1 /* Motorola 68HC11/HC12-specific support for 32-bit ELF 2 Copyright (C) 1999-2019 Free Software Foundation, Inc. 3 Contributed by Stephane Carrez (stcarrez@nerim.fr) 4 5 This file is part of BFD, the Binary File Descriptor library. 6 7 This program is free software; you can redistribute it and/or modify 8 it under the terms of the GNU General Public License as published by 9 the Free Software Foundation; either version 3 of the License, or 10 (at your option) any later version. 11 12 This program is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 GNU General Public License for more details. 16 17 You should have received a copy of the GNU General Public License 18 along with this program; if not, write to the Free Software 19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, 20 MA 02110-1301, USA. */ 21 22 #include "sysdep.h" 23 #include "alloca-conf.h" 24 #include "bfd.h" 25 #include "bfdlink.h" 26 #include "libbfd.h" 27 #include "elf-bfd.h" 28 #include "elf32-m68hc1x.h" 29 #include "elf/m68hc11.h" 30 #include "opcode/m68hc11.h" 31 #include "libiberty.h" 32 33 #define m68hc12_stub_hash_lookup(table, string, create, copy) \ 34 ((struct elf32_m68hc11_stub_hash_entry *) \ 35 bfd_hash_lookup ((table), (string), (create), (copy))) 36 37 static struct elf32_m68hc11_stub_hash_entry* m68hc12_add_stub 38 (const char *stub_name, 39 asection *section, 40 struct m68hc11_elf_link_hash_table *htab); 41 42 static struct bfd_hash_entry *stub_hash_newfunc 43 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *); 44 45 static void m68hc11_elf_set_symbol (bfd* abfd, struct bfd_link_info *info, 46 const char* name, bfd_vma value, 47 asection* sec); 48 49 static bfd_boolean m68hc11_elf_export_one_stub 50 (struct bfd_hash_entry *gen_entry, void *in_arg); 51 52 static void scan_sections_for_abi (bfd*, asection*, void *); 53 54 struct m68hc11_scan_param 55 { 56 struct m68hc11_page_info* pinfo; 57 bfd_boolean use_memory_banks; 58 }; 59 60 61 /* Destroy a 68HC11/68HC12 ELF linker hash table. */ 62 63 static void 64 m68hc11_elf_bfd_link_hash_table_free (bfd *obfd) 65 { 66 struct m68hc11_elf_link_hash_table *ret 67 = (struct m68hc11_elf_link_hash_table *) obfd->link.hash; 68 69 bfd_hash_table_free (ret->stub_hash_table); 70 free (ret->stub_hash_table); 71 _bfd_elf_link_hash_table_free (obfd); 72 } 73 74 /* Create a 68HC11/68HC12 ELF linker hash table. */ 75 76 struct m68hc11_elf_link_hash_table* 77 m68hc11_elf_hash_table_create (bfd *abfd) 78 { 79 struct m68hc11_elf_link_hash_table *ret; 80 bfd_size_type amt = sizeof (struct m68hc11_elf_link_hash_table); 81 82 ret = (struct m68hc11_elf_link_hash_table *) bfd_zmalloc (amt); 83 if (ret == (struct m68hc11_elf_link_hash_table *) NULL) 84 return NULL; 85 86 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd, 87 _bfd_elf_link_hash_newfunc, 88 sizeof (struct elf_link_hash_entry), 89 M68HC11_ELF_DATA)) 90 { 91 free (ret); 92 return NULL; 93 } 94 95 /* Init the stub hash table too. */ 96 amt = sizeof (struct bfd_hash_table); 97 ret->stub_hash_table = (struct bfd_hash_table*) bfd_malloc (amt); 98 if (ret->stub_hash_table == NULL) 99 { 100 _bfd_elf_link_hash_table_free (abfd); 101 return NULL; 102 } 103 if (!bfd_hash_table_init (ret->stub_hash_table, stub_hash_newfunc, 104 sizeof (struct elf32_m68hc11_stub_hash_entry))) 105 { 106 free (ret->stub_hash_table); 107 _bfd_elf_link_hash_table_free (abfd); 108 return NULL; 109 } 110 ret->root.root.hash_table_free = m68hc11_elf_bfd_link_hash_table_free; 111 112 return ret; 113 } 114 115 /* Assorted hash table functions. */ 116 117 /* Initialize an entry in the stub hash table. */ 118 119 static struct bfd_hash_entry * 120 stub_hash_newfunc (struct bfd_hash_entry *entry, struct bfd_hash_table *table, 121 const char *string) 122 { 123 /* Allocate the structure if it has not already been allocated by a 124 subclass. */ 125 if (entry == NULL) 126 { 127 entry = bfd_hash_allocate (table, 128 sizeof (struct elf32_m68hc11_stub_hash_entry)); 129 if (entry == NULL) 130 return entry; 131 } 132 133 /* Call the allocation method of the superclass. */ 134 entry = bfd_hash_newfunc (entry, table, string); 135 if (entry != NULL) 136 { 137 struct elf32_m68hc11_stub_hash_entry *eh; 138 139 /* Initialize the local fields. */ 140 eh = (struct elf32_m68hc11_stub_hash_entry *) entry; 141 eh->stub_sec = NULL; 142 eh->stub_offset = 0; 143 eh->target_value = 0; 144 eh->target_section = NULL; 145 } 146 147 return entry; 148 } 149 150 /* Add a new stub entry to the stub hash. Not all fields of the new 151 stub entry are initialised. */ 152 153 static struct elf32_m68hc11_stub_hash_entry * 154 m68hc12_add_stub (const char *stub_name, asection *section, 155 struct m68hc11_elf_link_hash_table *htab) 156 { 157 struct elf32_m68hc11_stub_hash_entry *stub_entry; 158 159 /* Enter this entry into the linker stub hash table. */ 160 stub_entry = m68hc12_stub_hash_lookup (htab->stub_hash_table, stub_name, 161 TRUE, FALSE); 162 if (stub_entry == NULL) 163 { 164 /* xgettext:c-format */ 165 _bfd_error_handler (_("%pB: cannot create stub entry %s"), 166 section->owner, stub_name); 167 return NULL; 168 } 169 170 if (htab->stub_section == 0) 171 { 172 htab->stub_section = (*htab->add_stub_section) (".tramp", 173 htab->tramp_section); 174 } 175 176 stub_entry->stub_sec = htab->stub_section; 177 stub_entry->stub_offset = 0; 178 return stub_entry; 179 } 180 181 /* Hook called by the linker routine which adds symbols from an object 182 file. We use it for identify far symbols and force a loading of 183 the trampoline handler. */ 