k_got *got,
1608 				enum elf_m68k_reloc_type type)
1609 {
1610   enum elf_m68k_got_offset_size os;
1611   bfd_vma n_slots;
1612 
1613   n_slots = elf_m68k_reloc_got_n_slots (type);
1614 
1615   /* Decrese counter of slots with offset size corresponding to TYPE
1616      and all greater offset sizes.  */
1617   for (os = elf_m68k_reloc_got_offset_size (type); os <= R_32; ++os)
1618     {
1619       BFD_ASSERT (got->n_slots[os] >= n_slots);
1620 
1621       got->n_slots[os] -= n_slots;
1622     }
1623 }
1624 
1625 /* Add new or update existing entry to GOT.
1626    H, ABFD, TYPE and SYMNDX is data for the entry.
1627    INFO is a context where memory should be allocated.  */
1628 
1629 static struct elf_m68k_got_entry *
1630 elf_m68k_add_entry_to_got (struct elf_m68k_got *got,
1631 			   struct elf_link_hash_entry *h,
1632 			   const bfd *abfd,
1633 			   enum elf_m68k_reloc_type reloc_type,
1634 			   unsigned long symndx,
1635 			   struct bfd_link_info *info)
1636 {
1637   struct elf_m68k_got_entry_key key_;
1638   struct elf_m68k_got_entry *entry;
1639 
1640   if (h != NULL && elf_m68k_hash_entry (h)->got_entry_key == 0)
1641     elf_m68k_hash_entry (h)->got_entry_key
1642       = elf_m68k_multi_got (info)->global_symndx++;
1643 
1644   elf_m68k_init_got_entry_key (&key_, h, abfd, symndx, reloc_type);
1645 
1646   entry = elf_m68k_get_got_entry (got, &key_, FIND_OR_CREATE, info);
1647   if (entry == NULL)
1648     return NULL;
1649 
1650   /* Determine entry's type and update got->n_slots counters.  */
1651   entry->key_.type = elf_m68k_update_got_entry_type (got,
1652 						     entry->key_.type,
1653 						     reloc_type);
1654 
1655   /* Update refcount.  */
1656   ++entry->u.s1.refcount;
1657 
1658   if (entry->u.s1.refcount == 1)
1659     /* We see this entry for the first time.  */
1660     {
1661       if (entry->key_.bfd != NULL)
1662 	got->local_n_slots += elf_m68k_reloc_got_n_slots (entry->key_.type);
1663     }
1664 
1665   BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
1666 
1667   if ((got->n_slots[R_8]
1668        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1669       || (got->n_slots[R_16]
1670 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1671     /* This BFD has too many relocation.  */
1672     {
1673       if (got->n_slots[R_8] > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1674 	(*_bfd_error_handler) (_("%B: GOT overflow: "
1675 				 "Number of relocations with 8-bit "
1676 				 "offset > %d"),
1677 			       abfd,
1678 			       ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info));
1679       else
1680 	(*_bfd_error_handler) (_("%B: GOT overflow: "
1681 				 "Number of relocations with 8- or 16-bit "
1682 				 "offset > %d"),
1683 			       abfd,
1684 			       ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info));
1685 
1686       return NULL;
1687     }
1688 
1689   return entry;
1690 }
1691 
1692 /* Compute the hash value of the bfd in a bfd2got hash entry.  */
1693 
1694 static hashval_t
1695 elf_m68k_bfd2got_entry_hash (const void *entry)
1696 {
1697   const struct elf_m68k_bfd2got_entry *e;
1698 
1699   e = (const struct elf_m68k_bfd2got_entry *) entry;
1700 
1701   return e->bfd->id;
1702 }
1703 
1704 /* Check whether two hash entries have the same bfd.  */
1705 
1706 static int
1707 elf_m68k_bfd2got_entry_eq (const void *entry1, const void *entry2)
1708 {
1709   const struct elf_m68k_bfd2got_entry *e1;
1710   const struct elf_m68k_bfd2got_entry *e2;
1711 
1712   e1 = (const struct elf_m68k_bfd2got_entry *) entry1;
1713   e2 = (const struct elf_m68k_bfd2got_entry *) entry2;
1714 
1715   return e1->bfd == e2->bfd;
1716 }
1717 
1718 /* Destruct a bfd2got entry.  */
1719 
1720 static void
1721 elf_m68k_bfd2got_entry_del (void *_entry)
1722 {
1723   struct elf_m68k_bfd2got_entry *entry;
1724 
1725   entry = (struct elf_m68k_bfd2got_entry *) _entry;
1726 
1727   BFD_ASSERT (entry->got != NULL);
1728   elf_m68k_clear_got (entry->got);
1729 }
1730 
1731 /* Find existing or create new (depending on HOWTO) bfd2got entry in
1732    MULTI_GOT.  ABFD is the bfd we need a GOT for.  INFO is a context where
1733    memory should be allocated.  */
1734 
1735 static struct elf_m68k_bfd2got_entry *
1736 elf_m68k_get_bfd2got_entry (struct elf_m68k_multi_got *multi_got,
1737 			    const bfd *abfd,
1738 			    enum elf_m68k_get_entry_howto howto,
1739 			    struct bfd_link_info *info)
1740 {
1741   struct elf_m68k_bfd2got_entry entry_;
1742   void **ptr;
1743   struct elf_m68k_bfd2got_entry *entry;
1744 
1745   BFD_ASSERT ((info == NULL) == (howto == SEARCH || howto == MUST_FIND));
1746 
1747   if (multi_got->bfd2got == NULL)
1748     /* This is the first GOT.  Initialize bfd2got.  */
1749     {
1750       if (howto == SEARCH)
1751 	return NULL;
1752 
1753       multi_got->bfd2got = htab_try_create (1, elf_m68k_bfd2got_entry_hash,
1754 					    elf_m68k_bfd2got_entry_eq,
1755 					    elf_m68k_bfd2got_entry_del);
1756       if (multi_got->bfd2got == NULL)
1757 	{
1758 	  bfd_set_error (bfd_error_no_memory);
1759 	  return NULL;
1760 	}
1761     }
1762 
1763   entry_.bfd = abfd;
1764   ptr = htab_find_slot (multi_got->bfd2got, &entry_, (howto != SEARCH
1765 						      ? INSERT : NO_INSERT));
1766   if (ptr == NULL)
1767     {
1768       if (howto == SEARCH)
1769 	/* Entry not found.  */
1770 	return NULL;
1771 
1772       /* We're out of memory.  */
1773       bfd_set_error (bfd_error_no_memory);
1774       return NULL;
1775     }
1776 
1777   if (*ptr == NULL)
1778     /* Entry was not found.  Create new one.  */
1779     {
1780       BFD_ASSERT (howto != MUST_FIND && howto != SEARCH);
1781 
1782       entry = ((struct elf_m68k_bfd2got_entry *)
1783 	       bfd_alloc (elf_hash_table (info)->dynobj, sizeof (*entry)));
1784       if (entry == NULL)
1785 	return NULL;
1786 
1787       entry->bfd = abfd;
1788 
1789       entry->got = elf_m68k_create_empty_got (info);
1790       if (entry->got == NULL)
1791 	return NULL;
1792 
1793       *ptr = entry;
1794     }
1795   else
1796     {
1797       BFD_ASSERT (howto != MUST_CREATE);
1798 
1799       /* Return existing entry.  */
1800       entry = *ptr;
1801     }
1802 
1803   return entry;
1804 }
1805 
1806 struct elf_m68k_can_merge_gots_arg
1807 {
1808   /* A current_got that we constructing a DIFF against.  */
1809   struct elf_m68k_got *big;
1810 
1811   /* GOT holding entries not present or that should be changed in
1812      BIG.  */
1813   struct elf_m68k_got *diff;
1814 
1815   /* Context where to allocate memory.  */
1816   struct bfd_link_info *info;
1817 
1818   /* Error flag.  */
1819   bfd_boolean error_p;
1820 };
1821 
1822 /* Process a single entry from the small GOT to see if it should be added
1823    or updated in the big GOT.  */
1824 
1825 static int
1826 elf_m68k_can_merge_gots_1 (void **_entry_ptr, void *_arg)
1827 {
1828   const struct elf_m68k_got_entry *entry1;
1829   struct elf_m68k_can_merge_gots_arg *arg;
1830   const struct elf_m68k_got_entry *entry2;
1831   enum elf_m68k_reloc_type type;
1832 
1833   entry1 = (const struct elf_m68k_got_entry *) *_entry_ptr;
1834   arg = (struct elf_m68k_can_merge_gots_arg *) _arg;
1835 
1836   entry2 = elf_m68k_get_got_entry (arg->big, &entry1->key_, SEARCH, NULL);
1837 
1838   if (entry2 != NULL)
1839     /* We found an existing entry.  Check if we should update it.  */
1840     {
1841       type = elf_m68k_update_got_entry_type (arg->diff,
1842 					     entry2->key_.type,
1843 					     entry1->key_.type);
1844 
1845       if (type == entry2->key_.type)
1846 	/* ENTRY1 doesn't update data in ENTRY2.  Skip it.
1847 	   To skip creation of difference entry we use the type,
1848 	   which we won't see in GOT entries for sure.  */
1849 	type = R_68K_max;
1850     }
1851   else
1852     /* We didn't find the entry.  Add entry1 to DIFF.  */
1853     {
1854       BFD_ASSERT (entry1->key_.type != R_68K_max);
1855 
1856       type = elf_m68k_update_got_entry_type (arg->diff,
1857 					     R_68K_max, entry1->key_.type);
1858 
1859       if (entry1->key_.bfd != NULL)
1860 	arg->diff->local_n_slots += elf_m68k_reloc_got_n_slots (type);
1861     }
1862 
1863   if (type != R_68K_max)
1864     /* Create an entry in DIFF.  */
1865     {
1866       struct elf_m68k_got_entry *entry;
1867 
1868       entry = elf_m68k_get_got_entry (arg->diff, &entry1->key_, MUST_CREATE,
1869 				      arg->info);
1870       if (entry == NULL)
1871 	{
1872 	  arg->error_p = TRUE;
1873 	  return 0;
1874 	}
1875 
1876       entry->key_.type = type;
1877     }
1878 
1879   return 1;
1880 }
1881 
1882 /* Return TRUE if SMALL GOT can be added to BIG GOT without overflowing it.
1883    Construct DIFF GOT holding the entries which should be added or updated
1884    in BIG GOT to accumulate information from SMALL.
1885    INFO is the context where memory should be allocated.  */
1886 
1887 static bfd_boolean
1888 elf_m68k_can_merge_gots (struct elf_m68k_got *big,
1889 			 const struct elf_m68k_got *small,
1890 			 struct bfd_link_info *info,
1891 			 struct elf_m68k_got *diff)
1892 {
1893   struct elf_m68k_can_merge_gots_arg arg_;
1894 
1895   BFD_ASSERT (small->offset == (bfd_vma) -1);
1896 
1897   arg_.big = big;
1898   arg_.diff = diff;
1899   arg_.info = info;
1900   arg_.error_p = FALSE;
1901   htab_traverse_noresize (small->entries, elf_m68k_can_merge_gots_1, &arg_);
1902   if (arg_.error_p)
1903     {
1904       diff->offset = 0;
1905       return FALSE;
1906     }
1907 
1908   /* Check for overflow.  */
1909   if ((big->n_slots[R_8] + arg_.diff->n_slots[R_8]
1910        > ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1911       || (big->n_slots[R_16] + arg_.diff->n_slots[R_16]
1912 	  > ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info)))
1913     return FALSE;
1914 
1915   return TRUE;
1916 }
1917 
1918 struct elf_m68k_merge_gots_arg
1919 {
1920   /* The BIG got.  */
1921   struct elf_m68k_got *big;
1922 
1923   /* Context where memory should be allocated.  */
1924   struct bfd_link_info *info;
1925 
1926   /* Error flag.  */
1927   bfd_boolean error_p;
1928 };
1929 
1930 /* Process a single entry from DIFF got.  Add or update corresponding
1931    entry in the BIG got.  */
1932 
1933 static int
1934 elf_m68k_merge_gots_1 (void **entry_ptr, void *_arg)
1935 {
1936   const struct elf_m68k_got_entry *from;
1937   struct elf_m68k_merge_gots_arg *arg;
1938   struct elf_m68k_got_entry *to;
1939 
1940   from = (const struct elf_m68k_got_entry *) *entry_ptr;
1941   arg = (struct elf_m68k_merge_gots_arg *) _arg;
1942 
1943   to = elf_m68k_get_got_entry (arg->big, &from->key_, FIND_OR_CREATE,
1944 			       arg->info);
1945   if (to == NULL)
1946     {
1947       arg->error_p = TRUE;
1948       return 0;
1949     }
1950 
1951   BFD_ASSERT (to->u.s1.refcount == 0);
1952   /* All we need to merge is TYPE.  */
1953   to->key_.type = from->key_.type;
1954 
1955   return 1;
1956 }
1957 
1958 /* Merge data from DIFF to BIG.  INFO is context where memory should be
1959    allocated.  */
1960 
1961 static bfd_boolean
1962 elf_m68k_merge_gots (struct elf_m68k_got *big,
1963 		     struct elf_m68k_got *diff,
1964 		     struct bfd_link_info *info)
1965 {
1966   if (diff->entries != NULL)
1967     /* DIFF is not empty.  Merge it into BIG GOT.  */
1968     {
1969       struct elf_m68k_merge_gots_arg arg_;
1970 
1971       /* Merge entries.  */
1972       arg_.big = big;
1973       arg_.info = info;
1974       arg_.error_p = FALSE;
1975       htab_traverse_noresize (diff->entries, elf_m68k_merge_gots_1, &arg_);
1976       if (arg_.error_p)
1977 	return FALSE;
1978 
1979       /* Merge counters.  */
1980       big->n_slots[R_8] += diff->n_slots[R_8];
1981       big->n_slots[R_16] += diff->n_slots[R_16];
1982       big->n_slots[R_32] += diff->n_slots[R_32];
1983       big->local_n_slots += diff->local_n_slots;
1984     }
1985   else
1986     /* DIFF is empty.  */
1987     {
1988       BFD_ASSERT (diff->n_slots[R_8] == 0);
1989       BFD_ASSERT (diff->n_slots[R_16] == 0);
1990       BFD_ASSERT (diff->n_slots[R_32] == 0);
1991       BFD_ASSERT (diff->local_n_slots == 0);
1992     }
1993 
1994   BFD_ASSERT (!elf_m68k_hash_table (info)->allow_multigot_p
1995 	      || ((big->n_slots[R_8]
1996 		   <= ELF_M68K_R_8_MAX_N_SLOTS_IN_GOT (info))
1997 		  && (big->n_slots[R_16]
1998 		      <= ELF_M68K_R_8_16_MAX_N_SLOTS_IN_GOT (info))));
1999 
2000   return TRUE;
2001 }
2002 
2003 struct elf_m68k_finalize_got_offsets_arg
2004 {
2005   /* Ranges of the offsets for GOT entries.
2006      R_x entries receive offsets between offset1[R_x] and offset2[R_x].
2007      R_x is R_8, R_16 and R_32.  */
2008   bfd_vma *offset1;
2009   bfd_vma *offset2;
2010 
2011   /* Mapping from global symndx to global symbols.