184 185 bfd_boolean 186 elf32_m68hc11_add_symbol_hook (bfd *abfd, struct bfd_link_info *info, 187 Elf_Internal_Sym *sym, 188 const char **namep ATTRIBUTE_UNUSED, 189 flagword *flagsp ATTRIBUTE_UNUSED, 190 asection **secp ATTRIBUTE_UNUSED, 191 bfd_vma *valp ATTRIBUTE_UNUSED) 192 { 193 if (sym->st_other & STO_M68HC12_FAR) 194 { 195 struct elf_link_hash_entry *h; 196 197 h = (struct elf_link_hash_entry *) 198 bfd_link_hash_lookup (info->hash, "__far_trampoline", 199 FALSE, FALSE, FALSE); 200 if (h == NULL) 201 { 202 struct bfd_link_hash_entry* entry = NULL; 203 204 _bfd_generic_link_add_one_symbol (info, abfd, 205 "__far_trampoline", 206 BSF_GLOBAL, 207 bfd_und_section_ptr, 208 (bfd_vma) 0, (const char*) NULL, 209 FALSE, FALSE, &entry); 210 } 211 212 } 213 return TRUE; 214 } 215 216 /* Merge non-visibility st_other attributes, STO_M68HC12_FAR and 217 STO_M68HC12_INTERRUPT. */ 218 219 void 220 elf32_m68hc11_merge_symbol_attribute (struct elf_link_hash_entry *h, 221 const Elf_Internal_Sym *isym, 222 bfd_boolean definition, 223 bfd_boolean dynamic ATTRIBUTE_UNUSED) 224 { 225 if (definition) 226 h->other = ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) 227 | ELF_ST_VISIBILITY (h->other)); 228 } 229 230 /* External entry points for sizing and building linker stubs. */ 231 232 /* Set up various things so that we can make a list of input sections 233 for each output section included in the link. Returns -1 on error, 234 0 when no stubs will be needed, and 1 on success. */ 235 236 int 237 elf32_m68hc11_setup_section_lists (bfd *output_bfd, struct bfd_link_info *info) 238 { 239 bfd *input_bfd; 240 unsigned int bfd_count; 241 unsigned int top_id, top_index; 242 asection *section; 243 asection **input_list, **list; 244 bfd_size_type amt; 245 asection *text_section; 246 struct m68hc11_elf_link_hash_table *htab; 247 248 htab = m68hc11_elf_hash_table (info); 249 if (htab == NULL) 250 return -1; 251 252 if (bfd_get_flavour (info->output_bfd) != bfd_target_elf_flavour) 253 return 0; 254 255 /* Count the number of input BFDs and find the top input section id. 256 Also search for an existing ".tramp" section so that we know 257 where generated trampolines must go. Default to ".text" if we 258 can't find it. */ 259 htab->tramp_section = 0; 260 text_section = 0; 261 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0; 262 input_bfd != NULL; 263 input_bfd = input_bfd->link.next) 264 { 265 bfd_count += 1; 266 for (section = input_bfd->sections; 267 section != NULL; 268 section = section->next) 269 { 270 const char* name = bfd_get_section_name (input_bfd, section); 271 272 if (!strcmp (name, ".tramp")) 273 htab->tramp_section = section; 274 275 if (!strcmp (name, ".text")) 276 text_section = section; 277 278 if (top_id < section->id) 279 top_id = section->id; 280 } 281 } 282 htab->bfd_count = bfd_count; 283 if (htab->tramp_section == 0) 284 htab->tramp_section = text_section; 285 286 /* We can't use output_bfd->section_count here to find the top output 287 section index as some sections may have been removed, and 288 strip_excluded_output_sections doesn't renumber the indices. */ 289 for (section = output_bfd->sections, top_index = 0; 290 section != NULL; 291 section = section->next) 292 { 293 if (top_index < section->index) 294 top_index = section->index; 295 } 296 297 htab->top_index = top_index; 298 amt = sizeof (asection *) * (top_index + 1); 299 input_list = (asection **) bfd_malloc (amt); 300 htab->input_list = input_list; 301 if (input_list == NULL) 302 return -1; 303 304 /* For sections we aren't interested in, mark their entries with a 305 value we can check later. */ 306 list = input_list + top_index; 307 do 308 *list = bfd_abs_section_ptr; 309 while (list-- != input_list); 310 311 for (section = output_bfd->sections; 312 section != NULL; 313 section = section->next) 314 { 315 if ((section->flags & SEC_CODE) != 0) 316 input_list[section->index] = NULL; 317 } 318 319 return 1; 320 } 321 322 /* Determine and set the size of the stub section for a final link. 323 324 The basic idea here is to examine all the relocations looking for 325 PC-relative calls to a target that is unreachable with a "bl" 326 instruction. */ 327 328 bfd_boolean 329 elf32_m68hc11_size_stubs (bfd *output_bfd, bfd *stub_bfd, 330 struct bfd_link_info *info, 331 asection * (*add_stub_section) (const char*, asection*)) 332 { 333 bfd *input_bfd; 334 asection *section; 335 Elf_Internal_Sym *local_syms, **all_local_syms; 336 unsigned int bfd_indx, bfd_count; 337 bfd_size_type amt; 338 asection *stub_sec; 339 struct m68hc11_elf_link_hash_table *htab = m68hc11_elf_hash_table (info); 340 341 if (htab == NULL) 342 return FALSE; 343 344 /* Stash our params away. */ 345 htab->stub_bfd = stub_bfd; 346 htab->add_stub_section = add_stub_section; 347 348 /* Count the number of input BFDs and find the top input section id. */ 349 for (input_bfd = info->input_bfds, bfd_count = 0; 350 input_bfd != NULL; 351 input_bfd = input_bfd->link.next) 352 bfd_count += 1; 353 354 /* We want to read in symbol extension records only once. To do this 355 we need to read in the local symbols in parallel and save them for 356 later use; so hold pointers to the local symbols in an array. */ 357 amt = sizeof (Elf_Internal_Sym *) * bfd_count; 358 all_local_syms = (Elf_Internal_Sym **) bfd_zmalloc (amt); 359 if (all_local_syms == NULL) 360 return FALSE; 361 362 /* Walk over all the input BFDs, swapping in local symbols. */ 363 for (input_bfd = info->input_bfds, bfd_indx = 0; 364 input_bfd != NULL; 365 input_bfd = input_bfd->link.next, bfd_indx++) 366 { 367 Elf_Internal_Shdr *symtab_hdr; 368 369 /* We'll need the symbol table in a second. */ 370 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 371 if (symtab_hdr->sh_info == 0) 372 continue; 373 374 /* We need an array of the local symbols attached to the input bfd. */ 375 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents; 376 if (local_syms == NULL) 377 { 378 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr, 379 symtab_hdr->sh_info, 0, 380 NULL, NULL, NULL); 381 /* Cache them for elf_link_input_bfd. */ 382 symtab_hdr->contents = (unsigned char *) local_syms; 383 } 384 if (local_syms == NULL) 385 { 386 free (all_local_syms); 387 return FALSE; 388 } 389 390 all_local_syms[bfd_indx] = local_syms; 391 } 392 393 for (input_bfd = info->input_bfds, bfd_indx = 0; 394 input_bfd != NULL; 395 input_bfd = input_bfd->link.next, bfd_indx++) 396 { 397 Elf_Internal_Shdr *symtab_hdr; 398 struct elf_link_hash_entry ** sym_hashes; 399 400 sym_hashes = elf_sym_hashes (input_bfd); 401 402 /* We'll need the symbol table in a second. */ 403 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 404 if (symtab_hdr->sh_info == 0) 405 continue; 406 407 local_syms = all_local_syms[bfd_indx]; 408 409 /* Walk over each section attached to the input bfd. */ 410 for (section = input_bfd->sections; 411 section != NULL; 412 section = section->next) 413 { 414 Elf_Internal_Rela *internal_relocs, *irelaend, *irela; 415 416 /* If there aren't any relocs, then there's nothing more 417 to do. */ 418 if ((section->flags & SEC_RELOC) == 0 419 || section->reloc_count == 0) 420 continue; 421 422 /* If this section is a link-once section that will be 423 discarded, then don't create any stubs. */ 424 if (section->output_section == NULL 425 || section->output_section->owner != output_bfd) 426 continue; 427 428 /* Get the relocs. */ 429 internal_relocs 430 = _bfd_elf_link_read_relocs (input_bfd, section, NULL, 431 (Elf_Internal_Rela *) NULL, 432 info->keep_memory); 433 if (internal_relocs == NULL) 434 goto error_ret_free_local; 435 436 /* Now examine each relocation. */ 437 irela = internal_relocs; 438 irelaend = irela + section->reloc_count; 439 for (; irela < irelaend; irela++) 440 { 441 unsigned int r_type, r_indx; 442 struct elf32_m68hc11_stub_hash_entry *stub_entry; 443 asection *sym_sec; 444 bfd_vma sym_value; 445 struct elf_link_hash_entry *hash; 446 const char *stub_name; 447 Elf_Internal_Sym *sym; 448 449 r_type = ELF32_R_TYPE (irela->r_info); 450 451 /* Only look at 16-bit relocs. */ 452 if (r_type != (unsigned int) R_M68HC11_16) 453 continue; 454 455 /* Now determine the call target, its name, value, 456 section. */ 457 r_indx = ELF32_R_SYM (irela->r_info); 458 if (r_indx < symtab_hdr->sh_info) 459 { 460 /* It's a local symbol. */ 461 Elf_Internal_Shdr *hdr; 462 bfd_boolean is_far; 463 464 sym = local_syms + r_indx; 465 is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); 466 if (!is_far) 467 continue; 468 469 if (sym->st_shndx >= elf_numsections (input_bfd)) 470 sym_sec = NULL; 471 else 472 { 473 hdr = elf_elfsections (input_bfd)[sym->st_shndx]; 474 sym_sec = hdr->bfd_section; 475 } 476 stub_name = (bfd_elf_string_from_elf_section 477 (input_bfd, symtab_hdr->sh_link, 478 sym->st_name)); 479 sym_value = sym->st_value; 480 hash = NULL; 481 } 482 else 483 { 484 /* It's an external symbol. */ 485 int e_indx; 486 487 e_indx = r_indx - symtab_hdr->sh_info; 488 hash = (struct elf_link_hash_entry *) 489 (sym_hashes[e_indx]); 490 491 while (hash->root.type == bfd_link_hash_indirect 492 || hash->root.type == bfd_link_hash_warning) 493 hash = ((struct elf_link_hash_entry *) 494 hash->root.u.i.link); 495 496 if (hash->root.type == bfd_link_hash_defined 497 || hash->root.type == bfd_link_hash_defweak 498 || hash->root.type == bfd_link_hash_new) 499 { 500 if (!(hash->other & STO_M68HC12_FAR)) 501 continue; 502 } 503 else if (hash->root.type == bfd_link_hash_undefweak) 504 { 505 continue; 506 } 507 else if (hash->root.type == bfd_link_hash_undefined) 508 { 509 continue; 510 } 511 else 512 { 513 bfd_set_error (bfd_error_bad_value); 514 goto error_ret_free_internal; 515 } 516 sym_sec = hash->root.u.def.section; 517 sym_value = hash->root.u.def.value; 518 stub_name = hash->root.root.string; 519 } 520 521 if (!stub_name) 522 goto error_ret_free_internal; 523 524 stub_entry = m68hc12_stub_hash_lookup 525 (htab->stub_hash_table, 526 stub_name, 527 FALSE, FALSE); 528 if (stub_entry == NULL) 529 { 530 if (add_stub_section == 0) 531 continue; 532 533 stub_entry = m68hc12_add_stub (stub_name, section, htab); 534 if (stub_entry == NULL) 535 { 536 error_ret_free_internal: 537 if (elf_section_data (section)->relocs == NULL) 538 free (internal_relocs); 539 goto error_ret_free_local; 540 } 541 } 542 543 stub_entry->target_value = sym_value; 544 stub_entry->target_section = sym_sec; 545 } 546 547 /* We're done with the internal relocs, free them. */ 548 if (elf_section_data (section)->relocs == NULL) 549 free (internal_relocs); 550 } 551 } 552 553 if (add_stub_section) 554 { 555 /* OK, we've added some stubs. Find out the new size of the 556 stub sections. */ 557 for (stub_sec = htab->stub_bfd->sections; 558 stub_sec != NULL; 559 stub_sec = stub_sec->next) 560 { 561 stub_sec->size = 0; 562 } 563 564 bfd_hash_traverse (htab->stub_hash_table, htab->size_one_stub, htab); 565 } 566 free (all_local_syms); 567 return TRUE; 568 569 error_ret_free_local: 570 free (all_local_syms); 571 return FALSE; 572 } 573 574 /* Export the trampoline addresses in the symbol table. */ 575 