2012      This is used to build lists of got entries for global symbols.  */
2013   struct elf_m68k_link_hash_entry **symndx2h;
2014 
2015   bfd_vma n_ldm_entries;
2016 };
2017 
2018 /* Assign ENTRY an offset.  Build list of GOT entries for global symbols
2019    along the way.  */
2020 
2021 static int
2022 elf_m68k_finalize_got_offsets_1 (void **entry_ptr, void *_arg)
2023 {
2024   struct elf_m68k_got_entry *entry;
2025   struct elf_m68k_finalize_got_offsets_arg *arg;
2026 
2027   enum elf_m68k_got_offset_size got_offset_size;
2028   bfd_vma entry_size;
2029 
2030   entry = (struct elf_m68k_got_entry *) *entry_ptr;
2031   arg = (struct elf_m68k_finalize_got_offsets_arg *) _arg;
2032 
2033   /* This should be a fresh entry created in elf_m68k_can_merge_gots.  */
2034   BFD_ASSERT (entry->u.s1.refcount == 0);
2035 
2036   /* Get GOT offset size for the entry .  */
2037   got_offset_size = elf_m68k_reloc_got_offset_size (entry->key_.type);
2038 
2039   /* Calculate entry size in bytes.  */
2040   entry_size = 4 * elf_m68k_reloc_got_n_slots (entry->key_.type);
2041 
2042   /* Check if we should switch to negative range of the offsets. */
2043   if (arg->offset1[got_offset_size] + entry_size
2044       > arg->offset2[got_offset_size])
2045     {
2046       /* Verify that this is the only switch to negative range for
2047 	 got_offset_size.  If this assertion fails, then we've miscalculated
2048 	 range for got_offset_size entries in
2049 	 elf_m68k_finalize_got_offsets.  */
2050       BFD_ASSERT (arg->offset2[got_offset_size]
2051 		  != arg->offset2[-(int) got_offset_size - 1]);
2052 
2053       /* Switch.  */
2054       arg->offset1[got_offset_size] = arg->offset1[-(int) got_offset_size - 1];
2055       arg->offset2[got_offset_size] = arg->offset2[-(int) got_offset_size - 1];
2056 
2057       /* Verify that now we have enough room for the entry.  */
2058       BFD_ASSERT (arg->offset1[got_offset_size] + entry_size
2059 		  <= arg->offset2[got_offset_size]);
2060     }
2061 
2062   /* Assign offset to entry.  */
2063   entry->u.s2.offset = arg->offset1[got_offset_size];
2064   arg->offset1[got_offset_size] += entry_size;
2065 
2066   if (entry->key_.bfd == NULL)
2067     /* Hook up this entry into the list of got_entries of H.  */
2068     {
2069       struct elf_m68k_link_hash_entry *h;
2070 
2071       h = arg->symndx2h[entry->key_.symndx];
2072       if (h != NULL)
2073 	{
2074 	  entry->u.s2.next = h->glist;
2075 	  h->glist = entry;
2076 	}
2077       else
2078 	/* This should be the entry for TLS_LDM relocation then.  */
2079 	{
2080 	  BFD_ASSERT ((elf_m68k_reloc_got_type (entry->key_.type)
2081 		       == R_68K_TLS_LDM32)
2082 		      && entry->key_.symndx == 0);
2083 
2084 	  ++arg->n_ldm_entries;
2085 	}
2086     }
2087   else
2088     /* This entry is for local symbol.  */
2089     entry->u.s2.next = NULL;
2090 
2091   return 1;
2092 }
2093 
2094 /* Assign offsets within GOT.  USE_NEG_GOT_OFFSETS_P indicates if we
2095    should use negative offsets.
2096    Build list of GOT entries for global symbols along the way.
2097    SYMNDX2H is mapping from global symbol indices to actual
2098    global symbols.
2099    Return offset at which next GOT should start.  */
2100 
2101 static void
2102 elf_m68k_finalize_got_offsets (struct elf_m68k_got *got,
2103 			       bfd_boolean use_neg_got_offsets_p,
2104 			       struct elf_m68k_link_hash_entry **symndx2h,
2105 			       bfd_vma *final_offset, bfd_vma *n_ldm_entries)
2106 {
2107   struct elf_m68k_finalize_got_offsets_arg arg_;
2108   bfd_vma offset1_[2 * R_LAST];
2109   bfd_vma offset2_[2 * R_LAST];
2110   int i;
2111   bfd_vma start_offset;
2112 
2113   BFD_ASSERT (got->offset != (bfd_vma) -1);
2114 
2115   /* We set entry offsets relative to the .got section (and not the
2116      start of a particular GOT), so that we can use them in
2117      finish_dynamic_symbol without needing to know the GOT which they come
2118      from.  */
2119 
2120   /* Put offset1 in the middle of offset1_, same for offset2.  */
2121   arg_.offset1 = offset1_ + R_LAST;
2122   arg_.offset2 = offset2_ + R_LAST;
2123 
2124   start_offset = got->offset;
2125 
2126   if (use_neg_got_offsets_p)
2127     /* Setup both negative and positive ranges for R_8, R_16 and R_32.  */
2128     i = -(int) R_32 - 1;
2129   else
2130     /* Setup positives ranges for R_8, R_16 and R_32.  */
2131     i = (int) R_8;
2132 
2133   for (; i <= (int) R_32; ++i)
2134     {
2135       int j;
2136       size_t n;
2137 
2138       /* Set beginning of the range of offsets I.  */
2139       arg_.offset1[i] = start_offset;
2140 
2141       /* Calculate number of slots that require I offsets.  */
2142       j = (i >= 0) ? i : -i - 1;
2143       n = (j >= 1) ? got->n_slots[j - 1] : 0;
2144       n = got->n_slots[j] - n;
2145 
2146       if (use_neg_got_offsets_p && n != 0)
2147 	{
2148 	  if (i < 0)
2149 	    /* We first fill the positive side of the range, so we might
2150 	       end up with one empty slot at that side when we can't fit
2151 	       whole 2-slot entry.  Account for that at negative side of
2152 	       the interval with one additional entry.  */
2153 	    n = n / 2 + 1;
2154 	  else
2155 	    /* When the number of slots is odd, make positive side of the
2156 	       range one entry bigger.  */
2157 	    n = (n + 1) / 2;
2158 	}
2159 
2160       /* N is the number of slots that require I offsets.
2161 	 Calculate length of the range for I offsets.  */
2162       n = 4 * n;
2163 
2164       /* Set end of the range.  */
2165       arg_.offset2[i] = start_offset + n;
2166 
2167       start_offset = arg_.offset2[i];
2168     }
2169 
2170   if (!use_neg_got_offsets_p)
2171     /* Make sure that if we try to switch to negative offsets in
2172        elf_m68k_finalize_got_offsets_1, the assert therein will catch
2173        the bug.  */
2174     for (i = R_8; i <= R_32; ++i)
2175       arg_.offset2[-i - 1] = arg_.offset2[i];
2176 
2177   /* Setup got->offset.  offset1[R_8] is either in the middle or at the
2178      beginning of GOT depending on use_neg_got_offsets_p.  */
2179   got->offset = arg_.offset1[R_8];
2180 
2181   arg_.symndx2h = symndx2h;
2182   arg_.n_ldm_entries = 0;
2183 
2184   /* Assign offsets.  */
2185   htab_traverse (got->entries, elf_m68k_finalize_got_offsets_1, &arg_);
2186 
2187   /* Check offset ranges we have actually assigned.  */
2188   for (i = (int) R_8; i <= (int) R_32; ++i)
2189     BFD_ASSERT (arg_.offset2[i] - arg_.offset1[i] <= 4);
2190 
2191   *final_offset = start_offset;
2192   *n_ldm_entries = arg_.n_ldm_entries;
2193 }
2194 
2195 struct elf_m68k_partition_multi_got_arg
2196 {
2197   /* The GOT we are adding entries to.  Aka big got.  */
2198   struct elf_m68k_got *current_got;
2199 
2200   /* Offset to assign the next CURRENT_GOT.  */
2201   bfd_vma offset;
2202 
2203   /* Context where memory should be allocated.  */
2204   struct bfd_link_info *info;
2205 
2206   /* Total number of slots in the .got section.
2207      This is used to calculate size of the .got and .rela.got sections.  */
2208   bfd_vma n_slots;
2209 
2210   /* Difference in numbers of allocated slots in the .got section
2211      and necessary relocations in the .rela.got section.
2212      This is used to calculate size of the .rela.got section.  */
2213   bfd_vma slots_relas_diff;
2214 
2215   /* Error flag.  */
2216   bfd_boolean error_p;
2217 
2218   /* Mapping from global symndx to global symbols.
2219      This is used to build lists of got entries for global symbols.  */
2220   struct elf_m68k_link_hash_entry **symndx2h;
2221 };
2222 
2223 static void
2224 elf_m68k_partition_multi_got_2 (struct elf_m68k_partition_multi_got_arg *arg)
2225 {
2226   bfd_vma n_ldm_entries;
2227 
2228   elf_m68k_finalize_got_offsets (arg->current_got,
2229 				 (elf_m68k_hash_table (arg->info)
2230 				  ->use_neg_got_offsets_p),
2231 				 arg->symndx2h,
2232 				 &arg->offset, &n_ldm_entries);
2233 
2234   arg->n_slots += arg->current_got->n_slots[R_32];
2235 
2236   if (!arg->info->shared)
2237     /* If we are generating a shared object, we need to
2238        output a R_68K_RELATIVE reloc so that the dynamic
2239        linker can adjust this GOT entry.  Overwise we
2240        don't need space in .rela.got for local symbols.  */
2241     arg->slots_relas_diff += arg->current_got->local_n_slots;
2242 
2243   /* @LDM relocations require a 2-slot GOT entry, but only
2244      one relocation.  Account for that.  */
2245   arg->slots_relas_diff += n_ldm_entries;
2246 
2247   BFD_ASSERT (arg->slots_relas_diff <= arg->n_slots);
2248 }
2249 
2250 
2251 /* Process a single BFD2GOT entry and either merge GOT to CURRENT_GOT
2252    or start a new CURRENT_GOT.  */
2253 
2254 static int
2255 elf_m68k_partition_multi_got_1 (void **_entry, void *_arg)
2256 {
2257   struct elf_m68k_bfd2got_entry *entry;
2258   struct elf_m68k_partition_multi_got_arg *arg;
2259   struct elf_m68k_got *got;
2260   struct elf_m68k_got diff_;
2261   struct elf_m68k_got *diff;
2262 
2263   entry = (struct elf_m68k_bfd2got_entry *) *_entry;
2264   arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2265 
2266   got = entry->got;
2267   BFD_ASSERT (got != NULL);
2268   BFD_ASSERT (got->offset == (bfd_vma) -1);
2269 
2270   diff = NULL;
2271 
2272   if (arg->current_got != NULL)
2273     /* Construct diff.  */
2274     {
2275       diff = &diff_;
2276       elf_m68k_init_got (diff);
2277 
2278       if (!elf_m68k_can_merge_gots (arg->current_got, got, arg->info, diff))
2279 	{
2280 	  if (diff->offset == 0)
2281 	    /* Offset set to 0 in the diff_ indicates an error.  */
2282 	    {
2283 	      arg->error_p = TRUE;
2284 	      goto final_return;
2285 	    }
2286 
2287 	  if (elf_m68k_hash_table (arg->info)->allow_multigot_p)
2288 	    {
2289 	      elf_m68k_clear_got (diff);
2290 	      /* Schedule to finish up current_got and start new one.  */
2291 	      diff = NULL;
2292 	    }
2293 	  /* else
2294 	     Merge GOTs no matter what.  If big GOT overflows,
2295 	     we'll fail in relocate_section due to truncated relocations.
2296 
2297 	     ??? May be fail earlier?  E.g., in can_merge_gots.  */
2298 	}
2299     }
2300   else
2301     /* Diff of got against empty current_got is got itself.  */
2302     {
2303       /* Create empty current_got to put subsequent GOTs to.  */
2304       arg->current_got = elf_m68k_create_empty_got (arg->info);
2305       if (arg->current_got == NULL)
2306 	{
2307 	  arg->error_p = TRUE;
2308 	  goto final_return;
2309 	}
2310 
2311       arg->current_got->offset = arg->offset;
2312 
2313       diff = got;
2314     }
2315 
2316   if (diff != NULL)
2317     {
2318       if (!elf_m68k_merge_gots (arg->current_got, diff, arg->info))
2319 	{
2320 	  arg->error_p = TRUE;
2321 	  goto final_return;
2322 	}
2323 
2324       /* Now we can free GOT.  */
2325       elf_m68k_clear_got (got);
2326 
2327       entry->got = arg->current_got;
2328     }
2329   else
2330     {
2331       /* Finish up current_got.  */
2332       elf_m68k_partition_multi_got_2 (arg);
2333 
2334       /* Schedule to start a new current_got.  */
2335       arg->current_got = NULL;
2336 
2337       /* Retry.  */
2338       if (!elf_m68k_partition_multi_got_1 (_entry, _arg))
2339 	{
2340 	  BFD_ASSERT (arg->error_p);
2341 	  goto final_return;
2342 	}
2343     }
2344 
2345  final_return:
2346   if (diff != NULL)
2347     elf_m68k_clear_got (diff);
2348 
2349   return arg->error_p == FALSE ? 1 : 0;
2350 }
2351 
2352 /* Helper function to build symndx2h mapping.  */
2353 
2354 static bfd_boolean
2355 elf_m68k_init_symndx2h_1 (struct elf_link_hash_entry *_h,
2356 			  void *_arg)
2357 {
2358   struct elf_m68k_link_hash_entry *h;
2359 
2360   h = elf_m68k_hash_entry (_h);
2361 
2362   if (h->got_entry_key != 0)
2363     /* H has at least one entry in the GOT.  */
2364     {
2365       struct elf_m68k_partition_multi_got_arg *arg;
2366 
2367       arg = (struct elf_m68k_partition_multi_got_arg *) _arg;
2368 
2369       BFD_ASSERT (arg->symndx2h[h->got_entry_key] == NULL);
2370       arg->symndx2h[h->got_entry_key] = h;
2371     }
2372 
2373   return TRUE;
2374 }
2375 
2376 /* Merge GOTs of some BFDs, assign offsets to GOT entries and build
2377    lists of GOT entries for global symbols.