static bfd_boolean 576 m68hc11_elf_export_one_stub (struct bfd_hash_entry *gen_entry, void *in_arg) 577 { 578 struct bfd_link_info *info; 579 struct m68hc11_elf_link_hash_table *htab; 580 struct elf32_m68hc11_stub_hash_entry *stub_entry; 581 char* name; 582 bfd_boolean result; 583 584 info = (struct bfd_link_info *) in_arg; 585 htab = m68hc11_elf_hash_table (info); 586 if (htab == NULL) 587 return FALSE; 588 589 /* Massage our args to the form they really have. */ 590 stub_entry = (struct elf32_m68hc11_stub_hash_entry *) gen_entry; 591 592 /* Generate the trampoline according to HC11 or HC12. */ 593 result = (* htab->build_one_stub) (gen_entry, in_arg); 594 595 /* Make a printable name that does not conflict with the real function. */ 596 name = concat ("tramp.", stub_entry->root.string, NULL); 597 598 /* Export the symbol for debugging/disassembling. */ 599 m68hc11_elf_set_symbol (htab->stub_bfd, info, name, 600 stub_entry->stub_offset, 601 stub_entry->stub_sec); 602 free (name); 603 return result; 604 } 605 606 /* Export a symbol or set its value and section. */ 607 static void 608 m68hc11_elf_set_symbol (bfd *abfd, struct bfd_link_info *info, 609 const char *name, bfd_vma value, asection *sec) 610 { 611 struct elf_link_hash_entry *h; 612 613 h = (struct elf_link_hash_entry *) 614 bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE); 615 if (h == NULL) 616 { 617 _bfd_generic_link_add_one_symbol (info, abfd, 618 name, 619 BSF_GLOBAL, 620 sec, 621 value, 622 (const char*) NULL, 623 TRUE, FALSE, NULL); 624 } 625 else 626 { 627 h->root.type = bfd_link_hash_defined; 628 h->root.u.def.value = value; 629 h->root.u.def.section = sec; 630 } 631 } 632 633 634 /* Build all the stubs associated with the current output file. The 635 stubs are kept in a hash table attached to the main linker hash 636 table. This function is called via m68hc12elf_finish in the 637 linker. */ 638 639 bfd_boolean 640 elf32_m68hc11_build_stubs (bfd *abfd, struct bfd_link_info *info) 641 { 642 asection *stub_sec; 643 struct bfd_hash_table *table; 644 struct m68hc11_elf_link_hash_table *htab; 645 struct m68hc11_scan_param param; 646 647 m68hc11_elf_get_bank_parameters (info); 648 htab = m68hc11_elf_hash_table (info); 649 if (htab == NULL) 650 return FALSE; 651 652 for (stub_sec = htab->stub_bfd->sections; 653 stub_sec != NULL; 654 stub_sec = stub_sec->next) 655 { 656 bfd_size_type size; 657 658 /* Allocate memory to hold the linker stubs. */ 659 size = stub_sec->size; 660 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size); 661 if (stub_sec->contents == NULL && size != 0) 662 return FALSE; 663 stub_sec->size = 0; 664 } 665 666 /* Build the stubs as directed by the stub hash table. */ 667 table = htab->stub_hash_table; 668 bfd_hash_traverse (table, m68hc11_elf_export_one_stub, info); 669 670 /* Scan the output sections to see if we use the memory banks. 671 If so, export the symbols that define how the memory banks 672 are mapped. This is used by gdb and the simulator to obtain 673 the information. It can be used by programs to burn the eprom 674 at the good addresses. */ 675 param.use_memory_banks = FALSE; 676 param.pinfo = &htab->pinfo; 677 bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); 678 if (param.use_memory_banks) 679 { 680 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_START_NAME, 681 htab->pinfo.bank_physical, 682 bfd_abs_section_ptr); 683 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_VIRTUAL_NAME, 684 htab->pinfo.bank_virtual, 685 bfd_abs_section_ptr); 686 m68hc11_elf_set_symbol (abfd, info, BFD_M68HC11_BANK_SIZE_NAME, 687 htab->pinfo.bank_size, 688 bfd_abs_section_ptr); 689 } 690 691 return TRUE; 692 } 693 694 void 695 m68hc11_elf_get_bank_parameters (struct bfd_link_info *info) 696 { 697 unsigned i; 698 struct m68hc11_page_info *pinfo; 699 struct bfd_link_hash_entry *h; 700 struct m68hc11_elf_link_hash_table *htab; 701 702 htab = m68hc11_elf_hash_table (info); 703 if (htab == NULL) 704 return; 705 706 pinfo = & htab->pinfo; 707 if (pinfo->bank_param_initialized) 708 return; 709 710 pinfo->bank_virtual = M68HC12_BANK_VIRT; 711 pinfo->bank_mask = M68HC12_BANK_MASK; 712 pinfo->bank_physical = M68HC12_BANK_BASE; 713 pinfo->bank_shift = M68HC12_BANK_SHIFT; 714 pinfo->bank_size = 1 << M68HC12_BANK_SHIFT; 715 716 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_START_NAME, 717 FALSE, FALSE, TRUE); 718 if (h != (struct bfd_link_hash_entry*) NULL 719 && h->type == bfd_link_hash_defined) 720 pinfo->bank_physical = (h->u.def.value 721 + h->u.def.section->output_section->vma 722 + h->u.def.section->output_offset); 723 724 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_VIRTUAL_NAME, 725 FALSE, FALSE, TRUE); 726 if (h != (struct bfd_link_hash_entry*) NULL 727 && h->type == bfd_link_hash_defined) 728 pinfo->bank_virtual = (h->u.def.value 729 + h->u.def.section->output_section->vma 730 + h->u.def.section->output_offset); 731 732 h = bfd_link_hash_lookup (info->hash, BFD_M68HC11_BANK_SIZE_NAME, 733 FALSE, FALSE, TRUE); 734 if (h != (struct bfd_link_hash_entry*) NULL 735 && h->type == bfd_link_hash_defined) 736 pinfo->bank_size = (h->u.def.value 737 + h->u.def.section->output_section->vma 738 + h->u.def.section->output_offset); 739 740 pinfo->bank_shift = 0; 741 for (i = pinfo->bank_size; i != 0; i >>= 1) 742 pinfo->bank_shift++; 743 pinfo->bank_shift--; 744 pinfo->bank_mask = (1 << pinfo->bank_shift) - 1; 745 pinfo->bank_physical_end = pinfo->bank_physical + pinfo->bank_size; 746 pinfo->bank_param_initialized = 1; 747 748 h = bfd_link_hash_lookup (info->hash, "__far_trampoline", FALSE, 749 FALSE, TRUE); 750 if (h != (struct bfd_link_hash_entry*) NULL 751 && h->type == bfd_link_hash_defined) 752 pinfo->trampoline_addr = (h->u.def.value 753 + h->u.def.section->output_section->vma 754 + h->u.def.section->output_offset); 755 } 756 757 /* Return 1 if the address is in banked memory. 