2378    Calculate sizes of .got and .rela.got sections.  */
2379 
2380 static bfd_boolean
2381 elf_m68k_partition_multi_got (struct bfd_link_info *info)
2382 {
2383   struct elf_m68k_multi_got *multi_got;
2384   struct elf_m68k_partition_multi_got_arg arg_;
2385 
2386   multi_got = elf_m68k_multi_got (info);
2387 
2388   arg_.current_got = NULL;
2389   arg_.offset = 0;
2390   arg_.info = info;
2391   arg_.n_slots = 0;
2392   arg_.slots_relas_diff = 0;
2393   arg_.error_p = FALSE;
2394 
2395   if (multi_got->bfd2got != NULL)
2396     {
2397       /* Initialize symndx2h mapping.  */
2398       {
2399 	arg_.symndx2h = bfd_zmalloc (multi_got->global_symndx
2400 				     * sizeof (*arg_.symndx2h));
2401 	if (arg_.symndx2h == NULL)
2402 	  return FALSE;
2403 
2404 	elf_link_hash_traverse (elf_hash_table (info),
2405 				elf_m68k_init_symndx2h_1, &arg_);
2406       }
2407 
2408       /* Partition.  */
2409       htab_traverse (multi_got->bfd2got, elf_m68k_partition_multi_got_1,
2410 		     &arg_);
2411       if (arg_.error_p)
2412 	{
2413 	  free (arg_.symndx2h);
2414 	  arg_.symndx2h = NULL;
2415 
2416 	  return FALSE;
2417 	}
2418 
2419       /* Finish up last current_got.  */
2420       elf_m68k_partition_multi_got_2 (&arg_);
2421 
2422       free (arg_.symndx2h);
2423     }
2424 
2425   if (elf_hash_table (info)->dynobj != NULL)
2426     /* Set sizes of .got and .rela.got sections.  */
2427     {
2428       asection *s;
2429 
2430       s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".got");
2431       if (s != NULL)
2432 	s->size = arg_.offset;
2433       else
2434 	BFD_ASSERT (arg_.offset == 0);
2435 
2436       BFD_ASSERT (arg_.slots_relas_diff <= arg_.n_slots);
2437       arg_.n_slots -= arg_.slots_relas_diff;
2438 
2439       s = bfd_get_linker_section (elf_hash_table (info)->dynobj, ".rela.got");
2440       if (s != NULL)
2441 	s->size = arg_.n_slots * sizeof (Elf32_External_Rela);
2442       else
2443 	BFD_ASSERT (arg_.n_slots == 0);
2444     }
2445   else
2446     BFD_ASSERT (multi_got->bfd2got == NULL);
2447 
2448   return TRUE;
2449 }
2450 
2451 /* Specialized version of elf_m68k_get_got_entry that returns pointer
2452    to hashtable slot, thus allowing removal of entry via
2453    elf_m68k_remove_got_entry.  */
2454 
2455 static struct elf_m68k_got_entry **
2456 elf_m68k_find_got_entry_ptr (struct elf_m68k_got *got,
2457 			     struct elf_m68k_got_entry_key *key)
2458 {
2459   void **ptr;
2460   struct elf_m68k_got_entry entry_;
2461   struct elf_m68k_got_entry **entry_ptr;
2462 
2463   entry_.key_ = *key;
2464   ptr = htab_find_slot (got->entries, &entry_, NO_INSERT);
2465   BFD_ASSERT (ptr != NULL);
2466 
2467   entry_ptr = (struct elf_m68k_got_entry **) ptr;
2468 
2469   return entry_ptr;
2470 }
2471 
2472 /* Remove entry pointed to by ENTRY_PTR from GOT.  */
2473 
2474 static void
2475 elf_m68k_remove_got_entry (struct elf_m68k_got *got,
2476 			   struct elf_m68k_got_entry **entry_ptr)
2477 {
2478   struct elf_m68k_got_entry *entry;
2479 
2480   entry = *entry_ptr;
2481 
2482   /* Check that offsets have not been finalized yet.  */
2483   BFD_ASSERT (got->offset == (bfd_vma) -1);
2484   /* Check that this entry is indeed unused.  */
2485   BFD_ASSERT (entry->u.s1.refcount == 0);
2486 
2487   elf_m68k_remove_got_entry_type (got, entry->key_.type);
2488 
2489   if (entry->key_.bfd != NULL)
2490     got->local_n_slots -= elf_m68k_reloc_got_n_slots (entry->key_.type);
2491 
2492   BFD_ASSERT (got->n_slots[R_32] >= got->local_n_slots);
2493 
2494   htab_clear_slot (got->entries, (void **) entry_ptr);
2495 }
2496 
2497 /* Copy any information related to dynamic linking from a pre-existing
2498    symbol to a newly created symbol.  Also called to copy flags and
2499    other back-end info to a weakdef, in which case the symbol is not
2500    newly created and plt/got refcounts and dynamic indices should not
2501    be copied.  */
2502 
2503 static void
2504 elf_m68k_copy_indirect_symbol (struct bfd_link_info *info,
2505 			       struct elf_link_hash_entry *_dir,
2506 			       struct elf_link_hash_entry *_ind)
2507 {
2508   struct elf_m68k_link_hash_entry *dir;
2509   struct elf_m68k_link_hash_entry *ind;
2510 
2511   _bfd_elf_link_hash_copy_indirect (info, _dir, _ind);
2512 
2513   if (_ind->root.type != bfd_link_hash_indirect)
2514     return;
2515 
2516   dir = elf_m68k_hash_entry (_dir);
2517   ind = elf_m68k_hash_entry (_ind);
2518 
2519   /* Any absolute non-dynamic relocations against an indirect or weak
2520      definition will be against the target symbol.  */
2521   _dir->non_got_ref |= _ind->non_got_ref;
2522 
2523   /* We might have a direct symbol already having entries in the GOTs.
2524      Update its key only in case indirect symbol has GOT entries and
2525      assert that both indirect and direct symbols don't have GOT entries
2526      at the same time.  */
2527   if (ind->got_entry_key != 0)
2528     {
2529       BFD_ASSERT (dir->got_entry_key == 0);
2530       /* Assert that GOTs aren't partioned yet.  */
2531       BFD_ASSERT (ind->glist == NULL);
2532 
2533       dir->got_entry_key = ind->got_entry_key;
2534       ind->got_entry_key = 0;
2535     }
2536 }
2537 
2538 /* Look through the relocs for a section during the first phase, and
2539    allocate space in the global offset table or procedure linkage
2540    table.  */
2541 
2542 static bfd_boolean
2543 elf_m68k_check_relocs (bfd *abfd,
2544 		       struct bfd_link_info *info,
2545 		       asection *sec,
2546 		       const Elf_Internal_Rela *relocs)
2547 {
2548   bfd *dynobj;
2549   Elf_Internal_Shdr *symtab_hdr;
2550   struct elf_link_hash_entry **sym_hashes;
2551   const Elf_Internal_Rela *rel;
2552   const Elf_Internal_Rela *rel_end;
2553   asection *sgot;
2554   asection *srelgot;
2555   asection *sreloc;
2556   struct elf_m68k_got *got;
2557 
2558   if (info->relocatable)
2559     return TRUE;
2560 
2561   dynobj = elf_hash_table (info)->dynobj;
2562   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2563   sym_hashes = elf_sym_hashes (abfd);
2564 
2565   sgot = NULL;
2566   srelgot = NULL;
2567   sreloc = NULL;
2568 
2569   got = NULL;
2570 
2571   rel_end = relocs + sec->reloc_count;
2572   for (rel = relocs; rel < rel_end; rel++)
2573     {
2574       unsigned long r_symndx;
2575       struct elf_link_hash_entry *h;
2576 
2577       r_symndx = ELF32_R_SYM (rel->r_info);
2578 
2579       if (r_symndx < symtab_hdr->sh_info)
2580 	h = NULL;
2581       else
2582 	{
2583 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2584 	  while (h->root.type == bfd_link_hash_indirect
2585 		 || h->root.type == bfd_link_hash_warning)
2586 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2587 	}
2588 
2589       switch (ELF32_R_TYPE (rel->r_info))
2590 	{
2591 	case R_68K_GOT8:
2592 	case R_68K_GOT16:
2593 	case R_68K_GOT32:
2594 	  if (h != NULL
2595 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2596 	    break;
2597 	  /* Fall through.  */
2598 
2599 	  /* Relative GOT relocations.  */
2600 	case R_68K_GOT8O:
2601 	case R_68K_GOT16O:
2602 	case R_68K_GOT32O:
2603 	  /* Fall through.  */
2604 
2605 	  /* TLS relocations.  */
2606 	case R_68K_TLS_GD8:
2607 	case R_68K_TLS_GD16:
2608 	case R_68K_TLS_GD32:
2609 	case R_68K_TLS_LDM8:
2610 	case R_68K_TLS_LDM16:
2611 	case R_68K_TLS_LDM32:
2612 	case R_68K_TLS_IE8:
2613 	case R_68K_TLS_IE16:
2614 	case R_68K_TLS_IE32:
2615 
2616 	case R_68K_TLS_TPREL32:
2617 	case R_68K_TLS_DTPREL32:
2618 
2619 	  if (ELF32_R_TYPE (rel->r_info) == R_68K_TLS_TPREL32
2620 	      && info->shared)
2621 	    /* Do the special chorus for libraries with static TLS.  */
2622 	    info->flags |= DF_STATIC_TLS;
2623 
2624 	  /* This symbol requires a global offset table entry.  */
2625 
2626 	  if (dynobj == NULL)
2627 	    {
2628 	      /* Create the .got section.  */
2629 	      elf_hash_table (info)->dynobj = dynobj = abfd;
2630 	      if (!_bfd_elf_create_got_section (dynobj, info))
2631 		return FALSE;
2632 	    }
2633 
2634 	  if (sgot == NULL)
2635 	    {
2636 	      sgot = bfd_get_linker_section (dynobj, ".got");
2637 	      BFD_ASSERT (sgot != NULL);
2638 	    }
2639 
2640 	  if (srelgot == NULL
2641 	      && (h != NULL || info->shared))
2642 	    {
2643 	      srelgot = bfd_get_linker_section (dynobj, ".rela.got");
2644 	      if (srelgot == NULL)
2645 		{
2646 		  flagword flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
2647 				    | SEC_IN_MEMORY | SEC_LINKER_CREATED
2648 				    | SEC_READONLY);
2649 		  srelgot = bfd_make_section_anyway_with_flags (dynobj,
2650 								".rela.got",
2651 								flags);
2652 		  if (srelgot == NULL
2653 		      || !bfd_set_section_alignment (dynobj, srelgot, 2))
2654 		    return FALSE;
2655 		}
2656 	    }
2657 
2658 	  if (got == NULL)
2659 	    {
2660 	      struct elf_m68k_bfd2got_entry *bfd2got_entry;
2661 
2662 	      bfd2got_entry
2663 		= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2664 					      abfd, FIND_OR_CREATE, info);
2665 	      if (bfd2got_entry == NULL)
2666 		return FALSE;
2667 
2668 	      got = bfd2got_entry->got;
2669 	      BFD_ASSERT (got != NULL);
2670 	    }
2671 
2672 	  {
2673 	    struct elf_m68k_got_entry *got_entry;
2674 
2675 	    /* Add entry to got.  */
2676 	    got_entry = elf_m68k_add_entry_to_got (got, h, abfd,
2677 						   ELF32_R_TYPE (rel->r_info),
2678 						   r_symndx, info);
2679 	    if (got_entry == NULL)
2680 	      return FALSE;
2681 
2682 	    if (got_entry->u.s1.refcount == 1)
2683 	      {
2684 		/* Make sure this symbol is output as a dynamic symbol.  */
2685 		if (h != NULL
2686 		    && h->dynindx == -1
2687 		    && !h->forced_local)
2688 		  {
2689 		    if (!bfd_elf_link_record_dynamic_symbol (info, h))
2690 		      return FALSE;
2691 		  }
2692 	      }
2693 	  }
2694 
2695 	  break;
2696 
2697 	case R_68K_PLT8:
2698 	case R_68K_PLT16:
2699 	case R_68K_PLT32:
2700 	  /* This symbol requires a procedure linkage table entry.  We
2701 	     actually build the entry in adjust_dynamic_symbol,
2702              because this might be a case of linking PIC code which is
2703              never referenced by a dynamic object, in which case we
2704              don't need to generate a procedure linkage table entry
2705              after all.  */
2706 
2707 	  /* If this is a local symbol, we resolve it directly without
2708 	     creating a procedure linkage table entry.  */
2709 	  if (h == NULL)
2710 	    continue;
2711 
2712 	  h->needs_plt = 1;
2713 	  h->plt.refcount++;
2714 	  break;
2715 
2716 	case R_68K_PLT8O:
2717 	case R_68K_PLT16O:
2718 	case R_68K_PLT32O:
2719 	  /* This symbol requires a procedure linkage table entry.  */
2720 
2721 	  if (h == NULL)
2722 	    {
2723 	      /* It does not make sense to have this relocation for a
2724 		 local symbol.  FIXME: does it?  How to handle it if
2725 		 it does make sense?  */
2726 	      bfd_set_error (bfd_error_bad_value);
2727 	      return FALSE;
2728 	    }
2729 
2730 	  /* Make sure this symbol is output as a dynamic symbol.  */
2731 	  if (h->dynindx == -1
2732 	      && !h->forced_local)
2733 	    {
2734 	      if (!bfd_elf_link_record_dynamic_symbol (info, h))
2735 		return FALSE;
2736 	    }
2737 
2738 	  h->needs_plt = 1;
2739 	  h->plt.refcount++;
2740 	  break;
2741 
2742 	case R_68K_PC8:
2743 	case R_68K_PC16:
2744 	case R_68K_PC32:
2745 	  /* If we are creating a shared library and this is not a local
2746 	     symbol, we need to copy the reloc into the shared library.