758 This can be applied to a virtual address and to a physical address. */ 759 int 760 m68hc11_addr_is_banked (struct m68hc11_page_info *pinfo, bfd_vma addr) 761 { 762 if (addr >= pinfo->bank_virtual) 763 return 1; 764 765 if (addr >= pinfo->bank_physical && addr <= pinfo->bank_physical_end) 766 return 1; 767 768 return 0; 769 } 770 771 /* Return the physical address seen by the processor, taking 772 into account banked memory. */ 773 bfd_vma 774 m68hc11_phys_addr (struct m68hc11_page_info *pinfo, bfd_vma addr) 775 { 776 if (addr < pinfo->bank_virtual) 777 return addr; 778 779 /* Map the address to the memory bank. */ 780 addr -= pinfo->bank_virtual; 781 addr &= pinfo->bank_mask; 782 addr += pinfo->bank_physical; 783 return addr; 784 } 785 786 /* Return the page number corresponding to an address in banked memory. */ 787 bfd_vma 788 m68hc11_phys_page (struct m68hc11_page_info *pinfo, bfd_vma addr) 789 { 790 if (addr < pinfo->bank_virtual) 791 return 0; 792 793 /* Map the address to the memory bank. */ 794 addr -= pinfo->bank_virtual; 795 addr >>= pinfo->bank_shift; 796 addr &= 0x0ff; 797 return addr; 798 } 799 800 /* This function is used for relocs which are only used for relaxing, 801 which the linker should otherwise ignore. */ 802 803 bfd_reloc_status_type 804 m68hc11_elf_ignore_reloc (bfd *abfd ATTRIBUTE_UNUSED, 805 arelent *reloc_entry, 806 asymbol *symbol ATTRIBUTE_UNUSED, 807 void *data ATTRIBUTE_UNUSED, 808 asection *input_section, 809 bfd *output_bfd, 810 char **error_message ATTRIBUTE_UNUSED) 811 { 812 if (output_bfd != NULL) 813 reloc_entry->address += input_section->output_offset; 814 return bfd_reloc_ok; 815 } 816 817 bfd_reloc_status_type 818 m68hc11_elf_special_reloc (bfd *abfd ATTRIBUTE_UNUSED, 819 arelent *reloc_entry, 820 asymbol *symbol, 821 void *data ATTRIBUTE_UNUSED, 822 asection *input_section, 823 bfd *output_bfd, 824 char **error_message ATTRIBUTE_UNUSED) 825 { 826 if (output_bfd != (bfd *) NULL 827 && (symbol->flags & BSF_SECTION_SYM) == 0 828 && (! reloc_entry->howto->partial_inplace 829 || reloc_entry->addend == 0)) 830 { 831 reloc_entry->address += input_section->output_offset; 832 return bfd_reloc_ok; 833 } 834 835 if (output_bfd != NULL) 836 return bfd_reloc_continue; 837 838 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section)) 839 return bfd_reloc_outofrange; 840 841 abort(); 842 } 843 844 /* Look through the relocs for a section during the first phase. 845 Since we don't do .gots or .plts, we just need to consider the 846 virtual table relocs for gc. */ 847 848 bfd_boolean 849 elf32_m68hc11_check_relocs (bfd *abfd, struct bfd_link_info *info, 850 asection *sec, const Elf_Internal_Rela *relocs) 851 { 852 Elf_Internal_Shdr * symtab_hdr; 853 struct elf_link_hash_entry ** sym_hashes; 854 const Elf_Internal_Rela * rel; 855 const Elf_Internal_Rela * rel_end; 856 857 if (bfd_link_relocatable (info)) 858 return TRUE; 859 860 symtab_hdr = & elf_tdata (abfd)->symtab_hdr; 861 sym_hashes = elf_sym_hashes (abfd); 862 rel_end = relocs + sec->reloc_count; 863 864 for (rel = relocs; rel < rel_end; rel++) 865 { 866 struct elf_link_hash_entry * h; 867 unsigned long r_symndx; 868 869 r_symndx = ELF32_R_SYM (rel->r_info); 870 871 if (r_symndx < symtab_hdr->sh_info) 872 h = NULL; 873 else 874 { 875 h = sym_hashes [r_symndx - symtab_hdr->sh_info]; 876 while (h->root.type == bfd_link_hash_indirect 877 || h->root.type == bfd_link_hash_warning) 878 h = (struct elf_link_hash_entry *) h->root.u.i.link; 879 } 880 881 switch (ELF32_R_TYPE (rel->r_info)) 882 { 883 /* This relocation describes the C++ object vtable hierarchy. 884 Reconstruct it for later use during GC. */ 885 case R_M68HC11_GNU_VTINHERIT: 886 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset)) 887 return FALSE; 888 break; 889 890 /* This relocation describes which C++ vtable entries are actually 891 used. Record for later use during GC. */ 892 case R_M68HC11_GNU_VTENTRY: 893 BFD_ASSERT (h != NULL); 894 if (h != NULL 895 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_addend)) 896 return FALSE; 897 break; 898 } 899 } 900 901 return TRUE; 902 } 903 904 /* Relocate a 68hc11/68hc12 ELF section. */ 905 bfd_boolean 906 elf32_m68hc11_relocate_section (bfd *output_bfd ATTRIBUTE_UNUSED, 907 struct bfd_link_info *info, 908 bfd *input_bfd, asection *input_section, 909 bfd_byte *contents, Elf_Internal_Rela *relocs, 910 Elf_Internal_Sym *local_syms, 911 asection **local_sections) 912 { 913 Elf_Internal_Shdr *symtab_hdr; 914 struct elf_link_hash_entry **sym_hashes; 915 Elf_Internal_Rela *rel, *relend; 916 const char *name = NULL; 917 struct m68hc11_page_info *pinfo; 918 const struct elf_backend_data * const ebd = get_elf_backend_data (input_bfd); 919 struct m68hc11_elf_link_hash_table *htab; 920 unsigned long e_flags; 921 922 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr; 923 sym_hashes = elf_sym_hashes (input_bfd); 924 e_flags = elf_elfheader (input_bfd)->e_flags; 925 926 htab = m68hc11_elf_hash_table (info); 927 if (htab == NULL) 928 return FALSE; 929 930 /* Get memory bank parameters. */ 931 m68hc11_elf_get_bank_parameters (info); 932 933 pinfo = & htab->pinfo; 934 rel = relocs; 935 relend = relocs + input_section->reloc_count; 936 937 for (; rel < relend; rel++) 938 { 939 int r_type; 940 arelent arel; 941 reloc_howto_type *howto; 942 unsigned long r_symndx; 943 Elf_Internal_Sym *sym; 944 asection *sec; 945 bfd_vma relocation = 0; 946 bfd_reloc_status_type r = bfd_reloc_undefined; 947 bfd_vma phys_page; 948 bfd_vma phys_addr; 949 bfd_vma insn_addr; 950 bfd_vma insn_page; 951 bfd_boolean is_far = FALSE; 952 bfd_boolean is_xgate_symbol = FALSE; 953 bfd_boolean is_section_symbol = FALSE; 954 struct elf_link_hash_entry *h; 955 bfd_vma val; 956 const char * msg; 957 char * buf; 958 959 r_symndx = ELF32_R_SYM (rel->r_info); 960 r_type = ELF32_R_TYPE (rel->r_info); 961 962 if (r_type == R_M68HC11_GNU_VTENTRY 963 || r_type == R_M68HC11_GNU_VTINHERIT) 964 continue; 965 966 if (! (*ebd->elf_info_to_howto_rel) (input_bfd, &arel, rel)) 967 continue; 968 howto = arel.howto; 969 970 h = NULL; 971 sym = NULL; 972 sec = NULL; 973 if (r_symndx < symtab_hdr->sh_info) 974 { 975 sym = local_syms + r_symndx; 976 sec = local_sections[r_symndx]; 977 relocation = (sec->output_section->vma 978 + sec->output_offset 979 + sym->st_value); 980 is_far = (sym && (sym->st_other & STO_M68HC12_FAR)); 981 is_xgate_symbol = (sym && (sym->st_target_internal)); 982 is_section_symbol = ELF_ST_TYPE (sym->st_info) & STT_SECTION; 983 } 984 else 985 { 986 bfd_boolean unresolved_reloc, warned, ignored; 987 988 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel, 989 r_symndx, symtab_hdr, sym_hashes, 990 h, sec, relocation, unresolved_reloc, 991 warned, ignored); 992 993 is_far = (h && (h->other & STO_M68HC12_FAR)); 994 is_xgate_symbol = (h && (h->target_internal)); 995 } 996 997 if (sec != NULL && discarded_section (sec)) 998 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section, 999 rel, 1, relend, howto, 0, contents); 1000 1001 if (bfd_link_relocatable (info)) 1002 { 1003 /* This is a relocatable link. We don't have to change 1004 anything, unless the reloc is against a section symbol, 1005 in which case we have to adjust according to where the 1006 section symbol winds up in the output section. */ 1007 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION) 1008 rel->r_addend += sec->output_offset; 1009 continue; 1010 } 1011 1012 if (h != NULL) 1013 name = h->root.root.string; 1014 else 1015 { 1016 name = (bfd_elf_string_from_elf_section 1017 (input_bfd, symtab_hdr->sh_link, sym->st_name)); 1018 if (name == NULL || *name == '\0') 1019 name = bfd_section_name (input_bfd, sec); 1020 } 1021 1022 if (is_far && ELF32_R_TYPE (rel->r_info) == R_M68HC11_16) 1023 { 1024 struct elf32_m68hc11_stub_hash_entry* stub; 1025 1026 stub = m68hc12_stub_hash_lookup (htab->stub_hash_table, 1027 name, FALSE, FALSE); 1028 if (stub) 1029 { 1030 relocation = stub->stub_offset 1031 + stub->stub_sec->output_section->vma 1032 + stub->stub_sec->output_offset; 1033 is_far = FALSE; 1034 } 1035 } 1036 1037 /* Do the memory bank mapping. */ 1038 phys_addr = m68hc11_phys_addr (pinfo, relocation + rel->r_addend); 1039 phys_page = m68hc11_phys_page (pinfo, relocation + rel->r_addend); 1040 switch (r_type) 1041 { 1042 case R_M68HC12_LO8XG: 1043 /* This relocation is specific to XGATE IMM16 calls and will precede 1044 a HI8. tc-m68hc11 only generates them in pairs. 1045 Leave the relocation to the HI8XG step. */ 1046 r = bfd_reloc_ok; 1047 r_type = R_M68HC11_NONE; 1048 break; 1049 1050 case R_M68HC12_HI8XG: 1051 /* This relocation is specific to XGATE IMM16 calls and must follow 1052 a LO8XG. Does not actually check that it was a LO8XG. 1053 Adjusts high and low bytes. */ 1054 relocation = phys_addr; 1055 if ((e_flags & E_M68HC11_XGATE_RAMOFFSET) 1056 && (relocation >= 0x2000)) 1057 relocation += 0xc000; /* HARDCODED RAM offset for XGATE. */ 1058 1059 /* Fetch 16 bit value including low byte in previous insn. */ 1060 val = (bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset) << 8) 1061 | bfd_get_8 (input_bfd, (bfd_byte*) contents + rel->r_offset - 2); 1062 1063 /* Add on value to preserve carry, then write zero to high byte. */ 1064 relocation += val; 1065 1066 /* Write out top byte. */ 1067 bfd_put_8 (input_bfd, (relocation >> 8) & 0xff, 1068 (bfd_byte*) contents + rel->r_offset); 1069 1070 /* Write out low byte to previous instruction. */ 1071 bfd_put_8 (input_bfd, relocation & 0xff, 1072 (bfd_byte*) contents + rel->r_offset - 2); 1073 1074 /* Mark as relocation completed. */ 1075 r = bfd_reloc_ok; 1076 r_type = R_M68HC11_NONE; 1077 break; 1078 1079 /* The HI8 and LO8 relocs are generated by %hi(expr) %lo(expr) 1080 assembler directives. %hi does not support carry. */ 1081 case R_M68HC11_HI8: 1082 case R_M68HC11_LO8: 1083 relocation = phys_addr; 1084 break; 1085 1086 case R_M68HC11_24: 1087 /* Reloc used by 68HC12 call instruction. */ 1088 bfd_put_16 (input_bfd, phys_addr, 1089 (bfd_byte*) contents + rel->r_offset); 1090 bfd_put_8 (input_bfd, phys_page, 1091 (bfd_byte*) contents + rel->r_offset + 2); 1092 r = bfd_reloc_ok; 1093 r_type = R_M68HC11_NONE; 1094 break; 1095 1096 case R_M68HC11_NONE: 1097 r = bfd_reloc_ok; 1098 break; 1099 1100 case R_M68HC11_LO16: 1101 /* Reloc generated by %addr(expr) gas to obtain the 1102 address as mapped in the memory bank window. */ 1103 relocation = phys_addr; 1104 break; 1105 1106 case R_M68HC11_PAGE: 1107 /* Reloc generated by %page(expr) gas to obtain the 1108 page number associated with the address. */ 1109 relocation = phys_page; 1110 break; 1111 1112 case R_M68HC11_16: 1113 /* Get virtual address of instruction having the relocation. */ 1114 if (is_far) 1115 { 1116 msg = _("reference to the far