2747 	     However when linking with -Bsymbolic and this is a global
2748 	     symbol which is defined in an object we are including in the
2749 	     link (i.e., DEF_REGULAR is set), then we can resolve the
2750 	     reloc directly.  At this point we have not seen all the input
2751 	     files, so it is possible that DEF_REGULAR is not set now but
2752 	     will be set later (it is never cleared).  We account for that
2753 	     possibility below by storing information in the
2754 	     pcrel_relocs_copied field of the hash table entry.  */
2755 	  if (!(info->shared
2756 		&& (sec->flags & SEC_ALLOC) != 0
2757 		&& h != NULL
2758 		&& (!info->symbolic
2759 		    || h->root.type == bfd_link_hash_defweak
2760 		    || !h->def_regular)))
2761 	    {
2762 	      if (h != NULL)
2763 		{
2764 		  /* Make sure a plt entry is created for this symbol if
2765 		     it turns out to be a function defined by a dynamic
2766 		     object.  */
2767 		  h->plt.refcount++;
2768 		}
2769 	      break;
2770 	    }
2771 	  /* Fall through.  */
2772 	case R_68K_8:
2773 	case R_68K_16:
2774 	case R_68K_32:
2775 	  /* We don't need to handle relocs into sections not going into
2776 	     the "real" output.  */
2777 	  if ((sec->flags & SEC_ALLOC) == 0)
2778 	      break;
2779 
2780 	  if (h != NULL)
2781 	    {
2782 	      /* Make sure a plt entry is created for this symbol if it
2783 		 turns out to be a function defined by a dynamic object.  */
2784 	      h->plt.refcount++;
2785 
2786 	      if (info->executable)
2787 		/* This symbol needs a non-GOT reference.  */
2788 		h->non_got_ref = 1;
2789 	    }
2790 
2791 	  /* If we are creating a shared library, we need to copy the
2792 	     reloc into the shared library.  */
2793 	  if (info->shared)
2794 	    {
2795 	      /* When creating a shared object, we must copy these
2796 		 reloc types into the output file.  We create a reloc
2797 		 section in dynobj and make room for this reloc.  */
2798 	      if (sreloc == NULL)
2799 		{
2800 		  sreloc = _bfd_elf_make_dynamic_reloc_section
2801 		    (sec, dynobj, 2, abfd, /*rela?*/ TRUE);
2802 
2803 		  if (sreloc == NULL)
2804 		    return FALSE;
2805 		}
2806 
2807 	      if (sec->flags & SEC_READONLY
2808 		  /* Don't set DF_TEXTREL yet for PC relative
2809 		     relocations, they might be discarded later.  */
2810 		  && !(ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2811 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2812 		       || ELF32_R_TYPE (rel->r_info) == R_68K_PC32))
2813 		    info->flags |= DF_TEXTREL;
2814 
2815 	      sreloc->size += sizeof (Elf32_External_Rela);
2816 
2817 	      /* We count the number of PC relative relocations we have
2818 		 entered for this symbol, so that we can discard them
2819 		 again if, in the -Bsymbolic case, the symbol is later
2820 		 defined by a regular object, or, in the normal shared
2821 		 case, the symbol is forced to be local.  Note that this
2822 		 function is only called if we are using an m68kelf linker
2823 		 hash table, which means that h is really a pointer to an
2824 		 elf_m68k_link_hash_entry.  */
2825 	      if (ELF32_R_TYPE (rel->r_info) == R_68K_PC8
2826 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC16
2827 		  || ELF32_R_TYPE (rel->r_info) == R_68K_PC32)
2828 		{
2829 		  struct elf_m68k_pcrel_relocs_copied *p;
2830 		  struct elf_m68k_pcrel_relocs_copied **head;
2831 
2832 		  if (h != NULL)
2833 		    {
2834 		      struct elf_m68k_link_hash_entry *eh
2835 			= elf_m68k_hash_entry (h);
2836 		      head = &eh->pcrel_relocs_copied;
2837 		    }
2838 		  else
2839 		    {
2840 		      asection *s;
2841 		      void *vpp;
2842 		      Elf_Internal_Sym *isym;
2843 
2844 		      isym = bfd_sym_from_r_symndx (&elf_m68k_hash_table (info)->sym_cache,
2845 						    abfd, r_symndx);
2846 		      if (isym == NULL)
2847 			return FALSE;
2848 
2849 		      s = bfd_section_from_elf_index (abfd, isym->st_shndx);
2850 		      if (s == NULL)
2851 			s = sec;
2852 
2853 		      vpp = &elf_section_data (s)->local_dynrel;
2854 		      head = (struct elf_m68k_pcrel_relocs_copied **) vpp;
2855 		    }
2856 
2857 		  for (p = *head; p != NULL; p = p->next)
2858 		    if (p->section == sreloc)
2859 		      break;
2860 
2861 		  if (p == NULL)
2862 		    {
2863 		      p = ((struct elf_m68k_pcrel_relocs_copied *)
2864 			   bfd_alloc (dynobj, (bfd_size_type) sizeof *p));
2865 		      if (p == NULL)
2866 			return FALSE;
2867 		      p->next = *head;
2868 		      *head = p;
2869 		      p->section = sreloc;
2870 		      p->count = 0;
2871 		    }
2872 
2873 		  ++p->count;
2874 		}
2875 	    }
2876 
2877 	  break;
2878 
2879 	  /* This relocation describes the C++ object vtable hierarchy.
2880 	     Reconstruct it for later use during GC.  */
2881 	case R_68K_GNU_VTINHERIT:
2882 	  if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
2883 	    return FALSE;
2884 	  break;
2885 
2886 	  /* This relocation describes which C++ vtable entries are actually
2887 	     used.  Record for later use during GC.  */
2888 	case R_68K_GNU_VTENTRY:
2889 	  BFD_ASSERT (h != NULL);
2890 	  if (h != NULL
2891 	      && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend))
2892 	    return FALSE;
2893 	  break;
2894 
2895 	default:
2896 	  break;
2897 	}
2898     }
2899 
2900   return TRUE;
2901 }
2902 
2903 /* Return the section that should be marked against GC for a given
2904    relocation.  */
2905 
2906 static asection *
2907 elf_m68k_gc_mark_hook (asection *sec,
2908 		       struct bfd_link_info *info,
2909 		       Elf_Internal_Rela *rel,
2910 		       struct elf_link_hash_entry *h,
2911 		       Elf_Internal_Sym *sym)
2912 {
2913   if (h != NULL)
2914     switch (ELF32_R_TYPE (rel->r_info))
2915       {
2916       case R_68K_GNU_VTINHERIT:
2917       case R_68K_GNU_VTENTRY:
2918 	return NULL;
2919       }
2920 
2921   return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
2922 }
2923 
2924 /* Update the got entry reference counts for the section being removed.  */
2925 
2926 static bfd_boolean
2927 elf_m68k_gc_sweep_hook (bfd *abfd,
2928 			struct bfd_link_info *info,
2929 			asection *sec,
2930 			const Elf_Internal_Rela *relocs)
2931 {
2932   Elf_Internal_Shdr *symtab_hdr;
2933   struct elf_link_hash_entry **sym_hashes;
2934   const Elf_Internal_Rela *rel, *relend;
2935   bfd *dynobj;
2936   struct elf_m68k_got *got;
2937 
2938   if (info->relocatable)
2939     return TRUE;
2940 
2941   dynobj = elf_hash_table (info)->dynobj;
2942   if (dynobj == NULL)
2943     return TRUE;
2944 
2945   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2946   sym_hashes = elf_sym_hashes (abfd);
2947   got = NULL;
2948 
2949   relend = relocs + sec->reloc_count;
2950   for (rel = relocs; rel < relend; rel++)
2951     {
2952       unsigned long r_symndx;
2953       struct elf_link_hash_entry *h = NULL;
2954 
2955       r_symndx = ELF32_R_SYM (rel->r_info);
2956       if (r_symndx >= symtab_hdr->sh_info)
2957 	{
2958 	  h = sym_hashes[r_symndx - symtab_hdr->sh_info];
2959 	  while (h->root.type == bfd_link_hash_indirect
2960 		 || h->root.type == bfd_link_hash_warning)
2961 	    h = (struct elf_link_hash_entry *) h->root.u.i.link;
2962 	}
2963 
2964       switch (ELF32_R_TYPE (rel->r_info))
2965 	{
2966 	case R_68K_GOT8:
2967 	case R_68K_GOT16:
2968 	case R_68K_GOT32:
2969 	  if (h != NULL
2970 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
2971 	    break;
2972 
2973 	  /* FALLTHRU */
2974 	case R_68K_GOT8O:
2975 	case R_68K_GOT16O:
2976 	case R_68K_GOT32O:
2977 	  /* Fall through.  */
2978 
2979 	  /* TLS relocations.  */
2980 	case R_68K_TLS_GD8:
2981 	case R_68K_TLS_GD16:
2982 	case R_68K_TLS_GD32:
2983 	case R_68K_TLS_LDM8:
2984 	case R_68K_TLS_LDM16:
2985 	case R_68K_TLS_LDM32:
2986 	case R_68K_TLS_IE8:
2987 	case R_68K_TLS_IE16:
2988 	case R_68K_TLS_IE32:
2989 
2990 	case R_68K_TLS_TPREL32:
2991 	case R_68K_TLS_DTPREL32:
2992 
2993 	  if (got == NULL)
2994 	    {
2995 	      got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
2996 						abfd, MUST_FIND, NULL)->got;
2997 	      BFD_ASSERT (got != NULL);
2998 	    }
2999 
3000 	  {
3001 	    struct elf_m68k_got_entry_key key_;
3002 	    struct elf_m68k_got_entry **got_entry_ptr;
3003 	    struct elf_m68k_got_entry *got_entry;
3004 
3005 	    elf_m68k_init_got_entry_key (&key_, h, abfd, r_symndx,
3006 					 ELF32_R_TYPE (rel->r_info));
3007 	    got_entry_ptr = elf_m68k_find_got_entry_ptr (got, &key_);
3008 
3009 	    got_entry = *got_entry_ptr;
3010 
3011 	    if (got_entry->u.s1.refcount > 0)
3012 	      {
3013 		--got_entry->u.s1.refcount;
3014 
3015 		if (got_entry->u.s1.refcount == 0)
3016 		  /* We don't need the .got entry any more.  */
3017 		  elf_m68k_remove_got_entry (got, got_entry_ptr);
3018 	      }
3019 	  }
3020 	  break;
3021 
3022 	case R_68K_PLT8:
3023 	case R_68K_PLT16:
3024 	case R_68K_PLT32:
3025 	case R_68K_PLT8O:
3026 	case R_68K_PLT16O:
3027 	case R_68K_PLT32O:
3028 	case R_68K_PC8:
3029 	case R_68K_PC16:
3030 	case R_68K_PC32:
3031 	case R_68K_8:
3032 	case R_68K_16:
3033 	case R_68K_32:
3034 	  if (h != NULL)
3035 	    {
3036 	      if (h->plt.refcount > 0)
3037 		--h->plt.refcount;
3038 	    }
3039 	  break;
3040 
3041 	default:
3042 	  break;
3043 	}
3044     }
3045 
3046   return TRUE;
3047 }
3048 
3049 /* Return the type of PLT associated with OUTPUT_BFD.  */
3050 
3051 static const struct elf_m68k_plt_info *
3052 elf_m68k_get_plt_info (bfd *output_bfd)
3053 {
3054   unsigned int features;
3055 
3056   features = bfd_m68k_mach_to_features (bfd_get_mach (output_bfd));
3057   if (features & cpu32)
3058     return &elf_cpu32_plt_info;
3059   if (features & mcfisa_b)
3060     return &elf_isab_plt_info;
3061   if (features & mcfisa_c)
3062     return &elf_isac_plt_info;
3063   return &elf_m68k_plt_info;
3064 }
3065 
3066 /* This function is called after all the input files have been read,
3067    and the input sections have been assigned to output sections.
3068    It's a convenient place to determine the PLT style.  */
3069 
3070 static bfd_boolean
3071 elf_m68k_always_size_sections (bfd *output_bfd, struct bfd_link_info *info)
3072 {
3073   /* Bind input BFDs to GOTs and calculate sizes of .got and .rela.got
3074      sections.  */
3075   if (!elf_m68k_partition_multi_got (info))
3076     return FALSE;
3077 
3078   elf_m68k_hash_table (info)->plt_info = elf_m68k_get_plt_info (output_bfd);
3079   return TRUE;
3080 }
3081 
3082 /* Adjust a symbol defined by a dynamic object and referenced by a
3083    regular object.  The current definition is in some section of the
3084    dynamic object, but we're not including those sections.  We have to
3085    change the definition to something the rest of the link can
3086    understand.  */
3087 
3088 static bfd_boolean
3089 elf_m68k_adjust_dynamic_symbol (struct bfd_link_info *info,
3090 				struct elf_link_hash_entry *h)
3091 {
3092   struct elf_m68k_link_hash_table *htab;
3093   bfd *dynobj;
3094   asection *s;
3095 
3096   htab = elf_m68k_hash_table (info);
3097   dynobj = elf_hash_table (info)->dynobj;
3098 
3099   /* Make sure we know what is going on here.  */
3100   BFD_ASSERT (dynobj != NULL
3101 	      && (h->needs_plt
3102 		  || h->u.weakdef != NULL
3103 		  || (h->def_dynamic
3104 		      && h->ref_regular
3105 		      && !h->def_regular)));
3106 
3107   /* If this is a function, put it in the procedure linkage table.  We
3108      will fill in the contents of the procedure linkage table later,
3109      when we know the address of the .got section.  */
3110   if (h->type == STT_FUNC
3111       || h->needs_plt)
3112     {
3113       if ((h->plt.refcount <= 0
3114            || SYMBOL_CALLS_LOCAL (info, h)
3115 	   || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
3116 	       && h->root.type == bfd_link_hash_undefweak))
3117 	  /* We must always create the plt entry if it was referenced
3118 	     by a PLTxxO relocation.  In this case we already recorded
3119 	     it as a dynamic symbol.  */
3120 	  && h->dynindx == -1)
3121 	{
3122 	  /* This case can occur if we saw a PLTxx reloc in an input
3123 	     file, but the symbol was never referred to by a dynamic
3124 	     object, or if all references were garbage collected.  In
3125 	     such a case, we don't actually need to build a procedure
3126 	     linkage table, and we can just do a PCxx reloc instead.  */
3127 	  h->plt.offset = (bfd_vma) -1;
3128 	  h->needs_plt = 0;
3129 	  return TRUE;
3130 	}
3131 
3132       /* Make sure this symbol is output as a dynamic symbol.  */
3133       if (h->dynindx == -1
3134 	  && !h->forced_local)
3135 	{
3136 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3137 	    return FALSE;
3138 	}
3139 
3140       s = bfd_get_linker_section (dynobj, ".plt");
3141       BFD_ASSERT (s != NULL);
3142 
3143       /* If this is the first .plt entry, make room for the special
3144 	 first entry.  */
3145       if (s->size == 0)
3146 	s->size = htab->plt_info->size;
3147 
3148       /* If this symbol is not defined in a regular file, and we are
3149 	 not generating a shared library, then set the symbol to this
3150 	 location in the .plt.  This is required to make function
3151 	 pointers compare as equal between the normal executable and
3152 	 the shared library.  */
3153       if (!info->shared
3154 	  && !h->def_regular)
3155 	{
3156 	  h->root.u.def.section = s;
3157 	  h->root.u.def.value = s->size;
3158 	}
3159 
3160       h->plt.offset = s->size;
3161 
3162       /* Make room for this entry.  */
3163       s->size += htab->plt_info->size;
3164 
3165       /* We also need to make an entry in the .got.plt section, which
3166 	 will be placed in the .got section by the linker script.  */
3167       s = bfd_get_linker_section (dynobj, ".got.plt");
3168       BFD_ASSERT (s != NULL);
3169       s->size += 4;
3170 
3171       /* We also need to make an entry in the .rela.plt section.  */
3172       s = bfd_get_linker_section (dynobj, ".rela.plt");
3173       BFD_ASSERT (s != NULL);
3174       s->size += sizeof (Elf32_External_Rela);
3175 
3176       return TRUE;
3177     }
3178 
3179   /* Reinitialize the plt offset now that it is not used as a reference
3180      count any more.  */
3181   h->plt.offset = (bfd_vma) -1;
3182 
3183   /* If this is a weak symbol, and there is a real definition, the
3184      processor independent code will have arranged for us to see the
3185      real definition first, and we can just use the same value.  */
3186   if (h->u.weakdef != NULL)
3187     {
3188       BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
3189 		  || h->u.weakdef->root.type == bfd_link_hash_defweak);
3190       h->root.u.def.section = h->u.weakdef->root.u.def.section;
3191       h->root.u.def.value = h->u.weakdef->root.u.def.value;
3192       return TRUE;
3193     }
3194 
3195   /* This is a reference to a symbol defined by a dynamic object which
3196      is not a function.  */
3197 
3198   /* If we are creating a shared library, we must presume that the
3199      only references to the symbol are via the global offset table.
3200      For such cases we need not do anything here; the relocations will
3201      be handled correctly by relocate_section.  */
3202   if (info->shared)
3203     return TRUE;
3204 
3205   /* If there are no references to this symbol that do not use the
3206      GOT, we don't need to generate a copy reloc.  */
3207   if (!h->non_got_ref)
3208     return TRUE;
3209 
3210   /* We must allocate the symbol in our .dynbss section, which will
3211      become part of the .bss section of the executable.  There will be
3212      an entry for this symbol in the .dynsym section.  The dynamic
3213      object will contain position independent code, so all references
3214      from the dynamic object to this symbol will go through the global
3215      offset table.  The dynamic linker will use the .dynsym entry to
3216      determine the address it must put in the global offset table, so
3217      both the dynamic object and the regular object will refer to the
3218      same memory location for the variable.  */
3219 
3220   s = bfd_get_linker_section (dynobj, ".dynbss");
3221   BFD_ASSERT (s != NULL);
3222 
3223   /* We must generate a R_68K_COPY reloc to tell the dynamic linker to
3224      copy the initial value out of the dynamic object and into the
3225      runtime process image.  We need to remember the offset into the
3226      .rela.bss section we are going to use.  */
3227   if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
3228     {
3229       asection *srel;
3230 
3231       srel = bfd_get_linker_section (dynobj, ".rela.bss");
3232       BFD_ASSERT (srel != NULL);
3233       srel->size += sizeof (Elf32_External_Rela);
3234       h->needs_copy = 1;
3235     }
3236 
3237   return _bfd_elf_adjust_dynamic_copy (h, s);
3238 }
3239 
3240 /* Set the sizes of the dynamic sections.  */
3241 
3242 static bfd_boolean
3243 elf_m68k_size_dynamic_sections (bfd *output_bfd ATTRIBUTE_UNUSED,
3244 				struct bfd_link_info *info)
3245 {
3246   bfd *dynobj;
3247   asection *s;
3248   bfd_boolean plt;
3249   bfd_boolean relocs;
3250 
3251   dynobj = elf_hash_table (info)->dynobj;
3252   BFD_ASSERT (dynobj != NULL);
3253 
3254   if (elf_hash_table (info)->dynamic_sections_created)
3255     {
3256       /* Set the contents of the .interp section to the interpreter.  */
3257       if (info->executable)
3258 	{
3259 	  s = bfd_get_linker_section (dynobj, ".interp");
3260 	  BFD_ASSERT (s != NULL);
3261 	  s->size = sizeof ELF_DYNAMIC_INTERPRETER;
3262 	  s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
3263 	}
3264     }
3265   else
3266     {
3267       /* We may have created entries in the .rela.got section.
3268 	 However, if we are not creating the dynamic sections, we will
3269 	 not actually use these entries.  Reset the size of .rela.got,
3270 	 which will cause it to get stripped from the output file
3271 	 below.  */
3272       s = bfd_get_linker_section (dynobj, ".rela.got");
3273       if (s != NULL)
3274 	s->size = 0;
3275     }
3276 
3277   /* If this is a -Bsymbolic shared link, then we need to discard all
3278      PC relative relocs against symbols defined in a regular object.
3279      For the normal shared case we discard the PC relative relocs
3280      against symbols that have become local due to visibility changes.
3281      We allocated space for them in the check_relocs routine, but we
3282      will not fill them in in the relocate_section routine.  */
3283   if (info->shared)
3284     elf_link_hash_traverse (elf_hash_table (info),
3285 			    elf_m68k_discard_copies,
3286 			    info);
3287 
3288   /* The check_relocs and adjust_dynamic_symbol entry points have
3289      determined the sizes of the various dynamic sections.  Allocate
3290      memory for them.  */
3291   plt = FALSE;
3292   relocs = FALSE;
3293   for (s = dynobj->sections; s != NULL; s = s->next)
3294     {
3295       const char *name;
3296 
3297       if ((s->flags & SEC_LINKER_CREATED) == 0)
3298 	continue;
3299 
3300       /* It's OK to base decisions on the section name, because none
3301 	 of the dynobj section names depend upon the input files.  */
3302       name = bfd_get_section_name (dynobj, s);
3303 
3304       if (strcmp (name, ".plt") == 0)
3305 	{
3306 	  /* Remember whether there is a PLT.  */
3307 	  plt = s->size != 0;
3308 	}
3309       else if (CONST_STRNEQ (name, ".rela"))
3310 	{
3311 	  if (s->size != 0)
3312 	    {
3313 	      relocs = TRUE;
3314 
3315 	      /* We use the reloc_count field as a counter if we need
3316 		 to copy relocs into the output file.  */
3317 	      s->reloc_count = 0;
3318 	    }
3319 	}
3320       else if (! CONST_STRNEQ (name, ".got")
3321 	       && strcmp (name, ".dynbss") != 0)
3322 	{
3323 	  /* It's not one of our sections, so don't allocate space.  */
3324 	  continue;
3325 	}
3326 
3327       if (s->size == 0)
3328 	{
3329 	  /* If we don't need this section, strip it from the
3330 	     output file.  This is mostly to handle .rela.bss and
3331 	     .rela.plt.  We must create both sections in
3332 	     create_dynamic_sections, because they must be created
3333 	     before the linker maps input sections to output
3334 	     sections.  The linker does that before
3335 	     adjust_dynamic_symbol is called, and it is that
3336 	     function which decides whether anything needs to go
3337 	     into these sections.  */
3338 	  s->flags |= SEC_EXCLUDE;
3339 	  continue;
3340 	}
3341 
3342       if ((s->flags & SEC_HAS_CONTENTS) == 0)
3343 	continue;
3344 
3345       /* Allocate memory for the section contents.  */
3346       /* FIXME: This should be a call to bfd_alloc not bfd_zalloc.
3347 	 Unused entries should be reclaimed before the section's contents
3348 	 are written out, but at the moment this does not happen.  Thus in
3349 	 order to prevent writing out garbage, we initialise the section's
3350 	 contents to zero.  */
3351       s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
3352       if (s->contents == NULL)
3353 	return FALSE;
3354     }
3355 
3356   if (elf_hash_table (info)->dynamic_sections_created)
3357     {
3358       /* Add some entries to the .dynamic section.  We fill in the
3359 	 values later, in elf_m68k_finish_dynamic_sections, but we
3360 	 must add the entries now so that we get the correct size for
3361 	 the .dynamic section.  The DT_DEBUG entry is filled in by the
3362 	 dynamic linker and used by the debugger.  */
3363 #define add_dynamic_entry(TAG, VAL) \
3364   _bfd_elf_add_dynamic_entry (info, TAG, VAL)
3365 
3366       if (!info->shared)
3367 	{
3368 	  if (!add_dynamic_entry (DT_DEBUG, 0))
3369 	    return FALSE;
3370 	}
3371 
3372       if (plt)
3373 	{
3374 	  if (!add_dynamic_entry (DT_PLTGOT, 0)
3375 	      || !add_dynamic_entry (DT_PLTRELSZ, 0)
3376 	      || !add_dynamic_entry (DT_PLTREL, DT_RELA)
3377 	      || !add_dynamic_entry (DT_JMPREL, 0))
3378 	    return FALSE;
3379 	}
3380 
3381       if (relocs)
3382 	{
3383 	  if (!add_dynamic_entry (DT_RELA, 0)
3384 	      || !add_dynamic_entry (DT_RELASZ, 0)
3385 	      || !add_dynamic_entry (DT_RELAENT, sizeof (Elf32_External_Rela)))
3386 	    return FALSE;
3387 	}
3388 
3389       if ((info->flags & DF_TEXTREL) != 0)
3390 	{
3391 	  if (!add_dynamic_entry (DT_TEXTREL, 0))
3392 	    return FALSE;
3393 	}
3394     }
3395 #undef add_dynamic_entry
3396 
3397   return TRUE;
3398 }
3399 
3400 /* This function is called via elf_link_hash_traverse if we are
3401    creating a shared object.  In the -Bsymbolic case it discards the
3402    space allocated to copy PC relative relocs against symbols which
3403    are defined in regular objects.  For the normal shared case, it
3404    discards space for pc-relative relocs that have become local due to
3405    symbol visibility changes.  We allocated space for them in the
3406    check_relocs routine, but we won't fill them in in the
3407    relocate_section routine.
3408 
3409    We also check whether any of the remaining relocations apply
3410    against a readonly section, and set the DF_TEXTREL flag in this
3411    case.  */
3412 
3413 static bfd_boolean
3414 elf_m68k_discard_copies (struct elf_link_hash_entry *h,
3415 			 void * inf)
3416 {
3417   struct bfd_link_info *info = (struct bfd_link_info *) inf;
3418   struct elf_m68k_pcrel_relocs_copied *s;
3419 
3420   if (!SYMBOL_CALLS_LOCAL (info, h))
3421     {
3422       if ((info->flags & DF_TEXTREL) == 0)
3423 	{
3424 	  /* Look for relocations against read-only sections.  */
3425 	  for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3426 	       s != NULL;
3427 	       s = s->next)
3428 	    if ((s->section->flags & SEC_READONLY) != 0)
3429 	      {
3430 		info->flags |= DF_TEXTREL;
3431 		break;
3432 	      }
3433 	}
3434 
3435       /* Make sure undefined weak symbols are output as a dynamic symbol
3436 	 in PIEs.  */
3437       if (h->non_got_ref
3438 	  && h->root.type == bfd_link_hash_undefweak
3439 	  && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3440 	  && h->dynindx == -1
3441 	  && !h->forced_local)
3442 	{
3443 	  if (! bfd_elf_link_record_dynamic_symbol (info, h))
3444 	    return FALSE;
3445 	}
3446 
3447       return TRUE;
3448     }
3449 
3450   for (s = elf_m68k_hash_entry (h)->pcrel_relocs_copied;
3451        s != NULL;
3452        s = s->next)
3453     s->section->size -= s->count * sizeof (Elf32_External_Rela);
3454 
3455   return TRUE;
3456 }
3457 
3458 
3459 /* Install relocation RELA.  */
3460 
3461 static void
3462 elf_m68k_install_rela (bfd *output_bfd,
3463 		       asection *srela,
3464 		       Elf_Internal_Rela *rela)
3465 {
3466   bfd_byte *loc;
3467 
3468   loc = srela->contents;
3469   loc += srela->reloc_count++ * sizeof (Elf32_External_Rela);
3470   bfd_elf32_swap_reloca_out (output_bfd, rela, loc);
3471 }
3472 
3473 /* Find the base offsets for thread-local storage in this object,
3474    for GD/LD and IE/LE respectively.  */
3475 
3476 #define DTP_OFFSET 0x8000
3477 #define TP_OFFSET  0x7000
3478 
3479 static bfd_vma
3480 dtpoff_base (struct bfd_link_info *info)
3481 {
3482   /* If tls_sec is NULL, we should have signalled an error already.  */
3483   if (elf_hash_table (info)->tls_sec == NULL)
3484     return 0;
3485   return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
3486 }
3487 
3488 static bfd_vma
3489 tpoff_base (struct bfd_link_info *info)
3490 {
3491   /* If tls_sec is NULL, we should have signalled an error already.  */
3492   if (elf_hash_table (info)->tls_sec == NULL)
3493     return 0;
3494   return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
3495 }
3496 
3497 /* Output necessary relocation to handle a symbol during static link.
3498    This function is called from elf_m68k_relocate_section.  */
3499 
3500 static void
3501 elf_m68k_init_got_entry_static (struct bfd_link_info *info,
3502 				bfd *output_bfd,
3503 				enum elf_m68k_reloc_type r_type,
3504 				asection *sgot,
3505 				bfd_vma got_entry_offset,
3506 				bfd_vma relocation)
3507 {
3508   switch (elf_m68k_reloc_got_type (r_type))
3509     {
3510     case R_68K_GOT32O:
3511       bfd_put_32 (output_bfd, relocation, sgot->contents + got_entry_offset);
3512       break;
3513 
3514     case R_68K_TLS_GD32:
3515       /* We know the offset within the module,
3516 	 put it into the second GOT slot.  */
3517       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3518 		  sgot->contents + got_entry_offset + 4);
3519       /* FALLTHRU */
3520 
3521     case R_68K_TLS_LDM32:
3522       /* Mark it as belonging to module 1, the executable.  */
3523       bfd_put_32 (output_bfd, 1, sgot->contents + got_entry_offset);
3524       break;
3525 
3526     case R_68K_TLS_IE32:
3527       bfd_put_32 (output_bfd, relocation - tpoff_base (info),
3528 		  sgot->contents + got_entry_offset);
3529       break;
3530 
3531     default:
3532       BFD_ASSERT (FALSE);
3533     }
3534 }
3535 
3536 /* Output necessary relocation to handle a local symbol
3537    during dynamic link.
3538    This function is called either from elf_m68k_relocate_section
3539    or from elf_m68k_finish_dynamic_symbol.  */
3540 
3541 static void
3542 elf_m68k_init_got_entry_local_shared (struct bfd_link_info *info,
3543 				      bfd *output_bfd,
3544 				      enum elf_m68k_reloc_type r_type,
3545 				      asection *sgot,
3546 				      bfd_vma got_entry_offset,
3547 				      bfd_vma relocation,
3548 				      asection *srela)
3549 {
3550   Elf_Internal_Rela outrel;
3551 
3552   switch (elf_m68k_reloc_got_type (r_type))
3553     {
3554     case R_68K_GOT32O:
3555       /* Emit RELATIVE relocation to initialize GOT slot
3556 	 at run-time.  */
3557       outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
3558       outrel.r_addend = relocation;
3559       break;
3560 
3561     case R_68K_TLS_GD32:
3562       /* We know the offset within the module,
3563 	 put it into the second GOT slot.  */
3564       bfd_put_32 (output_bfd, relocation - dtpoff_base (info),
3565 		  sgot->contents + got_entry_offset + 4);
3566       /* FALLTHRU */
3567 
3568     case R_68K_TLS_LDM32:
3569       /* We don't know the module number,
3570 	 create a relocation for it.  */
3571       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_DTPMOD32);
3572       outrel.r_addend = 0;
3573       break;
3574 
3575     case R_68K_TLS_IE32:
3576       /* Emit TPREL relocation to initialize GOT slot
3577 	 at run-time.  */
3578       outrel.r_info = ELF32_R_INFO (0, R_68K_TLS_TPREL32);
3579       outrel.r_addend = relocation - elf_hash_table (info)->tls_sec->vma;
3580       break;
3581 
3582     default:
3583       BFD_ASSERT (FALSE);
3584     }
3585 
3586   /* Offset of the GOT entry.  */
3587   outrel.r_offset = (sgot->output_section->vma
3588 		     + sgot->output_offset
3589 		     + got_entry_offset);
3590 
3591   /* Install one of the above relocations.  */
3592   elf_m68k_install_rela (output_bfd, srela, &outrel);
3593 
3594   bfd_put_32 (output_bfd, outrel.r_addend, sgot->contents + got_entry_offset);
3595 }
3596 
3597 /* Relocate an M68K ELF section.  */
3598 
3599 static bfd_boolean
3600 elf_m68k_relocate_section (bfd *output_bfd,
3601 			   struct bfd_link_info *info,
3602 			   bfd *input_bfd,
3603 			   asection *input_section,
3604 			   bfd_byte *contents,
3605 			   Elf_Internal_Rela *relocs,
3606 			   Elf_Internal_Sym *local_syms,
3607 			   asection **local_sections)
3608 {
3609   bfd *dynobj;
3610   Elf_Internal_Shdr *symtab_hdr;
3611   struct elf_link_hash_entry **sym_hashes;
3612   asection *sgot;
3613   asection *splt;
3614   asection *sreloc;
3615   asection *srela;
3616   struct elf_m68k_got *got;
3617   Elf_Internal_Rela *rel;
3618   Elf_Internal_Rela *relend;
3619 
3620   dynobj = elf_hash_table (info)->dynobj;
3621   symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3622   sym_hashes = elf_sym_hashes (input_bfd);
3623 
3624   sgot = NULL;
3625   splt = NULL;
3626   sreloc = NULL;
3627   srela = NULL;
3628 
3629   got = NULL;
3630 
3631   rel = relocs;
3632   relend = relocs + input_section->reloc_count;
3633   for (; rel < relend; rel++)
3634     {
3635       int r_type;
3636       reloc_howto_type *howto;
3637       unsigned long r_symndx;
3638       struct elf_link_hash_entry *h;
3639       Elf_Internal_Sym *sym;
3640       asection *sec;
3641       bfd_vma relocation;
3642       bfd_boolean unresolved_reloc;
3643       bfd_reloc_status_type r;
3644 
3645       r_type = ELF32_R_TYPE (rel->r_info);
3646       if (r_type < 0 || r_type >= (int) R_68K_max)
3647 	{
3648 	  bfd_set_error (bfd_error_bad_value);
3649 	  return FALSE;
3650 	}
3651       howto = howto_table + r_type;
3652 
3653       r_symndx = ELF32_R_SYM (rel->r_info);
3654 
3655       h = NULL;
3656       sym = NULL;
3657       sec = NULL;
3658       unresolved_reloc = FALSE;
3659 
3660       if (r_symndx < symtab_hdr->sh_info)
3661 	{
3662 	  sym = local_syms + r_symndx;
3663 	  sec = local_sections[r_symndx];
3664 	  relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
3665 	}
3666       else
3667 	{
3668 	  bfd_boolean warned;
3669 
3670 	  RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
3671 				   r_symndx, symtab_hdr, sym_hashes,
3672 				   h, sec, relocation,
3673 				   unresolved_reloc, warned);
3674 	}
3675 
3676       if (sec != NULL && discarded_section (sec))
3677 	RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
3678 					 rel, 1, relend, howto, 0, contents);
3679 
3680       if (info->relocatable)
3681 	continue;
3682 
3683       switch (r_type)
3684 	{
3685 	case R_68K_GOT8:
3686 	case R_68K_GOT16:
3687 	case R_68K_GOT32:
3688 	  /* Relocation is to the address of the entry for this symbol
3689 	     in the global offset table.  */
3690 	  if (h != NULL
3691 	      && strcmp (h->root.root.string, "_GLOBAL_OFFSET_TABLE_") == 0)
3692 	    {
3693 	      if (elf_m68k_hash_table (info)->local_gp_p)
3694 		{
3695 		  bfd_vma sgot_output_offset;
3696 		  bfd_vma got_offset;
3697 
3698 		  if (sgot == NULL)
3699 		    {
3700 		      sgot = bfd_get_linker_section (dynobj, ".got");
3701 
3702 		      if (sgot != NULL)
3703 			sgot_output_offset = sgot->output_offset;
3704 		      else
3705 			/* In this case we have a reference to
3706 			   _GLOBAL_OFFSET_TABLE_, but the GOT itself is
3707 			   empty.