symbol `%s' using a wrong " 1117 "relocation may result in incorrect execution"); 1118 buf = xmalloc (strlen (msg) + strlen (name) + 10); 1119 sprintf (buf, msg, name); 1120 1121 (*info->callbacks->warning) 1122 (info, buf, name, input_bfd, NULL, rel->r_offset); 1123 free (buf); 1124 } 1125 1126 /* Get virtual address of instruction having the relocation. */ 1127 insn_addr = input_section->output_section->vma 1128 + input_section->output_offset 1129 + rel->r_offset; 1130 1131 insn_page = m68hc11_phys_page (pinfo, insn_addr); 1132 1133 /* If we are linking an S12 instruction against an XGATE symbol, we 1134 need to change the offset of the symbol value so that it's correct 1135 from the S12's perspective. */ 1136 if (is_xgate_symbol) 1137 { 1138 /* The ram in the global space is mapped to 0x2000 in the 16-bit 1139 address space for S12 and 0xE000 in the 16-bit address space 1140 for XGATE. */ 1141 if (relocation >= 0xE000) 1142 { 1143 /* We offset the address by the difference 1144 between these two mappings. */ 1145 relocation -= 0xC000; 1146 break; 1147 } 1148 else 1149 { 1150 msg = _("XGATE address (%lx) is not within shared RAM" 1151 "(0xE000-0xFFFF), therefore you must manually offset " 1152 "the address, and possibly manage the page, in your " 1153 "code."); 1154 buf = xmalloc (strlen (msg) + 128); 1155 sprintf (buf, msg, phys_addr); 1156 (*info->callbacks->warning) (info, buf, name, input_bfd, 1157 input_section, insn_addr); 1158 free (buf); 1159 break; 1160 } 1161 } 1162 1163 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend) 1164 && m68hc11_addr_is_banked (pinfo, insn_addr) 1165 && phys_page != insn_page && !(e_flags & E_M68HC11_NO_BANK_WARNING)) 1166 { 1167 /* xgettext:c-format */ 1168 msg = _("banked address [%lx:%04lx] (%lx) is not in the same bank " 1169 "as current banked address [%lx:%04lx] (%lx)"); 1170 buf = xmalloc (strlen (msg) + 128); 1171 sprintf (buf, msg, phys_page, phys_addr, 1172 (long) (relocation + rel->r_addend), 1173 insn_page, m68hc11_phys_addr (pinfo, insn_addr), 1174 (long) (insn_addr)); 1175 (*info->callbacks->warning) (info, buf, name, input_bfd, 1176 input_section, rel->r_offset); 1177 free (buf); 1178 break; 1179 } 1180 1181 if (phys_page != 0 && insn_page == 0) 1182 { 1183 /* xgettext:c-format */ 1184 msg = _("reference to a banked address [%lx:%04lx] in the " 1185 "normal address space at %04lx"); 1186 buf = xmalloc (strlen (msg) + 128); 1187 sprintf (buf, msg, phys_page, phys_addr, insn_addr); 1188 (*info->callbacks->warning) (info, buf, name, input_bfd, 1189 input_section, insn_addr); 1190 free (buf); 1191 relocation = phys_addr; 1192 break; 1193 } 1194 1195 /* If this is a banked address use the phys_addr so that 1196 we stay in the banked window. */ 1197 if (m68hc11_addr_is_banked (pinfo, relocation + rel->r_addend)) 1198 relocation = phys_addr; 1199 break; 1200 } 1201 1202 /* If we are linking an XGATE instruction against an S12 symbol, we 1203 need to change the offset of the symbol value so that it's correct 1204 from the XGATE's perspective. */ 1205 if (!strcmp (howto->name, "R_XGATE_IMM8_LO") 1206 || !strcmp (howto->name, "R_XGATE_IMM8_HI")) 1207 { 1208 /* We can only offset S12 addresses that lie within the non-paged 1209 area of RAM. */ 1210 if (!is_xgate_symbol && !is_section_symbol) 1211 { 1212 /* The ram in the global space is mapped to 0x2000 and stops at 1213 0x4000 in the 16-bit address space for S12 and 0xE000 in the 1214 16-bit address space for XGATE. */ 1215 if (relocation >= 0x2000 && relocation < 0x4000) 1216 /* We offset the address by the difference 1217 between these two mappings. */ 1218 relocation += 0xC000; 1219 else 1220 { 1221 /* Get virtual address of instruction having the relocation. */ 1222 insn_addr = input_section->output_section->vma 1223 + input_section->output_offset + rel->r_offset; 1224 1225 msg = _("S12 address (%lx) is not within shared RAM" 1226 "(0x2000-0x4000), therefore you must manually " 1227 "offset the address in your code"); 1228 buf = xmalloc (strlen (msg) + 128); 1229 sprintf (buf, msg, phys_addr); 1230 (*info->callbacks->warning) (info, buf, name, input_bfd, 1231 input_section, insn_addr); 1232 free (buf); 1233 break; 1234 } 1235 } 1236 } 1237 1238 if (r_type != R_M68HC11_NONE) 1239 { 1240 if ((r_type == R_M68HC12_PCREL_9) || (r_type == R_M68HC12_PCREL_10)) 1241 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 1242 contents, rel->r_offset, 1243 relocation - 2, rel->r_addend); 1244 else 1245 r = _bfd_final_link_relocate (howto, input_bfd, input_section, 1246 contents, rel->r_offset, 1247 relocation, rel->r_addend); 1248 } 1249 1250 if (r != bfd_reloc_ok) 1251 { 1252 switch (r) 1253 { 1254 case bfd_reloc_overflow: 1255 (*info->callbacks->reloc_overflow) 1256 (info, NULL, name, howto->name, (bfd_vma) 0, 1257 input_bfd, input_section, rel->r_offset); 1258 break; 1259 1260 case bfd_reloc_undefined: 1261 (*info->callbacks->undefined_symbol) 1262 (info, name, input_bfd, input_section, rel->r_offset, TRUE); 1263 break; 1264 1265 case bfd_reloc_outofrange: 1266 msg = _ ("internal error: out of range error"); 1267 goto common_error; 1268 1269 case bfd_reloc_notsupported: 1270 msg = _ ("internal error: unsupported relocation error"); 1271 goto common_error; 1272 1273 case bfd_reloc_dangerous: 1274 msg = _ ("internal error: dangerous error"); 1275 goto common_error; 1276 1277 default: 1278 msg = _ ("internal error: unknown error"); 1279 /* fall through */ 1280 1281 common_error: 1282 (*info->callbacks->warning) (info, msg, name, input_bfd, 1283 input_section, rel->r_offset); 1284 break; 1285 } 1286 } 1287 } 1288 1289 return TRUE; 1290 } 1291 1292 1293 1294 /* Set and control ELF flags in ELF header. */ 1295 1296 bfd_boolean 1297 _bfd_m68hc11_elf_set_private_flags (bfd *abfd, flagword flags) 1298 { 1299 BFD_ASSERT (!elf_flags_init (abfd) 1300 || elf_elfheader (abfd)->e_flags == flags); 1301 1302 elf_elfheader (abfd)->e_flags = flags; 1303 elf_flags_init (abfd) = TRUE; 1304 return TRUE; 1305 } 1306 1307 /* Merge backend specific data from an object file to the output 1308 object file when linking. */ 1309 1310 bfd_boolean 1311 _bfd_m68hc11_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info) 1312 { 1313 bfd *obfd = info->output_bfd; 1314 flagword old_flags; 1315 flagword new_flags; 1316 bfd_boolean ok = TRUE; 1317 1318 /* Check if we have the same endianness */ 1319 if (!