3708 			   ??? Issue a warning?  */
3709 			sgot_output_offset = 0;
3710 		    }
3711 		  else
3712 		    sgot_output_offset = sgot->output_offset;
3713 
3714 		  if (got == NULL)
3715 		    {
3716 		      struct elf_m68k_bfd2got_entry *bfd2got_entry;
3717 
3718 		      bfd2got_entry
3719 			= elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3720 						      input_bfd, SEARCH, NULL);
3721 
3722 		      if (bfd2got_entry != NULL)
3723 			{
3724 			  got = bfd2got_entry->got;
3725 			  BFD_ASSERT (got != NULL);
3726 
3727 			  got_offset = got->offset;
3728 			}
3729 		      else
3730 			/* In this case we have a reference to
3731 			   _GLOBAL_OFFSET_TABLE_, but no other references
3732 			   accessing any GOT entries.
3733 			   ??? Issue a warning?  */
3734 			got_offset = 0;
3735 		    }
3736 		  else
3737 		    got_offset = got->offset;
3738 
3739 		  /* Adjust GOT pointer to point to the GOT
3740 		     assigned to input_bfd.  */
3741 		  rel->r_addend += sgot_output_offset + got_offset;
3742 		}
3743 	      else
3744 		BFD_ASSERT (got == NULL || got->offset == 0);
3745 
3746 	      break;
3747 	    }
3748 	  /* Fall through.  */
3749 	case R_68K_GOT8O:
3750 	case R_68K_GOT16O:
3751 	case R_68K_GOT32O:
3752 
3753 	case R_68K_TLS_LDM32:
3754 	case R_68K_TLS_LDM16:
3755 	case R_68K_TLS_LDM8:
3756 
3757 	case R_68K_TLS_GD8:
3758 	case R_68K_TLS_GD16:
3759 	case R_68K_TLS_GD32:
3760 
3761 	case R_68K_TLS_IE8:
3762 	case R_68K_TLS_IE16:
3763 	case R_68K_TLS_IE32:
3764 
3765 	  /* Relocation is the offset of the entry for this symbol in
3766 	     the global offset table.  */
3767 
3768 	  {
3769 	    struct elf_m68k_got_entry_key key_;
3770 	    bfd_vma *off_ptr;
3771 	    bfd_vma off;
3772 
3773 	    if (sgot == NULL)
3774 	      {
3775 		sgot = bfd_get_linker_section (dynobj, ".got");
3776 		BFD_ASSERT (sgot != NULL);
3777 	      }
3778 
3779 	    if (got == NULL)
3780 	      {
3781 		got = elf_m68k_get_bfd2got_entry (elf_m68k_multi_got (info),
3782 						  input_bfd, MUST_FIND,
3783 						  NULL)->got;
3784 		BFD_ASSERT (got != NULL);
3785 	      }
3786 
3787 	    /* Get GOT offset for this symbol.  */
3788 	    elf_m68k_init_got_entry_key (&key_, h, input_bfd, r_symndx,
3789 					 r_type);
3790 	    off_ptr = &elf_m68k_get_got_entry (got, &key_, MUST_FIND,
3791 					       NULL)->u.s2.offset;
3792 	    off = *off_ptr;
3793 
3794 	    /* The offset must always be a multiple of 4.  We use
3795 	       the least significant bit to record whether we have
3796 	       already generated the necessary reloc.  */
3797 	    if ((off & 1) != 0)
3798 	      off &= ~1;
3799 	    else
3800 	      {
3801 		if (h != NULL
3802 		    /* @TLSLDM relocations are bounded to the module, in
3803 		       which the symbol is defined -- not to the symbol
3804 		       itself.  */
3805 		    && elf_m68k_reloc_got_type (r_type) != R_68K_TLS_LDM32)
3806 		  {
3807 		    bfd_boolean dyn;
3808 
3809 		    dyn = elf_hash_table (info)->dynamic_sections_created;
3810 		    if (!WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
3811 			|| (info->shared
3812 			    && SYMBOL_REFERENCES_LOCAL (info, h))
3813 			|| (ELF_ST_VISIBILITY (h->other)
3814 			    && h->root.type == bfd_link_hash_undefweak))
3815 		      {
3816 			/* This is actually a static link, or it is a
3817 			   -Bsymbolic link and the symbol is defined
3818 			   locally, or the symbol was forced to be local
3819 			   because of a version file.  We must initialize
3820 			   this entry in the global offset table.  Since
3821 			   the offset must always be a multiple of 4, we
3822 			   use the least significant bit to record whether
3823 			   we have initialized it already.
3824 
3825 			   When doing a dynamic link, we create a .rela.got
3826 			   relocation entry to initialize the value.  This
3827 			   is done in the finish_dynamic_symbol routine.  */
3828 
3829 			elf_m68k_init_got_entry_static (info,
3830 							output_bfd,
3831 							r_type,
3832 							sgot,
3833 							off,
3834 							relocation);
3835 
3836 			*off_ptr |= 1;
3837 		      }
3838 		    else
3839 		      unresolved_reloc = FALSE;
3840 		  }
3841 		else if (info->shared) /* && h == NULL */
3842 		  /* Process local symbol during dynamic link.  */
3843 		  {
3844 		    if (srela == NULL)
3845 		      {
3846 			srela = bfd_get_linker_section (dynobj, ".rela.got");
3847 			BFD_ASSERT (srela != NULL);
3848 		      }
3849 
3850 		    elf_m68k_init_got_entry_local_shared (info,
3851 							  output_bfd,
3852 							  r_type,
3853 							  sgot,
3854 							  off,
3855 							  relocation,
3856 							  srela);
3857 
3858 		    *off_ptr |= 1;
3859 		  }
3860 		else /* h == NULL && !info->shared */
3861 		  {
3862 		    elf_m68k_init_got_entry_static (info,
3863 						    output_bfd,
3864 						    r_type,
3865 						    sgot,
3866 						    off,
3867 						    relocation);
3868 
3869 		    *off_ptr |= 1;
3870 		  }
3871 	      }
3872 
3873 	    /* We don't use elf_m68k_reloc_got_type in the condition below
3874 	       because this is the only place where difference between
3875 	       R_68K_GOTx and R_68K_GOTxO relocations matters.  */
3876 	    if (r_type == R_68K_GOT32O
3877 		|| r_type == R_68K_GOT16O
3878 		|| r_type == R_68K_GOT8O
3879 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_GD32
3880 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_LDM32
3881 		|| elf_m68k_reloc_got_type (r_type) == R_68K_TLS_IE32)
3882 	      {
3883 		/* GOT pointer is adjusted to point to the start/middle
3884 		   of local GOT.  Adjust the offset accordingly.  */
3885 		BFD_ASSERT (elf_m68k_hash_table (info)->use_neg_got_offsets_p
3886 			    || off >= got->offset);
3887 
3888 		if (elf_m68k_hash_table (info)->local_gp_p)
3889 		  relocation = off - got->offset;
3890 		else
3891 		  {
3892 		    BFD_ASSERT (got->offset == 0);
3893 		    relocation = sgot->output_offset + off;
3894 		  }
3895 
3896 		/* This relocation does not use the addend.  */
3897 		rel->r_addend = 0;
3898 	      }
3899 	    else
3900 	      relocation = (sgot->output_section->vma + sgot->output_offset
3901 			    + off);
3902 	  }
3903 	  break;
3904 
3905 	case R_68K_TLS_LDO32:
3906 	case R_68K_TLS_LDO16:
3907 	case R_68K_TLS_LDO8:
3908 	  relocation -= dtpoff_base (info);
3909 	  break;
3910 
3911 	case R_68K_TLS_LE32:
3912 	case R_68K_TLS_LE16:
3913 	case R_68K_TLS_LE8:
3914 	  if (info->shared && !info->pie)
3915 	    {
3916 	      (*_bfd_error_handler)
3917 		(_("%B(%A+0x%lx): R_68K_TLS_LE32 relocation not permitted "
3918 		   "in shared object"),
3919 		 input_bfd, input_section, (long) rel->r_offset, howto->name);
3920 
3921 	      return FALSE;
3922 	    }
3923 	  else
3924 	    relocation -= tpoff_base (info);
3925 
3926 	  break;
3927 
3928 	case R_68K_PLT8:
3929 	case R_68K_PLT16:
3930 	case R_68K_PLT32:
3931 	  /* Relocation is to the entry for this symbol in the
3932 	     procedure linkage table.  */
3933 
3934 	  /* Resolve a PLTxx reloc against a local symbol directly,
3935 	     without using the procedure linkage table.  */
3936 	  if (h == NULL)
3937 	    break;
3938 
3939 	  if (h->plt.offset == (bfd_vma) -1
3940 	      || !elf_hash_table (info)->dynamic_sections_created)
3941 	    {
3942 	      /* We didn't make a PLT entry for this symbol.  This
3943 		 happens when statically linking PIC code, or when
3944 		 using -Bsymbolic.  */
3945 	      break;
3946 	    }
3947 
3948 	  if (splt == NULL)
3949 	    {
3950 	      splt = bfd_get_linker_section (dynobj, ".plt");
3951 	      BFD_ASSERT (splt != NULL);
3952 	    }
3953 
3954 	  relocation = (splt->output_section->vma
3955 			+ splt->output_offset
3956 			+ h->plt.offset);
3957 	  unresolved_reloc = FALSE;
3958 	  break;
3959 
3960 	case R_68K_PLT8O:
3961 	case R_68K_PLT16O:
3962 	case R_68K_PLT32O:
3963 	  /* Relocation is the offset of the entry for this symbol in
3964 	     the procedure linkage table.  */
3965 	  BFD_ASSERT (h != NULL && h->plt.offset != (bfd_vma) -1);
3966 
3967 	  if (splt == NULL)
3968 	    {
3969 	      splt = bfd_get_linker_section (dynobj, ".plt");
3970 	      BFD_ASSERT (splt != NULL);
3971 	    }
3972 
3973 	  relocation = h->plt.offset;
3974 	  unresolved_reloc = FALSE;
3975 
3976 	  /* This relocation does not use the addend.  */
3977 	  rel->r_addend = 0;
3978 
3979 	  break;
3980 
3981 	case R_68K_8:
3982 	case R_68K_16:
3983 	case R_68K_32:
3984 	case R_68K_PC8:
3985 	case R_68K_PC16:
3986 	case R_68K_PC32:
3987 	  if (info->shared
3988 	      && r_symndx != STN_UNDEF
3989 	      && (input_section->flags & SEC_ALLOC) != 0
3990 	      && (h == NULL
3991 		  || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3992 		  || h->root.type != bfd_link_hash_undefweak)
3993 	      && ((r_type != R_68K_PC8
3994 		   && r_type != R_68K_PC16
3995 		   && r_type != R_68K_PC32)
3996 		  || !SYMBOL_CALLS_LOCAL (info, h)))
3997 	    {
3998 	      Elf_Internal_Rela outrel;
3999 	      bfd_byte *loc;
4000 	      bfd_boolean skip, relocate;
4001 
4002 	      /* When generating a shared object, these relocations
4003 		 are copied into the output file to be resolved at run
4004 		 time.  */
4005 
4006 	      skip = FALSE;
4007 	      relocate = FALSE;
4008 
4009 	      outrel.r_offset =
4010 		_bfd_elf_section_offset (output_bfd, info, input_section,
4011 					 rel->r_offset);
4012 	      if (outrel.r_offset == (bfd_vma) -1)
4013 		skip = TRUE;
4014 	      else if (outrel.r_offset == (bfd_vma) -2)
4015 		skip = TRUE, relocate = TRUE;
4016 	      outrel.r_offset += (input_section->output_section->vma
4017 				  + input_section->output_offset);
4018 
4019 	      if (skip)
4020 		memset (&outrel, 0, sizeof outrel);
4021 	      else if (h != NULL
4022 		       && h->dynindx != -1
4023 		       && (r_type == R_68K_PC8
4024 			   || r_type == R_68K_PC16
4025 			   || r_type == R_68K_PC32
4026 			   || !info->shared
4027 			   || !info->symbolic
4028 			   || !h->def_regular))
4029 		{
4030 		  outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4031 		  outrel.r_addend = rel->r_addend;
4032 		}
4033 	      else
4034 		{
4035 		  /* This symbol is local, or marked to become local.  */
4036 		  outrel.r_addend = relocation + rel->r_addend;
4037 
4038 		  if (r_type == R_68K_32)
4039 		    {
4040 		      relocate = TRUE;
4041 		      outrel.r_info = ELF32_R_INFO (0, R_68K_RELATIVE);
4042 		    }
4043 		  else
4044 		    {
4045 		      long indx;
4046 
4047 		      if (bfd_is_abs_section (sec))
4048 			indx = 0;
4049 		      else if (sec == NULL || sec->owner == NULL)
4050 			{
4051 			  bfd_set_error (bfd_error_bad_value);
4052 			  return FALSE;
4053 			}
4054 		      else
4055 			{
4056 			  asection *osec;
4057 
4058 			  /* We are turning this relocation into one
4059 			     against a section symbol.  It would be
4060 			     proper to subtract the symbol's value,
4061 			     osec->vma, from the emitted reloc addend,
4062 			     but ld.so expects buggy relocs.  */
4063 			  osec = sec->output_section;
4064 			  indx = elf_section_data (osec)->dynindx;
4065 			  if (indx == 0)
4066 			    {
4067 			      struct elf_link_hash_table *htab;
4068 			      htab = elf_hash_table (info);
4069 			      osec = htab->text_index_section;
4070 			      indx = elf_section_data (osec)->dynindx;
4071 			    }
4072 			  BFD_ASSERT (indx != 0);
4073 			}
4074 
4075 		      outrel.r_info = ELF32_R_INFO (indx, r_type);
4076 		    }
4077 		}
4078 
4079 	      sreloc = elf_section_data (input_section)->sreloc;
4080 	      if (sreloc == NULL)
4081 		abort ();
4082 
4083 	      loc = sreloc->contents;
4084 	      loc += sreloc->reloc_count++ * sizeof (Elf32_External_Rela);
4085 	      bfd_elf32_swap_reloca_out (output_bfd, &outrel, loc);
4086 
4087 	      /* This reloc will be computed at runtime, so there's no
4088                  need to do anything now, except for R_68K_32
4089                  relocations that have been turned into
4090                  R_68K_RELATIVE.  */
4091 	      if (!relocate)
4092 		continue;
4093 	    }
4094 
4095 	  break;
4096 
4097 	case R_68K_GNU_VTINHERIT:
4098 	case R_68K_GNU_VTENTRY:
4099 	  /* These are no-ops in the end.  */
4100 	  continue;
4101 
4102 	default:
4103 	  break;
4104 	}
4105 
4106       /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
4107 	 because such sections are not SEC_ALLOC and thus ld.so will
4108 	 not process them.  */
4109       if (unresolved_reloc
4110 	  && !((input_section->flags & SEC_DEBUGGING) != 0
4111 	       && h->def_dynamic)
4112 	  && _bfd_elf_section_offset (output_bfd, info, input_section,
4113 				      rel->r_offset) != (bfd_vma) -1)
4114 	{
4115 	  (*_bfd_error_handler)
4116 	    (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