_bfd_generic_verify_endian_match (ibfd, info)) 1320 return FALSE; 1321 1322 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour 1323 || bfd_get_flavour (obfd) != bfd_target_elf_flavour) 1324 return TRUE; 1325 1326 new_flags = elf_elfheader (ibfd)->e_flags; 1327 elf_elfheader (obfd)->e_flags |= new_flags & EF_M68HC11_ABI; 1328 old_flags = elf_elfheader (obfd)->e_flags; 1329 1330 if (! elf_flags_init (obfd)) 1331 { 1332 elf_flags_init (obfd) = TRUE; 1333 elf_elfheader (obfd)->e_flags = new_flags; 1334 elf_elfheader (obfd)->e_ident[EI_CLASS] 1335 = elf_elfheader (ibfd)->e_ident[EI_CLASS]; 1336 1337 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd) 1338 && bfd_get_arch_info (obfd)->the_default) 1339 { 1340 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), 1341 bfd_get_mach (ibfd))) 1342 return FALSE; 1343 } 1344 1345 return TRUE; 1346 } 1347 1348 /* Check ABI compatibility. */ 1349 if ((new_flags & E_M68HC11_I32) != (old_flags & E_M68HC11_I32)) 1350 { 1351 _bfd_error_handler 1352 (_("%pB: linking files compiled for 16-bit integers (-mshort) " 1353 "and others for 32-bit integers"), ibfd); 1354 ok = FALSE; 1355 } 1356 if ((new_flags & E_M68HC11_F64) != (old_flags & E_M68HC11_F64)) 1357 { 1358 _bfd_error_handler 1359 (_("%pB: linking files compiled for 32-bit double (-fshort-double) " 1360 "and others for 64-bit double"), ibfd); 1361 ok = FALSE; 1362 } 1363 1364 /* Processor compatibility. */ 1365 if (!EF_M68HC11_CAN_MERGE_MACH (new_flags, old_flags)) 1366 { 1367 _bfd_error_handler 1368 (_("%pB: linking files compiled for HCS12 with " 1369 "others compiled for HC12"), ibfd); 1370 ok = FALSE; 1371 } 1372 new_flags = ((new_flags & ~EF_M68HC11_MACH_MASK) 1373 | (EF_M68HC11_MERGE_MACH (new_flags, old_flags))); 1374 1375 elf_elfheader (obfd)->e_flags = new_flags; 1376 1377 new_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); 1378 old_flags &= ~(EF_M68HC11_ABI | EF_M68HC11_MACH_MASK); 1379 1380 /* Warn about any other mismatches */ 1381 if (new_flags != old_flags) 1382 { 1383 _bfd_error_handler 1384 /* xgettext:c-format */ 1385 (_("%pB: uses different e_flags (%#x) fields than previous modules (%#x)"), 1386 ibfd, new_flags, old_flags); 1387 ok = FALSE; 1388 } 1389 1390 if (! ok) 1391 { 1392 bfd_set_error (bfd_error_bad_value); 1393 return FALSE; 1394 } 1395 1396 return TRUE; 1397 } 1398 1399 bfd_boolean 1400 _bfd_m68hc11_elf_print_private_bfd_data (bfd *abfd, void *ptr) 1401 { 1402 FILE *file = (FILE *) ptr; 1403 1404 BFD_ASSERT (abfd != NULL && ptr != NULL); 1405 1406 /* Print normal ELF private data. */ 1407 _bfd_elf_print_private_bfd_data (abfd, ptr); 1408 1409 /* xgettext:c-format */ 1410 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags); 1411 1412 if (elf_elfheader (abfd)->e_flags & E_M68HC11_I32) 1413 fprintf (file, _("[abi=32-bit int, ")); 1414 else 1415 fprintf (file, _("[abi=16-bit int, ")); 1416 1417 if (elf_elfheader (abfd)->e_flags & E_M68HC11_F64) 1418 fprintf (file, _("64-bit double, ")); 1419 else 1420 fprintf (file, _("32-bit double, ")); 1421 1422 if (strcmp (bfd_get_target (abfd), "elf32-m68hc11") == 0) 1423 fprintf (file, _("cpu=HC11]")); 1424 else if (elf_elfheader (abfd)->e_flags & EF_M68HCS12_MACH) 1425 fprintf (file, _("cpu=HCS12]")); 1426 else 1427 fprintf (file, _("cpu=HC12]")); 1428 1429 if (elf_elfheader (abfd)->e_flags & E_M68HC12_BANKS) 1430 fprintf (file, _(" [memory=bank-model]")); 1431 else 1432 fprintf (file, _(" [memory=flat]")); 1433 1434 if (elf_elfheader (abfd)->e_flags & E_M68HC11_XGATE_RAMOFFSET) 1435 fprintf (file, _(" [XGATE RAM offsetting]")); 1436 1437 fputc ('\n', file); 1438 1439 return TRUE; 1440 } 1441 1442 static void scan_sections_for_abi (bfd *abfd ATTRIBUTE_UNUSED, 1443 asection *asect, void *arg) 1444 { 1445 struct m68hc11_scan_param* p = (struct m68hc11_scan_param*) arg; 1446 1447 if (asect->vma >= p->pinfo->bank_virtual) 1448 p->use_memory_banks = TRUE; 1449 } 1450 1451 /* Tweak the OSABI field of the elf header. */ 1452 1453 void 1454 elf32_m68hc11_post_process_headers (bfd *abfd, struct bfd_link_info *link_info) 1455 { 1456 struct m68hc11_scan_param param; 1457 struct m68hc11_elf_link_hash_table *htab; 1458 1459 _bfd_elf_post_process_headers (abfd, link_info); 1460 1461 if (link_info == NULL) 1462 return; 1463 1464 htab = m68hc11_elf_hash_table (link_info); 1465 if (htab == NULL) 1466 return; 1467 1468 m68hc11_elf_get_bank_parameters (link_info); 1469 1470 param.use_memory_banks = FALSE; 1471 param.pinfo = & htab->pinfo; 1472 1473 bfd_map_over_sections (abfd, scan_sections_for_abi, ¶m); 1474 1475 if (param.use_memory_banks) 1476 { 1477 Elf_Internal_Ehdr * i_ehdrp; 1478 1479 i_ehdrp = elf_elfheader (abfd); 1480 i_ehdrp->e_flags |= E_M68HC12_BANKS; 1481 } 1482 } 1483