4117 	     input_bfd,
4118 	     input_section,
4119 	     (long) rel->r_offset,
4120 	     howto->name,
4121 	     h->root.root.string);
4122 	  return FALSE;
4123 	}
4124 
4125       if (r_symndx != STN_UNDEF
4126 	  && r_type != R_68K_NONE
4127 	  && (h == NULL
4128 	      || h->root.type == bfd_link_hash_defined
4129 	      || h->root.type == bfd_link_hash_defweak))
4130 	{
4131 	  char sym_type;
4132 
4133 	  sym_type = (sym != NULL) ? ELF32_ST_TYPE (sym->st_info) : h->type;
4134 
4135 	  if (elf_m68k_reloc_tls_p (r_type) != (sym_type == STT_TLS))
4136 	    {
4137 	      const char *name;
4138 
4139 	      if (h != NULL)
4140 		name = h->root.root.string;
4141 	      else
4142 		{
4143 		  name = (bfd_elf_string_from_elf_section
4144 			  (input_bfd, symtab_hdr->sh_link, sym->st_name));
4145 		  if (name == NULL || *name == '\0')
4146 		    name = bfd_section_name (input_bfd, sec);
4147 		}
4148 
4149 	      (*_bfd_error_handler)
4150 		((sym_type == STT_TLS
4151 		  ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
4152 		  : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
4153 		 input_bfd,
4154 		 input_section,
4155 		 (long) rel->r_offset,
4156 		 howto->name,
4157 		 name);
4158 	    }
4159 	}
4160 
4161       r = _bfd_final_link_relocate (howto, input_bfd, input_section,
4162 				    contents, rel->r_offset,
4163 				    relocation, rel->r_addend);
4164 
4165       if (r != bfd_reloc_ok)
4166 	{
4167 	  const char *name;
4168 
4169 	  if (h != NULL)
4170 	    name = h->root.root.string;
4171 	  else
4172 	    {
4173 	      name = bfd_elf_string_from_elf_section (input_bfd,
4174 						      symtab_hdr->sh_link,
4175 						      sym->st_name);
4176 	      if (name == NULL)
4177 		return FALSE;
4178 	      if (*name == '\0')
4179 		name = bfd_section_name (input_bfd, sec);
4180 	    }
4181 
4182 	  if (r == bfd_reloc_overflow)
4183 	    {
4184 	      if (!(info->callbacks->reloc_overflow
4185 		    (info, (h ? &h->root : NULL), name, howto->name,
4186 		     (bfd_vma) 0, input_bfd, input_section,
4187 		     rel->r_offset)))
4188 		return FALSE;
4189 	    }
4190 	  else
4191 	    {
4192 	      (*_bfd_error_handler)
4193 		(_("%B(%A+0x%lx): reloc against `%s': error %d"),
4194 		 input_bfd, input_section,
4195 		 (long) rel->r_offset, name, (int) r);
4196 	      return FALSE;
4197 	    }
4198 	}
4199     }
4200 
4201   return TRUE;
4202 }
4203 
4204 /* Install an M_68K_PC32 relocation against VALUE at offset OFFSET
4205    into section SEC.  */
4206 
4207 static void
4208 elf_m68k_install_pc32 (asection *sec, bfd_vma offset, bfd_vma value)
4209 {
4210   /* Make VALUE PC-relative.  */
4211   value -= sec->output_section->vma + offset;
4212 
4213   /* Apply any in-place addend.  */
4214   value += bfd_get_32 (sec->owner, sec->contents + offset);
4215 
4216   bfd_put_32 (sec->owner, value, sec->contents + offset);
4217 }
4218 
4219 /* Finish up dynamic symbol handling.  We set the contents of various
4220    dynamic sections here.  */
4221 
4222 static bfd_boolean
4223 elf_m68k_finish_dynamic_symbol (bfd *output_bfd,
4224 				struct bfd_link_info *info,
4225 				struct elf_link_hash_entry *h,
4226 				Elf_Internal_Sym *sym)
4227 {
4228   bfd *dynobj;
4229 
4230   dynobj = elf_hash_table (info)->dynobj;
4231 
4232   if (h->plt.offset != (bfd_vma) -1)
4233     {
4234       const struct elf_m68k_plt_info *plt_info;
4235       asection *splt;
4236       asection *sgot;
4237       asection *srela;
4238       bfd_vma plt_index;
4239       bfd_vma got_offset;
4240       Elf_Internal_Rela rela;
4241       bfd_byte *loc;
4242 
4243       /* This symbol has an entry in the procedure linkage table.  Set
4244 	 it up.  */
4245 
4246       BFD_ASSERT (h->dynindx != -1);
4247 
4248       plt_info = elf_m68k_hash_table (info)->plt_info;
4249       splt = bfd_get_linker_section (dynobj, ".plt");
4250       sgot = bfd_get_linker_section (dynobj, ".got.plt");
4251       srela = bfd_get_linker_section (dynobj, ".rela.plt");
4252       BFD_ASSERT (splt != NULL && sgot != NULL && srela != NULL);
4253 
4254       /* Get the index in the procedure linkage table which
4255 	 corresponds to this symbol.  This is the index of this symbol
4256 	 in all the symbols for which we are making plt entries.  The
4257 	 first entry in the procedure linkage table is reserved.  */
4258       plt_index = (h->plt.offset / plt_info->size) - 1;
4259 
4260       /* Get the offset into the .got table of the entry that
4261 	 corresponds to this function.  Each .got entry is 4 bytes.
4262 	 The first three are reserved.  */
4263       got_offset = (plt_index + 3) * 4;
4264 
4265       memcpy (splt->contents + h->plt.offset,
4266 	      plt_info->symbol_entry,
4267 	      plt_info->size);
4268 
4269       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.got,
4270 			     (sgot->output_section->vma
4271 			      + sgot->output_offset
4272 			      + got_offset));
4273 
4274       bfd_put_32 (output_bfd, plt_index * sizeof (Elf32_External_Rela),
4275 		  splt->contents
4276 		  + h->plt.offset
4277 		  + plt_info->symbol_resolve_entry + 2);
4278 
4279       elf_m68k_install_pc32 (splt, h->plt.offset + plt_info->symbol_relocs.plt,
4280 			     splt->output_section->vma);
4281 
4282       /* Fill in the entry in the global offset table.  */
4283       bfd_put_32 (output_bfd,
4284 		  (splt->output_section->vma
4285 		   + splt->output_offset
4286 		   + h->plt.offset
4287 		   + plt_info->symbol_resolve_entry),
4288 		  sgot->contents + got_offset);
4289 
4290       /* Fill in the entry in the .rela.plt section.  */
4291       rela.r_offset = (sgot->output_section->vma
4292 		       + sgot->output_offset
4293 		       + got_offset);
4294       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_JMP_SLOT);
4295       rela.r_addend = 0;
4296       loc = srela->contents + plt_index * sizeof (Elf32_External_Rela);
4297       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4298 
4299       if (!h->def_regular)
4300 	{
4301 	  /* Mark the symbol as undefined, rather than as defined in
4302 	     the .plt section.  Leave the value alone.  */
4303 	  sym->st_shndx = SHN_UNDEF;
4304 	}
4305     }
4306 
4307   if (elf_m68k_hash_entry (h)->glist != NULL)
4308     {
4309       asection *sgot;
4310       asection *srela;
4311       struct elf_m68k_got_entry *got_entry;
4312 
4313       /* This symbol has an entry in the global offset table.  Set it
4314 	 up.  */
4315 
4316       sgot = bfd_get_linker_section (dynobj, ".got");
4317       srela = bfd_get_linker_section (dynobj, ".rela.got");
4318       BFD_ASSERT (sgot != NULL && srela != NULL);
4319 
4320       got_entry = elf_m68k_hash_entry (h)->glist;
4321 
4322       while (got_entry != NULL)
4323 	{
4324 	  enum elf_m68k_reloc_type r_type;
4325 	  bfd_vma got_entry_offset;
4326 
4327 	  r_type = got_entry->key_.type;
4328 	  got_entry_offset = got_entry->u.s2.offset &~ (bfd_vma) 1;
4329 
4330 	  /* If this is a -Bsymbolic link, and the symbol is defined
4331 	     locally, we just want to emit a RELATIVE reloc.  Likewise if
4332 	     the symbol was forced to be local because of a version file.
4333 	     The entry in the global offset table already have been
4334 	     initialized in the relocate_section function.  */
4335 	  if (info->shared
4336 	      && SYMBOL_REFERENCES_LOCAL (info, h))
4337 	    {
4338 	      bfd_vma relocation;
4339 
4340 	      relocation = bfd_get_signed_32 (output_bfd,
4341 					      (sgot->contents
4342 					       + got_entry_offset));
4343 
4344 	      /* Undo TP bias.  */
4345 	      switch (elf_m68k_reloc_got_type (r_type))
4346 		{
4347 		case R_68K_GOT32O:
4348 		case R_68K_TLS_LDM32:
4349 		  break;
4350 
4351 		case R_68K_TLS_GD32:
4352 		  /* The value for this relocation is actually put in
4353 		     the second GOT slot.  */
4354 		  relocation = bfd_get_signed_32 (output_bfd,
4355 						  (sgot->contents
4356 						   + got_entry_offset + 4));
4357 		  relocation += dtpoff_base (info);
4358 		  break;
4359 
4360 		case R_68K_TLS_IE32:
4361 		  relocation += tpoff_base (info);
4362 		  break;
4363 
4364 		default:
4365 		  BFD_ASSERT (FALSE);
4366 		}
4367 
4368 	      elf_m68k_init_got_entry_local_shared (info,
4369 						    output_bfd,
4370 						    r_type,
4371 						    sgot,
4372 						    got_entry_offset,
4373 						    relocation,
4374 						    srela);
4375 	    }
4376 	  else
4377 	    {
4378 	      Elf_Internal_Rela rela;
4379 
4380 	      /* Put zeros to GOT slots that will be initialized
4381 		 at run-time.  */
4382 	      {
4383 		bfd_vma n_slots;
4384 
4385 		n_slots = elf_m68k_reloc_got_n_slots (got_entry->key_.type);
4386 		while (n_slots--)
4387 		  bfd_put_32 (output_bfd, (bfd_vma) 0,
4388 			      (sgot->contents + got_entry_offset
4389 			       + 4 * n_slots));
4390 	      }
4391 
4392 	      rela.r_addend = 0;
4393 	      rela.r_offset = (sgot->output_section->vma
4394 			       + sgot->output_offset
4395 			       + got_entry_offset);
4396 
4397 	      switch (elf_m68k_reloc_got_type (r_type))
4398 		{
4399 		case R_68K_GOT32O:
4400 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_GLOB_DAT);
4401 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4402 		  break;
4403 
4404 		case R_68K_TLS_GD32:
4405 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPMOD32);
4406 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4407 
4408 		  rela.r_offset += 4;
4409 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_DTPREL32);
4410 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4411 		  break;
4412 
4413 		case R_68K_TLS_IE32:
4414 		  rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_TLS_TPREL32);
4415 		  elf_m68k_install_rela (output_bfd, srela, &rela);
4416 		  break;
4417 
4418 		default:
4419 		  BFD_ASSERT (FALSE);
4420 		  break;
4421 		}
4422 	    }
4423 
4424 	  got_entry = got_entry->u.s2.next;
4425 	}
4426     }
4427 
4428   if (h->needs_copy)
4429     {
4430       asection *s;
4431       Elf_Internal_Rela rela;
4432       bfd_byte *loc;
4433 
4434       /* This symbol needs a copy reloc.  Set it up.  */
4435 
4436       BFD_ASSERT (h->dynindx != -1
4437 		  && (h->root.type == bfd_link_hash_defined
4438 		      || h->root.type == bfd_link_hash_defweak));
4439 
4440       s = bfd_get_linker_section (dynobj, ".rela.bss");
4441       BFD_ASSERT (s != NULL);
4442 
4443       rela.r_offset = (h->root.u.def.value
4444 		       + h->root.u.def.section->output_section->vma
4445 		       + h->root.u.def.section->output_offset);
4446       rela.r_info = ELF32_R_INFO (h->dynindx, R_68K_COPY);
4447       rela.r_addend = 0;
4448       loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
4449       bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
4450     }
4451 
4452   return TRUE;
4453 }
4454 
4455 /* Finish up the dynamic sections.  */
4456 
4457 static bfd_boolean
4458 elf_m68k_finish_dynamic_sections (bfd *output_bfd, struct bfd_link_info *info)
4459 {
4460   bfd *dynobj;
4461   asection *sgot;
4462   asection *sdyn;
4463 
4464   dynobj = elf_hash_table (info)->dynobj;
4465 
4466   sgot = bfd_get_linker_section (dynobj, ".got.plt");
4467   BFD_ASSERT (sgot != NULL);
4468   sdyn = bfd_get_linker_section (dynobj, ".dynamic");
4469 
4470   if (elf_hash_table (info)->dynamic_sections_created)
4471     {
4472       asection *splt;
4473       Elf32_External_Dyn *dyncon, *dynconend;
4474 
4475       splt = bfd_get_linker_section (dynobj, ".plt");
4476       BFD_ASSERT (splt != NULL && sdyn != NULL);
4477 
4478       dyncon = (Elf32_External_Dyn *) sdyn->contents;
4479       dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
4480       for (; dyncon < dynconend; dyncon++)
4481 	{
4482 	  Elf_Internal_Dyn dyn;
4483 	  const char *name;
4484 	  asection *s;
4485 
4486 	  bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
4487 
4488 	  switch (dyn.d_tag)
4489 	    {
4490 	    default:
4491 	      break;
4492 
4493 	    case DT_PLTGOT:
4494 	      name = ".got";
4495 	      goto get_vma;
4496 	    case DT_JMPREL:
4497 	      name = ".rela.plt";
4498 	    get_vma:
4499 	      s = bfd_get_section_by_name (output_bfd, name);
4500 	      BFD_ASSERT (s != NULL);
4501 	      dyn.d_un.d_ptr = s->vma;
4502 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4503 	      break;
4504 
4505 	    case DT_PLTRELSZ:
4506 	      s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4507 	      BFD_ASSERT (s != NULL);
4508 	      dyn.d_un.d_val = s->size;
4509 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4510 	      break;
4511 
4512 	    case DT_RELASZ:
4513 	      /* The procedure linkage table relocs (DT_JMPREL) should
4514 		 not be included in the overall relocs (DT_RELA).
4515 		 Therefore, we override the DT_RELASZ entry here to
4516 		 make it not include the JMPREL relocs.  Since the
4517 		 linker script arranges for .rela.plt to follow all
4518 		 other relocation sections, we don't have to worry
4519 		 about changing the DT_RELA entry.  */
4520 	      s = bfd_get_section_by_name (output_bfd, ".rela.plt");
4521 	      if (s != NULL)
4522 		dyn.d_un.d_val -= s->size;
4523 	      bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
4524 	      break;
4525 	    }
4526 	}
4527 
4528       /* Fill in the first entry in the procedure linkage table.  */
4529       if (splt->size > 0)
4530 	{
4531 	  const struct elf_m68k_plt_info *plt_info;
4532 
4533 	  plt_info = elf_m68k_hash_table (info)->plt_info;
4534 	  memcpy (splt->contents, plt_info->plt0_entry, plt_info->size);
4535 
4536 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got4,
4537 				 (sgot->output_section->vma
4538 				  + sgot->output_offset
4539 				  + 4));
4540 
4541 	  elf_m68k_install_pc32 (splt, plt_info->plt0_relocs.got8,
4542 				 (sgot->output_section->vma
4543 				  + sgot->output_offset
4544 				  + 8));
4545 
4546 	  elf_section_data (splt->output_section)->this_hdr.sh_entsize
4547 	    = plt_info->size;
4548 	}
4549     }
4550 
4551   /* Fill in the first three entries in the global offset table.  */
4552   if (sgot->size > 0)
4553     {
4554       if (sdyn == NULL)
4555 	bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
4556       else
4557 	bfd_put_32 (output_bfd,
4558 		    sdyn->output_section->vma + sdyn->output_offset,
4559 		    sgot->contents);
4560       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
4561       bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
4562     }
4563 
4564   elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
4565 
4566   return TRUE;
4567 }
4568 
4569 /* Given a .data section and a .emreloc in-memory section, store
4570    relocation information into the .emreloc section which can be
4571    used at runtime to relocate the section.  This is called by the
4572    linker when the --embedded-relocs switch is used.  This is called
4573    after the add_symbols entry point has been called for all the
4574    objects, and before the final_link entry point is called.  */
4575 
4576 bfd_boolean
4577 bfd_m68k_elf32_create_embedded_relocs (abfd, info, datasec, relsec, errmsg)
4578      bfd *abfd;
4579      struct bfd_link_info *info;
4580      asection *datasec;
4581      asection *relsec;
4582      char **errmsg;
4583 {
4584   Elf_Internal_Shdr *symtab_hdr;
4585   Elf_Internal_Sym *isymbuf = NULL;
4586   Elf_Internal_Rela *internal_relocs = NULL;
4587   Elf_Internal_Rela *irel, *irelend;
4588   bfd_byte *p;
4589   bfd_size_type amt;
4590 
4591   BFD_ASSERT (! info->relocatable);
4592 
4593   *errmsg = NULL;
4594 
4595   if (datasec->reloc_count == 0)
4596     return TRUE;
4597 
4598   symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
4599 
4600   /* Get a copy of the native relocations.  */
4601   internal_relocs = (_bfd_elf_link_read_relocs
4602 		     (abfd, datasec, NULL, (Elf_Internal_Rela *) NULL,
4603 		      info->keep_memory));
4604   if (internal_relocs == NULL)
4605     goto error_return;
4606 
4607   amt = (bfd_size_type) datasec->reloc_count * 12;
4608   relsec->contents = (bfd_byte *) bfd_alloc (abfd, amt);
4609   if (relsec->contents == NULL)
4610     goto error_return;
4611 
4612   p = relsec->contents;
4613 
4614   irelend = internal_relocs + datasec->reloc_count;
4615   for (irel = internal_relocs; irel < irelend; irel++, p += 12)
4616     {
4617       asection *targetsec;
4618 
4619       /* We are going to write a four byte longword into the runtime
4620        reloc section.  The longword will be the address in the data
4621        section which must be relocated.  It is followed by the name
4622        of the target section NUL-padded or truncated to 8
4623        characters.  */
4624 
4625       /* We can only relocate absolute longword relocs at run time.  */
4626       if (ELF32_R_TYPE (irel->r_info) != (int) R_68K_32)
4627 	{
4628 	  *errmsg = _("unsupported reloc type");
4629 	  bfd_set_error (bfd_error_bad_value);
4630 	  goto error_return;
4631 	}
4632 
4633       /* Get the target section referred to by the reloc.  */
4634       if (ELF32_R_SYM (irel->r_info) < symtab_hdr->sh_info)
4635 	{
4636 	  /* A local symbol.  */
4637 	  Elf_Internal_Sym *isym;
4638 
4639 	  /* Read this BFD's local symbols if we haven't done so already.  */
4640 	  if (isymbuf == NULL)
4641 	    {
4642 	      isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
4643 	      if (isymbuf == NULL)
4644 		isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
4645 						symtab_hdr->sh_info, 0,
4646 						NULL, NULL, NULL);
4647 	      if (isymbuf == NULL)
4648 		goto error_return;
4649 	    }
4650 
4651 	  isym = isymbuf + ELF32_R_SYM (irel->r_info);
4652 	  targetsec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4653 	}
4654       else
4655 	{
4656 	  unsigned long indx;
4657 	  struct elf_link_hash_entry *h;
4658 
4659 	  /* An external symbol.  */
4660 	  indx = ELF32_R_SYM (irel->r_info) - symtab_hdr->sh_info;
4661 	  h = elf_sym_hashes (abfd)[indx];
4662 	  BFD_ASSERT (h != NULL);
4663 	  if (h->root.type == bfd_link_hash_defined
4664 	      || h->root.type == bfd_link_hash_defweak)
4665 	    targetsec = h->root.u.def.section;
4666 	  else
4667 	    targetsec = NULL;
4668 	}
4669 
4670       bfd_put_32 (abfd, irel->r_offset + datasec->output_offset, p);
4671       memset (p + 4, 0, 8);
4672       if (targetsec != NULL)
4673 	strncpy ((char *) p + 4, targetsec->output_section->name, 8);
4674     }
4675 
4676   if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4677     free (isymbuf);
4678   if (internal_relocs != NULL
4679       && elf_section_data (datasec)->relocs != internal_relocs)
4680     free (internal_relocs);
4681   return TRUE;
4682 
4683 error_return:
4684   if (isymbuf != NULL && symtab_hdr->contents != (unsigned char *) isymbuf)
4685     free (isymbuf);
4686   if (internal_relocs != NULL
4687       && elf_section_data (datasec)->relocs != internal_relocs)
4688     free (internal_relocs);
4689   return FALSE;
4690 }
4691 
4692 /* Set target options.  */
4693 
4694 void
4695 bfd_elf_m68k_set_target_options (struct bfd_link_info *info, int got_handling)
4696 {
4697   struct elf_m68k_link_hash_table *htab;
4698   bfd_boolean use_neg_got_offsets_p;
4699   bfd_boolean allow_multigot_p;
4700   bfd_boolean local_gp_p;
4701 
4702   switch (got_handling)
4703     {
4704     case 0:
4705       /* --got=single.  */
4706       local_gp_p = FALSE;
4707       use_neg_got_offsets_p = FALSE;
4708       allow_multigot_p = FALSE;
4709       break;
4710 
4711     case 1:
4712       /* --got=negative.  */
4713       local_gp_p = TRUE;
4714       use_neg_got_offsets_p = TRUE;
4715       allow_multigot_p = FALSE;
4716       break;
4717 
4718     case 2:
4719       /* --got=multigot.  */
4720       local_gp_p = TRUE;
4721       use_neg_got_offsets_p = TRUE;
4722       allow_multigot_p = TRUE;
4723       break;
4724 
4725     default:
4726       BFD_ASSERT (FALSE);
4727       return;
4728     }
4729 
4730   htab = elf_m68k_hash_table (info);
4731   if (htab != NULL)
4732     {
4733       htab->local_gp_p = local_gp_p;
4734       htab->use_neg_got_offsets_p = use_neg_got_offsets_p;
4735       htab->allow_multigot_p = allow_multigot_p;
4736     }
4737 }
4738 
4739 static enum elf_reloc_type_class
4740 elf32_m68k_reloc_type_class (const Elf_Internal_Rela *rela)
4741 {
4742   switch ((int) ELF32_R_TYPE (rela->r_info))
4743     {
4744     case R_68K_RELATIVE:
4745       return reloc_class_relative;
4746     case R_68K_JMP_SLOT:
4747       return reloc_class_plt;
4748     case R_68K_COPY:
4749       return reloc_class_copy;
4750     default:
4751       return reloc_class_normal;
4752     }
4753 }
4754 
4755 /* Return address for Ith PLT stub in section PLT, for relocation REL
4756    or (bfd_vma) -1 if it should not be included.  */
4757 
4758 static bfd_vma
4759 elf_m68k_plt_sym_val (bfd_vma i, const asection *plt,
4760 		      const arelent *rel ATTRIBUTE_UNUSED)
4761 {
4762   return plt->vma + (i + 1) * elf_m68k_get_plt_info (plt->owner)->size;
4763 }
4764 
4765 /* Support for core dump NOTE sections.  */
4766 
4767 static bfd_boolean
4768 elf_m68k_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
4769 {
4770   int offset;
4771   size_t size;
4772 
4773   switch (note->descsz)
4774     {
4775     default:
4776       return FALSE;
4777 
4778     case 154:		/* Linux/m68k */
4779       /* pr_cursig */
4780       elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
4781 
4782       /* pr_pid */
4783       elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 22);
4784 
4785       /* pr_reg */
4786       offset = 70;
4787       size = 80;
4788 
4789       break;
4790     }
4791 
4792   /* Make a ".reg/999" section.  */
4793   return _bfd_elfcore_make_pseudosection (abfd, ".reg",
4794 					  size, note->descpos + offset);
4795 }
4796 
4797 static bfd_boolean
4798 elf_m68k_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
4799 {
4800   switch (note->descsz)
4801     {
4802     default:
4803       return FALSE;
4804 
4805     case 124:		/* Linux/m68k elf_prpsinfo.  */
4806       elf_tdata (abfd)->core->pid
4807 	= bfd_get_32 (abfd, note->descdata + 12);
4808       elf_tdata (abfd)->core->program
4809 	= _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
4810       elf_tdata (abfd)->core->command
4811 	= _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
4812     }
4813 
4814   /* Note that for some reason, a spurious space is tacked
4815      onto the end of the args in some (at least one anyway)
4816      implementations, so strip it off if it exists.  */
4817   {
4818     char *command = elf_tdata (abfd)->core->command;
4819     int n = strlen (command);
4820 
4821     if (n > 0 && command[n - 1] == ' ')
4822       command[n - 1] = '\0';
4823   }
4824 
4825   return TRUE;
4826 }
4827 
4828 #define TARGET_BIG_SYM			bfd_elf32_m68k_vec
4829 #define TARGET_BIG_NAME			"elf32-m68k"
4830 #define ELF_MACHINE_CODE		EM_68K
4831 #define ELF_MAXPAGESIZE			0x2000
4832 #define elf_backend_create_dynamic_sections \
4833 					_bfd_elf_create_dynamic_sections
4834 #define bfd_elf32_bfd_link_hash_table_create \
4835 					elf_m68k_link_hash_table_create
4836 /* ??? Should it be this macro or bfd_elfNN_bfd_link_hash_table_create?  */
4837 #define bfd_elf32_bfd_link_hash_table_free \
4838 					elf_m68k_link_hash_table_free
4839 #define bfd_elf32_bfd_final_link	bfd_elf_final_link
4840 
4841 #define elf_backend_check_relocs	elf_m68k_check_relocs
4842 #define elf_backend_always_size_sections \
4843 					elf_m68k_always_size_sections
4844 #define elf_backend_adjust_dynamic_symbol \
4845 					elf_m68k_adjust_dynamic_symbol
4846 #define elf_backend_size_dynamic_sections \
4847 					elf_m68k_size_dynamic_sections
4848 #define elf_backend_final_write_processing	elf_m68k_final_write_processing
4849 #define elf_backend_init_index_section	_bfd_elf_init_1_index_section
4850 #define elf_backend_relocate_section	elf_m68k_relocate_section
4851 #define elf_backend_finish_dynamic_symbol \
4852 					elf_m68k_finish_dynamic_symbol
4853 #define elf_backend_finish_dynamic_sections \
4854 					elf_m68k_finish_dynamic_sections
4855 #define elf_backend_gc_mark_hook	elf_m68k_gc_mark_hook
4856 #define elf_backend_gc_sweep_hook	elf_m68k_gc_sweep_hook
4857 #define elf_backend_copy_indirect_symbol elf_m68k_copy_indirect_symbol
4858 #define bfd_elf32_bfd_merge_private_bfd_data \
4859                                         elf32_m68k_merge_private_bfd_data
4860 #define bfd_elf32_bfd_set_private_flags \
4861                                         elf32_m68k_set_private_flags
4862 #define bfd_elf32_bfd_print_private_bfd_data \
4863                                         elf32_m68k_print_private_bfd_data
4864 #define elf_backend_reloc_type_class	elf32_m68k_reloc_type_class
4865 #define elf_backend_plt_sym_val		elf_m68k_plt_sym_val
4866 #define elf_backend_object_p		elf32_m68k_object_p
4867 #define elf_backend_grok_prstatus	elf_m68k_grok_prstatus
4868 #define elf_backend_grok_psinfo		elf_m68k_grok_psinfo
4869 
4870 #define elf_backend_can_gc_sections 1
4871 #define elf_backend_can_refcount 1
4872 #define elf_backend_want_got_plt 1
4873 #define elf_backend_plt_readonly 1
4874 #define elf_backend_want_plt_sym 0
4875 #define elf_backend_got_header_size	12
4876 #define elf_backend_rela_normal		1
4877 
4878 #include "elf32-target.h"
4879